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Abstract
In this work, we prove the lower bound ln(Hn)−ln( 53 ) for the partial

sum of the Prime Harmonic series and, based on this, the divergence
of the Prime Harmonic Series

∑n
p=1[p prime] · 1p . The proof relies on

the unique squarefree decomposition of natural numbers. This proof
is similar to Euler’s original proof (which was highly informal and
morally questionable). Its advantage over proofs by contradiction, like
the famous one by Paul Erdős, is that it provides a relatively good
lower bound for the partial sums.
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1 Auxiliary lemmas
theory Prime-Harmonic-Misc
imports

Complex-Main
HOL−Number-Theory.Number-Theory

begin

lemma sum-list-nonneg: ∀ x∈set xs. x ≥ 0 =⇒ sum-list xs ≥ (0 :: ′a :: or-
dered-ab-group-add)

by (induction xs) auto

lemma sum-telescope ′:
assumes m ≤ n
shows (

∑
k = Suc m..n. f k − f (Suc k)) = f (Suc m) − (f (Suc n) :: ′a ::

ab-group-add)
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by (rule dec-induct[OF assms]) (simp-all add: algebra-simps)

lemma dvd-prodI :
assumes finite A x ∈ A
shows f x dvd prod f A

proof −
from assms have prod f A = f x ∗ prod f (A − {x})

by (intro prod.remove) simp-all
thus ?thesis by simp

qed

lemma dvd-prodD: finite A =⇒ prod f A dvd x =⇒ a ∈ A =⇒ f a dvd x
by (erule dvd-trans[OF dvd-prodI ])

lemma multiplicity-power-nat:
prime p =⇒ n > 0 =⇒ multiplicity p (n ^ k :: nat) = k ∗ multiplicity p n
by (induction k) (simp-all add: prime-elem-multiplicity-mult-distrib)

lemma multiplicity-prod-prime-powers-nat ′:
finite S =⇒ ∀ p∈S . prime p =⇒ prime p =⇒

multiplicity p (
∏

S :: nat) = (if p ∈ S then 1 else 0 )
using multiplicity-prod-prime-powers[of S p λ-. 1 ] by simp

lemma prod-prime-subset:
assumes finite A finite B
assumes

∧
x. x ∈ A =⇒ prime (x::nat)

assumes
∧

x. x ∈ B =⇒ prime x
assumes

∏
A dvd

∏
B

shows A ⊆ B
proof

fix x assume x: x ∈ A
from assms(4 )[of 0 ] have 0 /∈ B by auto
with assms have nonzero: ∀ z∈B. z 6= 0 by (intro ballI notI ) auto

from x assms have 1 = multiplicity x (
∏

A)
by (subst multiplicity-prod-prime-powers-nat ′) simp-all

also from assms nonzero have . . . ≤ multiplicity x (
∏

B) by (intro dvd-imp-multiplicity-le)
auto

finally have multiplicity x (
∏

B) > 0 by simp
moreover from assms x have prime x by simp
ultimately show x ∈ B using assms(2 ,4 )
by (subst (asm) multiplicity-prod-prime-powers-nat ′) (simp-all split: if-split-asm)

qed

lemma prod-prime-eq:
assumes finite A finite B

∧
x. x ∈ A =⇒ prime (x::nat)

∧
x. x ∈ B =⇒ prime

x
∏

A =
∏

B
shows A = B
using assms by (intro equalityI prod-prime-subset) simp-all
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lemma ln-ln-nonneg:
assumes x: x ≥ (3 :: real)
shows ln (ln x) ≥ 0

proof −
have exp 1 ≤ (3 ::real) by (rule exp-le)
hence ln (exp 1 ) ≤ ln (3 :: real) by (subst ln-le-cancel-iff ) simp-all
also from x have . . . ≤ ln x by (subst ln-le-cancel-iff ) simp-all
finally have ln 1 ≤ ln (ln x) using x by (subst ln-le-cancel-iff ) simp-all
thus ?thesis by simp

qed

end

2 Squarefree decomposition of natural numbers
theory Squarefree-Nat
imports

Main
HOL−Number-Theory.Number-Theory
Prime-Harmonic-Misc

begin

The squarefree part of a natural number is the set of all prime factors that
appear with odd multiplicity. The square part, correspondingly, is what
remains after dividing by the squarefree part.
definition squarefree-part :: nat ⇒ nat set where

squarefree-part n = {p∈prime-factors n. odd (multiplicity p n)}

definition square-part :: nat ⇒ nat where
square-part n = (if n = 0 then 0 else (

∏
p∈prime-factors n. p ^ (multiplicity p n

div 2 )))

lemma squarefree-part-0 [simp]: squarefree-part 0 = {}
by (simp add: squarefree-part-def )

lemma square-part-0 [simp]: square-part 0 = 0
by (simp add: square-part-def )

lemma squarefree-decompose:
∏

(squarefree-part n) ∗ square-part n ^ 2 = n
proof (cases n = 0 )

case False
define A s where A = squarefree-part n and s = square-part n
have (

∏
A) = (

∏
p∈A. p ^ (multiplicity p n mod 2 ))

by (intro prod.cong) (auto simp: A-def squarefree-part-def elim!: oddE)
also have . . . = (

∏
p∈prime-factors n. p ^ (multiplicity p n mod 2 ))

by (intro prod.mono-neutral-left) (auto simp: A-def squarefree-part-def )
also from False have . . . ∗ s^2 = n

3



by (simp add: s-def square-part-def prod.distrib [symmetric] power-add [symmetric]

power-mult [symmetric] prime-factorization-nat [symmetric]
algebra-simps

prod-power-distrib)
finally show

∏
A ∗ s^2 = n .

qed simp

lemma squarefree-part-pos [simp]:
∏

(squarefree-part n) > 0
using prime-gt-0-nat unfolding squarefree-part-def by auto

lemma squarefree-part-ge-Suc-0 [simp]:
∏

(squarefree-part n) ≥ Suc 0
using squarefree-part-pos[of n] by presburger

lemma squarefree-part-subset [intro]: squarefree-part n ⊆ prime-factors n
unfolding squarefree-part-def by auto

lemma squarefree-part-finite [simp]: finite (squarefree-part n)
by (rule finite-subset[OF squarefree-part-subset]) simp

lemma squarefree-part-dvd [simp]:
∏

(squarefree-part n) dvd n
by (subst (2 ) squarefree-decompose [of n, symmetric]) simp

lemma squarefree-part-dvd ′ [simp]: p ∈ squarefree-part n =⇒ p dvd n
by (rule dvd-prodD[OF - squarefree-part-dvd]) simp-all

lemma square-part-dvd [simp]: square-part n ^ 2 dvd n
by (subst (2 ) squarefree-decompose [of n, symmetric]) simp

lemma square-part-dvd ′ [simp]: square-part n dvd n
by (subst (2 ) squarefree-decompose [of n, symmetric]) simp

lemma squarefree-part-le: p ∈ squarefree-part n =⇒ p ≤ n
by (cases n = 0 ) (simp-all add: dvd-imp-le)

lemma square-part-le: square-part n ≤ n
by (cases n = 0 ) (simp-all add: dvd-imp-le)

lemma square-part-le-sqrt: square-part n ≤ nat bsqrt (real n)c
proof −

have 1 ∗ square-part n ^ 2 ≤
∏

(squarefree-part n) ∗ square-part n ^ 2
by (intro mult-right-mono) simp-all

also have . . . = n by (rule squarefree-decompose)
finally have real (square-part n ^ 2 ) ≤ real n by (subst of-nat-le-iff ) simp
hence sqrt (real (square-part n ^ 2 )) ≤ sqrt (real n)

by (subst real-sqrt-le-iff ) simp-all
also have sqrt (real (square-part n ^ 2 )) = real (square-part n) by simp
finally show ?thesis by linarith

qed

4



lemma square-part-pos [simp]: n > 0 =⇒ square-part n > 0
unfolding square-part-def using prime-gt-0-nat by auto

lemma square-part-ge-Suc-0 [simp]: n > 0 =⇒ square-part n ≥ Suc 0
using square-part-pos[of n] by presburger

lemma zero-not-in-squarefree-part [simp]: 0 /∈ squarefree-part n
unfolding squarefree-part-def by auto

lemma multiplicity-squarefree-part:
prime p =⇒ multiplicity p (

∏
(squarefree-part n)) = (if p ∈ squarefree-part n then

1 else 0 )
using squarefree-part-subset[of n]
by (intro multiplicity-prod-prime-powers-nat ′) auto

The squarefree part really is square, its only square divisor is 1.
lemma square-dvd-squarefree-part-iff :

x^2 dvd
∏

(squarefree-part n) ←→ x = 1
proof (rule iffI , rule multiplicity-eq-nat)

assume dvd: x^2 dvd
∏

(squarefree-part n)
hence x 6= 0 using squarefree-part-subset[of n] prime-gt-0-nat by (intro notI )

auto
thus x: x > 0 by simp

fix p :: nat assume p: prime p
from p x have 2 ∗ multiplicity p x = multiplicity p (x^2 )

by (simp add: multiplicity-power-nat)
also from dvd have . . . ≤ multiplicity p (

∏
(squarefree-part n))

by (intro dvd-imp-multiplicity-le) simp-all
also have . . . ≤ 1 using multiplicity-squarefree-part[of p n] p by simp
finally show multiplicity p x = multiplicity p 1 by simp

qed simp-all

lemma squarefree-decomposition-unique1 :
assumes squarefree-part m = squarefree-part n
assumes square-part m = square-part n
shows m = n
by (subst (1 2 ) squarefree-decompose [symmetric]) (simp add: assms)

lemma squarefree-decomposition-unique2 :
assumes n: n > 0
assumes decomp: n = (

∏
A2 ∗ s2^2 )

assumes prime:
∧

x. x ∈ A2 =⇒ prime x
assumes fin: finite A2
assumes s2-nonneg: s2 ≥ 0
shows A2 = squarefree-part n and s2 = square-part n

proof −
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define A1 s1 where A1 = squarefree-part n and s1 = square-part n
have finite A1 unfolding A1-def by simp
note fin = ‹finite A1 › ‹finite A2 ›

have A1 ⊆ prime-factors n unfolding A1-def using squarefree-part-subset .
note subset = this prime

have
∏

A1 > 0
∏

A2 > 0 using subset(1 ) prime-gt-0-nat
by (auto intro!: prod-pos dest: prime)

from n have s1 > 0 unfolding s1-def by simp
from assms have s2 6= 0 by (intro notI ) simp
hence s2 > 0 by simp
note pos = ‹

∏
A1 > 0 › ‹

∏
A2 > 0 › ‹s1 > 0 › ‹s2 > 0 ›

have eq ′: multiplicity p s1 = multiplicity p s2
multiplicity p (

∏
A1 ) = multiplicity p (

∏
A2 )

if p: prime p for p
proof −

define m where m = multiplicity p
from decomp have m (

∏
A1 ∗ s1^2 ) = m (

∏
A2 ∗ s2^2 ) unfolding A1-def

s1-def
by (simp add: A1-def s1-def squarefree-decompose)

with p pos have eq: m (
∏

A1 ) + 2 ∗ m s1 = m (
∏

A2 ) + 2 ∗ m s2
by (simp add: m-def prime-elem-multiplicity-mult-distrib multiplicity-power-nat)
moreover from fin subset p have m (

∏
A1 ) ≤ 1 m (

∏
A2 ) ≤ 1 unfolding

m-def
by ((subst multiplicity-prod-prime-powers-nat ′, auto)[])+

ultimately show m s1 = m s2 by linarith
with eq show m (

∏
A1 ) = m (

∏
A2 ) by simp

qed

show s2 = square-part n
by (rule multiplicity-eq-nat) (insert pos eq ′(1 ), auto simp: s1-def )

have
∏

A2 =
∏

(squarefree-part n)
by (rule multiplicity-eq-nat) (insert pos eq ′(2 ), auto simp: A1-def )

with fin subset show A2 = squarefree-part n unfolding A1-def
by (intro prod-prime-eq) auto

qed

lemma squarefree-decomposition-unique2 ′:
assumes decomp: (

∏
A1 ∗ s1^2 ) = (

∏
A2 ∗ s2^2 :: nat)

assumes fin: finite A1 finite A2
assumes subset:

∧
x. x ∈ A1 =⇒ prime x

∧
x. x ∈ A2 =⇒ prime x

assumes pos: s1 > 0 s2 > 0
defines n ≡

∏
A1 ∗ s1^2

shows A1 = A2 s1 = s2
proof −

from pos have n: n > 0 using prime-gt-0-nat
by (auto simp: n-def intro!: prod-pos dest: subset)
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have A1 = squarefree-part n s1 = square-part n
by ((rule squarefree-decomposition-unique2 [of n A1 s1 ], insert assms n, simp-all)[])+

moreover have A2 = squarefree-part n s2 = square-part n
by ((rule squarefree-decomposition-unique2 [of n A2 s2 ], insert assms n, simp-all)[])+

ultimately show A1 = A2 s1 = s2 by simp-all
qed

The following is a nice and simple lower bound on the number of prime
numbers less than a given number due to Erdős. In particular, it implies
that there are infinitely many primes.
lemma primes-lower-bound:

fixes n :: nat
assumes n > 0
defines π ≡ λn. card {p. prime p ∧ p ≤ n}
shows real (π n) ≥ ln (real n) / ln 4

proof −
have real n = real (card {1 ..n}) by simp
also have {1 ..n} = (λ(A, b).

∏
A ∗ b^2 ) ‘ (λn. (squarefree-part n, square-part

n)) ‘ {1 ..n}
unfolding image-comp o-def squarefree-decompose case-prod-unfold fst-conv

snd-conv by simp
also have card . . . ≤ card ((λn. (squarefree-part n, square-part n)) ‘ {1 ..n})

by (rule card-image-le) simp-all
also have . . . ≤ card (squarefree-part ‘ {1 ..n} × square-part ‘ {1 ..n})

by (rule card-mono) auto
also have real . . . = real (card (squarefree-part ‘ {1 ..n})) ∗ real (card (square-part

‘ {1 ..n}))
by simp

also have . . . ≤ 2 ^ π n ∗ sqrt (real n)
proof (rule mult-mono)

have card (squarefree-part ‘ {1 ..n}) ≤ card (Pow {p. prime p ∧ p ≤ n})
using squarefree-part-subset squarefree-part-le by (intro card-mono) force+

also have real . . . = 2 ^ π n by (simp add: π-def card-Pow)
finally show real (card (squarefree-part ‘ {1 ..n})) ≤ 2 ^ π n by − simp-all

next
have square-part k ≤ nat bsqrt nc if k ≤ n for k

by (rule order .trans[OF square-part-le-sqrt])
(insert that, auto intro!: nat-mono floor-mono)

hence card (square-part ‘ {1 ..n}) ≤ card {1 ..nat bsqrt nc}
by (intro card-mono) (auto intro: order .trans[OF square-part-le-sqrt])

also have . . . = nat bsqrt nc by simp
also have real . . . ≤ sqrt n by simp
finally show real (card (square-part ‘ {1 ..n})) ≤ sqrt (real n) by − simp-all

qed simp-all
finally have real n ≤ 2 ^ π n ∗ sqrt (real n) by − simp-all
with ‹n > 0 › have ln (real n) ≤ ln (2 ^ π n ∗ sqrt (real n))

by (subst ln-le-cancel-iff ) simp-all
moreover have ln (4 :: real) = real 2 ∗ ln 2 by (subst ln-realpow [symmetric])

simp-all
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ultimately show ?thesis using ‹n > 0 ›
by (simp add: ln-mult ln-realpow[of - π n] ln-sqrt field-simps)

qed

end

3 The Prime Harmonic Series
theory Prime-Harmonic
imports

HOL−Analysis.Analysis
HOL−Number-Theory.Number-Theory
Prime-Harmonic-Misc
Squarefree-Nat

begin

3.1 Auxiliary equalities and inequalities

First of all, we prove the following result about rearranging a product over
a set into a sum over all subsets of that set.
lemma prime-harmonic-aux1 :

fixes A :: ′a :: field set
shows finite A =⇒ (

∏
x∈A. 1 + 1 / x) = (

∑
x∈Pow A. 1 /

∏
x)

proof (induction rule: finite-induct)
fix a :: ′a and A :: ′a set
assume a: a /∈ A and fin: finite A
assume IH : (

∏
x∈A. 1 + 1 / x) = (

∑
x∈Pow A. 1 /

∏
x)

from a and fin have (
∏

x∈insert a A. 1 + 1 / x) = (1 + 1 / a) ∗ (
∏

x∈A. 1
+ 1 / x) by simp

also from fin have . . . = (
∑

x∈Pow A. 1 /
∏

x) + (
∑

x∈Pow A. 1 / (a ∗∏
x))
by (subst IH ) (auto simp add: algebra-simps sum-divide-distrib)

also from fin a have (
∑

x∈Pow A. 1 / (a ∗
∏

x)) = (
∑

x∈Pow A. 1 /
∏

(insert
a x))

by (intro sum.cong refl, subst prod.insert) (auto dest: finite-subset)
also from a have . . . = (

∑
x∈insert a ‘ Pow A. 1 /

∏
x)

by (subst sum.reindex) (auto simp: inj-on-def )
also from fin a have (

∑
x∈Pow A. 1 /

∏
x) + . . . = (

∑
x∈Pow A ∪ insert a

‘ Pow A. 1 /
∏

x)
by (intro sum.union-disjoint [symmetric]) (simp, simp, blast)

also have Pow A ∪ insert a ‘ Pow A = Pow (insert a A) by (simp only:
Pow-insert)

finally show (
∏

x∈insert a A. 1 + 1 / x) = (
∑

x∈Pow (insert a A). 1 /
∏

x)
.
qed simp

Next, we prove a simple and reasonably accurate upper bound for the sum of
the squares of any subset of the natural numbers, derived by simple telescop-
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ing. Our upper bound is approximately 1.67; the exact value is π2

6 ≈ 1.64.
(cf. Basel problem)
lemma prime-harmonic-aux2 :

assumes finite (A :: nat set)
shows (

∑
k∈A. 1 / (real k ^ 2 )) ≤ 5/3

proof −
define n where n = max 2 (Max A)
have n: n ≥ Max A n ≥ 2 by (auto simp: n-def )
with assms have A ⊆ {0 ..n} by (auto intro: order .trans[OF Max-ge])
hence (

∑
k∈A. 1 / (real k ^ 2 )) ≤ (

∑
k=0 ..n. 1 / (real k ^ 2 )) by (intro

sum-mono2 ) auto
also from n have . . . = 1 + (

∑
k=Suc 1 ..n. 1 / (real k ^ 2 )) by (simp add:

sum.atLeast-Suc-atMost)
also have (

∑
k=Suc 1 ..n. 1 / (real k ^ 2 )) ≤

(
∑

k=Suc 1 ..n. 1 / (real k ^ 2 − 1/4 )) unfolding power2-eq-square
by (intro sum-mono divide-left-mono mult-pos-pos)

(linarith, simp-all add: field-simps less-1-mult)
also have . . . = (

∑
k=Suc 1 ..n. 1 / (real k − 1/2 ) − 1 / (real (Suc k) − 1/2 ))

by (intro sum.cong refl) (simp-all add: field-simps power2-eq-square)
also from n have . . . = 2 / 3 − 1 / (1 / 2 + real n)

by (subst sum-telescope ′) simp-all
also have 1 + . . . ≤ 5/3 by simp
finally show ?thesis by − simp

qed

3.2 Estimating the partial sums of the Prime Harmonic Se-
ries

We are now ready to show our main result: the value of the partial prime
harmonic sum over all primes no greater than n is bounded from below by
the n-th harmonic number Hn minus some constant.
In our case, this constant will be 5

3 . As mentioned before, using a proof
of the Basel problem can improve this to π2

6 , but the improvement is very
small and the proof of the Basel problem is a very complex one.
The exact asymptotic behaviour of the partial sums is actually ln(lnn)+M ,
where M is the Meissel–Mertens constant (approximately 0.261).
theorem prime-harmonic-lower :

assumes n: n ≥ 2
shows (

∑
p←primes-upto n. 1 / real p) ≥ ln (harm n) − ln (5/3 )

proof −
— the set of primes that we will allow in the squarefree part
define P where P n = set (primes-upto n) for n
{

fix n :: nat
have finite (P n) by (simp add: P-def )

} note [simp] = this
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— The function that combines the squarefree part and the square part
define f where f = (λ(R, s :: nat).

∏
R ∗ s^2 )

— f is injective if the squarefree part contains only primes and the square part is
positive.

have inj: inj-on f (Pow (P n)×{1 ..n})
proof (rule inj-onI , clarify, rule conjI )

fix A1 A2 :: nat set and s1 s2 :: nat
assume A: A1 ⊆ P n A2 ⊆ P n s1 ∈ {1 ..n} s2 ∈ {1 ..n} f (A1 , s1 ) = f (A2 ,

s2 )
have fin: finite A1 finite A2 by (rule A(1 ,2 )[THEN finite-subset], simp)+
show A1 = A2 s1 = s2

by ((rule squarefree-decomposition-unique2 ′[of A1 s1 A2 s2 ],
insert A fin, auto simp: f-def P-def set-primes-upto)[])+

qed

— f hits every number between 1 and n. It also hits a lot of other numbers, but
we do not care about those, since we only need a lower bound.

have surj: {1 ..n} ⊆ f ‘ (Pow (P n)×{1 ..n})
proof

fix x assume x: x ∈ {1 ..n}
have x = f (squarefree-part x, square-part x) by (simp add: f-def square-

free-decompose)
moreover have squarefree-part x ∈ Pow (P n) using squarefree-part-subset[of

x] x
by (auto simp: P-def set-primes-upto intro: order .trans[OF squarefree-part-le[of

- x]])
moreover have square-part x ∈ {1 ..n} using x

by (auto simp: Suc-le-eq intro: order .trans[OF square-part-le[of x]])
ultimately show x ∈ f ‘ (Pow (P n)×{1 ..n}) by simp

qed

— We now show the main result by rearranging the sum over all primes to a
product over all all squarefree parts times a sum over all square parts, and then
applying some simple-minded approximation

have harm n = (
∑

n=1 ..n. 1 / real n) by (simp add: harm-def field-simps)
also from surj have . . . ≤ (

∑
n∈f ‘ (Pow (P n)×{1 ..n}). 1 / real n)

by (intro sum-mono2 finite-imageI finite-cartesian-product) simp-all
also from inj have . . . = (

∑
x∈Pow (P n)×{1 ..n}. 1 / real (f x))

by (subst sum.reindex) simp-all
also have . . . = (

∑
A∈Pow (P n). 1 / real (

∏
A)) ∗ (

∑
k=1 ..n. 1 / (real k)^2 )

unfolding f-def
by (subst sum-product, subst sum.cartesian-product) (simp add: case-prod-beta)

also have . . . ≤ (
∑

A∈Pow (P n). 1 / real (
∏

A)) ∗ (5/3 )
by (intro mult-left-mono prime-harmonic-aux2 sum-nonneg)

(auto simp: P-def intro!: prod-nonneg)
also have (

∑
A∈Pow (P n). 1 / real (

∏
A)) = (

∑
A∈((‘) real) ‘ Pow (P n). 1

/
∏

A)
by (subst sum.reindex) (auto simp: inj-on-def inj-image-eq-iff prod.reindex)
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also have ((‘) real) ‘ Pow (P n) = Pow (real ‘ P n) by (intro image-Pow-surj
refl)

also have (
∑

A∈Pow (real ‘ P n). 1 /
∏

A) = (
∏

x∈real ‘ P n. 1 + 1 / x)
by (intro prime-harmonic-aux1 [symmetric] finite-imageI ) simp-all

also have . . . = (
∏

i∈P n. 1 + 1 / real i) by (subst prod.reindex) (auto simp:
inj-on-def )

also have . . . ≤ (
∏

i∈P n. exp (1 / real i)) by (intro prod-mono) auto
also have . . . = exp (

∑
i∈P n. 1 / real i) by (simp add: exp-sum)

finally have ln (harm n) ≤ ln (. . . ∗ (5/3 )) using n
by (subst ln-le-cancel-iff ) simp-all

hence ln (harm n) − ln (5/3 ) ≤ (
∑

i∈P n. 1 / real i)
by (subst (asm) ln-mult) (simp-all add: algebra-simps)

thus ?thesis unfolding P-def
by (subst (asm) sum.distinct-set-conv-list) simp-all

qed

We can use the inequality ln(n+1) ≤ Hn to estimate the asymptotic growth
of the partial prime harmonic series. Note that Hn ∼ lnn+γ where γ is the
Euler–Mascheroni constant (approximately 0.577), so we lose some accuracy
here.
corollary prime-harmonic-lower ′:

assumes n: n ≥ 2
shows (

∑
p←primes-upto n. 1 / real p) ≥ ln (ln (n + 1 )) − ln (5/3 )

proof −
from assms ln-le-harm[of n] have ln (ln (real n + 1 )) ≤ ln (harm n) by simp
also from assms have . . . − ln (5/3 ) ≤ (

∑
p←primes-upto n. 1 / real p)

by (rule prime-harmonic-lower)
finally show ?thesis by − simp

qed

lemma Bseq-eventually-mono:
assumes eventually (λn. norm (f n) ≤ norm (g n)) sequentially Bseq g
shows Bseq f

proof −
from assms(1 ) obtain N where N :

∧
n. n ≥ N =⇒ norm (f n) ≤ norm (g n)

by (auto simp: eventually-at-top-linorder)
from assms(2 ) obtain K where K :

∧
n. norm (g n) ≤ K by (blast elim!:

BseqE)
{

fix n :: nat
have norm (f n) ≤ max K (Max {norm (f n) |n. n < N})

apply (cases n < N )
apply (rule max.coboundedI2 , rule Max.coboundedI , auto) []
apply (rule max.coboundedI1 , force intro: order .trans[OF N K ])
done

}
thus ?thesis by (blast intro: BseqI ′)
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qed

lemma Bseq-add:
assumes Bseq (f :: nat ⇒ ′a :: real-normed-vector)
shows Bseq (λx. f x + c)

proof −
from assms obtain K where K :

∧
x. norm (f x) ≤ K unfolding Bseq-def by

blast
{

fix x :: nat
have norm (f x + c) ≤ norm (f x) + norm c by (rule norm-triangle-ineq)
also have norm (f x) ≤ K by (rule K )
finally have norm (f x + c) ≤ K + norm c by simp

}
thus ?thesis by (rule BseqI ′)

qed

lemma convergent-imp-Bseq: convergent f =⇒ Bseq f
by (simp add: Cauchy-Bseq convergent-Cauchy)

We now use our last estimate to show that the prime harmonic series di-
verges. This is obvious, since it is bounded from below by ln(ln(n + 1))
minus some constant, which obviously tends to infinite.
Directly using the divergence of the harmonic series would also be possible
and shorten this proof a bit..
corollary prime-harmonic-series-unbounded:
¬Bseq (λn.

∑
p←primes-upto n. 1 / p) (is ¬Bseq ?f )

proof
assume Bseq ?f
hence Bseq (λn. ?f n + ln (5/3 )) by (rule Bseq-add)
have Bseq (λn. ln (ln (n + 1 )))
proof (rule Bseq-eventually-mono)

from eventually-ge-at-top[of 2 ::nat]
show eventually (λn. norm (ln (ln (n + 1 ))) ≤ norm (?f n + ln (5/3 )))

sequentially
proof eventually-elim

fix n :: nat assume n: n ≥ 2
hence norm (ln (ln (real n + 1 ))) = ln (ln (real n + 1 ))

using ln-ln-nonneg[of real n + 1 ] by simp
also have . . . ≤ ?f n + ln (5/3 ) using prime-harmonic-lower ′[OF n]

by (simp add: algebra-simps)
also have ?f n + ln (5/3 ) ≥ 0 by (intro add-nonneg-nonneg sum-list-nonneg)

simp-all
hence ?f n + ln (5/3 ) = norm (?f n + ln (5/3 )) by simp
finally show norm (ln (ln (n + 1 ))) ≤ norm (?f n + ln (5/3 ))

by (simp add: add-ac)
qed

qed fact
then obtain k where k: k > 0

∧
n. norm (ln (ln (real (n::nat) + 1 ))) ≤ k
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by (auto elim!: BseqE simp: add-ac)

define N where N = nat dexp (exp k)e
have N-pos: N > 0 unfolding N-def by simp
have real N + 1 > exp (exp k) unfolding N-def by linarith
hence ln (real N + 1 ) > ln (exp (exp k)) by (subst ln-less-cancel-iff ) simp-all
with N-pos have ln (ln (real N + 1 )) > ln (exp k) by (subst ln-less-cancel-iff )

simp-all
hence k < ln (ln (real N + 1 )) by simp
also have . . . ≤ norm (ln (ln (real N + 1 ))) by simp
finally show False using k(2 )[of N ] by simp

qed

corollary prime-harmonic-series-diverges:
¬convergent (λn.

∑
p←primes-upto n. 1 / p)

using prime-harmonic-series-unbounded convergent-imp-Bseq by blast

end
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