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Abstract

This article provides a short proof of the Prime Number Theorem in
several equivalent forms, most notably π(x) ∼ x/ lnx where π(x) is the
number of primes no larger than x. It also defines other basic number-
theoretic functions related to primes like Chebyshev’s ϑ and ψ and
the “n-th prime number” function pn. We also show various bounds
and relationship between these functions are shown. Lastly, we derive
Mertens’ First and Second Theorem, i. e.

∑
p≤x

ln p
p = lnx+O(1) and∑

p≤x
1
p = ln lnx +M + O(1/ lnx). We also give explicit bounds for

the remainder terms.
The proof of the Prime Number Theorem builds on a library of

Dirichlet series and analytic combinatorics. We essentially follow the
presentation by Newman [6]. The core part of the proof is a Tauberian
theorem for Dirichlet series, which is proven using complex analysis
and then used to strengthen Mertens’ First Theorem to

∑
p≤x

ln p
p =

lnx+ c+ o(1).
A variant of this proof has been formalised before by Harrison in

HOL Light [5], and formalisations of Selberg’s elementary proof exist
both by Avigad et al. [2] in Isabelle and by Carneiro [3] in Metamath.
The advantage of the analytic proof is that, while it requires more pow-
erful mathematical tools, it is considerably shorter and clearer. This
article attempts to provide a short and clear formalisation of all com-
ponents of that proof using the full range of mathematical machinery
available in Isabelle, staying as close as possible to Newman’s simple
paper proof.
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1 Auxiliary material
theory Prime-Number-Theorem-Library
imports

Zeta-Function.Zeta-Function
HOL−Real-Asymp.Real-Asymp

begin

Conflicting notation from HOL−Analysis.Infinite-Sum
no-notation Infinite-Sum.abs-summable-on (infixr ‹abs ′-summable ′-on› 46 )

lemma homotopic-loopsI :
fixes h :: real × real ⇒ -
assumes continuous-on ({0 ..1} × {0 ..1}) h

h ‘ ({0 ..1} × {0 ..1}) ⊆ s∧
x. x ∈ {0 ..1} =⇒ h (0 , x) = p x∧
x. x ∈ {0 ..1} =⇒ h (1 , x) = q x∧
x. x ∈ {0 ..1} =⇒ pathfinish (h ◦ Pair x) = pathstart (h ◦ Pair x)

shows homotopic-loops s p q
using assms unfolding homotopic-loops by (intro exI [of - h]) auto

lemma homotopic-pathsI :
fixes h :: real × real ⇒ -
assumes continuous-on ({0 ..1} × {0 ..1}) h
assumes h ‘ ({0 ..1} × {0 ..1}) ⊆ s
assumes

∧
x. x ∈ {0 ..1} =⇒ h (0 , x) = p x

assumes
∧

x. x ∈ {0 ..1} =⇒ h (1 , x) = q x
assumes

∧
x. x ∈ {0 ..1} =⇒ pathstart (h ◦ Pair x) = pathstart p

assumes
∧

x. x ∈ {0 ..1} =⇒ pathfinish (h ◦ Pair x) = pathfinish p
shows homotopic-paths s p q
using assms unfolding homotopic-paths by (intro exI [of - h]) auto

lemma sum-upto-ln-conv-sum-upto-mangoldt:
sum-upto (λn. ln (real n)) x = sum-upto (λn. mangoldt n ∗ nat bx / real nc) x

proof −
have sum-upto (λn. ln (real n)) x =

sum-upto (λn.
∑

d | d dvd n. mangoldt d) x
by (intro sum-upto-cong) (simp-all add: mangoldt-sum)

also have . . . = sum-upto (λk. sum-upto (λd. mangoldt k) (x / real k)) x
by (rule sum-upto-sum-divisors)

also have . . . = sum-upto (λn. mangoldt n ∗ nat bx / real nc) x
unfolding sum-upto-altdef by (simp add: mult-ac)

finally show ?thesis .
qed

lemma ln-fact-conv-sum-upto-mangoldt:
ln (fact n) = sum-upto (λk. mangoldt k ∗ (n div k)) n

proof −
have [simp]: {0<..Suc n} = insert (Suc n) {0<..n} for n by auto
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have ln (fact n) = sum-upto (λn. ln (real n)) n
by (induction n) (auto simp: sum-upto-altdef nat-add-distrib ln-mult)

also have . . . = sum-upto (λk. mangoldt k ∗ (n div k)) n
unfolding sum-upto-ln-conv-sum-upto-mangoldt
by (intro sum-upto-cong) (auto simp: floor-divide-of-nat-eq)

finally show ?thesis .
qed

lemma fds-abs-converges-comparison-test:
fixes s :: ′a :: dirichlet-series
assumes eventually (λn. norm (fds-nth f n) ≤ fds-nth g n) at-top and fds-converges

g (s · 1 )
shows fds-abs-converges f s
unfolding fds-abs-converges-def

proof (rule summable-comparison-test-ev)
from assms(2 ) show summable (λn. fds-nth g n / n powr (s · 1 ))

by (auto simp: fds-converges-def )
from assms(1 ) eventually-gt-at-top[of 0 ]

show eventually (λn. norm (norm (fds-nth f n / nat-power n s)) ≤
fds-nth g n / real n powr (s · 1 )) at-top

by eventually-elim (auto simp: norm-divide norm-nat-power intro!: divide-right-mono)
qed

lemma fds-converges-scaleR [intro]:
assumes fds-converges f s
shows fds-converges (c ∗R f ) s

proof −
from assms have summable (λn. c ∗R (fds-nth f n / nat-power n s))

by (intro summable-scaleR-right) (auto simp: fds-converges-def )
also have (λn. c ∗R (fds-nth f n / nat-power n s)) = (λn. (c ∗R fds-nth f n /

nat-power n s))
by (simp add: scaleR-conv-of-real)

finally show ?thesis by (simp add: fds-converges-def )
qed

lemma fds-abs-converges-scaleR [intro]:
assumes fds-abs-converges f s
shows fds-abs-converges (c ∗R f ) s

proof −
from assms have summable (λn. abs c ∗ norm (fds-nth f n / nat-power n s))

by (intro summable-mult) (auto simp: fds-abs-converges-def )
also have (λn. abs c ∗ norm (fds-nth f n / nat-power n s)) =

(λn. norm ((c ∗R fds-nth f n) / nat-power n s)) by (simp add:
norm-divide)

finally show ?thesis by (simp add: fds-abs-converges-def )
qed

lemma conv-abscissa-scaleR: conv-abscissa (scaleR c f ) ≤ conv-abscissa f
by (rule conv-abscissa-mono) auto
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lemma abs-conv-abscissa-scaleR: abs-conv-abscissa (scaleR c f ) ≤ abs-conv-abscissa
f

by (rule abs-conv-abscissa-mono) auto

lemma fds-abs-converges-mult-const-left [intro]:
fds-abs-converges f s =⇒ fds-abs-converges (fds-const c ∗ f ) s
by (auto simp: fds-abs-converges-def norm-mult norm-divide dest: summable-mult[of

- norm c])

lemma conv-abscissa-mult-const-left:
conv-abscissa (fds-const c ∗ f ) ≤ conv-abscissa f
by (intro conv-abscissa-mono) auto

lemma abs-conv-abscissa-mult-const-left:
abs-conv-abscissa (fds-const c ∗ f ) ≤ abs-conv-abscissa f
by (intro abs-conv-abscissa-mono) auto

lemma fds-abs-converges-mult-const-right [intro]:
fds-abs-converges f s =⇒ fds-abs-converges (f ∗ fds-const c) s
by (metis mult.commute fds-abs-converges-mult-const-left)

lemma conv-abscissa-mult-const-right:
conv-abscissa (f ∗ fds-const c) ≤ conv-abscissa f
by (intro conv-abscissa-mono) auto

lemma abs-conv-abscissa-mult-const-right:
abs-conv-abscissa (f ∗ fds-const c) ≤ abs-conv-abscissa f
by (intro abs-conv-abscissa-mono) auto

lemma bounded-coeffs-imp-fds-abs-converges:
fixes s :: ′a :: dirichlet-series and f :: ′a fds
assumes Bseq (fds-nth f ) s · 1 > 1
shows fds-abs-converges f s

proof −
from assms obtain C where C :

∧
n. norm (fds-nth f n) ≤ C

by (auto simp: Bseq-def )
show ?thesis
proof (rule fds-abs-converges-comparison-test)

from ‹s · 1 > 1 › show fds-converges (C ∗R fds-zeta) (s · 1 )
by (intro fds-abs-converges-imp-converges) auto

from C show eventually (λn. norm (fds-nth f n) ≤ fds-nth (C ∗R fds-zeta) n)
at-top

by (intro always-eventually) (auto simp: fds-nth-zeta)
qed

qed

lemma bounded-coeffs-imp-fds-abs-converges ′:
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fixes s :: ′a :: dirichlet-series and f :: ′a fds
assumes Bseq (λn. fds-nth f n ∗ nat-power n s0 ) s · 1 > 1 − s0 · 1
shows fds-abs-converges f s

proof −
have fds-nth (fds-shift s0 f ) = (λn. fds-nth f n ∗ nat-power n s0 )

by (auto simp: fun-eq-iff )
with assms have Bseq (fds-nth (fds-shift s0 f )) by simp
with assms(2 ) have fds-abs-converges (fds-shift s0 f ) (s + s0 )

by (intro bounded-coeffs-imp-fds-abs-converges) (auto simp: algebra-simps)
thus ?thesis by simp

qed

lemma bounded-coeffs-imp-abs-conv-abscissa-le:
fixes s :: ′a :: dirichlet-series and f :: ′a fds and c :: ereal
assumes Bseq (λn. fds-nth f n ∗ nat-power n s) 1 − s · 1 ≤ c
shows abs-conv-abscissa f ≤ c

proof (rule abs-conv-abscissa-leI-weak)
fix x assume c < ereal x
have ereal (1 − s · 1 ) ≤ c by fact
also have . . . < ereal x by fact
finally have 1 − s · 1 < ereal x by simp
thus fds-abs-converges f (of-real x)

by (intro bounded-coeffs-imp-fds-abs-converges ′[OF assms(1 )]) auto
qed

lemma bounded-coeffs-imp-abs-conv-abscissa-le-1 :
fixes s :: ′a :: dirichlet-series and f :: ′a fds
assumes Bseq (λn. fds-nth f n)
shows abs-conv-abscissa f ≤ 1

proof −
have [simp]: fds-nth f n ∗ nat-power n 0 = fds-nth f n for n

by (cases n = 0 ) auto
show ?thesis

by (rule bounded-coeffs-imp-abs-conv-abscissa-le[where s = 0 ]) (insert assms,
auto simp:)
qed

lemma
fixes a b c :: real
assumes ab: a + b > 0 and c: c < −1
shows set-integrable-powr-at-top: (λx. (b + x) powr c) absolutely-integrable-on
{a<..}

and set-lebesgue-integral-powr-at-top:
(
∫

x∈{a<..}. ((b + x) powr c) ∂lborel) = −((b + a) powr (c + 1 ) / (c +
1 ))

and powr-has-integral-at-top:
((λx. (b + x) powr c) has-integral −((b + a) powr (c + 1 ) / (c + 1 )))

{a<..}
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proof −
let ?f = λx. (b + x) powr c and ?F = λx. (b + x) powr (c + 1 ) / (c + 1 )
have limits: ((?F ◦ real-of-ereal) −−−→ ?F a) (at-right (ereal a))

((?F ◦ real-of-ereal) −−−→ 0 ) (at-left ∞)
using c ab unfolding ereal-tendsto-simps1 by (real-asymp simp: field-simps)+

have 1 : set-integrable lborel (einterval a ∞) ?f using ab c limits
by (intro interval-integral-FTC-nonneg) (auto intro!: derivative-eq-intros con-

tinuous-intros)
thus 2 : ?f absolutely-integrable-on {a<..}

by (auto simp: set-integrable-def integrable-completion)
have LBINT x=ereal a..∞. (b + x) powr c = 0 − ?F a using ab c limits

by (intro interval-integral-FTC-nonneg) (auto intro!: derivative-eq-intros con-
tinuous-intros)

thus 3 : (
∫

x∈{a<..}. ((b + x) powr c) ∂lborel) = −((b + a) powr (c + 1 ) / (c
+ 1 ))

by (simp add: interval-integral-to-infinity-eq)
show (?f has-integral −((b + a) powr (c + 1 ) / (c + 1 ))) {a<..}

using set-borel-integral-eq-integral[OF 1 ] 3 by (simp add: has-integral-iff )
qed

lemma fds-converges-altdef2 :
fds-converges f s ←→ convergent (λN . eval-fds (fds-truncate N f ) s)
unfolding fds-converges-def summable-iff-convergent ′ eval-fds-truncate
by (auto simp: not-le intro!: convergent-cong always-eventually sum.mono-neutral-right)

lemma tendsto-eval-fds-truncate:
assumes fds-converges f s
shows (λN . eval-fds (fds-truncate N f ) s) −−−−→ eval-fds f s

proof −
have (λN . eval-fds (fds-truncate N f ) s) −−−−→ eval-fds f s ←→

(λN .
∑

i≤N . fds-nth f i / nat-power i s) −−−−→ eval-fds f s
unfolding eval-fds-truncate

by (intro filterlim-cong always-eventually allI sum.mono-neutral-left) (auto simp:
not-le)

also have . . . using assms
by (simp add: fds-converges-iff sums-def ′ atLeast0AtMost)

finally show ?thesis .
qed

lemma linepath-translate-left: linepath (c + a) (c + a) = (λx. c + a) ◦ linepath
a b

by auto

lemma linepath-translate-right: linepath (a + c) (b + c) = (λx. x + c) ◦ linepath
a b

by (auto simp: fun-eq-iff linepath-def algebra-simps)

lemma has-contour-integral-linepath-same-Im-iff :
fixes a b :: complex and f :: complex ⇒ complex
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assumes Im a = Im b Re a < Re b
shows (f has-contour-integral I ) (linepath a b) ←→

((λx. f (of-real x + Im a ∗ i)) has-integral I ) {Re a..Re b}
proof −

have deriv: vector-derivative ((λx. x − Im a ∗ i) ◦ linepath a b) (at y) = b − a
for y

using linepath-translate-right[of a −Im a ∗ i b, symmetric] by simp
have (f has-contour-integral I ) (linepath a b) ←→

((λx. f (x + Im a ∗ i)) has-contour-integral I ) (linepath (a − Im a ∗ i) (b
− Im a ∗ i))

using linepath-translate-right[of a −Im a ∗ i b] deriv by (simp add: has-contour-integral)
also have . . . ←→ ((λx. f (x + Im a ∗ i)) has-integral I ) {Re a..Re b} using

assms
by (subst has-contour-integral-linepath-Reals-iff ) (auto simp: complex-is-Real-iff )

finally show ?thesis .
qed

lemma contour-integrable-linepath-same-Im-iff :
fixes a b :: complex and f :: complex ⇒ complex
assumes Im a = Im b Re a < Re b
shows (f contour-integrable-on linepath a b) ←→

(λx. f (of-real x + Im a ∗ i)) integrable-on {Re a..Re b}
using contour-integrable-on-def has-contour-integral-linepath-same-Im-iff [OF assms]

by blast

lemma contour-integral-linepath-same-Im:
fixes a b :: complex and f :: complex ⇒ complex
assumes Im a = Im b Re a < Re b
shows contour-integral (linepath a b) f = integral {Re a..Re b} (λx. f (x + Im

a ∗ i))
proof (cases f contour-integrable-on linepath a b)

case True
thus ?thesis using has-contour-integral-linepath-same-Im-iff [OF assms, of f ]

using has-contour-integral-integral has-contour-integral-unique by blast
next

case False
thus ?thesis using contour-integrable-linepath-same-Im-iff [OF assms, of f ]

by (simp add: not-integrable-contour-integral not-integrable-integral)
qed

lemmas [simp del] = div-mult-self3 div-mult-self4 div-mult-self2 div-mult-self1

interpretation cis: periodic-fun-simple cis 2 ∗ pi
by standard (simp-all add: complex-eq-iff )

lemma analytic-onE-box:
assumes f analytic-on A s ∈ A
obtains a b where Re a < Re b Im a < Im b s ∈ box a b f analytic-on box a b
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proof −
from assms obtain r where r : r > 0 f holomorphic-on ball s r

by (auto simp: analytic-on-def )
with open-contains-box[of ball s r s] obtain a b

where box a b ⊆ ball s r s ∈ box a b ∀ i∈Basis. a · i < b · i by auto
moreover from r have f analytic-on ball s r by (simp add: analytic-on-open)
ultimately show ?thesis using that[of a b] analytic-on-subset[of - ball s r box a

b]
by (auto simp: Basis-complex-def )

qed

lemma Re-image-box:
assumes Re a < Re b Im a < Im b
shows Re ‘ box a b = {Re a<..<Re b}
using inner-image-box[of 1 ::complex a b] assms by (auto simp: Basis-complex-def )

lemma Im-image-box:
assumes Re a < Re b Im a < Im b
shows Im ‘ box a b = {Im a<..<Im b}
using inner-image-box[of i::complex a b] assms by (auto simp: Basis-complex-def )

lemma Re-image-cbox:
assumes Re a ≤ Re b Im a ≤ Im b
shows Re ‘ cbox a b = {Re a..Re b}
using inner-image-cbox[of 1 ::complex a b] assms by (auto simp: Basis-complex-def )

lemma Im-image-cbox:
assumes Re a ≤ Re b Im a ≤ Im b
shows Im ‘ cbox a b = {Im a..Im b}
using inner-image-cbox[of i::complex a b] assms by (auto simp: Basis-complex-def )

lemma analytic-onE-cball:
assumes f analytic-on A s ∈ A ub > (0 ::real)
obtains R where R > 0 R < ub f analytic-on cball s R

proof −
from assms obtain r where r > 0 f holomorphic-on ball s r

by (auto simp: analytic-on-def )
hence f analytic-on ball s r by (simp add: analytic-on-open)
hence f analytic-on cball s (min (ub / 2 ) (r / 2 ))

by (rule analytic-on-subset, subst cball-subset-ball-iff ) (use ‹r > 0 › in auto)
moreover have min (ub / 2 ) (r / 2 ) > 0 and min (ub / 2 ) (r / 2 ) < ub

using ‹r > 0 › and ‹ub > 0 › by (auto simp: min-def )
ultimately show ?thesis using that[of min (ub / 2 ) (r / 2 )]

by blast
qed

corollary analytic-pre-zeta ′ [analytic-intros]:
assumes f analytic-on A a > 0
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shows (λx. pre-zeta a (f x)) analytic-on A
using analytic-on-compose-gen[OF assms(1 ) analytic-pre-zeta[of a UNIV ]] assms(2 )
by (auto simp: o-def )

corollary analytic-hurwitz-zeta ′ [analytic-intros]:
assumes f analytic-on A (

∧
x. x ∈ A =⇒ f x 6= 1 ) a > 0

shows (λx. hurwitz-zeta a (f x)) analytic-on A
using analytic-on-compose-gen[OF assms(1 ) analytic-hurwitz-zeta[of a −{1}]]

assms(2 ,3 )
by (auto simp: o-def )

corollary analytic-zeta ′ [analytic-intros]:
assumes f analytic-on A (

∧
x. x ∈ A =⇒ f x 6= 1 )

shows (λx. zeta (f x)) analytic-on A
using analytic-on-compose-gen[OF assms(1 ) analytic-zeta[of −{1}]] assms(2 )
by (auto simp: o-def )

lemma logderiv-zeta-analytic: (λs. deriv zeta s / zeta s) analytic-on {s. Re s ≥ 1}
− {1}

using zeta-Re-ge-1-nonzero by (auto intro!: analytic-intros)

lemma mult-real-sqrt: x ≥ 0 =⇒ x ∗ sqrt y = sqrt (x ^ 2 ∗ y)
by (simp add: real-sqrt-mult)

lemma arcsin-pos: x ∈ {0<..1} =⇒ arcsin x > 0
using arcsin-less-arcsin[of 0 x] by simp

lemmas analytic-imp-holomorphic ′= holomorphic-on-subset[OF analytic-imp-holomorphic]

lemma residue-simple ′:
assumes open s 0 ∈ s f holomorphic-on s
shows residue (λw. f w / w) 0 = f 0
using residue-simple[of s 0 f ] assms by simp

lemma fds-converges-cong:
assumes eventually (λn. fds-nth f n = fds-nth g n) at-top s = s ′

shows fds-converges f s ←→ fds-converges g s ′

unfolding fds-converges-def
by (intro summable-cong eventually-mono[OF assms(1 )]) (simp-all add: assms)

lemma fds-abs-converges-cong:
assumes eventually (λn. fds-nth f n = fds-nth g n) at-top s = s ′

shows fds-abs-converges f s ←→ fds-abs-converges g s ′

unfolding fds-abs-converges-def
by (intro summable-cong eventually-mono[OF assms(1 )]) (simp-all add: assms)

lemma conv-abscissa-cong:
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assumes eventually (λn. fds-nth f n = fds-nth g n) at-top
shows conv-abscissa f = conv-abscissa g

proof −
have fds-converges f = fds-converges g

by (intro ext fds-converges-cong assms refl)
thus ?thesis by (simp add: conv-abscissa-def )

qed

lemma abs-conv-abscissa-cong:
assumes eventually (λn. fds-nth f n = fds-nth g n) at-top
shows abs-conv-abscissa f = abs-conv-abscissa g

proof −
have fds-abs-converges f = fds-abs-converges g

by (intro ext fds-abs-converges-cong assms refl)
thus ?thesis by (simp add: abs-conv-abscissa-def )

qed

definition fds-remainder where
fds-remainder m = fds-subseries (λn. n > m)

lemma fds-nth-remainder : fds-nth (fds-remainder m f ) = (λn. if n > m then
fds-nth f n else 0 )

by (simp add: fds-remainder-def fds-subseries-def fds-nth-fds ′)

lemma fds-converges-remainder-iff [simp]:
fds-converges (fds-remainder m f ) s ←→ fds-converges f s
by (intro fds-converges-cong eventually-mono[OF eventually-gt-at-top[of m]])

(auto simp: fds-nth-remainder)

lemma fds-abs-converges-remainder-iff [simp]:
fds-abs-converges (fds-remainder m f ) s ←→ fds-abs-converges f s
by (intro fds-abs-converges-cong eventually-mono[OF eventually-gt-at-top[of m]])

(auto simp: fds-nth-remainder)

lemma fds-converges-remainder [intro]:
fds-converges f s =⇒ fds-converges (fds-remainder m f ) s

and fds-abs-converges-remainder [intro]:
fds-abs-converges f s =⇒ fds-abs-converges (fds-remainder m f ) s

by simp-all

lemma conv-abscissa-remainder [simp]:
conv-abscissa (fds-remainder m f ) = conv-abscissa f
by (intro conv-abscissa-cong eventually-mono[OF eventually-gt-at-top[of m]])

(auto simp: fds-nth-remainder)

lemma abs-conv-abscissa-remainder [simp]:
abs-conv-abscissa (fds-remainder m f ) = abs-conv-abscissa f
by (intro abs-conv-abscissa-cong eventually-mono[OF eventually-gt-at-top[of m]])
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(auto simp: fds-nth-remainder)

lemma eval-fds-remainder :
eval-fds (fds-remainder m f ) s = (

∑
n. fds-nth f (n + Suc m) / nat-power (n

+ Suc m) s)
(is - = suminf (λn. ?f (n + Suc m)))

proof (cases fds-converges f s)
case False
hence ¬fds-converges (fds-remainder m f ) s by simp
hence (λx. (λn. fds-nth (fds-remainder m f ) n / nat-power n s) sums x) = (λ-.

False)
by (auto simp: fds-converges-def summable-def )

hence eval-fds (fds-remainder m f ) s = (THE -. False)
by (simp add: eval-fds-def suminf-def )

moreover from False have ¬summable (λn. ?f (n + Suc m)) unfolding
fds-converges-def

by (subst summable-iff-shift) auto
hence (λx. (λn. ?f (n + Suc m)) sums x) = (λ-. False)

by (auto simp: summable-def )
hence suminf (λn. ?f (n + Suc m)) = (THE -. False)

by (simp add: suminf-def )
ultimately show ?thesis by simp

next
case True
hence ∗: fds-converges (fds-remainder m f ) s by simp
have eval-fds (fds-remainder m f ) s = (

∑
n. fds-nth (fds-remainder m f ) n /

nat-power n s)
unfolding eval-fds-def ..

also have . . . = (
∑

n. fds-nth (fds-remainder m f ) (n + Suc m) / nat-power (n
+ Suc m) s)

using ∗ unfolding fds-converges-def
by (subst suminf-minus-initial-segment) (auto simp: fds-nth-remainder)

also have (λn. fds-nth (fds-remainder m f ) (n + Suc m)) = (λn. fds-nth f (n +
Suc m))

by (intro ext) (auto simp: fds-nth-remainder)
finally show ?thesis .

qed

lemma fds-truncate-plus-remainder : fds-truncate m f + fds-remainder m f = f
by (intro fds-eqI ) (auto simp: fds-truncate-def fds-remainder-def fds-subseries-def )

lemma holomorphic-fds-eval ′ [holomorphic-intros]:
assumes g holomorphic-on A

∧
x. x ∈ A =⇒ Re (g x) > conv-abscissa f

shows (λx. eval-fds f (g x)) holomorphic-on A
using holomorphic-on-compose-gen[OF assms(1 ) holomorphic-fds-eval[OF or-

der .refl, of f ]] assms(2 )
by (auto simp: o-def )
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lemma analytic-fds-eval ′ [analytic-intros]:
assumes g analytic-on A

∧
x. x ∈ A =⇒ Re (g x) > conv-abscissa f

shows (λx. eval-fds f (g x)) analytic-on A
using analytic-on-compose-gen[OF assms(1 ) analytic-fds-eval[OF order .refl, of

f ]] assms(2 )
by (auto simp: o-def )

lemma continuous-on-linepath [continuous-intros]:
assumes continuous-on A a continuous-on A b continuous-on A f
shows continuous-on A (λx. linepath (a x) (b x) (f x))
using assms by (auto simp: linepath-def intro!: continuous-intros assms)

lemma continuous-on-part-circlepath [continuous-intros]:
assumes continuous-on A c continuous-on A r continuous-on A a continuous-on

A b
continuous-on A f

shows continuous-on A (λx. part-circlepath (c x) (r x) (a x) (b x) (f x))
using assms by (auto simp: part-circlepath-def intro!: continuous-intros assms)

lemma homotopic-loops-part-circlepath:
assumes sphere c r ⊆ A and r ≥ 0 and

b1 = a1 + 2 ∗ of-int k ∗ pi and b2 = a2 + 2 ∗ of-int k ∗ pi
shows homotopic-loops A (part-circlepath c r a1 b1 ) (part-circlepath c r a2 b2 )

proof −
define h where h = (λ(x,y). part-circlepath c r (linepath a1 a2 x) (linepath b1

b2 x) y)
show ?thesis
proof (rule homotopic-loopsI )

show continuous-on ({0 ..1} × {0 ..1}) h
by (auto simp: h-def case-prod-unfold intro!: continuous-intros)

next
from assms have h ‘ ({0 ..1} × {0 ..1}) ⊆ sphere c r

by (auto simp: h-def part-circlepath-def dist-norm norm-mult)
also have . . . ⊆ A by fact
finally show h ‘ ({0 ..1} × {0 ..1}) ⊆ A .

next
fix x :: real assume x: x ∈ {0 ..1}
show h (0 , x) = part-circlepath c r a1 b1 x and h (1 , x) = part-circlepath c r

a2 b2 x
by (simp-all add: h-def linepath-def )

have cis (pi ∗ (real-of-int k ∗ 2 )) = 1
using cis.plus-of-int[of 0 k] by (simp add: algebra-simps)

thus pathfinish (h ◦ Pair x) = pathstart (h ◦ Pair x)
by (simp add: h-def o-def exp-eq-polar linepath-def algebra-simps

cis-mult [symmetric] cis-divide [symmetric] assms)
qed

qed

lemma part-circlepath-conv-subpath:
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part-circlepath c r a b = subpath (a / (2∗pi)) (b / (2∗pi)) (circlepath c r)
by (simp add: part-circlepath-def circlepath-def subpath-def linepath-def alge-

bra-simps exp-eq-polar)

lemma homotopic-paths-part-circlepath:
assumes a ≤ b b ≤ c
assumes path-image (part-circlepath C r a c) ⊆ A r ≥ 0
shows homotopic-paths A (part-circlepath C r a c)

(part-circlepath C r a b +++ part-circlepath C r b c)
(is homotopic-paths - ?g (?h1 +++ ?h2 ))

proof (cases a = c)
case False
with assms have a < c by simp
define slope where slope = (b − a) / (c − a)
from assms and ‹a < c› have slope: slope ∈ {0 ..1}

by (auto simp: field-simps slope-def )
define f :: real ⇒ real where

f = linepath 0 slope +++ linepath slope 1

show ?thesis
proof (rule homotopic-paths-reparametrize)

fix t :: real assume t: t ∈ {0 ..1}
show (?h1 +++ ?h2 ) t = ?g (f t)
proof (cases t ≤ 1 / 2 )

case True
hence ?g (f t) = C + r ∗ cis ((1 − f t) ∗ a + f t ∗ c)

by (simp add: joinpaths-def part-circlepath-def exp-eq-polar linepath-def )
also from True ‹a < c› have (1 − f t) ∗ a + f t ∗ c = (1 − 2 ∗ t) ∗ a + 2

∗ t ∗ b
unfolding f-def slope-def linepath-def joinpaths-def
by (simp add: divide-simps del: div-mult-self3 div-mult-self4 div-mult-self2

div-mult-self1 )
(simp add: algebra-simps)?

also from True have C + r ∗ cis . . . = (?h1 +++ ?h2 ) t
by (simp add: joinpaths-def part-circlepath-def exp-eq-polar linepath-def )

finally show ?thesis ..
next

case False
hence ?g (f t) = C + r ∗ cis ((1 − f t) ∗ a + f t ∗ c)

by (simp add: joinpaths-def part-circlepath-def exp-eq-polar linepath-def )
also from False ‹a < c› have (1 − f t) ∗ a + f t ∗ c = (2 − 2 ∗ t) ∗ b +

(2 ∗ t − 1 ) ∗ c
unfolding f-def slope-def linepath-def joinpaths-def
by (simp add: divide-simps del: div-mult-self3 div-mult-self4 div-mult-self2

div-mult-self1 )
(simp add: algebra-simps)?

also from False have C + r ∗ cis . . . = (?h1 +++ ?h2 ) t
by (simp add: joinpaths-def part-circlepath-def exp-eq-polar linepath-def )

finally show ?thesis ..
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qed
next

from slope have path-image f ⊆ {0 ..1}
by (auto simp: f-def path-image-join closed-segment-eq-real-ivl)

thus f ∈ {0 ..1} → {0 ..1} by (force simp add: path-image-def )
next

have path f unfolding f-def by auto
thus continuous-on {0 ..1} f by (simp add: path-def )

qed (insert assms, auto simp: f-def joinpaths-def linepath-def )
next

case [simp]: True
with assms have [simp]: b = c by auto
have part-circlepath C r c c +++ part-circlepath C r c c = part-circlepath C r c

c
by (simp add: fun-eq-iff joinpaths-def part-circlepath-def )

thus ?thesis using assms by simp
qed

lemma path-image-part-circlepath-subset:
assumes a ≤ a ′ a ′ ≤ b ′ b ′ ≤ b
shows path-image (part-circlepath c r a ′ b ′) ⊆ path-image (part-circlepath c r

a b)
using assms by (subst (1 2 ) path-image-part-circlepath) auto

lemma part-circlepath-mirror :
assumes a ′ = a + pi + 2 ∗ pi ∗ of-int k b ′ = b + pi + 2 ∗ pi ∗ of-int k c ′ =
−c

shows −part-circlepath c r a b = part-circlepath c ′ r a ′ b ′

proof
fix x :: real
have part-circlepath c ′ r a ′ b ′ x = c ′ + r ∗ cis (linepath a b x + pi + k ∗ (2 ∗

pi))
by (simp add: part-circlepath-def exp-eq-polar assms linepath-translate-right

mult-ac)
also have cis (linepath a b x + pi + k ∗ (2 ∗ pi)) = cis (linepath a b x + pi)

by (rule cis.plus-of-int)
also have . . . = −cis (linepath a b x)

by (simp add: minus-cis)
also have c ′ + r ∗ . . . = −part-circlepath c r a b x

by (simp add: part-circlepath-def assms exp-eq-polar)
finally show (− part-circlepath c r a b) x = part-circlepath c ′ r a ′ b ′ x

by simp
qed

lemma path-mirror [intro]: path (g :: - ⇒ ′b::topological-group-add) =⇒ path (−g)
by (auto simp: path-def intro!: continuous-intros)

lemma path-mirror-iff [simp]: path (−g :: - ⇒ ′b::topological-group-add) ←→ path
g
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using path-mirror [of g] path-mirror [of −g] by (auto simp: fun-Compl-def )

lemma valid-path-mirror [intro]: valid-path g =⇒ valid-path (−g)
by (auto simp: valid-path-def fun-Compl-def piecewise-C1-differentiable-neg)

lemma valid-path-mirror-iff [simp]: valid-path (−g) ←→ valid-path g
using valid-path-mirror [of g] valid-path-mirror [of −g] by (auto simp: fun-Compl-def )

lemma pathstart-mirror [simp]: pathstart (−g) = −pathstart g
and pathfinish-mirror [simp]: pathfinish (−g) = −pathfinish g
by (simp-all add: pathstart-def pathfinish-def )

lemma path-image-mirror : path-image (−g) = uminus ‘ path-image g
by (auto simp: path-image-def )

lemma cos-le-zero:
assumes x ∈ {pi/2 ..3∗pi/2}
shows cos x ≤ 0

proof −
have cos x = −cos (x − pi) by (simp add: cos-diff )
moreover from assms have cos (x − pi) ≥ 0

by (intro cos-ge-zero) auto
ultimately show ?thesis by simp

qed

lemma cos-le-zero ′: x ∈ {−3∗pi/2 ..−pi/2} =⇒ cos x ≤ 0
using cos-le-zero[of −x] by simp

lemma winding-number-join-pos-combined ′:
[[valid-path γ1 ∧ z /∈ path-image γ1 ∧ 0 < Re (winding-number γ1 z);

valid-path γ2 ∧ z /∈ path-image γ2 ∧ 0 < Re (winding-number γ2 z);
pathfinish γ1 = pathstart γ2 ]]

=⇒ valid-path(γ1 +++ γ2 ) ∧ z /∈ path-image(γ1 +++ γ2 ) ∧ 0 < Re(winding-number(γ1
+++ γ2 ) z)
by (simp add: valid-path-join path-image-join winding-number-join valid-path-imp-path)

lemma Union-atLeastAtMost-real-of-nat:
assumes a < b
shows (

⋃
n∈{a..<b}. {real n..real (n + 1 )}) = {real a..real b}

proof (intro equalityI subsetI )
fix x assume x: x ∈ {real a..real b}
thus x ∈ (

⋃
n∈{a..<b}. {real n..real (n + 1 )})

proof (cases x = real b)
case True
with assms show ?thesis by (auto intro!: bexI [of - b − 1 ])

next
case False
with x have x: x ≥ real a x < real b by simp-all
hence x ≥ real (nat bxc) x ≤ real (Suc (nat bxc)) by linarith+
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moreover from x have nat bxc ≥ a nat bxc < b by linarith+
ultimately show ?thesis by force

qed
qed auto

lemma nat-sum-has-integral-floor :
fixes f :: nat ⇒ ′a :: banach
assumes mn: m < n
shows ((λx. f (nat bxc)) has-integral sum f {m..<n}) {real m..real n}

proof −
define D where D = (λi. {real i..real (Suc i)}) ‘ {m..<n}
have D: D division-of {m..n}

using Union-atLeastAtMost-real-of-nat[OF mn] by (simp add: division-of-def
D-def )

have ((λx. f (nat bxc)) has-integral (
∑

X∈D. f (nat bInf Xc))) {real m..real n}
proof (rule has-integral-combine-division)

fix X assume X : X ∈ D
have nat bxc = nat bInf Xc if x ∈ X − {Sup X} for x

using that X by (auto simp: D-def nat-eq-iff floor-eq-iff )
hence ((λx. f (nat bxc)) has-integral f (nat bInf Xc)) X ←→

((λx. f (nat bInf Xc)) has-integral f (nat bInf Xc)) X using X
by (intro has-integral-spike-eq[of {Sup X}]) auto

also from X have . . . using has-integral-const-real[of f (nat bInf Xc) Inf X
Sup X ]

by (auto simp: D-def )
finally show ((λx. f (nat bxc)) has-integral f (nat bInf Xc)) X .

qed fact+
also have (

∑
X∈D. f (nat bInf Xc)) = (

∑
k∈{m..<n}. f k)

unfolding D-def by (subst sum.reindex) (auto simp: inj-on-def nat-add-distrib)
finally show ?thesis .

qed

lemma nat-sum-has-integral-ceiling:
fixes f :: nat ⇒ ′a :: banach
assumes mn: m < n
shows ((λx. f (nat dxe)) has-integral sum f {m<..n}) {real m..real n}

proof −
define D where D = (λi. {real i..real (Suc i)}) ‘ {m..<n}
have D: D division-of {m..n}

using Union-atLeastAtMost-real-of-nat[OF mn] by (simp add: division-of-def
D-def )

have ((λx. f (nat dxe)) has-integral (
∑

X∈D. f (nat bSup Xc))) {real m..real n}
proof (rule has-integral-combine-division)

fix X assume X : X ∈ D
have nat dxe = nat bSup Xc if x ∈ X − {Inf X} for x

using that X by (auto simp: D-def nat-eq-iff ceiling-eq-iff )
hence ((λx. f (nat dxe)) has-integral f (nat bSup Xc)) X ←→

((λx. f (nat bSup Xc)) has-integral f (nat bSup Xc)) X using X
by (intro has-integral-spike-eq[of {Inf X}]) auto
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also from X have . . . using has-integral-const-real[of f (nat bSup Xc) Inf X
Sup X ]

by (auto simp: D-def )
finally show ((λx. f (nat dxe)) has-integral f (nat bSup Xc)) X .

qed fact+
also have (

∑
X∈D. f (nat bSup Xc)) = (

∑
k∈{m..<n}. f (Suc k))

unfolding D-def by (subst sum.reindex) (auto simp: inj-on-def nat-add-distrib)
also have . . . = (

∑
k∈{m<..n}. f k)

by (intro sum.reindex-bij-witness[of - λx. x − 1 Suc]) auto
finally show ?thesis .

qed

lemma zeta-partial-sum-le:
fixes x :: real and m :: nat
assumes x: x ∈ {0<..1}
shows (

∑
k=1 ..m. real k powr (x − 1 )) ≤ real m powr x / x

proof −
consider m = 0 | m = 1 | m > 1 by force
thus ?thesis
proof cases

assume m: m > 1
hence {1 ..m} = insert 1 {1<..m} by auto
also have (

∑
k∈. . . . real k powr (x − 1 )) = 1 + (

∑
k∈{1<..m}. real k powr

(x − 1 ))
by simp

also have (
∑

k∈{1<..m}. real k powr (x − 1 )) ≤ real m powr x / x − 1 / x
proof (rule has-integral-le)

show ((λt. (nat dte) powr (x − 1 )) has-integral (
∑

n∈{1<..m}. n powr (x
− 1 ))) {real 1 ..m}

using m by (intro nat-sum-has-integral-ceiling) auto
next

have ((λt. t powr (x − 1 )) has-integral (real m powr x / x − real 1 powr x /
x))

{real 1 ..real m}
by (intro fundamental-theorem-of-calculus)

(insert x m, auto simp flip: has-real-derivative-iff-has-vector-derivative
intro!: derivative-eq-intros)

thus ((λt. t powr (x − 1 )) has-integral (real m powr x / x − 1 / x)) {real
1 ..real m}

by simp
qed (insert x, auto intro!: powr-mono2 ′)
also have 1 + (real m powr x / x − 1 / x) ≤ real m powr x / x

using x by (simp add: field-simps)
finally show ?thesis by simp

qed (use assms in auto)
qed

lemma zeta-partial-sum-le ′:
fixes x :: real and m :: nat
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assumes x: x > 0 and m: m > 0
shows (

∑
n=1 ..m. real n powr (x − 1 )) ≤ m powr x ∗ (1 / x + 1 / m)

proof (cases x > 1 )
case False
with assms have (

∑
n=1 ..m. real n powr (x − 1 )) ≤ m powr x / x

by (intro zeta-partial-sum-le) auto
also have . . . ≤ m powr x ∗ (1 / x + 1 / m)

using assms by (simp add: field-simps)
finally show ?thesis .

next
case True
have (

∑
n∈{1 ..m}. n powr (x − 1 )) = (

∑
n∈insert m {0 ..<m}. n powr (x −

1 ))
by (intro sum.mono-neutral-left) auto

also have . . . = m powr (x − 1 ) + (
∑

n∈{0 ..<m}. n powr (x − 1 )) by simp
also have (

∑
n∈{0 ..<m}. n powr (x − 1 )) ≤ real m powr x / x

proof (rule has-integral-le)
show ((λt. (nat btc) powr (x − 1 )) has-integral (

∑
n∈{0 ..<m}. n powr (x −

1 ))) {real 0 ..m}
using m by (intro nat-sum-has-integral-floor) auto

next
show ((λt. t powr (x − 1 )) has-integral (real m powr x / x)) {real 0 ..real m}

using has-integral-powr-from-0 [of x − 1 ] x by auto
next

fix t assume t ∈ {real 0 ..real m}
with ‹x > 1 › show real (nat btc) powr (x − 1 ) ≤ t powr (x − 1 )

by (cases t = 0 ) (auto intro: powr-mono2 )
qed
also have m powr (x − 1 ) + m powr x / x = m powr x ∗ (1 / x + 1 / m)

using m x by (simp add: powr-diff field-simps)
finally show ?thesis by simp

qed

lemma natfun-bigo-1E :
assumes (f :: nat ⇒ -) ∈ O(λ-. 1 )
obtains C where C ≥ lb

∧
n. norm (f n) ≤ C

proof −
from assms obtain C N where ∀n≥N . norm (f n) ≤ C

by (auto elim!: landau-o.bigE simp: eventually-at-top-linorder)
hence ∗: norm (f n) ≤ Max ({C , lb} ∪ (norm ‘ f ‘ {..<N})) for n

by (cases n ≥ N ) (subst Max-ge-iff ; force simp: image-iff )+
moreover have Max ({C , lb} ∪ (norm ‘ f ‘ {..<N})) ≥ lb

by (intro Max.coboundedI ) auto
ultimately show ?thesis using that by blast

qed

lemma natfun-bigo-iff-Bseq: f ∈ O(λ-. 1 ) ←→ Bseq f
proof

assume Bseq f
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then obtain C where C > 0
∧

n. norm (f n) ≤ C by (auto simp: Bseq-def )
thus f ∈ O(λ-. 1 ) by (intro bigoI [of - C ]) auto

next
assume f ∈ O(λ-. 1 )
from natfun-bigo-1E [OF this, where lb = 1 ] obtain C where C ≥ 1

∧
n. norm

(f n) ≤ C
by auto

thus Bseq f by (auto simp: Bseq-def intro!: exI [of - C ])
qed

lemma enn-decreasing-sum-le-set-nn-integral:
fixes f :: real ⇒ ennreal
assumes decreasing:

∧
x y. 0 ≤ x =⇒ x ≤ y =⇒ f y ≤ f x

shows (
∑

n. f (real (Suc n))) ≤ set-nn-integral lborel {0 ..} f
proof −

have (
∑

n. (f (Suc n))) =
(
∑

n.
∫

+x∈{real n<..real (Suc n)}. (f (Suc n)) ∂lborel)
by (subst nn-integral-cmult-indicator) auto

also have nat dxe = Suc n if x ∈ {real n<..real (Suc n)} for x n
using that by (auto simp: nat-eq-iff ceiling-eq-iff )

hence (
∑

n.
∫

+x∈{real n<..real (Suc n)}. (f (Suc n)) ∂lborel) =
(
∑

n.
∫

+x∈{real n<..real (Suc n)}. (f (real (nat dxe))) ∂lborel)
by (intro suminf-cong nn-integral-cong) (auto simp: indicator-def )

also have . . . = (
∫

+x∈(
⋃

i. {real i<..real (Suc i)}). (f (nat dx::reale)) ∂lborel)
by (subst nn-integral-disjoint-family)

(auto simp: disjoint-family-on-def )
also have . . . ≤ (

∫
+x∈{0 ..}. (f x) ∂lborel)

by (intro nn-integral-mono) (auto simp: indicator-def intro!: decreasing)
finally show ?thesis .

qed

lemma abs-summable-on-uminus-iff :
(λx. −f x) abs-summable-on A ←→ f abs-summable-on A
by (simp add: abs-summable-on-def )

lemma abs-summable-on-cmult-right-iff :
fixes f :: ′a ⇒ ′b :: {banach, real-normed-field, second-countable-topology}
assumes c 6= 0
shows (λx. c ∗ f x) abs-summable-on A ←→ f abs-summable-on A
by (simp add: abs-summable-on-altdef assms)

lemma abs-summable-on-cmult-left-iff :
fixes f :: ′a ⇒ ′b :: {banach, real-normed-field, second-countable-topology}
assumes c 6= 0
shows (λx. f x ∗ c) abs-summable-on A ←→ f abs-summable-on A
by (simp add: abs-summable-on-altdef assms)

lemma decreasing-sum-le-integral:
fixes f :: real ⇒ real
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assumes nonneg:
∧

x. x ≥ 0 =⇒ f x ≥ 0
assumes decreasing:

∧
x y. 0 ≤ x =⇒ x ≤ y =⇒ f y ≤ f x

assumes integral: (f has-integral I ) {0 ..}
shows summable (λi. f (real (Suc i))) and suminf (λi. f (real (Suc i))) ≤ I

proof −
have [simp]: I ≥ 0

by (intro has-integral-nonneg[OF integral] nonneg) auto
have (

∑
n. ennreal (f (Suc n))) =

(
∑

n.
∫

+x∈{real n<..real (Suc n)}. ennreal (f (Suc n)) ∂lborel)
by (subst nn-integral-cmult-indicator) auto

also have nat dxe = Suc n if x ∈ {real n<..real (Suc n)} for x n
using that by (auto simp: nat-eq-iff ceiling-eq-iff )

hence (
∑

n.
∫

+x∈{real n<..real (Suc n)}. ennreal (f (Suc n)) ∂lborel) =
(
∑

n.
∫

+x∈{real n<..real (Suc n)}. ennreal (f (real (nat dxe))) ∂lborel)
by (intro suminf-cong nn-integral-cong) (auto simp: indicator-def )

also have . . . = (
∫

+x∈(
⋃

i. {real i<..real (Suc i)}). ennreal (f (nat dx::reale))
∂lborel)

by (subst nn-integral-disjoint-family)
(auto simp: disjoint-family-on-def intro!: measurable-completion)

also have . . . ≤ (
∫

+x∈{0 ..}. ennreal (f x) ∂lborel)
by (intro nn-integral-mono) (auto simp: indicator-def nonneg intro!: decreasing)

also have . . . = (
∫

+ x. ennreal (indicat-real {0 ..} x ∗ f x) ∂lborel)
by (intro nn-integral-cong) (auto simp: indicator-def )

also have . . . = ennreal I
using nn-integral-has-integral-lebesgue[OF nonneg integral] by (auto simp: non-

neg)
finally have ∗: (

∑
n. ennreal (f (Suc n))) ≤ ennreal I .

from ∗ show summable: summable (λi. f (real (Suc i)))
by (intro summable-suminf-not-top) (auto simp: top-unique intro: nonneg)

note ∗
also from summable have (

∑
n. ennreal (f (Suc n))) = ennreal (

∑
n. f (Suc

n))
by (subst suminf-ennreal2 ) (auto simp: o-def nonneg)

finally show (
∑

n. f (real (Suc n))) ≤ I by (subst (asm) ennreal-le-iff ) auto
qed

lemma decreasing-sum-le-integral ′:
fixes f :: real ⇒ real
assumes

∧
x. x ≥ 0 =⇒ f x ≥ 0

assumes
∧

x y. 0 ≤ x =⇒ x ≤ y =⇒ f y ≤ f x
assumes (f has-integral I ) {0 ..}
shows summable (λi. f (real i)) and suminf (λi. f (real i)) ≤ f 0 + I

proof −
have summable ((λi. f (real (Suc i))))

using decreasing-sum-le-integral[OF assms] by (simp add: o-def )
thus ∗: summable (λi. f (real i)) by (subst (asm) summable-Suc-iff )
have (

∑
n. f (real (Suc n))) ≤ I by (intro decreasing-sum-le-integral assms)

thus suminf (λi. f (real i)) ≤ f 0 + I
using ∗ by (subst (asm) suminf-split-head) auto
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qed

lemma of-nat-powr-neq-1-complex [simp]:
assumes n > 1 Re s 6= 0
shows of-nat n powr s 6= (1 ::complex)

proof −
have norm (of-nat n powr s) = real n powr Re s

by (simp add: norm-powr-real-powr)
also have . . . 6= 1

using assms by (auto simp: powr-def )
finally show ?thesis by auto

qed

lemma fds-logderiv-completely-multiplicative:
fixes f :: ′a :: {real-normed-field} fds
assumes completely-multiplicative-function (fds-nth f ) fds-nth f 1 6= 0
shows fds-deriv f / f = − fds (λn. fds-nth f n ∗ mangoldt n)

proof −
have fds-deriv f / f = − fds (λn. fds-nth f n ∗ mangoldt n) ∗ f / f

using completely-multiplicative-fds-deriv[of fds-nth f ] assms by simp
also have . . . = − fds (λn. fds-nth f n ∗ mangoldt n)

using assms by (simp add: divide-fds-def fds-right-inverse)
finally show ?thesis .

qed

lemma fds-nth-logderiv-completely-multiplicative:
fixes f :: ′a :: {real-normed-field} fds
assumes completely-multiplicative-function (fds-nth f ) fds-nth f 1 6= 0
shows fds-nth (fds-deriv f / f ) n = −fds-nth f n ∗ mangoldt n
using assms by (subst fds-logderiv-completely-multiplicative) (simp-all add: fds-nth-fds ′)

lemma eval-fds-logderiv-completely-multiplicative:
fixes s :: ′a :: dirichlet-series and l :: ′a and f :: ′a fds
defines h ≡ fds-deriv f / f
assumes completely-multiplicative-function (fds-nth f ) and [simp]: fds-nth f 1 6=

0
assumes s · 1 > abs-conv-abscissa f
shows (λp. of-real (ln (real p)) ∗ (1 / (1 − fds-nth f p / nat-power p s) − 1 ))

abs-summable-on {p. prime p} (is ?th1 )
and eval-fds h s = −(

∑
ap | prime p. of-real (ln (real p)) ∗

(1 / (1 − fds-nth f p / nat-power p s) − 1 )) (is ?th2 )
proof −

let ?P = {p::nat. prime p}
interpret f : completely-multiplicative-function fds-nth f by fact
have fds-abs-converges h s
using abs-conv-abscissa-completely-multiplicative-log-deriv[OF assms(2 )] assms
by (intro fds-abs-converges) auto

hence ∗: (λn. fds-nth h n / nat-power n s) abs-summable-on UNIV
by (auto simp: h-def fds-abs-converges-altdef ′)
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note ∗
also have (λn. fds-nth h n / nat-power n s) abs-summable-on UNIV ←→

(λx. −fds-nth f x ∗ mangoldt x / nat-power x s) abs-summable-on Collect
primepow

unfolding h-def using fds-nth-logderiv-completely-multiplicative[OF assms(2 )]
by (intro abs-summable-on-cong-neutral) (auto simp: fds-nth-fds mangoldt-def )

finally have sum1 : (λx. −fds-nth f x ∗ mangoldt x / nat-power x s)
abs-summable-on Collect primepow

by (rule abs-summable-on-subset) auto
also have ?this ←→ (λ(p,k). −fds-nth f (p ^ Suc k) ∗ mangoldt (p ^ Suc k) /

nat-power (p ^ Suc k) s) abs-summable-on (?P × UNIV )
using bij-betw-primepows unfolding case-prod-unfold
by (intro abs-summable-on-reindex-bij-betw [symmetric])

also have . . . ←→ (λ(p,k). −((fds-nth f p / nat-power p s) ^ Suc k ∗ of-real (ln
(real p))))

abs-summable-on (?P × UNIV )
unfolding case-prod-unfold
by (intro abs-summable-on-cong, subst mangoldt-primepow)
(auto simp: f .mult f .power nat-power-mult-distrib nat-power-power-left power-divide

dest: prime-gt-1-nat)
finally have sum2 : . . . .

have sum4 : summable (λn. (norm (fds-nth f p / nat-power p s)) ^ Suc n) if p:
prime p for p

proof −
have summable (λn. |ln (real p)| ∗ (norm (fds-nth f p / nat-power p s)) ^ Suc

n)
using p abs-summable-on-Sigma-project2 [OF sum2 , of p] unfolding abs-summable-on-nat-iff ′

by (simp add: norm-power norm-mult norm-divide mult-ac del: power-Suc)
thus ?thesis by (rule summable-mult-D) (insert p, auto dest: prime-gt-1-nat)

qed
have sums: (λn. (fds-nth f p / nat-power p s) ^ Suc n) sums

(1 / (1 − fds-nth f p / nat-power p s) − 1 ) if p: prime p for p :: nat
proof −

from sum4 [OF p] have norm (fds-nth f p / nat-power p s) < 1
unfolding summable-Suc-iff by (simp add: summable-geometric-iff )

from geometric-sums[OF this] show ?thesis by (subst sums-Suc-iff ) auto
qed

have eq: (
∑

ak. − ((fds-nth f p / nat-power p s) ^ Suc k ∗ of-real (ln (real p))))
=

−(of-real (ln (real p)) ∗ (1 / (1 − fds-nth f p / nat-power p s) − 1 ))
if p: prime p for p

proof −
have (

∑
ak. − ((fds-nth f p / nat-power p s) ^ Suc k ∗ of-real (ln (real p)))) =

(
∑

ak. (fds-nth f p / nat-power p s) ^ Suc k) ∗ of-real (−ln (real p))
using sum4 [of p] p
by (subst infsetsum-cmult-left [symmetric])
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(auto simp: abs-summable-on-nat-iff ′ norm-power simp del: power-Suc)
also have (

∑
ak. (fds-nth f p / nat-power p s) ^ Suc k) =

(1 / (1 − fds-nth f p / nat-power p s) − 1 ) using sum4 [OF p]
sums[OF p]

by (subst infsetsum-nat ′)
(auto simp: sums-iff abs-summable-on-nat-iff ′ norm-power simp del:

power-Suc)
finally show ?thesis by (simp add: mult-ac)

qed

have sum3 : (λx.
∑

ay. − ((fds-nth f x / nat-power x s) ^ Suc y ∗ of-real (ln
(real x))))

abs-summable-on {p. prime p}
using sum2 by (rule abs-summable-on-Sigma-project1 ′) auto

also have ?this ←→ (λp. −(of-real (ln (real p)) ∗
(1 / (1 − fds-nth f p / nat-power p s) − 1 ))) abs-summable-on {p.

prime p}
by (intro abs-summable-on-cong eq) auto

also have . . . ←→ ?th1 by (subst abs-summable-on-uminus-iff ) auto
finally show ?th1 .

have eval-fds h s = (
∑

an. fds-nth h n / nat-power n s)
using ∗ unfolding eval-fds-def by (subst infsetsum-nat ′) auto

also have . . . = (
∑

an ∈ {n. primepow n}. −fds-nth f n ∗ mangoldt n / nat-power
n s)

unfolding h-def using fds-nth-logderiv-completely-multiplicative[OF assms(2 )]
by (intro infsetsum-cong-neutral) (auto simp: fds-nth-fds mangoldt-def )

also have . . . = (
∑

a(p,k)∈(?P × UNIV ). −fds-nth f (p ^ Suc k) ∗ mangoldt
(p ^ Suc k) /

nat-power (p ^ Suc k) s)
using bij-betw-primepows unfolding case-prod-unfold
by (intro infsetsum-reindex-bij-betw [symmetric])

also have . . . = (
∑

a(p,k)∈(?P × UNIV ).
−((fds-nth f p / nat-power p s) ^ Suc k) ∗ of-real (ln (real p)))

by (intro infsetsum-cong)
(auto simp: f .mult f .power mangoldt-def aprimedivisor-prime-power ln-realpow

prime-gt-0-nat
nat-power-power-left divide-simps simp del: power-Suc)

also have . . . = (
∑

ap | prime p.
∑

ak.
− ((fds-nth f p / nat-power p s) ^ Suc k) ∗ of-real (ln (real p)))

using sum2 by (subst infsetsum-Times) (auto simp: case-prod-unfold)
also have . . . = (

∑
ap | prime p. −(of-real (ln (real p)) ∗

(1 / (1 − fds-nth f p / nat-power p s) − 1 )))
using eq by (intro infsetsum-cong) auto

finally show ?th2 by (subst (asm) infsetsum-uminus)
qed

lemma eval-fds-logderiv-zeta:
assumes Re s > 1
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shows (λp. of-real (ln (real p)) / (p powr s − 1 ))
abs-summable-on {p. prime p} (is ?th1 )

and deriv zeta s / zeta s =
−(

∑
ap | prime p. of-real (ln (real p)) / (p powr s − 1 )) (is ?th2 )

proof −
have ∗: completely-multiplicative-function (fds-nth fds-zeta :: - ⇒ complex)

by standard auto
note abscissa = le-less-trans[OF abs-conv-abscissa-completely-multiplicative-log-deriv[OF
∗]]

have (λp. ln (real p) ∗ (1 / (1 − fds-nth fds-zeta p / p powr s) − 1 ))
abs-summable-on {p. prime p}

using eval-fds-logderiv-completely-multiplicative[OF ∗, of s] assms by auto
also have ?this ←→ (λp. ln (real p) / (p powr s − 1 )) abs-summable-on {p.

prime p} using assms
by (intro abs-summable-on-cong) (auto simp: fds-nth-zeta divide-simps dest:

prime-gt-1-nat)
finally show ?th1 .

from assms have ev: eventually (λz. z ∈ {z. Re z > 1}) (nhds s)
by (intro eventually-nhds-in-open open-halfspace-Re-gt) auto

have deriv zeta s = deriv (eval-fds fds-zeta) s
by (intro deriv-cong-ev[OF eventually-mono[OF ev]]) (auto simp: eval-fds-zeta)

also have deriv (eval-fds fds-zeta) s / zeta s = eval-fds (fds-deriv fds-zeta /
fds-zeta) s

using assms zeta-Re-gt-1-nonzero[of s]
by (subst eval-fds-log-deriv) (auto simp: eval-fds-zeta eval-fds-deriv intro!: ab-

scissa)
also have eval-fds (fds-deriv fds-zeta / fds-zeta) s =

−(
∑

ap | prime p. ln (real p) ∗ (1 / (1 − fds-nth fds-zeta p / p powr
s) − 1 ))

(is - = −?S) using eval-fds-logderiv-completely-multiplicative[OF ∗, of s] assms
by auto

also have ?S = (
∑

ap | prime p. ln (real p) / (p powr s − 1 )) using assms
by (intro infsetsum-cong) (auto simp: fds-nth-zeta divide-simps dest: prime-gt-1-nat)

finally show ?th2 .
qed

lemma sums-logderiv-zeta:
assumes Re s > 1
shows (λp. if prime p then of-real (ln (real p)) / (of-nat p powr s − 1 ) else 0 )

sums
−(deriv zeta s / zeta s) (is ?f sums -)

proof −
note ∗ = eval-fds-logderiv-zeta[OF assms]
from sums-infsetsum-nat[OF ∗(1 )] and ∗(2 ) show ?thesis by simp

qed

lemma range-add-nat: range (λn. n + c) = {(c::nat)..}
using Nat.le-imp-diff-is-add by auto
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lemma abs-summable-hurwitz-zeta:
assumes Re s > 1 a + real b > 0
shows (λn. 1 / (of-nat n + a) powr s) abs-summable-on {b..}

proof −
from assms have summable (λn. cmod (1 / (of-nat (n + b) + a) powr s))

using summable-hurwitz-zeta-real[of Re s a + b]
by (auto simp: norm-divide powr-minus field-simps norm-powr-real-powr)

hence (λn. 1 / (of-nat (n + b) + a) powr s) abs-summable-on UNIV
by (auto simp: abs-summable-on-nat-iff ′ add-ac)

also have ?this ←→ (λn. 1 / (of-nat n + a) powr s) abs-summable-on range
(λn. n + b)

by (rule abs-summable-on-reindex-iff ) auto
also have range (λn. n + b) = {b..} by (rule range-add-nat)
finally show ?thesis .

qed

lemma hurwitz-zeta-nat-conv-infsetsum:
assumes a > 0 and Re s > 1
shows hurwitz-zeta (real a) s = (

∑
an. of-nat (n + a) powr −s)

hurwitz-zeta (real a) s = (
∑

an∈{a..}. of-nat n powr −s)
proof −

have hurwitz-zeta (real a) s = (
∑

n. of-nat (n + a) powr −s)
using assms by (subst hurwitz-zeta-conv-suminf ) auto

also have . . . = (
∑

an. of-nat (n + a) powr −s)
using abs-summable-hurwitz-zeta[of s a 0 ] assms
by (intro infsetsum-nat ′ [symmetric]) (auto simp: powr-minus field-simps)

finally show hurwitz-zeta (real a) s = (
∑

an. of-nat (n + a) powr −s) .
also have . . . = (

∑
an∈range (λn. n + a). of-nat n powr −s)

by (rule infsetsum-reindex [symmetric]) auto
also have range (λn. n + a) = {a..} by (rule range-add-nat)
finally show hurwitz-zeta (real a) s = (

∑
an∈{a..}. of-nat n powr −s) .

qed

lemma pre-zeta-bound:
assumes 0 < Re s and a: a > 0
shows norm (pre-zeta a s) ≤ (1 + norm s / Re s) / 2 ∗ a powr −Re s

proof −
let ?f = λx. − (s ∗ (x + a) powr (−1−s))
let ?g ′ = λx. norm s ∗ (x + a) powr (−1−Re s)
let ?g = λx. −norm s / Re s ∗ (x + a) powr (−Re s)
define R where R = EM-remainder 1 ?f 0
have [simp]: −Re s − 1 = −1 − Re s by (simp add: algebra-simps)

have |frac x − 1 / 2 | ≤ 1 / 2 for x :: real unfolding frac-def
by linarith

hence |pbernpoly (Suc 0 ) x| ≤ 1 / 2 for x
by (simp add: pbernpoly-def bernpoly-def )

moreover have ((λb. cmod s ∗ (b + a) powr − Re s / Re s) −−−→ 0 ) at-top
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using ‹Re s > 0 › ‹a > 0 › by real-asymp
ultimately have ∗: ∀ x. x ≥ real 0 −→ norm (EM-remainder 1 ?f (int x)) ≤

(1 / 2 ) / fact 1 ∗ (−?g (real x))
using ‹a > 0 › ‹Re s > 0 ›
by (intro norm-EM-remainder-le-strong-nat ′[where g ′ = ?g ′ and Y = {}])

(auto intro!: continuous-intros derivative-eq-intros
simp: field-simps norm-mult norm-powr-real-powr add-eq-0-iff )

have R: norm R ≤ norm s / (2 ∗ Re s) ∗ a powr −Re s
unfolding R-def using spec[OF ∗, of 0 ] by simp

from assms have pre-zeta a s = a powr −s / 2 + R
by (simp add: pre-zeta-def pre-zeta-aux-def R-def )

also have norm . . . ≤ a powr −Re s / 2 + norm s / (2 ∗ Re s) ∗ a powr −Re
s using a

by (intro order .trans[OF norm-triangle-ineq] add-mono R) (auto simp: norm-powr-real-powr)
also have . . . = (1 + norm s / Re s) / 2 ∗ a powr −Re s

by (simp add: field-simps)
finally show ?thesis .

qed

lemma pre-zeta-bound ′:
assumes 0 < Re s and a: a > 0
shows norm (pre-zeta a s) ≤ norm s / (Re s ∗ a powr Re s)

proof −
from assms have norm (pre-zeta a s) ≤ (1 + norm s / Re s) / 2 ∗ a powr −Re

s
by (intro pre-zeta-bound) auto

also have . . . = (Re s + norm s) / 2 / (Re s ∗ a powr Re s)
using assms by (auto simp: field-simps powr-minus)

also have Re s + norm s ≤ norm s + norm s by (intro add-right-mono com-
plex-Re-le-cmod)

also have (norm s + norm s) / 2 = norm s by simp
finally show norm (pre-zeta a s) ≤ norm s / (Re s ∗ a powr Re s)

using assms by (simp add: divide-right-mono)
qed

lemma deriv-zeta-eq:
assumes s: s 6= 1
shows deriv zeta s = deriv (pre-zeta 1 ) s − 1 / (s − 1 )2

proof −
from s have ev: eventually (λz. z 6= 1 ) (nhds s) by (intro t1-space-nhds)
have [derivative-intros]: (pre-zeta 1 has-field-derivative deriv (pre-zeta 1 ) s) (at

s)
by (intro holomorphic-derivI [of - UNIV ] holomorphic-intros) auto

have ((λs. pre-zeta 1 s + 1 / (s − 1 )) has-field-derivative
(deriv (pre-zeta 1 ) s − 1 / (s − 1 )2)) (at s)

using s by (auto intro!: derivative-eq-intros simp: power2-eq-square)
also have ?this ←→ (zeta has-field-derivative (deriv (pre-zeta 1 ) s − 1 / (s −

1 )2)) (at s)
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by (intro has-field-derivative-cong-ev eventually-mono[OF ev])
(auto simp: zeta-def hurwitz-zeta-def )

finally show ?thesis by (rule DERIV-imp-deriv)
qed

lemma zeta-remove-zero:
assumes Re s ≥ 1
shows (s − 1 ) ∗ pre-zeta 1 s + 1 6= 0

proof (cases s = 1 )
case False
hence (s − 1 ) ∗ pre-zeta 1 s + 1 = (s − 1 ) ∗ zeta s

by (simp add: zeta-def hurwitz-zeta-def divide-simps)
also from False assms have . . . 6= 0 using zeta-Re-ge-1-nonzero[of s] by auto
finally show ?thesis .

qed auto

lemma eval-fds-deriv-zeta:
assumes Re s > 1
shows eval-fds (fds-deriv fds-zeta) s = deriv zeta s

proof −
have ev: eventually (λz. z ∈ {z. Re z > 1}) (nhds s)

using assms by (intro eventually-nhds-in-open open-halfspace-Re-gt) auto
from assms have eval-fds (fds-deriv fds-zeta) s = deriv (eval-fds fds-zeta) s

by (subst eval-fds-deriv) auto
also have . . . = deriv zeta s

by (intro deriv-cong-ev eventually-mono[OF ev]) (auto simp: eval-fds-zeta)
finally show ?thesis .

qed

lemma le-nat-iff ′: x ≤ nat y ←→ x = 0 ∧ y ≤ 0 ∨ int x ≤ y
by auto

lemma sum-upto-plus1 :
assumes x ≥ 0
shows sum-upto f (x + 1 ) = sum-upto f x + f (Suc (nat bxc))

proof −
have sum-upto f (x + 1 ) = sum f {0<..Suc (nat bxc)}

using assms by (simp add: sum-upto-altdef nat-add-distrib)
also have {0<..Suc (nat bxc)} = insert (Suc (nat bxc)) {0<..nat bxc}

by auto
also have sum f . . . = sum-upto f x + f (Suc (nat bxc))

by (subst sum.insert) (auto simp: sum-upto-altdef add-ac)
finally show ?thesis .

qed

lemma sum-upto-minus1 :
assumes x ≥ 1
shows sum-upto f (x − 1 ) = (sum-upto f x − f (nat bxc) :: ′a :: ab-group-add)
using sum-upto-plus1 [of x − 1 f ] assms by (simp add: algebra-simps nat-diff-distrib)
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lemma integral-smallo:
fixes f g g ′ :: real ⇒ real
assumes f ∈ o(g ′) and filterlim g at-top at-top
assumes

∧
a ′ x. a ≤ a ′ =⇒ a ′ ≤ x =⇒ f integrable-on {a ′..x}

assumes deriv:
∧

x. x ≥ a =⇒ (g has-field-derivative g ′ x) (at x)
assumes cont: continuous-on {a..} g ′

assumes nonneg:
∧

x. x ≥ a =⇒ g ′ x ≥ 0
shows (λx. integral {a..x} f ) ∈ o(g)

proof (rule landau-o.smallI )
fix c :: real assume c: c > 0
note [continuous-intros] = continuous-on-subset[OF cont]
define c ′ where c ′ = c / 2
from c have c ′: c ′ > 0 by (simp add: c ′-def )
from landau-o.smallD[OF assms(1 ) this]

obtain b where b:
∧

x. x ≥ b =⇒ norm (f x) ≤ c ′ ∗ norm (g ′ x)
unfolding eventually-at-top-linorder by blast

define b ′ where b ′ = max a b
define D where D = norm (integral {a..b ′} f )

have filterlim (λx. c ′ ∗ g x) at-top at-top
using c ′ by (intro filterlim-tendsto-pos-mult-at-top[OF tendsto-const] assms)

hence eventually (λx. c ′ ∗ g x ≥ D − c ′ ∗ g b ′) at-top
by (auto simp: filterlim-at-top)

thus eventually (λx. norm (integral {a..x} f ) ≤ c ∗ norm (g x)) at-top
using eventually-ge-at-top[of b ′]

proof eventually-elim
case (elim x)
have b ′: a ≤ b ′ b ≤ b ′ by (auto simp: b ′-def )
from elim b ′ have integrable: (λx. |g ′ x|) integrable-on {b ′..x}

by (intro integrable-continuous-real continuous-intros) auto
have integral {a..x} f = integral {a..b ′} f + integral {b ′..x} f
using elim b ′ by (intro Henstock-Kurzweil-Integration.integral-combine [symmetric]

assms) auto
also have norm . . . ≤ D + norm (integral {b ′..x} f )

unfolding D-def by (rule norm-triangle-ineq)
also have norm (integral {b ′..x} f ) ≤ integral {b ′..x} (λx. c ′ ∗ norm (g ′ x))

using b ′ elim assms c ′ integrable by (intro integral-norm-bound-integral b
assms) auto

also have . . . = c ′ ∗ integral {b ′..x} (λx. |g ′ x|) by simp
also have integral {b ′..x} (λx. |g ′ x|) = integral {b ′..x} g ′

using assms b ′ by (intro integral-cong) auto
also have (g ′ has-integral (g x − g b ′)) {b ′..x} using b ′ elim

by (intro fundamental-theorem-of-calculus)
(auto simp flip: has-real-derivative-iff-has-vector-derivative

intro!: has-field-derivative-at-within[OF deriv])
hence integral {b ′..x} g ′ = g x − g b ′

by (simp add: has-integral-iff )
also have D + c ′ ∗ (g x − g b ′) ≤ c ∗ g x
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using elim by (simp add: field-simps c ′-def )
also have . . . ≤ c ∗ norm (g x)

using c by (intro mult-left-mono) auto
finally show ?case by simp

qed
qed

lemma integral-bigo:
fixes f g g ′ :: real ⇒ real
assumes f ∈ O(g ′) and filterlim g at-top at-top
assumes

∧
a ′ x. a ≤ a ′ =⇒ a ′ ≤ x =⇒ f integrable-on {a ′..x}

assumes deriv:
∧

x. x ≥ a =⇒ (g has-field-derivative g ′ x) (at x within {a..})
assumes cont: continuous-on {a..} g ′

assumes nonneg:
∧

x. x ≥ a =⇒ g ′ x ≥ 0
shows (λx. integral {a..x} f ) ∈ O(g)

proof −
note [continuous-intros] = continuous-on-subset[OF cont]
from landau-o.bigE [OF assms(1 )]

obtain c b where c: c > 0 and b:
∧

x. x ≥ b =⇒ norm (f x) ≤ c ∗ norm (g ′

x)
unfolding eventually-at-top-linorder by metis

define c ′ where c ′ = c / 2
define b ′ where b ′ = max a b
define D where D = norm (integral {a..b ′} f )

have filterlim (λx. c ∗ g x) at-top at-top
using c by (intro filterlim-tendsto-pos-mult-at-top[OF tendsto-const] assms)

hence eventually (λx. c ∗ g x ≥ D − c ∗ g b ′) at-top
by (auto simp: filterlim-at-top)

hence eventually (λx. norm (integral {a..x} f ) ≤ 2 ∗ c ∗ norm (g x)) at-top
using eventually-ge-at-top[of b ′]

proof eventually-elim
case (elim x)
have b ′: a ≤ b ′ b ≤ b ′ by (auto simp: b ′-def )
from elim b ′ have integrable: (λx. |g ′ x|) integrable-on {b ′..x}

by (intro integrable-continuous-real continuous-intros) auto
have integral {a..x} f = integral {a..b ′} f + integral {b ′..x} f
using elim b ′ by (intro Henstock-Kurzweil-Integration.integral-combine [symmetric]

assms) auto
also have norm . . . ≤ D + norm (integral {b ′..x} f )

unfolding D-def by (rule norm-triangle-ineq)
also have norm (integral {b ′..x} f ) ≤ integral {b ′..x} (λx. c ∗ norm (g ′ x))

using b ′ elim assms c integrable by (intro integral-norm-bound-integral b
assms) auto

also have . . . = c ∗ integral {b ′..x} (λx. |g ′ x|) by simp
also have integral {b ′..x} (λx. |g ′ x|) = integral {b ′..x} g ′

using assms b ′ by (intro integral-cong) auto
also have (g ′ has-integral (g x − g b ′)) {b ′..x} using b ′ elim

by (intro fundamental-theorem-of-calculus)
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(auto simp flip: has-real-derivative-iff-has-vector-derivative
intro!: DERIV-subset[OF deriv])

hence integral {b ′..x} g ′ = g x − g b ′

by (simp add: has-integral-iff )
also have D + c ∗ (g x − g b ′) ≤ 2 ∗ c ∗ g x

using elim by (simp add: field-simps c ′-def )
also have . . . ≤ 2 ∗ c ∗ norm (g x)

using c by (intro mult-left-mono) auto
finally show ?case by simp

qed
thus ?thesis by (rule bigoI )

qed

lemma primepows-le-subset:
assumes x: x > 0 and l: l > 0
shows {(p, i). prime p ∧ l ≤ i ∧ real (p ^ i) ≤ x} ⊆ {..nat broot l xc} × {..nat
blog 2 xc}
proof safe

fix p i :: nat assume pi: prime p i ≥ l real (p ^ i) ≤ x
have real p ^ l ≤ real p ^ i using pi x l

by (intro power-increasing) (auto dest: prime-gt-0-nat)
also have . . . ≤ x using pi by simp
finally have root l (real p ^ l) ≤ root l x

using x pi l by (subst real-root-le-iff ) auto
also have root l (real p ^ l) = real p

using pi l by (subst real-root-pos2 ) auto
finally show p ≤ nat broot l xc using pi l x by (simp add: le-nat-iff ′ le-floor-iff )

from pi have 2 ^ i ≤ real p ^ i using l
by (intro power-mono) (auto dest: prime-gt-1-nat)

also have . . . ≤ x using pi by simp
finally show i ≤ nat blog 2 xc using pi x

by (auto simp: le-nat-iff ′ le-floor-iff le-log-iff powr-realpow)
qed

lemma mangoldt-non-primepow: ¬primepow n =⇒ mangoldt n = 0
by (auto simp: mangoldt-def )

lemma ln-minus-ln-floor-bigo: (λx. ln x − ln (real (nat bxc))) ∈ O(λ-. 1 )
proof (intro le-imp-bigo-real[of 1 ] eventually-mono[OF eventually-ge-at-top[of 1 ]])

fix x :: real assume x: x ≥ 1
from x have ∗: x − real (nat bxc) ≤ 1 by linarith
from x have ln x − ln (real (nat bxc)) ≤ (x − real (nat bxc)) / real (nat bxc)

by (intro ln-diff-le) auto
also have . . . ≤ 1 / 1 using x ∗ by (intro frac-le) auto
finally show ln x − ln (real (nat bxc)) ≤ 1 ∗ 1 by simp

qed auto
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lemma cos-geD:
assumes cos x ≥ cos a 0 ≤ a a ≤ pi −pi ≤ x x ≤ pi
shows x ∈ {−a..a}

proof (cases x ≥ 0 )
case True
with assms show ?thesis

by (subst (asm) cos-mono-le-eq) auto
next

case False
with assms show ?thesis using cos-mono-le-eq[of a −x]

by auto
qed

lemma path-image-part-circlepath-same-Re:
assumes 0 ≤ b b ≤ pi a = −b r ≥ 0
shows path-image (part-circlepath c r a b) = sphere c r ∩ {s. Re s ≥ Re c + r
∗ cos a}
proof safe

fix z assume z ∈ path-image (part-circlepath c r a b)
with assms obtain t where t: t ∈ {a..b} z = c + of-real r ∗ cis t

by (auto simp: path-image-part-circlepath exp-eq-polar)
from t and assms show z ∈ sphere c r

by (auto simp: dist-norm norm-mult)
from t and assms show Re z ≥ Re c + r ∗ cos a

using cos-monotone-0-pi-le[of t b] cos-monotone-minus-pi-0 ′[of a t]
by (cases t ≥ 0 ) (auto intro!: mult-left-mono)

next
fix z assume z: z ∈ sphere c r Re z ≥ Re c + r ∗ cos a
show z ∈ path-image (part-circlepath c r a b)
proof (cases r = 0 )

case False
with assms have r : r > 0 by simp
with z have z-eq: z = c + r ∗ cis (Arg (z − c))
using Arg-eq[of z − c] by (auto simp: dist-norm exp-eq-polar norm-minus-commute)

moreover from z(2 ) r assms have cos b ≤ cos (Arg (z − c))
by (subst (asm) z-eq) auto

with assms have Arg (z − c) ∈ {−b..b}
using Arg-le-pi[of z − c] mpi-less-Arg[of z − c] by (intro cos-geD) auto

ultimately show z ∈ path-image (part-circlepath c r a b)
using assms by (subst path-image-part-circlepath) (auto simp: exp-eq-polar)

qed (insert assms z, auto simp: path-image-part-circlepath)
qed

lemma part-circlepath-rotate-left:
part-circlepath c r (x + a) (x + b) = (λz. c + cis x ∗ (z − c)) ◦ part-circlepath

c r a b
by (simp add: part-circlepath-def exp-eq-polar fun-eq-iff

linepath-translate-left linepath-translate-right cis-mult add-ac)
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lemma part-circlepath-rotate-right:
part-circlepath c r (a + x) (b + x) = (λz. c + cis x ∗ (z − c)) ◦ part-circlepath

c r a b
by (simp add: part-circlepath-def exp-eq-polar fun-eq-iff

linepath-translate-left linepath-translate-right cis-mult add-ac)

lemma path-image-semicircle-Re-ge:
assumes r ≥ 0
shows path-image (part-circlepath c r (−pi/2 ) (pi/2 )) =

sphere c r ∩ {s. Re s ≥ Re c}
by (subst path-image-part-circlepath-same-Re) (simp-all add: assms)

lemma sphere-rotate: (λz. c + cis x ∗ (z − c)) ‘ sphere c r = sphere c r
proof safe

fix z assume z: z ∈ sphere c r
hence z = c + cis x ∗ (c + cis (−x) ∗ (z − c) − c)

c + cis (−x) ∗ (z − c) ∈ sphere c r
by (auto simp: dist-norm norm-mult norm-minus-commute

cis-conv-exp exp-minus field-simps norm-divide)
with z show z ∈ (λz. c + cis x ∗ (z − c)) ‘ sphere c r by blast

qed (auto simp: dist-norm norm-minus-commute norm-mult)

lemma path-image-semicircle-Re-le:
assumes r ≥ 0
shows path-image (part-circlepath c r (pi/2 ) (3/2∗pi)) =

sphere c r ∩ {s. Re s ≤ Re c}
proof −

let ?f = (λz. c + cis pi ∗ (z − c))
have ∗: part-circlepath c r (pi/2 ) (3/2∗pi) = part-circlepath c r (pi + (−pi/2 ))

(pi + pi/2 )
by simp

have path-image (part-circlepath c r (pi/2 ) (3/2∗pi)) =
?f ‘ sphere c r ∩ ?f ‘ {s. Re c ≤ Re s}

unfolding ∗ part-circlepath-rotate-left path-image-compose path-image-semicircle-Re-ge[OF
assms]

by auto
also have ?f ‘ sphere c r = sphere c r

by (rule sphere-rotate)
also have ?f ‘ {s. Re c ≤ Re s} = {s. Re c ≥ Re s}

by (auto simp: image-iff intro!: exI [of - 2 ∗ c − x for x])
finally show ?thesis .

qed

lemma path-image-semicircle-Im-ge:
assumes r ≥ 0
shows path-image (part-circlepath c r 0 pi) =

sphere c r ∩ {s. Im s ≥ Im c}
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proof −
let ?f = (λz. c + cis (pi/2 ) ∗ (z − c))
have ∗: part-circlepath c r 0 pi = part-circlepath c r (pi / 2 + (−pi/2 )) (pi / 2

+ pi/2 )
by simp

have path-image (part-circlepath c r 0 pi) =
?f ‘ sphere c r ∩ ?f ‘ {s. Re c ≤ Re s}

unfolding ∗ part-circlepath-rotate-left path-image-compose path-image-semicircle-Re-ge[OF
assms]

by auto
also have ?f ‘ sphere c r = sphere c r

by (rule sphere-rotate)
also have ?f ‘ {s. Re c ≤ Re s} = {s. Im c ≤ Im s}

by (auto simp: image-iff intro!: exI [of - c − i ∗ (x − c) for x])
finally show ?thesis .

qed

lemma path-image-semicircle-Im-le:
assumes r ≥ 0
shows path-image (part-circlepath c r pi (2 ∗ pi)) =

sphere c r ∩ {s. Im s ≤ Im c}
proof −

let ?f = (λz. c + cis (3∗pi/2 ) ∗ (z − c))
have ∗: part-circlepath c r pi (2∗pi) = part-circlepath c r (3∗pi/2 + (−pi/2 ))

(3∗pi/2 + pi/2 )
by simp

have path-image (part-circlepath c r pi (2 ∗ pi)) =
?f ‘ sphere c r ∩ ?f ‘ {s. Re c ≤ Re s}

unfolding ∗ part-circlepath-rotate-left path-image-compose path-image-semicircle-Re-ge[OF
assms]

by auto
also have ?f ‘ sphere c r = sphere c r

by (rule sphere-rotate)
also have cis (3 ∗ pi / 2 ) = −i

using cis-mult[of pi pi / 2 ] by simp
hence ?f ‘ {s. Re c ≤ Re s} = {s. Im c ≥ Im s}

by (auto simp: image-iff intro!: exI [of - c + i ∗ (x − c) for x])
finally show ?thesis .

qed

lemma eval-fds-logderiv-zeta-real:
assumes x > (1 :: real)
shows (λp. ln (real p) / (p powr x − 1 )) abs-summable-on {p. prime p} (is

?th1 )
and deriv zeta (of-real x) / zeta (of-real x) =

−of-real (
∑

ap | prime p. ln (real p) / (p powr x − 1 )) (is ?th2 )
proof −

have (λp. Re (of-real (ln (real p)) / (of-nat p powr of-real x − 1 )))
abs-summable-on {p. prime p} using assms
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by (intro abs-summable-Re eval-fds-logderiv-zeta) auto
also have ?this ←→ ?th1

by (intro abs-summable-on-cong) (auto simp: powr-Reals-eq)
finally show ?th1 .
show ?th2 using assms
by (subst eval-fds-logderiv-zeta) (auto simp: infsetsum-of-real [symmetric] powr-Reals-eq)

qed

lemma
fixes a b c d :: real
assumes ab: d ∗ a + b ≥ 1 and c: c < −1 and d: d > 0
defines C ≡ − ((ln (d ∗ a + b) − 1 / (c + 1 )) ∗ (d ∗ a + b) powr (c + 1 ) /

(d ∗ (c + 1 )))
shows set-integrable-ln-powr-at-top:

(λx. (ln (d ∗ x + b) ∗ ((d ∗ x + b) powr c))) absolutely-integrable-on
{a<..} (is ?th1 )

and set-lebesgue-integral-ln-powr-at-top:
(
∫

x∈{a<..}. (ln (d ∗ x + b) ∗ ((d ∗ x + b) powr c)) ∂lborel) = C (is
?th2 )

and ln-powr-has-integral-at-top:
((λx. ln (d ∗ x + b) ∗ (d ∗ x + b) powr c) has-integral C ) {a<..} (is ?th3 )

proof −
define f where f = (λx. ln (d ∗ x + b) ∗ (d ∗ x + b) powr c)
define F where F = (λx. (ln (d ∗ x + b) − 1 / (c + 1 )) ∗ (d ∗ x + b) powr

(c + 1 ) / (d ∗ (c + 1 )))

have ∗: (F has-field-derivative f x) (at x) isCont f x f x ≥ 0 if x > a for x
proof −

have 1 ≤ d ∗ a + b by fact
also have . . . < d ∗ x + b using that assms

by (intro add-strict-right-mono mult-strict-left-mono)
finally have gt-1 : d ∗ x + b > 1 .
show (F has-field-derivative f x) (at x) isCont f x using ab c d gt-1

by (auto simp: F-def f-def divide-simps intro!: derivative-eq-intros continu-
ous-intros)

(auto simp: algebra-simps powr-add)?
show f x ≥ 0 using gt-1 by (auto simp: f-def )

qed

have limits: ((F ◦ real-of-ereal) −−−→ F a) (at-right (ereal a))
((F ◦ real-of-ereal) −−−→ 0 ) (at-left ∞)

using c ab d unfolding ereal-tendsto-simps1 F-def by (real-asymp; simp add:
field-simps)+

have 1 : set-integrable lborel (einterval a ∞) f using ab c limits
by (intro interval-integral-FTC-nonneg) (auto intro!: ∗ AE-I2 )

thus 2 : f absolutely-integrable-on {a<..}
by (auto simp: set-integrable-def integrable-completion)

have (LBINT x=ereal a..∞. f x) = 0 − F a using ab c limits
by (intro interval-integral-FTC-nonneg) (auto intro!: ∗)
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thus 3 : ?th2
by (simp add: interval-integral-to-infinity-eq F-def f-def C-def )

show ?th3
using set-borel-integral-eq-integral[OF 1 ] 3 by (simp add: has-integral-iff f-def

C-def )
qed

lemma ln-fact-conv-sum-upto: ln (fact n) = sum-upto ln n
by (induction n) (auto simp: sum-upto-plus1 add.commute[of 1 ] ln-mult)

lemma sum-upto-ln-conv-ln-fact: sum-upto ln x = ln (fact (nat bxc))
by (simp add: ln-fact-conv-sum-upto sum-upto-altdef )

lemma real-of-nat-div: real (a div b) = real-of-int breal a / real bc
by (simp add: floor-divide-of-nat-eq)

lemma measurable-sum-upto [measurable]:
fixes f :: ′a ⇒ nat ⇒ real
assumes [measurable]:

∧
y. (λt. f t y) ∈ M →M borel

assumes [measurable]: x ∈ M →M borel
shows (λt. sum-upto (f t) (x t)) ∈ M →M borel

proof −
have meas: (λt. set-lebesgue-integral lborel {y. y ≥ 0 ∧ y − real (nat bx tc) ≤

0} (λy. f t (nat dye)))
∈ M →M borel (is ?f ∈ -) unfolding set-lebesgue-integral-def

by measurable
also have ?f = (λt. sum-upto (f t) (x t))
proof

fix t :: ′a
show ?f t = sum-upto (f t) (x t)
proof (cases x t < 1 )

case True
hence {y. y ≥ 0 ∧ y − real (nat bx tc) ≤ 0} = {0} by auto
thus ?thesis using True

by (simp add: set-integral-at-point sum-upto-altdef )
next

case False
define n where n = nat bx tc
from False have n > 0 by (auto simp: n-def )

have ∗: ((λx. f t (nat dxe)) has-integral sum (f t) {0<..n}) {real 0 ..real n}
using ‹n > 0 › by (intro nat-sum-has-integral-ceiling) auto

have ∗∗: (λx. f t (nat dxe)) absolutely-integrable-on {real 0 ..real n}
proof (rule absolutely-integrable-absolutely-integrable-ubound)

show (λ-. MAX n∈{0 ..n}. |f t n|) absolutely-integrable-on {real 0 ..real n}
using ‹n > 0 › by (subst absolutely-integrable-on-iff-nonneg)

(auto simp: Max-ge-iff intro!: exI [of - f t 0 ])
show (λx. f t (nat dxe)) integrable-on {real 0 ..real n}
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using ∗ by (simp add: has-integral-iff )
next

fix y :: real assume y: y ∈ {real 0 ..real n}
have f t (nat dye) ≤ |f t (nat dye)|

by simp
also have . . . ≤ (MAX n∈{0 ..n}. |f t n|)

using y by (intro Max.coboundedI ) auto
finally show f t (nat dye) ≤ (MAX n∈{0 ..n}. |f t n|) .

qed
have sum (f t) {0<..n} = (

∫
x∈{real 0 ..real n}. f t (nat dxe) ∂lebesgue)

using has-integral-set-lebesgue[OF ∗∗] ∗ by (simp add: has-integral-iff )
also have . . . = (

∫
x∈{real 0 ..real n}. f t (nat dxe) ∂lborel)

unfolding set-lebesgue-integral-def by (subst integral-completion) auto
also have {real 0 ..real n} = {y. 0 ≤ y ∧ y − real (nat bx tc) ≤ 0}

by (auto simp: n-def )
also have sum (f t) {0<..n} = sum-upto (f t) (x t)

by (simp add: sum-upto-altdef n-def )
finally show ?thesis ..

qed
qed
finally show ?thesis .

qed

end

2 Ingham’s Tauberian Theorem
theory Newman-Ingham-Tauberian
imports

HOL−Real-Asymp.Real-Asymp
Prime-Number-Theorem-Library

begin

In his proof of the Prime Number Theorem, Newman [6] uses a Tauberian
theorem that was first proven by Ingham. Newman gives a nice and straight-
forward proof of this theorem based on contour integration. This section will
be concerned with proving this theorem.
This Tauberian theorem is probably the part of the Newman’s proof of the
Prime Number Theorem where most of the “heavy lifting” is done. Its
purpose is to extend the summability of a Dirichlet series with bounded
coefficients from the region R(s) > 1 to R(s) ≥ 1.
In order to show it, we first require a number of auxiliary bounding lemmas.
lemma newman-ingham-aux1 :

fixes R :: real and z :: complex
assumes R: R > 0 and z : norm z = R
shows norm (1 / z + z / R2) = 2 ∗ |Re z| / R2

proof −
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from z and R have [simp]: z 6= 0 by auto
have 1 / z + z / R2 = (R2 + z2) ∗ (1 / R2 / z) using R

by (simp add: field-simps power2-eq-square)
also have norm . . . = norm (R2 + z2) / R ^ 3

by (simp add: numeral-3-eq-3 z norm-divide norm-mult power2-eq-square)
also have R2 + z2 = z ∗ (z + cnj z) using complex-norm-square[of z]

by (simp add: z power2-eq-square algebra-simps)
also have norm . . . = 2 ∗ |Re z| ∗ R

by (subst complex-add-cnj) (simp-all add: z norm-mult)
also have . . . / R ^ 3 = 2 ∗ |Re z| / R2

using R by (simp add: field-simps numeral-3-eq-3 power2-eq-square)
finally show ?thesis .

qed

lemma newman-ingham-aux2 :
fixes m :: nat and w z :: complex
assumes 1 ≤ m 1 ≤ Re w 0 < Re z and f :

∧
n. 1 ≤ n =⇒ norm (f n) ≤ C

shows norm (
∑

n=1 ..m. f n / n powr (w − z)) ≤ C ∗ (m powr Re z) ∗ (1 / m
+ 1 / Re z)
proof −

have [simp]: C ≥ 0 by (rule order .trans[OF - f [of 1 ]]) auto
have norm (

∑
n=1 ..m. f n / n powr (w − z)) ≤ (

∑
n=1 ..m. C / n powr (1 −

Re z))
by (rule sum-norm-le)

(insert assms, auto simp: norm-divide norm-powr-real-powr intro!: frac-le
assms powr-mono)

also have . . . = C ∗ (
∑

n=1 ..m. n powr (Re z − 1 ))
by (subst sum-distrib-left) (simp-all add: powr-diff )

also have . . . ≤ C ∗ (m powr Re z ∗ (1 / Re z + 1 / m))
using zeta-partial-sum-le ′[of Re z m] assms by (intro mult-left-mono) auto

finally show ?thesis by (simp add: mult-ac add-ac)
qed

lemma hurwitz-zeta-real-bound-aux:
fixes a x :: real
assumes ax: a > 0 x > 1
shows (

∑
i. (a + real (Suc i)) powr (−x)) ≤ a powr (1 − x) / (x − 1 )

proof (rule decreasing-sum-le-integral, goal-cases)
have ((λt. (a + t) powr −x) has-integral −(a powr (−x + 1 )) / (−x + 1 ))

(interior {0 ..})
using powr-has-integral-at-top[of 0 a −x] using ax by (simp add: interior-real-atLeast)

also have −(a powr (− x + 1 )) / (− x + 1 ) = a powr (1 − x) / (x − 1 )
using ax by (simp add: field-simps)

finally show ((λt. (a + t) powr −x) has-integral a powr (1 − x) / (x − 1 ))
{0 ..}

by (subst (asm) has-integral-interior) auto
qed (insert ax, auto intro!: powr-mono2 ′)

Given a function that is analytic on some vertical line segment, we can find
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a rectangle around that line segment on which the function is also analytic.
lemma analytic-on-axis-extend:

fixes y1 y2 x :: real
defines S ≡ {z. Re z = x ∧ Im z ∈ {y1 ..y2}}
assumes y1 ≤ y2
assumes f analytic-on S
obtains x1 x2 :: real where x1 < x x2 > x f analytic-on cbox (Complex x1 y1 )

(Complex x2 y2 )
proof −

define C where C = {box a b |a b z. f analytic-on box a b ∧ z ∈ box a b ∧ z ∈
S}

have S = cbox (Complex x y1 ) (Complex x y2 )
by (auto simp: S-def in-cbox-complex-iff )

also have compact . . . by simp
finally have 1 : compact S .

have 2 : S ⊆
⋃

C
proof (intro subsetI )

fix z assume z ∈ S
from ‹f analytic-on S› and this obtain a b where z ∈ box a b f analytic-on

box a b
by (blast elim: analytic-onE-box)

with ‹z ∈ S› show z ∈
⋃

C unfolding C-def by blast
qed

have 3 : open X if X ∈ C for X using that by (auto simp: C-def )
from compactE [OF 1 2 3 ] obtain T where T : T ⊆ C finite T S ⊆

⋃
T

by blast

define x1 where x1 = Max (insert (x − 1 ) ((λX . x + (Inf (Re ‘ X) − x) / 2 )
‘ T ))

define x2 where x2 = Min (insert (x + 1 ) ((λX . x + (Sup (Re ‘ X) − x) / 2 )
‘ T ))

have ∗: x + (Inf (Re ‘ X) − x) / 2 < x ∧ x + (Sup (Re ‘ X) − x) / 2 > x if
X ∈ T for X

proof −
from that and T obtain a b s where [simp]: X = box a b and s: s ∈ box a b

s ∈ S
by (force simp: C-def )

hence le: Re a < Re b Im a < Im b by (auto simp: in-box-complex-iff )
show ?thesis using le s

unfolding ‹X = box a b› Re-image-box[OF le] Im-image-box[OF le]
by (auto simp: S-def in-box-complex-iff )

qed
from ∗ T have x1 < x unfolding x1-def by (subst Max-less-iff ) auto
from ∗ T have x2 > x unfolding x2-def by (subst Min-gr-iff ) auto

have f analytic-on (
⋃

T )
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using T by (subst analytic-on-Union) (auto simp: C-def )
moreover have z ∈

⋃
T if z ∈ cbox (Complex x1 y1 ) (Complex x2 y2 ) for z

proof −
from that have Complex x (Im z) ∈ S

by (auto simp: in-cbox-complex-iff S-def )
with T obtain X where X : X ∈ T Complex x (Im z) ∈ X

by auto
with T obtain a b where [simp]: X = box a b by (auto simp: C-def )
from X have le: Re a < Re b Im a < Im b by (auto simp: in-box-complex-iff )

from that have Re z ≤ x2 by (simp add: in-cbox-complex-iff )
also have . . . ≤ x + (Sup (Re ‘ X) − x) / 2

unfolding x2-def by (rule Min.coboundedI )(use T X in auto)
also have . . . = (x + Re b) / 2

using le unfolding ‹X = box a b› Re-image-box[OF le] by (simp add:
field-simps)

also have . . . < (Re b + Re b) / 2
using X by (intro divide-strict-right-mono add-strict-right-mono)

(auto simp: in-box-complex-iff )
also have . . . = Re b by simp
finally have [simp]: Re z < Re b .

have Re a = (Re a + Re a) / 2 by simp
also have . . . < (x + Re a) / 2

using X by (intro divide-strict-right-mono add-strict-right-mono)
(auto simp: in-box-complex-iff )

also have . . . = x + (Inf (Re ‘ X) − x) / 2
using le unfolding ‹X = box a b› Re-image-box[OF le] by (simp add:

field-simps)
also have . . . ≤ x1 unfolding x1-def by (rule Max.coboundedI )(use T X in

auto)
also have . . . ≤ Re z using that by (simp add: in-cbox-complex-iff )
finally have [simp]: Re z > Re a .

from X have z ∈ X by (simp add: in-box-complex-iff )
with T X show ?thesis by blast

qed
hence cbox (Complex x1 y1 ) (Complex x2 y2 ) ⊆

⋃
T by blast

ultimately have f analytic-on cbox (Complex x1 y1 ) (Complex x2 y2 )
by (rule analytic-on-subset)

with ‹x1 < x› and ‹x2 > x› and that[of x1 x2 ] show ?thesis by blast
qed

We will now prove the theorem. The precise setting is this: Consider a
Dirichlet series F (s) =

∑
ann

−s with bounded coefficients. Clearly, this
converges to an analytic function f(s) on {s | R(s) > 1}.
If f(s) is analytic on the larger set {s | R(s) ≥ 1}, F converges to f(s) for
all R(s) ≥ 1.
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The proof follows Newman’s argument very closely, but some of the precise
bounds we use are a bit different from his. Also, like Harrison, we choose a
combination of a semicircle and a rectangle as our contour, whereas Newman
uses a circle with a vertical cut-off. The result of the Residue theorem is the
same in both cases, but the bounding of the contributions of the different
parts is somewhat different.
The reason why we picked Harrison’s contour over Newman’s is because we
could not understand how his bounding of the different contributions fits to
his contour, and it seems likely that this is also the reason why Harrison
altered the contour in the first place.
lemma Newman-Ingham-1 :

fixes F :: complex fds and f :: complex ⇒ complex
assumes coeff-bound: fds-nth F ∈ O(λ-. 1 )
assumes f-analytic: f analytic-on {s. Re s ≥ 1}
assumes F-conv-f :

∧
s. Re s > 1 =⇒ eval-fds F s = f s

assumes w: Re w ≥ 1
shows fds-converges F w and eval-fds F w = f w

proof −
— We get a bound on our coefficients and call it C.
obtain C where C : C ≥ 1

∧
n. norm (fds-nth F n) ≤ C

using natfun-bigo-1E [OF coeff-bound, where lb = 1 ] by blast
write contour-integral (‹

∮
[-]›)

— We show convergence directly by showing that the difference between the
partial sums and the limit vanishes.

have (λN . eval-fds (fds-truncate N F) w) −−−−→ f w
unfolding tendsto-iff dist-norm norm-minus-commute[of eval-fds F s for F s]

proof safe
fix ε :: real assume ε: ε > 0
— We choose an integration radius that is big enough for the error to be

sufficiently small.
define R where R = max 1 (3 ∗ C / ε)
have R: R ≥ 3 ∗ C / ε R ≥ 1 by (auto simp: R-def )

— Next, we extend the analyticity of f (w + z) to the left of the complex plane
within a thin rectangle that is at least as high as the circle.

obtain l where l: l > 0
(λz. f (w + z)) analytic-on {s. Re s > 0 ∨ Im s ∈ {−R−1<..<R+1} ∧ Re

s > −l}
proof −

have f-analytic ′: (λz. f (w + z)) analytic-on {s. Re s ≥ 0}
by (rule analytic-on-compose-gen[OF - f-analytic, unfolded o-def ])

(insert w, auto intro: analytic-intros)
hence (λz. f (w + z)) analytic-on {s. Re s = 0 ∧ Im s ∈ {−R−1 ..R+1}}

by (rule analytic-on-subset) auto
from analytic-on-axis-extend[OF - this] obtain x1 x2 where x12 :

x1 < 0 x2 > 0 (λz. f (w + z)) analytic-on cbox (Complex x1 (−R−1 ))
(Complex x2 (R+1 ))
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using ‹R ≥ 1 › by auto
from this(3 ) have (λz. f (w + z)) analytic-on {s. Re s ∈ {x1 ..0} ∧ Im s ∈

{−R−1 ..R+1}}
by (rule analytic-on-subset) (insert x12 , auto simp: in-cbox-complex-iff )

with f-analytic ′ have (λz. f (w + z)) analytic-on
({s. Re s ≥ 0} ∪ {s. Re s ∈ {x1 ..0} ∧ Im s ∈

{−R−1 ..R+1}})
by (subst analytic-on-Un) auto

hence (λz. f (w + z)) analytic-on {s. Re s > 0 ∨ Im s ∈ {−R−1<..<R+1}
∧ Re s > x1}

by (rule analytic-on-subset) auto
with ‹x1 < 0 › and that[of −x1 ] show ?thesis by auto

qed

— The function f (w + z) is now analytic on the open box (−l;R+1)+ i(−R+
1;R+ 1). We call this region X.

define X where X = box (Complex (−l) (−R−1 )) (Complex (R+1 ) (R+1 ))
have [simp, intro]: open X convex X by (simp-all add: X-def open-box)
from R l have [simp]: 0 ∈ X by (auto simp: X-def in-box-complex-iff )
have analytic: (λz. f (w + z)) analytic-on X

by (rule analytic-on-subset[OF l(2 )]) (auto simp: X-def in-box-complex-iff )
note f-analytic ′ [analytic-intros] = analytic-on-compose-gen[OF - analytic, un-

folded o-def ]
note f-holo [holomorphic-intros] =

holomorphic-on-compose-gen[OF - analytic-imp-holomorphic[OF analytic],
unfolded o-def ]

note f-cont [continuous-intros] = continuous-on-compose2 [OF
holomorphic-on-imp-continuous-on[OF analytic-imp-holomorphic[OF ana-

lytic]]]

— We now pick a smaller closed box X ′ inside the big open box X. This is
because we need a compact set for the next step. our integration path still lies
entirely within X ′, and since X ′ is compact, f (w + z) is bounded on it, so we
obtain such a bound and call it M.

define δ where δ = min (1/2 ) (l/2 )
from l have δ: δ > 0 δ ≤ 1/2 δ < l by (auto simp: δ-def )
define X ′ where X ′ = cbox (Complex (−δ) (−R)) (Complex R R)
have X ′ ⊆ X unfolding X ′-def X-def using l(1 ) R δ

by (intro subset-box-imp) (auto simp: Basis-complex-def )
have [intro]: compact X ′ by (simp add: X ′-def )
moreover have continuous-on X ′ (λz. f (w + z))

using w ‹X ′ ⊆ X› by (auto intro!: continuous-intros)
ultimately obtain M where M : M ≥ 0

∧
z. z ∈ X ′ =⇒ norm (f (w + z))

≤ M
using continuous-on-compact-bound by blast

— Our objective is now to show that the difference between the N -th partial
sum and the limit is below a certain bound (depending on N ) which tends to 0 for
N → ∞. We use the following bound:
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define bound where
bound = (λN ::nat. (2∗C/R + C/N + 3∗M / (pi∗R∗ln N ) + 3∗R∗M / (δ∗pi

∗ N powr δ)))
have 2 ∗ C / R < ε using M (1 ) R C (1 ) δ(1 ) ε

by (auto simp: field-simps)
— Evidently this is below ε for sufficiently large N.
hence eventually (λN ::nat. bound N < ε) at-top

using M (1 ) R C (1 ) δ(1 ) ε unfolding bound-def by real-asymp

— It now only remains to show that the difference is indeed less than the claimed
bound.

thus eventually (λN . norm (f w − eval-fds (fds-truncate N F) w) < ε) at-top
using eventually-gt-at-top[of 1 ]

proof eventually-elim
case (elim N )
note N = this

— Like Harrison (and unlike Newman), our integration path Γ consists of a
semicircle A of radius R in the right-halfplane and a box of width δ and height 2R
on the left halfplane. The latter consists of three straight lines, which we call B1
to B3.

define A where A = part-circlepath 0 R (−pi/2 ) (pi/2 )
define B2 where B2 = linepath (Complex (−δ) R) (Complex (−δ) (−R))
define B1 where B1 = linepath (R ∗ i) (R ∗ i − δ)
define B3 where B3 = linepath (−R ∗ i − δ) (−R ∗ i)
define Γ where Γ = A +++ B1 +++ B2 +++ B3

— We first need to show some basic facts about the geometry of our integration
path.

have [simp, intro]:
path A path B1 path B3 path B2
valid-path A valid-path B1 valid-path B3 valid-path B2
arc A arc B1 arc B3 arc B2
pathstart A = −i ∗ R pathfinish A = i ∗ R
pathstart B1 = i ∗ R pathfinish B1 = R ∗ i − δ
pathstart B3 = −R ∗ i − δ pathfinish B3 = −i ∗ R
pathstart B2 = R ∗ i − δ pathfinish B2 = −R ∗ i − δ using R δ

by (simp-all add: A-def B1-def B3-def exp-eq-polar B2-def Complex-eq
arc-part-circlepath)

hence [simp, intro]: valid-path Γ
by (simp add: Γ-def A-def B1-def B3-def B2-def exp-eq-polar Complex-eq)

hence [simp, intro]: path Γ using valid-path-imp-path by blast
have [simp]: pathfinish Γ = pathstart Γ by (simp add: Γ-def exp-eq-polar)

have image-B2 : path-image B2 = {s. Re s = −δ ∧ Im s ∈ {−R..R}}
using R by (auto simp: closed-segment-same-Re closed-segment-eq-real-ivl

B2-def )
have image-B1 : path-image B1 = {s. Re s ∈ {−δ..0} ∧ Im s = R}
and image-B3 : path-image B3 = {s. Re s ∈ {−δ..0} ∧ Im s = −R}
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using δ by (auto simp: B1-def B3-def closed-segment-same-Im closed-segment-eq-real-ivl)
have image-A: path-image A = {s. Re s ≥ 0 ∧ norm s = R}

unfolding A-def using R by (subst path-image-semicircle-Re-ge) auto
also have z ∈ . . . −→ z ∈ X ′ − {0} for z

using complex-Re-le-cmod[of z] abs-Im-le-cmod[of z] δ R
by (auto simp: X ′-def in-cbox-complex-iff )

hence {s. Re s ≥ 0 ∧ norm s = R} ⊆ X ′ − {0} by auto
finally have path-image B2 ⊆ X ′ − {0} path-image A ⊆ X ′ − {0}

path-image B1 ⊆ X ′ − {0} path-image B3 ⊆ X ′ − {0} using ‹δ > 0 ›
by (auto simp: X ′-def in-cbox-complex-iff image-B2 image-B1 image-B3 )

note path-images = this ‹X ′ ⊆ X›

— Γ is a simple path, which, combined with its simple geometric shape, makes
reasoning about its winding numbers trivial.

from R have simple-path A unfolding A-def
by (subst simple-path-part-circlepath) auto

have simple-path Γ unfolding Γ-def
proof (intro simple-path-join-loop subsetI arc-join, goal-cases)

fix z assume z: z ∈ path-image A ∩ path-image (B1 +++ B2 +++ B3 )
with image-A have Re z ≥ 0 norm z = R by auto
with z R δ show z ∈ {pathstart A, pathstart (B1 +++ B2 +++ B3 )}
by (auto simp: path-image-join image-B1 image-B2 image-B3 complex-eq-iff )
qed (insert R, auto simp: image-B1 image-B3 path-image-join image-B2

complex-eq-iff )

— We define the integrands in the same fashion as Newman:
define g where g = (λz::complex. f (w + z) ∗ N powr z ∗ (1 / z + z / R2))
define S where S = eval-fds (fds-truncate N F)
define g-S where g-S = (λz::complex. S (w + z) ∗ N powr z ∗ (1 / z + z /

R2))
define rem where rem = (λz::complex. f z − S z)
define g-rem where g-rem = (λz::complex. rem (w + z) ∗ N powr z ∗ (1 /

z + z / R2))

have g-holo: g holomorphic-on X − {0} unfolding g-def
by (auto intro!: holomorphic-intros analytic-imp-holomorphic ′[OF analytic])

have rem-altdef : rem z = eval-fds (fds-remainder N F) z if Re z > 1 for z
proof −
have abscissa: abs-conv-abscissa F ≤ 1

using assms by (intro bounded-coeffs-imp-abs-conv-abscissa-le-1 )
(simp-all add: natfun-bigo-iff-Bseq)

from assms and that have f z = eval-fds F z by auto
also have F = fds-truncate N F + fds-remainder N F

by (rule fds-truncate-plus-remainder [symmetric])
also from that have eval-fds . . . z = S z + eval-fds (fds-remainder N F) z

unfolding S-def
by (subst eval-fds-add) (auto intro!: fds-abs-converges-imp-converges

fds-abs-converges[OF le-less-trans[OF

44



abscissa]])
finally show ?thesis by (simp add: rem-def )

qed

— We now come to the first application of the residue theorem along the path
Γ:

have
∮
[Γ] g = 2 ∗ pi ∗ i ∗ winding-number Γ 0 ∗ residue g 0

proof (subst Residue-theorem)
show g holomorphic-on X − {0} by fact
show path-image Γ ⊆ X − {0} using path-images

by (auto simp: Γ-def path-image-join)
thus ∀ z. z /∈ X −→ winding-number Γ z = 0

by (auto intro!: simply-connected-imp-winding-number-zero[of X ]
convex-imp-simply-connected)

qed (insert path-images, auto intro: convex-connected)
also have winding-number Γ 0 = 1
proof (rule simple-closed-path-winding-number-pos)

from R δ have ∀ g∈{A, B1 , B2 , B3}. Re (winding-number g 0 ) > 0
unfolding A-def B1-def B2-def B3-def

by (auto intro!: winding-number-linepath-pos-lt winding-number-part-circlepath-pos-less)
hence valid-path Γ ∧ 0 /∈ path-image Γ ∧ Re (winding-number Γ 0 ) > 0

unfolding Γ-def using path-images(1−4 ) by (intro winding-number-join-pos-combined ′)
auto

thus Re (winding-number Γ 0 ) > 0 by simp
qed (insert path-images ‹simple-path Γ›, auto simp: Γ-def path-image-join)
also have residue g 0 = f w
proof −

have g = (λz::complex. f (w + z) ∗ N powr z ∗ (1 + z2 / R2) / z)
by (auto simp: g-def divide-simps fun-eq-iff power2-eq-square

simp del: div-mult-self3 div-mult-self4 div-mult-self2 div-mult-self1 )
moreover from N have residue . . . 0 = f w

by (subst residue-simple ′[of X ])
(auto intro!: holomorphic-intros analytic-imp-holomorphic[OF analytic])

ultimately show ?thesis by (simp only:)
qed
finally have 2 ∗ pi ∗ i ∗ f w =

∮
[Γ] g by simp

also have . . . =
∮
[A] g +

∮
[B2 ] g +

∮
[B1 ] g +

∮
[B3 ] g unfolding Γ-def

by (subst contour-integral-join, (insert path-images,
auto intro!: contour-integral-join contour-integrable-holomorphic-simple

g-holo)[4 ])+
(simp-all add: add-ac)

finally have integral1 : 2 ∗ pi ∗ i ∗ f w =
∮
[A] g +

∮
[B2 ] g +

∮
[B1 ] g +∮

[B3 ] g .

— Next, we apply the residue theorem along a circle of radius R to another
integrand that is related to the partial sum:

have
∮
[circlepath 0 R] g-S = 2 ∗ pi ∗ i ∗ residue g-S 0

proof (subst Residue-theorem)
show g-S holomorphic-on UNIV − {0}
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by (auto simp: g-S-def S-def intro!: holomorphic-intros)
qed (insert R, auto simp: winding-number-circlepath-centre)
also have residue g-S 0 = S w
proof −

have g-S = (λz::complex. S (w + z) ∗ N powr z ∗ (1 + z2 / R2) / z)
by (auto simp: g-S-def divide-simps fun-eq-iff power2-eq-square

simp del: div-mult-self3 div-mult-self4 div-mult-self2 div-mult-self1 )
moreover from N have residue . . . 0 = S w

by (subst residue-simple ′[of X ])
(auto intro!: holomorphic-intros simp: S-def )

ultimately show ?thesis by (simp only:)
qed
finally have 2 ∗ pi ∗ i ∗ S w =

∮
[circlepath 0 R] g-S ..

— We split this integral into integrals along two semicircles in the left and
right half-plane, respectively:

also have . . . =
∮
[part-circlepath 0 R (−pi/2 ) (3∗pi/2 )] g-S

proof (rule Cauchy-theorem-homotopic-loops)
show homotopic-loops (−{0}) (circlepath 0 R)

(part-circlepath 0 R (− pi / 2 ) (3 ∗ pi / 2 )) unfolding circlepath-def
using R

by (intro homotopic-loops-part-circlepath[where k = 1 ]) auto
qed (auto simp: g-S-def S-def intro!: holomorphic-intros)
also have . . . =

∮
[A +++ −A] g-S

proof (rule Cauchy-theorem-homotopic-paths)
have ∗: −A = part-circlepath 0 R (pi/2 ) (3∗pi/2 ) unfolding A-def

by (intro part-circlepath-mirror [where k = 0 ]) auto
from R show homotopic-paths (−{0}) (part-circlepath 0 R (−pi/2 )

(3∗pi/2 )) (A +++ −A)
unfolding ∗ unfolding A-def

by (intro homotopic-paths-part-circlepath) (auto dest!: in-path-image-part-circlepath)
qed (auto simp: g-S-def S-def A-def exp-eq-polar intro!: holomorphic-intros)
also have . . . =

∮
[A] g-S +

∮
[−A] g-S using R

by (intro contour-integral-join contour-integrable-holomorphic-simple[of -
−{0}])

(auto simp: A-def g-S-def S-def path-image-mirror dest!: in-path-image-part-circlepath
intro!: holomorphic-intros)

also have
∮
[−A] g-S = −

∮
[A] (λx. g-S (−x))

by (simp add: A-def contour-integral-mirror contour-integral-neg)
finally have integral2 : 2 ∗ pi ∗ i ∗ S w =

∮
[A] g-S −

∮
[A] (λx. g-S (−x))

by simp

— Next, we show a small bounding lemma that we will need for the final
estimate:

have circle-bound: norm (1 / z + z / R2) ≤ 2 / R if [simp]: norm z = R
for z :: complex

proof −
have norm (1 / z + z / R2) ≤ 1 / R + 1 / R

by (intro order .trans[OF norm-triangle-ineq] add-mono)
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(insert R, simp-all add: norm-divide norm-mult power2-eq-square)
thus ?thesis by simp

qed

— The next bound differs somewhat from Newman’s, but it works just as well.
Its purpose is to bound the contribution of the two short horizontal line segments.

have B12-bound: norm (integral {− δ..0} (λx. g (x + R ′ ∗ i))) ≤ 3 ∗ M /
R / ln N

(is ?I ≤ -) if |R ′| = R for R ′

proof −
have ?I ≤ integral {−δ..0} (λx. 3 ∗ M / R ∗ N powr x)
proof (rule integral-norm-bound-integral)

fix x assume x: x ∈ {−δ..0}
define z where z = x + i ∗ R ′

from R that have [simp]: z 6= 0 Re z = x Im z = R ′

by (auto simp: z-def complex-eq-iff )
from x R that have z ∈ X ′ by (auto simp: z-def X ′-def in-cbox-complex-iff )

from x R that have norm z ≤ δ + R
by (intro order .trans[OF cmod-le add-mono]) auto

hence norm (1 / z + z / R2) ≤ 1 / R + (δ / R + 1 ) / R
using R that abs-Im-le-cmod[of z]
by (intro order .trans[OF norm-triangle-ineq add-mono])

(auto simp: norm-divide norm-mult power2-eq-square field-simps )
also have δ / R ≤ 1 using δ R by auto
finally have norm (1 / z + z / R2) ≤ 3 / R

using R by (simp add: divide-right-mono)
hence norm (g z) ≤ M ∗ N powr x ∗ (3 / R)

unfolding g-def norm-mult using ‹M ≥ 0 › ‹z ∈ X ′›
by (intro mult-mono mult-nonneg-nonneg M ) (auto simp: norm-powr-real-powr)

thus norm (g (x + R ′ ∗ i)) ≤ 3 ∗ M / R ∗ N powr x by (simp add:
mult-ac z-def )

qed (insert N R l that δ, auto intro!: integrable-continuous-real continu-
ous-intros

simp: g-def X-def complex-eq-iff in-box-complex-iff )
also have . . . = 3 ∗ M / R ∗ integral {−δ..0} (λx. N powr x) by simp
also have ((λx. N powr x) has-integral (N powr 0 / ln N − N powr (−δ) /

ln N )) {−δ..0}
using δ N
by (intro fundamental-theorem-of-calculus)

(auto simp: has-real-derivative-iff-has-vector-derivative [symmetric]
powr-def

intro!: derivative-eq-intros)
hence integral {−δ..0} (λx. N powr x) = 1 / ln (real N ) − real N powr −

δ / ln (real N )
using N by (simp add: has-integral-iff )

also have . . . ≤ 1 / ln (real N ) using N by simp
finally show ?thesis using M R by (simp add: mult-left-mono divide-right-mono)
qed
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— We combine the two results from the residue theorem and obtain an integral
representation of the difference between the partial sums and the limit:

have 2 ∗ pi ∗ i ∗ (f w − S w) =∮
[A] g −

∮
[A] g-S +

∮
[A] (λx. g-S (−x)) +

∮
[B1 ] g +

∮
[B3 ] g +∮

[B2 ] g
unfolding ring-distribs integral1 integral2 by (simp add: algebra-simps)

also have
∮
[A] g −

∮
[A] g-S =

∮
[A] (λx. g x − g-S x) using path-images

by (intro contour-integral-diff [symmetric])
(auto intro!: contour-integrable-holomorphic-simple[of - X − {0}] holo-

morphic-intros
simp: g-S-def g-holo S-def )

also have . . . =
∮
[A] g-rem

by (simp add: g-rem-def g-def g-S-def algebra-simps rem-def )
finally have 2 ∗ pi ∗ i ∗ (f w − S w) =∮

[A] g-rem +
∮
[A] (λx. g-S (− x)) +

∮
[B1 ] g +

∮
[B3 ] g +∮

[B2 ] g .

— We now bound each of these integrals individually:
also have norm . . . ≤ 2 ∗ C ∗ pi / R + 2 ∗ C ∗ pi ∗ (1 / N + 1 / R)

+ 3 ∗ M / R / ln N +
3 ∗ M / R / ln N + 6 ∗ R ∗ M ∗ N powr (−δ) / δ

proof (rule order .trans[OF norm-triangle-ineq] add-mono)+
have

∮
[B1 ] g = −

∮
[reversepath B1 ] g by (simp add: contour-integral-reversepath)

also have
∮
[reversepath B1 ] g = integral {−δ..0} (λx. g (x + R ∗ i))

unfolding B1-def reversepath-linepath using δ
by (subst contour-integral-linepath-same-Im) auto

also have norm (−. . . ) = norm . . . by simp
also have . . . ≤ 3 ∗ M / R / ln N using R by (intro B12-bound) auto
finally show norm (

∮
[B1 ] g) ≤ . . . .

next
have

∮
[B3 ] g = integral {−δ..0} (λx. g (x + (−R) ∗ i)) unfolding B3-def

using δ
by (subst contour-integral-linepath-same-Im) auto

also have norm . . . ≤ 3 ∗ M / R / ln N using R by (intro B12-bound)
auto

finally show norm (
∮
[B3 ] g) ≤ . . . .

next
have norm (

∮
[B2 ] g) ≤ M ∗ N powr (−δ) ∗ (3 / δ) ∗

norm (Complex (− δ) (−R) − Complex (− δ) R) unfolding B2-def
proof ((rule contour-integral-bound-linepath; (fold B2-def )?), goal-cases)

case (3 z)
from 3 δ R have [simp]: z 6= 0 and Re-z: Re z = −δ and Im-z: Im z ∈

{−R..R}
by (auto simp: closed-segment-same-Re closed-segment-eq-real-ivl)

from 3 have z ∈ X ′ using R δ path-images by (auto simp: B2-def )
from 3 δ R have norm z ≤ sqrt (δ^2 + R^2 ) unfolding cmod-def using

Re-z Im-z
by (intro real-sqrt-le-mono add-mono) (auto simp: power2-le-iff-abs-le)
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from power-mono[OF this, of 2 ] have norm-sqr : norm z ^ 2 ≤ δ2 + R2

by simp

have norm (1 / z + z / R2) ≤ (1 + (norm z)2 / R2) / δ
unfolding add-divide-distrib using δ R abs-Re-le-cmod[of z]
by (intro order .trans[OF norm-triangle-ineq] add-mono)
(auto simp: norm-divide norm-mult field-simps power2-eq-square Re-z)

also have . . . ≤ (1 + (1 + δ2 / R2)) / δ using δ R ‹z ∈ X ′› norm-sqr
unfolding X ′-def

by (intro divide-right-mono add-left-mono)
(auto simp: field-simps in-cbox-complex-iff intro!: power-mono)

also have δ2 / R2 ≤ 1
using δ R by (auto simp: field-simps intro!: power-mono)
finally have norm (1 / z + z / R2) ≤ 3 / δ using δ by(simp add:

divide-right-mono)
with ‹z ∈ X ′› show norm (g z) ≤ M ∗ N powr (−δ) ∗ (3 / δ) unfolding

g-def norm-mult
by (intro mult-mono mult-nonneg-nonneg M ) (auto simp: norm-powr-real-powr

Re-z)
qed (insert path-images M δ, auto intro!: contour-integrable-holomorphic-simple[OF

g-holo])
thus norm (

∮
[B2 ] g) ≤ 6 ∗ R ∗ M ∗ N powr (−δ) / δ

using R by (simp add: field-simps cmod-def real-sqrt-mult)
next
have norm (

∮
[A] (λx. g-S (− x))) ≤ (2 ∗ C / (real N ∗ R) + 2 ∗ C / R2)

∗
R ∗ ((pi/2 ) − (−pi/2 )) unfolding A-def

proof ((rule contour-integral-bound-part-circlepath-strong[where k = {R ∗
i, −R∗i}];

(fold A-def )?), goal-cases)
case (6 z)
hence [simp]: z 6= 0 and norm z = R using R

by (auto simp: A-def dest!: in-path-image-part-circlepath)
from 6 have Re z 6= 0

using ‹norm z = R› by (auto simp: cmod-def abs-if complex-eq-iff split:
if-splits)

with 6 have Re z > 0 using image-A by auto
have S (w − z) = (

∑
k = 1 ..N . fds-nth F k / of-nat k powr (w − z))

by (simp add: S-def eval-fds-truncate)
also have norm . . . ≤ C ∗ N powr Re z ∗ (1 / N + 1 / Re z)

using ‹Re z > 0 › w N by (intro newman-ingham-aux2 C ) auto
finally have norm (S (w − z)) ≤ . . . .
hence norm (g-S (−z)) ≤

(C ∗ N powr (Re z) ∗ (1 / N + 1 / Re z)) ∗ N powr (−Re z) ∗ (2
∗ Re z / R2)

unfolding g-S-def norm-mult
using newman-ingham-aux1 [OF - ‹norm z = R›] ‹Re z > 0 › ‹C ≥ 1 › R
by (intro mult-mono mult-nonneg-nonneg circle-bound)

(auto simp: norm-powr-real-powr norm-uminus-minus)
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also have . . . = 2 ∗ C ∗ (Re z / N + 1 ) / R2 using R N ‹Re z > 0 ›
by (simp add: powr-minus algebra-simps)

also have . . . ≤ 2 ∗ C / (N ∗ R) + 2 ∗ C / R2 unfolding add-divide-distrib
ring-distribs

using R N abs-Re-le-cmod[of z] ‹norm z = R› ‹Re z > 0 › ‹C ≥ 1 ›
by (intro add-mono) (auto simp: power2-eq-square field-simps mult-mono)
finally show ?case .

qed (insert R N image-A C , auto intro!: contour-integrable-holomorphic-simple[of
- −{0}]

holomorphic-intros simp: g-S-def S-def )
also have . . . = 2 ∗ C ∗ pi ∗ (1 / N + 1 / R) using R N

by (simp add: power2-eq-square field-simps)
finally show norm (

∮
[A] (λx. g-S (− x))) ≤ . . . .

next
have norm (

∮
[A] g-rem) ≤ (2 ∗ C / R2) ∗ R ∗ ((pi/2 ) − (−pi/2 ))

unfolding A-def
proof ((rule contour-integral-bound-part-circlepath-strong[where k = {R ∗

i, −R∗i}];
(fold A-def )?), goal-cases)

case (6 z)
hence [simp]: z 6= 0 and norm z = R using R

by (auto simp: A-def dest!: in-path-image-part-circlepath)
from 6 have Re z 6= 0

using ‹norm z = R› by (auto simp: cmod-def abs-if complex-eq-iff split:
if-splits)

with 6 have Re z > 0 using image-A by auto

have summable: summable (λn. C ∗ (1 / (Suc n + N ) powr (Re w + Re
z)))

using summable-hurwitz-zeta-real[of Re w + Re z Suc N ] ‹Re z > 0 › w
unfolding powr-minus by (intro summable-mult) (auto simp: field-simps)
have rem (w + z) = (

∑
n. fds-nth F (Suc n + N ) / (Suc n + N ) powr

(w + z))
using ‹Re z > 0 › w by (simp add: rem-altdef eval-fds-remainder)

also have norm . . . ≤ (
∑

n. C / (Suc n + N ) powr Re (w + z)) using
summable

by (intro norm-suminf-le)
(auto simp: norm-divide norm-powr-real-powr intro!: divide-right-mono

C )
also have . . . = (

∑
n. C ∗ (Suc n + N ) powr −Re (w + z))

unfolding powr-minus by (simp add: field-simps)
also have . . . = C ∗ (

∑
n. (Suc n + N ) powr −Re (w + z))

using summable-hurwitz-zeta-real[of Re w + Re z Suc N ] ‹Re z > 0 › w
by (subst suminf-mult) (auto simp: add-ac)

also have (
∑

n. (Suc n + N ) powr −Re (w + z)) ≤
N powr (1 − Re (w + z)) / (Re (w + z) − 1 )

using ‹Re z > 0 › w N hurwitz-zeta-real-bound-aux[of N Re (w + z)]
by (auto simp: add-ac)

also have . . . ≤ N powr −Re z / Re z
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using w N ‹Re z > 0 › by (intro frac-le powr-mono) auto
finally have norm (rem (w + z)) ≤ C / (Re z ∗ N powr Re z)

using C by (simp add: mult-left-mono mult-right-mono powr-minus
field-simps)

hence norm (g-rem z) ≤ (C / (Re z ∗ N powr Re z)) ∗ N powr (Re z) ∗
(2 ∗ Re z / R2)

unfolding g-rem-def norm-mult
using newman-ingham-aux1 [OF - ‹norm z = R›] R ‹Re z > 0 › C
by (intro mult-mono mult-nonneg-nonneg circle-bound)

(auto simp: norm-powr-real-powr norm-uminus-minus)
also have . . . = 2 ∗ C / R2 using R N ‹Re z > 0 ›

by (simp add: powr-minus field-simps)
finally show ?case .

next
show g-rem contour-integrable-on A using path-images

by (auto simp: g-rem-def rem-def S-def
intro!: contour-integrable-holomorphic-simple[of - X−{0}]

holomorphic-intros)
qed (insert R N C , auto)
also have (2 ∗ C / R2) ∗ R ∗ ((pi/2 ) − (−pi/2 )) = 2 ∗ C ∗ pi / R

using R by (simp add: power2-eq-square field-simps)
finally show norm (

∮
[A] g-rem) ≤ . . . .

qed
also have . . . = 4∗C∗pi/R + 2∗C∗pi/N + 6∗M/R / ln N + 6∗R∗M∗N

powr − δ / δ
by (simp add: algebra-simps)

also have . . . = 2∗pi ∗ (2∗C/R + C/N + 3∗M / (pi∗R∗ln N ) + 3∗R∗M
/ (δ∗pi ∗ N powr δ))

by (simp add: field-simps powr-minus )
also have norm (2 ∗ pi ∗ i ∗ (f w − S w)) = 2 ∗ pi ∗ norm (f w − S w)

by (simp add: norm-mult)
finally have norm (f w − S w) ≤ bound N by (simp add: bound-def )
also have bound N < ε by fact
finally show norm (f w − S w) < ε .

qed
qed
thus fds-converges F w

by (auto simp: fds-converges-altdef2 intro: convergentI )
thus eval-fds F w = f w

using ‹(λN . eval-fds (fds-truncate N F) w) −−−−→ f w›
by (intro tendsto-unique[OF - tendsto-eval-fds-truncate]) auto

qed

The theorem generalises in a trivial way; we can replace the requirement
that the coefficients of f(s) be O(1) by O(nσ−1) for some σ ∈ R, then f(s)
converges for R(s) > σ. If it can be analytically continued to R(s) ≥ σ, it
is also convergent there.
theorem Newman-Ingham:

fixes F :: complex fds and f :: complex ⇒ complex
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assumes coeff-bound: fds-nth F ∈ O(λn. n powr of-real (σ − 1 ))
assumes f-analytic: f analytic-on {s. Re s ≥ σ}
assumes F-conv-f :

∧
s. Re s > σ =⇒ eval-fds F s = f s

assumes w: Re w ≥ σ
shows fds-converges F w and eval-fds F w = f w

proof −
define F ′ where F ′ = fds-shift (−of-real (σ − 1 )) F
define f ′ where f ′ = f ◦ (λs. s + of-real (σ − 1 ))

have fds-nth F ′ = (λn. fds-nth F n ∗ of-nat n powr −of-real(σ − 1 ))
by (auto simp: fun-eq-iff F ′-def )

also have . . . ∈ O(λn. of-nat n powr of-real (σ − 1 ) ∗ of-nat n powr −of-real(σ
− 1 ))

by (intro landau-o.big.mult-right assms)
also have (λn. of-nat n powr of-real (σ − 1 ) ∗ of-nat n powr −of-real (σ − 1 ))
∈ Θ(λ-. 1 )

by (intro bigthetaI-cong eventually-mono[OF eventually-gt-at-top[of 0 ]])
(auto simp: powr-minus powr-diff )

finally have bigo: fds-nth F ′ ∈ O(λ-. 1 ) .

from f-analytic have analytic: f ′ analytic-on {s. Re s ≥ 1} unfolding f ′-def
by (intro analytic-on-compose-gen[OF - f-analytic]) (auto intro!: analytic-intros)

have F ′-f : eval-fds F ′ s = f ′ s if Re s > 1 for s
using assms that by (auto simp: F ′-def f ′-def algebra-simps)

have w ′: 1 ≤ Re (w − of-real (σ − 1 ))
using w by simp

have 1 : fds-converges F ′ (w − of-real (σ − 1 ))
using bigo analytic F ′-f w ′ by (rule Newman-Ingham-1 )

thus fds-converges F w by (auto simp: F ′-def )

have 2 : eval-fds F ′ (w − of-real (σ − 1 )) = f ′ (w − of-real (σ − 1 ))
using bigo analytic F ′-f w ′ by (rule Newman-Ingham-1 )

thus eval-fds F w = f w
using assms by (simp add: F ′-def f ′-def )

qed

end

3 Prime-Counting Functions
theory Prime-Counting-Functions

imports Prime-Number-Theorem-Library
begin

We will now define the basic prime-counting functions π, ϑ, and ψ. Addi-
tionally, we shall define a function M that is related to Mertens’ theorems
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and Newman’s proof of the Prime Number Theorem. Most of the results in
this file are not actually required to prove the Prime Number Theorem, but
are still nice to have.

3.1 Definitions
definition prime-sum-upto :: (nat ⇒ ′a) ⇒ real ⇒ ′a :: semiring-1 where

prime-sum-upto f x = (
∑

p | prime p ∧ real p ≤ x. f p)

lemma prime-sum-upto-altdef1 :
prime-sum-upto f x = sum-upto (λp. ind prime p ∗ f p) x
unfolding sum-upto-def prime-sum-upto-def
by (intro sum.mono-neutral-cong-left finite-subset[OF - finite-Nats-le-real[of x]])

(auto dest: prime-gt-1-nat simp: ind-def )

lemma prime-sum-upto-altdef2 :
prime-sum-upto f x = (

∑
p | prime p ∧ p ≤ nat bxc. f p)

unfolding sum-upto-altdef prime-sum-upto-altdef1
by (intro sum.mono-neutral-cong-right) (auto simp: ind-def dest: prime-gt-1-nat)

lemma prime-sum-upto-altdef3 :
prime-sum-upto f x = (

∑
p←primes-upto (nat bxc). f p)

proof −
have (

∑
p←primes-upto (nat bxc). f p) = (

∑
p | prime p ∧ p ≤ nat bxc. f p)

by (subst sum-list-distinct-conv-sum-set) (auto simp: set-primes-upto conj-commute)
thus ?thesis by (simp add: prime-sum-upto-altdef2 )

qed

lemma prime-sum-upto-eqI :
assumes a ≤ b

∧
k. k ∈ {nat bac<..natbbc} =⇒ ¬prime k

shows prime-sum-upto f a = prime-sum-upto f b
proof −

have ∗: k ≤ nat bac if k ≤ nat bbc prime k for k
using that assms(2 )[of k] by (cases k ≤ nat bac) auto

from assms(1 ) have nat bac ≤ nat bbc by linarith
hence (

∑
p | prime p ∧ p ≤ nat bac. f p) = (

∑
p | prime p ∧ p ≤ nat bbc. f p)

using assms by (intro sum.mono-neutral-left) (auto dest: ∗)
thus ?thesis by (simp add: prime-sum-upto-altdef2 )

qed

lemma prime-sum-upto-eqI ′:
assumes a ′ ≤ nat bac a ≤ b nat bbc ≤ b ′ ∧k. k ∈ {a ′<..b ′} =⇒ ¬prime k
shows prime-sum-upto f a = prime-sum-upto f b
by (rule prime-sum-upto-eqI ) (use assms in auto)

lemmas eval-prime-sum-upto = prime-sum-upto-altdef3 [unfolded primes-upto-sieve]

lemma of-nat-prime-sum-upto: of-nat (prime-sum-upto f x) = prime-sum-upto
(λp. of-nat (f p)) x
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by (simp add: prime-sum-upto-def )

lemma prime-sum-upto-mono:
assumes

∧
n. n > 0 =⇒ f n ≥ (0 ::real) x ≤ y

shows prime-sum-upto f x ≤ prime-sum-upto f y
using assms unfolding prime-sum-upto-altdef1 sum-upto-altdef
by (intro sum-mono2 ) (auto simp: le-nat-iff ′ le-floor-iff ind-def )

lemma prime-sum-upto-nonneg:
assumes

∧
n. n > 0 =⇒ f n ≥ (0 :: real)

shows prime-sum-upto f x ≥ 0
unfolding prime-sum-upto-altdef1 sum-upto-altdef
by (intro sum-nonneg) (auto simp: ind-def assms)

lemma prime-sum-upto-eq-0 :
assumes x < 2
shows prime-sum-upto f x = 0

proof −
from assms have nat bxc = 0 ∨ nat bxc = 1 by linarith
thus ?thesis by (auto simp: eval-prime-sum-upto)

qed

lemma measurable-prime-sum-upto [measurable]:
fixes f :: ′a ⇒ nat ⇒ real
assumes [measurable]:

∧
y. (λt. f t y) ∈ M →M borel

assumes [measurable]: x ∈ M →M borel
shows (λt. prime-sum-upto (f t) (x t)) ∈ M →M borel
unfolding prime-sum-upto-altdef1 by measurable

The following theorem breaks down a sum over all prime powers no greater
than fixed bound into a nicer form.
lemma sum-upto-primepows:

fixes f :: nat ⇒ ′a :: comm-monoid-add
assumes

∧
n. ¬primepow n =⇒ f n = 0

∧
p i. prime p =⇒ i > 0 =⇒ f (p ^ i)

= g p i
shows sum-upto f x = (

∑
(p, i) | prime p ∧ i > 0 ∧ real (p ^ i) ≤ x. g p i)

proof −
let ?d = aprimedivisor
have g: g (?d n) (multiplicity (?d n) n) = f n if primepow n for n using that

by (subst assms(2 ) [symmetric])
(auto simp: primepow-decompose aprimedivisor-prime-power primepow-gt-Suc-0

intro!: aprimedivisor-nat multiplicity-aprimedivisor-gt-0-nat)
have sum-upto f x = (

∑
n | primepow n ∧ real n ≤ x. f n)

unfolding sum-upto-def using assms
by (intro sum.mono-neutral-cong-right) (auto simp: primepow-gt-0-nat)

also have . . . = (
∑

(p, i) | prime p ∧ i > 0 ∧ real (p ^ i) ≤ x. g p i) (is - =
sum - ?S)

by (rule sum.reindex-bij-witness[of - λ(p,i). p ^ i λn. (?d n, multiplicity (?d n)
n)])
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(auto simp: aprimedivisor-prime-power primepow-decompose primepow-gt-Suc-0
g

simp del: of-nat-power intro!: aprimedivisor-nat multiplicity-aprimedivisor-gt-0-nat)
finally show ?thesis .

qed

definition primes-pi where primes-pi = prime-sum-upto (λp. 1 :: real)
definition primes-theta where primes-theta = prime-sum-upto (λp. ln (real p))
definition primes-psi where primes-psi = sum-upto (mangoldt :: nat ⇒ real)
definition primes-M where primes-M = prime-sum-upto (λp. ln (real p) /
real p)

Next, we define some nice optional notation for these functions.
open-bundle prime-counting-syntax
begin
notation primes-pi (‹π›)
notation primes-theta (‹ϑ›)
notation primes-psi (‹ψ›)
notation primes-M (‹M›)
end

lemmas π-def = primes-pi-def
lemmas ϑ-def = primes-theta-def
lemmas ψ-def = primes-psi-def

lemmas eval-π = primes-pi-def [unfolded eval-prime-sum-upto]
lemmas eval-ϑ = primes-theta-def [unfolded eval-prime-sum-upto]
lemmas eval-M = primes-M-def [unfolded eval-prime-sum-upto]

3.2 Basic properties

The proofs in this section are mostly taken from Apostol [1].
lemma measurable-π [measurable]: π ∈ borel →M borel

and measurable-ϑ [measurable]: ϑ ∈ borel →M borel
and measurable-ψ [measurable]: ψ ∈ borel →M borel
and measurable-primes-M [measurable]: M ∈ borel →M borel
unfolding primes-M-def π-def ϑ-def ψ-def by measurable

lemma π-eq-0 [simp]: x < 2 =⇒ π x = 0
and ϑ-eq-0 [simp]: x < 2 =⇒ ϑ x = 0
and primes-M-eq-0 [simp]: x < 2 =⇒ M x = 0
unfolding primes-pi-def primes-theta-def primes-M-def
by (rule prime-sum-upto-eq-0 ; simp)+

lemma π-nat-cancel [simp]: π (nat x) = π x
and ϑ-nat-cancel [simp]: ϑ (nat x) = ϑ x
and primes-M-nat-cancel [simp]: M (nat x) = M x
and ψ-nat-cancel [simp]: ψ (nat x) = ψ x

55



and π-floor-cancel [simp]: π (of-int byc) = π y
and ϑ-floor-cancel [simp]: ϑ (of-int byc) = ϑ y
and primes-M-floor-cancel [simp]: M (of-int byc) = M y
and ψ-floor-cancel [simp]: ψ (of-int byc) = ψ y
by (simp-all add: π-def ϑ-def ψ-def primes-M-def prime-sum-upto-altdef2 sum-upto-altdef )

lemma π-nonneg [intro]: π x ≥ 0
and ϑ-nonneg [intro]: ϑ x ≥ 0
and primes-M-nonneg [intro]: M x ≥ 0
unfolding primes-pi-def primes-theta-def primes-M-def
by (rule prime-sum-upto-nonneg; simp)+

lemma π-mono [intro]: x ≤ y =⇒ π x ≤ π y
and ϑ-mono [intro]: x ≤ y =⇒ ϑ x ≤ ϑ y
and primes-M-mono [intro]: x ≤ y =⇒ M x ≤ M y
unfolding primes-pi-def primes-theta-def primes-M-def
by (rule prime-sum-upto-mono; simp)+

lemma π-pos-iff : π x > 0 ←→ x ≥ 2
proof

assume x: x ≥ 2
show π x > 0

by (rule less-le-trans[OF - π-mono[OF x]]) (auto simp: eval-π)
next

assume π x > 0
hence ¬(x < 2 ) by auto
thus x ≥ 2 by simp

qed

lemma π-pos: x ≥ 2 =⇒ π x > 0
by (simp add: π-pos-iff )

lemma ψ-eq-0 [simp]:
assumes x < 2
shows ψ x = 0

proof −
from assms have nat bxc ≤ 1 by linarith
hence mangoldt n = (0 :: real) if n ∈ {0<..nat bxc} for n

using that by (auto simp: mangoldt-def dest!: primepow-gt-Suc-0 )
thus ?thesis unfolding ψ-def sum-upto-altdef by (intro sum.neutral) auto

qed

lemma ψ-nonneg [intro]: ψ x ≥ 0
unfolding ψ-def sum-upto-def by (intro sum-nonneg mangoldt-nonneg)

lemma ψ-mono: x ≤ y =⇒ ψ x ≤ ψ y
unfolding ψ-def sum-upto-def by (intro sum-mono2 mangoldt-nonneg) auto
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3.3 The n-th prime number

Next we define the n-th prime number, where counting starts from 0. In
traditional mathematics, it seems that counting usually starts from 1, but it
is more natural to start from 0 in HOL and the asymptotics of the function
are the same.
definition nth-prime :: nat ⇒ nat where

nth-prime n = (THE p. prime p ∧ card {q. prime q ∧ q < p} = n)

lemma finite-primes-less [intro]: finite {q::nat. prime q ∧ q < p}
by (rule finite-subset[of - {..<p}]) auto

lemma nth-prime-unique-aux:
fixes p p ′ :: nat
assumes prime p card {q. prime q ∧ q < p} = n
assumes prime p ′ card {q. prime q ∧ q < p ′} = n
shows p = p ′

using assms
proof (induction p p ′ rule: linorder-wlog)

case (le p p ′)
have finite {q. prime q ∧ q < p ′} by (rule finite-primes-less)
moreover from le have {q. prime q ∧ q < p} ⊆ {q. prime q ∧ q < p ′}

by auto
moreover from le have card {q. prime q ∧ q < p} = card {q. prime q ∧ q <

p ′}
by simp

ultimately have {q. prime q ∧ q < p} = {q. prime q ∧ q < p ′}
by (rule card-subset-eq)

with ‹prime p› have ¬(p < p ′) by blast
with ‹p ≤ p ′› show p = p ′ by auto

qed auto

lemma π-smallest-prime-beyond:
π (real (smallest-prime-beyond m)) = π (real (m − 1 )) + 1

proof (cases m)
case 0
have smallest-prime-beyond 0 = 2

by (rule smallest-prime-beyond-eq) (auto dest: prime-gt-1-nat)
with 0 show ?thesis by (simp add: eval-π)

next
case (Suc n)
define n ′ where n ′ = smallest-prime-beyond (Suc n)
have n < n ′

using smallest-prime-beyond-le[of Suc n] unfolding n ′-def by linarith
have prime n ′ by (simp add: n ′-def )
have n ′ ≤ p if prime p p > n for p

using that smallest-prime-beyond-smallest[of p Suc n] by (auto simp: n ′-def )
note n ′ = ‹n < n ′› ‹prime n ′› this
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have π (real n ′) = real (card {p. prime p ∧ p ≤ n ′})
by (simp add: π-def prime-sum-upto-def )

also have Suc n ≤ n ′ unfolding n ′-def by (rule smallest-prime-beyond-le)
hence {p. prime p ∧ p ≤ n ′} = {p. prime p ∧ p ≤ n} ∪ {p. prime p ∧ p ∈
{n<..n ′}}

by auto
also have real (card . . . ) = π (real n) + real (card {p. prime p ∧ p ∈ {n<..n ′}})

by (subst card-Un-disjoint) (auto simp: π-def prime-sum-upto-def )
also have {p. prime p ∧ p ∈ {n<..n ′}} = {n ′}

using n ′ by (auto intro: antisym)
finally show ?thesis using Suc by (simp add: n ′-def )

qed

lemma π-inverse-exists: ∃n. π (real n) = real m
proof (induction m)

case 0
show ?case by (intro exI [of - 0 ]) auto

next
case (Suc m)
from Suc.IH obtain n where n: π (real n) = real m

by auto
hence π (real (smallest-prime-beyond (Suc n))) = real (Suc m)

by (subst π-smallest-prime-beyond) auto
thus ?case by blast

qed

lemma nth-prime-exists: ∃ p::nat. prime p ∧ card {q. prime q ∧ q < p} = n
proof −

from π-inverse-exists[of n] obtain m where π (real m) = real n by blast
hence card: card {q. prime q ∧ q ≤ m} = n

by (auto simp: π-def prime-sum-upto-def )

define p where p = smallest-prime-beyond (Suc m)
have m < p using smallest-prime-beyond-le[of Suc m] unfolding p-def by

linarith
have prime p by (simp add: p-def )
have p ≤ q if prime q q > m for q

using smallest-prime-beyond-smallest[of q Suc m] that by (simp add: p-def )
note p = ‹m < p› ‹prime p› this

have {q. prime q ∧ q < p} = {q. prime q ∧ q ≤ m}
proof safe

fix q assume prime q q < p
hence ¬(q > m) using p(1 ,2 ) p(3 )[of q] by auto
thus q ≤ m by simp

qed (insert p, auto)
also have card . . . = n by fact
finally show ?thesis using ‹prime p› by blast

qed
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lemma nth-prime-exists1 : ∃ !p::nat. prime p ∧ card {q. prime q ∧ q < p} = n
by (intro ex-ex1I nth-prime-exists) (blast intro: nth-prime-unique-aux)

lemma prime-nth-prime [intro]: prime (nth-prime n)
and card-less-nth-prime [simp]: card {q. prime q ∧ q < nth-prime n} = n
using theI ′[OF nth-prime-exists1 [of n]] by (simp-all add: nth-prime-def )

lemma card-le-nth-prime [simp]: card {q. prime q ∧ q ≤ nth-prime n} = Suc n
proof −

have {q. prime q ∧ q ≤ nth-prime n} = insert (nth-prime n) {q. prime q ∧ q <
nth-prime n}

by auto
also have card . . . = Suc n by simp
finally show ?thesis .

qed

lemma π-nth-prime [simp]: π (real (nth-prime n)) = real n + 1
by (simp add: π-def prime-sum-upto-def )

lemma nth-prime-eqI :
assumes prime p card {q. prime q ∧ q < p} = n
shows nth-prime n = p
unfolding nth-prime-def
by (rule the1-equality[OF nth-prime-exists1 ]) (use assms in auto)

lemma nth-prime-eqI ′:
assumes prime p card {q. prime q ∧ q ≤ p} = Suc n
shows nth-prime n = p

proof (rule nth-prime-eqI )
have {q. prime q ∧ q ≤ p} = insert p {q. prime q ∧ q < p}

using assms by auto
also have card . . . = Suc (card {q. prime q ∧ q < p})

by simp
finally show card {q. prime q ∧ q < p} = n using assms by simp

qed (use assms in auto)

lemma nth-prime-eqI ′′:
assumes prime p π (real p) = real n + 1
shows nth-prime n = p

proof (rule nth-prime-eqI ′)
have real (card {q. prime q ∧ q ≤ p}) = π (real p)

by (simp add: π-def prime-sum-upto-def )
also have . . . = real (Suc n) by (simp add: assms)
finally show card {q. prime q ∧ q ≤ p} = Suc n

by (simp only: of-nat-eq-iff )
qed fact+

lemma nth-prime-0 [simp]: nth-prime 0 = 2
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by (intro nth-prime-eqI ) (auto dest: prime-gt-1-nat)

lemma nth-prime-Suc: nth-prime (Suc n) = smallest-prime-beyond (Suc (nth-prime
n))

by (rule nth-prime-eqI ′′) (simp-all add: π-smallest-prime-beyond)

lemmas nth-prime-code [code] = nth-prime-0 nth-prime-Suc

lemma strict-mono-nth-prime: strict-mono nth-prime
proof (rule strict-monoI-Suc)

fix n :: nat
have Suc (nth-prime n) ≤ smallest-prime-beyond (Suc (nth-prime n)) by simp
also have . . . = nth-prime (Suc n) by (simp add: nth-prime-Suc)
finally show nth-prime n < nth-prime (Suc n) by simp

qed

lemma nth-prime-le-iff [simp]: nth-prime m ≤ nth-prime n ←→ m ≤ n
using strict-mono-less-eq[OF strict-mono-nth-prime] by blast

lemma nth-prime-less-iff [simp]: nth-prime m < nth-prime n ←→ m < n
using strict-mono-less[OF strict-mono-nth-prime] by blast

lemma nth-prime-eq-iff [simp]: nth-prime m = nth-prime n ←→ m = n
using strict-mono-eq[OF strict-mono-nth-prime] by blast

lemma nth-prime-ge-2 : nth-prime n ≥ 2
using nth-prime-le-iff [of 0 n] by (simp del: nth-prime-le-iff )

lemma nth-prime-lower-bound: nth-prime n ≥ Suc (Suc n)
proof −

have n = card {q. prime q ∧ q < nth-prime n}
by simp

also have . . . ≤ card {2 ..<nth-prime n}
by (intro card-mono) (auto dest: prime-gt-1-nat)

also have . . . = nth-prime n − 2 by simp
finally show ?thesis using nth-prime-ge-2 [of n] by linarith

qed

lemma nth-prime-at-top: filterlim nth-prime at-top at-top
proof (rule filterlim-at-top-mono)

show filterlim (λn::nat. n + 2 ) at-top at-top by real-asymp
qed (auto simp: nth-prime-lower-bound)

lemma π-at-top: filterlim π at-top at-top
unfolding filterlim-at-top

proof safe
fix C :: real
define x0 where x0 = real (nth-prime (nat dmax 0 Ce))
show eventually (λx. π x ≥ C ) at-top
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using eventually-ge-at-top
proof eventually-elim

fix x assume x ≥ x0
have C ≤ real (nat dmax 0 Ce + 1 ) by linarith
also have real (nat dmax 0 Ce + 1 ) = π x0

unfolding x0-def by simp
also have . . . ≤ π x by (rule π-mono) fact
finally show π x ≥ C .

qed
qed

An unbounded, strictly increasing sequence an partitions [a0;∞) into seg-
ments of the form [an; an+1).
lemma strict-mono-sequence-partition:

assumes strict-mono (f :: nat ⇒ ′a :: {linorder , no-top})
assumes x ≥ f 0
assumes filterlim f at-top at-top
shows ∃ k. x ∈ {f k..<f (Suc k)}

proof −
define k where k = (LEAST k. f (Suc k) > x)
{

obtain n where x ≤ f n
using assms by (auto simp: filterlim-at-top eventually-at-top-linorder)

also have f n < f (Suc n)
using assms by (auto simp: strict-mono-Suc-iff )

finally have ∃n. f (Suc n) > x by auto
}
from LeastI-ex[OF this] have x < f (Suc k)

by (simp add: k-def )
moreover have f k ≤ x
proof (cases k)

case (Suc k ′)
have k ≤ k ′ if f (Suc k ′) > x

using that unfolding k-def by (rule Least-le)
with Suc show f k ≤ x by (cases f k ≤ x) (auto simp: not-le)

qed (use assms in auto)
ultimately show ?thesis by auto

qed

lemma nth-prime-partition:
assumes x ≥ 2
shows ∃ k. x ∈ {nth-prime k..<nth-prime (Suc k)}
using strict-mono-sequence-partition[OF strict-mono-nth-prime, of x] assms nth-prime-at-top
by simp

lemma nth-prime-partition ′:
assumes x ≥ 2
shows ∃ k. x ∈ {real (nth-prime k)..<real (nth-prime (Suc k))}
by (rule strict-mono-sequence-partition)
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(auto simp: strict-mono-Suc-iff assms
intro!: filterlim-real-sequentially filterlim-compose[OF - nth-prime-at-top])

lemma between-nth-primes-imp-nonprime:
assumes n > nth-prime k n < nth-prime (Suc k)
shows ¬prime n
using assms by (metis Suc-leI not-le nth-prime-Suc smallest-prime-beyond-smallest)

lemma nth-prime-partition ′′:
assumes x ≥ (2 :: real)
shows x ∈ {real (nth-prime (nat bπ xc − 1 ))..<real (nth-prime (nat bπ xc))}

proof −
obtain n where n: x ∈ {nth-prime n..<nth-prime (Suc n)}

using nth-prime-partition ′ assms by auto
have π (nth-prime n) = π x

unfolding π-def using between-nth-primes-imp-nonprime n
by (intro prime-sum-upto-eqI ) (auto simp: le-nat-iff le-floor-iff )

hence real n = π x − 1
by simp

hence n-eq: n = nat bπ xc − 1 Suc n = nat bπ xc
by linarith+

with n show ?thesis
by simp

qed

3.4 Relations between different prime-counting functions

The ψ function can be expressed as a sum of ϑ.
lemma ψ-altdef :

assumes x > 0
shows ψ x = sum-upto (λm. prime-sum-upto ln (root m x)) (log 2 x) (is - =

?rhs)
proof −

have finite: finite {p. prime p ∧ real p ≤ y} for y
by (rule finite-subset[of - {..nat byc}]) (auto simp: le-nat-iff ′ le-floor-iff )

define S where S = (SIGMA i:{i. 0 < i ∧ real i ≤ log 2 x}. {p. prime p ∧ real
p ≤ root i x})

have ψ x = (
∑

(p, i) | prime p ∧ 0 < i ∧ real (p ^ i) ≤ x. ln (real p)) unfolding
ψ-def

by (subst sum-upto-primepows[where g = λp i. ln (real p)])
(auto simp: case-prod-unfold mangoldt-non-primepow)

also have . . . = (
∑

(i, p) | prime p ∧ 0 < i ∧ real (p ^ i) ≤ x. ln (real p))
by (intro sum.reindex-bij-witness[of - λ(x,y). (y,x) λ(x,y). (y,x)]) auto

also have {(i, p). prime p ∧ 0 < i ∧ real (p ^ i) ≤ x} = S
unfolding S-def

proof safe
fix i p :: nat assume ip: i > 0 real i ≤ log 2 x prime p real p ≤ root i x
hence real (p ^ i) ≤ root i x ^ i unfolding of-nat-power by (intro power-mono)

auto
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with ip assms show real (p ^ i) ≤ x by simp
next

fix i p assume ip: prime p i > 0 real (p ^ i) ≤ x
from ip have 2 ^ i ≤ p ^ i by (intro power-mono) (auto dest: prime-gt-1-nat)
also have . . . ≤ x using ip by simp
finally show real i ≤ log 2 x

using assms by (simp add: le-log-iff powr-realpow)
have root i (real p ^ i) ≤ root i x using ip assms

by (subst real-root-le-iff ) auto
also have root i (real p ^ i) = real p

using assms ip by (subst real-root-pos2 ) auto
finally show real p ≤ root i x .

qed
also have (

∑
(i,p)∈S . ln p) = sum-upto (λm. prime-sum-upto ln (root m x))

(log 2 x)
unfolding sum-upto-def prime-sum-upto-def S-def using finite by (subst sum.Sigma)

auto
finally show ?thesis .

qed

lemma ψ-conv-ϑ-sum: x > 0 =⇒ ψ x = sum-upto (λm. ϑ (root m x)) (log 2 x)
by (simp add: ψ-altdef ϑ-def )

lemma ψ-minus-ϑ:
assumes x: x ≥ 2
shows ψ x − ϑ x = (

∑
i | 2 ≤ i ∧ real i ≤ log 2 x. ϑ (root i x))

proof −
have finite: finite {i. 2 ≤ i ∧ real i ≤ log 2 x}

by (rule finite-subset[of - {2 ..nat blog 2 xc}]) (auto simp: le-nat-iff ′ le-floor-iff )
have ψ x = (

∑
i | 0 < i ∧ real i ≤ log 2 x. ϑ (root i x)) using x

by (simp add: ψ-conv-ϑ-sum sum-upto-def )
also have {i. 0 < i ∧ real i ≤ log 2 x} = insert 1 {i. 2 ≤ i ∧ real i ≤ log 2 x}

using x
by (auto simp: le-log-iff )

also have (
∑

i∈. . . . ϑ (root i x)) − ϑ x =
(
∑

i | 2 ≤ i ∧ real i ≤ log 2 x. ϑ (root i x)) using finite
by (subst sum.insert) auto

finally show ?thesis .
qed

The following theorems use summation by parts to relate different prime-
counting functions to one another with an integral as a remainder term.
lemma ϑ-conv-π-integral:

assumes x ≥ 2
shows ((λt. π t / t) has-integral (π x ∗ ln x − ϑ x)) {2 ..x}

proof (cases x = 2 )
case False
note [intro] = finite-vimage-real-of-nat-greaterThanAtMost
from False and assms have x: x > 2 by simp
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have ((λt. sum-upto (ind prime) t ∗ (1 / t)) has-integral
sum-upto (ind prime) x ∗ ln x − sum-upto (ind prime) 2 ∗ ln 2 −
(
∑

n∈real −‘ {2<..x}. ind prime n ∗ ln (real n))) {2 ..x} using x
by (intro partial-summation-strong[where X = {}])

(auto intro!: continuous-intros derivative-eq-intros
simp flip: has-real-derivative-iff-has-vector-derivative)

hence ((λt. π t / t) has-integral (π x ∗ ln x −
(π 2 ∗ ln 2 + (

∑
n∈real −‘ {2<..x}. ind prime n ∗ ln n)))) {2 ..x}

by (simp add: π-def prime-sum-upto-altdef1 algebra-simps)
also have π 2 ∗ ln 2 + (

∑
n∈real −‘ {2<..x}. ind prime n ∗ ln n) =

(
∑

n∈insert 2 (real −‘ {2<..x}). ind prime n ∗ ln n)
by (subst sum.insert) (auto simp: eval-π)

also have . . . = ϑ x unfolding ϑ-def prime-sum-upto-def using x
by (intro sum.mono-neutral-cong-right) (auto simp: ind-def dest: prime-gt-1-nat)

finally show ?thesis .
qed (auto simp: has-integral-refl eval-π eval-ϑ)

lemma π-conv-ϑ-integral:
assumes x ≥ 2
shows ((λt. ϑ t / (t ∗ ln t ^ 2 )) has-integral (π x − ϑ x / ln x)) {2 ..x}

proof (cases x = 2 )
case False
define b where b = (λp. ind prime p ∗ ln (real p))
note [intro] = finite-vimage-real-of-nat-greaterThanAtMost
from False and assms have x: x > 2 by simp
have ((λt. −(sum-upto b t ∗ (−1 / (t ∗ (ln t)2)))) has-integral

−(sum-upto b x ∗ (1 / ln x) − sum-upto b 2 ∗ (1 / ln 2 ) −
(
∑

n∈real −‘ {2<..x}. b n ∗ (1 / ln (real n))))) {2 ..x} using x
by (intro has-integral-neg partial-summation-strong[where X = {}])

(auto intro!: continuous-intros derivative-eq-intros
simp flip: has-real-derivative-iff-has-vector-derivative simp add: power2-eq-square)

also have sum-upto b = ϑ
by (simp add: ϑ-def b-def prime-sum-upto-altdef1 fun-eq-iff )

also have ϑ x ∗ (1 / ln x) − ϑ 2 ∗ (1 / ln 2 ) −
(
∑

n∈real −‘ {2<..x}. b n ∗ (1 / ln (real n))) =
ϑ x ∗ (1 / ln x) − (

∑
n∈insert 2 (real −‘ {2<..x}). b n ∗ (1 / ln

(real n)))
by (subst sum.insert) (auto simp: b-def eval-ϑ)

also have (
∑

n∈insert 2 (real −‘ {2<..x}). b n ∗ (1 / ln (real n))) = π x using
x

unfolding π-def prime-sum-upto-altdef1 sum-upto-def
proof (intro sum.mono-neutral-cong-left ballI , goal-cases)

case (3 p)
hence p = 1 by auto
thus ?case by auto

qed (auto simp: b-def )
finally show ?thesis by simp

qed (auto simp: has-integral-refl eval-π eval-ϑ)
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lemma integrable-weighted-ϑ:
assumes 2 ≤ a a ≤ x
shows ((λt. ϑ t / (t ∗ ln t ^ 2 )) integrable-on {a..x})

proof (cases a < x)
case True
hence ((λt. ϑ t ∗ (1 / (t ∗ ln t ^ 2 ))) integrable-on {a..x}) using assms

unfolding ϑ-def prime-sum-upto-altdef1
by (intro partial-summation-integrable-strong[where X = {} and f = λx. −1

/ ln x])
(auto simp flip: has-real-derivative-iff-has-vector-derivative

intro!: derivative-eq-intros continuous-intros simp: power2-eq-square
field-simps)

thus ?thesis by simp
qed (insert has-integral-refl[of - a] assms, auto simp: has-integral-iff )

lemma ϑ-conv-M-integral:
assumes x ≥ 2
shows (M has-integral (M x ∗ x − ϑ x)) {2 ..x}

proof (cases x = 2 )
case False
with assms have x: x > 2 by simp
define b :: nat ⇒ real where b = (λp. ind prime p ∗ ln p / p)
note [intro] = finite-vimage-real-of-nat-greaterThanAtMost
have prime-le-2 : p = 2 if p ≤ 2 prime p for p :: nat

using that by (auto simp: prime-nat-iff )

have ((λt. sum-upto b t ∗ 1 ) has-integral sum-upto b x ∗ x − sum-upto b 2 ∗ 2
−

(
∑

n∈real −‘ {2<..x}. b n ∗ real n)) {2 ..x} using x
by (intro partial-summation-strong[of {}])

(auto simp flip: has-real-derivative-iff-has-vector-derivative
intro!: derivative-eq-intros continuous-intros)

also have sum-upto b = M
by (simp add: fun-eq-iff primes-M-def b-def prime-sum-upto-altdef1 )

also have M x ∗ x − M 2 ∗ 2 − (
∑

n∈real −‘ {2<..x}. b n ∗ real n) =
M x ∗ x − (

∑
n∈insert 2 (real −‘ {2<..x}). b n ∗ real n)

by (subst sum.insert) (auto simp: eval-M b-def )
also have (

∑
n∈insert 2 (real −‘ {2<..x}). b n ∗ real n) = ϑ x

unfolding ϑ-def prime-sum-upto-def using x
by (intro sum.mono-neutral-cong-right) (auto simp: b-def ind-def not-less prime-le-2 )

finally show ?thesis by simp
qed (auto simp: eval-ϑ eval-M)

lemma M-conv-ϑ-integral:
assumes x ≥ 2
shows ((λt. ϑ t / t2) has-integral (M x − ϑ x / x)) {2 ..x}

proof (cases x = 2 )
case False
with assms have x: x > 2 by simp
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define b :: nat ⇒ real where b = (λp. ind prime p ∗ ln p)
note [intro] = finite-vimage-real-of-nat-greaterThanAtMost
have prime-le-2 : p = 2 if p ≤ 2 prime p for p :: nat

using that by (auto simp: prime-nat-iff )

have ((λt. sum-upto b t ∗ (1 / t^2 )) has-integral
sum-upto b x ∗ (−1 / x) − sum-upto b 2 ∗ (−1 / 2 ) −
(
∑

n∈real −‘ {2<..x}. b n ∗ (−1 / real n))) {2 ..x} using x
by (intro partial-summation-strong[of {}])
(auto simp flip: has-real-derivative-iff-has-vector-derivative simp: power2-eq-square

intro!: derivative-eq-intros continuous-intros)
also have sum-upto b = ϑ

by (simp add: fun-eq-iff ϑ-def b-def prime-sum-upto-altdef1 )
also have ϑ x ∗ (−1 / x) − ϑ 2 ∗ (−1 / 2 ) − (

∑
n∈real −‘ {2<..x}. b n ∗

(−1 / real n)) =
−(ϑ x / x − (

∑
n∈insert 2 (real −‘ {2<..x}). b n / real n))

by (subst sum.insert) (auto simp: eval-ϑ b-def sum-negf )
also have (

∑
n∈insert 2 (real −‘ {2<..x}). b n / real n) = M x

unfolding primes-M-def prime-sum-upto-def using x
by (intro sum.mono-neutral-cong-right) (auto simp: b-def ind-def not-less prime-le-2 )

finally show ?thesis by simp
qed (auto simp: eval-ϑ eval-M)

lemma integrable-primes-M : M integrable-on {x..y} if 2 ≤ x for x y :: real
proof −

have (λx. M x ∗ 1 ) integrable-on {x..y} if 2 ≤ x x < y for x y :: real
unfolding primes-M-def prime-sum-upto-altdef1 using that
by (intro partial-summation-integrable-strong[where X = {} and f = λx. x])

(auto simp flip: has-real-derivative-iff-has-vector-derivative
intro!: derivative-eq-intros continuous-intros)

thus ?thesis using that has-integral-refl(2 )[of M x] by (cases x y rule: linorder-cases)
auto
qed

3.5 Bounds
lemma ϑ-upper-bound-coarse:

assumes x ≥ 1
shows ϑ x ≤ x ∗ ln x

proof −
have ϑ x ≤ sum-upto (λ-. ln x) x unfolding ϑ-def prime-sum-upto-altdef1

sum-upto-def
by (intro sum-mono) (auto simp: ind-def )

also have . . . ≤ real-of-int bxc ∗ ln x using assms
by (simp add: sum-upto-altdef )

also have . . . ≤ x ∗ ln x using assms by (intro mult-right-mono) auto
finally show ?thesis .

qed
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lemma ϑ-le-ψ: ϑ x ≤ ψ x
proof (cases x ≥ 2 )

case False
hence nat bxc = 0 ∨ nat bxc = 1 by linarith
thus ?thesis by (auto simp: eval-ϑ)

next
case True
hence ψ x − ϑ x = (

∑
i | 2 ≤ i ∧ real i ≤ log 2 x. ϑ (root i x))

by (rule ψ-minus-ϑ)
also have . . . ≥ 0 by (intro sum-nonneg) auto
finally show ?thesis by simp

qed

lemma π-upper-bound-coarse:
assumes x ≥ 0
shows π x ≤ x / 3 + 2

proof −
have {p. prime p ∧ p ≤ nat bxc} ⊆ {2 , 3} ∪ {p. p 6= 1 ∧ odd p ∧ ¬3 dvd p ∧

p ≤ nat bxc}
using primes-dvd-imp-eq[of 2 :: nat] primes-dvd-imp-eq[of 3 :: nat] by auto

also have . . . ⊆ {2 , 3} ∪ ((λk. 6∗k+1 ) ‘ {0<..<nat b(x+5 )/6 c} ∪ (λk. 6∗k+5 )
‘ {..<nat b(x+1 )/6 c})

(is - ∪ ?lhs ⊆ - ∪ ?rhs)
proof (intro Un-mono subsetI )

fix p :: nat assume p ∈ ?lhs
hence p: p 6= 1 odd p ¬3 dvd p p ≤ nat bxc by auto
from p (1−3 ) have (∃ k. k > 0 ∧ p = 6 ∗ k + 1 ∨ p = 6 ∗ k + 5 ) by

presburger
then obtain k where k > 0 ∧ p = 6 ∗ k + 1 ∨ p = 6 ∗ k + 5 by blast
hence p = 6 ∗ k + 1 ∧ k > 0 ∧ k < nat b(x+5 )/6 c ∨ p = 6∗k+5 ∧ k < nat

b(x+1 )/6 c
unfolding add-divide-distrib using p(4 ) by linarith

thus p ∈ ?rhs by auto
qed
finally have subset: {p. prime p ∧ p ≤ nat bxc} ⊆ . . . (is - ⊆ ?A) .

have π x = real (card {p. prime p ∧ p ≤ nat bxc})
by (simp add: π-def prime-sum-upto-altdef2 )

also have card {p. prime p ∧ p ≤ nat bxc} ≤ card ?A
by (intro card-mono subset) auto

also have . . . ≤ 2 + (nat b(x+5 )/6 c − 1 + nat b(x+1 )/6 c)
by (intro order .trans[OF card-Un-le] add-mono order .trans[OF card-image-le])

auto
also have . . . ≤ x / 3 + 2

using assms unfolding add-divide-distrib by (cases x ≥ 1 , linarith, simp)
finally show ?thesis by simp

qed

lemma le-numeral-iff : m ≤ numeral n ←→ m = numeral n ∨ m ≤ pred-numeral

67



n
using numeral-eq-Suc by presburger

The following nice proof for the upper bound θ(x) ≤ ln 4 · x is taken from
Otto Forster’s lecture notes on Analytic Number Theory [4].
lemma prod-primes-upto-less:

defines F ≡ (λn. (
∏
{p::nat. prime p ∧ p ≤ n}))

shows n > 0 =⇒ F n < 4 ^ n
proof (induction n rule: less-induct)

case (less n)
have n = 0 ∨ n = 1 ∨ n = 2 ∨ n = 3 ∨ even n ∧ n ≥ 4 ∨ odd n ∧ n ≥ 4

by presburger
then consider n = 0 | n = 1 | n = 2 | n = 3 | even n n ≥ 4 | odd n n ≥ 4

by metis
thus ?case
proof cases

assume [simp]: n = 1
have ∗: {p. prime p ∧ p ≤ Suc 0} = {} by (auto dest: prime-gt-1-nat)
show ?thesis by (simp add: F-def ∗)

next
assume [simp]: n = 2
have ∗: {p. prime p ∧ p ≤ 2} = {2 :: nat}

by (auto simp: le-numeral-iff dest: prime-gt-1-nat)
thus ?thesis by (simp add: F-def ∗)

next
assume [simp]: n = 3
have ∗: {p. prime p ∧ p ≤ 3} = {2 , 3 :: nat}

by (auto simp: le-numeral-iff dest: prime-gt-1-nat)
thus ?thesis by (simp add: F-def ∗)

next
assume n: even n n ≥ 4
from n have F (n − 1 ) < 4 ^ (n − 1 ) by (intro less.IH ) auto
also have prime p ∧ p ≤ n ←→ prime p ∧ p ≤ n − 1 for p

using n prime-odd-nat[of n] by (cases p = n) auto
hence F (n − 1 ) = F n by (simp add: F-def )
also have 4 ^ (n − 1 ) ≤ (4 ^ n :: nat) by (intro power-increasing) auto
finally show ?case .

next
assume n: odd n n ≥ 4
then obtain k where k-eq: n = Suc (2 ∗ k) by (auto elim: oddE)
from n have k: k ≥ 2 unfolding k-eq by presburger
have prime-dvd: p dvd (n choose k) if p: prime p p ∈ {k+1<..n} for p
proof −

from p k n have p dvd pochhammer (k + 2 ) k
unfolding pochhammer-prod
by (subst prime-dvd-prod-iff )
(auto intro!: bexI [of - p − k − 2 ] simp: k-eq numeral-2-eq-2 Suc-diff-Suc)

also have pochhammer (real (k + 2 )) k = real ((n choose k) ∗ fact k)
by (simp add: binomial-gbinomial gbinomial-pochhammer ′ k-eq field-simps)
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hence pochhammer (k + 2 ) k = (n choose k) ∗ fact k
unfolding pochhammer-of-nat of-nat-eq-iff .

finally show p dvd (n choose k) using p
by (auto simp: prime-dvd-fact-iff prime-dvd-mult-nat)

qed

have
∏
{p. prime p ∧ p ∈ {k+1<..n}} dvd (n choose k)

proof (rule multiplicity-le-imp-dvd, goal-cases)
case (2 p)
thus ?case
proof (cases p ∈ {k+1<..n})

case False
hence multiplicity p (

∏
{p. prime p ∧ p ∈ {k+1<..n}}) = 0 using 2

by (subst prime-elem-multiplicity-prod-distrib) (auto simp: prime-multiplicity-other)
thus ?thesis by auto

next
case True
hence multiplicity p (

∏
{p. prime p ∧ p ∈ {k+1<..n}}) =

sum (multiplicity p) {p. prime p ∧ Suc k < p ∧ p ≤ n} using 2
by (subst prime-elem-multiplicity-prod-distrib) auto

also have . . . = sum (multiplicity p) {p} using True 2
proof (intro sum.mono-neutral-right ballI )

fix q :: nat assume q ∈ {p. prime p ∧ Suc k < p ∧ p ≤ n} − {p}
thus multiplicity p q = 0 using 2

by (cases p = q) (auto simp: prime-multiplicity-other)
qed auto
also have . . . = 1 using 2 by simp
also have 1 ≤ multiplicity p (n choose k)

using prime-dvd[of p] 2 True by (intro multiplicity-geI ) auto
finally show ?thesis .

qed
qed auto
hence

∏
{p. prime p ∧ p ∈ {k+1<..n}} ≤ (n choose k)

by (intro dvd-imp-le) (auto simp: k-eq)
also have . . . = 1 / 2 ∗ (

∑
i∈{k, Suc k}. n choose i)

using central-binomial-odd[of n] by (simp add: k-eq)
also have (

∑
i∈{k, Suc k}. n choose i) < (

∑
i∈{0 , k, Suc k}. n choose i)

using k by simp
also have . . . ≤ (

∑
i≤n. n choose i)

by (intro sum-mono2 ) (auto simp: k-eq)
also have . . . = (1 + 1 ) ^ n

using binomial[of 1 1 n] by simp
also have 1 / 2 ∗ . . . = real (4 ^ k)

by (simp add: k-eq power-mult)
finally have less: (

∏
{p. prime p ∧ p ∈ {k + 1<..n}}) < 4 ^ k

unfolding of-nat-less-iff by simp

have F n = F (Suc k) ∗ (
∏
{p. prime p ∧ p ∈ {k+1<..n}}) unfolding F-def

by (subst prod.union-disjoint [symmetric]) (auto intro!: prod.cong simp: k-eq)
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also have . . . < 4 ^ Suc k ∗ 4 ^ k using n
by (intro mult-strict-mono less less.IH ) (auto simp: k-eq)

also have . . . = 4 ^ (Suc k + k)
by (simp add: power-add)

also have Suc k + k = n by (simp add: k-eq)
finally show ?case .

qed (insert less.prems, auto)
qed

lemma ϑ-upper-bound:
assumes x: x ≥ 1
shows ϑ x < ln 4 ∗ x

proof −
have 4 powr (ϑ x / ln 4 ) = (

∏
p | prime p ∧ p ≤ nat bxc. 4 powr (log 4 (real

p)))
by (simp add: ϑ-def powr-sum prime-sum-upto-altdef2 sum-divide-distrib log-def )

also have . . . = (
∏

p | prime p ∧ p ≤ nat bxc. real p)
by (intro prod.cong) (auto dest: prime-gt-1-nat)

also have . . . = real (
∏

p | prime p ∧ p ≤ nat bxc. p)
by simp

also have (
∏

p | prime p ∧ p ≤ nat bxc. p) < 4 ^ nat bxc
using x by (intro prod-primes-upto-less) auto

also have . . . = 4 powr real (nat bxc)
using x by (subst powr-realpow) auto

also have . . . ≤ 4 powr x
using x by (intro powr-mono) auto

finally have 4 powr (ϑ x / ln 4 ) < 4 powr x
by simp

thus ϑ x < ln 4 ∗ x
by (subst (asm) powr-less-cancel-iff ) (auto simp: field-simps)

qed

lemma ϑ-bigo: ϑ ∈ O(λx. x)
by (intro le-imp-bigo-real[of ln 4 ] eventually-mono[OF eventually-ge-at-top[of 1 ]]

less-imp-le[OF ϑ-upper-bound]) auto

lemma ψ-minus-ϑ-bound:
assumes x: x ≥ 2
shows ψ x − ϑ x ≤ 2 ∗ ln x ∗ sqrt x

proof −
have ψ x − ϑ x = (

∑
i | 2 ≤ i ∧ real i ≤ log 2 x. ϑ (root i x)) using x

by (rule ψ-minus-ϑ)
also have . . . ≤ (

∑
i | 2 ≤ i ∧ real i ≤ log 2 x. ln 4 ∗ root i x)

using x by (intro sum-mono less-imp-le[OF ϑ-upper-bound]) auto
also have . . . ≤ (

∑
i | 2 ≤ i ∧ real i ≤ log 2 x. ln 4 ∗ root 2 x) using x

by (intro sum-mono mult-mono) (auto simp: le-log-iff powr-realpow intro!:
real-root-decreasing)

also have . . . = card {i. 2 ≤ i ∧ real i ≤ log 2 x} ∗ ln 4 ∗ sqrt x
by (simp add: sqrt-def )
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also have {i. 2 ≤ i ∧ real i ≤ log 2 x} = {2 ..nat blog 2 xc}
by (auto simp: le-nat-iff ′ le-floor-iff )

also have log 2 x ≥ 1 using x by (simp add: le-log-iff )
hence real (nat blog 2 xc − 1 ) ≤ log 2 x using x by linarith
hence card {2 ..nat blog 2 xc} ≤ log 2 x by simp
also have ln (2 ∗ 2 :: real) = 2 ∗ ln 2 by (subst ln-mult) auto
hence log 2 x ∗ ln 4 ∗ sqrt x = 2 ∗ ln x ∗ sqrt x using x

by (simp add: ln-sqrt log-def power2-eq-square field-simps)
finally show ?thesis using x by (simp add: mult-right-mono)

qed

lemma ψ-minus-ϑ-bigo: (λx. ψ x − ϑ x) ∈ O(λx. ln x ∗ sqrt x)
proof (intro bigoI [of - 2 ] eventually-mono[OF eventually-ge-at-top[of 2 ]])

fix x :: real assume x ≥ 2
thus norm (ψ x − ϑ x) ≤ 2 ∗ norm (ln x ∗ sqrt x)

using ψ-minus-ϑ-bound[of x] ϑ-le-ψ[of x] by simp
qed

lemma ψ-bigo: ψ ∈ O(λx. x)
proof −

have (λx. ψ x − ϑ x) ∈ O(λx. ln x ∗ sqrt x)
by (rule ψ-minus-ϑ-bigo)

also have (λx. ln x ∗ sqrt x) ∈ O(λx. x)
by real-asymp

finally have (λx. ψ x − ϑ x + ϑ x) ∈ O(λx. x)
by (rule sum-in-bigo) (fact ϑ-bigo)

thus ?thesis by simp
qed

We shall now attempt to get some more concrete bounds on the difference
between π(x) and θ(x)/ lnx These will be essential in showing the Prime
Number Theorem later.
We first need some bounds on the integral∫ x

2

1

ln2 t
dt

in order to bound the contribution of the remainder term. This integral
actually has an antiderivative in terms of the logarithmic integral li(x), but
since we do not have a formalisation of it in Isabelle, we will instead use the
following ad-hoc bound given by Apostol:
lemma integral-one-over-log-squared-bound:

assumes x: x ≥ 4
shows integral {2 ..x} (λt. 1 / ln t ^ 2 ) ≤ sqrt x / ln 2 ^ 2 + 4 ∗ x / ln x ^ 2

proof −
from x have x ∗ 1 ≤ x ^ 2 unfolding power2-eq-square by (intro mult-left-mono)

auto
with x have x ′: 2 ≤ sqrt x sqrt x ≤ x

by (auto simp: real-sqrt-le-iff ′ intro!: real-le-rsqrt)
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have integral {2 ..x} (λt. 1 / ln t ^ 2 ) =
integral {2 ..sqrt x} (λt. 1 / ln t ^ 2 ) + integral {sqrt x..x} (λt. 1 / ln t ^

2 )
(is - = ?I1 + ?I2 ) using x x ′

by (intro Henstock-Kurzweil-Integration.integral-combine [symmetric] integrable-continuous-real)
(auto intro!: continuous-intros)

also have ?I1 ≤ integral {2 ..sqrt x} (λ-. 1 / ln 2 ^ 2 ) using x
by (intro integral-le integrable-continuous-real divide-left-mono

power-mono continuous-intros) auto
also have . . . ≤ sqrt x / ln 2 ^ 2 using x ′ by (simp add: field-simps)
also have ?I2 ≤ integral {sqrt x..x} (λt. 1 / ln (sqrt x) ^ 2 ) using x ′

by (intro integral-le integrable-continuous-real divide-left-mono
power-mono continuous-intros) auto

also have . . . ≤ 4 ∗ x / ln x ^ 2 using x ′ by (simp add: ln-sqrt field-simps)
finally show ?thesis by simp

qed

lemma integral-one-over-log-squared-bigo:
(λx::real. integral {2 ..x} (λt. 1 / ln t ^ 2 )) ∈ O(λx. x / ln x ^ 2 )

proof −
define ub where ub = (λx::real. sqrt x / ln 2 ^ 2 + 4 ∗ x / ln x ^ 2 )
have eventually (λx. |integral {2 ..x} (λt. 1 / (ln t)2)| ≤ |ub x|) at-top

using eventually-ge-at-top[of 4 ]
proof eventually-elim

case (elim x)
hence |integral {2 ..x} (λt. 1 / ln t ^ 2 )| = integral {2 ..x} (λt. 1 / ln t ^ 2 )

by (intro abs-of-nonneg integral-nonneg integrable-continuous-real continu-
ous-intros) auto

also have . . . ≤ |ub x|
using integral-one-over-log-squared-bound[of x] elim by (simp add: ub-def )

finally show ?case .
qed
hence (λx. integral {2 ..x} (λt. 1 / (ln t)2)) ∈ O(ub)

by (intro landau-o.bigI [of 1 ]) auto
also have ub ∈ O(λx. x / ln x ^ 2 ) unfolding ub-def by real-asymp
finally show ?thesis .

qed

lemma π-ϑ-bound:
assumes x ≥ (4 :: real)
defines ub ≡ 2 / ln 2 ∗ sqrt x + 8 ∗ ln 2 ∗ x / ln x ^ 2
shows π x − ϑ x / ln x ∈ {0 ..ub}

proof −
define r where r = (λx. integral {2 ..x} (λt. ϑ t / (t ∗ ln t ^ 2 )))
have integrable: (λt. c / ln t ^ 2 ) integrable-on {2 ..x} for c

by (intro integrable-continuous-real continuous-intros) auto

have r x ≤ integral {2 ..x} (λt. ln 4 / ln t ^ 2 ) unfolding r-def
using integrable-weighted-ϑ[of 2 x] integrable[of ln 4 ] assms less-imp-le[OF
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ϑ-upper-bound]
by (intro integral-le divide-right-mono) (auto simp: field-simps)

also have . . . = ln 4 ∗ integral {2 ..x} (λt. 1 / ln t ^ 2 )
using integrable[of 1 ] by (subst integral-mult) auto

also have . . . ≤ ln 4 ∗ (sqrt x / ln 2 ^ 2 + 4 ∗ x / ln x ^ 2 )
using assms by (intro mult-left-mono integral-one-over-log-squared-bound) auto

also have ln (4 :: real) = 2 ∗ ln 2
using ln-realpow[of 2 2 ] by simp

also have . . . ∗ (sqrt x / ln 2 ^ 2 + 4 ∗ x / ln x ^ 2 ) = ub
using assms by (simp add: field-simps power2-eq-square ub-def )

finally have r x ≤ . . . .
moreover have r x ≥ 0 unfolding r-def using assms

by (intro integral-nonneg integrable-weighted-ϑ divide-nonneg-pos) auto
ultimately have r x ∈ {0 ..ub} by auto
with π-conv-ϑ-integral[of x] assms(1 ) show ?thesis

by (simp add: r-def has-integral-iff )
qed

The following statement already indicates that the asymptotics of π and ϑ
are very closely related, since through it, π(x) ∼ x/ lnx and θ(x) ∼ x imply
each other.
lemma π-ϑ-bigo: (λx. π x − ϑ x / ln x) ∈ O(λx. x / ln x ^ 2 )
proof −

define ub where ub = (λx. 2 / ln 2 ∗ sqrt x + 8 ∗ ln 2 ∗ x / ln x ^ 2 )
have (λx. π x − ϑ x / ln x) ∈ O(ub)
proof (intro le-imp-bigo-real[of 1 ] eventually-mono[OF eventually-ge-at-top])

fix x :: real assume x ≥ 4
from π-ϑ-bound[OF this] show π x − ϑ x / ln x ≥ 0 and π x − ϑ x / ln x ≤

1 ∗ ub x
by (simp-all add: ub-def )

qed auto
also have ub ∈ O(λx. x / ln x ^ 2 )

unfolding ub-def by real-asymp
finally show ?thesis .

qed

As a foreshadowing of the Prime Number Theorem, we can already show
the following upper bound on π(x):
lemma π-upper-bound:

assumes x ≥ (4 :: real)
shows π x < ln 4 ∗ x / ln x + 8 ∗ ln 2 ∗ x / ln x ^ 2 + 2 / ln 2 ∗ sqrt x

proof −
define ub where ub = 2 / ln 2 ∗ sqrt x + 8 ∗ ln 2 ∗ x / ln x ^ 2
have π x ≤ ϑ x / ln x + ub

using π-ϑ-bound[of x] assms unfolding ub-def by simp
also from assms have ϑ x / ln x < ln 4 ∗ x / ln x

by (intro ϑ-upper-bound divide-strict-right-mono) auto
finally show ?thesis

using assms by (simp add: algebra-simps ub-def )

73



qed

lemma π-bigo: π ∈ O(λx. x / ln x)
proof −

have (λx. π x − ϑ x / ln x) ∈ O(λx. x / ln x ^ 2 )
by (fact π-ϑ-bigo)

also have (λx::real. x / ln x ^ 2 ) ∈ O(λx. x / ln x)
by real-asymp

finally have (λx. π x − ϑ x / ln x) ∈ O(λx. x / ln x) .
moreover have eventually (λx::real. ln x > 0 ) at-top by real-asymp
hence eventually (λx::real. ln x 6= 0 ) at-top by eventually-elim auto
hence (λx. ϑ x / ln x) ∈ O(λx. x / ln x)

using ϑ-bigo by (intro landau-o.big.divide-right)
ultimately have (λx. π x − ϑ x / ln x + ϑ x / ln x) ∈ O(λx. x / ln x)

by (rule sum-in-bigo)
thus ?thesis by simp

qed

3.6 Equivalence of various forms of the Prime Number The-
orem

In this section, we show that the following forms of the Prime Number
Theorem are all equivalent:

1. π(x) ∼ x/ lnx

2. π(x) lnπ(x) ∼ x

3. pn ∼ n lnn

4. ϑ(x) ∼ x

5. ψ(x) ∼ x

We show the following implication chains:

• (1 ) → (2 ) → (3 ) → (2 ) → (1 )

• (1 ) → (4 ) → (1 )

• (4 ) → (5 ) → (4 )

All of these proofs are taken from Apostol’s book.
lemma PNT1-imp-PNT1 ′:

assumes π ∼[at-top] (λx. x / ln x)
shows (λx. ln (π x)) ∼[at-top] ln

proof −
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from assms have ((λx. π x / (x / ln x)) −−−→ 1 ) at-top
by (rule asymp-equivD-strong[OF - eventually-mono[OF eventually-gt-at-top[of

1 ]]]) auto
hence ((λx. ln (π x / (x / ln x))) −−−→ ln 1 ) at-top

by (rule tendsto-ln) auto
also have ?this ←→ ((λx. ln (π x) − ln x + ln (ln x)) −−−→ 0 ) at-top

by (intro filterlim-cong eventually-mono[OF eventually-gt-at-top[of 2 ]])
(auto simp: ln-divide-pos field-simps π-pos-iff ln-mult-pos)

finally have (λx. ln (π x) − ln x + ln (ln x)) ∈ o(λ-. 1 )
by (intro smalloI-tendsto) auto

also have (λ-::real. 1 :: real) ∈ o(λx. ln x)
by real-asymp

finally have (λx. ln (π x) − ln x + ln (ln x) − ln (ln x)) ∈ o(λx. ln x)
by (rule sum-in-smallo) real-asymp+

thus ∗: (λx. ln (π x)) ∼[at-top] ln
by (simp add: asymp-equiv-altdef )

qed

lemma PNT1-imp-PNT2 :
assumes π ∼[at-top] (λx. x / ln x)
shows (λx. π x ∗ ln (π x)) ∼[at-top] (λx. x)

proof −
have (λx. π x ∗ ln (π x)) ∼[at-top] (λx. x / ln x ∗ ln x)

by (intro asymp-equiv-intros assms PNT1-imp-PNT1 ′)
also have . . . ∼[at-top] (λx. x)

by (intro asymp-equiv-refl-ev eventually-mono[OF eventually-gt-at-top[of 1 ]])
(auto simp: field-simps)

finally show (λx. π x ∗ ln (π x)) ∼[at-top] (λx. x)
by simp

qed

lemma PNT2-imp-PNT3 :
assumes (λx. π x ∗ ln (π x)) ∼[at-top] (λx. x)
shows nth-prime ∼[at-top] (λn. n ∗ ln n)

proof −
have (λn. nth-prime n) ∼[at-top] (λn. π (nth-prime n) ∗ ln (π (nth-prime n)))

using assms
by (rule asymp-equiv-symI [OF asymp-equiv-compose ′])
(auto intro!: filterlim-compose[OF filterlim-real-sequentially nth-prime-at-top])

also have . . . = (λn. real (Suc n) ∗ ln (real (Suc n)))
by (simp add: add-ac)

also have . . . ∼[at-top] (λn. real n ∗ ln (real n))
by real-asymp

finally show nth-prime ∼[at-top] (λn. n ∗ ln n) .
qed

lemma PNT3-imp-PNT2 :
assumes nth-prime ∼[at-top] (λn. n ∗ ln n)
shows (λx. π x ∗ ln (π x)) ∼[at-top] (λx. x)
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proof (rule asymp-equiv-symI , rule asymp-equiv-sandwich-real)
show eventually (λx. x ∈ {real (nth-prime (nat bπ xc − 1 ))..real (nth-prime (nat
bπ xc))})

at-top
using eventually-ge-at-top[of 2 ]

proof eventually-elim
case (elim x)
with nth-prime-partition ′′[of x] show ?case by auto

qed
next

have (λx. real (nth-prime (nat bπ xc − 1 ))) ∼[at-top]
(λx. real (nat bπ xc − 1 ) ∗ ln (real (nat bπ xc − 1 )))

by (rule asymp-equiv-compose ′[OF - π-at-top], rule asymp-equiv-compose ′[OF
assms]) real-asymp

also have . . . ∼[at-top] (λx. π x ∗ ln (π x))
by (rule asymp-equiv-compose ′[OF - π-at-top]) real-asymp

finally show (λx. real (nth-prime (nat bπ xc − 1 ))) ∼[at-top] (λx. π x ∗ ln (π
x)) .
next

have (λx. real (nth-prime (nat bπ xc))) ∼[at-top]
(λx. real (nat bπ xc) ∗ ln (real (nat bπ xc)))

by (rule asymp-equiv-compose ′[OF - π-at-top], rule asymp-equiv-compose ′[OF
assms]) real-asymp

also have . . . ∼[at-top] (λx. π x ∗ ln (π x))
by (rule asymp-equiv-compose ′[OF - π-at-top]) real-asymp

finally show (λx. real (nth-prime (nat bπ xc))) ∼[at-top] (λx. π x ∗ ln (π x)) .
qed

lemma PNT2-imp-PNT1 :
assumes (λx. π x ∗ ln (π x)) ∼[at-top] (λx. x)
shows (λx. ln (π x)) ∼[at-top] (λx. ln x)

and π ∼[at-top] (λx. x / ln x)
proof −

have ev: eventually (λx. π x > 0 ) at-top
eventually (λx. ln (π x) > 0 ) at-top
eventually (λx. ln (ln (π x)) > 0 ) at-top

by (rule eventually-compose-filterlim[OF - π-at-top], real-asymp)+

let ?f = λx. 1 + ln (ln (π x)) / ln (π x) − ln x / ln (π x)
have ((λx. ln (π x) ∗ ?f x) −−−→ ln 1 ) at-top
proof (rule Lim-transform-eventually)

from assms have ((λx. π x ∗ ln (π x) / x) −−−→ 1 ) at-top
by (rule asymp-equivD-strong[OF - eventually-mono[OF eventually-gt-at-top[of

1 ]]]) auto
then show ((λx. ln (π x ∗ ln (π x) / x)) −−−→ ln 1 ) at-top

by (rule tendsto-ln) auto
show ∀ F x in at-top. ln (π x ∗ ln (π x) / x) = ln (π x) ∗ ?f x

using eventually-gt-at-top[of 0 ] ev
by eventually-elim (simp add: field-simps ln-mult ln-div)
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qed
moreover have ((λx. 1 / ln (π x)) −−−→ 0 ) at-top

by (rule filterlim-compose[OF - π-at-top]) real-asymp
ultimately have ((λx. ln (π x) ∗ ?f x ∗ (1 / ln (π x))) −−−→ ln 1 ∗ 0 ) at-top

by (rule tendsto-mult)
moreover have eventually (λx. ln (π x) ∗ ?f x ∗ (1 / ln (π x)) = ?f x) at-top

using ev by eventually-elim auto
ultimately have (?f −−−→ ln 1 ∗ 0 ) at-top

by (rule Lim-transform-eventually)
hence ((λx. 1 + ln (ln (π x)) / ln (π x) − ?f x) −−−→ 1 + 0 − ln 1 ∗ 0 ) at-top

by (intro tendsto-intros filterlim-compose[OF - π-at-top]) (real-asymp | simp)+
hence ((λx. ln x / ln (π x)) −−−→ 1 ) at-top

by simp
thus ∗: (λx. ln (π x)) ∼[at-top] (λx. ln x)

by (rule asymp-equiv-symI [OF asymp-equivI ′])

have eventually (λx. π x = π x ∗ ln (π x) / ln (π x)) at-top
using ev by eventually-elim auto

hence π ∼[at-top] (λx. π x ∗ ln (π x) / ln (π x))
by (rule asymp-equiv-refl-ev)

also from assms and ∗ have (λx. π x ∗ ln (π x) / ln (π x)) ∼[at-top] (λx. x /
ln x)

by (rule asymp-equiv-intros)
finally show π ∼[at-top] (λx. x / ln x) .

qed

lemma PNT4-imp-PNT5 :
assumes ϑ ∼[at-top] (λx. x)
shows ψ ∼[at-top] (λx. x)

proof −
define r where r = (λx. ψ x − ϑ x)
have r ∈ O(λx. ln x ∗ sqrt x)

unfolding r-def by (fact ψ-minus-ϑ-bigo)
also have (λx::real. ln x ∗ sqrt x) ∈ o(λx. x)

by real-asymp
finally have r : r ∈ o(λx. x) .

have (λx. ϑ x + r x) ∼[at-top] (λx. x)
using assms r by (subst asymp-equiv-add-right) auto

thus ?thesis by (simp add: r-def )
qed

lemma PNT4-imp-PNT1 :
assumes ϑ ∼[at-top] (λx. x)
shows π ∼[at-top] (λx. x / ln x)

proof −
have (λx. (π x − ϑ x / ln x) + ((ϑ x − x) / ln x)) ∈ o(λx. x / ln x)
proof (rule sum-in-smallo)

have (λx. π x − ϑ x / ln x) ∈ O(λx. x / ln x ^ 2 )
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by (rule π-ϑ-bigo)
also have (λx. x / ln x ^ 2 ) ∈ o(λx. x / ln x :: real)

by real-asymp
finally show (λx. π x − ϑ x / ln x) ∈ o(λx. x / ln x) .

next
have eventually (λx::real. ln x > 0 ) at-top by real-asymp
hence eventually (λx::real. ln x 6= 0 ) at-top by eventually-elim auto
thus (λx. (ϑ x − x) / ln x) ∈ o(λx. x / ln x)

by (intro landau-o.small.divide-right asymp-equiv-imp-diff-smallo assms)
qed
thus ?thesis by (simp add: diff-divide-distrib asymp-equiv-altdef )

qed

lemma PNT1-imp-PNT4 :
assumes π ∼[at-top] (λx. x / ln x)
shows ϑ ∼[at-top] (λx. x)

proof −
have ϑ ∼[at-top] (λx. π x ∗ ln x)
proof (rule smallo-imp-asymp-equiv)

have (λx. ϑ x − π x ∗ ln x) ∈ Θ(λx. − ((π x − ϑ x / ln x) ∗ ln x))
by (intro bigthetaI-cong eventually-mono[OF eventually-gt-at-top[of 1 ]])

(auto simp: field-simps)
also have (λx. − ((π x − ϑ x / ln x) ∗ ln x)) ∈ O(λx. x / (ln x)2 ∗ ln x)
unfolding landau-o.big.uminus-in-iff by (intro landau-o.big.mult-right π-ϑ-bigo)
also have (λx::real. x / (ln x)2 ∗ ln x) ∈ o(λx. x / ln x ∗ ln x)

by real-asymp
also have (λx. x / ln x ∗ ln x) ∈ Θ(λx. π x ∗ ln x)

by (intro asymp-equiv-imp-bigtheta asymp-equiv-intros asymp-equiv-symI [OF
assms])

finally show (λx. ϑ x − π x ∗ ln x) ∈ o(λx. π x ∗ ln x) .
qed
also have . . . ∼[at-top] (λx. x / ln x ∗ ln x)

by (intro asymp-equiv-intros assms)
also have . . . ∼[at-top] (λx. x)

by real-asymp
finally show ?thesis .

qed

lemma PNT5-imp-PNT4 :
assumes ψ ∼[at-top] (λx. x)
shows ϑ ∼[at-top] (λx. x)

proof −
define r where r = (λx. ϑ x − ψ x)
have (λx. ψ x − ϑ x) ∈ O(λx. ln x ∗ sqrt x)

by (fact ψ-minus-ϑ-bigo)
also have (λx. ψ x − ϑ x) = (λx. −r x)

by (simp add: r-def )
finally have r ∈ O(λx. ln x ∗ sqrt x)

by simp
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also have (λx::real. ln x ∗ sqrt x) ∈ o(λx. x)
by real-asymp

finally have r : r ∈ o(λx. x) .

have (λx. ψ x + r x) ∼[at-top] (λx. x)
using assms r by (subst asymp-equiv-add-right) auto

thus ?thesis by (simp add: r-def )
qed

3.7 The asymptotic form of Mertens’ First Theorem

Mertens’ first theorem states that M(x) − lnx is bounded, i. e. M(x) =
lnx+O(1).
With some work, one can also show some absolute bounds for |M(x)− lnx|,
and we will, in fact, do this later. However, this asymptotic form is somewhat
easier to obtain and it is (as we shall see) enough to prove the Prime Number
Theorem, so we prove the weak form here first for the sake of a smoother
presentation.
First of all, we need a very weak version of Stirling’s formula for the loga-
rithm of the factorial, namely:

ln(bxc!) =
∑
n≤x

lnx = x lnx+O(x)

We show this using summation by parts.
lemma stirling-weak:

assumes x: x ≥ 1
shows sum-upto ln x ∈ {x ∗ ln x − x − ln x + 1 .. x ∗ ln x}

proof (cases x = 1 )
case True
have {0<..Suc 0} = {1} by auto
with True show ?thesis by (simp add: sum-upto-altdef )

next
case False
with assms have x: x > 1 by simp
have ((λt. sum-upto (λ-. 1 ) t ∗ (1 / t)) has-integral

sum-upto (λ-. 1 ) x ∗ ln x − sum-upto (λ-. 1 ) 1 ∗ ln 1 −
(
∑

n∈real −‘ {1<..x}. 1 ∗ ln (real n))) {1 ..x} using x
by (intro partial-summation-strong[of {}])

(auto simp flip: has-real-derivative-iff-has-vector-derivative
intro!: derivative-eq-intros continuous-intros)

hence ((λt. real (nat btc) / t) has-integral
real (nat bxc) ∗ ln x − (

∑
n∈real −‘ {1<..x}. ln (real n))) {1 ..x}

by (simp add: sum-upto-altdef )
also have (

∑
n∈real −‘ {1<..x}. ln (real n)) = sum-upto ln x unfolding

sum-upto-def
by (intro sum.mono-neutral-left)
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(auto intro!: finite-subset[OF - finite-vimage-real-of-nat-greaterThanAtMost[of
0 x]])

finally have ∗: ((λt. real (nat btc) / t) has-integral bxc ∗ ln x − sum-upto ln x)
{1 ..x}

using x by simp

have 0 ≤ real-of-int bxc ∗ ln x − sum-upto (λn. ln (real n)) x
using ∗ by (rule has-integral-nonneg) auto

also have . . . ≤ x ∗ ln x − sum-upto ln x
using x by (intro diff-mono mult-mono) auto

finally have upper : sum-upto ln x ≤ x ∗ ln x by simp

have (x − 1 ) ∗ ln x − x + 1 ≤ bxc ∗ ln x − x + 1
using x by (intro diff-mono mult-mono add-mono) auto

also have ((λt. 1 ) has-integral (x − 1 )) {1 ..x}
using has-integral-const-real[of 1 ::real 1 x] x by simp

from ∗ and this have bxc ∗ ln x − sum-upto ln x ≤ x − 1
by (rule has-integral-le) auto

hence bxc ∗ ln x − x + 1 ≤ sum-upto ln x
by simp

finally have sum-upto ln x ≥ x ∗ ln x − x − ln x + 1
by (simp add: algebra-simps)

with upper show ?thesis by simp
qed

lemma stirling-weak-bigo: (λx::real. sum-upto ln x − x ∗ ln x) ∈ O(λx. x)
proof −

have (λx. sum-upto ln x − x ∗ ln x) ∈ O(λx. −(sum-upto ln x − x ∗ ln x))
by (subst landau-o.big.uminus) auto

also have (λx. −(sum-upto ln x − x ∗ ln x)) ∈ O(λx. x + ln x − 1 )
proof (intro le-imp-bigo-real[of 2 ] eventually-mono[OF eventually-ge-at-top[of

1 ]], goal-cases)
case (2 x)
thus ?case using stirling-weak[of x] by (auto simp: algebra-simps)

next
case (3 x)
thus ?case using stirling-weak[of x] by (auto simp: algebra-simps)

qed auto
also have (λx. x + ln x − 1 ) ∈ O(λx::real. x) by real-asymp
finally show ?thesis .

qed

lemma floor-floor-div-eq:
fixes x :: real and d :: nat
assumes x ≥ 0
shows bnat bxc / real dc = bx / real dc

proof −
have bnat bxc / real-of-int (int d)c = bx / real-of-int (int d)c using assms

by (subst (1 2 ) floor-divide-real-eq-div) auto
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thus ?thesis by simp
qed

The key to showing Mertens’ first theorem is the function

h(x) :=
∑
n≤x

Λ(d)

d

where Λ is the Mangoldt function, which is equal to ln p for any prime power
pk and 0 otherwise. As we shall see, h(x) is a good approximation for M(x),
as the difference between them is bounded by a constant.
lemma sum-upto-mangoldt-over-id-minus-phi-bounded:

(λx. sum-upto (λd. mangoldt d / real d) x − M x) ∈ O(λ-. 1 )
proof −

define f where f = (λd. mangoldt d / real d)
define C where C = (

∑
p. ln (real (p + 1 )) ∗ (1 / real (p ∗ (p − 1 ))))

have summable: summable (λp::nat. ln (p + 1 ) ∗ (1 / (p ∗ (p − 1 ))))
proof (rule summable-comparison-test-bigo)

show summable (λp. norm (p powr (−3/2 )))
by (simp add: summable-real-powr-iff )

qed real-asymp

have diff-bound: sum-upto f x − M x ∈ {0 ..C} if x: x ≥ 4 for x
proof −

define S where S = {(p, i). prime p ∧ 0 < i ∧ real (p ^ i) ≤ x}
define S ′ where S ′ = (SIGMA p:{2 ..nat broot 2 xc}. {2 ..nat blog 2 xc})
have S ⊆ {..nat bxc} × {..nat blog 2 xc} unfolding S-def

using x primepows-le-subset[of x 1 ] by (auto simp: Suc-le-eq)
hence finite S by (rule finite-subset) auto
note fin = finite-subset[OF - this, unfolded S-def ]

have sum-upto f x = (
∑

(p, i)∈S . ln (real p) / real (p ^ i)) unfolding S-def
by (intro sum-upto-primepows) (auto simp: f-def mangoldt-non-primepow)

also have S = {p. prime p ∧ p ≤ x} × {1} ∪ {(p, i). prime p ∧ 1 < i ∧ real
(p ^ i) ≤ x}

by (auto simp: S-def not-less le-Suc-eq not-le intro!: Suc-lessI )
also have (

∑
(p,i)∈. . . . ln (real p) / real (p ^ i)) =

(
∑

(p, i) ∈ {p. prime p ∧ of-nat p ≤ x} × {1}. ln (real p) / real (p
^ i)) +

(
∑

(p, i) | prime p ∧ real (p ^ i) ≤ x ∧ i > 1 . ln (real p) / real (p
^ i))

(is - = ?S1 + ?S2 )
by (subst sum.union-disjoint[OF fin fin]) (auto simp: conj-commute case-prod-unfold)
also have ?S1 = M x
by (subst sum.cartesian-product [symmetric]) (auto simp: primes-M-def prime-sum-upto-def )
finally have eq: sum-upto f x − M x = ?S2 by simp
have ?S2 ≤ (

∑
(p, i)∈S ′. ln (real p) / real (p ^ i))

using primepows-le-subset[of x 2 ] x unfolding case-prod-unfold of-nat-power
by (intro sum-mono2 divide-nonneg-pos zero-less-power)
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(auto simp: eval-nat-numeral Suc-le-eq S ′-def subset-iff dest: prime-gt-1-nat)+
also have . . . = (

∑
p=2 ..nat bsqrt xc. ln p ∗ (

∑
i∈{2 ..nat blog 2 xc}. (1 /

real p) ^ i))
by (simp add: S ′-def sum.Sigma case-prod-unfold

sum-distrib-left sqrt-def field-simps)
also have . . . ≤ (

∑
p=2 ..nat bsqrt xc. ln p ∗ (1 / (p ∗ (p − 1 ))))

unfolding sum-upto-def
proof (intro sum-mono, goal-cases)

case (1 p)
from x have nat blog 2 xc ≥ 2

by (auto simp: le-nat-iff ′ le-log-iff )
hence (

∑
i∈{2 ..nat blog 2 xc}. (1 / real p) ^ i) =

((1 / p)2 − (1 / p) ^ nat blog 2 xc / p) / (1 − 1 / p) using 1
by (subst sum-gp) (auto dest!: prime-gt-1-nat simp: field-simps power2-eq-square)
also have . . . ≤ ((1 / p) ^ 2 − 0 ) / (1 − 1 / p)

using 1 by (intro divide-right-mono diff-mono power-mono)
(auto simp: field-simps dest: prime-gt-0-nat)

also have . . . = 1 / (p ∗ (p − 1 ))
by (auto simp: divide-simps power2-eq-square dest: prime-gt-0-nat)

finally show ?case
using 1 by (intro mult-left-mono) (auto dest: prime-gt-0-nat)

qed
also have . . . ≤ (

∑
p=2 ..nat bsqrt xc. ln (p + 1 ) ∗ (1 / (p ∗ (p − 1 ))))

by (intro sum-mono mult-mono) auto
also have . . . ≤ C unfolding C-def

by (intro sum-le-suminf summable) auto
finally have ?S2 ≤ C by simp
moreover have ?S2 ≥ 0 by (intro sum-nonneg) (auto dest: prime-gt-0-nat)
ultimately show ?thesis using eq by simp

qed

from diff-bound[of 4 ] have C ≥ 0 by auto
with diff-bound show (λx. sum-upto f x − M x) ∈ O(λ-. 1 )
by (intro le-imp-bigo-real[of C ] eventually-mono[OF eventually-ge-at-top[of 4 ]])

auto
qed

Next, we show that our h(x) itself is close to lnx, i. e.:∑
n≤x

Λ(d)

d
= lnx+O(1)

lemma sum-upto-mangoldt-over-id-asymptotics:
(λx. sum-upto (λd. mangoldt d / real d) x − ln x) ∈ O(λ-. 1 )

proof −
define r where r = (λn::real. sum-upto (λd. mangoldt d ∗ (n / d − real-of-int
bn / dc)) n)

have r : r ∈ O(ψ)
proof (intro landau-o.bigI [of 1 ] eventually-mono[OF eventually-ge-at-top[of 0 ]])
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fix x :: real assume x: x ≥ 0
have eq: {1 ..nat bxc} = {0<..nat bxc} by auto
hence r x ≥ 0 unfolding r-def sum-upto-def

by (intro sum-nonneg mult-nonneg-nonneg mangoldt-nonneg)
(auto simp: floor-le-iff )

moreover have x / real d ≤ 1 + real-of-int bx / real dc for d by linarith
hence r x ≤ sum-upto (λd. mangoldt d ∗ 1 ) x unfolding sum-upto-altdef eq

r-def using x
by (intro sum-mono mult-mono mangoldt-nonneg)

(auto simp: less-imp-le[OF frac-lt-1 ] algebra-simps)
ultimately show norm (r x) ≤ 1 ∗ norm (ψ x) by (simp add: ψ-def )

qed auto
also have ψ ∈ O(λx. x) by (fact ψ-bigo)
finally have r : r ∈ O(λx. x) .

define r ′ where r ′ = (λx::real. sum-upto ln x − x ∗ ln x)
have r ′-bigo: r ′ ∈ O(λx. x)

using stirling-weak-bigo unfolding r ′-def .
have ln-fact: ln (fact n) = (

∑
d=1 ..n. ln d) for n

by (induction n) (simp-all add: ln-mult)
hence r ′: sum-upto ln n = n ∗ ln n + r ′ n for n :: real

unfolding r ′-def sum-upto-altdef by (auto intro!: sum.cong)

have eventually (λn. sum-upto (λd. mangoldt d / d) n − ln n = r ′ n / n + r n
/ n) at-top

using eventually-gt-at-top
proof eventually-elim

fix x :: real assume x: x > 0
have sum-upto ln x = sum-upto (λn. mangoldt n ∗ real (nat bx / nc)) x

unfolding sum-upto-ln-conv-sum-upto-mangoldt ..
also have . . . = sum-upto (λd. mangoldt d ∗ (x / d)) x − r x

unfolding sum-upto-def by (simp add: algebra-simps sum-subtractf r-def
sum-upto-def )

also have sum-upto (λd. mangoldt d ∗ (x / d)) x = x ∗ sum-upto (λd. mangoldt
d / d) x

unfolding sum-upto-def by (subst sum-distrib-left) (simp add: field-simps)
finally have x ∗ sum-upto (λd. mangoldt d / real d) x = r ′ x + r x + x ∗ ln x

by (simp add: r ′ algebra-simps)
thus sum-upto (λd. mangoldt d / d) x − ln x = r ′ x / x + r x / x

using x by (simp add: field-simps)
qed
hence (λx. sum-upto (λd. mangoldt d / d) x − ln x) ∈ Θ(λx. r ′ x / x + r x /

x)
by (rule bigthetaI-cong)

also have (λx. r ′ x / x + r x / x) ∈ O(λ-. 1 )
by (intro sum-in-bigo) (insert r r ′-bigo, auto simp: landau-divide-simps)

finally show ?thesis .
qed

Combining these two gives us Mertens’ first theorem.
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theorem mertens-bounded: (λx. M x − ln x) ∈ O(λ-. 1 )
proof −

define f where f = sum-upto (λd. mangoldt d / d)
have (λx. (f x − ln x) − (f x − M x)) ∈ O(λ-. 1 )

using sum-upto-mangoldt-over-id-asymptotics
sum-upto-mangoldt-over-id-minus-phi-bounded

unfolding f-def by (rule sum-in-bigo)
thus ?thesis by simp

qed

lemma primes-M-bigo: M ∈ O(λx. ln x)
proof −

have (λx. M x − ln x) ∈ O(λ-. 1 )
by (rule mertens-bounded)

also have (λ-::real. 1 ) ∈ O(λx. ln x)
by real-asymp

finally have (λx. M x − ln x + ln x) ∈ O(λx. ln x)
by (rule sum-in-bigo) auto

thus ?thesis by simp
qed

end

4 The Prime Number Theorem
theory Prime-Number-Theorem
imports

Newman-Ingham-Tauberian
Prime-Counting-Functions

begin

4.1 Constructing Newman’s function

Starting from Mertens’ first theorem, i. e. M(x) = lnx+O(1), we now want
to derive that M(x) = lnx + c + o(1). This result is considerably stronger
and it implies the Prime Number Theorem quite directly.
In order to do this, we define the Dirichlet series

f(s) =

∞∑
n=1

M(n)

ns
.

We will prove that this series extends meromorphically to R(s) ≥ 1 and
apply Ingham’s theorem to it (after we subtracted its pole at s = 1).
definition fds-newman where

fds-newman = fds (λn. complex-of-real (M n))
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lemma fds-nth-newman:
fds-nth fds-newman n = of-real (M n)
by (simp add: fds-newman-def fds-nth-fds)

lemma norm-fds-nth-newman:
norm (fds-nth fds-newman n) = M n
unfolding fds-nth-newman norm-of-real
by (intro abs-of-nonneg sum-nonneg divide-nonneg-pos) (auto dest: prime-ge-1-nat)

The Dirichlet series f(s) + ζ ′(s) has the coefficients M(n) − lnn, so by
Mertens’ first theorem, f(s) + ζ ′(s) has bounded coefficients.
lemma bounded-coeffs-newman-minus-deriv-zeta:

defines f ≡ fds-newman + fds-deriv fds-zeta
shows Bseq (λn. fds-nth f n)

proof −
have (λn. M (real n) − ln (real n)) ∈ O(λ-. 1 )

using mertens-bounded by (rule landau-o.big.compose) real-asymp
from natfun-bigo-1E [OF this, of 1 ]

obtain c where c: c ≥ 1
∧

n. |M (real n) − ln (real n)| ≤ c by auto

show ?thesis
proof (intro BseqI [of c] allI )

fix n :: nat
show norm (fds-nth f n) ≤ c
proof (cases n = 0 )

case False
hence fds-nth f n = of-real (M n − ln n)
by (simp add: f-def fds-nth-newman fds-nth-deriv fds-nth-zeta scaleR-conv-of-real)
also from ‹n 6= 0 › have norm . . . ≤ c

using c(2 )[of n] by (simp add: in-Reals-norm)
finally show ?thesis .

qed (insert c, auto)
qed (insert c, auto)

qed

A Dirichlet series with bounded coefficients converges for all s with R(s) > 1
and so does ζ ′(s), so we can conclude that f(s) does as well.
lemma abs-conv-abscissa-newman: abs-conv-abscissa fds-newman ≤ 1

and conv-abscissa-newman: conv-abscissa fds-newman ≤ 1
proof −

define f where f = fds-newman + fds-deriv fds-zeta
have abs-conv-abscissa f ≤ 1

using bounded-coeffs-newman-minus-deriv-zeta unfolding f-def
by (rule bounded-coeffs-imp-abs-conv-abscissa-le-1 )

hence abs-conv-abscissa (f − fds-deriv fds-zeta) ≤ 1
by (intro abs-conv-abscissa-diff-leI ) (auto simp: abs-conv-abscissa-deriv)

also have f − fds-deriv fds-zeta = fds-newman by (simp add: f-def )
finally show abs-conv-abscissa fds-newman ≤ 1 .
from conv-le-abs-conv-abscissa and this show conv-abscissa fds-newman ≤ 1
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by (rule order .trans)
qed

We now change the order of summation to obtain an alternative form of
f(s) in terms of a sum of Hurwitz ζ functions.
lemma eval-fds-newman-conv-infsetsum:

assumes s: Re s > 1
shows eval-fds fds-newman s = (

∑
ap | prime p. (ln (real p) / real p) ∗

hurwitz-zeta p s)
(λp. ln (real p) / real p ∗ hurwitz-zeta p s) abs-summable-on {p. prime p}

proof −
from s have conv: fds-abs-converges fds-newman s

by (intro fds-abs-converges le-less-trans[OF abs-conv-abscissa-newman]) auto
define f where f = (λn p. ln (real p) / real p / of-nat n powr s)

have eq: (
∑

an∈{p..}. f n p) = ln (real p) / real p ∗ hurwitz-zeta p s if prime p
for p

proof −
have (

∑
an∈{p..}. f n p) = (

∑
ax∈{p..}. (ln (real p) / of-nat p) ∗ (1 / of-nat

x powr s))
by (simp add: f-def )

also have . . . = (ln (real p) / of-nat p) ∗ (
∑

ax∈{p..}. 1 / of-nat x powr s)
using abs-summable-hurwitz-zeta[of s 0 p] that s
by (intro infsetsum-cmult-right) (auto dest: prime-gt-0-nat)

also have (
∑

ax∈{p..}. 1 / of-nat x powr s) = hurwitz-zeta p s
using s that by (subst hurwitz-zeta-nat-conv-infsetsum(2 ))

(auto dest: prime-gt-0-nat simp: field-simps powr-minus)
finally show ?thesis .

qed

have norm-f : norm (f n p) = ln p / p / n powr Re s if prime p for n p :: nat
by (auto simp: f-def norm-divide norm-mult norm-powr-real-powr)

from conv have (λn. norm (fds-nth fds-newman n / n powr s)) abs-summable-on
UNIV

by (intro abs-summable-on-normI ) (simp add: fds-abs-converges-altdef ′)
also have (λn. norm (fds-nth fds-newman n / n powr s)) =

(λn.
∑

p | prime p ∧ p ≤ n. norm (f n p))
by (auto simp: norm-divide norm-fds-nth-newman sum-divide-distrib primes-M-def

prime-sum-upto-def norm-mult norm-f norm-powr-real-powr intro!:
sum.cong)

finally have summable1 : (λ(n,p). f n p) abs-summable-on (SIGMA n:UNIV . {p.
prime p ∧ p ≤ n})

using conv by (subst abs-summable-on-Sigma-iff ) auto
also have ?this ←→ (λ(p,n). f n p) abs-summable-on

(λ(n,p). (p,n)) ‘ (SIGMA n:UNIV . {p. prime p ∧ p ≤ n})
by (subst abs-summable-on-reindex-iff [symmetric]) (auto simp: case-prod-unfold

inj-on-def )
also have (λ(n,p). (p,n)) ‘ (SIGMA n:UNIV . {p. prime p ∧ p ≤ n}) =

(SIGMA p:{p. prime p}. {p..}) by auto
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finally have summable2 : (λ(p,n). f n p) abs-summable-on . . . .
from abs-summable-on-Sigma-project1 ′[OF this]

have (λp.
∑

an∈{p..}. f n p) abs-summable-on {p. prime p} by auto
also have ?this ←→ (λp. ln (real p) / real p ∗ hurwitz-zeta p s) abs-summable-on
{p. prime p}

by (intro abs-summable-on-cong eq) auto
finally show . . . .

have eval-fds fds-newman s =
(
∑

an.
∑

p | prime p ∧ p ≤ n. ln (real p) / real p / of-nat n powr s)
using conv by (simp add: eval-fds-altdef fds-nth-newman sum-divide-distrib

primes-M-def prime-sum-upto-def )
also have . . . = (

∑
an.

∑
ap | prime p ∧ p ≤ n. f n p)

unfolding f-def by (subst infsetsum-finite) auto
also have . . . = (

∑
a(n, p) ∈ (SIGMA n:UNIV . {p. prime p ∧ p ≤ n}). f n p)

using summable1 by (subst infsetsum-Sigma) auto
also have . . . = (

∑
a(p, n) ∈ (λ(n,p). (p, n)) ‘ (SIGMA n:UNIV . {p. prime p

∧ p ≤ n}). f n p)
by (subst infsetsum-reindex) (auto simp: case-prod-unfold inj-on-def )

also have (λ(n,p). (p, n)) ‘ (SIGMA n:UNIV . {p. prime p ∧ p ≤ n}) =
(SIGMA p:{p. prime p}. {p..}) by auto

also have (
∑

a(p,n)∈. . . . f n p) = (
∑

ap | prime p.
∑

an∈{p..}. f n p)
using summable2 by (subst infsetsum-Sigma) auto

also have (
∑

ap | prime p.
∑

an∈{p..}. f n p) =
(
∑

ap | prime p. ln (real p) / real p ∗ hurwitz-zeta p s)
by (intro infsetsum-cong eq) auto

finally show eval-fds fds-newman s =
(
∑

ap | prime p. (ln (real p) / real p) ∗ hurwitz-zeta p s) .
qed

We now define a meromorphic continuation of f(s) on R(s) > 1
2 .

To construct f(s), we express it as

f(s) =
1

z − 1

(
f̄(s)− ζ ′(s)

ζ(s)

)
,

where f̄(s) (which we shall call pre-newman) is a function that is analytic
on <(s) > 1

2 , which can be shown fairly easily using the Weierstraß M test.
ζ ′(s)/ζ(s) is meromorphic except for a single pole at s = 1 and one k-th
order pole for any k-th order zero of ζ, but for the Prime Number Theorem,
we are only concerned with the area R(s) ≥ 1, where ζ does not have any
zeros.
Taken together, this means that f(s) is analytic for R(s) ≥ 1 except for a
double pole at s = 1, which we will take care of later.
context

fixes A :: nat ⇒ complex ⇒ complex and B :: nat ⇒ complex ⇒ complex
defines A ≡ (λp s. (s − 1 ) ∗ pre-zeta (real p) s −

of-nat p / (of-nat p powr s ∗ (of-nat p powr s − 1 )))
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defines B ≡ (λp s. of-real (ln (real p)) / of-nat p ∗ A p s)
begin

definition pre-newman :: complex ⇒ complex where
pre-newman s = (

∑
p. if prime p then B p s else 0 )

definition newman where newman s = 1 / (s − 1 ) ∗ (pre-newman s − deriv
zeta s / zeta s)

The sum used in the definition of pre-newman converges uniformly on any
disc within the half-space with R(s) > 1

2 by the Weierstraß M test.
lemma uniform-limit-pre-newman:

assumes r : r ≥ 0 Re s − r > 1 / 2
shows uniform-limit (cball s r)

(λn s.
∑

p<n. if prime p then B p s else 0 ) pre-newman at-top
proof −

from r have Re: Re z > 1 / 2 if dist s z ≤ r for z
using abs-Re-le-cmod[of s − z] r that
by (auto simp: dist-norm abs-if split: if-splits)

define x where x = Re s − r — The lower bound for the real part in the disc
from r Re have x > 1 / 2 by (auto simp: x-def )

— The following sequence M bounds the summand, and it is obviously O(n−1−ε)
and therefore summable

define C where C = (norm s + r + 1 ) ∗ (norm s + r) / x
define M where M = (λp::nat. ln p ∗ (C / p powr (x + 1 ) + 1 / (p powr x ∗

(p powr x − 1 ))))

show ?thesis unfolding pre-newman-def
proof (intro Weierstrass-m-test-ev[OF eventually-mono[OF eventually-gt-at-top[of

1 ]]] ballI )
show summable M
proof (rule summable-comparison-test-bigo)

define ε where ε = min (2 ∗ x − 1 ) x / 2
from ‹x > 1 / 2 › have ε: ε > 0 1 + ε < 2 ∗ x 1 + ε < x + 1

by (auto simp: ε-def min-def field-simps)
show M ∈ O(λn. n powr (− 1 − ε)) unfolding M-def distrib-left

by (intro sum-in-bigo) (use ε in real-asymp)+
from ε show summable (λn. norm (n powr (− 1 − ε)))

by (simp add: summable-real-powr-iff )
qed

next
fix p :: nat and z assume p: p > 1 and z: z ∈ cball s r
from z r Re[of z] have x: Re z ≥ x x > 1 / 2 and Re z > 1 / 2
using abs-Re-le-cmod[of s − z] by (auto simp: x-def algebra-simps dist-norm)

have norm-z: norm z ≤ norm s + r
using z norm-triangle-ineq2 [of z s] r by (auto simp: dist-norm norm-minus-commute)
from ‹p > 1 › and x and r have M p ≥ 0
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by (auto simp: C-def M-def intro!: mult-nonneg-nonneg add-nonneg-nonneg
divide-nonneg-pos)

have bound: norm ((z − 1 ) ∗ pre-zeta p z) ≤
norm (z − 1 ) ∗ (norm z / (Re z ∗ p powr Re z))

using pre-zeta-bound ′[of z p] p ‹Re z > 1 / 2 ›
unfolding norm-mult by (intro mult-mono pre-zeta-bound) auto

have norm (B p z) = ln p / p ∗ norm (A p z)
unfolding B-def using ‹p > 1 › by (simp add: B-def norm-mult norm-divide)

also have . . . ≤ ln p / p ∗ (norm (z − 1 ) ∗ norm z / Re z / p powr Re z +
p / (p powr Re z ∗ (p powr Re z − 1 )))

unfolding A-def using ‹p > 1 › and ‹Re z > 1 / 2 › and bound
by (intro mult-left-mono order .trans[OF norm-triangle-ineq4 add-mono] mult-left-mono)

(auto simp: norm-divide norm-mult norm-powr-real-powr
intro!: divide-left-mono order .trans[OF - norm-triangle-ineq2 ])

also have . . . = ln p ∗ (norm (z − 1 ) ∗ norm z / Re z / p powr (Re z + 1 )
+

1 / (p powr Re z ∗ (p powr Re z − 1 )))
using ‹p > 1 › by (simp add: field-simps powr-add powr-minus)

also have norm (z − 1 ) ∗ norm z / Re z / p powr (Re z + 1 ) ≤ C / p powr
(x + 1 )

unfolding C-def using r ‹Re z > 1 / 2 › norm-z p x
by (intro mult-mono frac-le powr-mono order .trans[OF norm-triangle-ineq4 ])

auto
also have 1 / (p powr Re z ∗ (p powr Re z − 1 )) ≤

1 / (p powr x ∗ (p powr x − 1 )) using ‹p > 1 › x
by (intro divide-left-mono mult-mono powr-mono diff-right-mono mult-pos-pos)

(auto simp: ge-one-powr-ge-zero)
finally have norm (B p z) ≤ M p

using ‹p > 1 › by (simp add: mult-left-mono M-def )
with ‹M p ≥ 0 › show norm (if prime p then B p z else 0 ) ≤ M p by simp

qed
qed

lemma sums-pre-newman: Re s > 1 / 2 =⇒ (λp. if prime p then B p s else 0 )
sums pre-newman s

using tendsto-uniform-limitI [OF uniform-limit-pre-newman[of 0 s]] by (auto
simp: sums-def )

lemma analytic-pre-newman [THEN analytic-on-subset, analytic-intros]:
pre-newman analytic-on {s. Re s > 1 / 2}

proof −
have holo: (λs::complex. if prime p then B p s else 0 ) holomorphic-on X

if X ⊆ {s. Re s > 1 / 2} for X and p :: nat using that
by (cases prime p)

(auto intro!: holomorphic-intros simp: B-def A-def dest!: prime-gt-1-nat)
have holo ′: pre-newman holomorphic-on ball s r if r : r ≥ 0 Re s − r > 1 / 2

for s r
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proof −
from r have Re: Re z > 1 / 2 if dist s z ≤ r for z

using abs-Re-le-cmod[of s − z] r that by (auto simp: dist-norm abs-if split:
if-splits)

show ?thesis
by (rule holomorphic-uniform-limit[OF - uniform-limit-pre-newman[of r s]])
(insert that Re, auto intro!: always-eventually holomorphic-on-imp-continuous-on

holomorphic-intros holo)
qed
show ?thesis unfolding analytic-on-def
proof safe

fix s assume Re s > 1 / 2
thus ∃ r>0 . pre-newman holomorphic-on ball s r

by (intro exI [of - (Re s − 1 / 2 ) / 2 ] conjI holo ′) (auto simp: field-simps)
qed

qed

lemma holomorphic-pre-newman [holomorphic-intros]:
X ⊆ {s. Re s > 1 / 2} =⇒ pre-newman holomorphic-on X
using analytic-pre-newman by (rule analytic-imp-holomorphic)

lemma eval-fds-newman:
assumes s: Re s > 1
shows eval-fds fds-newman s = newman s

proof −
have eq: (ln (real p) / real p) ∗ hurwitz-zeta p s =

1 / (s − 1 ) ∗ (ln (real p) / (p powr s − 1 ) + B p s)
if p: prime p for p

proof −
have (ln (real p) / real p) ∗ hurwitz-zeta p s =

ln (real p) / real p ∗ (p powr (1 − s) / (s − 1 ) + pre-zeta p s)
using s by (auto simp add: hurwitz-zeta-def )

also have . . . = 1 / (s − 1 ) ∗ (ln (real p) / (p powr s − 1 ) + B p s)
using p s by (simp add: divide-simps powr-diff B-def )

(auto simp: A-def field-simps dest: prime-gt-1-nat)?
finally show ?thesis .

qed

have (λp. (ln (real p) / real p) ∗ hurwitz-zeta p s) abs-summable-on {p. prime
p}

using s by (intro eval-fds-newman-conv-infsetsum)
hence (λp. 1 / (s − 1 ) ∗ (ln (real p) / (p powr s − 1 ) + B p s))

abs-summable-on {p. prime p}
by (subst (asm) abs-summable-on-cong[OF eq refl]) auto

hence summable:
(λp. ln (real p) / (p powr s − 1 ) + B p s) abs-summable-on {p. prime p}
using s by (subst (asm) abs-summable-on-cmult-right-iff ) auto

from s have [simp]: s 6= 1 by auto
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have eval-fds fds-newman s =
(
∑

ap | prime p. (ln (real p) / real p) ∗ hurwitz-zeta p s)
using s by (rule eval-fds-newman-conv-infsetsum)

also have . . . = (
∑

ap | prime p. 1 / (s − 1 ) ∗ (ln (real p) / (p powr s − 1 ) +
B p s))

by (intro infsetsum-cong eq) auto
also have . . . = 1 / (s − 1 ) ∗ (

∑
ap | prime p. ln (real p) / (p powr s − 1 ) +

B p s)
(is - = - ∗ ?S) by (rule infsetsum-cmult-right[OF summable])

also have ?S = (
∑

p. if prime p then
ln (real p) / (p powr s − 1 ) + B p s else 0 )

by (subst infsetsum-nat[OF summable]) auto
also have . . . = (

∑
p. (if prime p then ln (real p) / (p powr s − 1 ) else 0 ) +

(if prime p then B p s else 0 ))
by (intro suminf-cong) auto

also have . . . = pre-newman s − deriv zeta s / zeta s
using sums-pre-newman[of s] sums-logderiv-zeta[of s] s
by (subst suminf-add [symmetric]) (auto simp: sums-iff )

finally show ?thesis by (simp add: newman-def )
qed

end

Next, we shall attempt to get rid of the pole by subtracting suitable multiples
of ζ(s) and ζ ′(s). To this end, we shall first prove the following alternative
definition of ζ ′(s):
lemma deriv-zeta-eq ′:

assumes 0 < Re s s 6= 1
shows deriv zeta s = deriv (λz. pre-zeta 1 z ∗ (z − 1 )) s / (s − 1 ) −

(pre-zeta 1 s ∗ (s − 1 ) + 1 ) / (s − 1 )2
(is - = ?rhs)

proof (rule DERIV-imp-deriv)
have [derivative-intros]: (pre-zeta 1 has-field-derivative deriv (pre-zeta 1 ) s) (at

s)
by (intro holomorphic-derivI [of - UNIV ] holomorphic-intros) auto

have ∗: deriv (λz. pre-zeta 1 z ∗ (z − 1 )) s = deriv (pre-zeta 1 ) s ∗ (s − 1 ) +
pre-zeta 1 s

by (subst deriv-mult)
(auto intro!: holomorphic-on-imp-differentiable-at[of - UNIV ] holomorphic-intros)

hence ((λs. pre-zeta 1 s + 1 / (s − 1 )) has-field-derivative
deriv (pre-zeta 1 ) s − 1 / ((s − 1 ) ∗ (s − 1 ))) (at s)

using assms by (auto intro!: derivative-eq-intros)
also have deriv (pre-zeta 1 ) s − 1 / ((s − 1 ) ∗ (s − 1 )) = ?rhs
using ∗ assms by (simp add: divide-simps power2-eq-square, simp add: field-simps)

also have ((λs. pre-zeta 1 s + 1 / (s − 1 )) has-field-derivative ?rhs) (at s) ←→
(zeta has-field-derivative ?rhs) (at s)

using assms
by (intro has-field-derivative-cong-ev eventually-mono[OF t1-space-nhds[of - 1 ]])

(auto simp: zeta-def hurwitz-zeta-def )
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finally show . . . .
qed

From this, it follows that (s− 1)ζ ′(s)− ζ ′(s)/ζ(s) is analytic for R(s) ≥ 1:
lemma analytic-zeta-derivdiff :

obtains a where
(λz. if z = 1 then a else (z − 1 ) ∗ deriv zeta z − deriv zeta z / zeta z)

analytic-on {s. Re s ≥ 1}
proof

have neq: pre-zeta 1 z ∗ (z − 1 ) + 1 6= 0 if Re z ≥ 1 for z
using zeta-Re-ge-1-nonzero[of z] that
by (cases z = 1 ) (auto simp: zeta-def hurwitz-zeta-def divide-simps)

let ?g = λz. (1 − inverse (pre-zeta 1 z ∗ (z − 1 ) + 1 )) ∗ ((z − 1 ) ∗
deriv ((λu. pre-zeta 1 u ∗ (u − 1 ))) z − (pre-zeta 1 z ∗ (z − 1 ) + 1 ))

show (λz. if z = 1 then deriv ?g 1 else (z − 1 ) ∗ deriv zeta z − deriv zeta z /
zeta z)

analytic-on {s. Re s ≥ 1} (is ?f analytic-on -)
proof (rule pole-theorem-analytic-0 )

show ?g analytic-on {s. 1 ≤ Re s} using neq
by (auto intro!: analytic-intros)

next
show ∃ d>0 . ∀w∈ball z d − {1}. ?g w = (w − 1 ) ∗ ?f w

if z: z ∈ {s. 1 ≤ Re s} for z
proof −

have ∗: isCont (λz. pre-zeta 1 z ∗ (z − 1 ) + 1 ) z
by (auto intro!: continuous-intros)
obtain e where e > 0 and e:

∧
y. dist z y < e =⇒ pre-zeta (Suc 0 ) y ∗

(y−1 ) + 1 6= 0
using continuous-at-avoid [OF ∗ neq[of z]] z by auto

show ?thesis
proof (intro exI ballI conjI )

fix w
assume w: w ∈ ball z (min e 1 ) − {1}
then have Re w > 0

using complex-Re-le-cmod [of z−w] z by (simp add: dist-norm)
with w show ?g w = (w − 1 ) ∗ (if w = 1 then deriv ?g 1 else

(w − 1 ) ∗ deriv zeta w − deriv zeta w / zeta w)
by (subst (1 2 ) deriv-zeta-eq ′,

simp-all add: zeta-def hurwitz-zeta-def divide-simps e power2-eq-square)
(simp-all add: algebra-simps)?

qed (use ‹e > 0 › in auto)
qed

qed auto
qed

Finally, f(s) + ζ ′(s) + cζ(s) is analytic.
lemma analytic-newman-variant:

obtains c a where
(λz. if z = 1 then a else newman z + deriv zeta z + c ∗ zeta z) analytic-on
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{s. Re s ≥ 1}
proof −

obtain c where
c: (λz. if z = 1 then c else (z − 1 ) ∗ deriv zeta z − deriv zeta z / zeta z)

analytic-on {s. Re s ≥ 1}
using analytic-zeta-derivdiff by blast

let ?g = λz. pre-newman z +
(if z = 1 then c
else (z − 1 ) ∗ deriv zeta z −

deriv zeta z / zeta z) − (c + pre-newman 1 ) ∗ (pre-zeta 1 z ∗ (z −
1 ) + 1 )

have (λz. if z = 1 then deriv ?g 1 else newman z + deriv zeta z + (−(c +
pre-newman 1 )) ∗ zeta z)

analytic-on {s. Re s ≥ 1} (is ?f analytic-on -)
proof (rule pole-theorem-analytic-0 )

show ?g analytic-on {s. 1 ≤ Re s}
by (intro c analytic-intros) auto

next
show ∃ d>0 . ∀w∈ball z d − {1}. ?g w = (w − 1 ) ∗ ?f w

if z ∈ {s. 1 ≤ Re s} for z using that
by (intro exI [of - 1 ], simp-all add: newman-def divide-simps zeta-def hur-

witz-zeta-def )
(auto simp: field-simps)?

qed auto
with that show ?thesis by blast

qed

4.2 The asymptotic expansion of M

Our next goal is to show the key result that M(x) = lnn+ c+ o(1).
As a first step, we invoke Ingham’s Tauberian theorem on the function we
have just defined and obtain that the sum

∞∑
n=1

M(n)− lnn+ c

n

exists.
lemma mertens-summable:

obtains c :: real where summable (λn. (M n − ln n + c) / n)
proof −

from analytic-newman-variant obtain c a where
analytic: (λz. if z = 1 then a else newman z + deriv zeta z + c ∗ zeta z)

analytic-on {s. Re s ≥ 1} .
define f where f = (λz. if z = 1 then a else newman z + deriv zeta z + c ∗

zeta z)
have analytic: f analytic-on {s. Re s ≥ 1} using analytic by (simp add: f-def )
define F where F = fds-newman + fds-deriv fds-zeta + fds-const c ∗ fds-zeta
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note le = conv-abscissa-add-leI conv-abscissa-deriv-le conv-abscissa-newman conv-abscissa-mult-const-left
note intros = le le[THEN le-less-trans] le[THEN order .trans] fds-converges
have eval-F : eval-fds F s = f s if s: Re s > 1 for s
proof −

have eval-fds F s = eval-fds (fds-newman + fds-deriv fds-zeta) s +
eval-fds (fds-const c ∗ fds-zeta) s

unfolding F-def using s by (subst eval-fds-add) (auto intro!: intros)
also have . . . = f s using s unfolding f-def

by (subst eval-fds-add)
(auto intro!: intros simp: eval-fds-newman eval-fds-deriv-zeta eval-fds-mult

eval-fds-zeta)
finally show ?thesis .

qed

have conv: fds-converges F s if Re s ≥ 1 for s
proof (rule Newman-Ingham-1 )

have (λn. M (real n) − ln (real n)) ∈ O(λ-. 1 )
using mertens-bounded by (rule landau-o.big.compose) real-asymp

from natfun-bigo-1E [OF this, of 1 ]
obtain c ′ where c ′: c ′ ≥ 1

∧
n. |M (real n) − ln (real n)| ≤ c ′ by auto

have Bseq (fds-nth F)
proof (intro BseqI allI )

fix n :: nat
show norm (fds-nth F n) ≤ (c ′ + norm c) unfolding F-def using c ′

by (auto simp: fds-nth-zeta fds-nth-deriv fds-nth-newman scaleR-conv-of-real
in-Reals-norm

intro!: order .trans[OF norm-triangle-ineq] add-mono)
qed (insert c ′, auto intro: add-pos-nonneg)
thus fds-nth F ∈ O(λ-. 1 ) by (simp add: natfun-bigo-iff-Bseq)

next
show f analytic-on {s. Re s ≥ 1} by fact

next
show eval-fds F s = f s if Re s > 1 for s using that by (rule eval-F)

qed (insert that, auto simp: F-def intro!: intros)
from conv[of 1 ] have summable (λn. fds-nth F n / of-nat n)

unfolding fds-converges-def by auto
also have ?this ←→ summable (λn. (M n − Ln n + c) / n)

by (intro summable-cong eventually-mono[OF eventually-gt-at-top[of 0 ]])
(auto simp: F-def fds-nth-newman fds-nth-deriv fds-nth-zeta scaleR-conv-of-real

intro!: sum.cong dest: prime-gt-0-nat)
finally have summable (λn. (M n − Re (Ln (of-nat n)) + Re c) / n)

by (auto dest: summable-Re)
also have ?this ←→ summable (λn. (M n − ln n + Re c) / n)

by (intro summable-cong eventually-mono[OF eventually-gt-at-top[of 0 ]]) (auto
intro!: sum.cong)

finally show ?thesis using that[of Re c] by blast
qed

Next, we prove a lemma given by Newman stating that if the sum
∑
an/n
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exists and an+lnn is nondecreasing, then an must tend to 0. Unfortunately,
the proof is rather tedious, but so is the paper version by Newman.
lemma sum-goestozero-lemma:

fixes d::real
assumes d: |

∑
i = M ..N . a i / i| < d and le:

∧
n. a n + ln n ≤ a (Suc n) +

ln (Suc n)
and 0 < M M < N

shows a M ≤ d ∗ N / (real N − real M ) + (real N − real M ) / M ∧
−a N ≤ d ∗ N / (real N − real M ) + (real N − real M ) / M

proof −
have 0 ≤ d

using assms by linarith+
then have 0 ≤ d ∗ N / (N − M + 1 ) by simp
then have le-dN : [[0 ≤ x =⇒ x ≤ d ∗ N / (N − M + 1 )]] =⇒ x ≤ d ∗ N / (N
− M + 1 ) for x::real

by linarith
have le-a-ln: a m + ln m ≤ a n + ln n if n ≥ m for n m

by (rule transitive-stepwise-le) (use le that in auto)
have ∗: x ≤ b ∧ y ≤ b if a ≤ b x ≤ a y ≤ a for a b x y::real

using that by linarith
show ?thesis
proof (rule ∗)

show d ∗ N / (N − M ) + ln (N / M ) ≤ d ∗ N / (real N − real M ) + (real
N − real M ) / M

using ‹0 < M › ‹M < N › ln-le-minus-one [of N / M ]
by (simp add: of-nat-diff ) (simp add: divide-simps)

next
have a M − ln (N / M ) ≤ (d ∗ N ) / (N − M + 1 )
proof (rule le-dN )

assume 0 : 0 ≤ a M − ln (N / M )
have (Suc N − M ) ∗ (a M − ln (N / M )) / N = (

∑
i = M ..N . (a M − ln

(N / M )) / N )
by simp

also have . . . ≤ (
∑

i = M ..N . a i / i)
proof (rule sum-mono)

fix i
assume i: i ∈ {M ..N}
with ‹0 < M › have 0 < i by auto
have (a M − ln (N / M )) / N ≤ (a M − ln (N / M )) / i

using 0 using i ‹0 < M › by (simp add: frac-le-eq divide-simps mult-left-mono)
also have a M + ln (real M ) ≤ a i + ln (real N )

by (rule order .trans[OF le-a-ln[of M i]]) (use i assms in auto)
hence (a M − ln (N / M )) / i ≤ a i / real i

using assms i by (intro divide-right-mono) (auto simp: ln-div field-simps)
finally show (a M − ln (N / M )) / real N ≤ a i / real i .

qed
finally have ((Suc N ) − M ) ∗ (a M − ln (N / M )) / N ≤ |

∑
i = M ..N . a

i / i|
by simp
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also have . . . ≤ d using d by simp
finally have ((Suc N ) − M ) ∗ (a M − ln (N / M )) / N ≤ d .
then show ?thesis

using ‹M < N › by (simp add: of-nat-diff field-simps)
qed
also have . . . ≤ d ∗ N / (N − M )

using assms(1 ,4 ) by (simp add: field-simps)
finally show a M ≤ d ∗ N / (N − M ) + ln (N / M ) by simp

next
have − a N − ln (N / M ) ≤ (d ∗ N ) / (N − M + 1 )
proof (rule le-dN )

assume 0 : 0 ≤ − a N − ln (N / M )
have (

∑
i = M ..N . a i / i) ≤ (

∑
i = M ..N . (a N + ln (N / M )) / N )

proof (rule sum-mono)
fix i
assume i: i ∈ {M ..N}
with ‹0 < M › have 0 < i by auto
have a i + ln (real M ) ≤ a N + ln (real N )

by (rule order .trans[OF - le-a-ln[of i N ]]) (use i assms in auto)
hence a i / i ≤ (a N + ln (N / M )) / i

using assms(3 ,4 ) by (intro divide-right-mono) (auto simp: field-simps
ln-div)

also have . . . ≤ (a N + ln (N / M )) / N
using i ‹i > 0 › 0 by (intro divide-left-mono-neg) auto

finally show a i / i ≤ (a N + ln (N / M )) / N .
qed
also have . . . = ((Suc N ) − M ) ∗ (a N + ln (N / M )) / N

by simp
finally have (

∑
i = M ..N . a i / i) ≤ (real (Suc N ) − real M ) ∗ (a N + ln

(N / M )) / N
using ‹M < N › by (simp add: of-nat-diff )

then have −((real (Suc N ) − real M ) ∗ (a N + ln (N / M )) / N ) ≤ |
∑

i
= M ..N . a i / i|

by linarith
also have . . . ≤ d using d by simp
finally have − ((real (Suc N ) − real M ) ∗ (a N + ln (N / M )) / N ) ≤ d .
then show ?thesis

using ‹M < N › by (simp add: of-nat-diff field-simps)
qed
also have . . . ≤ d ∗ N / real (N − M )

using ‹0 < M › ‹M < N › ‹0 ≤ d› by (simp add: field-simps)
finally show −a N ≤ d ∗ N / real (N − M ) + ln (N / M ) by simp

qed
qed

proposition sum-goestozero-theorem:
assumes summ: summable (λi. a i / i)

and le:
∧

n. a n + ln n ≤ a (Suc n) + ln (Suc n)
shows a −−−−→ 0
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proof (clarsimp simp: lim-sequentially)
fix r ::real
assume r > 0
have ∗: ∃n0 . ∀n≥n0 . |a n| < ε if ε: 0 < ε ε < 1 for ε
proof −

have 0 < (ε / 8 )2 using ‹0 < ε› by simp
then obtain N0 where N0 :

∧
m n. m ≥ N0 =⇒ norm (

∑
k=m..n. (λi. a i

/ i) k) < (ε / 8 )2
by (metis summable-partial-sum-bound summ)

obtain N1 where real N1 > 4 / ε
using reals-Archimedean2 [of 4 / ε] ε by auto

hence N1 6= 0 and N1 : 1 / real N1 < ε / 4 using ε
by (auto simp: divide-simps mult-ac intro: Nat.gr0I )

have |a n| < ε if n: n ≥ 2 ∗ N0 + N1 + 7 for n
proof −

define k where k = bn ∗ ε/4 c
have n ∗ ε / 4 > 1 and n ∗ ε / 4 ≤ n / 4 and n / 4 < n
using less-le-trans[OF N1 , of n / N1 ∗ ε / 4 ] ‹N1 6= 0 › ε n by (auto simp:

field-simps)
hence k: k > 0 4 ∗ k ≤ n nat k < n (n ∗ ε / 4 ) − 1 < k k ≤ (n ∗ ε / 4 )

unfolding k-def by linarith+

have −a n < ε
proof −

have N0 ≤ n − nat k
using n k by linarith

then have ∗: |
∑

k = n − nat k .. n. a k / k| < (ε / 8 )2
using N0 [of n − nat k n] by simp

have −a n ≤ (ε / 8 )2 ∗ n / bn ∗ ε / 4 c + bn ∗ ε / 4 c / (n − k)
using sum-goestozero-lemma [OF ∗ le, THEN conjunct2 ] k by (simp add:

of-nat-diff k-def )
also have . . . < ε
proof −

have ε / 16 ∗ n / k < 2
using k by (auto simp: field-simps)

then have ε ∗ (ε / 16 ∗ n / k) < ε ∗ 2
using ε mult-less-cancel-left-pos by blast

then have (ε / 8 )2 ∗ n / k < ε / 2
by (simp add: field-simps power2-eq-square)

moreover have k / (n − k) < ε / 2
proof −

have (ε + 2 ) ∗ k < 4 ∗ k using k ε by simp
also have . . . ≤ ε ∗ real n using k by (auto simp: field-simps)
finally show ?thesis using k by (auto simp: field-simps)

qed
ultimately show ?thesis unfolding k-def by linarith

qed
finally show ?thesis .
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qed
moreover have a n < ε
proof −

have N0 ≤ n using n k by linarith
then have ∗: |

∑
k = n .. n + nat k. a k / k| < (ε/8 )2

using N0 [of n n + nat k] by simp
have a n ≤ (ε/8 )2 ∗ (n + nat k) / k + k / n
using sum-goestozero-lemma [OF ∗ le, THEN conjunct1 ] k by (simp add:

of-nat-diff )
also have . . . < ε
proof −

have 4 ≤ 28 ∗ real-of-int k using k by linarith
then have ε/16 ∗ n / k < 2 using k by (auto simp: field-simps)
have ε ∗ (real n + k) < 32 ∗ k
proof −

have ε ∗ n / 4 < k + 1 by (simp add: mult.commute k-def )
then have ε ∗ n < 4 ∗ k + 4 by (simp add: divide-simps)
also have . . . ≤ 8 ∗ k using k by auto
finally have 1 : ε ∗ real n < 8 ∗ k .
have 2 : ε ∗ k < k using k ε by simp

show ?thesis using k add-strict-mono [OF 1 2 ] by (simp add: alge-
bra-simps)

qed
then have (ε / 8 )2 ∗ real (n + nat k) / k < ε / 2

using ε k by (simp add: divide-simps mult-less-0-iff power2-eq-square)
moreover have k / n < ε / 2

using k ε by (auto simp: k-def field-simps)
ultimately show ?thesis by linarith

qed
finally show ?thesis .

qed
ultimately show ?thesis by force

qed
then show ?thesis by blast

qed
show ∃n0 . ∀n≥n0 . |a n| < r

using ∗ [of min r (1/5 )] ‹0 < r› by force
qed

This leads us to the main intermediate result:
lemma Mertens-convergent: convergent (λn::nat. M n − ln n)
proof −

obtain c where c: summable (λn. (M n − ln n + c) / n)
by (blast intro: mertens-summable)

then obtain l where l: (λn. (M n − ln n + c) / n) sums l
by (auto simp: summable-def )

have ∗: (λn. M n − ln n + c) −−−−→ 0
by (rule sum-goestozero-theorem[OF c]) auto

hence (λn. M n − ln n) −−−−→ −c
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by (simp add: tendsto-iff dist-norm)
thus ?thesis by (rule convergentI )

qed

corollary M-minus-ln-limit:
obtains c where ((λx::real. M x − ln x) −−−→ c) at-top

proof −
from Mertens-convergent obtain c where (λn. M n − ln n) −−−−→ c

by (auto simp: convergent-def )
hence 1 : ((λx::real. M (nat bxc) − ln (nat bxc)) −−−→ c) at-top

by (rule filterlim-compose) real-asymp
have 2 : ((λx::real. ln (nat bxc) − ln x) −−−→ 0 ) at-top

by real-asymp
have 3 : ((λx. M x − ln x) −−−→ c) at-top

using tendsto-add[OF 1 2 ] by simp
with that show ?thesis by blast

qed

4.3 The asymptotics of the prime-counting functions

We will now use the above result to prove the asymptotics of the prime-
counting functions ϑ(x) ∼ x, ψ(x) ∼ x, and π(x) ∼ x/ lnx. The last of these
is typically called the Prime Number Theorem, but since these functions can
be expressed in terms of one another quite easily, knowing the asymptotics
of any of them immediately gives the asymptotics of the other ones.
In this sense, all of the above are equivalent formulations of the Prime Num-
ber Theorem. The one we shall tackle first, due to its strong connection to
the M function, is ϑ(x) ∼ x.
We know that M(x) has the asymptotic expansion M(x) = lnx+ c+ o(1).
We also know that

ϑ(x) = xM(x)−
∫ x

2
M(t) dt .

Substituting in the above asymptotic equation, we obtain:

ϑ(x) = x lnx+ cx+ o(x)−
∫ x

2
ln t+ c+ o(1) dt

= x lnx+ cx+ o(x)− (x lnx− x+ cx+ o(x))

= x+ o(x)

In conclusion, ϑ(x) ∼ x.
theorem ϑ-asymptotics: ϑ ∼[at-top] (λx. x)
proof −

from M-minus-ln-limit obtain c where c: ((λx. M x − ln x) −−−→ c) at-top
by auto

define r where r = (λx. M x − ln x − c)
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have M-expand: M = (λx. ln x + c + r x)
by (simp add: r-def )

have r : r ∈ o(λ-. 1 ) unfolding r-def
using tendsto-add[OF c tendsto-const[of −c]] by (intro smalloI-tendsto) auto

define r ′ where r ′ = (λx. integral {2 ..x} r)
have integrable-r : r integrable-on {x..y}

if 2 ≤ x for x y :: real using that unfolding r-def
by (intro integrable-diff integrable-primes-M )

(auto intro!: integrable-continuous-real continuous-intros)
hence integral: (r has-integral r ′ x) {2 ..x} if x ≥ 2 for x

by (auto simp: has-integral-iff r ′-def )
have r ′: r ′ ∈ o(λx. x) using integrable-r unfolding r ′-def

by (intro integral-smallo[OF r ]) (auto simp: filterlim-ident)

define C where C = 2 ∗ (c + ln 2 − 1 )
have ϑ ∼[at-top] (λx. x + (r x ∗ x + C − r ′ x))
proof (intro asymp-equiv-refl-ev eventually-mono[OF eventually-gt-at-top])

fix x :: real assume x: x > 2
have (M has-integral ((x ∗ ln x − x + c ∗ x) − (2 ∗ ln 2 − 2 + c ∗ 2 ) + r ′

x)) {2 ..x}
unfolding M-expand using x
by (intro has-integral-add[OF fundamental-theorem-of-calculus integral])

(auto simp flip: has-real-derivative-iff-has-vector-derivative
intro!: derivative-eq-intros continuous-intros)

from has-integral-unique[OF ϑ-conv-M-integral this]
show ϑ x = x + (r x ∗ x + C − r ′ x) using x
by (simp add: field-simps M-expand C-def )

qed
also have (λx. r x ∗ x + C − r ′ x) ∈ o(λx. x)
proof (intro sum-in-smallo r)

show (λ-. C ) ∈ o(λx. x) by real-asymp
qed (insert landau-o.small-big-mult[OF r , of λx. x] r ′, simp-all)
hence (λx. x + (r x ∗ x + C − r ′ x)) ∼[at-top] (λx. x)

by (subst asymp-equiv-add-right) auto
finally show ?thesis by auto

qed

The various other forms of the Prime Number Theorem follow as simple
corollaries.
corollary ψ-asymptotics: ψ ∼[at-top] (λx. x)

using ϑ-asymptotics PNT4-imp-PNT5 by simp

corollary prime-number-theorem: π ∼[at-top] (λx. x / ln x)
using ϑ-asymptotics PNT4-imp-PNT1 by simp

corollary ln-π-asymptotics: (λx. ln (π x)) ∼[at-top] ln
using prime-number-theorem PNT1-imp-PNT1 ′ by simp
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corollary π-ln-π-asymptotics: (λx. π x ∗ ln (π x)) ∼[at-top] (λx. x)
using prime-number-theorem PNT1-imp-PNT2 by simp

corollary nth-prime-asymptotics: (λn. real (nth-prime n)) ∼[at-top] (λn. real n ∗
ln (real n))

using π-ln-π-asymptotics PNT2-imp-PNT3 by simp

The following versions use a little less notation.
corollary prime-number-theorem ′: ((λx. π x / (x / ln x)) −−−→ 1 ) at-top

using prime-number-theorem
by (rule asymp-equivD-strong[OF - eventually-mono[OF eventually-gt-at-top[of

1 ]]]) auto

corollary prime-number-theorem ′′:
(λx. card {p. prime p ∧ real p ≤ x}) ∼[at-top] (λx. x / ln x)

proof −
have π = (λx. card {p. prime p ∧ real p ≤ x})

by (intro ext) (simp add: π-def prime-sum-upto-def )
with prime-number-theorem show ?thesis by simp

qed

corollary prime-number-theorem ′′′:
(λn. card {p. prime p ∧ p ≤ n}) ∼[at-top] (λn. real n / ln (real n))

proof −
have (λn. card {p. prime p ∧ real p ≤ real n}) ∼[at-top] (λn. real n / ln (real

n))
using prime-number-theorem ′′

by (rule asymp-equiv-compose ′) (simp add: filterlim-real-sequentially)
thus ?thesis by simp

qed

end

5 Mertens’ Theorems
theory Mertens-Theorems
imports

Prime-Counting-Functions
Stirling-Formula.Stirling-Formula

begin

In this section, we will prove Mertens’ First and Second Theorem. These are
weaker results than the Prime Number Theorem, and we will derive them
without using it.
However, like Mertens himself, we will not only prove them asymptotically,
but absolutely. This means that we will show that the remainder terms are
not only “Big-O” of some bound, but we will give concrete (and reasonably

101



tight) upper and lower bounds for them that hold on the entire domain.
This makes the proofs a bit more tedious.

5.1 Absolute Bounds for Mertens’ First Theorem

We have already shown the asymptotic form of Mertens’ first theorem, i. e.
M(n) = lnn+ O(1). We now want to obtain some absolute bounds on the
O(1) remainder term using a more careful derivation than before.
The precise bounds we will show are M(n) − lnn ∈ (−1 − 9

π2 ; ln 4] ≈
(−1.9119; 1.3863] for n ∈ �.
First, we need a simple lemma on the finiteness of exponents to consider in
a sum of all prime powers up to a certain point:
lemma exponents-le-finite:

assumes p > (1 :: nat) k > 0
shows finite {i. real (p ^ (k ∗ i + l)) ≤ x}

proof (rule finite-subset)
show {i. real (p ^ (k ∗ i + l)) ≤ x} ⊆ {..nat bxc}
proof safe

fix i assume i: real (p ^ (k ∗ i + l)) ≤ x
have i < 2 ^ i by (rule less-exp)
also from assms have i ≤ k ∗ i + l by (cases k) auto
hence 2 ^ i ≤ (2 ^ (k ∗ i + l) :: nat)

using assms by (intro power-increasing) auto
also have . . . ≤ p ^ (k ∗ i + l) using assms by (intro power-mono) auto
also have real . . . ≤ x using i by simp
finally show i ≤ nat bxc by linarith

qed
qed auto

Next, we need the following bound on ζ ′(2):
lemma deriv-zeta-2-bound: Re (deriv zeta 2 ) > −1
proof −

have ((λx::real. ln (x + 3 ) ∗ (x + 3 ) powr −2 ) has-integral (ln 3 + 1 ) / 3 )
(interior {0 ..})

using ln-powr-has-integral-at-top[of 1 0 3 −2 ]
by (simp add: interior-real-atLeast powr-minus)

hence ((λx::real. ln (x + 3 ) ∗ (x + 3 ) powr −2 ) has-integral (ln 3 + 1 ) / 3 )
{0 ..}

by (subst (asm) has-integral-interior) auto
also have ?this ←→ ((λx::real. ln (x + 3 ) / (x + 3 ) ^ 2 ) has-integral (ln 3 +

1 ) / 3 ) {0 ..}
by (intro has-integral-cong) (auto simp: powr-minus field-simps)

finally have int: . . . .
have exp (1 / 2 :: real) ^ 2 ≤ 2 ^ 2

using exp-le by (subst exp-double [symmetric]) simp-all
hence exp-half : exp (1 / 2 :: real) ≤ 2

by (rule power2-le-imp-le) auto
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have mono: ln x / x ^ 2 ≤ ln y / y ^ 2 if y ≥ exp (1/2 ) x ≥ y for x y :: real
proof (rule DERIV-nonpos-imp-nonincreasing[of - - λx. ln x / x ^ 2 ])

fix t assume t: t ≥ y t ≤ x
have y > 0 by (rule less-le-trans[OF - that(1 )]) auto
with t that have ln t ≥ ln (exp (1 / 2 ))

by (subst ln-le-cancel-iff ) auto
hence ln t ≥ 1 / 2 by (simp only: ln-exp)
from t ‹y > 0 › have ((λx. ln x / x ^ 2 ) has-field-derivative ((1 − 2 ∗ ln t) /

t ^ 3 )) (at t)
by (auto intro!: derivative-eq-intros simp: eval-nat-numeral field-simps)

moreover have (1 − 2 ∗ ln t) / t ^ 3 ≤ 0
using t that ‹y > 0 › ‹ln t ≥ 1 / 2 › by (intro divide-nonpos-pos) auto

ultimately show ∃ f ′. ((λx. ln x / x ^ 2 ) has-field-derivative f ′) (at t) ∧ f ′ ≤
0 by blast

qed fact+

have fds-converges (fds-deriv fds-zeta) (2 :: complex)
by (intro fds-converges-deriv) auto

hence (λn. of-real (−ln (real (Suc n)) / (of-nat (Suc n)) ^ 2 )) sums deriv zeta
2

by (auto simp: fds-converges-altdef add-ac eval-fds-deriv-zeta fds-nth-deriv
scaleR-conv-of-real

simp del: of-nat-Suc)
note ∗ = sums-split-initial-segment[OF sums-minus[OF sums-Re[OF this]], of 3 ]

have (λn. ln (real (n+4 )) / real (n+4 ) ^ 2 ) sums (−Re (deriv zeta 2 ) − (ln
2 / 4 + ln 3 / 9 ))

using ∗ by (simp add: eval-nat-numeral)
hence −Re (deriv zeta 2 ) − (ln 2 / 4 + ln 3 / 9 ) =

(
∑

n. ln (real (Suc n) + 3 ) / (real (Suc n) + 3 ) ^ 2 )
by (simp-all add: sums-iff algebra-simps)

also have . . . ≤ (ln 3 + 1 ) / 3 using int exp-half
by (intro decreasing-sum-le-integral divide-nonneg-pos mono) (auto simp: powr-minus

field-simps)
finally have −Re (deriv zeta 2 ) ≤ (16 ∗ ln 3 + 9 ∗ ln 2 + 12 ) / 36

by simp
also have ln 3 ≤ (11 / 10 :: real)
using ln-approx-bounds[of 3 2 ] by (simp add: power-numeral-reduce numeral-2-eq-2 )

hence (16 ∗ ln 3 + 9 ∗ ln 2 + 12 ) / 36 ≤ (16 ∗ (11 / 10 ) + 9 ∗ 25 / 36 +
12 ) / (36 :: real)

using ln2-le-25-over-36 by (intro add-mono mult-left-mono divide-right-mono)
auto

also have . . . < 1 by simp
finally show ?thesis by simp

qed

Using the logarithmic derivative of Euler’s product formula for ζ(s) at s = 2
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and the bound on ζ ′(2) we have just derived, we can obtain the bound∑
pi≤x,i≥2

ln p

pi
<

9

π2
.

lemma mertens-remainder-aux-bound:
fixes x :: real
defines R ≡ (

∑
(p,i) | prime p ∧ i > 1 ∧ real (p ^ i) ≤ x. ln (real p) / p ^ i)

shows R < 9 / pi2
proof −

define S ′ where S ′ = {(p, i). prime p ∧ i > 1 ∧ real (p ^ i) ≤ x}
define S ′′ where S ′′ = {(p, i). prime p ∧ i > 1 ∧ real (p ^ Suc i) ≤ x}

have finite-row: finite {i. i > 1 ∧ real (p ^ (i + k)) ≤ x} if p: prime p for p k
proof (rule finite-subset)

show {i. i > 1 ∧ real (p ^ (i + k)) ≤ x} ⊆ {..nat bxc}
proof safe

fix i assume i: i > 1 real (p ^ (i + k)) ≤ x
have i < 2 ^ (i + k) by (induction i) auto

also from p have . . . ≤ p ^ (i + k) by (intro power-mono) (auto dest:
prime-gt-1-nat)

also have real . . . ≤ x using i by simp
finally show i ≤ nat bxc by linarith

qed
qed auto

have S ′′ ⊆ S ′ unfolding S ′′-def S ′-def
proof safe

fix p i assume pi: prime p real (p ^ Suc i) ≤ x i > 1
have real (p ^ i) ≤ real (p ^ Suc i)

using pi unfolding of-nat-le-iff by (intro power-increasing) (auto dest:
prime-gt-1-nat)

also have . . . ≤ x by fact
finally show real (p ^ i) ≤ x .

qed

have S ′-alt: S ′ = (SIGMA p:{p. prime p ∧ real p ≤ x}. {i. i > 1 ∧ real (p ^
i) ≤ x})

unfolding S ′-def
proof safe

fix p i assume prime p real (p ^ i) ≤ x i > 1
hence p ^ 1 ≤ p ^ i

by (intro power-increasing) (auto dest: prime-gt-1-nat)
also have real . . . ≤ x by fact
finally show real p ≤ x by simp

qed

have finite: finite {p. prime p ∧ real p ≤ x}
by (rule finite-subset[OF - finite-Nats-le-real[of x]]) (auto dest: prime-gt-0-nat)
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have finite S ′ unfolding S ′-alt using finite-row[of - 0 ]
by (intro finite-SigmaI finite) auto

have R ≤ 3 / 2 ∗ (
∑

(p, i) | (p, i) ∈ S ′ ∧ even i. ln (real p) / real (p ^ i))
proof −

have R = (
∑

y∈{0 , 1}.
∑

z | z ∈ S ′ ∧ snd z mod 2 = y. ln (real (fst z)) /
real (fst z ^ snd z))

using ‹finite S ′› by (subst sum.group) (auto simp: case-prod-unfold R-def
S ′-def )

also have . . . = (
∑

(p,i) | (p, i) ∈ S ′ ∧ even i. ln (real p) / real (p ^ i)) +
(
∑

(p,i) | (p, i) ∈ S ′ ∧ odd i. ln (real p) / real (p ^ i))
unfolding even-iff-mod-2-eq-zero odd-iff-mod-2-eq-one by (simp add: case-prod-unfold)
also have (

∑
(p,i) | (p, i) ∈ S ′ ∧ odd i. ln (real p) / real (p ^ i)) =

(
∑

(p,i) | (p, i) ∈ S ′′ ∧ even i. ln (real p) / real (p ^ Suc i))
by (intro sum.reindex-bij-witness[of - λ(p,i). (p, Suc i) λ(p,i). (p, i − 1 )])
(auto simp: case-prod-unfold S ′-def S ′′-def elim: oddE simp del: power-Suc)

also have . . . ≤ (
∑

(p,i) | (p, i) ∈ S ′ ∧ even i. ln (real p) / real (p ^ Suc i))
using ‹S ′′ ⊆ S ′› unfolding case-prod-unfold
by (intro sum-mono2 divide-nonneg-pos ln-ge-zero finite-subset[OF - ‹finite

S ′›])
(auto simp: S ′-def S ′′-def case-prod-unfold dest: prime-gt-0-nat simp del:

power-Suc)
also have . . . ≤ (

∑
(p,i) | (p, i) ∈ S ′ ∧ even i. ln (real p) / real (2 ∗ p ^ i))

unfolding case-prod-unfold
by (intro sum-mono divide-left-mono) (auto simp: S ′-def dest!: prime-gt-1-nat)

also have . . . = (1 / 2 ) ∗ (
∑

(p,i) | (p, i) ∈ S ′ ∧ even i. ln (real p) / real (p
^ i))

by (subst sum-distrib-left) (auto simp: case-prod-unfold)
also have (

∑
(p,i) | (p, i) ∈ S ′ ∧ even i. ln (real p) / real (p ^ i)) + . . . =

3 / 2 ∗ (
∑

(p,i) | (p, i) ∈ S ′ ∧ even i. ln (real p) / real (p ^ i))
by simp

finally show ?thesis by simp
qed

also have (
∑

(p,i) | (p, i) ∈ S ′ ∧ even i. ln (real p) / real (p ^ i)) =
(
∑

p | prime p ∧ real p ≤ x. ln (real p) ∗
(
∑

i | i > 0 ∧ even i ∧ real (p ^ i) ≤ x. (1 / real p) ^ i))
unfolding sum-distrib-left

proof (subst sum.Sigma[OF - ballI ])
fix p assume p: p ∈ {p. prime p ∧ real p ≤ x}
thus finite {i. 0 < i ∧ even i ∧ real (p ^ i) ≤ x}

by (intro finite-subset[OF - exponents-le-finite[of p 1 0 x]]) (auto dest:
prime-gt-1-nat)

qed (auto intro!: sum.cong finite-subset[OF - finite-Nats-le-real[of x]]
dest: prime-gt-0-nat simp: S ′-alt power-divide)

also have . . . ≤ (
∑

p | prime p ∧ real p ≤ x. ln (real p) / (real p ^ 2 − 1 ))
proof (rule sum-mono)

fix p assume p: p ∈ {p. prime p ∧ real p ≤ x}
have p > 1 using p by (auto dest: prime-gt-1-nat)
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have (
∑

i | i > 0 ∧ even i ∧ real (p ^ i) ≤ x. (1 / real p) ^ i) =
(
∑

i | real (p ^ (2 ∗ i + 2 )) ≤ x. (1 / real p) ^ (2 ∗ i)) / real p ^ 2
(is - = ?S / -) unfolding sum-divide-distrib
by (rule sum.reindex-bij-witness[of - λi. 2 ∗ Suc i λi. (i − 2 ) div 2 ])

(insert ‹p > 1 ›, auto simp: numeral-3-eq-3 power2-eq-square power-diff
algebra-simps elim!: evenE)

also have ?S = (
∑

i | real (p ^ (2 ∗ i + 2 )) ≤ x. (1 / real p ^ 2 ) ^ i)
by (subst power-mult) (simp-all add: algebra-simps power-divide)

also have . . . ≤ (
∑

i. (1 / real p ^ 2 ) ^ i)
using exponents-le-finite[of p 2 2 x] ‹p > 1 ›
by (intro sum-le-suminf ) (auto simp: summable-geometric-iff )

also have . . . = real p ^ 2 / (real p ^ 2 − 1 )
using ‹p > 1 › by (subst suminf-geometric) (auto simp: field-simps)

also have . . . / real p ^ 2 = 1 / (real p ^ 2 − 1 )
using ‹p > 1 › by (simp add: divide-simps)

finally have (
∑

i | 0 < i ∧ even i ∧ real (p ^ i) ≤ x. (1 / real p) ^ i) ≤
1 / (real p ^ 2 − 1 ) (is ?lhs ≤ ?rhs)

using ‹p > 1 › by (simp add: divide-right-mono)
thus ln (real p) ∗ ?lhs ≤ ln (real p) / (real p ^ 2 − 1 )

using ‹p > 1 › by (simp add: divide-simps)
qed
also have . . . = (

∑
a p | prime p ∧ real p ≤ x. ln (real p) / (real p ^ 2 − 1 ))

using finite by (intro infsetsum-finite [symmetric]) auto
also have . . . ≤ (

∑
a p | prime p. ln (real p) / (real p ^ 2 − 1 ))

using eval-fds-logderiv-zeta-real[of 2 ] finite
by (intro infsetsum-mono-neutral-left divide-nonneg-pos) (auto simp: dest:

prime-gt-1-nat)
also have . . . = −Re (deriv zeta (of-real 2 ) / zeta (of-real 2 ))

by (subst eval-fds-logderiv-zeta-real) auto
also have . . . = (−Re (deriv zeta 2 )) ∗ (6 / pi2)

by (simp add: zeta-even-numeral)
also have . . . < 1 ∗ (6 / pi2)

using deriv-zeta-2-bound by (intro mult-strict-right-mono) auto
also have 3 / 2 ∗ . . . = 9 / pi2 by simp
finally show ?thesis by simp

qed

We now consider the equation

ln(n!) =
∑
k≤n

Λ(k)
⌊n
k

⌋
and estimate both sides in different ways. The left-hand-side can be es-
timated using Stirling’s formula, and we can simplify the right-hand side
to ∑

k≤n

Λ(k)
⌊n
k

⌋
=

∑
pi≤x,i≥1

ln p

⌊
n

pi

⌋
and then split the sum into those pi with i = 1 and those with i ≥ 2.
Applying the bound we have just shown and some more routine estimates,
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we obtain the following reasonably strong version of Mertens’ First Theorem
on the naturals: M(n)− ln(n) ∈ (−1− 9

π2 ; ln 4]

theorem mertens-bound-strong:
fixes n :: nat assumes n: n > 0
shows M n − ln n ∈ {−1 − 9 / pi2<..ln 4}

proof (cases n ≥ 3 )
case False
with n consider n = 1 | n = 2 by force
thus ?thesis
proof cases

assume [simp]: n = 1
have −1 + (−9 / pi2) < 0

by (intro add-neg-neg divide-neg-pos) auto
thus ?thesis by simp

next
assume [simp]: n = 2
have eq: M n − ln n = −ln 2 / 2 by (simp add: eval-M)
have −1 − 9 / pi ^ 2 + ln 2 / 2 ≤ −1 − 9 / 4 ^ 2 + 25 / 36 / 2

using pi-less-4 ln2-le-25-over-36
by (intro diff-mono add-mono divide-left-mono divide-right-mono power-mono)

auto
also have . . . < 0 by simp
finally have −ln 2 / 2 > −1 − 9 / pi2 by simp
moreover {

have −ln 2 / 2 ≤ (0 ::real) by (intro divide-nonpos-pos) auto
also have . . . ≤ ln 4 by simp
finally have −ln 2 / 2 ≤ ln (4 :: real) by simp

}
ultimately show ?thesis unfolding eq by simp

qed

next
case True
hence n: n ≥ 3 by simp
have finite: finite {(p, i). prime p ∧ i ≥ 1 ∧ p ^ i ≤ n}
proof (rule finite-subset)

show {(p, i). prime p ∧ i ≥ 1 ∧ p ^ i ≤ n}
⊆ {..nat broot 1 (real n)c} × {..nat blog 2 (real n)c}

using primepows-le-subset[of real n 1 ] n unfolding of-nat-le-iff by auto
qed auto

define r where r = prime-sum-upto (λp. ln (real p) ∗ frac (real n / real p)) n
define R where R = (

∑
(p,i) | prime p ∧ i > 1 ∧ p ^ i ≤ n. ln (real p) ∗ real

(n div (p ^ i)))
define R ′ where R ′ = (

∑
(p,i) | prime p ∧ i > 1 ∧ p ^ i ≤ n. ln (real p) / p

^ i)
have [simp]: ln (4 :: real) = 2 ∗ ln 2

using ln-realpow[of 2 2 ] by simp
from pi-less-4 have ln pi ≤ ln 4 by (subst ln-le-cancel-iff ) auto
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also have . . . = 2 ∗ ln 2 by simp
also have . . . ≤ 2 ∗ (25 / 36 ) by (intro mult-left-mono ln2-le-25-over-36 ) auto
finally have ln-pi: ln pi ≤ 25 / 18 by simp
have ln 3 ≤ ln (4 ::nat) by (subst ln-le-cancel-iff ) auto
also have . . . = 2 ∗ ln 2 by simp
also have . . . ≤ 2 ∗ (25 / 36 ) by (intro mult-left-mono ln2-le-25-over-36 ) auto
finally have ln-3 : ln (3 ::real) ≤ 25 / 18 by simp

have R / n = (
∑

(p,i) | prime p ∧ i > 1 ∧ p ^ i ≤ n. ln (real p) ∗ (real (n div
(p ^ i)) / n))

by (simp add: R-def sum-divide-distrib field-simps case-prod-unfold)
also have . . . ≤ (

∑
(p,i) | prime p ∧ i > 1 ∧ p ^ i ≤ n. ln (real p) ∗ (1 / p ^

i))
unfolding R ′-def case-prod-unfold using n
by (intro sum-mono mult-left-mono) (auto simp: field-simps real-of-nat-div dest:

prime-gt-0-nat)
also have . . . = R ′ by (simp add: R ′-def )
also have R ′ < 9 / pi2

unfolding R ′-def using mertens-remainder-aux-bound[of n] by simp
finally have R / n < 9 / pi2 .
moreover have R ≥ 0
unfolding R-def by (intro sum-nonneg mult-nonneg-nonneg) (auto dest: prime-gt-0-nat)

ultimately have R-bounds: R / n ∈ {0 ..<9 / pi2} by simp

have ln (fact n :: real) ≤ ln (2 ∗ pi ∗ n) / 2 + n ∗ ln n − n + 1 / (12 ∗ n)
using ln-fact-bounds(2 )[of n] n by simp

also have . . . / n − ln n = −1 + (ln 2 + ln pi) / (2 ∗ n) + (ln n / n) / 2 +
1 / (12 ∗ real n ^ 2 )

using n by (simp add: power2-eq-square field-simps ln-mult)
also have . . . ≤ −1 + (ln 2 + ln pi) / (2 ∗ 3 ) + (ln 3 / 3 ) / 2 + 1 / (12 ∗

3 2)
using exp-le n pi-gt3
by (intro add-mono divide-right-mono divide-left-mono mult-mono

mult-pos-pos ln-x-over-x-mono power-mono) auto
also have . . . ≤ −1 + (25 / 36 + 25 / 18 ) / (2 ∗ 3 ) + (25 / 18 / 3 ) / 2 +

1 / (12 ∗ 3 2)
using ln-pi ln2-le-25-over-36 ln-3 by (intro add-mono divide-left-mono di-

vide-right-mono) auto
also have . . . ≤ 0 by simp
finally have ln n − ln (fact n) / n ≥ 0 using n by (simp add: divide-right-mono)
have −ln (fact n) ≤ −ln (2 ∗ pi ∗ n) / 2 − n ∗ ln n + n

using ln-fact-bounds(1 )[of n] n by simp
also have ln n + . . . / n = −ln (2 ∗ pi) / (2 ∗ n) − (ln n / n) / 2 + 1

using n by (simp add: field-simps ln-mult)
also have . . . ≤ 0 − 0 + 1

using pi-gt3 n by (intro add-mono diff-mono) auto
finally have upper : ln n − ln (fact n) / n ≤ 1

using n by (simp add: divide-right-mono)
with ‹ln n − ln (fact n) / n ≥ 0 › have fact-bounds: ln n − ln (fact n) / n ∈
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{0 ..1} by simp

have r ≤ prime-sum-upto (λp. ln p ∗ 1 ) n
using less-imp-le[OF frac-lt-1 ] unfolding r-def ϑ-def prime-sum-upto-def
by (intro sum-mono mult-left-mono) (auto simp: dest: prime-gt-0-nat)

also have . . . = ϑ n by (simp add: ϑ-def )
also have . . . < ln 4 ∗ n using n by (intro ϑ-upper-bound) auto
finally have r / n < ln 4 using n by (simp add: field-simps)
moreover have r ≥ 0 unfolding r-def prime-sum-upto-def

by (intro sum-nonneg mult-nonneg-nonneg) (auto dest: prime-gt-0-nat)
ultimately have r-bounds: r / n ∈ {0 ..<ln 4} by simp

have ln (fact n :: real) = sum-upto (λk. mangoldt k ∗ real (n div k)) (real n)
by (simp add: ln-fact-conv-sum-upto-mangoldt)

also have . . . = (
∑

(p,i) | prime p ∧ i > 0 ∧ real (p ^ i) ≤ real n.
ln (real p) ∗ real (n div (p ^ i)))

by (intro sum-upto-primepows) (auto simp: mangoldt-non-primepow)
also have {(p, i). prime p ∧ i > 0 ∧ real (p ^ i) ≤ real n} =

{(p, i). prime p ∧ i = 1 ∧ p ≤ n} ∪
{(p, i). prime p ∧ i > 1 ∧ (p ^ i) ≤ n} unfolding of-nat-le-iff

by (auto simp: not-less le-Suc-eq)
also have (

∑
(p,i)∈. . . . ln (real p) ∗ real (n div (p ^ i))) =

(
∑

(p,i) | prime p ∧ i = 1 ∧ p ≤ n. ln (real p) ∗ real (n div (p ^ i)))
+ R

(is - = ?S + -)
by (subst sum.union-disjoint) (auto intro!: finite-subset[OF - finite] simp: R-def )

also have ?S = prime-sum-upto (λp. ln (real p) ∗ real (n div p)) n
unfolding prime-sum-upto-def
by (intro sum.reindex-bij-witness[of - λp. (p, 1 ) fst]) auto

also have . . . = prime-sum-upto (λp. ln (real p) ∗ real n / real p) n − r
unfolding r-def prime-sum-upto-def sum-subtractf [symmetric] using n
by (intro sum.cong) (auto simp: frac-def real-of-nat-div algebra-simps)

also have prime-sum-upto (λp. ln (real p) ∗ real n / real p) n = n ∗ M n
by (simp add: primes-M-def sum-distrib-left sum-distrib-right prime-sum-upto-def

field-simps)
finally have M n − ln n = ln (fact n) / n − ln n + r / n − R / n

using n by (simp add: field-simps)
hence ln n − M n = ln n − ln (fact n) / n − r / n + R / n

by simp
with fact-bounds r-bounds R-bounds show M n − ln n ∈ {−1 − 9 / pi2<..ln

4}
by simp

qed

As a simple corollary, we obtain a similar bound on the reals.
lemma mertens-bound-real-strong:

fixes x :: real assumes x: x ≥ 1
shows M x − ln x ∈ {−1 − 9 / pi ^ 2 − ln (1 + frac x / real (nat bxc)) <..

ln 4}
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proof −
have M x − ln x ≤ M (real (nat bxc)) − ln (real (nat bxc))

using assms by simp
also have . . . ≤ ln 4

using mertens-bound-strong[of nat bxc] assms by simp
finally have M x − ln x ≤ ln 4 .

from assms have pos: real-of-int bxc 6= 0 by linarith
have frac x / real (nat bxc) ≥ 0

using assms by (intro divide-nonneg-pos) auto
moreover have frac x / real (nat bxc) ≤ 1 / 1

using assms frac-lt-1 [of x] by (intro frac-le) auto
ultimately have ∗: frac x / real (nat bxc) ∈ {0 ..1} by auto
have ln x − ln (real (nat bxc)) = ln (x / real (nat bxc))

using assms ln-div pos by force
also have x / real (nat bxc) = 1 + frac x / real (nat bxc)

using assms pos by (simp add: frac-def field-simps)
finally have M x − ln x > −1−9/pi^2−ln (1 + frac x / real (nat bxc))

using mertens-bound-strong[of nat bxc] x by simp
with ‹M x − ln x ≤ ln 4 › show ?thesis by simp

qed

We weaken this estimate a bit to obtain nicer bounds:
lemma mertens-bound-real ′:

fixes x :: real assumes x: x ≥ 1
shows M x − ln x ∈ {−2<..25/18}

proof −
have M x − ln x ≤ ln 4

using mertens-bound-real-strong[of x] x by simp
also have . . . ≤ 25 / 18

using ln-realpow[of 2 2 ] ln2-le-25-over-36 by simp
finally have M x − ln x ≤ 25 / 18 .

have ln2 : ln (2 :: real) ∈ {2/3 ..25/36}
using ln-approx-bounds[of 2 1 ] by (simp add: eval-nat-numeral)

have ln3 : ln (3 ::real) ∈ {1 ..10/9}
using ln-approx-bounds[of 3 1 ] by (simp add: eval-nat-numeral)

have ln5 : ln (5 ::real) ∈ {4/3 ..76/45}
using ln-approx-bounds[of 5 1 ] by (simp add: eval-nat-numeral)

have ln7 : ln (7 ::real) ∈ {3/2 ..15/7}
using ln-approx-bounds[of 7 1 ] by (simp add: eval-nat-numeral)

have ln11 : ln (11 ::real) ∈ {5/3 ..290/99}
using ln-approx-bounds[of 11 1 ] by (simp add: eval-nat-numeral)

— Choosing the lower bound -2 is somewhat arbitrary here; it is a trade-off
between getting a reasonably tight bound and having to make lots of case distinc-
tions. To get -2 as a lower bound, we have to show the cases up to x = 11 by case
distinction,

have M x − ln x > −2
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proof (cases x ≥ 11 )
case False
hence x ∈ {1 ..<2} ∨ x ∈ {2 ..<3} ∨ x ∈ {3 ..<5} ∨ x ∈ {5 ..<7} ∨ x ∈

{7 ..<11}
using x by force

thus ?thesis
proof (elim disjE)

assume x: x ∈ {1 ..<2}
hence ln x − M x ≤ ln 2 − 0

by (intro diff-mono) auto
also have . . . < 2 using ln2-le-25-over-36 by simp
finally show ?thesis by simp

next
assume x: x ∈ {2 ..<3}
hence [simp]: bxc = 2 by (intro floor-unique) auto
from x have ln x − M x ≤ ln 3 − ln 2 / 2

by (intro diff-mono) (auto simp: eval-M)
also have . . . = ln (9 / 2 ) / 2 using ln-realpow[of 3 2 ] by (simp add: ln-div)

also have . . . < 2 using ln-approx-bounds[of 9 / 2 1 ] by (simp add:
eval-nat-numeral)

finally show ?thesis by simp
next

assume x: x ∈ {3 ..<5}
hence M 3 = M x

unfolding primes-M-def
by (intro prime-sum-upto-eqI ′[where a ′ = 3 and b ′ = 4 ])

(auto simp: nat-le-iff le-numeral-iff nat-eq-iff floor-eq-iff )
also have M 3 = ln 2 / 2 + ln 3 / 3

by (simp add: eval-M eval-nat-numeral mark-out-code)
finally have [simp]: M x = ln 2 / 2 + ln 3 / 3 ..
from x have ln x − M x ≤ ln 5 − (ln 2 / 2 + ln 3 / 3 )

by (intro diff-mono) auto
also have . . . < 2 using ln2 ln3 ln5 by simp
finally show ?thesis by simp

next
assume x: x ∈ {5 ..<7}
hence M 5 = M x

unfolding primes-M-def
by (intro prime-sum-upto-eqI ′[where a ′ = 5 and b ′ = 6 ])

(auto simp: nat-le-iff le-numeral-iff nat-eq-iff floor-eq-iff )
also have M 5 = ln 2 / 2 + ln 3 / 3 + ln 5 / 5

by (simp add: eval-M eval-nat-numeral mark-out-code)
finally have [simp]: M x = ln 2 / 2 + ln 3 / 3 + ln 5 / 5 ..
from x have ln x − M x ≤ ln 7 − (ln 2 / 2 + ln 3 / 3 + ln 5 / 5 )

by (intro diff-mono) auto
also have . . . < 2 using ln2 ln3 ln5 ln7 by simp
finally show ?thesis by simp

next
assume x: x ∈ {7 ..<11}
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hence M 7 = M x
unfolding primes-M-def
by (intro prime-sum-upto-eqI ′[where a ′ = 7 and b ′ = 10 ])

(auto simp: nat-le-iff le-numeral-iff nat-eq-iff floor-eq-iff )
also have M 7 = ln 2 / 2 + ln 3 / 3 + ln 5 / 5 + ln 7 / 7

by (simp add: eval-M eval-nat-numeral mark-out-code)
finally have [simp]: M x = ln 2 / 2 + ln 3 / 3 + ln 5 / 5 + ln 7 / 7 ..
from x have ln x − M x ≤ ln 11 − (ln 2 / 2 + ln 3 / 3 + ln 5 / 5 + ln 7

/ 7 )
by (intro diff-mono) auto

also have . . . < 2 using ln2 ln3 ln5 ln7 ln11 by simp
finally show ?thesis by simp

qed
next

case True
have ln x − M x ≤ 1 + 9/pi^2 + ln (1 + frac x / real (nat bxc))

using mertens-bound-real-strong[of x] x by simp
also have 1 + frac x / real (nat bxc) ≤ 1 + 1 / 11

using True frac-lt-1 [of x] by (intro add-mono frac-le) auto
hence ln (1 + frac x / real (nat bxc)) ≤ ln (1 + 1 / 11 )

using x by (subst ln-le-cancel-iff ) (auto intro!: add-pos-nonneg)
also have . . . = ln (12 / 11 ) by simp
also have . . . ≤ 1585 / 18216

using ln-approx-bounds[of 12 / 11 1 ] by (simp add: eval-nat-numeral)
also have 9 / pi ^ 2 ≤ 9 / 3 .141592653588 ^ 2

using pi-approx by (intro divide-left-mono power-mono mult-pos-pos) auto
also have 1 + . . . + 1585 / 18216 < 2

by (simp add: power2-eq-square)
finally show ?thesis by simp

qed
with ‹M x − ln x ≤ 25 / 18 › show ?thesis by simp

qed

corollary mertens-first-theorem:
fixes x :: real assumes x: x ≥ 1
shows |M x − ln x| < 2
using mertens-bound-real ′[of x] x by (simp add: abs-if )

5.2 Mertens’ Second Theorem

Mertens’ Second Theorem concerns the asymptotics of the Prime Harmonic
Series, namely ∑

p≤x

1

p
= ln lnx+M +O

(
1

lnx

)
where M ≈ 0.261497 is the Meissel–Mertens constant.
We define the constant in the following way:
definition meissel-mertens where
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meissel-mertens = 1 − ln (ln 2 ) + integral {2 ..} (λt. (M t − ln t) / (t ∗ ln t ^
2 ))

We will require the value of the integral
∫∞
a

t
ln2 t

dt = 1
ln a as an upper bound

on the remainder term:
lemma integral-one-over-x-ln-x-squared:

assumes a: (a::real) > 1
shows set-integrable lborel {a<..} (λt. 1 / (t ∗ ln t ^ 2 )) (is ?th1 )

and set-lebesgue-integral lborel {a<..} (λt. 1 / (t ∗ ln t ^ 2 )) = 1 / ln a (is
?th2 )

and ((λt. 1 / (t ∗ (ln t)2)) has-integral 1 / ln a) {a<..} (is ?th3 )
proof −

have cont: isCont (λt. 1 / (t ∗ (ln t)2)) x if x > a for x
using that a by (auto intro!: continuous-intros)

have deriv: ((λx. −1 / ln x) has-real-derivative 1 / (x ∗ (ln x)2)) (at x) if x >
a for x

using that a by (auto intro!: derivative-eq-intros simp: power2-eq-square field-simps)
have lim1 : (((λx. − 1 / ln x) ◦ real-of-ereal) −−−→ −(1 / ln a)) (at-right (ereal

a))
unfolding ereal-tendsto-simps using a by (real-asymp simp: field-simps)

have lim2 : (((λx. − 1 / ln x) ◦ real-of-ereal) −−−→ 0 ) (at-left ∞)
unfolding ereal-tendsto-simps using a by (real-asymp simp: field-simps)

have set-integrable lborel (einterval a ∞) (λt. 1 / (t ∗ ln t ^ 2 ))
by (rule interval-integral-FTC-nonneg[OF - deriv cont - lim1 lim2 ]) (use a in

auto)
thus ?th1 by simp
have interval-lebesgue-integral lborel (ereal a) ∞ (λt. 1 / (t ∗ ln t ^ 2 )) = 0 −

(−(1 / ln a))
by (rule interval-integral-FTC-nonneg[OF - deriv cont - lim1 lim2 ]) (use a in

auto)
thus ?th2 by (simp add: interval-integral-to-infinity-eq)

have ((λt. 1 / (t ∗ ln t ^ 2 )) has-integral
set-lebesgue-integral lebesgue {a<..} (λt. 1 / (t ∗ ln t ^ 2 ))) {a<..}

using ‹?th1 › by (intro has-integral-set-lebesgue)
(auto simp: set-integrable-def integrable-completion)

also have set-lebesgue-integral lebesgue {a<..} (λt. 1 / (t ∗ ln t ^ 2 )) = 1 / ln
a

using ‹?th2 › unfolding set-lebesgue-integral-def by (subst integral-completion)
auto

finally show ?th3 .
qed

We show that the integral in our definition of the Meissel–Mertens constant
is well-defined and give an upper bound for its tails:
lemma

assumes a > (1 :: real)
defines r ≡ (λt. (M t − ln t) / (t ∗ ln t ^ 2 ))
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shows integrable-meissel-mertens: set-integrable lborel {a<..} r
and meissel-mertens-integral-le: norm (integral {a<..} r) ≤ 2 / ln a

proof −
have ∗: ((λt. 2 ∗ (1 / (t ∗ ln t ^ 2 ))) has-integral 2 ∗ (1 / ln a)) {a<..}

using assms by (intro has-integral-mult-right integral-one-over-x-ln-x-squared)
auto

show set-integrable lborel {a<..} r unfolding set-integrable-def
proof (rule Bochner-Integration.integrable-bound[OF - - AE-I2 ])

have integrable lborel (λt::real. indicator {a<..} t ∗ (2 ∗ (1 / (t ∗ ln t ^ 2 ))))
using integrable-mult-right[of 2 ,

OF integral-one-over-x-ln-x-squared(1 )[of a, unfolded set-integrable-def ]]
assms

by (simp add: algebra-simps)
thus integrable lborel (λt::real. indicator {a<..} t ∗R (2 / (t ∗ ln t ^ 2 )))

by simp
fix x :: real
show norm (indicat-real {a<..} x ∗R r x) ≤

norm (indicat-real {a<..} x ∗R (2 / (x ∗ ln x ^ 2 )))
proof (cases x > a)

case True
thus ?thesis

unfolding norm-scaleR norm-mult r-def norm-divide using mertens-first-theorem[of
x] assms

by (intro mult-mono frac-le divide-nonneg-pos) (auto simp: indicator-def )
qed (auto simp: indicator-def )

qed (auto simp: r-def )
hence r integrable-on {a<..}

by (simp add: set-borel-integral-eq-integral(1 ))
hence norm (integral {a<..} r) ≤ integral {a<..} (λx. 2 ∗ (1 / (x ∗ ln x ^ 2 )))
proof (rule integral-norm-bound-integral)

show (λx. 2 ∗ (1 / (x ∗ (ln x)2))) integrable-on {a<..}
using ∗ by (simp add: has-integral-iff )

fix x assume x ∈ {a<..}
hence norm (r x) ≤ 2 / (x ∗ (ln x)2)

unfolding r-def norm-divide using mertens-first-theorem[of x] assms
by (intro mult-mono frac-le divide-nonneg-pos) (auto simp: indicator-def )

thus norm (r x) ≤ 2∗ (1 / (x ∗ ln x ^ 2 )) by simp
qed
also have . . . = 2 / ln a

using ∗ by (simp add: has-integral-iff )
finally show norm (integral {a<..} r) ≤ 2 / ln a .

qed

lemma integrable-on-meissel-mertens:
assumes A ⊆ {1 ..} Inf A > 1 A ∈ sets borel
shows (λt. (M t − ln t) / (t ∗ ln t ^ 2 )) integrable-on A

proof −
from assms obtain x where x: 1 < x x < Inf A

using dense by blast
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from assms have bdd-below A by (intro bdd-belowI [of - 1 ]) auto
hence A ⊆ {Inf A..} by (auto simp: cInf-lower)
also have . . . ⊆ {x<..} using x by auto
finally have ∗: A ⊆ {x<..} .
have set-integrable lborel A (λt. (M t − ln t) / (t ∗ ln t ^ 2 ))

by (rule set-integrable-subset[OF integrable-meissel-mertens[of x]]) (use x ∗
assms in auto)

thus ?thesis by (simp add: set-borel-integral-eq-integral(1 ))
qed

lemma meissel-mertens-bounds: |meissel-mertens − 1 + ln (ln 2 )| ≤ 2 / ln 2
proof −

have ∗: {2 ..} − {2<..} = {2 ::real} by auto
also have negligible . . . by simp
finally have integral {2 ..} (λt. (M t − ln t) / (t ∗ (ln t)2)) =

integral {2<..} (λt. (M t − ln t) / (t ∗ (ln t)2))
by (intro sym[OF integral-subset-negligible]) auto

also have norm . . . ≤ 2 / ln 2
by (rule meissel-mertens-integral-le) auto

finally show |meissel-mertens − 1 + ln (ln 2 )| ≤ 2 / ln 2
by (simp add: meissel-mertens-def )

qed

Finally, obtaining Mertens’ second theorem from the first one is nothing but
a routine summation by parts, followed by a use of the above bound:
theorem mertens-second-theorem:

defines f ≡ prime-sum-upto (λp. 1 / p)
shows

∧
x. x ≥ 2 =⇒ |f x − ln (ln x) − meissel-mertens| ≤ 4 / ln x

and (λx. f x − ln (ln x) − meissel-mertens) ∈ O(λx. 1 / ln x)
proof −

define r where r = (λt. (M t − ln t) / (t ∗ ln t ^ 2 ))

{
fix x :: real assume x: x > 2
have ((λt. M t ∗ (−1 / (t ∗ ln t ^ 2 ))) has-integral M x ∗ (1 / ln x) − M 2

∗ (1 / ln 2 ) −
(
∑

n∈real −‘ {2<..x}. ind prime n ∗ (ln n / real n) ∗ (1 / ln n))) {2 ..x}
unfolding primes-M-def prime-sum-upto-altdef1 using x
by (intro partial-summation-strong[of {}])

(auto intro!: continuous-intros derivative-eq-intros simp: power2-eq-square
simp flip: has-real-derivative-iff-has-vector-derivative)

also have M x ∗ (1 / ln x) − M 2 ∗ (1 / ln 2 ) −
(
∑

n∈real −‘ {2<..x}. ind prime n ∗ (ln n / n) ∗ (1 / ln n)) =
M x / ln x − (

∑
n∈insert 2 (real −‘ {2<..x}). ind prime n ∗ (ln n /

n) ∗ (1 / ln n))
(is - = - − ?S)
by (subst sum.insert)

(auto simp: primes-M-def finite-vimage-real-of-nat-greaterThanAtMost
eval-prime-sum-upto)
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also have ?S = f x
unfolding f-def prime-sum-upto-altdef1 sum-upto-def using x

by (intro sum.mono-neutral-cong-left) (auto simp: not-less numeral-2-eq-2
le-Suc-eq)

finally have ((λt. −M t / (t ∗ ln t ^ 2 )) has-integral (M x / ln x − f x))
{2 ..x}

by simp
from has-integral-neg[OF this]

have ((λt. M t / (t ∗ ln t ^ 2 )) has-integral (f x − M x / ln x)) {2 ..x} by
simp

hence ((λt. M t / (t ∗ ln t ^ 2 ) − 1 / (t ∗ ln t)) has-integral
(f x − M x / ln x − (ln (ln x) − ln (ln 2 )))) {2 ..x} using x

by (intro has-integral-diff fundamental-theorem-of-calculus)
(auto simp flip: has-real-derivative-iff-has-vector-derivative

intro!: derivative-eq-intros)
also have ?this ←→ (r has-integral (f x − M x / ln x − (ln (ln x) − ln (ln

2 )))) {2 ..x}
by (intro has-integral-cong) (auto simp: r-def field-simps power2-eq-square)

finally have . . . .
} note integral = this

define RM where RM = (λx. M x − ln x)
have M: M x = ln x + RM x for x by (simp add: RM-def )
define I where I = (λx. integral {x..} r)
define C where C = (1 − ln (ln 2 ) + I 2 )
have C-altdef : C = meissel-mertens

by (simp add: I-def r-def C-def meissel-mertens-def )

show bound: |f x − ln (ln x) − meissel-mertens| ≤ 4 / ln x if x: x ≥ 2 for x
proof (cases x = 2 )

case True
hence |f x − ln (ln x) − meissel-mertens| = |1 / 2 − ln (ln 2 ) − meis-

sel-mertens|
by (simp add: f-def eval-prime-sum-upto )

also have . . . ≤ 2 / ln 2 + 1 / 2
using meissel-mertens-bounds by linarith

also have . . . ≤ 2 / ln 2 + 2 / ln 2 using ln2-le-25-over-36
by (intro add-mono divide-left-mono) auto

finally show ?thesis using True by simp
next

case False
hence x: x > 2 using x by simp
have integral {2 ..x} r + I x = integral ({2 ..x} ∪ {x..}) r unfolding I-def r-def

using x
by (intro integral-Un [symmetric] integrable-on-meissel-mertens) (auto simp:

max-def r-def )
also have {2 ..x} ∪ {x..} = {2 ..} using x by auto
finally have ∗: integral {2 ..x} r = I 2 − I x unfolding I-def by simp
have eq: f x − ln (ln x) − C = RM x / ln x − I x
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using integral[OF x] x by (auto simp: C-def field-simps M has-integral-iff ∗)
also have |. . . | ≤ |RM x / ln x| + norm (I x)

unfolding real-norm-def by (rule abs-triangle-ineq4 )
also have |RM x / ln x| ≤ 2 / |ln x|

unfolding RM-def abs-divide using mertens-first-theorem[of x] x
by (intro divide-right-mono) auto

also have {x..} − {x<..} = {x} and {x<..} ⊆ {x..} by auto
hence I x = integral {x<..} r unfolding I-def

by (intro integral-subset-negligible [symmetric]) simp-all
also have norm . . . ≤ 2 / ln x

using meissel-mertens-integral-le[of x] x by (simp add: r-def )
finally show |f x − ln (ln x) − meissel-mertens| ≤ 4 / ln x

using x by (simp add: C-altdef )
qed

have (λx. f x − ln (ln x) − C ) ∈ O(λx. 1 / ln x)
proof (intro landau-o.bigI [of 4 ] eventually-mono[OF eventually-ge-at-top[of 2 ]])

fix x :: real assume x: x ≥ 2
with bound[OF x] show norm (f x − ln (ln x) − C ) ≤ 4 ∗ norm (1 / ln x)

by (simp add: C-altdef )
qed (auto intro!: add-pos-nonneg)
thus (λx. f x − ln (ln x) − meissel-mertens) ∈ O(λx. 1 / ln x)

by (simp add: C-altdef )
qed

corollary prime-harmonic-asymp-equiv: prime-sum-upto (λp. 1 / p) ∼[at-top] (λx.
ln (ln x))
proof −

define f where f = prime-sum-upto (λp. 1 / p)
have (λx. f x − ln (ln x) − meissel-mertens + meissel-mertens) ∈ o(λx. ln (ln

x))
unfolding f-def

by (rule sum-in-smallo[OF landau-o.big-small-trans[OF mertens-second-theorem(2 )]])
real-asymp+

hence (λx. f x − ln (ln x)) ∈ o(λx. ln (ln x))
by simp

thus ?thesis unfolding f-def
by (rule smallo-imp-asymp-equiv)

qed

As a corollary, we get the divergence of the prime harmonic series.
corollary prime-harmonic-diverges: filterlim (prime-sum-upto (λp. 1 / p)) at-top
at-top

using asymp-equiv-symI [OF prime-harmonic-asymp-equiv]
by (rule asymp-equiv-at-top-transfer) real-asymp

end
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