
Formalization of Conflict Analysis of Programs with
Procedures, Thread Creation, and Monitors in

Isabelle/HOL

Peter Lammich
Markus Müller-Olm

Institut für Informatik, Fachbereich Mathematik und Informatik
Westfälische Wilhelms-Universität Münster

peter.lammich@uni-muenster.de and mmo@math.uni-muenster.de

March 17, 2025

Abstract

In this work we formally verify the soundness and precision of a
static program analysis that detects conflicts (e.g. data races) in pro-
grams with procedures, thread creation and monitors with the Isabelle
theorem prover. As common in static program analysis, our program
model abstracts guarded branching by nondeterministic branching, but
completely interprets the call-/return behavior of procedures, synchro-
nization by monitors, and thread creation. The analysis is based on
the observation that all conflicts already occur in a class of partic-
ularly restricted schedules. These restricted schedules are suited to
constraint-system-based program analysis.

The formalization is based upon a flowgraph-based program model
with an operational semantics as reference point.

1

Contents
1 Introduction 4

2 Monitor Consistent Interleaving 5
2.1 Monitors of lists of monitor pairs 5
2.2 Properties of consistent interleaving 9

3 Acquisition Histories 11
3.1 Definitions . 12
3.2 Interleavability . 12
3.3 Used monitors . 12
3.4 Ordering . 13
3.5 Acquisition histories of executions 13
3.6 Acquisition history backward update 17

4 Labeled transition systems 18
4.1 Definitions . 18
4.2 Basic properties of transitive reflexive closure 18

4.2.1 Appending of elements to paths 19
4.2.2 Transitivity reasoning setup 20
4.2.3 Monotonicity . 20
4.2.4 Special lemmas for reasoning about states that are pairs 20
4.2.5 Invariants . 21

5 Thread Tracking 21
5.1 Semantic on multiset configuration 21
5.2 Invariants . 22
5.3 Context preservation assumption 23
5.4 Explicit local context . 24

5.4.1 Lifted step datatype 25
5.4.2 Definition of the loc/env-semantics 26
5.4.3 Relation between multiset- and loc/env-semantics . . 26
5.4.4 Invariants . 28

6 Flowgraphs 28
6.1 Definitions . 29
6.2 Basic properties . 29
6.3 Extra assumptions for flowgraphs 30
6.4 Example Flowgraph . 30

7 Operational Semantics 31
7.1 Configurations and labels . 31
7.2 Monitors . 32
7.3 Valid configurations . 34

2

7.4 Configurations at control points 35
7.5 Operational semantics . 37

7.5.1 Semantic reference point 37
7.6 Basic properties . 38

7.6.1 Validity . 38
7.6.2 Equivalence to reference point 38
7.6.3 Case distinctions . 39

7.7 Advanced properties . 42
7.7.1 Stack composition / decomposition 42
7.7.2 Adding threads . 48
7.7.3 Conversion between environment and monitor restric-

tions . 48

8 Normalized Paths 51
8.1 Semantic properties of restricted flowgraphs 51
8.2 Definition of normalized paths 53
8.3 Representation property for reachable configurations 54
8.4 Properties of normalized path 60

8.4.1 Validity . 60
8.4.2 Monitors . 61
8.4.3 Modifying the context 63
8.4.4 Altering the local stack 67

8.5 Relation to monitor consistent interleaving 70
8.5.1 Abstraction function for normalized paths 70
8.5.2 Monitors . 71
8.5.3 Interleaving theorem 72
8.5.4 Reverse splitting . 84

9 Constraint Systems 85
9.1 Same-level paths . 86

9.1.1 Definition . 86
9.1.2 Soundness and Precision 87

9.2 Single reaching path . 92
9.2.1 Constraint system . 92
9.2.2 Soundness and precision 94

9.3 Simultaneously reaching path 101
9.3.1 Constraint system . 101
9.3.2 Soundness and precision 103

10 Main Result 112

11 Conclusion 113

3

1 Introduction

Conflicts are a common programming error in parallel programs. A con-
flict occurs if the same resource is accessed simultaneously by more than
one process. Given a program π and two sets of control points U and V ,
the analysis problem is to decide whether there is an execution of π that
simultaneously reaches one control point from U and one from V .
In this work, we use a flowgraph-based program model that extends a previ-
ously studied model [6] by reentrant monitors. In our model, programs can
call recursive procedures, dynamically create new threads and synchronize
via reentrant monitors. As usual in static program analysis, our program
model abstracts away guarded branching by nondeterministic choice. We
use an operational semantics as reference point for the correctness proofs.
It models parallel execution by interleaving, i.e. just one thread is executed
at any time and context switches may occur after every step. The next step
is nondeterministically selected from all threads ready for execution. The
analysis is based on a constraint system generated from the flowgraph. From
its least solution, one can decide whether control points from U and V are
simultaneously reachable or not.
It is notoriously hard to analyze concurrent programs with constraint sys-
tems because of the arbitrary fine-grained interleaving. The key idea behind
our analysis is to use a restricted scheduling: While the interleaving seman-
tics can switch the context after each step, the restricted scheduling just
allows context switches at certain points of a thread’s execution. We can
show that each conflict is also reachable under this restricted scheduling.
The restricted schedules can be easily analyzed with constraint systems as
most of the complexity generated by arbitrary interleaving does no longer
occur due to the restrictions. The remaining concurrency effects can be
smoothly handled by using the concept of acquisition histories [5].

Related Work In [6] we present a constraint-system-based analysis for
programs with thread creation and procedures but without monitors. The
abstraction from synchronization is common in this line of research: There
are automata-based techniques [1, 2, 3] as well as constraint-system-based
techniques [7, 6] to analyze programs with procedures and either parallel
calls or thread creation, but without any synchronization. In [5, 4] anal-
ysis techniques for interprocedural parallel programs with a fixed number
of initial threads and nested locks are presented. These nested locks are
not syntactically bound to the program structure, but assumed to be well-
nested, that is any unlock statement is required to release the lock that was
acquired last by the thread. Moreover, there is no support for reentrant

4

locks1. We use monitors instead of locks. Monitors are syntactically bound
to the program structure and thus well-nestedness is guaranteed statically.
Additionally we directly support reentrant monitors. Our model cannot
simulate well-nested locks where a lock statement and its corresponding un-
lock statement may be in different procedures (as in [5, 4]). As common
programming languages like Java also use reentrant monitors rather than
locks, we believe our model to be useful as well.

Document structure This document contains a commented formaliza-
tion of these ideas as a collection of Isabelle/HOL theories. A more abstract
description is in preparation. This document starts with formalization mon-
itor consistent interleaving (Section 2) and acquisition histories (Section 3).
Labeled transition systems are formalized in Section 4, and Section 5 defines
the notion of interleaving semantics. Flowgraphs are defined in Section 6,
and Section 7 describes their operational semantics. Section 8 contains the
formalization of the restricted interleaving and Section 9 contains the con-
straint systems. Finally, the main result of this development – the correct-
ness of the constraint systems w.r.t. to the operational semantics – is briefly
stated in Section 10.

2 Monitor Consistent Interleaving
theory ConsInterleave
imports Interleave Misc
begin

The monitor consistent interleaving operator is defined on two lists of arbi-
trary elements, provided an abstraction function α that maps list elements
to pairs of sets of monitors is available. α e = (M , M ′) intuitively means
that step e enters the monitors in M and passes (enters and leaves) the
monitors in M ′. The consistent interleaving describes all interleavings of
the two lists that are consistent w.r.t. the monitor usage.

2.1 Monitors of lists of monitor pairs

The following defines the set of all monitors that occur in a list of pairs of
monitors. This definition is used in the following context: mon-pl (map α
w) is the set of monitors used by a word w w.r.t. the abstraction α

definition
mon-pl w == foldl (∪) {} (map (λe. fst e ∪ snd e) w)

lemma mon-pl-empty[simp]: mon-pl [] = {}
1Reentrant locks can always be simulated by non-reentrant ones, at the cost of a worst-

case exponential blowup of the program size

5

by (unfold mon-pl-def , auto)
lemma mon-pl-cons[simp]: mon-pl (e#w) = fst e ∪ snd e ∪ mon-pl w

by (unfold mon-pl-def) (simp, subst foldl-un-empty-eq, auto)

lemma mon-pl-unconc: !!b. mon-pl (a@b) = mon-pl a ∪ mon-pl b
by (induct a) auto

lemma mon-pl-ileq: w�w ′ =⇒ mon-pl w ⊆ mon-pl w ′

by (induct rule: less-eq-list-induct) auto

lemma mon-pl-set: mon-pl w =
⋃
{ fst e ∪ snd e | e. e∈set w }

by (auto simp add: mon-pl-def foldl-set) blast+

fun
cil :: ′a list ⇒ (′a ⇒ (′m set × ′m set)) ⇒ ′a list ⇒ ′a list set
(‹- ⊗- -› [64 ,64 ,64] 64) where

— Interleaving with the empty word results in the empty word
[] ⊗α w = {w}
| w ⊗α [] = {w}
— If both words are not empty, we can take the first step of one word, interleave

the rest with the other word and then append the first step to all result set elements,
provided it does not allocate a monitor that is used by the other word
| e1#w1 ⊗α e2#w2 = (

if fst (α e1) ∩ mon-pl (map α (e2#w2)) = {} then
e1 ·(w1 ⊗α e2#w2)

else {}
) ∪ (

if fst (α e2) ∩ mon-pl (map α (e1#w1)) = {} then
e2 ·(e1#w1 ⊗α w2)

else {}
)

Note that this definition allows reentrant monitors, because it only checks
that a monitor that is going to be entered by one word is not used in the
other word. Thus the same word may enter the same monitor multiple times.

The next lemmas are some auxiliary lemmas to simplify the handling of the
consistent interleaving operator.
lemma cil-last-case-split[cases set, case-names left right]:
[[w∈e1#w1 ⊗α e2#w2 ;
!!w ′. [[w=e1#w ′; w ′∈(w1 ⊗α e2#w2);

fst (α e1) ∩ mon-pl (map α (e2#w2)) = {}]] =⇒ P;
!!w ′. [[w=e2#w ′; w ′∈(e1#w1 ⊗α w2);

fst (α e2) ∩ mon-pl (map α (e1#w1)) = {}]] =⇒ P
]] =⇒ P
by (auto elim: list-set-cons-cases split: if-split-asm)

lemma cil-cases[cases set, case-names both-empty left-empty right-empty app-left
app-right]:

6

[[w∈wa⊗αwb;
[[w=[]; wa=[]; wb=[]]] =⇒ P;
[[wa=[]; w=wb]] =⇒ P;
[[w=wa; wb=[]]] =⇒ P;
!!ea wa ′ w ′. [[w=ea#w ′; wa=ea#wa ′; w ′∈wa ′⊗αwb;

fst (α ea) ∩ mon-pl (map α wb) = {}]] =⇒ P;
!!eb wb ′ w ′. [[w=eb#w ′; wb=eb#wb ′; w ′∈wa⊗αwb ′;

fst (α eb) ∩ mon-pl (map α wa) = {}]] =⇒ P
]] =⇒ P

proof (induct wa α wb rule: cil.induct)
case 1 thus ?case by simp next
case 2 thus ?case by simp next
case (3 ea wa ′ α eb wb ′)
from 3 .prems(1) show ?thesis proof (cases rule: cil-last-case-split)

case (left w ′) from 3 .prems(5)[OF left(1) - left(2 ,3)] show ?thesis by simp
next

case (right w ′) from 3 .prems(6)[OF right(1) - right(2 ,3)] show ?thesis by
simp

qed
qed

lemma cil-induct ′[case-names both-empty left-empty right-empty append]: [[∧
α. P α [] [];∧
α ad ae. P α [] (ad # ae);∧
α z aa. P α (z # aa) [];∧
α e1 w1 e2 w2 . [[
[[fst (α e1) ∩ mon-pl (map α (e2 # w2)) = {}]] =⇒ P α w1 (e2 # w2);
[[fst (α e2) ∩ mon-pl (map α (e1 # w1)) = {}]] =⇒ P α (e1 # w1) w2]]

=⇒ P α (e1 # w1) (e2 # w2)
]] =⇒ P α wa wb
apply (induct wa α wb rule: cil.induct)
apply (case-tac w)
apply auto
done

lemma cil-induct-fixα: [[
P α [] [];∧

ad ae. P α [] (ad # ae);∧
z aa. P α (z # aa) [];∧
e1 w1 e2 w2 .
[[fst (α e2) ∩ mon-pl (map α (e1 # w1)) = {} −→ P α (e1 # w1) w2 ;
fst (α e1) ∩ mon-pl (map α (e2 # w2)) = {} −→ P α w1 (e2 # w2)]]
=⇒ P α (e1 # w1) (e2 # w2)]]

=⇒ P α v w
apply (induct v α w rule: cil.induct)
apply (case-tac w)
apply auto
done

7

lemma cil-induct-fixα ′[case-names both-empty left-empty right-empty append]: [[
P α [] [];∧

ad ae. P α [] (ad # ae);∧
z aa. P α (z # aa) [];∧
e1 w1 e2 w2 . [[
fst (α e1) ∩ mon-pl (map α (e2 # w2)) = {} =⇒ P α w1 (e2 # w2);
fst (α e2) ∩ mon-pl (map α (e1 # w1)) = {} =⇒ P α (e1 # w1) w2]]
=⇒ P α (e1 # w1) (e2 # w2)

]] =⇒ P α wa wb
apply (induct wa α wb rule: cil.induct)
apply (case-tac w)
apply auto
done

lemma [simp]: w⊗α[] = {w}
by (cases w, auto)

lemma cil-contains-empty[rule-format, simp]: ([] ∈ wa⊗αwb) = (wa=[] ∧ wb=[])
by (induct wa α wb rule: cil.induct) auto

lemma cil-cons-cases[cases set, case-names left right]: [[e#w ∈ w1⊗αw2 ;
!!w1 ′. [[w1=e#w1 ′; w∈w1 ′⊗αw2 ; fst (α e) ∩ mon-pl (map α w2) = {}]] =⇒ P;
!!w2 ′. [[w2=e#w2 ′; w∈w1⊗αw2 ′; fst (α e) ∩ mon-pl (map α w1) = {}]] =⇒ P

]] =⇒ P
by (cases rule: cil-cases) auto

lemma cil-set-induct[induct set, case-names empty left right]: !!α w1 w2 . [[
w∈w1⊗αw2 ;
!!α. P [] α [] [];
!!α e w ′ w1 ′ w2 . [[w ′∈w1 ′⊗αw2 ; fst (α e) ∩ mon-pl (map α w2) = {};

P w ′ α w1 ′ w2]] =⇒ P (e#w ′) α (e#w1 ′) w2 ;
!!α e w ′ w2 ′ w1 . [[w ′∈w1⊗αw2 ′; fst (α e) ∩ mon-pl (map α w1) = {};

P w ′ α w1 w2 ′]] =⇒ P (e#w ′) α w1 (e#w2 ′)
]] =⇒ P w α w1 w2
by (induct w) (auto intro!: cil-contains-empty elim: cil-cons-cases)

lemma cil-set-induct-fixα[induct set, case-names empty left right]: !!w1 w2 . [[
w∈w1⊗αw2 ;
P [] α [] [];
!!e w ′ w1 ′ w2 . [[w ′∈w1 ′⊗αw2 ; fst (α e) ∩ mon-pl (map α w2) = {};

P w ′ α w1 ′ w2]] =⇒ P (e#w ′) α (e#w1 ′) w2 ;
!!e w ′ w2 ′ w1 . [[w ′∈w1⊗αw2 ′; fst (α e) ∩ mon-pl (map α w1) = {};

P w ′ α w1 w2 ′]] =⇒ P (e#w ′) α w1 (e#w2 ′)
]] =⇒ P w α w1 w2
by (induct w) (auto intro!: cil-contains-empty elim: cil-cons-cases)

lemma cil-cons1 : [[w∈wa⊗αwb; fst (α e) ∩ mon-pl (map α wb) = {}]]
=⇒ e#w ∈ e#wa ⊗α wb

by (cases wb) auto

8

lemma cil-cons2 : [[w∈wa⊗αwb; fst (α e) ∩ mon-pl (map α wa) = {}]]
=⇒ e#w ∈ wa ⊗α e#wb

by (cases wa) auto

2.2 Properties of consistent interleaving
lemma cil-subset-il: w⊗αw ′ ⊆ w⊗w ′

apply (induct w α w ′ rule: cil.induct)
apply simp-all
apply safe
apply auto
done

lemma cil-subset-il ′: w∈w1⊗αw2 =⇒ w∈w1⊗w2
using cil-subset-il by (auto)

— Consistent interleaving preserves the set of letters of both operands
lemma cil-set: w∈w1⊗αw2 =⇒ set w = set w1 ∪ set w2

by (induct rule: cil-set-induct-fixα) auto
corollary cil-mon-pl: w∈w1⊗αw2
=⇒ mon-pl (map α w) = mon-pl (map α w1) ∪ mon-pl (map α w2)
by (subst mon-pl-unconc[symmetric]) (simp add: mon-pl-set cil-set, blast 20)

— Consistent interleaving preserves the length of both operands
lemma cil-length[rule-format]: ∀w∈wa⊗αwb. length w = length wa + length wb

by (induct rule: cil.induct) auto

— Consistent interleaving contains all letters of each operand in the original order
lemma cil-ileq: w∈w1⊗αw2 =⇒ w1�w ∧ w2�w

by (intro conjI cil-subset-il ′ ileq-interleave)

— Consistent interleaving is commutative and associative
lemma cil-commute: w⊗αw ′ = w ′⊗αw

by (induct rule: cil.induct) auto

lemma cil-assoc1 : !!wl w1 w2 w3 . [[w∈wl⊗αw3 ; wl∈w1⊗αw2]]
=⇒ ∃wr . w∈w1⊗αwr ∧ wr∈w2⊗αw3

proof (induct w rule: length-compl-induct)
case Nil thus ?case by auto

next
case (Cons e w) from Cons.prems(1) show ?case proof (cases rule: cil-cons-cases)

case (left wl ′) with Cons.prems(2) have e#wl ′ ∈ w1⊗αw2 by simp
thus ?thesis proof (cases rule: cil-cons-cases[case-names left ′ right ′])

case (left ′ w1 ′)
from Cons.hyps[OF - left(2) left ′(2)] obtain wr where IHAPP: w ∈ w1 ′

⊗α wr wr ∈ w2 ⊗α w3 by blast
have e#w∈e#w1 ′⊗αwr proof (rule cil-cons1 [OF IHAPP(1)])

from left left ′ cil-mon-pl[OF IHAPP(2)] show fst (α e) ∩ mon-pl (map α
wr) = {} by auto

9

qed
thus ?thesis using IHAPP(2) left ′ by blast

next
case (right ′ w2 ′) from Cons.hyps[OF - left(2) right ′(2)] obtain wr where

IHAPP: w ∈ w1 ⊗α wr wr ∈ w2 ′ ⊗α w3 by blast
from IHAPP(2) left have e#wr ∈ e#w2 ′ ⊗α w3 by (auto intro: cil-cons1)
moreover from right ′ IHAPP(1) have e#w ∈ w1 ⊗α e#wr by (auto intro:

cil-cons2)
ultimately show ?thesis using right ′ by blast

qed
next

case (right w3 ′) from Cons.hyps[OF - right(2) Cons.prems(2)] obtain wr
where IHAPP: w ∈ w1 ⊗α wr wr ∈ w2 ⊗α w3 ′ by blast

from IHAPP(2) right cil-mon-pl[OF Cons.prems(2)] have e#wr ∈ w2 ⊗α
e#w3 ′ by (auto intro: cil-cons2)

moreover from IHAPP(1) right cil-mon-pl[OF Cons.prems(2)] have e#w ∈
w1 ⊗α e#wr by (auto intro: cil-cons2)

ultimately show ?thesis using right by blast
qed

qed

lemma cil-assoc2 :
assumes A: w∈w1⊗αwr and B: wr∈w2⊗αw3
shows ∃wl. w∈wl⊗αw3 ∧ wl∈w1⊗αw2

proof −
from A have A ′: w∈wr⊗αw1 by (simp add: cil-commute)
from B have B ′: wr∈w3⊗αw2 by (simp add: cil-commute)
from cil-assoc1 [OF A ′ B ′] obtain wl where w ∈ w3 ⊗α wl ∧ wl ∈ w2 ⊗α w1

by blast
thus ?thesis by (auto simp add: cil-commute)

qed

— Parts of the abstraction can be moved to the operands

lemma cil-map: w∈w1 ⊗(α◦f) w2 =⇒ map f w ∈ map f w1 ⊗α map f w2
proof (induct rule: cil-set-induct-fixα)

case empty thus ?case by auto
next

case (left e w ′ w1 ′ w2)
have f e # map f w ′ ∈ f e # map f w1 ′ ⊗α map f w2 proof (rule cil-cons1)

from left(2) have fst ((α◦f) e) ∩ mon-pl (map α (map f w2)) = {} by (simp
only: map-map[symmetric])

thus fst (α (f e)) ∩ mon-pl (map α (map f w2)) = {} by (simp only: o-apply)
qed (rule left(3))
thus ?case by simp

next
case (right e w ′ w2 ′ w1)
have f e # map f w ′ ∈ map f w1 ⊗α f e # map f w2 ′ proof (rule cil-cons2)

10

from right(2) have fst ((α◦f) e) ∩ mon-pl (map α (map f w1)) = {} by (simp
only: map-map[symmetric])

thus fst (α (f e)) ∩ mon-pl (map α (map f w1)) = {} by (simp only: o-apply)
qed (rule right(3))
thus ?case by simp

qed

end

3 Acquisition Histories
theory AcquisitionHistory
imports ConsInterleave
begin

The concept of acquisition histories was introduced by Kahlon, Ivancic, and
Gupta [5] as a bounded size abstraction of executions that acquire and re-
lease locks that contains enough information to decide consistent interleav-
ability. In this work, we use this concept for reentrant monitors. As in
Section 2, we encode monitor usage information in pairs of sets of monitors,
and regard lists of such pairs as (abstract) executions. An item (E , U) of
such a list describes a sequence of steps of the concrete execution that first
enters the monitors in E and then passes through the monitors in U. The
monitors in E are never left by the execution. Note that due to the syntac-
tic binding of monitors to the program structure, any execution of a single
thread can be abstracted to a sequence of (E , U)-pairs. Restricting the
possible schedules (see Section 8) will allow us to also abstract executions
reaching a single program point to a sequence of such pairs.
We want to decide whether two executions are interleavable. The key ob-
servation of [5] is, that two executions e and e ′ are not interleavable if and
only if there is a conflicting pair (m, m ′) of monitors, such that e enters
(and never leaves) m and then uses m ′ and e ′ enters (and never leaves) m ′

and then uses m.
An acquisition history is a map from monitors to set of monitors. The
acquisition history of an execution maps a monitor m that is allocated at
the end of the execution to all monitors that are used after or in the same
step that finally enters m. Monitors that are not allocated at the end of
an execution are mapped to the empty set. Though originally used for a
setting without reentrant monitors, acquisition histories also work for our
setting with reentrant monitors.
This theory contains the definition of acquisition histories and acquisition
history interleavability, an ordering on acquisition histories that reflects the
blocking potential of acquisition histories, and a mapping function from

11

paths to acquisition histories that is shown to be compatible with monitor
consistent interleaving.

3.1 Definitions

Acquisition histories are modeled as functions from monitors to sets of mon-
itors. Intuitively m ′ ∈ h m models that an execution finally is in m, and
monitor m ′ has been used (i.e. passed or entered) after or at the same time
m has been finally entered. By convention, we have m ∈ h m or h m = {}.
definition ah == { (h:: ′m ⇒ ′m set) . ∀ m. h m = {} ∨ m∈h m }

lemma ah-cases[cases set]: [[h∈ah; h m = {} =⇒ P ; m ∈ h m =⇒ P]] =⇒ P
by (unfold ah-def) blast

3.2 Interleavability

Two acquisition histories h1 and h2 are considered interleavable, iff there
is no conflicting pair of monitors m1 and m2, where a pair of monitors m1
and m2 is called conflicting iff m1 is used in h2 after entering m2 and, vice
versa, m2 is used in h1 after entering m1.
definition

ah-il :: (′m ⇒ ′m set) ⇒ (′m ⇒ ′m set) ⇒ bool (infix ‹[∗]› 65)
where
h1 [∗] h2 == ¬(∃m1 m2 . m1∈h2 m2 ∧ m2 ∈ h1 m1)

From our convention, it follows (as expected) that the sets of entered mon-
itors (lock-sets) of two interleavable acquisition histories are disjoint
lemma ah-il-lockset-disjoint:
[[h1∈ah; h2∈ah; h1 [∗] h2]] =⇒ h1 m = {} ∨ h2 m = {}
by (unfold ah-il-def) (auto elim: ah-cases)

Of course, acquisition history interleavability is commutative
lemma ah-il-commute: h1 [∗] h2 =⇒ h2 [∗] h1

by (unfold ah-il-def) auto

3.3 Used monitors

Let’s define the monitors of an acquisition history, as all monitors that occur
in the acquisition history
definition

mon-ah :: (′m ⇒ ′m set) ⇒ ′m set
where
mon-ah h ==

⋃
{ h(m) | m. True}

12

3.4 Ordering

The element-wise subset-ordering on acquisition histories intuitively reflects
the blocking potential: The bigger the acquisition history, the fewer acqui-
sition histories are interleavable with it.

Note that the Isabelle standard library automatically lifts the subset order-
ing to functions, so we need no explicit definition here.
lemma ah-leq-il: [[h1 [∗] h2 ; h1 ′ ≤ h1 ; h2 ′ ≤ h2]] =⇒ h1 ′ [∗] h2 ′

by (unfold ah-il-def le-fun-def [where ′b= ′a set]) blast+
lemma ah-leq-il-left: [[h1 [∗] h2 ; h1 ′ ≤ h1]] =⇒ h1 ′ [∗] h2 and

ah-leq-il-right: [[h1 [∗] h2 ; h2 ′ ≤ h2]] =⇒ h1 [∗] h2 ′

by (unfold ah-il-def le-fun-def [where ′b= ′a set]) blast+

3.5 Acquisition histories of executions

Next we define a function that abstracts from executions (lists of enter/use
pairs) to acquisition histories
primrec αah :: (′m set × ′m set) list ⇒ ′m ⇒ ′m set where
αah [] m = {}
| αah (e#w) m = (if m∈fst e then fst e ∪ snd e ∪ mon-pl w else αah w m)

— αah generates valid acquisition histories
lemma αah-ah: αah w ∈ ah

apply (induct w)
apply (unfold ah-def)
apply simp
apply (fastforce split: if-split-asm)
done

lemma αah-hd: [[m∈fst e; x∈fst e ∪ snd e ∪ mon-pl w]] =⇒ x∈αah (e#w) m
by auto

lemma αah-tl: [[m /∈fst e; x∈αah w m]] =⇒ x∈αah (e#w) m
by auto

lemma αah-cases[cases set, case-names hd tl]: [[
x∈αah w m;
!!e w ′. [[w=e#w ′; m∈fst e; x∈fst e ∪ snd e ∪ mon-pl w ′]] =⇒ P;
!!e w ′. [[w=e#w ′; m /∈fst e; x∈αah w ′ m]] =⇒ P

]] =⇒ P
by (cases w) (simp-all split: if-split-asm)

lemma αah-cons-cases[cases set, case-names hd tl]: [[
x∈αah (e#w ′) m;
[[m∈fst e; x∈fst e ∪ snd e ∪ mon-pl w ′]] =⇒ P;
[[m /∈fst e; x∈αah w ′ m]] =⇒ P

]] =⇒ P
by (simp-all split: if-split-asm)

13

lemma mon-ah-subset: mon-ah (αah w) ⊆ mon-pl w
by (induct w) (auto simp add: mon-ah-def)

— Subwords generate smaller acquisition histories
lemma αah-ileq: w1�w2 =⇒ αah w1 ≤ αah w2
proof (induct rule: less-eq-list-induct)

case empty thus ?case by (unfold le-fun-def [where ′b= ′a set], simp)
next

case (drop l ′ l a) show ?case
proof (unfold le-fun-def [where ′b= ′a set], intro allI subsetI)

fix m x
assume A: x ∈ αah l ′ m
with drop(2) have x∈αah l m by (unfold le-fun-def [where ′b= ′a set], auto)
moreover hence x∈mon-pl l using mon-ah-subset[unfolded mon-ah-def] by

fast
ultimately show x∈αah (a # l) m by auto

qed
next

case (take a b l ′ l) show ?case
proof (unfold le-fun-def [where ′b= ′a set], intro allI subsetI)

fix m x
assume A: x∈αah (a#l ′) m
thus x ∈ αah (b # l) m
proof (cases rule: αah-cons-cases)

case hd
with mon-pl-ileq[OF take.hyps(2)] and ‹a = b›
show ?thesis by auto

next
case tl
with take.hyps(3)[unfolded le-fun-def [where ′b= ′a set]] and ‹a = b›
show ?thesis by auto

qed
qed

qed

We can now prove the relation of monitor consistent interleavability and
interleavability of the acquisition histories.
lemma ah-interleavable1 :

w ∈ w1 ⊗α w2 =⇒ αah (map α w1) [∗] αah (map α w2)
— The lemma is shown by induction on the structure of the monitor consistent

interleaving operator
proof (induct w α w1 w2 rule: cil-set-induct-fixα)

case empty show ?case by (simp add: ah-il-def) — The base case is trivial by
the definition of ([∗])
next

— Case: First step comes from the left word
case (left e w ′ w1 ′ w2) show ?case
proof (rule ccontr) — We do a proof by contradiction

14

— Assume there is a conflicting pair in the acquisition histories
assume ¬ αah (map α (e # w1 ′)) [∗] αah (map α w2)
then obtain m1 m2 where CPAIR: m1 ∈ αah (map α (e#w1 ′)) m2 m2 ∈

αah (map α w2) m1 by (unfold ah-il-def , blast)
— It comes either from the first step or not
from CPAIR(1) have (m2∈fst (α e) ∧ m1 ∈ fst (α e) ∪ snd (α e) ∪ mon-pl

(map α w1 ′)) ∨ (m2 /∈fst (α e) ∧ m1 ∈ αah (map α w1 ′) m2) (is ?CASE1 ∨
?CASE2)

by (auto split: if-split-asm)
moreover {

— Case: One monitor of the conflicting pair is entered in the first step of the
left path

assume ?CASE1 hence C : m2∈fst (α e) ..
— Because the paths are consistently interleavable, the monitors entered in

the first step must not occur in the other path
from left(2) mon-ah-subset[of map α w2] have fst (α e) ∩ mon-ah (αah

(map α w2)) = {} by auto
— But this is a contradiction to being a conflicting pair
with C CPAIR(2) have False by (unfold mon-ah-def , blast)

} moreover {
— Case: The first monitor of the conflicting pair is entered after the first step

of the left path
assume ?CASE2 hence C : m1 ∈ αah (map α w1 ′) m2 ..
— But this is a contradiction to the induction hypothesis, that says that the

acquisition histories of the tail of the left path and the right path are interleavable
with left(3) CPAIR(2) have False by (unfold ah-il-def , blast)

} ultimately show False ..
qed

next
— Case: First step comes from the right word. This case is shown completely

analogous
case (right e w ′ w2 ′ w1) show ?case
proof (rule ccontr)

assume ¬ αah (map α w1) [∗] αah (map α (e#w2 ′))
then obtain m1 m2 where CPAIR: m1 ∈ αah (map α w1) m2 m2 ∈ αah

(map α (e#w2 ′)) m1 by (unfold ah-il-def , blast)
from CPAIR(2) have (m1∈fst (α e) ∧ m2 ∈ fst (α e) ∪ snd (α e) ∪ mon-pl

(map α w2 ′)) ∨ (m1 /∈fst (α e) ∧ m2 ∈ αah (map α w2 ′) m1) (is ?CASE1 ∨
?CASE2)

by (auto split: if-split-asm)
moreover {

assume ?CASE1 hence C : m1∈fst (α e) ..
from right(2) mon-ah-subset[of map α w1] have fst (α e) ∩ mon-ah (αah

(map α w1)) = {} by auto
with C CPAIR(1) have False by (unfold mon-ah-def , blast)

} moreover {
assume ?CASE2 hence C : m2 ∈ αah (map α w2 ′) m1 ..
with right(3) CPAIR(1) have False by (unfold ah-il-def , blast)

} ultimately show False ..

15

qed
qed

lemma ah-interleavable2 :
assumes A: αah (map α w1) [∗] αah (map α w2)
shows w1 ⊗α w2 6= {}
— This lemma is shown by induction on the sum of the word lengths

proof −
— To apply this induction in Isabelle, we have to rewrite the lemma a bit
{ fix n

have !!w1 w2 . [[αah (map α w1) [∗] αah (map α w2); n=length w1 + length
w2]] =⇒ w1 ⊗α w2 6= {}

proof (induct n rule: nat-less-induct[case-names I])
— We first rule out the cases that one of the words is empty
case (I n w1 w2) show ?case proof (cases w1)

— If the first word is empty, the lemma is trivial
case Nil with I .prems show ?thesis by simp

next
case (Cons e1 w1 ′) note CONS1=this show ?thesis proof (cases w2)

— If the second word is empty, the lemma is also trivial
case Nil with I .prems show ?thesis by simp

next
— The interesting case is if both words are not empty
case (Cons e2 w2 ′) note CONS2=this
— In this case, we check whether the first step of one of the words can

safely be executed without blocking any steps of the other word
show ?thesis proof (cases fst (α e1) ∩ mon-pl (map α w2) = {})

case True — The first step of the first word can safely be executed
— From the induction hypothesis, we get that there is a consistent

interleaving of the rest of the first word and the second word
have w1 ′⊗αw2 6= {} proof −

from I .prems(1) CONS1 ah-leq-il-left[OF - αah-ileq[OF le-list-map,
OF less-eq-list-drop[OF order-refl]]] have αah (map α w1 ′) [∗] αah (map α w2)
by fast

moreover from CONS1 I .prems(2) have length w1 ′+length w2 < n
by simp

ultimately show ?thesis using I .hyps by blast
qed
— And because the first step of the first word can be safely executed, we

can prepend it to that consistent interleaving
with cil-cons1 [OF - True] CONS1 show ?thesis by blast

next
case False note C1=this
show ?thesis proof (cases fst (α e2) ∩ mon-pl (map α w1) = {})

case True — The first step of the second word can safely be executed
— This case is shown analogously to the latter one
have w1⊗αw2 ′ 6= {} proof −
from I .prems(1) CONS2 ah-leq-il-right[OF - αah-ileq[OF le-list-map,

16

OF less-eq-list-drop[OF order-refl]]] have αah (map α w1) [∗] αah (map α w2 ′)
by fast

moreover from CONS2 I .prems(2) have length w1+length w2 ′ <
n by simp

ultimately show ?thesis using I .hyps by blast
qed
with cil-cons2 [OF - True] CONS2 show ?thesis by blast

next
case False note C2=this — Neither first step can safely be executed.

This is exactly the situation from that we can extract a conflicting pair
from C1 C2 obtain m1 m2 where m1∈fst (α e1) m1∈mon-pl (map

α w2) m2∈fst (α e2) m2∈mon-pl (map α w1) by blast
with CONS1 CONS2 have m2 ∈ αah (map α w1) m1 m1 ∈ αah

(map α w2) m2 by auto
— But by assumption, there are no conflicting pairs, thus we get a

contradiction
with I .prems(1) have False by (unfold ah-il-def) blast
thus ?thesis ..

qed
qed

qed
qed

qed
} with A show ?thesis by blast

qed

Finally, we can state the relationship between monitor consistent interleav-
ing and interleaving of acquisition histories
theorem ah-interleavable:
(αah (map α w1) [∗] αah (map α w2)) ←→ (w1⊗αw2 6={})
using ah-interleavable1 ah-interleavable2 by blast

3.6 Acquisition history backward update

We define a function to update an acquisition history backwards. This func-
tion is useful for constructing acquisition histories in backward constraint
systems.
definition

ah-update :: (′m ⇒ ′m set) ⇒ (′m set ∗ ′m set) ⇒ ′m set ⇒ (′m ⇒ ′m set)
where
ah-update h F M m == if m∈fst F then fst F ∪ snd F ∪ M else h m

Intuitively, ah-update h (E , U) M m means to prepend a step (E , U) to the
acquisition history h of a path that uses monitors M. Note that we need the
extra parameter M, since an acquisition history does not contain information
about the monitors that are used on a path before the first monitor that
will not be left has been entered.
lemma ah-update-cons: αah (e#w) = ah-update (αah w) e (mon-pl w)

17

by (auto intro!: ext simp add: ah-update-def)

The backward-update function is monotonic in the first and third argument
as well as in the used monitors of the second argument. Note that it is, in
general, not monotonic in the entered monitors of the second argument.
lemma ah-update-mono: [[h ≤ h ′; F=F ′; M⊆M ′]]
=⇒ ah-update h F M ≤ ah-update h ′ F ′ M ′

by (auto simp add: ah-update-def le-fun-def [where ′b= ′a set])
lemma ah-update-mono2 : [[h ≤ h ′; U⊆U ′; M⊆M ′]]
=⇒ ah-update h (E ,U) M ≤ ah-update h ′ (E ,U ′) M ′

by (auto simp add: ah-update-def le-fun-def [where ′b= ′a set])

end

4 Labeled transition systems
theory LTS
imports Main
begin

Labeled transition systems (LTS) provide a model of a state transition sys-
tem with named transitions.

4.1 Definitions

An LTS is modeled as a ternary relation between start configuration, tran-
sition label and end configuration
type-synonym (′c, ′a) LTS = (′c × ′a × ′c) set

Transitive reflexive closure
inductive-set

trcl :: (′c, ′a) LTS ⇒ (′c, ′a list) LTS
for t
where
empty[simp]: (c,[],c) ∈ trcl t
| cons[simp]: [[(c,a,c ′) ∈ t; (c ′,w,c ′′) ∈ trcl t]] =⇒ (c,a#w,c ′′) ∈ trcl t

4.2 Basic properties of transitive reflexive closure
lemma trcl-empty-cons: (c,[],c ′)∈trcl t =⇒ (c=c ′)

by (auto elim: trcl.cases)
lemma trcl-empty-simp[simp]: (c,[],c ′)∈trcl t = (c=c ′)

by (auto elim: trcl.cases intro: trcl.intros)

lemma trcl-single[simp]: ((c,[a],c ′) ∈ trcl t) = ((c,a,c ′) ∈ t)
by (auto elim: trcl.cases)

lemma trcl-uncons: (c,a#w,c ′)∈trcl t =⇒ ∃ ch . (c,a,ch)∈t ∧ (ch,w,c ′) ∈ trcl t

18

by (auto elim: trcl.cases)
lemma trcl-uncons-cases: [[

(c,e#w,c ′)∈trcl S ;
!!ch. [[(c,e,ch)∈S ; (ch,w,c ′)∈trcl S]] =⇒ P

]] =⇒ P
by (blast dest: trcl-uncons)

lemma trcl-one-elem: (c,e,c ′)∈t =⇒ (c,[e],c ′)∈trcl t
by auto

lemma trcl-unconsE [cases set, case-names split]: [[
(c,e#w,c ′)∈trcl S ;
!!ch. [[(c,e,ch)∈S ; (ch,w,c ′)∈trcl S]] =⇒ P

]] =⇒ P
by (blast dest: trcl-uncons)

lemma trcl-pair-unconsE [cases set, case-names split]: [[
((s,c),e#w,(s ′,c ′))∈trcl S ;
!!sh ch. [[((s,c),e,(sh,ch))∈S ; ((sh,ch),w,(s ′,c ′))∈trcl S]] =⇒ P

]] =⇒ P
by (fast dest: trcl-uncons)

lemma trcl-concat: !! c . [[(c,w1 ,c ′)∈trcl t; (c ′,w2 ,c ′′)∈trcl t]]
=⇒ (c,w1@w2 ,c ′′)∈trcl t

proof (induct w1)
case Nil thus ?case by (subgoal-tac c=c ′) auto

next
case (Cons a w) thus ?case by (auto dest: trcl-uncons)

qed

lemma trcl-unconcat: !! c . (c,w1@w2 ,c ′)∈trcl t
=⇒ ∃ ch . (c,w1 ,ch)∈trcl t ∧ (ch,w2 ,c ′)∈trcl t

proof (induct w1)
case Nil hence (c,[],c)∈trcl t ∧ (c,w2 ,c ′)∈trcl t by auto
thus ?case by fast

next
case (Cons a w1) note IHP = this
hence (c,a#(w1@w2),c ′)∈trcl t by simp
with trcl-uncons obtain chh where (c,a,chh)∈t ∧ (chh,w1@w2 ,c ′)∈trcl t by

fast
moreover with IHP obtain ch where (chh,w1 ,ch)∈trcl t ∧ (ch,w2 ,c ′)∈trcl t

by fast
ultimately have (c,a#w1 ,ch)∈trcl t ∧ (ch,w2 ,c ′)∈trcl t by auto
thus ?case by fast

qed

4.2.1 Appending of elements to paths
lemma trcl-rev-cons: [[(c,w,ch)∈trcl T ; (ch,e,c ′)∈T]] =⇒ (c,w@[e],c ′)∈trcl T

by (auto dest: trcl-concat iff add: trcl-single)
lemma trcl-rev-uncons: (c,w@[e],c ′)∈trcl T

19

=⇒ ∃ ch. (c,w,ch)∈trcl T ∧ (ch,e,c ′)∈T
by (force dest: trcl-unconcat)

lemma trcl-rev-induct[induct set, consumes 1 , case-names empty snoc]: !! c ′. [[
(c,w,c ′)∈trcl S ;
!!c. P c [] c;
!!c w c ′ e c ′′. [[(c,w,c ′)∈trcl S ; (c ′,e,c ′′)∈S ; P c w c ′]] =⇒ P c (w@[e]) c ′′

]] =⇒ P c w c ′

by (induct w rule: rev-induct) (auto dest: trcl-rev-uncons)
lemma trcl-rev-cases: !!c c ′. [[

(c,w,c ′)∈trcl S ;
[[w=[]; c=c ′]]=⇒P;
!!ch e wh. [[w=wh@[e]; (c,wh,ch)∈trcl S ; (ch,e,c ′)∈S]]=⇒P

]] =⇒ P
by (induct w rule: rev-induct) (auto dest: trcl-rev-uncons)

lemma trcl-cons2 : [[(c,e,ch)∈T ; (ch,f ,c ′)∈T]] =⇒ (c,[e,f],c ′)∈trcl T
by auto

4.2.2 Transitivity reasoning setup
declare trcl-cons2 [trans] — It’s important that this is declared before trcl-concat,
because we want trcl-concat to be tried first by the transitivity reasoner
declare cons[trans]
declare trcl-concat[trans]
declare trcl-rev-cons[trans]

4.2.3 Monotonicity
lemma trcl-mono: !!A B. A ⊆ B =⇒ trcl A ⊆ trcl B

apply (clarsimp)
apply (erule trcl.induct)
apply auto

done

lemma trcl-inter-mono: x∈trcl (S∩R) =⇒ x∈trcl S x∈trcl (S∩R) =⇒ x∈trcl R
proof −

assume x∈trcl (S∩R)
with trcl-mono[of S∩R S] show x∈trcl S by auto

next
assume x∈trcl (S∩R)
with trcl-mono[of S∩R R] show x∈trcl R by auto

qed

4.2.4 Special lemmas for reasoning about states that are pairs
lemmas trcl-pair-induct = trcl.induct[of (xc1 ,xc2) xb (xa1 ,xa2), split-format (complete),
consumes 1 , case-names empty cons]
lemmas trcl-rev-pair-induct = trcl-rev-induct[of (xc1 ,xc2) xb (xa1 ,xa2), split-format
(complete), consumes 1 , case-names empty snoc]

20

4.2.5 Invariants
lemma trcl-prop-trans[cases set, consumes 1 , case-names empty steps]: [[

(c,w,c ′)∈trcl S ;
[[c=c ′; w=[]]] =⇒ P;
[[c∈Domain S ; c ′∈Range (Range S)]]=⇒P

]] =⇒ P
apply (erule-tac trcl-rev-cases)
apply auto
apply (erule trcl.cases)
apply auto
done

end

5 Thread Tracking
theory ThreadTracking
imports Main HOL−Library.Multiset LTS Misc
begin

This theory defines some general notion of an interleaving semantics. It
defines how to extend a semantics specified on a single thread and a context
to a semantic on multisets of threads. The context is needed in order to
keep track of synchronization.

5.1 Semantic on multiset configuration

The interleaving semantics is defined on a multiset of stacks. The thread to
make the next step is nondeterministically chosen from all threads ready to
make steps.
definition

gtr gtrs == { (add-mset s c,e,add-mset s ′ c ′) | s c e s ′ c ′ . ((s,c),e,(s ′,c ′))∈gtrs }

lemma gtrI-s: ((s,c),e,(s ′,c ′))∈gtrs =⇒ (add-mset s c,e,add-mset s ′ c ′)∈gtr gtrs
by (unfold gtr-def , auto)

lemma gtrI : ((s,c),w,(s ′,c ′))∈trcl gtrs
=⇒ (add-mset s c,w,add-mset s ′ c ′)∈trcl (gtr gtrs)
by (induct rule: trcl-pair-induct) (auto dest: gtrI-s)

lemma gtrE : [[
(c,e,c ′)∈gtr T ;
!!s ce s ′ ce ′. [[c=add-mset s ce; c ′=add-mset s ′ ce ′; ((s,ce),e,(s ′,ce ′))∈T]] =⇒

P
]] =⇒ P
by (unfold gtr-def) auto

21

lemma gtr-empty-conf-s[simp]:
({#},w,c ′)/∈gtr S
(c,w,{#})/∈gtr S
by (auto elim: gtrE)

lemma gtr-empty-conf1 [simp]: (({#},w,c ′)∈trcl (gtr S)) ←→ (w=[] ∧ c ′={#})
by (induct w) (auto dest: trcl-uncons)

lemma gtr-empty-conf2 [simp]: ((c,w,{#})∈trcl (gtr S)) ←→ (w=[] ∧ c={#})
by (induct w rule: rev-induct) (auto dest: trcl-rev-uncons)

lemma gtr-find-thread: [[
(c,e,c ′)∈gtr gtrs;
!!s ce s ′ ce ′. [[c=add-mset s ce; c ′=add-mset s ′ ce ′; ((s,ce),e,(s ′,ce ′))∈gtrs]] =⇒

P
]] =⇒ P
by (unfold gtr-def) auto

lemma gtr-step-cases[cases set, case-names loc other]: [[
(add-mset s ce,e,c ′)∈gtr gtrs;
!!s ′ ce ′. [[c ′=add-mset s ′ ce ′; ((s,ce),e,(s ′,ce ′))∈gtrs]] =⇒ P;
!!cc ss ss ′ ce ′. [[ce=add-mset ss cc; c ′=add-mset ss ′ ce ′;

((ss,add-mset s cc),e,(ss ′,ce ′))∈gtrs]] =⇒ P
]] =⇒ P
by (auto elim!: gtr-find-thread mset-single-cases)

lemma gtr-rev-cases[cases set, case-names loc other]: [[
(c,e,add-mset s ′ ce ′)∈gtr gtrs;
!!s ce. [[c=add-mset s ce; ((s,ce),e,(s ′,ce ′))∈gtrs]] =⇒ P;
!!cc ss ss ′ ce. [[c=add-mset ss ce; ce ′=add-mset ss ′ cc;

((ss,ce),e,(ss ′,add-mset s ′ cc))∈gtrs]] =⇒ P
]] =⇒ P
by (auto elim!: gtr-find-thread mset-single-cases)

5.2 Invariants
lemma gtr-preserve-s: [[

(c,e,c ′)∈gtr T ;
P c;
!!s c s ′ c ′ e. [[P (add-mset s c); ((s,c),e,(s ′,c ′))∈T]] =⇒ P (add-mset s ′ c ′)

]] =⇒ P c ′

by (unfold gtr-def) blast

lemma gtr-preserve: [[
(c,w,c ′)∈trcl (gtr T);
P c;
!!s c s ′ c ′ e. [[P (add-mset s c); ((s,c),e,(s ′,c ′))∈T]] =⇒ P (add-mset s ′ c ′)

]] =⇒ P c ′

apply (induct rule: trcl.induct)
apply simp
apply (subgoal-tac P c ′)

22

apply blast
apply (blast intro: gtr-preserve-s)

done

5.3 Context preservation assumption

We now assume that the original semantics does not modify threads in the
context, i.e. it may only add new threads to the context and use the context
to obtain monitor information, but not change any existing thread in the
context. This assumption is valid for our semantics, where the context is just
needed to determine the set of allocated monitors. It allows us to generally
derive some further properties of such semantics.
locale env-no-step =

fixes gtrs :: ((′s× ′s multiset), ′l) LTS
assumes env-no-step-s[cases set, case-names csp]:
[[((s,c),e,(s ′,c ′))∈gtrs; !!csp. c ′=csp+c =⇒ P]] =⇒ P

— The property of not changing existing threads in the context transfers to paths
lemma (in env-no-step) env-no-step[cases set, case-names csp]: [[

((s,c),w,(s ′,c ′))∈trcl gtrs;
!! csp. c ′=csp+c =⇒ P

]] =⇒ P
proof −
have ((s,c),w,(s ′,c ′))∈trcl gtrs =⇒ ∃ csp. c ′=csp+c proof (induct rule: trcl-pair-induct)

case empty thus ?case by (auto intro: exI [of - {#}])
next

case (cons s c e sh ch w s ′ c ′) note IHP=this
from env-no-step-s[OF IHP(1)] obtain csph where ch=csph+c by auto
moreover from IHP(3) obtain csp ′ where c ′=csp ′+ch by auto
ultimately have c ′=csp ′+csph+c by (simp add: union-assoc)
thus ?case by blast

qed
moreover assume ((s,c),w,(s ′,c ′))∈trcl gtrs !! csp. c ′=csp+c =⇒ P
ultimately show ?thesis by blast

qed

The following lemma can be used to make a case distinction how a step
operated on a given thread in the end configuration:

loc The thread made the step

spawn The thread was spawned by the step

env The thread was not involved in the step

lemma (in env-no-step) rev-cases-p[cases set, case-names loc spawn env]:
assumes STEP: (c,e,add-mset s ′ ce ′)∈gtr gtrs and
LOC : !!s ce. [[c={#s#}+ce; ((s,ce),e,(s ′,ce ′))∈gtrs]] =⇒ P and

23

SPAWN : !!ss ss ′ ce csp.
[[c=add-mset ss ce; ce ′=add-mset ss ′ (csp+ce);
((ss,ce),e,(ss ′,add-mset s ′ (csp+ce)))∈gtrs]]

=⇒ P and
ENV : !!ss ss ′ ce csp.

[[c=add-mset ss (add-mset s ′ ce); ce ′=add-mset ss ′ (csp+ce);
((ss,add-mset s ′ ce),e,(ss ′,csp+(add-mset s ′ ce)))∈gtrs]]

=⇒ P
shows P

proof (rule gtr-rev-cases[OF STEP], goal-cases)
case 1 thus ?thesis using LOC by auto

next
case CASE : (2 cc ss ss ′ ce)
hence CASE ′: c = {#ss#} + ce ce ′ = {#ss ′#} + cc ((ss, ce), e, ss ′, {#s ′#}

+ cc) ∈ gtrs by simp-all
from env-no-step-s[OF CASE ′(3)] obtain csp where EQ: add-mset s ′ cc = csp

+ ce by auto
thus ?thesis proof (cases rule: mset-unplusm-dist-cases)

case left note CC=this
with CASE ′ have ce ′={#ss ′#} + (csp−{#s ′#}) + ce by (auto simp add:

union-assoc)
moreover from CC (2) have {#s ′#}+cc = {#s ′#} + (csp−{#s ′#}) + ce

by (simp add: union-assoc)
ultimately show ?thesis using CASE ′(1 ,3) CASE(2) SPAWN by auto

next
case right note CC=this
from CC (1) CASE ′(1) have c=add-mset ss (add-mset s ′ (ce − {#s ′#})) by

(simp add: union-assoc)
moreover from CC (2) CASE ′(2) have ce ′=add-mset ss ′ (csp+(ce−{#s ′#}))

by (simp add: union-assoc)
moreover from CC (2) have add-mset s ′ cc = csp+(add-mset s ′ (ce−{#s ′#}))

by (simp add: union-ac)
ultimately show ?thesis using CASE ′(3) CASE(3) CC (1) ENV by metis

qed
qed

5.4 Explicit local context

In the multiset semantics, a single thread has no identity. This may become
a problem when reasoning about a fixed thread during an execution. For
example, in our constraint-system-based approach the operational charac-
terization of the least solution of the constraint system requires to state
properties of the steps of the initial thread in some execution. With the
multiset semantics, we are unable to identify those steps among all steps.
There are many solutions to this problem, for example, using thread ids
either as part of the thread’s configuration or as part of the whole config-
uration by using lists of stacks or maps from ids to stacks as configuration
datatype.

24

In the following we present a special solution that is strong enough to suit
our purposes but not meant as a general solution.
Instead of identifying every single thread uniquely, we only distinguish one
thread as the local thread. The other threads are environment threads. We
then attach to every step the information whether it was on the local or on
some environment thread.
We call this semantics loc/env-semantics in contrast to the multiset-semantics
of the last section.

5.4.1 Lifted step datatype
datatype ′a el-step = LOC ′a | ENV ′a

definition
loc w == filter (λe. case e of LOC a ⇒ True | ENV a ⇒ False) w

definition
env w == filter (λe. case e of LOC a ⇒ False | ENV a ⇒ True) w

definition
le-rem-s e == case e of LOC a ⇒ a | ENV a ⇒ a

Standard simplification lemmas
lemma loc-env-simps[simp]:

loc [] = []
env [] = []
by (unfold loc-def env-def) auto

lemma loc-single[simp]: loc [a] = (case a of LOC e ⇒ [a] | ENV e ⇒ [])
by (unfold loc-def) (auto split: el-step.split)

lemma loc-uncons[simp]:
loc (a#b) = (case a of LOC e ⇒ [a] | ENV e ⇒ [])@loc b
by (unfold loc-def) (auto split: el-step.split)

lemma loc-unconc[simp]: loc (a@b) = loc a @ loc b
by (unfold loc-def , simp)

lemma env-single[simp]: env [a] = (case a of LOC e ⇒ [] | ENV e ⇒ [a])
by (unfold env-def) (auto split: el-step.split)

lemma env-uncons[simp]:
env (a#b) = (case a of LOC e ⇒ [] | ENV e ⇒ [a]) @ env b
by (unfold env-def) (auto split: el-step.split)

lemma env-unconc[simp]: env (a@b) = env a @ env b
by (unfold env-def , simp)

The following simplification lemmas are for converting between paths of the
multiset- and loc/env-semantics
lemma le-rem-simps [simp]:

25

le-rem-s (LOC a) = a
le-rem-s (ENV a) = a
by (unfold le-rem-s-def , auto)

lemma le-rem-id-simps[simp]:
le-rem-s◦LOC = id
le-rem-s◦ENV = id
by (auto intro: ext)

lemma le-rem-id-map[simp]:
map le-rem-s (map LOC w) = w
map le-rem-s (map ENV w) = w
by auto

lemma env-map-env [simp]: env (map ENV w) = map ENV w
by (unfold env-def) simp

lemma env-map-loc [simp]: env (map LOC w) = []
by (unfold env-def) simp

lemma loc-map-env [simp]: loc (map ENV w) = []
by (unfold loc-def) simp

lemma loc-map-loc [simp]: loc (map LOC w) = map LOC w
by (unfold loc-def) simp

5.4.2 Definition of the loc/env-semantics
type-synonym ′s el-conf = (′s × ′s multiset)

inductive-set
gtrp :: (′s el-conf , ′l) LTS ⇒ (′s el-conf , ′l el-step) LTS
for S
where
gtrp-loc: ((s,c),e,(s ′,c ′))∈S =⇒ ((s,c),LOC e,(s ′,c ′))∈gtrp S
| gtrp-env: ((s,add-mset sl c),e,(s ′,add-mset sl c ′))∈S

=⇒ ((sl,add-mset s c),ENV e,(sl,add-mset s ′ c ′))∈gtrp S

5.4.3 Relation between multiset- and loc/env-semantics
lemma gtrp2gtr-s:
((s,c),e,(s ′,c ′))∈gtrp T =⇒ (add-mset s c,le-rem-s e,add-mset s ′ c ′)∈gtr T

proof (cases rule: gtrp.cases, auto intro: gtrI-s)
fix c c ′ e ss ss ′ assume ((ss,add-mset s c),e,(ss ′,add-mset s c ′))∈T
hence (add-mset ss (add-mset s c),e,add-mset ss ′ (add-mset s c ′)) ∈ gtr T by

(auto intro!: gtrI-s)
thus (add-mset s (add-mset ss c), e, add-mset s (add-mset ss ′ c ′)) ∈ gtr T by

(auto simp add: add-mset-commute)
qed

lemma gtrp2gtr :
((s,c),w,(s ′,c ′))∈trcl (gtrp T)
=⇒ (add-mset s c,map le-rem-s w,add-mset s ′ c ′)∈trcl (gtr T)

26

by (induct rule: trcl-pair-induct) (auto dest: gtrp2gtr-s)

lemma (in env-no-step) gtr2gtrp-s[cases set, case-names gtrp]:
assumes A: (add-mset s c,e,c ′)∈gtr gtrs
and CASE : !!s ′ ce ′ ee. [[c ′=add-mset s ′ ce ′; e=le-rem-s ee;

((s,c),ee,(s ′,ce ′))∈gtrp gtrs]]
=⇒ P

shows P
using A

proof (cases rule: gtr-step-cases)
case (loc s ′ ce ′) hence ((s,c),LOC e,(s ′,ce ′))∈gtrp gtrs by (blast intro: gtrp-loc)
with loc(1) show ?thesis by (rule-tac CASE) auto

next
case (other cc ss ss ′ ce ′) from env-no-step-s[OF other(3)] obtain csp where

CE ′FMT : ce ′=csp + (add-mset s cc) .
with other(3) have ((ss,add-mset s cc),e,(ss ′,add-mset s (csp+cc)))∈gtrs by

auto
from gtrp-env[OF this] other(1) have ((s, c), ENV e, s, {#ss ′#} + (csp + cc))
∈ gtrp gtrs by simp

moreover from other CE ′FMT have c ′ = {#s#} + ({#ss ′#} + (csp + cc))
by (simp add: union-ac)

ultimately show ?thesis by (rule-tac CASE) auto
qed

lemma (in env-no-step) gtr2gtrp[cases set, case-names gtrp]:
assumes A: (add-mset s c,w,c ′)∈trcl (gtr gtrs)
and CASE : !!s ′ ce ′ ww. [[c ′=add-mset s ′ ce ′; w=map le-rem-s ww;

((s,c),ww,(s ′,ce ′))∈trcl (gtrp gtrs)]]
=⇒ P

shows P
proof −

have !!s c. (add-mset s c,w,c ′)∈trcl (gtr gtrs) =⇒ ∃ s ′ ce ′ ww. c ′=add-mset s ′ ce ′

∧ w=map le-rem-s ww ∧ ((s,c),ww,(s ′,ce ′))∈trcl (gtrp gtrs) proof (induct w)
case Nil thus ?case by auto

next
case (Cons e w) then obtain ch where SPLIT : (add-mset s c,e,ch)∈gtr gtrs

(ch,w,c ′)∈trcl (gtr gtrs) by (auto dest: trcl-uncons)
from gtr2gtrp-s[OF SPLIT (1)] obtain sh ceh ee where FS : ch = add-mset sh

ceh e = le-rem-s ee ((s, c), ee, sh, ceh) ∈ gtrp gtrs by blast
moreover from FS(1) SPLIT (2) Cons.hyps obtain s ′ ce ′ ww where IH :

c ′=add-mset s ′ ce ′ w=map le-rem-s ww ((sh,ceh),ww,(s ′,ce ′))∈trcl (gtrp gtrs) by
blast

ultimately have ((s,c),ee#ww,(s ′,ce ′))∈trcl (gtrp gtrs) e#w = map le-rem-s
(ee#ww) by auto

with IH (1) show ?case by iprover
qed
with A CASE show ?thesis by blast

qed

27

5.4.4 Invariants
lemma gtrp-preserve-s:

assumes A: ((s,c),e,(s ′,c ′))∈gtrp T
and INIT : P (add-mset s c)
and PRES : !!s c s ′ c ′ e. [[P (add-mset s c); ((s,c),e,(s ′,c ′))∈T]]

=⇒ P (add-mset s ′ c ′)
shows P (add-mset s ′ c ′)

proof −
from gtr-preserve-s[OF gtrp2gtr-s[OF A], where P=P, OF INIT] PRES show

P (add-mset s ′ c ′) by blast
qed

lemma gtrp-preserve:
assumes A: ((s,c),w,(s ′,c ′))∈trcl (gtrp T)
and INIT : P (add-mset s c)
and PRES : !!s c s ′ c ′ e. [[P (add-mset s c); ((s,c),e,(s ′,c ′))∈T]]

=⇒ P (add-mset s ′ c ′)
shows P (add-mset s ′ c ′)

proof −
from gtr-preserve[OF gtrp2gtr [OF A], where P=P, OF INIT] PRES show P

(add-mset s ′ c ′) by blast
qed

end

6 Flowgraphs
theory Flowgraph
imports Main Misc
begin

We use a flowgraph-based program model that extends the one we used
previously [6]. A program is represented as an edge annotated graph and a
set of procedures. The nodes of the graph are partitioned by the procedures,
i.e. every node belongs to exactly one procedure. There are no edges between
nodes of different procedures. Every procedure has a distinguished entry
and return node and a set of monitors it synchronizes on. Additionally,
the program has a distinguished main procedure. The edges are annotated
with statements. A statement is either a base statement, a procedure call
or a thread creation (spawn). Procedure calls and thread creations refer
to the called procedure or to the initial procedure of the spawned thread,
respectively.
We require that the main procedure and any initial procedure of a spawned
thread does not to synchronize on any monitors. This avoids that spawning
of a procedure together with entering a monitor is available in our model as

28

an atomic step, which would be an unrealistic assumption for practical prob-
lems. Technically, our model would become strictly more powerful without
this assumption.
If we allowed this, our model would become strictly more powerful,

6.1 Definitions
datatype (′p, ′ba) edgeAnnot = Base ′ba | Call ′p | Spawn ′p
type-synonym (′n, ′p, ′ba) edge = (′n × (′p, ′ba) edgeAnnot × ′n)

record (′n, ′p, ′ba, ′m) flowgraph-rec =
edges :: (′n, ′p, ′ba) edge set — Set of annotated edges
main :: ′p — Main procedure
entry :: ′p ⇒ ′n — Maps a procedure to its entry point
return :: ′p ⇒ ′n — Maps a procedure to its return point
mon :: ′p ⇒ ′m set — Maps procedures to the set of monitors they allocate
proc-of :: ′n ⇒ ′p — Maps a node to the procedure it is contained in

definition
initialproc fg p == p=main fg ∨ (∃ u v. (u,Spawn p,v)∈edges fg)

lemma main-is-initial[simp]: initialproc fg (main fg)
by (unfold initialproc-def) simp

locale flowgraph =
fixes fg :: (′n, ′p, ′ba, ′m, ′more) flowgraph-rec-scheme (structure)

— Edges are inside procedures only
assumes edges-part: (u,a,v)∈edges fg =⇒ proc-of fg u = proc-of fg v
— The entry point of a procedure must be in that procedure
assumes entry-valid[simp]: proc-of fg (entry fg p) = p
— The return point of a procedure must be in that procedure
assumes return-valid[simp]: proc-of fg (return fg p) = p
— Initial procedures do not synchronize on any monitors
assumes initial-no-mon[simp]: initialproc fg p =⇒ mon fg p = {}

6.2 Basic properties
lemma (in flowgraph) spawn-no-mon[simp]:
(u, Spawn p, v) ∈ edges fg =⇒ mon fg p = {}
using initial-no-mon by (unfold initialproc-def , blast)

lemma (in flowgraph) main-no-mon[simp]: mon fg (main fg) = {}
using initial-no-mon by (unfold initialproc-def , blast)

lemma (in flowgraph) entry-return-same-proc[simp]:
entry fg p = return fg p ′ =⇒ p=p ′

apply (subgoal-tac proc-of fg (entry fg p) = proc-of fg (return fg p ′))
apply (simp (no-asm-use))
by simp

29

lemma (in flowgraph) entry-entry-same-proc[simp]:
entry fg p = entry fg p ′ =⇒ p=p ′

apply (subgoal-tac proc-of fg (entry fg p) = proc-of fg (entry fg p ′))
apply (simp (no-asm-use))
by simp

lemma (in flowgraph) return-return-same-proc[simp]:
return fg p = return fg p ′ =⇒ p=p ′

apply (subgoal-tac proc-of fg (return fg p) = proc-of fg (entry fg p ′))
apply (simp (no-asm-use))
by simp

6.3 Extra assumptions for flowgraphs

In order to simplify the definition of our restricted schedules (cf. Section 8),
we make some extra constraints on flowgraphs. Note that these are no real
restrictions, as we can always rewrite flowgraphs to match these constraints,
preserving the set of conflicts. We leave it to future work to consider such a
rewriting formally.
The background of this restrictions is that we want to start an execution
of a thread with a procedure call that never returns. This will allow easier
technical treatment in Section 8. Here we enforce this semantic restrictions
by syntactic properties of the flowgraph.

The return node of a procedure is called isolated, if it has no incoming edges
and is different from the entry node. A procedure with an isolated return
node will never return. See Section 8.1 for a proof of this.
definition

isolated-ret fg p ==
(∀ u l. ¬(u,l,return fg p)∈edges fg) ∧ entry fg p 6= return fg p

The following syntactic restrictions guarantee that each thread’s execution
starts with a non-returning call. See Section 8.1 for a proof of this.
locale eflowgraph = flowgraph +

— Initial procedure’s entry node isn’t equal to its return node
assumes initial-no-ret: initialproc fg p =⇒ entry fg p 6= return fg p
— The only outgoing edges of initial procedures’ entry nodes are call edges to

procedures with isolated return node
assumes initial-call-no-ret: [[initialproc fg p; (entry fg p,l,v)∈edges fg]]
=⇒ ∃ p ′. l=Call p ′ ∧ isolated-ret fg p ′

6.4 Example Flowgraph

This section contains a check that there exists a (non-trivial) flowgraph,
i.e. that the assumptions made in the flowgraph and eflowgraph locales are
consistent and have at least one non-trivial model.

30

definition
example-fg == (|

edges = {((0 ::nat,0 ::nat),Call 1 ,(0 ,1)), ((1 ,0),Spawn 0 ,(1 ,0)),
((1 ,0),Call 0 , (1 ,0))},

main = 0 ,
entry = λp. (p,0),
return = λp. (p,1),
mon = λp. if p=1 then {0} else {},
proc-of= λ (p,x). p |)

lemma exists-eflowgraph: eflowgraph example-fg
apply (unfold-locales)
apply (unfold example-fg-def)
apply simp
apply fast
apply simp
apply simp
apply (simp add: initialproc-def)
apply (simp add: initialproc-def)
apply (simp add: initialproc-def isolated-ret-def)
done

end

7 Operational Semantics
theory Semantics
imports Main Flowgraph HOL−Library.Multiset LTS Interleave ThreadTracking
begin

7.1 Configurations and labels

The state of a single thread is described by a stack of control nodes. The
top node is the current control node and the nodes deeper in the stack are
stored return addresses. The configuration of a whole program is described
by a multiset of stacks.
Note that we model stacks as lists here, the first element being the top
element.
type-synonym ′n conf = (′n list) multiset

A step is labeled according to the executed edge. Additionally, we introduce
a label for a procedure return step, that has no corresponding edge.
datatype (′p, ′ba) label = LBase ′ba | LCall ′p | LRet | LSpawn ′p

31

7.2 Monitors

The following defines the monitors of nodes, stacks, configurations, step
labels and paths (sequences of step labels)
definition

— The monitors of a node are the monitors the procedure of the node synchronizes
on

mon-n fg n == mon fg (proc-of fg n)

definition
— The monitors of a stack are the monitors of all its nodes
mon-s fg s ==

⋃
{ mon-n fg n | n . n ∈ set s }

definition
— The monitors of a configuration are the monitors of all its stacks
mon-c fg c ==

⋃
{ mon-s fg s | s . s ∈# c }

— The monitors of a step label are the monitors of procedures that are called by
this step
definition mon-e :: (′b, ′c, ′d, ′a, ′e) flowgraph-rec-scheme ⇒ (′c, ′f) label ⇒ ′a
set where

mon-e fg e = (case e of (LCall p) ⇒ mon fg p | - ⇒ {})

lemma mon-e-simps [simp]:
mon-e fg (LBase a) = {}
mon-e fg (LCall p) = mon fg p
mon-e fg (LRet) = {}
mon-e fg (LSpawn p) = {}
by (simp-all add: mon-e-def)

— The monitors of a path are the monitors of all procedures that are called on the
path
definition

mon-w fg w ==
⋃
{ mon-e fg e | e. e ∈ set w}

lemma mon-s-alt: mon-s fg s ==
⋃

(mon fg ‘ proc-of fg ‘ set s)
by (unfold mon-s-def mon-n-def) (auto intro!: eq-reflection)

lemma mon-c-alt: mon-c fg c ==
⋃

(mon-s fg ‘ set-mset c)
by (unfold mon-c-def set-mset-def) (auto intro!: eq-reflection)

lemma mon-w-alt: mon-w fg w ==
⋃

(mon-e fg ‘ set w)
by (unfold mon-w-def) (auto intro!: eq-reflection)

lemma mon-sI : [[n∈set s; m∈mon-n fg n]] =⇒ m∈mon-s fg s
by (unfold mon-s-def , auto)

lemma mon-sD: m∈mon-s fg s =⇒ ∃n∈set s. m∈mon-n fg n
by (unfold mon-s-def , auto)

lemma mon-n-same-proc:
proc-of fg n = proc-of fg n ′ =⇒ mon-n fg n = mon-n fg n ′

32

by (unfold mon-n-def , simp)
lemma mon-s-same-proc:

proc-of fg ‘ set s = proc-of fg ‘ set s ′ =⇒ mon-s fg s = mon-s fg s ′

by (unfold mon-s-alt, simp)

lemma (in flowgraph) mon-of-entry[simp]: mon-n fg (entry fg p) = mon fg p
by (unfold mon-n-def , simp add: entry-valid)

lemma (in flowgraph) mon-of-ret[simp]: mon-n fg (return fg p) = mon fg p
by (unfold mon-n-def , simp add: return-valid)

lemma mon-c-single[simp]: mon-c fg {#s#} = mon-s fg s
by (unfold mon-c-def) auto

lemma mon-s-single[simp]: mon-s fg [n] = mon-n fg n
by (unfold mon-s-def) auto

lemma mon-s-empty[simp]: mon-s fg [] = {}
by (unfold mon-s-def) auto

lemma mon-c-empty[simp]: mon-c fg {#} = {}
by (unfold mon-c-def) auto

lemma mon-s-unconc: mon-s fg (a@b) = mon-s fg a ∪ mon-s fg b
by (unfold mon-s-def) auto

lemma mon-s-uncons[simp]: mon-s fg (a#as) = mon-n fg a ∪ mon-s fg as
by (rule mon-s-unconc[where a=[a], simplified])

lemma mon-c-union-conc: mon-c fg (a+b) = mon-c fg a ∪ mon-c fg b
by (unfold mon-c-def) auto

lemma mon-c-add-mset-unconc: mon-c fg (add-mset x b) = mon-s fg x ∪ mon-c
fg b

by (unfold mon-c-def) auto

lemmas mon-c-unconc = mon-c-union-conc mon-c-add-mset-unconc

lemma mon-cI : [[s ∈# c; m∈mon-s fg s]] =⇒ m∈mon-c fg c
by (unfold mon-c-def , auto)

lemma mon-cD: [[m∈mon-c fg c]] =⇒ ∃ s. s ∈# c ∧ m∈mon-s fg s
by (unfold mon-c-def , auto)

lemma mon-s-mono: set s ⊆ set s ′ =⇒ mon-s fg s ⊆ mon-s fg s ′

by (unfold mon-s-def) auto
lemma mon-c-mono: c⊆#c ′ =⇒ mon-c fg c ⊆ mon-c fg c ′

by (unfold mon-c-def) (auto dest: mset-subset-eqD)

lemma mon-w-empty[simp]: mon-w fg [] = {}
by (unfold mon-w-def , auto)

lemma mon-w-single[simp]: mon-w fg [e] = mon-e fg e
by (unfold mon-w-def , auto)

lemma mon-w-unconc: mon-w fg (wa@wb) = mon-w fg wa ∪ mon-w fg wb
by (unfold mon-w-def) auto

33

lemma mon-w-uncons[simp]: mon-w fg (e#w) = mon-e fg e ∪ mon-w fg w
by (rule mon-w-unconc[where wa=[e], simplified])

lemma mon-w-ileq: w�w ′ =⇒ mon-w fg w ⊆ mon-w fg w ′

by (induct rule: less-eq-list-induct) auto

7.3 Valid configurations

We call a configuration valid if each monitor is owned by at most one thread.
definition

valid fg c == ∀ s s ′. {#s, s ′#} ⊆# c −→ mon-s fg s ∩ mon-s fg s ′ = {}

lemma valid-empty[simp, intro!]: valid fg {#}
by (unfold valid-def , auto)

lemma valid-single[simp, intro!]: valid fg {#s#}
by (unfold valid-def subset-mset-def) auto

lemma valid-split1 :
valid fg (c+c ′) =⇒ valid fg c ∧ valid fg c ′ ∧ mon-c fg c ∩ mon-c fg c ′ = {}
apply (unfold valid-def)
apply (auto simp add: mset-le-incr-right)
apply (drule mon-cD)+
apply auto
apply (subgoal-tac {#s#}+{#sa#} ⊆# c+c ′)
apply (auto dest!: multi-member-split)
done

lemma valid-split2 :
[[valid fg c; valid fg c ′; mon-c fg c ∩ mon-c fg c ′ = {}]] =⇒ valid fg (c+c ′)
apply (unfold valid-def)
apply (intro impI allI)
apply (erule mset-2dist2-cases)
apply simp-all
apply (blast intro: mon-cI)+
done

lemma valid-union-conc:
valid fg (c+c ′) ←→ (valid fg c ∧ valid fg c ′ ∧ mon-c fg c ∩ mon-c fg c ′ = {})
by (blast dest: valid-split1 valid-split2)

lemma valid-add-mset-conc:
valid fg (add-mset x c ′) ←→ (valid fg c ′ ∧ mon-s fg x ∩ mon-c fg c ′ = {})
unfolding add-mset-add-single[of x c ′] valid-union-conc by (auto simp: mon-s-def)

lemmas valid-unconc = valid-union-conc valid-add-mset-conc

lemma valid-no-mon: mon-c fg c = {} =⇒ valid fg c
proof (unfold valid-def , intro allI impI)

fix s s ′

34

assume A: mon-c fg c = {} and B: {#s, s ′#} ⊆# c
from mon-c-mono[OF B, of fg] A have mon-s fg s = {} mon-s fg s ′ = {} by

(auto simp add: mon-c-unconc)
thus mon-s fg s ∩ mon-s fg s ′ = {} by blast

qed

7.4 Configurations at control points
primrec atU-s :: ′n set ⇒ ′n list ⇒ bool where

atU-s U [] = False
| atU-s U (u#r) = (u∈U)

lemma atU-s-decomp[simp]: atU-s U (s@s ′) = (atU-s U s ∨ (s=[] ∧ atU-s U s ′))
by (induct s) auto

— A configuration is at U if it contains a stack that is at U
definition

atU U c == ∃ s. s ∈# c ∧ atU-s U s

lemma atU-fmt: [[atU U c; !!ui r . [[ui#r ∈# c; ui∈U]] =⇒ P]] =⇒ P
apply (unfold atU-def)
apply auto
apply (case-tac s)
apply auto
done

lemma atU-union-cases[case-names left right, consumes 1]: [[
atU U (c1+c2);
atU U c1 =⇒ P;
atU U c2 =⇒ P

]] =⇒ P
by (unfold atU-def) (blast elim: mset-un-cases)

lemma atU-add: atU U c =⇒ atU U (c+ce) ∧ atU U (ce+c)
by (unfold atU-def) (auto simp add: union-ac)

lemma atU-union[simp]: atU U (c1+c2) = (atU U c1 ∨ atU U c2)
by (auto simp add: atU-add elim: atU-union-cases)

lemma atU-empty[simp]: ¬atU U {#}
by (unfold atU-def , auto)

lemma atU-single[simp]: atU U {#s#} = atU-s U s
by (unfold atU-def , auto)

lemma atU-single-top[simp]: atU U {#u#r#} = (u∈U)
by (auto)

lemma atU-add-mset[simp]: atU U (add-mset c c2) = (atU-s U c ∨ atU U c2)
unfolding add-mset-add-single[of c c2] atU-union by auto

35

lemma atU-xchange-stack: atU U (add-mset (u#r) c) =⇒ atU U (add-mset (u#r ′)
c)

by (simp)

— A configuration is simultaneously at U and V if it contains a stack at U and
another one at V
definition

atUV U V c == ∃ su sv. {#su#}+{#sv#} ⊆# c ∧ atU-s U su ∧ atU-s V sv

lemma atUV-empty[simp]: ¬atUV U V {#}
by (unfold atUV-def) auto

lemma atUV-single[simp]: ¬atUV U V {#s#}
by (unfold atUV-def) auto

lemma atUV-union[simp]:
atUV U V (c1+c2) ←→
(
(atUV U V c1) ∨
(atUV U V c2) ∨
(atU U c1 ∧ atU V c2) ∨
(atU V c1 ∧ atU U c2)

)
apply (unfold atUV-def atU-def)
apply (auto elim!: mset-2dist2-cases intro: mset-le-incr-right iff add: mset-le-mono-add-single)
apply (subst union-commute)
apply (auto iff add: mset-le-mono-add-single)
done

lemma atUV-add-mset[simp]:
atUV U V (add-mset c c2) ←→
(
(atUV U V c2) ∨
(atU U {#c#} ∧ atU V c2) ∨
(atU V {#c#} ∧ atU U c2)

)
unfolding add-mset-add-single[of c c2]
unfolding atUV-union
by auto

lemma atUV-union-cases[case-names left right lr rl, consumes 1]: [[
atUV U V (c1+c2);
atUV U V c1 =⇒ P;
atUV U V c2 =⇒ P;
[[atU U c1 ; atU V c2]] =⇒ P;
[[atU V c1 ; atU U c2]] =⇒ P

]] =⇒ P
by auto

36

7.5 Operational semantics
7.5.1 Semantic reference point

We now define our semantic reference point. We assess correctness and
completeness of analyses relative to this reference point.
inductive-set

refpoint :: (′n, ′p, ′ba, ′m, ′more) flowgraph-rec-scheme ⇒
(′n conf × (′p, ′ba) label × ′n conf) set

for fg
where

— A base edge transforms the top node of one stack and leaves the other stacks
untouched.

refpoint-base: [[(u,Base a,v)∈edges fg; valid fg ({#u#r#}+c)]]
=⇒ (add-mset (u#r) c,LBase a,add-mset (v#r) c)∈refpoint fg |

— A call edge transforms the top node of a stack and then pushes the entry node
of the called procedure onto that stack. It can only be executed if all monitors the
called procedure synchronizes on are available. Reentrant monitors are modeled
here by checking availability of monitors just against the other stacks, not against
the stack of the thread that executes the call. The other stacks are left untouched.

refpoint-call: [[(u,Call p,v)∈edges fg; valid fg ({#u#r#}+c);
mon fg p ∩ mon-c fg c = {}]]

=⇒ (add-mset (u#r) c,LCall p, add-mset (entry fg p#v#r) c)∈refpoint fg |
— A return step pops a return node from a stack. There is no corresponding

flowgraph edge for a return step. The other stacks are left untouched.
refpoint-ret: [[valid fg ({#return fg p#r#}+c)]]
=⇒ (add-mset (return fg p#r) c,LRet,(add-mset r c))∈refpoint fg |

— A spawn edge transforms the top node of a stack and adds a new stack to
the environment, with the entry node of the spawned procedure at the top and no
stored return addresses. The other stacks are also left untouched.

refpoint-spawn: [[(u,Spawn p,v)∈edges fg; valid fg (add-mset (u#r) c)]]
=⇒ (add-mset (u#r) c,LSpawn p, add-mset (v#r) (add-mset [entry fg p]

c))∈refpoint fg

Instead of working directly with the reference point semantics, we define
the operational semantics of flowgraphs by describing how a single stack is
transformed in a context of environment threads, and then use the theory
developed in Section 5 to derive an interleaving semantics. Note that this
semantics is also defined for invalid configurations (cf. Section 7.3). In
Section 7.6.1 we will show that it preserves validity of a configuration, and
in Section 7.6.2 we show that it is equivalent to the reference point semantics
on valid configurations.
inductive-set

trss :: (′n, ′p, ′ba, ′m, ′more) flowgraph-rec-scheme ⇒
((′n list ∗ ′n conf) ∗ (′p, ′ba) label ∗ (′n list ∗ ′n conf)) set

for fg
where

trss-base: [[(u,Base a,v)∈edges fg]] =⇒

37

((u#r ,c), LBase a, (v#r ,c)) ∈ trss fg
| trss-call: [[(u,Call p,v)∈edges fg; mon fg p ∩ mon-c fg c = {}]] =⇒
((u#r ,c),LCall p, ((entry fg p)#v#r ,c)) ∈ trss fg
| trss-ret: ((((return fg p)#r),c),LRet,(r ,c)) ∈ trss fg
| trss-spawn: [[(u,Spawn p,v)∈edges fg]] =⇒
((u#r ,c),LSpawn p,(v#r ,add-mset [entry fg p] c)) ∈ trss fg

— The interleaving semantics is generated using the general techniques from Sec-
tion 5
abbreviation tr where tr fg == gtr (trss fg)
— We also generate the loc/env-semantics
abbreviation trp where trp fg == gtrp (trss fg)

7.6 Basic properties
7.6.1 Validity
lemma (in flowgraph) trss-valid-preserve-s:
[[valid fg (add-mset s c); ((s,c),e,(s ′,c ′))∈trss fg]] =⇒ valid fg (add-mset s ′ c ′)
apply (erule trss.cases)
apply (simp-all add: valid-unconc mon-c-unconc)

by (blast dest: mon-n-same-proc edges-part)+

lemma (in flowgraph) trss-valid-preserve:
[[((s,c),w,(s ′,c ′))∈trcl (trss fg); valid fg ({#s#}+c)]] =⇒ valid fg ({#s ′#}+c ′)
by (induct rule: trcl-pair-induct) (auto intro: trss-valid-preserve-s)

lemma (in flowgraph) tr-valid-preserve-s:
[[(c,e,c ′)∈tr fg; valid fg c]] =⇒ valid fg c ′

by (rule gtr-preserve-s[where P=valid fg]) (auto dest: trss-valid-preserve-s)

lemma (in flowgraph) tr-valid-preserve:
[[(c,w,c ′)∈trcl (tr fg); valid fg c]] =⇒ valid fg c ′

by (rule gtr-preserve[where P=valid fg]) (auto dest: trss-valid-preserve-s)

lemma (in flowgraph) trp-valid-preserve-s:
[[((s,c),e,(s ′,c ′))∈trp fg; valid fg (add-mset s c)]] =⇒ valid fg (add-mset s ′ c ′)
by (rule gtrp-preserve-s[where P=valid fg]) (auto dest: trss-valid-preserve-s)

lemma (in flowgraph) trp-valid-preserve:
[[((s,c),w,(s ′,c ′))∈trcl (trp fg); valid fg ({#s#}+c)]] =⇒ valid fg (add-mset s ′ c ′)
by (rule gtrp-preserve[where P=valid fg]) (auto dest: trss-valid-preserve-s)

7.6.2 Equivalence to reference point
lemma refpoint-eq-s: valid fg c =⇒ ((c,e,c ′)∈refpoint fg) ←→ ((c,e,c ′)∈tr fg)

apply rule
apply (erule refpoint.cases)

38

apply (auto intro: gtrI-s trss.intros simp add: union-assoc add-mset-commute)
apply (erule gtrE)
apply (erule trss.cases)
apply (auto intro: refpoint.intros simp add: union-assoc[symmetric] add-mset-commute)
done

lemma (in flowgraph) refpoint-eq:
valid fg c =⇒ ((c,w,c ′)∈trcl (refpoint fg)) ←→ ((c,w,c ′)∈trcl (tr fg))

proof −
have ((c,w,c ′)∈trcl (refpoint fg)) =⇒ valid fg c =⇒ ((c,w,c ′)∈trcl (tr fg)) by

(induct rule: trcl.induct) (auto simp add: refpoint-eq-s tr-valid-preserve-s)
moreover have ((c,w,c ′)∈trcl (tr fg)) =⇒ valid fg c =⇒ ((c,w,c ′)∈trcl (refpoint

fg)) by (induct rule: trcl.induct) (auto simp add: refpoint-eq-s tr-valid-preserve-s)
ultimately show valid fg c =⇒ ((c,w,c ′)∈trcl (refpoint fg)) = ((c,w,c ′)∈trcl (tr

fg)) ..
qed

7.6.3 Case distinctions
lemma trss-c-cases-s[cases set, case-names no-spawn spawn]: [[

((s,c),e,(s ′,c ′))∈trss fg;
[[c ′=c]] =⇒ P;
!!p u v. [[e=LSpawn p; (u,Spawn p,v)∈edges fg;

hd s=u; hd s ′=v; c ′={#[entry fg p]#}+c]] =⇒ P
]] =⇒ P

by (auto elim!: trss.cases)
lemma trss-c-fmt-s: [[((s,c),e,(s ′,c ′))∈trss fg]]
=⇒ ∃ csp. c ′=csp+c ∧

(csp={#} ∨ (∃ p. e=LSpawn p ∧ csp={#[entry fg p]#}))
by (force elim!: trss-c-cases-s)

lemma (in flowgraph) trss-c ′-split-s: [[
((s,c),e,(s ′,c ′))∈trss fg;
!!csp. [[c ′=csp+c; mon-c fg csp={}]] =⇒ P

]] =⇒ P
apply (erule trss-c-cases-s)
apply (subgoal-tac c ′={#}+c)
apply (fastforce)
apply auto
done

lemma trss-c-cases[cases set, case-names c-case]: !!s c. [[
((s,c),w,(s ′,c ′))∈trcl (trss fg);
!!csp. [[c ′=csp+c; !!s. s ∈# csp =⇒ ∃ p u v. s=[entry fg p] ∧

(u,Spawn p,v)∈edges fg ∧
initialproc fg p]]

=⇒ P
]] =⇒ P

proof (induct w)

39

case Nil note A=this
hence s ′=s c ′=c by simp-all
hence c ′={#}+c by simp
from A(2)[OF this] show P by simp

next
case (Cons e w) note IHP=this
then obtain sh ch where SPLIT1 : ((s,c),e,(sh,ch))∈trss fg and SPLIT2 :

((sh,ch),w,(s ′,c ′))∈trcl (trss fg) by (fastforce dest: trcl-uncons)
from SPLIT2 show ?case proof (rule IHP(1))

fix csp
assume C ′FMT : c ′=csp+ch and CSPFMT : !!s. s ∈# csp =⇒ ∃ p u v. s=[entry

fg p] ∧ (u,Spawn p, v)∈edges fg ∧ initialproc fg p
from SPLIT1 show ?thesis
proof (rule trss-c-cases-s)

assume ch=c with C ′FMT CSPFMT IHP(3) show ?case by blast
next

fix p
assume EFMT : e=LSpawn p and CHFMT : ch={#[entry fg p]#}+c
with C ′FMT have c ′=({#[entry fg p]#}+csp)+c by (simp add: union-ac)
moreover
from EFMT SPLIT1 have ∃ u v. (u,Spawn p, v)∈edges fg by (blast elim!:

trss.cases)
hence !!s. s ∈# {#[entry fg p]#} + csp =⇒ ∃ p u v. s=[entry fg p] ∧

(u,Spawn p, v)∈edges fg ∧ initialproc fg p using CSPFMT by (unfold initial-
proc-def , erule-tac mset-un-cases) (auto)

ultimately show ?case using IHP(3) by blast
qed

qed
qed

lemma (in flowgraph) c-of-initial-no-mon:
assumes A: !!s. s ∈# csp =⇒ ∃ p. s=[entry fg p] ∧ initialproc fg p
shows mon-c fg csp = {}
by (unfold mon-c-def) (auto dest: A initial-no-mon)

lemma (in flowgraph) trss-c-no-mon-s:
assumes A: ((s,c),e,(s ′,c ′))∈trss fg
shows mon-c fg c ′ = mon-c fg c
using A

proof (erule-tac trss-c-cases-s)
assume c ′=c thus ?thesis by simp

next
fix p assume EFMT : e=LSpawn p and C ′FMT : c ′={#[entry fg p]#} + c
from EFMT obtain u v where (u,Spawn p,v)∈edges fg using A by (auto elim:

trss.cases)
with spawn-no-mon have mon-c fg {#[entry fg p]#} = {} by simp
with C ′FMT show ?thesis by (simp add: mon-c-unconc)

qed

40

corollary (in flowgraph) trss-c-no-mon:
((s,c),w,(s ′,c ′))∈trcl (trss fg) =⇒ mon-c fg c ′ = mon-c fg c
apply (auto elim!: trss-c-cases simp add: mon-c-unconc)

proof −
fix csp x
assume x∈mon-c fg csp
then obtain s where s ∈# csp and M : x∈mon-s fg s by (unfold mon-c-def ,

auto)
moreover assume ∀ s. s ∈# csp −→ (∃ p. s = [entry fg p] ∧ (∃ u v. (u, Spawn

p, v) ∈ edges fg) ∧ initialproc fg p)
ultimately obtain p u v where s=[entry fg p] and (u,Spawn p,v)∈edges fg by

blast
hence mon-s fg s = {} by (simp)
with M have False by simp
thus x∈mon-c fg c ..

qed

lemma (in flowgraph) trss-spawn-no-mon-step[simp]:
((s,c),LSpawn p, (s ′,c ′))∈trss fg =⇒ mon fg p = {}
by (auto elim: trss.cases)

lemma trss-no-empty-s[simp]: (([],c),e,(s ′,c ′))∈trss fg = False
by (auto elim!: trss.cases)

lemma trss-no-empty[simp]:
assumes A: (([],c),w,(s ′,c ′))∈trcl (trss fg)
shows w=[] ∧ s ′=[] ∧ c=c ′

proof −
note A
moreover {

fix s
have ((s,c),w,(s ′,c ′))∈trcl (trss fg) =⇒ s=[] =⇒ w=[] ∧ s ′=[] ∧ c=c ′

by (induct rule: trcl-pair-induct) auto
} ultimately show ?thesis by blast

qed

lemma trs-step-cases[cases set, case-names NO-SPAWN SPAWN]:
assumes A: (c,e,c ′)∈tr fg
assumes A-NO-SPAWN : !!s ce s ′ csp. [[

((s,ce),e,(s ′,ce))∈trss fg;
c={#s#}+ce; c ′={#s ′#}+ce

]] =⇒ P
assumes A-SPAWN : !!s ce s ′ p. [[

((s,ce),LSpawn p,(s ′,{#[entry fg p]#}+ce))∈trss fg;
c={#s#}+ce;

41

c ′={#s ′#}+{#[entry fg p]#}+ce;
e=LSpawn p

]] =⇒ P
shows P

proof −
from A show ?thesis proof (erule-tac gtr-find-thread)

fix s ce s ′ ce ′

assume FMT : c = add-mset s ce c ′ = add-mset s ′ ce ′

assume B: ((s, ce), e, s ′, ce ′) ∈ trss fg thus ?thesis proof (cases rule:
trss-c-cases-s)

case no-spawn thus ?thesis using FMT B by (−) (rule A-NO-SPAWN , auto)

next
case (spawn p) thus ?thesis using FMT B by (−) (rule A-SPAWN , auto

simp add: union-assoc)
qed

qed
qed

7.7 Advanced properties
7.7.1 Stack composition / decomposition
lemma trss-stack-comp-s:
((s,c),e,(s ′,c ′))∈trss fg =⇒ ((s@r ,c),e,(s ′@r ,c ′))∈trss fg
by (auto elim!: trss.cases intro: trss.intros)

lemma trss-stack-comp:
((s,c),w,(s ′,c ′))∈trcl (trss fg) =⇒ ((s@r ,c),w,(s ′@r ,c ′))∈trcl (trss fg)

proof (induct rule: trcl-pair-induct)
case empty thus ?case by auto

next
case (cons s c e sh ch w s ′ c ′) note IHP=this
from trss-stack-comp-s[OF IHP(1)] have ((s @ r , c), e, sh @ r , ch) ∈ trss fg .
also note IHP(3)
finally show ?case .

qed

lemma trss-stack-decomp-s: [[((s@r ,c),e,(s ′,c ′))∈trss fg; s 6=[]]]
=⇒ ∃ sp ′. s ′=sp ′@r ∧ ((s,c),e,(sp ′,c ′))∈trss fg
by (cases s, simp) (auto intro: trss.intros elim!: trss.cases)

lemma trss-find-return: [[
((s@r ,c),w,(r ,c ′))∈trcl (trss fg);
!!wa wb ch. [[w=wa@wb; ((s,c),wa,([],ch))∈trcl (trss fg);

((r ,ch),wb,(r ,c ′))∈trcl (trss fg)]] =⇒ P
]] =⇒ P
— If s = [], the proposition follows trivially
apply (cases s=[])
apply fastforce

42

proof −
— For s 6= [], we use induction by w
have IM : !!s c. [[((s@r ,c),w,(r ,c ′))∈trcl (trss fg); s 6=[]]] =⇒ ∃wa wb ch. w=wa@wb
∧ ((s,c),wa,([],ch))∈trcl (trss fg) ∧ ((r ,ch),wb,(r ,c ′))∈trcl (trss fg)

proof (induct w)
case Nil thus ?case by (auto)

next
case (Cons e w) note IHP=this
then obtain sh ch where SPLIT1 : ((s@r ,c),e,(sh,ch))∈trss fg and SPLIT2 :

((sh,ch),w,(r ,c ′))∈trcl (trss fg) by (fast dest: trcl-uncons)
{ assume CASE : e=LRet
with SPLIT1 obtain p where EDGE : s@r=return fg p # sh c=ch by (auto

elim!: trss.cases)
with IHP(3) obtain ss where SHFMT : s=return fg p # ss sh=ss@r by

(cases s, auto)
{ assume CC : ss 6=[]

with SHFMT have ∃ ss. ss 6=[] ∧ sh=ss@r by blast
} moreover {

assume CC : ss=[]
with CASE SHFMT EDGE have ((s,c),[e],([],ch))∈trcl (trss fg) e#w=[e]@w

by (auto intro: trss-ret)
moreover from SPLIT2 SHFMT CC have ((r ,ch),w,(r ,c ′))∈trcl (trss fg)

by simp
ultimately have ?case by blast

} ultimately have ?case ∨ (∃ ss. ss 6=[] ∧ sh=ss@r) by blast
} moreover {

assume e 6=LRet
with SPLIT1 IHP(3) have (∃ ss. ss 6=[] ∧ sh=ss@r) by (force elim!: trss.cases

simp add: append-eq-Cons-conv)
} moreover {

assume (∃ ss. ss 6=[] ∧ sh=ss@r)
then obtain ss where CASE : ss 6=[] sh=ss@r by blast
with SPLIT2 have ((ss@r , ch), w, r , c ′) ∈ trcl (trss fg) by simp

from IHP(1)[OF this CASE(1)] obtain wa wb ch ′ where IHAPP: w=wa@wb
((ss,ch),wa,([],ch ′))∈trcl (trss fg) ((r ,ch ′),wb,(r ,c ′))∈trcl (trss fg) by blast

moreover from CASE SPLIT1 have ((s @ r , c), e, ss@r , ch) ∈ trss fg by
simp

from trss-stack-decomp-s[OF this IHP(3)] have ((s, c), e, ss, ch) ∈ trss fg
by auto

with IHAPP have ((s, c), e#wa, ([],ch ′)) ∈ trcl (trss fg) by (rule-tac trcl.cons)
moreover from IHAPP have e#w=(e#wa)@wb by auto
ultimately have ?case by blast

} ultimately show ?case by blast
qed
assume ((s @ r , c), w, r , c ′) ∈ trcl (trss fg) s 6= [] !!wa wb ch. [[w=wa@wb;

((s,c),wa,([],ch))∈trcl (trss fg); ((r ,ch),wb,(r ,c ′))∈trcl (trss fg)]] =⇒ P thus P by
(blast dest: IM)
qed

43

lemma trss-return-cases[cases set]: !!u r c. [[
((u#r ,c),w,(r ′,c ′))∈trcl (trss fg);
!! s ′ u ′. [[r ′=s ′@u ′#r ; (([u],c),w,(s ′@[u ′],c ′))∈trcl (trss fg)]] =⇒ P;
!! wa wb ch. [[w=wa@wb; (([u],c),wa,([],ch))∈trcl (trss fg);

((r ,ch),wb,(r ′,c ′))∈trcl (trss fg)]] =⇒ P
]] =⇒ P

proof (induct w rule: length-compl-induct)
case Nil thus ?case by auto

next
case (Cons e w) note IHP=this
then obtain sh ch where SPLIT1 : ((u#r ,c),e,(sh,ch))∈trss fg and SPLIT2 :

((sh,ch),w,(r ′,c ′))∈trcl (trss fg) by (fast dest: trcl-uncons)
{

fix ba q
assume CASE : e=LBase ba ∨ e=LSpawn q
with SPLIT1 obtain v where E : sh=v#r (([u],c),e,([v],ch))∈trss fg by (auto

elim!: trss.cases intro: trss.intros)
with SPLIT2 have ((v#r ,ch),w,(r ′,c ′))∈trcl (trss fg) by simp
hence ?case proof (cases rule: IHP(1)[of w, simplified, cases set])

case (1 s ′ u ′) note CC=this
with E(2) have (([u],c),e#w,(s ′@[u ′],c ′))∈trcl (trss fg) by simp
from IHP(3)[OF CC (1) this] show ?thesis .

next
case (2 wa wb ct) note CC=this
with E(2) have (([u],c),e#wa,([],ct))∈trcl (trss fg) e#w = (e#wa)@wb by

simp-all
from IHP(4)[OF this(2 ,1) CC (3)] show ?thesis .

qed
} moreover {

assume CASE : e=LRet
with SPLIT1 have sh=r (([u],c),[e],([],ch))∈trcl (trss fg) by (auto elim!:

trss.cases intro: trss.intros)
with IHP(4)[OF - this(2)] SPLIT2 have ?case by auto

} moreover {
fix q
assume CASE : e=LCall q

with SPLIT1 obtain u ′ where SHFMT : sh=entry fg q # u ′# r (([u],c),e,(entry
fg q # [u ′],ch))∈trss fg by (auto elim!: trss.cases intro: trss.intros)

with SPLIT2 have ((entry fg q # u ′ # r ,ch),w,(r ′,c ′))∈trcl (trss fg) by simp
hence ?case proof (cases rule: IHP(1)[of w, simplified, cases set])

case (1 st ut) note CC=this
from trss-stack-comp[OF CC (2), where r=[u ′]] have ((entry fg q#[u ′], ch),

w, (st @ [ut]) @ [u ′], c ′) ∈ trcl (trss fg) by auto
with SHFMT (2) have (([u],c),e#w, (st @ [ut]) @ [u ′], c ′) ∈ trcl (trss fg) by

auto
from IHP(3)[OF - this] CC (1) show ?thesis by simp

next
case (2 wa wb ct) note CC=this

44

from trss-stack-comp[OF CC (2), where r=[u ′]] have ((entry fg q # [u ′],
ch), wa, [u ′], ct) ∈ trcl (trss fg) by simp

with SHFMT have PREPATH : (([u],c),e#wa, [u ′], ct) ∈ trcl (trss fg) by
simp

from CC have L: length wb≤length w by simp
from CC (3) show ?case proof (cases rule: IHP(1)[OF L, cases set])

case (1 s ′′ u ′′) note CCC=this from trcl-concat[OF PREPATH CCC (2)]
CC (1) have (([u],c),e#w,(s ′′@[u ′′],c ′))∈trcl (trss fg) by (simp)

from IHP(3)[OF CCC (1) this] show ?thesis .
next

case (2 wba wbb c ′′) note CCC=this from trcl-concat[OF PREPATH
CCC (2)] CC (1) CCC (1) have e#w = (e#wa@wba)@wbb (([u], c), e # wa @
wba, [], c ′′) ∈ trcl (trss fg) by auto

from IHP(4)[OF this CCC (3)] show ?thesis .
qed

qed
} ultimately show ?case by (cases e, auto)

qed

lemma (in flowgraph) trss-find-call:
!!v r ′ c ′. [[(([sp],c),w,(v#r ′,c ′)) ∈ trcl (trss fg); r ′6=[]]]
=⇒ ∃ rh ch p wa wb.

w=wa@(LCall p)#wb ∧
proc-of fg v = p ∧
(([sp],c),wa,(rh,ch))∈trcl (trss fg) ∧
((rh,ch),LCall p,((entry fg p)#r ′,ch))∈trss fg ∧
(([entry fg p],ch),wb,([v],c ′))∈trcl (trss fg)

proof (induct w rule: length-compl-rev-induct)
case Nil thus ?case by (auto)

next
case (snoc w e) note IHP=this
then obtain rh ch where SPLIT1 : (([sp],c),w,(rh,ch))∈trcl (trss fg) and SPLIT2 :

((rh,ch),e,(v#r ′,c ′))∈trss fg by (fast dest: trcl-rev-uncons)

{
assume ∃ u. rh=u#r ′

then obtain u where RHFMT [simp]: rh=u#r ′ by blast
with SPLIT2 have proc-of fg u = proc-of fg v by (auto elim: trss.cases intro:

edges-part)
moreover from IHP(1)[of w u r ′ ch, OF - SPLIT1 [simplified] IHP(3)] obtain

rt ct p wa wb where
IHAPP: w = wa @ LCall p # wb proc-of fg u = p (([sp], c), wa, (rt, ct)) ∈

trcl (trss fg) ((rt, ct), LCall p, entry fg p # r ′, ct) ∈ trss fg
(([entry fg p], ct), wb, ([u], ch)) ∈ trcl (trss fg) by (blast)

moreover
have (([entry fg p], ct), wb@[e], ([v], c ′)) ∈ trcl (trss fg) proof −

note IHAPP(5)
also from SPLIT2 have (([u],ch),e,([v],c ′)) ∈ trss fg by (auto elim!: trss.cases

intro!: trss.intros)

45

finally show ?thesis .
qed
moreover from IHAPP have w@[e] = wa @ LCall p # (wb@[e]) by auto
ultimately have ?case by auto

}
moreover have (∃ u. rh=u#r ′) ∨ ?case
proof (rule trss.cases[OF SPLIT2], simp-all, goal-cases) — Cases for base- and

spawn edge are discharged automatically
— Case: call-edge

case (1 ca p r u vv) with SPLIT1 SPLIT2 show ?case by fastforce
next

— Case: return edge
case CC : (2 q r ca)
hence [simp]: rh=(return fg q)#v#r ′ by simp
with IHP(1)[of w (return fg q) v#r ′ ch, OF - SPLIT1 [simplified]] obtain rt

ct wa wb where
IHAPP: w = wa @ LCall q # wb (([sp], c), wa, rt, ct) ∈ trcl (trss fg) ((rt,

ct), LCall q, entry fg q # v # r ′, ct) ∈ trss fg
(([entry fg q], ct), wb, [return fg q], ch) ∈ trcl (trss fg) by force

then obtain u where RTFMT [simp]: rt=u#r ′ and PROC-OF-U : proc-of fg
u = proc-of fg v by (auto elim: trss.cases intro: edges-part)

from IHAPP(1) have LENWA: length wa ≤ length w by auto
from IHP(1)[OF LENWA IHAPP(2)[simplified] IHP(3)] obtain rhh chh p

waa wab where
IHAPP ′: wa=waa@LCall p # wab proc-of fg u = p (([sp],c),waa,(rhh,chh))∈trcl

(trss fg) ((rhh,chh),LCall p, (entry fg p#r ′,chh))∈trss fg
(([entry fg p],chh),wab,([u],ct))∈trcl (trss fg)

by blast
from IHAPP IHAPP ′ PROC-OF-U have w@[e]=waa@LCall p#(wab@LCall

q#wb@[e]) ∧ proc-of fg v = p by auto
moreover have (([entry fg p],chh),wab@(LCall q)#wb@[e],([v],c ′))∈trcl (trss

fg) proof −
note IHAPP ′(5)
also from IHAPP have (([u], ct), LCall q, entry fg q # [v], ct) ∈ trss fg by

(auto elim!: trss.cases intro!: trss.intros)
also from trss-stack-comp[OF IHAPP(4)] have ((entry fg q#[v],ct),wb,(return

fg q#[v],ch))∈trcl (trss fg) by simp
also from CC have ((return fg q#[v],ch),e,([v],c ′))∈trss fg by (auto intro:

trss-ret)
finally show ?thesis by simp

qed
moreover note IHAPP ′ CC
ultimately show ?case by auto

qed
ultimately show ?case by blast

qed

— This lemma is better suited for application in soundness proofs of constraint
systems than flowgraph.trss-find-call

46

lemma (in flowgraph) trss-find-call ′:
assumes A: (([sp],c),w,(return fg p#[u ′],c ′)) ∈ trcl (trss fg)
and EX : !!uh ch wa wb. [[

w=wa@(LCall p)#wb;
(([sp],c),wa,([uh],ch))∈trcl (trss fg);
(([uh],ch),LCall p,((entry fg p)#[u ′],ch))∈trss fg;
(uh,Call p,u ′)∈edges fg;
(([entry fg p],ch),wb,([return fg p],c ′))∈trcl (trss fg)

]] =⇒ P
shows P

proof −
from trss-find-call[OF A] obtain rh ch wa wb where FC :

w = wa @ LCall p # wb
(([sp], c), wa, rh, ch) ∈ trcl (trss fg)
((rh, ch), LCall p, [entry fg p, u ′], ch) ∈ trss fg
(([entry fg p], ch), wb, [return fg p], c ′) ∈ trcl (trss fg)
by auto

moreover from FC (3) obtain uh where ADD: rh=[uh] (uh,Call p,u ′)∈edges
fg by (auto elim: trss.cases)

ultimately show ?thesis using EX by auto
qed

lemma (in flowgraph) trss-bot-proc-const:
!!s ′ u ′ c ′. ((s@[u],c),w,(s ′@[u ′],c ′))∈trcl (trss fg)
=⇒ proc-of fg u = proc-of fg u ′

proof (induct w rule: rev-induct)
case Nil thus ?case by auto

next
case (snoc e w) note IHP=this then obtain sh ch where SPLIT1 : ((s@[u],c),w,(sh,ch))∈trcl

(trss fg) and SPLIT2 : ((sh,ch),e,(s ′@[u ′],c ′))∈trss fg by (fast dest: trcl-rev-uncons)
from SPLIT2 have sh 6=[] by (auto elim!: trss.cases)
then obtain ssh uh where SHFMT : sh=ssh@[uh] by (blast dest: list-rev-decomp)
with IHP(1)[of ssh uh ch] SPLIT1 have proc-of fg u = proc-of fg uh by auto
also from SPLIT2 SHFMT have proc-of fg uh = proc-of fg u ′ by (cases rule:

trss.cases) (cases ssh, auto simp add: edges-part)+
finally show ?case .

qed

— Specialized version of flowgraph.trss-bot-proc-constthat comes in handy for pre-
cision proofs of constraint systems
lemma (in flowgraph) trss-er-path-proc-const:
(([entry fg p],c),w,([return fg q],c ′))∈trcl (trss fg) =⇒ p=q
using trss-bot-proc-const[of [] entry fg p - - [] return fg q, simplified] .

lemma trss-2empty-to-2return: [[((s,c),w,([],c ′))∈trcl (trss fg); s 6=[]]] =⇒
∃w ′ p. w=w ′@[LRet] ∧ ((s,c),w ′,([return fg p],c ′))∈trcl (trss fg)

proof −
assume A: ((s,c),w,([],c ′))∈trcl (trss fg) s 6=[]
hence w 6=[] by auto

47

then obtain w ′ e where WD: w=w ′@[e] by (blast dest: list-rev-decomp)
with A(1) obtain sh ch where SPLIT : ((s,c),w ′,(sh,ch))∈trcl (trss fg) ((sh,ch),e,([],c ′))∈trss

fg by (fast dest: trcl-rev-uncons)
from SPLIT (2) obtain p where e=LRet sh=[return fg p] ch=c ′ by (cases rule:

trss.cases, auto)
with SPLIT (1) WD show ?thesis by blast

qed

lemma trss-2return-to-2empty: [[((s,c),w,([return fg p],c ′))∈trcl (trss fg)]]
=⇒ ((s,c),w@[LRet],([],c ′))∈trcl (trss fg)
apply (subgoal-tac (([return fg p],c ′),LRet,([],c ′))∈trss fg)
by (auto dest: trcl-rev-cons intro: trss.intros)

7.7.2 Adding threads
lemma trss-env-increasing-s: ((s,c),e,(s ′,c ′))∈trss fg =⇒ c⊆#c ′

by (auto elim!: trss.cases)
lemma trss-env-increasing: ((s,c),w,(s ′,c ′))∈trcl (trss fg) =⇒ c⊆#c ′

by (induct rule: trcl-pair-induct) (auto dest: trss-env-increasing-s order-trans)

7.7.3 Conversion between environment and monitor restrictions
lemma trss-mon-e-no-ctx:
((s,c),e,(s ′,c ′))∈trss fg =⇒ mon-e fg e ∩ mon-c fg c = {}
by (erule trss.cases) auto

lemma (in flowgraph) trss-mon-w-no-ctx:
((s,c),w,(s ′,c ′))∈trcl (trss fg) =⇒ mon-w fg w ∩ mon-c fg c = {}
by (induct rule: trcl-pair-induct) (auto dest: trss-mon-e-no-ctx simp add: trss-c-no-mon-s)

lemma (in flowgraph) trss-modify-context-s:
!!cn. [[((s,c),e,(s ′,c ′))∈trss fg; mon-e fg e ∩ mon-c fg cn = {}]]
=⇒ ∃ csp. c ′=csp+c ∧ mon-c fg csp = {} ∧ ((s,cn),e,(s ′,csp+cn))∈trss fg

by (erule trss.cases) (auto intro!: trss.intros)

lemma (in flowgraph) trss-modify-context[rule-format]:
[[((s,c),w,(s ′,c ′))∈trcl (trss fg)]]
=⇒ ∀ cn. mon-w fg w ∩ mon-c fg cn = {}
−→ (∃ csp. c ′=csp+c ∧ mon-c fg csp = {} ∧

((s,cn),w,(s ′,csp+cn))∈trcl (trss fg))
proof (induct rule: trcl-pair-induct)

case empty thus ?case by simp
next

case (cons s c e sh ch w s ′ c ′) note IHP=this show ?case
proof (intro allI impI)

fix cn
assume MON : mon-w fg (e # w) ∩ mon-c fg cn = {}
from trss-modify-context-s[OF IHP(1)] MON obtain csph where S1 : ch =

csph + c mon-c fg csph={} ((s, cn), e, sh, csph + cn) ∈ trss fg by auto
with MON have mon-w fg w ∩ mon-c fg (csph+cn) = {} by (auto simp add:

mon-c-unconc)

48

with IHP(3)[rule-format] obtain csp where S2 : c ′=csp+ch mon-c fg csp={}
((sh,csph+cn),w,(s ′,csp+(csph+cn)))∈trcl (trss fg) by blast

from S1 S2 have c ′=(csp+csph)+c mon-c fg (csp+csph)={} ((s,cn),e#w,(s ′,(csp+csph)+cn))∈trcl
(trss fg) by (auto simp add: union-assoc mon-c-unconc)

thus ∃ csp. c ′ = csp + c ∧ mon-c fg csp = {} ∧ ((s, cn), e # w, s ′, csp + cn)
∈ trcl (trss fg) by blast

qed
qed

lemma trss-add-context-s:
[[((s,c),e,(s ′,c ′))∈trss fg; mon-e fg e ∩ mon-c fg ce = {}]]
=⇒ ((s,c+ce),e,(s ′,c ′+ce))∈trss fg

by (auto elim!: trss.cases intro!: trss.intros simp add: union-assoc mon-c-unconc)

lemma trss-add-context:
[[((s,c),w,(s ′,c ′))∈trcl (trss fg); mon-w fg w ∩ mon-c fg ce = {}]]
=⇒ ((s,c+ce),w,(s ′,c ′+ce))∈trcl (trss fg)

proof (induct rule: trcl-pair-induct)
case empty thus ?case by simp

next
case (cons s c e sh ch w s ′ c ′) note IHP=this
from IHP(4) have MM : mon-e fg e ∩ mon-c fg ce = {} mon-w fg w ∩ mon-c

fg ce = {} by auto
from trcl.cons[OF trss-add-context-s[OF IHP(1) MM (1)] IHP(3)[OF MM (2)]]

show ?case .
qed

lemma trss-drop-context-s: [[((s,c+ce),e,(s ′,c ′+ce))∈trss fg]]
=⇒ ((s,c),e,(s ′,c ′))∈trss fg ∧ mon-e fg e ∩ mon-c fg ce = {}
by (erule trss.cases) (auto intro!: trss.intros simp add: mon-c-unconc union-assoc[of

- c ce, symmetric])

lemma trss-drop-context: !!s c. [[((s,c+ce),w,(s ′,c ′+ce))∈trcl (trss fg)]]
=⇒ ((s,c),w,(s ′,c ′))∈trcl (trss fg) ∧ mon-w fg w ∩ mon-c fg ce = {}

proof (induct w)
case Nil thus ?case by auto

next
case (Cons e w) note IHP=this
then obtain sh ch where SPLIT : ((s,c+ce),e,(sh,ch))∈trss fg ((sh,ch),w,(s ′,c ′+ce))∈

trcl (trss fg) by (fast dest: trcl-uncons)
from trss-c-fmt-s[OF SPLIT (1)] obtain csp where CHFMT : ch = (csp + c)

+ ce by (auto simp add: union-assoc)
from CHFMT trss-drop-context-s SPLIT (1) have ((s,c),e,(sh,csp+c))∈trss fg

mon-e fg e ∩ mon-c fg ce = {} by blast+
moreover from CHFMT IHP(1) SPLIT (2) have ((sh,csp+c),w,(s ′,c ′))∈trcl

(trss fg) mon-w fg w ∩ mon-c fg ce = {} by blast+
ultimately show ?case by auto

qed

49

lemma trss-xchange-context-s:
assumes A: ((s,c),e,(s ′,csp+c))∈trss fg
and M :mon-c fg cn ⊆ mon-c fg c
shows ((s,cn),e,(s ′,csp+cn))∈trss fg

proof −
from trss-drop-context-s[of - {#}, simplified, OF A] have DC : ((s, {#}), e, s ′,

csp) ∈ trss fg mon-e fg e ∩ mon-c fg c = {} by simp-all
with M have mon-e fg e ∩ mon-c fg cn = {} by auto
from trss-add-context-s[OF DC (1) this] show ?thesis by auto

qed

lemma trss-xchange-context:
assumes A: ((s,c),w,(s ′,csp+c))∈trcl (trss fg)
and M :mon-c fg cn ⊆ mon-c fg c
shows ((s,cn),w,(s ′,csp+cn))∈trcl (trss fg)

proof −
from trss-drop-context[of - {#}, simplified, OF A] have DC : ((s, {#}), w, s ′,

csp) ∈ trcl (trss fg) mon-w fg w ∩ mon-c fg c = {} by simp-all
with M have mon-w fg w ∩ mon-c fg cn = {} by auto
from trss-add-context[OF DC (1) this] show ?thesis by auto

qed

lemma trss-drop-all-context-s[cases set, case-names dropped]:
assumes A: ((s,c),e,(s ′,c ′))∈trss fg
and C : !!csp. [[c ′=csp+c; ((s,{#}),e,(s ′,csp))∈trss fg]] =⇒ P
shows P

using A proof (cases rule: trss-c-cases-s)
case no-spawn with trss-xchange-context-s[of s c e s ′ {#} fg {#}] A C show P

by auto
next

case (spawn p u v) with trss-xchange-context-s[of s c e s ′ {#[entry fg p]#} fg
{#}] A C show P by auto
qed

lemma trss-drop-all-context[cases set, case-names dropped]:
assumes A: ((s,c),w,(s ′,c ′))∈trcl (trss fg)
and C : !!csp. [[c ′=csp+c; ((s,{#}),w,(s ′,csp))∈trcl (trss fg)]] =⇒ P
shows P

using A proof (cases rule: trss-c-cases)
case (c-case csp) with trss-xchange-context[of s c w s ′ csp fg {#}] A C show P

by auto
qed

lemma tr-add-context-s:
[[(c,e,c ′)∈tr fg; mon-e fg e ∩ mon-c fg ce = {}]] =⇒ (c+ce,e,c ′+ce)∈tr fg
by (erule gtrE) (auto simp add: mon-c-unconc union-assoc intro: gtrI-s dest:

trss-add-context-s)

lemma tr-add-context:

50

[[(c,w,c ′)∈trcl (tr fg); mon-w fg w ∩ mon-c fg ce = {}]]
=⇒ (c+ce,w,c ′+ce)∈trcl (tr fg)

proof (induct rule: trcl.induct)
case empty thus ?case by auto

next
case (cons c e c ′ w c ′′) note IHP=this
from tr-add-context-s[OF IHP(1), of ce] IHP(4) have (c + ce, e, c ′ + ce) ∈ tr

fg by auto
also from IHP(3 ,4) have (c ′ + ce, w, c ′′ + ce) ∈ trcl (tr fg) by auto
finally show ?case .

qed

end

8 Normalized Paths
theory Normalization
imports Main ThreadTracking Semantics ConsInterleave
begin

The idea of normalized paths is to consider particular schedules only. While
the original semantics allows a context switch to occur after every single
step, we now define a semantics that allows context switches only before
non-returning calls or after a thread has reached its final stack. We then
show that this semantics is able to reach the same set of configurations as
the original semantics.

8.1 Semantic properties of restricted flowgraphs

It makes the formalization smoother, if we assume that every thread’s execu-
tion begins with a non-returning call. For this purpose, we defined syntactic
restrictions on flowgraphs already (cf. Section 6.3). We now show that these
restrictions have the desired semantic effect.
lemma (in eflowgraph) iso-ret-no-ret: !!u c. [[

isolated-ret fg p;
proc-of fg u = p;
u 6= return fg p;
(([u],c),w,([return fg p ′],c ′))∈trcl (trss fg)

]] =⇒ False
proof (induct w rule: length-compl-induct)

case Nil thus ?case by auto
next

case (Cons e w) note IHP=this
then obtain sh ch where SPLIT1 : (([u],c),e,(sh,ch))∈trss fg and SPLIT2 :

((sh,ch),w,([return fg p ′],c ′))∈trcl (trss fg) by (fast dest: trcl-uncons)
show ?case proof (cases e)

case LRet with SPLIT1 IHP(3 ,4) show False by (auto elim!: trss.cases)

51

next
case LBase with SPLIT1 IHP(2 ,3) obtain v where A: sh=[v] proc-of fg v =

p v 6=return fg p by (force elim!: trss.cases simp add: edges-part isolated-ret-def)
with IHP SPLIT2 show False by auto

next
case (LSpawn q) with SPLIT1 IHP(2 ,3) obtain v where A: sh=[v] proc-of fg v

= p v 6=return fg p by (force elim!: trss.cases simp add: edges-part isolated-ret-def)
with IHP SPLIT2 show False by auto

next
case (LCall q) with SPLIT1 IHP(2 ,3) obtain uh where A: sh=entry fg

q#[uh] proc-of fg uh = p uh 6=return fg p by (force elim!: trss.cases simp add:
edges-part isolated-ret-def)

with SPLIT2 have B: ((entry fg q#[uh],ch),w,([return fg p ′],c ′))∈trcl (trss fg)
by simp

from trss-return-cases[OF B] obtain w1 w2 ct where C : w=w1@w2 length
w2 ≤ length w (([entry fg q],ch),w1 ,([],ct))∈trcl (trss fg) (([uh],ct),w2 ,([return fg
p ′],c ′))∈trcl (trss fg) by (auto)

from IHP(1)[OF C (2) IHP(2) A(2 ,3) C (4)] show False .
qed

qed

— The first step of an initial procedure is a call
lemma (in eflowgraph) initial-starts-with-call:
[[(([entry fg p],c),e,(s ′,c ′))∈trss fg; initialproc fg p]]
=⇒ ∃ p ′. e=LCall p ′ ∧ isolated-ret fg p ′

by (auto elim!: trss.cases dest: initial-call-no-ret initial-no-ret entry-return-same-proc)

— There are no same-level paths starting from the entry node of an initial procedure
lemma (in eflowgraph) no-sl-from-initial:

assumes A: w 6=[] initialproc fg p
(([entry fg p],c),w,([v],c ′))∈trcl (trss fg)

shows False
proof −

from A obtain sh ch e w ′ where SPLIT : (([entry fg p],c),e,(sh,ch))∈trss fg
((sh,ch),w ′,([v],c ′))∈trcl (trss fg) by (cases w, simp, fast dest: trcl-uncons)

from initial-starts-with-call[OF SPLIT (1) A(2)] obtain p ′ where CE : e=LCall
p ′ isolated-ret fg p ′ by blast

with SPLIT (1) obtain u ′ where sh=entry fg p ′#[u ′] by (auto elim!: trss.cases)
with SPLIT (2) have ((entry fg p ′#[u ′],ch),w ′,([v],c ′))∈trcl (trss fg) by simp
then obtain wa ct where (([entry fg p ′],ch),wa,([],ct))∈trcl (trss fg) by (erule-tac

trss-return-cases, auto)
then obtain wa ′ p ′′ where (([entry fg p ′],ch),wa ′,([return fg p ′′],ct))∈trcl (trss

fg) by (blast dest: trss-2empty-to-2return)
from iso-ret-no-ret[OF CE(2) - - this] CE(2)[unfolded isolated-ret-def] show

?thesis by simp
qed

— There are no same-level or returning paths starting from the entry node of an
initial procedure

52

lemma (in eflowgraph) no-retsl-from-initial:
assumes A: w 6=[]

initialproc fg p
(([entry fg p],c),w,(r ′,c ′))∈trcl (trss fg)
length r ′ ≤ 1

shows False
proof (cases r ′)

case Nil with A(3) have (([entry fg p],c),w,([],c ′))∈trcl (trss fg) by simp
from trss-2empty-to-2return[OF this, simplified] obtain w ′ q where B: w=w ′@[LRet]

(([entry fg p], c), w ′, [return fg q], c ′) ∈ trcl (trss fg) by (blast)
show ?thesis proof (cases w ′)
case Nil with B have p=q entry fg p = return fg p by (auto dest: trcl-empty-cons

entry-return-same-proc)
with A(2) initial-no-ret show False by blast

next
case Cons hence w ′6=[] by simp
from no-sl-from-initial[OF this A(2) B(2)] show False .

qed
next

case (Cons u rr) with A(4) have r ′=[u] by auto
with no-sl-from-initial[OF A(1 ,2)] A(3) show False by auto

qed

8.2 Definition of normalized paths

In order to describe the restricted schedules, we define an operational se-
mantics that performs an atomically scheduled sequence of steps in one step,
called a macrostep. Context switches may occur after macrosteps only. We
call this the normalized semantics and a sequence of macrosteps a normalized
path.
Since we ensured that every path starts with a non-returning call, we can
define a macrostep as an initial call followed by a same-level path2 of the
called procedure. This has the effect that context switches are either per-
formed before a non-returning call (if the thread makes a further macrostep
in the future) or after the thread has reached its final configuration.
As for the original semantics, we first define the normalized semantics on a
single thread with a context and then use the theory developed in Section 5
to derive interleaving semantics on multisets and configurations with an
explicit local thread (loc/env-semantics, cf. Section 5.4).
inductive-set

ntrs :: (′n, ′p, ′ba, ′m, ′more) flowgraph-rec-scheme ⇒
((′n list × ′n conf) × (′p, ′ba) label list × (′n list × ′n conf)) set

for fg
2Same-level paths are paths with balanced calls and returns. The stack-level at the

beginning of their execution is the same as at the end, and during the execution, the stack
never falls below the initial level.

53

where
— A macrostep transforms one thread by first calling a procedure and then doing

a same-level path
ntrs-step: [[((u#r ,ce),LCall p, (entry fg p # u ′ # r ,ce))∈trss fg;

(([entry fg p],ce),w,([v],ce ′))∈trcl (trss fg)]] =⇒
((u#r ,ce),LCall p#w,(v#u ′#r ,ce ′))∈ntrs fg

abbreviation ntr where ntr fg == gtr (ntrs fg)
abbreviation ntrp where ntrp fg == gtrp (ntrs fg)

interpretation ntrs: env-no-step ntrs fg
apply (rule env-no-step.intro)
apply (erule ntrs.cases)
apply clarsimp
apply (erule trss-c-cases)
apply auto
done

8.3 Representation property for reachable configurations

In this section, we show that a configuration is reachable if and only if it is
reachable via a normalized path.

The first direction is to show that a normalized path is also a path. This
follows from the definitions. Note that we first show that a single macrostep
corresponds to a path and then generalize the result to sequences of macrosteps
lemma ntrs-is-trss-s: ((s,c),w,(s ′,c ′))∈ntrs fg =⇒ ((s,c),w,(s ′,c ′))∈trcl (trss fg)
proof (erule ntrs.cases, auto)

fix p r u u ′ v w
assume A: ((u # r , c), LCall p, entry fg p # u ′ # r , c) ∈ trss fg (([entry fg p],

c), w, [v], c ′) ∈ trcl (trss fg)
from trss-stack-comp[OF A(2), of u ′#r] have ((entry fg p # u ′ # r , c), w, v #

u ′ # r , c ′) ∈ trcl (trss fg) by simp
with A(1) show ((u # r , c), LCall p # w, v # u ′ # r , c ′) ∈ trcl (trss fg) by

auto
qed

lemma ntrs-is-trss: ((s,c),w,(s ′,c ′))∈trcl (ntrs fg)
=⇒ ((s,c),foldl (@) [] w,(s ′,c ′))∈trcl (trss fg)

proof (induct rule: trcl-pair-induct)
case empty thus ?case by simp

next
case (cons s c e sh ch w s ′ c ′) note IHP=this
from trcl-concat[OF ntrs-is-trss-s[OF IHP(1)] IHP(3)] foldl-conc-empty-eq[of e

w] show ?case by simp
qed

lemma ntr-is-tr-s: (c,w,c ′)∈ntr fg =⇒ (c,w,c ′)∈trcl (tr fg)

54

by (erule gtrE) (auto dest: ntrs-is-trss-s intro: gtrI)

lemma ntr-is-tr : (c,ww,c ′)∈trcl (ntr fg) =⇒ (c,foldl (@) [] ww,c ′)∈trcl (tr fg)
proof (induct rule: trcl.induct)

case empty thus ?case by auto
next

case (cons c ee c ′ ww c ′′) note IHP=this
from trcl-concat[OF ntr-is-tr-s[OF IHP(1)] IHP(3)] foldl-conc-empty-eq[of ee

ww] show ?case by (auto)
qed

The other direction requires to prove that for each path reaching a con-
figuration there is also a normalized path reaching the same configuration.
We need an auxiliary lemma for this proof, that is a kind of append rule:
Given a normalized path reaching some configuration c, and a same level
or returning path from some stack in c, we can derive a normalized path to
c modified according to the same-level path. We cannot simply append the
same-level or returning path as a macrostep, because it does not start with
a non-returning call. Instead, we will have to append it to some macrostep
in the normalized path, i.e. move it „left” into the normalized path.

Intuitively, we can describe the concept of the proof as follows: Due to the
restrictions we made on flowgraphs, a same-level or returning path cannot
be the first steps on a thread. Hence there is a last macrostep that was
executed on the thread. When this macrostep was executed, all threads
held less monitors then they do at the end of the execution, because the set
of monitors held by every single thread is increasing during the execution of
a normalized path. Thus we can append the same-level or returning path to
the last macrostep on that thread. As a same-level or returning path does
not allocate any monitors, the following macrosteps remain executable. If we
have a same-level path, appending it to a macrostep yields a valid macrostep
again and we are done. Appending a returning path to a macrostep yields
a same-level path. In this case we inductively repeat our argument.
The actual proof is strictly inductive; it either appends the same-level path
to the last macrostep or inductively repeats the argument.
lemma (in eflowgraph) ntr-sl-move-left: !!ce u r w r ′ ce ′.
[[({#[entry fg p]#},ww,{# u#r #}+ce)∈trcl (ntr fg);
(([u],ce),w,(r ′,ce ′))∈trcl (trss fg);
initialproc fg p;
length r ′ ≤ 1 ; w 6=[]

]] =⇒ ∃ww ′. ({#[entry fg p]#}, ww ′,{# r ′@r #}+ce ′)∈trcl (ntr fg)
proof (induct ww rule: rev-induct)

case Nil note CC=this hence u=entry fg p by auto
— If the normalized path is empty, we get a contradiction, because there is no

same-level path from the initial configuration of a thread
with CC (2) no-retsl-from-initial[OF CC (5 ,3) - CC (4)] have False by blast
thus ?case ..

55

next
case (snoc ee ww) note IHP=this
— In the induction step, we extract the last macrostep
then obtain ch where SPLIT : ({#[entry fg p]#},ww,ch)∈trcl (ntr fg) (ch,ee,{#

u#r #}+ce)∈ntr fg by (fast dest: trcl-rev-uncons)
— The last macrostep first executes a call and then a same-level path
from SPLIT (2) obtain q wws uh rh ceh uh ′ vt cet where

STEPFMT : ee=LCall q#wws ch=add-mset (uh#rh) ceh add-mset (u#r) ce =
add-mset (vt#uh ′#rh) cet ((uh#rh,ceh),LCall q,(entry fg q#uh ′#rh,ceh))∈trss fg
(([entry fg q],ceh),wws,([vt],cet))∈trcl (trss fg)

by (auto elim!: gtrE ntrs.cases[simplified])
— Make a case distinction whether the last step was executed on the same thread

as the sl/ret-path or not
from STEPFMT (3) show ?case proof (cases rule: mset-single-cases ′)

— If the sl/ret path was executed on the same thread as the last macrostep
case loc note CASE=this hence C ′: u=vt r=uh ′#rh ce=cet by auto
— we append it to the last macrostep.

with STEPFMT (5) IHP(3) have NEWPATH : (([entry fg q],ceh),wws@w,(r ′,ce ′))∈trcl
(trss fg) by (simp add: trcl-concat)

— We then distinguish whether we appended a same-level or a returning path
show ?thesis proof (cases r ′)

— If we appended a same-level path
case (Cons v ′) — Same-level path with IHP(5) have CC : r ′=[v ′] by auto
— The macrostep still ends with a same-level path
with NEWPATH have (([entry fg q],ceh),wws@w,([v ′],ce ′))∈trcl (trss fg) by

simp
— and thus remains a valid macrostep

from gtrI-s[OF ntrs-step[OF STEPFMT (4), simplified, OF this]] have
(add-mset (uh # rh) ceh, LCall q # wws@w, add-mset (v ′ # uh ′ # rh) ce ′) ∈
ntr fg .

— that we can append to the prefix of the normalized path to get our proposition
with STEPFMT (2) SPLIT (1) CC C ′(2) have ({#[entry fg p]#},ww@[LCall

q#wws@w],{# r ′@r #} + ce ′)∈trcl (ntr fg) by (auto simp add: trcl-rev-cons)
thus ?thesis by blast

next
— If we appended a returning path
case Nil note CC=this
— The macrostep now ends with a returning path, and thus gets a same-level

path
have NEWSL: (([uh], ceh), LCall q # wws @ w, [uh ′], ce ′) ∈ trcl (trss fg)

proof −
from STEPFMT (4) have (([uh],ceh),LCall q,(entry fg q#[uh ′],ceh))∈trss

fg by (auto elim!: trss.cases intro: trss.intros)
also from trss-stack-comp[OF NEWPATH] CC have ((entry fg q#[uh ′],ceh),wws@w,([uh ′],ce ′))∈trcl

(trss fg) by auto
finally show ?thesis .

qed
— Hence we can apply the induction hypothesis and get the proposition
from IHP(1)[OF - NEWSL] SPLIT STEPFMT (2) IHP(4) CC C ′(2) show

56

?thesis by auto
qed

next
— If the sl/ret path was executed on a different thread than the last macrostep
case (env cc) note CASE=this
— we first look at the context after the last macrostep. It consists of the threads

that already have been there and the threads that have been spawned by the last
macrostep

from STEPFMT (5) obtain cspt where CETFMT : cet=cspt+ceh !!s. s ∈#
cspt =⇒ ∃ p. s=[entry fg p] ∧ initialproc fg p

by (unfold initialproc-def) (erule trss-c-cases, blast)
— The spawned threads do not hold any monitors yet
hence CSPT-NO-MON : mon-c fg cspt = {} by (simp add: c-of-initial-no-mon)
— We now distinguish whether the sl/ret path is executed on a thread that was

just spawned or on a thread that was already there
from CASE(1) CETFMT (1) have u#r ∈# cspt+ceh by auto
thus ?thesis proof (cases rule: mset-un-cases[cases set])

— The sl/ret path cannot have been executed on a freshly spawned thread
due to the restrictions we made on the flowgraph

case left — Thread was spawned with CETFMT obtain q where u=entry
fg q r=[] initialproc fg q by auto

with IHP(3 ,5 ,6) no-retsl-from-initial have False by blast
thus ?thesis ..

next
— Hence let’s assume the sl/ret path is executed on a thread that was already

there before the last macrostep
case right note CC=this
— We can write the configuration before the last macrostep in a way that one

sees the thread that executed the sl/ret path
hence CEHFMT : ceh={# u#r #}+(ceh−{# u#r #}) by auto
have CHFMT : ch = {# u#r #} + ({# uh#rh #}+(ceh−{# u#r #}))

proof −
from CEHFMT STEPFMT (2) have ch = {# uh#rh #} + ({# u#r

#}+(ceh−{# u#r #})) by simp
thus ?thesis by (auto simp add: union-ac)

qed
— There are not more monitors than after the last macrostep
have MON-CE : mon-c fg ({# uh#rh #}+(ceh−{# u#r #})) ⊆ mon-c fg

ce proof −
have mon-n fg uh ⊆ mon-n fg uh ′ using STEPFMT (4) by (auto elim!:

trss.cases dest: mon-n-same-proc edges-part)
moreover have mon-c fg (ceh−{#u#r#}) ⊆ mon-c fg cc proof −

from CASE(3) CETFMT have cc=(cspt+ceh)−{#u#r#} by simp
with CC have cc = cspt+(ceh−{#u#r#}) by auto
with CSPT-NO-MON show ?thesis by (auto simp add: mon-c-unconc)

qed
ultimately show ?thesis using CASE(2) by (auto simp add: mon-c-unconc)
qed

— The same-level path preserves the threads in its environment and the threads

57

that it creates hold no monitors
from IHP(3) obtain csp ′ where CE ′FMT : ce ′=csp ′+ce mon-c fg csp ′ = {}

by (−) (erule trss-c-cases, blast intro!: c-of-initial-no-mon)
— We can execute the sl/ret-path also from the configuration before the last

step
from trss-xchange-context[OF - MON-CE] IHP(3) CE ′FMT have NSL: (([u],

{#uh # rh#} + (ceh − {#u # r#})), w, r ′, csp ′ + ({#uh # rh#} + (ceh −
{#u # r#}))) ∈ trcl (trss fg) by auto

— And with the induction hypothesis we get a normalized path
from IHP(1)[OF - NSL IHP(4 ,5 ,6)] SPLIT (1) CHFMT obtain ww ′ where

NNPATH : ({#[entry fg p]#}, ww ′, {#r ′ @ r#} + (csp ′ + ({#uh # rh#} + (ceh
− {#u # r#})))) ∈ trcl (ntr fg) by blast

— We now show that the last macrostep can also be executed from the new
configuration, after the sl/ret path has been executed (on another thread)

have ({#r ′ @ r#} + (csp ′ + ({#uh # rh#} + (ceh − {#u # r#}))), ee,
{#vt # uh ′ # rh#} + (cspt + ({#r ′ @ r#} + (csp ′ + (ceh − {#u # r#})))))
∈ ntr fg

proof −
— This is because the sl/ret path has not allocated any monitors
have MON-CEH : mon-c fg ({#r ′ @ r#} + (csp ′ + (ceh − {#u # r#})))

⊆ mon-c fg ceh proof −
from IHP(3 ,5) trss-bot-proc-const[of [] u ce w [] - ce ′] mon-n-same-proc

have mon-s fg r ′ ⊆ mon-n fg u by (cases r ′) (simp, force)
moreover from CEHFMT have mon-c fg ceh = mon-c fg ({#u # r#} +

(ceh − {#u # r#})) by simp — Need to state this explicitly because of recursive
simp rule ceh = {#u # r#} + (ceh − {#u # r#})

ultimately show ?thesis using CE ′FMT (2) by (auto simp add:
mon-c-unconc mon-s-unconc)

qed
— And we can reassemble the macrostep within the new context
note trss-xchange-context-s[OF - MON-CEH , where csp={#}, simplified,

OF STEPFMT (4)]
moreover from trss-xchange-context[OF - MON-CEH , of [entry fg q] wws

[vt] cspt] STEPFMT (5) CETFMT (1) have
(([entry fg q], {#r ′ @ r#} + (csp ′ + (ceh − {#u # r#}))), wws, [vt],

cspt + ({#r ′ @ r#} + (csp ′ + (ceh − {#u # r#})))) ∈ trcl (trss fg) by blast
moreover note STEPFMT (1)

ultimately have ((uh#rh,({#r ′@ r#} + (csp ′+ (ceh − {#u # r#})))),ee,(vt#uh ′#rh,cspt+({#r ′

@ r#} + (csp ′ + (ceh − {#u # r#})))))∈ntrs fg by (auto intro: ntrs.intros)
from gtrI-s[OF this] show ?thesis by (simp add: add-mset-commute)

qed
— Finally we append the last macrostep to the normalized paths we obtained

by the induction hypothesis
from trcl-rev-cons[OF NNPATH this] have ({#[entry fg p]#}, ww ′ @ [ee],

{#vt # uh ′ # rh#} + (cspt + ({#r ′ @ r#} + (csp ′ + (ceh − {#u # r#})))))
∈ trcl (ntr fg) .

— And show that we got the right configuration
moreover from CC CETFMT CASE(3)[symmetric] CASE(2) CE ′FMT (1)

have {#vt # uh ′ # rh#} + (cspt + ({#r ′ @ r#} + (csp ′ + (ceh − {#u #

58

r#})))) = {# r ′@r #}+ce ′ by (simp add: union-ac)
ultimately show ?thesis by auto

qed
qed

qed

Finally we can prove: Any reachable configuration can also be reached by a
normalized path. With eflowgraph.ntr-sl-move-left we can easily show this
lemma With eflowgraph.ntr-sl-move-left we can easily show this by induction
on the reaching path. For the empty path, the proposition follows trivially.
Else we consider the last step. If it is a call, we can execute it as a macrostep
and get the proposition. Otherwise the last step is a same-level (Base,
Spawn) or returning (Ret) path of length 1, and we can append it to the
normalized path using eflowgraph.ntr-sl-move-left.
lemma (in eflowgraph) normalize: [[

(cstart,w,c ′)∈trcl (tr fg);
cstart={# [entry fg p] #};
initialproc fg p]]

=⇒ ∃w ′. ({# [entry fg p] #},w ′,c ′)∈trcl (ntr fg)
— The lemma is shown by induction on the reaching path
proof (induct rule: trcl-rev-induct)

— The empty case is trivial, as the empty path is also a valid normalized path
case empty thus ?case by (auto intro: exI [of - []])

next
case (snoc cstart w c e c ′) note IHP=this
— In the inductive case, we can assume that we have an already normalized path

and need to append a last step
then obtain w ′ where IHP ′: ({# [entry fg p] #},w ′,c)∈trcl (ntr fg) (c,e,c ′)∈tr

fg by blast
— We make explicit the thread on that this last step was executed
from gtr-find-thread[OF IHP ′(2)] obtain s ce s ′ ce ′ where TSTEP: c = add-mset

s ce c ′ = add-mset s ′ ce ′ ((s, ce), e, (s ′, ce ′)) ∈ trss fg by blast
— The proof is done by a case distinction whether the last step was a call or not
{

— Last step was a procedure call
fix q
assume CASE : e=LCall q
— As it is the last step, the procedure call will not return and thus is a valid

macrostep
have (c,LCall q # [], c ′)∈ntr fg using TSTEP CASE by (auto elim!: trss.cases

intro!: ntrs.intros gtrI-s trss.intros)
— That can be appended to the initial normalized path
from trcl-rev-cons[OF IHP ′(1) this] have ?case by blast

} moreover {
— Last step was no procedure call
fix q a
assume CASE : e=LBase a ∨ e=LSpawn q ∨ e=LRet
— Then it is a same-level or returning path

59

with TSTEP(3) obtain u r r ′ where SLR: s=u#r s ′=r ′@r length r ′≤1
(([u],ce),[e],(r ′,ce ′))∈trcl (trss fg) by (force elim!: trss.cases intro!: trss.intros)

— That can be appended to the normalized path using the [[({#[entry fg ?p]#},
?ww, {#?u # ?r#} + ?ce) ∈ trcl (ntr fg); (([?u], ?ce), ?w, ?r ′, ?ce ′) ∈ trcl (trss
fg); initialproc fg ?p; length ?r ′ ≤ 1 ; ?w 6= []]] =⇒ ∃ww ′. ({#[entry fg ?p]#}, ww ′,
{#?r ′ @ ?r#} + ?ce ′) ∈ trcl (ntr fg) - lemma

from ntr-sl-move-left[OF - SLR(4) IHP(5) SLR(3)] IHP ′(1) TSTEP(1) SLR(1)
obtain ww ′ where ({#[entry fg p]#}, ww ′, {#r ′ @ r#} + ce ′) ∈ trcl (ntr fg) by
auto

with SLR(2) TSTEP(2) have ?case by auto
} ultimately show ?case by (cases e, auto)

qed

As the main result of this section we get: A configuration is reachable if and
only if it is also reachable via a normalized path:
theorem (in eflowgraph) ntr-repr :

(∃w. ({#[entry fg (main fg)]#},w,c)∈trcl (tr fg))
←→ (∃w. ({#[entry fg (main fg)]#},w,c)∈trcl (ntr fg))

by (auto simp add: initialproc-def intro!: normalize ntr-is-tr)

8.4 Properties of normalized path

Like a usual path, also a macrostep modifies one thread, spawns some
threads and preserves the state of all the other threads. The spawned threads
do not make any steps, thus they stay in their initial configurations.
lemma ntrs-c-cases-s[cases set]: [[

((s,c),w,(s ′,c ′))∈ntrs fg;
!!csp. [[c ′=csp+c; !!s. s ∈# csp =⇒ ∃ p u v. s=[entry fg p] ∧

(u,Spawn p,v)∈edges fg ∧
initialproc fg p

]] =⇒ P
]] =⇒ P
by (auto dest!: ntrs-is-trss-s elim!: trss-c-cases)

lemma ntrs-c-cases[cases set]: [[
((s,c),ww,(s ′,c ′))∈trcl (ntrs fg);
!!csp. [[c ′=csp+c; !!s. s ∈# csp =⇒ ∃ p u v. s=[entry fg p] ∧

(u,Spawn p,v)∈edges fg ∧
initialproc fg p

]] =⇒ P
]] =⇒ P
by (auto dest!: ntrs-is-trss elim!: trss-c-cases)

8.4.1 Validity

Like usual paths, also normalized paths preserve validity of the configura-
tions.
lemmas (in flowgraph) ntrs-valid-preserve-s = trss-valid-preserve[OF ntrs-is-trss-s]

60

lemmas (in flowgraph) ntr-valid-preserve-s = tr-valid-preserve[OF ntr-is-tr-s]
lemmas (in flowgraph) ntrs-valid-preserve = trss-valid-preserve[OF ntrs-is-trss]
lemmas (in flowgraph) ntr-valid-preserve = tr-valid-preserve[OF ntr-is-tr]
lemma (in flowgraph) ntrp-valid-preserve-s:

assumes A: ((s,c),e,(s ′,c ′))∈ntrp fg
and V : valid fg (add-mset s c)
shows valid fg (add-mset s ′ c ′)
using ntr-valid-preserve-s[OF gtrp2gtr-s[OF A] V] by assumption

lemma (in flowgraph) ntrp-valid-preserve:
assumes A: ((s,c),e,(s ′,c ′))∈trcl (ntrp fg)
and V : valid fg (add-mset s c)
shows valid fg (add-mset s ′ c ′)
using ntr-valid-preserve[OF gtrp2gtr [OF A] V] by assumption

8.4.2 Monitors

The following defines the set of monitors used by a normalized path and
shows its basic properties:
definition

mon-ww fg ww == foldl (∪) {} (map (mon-w fg) ww)

definition
mon-loc fg ww == mon-ww fg (map le-rem-s (loc ww))

definition
mon-env fg ww == mon-ww fg (map le-rem-s (env ww))

lemma mon-ww-empty[simp]: mon-ww fg [] = {}
by (unfold mon-ww-def , auto)

lemma mon-ww-uncons[simp]:
mon-ww fg (ee#ww) = mon-w fg ee ∪ mon-ww fg ww
by (unfold mon-ww-def , auto simp add: foldl-un-empty-eq[of mon-w fg ee])

lemma mon-ww-unconc:
mon-ww fg (ww1@ww2) = mon-ww fg ww1 ∪ mon-ww fg ww2
by (induct ww1) auto

lemma mon-env-empty[simp]: mon-env fg [] = {}
by (unfold mon-env-def) auto

lemma mon-env-single[simp]:
mon-env fg [e] = (case e of LOC a ⇒ {} | ENV a ⇒ mon-w fg a)
by (unfold mon-env-def) (auto split: el-step.split)

lemma mon-env-uncons[simp]:
mon-env fg (e#w)
= (case e of LOC a ⇒ {} | ENV a ⇒ mon-w fg a) ∪ mon-env fg w

by (unfold mon-env-def) (auto split: el-step.split)
lemma mon-env-unconc:

mon-env fg (w1@w2) = mon-env fg w1 ∪ mon-env fg w2
by (unfold mon-env-def) (auto simp add: mon-ww-unconc)

61

lemma mon-loc-empty[simp]: mon-loc fg [] = {}
by (unfold mon-loc-def) auto

lemma mon-loc-single[simp]:
mon-loc fg [e] = (case e of ENV a ⇒ {} | LOC a ⇒ mon-w fg a)
by (unfold mon-loc-def) (auto split: el-step.split)

lemma mon-loc-uncons[simp]:
mon-loc fg (e#w)
= (case e of ENV a ⇒ {} | LOC a ⇒ mon-w fg a) ∪ mon-loc fg w
by (unfold mon-loc-def) (auto split: el-step.split)

lemma mon-loc-unconc:
mon-loc fg (w1@w2) = mon-loc fg w1 ∪ mon-loc fg w2
by (unfold mon-loc-def) (auto simp add: mon-ww-unconc)

lemma mon-ww-of-foldl[simp]: mon-w fg (foldl (@) [] ww) = mon-ww fg ww
apply (induct ww)
apply (unfold mon-ww-def)
apply simp
apply simp
apply (subst foldl-conc-empty-eq, subst foldl-un-empty-eq)
apply (simp add: mon-w-unconc)

done

lemma mon-ww-ileq: w�w ′ =⇒ mon-ww fg w ⊆ mon-ww fg w ′

by (induct rule: less-eq-list-induct) auto

lemma mon-ww-cil:
w∈w1⊗αw2 =⇒ mon-ww fg w = mon-ww fg w1 ∪ mon-ww fg w2
by (induct rule: cil-set-induct-fixα) auto

lemma mon-loc-cil:
w∈w1⊗αw2 =⇒ mon-loc fg w = mon-loc fg w1 ∪ mon-loc fg w2
by (induct rule: cil-set-induct-fixα) auto

lemma mon-env-cil:
w∈w1⊗αw2 =⇒ mon-env fg w = mon-env fg w1 ∪ mon-env fg w2
by (induct rule: cil-set-induct-fixα) auto

lemma mon-ww-of-le-rem:
mon-ww fg (map le-rem-s w) = mon-loc fg w ∪ mon-env fg w
by (induct w) (auto split: el-step.split)

lemma mon-env-ileq: w�w ′ =⇒ mon-env fg w ⊆ mon-env fg w ′

by (induct rule: less-eq-list-induct) auto
lemma mon-loc-ileq: w�w ′ =⇒ mon-loc fg w ⊆ mon-loc fg w ′

by (induct rule: less-eq-list-induct) auto

lemma mon-loc-map-loc[simp]: mon-loc fg (map LOC w) = mon-ww fg w
by (unfold mon-loc-def) simp

lemma mon-env-map-env[simp]: mon-env fg (map ENV w) = mon-ww fg w

62

by (unfold mon-env-def) simp
lemma mon-loc-map-env[simp]: mon-loc fg (map ENV w) = {}

by (induct w) auto
lemma mon-env-map-loc[simp]: mon-env fg (map LOC w) = {}

by (induct w) auto

— As monitors are syntactically bound to procedures, and each macrostep starts
with a non-returning call, the set of monitors allocated during the execution of a
normalized path is monotonically increasing
lemma (in flowgraph) ntrs-mon-increasing-s: ((s,c),e,(s ′,c ′))∈ntrs fg
=⇒ mon-s fg s ⊆ mon-s fg s ′ ∧ mon-c fg c = mon-c fg c ′

apply (erule ntrs.cases)
apply (auto simp add: trss-c-no-mon)
apply (subgoal-tac mon-n fg u = mon-n fg u ′)
apply (simp)
apply (auto elim!: trss.cases dest!: mon-n-same-proc edges-part)

done

lemma (in flowgraph) ntr-mon-increasing-s:
(c,ee,c ′)∈ntr fg =⇒ mon-c fg c ⊆ mon-c fg c ′

by (erule gtrE) (auto dest: ntrs-mon-increasing-s simp add: mon-c-unconc)

lemma (in flowgraph) ntrp-mon-increasing-s: ((s,c),e,(s ′,c ′))∈ntrp fg
=⇒ mon-s fg s ⊆ mon-s fg s ′ ∧ mon-c fg c ⊆ mon-c fg c ′

apply (erule gtrp.cases)
apply (auto dest: ntrs-mon-increasing-s simp add: mon-c-unconc)[]

apply (intro conjI)
apply (auto dest: ntrs-mon-increasing-s simp add: mon-c-unconc)[]

apply (auto dest: ntrs-mon-increasing-s simp add: mon-c-unconc)[]
apply (erule ntrs-c-cases-s)
apply (auto simp: mon-c-unconc)
done

lemma (in flowgraph) ntrp-mon-increasing: ((s,c),e,(s ′,c ′))∈trcl (ntrp fg)
=⇒ mon-s fg s ⊆ mon-s fg s ′ ∧ mon-c fg c ⊆ mon-c fg c ′

by (induct rule: trcl-rev-pair-induct) (auto dest!: ntrp-mon-increasing-s)

8.4.3 Modifying the context
lemmas (in flowgraph) ntrs-c-no-mon-s = trss-c-no-mon[OF ntrs-is-trss-s]
lemmas (in flowgraph) ntrs-c-no-mon = trss-c-no-mon[OF ntrs-is-trss]

Also like a usual path, a normalized step must not use any monitors that
are allocated by other threads
lemmas (in flowgraph) ntrs-mon-e-no-ctx = trss-mon-w-no-ctx[OF ntrs-is-trss-s]
lemma (in flowgraph) ntrs-mon-w-no-ctx:

assumes A: ((s,c),w,(s ′,c ′))∈trcl (ntrs fg)
shows mon-ww fg w ∩ mon-c fg c = {}

63

using trss-mon-w-no-ctx[OF ntrs-is-trss[OF A]] by simp

lemma (in flowgraph) ntrp-mon-env-e-no-ctx:
((s,c),ENV e,(s ′,c ′))∈ntrp fg =⇒ mon-w fg e ∩ mon-s fg s = {}
by (auto elim!: gtrp.cases dest!: ntrs-mon-e-no-ctx simp add: mon-c-unconc)

lemma (in flowgraph) ntrp-mon-loc-e-no-ctx:
((s,c),LOC e,(s ′,c ′))∈ntrp fg =⇒ mon-w fg e ∩ mon-c fg c = {}
by (auto elim!: gtrp.cases dest!: ntrs-mon-e-no-ctx)

lemma (in flowgraph) ntrp-mon-env-w-no-ctx:
((s,c),w,(s ′,c ′))∈trcl (ntrp fg) =⇒ mon-env fg w ∩ mon-s fg s = {}
by (induct rule: trcl-rev-pair-induct) (unfold mon-env-def , auto split: el-step.split

dest!: ntrp-mon-env-e-no-ctx ntrp-mon-increasing simp add: mon-ww-unconc)

lemma (in flowgraph) ntrp-mon-loc-w-no-ctx:
((s,c),w,(s ′,c ′))∈trcl (ntrp fg) =⇒ mon-loc fg w ∩ mon-c fg c = {}
by (induct rule: trcl-rev-pair-induct) (unfold mon-loc-def , auto split: el-step.split

dest!: ntrp-mon-loc-e-no-ctx ntrp-mon-increasing simp add: mon-ww-unconc)

The next lemmas are rules how to add or remove threads while preserving
the executability of a path
lemma (in flowgraph) ntrs-modify-context-s:

assumes A: ((s,c),ee,(s ′,c ′))∈ntrs fg
and B: mon-w fg ee ∩ mon-c fg cn = {}
shows ∃ csp. c ′=csp+c ∧ mon-c fg csp={} ∧ ((s,cn),ee,(s ′,csp+cn))∈ntrs fg

proof −
from A obtain p r u u ′ v w where S : s=u#r ee=LCall p#w s ′=v#u ′#r

((u#r ,c),LCall p,(entry fg p#u ′#r ,c))∈trss fg (([entry fg p],c),w,([v],c ′))∈trcl (trss
fg) by (blast elim!: ntrs.cases[simplified])
with trss-modify-context-s[OF S(4)] B have ((u#r ,cn),LCall p,(entry fg p#u ′#r ,cn))∈trss

fg by auto
moreover from S trss-modify-context[OF S(5)] B obtain csp where c ′=csp+c

mon-c fg csp = {} (([entry fg p],cn),w,([v],csp+cn))∈trcl (trss fg) by auto
ultimately show ?thesis using S by (auto intro!: ntrs-step)

qed

lemma (in flowgraph) ntrs-modify-context[rule-format]:
[[((s,c),w,(s ′,c ′))∈trcl (ntrs fg)]]
=⇒ ∀ cn. mon-ww fg w ∩ mon-c fg cn = {}
−→ (∃ csp. c ′=csp+c ∧ mon-c fg csp = {} ∧

((s,cn),w,(s ′,csp+cn))∈trcl (ntrs fg))
proof (induct rule: trcl-pair-induct)

case empty thus ?case by simp
next

case (cons s c e sh ch w s ′ c ′) note IHP=this show ?case
proof (intro allI impI)

fix cn
assume MON : mon-ww fg (e # w) ∩ mon-c fg cn = {}

64

from ntrs-modify-context-s[OF IHP(1)] MON obtain csph where S1 : ch =
csph + c mon-c fg csph={} ((s, cn), e, sh, csph + cn) ∈ ntrs fg by auto

with MON have mon-ww fg w ∩ mon-c fg (csph+cn) = {} by (auto simp add:
mon-c-unconc)

with IHP(3)[rule-format] obtain csp where S2 : c ′=csp+ch mon-c fg csp={}
((sh,csph+cn),w,(s ′,csp+(csph+cn)))∈trcl (ntrs fg) by blast

from S1 S2 have c ′=(csp+csph)+c mon-c fg (csp+csph)={} ((s,cn),e#w,(s ′,(csp+csph)+cn))∈trcl
(ntrs fg) by (auto simp add: union-assoc mon-c-unconc)

thus ∃ csp. c ′ = csp + c ∧ mon-c fg csp = {} ∧ ((s, cn), e # w, s ′, csp + cn)
∈ trcl (ntrs fg) by blast

qed
qed

lemma ntrs-xchange-context-s:
assumes A: ((s,c),ee,(s ′,csp+c))∈ntrs fg
and B: mon-c fg cn ⊆ mon-c fg c
shows ((s,cn),ee,(s ′,csp+cn))∈ntrs fg

proof −
obtain p r u u ′ v w where S : s=u#r ee=LCall p#w s ′=v#u ′#r ((u#r ,c),LCall

p,(entry fg p#u ′#r ,c))∈trss fg (([entry fg p],c),w,([v],csp+c))∈trcl (trss fg)
proof −

from ntrs.cases[OF A, simplified] obtain ce ce ′ p r u u ′ v w where s = u #
r c = ce ee = LCall p # w s ′ = v # u ′ # r csp + ce = ce ′ ((u # r , ce), LCall p,
entry fg p # u ′ # r , ce) ∈ trss fg

(([entry fg p], ce), w, [v], ce ′) ∈ trcl (trss fg) .
hence s=u#r ee=LCall p#w s ′=v#u ′#r ((u#r ,c),LCall p,(entry fg p#u ′#r ,c))∈trss

fg (([entry fg p],c),w,([v],csp+c))∈trcl (trss fg) by auto
then show ?thesis ..

qed
from ntrs-step[simplified, OF trss-xchange-context-s[where csp={#}, simplified,

OF S(4) B] trss-xchange-context[OF S(5) B]] S show ?thesis by simp
qed

lemma ntrs-replace-context-s:
assumes A: ((s,c+cr),ee,(s ′,c ′+cr))∈ntrs fg
and B: mon-c fg crn ⊆ mon-c fg cr
shows ((s,c+crn),ee,(s ′,c ′+crn))∈ntrs fg

proof −
from ntrs-c-cases-s[OF A] obtain csp where G: c ′+cr = csp+(c+cr) . hence

F : c ′=csp+c by (auto simp add: union-assoc[symmetric])
from B have MON : mon-c fg (c+crn) ⊆ mon-c fg (c+cr) by (auto simp add:

mon-c-unconc)
from ntrs-xchange-context-s[OF - MON] A G have ((s,c+crn),ee,(s ′,csp+(c+crn)))∈ntrs

fg by auto
with F show ?thesis by (simp add: union-assoc)

qed

lemma (in flowgraph) ntrs-xchange-context: !!s c c ′ cn. [[
((s,c),ww,(s ′,c ′))∈trcl (ntrs fg);

65

mon-c fg cn ⊆ mon-c fg c
]] =⇒ ∃ csp.

c ′=csp+c ∧ ((s,cn),ww,(s ′,csp+cn))∈trcl (ntrs fg)
proof (induct ww)

case Nil note CASE=this
thus ?case by (auto intro!: exI [of - {#}])

next
case (Cons ee ww) note IHP=this
then obtain sh ch where SPLIT : ((s,c),ee,(sh,ch))∈ntrs fg ((sh,ch),ww,(s ′,c ′))∈trcl

(ntrs fg) by (fast dest: trcl-uncons)
from ntrs-c-cases-s[OF SPLIT (1)] obtain csph where CHFMT : ch=csph+c !!s.

s ∈# csph =⇒ ∃ p u v. s=[entry fg p] ∧ (u, Spawn p, v) ∈ edges fg ∧ initialproc
fg p by blast
with ntrs-xchange-context-s SPLIT (1) IHP(3) have ((s,cn),ee,(sh,csph+cn))∈ntrs

fg by blast
also
from c-of-initial-no-mon CHFMT (2) have CSPH-NO-MON : mon-c fg csph =
{} by auto

with IHP(3) CHFMT have 1 : mon-c fg (csph+cn) ⊆ mon-c fg ch by (auto
simp add: mon-c-unconc)

from IHP(1)[OF SPLIT (2) this] obtain csp where C ′FMT : c ′=csp+ch and
SND: ((sh,csph+cn),ww,(s ′,csp+(csph+cn)))∈trcl (ntrs fg) by blast

note SND
finally have ((s, cn), ee # ww, s ′, (csp + csph) + cn) ∈ trcl (ntrs fg) by (simp

add: union-assoc)
moreover from CHFMT (1) C ′FMT have c ′=(csp+csph)+c by (simp add:

union-assoc)
ultimately show ?case by blast

qed

lemma (in flowgraph) ntrs-replace-context:
assumes A: ((s,c+cr),ww,(s ′,c ′+cr))∈trcl (ntrs fg)
and B: mon-c fg crn ⊆ mon-c fg cr
shows ((s,c+crn),ww,(s ′,c ′+crn))∈trcl (ntrs fg)

proof −
from ntrs-c-cases[OF A] obtain csp where G: c ′+cr = csp+(c+cr) . hence

F : c ′=csp+c by (auto simp add: union-assoc[symmetric])
from B have MON : mon-c fg (c+crn) ⊆ mon-c fg (c+cr) by (auto simp add:

mon-c-unconc)
from ntrs-xchange-context[OF A MON] G have ((s,c+crn),ww,(s ′,csp+(c+crn)))∈trcl

(ntrs fg) by auto
with F show ?thesis by (simp add: union-assoc)

qed

lemma (in flowgraph) ntr-add-context-s:
assumes A: (c,e,c ′)∈ntr fg
and B: mon-w fg e ∩ mon-c fg cn = {}
shows (c+cn,e,c ′+cn)∈ntr fg

66

proof −
from gtrE [OF A] obtain s ce s ′ ce ′ where NTRS : c = add-mset s ce c ′ =

add-mset s ′ ce ′ ((s, ce), e, s ′, ce ′) ∈ ntrs fg .
from ntrs-mon-e-no-ctx[OF NTRS(3)] B have M : mon-w fg e ∩ (mon-c fg

(ce+cn)) = {} by (auto simp add: mon-c-unconc)
from ntrs-modify-context-s[OF NTRS(3) M] have ((s,ce+cn),e,(s ′,ce ′+cn))∈ntrs

fg by (auto simp add: union-assoc)
with NTRS show ?thesis by (auto simp add: union-assoc intro: gtrI-s)

qed

lemma (in flowgraph) ntr-add-context:
[[(c,w,c ′)∈trcl (ntr fg); mon-ww fg w ∩ mon-c fg cn = {}]]
=⇒ (c+cn,w,c ′+cn)∈trcl (ntr fg)

by (induct rule: trcl.induct) (simp, force dest: ntr-add-context-s)

lemma (in flowgraph) ntrs-add-context-s:
assumes A: ((s,c),e,(s ′,c ′))∈ntrs fg
and B: mon-w fg e ∩ mon-c fg cn = {}
shows ((s,c+cn),e,(s ′,c ′+cn))∈ntrs fg
using ntrs-mon-e-no-ctx[OF A] ntrs-modify-context-s[OF A, of c+cn] B by (force

simp add: mon-c-unconc union-ac)

lemma (in flowgraph) ntrp-add-context-s:
[[((s,c),e,(s ′,c ′))∈ntrp fg; mon-w fg (le-rem-s e) ∩ mon-c fg cn = {}]]
=⇒ ((s,c+cn),e,(s ′,c ′+cn))∈ntrp fg
apply (erule gtrp.cases)
by (auto dest: ntrs-add-context-s intro!: gtrp.intros)

lemma (in flowgraph) ntrp-add-context: [[
((s,c),w,(s ′,c ′))∈trcl (ntrp fg);
mon-ww fg (map le-rem-s w) ∩ mon-c fg cn = {}

]] =⇒ ((s,c+cn),w,(s ′,c ′+cn))∈trcl (ntrp fg)
by (induct rule: trcl-pair-induct) (simp, force dest: ntrp-add-context-s)

8.4.4 Altering the local stack
lemma ntrs-stack-comp-s:

assumes A: ((s,c),ee,(s ′,c ′))∈ntrs fg
shows ((s@r ,c),ee,(s ′@r ,c ′))∈ntrs fg
using A
by (auto dest: trss-stack-comp trss-stack-comp-s elim!: ntrs.cases intro!: ntrs-step[simplified])

lemma ntrs-stack-comp: ((s,c),ww,(s ′,c ′))∈trcl (ntrs fg)
=⇒ ((s@r ,c),ww,(s ′@r ,c ′))∈trcl (ntrs fg)
by (induct rule: trcl-pair-induct) (auto intro!: trcl.cons[OF ntrs-stack-comp-s])

lemma (in flowgraph) ntrp-stack-comp-s:
assumes A: ((s,c),ee,(s ′,c ′))∈ntrp fg

67

and B: mon-s fg r ∩ mon-env fg [ee] = {}
shows ((s@r ,c),ee,(s ′@r ,c ′))∈ntrp fg
using A

proof (cases rule: gtrp.cases)
case gtrp-loc then obtain e where CASE : ee=LOC e ((s,c),e,(s ′,c ′))∈ntrs fg

by auto
hence ((s@r ,c),e,(s ′@r ,c ′))∈ntrs fg by (blast dest: ntrs-stack-comp-s)
with CASE(1) show ?thesis by (auto intro: gtrp.gtrp-loc)

next
case gtrp-env then obtain sm ce sm ′ ce ′ e where CASE : s ′=s c={#sm#}+ce

c ′={#sm ′#}+ce ′ ee=ENV e ((sm,{#s#}+ce),e,(sm ′,{#s#}+ce ′))∈ntrs fg by auto
from ntrs-modify-context-s[OF CASE(5), where cn={#s@r#}+ce] ntrs-mon-e-no-ctx[OF

CASE(5)] B CASE(4) obtain csp where
ADD: {#s#} + ce ′ = csp + ({#s#} + ce) mon-c fg csp = {} ((sm, {#s

@ r#} + ce), e, sm ′, csp + ({#s @ r#} + ce)) ∈ ntrs fg by (auto simp add:
mon-c-unconc mon-s-unconc)

moreover from ADD(1) have {#s#}+ce ′={#s#}+(csp+ce) by (simp add:
union-ac) hence ce ′=csp+ce by simp

ultimately have ((sm, {#s @ r#} + ce), e, sm ′, ({#s @ r#} + ce ′)) ∈ ntrs
fg by (simp add: union-ac)

with CASE(1 ,2 ,3 ,4) show ?thesis by (auto intro: gtrp.gtrp-env)
qed

lemma (in flowgraph) ntrp-stack-comp:
[[((s,c),ww,(s ′,c ′))∈trcl (ntrp fg); mon-s fg r ∩ mon-env fg ww = {}]]
=⇒ ((s@r ,c),ww,(s ′@r ,c ′))∈trcl (ntrp fg)

by (induct rule: trcl-pair-induct) (auto intro!: trcl.cons[OF ntrp-stack-comp-s])

lemma ntrs-stack-top-decomp-s:
assumes A: ((u#r ,c),ee,(s ′,c ′))∈ntrs fg
and EX : !!v u ′ p. [[

s ′=v#u ′#r ;
(([u],c),ee,([v,u ′],c ′))∈ntrs fg;
(u,Call p,u ′)∈edges fg

]] =⇒ P
shows P

using A
proof (cases rule: ntrs.cases)

case ntrs-step then obtain u ′ v p w where CASE : ee=LCall p#w s ′=v#u ′#r
((u#r ,c),LCall p,(entry fg p#u ′#r ,c))∈trss fg (([entry fg p],c),w,([v],c ′))∈trcl (trss
fg) by (simp)

from trss-stack-decomp-s[where s=[u], simplified, OF CASE(3)] have SDC :
(([u], c), LCall p, ([entry fg p, u ′], c)) ∈ trss fg by auto
with CASE(1 ,4) have (([u],c),ee,([v,u ′],c ′))∈ntrs fg by (auto intro!: ntrs.ntrs-step)
moreover from SDC have (u,Call p,u ′)∈edges fg by (auto elim!: trss.cases)
ultimately show ?thesis using CASE(2) by (blast intro!: EX)

qed

lemma ntrs-stack-decomp-s:

68

assumes A: ((u#s@r ,c),ee,(s ′,c ′))∈ntrs fg
and EX : !!v u ′ p. [[

s ′=v#u ′#s@r ;
((u#s,c),ee,(v#u ′#s,c ′))∈ntrs fg;
(u,Call p,u ′)∈edges fg

]] =⇒ P
shows P
apply (rule ntrs-stack-top-decomp-s[OF A])
apply (rule EX)
apply (auto dest: ntrs-stack-comp-s)
done

lemma ntrs-stack-decomp: !!u s r c P. [[
((u#s@r ,c),ww,(s ′,c ′))∈trcl (ntrs fg);
!!v rr . [[s ′=v#rr@r ; ((u#s,c),ww,(v#rr ,c ′))∈trcl (ntrs fg)]] =⇒ P

]] =⇒ P
proof (induct ww)

case Nil thus ?case by fastforce
next
case (Cons e w) from Cons.prems show ?case proof (cases rule: trcl-pair-unconsE)

case (split sh ch)
from ntrs-stack-decomp-s[OF split(1)] obtain vh uh p where F : sh = vh#uh#s@r

((u#s, c), e, vh#uh#s, ch) ∈ ntrs fg (u, Call p, uh) ∈ edges fg by blast
from F(1) split(2) Cons.hyps[of vh uh#s r ch] obtain v ′ rr where S :

s ′=v ′#rr@r ((vh#uh#s,ch),w,(v ′#rr ,c ′))∈trcl (ntrs fg) by auto
from trcl.cons[OF F(2) S(2)] S(1) Cons.prems(2) show ?thesis by blast

qed
qed

lemma ntrp-stack-decomp-s:
assumes A: ((u#s@r ,c),ee,(s ′,c ′))∈ntrp fg
and EX : !!v rr . [[s ′=v#rr@r ; ((u#s,c),ee,(v#rr ,c ′))∈ntrp fg]] =⇒ P
shows P
using A

proof (cases rule: gtrp.cases)
case gtrp-loc thus ?thesis using EX by (force elim!: ntrs-stack-decomp-s intro!:

gtrp.intros)
next

case gtrp-env then obtain e ss ss ′ ce ce ′ where S : ee=ENV e s ′=u#s@r
c={#ss#}+ce c ′={#ss ′#}+ce ′ ((ss,ce+{#u#s@r#}),e,(ss ′,ce ′+{#u#s@r#}))∈ntrs
fg by (auto simp add: union-ac)

from ntrs-replace-context-s[OF S(5), where crn={#u#s#}] have ((ss, {#u #
s#} + ce), e, ss ′, {#u # s#} + ce ′) ∈ ntrs fg by (auto simp add: mon-s-unconc
union-ac)

with S show P by (rule-tac EX) (auto intro: gtrp.gtrp-env)
qed

lemma ntrp-stack-decomp: !!u s r c P. [[
((u#s@r ,c),ww,(s ′,c ′))∈trcl (ntrp fg);

69

!!v rr . [[s ′=v#rr@r ; ((u#s,c),ww,(v#rr ,c ′))∈trcl (ntrp fg)]] =⇒ P
]] =⇒ P

proof (induct ww)
case Nil thus ?case by fastforce

next
case (Cons e w) from Cons.prems show ?case proof (cases rule: trcl-pair-unconsE)

case (split sh ch)
from ntrp-stack-decomp-s[OF split(1)] obtain vh rrh where F : sh = vh#rrh@r

((u#s, c), e, vh#rrh, ch) ∈ ntrp fg by blast
from F(1) split(2) Cons.hyps[of vh rrh r ch] obtain v ′ rr where S : s ′=v ′#rr@r

((vh#rrh,ch),w,(v ′#rr ,c ′))∈trcl (ntrp fg) by auto
from trcl.cons[OF F(2) S(2)] S(1) Cons.prems(2) show ?thesis by blast

qed
qed

8.5 Relation to monitor consistent interleaving

In this section, we describe the relation of the consistent interleaving oper-
ator (cf. Section 2) and the macrostep-semantics.

8.5.1 Abstraction function for normalized paths

We first need to define an abstraction function that maps a macrostep on a
pair of entered and passed monitors, as required by the ⊗α-operator:
A step on a normalized paths enters the monitors of the first called procedure
and passes the monitors that occur in the following same-level path.
definition
αn fg e == if e=[] then ({},{}) else (mon-e fg (hd e), mon-w fg (tl e))

lemma αn-simps[simp]:
αn fg [] = ({},{})
αn fg (e#w) = (mon-e fg e, mon-w fg w)
by (unfold αn-def , auto)

— We also need an abstraction function for normalized loc/env-paths
definition
αnl fg e == αn fg (le-rem-s e)

lemma αnl-def ′: αnl fg == αn fg ◦ le-rem-s
by (rule eq-reflection[OF ext]) (auto simp add: αnl-def)

— These are some ad-hoc simplifications, with the aim at converting αnl back to
αn
lemma αnl-simps[simp]:
αnl fg (ENV x) = αn fg x
αnl fg (LOC x) = αn fg x
by (unfold αnl-def , auto)

70

lemma αnl-simps1 [simp]:
(αnl fg) ◦ ENV = αn fg
(αnl fg) ◦ LOC = αn fg
by (unfold αnl-def ′ comp-def) (simp-all)

lemma αn-αnl: (αn fg) ◦ le-rem-s = αnl fg
unfolding αnl-def ′[symmetric] ..

lemma αn-fst-snd[simp]: fst (αn fg w) ∪ snd (αn fg w) = mon-w fg w
by (induct w) auto

lemma mon-pl-of-αnl: mon-pl (map (αnl fg) w) = mon-loc fg w ∪ mon-env fg w
by (induct w) (auto split: el-step.split)

We now derive specialized introduction lemmas for ⊗αn fg

lemma cil-αn-cons-helper : mon-pl (map (αn fg) wb) = mon-ww fg wb
apply (unfold mon-pl-def)
apply (induct wb)
apply simp-all
apply (unfold mon-ww-def)
apply (subst foldl-un-empty-eq)
apply (case-tac a)
apply simp-all
done

lemma cil-αnl-cons-helper :
mon-pl (map (αnl fg) wb) = mon-ww fg (map le-rem-s wb)
by (simp add: αn-αnl cil-αn-cons-helper [symmetric])

lemma cil-αn-cons1 : [[w∈wa⊗αn fgwb; fst (αn fg e) ∩ mon-ww fg wb = {}]]
=⇒ e#w ∈ e#wa ⊗αn fg wb
apply (rule cil-cons1)
apply assumption
apply (subst cil-αn-cons-helper)
apply assumption

done

lemma cil-αn-cons2 : [[w∈wa⊗αn fgwb; fst (αn fg e) ∩ mon-ww fg wa = {}]]
=⇒ e#w ∈ wa ⊗αn fg e#wb
apply (rule cil-cons2)
apply assumption
apply (subst cil-αn-cons-helper)
apply assumption

done

8.5.2 Monitors
lemma (in flowgraph) ntrs-mon-s:

assumes A: ((s,c),e,(s ′,c ′))∈ntrs fg
shows mon-s fg s ′ = mon-s fg s ∪ fst (αn fg e)

proof −

71

from A obtain u r p u ′ w v where DET : s=u#r e=LCall p#w ((u#r ,c),LCall
p,(entry fg p#u ′#r ,c))∈trss fg (([entry fg p],c),w,([v],c ′))∈trcl (trss fg) s ′=v#u ′#r
by (blast elim!: ntrs.cases[simplified])
hence mon-n fg u = mon-n fg u ′ by (auto elim!: trss.cases dest: mon-n-same-proc

edges-part)
with trss-bot-proc-const[where s=[] and s ′=[], simplified, OF DET (4)] DET (1 ,2 ,5)

show ?thesis by (auto simp add: mon-n-def αn-def)
qed

corollary (in flowgraph) ntrs-called-mon:
assumes A: ((s,c),e,(s ′,c ′))∈ntrs fg
shows fst (αn fg e) ⊆ mon-s fg s ′

using ntrs-mon-s[OF A] by auto

lemma (in flowgraph) ntr-mon-s:
(c,e,c ′)∈ntr fg =⇒ mon-c fg c ′ = mon-c fg c ∪ fst (αn fg e)
by (erule gtrE) (auto simp add: mon-c-unconc ntrs-c-no-mon-s ntrs-mon-s)

lemma (in flowgraph) ntrp-mon-s:
assumes A: ((s,c),e,(s ′,c ′))∈ntrp fg
shows mon-c fg (add-mset s ′ c ′) = mon-c fg (add-mset s c) ∪ fst (αnl fg e)
using ntr-mon-s[OF gtrp2gtr-s[OF A]] by (unfold αnl-def)

8.5.3 Interleaving theorem

In this section, we show that the consistent interleaving operator describes
the intuition behind interleavability of normalized paths. We show: Two
paths are simultaneously executable if and only if they are consistently in-
terleavable and the monitors of the initial configurations are compatible

The split lemma splits an execution from a context of the form ca + cb into
two interleavable executions from ca and cb respectively. While further down
we prove this lemma for loc/env-path, which is more general but also more
complicated, we start with the proof for paths of the multiset-semantics for
illustrating the idea.
lemma (in flowgraph) ntr-split:
!!ca cb. [[(ca+cb,w,c ′)∈trcl (ntr fg); valid fg (ca+cb)]] =⇒
∃ ca ′ cb ′ wa wb.
c ′=ca ′+cb ′ ∧
w∈(wa⊗αn fgwb) ∧
mon-c fg ca ∩ (mon-c fg cb ∪ mon-ww fg wb) = {} ∧
mon-c fg cb ∩ (mon-c fg ca ∪ mon-ww fg wa) = {} ∧
(ca,wa,ca ′)∈trcl (ntr fg) ∧ (cb,wb,cb ′)∈trcl (ntr fg)

proof (induct w) — The proof is done by induction on the path
— If the path is empty, the lemma is trivial

case Nil thus ?case by − (rule exI [of - ca], rule exI [of - cb], intro exI [of - []],
auto simp add: valid-unconc)
next

72

case (Cons e w) note IHP=this
— We split a non-empty paths after the first (macro) step

then obtain ch where SPLIT : (ca+cb,e,ch)∈ntr fg (ch,w,c ′)∈trcl (ntr fg) by
(fast dest: trcl-uncons)

— Pick the stack that made the first step
from gtrE [OF SPLIT (1)] obtain s ce sh ceh where NTRS : ca+cb=add-mset s

ce ch=add-mset sh ceh ((s,ce),e,(sh,ceh))∈ntrs fg .
— And separate the threads that where spawned during the first step from the

ones that where already there
then obtain csp where CEHFMT : ceh=csp+ce mon-c fg csp={} by (auto elim!:

ntrs-c-cases-s intro!: c-of-initial-no-mon)

— Needed later: The first macrostep uses no monitors already owned by threads
that where already there

from ntrs-mon-e-no-ctx[OF NTRS(3)] have MONED: mon-w fg e ∩ mon-c fg
ce = {} by (auto simp add: mon-c-unconc)

— Needed later: The intermediate configuration is valid
from ntr-valid-preserve-s[OF SPLIT (1) IHP(3)] have CHVALID: valid fg ch .

— We make a case distinction whether the thread that made the first step was in
the left or right part of the initial configuration
from NTRS(1)[symmetric] show ?case proof (cases rule: mset-unplusm-dist-cases)

— The first step was on a thread in the left part of the initial configuration
case left note CASE=this
— We can write the intermediate configuration so that it is suited for the

induction hypothesis
with CEHFMT NTRS have CHFMT : ch=({#sh#}+csp+(ca−{#s#}))+cb

by (simp add: union-ac)
— and by the induction hypothesis, we split the path from the intermediate

configuration
with IHP(1) SPLIT (2) CHVALID obtain ca ′ cb ′ wa wb where IHAPP:

c ′=ca ′+cb ′

w∈wa⊗αn fgwb
mon-c fg ({#sh#}+csp+(ca−{#s#})) ∩ (mon-c fg cb ∪ mon-ww fg wb)={}
mon-c fg cb ∩ (mon-c fg ({#sh#}+csp+(ca−{#s#})) ∪ mon-ww fg wa)={}
({#sh#}+csp+(ca−{#s#}),wa,ca ′)∈trcl (ntr fg)
(cb,wb,cb ′)∈trcl (ntr fg)
by blast

moreover
— It remains to show that we can execute the first step with the right part of

the configuration removed
have FIRSTSTEP: (ca,e,{#sh#}+csp+(ca−{#s#}))∈ntr fg
proof −

from CASE(2) have mon-c fg (ca−{#s#}) ⊆ mon-c fg ce by (auto simp
add: mon-c-unconc)

with ntrs-xchange-context-s NTRS(3) CEHFMT CASE(2) have ((s,ca−{#s#}),e,(sh,csp+(ca−{#s#})))∈ntrs
fg by blast

from gtrI-s[OF this] CASE(1) show ?thesis by (auto simp add: union-assoc)

73

qed
with IHAPP(5) have (ca,e#wa,ca ′)∈trcl (ntr fg) by simp
moreover
— and that we can prepend the first step to the interleaving
have e#w ∈ e#wa ⊗αn fg wb
proof −

from ntrs-called-mon[OF NTRS(3)] have fst (αn fg e) ⊆ mon-s fg sh .
with IHAPP(3) have fst (αn fg e) ∩ mon-ww fg wb = {} by (auto simp add:

mon-c-unconc)
from cil-αn-cons1 [OF IHAPP(2) this] show ?thesis .

qed
moreover
— and that the monitors of the initial context does not interfere
have mon-c fg ca ∩ (mon-c fg cb ∪ mon-ww fg wb) = {} mon-c fg cb ∩ (mon-c

fg ca ∪ mon-ww fg (e#wa)) = {}
proof −

from ntr-mon-increasing-s[OF FIRSTSTEP] IHAPP(3) show mon-c fg ca
∩ (mon-c fg cb ∪ mon-ww fg wb) = {} by auto

from MONED CASE have mon-c fg cb ∩ mon-w fg e = {} by (auto simp
add: mon-c-unconc)

with ntr-mon-increasing-s[OF FIRSTSTEP] IHAPP(4) show mon-c fg cb ∩
(mon-c fg ca ∪ mon-ww fg (e#wa)) = {} by auto

qed
ultimately show ?thesis by blast

next
— The other case, that is if the first step was made on a thread in the right

part of the configuration, is shown completely analogously
case right note CASE=this
with CEHFMT NTRS have CHFMT : ch=ca+({#sh#}+csp+(cb−{#s#}))

by (simp add: union-ac)
with IHP(1) SPLIT (2) CHVALID obtain ca ′ cb ′ wa wb where IHAPP:

c ′=ca ′+cb ′ w∈wa⊗αn fgwb mon-c fg ca ∩ (mon-c fg ({#sh#}+csp+(cb−{#s#}))
∪ mon-ww fg wb)={}

mon-c fg ({#sh#}+csp+(cb−{#s#})) ∩ (mon-c fg ca ∪ mon-ww fg wa)={}
(ca,wa,ca ′)∈trcl (ntr fg) ({#sh#}+csp+(cb−{#s#}),wb,cb ′)∈trcl (ntr fg)

by blast
moreover
have FIRSTSTEP: (cb,e,{#sh#}+csp+(cb−{#s#}))∈ntr fg proof −

from CASE(2) have mon-c fg (cb−{#s#}) ⊆ mon-c fg ce by (auto simp
add: mon-c-unconc)

with ntrs-xchange-context-s NTRS(3) CEHFMT CASE(2) have ((s,cb−{#s#}),e,(sh,csp+(cb−{#s#})))∈ntrs
fg by blast

from gtrI-s[OF this] CASE(1) show ?thesis by (auto simp add: union-assoc)
qed
with IHAPP(6) have PA: (cb,e#wb,cb ′)∈trcl (ntr fg) by simp
moreover
have e#w ∈ wa ⊗αn fg e#wb
proof −

from ntrs-called-mon[OF NTRS(3)] have fst (αn fg e) ⊆ mon-s fg sh .

74

with IHAPP(4) have fst (αn fg e) ∩ mon-ww fg wa = {} by (auto simp add:
mon-c-unconc)

from cil-αn-cons2 [OF IHAPP(2) this] show ?thesis .
qed
moreover
have mon-c fg cb ∩ (mon-c fg ca ∪ mon-ww fg wa) = {} mon-c fg ca ∩ (mon-c

fg cb ∪ mon-ww fg (e#wb)) = {}
proof −

from ntr-mon-increasing-s[OF FIRSTSTEP] IHAPP(4) show mon-c fg cb
∩ (mon-c fg ca ∪ mon-ww fg wa) = {} by auto

from MONED CASE have mon-c fg ca ∩ mon-w fg e = {} by (auto simp
add: mon-c-unconc)

with ntr-mon-increasing-s[OF FIRSTSTEP] IHAPP(3) show mon-c fg ca ∩
(mon-c fg cb ∪ mon-ww fg (e#wb)) = {} by auto

qed
ultimately show ?thesis by blast

qed
qed

The next lemma is a more general version of flowgraph.ntr-split for the
semantics with a distinguished local thread. The proof follows exactly the
same ideas, but is more complex.
lemma (in flowgraph) ntrp-split:
!!s c1 c2 s ′ c ′.
[[((s,c1+c2),w,(s ′,c ′))∈trcl (ntrp fg); valid fg ({#s#}+c1+c2)]]
=⇒ ∃w1 w2 c1 ′ c2 ′.

w ∈ w1 ⊗αnl fg (map ENV w2) ∧
c ′=c1 ′+c2 ′ ∧
((s,c1),w1 ,(s ′,c1 ′))∈trcl (ntrp fg) ∧
(c2 ,w2 ,c2 ′)∈trcl (ntr fg) ∧
mon-ww fg (map le-rem-s w1) ∩ mon-c fg c2 = {} ∧
mon-ww fg w2 ∩ mon-c fg ({#s#}+c1) = {}

proof (induct w)
case Nil thus ?case by (auto intro: exI [of - []] exI [of - {#}])

next
case (Cons ee w) then obtain sh ch where SPLIT : ((s,c1+c2),ee,(sh,ch))∈ntrp

fg ((sh,ch),w,(s ′,c ′))∈trcl (ntrp fg) by (fast dest: trcl-uncons)
from SPLIT (1) show ?case proof (cases rule: gtrp.cases)
case gtrp-loc then obtain e where CASE : ee=LOC e ((s,c1+c2),e,(sh,ch))∈ntrs

fg by auto
from ntrs-c-cases-s[OF CASE(2)] obtain csp where CHFMT : ch=(csp+c1)+c2∧
s. s ∈# csp =⇒ ∃ p u v. s = [entry fg p] ∧ (u, Spawn p, v) ∈ edges fg ∧ initialproc

fg p by (simp add: union-assoc, blast)
with c-of-initial-no-mon have CSPNOMON : mon-c fg csp = {} by auto
from ntr-valid-preserve-s[OF gtrI-s, OF CASE(2)] Cons.prems(2) CHFMT

have VALID: valid fg ({#sh#}+(csp+c1)+c2) by (simp add: union-ac)
from Cons.hyps[OF - VALID, of s ′ c ′] CHFMT (1) SPLIT (2) obtain w1 w2

c1 ′ c2 ′ where IHAPP: w ∈ w1 ⊗αnl fg (map ENV w2) c ′ = c1 ′ + c2 ′ ((sh, csp
+ c1), w1 , s ′, c1 ′) ∈ trcl (ntrp fg)

75

(c2 , w2 , c2 ′) ∈ trcl (ntr fg) mon-ww fg (map le-rem-s w1) ∩ mon-c fg c2 =
{} mon-ww fg w2 ∩ mon-c fg ({#sh#} + (csp + c1)) = {} by blast

have ee#w ∈ ee#w1 ⊗αnl fg (map ENV w2) proof (rule cil-cons1)
from ntrp-mon-env-w-no-ctx[OF SPLIT (2), unfolded mon-env-def] have

mon-ww fg (map le-rem-s (env w)) ∩ mon-s fg sh = {} .
moreover have mon-ww fg w2 ⊆ mon-ww fg (map le-rem-s (env w)) proof

−
from cil-subset-il IHAPP(1) ileq-interleave have map ENV w2 � w by

blast
from le-list-filter [OF this] have env (map ENV w2) � env w by (unfold

env-def) blast
hence map ENV w2 � env w by (unfold env-def) simp
from le-list-map[OF this, of le-rem-s] have w2 � map le-rem-s (env w) by

simp
thus ?thesis by (rule mon-ww-ileq)

qed
ultimately have mon-ww fg w2 ∩ mon-s fg sh = {} by blast

with ntrs-mon-s[OF CASE(2)] CASE(1) show fst (αnl fg ee) ∩ mon-pl (map
(αnl fg) (map ENV w2)) = {} by (auto simp add: cil-αn-cons-helper)

qed (rule IHAPP(1))
moreover
have ((s,c1),ee#w1 ,(s ′,c1 ′))∈trcl (ntrp fg) proof −
from ntrs-xchange-context-s[of s c1+c2 e sh csp fg c1] CASE(2) CHFMT (1)

have ((s, c1), e, sh, csp + c1) ∈ ntrs fg by (auto simp add: mon-c-unconc
union-ac)

with CASE(1) have ((s, c1), ee, sh, csp + c1) ∈ ntrp fg by (auto intro:
gtrp.gtrp-loc)

also note IHAPP(3)
finally show ?thesis .

qed
moreover from CASE(1) ntrs-mon-e-no-ctx[OF CASE(2)] IHAPP(5) have

mon-ww fg (map le-rem-s (ee#w1)) ∩ mon-c fg c2 = {} by (auto simp add:
mon-c-unconc)

moreover from ntrs-mon-increasing-s[OF CASE(2)] CHFMT (1) IHAPP(6)
have mon-ww fg w2 ∩ mon-c fg ({#s#} + c1) = {} by (auto simp add: mon-c-unconc)

moreover note IHAPP(2 ,4)
ultimately show ?thesis by blast

next
case gtrp-env then obtain e ss ce ssh ceh where CASE : ee=ENV e c1+c2=add-mset

ss ce sh=s ch=add-mset ssh ceh ((ss,add-mset s ce),e,(ssh,add-mset s ceh))∈ntrs
fg by auto

from ntrs-c-cases-s[OF CASE(5)] obtain csp where HFMT : add-mset s ceh
= csp + (add-mset s ce)

∧
s. s ∈# csp =⇒ ∃ p u v. s = [entry fg p] ∧ (u, Spawn

p, v) ∈ edges fg ∧ initialproc fg p by (blast)
from union-left-cancel[of {#s#} ceh csp+ce] HFMT (1) have CEHFMT :

ceh=csp+ce by (auto simp add: union-ac)
from HFMT (2) have CHNOMON : mon-c fg csp = {} by (blast intro!:

c-of-initial-no-mon)
from CASE(2)[symmetric] show ?thesis proof (cases rule: mset-unplusm-dist-cases)

76

— Made an env-step in c1, this is considered the „left” part. Apply induction
hypothesis with original(!) local thread and the spawned threads on the left side

case left
with HFMT (1) CASE(4) CEHFMT have CHFMT ′: ch=(csp+{#ssh#}+(c1−{#ss#}))

+ c2 by (simp add: union-ac)
have VALID: valid fg ({#s#} + (csp+{#ssh#}+(c1−{#ss#})) + c2) proof

−
from ntr-valid-preserve-s[OF gtrI-s, OF CASE(5)] Cons.prems(2) CASE(2)

have valid fg ({#ssh#} + ({#s#} + ceh)) by (simp add: union-assoc add-mset-commute)
with left CEHFMT show ?thesis by (auto simp add: union-ac add-mset-commute)
qed
from Cons.hyps[OF - VALID,of s ′ c ′] CHFMT ′ SPLIT (2) CASE(3) obtain

w1 w2 c1 ′ c2 ′ where IHAPP: w ∈ w1 ⊗αnl fg map ENV w2 c ′ = c1 ′ + c2 ′

((s, csp + {#ssh#} + (c1 − {#ss#})), w1 , s ′, c1 ′) ∈ trcl (ntrp fg) (c2 ,
w2 , c2 ′) ∈ trcl (ntr fg)

mon-ww fg (map le-rem-s w1) ∩ mon-c fg c2 = {} mon-ww fg w2 ∩ mon-c
fg ({#s#} + (csp + {#ssh#} + (c1 − {#ss#}))) = {} by blast

have ee # w ∈ (ee#w1) ⊗αnl fg map ENV w2 proof (rule cil-cons1)
from IHAPP(6) have mon-ww fg w2 ∩ mon-s fg ssh = {} by (auto simp

add: mon-c-unconc)
moreover from ntrs-mon-s[OF CASE(5)] CASE(1) have fst (αnl fg ee)

⊆ mon-s fg ssh by auto
ultimately have fst (αnl fg ee) ∩ mon-ww fg w2 = {} by auto
moreover have mon-pl (map (αnl fg) (map ENV w2)) = mon-ww fg w2

by (simp add: cil-αn-cons-helper)
ultimately show fst (αnl fg ee) ∩ mon-pl (map (αnl fg) (map ENV w2))

= {} by auto
qed (rule IHAPP(1))
moreover
have SS : ((s,c1),ee,(s,csp + {#ssh#} + (c1 − {#ss#})))∈ntrp fg proof −
from left HFMT (1) have {#s#}+ce={#s#}+(c1−{#ss#})+c2 {#s#}+ceh

= csp+({#s#}+(c1−{#ss#})+c2) by (simp-all add: union-ac)
with CASE(5) ntrs-xchange-context-s[of ss {#s#}+(c1−{#ss#})+c2 e

ssh csp fg ({#s#}+(c1−{#ss#}))] have
((ss, add-mset s (c1 − {#ss#})), e, ssh, add-mset s (csp+(c1 − {#ss#})))

∈ ntrs fg by (auto simp add: mon-c-unconc union-ac)
from gtrp.gtrp-env[OF this] left(1)[symmetric] CASE(1) show ?thesis by

(simp add: union-ac)
qed
from trcl.cons[OF this IHAPP(3)] have ((s, c1), ee # w1 , s ′, c1 ′) ∈ trcl

(ntrp fg) .
moreover

from ntrs-mon-e-no-ctx[OF CASE(5)] left CASE(1) IHAPP(5) have mon-ww
fg (map le-rem-s (ee#w1)) ∩ mon-c fg c2 = {} by (auto simp add: mon-c-unconc)

moreover
from ntrp-mon-increasing-s[OF SS] IHAPP(6) have mon-ww fg w2 ∩ mon-c

fg ({#s#} + c1) = {} by (auto simp add: mon-c-unconc)
moreover note IHAPP(2 ,4)
ultimately show ?thesis by blast

77

next
— Made an env-step in c2. This is considered the right part. Induction

hypothesis is applied with original local thread and the spawned threads on the
right side

case right
with HFMT (1) CASE(4) CEHFMT have CHFMT ′: ch=c1 + (csp+{#ssh#}+(c2−{#ss#}))

by (simp add: union-ac)
have VALID: valid fg ({#s#} + c1 + ((csp+{#ssh#}+(c2−{#ss#}))))

proof −
from ntr-valid-preserve-s[OF gtrI-s, OF CASE(5)] Cons.prems(2) CASE(2)

have valid fg ({#ssh#} + ({#s#} + ceh)) by (auto simp add: union-ac add-mset-commute)
with right CEHFMT show ?thesis by (auto simp add: union-ac add-mset-commute)
qed
from Cons.hyps[OF - VALID,of s ′ c ′] CHFMT ′ SPLIT (2) CASE(3) obtain

w1 w2 c1 ′ c2 ′ where IHAPP: w ∈ w1 ⊗αnl fg map ENV w2 c ′ = c1 ′ + c2 ′

((s, c1), w1 , s ′, c1 ′) ∈ trcl (ntrp fg) (csp + {#ssh#} + (c2 − {#ss#}),
w2 , c2 ′) ∈ trcl (ntr fg)

mon-ww fg (map le-rem-s w1) ∩ mon-c fg (csp + {#ssh#} + (c2 − {#ss#}))
= {} mon-ww fg w2 ∩ mon-c fg ({#s#} + c1) = {} by blast

have ee # w ∈ w1 ⊗αnl fg map ENV (e#w2) proof (simp add: CASE(1),
rule cil-cons2)

from IHAPP(5) have mon-ww fg (map le-rem-s w1) ∩ mon-s fg ssh = {}
by (auto simp add: mon-c-unconc)

moreover from ntrs-mon-s[OF CASE(5)] CASE(1) have fst (αnl fg ee)
⊆ mon-s fg ssh by auto

ultimately have fst (αnl fg ee) ∩ mon-ww fg (map le-rem-s w1) = {} by
auto

moreover have mon-pl (map (αnl fg) w1) = mon-ww fg (map le-rem-s w1)
by (unfold αnl-def ′) (simp add: cil-αn-cons-helper [symmetric])

ultimately show fst (αnl fg (ENV e)) ∩ mon-pl (map (αnl fg) w1) = {}
using CASE(1) by auto

qed (rule IHAPP(1))
moreover
have SS : (c2 ,e,csp + {#ssh#} + (c2 − {#ss#}))∈ntr fg proof −
from right HFMT (1) have {#s#}+ce={#s#}+c1+(c2−{#ss#}) {#s#}+ceh

= csp+({#s#}+c1+(c2−{#ss#})) by (simp-all add: union-ac)
with CASE(5) ntrs-xchange-context-s[of ss {#s#}+c1+(c2−{#ss#}) e

ssh csp fg c2−{#ss#}] have
((ss, (c2 − {#ss#})), e, ssh, csp+ (c2 − {#ss#})) ∈ ntrs fg by (auto

simp add: mon-c-unconc union-ac)
from gtrI-s[OF this] right(1)[symmetric] show ?thesis by (simp add:

union-ac)
qed
from trcl.cons[OF this IHAPP(4)] have (c2 , e # w2 , c2 ′) ∈ trcl (ntr fg) .
moreover

from ntr-mon-increasing-s[OF SS] IHAPP(5) have mon-ww fg (map le-rem-s
w1) ∩ mon-c fg c2 = {} by (auto simp add: mon-c-unconc)

moreover
from ntrs-mon-e-no-ctx[OF CASE(5)] right IHAPP(6) have mon-ww fg

78

(e#w2) ∩ mon-c fg ({#s#} + c1) = {} by (auto simp add: mon-c-unconc)
moreover note IHAPP(2 ,3)
ultimately show ?thesis by blast

qed
qed

qed

— Just a check that flowgraph.ntrp-split is really a generalization of flowgraph.ntr-split:
lemma (in flowgraph) ntr-split ′:

assumes A: (ca+cb,w,c ′)∈trcl (ntr fg)
and VALID: valid fg (ca+cb)
shows ∃ ca ′ cb ′ wa wb.

c ′=ca ′+cb ′ ∧
w∈(wa⊗αn fgwb) ∧
mon-c fg ca ∩ (mon-c fg cb ∪ mon-ww fg wb) = {} ∧
mon-c fg cb ∩ (mon-c fg ca ∪ mon-ww fg wa) = {} ∧
(ca,wa,ca ′)∈trcl (ntr fg) ∧
(cb,wb,cb ′)∈trcl (ntr fg)

using A VALID by(rule ntr-split)

The unsplit lemma combines two interleavable executions. For illustration
purposes, we first prove the less general version for multiset-configurations.
The general version for loc/env-configurations is shown later.
lemma (in flowgraph) ntr-unsplit:

assumes A: w∈wa⊗αn fgwb and
B: (ca,wa,ca ′)∈trcl (ntr fg)
(cb,wb,cb ′)∈trcl (ntr fg)
mon-c fg ca ∩ (mon-c fg cb ∪ mon-ww fg wb)={}
mon-c fg cb ∩ (mon-c fg ca ∪ mon-ww fg wa)={}
shows (ca+cb,w,ca ′+cb ′)∈trcl (ntr fg)

proof −
— We have to generalize and rewrite the goal, in order to apply Isabelle’s induction

method
from A have ∀ ca cb. (ca,wa,ca ′)∈trcl (ntr fg) ∧ (cb,wb,cb ′)∈trcl (ntr fg) ∧ mon-c

fg ca ∩ (mon-c fg cb ∪ mon-ww fg wb)={} ∧ mon-c fg cb ∩ (mon-c fg ca ∪ mon-ww
fg wa)={} −→

(ca+cb,w,ca ′+cb ′)∈trcl (ntr fg)
— We prove the generalized goal by induction over the structure of consistent

interleaving
proof (induct rule: cil-set-induct-fixα)

— If both words are empty, the proposition is trivial
case empty thus ?case by simp

next
— The first macrostep of the combined path was taken from the left operand of

the interleaving
case (left e w ′ w1 ′ w2) thus ?case
proof (intro allI impI , goal-cases)

case (1 ca cb)
hence I : w ′ ∈ w1 ′ ⊗αn fg w2 fst (αn fg e) ∩ mon-pl (map (αn fg) w2) = {}

79

!!ca cb.
[[(ca, w1 ′, ca ′) ∈ trcl (ntr fg);
(cb, w2 , cb ′) ∈ trcl (ntr fg);
mon-c fg ca ∩ (mon-c fg cb ∪ mon-ww fg w2) = {};
mon-c fg cb ∩ (mon-c fg ca ∪ mon-ww fg w1 ′) = {}]] =⇒
(ca + cb, w ′, ca ′ + cb ′) ∈ trcl (ntr fg)

(ca, e # w1 ′, ca ′) ∈ trcl (ntr fg) (cb, w2 , cb ′) ∈ trcl (ntr fg)
mon-c fg ca ∩ (mon-c fg cb ∪ mon-ww fg w2) = {}
mon-c fg cb ∩ (mon-c fg ca ∪ mon-ww fg (e # w1 ′)) = {} by blast+

— Split the left path after the first step
then obtain cah where SPLIT : (ca,e,cah)∈ntr fg (cah,w1 ′,ca ′)∈trcl (ntr fg)

by (fast dest: trcl-uncons)
— and combine the first step of the left path with the initial right context
from ntr-add-context-s[OF SPLIT (1), where cn=cb] I (7) have (ca + cb, e,

cah + cb) ∈ ntr fg by auto
also
— The rest of the path is combined by using the induction hypothesis
have (cah + cb, w ′, ca ′ + cb ′) ∈ trcl (ntr fg) proof −
from I (2 ,6 ,7) ntr-mon-s[OF SPLIT (1)] have MON-CAH : mon-c fg cah ∩

(mon-c fg cb ∪ mon-ww fg w2) = {} by (cases e) (auto simp add: cil-αn-cons-helper)

with I (7) have MON-CB: mon-c fg cb ∩ (mon-c fg cah ∪ mon-ww fg w1 ′)
= {} by auto

from I (3)[OF SPLIT (2) I (5) MON-CAH MON-CB] show ?thesis .
qed
finally show ?case .

qed
next

— The first macrostep of the combined path was taken from the right path –
this case is done completely analogous

case (right e w ′ w2 ′ w1) thus ?case
proof (intro allI impI , goal-cases)

case (1 ca cb)
hence I : w ′ ∈ w1 ⊗αn fg w2 ′ fst (αn fg e) ∩ mon-pl (map (αn fg) w1) = {}
!!ca cb.

[[(ca, w1 , ca ′) ∈ trcl (ntr fg);
(cb, w2 ′, cb ′) ∈ trcl (ntr fg);
mon-c fg ca ∩ (mon-c fg cb ∪ mon-ww fg w2 ′) = {};
mon-c fg cb ∩ (mon-c fg ca ∪ mon-ww fg w1) = {}]] =⇒
(ca + cb, w ′, ca ′ + cb ′) ∈ trcl (ntr fg)

(ca, w1 , ca ′) ∈ trcl (ntr fg) (cb, e#w2 ′, cb ′) ∈ trcl (ntr fg)
mon-c fg ca ∩ (mon-c fg cb ∪ mon-ww fg (e#w2 ′)) = {}
mon-c fg cb ∩ (mon-c fg ca ∪ mon-ww fg w1) = {} by blast+

then obtain cbh where SPLIT : (cb,e,cbh)∈ntr fg (cbh,w2 ′,cb ′)∈trcl (ntr fg)
by (fast dest: trcl-uncons)

from ntr-add-context-s[OF SPLIT (1), where cn=ca] I (6) have (ca + cb, e,
ca + cbh) ∈ ntr fg by (auto simp add: union-commute)

also
have (ca + cbh, w ′, ca ′ + cb ′) ∈ trcl (ntr fg) proof −

80

from I (2 ,6 ,7) ntr-mon-s[OF SPLIT (1)] have MON-CBH : mon-c fg cbh ∩
(mon-c fg ca ∪ mon-ww fg w1) = {} by (cases e) (auto simp add: cil-αn-cons-helper)

with I (6) have MON-CA: mon-c fg ca ∩ (mon-c fg cbh ∪ mon-ww fg w2 ′)
= {} by auto

from I (3)[OF I (4) SPLIT (2) MON-CA MON-CBH] show ?thesis .
qed
finally show ?case .

qed
qed
with B show ?thesis by blast

qed

lemma (in flowgraph) ntrp-unsplit:
assumes A: w∈wa⊗αnl fg (map ENV wb) and
B: ((s,ca),wa,(s ′,ca ′))∈trcl (ntrp fg)
(cb,wb,cb ′)∈trcl (ntr fg)
mon-c fg ({#s#}+ca) ∩ (mon-c fg cb ∪ mon-ww fg wb)={}
mon-c fg cb ∩ (mon-c fg ({#s#}+ca) ∪ mon-ww fg (map le-rem-s wa))={}
shows ((s,ca+cb),w,(s ′,ca ′+cb ′))∈trcl (ntrp fg)

proof −
{ fix wb ′

have w∈wa⊗αnl fgwb ′ =⇒
∀ s ca cb wb. wb ′=map ENV wb ∧
((s,ca),wa,(s ′,ca ′))∈trcl (ntrp fg) ∧ (cb,wb,cb ′)∈trcl (ntr fg) ∧ mon-c fg

({#s#}+ca) ∩ (mon-c fg cb ∪ mon-ww fg wb)={} ∧ mon-c fg cb ∩ (mon-c fg
({#s#}+ca) ∪ mon-ww fg (map le-rem-s wa))={} −→

((s,ca+cb),w,(s ′,ca ′+cb ′))∈trcl (ntrp fg)
proof (induct rule: cil-set-induct-fixα)

case empty thus ?case by simp
next

case (left e w ′ w1 ′ w2)
thus ?case
proof (intro allI impI , goal-cases)

case (1 s ca cb wb)
hence I : w ′ ∈ w1 ′ ⊗αnl fg w2 fst (αnl fg e) ∩ mon-pl (map (αnl fg) w2) =

{}
!!s ca cb wb. [[

w2 = map ENV wb;
((s, ca), w1 ′, s ′, ca ′) ∈ trcl (ntrp fg);
(cb, wb, cb ′) ∈ trcl (ntr fg);
mon-c fg ({#s#} + ca) ∩ (mon-c fg cb ∪ mon-ww fg wb) = {};

mon-c fg cb ∩ (mon-c fg ({#s#} + ca) ∪ mon-ww fg (map le-rem-s w1 ′))
= {}

]] =⇒ ((s, ca + cb), w ′, s ′, ca ′ + cb ′) ∈ trcl (ntrp fg)
w2 = map ENV wb
((s, ca), e # w1 ′, s ′, ca ′) ∈ trcl (ntrp fg)
(cb, wb, cb ′) ∈ trcl (ntr fg)
mon-c fg ({#s#} + ca) ∩ (mon-c fg cb ∪ mon-ww fg wb) = {}

81

mon-c fg cb ∩ (mon-c fg ({#s#} + ca) ∪ mon-ww fg (map le-rem-s (e #
w1 ′))) = {}

by blast+
then obtain sh cah where SPLIT : ((s,ca),e,(sh,cah))∈ntrp fg ((sh,cah),w1 ′,(s ′,ca ′))∈trcl

(ntrp fg) by (fast dest: trcl-uncons)
from ntrp-add-context-s[OF SPLIT (1), of cb] I (8) have ((s, ca + cb), e,

sh, cah + cb) ∈ ntrp fg by auto
also have ((sh,cah+cb),w ′,(s ′,ca ′+cb ′))∈trcl (ntrp fg) proof (rule I (3))

from ntrp-mon-s[OF SPLIT (1)] I (2 ,4 ,7 ,8) show 1 : mon-c fg ({#sh#}
+ cah) ∩ (mon-c fg cb ∪ mon-ww fg wb) = {}

by (cases e) (rename-tac a, case-tac a, simp add: cil-αn-cons-helper ,
fastforce simp add: cil-αn-cons-helper)+

from I (8) 1 show mon-c fg cb ∩ (mon-c fg ({#sh#} + cah) ∪ mon-ww
fg (map le-rem-s w1 ′)) = {} by auto

qed (auto simp add: I (4 ,6) SPLIT (2))
finally show ?case .

qed
next

case (right ee w ′ w2 ′ w1)
thus ?case
proof (intro allI impI , goal-cases)

case (1 s ca cb wb)
hence I : w ′ ∈ w1 ⊗αnl fg w2 ′ fst (αnl fg ee) ∩ mon-pl (map (αnl fg) w1)

= {}
!!s ca cb wb. [[

w2 ′ = map ENV wb;
((s, ca), w1 , s ′, ca ′) ∈ trcl (ntrp fg);
(cb, wb, cb ′) ∈ trcl (ntr fg);
mon-c fg ({#s#} + ca) ∩ (mon-c fg cb ∪ mon-ww fg wb) = {};

mon-c fg cb ∩ (mon-c fg ({#s#} + ca) ∪ mon-ww fg (map le-rem-s w1))
= {}

]] =⇒ ((s, ca + cb), w ′, s ′, ca ′ + cb ′) ∈ trcl (ntrp fg)
ee#w2 ′ = map ENV wb
((s, ca), w1 , s ′, ca ′) ∈ trcl (ntrp fg)
(cb, wb, cb ′) ∈ trcl (ntr fg)
mon-c fg ({#s#} + ca) ∩ (mon-c fg cb ∪ mon-ww fg wb) = {}
mon-c fg cb ∩ (mon-c fg ({#s#} + ca) ∪ mon-ww fg (map le-rem-s w1))

= {}
by fastforce+

from I (4) obtain e wb ′ where EE : wb=e#wb ′ ee=ENV e w2 ′=map ENV
wb ′ by (cases wb, auto)

with I (6) obtain cbh where SPLIT : (cb,e,cbh)∈ntr fg (cbh,wb ′,cb ′)∈trcl
(ntr fg) by (fast dest: trcl-uncons)

have ((s, ca + cb), ee, (s, ca + cbh)) ∈ ntrp fg proof −
from gtrE [OF SPLIT (1)] obtain sb ceb sbh cebh where NTRS : cb =

add-mset sb ceb cbh = add-mset sbh cebh ((sb, ceb), e, sbh, cebh) ∈ ntrs fg .
from ntrs-add-context-s[OF NTRS(3), of {#s#}+ca] EE(1) I (7) have

((sb, add-mset s (ca+ceb)), e, sbh, add-mset s (ca+cebh)) ∈ ntrs fg by (auto simp
add: union-ac)

82

from gtrp-env[OF this] NTRS(1 ,2) EE(2) show ?thesis by (simp add:
union-ac)

qed
also have ((s,ca+cbh),w ′,(s ′,ca ′+cb ′))∈trcl (ntrp fg) proof (rule I (3))

from ntr-mon-s[OF SPLIT (1)] I (2 ,4 ,7 ,8) EE(2) show 1 : mon-c fg cbh
∩ (mon-c fg ({#s#} + ca) ∪ mon-ww fg (map le-rem-s w1)) = {}

by (cases e) (simp add: cil-αnl-cons-helper , fastforce simp add: cil-αnl-cons-helper)

from I (7) 1 EE(1) show mon-c fg ({#s#} + ca) ∩ (mon-c fg cbh ∪
mon-ww fg wb ′) = {} by auto

qed (auto simp add: EE(3) I (5) SPLIT (2))
finally show ?case .

qed
qed

}
with A B show ?thesis by blast

qed

And finally we get the desired theorem: Two paths are simultaneously ex-
ecutable if and only if they are consistently interleavable and the monitors
of the initial configurations are compatible. Note that we have to assume a
valid starting configuration.
theorem (in flowgraph) ntr-interleave: valid fg (ca+cb) =⇒
(ca+cb,w,c ′)∈trcl (ntr fg) ←→
(∃ ca ′ cb ′ wa wb.

c ′=ca ′+cb ′ ∧
w∈(wa⊗αn fgwb) ∧
mon-c fg ca ∩ (mon-c fg cb ∪ mon-ww fg wb) = {} ∧
mon-c fg cb ∩ (mon-c fg ca ∪ mon-ww fg wa) = {} ∧
(ca,wa,ca ′)∈trcl (ntr fg) ∧ (cb,wb,cb ′)∈trcl (ntr fg))

by (blast intro!: ntr-split ntr-unsplit)

— Here is the corresponding version for executions with an explicit local thread
theorem (in flowgraph) ntrp-interleave:

valid fg ({#s#}+c1+c2) =⇒
((s,c1+c2),w,(s ′,c ′))∈trcl (ntrp fg) ←→
(∃w1 w2 c1 ′ c2 ′.

w ∈ w1 ⊗αnl fg (map ENV w2) ∧
c ′=c1 ′+c2 ′ ∧
((s,c1),w1 ,(s ′,c1 ′))∈trcl (ntrp fg) ∧
(c2 ,w2 ,c2 ′)∈trcl (ntr fg) ∧
mon-ww fg (map le-rem-s w1) ∩
mon-c fg c2 = {} ∧
mon-ww fg w2 ∩ mon-c fg ({#s#}+c1) = {})

apply (intro iffI)
apply (blast intro: ntrp-split)
apply (auto intro!: ntrp-unsplit simp add: valid-unconc

mon-c-unconc)
done

83

The next is a corollary of flowgraph.ntrp-unsplit, allowing us to convert a
path to loc/env semantics by adding a local stack that does not make any
steps.
corollary (in flowgraph) ntr2ntrp: [[

(c,w,c ′)∈trcl (ntr fg);
mon-c fg (add-mset s cl) ∩ (mon-c fg c ∪ mon-ww fg w)={}

]] =⇒ ((s,cl+c),map ENV w,(s,cl+c ′))∈trcl (ntrp fg)
using ntrp-unsplit[where wa=[], simplified] by fast

8.5.4 Reverse splitting

This section establishes a theorem that allows us to find the thread in the
original configuration that created some distinguished thread in the final
configuration.
lemma (in flowgraph) ntr-reverse-split: !!w s ′ ce ′. [[
(c,w,{#s ′#}+ce ′)∈trcl (ntr fg);
valid fg c]] =⇒
∃ s ce w1 w2 ce1 ′ ce2 ′.

c={#s#}+ce ∧
ce ′=ce1 ′+ce2 ′ ∧
w∈w1⊗αn fg w2 ∧
mon-s fg s ∩ (mon-c fg ce ∪ mon-ww fg w2) = {} ∧
mon-c fg ce ∩ (mon-s fg s ∪ mon-ww fg w1) = {} ∧
({#s#},w1 ,{#s ′#}+ce1 ′)∈trcl (ntr fg) ∧
(ce,w2 ,ce2 ′)∈trcl (ntr fg)

— The proof works by induction on the initial configuration. Note that configura-
tions consist of finitely many threads only
— FIXME: An induction over the size (rather then over the adding of some fixed
element) may lead to a smoother proof here
proof (induct c rule: multiset-induct ′)

— If the initial configuration is empty, we immediately get a contradiction
case empty hence False by auto thus ?case ..

next
— The initial configuration has the form {#s#}+ce.
case (add ce s)
— We split the path by this initial configuration
from ntr-split[OF add.prems(1 ,2)] obtain ce1 ′ ce2 ′ w1 w2 where

SPLIT : add-mset s ′ ce ′=ce1 ′+ce2 ′ w∈w1⊗αn fgw2
mon-c fg ce ∩ (mon-s fg s∪mon-ww fg w1) = {}
mon-s fg s ∩ (mon-c fg ce ∪ mon-ww fg w2) = {}
({#s#},w1 ,ce1 ′)∈trcl (ntr fg)
(ce,w2 ,ce2 ′)∈trcl (ntr fg)
by auto

— And then check whether splitting off s was the right choice
from SPLIT (1) show ?case proof (cases rule: mset-unplusm-dist-cases)

— Our choice was correct, s ′ is generated by some descendant of s"
case left
with SPLIT show ?thesis by fastforce

84

next
— Our choice was not correct, s ′ is generated by some descendant of ce
case right with SPLIT (6) have C : (ce,w2 ,{#s ′#}+(ce2 ′−{#s ′#}))∈trcl (ntr

fg) by auto
— In this case we apply the induction hypothesis to the path from ce
from add.prems(2) have VALID: valid fg ce mon-s fg s ∩ mon-c fg ce = {}

by (simp-all add: valid-unconc)
from add.hyps[OF C VALID(1)] obtain st cet w21 w22 ce21 ′ ce22 ′ where

IHAPP:
ce={#st#}+cet
ce2 ′−{#s ′#} = ce21 ′+ce22 ′

w2∈w21⊗αn fgw22
mon-s fg st ∩ (mon-c fg cet ∪ mon-ww fg w22)={}
mon-c fg cet ∩ (mon-s fg st ∪ mon-ww fg w21)={}
({#st#},w21 ,{#s ′#}+ce21 ′)∈trcl (ntr fg)
(cet,w22 ,ce22 ′)∈trcl (ntr fg) by blast

— And finally we add the path from s again. This requires some monitor sorting
and the associativity of the consistent interleaving operator.

from cil-assoc2 [of w w1 - w2 w22 w21] SPLIT (2) IHAPP(3) obtain wl where
CASSOC : w∈w21⊗αn fgwl wl∈w1⊗αn fgw22 by (auto simp add: cil-commute)

from CASSOC IHAPP(1 ,3 ,4 ,5) SPLIT (3 ,4) have COMBINE : (add-mset s
cet, wl, ce1 ′ + ce22 ′) ∈ trcl (ntr fg) using ntr-unsplit[OF CASSOC (2) SPLIT (5)
IHAPP(7)] by (auto simp add: mon-c-unconc mon-ww-cil Int-Un-distrib2)

moreover from CASSOC IHAPP(1 ,3 ,4 ,5) SPLIT (3 ,4) have mon-s fg st ∩
(mon-c fg ({#s#}+cet) ∪ mon-ww fg wl) = {} mon-c fg ({#s#}+cet) ∩ (mon-s
fg st ∪ mon-ww fg w21) = {} by (auto simp add: mon-c-unconc mon-ww-cil)

moreover from right IHAPP(1 ,2) have {#s#}+ce={#st#}+({#s#}+cet)
ce ′=ce21 ′+(ce1 ′+ce22 ′) by (simp-all add: union-ac)

moreover note IHAPP(6) CASSOC (1)
ultimately show ?thesis by fastforce

qed
qed

end

9 Constraint Systems
theory ConstraintSystems
imports Main AcquisitionHistory Normalization
begin

In this section we develop a constraint-system-based characterization of our
analysis.

Constraint systems are widely used in static program analysis. There least
solution describes the desired analysis information. In its generic form, a
constraint system R is a set of inequations over a complete lattice (L,v)
and a set of variables V . An inequation has the form R[v] w rhs, where

85

R[v] ∈ V and rhs is a monotonic function over the variables. Note that
for program analysis, there is usually one variable per control point. The
variables are then named R[v], where v is a control point. By standard
fixed-point theory, those constraint systems have a least solution. Outside
the constraint system definition R[v] usually refers to a component of that
least solution.
Usually a constraint system is generated from the program. For example, a
constraint generation pattern could be the following:

for (u,Call q, v) ∈ E:
Sk[v] ⊇ {(mon(q) ∪M ∪M ′, P̃) | (M,P) ∈ Sk[u] ∧ (M ′, P ′) ∈ Sk[rq]

∧ P̃ ≤ P] P ′ ∧ |P̃ | ≤ 2}

For some parameter k and a flowgraph with nodes N and edges E, this
generates a constraint system over the variables {Sk[v] | v ∈ N}. One
constraint is generated for each call edge. While we use a powerset lattice
here, we can in general use any complete lattice. However, all the constraint
systems needed for our conflict analysis are defined over powerset lattices
(P(′a),⊆) for some type ′a. This admits a convenient formalization in Is-
abelle/HOL using inductively defined sets. We inductively define a relation
between variables3 and the elements of their values in the least solution, i.e.
the set {(v, x) | x ∈ R[v]}. For example, the constraint generator pattern
from above would become the following introduction rule in the inductive
definition of the set S-cs fg k:

[[(u,Call q,v)∈edges fg; (u,M ,P)∈S-cs fg k;
(return fg q,Ms,Ps)∈S-cs fg k; P ′⊆#P+Ps; size P ′ ≤ k]]
=⇒ (v,mon fg q ∪ M ∪ Ms,P ′)∈S-cs fg k

The main advantage of this approach is that one gets a concise formalization
by using Isabelle’s standard machinery, the main disadvantage is that this
approach only works for powerset lattices ordered by ⊆.

9.1 Same-level paths
9.1.1 Definition

We define a constraint system that collects abstract information about same-
level paths. In particular, we collect the set of used monitors and all multi-
subsets of spawned threads that are not bigger than k elements, where k is
a parameter that can be freely chosen.

An element (u,M ,P)∈S-cs fg k means that there is a same-level path from
the entry node of the procedure of u to u, that uses the monitors M and
spawns at least the threads in P.

3Variables are identified by control nodes here

86

inductive-set
S-cs :: (′n, ′p, ′ba, ′m, ′more) flowgraph-rec-scheme ⇒ nat ⇒

(′n × ′m set × ′p multiset) set
for fg k
where

S-init: (entry fg p,{},{#})∈S-cs fg k
| S-base: [[(u,Base a,v)∈edges fg; (u,M ,P)∈S-cs fg k]] =⇒ (v,M ,P)∈S-cs fg k
| S-call: [[(u,Call q,v)∈edges fg; (u,M ,P)∈S-cs fg k;

(return fg q,Ms,Ps)∈S-cs fg k; P ′⊆#P+Ps; size P ′ ≤ k]]
=⇒ (v,mon fg q ∪ M ∪ Ms,P ′)∈S-cs fg k

| S-spawn: [[(u,Spawn q,v)∈edges fg; (u,M ,P)∈S-cs fg k;
P ′⊆#{#q#}+P; size P ′ ≤ k]]

=⇒ (v,M ,P ′)∈S-cs fg k

The intuition underlying this constraint system is the following: The S-init-
constraint describes that the procedures entry node can be reached with the
empty path, that has no monitors and spawns no procedures. The S-base-
constraint describes that executing a base edge does not use monitors or
spawn threads, so each path reaching the start node of the base edge also
induces a path reaching the end node of the base edge with the same set
of monitors and the same set of spawned threads. The S-call-constraint
models the effect of a procedure call. If there is a path to the start node of
a call edge and a same-level path through the procedure, this also induces
a path to the end node of the call edge. This path uses the monitors of
both path and spawns the threads that are spawned on both paths. Since
we only record a limited subset of the spawned threads, we have to choose
which of the threads are recorded. The S-spawn-constraint models the effect
of a spawn edge. A path to the start node of the spawn edge induces a path
to the end node that uses the same set of monitors and spawns the threads
of the initial path plus the one spawned by the spawn edge. We again have
to choose which of these threads are recorded.

9.1.2 Soundness and Precision

Soundness of the constraint system S-cs means, that every same-level path
has a corresponding entry in the constraint system.
As usual the soundness proof works by induction over the length of exe-
cution paths. The base case (empty path) trivially follows from the S-init
constraint. In the inductive case, we consider the edge that induces the
last step of the path; for a return step, this is the corresponding call edge
(cf. Lemma flowgraph.trss-find-call ′). With the induction hypothesis, we
get the soundness for the (shorter) prefix of the path, and depending on the
last step we can choose a constraint that implies soundness for the whole
path.
lemma (in flowgraph) S-sound: !!p v c ′ P.

87

[[(([entry fg p],{#}),w,([v],c ′))∈trcl (trss fg);
size P≤k; (λp. [entry fg p]) ‘# P ⊆# c ′]]

=⇒ (v,mon-w fg w,P)∈S-cs fg k
proof (induct w rule: length-compl-rev-induct)

case Nil thus ?case by (auto intro: S-init)
next
case (snoc w e) then obtain sh ch where SPLIT : (([entry fg p],{#}),w,(sh,ch))∈trcl

(trss fg) ((sh,ch),e,([v],c ′))∈trss fg by (fast dest: trcl-rev-uncons)
from SPLIT (2) show ?case proof (cases rule: trss.cases)
case trss-base then obtain u a where CASE : e=LBase a sh=[u] ch=c ′ (u,Base

a,v)∈edges fg by auto
with snoc.hyps[of w p u c ′, OF - - snoc.prems(2 ,3)] SPLIT (1) have (u,mon-w

fg w,P)∈S-cs fg k by blast
moreover from CASE(1) have mon-e fg e = {} by simp
ultimately show ?thesis using S-base[OF CASE(4)] by (auto simp add:

mon-w-unconc)
next

case trss-ret then obtain q where CASE : e=LRet sh=return fg q#[v] ch=c ′

by auto
with SPLIT (1) have (([entry fg p], {#}), w, [return fg q,v], c ′) ∈ trcl (trss fg)

by simp
from trss-find-call ′[OF this] obtain ut ct w1 w2 where FC :

w=w1@LCall q#w2
(([entry fg p],{#}),w1 ,([ut],ct))∈trcl (trss fg)
(([ut],ct),LCall q,([entry fg q,v],ct))∈trss fg
(ut,Call q,v)∈edges fg
(([entry fg q],ct),w2 ,([return fg q],c ′))∈trcl (trss fg) .

from trss-drop-all-context[OF FC (5)] obtain csp ′ where SLP: c ′=ct+csp ′

(([entry fg q],{#}),w2 ,([return fg q],csp ′))∈trcl (trss fg) by (auto simp add: union-ac)
from FC (1) have LEN : length w1 ≤ length w length w2 ≤ length w by auto

from mset-map-split-orig-le SLP(1) snoc.prems(3) obtain P1 P2 where
PSPLIT : P=P1+P2 (λp. [entry fg p]) ‘# P1 ⊆# ct (λp. [entry fg p]) ‘# P2
⊆# csp ′ by blast

with snoc.prems(2) have PSIZE : size P1 ≤ k size P2 ≤ k by auto
from snoc.hyps[OF LEN (1) FC (2) PSIZE(1) PSPLIT (2)] snoc.hyps[OF LEN (2)

SLP(2) PSIZE(2) PSPLIT (3)] have IHAPP: (ut, mon-w fg w1 , P1) ∈ S-cs fg k
(return fg q, mon-w fg w2 , P2) ∈ S-cs fg k .

from S-call[OF FC (4) IHAPP subset-mset.eq-refl[OF PSPLIT (1)] snoc.prems(2)]
FC (1) CASE(1) show (v, mon-w fg (w@[e]), P) ∈ S-cs fg k by (auto simp add:
mon-w-unconc Un-ac)

next
case trss-spawn then obtain u q where CASE : e=LSpawn q sh=[u] c ′={#[entry

fg q]#}+ch (u,Spawn q,v)∈edges fg by auto
from mset-map-split-orig-le CASE(3) snoc.prems(3) obtain P1 P2 where

PSPLIT : P=P1+P2 (λp. [entry fg p]) ‘# P1 ⊆# {#[entry fg q]#} (λp. [entry fg
p]) ‘# P2 ⊆# ch by blast

with snoc.prems(2) have PSIZE : size P2 ≤ k by simp
from snoc.hyps[OF - - PSIZE PSPLIT (3)] SPLIT (1) CASE(2) have IHAPP:

(u,mon-w fg w,P2)∈S-cs fg k by blast

88

have PCOND: P ⊆# {#q#}+P2 proof −
from PSPLIT (2) have P1⊆#{#q#} by (auto elim!: mset-le-single-cases

mset-map-single-rightE)
with PSPLIT (1) show ?thesis by simp

qed
from S-spawn[OF CASE(4) IHAPP PCOND snoc.prems(2)] CASE(1) show

(v, mon-w fg (w @ [e]), P) ∈ S-cs fg k by (auto simp add: mon-w-unconc)
qed

qed

Precision means that all entries appearing in the smallest solution of the con-
straint system are justified by some path in the operational characterization.
For proving precision, one usually shows that a family of sets derived as an
abstraction from the operational characterization solves all constraints.
In our formalization of constraint systems as inductive sets this amounts to
constructing for each constraint a justifying path for the entries described
on the conclusion side of the implication – under the assumption that cor-
responding paths exists for the entries mentioned in the antecedent.
lemma (in flowgraph) S-precise: (v,M ,P)∈S-cs fg k
=⇒ ∃ p c ′ w.

(([entry fg p],{#}),w,([v],c ′))∈trcl (trss fg) ∧
size P≤k ∧
(λp. [entry fg p]) ‘# P ⊆# c ′ ∧
M=mon-w fg w

proof (induct rule: S-cs.induct)
case (S-init p) have (([entry fg p],{#}),[],([entry fg p],{#}))∈trcl (trss fg) by

simp-all
thus ?case by fastforce

next
case (S-base u a v M P) then obtain p c ′ w where IHAPP: (([entry fg p],
{#}), w, [u], c ′) ∈ trcl (trss fg) size P ≤ k (λp. [entry fg p]) ‘# P ⊆# c ′ M =
mon-w fg w by blast

note IHAPP(1)
also from S-base have (([u],c ′),LBase a,([v],c ′))∈trss fg by (auto intro: trss-base)
finally have (([entry fg p], {#}), w @ [LBase a], [v], c ′) ∈ trcl (trss fg) .
moreover from IHAPP(4) have M=mon-w fg (w @ [LBase a]) by (simp add:

mon-w-unconc)
ultimately show ?case using IHAPP(2 ,3 ,4) by blast

next
case (S-call u q v M P Ms Ps P ′) then obtain p csp1 w1 where REACH-

ING-PATH : (([entry fg p], {#}), w1 , [u], csp1) ∈ trcl (trss fg) size P ≤ k (λp.
[entry fg p]) ‘# P ⊆# csp1 M = mon-w fg w1 by blast

from S-call obtain csp2 w2 where SL-PATH : (([entry fg q], {#}), w2 , [return
fg q], csp2) ∈ trcl (trss fg) size Ps ≤ k (λp. [entry fg p]) ‘# Ps ⊆# csp2 Ms =
mon-w fg w2

by (blast dest: trss-er-path-proc-const)
from trss-c-no-mon[OF REACHING-PATH (1)] trss-c-no-mon[OF SL-PATH (1)]

have NOMON : mon-c fg csp1 = {} mon-c fg csp2 = {} by auto

89

have (([entry fg p], {#}), w1@LCall q#w2@[LRet],([v],csp1+csp2))∈trcl (trss
fg) proof −

note REACHING-PATH (1)
also from trss-call[OF S-call(1)] NOMON have (([u],csp1),LCall q,([entry fg

q,v],csp1))∈trss fg by (auto)
also from trss-add-context[OF trss-stack-comp[OF SL-PATH (1)]] NOMON

have (([entry fg q,v],csp1),w2 ,([return fg q,v],csp1+csp2))∈trcl (trss fg) by (simp
add: union-ac)

also have (([return fg q,v],csp1+csp2),LRet,([v],csp1+csp2))∈trss fg by (rule
trss-ret)

finally show ?thesis by simp
qed
moreover from REACHING-PATH (4) SL-PATH (4) have mon fg q ∪ M ∪

Ms = mon-w fg (w1@LCall q#w2@[LRet]) by (auto simp add: mon-w-unconc)
moreover have (λp. [entry fg p]) ‘# (P ′) ⊆# csp1+csp2 (is ?f ‘# P ′ ⊆# -)

proof −
from image-mset-subseteq-mono[OF S-call(6)] have ?f ‘# P ′ ⊆# ?f ‘# P +

?f ‘# Ps by auto
also from mset-subset-eq-mono-add[OF REACHING-PATH (3) SL-PATH (3)]

have . . . ⊆# csp1+csp2 .
finally show ?thesis .

qed
moreover note S-call(7)
ultimately show ?case by blast

next
case (S-spawn u q v M P P ′) then obtain p c ′ w where IHAPP: (([entry fg p],
{#}), w, [u], c ′) ∈ trcl (trss fg) size P ≤ k (λp. [entry fg p]) ‘# P ⊆# c ′ M =
mon-w fg w by blast

note IHAPP(1)
also from S-spawn(1) have (([u],c ′),LSpawn q,([v],add-mset [entry fg q] c ′))∈trss

fg by (rule trss-spawn)
finally have (([entry fg p], {#}), w @ [LSpawn q], [v], add-mset [entry fg q] c ′)
∈ trcl (trss fg) .

moreover from IHAPP(4) have M=mon-w fg (w @ [LSpawn q]) by (simp add:
mon-w-unconc)

moreover have (λp. [entry fg p]) ‘# P ′ ⊆# {#[entry fg q]#} + c ′ (is ?f ‘# -
⊆# -) proof −

from image-mset-subseteq-mono[OF S-spawn(4)] have ?f ‘# P ′ ⊆# {#[entry
fg q]#} + ?f ‘# P by auto

also from mset-subset-eq-mono-add[OF - IHAPP(3)] have . . . ⊆# {#[entry
fg q]#} + c ′ by (auto intro: IHAPP(3))

finally show ?thesis .
qed
moreover note S-spawn(5)
ultimately show ?case by auto

qed

— Finally we can state the soundness and precision as a single theorem
theorem (in flowgraph) S-sound-precise:

90

(v,M ,P)∈S-cs fg k ←→
(∃ p c ′ w. (([entry fg p],{#}),w,([v],c ′))∈trcl (trss fg) ∧

size P≤k ∧ (λp. [entry fg p]) ‘# P ⊆# c ′ ∧ M=mon-w fg w)
using S-sound S-precise by blast

Next, we present specialized soundness and precision lemmas, that reason
over a macrostep (ntrp fg) rather than a same-level path (trcl (trss fg)).
They are tailored for the use in the soundness and precision proofs of the
other constraint systems.
lemma (in flowgraph) S-sound-ntrp:

assumes A: (([u],{#}),eel,(sh,ch))∈ntrp fg and
CASE : !!p u ′ v w. [[

eel=LOC (LCall p#w);
(u,Call p,u ′)∈edges fg;
sh=[v,u ′];
proc-of fg v = p;
mon-c fg ch = {};
!!s. s ∈# ch =⇒ ∃ p u v. s=[entry fg p] ∧

(u,Spawn p,v)∈edges fg ∧
initialproc fg p;

!!P. (λp. [entry fg p]) ‘# P ⊆# ch =⇒
(v,mon-w fg w,P)∈S-cs fg (size P)

]] =⇒ Q
shows Q

proof −
from A obtain ee where EE : eel=LOC ee (([u],{#}),ee,(sh,ch))∈ntrs fg by

(auto elim: gtrp.cases)
have CHFMT : !!s. s ∈# ch =⇒ ∃ p u v. s=[entry fg p] ∧ (u,Spawn p,v)∈edges

fg ∧ initialproc fg p by (auto intro: ntrs-c-cases-s[OF EE(2)])
with c-of-initial-no-mon have CHNOMON : mon-c fg ch = {} by blast
from EE(2) obtain p u ′ v w where FIRSTSPLIT : ee=LCall p#w (([u],{#}),LCall

p,([entry fg p,u ′],{#}))∈trss fg sh=[v,u ′] (([entry fg p],{#}),w,([v],ch))∈trcl (trss
fg) by (auto elim!: ntrs.cases[simplified])
from FIRSTSPLIT have EDGE : (u,Call p,u ′)∈edges fg by (auto elim!: trss.cases)
from trss-bot-proc-const[where s=[] and s ′=[], simplified, OF FIRSTSPLIT (4)]

have PROC-OF-V : proc-of fg v = p by simp
have !!P. (λp. [entry fg p]) ‘# P ⊆# ch =⇒ (v,mon-w fg w,P)∈S-cs fg (size P)

proof −
fix P assume (λp. [entry fg p]) ‘# P ⊆# ch
from S-sound[OF FIRSTSPLIT (4) - this, of size P] show ?thesis P by simp

qed
with EE(1) FIRSTSPLIT (1 ,3) EDGE PROC-OF-V CHNOMON CHFMT show

Q by (rule-tac CASE) auto
qed

lemma (in flowgraph) S-precise-ntrp:
assumes ENTRY : (v,M ,P)∈S-cs fg k and

P: proc-of fg v = p and
EDGE : (u,Call p,u ′)∈edges fg

91

shows ∃w ch.
(([u],{#}),LOC (LCall p#w),([v,u ′],ch))∈ntrp fg ∧
size P ≤ k ∧
M=mon-w fg w ∧
mon-n fg v = mon fg p ∧
(λp. [entry fg p]) ‘# P ⊆# ch ∧
mon-c fg ch={}

proof −
from P S-precise[OF ENTRY , simplified] trss-bot-proc-const[where s=[] and

s ′=[], simplified] obtain wsl ch where
SLPATH : (([entry fg p], {#}), wsl, [v], ch) ∈ trcl (trss fg) size P ≤ k (λp.

[entry fg p]) ‘# P ⊆# ch M = mon-w fg wsl by fastforce
from mon-n-same-proc[OF trss-bot-proc-const[where s=[] and s ′=[], simplified,

OF SLPATH (1)]] have MON-V : mon-n fg v = mon fg p by (simp)
from trss-c-cases[OF SLPATH (1), simplified] have CHFMT :

∧
s. s ∈# ch =⇒

∃ p. s = [entry fg p] ∧ (∃ u v. (u, Spawn p, v) ∈ edges fg) ∧ initialproc fg p by blast
with c-of-initial-no-mon have CHNOMON : mon-c fg ch = {} by blast
— From the constraints prerequisites, we can construct the first step
have FS : (([u],{#}),LCall p#wsl,([v,u ′],ch))∈ntrs fg proof (rule ntrs-step[where

r=[], simplified])
from EDGE show (([u], {#}), LCall p, [entry fg p, u ′], {#}) ∈ trss fg by

(auto intro: trss-call)
qed (rule SLPATH (1))
hence FSP: (([u],{#}),LOC (LCall p#wsl),([v,u ′],ch))∈ntrp fg by (blast intro:

gtrp-loc)
from FSP SLPATH (2 ,3 ,4) CHNOMON MON-V show ?thesis by blast

qed

9.2 Single reaching path

In this section we define a constraint system that collects abstract informa-
tion of paths reaching a control node at U. The path starts with a single
initial thread. The collected information are the monitors used by the steps
of the initial thread, the monitors used by steps of other threads and the
acquisition history of the path. To distinguish the steps of the initial thread
from steps of other threads, we use the loc/env-semantics (cf. Section 5.4).

9.2.1 Constraint system

An element (u, Ml, Me, h) ∈ RU-cs fg U corresponds to a path from
{#[u]#} to some configuration at U, that uses monitors from Ml in the
steps of the initial thread, monitors from Me in the steps of other threads
and has acquisition history h.
Here, the correspondence between paths and entries included into the in-
ductively defined set is not perfect but strong enough for our purposes:
While each constraint system entry corresponds to a path, not each path
corresponds to a constraint system entry. But for each path reaching a

92

configuration at U, we find an entry with less or equal monitors and an
acquisition history less or equal to the acquisition history of the path.
inductive-set

RU-cs :: (′n, ′p, ′ba, ′m, ′more) flowgraph-rec-scheme ⇒ ′n set ⇒
(′n × ′m set × ′m set × (′m ⇒ ′m set)) set

for fg U
where

RU-init: u∈U =⇒ (u,{},{},λx.{})∈RU-cs fg U
| RU-call: [[(u,Call p,u ′)∈edges fg; proc-of fg v = p; (v,M ,P)∈S-cs fg 0 ;

(v,Ml,Me,h)∈RU-cs fg U ; mon-n fg u ∩ Me = {}]]
=⇒ (u, mon fg p ∪ M ∪ Ml, Me, ah-update h (mon fg p,M) (Ml∪Me))
∈ RU-cs fg U

| RU-spawn: [[(u,Call p,u ′)∈edges fg; proc-of fg v = p; (v,M ,P)∈S-cs fg 1 ;
q ∈# P; (entry fg q,Ml,Me,h)∈RU-cs fg U ;
(mon-n fg u ∪ mon fg p) ∩ (Ml ∪ Me)={}]]

=⇒ (u,mon fg p ∪ M , Ml ∪ Me, ah-update h (mon fg p,M) (Ml∪Me))
∈ RU-cs fg U

The constraint system works by tracking only a single thread. Initially,
there is just one thread, and from this thread we reach a configuration at U.
After a macrostep, we have the transformed initial thread and some spawned
threads. The key idea is, that the actual node U is reached by just one of
these threads. The steps of the other threads are useless for reaching U.
Because of the nice properties of normalized paths, we can simply prune
those steps from the path.
The RU-init-constraint reflects that we can reach a control node from itself
with the empty path. The RU-call-constraint describes the case that U
is reached from the initial thread, and the RU-spawn-constraint describes
the case that U is reached from one of the spawned threads. In the two
latter cases, we have to check whether prepending the macrostep to the
reaching path is allowed or not due to monitor restrictions. In the call case,
the procedure of the initial node must not own monitors that are used in
the environment steps of the appended reaching path (mon-n fg u ∩ Me
= {}). As we only test disjointness with the set of monitors used by the
environment, reentrant monitors can be handled. In the spawn case, we have
to check disjointness with both, the monitors of local and environment steps
of the reaching path from the spawned thread, because from the perspective
of the initial thread, all these steps are environment steps ((mon-n fg u ∪
mon fg p) ∩ (Ml ∪ Me)={}). Note that in the call case, we do not need
to explicitly check that the monitors used by the environment are disjoint
from the monitors acquired by the called procedure because this already
follows from the existence of a reaching path, as the starting point of this
path already holds all these monitors.
However, in the spawn case, we have to check for both the monitors of the
start node and of the called procedure to be compatible with the already

93

known reaching path from the entry node of the spawned thread.

9.2.2 Soundness and precision

The following lemma intuitively states: If we can reach a configuration that
is at U from some start configuration, then there is a single thread in the
start configuration that can reach a configuration at U with a subword of the
original path.
The proof follows from Lemma flowgraph.ntr-reverse-split rather directly.
lemma (in flowgraph) ntr-reverse-split-atU :

assumes V : valid fg c and
A: atU U c ′ and
B: (c,w,c ′)∈trcl (ntr fg)

shows ∃ s w ′ c1 ′.
s ∈# c ∧ w ′�w ∧ c1 ′ ⊆# c ′ ∧
atU U c1 ′ ∧ ({#s#},w ′,c1 ′)∈trcl (ntr fg)

proof −
obtain ui r ce ′ where C ′FMT : c ′={#ui#r#}+ce ′ ui∈U by (rule atU-fmt[OF

A], simp only: mset-contains-eq) (blast dest: sym)
with ntr-reverse-split[OF - V] B obtain s ce w1 w2 ce1 ′ ce2 ′ where RSPLIT :

c={#s#}+ce ce ′=ce1 ′+ce2 ′ w∈w1⊗αn fgw2 ({#s#}, w1 , {#ui#r#} + ce1 ′) ∈
trcl (ntr fg) by blast
with C ′FMT have s ∈# c w1�w {#ui#r#}+ce1 ′⊆# c ′ atU U ({#ui#r#}+ce1 ′)

by (auto dest: cil-ileq)
with RSPLIT (4) show ?thesis by blast

qed

The next lemma shows the soundness of the RU constraint system.
The proof works by induction over the length of the reaching path. For
the empty path, the proposition follows by the RU-init-constraint. For a
non-empty path, we consider the first step. It has transformed the initial
thread and may have spawned some other threads. From the resulting con-
figuration, U is reached. Due to flowgraph.ntr-split we get two interleavable
paths from the rest of the original path, one from the transformed initial
thread and one from the spawned threads. We then distinguish two cases: if
the first path reaches U, the proposition follows by the induction hypothesis
and the RU-call constraint.
Otherwise, we use flowgraph.ntr-reverse-split-atU to identify the thread that
actually reaches U among all the spawned threads. Then we apply the
induction hypothesis to the path of that thread and prepend the first step
using the RU-spawn-constraint.
The main complexity of the proof script below results from fiddling with the
monitors and converting between the multiset-and loc/env-semantics. Also
the arguments to show that the acquisition histories are sound approxima-
tions require some space.

94

lemma (in flowgraph) RU-sound:
!!u s ′ c ′. [[(([u],{#}),w,(s ′,c ′))∈trcl (ntrp fg); atU U (add-mset s ′ c ′)]]
=⇒ ∃Ml Me h.
(u,Ml,Me,h)∈RU-cs fg U ∧
Ml ⊆ mon-loc fg w ∧
Me ⊆ mon-env fg w ∧
h ≤ αah (map (αnl fg) w)

— The proof works by induction over the length of the reaching path
proof (induct w rule: length-compl-induct)

— For a reaching path of length zero, the proposition follows immediately by the
constraint RU-init

case Nil thus ?case by auto (auto intro!: RU-init)
next

case (Cons eel wwl)
— For a non-empty path, we regard the first step and the rest of the path
then obtain sh ch where SPLIT :
(([u],{#}),eel,(sh,ch))∈ntrp fg
((sh,ch),wwl,(s ′,c ′))∈trcl (ntrp fg)
by (fast dest: trcl-uncons)

obtain p u ′ v w where
— The first step consists of an initial call and a same-level path
FS-FMT : eel = LOC (LCall p # w) (u, Call p, u ′) ∈ edges fg sh = [v, u ′]

proc-of fg v = p mon-c fg ch = {}
— The only environment threads after the first step are the threads that where

spawned by the first step
and CHFMT :

∧
s. s ∈# ch =⇒ ∃ p u v. s=[entry fg p] ∧ (u,Spawn p,v)∈edges

fg ∧ initialproc fg p
— For the same-level path, we find a corresponding entry in the S-cs-constraint

system
and S-ENTRY-PAT :

∧
P. (λp. [entry fg p]) ‘# P ⊆# ch =⇒ (v, mon-w fg w,

P) ∈ S-cs fg (size P)
by (rule S-sound-ntrp[OF SPLIT (1)]) blast

from ntrp-valid-preserve-s[OF SPLIT (1)] have HVALID: valid fg ({#sh#} +
ch) by simp

— We split the remaining path by the local thread and the spawned threads,
getting two interleavable paths, one from the local thread and one from the spawned
threads
from ntrp-split[where ?c1 .0={#}, simplified, OF SPLIT (2) ntrp-valid-preserve-s[OF

SPLIT (1)], simplified] obtain w1 w2 c1 ′ c2 ′ where
LESPLIT :

wwl∈w1⊗αnl fg map ENV w2
c ′ = c1 ′ + c2 ′

((sh, {#}), w1 , s ′, c1 ′) ∈ trcl (ntrp fg)
(ch, w2 , c2 ′) ∈ trcl (ntr fg)
mon-ww fg (map le-rem-s w1) ∩ mon-c fg ch = {}
mon-ww fg w2 ∩ mon-s fg sh = {}

by blast
— We make a case distinction whether U was reached from the local thread or

from the spawned threads

95

from Cons.prems(2) LESPLIT (2) have atU U (({#s ′#}+c1 ′) + c2 ′) by (auto
simp add: union-ac)

thus ?case proof (cases rule: atU-union-cases)
case left — U was reached from the local thread
from cil-ileq[OF LESPLIT (1)] have ILEQ: w1�wwl and LEN : length w1 ≤

length wwl by (auto simp add: le-list-length)
— We can cut off the bottom stack symbol from the reaching path (as always

possible for normalized paths)
from FS-FMT (3) LESPLIT (3) ntrp-stack-decomp[of v [] [u ′] {#} w1 s ′ c1 ′ fg,

simplified] obtain v ′ rr where DECOMP: s ′=v ′#rr@[u ′] (([v],{#}),w1 ,(v ′#rr ,c1 ′))∈trcl
(ntrp fg) by auto

— This does not affect the configuration being at U
from atU-xchange-stack left DECOMP(1) have ATU : atU U (add-mset (v ′#rr)

c1 ′) by fastforce
— Then we can apply the induction hypothesis to get a constraint system entry

for the path
from Cons.hyps[OF LEN DECOMP(2) ATU] obtain Ml Me h where IHAPP:

(v,Ml,Me,h)∈RU-cs fg U Ml ⊆ mon-loc fg w1 Me ⊆ mon-env fg w1 h ≤ αah (map
(αnl fg) w1) by blast

— Next, we have to apply the constraint RU-call
from S-ENTRY-PAT [of {#}, simplified] have S-ENTRY : (v, mon-w fg w,

{#}) ∈ S-cs fg 0 .
have MON-U-ME : mon-n fg u ∩ Me = {} proof −

from ntrp-mon-env-w-no-ctx[OF Cons.prems(1)] have mon-env fg wwl ∩
mon-n fg u = {} by (auto)

with mon-env-ileq[OF ILEQ] IHAPP(3) show ?thesis by fast
qed
from RU-call[OF FS-FMT (2 ,4) S-ENTRY IHAPP(1) MON-U-ME] have (u,

mon fg p ∪ mon-w fg w ∪ Ml, Me, ah-update h (mon fg p, mon-w fg w) (Ml ∪
Me)) ∈ RU-cs fg U .

— Then we assemble the rest of the proposition, that are the monitor restrictions
and the acquisition history restriction

moreover have mon fg p ∪ mon-w fg w ∪ Ml ⊆ mon-loc fg (eel#wwl) using
mon-loc-ileq[OF ILEQ] IHAPP(2) FS-FMT (1) by fastforce

moreover have Me ⊆ mon-env fg (eel#wwl) using mon-env-ileq[OF ILEQ,
of fg] IHAPP(3) by auto

moreover have ah-update h (mon fg p, mon-w fg w) (Ml ∪ Me) ≤ αah (map
(αnl fg) (eel#wwl)) proof (simp add: ah-update-cons)

show ah-update h (mon fg p, mon-w fg w) (Ml ∪ Me) ≤ ah-update (αah (map
(αnl fg) wwl)) (αnl fg eel) (mon-pl (map (αnl fg) wwl)) proof (rule ah-update-mono)

from IHAPP(4) have h ≤ αah (map (αnl fg) w1) .
also from αah-ileq[OF le-list-map[OF ILEQ]] have αah (map (αnl fg) w1)

≤ αah (map (αnl fg) wwl) .
finally show h ≤ αah (map (αnl fg) wwl) .

next
from FS-FMT (1) show (mon fg p, mon-w fg w) = αnl fg eel by auto

next
from IHAPP(2 ,3) have (Ml ∪ Me) ⊆ mon-pl (map (αnl fg) w1) by (auto

simp add: mon-pl-of-αnl)

96

also from mon-pl-ileq[OF le-list-map[OF ILEQ]] have . . . ⊆ mon-pl (map
(αnl fg) wwl) .

finally show (Ml ∪ Me) ⊆ mon-pl (map (αnl fg) wwl) .
qed

qed
ultimately show ?thesis by blast

next
case right — U was reached from the spawned threads
from cil-ileq[OF LESPLIT (1)] le-list-length[of map ENV w2 wwl] have ILEQ:

map ENV w2�wwl and LEN : length w2 ≤ length wwl by (auto)
from HVALID have CHVALID: valid fg ch mon-s fg sh ∩ mon-c fg ch = {}

by (auto simp add: valid-unconc)
— We first identify the actual thread from that U was reached
from ntr-reverse-split-atU [OF CHVALID(1) right LESPLIT (4)] obtain q

wr cr ′ where RI : [entry fg q] ∈# ch wr�w2 cr ′⊆#c2 ′ atU U cr ′ ({#[entry fg
q]#},wr ,cr ′)∈trcl (ntr fg) by (blast dest: CHFMT)

— In order to apply the induction hypothesis, we have to convert the reaching
path to loc/env semantics

from ntrs.gtr2gtrp[where c={#}, simplified, OF RI (5)] obtain sr ′ cre ′ wwr
where RI-NTRP: cr ′=add-mset sr ′ cre ′ wr=map le-rem-s wwr (([entry fg q],{#}),wwr ,(sr ′,cre ′))∈trcl
(ntrp fg) by blast

from LEN le-list-length[OF RI (2)] RI-NTRP(2) have LEN ′: length wwr ≤
length wwl by simp

— The induction hypothesis yields a constraint system entry
from Cons.hyps[OF LEN ′ RI-NTRP(3)] RI-NTRP(1) RI (4) obtain Ml Me

h where IHAPP: (entry fg q, Ml, Me, h)∈RU-cs fg U Ml ⊆ mon-loc fg wwr Me
⊆ mon-env fg wwr h ≤ αah (map (αnl fg) wwr) by auto

— We also have an entry in the same-level path constraint system that contains
the thread from that U was reached

from S-ENTRY-PAT [of {#q#}, simplified] RI (1) have S-ENTRY : (v, mon-w
fg w, {#q#}) ∈ S-cs fg 1 by auto

— Before we can apply the RU-spawn-constraint, we have to analyze the monitors
have MON-MLE-ENV : Ml ∪ Me ⊆ mon-env fg wwl proof −

from IHAPP(2 ,3) have Ml ∪ Me ⊆ mon-loc fg wwr ∪ mon-env fg wwr by
auto

also from mon-ww-of-le-rem[symmetric] RI-NTRP(2) have . . . = mon-ww
fg wr by fastforce

also from mon-env-ileq[OF ILEQ] mon-ww-ileq[OF RI (2)] have . . . ⊆
mon-env fg wwl by fastforce

finally show ?thesis .
qed
have MON-UP-MLE : (mon-n fg u ∪ mon fg p) ∩ (Ml ∪ Me) = {} proof −

from ntrp-mon-env-w-no-ctx[OF SPLIT (2)] FS-FMT (3 ,4) edges-part[OF
FS-FMT (2)] have (mon-n fg u ∪ mon fg p) ∩ mon-env fg wwl = {} by (auto
simp add: mon-n-def)

with MON-MLE-ENV show ?thesis by auto
qed
— Finally we can apply the RU-spawn-constraint that yields us an entry for the

reaching path from u

97

from RU-spawn[OF FS-FMT (2 ,4) S-ENTRY - IHAPP(1) MON-UP-MLE]
have (u, mon fg p ∪ mon-w fg w, Ml ∪ Me, ah-update h (mon fg p, mon-w fg w)
(Ml ∪ Me)) ∈ RU-cs fg U by simp

— Next we have to assemble the rest of the proposition
moreover have mon fg p ∪ mon-w fg w ⊆ mon-loc fg (eel#wwl) using

FS-FMT (1) by fastforce
moreover have Ml ∪ Me ⊆ mon-env fg (eel#wwl) using MON-MLE-ENV

by auto
moreover have ah-update h (mon fg p, mon-w fg w) (Ml ∪ Me) ≤ αah (map

(αnl fg) (eel#wwl)) — Only the proposition about the acquisition histories needs
some more work

proof (simp add: ah-update-cons)
have MAP-HELPER: map (αnl fg) wwr � map (αnl fg) wwl proof −

from RI-NTRP(2) have map (αnl fg) wwr = map (αn fg) wr by (simp
add: αn-αnl)

also from le-list-map[OF RI (2)] have . . . � map (αn fg) w2 .
also have . . . = map (αnl fg) (map ENV w2) by simp
also from le-list-map[OF ILEQ] have . . . � map (αnl fg) wwl .
finally show ?thesis .

qed
show ah-update h (mon fg p, mon-w fg w) (Ml ∪ Me) ≤ ah-update (αah (map

(αnl fg) wwl)) (αnl fg eel) (mon-pl (map (αnl fg) wwl)) proof (rule ah-update-mono)
from IHAPP(4) have h ≤ αah (map (αnl fg) wwr) .

also have . . . ≤ αah (map (αnl fg) wwl) by (rule αah-ileq[OF MAP-HELPER])
finally show h ≤ αah (map (αnl fg) wwl) .

next
from FS-FMT (1) show (mon fg p, mon-w fg w) = αnl fg eel by simp

next
from IHAPP(2 ,3) mon-pl-ileq[OF MAP-HELPER] show Ml ∪ Me ⊆ mon-pl

(map (αnl fg) wwl) by (auto simp add: mon-pl-of-αnl)
qed

qed
ultimately show ?thesis by blast

qed
qed

Now we prove a statement about the precision of the least solution. As in
the precision proof of the S-cs constraint system, we construct a path for the
entry on the conclusion side of each constraint, assuming that there already
exists paths for the entries mentioned in the antecedent.
We show that each entry in the least solution corresponds exactly to some
executable path, and is not just an under-approximation of a path; while
for the soundness direction, we could only show that every executable path
is under-approximated. The reason for this is that in effect, the constraint
system prunes the steps of threads that are not needed to reach the control
point. However, each pruned path is executable.
lemma (in flowgraph) RU-precise: (u,Ml,Me,h)∈RU-cs fg U
=⇒ ∃w s ′ c ′.

98

(([u],{#}),w,(s ′,c ′))∈trcl (ntrp fg) ∧
atU U ({#s ′#}+c ′) ∧
mon-loc fg w = Ml ∧
mon-env fg w = Me ∧
αah (map (αnl fg) w) = h

proof (induct rule: RU-cs.induct)
— The RU-init constraint is trivially covered by the empty path
case (RU-init u) thus ?case by (auto intro: exI [of - []])

next
— Call constraint
case (RU-call u p u ′ v M P Ml Me h)
then obtain w s ′ c ′ where IHAPP: (([v], {#}), w, s ′, c ′) ∈ trcl (ntrp fg) atU

U ({#s ′#} + c ′) mon-loc fg w = Ml mon-env fg w = Me αah (map (αnl fg) w)
= h by blast
from RU-call.hyps(2) S-precise[OF RU-call.hyps(3), simplified] trss-bot-proc-const[where

s=[] and s ′=[], simplified] obtain wsl ch where
SLPATH : (([entry fg p], {#}), wsl, [v], ch) ∈ trcl (trss fg) M = mon-w fg wsl

by fastforce
from trss-c-cases[OF SLPATH (1), simplified] have CHFMT :

∧
s. s ∈# ch =⇒

∃ p. s = [entry fg p] ∧ (∃ u v. (u, Spawn p, v) ∈ edges fg) ∧ initialproc fg p by blast
with c-of-initial-no-mon have CHNOMON : mon-c fg ch = {} by blast

— From the constraints prerequisites, we can construct the first step
have FS : (([u],{#}),LCall p#wsl,([v,u ′],ch))∈ntrs fg proof (rule ntrs-step[where

r=[], simplified])
from RU-call.hyps(1) show (([u], {#}), LCall p, [entry fg p, u ′], {#}) ∈ trss

fg by (auto intro: trss-call)
qed (rule SLPATH (1))
hence FSP: (([u],{#}),LOC (LCall p#wsl),([v,u ′],ch))∈ntrp fg by (blast intro:

gtrp-loc)
also

— The rest of the path comes from the induction hypothesis, after adding the
rest of the threads to the context
have (([v, u ′], ch), w, s ′@ [u ′], c ′+ ch) ∈ trcl (ntrp fg) proof (rule ntrp-add-context[OF

ntrp-stack-comp[OF IHAPP(1), where r=[u ′]], where cn=ch, simplified])
from RU-call.hyps(1 ,6) IHAPP(4) show mon-n fg u ′ ∩ mon-env fg w = {}

by (auto simp add: mon-n-def edges-part)
from CHNOMON show mon-ww fg (map le-rem-s w) ∩ mon-c fg ch = {} by

auto
qed
finally have (([u], {#}), LOC (LCall p # wsl) # w, s ′ @ [u ′], c ′ + ch) ∈ trcl

(ntrp fg) .
— It is straightforward to show that the new path satisfies the required properties

for its monitors and acquisition history
moreover from IHAPP(2) have atU U ({# s ′@[u ′] #}+(c ′+ch)) by auto
moreover have mon-loc fg (LOC (LCall p # wsl) # w) = mon fg p ∪ M ∪ Ml

using SLPATH (2) IHAPP(3) by auto
moreover have mon-env fg (LOC (LCall p # wsl) # w) = Me using IHAPP(4)

by auto
moreover have αah (map (αnl fg) (LOC (LCall p # wsl) # w)) = ah-update

99

h (mon fg p, M) (Ml ∪ Me) proof −
have αah (map (αnl fg) (LOC (LCall p # wsl) # w)) = ah-update (αah (map

(αnl fg) w)) (mon fg p, mon-w fg wsl) (mon-pl (map (αnl fg) w)) by (auto simp
add: ah-update-cons)

also have . . . = ah-update h (mon fg p, M) (Ml ∪ Me) proof −
from IHAPP(5) have αah (map (αnl fg) w) = h .
moreover from SLPATH (2) have (mon fg p, mon-w fg wsl) = (mon fg p,

M) by (simp add: mon-pl-of-αnl)
moreover from IHAPP(3 ,4) have mon-pl (map (αnl fg) w) = Ml ∪ Me by

(auto simp add: mon-pl-of-αnl)
ultimately show ?thesis by simp

qed
finally show ?thesis .

qed
ultimately show ?case by blast

next
— Spawn constraint
case (RU-spawn u p u ′ v M P q Ml Me h) then obtain w s ′ c ′ where IHAPP:

(([entry fg q], {#}), w, s ′, c ′) ∈ trcl (ntrp fg) atU U ({#s ′#} + c ′) mon-loc fg w
= Ml mon-env fg w = Me αah (map (αnl fg) w) = h by blast
from RU-spawn.hyps(2) S-precise[OF RU-spawn.hyps(3), simplified] trss-bot-proc-const[where

s=[] and s ′=[], simplified] obtain wsl ch where
SLPATH : (([entry fg p], {#}), wsl, [v], ch) ∈ trcl (trss fg) M = mon-w fg wsl

size P ≤ 1 (λp. [entry fg p]) ‘# P ⊆# ch by fastforce
with RU-spawn.hyps(4) obtain che where PFMT : P={#q#} ch = {#[entry

fg q]#} + che by (auto elim!: mset-size-le1-cases mset-le-addE)
from trss-c-cases[OF SLPATH (1), simplified] have CHFMT :

∧
s. s ∈# ch =⇒

∃ p. s = [entry fg p] ∧ (∃ u v. (u, Spawn p, v) ∈ edges fg) ∧ initialproc fg p by blast
with c-of-initial-no-mon have CHNOMON : mon-c fg ch = {} by blast
have FS : (([u],{#}),LCall p#wsl,([v,u ′],ch))∈ntrs fg proof (rule ntrs-step[where

r=[], simplified])
from RU-spawn.hyps(1) show (([u], {#}), LCall p, [entry fg p, u ′], {#}) ∈

trss fg by (auto intro: trss-call)
qed (rule SLPATH (1))
hence FSP: (([u],{#}),LOC (LCall p#wsl),([v,u ′],ch))∈ntrp fg by (blast intro:

gtrp-loc)
also have (([v, u ′], ch), map ENV (map le-rem-s w), [v,u ′], che+({#s ′#}+c ′))
∈ trcl (ntrp fg) proof −

from IHAPP(3 ,4) have mon-ww fg (map le-rem-s w) ⊆ Ml ∪ Me by (auto
simp add: mon-ww-of-le-rem)

with RU-spawn.hyps(1 ,2 ,7) have (mon-n fg v ∪ mon-n fg u ′) ∩ mon-ww fg
(map le-rem-s w) = {} by (auto simp add: mon-n-def edges-part)

with ntr2ntrp[OF gtrp2gtr [OF IHAPP(1)], of [v,u ′] che] PFMT (2) CHNOMON
show ?thesis by (auto simp add: union-ac mon-c-unconc)

qed
finally have (([u], {#}), LOC (LCall p # wsl) # map ENV (map le-rem-s w),

[v, u ′], che + ({#s ′#} + c ′)) ∈ trcl (ntrp fg) .
moreover from IHAPP(2) have atU U ({#[v,u ′]#} + (che+({#s ′#} + c ′)))

by auto

100

moreover have mon-loc fg (LOC (LCall p # wsl) # map ENV (map le-rem-s
w)) = mon fg p ∪ M using SLPATH (2) by (auto simp del: map-map)

moreover have mon-env fg (LOC (LCall p # wsl) # map ENV (map le-rem-s
w)) = Ml ∪ Me using IHAPP(3 ,4) by (auto simp add: mon-ww-of-le-rem simp
del: map-map)

moreover have αah (map (αnl fg) (LOC (LCall p # wsl) # map ENV (map
le-rem-s w))) = ah-update h (mon fg p, M) (Ml ∪ Me) proof −

have αah (map (αnl fg) (LOC (LCall p # wsl) # map ENV (map le-rem-s
w))) = ah-update (αah (map (αn fg) (map le-rem-s w))) (mon fg p, mon-w fg wsl)
(mon-pl (map (αn fg) (map le-rem-s w))) by (simp add: ah-update-cons o-assoc)

also have . . . = ah-update h (mon fg p, M) (Ml ∪ Me) proof −
from IHAPP(5) have αah (map (αn fg) (map le-rem-s w)) = h by (simp

add: αn-αnl)
moreover from SLPATH (2) have (mon fg p, mon-w fg wsl) = (mon fg p,

M) by simp
moreover from IHAPP(3 ,4) have mon-pl (map (αn fg) (map le-rem-s w))

= Ml ∪ Me by (auto simp add: mon-pl-of-αnl αn-αnl)
ultimately show ?thesis by simp

qed
finally show ?thesis .

qed
ultimately show ?case by blast

qed

9.3 Simultaneously reaching path

In this section, we define a constraint system that collects abstract informa-
tion for paths starting at a single control node and reaching two program
points simultaneously, one from a set U and one from a set V.

9.3.1 Constraint system

An element (u, Ml, Me) ∈ RUV-cs fg U V means, that there is a path from
{#[u]#} to some configuration that is simultaneously at U and at V. That
path uses monitors from Ml in the first thread and monitors from Me in the
other threads.
inductive-set

RUV-cs :: (′n, ′p, ′ba, ′m, ′more) flowgraph-rec-scheme ⇒
′n set ⇒ ′n set ⇒ (′n × ′m set × ′m set) set

for fg U V
where

RUV-call:
[[(u,Call p,u ′)∈edges fg; proc-of fg v = p; (v,M ,P)∈S-cs fg 0 ;

(v,Ml,Me)∈RUV-cs fg U V ; mon-n fg u ∩ Me = {}]]
=⇒ (u,mon fg p ∪ M ∪ Ml,Me)∈RUV-cs fg U V

| RUV-spawn:
[[(u,Call p,u ′)∈edges fg; proc-of fg v = p; (v,M ,P)∈S-cs fg 1 ; q ∈# P;

101

(entry fg q,Ml,Me)∈RUV-cs fg U V ;
(mon-n fg u ∪ mon fg p) ∩ (Ml ∪ Me) = {}]]

=⇒ (u, mon fg p ∪ M , Ml∪Me)∈RUV-cs fg U V
| RUV-split-le:

[[(u,Call p,u ′)∈edges fg; proc-of fg v = p; (v,M ,P)∈S-cs fg 1 ; q ∈# P;
(v,Ml,Me,h)∈RU-cs fg U ; (entry fg q,Ml ′,Me ′,h ′)∈RU-cs fg V ;
(mon-n fg u ∪ mon fg p) ∩ (Me∪Ml ′∪Me ′)={}; h [∗] h ′]]

=⇒ (u, mon fg p ∪ M ∪ Ml, Me ∪ Ml ′ ∪ Me ′)∈RUV-cs fg U V
| RUV-split-el:

[[(u,Call p,u ′)∈edges fg; proc-of fg v = p; (v,M ,P)∈S-cs fg 1 ; q ∈# P;
(v,Ml,Me,h)∈RU-cs fg V ; (entry fg q,Ml ′,Me ′,h ′)∈RU-cs fg U ;
(mon-n fg u ∪ mon fg p) ∩ (Me∪Ml ′∪Me ′)={}; h [∗] h ′]]

=⇒ (u, mon fg p ∪ M ∪ Ml, Me ∪ Ml ′ ∪ Me ′)∈RUV-cs fg U V
| RUV-split-ee:

[[(u,Call p,u ′)∈edges fg; proc-of fg v = p; (v,M ,P)∈S-cs fg 2 ;
{#q#}+{#q ′#} ⊆# P;
(entry fg q,Ml,Me,h)∈RU-cs fg U ; (entry fg q ′,Ml ′,Me ′,h ′)∈RU-cs fg V ;
(mon-n fg u ∪ mon fg p) ∩ (Ml∪Me∪Ml ′∪Me ′) = {}; h [∗] h ′]]

=⇒ (u, mon fg p ∪ M , Ml∪Me∪Ml ′∪Me ′)∈RUV-cs fg U V

The idea underlying this constraint system is similar to the RU-cs-constraint
system for reaching a single node set. Initially, we just track one thread.
After a macrostep, we have a configuration consisting of the transformed
initial thread and the spawned threads. From this configuration, we reach
two nodes simultaneously, one in U and one in V. Each of these nodes is
reached by just a single thread. The constraint system contains one con-
straint for each case how these threads are related to the initial and the
spawned threads:

RUV_call Both, U and V are reached from the initial thread.

RUV_spawn Both, U and V are reached from a single spawned thread.

RUV_split_le U is reached from the initial thread, V is reached from a
spawned thread.

RUV_split_el V is reached from the initial thread, U is reached from a
spawned thread.

RUV_split_ee Both, U and V are reached from different spawned threads.

In the latter three cases, we have to analyze the interleaving of two paths
each reaching a single control node. This is done via the acquisition history
information that we collected in the RU-cs-constraint system.
Note that we do not need an initializing constraint for the empty path, as a
single configuration cannot simultaneously be at two control nodes.

102

9.3.2 Soundness and precision
lemma (in flowgraph) RUV-sound: !!u s ′ c ′.
[[(([u],{#}),w,(s ′,c ′))∈trcl (ntrp fg); atUV U V ({#s ′#}+c ′)]]
=⇒ ∃Ml Me.
(u,Ml,Me)∈RUV-cs fg U V ∧
Ml ⊆ mon-loc fg w ∧
Me ⊆ mon-env fg w

— The soundness proof is done by induction over the length of the reaching path
proof (induct w rule: length-compl-induct)

— In case of the empty path, a contradiction follows because a single-thread
configuration cannot simultaneously be at two control nodes

case Nil hence False by simp thus ?case ..
next
case (Cons ee ww) then obtain sh ch where SPLIT : (([u],{#}),ee,(sh,ch))∈ntrp

fg ((sh,ch),ww,(s ′,c ′))∈trcl (ntrp fg) by (fast dest: trcl-uncons)
from ntrp-split[where ?c1 .0={#}, simplified, OF SPLIT (2) ntrp-valid-preserve-s[OF

SPLIT (1)], simplified] obtain w1 w2 c1 ′ c2 ′ where
LESPLIT : ww ∈ w1 ⊗αnl fg map ENV w2 c ′ = c1 ′ + c2 ′ ((sh, {#}), w1 , s ′,

c1 ′) ∈ trcl (ntrp fg) (ch, w2 , c2 ′) ∈ trcl (ntr fg) mon-ww fg (map le-rem-s w1) ∩
mon-c fg ch = {} mon-ww fg w2 ∩ mon-s fg sh = {}

by blast
obtain p u ′ v w where

FS-FMT : ee = LOC (LCall p # w) (u, Call p, u ′) ∈ edges fg sh = [v, u ′]
proc-of fg v = p mon-c fg ch = {}

and CHFMT :
∧

s. s ∈# ch =⇒ ∃ p u v. s = [entry fg p] ∧ (u, Spawn p, v) ∈
edges fg ∧ initialproc fg p

and S-ENTRY-PAT :
∧

P. (λp. [entry fg p]) ‘# P ⊆# ch =⇒ (v, mon-w fg w,
P) ∈ S-cs fg (size P)

by (rule S-sound-ntrp[OF SPLIT (1)]) blast
from ntrp-mon-env-w-no-ctx[OF SPLIT (2)] FS-FMT (3 ,4) edges-part[OF FS-FMT (2)]

have MON-PU : mon-env fg ww ∩ (mon fg p ∪ mon-n fg u) = {} by (auto simp
add: mon-n-def)

from cil-ileq[OF LESPLIT (1)] mon-loc-ileq[of w1 ww fg] mon-env-ileq[of w1 ww
fg] have MON1-LEQ: mon-loc fg w1 ⊆ mon-loc fg ww mon-env fg w1 ⊆ mon-env
fg ww by auto
from cil-ileq[OF LESPLIT (1)] mon-env-ileq[of map ENV w2 ww fg] have MON2-LEQ:

mon-ww fg w2 ⊆ mon-env fg ww by simp
from LESPLIT (3) FS-FMT (3) ntrp-stack-decomp[of v [] [u ′] {#} w1 s ′ c1 ′, sim-

plified] obtain v ′ rr where DECOMP-LOC : s ′=v ′#rr@[u ′] (([v],{#}),w1 ,(v ′#rr ,c1 ′))∈trcl
(ntrp fg) by (simp, blast)

from Cons.prems(2) LESPLIT (2) have atUV U V (({#s ′#}+c1 ′) + c2 ′) by
(simp add: union-ac)

thus ?case proof (cases rule: atUV-union-cases)
case left with DECOMP-LOC (1) have ATUV : atUV U V ({# v ′#rr #}+c1 ′)

by simp
from Cons.hyps[OF - DECOMP-LOC (2) ATUV] cil-length[OF LESPLIT (1)]

obtain Ml Me where IHAPP: (v, Ml, Me) ∈ RUV-cs fg U V Ml ⊆ mon-loc fg w1
Me ⊆ mon-env fg w1 by auto

from RUV-call[OF FS-FMT (2 ,4) S-ENTRY-PAT [of {#}, simplified] IHAPP(1)]

103

have (u, mon fg p ∪ mon-w fg w ∪ Ml, Me) ∈ RUV-cs fg U V using IHAPP(3)
MON-PU MON1-LEQ by fastforce

moreover have mon fg p ∪ mon-w fg w ∪ Ml ⊆ mon-loc fg (ee#ww) using
FS-FMT (1) IHAPP(2) MON1-LEQ by auto

moreover have Me ⊆ mon-env fg (ee#ww) using IHAPP(3) MON1-LEQ by
auto

ultimately show ?thesis by blast
next

case right — Both nodes are reached from the spawned threads, we have to
further distinguish whether both nodes are reached from the same thread or from
different threads

then obtain s1 ′ s2 ′ where R-STACKS : {#s1 ′#}+{#s2 ′#} ⊆# c2 ′ atU-s U
s1 ′ atU-s V s2 ′ by (unfold atUV-def) auto

then obtain ce2 ′ where C2 ′FMT : c2 ′={#s1 ′#}+({#s2 ′#}+ce2 ′) by (auto
simp add: mset-subset-eq-exists-conv union-ac)

obtain q ceh w21 w22 ce21 ′ ce22 ′ where
REVSPLIT : ch={#[entry fg q]#}+ceh add-mset s2 ′ ce2 ′ = ce21 ′+ce22 ′

w2∈w21⊗αn fgw22 mon fg q ∩ (mon-c fg ceh ∪ mon-ww fg w22)={} mon-c fg ceh
∩ (mon fg q ∪ mon-ww fg w21) = {}

({#[entry fg q]#},w21 ,{#s1 ′#}+ce21 ′)∈trcl (ntr fg) (ceh,w22 ,ce22 ′)∈trcl
(ntr fg)

proof −
from ntr-reverse-split[of ch w2 s1 ′ {#s2 ′#}+ce2 ′] ntrp-valid-preserve-s[OF

SPLIT (1), simplified] C2 ′FMT LESPLIT (4)
obtain seh ceh w21 w22 ce21 ′ ce22 ′ where
∗: ch={#seh#}+ceh {#s2 ′#}+ce2 ′ = ce21 ′+ce22 ′ w2∈w21⊗αn fgw22

mon-s fg seh ∩ (mon-c fg ceh ∪ mon-ww fg w22)={} mon-c fg ceh ∩ (mon-s fg seh
∪ mon-ww fg w21) = {}

({#seh#},w21 ,{#s1 ′#}+ce21 ′)∈trcl (ntr fg) (ceh,w22 ,ce22 ′)∈trcl (ntr fg)
by (auto simp add: valid-unconc)

from this(1) CHFMT [of seh] obtain q where seh=[entry fg q] by auto
with ∗ have ch={#[entry fg q]#}+ceh add-mset s2 ′ ce2 ′ = ce21 ′+ce22 ′

w2∈w21⊗αn fgw22 mon fg q ∩ (mon-c fg ceh ∪ mon-ww fg w22)={} mon-c fg ceh
∩ (mon fg q ∪ mon-ww fg w21) = {}

({#[entry fg q]#},w21 ,{#s1 ′#}+ce21 ′)∈trcl (ntr fg) (ceh,w22 ,ce22 ′)∈trcl
(ntr fg) by auto

thus thesis using that by (blast)
qed

— For applying the induction hypothesis, it will be handy to have the reaching
path in loc/env format:

from ntrs.gtr2gtrp[where c={#}, simplified, OF REVSPLIT (6)] obtain sq ′

csp-q ww21 where
R-CONV : add-mset s1 ′ ce21 ′ = add-mset sq ′ csp-q w21 = map le-rem-s ww21

(([entry fg q], {#}), ww21 , sq ′, csp-q) ∈ trcl (ntrp fg) by auto
from cil-ileq[OF REVSPLIT (3)] mon-ww-ileq[of w21 w2 fg] mon-ww-ileq[of

w22 w2 fg] have MON2N-LEQ: mon-ww fg w21 ⊆ mon-ww fg w2 mon-ww fg w22
⊆ mon-ww fg w2 by auto

from REVSPLIT (2) show ?thesis proof (cases rule: mset-unplusm-dist-cases[case-names
left ′ right ′])

104

case left ′ — Both nodes are reached from the same thread
have ATUV : atUV U V ({#sq ′#}+csp-q) using right C2 ′FMT R-STACKS(2 ,3)

left ′(1)
by (metis R-CONV (1) add-mset-add-single atUV-union atU-add-mset

union-commute)
from Cons.hyps[OF - R-CONV (3) ATUV] cil-length[OF REVSPLIT (3)]

cil-length[OF LESPLIT (1)] R-CONV (2) obtain Ml Me where IHAPP: (entry fg
q, Ml, Me) ∈ RUV-cs fg U V Ml ⊆ mon-loc fg ww21 Me ⊆ mon-env fg ww21 by
auto

from REVSPLIT (1) S-ENTRY-PAT [of {#q#}, simplified] have S-ENTRY :
(v, mon-w fg w, {#q#}) ∈ S-cs fg 1 by simp

have MON-COND: (mon-n fg u ∪ mon fg p) ∩ (Ml ∪ Me) = {} proof −
from R-CONV (2) have mon-ww fg w21 = mon-loc fg ww21 ∪ mon-env fg

ww21 by (simp add: mon-ww-of-le-rem)
with IHAPP(2 ,3) MON2N-LEQ(1) MON-PU MON2-LEQ show ?thesis

by blast
qed

from RUV-spawn[OF FS-FMT (2) FS-FMT (4) S-ENTRY - IHAPP(1)
MON-COND] have (u, mon fg p ∪ mon-w fg w, Ml ∪ Me) ∈ RUV-cs fg U V
by simp

moreover have mon fg p ∪ mon-w fg w ⊆ mon-loc fg (ee#ww) using
FS-FMT (1) by auto

moreover have Ml ∪ Me ⊆ mon-env fg (ee#ww) using IHAPP(2 ,3)
R-CONV (2) MON2N-LEQ(1) MON2-LEQ by (auto simp add: mon-ww-of-le-rem)

ultimately show ?thesis by blast
next

case right ′ — The nodes are reached from different threads
from R-STACKS(2 ,3) have ATUV : atU U (add-mset sq ′ csp-q) atU V ce22 ′

by (−) (subst R-CONV (1)[symmetric], simp, subst right ′(1), simp)
— We have to reverse-split the second path again, to extract the second

interesting thread
obtain q ′ w22 ′ ce22e ′ where REVSPLIT ′: [entry fg q ′] ∈# ceh w22 ′�w22

ce22e ′ ⊆# ce22 ′ atU V ce22e ′ ({#[entry fg q ′]#},w22 ′,ce22e ′)∈trcl (ntr fg)
proof −
from ntr-reverse-split-atU [OF - ATUV (2) REVSPLIT (7)] ntrp-valid-preserve-s[OF

SPLIT (1), simplified] REVSPLIT (1) obtain sq ′′ w22 ′ ce22e ′ where
∗: sq ′′∈# ceh w22 ′�w22 ce22e ′⊆# ce22 ′ atU V ce22e ′ ({#sq ′′#},w22 ′,ce22e ′)∈trcl

(ntr fg) by (auto simp add: valid-unconc)
from CHFMT [of sq ′′] REVSPLIT (1) this(1) obtain q ′ where sq ′′=[entry

fg q ′] by auto
with ∗ show thesis using that by blast

qed
from ntrs.gtr2gtrp[where c={#}, simplified, OF REVSPLIT ′(5)] obtain

sq ′′ ce22ee ′ ww22 ′ where R-CONV ′: ce22e ′ = add-mset sq ′′ ce22ee ′ w22 ′=map
le-rem-s ww22 ′ (([entry fg q ′],{#}),ww22 ′,(sq ′′,ce22ee ′))∈trcl (ntrp fg) by blast

— From the soundness of the RU-constraint system, we get the corresponding
entries

from RU-sound[OF R-CONV (3) ATUV (1)] obtain Ml Me h where RU :

105

(entry fg q, Ml, Me, h) ∈ RU-cs fg U Ml ⊆ mon-loc fg ww21 Me ⊆ mon-env fg
ww21 h ≤ αah (map (αnl fg) ww21) by blast

from RU-sound[OF R-CONV ′(3), of V] REVSPLIT ′(4) R-CONV ′(1) ob-
tain Ml ′ Me ′ h ′ where RV : (entry fg q ′, Ml ′, Me ′, h ′) ∈ RU-cs fg V Ml ′⊆ mon-loc
fg ww22 ′ Me ′ ⊆ mon-env fg ww22 ′ h ′ ≤ αah (map (αnl fg) ww22 ′) by auto

from S-ENTRY-PAT [of {#q#}+{#q ′#}, simplified] REVSPLIT (1) REVS-
PLIT ′(1) have S-ENTRY : (v, mon-w fg w, {#q#} + {#q ′#}) ∈ S-cs fg (2 ::nat)
by (simp add: numerals)

have (u, mon fg p ∪ mon-w fg w, Ml ∪ Me ∪ Ml ′ ∪ Me ′) ∈ RUV-cs fg U V
proof (rule RUV-split-ee[OF FS-FMT (2 ,4) S-ENTRY - RU (1) RV (1)])

from MON-PU MON2-LEQ MON2N-LEQ R-CONV (2) R-CONV ′(2)
mon-ww-ileq[OF REVSPLIT ′(2), of fg] RU (2 ,3) RV (2 ,3) show (mon-n fg u ∪
mon fg p) ∩ (Ml ∪ Me ∪ Ml ′ ∪ Me ′) = {} by (simp add: mon-ww-of-le-rem) blast

next
from ah-interleavable1 [OF REVSPLIT (3)] have αah (map (αn fg) w21)

[∗] αah (map (αn fg) w22) .
thus h [∗] h ′

proof (erule-tac ah-leq-il)
note RU (4)
also have map (αnl fg) ww21 � map (αn fg) w21 using R-CONV (2) by

(simp add: αn-αnl)
hence αah (map (αnl fg) ww21) ≤ αah (map (αn fg) w21) by (rule

αah-ileq)
finally show h ≤ αah (map (αn fg) w21) .

next
note RV (4)
also have map (αnl fg) ww22 ′ � map (αn fg) w22 using R-CONV ′(2)

REVSPLIT ′(2) by (simp add: αn-αnl[symmetric] le-list-map map-map[symmetric]
del: map-map)

hence αah (map (αnl fg) ww22 ′) ≤ αah (map (αn fg) w22) by (rule
αah-ileq)

finally show h ′ ≤ αah (map (αn fg) w22) .
qed

qed (simp)
moreover have mon fg p ∪ mon-w fg w ⊆ mon-loc fg (ee#ww) using

FS-FMT (1) by auto
moreover have Ml ∪ Me ∪ Ml ′ ∪ Me ′⊆ mon-env fg (ee#ww) using RV (2 ,3)

RU (2 ,3) mon-ww-ileq[OF REVSPLIT ′(2), of fg] MON2N-LEQ R-CONV (2) R-CONV ′(2)
MON2-LEQ by (simp add: mon-ww-of-le-rem) blast

ultimately show ?thesis by blast
qed

next
case lr — The first node is reached from the local thread, the second one from

a spawned thread
from RU-sound[OF DECOMP-LOC (2), of U] lr(1) DECOMP-LOC (1) obtain

Ml Me h where RU : (v, Ml, Me, h) ∈ RU-cs fg U Ml ⊆ mon-loc fg w1 Me ⊆
mon-env fg w1 h ≤ αah (map (αnl fg) w1) by auto

obtain Ml ′ Me ′ h ′ q ′ where RV : [entry fg q ′] ∈# ch (entry fg q ′, Ml ′, Me ′,
h ′) ∈ RU-cs fg V Ml ′ ⊆ mon-ww fg w2 Me ′ ⊆ mon-ww fg w2 h ′ ≤ αah (map (αn

106

fg) w2)
proof −

— We have to extract the interesting thread from the spawned threads in
order to get an entry in RU fg V

obtain q ′ w2 ′ c2i ′ where REVSPLIT : [entry fg q ′] ∈# ch w2 ′�w2 c2i ′ ⊆#
c2 ′ atU V c2i ′ ({#[entry fg q ′]#},w2 ′,c2i ′)∈trcl (ntr fg)

using ntr-reverse-split-atU [OF - lr(2) LESPLIT (4)] ntrp-valid-preserve-s[OF
SPLIT (1), simplified] CHFMT by (simp add: valid-unconc) blast

from ntrs.gtr2gtrp[where c={#}, simplified, OF REVSPLIT (5)] obtain s2i ′
c2ie ′ ww2 ′ where R-CONV : c2i ′=add-mset s2i ′ c2ie ′ w2 ′=map le-rem-s ww2 ′

(([entry fg q ′], {#}), ww2 ′, s2i ′, c2ie ′) ∈ trcl (ntrp fg) .
from RU-sound[OF R-CONV (3), of V] REVSPLIT (4) R-CONV (1) obtain

Ml ′ Me ′ h ′ where RV : (entry fg q ′, Ml ′, Me ′, h ′) ∈ RU-cs fg V Ml ′ ⊆ mon-loc fg
ww2 ′ Me ′ ⊆ mon-env fg ww2 ′ h ′ ≤ αah (map (αnl fg) ww2 ′) by auto

moreover have mon-loc fg ww2 ′⊆ mon-ww fg w2 mon-env fg ww2 ′⊆ mon-ww
fg w2 using mon-ww-ileq[OF REVSPLIT (2), of fg] R-CONV (2) by (auto simp
add: mon-ww-of-le-rem)

moreover have αah (map (αnl fg) ww2 ′) ≤ αah (map (αn fg) w2) using
REVSPLIT (2) R-CONV (2) by (auto simp add: αn-αnl[symmetric] le-list-map
map-map[symmetric] simp del: map-map intro: αah-ileq del: predicate2I)

ultimately show thesis using that REVSPLIT (1) by (blast intro: or-
der-trans)

qed
from S-ENTRY-PAT [of {#q ′#}, simplified] RV (1) have S-ENTRY : (v,

mon-w fg w, {#q ′#}) ∈ S-cs fg 1 by simp
have (u, mon fg p ∪ mon-w fg w ∪ Ml, Me ∪ Ml ′ ∪ Me ′) ∈ RUV-cs fg U V

proof (rule RUV-split-le[OF FS-FMT (2 ,4) S-ENTRY - RU (1) RV (2)])
from MON-PU MON1-LEQ MON2-LEQ RU (3) RV (3 ,4) show (mon-n fg

u ∪ mon fg p) ∩ (Me ∪ Ml ′ ∪ Me ′) = {} by blast
next

from ah-interleavable1 [OF LESPLIT (1)] have αah (map (αnl fg) w1) [∗]
αah (map (αn fg) w2) by simp

thus h [∗] h ′ using RU (4) RV (5) by (auto elim: ah-leq-il)
qed (simp)
moreover have mon fg p ∪ mon-w fg w ∪ Ml ⊆ mon-loc fg (ee # ww) using

FS-FMT (1) MON1-LEQ RU (2) by (simp) blast
moreover have Me ∪ Ml ′ ∪ Me ′ ⊆ mon-env fg (ee # ww) using MON1-LEQ

MON2-LEQ RU (3) RV (3 ,4) by (simp) blast
ultimately show ?thesis by blast

next
case rl — The second node is reached from the local thread, the first one from

a spawned thread. This case is symmetric to the previous one
from RU-sound[OF DECOMP-LOC (2), of V] rl(1) DECOMP-LOC (1) obtain

Ml Me h where RV : (v, Ml, Me, h) ∈ RU-cs fg V Ml ⊆ mon-loc fg w1 Me ⊆
mon-env fg w1 h ≤ αah (map (αnl fg) w1) by auto

obtain Ml ′ Me ′ h ′ q ′ where RU : [entry fg q ′] ∈# ch (entry fg q ′, Ml ′, Me ′,
h ′) ∈ RU-cs fg U Ml ′ ⊆ mon-ww fg w2 Me ′ ⊆ mon-ww fg w2 h ′ ≤ αah (map (αn
fg) w2)

proof −

107

— We have to extract the interesting thread from the spawned threads in
order to get an entry in RU fg V

obtain q ′ w2 ′ c2i ′ where REVSPLIT : [entry fg q ′] ∈# ch w2 ′�w2 c2i ′ ⊆#
c2 ′ atU U c2i ′ ({#[entry fg q ′]#},w2 ′,c2i ′)∈trcl (ntr fg)

using ntr-reverse-split-atU [OF - rl(2) LESPLIT (4)] ntrp-valid-preserve-s[OF
SPLIT (1), simplified] CHFMT by (simp add: valid-unconc) blast

from ntrs.gtr2gtrp[where c={#}, simplified, OF REVSPLIT (5)] obtain s2i ′
c2ie ′ ww2 ′ where R-CONV : c2i ′=add-mset s2i ′ c2ie ′ w2 ′=map le-rem-s ww2 ′

(([entry fg q ′], {#}), ww2 ′, s2i ′, c2ie ′) ∈ trcl (ntrp fg) .
from RU-sound[OF R-CONV (3), of U] REVSPLIT (4) R-CONV (1) obtain

Ml ′ Me ′ h ′ where RU : (entry fg q ′, Ml ′, Me ′, h ′) ∈ RU-cs fg U Ml ′ ⊆ mon-loc fg
ww2 ′ Me ′ ⊆ mon-env fg ww2 ′ h ′ ≤ αah (map (αnl fg) ww2 ′) by auto

moreover have mon-loc fg ww2 ′⊆ mon-ww fg w2 mon-env fg ww2 ′⊆ mon-ww
fg w2 using mon-ww-ileq[OF REVSPLIT (2), of fg] R-CONV (2) by (auto simp
add: mon-ww-of-le-rem)

moreover have αah (map (αnl fg) ww2 ′) ≤ αah (map (αn fg) w2) using
REVSPLIT (2) R-CONV (2) by (auto simp add: αn-αnl[symmetric] le-list-map
map-map[symmetric] simp del: map-map intro: αah-ileq del: predicate2I)

ultimately show thesis using that REVSPLIT (1) by (blast intro: or-
der-trans)

qed
from S-ENTRY-PAT [of {#q ′#}, simplified] RU (1) have S-ENTRY : (v,

mon-w fg w, {#q ′#}) ∈ S-cs fg 1 by simp
have (u, mon fg p ∪ mon-w fg w ∪ Ml, Me ∪ Ml ′ ∪ Me ′) ∈ RUV-cs fg U V

proof (rule RUV-split-el[OF FS-FMT (2 ,4) S-ENTRY - RV (1) RU (2)])
from MON-PU MON1-LEQ MON2-LEQ RV (3) RU (3 ,4) show (mon-n fg

u ∪ mon fg p) ∩ (Me ∪ Ml ′ ∪ Me ′) = {} by blast
next

from ah-interleavable1 [OF LESPLIT (1)] have αah (map (αnl fg) w1) [∗]
αah (map (αn fg) w2) by simp

thus h [∗] h ′ using RV (4) RU (5) by (auto elim: ah-leq-il)
qed (simp)
moreover have mon fg p ∪ mon-w fg w ∪ Ml ⊆ mon-loc fg (ee # ww) using

FS-FMT (1) MON1-LEQ RV (2) by (simp) blast
moreover have Me ∪ Ml ′ ∪ Me ′ ⊆ mon-env fg (ee # ww) using MON1-LEQ

MON2-LEQ RV (3) RU (3 ,4) by (simp) blast
ultimately show ?thesis by blast

qed
qed

lemma (in flowgraph) RUV-precise: (u,Ml,Me)∈RUV-cs fg U V
=⇒ ∃w s ′ c ′.
(([u],{#}),w,(s ′,c ′))∈trcl (ntrp fg) ∧
atUV U V ({#s ′#}+c ′) ∧
mon-loc fg w = Ml ∧
mon-env fg w = Me

proof (induct rule: RUV-cs.induct)
case (RUV-call u p u ′ v M P Ml Me) then obtain ww s ′ c ′ where IH : (([v],
{#}), ww, s ′, c ′) ∈ trcl (ntrp fg) atUV U V ({#s ′#} + c ′) mon-loc fg ww = Ml

108

mon-env fg ww = Me by blast
from S-precise-ntrp[OF RUV-call(3 ,2 ,1), simplified] obtain w ch where FS :

(([u], {#}), LOC (LCall p # w), [v, u ′], ch) ∈ ntrp fg P = {#} M = mon-w fg w
mon-n fg v = mon fg p mon-c fg ch = {} by blast

note FS(1)
also have (([v, u ′], ch), ww, s ′ @ [u ′], c ′ + ch) ∈ trcl (ntrp fg)
using ntrp-add-context[OF ntrp-stack-comp[OF IH (1), of [u ′]], of ch, simplified]

FS(5) IH (4) RUV-call.hyps(6) mon-n-same-proc[OF edges-part[OF RUV-call.hyps(1)]]
by simp

finally have (([u], {#}), LOC (LCall p # w) # ww, s ′ @ [u ′], c ′ + ch) ∈ trcl
(ntrp fg) .

moreover from IH (2) have atUV U V ({#s ′ @ [u ′]#}+(c ′+ch)) by auto
moreover have mon-loc fg (LOC (LCall p # w) # ww) = mon fg p ∪ M ∪ Ml

using IH (3) FS(3) by auto
moreover have mon-env fg (LOC (LCall p # w) # ww) = Me using IH (4)

by auto
ultimately show ?case by blast

next
case (RUV-spawn u p u ′ v M P q Ml Me) then obtain ww s ′ c ′ where IH :

(([entry fg q], {#}), ww, s ′, c ′) ∈ trcl (ntrp fg) atUV U V ({#s ′#} + c ′) mon-loc
fg ww = Ml mon-env fg ww = Me by blast
from S-precise-ntrp[OF RUV-spawn(3 ,2 ,1), simplified] mset-size1elem[OF - RUV-spawn(4)]

obtain w che where
FS : (([u], {#}), LOC (LCall p # w), [v, u ′], {#[entry fg q]#} + che) ∈ ntrp

fg P={#q#} M = mon-w fg w mon-n fg v = mon fg p mon-c fg ({#[entry fg
q]#}+che) = {} by (auto elim: mset-le-addE)

moreover
have (([v, u ′], che + {#[entry fg q]#}), map ENV (map le-rem-s ww), ([v,u ′],che+({#s ′#}

+ c ′)))∈trcl (ntrp fg)
using ntr2ntrp[OF gtrp2gtr [OF IH (1)], of [v,u ′] che] IH (3 ,4) RUV-spawn(7)

FS(4 ,5) mon-n-same-proc[OF edges-part[OF RUV-spawn(1)]]
by (auto simp add: mon-c-unconc mon-ww-of-le-rem)

ultimately have (([u], {#}), LOC (LCall p # w) # map ENV (map le-rem-s
ww), ([v,u ′],che+({#s ′#} + c ′))) ∈ trcl (ntrp fg) by (auto simp add: union-ac)

moreover have atUV U V ({#[v,u ′]#} + (che+({#s ′#} + c ′))) using IH (2)
by auto

moreover have mon-loc fg (LOC (LCall p # w) # map ENV (map le-rem-s
ww)) = mon fg p ∪ M using FS(3) by (simp del: map-map)

moreover have mon-env fg (LOC (LCall p # w) # map ENV (map le-rem-s
ww)) = Ml ∪ Me using IH (3 ,4) by (auto simp add: mon-ww-of-le-rem simp del:
map-map)

ultimately show ?case by blast
next

case (RUV-split-le u p u ′ v M P q Ml Me h Ml ′ Me ′ h ′)
— Get paths from precision results
from S-precise-ntrp[OF RUV-split-le(3 ,2 ,1), simplified] mset-size1elem[OF -

RUV-split-le(4)] obtain w che where
FS : (([u], {#}), LOC (LCall p # w), [v, u ′], {#[entry fg q]#} + che) ∈ ntrp

fg P={#q#} M = mon-w fg w mon-n fg v = mon fg p mon-c fg ({#[entry fg

109

q]#}+che) = {} by (auto elim: mset-le-addE)
from RU-precise[OF RUV-split-le(5)] obtain ww1 s1 ′ c1 ′ where P1 : (([v],

{#}), ww1 , s1 ′, c1 ′) ∈ trcl (ntrp fg) atU U ({#s1 ′#} + c1 ′) mon-loc fg ww1 =
Ml mon-env fg ww1 = Me αah (map (αnl fg) ww1) = h by blast

from RU-precise[OF RUV-split-le(6)] obtain ww2 s2 ′ c2 ′ where P2 : (([entry
fg q], {#}), ww2 , s2 ′, c2 ′) ∈ trcl (ntrp fg) atU V ({#s2 ′#} + c2 ′) mon-loc fg
ww2 = Ml ′ mon-env fg ww2 = Me ′ αah (map (αnl fg) ww2) = h ′ by blast

— Get combined path from the acquisition history interleavability, need to remap
loc/env-steps in second path

from P2 (5) have αah (map (αnl fg) (map ENV (map le-rem-s ww2))) = h ′ by
(simp add: αn-αnl o-assoc)

with P1 (5) RUV-split-le(8) obtain ww where IL: ww∈ww1⊗αnl fg(map ENV
(map le-rem-s ww2)) using ah-interleavable2 by (force)

— Use the ntrp-unsplit-theorem to combine the executions
from ntrp-unsplit[where ca={#},OF IL P1 (1) gtrp2gtr [OF P2 (1)], simplified]

have (([v], {#[entry fg q]#}), ww, s1 ′, c1 ′ + ({#s2 ′#} + c2 ′)) ∈ trcl (ntrp fg)
using FS(4 ,5) RUV-split-le(7)
by (auto simp add: mon-c-unconc mon-ww-of-le-rem P2 (3 ,4))

from ntrp-add-context[OF ntrp-stack-comp[OF this, of [u ′]], of che] have (([v]
@ [u ′], {#[entry fg q]#} + che), ww, s1 ′ @ [u ′], c1 ′ + ({#s2 ′#} + c2 ′) + che)
∈ trcl (ntrp fg)

using mon-n-same-proc[OF edges-part[OF RUV-split-le(1)]] mon-loc-cil[OF
IL, of fg] mon-env-cil[OF IL, of fg] FS(4 ,5) RUV-split-le(7) by (auto simp add:
mon-c-unconc P1 (3 ,4) P2 (3 ,4) mon-ww-of-le-rem simp del: map-map)

with FS(1) have (([u], {#}), LOC (LCall p # w) # ww, (s1 ′ @ [u ′], c1 ′ +
({#s2 ′#} + c2 ′) + che))∈trcl (ntrp fg) by simp

moreover have atUV U V ({#s1 ′ @ [u ′]#}+(c1 ′ + ({#s2 ′#} + c2 ′) + che))
using P1 (2) P2 (2) by auto

moreover have mon-loc fg (LOC (LCall p # w) # ww) = mon fg p ∪ M ∪ Ml
using FS(3) P1 (3) mon-loc-cil[OF IL, of fg] by (auto simp del: map-map)

moreover have mon-env fg (LOC (LCall p # w) # ww) = Me ∪ Ml ′ ∪ Me ′ us-
ing P1 (4) P2 (3 ,4) mon-env-cil[OF IL, of fg] by (auto simp add: mon-ww-of-le-rem
simp del: map-map)

ultimately show ?case by blast
next

case (RUV-split-el u p u ′ v M P q Ml Me h Ml ′ Me ′ h ′) — This is the symmetric
case to RUV-split-le, it is proved completely analogously, just need to swap U and
V.

— Get paths from precision results
from S-precise-ntrp[OF RUV-split-el(3 ,2 ,1), simplified] mset-size1elem[OF -

RUV-split-el(4)] obtain w che where
FS : (([u], {#}), LOC (LCall p # w), [v, u ′], {#[entry fg q]#} + che) ∈ ntrp

fg P={#q#} M = mon-w fg w mon-n fg v = mon fg p mon-c fg ({#[entry fg
q]#}+che) = {} by (auto elim: mset-le-addE)

from RU-precise[OF RUV-split-el(5)] obtain ww1 s1 ′ c1 ′ where P1 : (([v],
{#}), ww1 , s1 ′, c1 ′) ∈ trcl (ntrp fg) atU V ({#s1 ′#} + c1 ′) mon-loc fg ww1 =
Ml mon-env fg ww1 = Me αah (map (αnl fg) ww1) = h by blast

from RU-precise[OF RUV-split-el(6)] obtain ww2 s2 ′ c2 ′ where P2 : (([entry
fg q], {#}), ww2 , s2 ′, c2 ′) ∈ trcl (ntrp fg) atU U ({#s2 ′#} + c2 ′) mon-loc fg

110

ww2 = Ml ′ mon-env fg ww2 = Me ′ αah (map (αnl fg) ww2) = h ′ by blast
— Get combined path from the acquisition history interleavability, need to remap

loc/env-steps in second path
from P2 (5) have αah (map (αnl fg) (map ENV (map le-rem-s ww2))) = h ′ by

(simp add: αn-αnl o-assoc)
with P1 (5) RUV-split-el(8) obtain ww where IL: ww∈ww1⊗αnl fg(map ENV

(map le-rem-s ww2)) using ah-interleavable2 by (force)
— Use the ntrp-unsplit-theorem to combine the executions
from ntrp-unsplit[where ca={#},OF IL P1 (1) gtrp2gtr [OF P2 (1)], simplified]

have (([v], {#[entry fg q]#}), ww, s1 ′, c1 ′ + ({#s2 ′#} + c2 ′)) ∈ trcl (ntrp fg)
using FS(4 ,5) RUV-split-el(7)
by (auto simp add: mon-c-unconc mon-ww-of-le-rem P2 (3 ,4))

from ntrp-add-context[OF ntrp-stack-comp[OF this, of [u ′]], of che] have (([v]
@ [u ′], {#[entry fg q]#} + che), ww, s1 ′ @ [u ′], c1 ′ + ({#s2 ′#} + c2 ′) + che)
∈ trcl (ntrp fg)

using mon-n-same-proc[OF edges-part[OF RUV-split-el(1)]] mon-loc-cil[OF
IL, of fg] mon-env-cil[OF IL, of fg] FS(4 ,5) RUV-split-el(7) by (auto simp add:
mon-c-unconc P1 (3 ,4) P2 (3 ,4) mon-ww-of-le-rem simp del: map-map)

with FS(1) have (([u], {#}), LOC (LCall p # w) # ww, (s1 ′ @ [u ′], c1 ′ +
({#s2 ′#} + c2 ′) + che))∈trcl (ntrp fg) by simp

moreover have atUV U V ({#s1 ′ @ [u ′]#}+(c1 ′ + ({#s2 ′#} + c2 ′) + che))
using P1 (2) P2 (2) by auto

moreover have mon-loc fg (LOC (LCall p # w) # ww) = mon fg p ∪ M ∪ Ml
using FS(3) P1 (3) mon-loc-cil[OF IL, of fg] by (auto simp del: map-map)

moreover have mon-env fg (LOC (LCall p # w) # ww) = Me ∪ Ml ′ ∪ Me ′ us-
ing P1 (4) P2 (3 ,4) mon-env-cil[OF IL, of fg] by (auto simp add: mon-ww-of-le-rem
simp del: map-map)

ultimately show ?case by blast
next

case (RUV-split-ee u p u ′ v M P q q ′ Ml Me h Ml ′ Me ′ h ′)
— Get paths from precision results
from S-precise-ntrp[OF RUV-split-ee(3 ,2 ,1), simplified] mset-size2elem[OF -

RUV-split-ee(4)] obtain w che where
FS : (([u], {#}), LOC (LCall p # w), [v, u ′], {#[entry fg q]#} + {#[entry fg

q ′]#} + che) ∈ ntrp fg P={#q#}+{#q ′#} M = mon-w fg w mon-n fg v = mon
fg p mon-c fg ({#[entry fg q]#}+{#[entry fg q ′]#}+che) = {}

by (auto elim: mset-le-addE)
from RU-precise[OF RUV-split-ee(5)] obtain ww1 s1 ′ c1 ′ where P1 : (([entry

fg q], {#}), ww1 , s1 ′, c1 ′) ∈ trcl (ntrp fg) atU U ({#s1 ′#} + c1 ′) mon-loc fg
ww1 = Ml mon-env fg ww1 = Me αah (map (αnl fg) ww1) = h by blast

from RU-precise[OF RUV-split-ee(6)] obtain ww2 s2 ′ c2 ′ where P2 : (([entry
fg q ′], {#}), ww2 , s2 ′, c2 ′) ∈ trcl (ntrp fg) atU V ({#s2 ′#} + c2 ′) mon-loc fg
ww2 = Ml ′ mon-env fg ww2 = Me ′ αah (map (αnl fg) ww2) = h ′ by blast

— Get interleaved paths, project away loc/env information first
from P1 (5) P2 (5) have αah (map (αn fg) (map le-rem-s ww1)) = h αah (map

(αn fg) (map le-rem-s ww2)) = h ′ by (auto simp add: αn-αnl o-assoc)
with RUV-split-ee(8) obtain ww where IL: ww ∈ (map le-rem-s ww1) ⊗αn fg

(map le-rem-s ww2) using ah-interleavable2 by (force simp del: map-map)

111

— Use the ntr-unsplit-theorem to combine the executions
from ntr-unsplit[OF IL gtrp2gtr [OF P1 (1)] gtrp2gtr [OF P2 (1)], simplified] have

PC : ({#[entry fg q]#} + {#[entry fg q ′]#}, ww, {#s1 ′#} + c1 ′ + ({#s2 ′#} +
c2 ′)) ∈ trcl (ntr fg) using FS(5) by (auto simp add: mon-c-unconc)

— Prepend first step
from ntr2ntrp[OF PC (1), of [v,u ′] che] have (([v, u ′], che + ({#[entry fg q]#}

+ {#[entry fg q ′]#})), map ENV ww, [v, u ′], che + ({#s1 ′#} + c1 ′ + ({#s2 ′#}
+ c2 ′))) ∈ trcl (ntrp fg)

using RUV-split-ee(7) FS(5) mon-ww-cil[OF IL, of fg] FS(4) mon-n-same-proc[OF
edges-part[OF RUV-split-ee(1)]] by (auto simp add: mon-c-unconc mon-ww-of-le-rem
P1 (3 ,4) P2 (3 ,4))

with FS(1) have (([u], {#}), LOC (LCall p # w) # map ENV ww, ([v, u ′],
che + ({#s1 ′#} + c1 ′ + ({#s2 ′#} + c2 ′)))) ∈ trcl (ntrp fg) by (auto simp add:
union-ac)

moreover have atUV U V ({#[v, u ′]#}+(che + ({#s1 ′#} + c1 ′ + ({#s2 ′#}
+ c2 ′)))) using P1 (2) P2 (2) by auto

moreover have mon-loc fg (LOC (LCall p # w) # map ENV ww) = mon fg p
∪ M using FS(3) by auto

moreover have mon-env fg (LOC (LCall p # w) # map ENV ww) = Ml ∪ Me
∪ Ml ′ ∪ Me ′ using mon-ww-cil[OF IL, of fg] by (auto simp add: P1 (3 ,4) P2 (3 ,4)
mon-ww-of-le-rem)

ultimately show ?case by blast
qed

end

10 Main Result
theory MainResult
imports ConstraintSystems
begin

At this point everything is available to prove the main result of this project:
The constraint system RUV-cs precisely characterizes simultaneously reach-
able control nodes w.r.t. to our semantic reference point.
The „trusted base” of this proof, that are all definitions a reader that trusts
the Isabelle prover must additionally trust, is the following:

• The flowgraph and the assumptions made on it in the flowgraph- and
eflowgraph-locales. Note that we show in Section 6.4 that there is at
least one non-trivial model of eflowgraph.

• The reference point semantics (refpoint) and the transitive closure op-
erator (trcl).

• The definition of atUV.

• All dependencies of the above definitions in the Isabelle standard li-
braries.

112

theorem (in eflowgraph) RUV-is-sim-reach:
(∃w c ′. ({#[entry fg (main fg)]#},w,c ′)∈trcl (refpoint fg) ∧ atUV U V c ′)
←→ (∃Ml Me. (entry fg (main fg),Ml,Me)∈RUV-cs fg U V)

— The proof uses the soundness and precision theorems wrt. to normalized paths
(flowgraph.RUV-sound, flowgraph.RUV-precise) as well as the normalization result,
i.e. that every reachable configuration is also reachable using a normalized path
(eflowgraph.normalize) and, vice versa, that every normalized path is also a usual
path (ntr-is-tr). Finally the conversion between our working semantics and the
semantic reference point is exploited (flowgraph.refpoint-eq).
(is ?lhs ←→ ?rhs)

proof
assume ?lhs
then obtain w c ′ where C : ({#[entry fg (main fg)]#}, w, c ′) ∈ trcl (tr fg)

atUV U V c ′ by (auto simp add: refpoint-eq)
from normalize[OF C (1), of main fg, simplified] obtain ww where ({#[entry

fg (main fg)]#}, ww, c ′) ∈ trcl (ntr fg) by blast
from ntrs.gtr2gtrp[where c={#}, simplified, OF this] obtain s ′ ce ′ wwl where

1 : c ′=add-mset s ′ ce ′ ww = map le-rem-s wwl (([entry fg (main fg)], {#}), wwl,
s ′, ce ′) ∈ trcl (ntrp fg) by blast

with C (2) have 2 : atUV U V ({#s ′#}+ce ′) by auto
from RUV-sound[OF 1 (3) 2] show ?rhs by blast

next
assume ?rhs
then obtain Ml Me where C : (entry fg (main fg), Ml, Me) ∈ RUV-cs fg U V

by blast
from RUV-precise[OF C] obtain wwl s ′ c ′ where P: (([entry fg (main fg)],
{#}), wwl, s ′, c ′) ∈ trcl (ntrp fg) atUV U V ({#s ′#} + c ′) by blast

from gtrp2gtr [OF P(1)] have ({# [entry fg (main fg)] #}, map le-rem-s wwl,
{#s ′#}+c ′) ∈ trcl (ntr fg) by (auto)

from ntr-is-tr [OF this] P(2) have ∃w c ′. ({#[entry fg (main fg)]#}, w, c ′) ∈
trcl (tr fg) ∧ atUV U V c ′ by blast

thus ?lhs by (simp add: refpoint-eq)
qed

end

11 Conclusion

We have formalized a flowgraph-based model for programs with recursive
procedure calls, dynamic thread creation and reentrant monitors and its
operational semantics. Based on the operational semantics, we defined a
conflict as being able to simultaneously reach two control points from two
given sets U and V when starting at the initial program configuration, just
consisting of a single thread at the entry point of the main procedure. We
then formalized a constraint-system-based analysis for conflicts and proved
it sound and precise w.r.t. the operational definition of a conflict. The main
idea of the analysis was to restrict the possible schedules of a program. On

113

the one hand, this restriction enabled the constraint system based analysis,
on the other hand it did not change the set of reachable configurations (and
thus the set of conflicts).
We characterized the constraint systems as inductive sets. While we did not
derive an executable algorithm explicitly, the steps from the inductive sets
characterization to an algorithm follow the path common in program analy-
sis and pose no particular difficulty. The algorithm would have to construct
a constraint system (system of inequalities over a finite height lattice) from
a given program corresponding to the inductively defined sets studied here
and then determine its least solution, e.g. by a worklist algorithm. In order
to make the algorithm executable, we would have to introduce finiteness
assumptions for our programs. The derivation of executable algorithms is
currently in preparation.
A formal analysis of the algorithmic complexity of the problem will be pre-
sented elsewhere. Here we only present some results: Already the problem
of deciding the reachability of a single control node is NP-hard, as can be
shown by a simple reduction from SAT. On the other hand, we can decide si-
multaneous reachability in nondeterministic polynomial time in the program
size, where the number of random bits depends on the possible nesting depth
of the monitors. This can be shown by analyzing the constraint systems.

Acknowledgement We thank Dejvuth Suwimonteerabuth for an inter-
esting discussion about static analysis of programs with locks. We also
thank the people on the Isabelle mailing list for quick and useful responses.

References

[1] A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis
of dynamic networks of pushdown systems. In Proc. of CONCUR’05.
Springer, 2005.

[2] J. Esparza and J. Knoop. An automata-theoretic approach to interproce-
dural data-flow analysis. In Proc. of FoSSaCS’99, pages 14–30. Springer,
1999.

[3] J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on
interprocedural parallel flow graphs. In Proc. of POPL’00, pages 1–11.
Springer, 2000.

[4] V. Kahlon and A. Gupta. An automata-theoretic approach for model
checking threads for LTL properties. In Proc. of LICS 2006, pages
101–110. IEEE Computer Society, 2006.

114

[5] V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads com-
municating via locks. In Proc. of CAV 2005, pages 505–518. Springer,
2005.

[6] P. Lammich and M. Müller-Olm. Precise fixpoint-based analysis of pro-
grams with thread-creation. In Proc. of CONCUR 2007, pages 287–302.
Springer, 2007.

[7] H. Seidl and B. Steffen. Constraint-based inter-procedural analysis of
parallel programs. Nordic Journal of Computing (NJC), 7(4):375–400,
2000.

115

	Introduction
	Monitor Consistent Interleaving
	Monitors of lists of monitor pairs
	Properties of consistent interleaving

	Acquisition Histories
	Definitions
	Interleavability
	Used monitors
	Ordering
	Acquisition histories of executions
	Acquisition history backward update

	Labeled transition systems
	Definitions
	Basic properties of transitive reflexive closure
	Appending of elements to paths
	Transitivity reasoning setup
	Monotonicity
	Special lemmas for reasoning about states that are pairs
	Invariants

	Thread Tracking
	Semantic on multiset configuration
	Invariants
	Context preservation assumption
	Explicit local context
	Lifted step datatype
	Definition of the loc/env-semantics
	Relation between multiset- and loc/env-semantics
	Invariants

	Flowgraphs
	Definitions
	Basic properties
	Extra assumptions for flowgraphs
	Example Flowgraph

	Operational Semantics
	Configurations and labels
	Monitors
	Valid configurations
	Configurations at control points
	Operational semantics
	Semantic reference point

	Basic properties
	Validity
	Equivalence to reference point
	Case distinctions

	Advanced properties
	Stack composition / decomposition
	Adding threads
	Conversion between environment and monitor restrictions

	Normalized Paths
	Semantic properties of restricted flowgraphs
	Definition of normalized paths
	Representation property for reachable configurations
	Properties of normalized path
	Validity
	Monitors
	Modifying the context
	Altering the local stack

	Relation to monitor consistent interleaving
	Abstraction function for normalized paths
	Monitors
	Interleaving theorem
	Reverse splitting

	Constraint Systems
	Same-level paths
	Definition
	Soundness and Precision

	Single reaching path
	Constraint system
	Soundness and precision

	Simultaneously reaching path
	Constraint system
	Soundness and precision

	Main Result
	Conclusion

