
Probabilistic Timed Automata

Simon Wimmer and Johannes Hölzl

March 17, 2025

Abstract

We present a formalization of probabilistic timed automata (PTA) for which we try to follow the
formula “MDP + TA = PTA” as far as possible: our work starts from our existing formalizations
of Markov decision processes (MDP) and timed automata (TA) and combines them modularly.
We prove the fundamental result for probabilistic timed automata: the region construction that is
known from timed automata carries over to the probabilistic setting. In particular, this allows us
to prove that minimum and maximum reachability probabilities can be computed via a reduction
to MDP model checking, including the case where one wants to disregard unrealizable behavior.
Further information can be found in our ITP paper [2].

The definition of the PTA semantics can be found in Section 3.3, the region MDP is in Section 4.1,
the bisimulation theorem is in Section 1, and the final theorems can be found in Section 7.4. The
background theory we formalize is described in the seminal paper on PTA [1].

Contents
1 Bisimulation on a Relation 3

2 Additional Facts on Regions 6

3 Definition and Semantics 10
3.1 Syntactic Definition . 10

3.1.1 Collecting Information About Clocks . 11
3.2 Operational Semantics as an MDP . 11
3.3 Syntactic Definition . 12

4 Constructing the Corresponding Finite MDP on Regions 12
4.1 Syntactic Definition . 13
4.2 Many Closure Properties . 13
4.3 The Region Graph is a Finite MDP . 14

5 Relating the MDPs 16
5.1 Translating From K to K . 16
5.2 Translating Configurations . 20

5.2.1 States . 20
5.2.2 Intermezzo . 22
5.2.3 Predicates . 23
5.2.4 Distributions . 23
5.2.5 Configuration . 31

5.3 Equalities Between Measures of Trace Spaces . 42

6 Classifying Regions for Divergence 46
6.1 Pairwise . 46
6.2 Regions . 47
6.3 Unbounded and Zero Regions . 48

1

7 Reachability 48
7.1 Definitions . 48
7.2 Easier Result on All Configurations . 49
7.3 Divergent Adversaries . 51
7.4 Main Result . 81

2

theory PTA
imports library/Lib

begin

1 Bisimulation on a Relation
definition rel-set-strong :: (′a ⇒ ′b ⇒ bool) ⇒ ′a set ⇒ ′b set ⇒ bool

where rel-set-strong R A B ←→ (∀ x y. R x y −→ (x ∈ A ←→ y ∈ B))

lemma T-eq-rel-half [consumes 4 , case-names prob sets cont]:
fixes R :: ′s ⇒ ′t ⇒ bool and f :: ′s ⇒ ′t and S :: ′s set
assumes R-def :

∧
s t. R s t ←→ (s ∈ S ∧ f s = t)

assumes A[measurable]: A ∈ sets (stream-space (count-space UNIV))
and B[measurable]: B ∈ sets (stream-space (count-space UNIV))
and AB: rel-set-strong (stream-all2 R) A B and KL: rel-fun R (rel-pmf R) K L and xy: R x y

shows MC-syntax.T K x A = MC-syntax.T L y B
proof −

interpret K : MC-syntax K by unfold-locales
interpret L: MC-syntax L by unfold-locales

have x ∈ S using ‹R x y› by (auto simp: R-def)

define g where g t = (SOME s. R s t) for t
have measurable-g: g ∈ count-space UNIV →M count-space UNIV by auto
have g: R i j =⇒ R (g j) j for i j

unfolding g-def by (rule someI)

have K-subset: x ∈ S =⇒ K x ⊆ S for x
using KL[THEN rel-funD, of x f x, THEN rel-pmf-imp-rel-set] by (auto simp: rel-set-def R-def)

have in-S : AE ω in K .T x. ω ∈ streams S
using K .AE-T-enabled

proof eventually-elim
case (elim ω) with ‹x ∈ S› show ?case

apply (coinduction arbitrary: x ω)
subgoal for x ω using K-subset by (cases ω) (auto simp: K .enabled-Stream)
done

qed

have L-eq: L y = map-pmf f (K x) if xy: R x y for x y
proof −

have rel-pmf (λx y. x = y) (map-pmf f (K x)) (L y)
using KL[THEN rel-funD, OF xy] by (auto intro: pmf .rel-mono-strong simp: R-def pmf .rel-map)

then show ?thesis unfolding pmf .rel-eq by simp
qed

let ?D = λx. distr (K .T x) K .S (smap f)
have prob-space-D: ?D x ∈ space (prob-algebra K .S) for x

by (auto simp: space-prob-algebra K .T .prob-space-distr)

have D-eq-D: ?D x = ?D x ′ if R x y R x ′ y for x x ′ y
proof (rule stream-space-eq-sstart)

define A where A = K .acc ‘‘ {x, x ′}
have x-A: x ∈ A x ′ ∈ A by (auto simp: A-def)
let ?Ω = f ‘ A
show countable ?Ω

unfolding A-def by (intro countable-image K .countable-acc) auto
show prob-space (?D x) prob-space (?D x ′) by (auto intro!: K .T .prob-space-distr)
show sets (?D x) = sets L.S sets (?D x ′) = sets L.S by auto
have AE-streams: AE x in ?D x ′′. x ∈ streams ?Ω if x ′′ ∈ A for x ′′

3

apply (simp add: space-stream-space streams-sets AE-distr-iff)
using K .AE-T-reachable[of x ′′] unfolding alw-HLD-iff-streams

proof eventually-elim
fix s assume s ∈ streams (K .acc ‘‘ {x ′′})
moreover have K .acc ‘‘ {x ′′} ⊆ A

using ‹x ′′ ∈ A› by (auto simp: A-def Image-def intro: rtrancl-trans)
ultimately show smap f s ∈ streams (f ‘ A)

by (auto intro: smap-streams)
qed
with x-A show AE x in ?D x ′. x ∈ streams ?Ω AE x in ?D x. x ∈ streams ?Ω

by auto
from ‹x ∈ A› ‹x ′ ∈ A› that show ?D x (sstart (f ‘ A) xs) = ?D x ′ (sstart (f ‘ A) xs) for xs
proof (induction xs arbitrary: x x ′ y)

case Nil
moreover have ?D x (streams (f ‘ A)) = 1 if x ∈ A for x

using AE-streams[of x] that
by (intro prob-space.emeasure-eq-1-AE [OF K .T .prob-space-distr]) (auto simp: streams-sets)

ultimately show ?case by simp
next

case (Cons z zs x x ′ y)
have rel-pmf (R OO R−1−1) (K x) (K x ′)

using KL[THEN rel-funD, OF Cons(4)] KL[THEN rel-funD, OF Cons(5)]
unfolding pmf .rel-compp pmf .rel-flip by auto

then obtain p :: (′s × ′s) pmf where p:
∧

a b. (a, b) ∈ p =⇒ (R OO R−1−1) a b and
eq: map-pmf fst p = K x map-pmf snd p = K x ′

by (auto simp: pmf .in-rel)
let ?S = stream-space (count-space UNIV)
have ∗: (##) y −‘ smap f −‘ sstart (f ‘ A) (z # zs) = (if f y = z then smap f −‘ sstart (f ‘ A) zs else

{}) for y z zs
by auto

have ∗∗: ?D x (sstart (f ‘ A) (z # zs)) = (
∫

+ y ′. (if f y ′ = z then ?D y ′ (sstart (f ‘ A) zs) else 0) ∂K x)
for x

apply (simp add: emeasure-distr)
apply (subst K .T-eq-bind)
apply (subst emeasure-bind[where N=?S])

apply simp
apply (rule measurable-distr2 [where M=?S])
apply measurable

apply (intro nn-integral-cong-AE AE-pmfI)
apply (auto simp add: emeasure-distr)
apply (simp-all add: ∗ space-stream-space)
done

have fst-A: fst ab ∈ A if ab ∈ p for ab
proof −

have fst ab ∈ K x using ‹ab ∈ p› set-map-pmf [of fst p] by (auto simp: eq)
with ‹x ∈ A› show fst ab ∈ A

by (auto simp: A-def intro: rtrancl.rtrancl-into-rtrancl)
qed
have snd-A: snd ab ∈ A if ab ∈ p for ab
proof −

have snd ab ∈ K x ′ using ‹ab ∈ p› set-map-pmf [of snd p] by (auto simp: eq)
with ‹x ′ ∈ A› show snd ab ∈ A

by (auto simp: A-def intro: rtrancl.rtrancl-into-rtrancl)
qed
show ?case

unfolding ∗∗ eq[symmetric] nn-integral-map-pmf
apply (intro nn-integral-cong-AE AE-pmfI)
subgoal for ab using p[of fst ab snd ab] by (auto simp: R-def intro!: Cons(1) fst-A snd-A)
done

qed
qed

4

have L-eq-D: L.T y = ?D x
using ‹R x y›

proof (coinduction arbitrary: x y rule: L.T-coinduct)
case (cont x y)
then have Kx-Ly: rel-pmf R (K x) (L y)

by (rule KL[THEN rel-funD])
then have ∗: y ′ ∈ L y =⇒ ∃ x ′∈K x. R x ′ y ′ for y ′

by (auto dest!: rel-pmf-imp-rel-set simp: rel-set-def)
have ∗∗: y ′ ∈ L y =⇒ R (g y ′) y ′ for y ′

using ∗[of y ′] unfolding g-def by (auto intro: someI)

have D-SCons-eq-D-D: distr (K .T i) K .S (λx. z ## smap f x) = distr (?D i) K .S (λx. z ## x) for i z
by (subst distr-distr) (auto simp: comp-def)

have D-eq-D-gi: ?D i = ?D (g (f i)) if i: i ∈ K x for i
proof −

obtain j where j ∈ L y R i j f i = j
using Kx-Ly i by (force dest!: rel-pmf-imp-rel-set simp: rel-set-def R-def)

then show ?thesis
by (auto intro!: D-eq-D[OF ‹R i j›] g)

qed

have ∗∗∗: ?D x = measure-pmf (L y) >>= (λy. distr (?D (g y)) K .S ((##) y))
apply (subst K .T-eq-bind)
apply (subst distr-bind[of - - K .S])

apply (rule measurable-distr2 [of - - K .S])
apply (simp-all add: Pi-iff)

apply (simp add: distr-distr comp-def L-eq[OF cont] map-pmf-rep-eq)
apply (subst bind-distr [where K=K .S])

apply measurable []
apply (rule measurable-distr2 [of - - K .S])
apply measurable []
apply (rule measurable-compose[OF measurable-g])
apply measurable []

apply simp
apply (rule bind-measure-pmf-cong[where N=K .S])

apply (auto simp: space-subprob-algebra space-stream-space intro!: K .T .subprob-space-distr)
unfolding D-SCons-eq-D-D D-eq-D-gi ..

show ?case
by (intro exI [of - λt. distr (K .T (g t)) (stream-space (count-space UNIV)) (smap f)])

(auto simp add: K .T .prob-space-distr ∗∗∗ dest: ∗∗)
qed (auto intro: K .T .prob-space-distr)

have stream-all2 R s t ←→ (s ∈ streams S ∧ smap f s = t) for s t
proof safe

show stream-all2 R s t =⇒ s ∈ streams S
apply (coinduction arbitrary: s t)
subgoal for s t by (cases s; cases t) (auto simp: R-def)
done

show stream-all2 R s t =⇒ smap f s = t
apply (coinduction arbitrary: s t rule: stream.coinduct)
subgoal for s t by (cases s; cases t) (auto simp: R-def)
done

qed (auto intro!: stream.rel-refl-strong simp: stream.rel-map R-def streams-iff-sset)
then have ω ∈ streams S =⇒ ω ∈ A ←→ smap f ω ∈ B for ω

using AB by (auto simp: rel-set-strong-def)
with in-S have K .T x A = K .T x (smap f −‘ B ∩ space (K .T x))

by (auto intro!: emeasure-eq-AE streams-sets)
also have . . . = (distr (K .T x) K .S (smap f)) B

by (intro emeasure-distr [symmetric]) auto
also have . . . = (L.T y) B unfolding L-eq-D ..

5

finally show ?thesis .
qed

no-notation ccval (‹{|-|}› [100])

hide-const succ

2 Additional Facts on Regions
declare reset-set11 [simp] reset-set1 [simp]

Defining the closest successor of a region. Only exists if at least one interval is upper-bounded.
abbreviation is-upper-right where

is-upper-right R ≡ (∀ t ≥ 0 . ∀ u ∈ R. u ⊕ t ∈ R)

definition
succ R R ≡
if is-upper-right R then R else
(THE R ′. R ′ 6= R ∧ R ′ ∈ Succ R R ∧ (∀ u ∈ R. ∀ t ≥ 0 . (u ⊕ t) /∈ R −→ (∃ t ′ ≤ t. (u ⊕ t ′) ∈ R ′ ∧ 0 ≤

t ′)))

lemma region-continuous:
assumes valid-region X k I r
defines R: R ≡ region X I r
assumes between: 0 ≤ t1 t1 ≤ t2
assumes elem: u ∈ R u ⊕ t2 ∈ R
shows u ⊕ t1 ∈ R

unfolding R
proof

from ‹0 ≤ t1 › ‹u ∈ R› show ∀ x∈X . 0 ≤ (u ⊕ t1) x by (auto simp: R cval-add-def)

have intv-elem x (u ⊕ t1) (I x) if x ∈ X for x
proof −

from elem that have intv-elem x u (I x) intv-elem x (u ⊕ t2) (I x) by (auto simp: R)
with between show ?thesis by (cases I x, auto simp: cval-add-def)

qed
then show ∀ x ∈ X . intv-elem x (u ⊕ t1) (I x) by blast

let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
show ?X0 = ?X0 ..

from elem have ∀ x ∈ ?X0. ∀ y ∈ ?X0. (x, y) ∈ r ←→ frac (u x) ≤ frac (u y) by (auto simp: R)
moreover
{ fix x y c d assume A: x ∈ X y ∈ X I x = Intv c I y = Intv d

from A elem between have ∗:
c < u x u x < c + 1 c < u x + t1 u x + t1 < c + 1

by (fastforce simp: cval-add-def R)+
moreover from A(2 ,4) elem between have ∗∗:

d < u y u y < d + 1 d < u y + t1 u y + t1 < d + 1
by (fastforce simp: cval-add-def R)+
ultimately have u x = c + frac (u x) u y = d + frac (u y) using nat-intv-frac-decomp by auto
then have

frac (u x + t1) = frac (u x) + t1 frac (u y + t1) = frac (u y) + t1
using ∗(3 ,4) ∗∗(3 ,4) nat-intv-frac-decomp by force+
then have

frac (u x) ≤ frac (u y) ←→ frac ((u ⊕ t1) x) ≤ frac ((u ⊕ t1) y)
by (auto simp: cval-add-def)

}
ultimately show

6

∀ x ∈ ?X0. ∀ y ∈ ?X0. (x, y) ∈ r ←→ frac ((u ⊕ t1) x) ≤ frac ((u ⊕ t1) y)
by (auto simp: cval-add-def)

qed

lemma upper-right-eq:
assumes finite X valid-region X k I r
shows (∀ x ∈ X . isGreater (I x)) ←→ is-upper-right (region X I r)

using assms
proof (safe, goal-cases)

case (1 t u)
then show ?case

by − (standard, force simp: cval-add-def)+
next

case (2 x)

from region-not-empty[OF assms] obtain u where u: u ∈ region X I r ..
moreover have (1 :: real) ≥ 0 by auto
ultimately have (u ⊕ 1) ∈ region X I r using 2 by auto
with ‹x ∈ X› u have intv-elem x u (I x) intv-elem x (u ⊕ 1) (I x) by auto
then show ?case by (cases I x, auto simp: cval-add-def)

qed

lemma bounded-region:
assumes finite X valid-region X k I r
defines R: R ≡ region X I r
assumes ¬ is-upper-right R u ∈ R
shows u ⊕ 1 /∈ R

proof −
from upper-right-eq[OF assms(1 ,2)] assms(4) obtain x where x:

x ∈ X ¬ isGreater (I x)
by (auto simp: R)
with assms have intv-elem x u (I x) by auto
with x(2) have ¬ intv-elem x (u ⊕ 1) (I x) by (cases I x, auto simp: cval-add-def)
with x(1) assms show ?thesis by auto

qed

context AlphaClosure-global
begin

no-notation Regions-Beta.part (‹[-]-› [61 ,61] 61)

lemma succ-ex:
assumes R ∈ R
shows succ R R ∈ R (is ?G1) and succ R R ∈ Succ R R (is ?G2)
and ∀ u ∈ R. ∀ t ≥ 0 . (u ⊕ t) /∈ R −→ (∃ t ′ ≤ t. (u ⊕ t ′) ∈ succ R R ∧ 0 ≤ t ′) (is ?G3)

proof −
from ‹R ∈ R› obtain I r where R: R = region X I r valid-region X k I r

unfolding R-def by auto
from region-not-empty[OF finite] R obtain u where u: u ∈ R

by blast
let ?Z = {x ∈ X . ∃ c. I x = Const c}
let ?succ =
λ R ′. R ′ 6= R ∧ R ′ ∈ Succ R R
∧ (∀ u ∈ R. ∀ t ≥ 0 . (u ⊕ t) /∈ R −→ (∃ t ′ ≤ t. (u ⊕ t ′) ∈ R ′ ∧ 0 ≤ t ′))

consider (upper-right) ∀ x ∈ X . isGreater (I x) | (intv) ∃ x ∈ X . ∃ d. I x = Intv d ∧ ?Z = {}
| (const) ?Z 6= {}

apply (cases ∀ x ∈ X . isGreater (I x))
apply fast

apply (cases ?Z = {})
apply safe

7

apply (rename-tac x)
apply (case-tac I x)

by auto
then have ?G1 ∧ ?G2 ∧ ?G3
proof cases

case const
with upper-right-eq[OF finite R(2)] have ¬ is-upper-right R by (auto simp: R(1))
from closest-prestable-1 (1 ,2)[OF const finite R(2)] closest-valid-1 [OF const finite R(2)] R(1)
obtain R ′ where R ′:
∀ u ∈ R. ∀ t>0 . ∃ t ′≤t. (u ⊕ t ′) ∈ R ′ ∧ t ′ ≥ 0 R ′ ∈ R ∀ u ∈ R ′. ∀ t≥0 . (u ⊕ t) /∈ R

unfolding R-def by auto
with region-not-empty[OF finite] obtain u ′ where u ′ ∈ R ′ unfolding R-def by blast
with R ′(3) have neq: R ′ 6= R by (fastforce simp: cval-add-def)
obtain t:: real where t > 0 by (auto intro: that[of 1])
with R ′(1 ,2) ‹u ∈ R› obtain t where t ≥ 0 u ⊕ t ∈ R ′ by auto
with ‹R ∈ R› ‹R ′ ∈ R› ‹u ∈ R› have R ′ ∈ Succ R R by (intro SuccI3)
moreover have (∀ u ∈ R. ∀ t ≥ 0 . (u ⊕ t) /∈ R −→ (∃ t ′ ≤ t. (u ⊕ t ′) ∈ R ′ ∧ 0 ≤ t ′))

using R ′(1) unfolding cval-add-def
apply clarsimp
subgoal for u t

by (cases t = 0) auto
done

ultimately have ∗: ?succ R ′ using neq by auto
have succ R R = R ′ unfolding succ-def
proof (simp add: ‹¬ is-upper-right R›, intro the-equality, rule ∗, goal-cases)

case prems: (1 R ′′)
from prems obtain t ′ u ′ where R ′′:

R ′′ ∈ R R ′′ 6= R t ′ ≥ 0 R ′′ = [u ′ ⊕ t ′]R u ′ ∈ R
using R ′(1) by fastforce
from this(1) obtain I r where R ′′2 :

R ′′ = region X I r valid-region X k I r
by (auto simp: R-def)

from R ′′ have u ′ ⊕ t ′ /∈ R using assms region-unique-spec by blast
with ∗ ‹t ′ ≥ 0 › ‹u ′ ∈ R› obtain t ′′ where t ′′: t ′′ ≤ t ′ u ′ ⊕ t ′′ ∈ R ′ t ′′ ≥ 0 by auto
from this(2) neq have u ′ ⊕ t ′′ /∈ R using R ′(2) assms region-unique-spec by auto
with t ′′ prems ‹u ′ ∈ R› obtain t ′′′ where t ′′′:

t ′′′ ≤ t ′′ u ′ ⊕ t ′′′ ∈ R ′′ t ′′′ ≥ 0
by auto
with region-continuous[OF R ′′2 (2) - - t ′′′(2)[unfolded R ′′2 (1)], of t ′′ − t ′′′ t ′ − t ′′′]

t ′′ R ′′ regions-closed ′-spec[OF ‹R ∈ R› R ′′(5 ,3)]
have u ′ ⊕ t ′′ ∈ R ′′ by (auto simp: R ′′2 cval-add-def)
with t ′′(2) show ?case using R ′′(1) R ′(2) region-unique-spec by blast

qed
with R ′ ∗ show ?thesis by auto

next
case intv
then have ∗: ∀ x∈X . ¬ Regions.isConst (I x) by auto
let ?X0 = {x ∈ X . isIntv (I x)}
let ?M = {x ∈ ?X0. ∀ y∈?X0. (x, y) ∈ r −→ (y, x) ∈ r}
from intv obtain x c where x: x ∈ X ¬ isGreater (I x) and c: I x = Intv c by auto
with ‹x ∈ X› have ?X0 6= {} by auto
have ?X0 = {x ∈ X . ∃ d. I x = Intv d} by auto
with R(2) have r : total-on ?X0 r trans r by auto
from total-finite-trans-max[OF ‹?X0 6= {}› - this] finite
obtain x ′ where x ′: x ′ ∈ ?X0 ∀ y ∈ ?X0. x ′ 6= y −→ (y, x ′) ∈ r by fastforce
from this(2) have ∀ y∈?X0. (x ′, y) ∈ r −→ (y, x ′) ∈ r by auto
with x ′(1) have ∗∗: ?M 6= {} by fastforce
with upper-right-eq[OF finite R(2)] have ¬ is-upper-right R by (auto simp: R(1))
from closest-prestable-2 (1 ,2)[OF ∗ finite R(2) ∗∗] closest-valid-2 [OF ∗ finite R(2) ∗∗] R(1)
obtain R ′ where R ′:
(∀ u ∈ R. ∀ t ≥ 0 . (u ⊕ t) /∈ R −→ (∃ t ′ ≤ t. (u ⊕ t ′) ∈ R ′ ∧ 0 ≤ t ′)) R ′ ∈ R

8

∀ u ∈ R ′. ∀ t≥0 . (u ⊕ t) /∈ R
unfolding R-def by auto
with region-not-empty[OF finite] obtain u ′ where u ′ ∈ R ′ unfolding R-def by blast
with R ′(3) have neq: R ′ 6= R by (fastforce simp: cval-add-def)
from bounded-region[OF finite R(2), folded R(1), OF ‹¬ is-upper-right R› u] have

u ⊕ (1 :: t) /∈ R (1 :: t) ≥ 0
by auto
with R ′(1) u obtain t ′ where t ′ ≤ (1 :: t) (u ⊕ t ′) ∈ R ′ 0 ≤ t ′ by fastforce
with ‹R ∈ R› ‹R ′ ∈ R› ‹u ∈ R› have R ′ ∈ Succ R R by (intro SuccI3)
with R ′(1) neq have ∗: ?succ R ′ by auto
have succ R R = R ′ unfolding succ-def
proof (simp add: ‹¬ is-upper-right R›, intro the-equality, rule ∗, goal-cases)

case prems: (1 R ′′)
from prems obtain t ′ u ′ where R ′′:

R ′′ ∈ R R ′′ 6= R t ′ ≥ 0 R ′′ = [u ′ ⊕ t ′]R u ′ ∈ R
using R ′(1) by fastforce
from this(1) obtain I r where R ′′2 :

R ′′ = region X I r valid-region X k I r
by (auto simp: R-def)
from R ′′ have u ′ ⊕ t ′ /∈ R using assms region-unique-spec by blast
with ∗ ‹t ′ ≥ 0 › ‹u ′ ∈ R› obtain t ′′ where t ′′: t ′′ ≤ t ′ u ′ ⊕ t ′′ ∈ R ′ t ′′ ≥ 0 by auto
from this(2) neq have u ′ ⊕ t ′′ /∈ R using R ′(2) assms region-unique-spec by auto
with t ′′ prems ‹u ′ ∈ R› obtain t ′′′ where t ′′′:

t ′′′ ≤ t ′′ u ′ ⊕ t ′′′ ∈ R ′′ t ′′′ ≥ 0
by auto
with region-continuous[OF R ′′2 (2) - - t ′′′(2)[unfolded R ′′2 (1)], of t ′′ − t ′′′ t ′ − t ′′′]

t ′′ R ′′ regions-closed ′-spec[OF ‹R ∈ R› R ′′(5 ,3)]
have u ′ ⊕ t ′′ ∈ R ′′ by (auto simp: cval-add-def R ′′2)
with t ′′(2) show ?case using R ′′(1) R ′(2) region-unique-spec by blast

qed
with R ′ ∗ show ?thesis by auto

next
case upper-right
with upper-right-eq[OF finite R(2)] have succ R R = R by (auto simp: R succ-def)
with ‹R ∈ R› u show ?thesis by (fastforce simp: cval-add-def intro: SuccI3)

qed
then show ?G1 ?G2 ?G3 by auto

qed

lemma region-set ′-closed:
fixes d :: nat
assumes R ∈ R d ≥ 0 ∀ x∈set r . d ≤ k x set r ⊆ X
shows region-set ′ R r d ∈ R

proof −
from region-not-empty[OF finite] assms(1) obtain u where u ∈ R using R-def by blast
from region-set ′-id[OF - - finite, of - k, folded R-def] assms this show ?thesis by fastforce

qed

lemma clock-set-cong[simp]:
assumes ∀ c ∈ set r . u c = d
shows [r → d]u = u

proof standard
fix c
from assms show ([r → d]u) c = u c by (cases c ∈ set r ; auto)

qed

lemma region-reset-not-Succ:

notes regions-closed ′-spec[intro]
assumes R ∈ R set r ⊆ X

9

shows region-set ′ R r 0 = R ∨ region-set ′ R r 0 /∈ Succ R R (is ?R = R ∨ -)
proof −

from assms finite obtain u where u ∈ R by (meson Succ.cases succ-ex(2))
with ‹R ∈ R› have u ∈ V [u]R = R by (auto simp: region-unique-spec dest: region-V)
with region-set ′-id[OF ‹R ∈ R›[unfolded R-def] ‹u ∈ R› finite] assms(2) have

?R = [[r→0]u]R
by (force simp: R-def)
show ?thesis
proof (cases ∀ x ∈ set r . u x = 0)

case True
then have [r→0]u = u by simp
with ‹?R = -› ‹- = R› have ?R = R by (force simp: R-def)
then show ?thesis ..

next
case False
then obtain x where x: x ∈ set r u x 6= 0 by auto
{ assume ?R ∈ Succ R R

with ‹u ∈ R› ‹R ∈ R› obtain t where
t ≥ 0 [u ⊕ t]R = ?R ?R ∈ R

by (meson Succ.cases set-of-regions-spec)
with ‹u ∈ R› assms(1) have u ⊕ t ∈ ?R by blast
moreover from ‹?R = -› ‹u ∈ R› have [r→0]u ∈ ?R by (fastforce simp: region-set ′-def)
moreover from x ‹t ≥ 0 › ‹u ∈ V › assms have (u ⊕ t) x > 0 by (force simp: cval-add-def V-def)
moreover from x have ([r→0]u) x = 0 by auto
ultimately have False using ‹?R ∈ R› x(1) by (fastforce simp: region-set ′-def)

}
then show ?thesis by auto

qed
qed

end

3 Definition and Semantics
3.1 Syntactic Definition

We do not include:

• a labelling function, as we will assume that atomic propositions are simply sets of states

• a fixed set of locations or clocks, as we will implicitly derive it from the set of transitions

• start or end locations, as we will primarily study reachability

type-synonym
(′c, ′t, ′s) transition = ′s ∗ (′c, ′t) cconstraint ∗ (′c set ∗ ′s) pmf

type-synonym
(′c, ′t, ′s) pta = (′c, ′t, ′s) transition set ∗ (′c, ′t, ′s) invassn

definition
edges :: (′c, ′t, ′s) transition ⇒ (′s ∗ (′c, ′t) cconstraint ∗ (′c set ∗ ′s) pmf ∗ ′c set ∗ ′s) set

where
edges ≡ λ (l, g, p). {(l, g, p, X , l ′) | X l ′. (X , l ′) ∈ set-pmf p}

definition
Edges A ≡

⋃
{edges t | t. t ∈ fst A}

definition
trans-of :: (′c, ′t, ′s) pta ⇒ (′c, ′t, ′s) transition set

10

where
trans-of ≡ fst

definition
inv-of :: (′c, ′time, ′s) pta ⇒ (′c, ′time, ′s) invassn

where
inv-of ≡ snd

no-notation transition (‹- ` - −→-,-,- -› [61 ,61 ,61 ,61 ,61 ,61] 61)

abbreviation transition ::
(′c, ′time, ′s) pta ⇒ ′s ⇒ (′c, ′time) cconstraint ⇒ (′c set ∗ ′s) pmf ⇒ ′c set ⇒ ′s ⇒ bool

(‹- ` - −→-,-,- -› [61 ,61 ,61 ,61 ,61 ,61] 61) where
(A ` l −→g,p,X l ′) ≡ (l, g, p, X , l ′) ∈ Edges A

definition
locations :: (′c, ′t, ′s) pta ⇒ ′s set

where
locations A ≡ (fst ‘ Edges A) ∪ ((snd o snd o snd o snd) ‘ Edges A)

3.1.1 Collecting Information About Clocks
definition collect-clkt :: (′c, ′t::time, ′s) transition set ⇒ (′c ∗ ′t) set
where

collect-clkt S =
⋃
{collect-clock-pairs (fst (snd t)) | t . t ∈ S}

definition collect-clki :: (′c, ′t :: time, ′s) invassn ⇒ (′c ∗ ′t) set
where

collect-clki I =
⋃
{collect-clock-pairs (I x) | x. True}

definition clkp-set :: (′c, ′t :: time, ′s) pta ⇒ (′c ∗ ′t) set
where

clkp-set A = collect-clki (inv-of A) ∪ collect-clkt (trans-of A)

definition collect-clkvt :: (′c, ′t :: time, ′s) pta ⇒ ′c set
where

collect-clkvt A =
⋃

((fst o snd o snd o snd) ‘ Edges A)

abbreviation clocks where clocks A ≡ fst ‘ clkp-set A ∪ collect-clkvt A

definition valid-abstraction
where

valid-abstraction A X k ≡
(∀ (x,m) ∈ clkp-set A. m ≤ k x ∧ x ∈ X ∧ m ∈ �) ∧ collect-clkvt A ⊆ X ∧ finite X

lemma valid-abstractionD[dest]:
assumes valid-abstraction A X k
shows (∀ (x,m) ∈ clkp-set A. m ≤ k x ∧ x ∈ X ∧ m ∈ �) collect-clkvt A ⊆ X finite X

using assms unfolding valid-abstraction-def by auto

lemma valid-abstractionI [intro]:
assumes (∀ (x,m) ∈ clkp-set A. m ≤ k x ∧ x ∈ X ∧ m ∈ �) collect-clkvt A ⊆ X finite X
shows valid-abstraction A X k

using assms unfolding valid-abstraction-def by auto

3.2 Operational Semantics as an MDP
abbreviation (input) clock-set-set :: ′c set ⇒ ′t::time ⇒ (′c, ′t) cval ⇒ (′c, ′t) cval
(‹[-:=-]-› [65 ,65 ,65] 65)
where
[X :=t]u ≡ clock-set (SOME r . set r = X) t u

11

term region-set ′

abbreviation region-set-set :: ′c set ⇒ ′t::time ⇒ (′c, ′t) zone ⇒ (′c, ′t) zone
(‹[-::=-]-› [65 ,65 ,65] 65)
where
[X ::=t]R ≡ region-set ′ R (SOME r . set r = X) t

no-notation zone-set (‹-- → 0› [71] 71)

abbreviation zone-set-set :: (′c, ′t::time) zone ⇒ ′c set ⇒ (′c, ′t) zone
(‹-- → 0› [71] 71)
where

ZX → 0 ≡ zone-set Z (SOME r . set r = X)

abbreviation (input) ccval (‹{|-|}› [100]) where ccval cc ≡ {v. v ` cc}

locale Probabilistic-Timed-Automaton =
fixes A :: (′c, ′t :: time, ′s) pta
assumes admissible-targets:
(l, g, µ) ∈ trans-of A =⇒ (X , l ′) ∈ µ =⇒ {|g|}X → 0 ⊆ {|inv-of A l ′|}
(l, g, µ) ∈ trans-of A =⇒ (X , l ′) ∈ µ =⇒ X ⊆ clocks A

— Not necessarily what we want to have
begin

3.3 Syntactic Definition
definition L = locations A

definition X = clocks A

definition S ≡ {(l, u) . l ∈ L ∧ (∀ x ∈ X . u x ≥ 0) ∧ u ` inv-of A l}

inductive-set
K :: (′s ∗ (′c, ′t) cval) ⇒ (′s ∗ (′c, ′t) cval) pmf set for st :: (′s ∗ (′c, ′t) cval)

where
— Passage of time delay:
st ∈ S =⇒ st = (l, u) =⇒ t ≥ 0 =⇒ u ⊕ t ` inv-of A l =⇒ return-pmf (l, u ⊕ t) ∈ K st |
— Discrete transitions action:
st ∈ S =⇒ st = (l, u) =⇒ (l, g, µ) ∈ trans-of A =⇒ u ` g
=⇒ map-pmf (λ (X , l). (l, ([X := 0]u))) µ ∈ K st |
— Self loops – Note that this does not assume st ∈ S loop:
return-pmf st ∈ K st

declare K .intros[intro]

sublocale MDP: Markov-Decision-Process K by (standard, auto)

end

4 Constructing the Corresponding Finite MDP on Regions
locale Probabilistic-Timed-Automaton-Regions =

Probabilistic-Timed-Automaton A + Regions-global X
for A :: (′c, t, ′s) pta +
— The following are necessary to obtain a finite MDP
assumes finite: finite X finite L finite (trans-of A)
assumes not-trivial: ∃ l ∈ L. ∃ u ∈ V . u ` inv-of A l
assumes valid: valid-abstraction A X k

begin

12

lemmas finite-R = finite-R[OF finite(1), of k, folded R-def]

4.1 Syntactic Definition
definition S ≡ {(l, R) . l ∈ L ∧ R ∈ R ∧ R ⊆ {u. u ` inv-of A l}}

lemma S-alt-def : S = {(l, u) . l ∈ L ∧ u ∈ V ∧ u ` inv-of A l} unfolding V-def S-def by auto

Note how we relax the definition to allow more transitions in the first case. To obtain a more compact
MDP the commented out version can be used an proved equivalent.
inductive-set
K :: (′s ∗ (′c, t) cval set) ⇒ (′s ∗ (′c, t) cval set) pmf set for st :: (′s ∗ (′c, t) cval set)

where

— Passage of time delay:
st ∈ S =⇒ st = (l,R) =⇒ R ′ ∈ Succ R R =⇒ R ′ ⊆ {|inv-of A l|} =⇒ return-pmf (l, R ′) ∈ K st |
— Discrete transitions action:
st ∈ S =⇒ st = (l, R) =⇒ (l, g, µ) ∈ trans-of A =⇒ R ⊆ {|g|}
=⇒ map-pmf (λ (X , l). (l, region-set ′ R (SOME r . set r = X) 0)) µ ∈ K st |
— Self loops – Note that this does not assume st ∈ S loop:
return-pmf st ∈ K st

lemmas [intro] = K.intros

4.2 Many Closure Properties
lemma transition-def :
(A ` l −→g,µ,X l ′) = ((l, g, µ) ∈ trans-of A ∧ (X , l ′) ∈ µ)
unfolding Edges-def edges-def trans-of-def by auto

lemma transitionI [intro]:
A ` l −→g,µ,X l ′ if (l, g, µ) ∈ trans-of A (X , l ′) ∈ µ
using that unfolding transition-def ..

lemma transitionD[dest]:
(l, g, µ) ∈ trans-of A (X , l ′) ∈ µ if A ` l −→g,µ,X l ′
using that unfolding transition-def by auto

lemma bex-Edges:
(∃ x ∈ Edges A. P x) = (∃ l g µ X l ′. A ` l −→g,µ,X l ′ ∧ P (l, g, µ, X , l ′))
by fastforce

lemma L-trans[intro]:
assumes (l, g, µ) ∈ trans-of A (X , l ′) ∈ µ
shows l ∈ L l ′ ∈ L
using assms unfolding L-def locations-def by (auto simp: image-iff bex-Edges transition-def)

lemma transition-X :
X ⊆ X if A ` l −→g,µ,X l ′
using that unfolding X -def collect-clkvt-def clkp-set-def by auto

lemma admissible-targets-alt:
A ` l −→g,µ,X l ′ =⇒ {|g|}X → 0 ⊆ {|inv-of A l ′|}
A ` l −→g,µ,X l ′ =⇒ X ⊆ clocks A
by (intro admissible-targets; blast)+

lemma V-reset-closed[intro]:

13

assumes u ∈ V
shows [r → (d::nat)]u ∈ V

using assms unfolding V-def
apply safe
subgoal for x

by (cases x ∈ set r ; auto)
done

lemmas V-reset-closed ′[intro] = V-reset-closed[of - - 0 , simplified]

lemma regions-part-ex[intro]:
assumes u ∈ V
shows u ∈ [u]R [u]R ∈ R

proof −
from assms regions-partition[OF meta-eq-to-obj-eq[OF R-def]] have
∃ !R. R ∈ R ∧ u ∈ R
unfolding V-def by auto

then show [u]R ∈ R u ∈ [u]R
using alpha-interp.region-unique-spec by auto

qed

lemma rep-R-ex[intro]:
assumes R ∈ R
shows (SOME u. u ∈ R) ∈ R

proof −
from assms region-not-empty[OF finite(1)] have ∃ u. u ∈ R unfolding R-def by auto
then show ?thesis ..

qed

lemma V-nn-closed[intro]:
u ∈ V =⇒ t ≥ 0 =⇒ u ⊕ t ∈ V

unfolding V-def cval-add-def by auto

lemma K-S-closed[intro]:
assumes µ ∈ K s s ′ ∈ µ s ∈ S
shows s ′ ∈ S
using assms
by (cases rule: K .cases, auto simp: S-alt-def dest: admissible-targets[unfolded zone-set-def])

lemma S-V [intro]:
(l, u) ∈ S =⇒ u ∈ V

unfolding S-alt-def by auto

lemma L-V [intro]:
(l, u) ∈ S =⇒ l ∈ L

unfolding S-def by auto

lemma S-V [intro]:
(l, R) ∈ S =⇒ R ∈ R

unfolding S-def by auto

lemma admissible-targets ′:
assumes (l, g, µ) ∈ trans-of A (X , l ′) ∈ µ R ⊆ {|g|}
shows region-set ′ R (SOME r . set r = X) 0 ⊆ {|inv-of A l ′|}

using admissible-targets(1)[OF assms(1 ,2)] assms(3) unfolding region-set ′-def zone-set-def by auto

4.3 The Region Graph is a Finite MDP
lemma S-finite:

finite S
using finite finite-R unfolding S-def by auto

14

lemma K-finite:
finite (K st)

proof −
let ?B1 = {(R ′, l, R). st ∈ S ∧ st = (l, R) ∧ R ′ ∈ Succ R R ∧ R ′ ⊆ {|inv-of A l|}}
let ?S1 = (λ(R ′, l, R). return-pmf (l, R ′)) ‘ ?B1
let ?S1 = {return-pmf (l, R ′) | R ′ l R. st ∈ S ∧ st = (l, R) ∧ R ′ ∈ Succ R R ∧ R ′ ⊆ {|inv-of A l|}}
let ?S2 = {map-pmf (λ (X , l). (l, region-set ′ R (SOME r . set r = X) 0)) µ

| R µ. ∃ l g. st ∈ S ∧ st = (l, R) ∧ (l, g, µ) ∈ trans-of A ∧ R ⊆ {|g|}}
have ?B1 ⊆ {(R ′, l, R). R ′ ∈ R ∧ (l, R) ∈ S } unfolding S-def by auto
with S-finite finite-R have finite ?B1 by − (rule finite-subset, auto)
moreover have ?S1 = (λ(R ′, l, R). return-pmf (l, R ′)) ‘ ?B1 by (auto simp: image-def)
ultimately have ∗: finite ?S1 by auto
have {µ. ∃ l g. (l, g, µ) ∈ PTA.trans-of A} = ((λ (l, g, µ). µ) ‘ PTA.trans-of A) by force
with finite(3) finite-R have finite {(R, µ). ∃ l g. R ∈ R ∧ (l, g, µ) ∈ trans-of A} by auto
moreover have
{(R, µ). ∃ l g. st ∈ S ∧ st = (l, R) ∧ (l, g, µ) ∈ trans-of A ∧ R ⊆ {|g|}} ⊆ . . .

unfolding S-def by fastforce
ultimately have ∗∗:

finite {(R, µ). ∃ l g. st ∈ S ∧ st = (l, R) ∧ (l, g, µ) ∈ trans-of A ∧ R ⊆ {|g|}}
unfolding S-def by (blast intro: finite-subset)
then have finite ?S2 unfolding S-def by auto
have K st = ?S1 ∪ ?S2 ∪ {return-pmf st} by (safe, cases rule: K.cases, auto)
with ∗ ∗∗ show ?thesis by auto

qed

lemma R-not-empty:
R 6= {}

proof −
let ?r = {}
let ?I = λ c. Const 0
let ?R = region X ?I ?r
have valid-region X k ?I ?r
proof

show {} = {x ∈ X . ∃ d. Const 0 = Intv d} by auto
show refl-on {} {} and trans {} and total-on {} {} unfolding trans-def by auto
show ∀ x ∈ X . Regions.valid-intv (k x) (Const 0) by auto

qed
then have ?R ∈ R unfolding R-def by auto
then show R 6= {} by blast

qed

lemma S-not-empty:
S 6= {}

proof −
from not-trivial obtain l u where st: l ∈ L u ∈ V u ` inv-of A l by blast
then obtain R where R: R ∈ R u ∈ R using R-V by auto
from valid have
∀ (x, m)∈collect-clock-pairs (inv-of A l). m ≤ real (k x) ∧ x ∈ X ∧ m ∈ �

by (fastforce simp: clkp-set-def collect-clki-def)
from ccompatible[OF this, folded R-def] R st(3) have

R ⊆ {|inv-of A l|}
unfolding ccompatible-def ccval-def by auto
with st(1) R(1) show ?thesis unfolding S-def by auto

qed

lemma K-S-closed:
assumes s ∈ S
shows (

⋃
D∈K s. set-pmf D) ⊆ S

proof (safe, cases rule: K.cases, blast, goal-cases)

15

case (1 x a b l R)
then show ?case unfolding S-def by (auto intro: alpha-interp.succ-ex(1))

next
case (3 a b x)
with ‹s ∈ S› show ?case by auto

next
case prems: (2 l ′ R ′ p l R g µ)
then obtain X where ∗: (X , l ′) ∈ set-pmf µ R ′ = region-set ′ R (SOME r . set r = X) 0 by auto

show ?case unfolding S-def
proof safe

from ∗(1) have (l, g, µ, X , l ′) ∈ edges (l,g, µ) unfolding edges-def by auto
with prems(6) have (l, g, µ, X , l ′) ∈ Edges A unfolding Edges-def trans-of-def by auto
then show l ′ ∈ L unfolding L-def locations-def by force

show u ` inv-of A l ′ if u ∈ R ′ for u
using admissible-targets ′[OF prems(6) ∗(1) prems(7)] ∗(2) that by auto

from admissible-targets(2)[OF prems(6) ∗(1)] have X ⊆ X unfolding X -def by auto
with finite(1) have finite X by (blast intro: finite-subset)
then obtain r where set r = X using finite-list by auto
then have set (SOME r . set r = X) = X by (rule someI)
with ‹X ⊆ X › have set (SOME r . set r = X) ⊆ X by auto
with alpha-interp.region-set ′-closed[of R 0 SOME r . set r = X] prems(4 ,5) ∗(2)
show R ′ ∈ R unfolding S-def X -def by auto

qed
qed

sublocale R-G: Finite-Markov-Decision-Process K S
by (standard, auto simp: S-finite S-not-empty K-finite K-S-closed)

lemmas K-S-closed ′[intro] = R-G.set-pmf-closed

5 Relating the MDPs
5.1 Translating From K to K
lemma ccompatible-inv:

shows ccompatible R (inv-of A l)
proof −

from valid have
∀ (x, m)∈collect-clock-pairs (inv-of A l). m ≤ real (k x) ∧ x ∈ X ∧ m ∈ �

unfolding valid-abstraction-def clkp-set-def collect-clki-def by auto
with ccompatible[of - k X , folded R-def] show ?thesis by auto

qed

lemma ccompatible-guard:
assumes (l, g, µ) ∈ trans-of A
shows ccompatible R g

proof −
from assms valid have
∀ (x, m)∈collect-clock-pairs g. m ≤ real (k x) ∧ x ∈ X ∧ m ∈ �

unfolding valid-abstraction-def clkp-set-def collect-clkt-def trans-of-def by fastforce
with assms ccompatible[of - k X , folded R-def] show ?thesis by auto

qed

lemmas ccompatible-def = ccompatible-def [unfolded ccval-def]

lemma region-set ′-eq:
fixes X :: ′c set

16

assumes R ∈ R u ∈ R
and A ` l −→g,µ,X l ′

shows
[[X :=0]u]R = region-set ′ R (SOME r . set r = X) 0 [[X :=0]u]R ∈ R [X :=0]u ∈ [[X :=0]u]R

proof −
let ?r = (SOME r . set r = X)
from admissible-targets-alt[OF assms(3)] X -def finite have finite X

by (auto intro: finite-subset)
then obtain r where set r = X using finite-list by blast
then have set ?r = X by (intro someI)
with valid assms(3) have set ?r ⊆ X

by (simp add: transition-X)
from region-set ′-id[of - X k, folded R-def , OF assms(1 ,2) finite(1) - - this]
show
[[X :=0]u]R = region-set ′ R (SOME r . set r = X) 0 [[X :=0]u]R ∈ R [X :=0]u ∈ [[X :=0]u]R

by force+
qed

lemma regions-part-ex-reset:
assumes u ∈ V
shows [r → (d::nat)]u ∈ [[r → d]u]R [[r → d]u]R ∈ R

using assms by auto

lemma reset-sets-all-equiv:
assumes u ∈ V u ′ ∈ [[r → (d :: nat)]u]R x ∈ set r set r ⊆ X d ≤ k x
shows u ′ x = d

proof −
from assms(1) have u: [r → d]u ∈ [[r → d]u]R [[r → d]u]R ∈ R by auto
then obtain I % where I : [[r → d]u]R = region X I % valid-region X k I %

by (auto simp: R-def)
with u(1) assms(3−) have intv-elem x ([r → d]u) (I x) valid-intv (k x) (I x) by fastforce+
moreover from assms have ([r → d]u) x = d by simp
ultimately have I x = Const d using assms(5) by (cases I x) auto
moreover from I assms(2−) have intv-elem x u ′ (I x) by fastforce
ultimately show u ′ x = d by auto

qed

lemma reset-eq:
assumes u ∈ V ([[r → 0]u]R) = ([[r ′→ 0]u]R) set r ⊆ X set r ′ ⊆ X
shows [r → 0]u = [r ′→ 0]u using assms

proof −
have ∗: u ′ x = 0 if u ′ ∈ [[r → 0]u]R x ∈ set r for u ′ x
using reset-sets-all-equiv[of u u ′ r 0 x] that assms by auto
have u ′ x = 0 if u ′ ∈ [[r ′→ 0]u]R x ∈ set r ′ for u ′ x
using reset-sets-all-equiv[of u u ′ r ′ 0 x] that assms by auto
from regions-part-ex-reset[OF assms(1), of - 0] assms(2) have ∗∗:
([r ′→ 0]u) ∈ [[r → 0]u]R ([r → 0]u) ∈ [[r → 0]u]R [[r → 0]u]R ∈ R

by auto
have (([r → 0]u) x) = (([r ′→ 0]u) x) for x
proof (cases x ∈ set r)

case True
then have ([r → 0]u) x = 0 by simp
moreover from ∗ ∗∗ True have ([r ′→ 0]u) x = 0 by auto
ultimately show ?thesis ..

next
case False
then have id: ([r→0]u) x = u x by simp
show ?thesis
proof (cases x ∈ set r ′)

case True
then have reset: ([r ′→ 0]u) x = 0 by simp

17

show ?thesis
proof (cases x ∈ X)

case True
from ∗∗(3) obtain I % where
([([r → 0]u)]R) = Regions.region X I % Regions.valid-region X k I %

by (auto simp: R-def)
with ∗∗ ‹x ∈ X › have ∗∗∗:

intv-elem x ([r ′→ 0]u) (I x) intv-elem x ([r → 0]u) (I x)
by auto
with reset have I x = Const 0 by (cases I x, auto)
with ∗∗∗(2) have ([r → 0]u) x = 0 by auto
with reset show ?thesis by auto

next
case False
with assms(3−) have x /∈ set r x /∈ set r ′ by auto
then show ?thesis by simp

qed
next

case False
then have reset: ([r ′→ 0]u) x = u x by simp
with id show ?thesis by simp

qed
qed
then show ?thesis ..

qed

lemma admissible-targets-clocks:
assumes (l, g, µ) ∈ trans-of A (X , l ′) ∈ µ
shows X ⊆ X set (SOME r . set r = X) ⊆ X

proof −
from admissible-targets(2)[OF assms] finite have

finite X X ⊆ X
by (auto intro: finite-subset simp: X -def)
then obtain r where set r = X using finite-list by blast
with ‹X ⊆ X › show X ⊆ X set (SOME r . set r = X) ⊆ X

by (metis (mono-tags, lifting) someI-ex)+
qed

lemma
rel-pmf (λ a b. f a = b) µ (map-pmf f µ)

by (subst pmf .rel-map(2)) (rule rel-pmf-reflI , auto)

lemma K-pmf-rel:
defines f ≡ λ (l, u). (l, [u]R)
shows rel-pmf (λ (l, u) st. (l, [u]R) = st) µ (map-pmf f µ) unfolding f-def

by (subst pmf .rel-map(2)) (rule rel-pmf-reflI , auto)

lemma K-pmf-rel:
assumes A: µ ∈ K (l, R)
defines f ≡ λ (l, u). (l, SOME u. u ∈ R)
shows rel-pmf (λ (l, u) st. (l, SOME u. u ∈ R) = st) µ (map-pmf f µ) unfolding f-def

by (subst pmf .rel-map(2)) (rule rel-pmf-reflI , auto)

lemma K-elem-abs-inj:
assumes A: µ ∈ K (l, u)
defines f ≡ λ (l, u). (l, [u]R)
shows inj-on f µ

proof −
have (l1 , u1) = (l2 , u2)

if id: (l1 , [u1]R) = (l2 , [u2]R) and elem: (l1 , u1) ∈ µ (l2 , u2) ∈ µ for l1 l2 u1 u2
proof −

18

from id have [simp]: l2 = l1 by auto
from A
show ?thesis
proof (cases, safe, goal-cases)

case (4 - - τ µ ′)
from ‹µ = -› elem obtain X1 X2 where

u1 = [(SOME r . set r = X1)→0]u (X1 , l1) ∈ µ ′

u2 = [(SOME r . set r = X2)→0]u (X2 , l1) ∈ µ ′

by auto
with ‹- ∈ trans-of -› admissible-targets-clocks have

set (SOME r . set r = X1) ⊆ X set (SOME r . set r = X2) ⊆ X
by auto
with id ‹u1 = -› ‹u2 = -› reset-eq[of u] ‹- ∈ S› show ?case by (auto simp: S-def V-def)

qed (−, insert elem, simp)+
qed
then show ?thesis unfolding f-def inj-on-def by auto

qed

lemma K-elem-repr-inj:
notes alpha-interp.valid-regions-distinct-spec[intro]
assumes A: µ ∈ K (l, R)
defines f ≡ λ (l, R). (l, SOME u. u ∈ R)
shows inj-on f µ

proof −
have (l1 , R1) = (l2 , R2)

if id: (l1 , SOME u. u ∈ R1) = (l2 , SOME u. u ∈ R2) and elem: (l1 , R1) ∈ µ (l2 , R2) ∈ µ
for l1 l2 R1 R2

proof −
let ?r1 = SOME u. u ∈ R1 and ?r2 = SOME u. u ∈ R2
from id have [simp]: l2 = l1 ?r2 = ?r1 by auto
{ fix g µ ′ x

assume (l, R) ∈ S (l, g, µ ′) ∈ PTA.trans-of A R ⊆ {v. v ` g}
and µ = map-pmf (λ(X , l). (l, region-set ′ R (SOME r . set r = X) 0)) µ ′

from ‹µ = -› elem obtain X1 X2 where
R1 = region-set ′ R (SOME r . set r = X1) 0 (X1 , l1) ∈ µ ′

R2 = region-set ′ R (SOME r . set r = X2) 0 (X2 , l1) ∈ µ ′

by auto
with ‹- ∈ trans-of -› admissible-targets-clocks have

set (SOME r . set r = X1) ⊆ X set (SOME r . set r = X2) ⊆ X
by auto
with alpha-interp.region-set ′-closed[of - 0] ‹R1 = -› ‹R2 = -› ‹- ∈ S› have

R1 ∈ R R2 ∈ R
unfolding S-def by auto
with region-not-empty[OF finite(1)] have

R1 6= {} R2 6= {} ∃ u. u ∈ R1 ∃ u. u ∈ R2
by (auto simp: R-def)
from someI-ex[OF this(3)] someI-ex[OF this(4)] have ?r1 ∈ R1 ?r1 ∈ R2 by simp+
with ‹R1 ∈ R› ‹R2 ∈ R› have R1 = R2 ..

}
from A elem this show ?thesis by (cases, auto)

qed
then show ?thesis unfolding f-def inj-on-def by auto

qed

lemma K-elem-pmf-map-abs:
assumes A: µ ∈ K (l, u) (l ′, u ′) ∈ µ
defines f ≡ λ (l, u). (l, [u]R)
shows pmf (map-pmf f µ) (f (l ′, u ′)) = pmf µ (l ′, u ′)

using A unfolding f-def by (blast intro: pmf-map-inj K-elem-abs-inj)

lemma K-elem-pmf-map-repr :

19

assumes A: µ ∈ K (l, R) (l ′, R ′) ∈ µ
defines f ≡ λ (l, R). (l, SOME u. u ∈ R)
shows pmf (map-pmf f µ) (f (l ′, R ′)) = pmf µ (l ′, R ′)

using A unfolding f-def by (blast intro: pmf-map-inj K-elem-repr-inj)

definition transp :: (′s ∗ (′c, t) cval ⇒ bool) ⇒ ′s ∗ (′c, t) cval set ⇒ bool where
transp ϕ ≡ λ (l, R). ∀ u ∈ R. ϕ (l, u)

5.2 Translating Configurations
5.2.1 States
definition

abss :: ′s ∗ (′c, t) cval ⇒ ′s ∗ (′c, t) cval set
where

abss ≡ λ (l, u). if u ∈ V then (l, [u]R) else (l, −V)

definition
reps :: ′s ∗ (′c, t) cval set ⇒ ′s ∗ (′c, t) cval

where
reps ≡ λ (l, R). if R ∈ R then (l, SOME u. u ∈ R) else (l, λ-. −1)

lemma S-reps-S [intro]:
assumes s ∈ S
shows reps s ∈ S

using assms R-V unfolding S-def S-def reps-def V-def by force

lemma S-abss-S[intro]:
assumes s ∈ S
shows abss s ∈ S

using assms ccompatible-inv unfolding S-def S-alt-def abss-def ccompatible-def by force

lemma S-abss-reps[simp]:
s ∈ S =⇒ abss (reps s) = s

using R-V alpha-interp.region-unique-spec by (auto simp: S-def S-def reps-def abss-def ; blast)

lemma map-pmf-abs-reps:
assumes s ∈ S µ ∈ K s
shows map-pmf abss (map-pmf reps µ) = µ

proof −
have map-pmf abss (map-pmf reps µ) = map-pmf (abss o reps) µ by (simp add: pmf .map-comp)
also have . . . = µ
proof (rule map-pmf-idI , safe, goal-cases)

case prems: (1 l ′ R ′)
with assms have (l ′, R ′) ∈ S reps (l ′, R ′) ∈ S by auto
then show ?case by auto

qed
finally show ?thesis by auto

qed

lemma abss-reps-id:
notes R-G.cfg-onD-state[simp del]
assumes s ′ ∈ S s ∈ set-pmf (action cfg) cfg ∈ R-G.cfg-on s ′

shows abss (reps s) = s
proof −

from assms have s ∈ S by auto
then show ?thesis by auto

qed

20

lemma abss-S [intro]:
assumes (l, u) ∈ S
shows abss (l, u) = (l, [u]R)

using assms unfolding abss-def by auto

lemma reps-S[intro]:
assumes (l, R) ∈ S
shows reps (l, R) = (l, SOME u. u ∈ R)

using assms unfolding reps-def by auto

lemma fst-abss:
fst (abss st) = fst st for st
by (cases st) (auto simp: abss-def)

lemma K-elem-abss-inj:
assumes A: µ ∈ K (l, u) (l, u) ∈ S
shows inj-on abss µ

proof −
from assms have abss s ′ = (λ (l, u). (l, [u]R)) s ′ if s ′ ∈ µ for s ′

using that by (auto split: prod.split)
from inj-on-cong[OF this] K-elem-abs-inj[OF A(1)] show ?thesis by force

qed

lemma K-elem-reps-inj:
assumes A: µ ∈ K (l, R) (l, R) ∈ S
shows inj-on reps µ

proof −
from assms have reps s ′ = (λ (l, R). (l, SOME u. u ∈ R)) s ′ if s ′ ∈ µ for s ′

using that by (auto split: prod.split)
from inj-on-cong[OF this] K-elem-repr-inj[OF A(1)] show ?thesis by force

qed

lemma P-elem-pmf-map-abss:
assumes A: µ ∈ K (l, u) (l, u) ∈ S s ′ ∈ µ
shows pmf (map-pmf abss µ) (abss s ′) = pmf µ s ′

using A by (blast intro: pmf-map-inj K-elem-abss-inj)

lemma K-elem-pmf-map-reps:
assumes A: µ ∈ K (l, R) (l, R) ∈ S (l ′, R ′) ∈ µ
shows pmf (map-pmf reps µ) (reps (l ′, R ′)) = pmf µ (l ′, R ′)

using A by (blast intro: pmf-map-inj K-elem-reps-inj)

We need that X is non-trivial here
lemma not-S-reps:
(l, R) /∈ S =⇒ reps (l, R) /∈ S

proof −
assume (l, R) /∈ S
let ?u = SOME u. u ∈ R
have ¬ ?u ` inv-of A l if R ∈ R l ∈ L
proof −

from region-not-empty[OF finite(1)] ‹R ∈ R› have ∃ u. u ∈ R by (auto simp: R-def)
from someI-ex[OF this] have ?u ∈ R .
moreover from ‹(l, R) /∈ S› that have ¬ R ⊆ {|inv-of A l|} by (auto simp: S-def)
ultimately show ?thesis

using ccompatible-inv[of l] ‹R ∈ R› unfolding ccompatible-def by fastforce
qed
with non-empty ‹(l, R) /∈ S› show ?thesis unfolding S-def S-def reps-def by auto

qed

21

lemma neq-V-not-region:
−V /∈ R

using R-V rep-R-ex by auto

lemma S-abss-S :
abss s ∈ S =⇒ s ∈ S
unfolding abss-def S-def S-def
apply safe
subgoal for - - - u

by (cases u ∈ V) auto
subgoal for - - - u

using neq-V-not-region by (cases u ∈ V , (auto simp: V-def ; fail), auto)
subgoal for l ′ y l u

using neq-V-not-region by (cases u ∈ V ; auto dest: regions-part-ex)
done

lemma S-pred-stream-abss-S:
pred-stream (λ s. s ∈ S) xs ←→ pred-stream (λ s. s ∈ S) (smap abss xs)

using S-abss-S S-abss-S by (auto simp: stream.pred-set)

sublocale MDP: Markov-Decision-Process-Invariant K S by (standard, auto)

abbreviation (input) valid-cfg ≡ MDP.valid-cfg

lemma K-closed:
s ∈ S =⇒ (

⋃
D∈K s. set-pmf D) ⊆ S

by auto

5.2.2 Intermezzo
abbreviation timed-bisim (infixr ‹∼› 60) where

s ∼ s ′ ≡ abss s = abss s ′

lemma bisim-loc-id[intro]:
(l, u) ∼ (l ′, u ′) =⇒ l = l ′

unfolding abss-def by (cases u ∈ V ; cases u ′ ∈ V ; simp)

lemma bisim-val-id[intro]:
[u]R = [u ′]R if u ∈ V (l, u) ∼ (l ′, u ′)

proof −
have (l ′, − V) 6= (l, [u]R)

using that by blast
with that have u ′ ∈ V

by (force simp: abss-def)
with that show ?thesis

by (simp add: abss-def)
qed

lemma bisim-symmetric:
(l, u) ∼ (l ′, u ′) = (l ′, u ′) ∼ (l, u)

by (rule eq-commute)

lemma bisim-val-id2 [intro]:
u ′ ∈ V =⇒ (l, u) ∼ (l ′, u ′) =⇒ [u]R = [u ′]R

apply (subst (asm) eq-commute)
apply (subst eq-commute)
apply (rule bisim-val-id)

by auto

lemma K-bisim-unique:

22

assumes s ∈ S µ ∈ K s x ∈ µ x ′ ∈ µ x ∼ x ′

shows x = x ′

using assms(2 ,1 ,3−)
proof (cases rule: K .cases)

case prems: (action l u τ µ ′)
with assms obtain l1 l2 X1 X2 where A:
(X1 , l1) ∈ set-pmf µ ′ (X2 , l2) ∈ set-pmf µ ′

x = (l1 , [X1 :=0]u) x ′ = (l2 , [X2 :=0]u)
by auto
from ‹x ∼ x ′› A ‹s ∈ S› ‹s = (l, u)› have [[X1 :=0]u]R = [[X2 :=0]u]R

using bisim-val-id[OF S-V] K-S-closed assms(2−4) by (auto intro!: bisim-val-id[OF S-V])
then have [X1 :=0]u = [X2 :=0]u

using A admissible-targets-clocks(2)[OF prems(4)] prems(2 ,3) by − (rule reset-eq, force)
with A ‹x ∼ x ′› show ?thesis by auto

next
case delay
with assms(3−) show ?thesis by auto

next
case loop
with assms(3−) show ?thesis by auto

qed

5.2.3 Predicates
definition absp where

absp ϕ ≡ ϕ o reps

definition repp where
repp ϕ ≡ ϕ o absp

5.2.4 Distributions
definition

abst :: (′s ∗ (′c, t) cval) pmf ⇒ (′s ∗ (′c, t) cval set) pmf
where

abst = map-pmf abss

lemma abss-SD:
assumes abss s ∈ S
obtains l u where s = (l, u) u ∈ [u]R [u]R ∈ R

proof −
obtain l u where s = (l, u) by force
moreover from S-abss-S [OF assms] have s ∈ S .
ultimately have abss s = (l, [u]R) u ∈ V u ∈ [u]R [u]R ∈ R by auto
with ‹s = -› show ?thesis by (auto intro: that)

qed

lemma abss-SD ′:
assumes abss s ∈ S abss s = (l, R)
obtains u where s = (l, u) u ∈ [u]R [u]R ∈ R R = [u]R

proof −
from abss-SD[OF assms(1)] obtain l ′ u where u:

s = (l ′, u) u ∈ [u]R [u]R ∈ R
by blast+
with R-V have u ∈ V by auto
with ‹s = -› assms(2) have l ′ = l R = [u]R unfolding abss-def by auto
with u show ?thesis by (auto intro: that)

qed

23

definition infR R ≡ λ c. of-int b(SOME u. u ∈ R) cc

term let a = 3 in b

definition delayedR R u ≡
u ⊕ (

let I = (SOME I . ∃ r . valid-region X k I r ∧ R = region X I r);
m = 1 − Max ({frac (u c) | c. c ∈ X ∧ isIntv (I c)} ∪ {0})

in SOME t. u ⊕ t ∈ R ∧ t ≥ m / 2
)

lemma delayedR-correct-aux-aux:
fixes c :: nat
fixes a b :: real
assumes c < a a < Suc c b ≥ 0 a + b < Suc c
shows frac (a + b) = frac a + b

proof −
have f1 : a + b < real (c + 1)

using assms(4) by auto
have f2 :

∧
r ra. (r ::real) + (− r + ra) = ra

by linarith
have f3 :

∧
r . (r ::real) = − (− r)

by linarith
have f4 :

∧
r ra. − (r ::real) + (ra + r) = ra

by linarith
then have f5 :

∧
r n. r + − frac r = real n ∨ ¬ r < real (n + 1) ∨ ¬ real n < r

using f2 by (metis nat-intv-frac-decomp)
then have frac a + real c = a

using f4 f3 by (metis One-nat-def add.right-neutral add-Suc-right assms(1) assms(2))
then show ?thesis

using f5 f1 assms(1) assms(3) by fastforce
qed

lemma delayedR-correct-aux:
fixes I r
defines R ≡ region X I r
assumes u ∈ R valid-region X k I r ∀ c ∈ X . ¬ isConst (I c)

∀ c ∈ X . isIntv (I c) −→ (u ⊕ t) c < intv-const (I c) + 1
t ≥ 0

shows u ⊕ t ∈ R unfolding R-def
proof

from assms have R ∈ R unfolding R-def by auto
with ‹u ∈ R› R-V have u ∈ V by auto
with ‹t ≥ 0 › show ∀ x∈X . 0 ≤ (u ⊕ t) x unfolding V-def by (auto simp: cval-add-def)
have intv-elem x (u ⊕ t) (I x) if x ∈ X for x
proof (cases I x)

case Const
with assms ‹x ∈ X › show ?thesis by auto

next
case (Intv c)
with assms ‹x ∈ X › show ?thesis by (simp add: cval-add-def) (rule; force)

next
case (Greater c)

24

with assms ‹x ∈ X › show ?thesis by (fastforce simp add: cval-add-def)
qed
then show ∀ x∈X . intv-elem x (u ⊕ t) (I x) ..

let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
show ?X0 = ?X0 by auto

have frac (u x + t) = frac (u x) + t if x ∈ ?X0 for x
proof −

show ?thesis
apply (rule delayedR-correct-aux-aux[where c = intv-const (I x)])

using assms ‹x ∈ ?X0› by (force simp add: cval-add-def)+
qed
then have frac (u x) ≤ frac (u y) ←→ frac (u x + t) ≤ frac (u y + t) if x ∈ ?X0 y ∈ ?X0 for x y
using that by auto
with assms show
∀ x∈?X0. ∀ y∈?X0. ((x, y) ∈ r) = (frac ((u ⊕ t) x) ≤ frac ((u ⊕ t) y))

unfolding cval-add-def by auto
qed

lemma delayedR-correct-aux ′:
fixes I r
defines R ≡ region X I r
assumes u ⊕ t1 ∈ R valid-region X k I r ∀ c ∈ X . ¬ isConst (I c)

∀ c ∈ X . isIntv (I c) −→ (u ⊕ t2) c < intv-const (I c) + 1
t1 ≤ t2

shows u ⊕ t2 ∈ R
proof −

have (u ⊕ t1) ⊕ (t2 − t1) ∈ R unfolding R-def
using assms by − (rule delayedR-correct-aux, auto simp: cval-add-def)

then show u ⊕ t2 ∈ R by (simp add: cval-add-def)
qed

lemma valid-regions-intv-distinct:
valid-region X k I r =⇒ valid-region X k I ′ r ′ =⇒ u ∈ region X I r =⇒ u ∈ region X I ′ r ′

=⇒ x ∈ X =⇒ I x = I ′ x
proof goal-cases

case A: 1
note x = ‹x ∈ X›
with A have valid-intv (k x) (I x) by auto
moreover from A(2) x have valid-intv (k x) (I ′ x) by auto
moreover from A(3) x have intv-elem x u (I x) by auto
moreover from A(4) x have intv-elem x u (I ′ x) by auto
ultimately show I x = I ′ x using valid-intv-distinct by fastforce

qed

lemma delayedR-correct:
fixes I r
defines R ′ ≡ region X I r
assumes u ∈ R R ∈ R valid-region X k I r ∀ c ∈ X . ¬ isConst (I c) R ′ ∈ Succ R R
shows

delayedR R ′ u ∈ R ′

∃ t ≥ 0 . delayedR R ′ u = u ⊕ t
∧ t ≥ (1 − Max ({frac (u c) | c. c ∈ X ∧ isIntv (I c)} ∪ {0})) / 2

proof −
let ?u = SOME u. u ∈ R
let ?I = SOME I . ∃ r . valid-region X k I r ∧ R ′ = region X I r
let ?S = {frac (u c) | c. c ∈ X ∧ isIntv (I c)}

25

let ?m = 1 − Max (?S ∪ {0})
let ?t = SOME t. u ⊕ t ∈ R ′ ∧ t ≥ ?m / 2
have Max (?S ∪ {0}) ≥ 0 ?m ≤ 1 using finite(1) by auto
have Max (?S ∪ {0}) ∈ ?S ∪ {0} using finite(1) by − (rule Max-in; auto)
with frac-lt-1 have Max (?S ∪ {0}) ≤ 1 ?m ≥ 0 by auto
from assms(3 , 6) ‹u ∈ R› obtain t where t:

u ⊕ t ∈ R ′ t ≥ 0
by (metis alpha-interp.regions-closed ′-spec alpha-interp.set-of-regions-spec)
have I-cong: ∀ c ∈ X . I ′ c = I c if valid-region X k I ′ r ′ R ′ = region X I ′ r ′ for I ′ r ′

using valid-regions-intv-distinct assms(4) t(1) that unfolding R ′-def by auto
have I-cong: ?I c = I c if c ∈ X for c
proof −

from assms have
∃ r . valid-region X k ?I r ∧ R ′ = region X ?I r

by − (rule someI [where P = λ I . ∃ r . valid-region X k I r ∧ R ′ = region X I r]; auto)
with I-cong that show ?thesis by auto

qed
then have ?S = {frac (u c) | c. c ∈ X ∧ isIntv (?I c)} by auto
have upper-bound: (u ⊕ ?m / 2) c < intv-const (I c) + 1 if c ∈ X isIntv (I c) for c
proof (cases u c > intv-const (I c))

case True
from t that assms have u c + t < intv-const (I c) + 1 unfolding cval-add-def by fastforce
with ‹t ≥ 0 › True have ∗: intv-const (I c) < u c u c < intv-const (I c) + 1 by auto
have frac (u c) ≤ Max (?S ∪ {0}) using finite(1) that by − (rule Max-ge; auto)
then have ?m ≤ 1 − frac (u c) by auto
then have ?m / 2 < 1 − frac (u c) using ∗ nat-intv-frac-decomp by fastforce
then have (u ⊕ ?m / 2) c < u c + 1 − frac (u c) unfolding cval-add-def by auto
also from ∗ have
. . . = intv-const (I c) + 1

using nat-intv-frac-decomp of-nat-1 of-nat-add by fastforce
finally show ?thesis .

next
case False
then have u c ≤ intv-const (I c) by auto
moreover from ‹0 ≤ ?m› ‹?m ≤ 1 › have ?m / 2 < 1 by auto
ultimately have u c + ?m / 2 < intv-const (I c) + 1 by linarith
then show ?thesis by (simp add: cval-add-def)

qed
have ?t ≥ 0 ∧ u ⊕ ?t ∈ R ′ ∧ ?t ≥ ?m / 2
proof (cases t ≥ ?m / 2)

case True
from ‹t ≥ ?m / 2 › t ‹Max (?S ∪ {0}) ≤ 1 › have u ⊕ ?t ∈ R ′ ∧ ?t ≥ ?m / 2

by − (rule someI ; auto)
with ‹?m ≥ 0 › show ?thesis by auto

next
case False
have u ⊕ ?m / 2 ∈ R ′ unfolding R ′-def
apply (rule delayedR-correct-aux ′)

apply (rule t[unfolded R ′-def])
apply (rule assms)+

using upper-bound False by auto
with ‹?m ≥ 0 › show ?thesis by − (rule someI2 ; fastforce)

qed
then show delayedR R ′ u ∈ R ′ ∃ t≥0 . delayedR R ′ u = u ⊕ t ∧ t ≥ ?m / 2

by (auto simp: delayedR-def ‹?S = -›)
qed

definition
rept :: ′s ∗ (′c, t) cval ⇒ (′s ∗ (′c, t) cval set) pmf ⇒ (′s ∗ (′c, t) cval) pmf

where
rept s µ-abs ≡ let (l, u) = s in

26

if (∃ R ′. (l, u) ∈ S ∧ µ-abs = return-pmf (l, R ′) ∧
(([u]R = R ′ ∧ (∀ c ∈ X . u c > k c))))

then return-pmf (l, u ⊕ 0 .5)
else if
(∃ R ′. (l, u) ∈ S ∧ µ-abs = return-pmf (l, R ′) ∧ R ′ ∈ Succ R ([u]R) ∧ [u]R 6= R ′

∧ (∀ u ∈ R ′. ∀ c ∈ X . @ d. d ≤ k c ∧ u c = real d))
then return-pmf (l, delayedR (SOME R ′. µ-abs = return-pmf (l, R ′)) u)
else SOME µ. µ ∈ K s ∧ abst µ = µ-abs

lemma S-L:
l ∈ L if (l, R) ∈ S
using that unfolding S-def by auto

lemma S-inv:
(l, R) ∈ S =⇒ R ⊆ {|inv-of A l|}
unfolding S-def by auto

lemma upper-right-closed:
assumes ∀ c∈X . real (k c) < u c u ∈ R R ∈ R t ≥ 0
shows u ⊕ t ∈ R

proof −
from ‹R ∈ R› obtain I r where R:

R = region X I r valid-region X k I r
unfolding R-def by auto
from assms R-V have u ∈ V by auto
from assms R have ∀ c ∈ X . I c = Greater (k c) by safe (case-tac I c; fastforce)
with R ‹u ∈ V › assms show

u ⊕ t ∈ R
unfolding V-def by safe (rule; force simp: cval-add-def)

qed

lemma S-I [intro]:
(l, u) ∈ S if l ∈ L u ∈ V u ` inv-of A l
using that by (auto simp: S-def V-def)

lemma rept-ex:
assumes µ ∈ K (abss s)
shows rept s µ ∈ K s ∧ abst (rept s µ) = µ using assms

proof cases
case prems: (delay l R R ′)
then have R ∈ R by auto
from prems(2) have s ∈ S by (auto intro: S-abss-S)
from abss-SD[OF prems(2)] obtain l ′ u ′ where s = (l ′, u ′) u ′ ∈ [u ′]R

by metis
with prems(3) have ∗: s = (l, u ′) ∧ u ′ ∈ R
apply simp
apply (subst (asm) abss-S [OF S-abss-S])

using prems(2) by auto
with prems(4) alpha-interp.set-of-regions-spec[OF ‹R ∈ R›] obtain t where R ′:

t ≥ 0 R ′ = [u ′ ⊕ t]R
by auto
with ‹s ∈ S› ∗ have u ′ ⊕ t ∈ R ′ u ′ ⊕ t ∈ V l ∈ L by auto
with prems(5) have (l, u ′ ⊕ t) ∈ S unfolding S-def V-def by auto
with ‹R ′ = [u ′ ⊕ t]R› have ∗∗: abss (l, u ′ ⊕ t) = (l, R ′) by (auto simp: abss-S)
let ?µ = return-pmf (l, u ′ ⊕ t)
have ?µ ∈ K s using ∗ ‹s ∈ S› ‹t ≥ 0 › ‹u ′ ⊕ t ∈ R ′› prems by blast
moreover have abst ?µ = µ by (simp add: ∗∗ abst-def prems(1))
moreover note default = calculation
have R ′ ∈ R using prems(4) by auto
have R: [u ′]R = R by (simp add: ∗ ‹R ∈ R› alpha-interp.region-unique-spec)

27

from ‹R ′ ∈ R› obtain I r where R ′:
R ′ = region X I r valid-region X k I r

unfolding R-def by auto
have u ′ ∈ V using ∗ prems R-V by force
let ?µ ′ = return-pmf (l, u ′ ⊕ 0 .5)
have elapsed: abst (return-pmf (l, u ′ ⊕ t)) = µ return-pmf (l, u ′ ⊕ t) ∈ K s

if u ′ ⊕ t ∈ R ′ t ≥ 0 for t
proof −

let ?u = u ′ ⊕ t let ?µ ′ = return-pmf (l, u ′ ⊕ t)
from ‹?u ∈ R ′› ‹R ′ ∈ R› R-V have ?u ∈ V by auto
with ‹?u ∈ R ′› ‹R ′ ∈ R› have [?u]R = R ′ using alpha-interp.region-unique-spec by auto
with ‹?u ∈ V › ‹?u ∈ R ′› ‹l ∈ L› prems(4 ,5) have abss (l, ?u) = (l, R ′)

by (subst abss-S) auto
with prems(1) have abst ?µ ′ = µ by (auto simp: abst-def)
moreover from ∗ ‹?u ∈ R ′› ‹s ∈ S› prems ‹t ≥ 0 › have ?µ ′ ∈ K s by auto
ultimately show abst ?µ ′ = µ ?µ ′ ∈ K s by auto

qed
show ?thesis
proof (cases R = R ′)

case T : True
show ?thesis
proof (cases ∀ c ∈ X . u ′ c > k c)

case True
with T ∗ R prems(1 ,4) ‹s ∈ S› have

rept s µ = return-pmf (l, u ′ ⊕ 0 .5) (is - = ?µ)
unfolding rept-def by auto
from upper-right-closed[OF True] ∗ ‹R ′ ∈ R› T have u ′ ⊕ 0 .5 ∈ R ′ by auto
with elapsed ‹rept - - = -› show ?thesis by auto

next
case False
with T ∗ R prems(1) have

rept s µ = (SOME µ ′. µ ′ ∈ K s ∧ abst µ ′ = µ)
unfolding rept-def by auto
with default show ?thesis by simp (rule someI ; auto)

qed
next

case F : False
show ?thesis
proof (cases ∀ u ∈ R ′. ∀ c ∈ X . @ d. d ≤ k c ∧ u c = real d)

case False
with F ∗ R prems(1) have

rept s µ = (SOME µ ′. µ ′ ∈ K s ∧ abst µ ′ = µ)
unfolding rept-def by auto
with default show ?thesis by simp (rule someI ; auto)

next
case True
from True F ∗ R prems(1 ,4) ‹s ∈ S› have

rept s µ = return-pmf (l, delayedR (SOME R ′. µ = return-pmf (l, R ′)) u ′)
(is - = return-pmf (l, delayedR ?R u ′))

unfolding rept-def by auto
let ?u = delayedR ?R u ′

from prems(1) have µ = return-pmf (l, ?R) by auto
with prems(1) have ?R = R ′ by auto
moreover from R ′ True ‹- ∈ R ′› have ∀ c∈X . ¬ Regions.isConst (I c) by fastforce
moreover note delayedR-correct[of u ′ R I r] ∗ ‹R ∈ R› R ′ True ‹R ′ ∈ Succ R R›
ultimately obtain t where ∗∗: delayedR R ′ u ′ ∈ R ′ t ≥ 0 delayedR R ′ u ′ = u ′ ⊕ t by auto
moreover from ‹?R =- ›‹rept - - = -› have rept s µ = return-pmf (l, delayedR R ′ u ′) by auto
ultimately show ?thesis using elapsed by auto

qed
qed

next

28

case prems: (action l R τ µ ′)
from abss-SD ′[OF prems(2 ,3)] obtain u where u:

s = (l, u) u ∈ [u]R [u]R ∈ R R = [u]R
by auto
with ‹- ∈ S› have (l, u) ∈ S by (auto intro: S-abss-S)
let ?µ = map-pmf (λ(X , l). (l, [X :=0]u)) µ ′

from u prems have ?µ ∈ K s by (fastforce intro: S-abss-S)
moreover have abst ?µ = µ unfolding prems(1) abst-def
proof (subst map-pmf-comp, rule pmf .map-cong, safe, goal-cases)

case A: (1 X l ′)
from u have u ∈ V using R-V by auto
then have [X :=0]u ∈ V by auto
from prems(1) A
have (l ′, region-set ′ R (SOME r . set r = X) 0) ∈ µ by auto
from A prems R-G.K-closed ‹µ ∈ -› have

l ′ ∈ L region-set ′ R (SOME r . set r = X) 0 ⊆ {|inv-of A l ′|}
by (force dest: S-L S-inv)+
with u have [X :=0]u ` inv-of A l ′ unfolding region-set ′-def by auto
with ‹l ′ ∈ L› ‹[X :=0]u ∈ V › have (l ′, [X :=0]u) ∈ S unfolding S-def V-def by auto
then have abss (l ′, [X :=0]u) = (l ′, [[X :=0]u]R) by auto
also have
. . . = (l ′, region-set ′ R (SOME r . set r = X) 0)

using region-set ′-eq(1)[unfolded transition-def] prems A u by force
finally show ?case .

qed
ultimately have default: ?thesis if rept s µ = (SOME µ ′. µ ′ ∈ K s ∧ abst µ ′ = µ) using that
by simp (rule someI ; auto)
show ?thesis
proof (cases ∃ R. µ = return-pmf (l, R))

case False
with ‹s = (l, u)› have rept s µ = (SOME µ ′. µ ′ ∈ K s ∧ abst µ ′ = µ) unfolding rept-def by auto
with default show ?thesis by auto

next
case True
then obtain R ′ where R ′: µ = return-pmf (l, R ′) by auto
show ?thesis
proof (cases R = R ′)

case False
from R ′ prems(1) have
∀ (X , l ′) ∈ µ ′. (l ′, region-set ′ R (SOME r . set r = X) 0) = (l, R ′)

by (auto simp: map-pmf-eq-return-pmf-iff [of - µ ′ (l, R ′)])
then obtain X where

region-set ′ R (SOME r . set r = X) 0 = R ′ (X , l) ∈ µ ′

using set-pmf-not-empty by force
with prems(4) have X ⊆ X by (simp add: admissible-targets-clocks(1))
moreover then have

set (SOME r . set r = X) = X
by − (rule someI-ex, metis finite-list finite(1) finite-subset)
ultimately have set (SOME r . set r = X) ⊆ X by auto
with alpha-interp.region-reset-not-Succ False ‹- = R ′› u(3 ,4) have R ′ /∈ Succ R R by auto
with ‹s = (l, u)› R ′ u(4) False have

rept s µ = (SOME µ ′. µ ′ ∈ K s ∧ abst µ ′ = µ)
unfolding rept-def by auto
with default show ?thesis by auto

next
case T : True
show ?thesis
proof (cases ∀ c∈X . real (k c) < u c)

case False
with T ‹s = (l, u)› R ′ u(4) have

rept s µ = (SOME µ ′. µ ′ ∈ K s ∧ abst µ ′ = µ)

29

unfolding rept-def by auto
with default show ?thesis by auto

next
case True
with T ‹s = (l, u)› R ′ u(4) ‹(l, u) ∈ S› have

rept s µ = return-pmf (l, u ⊕ 0 .5)
unfolding rept-def by auto
from upper-right-closed[OF True] T u R-V have u ⊕ 0 .5 ∈ R ′ u ⊕ 0 .5 ∈ V by force+
moreover then have [u ⊕ 0 .5]R = R ′

using T alpha-interp.region-unique-spec u(3 ,4) by blast
moreover note ∗ = ‹rept - - = -› R ′ ‹abss s ∈ S› ‹abss s = -› prems(5)
ultimately have abst (rept s µ) = µ
apply (simp add: abst-def)
apply (subst abss-S)

by (auto simp: S-L S-def V-def T dest: S-inv)
moreover from ∗ ‹s = -› ‹(l, u) ∈ S› ‹- ∈ R ′› have

rept s µ ∈ K s
apply simp
apply (rule K .delay)

by (auto simp: T dest: S-inv)
ultimately show ?thesis by auto

qed
qed

qed
next

case loop
obtain l u where s = (l, u) by force
show ?thesis
proof (cases s ∈ S)

case T : True
with ‹s = -› have ∗: l ∈ L u ∈ [u]R [u]R ∈ R abss s = (l, [u]R) by auto
then have abss s = (l, [u]R) by auto
with ‹s ∈ S› S-abss-S have (l, [u]R) ∈ S by auto
with S-inv have [u]R ⊆ {u. u ` inv-of A l} by auto
show ?thesis
proof (cases ∀ c∈X . real (k c) < u c)

case True
with ∗ ‹µ = -› ‹s = -› ‹s ∈ S› have

rept s µ = return-pmf (l, u ⊕ 0 .5)
unfolding rept-def by auto
from upper-right-closed[OF True] ∗ have u ⊕ 0 .5 ∈ [u]R by auto
moreover with ∗ R-V have u ⊕ 0 .5 ∈ V by auto
moreover with calculation ∗ alpha-interp.region-unique-spec have [u ⊕ 0 .5]R = [u]R by blast
moreover note ∗ ‹rept - - = -› ‹s = -› T ‹µ = -› ‹(l, -) ∈ S› S-inv
ultimately show ?thesis unfolding rept-def
apply simp
apply safe
apply fastforce

apply (simp add: abst-def)
apply (subst abst-def abss-S)

by fastforce+
next

case False
with ∗ ‹s = -› ‹µ = -› have

rept s µ = (SOME µ ′. µ ′ ∈ K s ∧ abst µ ′ = µ)
unfolding rept-def by auto
with ‹µ = -› show ?thesis by simp (rule someI [where x = return-pmf s], auto simp: abst-def)

qed
next

case False
with ‹s = -› ‹µ = -› have

30

rept s µ = (SOME µ ′. µ ′ ∈ K s ∧ abst µ ′ = µ)
unfolding rept-def by auto
with ‹µ = -› show ?thesis by simp (rule someI [where x = return-pmf s], auto simp: abst-def)

qed
qed

lemmas rept-K [intro] = rept-ex[THEN conjunct1]
lemmas abst-rept-id[simp] = rept-ex[THEN conjunct2]

lemma abst-rept2 :
assumes µ ∈ K s s ∈ S
shows abst (rept (reps s) µ) = µ

using assms by auto

lemma rept-K2 :
assumes µ ∈ K s s ∈ S
shows rept (reps s) µ ∈ K (reps s)

using assms by auto

lemma theI ′:
assumes P a

and
∧

x. P x =⇒ x = a
shows P (THE x . P x) ∧ (∀ y. P y −→ y = (THE x. P x))

using theI assms by metis

lemma cont-cfg-defined:
fixes cfg s
assumes cfg ∈ valid-cfg s ∈ abst (action cfg)
defines x ≡ THE x . abss x = s ∧ x ∈ action cfg
shows (abss x = s ∧ x ∈ action cfg) ∧ (∀ y. abss y = s ∧ y ∈ action cfg −→ y = x)

proof −
from assms(2) obtain s ′ where s ′ ∈ action cfg s = abss s ′ unfolding abst-def by auto
with assms show ?thesis unfolding x-def
by −(rule theI ′[of - s ′],auto intro: K-bisim-unique MDP.valid-cfg-state-in-S dest: MDP.valid-cfgD)

qed

definition
absc ′ :: (′s ∗ (′c, t) cval) cfg ⇒ (′s ∗ (′c, t) cval set) cfg

where
absc ′ cfg = cfg-corec
(abss (state cfg))
(abst o action)
(λ cfg s. cont cfg (THE x . abss x = s ∧ x ∈ action cfg)) cfg

5.2.5 Configuration
definition

absc :: (′s ∗ (′c, t) cval) cfg ⇒ (′s ∗ (′c, t) cval set) cfg
where

absc cfg = cfg-corec
(abss (state cfg))
(abst o action)
(λ cfg s. cont cfg (THE x . abss x = s ∧ x ∈ action cfg)) cfg

definition
repcs :: ′s ∗ (′c, t) cval ⇒ (′s ∗ (′c, t) cval set) cfg ⇒ (′s ∗ (′c, t) cval) cfg

where
repcs s cfg = cfg-corec

s
(λ (s, cfg). rept s (action cfg))

31

(λ (s, cfg) s ′. (s ′, cont cfg (abss s ′))) (s, cfg)

definition
repc cfg = repcs (reps (state cfg)) cfg

lemma S-state-absc-repc[simp]:
state cfg ∈ S =⇒ state (absc (repc cfg)) = state cfg

by (simp add: absc-def repc-def repcs-def)

lemma action-repc:
action (repc cfg) = rept (reps (state cfg)) (action cfg)

unfolding repc-def repcs-def by simp

lemma action-absc:
action (absc cfg) = abst (action cfg)

unfolding absc-def by simp

lemma action-absc ′:
action (absc cfg) = map-pmf abss (action cfg)

unfolding absc-def unfolding abst-def by simp

lemma
notes R-G.cfg-onD-state[simp del]
assumes state cfg ∈ S s ′ ∈ set-pmf (action (repc cfg)) cfg ∈ R-G.cfg-on (state cfg)
shows cont (repc cfg) s ′ = repcs s ′ (cont cfg (abss s ′))

using assms by (auto simp: repc-def repcs-def abss-reps-id)

lemma cont-repcs1 :
notes R-G.cfg-onD-state[simp del]
assumes abss s ∈ S s ′ ∈ set-pmf (action (repcs s cfg)) cfg ∈ R-G.cfg-on (abss s)
shows cont (repcs s cfg) s ′ = repcs s ′ (cont cfg (abss s ′))

using assms by (auto simp: repc-def repcs-def abss-reps-id)

lemma cont-absc-1 :
notes MDP.cfg-onD-state[simp del]
assumes cfg ∈ valid-cfg s ′ ∈ set-pmf (action cfg)
shows cont (absc cfg) (abss s ′) = absc (cont cfg s ′)

proof −
define x where x ≡ THE x. x ∼ s ′ ∧ x ∈ set-pmf (action cfg)
from assms(2) have abss s ′ ∈ set-pmf (abst (action cfg)) unfolding abst-def by auto
from cont-cfg-defined[OF assms(1) this] have
(x ∼ s ′ ∧ x ∈ set-pmf (action cfg)) ∧ (∀ y. y ∼ s ′ ∧ y ∈ set-pmf (action cfg) −→ y = x)

unfolding x-def .
with assms have s ′ = x by fastforce
then show ?thesis
unfolding absc-def abst-def repc-def x-def using assms(2) by auto

qed

lemma state-repc:
state (repc cfg) = reps (state cfg)

unfolding repc-def repcs-def by simp

lemma abss-reps-id ′:
notes R-G.cfg-onD-state[simp del]
assumes cfg ∈ R-G.valid-cfg s ∈ set-pmf (action cfg)
shows abss (reps s) = s

using assms by (auto intro: abss-reps-id R-G.valid-cfg-state-in-S R-G.valid-cfgD)

lemma valid-cfg-coinduct[coinduct set: valid-cfg]:

32

assumes P cfg
assumes

∧
cfg. P cfg =⇒ state cfg ∈ S

assumes
∧

cfg. P cfg =⇒ action cfg ∈ K (state cfg)
assumes

∧
cfg t. P cfg =⇒ t ∈ action cfg =⇒ P (cont cfg t)

shows cfg ∈ valid-cfg
proof −

from assms have cfg ∈ MDP.cfg-on (state cfg) by (coinduction arbitrary: cfg) auto
moreover from assms have state cfg ∈ S by auto
ultimately show ?thesis by (intro MDP.valid-cfgI)

qed

lemma state-repcD[simp]:
assumes cfg ∈ R-G.cfg-on s
shows state (repc cfg) = reps s

using assms unfolding repc-def repcs-def by auto

lemma ccompatible-subs[intro]:
assumes ccompatible R g R ∈ R u ∈ R u ` g
shows R ⊆ {u. u ` g}

using assms unfolding ccompatible-def by auto

lemma action-abscD[dest]:
cfg ∈ MDP.cfg-on s =⇒ action (absc cfg) ∈ K (abss s)

unfolding absc-def abst-def
proof simp

assume cfg: cfg ∈ MDP.cfg-on s
then have action cfg ∈ K s by auto
then show map-pmf abss (action cfg) ∈ K (abss s)
proof cases

case prems: (delay l u t)
then have [u ⊕ t]R ∈ R by auto
moreover with prems ccompatible-inv[of l] have
[u ⊕ t]R ⊆ {v. v ` PTA.inv-of A l}

unfolding ccompatible-def by force
moreover from prems have abss (l, u ⊕ t) = (l, [u ⊕ t]R) by (subst abss-S) auto
ultimately show ?thesis using prems by auto

next
case prems: (action l u g µ)
then have [u]R ∈ R by auto
moreover with prems ccompatible-guard have [u]R ⊆ {u. u ` g}

by (intro ccompatible-subs) auto
moreover have

map-pmf abss (action cfg)
= map-pmf (λ(X , l). (l, region-set ′ ([u]R) (SOME r . set r = X) 0)) µ

proof −
have abss (l ′, [X :=0]u) = (l ′, region-set ′ ([u]R) (SOME r . set r = X) 0)

if (X , l ′) ∈ µ for X l ′
proof −

from that prems have A ` l −→g,µ,X l ′
by auto

from that prems MDP.action-closed[OF - cfg] have (l ′, [X :=0]u) ∈ S by force
then have abss (l ′, [X :=0]u) = (l ′, [[X :=0]u]R) by auto
also have
. . . = (l ′, region-set ′ ([u]R) (SOME r . set r = X) 0)
using region-set ′-eq(1)[OF - - ‹A ` l −→g,µ,X l ′›] prems by auto

finally show ?thesis .
qed
then show ?thesis

unfolding prems(1)

33

by (auto intro: pmf .map-cong simp: map-pmf-comp)
qed
ultimately show ?thesis using prems by auto

next
case prems: loop
then show ?thesis by auto

qed
qed

lemma repcs-valid[intro]:
assumes cfg ∈ R-G.valid-cfg abss s = state cfg
shows repcs s cfg ∈ valid-cfg

using assms
proof (coinduction arbitrary: cfg s)

case 1
then show ?case
by (auto simp: repcs-def S-abss-S dest: R-G.valid-cfg-state-in-S)

next
case (2 cfg ′ s)
then show ?case
by (simp add: repcs-def) (rule rept-K , auto dest: R-G.valid-cfgD)

next
case prems: (3 s ′ cfg)
let ?cfg = cont cfg (abss s ′)
from prems have abss s ′ ∈ abst (rept s (action cfg)) unfolding repcs-def abst-def by auto
with prems have

abss s ′ ∈ action cfg
by (subst (asm) abst-rept-id) (auto dest: R-G.valid-cfgD)
with prems show ?case

by (inst-existentials ?cfg s ′, subst cont-repcs1)
(auto dest: R-G.valid-cfg-state-in-S intro: R-G.valid-cfgD R-G.valid-cfg-cont)

qed

lemma repc-valid[intro]:
assumes cfg ∈ R-G.valid-cfg
shows repc cfg ∈ valid-cfg

using assms unfolding repc-def by (force dest: R-G.valid-cfg-state-in-S)

lemma action-abst-repcs:
assumes cfg ∈ R-G.valid-cfg abss s = state cfg
shows abst (action (repcs s cfg)) = action cfg

proof −
from assms show ?thesis
unfolding repc-def repcs-def
apply simp
apply (subst abst-rept-id)

by (auto dest: R-G.cfg-onD-action R-G.valid-cfgD)
qed

lemma action-abst-repc:
assumes cfg ∈ R-G.valid-cfg
shows abst (action (repc cfg)) = action cfg

proof −
from assms have abss (reps (state cfg)) = state cfg by (auto dest: R-G.valid-cfg-state-in-S)
with action-abst-repcs[OF assms] show ?thesis unfolding repc-def by auto

qed

lemma state-absc:
state (absc cfg) = abss (state cfg)

unfolding absc-def by auto

34

lemma state-repcs[simp]:
state (repcs s cfg) = s

unfolding repcs-def by auto

lemma repcs-bisim:
notes R-G.cfg-onD-state[simp del]
assumes cfg ∈ R-G.valid-cfg x ∈ S x ∼ x ′ abss x = state cfg
shows absc (repcs x cfg) = absc (repcs x ′ cfg)

using assms
proof −

from assms have abss x ′ = state cfg by auto
from assms have abss x ′ ∈ S by auto
then have x ′ ∈ S by (auto intro: S-abss-S)
with assms show ?thesis
proof (coinduction arbitrary: cfg x x ′)

case state
then show ?case by (simp add: state-absc)

next
case action
then show ?case unfolding absc-def repcs-def by (auto dest: R-G.valid-cfgD)

next
case prems: (cont s cfg x x ′)
define cfg ′ where cfg ′ = cont cfg s
define t where t ≡ THE y. abss y = s ∧ y ∈ action (repcs x cfg)
define t ′ where t ′ ≡THE y. abss y = s ∧ y ∈ action (repcs x ′ cfg)
from prems have valid: repcs x cfg ∈ valid-cfg by (intro repcs-valid)
from prems have ∗: s ∈ abst (action (repcs x cfg))

unfolding cfg ′-def by (simp add: action-absc)
with prems have s ∈ action cfg by (auto dest: R-G.valid-cfgD simp: repcs-def)
with prems have s ∈ S by (auto intro: R-G.valid-cfg-action)
from cont-cfg-defined[OF valid ∗] have t:

abss t = s t ∈ action (repcs x cfg)
unfolding t-def by auto

have cont (absc (repcs x cfg)) s = cont (absc (repcs x cfg)) (abss t) using t by auto
have cont (absc (repcs x cfg)) s = absc (cont (repcs x cfg) t)

using t valid by (auto simp: cont-absc-1)
also have . . . = absc (repcs t (cont cfg s))

using prems t by (subst cont-repcs1) (auto dest: R-G.valid-cfgD)
finally have cont-x: cont (absc (repcs x cfg)) s = absc (repcs t (cont cfg s)) .
from prems have valid: repcs x ′ cfg ∈ valid-cfg by auto
from ‹s ∈ action cfg› prems have s ∈ abst (action (repcs x ′ cfg))

by (auto dest: R-G.valid-cfgD simp: repcs-def)
from cont-cfg-defined[OF valid this] have t ′:

abss t ′ = s t ′ ∈ action (repcs x ′ cfg)
unfolding t ′-def by auto
have cont (absc (repcs x ′ cfg)) s = cont (absc (repcs x ′ cfg)) (abss t ′) using t ′ by auto
have cont (absc (repcs x ′ cfg)) s = absc (cont (repcs x ′ cfg) t ′)

using t ′ valid by (auto simp: cont-absc-1)
also have . . . = absc (repcs t ′ (cont cfg s))

using prems t ′ by (subst cont-repcs1) (auto dest: R-G.valid-cfgD)
finally have cont (absc (repcs x ′ cfg)) s = absc (repcs t ′ (cont cfg s)) .
with cont-x ‹s ∈ action cfg› prems(1) t t ′ ‹s ∈ S›
show ?case

by (inst-existentials cont cfg s t t ′)
(auto intro: S-abss-S R-G.valid-cfg-action R-G.valid-cfg-cont)

qed
qed

named-theorems R-G-I

35

lemmas R-G.valid-cfg-state-in-S [R-G-I] R-G.valid-cfgD[R-G-I] R-G.valid-cfg-action

lemma absc-repcs-id:
notes R-G.cfg-onD-state[simp del]
assumes cfg ∈ R-G.valid-cfg abss s = state cfg
shows absc (repcs s cfg) = cfg using assms

proof (subst eq-commute, coinduction arbitrary: cfg s)
case state
then show ?case by (simp add: absc-def repc-def repcs-def)

next
case prems: (action cfg)
then show ?case by (auto simp: action-abst-repcs action-absc)

next
case prems: (cont s ′)
define cfg ′ where cfg ′ ≡ repcs s cfg
define t where t ≡ THE x. abss x = s ′ ∧ x ∈ set-pmf (action cfg ′)
from prems have cfg ∈ R-G.cfg-on (state cfg) state cfg ∈ S by (auto dest: R-G-I)
then have ∗: cfg ∈ R-G.cfg-on (abss (reps (state cfg))) abss (reps (state cfg)) ∈ S by auto
from prems have s ′ ∈ S by (auto intro: R-G.valid-cfg-action)
from prems have valid: cfg ′ ∈ valid-cfg unfolding cfg ′-def by (intro repcs-valid)
from prems have s ′ ∈ abst (action cfg ′) unfolding cfg ′-def by (subst action-abst-repcs)
from cont-cfg-defined[OF valid this] have t:

abss t = s ′ t ∈ action cfg ′

unfolding t-def cfg ′-def by auto
with prems have t ∼ reps (abss t)
apply −
apply (subst S-abss-reps)

by (auto intro: R-G.valid-cfg-action)
have cont (absc cfg ′) s ′ = cont (absc cfg ′) (abss t) using t by auto
have cont (absc cfg ′) s ′ = absc (cont cfg ′ t) using t valid by (auto simp: cont-absc-1)
also have . . . = absc (repcs t (cont cfg s ′)) using prems t ∗ ‹t ∼ -› valid
by (fastforce dest: R-G-I intro: repcs-bisim simp: cont-repcs1 cfg ′-def)
finally show ?case
apply −
apply (rule exI [where x = cont cfg s ′], rule exI [where x = t])

unfolding cfg ′-def using prems t by (auto intro: R-G.valid-cfg-cont)
qed

lemma absc-repc-id:
notes R-G.cfg-onD-state[simp del]
assumes cfg ∈ R-G.valid-cfg
shows absc (repc cfg) = cfg using assms

unfolding repc-def using assms by (subst absc-repcs-id) (auto dest: R-G-I)

lemma K-cfg-map-absc:
cfg ∈ valid-cfg =⇒ K-cfg (absc cfg) = map-pmf absc (K-cfg cfg)

by (auto simp: K-cfg-def map-pmf-comp action-absc abst-def cont-absc-1 intro: map-pmf-cong)

lemma smap-comp:
(smap f o smap g) = smap (f o g)

by (auto simp: stream.map-comp)

lemma state-abscD[simp]:
assumes cfg ∈ MDP.cfg-on s
shows state (absc cfg) = abss s

using assms unfolding absc-def by auto

36

lemma R-G-valid-cfg-coinduct[coinduct set: valid-cfg]:
assumes P cfg
assumes

∧
cfg. P cfg =⇒ state cfg ∈ S

assumes
∧

cfg. P cfg =⇒ action cfg ∈ K (state cfg)
assumes

∧
cfg t. P cfg =⇒ t ∈ action cfg =⇒ P (cont cfg t)

shows cfg ∈ R-G.valid-cfg
proof −

from assms have cfg ∈ R-G.cfg-on (state cfg) by (coinduction arbitrary: cfg) auto
moreover from assms have state cfg ∈ S by auto
ultimately show ?thesis by (intro R-G.valid-cfgI)

qed

lemma absc-valid[intro]:
assumes cfg ∈ valid-cfg
shows absc cfg ∈ R-G.valid-cfg

using assms
proof (coinduction arbitrary: cfg)

case 1
then show ?case by (auto simp: absc-def dest: MDP.valid-cfg-state-in-S)

next
case (2 cfg ′)
then show ?case by (subst state-abscD) (auto intro: MDP.valid-cfgD action-abscD)

next
case prems: (3 s ′ cfg)
define t where t ≡ THE x . abss x = s ′ ∧ x ∈ set-pmf (action cfg)
let ?cfg = cont cfg t
from prems obtain s where s ′ = abss s s ∈ action cfg by (auto simp: action-absc ′)
with cont-cfg-defined[OF prems(1), of s ′] have

abss t = s ′ t ∈ set-pmf (action cfg)
∀ y. abss y = s ′ ∧ y ∈ set-pmf (action cfg) −→ y = t

unfolding t-def abst-def by auto
with prems show ?case

by (inst-existentials ?cfg)
(auto intro: MDP.valid-cfg-cont simp: abst-def action-absc absc-def t-def)

qed

lemma K-cfg-set-absc:
assumes cfg ∈ valid-cfg cfg ′ ∈ K-cfg cfg
shows absc cfg ′ ∈ K-cfg (absc cfg)

using assms by (auto simp: K-cfg-map-absc)

lemma abst-action-repcs:
assumes cfg ∈ R-G.valid-cfg abss s = state cfg
shows abst (action (repcs s cfg)) = action cfg

unfolding repc-def repcs-def using assms by (simp, subst abst-rept-id) (auto intro: R-G-I)

lemma abst-action-repc:
assumes cfg ∈ R-G.valid-cfg
shows abst (action (repc cfg)) = action cfg

using assms unfolding repc-def by (auto intro: abst-action-repcs simp: R-G-I)

lemma K-elem-abss-inj ′:
assumes µ ∈ K s

and s ∈ S
shows inj-on abss (set-pmf µ)

using assms K-elem-abss-inj by (simp add: K-bisim-unique inj-onI)

lemma K-cfg-rept-aux:
assumes cfg ∈ R-G.valid-cfg abss s = state cfg x ∈ rept s (action cfg)
defines t ≡ λ cfg ′. THE s ′. s ′ ∈ rept s (action cfg) ∧ s ′ ∼ x
shows t cfg ′ = x

37

proof −
from assms have rept s (action cfg) ∈ K s s ∈ S by (auto simp: R-G-I S-abss-S)
from K-bisim-unique[OF this(2 ,1) - assms(3)] assms(3) show ?thesis unfolding t-def by blast

qed

lemma K-cfg-rept-action:
assumes cfg ∈ R-G.valid-cfg abss s = state cfg cfg ′ ∈ set-pmf (K-cfg cfg)
shows abss (THE s ′. s ′ ∈ rept s (action cfg) ∧ abss s ′ = state cfg ′) = state cfg ′

proof −
let ?µ = rept s (action cfg)
from abst-rept-id assms have action cfg = abst ?µ by (auto simp: R-G-I)
moreover from assms have state cfg ′ ∈ action cfg by (auto simp: set-K-cfg)
ultimately have state cfg ′ ∈ abst ?µ by simp
then obtain s ′ where s ′ ∈ ?µ abss s ′ = state cfg ′ by (auto simp: abst-def pmf .set-map)
with K-cfg-rept-aux[OF assms(1 ,2) this(1)] show ?thesis by auto

qed

lemma K-cfg-map-repcs:
assumes cfg ∈ R-G.valid-cfg abss s = state cfg
defines repc ′ ≡ (λ cfg ′. repcs (THE s ′. s ′ ∈ rept s (action cfg) ∧ abss s ′ = state cfg ′) cfg ′)
shows K-cfg (repcs s cfg) = map-pmf repc ′ (K-cfg cfg)

proof −
let ?µ = rept s (action cfg)
define t where t ≡ λ cfg ′. THE s. s ∈ ?µ ∧ abss s = state cfg ′

have t: t (cont cfg (abss s ′)) = s ′ if s ′ ∈ ?µ for s ′

using K-cfg-rept-aux[OF assms(1 ,2) that] unfolding t-def by auto
show ?thesis

unfolding K-cfg-def using t
by (subst abst-action-repcs[symmetric])

(auto simp: repc-def repcs-def t-def map-pmf-comp abst-def assms intro: map-pmf-cong)
qed

lemma K-cfg-map-repc:
assumes cfg ∈ R-G.valid-cfg
defines

repc ′ cfg ′ ≡ repcs (THE s. s ∈ rept (reps (state cfg)) (action cfg) ∧ abss s = state cfg ′) cfg ′

shows
K-cfg (repc cfg) = map-pmf repc ′ (K-cfg cfg)

using assms unfolding repc ′-def repc-def by (auto simp: R-G-I K-cfg-map-repcs)

lemma R-G-K-cfg-valid-cfgD:
assumes cfg ∈ R-G.valid-cfg cfg ′ ∈ K-cfg cfg
shows cfg ′ = cont cfg (state cfg ′) state cfg ′ ∈ action cfg

proof −
from assms(2) obtain s where s ∈ action cfg cfg ′ = cont cfg s by (auto simp: set-K-cfg)
with assms show

cfg ′ = cont cfg (state cfg ′) state cfg ′ ∈ action cfg
by (auto intro: R-G.valid-cfg-state-in-S R-G.valid-cfgD)

qed

lemma K-cfg-valid-cfgD:
assumes cfg ∈ valid-cfg cfg ′ ∈ K-cfg cfg
shows cfg ′ = cont cfg (state cfg ′) state cfg ′ ∈ action cfg

proof −
from assms(2) obtain s where s ∈ action cfg cfg ′ = cont cfg s by (auto simp: set-K-cfg)
with assms show

cfg ′ = cont cfg (state cfg ′) state cfg ′ ∈ action cfg
by auto

qed

38

lemma absc-bisim-abss:
assumes absc x = absc x ′

shows state x ∼ state x ′

proof −
from assms have state (absc x) = state (absc x ′) by simp
then show ?thesis by (simp add: state-absc)

qed

lemma K-cfg-bisim-unique:
assumes cfg ∈ valid-cfg and x ∈ K-cfg cfg x ′ ∈ K-cfg cfg and state x ∼ state x ′

shows x = x ′

proof −
define t where t ≡ THE x ′. x ′ ∼ state x ∧ x ′ ∈ set-pmf (action cfg)
from K-cfg-valid-cfgD assms have ∗:

x = cont cfg (state x) state x ∈ action cfg
x ′ = cont cfg (state x ′) state x ′ ∈ action cfg
by auto

with assms have
cfg ∈ valid-cfg abss (state x) ∈ set-pmf (abst (action cfg))
unfolding abst-def by auto

with cont-cfg-defined[of cfg abss (state x)] have
∀ y. y ∼ state x ∧ y ∈ set-pmf (action cfg) −→ y = t
unfolding t-def by auto

with ∗ assms(4) have state x ′ = t state x = t by fastforce+
with ∗ show ?thesis by simp

qed

lemma absc-distr-self :
MDP.MC .T (absc cfg) = distr (MDP.MC .T cfg) MDP.MC .S (smap absc) if cfg ∈ valid-cfg
using ‹cfg ∈ -›

proof (coinduction arbitrary: cfg rule: MDP.MC .T-coinduct)
case prob
show ?case by (rule MDP.MC .T .prob-space-distr , simp)

next
case sets
show ?case by auto

next
case prems: (cont cfg)
define t where t ≡ λ y. THE x. y = absc x ∧ x ∈ K-cfg cfg
define M ′ where M ′ ≡ λ cfg. distr (MDP.MC .T (t cfg)) MDP.MC .S (smap absc)
show ?case
proof (rule exI [where x = M ′], safe, goal-cases)

case A: (1 y)
from A prems obtain x ′ where y = absc x ′ x ′ ∈ K-cfg cfg by (auto simp: K-cfg-map-absc)
with K-cfg-bisim-unique[OF prems - - absc-bisim-abss] have

y = absc (t y) x ′ = t y
unfolding t-def by (auto intro: theI2)

moreover have x ′ ∈ valid-cfg using ‹x ′ ∈ -› prems by auto
ultimately show ?case unfolding M ′-def by auto

next
case 5
show ?case unfolding M ′-def

apply (subst distr-distr)
prefer 3
apply (subst MDP.MC .T-eq-bind)
apply (subst distr-bind)

prefer 4
apply (subst distr-distr)

prefer 3
apply (subst K-cfg-map-absc)

39

apply (rule prems)
apply (subst map-pmf-rep-eq)
apply (subst bind-distr)

prefer 4
apply (rule bind-measure-pmf-cong)

prefer 3
subgoal premises A for x
proof −

have t (absc x) = x unfolding t-def
proof (rule the-equality, goal-cases)

case 1 with A show ?case by simp
next

case (2 x ′)
with K-cfg-bisim-unique[OF prems - A absc-bisim-abss] show ?case by simp

qed
then show ?thesis by (auto simp: comp-def)

qed
by (fastforce

simp: space-subprob-algebra MC-syntax.in-S
intro: bind-measure-pmf-cong MDP.MC .T .subprob-space-distr MDP.MC .T .prob-space-distr
)+

qed (auto simp: M ′-def intro: MDP.MC .T .prob-space-distr)
qed

lemma R-G-trace-space-distr-eq:
assumes cfg ∈ R-G.valid-cfg abss s = state cfg
shows MDP.MC .T cfg = distr (MDP.MC .T (repcs s cfg)) MDP.MC .S (smap absc)

using assms
proof (coinduction arbitrary: cfg s rule: MDP.MC .T-coinduct)

case prob
show ?case by (rule MDP.MC .T .prob-space-distr , simp)

next
case sets
show ?case by auto

next
case prems: (cont cfg s)
let ?µ = rept s (action cfg)
define repc ′ where repc ′ ≡ λ cfg ′. repcs (THE s. s ∈ ?µ ∧ abss s = state cfg ′) cfg ′

define M ′ where M ′ ≡ λ cfg. distr (MDP.MC .T (repc ′ cfg)) MDP.MC .S (smap absc)
show ?case
proof (intro exI [where x = M ′], safe, goal-cases)

case A: (1 cfg ′)
with K-cfg-rept-action[OF prems] have

abss (THE s. s ∈ ?µ ∧ abss s = state cfg ′) = state cfg ′

by auto
moreover from A prems have cfg ′ ∈ R-G.valid-cfg by auto
ultimately show ?case unfolding M ′-def repc ′-def by best

next
case 4
show ?case unfolding M ′-def by (rule MDP.MC .T .prob-space-distr , simp)

next
case 5
have ∗: smap absc ◦ (##) (repc ′ cfg ′) = (##) cfg ′ ◦ smap absc
if cfg ′ ∈ set-pmf (K-cfg cfg) for cfg ′

proof −
from K-cfg-rept-action[OF prems that] have

abss (THE s. s ∈ ?µ ∧ abss s = state cfg ′) = state cfg ′

.
with prems that have ∗:

absc (repc ′ cfg ′) = cfg ′

unfolding repc ′-def by (subst absc-repcs-id, auto)

40

then show (smap absc ◦ (##) (repc ′ cfg ′)) = ((##) cfg ′ ◦ smap absc) by auto
qed
from prems show ?case unfolding M ′-def

apply (subst distr-distr)
apply simp+

apply (subst MDP.MC .T-eq-bind)
apply (subst distr-bind)

prefer 2
apply simp

apply (rule MDP.MC .distr-Stream-subprob)
apply simp

apply (subst distr-distr)
apply simp+

apply (subst K-cfg-map-repcs[OF prems])
apply (subst map-pmf-rep-eq)
apply (subst bind-distr)

by (fastforce simp: ∗[unfolded repc ′-def] repc ′-def space-subprob-algebra MC-syntax.in-S
intro: bind-measure-pmf-cong MDP.MC .T .subprob-space-distr)+

qed (simp add: M ′-def)+
qed

lemma repc-inj-on-K-cfg:
assumes cfg ∈ R-G.cfg-on s s ∈ S
shows inj-on repc (set-pmf (K-cfg cfg))
using assms
by (intro inj-on-inverseI [where g = absc], subst absc-repc-id)

(auto intro: R-G.valid-cfgD R-G.valid-cfgI R-G.valid-cfg-state-in-S)

lemma smap-absc-iff :
assumes

∧
x y. x ∈ X =⇒ smap abss x = smap abss y =⇒ y ∈ X

shows (smap state xs ∈ X) = (smap (λz. abss (state z)) xs ∈ smap abss ‘ X)
proof (safe, goal-cases)

case 1
then show ?case unfolding image-def

by clarify (inst-existentials smap state xs, auto simp: stream.map-comp)
next

case prems: (2 xs ′)
have

smap (λz. abss (state z)) xs = smap abss (smap state xs)
by (auto simp: comp-def stream.map-comp)
with prems have smap abss (smap state xs) = smap abss xs ′ by simp
with prems(2) assms show ?case by auto

qed

lemma valid-abss-reps[simp]:
assumes cfg ∈ R-G.valid-cfg
shows abss (reps (state cfg)) = state cfg

using assms by (subst S-abss-reps) (auto intro: R-G.valid-cfg-state-in-S)

lemma in-space-UNIV : x ∈ space (count-space UNIV)
by simp

lemma S-reps-S-aux:
reps (l, R) ∈ S =⇒ (l, R) ∈ S
using ccompatible-inv unfolding reps-def ccompatible-def S-def S-def
by (cases R ∈ R; auto simp: non-empty)

lemma S-reps-S[intro]:
reps s ∈ S =⇒ s ∈ S
using S-reps-S-aux by (metis surj-pair)

41

lemma absc-valid-cfg-eq:
absc ‘ valid-cfg = R-G.valid-cfg
apply safe
subgoal

by auto
subgoal for cfg

using absc-repcs-id[where s = reps (state cfg)]
by − (frule repcs-valid[where s = reps (state cfg)]; force intro: imageI)

done

lemma action-repcs:
action (repcs (l, u) cfg) = rept (l, u) (action cfg)
by (simp add: repcs-def)

5.3 Equalities Between Measures of Trace Spaces
lemma path-measure-eq-absc1-new:

fixes cfg s
defines cfg ′ ≡ absc cfg
assumes valid: cfg ∈ valid-cfg
assumes X [measurable]: X ∈ R-G.St and Y [measurable]: Y ∈ MDP.St
assumes P: AE x in (R-G.T cfg ′). P x and Q: AE x in (MDP.T cfg). Q x
assumes P ′[measurable]: Measurable.pred R-G.St P

and Q ′[measurable]: Measurable.pred MDP.St Q
assumes X-Y-closed:

∧
x y. P x =⇒ smap abss y = x =⇒ x ∈ X =⇒ y ∈ Y ∧ Q y

assumes Y-X-closed:
∧

x y. Q y =⇒ smap abss y = x =⇒ y ∈ Y =⇒ x ∈ X ∧ P x
shows

emeasure (R-G.T cfg ′) X = emeasure (MDP.T cfg) Y
proof −

have ∗: stream-all2 (λs. (=) (absc s)) x y = stream-all2 (=) (smap absc x) y for x y
by simp

have ∗: stream-all2 (λs t. t = absc s) x y = stream-all2 (=) y (smap absc x) for x y
using stream.rel-conversep[of λs t. t = absc s]
by (simp add: conversep-iff [abs-def])

from P have emeasure (R-G.T cfg ′) X = emeasure (R-G.T cfg ′) {x ∈ X . P x}
by (auto intro: emeasure-eq-AE)

moreover from Q have emeasure (MDP.T cfg) Y = emeasure (MDP.T cfg) {y ∈ Y . Q y}
by (auto intro: emeasure-eq-AE)

moreover show ?thesis
apply (simp only: calculation)
unfolding R-G.T-def MDP.T-def
apply (simp add: emeasure-distr)
apply (rule sym)
apply (rule T-eq-rel-half [where f = absc and S = valid-cfg])

apply (rule HOL.refl)
apply measurable

apply (simp add: space-stream-space)
subgoal

unfolding rel-set-strong-def stream.rel-eq
apply (intro allI impI)
apply (drule stream.rel-mono-strong[where Ra = λs t. t = absc s])
apply (simp; fail)

subgoal for x y
using Y-X-closed[of smap state x smap state (smap absc x) for x y]
using X-Y-closed[of smap state (smap absc x) smap state x for x y]
by (auto simp: ∗ stream.rel-eq stream.map-comp state-absc)+

done
subgoal

apply (auto intro!: rel-funI)

42

apply (subst K-cfg-map-absc)
defer
apply (subst pmf .rel-map(2))
apply (rule rel-pmf-reflI)

by auto
subgoal

using valid unfolding cfg ′-def by simp
done

qed

lemma path-measure-eq-repcs1-new:
fixes cfg s
defines cfg ′ ≡ repcs s cfg
assumes s: abss s = state cfg
assumes valid: cfg ∈ R-G.valid-cfg
assumes X [measurable]: X ∈ R-G.St and Y [measurable]: Y ∈ MDP.St
assumes P: AE x in (R-G.T cfg). P x and Q: AE x in (MDP.T cfg ′). Q x
assumes P ′[measurable]: Measurable.pred R-G.St P

and Q ′[measurable]: Measurable.pred MDP.St Q
assumes X-Y-closed:

∧
x y. P x =⇒ smap abss y = x =⇒ x ∈ X =⇒ y ∈ Y ∧ Q y

assumes Y-X-closed:
∧

x y. Q y =⇒ smap abss y = x =⇒ y ∈ Y =⇒ x ∈ X ∧ P x
shows

emeasure (R-G.T cfg) X = emeasure (MDP.T cfg ′) Y
proof −

have ∗: stream-all2 (λs t. t = absc s) x y = stream-all2 (=) y (smap absc x) for x y
using stream.rel-conversep[of λs t. t = absc s]
by (simp add: conversep-iff [abs-def])

from P X have
emeasure (R-G.T cfg) X = emeasure (R-G.T cfg) {x ∈ X . P x}
by (auto intro: emeasure-eq-AE)

moreover from Q Y have
emeasure (MDP.T cfg ′) Y = emeasure (MDP.T cfg ′) {y ∈ Y . Q y}
by (auto intro: emeasure-eq-AE)

moreover show ?thesis
apply (simp only: calculation)
unfolding R-G.T-def MDP.T-def
apply (simp add: emeasure-distr)
apply (rule sym)
apply (rule T-eq-rel-half [where f = absc and S = valid-cfg])

apply (rule HOL.refl)
apply measurable

apply (simp add: space-stream-space)
subgoal

unfolding rel-set-strong-def stream.rel-eq
apply (intro allI impI)
apply (drule stream.rel-mono-strong[where Ra = λs t. t = absc s])
apply (simp; fail)

subgoal for x y
using Y-X-closed[of smap state x smap state (smap absc x) for x y]
using X-Y-closed[of smap state (smap absc x) smap state x for x y]
by (auto simp: ∗ stream.rel-eq stream.map-comp state-absc)+

done
subgoal

apply (auto intro!: rel-funI)
apply (subst K-cfg-map-absc)
defer
apply (subst pmf .rel-map(2))
apply (rule rel-pmf-reflI)

by auto
subgoal

43

using valid unfolding cfg ′-def by (auto simp: s absc-repcs-id)
done

qed

lemma region-compatible-suntil1 :
assumes (holds (λx. ϕ (reps x)) suntil holds (λx. ψ (reps x))) (smap abss x)

and pred-stream (λ s. ϕ (reps (abss s)) −→ ϕ s) x
and pred-stream (λ s. ψ (reps (abss s)) −→ ψ s) x

shows (holds ϕ suntil holds ψ) x using assms
proof (induction smap abss x arbitrary: x rule: suntil.induct)

case base
then show ?case by (auto intro: suntil.base simp: stream.pred-set)

next
case step
have

pred-stream (λs. ϕ (reps (abss s)) −→ ϕ s) (stl x)
pred-stream (λs. ψ (reps (abss s)) −→ ψ s) (stl x)
using step.prems apply (cases x; auto)
using step.prems apply (cases x; auto)
done

with step.hyps(3)[of stl x] have (holds ϕ suntil holds ψ) (stl x) by auto
with step.prems step.hyps(1−2) show ?case by (auto intro: suntil.step simp: stream.pred-set)

qed

lemma region-compatible-suntil2 :
assumes (holds ϕ suntil holds ψ) x

and pred-stream (λ s. ϕ s −→ ϕ (reps (abss s))) x
and pred-stream (λ s. ψ s −→ ψ (reps (abss s))) x

shows (holds (λx. ϕ (reps x)) suntil holds (λx. ψ (reps x))) (smap abss x) using assms
proof (induction x rule: suntil.induct)

case (base x)
then show ?case by (auto intro: suntil.base simp: stream.pred-set)

next
case (step x)
have

pred-stream (λs. ϕ s −→ ϕ (reps (abss s))) (stl x)
pred-stream (λs. ψ s −→ ψ (reps (abss s))) (stl x)
using step.prems apply (cases x; auto)
using step.prems apply (cases x; auto)
done

with step show ?case by (auto intro: suntil.step simp: stream.pred-set)
qed

lemma region-compatible-suntil:
assumes pred-stream (λ s. ϕ (reps (abss s)) ←→ ϕ s) x

and pred-stream (λ s. ψ (reps (abss s)) ←→ ψ s) x
shows (holds (λx. ϕ (reps x)) suntil holds (λx. ψ (reps x))) (smap abss x)
←→ (holds ϕ suntil holds ψ) x using assms

using assms region-compatible-suntil1 region-compatible-suntil2 unfolding stream.pred-set by blast

lemma reps-abss-S :
assumes reps (abss s) ∈ S
shows s ∈ S

by (simp add: S-reps-S S-abss-S assms)

lemma measurable-sset[measurable (raw)]:
assumes f [measurable]: f ∈ N →M stream-space M and P[measurable]: Measurable.pred M P
shows Measurable.pred N (λx. ∀ s∈sset (f x). P s)

proof −
have ∗: (λx. ∀ s∈sset (f x). P s) = (λx. ∀ i. P (f x !! i))

by (simp add: sset-range)

44

show ?thesis
unfolding ∗ by measurable

qed

lemma path-measure-eq-repcs ′′-new:
notes in-space-UNIV [measurable]
fixes cfg ϕ ψ s
defines cfg ′ ≡ repcs s cfg
defines ϕ ′ ≡ absp ϕ and ψ ′ ≡ absp ψ
assumes s: abss s = state cfg
assumes valid: cfg ∈ R-G.valid-cfg
assumes valid ′: cfg ′ ∈ valid-cfg
assumes equiv-ϕ:

∧
x. pred-stream (λ s. s ∈ S) x

=⇒ pred-stream (λ s. ϕ (reps (abss s)) ←→ ϕ s) (state cfg ′ ## x)
and equiv-ψ:

∧
x. pred-stream (λ s. s ∈ S) x

=⇒ pred-stream (λ s. ψ (reps (abss s)) ←→ ψ s) (state cfg ′ ## x)
shows

emeasure (R-G.T cfg) {x∈space R-G.St. (holds ϕ ′ suntil holds ψ ′) (state cfg ## x)} =
emeasure (MDP.T cfg ′) {x∈space MDP.St. (holds ϕ suntil holds ψ) (state cfg ′ ## x)}

unfolding cfg ′-def
apply (rule path-measure-eq-repcs1-new[where P = pred-stream (λ s. s ∈ S) and Q = pred-stream (λ s. s
∈ S)])

apply fact
apply fact

apply measurable
subgoal

unfolding R-G.T-def
apply (subst AE-distr-iff)

apply (auto; fail)
apply (auto simp: stream.pred-set; fail)

apply (rule AE-mp[OF MDP.MC .AE-T-enabled AE-I2])
using R-G.pred-stream-cfg-on[OF valid] by (auto simp: stream.pred-set)

subgoal
unfolding MDP.T-def
apply (subst AE-distr-iff)

apply (auto; fail)
apply (auto simp: stream.pred-set; fail)

apply (rule AE-mp[OF MDP.MC .AE-T-enabled AE-I2])
using MDP.pred-stream-cfg-on[OF valid ′, unfolded cfg ′-def] by (auto simp: stream.pred-set)
apply measurable

subgoal premises prems for ys xs
apply safe

apply measurable
unfolding ϕ ′-def ψ ′-def absp-def
apply (subst region-compatible-suntil[symmetric])

subgoal
proof −

from prems have pred-stream (λs. s ∈ S) xs using S-abss-S by (auto simp: stream.pred-set)
with equiv-ϕ show ?thesis by (simp add: cfg ′-def)

qed
subgoal
proof −

from prems have pred-stream (λs. s ∈ S) xs using S-abss-S by (auto simp: stream.pred-set)
with equiv-ψ show ?thesis by (simp add: cfg ′-def)

qed
using valid prems
apply (auto simp: s comp-def ϕ ′-def ψ ′-def absp-def dest: R-G.valid-cfg-state-in-S)

apply (auto simp: stream.pred-set intro: S-abss-S dest: R-G.valid-cfg-state-in-S)
done

subgoal premises prems for ys xs
apply safe

45

using prems apply (auto simp: stream.pred-set S-abss-S ; measurable; fail)
using prems unfolding ϕ ′-def ψ ′-def absp-def comp-def apply (simp add: stream.map-comp)
apply (subst (asm) region-compatible-suntil[symmetric])

subgoal
proof −

from prems have pred-stream (λs. s ∈ S) xs using S-abss-S by auto
with equiv-ϕ show ?thesis using valid by (simp add: cfg ′-def repc-def)

qed
subgoal
proof −

from prems have pred-stream (λs. s ∈ S) xs using S-abss-S by auto
with equiv-ψ show ?thesis using valid by (simp add: cfg ′-def)

qed
using valid prems by (auto simp: s S-abss-S stream.pred-set dest: R-G.valid-cfg-state-in-S)

done

end

end
theory PTA-Reachability

imports PTA
begin

6 Classifying Regions for Divergence
6.1 Pairwise
coinductive pairwise :: (′a ⇒ ′a ⇒ bool) ⇒ ′a stream ⇒ bool for P where

P a b =⇒ pairwise P (b ## xs) =⇒ pairwise P (a ## b ## xs)

lemma pairwise-Suc:
pairwise P xs =⇒ P (xs !! i) (xs !! (Suc i))
by (induction i arbitrary: xs) (force elim: pairwise.cases)+

lemma Suc-pairwise:
∀ i. P (xs !! i) (xs !! (Suc i)) =⇒ pairwise P xs
apply (coinduction arbitrary: xs)
apply (subst stream.collapse[symmetric])
apply (rewrite in stl - stream.collapse[symmetric])
apply (intro exI conjI , rule HOL.refl)
apply (erule allE [where x = 0]; simp; fail)

by simp (metis snth.simps(2))

lemma pairwise-iff :
pairwise P xs ←→ (∀ i. P (xs !! i) (xs !! (Suc i)))

using pairwise-Suc Suc-pairwise by blast

lemma pairwise-stlD:
pairwise P xs =⇒ pairwise P (stl xs)

by (auto elim: pairwise.cases)

lemma pairwise-pairD:
pairwise P xs =⇒ P (shd xs) (shd (stl xs))

by (auto elim: pairwise.cases)

lemma pairwise-mp:
assumes pairwise P xs and lift:

∧
x y. x ∈ sset xs =⇒ y ∈ sset xs =⇒ P x y =⇒ Q x y

shows pairwise Q xs using assms
apply (coinduction arbitrary: xs)
subgoal for xs

46

apply (subst stream.collapse[symmetric])
apply (rewrite in stl - stream.collapse[symmetric])
apply (intro exI conjI)
apply (rule HOL.refl)

by (auto intro: stl-sset dest: pairwise-pairD pairwise-stlD)
done

lemma pairwise-sdropD:
pairwise P (sdrop i xs) if pairwise P xs
using that

proof (coinduction arbitrary: i xs)
case (pairwise i xs)
then show ?case

apply (inst-existentials shd (sdrop i xs) shd (stl (sdrop i xs)) stl (stl (sdrop i xs)))
subgoal

by (auto dest: pairwise-Suc) (metis sdrop-simps(1) sdrop-stl stream.collapse)
subgoal

by (inst-existentials i − 1 stl xs) (auto dest: pairwise-Suc pairwise-stlD)
by (metis sdrop-simps(2) stream.collapse)

qed

6.2 Regions
lemma gt-GreaterD:

assumes u ∈ region X I r valid-region X k I r c ∈ X u c > k c
shows I c = Greater (k c)

proof −
from assms have intv-elem c u (I c) valid-intv (k c) (I c) by auto
with assms(4) show ?thesis by (cases I c) auto

qed

lemma const-ConstD:
assumes u ∈ region X I r valid-region X k I r c ∈ X u c = d d ≤ k c
shows I c = Const d

proof −
from assms have intv-elem c u (I c) valid-intv (k c) (I c) by auto
with assms(4 ,5) show ?thesis by (cases I c) auto

qed

lemma not-Greater-bounded:
assumes I x 6= Greater (k x) x ∈ X valid-region X k I r u ∈ region X I r
shows u x ≤ k x

proof −
from assms have intv-elem x u (I x) valid-intv (k x) (I x) by auto
with assms(1) show u x ≤ k x by (cases I x) auto

qed

lemma Greater-closed:
fixes t :: real
assumes u ∈ region X I r valid-region X k I r c ∈ X I c = Greater (k c) t > k c
shows u(c := t) ∈ region X I r
using assms
apply (intro region.intros)

apply (auto; fail)
apply standard

subgoal for x
by (cases x = c; cases I x; force intro!: intv-elem.intros)

by auto

lemma Greater-unbounded-aux:
assumes finite X valid-region X k I r c ∈ X I c = Greater (k c)

47

shows ∃ u ∈ region X I r . u c > t
using assms Greater-closed[OF - assms(2−4)]
proof −

let ?R = region X I r
let ?t = if t > k c then t + 1 else k c + 1
have t: ?t > k c by auto
from region-not-empty[OF assms(1 ,2)] obtain u where u: u ∈ ?R by auto
from Greater-closed[OF this assms(2−4) t] have u(c:=?t) ∈ ?R by auto
with t show ?thesis by (inst-existentials u(c:=?t)) auto

qed

6.3 Unbounded and Zero Regions
definition unbounded x R ≡ ∀ t. ∃ u ∈ R. u x > t

definition zero x R ≡ ∀ u ∈ R. u x = 0

lemma Greater-unbounded:
assumes finite X valid-region X k I r c ∈ X I c = Greater (k c)
shows unbounded c (region X I r)

using Greater-unbounded-aux[OF assms] unfolding unbounded-def by blast

lemma unbounded-Greater :
assumes valid-region X k I r c ∈ X unbounded c (region X I r)
shows I c = Greater (k c)

using assms unfolding unbounded-def by (auto intro: gt-GreaterD)

lemma Const-zero:
assumes c ∈ X I c = Const 0
shows zero c (region X I r)

using assms unfolding zero-def by force

lemma zero-Const:
assumes finite X valid-region X k I r c ∈ X zero c (region X I r)
shows I c = Const 0

proof −
from assms obtain u where u ∈ region X I r by atomize-elim (auto intro: region-not-empty)
with assms show ?thesis unfolding zero-def by (auto intro: const-ConstD)

qed

lemma zero-all:
assumes finite X valid-region X k I r c ∈ X u ∈ region X I r u c = 0
shows zero c (region X I r)

proof −
from assms have intv-elem c u (I c) valid-intv (k c) (I c) by auto
then have I c = Const 0 using assms(5) by cases auto
with assms have u ′ c = 0 if u ′ ∈ region X I r for u ′ using that by force
then show ?thesis unfolding zero-def by blast

qed

7 Reachability
7.1 Definitions
locale Probabilistic-Timed-Automaton-Regions-Reachability =

Probabilistic-Timed-Automaton-Regions k v n not-in-X A
for k v n not-in-X and A :: (′c, t, ′s) pta +

fixes ϕ ψ :: (′s ∗ (′c, t) cval) ⇒ bool fixes s
assumes ϕ:

∧
x y. x ∈ S =⇒ timed-bisim x y =⇒ ϕ x ←→ ϕ y

assumes ψ:
∧

x y. x ∈ S =⇒ timed-bisim x y =⇒ ψ x ←→ ψ y

48

assumes s[intro, simp]: s ∈ S
begin

definition ϕ ′ ≡ absp ϕ
definition ψ ′ ≡ absp ψ
definition s ′ ≡ abss s

lemma s-s ′-cfg-on[intro]:
assumes cfg ∈ MDP.cfg-on s
shows absc cfg ∈ R-G.cfg-on s ′

proof −
from assms s have cfg ∈ valid-cfg unfolding MDP.valid-cfg-def by auto
then have absc cfg ∈ R-G.cfg-on (state (absc cfg)) by (auto intro: R-G.valid-cfgD)
with assms show ?thesis unfolding s ′-def by (auto simp: state-absc)

qed

lemma s ′-S[simp, intro]:
s ′ ∈ S
unfolding s ′-def using s by auto

lemma s ′-s-cfg-on[intro]:
assumes cfg ∈ R-G.cfg-on s ′

shows repcs s cfg ∈ MDP.cfg-on s
proof −

from assms s have cfg ∈ R-G.valid-cfg unfolding R-G.valid-cfg-def by auto
with assms have repcs s cfg ∈ valid-cfg by (auto simp: s ′-def intro: R-G.valid-cfgD)
then show ?thesis by (auto dest: MDP.valid-cfgD)

qed

lemma (in Probabilistic-Timed-Automaton-Regions) compatible-stream:
assumes ϕ:

∧
x y. x ∈ S =⇒ x ∼ y =⇒ ϕ x ←→ ϕ y

assumes pred-stream (λs. s ∈ S) xs
and [intro]: x ∈ S

shows pred-stream (λs. ϕ (reps (abss s)) = ϕ s) (x ## xs)
unfolding stream.pred-set proof clarify

fix l u
assume A: (l, u) ∈ sset (x ## xs)
from assms have pred-stream (λs. s ∈ S) (x ## xs) by auto
with A have (l, u) ∈ S by (fastforce simp: stream.pred-set)
then have abss (l, u) ∈ S by auto
then have reps (abss (l, u)) ∼ (l, u) by simp
with ϕ ‹(l, u) ∈ S› show ϕ (reps (abss (l, u))) = ϕ (l, u) by blast

qed

lemma ϕ-stream ′:
pred-stream (λs. ϕ (reps (abss s)) = ϕ s) (x ## xs) if pred-stream (λs. s ∈ S) xs x ∈ S
using compatible-stream[of ϕ, OF ϕ that] .

lemma ψ-stream ′:
pred-stream (λs. ψ (reps (abss s)) = ψ s) (x ## xs) if pred-stream (λs. s ∈ S) xs x ∈ S
using compatible-stream[of ψ, OF ψ that] .

lemmas ϕ-stream = compatible-stream[of ϕ, OF ϕ]
lemmas ψ-stream = compatible-stream[of ψ, OF ψ]

7.2 Easier Result on All Configurations
lemma suntil-reps:

assumes
∀ s∈sset (smap abss y). s ∈ S
(holds ϕ ′ suntil holds ψ ′) (s ′ ## smap abss y)

49

shows (holds ϕ suntil holds ψ) (s ## y)
using assms
by (subst region-compatible-suntil[symmetric]; (intro ϕ-stream ψ-stream)?)

(auto simp: ϕ ′-def ψ ′-def absp-def stream.pred-set S-abss-S s ′-def comp-def)

lemma suntil-abss:
assumes
∀ s∈sset y. s ∈ S
(holds ϕ suntil holds ψ) (s ## y)

shows
(holds ϕ ′ suntil holds ψ ′) (s ′ ## smap abss y)

using assms
by (subst (asm) region-compatible-suntil[symmetric]; (intro ϕ-stream ψ-stream)?)

(auto simp: ϕ ′-def ψ ′-def absp-def stream.pred-set s ′-def comp-def)

theorem P-sup-sunitl-eq:
notes [measurable] = in-space-UNIV and [iff] = pred-stream-iff
shows
(MDP.P-sup s (λx. (holds ϕ suntil holds ψ) (s ## x)))
= (R-G.P-sup s ′ (λx. (holds ϕ ′ suntil holds ψ ′) (s ′ ## x)))

unfolding MDP.P-sup-def R-G.P-sup-def
proof (rule SUP-eq, goal-cases)

case prems: (1 cfg)
let ?cfg ′ = absc cfg
from prems have cfg ∈ valid-cfg by (auto intro: MDP.valid-cfgI)
then have ?cfg ′ ∈ R-G.valid-cfg by (auto intro: R-G.valid-cfgI)
from ‹cfg ∈ valid-cfg› have alw-S : almost-everywhere (MDP.T cfg) (pred-stream (λs. s ∈ S))

by (rule MDP.alw-S)
from ‹?cfg ′∈ R-G.valid-cfg› have alw-S: almost-everywhere (R-G.T ?cfg ′) (pred-stream (λs. s ∈ S))

by (rule R-G.alw-S)
have emeasure (MDP.T cfg) {x ∈ space MDP.St. (holds ϕ suntil holds ψ) (s ## x)}

= emeasure (R-G.T ?cfg ′) {x ∈ space R-G.St. (holds ϕ ′ suntil holds ψ ′) (s ′ ## x)}
apply (rule path-measure-eq-absc1-new[symmetric, where P = pred-stream (λ s. s ∈ S)

and Q = pred-stream (λ s. s ∈ S)]
)

using prems alw-S alw-S apply (auto intro: MDP.valid-cfgI simp:)[7]
by (auto simp: S-abss-S intro: S-abss-S intro!: suntil-abss suntil-reps, measurable)

with prems show ?case by (inst-existentials ?cfg ′) auto
next

case prems: (2 cfg)
let ?cfg ′ = repcs s cfg
have s = state ?cfg ′ by simp
from prems have s ′ = state cfg by auto
have pred-stream (λs. ϕ (reps (abss s)) = ϕ s) (state (repcs s cfg) ## x)

if pred-stream (λs. s ∈ S) x for x
using prems that by (intro ϕ-stream) auto

moreover
have pred-stream (λs. ψ (reps (abss s)) = ψ s) (state (repcs s cfg) ## x)

if pred-stream (λs. s ∈ S) x for x
using prems that by (intro ψ-stream) auto

ultimately
have emeasure (R-G.T cfg) {x ∈ space R-G.St. (holds ϕ ′ suntil holds ψ ′) (s ′ ## x)}
= emeasure (MDP.T (repcs s cfg)) {x ∈ space MDP.St. (holds ϕ suntil holds ψ) (s ## x)}
apply (rewrite in s ## - ‹s = -›)
apply (subst ‹s ′ = -›)
unfolding ϕ ′-def ψ ′-def s ′-def
apply (rule path-measure-eq-repcs ′′-new)
using prems by (auto 4 3 simp: s ′-def intro: R-G.valid-cfgI MDP.valid-cfgI)

with prems show ?case by (inst-existentials ?cfg ′) auto

50

qed

end

7.3 Divergent Adversaries
context Probabilistic-Timed-Automaton
begin

definition elapsed u u ′ ≡ Max ({u ′ c − u c | c. c ∈ X} ∪ {0})

definition eq-elapsed u u ′ ≡ elapsed u u ′ > 0 −→ (∀ c ∈ X . u ′ c − u c = elapsed u u ′)

fun dur :: (′c, t) cval stream ⇒ nat ⇒ t where
dur - 0 = 0 |
dur (x ## y ## xs) (Suc i) = elapsed x y + dur (y ## xs) i

definition divergent ω ≡ ∀ t. ∃ n. dur ω n > t

definition div-cfg cfg ≡ AE ω in MDP.MC .T cfg. divergent (smap (snd o state) ω)

definition R-div ω ≡
∀ x ∈ X . (∀ i. (∃ j ≥ i. zero x (ω !! j)) ∧ (∃ j ≥ i. ¬ zero x (ω !! j)))
∨ (∃ i. ∀ j ≥ i. unbounded x (ω !! j))

definition R-G-div-cfg cfg ≡ AE ω in MDP.MC .T cfg. R-div (smap (snd o state) ω)

end

context Probabilistic-Timed-Automaton-Regions
begin

definition cfg-on-div st ≡ MDP.cfg-on st ∩ {cfg. div-cfg cfg}

definition R-G-cfg-on-div st ≡ R-G.cfg-on st ∩ {cfg. R-G-div-cfg cfg}

lemma measurable-R-div[measurable]: Measurable.pred MDP.MC .S R-div
unfolding R-div-def
by (intro

pred-intros-finite[OF beta-interp.finite]
pred-intros-logic pred-intros-countable
measurable-count-space-const measurable-compose[OF measurable-snth]

) measurable

lemma elapsed-ge0 [simp]: elapsed x y ≥ 0
unfolding elapsed-def using finite(1) by auto

lemma dur-pos:
dur xs i ≥ 0

apply (induction i arbitrary: xs)
apply (auto; fail)
subgoal for i xs

apply (subst stream.collapse[symmetric])
apply (rewrite at stl xs stream.collapse[symmetric])
apply (subst dur .simps)

by simp
done

lemma dur-mono:
i ≤ j =⇒ dur xs i ≤ dur xs j

proof (induction i arbitrary: xs j)

51

case 0 show ?case by (auto intro: dur-pos)
next

case (Suc i xs j)
obtain x y ys where xs: xs = x ## y ## ys using stream.collapse by metis
from Suc obtain j ′ where j ′: j = Suc j ′ by (cases j) auto
with xs have dur xs j = elapsed x y + dur (y ## ys) j ′ by auto
also from Suc j ′ have . . . ≥ elapsed x y + dur (y ## ys) i by auto
also have elapsed x y + dur (y ## ys) i = dur xs (Suc i) by (simp add: xs)
finally show ?case .

qed

lemma dur-monoD:
assumes dur xs i < dur xs j
shows i < j using assms

by − (rule ccontr ; auto 4 4 dest: leI dur-mono[where xs = xs])

lemma elapsed-0D:
assumes c ∈ X elapsed u u ′ ≤ 0
shows u ′ c − u c ≤ 0

proof −
from assms have u ′ c − u c ∈ {u ′ c − u c | c. c ∈ X} ∪ {0} by auto
with finite(1) have u ′ c − u c ≤ Max ({u ′ c − u c | c. c ∈ X} ∪ {0}) by auto
with assms(2) show ?thesis unfolding elapsed-def by auto

qed

lemma elapsed-ge:
assumes eq-elapsed u u ′ c ∈ X
shows elapsed u u ′ ≥ u ′ c − u c
using assms unfolding eq-elapsed-def by (auto intro: elapsed-ge0 order .trans[OF elapsed-0D])

lemma elapsed-eq:
assumes eq-elapsed u u ′ c ∈ X u ′ c − u c ≥ 0
shows elapsed u u ′ = u ′ c − u c
using elapsed-ge[OF assms(1 ,2)] assms unfolding eq-elapsed-def by auto

lemma dur-shift:
dur ω (i + j) = dur ω i + dur (sdrop i ω) j

apply (induction i arbitrary: ω)
apply simp

subgoal for i ω
apply simp
apply (subst stream.collapse[symmetric])
apply (rewrite at stl ω stream.collapse[symmetric])
apply (subst dur .simps)
apply (rewrite in dur ω stream.collapse[symmetric])
apply (rewrite in dur (- ## ◊) (Suc -) stream.collapse[symmetric])
apply (subst dur .simps)
apply simp

done
done

lemma dur-zero:
assumes
∀ i. xs !! i ∈ ω !! i ∀ j ≤ i. zero x (ω !! j) x ∈ X
∀ i. eq-elapsed (xs !! i) (xs !! Suc i)

shows dur xs i = 0 using assms
proof (induction i arbitrary: xs ω)

case 0
then show ?case by simp

next
case (Suc i xs ω)

52

let ?x = xs !! 0
let ?y = xs !! 1
let ?ys = stl (stl xs)
have xs: xs = ?x ## ?y ## ?ys by auto
from Suc.prems have
∀ i. (?y ## ?ys) !! i ∈ stl ω !! i ∀ j ≤ i. zero x (stl ω !! j)
∀ i. eq-elapsed (stl xs !! i) (stl xs !! Suc i)
by (metis snth.simps(2) | auto)+

from Suc.IH [OF this(1 ,2) ‹x ∈ -›] this(3) have [simp]: dur (stl xs) i = 0 by auto
from Suc.prems(1 ,2) have ?y x = 0 ?x x = 0 unfolding zero-def by force+
then have ∗: ?y x − ?x x = 0 by simp
have dur xs (Suc i) = elapsed ?x ?y

apply (subst xs)
apply (subst dur .simps)
by simp

also have . . . = 0
apply (subst elapsed-eq[OF - ‹x ∈ -›])
unfolding One-nat-def using Suc.prems(4) apply blast
using ∗ by auto

finally show ?case .
qed

lemma dur-zero-tail:
assumes ∀ i. xs !! i ∈ ω !! i ∀ k ≥ i. k ≤ j −→ zero x (ω !! k) x ∈ X j ≥ i

∀ i. eq-elapsed (xs !! i) (xs !! Suc i)
shows dur xs j = dur xs i

proof −
from ‹j ≥ i› dur-shift[of xs i j − i] have

dur xs j = dur xs i + dur (sdrop i xs) (j − i)
by simp
also have . . . = dur xs i

using assms
by (rewrite in dur (sdrop - -) - dur-zero[where ω = sdrop i ω])

(auto dest: prop-nth-sdrop-pair [of eq-elapsed] prop-nth-sdrop prop-nth-sdrop-pair [of (∈)])
finally show ?thesis .

qed

lemma elapsed-ge-pos:
fixes u :: (′c, t) cval
assumes eq-elapsed u u ′ c ∈ X u ∈ V u ′ ∈ V
shows elapsed u u ′ ≤ u ′ c

proof (cases elapsed u u ′ = 0)
case True
with assms show ?thesis by (auto simp: V-def)

next
case False
from ‹u ∈ V › ‹c ∈ X › have u c ≥ 0 by (auto simp: V-def)
from False assms have elapsed u u ′ = u ′ c − u c

unfolding eq-elapsed-def by (auto simp add: less-le)
also from ‹u c ≥ 0 › have . . . ≤ u ′ c by simp
finally show ?thesis .

qed

lemma dur-Suc:
dur xs (Suc i) − dur xs i = elapsed (xs !! i) (xs !! Suc i)

apply (induction i arbitrary: xs)
apply simp
apply (subst stream.collapse[symmetric])
apply (rewrite in stl - stream.collapse[symmetric])
apply (subst dur .simps)
apply simp

53

apply simp
subgoal for i xs
apply (subst stream.collapse[symmetric])
apply (rewrite in stl - stream.collapse[symmetric])
apply (subst dur .simps)
apply simp
apply (rewrite in dur xs (Suc -) stream.collapse[symmetric])
apply (rewrite at stl xs in - ## stl xs stream.collapse[symmetric])
apply (subst dur .simps)
apply simp

done
done

inductive trans where
succ: t ≥ 0 =⇒ u ′ = u ⊕ t =⇒ trans u u ′ |
reset: set l ⊆ X =⇒ u ′ = clock-set l 0 u =⇒ trans u u ′ |
id: u = u ′ =⇒ trans u u ′

abbreviation stream-trans ≡ pairwise trans

lemma K-cfg-trans:
assumes cfg ∈ MDP.cfg-on (l, R) cfg ′ ∈ K-cfg cfg state cfg ′ = (l ′, R ′)
shows trans R R ′

using assms
apply (simp add: set-K-cfg)
apply (drule MDP.cfg-onD-action)
apply (cases rule: K .cases)

apply (auto intro: trans.intros)
using admissible-targets-clocks(2) by (blast intro: trans.intros(2))

lemma enabled-stream-trans:
assumes cfg ∈ valid-cfg MDP.MC .enabled cfg xs
shows stream-trans (smap (snd o state) xs)
using assms

proof (coinduction arbitrary: cfg xs)
case prems: (pairwise cfg xs)
let ?xs = stl (stl xs) let ?x = shd xs let ?y = shd (stl xs)
from MDP.pred-stream-cfg-on[OF prems] have ∗:

pred-stream (λcfg. state cfg ∈ S ∧ cfg ∈ MDP.cfg-on (state cfg)) xs .
obtain l R l ′ R ′ where eq: state ?x = (l, R) state ?y = (l ′, R ′) by force
moreover from ∗ have ?x ∈ MDP.cfg-on (state ?x) ?x ∈ valid-cfg

by (auto intro: MDP.valid-cfgI simp: stream.pred-set)
moreover from prems(2) have ?y ∈ K-cfg ?x by (auto elim: MDP.MC .enabled.cases)
ultimately have trans R R ′

by (intro K-cfg-trans[where cfg = ?x and cfg ′ = ?y and l = l and l ′ = l ′]) metis+
with ‹?x ∈ valid-cfg› prems(2) show ?case

apply (inst-existentials R R ′ smap (snd o state) ?xs)
apply (simp add: eq; fail)+

apply (rule disjI1 , inst-existentials ?x stl xs)
by (auto simp: eq elim: MDP.MC .enabled.cases)

qed

lemma stream-trans-trans:
assumes stream-trans xs
shows trans (xs !! i) (stl xs !! i)

using pairwise-Suc assms by auto

lemma trans-eq-elapsed:
assumes trans u u ′ u ∈ V
shows eq-elapsed u u ′

using assms

54

proof cases
case (succ t)
with finite(1) show ?thesis by (auto simp: cval-add-def elapsed-def max-def eq-elapsed-def)

next
case prems: (reset l)
then have u ′ c − u c ≤ 0 if c ∈ X for c
using that ‹u ∈ V › by (cases c ∈ set l) (auto simp: V-def)
then have elapsed u u ′ = 0 unfolding elapsed-def using finite(1)
apply simp
apply (subst Max-insert2)

by auto
then show ?thesis by (auto simp: eq-elapsed-def)

next
case id
then show ?thesis

using finite(1) by (auto simp: Max-gr-iff elapsed-def eq-elapsed-def)
qed

lemma pairwise-trans-eq-elapsed:
assumes stream-trans xs pred-stream (λ u. u ∈ V) xs
shows pairwise eq-elapsed xs

using trans-eq-elapsed assms by (auto intro: pairwise-mp simp: stream.pred-set)

lemma not-reset-dur :
assumes ∀ k>i. k ≤ j −→ ¬ zero c ([xs !! k]R) j ≥ i c ∈ X stream-trans xs
∀ i. eq-elapsed (xs !! i) (xs !! Suc i) ∀ i. xs !! i ∈ V

shows dur xs j − dur xs i = (xs !! j) c − (xs !! i) c
using assms

proof (induction j)
case 0 then show ?case by simp

next
case (Suc j)
from stream-trans-trans[OF Suc.prems(4)] have trans: trans (xs !! j) (xs !! Suc j) by auto
from Suc.prems have ∗:
¬ zero c ([xs !! Suc j]R) eq-elapsed (xs !! j) (xs !! Suc j) if Suc j > i
using that by auto

from Suc.prems(6) have xs !! j ∈ V xs !! Suc j ∈ V by blast+
then have regions: [xs !! j]R ∈ R [xs !! Suc j]R ∈ R by auto
from trans have (xs !! Suc j) c − (xs !! j) c ≥ 0 if Suc j > i
proof (cases)

case succ
with regions show ?thesis by (auto simp: cval-add-def)

next
case prems: (reset l)
show ?thesis
proof (cases c ∈ set l)

case False
with prems show ?thesis by auto

next
case True
with prems have (xs !! Suc j) c = 0 by auto
moreover from assms have xs !! Suc j ∈ [xs !! Suc j]R by blast
ultimately have

zero c ([xs !! Suc j]R)
using zero-all[OF finite(1) - ‹c ∈ X ›] regions(2) by (auto simp: R-def)

with ∗ that show ?thesis by auto
qed

next
case id then show ?thesis by simp

qed
with ∗ ‹c ∈ X › elapsed-eq have

55

∗: elapsed (xs !! j) (xs !! Suc j) = (xs !! Suc j) c − (xs !! j) c
if Suc j > i
using that by blast

show ?case
proof (cases i = Suc j)

case False
with Suc have

dur xs (Suc j) − dur xs i = dur xs (Suc j) − dur xs j + (xs !! j) c − (xs !! i) c
by auto

also have . . . = elapsed (xs !! j) (xs !! Suc j) + (xs !! j) c − (xs !! i) c
by (simp add: dur-Suc)

also have
. . . = (xs !! Suc j) c − (xs !! j) c + (xs !! j) c − (xs !! i) c
using ∗ False Suc.prems by auto

also have . . . = (xs !! Suc j) c − (xs !! i) c by simp
finally show ?thesis by auto

next
case True
then show ?thesis by simp

qed
qed

lemma not-reset-dur ′:
assumes ∀ j≥i. ¬ zero c ([xs !! j]R) j ≥ i c ∈ X stream-trans xs

∀ i. eq-elapsed (xs !! i) (xs !! Suc i) ∀ j. xs !! j ∈ V
shows dur xs j − dur xs i = (xs !! j) c − (xs !! i) c

using assms not-reset-dur by auto

lemma not-reset-unbounded:
assumes ∀ j≥i. ¬ zero c ([xs !! j]R) j ≥ i c ∈ X stream-trans xs

∀ i. eq-elapsed (xs !! i) (xs !! Suc i) ∀ j. xs !! j ∈ V
unbounded c ([xs !! i]R)

shows unbounded c ([xs !! j]R)
proof −

let ?u = xs !! i let ?u ′ = xs !! j let ?R = [xs !! i]R
from assms have ?u ∈ ?R by auto
from assms(6) have ?R ∈ R by auto
then obtain I r where ?R = region X I r valid-region X k I r unfolding R-def by auto
with assms(3 ,7) unbounded-Greater ‹?u ∈ ?R› have ?u c > k c by force
also from not-reset-dur ′[OF assms(1−6)] dur-mono[OF ‹j ≥ i›, of xs] have ?u ′ c ≥ ?u c by auto
finally have ?u ′ c > k c by auto
let ?R ′ = [xs !! j]R
from assms have ?u ′ ∈ ?R ′ by auto
from assms(6) have ?R ′ ∈ R by auto
then obtain I r where ?R ′ = region X I r valid-region X k I r unfolding R-def by auto
moreover with ‹?u ′ c > -› ‹?u ′ ∈ -› gt-GreaterD ‹c ∈ X › have I c = Greater (k c) by auto
ultimately show ?thesis using Greater-unbounded[OF finite(1) - ‹c ∈ X ›] by auto

qed

lemma gt-unboundedD:
assumes u ∈ R

and R ∈ R
and c ∈ X
and real (k c) < u c

shows unbounded c R
proof −

from assms obtain I r where R = region X I r valid-region X k I r
unfolding R-def by auto

with Greater-unbounded[of X k I r c] gt-GreaterD[of u X I r k c] assms finite(1) show ?thesis
by auto

qed

56

definition trans ′ :: (′c, t) cval ⇒ (′c, t) cval ⇒ bool where
trans ′ u u ′ ≡
((∀ c ∈ X . u c > k c ∧ u ′ c > k c ∧ u 6= u ′) −→ u ′ = u ⊕ 0 .5) ∧
((∃ c ∈ X . u c = 0 ∧ u ′ c > 0 ∧ (∀ c∈X . @ d. d ≤ k c ∧ u ′ c = real d))
−→ u ′ = delayedR ([u ′]R) u)

lemma zeroI :
assumes c ∈ X u ∈ V u c = 0
shows zero c ([u]R)

proof −
from assms have u ∈ [u]R [u]R ∈ R by auto
then obtain I r where [u]R = region X I r valid-region X k I r unfolding R-def by auto
with zero-all[OF finite(1) this(2) ‹c ∈ X ›] ‹u ∈ [u]R› ‹u c = 0 › show ?thesis by auto

qed

lemma zeroD:
u x = 0 if zero x ([u]R) u ∈ V
using that by (metis regions-part-ex(1) zero-def)

lemma not-zeroD:
assumes ¬ zero x ([u]R) u ∈ V x ∈ X
shows u x > 0

proof −
from zeroI assms have u x 6= 0 by auto
moreover from assms have u x ≥ 0 unfolding V-def by auto
ultimately show ?thesis by auto

qed

lemma not-const-intv:
assumes u ∈ V ∀ c∈X . @ d. d ≤ k c ∧ u c = real d
shows ∀ c∈X . ∀ u ∈ [u]R. @ d. d ≤ k c ∧ u c = real d

proof −
from assms have u ∈ [u]R [u]R ∈ R by auto
then obtain I r where I : [u]R = region X I r valid-region X k I r unfolding R-def by auto
have @ d. d ≤ k c ∧ u ′ c = real d if c ∈ X u ′ ∈ [u]R for c u ′

proof safe
fix d assume A: d ≤ k c u ′ c = real d
from I that have intv-elem c u ′ (I c) valid-intv (k c) (I c) by auto
then show False

using A I ‹u ∈ [u]R› ‹c ∈ X › assms(2) by (cases; fastforce)
qed
then show ?thesis by auto

qed

lemma K-cfg-trans ′:
assumes repcs (l, u) cfg ∈ MDP.cfg-on (l, u) cfg ′ ∈ K-cfg (repcs (l, u) cfg)

state cfg ′ = (l ′, u ′) (l, u) ∈ S cfg ∈ R-G.valid-cfg abss (l, u) = state cfg
shows trans ′ u u ′

using assms
apply (simp add: set-K-cfg)
apply (drule MDP.cfg-onD-action)
apply (cases rule: K .cases)
apply assumption

proof goal-cases
case prems: (1 l u t)
from assms ‹- = (l, u)› have repcs (l, u) cfg ∈ valid-cfg by (auto intro: MDP.valid-cfgI)
then have absc (repcs (l, u) cfg) ∈ R-G.valid-cfg by auto

57

from prems have ∗: rept (l, u) (action cfg) = return-pmf (l, u ⊕ t) unfolding repcs-def by auto
from ‹abss - = -› ‹- = (l, u)› ‹cfg ∈ R-G.valid-cfg› have

action cfg ∈ K (abss (l, u))
by (auto dest: R-G-I)
from abst-rept-id[OF this] ∗ have action cfg = abst (return-pmf (l, u ⊕ t)) by auto
with prems have ∗∗: action cfg = return-pmf (l, [u ⊕ t]R) unfolding abst-def by auto
show ?thesis
proof (cases ∀ c ∈ X . u c > k c)

case True
from prems have u ⊕ t ∈ [u]R by (auto intro: upper-right-closed[OF True])
with prems have [u ⊕ t]R = [u]R by (auto dest: alpha-interp.region-unique-spec)
with ∗∗ have action cfg = return-pmf (l, [u]R) by simp
with True have rept (l, u) (action cfg) = return-pmf (l, u ⊕ 0 .5)
unfolding rept-def using prems by auto
with ∗ have u ⊕ t = u ⊕ 0 .5 by auto
moreover from prems have u ′ = u ⊕ t by auto
moreover from prems True have ∀ c ∈ X . u ′ c > k c by (auto simp: cval-add-def)
ultimately show ?thesis using True ‹- = (l, u)› unfolding trans ′-def by auto

next
case F : False
show ?thesis
proof (cases ∃ c∈X . u c = 0 ∧ 0 < u ′ c ∧ (∀ c∈X . @ d. d ≤ k c ∧ u ′ c = real d))

case True
from prems have u ′ ∈ [u ′]R by auto
from prems have [u ⊕ t]R ∈ Succ R ([u]R) by auto
from True obtain c where c ∈ X u c = 0 u ′ c > 0 by auto
with zeroI prems have zero c ([u]R) by auto
moreover from ‹u ′ ∈ -› ‹u ′ c > 0 › have ¬ zero c ([u ′]R) unfolding zero-def by fastforce
ultimately have [u ⊕ t]R 6= [u]R using prems by auto
moreover from True not-const-intv prems have
∀ u ∈ [u ⊕ t]R. ∀ c∈X . @ d. d ≤ k c ∧ u c = real d

by auto
ultimately have ∃R ′. (l, u) ∈ S ∧

action cfg = return-pmf (l, R ′) ∧
R ′ ∈ Succ R ([u]R) ∧ [u]R 6= R ′ ∧ (∀ u∈R ′. ∀ c∈X . @ d. d ≤ k c ∧ u c = real d)

apply −
apply (rule exI [where x = [u ⊕ t]R])
apply safe

using prems ∗∗ by auto
then have

rept (l, u) (action cfg)
= return-pmf (l, delayedR (SOME R ′. action cfg = return-pmf (l, R ′)) u)

unfolding rept-def by auto
with ∗ ∗∗ prems have u ′ = delayedR ([u ⊕ t]R) u by auto
with F True prems show ?thesis unfolding trans ′-def by auto

next
case False
with F ‹- = (l, u)› show ?thesis unfolding trans ′-def by auto

qed
qed

next
case prems: (2 - - τ µ)
then obtain X where X : u ′ = ([X := 0]u) (X , l ′) ∈ set-pmf µ by auto
from ‹- ∈ S› have u ∈ V by auto
let ?r = SOME r . set r = X
show ?case
proof (cases X = {})

case True
with X have u = u ′ by auto
with non-empty show ?thesis unfolding trans ′-def by auto

next

58

case False
then obtain x where x ∈ X by auto
moreover have X ⊆ X using admissible-targets-clocks(1)[OF prems(10) X(2)] by auto
ultimately have x ∈ X by auto
from ‹X ⊆ X › finite(1) obtain r where set r = X using finite-list finite-subset by blast
then have r : set ?r = X by (rule someI)
with ‹x ∈ X› X have u ′ x = 0 by auto
from X r ‹u ∈ V › ‹X ⊆ X › have u ′ x ≤ u x for x

by (cases x ∈ X ; auto simp: V-def)
have False if u ′ x > 0 ∧ u x = 0 for x

using ‹u ′ - ≤ -›[of x] that by auto
with ‹u ′ x = 0 › show ?thesis using ‹x ∈ X › unfolding trans ′-def by auto

qed
next

case 3
with non-empty show ?case unfolding trans ′-def by auto

qed

coinductive enabled-repcs where
enabled-repcs (shd xs) (stl xs) =⇒ shd xs = repcs st ′ cfg ′ =⇒ st ′ ∈ rept st (action cfg)
=⇒ abss st ′ = state cfg ′

=⇒ cfg ′ ∈ R-G.valid-cfg
=⇒ enabled-repcs (repcs st cfg) xs

lemma K-cfg-rept-in:
assumes cfg ∈ R-G.valid-cfg

and abss st = state cfg
and cfg ′ ∈ K-cfg cfg

shows (THE s ′. s ′ ∈ set-pmf (rept st (action cfg)) ∧ abss s ′ = state cfg ′)
∈ set-pmf (rept st (action cfg))

proof −
from assms(1 ,2) have action cfg ∈ K (abss st) by (auto simp: R-G-I)
from ‹cfg ′ ∈ -› have

cfg ′ = cont cfg (state cfg ′) state cfg ′ ∈ action cfg
by (auto simp: set-K-cfg)
with abst-rept-id[OF ‹action - ∈ -›] pmf .set-map have

state cfg ′ ∈ abss ‘ set-pmf (rept st (action cfg)) unfolding abst-def by metis
then obtain st ′ where

st ′ ∈ rept st (action cfg) abss st ′ = state cfg ′

unfolding abst-def by auto
with K-cfg-rept-aux[OF assms(1 ,2) this(1)] show ?thesis by auto

qed

lemma enabled-repcsI :
assumes cfg ∈ R-G.valid-cfg abss st = state cfg MDP.MC .enabled (repcs st cfg) xs
shows enabled-repcs (repcs st cfg) xs using assms

proof (coinduction arbitrary: cfg xs st)
case prems: (enabled-repcs cfg xs st)
let ?x = shd xs and ?y = shd (stl xs)
let ?st = THE s ′. s ′ ∈ set-pmf (rept st (action cfg)) ∧ abss s ′ = state (absc ?x)
from prems(3) have ?x ∈ K-cfg (repcs st cfg) by cases
with K-cfg-map-repcs[OF prems(1 ,2)] obtain cfg ′ where

cfg ′ ∈ K-cfg cfg ?x = repcs (THE s ′. s ′ ∈ rept st (action cfg) ∧ abss s ′ = state cfg ′) cfg ′

by auto
let ?st = THE s ′. s ′ ∈ rept st (action cfg) ∧ abss s ′ = state cfg ′

from K-cfg-rept-action[OF prems(1 ,2) ‹cfg ′ ∈ -›] have abss ?st = state cfg ′ .
moreover from K-cfg-rept-in[OF prems(1 ,2) ‹cfg ′ ∈ -›] have ?st ∈ rept st (action cfg) .
moreover have cfg ′ ∈ R-G.valid-cfg using ‹cfg ′ ∈ K-cfg cfg› prems(1) by blast
moreover from absc-repcs-id[OF this ‹abss ?st = state cfg ′›] ‹?x = -› have absc ?x = cfg ′

by auto

59

moreover from prems(3) have MDP.MC .enabled (shd xs) (stl xs) by cases
ultimately show ?case

using ‹?x = -› by (inst-existentials xs ?st absc ?x st cfg) fastforce+
qed

lemma repcs-eq-rept:
rept st (action cfg) = rept st ′′ (action cfg ′′) if repcs st cfg = repcs st ′′ cfg ′′

by (metis (mono-tags, lifting) action-cfg-corec old.prod.case repcs-def that)

lemma enabled-stream-trans ′:
assumes cfg ∈ R-G.valid-cfg abss st = state cfg MDP.MC .enabled (repcs st cfg) xs
shows pairwise trans ′ (smap (snd o state) xs)

using assms
proof (coinduction arbitrary: cfg xs st)

case prems: (pairwise cfg xs)
let ?xs = stl xs
from prems have A: enabled-repcs (repcs st cfg) xs by (auto intro: enabled-repcsI)
then obtain st ′ cfg ′ where

enabled-repcs (shd xs) (stl xs) shd xs = repcs st ′ cfg ′ st ′ ∈ rept st (action cfg)
abss st ′ = state cfg ′ cfg ′ ∈ R-G.valid-cfg

apply atomize-elim
apply (cases rule: enabled-repcs.cases)
apply assumption
subgoal for st ′ cfg ′ st ′′ cfg ′′

by (inst-existentials st ′ cfg ′) (auto dest: repcs-eq-rept)
done
then obtain st ′′ cfg ′′ where

enabled-repcs (shd ?xs) (stl ?xs)
shd ?xs = repcs st ′′ cfg ′′ st ′′ ∈ rept st ′ (action cfg ′) abss st ′′ = state cfg ′′

by atomize-elim (subst (asm)enabled-repcs.simps, fastforce dest: repcs-eq-rept)
let ?x = shd xs let ?y = shd (stl xs)
let ?cfg = repcs st cfg
from prems have ?cfg ∈ valid-cfg by auto
from MDP.pred-stream-cfg-on[OF ‹?cfg ∈ valid-cfg› prems(3)] have ∗:

pred-stream (λcfg. state cfg ∈ S ∧ cfg ∈ MDP.cfg-on (state cfg)) xs .
obtain l u l ′ u ′ where eq: st ′ = (l, u) st ′′ = (l ′, u ′)

by force
moreover from ∗ have

?x ∈ MDP.cfg-on (state ?x) ?x ∈ valid-cfg
by (auto intro: MDP.valid-cfgI simp: stream.pred-set)

moreover from prems(3) have ?y ∈ K-cfg ?x by (auto elim: MDP.MC .enabled.cases)
ultimately have trans ′ u u ′

using ‹?x = -› ‹?y = -› ‹cfg ′ ∈ -› ‹abss st ′ = -›
by (intro K-cfg-trans ′) (auto dest: MDP.valid-cfg-state-in-S)

with ‹?x ∈ valid-cfg› ‹cfg ′ ∈ R-G.valid-cfg› prems(3) ‹abss - = state cfg ′› show ?case
apply (inst-existentials u u ′ smap (snd o state) (stl ?xs))
apply (simp add: eq ‹?x = -› ‹?y = -›; fail)+
by ((intro disjI1 exI)?; auto simp: ‹?x = -› ‹?y = -› eq elim: MDP.MC .enabled.cases)

qed

lemma divergent-R-divergent:
assumes in-S : pred-stream (λ u. u ∈ V) xs

and div: divergent xs
and trans: stream-trans xs

shows R-div (smap (λ u. [u]R) xs) (is R-div ?ω)
unfolding R-div-def proof (safe, simp-all)

fix x i
assume x: x ∈ X and bounded: ∀ i. ∃ j≥i. ¬ unbounded x ([xs !! j]R)
from in-S have xs-ω: ∀ i. xs !! i ∈ ?ω !! i by (auto simp: stream.pred-set)
from trans in-S have elapsed:
∀ i. eq-elapsed (xs !! i) (xs !! Suc i)

60

by (fastforce intro: pairwise-trans-eq-elapsed pairwise-Suc[where P = eq-elapsed])
{ assume A: ∀ j ≥ i. ¬ zero x ([xs !! j]R)

let ?t = dur xs i + k x
from div obtain j where j: dur xs j > dur xs i + k x unfolding divergent-def by auto
then have k x < dur xs j − dur xs i by auto
also with not-reset-dur ′[OF A less-imp-le[OF dur-monoD], of xs] ‹x ∈ X › assms elapsed have
. . . = (xs !! j) x − (xs !! i) x
by (auto simp: stream.pred-set)

also have . . . ≤ (xs !! j) x
using assms(1) ‹x ∈ X › unfolding V-def by (auto simp: stream.pred-set)

finally have unbounded x ([xs !! j]R)
using assms ‹x ∈ X › by (intro gt-unboundedD) (auto simp: stream.pred-set)

moreover from dur-monoD[of xs i j] j A have ∀ j ′ ≥ j. ¬ zero x ([xs !! j ′]R) by auto
ultimately have ∀ i≥j. unbounded x ([xs !! i]R)

using elapsed assms x by (auto intro: not-reset-unbounded simp: stream.pred-set)
with bounded have False by auto

}
then show ∃ j≥i. zero x ([xs !! j]R) by auto
{ assume A: ∀ j ≥ i. zero x ([xs !! j]R)

from div obtain j where j: dur xs j > dur xs i unfolding divergent-def by auto
then have j ≥ i by (auto dest: dur-monoD)
from A have ∀ j ≥ i. zero x (?ω !! j) by auto
with dur-zero-tail[OF xs-ω - x ‹i ≤ j› elapsed] j have False by simp

}
then show ∃ j≥i. ¬ zero x ([xs !! j]R) by auto

qed

lemma (in −)
fixes f :: nat ⇒ real
assumes ∀ i. f i ≥ 0 ∀ i. ∃ j ≥ i. f j > d d > 0
shows ∃ n. (

∑
i ≤ n. f i) > t

oops

lemma dur-ev-exceedsI :
assumes ∀ i. ∃ j ≥ i. dur xs j − dur xs i ≥ d and d > 0
obtains i where dur xs i > t

proof −
have base: ∃ i. dur xs i > t if t < d for t
proof −

from assms obtain j where dur xs j − dur xs 0 ≥ d by fastforce
with dur-pos[of xs 0] have dur xs j ≥ d by simp
with ‹d > 0 › ‹t < d› show ?thesis by − (rule exI [where x = j]; auto)

qed
have base2 : ∃ i. dur xs i > t if t ≤ d for t
proof (cases t = d)

case False
with ‹t ≤ d› base show ?thesis by simp

next
case True
from base ‹d > 0 › obtain i where dur xs i > 0 by auto
moreover from assms obtain j where dur xs j − dur xs i ≥ d by auto
ultimately have dur xs j > d by auto
with ‹t = d› show ?thesis by auto

qed
show ?thesis
proof (cases t ≥ 0)

case False
with dur-pos have dur xs 0 > t by auto
then show ?thesis by (fastforce intro: that)

next

61

case True
let ?m = nat dt / de
from True have ∃ i. dur xs i > ?m ∗ d
proof (induction ?m arbitrary: t)

case 0
with base[OF ‹0 < d›] show ?case by simp

next
case (Suc n t)
let ?t = t − d
show ?case
proof (cases t ≥ d)

case True
have ?t / d = t / d − 1

proof −
have t / d + − 1 ∗ ((t + − 1 ∗ d) / d) + − 1 ∗ (d / d) = 0

by (simp add: diff-divide-distrib)
then have t / d + − 1 ∗ ((t + − 1 ∗ d) / d) = 1

using assms(2) by fastforce
then show ?thesis

by algebra
qed
then have d?t / de = dt / de − 1 by simp
with ‹Suc n = -› have n = nat d?t / de by simp
with Suc ‹t ≥ d› obtain i where nat d?t / de ∗ d < dur xs i by fastforce
from assms obtain j where dur xs j − dur xs i ≥ d j ≥ i by auto
with ‹dur xs i > -› have nat d?t / de ∗ d + d < dur xs j by simp
with True have dur xs j > nat dt / de ∗ d
by (metis Suc.hyps(2) ‹n = nat d(t − d) / de› add.commute distrib-left mult.commute

mult.right-neutral of-nat-Suc)
then show ?thesis by blast

next
case False
with ‹t ≥ 0 › ‹d > 0 › have nat dt / de ≤ 1 by simp
then have nat dt / de ∗ d ≤ d
by (metis One-nat-def ‹Suc n = -› Suc-leI add.right-neutral le-antisym mult.commute

mult.right-neutral of-nat-0 of-nat-Suc order-refl zero-less-Suc)
with base2 show ?thesis by auto

qed
qed
then obtain i where dur xs i > ?m ∗ d by atomize-elim
moreover from ‹t ≥ 0 › ‹d > 0 › have ?m ∗ d ≥ t

using pos-divide-le-eq real-nat-ceiling-ge by blast
ultimately show ?thesis using that[of i] by simp

qed
qed

lemma not-reset-mono:
assumes stream-trans xs shd xs c1 ≥ shd xs c2 stream-all (λ u. u ∈ V) xs c2 ∈ X
shows (holds (λ u. u c1 ≥ u c2) until holds (λ u. u c1 = 0)) xs using assms

proof (coinduction arbitrary: xs)
case prems: (UNTIL xs)
let ?xs = stl xs
let ?x = shd xs
let ?y = shd ?xs
show ?case
proof (cases ?x c1 = 0)

case False
show ?thesis
proof (cases ?y c1 = 0)

62

case False
from prems have trans ?x ?y by (intro pairwise-pairD[of trans])
then have ?y c1 ≥ ?y c2
proof cases

case A: (reset t)
show ?thesis
proof (cases c1 ∈ set t)

case True
with A False show ?thesis by auto

next
case False
from prems have ?x c2 ≥ 0 by (auto simp: V-def)
with A have ?y c2 ≤ ?x c2 by (cases c2 ∈ set t) auto
with A False ‹?x c1 ≥ ?x c2 › show ?thesis by auto

qed
qed (use prems in ‹auto simp: cval-add-def ›)
moreover from prems have stream-trans ?xs stream-all (λ u. u ∈ V) ?xs

by (auto intro: pairwise-stlD stl-sset)
ultimately show ?thesis

using prems by auto
qed (use prems in ‹auto intro: UNTIL.base›)

qed auto
qed

lemma R-divergent-divergent-aux:
fixes xs :: (′c, t) cval stream
assumes stream-trans xs stream-all (λ u. u ∈ V) xs

(xs !! i) c1 = 0 ∃ k > i. k ≤ j ∧ (xs !! k) c2 = 0
∀ k > i. k ≤ j −→ (xs !! k) c1 6= 0
c1 ∈ X c2 ∈ X

shows (xs !! j) c1 ≥ (xs !! j) c2
proof −

from assms obtain k where k: k > i k ≤ j (xs !! k) c2 = 0 by auto
with assms(5) ‹k ≤ j› have (xs !! k) c1 6= 0 by auto
moreover from assms(2) ‹c1 ∈ X › have (xs !! k) c1 ≥ 0 by (auto simp: V-def)
ultimately have (xs !! k) c1 > 0 by auto
with ‹(xs !! k) c2 = 0 › have shd (sdrop k xs) c1 ≥ shd (sdrop k xs) c2 by auto
from not-reset-mono[OF - this] assms have
(holds (λu. u c2 ≤ u c1) until holds (λu. u c1 = 0)) (sdrop k xs)

by (auto intro: sset-sdrop pairwise-sdropD)
from assms(5) k(2) ‹k > i› have ∀ m ≤ j − k. (sdrop k xs !! m) c1 6= 0 by simp
with holds-untilD[OF ‹(- until -) -›, of j − k] have
(sdrop k xs !! (j − k)) c2 ≤ (sdrop k xs !! (j − k)) c1 .

then show (xs !! j) c2 ≤ (xs !! j) c1 using k(1 ,2) by simp
qed

lemma unbounded-all:
assumes R ∈ R u ∈ R unbounded x R x ∈ X
shows u x > k x

proof −
from assms obtain I r where R: R = region X I r valid-region X k I r unfolding R-def by auto
with unbounded-Greater ‹x ∈ X › assms(3) have I x = Greater (k x) by simp
with ‹u ∈ R› R ‹x ∈ X › show ?thesis by force

qed

lemma trans-not-delay-mono:
u ′ c ≤ u c if trans u u ′ u ∈ V x ∈ X u ′ x = 0 c ∈ X
using ‹trans u u ′›

proof (cases)
case (reset l)
with that show ?thesis by (cases c ∈ set l) (auto simp: V-def)

63

qed (use that in ‹auto simp: cval-add-def V-def add-nonneg-eq-0-iff ›)

lemma dur-reset:
assumes pairwise eq-elapsed xs pred-stream (λ u. u ∈ V) xs zero x ([xs !! Suc i]R) x ∈ X
shows dur xs (Suc i) − dur xs i = 0

proof −
from assms(2) have in-V : xs !! Suc i ∈ V

unfolding stream.pred-set by auto (metis snth.simps(2) snth-sset)
with elapsed-ge-pos[of xs !! i xs !! Suc i x] pairwise-Suc[OF assms(1)] assms(2−) have

elapsed (xs !! i) (xs !! Suc i) ≤ (xs !! Suc i) x
unfolding stream.pred-set by auto

with in-V assms(3) have elapsed (xs !! i) (xs !! Suc i) ≤ 0 by (auto simp: zeroD)
with elapsed-ge0 [of xs !! i xs !! Suc i] have elapsed (xs !! i) (xs !! Suc i) = 0

by linarith
then show ?thesis by (subst dur-Suc)

qed

lemma resets-mono-0 ′:
assumes pairwise eq-elapsed xs stream-all (λ u. u ∈ V) xs stream-trans xs

∀ j ≤ i. zero x ([xs !! j]R) x ∈ X c ∈ X
shows (xs !! i) c = (xs !! 0) c ∨ (xs !! i) c = 0

using assms proof (induction i)
case 0
then show ?case by auto

next
case (Suc i)
from Suc.prems have ∗: (xs !! Suc i) x = 0 (xs !! i) x = 0

by (blast intro: zeroD snth-sset, force intro: zeroD snth-sset)
from pairwise-Suc[OF Suc.prems(3)] have trans (xs !! i) (xs !! Suc i) .
then show ?case
proof cases

case prems: (succ t)
with ∗ have t = 0 unfolding cval-add-def by auto
with prems have (xs !! Suc i) c = (xs !! i) c unfolding cval-add-def by auto
with Suc show ?thesis by auto

next
case prems: (reset l)
then have (xs !! Suc i) c = 0 ∨ (xs !! Suc i) c = (xs !! i) c by (cases c ∈ set l) auto
with Suc show ?thesis by auto

next
case id
with Suc show ?thesis by auto

qed
qed

lemma resets-mono ′:
assumes pairwise eq-elapsed xs pred-stream (λ u. u ∈ V) xs stream-trans xs

∀ k ≥ i. k ≤ j −→ zero x ([xs !! k]R) x ∈ X c ∈ X i ≤ j
shows (xs !! j) c = (xs !! i) c ∨ (xs !! j) c = 0 using assms

proof −
from assms have 1 : stream-all (λ u. u ∈ V) (sdrop i xs)

using sset-sdrop unfolding stream.pred-set by force
from assms have 2 : pairwise eq-elapsed (sdrop i xs) by (intro pairwise-sdropD)
from assms have 3 : stream-trans (sdrop i xs) by (intro pairwise-sdropD)
from assms have 4 :
∀ k≤j − i. zero x ([sdrop i xs !! k]R)

by (simp add: le-diff-conv2 assms(6))
from resets-mono-0 ′[OF 2 1 3 4 assms(5 ,6)] ‹i ≤ j› show ?thesis by simp

qed

lemma resets-mono:

64

assumes pairwise eq-elapsed xs pred-stream (λ u. u ∈ V) xs stream-trans xs
∀ k ≥ i. k ≤ j −→ zero x ([xs !! k]R) x ∈ X c ∈ X i ≤ j

shows (xs !! j) c ≤ (xs !! i) c using assms
using assms by (auto simp: V-def dest: resets-mono ′[where c = c] simp: stream.pred-set)

lemma R-divergent-divergent-aux2 :
fixes M :: (nat ⇒ bool) set
assumes ∀ i. ∀ P ∈ M . ∃ j ≥ i. P j M 6= {} finite M
shows ∀ i.∃ j≥i.∃ k>j.∃ P ∈ M . P j ∧ P k ∧ (∀ m < k. j < m −→ ¬ P m)
∧ (∀ Q ∈ M . ∃ m ≤ k. j < m ∧ Q m)

proof
fix i
let ?j1 = Max {LEAST m. m > i ∧ P m | P. P ∈ M}
from ‹M 6= {}› obtain P where P ∈ M by auto
let ?m = LEAST m. m > i ∧ P m
from assms(1) ‹P ∈ M › obtain j where j ≥ Suc i P j by auto
then have j > i P j by auto
with ‹P ∈ M › have ?m > i ∧ P ?m by − (rule LeastI ; auto)
moreover with ‹finite M › ‹P ∈ M › have ?j1 ≥ ?m by − (rule Max-ge; auto)
ultimately have ?j1 ≥ i by simp
moreover have ∃ m > i. m ≤ ?j1 ∧ P m if P ∈ M for P
proof −

let ?m = LEAST m. m > i ∧ P m
from assms(1) ‹P ∈ M › obtain j where j ≥ Suc i P j by auto
then have j > i P j by auto
with ‹P ∈ M › have ?m > i ∧ P ?m by − (rule LeastI ; auto)
moreover with ‹finite M › ‹P ∈ M › have ?j1 ≥ ?m by − (rule Max-ge; auto)
ultimately show ?thesis by auto

qed
ultimately obtain j1 where j1 : j1 ≥ i ∀ P ∈ M . ∃ m > i. j1 ≥ m ∧ P m by auto
define k where k Q = (LEAST k. k > j1 ∧ Q k) for Q
let ?k = Max {k Q | Q. Q ∈ M}
let ?P = SOME P. P ∈ M ∧ k P = ?k
let ?j = Max {j. i ≤ j ∧ j ≤ j1 ∧ ?P j}
have ?k ∈ {k Q | Q. Q ∈ M} using assms by − (rule Max-in; auto)
then obtain P where P: k P = ?k P ∈ M by auto
have ?k ≥ k Q if Q ∈ M for Q using assms that by − (rule Max-ge; auto)
have ∗: ?P ∈ M ∧ k ?P = ?k using P by − (rule someI [where x = P]; auto)
with j1 have ∃ m > i. j1 ≥ m ∧ ?P m by auto
with ‹finite -› have ?j ∈ {j. i ≤ j ∧ j ≤ j1 ∧ ?P j} by − (rule Max-in; auto)
have k: k Q > j1 ∧ Q (k Q) if Q ∈ M for Q
proof −

from assms(1) ‹Q ∈ M › obtain m where m ≥ Suc j1 Q m by auto
then have m > j1 Q m by auto
then show k Q > j1 ∧ Q (k Q) unfolding k-def by − (rule LeastI ; blast)

qed
with ∗ ‹?j ∈ -› have ?P ?k ?j < ?k by fastforce+
have ¬ ?P m if ?j < m m < ?k for m
proof (rule ccontr , simp)

assume ?P m
have m > j1
proof (rule ccontr)

assume ¬ j1 < m
with ‹?j < m› ‹?j ∈ -› have i ≤ m m ≤ j1 by auto
with ‹?P m› ‹finite -› have ?j ≥ m by − (rule Max-ge; auto)
with ‹?j < m› show False by simp

qed
with ‹?P m› ‹finite -› have k ?P ≤ m unfolding k-def by (auto intro: Least-le)
with ∗ ‹m < ?k› show False by auto

qed
moreover have ∃ m ≤ ?k. ?j < m ∧ Q m if Q ∈ M for Q

65

proof −
from k[OF ‹Q ∈ M ›] have k Q > j1 ∧ Q (k Q) .
moreover with ‹finite -› ‹Q ∈ M › have k Q ≤ ?k by − (rule Max-ge; auto)
moreover with ‹?j ∈ -› ‹k Q > - ∧ -› have ?j < k Q by auto
ultimately show ?thesis by auto

qed
ultimately show
∃ j≥i.∃ k>j.∃ P ∈ M . P j ∧ P k ∧ (∀ m < k. j < m −→ ¬ P m)
∧ (∀ Q ∈ M . ∃ m ≤ k. j < m ∧ Q m)

using ‹?j < ?k› ‹?j ∈ -› ‹?P ?k› ∗ by (inst-existentials ?j ?k ?P; blast)
qed

lemma R-divergent-divergent:
assumes in-S : pred-stream (λ u. u ∈ V) xs

and div: R-div (smap (λ u. [u]R) xs)
and trans: stream-trans xs
and trans ′: pairwise trans ′ xs
and unbounded-not-const:
∀ u. (∀ c∈X . real (k c) < u c) −→ ¬ ev (alw (λxs. shd xs = u)) xs

shows divergent xs
unfolding divergent-def proof
fix t
from pairwise-trans-eq-elapsed[OF trans in-S] have eq-elapsed: pairwise eq-elapsed xs .
define X1 where X1 = {x. x ∈ X ∧ (∃ i. ∀ j ≥ i. unbounded x ([xs !! j]R))}
let ?i = Max {(SOME i. ∀ j ≥ i. unbounded x ([xs !! j]R)) | x. x ∈ X}
from finite(1) non-empty have

?i ∈ {(SOME i. ∀ j ≥ i. unbounded x ([xs !! j]R)) | x. x ∈ X}
by (intro Max-in) auto

have unbounded x ([xs !! j]R) if x ∈ X1 j ≥ ?i for x j
proof −

have X1 ⊆ X unfolding X1-def by auto
with finite(1) non-empty ‹x ∈ X1 › have ∗:

?i ≥ (SOME i. ∀ j ≥ i. unbounded x ([xs !! j]R)) (is ?i ≥ ?k)
by (intro Max-ge) auto

from ‹x ∈ X1 › have ∃ k. ∀ j ≥ k. unbounded x ([xs !! j]R) by (auto simp: X1-def)
then have ∀ j ≥ ?k. unbounded x ([xs !! j]R) by (rule someI-ex)
moreover from ‹j ≥ ?i› ‹?i ≥ -› have j ≥ ?k by auto
ultimately show ?thesis by blast

qed
then obtain i where unbounded: ∀ x ∈ X1 . ∀ j ≥ i. unbounded x ([xs !! j]R)

using finite by auto
show ∃ n. t < dur xs n
proof (cases ∀ x ∈ X . (∃ i. ∀ j ≥ i. unbounded x ([xs !! j]R)))

case True
then have X1 = X unfolding X1-def by auto
have ∃ k≥j. 0 .5 ≤ dur xs k − dur xs j for j
proof −

let ?u = xs !! max i j
from in-S have ?u ∈ [?u]R [?u]R ∈ R

by (auto simp: stream.pred-set)
moreover from unbounded ‹X1 = X › have
∀ x ∈ X . unbounded x ([?u]R)
by force

ultimately have ∀ x ∈ X . ?u x > k x
by (auto intro: unbounded-all)

with unbounded-not-const have ¬ ev (alw (HLD {?u})) xs
unfolding HLD-iff by simp

then obtain r where
r ≥ max i j xs !! r 6= xs !! Suc r
apply atomize-elim
apply (simp add: not-ev-iff not-alw-iff)

66

apply (drule alw-sdrop[where n = max i j])
apply (drule alwD)
apply (subst (asm) (3) stream.collapse[symmetric])
apply simp
apply (drule ev-neq-start-implies-ev-neq[simplified comp-def])
using stream.collapse[of sdrop (max i j) xs] by (auto 4 3 elim: ev-sdropD)

let ?k = Suc r
from in-S have xs !! ?k ∈ V using snth-sset unfolding stream.pred-set by blast
with in-S have ∗:

xs !! r ∈ [xs !! r]R [xs !! r]R ∈ R
xs !! ?k ∈ [xs !! ?k]R [xs !! ?k]R ∈ R
by (auto simp: stream.pred-set)

from ‹r ≥ -› have r ≥ i ?k ≥ i by auto
with unbounded ‹X1 = X › have
∀ x ∈ X . unbounded x ([xs !! r]R) ∀ x ∈ X . unbounded x ([xs !! ?k]R)
by (auto simp del: snth.simps(2))

with in-S have ∀ x ∈ X . (xs !! r) x > k x ∀ x ∈ X . (xs !! ?k) x > k x
using ∗ by (auto intro: unbounded-all)

moreover from trans ′ have trans ′ (xs !! r) (xs !! ?k)
using pairwise-Suc by auto

ultimately have (xs !! ?k) = (xs !! r) ⊕ 0 .5
unfolding trans ′-def using ‹xs !! r 6= -› by auto

moreover from pairwise-Suc[OF eq-elapsed] have eq-elapsed (xs !! r) (xs !! ?k)
by auto

ultimately have
dur xs ?k − dur xs r = 0 .5
using non-empty by (auto simp: cval-add-def dur-Suc elapsed-eq)

with dur-mono[of j r xs] ‹r ≥ max i j› have dur xs ?k − dur xs j ≥ 0 .5
by auto

with ‹r ≥ max i j› show ?thesis by − (rule exI [where x = ?k]; auto)
qed
then show ?thesis by − (rule dur-ev-exceedsI [where d = 0 .5]; auto)

next
case False
define X2 where X2 = X − X1
from False have X2 6= {} unfolding X1-def X2-def by fastforce
have inf-resets:
∀ i. (∃ j≥i. zero x ([xs !! j]R)) ∧ (∃ j≥i. ¬ zero x ([xs !! j]R)) if x ∈ X2 for x
using that div unfolding X1-def X2-def R-div-def by fastforce

have ∃ j ≥ i. ∃ k > j. ∃ x ∈ X2 . zero x ([xs !! j]R) ∧ zero x ([xs !! k]R)
∧ (∀ m. j < m ∧ m < k −→ ¬ zero x ([xs !! m]R))
∧ (∀ x ∈ X2 . ∃ m. j < m ∧ m ≤ k ∧ zero x ([xs !! m]R))
∧ (∀ x ∈ X1 . ∀ m ≥ j. unbounded x ([xs !! m]R)) for i

proof −
from unbounded obtain i ′ where i ′: ∀ x ∈ X1 . ∀ m ≥ i ′. unbounded x ([xs !! m]R) by auto
then obtain i ′ where i ′:

i ′ ≥ i ∀ x ∈ X1 . ∀ m ≥ i ′. unbounded x ([xs !! m]R)
by (cases i ′ ≥ i; auto)

from finite(1) have finite X2 unfolding X2-def by auto
with ‹X2 6= {}› R-divergent-divergent-aux2 [where M = {λ i. zero x ([xs !! i]R) | x. x ∈ X2}]

inf-resets
have ∃ j≥i ′. ∃ k>j. ∃P∈{λi. zero x ([xs !! i]R) |x. x ∈ X2}. P j ∧ P k
∧ (∀m<k. j < m −→ ¬ P m) ∧ (∀Q∈{λi. zero x ([xs !! i]R) |x. x ∈ X2}. ∃m≤k. j < m ∧ Q m)
by force

then obtain j k x where
j ≥ i ′ k > j x ∈ X2 zero x ([xs !! j]R) zero x ([xs !! k]R)
∀m. j < m ∧ m < k −→ ¬ zero x ([xs !! m]R)
∀Q∈{λi. zero x ([xs !! i]R) |x. x ∈ X2}. ∃m≤k. j < m ∧ Q m
by auto

moreover from this(7) have ∀ x∈X2 . ∃m ≤ k. j < m ∧ zero x ([xs !! m]R) by auto
ultimately show ?thesis using i ′

67

by (inst-existentials j k x) auto
qed
moreover have ∃ j ′ ≥ j. dur xs j ′ − dur xs i ≥ 0 .5

if x: x ∈ X2 i < j zero x ([xs !! i]R) zero x ([xs !! j]R)
and not-reset: ∀ m. i < m ∧ m < j −→ ¬ zero x ([xs !! m]R)
and X2 : ∀ x ∈ X2 . ∃ m. i < m ∧ m ≤ j ∧ zero x ([xs !! m]R)
and X1 : ∀ x ∈ X1 . ∀ m ≥ i. unbounded x ([xs !! m]R)

for x i j
proof −

have ∃ j ′>j. ¬ zero x ([xs !! j ′]R)
proof −

from inf-resets[OF x(1)] obtain j ′ where j ′ ≥ Suc j ¬ zero x ([xs !! j ′]R) by auto
then show ?thesis by − (rule exI [where x = j ′]; auto)

qed
from inf-resets[OF x(1)] obtain j ′ where j ′ ≥ Suc j ¬ zero x ([xs !! j ′]R) by auto
with nat-eventually-critical-path[OF x(4) this(2)]
obtain j ′ where j ′:

j ′ > j ¬ zero x ([xs !! j ′]R) ∀ m ≥ j. m < j ′ −→ zero x ([xs !! m]R)
by auto

from ‹x ∈ X2 › have x ∈ X unfolding X2-def by simp
with ‹i < j› not-reset not-reset-dur ‹stream-trans -› in-S pairwise-Suc[OF eq-elapsed] have

dur xs (j − 1) − dur xs i = (xs !! (j − 1)) x − (xs !! i) x (is ?d1 = ?d2)
by (auto simp: stream.pred-set)

moreover from ‹zero x ([xs !! i]R)› in-S have (xs !! i) x = 0
by (auto intro: zeroD simp: stream.pred-set)

ultimately have
dur xs (j − 1) − dur xs i = (xs !! (j − 1)) x (is ?d1 = ?d2)
by simp

show ?thesis
proof (cases ?d1 ≥ 0 .5)

case True

with dur-mono[of j − 1 j xs] have
5 / 10 ≤ dur xs j − dur xs i
by simp

then show ?thesis by blast
next

case False
have j-c-bound: (xs !! j) c ≤ ?d2 if c ∈ X2 for c
proof (cases (xs !! j) c = 0)

case True
from in-S ‹j > -› True ‹x ∈ X › show ?thesis by (auto simp: V-def stream.pred-set)

next
case False
from X2 ‹c ∈ X2 › in-S have ∃ k>i. k ≤ j ∧ (xs !! k) c = 0

by (force simp: zeroD stream.pred-set)
with False have
∃ k>i. k ≤ j − Suc 0 ∧ (xs !! k) c = 0
by (metis Suc-le-eq Suc-pred linorder-neqE-nat not-less not-less-zero)

moreover from that have c ∈ X by (auto simp: X2-def)
moreover from not-reset in-S ‹x ∈ X › have
∀ k>i. k ≤ j − 1 −→ (xs !! k) x 6= 0
by (auto simp: zeroI stream.pred-set)

ultimately have
(xs !! (j − 1)) c ≤ ?d2
using trans in-S ‹- x = 0 › ‹x ∈ X ›
by (auto intro: R-divergent-divergent-aux that simp: stream.pred-set)

moreover from
trans-not-delay-mono[OF pairwise-Suc[OF trans], of j − 1]
‹x ∈ X › ‹c ∈ X › ‹j > -› in-S x(4)

have (xs !! j) c ≤ (xs !! (j − 1)) c by (auto simp: zeroD stream.pred-set)

68

ultimately show ?thesis by auto
qed
moreover from False ‹?d1 = ?d2 › have ?d2 < 1 by auto
moreover from in-S have (xs !! j) c ≥ 0 if c ∈ X for c

using that by (auto simp: V-def stream.pred-set)
ultimately have frac-bound: frac ((xs !! j) c) ≤ ?d2 if c ∈ X2 for c

using that frac-le-1I by (force simp: X2-def)

let ?u = (xs !! j)
from in-S have [xs !! j]R ∈ R by (auto simp: stream.pred-set)
then obtain I r where region:
[xs !! j]R = region X I r valid-region X k I r
unfolding R-def by auto

let ?S = {frac (?u c) | c. c ∈ X ∧ isIntv (I c)}
have X -X2 : c ∈ X2 if c ∈ X isIntv (I c) for c
proof −

from X1 ‹j > i› have ∀ x∈X1 . unbounded x ([xs !! j]R) by auto
with unbounded-Greater [OF region(2) ‹c ∈ X ›] region(1) that(2) have c /∈ X1 by auto
with ‹c ∈ X › show c ∈ X2 unfolding X2-def by auto

qed
have frac-bound: frac ((xs !! j) c) ≤ ?d2 if c ∈ X isIntv (I c) for c

using frac-bound[OF X -X2] that .
have dur xs (j ′ − 1) = dur xs j using j ′ ‹x ∈ X › in-S eq-elapsed

by (subst dur-zero-tail[where ω = smap (λ u. [u]R) xs])
(auto dest: pairwise-Suc simp: stream.pred-set)

moreover from dur-reset[OF eq-elapsed in-S , of x j − 1] ‹x ∈ X › x(4) ‹j > -› have
dur xs j = dur xs (j − 1)
by (auto simp: stream.pred-set)

ultimately have dur xs (j ′ − 1) = dur xs (j − 1) by auto
moreover have dur xs j ′ − dur xs (j ′ − 1) ≥ (1 − ?d2) / 2
proof −

from ‹j ′ > -› have j ′ > 0 by auto
with pairwise-Suc[OF trans ′, of j ′ − 1] have

trans ′ (xs !! (j ′ − 1)) (xs !! j ′)
by auto

moreover from j ′ have
(xs !! (j ′ − 1)) x = 0 (xs !! j ′) x > 0
using in-S ‹x ∈ X › by (force intro: zeroD dest: not-zeroD simp: stream.pred-set)+

moreover note delayedR-aux = calculation
obtain t where
(xs !! j ′) = (xs !! (j ′ − 1)) ⊕ t t ≥ (1 − ?d2) / 2 t ≥ 0

proof −
from in-S have [xs !! j ′]R ∈ R by (auto simp: stream.pred-set)
then obtain I ′ r ′ where region ′:
[xs !! j ′]R = region X I ′ r ′ valid-region X k I ′ r ′

unfolding R-def by auto
let ?S ′ = {frac ((xs !! (j ′ − 1)) c) |c. c ∈ X ∧ Regions.isIntv (I ′ c)}

from finite(1) have ?d2 ≥ Max (?S ′ ∪ {0})
apply −
apply (rule Max.boundedI)

apply fastforce
apply fastforce

apply safe
subgoal premises prems for - c d
proof −

from j ′ have (xs !! (j ′ − 1)) c = ?u c ∨ (xs !! (j ′ − 1)) c = 0
by (intro resets-mono ′[OF eq-elapsed in-S trans - ‹x ∈ X › ‹c ∈ X ›]; auto)

then show ?thesis
proof (standard, goal-cases)

case A: 1

69

show ?thesis
proof (cases c ∈ X1)

case True
with X1 ‹j ′ > j› ‹j > i› have unbounded c ([xs !! j ′]R) by auto
with region ′ ‹c ∈ X › have I ′ c = Greater (k c)

by (auto intro: unbounded-Greater)
with prems show ?thesis by auto

next
case False
with ‹c ∈ X › have c ∈ X2 unfolding X2-def by auto
with j-c-bound have mono: (xs !! j) c ≤ (xs !! (j − 1)) x .
from in-S ‹c ∈ X › have (xs !! (j ′ − 1)) c ≥ 0

unfolding V-def stream.pred-set by auto
then have

frac ((xs !! (j ′ − 1)) c) ≤ (xs !! (j ′ − 1)) c
using frac-le-self by auto

with A mono show ?thesis by auto
qed

next
case prems: 2

have frac (0 :: real) = (0 :: real) by auto
then have frac (0 :: real) ≤ (0 :: real) by linarith
moreover from in-S ‹x ∈ X › have (xs !! (j − 1)) x ≥ 0

unfolding V-def stream.pred-set by auto
ultimately show ?thesis using prems by auto

qed
qed
using in-S ‹x ∈ X › by (auto simp: V-def stream.pred-set)

then have le: (1 − ?d2) / 2 ≤ (1 − Max (?S ′ ∪ {0})) / 2 by simp

let ?u = xs !! j ′
let ?u ′ = xs !! (j ′ − 1)
from in-S have ∗: ?u ′ ∈ V [?u ′]R ∈ R ?u ∈ V [?u]R ∈ R

by (auto simp: stream.pred-set)
from pairwise-Suc[OF trans, of j ′ − 1] ‹j ′ > j› have

trans (xs !! (j ′ − 1)) (xs !! j ′)
by auto

then have Succ:
[xs !! j ′]R ∈ Succ R ([xs !! (j ′ − 1)]R) ∧ (∃ t≥ 0 . ?u = ?u ′ ⊕ t)

proof cases
case prems: (succ t)
from ∗ have ?u ′ ∈ [?u ′]R by auto
with prems ∗ show ?thesis by auto

next
case (reset l)
with ‹?u ′ ∈ V › have ?u x ≤ ?u ′ x by (cases x ∈ set l) (auto simp: V-def)
from j ′ have zero x ([?u ′]R) by auto
with ‹?u ′ ∈ V › have ?u ′ x = 0 unfolding zero-def by auto
with ‹?u x ≤ -› ‹?u x > 0 › show ?thesis by auto

next
case id
with ∗ Succ-refl[of R X k, folded R-def , OF - finite(1)] show ?thesis

unfolding cval-add-def by auto
qed
then obtain t where t: ?u = xs !! (j ′ − 1) ⊕ t t ≥ 0 by auto
note Succ = Succ[THEN conjunct1]

show ?thesis
proof (cases ∃ c ∈ X2 . ∃ d :: nat. ?u c = d)

case True

70

from True obtain c and d :: nat where c:
c ∈ X c ∈ X2 ?u c = d
by (auto simp: X2-def)

have ?u x > 0 by fact
from pairwise-Suc[OF eq-elapsed, of j ′ − 1] ‹j ′ > j› have

eq-elapsed (xs !! (j ′ − 1)) ?u
by auto

moreover from
elapsed-eq[OF this ‹x ∈ X ›] ‹(xs !! (j ′ − 1)) x = 0 › ‹(xs !! j ′) x > 0 ›

have elapsed (xs !! (j ′ − 1)) (xs !! j ′) > 0
by auto

ultimately have
?u c − (xs !! (j ′ − 1)) c > 0
using ‹c ∈ X › unfolding eq-elapsed-def by auto

moreover from in-S have xs !! (j ′ − 1) ∈ V by (auto simp: stream.pred-set)
ultimately have ?u c > 0 using ‹c ∈ X › unfolding V-def by auto
from region ′ in-S ‹c ∈ X › have intv-elem c ?u (I ′ c)

by (force simp: stream.pred-set)
with ‹?u c = d› ‹?u c > 0 › have ?u c ≥ 1 by auto
moreover have (xs !! (j ′ − 1)) c ≤ 0 .5
proof −

have (xs !! (j ′ − 1)) c ≤ (xs !! j) c

using j ′(1 ,3)
by (auto intro: resets-mono[OF eq-elapsed in-S trans - ‹x ∈ X › ‹c ∈ X ›])

also have . . . ≤ ?d2 using j-c-bound[OF ‹c ∈ X2 ›] .
also from ‹?d1 = ?d2 › ‹¬ 5 / 10 ≤ -› have . . . ≤ 0 .5 by simp
finally show ?thesis .

qed
moreover have ?d2 ≥ 0 using in-S ‹x ∈ X › by (auto simp: V-def stream.pred-set)
ultimately have ?u c − (xs !! (j ′ − 1)) c ≥ (1 − ?d2) / 2 by auto
with t have t ≥ (1 − ?d2) / 2 unfolding cval-add-def by auto
with t show ?thesis by (auto intro: that)

next
case F : False
have not-const: ¬ isConst (I ′ c) if c ∈ X for c
proof (rule ccontr , simp)

assume A: isConst (I ′ c)
show False
proof (cases c ∈ X1)

case True
with X1 ‹j ′ > j› ‹j > -› have unbounded c ([xs !! j ′]R) by auto
with unbounded-Greater ‹c ∈ X › region ′ have isGreater (I ′ c) by force
with A show False by auto

next
case False
with ‹c ∈ X › have c ∈ X2 unfolding X2-def by auto
from region ′ in-S ‹c ∈ X › have intv-elem c ?u (I ′ c)

unfolding stream.pred-set by force
with ‹c ∈ X2 › A False F show False by auto

qed
qed
have @ x. x ≤ k c ∧ (xs !! j ′) c = real x if c ∈ X for c
proof (cases c ∈ X2 ; safe)

fix d
assume c ∈ X2 (xs !! j ′) c = real d
with F show False by auto

next
fix d
assume c /∈ X2
with that have c ∈ X1 unfolding X2-def by auto

71

with X1 ‹j ′ > j› ‹j > i› have unbounded c ([?u]R) by auto
from unbounded-all[OF - - this] ‹c ∈ X › in-S have ?u c > k c

by (force simp: stream.pred-set)
moreover assume ?u c = real d d ≤ k c
ultimately show False by auto

qed
with delayedR-aux have
(xs !! j ′) = delayedR ([xs !! j ′]R) (xs !! (j ′ − 1))
using ‹x ∈ X › unfolding trans ′-def by auto

from not-const region ′(1) in-S Succ(1) have
∃ t≥0 . delayedR ([xs !! j ′]R) (xs !! (j ′ − 1)) = xs !! (j ′ − 1) ⊕ t ∧

(1 − Max (?S ′ ∪ {0})) / 2 ≤ t
apply simp
apply (rule delayedR-correct(2)[OF - - region ′(2), simplified])
by (auto simp: stream.pred-set)

with le ‹- = delayedR - -› show ?thesis by (auto intro: that)
qed

qed
moreover from pairwise-Suc[OF eq-elapsed, of j ′ − 1] ‹j ′ > 0 › have

eq-elapsed (xs !! (j ′ − 1)) (xs !! j ′)
by auto

ultimately show dur xs j ′ − dur xs (j ′ − 1) ≥ (1 − ?d2) / 2
using ‹j ′ > 0 › dur-Suc[of - j ′ − 1] ‹x ∈ X › by (auto simp: cval-add-def elapsed-eq)

qed
moreover from dur-mono[of i j − 1 xs] ‹i < j› have dur xs i ≤ dur xs (j − 1) by simp
ultimately have dur xs j ′ − dur xs i ≥ 0 .5 unfolding ‹?d1 = ?d2 ›[symmetric] by auto
then show ?thesis using ‹j < j ′› by − (rule exI [where x = j ′]; auto)

qed
qed
moreover
have ∃ j ′ ≥ i. dur xs j ′ − dur xs i ≥ 0 .5 for i
proof −

from calculation(1)[of i] obtain j k x where
j≥i k>j x∈X2 zero x ([xs !! j]R)
zero x ([xs !! k]R)
∀m. j < m ∧ m < k −→ ¬ zero x ([xs !! m]R)
∀ x∈X2 . ∃m>j. m ≤ k ∧ zero x ([xs !! m]R)
∀ x∈X1 . ∀m≥j. unbounded x ([xs !! m]R)
by auto

from calculation(2)[OF this(3 ,2 ,4−8)] obtain j ′ where
j ′≥k 5 / 10 ≤ dur xs j ′ − dur xs j
by auto

with dur-mono[of i j xs] ‹j ≥ i› ‹k > j› show ?thesis by (intro exI [where x = j ′]; auto)
qed
then show ?thesis by − (rule dur-ev-exceedsI [where d = 0 .5]; auto)

qed
qed

lemma cfg-on-div-absc:
notes in-space-UNIV [measurable]
assumes cfg ∈ cfg-on-div st st ∈ S
shows absc cfg ∈ R-G-cfg-on-div (abss st)

proof −
from assms have ∗: cfg ∈ MDP.cfg-on st state cfg = st div-cfg cfg

unfolding cfg-on-div-def by auto
with assms have cfg ∈ valid-cfg by (auto intro: MDP.valid-cfgI)
have almost-everywhere (MDP.MC .T cfg) (MDP.MC .enabled cfg)

by (rule MDP.MC .AE-T-enabled)
moreover from ∗ have AE x in MDP.MC .T cfg. divergent (smap (snd ◦ state) x)

by (simp add: div-cfg-def)
ultimately have AE x in MDP.MC .T cfg. R-div (smap (snd ◦ state) (smap absc x))

72

proof eventually-elim
case (elim ω)
let ?xs = smap (snd o state) ω
from MDP.pred-stream-cfg-on[OF ‹- ∈ valid-cfg› ‹MDP.MC .enabled - -›] have ∗:

pred-stream (λ x. x ∈ S) (smap state ω)
by (auto simp: stream.pred-set)

have [snd (state x)]R = snd (abss (state x)) if x ∈ sset ω for x
proof −

from ∗ that have state x ∈ S by (auto simp: stream.pred-set)
then have snd (abss (state x)) = [snd (state x)]R by (metis abss-S snd-conv surj-pair)
then show ?thesis ..

qed
then have smap (λz. [snd (state z)]R) ω = (smap (λz. snd (abss (state z))) ω) by auto
from ∗ have pred-stream (λ u. u ∈ V) ?xs

apply (simp add: map-def stream.pred-set)
apply (subst (asm) surjective-pairing)
using S-V by blast

moreover have stream-trans ?xs
by (rule enabled-stream-trans ‹- ∈ valid-cfg› ‹MDP.MC .enabled - -›)+

ultimately show ?case using ‹divergent -› ‹smap - ω = -›
by − (drule divergent-R-divergent, auto simp add: stream.map-comp state-absc)

qed
with ‹cfg ∈ valid-cfg› have R-G-div-cfg (absc cfg) unfolding R-G-div-cfg-def

by (subst absc-distr-self) (auto intro: MDP.valid-cfgI simp: AE-distr-iff)
with R-G.valid-cfgD ‹cfg ∈ valid-cfg› ∗ show ?thesis unfolding R-G-cfg-on-div-def by auto force

qed

definition
alternating cfg = (AE ω in MDP.MC .T cfg.

alw (ev (HLD {cfg. ∀ cfg ′ ∈ K-cfg cfg. fst (state cfg ′) = fst (state cfg)})) ω)

lemma K-cfg-same-loc-iff :
(∀ cfg ′∈ K-cfg cfg. fst (state cfg ′) = fst (state cfg))
←→ (∀ cfg ′∈ K-cfg (absc cfg). fst (state cfg ′) = fst (state (absc cfg)))
if cfg ∈ valid-cfg
using that by (auto simp: state-absc fst-abss K-cfg-map-absc)

lemma (in −) stream-all2-flip:
stream-all2 (λa b. R b a) xs ys = stream-all2 R ys xs
by (standard; coinduction arbitrary: xs ys; auto dest: sym)

lemma AE-alw-ev-same-loc-iff :
assumes cfg ∈ valid-cfg
shows alternating cfg ←→ alternating (absc cfg)
unfolding alternating-def
apply (simp add: MDP.MC .T .AE-iff-emeasure-eq-1)
subgoal
proof −

show ?thesis (is (?x = 1) = (?y = 1))
proof −

have ∗: stream-all2 (λs t. t = absc s) x y = stream-all2 (=) y (smap absc x) for x y
by (subst stream-all2-flip) simp

have ?x = ?y
apply (rule T-eq-rel-half [where f = absc and S = valid-cfg, OF HOL.refl, rotated 2])
subgoal

apply (simp add: space-stream-space rel-set-strong-def)
apply (intro allI impI)
apply (frule stream.rel-mono-strong[where Ra = λs t. t = absc s])
by (auto simp: ∗ stream.rel-eq stream-all2-refl alw-holds-pred-stream-iff [symmetric]

K-cfg-same-loc-iff HLD-def comp-def elim!: alw-ev-cong)

73

subgoal
by (rule rel-funI) (auto intro!: rel-pmf-reflI simp: pmf .rel-map(2) K-cfg-map-absc)

using ‹cfg ∈ valid-cfg› by simp+
then show ?thesis

by simp
qed

qed
done

lemma AE-alw-ev-same-loc-iff ′:
assumes cfg ∈ R-G.cfg-on (abss st) st ∈ S
shows alternating cfg ←→ alternating (repcs st cfg)

proof −
from assms have cfg ∈ R-G.valid-cfg

by (auto intro: R-G.valid-cfgI)
with assms show ?thesis

by (subst AE-alw-ev-same-loc-iff) (auto simp: absc-repcs-id)
qed

lemma (in −) cval-add-non-id:
False if b ⊕ d = b d > 0 for d :: real

proof −
from that(1) have (b ⊕ d) x = b x

by (rule fun-cong)
with ‹d > 0 › show False

unfolding cval-add-def by simp
qed

lemma repcs-unbounded-AE-non-loop-end-strong:
assumes cfg ∈ R-G.cfg-on (abss st) st ∈ S

and alternating cfg
shows AE ω in MDP.MC .T (repcs st cfg).

(∀ u :: (′c ⇒ real). (∀ c ∈ X . u c > real (k c)) −→
¬ (ev (alw (λ xs. shd xs = u))) (smap (snd o state) ω)) (is AE ω in ?M . ?P ω)

proof −
from assms have cfg ∈ R-G.valid-cfg

by (auto intro: R-G.valid-cfgI)
with assms(1) have repcs st cfg ∈ valid-cfg

by auto
from R-G.valid-cfgD[OF ‹cfg ∈ R-G.valid-cfg›] have cfg ∈ R-G.cfg-on (state cfg) .
let ?U = λ u.

⋃
l ∈ L. {µ ∈ K (l, u). µ 6= return-pmf (l, u) ∧ (∀ x ∈ µ. fst x = l)}

let ?r = λ u. Sup ({0} ∪ (λ µ. measure-pmf µ {x. snd x = u}) ‘ ?U u)
have lt-1 : ?r u < 1 for u
proof −

have ∗: emeasure (measure-pmf µ) {x. snd x = u} < 1
if µ 6= return-pmf (l, u) ∀ x∈set-pmf µ. fst x = l for µ and l :: ′s

proof (rule ccontr)
assume ¬ emeasure (measure-pmf µ) {x. snd x = u} < 1
then have 1 = emeasure (measure-pmf µ) {x. snd x = u}

using measure-pmf .emeasure-ge-1-iff by force
also from that(2) have . . . ≤ emeasure (measure-pmf µ) {(l, u)}

by (subst emeasure-Int-set-pmf [symmetric]) (auto intro!: emeasure-mono)
finally show False

by (simp add: measure-pmf .emeasure-ge-1-iff measure-pmf-eq-1-iff that(1))
qed
let ?S =
{map-pmf (λ (X , l). (l, ([X := 0]u))) µ | µ l g. (l, g, µ) ∈ trans-of A}

have (λ µ. measure-pmf µ {x. snd x = u}) ‘ ?U u
⊆ {0 , 1} ∪ (λ µ. measure-pmf µ {x. snd x = u}) ‘ ?S
by (force elim!: K .cases)

moreover have finite ?S

74

proof −
have ?S ⊆ (λ (l, g, µ). map-pmf (λ (X , l). (l, ([X := 0]u))) µ) ‘ trans-of A

by force
also from finite(3) have finite
finally show ?thesis .

qed
ultimately have finite ((λ µ. measure-pmf µ {x. snd x = u}) ‘ ?U u)

by (auto intro: finite-subset)
then show ?thesis

by (fastforce intro: ∗ finite-imp-Sup-less)
qed
{ fix l :: ′s and u :: ′c ⇒ real and cfg :: (′s × (′c ⇒ real) set) cfg

assume unbounded: ∀ c ∈ X . u c > k c and cfg ∈ R-G.cfg-on (abss (l, u)) abss (l, u) ∈ S
and same-loc: ∀ cfg ′ ∈ K-cfg cfg. fst (state cfg ′) = l

then have cfg ∈ R-G.valid-cfg repcs (l, u) cfg ∈ valid-cfg
by (auto intro: R-G.valid-cfgI)

then have cfg-on: repcs (l, u) cfg ∈ MDP.cfg-on (l, u)
by (auto dest: MDP.valid-cfgD)

from ‹cfg ∈ R-G.cfg-on -› have action cfg ∈ K (abss (l, u))
by (rule R-G.cfg-onD-action)

have K-cfg-rept: state ‘ K-cfg (repcs (l, u) cfg) = rept (l, u) (action cfg)
unfolding K-cfg-def by (force simp: action-repcs)

have l ∈ L
using MDP.valid-cfg-state-in-S ‹repcs (l, u) cfg ∈ MDP.valid-cfg› by fastforce

moreover have rept (l, u) (action cfg) 6= return-pmf (l, u)
proof (rule ccontr , simp)

assume rept (l, u) (action cfg) = return-pmf (l, u)
then have action cfg = return-pmf (abss (l, u))

using abst-rept-id[OF ‹action cfg ∈ -›]
by (simp add: abst-def)

moreover have (l, u) ∈ S
using ‹- ∈ S› by (auto dest: S-abss-S)

moreover have abss (l, u) = (l, [u]R)
by (metis abss-S calculation(2))

ultimately show False
using ‹rept (l, u) - = -› unbounded unfolding rept-def by (auto dest: cval-add-non-id)

qed
moreover have rept (l, u) (action cfg) ∈ K (l, u)
proof −

have action (repcs (l, u) cfg) ∈ K (l, u)
using cfg-on by blast

then show ?thesis
by (simp add: repcs-def)

qed
moreover have ∀ x∈set-pmf (rept (l, u) (action cfg)). fst x = l

using same-loc K-cfg-same-loc-iff [of repcs (l, u) cfg]
‹repcs (l, u) - ∈ valid-cfg› ‹cfg ∈ R-G.valid-cfg› ‹cfg ∈ R-G.cfg-on -›

by (simp add: absc-repcs-id fst-abss K-cfg-rept[symmetric])
ultimately have rept (l, u) (action cfg) ∈ ?U u

by blast
then have measure-pmf (rept (l, u) (action cfg)) {x. snd x = u} ≤ ?r u

by (fastforce intro: Sup-upper)
moreover have rept (l, u) (action cfg) = action (repcs (l, u) cfg)

by (simp add: repcs-def)
ultimately have measure-pmf (action (repcs (l, u) cfg)) {x. snd x = u} ≤ ?r u

by auto
}
note ∗ = this
let ?S = {cfg. ∃ cfg ′ s. cfg ′ ∈ R-G.valid-cfg ∧ cfg = repcs s cfg ′ ∧ abss s = state cfg ′}
have start: repcs st cfg ∈ ?S

75

using ‹cfg ∈ R-G.valid-cfg› assms unfolding R-G-cfg-on-div-def
by clarsimp (inst-existentials cfg fst st snd st, auto)

have step: y ∈ ?S if y ∈ K-cfg x x ∈ ?S for x y
using that apply safe
subgoal for cfg ′ l u

apply (inst-existentials absc y state y)
subgoal

by blast
subgoal

by (metis
K-cfg-valid-cfgD R-G.valid-cfgD R-G.valid-cfg-state-in-S absc-repcs-id cont-absc-1
cont-repcs1 repcs-valid
)

subgoal
by (simp add: state-absc)

done
done

have ∗∗: x ∈ ?S if (repcs st cfg, x) ∈ MDP.MC .acc for x
proof −

from MDP.MC .acc-relfunD[OF that] obtain n where ((λ a b. b ∈ K-cfg a) ^^ n) (repcs st cfg) x .
then show ?thesis
proof (induction n arbitrary: x)

case 0
with start show ?case

by simp
next

case (Suc n)
from this(2)[simplified] show ?case

apply (rule relcomppE)
apply (erule step)
apply (erule Suc.IH)
done

qed
qed
have ∗∗∗: almost-everywhere (MDP.MC .T (repcs st cfg)) (alw (HLD ?S))

by (rule AE-mp[OF MDP.MC .AE-T-reachable]) (fastforce dest: ∗∗ simp: HLD-iff elim: alw-mono)

from ‹alternating cfg› assms have alternating (repcs st cfg)
by (simp add: AE-alw-ev-same-loc-iff ′[of - st])

then have alw-ev-same2 : almost-everywhere (MDP.MC .T (repcs st cfg))
(alw (λω. HLD (state −‘ snd −‘ {u}) ω −→
ev (HLD {cfg. ∀ cfg ′∈set-pmf (K-cfg cfg). fst (state cfg ′) = fst (state cfg)}) ω))

for u unfolding alternating-def by (auto elim: alw-mono)

let ?X = {cfg :: (′s × (′c ⇒ real)) cfg. ∀ c ∈ X . snd (state cfg) c > k c}
let ?Y = {cfg. ∀ cfg ′ ∈ K-cfg cfg. fst (state cfg ′) = fst (state cfg)}

have (AE ω in ?M . ?P ω) ←→
(AE ω in ?M . ∀ u :: (′c ⇒ real).
(∀ c ∈ X . u c > k c) ∧ u ∈ snd ‘ state ‘ (MDP.MC .acc ‘‘ {repcs st cfg}) −→
¬ (ev (alw (λ xs. shd xs = u))) (smap (snd o state) ω)) (is ?L ←→ ?R)

proof
assume ?L
then show ?R

by eventually-elim auto
next

assume ?R
with MDP.MC .AE-T-reachable[of repcs st cfg] show ?L
proof (eventually-elim, intro allI impI notI , goal-cases)

case (1 ω u)
then show ?case

76

by − (intro alw-HLD-smap alw-disjoint-ccontr [where
S = (snd o state) ‘ MDP.MC .acc ‘‘ {repcs st cfg}
and R = {u} and ω = smap (snd o state) ω
]; auto simp: HLD-iff comp-def)

qed
qed

also have . . . ←→
(∀ u :: (′c ⇒ real).
(∀ c ∈ X . u c > k c) ∧ u ∈ snd ‘ state ‘ (MDP.MC .acc ‘‘ {repcs st cfg}) −→
(AE ω in ?M . ¬ (ev (alw (λ xs. shd xs = u))) (smap (snd o state) ω)))

using MDP.MC .countable-reachable[of repcs st cfg]
by − (rule AE-all-imp-countable,

auto intro: countable-subset[where B = snd ‘ state ‘ MDP.MC .acc ‘‘ {repcs st cfg}])
also show ?thesis

unfolding calculation
apply clarsimp
subgoal for l u x

apply (rule
MDP.non-loop-tail-strong[simplified, of snd snd (state x) ?Y ?S ?r (snd (state x))]
)

subgoal
apply safe
subgoal premises prems for cfg l1 u1 - cfg ′ l2 u2
proof −

have [simp]: l2 = l1 u2 = u1
subgoal

by (metis MDP.cfg-onD-state Pair-inject prems(4) state-repcs)
subgoal

by (metis MDP.cfg-onD-state prems(4) snd-conv state-repcs)
done

with prems have [simp]: u2 = u
by (metis ‹(l, u) = state x› ‹snd (l1 , u1) = snd (state x)› ‹u2 = u1 › snd-conv)

have [simp]: snd −‘ {snd (state x)} = {y. snd y = snd (state x)}
by (simp add: vimage-def)

from prems show ?thesis
apply simp
apply (erule ∗[simplified])
subgoal

using prems(1) prems(2)[symmetric] prems(3−) by (auto simp: R-G.valid-cfg-def)
subgoal

using prems(1) prems(2)[symmetric] prems(3−) by (auto simp: R-G.valid-cfg-def)
subgoal

using K-cfg-same-loc-iff [of repcs (l1 , snd (state x)) cfg ′]
by (simp add: absc-repcs-id) (metis fst-abss fst-conv repcs-valid)

done
qed
done

subgoal
by (auto intro: lt-1 [simplified])
apply (rule MDP.valid-cfgD[OF ‹repcs st cfg ∈ valid-cfg›]; fail)

subgoal
using ∗∗∗ unfolding alw-holds-pred-stream-iff [symmetric] HLD-def .

subgoal
by (rule alw-ev-same2)

done
done

qed

lemma cfg-on-div-repcs-strong:
notes in-space-UNIV [measurable]

77

assumes cfg ∈ R-G-cfg-on-div (abss st) st ∈ S and alternating cfg
shows repcs st cfg ∈ cfg-on-div st

proof −
let ?st = abss st
let ?cfg = repcs st cfg
from assms have ∗:

cfg ∈ R-G.cfg-on ?st state cfg = ?st R-G-div-cfg cfg
unfolding R-G-cfg-on-div-def by auto

with assms have cfg ∈ R-G.valid-cfg by (auto intro: R-G.valid-cfgI)
with ‹st ∈ S› ‹- = ?st› have ?cfg ∈ valid-cfg by auto
from ∗(1) ‹st ∈ S› ‹alternating cfg› have

AE ω in MDP.MC .T ?cfg. ∀ u. (∀ c∈X . real (k c) < u c) −→
¬ ev (alw (λxs. shd xs = u)) (smap (snd ◦ state) ω)

by (rule repcs-unbounded-AE-non-loop-end-strong)
— Move to lower level
moreover from ∗(2 ,3) have AE ω in MDP.MC .T ?cfg. R-div (smap (snd ◦ state) (smap absc ω))

unfolding R-G-div-cfg-def
by (subst (asm) R-G-trace-space-distr-eq[OF ‹cfg ∈ R-G.valid-cfg›]; simp add: AE-distr-iff)

ultimately have div-cfg ?cfg
unfolding div-cfg-def using MDP.MC .AE-T-enabled[of ?cfg]

proof eventually-elim
case prems: (elim ω)

let ?xs = smap (snd o state) ω
from MDP.pred-stream-cfg-on[OF ‹- ∈ valid-cfg› ‹MDP.MC .enabled - -›] have ∗:

pred-stream (λ x. x ∈ S) (smap state ω)
by (auto simp: stream.pred-set)

have [snd (state x)]R = snd (abss (state x)) if x ∈ sset ω for x
proof −

from ∗ that have state x ∈ S by (auto simp: stream.pred-set)
then have snd (abss (state x)) = [snd (state x)]R by (metis abss-S snd-conv surj-pair)
then show ?thesis ..

qed
then have smap (λz. [snd (state z)]R) ω = (smap (λz. snd (abss (state z))) ω) by auto
from ∗ have pred-stream (λ u. u ∈ V) ?xs

by (simp add: map-def stream.pred-set, subst (asm) surjective-pairing, blast)
moreover have stream-trans ?xs

by (rule enabled-stream-trans ‹- ∈ valid-cfg› ‹MDP.MC .enabled - -›)+
moreover have pairwise trans ′ ?xs

using ‹- ∈ R-G.valid-cfg› ‹state cfg = -›[symmetric] ‹MDP.MC .enabled - -›
by (rule enabled-stream-trans ′)

moreover from prems(1) have
∀ u. (∀ c∈X . real (k c) < u c) −→ ¬ ev (alw (λxs. snd (shd xs) = u)) (smap state ω)
by (simp add: comp-def)

ultimately show ?case using ‹R-div -›
by (simp add: stream.map-comp state-absc ‹smap - ω = -› R-divergent-divergent comp-def)

qed
with MDP.valid-cfgD ‹cfg ∈ R-G.valid-cfg› ∗ show ?thesis unfolding cfg-on-div-def by auto force

qed

lemma repcs-unbounded-AE-non-loop-end:
assumes cfg ∈ R-G.cfg-on (abss st) st ∈ S
shows AE ω in MDP.MC .T (repcs st cfg).

(∀ s :: (′s × (′c ⇒ real)). (∀ c ∈ X . snd s c > k c) −→
¬ (ev (alw (λ xs. shd xs = s))) (smap state ω)) (is AE ω in ?M . ?P ω)

proof −
from assms have cfg ∈ R-G.valid-cfg

by (auto intro: R-G.valid-cfgI)
with assms(1) have repcs st cfg ∈ valid-cfg

by auto
from R-G.valid-cfgD[OF ‹cfg ∈ R-G.valid-cfg›] have cfg ∈ R-G.cfg-on (state cfg) .
let ?K = λ x. {µ ∈ K x. µ 6= return-pmf x}

78

let ?r = λ x. Sup ((λ µ. measure-pmf µ {x}) ‘ ?K x)
have lt-1 : ?r x < 1 if µ ∈ ?K x for µ x
proof −

have ∗: emeasure (measure-pmf µ) {x} < 1 if µ 6= return-pmf x for µ
proof (rule ccontr)

assume ¬ emeasure (measure-pmf µ) {x} < 1
then have emeasure (measure-pmf µ) {x} = 1

using measure-pmf .emeasure-ge-1-iff by force
with that show False

by (simp add: measure-pmf-eq-1-iff)
qed
let ?S =
{map-pmf (λ (X , l). (l, ([X := 0]u))) µ | µ l u g.

x = (l, u) ∧ (l, g, µ) ∈ trans-of A}
have (λ µ. measure-pmf µ {x}) ‘ ?K x
⊆ {0 , 1} ∪ (λ µ. measure-pmf µ {x}) ‘ ?S
by (force elim!: K .cases)

moreover have finite ?S
proof −

have ?S ⊆ (λ (l, g, µ). map-pmf (λ (X , l). (l, (clock-set-set X 0 (snd x)))) µ) ‘ trans-of A
by force

also from finite(3) have finite
finally show ?thesis .

qed
ultimately have finite ((λ µ. measure-pmf µ {x}) ‘ ?K x)

by (auto intro: finite-subset)
then show ?thesis

using that by (auto intro: ∗ finite-imp-Sup-less)
qed
{ fix s :: ′s × (′c ⇒ real) and cfg :: (′s × (′c ⇒ real) set) cfg

assume unbounded: ∀ c ∈ X . snd s c > k c and cfg ∈ R-G.cfg-on (abss s) abss s ∈ S
then have repcs s cfg ∈ valid-cfg

by (auto intro: R-G.valid-cfgI)
then have cfg-on: repcs s cfg ∈ MDP.cfg-on s

by (auto dest: MDP.valid-cfgD)
from ‹cfg ∈ -› have action cfg ∈ K (abss s)

by (rule R-G.cfg-onD-action)
have rept s (action cfg) 6= return-pmf s
proof (rule ccontr , simp)

assume rept s (action cfg) = return-pmf s
then have action cfg = return-pmf (abss s)

using abst-rept-id[OF ‹action cfg ∈ -›]
by (simp add: abst-def)

moreover have (fst s, snd s) ∈ S
using ‹- ∈ S› by (auto dest: S-abss-S)

moreover have abss s = (fst s, [snd s]R)
by (metis abss-S calculation(2) prod.collapse)

ultimately show False
using ‹rept s - = -› unbounded unfolding rept-def by (cases s) (auto dest: cval-add-non-id)

qed
moreover have rept s (action cfg) ∈ K s
proof −

have action (repcs s cfg) ∈ K s
using cfg-on by blast

then show ?thesis
by (simp add: repcs-def)

qed
ultimately have rept s (action cfg) ∈ ?K s

by blast
then have measure-pmf (rept s (action cfg)) {s} ≤ ?r s

by (auto intro: Sup-upper)

79

moreover have rept s (action cfg) = action (repcs s cfg)
by (simp add: repcs-def)

ultimately have measure-pmf (action (repcs s cfg)) {s} ≤ ?r s
by auto

note this ‹rept s (action cfg) ∈ ?K s›
}
note ∗ = this
let ?S = {cfg. ∃ cfg ′ s. cfg ′ ∈ R-G.valid-cfg ∧ cfg = repcs s cfg ′ ∧ abss s = state cfg ′}
have start: repcs st cfg ∈ ?S

using ‹cfg ∈ R-G.valid-cfg› assms unfolding R-G-cfg-on-div-def
by clarsimp (inst-existentials cfg fst st snd st, auto)

have step: y ∈ ?S if y ∈ K-cfg x x ∈ ?S for x y
using that apply safe
subgoal for cfg ′ l u

apply (inst-existentials absc y state y)
subgoal

by blast
subgoal

by (metis
K-cfg-valid-cfgD R-G.valid-cfgD R-G.valid-cfg-state-in-S absc-repcs-id cont-absc-1
cont-repcs1 repcs-valid
)

subgoal
by (simp add: state-absc)

done
done

have ∗∗: x ∈ ?S if (repcs st cfg, x) ∈ MDP.MC .acc for x
proof −

from MDP.MC .acc-relfunD[OF that] obtain n where ((λ a b. b ∈ K-cfg a) ^^ n) (repcs st cfg) x .
then show ?thesis
proof (induction n arbitrary: x)

case 0
with start show ?case

by simp
next

case (Suc n)
from this(2)[simplified] show ?case

by (elim relcomppE step Suc.IH)
qed

qed
have ∗∗∗: almost-everywhere (MDP.MC .T (repcs st cfg)) (alw (HLD ?S))

by (rule AE-mp[OF MDP.MC .AE-T-reachable]) (fastforce dest: ∗∗ simp: HLD-iff elim: alw-mono)

have (AE ω in ?M . ?P ω) ←→
(AE ω in ?M . ∀ s :: (′s × (′c ⇒ real)).
(∀ c ∈ X . snd s c > k c) ∧ s ∈ state ‘ (MDP.MC .acc ‘‘ {repcs st cfg}) −→
¬ (ev (alw (λ xs. shd xs = s))) (smap state ω)) (is ?L ←→ ?R)

proof
assume ?L
then show ?R

by eventually-elim auto
next

assume ?R
with MDP.MC .AE-T-reachable[of repcs st cfg] show ?L
proof (eventually-elim, intro allI impI notI , goal-cases)

case (1 ω s)
from this(1 ,2 ,5 ,6) show ?case

by (intro alw-HLD-smap alw-disjoint-ccontr [where
S = state ‘ MDP.MC .acc ‘‘ {repcs st cfg} and R = {s} and ω = smap state ω
]; simp add: HLD-iff comp-def ; blast)

qed

80

qed

also have . . . ←→
(∀ s :: (′s × (′c ⇒ real)).
(∀ c ∈ X . snd s c > k c) ∧ s ∈ state ‘ (MDP.MC .acc ‘‘ {repcs st cfg}) −→
(AE ω in ?M . ¬ (ev (alw (λ xs. shd xs = s))) (smap state ω)))

using MDP.MC .countable-reachable[of repcs st cfg]
by − (rule AE-all-imp-countable,

auto intro: countable-subset[where B = state ‘ MDP.MC .acc ‘‘ {repcs st cfg}])
also show ?thesis

unfolding calculation
apply clarsimp
subgoal for l u x

apply (rule MDP.non-loop-tail ′[simplified, of state x ?S ?r (state x)])
subgoal

apply safe
subgoal premises prems for cfg cfg ′ l ′ u ′

proof −
from prems have state x = (l ′, u ′)

by (metis MDP.cfg-onD-state state-repcs)
with ‹- = state x› have [simp]: l = l ′ u = u ′

by auto
show ?thesis

unfolding ‹state x = -› using prems(1 ,3−) by (auto simp: R-G.valid-cfg-def intro: ∗)
qed
done

subgoal
apply (drule ∗∗)
apply clarsimp
apply (rule lt-1)
apply (rule ∗)
apply (auto dest: R-G.valid-cfg-state-in-S R-G.valid-cfgD)
done

apply (rule MDP.valid-cfgD[OF ‹repcs st cfg ∈ valid-cfg›]; fail)
using ∗∗∗ unfolding alw-holds-pred-stream-iff [symmetric] HLD-def .

done
qed

end

7.4 Main Result
context Probabilistic-Timed-Automaton-Regions-Reachability
begin

lemma R-G-cfg-on-valid:
cfg ∈ R-G.valid-cfg if cfg ∈ R-G-cfg-on-div s ′

using that unfolding R-G-cfg-on-div-def R-G.valid-cfg-def by auto

lemma cfg-on-valid:
cfg ∈ valid-cfg if cfg ∈ cfg-on-div s
using that unfolding cfg-on-div-def MDP.valid-cfg-def by auto

abbreviation path-measure P cfg ≡ emeasure (MDP.T cfg) {x∈space MDP.St. P x}
abbreviation R-G-path-measure P cfg ≡ emeasure (R-G.T cfg) {x∈space R-G.St. P x}
abbreviation progressive st ≡ cfg-on-div st ∩ {cfg. alternating cfg}
abbreviation R-G-progressive st ≡ R-G-cfg-on-div st ∩ {cfg. alternating cfg}

Summary of our results on divergent configurations:
lemma absc-valid-cfg-eq:

absc ‘ progressive s = R-G-progressive s ′

81

apply safe
subgoal

unfolding s ′-def by (rule cfg-on-div-absc) auto
subgoal

by (simp add: AE-alw-ev-same-loc-iff cfg-on-valid)
subgoal for cfg

unfolding s ′-def
by (frule cfg-on-div-repcs-strong)

(auto 4 4
simp: s ′-def R-G-cfg-on-div-def AE-alw-ev-same-loc-iff ′[symmetric]
intro: R-G-cfg-on-valid absc-repcs-id[symmetric]

)
done

Main theorem:
theorem Min-Max-reachability:

notes in-space-UNIV [measurable] and [iff] = pred-stream-iff
shows
(
⊔

cfg∈ progressive s. path-measure (λ x. (holds ϕ suntil holds ψ) (s ## x)) cfg)
= (

⊔
cfg∈ R-G-progressive s ′. R-G-path-measure (λ x. (holds ϕ ′ suntil holds ψ ′) (s ′ ## x)) cfg)

∧ (
d

cfg∈ progressive s. path-measure (λ x. (holds ϕ suntil holds ψ) (s ## x)) cfg)
= (

d
cfg∈ R-G-progressive s ′. R-G-path-measure (λ x. (holds ϕ ′ suntil holds ψ ′) (s ′ ## x)) cfg)

proof (rule SUP-eq-and-INF-eq; rule bexI [rotated]; erule IntE)
fix cfg assume cfg-div: cfg ∈ R-G-cfg-on-div s ′ and cfg ∈ Collect alternating
then have alternating cfg

by auto
let ?cfg ′ = repcs s cfg
from ‹alternating cfg› cfg-div have alternating ?cfg ′

by (simp add: R-G-cfg-on-div-def s ′-def AE-alw-ev-same-loc-iff ′[of - s])
with cfg-div ‹alternating cfg› show ?cfg ′ ∈ cfg-on-div s ∩ Collect alternating

by (auto intro: cfg-on-div-repcs-strong simp: s ′-def)
show emeasure (R-G.T cfg) {x ∈ space R-G.St. (holds ϕ ′ suntil holds ψ ′) (s ′ ## x)}

= emeasure (MDP.T ?cfg ′) {x ∈ space MDP.St. (holds ϕ suntil holds ψ) (s ## x)}
(is ?a = ?b)

proof −
from cfg-div have cfg ∈ R-G.valid-cfg

by (rule R-G-cfg-on-valid)
from cfg-div have cfg ∈ R-G.cfg-on s ′

unfolding R-G-cfg-on-div-def by auto
then have state cfg = s ′

by auto
have ?a = ?b

apply (rule
path-measure-eq-repcs ′′-new[

of s cfg ϕ ψ, folded ϕ ′-def ψ ′-def , unfolded ‹- = s ′› state-repcs
]

)
subgoal

unfolding s ′-def ..
subgoal

by fact
subgoal

using ‹?cfg ′ ∈ cfg-on-div s ∩ -› by (blast intro: cfg-on-valid)
subgoal premises prems for xs

using prems s by (intro ϕ-stream)
subgoal premises prems

using prems s by (intro ψ-stream)
done

then show ?thesis
by simp

qed

82

next
fix cfg assume cfg-div: cfg ∈ cfg-on-div s and cfg ∈ Collect alternating
with absc-valid-cfg-eq show absc cfg ∈ R-G-cfg-on-div s ′ ∩ Collect alternating

by auto
show emeasure (MDP.T cfg) {x ∈ space MDP.St. (holds ϕ suntil holds ψ) (s ## x)}

= emeasure (R-G.T (absc cfg)) {x ∈ space R-G.St. (holds ϕ ′ suntil holds ψ ′) (s ′ ## x)}
(is ?a = ?b)

proof −
have absc cfg ∈ R-G.valid-cfg

using R-G-cfg-on-valid ‹absc cfg ∈ R-G-cfg-on-div s ′ ∩ -› by blast
from cfg-div have cfg ∈ valid-cfg

by (simp add: cfg-on-valid)
with ‹absc cfg ∈ R-G.valid-cfg› have ?b = ?a

by (intro MDP.alw-S R-G.alw-S path-measure-eq-absc1-new
[where P = pred-stream (λs. s ∈ S) and Q = pred-stream (λs. s ∈ S)]

)
(auto simp: S-abss-S intro: S-abss-S intro!: suntil-abss suntil-reps, measurable)

then show ?a = ?b
by simp

qed
qed

end

end

References

[1] M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of real-time
systems with discrete probability distributions. Th. Comp. Sci., 282(1).

[2] S. Wimmer and J. Hölzl. MDP + TA = PTA: Probabilistic timed automata, formalized. In
J. Avigad and A. Mahboubi, editors, ITP 2018, Proceedings, Lecture Notes in Computer Science.
Springer, 2018.

83

	Bisimulation on a Relation
	Additional Facts on Regions
	Definition and Semantics
	Syntactic Definition
	Collecting Information About Clocks

	Operational Semantics as an MDP
	Syntactic Definition

	Constructing the Corresponding Finite MDP on Regions
	Syntactic Definition
	Many Closure Properties
	The Region Graph is a Finite MDP

	Relating the MDPs
	Translating From K to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 K
	Translating Configurations
	States
	Intermezzo
	Predicates
	Distributions
	Configuration

	Equalities Between Measures of Trace Spaces

	Classifying Regions for Divergence
	Pairwise
	Regions
	Unbounded and Zero Regions

	Reachability
	Definitions
	Easier Result on All Configurations
	Divergent Adversaries
	Main Result

