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Abstract
In this work, we prove the lower bound ln(Hn)−ln( 53 ) for the partial

sum of the Prime Harmonic series and, based on this, the divergence
of the Prime Harmonic Series

∑n
p=1[p prime] · 1p . The proof relies on

the unique squarefree decomposition of natural numbers. This proof
is similar to Euler’s original proof (which was highly informal and
morally questionable). Its advantage over proofs by contradiction, like
the famous one by Paul Erdős, is that it provides a relatively good
lower bound for the partial sums.
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1 Auxiliary lemmas
theory Prime-Harmonic-Misc
imports

Complex-Main
HOL−Number-Theory.Number-Theory

begin

lemma sum-list-nonneg: ∀ x∈set xs. x ≥ 0 =⇒ sum-list xs ≥ (0 :: ′a :: or-
dered-ab-group-add)
〈proof 〉

lemma sum-telescope ′:
assumes m ≤ n
shows (

∑
k = Suc m..n. f k − f (Suc k)) = f (Suc m) − (f (Suc n) :: ′a ::

ab-group-add)
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〈proof 〉

lemma dvd-prodI :
assumes finite A x ∈ A
shows f x dvd prod f A
〈proof 〉

lemma dvd-prodD: finite A =⇒ prod f A dvd x =⇒ a ∈ A =⇒ f a dvd x
〈proof 〉

lemma multiplicity-power-nat:
prime p =⇒ n > 0 =⇒ multiplicity p (n ^ k :: nat) = k ∗ multiplicity p n
〈proof 〉

lemma multiplicity-prod-prime-powers-nat ′:
finite S =⇒ ∀ p∈S . prime p =⇒ prime p =⇒

multiplicity p (
∏

S :: nat) = (if p ∈ S then 1 else 0 )
〈proof 〉

lemma prod-prime-subset:
assumes finite A finite B
assumes

∧
x. x ∈ A =⇒ prime (x::nat)

assumes
∧

x. x ∈ B =⇒ prime x
assumes

∏
A dvd

∏
B

shows A ⊆ B
〈proof 〉

lemma prod-prime-eq:
assumes finite A finite B

∧
x. x ∈ A =⇒ prime (x::nat)

∧
x. x ∈ B =⇒ prime

x
∏

A =
∏

B
shows A = B
〈proof 〉

lemma ln-ln-nonneg:
assumes x: x ≥ (3 :: real)
shows ln (ln x) ≥ 0
〈proof 〉

end

2 Squarefree decomposition of natural numbers
theory Squarefree-Nat
imports

Main
HOL−Number-Theory.Number-Theory
Prime-Harmonic-Misc

begin

2



The squarefree part of a natural number is the set of all prime factors that
appear with odd multiplicity. The square part, correspondingly, is what
remains after dividing by the squarefree part.
definition squarefree-part :: nat ⇒ nat set where

squarefree-part n = {p∈prime-factors n. odd (multiplicity p n)}

definition square-part :: nat ⇒ nat where
square-part n = (if n = 0 then 0 else (

∏
p∈prime-factors n. p ^ (multiplicity p n

div 2 )))

lemma squarefree-part-0 [simp]: squarefree-part 0 = {}
〈proof 〉

lemma square-part-0 [simp]: square-part 0 = 0
〈proof 〉

lemma squarefree-decompose:
∏

(squarefree-part n) ∗ square-part n ^ 2 = n
〈proof 〉

lemma squarefree-part-pos [simp]:
∏

(squarefree-part n) > 0
〈proof 〉

lemma squarefree-part-ge-Suc-0 [simp]:
∏

(squarefree-part n) ≥ Suc 0
〈proof 〉

lemma squarefree-part-subset [intro]: squarefree-part n ⊆ prime-factors n
〈proof 〉

lemma squarefree-part-finite [simp]: finite (squarefree-part n)
〈proof 〉

lemma squarefree-part-dvd [simp]:
∏

(squarefree-part n) dvd n
〈proof 〉

lemma squarefree-part-dvd ′ [simp]: p ∈ squarefree-part n =⇒ p dvd n
〈proof 〉

lemma square-part-dvd [simp]: square-part n ^ 2 dvd n
〈proof 〉

lemma square-part-dvd ′ [simp]: square-part n dvd n
〈proof 〉

lemma squarefree-part-le: p ∈ squarefree-part n =⇒ p ≤ n
〈proof 〉

lemma square-part-le: square-part n ≤ n
〈proof 〉
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lemma square-part-le-sqrt: square-part n ≤ nat bsqrt (real n)c
〈proof 〉

lemma square-part-pos [simp]: n > 0 =⇒ square-part n > 0
〈proof 〉

lemma square-part-ge-Suc-0 [simp]: n > 0 =⇒ square-part n ≥ Suc 0
〈proof 〉

lemma zero-not-in-squarefree-part [simp]: 0 /∈ squarefree-part n
〈proof 〉

lemma multiplicity-squarefree-part:
prime p =⇒ multiplicity p (

∏
(squarefree-part n)) = (if p ∈ squarefree-part n then

1 else 0 )
〈proof 〉

The squarefree part really is square, its only square divisor is 1.
lemma square-dvd-squarefree-part-iff :

x^2 dvd
∏

(squarefree-part n) ←→ x = 1
〈proof 〉

lemma squarefree-decomposition-unique1 :
assumes squarefree-part m = squarefree-part n
assumes square-part m = square-part n
shows m = n
〈proof 〉

lemma squarefree-decomposition-unique2 :
assumes n: n > 0
assumes decomp: n = (

∏
A2 ∗ s2^2 )

assumes prime:
∧

x. x ∈ A2 =⇒ prime x
assumes fin: finite A2
assumes s2-nonneg: s2 ≥ 0
shows A2 = squarefree-part n and s2 = square-part n
〈proof 〉

lemma squarefree-decomposition-unique2 ′:
assumes decomp: (

∏
A1 ∗ s1^2 ) = (

∏
A2 ∗ s2^2 :: nat)

assumes fin: finite A1 finite A2
assumes subset:

∧
x. x ∈ A1 =⇒ prime x

∧
x. x ∈ A2 =⇒ prime x

assumes pos: s1 > 0 s2 > 0
defines n ≡

∏
A1 ∗ s1^2

shows A1 = A2 s1 = s2
〈proof 〉

The following is a nice and simple lower bound on the number of prime
numbers less than a given number due to Erdős. In particular, it implies
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that there are infinitely many primes.
lemma primes-lower-bound:

fixes n :: nat
assumes n > 0
defines π ≡ λn. card {p. prime p ∧ p ≤ n}
shows real (π n) ≥ ln (real n) / ln 4
〈proof 〉

end

3 The Prime Harmonic Series
theory Prime-Harmonic
imports

HOL−Analysis.Analysis
HOL−Number-Theory.Number-Theory
Prime-Harmonic-Misc
Squarefree-Nat

begin

3.1 Auxiliary equalities and inequalities

First of all, we prove the following result about rearranging a product over
a set into a sum over all subsets of that set.
lemma prime-harmonic-aux1 :

fixes A :: ′a :: field set
shows finite A =⇒ (

∏
x∈A. 1 + 1 / x) = (

∑
x∈Pow A. 1 /

∏
x)

〈proof 〉

Next, we prove a simple and reasonably accurate upper bound for the sum of
the squares of any subset of the natural numbers, derived by simple telescop-
ing. Our upper bound is approximately 1.67; the exact value is π2

6 ≈ 1.64.
(cf. Basel problem)
lemma prime-harmonic-aux2 :

assumes finite (A :: nat set)
shows (

∑
k∈A. 1 / (real k ^ 2 )) ≤ 5/3

〈proof 〉

3.2 Estimating the partial sums of the Prime Harmonic Se-
ries

We are now ready to show our main result: the value of the partial prime
harmonic sum over all primes no greater than n is bounded from below by
the n-th harmonic number Hn minus some constant.
In our case, this constant will be 5

3 . As mentioned before, using a proof
of the Basel problem can improve this to π2

6 , but the improvement is very
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small and the proof of the Basel problem is a very complex one.
The exact asymptotic behaviour of the partial sums is actually ln(lnn)+M ,
where M is the Meissel–Mertens constant (approximately 0.261).
theorem prime-harmonic-lower :

assumes n: n ≥ 2
shows (

∑
p←primes-upto n. 1 / real p) ≥ ln (harm n) − ln (5/3 )

〈proof 〉

We can use the inequality ln(n+1) ≤ Hn to estimate the asymptotic growth
of the partial prime harmonic series. Note that Hn ∼ lnn+γ where γ is the
Euler–Mascheroni constant (approximately 0.577), so we lose some accuracy
here.
corollary prime-harmonic-lower ′:

assumes n: n ≥ 2
shows (

∑
p←primes-upto n. 1 / real p) ≥ ln (ln (n + 1 )) − ln (5/3 )

〈proof 〉

lemma Bseq-eventually-mono:
assumes eventually (λn. norm (f n) ≤ norm (g n)) sequentially Bseq g
shows Bseq f
〈proof 〉

lemma Bseq-add:
assumes Bseq (f :: nat ⇒ ′a :: real-normed-vector)
shows Bseq (λx. f x + c)
〈proof 〉

lemma convergent-imp-Bseq: convergent f =⇒ Bseq f
〈proof 〉

We now use our last estimate to show that the prime harmonic series di-
verges. This is obvious, since it is bounded from below by ln(ln(n + 1))
minus some constant, which obviously tends to infinite.
Directly using the divergence of the harmonic series would also be possible
and shorten this proof a bit..
corollary prime-harmonic-series-unbounded:
¬Bseq (λn.

∑
p←primes-upto n. 1 / p) (is ¬Bseq ?f )

〈proof 〉

corollary prime-harmonic-series-diverges:
¬convergent (λn.

∑
p←primes-upto n. 1 / p)

〈proof 〉

end
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