Proof Terms for Term Rewriting

Christina Kirk (Kohl)

University of Innsbruck, Austria

April 13, 2025

Abstract

Proof terms are first-order terms that represent reductions in term
rewriting. They were initially introduced in [6] and [5, Chapter 8]
by van Qostrom and de Vrijer to study equivalences of reductions in
left-linear rewrite systems. This entry formalizes proof terms for multi-
steps in first-order term rewrite systems. We define simple proof terms
(i.e., without a composition operator) and establish the correspondence
to multi-steps: each proof term represents a multi-step with the same
source and target, and every multi-step can be expressed as a proof
term. The formalization moreover includes operations on proof terms,
such as residuals, join, and deletion and a method for labeling proof
term sources to identify overlaps between two proof terms.

This formalization is part of the Isabelle Formalization of Rewriting
IsaFoR and is an essential component of several formalized confluence
and commutation results involving multi-steps [2, 3, 4, 1].

Contents
1 Preliminaries 2
1.1 Utilities for Lists 2
1.1.1 Lists of option 4
1.2 Results About Linear Terms 4
1.3 Results About Substitutions and Contexts 5
1.3.1 Utilities for mk-subst 7
1.4 Matching Terms 7
1.4.1 Matching of Linear Terms 8
2 Proof Terms 9
2.1 Definitions 9
2.2 Frequently Used Locales/Contexts 11
2.3 Proof Term Predicates 12
2.4 ’Normal” Terms vs. Proof Terms 14

http://cl-informatik.uibk.ac.at/isafor/

2.5 Substitutions o
2.6 Contextso
2.7 Source and Target L.
2.8 Additional Results
2.9 Proof Terms Represent Multi-Steps

3 Operations on Proof Terms

3.1 Residuals
3.2 Join

3.21 N-FoldJoin
3.3 Deletion
3.4 Computations With Single Redexes

4 Orthogonal Proof Terms

5 Labels and Overlaps

5.1 Labeled Proof Terms
5.2 Measuring Overlap L.
5.3 Collecting Overlapping Positions

6 Redex Patterns

1 Preliminaries

theory Proof-Term-Utils
imports
First-Order-Terms. Matching
First-Order-Rewriting. Term-Impl
begin

1.1 Utilities for Lists

lemma obtain-list-with-property:
assumes Vz € set zs. da. Pa x
shows Jas. length as = length xs A (Vi < length zs. P (asli) (zs!7))

{proof)

lemma card-Union-Sum:
assumes is-partition (map f [0..<length zs])
and Vi < length xs. finite (f 1)
shows card (|Ji<length zs. fi) = (3 i<length xs. card (f 7))
(proof)

20
21
25
28
30
30

34

35
36
44
45

47

lemma sum-sum-concat: (> i<length xs. Y xf (xsli). g x) = (3 x4 concat (map

fxs). g x)
(proof)

lemma concat-map2-zip:
assumes length xs = length ys
and Vi < length zs. length (xsli) = length (ys!%)
shows concat (map2 zip xs ys) = zip (concat xs) (concat ys)
(proof)

lemma sum-list-less:
assumes less:i < j
and i’j"i’ < length xs j' < length xs
and ;5" < length (xs!j’)
and sums:i = sum-list (map length (take i’ xs)) + @' j = sum-list (map length
(take j" zs)) + 7"
shows i’ < j’

(proof)

lemma zip-symm: (z, y) € set (zip xs ys) = (y,) € set (zip ys xs)
(proof)

lemma sum-list-elem:
(Calyl fz) =fy
(proof)

lemma sum-list-zero:
assumes Vi < length zs. f (zsli) = 0
shows (3" z«uas. fz) =0

(proof)

lemma distinct-is-partition:
assumes distinct (concat ts)
shows is-partition (map set ts)

(proof)

lemma filter-ex-index:
assumes z = filter fxzs | i i < length (filter f xs)
shows 3j. j < length zs N x = zslj

{proof)

lemma filter-indez-neq”:

assumes i < jj < length (filter f xs)

shows 3 i’ j'. i’ < length zs A j' < length zs A i’ < j' N xzs | i’ = (filter f xs) !
i N axs!j = (filter fas)!j

(proof)

lemma filter-index-neq:

assumes i # j i < length (filter f xzs) j < length (filter f xs)

shows 3 i’ j'. i’ < length xs A j' < length xs N i’ # ' N xs | i’ = (filter f xs) !
i N as!j = (filter fas)!j
{proof)

lemma nth-drop-equal:
assumes length xs = length ys
and Vj < length zs. j > i —> zslj = yslj
shows drop i xs = drop © ys

(proof)

lemma union-take-drop-list:

assumes i < length xs

shows (set (take i xs)) U (set (drop (Suc i) xs)) = {aslj | j. j < length xs N j #
i}
(proof)

lemma list-tl-eq:
assumes length xs = length ys xs # ||
and Vi < length zs. i > 0 — wzsli = ysli
shows tl xs = tl ys

(proof)

1.1.1 Lists of option

lemma length-those:
assumes those xs = Some ys
shows length xs = length ys

{proof)

lemma those-not-none-z: those xs = Some ys = x € set xs = x # None

(proof)

lemma those-not-none-xs: list-all (A\x. x # None) xs => those s # None

{proof)

lemma those-some:
assumes length s = length ys Vi < length zs. zsli = Some (ys!i)
shows those s = Some ys

{proof)

lemma those-some2:
assumes those xs = Some ys
shows Vi < length xs. zsli = Some (ys!i)

(proof)

lemma exists-some-list:
assumes Vi < length zs. (3y. zsli = Some y)
shows 3 ys. (Vi < length zs. zsli = Some (ys!i)) A length ys = length xs

{proof)

1.2 Results About Linear Terms

lemma linear-term-var-vars-term-list:
assumes linear-term t

shows vars-term-list t = vars-distinct t
(proof)

lemma linear-term-unique-vars:
assumes linear-term s
and p € poss s and s|-p = Var z
and ¢ € poss s and s|-¢ = Var z
shows p = ¢
(proof)

lemma linear-term-ctzt:
assumes linear-term t
and p € poss t
shows wars-ctat (ctat-of-pos-term p t) N vars-term (t|-p) = {}
(proof)

lemma linear-term-obtain-subst:
assumes linear-term (Fun f ts) and l:length ts = length ss
and substs: Vi< length ts. (3o. tsli - o = ssli)
shows Jo. Fun fits- o = Fun [ss

(proof)

lemma linear-ctxt-of-pos-term:
assumes linear-term t and lin-s:linear-term s and p:p € poss t
and vars-term t N vars-term s = {}
shows linear-term (replace-at t p s)

(proof)

lemma distinct-vars:

assumes \p qz y. p# q = p € posst = q € poss t = t|-p = Var z =
tl-qg=Vary = x#y

shows distinct (vars-term-list t)

(proof)

lemma distinct-vars-linear-term:
assumes distinct (vars-term-list t)
shows linear-term t

{proof)

lemma distinct-vars-eg-linear: linear-term t = distinct (vars-term-list t)
{proof)

1.3 Results About Substitutions and Contexts

lemma ctzt-apply-term-subst:
assumes linear-term t and i < length (vars-term-list t)
and p = (var-poss-list t)!4
shows (ctzt-of-pos-term p (t - 0))(s) = t - o((vars-term-list t)!i := s)
(proof)

lemma ctaxt-subst-apply:
assumes p € poss t and t|-p = Var z
and linear-term t
shows ((ctzt-of-pos-term p t) -c 0){s) =t - o(x = s)
(proof)

lemma ctzt-of-pos-term-hole-subst:
assumes linear-term t
and i < length (var-poss-list t) and p = var-poss-list t ! i
and Vz € vars-term t. x # vars-term-list t i — ocx =71z
shows ctzt-of-pos-term p (t - o) = ctxt-of-pos-term p (t - T)
(proof)

lemma ctxt-apply-ctzt-apply:

assumes p € poss t

shows (ctzt-of-pos-term (pQq) ((ctzt-of-pos-term p t) (s))) (u) = (ctzt-of-pos-term
p t){(ctat-of-pos-term q s) (u))

(proof)

lemma replace-at-append-subst:
assumes linear-term t
and p € poss t t|-p = Var x
shows (ctzt-of-pos-term (pQgq) (t - 0)) (s) =t - o(x := (ctxt-of-pos-term q (o
z)) (s))

(proof)

lemma replace-at-fun-poss-not-below:
assumes = p <, ¢
and p € poss t and q € fun-poss (replace-at t p s)
shows ¢ € fun-poss t
(proof)

lemma substitution-subterm-at:
assumes Vj < length (vars-term-list). o (vars-term-list l'! j) = s |- (var-poss-list
1)
and 37. 1 -7 =3
shows [- 0 = s
(proof)

lemma vars-map-vars-term:
map | (vars-term-list t) = vars-term-list (map-vars-term f t)

(proof)

lemma ctxt-apply-subt-at:

assumes q € poss s

shows (ctzt-of-pos-term p (s|-q)) (t) = (ctat-of-pos-term (q@p) s) (t) |- ¢
(proof)

1.3.1 Utilities for mk-subst

We consider the special case of applying mk-subst when the variables in-
volved form a partition.

lemma mk-subst-same:
assumes length xs = length ts distinct zs
shows map (mk-subst f (zip zs ts)) zs = ts

{proof)

lemma map2-zip: set (map fst (concat (map2 zip xs ys))) C set (concat xs)

{(proof)

lemma mk-subst-partition:
fixes xs :: ‘a list list
assumes l:length s = length ss
and part:is-partition (map set xs)
shows Vi < length xs. Vx € set (xzsli). (mk-subst f (zip (xzsli) (ssli))) z =
(mk-subst f (concat (map2 zip xs ss)))
{proof)

The following lemma is used later to show that A = (to-pterm (lhs)) - o
implies A = (to-pterm (lhs «)) - (As), for some suitable As.

lemma subst-imp-mk-subst:

assumes s =t -0

shows Jss. t - 0 = t - (mk-subst Var (zip (vars-distinct t) ss)) A length ss =
length (vars-distinct t) A (Vi < length ss. o (vars-distinct t!i) = ssli)
(proof)

lemma mk-subst-rename:
assumes length (vars-distinct t) = length zs and inj f

shows ¢ - (mk-subst Var (zip (vars-distinct t) xs)) = (map-vars-term f t) -
(mk-subst Var (zip (vars-distinct (map-vars-term f t)) s))
(proof)

1.4 Matching Terms

The goal is showing that match (¢ - o) t = Some o whenever the domain
of o is a subset of the variables in ¢t. For that we need some helper lemmas.

lemma decompose-fst:
assumes decompose (Fun f ss) t = Some us
shows map fst us = ss

(proof)

lemma decompose-vars-term:
assumes decompose (Fun f ss) t = Some us
shows vars-term (Fun f ss) = (U (a, b) € set us. vars-term a)

(proof)

lemma match-term-list-domain:
assumes match-term-list P o = Some T
shows Vz. z ¢ (U (a, b) € set P. vars-term a) A o & = None — 7 x = None

{proof)

lemma match-subst-domain:
assumes match a b = Some o
shows subst-domain o C vars-term b

(proof)

lemma match-trivial:
assumes subst-domain o C wvars-term t
shows match (t - 0) t = Some o

(proof)

end

1.4.1 Matching of Linear Terms

theory Linear-Matching
imports Proof-Term-Utils
begin

For a linear term the matching substitution can simply be computed with
the following definition.

definition match-substs :: ('f, 'v) term = ('f, 'v) term = ("v x ('f, 'v) term) list
where match-substs t s = (zip (vars-term-list t) (map (Ap. s|-p) (var-poss-list

t))

lemma mk-subst-partition-special:
assumes length ss = length ts
and is-partition (map vars-term ts)
shows Vi < length ts. (tsli) - (mk-subst f (zip (vars-term-list (tsli)) (ssli))) =
(ts'0) - (mk-subst f (concat (map2 zip (map vars-term-list ts) ss)))
{proof)

lemma match-substs-Fun:
assumes [:length ts = length ss
shows match-substs (Fun f ts) (Fun g ss) = concat (map2 zip (map vars-term-list
ts) (map2 (At s. map ((|-) s) (var-poss-list t)) ts ss))
(is match-substs (Fun f ts) (Fun g ss) = concat (map2 zip ?zs ?terms))

(proof)

If all function symbols in term ¢ coincide with function symbols in term s,
then ¢ matches s.

lemma fun-poss-eq-imp-matches:

fixes st :: ('f, 'v) term

assumes linear-term t and Vp € poss t. V [ts. t|-p = Fun fts — (3 ss. length
ts = length ss A s|-p = Fun f ss)

shows t - (mk-subst Var (match-substs t s)) = s
(proof)

end

2 Proof Terms

theory Proof-Terms
imports
First-Order-Terms. Matching
First-Order- Rewriting. Multistep
Proof-Term-Utils
begin

2.1 Definitions

A rewrite rule consists of a pair of terms representing its left-hand side and
right-hand side. We associate a rule symbol with each rewrite rule.

datatype ('f, 'v) prule =
Rule (lhs: ('f, 'v) term) (rhs: ('f, 'v) term) (- — - [51, 51] 52)

Translate between prule defined here and rule as defined in IsaFoR.

abbreviation to-rule :: ('f, 'v) prule = (’f, 'v) rule
where to-rule r = (lhs r, rhs 1)

Proof terms are terms built from variables, function symbols, and rules.

type-synonym

('f, ") pterm = ((’f, "v) prule + 'f, 'v) term
type-synonym

('f, v) pterm-ctzt = (('f, "v) prule + 'f, "v) ctat

We provides an easier notation for proof terms (avoiding Inl and Inr).

abbreviation Prule :: ('f, 'v) prule = ('f, 'v) pterm list = ('f, 'v) pterm
where Prule o As = Fun (Inl «) As

abbreviation Pfun :: 'f = ('f, 'v) pterm list = ('f, 'v) pterm
where Pfun f As = Fun (Inr f) As

Also for contexts.

abbreviation Crule :: ('f, 'v) prule = ('f, 'v) pterm list = ('f, 'v) pterm-ctzt =
('f, ") pterm list =('f, "v) pterm-ctat

where Crule o As1 C As2 = More (Inl o) Asl C As2
abbreviation Cfun :: 'f = ('f, 'v) pterm list = ('f, 'v) pterm-ctat = ('f, 'v)
pterm list =('f, 'v) pterm-ctat

where Cfun f As1 C As2 = More (Inr f) Asl C As2

Case analysis on proof terms.

lemma pterm-cases [case-names Var Pfun Prule, cases type: pterm):

(Nz. A = Var x = P) = (A\f As. A = Pfun f As = P) = (Ao 4s. A =
Prule « As = P) = P

(proof)

Induction scheme for proof terms.

lemma
fixes P :: ('f, 'v) pterm = bool
assumes Az. P (Var z)
and Af As. (Na. a € set As = P a) = P (Pfun f As)
and A« As. (Aa. a € set As = P a) = P (Prule a As)
shows pterm-induct [case-names Var Pfun Prule, induct type: pterm]: P A

{proof)

Induction scheme for contexts of proof terms.

lemma

fixes P :: ('f, 'v) pterm-ctzt = bool

assumes P [J

and Afss! Css2. P C = P (Cfun f ss1 C ss2)

and Aa ss! Css2. P C = P (Crule « ss1 C ss2)

shows pterm-ctzt-induct [case-names Hole Cfun Crule, induct type: pterm-ctxt]:
pPC

(proof)

Obtain the distinct variables occurring on the left-hand side of a rule in the
order they appear.

abbreviation var-rule :: ('f, 'v) prule = v list where var-rule o = vars-distinct
(lhs @)

abbreviation Ilhs-subst :: ('g, "v) term list = ('f, "v) prule = ('g, "v) subst ({-)-
[0,99])
where lhs-subst As a = mk-subst Var (zip (var-rule o) As)

A proof term using only function symbols and variables is an empty step.

fun is-empty-step :: ('f, 'v) pterm = bool where
is-empty-step (Var x) = True

| is-empty-step (Pfun f As) = list-all is-empty-step As

| is-empty-step (Prule o As) = False

fun is-Prule :: ('f, 'v) pterm = bool where
is-Prule (Prule - -) = True
| is-Prule - = False

Source and target

fun source :: ('f, 'v) pterm = ('f, 'v) term where
source (Var x) = Var z

| source (Pfun f As) = Fun f (map source As)

| source (Prule o As) = lhs o - (map source As),

10

fun target :: ('f, 'v) pterm = ('f, 'v) term where
target (Var z) = Var

| target (Pfun f As) = Fun f (map target As)

| target (Prule o As) = rhs a - (map target As)q

Source also works for proof term contexts in left-linear TRSs.

fun source-ctat :: ('f, 'v) pterm-ctet = ('f, 'v) ctat where

source-ctzt 1 = [
| source-ctzt (Cfun f As1 C As2) = More f (map source Asl) (source-ctzt C) (map
source As2)
| source-ctat (Crule o Asl C As2) =

(let ctat-pos = (var-poss-list (lhs «))!(length Asl);

placeholder = Var ((vars-term-list (lhs «)) ! (length As1)) in

ctxt-of-pos-term (ctxt-pos) (lhs o - (map source (As1 @ ((placeholder # As2))))a))

o. (source-ctzt C')

abbreviation co-initial A B = (source A = source B)

Transform simple terms to proof terms.

fun to-pterm :: ('f, "v) term = (’f, 'v) pterm where
to-pterm (Var z) = Var x
| to-pterm (Fun f ts) = Pfun f (map to-pterm ts)

Also for contexts.

fun to-pterm-ctzt :: ('f, 'v) ctzt = (’f, 'v) pterm-ctzt where

to-pterm-ctat 1 = [J
| to-pterm-ctat (More f ss1 C ss2) = Cfun f (map to-pterm ss1) (to-pterm-ctzt C)
(map to-pterm ss2)

2.2 Frequently Used Locales/Contexts

Often certain properties about proof terms only hold when the underlying
TRS does not contain variable left-hand sides and/or variables on the right
are a subset of the variables on the left and/or the TRS is left-linear.
locale left-lin =

fixes R :: ('f, ") trs

assumes left-lin:left-linear-trs R

locale no-var-lhs =
fixes R :: ('f, 'v) trs
assumes no-var-lths:Ball R (A\(I, r). is-Fun [)

locale var-rhs-subset-lhs =
fixes R :: ('f, 'v) trs

assumes varcond:Ball R (\(I, r). vars-term r C vars-term 1)

locale wf-trs = no-var-lhs + var-rhs-subset-lhs
locale left-lin-no-var-ths = left-lin + no-var-lhs

11

locale left-lin-wf-trs = left-lin + wf-trs

context wf-trs

begin

lemma wf-trs-alt:
shows Trs.wf-trs R

(proof)
end

context left-lin
begin
lemma length-var-rule:
assumes to-rule o« € R
shows length (var-rule) = length (vars-term-list (lhs «))

(proof)

end

2.3 Proof Term Predicates

The number of arguments of a well-defined proof term over a TRS R using
a rule symbol a corresponds to the number of variables in lhs a. Also the
rewrite rule for & must belong to the TRS R.

inductive-set wf-pterm :: ('f, 'v) trs = ('f, 'v) pterm set
for R where
[simp]: Var x € wf-pterm R
[[intro]: ¥Vt € set ts. t € wf-pterm R = Pfun fts € wf-pterm R
|[intro]: (Ihs o, rhs @) € R = length As = length (var-rule o) =
Va € set As. a € wf-pterm R = Prule o As € wf-pterm R

inductive-set wf-pterm-ctat :: ('f, "v) trs = ('f, 'v) pterm-ctzt set

for R where

[simp]: O € wf-pterm-ctzt R

|[intro]: Vs € (set ss1) U (set ss2). s € wf-pterm R = C' € wf-pterm-ctzt R =
Cfun f ss1 C ss2 € wf-pterm-ctat R

[[intro]: (lhs a, Ths @) € R => (length ss1) + (length ss2) + 1 = length (var-rule

a) =
Vs € (set ss1) U (set ss2). s € wf-pterm R = C € wf-pterm-ctat R =
Crule a ss1 C ss2 € wf-pterm-ctat R

lemma fun-well-arg[introl:
assumes Fun f As € wf-pterm R a € set As
shows a € wf-pterm R

{proof)

lemma trs-well-ctxt-arg[intro]:
assumes More f ss1 C ss2 € wf-pterm-ctzt R s € (set ss1) U (set ss2)
shows s € wf-pterm R

{proof)

12

lemma trs-well-ctxt-C[intro]:
assumes More f ss1 C ss2 € wf-pterm-ctat R
shows C € wf-pterm-ctat R

{proof)

context no-var-lhs

begin

lemma [hs-is-Fun:
assumes Prule a Bs € wf-pterm R
shows is-Fun (lhs @)

(proof)
end

lemma [hs-subst-var-well-def:
assumes Vi < length As. Asli € wf-pterm R
shows ((4s),) = € wf-pterm R

(proof)

lemma [hs-subst-well-def:
assumes Vi < length As. Asli € wf-pterm R B € wf-pterm R
shows B - ((As),) € wf-pterm R

{proof)

lemma subt-at-is-wf-pterm:
assumes p € poss A and A € wf-pterm R
shows A|-p € wf-pterm R

{proof)

lemma ctzt-of-pos-term-well:
assumes p € poss A and A € wf-pterm R
shows ctzt-of-pos-term p A € wf-pterm-ctxt R

(proof)

Every normal term is a well-defined proof term.

lemma to-pterm-wf-pterm[simpl: to-pterm t € wf-pterm R
(proof)

lemma to-pterm-trs-ctat:
assumes p € poss (to-pterm s)
shows ctzt-of-pos-term p (to-pterm s) € wf-pterm-ctzt R
(proof)

lemma to-pterm-ctat-wf-pterm-ctat:
shows to-pterm-ctxt C € wf-pterm-ctzt R

(proof)

lemma ctxt-wf-pterm:
assumes A € wf-pterm R and p € poss A
and B € wf-pterm R

13

shows (ctzt-of-pos-term p A)(B) € wf-pterm R
(proof)

2.4 ’Normal’ Terms vs. Proof Terms

lemma to-pterm-empty: is-empty-step (to-pterm t)

(proof)

Variables remain unchanged.

lemma vars-to-pterm: vars-term-list (to-pterm t) = vars-term-list t
(proof)

lemma poss-list-to-pterm: poss-list t = poss-list (to-pterm t)

(proof)

lemma p-in-poss-to-pterm:
assumes p € poss t
shows p € poss (to-pterm t)

{proof)

lemma var-poss-to-pterm: var-poss t = var-poss (to-pterm t)
(proof)

lemma var-poss-list-to-pterm: var-poss-list (to-pterm t) = var-poss-list t

(proof)

to-pterm distributes over application of substitution.

lemma to-pterm-subst:
to-pterm (t - o) = (to-pterm t) - (to-pterm o o)
(proof)

to-pterm distributes over context.

lemma to-pterm-ctat-of-pos-apply-term:

assumes p € poss s

shows to-pterm ((ctazt-of-pos-term p s) (t)) = (ctzt-of-pos-term p (to-pterm
s)){to-pterm t)

(proof)

Linear terms become linear proof terms.

lemma to-pterm-linear:
assumes linear-term t
shows linear-term (to-pterm t)

{proof)

lemma lhs-subst-trivial:
shows match (to-pterm (lhs «) - (As)y) (to-pterm (lhs)) = Some (As),

{proof)

lemma to-pterm-ctxt-apply-term:

14

to-pterm C(t) = (to-pterm-ctzt C) (to-pterm t)
{proof)

2.5 Substitutions

lemma fun-mk-subst|simp]:
assumes Vz. f (Var z) = Var z
shows f o (mk-subst Var (zip vs ts)) = mk-subst Var (zip vs (map f ts))

(proof)

lemma apply-lhs-subst-var-rule:
assumes length ts = length (var-rule o)
shows map ((ts)s) (var-rule o) = ts

{proof)

lemma match-lhs-subst:
assumes match B (to-pterm (lhs «)) = Some o
shows 3 Bs. length Bs = length (var-rule o)) A
B = (to-pterm (lhs @) - (Bs)o A
(Vz € set (var-rule). 0 x = ((Bs)q) T)
(proof)

lemma apply-subst-wf-pterm:
assumes A € wf-pterm R
and Vz € vars-term A. 0 x € wf-pterm R
shows A - 0 € wf-pterm R

{proof)

lemma subst-well-def:
assumes B € wf-pterm R A - 0 = Bz € vars-term A
shows o z € wf-pterm R

{proof)

lemma [hs-subst-args-wf-pterm:

assumes to-pterm (lhs «) - (As), € wf-pterm R and length As = length (var-rule
a)

shows Va € set As. a € wf-pterm R
(proof)

lemma match-well-def:
assumes B € wf-pterm R match B A = Some o
shows Vi < length (vars-distinct A). o ((vars-distinct A) | i) € wf-pterm R

{proof)

lemma subst-imp-well-def:
assumes A - o € wf-pterm R
shows A € wf-pterm R

{proof)

15

lemma lhs-subst-var-i:
assumes z = (var-rule o)!i and ¢ < length (var-rule o) and i < length As
shows ((4s),) z = Asli
{proof)

lemma lhs-subst-not-var-i:
assumes —(3 ¢ < length As. i < length (var-rule a) A © = (var-rule a)li)
shows ((4s),) © = Var x
{proof)

lemma [hs-subst-upd:
assumes length ss1 < length (var-rule o)
shows (((ss1 Q t # s52),) ((var-rule o)!(length ss1) 1= s)) = (ss1 Q s # $52)4

(proof)

lemma eval-lhs-subst:

assumes [:length (var-rule o) = length As

shows (to-pterm (lhs «)) - (A8)o - 0 = (to-pterm (lhs «)) - {map (Ma. a - o)
As)q,
(proof)

lemma var-rule-pos-subst:
assumes i < length (var-rule o) length ss = length (var-rule o)
and p € poss (lhs) Var ((var-rule a)li) = (lhs a)|-p
shows lhs a - (s8)q |- (pQq) = (ss!4)|-q
(proof)

lemma [hs-subst-var-rule:
assumes vars-term t C vars-term (lhs a)
shows t - (map o (var-rule a))o =t - o

(proof)

2.6 Contexts

lemma match-lhs-context:
assumes i < length (vars-term-list t) A p = (var-poss-list t)!i
and linear-term t
and match (((ctat-of-pos-term p (t - 0)))(B)) t = Some T
shows map 7 (vars-term-list t) = (map o (vars-term-list t))[i := B|

(proof)

lemma ctzt-lhs-subst:
assumes i:7 < length (var-poss-list (lhs o)) and l:length As = length (var-rule
a)
and pl:pl = var-poss-list (lhs o) ! ¢ and lin:linear-term (lhs o)
and p2 € poss (Asli)
shows (ctzt-of-pos-term (p1 Q p2) (to-pterm (Ihs @) - (As)q))(A) =
(to-pterm (lhs o)) - (take i As @Q (ctat-of-pos-term p2 (Asli))(A) # drop
(Suc i) As)q

16

(proof)

lemma ctxt-rule-obtain-pos:
assumes iq:i#q € poss (Prule o As)
and p-pos:p € poss (source (Prule o As))
and ctat:source-ctxt (ctzt-of-pos-term (i#q) (Prule a As)) = ctat-of-pos-term
p (source (Prule a As))
and lin:linear-term (lhs o)
and l:length As = length (var-rule o)
shows Ip! p2. p = pl@Qp2 A pl = var-poss-list (lhs a)li A p2 € poss (source
(As!D))
(proof)

2.7 Source and Target

lemma source-empty-step:
assumes is-empty-step t
shows to-pterm (source t) =t

(proof)

lemma empty-coinitial:
shows co-initial A t = is-empty-step t = to-pterm (source A) =t

{proof)

lemma source-to-pterm[simp|: source (to-pterm t) = t
(proof)

lemma target-to-pterm[simp): target (to-pterm t) =t
(proof)

lemma vars-term-source:
assumes A € wf-pterm R
shows vars-term A = wvars-term (source A)

(proof)

context var-rhs-subset-lhs
begin
lemma vars-term-target:
assumes A € wf-pterm R
shows vars-term (target A) C vars-term A

(proof)
end

lemma linear-source-imp-linear-pterm:

assumes A € wf-pterm R linear-term (source A)
shows linear-term A

{proof)

context var-rhs-subset-lhs

17

begin
lemma target-apply-subst:

assumes A € wf-pterm R

shows target (A - o) = (target A) - (target o o)
(proof)

end

context var-rhs-subset-lhs

begin

lemma tgt-subst-simp:

assumes A € wf-pterm R
shows target (A - o) = target ((to-pterm (target A)) - o)
(proof)

end

lemma target-empty-apply-subst:

assumes is-empty-step t

shows target (t - o) = (target t) - (target o o)
(proof)

lemma source-ctat-comp:source-ctxt (C1 o, 02) = source-ctxt C1 o, source-ctxt
c2

{proof)

lemma context-source: source (A(B)) = source (A(to-pterm (source B)))

(proof)

lemma context-target: target (A(B)) = target (A{to-pterm (target B)))
(proof)

lemma source-to-pterm-ctat:
source ((to-pterm-ctat C')(A)) = C(source A)

{proof)

lemma target-to-pterm-ctxt:
target ((to-pterm-ctzt C)(A)) = C(target A)
(proof)

lemma source-ctxt-to-pterm:
assumes p € poss s
shows source-ctat (ctat-of-pos-term p (to-pterm s)) = ctat-of-pos-term p s

(proof)

lemma to-pterm-ctzt-at-pos:
assumes p € poss s
shows ctat-of-pos-term p (to-pterm s) = to-pterm-ctat (ctat-of-pos-term p s)

{(proof)

lemma to-pterm-ctat-hole-pos: hole-pos C' = hole-pos (to-pterm-ctat C)

18

{proof)

lemma source-to-pterm-ctxt’:
assumes ¢ € poss §
shows source-ctat (to-pterm-ctzt (ctxt-of-pos-term q s)) = ctat-of-pos-term q s

(proof)

lemma to-pterm-ctat-comp: to-pterm-ctat (C o. D) = to-pterm-ctzt C o to-pterm-ctxt
D
(proof)

lemma source-apply-subst:
assumes A € wf-pterm R
shows source (A - o) = (source A) - (source o o)

(proof)

lemma ctxt-of-pos-term-at-var-subst:
assumes linear-term t
and p € poss t and t|-p = Var z
and Vy € vars-termt. y . —Ty=0y
shows ctrt-of-pos-term p (t - 7) = ctxt-of-pos-term p (t - o)
(proof)

context left-lin
begin

lemma source-ctrt-apply-subst:
assumes C € wf-pterm-ctzt R
shows source-ctat (C - o) = (source-ctzt C) -, (source o o)

(proof)

Needs left-linearity to avoid multihole contexts.

lemma source-ctrt-apply-term:
assumes C € wf-pterm-ctzt R
shows source (C{A)) = (source-ctat C){source A)

(proof)

end

lemma rewrite-tgt:

assumes rstep:(t,v) € (rstep R)*

shows (target (C ((to-pterm t) - o)), target (C' {((to-pterm v) - 0))) € (rstep R)*
(proof)

2.8 Additional Results

lemma length-args-well-Prule:
assumes Prule o As € wf-pterm R Prule a Bs € wf-pterm S
shows length As = length Bs

(proof)

19

lemma co-initial- Var:
assumes co-initial (Var z) B
shows B = Varz V (3a b’ y. B = Prule a b’ A lhs « = Var y)

(proof)

lemma source-poss:
assumes p:p € poss (source (Pfun f As)) and iq:i#tq € poss (Pfun f As)
and ctat:source-ctzt (ctzt-of-pos-term (i#q) (Pfun f As)) = ctxt-of-pos-term p
(source (Pfun f As))
shows Jp’. p = i#p’ N p’ € poss (source (Asli))
(proof)

lemma simple-pterm-match:
assumes source A =t - o
and linear-term t
and A - 71 = to-pterm t - 72
shows matches A (to-pterm t)

{proof)

2.9 Proof Terms Represent Multi-Steps

context var-rhs-subset-lhs
begin
lemma mstep-to-pterm:
assumes (s, t) € mstep R
shows JA. A € wf-pterm R N source A = s A target A =t

(proof)
end

lemma pterm-to-mstep:
assumes A € wf-pterm R
shows (source A, target A) € mstep R

(proof)

lemma co-init-prule:
assumes co-initial (Prule a As) (Prule « Bs)
and Prule a As € wf-pterm R and Prule o Bs € wf-pterm R
shows Vi<length As. co-initial (As!i) (Bsli)
(proof)

3 Operations on Proof Terms

The operations residual, deletion, and join on proof terms all fulfill A %
(source A) = A which implies several useful results.

locale op-proof-term = left-lin-no-var-lhs +
fixes f :: (("a, 'b) prule + 'a, 'b) Term.term = (('a, 'b) prule + 'a, 'b) Term.term
= (('a, 'b) prule + 'a, 'b) Term.term option

20

assumes f-src: A € wf-pterm R = f A (to-pterm (source A)) = Some A
and f-pfun:f (Pfun g As)(Pfun g Bs) = (if length As = length Bs then
(case those (map2 f As Bs) of
Some xs = Some (Pfun g xs)
| None = None) else None)
and f-prule:f (Prule a As) (Pfun g Bs) = (case match (Pfun g Bs) (to-pterm
(lhs @) of
None = None
| Some o =
(case those (map2 f As (map o (var-rule «))) of
Some xs = Some (Prule « xs)
| None = None))
begin

notation
f ('(+") and
f ((-%-) [51, 51] 50)

lemma apply-f-ctxt:
assumes C € wf-pterm-ctzt R
and A x B = Some D
shows C(A) x (to-pterm-ctzt (source-ctat C))(B) = Some (C(D))
(proof)

end

end
theory Residual-Join-Deletion

imports
Proof-Terms
Linear-Matching
begin

3.1 Residuals

Auxiliary lemma in preparation of termination simp rule.

lemma match-vars-term-size:
assumes match s t = Some o
and z € vars-term t
shows size (o x) < size s

(proof)

lemma [termination-simp):
assumes match (Fun f ss) (to-pterm 1) = Some o
and x: (s, t) € set (zip (map o (vars-distinct 1)) ts)
shows size s < Suc (size-list size ss)

(proof)

21

Additional simp rule because we allow variable left-hand sides of rewrite
rules at this point. Then Var z / a and o / Var x are also possible when
evaluating residuals. This might become important when we want to intro-
duce the error rule for residuals of composed proof terms.

lemma [termination-simp):
assumes match (Var z) (to-pterm l) = Some o
and (a, b) € set (zip (map o (vars-distinct 1)) ts)
shows size a = 1

(proof)

fun residual :: ('f, 'v) pterm = ('f, 'v) pterm = ('f, 'v) pterm option (infixr re
70)
where
Var x re Var y =
(if £ = y then Some (Var x) else None)
| Pfun f As re Pfun g Bs =
(if (f = g A length As = length Bs) then
(case those (map2 residual As Bs) of
Some zs = Some (Pfun f xs)
| None = None)
else None)
| Prule o As re Prule 8 Bs =
(if o = B then
(case those (map?2 residual As Bs) of
Some xs = Some ((to-pterm (rhs @)) - (28)q)
| None = None)
else None)
| Prule « As re B =
(case match B (to-pterm (lhs) of
None = None
| Some o =
(case those (map?2 residual As (map o (var-rule @))) of
Some zs = Some (Prule o zs)
| None = None))
| A re Prule o« Bs =
(case match A (to-pterm (lhs «)) of
None = None
| Some o =
(case those (map2 residual (map o (var-rule o)) Bs) of
Some xs = Some ((to-pterm (rhs «)) - (28)q)
| None = None))
| A re B = None

Since the interesting proofs about residuals always follow the same pattern
of induction on the definition, we introduce the following 6 lemmas corre-
sponding to the step cases.

lemma residual-fun-fun:

assumes (Pfun f As) re (Pfun g Bs) = Some C

22

shows f = g A length As = length Bs A
(3Cs. C = Pfun f Cs A
length Cs = length As A
(Vi < length As. Asli re Bsli = Some (Csli)))

(proof)

lemma residual-rule-rule:
assumes (Prule oo As) re (Prule § Bs) = Some C
(Prule o As) € wf-pterm R
(Prule 8 Bs) € wf-pterm S
shows a = 8 A length As = length Bs A
(3 Cs. C = to-pterm (rhs) - (Cs)q A
length Cs = length As A
(Vi < length As. Asli re Bsli = Some (Csli)))

(proof)

lemma residual-rule-var:
assumes (Prule o As) re (Var z) = Some C
(Prule o As) € wf-pterm R
shows Jo. match (Var x) (to-pterm (lhs o)) = Some o A
(3Cs. C = Prule o Cs A
length Cs = length As A
(Vi < length As. Asli re (o (var-rule a ! 7)) = Some (Cs!i)))
(proof)

lemma residual-rule-fun:
assumes (Prule a As) re (Pfun f Bs) = Some C
(Prule o As) € wf-pterm R
shows Jo. match (Pfun f Bs) (to-pterm (lhs o)) = Some o A
(3Cs. C = Prule oo Cs A
length Cs = length As A
(Vi < length As. Asli re (o (var-rule a ! i)) = Some (Csli)))
(proof)

lemma residual-var-rule:
assumes (Var z) re (Prule a As) = Some C
(Prule a As) € wf-pterm R
shows Jo. match (Var z) (to-pterm (lhs «)) = Some o A
(3 Cs. C = (to-pterm (rhs a)) - (Cs)aq A
length Cs = length As A
(Vi < length As. (o (var-rule ! i) re Asli) = Some (Csli)))
(proof)

lemma residual-fun-rule:
assumes (Pfun f Bs) re (Prule @ As) = Some C
(Prule o As) € wf-pterm R
shows Jo. match (Pfun f Bs) (to-pterm (lhs o)) = Some o A
(3 Cs. C = (to-pterm (rhs a)) - (Cs)oq A
length Cs = length As A

23

(Vi < length As. (o (var-rule a ! i)) re Asli = Some (Csl7)))
(proof)

t/ A= tgt(A)

lemma res-emptyl:
assumes is-empty-step t co-initial A t A € wf-pterm R
shows t re A = Some (to-pterm (target A))

(proof)
Ajt=A4A

lemma res-empty2:
assumes A € wf-pterm R
shows A re (to-pterm (source A)) = Some A

(proof)

A/ A= tgt(A)

lemma res-same: A re A = Some (to-pterm (target A))
(proof)

lemma residual-src-tgt:
assumes A re B = Some C A € wf-pterm R B € wf-pterm S
shows source C' = target B

{proof)

The following two lemmas are used inside the induction proof for the result
tgt(A / B) = tgt(B / A). Defining them here, outside the main proof makes
them reusable for the symmetric cases of the proof.

lemma tgt-tgt-rule-var:
assumes Ao a b ¢ d. match (Var v) (to-pterm (lhs o)) = Some 0 =
(a,b) € set (zip As (map o (var-rule o)) =
areb= Some c = brea= Somed—=— a € wf-pterm R = b €
wf-pterm S =
target ¢ = target d
Prule o« As re Var v = Some C
Var v re Prule « As = Some D
Prule a As € wf-pterm R
shows target C = target D

(proof)

lemma tgt-tgt-rule-fun:
assumes Ao a b ¢ d. match (Pfun f Bs) (to-pterm (lhs a)) = Some 0 =
(a,b) € set (zip As (map o (var-rule a))) =
areb= Some c = brea= Somed = a € wf-pterm R = b €
wf-pterm S —
target ¢ = target d
Prule o As re Pfun f Bs = Some C
Pfun f Bs re Prule « As = Some D
Prule o As € wf-pterm R

24

Pfun f Bs € wf-pterm S
shows target C' = target D
(proof)

lemma residual-tgt-tgt:
assumes A re B = Some C Bre A = Some D A € wf-pterm R B € wf-pterm S
shows target C = target D

{proof)

lemma rule-residual-lhs:
assumes args:those (map2 (re) As Bs) = Some Cs
and is-Fun:is-Fun (lhs o)) and [:length Bs = length (var-rule «)
shows Prule oo As re (to-pterm (lhs «) - (Bs),) = Some (Prule o Cs)

(proof)

lemma residual-well-defined:
assumes A € wf-pterm R B € wf-pterm S A re B = Some C
shows C € wf-pterm R

{proof)

no-notation sup (infixl Ll 65)

3.2 Join

fun join :: ('f, 'v) pterm = ('f,'v) pterm = (’f,’v) pterm option (infixr U 70)
where
Var z U Var y =
(if x = y then Some (Var) else None)
| Pfun f As U Pfun g Bs =
(if (f = g A length As = length Bs) then
(case those (map2 (U) As Bs) of
Some zs = Some (Pfun f xs)
| None = None)
else None)
| Prule o As U Prule 8 Bs =
(if « = B then
(case those (map2 (U) As Bs) of
Some zs = Some (Prule o zs)
| None = None)
else None)
| Prule « As U B =
(case match B (to-pterm (lhs) of
None = None
| Some o =
(case those (map2 (U) As (map o (var-rule a))) of
Some zs = Some (Prule « xs)
| None = None))
| AU Prule o Bs =
(case match A (to-pterm (lhs «)) of

25

None = None
| Some o =
(case those (map2 (U) (map o (var-rule)) Bs) of
Some xs = Some (Prule o xs)
| None = None))
| AU B = None

lemma join-sym: AU B =B A
(proof)

lemma join-with-source:
assumes A € wf-pterm R
shows A Ul to-pterm (source A) = Some A

(proof)

context no-var-lhs
begin

lemma join-subst:
assumes B € wf-pterm R and Vz € vars-term B. o x € wf-pterm R
and Vz € vars-term B. source (0 z) = 0 x
shows (B - (to-pterm o o)) U ((to-pterm (source B)) - ¢) = Some (B -)
(proof)

end

lemma join-same:
shows A U A = Some A

(proof)

Analogous to residuals there are 6 lemmas corresponding to the step cases
in induction proofs for joins.

lemma join-fun-fun:
assumes (Pfun f As) U (Pfun g Bs) = Some C
shows f = g A length As = length Bs A
(3Cs. C = Pfun f Cs A
length Cs = length As A
(Vi < length As. Asli U Bsli = Some (Csli)))
(proof)

lemma join-rule-rule:
assumes (Prule o As) U (Prule 8 Bs) = Some C
(Prule As) € wf-pterm R
(Prule p Bs) € wf-pterm R
shows a = 8 A length As = length Bs A
(3Cs. C = Prule oo Cs A
length Cs = length As A
(Vi < length As. Asli U Bsli = Some (Csli)))
(proof)

26

lemma join-rule-var:
assumes (Prule oo As) U (Var) = Some C
(Prule o As) € wf-pterm R
shows Jo. match (Var x) (to-pterm (lhs «)) = Some o A
(3Cs. C = Prule a Cs A
length Cs = length As A
(Vi < length As. Asli U (o (var-rule a ! i)) = Some (Cs!i)))
(proof)

lemma join-rule-fun:
assumes (Prule o As) U (Pfun f Bs) = Some C
(Prule o As) € wf-pterm R
shows Jo. match (Pfun f Bs) (to-pterm (lhs a))) = Some o A
(3Cs. C = Prule o Cs A
length Cs = length As A
(Vi < length As. Asli U (o (var-rule a ! i)) = Some (Cs!i)))
(proof)

lemma join-wf-pterm:
assumes A LI B = Some C
and A € wf-pterm R and B € wf-pterm R
shows C € wf-pterm R

{proof)

lemma source-join:
assumes A LI B = Some C
and A € wf-pterm R and B € wf-pterm R
shows co-initial A C

{proof)

lemma join-pterm-subst-Some:

fixes A B:('f, 'v) pterm

assumes (A - o) U (A - 7) = Some B

shows Jp. (Vz € vars-term A. 0 x U T 2 = Some (0)) AN B= A - p A match
B A = Some o
(proof)

lemma join-pterm-subst-None:
fixes A:('f, 'v) pterm
assumes (A - o) U (A - 7) = None
shows 3 z € vars-term A. o x U T x = None

(proof)

fun mk-subst-from-list :: ("v = ('f, 'v) term) list = ('v = (’f, 'v) term) where
mk-subst-from-list || = Var
| mk-subst-from-list (o # os) = (Az. case o x of
Var © = mk-subst-from-list os x
|t =1t)

27

lemma join-is-Fun:

assumes join:A U B = Some (Pfun f Cs)

shows 3 As. A = Pfun f As A length As = length Cs
(proof)

lemma join-obtain-subst:
assumes join:A U B = Some (to-pterm t - o) and linear-term t
shows (to-pterm t) - mk-subst Var (match-substs (to-pterm t) A) = A

{(proof)

lemma join-pterm-linear-subst:

assumes join:A U B = Some (to-pterm t - o) and lin:linear-term ¢

shows 3 o4 op. 4 = (to-pterm t - 04) N B = (to-pterm t - o) N (Vz €
vars-term t. o4 x U op x = Some (o x))

(proof)

context no-var-lhs
begin
lemma join-rule-lhs:
assumes wf:Prule a As € wf-pterm R and args:Vi < length As. As!i U Bs!i #
None and l:length Bs = length As
shows Prule a As U (to-pterm (lhs o) - (Bs)y) # None

(proof)
end

3.2.1 N-Fold Join

We define a function to recursively join a list of n proof terms. Since each
individual join produces a (('f, 'v) prule + 'f, 'v) Term.term option we first
introduce the following helper function.
fun join-opt :: ('f, 'v) pterm = ('f, "v) pterm option = ('f, 'v) pterm option
where
join-opt A (Some B) = AU B
| join-opt - - = None

fun join-list :: ('f, 'v) pterm list = ('f,’v) pterm option (|])
where
join-list [| = None
| join-list (A # []) = Some A
| join-list (A # As) = join-opt A (join-list As)

context left-lin-no-var-lhs
begin

lemma join-var-rule:
assumes to-rule « € R
shows Var z U Prule @ As = None

(proof)

28

lemma var-join:
assumes Var z U B = Some C and B € wf-pterm R
shows B= Varz A C = Varx

(proof)

lemma fun-join:
assumes Pfun f As U B = Some C
shows (3¢ Bs. B = Pfun g Bs) V (3a Bs. B = Prule a Bs)

(proof)

lemma rule-join:
assumes Prule o As 11 B = Some C and Prule o As € wf-pterm R
shows (3¢ Bs. B = Pfun g Bs) V (38 Bs. B = Prule 8 Bs)
(proof)

Associativity of join is currently not used in any proofs. But it is still a
valuable result, hence included here.

lemma join-opt-assoc:
assumes A € wf-pterm R B € wf-pterm R C € wf-pterm R
shows join-opt A (B U C) = join-opt C (A U B)
(proof)

Preparation for well-definedness result for | |.

lemma join-triple-defined:
assumes A € wf-pterm R B € wf-pterm R C € wf-pterm R
and A U B # None B U C # None AU C # None
shows join-opt A (B U C) # None
(proof)

lemma join-list-defined:
assumes V al a2. al € set As A\ a2 € set As — al U a2 # None
and Va € set As. a € wf-pterm R and As # ||
shows 3 D. join-list As = Some D N D € wf-pterm R

(proof)

lemma join-list-wf-pterm:
assumes Y a € set As. a € wf-pterm R
and join-list As = Some B
shows B € wf-pterm R
(proof)

lemma source-join-list:
assumes join-list As = Some B and Va € set As. a € wf-pterm R
shows AA. A € set As = source A = source B

(proof)

end

29

3.3 Deletion

fun deletion :: ('f, 'v) pterm = ('f,'v) pterm = (’f,'v) pterm option (infixr —,
70)
where
Var x —, Var y =
(if x = y then Some (Var) else None)
| Pfun f As —, Pfun g Bs =
(if (f = g A length As = length Bs) then
(case those (map2 (—,) As Bs) of
Some zs = Some (Pfun f xs)
| None = None)

else None)
| Prule o As —, Prule 8 Bs =
(if « = B then

(case those (map2 (—,) As Bs) of
Some zs = Some ((to-pterm (lhs @)) - (28)q)
| None = None)
else None)
| Prule o As —, B =
(case match B (to-pterm (lhs a)) of
None = None
| Some o =
(case those (map2 (—p) As (map o (var-rule o)) of
Some xs = Some (Prule o xs)
| None = None))
| A —, B = None

lemma del-empty:
assumes A € wf-pterm R
shows A —, (to-pterm (source A)) = Some A

(proof)

context no-var-lhs
begin
lemma deletion-source:
assumes A € wf-pterm R B € wf-pterm R
and A —, B = Some C
shows source C = source A

(proof)
end

3.4 Computations With Single Redexes
When a proof term contains only a single rule symbol, we say it is a *single
redet.

definition [l-single-redex :: ('f, 'v) term = pos = ('f, 'v) prule = ('f, "v) pterm
where [l-single-redex s p a = (ctat-of-pos-term p (to-pterm s))(Prule a (map
(to-pterm o (Api. s|-(p@p1))) (var-poss-list (lhs «))))

30

The [l in [l-single-redex stands for *left—linear, since this definition only
makes sense for left-linear rules.

lemma source-single-redez:

assumes p € poss s

shows source (ll-single-redex s p) = (ctat-of-pos-term p s){(lhs «) - {(map (Api.
s|-(p@p1)) (var-poss-list (lhs «)))q)
(proof)

lemma target-single-redex:

assumes p € poss s

shows target (ll-single-redex s p) = (ctzt-of-pos-term p s){(rhs) - {(map (Api.
s|-(p@p1)) (var-poss-list (lhs «)))q)
(proof)

lemma single-redez-rstep:
assumes to-rule « € R p € poss s
shows (source (ll-single-redex s p «), target (ll-single-redex s p o)) € rstep R
(proof)

lemma single-redez-neq:
assumes («, p) # (8, q¢) p € poss s ¢ € poss s
shows [l-single-redex s p o # ll-single-redex s q 3

(proof)

context left-lin-wf-trs
begin
lemma rstep-exists-single-redezx:
assumes (s, t) € rstep R
shows 3 A p a. A = (ll-single-redex s p a) A\ source A = s A target A =t A
to-rule « € R A\ p € poss s

(proof)

end

lemma single-redez-wf-pterm:
assumes to-rule @ € R and lin:linear-term (lhs «)
and p:p € poss s
shows [l-single-redex s p o € wf-pterm R
(proof)

Interaction of a single redex A, contained in A with the proof term A.

locale single-redex = left-lin-no-var-lhs +
fixes A Apqga
assumes a-well:A € wf-pterm R
and p:p € poss (source A) and ¢:q € poss A
and pq:ctzt-of-pos-term p (source A) = source-ctzt (ctzt-of-pos-term q A)
and delta:A = ll-single-redex (source A) p «
and aq:Al-¢ = Prule o (map (Mi. A|-(¢Q[d])) [0..<length (var-rule «)])
begin

31

interpretation residual-op:op-proof-term R residual
(proof)

interpretation deletion-op:op-proof-term R deletion
(proof)

abbreviation As = (map (A\i. A|-(¢Q[i])) [0..<length (var-rule «)])

lemma length-as:length As = length (var-rule o)
(proof)

lemma as-well:Vi < length As. Asli € wf-pterm R
(proof)

lemma a:A = (ctzt-of-pos-term q A)(Prule o As)
{proof)

lemma rule-in-TRS: to-rule o« € R
(proof)

lemma lin-lhs:linear-term (lhs o)
(proof)

lemma source-at-pq:source (A|-q) = (source A)|-p
(proof)

lemma single-redez-pterm:
shows A = (ctat-of-pos-term p (to-pterm (source A)))(Prule « (map (to-pterm
o source) As))

(proof)

lemma delta-trs-wf-pterm:
shows A € wf-pterm R

(proof)

lemma source-delta: source A = source A

(proof)

lemma residual:
shows A re A = Some ((ctat-of-pos-term q A){((to-pterm (rhs o)) - (As)q))
(proof)

lemma residual-well:
the (A re A) € wf-pterm R
(proof)

lemma target-residual:target (the (A re A)) = target A
(proof)

32

lemma deletion:
shows A —, A = Some ((ctat-of-pos-term q A)((to-pterm (lhs o)) - (As)a))
(proof)

lemma deletion-well:
shows the (A —, A) € wf-pterm R
(proof)

end

locale single-redex’ = left-lin-wf-trs +
fixes AApqgqac
assumes a-well:A € wf-pterm R and rule-in-TRS:to-rule o € R
and p:p € poss (source A) and ¢:q € poss A
and pq: ctzt-of-pos-term p (source A) = source-ctat (ctzt-of-pos-term q A)
and delta:A = ll-single-redex (source A) p «
and aq:Al-q = (to-pterm (lhs «)) - o
begin

interpretation residual-op:op-proof-term R residual {proof)

lemma a:A = (ctzt-of-pos-term q A){(to-pterm (lhs «)) - o)
{proof)

lemma lin-lhs:linear-term (lhs o)
{proof)

lemma is-fun-lhs:is-Fun (lhs «)
{proof)

abbreviation As = map o (var-rule)

lemma lhs-subst: (to-pterm (lhs «)) - 0 = (to-pterm (lhs «)) - (As),
(proof)

lemma rhs-subst: (to-pterm (rhs «)) - o = (to-pterm (rhs «)) - (As)q
(proof)

lemma as-well:Vi < length As. Asli € wf-pterm R
(proof)

lemma source-at-pq:source (A|-q) = (source A)|-p

(proof)

lemma single-redex-pterm:
shows A = (ctzt-of-pos-term p (to-pterm (source A)))(Prule o (map (to-pterm
o source) As))

(proof)

33

lemma residual:
shows A re A = Some ((ctat-of-pos-term q A){((to-pterm (rhs «)) - o))

(proof)

end

end

4 Orthogonal Proof Terms

theory Orthogonal-PT
imports
Residual-Join-Deletion

begin

inductive orthogonal::('f, 'v) pterm = ('f, 'v) pterm = bool (infixl 1, 50)
where
Varx L, Var z
| length As = length Bs =V { < length As. Asli 1, Bsli = Fun f As 1, Fun f
Bs
| length As = length Bs = ¥/ (a,b) € set(zip As Bs). a L, b = (Prule a As) 1,
(to-pterm (lhs «)) - (BS)q
| length As = length Bs = ¥ (a,b) € set(zip As Bs). a L, b = (to-pterm (lhs
a)) - (As)o L, (Prule o Bs)
lemmas orthogonal.intros|intro]

lemma orth-symp: symp (L,)

(proof)

lemma equal-imp-orthogonal:
shows 4 1, A

(proof)

lemma source-orthogonal:
assumes source A =t
shows A L, to-pterm {

{proof)

lemma orth-imp-co-initial:
assumes A 1, B
shows co-initial A B

(proof)
If two proof terms are orthogonal then residual and join are well-defined.

lemma orth-imp-residual-defined:
assumes varcond: A\l r. (I, r) € R = is-Fun I Nl r. (I, r) € S = is-Fun |
and A 1L, B
and A € wf-pterm R and B € wf-pterm S

34

shows A re B # None
{proof)

lemma orth-imp-join-defined:
assumes varcond: A\l r. (I, r) € R = is-Fun |
and A 1, B
and A € wf-pterm R and B € wf-pterm R
shows A U B # None

(proof)

context no-var-lhs

begin

lemma orth-imp-residual-defined:
assumes A 1, B and A € wf-pterm R and B € wf-pterm R
shows A re B # None

(proof)

lemma orth-imp-join-defined:
assumes A 1, B and A € wf-pterm R and B € wf-pterm R
shows A U B # None

{proof)

lemma orthogonal-ctxt:
assumes C(A) L, C(B) C € wf-pterm-ctzt R
shows A 1, B
{proof)

end

context left-lin-no-var-lhs
begin

lemma orthogonal-subst:
assumes A - 0 L, B - 0 source A = source B
and A € wf-pterm R B € wf-pterm R
shows A 1, B

{proof)

end

end

5 Labels and Overlaps

theory Labels-and-Overlaps

imports
Orthogonal-PT
Well-Quasi-Orders. Almost- Full- Relations

35

begin

5.1 Labeled Proof Terms

The idea is to label function symbols in the source of a proof term that
are affected by a rule symbol o with o and the distance from the root to
. Therefore, a label is a pair consisting of a rule symbol and a natural
number, or it can be None. A labeled term is a term, where each function
symbol additionally has a label associated with it.

type-synonym

('f, 'v) label = (('f, "v) prule x nat) option
type-synonym

('f, 'v) term-lab = ('f x ('f, "v) label, 'v) term

fun label-term :: ('f, 'v) prule = nat = ('f, 'v) term = ('f, 'v) term-lab
where
label-term o i (Var z) = Var z

| label-term o @ (Fun fts) = Fun (f, Some (a, ©)) (map (label-term « (i+1)) ts)

abbreviation labeled-lhs :: ('f, "v) prule = ('f, 'v) term-lab
where labeled-lhs a = label-term o 0 (lhs «)

fun labeled-source :: ('f, 'v) pterm = ('f, 'v) term-lab
where
labeled-source (Var x) = Var
| labeled-source (Pfun f As) = Fun (f, None) (map labeled-source As)
| labeled-source (Prule o As) = (labeled-lhs «) - (map labeled-source As),

fun term-lab-to-term :: ('f, 'v) term-lab = ('f, 'v) term
where
term-lab-to-term (Var z) = Var z
| term-lab-to-term (Fun f ts) = Fun (fst f) (map term-lab-to-term ts)

fun term-to-term-lab :: ('f, 'v) term = (’f, 'v) term-lab
where
term-to-term-lab (Var z) = Var x
| term-to-term-lab (Fun f ts) = Fun (f, None) (map term-to-term-lab ts)

fun get-label :: ('f, "v) term-lab = ('f, 'v) label
where
get-label (Var z) = None

| get-label (Fun fts) = snd f

fun labelposs :: ('f, 'v) term-lab = pos set
where
labelposs (Var z) = {}
| labelposs (Fun (f, None) ts) = (|Ji<length ts. {i # p | p. p € labelposs (ts ! 7)})
| labelposs (Fun (f, Some 1) ts) = {[]} U (U i<length ts. {i # p | p. p € labelposs

36

(ts!)})

abbreviation possL :: ('f, 'v) pterm = pos set
where possL A = labelposs (labeled-source A)

lemma labelposs-term-to-term-lab: labelposs (term-to-term-lab t) = {}
(proof)

lemma term-lab-to-term-lab[simp]: term-lab-to-term (term-to-term-lab t) =t

{(proof)

lemma term-lab-to-term-subt-at:
assumes p € poss t
shows term-lab-to-term t |-p = term-lab-to-term (t|-p)

(proof)

lemma vars-term-labeled-lhs: vars-term (label-term a i t) = vars-term t
{proof)

lemma vars-term-list-labeled-lhs: vars-term-list (label-term « i t) = vars-term-list
t

(proof)

lemma var-poss-list-labeled-lhs: var-poss-list (label-term « i t) = var-poss-list t
(proof)

lemma var-labeled-lhs[simp]: vars-distinct (label-term « i t) = vars-distinct t
{proof)

lemma labelposs-subt-at:
assumes ¢ € poss t p € labelposs (t|-q)
shows ¢@Qp € labelposs t

{proof)

lemma var-label-term:
assumes p € poss t and t|-p = Var x
shows label-term a n t |-p = Var z

{proof)

lemma get-label-label-term:
assumes p € fun-poss t
shows get-label (label-term « n t|-p) = Some (o, n + size p)

{proof)

lemma linear-label-term:
assumes linear-term t
shows linear-term (label-term « n t)

(proof)

37

lemma var-term-lab-to-term:
assumes p € poss t and t|-p = Var z
shows term-lab-to-term t |-p = Var z

{proof)

lemma poss-term-lab-to-term[simp|: poss t = poss (term-lab-to-term t)
(proof)

lemma fun-poss-term-lab-to-term[simp): fun-poss t = fun-poss (term-lab-to-term
t)

(proof)

lemma vars-term-list-term-lab-to-term: vars-term-list t = vars-term-list (term-lab-to-term
t)
(proof)

lemma vars-term-list-term-to-term-lab: vars-term-list (term-to-term-lab t) = vars-term-list
t

(proof)

lemma linear-term-to-term-lab:
assumes linear-term t
shows linear-term (term-to-term-lab t)

{proof)

lemma var-poss-list-term-lab-to-term: var-poss-list t = var-poss-list (term-lab-to-term
t)
(proof)

lemma label-poss-labeled-lhs:
assumes p € fun-poss (label-term o n t)
shows p € labelposs (label-term a n t)

{proof)

lemma labeled-var:
assumes source A = Var z
shows labeled-source A = Var x

{proof)

lemma labelposs-subs-fun-poss: labelposs t C fun-poss t

(proof)

lemma labelposs-subs-poss|[simp]: labelposs t C poss t
(proof)

lemma get-label-imp-labelposs:
assumes p € poss t and get-label (t|-p) # None
shows p € labelposs t

{proof)

38

lemma labelposs-obtain-label:
assumes p € labelposs t
shows Ja m. get-label (t|-p) = Some(a, m)
(proof)

lemma possL-obtain-label:
assumes p € possL A
shows Ja m. get-label ((labeled-source A)|-p) = Some(a, m)

(proof)

lemma labeled-source-apply-subst:
assumes A € wf-pterm R
shows labeled-source (A - o) = (labeled-source A) - (labeled-source o o)

(proof)

lemma labelposs-apply-subst:

labelposs (s - o) = labelposs s U {pQq| p q z. p € var-poss s A\ s|-p = Varz A q
€ labelposs (o)}
(proof)

lemma possL-apply-subst:

assumes A - 0 € wf-pterm R

shows possL (A - o) = possL A U {pQq| p q z. p € var-poss (labeled-source A)
A (labeled-source A)|-p = Var x A q € possL (o)}

(proof)

lemma label-term-to-term[simpl: term-lab-to-term (label-term a n t) =t
{proof)

lemma fun-poss-label-term: p € fun-poss (label-term B n t) +— p € fun-poss t

(proof)

lemma term-lab-to-term-subst: term-lab-to-term (t - o) = term-lab-to-term t -
(term-lab-to-term o o)
(proof)

lemma labeled-source-to-term|[simp]: term-lab-to-term (labeled-source A) = source

A
(proof)

lemma possL-subset-poss-source: possL A C poss (source A)
(proof)

lemma labeled-source-pos:
assumes p € poss s and term-lab-to-term t = s
shows term-lab-to-term (t|-p) = s|-p

(proof)

39

lemma get-label-at-fun-poss-subst:
assumes p € fun-poss t
shows get-label ((t - o)|-p) = get-label (t|-p)
(proof)

lemma labeled-source-simple-pterm:possL (to-pterm t) = {}
(proof)

lemma label-term-increase:
assumes s = (label-term a n t) - 0 and p € fun-poss t
shows get-label (s|-p) = Some (a, n + length p)
{proof)

The number attached to a labeled function symbol cannot exceed the depth
of that function symbol.

lemma label-term-maz-value:
assumes p € poss (labeled-source A) and get-label ((labeled-source A)|-p) = Some
(a, n)
and A € wf-pterm R
shows n < length p

(proof)

The labels decrease when moving up towards the root from a labeled function
symbol.

lemma label-decrease:
assumes pQgq € poss (labeled-source A)
and get-label ((labeled-source A)|-(p@Qq)) = Some («, length ¢ + n)
and A € wf-pterm R
shows get-label ((labeled-source A)|-p) = Some (o, n)

{proof)

If a function symbol is labeled with («, n), then the function symbol n
positions above it is labeled with («, 0).

lemma obtain-label-root:
assumes p € poss (labeled-source A)
and get-label ((labeled-source A)|-p) = Some (o, n)
and A € wf-pterm R
shows get-label ((labeled-source A)|-(take (length p — n) p)) = Some (o, 0) A
take (length p — n) p € poss (labeled-source A)
(proof)

lemma label-ctat-apply-term:

assumes get-label (labeled-source A |- p) = 1 q € poss s

shows get-label (labeled-source ((ctt-of-pos-term q (to-pterm s)) (A4)) |- (¢@Qp))
=1
(proof)

lemma single-redez-at-p-label:

40

assumes p € poss s and is-Fun (lhs «)
shows get-label (labeled-source (ll-single-redex s p «) |-p) = Some(a, 0)

(proof)

Whenever a function symbol at position p has label («, 0) or no label in
labeled-source A, then we know that there exists a position ¢ in A such that
A |- ¢ = a As for appropriate As. Moreover, taking the source of the context
at position ¢ must be the same as first computing the source of A and then
taking the context at p.

context left-lin
begin
lemma poss-labeled-source:
assumes p € poss (labeled-source A)

and get-label ((labeled-source A)|-p) = Some (a, 0)

and A € wf-pterm R
shows 3¢ € poss A. ctat-of-pos-term p (source A) = source-ctxt (ctrt-of-pos-term
qA) A

Al-g = Prule o (map (Ai. A|-(¢Q[4])) [0..<length (var-rule a)])

(proof)

lemma poss-labeled-source-None:
assumes p € poss (labeled-source A)
and get-label ((labeled-source A)|-p) = None
and A € wf-pterm R
shows 3 ¢ € poss A. ctat-of-pos-term p (source A) = source-ctzt (ctzt-of-pos-term
q 4)
(proof)

end

If we know that some part of a term does not contain labels (i.e., is coming
from a simple proof term t¢) then we know that the label originates below
some variable position of ¢.

lemma labeled-source-to-pterm-subst:
assumes p-pos:p € possL (to-pterm t - o) and well:Vz € vars-term t. o = €
wf-pterm R
shows 3pl p2 z . pl € posst A t|-pl = Varz A p1@p2 <, p
A p2 € possL (o x) N get-label ((labeled-source (o x))|-p2) = Some (v, 0)
(proof)

lemma labelposs-subst:

assumes p € labelposs (t - o)

shows p € labelposs t V (Ipl p2 xz. p = plQp2 A pl € poss t A t|-pl = Var x
A p2 € labelposs (o 1))

(proof)

lemma set-labelposs-subst:

labelposs (t - o) = labelposs t U (|J i< length (vars-term-list t). {(var-poss-list
t19)Qq | q. q € labelposs (o (vars-term-list t ! ©))}) (is Zps = %qs)

41

(proof)

The labeled positions in a proof term Prule o As are the function positions
of [hs a together with all labeled positions in the arguments As.

lemma possi-rule:

assumes length As = length (var-rule «) linear-term (lhs @)

shows possL (Prule o As) = fun-poss (lhs a) U (U i< (length As). {(var-poss-list
(lhs a)li)Qq | q. q € possL(Asli)})
{proof)

lemma labelposs-subs-fun-poss-source:
assumes p € possL A
shows p € fun-poss (source A)

(proof)

The labeled source of a context (obtained from some proof term A) applied
to some proof term B is the labeled source of the context applied to the
labeled source of the proof term B.

context left-lin
begin
lemma label-source-ctxt:
assumes A € wf-pterm R
and ctzt-of-pos-term p (source A) = source-ctzt (ctzt-of-pos-term p’ A)
and p € poss (source A) and p’ € poss A
shows labeled-source (ctrt-of-pos-term p’ A)(B) = (ctat-of-pos-term p (labeled-source
A)){(labeled-source B)

(proof)
end

lemma labeled-ctrt-above:

assumes p € poss A and r € poss Aand ~p <, r

shows get-label ((ctat-of-pos-term p A)(labeled-source B) |-r) = get-label (A |-r)
(proof)

The labeled positions of a context (obtained from some proof term A) ap-
plied to some proof term B are the labeled positions of the context together
with the labeled positions of the proof term B.

context left-lin
begin
lemma label-ctxt:
assumes A € wf-pterm R
and ctzt-of-pos-term p (source A) = source-ctat (ctxt-of-pos-term p’ A)
and p € poss (source A) and p’ € poss A
shows possL (ctazt-of-pos-term p’ A)(B) = {q. ¢ € possL A N —p <, ¢} U {pQq|
q. q € possL B}
(proof)

lemma single-redez-possL:

42

assumes to-rule « € R p € poss s
shows possL (ll-single-redex s p o) = {p @ q |q. q € fun-poss (lhs)}
(proof)

end

lemma labeled-poss-in-lhs:
assumes p-pos:p € poss (source (Prule o As)) and well: Prule o As € wf-pterm
R
and get-label ((labeled-source (Prule o As))|-p) = Some («, length p) is-Fun
(lhs @)
shows p € fun-poss (lhs «)
(proof)

context left-lin-no-var-lhs
begin
lemma get-label-Prule:

assumes Prule a As € wf-pterm R and p € poss (source (Prule a As)) and
get-label (labeled-source (Prule a As) |- p) = Some (5, 0)

shows (p =[] Aa=p)V

(3 pl p2i. p=plQ@p2 N i < length As A var-poss-list (lhs «)li = p1 A

p2 € poss (source (As'i)) N get-label (labeled-source (Asli)|-p2) = Some

(8, 0))

(proof)
end

If the labeled source of a proof term A has the shape ¢t - o where all function
symbols in ¢ are unlabeled, then A matches ¢t with some substitution 7.

context no-var-lhs
begin
lemma pterm-source-substitution:
assumes A € wf-pterm R
and source A =t - o and linear-term t
and Vp € fun-poss t. p ¢ possL A
shows A = (to-pterm t) - (mk-subst Var (match-substs (to-pterm t) A))

(proof)

lemma unlabeled-source-to-pterm:
assumes labeled-source A = s - T
and linear-term s and A € wf-pterm R
and labelposs s = {}
shows 3 As. A = to-pterm (term-lab-to-term s) - (mk-subst Var (zip (vars-term-list
s) As)) A length (vars-term-list s) = length As
(proof)
end

lemma labels-intersect-label-term:
assumes term-lab-to-term A = t - (term-lab-to-term o o)

43

and linear-term t
and labelposs A N labelposs ((label-term o n t) - o) = {}
shows 3 As. A = term-to-term-lab t - (mk-subst Var (zip (vars-term-list t) As)) A
length As = length (vars-term-list t)

(proof)

lemma labeled-wf-pterm-rule-in-TRS:
assumes A € wf-pterm R and p € poss (labeled-source A)
and get-label (labeled-source A |- p) = Some («, n)
shows to-rule a € R

(proof)

context no-var-lhs
begin
lemma unlabeled-above-p:
assumes A € wf-pterm R
and p € poss (source A)
andV r.r <, p — r ¢ possL A
shows p € poss A A labeled-source A|-p = labeled-source (A|-p)

(proof)
end

lemma (in single-redex) labeled-source-at-pq:labeled-source (A]-q) = (labeled-source
A)l-p
{proof)

context left-lin
begin
lemma single-redez-label:
assumes A = [l-single-redex s p a p € poss s q € poss (source A) to-rule o € R
and get-label (labeled-source A |-q) = Some (8, n)
shows a = 8 A (3¢’ q = pQq’ A length ¢ = n A q' € fun-poss (lhs @))
(proof)

end

5.2 Measuring Overlap

abbreviation measure-ov :: ('f, 'v) pterm = ('f, 'v) pterm = nat
where measure-ov A B = card ((possL A) N (possL B))

lemma finite-labelposs: finite (labelposs A)
(proof)

lemma finite-possL: finite (possL A)
(proof)

lemma measure-ov-symm: measure-ov A B = measure-ov B A
{proof)

44

lemma measure-lhs-subst:
assumes [:length As = length Bs
shows card ((labelposs ((label-term « j t) - (map labeled-source As)q)) N
(labelposs (labeled-source (to-pterm t) - (map labeled-source Bs),)))
= (D z<vars-term-list t. measure-ov (({As)q)) (({Bs)a) T))
{proof)

lemma measure-lhs-args-zero:
assumes [:length As = length Bs
and empty:V i < length As. measure-ov (Asli) (Bsli) = 0
shows measure-ov (Prule a As) ((to-pterm (lhs «)) - (Bs)y) = 0
(proof)

lemma measure-zero-subt-at:
assumes term-lab-to-term A = term-lab-to-term B
and labelposs A N labelposs B = {}
and p € poss A
shows labelposs (Al-p) N labelposs (B|-p) = {}

{proof)

lemma empty-step-imp-measure-zero:
assumes is-empty-step A
shows measure-ov A B = 0
(proof)

lemma measure-ov-to-pterm:
shows measure-ov A (to-pterm t) = 0

{proof)

lemma measure-zero-imp-orthogonal:
assumes R:left-lin-no-var-lhs R and S:left-lin-no-var-ths S
and co-initial A B A € wf-pterm R B € wf-pterm S
and measure-ov A B = (0

shows A L, B
(proof)

5.3 Collecting Overlapping Positions

abbreviation overlaps-pos :: ('f, "v) term-lab = ('f, 'v) term-lab = (pos X pos)
set
where overlaps-pos A B = Set.filter (A(p,q). get-label (A|-p) # None A get-label
(B|-q) # None A
snd (the (get-label (A|-p))) = 0 A snd (the (get-label (B|-q))) = 0 A
(p <p q A get-label (A|-q) # None A fst (the (get-label (A|-q))) = fst
(the (get-label (A]-p))) A snd (the (get-label (A|-q))) = length (the (remove-prefiz
pq)V (

(the (get-label
q))))

—~

<, p A get-label (B|-p) # None A fst (the (get-label (B|-q))) = fst
B|-p))) A snd (the (get-label (B|-p))) = length (the (remove-prefiz

45

(fun-poss A X fun-poss B)

lemma overlaps-pos-symmetric:
assumes (p,q) € overlaps-pos A B
shows (¢,p) € overlaps-pos B A

{proof)

lemma overlaps-pos-intro:
assumes ¢Qq’ € fun-poss A and q € fun-poss B
and get-label (A]-(¢Qq")) = Some (v, 0)
and get-label (B|-q) = Some (8, 0)
and get-label (B|-(qQq")) = Some (8, length q’)
shows (¢Qq’, q) € overlaps-pos A B
(proof)

Define the partial order on overlaps

definition less-eq-overlap :: pos X pos = pos X pos = bool (infix <, 50)
where p <, ¢ +— (fst p <, fst q) A (snd p <, snd q)

definition less-overlap :: pos X pos = pos X pos = bool (infix <, 50)
where p <, ¢ +— p <, ¢gApF#q

interpretation order-overlaps: order less-eq-overlap less-overlap

(proof)

lemma overlaps-pos-finite: finite (overlaps-pos A B)
(proof)

lemma labeled-sources-imp-measure-not-zero:

assumes p € poss (labeled-source A) p € poss (labeled-source B)

and get-label ((labeled-source A)|-p) # None A get-label ((labeled-source B)|-p)
None

shows measure-ov A B > 0

(proof)

lemma measure-zero-imp-empty-overlaps:
assumes measure-ov A B = 0 and co-init:co-initial A B
shows overlaps-pos (labeled-source A) (labeled-source B) = {}

(proof)

lemma empty-overlaps-imp-measure-zero:
assumes A € wf-pterm R and B € wf-pterm S
and overlaps-pos (labeled-source A) (labeled-source B) = {}
shows measure-ov A B = 0

(proof)
lemma obtain-overlap:

assumes p € possL A p € possL B
and get-label (labeled-source A|-p) = Some (v, n)

46

and get-label (labeled-source B|-p) = Some (§, m)
and n < length p m < length p
and 7y = take (length p — n) p
and ré = take (length p — m) p
and rd <, ry
and a-well:A € wf-pterm R and b-well:B € wf-pterm S
shows (rv, rd) € overlaps-pos (labeled-source A) (labeled-source B)

(proof)

end

6 Redex Patterns

theory Redex-Patterns
imports

Labels-and-Overlaps
begin

Collect all rule symbols of a proof term together with the position in its
source where they appear. This is used to split a proof term into a set of
single steps, whose union (| |) is the whole proof term again.

The redex patterns are collected in leftmost outermost order.

fun redez-patterns :: ('f, 'v) pterm = (('f, 'v) prule x pos) list
where
redex-patterns (Var z) = ||
| redez-patterns (Pfun f ss) = concat (map (A (i, rps). map (A (o, p). (o, i#p))
ps)
(zip [0 ..< length ss] (map redez-patterns ss)))
| redex-patterns (Prule a ss) = (o, []) # concat (map (A (p1, rps). map (A (o, p2).
(a, p1@p2)) 7ps)
(zip (var-poss-list (lhs «)) (map redex-patterns ss)))

interpretation lexord-linorder:
linorder ord.lexordp-eq ((<) :: nat = nat = bool)
ord.lezordp ((<) :: nat = nat = bool)

(proof)

lemma lexord-prefiz-diff:
assumes (ord.lezordp ((<) :: nat = nat = bool)) zs ys and - prefix xs ys
shows (ord.lexordp (<)) (zsQus) (ysQus)

(proof)
lemma wvar-poss-list-sorted: sorted-wrt (ord.lexordp ((<) :: nat = nat = bool))
(var-poss-list t)

(proof)

context left-lin-no-var-lhs

47

begin

lemma redex-patterns-sorted:
assumes A € wf-pterm R
shows sorted-wrt (ord.lexordp (<)) (map snd (redez-patterns A))

(proof)

corollary distinct-snd-rdp:
assumes A € wf-pterm R
shows distinct (map snd (redez-patterns A))

(proof)

lemma redez-patterns-equal:
assumes wf:A € wf-pterm R
and sorted:sorted-wrt (ord.lexordp (<)) (map snd zs) and eq:set zs = set
(redex-patterns A)
shows zs = redex-patterns A

(proof)

lemma redez-patterns-order:
assumes A € wf-pterm R and ¢ < j and j < length (redex-patterns A)
and redez-patterns A ! i = («, pl) and redex-patterns A j = (8, p2)
shows — p2 <, pl
(proof)

end

context left-lin-no-var-lhs
begin
lemma redex-patterns-label:
assumes A € wf-pterm R
shows (a, p) € set (redex-patterns A) <— p € poss (source A) A get-label
(labeled-source A |- p) = Some («, 0)

(proof)

lemma redez-pattern-rule-symbol:
assumes A € wf-pterm R (a, p) € set (redez-patterns A)
shows to-rule « € R

(proof)

lemma redez-patterns-subset-possL:
assumes A € wf-pterm R
shows set (map snd (redez-patterns A)) C possL A

(proof)
end

lemma redez-poss-empty-imp-empty-step:

assumes redez-patterns A = [|
shows is-empty-step A

48

{proof)

lemma overlap-imp-redex-poss:
assumes A € wf-pterm R B € wf-pterm R
and measure-ov A B # 0
shows redex-patterns A # |]

(proof)

lemma redez-patterns-to-pterm:
shows redex-patterns (to-pterm s) = [|

(proof)

lemma redex-patterns-elem-fun:

assumes (a, p) € set (redez-patterns (Pfun f As))

shows 3¢ p’. i < length As N p = i#p’ A («, p’) € set (redex-patterns (Asli))
(proof)

lemma redez-patterns-elem-rule:
assumes (a, p) € set (redez-patterns (Prule 8 As))
shows p =[] V (Fip’ i < length As A i < length (var-poss-list (lhs [3))
A p = (var-poss-list (lhs p)1i)Qp’ A (o, p’) € set (redex-patterns (Asli)))
(proof)

lemma redez-patterns-elem-fun’:
assumes (a, p) € set (redex-patterns (As'i)) and i:i < length As
shows («, i#p) € set (redex-patterns (Pfun f As))

(proof)

lemma redez-patterns-elem-rule”:

assumes (8, p) € set (redez-patterns (Asli)) and i:i < length As i < length
(var-poss-list (lhs «))

shows (53, (var-poss-list (lhs) ! ©)Qp) € set (redex-patterns (Prule o As))
(proo)

lemma redez-patterns-elem-subst:

assumes (a, p) € set (redex-patterns ((to-pterm t) - o))

shows Jp! p2 z. p = plQp2 A (o, p2) € set (redex-patterns (o x)) A pl €
var-poss t A t|-pl = Var

(proof)

context left-lin-no-var-lhs
begin

lemma redez-patterns-rule’”:
assumes rdp:(5, p @ q) € set (redex-patterns (Prule o As))
and wf:Prule a As € wf-pterm R
and p:p = var-poss-list (lhs)i
and 7:7 < length As

49

shows (5, q) € set (redex-patterns (Asli))
(proof)

lemma redez-patterns-elem-subst’:
assumes (o, p2) € set (redez-patterns (o z)) and pl:pl € poss t t|-pl = Var z
shows («, p1@p2) € set (redex-patterns ((to-pterm t) - o))

(proof)

lemma redez-patterns-join:
assumes A € wf-pterm R B € wf-pterm R A U B = Some C
shows set (redex-patterns C) = set (redex-patterns A) U set (redez-patterns B)

{proof)

lemma redez-patterns-join-list:
assumes join-list As = Some A and Va € set As. a € wf-pterm R
shows set (redez-patterns A) = |J (set (map (set o redex-patterns) As))

(proof)

lemma redex-patterns-context:

assumes p € poss s

shows redex-patterns ((ctzt-of-pos-term p (to-pterm s)) (4A)) = map (M a, q).
(a,pQq)) (redex-patterns A)

{proof)

lemma redez-patterns-prule:
assumes l:length ts = length (var-poss-list (lhs «))
shows redex-patterns (Prule oo (map to-pterm ts)) = [(a, [])]

(proof)

lemma redez-patterns-single:
assumes p € poss s and to-rule a € R
shows redex-patterns (ll-single-redex s p) = [(«, p)]

(proof)

lemma get-label-imp-rdp:
assumes get-label (labeled-source A |- p) = Some («, 0)
and A € wf-pterm R
and p € poss (labeled-source A)
shows («, p) € set (redex-patterns A)

{proof)

lemma redex-pattern-proof-term-equality:
assumes A € wf-pterm R B € wf-pterm R
and set (redex-patterns A) = set (redex-patterns B)
and source A = source B
shows A = B

(proof)

50

end

abbreviation single-steps :: ('f, 'v) pterm = ('f, 'v) pterm list
where single-steps A = map (A (a, p). ll-single-redex (source A) p «) (redex-patterns

4)

context left-lin-wf-trs
begin

lemma [l-no-var-lhs: left-lin-no-var-ths R
(proof)

lemma single-step-redez-patterns:

assumes A € wf-pterm R A € set (single-steps A)

shows 3p a. A = ll-single-redex (source A) p a A (o, p) € set (redex-patterns
A) A redez-patterns A = [(a, p)]

(proof)

lemma single-step-wf:
assumes A € wf-pterm R and A € set (single-steps A)
shows A € wf-pterm R

(proof)

lemma source-single-step:
assumes A:A € set (single-steps A) and wf:A € wf-pterm R
shows source A = source A

(proof)

lemma single-redez-single-step:
assumes A:A = [l-single-redex s p «
and p:p € poss s and a:to-rule o € R
and src:source A = s
shows single-steps A = [A]
(proof)

lemma single-step-label-imp-label:
assumes A:A € set (single-steps A) and q:q € poss (labeled-source A) and wf: A
€ wf-pterm R
and lab:get-label (labeled-source A|-q) = Some |
shows get-label (labeled-source A |-q) = Some 1

(proof)

lemma single-steps-measure:
assumes Al :Al € set (single-steps A) and A2:A2 € set (single-steps A)
and wf:A € wf-pterm R and neq:A1 # A2
shows measure-ov A1 A2 = 0

{(proof)

lemma single-steps-orth:

o1

assumes A1:A1 € set (single-steps A) and A2:A2 € set (single-steps A) and
wf:A € wf-pterm R

shows A1 1, A2

{proof)

lemma redez-patterns-below:

assumes wf:A € wf-pterm R

and (a, p) € set (redex-patterns A)

and (8, pQq) € set (redex-patterns A) and q # [|
shows ¢ ¢ fun-poss (lhs @)

(proof)

lemma single-steps-singleton:
assumes A-uwf:A € wf-pterm R and A:single-steps A = [A]
shows A = A

{proof)

end

context left-lin-no-var-lhs

begin

lemma measure-ov-imp-single-step-ov:
assumes measure-ov A B # 0 and wf:A € wf-pterm R
shows JA € set (single-steps A). measure-ov A B # 0

(proof)
end

context left-lin-no-var-lhs
begin
lemma label-single-step:

assumes p € poss (labeled-source A) A € wf-pterm R

and get-label (labeled-source A |- p) = Some («, n)

shows 3 Ai. Ai € set (single-steps A) N get-label (labeled-source Ai |- p) = Some
(a,)
{proof)

lemma proof-term-matches:
assumes A € wf-pterm R B € wf-pterm R linear-term A
and A« r. (o, r) € set (redex-patterns A) = ((a, 1) € set (redex-patterns B)
A T € fun-poss (source A))
and source A - 0 = source B
shows A - (mk-subst Var (match-substs A B)) = B
{proof)

end

context left-lin-wf-trs
begin
lemma join-single-steps-wf:
assumes A € wf-pterm R
and As = filter f (single-steps A) and As # []

52

shows 3 D. join-list As = Some D N D € wf-pterm R
(proof)

lemma single-steps-join-list:
assumes join-list As = Some A and Va € set As. a € wf-pterm R
shows set (single-steps A) = |J (set (map (set o single-steps) As))
(proof)
end

end

References

1]

[5]

[6]

C. Kirk and A. Middeldorp. Formalizing simultaneous critical pairs for
confluence of left-linear rewrite systems. In Proc. 14th International
Conference on Certified Programs and Proofs, pages 156-170, 2025.

C. Kohl and A. Middeldorp. A formalization of the development closed-
ness criterion for left-linear term rewrite systems. In Proc. 12th Inter-

national Conference on Certified Programs and Proofs, pages 197-210,
2023.

C. Kohl and A. Middeldorp. Formalizing almost development closed
critical pairs (short paper). In Proc. 14th International Joint Conference
on Automated Reasoning, volume 268 of LIPIcs, pages 38:1-38:8, 2023.

C. Kohl and A. Middeldorp. Formalizing confluence and commutation
criteria using proof terms. In Proc. 12th International Workshop on
Confluence, pages 49-54, 2023. Available from http://cl-informatik.uibk.
ac.at/iwc/2023 /proceedings.pdf.

TeReSe, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2003.

V. van Oostrom and R. de Vrijer. Four equivalent equivalences of reduc-
tions. In Proc. 2nd International Workshop on Reduction Strategies in
Rewriting and Programming, volume 70(6) of Electronic Notes in Theo-
retical Computer Science, pages 21-61, 2002.

93

http://cl-informatik.uibk.ac.at/iwc/2023/proceedings.pdf
http://cl-informatik.uibk.ac.at/iwc/2023/proceedings.pdf

	Preliminaries
	Utilities for Lists
	Lists of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 option

	Results About Linear Terms
	Results About Substitutions and Contexts
	Utilities for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 mk-subst

	Matching Terms
	Matching of Linear Terms

	Proof Terms
	Definitions
	Frequently Used Locales/Contexts
	Proof Term Predicates
	'Normal' Terms vs. Proof Terms
	Substitutions
	Contexts
	Source and Target
	Additional Results
	Proof Terms Represent Multi-Steps

	Operations on Proof Terms
	Residuals
	Join
	N-Fold Join

	Deletion
	Computations With Single Redexes

	Orthogonal Proof Terms
	Labels and Overlaps
	Labeled Proof Terms
	Measuring Overlap
	Collecting Overlapping Positions

	Redex Patterns

