Types Disproved Being BNFs during the Formalization of the Probabilistic Hierarchy

Johannes Hölzl Andreas Lochbihler Dmitriy Traytel

September 13, 2023

Contents

1 Sets Bounded by a Finite Cardinal >2 Are Not BNFs 1
2 Vardi Systems Are Not a BNF 4

1 Sets Bounded by a Finite Cardinal >2 Are Not BNFs

Do not import this theory. It contains an inconsistent axiomatization. The point is to exhibit the particular inconsistency.

```
typedef \(\left({ }^{\prime} a,{ }^{\prime} k\right)\) bset \((-\operatorname{set}[-][22,21] 21)=\)
    \(\{A:: ' a\) set. \(|A|<o \mid U N I V:: ' k\) set \(\mid\}\)
    morphisms set-bset Abs-bset
    by (rule exI[of - \{\}]) (auto simp: card-of-empty4 csum-def)
setup-lifting type-definition-bset
lift-definition map-bset ::
    \(\left(' a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a \operatorname{set}[k] \Rightarrow{ }^{\prime} b \operatorname{set}\left[{ }^{\prime} k\right]\) is image
    using card-of-image ordLeq-ordLess-trans by blast
inductive rel-bset :: \(\left({ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow\right.\) bool \() \Rightarrow\left({ }^{\prime} a,{ }^{\prime} k\right)\) bset \(\Rightarrow\left({ }^{\prime} b,{ }^{\prime} k\right)\) bset \(\Rightarrow\) bool for
\(R\) where
    set-bset \(x \subseteq\{(x, y) . R x y\} \Longrightarrow\) rel-bset \(R(\) map-bset fst \(x)\) (map-bset snd \(x\) )
```

We axiomatize the relator commutation property and show that we can deduce False from it.

We cannot do this with a locale, since we need the fully polymorphic version of the following axiom.

axiomatization where

inconsistent: rel-bset R1 OO rel-bset R2 \leq rel-bset (R1 OO R2)

```
bnf ('a, 'k) bset
    map: map-bset
    sets: set-bset
    bd: natLeq +c card-suc ( |UNIV :: 'k set| )
    rel: rel-bset
proof (standard, goal-cases)
    case 1 then show ?case
        by transfer simp
next
    case 2 then show ?case
        apply (rule ext)
        apply transfer
        apply auto
        done
next
    case 3 then show ?case
        apply transfer
        apply (auto simp: image-iff)
        done
next
    case 4 then show ?case
        apply (rule ext)
        apply transfer
        apply simp
        done
next
    case 5 then show ?case by (rule card-order-bd-fun)
next
    case 6 then show ?case by (rule Cinfinite-bd-fun[THEN conjunct1])
next
    case 7 then show ?case by (rule regularCard-bd-fun)
next
    case 8 then show ?case
        by transfer
            (erule ordLess-ordLeq-trans[OF - ordLeq-transitive[OF - ordLeq-csum2]];
                simp add: card-suc-greater ordLess-imp-ordLeq Card-order-card-suc)
next
    case 9 then show ?case by (rule inconsistent) - BAAAAAMMMM
next
    case 10 then show ?case
        by (auto simp: fun-eq-iff intro: rel-bset.intros elim: rel-bset.cases)
qed
lemma card-option-finite[simp]:
    assumes finite (UNIV :: 'k set)
    shows card (UNIV :: 'k option set) = Suc (card (UNIV :: 'k set))
    (is card ?L = Suc (card ?R))
proof -
    have card ?L = Suc (card (?L - {None})) by (rule card.remove) (auto simp:
```

```
assms)
    also have card (?L - {None}) = card ?R
        by (rule bij-betw-same-card[of the])
            (auto simp: bij-betw-def inj-on-def image-iff intro!: bexI[of - Some x for x])
    finally show ?thesis.
qed
datatype ('a :: enum) x = A| B'a option | C
abbreviation Bs \equivB'(insert None (Some'set Enum.enum))
lemma UNIV-x[simp]:
    (UNIV :: ('a :: enum) x set) = {A,C}\cupBs
    (is - = ?R)
proof (intro set-eqI iffI)
    fix }x:: 'a x show x\in?R by (cases x) (auto simp add: enum-UNIV
qed simp
lemma Collect-split-in-rel: {(x,y). in-rel R x y} =R
    by auto
lift-definition X :: ('a :: enum x, 'a x) bset is insert A Bs
    by (subst finite-card-of-iff-card3) (auto simp: card.insert-remove card-Diff-singleton-if)
lift-definition Y :: ('a :: enum x, 'a x) bset is insert C Bs
    by (subst finite-card-of-iff-card3) (auto simp: card.insert-remove card-Diff-singleton-if)
lift-definition Z :: ('a :: enum x, 'a x) bset is {A,C}
    by (subst finite-card-of-iff-card3) (auto simp: card.insert-remove card-Diff-singleton-if)
lift-definition R :: ('a x > 'a x, 'a :: enum x) bset is insert ( }A,A)((\lambdaB.(B,C)
    ' Bs)
    by (subst finite-card-of-iff-card3)
        (auto simp: card.insert-remove card-Diff-singleton-if image-iff card-image inj-on-def)
lift-definition S :: ('a x > 'a x, 'a :: enum x) bset is insert (C,C) (( }\lambdaB.(A,B)
'Bs)
    by (subst finite-card-of-iff-card3)
    (auto simp: card.insert-remove card-Diff-singleton-if image-iff card-image inj-on-def)
lift-definition in-brel :: (' }a\times\mp@subsup{}{}{\prime}b,'k) bset => ' ' a > 'b b bool is in-rel.
lemma False
proof -
    have rel-bset (in-brel R) X Z
        unfolding bset.in-rel mem-Collect-eq
        apply (intro exI[of-R])
        apply transfer
        apply (auto simp: image-iff)
```

```
    done
    moreover
    have rel-bset (in-brel S) Z Y
    unfolding bset.in-rel mem-Collect-eq
    apply (intro exI[of - S])
    apply transfer
    apply (auto simp: image-iff)
    done
    ultimately have rel-bset (in-brel R OO in-brel S) X Y
    unfolding bset.rel-compp by blast
    moreover
    have *: insert (A,A) ((\lambdaB. (B,C))'Bs)O insert (C,C) ((\lambdaB. (A,B))'Bs)
=
    ((\lambdaB. (B,C))'Bs)\cup((\lambdaB. (A,B))'Bs) (is - = ?RS ) by auto
    have ᄀ rel-bset (in-brel R OO in-brel S) X Y
    unfolding bset.in-rel mem-Collect-eq
    proof (transfer, safe, unfold relcompp-in-rel * Collect-split-in-rel)
    fix Z :: (' }a::\mathrm{ enum }x\times\mp@subsup{}{}{\prime}ax) se
    note enum-UNIV[simp] UNIV-option-conv[symmetric, simp]
    assume Z \subseteq?RS fst' }Z=\mathrm{ insert A Bs snd ' }Z=\mathrm{ insert C Bs
    then have Z =?RS unfolding fst-eq-Domain snd-eq-Range by auto
    moreover assume |Z|<o |UNIV :: 'a x set 
    ultimately show False unfolding < Z =?RS>
    by (subst (asm) finite-card-of-iff-card3, simp, simp, subst (asm) card-Un-disjoint)
        (auto simp: card.insert-remove card-Diff-singleton-if card-image inj-on-def
split: if-splits)
    qed
    ultimately show False by blast
qed
```


2 Vardi Systems Are Not a BNF

Do not import this theory. It contains an inconsistent axiomatization. The point is to exhibit the particular inconsistency.

We axiomatize the relator commutation property and show that we can deduce False from it.
We cannot do this with a locale, since we need the fully polymorphic version of the following axiom.
axiomatization where
inconsistent: rel-var R1 S1 OO rel-var R2 S2 \leq rel-var (R1 OO R2) (S1 OO S2)
bnf ($\left.{ }^{\prime} a,{ }^{\prime} b,{ }^{\prime} k\right)$ var
map: map-var
sets: set1-var set2-var
bd: bd-pre-var0 :: 'k var0-pre-var0-bdT rel
rel: rel-var

```
proof (standard, goal-cases)
    case 1 then show ?case
        by transfer (auto simp add: var0.map-id)
next
    case 2 then show ?case
        apply (rule ext)
        apply transfer
        apply (auto simp add: var0.map-comp)
        done
next
    case 3 then show ?case
        apply transfer
        apply (subst var0.map-cong0)
        apply assumption
        apply assumption
        apply auto
        done
next
    case 4 then show ?case
        apply (rule ext)
        apply transfer
        apply (simp add: var0.set-map0)
        done
next
    case 5 then show ?case
        apply (rule ext)
        apply transfer
        apply (simp add: var0.set-map0)
        done
next
    case }6\mathrm{ then show ?case by (rule var0.bd-card-order)
next
    case 7 then show ?case
        by (simp add: var0.bd-cinfinite)
next
    case 8 then show ?case by (rule var0.bd-regularCard)
next
    case (9 x) then show ?case
        unfolding subset-eq set1-var-def by (simp add: var0.set-bd(1))
next
    case (10 x) then show ?case
        unfolding subset-eq set2-var-def by (simp add: var0.set-bd(2))
next
    case 11 then show ?case by (rule inconsistent) - BAAAAAMMMM
next
    case 12 then show ?case
        unfolding rel-var.simps[abs-def] by (auto simp: fun-eq-iff)
qed
```

lift-definition $X::\left(b o o l,{ }^{\prime} b,{ }^{\prime} k\right)$ var is BPS (binsert (True, undefined) (binsert (False, undefined) bempty)).
lift-definition $Y::(b o o l, ' b, ' k)$ var is PMF (pmf-of-set $\{($ True, undefined), (False, undefined) $\}$).
lift-definition $Z::\left(b o o l,{ }^{\prime} b,{ }^{\prime} k\right)$ var is PMF (return-pmf (True, undefined)).
lift-definition $Z^{\prime}::\left(b o o l,{ }^{\prime} b,{ }^{\prime} k\right)$ var is $B P S$ (bsingleton (True, undefined)).
lift-definition $C::\left(b o o l \times b o o l,{ }^{\prime} b \times^{\prime} b,{ }^{\prime} k\right)$ var is BPS (binsert ((True, True), (undefined, undefined)) (binsert ((False, True), (undefined, undefined)) bempty)).
lift-definition $C^{\prime}::\left(b o o l \times b o o l,{ }^{\prime} b \times^{\prime} b,{ }^{\prime} k\right)$ var is PMF (map-pmf $(\lambda((a, b),(c, d)) .((a, c),(b, d)))$ (pair-pmf (return-pmf (True, undefined $)$) (pmf-of-set $\{($ True, undefined $),($ False, undefined $)\}))$).
lemma Z-eq- $Z^{\prime}: Z=Z^{\prime}$
by transfer auto

```
lemma False
proof -
    have \([\) simp \(]: \bigwedge x . p m f\)-of-set \(\{(\) True, undefined \(),(\) False, undefined \()\} \neq\) return-pmf
X
    by (auto simp: pmf-eq-iff split: split-indicator)
    have [simp]: \(\bigwedge x\). binsert (True, undefined) (binsert (False, undefined) bempty)
\(\neq\) bsingleton \(x\)
    unfolding bsingleton-def by transfer auto
    define \(R\) where \(R a b=b\) for \(a b::\) bool
    have rel-var \(R(=) X Z^{\prime}\)
        unfolding \(R\)-def var.in-rel mem-Collect-eq subset-eq
    apply (intro exI[of - C])
    apply transfer
        apply (auto simp: set-bset binsert.rep-eq fsts.simps snds.simps bempty.rep-eq
bsingleton-def)
    done
    moreover
    define \(S\) where \(S a b=a\) for \(a b::\) bool
    have rel-var \(S\) (=) \(Z Y\)
        unfolding \(S\)-def var.in-rel mem-Collect-eq subset-eq
        apply (intro exI[of - \(C\) ' \(]\) )
    apply transfer
        apply (auto simp: fsts.simps snds.simps pmf.map-comp comp-def split-beta
map-fst-pair-pmf map-snd-pair-pmf)
    done
    ultimately have rel-var \((R O O S)((=) O O(=)) X Y\) (is rel-var ? \(R\) ? \(S X X Y)\)
        unfolding var.rel-compp unfolding \(Z\)-eq- \(Z^{\prime}\) by blast
```

```
moreover have \(\neg\) rel-var ? \(R\) ?S \(X Y\)
    unfolding var.in-rel mem-Collect-eq subset-eq
    apply (auto simp: split-beta)
    apply transfer \({ }^{\prime}\)
    apply (auto elim!: var-eq.cases)
    apply (case-tac [!] z)
    apply (auto simp add: snds.simps)
    done
    ultimately show False
    by auto
qed
```

