
Formalization of Conflict Analysis of Programs with
Procedures, Thread Creation, and Monitors in

Isabelle/HOL

Peter Lammich
Markus Müller-Olm

Institut für Informatik, Fachbereich Mathematik und Informatik
Westfälische Wilhelms-Universität Münster

peter.lammich@uni-muenster.de and mmo@math.uni-muenster.de

March 17, 2025

Abstract

In this work we formally verify the soundness and precision of a
static program analysis that detects conflicts (e.g. data races) in pro-
grams with procedures, thread creation and monitors with the Isabelle
theorem prover. As common in static program analysis, our program
model abstracts guarded branching by nondeterministic branching, but
completely interprets the call-/return behavior of procedures, synchro-
nization by monitors, and thread creation. The analysis is based on
the observation that all conflicts already occur in a class of partic-
ularly restricted schedules. These restricted schedules are suited to
constraint-system-based program analysis.

The formalization is based upon a flowgraph-based program model
with an operational semantics as reference point.

1

Contents
1 Introduction 4

2 Monitor Consistent Interleaving 5
2.1 Monitors of lists of monitor pairs 5
2.2 Properties of consistent interleaving 8

3 Acquisition Histories 9
3.1 Definitions . 10
3.2 Interleavability . 10
3.3 Used monitors . 11
3.4 Ordering . 11
3.5 Acquisition histories of executions 11
3.6 Acquisition history backward update 12

4 Labeled transition systems 13
4.1 Definitions . 13
4.2 Basic properties of transitive reflexive closure 13

4.2.1 Appending of elements to paths 14
4.2.2 Transitivity reasoning setup 15
4.2.3 Monotonicity . 15
4.2.4 Special lemmas for reasoning about states that are pairs 15
4.2.5 Invariants . 15

5 Thread Tracking 15
5.1 Semantic on multiset configuration 16
5.2 Invariants . 17
5.3 Context preservation assumption 17
5.4 Explicit local context . 18

5.4.1 Lifted step datatype 18
5.4.2 Definition of the loc/env-semantics 20
5.4.3 Relation between multiset- and loc/env-semantics . . 20
5.4.4 Invariants . 20

6 Flowgraphs 21
6.1 Definitions . 21
6.2 Basic properties . 22
6.3 Extra assumptions for flowgraphs 22
6.4 Example Flowgraph . 23

7 Operational Semantics 23
7.1 Configurations and labels . 24
7.2 Monitors . 24
7.3 Valid configurations . 26

2

7.4 Configurations at control points 27
7.5 Operational semantics . 28

7.5.1 Semantic reference point 28
7.6 Basic properties . 30

7.6.1 Validity . 30
7.6.2 Equivalence to reference point 30
7.6.3 Case distinctions . 30

7.7 Advanced properties . 32
7.7.1 Stack composition / decomposition 32
7.7.2 Adding threads . 33
7.7.3 Conversion between environment and monitor restric-

tions . 33

8 Normalized Paths 35
8.1 Semantic properties of restricted flowgraphs 35
8.2 Definition of normalized paths 36
8.3 Representation property for reachable configurations 37
8.4 Properties of normalized path 38

8.4.1 Validity . 39
8.4.2 Monitors . 39
8.4.3 Modifying the context 41
8.4.4 Altering the local stack 43

8.5 Relation to monitor consistent interleaving 44
8.5.1 Abstraction function for normalized paths 45
8.5.2 Monitors . 46
8.5.3 Interleaving theorem 46
8.5.4 Reverse splitting . 48

9 Constraint Systems 49
9.1 Same-level paths . 50

9.1.1 Definition . 50
9.1.2 Soundness and Precision 51

9.2 Single reaching path . 52
9.2.1 Constraint system . 52
9.2.2 Soundness and precision 54

9.3 Simultaneously reaching path 55
9.3.1 Constraint system . 55
9.3.2 Soundness and precision 57

10 Main Result 57

11 Conclusion 58

3

1 Introduction

Conflicts are a common programming error in parallel programs. A con-
flict occurs if the same resource is accessed simultaneously by more than
one process. Given a program π and two sets of control points U and V ,
the analysis problem is to decide whether there is an execution of π that
simultaneously reaches one control point from U and one from V .
In this work, we use a flowgraph-based program model that extends a previ-
ously studied model [6] by reentrant monitors. In our model, programs can
call recursive procedures, dynamically create new threads and synchronize
via reentrant monitors. As usual in static program analysis, our program
model abstracts away guarded branching by nondeterministic choice. We
use an operational semantics as reference point for the correctness proofs.
It models parallel execution by interleaving, i.e. just one thread is executed
at any time and context switches may occur after every step. The next step
is nondeterministically selected from all threads ready for execution. The
analysis is based on a constraint system generated from the flowgraph. From
its least solution, one can decide whether control points from U and V are
simultaneously reachable or not.
It is notoriously hard to analyze concurrent programs with constraint sys-
tems because of the arbitrary fine-grained interleaving. The key idea behind
our analysis is to use a restricted scheduling: While the interleaving seman-
tics can switch the context after each step, the restricted scheduling just
allows context switches at certain points of a thread’s execution. We can
show that each conflict is also reachable under this restricted scheduling.
The restricted schedules can be easily analyzed with constraint systems as
most of the complexity generated by arbitrary interleaving does no longer
occur due to the restrictions. The remaining concurrency effects can be
smoothly handled by using the concept of acquisition histories [5].

Related Work In [6] we present a constraint-system-based analysis for
programs with thread creation and procedures but without monitors. The
abstraction from synchronization is common in this line of research: There
are automata-based techniques [1, 2, 3] as well as constraint-system-based
techniques [7, 6] to analyze programs with procedures and either parallel
calls or thread creation, but without any synchronization. In [5, 4] anal-
ysis techniques for interprocedural parallel programs with a fixed number
of initial threads and nested locks are presented. These nested locks are
not syntactically bound to the program structure, but assumed to be well-
nested, that is any unlock statement is required to release the lock that was
acquired last by the thread. Moreover, there is no support for reentrant

4

locks1. We use monitors instead of locks. Monitors are syntactically bound
to the program structure and thus well-nestedness is guaranteed statically.
Additionally we directly support reentrant monitors. Our model cannot
simulate well-nested locks where a lock statement and its corresponding un-
lock statement may be in different procedures (as in [5, 4]). As common
programming languages like Java also use reentrant monitors rather than
locks, we believe our model to be useful as well.

Document structure This document contains a commented formaliza-
tion of these ideas as a collection of Isabelle/HOL theories. A more abstract
description is in preparation. This document starts with formalization mon-
itor consistent interleaving (Section 2) and acquisition histories (Section 3).
Labeled transition systems are formalized in Section 4, and Section 5 defines
the notion of interleaving semantics. Flowgraphs are defined in Section 6,
and Section 7 describes their operational semantics. Section 8 contains the
formalization of the restricted interleaving and Section 9 contains the con-
straint systems. Finally, the main result of this development – the correct-
ness of the constraint systems w.r.t. to the operational semantics – is briefly
stated in Section 10.

2 Monitor Consistent Interleaving
theory ConsInterleave
imports Interleave Misc
begin

The monitor consistent interleaving operator is defined on two lists of arbi-
trary elements, provided an abstraction function α that maps list elements
to pairs of sets of monitors is available. α e = (M , M ′) intuitively means
that step e enters the monitors in M and passes (enters and leaves) the
monitors in M ′. The consistent interleaving describes all interleavings of
the two lists that are consistent w.r.t. the monitor usage.

2.1 Monitors of lists of monitor pairs

The following defines the set of all monitors that occur in a list of pairs of
monitors. This definition is used in the following context: mon-pl (map α
w) is the set of monitors used by a word w w.r.t. the abstraction α

definition
mon-pl w == foldl (∪) {} (map (λe. fst e ∪ snd e) w)

lemma mon-pl-empty[simp]: mon-pl [] = {}
1Reentrant locks can always be simulated by non-reentrant ones, at the cost of a worst-

case exponential blowup of the program size

5

〈proof 〉
lemma mon-pl-cons[simp]: mon-pl (e#w) = fst e ∪ snd e ∪ mon-pl w
〈proof 〉

lemma mon-pl-unconc: !!b. mon-pl (a@b) = mon-pl a ∪ mon-pl b
〈proof 〉

lemma mon-pl-ileq: w�w ′ =⇒ mon-pl w ⊆ mon-pl w ′

〈proof 〉

lemma mon-pl-set: mon-pl w =
⋃
{ fst e ∪ snd e | e. e∈set w }

〈proof 〉

fun
cil :: ′a list ⇒ (′a ⇒ (′m set × ′m set)) ⇒ ′a list ⇒ ′a list set
(‹- ⊗- -› [64 ,64 ,64] 64) where

— Interleaving with the empty word results in the empty word
[] ⊗α w = {w}
| w ⊗α [] = {w}
— If both words are not empty, we can take the first step of one word, interleave

the rest with the other word and then append the first step to all result set elements,
provided it does not allocate a monitor that is used by the other word
| e1#w1 ⊗α e2#w2 = (

if fst (α e1) ∩ mon-pl (map α (e2#w2)) = {} then
e1 ·(w1 ⊗α e2#w2)

else {}
) ∪ (

if fst (α e2) ∩ mon-pl (map α (e1#w1)) = {} then
e2 ·(e1#w1 ⊗α w2)

else {}
)

Note that this definition allows reentrant monitors, because it only checks
that a monitor that is going to be entered by one word is not used in the
other word. Thus the same word may enter the same monitor multiple times.

The next lemmas are some auxiliary lemmas to simplify the handling of the
consistent interleaving operator.
lemma cil-last-case-split[cases set, case-names left right]:
[[w∈e1#w1 ⊗α e2#w2 ;
!!w ′. [[w=e1#w ′; w ′∈(w1 ⊗α e2#w2);

fst (α e1) ∩ mon-pl (map α (e2#w2)) = {}]] =⇒ P;
!!w ′. [[w=e2#w ′; w ′∈(e1#w1 ⊗α w2);

fst (α e2) ∩ mon-pl (map α (e1#w1)) = {}]] =⇒ P
]] =⇒ P
〈proof 〉

lemma cil-cases[cases set, case-names both-empty left-empty right-empty app-left
app-right]:

6

[[w∈wa⊗αwb;
[[w=[]; wa=[]; wb=[]]] =⇒ P;
[[wa=[]; w=wb]] =⇒ P;
[[w=wa; wb=[]]] =⇒ P;
!!ea wa ′ w ′. [[w=ea#w ′; wa=ea#wa ′; w ′∈wa ′⊗αwb;

fst (α ea) ∩ mon-pl (map α wb) = {}]] =⇒ P;
!!eb wb ′ w ′. [[w=eb#w ′; wb=eb#wb ′; w ′∈wa⊗αwb ′;

fst (α eb) ∩ mon-pl (map α wa) = {}]] =⇒ P
]] =⇒ P
〈proof 〉

lemma cil-induct ′[case-names both-empty left-empty right-empty append]: [[∧
α. P α [] [];∧
α ad ae. P α [] (ad # ae);∧
α z aa. P α (z # aa) [];∧
α e1 w1 e2 w2 . [[
[[fst (α e1) ∩ mon-pl (map α (e2 # w2)) = {}]] =⇒ P α w1 (e2 # w2);
[[fst (α e2) ∩ mon-pl (map α (e1 # w1)) = {}]] =⇒ P α (e1 # w1) w2]]

=⇒ P α (e1 # w1) (e2 # w2)
]] =⇒ P α wa wb
〈proof 〉

lemma cil-induct-fixα: [[
P α [] [];∧

ad ae. P α [] (ad # ae);∧
z aa. P α (z # aa) [];∧
e1 w1 e2 w2 .
[[fst (α e2) ∩ mon-pl (map α (e1 # w1)) = {} −→ P α (e1 # w1) w2 ;
fst (α e1) ∩ mon-pl (map α (e2 # w2)) = {} −→ P α w1 (e2 # w2)]]
=⇒ P α (e1 # w1) (e2 # w2)]]

=⇒ P α v w
〈proof 〉

lemma cil-induct-fixα ′[case-names both-empty left-empty right-empty append]: [[
P α [] [];∧

ad ae. P α [] (ad # ae);∧
z aa. P α (z # aa) [];∧
e1 w1 e2 w2 . [[
fst (α e1) ∩ mon-pl (map α (e2 # w2)) = {} =⇒ P α w1 (e2 # w2);
fst (α e2) ∩ mon-pl (map α (e1 # w1)) = {} =⇒ P α (e1 # w1) w2]]
=⇒ P α (e1 # w1) (e2 # w2)

]] =⇒ P α wa wb
〈proof 〉

lemma [simp]: w⊗α[] = {w}
〈proof 〉

lemma cil-contains-empty[rule-format, simp]: ([] ∈ wa⊗αwb) = (wa=[] ∧ wb=[])
〈proof 〉

7

lemma cil-cons-cases[cases set, case-names left right]: [[e#w ∈ w1⊗αw2 ;
!!w1 ′. [[w1=e#w1 ′; w∈w1 ′⊗αw2 ; fst (α e) ∩ mon-pl (map α w2) = {}]] =⇒ P;
!!w2 ′. [[w2=e#w2 ′; w∈w1⊗αw2 ′; fst (α e) ∩ mon-pl (map α w1) = {}]] =⇒ P

]] =⇒ P
〈proof 〉

lemma cil-set-induct[induct set, case-names empty left right]: !!α w1 w2 . [[
w∈w1⊗αw2 ;
!!α. P [] α [] [];
!!α e w ′ w1 ′ w2 . [[w ′∈w1 ′⊗αw2 ; fst (α e) ∩ mon-pl (map α w2) = {};

P w ′ α w1 ′ w2]] =⇒ P (e#w ′) α (e#w1 ′) w2 ;
!!α e w ′ w2 ′ w1 . [[w ′∈w1⊗αw2 ′; fst (α e) ∩ mon-pl (map α w1) = {};

P w ′ α w1 w2 ′]] =⇒ P (e#w ′) α w1 (e#w2 ′)
]] =⇒ P w α w1 w2
〈proof 〉

lemma cil-set-induct-fixα[induct set, case-names empty left right]: !!w1 w2 . [[
w∈w1⊗αw2 ;
P [] α [] [];
!!e w ′ w1 ′ w2 . [[w ′∈w1 ′⊗αw2 ; fst (α e) ∩ mon-pl (map α w2) = {};

P w ′ α w1 ′ w2]] =⇒ P (e#w ′) α (e#w1 ′) w2 ;
!!e w ′ w2 ′ w1 . [[w ′∈w1⊗αw2 ′; fst (α e) ∩ mon-pl (map α w1) = {};

P w ′ α w1 w2 ′]] =⇒ P (e#w ′) α w1 (e#w2 ′)
]] =⇒ P w α w1 w2
〈proof 〉

lemma cil-cons1 : [[w∈wa⊗αwb; fst (α e) ∩ mon-pl (map α wb) = {}]]
=⇒ e#w ∈ e#wa ⊗α wb

〈proof 〉
lemma cil-cons2 : [[w∈wa⊗αwb; fst (α e) ∩ mon-pl (map α wa) = {}]]

=⇒ e#w ∈ wa ⊗α e#wb
〈proof 〉

2.2 Properties of consistent interleaving
lemma cil-subset-il: w⊗αw ′ ⊆ w⊗w ′

〈proof 〉

lemma cil-subset-il ′: w∈w1⊗αw2 =⇒ w∈w1⊗w2
〈proof 〉

lemma cil-set: w∈w1⊗αw2 =⇒ set w = set w1 ∪ set w2
〈proof 〉

corollary cil-mon-pl: w∈w1⊗αw2
=⇒ mon-pl (map α w) = mon-pl (map α w1) ∪ mon-pl (map α w2)
〈proof 〉

lemma cil-length[rule-format]: ∀w∈wa⊗αwb. length w = length wa + length wb
〈proof 〉

lemma cil-ileq: w∈w1⊗αw2 =⇒ w1�w ∧ w2�w

8

〈proof 〉
lemma cil-commute: w⊗αw ′ = w ′⊗αw
〈proof 〉

lemma cil-assoc1 : !!wl w1 w2 w3 . [[w∈wl⊗αw3 ; wl∈w1⊗αw2]]
=⇒ ∃wr . w∈w1⊗αwr ∧ wr∈w2⊗αw3
〈proof 〉

lemma cil-assoc2 :
assumes A: w∈w1⊗αwr and B: wr∈w2⊗αw3
shows ∃wl. w∈wl⊗αw3 ∧ wl∈w1⊗αw2
〈proof 〉

lemma cil-map: w∈w1 ⊗(α◦f) w2 =⇒ map f w ∈ map f w1 ⊗α map f w2
〈proof 〉

end

3 Acquisition Histories
theory AcquisitionHistory
imports ConsInterleave
begin

The concept of acquisition histories was introduced by Kahlon, Ivancic, and
Gupta [5] as a bounded size abstraction of executions that acquire and re-
lease locks that contains enough information to decide consistent interleav-
ability. In this work, we use this concept for reentrant monitors. As in
Section 2, we encode monitor usage information in pairs of sets of monitors,
and regard lists of such pairs as (abstract) executions. An item (E , U) of
such a list describes a sequence of steps of the concrete execution that first
enters the monitors in E and then passes through the monitors in U. The
monitors in E are never left by the execution. Note that due to the syntac-
tic binding of monitors to the program structure, any execution of a single
thread can be abstracted to a sequence of (E , U)-pairs. Restricting the
possible schedules (see Section 8) will allow us to also abstract executions
reaching a single program point to a sequence of such pairs.
We want to decide whether two executions are interleavable. The key ob-
servation of [5] is, that two executions e and e ′ are not interleavable if and
only if there is a conflicting pair (m, m ′) of monitors, such that e enters
(and never leaves) m and then uses m ′ and e ′ enters (and never leaves) m ′

and then uses m.
An acquisition history is a map from monitors to set of monitors. The
acquisition history of an execution maps a monitor m that is allocated at

9

the end of the execution to all monitors that are used after or in the same
step that finally enters m. Monitors that are not allocated at the end of
an execution are mapped to the empty set. Though originally used for a
setting without reentrant monitors, acquisition histories also work for our
setting with reentrant monitors.
This theory contains the definition of acquisition histories and acquisition
history interleavability, an ordering on acquisition histories that reflects the
blocking potential of acquisition histories, and a mapping function from
paths to acquisition histories that is shown to be compatible with monitor
consistent interleaving.

3.1 Definitions

Acquisition histories are modeled as functions from monitors to sets of mon-
itors. Intuitively m ′ ∈ h m models that an execution finally is in m, and
monitor m ′ has been used (i.e. passed or entered) after or at the same time
m has been finally entered. By convention, we have m ∈ h m or h m = {}.
definition ah == { (h:: ′m ⇒ ′m set) . ∀ m. h m = {} ∨ m∈h m }

lemma ah-cases[cases set]: [[h∈ah; h m = {} =⇒ P ; m ∈ h m =⇒ P]] =⇒ P
〈proof 〉

3.2 Interleavability

Two acquisition histories h1 and h2 are considered interleavable, iff there
is no conflicting pair of monitors m1 and m2, where a pair of monitors m1
and m2 is called conflicting iff m1 is used in h2 after entering m2 and, vice
versa, m2 is used in h1 after entering m1.
definition

ah-il :: (′m ⇒ ′m set) ⇒ (′m ⇒ ′m set) ⇒ bool (infix ‹[∗]› 65)
where
h1 [∗] h2 == ¬(∃m1 m2 . m1∈h2 m2 ∧ m2 ∈ h1 m1)

From our convention, it follows (as expected) that the sets of entered mon-
itors (lock-sets) of two interleavable acquisition histories are disjoint
lemma ah-il-lockset-disjoint:
[[h1∈ah; h2∈ah; h1 [∗] h2]] =⇒ h1 m = {} ∨ h2 m = {}
〈proof 〉

Of course, acquisition history interleavability is commutative
lemma ah-il-commute: h1 [∗] h2 =⇒ h2 [∗] h1
〈proof 〉

10

3.3 Used monitors

Let’s define the monitors of an acquisition history, as all monitors that occur
in the acquisition history
definition

mon-ah :: (′m ⇒ ′m set) ⇒ ′m set
where
mon-ah h ==

⋃
{ h(m) | m. True}

3.4 Ordering

The element-wise subset-ordering on acquisition histories intuitively reflects
the blocking potential: The bigger the acquisition history, the fewer acqui-
sition histories are interleavable with it.

Note that the Isabelle standard library automatically lifts the subset order-
ing to functions, so we need no explicit definition here.
lemma ah-leq-il: [[h1 [∗] h2 ; h1 ′ ≤ h1 ; h2 ′ ≤ h2]] =⇒ h1 ′ [∗] h2 ′

〈proof 〉
lemma ah-leq-il-left: [[h1 [∗] h2 ; h1 ′ ≤ h1]] =⇒ h1 ′ [∗] h2 and

ah-leq-il-right: [[h1 [∗] h2 ; h2 ′ ≤ h2]] =⇒ h1 [∗] h2 ′

〈proof 〉

3.5 Acquisition histories of executions

Next we define a function that abstracts from executions (lists of enter/use
pairs) to acquisition histories
primrec αah :: (′m set × ′m set) list ⇒ ′m ⇒ ′m set where
αah [] m = {}
| αah (e#w) m = (if m∈fst e then fst e ∪ snd e ∪ mon-pl w else αah w m)

— αah generates valid acquisition histories
lemma αah-ah: αah w ∈ ah
〈proof 〉

lemma αah-hd: [[m∈fst e; x∈fst e ∪ snd e ∪ mon-pl w]] =⇒ x∈αah (e#w) m
〈proof 〉

lemma αah-tl: [[m /∈fst e; x∈αah w m]] =⇒ x∈αah (e#w) m
〈proof 〉

lemma αah-cases[cases set, case-names hd tl]: [[
x∈αah w m;
!!e w ′. [[w=e#w ′; m∈fst e; x∈fst e ∪ snd e ∪ mon-pl w ′]] =⇒ P;
!!e w ′. [[w=e#w ′; m /∈fst e; x∈αah w ′ m]] =⇒ P

]] =⇒ P
〈proof 〉

11

lemma αah-cons-cases[cases set, case-names hd tl]: [[
x∈αah (e#w ′) m;
[[m∈fst e; x∈fst e ∪ snd e ∪ mon-pl w ′]] =⇒ P;
[[m /∈fst e; x∈αah w ′ m]] =⇒ P

]] =⇒ P
〈proof 〉

lemma mon-ah-subset: mon-ah (αah w) ⊆ mon-pl w
〈proof 〉

lemma αah-ileq: w1�w2 =⇒ αah w1 ≤ αah w2
〈proof 〉

We can now prove the relation of monitor consistent interleavability and
interleavability of the acquisition histories.
lemma ah-interleavable1 :

w ∈ w1 ⊗α w2 =⇒ αah (map α w1) [∗] αah (map α w2)
— The lemma is shown by induction on the structure of the monitor consistent

interleaving operator
〈proof 〉

lemma ah-interleavable2 :
assumes A: αah (map α w1) [∗] αah (map α w2)
shows w1 ⊗α w2 6= {}
— This lemma is shown by induction on the sum of the word lengths
〈proof 〉

Finally, we can state the relationship between monitor consistent interleav-
ing and interleaving of acquisition histories
theorem ah-interleavable:
(αah (map α w1) [∗] αah (map α w2)) ←→ (w1⊗αw2 6={})
〈proof 〉

3.6 Acquisition history backward update

We define a function to update an acquisition history backwards. This func-
tion is useful for constructing acquisition histories in backward constraint
systems.
definition

ah-update :: (′m ⇒ ′m set) ⇒ (′m set ∗ ′m set) ⇒ ′m set ⇒ (′m ⇒ ′m set)
where
ah-update h F M m == if m∈fst F then fst F ∪ snd F ∪ M else h m

Intuitively, ah-update h (E , U) M m means to prepend a step (E , U) to the
acquisition history h of a path that uses monitors M. Note that we need the
extra parameter M, since an acquisition history does not contain information
about the monitors that are used on a path before the first monitor that
will not be left has been entered.

12

lemma ah-update-cons: αah (e#w) = ah-update (αah w) e (mon-pl w)
〈proof 〉

The backward-update function is monotonic in the first and third argument
as well as in the used monitors of the second argument. Note that it is, in
general, not monotonic in the entered monitors of the second argument.
lemma ah-update-mono: [[h ≤ h ′; F=F ′; M⊆M ′]]
=⇒ ah-update h F M ≤ ah-update h ′ F ′ M ′

〈proof 〉
lemma ah-update-mono2 : [[h ≤ h ′; U⊆U ′; M⊆M ′]]
=⇒ ah-update h (E ,U) M ≤ ah-update h ′ (E ,U ′) M ′

〈proof 〉

end

4 Labeled transition systems
theory LTS
imports Main
begin

Labeled transition systems (LTS) provide a model of a state transition sys-
tem with named transitions.

4.1 Definitions

An LTS is modeled as a ternary relation between start configuration, tran-
sition label and end configuration
type-synonym (′c, ′a) LTS = (′c × ′a × ′c) set

Transitive reflexive closure
inductive-set

trcl :: (′c, ′a) LTS ⇒ (′c, ′a list) LTS
for t
where
empty[simp]: (c,[],c) ∈ trcl t
| cons[simp]: [[(c,a,c ′) ∈ t; (c ′,w,c ′′) ∈ trcl t]] =⇒ (c,a#w,c ′′) ∈ trcl t

4.2 Basic properties of transitive reflexive closure
lemma trcl-empty-cons: (c,[],c ′)∈trcl t =⇒ (c=c ′)
〈proof 〉

lemma trcl-empty-simp[simp]: (c,[],c ′)∈trcl t = (c=c ′)
〈proof 〉

lemma trcl-single[simp]: ((c,[a],c ′) ∈ trcl t) = ((c,a,c ′) ∈ t)
〈proof 〉

13

lemma trcl-uncons: (c,a#w,c ′)∈trcl t =⇒ ∃ ch . (c,a,ch)∈t ∧ (ch,w,c ′) ∈ trcl t
〈proof 〉

lemma trcl-uncons-cases: [[
(c,e#w,c ′)∈trcl S ;
!!ch. [[(c,e,ch)∈S ; (ch,w,c ′)∈trcl S]] =⇒ P

]] =⇒ P
〈proof 〉

lemma trcl-one-elem: (c,e,c ′)∈t =⇒ (c,[e],c ′)∈trcl t
〈proof 〉

lemma trcl-unconsE [cases set, case-names split]: [[
(c,e#w,c ′)∈trcl S ;
!!ch. [[(c,e,ch)∈S ; (ch,w,c ′)∈trcl S]] =⇒ P

]] =⇒ P
〈proof 〉

lemma trcl-pair-unconsE [cases set, case-names split]: [[
((s,c),e#w,(s ′,c ′))∈trcl S ;
!!sh ch. [[((s,c),e,(sh,ch))∈S ; ((sh,ch),w,(s ′,c ′))∈trcl S]] =⇒ P

]] =⇒ P
〈proof 〉

lemma trcl-concat: !! c . [[(c,w1 ,c ′)∈trcl t; (c ′,w2 ,c ′′)∈trcl t]]
=⇒ (c,w1@w2 ,c ′′)∈trcl t
〈proof 〉

lemma trcl-unconcat: !! c . (c,w1@w2 ,c ′)∈trcl t
=⇒ ∃ ch . (c,w1 ,ch)∈trcl t ∧ (ch,w2 ,c ′)∈trcl t
〈proof 〉

4.2.1 Appending of elements to paths
lemma trcl-rev-cons: [[(c,w,ch)∈trcl T ; (ch,e,c ′)∈T]] =⇒ (c,w@[e],c ′)∈trcl T
〈proof 〉

lemma trcl-rev-uncons: (c,w@[e],c ′)∈trcl T
=⇒ ∃ ch. (c,w,ch)∈trcl T ∧ (ch,e,c ′)∈T
〈proof 〉

lemma trcl-rev-induct[induct set, consumes 1 , case-names empty snoc]: !! c ′. [[
(c,w,c ′)∈trcl S ;
!!c. P c [] c;
!!c w c ′ e c ′′. [[(c,w,c ′)∈trcl S ; (c ′,e,c ′′)∈S ; P c w c ′]] =⇒ P c (w@[e]) c ′′

]] =⇒ P c w c ′

〈proof 〉
lemma trcl-rev-cases: !!c c ′. [[

(c,w,c ′)∈trcl S ;
[[w=[]; c=c ′]]=⇒P;
!!ch e wh. [[w=wh@[e]; (c,wh,ch)∈trcl S ; (ch,e,c ′)∈S]]=⇒P

]] =⇒ P
〈proof 〉

14

lemma trcl-cons2 : [[(c,e,ch)∈T ; (ch,f ,c ′)∈T]] =⇒ (c,[e,f],c ′)∈trcl T
〈proof 〉

4.2.2 Transitivity reasoning setup
declare trcl-cons2 [trans] — It’s important that this is declared before trcl-concat,
because we want trcl-concat to be tried first by the transitivity reasoner
declare cons[trans]
declare trcl-concat[trans]
declare trcl-rev-cons[trans]

4.2.3 Monotonicity
lemma trcl-mono: !!A B. A ⊆ B =⇒ trcl A ⊆ trcl B
〈proof 〉

lemma trcl-inter-mono: x∈trcl (S∩R) =⇒ x∈trcl S x∈trcl (S∩R) =⇒ x∈trcl R
〈proof 〉

4.2.4 Special lemmas for reasoning about states that are pairs
lemmas trcl-pair-induct = trcl.induct[of (xc1 ,xc2) xb (xa1 ,xa2), split-format (complete),
consumes 1 , case-names empty cons]
lemmas trcl-rev-pair-induct = trcl-rev-induct[of (xc1 ,xc2) xb (xa1 ,xa2), split-format
(complete), consumes 1 , case-names empty snoc]

4.2.5 Invariants
lemma trcl-prop-trans[cases set, consumes 1 , case-names empty steps]: [[

(c,w,c ′)∈trcl S ;
[[c=c ′; w=[]]] =⇒ P;
[[c∈Domain S ; c ′∈Range (Range S)]]=⇒P

]] =⇒ P
〈proof 〉

end

5 Thread Tracking
theory ThreadTracking
imports Main HOL−Library.Multiset LTS Misc
begin

This theory defines some general notion of an interleaving semantics. It
defines how to extend a semantics specified on a single thread and a context
to a semantic on multisets of threads. The context is needed in order to
keep track of synchronization.

15

5.1 Semantic on multiset configuration

The interleaving semantics is defined on a multiset of stacks. The thread to
make the next step is nondeterministically chosen from all threads ready to
make steps.
definition

gtr gtrs == { (add-mset s c,e,add-mset s ′ c ′) | s c e s ′ c ′ . ((s,c),e,(s ′,c ′))∈gtrs }

lemma gtrI-s: ((s,c),e,(s ′,c ′))∈gtrs =⇒ (add-mset s c,e,add-mset s ′ c ′)∈gtr gtrs
〈proof 〉

lemma gtrI : ((s,c),w,(s ′,c ′))∈trcl gtrs
=⇒ (add-mset s c,w,add-mset s ′ c ′)∈trcl (gtr gtrs)
〈proof 〉

lemma gtrE : [[
(c,e,c ′)∈gtr T ;
!!s ce s ′ ce ′. [[c=add-mset s ce; c ′=add-mset s ′ ce ′; ((s,ce),e,(s ′,ce ′))∈T]] =⇒

P
]] =⇒ P
〈proof 〉

lemma gtr-empty-conf-s[simp]:
({#},w,c ′)/∈gtr S
(c,w,{#})/∈gtr S
〈proof 〉

lemma gtr-empty-conf1 [simp]: (({#},w,c ′)∈trcl (gtr S)) ←→ (w=[] ∧ c ′={#})
〈proof 〉

lemma gtr-empty-conf2 [simp]: ((c,w,{#})∈trcl (gtr S)) ←→ (w=[] ∧ c={#})
〈proof 〉

lemma gtr-find-thread: [[
(c,e,c ′)∈gtr gtrs;
!!s ce s ′ ce ′. [[c=add-mset s ce; c ′=add-mset s ′ ce ′; ((s,ce),e,(s ′,ce ′))∈gtrs]] =⇒

P
]] =⇒ P
〈proof 〉

lemma gtr-step-cases[cases set, case-names loc other]: [[
(add-mset s ce,e,c ′)∈gtr gtrs;
!!s ′ ce ′. [[c ′=add-mset s ′ ce ′; ((s,ce),e,(s ′,ce ′))∈gtrs]] =⇒ P;
!!cc ss ss ′ ce ′. [[ce=add-mset ss cc; c ′=add-mset ss ′ ce ′;

((ss,add-mset s cc),e,(ss ′,ce ′))∈gtrs]] =⇒ P
]] =⇒ P
〈proof 〉

lemma gtr-rev-cases[cases set, case-names loc other]: [[
(c,e,add-mset s ′ ce ′)∈gtr gtrs;
!!s ce. [[c=add-mset s ce; ((s,ce),e,(s ′,ce ′))∈gtrs]] =⇒ P;
!!cc ss ss ′ ce. [[c=add-mset ss ce; ce ′=add-mset ss ′ cc;

16

((ss,ce),e,(ss ′,add-mset s ′ cc))∈gtrs]] =⇒ P
]] =⇒ P
〈proof 〉

5.2 Invariants
lemma gtr-preserve-s: [[

(c,e,c ′)∈gtr T ;
P c;
!!s c s ′ c ′ e. [[P (add-mset s c); ((s,c),e,(s ′,c ′))∈T]] =⇒ P (add-mset s ′ c ′)

]] =⇒ P c ′

〈proof 〉

lemma gtr-preserve: [[
(c,w,c ′)∈trcl (gtr T);
P c;
!!s c s ′ c ′ e. [[P (add-mset s c); ((s,c),e,(s ′,c ′))∈T]] =⇒ P (add-mset s ′ c ′)

]] =⇒ P c ′

〈proof 〉

5.3 Context preservation assumption

We now assume that the original semantics does not modify threads in the
context, i.e. it may only add new threads to the context and use the context
to obtain monitor information, but not change any existing thread in the
context. This assumption is valid for our semantics, where the context is just
needed to determine the set of allocated monitors. It allows us to generally
derive some further properties of such semantics.
locale env-no-step =

fixes gtrs :: ((′s× ′s multiset), ′l) LTS
assumes env-no-step-s[cases set, case-names csp]:
[[((s,c),e,(s ′,c ′))∈gtrs; !!csp. c ′=csp+c =⇒ P]] =⇒ P

— The property of not changing existing threads in the context transfers to paths
lemma (in env-no-step) env-no-step[cases set, case-names csp]: [[

((s,c),w,(s ′,c ′))∈trcl gtrs;
!! csp. c ′=csp+c =⇒ P

]] =⇒ P
〈proof 〉

The following lemma can be used to make a case distinction how a step
operated on a given thread in the end configuration:

loc The thread made the step

spawn The thread was spawned by the step

env The thread was not involved in the step

17

lemma (in env-no-step) rev-cases-p[cases set, case-names loc spawn env]:
assumes STEP: (c,e,add-mset s ′ ce ′)∈gtr gtrs and
LOC : !!s ce. [[c={#s#}+ce; ((s,ce),e,(s ′,ce ′))∈gtrs]] =⇒ P and
SPAWN : !!ss ss ′ ce csp.

[[c=add-mset ss ce; ce ′=add-mset ss ′ (csp+ce);
((ss,ce),e,(ss ′,add-mset s ′ (csp+ce)))∈gtrs]]

=⇒ P and
ENV : !!ss ss ′ ce csp.

[[c=add-mset ss (add-mset s ′ ce); ce ′=add-mset ss ′ (csp+ce);
((ss,add-mset s ′ ce),e,(ss ′,csp+(add-mset s ′ ce)))∈gtrs]]

=⇒ P
shows P
〈proof 〉

5.4 Explicit local context

In the multiset semantics, a single thread has no identity. This may become
a problem when reasoning about a fixed thread during an execution. For
example, in our constraint-system-based approach the operational charac-
terization of the least solution of the constraint system requires to state
properties of the steps of the initial thread in some execution. With the
multiset semantics, we are unable to identify those steps among all steps.
There are many solutions to this problem, for example, using thread ids
either as part of the thread’s configuration or as part of the whole config-
uration by using lists of stacks or maps from ids to stacks as configuration
datatype.
In the following we present a special solution that is strong enough to suit
our purposes but not meant as a general solution.
Instead of identifying every single thread uniquely, we only distinguish one
thread as the local thread. The other threads are environment threads. We
then attach to every step the information whether it was on the local or on
some environment thread.
We call this semantics loc/env-semantics in contrast to the multiset-semantics
of the last section.

5.4.1 Lifted step datatype
datatype ′a el-step = LOC ′a | ENV ′a

definition
loc w == filter (λe. case e of LOC a ⇒ True | ENV a ⇒ False) w

definition
env w == filter (λe. case e of LOC a ⇒ False | ENV a ⇒ True) w

definition

18

le-rem-s e == case e of LOC a ⇒ a | ENV a ⇒ a

Standard simplification lemmas
lemma loc-env-simps[simp]:

loc [] = []
env [] = []
〈proof 〉

lemma loc-single[simp]: loc [a] = (case a of LOC e ⇒ [a] | ENV e ⇒ [])
〈proof 〉

lemma loc-uncons[simp]:
loc (a#b) = (case a of LOC e ⇒ [a] | ENV e ⇒ [])@loc b
〈proof 〉

lemma loc-unconc[simp]: loc (a@b) = loc a @ loc b
〈proof 〉

lemma env-single[simp]: env [a] = (case a of LOC e ⇒ [] | ENV e ⇒ [a])
〈proof 〉

lemma env-uncons[simp]:
env (a#b) = (case a of LOC e ⇒ [] | ENV e ⇒ [a]) @ env b
〈proof 〉

lemma env-unconc[simp]: env (a@b) = env a @ env b
〈proof 〉

The following simplification lemmas are for converting between paths of the
multiset- and loc/env-semantics
lemma le-rem-simps [simp]:

le-rem-s (LOC a) = a
le-rem-s (ENV a) = a
〈proof 〉

lemma le-rem-id-simps[simp]:
le-rem-s◦LOC = id
le-rem-s◦ENV = id
〈proof 〉

lemma le-rem-id-map[simp]:
map le-rem-s (map LOC w) = w
map le-rem-s (map ENV w) = w
〈proof 〉

lemma env-map-env [simp]: env (map ENV w) = map ENV w
〈proof 〉

lemma env-map-loc [simp]: env (map LOC w) = []
〈proof 〉

lemma loc-map-env [simp]: loc (map ENV w) = []
〈proof 〉

lemma loc-map-loc [simp]: loc (map LOC w) = map LOC w
〈proof 〉

19

5.4.2 Definition of the loc/env-semantics
type-synonym ′s el-conf = (′s × ′s multiset)

inductive-set
gtrp :: (′s el-conf , ′l) LTS ⇒ (′s el-conf , ′l el-step) LTS
for S
where
gtrp-loc: ((s,c),e,(s ′,c ′))∈S =⇒ ((s,c),LOC e,(s ′,c ′))∈gtrp S
| gtrp-env: ((s,add-mset sl c),e,(s ′,add-mset sl c ′))∈S

=⇒ ((sl,add-mset s c),ENV e,(sl,add-mset s ′ c ′))∈gtrp S

5.4.3 Relation between multiset- and loc/env-semantics
lemma gtrp2gtr-s:
((s,c),e,(s ′,c ′))∈gtrp T =⇒ (add-mset s c,le-rem-s e,add-mset s ′ c ′)∈gtr T
〈proof 〉

lemma gtrp2gtr :
((s,c),w,(s ′,c ′))∈trcl (gtrp T)
=⇒ (add-mset s c,map le-rem-s w,add-mset s ′ c ′)∈trcl (gtr T)
〈proof 〉

lemma (in env-no-step) gtr2gtrp-s[cases set, case-names gtrp]:
assumes A: (add-mset s c,e,c ′)∈gtr gtrs
and CASE : !!s ′ ce ′ ee. [[c ′=add-mset s ′ ce ′; e=le-rem-s ee;

((s,c),ee,(s ′,ce ′))∈gtrp gtrs]]
=⇒ P

shows P
〈proof 〉

lemma (in env-no-step) gtr2gtrp[cases set, case-names gtrp]:
assumes A: (add-mset s c,w,c ′)∈trcl (gtr gtrs)
and CASE : !!s ′ ce ′ ww. [[c ′=add-mset s ′ ce ′; w=map le-rem-s ww;

((s,c),ww,(s ′,ce ′))∈trcl (gtrp gtrs)]]
=⇒ P

shows P
〈proof 〉

5.4.4 Invariants
lemma gtrp-preserve-s:

assumes A: ((s,c),e,(s ′,c ′))∈gtrp T
and INIT : P (add-mset s c)
and PRES : !!s c s ′ c ′ e. [[P (add-mset s c); ((s,c),e,(s ′,c ′))∈T]]

=⇒ P (add-mset s ′ c ′)
shows P (add-mset s ′ c ′)
〈proof 〉

20

lemma gtrp-preserve:
assumes A: ((s,c),w,(s ′,c ′))∈trcl (gtrp T)
and INIT : P (add-mset s c)
and PRES : !!s c s ′ c ′ e. [[P (add-mset s c); ((s,c),e,(s ′,c ′))∈T]]

=⇒ P (add-mset s ′ c ′)
shows P (add-mset s ′ c ′)
〈proof 〉

end

6 Flowgraphs
theory Flowgraph
imports Main Misc
begin

We use a flowgraph-based program model that extends the one we used
previously [6]. A program is represented as an edge annotated graph and a
set of procedures. The nodes of the graph are partitioned by the procedures,
i.e. every node belongs to exactly one procedure. There are no edges between
nodes of different procedures. Every procedure has a distinguished entry
and return node and a set of monitors it synchronizes on. Additionally,
the program has a distinguished main procedure. The edges are annotated
with statements. A statement is either a base statement, a procedure call
or a thread creation (spawn). Procedure calls and thread creations refer
to the called procedure or to the initial procedure of the spawned thread,
respectively.
We require that the main procedure and any initial procedure of a spawned
thread does not to synchronize on any monitors. This avoids that spawning
of a procedure together with entering a monitor is available in our model as
an atomic step, which would be an unrealistic assumption for practical prob-
lems. Technically, our model would become strictly more powerful without
this assumption.
If we allowed this, our model would become strictly more powerful,

6.1 Definitions
datatype (′p, ′ba) edgeAnnot = Base ′ba | Call ′p | Spawn ′p
type-synonym (′n, ′p, ′ba) edge = (′n × (′p, ′ba) edgeAnnot × ′n)

record (′n, ′p, ′ba, ′m) flowgraph-rec =
edges :: (′n, ′p, ′ba) edge set — Set of annotated edges
main :: ′p — Main procedure
entry :: ′p ⇒ ′n — Maps a procedure to its entry point
return :: ′p ⇒ ′n — Maps a procedure to its return point

21

mon :: ′p ⇒ ′m set — Maps procedures to the set of monitors they allocate
proc-of :: ′n ⇒ ′p — Maps a node to the procedure it is contained in

definition
initialproc fg p == p=main fg ∨ (∃ u v. (u,Spawn p,v)∈edges fg)

lemma main-is-initial[simp]: initialproc fg (main fg)
〈proof 〉

locale flowgraph =
fixes fg :: (′n, ′p, ′ba, ′m, ′more) flowgraph-rec-scheme (structure)

— Edges are inside procedures only
assumes edges-part: (u,a,v)∈edges fg =⇒ proc-of fg u = proc-of fg v
— The entry point of a procedure must be in that procedure
assumes entry-valid[simp]: proc-of fg (entry fg p) = p
— The return point of a procedure must be in that procedure
assumes return-valid[simp]: proc-of fg (return fg p) = p
— Initial procedures do not synchronize on any monitors
assumes initial-no-mon[simp]: initialproc fg p =⇒ mon fg p = {}

6.2 Basic properties
lemma (in flowgraph) spawn-no-mon[simp]:
(u, Spawn p, v) ∈ edges fg =⇒ mon fg p = {}
〈proof 〉

lemma (in flowgraph) main-no-mon[simp]: mon fg (main fg) = {}
〈proof 〉

lemma (in flowgraph) entry-return-same-proc[simp]:
entry fg p = return fg p ′ =⇒ p=p ′

〈proof 〉

lemma (in flowgraph) entry-entry-same-proc[simp]:
entry fg p = entry fg p ′ =⇒ p=p ′

〈proof 〉

lemma (in flowgraph) return-return-same-proc[simp]:
return fg p = return fg p ′ =⇒ p=p ′

〈proof 〉

6.3 Extra assumptions for flowgraphs

In order to simplify the definition of our restricted schedules (cf. Section 8),
we make some extra constraints on flowgraphs. Note that these are no real
restrictions, as we can always rewrite flowgraphs to match these constraints,
preserving the set of conflicts. We leave it to future work to consider such a
rewriting formally.

22

The background of this restrictions is that we want to start an execution
of a thread with a procedure call that never returns. This will allow easier
technical treatment in Section 8. Here we enforce this semantic restrictions
by syntactic properties of the flowgraph.

The return node of a procedure is called isolated, if it has no incoming edges
and is different from the entry node. A procedure with an isolated return
node will never return. See Section 8.1 for a proof of this.
definition

isolated-ret fg p ==
(∀ u l. ¬(u,l,return fg p)∈edges fg) ∧ entry fg p 6= return fg p

The following syntactic restrictions guarantee that each thread’s execution
starts with a non-returning call. See Section 8.1 for a proof of this.
locale eflowgraph = flowgraph +

— Initial procedure’s entry node isn’t equal to its return node
assumes initial-no-ret: initialproc fg p =⇒ entry fg p 6= return fg p
— The only outgoing edges of initial procedures’ entry nodes are call edges to

procedures with isolated return node
assumes initial-call-no-ret: [[initialproc fg p; (entry fg p,l,v)∈edges fg]]
=⇒ ∃ p ′. l=Call p ′ ∧ isolated-ret fg p ′

6.4 Example Flowgraph

This section contains a check that there exists a (non-trivial) flowgraph,
i.e. that the assumptions made in the flowgraph and eflowgraph locales are
consistent and have at least one non-trivial model.
definition

example-fg == (|
edges = {((0 ::nat,0 ::nat),Call 1 ,(0 ,1)), ((1 ,0),Spawn 0 ,(1 ,0)),

((1 ,0),Call 0 , (1 ,0))},
main = 0 ,
entry = λp. (p,0),
return = λp. (p,1),
mon = λp. if p=1 then {0} else {},
proc-of= λ (p,x). p |)

lemma exists-eflowgraph: eflowgraph example-fg
〈proof 〉

end

7 Operational Semantics
theory Semantics
imports Main Flowgraph HOL−Library.Multiset LTS Interleave ThreadTracking

23

begin

7.1 Configurations and labels

The state of a single thread is described by a stack of control nodes. The
top node is the current control node and the nodes deeper in the stack are
stored return addresses. The configuration of a whole program is described
by a multiset of stacks.
Note that we model stacks as lists here, the first element being the top
element.
type-synonym ′n conf = (′n list) multiset

A step is labeled according to the executed edge. Additionally, we introduce
a label for a procedure return step, that has no corresponding edge.
datatype (′p, ′ba) label = LBase ′ba | LCall ′p | LRet | LSpawn ′p

7.2 Monitors

The following defines the monitors of nodes, stacks, configurations, step
labels and paths (sequences of step labels)
definition

— The monitors of a node are the monitors the procedure of the node synchronizes
on

mon-n fg n == mon fg (proc-of fg n)

definition
— The monitors of a stack are the monitors of all its nodes
mon-s fg s ==

⋃
{ mon-n fg n | n . n ∈ set s }

definition
— The monitors of a configuration are the monitors of all its stacks
mon-c fg c ==

⋃
{ mon-s fg s | s . s ∈# c }

— The monitors of a step label are the monitors of procedures that are called by
this step
definition mon-e :: (′b, ′c, ′d, ′a, ′e) flowgraph-rec-scheme ⇒ (′c, ′f) label ⇒ ′a
set where

mon-e fg e = (case e of (LCall p) ⇒ mon fg p | - ⇒ {})

lemma mon-e-simps [simp]:
mon-e fg (LBase a) = {}
mon-e fg (LCall p) = mon fg p
mon-e fg (LRet) = {}
mon-e fg (LSpawn p) = {}
〈proof 〉

definition
mon-w fg w ==

⋃
{ mon-e fg e | e. e ∈ set w}

24

lemma mon-s-alt: mon-s fg s ==
⋃

(mon fg ‘ proc-of fg ‘ set s)
〈proof 〉

lemma mon-c-alt: mon-c fg c ==
⋃

(mon-s fg ‘ set-mset c)
〈proof 〉

lemma mon-w-alt: mon-w fg w ==
⋃

(mon-e fg ‘ set w)
〈proof 〉

lemma mon-sI : [[n∈set s; m∈mon-n fg n]] =⇒ m∈mon-s fg s
〈proof 〉

lemma mon-sD: m∈mon-s fg s =⇒ ∃n∈set s. m∈mon-n fg n
〈proof 〉

lemma mon-n-same-proc:
proc-of fg n = proc-of fg n ′ =⇒ mon-n fg n = mon-n fg n ′

〈proof 〉
lemma mon-s-same-proc:

proc-of fg ‘ set s = proc-of fg ‘ set s ′ =⇒ mon-s fg s = mon-s fg s ′

〈proof 〉

lemma (in flowgraph) mon-of-entry[simp]: mon-n fg (entry fg p) = mon fg p
〈proof 〉

lemma (in flowgraph) mon-of-ret[simp]: mon-n fg (return fg p) = mon fg p
〈proof 〉

lemma mon-c-single[simp]: mon-c fg {#s#} = mon-s fg s
〈proof 〉

lemma mon-s-single[simp]: mon-s fg [n] = mon-n fg n
〈proof 〉

lemma mon-s-empty[simp]: mon-s fg [] = {}
〈proof 〉

lemma mon-c-empty[simp]: mon-c fg {#} = {}
〈proof 〉

lemma mon-s-unconc: mon-s fg (a@b) = mon-s fg a ∪ mon-s fg b
〈proof 〉

lemma mon-s-uncons[simp]: mon-s fg (a#as) = mon-n fg a ∪ mon-s fg as
〈proof 〉

lemma mon-c-union-conc: mon-c fg (a+b) = mon-c fg a ∪ mon-c fg b
〈proof 〉

lemma mon-c-add-mset-unconc: mon-c fg (add-mset x b) = mon-s fg x ∪ mon-c
fg b
〈proof 〉

lemmas mon-c-unconc = mon-c-union-conc mon-c-add-mset-unconc

lemma mon-cI : [[s ∈# c; m∈mon-s fg s]] =⇒ m∈mon-c fg c

25

〈proof 〉
lemma mon-cD: [[m∈mon-c fg c]] =⇒ ∃ s. s ∈# c ∧ m∈mon-s fg s
〈proof 〉

lemma mon-s-mono: set s ⊆ set s ′ =⇒ mon-s fg s ⊆ mon-s fg s ′

〈proof 〉
lemma mon-c-mono: c⊆#c ′ =⇒ mon-c fg c ⊆ mon-c fg c ′

〈proof 〉

lemma mon-w-empty[simp]: mon-w fg [] = {}
〈proof 〉

lemma mon-w-single[simp]: mon-w fg [e] = mon-e fg e
〈proof 〉

lemma mon-w-unconc: mon-w fg (wa@wb) = mon-w fg wa ∪ mon-w fg wb
〈proof 〉

lemma mon-w-uncons[simp]: mon-w fg (e#w) = mon-e fg e ∪ mon-w fg w
〈proof 〉

lemma mon-w-ileq: w�w ′ =⇒ mon-w fg w ⊆ mon-w fg w ′

〈proof 〉

7.3 Valid configurations

We call a configuration valid if each monitor is owned by at most one thread.
definition

valid fg c == ∀ s s ′. {#s, s ′#} ⊆# c −→ mon-s fg s ∩ mon-s fg s ′ = {}

lemma valid-empty[simp, intro!]: valid fg {#}
〈proof 〉

lemma valid-single[simp, intro!]: valid fg {#s#}
〈proof 〉

lemma valid-split1 :
valid fg (c+c ′) =⇒ valid fg c ∧ valid fg c ′ ∧ mon-c fg c ∩ mon-c fg c ′ = {}
〈proof 〉

lemma valid-split2 :
[[valid fg c; valid fg c ′; mon-c fg c ∩ mon-c fg c ′ = {}]] =⇒ valid fg (c+c ′)
〈proof 〉

lemma valid-union-conc:
valid fg (c+c ′) ←→ (valid fg c ∧ valid fg c ′ ∧ mon-c fg c ∩ mon-c fg c ′ = {})
〈proof 〉

lemma valid-add-mset-conc:
valid fg (add-mset x c ′) ←→ (valid fg c ′ ∧ mon-s fg x ∩ mon-c fg c ′ = {})
〈proof 〉

lemmas valid-unconc = valid-union-conc valid-add-mset-conc

26

lemma valid-no-mon: mon-c fg c = {} =⇒ valid fg c
〈proof 〉

7.4 Configurations at control points
primrec atU-s :: ′n set ⇒ ′n list ⇒ bool where

atU-s U [] = False
| atU-s U (u#r) = (u∈U)

lemma atU-s-decomp[simp]: atU-s U (s@s ′) = (atU-s U s ∨ (s=[] ∧ atU-s U s ′))
〈proof 〉

definition
atU U c == ∃ s. s ∈# c ∧ atU-s U s

lemma atU-fmt: [[atU U c; !!ui r . [[ui#r ∈# c; ui∈U]] =⇒ P]] =⇒ P
〈proof 〉

lemma atU-union-cases[case-names left right, consumes 1]: [[
atU U (c1+c2);
atU U c1 =⇒ P;
atU U c2 =⇒ P

]] =⇒ P
〈proof 〉

lemma atU-add: atU U c =⇒ atU U (c+ce) ∧ atU U (ce+c)
〈proof 〉

lemma atU-union[simp]: atU U (c1+c2) = (atU U c1 ∨ atU U c2)
〈proof 〉

lemma atU-empty[simp]: ¬atU U {#}
〈proof 〉

lemma atU-single[simp]: atU U {#s#} = atU-s U s
〈proof 〉

lemma atU-single-top[simp]: atU U {#u#r#} = (u∈U)
〈proof 〉

lemma atU-add-mset[simp]: atU U (add-mset c c2) = (atU-s U c ∨ atU U c2)
〈proof 〉

lemma atU-xchange-stack: atU U (add-mset (u#r) c) =⇒ atU U (add-mset (u#r ′)
c)
〈proof 〉

definition
atUV U V c == ∃ su sv. {#su#}+{#sv#} ⊆# c ∧ atU-s U su ∧ atU-s V sv

lemma atUV-empty[simp]: ¬atUV U V {#}
〈proof 〉

27

lemma atUV-single[simp]: ¬atUV U V {#s#}
〈proof 〉

lemma atUV-union[simp]:
atUV U V (c1+c2) ←→
(
(atUV U V c1) ∨
(atUV U V c2) ∨
(atU U c1 ∧ atU V c2) ∨
(atU V c1 ∧ atU U c2)

)
〈proof 〉

lemma atUV-add-mset[simp]:
atUV U V (add-mset c c2) ←→
(
(atUV U V c2) ∨
(atU U {#c#} ∧ atU V c2) ∨
(atU V {#c#} ∧ atU U c2)

)
〈proof 〉

lemma atUV-union-cases[case-names left right lr rl, consumes 1]: [[
atUV U V (c1+c2);
atUV U V c1 =⇒ P;
atUV U V c2 =⇒ P;
[[atU U c1 ; atU V c2]] =⇒ P;
[[atU V c1 ; atU U c2]] =⇒ P

]] =⇒ P
〈proof 〉

7.5 Operational semantics
7.5.1 Semantic reference point

We now define our semantic reference point. We assess correctness and
completeness of analyses relative to this reference point.
inductive-set

refpoint :: (′n, ′p, ′ba, ′m, ′more) flowgraph-rec-scheme ⇒
(′n conf × (′p, ′ba) label × ′n conf) set

for fg
where

— A base edge transforms the top node of one stack and leaves the other stacks
untouched.

refpoint-base: [[(u,Base a,v)∈edges fg; valid fg ({#u#r#}+c)]]
=⇒ (add-mset (u#r) c,LBase a,add-mset (v#r) c)∈refpoint fg |

— A call edge transforms the top node of a stack and then pushes the entry node
of the called procedure onto that stack. It can only be executed if all monitors the
called procedure synchronizes on are available. Reentrant monitors are modeled

28

here by checking availability of monitors just against the other stacks, not against
the stack of the thread that executes the call. The other stacks are left untouched.

refpoint-call: [[(u,Call p,v)∈edges fg; valid fg ({#u#r#}+c);
mon fg p ∩ mon-c fg c = {}]]

=⇒ (add-mset (u#r) c,LCall p, add-mset (entry fg p#v#r) c)∈refpoint fg |
— A return step pops a return node from a stack. There is no corresponding

flowgraph edge for a return step. The other stacks are left untouched.
refpoint-ret: [[valid fg ({#return fg p#r#}+c)]]
=⇒ (add-mset (return fg p#r) c,LRet,(add-mset r c))∈refpoint fg |

— A spawn edge transforms the top node of a stack and adds a new stack to
the environment, with the entry node of the spawned procedure at the top and no
stored return addresses. The other stacks are also left untouched.

refpoint-spawn: [[(u,Spawn p,v)∈edges fg; valid fg (add-mset (u#r) c)]]
=⇒ (add-mset (u#r) c,LSpawn p, add-mset (v#r) (add-mset [entry fg p]

c))∈refpoint fg

Instead of working directly with the reference point semantics, we define
the operational semantics of flowgraphs by describing how a single stack is
transformed in a context of environment threads, and then use the theory
developed in Section 5 to derive an interleaving semantics. Note that this
semantics is also defined for invalid configurations (cf. Section 7.3). In
Section 7.6.1 we will show that it preserves validity of a configuration, and
in Section 7.6.2 we show that it is equivalent to the reference point semantics
on valid configurations.
inductive-set

trss :: (′n, ′p, ′ba, ′m, ′more) flowgraph-rec-scheme ⇒
((′n list ∗ ′n conf) ∗ (′p, ′ba) label ∗ (′n list ∗ ′n conf)) set

for fg
where

trss-base: [[(u,Base a,v)∈edges fg]] =⇒
((u#r ,c), LBase a, (v#r ,c)) ∈ trss fg

| trss-call: [[(u,Call p,v)∈edges fg; mon fg p ∩ mon-c fg c = {}]] =⇒
((u#r ,c),LCall p, ((entry fg p)#v#r ,c)) ∈ trss fg
| trss-ret: ((((return fg p)#r),c),LRet,(r ,c)) ∈ trss fg
| trss-spawn: [[(u,Spawn p,v)∈edges fg]] =⇒
((u#r ,c),LSpawn p,(v#r ,add-mset [entry fg p] c)) ∈ trss fg

— The interleaving semantics is generated using the general techniques from Sec-
tion 5
abbreviation tr where tr fg == gtr (trss fg)
— We also generate the loc/env-semantics
abbreviation trp where trp fg == gtrp (trss fg)

29

7.6 Basic properties
7.6.1 Validity
lemma (in flowgraph) trss-valid-preserve-s:
[[valid fg (add-mset s c); ((s,c),e,(s ′,c ′))∈trss fg]] =⇒ valid fg (add-mset s ′ c ′)
〈proof 〉

lemma (in flowgraph) trss-valid-preserve:
[[((s,c),w,(s ′,c ′))∈trcl (trss fg); valid fg ({#s#}+c)]] =⇒ valid fg ({#s ′#}+c ′)
〈proof 〉

lemma (in flowgraph) tr-valid-preserve-s:
[[(c,e,c ′)∈tr fg; valid fg c]] =⇒ valid fg c ′

〈proof 〉

lemma (in flowgraph) tr-valid-preserve:
[[(c,w,c ′)∈trcl (tr fg); valid fg c]] =⇒ valid fg c ′

〈proof 〉

lemma (in flowgraph) trp-valid-preserve-s:
[[((s,c),e,(s ′,c ′))∈trp fg; valid fg (add-mset s c)]] =⇒ valid fg (add-mset s ′ c ′)
〈proof 〉

lemma (in flowgraph) trp-valid-preserve:
[[((s,c),w,(s ′,c ′))∈trcl (trp fg); valid fg ({#s#}+c)]] =⇒ valid fg (add-mset s ′ c ′)
〈proof 〉

7.6.2 Equivalence to reference point
lemma refpoint-eq-s: valid fg c =⇒ ((c,e,c ′)∈refpoint fg) ←→ ((c,e,c ′)∈tr fg)
〈proof 〉

lemma (in flowgraph) refpoint-eq:
valid fg c =⇒ ((c,w,c ′)∈trcl (refpoint fg)) ←→ ((c,w,c ′)∈trcl (tr fg))
〈proof 〉

7.6.3 Case distinctions
lemma trss-c-cases-s[cases set, case-names no-spawn spawn]: [[

((s,c),e,(s ′,c ′))∈trss fg;
[[c ′=c]] =⇒ P;
!!p u v. [[e=LSpawn p; (u,Spawn p,v)∈edges fg;

hd s=u; hd s ′=v; c ′={#[entry fg p]#}+c]] =⇒ P
]] =⇒ P
〈proof 〉
lemma trss-c-fmt-s: [[((s,c),e,(s ′,c ′))∈trss fg]]
=⇒ ∃ csp. c ′=csp+c ∧

(csp={#} ∨ (∃ p. e=LSpawn p ∧ csp={#[entry fg p]#}))
〈proof 〉

30

lemma (in flowgraph) trss-c ′-split-s: [[
((s,c),e,(s ′,c ′))∈trss fg;
!!csp. [[c ′=csp+c; mon-c fg csp={}]] =⇒ P

]] =⇒ P
〈proof 〉

lemma trss-c-cases[cases set, case-names c-case]: !!s c. [[
((s,c),w,(s ′,c ′))∈trcl (trss fg);
!!csp. [[c ′=csp+c; !!s. s ∈# csp =⇒ ∃ p u v. s=[entry fg p] ∧

(u,Spawn p,v)∈edges fg ∧
initialproc fg p]]

=⇒ P
]] =⇒ P
〈proof 〉

lemma (in flowgraph) c-of-initial-no-mon:
assumes A: !!s. s ∈# csp =⇒ ∃ p. s=[entry fg p] ∧ initialproc fg p
shows mon-c fg csp = {}
〈proof 〉

lemma (in flowgraph) trss-c-no-mon-s:
assumes A: ((s,c),e,(s ′,c ′))∈trss fg
shows mon-c fg c ′ = mon-c fg c
〈proof 〉

corollary (in flowgraph) trss-c-no-mon:
((s,c),w,(s ′,c ′))∈trcl (trss fg) =⇒ mon-c fg c ′ = mon-c fg c
〈proof 〉

lemma (in flowgraph) trss-spawn-no-mon-step[simp]:
((s,c),LSpawn p, (s ′,c ′))∈trss fg =⇒ mon fg p = {}
〈proof 〉

lemma trss-no-empty-s[simp]: (([],c),e,(s ′,c ′))∈trss fg = False
〈proof 〉

lemma trss-no-empty[simp]:
assumes A: (([],c),w,(s ′,c ′))∈trcl (trss fg)
shows w=[] ∧ s ′=[] ∧ c=c ′

〈proof 〉

lemma trs-step-cases[cases set, case-names NO-SPAWN SPAWN]:
assumes A: (c,e,c ′)∈tr fg
assumes A-NO-SPAWN : !!s ce s ′ csp. [[

31

((s,ce),e,(s ′,ce))∈trss fg;
c={#s#}+ce; c ′={#s ′#}+ce

]] =⇒ P
assumes A-SPAWN : !!s ce s ′ p. [[

((s,ce),LSpawn p,(s ′,{#[entry fg p]#}+ce))∈trss fg;
c={#s#}+ce;
c ′={#s ′#}+{#[entry fg p]#}+ce;
e=LSpawn p

]] =⇒ P
shows P
〈proof 〉

7.7 Advanced properties
7.7.1 Stack composition / decomposition
lemma trss-stack-comp-s:
((s,c),e,(s ′,c ′))∈trss fg =⇒ ((s@r ,c),e,(s ′@r ,c ′))∈trss fg
〈proof 〉

lemma trss-stack-comp:
((s,c),w,(s ′,c ′))∈trcl (trss fg) =⇒ ((s@r ,c),w,(s ′@r ,c ′))∈trcl (trss fg)
〈proof 〉

lemma trss-stack-decomp-s: [[((s@r ,c),e,(s ′,c ′))∈trss fg; s 6=[]]]
=⇒ ∃ sp ′. s ′=sp ′@r ∧ ((s,c),e,(sp ′,c ′))∈trss fg
〈proof 〉

lemma trss-find-return: [[
((s@r ,c),w,(r ,c ′))∈trcl (trss fg);
!!wa wb ch. [[w=wa@wb; ((s,c),wa,([],ch))∈trcl (trss fg);

((r ,ch),wb,(r ,c ′))∈trcl (trss fg)]] =⇒ P
]] =⇒ P
— If s = [], the proposition follows trivially
〈proof 〉

lemma trss-return-cases[cases set]: !!u r c. [[
((u#r ,c),w,(r ′,c ′))∈trcl (trss fg);
!! s ′ u ′. [[r ′=s ′@u ′#r ; (([u],c),w,(s ′@[u ′],c ′))∈trcl (trss fg)]] =⇒ P;
!! wa wb ch. [[w=wa@wb; (([u],c),wa,([],ch))∈trcl (trss fg);

((r ,ch),wb,(r ′,c ′))∈trcl (trss fg)]] =⇒ P
]] =⇒ P
〈proof 〉

lemma (in flowgraph) trss-find-call:
!!v r ′ c ′. [[(([sp],c),w,(v#r ′,c ′)) ∈ trcl (trss fg); r ′6=[]]]
=⇒ ∃ rh ch p wa wb.

w=wa@(LCall p)#wb ∧
proc-of fg v = p ∧

32

(([sp],c),wa,(rh,ch))∈trcl (trss fg) ∧
((rh,ch),LCall p,((entry fg p)#r ′,ch))∈trss fg ∧
(([entry fg p],ch),wb,([v],c ′))∈trcl (trss fg)

〈proof 〉
lemma (in flowgraph) trss-find-call ′:

assumes A: (([sp],c),w,(return fg p#[u ′],c ′)) ∈ trcl (trss fg)
and EX : !!uh ch wa wb. [[

w=wa@(LCall p)#wb;
(([sp],c),wa,([uh],ch))∈trcl (trss fg);
(([uh],ch),LCall p,((entry fg p)#[u ′],ch))∈trss fg;
(uh,Call p,u ′)∈edges fg;
(([entry fg p],ch),wb,([return fg p],c ′))∈trcl (trss fg)

]] =⇒ P
shows P
〈proof 〉

lemma (in flowgraph) trss-bot-proc-const:
!!s ′ u ′ c ′. ((s@[u],c),w,(s ′@[u ′],c ′))∈trcl (trss fg)
=⇒ proc-of fg u = proc-of fg u ′

〈proof 〉
lemma (in flowgraph) trss-er-path-proc-const:
(([entry fg p],c),w,([return fg q],c ′))∈trcl (trss fg) =⇒ p=q
〈proof 〉

lemma trss-2empty-to-2return: [[((s,c),w,([],c ′))∈trcl (trss fg); s 6=[]]] =⇒
∃w ′ p. w=w ′@[LRet] ∧ ((s,c),w ′,([return fg p],c ′))∈trcl (trss fg)
〈proof 〉

lemma trss-2return-to-2empty: [[((s,c),w,([return fg p],c ′))∈trcl (trss fg)]]
=⇒ ((s,c),w@[LRet],([],c ′))∈trcl (trss fg)
〈proof 〉

7.7.2 Adding threads
lemma trss-env-increasing-s: ((s,c),e,(s ′,c ′))∈trss fg =⇒ c⊆#c ′

〈proof 〉
lemma trss-env-increasing: ((s,c),w,(s ′,c ′))∈trcl (trss fg) =⇒ c⊆#c ′

〈proof 〉

7.7.3 Conversion between environment and monitor restrictions
lemma trss-mon-e-no-ctx:
((s,c),e,(s ′,c ′))∈trss fg =⇒ mon-e fg e ∩ mon-c fg c = {}
〈proof 〉

lemma (in flowgraph) trss-mon-w-no-ctx:
((s,c),w,(s ′,c ′))∈trcl (trss fg) =⇒ mon-w fg w ∩ mon-c fg c = {}
〈proof 〉

lemma (in flowgraph) trss-modify-context-s:
!!cn. [[((s,c),e,(s ′,c ′))∈trss fg; mon-e fg e ∩ mon-c fg cn = {}]]

33

=⇒ ∃ csp. c ′=csp+c ∧ mon-c fg csp = {} ∧ ((s,cn),e,(s ′,csp+cn))∈trss fg
〈proof 〉

lemma (in flowgraph) trss-modify-context[rule-format]:
[[((s,c),w,(s ′,c ′))∈trcl (trss fg)]]
=⇒ ∀ cn. mon-w fg w ∩ mon-c fg cn = {}
−→ (∃ csp. c ′=csp+c ∧ mon-c fg csp = {} ∧

((s,cn),w,(s ′,csp+cn))∈trcl (trss fg))
〈proof 〉

lemma trss-add-context-s:
[[((s,c),e,(s ′,c ′))∈trss fg; mon-e fg e ∩ mon-c fg ce = {}]]
=⇒ ((s,c+ce),e,(s ′,c ′+ce))∈trss fg
〈proof 〉

lemma trss-add-context:
[[((s,c),w,(s ′,c ′))∈trcl (trss fg); mon-w fg w ∩ mon-c fg ce = {}]]
=⇒ ((s,c+ce),w,(s ′,c ′+ce))∈trcl (trss fg)

〈proof 〉

lemma trss-drop-context-s: [[((s,c+ce),e,(s ′,c ′+ce))∈trss fg]]
=⇒ ((s,c),e,(s ′,c ′))∈trss fg ∧ mon-e fg e ∩ mon-c fg ce = {}
〈proof 〉

lemma trss-drop-context: !!s c. [[((s,c+ce),w,(s ′,c ′+ce))∈trcl (trss fg)]]
=⇒ ((s,c),w,(s ′,c ′))∈trcl (trss fg) ∧ mon-w fg w ∩ mon-c fg ce = {}
〈proof 〉

lemma trss-xchange-context-s:
assumes A: ((s,c),e,(s ′,csp+c))∈trss fg
and M :mon-c fg cn ⊆ mon-c fg c
shows ((s,cn),e,(s ′,csp+cn))∈trss fg
〈proof 〉

lemma trss-xchange-context:
assumes A: ((s,c),w,(s ′,csp+c))∈trcl (trss fg)
and M :mon-c fg cn ⊆ mon-c fg c
shows ((s,cn),w,(s ′,csp+cn))∈trcl (trss fg)
〈proof 〉

lemma trss-drop-all-context-s[cases set, case-names dropped]:
assumes A: ((s,c),e,(s ′,c ′))∈trss fg
and C : !!csp. [[c ′=csp+c; ((s,{#}),e,(s ′,csp))∈trss fg]] =⇒ P
shows P
〈proof 〉

lemma trss-drop-all-context[cases set, case-names dropped]:
assumes A: ((s,c),w,(s ′,c ′))∈trcl (trss fg)
and C : !!csp. [[c ′=csp+c; ((s,{#}),w,(s ′,csp))∈trcl (trss fg)]] =⇒ P

34

shows P
〈proof 〉

lemma tr-add-context-s:
[[(c,e,c ′)∈tr fg; mon-e fg e ∩ mon-c fg ce = {}]] =⇒ (c+ce,e,c ′+ce)∈tr fg
〈proof 〉

lemma tr-add-context:
[[(c,w,c ′)∈trcl (tr fg); mon-w fg w ∩ mon-c fg ce = {}]]
=⇒ (c+ce,w,c ′+ce)∈trcl (tr fg)

〈proof 〉

end

8 Normalized Paths
theory Normalization
imports Main ThreadTracking Semantics ConsInterleave
begin

The idea of normalized paths is to consider particular schedules only. While
the original semantics allows a context switch to occur after every single
step, we now define a semantics that allows context switches only before
non-returning calls or after a thread has reached its final stack. We then
show that this semantics is able to reach the same set of configurations as
the original semantics.

8.1 Semantic properties of restricted flowgraphs

It makes the formalization smoother, if we assume that every thread’s execu-
tion begins with a non-returning call. For this purpose, we defined syntactic
restrictions on flowgraphs already (cf. Section 6.3). We now show that these
restrictions have the desired semantic effect.
lemma (in eflowgraph) iso-ret-no-ret: !!u c. [[

isolated-ret fg p;
proc-of fg u = p;
u 6= return fg p;
(([u],c),w,([return fg p ′],c ′))∈trcl (trss fg)

]] =⇒ False
〈proof 〉
lemma (in eflowgraph) initial-starts-with-call:
[[(([entry fg p],c),e,(s ′,c ′))∈trss fg; initialproc fg p]]
=⇒ ∃ p ′. e=LCall p ′ ∧ isolated-ret fg p ′

〈proof 〉
lemma (in eflowgraph) no-sl-from-initial:

assumes A: w 6=[] initialproc fg p
(([entry fg p],c),w,([v],c ′))∈trcl (trss fg)

35

shows False
〈proof 〉
lemma (in eflowgraph) no-retsl-from-initial:

assumes A: w 6=[]
initialproc fg p
(([entry fg p],c),w,(r ′,c ′))∈trcl (trss fg)
length r ′ ≤ 1

shows False
〈proof 〉

8.2 Definition of normalized paths

In order to describe the restricted schedules, we define an operational se-
mantics that performs an atomically scheduled sequence of steps in one step,
called a macrostep. Context switches may occur after macrosteps only. We
call this the normalized semantics and a sequence of macrosteps a normalized
path.
Since we ensured that every path starts with a non-returning call, we can
define a macrostep as an initial call followed by a same-level path2 of the
called procedure. This has the effect that context switches are either per-
formed before a non-returning call (if the thread makes a further macrostep
in the future) or after the thread has reached its final configuration.
As for the original semantics, we first define the normalized semantics on a
single thread with a context and then use the theory developed in Section 5
to derive interleaving semantics on multisets and configurations with an
explicit local thread (loc/env-semantics, cf. Section 5.4).
inductive-set

ntrs :: (′n, ′p, ′ba, ′m, ′more) flowgraph-rec-scheme ⇒
((′n list × ′n conf) × (′p, ′ba) label list × (′n list × ′n conf)) set

for fg
where
— A macrostep transforms one thread by first calling a procedure and then doing

a same-level path
ntrs-step: [[((u#r ,ce),LCall p, (entry fg p # u ′ # r ,ce))∈trss fg;

(([entry fg p],ce),w,([v],ce ′))∈trcl (trss fg)]] =⇒
((u#r ,ce),LCall p#w,(v#u ′#r ,ce ′))∈ntrs fg

abbreviation ntr where ntr fg == gtr (ntrs fg)
abbreviation ntrp where ntrp fg == gtrp (ntrs fg)

interpretation ntrs: env-no-step ntrs fg
〈proof 〉

2Same-level paths are paths with balanced calls and returns. The stack-level at the
beginning of their execution is the same as at the end, and during the execution, the stack
never falls below the initial level.

36

8.3 Representation property for reachable configurations

In this section, we show that a configuration is reachable if and only if it is
reachable via a normalized path.

The first direction is to show that a normalized path is also a path. This
follows from the definitions. Note that we first show that a single macrostep
corresponds to a path and then generalize the result to sequences of macrosteps
lemma ntrs-is-trss-s: ((s,c),w,(s ′,c ′))∈ntrs fg =⇒ ((s,c),w,(s ′,c ′))∈trcl (trss fg)
〈proof 〉

lemma ntrs-is-trss: ((s,c),w,(s ′,c ′))∈trcl (ntrs fg)
=⇒ ((s,c),foldl (@) [] w,(s ′,c ′))∈trcl (trss fg)
〈proof 〉

lemma ntr-is-tr-s: (c,w,c ′)∈ntr fg =⇒ (c,w,c ′)∈trcl (tr fg)
〈proof 〉

lemma ntr-is-tr : (c,ww,c ′)∈trcl (ntr fg) =⇒ (c,foldl (@) [] ww,c ′)∈trcl (tr fg)
〈proof 〉

The other direction requires to prove that for each path reaching a con-
figuration there is also a normalized path reaching the same configuration.
We need an auxiliary lemma for this proof, that is a kind of append rule:
Given a normalized path reaching some configuration c, and a same level
or returning path from some stack in c, we can derive a normalized path to
c modified according to the same-level path. We cannot simply append the
same-level or returning path as a macrostep, because it does not start with
a non-returning call. Instead, we will have to append it to some macrostep
in the normalized path, i.e. move it „left” into the normalized path.

Intuitively, we can describe the concept of the proof as follows: Due to the
restrictions we made on flowgraphs, a same-level or returning path cannot
be the first steps on a thread. Hence there is a last macrostep that was
executed on the thread. When this macrostep was executed, all threads
held less monitors then they do at the end of the execution, because the set
of monitors held by every single thread is increasing during the execution of
a normalized path. Thus we can append the same-level or returning path to
the last macrostep on that thread. As a same-level or returning path does
not allocate any monitors, the following macrosteps remain executable. If we
have a same-level path, appending it to a macrostep yields a valid macrostep
again and we are done. Appending a returning path to a macrostep yields
a same-level path. In this case we inductively repeat our argument.
The actual proof is strictly inductive; it either appends the same-level path
to the last macrostep or inductively repeats the argument.
lemma (in eflowgraph) ntr-sl-move-left: !!ce u r w r ′ ce ′.

37

[[({#[entry fg p]#},ww,{# u#r #}+ce)∈trcl (ntr fg);
(([u],ce),w,(r ′,ce ′))∈trcl (trss fg);
initialproc fg p;
length r ′ ≤ 1 ; w 6=[]

]] =⇒ ∃ww ′. ({#[entry fg p]#}, ww ′,{# r ′@r #}+ce ′)∈trcl (ntr fg)
〈proof 〉

Finally we can prove: Any reachable configuration can also be reached by a
normalized path. With eflowgraph.ntr-sl-move-left we can easily show this
lemma With eflowgraph.ntr-sl-move-left we can easily show this by induction
on the reaching path. For the empty path, the proposition follows trivially.
Else we consider the last step. If it is a call, we can execute it as a macrostep
and get the proposition. Otherwise the last step is a same-level (Base,
Spawn) or returning (Ret) path of length 1, and we can append it to the
normalized path using eflowgraph.ntr-sl-move-left.
lemma (in eflowgraph) normalize: [[

(cstart,w,c ′)∈trcl (tr fg);
cstart={# [entry fg p] #};
initialproc fg p]]

=⇒ ∃w ′. ({# [entry fg p] #},w ′,c ′)∈trcl (ntr fg)
— The lemma is shown by induction on the reaching path
〈proof 〉

As the main result of this section we get: A configuration is reachable if and
only if it is also reachable via a normalized path:
theorem (in eflowgraph) ntr-repr :

(∃w. ({#[entry fg (main fg)]#},w,c)∈trcl (tr fg))
←→ (∃w. ({#[entry fg (main fg)]#},w,c)∈trcl (ntr fg))
〈proof 〉

8.4 Properties of normalized path

Like a usual path, also a macrostep modifies one thread, spawns some
threads and preserves the state of all the other threads. The spawned threads
do not make any steps, thus they stay in their initial configurations.
lemma ntrs-c-cases-s[cases set]: [[

((s,c),w,(s ′,c ′))∈ntrs fg;
!!csp. [[c ′=csp+c; !!s. s ∈# csp =⇒ ∃ p u v. s=[entry fg p] ∧

(u,Spawn p,v)∈edges fg ∧
initialproc fg p

]] =⇒ P
]] =⇒ P
〈proof 〉

lemma ntrs-c-cases[cases set]: [[
((s,c),ww,(s ′,c ′))∈trcl (ntrs fg);
!!csp. [[c ′=csp+c; !!s. s ∈# csp =⇒ ∃ p u v. s=[entry fg p] ∧

38

(u,Spawn p,v)∈edges fg ∧
initialproc fg p

]] =⇒ P
]] =⇒ P
〈proof 〉

8.4.1 Validity

Like usual paths, also normalized paths preserve validity of the configura-
tions.
lemmas (in flowgraph) ntrs-valid-preserve-s = trss-valid-preserve[OF ntrs-is-trss-s]
lemmas (in flowgraph) ntr-valid-preserve-s = tr-valid-preserve[OF ntr-is-tr-s]
lemmas (in flowgraph) ntrs-valid-preserve = trss-valid-preserve[OF ntrs-is-trss]
lemmas (in flowgraph) ntr-valid-preserve = tr-valid-preserve[OF ntr-is-tr]
lemma (in flowgraph) ntrp-valid-preserve-s:

assumes A: ((s,c),e,(s ′,c ′))∈ntrp fg
and V : valid fg (add-mset s c)
shows valid fg (add-mset s ′ c ′)
〈proof 〉

lemma (in flowgraph) ntrp-valid-preserve:
assumes A: ((s,c),e,(s ′,c ′))∈trcl (ntrp fg)
and V : valid fg (add-mset s c)
shows valid fg (add-mset s ′ c ′)
〈proof 〉

8.4.2 Monitors

The following defines the set of monitors used by a normalized path and
shows its basic properties:
definition

mon-ww fg ww == foldl (∪) {} (map (mon-w fg) ww)

definition
mon-loc fg ww == mon-ww fg (map le-rem-s (loc ww))

definition
mon-env fg ww == mon-ww fg (map le-rem-s (env ww))

lemma mon-ww-empty[simp]: mon-ww fg [] = {}
〈proof 〉

lemma mon-ww-uncons[simp]:
mon-ww fg (ee#ww) = mon-w fg ee ∪ mon-ww fg ww
〈proof 〉

lemma mon-ww-unconc:
mon-ww fg (ww1@ww2) = mon-ww fg ww1 ∪ mon-ww fg ww2
〈proof 〉

lemma mon-env-empty[simp]: mon-env fg [] = {}

39

〈proof 〉
lemma mon-env-single[simp]:

mon-env fg [e] = (case e of LOC a ⇒ {} | ENV a ⇒ mon-w fg a)
〈proof 〉

lemma mon-env-uncons[simp]:
mon-env fg (e#w)
= (case e of LOC a ⇒ {} | ENV a ⇒ mon-w fg a) ∪ mon-env fg w
〈proof 〉

lemma mon-env-unconc:
mon-env fg (w1@w2) = mon-env fg w1 ∪ mon-env fg w2
〈proof 〉

lemma mon-loc-empty[simp]: mon-loc fg [] = {}
〈proof 〉

lemma mon-loc-single[simp]:
mon-loc fg [e] = (case e of ENV a ⇒ {} | LOC a ⇒ mon-w fg a)
〈proof 〉

lemma mon-loc-uncons[simp]:
mon-loc fg (e#w)
= (case e of ENV a ⇒ {} | LOC a ⇒ mon-w fg a) ∪ mon-loc fg w
〈proof 〉

lemma mon-loc-unconc:
mon-loc fg (w1@w2) = mon-loc fg w1 ∪ mon-loc fg w2
〈proof 〉

lemma mon-ww-of-foldl[simp]: mon-w fg (foldl (@) [] ww) = mon-ww fg ww
〈proof 〉

lemma mon-ww-ileq: w�w ′ =⇒ mon-ww fg w ⊆ mon-ww fg w ′

〈proof 〉

lemma mon-ww-cil:
w∈w1⊗αw2 =⇒ mon-ww fg w = mon-ww fg w1 ∪ mon-ww fg w2
〈proof 〉

lemma mon-loc-cil:
w∈w1⊗αw2 =⇒ mon-loc fg w = mon-loc fg w1 ∪ mon-loc fg w2
〈proof 〉

lemma mon-env-cil:
w∈w1⊗αw2 =⇒ mon-env fg w = mon-env fg w1 ∪ mon-env fg w2
〈proof 〉

lemma mon-ww-of-le-rem:
mon-ww fg (map le-rem-s w) = mon-loc fg w ∪ mon-env fg w
〈proof 〉

lemma mon-env-ileq: w�w ′ =⇒ mon-env fg w ⊆ mon-env fg w ′

〈proof 〉

40

lemma mon-loc-ileq: w�w ′ =⇒ mon-loc fg w ⊆ mon-loc fg w ′

〈proof 〉

lemma mon-loc-map-loc[simp]: mon-loc fg (map LOC w) = mon-ww fg w
〈proof 〉

lemma mon-env-map-env[simp]: mon-env fg (map ENV w) = mon-ww fg w
〈proof 〉

lemma mon-loc-map-env[simp]: mon-loc fg (map ENV w) = {}
〈proof 〉

lemma mon-env-map-loc[simp]: mon-env fg (map LOC w) = {}
〈proof 〉

lemma (in flowgraph) ntrs-mon-increasing-s: ((s,c),e,(s ′,c ′))∈ntrs fg
=⇒ mon-s fg s ⊆ mon-s fg s ′ ∧ mon-c fg c = mon-c fg c ′

〈proof 〉

lemma (in flowgraph) ntr-mon-increasing-s:
(c,ee,c ′)∈ntr fg =⇒ mon-c fg c ⊆ mon-c fg c ′

〈proof 〉

lemma (in flowgraph) ntrp-mon-increasing-s: ((s,c),e,(s ′,c ′))∈ntrp fg
=⇒ mon-s fg s ⊆ mon-s fg s ′ ∧ mon-c fg c ⊆ mon-c fg c ′

〈proof 〉

lemma (in flowgraph) ntrp-mon-increasing: ((s,c),e,(s ′,c ′))∈trcl (ntrp fg)
=⇒ mon-s fg s ⊆ mon-s fg s ′ ∧ mon-c fg c ⊆ mon-c fg c ′

〈proof 〉

8.4.3 Modifying the context
lemmas (in flowgraph) ntrs-c-no-mon-s = trss-c-no-mon[OF ntrs-is-trss-s]
lemmas (in flowgraph) ntrs-c-no-mon = trss-c-no-mon[OF ntrs-is-trss]

Also like a usual path, a normalized step must not use any monitors that
are allocated by other threads
lemmas (in flowgraph) ntrs-mon-e-no-ctx = trss-mon-w-no-ctx[OF ntrs-is-trss-s]
lemma (in flowgraph) ntrs-mon-w-no-ctx:

assumes A: ((s,c),w,(s ′,c ′))∈trcl (ntrs fg)
shows mon-ww fg w ∩ mon-c fg c = {}
〈proof 〉

lemma (in flowgraph) ntrp-mon-env-e-no-ctx:
((s,c),ENV e,(s ′,c ′))∈ntrp fg =⇒ mon-w fg e ∩ mon-s fg s = {}
〈proof 〉

lemma (in flowgraph) ntrp-mon-loc-e-no-ctx:
((s,c),LOC e,(s ′,c ′))∈ntrp fg =⇒ mon-w fg e ∩ mon-c fg c = {}
〈proof 〉

41

lemma (in flowgraph) ntrp-mon-env-w-no-ctx:
((s,c),w,(s ′,c ′))∈trcl (ntrp fg) =⇒ mon-env fg w ∩ mon-s fg s = {}
〈proof 〉

lemma (in flowgraph) ntrp-mon-loc-w-no-ctx:
((s,c),w,(s ′,c ′))∈trcl (ntrp fg) =⇒ mon-loc fg w ∩ mon-c fg c = {}
〈proof 〉

The next lemmas are rules how to add or remove threads while preserving
the executability of a path
lemma (in flowgraph) ntrs-modify-context-s:

assumes A: ((s,c),ee,(s ′,c ′))∈ntrs fg
and B: mon-w fg ee ∩ mon-c fg cn = {}
shows ∃ csp. c ′=csp+c ∧ mon-c fg csp={} ∧ ((s,cn),ee,(s ′,csp+cn))∈ntrs fg
〈proof 〉

lemma (in flowgraph) ntrs-modify-context[rule-format]:
[[((s,c),w,(s ′,c ′))∈trcl (ntrs fg)]]
=⇒ ∀ cn. mon-ww fg w ∩ mon-c fg cn = {}
−→ (∃ csp. c ′=csp+c ∧ mon-c fg csp = {} ∧

((s,cn),w,(s ′,csp+cn))∈trcl (ntrs fg))
〈proof 〉

lemma ntrs-xchange-context-s:
assumes A: ((s,c),ee,(s ′,csp+c))∈ntrs fg
and B: mon-c fg cn ⊆ mon-c fg c
shows ((s,cn),ee,(s ′,csp+cn))∈ntrs fg
〈proof 〉

lemma ntrs-replace-context-s:
assumes A: ((s,c+cr),ee,(s ′,c ′+cr))∈ntrs fg
and B: mon-c fg crn ⊆ mon-c fg cr
shows ((s,c+crn),ee,(s ′,c ′+crn))∈ntrs fg
〈proof 〉

lemma (in flowgraph) ntrs-xchange-context: !!s c c ′ cn. [[
((s,c),ww,(s ′,c ′))∈trcl (ntrs fg);
mon-c fg cn ⊆ mon-c fg c

]] =⇒ ∃ csp.
c ′=csp+c ∧ ((s,cn),ww,(s ′,csp+cn))∈trcl (ntrs fg)

〈proof 〉

lemma (in flowgraph) ntrs-replace-context:
assumes A: ((s,c+cr),ww,(s ′,c ′+cr))∈trcl (ntrs fg)
and B: mon-c fg crn ⊆ mon-c fg cr
shows ((s,c+crn),ww,(s ′,c ′+crn))∈trcl (ntrs fg)
〈proof 〉

42

lemma (in flowgraph) ntr-add-context-s:
assumes A: (c,e,c ′)∈ntr fg
and B: mon-w fg e ∩ mon-c fg cn = {}
shows (c+cn,e,c ′+cn)∈ntr fg
〈proof 〉

lemma (in flowgraph) ntr-add-context:
[[(c,w,c ′)∈trcl (ntr fg); mon-ww fg w ∩ mon-c fg cn = {}]]
=⇒ (c+cn,w,c ′+cn)∈trcl (ntr fg)
〈proof 〉

lemma (in flowgraph) ntrs-add-context-s:
assumes A: ((s,c),e,(s ′,c ′))∈ntrs fg
and B: mon-w fg e ∩ mon-c fg cn = {}
shows ((s,c+cn),e,(s ′,c ′+cn))∈ntrs fg
〈proof 〉

lemma (in flowgraph) ntrp-add-context-s:
[[((s,c),e,(s ′,c ′))∈ntrp fg; mon-w fg (le-rem-s e) ∩ mon-c fg cn = {}]]
=⇒ ((s,c+cn),e,(s ′,c ′+cn))∈ntrp fg
〈proof 〉

lemma (in flowgraph) ntrp-add-context: [[
((s,c),w,(s ′,c ′))∈trcl (ntrp fg);
mon-ww fg (map le-rem-s w) ∩ mon-c fg cn = {}

]] =⇒ ((s,c+cn),w,(s ′,c ′+cn))∈trcl (ntrp fg)
〈proof 〉

8.4.4 Altering the local stack
lemma ntrs-stack-comp-s:

assumes A: ((s,c),ee,(s ′,c ′))∈ntrs fg
shows ((s@r ,c),ee,(s ′@r ,c ′))∈ntrs fg
〈proof 〉

lemma ntrs-stack-comp: ((s,c),ww,(s ′,c ′))∈trcl (ntrs fg)
=⇒ ((s@r ,c),ww,(s ′@r ,c ′))∈trcl (ntrs fg)
〈proof 〉

lemma (in flowgraph) ntrp-stack-comp-s:
assumes A: ((s,c),ee,(s ′,c ′))∈ntrp fg
and B: mon-s fg r ∩ mon-env fg [ee] = {}
shows ((s@r ,c),ee,(s ′@r ,c ′))∈ntrp fg
〈proof 〉

lemma (in flowgraph) ntrp-stack-comp:
[[((s,c),ww,(s ′,c ′))∈trcl (ntrp fg); mon-s fg r ∩ mon-env fg ww = {}]]
=⇒ ((s@r ,c),ww,(s ′@r ,c ′))∈trcl (ntrp fg)

43

〈proof 〉

lemma ntrs-stack-top-decomp-s:
assumes A: ((u#r ,c),ee,(s ′,c ′))∈ntrs fg
and EX : !!v u ′ p. [[

s ′=v#u ′#r ;
(([u],c),ee,([v,u ′],c ′))∈ntrs fg;
(u,Call p,u ′)∈edges fg

]] =⇒ P
shows P
〈proof 〉

lemma ntrs-stack-decomp-s:
assumes A: ((u#s@r ,c),ee,(s ′,c ′))∈ntrs fg
and EX : !!v u ′ p. [[

s ′=v#u ′#s@r ;
((u#s,c),ee,(v#u ′#s,c ′))∈ntrs fg;
(u,Call p,u ′)∈edges fg

]] =⇒ P
shows P
〈proof 〉

lemma ntrs-stack-decomp: !!u s r c P. [[
((u#s@r ,c),ww,(s ′,c ′))∈trcl (ntrs fg);
!!v rr . [[s ′=v#rr@r ; ((u#s,c),ww,(v#rr ,c ′))∈trcl (ntrs fg)]] =⇒ P

]] =⇒ P
〈proof 〉

lemma ntrp-stack-decomp-s:
assumes A: ((u#s@r ,c),ee,(s ′,c ′))∈ntrp fg
and EX : !!v rr . [[s ′=v#rr@r ; ((u#s,c),ee,(v#rr ,c ′))∈ntrp fg]] =⇒ P
shows P
〈proof 〉

lemma ntrp-stack-decomp: !!u s r c P. [[
((u#s@r ,c),ww,(s ′,c ′))∈trcl (ntrp fg);
!!v rr . [[s ′=v#rr@r ; ((u#s,c),ww,(v#rr ,c ′))∈trcl (ntrp fg)]] =⇒ P

]] =⇒ P
〈proof 〉

8.5 Relation to monitor consistent interleaving

In this section, we describe the relation of the consistent interleaving oper-
ator (cf. Section 2) and the macrostep-semantics.

44

8.5.1 Abstraction function for normalized paths

We first need to define an abstraction function that maps a macrostep on a
pair of entered and passed monitors, as required by the ⊗α-operator:
A step on a normalized paths enters the monitors of the first called procedure
and passes the monitors that occur in the following same-level path.
definition
αn fg e == if e=[] then ({},{}) else (mon-e fg (hd e), mon-w fg (tl e))

lemma αn-simps[simp]:
αn fg [] = ({},{})
αn fg (e#w) = (mon-e fg e, mon-w fg w)
〈proof 〉

definition
αnl fg e == αn fg (le-rem-s e)

lemma αnl-def ′: αnl fg == αn fg ◦ le-rem-s
〈proof 〉

lemma αnl-simps[simp]:
αnl fg (ENV x) = αn fg x
αnl fg (LOC x) = αn fg x
〈proof 〉

lemma αnl-simps1 [simp]:
(αnl fg) ◦ ENV = αn fg
(αnl fg) ◦ LOC = αn fg
〈proof 〉

lemma αn-αnl: (αn fg) ◦ le-rem-s = αnl fg
〈proof 〉

lemma αn-fst-snd[simp]: fst (αn fg w) ∪ snd (αn fg w) = mon-w fg w
〈proof 〉

lemma mon-pl-of-αnl: mon-pl (map (αnl fg) w) = mon-loc fg w ∪ mon-env fg w
〈proof 〉

We now derive specialized introduction lemmas for ⊗αn fg

lemma cil-αn-cons-helper : mon-pl (map (αn fg) wb) = mon-ww fg wb
〈proof 〉

lemma cil-αnl-cons-helper :
mon-pl (map (αnl fg) wb) = mon-ww fg (map le-rem-s wb)
〈proof 〉

lemma cil-αn-cons1 : [[w∈wa⊗αn fgwb; fst (αn fg e) ∩ mon-ww fg wb = {}]]
=⇒ e#w ∈ e#wa ⊗αn fg wb
〈proof 〉

lemma cil-αn-cons2 : [[w∈wa⊗αn fgwb; fst (αn fg e) ∩ mon-ww fg wa = {}]]
=⇒ e#w ∈ wa ⊗αn fg e#wb

45

〈proof 〉

8.5.2 Monitors
lemma (in flowgraph) ntrs-mon-s:

assumes A: ((s,c),e,(s ′,c ′))∈ntrs fg
shows mon-s fg s ′ = mon-s fg s ∪ fst (αn fg e)
〈proof 〉

corollary (in flowgraph) ntrs-called-mon:
assumes A: ((s,c),e,(s ′,c ′))∈ntrs fg
shows fst (αn fg e) ⊆ mon-s fg s ′

〈proof 〉

lemma (in flowgraph) ntr-mon-s:
(c,e,c ′)∈ntr fg =⇒ mon-c fg c ′ = mon-c fg c ∪ fst (αn fg e)
〈proof 〉

lemma (in flowgraph) ntrp-mon-s:
assumes A: ((s,c),e,(s ′,c ′))∈ntrp fg
shows mon-c fg (add-mset s ′ c ′) = mon-c fg (add-mset s c) ∪ fst (αnl fg e)
〈proof 〉

8.5.3 Interleaving theorem

In this section, we show that the consistent interleaving operator describes
the intuition behind interleavability of normalized paths. We show: Two
paths are simultaneously executable if and only if they are consistently in-
terleavable and the monitors of the initial configurations are compatible

The split lemma splits an execution from a context of the form ca + cb into
two interleavable executions from ca and cb respectively. While further down
we prove this lemma for loc/env-path, which is more general but also more
complicated, we start with the proof for paths of the multiset-semantics for
illustrating the idea.
lemma (in flowgraph) ntr-split:
!!ca cb. [[(ca+cb,w,c ′)∈trcl (ntr fg); valid fg (ca+cb)]] =⇒
∃ ca ′ cb ′ wa wb.
c ′=ca ′+cb ′ ∧
w∈(wa⊗αn fgwb) ∧
mon-c fg ca ∩ (mon-c fg cb ∪ mon-ww fg wb) = {} ∧
mon-c fg cb ∩ (mon-c fg ca ∪ mon-ww fg wa) = {} ∧
(ca,wa,ca ′)∈trcl (ntr fg) ∧ (cb,wb,cb ′)∈trcl (ntr fg)
〈proof 〉

The next lemma is a more general version of flowgraph.ntr-split for the
semantics with a distinguished local thread. The proof follows exactly the
same ideas, but is more complex.

46

lemma (in flowgraph) ntrp-split:
!!s c1 c2 s ′ c ′.
[[((s,c1+c2),w,(s ′,c ′))∈trcl (ntrp fg); valid fg ({#s#}+c1+c2)]]
=⇒ ∃w1 w2 c1 ′ c2 ′.

w ∈ w1 ⊗αnl fg (map ENV w2) ∧
c ′=c1 ′+c2 ′ ∧
((s,c1),w1 ,(s ′,c1 ′))∈trcl (ntrp fg) ∧
(c2 ,w2 ,c2 ′)∈trcl (ntr fg) ∧
mon-ww fg (map le-rem-s w1) ∩ mon-c fg c2 = {} ∧
mon-ww fg w2 ∩ mon-c fg ({#s#}+c1) = {}

〈proof 〉
lemma (in flowgraph) ntr-split ′:

assumes A: (ca+cb,w,c ′)∈trcl (ntr fg)
and VALID: valid fg (ca+cb)
shows ∃ ca ′ cb ′ wa wb.

c ′=ca ′+cb ′ ∧
w∈(wa⊗αn fgwb) ∧
mon-c fg ca ∩ (mon-c fg cb ∪ mon-ww fg wb) = {} ∧
mon-c fg cb ∩ (mon-c fg ca ∪ mon-ww fg wa) = {} ∧
(ca,wa,ca ′)∈trcl (ntr fg) ∧
(cb,wb,cb ′)∈trcl (ntr fg)

〈proof 〉

The unsplit lemma combines two interleavable executions. For illustration
purposes, we first prove the less general version for multiset-configurations.
The general version for loc/env-configurations is shown later.
lemma (in flowgraph) ntr-unsplit:

assumes A: w∈wa⊗αn fgwb and
B: (ca,wa,ca ′)∈trcl (ntr fg)
(cb,wb,cb ′)∈trcl (ntr fg)
mon-c fg ca ∩ (mon-c fg cb ∪ mon-ww fg wb)={}
mon-c fg cb ∩ (mon-c fg ca ∪ mon-ww fg wa)={}
shows (ca+cb,w,ca ′+cb ′)∈trcl (ntr fg)
〈proof 〉

lemma (in flowgraph) ntrp-unsplit:
assumes A: w∈wa⊗αnl fg (map ENV wb) and
B: ((s,ca),wa,(s ′,ca ′))∈trcl (ntrp fg)
(cb,wb,cb ′)∈trcl (ntr fg)
mon-c fg ({#s#}+ca) ∩ (mon-c fg cb ∪ mon-ww fg wb)={}
mon-c fg cb ∩ (mon-c fg ({#s#}+ca) ∪ mon-ww fg (map le-rem-s wa))={}
shows ((s,ca+cb),w,(s ′,ca ′+cb ′))∈trcl (ntrp fg)
〈proof 〉

And finally we get the desired theorem: Two paths are simultaneously ex-
ecutable if and only if they are consistently interleavable and the monitors
of the initial configurations are compatible. Note that we have to assume a
valid starting configuration.

47

theorem (in flowgraph) ntr-interleave: valid fg (ca+cb) =⇒
(ca+cb,w,c ′)∈trcl (ntr fg) ←→
(∃ ca ′ cb ′ wa wb.

c ′=ca ′+cb ′ ∧
w∈(wa⊗αn fgwb) ∧
mon-c fg ca ∩ (mon-c fg cb ∪ mon-ww fg wb) = {} ∧
mon-c fg cb ∩ (mon-c fg ca ∪ mon-ww fg wa) = {} ∧
(ca,wa,ca ′)∈trcl (ntr fg) ∧ (cb,wb,cb ′)∈trcl (ntr fg))

〈proof 〉
theorem (in flowgraph) ntrp-interleave:

valid fg ({#s#}+c1+c2) =⇒
((s,c1+c2),w,(s ′,c ′))∈trcl (ntrp fg) ←→
(∃w1 w2 c1 ′ c2 ′.

w ∈ w1 ⊗αnl fg (map ENV w2) ∧
c ′=c1 ′+c2 ′ ∧
((s,c1),w1 ,(s ′,c1 ′))∈trcl (ntrp fg) ∧
(c2 ,w2 ,c2 ′)∈trcl (ntr fg) ∧
mon-ww fg (map le-rem-s w1) ∩
mon-c fg c2 = {} ∧
mon-ww fg w2 ∩ mon-c fg ({#s#}+c1) = {})
〈proof 〉

The next is a corollary of flowgraph.ntrp-unsplit, allowing us to convert a
path to loc/env semantics by adding a local stack that does not make any
steps.
corollary (in flowgraph) ntr2ntrp: [[

(c,w,c ′)∈trcl (ntr fg);
mon-c fg (add-mset s cl) ∩ (mon-c fg c ∪ mon-ww fg w)={}

]] =⇒ ((s,cl+c),map ENV w,(s,cl+c ′))∈trcl (ntrp fg)
〈proof 〉

8.5.4 Reverse splitting

This section establishes a theorem that allows us to find the thread in the
original configuration that created some distinguished thread in the final
configuration.
lemma (in flowgraph) ntr-reverse-split: !!w s ′ ce ′. [[
(c,w,{#s ′#}+ce ′)∈trcl (ntr fg);
valid fg c]] =⇒
∃ s ce w1 w2 ce1 ′ ce2 ′.

c={#s#}+ce ∧
ce ′=ce1 ′+ce2 ′ ∧
w∈w1⊗αn fg w2 ∧
mon-s fg s ∩ (mon-c fg ce ∪ mon-ww fg w2) = {} ∧
mon-c fg ce ∩ (mon-s fg s ∪ mon-ww fg w1) = {} ∧
({#s#},w1 ,{#s ′#}+ce1 ′)∈trcl (ntr fg) ∧
(ce,w2 ,ce2 ′)∈trcl (ntr fg)

48

— The proof works by induction on the initial configuration. Note that configura-
tions consist of finitely many threads only
— FIXME: An induction over the size (rather then over the adding of some fixed
element) may lead to a smoother proof here
〈proof 〉

end

9 Constraint Systems
theory ConstraintSystems
imports Main AcquisitionHistory Normalization
begin

In this section we develop a constraint-system-based characterization of our
analysis.

Constraint systems are widely used in static program analysis. There least
solution describes the desired analysis information. In its generic form, a
constraint system R is a set of inequations over a complete lattice (L,v)
and a set of variables V . An inequation has the form R[v] w rhs, where
R[v] ∈ V and rhs is a monotonic function over the variables. Note that
for program analysis, there is usually one variable per control point. The
variables are then named R[v], where v is a control point. By standard
fixed-point theory, those constraint systems have a least solution. Outside
the constraint system definition R[v] usually refers to a component of that
least solution.
Usually a constraint system is generated from the program. For example, a
constraint generation pattern could be the following:

for (u,Call q, v) ∈ E:
Sk[v] ⊇ {(mon(q) ∪M ∪M ′, P̃) | (M,P) ∈ Sk[u] ∧ (M ′, P ′) ∈ Sk[rq]

∧ P̃ ≤ P] P ′ ∧ |P̃ | ≤ 2}

For some parameter k and a flowgraph with nodes N and edges E, this
generates a constraint system over the variables {Sk[v] | v ∈ N}. One
constraint is generated for each call edge. While we use a powerset lattice
here, we can in general use any complete lattice. However, all the constraint
systems needed for our conflict analysis are defined over powerset lattices
(P(′a),⊆) for some type ′a. This admits a convenient formalization in Is-
abelle/HOL using inductively defined sets. We inductively define a relation
between variables3 and the elements of their values in the least solution, i.e.
the set {(v, x) | x ∈ R[v]}. For example, the constraint generator pattern
from above would become the following introduction rule in the inductive
definition of the set S-cs fg k:

3Variables are identified by control nodes here

49

[[(u,Call q,v)∈edges fg; (u,M ,P)∈S-cs fg k;
(return fg q,Ms,Ps)∈S-cs fg k; P ′⊆#P+Ps; size P ′ ≤ k]]
=⇒ (v,mon fg q ∪ M ∪ Ms,P ′)∈S-cs fg k

The main advantage of this approach is that one gets a concise formalization
by using Isabelle’s standard machinery, the main disadvantage is that this
approach only works for powerset lattices ordered by ⊆.

9.1 Same-level paths
9.1.1 Definition

We define a constraint system that collects abstract information about same-
level paths. In particular, we collect the set of used monitors and all multi-
subsets of spawned threads that are not bigger than k elements, where k is
a parameter that can be freely chosen.

An element (u,M ,P)∈S-cs fg k means that there is a same-level path from
the entry node of the procedure of u to u, that uses the monitors M and
spawns at least the threads in P.
inductive-set

S-cs :: (′n, ′p, ′ba, ′m, ′more) flowgraph-rec-scheme ⇒ nat ⇒
(′n × ′m set × ′p multiset) set

for fg k
where

S-init: (entry fg p,{},{#})∈S-cs fg k
| S-base: [[(u,Base a,v)∈edges fg; (u,M ,P)∈S-cs fg k]] =⇒ (v,M ,P)∈S-cs fg k
| S-call: [[(u,Call q,v)∈edges fg; (u,M ,P)∈S-cs fg k;

(return fg q,Ms,Ps)∈S-cs fg k; P ′⊆#P+Ps; size P ′ ≤ k]]
=⇒ (v,mon fg q ∪ M ∪ Ms,P ′)∈S-cs fg k

| S-spawn: [[(u,Spawn q,v)∈edges fg; (u,M ,P)∈S-cs fg k;
P ′⊆#{#q#}+P; size P ′ ≤ k]]

=⇒ (v,M ,P ′)∈S-cs fg k

The intuition underlying this constraint system is the following: The S-init-
constraint describes that the procedures entry node can be reached with the
empty path, that has no monitors and spawns no procedures. The S-base-
constraint describes that executing a base edge does not use monitors or
spawn threads, so each path reaching the start node of the base edge also
induces a path reaching the end node of the base edge with the same set
of monitors and the same set of spawned threads. The S-call-constraint
models the effect of a procedure call. If there is a path to the start node of
a call edge and a same-level path through the procedure, this also induces
a path to the end node of the call edge. This path uses the monitors of
both path and spawns the threads that are spawned on both paths. Since
we only record a limited subset of the spawned threads, we have to choose
which of the threads are recorded. The S-spawn-constraint models the effect

50

of a spawn edge. A path to the start node of the spawn edge induces a path
to the end node that uses the same set of monitors and spawns the threads
of the initial path plus the one spawned by the spawn edge. We again have
to choose which of these threads are recorded.

9.1.2 Soundness and Precision

Soundness of the constraint system S-cs means, that every same-level path
has a corresponding entry in the constraint system.
As usual the soundness proof works by induction over the length of exe-
cution paths. The base case (empty path) trivially follows from the S-init
constraint. In the inductive case, we consider the edge that induces the
last step of the path; for a return step, this is the corresponding call edge
(cf. Lemma flowgraph.trss-find-call ′). With the induction hypothesis, we
get the soundness for the (shorter) prefix of the path, and depending on the
last step we can choose a constraint that implies soundness for the whole
path.
lemma (in flowgraph) S-sound: !!p v c ′ P.
[[(([entry fg p],{#}),w,([v],c ′))∈trcl (trss fg);

size P≤k; (λp. [entry fg p]) ‘# P ⊆# c ′]]
=⇒ (v,mon-w fg w,P)∈S-cs fg k
〈proof 〉

Precision means that all entries appearing in the smallest solution of the con-
straint system are justified by some path in the operational characterization.
For proving precision, one usually shows that a family of sets derived as an
abstraction from the operational characterization solves all constraints.
In our formalization of constraint systems as inductive sets this amounts to
constructing for each constraint a justifying path for the entries described
on the conclusion side of the implication – under the assumption that cor-
responding paths exists for the entries mentioned in the antecedent.
lemma (in flowgraph) S-precise: (v,M ,P)∈S-cs fg k
=⇒ ∃ p c ′ w.

(([entry fg p],{#}),w,([v],c ′))∈trcl (trss fg) ∧
size P≤k ∧
(λp. [entry fg p]) ‘# P ⊆# c ′ ∧
M=mon-w fg w

〈proof 〉
theorem (in flowgraph) S-sound-precise:
(v,M ,P)∈S-cs fg k ←→
(∃ p c ′ w. (([entry fg p],{#}),w,([v],c ′))∈trcl (trss fg) ∧

size P≤k ∧ (λp. [entry fg p]) ‘# P ⊆# c ′ ∧ M=mon-w fg w)
〈proof 〉

Next, we present specialized soundness and precision lemmas, that reason
over a macrostep (ntrp fg) rather than a same-level path (trcl (trss fg)).

51

They are tailored for the use in the soundness and precision proofs of the
other constraint systems.
lemma (in flowgraph) S-sound-ntrp:

assumes A: (([u],{#}),eel,(sh,ch))∈ntrp fg and
CASE : !!p u ′ v w. [[

eel=LOC (LCall p#w);
(u,Call p,u ′)∈edges fg;
sh=[v,u ′];
proc-of fg v = p;
mon-c fg ch = {};
!!s. s ∈# ch =⇒ ∃ p u v. s=[entry fg p] ∧

(u,Spawn p,v)∈edges fg ∧
initialproc fg p;

!!P. (λp. [entry fg p]) ‘# P ⊆# ch =⇒
(v,mon-w fg w,P)∈S-cs fg (size P)

]] =⇒ Q
shows Q
〈proof 〉

lemma (in flowgraph) S-precise-ntrp:
assumes ENTRY : (v,M ,P)∈S-cs fg k and

P: proc-of fg v = p and
EDGE : (u,Call p,u ′)∈edges fg

shows ∃w ch.
(([u],{#}),LOC (LCall p#w),([v,u ′],ch))∈ntrp fg ∧
size P ≤ k ∧
M=mon-w fg w ∧
mon-n fg v = mon fg p ∧
(λp. [entry fg p]) ‘# P ⊆# ch ∧
mon-c fg ch={}

〈proof 〉

9.2 Single reaching path

In this section we define a constraint system that collects abstract informa-
tion of paths reaching a control node at U. The path starts with a single
initial thread. The collected information are the monitors used by the steps
of the initial thread, the monitors used by steps of other threads and the
acquisition history of the path. To distinguish the steps of the initial thread
from steps of other threads, we use the loc/env-semantics (cf. Section 5.4).

9.2.1 Constraint system

An element (u, Ml, Me, h) ∈ RU-cs fg U corresponds to a path from
{#[u]#} to some configuration at U, that uses monitors from Ml in the
steps of the initial thread, monitors from Me in the steps of other threads
and has acquisition history h.

52

Here, the correspondence between paths and entries included into the in-
ductively defined set is not perfect but strong enough for our purposes:
While each constraint system entry corresponds to a path, not each path
corresponds to a constraint system entry. But for each path reaching a
configuration at U, we find an entry with less or equal monitors and an
acquisition history less or equal to the acquisition history of the path.
inductive-set

RU-cs :: (′n, ′p, ′ba, ′m, ′more) flowgraph-rec-scheme ⇒ ′n set ⇒
(′n × ′m set × ′m set × (′m ⇒ ′m set)) set

for fg U
where

RU-init: u∈U =⇒ (u,{},{},λx.{})∈RU-cs fg U
| RU-call: [[(u,Call p,u ′)∈edges fg; proc-of fg v = p; (v,M ,P)∈S-cs fg 0 ;

(v,Ml,Me,h)∈RU-cs fg U ; mon-n fg u ∩ Me = {}]]
=⇒ (u, mon fg p ∪ M ∪ Ml, Me, ah-update h (mon fg p,M) (Ml∪Me))
∈ RU-cs fg U

| RU-spawn: [[(u,Call p,u ′)∈edges fg; proc-of fg v = p; (v,M ,P)∈S-cs fg 1 ;
q ∈# P; (entry fg q,Ml,Me,h)∈RU-cs fg U ;
(mon-n fg u ∪ mon fg p) ∩ (Ml ∪ Me)={}]]

=⇒ (u,mon fg p ∪ M , Ml ∪ Me, ah-update h (mon fg p,M) (Ml∪Me))
∈ RU-cs fg U

The constraint system works by tracking only a single thread. Initially,
there is just one thread, and from this thread we reach a configuration at U.
After a macrostep, we have the transformed initial thread and some spawned
threads. The key idea is, that the actual node U is reached by just one of
these threads. The steps of the other threads are useless for reaching U.
Because of the nice properties of normalized paths, we can simply prune
those steps from the path.
The RU-init-constraint reflects that we can reach a control node from itself
with the empty path. The RU-call-constraint describes the case that U
is reached from the initial thread, and the RU-spawn-constraint describes
the case that U is reached from one of the spawned threads. In the two
latter cases, we have to check whether prepending the macrostep to the
reaching path is allowed or not due to monitor restrictions. In the call case,
the procedure of the initial node must not own monitors that are used in
the environment steps of the appended reaching path (mon-n fg u ∩ Me
= {}). As we only test disjointness with the set of monitors used by the
environment, reentrant monitors can be handled. In the spawn case, we have
to check disjointness with both, the monitors of local and environment steps
of the reaching path from the spawned thread, because from the perspective
of the initial thread, all these steps are environment steps ((mon-n fg u ∪
mon fg p) ∩ (Ml ∪ Me)={}). Note that in the call case, we do not need
to explicitly check that the monitors used by the environment are disjoint
from the monitors acquired by the called procedure because this already

53

follows from the existence of a reaching path, as the starting point of this
path already holds all these monitors.
However, in the spawn case, we have to check for both the monitors of the
start node and of the called procedure to be compatible with the already
known reaching path from the entry node of the spawned thread.

9.2.2 Soundness and precision

The following lemma intuitively states: If we can reach a configuration that
is at U from some start configuration, then there is a single thread in the
start configuration that can reach a configuration at U with a subword of the
original path.
The proof follows from Lemma flowgraph.ntr-reverse-split rather directly.
lemma (in flowgraph) ntr-reverse-split-atU :

assumes V : valid fg c and
A: atU U c ′ and
B: (c,w,c ′)∈trcl (ntr fg)

shows ∃ s w ′ c1 ′.
s ∈# c ∧ w ′�w ∧ c1 ′ ⊆# c ′ ∧
atU U c1 ′ ∧ ({#s#},w ′,c1 ′)∈trcl (ntr fg)

〈proof 〉

The next lemma shows the soundness of the RU constraint system.
The proof works by induction over the length of the reaching path. For
the empty path, the proposition follows by the RU-init-constraint. For a
non-empty path, we consider the first step. It has transformed the initial
thread and may have spawned some other threads. From the resulting con-
figuration, U is reached. Due to flowgraph.ntr-split we get two interleavable
paths from the rest of the original path, one from the transformed initial
thread and one from the spawned threads. We then distinguish two cases: if
the first path reaches U, the proposition follows by the induction hypothesis
and the RU-call constraint.
Otherwise, we use flowgraph.ntr-reverse-split-atU to identify the thread that
actually reaches U among all the spawned threads. Then we apply the
induction hypothesis to the path of that thread and prepend the first step
using the RU-spawn-constraint.
The main complexity of the proof script below results from fiddling with the
monitors and converting between the multiset-and loc/env-semantics. Also
the arguments to show that the acquisition histories are sound approxima-
tions require some space.
lemma (in flowgraph) RU-sound:
!!u s ′ c ′. [[(([u],{#}),w,(s ′,c ′))∈trcl (ntrp fg); atU U (add-mset s ′ c ′)]]
=⇒ ∃Ml Me h.
(u,Ml,Me,h)∈RU-cs fg U ∧

54

Ml ⊆ mon-loc fg w ∧
Me ⊆ mon-env fg w ∧
h ≤ αah (map (αnl fg) w)

— The proof works by induction over the length of the reaching path
〈proof 〉

Now we prove a statement about the precision of the least solution. As in
the precision proof of the S-cs constraint system, we construct a path for the
entry on the conclusion side of each constraint, assuming that there already
exists paths for the entries mentioned in the antecedent.
We show that each entry in the least solution corresponds exactly to some
executable path, and is not just an under-approximation of a path; while
for the soundness direction, we could only show that every executable path
is under-approximated. The reason for this is that in effect, the constraint
system prunes the steps of threads that are not needed to reach the control
point. However, each pruned path is executable.
lemma (in flowgraph) RU-precise: (u,Ml,Me,h)∈RU-cs fg U
=⇒ ∃w s ′ c ′.
(([u],{#}),w,(s ′,c ′))∈trcl (ntrp fg) ∧
atU U ({#s ′#}+c ′) ∧
mon-loc fg w = Ml ∧
mon-env fg w = Me ∧
αah (map (αnl fg) w) = h

〈proof 〉

9.3 Simultaneously reaching path

In this section, we define a constraint system that collects abstract informa-
tion for paths starting at a single control node and reaching two program
points simultaneously, one from a set U and one from a set V.

9.3.1 Constraint system

An element (u, Ml, Me) ∈ RUV-cs fg U V means, that there is a path from
{#[u]#} to some configuration that is simultaneously at U and at V. That
path uses monitors from Ml in the first thread and monitors from Me in the
other threads.
inductive-set

RUV-cs :: (′n, ′p, ′ba, ′m, ′more) flowgraph-rec-scheme ⇒
′n set ⇒ ′n set ⇒ (′n × ′m set × ′m set) set

for fg U V
where

RUV-call:
[[(u,Call p,u ′)∈edges fg; proc-of fg v = p; (v,M ,P)∈S-cs fg 0 ;

(v,Ml,Me)∈RUV-cs fg U V ; mon-n fg u ∩ Me = {}]]
=⇒ (u,mon fg p ∪ M ∪ Ml,Me)∈RUV-cs fg U V

55

| RUV-spawn:
[[(u,Call p,u ′)∈edges fg; proc-of fg v = p; (v,M ,P)∈S-cs fg 1 ; q ∈# P;

(entry fg q,Ml,Me)∈RUV-cs fg U V ;
(mon-n fg u ∪ mon fg p) ∩ (Ml ∪ Me) = {}]]

=⇒ (u, mon fg p ∪ M , Ml∪Me)∈RUV-cs fg U V
| RUV-split-le:

[[(u,Call p,u ′)∈edges fg; proc-of fg v = p; (v,M ,P)∈S-cs fg 1 ; q ∈# P;
(v,Ml,Me,h)∈RU-cs fg U ; (entry fg q,Ml ′,Me ′,h ′)∈RU-cs fg V ;
(mon-n fg u ∪ mon fg p) ∩ (Me∪Ml ′∪Me ′)={}; h [∗] h ′]]

=⇒ (u, mon fg p ∪ M ∪ Ml, Me ∪ Ml ′ ∪ Me ′)∈RUV-cs fg U V
| RUV-split-el:

[[(u,Call p,u ′)∈edges fg; proc-of fg v = p; (v,M ,P)∈S-cs fg 1 ; q ∈# P;
(v,Ml,Me,h)∈RU-cs fg V ; (entry fg q,Ml ′,Me ′,h ′)∈RU-cs fg U ;
(mon-n fg u ∪ mon fg p) ∩ (Me∪Ml ′∪Me ′)={}; h [∗] h ′]]

=⇒ (u, mon fg p ∪ M ∪ Ml, Me ∪ Ml ′ ∪ Me ′)∈RUV-cs fg U V
| RUV-split-ee:

[[(u,Call p,u ′)∈edges fg; proc-of fg v = p; (v,M ,P)∈S-cs fg 2 ;
{#q#}+{#q ′#} ⊆# P;
(entry fg q,Ml,Me,h)∈RU-cs fg U ; (entry fg q ′,Ml ′,Me ′,h ′)∈RU-cs fg V ;
(mon-n fg u ∪ mon fg p) ∩ (Ml∪Me∪Ml ′∪Me ′) = {}; h [∗] h ′]]

=⇒ (u, mon fg p ∪ M , Ml∪Me∪Ml ′∪Me ′)∈RUV-cs fg U V

The idea underlying this constraint system is similar to the RU-cs-constraint
system for reaching a single node set. Initially, we just track one thread.
After a macrostep, we have a configuration consisting of the transformed
initial thread and the spawned threads. From this configuration, we reach
two nodes simultaneously, one in U and one in V. Each of these nodes is
reached by just a single thread. The constraint system contains one con-
straint for each case how these threads are related to the initial and the
spawned threads:

RUV_call Both, U and V are reached from the initial thread.

RUV_spawn Both, U and V are reached from a single spawned thread.

RUV_split_le U is reached from the initial thread, V is reached from a
spawned thread.

RUV_split_el V is reached from the initial thread, U is reached from a
spawned thread.

RUV_split_ee Both, U and V are reached from different spawned threads.

In the latter three cases, we have to analyze the interleaving of two paths
each reaching a single control node. This is done via the acquisition history
information that we collected in the RU-cs-constraint system.
Note that we do not need an initializing constraint for the empty path, as a
single configuration cannot simultaneously be at two control nodes.

56

9.3.2 Soundness and precision
lemma (in flowgraph) RUV-sound: !!u s ′ c ′.
[[(([u],{#}),w,(s ′,c ′))∈trcl (ntrp fg); atUV U V ({#s ′#}+c ′)]]
=⇒ ∃Ml Me.
(u,Ml,Me)∈RUV-cs fg U V ∧
Ml ⊆ mon-loc fg w ∧
Me ⊆ mon-env fg w

— The soundness proof is done by induction over the length of the reaching path
〈proof 〉

lemma (in flowgraph) RUV-precise: (u,Ml,Me)∈RUV-cs fg U V
=⇒ ∃w s ′ c ′.
(([u],{#}),w,(s ′,c ′))∈trcl (ntrp fg) ∧
atUV U V ({#s ′#}+c ′) ∧
mon-loc fg w = Ml ∧
mon-env fg w = Me

〈proof 〉

end

10 Main Result
theory MainResult
imports ConstraintSystems
begin

At this point everything is available to prove the main result of this project:
The constraint system RUV-cs precisely characterizes simultaneously reach-
able control nodes w.r.t. to our semantic reference point.
The „trusted base” of this proof, that are all definitions a reader that trusts
the Isabelle prover must additionally trust, is the following:

• The flowgraph and the assumptions made on it in the flowgraph- and
eflowgraph-locales. Note that we show in Section 6.4 that there is at
least one non-trivial model of eflowgraph.

• The reference point semantics (refpoint) and the transitive closure op-
erator (trcl).

• The definition of atUV.

• All dependencies of the above definitions in the Isabelle standard li-
braries.

theorem (in eflowgraph) RUV-is-sim-reach:
(∃w c ′. ({#[entry fg (main fg)]#},w,c ′)∈trcl (refpoint fg) ∧ atUV U V c ′)
←→ (∃Ml Me. (entry fg (main fg),Ml,Me)∈RUV-cs fg U V)

57

— The proof uses the soundness and precision theorems wrt. to normalized paths
(flowgraph.RUV-sound, flowgraph.RUV-precise) as well as the normalization result,
i.e. that every reachable configuration is also reachable using a normalized path
(eflowgraph.normalize) and, vice versa, that every normalized path is also a usual
path (ntr-is-tr). Finally the conversion between our working semantics and the
semantic reference point is exploited (flowgraph.refpoint-eq).
(is ?lhs ←→ ?rhs)
〈proof 〉

end

11 Conclusion

We have formalized a flowgraph-based model for programs with recursive
procedure calls, dynamic thread creation and reentrant monitors and its
operational semantics. Based on the operational semantics, we defined a
conflict as being able to simultaneously reach two control points from two
given sets U and V when starting at the initial program configuration, just
consisting of a single thread at the entry point of the main procedure. We
then formalized a constraint-system-based analysis for conflicts and proved
it sound and precise w.r.t. the operational definition of a conflict. The main
idea of the analysis was to restrict the possible schedules of a program. On
the one hand, this restriction enabled the constraint system based analysis,
on the other hand it did not change the set of reachable configurations (and
thus the set of conflicts).
We characterized the constraint systems as inductive sets. While we did not
derive an executable algorithm explicitly, the steps from the inductive sets
characterization to an algorithm follow the path common in program analy-
sis and pose no particular difficulty. The algorithm would have to construct
a constraint system (system of inequalities over a finite height lattice) from
a given program corresponding to the inductively defined sets studied here
and then determine its least solution, e.g. by a worklist algorithm. In order
to make the algorithm executable, we would have to introduce finiteness
assumptions for our programs. The derivation of executable algorithms is
currently in preparation.
A formal analysis of the algorithmic complexity of the problem will be pre-
sented elsewhere. Here we only present some results: Already the problem
of deciding the reachability of a single control node is NP-hard, as can be
shown by a simple reduction from SAT. On the other hand, we can decide si-
multaneous reachability in nondeterministic polynomial time in the program
size, where the number of random bits depends on the possible nesting depth
of the monitors. This can be shown by analyzing the constraint systems.

58

Acknowledgement We thank Dejvuth Suwimonteerabuth for an inter-
esting discussion about static analysis of programs with locks. We also
thank the people on the Isabelle mailing list for quick and useful responses.

References

[1] A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis
of dynamic networks of pushdown systems. In Proc. of CONCUR’05.
Springer, 2005.

[2] J. Esparza and J. Knoop. An automata-theoretic approach to interproce-
dural data-flow analysis. In Proc. of FoSSaCS’99, pages 14–30. Springer,
1999.

[3] J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on
interprocedural parallel flow graphs. In Proc. of POPL’00, pages 1–11.
Springer, 2000.

[4] V. Kahlon and A. Gupta. An automata-theoretic approach for model
checking threads for LTL properties. In Proc. of LICS 2006, pages
101–110. IEEE Computer Society, 2006.

[5] V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads com-
municating via locks. In Proc. of CAV 2005, pages 505–518. Springer,
2005.

[6] P. Lammich and M. Müller-Olm. Precise fixpoint-based analysis of pro-
grams with thread-creation. In Proc. of CONCUR 2007, pages 287–302.
Springer, 2007.

[7] H. Seidl and B. Steffen. Constraint-based inter-procedural analysis of
parallel programs. Nordic Journal of Computing (NJC), 7(4):375–400,
2000.

59

	Introduction
	Monitor Consistent Interleaving
	Monitors of lists of monitor pairs
	Properties of consistent interleaving

	Acquisition Histories
	Definitions
	Interleavability
	Used monitors
	Ordering
	Acquisition histories of executions
	Acquisition history backward update

	Labeled transition systems
	Definitions
	Basic properties of transitive reflexive closure
	Appending of elements to paths
	Transitivity reasoning setup
	Monotonicity
	Special lemmas for reasoning about states that are pairs
	Invariants

	Thread Tracking
	Semantic on multiset configuration
	Invariants
	Context preservation assumption
	Explicit local context
	Lifted step datatype
	Definition of the loc/env-semantics
	Relation between multiset- and loc/env-semantics
	Invariants

	Flowgraphs
	Definitions
	Basic properties
	Extra assumptions for flowgraphs
	Example Flowgraph

	Operational Semantics
	Configurations and labels
	Monitors
	Valid configurations
	Configurations at control points
	Operational semantics
	Semantic reference point

	Basic properties
	Validity
	Equivalence to reference point
	Case distinctions

	Advanced properties
	Stack composition / decomposition
	Adding threads
	Conversion between environment and monitor restrictions

	Normalized Paths
	Semantic properties of restricted flowgraphs
	Definition of normalized paths
	Representation property for reachable configurations
	Properties of normalized path
	Validity
	Monitors
	Modifying the context
	Altering the local stack

	Relation to monitor consistent interleaving
	Abstraction function for normalized paths
	Monitors
	Interleaving theorem
	Reverse splitting

	Constraint Systems
	Same-level paths
	Definition
	Soundness and Precision

	Single reaching path
	Constraint system
	Soundness and precision

	Simultaneously reaching path
	Constraint system
	Soundness and precision

	Main Result
	Conclusion

