
Types Disproved Being BNFs during the
Formalization of the Probabilistic Hierarchy

Johannes Hölzl Andreas Lochbihler Dmitriy Traytel

September 13, 2023

Contents
1 Sets Bounded by a Finite Cardinal > 2 Are Not BNFs 1

2 Vardi Systems Are Not a BNF 4

1 Sets Bounded by a Finite Cardinal > 2 Are Not
BNFs

Do not import this theory. It contains an inconsistent axiomatization. The
point is to exhibit the particular inconsistency.
typedef (′a, ′k) bset (- set[-] [22 , 21] 21) =
{A :: ′a set. |A| <o |UNIV :: ′k set|}
morphisms set-bset Abs-bset
by (rule exI [of - {}]) (auto simp: card-of-empty4 csum-def)

setup-lifting type-definition-bset

lift-definition map-bset ::
(′a ⇒ ′b) ⇒ ′a set[′k] ⇒ ′b set[′k] is image
using card-of-image ordLeq-ordLess-trans by blast

inductive rel-bset :: (′a ⇒ ′b ⇒ bool) ⇒ (′a, ′k) bset ⇒ (′b, ′k) bset ⇒ bool for
R where

set-bset x ⊆ {(x, y). R x y} =⇒ rel-bset R (map-bset fst x) (map-bset snd x)

We axiomatize the relator commutation property and show that we can
deduce False from it.
We cannot do this with a locale, since we need the fully polymorphic version
of the following axiom.
axiomatization where

inconsistent: rel-bset R1 OO rel-bset R2 ≤ rel-bset (R1 OO R2)

1

bnf (′a, ′k) bset
map: map-bset
sets: set-bset
bd: natLeq +c card-suc (|UNIV :: ′k set|)
rel: rel-bset

proof (standard, goal-cases)
case 1 then show ?case

by transfer simp
next

case 2 then show ?case
apply (rule ext)
apply transfer
apply auto
done

next
case 3 then show ?case

apply transfer
apply (auto simp: image-iff)
done

next
case 4 then show ?case

apply (rule ext)
apply transfer
apply simp
done

next
case 5 then show ?case by (rule card-order-bd-fun)

next
case 6 then show ?case by (rule Cinfinite-bd-fun[THEN conjunct1])

next
case 7 then show ?case by (rule regularCard-bd-fun)

next
case 8 then show ?case

by transfer
(erule ordLess-ordLeq-trans[OF - ordLeq-transitive[OF - ordLeq-csum2]];

simp add: card-suc-greater ordLess-imp-ordLeq Card-order-card-suc)
next

case 9 then show ?case by (rule inconsistent) — BAAAAAMMMM
next

case 10 then show ?case
by (auto simp: fun-eq-iff intro: rel-bset.intros elim: rel-bset.cases)

qed

lemma card-option-finite[simp]:
assumes finite (UNIV :: ′k set)
shows card (UNIV :: ′k option set) = Suc (card (UNIV :: ′k set))
(is card ?L = Suc (card ?R))

proof −
have card ?L = Suc (card (?L − {None})) by (rule card.remove) (auto simp:

2

assms)
also have card (?L − {None}) = card ?R

by (rule bij-betw-same-card[of the])
(auto simp: bij-betw-def inj-on-def image-iff intro!: bexI [of - Some x for x])

finally show ?thesis .
qed

datatype (′a :: enum) x = A | B ′a option | C

abbreviation Bs ≡ B ‘ (insert None (Some ‘ set Enum.enum))

lemma UNIV-x[simp]:
(UNIV :: (′a :: enum) x set) = {A, C} ∪ Bs
(is - = ?R)

proof (intro set-eqI iffI)
fix x :: ′a x show x ∈ ?R by (cases x) (auto simp add: enum-UNIV)

qed simp

lemma Collect-split-in-rel: {(x, y). in-rel R x y} = R
by auto

lift-definition X :: (′a :: enum x, ′a x) bset is insert A Bs
by (subst finite-card-of-iff-card3) (auto simp: card.insert-remove card-Diff-singleton-if)

lift-definition Y :: (′a :: enum x, ′a x) bset is insert C Bs
by (subst finite-card-of-iff-card3) (auto simp: card.insert-remove card-Diff-singleton-if)

lift-definition Z :: (′a :: enum x, ′a x) bset is {A, C}
by (subst finite-card-of-iff-card3) (auto simp: card.insert-remove card-Diff-singleton-if)

lift-definition R :: (′a x × ′a x, ′a :: enum x) bset is insert (A, A) ((λB. (B, C))
‘ Bs)

by (subst finite-card-of-iff-card3)
(auto simp: card.insert-remove card-Diff-singleton-if image-iff card-image inj-on-def)

lift-definition S :: (′a x × ′a x, ′a :: enum x) bset is insert (C , C) ((λB. (A, B))
‘ Bs)

by (subst finite-card-of-iff-card3)
(auto simp: card.insert-remove card-Diff-singleton-if image-iff card-image inj-on-def)

lift-definition in-brel :: (′a × ′b, ′k) bset ⇒ ′a ⇒ ′b ⇒ bool is in-rel .

lemma False
proof −

have rel-bset (in-brel R) X Z
unfolding bset.in-rel mem-Collect-eq
apply (intro exI [of - R])
apply transfer
apply (auto simp: image-iff)

3

done
moreover
have rel-bset (in-brel S) Z Y

unfolding bset.in-rel mem-Collect-eq
apply (intro exI [of - S])
apply transfer
apply (auto simp: image-iff)
done

ultimately have rel-bset (in-brel R OO in-brel S) X Y
unfolding bset.rel-compp by blast

moreover
have ∗: insert (A, A) ((λB. (B, C)) ‘ Bs) O insert (C , C) ((λB. (A, B)) ‘ Bs)

=
((λB. (B, C)) ‘ Bs) ∪ ((λB. (A, B)) ‘ Bs) (is - = ?RS) by auto

have ¬ rel-bset (in-brel R OO in-brel S) X Y
unfolding bset.in-rel mem-Collect-eq
proof (transfer , safe, unfold relcompp-in-rel ∗ Collect-split-in-rel)

fix Z :: (′a :: enum x × ′a x) set
note enum-UNIV [simp] UNIV-option-conv[symmetric, simp]
assume Z ⊆ ?RS fst ‘ Z = insert A Bs snd ‘ Z = insert C Bs
then have Z = ?RS unfolding fst-eq-Domain snd-eq-Range by auto
moreover assume |Z | <o |UNIV :: ′a x set|
ultimately show False unfolding ‹Z = ?RS›
by (subst (asm) finite-card-of-iff-card3 , simp, simp, subst (asm) card-Un-disjoint)

(auto simp: card.insert-remove card-Diff-singleton-if card-image inj-on-def
split: if-splits)

qed
ultimately show False by blast

qed

2 Vardi Systems Are Not a BNF

Do not import this theory. It contains an inconsistent axiomatization. The
point is to exhibit the particular inconsistency.

We axiomatize the relator commutation property and show that we can
deduce False from it.
We cannot do this with a locale, since we need the fully polymorphic version
of the following axiom.
axiomatization where

inconsistent: rel-var R1 S1 OO rel-var R2 S2 ≤ rel-var (R1 OO R2) (S1 OO S2)

bnf (′a, ′b, ′k) var
map: map-var
sets: set1-var set2-var
bd: bd-pre-var0 :: ′k var0-pre-var0-bdT rel
rel: rel-var

4

proof (standard, goal-cases)
case 1 then show ?case

by transfer (auto simp add: var0 .map-id)
next

case 2 then show ?case
apply (rule ext)
apply transfer
apply (auto simp add: var0 .map-comp)
done

next
case 3 then show ?case

apply transfer
apply (subst var0 .map-cong0)
apply assumption
apply assumption
apply auto
done

next
case 4 then show ?case

apply (rule ext)
apply transfer
apply (simp add: var0 .set-map0)
done

next
case 5 then show ?case

apply (rule ext)
apply transfer
apply (simp add: var0 .set-map0)
done

next
case 6 then show ?case by (rule var0 .bd-card-order)

next
case 7 then show ?case

by (simp add: var0 .bd-cinfinite)
next

case 8 then show ?case by (rule var0 .bd-regularCard)
next

case (9 x) then show ?case
unfolding subset-eq set1-var-def by (simp add: var0 .set-bd(1))

next
case (10 x) then show ?case

unfolding subset-eq set2-var-def by (simp add: var0 .set-bd(2))
next

case 11 then show ?case by (rule inconsistent) — BAAAAAMMMM
next

case 12 then show ?case
unfolding rel-var .simps[abs-def] by (auto simp: fun-eq-iff)

qed

5

lift-definition X :: (bool, ′b, ′k) var is BPS (binsert (True, undefined) (binsert
(False, undefined) bempty)).

lift-definition Y :: (bool, ′b, ′k) var is PMF (pmf-of-set {(True, undefined),
(False, undefined)}).

lift-definition Z :: (bool, ′b, ′k) var is PMF (return-pmf (True, undefined)).

lift-definition Z ′ :: (bool, ′b, ′k) var is BPS (bsingleton (True, undefined)).

lift-definition C :: (bool×bool, ′b× ′b, ′k) var is
BPS (binsert ((True, True), (undefined, undefined)) (binsert ((False, True),

(undefined, undefined)) bempty)).

lift-definition C ′ :: (bool×bool, ′b× ′b, ′k) var is
PMF (map-pmf (λ((a, b), (c, d)). ((a,c), (b,d))) (pair-pmf (return-pmf (True,

undefined)) (pmf-of-set {(True, undefined), (False, undefined)}))).

lemma Z-eq-Z ′: Z = Z ′

by transfer auto

lemma False
proof −

have [simp]:
∧

x. pmf-of-set {(True, undefined), (False, undefined)} 6= return-pmf
x

by (auto simp: pmf-eq-iff split: split-indicator)
have [simp]:

∧
x. binsert (True, undefined) (binsert (False, undefined) bempty)

6= bsingleton x
unfolding bsingleton-def by transfer auto

define R where R a b = b for a b :: bool
have rel-var R (=) X Z ′

unfolding R-def var .in-rel mem-Collect-eq subset-eq
apply (intro exI [of - C])
apply transfer
apply (auto simp: set-bset binsert.rep-eq fsts.simps snds.simps bempty.rep-eq

bsingleton-def)
done

moreover
define S where S a b = a for a b :: bool
have rel-var S (=) Z Y

unfolding S-def var .in-rel mem-Collect-eq subset-eq
apply (intro exI [of - C ′])
apply transfer
apply (auto simp: fsts.simps snds.simps pmf .map-comp comp-def split-beta

map-fst-pair-pmf map-snd-pair-pmf)
done

ultimately have rel-var (R OO S) ((=) OO (=)) X Y (is rel-var ?R ?S X Y)
unfolding var .rel-compp unfolding Z-eq-Z ′ by blast

6

moreover have ¬ rel-var ?R ?S X Y
unfolding var .in-rel mem-Collect-eq subset-eq
apply (auto simp: split-beta)
apply transfer ′

apply (auto elim!: var-eq.cases)
apply (case-tac [!] z)
apply (auto simp add: snds.simps)
done

ultimately show False
by auto

qed

7

	Sets Bounded by a Finite Cardinal >2 Are Not BNFs
	Vardi Systems Are Not a BNF

