Priority Queues Based on Braun Trees

Tobias Nipkow

March 17, 2025

Abstract

This entry verifies priority queues based on Braun trees. Insertion
and deletion take logarithmic time and preserve the balanced nature
of Braun trees. Two implementations of deletion are provided.

Contents

1

1

Priority Queues Based on Braun Trees

1.1 Imtroduction.,
1.2 Get Minimum
1.3 Imsertion
1.4 Deletion L
1.5 Running Time Analysis

Priority Queues Based on Braun Trees 2
2.1 Function del-min2
2.2 Correctness Proofo o

Sorting via Priority Queues Based on Braun Trees
Phase 1: List to Tree

Phase 2: Heap to List

Priority Queues Based on Braun Trees

theory Priority-Queue-Braun
imports

HOL— Library. Tree-Multiset

HOL— Library. Pattern-Aliases

HOL— Data-Structures. Priority- Queue-Specs
HOL— Data-Structures. Braun-Tree

HOL—- Data-Structures. Define- Time-Function

begin

TN NN N

ot Ot

10

1.1 Introduction

Braun, Rem and Hoogerwoord [1, 2] used specific balanced binary trees,
often called Braun trees (where in each node with subtrees [and r, size(r) <
size(l) < size(r) + 1), to implement flexible arrays. Paulson [3] (based on
code supplied by Okasaki) implemented priority queues via Braun trees.
This theory verifies Paulsons’s implementation, with small simplifications.

Direct proof of logarithmic height. Also follows from the fact that Braun
trees are balanced (proved in the base theory).

lemma height-size-braun: braun t => 2 ~ (height t) < 2 * size t + 1
(proof)

1.2 Get Minimum

fun get-min :: 'a::linorder tree = 'a where

get-min (Node lar) = a

lemma get-min: [heap t; t # Leaf | = get-min t = Min-mset (mset-tree t)
(proof)

1.3 Insertion

hide-const (open) insert

fun insert :: 'a::linorder = 'a tree = 'a tree where

insert a Leaf = Node Leaf a Leaf |

insert a (Node lz 1) =
(if a < z then Node (insert z r) a l else Node (insert a r) z 1)

lemma size-insert[simp): size(insert t) = size t + 1
(proof)

lemma mset-insert: mset-tree(insert x t) = {#x#} + mset-tree ¢

(proof)

lemma set-insert[simp]: set-tree(insert z t) = {x} U (set-tree t)
(proof)

lemma braun-insert: braun t = braun(insert z t)

(proof)

lemma heap-insert: heap t = heap(insert x t)
(proof)

1.4 Deletion

Slightly simpler definition of del-left which avoids the need to appeal to the
Braun invariant.

fun del-left :: 'a tree = 'a * 'a tree where
del-left (Node Leaf x v) = (z,1) |
del-left (Node l x) = (let (y,l") = del-left l in (y,Node r z 1'))

lemma del-left-mset-plus:
del-left t = (z,t") = t # Leaf
= mset-tree t = {#a#} + mset-tree t’
{proof)

lemma del-left-mset:

del-left t = (z,t") = t # Leaf

= x E€# mset-tree t N\ mset-tree t' = mset-tree t — {#a#}
(proof)

lemma del-left-set:
del-left t = (z,t") = t # Leaf = set-tree t = {x} U set-tree t’
(proof)

lemma del-left-heap:
del-left t = (z,t") = t # Leaf = heap t = heap t’
(proof)

lemma del-left-size:
del-left t = (z,t") = t # Leaf = size t = size t' + 1
(proof)

lemma del-left-braun:
del-left t = (z,t") = t # Leaf = braun t = braun t’

{proof)

context includes pattern-aliases
begin

Slightly simpler definition: - instead of () because of Braun invariant.

function (sequential) sift-down :: 'a::linorder tree = 'a = 'a tree = 'a tree where
sift-down Leaf a - = Node Leaf a Leaf |
sift-down (Node Leaf x -) a Leaf =
(if a < x then Node (Node Leaf x Leaf) a Leaf
else Node (Node Leaf a Leaf) x Leaf) |
sift-down (Node I1 z1 r1 =: t1) a (Node 12 22 r2 =: t2) =
(ifa <xl ANa<22
then Node t1 a t2
else if v1 < z2 then Node (sift-down l1 a r1) z1 t2
else Node t1 x2 (sift-down 12 a 12))
(proof)

termination

(proof)

end

lemma size-sift-down:
braun(Node | a 1) = size(sift-down | a 1) = size | + size r + 1

(proof)

lemma braun-sift-down:
braun(Node | a 1) = braun(sift-down l a r)

(proof)

lemma mset-sift-down:
braun(Node | a r) = mset-tree(sift-down | a 1) = {#a#} + (mset-tree | +
mset-tree)

(proof)

lemma set-sift-down: braun(Node l a 1)
= set-tree(sift-down l a r) = {a} U (set-tree | U set-tree 1)
(proof)

lemma heap-sift-down:
braun(Node | a 1) = heap | => heap r => heap(sift-down 1 a)

(proof)

fun del-min :: 'a::linorder tree = ’a tree where

del-min Leaf = Leaf |

del-min (Node Leaf z r) = Leaf |

del-min (Node l z) = (let (y,l') = del-left | in sift-down r y 1)

lemma braun-del-min: braun t = braun(del-min t)
(proof)

lemma heap-del-min: heap t => braun t = heap(del-min t)

(proof)

lemma size-del-min: assumes braun t shows size(del-min t) = size t — 1
(proof)

lemma mset-del-min: assumes braun t t # Leaf
shows mset-tree(del-min t) = mset-tree t — {#get-min t#}

(proof)
Last step: prove all axioms of the priority queue specification:

interpretation braun: Priority-Queue

where empty = Leaf and is-empty = \h. h = Leaf

and insert = insert and del-min = del-min

and get-min = get-min and invar = \h. braun h A heap h
and mset = mset-tree

(proof)

1.5 Running Time Analysis

time-fun insert

lemma T-insert: T-insert a t < height t + 1

(proof)
time-fun del-left

lemma T-del-left-height: t # Leaf = T-del-left t < height t
(proof)

time-function sift-down
termination

(proof)
lemma T-sift-down-height: braun(Node | a 1) = T-sift-down | z v < maz(height

1) (height v) + 1
(proof)

time-fun del-min

lemma del-left-height: [del-left t = (x, t'); t # () | = height t’ < height ¢
(proof)
lemma T-del-min-neq-Leaf: | # Leaf —>

T-del-min (Node | x r) = T-del-left | + (let (y,l") = del-left | in T-sift-down r y
)
(proof)

lemma T-del-min: assumes braun t shows T-del-min t < 2xheight t

(proof)

end

2 Priority Queues Based on Braun Trees 2

theory Priority-Queue-Braun2
imports Priority- Queue-Braun
begin

This is the version verified by Jean-Christophe Fillidtre with the help of
the Why3 system http://toccata.lri.fr/gallery /braun__trees.en.html. Only
the deletion function (del-min2 below) differs from Paulson’s version. But
the difference turns out to be minor — see below.

2.1 Function del-min2

fun le-root :: 'a::linorder = 'a tree = bool where

http://toccata.lri.fr/gallery/braun_trees.en.html

le-root a t = (t = Leaf V a < wvalue t)

fun replace-min :: ‘a::linorder = 'a tree = ’a tree where
replace-min x (Node | - r) =
(if le-root x | & le-root x r then Node l x r
else
let a = value [in
if le-root a r then Node (replace-min z 1) a r
else Node | (value r) (replace-min z 1))

fun merge :: 'a::linorder tree = 'a tree = 'a tree where
merge | Leaf = 1|
merge (Node l1 al r1) (Node 12 a2 12) =
(if a1 < a2 then Node (Node 12 a2 r2) al (merge 1 r1)
else let (z, l') = del-left (Node l1 al r1)
in Node (replace-min x (Node 12 a2 12)) a2 1)

fun del-min2 where
del-min2 Leaf = Leaf |
del-min2 (Node |l z r) = merge Il r

2.2 Correctness Proof

It turns out that replace-min is just sift-down in disguise:

lemma replace-min-sift-down: braun (Node l a r) => replace-min x (Node [a 1)
= sift-down l x r

(proof)

This means that del-min2 is merely a slight optimization of del-min:
instead of calling del-left right away, merge can take advantage of the case
where the smaller element is at the root of the left heap and can be moved
up without complications. However, on average this is just the case on the
first level.

Function merge:

lemma mset-tree-merge:
braun (Node | x 1) = mset-tree(merge | r) = mset-tree | + mset-tree r

(proof)

lemma heap-merge:
[braun (Node l z r); heap I; heap r | = heap(merge | r)
(proof)

lemma del-left-braun-size:
del-left t = (x,t") = braun t = t # Leaf = braun t’ A size t = size t' 4+ 1

(proof)

lemma braun-size-merge:
braun (Node | x r) = braun(merge [) A size(merge |) = size | + size r

(proof)
Last step: prove all axioms of the priority queue specification:

interpretation braun: Priority-Queue

where empty = Leaf and is-empty = \h. h = Leaf

and insert = insert and del-min = del-min2

and get-min = get-min and invar = Ah. braun h A heap h
and mset = mset-tree

(proof)
end

3 Sorting via Priority Queues Based on Braun
Trees

theory Sorting-Braun
imports Priority-Queue-Braun
begin

This theory is about sorting algorithms based on heaps. Algorithm
A can be found here http://www.csse.canterbury.ac.nz/walter.guttmann/
publications/0005.pdf on p. 54. (published here http://www.jucs.org/doi?
doi=10.3217/jucs-009-02-0173) Not really the classic heap sort but a mix-
ture of heap sort and merge sort. The algorithm (B) in Larry’s book comes
closer to the classic heap sort: https://www.cl.cam.ac.uk/~Ip15/MLbook/
programs/sample7.sml.

Both algorithms have two phases: build a heap from a list, then extract
the elements of the heap into a sorted list.
abbreviation(input)

nlog2 n == nat(ceiling(log 2 n))

4 Phase 1: List to Tree

Algorithm A does this naively, in O(nlgn) fashion and generates a Braun
tree:

fun heap-of-A :: ('a::linorder) list = 'a tree where
heap-of-A [| = Leaf |
heap-of-A (a#as) = insert a (heap-of-A as)

lemma heap-heap-of-A: heap (heap-of-A xs)
(proof)

lemma braun-heap-of-A: braun (heap-of-A xs)

http://www.csse.canterbury.ac.nz/walter.guttmann/publications/0005.pdf
http://www.csse.canterbury.ac.nz/walter.guttmann/publications/0005.pdf
http://www.jucs.org/doi?doi=10.3217/jucs-009-02-0173
http://www.jucs.org/doi?doi=10.3217/jucs-009-02-0173
https://www.cl.cam.ac.uk/~lp15/MLbook/programs/sample7.sml
https://www.cl.cam.ac.uk/~lp15/MLbook/programs/sample7.sml

(proof)

lemma mset-tree-heap-of-A: mset-tree (heap-of-A xs) = mset s

(proof)
Running time is n*log n, which we can approximate with height.

fun t-insert :: ‘a::linorder = 'a tree = nat where
t-insert a Leaf = 1 |

t-insert a (Node | z 1) =

(if a < x then 1 + t-insert x 1 else 1 + t-insert a r)

fun t-heap-of-A :: ('a::linorder) list = nat where
t-heap-of-A [= 0 |
t-heap-of-A (a#as) = t-insert a (heap-of-A as) + t-heap-of-A as

lemma t-insert-height:
t-insert x t < height t + 1

{proof)

lemma height-insert-ge:
height t < height (insert x t)

{proof)

lemma t-heap-of-A-bound:
t-heap-of-A xs < length xs * (height (heap-of-A xs) + 1)
(proof)

lemma size-heap-of-A:
size (heap-of-A xs) = length xs
(proof)

lemma t-heap-of-A-log-bound:
t-heap-of-A xzs < length zs * (nlog2 (length xs + 1) + 1)
(proof)

Algorithm B mimics heap sort more closely by building heaps bottom
up in a balanced way:

fun heapify :: nat = (‘a::linorder) list = 'a tree x 'a list where
heapify 0 xs = (Leaf, xs) |
heapify (Suc n) (z#zs) =
(let (1, ys) = heapify (Suc n div 2) xs;
(1, z8) = heapify (n div 2) ys
in (sift-down l x r, 28))

The result should be a Braun tree:

lemma heapify-snd:
n < length xs = snd (heapify n xs) = drop n xs

{proof)

lemma heapify-snd-tup:
heapify n zs = (t, ys) = n < length xs = ys = drop n xs
(proof)

lemma heapify-correct:
n < length xs = heapify n s = (t, ys) =
size t = n A heap t A braun t N mset-tree t = mset (take n xs)
(proof)

lemma braun-heapify:
n < length xs = braun (fst (heapify n xs))
(proof)

lemma heap-heapify:
n < length s => heap (fst (heapify n xs))
{proof)

lemma mset-heapify:
n < length xs = mset-tree (fst (heapify n xs)) = mset (take n xs)

{proof)

The running time of heapify is linear. (similar to https://en.wikipedia.
org/wiki/Binary heap#Building a heap)

This is an interesting result, so we embark on this exercise to prove it
the hard way.

context includes pattern-aliases
begin

function (sequential) t-sift-down :: 'a::linorder tree = 'a = 'a tree = nat where
t-sift-down Leaf a Leaf = 1 |
t-sift-down (Node Leaf x Leaf) a Leaf = 2 |
t-sift-down (Node 11 x1 r1 =: t1) a (Node 12 22 r2 =: t2) =

(ifa <zl ANa<22

then 1

else if 1 < x2 then 1 + t-sift-down l1 a 71

else 1 + t-sift-down 12 a r2)

(proof)

termination

(proof)

end

fun t-heapify :: nat = (‘a::linorder) list = nat where
t-heapify 0 xs = 1 |
t-heapify (Suc n) (zf#zs) =
(let (1, ys) = heapify (Suc n div 2) xs;
t1 = t-heapify (Suc n div 2) zs;
(r, zs) = heapify (n div 2) ys;

https://en.wikipedia.org/wiki/Binary_heap#Building_a_heap
https://en.wikipedia.org/wiki/Binary_heap#Building_a_heap

t2 = t-heapify (n div 2) ys
in 1+ tl + t2 + t-sift-down l z 1)

lemma t-sift-down-height:
braun (Node | x r) = t-sift-down | x r < height (Node | x)
(proof)

lemma sift-down-height:
braun (Node | © r) = height (sift-down | z r) < height (Node | x r)
{proof)

lemma braun-height-r-le:
braun (Node | x 1) == height r < height |

{proof)

lemma braun-height-l-le:
assumes b: braun (Node | z 1)
shows height | < Suc (height r)

{proof)

lemma braun-height-node-eq:
assumes b: braun (Node | z 1)
shows height (Node | z) = Suc (height 1)

{proof)

lemma t-heapify-induct:
i < length xs = t-heapify i xs + height (fst (heapify i xs)) < & * i + 1
(proof)

lemma t-heapify-bound:
1 < length xs = t-heapify i s < 5 *x { + 1
(proof)

5 Phase 2: Heap to List

Algorithm A extracts (list-of-A) the list by removing the root and merging
the children:

lemma size-prod-measure[measure-function]:
is-measure f = is-measure § = is-measure (size-prod f g)
(proof)

fun merge :: (‘a:linorder) tree = 'a tree = 'a tree where
merge Leaf t2 = t2 |
merge t1 Leaf = t1 |
merge (Node l1 al r1) (Node 12 a2 12) =
(if a1l < a2 then Node (merge i1 1) al (Node 12 a2 12)
else Node (Node l1 al 1) a2 (merge 12 r2))

10

value merge ((), 0::int, () (), 0, () = (0, 0, (0, 0, O))

lemma merge-size[termination-simpl:
size (merge l r) = size | + size T
(proof)

fun list-of-A :: (‘a::linorder) tree = 'a list where
list-of-A Leaf =[] |
list-of-A (Node l a r) = a # list-of-A (merge 1 r)

value list-of-A (heap-of-A shuffle100)

lemma set-tree-merge[simpl:
set-tree (merge 1 r) = set-tree | U set-tree r
{proof)

lemma mset-tree-merge[simpl:
mset-tree (merge | r) = mset-tree | + mset-tree r

{proof)

lemma merge-heap:
heap | = heap r = heap (merge | 1)

{proof)

lemma set-list-of-A[simp):
set (list-of-A t) = set-tree t
{proof)

lemma mset-list-of-A[simp]:
mset (list-of-A t) = mset-tree t
{proof)

lemma sorted-list-of-A:
heap t = sorted (list-of-A t)
(proof)

lemma sortedA: sorted (list-of-A (heap-of-A xs))
(proof)

lemma msetA: mset (list-of-A (heap-of-A xs)) = mset xs
(proof)

Does list-of-A take time O(nlgn)? Although merge does not preserve
braun, it cannot increase the height of the heap.

lemma merge-height:
height (merge [) < Suc (max (height 1) (height r))
{proof)

11

corollary merge-height-display:
height (merge I) < height (Node | x)
{proof)

fun t-merge :: (‘a::linorder) tree = 'a tree = nat where
t-merge Leaf t2 = 0 |
t-merge t1 Leaf = 0 |
t-merge (Node 11 al r1) (Node 12 a2 12) =
(if al < a2 then 1 + t-merge l1 r1
else 1 + t-merge 12 r2)

fun t-list-of-A :: (‘a::linorder) tree = nat where
t-list-of-A Leaf = 0 |
t-list-of-A (Node l a v) = 1 + t-merge l r + t-list-of-A (merge L 1)

lemma t-merge-height:
t-merge | v < maz (height 1) (height)
{proof)

lemma t-list-of-A-induct:
height t < n = t-list-of-A t < 2 x n * size t
(proof)

lemma t-list-of-A-bound:
t-list-of-A t < 2 x height t x size t
(proof)

lemma t-list-of-A-log-bound:
braun t = t-list-of-A t < 2 x nlog2 (size t + 1) * size t
{proof)

value t-list-of-A (heap-of-A shuffle100)

theorem ¢-sortA:

t-heap-of-A xs + t-list-of-A (heap-of-A zs) < 8 x length zs x (nlog2 (length xs +
1)+ 1)

(is ?lhs < -)

(proof)
Running time of algorithm B:

function list-of-B :: ('a::linorder) tree = 'a list where

list-of-B Leaf = || |

list-of-B (Node l a v) = a # list-of-B (del-min (Node | a 1))
(proof)

lemma [list-of-B-braun-ptermination:
braun t = list-of-B-dom t

{proof)

12

lemmas list-of-B-braun-simps
= list-of-B.psimps|OF list-of- B-braun-ptermination)

lemma mset-list-of-B:
braun t = mset (list-of-B t) = mset-tree t
(proof)

lemma set-list-of-B:
braun t = set (list-of-B t) = set-tree t
(proof)

lemma sorted-list-of-B:
braun t = heap t = sorted (list-of-B t)

{proof)

definition
heap-of-B xs = fst (heapify (length xs) xs)

lemma sortedB: sorted (list-of-B (heap-of-B xs))
(proof)

lemma msetB: mset (list-of-B (heap-of-B xs)) = mset s
(proof)

fun t-del-left :: 'a tree = nat where
t-del-left (Node Leaf x r) = 1 |
t-del-left (Node | z 1) = (let (y,l") = del-left l in 2 + t-del-left 1)

fun t-del-min :: 'a::linorder tree = nat where

t-del-min Leaf = 0 |

t-del-min (Node Leaf z r) = 0 |

t-del-min (Node l z) = (let (y,l") = del-left 1 in t-del-left | + t-sift-down r y 1)

function t-list-of-B :: (‘a::linorder) tree = nat where
t-list-of-B Leaf = 0 |
t-list-of-B (Node l a r) = 1 + t-del-min (Node | a r) + t-list-of-B (del-min (Node
lar))
{proof)

lemma t-del-left-bound:
t # Leaf = t-del-left t < 2 * height t
(proof)

lemma del-left-height:
del-left t = (v, t') = t # Leaf = height t' < height ¢
(proof)

lemma t-del-min-bound:
braun t = t-del-min t < 3 * height t

13

{proof)

lemma t-list-of- B-braun-ptermination:
braun t = t-list-of-B-dom t

(proof)

lemmas t-list-of-B-braun-simps
= t-list-of-B.psimps| OF t-list-of-B-braun-ptermination]

lemma del-min-height:
braun t = height (del-min t) < height t

{proof)

lemma t-list-of-B-induct:
braun t = height t < n = t-list-of-Bt < 3 * (n + 1) * size t
(proof)

lemma t-list-of-B-bound:
braun t = t-list-of-B t < 3 * (height t + 1) * size t
{proof)

lemma t-list-of-B-log-bound:
braun t = t-list-of-B t < 3 * (nlog2 (size t + 1) + 1) x size t
{proof)

definition
t-heap-of-B xs = length xs + t-heapify (length xs) xs

lemma t-heap-of-B-bound:
t-heap-of-B xs < 6 x length zs + 1
(proof)

lemmas size-heapify = arg-cong|OF mset-heapify, where f=size, simplified)
theorem t-sortB:
t-heap-of-B zs + t-list-of-B (heap-of-B xs)
< 8 x length xs * (nlog2 (length xzs + 1) + 3) + 1
(is %lhs < -)
(proof)

end

References

[1] W. Braun and M. Rem. A logarithmic implementation of flexible arrays.
Memorandum MR83/4. Eindhoven University of Techology, 1983.

14

[2] R. R. Hoogerwoord. A logarithmic implementation of flexible arrays. In
R. Bird, C. Morgan, and J. Woodcock, editors, Mathematics of Program
Construction, Second International Conference, volume 669 of LNCS,
pages 191-207. Springer, 1992.

[3] L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, 2nd edition, 1996.

15

	Priority Queues Based on Braun Trees
	Introduction
	Get Minimum
	Insertion
	Deletion
	Running Time Analysis

	Priority Queues Based on Braun Trees 2
	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 del-min2
	Correctness Proof

	Sorting via Priority Queues Based on Braun Trees
	Phase 1: List to Tree
	Phase 2: Heap to List

