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Abstract

This entry is a formalisation of Chapter 4 (and parts of Chapter
3) of Apostol’s Introduction to Analytic Number Theory. The main
topics that are addressed are properties of the distribution of prime
numbers that can be shown in an elementary way (i.e. without the
Prime Number Theorem), the various equivalent forms of the PNT
(which imply each other in elementary ways), and consequences that
follow from the PNT in elementary ways. The latter include bounds
for the number of distinct prime factors of n, the divisor function d(n),
Euler’s totient function ¢(n), and lem(1,...,n).
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1 Auxiliary material

theory Prime-Distribution-Elementary-Library
imports
Zeta-Function. Zeta- Function
Prime-Number- Theorem. Prime-Counting- Functions
Stirling-Formula.Stirling-Formula
begin

lemma divisor-count-pos [intro]: n > 0 = divisor-count n > 0
by (auto simp: divisor-count-def intro!: Nat.groOl)

lemma divisor-count-eq-0-iff [simp]: divisor-count n = 0 «— n = 0
by (cases n = 0) auto

lemma divisor-count-pos-iff [simp): divisor-count n > 0 <— n > 0
by (cases n = 0) auto

lemma smallest-prime-beyond-eval:
prime n => smallest-prime-beyond n = n
—prime n = smallest-prime-beyond n = smallest-prime-beyond (Suc n)
proof —
assume prime n
thus smallest-prime-beyond n = n
by (rule smallest-prime-beyond-eq) auto
next
assume —prime n
show smallest-prime-beyond n = smallest-prime-beyond (Suc n)
proof (rule antisym)
show smallest-prime-beyond n < smallest-prime-beyond (Suc n)
by (rule smallest-prime-beyond-smallest)
(auto intro: order.trans|OF - smallest-prime-beyond-le])
next
have smallest-prime-beyond n # n
using prime-smallest-prime-beyond|of n] <—prime n» by metis
hence smallest-prime-beyond n > n
using smallest-prime-beyond-le[of n] by linarith
thus smallest-prime-beyond n > smallest-prime-beyond (Suc n)
by (intro smallest-prime-beyond-smallest) auto
qed
qed

lemma nth-prime-numeral:
nth-prime (numeral n) = smallest-prime-beyond (Suc (nth-prime (pred-numeral

n)))

by (subst nth-prime-Suc[symmetric]) auto

lemmas nth-prime-eval = smallest-prime-beyond-eval nth-prime-Suc nth-prime-numeral



lemma nth-prime-1 [simp]: nth-prime (Suc 0) = 3
by (simp add: nth-prime-eval)

lemma nth-prime-2 [simp]: nth-prime 2 = 5
by (simp add: nth-prime-eval)

lemma nth-prime-3 [simp]: nth-prime 8 = 7
by (simp add: nth-prime-eval)

lemma strict-mono-sequence-partition:
assumes strict-mono (f :: nat = 'a :: {linorder, no-top})
assumes z > f 0
assumes filterlim f at-top at-top
shows 3Jk. z € {fk.<f (Suck)}
proof —
define k where k = (LEAST k. f (Suc k) > z)
{
obtain n where z < fn
using assms by (auto simp: filterlim-at-top eventually-at-top-linorder)
also have fn < f (Suc n)
using assms by (auto simp: strict-mono-Suc-iff)
finally have 3n. f (Suc n) > z by auto
}
from Leastl-ex[OF this| have = < f (Suc k)
by (simp add: k-def)
moreover have fk < z
proof (cases k)
case (Suc k')
have k < k' if f (Suc k') > z
using that unfolding k-def by (rule Least-le)
with Suc show [k < z by (cases f k < x) (auto simp: not-le)
qed (use assms in auto)
ultimately show ?thesis by auto
qed

lemma nth-prime-partition:
assumes r > 2
shows 3Jk. z € {nth-prime k..<nth-prime (Suc k)}
using strict-mono-sequence-partition| OF strict-mono-nth-prime, of x| assms nth-prime-at-top
by simp

lemma nth-prime-partition':
assumes > 2
shows 3k. z € {real (nth-prime k)..<real (nth-prime (Suc k))}
by (rule strict-mono-sequence-partition)
(auto simp: strict-mono-Suc-iff assms
introl: filterlim-real-sequentially filterlim-compose] OF - nth-prime-at-top])



lemma between-nth-primes-imp-nonprime:
assumes n > nth-prime k n < nth-prime (Suc k)
shows —prime n
using assms by (metis Suc-lel not-le nth-prime-Suc smallest-prime-beyond-smallest)

lemma nth-prime-partition’”:
includes prime-counting-syntax
assumes z > (2 :: real)
shows z € {real (nth-prime (nat |7 x| — 1))..<real (nth-prime (nat |7 z|))}
proof —
obtain n where n: z € {nth-prime n..<nth-prime (Suc n)}
using nth-prime-partition’ assms by auto
have 7 (nth-prime n) = 7 x
unfolding 7-def using between-nth-primes-imp-nonprime n
by (intro prime-sum-upto-eql) (auto simp: le-nat-iff le-floor-iff)
hence realn =72 — 1
by simp
hence n-eq: n = nat |7 x| — 1 Suc n = nat |7 x|
by linarith+
with n show ?thesis
by simp
qged

lemma asymp-equivD-strong:
assumes f ~[F| g eventually (Az. fx # 0V gz # 0) F
shows ((A\z. fz/gz) —— 1) F
proof —
from assms(1) have (A\z. if fr=0ANgx=0thenlelsefz [/ gaz) — 1) F
by (rule asymp-equivD)
also have ?this «— ?thesis
by (intro filterlim-cong eventually-mono[OF assms(2)]) auto
finally show ?thesis .
qed

lemma hurwitz-zeta-shift:
fixes s :: complex
assumes ¢ > 0 and s # 1
shows hurwitz-zeta (a + real n) s = hurwitz-zeta a s — (> k<n. (a + real k)
powr —s)
proof (rule analytic-continuation-open[where f = As. hurwitz-zeta (a + real n)
s])
fix s assume s: s € {s. Re s > 1}
have (\k. (a + of-nat (k + n)) powr —s) sums hurwitz-zeta (a + real n) s
using sums-hurwitz-zeta[of a + real n s| s assms by (simp add: add-ac)
moreover have (Ak. (a + of-nat k) powr —s) sums hurwitz-zeta a s
using sums-hurwitz-zeta[of a s] s assms by (simp add: add-ac)
hence (\k. (a + of-nat (k 4+ n)) powr —s) sums



(hurwitz-zeta a s — (D k<n. (a + of-nat k) powr —s))
by (rule sums-split-initial-segment)
ultimately show hurwitz-zeta (a + real n) s = hurwitz-zeta a s — (3 k<n. (a
+ real k) powr —s)
by (simp add: sums-iff)
next
show connected (—{1::complex})
by (rule connected-punctured-universe) auto
qed (use assms in <auto intro!: holomorphic-intros open-halfspace-Re-gt exI[of -
2)»)

lemma pbernpoly-bigo: pbernpoly n € O(A-. 1)
proof —
from bounded-pbernpoly|of n] obtain ¢ where Az. norm (pbernpoly n z) < ¢
by auto
thus ?thesis by (intro bigoI[of - c]) auto
qed

lemma harm-le: n > 1 — harmn < Inn + 1
using euler-mascheroni-sequence-decreasing[of 1 n)
by (simp add: harm-ezpand)

lemma sum-upto-1 [simp]: sum-upto f 1 = f 1
proof —

have {0<..Suc 0} = {1} by auto

thus ?thesis by (simp add: sum-upto-altdef)
qged

lemma sum-upto-cong’ [cong]:

(An.n>0 = realn <z = fn=fn = z=12 = sum-upto fz =
sum-upto 'z’

unfolding sum-upto-def by (intro sum.cong) auto

lemma finite-primes-le: finite {p. prime p A real p < z}
by (rule finite-subset[of - {..nat |x]}]) (auto simp: le-nat-iff le-floor-iff)

lemma frequently-filtermap: frequently P (filtermap f F) = frequently (An. P (f n))
F
by (auto simp: frequently-def eventually-filtermap)

lemma frequently-mono-filter: frequently P F — F < F' = frequently P F'
using filter-leD[of F' F' Ax. =P z] by (auto simp: frequently-def)

lemma w-at-top: filterlim primes-pi at-top at-top
unfolding filterlim-at-top

proof safe
fix C :: real
define z0 where 20 = real (nth-prime (nat [maz 0 C1))



show eventually (Az. primes-pi x > C) at-top
using eventually-ge-at-top
proof eventually-elim
fix z assume z > 20
have C < real (nat [maz 0 C| + 1) by linarith
also have real (nat [maz 0 C'| + 1) = primes-pi z0
unfolding z0-def by simp

also have ... < primes-pi x by (rule m-mono) fact
finally show primes-pi ¢ > C .
qged
qged

lemma sum-upto-in-stirling-weak-bigo: (Az. sum-upto In x — z x Iln z + z) € O(In)
proof —
let of =Xz.xcxlnx — x4+ In (2 *xpixzx)/ 2
have In (factn) — (nxInn —n+In (2xpixn)/ 2)€{0.1/(12+n)} if n
> (0 for n :: nat
using In-fact-bounds[OF that] by (auto simp: algebra-simps)
hence (An. In (fact n) — ?fn) € O(An. 1 / real n)
by (intro bigol[of - 1/12] eventually-mono|OF eventually-gt-at-top|of 0]]) auto
hence (Az. In (fact (nat |z])) — ?f (nat |z])) € O(Az. 1 / real (nat |z]))
by (rule landau-0.big.compose)
(intro filterlim-compose|OF filterlim-nat-sequentially] filterlim-floor-sequentially)
also have (Az. 1 / real (nat |z])) € O(Az::real. In z) by real-asymp
finally have (\z. In (fact (nat |z])) — ?f (nat |z]|) + (9f (nat |z|) — ?fz)) €
O(Az. In x)
by (rule sum-in-bigo) real-asymp
hence (\z. In (fact (nat |z])) — ?fz) € O(\z. In x)
by (simp add: algebra-simps)
hence (Az. In (fact (nat |z])) — ?fz+ In (2 xpixxz) / 2) € O(Az. In z)
by (rule sum-in-bigo) real-asymp
thus ?thesis by (simp add: sum-upto-In-conv-In-fact algebra-simps)
qed

1.1 Various facts about Dirichlet series

lemma fds-mangoldt”:
fds mangoldt = fds-zeta * fds-deriv (fds moebius-mu)
proof —
have fds mangoldt = (fds moebius-mu * fds (An. of-real (In (real n)) :: 'a))
(is - = 2f) by (subst fds-mangoldt) auto
also have ... = fds-zeta * fds-deriv (fds moebius-mu)
proof (intro fds-eql)
fix n :: nat assume n: n > 0
have fds-nth f n = (3. d | d dvd n. moebius-mu d x of-real (In (real (n div
d))))
by (auto simp: fds-eq-iff fds-nth-mult dirichlet-prod-def)
also have ... = (>_d | d dvd n. moebius-mu d * of-real (In (real n / real d)))
by (intro sum.cong) (auto elim!: dvdE simp: In-mult split: if-splits)



also have ... = (> d | d dvd n. moebius-mu d * of-real (In n — In d))
using n by (intro sum.cong refl) (subst In-div, auto elim!: dvdFE)
also have ... = of-real (In n) * (3. d | d dvd n. moebius-mu d) —
(>-d | d dvd n. of-real (In d) * moebius-mu d)
by (simp add: sum-subtractf sum-distrib-left sum-distrib-right algebra-simps)
also have of-real (In n) x (3. d | d dvd n. moebius-mu d) = 0
by (subst sum-moebius-mu-divisors’) auto
finally show fds-nth ?f n = fds-nth (fds-zeta x fds-deriv (fds moebius-mu) :: 'a
fds) n
by (simp add: fds-nth-mult dirichlet-prod-altdef! fds-nth-deriv sum-negf scaleR-conv-of-real)
qed
finally show ?thesis .
qed

lemma sum-upto-divisor-suml:
sum-upto (An. Y. d | d dvd n. f d :: real) © = sum-upto (An. fn x floor (z / n))
x
proof —
have sum-upto (An. > d | d dvd n. f d :: real) z =
sum-upto (An. fn x real (nat (floor (z / n)))) =
using sum-upto-dirichlet-prod[of f A-. 1 z
by (simp add: dirichlet-prod-def sum-upto-altdef)
also have ... = sum-upto (An. fn * floor (z / n))
unfolding sum-upto-def by (intro sum.cong) auto
finally show ?thesis .
qged

lemma sum-upto-divisor-sum2:

sum-upto (An. Y d | d dvd n. f d :: real) £ = sum-upto (An. sum-upto f (z / n))
x

using sum-upto-dirichlet-prod[of A-. 1 f x] by (simp add: dirichlet-prod-altdef1)

lemma sum-upto-moebius-times-floor-linear:
sum-upto (An. moebius-mu n x |x / real n]) x = (if x > 1 then 1 else 0)
proof —
have real-of-int (sum-upto (An. moebius-mu n * |z / real n|) x) =
sum-upto (An. moebius-mu n % of-int |x / real n]) x
by (simp add: sum-upto-def)
also have ... = sum-upto (An. >_ d | d dvd n. moebius-mu d :: real) x
using sum-upto-divisor-sum1 [of moebius-mu z] by auto
also have ... = sum-upto (An. if n = 1 then 1 else 0) z
by (intro sum-upto-cong sum-moebius-mu-divisors’ refl)
also have ... = real-of-int (if v > 1 then 1 else 0)
by (auto simp: sum-upto-def)
finally show ?thesis unfolding of-int-eq-iff .
qed

lemma In-fact-conv-sum-mangoldt:
sum-upto (An. mangoldt n % |z / real n]) z = In (fact (nat |z]))



proof —
have sum-upto (An. mangoldt n x of-int |z / real n|) z =
sum-upto (An. Y. d | d dvd n. mangoldt d :: real) x
using sum-upto-divisor-sum1[of mangoldt z] by auto
also have ... = sum-upto (An. of-real (In (real n)))
by (intro sum-upto-cong mangoldt-sum refl) auto
also have ... = (> ne{0<..nat |z]}. In n)
by (simp add: sum-upto-altdef)
also have ... = In ([[{0<..nat |z|})
unfolding of-nat-prod by (subst In-prod) auto
also have {0<..nat |z|} = {1..nat |z]} by auto
also have []... = fact (nat |z])
by (simp add: fact-prod)
finally show ?thesis by simp
qed

1.2 Facts about prime-counting functions

lemma abs-m [simp]: |primes-pi x| = primes-pi ©
by (subst abs-of-nonneg) auto

lemma 7-less-self:

includes prime-counting-syntax

assumes z > 0

shows 7wz <z
proof —

have 7 2 < (> ne{l<..nat |z|}. 1)

unfolding 7w-def prime-sum-upto-altdef2 by (intro sum-mono2) (auto dest:

prime-gt-1-nat)

also have ... = real (nat |z| — 1)
using assms by simp
also have ... < z using assms by linarith
finally show ?thesis .
qed

lemma 7-le-self:

includes prime-counting-syntax

assumes zr > |

shows wz <z — 1
proof —

have 7 2z < (3" ne{i<..nat |z|}. 1)

unfolding 7-def prime-sum-upto-altdef2 by (intro sum-mono2) (auto dest:

prime-gt-1-nat)

also have ... = real (nat |z] — 1)
using assms by simp
also have ... < x — [ using assms by linarith
finally show ?thesis .
qed
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lemma 7-le-self:
includes prime-counting-syntax
assumes x > (
shows 7wz <z
using 7-less-self[of x] assms by (cases x = 0) auto

1.3 Strengthening ‘Big-O’ bounds

The following two statements are crucial: They allow us to strengthen a
‘Big-O’ statement for n — oo or x — oo to a bound for all n > ng or all
x > xg under some mild conditions.

This allows us to use all the machinery of asymptotics in Isabelle and still
get a bound that is applicable over the full domain of the function in the
end. This is important because Newman often shows that f(x) € O(g(z))

and then writes . .
Z f(a) = Z O(g(ﬁ))

n<x n<x
which is not easy to justify otherwise.

lemma natfun-bigoFE:
fixes f :: nat = -
assumes bigo: f € O(g) and nz: An.n>n0 = gn # 0
obtains ¢ where ¢ > 0 An. n > n0 = norm (fn) < ¢ * norm (g n)
proof —
from bigo obtain ¢ where c¢: ¢ > 0 eventually (An. norm (f n) < ¢ * norm (g
n)) at-top
by (auto elim: landau-0.bigFE)
then obtain n0’ where n0”: An. n > n0’ = norm (f n) < ¢ * norm (g n)
by (auto simp: eventually-at-top-linorder)
define ¢’ where ¢’ = Maz ((An. norm (fn) / norm (gn)) *(insert n0 {n0..<n0'}))
have norm (f n) < maxz 1 (maz ¢ ¢’) * norm (g n) if n > n0 for n
proof (cases n > n0’)
case False
with that have norm (fn) / norm (g n) < ¢’
unfolding c’-def by (intro Maz.coboundedl) auto
also have ... < maz 1 (maz ¢ ¢’) by simp
finally show ?thesis using nz[of n] that by (simp add: field-simps)
next

case True
hence norm (f n) < ¢ x norm (g n) by (rule n0")
also have ... < maz 1 (maz ¢ ¢’) * norm (g n)

by (intro mult-right-mono) auto
finally show ?thesis .
qed
with that[of maz 1 (maz c ¢')] show Zthesis by auto
qed

lemma bigoE-bounded-real-fun:
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fixes f g :: real = real

assumes f € 0(g)

assumes Az. z > 20 = |gz| > cg cg > 0

assumes Ab. b > 20 = bounded (f ‘ {x0..b})

shows Je¢>0. V>0, |fz| < ¢ |g zf

proof —

from assms(1) obtain ¢ where c: ¢ > 0 eventually (Az. |fz| < ¢ * |g z|) at-top
by (elim landau-0.bigE) auto

then obtain b where b: Az. ¢ > b = |fz| < ¢ x |g z]
by (auto simp: eventually-at-top-linorder)

have bounded (f ¢ {x0..maz x0 b}) by (intro assms) auto

then obtain C where C: Az. z € {20..maz 20 b} = |fz| <
unfolding bounded-iff by fastforce

A\
Q

define ¢’ where ¢’ = maz ¢ (C / ¢g)
have |fz| < ¢’ * |g z| if z > 20 for z
proof (cases x > b)
case Fulse
then have |fz| < C
using C that by auto
with False have |fz| / |gz| < C / ¢y
by (meson abs-ge-zero assms frac-le landau-omega. R-trans that)
also have ... < ¢’/ by (simp add: c¢’-def)
finally show |fz| < ¢/ x |g 7|
using that False assms(2)[of x| assms(8) by (auto simp add: divide-simps
split: if-splits)

next
case True
hence |f z| < ¢ * |g z| by (intro b) auto
also have ... < ¢’ x |g x| by (intro mult-right-mono) (auto simp: c¢'-def)
finally show ?thesis .
qed

moreover from c¢(1) have ¢’ > 0 by (auto simp: c¢’-def)
ultimately show ?thesis by blast
qed

lemma sum-upto-asymptotics-lift-nat-real-auz:
fixes f :: nat = real and g :: real = real
assumes bigo: (An. (O_k=1..n. fk) — g (real n)) € O(An. h (real n))
assumes g-bigo-self: (An. g (real n) — g (real (Suc n))) € O(An. h (real n))
assumes h-bigo-self: (An. h (real n)) € O(An. h (real (Suc n)))
assumes h-pos: A\z. 2 > 1 = hz >0
assumes mono-g: mono-on {1..} g V mono-on {1..} (Ax. — g z)
assumes mono-h: mono-on {1..} h V mono-on {1..} (Az. — h x)
shows dc¢>0.Va>1. sum-upto fx — g < cxhz

proof —
have h-nz: h (real n) # 0 if n > 1 for n

using h-pos|of n| that by simp

12



from natfun-bigoE[OF bigo h-nz] obtain ¢! where
cl: ¢c1 >0 An.n> 1= norm (> k=1..n. fk) — g (real n)) < ¢l * norm
(h (real n))
by auto
from natfun-bigoE[OF g-bigo-self h-nz] obtain ¢2 where
c2:¢2 >0 An.n> 1= norm (g (real n) — g (real (Suc n))) < ¢2 x norm
(h (real n))
by auto
from natfun-bigoE[OF h-bigo-self h-nz] obtain ¢3 where
e3: ¢8>0 An.n> 1= norm (h (real n)) < ¢3 * norm (h (real (Suc n)))
by auto

fix = :: real assume z: © > 1
define n where n = nat ||
from z have n: n > 1 unfolding n-def by linarith

have (> k= 1..n. fk) — gz < (¢l + ¢2) % h (real n) using mono-g
proof
assume mono: mono-on {1..} (Az. —g x)
from z have z < real (Suc n)
unfolding n-def by linarith
hence (> k=1..n. fk) —ga < (O k=1..n.fk) —gn+ (gn — g (Sucn))
using mono-onD[OF mono, of x real (Suc n)] = by auto
also have ... < norm (> _k=1..n. fk) — gn) + norm (g n — g (Suc n))

by simp

also have ... < ¢1 x norm (h n) + ¢2 x norm (h n)
using n by (intro add-mono c1 ¢2) auto

also have ... = (¢l + ¢2)x hn

using h-pos|of real n] n by (simp add: algebra-simps)
finally show ?thesis .
next
assume mono: mono-on {1..} ¢
have O k=1..n. fk) —ga < O_k=1..n. fk) —gn
using z by (intro diff-mono mono-onD[OF mono]) (auto simp: n-def)
also have ... < ¢l * h (real n)
using cI(2)[of n] n h-pos|of n] by simp
also have ... < (¢l + ¢2) = h (real n)
using c2 h-pos[of n] n by (intro mult-right-mono) auto
finally show ?thesis .
qed
also have (c¢1 + ¢2) x h (real n) < (¢1 + ¢2) x (I + ¢8) x hz
using mono-h
proof
assume mono: mono-on {1..} (Az. —h z)
have (c1 + ¢2) = h (real n) < (c¢I + ¢2) * (¢8 * h (real (Suc n)))
using ¢3(2)[of n] n h-pos[of n] h-pos[of Suc n] c1(1) c2(1)
by (intro mult-left-mono) (auto)
also have ... = (¢I + ¢2) x ¢8 * h (real (Suc n))

13



by (simp add: mult-ac)
also have ... < (¢I + ¢2) x (I + ¢8) * h (real (Suc n))
using c1(1) c2(1) ¢5(1) h-pos|of Suc n] by (intro mult-left-mono mult-right-mono)
auto
also from z have z < real (Suc n)
unfolding n-def by linarith
hence (cI + ¢2) % (1 + ¢8) * h (real (Sucn)) < (cI + ¢2)* (1 + ¢3)*hz
using c1(1) ¢2(1) ¢5(1) mono-onD[OF mono, of © real (Suc n)]
by (intro mult-left-mono) (auto simp: n-def)
finally show (cI + ¢2) % h (realn) < (c1 + ¢2) * (I + ¢3) x hzx.
next
assume mono: mono-on {1..} h
have (c¢1 + ¢2) « h (real n) = 1 x ((cI + c2) % h (real n)) by simp
also have ... < (I + ¢3) * ((c1 + ¢2) * h (real n))
using cI(1) ¢2(1) ¢3(1) h-pos[of n] z n by (intro mult-right-mono) auto
also have ... = (1 + ¢8) * (c1 + ¢2) = h (real n)
by (simp add: mult-ac)
also have ... < (I + ¢3) % (cl + c2)*hz
using x ¢1(1) ¢2(1) ¢5(1) h-pos[of n] n
by (intro mult-left-mono mono-onD[OF mono]) (auto simp: n-def)
finally show (cI + ¢2) x h (realn) < (¢l + ¢2)* (1 + c¢3) xhzx
by (simp add: mult-ac)
qed
also have (> k = 1..n. fk) = sum-upto f z
unfolding sum-upto-altdef n-def by (intro sum.cong) auto
finally have sum-upto foz — gz < (¢l + ¢2) * (1 + ¢3) * hz .
}
moreover have (¢ + ¢2) x (1 + ¢3) > 0
using c¢1(1) ¢2(1) ¢3(1) by (intro mult-pos-pos add-pos-pos) auto
ultimately show ¢thesis by blast
qed

lemma sum-upto-asymptotics-lift-nat-real:
fixes f :: nat = real and g :: real = real
assumes bigo: (An. (> k=1..n. fk) — g (real n)) € O(An. h (real n))
assumes g-bigo-self: (An. g (real n) — g (real (Suc n))) € O(An. h (real n))
assumes h-bigo-self: (An. h (real n)) € O(An. h (real (Suc n)))
assumes h-pos: Az. x > 1 = hz > 0
assumes mono-g: mono-on {1..} g V mono-on {1..} (A\x. — g x)
assumes mono-h: mono-on {1..} h V mono-on {1..} (Az. — h z)
shows Je¢>0.Vaz>1. |sum-upto fz —ga| < cxhx
proof —
have d¢>0.Vz>1. sum-upto fx — gx < c* hx
by (intro sum-upto-asymptotics-lift-nat-real-auz assms)
then obtain ¢! where c1: ¢l > 0 N\z. ¢ > 1 = sum-upto fz — gx < ¢l *
hx
by auto

have (An. —(g (real n) — g (real (Suc n)))) € O(An. h (real n))
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by (subst landau-o0.big.uminus-in-iff) fact
also have (An. —(g (real n) — g (real (Suc n)))) = (An. g (real (Suc n)) — ¢
(real n))
by simp
finally have (An. g (real (Suc n)) — g (real n)) € O(An. h (real n)) .
moreover {
have (An. —(>_k=1..n. fk) — g (real n))) € O(An. h (real n))
by (subst landau-o.big.uminus-in-iff) fact
also have (An. —(>_k=1..n. fk) — g (real n))) =
(An. O_k=1..n. —f k) + g (real n)) by (simp add: sum-negf)
finally have (An. (3" k=1..n. — fk) + ¢ (real n)) € O(An. h (real n)) .
}
ultimately have J¢>0. Vz>1. sum-upto (An. —fn) z — (—gz) < cx hux
using mono-g
by (intro sum-upto-asymptotics-lift--nat-real-aux assms) (simp-all add: disj-commute)
then obtain c2 where ¢2: ¢2 > 0 Az. ¢ > 1 = sum-upto (An. — fn) z + g
r<ec2xhz
by auto

fix z :: real assume z: z > 1
have sum-upto fz — gz < mazx cl c2 x hx
using h-pos|of x| x by (intro order.trans[OF c1(2)] mult-right-mono) auto
moreover have sum-upto (An. —fn) ¢ + g < maz cl c2 * hx
using h-pos|of x| x by (intro order.trans|OF c2(2)] mult-right-mono) auto
hence —(sum-upto fz — gx) < maz ¢l c2 x hx
by (simp add: sum-upto-def sum-negf)
ultimately have |sum-upto fz — g z| < maz cI ¢2 * h x by linarith
}
moreover from cI(1) ¢2(1) have maz clI ¢2 > 0 by simp
ultimately show “thesis by blast
qed

lemma (in factorial-semiring) primepow-divisors-induct [case-names zero unit fac-
tor]:
assumes P 0 Az. is-unit v = P x
Ap kz primep = k>0 = -pdvdx = Px = P (p "k« x)
shows Pz
proof —
have finite (prime-factors z) by simp
thus ?thesis
proof (induction prime-factors x arbitrary: x rule: finite-induct)
case empty
hence prime-factors z = {} by metis
hence prime-factorization x = {#} by simp
thus ?case using assms(1,2) by (auto simp: prime-factorization-empty-iff)
next
case (insert p A x)
define k£ where k£ = multiplicity p =

15



have k > 0 using insert.hyps
by (auto simp: prime-factors-multiplicity k-def)
have p: p € prime-factors x using insert.hyps by auto
from p have z # 0 —is-unit p by (auto simp: in-prime-factors-iff)

from multiplicity-decompose’|OF this] obtain y where y: © = p ~k % y —p
dvd y
by (auto simp: k-def)
have prime-factorization x = replicate-mset k p + prime-factorization y
using p <k > 0> y unfolding y
by (subst prime-factorization-mult)
(auto simp: prime-factorization-prime-power in-prime-factors-iff)
moreover from y p have p ¢ prime-factors y
by (auto simp: in-prime-factors-iff)
ultimately have prime-factors y = prime-factors z — {p}
by auto
also have ... = A
using insert.hyps by auto
finally have P y using insert by auto
thus P z
unfolding y using y <k > 0> p by (intro assms(3)) (auto simp: in-prime-factors-iff)
qed
qed

end

2 Miscellaneous material

theory More-Dirichlet-Misc
imports
Prime-Distribution- Elementary-Library
Prime-Number- Theorem. Prime-Counting- Functions
begin

2.1 Generalised Dirichlet products

definition dirichlet-prod’ :: (nat = 'a :: comm-semiring-1) = (real = 'a) = real
= 'a where
dirichlet-prod’ f g x = sum-upto (Am. fm * g (z / real m))

lemma dirichlet-prod’-one-left:
dirichlet-prod’ (An. if n = 1 then 1 else 0) fx = (if x > 1 then f z else 0)
proof —
have dirichlet-prod’ (An. if n = 1 then 1 else 0) fz =
OCi|0<iNreali <z (if i = Suc 0 then 1 else 0) = f (z / real 7))
by (simp add: dirichlet-prod’-def sum-upto-def)

also have ... = (> ie€(if x > 1 then {1:nat} else {}). fz)
by (intro sum.mono-neutral-cong-right) (auto split: if-splits)
also have ... = (if ¢ > 1 then f z else 0)

16



by simp
finally show ?thesis .
qed

lemma dirichlet-prod’-cong:
assumes An.n >0 = realn <z = fn=Ff"n
assumes \y. y > 1 = y<z=gy=g"y
assumes r = 1’
shows dirichlet-prod’ f g x = dirichlet-prod’ f' g’ z'
unfolding dirichlet-prod’-def
by (intro sum-upto-cong’ assms, (subst assms | simp add: assms field-simps)+)

lemma dirichlet-prod’-assoc:
dirichlet-prod’ f (Ay. dirichlet-prod’ g h y) x = dirichlet-prod’ (dirichlet-prod f g)
hx
proof —
have dirichlet-prod’ f (\y. dirichlet-prod’ g h y) = =
O-m|m>0Arealm<z.>n|n>0Arealn<z/m fms*gnsx*
h (z / (m * n)))
by (simp add: algebra-simps dirichlet-prod’-def dirichlet-prod-def
sum-upto-def sum-distrib-left sum-distrib-right)
also have ... = (3] (m,n)e(SIGMA m:{m. m > 0 A realm < z}. {n. n> 0 A
realn < z / m}).
fm*xgnxh(z/(m=*n)))
by (subst sum.Sigma) auto
also have ... = (3 (mn, m)e(SIGMA mn:{mn. mn > 0 A real mn < z}. {m.
m dvd mn}).
fmx g (mndivm) =« h (z/ mn))
by (rule sum.reindez-bij-witness[of - A\(mn, m). (m, mn div m) A(m, n). (m *
n, m)))
(auto simp: case-prod-unfold field-simps dest: dvd-imp-le)
also have ... = dirichlet-prod’ (dirichlet-prod f g) h x
by (subst sum.Sigma [symmetric])
(simp-all add: dirichlet-prod’-def dirichlet-prod-def sum-upto-def
algebra-simps sum-distrib-left sum-distrib-right)
finally show ?thesis .
qged

lemma dirichlet-prod’-inversionl:
assumes Vz>1. g x = dirichlet-prod’ a fz x > 1
dirichlet-prod a ainv = (An. if n = 1 then 1 else 0)
shows [z = dirichlet-prod’ ainv g x
proof —
have dirichlet-prod’ ainv g x = dirichlet-prod’ ainv (dirichlet-prod’ a f) x
using assms by (intro dirichlet-prod’-cong) auto
also have ... = dirichlet-prod’ (An. if n = 1 then 1 else 0) fz
using assms by (simp add: dirichlet-prod’-assoc dirichlet-prod-commutes)
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also have ... = fzx
using assms by (subst dirichlet-prod’-one-left) auto
finally show ?thesis ..
qed

lemma dirichlet-prod’-inversion2:
assumes V>1. fz = dirichlet-prod’ ainv g x © > 1
dirichlet-prod a ainv = (An. if n = 1 then 1 else 0)
shows ¢ z = dirichlet-prod’ a f
proof —
have dirichlet-prod’ a f x = dirichlet-prod’ a (dirichlet-prod’ ainv g) x
using assms by (intro dirichlet-prod’-cong) auto
also have ... = dirichlet-prod’ (An. if n = 1 then 1 else 0) g z
using assms by (simp add: dirichlet-prod’-assoc dirichlet-prod-commutes)
also have ... =g«
using assms by (subst dirichlet-prod’-one-left) auto
finally show ?thesis ..
qed

lemma dirichlet-prod’-inversion:
assumes dirichlet-prod a ainv = (An. if n = 1 then 1 else 0)
shows (Vz>1. g x = dirichlet-prod’ a f x) +— (Vaz>1. f x = dirichlet-prod’
ainv g x)
using dirichlet-prod’-inversionl|of g a f - ainv] dirichlet-prod’-inversion2|of f
ainv g - aj
assms by blast

lemma dirichlet-prod’-inversion’:

assumes a 1 *x y = 1

defines ainv = dirichlet-inverse a y

shows (Va>1. g x = dirichlet-prod’ a f z) «— (Vaz>1. fx = dirichlet-prod’
ainv g x)

unfolding ainv-def

by (intro dirichlet-prod’-inversion dirichlet-prod-inverse assms)

lemma dirichlet-prod’-floor-conv-sum-upto:
dirichlet-prod’ f (Az. real-of-int (floor x)) x = sum-upto (An. sum-upto f (x / n))
x
proof —
have [simp]: sum-upto (A-. 1 :: real) x = real (nat |z]) for z
by (simp add: sum-upto-altdef)
show ?thesis
using sum-upto-dirichlet-prod[of An. 1::real f] sum-upto-dirichlet-prod[of f An.
1::real]
by (simp add: dirichlet-prod’-def dirichlet-prod-commutes)
qed

lemma (in completely-multiplicative-function) dirichlet-prod-self:

18



dirichlet-prod f f n = fn * of-nat (divisor-count n)
proof (cases n = 0)
case Fulse
have dirichlet-prod f fn= O (r,d) | r*d=n.f (r x d))
by (simp add: dirichlet-prod-altdef2 mult)

also have ... = (> (r, d) | r x d = n. fn)
by (intro sum.cong) auto
also have ... = fn * of-nat (card {(r, d). r x d = n})

by (simp add: mult.commaute)
also have bij-betw fst {(r, d). r x d = n} {r. r dvd n}
by (rule bij-betwI[of - - - Ar. (r, n div r)]) (use False in auto)
hence card {(r, d). r * d = n} = card {r. r dvd n}
by (rule bij-betw-same-card)
also have ... = divisor-count n
by (simp add: divisor-count-def)
finally show ?thesis .
qed auto

lemma completely-multiplicative-imp-moebius-mu-inverse:
fixes f :: nat = ‘a :: {comm-ring-1}
assumes completely-multiplicative-function f
shows  dirichlet-prod f (An. moebius-mu n * fn) n = (if n = 1 then 1 else 0)
proof —
interpret completely-multiplicative-function f by fact
have [simp]: fds f # 0 by (auto simp: fds-eq-iff)
have dirichlet-prod f (An. moebius-mu n * fn) n =
O (ry d) | 7 x d = n. moebius-mu r *x f (r x d))
by (subst dirichlet-prod-commutes)
(simp add: fds-eq-iff fds-nth-mult fds-nth-fds dirichlet-prod-altdef2 mult-ac

mult)
also have ... = (> (r, d) | r x d = n. moebius-mu r * f n)
by (intro sum.cong) auto
also have ... = dirichlet-prod moebius-mu (A-. 1) n x fn

by (simp add: dirichlet-prod-altdef2 sum-distrib-right case-prod-unfold mult)
also have dirichlet-prod moebius-mu (A-. 1) n = fds-nth (fds moebius-mu *
fds-zeta) n
by (simp add: fds-nth-mult)
also have fds moebius-mu * fds-zeta = 1
by (simp add: mult-ac fds-zeta-times-moebius-mu)
also have fds-nth 1 n x fn = fds-nth 1 n
by (auto simp: fds-eq-iff fds-nth-one)
finally show ?thesis by (simp add: fds-nth-one)
qged

lemma dirichlet-prod-inversion-completely-multiplicative:
fixes a :: nat = 'a :: comm-ring-1
assumes completely-multiplicative-function a
shows (Va>1. gz = dirichlet-prod’ o f z) «—
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(Vaz>1. fx = dirichlet-prod’ (An. moebius-mu n % a n) g )
by (intro dirichlet-prod’-inversion ext completely-multiplicative-imp-moebius-mu-inverse
assms)

lemma divisor-sigma-conv-dirichlet-prod:

divisor-sigma x n = dirichlet-prod (An. real n powr ) (A-. 1) n
proof (cases n = 0)

case Fulse

have fds (divisor-sigma x) = fds-shift x fds-zeta * fds-zeta

using fds-divisor-sigmalof x] by (simp add: mult-ac)

thus ?thesis using Fualse by (auto simp: fds-eq-iff fds-nth-mult)

qed simp-all

2.2 Legendre’s identity

definition legendre-auz :: real = nat = nat where
legendre-aux x p = (if prime p then (> m | m > 0 A real (p ~m) < z. nat |z /
p T m]) else 0)

lemma legendre-auz-not-prime [simp]: —prime p = legendre-auzx z p = 0
by (simp add: legendre-aux-def)

lemma legendre-auz-eq-0:
assumes real p > x
shows legendre-auz z p = 0
proof (cases prime p)

case True
have [simp]: —real p " m < z if m > 0 for m
proof —
have z < real p ~ 1 using assms by simp
also have ... < realp "~ m

using prime-gt-1-nat[OF True] that by (intro power-increasing) auto

finally show ?thesis by auto

qed

from assms have x: {m. m > 0 A real (p " m) < z} = {}
using prime-gt-1-nat[OF True] by auto

show ?thesis unfolding legendre-auz-def
by (subst %) auto

qed (auto simp: legendre-auz-def)

lemma legendre-aux-posD:
assumes legendre-aux x p > 0
shows prime p real p < z
proof —
show real p < z using legendre-auz-eq-0[of x p] assms
by (cases real p < x) auto
qed (use assms in <auto simp: legendre-auz-def split: if-splitsy)

lemma exponents-le-finite:
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assumes p > (1 :: nat) k> 0
shows finite {i. real (p ~(k x4+ 1)) < z}
proof (rule finite-subset)
show {i. real (p ~(k *x i+ 1)) < z} C {..nat |z]|}
proof safe
fix i assume i: real (p “(kxi+ 1) <z
have i < 2 7
by (rule less-exp)
also from assms have i < k x ¢ + [ by (cases k) auto
hence 2 7 < (2 " (kx4 + 1) :: nat)
using assms by (intro power-increasing) auto

also have ... < p 7 (k x ¢ + [) using assms by (intro power-mono) auto
also have real ... < x using i by simp
finally show ¢ < nat |z] by linarith
qed
qed auto

lemma finite-sum-legendre-aux:
assumes prime p
shows finite {m. m > 0 A real (p ~m) < z}
by (rule finite-subset|OF - exponents-le-finite[where k = 1 and [ = 0 and p =

pll)

(use assms prime-gt-1-nat[of p] in auto)

lemma legendre-auz-set-eq:
assumes prime p x > 1
shows {m.m > 0 A real (p ~m) < z} = {0<..nat |log (real p) z|}
using prime-gt-1-nat|OF assms(1)] assms
by (auto simp: le-nat-iff le-log-iff le-floor-iff powr-realpow)

lemma legendre-aux-altdef1:
legendre-aux x p = (if prime p A x > 1 then
(3" me{0<..nat |log (real p) x|}. nat |z / p ~ m]) else 0)
proof (cases prime p Az < 1)
case Fulse
thus ?thesis using legendre-aux-set-eq[of p x] by (auto simp: legendre-auz-def)
next
case True
have [simp]: —(real p ~m < z) for m
proof —
have z < real 1 using True by simp
also have real 1 < real (p ~ m)
unfolding of-nat-le-iff by (intro one-le-power) (use prime-gt-1-nat[of p] True
in auto)
finally show —(real p = m < z) by auto
qed
have {m. m > 0 A real (p ~m) < z} = {} by simp
with True show ?thesis by (simp add: legendre-aux-def)
qed
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lemma legendre-aux-altdef2:
assumes x > 1 prime p real p ~ Suc k > x
shows legendre-auz z p = (3 me{0<..k}. nat |z / p " m])
proof —
have legendre-auz xp = (D_m | m > 0 A real (p “m) < z. nat |z / p " m])
using assms by (simp add: legendre-auz-def)
also have ... = (3. me{0<..k}. nat |z / p ~m])
proof (intro sum.mono-neutral-left)
show {m. 0 < m A real (p "~ m) <z} C {0<..k}
proof safe
fix m assume m > O real (p " m) <z
hence real p ~m < z by simp
also note <z < real p ~ Suc k»
finally show m € {0<..k} using <m > 0>
using prime-gt-1-nat[OF <prime ps] by (subst (asm) power-strict-increasing-iff)
auto
qed
qed (use prime-gt-0-nat[of p] assms in <auto simp: field-simps»)
finally show ?thesis .
qed

theorem legendre-identity:

sum-upto In x = prime-sum-upto (Ap. legendre-auz x p x In p) x
proof —

define S where S = (SIGMA p:{p. prime p A real p < z}. {i. 7 > 0 A real (p
") < })

have prime-power-leD: real p < z if real p ~ i < x prime p i > 0 for p i
proof —
have realp 1 < realp "¢
using that prime-gt-1-nat[of p] by (intro power-increasing) auto
also have ... < z by fact
finally show real p < = by simp
qed

have sum-upto In © = sum-upto (An. mangoldt n * real (nat |z / real n|)) =
by (rule sum-upto-ln-conv-sum-upto-mangoldt)
also have ... = (3 (p, @) | prime p A 0 < i A real (p " %) < z.
Inp x real (nat |z / real (p ~i)]))
by (subst sum-upto-primepows[where g = Ap 4. In p x real (nat |z / real (p ~

1N

(auto simp: mangoldt-non-primepow)

also have ... = (3 (p,i)€S. In p x real (nat |z / p ~i]))
using prime-power-leD by (intro sum.cong refl) (auto simp: S-def)
also have ... = O p | primep A real p < z. > i |i> 0 A real (p " 7) < z.

Inpx real (nat |z / p " i]))
proof (unfold S-def, subst sum.Sigma)
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have {p. prime p A real p < z} C {..nat |z]}
by (auto simp: le-nat-iff le-floor-iff)
thus finite {p. prime p A real p < z}
by (rule finite-subset) auto
next
show V pe{p. prime p A real p < z}. finite {i. 0 < i A real (p " i) < z}
by (intro balll finite-sum-legendre-aux) auto
qged auto
also have ... = (> p | prime p A real p < z. In p *
real (347> 0 Areal (p " 1) <z (nat |z / p " i])))
by (simp add: sum-distrib-left)

also have ... = 3 p | prime p A real p < z. In p * real (legendre-aux z p))
by (intro sum.cong refl) (auto simp: legendre-auz-def)
also have ... = prime-sum-upto (Ap. In p * real (legendre-auz z p)) z

by (simp add: prime-sum-upto-def)
finally show ?thesis by (simp add: mult-ac)
qed

lemma legendre-identity”:
fact (nat |z]) = ([[p | prime p A real p < z. p ~ legendre-auz x p)
proof —
have fin: finite {p. prime p A real p < z}
by (rule finite-subset[of - {..nat |x]}]) (auto simp: le-nat-iff le-floor-iff)
have real (fact (nat |z])) = exp (sum-upto In x)
by (subst sum-upto-in-conv-In-fact) auto
also have sum-upto In x = prime-sum-upto (Ap. legendre-aux x p * In p)
by (rule legendre-identity)
also have exp ... = ([[p | prime p A real p < x. exp (In (real p) * legendre-auz
z p))
unfolding prime-sum-upto-def using fin by (subst exp-sum) (auto simp:
mult-ac)
also have ... = ([[p | prime p A real p < x. real (p ~ legendre-auzx x p))
proof (intro prod.cong refl)
fix p assume p € {p. prime p A real p < x}
hence p > 0 using prime-gt-0-nat[of p] by auto
from «p > 0» have exp (In (real p) x legendre-aux x p) = real p powr real
(legendre-aux z p)
by (simp add: powr-def)

also from «p > 0> have ... = real (p ~ legendre-aux z p)
by (subst powr-realpow) auto

finally show exp (In (real p) * legendre-auz x p) = ... .

qed

also have ... = real ([[p | prime p A real p < z. p ~ legendre-auz  p)
by simp

finally show ?thesis unfolding of-nat-eq-iff .

qed
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2.3 A weighted sum of the Mobius p function

context

fixes M :: real = real

defines M = (Az. sum-upto (An. moebius-mu n / n) x)
begin

lemma abs-sum-upto-moebius-mu-over-n-less:
assumes z: ¢ > 2
shows |Mz| < 1
proof —
have = * sum-upto (An. moebius-mu n / n) x — sum-upto (An. moebius-mu n *
frac (z / n)) x =
sum-upto (An. moebius-mu n x (z / n — frac (z / n))) x
by (subst mult.commute|of x])
(simp add: sum-upto-def sum-distrib-right sum-subtractf ring-distribs)
also have (An. z / real n — frac (z / real n)) = (An. of-int (floor (z / real n)))
by (simp add: frac-def)
also have sum-upto (An. moebius-mu n * real-of-int |z / real n|) x =
real-of-int (sum-upto (An. moebius-mu n x |x / real n]) z)
by (simp add: sum-upto-def)
also have ... = 1
using z by (subst sum-upto-moebius-times-floor-linear) auto
finally have eq: z « Mz = 1 + sum-upto (An. moebius-mu n * frac (z / n)) z
by (simp add: M-def)

have z x |M z| = |z x M z|
using z by (simp add: abs-mult)
also note eq
also have |1 + sum-upto (An. moebius-mu n * frac (z / n)) z| <
1 + |sum-upto (An. moebius-mu n * frac (z / n)) z|
by linarith

also have |sum-upto (An. moebius-mu n * frac (x / n)) x| <
sum-upto (An. |moebius-mu n * frac (z / n)|) x
unfolding sum-upto-def by (rule sum-abs)
also have ... < sum-upto (An. frac (z / n)) x
unfolding sum-upto-def by (intro sum-mono) (auto simp: moebius-mu-def
abs-mult)
also have ... = (3 ne{0<..nat |z]}. frac (z / n))

by (simp add: sum-upto-altdef)
also have {0<..nat |z|} = insert 1 {I<..nat |z|}
using = by (auto simp: le-nat-iff le-floor-iff)
also have (3 ne.... frac (z / n)) = frac z + (O_ne{l<.nat |z]}. frac (z /
w)

by (subst sum.insert) auto

also have (Y ne{1<..nat |z]}. frac (z / n)) < (O ne{l<.nat |z]}. 1)
using = by (intro sum-strict-mono frac-lt-1) auto

also have ... = nat |z| — 1 by simp

also have 1 + (frac x + real (nat |z| — 1)) ==z
using z by (subst of-nat-diff) (auto simp: le-nat-iff le-floor-iff frac-def)
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finally have z * |[M z| < z * 1 by simp
with z show |M z| < 1
by (subst (asm) mult-less-cancel-left-pos) auto
qed

lemma sum-upto-moebius-mu-over-n-eq:
assumes z < 2
shows Mz = (if v > 1 then 1 else 0)
proof (cases z > 1)
case True
have M z = (3" ne{n. n > 0 A real n < z}. moebius-mu n / n)
by (simp add: M-def sum-upto-def)
also from assms True have {n. n > 0 A real n < z} = {1}
by auto
thus ?thesis using True by (simp add: M-def sum-upto-def)
next
case Fulse
have M z = (D ne{n. n > 0 A real n < z}. moebius-mu n / n)
by (simp add: M-def sum-upto-def)
also from Fulse have {n. n > 0 A real n < z} = {}
by auto
finally show ?thesis using False by (simp add: M-def)
qed

lemma abs-sum-upto-moebius-mu-over-n-le: |M x| < 1

using sum-upto-moebius-mu-over-n-eq|of x] abs-sum-upto-moebius-mu-over-n-less|of
7]

by (cases x < 2) auto

end

end

3 The Prime w function

theory Primes-Omega
imports Dirichlet-Series. Dirichlet-Series Dirichlet-Series. Divisor-Count
begin

The prime w function w(n) counts the number of distinct prime factors of
n.

definition primes-omega :: nat = nat where
primes-omega n = card (prime-factors n)

lemma primes-omega-prime [simp|: prime p = primes-omega p = 1
by (simp add: primes-omega-def prime-factorization-prime)

lemma primes-omega-0 [simp]: primes-omega 0 = 0
by (simp add: primes-omega-def)
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lemma primes-omega-1 [simp]: primes-omega 1 = 0
by (simp add: primes-omega-def)

lemma primes-omega-Suc-0 [simp]: primes-omega (Suc 0) = 0
by (simp add: primes-omega-def)

lemma primes-omega-power [simpl: n > 0 = primes-omega (x ~n) = primes-omega
z
by (simp add: primes-omega-def prime-factors-power)

lemma primes-omega-primepow [simp|: primepow n => primes-omega n = 1
by (auto simp: primepow-def)

lemma primes-omega-eq-0-iff: primes-omegan = 0 +— n=0V n =1
by (auto simp: primes-omega-def prime-factorization-empty-iff)

lemma primes-omega-pos [simp, introl: n > 1 = primes-omega n > 0
by (cases primes-omega n > 0) (auto simp: primes-omega-eq-0-iff)

lemma primes-omega-mult-coprime:
assumes coprimez yx > 0V y > 0
shows primes-omega (z * y) = primes-omega x + primes-omega y
proof (casesz =0V y = 0)
case Fulse
hence prime-factors (z x y) = prime-factors x U prime-factors y
by (subst prime-factorization-mult) auto
also {
have prime-factors x N prime-factors y = set-mset (prime-factorization (ged
y))
using Fualse by (subst prime-factorization-ged) auto
also have gcd © y = 1 using <coprime x y> by auto
finally have card (prime-factors © U prime-factors y) = primes-omega © +
primes-omega y
unfolding primes-omega-def by (intro card-Un-disjoint) (use False in auto)
}

finally show ?thesis by (simp add: primes-omega-def)
qed (use assms in auto)

lemma divisor-count-squarefree:
assumes squarefree n n > 0
shows divisor-count n = 2 ~ primes-omega n
proof —
have divisor-count n = (][] p€prime-factors n. Suc (multiplicity p n))
using assms by (subst divisor-count.prod-prime-factors’) auto
also have ... = ([ peprime-factors n. 2)
using assms assms by (intro prod.cong) (auto simp: squarefree-factorial-semiring’)
finally show ?thesis by (simp add: primes-omega-def)
qed
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end

4 The Primorial function

theory Primorial
imports Prime-Distribution- Elementary-Library Primes-Omega
begin

4.1 Definition and basic properties

definition primorial :: real = nat where
primorial © = [[{p. prime p A real p < z}

lemma primorial-mono: x < y = primorial x < primorial y
unfolding primorial-def
by (intro dvd-imp-le prod-dvd-prod-subset)
(auto introl: prod-pos finite-primes-le dest: prime-gt-0-nat)

lemma prime-factorization-primorial:
prime-factorization (primorial ©) = mset-set {p. prime p A real p < z}
proof (intro multiset-eql)
fix p :: nat
note fin = finite-primes-le[of z]
show count (prime-factorization (primorial x)) p =
count (mset-set {p. prime p A real p < x}) p
proof (cases prime p)
case True
hence count (prime-factorization (primorial x)) p =
sum (multiplicity p) {p. prime p A\ real p < x}
unfolding primorial-def count-prime-factorization using fin
by (subst prime-elem-multiplicity-prod-distrib) auto
also from True have ... = sum (A-. 1) (if p < x then {p} else {}) using fin
by (intro sum.mono-neutral-cong-right) (auto simp: prime-multiplicity-other
split: if-splits)
also have ... = count (mset-set {p. prime p A real p < z}) p
using True fin by auto
finally show ?thesis .
qed auto
qed

lemma prime-factors-primorial [simp]:
prime-factors (primorial ) = {p. prime p A real p < x}

unfolding prime-factorization-primorial using finite-primes-le[of z] by simp

lemma primorial-pos [simp, intro]: primorial x > 0
unfolding primorial-def by (intro prod-pos) (auto dest: prime-gt-0-nat)

lemma primorial-neq-zero [simp|: primorial x # 0
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by auto

lemma of-nat-primes-omega-primorial [simpl: real (primes-omega (primorial z))
= primes-pi T
by (simp add: primes-omega-def primes-pi-def prime-sum-upto-def)

lemma primes-omega-primorial: primes-omega (primorial ) = nat | primes-pi x|
by (simp add: primes-omega-def primes-pi-def prime-sum-upto-def)

lemma prime-dvd-primorial-iff: prime p = p dvd primorial x +— p < z
using finite-primes-le[of x]
by (auto simp: primorial-def prime-dvd-prod-iff dest: primes-dvd-imp-eq)

lemma squarefree-primorial [intro]: squarefree (primorial x)
unfolding primorial-def
by (intro squarefree-prod-coprime) (auto simp: squarefree-prime intro: primes-coprime)

lemma primorial-ge: primorial x > 2 powr primes-pi x
proof —
have 2 powr primes-pi © = real ([[p | prime p A real p < z. 2)
by (simp add: primes-pi-def prime-sum-upto-def powr-realpow)
also have ([[p | prime p A real p < z. 2) < ([[p | prime p A real p < z. p)
by (intro prod-mono) (auto dest: prime-gt-1-nat)

also have ... = primorial ¢ by (simp add: primorial-def)
finally show ?thesis by simp
qged

lemma primorial-at-top: filterlim primorial at-top at-top
proof —
have filterlim (Az. real (primorial z)) at-top at-top
proof (rule filterlim-at-top-mono)
show eventually (Az. primorial z > 2 powr primes-pi x) at-top
by (intro always-eventually primorial-ge alll)
have filterlim (Az. exp (In 2 % primes-pi x)) at-top at-top
by (intro filterlim-compose| OF exp-at-top)
filterlim-tendsto-pos-mult-at-top| OF tendsto-const] m-at-top) auto
thus filterlim (Az. 2 powr primes-pi x) at-top at-top
by (simp add: powr-def mult-ac)
qed
thus ?thesis unfolding filterlim-sequentially-iff-filterlim-real [symmetric| .
qed

lemma totient-primorial:
real (totient (primorial x)) =
real (primorial x) * ([[p | primep A real p < z. 1 — 1 / real p) for z
proof —
have real (totient (primorial z)) =
primorial x * ([ p€prime-factors (primorial x). 1 — 1 / p)
by (rule totient-formula2)

28



thus ?thesis by simp
qed

lemma In-primorial: In (primorial ) = primes-theta x
proof —
have finite {p. prime p A real p < x}
by (rule finite-subset[of - {..nat |x]}]) (auto simp: le-nat-iff le-floor-iff)
thus ?thesis unfolding of-nat-prod primorial-def
by (subst In-prod) (auto dest: prime-gt-0-nat simp: ¥-def prime-sum-upto-def)
qed

lemma divisor-count-primorial: divisor-count (primorial x) = 2 powr primes-pi x
proof —
have divisor-count (primorial z) = (] p | prime p A real p < x. divisor-count p)
unfolding primorial-def
by (subst divisor-count.prod-coprime) (auto simp: primes-coprime)

also have ... = ([[p | prime p A real p < z. 2)
by (intro prod.cong divisor-count.prime) auto
also have ... = 2 powr primes-pi x

by (simp add: primes-pi-def prime-sum-upto-def powr-realpow)
finally show ?thesis .
qged

4.2 An alternative view on primorials

The following function is an alternative representation of primorials; instead
of taking the product of all primes up to a given real bound =z, it takes the
product of the first £ primes. This is sometimes more convenient.

definition primorial’ :: nat = nat where
primorial’ n = ([ k<n. nth-prime k)

lemma primorial’-0 [simpl: primorial’ 0 = 1
and primorial’-1 [simp]: primorial’ 1 = 2
and primorial’-2 [simp]: primorial’ 2 = 6
and primorial’-3 [simp]: primorial’ 8 = 30
by (simp-all add: primorial’-def less Than-nat-numeral)

lemma primorial’-Suc: primorial’ (Suc n) = nth-prime n * primorial’ n
by (simp add: primorial’-def)

lemma primorial’-pos [intro]: primorial’ n > 0
unfolding primorial’-def by (auto intro: prime-gt-0-nat)

lemma primorial’-neq-0 [simp]: primorial’ n # 0
by auto

lemma strict-mono-primorial’: strict-mono primorial’

unfolding strict-mono-Suc-iff
proof
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fix n :: nat
have primorial’ n * 1 < primorial’ n x nth-prime n
using prime-gt-1-nat[OF prime-nth-prime|of n]]
by (intro mult-strict-left-mono) auto
thus primorial’ n < primorial’ (Suc n)
by (simp add: primorial’-Suc)
qed

lemma prime-factorization-primorial’:

prime-factorization (primorial’ k) = mset-set (nth-prime ‘ {..<k})
proof —

have prime-factorization (primorial’ k) = (>_ i<k. prime-factorization (nth-prime
i)

unfolding primorial’-def by (subst prime-factorization-prod) (auto intro: prime-gt-0-nat)

also have ... = (3 i<k. {#nth-prime i#})
by (intro sum.cong prime-factorization-prime) auto

also have ... = (> penth-prime ‘ {..<k}. {#p#})
by (subst sum.reindex) (auto intro: inj-onl)

also have ... = mset-set (nth-prime ‘ {..<k})
by simp

finally show ?thesis .

qged

lemma prime-factors-primorial’: prime-factors (primorial’ k) = nth-prime ‘{..<k}
by (simp add: prime-factorization-primorial’)

lemma primes-omega-primorial’ [simp]: primes-omega (primorial’ k) = k
unfolding primes-omega-def prime-factors-primorial’ by (subst card-image) (auto
intro: inj-onl)

lemma squarefree-primorial’ [intro]: squarefree (primorial” x)
unfolding primorial’-def
by (intro squarefree-prod-coprime) (auto intro: squarefree-prime intro: primes-coprime)

lemma divisor-count-primorial’ [simp]: divisor-count (primorial’ k) = 2 "k
by (subst divisor-count-squarefree) auto

lemma totient-primorial’:
totient (primorial’ k) = primorial’ k x ([[i<k. 1 — 1 / nth-prime 1)
unfolding totient-formula2 prime-factors-primorial’
by (subst prod.reindex) (auto intro: inj-onl)

lemma primorial-conv-primorial”. primorial x = primorial’ (nat |primes-pi x|)
unfolding primorial-def primorial’-def
proof (rule prod.reindex-bij-witness|of - nth-prime Ap. nat | primes-pi (real p)| —
1))
fix p assume p: p € {p. prime p A real p < z}
have [simp]: primes-pi 2 = 1 by (auto simp: eval-m)
have primes-pi p > 1
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using p w-mono[of 2 real p| by (auto dest!: prime-gt-1-nat)
with p show nth-prime (nat |primes-pi p| — 1) = p
using 7-pos|of real p]
by (intro nth-prime-eql"’)
(auto simp: le-nat-iff le-floor-iff primes-pi-def prime-sum-upto-def of-nat-diff)
from p have nat | primes-pi (real p)| < nat |primes-pi x|
by (intro nat-mono floor-mono w-mono) auto
hence nat |primes-pi (real p)| — 1 < nat |primes-pi x|
using <primes-pi p > 1> by linarith
thus nat |primes-pi (real p)| — 1 € {..<nat |primes-pi x|} by simp
show nth-prime (nat |primes-pi (real p)] — 1) = p
using p <primes-pi p > 1>
by (intro nth-prime-eql’’) (auto simp: le-nat-iff primes-pi-def prime-sum-upto-def)
next
fix k assume k: k € {..<nat |primes-pi z|}
thus x: nat | primes-pi (real (nth-prime k))| — 1 = k by auto
from & have —(z < 2) by (intro notl) auto
hence z > 2 by simp
have real (nth-prime k) < real (nth-prime (nat | primes-pi | — 1))
using k by simp
also have ... < z
using nth-prime-partition'[of z] <z > 2> by auto
finally show nth-prime k € {p. prime p A real p < z}
by auto
qed

lemma primorial’-conv-primorial:
assumes n > 0
shows primorial’ n = primorial (nth-prime (n — 1))
proof —
have primorial (nth-prime (n — 1)) = ([[ k<nat (int (n — 1) + 1). nth-prime
k)
by (simp add: primorial-conv-primorial’ primorial’-def)
also have nat (int (n — 1)+ 1) =n
using assms by auto
finally show ?thesis by (simp add: primorial’-def)
qed

4.3 Maximal compositeness of primorials

Primorials are maximally composite, i.e. any number with £ distinct prime
factors is as least as big as the primorial with & distinct prime factors, and
and number less than a primorial has strictly less prime factors.

lemma nth-prime-le-prime-sequence:
fixes p :: nat = nat
assumes strict-mono-on {..<n} p and Ak. k < n = prime (p k) and k < n
shows nth-prime k < p k
using assms(3)
proof (induction k)
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case (
hence prime (p 0) by (intro assms)
hence p 0 > 2 by (auto dest: prime-gt-1-nat)
thus “case by simp
next
case (Suc k)
have IH: Suc (nth-prime k) < Suc (p k) using Suc by simp
have nth-prime (Suc k) = smallest-prime-beyond (Suc (nth-prime k))
by (simp add: nth-prime-Suc)
also {
have Suc (nth-prime k) < Suc (p k) using Suc by simp
also have ... < smallest-prime-beyond (Suc (p k))
by (rule smallest-prime-beyond-le)
finally have smallest-prime-beyond (Suc (nth-prime k)) < smallest-prime-beyond
(Suc (p k))
by (rule smallest-prime-beyond-smallest[OF prime-smallest-prime-beyond))
}

also have p k < p (Suc k)
using Suc by (intro strict-mono-onD[OF assms(1)]) auto
hence smallest-prime-beyond (Suc (p k)) < p (Suc k)
using Suc.prems by (intro smallest-prime-beyond-smallest assms) auto
finally show ?case .
qed

theorem primorial’-primes-omega-le:
fixes n :: nat
assumes n: n > 0
shows primorial’ (primes-omega n) < n
proof (cases n = 1)
case True
thus %thesis by simp
next
case Fulse
with assms have n > 1 by simp
define m where m = primes-omega n
define P where P = {p. prime p A real p < primes-pi n}
define ps where ps = sorted-list-of-set (prime-factors n)
have set-ps: set ps = prime-factors n by (simp add: ps-def)
have [simp]: length ps = m by (simp add: ps-def m-def primes-omega-def)
have sorted ps distinct ps by (simp-all add: ps-def)
hence mono: strict-mono-on {..<m} (Ak. ps! k)
by (intro strict-mono-onl le-neg-trans) (auto simp: sorted-nth-mono distinct-conv-nth)
from (n > 1> have m > 0
by (auto simp: m-def prime-factorization-empty-iff intro!: Nat.gr0I)

have primorial’ m = (J] k<m. nth-prime k)

using «m > 0> by (simp add: of-nat-diff primorial’-def m-def)
also have ([ k<m. nth-prime k) < ([[k<m. ps ! k = multiplicity (ps ! k) n)
proof (intro prod-mono congl)
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fix 7 assume i: i € {..<m}
hence p: ps | i € prime-factors n
using set-ps by (auto simp: set-conv-nth)
with ¢ set-ps have nth-prime ¢ < ps! i
by (intro nth-prime-le-prime-sequence[where n = m] mono) (auto simp:
set-conv-nth)
also have ... < ps! i = multiplicity (ps ! i) n
using p by (intro self-le-power) (auto simp: prime-factors-multiplicity dest:
prime-gt-1-nat)
finally show nth-prime i < ... .
qed auto
also have ... = ([[pe(Xi. ps ! 4) ‘{.<m}. p ~ multiplicity p n)
using «distinct ps» by (subst prod.reindex) (auto introl: inj-onl simp: dis-
tinct-conv-nth)
also have (\i. ps! i) ‘{.<m} = set ps
by (auto simp: set-conv-nth)
also have set ps = prime-factors n
by (simp add: set-ps)
also have ([] peprime-factors n. p ~ multiplicity p n) = n
using «n > 1> by (intro prime-factorization-nat [symmetric]) auto
finally show primorial’ m < n .
qged

lemma primes-omega-less-primes-omega-primorial:
fixes n :: nat
assumes n: n > 0 and n < primorial x
shows primes-omega n < primes-omega (primorial x)
proof (cases n > 1)
case Fulse
have [simp]: primes-pi 2 = 1 by (simp add: eval-)
from False assms have [simp]: n = 1 by auto
from assms have —(z < 2)
by (intro notl) (auto simp: primorial-conv-primorial’)
thus ?thesis using assms w-monolof 2 z] by auto
next
case True
define m where m = primes-omega n
have le: primorial’ m < n
using primorial’-primes-omega-le[of n] <n > 15 by (simp add: m-def primes-omega-def)
also have ... < primorial x by fact
also have ... = primorial’ (nat |primes-pi z|)
by (simp add: primorial-conv-primorial’)
finally have m < nat | primes-pi x|
using strict-mono-less|OF strict-mono-primorial’] by simp
hence m < primes-pi x by linarith

also have ... = primes-omega (primorial z) by simp
finally show ?thesis unfolding m-def of-nat-less-iff .
qed
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lemma primes-omega-le-primes-omega-primorial:

fixes n :: nat

assumes n < primorial T

shows primes-omega n < primes-omega (primorial )
proof —

consider n = 0 | n > 0 n = primorial z | n > 0 n # primorial x by force

thus ?thesis

by cases (use primes-omega-less-primes-omega-primorial[of n x| assms in auto)

qed

end

5 The LCM of the first n natural numbers

theory Lcm-Nat-Upto
imports Prime-Number-Theorem.Prime-Counting-Functions
begin

In this section, we examine Lem {1..n}. In particular, we will show that it
is equal to e¥(™ and thus (by the PNT) emto(®),

lemma multiplicity-Lem:
fixes A :: 'a :: {semiring-Gcd, factorial-semiring-ged} set
assumes finite A A # {} prime p 0 ¢ A
shows multiplicity p (Lem A) = Max (multiplicity p < A)
using assms

proof (induction A rule: finite-ne-induct)
case (insert z A)
have Lem (insert ¢ A) = lem x (Lem A) by simp
also have multiplicity p ... = Maz (multiplicity p ‘ insert x A)

using insert by (subst multiplicity-lem) (auto simp: Lem-0-iff)

finally show ?case by simp

qed auto

The multiplicity of any prime p in Lem {1..n} differs from that in Lem {1..n
— 1} iff nis a power of p, in which case it is greater by 1.

lemma multiplicity-Lem-atLeast1 AtMost-Suc:

fixes p n :: nat

assumes p: prime p and n: n > 0

shows multiplicity p (Lem {1..Suc n}) =

(if k. Suc n = p "k then 1 else 0) + multiplicity p (Lem {1..n})

proof —

define k where k = Max (multiplicity p ‘ {1..n})

define | where [ = multiplicity p (Suc n)

have eq: {1..Suc n} = insert (Suc n) {1..n} by auto

from <prime p> have p > 1 by (auto dest: prime-gt-1-nat)

have multiplicity p (Lem {1..Suc n}) = Maz (multiplicity p ‘ {1..Suc n})
using assms by (subst multiplicity-Lem) auto
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also have multiplicity p ‘ {1..Suc n} =
insert (multiplicity p (Suc n)) (multiplicity p “ {1..n})
by (simp only: eq image-insert)
also have Maz ... = maz L k
unfolding I-def k-def using assms by (subst Max.insert) auto
also have ... = (if 3k. Sucn =p ~k then 1 else 0) + k
proof (cases Ik. Sucn =1p " k)
case Fulse
have p ~ [ dvd Suc n
unfolding I-def by (intro multiplicity-dvd)
hence p ~ 1 < Suc n
unfolding I-def by (intro dvd-imp-le multiplicity-dvd) auto
moreover have Suc n # p ~ | using False by blast
ultimately have p ~ 1 < Suc n by linarith
moreover have p ~ 1 > 0 using «p > 1> by (intro zero-less-power) auto
ultimately have | = multiplicity p (p ") and p "1 € {1..n}
using <prime p» by auto
hence [ < k unfolding k-def by (intro Maz.coboundedl) auto
with Fualse show ?thesis by (simp add: I-def k-def)
next
case True
then obtain z where z: Suc n = p ~ z by blast
from z and «n > 0» have z > 0 by (intro Nat.gr0I) auto
from z have [simp]: | = x using ¢<prime p> by (simp add: I-def)
have z =k + 1
proof (intro antisym)
have p ~(z — 1) < Sucn
using <z > 0 <p > 1» unfolding z by (intro power-strict-increasing) auto
moreover have p ~(z — 1) > 0
using <p > 1» by (intro zero-less-power) auto
ultimately have multiplicity p (p " (x — 1)) =2z — 1 andp ~(z — 1) €
{1..n}
using <prime p» by auto
hencez — 1 <k
unfolding k-def by (intro Max.coboundedl) force+
thus z < k + 1 by linarith
next
have multiplicity p y < z if y € {1..n} for y
proof —
have p ~ multiplicity p y < y
using that by (intro dvd-imp-le multiplicity-dvd) auto
also have ... < Suc n using that by simp
also have ... = p 7z by (fact z)
finally show multiplicity p y < z
using <p > 1) by (subst (asm) power-strict-increasing-iff)
qed
hence k < z
using «n > 0» unfolding k-def by (subst Maz-less-iff) auto
thus £ + 1 < z by simp
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qed
thus ?thesis using True by simp
qed
also have k = multiplicity p (Lem {1..n})
unfolding k-def using «n > 0> and <prime p» by (subst multiplicity-Lcm)
auto
finally show ?thesis .
qed

Consequently, Lem {1..n} differs from Lem {1..n — 1} iff n is of the form
p* for some prime p, in which case it is greater by a factor of p.

lemma Lem-atLeast1 AtMost-Suc:
Lem {1..Suc n} = Lem {1..n} * (if primepow (Suc n) then aprimedivisor (Suc
n) else 1)
proof (cases n > 0)
case True
show ?thesis
proof (rule multiplicity-eq-nat)
fix p :: nat assume prime p
define = where = = (if primepow (Suc n) then aprimedivisor (Suc n) else 1)
have z > 0
using «n > 0» by (auto simp: z-def introl: aprimedivisor-pos-nat)

have multiplicity p (Lem {1..n} x x) = multiplicity p (Lem {1..n}) + multi-
plicity p «
using <prime p» <z > 0> by (subst prime-elem-multiplicity-mult-distrib) auto
also consider 3k%. Suc n = p "k | primepow (Suc n) =(Fk. Suc n =p " k)
| =primepow (Suc n) by blast
hence multiplicity p x = (if k. Suc n = p ~ k then 1 else 0)
proof cases
assume k. Sucn=p "k
thus “thesis using «prime p> <n > 0>
by (auto simp: z-def aprimedivisor-prime-power intro!: Nat.grOI)
next
assume *: primepow (Suc n) k. Sucn =p "k
then obtain ¢ k where ¢k: prime q Sucn=q "kk > 0q#p
by (auto simp: primepow-def)
thus ?thesis using (prime p»
by (subst x) (auto simp: x-def aprimedivisor-prime-power prime-multiplicity-other)
next
assume *: ~primepow (Suc n)
hence *x: 3 k. Suc n = p "k using prime p> <n > 0> by auto
from x show ?thesis unfolding z-def
by (subst *x) auto
qed
also have multiplicity p (Lem {1..n}) + ... = multiplicity p (Lem {I..Suc n})
using <prime p» <n > 0> by (subst multiplicity-Lem-atLeast1 AtMost-Suc)
(auto simp: z-def)
finally show multiplicity p (Lem {1..Suc n}) = multiplicity p (Lem {1..n} *
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qed (use <n > 0» in <auto introl: Nat.gr0I dest: aprimedivisor-pos-nat))
qed auto

It follows by induction that Lem {1..n} = e¥(™.

lemma Lcem-atLeast1 AtMost-conv-1:

includes prime-counting-syntaz

shows real (Lem {1..n}) = exp (¢ (real n))
proof (induction n)

case (Suc n)

have real (Lem {1..Suc n}) =

real (Lem {1..n}) * (if primepow (Suc n) then aprimedivisor (Suc n) else

1)

by (subst Lem-atLeast! AtMost-Suc) auto
also {
assume primepow (Suc n)
hence Suc n > Suc 0 by (rule primepow-gt-Suc-0)
hence aprimedivisor (Suc n) > 0 by (intro aprimedivisor-pos-nat) auto

}

hence (if primepow (Suc n) then aprimedivisor (Suc n) else 1) = exp (mangoldt
(Suc n))
by (simp add: mangoldt-def)
also have Lem {1..n} x ... = exp (¥ (real n + 1))
using Suc.IH by (simp add: primes-psi-def sum-upto-plus! exp-add)
finally show ?case by (simp add: add-ac)
qed simp-all

lemma Lem-upto-real-conv-i:
includes prime-counting-syntaz
shows real (Lem {1..nat |x]}) = exp (¢ z)
by (subst Lem-atLeast1 AtMost-conv-i)) (simp add: primes-psi-def sum-upto-altdef)

end

6 Shapiro’s Tauberian Theorem

theory Shapiro-Tauberian

imports
More-Dirichlet-Misc
Prime-Number- Theorem. Prime-Counting- Functions
Prime-Distribution-Elementary-Library

begin

6.1 Proof

Given an arithmeticla function a(n), Shapiro’s Tauberian theorem relates

the sum >, a(n) to the weighted sums >, . a(n)[;| and ), -, a(n)/n.
More precisely, it shows that if > _ a(n)|5| = zInz + O(z), then:
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« Yo ™ =z +0(1)

n

¢ > n<za(n) < Bx for some constant B > 0 and all z > 0

¢ D <z a(n) > Cx for some constant C' > 0 and all z > 1/C

locale shapiro-tauberian =
fixes a :: nat = real and A S T :: real = real
defines A = sum-upto (An. an / n)
defines S = sum-upto a
defines T = (A\z. dirichlet-prod’ a floor x)

assumes a-nonneg: An.n>0= an>20
assumes a-asymptotics: (Az. T x — z x In z) € O(A\z. 1)
begin

lemma fin: finite X if X C {n. real n < z} for X =
by (rule finite-subset[of - {..nat | z|}]) (use that in <auto simp: le-nat-iff le-floor-iff )

lemma S-mono: Sz < Syifz < yfor zy
unfolding S-def sum-upto-def using that by (intro sum-mono2 fin[of - y| a-nonneg)
auto

lemma split:
fixes f :: nat = real
assumes « € {0..1}
shows sum-upto fz = sum-upto f (axz) + (3 n|n > 0 A real n € {axz<..z}.
fn)
proof (cases z > 0)
case Fulse
hence x: {n.n > 0 A realn <z} = {} {n. n> 0 A real n € {axz<.z}} = {}
using mult-right-monolof « 1 z] assms by auto
have oo x z < 0
using False assms by (intro mult-nonneg-nonpos) auto
hence *x: {n. n > 0 A realn < a x z} = {}
by auto
show ?thesis
unfolding sum-upto-def * *x by auto
next
case True
have sum-upto fz = (3 n|n> 0 Arealn <z fn)
by (simp add: sum-upto-def)
also have {n.n > 0 A realn < z} =
{n.n>0Arealn < axx}U{n.n>0Areln e {axz<.x}}
using assms True mult-right-monolof « 1 z] by (force intro: order-trans)
also have (> ne.... fn) = sum-upto f (axz) + O.n | n > 0 A real n €
{axz<..z}. fn)
by (subst sum.union-disjoint) (auto intro: fin simp: sum-upto-def)
finally show ?thesis .
qed
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lemma S-diff-T-diff: Sz — S(x/2) < Tz —2xT (z/ 2)
proof —
note fin = fin[of - ]
have T-diff-eq:
Ter—2xT (x/2) =sumupto (M. anx*(lz/n] —2x|xz/(2x*xn)]) (z
/ 2) +
O-nln>0Arealne{z/2<.z}. anx|z/n])
unfolding T-def dirichlet-prod’-def
by (subst splitfwhere a = 1/2])
(simp-all add: sum-upto-def sum-subtractf ring-distribs
sum-distrib-left sum-distrib-right mult-ac)

have Sz — S (z/2)=0O_n|n>0Arealnec{z/2<.z}. an)
unfolding S-def by (subst splitfwhere o = 1 / 2]) (auto simp: sum-upto-def)
alsohave ... = (3_n|n> 0 Arealne {z/2<.z}. anx|z/n|)
proof (intro sum.cong)
fix n assume n € {n. n > 0 A real n € {z/2<..z}}
hence z / n > 1 2 / n < 2 by (auto simp: field-simps)
hence |z / n| = I by linarith
thus an =an * |z / n|] by simp
qed auto
also have ... = 0 + ... by simp
also have 0 < sum-upto (An.anx* (lz /n| — 2« |z / (2%xn)])) (z/ 2)
unfolding sum-upto-def
proof (intro sum-nonneg mult-nonneg-nonneg a-nonneg)
fix n assume n € {n.n > 0 Arealn <z / 2}
hence z / real n > 2 by (auto simp: field-simps)
thus real-of-int (|z / n| — 2% |z /(2 xn)]) >0
using le-mult-floor[of 2 x / (2 * n)] by (simp add: mult-ac)
qed auto
alsohave ... + 3-n|n>0Arelne{z/2<.z}.anx|z/n])=Tz— 2
x T (z /] 2)
using T-diff-eq ..
finally show Sz — S (z/ 2) < Tz — 2% T (x/ 2) by simp
qed

lemma
shows diff-bound-strong: 3¢>0.Va>0. . x Az — T x € {0..cxx}
and asymptotics: M. Az —Inz) e O(A-. 1)
and upper: Je¢>0.V2>0. Sz < cxx
and lower: Je>0.Va>1/c. Sx > cx
and bigtheta: S € O(Az. z)
proof —

— We first prove the third case, i.e. the upper bound for S.
have (A\z. Sz — S (z/2) e OAz. Tz — 2T (z/ 2))
proof (rule le-imp-bigo-real)
show eventually (Az. Sz — S (x / 2) > 0) at-top
using eventually-ge-at-top[of 0]

39



proof eventually-elim
case (elim )
thus ?case using S-mono[of z / 2 x| by simp
qed
next
show eventually (Az. Sz — S (x/ 2)< 1 x(Txz— 2T (x/ 2))) at-top
using S-diff-T-diff by simp
qged auto
also have (A\z. Tz — 2+ T (z / 2)) € O(\x. x)
proof —
have (\z. Tz — 2« T (z /] 2)) =
M. (Tz—zxlnz)—2%x(T(x/2) —(x/2)*in(zx/2)
+2zx(Inz—In(z/ 2))) by (simp add: algebra-simps)
also have ... € O(\z. z)
proof (rule sum-in-bigo, rule sum-in-bigo)
show (Az. Tz — z *x In z) € O(Az. z) by (rule a-asymptotics)
next
have Az. T (z / 2) —(x / 2)*xIn(z / 2)) € O(\z. z ] 2)
using a-asymptotics by (rule landau-o.big.compose) real-asymp+
thus (A\z. 2% (T (z/ 2)—z/ 2xIn(z/ 2)) € O(\x. )
unfolding cmult-in-bigo-iff by (subst (asm) landau-o.big.cdiv) auto
qed real-asymp+
finally show ?thesis .
qed
finally have S-diff-bigo: (A\x. S — S (z / 2)) € O(Az. z) .

obtain ¢! where cl: ¢1 > 0 N\z. 2> 0= Sz <cl xzx
proof —
from S-diff-bigo have (An. S (real n) — S (real n / 2)) € O(An. real n)
by (rule landau-o0.big.compose) real-asymp
from natfun-bigoE[OF this, of 1] obtain ¢
where ¢ > 0 Vn>1.|S (real n) — S (real n / 2)| < ¢ * real n by auto
hence ¢: S (realn) — S (realn / 2) < ¢ x real n if n > 1 for n
using S-mono|of real n 2 x real n| that by auto
have c-twopow: S (2 "Sucn / 2) =S (2 " n/2)<cx2 nforn
using c[of 2 " n] by simp

have S-twopow-le: S (2 " k) < 2 xcx 2 "k for k
proof —
have [simp]: {0<..Suc 0} = {1} by auto
have (> r<Suck. S (2 " Sucr /2)—8S(2"r/2) <> r<Suck.cx 2
~ )
by (intro sum-mono c-twopow)
also have (> r<Suc k. S (2 " Sucr [/ 2)—S(2"r/2)=5(2"k)
by (subst sum-lessThan-telescope) (auto simp: S-def sum-upto-altdef)
also have (D r<Suck.cx 2 "r)=cx* (D r<Suck. 2 "r)
unfolding sum-distrib-left ..
also have (> r<Suc k. 2 " r :: real) = 2"Suc k — 1
by (subst geometric-sum) auto
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alsohave cx ... < cx*x 2 Suck
using <c¢ > 0> by (intro mult-left-mono) auto
finally show S (2 k) < 2 x c*x 2 "k by simp
qed

have S-le: Sz </ *xc*xzifz > 0 for z
proof (cases z > 1)

case Fulse

with that have z € {0..<1} by auto

thus ?thesis using <c > 0» by (auto simp: S-def sum-upto-altdef)
next

case True

hence z: © > 1 by simp

define n where n = nat |log 2 z|

have 2 powr real n < 2 powr (log 2 x)

unfolding n-def using z by (intro powr-mono) auto
hence ge: 2 " n < z using z by (subst (asm) powr-realpow) auto

have 2 powr real (Suc n) > 2 powr (log 2 x)
unfolding n-def using z by (intro powr-less-mono) linarith+
hence less: 2 7 (Suc n) > z using z by (subst (asm) powr-realpow) auto

have Sz < S (2 ™ Suc n)
using less by (intro S-mono) auto

alsohave ... < 2xc¢c*x 2 " Sucn
by (intro S-twopow-le)
alsohave ... =/ xc* 2 " n
by simp
alsohave ... < / xcxx

by (intro mult-left-mono ge) (use z <¢ > 0) in auto)
finally show Sz < / xcx x .
qed

with that[of 4/ * ¢] and «¢c > 0> show ?thesis by auto
qed
thus 3¢>0.Vz>0. Sz < ¢ *x x by auto

— The asymptotics of A follows from this immediately:
have a-strong: v + Az — Tz € {0..cl % z} if x: x > 0 for z
proof —
have sum-upto (An. a n * frac (z / n)) x < sum-upto (An. a n * 1) z unfolding
sum-upto-def
by (intro sum-mono mult-left-mono a-nonneg) (auto intro: less-imp-le frac-lt-1)
also have ... = § z unfolding S-def by simp
also from z have ... < ¢! * z by (rule c1)
finally have sum-upto (An. a n % frac (z / n)) z < cl x z .
moreover have sum-upto (An. a n * frac (z / n)) z > 0
unfolding sum-upto-def by (intro sum-nonneg mult-nonneg-nonneg a-nonneg)
auto
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ultimately have sum-upto (An. a n * frac (x / n)) z € {0..cIxx} by auto
also have sum-upto (An. an x frac (x / n)) z =z« Az — Tz
by (simp add: T-def A-def sum-upto-def sum-subtractf frac-def algebra-simps
sum-distrib-left sum-distrib-right dirichlet-prod’-def)
finally show ?thesis .
qed
thus 3¢>0.Vz>0. 2« Ax — Tz € {0..cxx}
using «cl > 0» by (intro exI[of - c1]) auto
hence (M\z. z * Az — T z) € O(\z. z)
using a-strong <c1 > 0»
by (intro le-imp-bigo-real[of c1] eventually-mono|OF eventually-ge-at-toplof 1]])
auto
from this and a-asymptotics have (A\z. (x * Az — Tz) + (Tz — zxIlnzx)) €
O(\z. z)
by (rule sum-in-bigo)
hence (\z. z x (A z — Inz)) € O(Az. x * 1)
by (simp add: algebra-simps)
thus bigo: (A\z. Az — Inz) € O(Az. 1)
by (subst (asm) landau-o.big.mult-cancel-left) auto

— It remains to show the lower bound for S.
define R where R = (Az. Az — In x)
obtain M where M: A\z. 2 > 1 = |[Rz| < M
proof —
have (An. R (real n)) € O(X-. 1)
using bigo unfolding R-def by (rule landau-o0.big.compose) real-asymp
from natfun-bigoE|OF this, of 0] obtain M where M: M > 0 An. |R (real
n)| < M
by auto

have |[Rz| < M + In 2 ifz: z > 1 for
proof —
define n where n = nat |z|
have |R z — R (real n)| = In (z / n)
using z by (simp add: R-def A-def sum-upto-altdef n-def In-divide-pos)
also {
have z < real n + 1
unfolding n-def by linarith
also have 1 < real n
using z unfolding n-def by simp
finally have In (z / n) < In 2
using = by (simp add: field-simps)

finally have |R z| < |R (real n)| + In 2
by linarith
also have |R (real n)| < M
by (rule M)
finally show |R z| < M + In 2 by simp
qed
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with that[of M + In 2] show %thesis by blast
qed
have M > 0 using M|of 1] by simp

have A-diff-ge: Az — A (axx) > —lna — 2 x M
if wae{0<.<1}and z > 1 / a for z « :: real

proof —
from that have 1 < inverse a * 1 by (simp add: field-simps)
also have ... < inverse a * (a * x)

using <z > 1 / @ and « by (intro mult-left-mono) (auto simp: field-simps)
also from « have ... = z by simp
finally have z > 1 .
note z = this <z >= 1 /

have —ina — M — M < —In a — |R z| — |R (axx)]
using z « by (intro diff-mono M) (auto simp: field-simps)
also have ... < —lna + Rz — R (axx)
by linarith
also have ... = A z — A (axz)
using a z by (simp add: R-def In-mult)
finally show A x — A (axz) > —ln o — 2 x M by simp
qed

define oo where a = exp (—2+«M—1)
have a € {0<..<1}
using <M > 0» by (auto simp: a-def)

have S-ge: Sz >axzifx: x> 1/ aforz
proof —
have 1 = -lna — 2« M
by (simp add: a-def)
also have ... < Az — A (axzx)
by (intro A-diff-ge) fact+
alsohave ... = (D n|n >0 A realn € {axz<.z}. an / n)
unfolding A-def using <o € {0<..<1}> by (subst splitiwhere o = a]) auto
also have ... < (3 n|n> 0 A realn € {axz<.z}. an / (axz))
using z <« € {0<..<1}» by (intro sum-mono divide-left-mono a-nonneg) auto
alsohave ... = (D n|n > 0 A real n € {axz<..z}. an) / (axzx)
by (simp add: sum-divide-distrib)
also have ... < Sz / (axx)
using z <a € {0<..<1}> unfolding S-def sum-upto-def
by (intro divide-right-mono sum-mono2 a-nonneg) (auto simp: field-simps)
finally show Sz > a *x x
using «a € {0<..<1}> z by (simp add: field-simps)
qed
thus 3¢>0.Va>1/c. Sz > cx
using «« € {0<..<1}> by (intro exl[of - ) auto

have S-nonneg: Sz > 0 for z
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unfolding S-def sum-upto-def by (intro sum-nonneg a-nonneg) auto
have eventually (Az. |S z| > « * |z|) at-top
using eventually-ge-at-top[of maz 0 (1 / o))
proof eventually-elim
case (elim x)
with S-ge[of z] elim show ?case by auto
qed
hence S € Q(\z. z)
using «« € {0<..<1}> by (intro landau-omega.bigl[of a]) auto
moreover have S € O(\z. z)
proof (intro bigol eventually-mono|OF eventually-ge-at-top[of 0]))
fix = :: real assume z > 0
thus norm (S z) < ¢l % norm z
using cI(2)[of z] by (auto simp: S-nonneg)
qed
ultimately show S € ©(\z. 1)
by (intro bigthetal)
qed

end

6.2 Applications to the Chebyshev functions

We can now apply Shapiro’s Tauberian theorem to ¢ and 9.

lemma dirichlet-prod-mangoldt1-floor-bigo:
includes prime-counting-syntaz
shows (A\z. dirichlet-prod’ (An. ind prime n * In n) floor x — z * In z) € O(Az.
7)
proof —
— This is a perhaps somewhat roundabout way of proving this statement. We
show this using the asymptotics of 9: M(z) = Inz + O(1)
We proved this before (which was a bit of work, but not that much). Apostol, on the
other hand, shows the following statement first and then deduces the asymptotics
of M with Shapiro’s Tauberian theorem instead. This might save a bit of work,
but it is probably negligible.
define R where R = (Az. sum-upto (\i. ind prime i x In i * frac (x / i)) x)
have «: Rz € {0..ln 4 x z} ifz > 1 for z
proof —
have Rz <9z
unfolding R-def prime-sum-upto-altdefl sum-upto-def 9-def
by (intro sum-mono) (auto simp: ind-def less-imp-le[OF frac-lt-1] dest!:
prime-gt-1-nat)
also have ... <In 4 xx
by (rule ¥-upper-bound) fact+
finally have R z < In 4 * z by auto
moreover have R z > (0 unfolding R-def sum-upto-def
by (intro sum-nonneg mult-nonneg-nonneg) (auto simp: ind-def)
ultimately show #thesis by auto
qed
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have eventually (Az. |R z| < In 4 * |z|) at-top
using eventually-ge-at-top[of 1] by eventually-elim (use * in auto)
hence R € O(A\z. z) by (intro landau-o.bigI[of In 4]) auto

have (Az. dirichlet-prod’ (An. ind prime n x In n) floor x — z * In x) =
M.z« (Mz—Inz) — Rx)
by (auto simp: primes-M-def dirichlet-prod’-def prime-sum-upto-altdef1 sum-upto-def
frac-def sum-subtractf sum-distrib-left sum-distrib-right algebra-simps
R-def)
also have ... € O(\z. 1)
proof (rule sum-in-bigo)
have (Az. 2 x Mz — Inx)) € O(Az. z % 1)
by (intro landau-o0.big.mult mertens-bounded) auto
thus (A\z. z x (M = — In z)) € O(Az. z) by simp
qed fact+
finally show ?thesis .
qed

lemma dirichlet-prod’-mangoldt-floor-asymptotics:
(Ax. dirichlet-prod” mangoldt floor x — x % In © + x) € O(In)
proof —
have dirichlet-prod’ mangoldt floor = (Az. sum-upto In x)
unfolding sum-upto-in-conv-sum-upto-mangoldt dirichlet-prod’-def
by (intro sum-upto-cong’ ext) auto
hence (A\z. dirichlet-prod’ mangoldt floor © — x * In x + z) = (Az. sum-upto In
x—xxlnz+ 1)
by simp
also have ... € O(in)
by (rule sum-upto-In-stirling-weak-bigo)
finally show (Az. dirichlet-prod’ mangoldt (A\x. real-of-int |z|) x — z x In z +
z) € O(ln) .
qed

interpretation v: shapiro-tauberian mangoldt sum-upto (An. mangoldt n / n)
primes-psi
dirichlet-prod’ mangoldt floor
proof unfold-locales
have dirichlet-prod’ mangoldt floor = (Az. sum-upto In x)
unfolding sum-upto-in-conv-sum-upto-mangoldt dirichlet-prod’-def
by (intro sum-upto-cong’ ext) auto
hence (Az. dirichlet-prod’ mangoldt floor © — x * In x + z) = (Az. sum-upto In
x—xxlnz+ 1)
by simp
also have ... € O(in)
by (rule sum-upto-in-stirling-weak-bigo)
also have In € O(\x::real. z) by real-asymp
finally have (Az. dirichlet-prod’ mangoldt (\x. real-of-int |z|) x — x x Inz + z
— )

45



€ O(Az. z) by (rule sum-in-bigo) auto
thus (Az. dirichlet-prod’ mangoldt (Az. real-of-int |z]) x — z * In z) € O(A\z. )
by simp
qed (simp-all add: primes-psi-def mangoldt-nonneg)

thm .asymptotics .upper .lower

interpretation ¢: shapiro-tauberian An. ind prime n * In n
sum-upto (An. ind prime n x Iln n / n) primes-theta dirichlet-prod’ (An. ind prime
n x In n) floor
proof unfold-locales
fix n :: nat show ind prime n x Inn > 0
by (auto simp: ind-def dest: prime-gt-1-nat)
next
show (Az. dirichlet-prod’ (An. ind prime n * In n) floor z — x * In ) € O(\z.
7)
by (rule dirichlet-prod-mangoldt1-floor-bigo)
qed (simp-all add: primes-theta-def mangoldt-nonneg prime-sum-upto-altdef! [abs-def])

thm ¢.asymptotics 9.upper J.lower

lemma sum-upto-1-x-over-n-asymptotics:
(Az. sum-upto (An. primes-psi (x / n)) x — z * In ¢ + z) € O(In)
and sum-upto-U-z-over-n-asymptotics:
(Az. sum-upto (An. primes-theta (z / n)) = — z * In z) € O(\z. x)
using dirichlet-prod-mangoldt1-floor-bigo dirichlet-prod’-mangoldt-floor-asymptotics
by (simp-all add: dirichlet-prod’-floor-conv-sum-upto primes-theta-def
primes-psi-def prime-sum-upto-altdefl)

end

7 Bounds on partial sums of the ( function

theory Partial-Zeta-Bounds

imports
Euler-MacLaurin. Euler-MacLaurin-Landau
Zeta-Function. Zeta- Function
Prime-Number-Theorem. Prime- Number- Theorem-Library
Prime-Distribution- Elementary-Library

begin

We employ Euler-MacLaurin’s summation formula to obtain asymptotic
estimates for the partial sums of the Riemann ((s) function for fixed real a,
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i.e. the function "
HOED
k=1

We distinguish various cases. The case s = 1 is simply the Harmonic num-
bers and is treated apart from the others.

lemma harm-asymp-equiv: sum-upto (An. 1 / n) ~[at-top] In
proof —
have sum-upto (An. n powr —1) ~[at-top] (A\z. In (|z| + 1))
proof (rule asymp-equiv-sandwich)
have eventually (Az. sum-upto (An. n powr —1) z € {ln (|z] + 1)..In |z] +
1}) at-top
using eventually-ge-at-top|of 1]
proof eventually-elim
case (elim )
have sum-upto (An. real n powr —1) © = harm (nat |z|)
unfolding sum-upto-altdef harm-def by (intro sum.cong) (auto simp:
field-simps powr-minus)
also have ... € {In (|z] + 1)..In |z] + 1}
using elim harm-le[of nat |z]] In-le-harm[of nat |x]]
by (auto simp: le-nat-iff le-floor-iff)
finally show ?case by simp
qed
thus eventually (Az. sum-upto (An. n powr —1) z > In (|z] + 1)) at-top
eventually (Az. sum-upto (An. n powr —1) z < In |z]| + 1) at-top
by (eventually-elim; simp)+
qed real-asymp+

also have ... ~Jat-top] In by real-asymp

finally show ?thesis by (simp add: powr-minus field-simps)
qged
lemma

fixes s :: real
assumes s: § > 0 s # 1
shows zeta-partial-sum-bigo-pos:
(An. O k=1..n. real k powr —s) — real n powr (1 —s) /(I — s) — Re
(zeta )
€ O(Az. real © powr —s)
and zeta-partial-sum-bigo-pos':
(An. >>k=1..n. real k powr —s) =o
(An. real n powr (1 — s) / (1 — s) + Re (zeta s)) +0 O(Az. real x
powr —s)
proof —
define F' where F = (\z. z powr (1 — s) / (1 — s))
define f where f = (Az. z powr —s)
define f’ where f' = (Az. —s * x powr (—s—1))
define 2z where z = Re (zeta s)

interpret euler-maclaurin-nat’ F f () [f, f] 1 0 z {}
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proof
have (Ab. (> k=1..b. real k powr —s) — real b powr (1 — s) / (1 — s) — real
b powr —s / 2)
—— Re (zeta s) — 0
proof (intro tendsto-diff)
let 2g = \b. (3 i<b. complex-of-real (real i + 1) powr — complex-of-real s)

of-nat b powr (1 — complez-of-real s) / (1 — complez-of-real

s)
have Vg b in at-top. Re (%9 b) = (O_k=1..b. real k powr —s) — real b powr
(1—s)/(1—s)
using eventually-ge-at-top[of 1]
proof eventually-elim
case (elim b)
have (3 k=1..b. real k powr —s) = (>_ k<b. real (Suc k) powr —s)
by (intro sum.reindex-bij-witness[of - Suc An. n — 1]) auto
also have ... — real b powr (1 —s) / (1 — s) = Re (%9 b)
by (auto simp: powr-Reals-eq add-ac)
finally show ?Zcase ..
qed
moreover have (Ab. Re (?g b)) —— Re (zeta s)
using hurwitz-zeta-critical-strip[of of-real s 1] s
by (intro tendsto-intros) (simp add: zeta-def)
ultimately show (Ab. (> k=1..b. real k powr —s) — real b powr (1 — s) /
(I — s)) —— Re (zeta s)
by (blast intro: Lim-transform-eventually)
qed (use s in real-asymp)
thus (Ab. Ok = 1..b. f (real k)) — F (real b) —
>oi<2 % 0 + 1. (bernoulli’ (Suc @) / fact (Suc @) *r (If, f] ! ©) (real
»))
—— z by (simp add: f-def F-def z-def)

qged (use (s # 1) in
<auto intro!: derivative-eq-intros continuous-intros
simp flip: has-real-derivative-iff-has-vector-derivative
simp: F-def f-def f’-def nth-Cons split: nat.splits»)

{

fix n :: nat assume n: n > 1
have (3" k=1..n. real k powr —s) =
npowr (I —s) /(1 —s)+z+ 1/2 % n powr —s —
EM-remainder 1 f' (int n)
using euler-maclaurin-strong-nat’[of n] n by (simp add: F-def f-def)
} note x = this

have (An. (3 k=1..n. real k powr —s) — npowr (1 —s) /(1 —s) — z) €
O(An. 1/2 * n powr —s — EM-remainder 1 f' (int n))
using * by (intro bigthetal-cong eventually-mono|OF eventually-ge-at-top|of
1)) auto
also have (An. 1/2 * n powr —s — EM-remainder 1 f' (int n)) € O(An. n powr
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—s)
proof (intro sum-in-bigo)
have (A\z. norm (EM-remainder 1 f' (int x))) € O(Az. real x powr — )
proof (rule EM-remainder-strong-bigo-natjwhere a = 1 and Y = {}])
fix z :: real assume z > I
show norm (f' z) < s * z powr (—s—1)
using s by (simp add: f’-def)
next
from s show ((Az. z powr —s) —— 0) at-top by real-asymp
qed (auto simp: f'-def introl: continuous-intros derivative-eq-intros)
thus (Az. EM-remainder 1 f' (int x)) € O(Az. real x powr —s)
by simp
qed real-asymp+
finally show (An. (3" k=1..n. real k powr —s) — real n powr (1 — s) / (1 — s)

— Z)
€ O(\z. real z powr —s) .
thus(An. > k=1..n. real k powr —s) =o
(An. real n powr (1 —s) / (1 — s) + z) +0 O(Az. real x powr —s)
by (subst set-minus-plus [symmetric]) (simp-all add: fun-diff-def algebra-simps)
qed

lemma zeta-tail-bigo:
fixes s :: real
assumes s: s > 1
shows (An. Re (hurwitz-zeta (real n + 1) s)) € O(Az. real z powr (1 — s))
proof —
have [simp]: complez-of-real (Re (zeta s)) = zeta s
using zeta-real[of s| by (auto elim!: Reals-cases)

from s have s”: s > 0 s # 1 by auto
have (An. —Re (hurwitz-zeta (real n + 1) s) — real n powr (1 — s) / (1 — s)
+ real n powr (1 — s) / (1 — s))
€ O(Az. real z powr (1 — s))
proof (rule sum-in-bigo)
have (An. —Re (hurwitz-zeta (real n + 1) s) — real n powr (1 —s) / (1 — s))

(An. O k=1..n. real k powr —s) — real n powr (1 —s) /(I — s) — Re
(zeta )
(is ?lhs = ?rhs)
proof
fix n :: nat
have hurwitz-zeta (1 + real n) s = zeta s — (> k<n. real (Suc k) powr —s)
by (subst hurwitz-zeta-shift) (use assms in <auto simp: zeta-def powr-Reals-eq»)
also have (> k<n. real (Suc k) powr —s) = (> k=1..n. real k powr —s)
by (rule sum.reindez-bij-witness[of - Ak. k — 1 Suc]) auto
finally show ?lhs n = %rhs n by (simp add: add-ac)
qed
also have ... € O(Az. real z powr (—s))
by (rule zeta-partial-sum-bigo-pos) (use s in auto)

49



also have (Az. real © powr (—s)) € O(Ax. real T powr (1—s))
by real-asymp
finally show (An. —Re (hurwitz-zeta (real n + 1) s) — real n powr (1 — s) /
(1 —s)e....
qed (use s in real-asymp)
thus ?thesis by simp
qed

lemma zeta-tail-bigo”:
fixes s :: real
assumes s: § > 1
shows (An. Re (hurwitz-zeta (real n) s)) € O(Az. real x powr (1 — s))
proof —
have (An. Re (hurwitz-zeta (real n) s)) € O(An. Re (hurwitz-zeta (real (n — 1)
+ 1))
by (intro bigthetal-cong eventually-mono|OF eventually-ge-at-top[of 1]])
(auto simp: of-nat-diff)
also have (An. Re (hurwitz-zeta (real (n — 1) + 1) s)) € O(Az. real (z — 1)
powr (1 — s))
by (rule landau-o0.big.compose[OF zeta-tail-bigo|OF assms]]) real-asymp
also have (Az. real (x — 1) powr (1 — s)) € O(\x. real x powr (1 — s))
by real-asymp
finally show ?thesis .
qed

lemma
fixes s :: real
assumes s: s > 0
shows zeta-partial-sum-bigo-neg:
(An. (OSi=1..n. real i powr s) — n powr (I + s) / (1 + 5)) € O(An. n
powr s)
and zeta-partial-sum-bigo-neg”:
(An. (> i=1..n. real i powr s)) =0 (An. n powr (1 + s) / (I + s)) +o
O(An. n powr s)
proof —
define F where F = (Az. z powr (1 + s) / (1 + s))
define f where f = (Az. z powr s)
define f' where f' = (Az. s * x powr (s — 1))

have (> i=1..n. f (real i)) — Fn =
1/2—-F1+fn/ 2+ EM-remainder’ 1 f' 1 (real n) if n: n > 1 for n
proof —
have (> ie{1<..n}. f (real i)) — integral {real 1..real n} f =
(> k<1. (bernoulli’ (Suc k) / fact (Suc k)) *r (([f, f]! k) (real n) —
(If, 71" k) (real 1))) + EM-remainder’ 1 ([f, f]! 1) (real 1) (real n)
by (rule euler-maclaurin-strong-raw-nat[where Y = {}])
(use <s > 0> <n > 1 in
<auto intro!: derivative-eq-intros continuous-intros
simp flip: has-real-derivative-iff-has-vector-derivative
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simp: F-def f-def f'-def nth-Cons split: nat.splits»)
also have (> ie{1<..n}. f (real 7)) = (>_ i€insert 1 {1<..n}. f (real 7)) — f

using n by (subst sum.insert) auto
also from n have insert 1 {1<..n} = {1..n} by auto
finally have (> i=1..n. f (real i)) — Fn = f1 + (integral {1..real n} f — F
n) +
(f (real n) — f1) /] 2 + EM-remainder’ 1 f' 1 (real n) by simp
hence (> i=1..n. f (reali)) — Fn =1/ 2 + (integral {1..real n} f — F n)

+
f (real mn) / 2 + EM-remainder’ 1 f' 1 (real n)
using s by (simp add: f-def diff-divide-distrib)
also have (f has-integral (F (real n) — F 1)) {1..real n} using assms n
by (intro fundamental-theorem-of-calculus)
(auto simp flip: has-real-derivative-iff-has-vector-derivative simp: F-def f-def
intro!: derivative-eq-intros continuous-intros)
hence integral {1..realn} f — Fn=— F 1
by (simp add: has-integral-iff)
alsohave 1 / 2 + (=F 1)+ f(realn) /2=1/2—-F1+fn/2
by simp
finally show ?thesis .
qed

hence (An. (3" i=1..n. f (real i)) — Fn) €
©OAn.1/2—-F1+fn/ 2+ EM-remainder’ 1 f' 1 (real n))
by (intro bigthetal-cong eventually-mono|OF eventually-ge-at-top[of 1]])
also have (An. 1 /2 — F 1+ fn/ 2+ EM-remainder’ 1 f' 1 (real n))
€ O(An. real n powr s)
unfolding F-def f-def
proof (intro sum-in-bigo)
have (\z. integral {1..real } (At. pbernpoly 1 t xg f't)) € O(An. 1 / s x real
n powr )
proof (intro landau-0.big.compose[ OF integral-bigo])
have (Az. pbernpoly 1 z % f' z) € O(Az. 1 * z powr (s — 1))
by (intro landau-o.big.mult pbernpoly-bigo) (auto simp: f'-def)
thus (Az. pbernpoly 1 © x5 f' z) € O(Az. x powr (s — 1))
by simp
from s show filterlim (Aa. 1 / s * a powr s) at-top at-top by real-asymp
next
fix a’ z :: real assume o’ > 1 a’' < z
thus (Aa. pbernpoly 1 a xr f' a) integrable-on {a’..z}
by (intro integrable-EM-remainder’) (auto intro!: continuous-intros simp:
['-def)
qged (use s in <auto introl: filterlim-real-sequentially continuous-intros deriva-
tive-eq-intros»)
thus (A\z. EM-remainder’ 1 f' 1 (real z)) € O(An. real n powr s)
using <s > 0» by (simp add: EM-remainder’-def)
qed (use <s > 0» in real-asymp)+
finally show (An. (3" i=1..n. real i powr s) — n powr (1 + s) / (I + 5)) €
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O(An. n powr s)
by (simp add: f-def F-def)
thus (An. (3 i=1..n. real i powr s)) =o (An. n powr (1 + s) / (I + s)) 4o
O(An. n powr s)
by (subst set-minus-plus [symmetric]) (simp-all add: fun-diff-def algebra-simps)
qed

lemma zeta-partial-sum-le-pos:

assumes s > 0 s # 1

defines z = Re (zeta (complex-of-real s))

shows J¢>0.Vz>1. |sum-upto (An. n powr —s) © — (x powr (1—s) / (1—3s)
+ 2)| < ¢ * z powr —s
proof (rule sum-upto-asymptotics-lift-nat-real)

show (An. (" k = 1..n. real k powr — s) — (real n powr (1 — s) / (I — s) +

z))
€ O(An. real n powr — )
using zeta-partial-sum-bigo-pos|OF assms(1,2)] unfolding z-def
by (simp add: algebra-simps)

from assms have s < 1 V s > 1 by linarith
thus (An. real n powr (1 — s) / (1 — s) + z — (real (Suc n) powr (1 — s) / (1
—8) + 2))
€ O(An. real n powr — s)
by standard (use <s > 0) in <real-asymp+>)
show (An. real n powr — s) € O(An. real (Suc n) powr — )
by real-asymp
show mono-on {1..} (Aa. a powr — s) V mono-on {1..} (A\x. — (z powr — s))
using assms by (intro disjI2) (auto introl: mono-onl powr-mono2’)

from assms have s < 1 V s > 1 by linarith
hence mono-on {1..} (Aa. a powr (1 — )/ (1 — s) + 2)
proof
assume s < I
thus ?thesis using «s > 0»
by (intro mono-onl powr-mono2 divide-right-mono add-right-mono) auto
next
assume s > I
thus ?thesis
by (intro mono-onl le-imp-neg-le add-right-mono divide-right-mono-neg powr-mono2’)
auto
qed
thus mono-on {1..} (Aa. a powr (1 —s) /(1 —s)+ 2)V
mono-on {1..} (Ax. — (x powr (1 — s) / (1 — s) + z)) by blast
qed auto

lemma zeta-partial-sum-le-pos’:
assumes s > 0 s # 1
defines z = Re (zeta (complex-of-real s))
shows J¢>0.Va>1. |sum-upto (An. n powr —s) © — x powr (1—s) / (1—s)|
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<c
proof —
have 3¢>0. Vz>1. |sum-upto (An. n powr —s) z — x powr (1—s) / (1—s)] < ¢
* 1
proof (rule sum-upto-asymptotics-lift-nat-real)
have (An. (3_k = 1..n. real k powr — s) — (real n powr (1 — ) / (1 — s) +
2)
€ O(An. real n powr — s)
using zeta-partial-sum-bigo-pos| OF assms(1,2)] unfolding z-def
by (simp add: algebra-simps)
also have (An. real n powr —s) € O(An. 1)
using assms by real-asymp
finally have (An. (3" k = 1..n. real k powr — s) — real n powr (1 — s) / (1 —

s) — z)
€ O(An. 1) by (simp add: algebra-simps)
hence (An. (O_k = 1..n. real k powr — s) — real n powr (1 —s) /(1 — s) —
z+z) € O(An. 1)
by (rule sum-in-bigo) auto
thus (An. (O_k = 1..n. real k powr — s) — (real n powr (I — s) / (I — s))) €
O(An. 1)
by simp

from assms have s < 1 V s > 1 by linarith
thus (An. real n powr (1 —s) / (1 — s) — (real (Suc n) powr (1 —s) / (1 —
s))) € O(An. 1)
by standard (use <s > 0> in (real-asymp+>)
show mono-on {1..} (Aa. 1) V mono-on {1..} (Az::real. —1 :: real)
using assms by (intro disjI2) (auto introl: mono-onl powr-mono2’)

from assms have s < 1 V s > 1 by linarith
hence mono-on {1..} (Aa. a powr (1 — s) / (1 — s))
proof
assume s < 1
thus ?thesis using «s > 0»
by (intro mono-onl powr-mono2 divide-right-mono add-right-mono) auto
next
assume s > 1
thus ?thesis
by (intro mono-onl le-imp-neg-le add-right-mono divide-right-mono-neg
powr-mono2’) auto
qed
thus mono-on {1..} (Aa. a powr (1 —s) /(1 —s)) V
mono-on {1..} (Az. — (z powr (1 — s) / (1 — s))) by blast

qged auto
thus ?thesis by simp
qed

lemma zeta-partial-sum-le-pos’”:
assumes s > 0 s # 1
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shows J¢>0.Va>1. |sum-upto (An. n powr —s) z| < ¢ x z powr maz 0 (1 —
)
proof —
from zeta-partial-sum-le-pos’|OF assms] obtain ¢ where
c:¢c> 0 N\x. x > 1 = |sum-upto (Az. real © powr — s) © — x powr (I — )
/(1 —s)<c
by auto

fix z :: real assume z: z > 1
have |sum-upto (Az. real z powr — s) z| < |z powr (1 —s) / (I — s)| + ¢
using ¢(1) ¢(2)[OF z] z by linarith
also have |z powr (1 — s) / (1 — s)| = z powr (1 —s) /|1 — s
using assms by simp
also have ... < x powr maz 0 (1 — s) /|1 — ]
using z by (intro divide-right-mono powr-mono) auto
also have ¢ = ¢ * x powr 0 using z by simp
also have ¢ * z powr 0 < ¢ x z powr maz 0 (1 — s)
using ¢(1) z by (intro mult-left-mono powr-mono) auto
also have z powr maz 0 (1 — s) / |1 — s| + ¢ * x powr maz 0 (I — s) =
(1 /11 = s|+ ¢)*xpowr maz 0 (1 — s)
by (simp add: algebra-simps)
finally have |sum-upto (Az. real z powr — s) x| < (1 /|1 — s| + ¢) x z powr
maz 0 (1 — s)
by simp
}

moreover have (1 /|1 — s/ +¢) > 0
using ¢ assms by (intro add-pos-pos divide-pos-pos) auto
ultimately show ¢thesis by blast
qed

lemma zeta-partial-sum-le-pos-bigo:
assumes s > 0 s # 1
shows (Az. sum-upto (An. n powr —s) z) € O(Az. x powr mazx 0 (1 — s))
proof —
from zeta-partial-sum-le-pos’'|OF assms] obtain ¢
where V2> 1. |sum-upto (An. n powr —s) x| < ¢ x z powr maz 0 (1 — s) by
auto
thus ?thesis
by (intro bigol[of - ¢] eventually-mono[OF eventually-ge-at-top[of 1]]) auto
qed

lemma zeta-partial-sum-01-asymp-equiv:
assumes s € {0<..<1}
shows sum-upto (An. n powr —s) ~lat-top] (Az. = powr (1 — s) / (1 — s))
proof —
from zeta-partial-sum-le-pos’[of s] assms obtain ¢ where
c: ¢ > 0Va>1. |sum-upto (Az. real x powr —s) © — x powr (1 — s) / (1 — s)|
< ¢ by auto
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hence (\z. sum-upto (Az. real x powr —s) x — z powr (1 — s) / (I — s)) €
O(A-. 1)
by (intro bigol[of - ¢] eventually-mono|OF eventually-ge-at-top[of 1]]) auto
also have (A-. 1) € o(Az. z powr (I — s) / (1 — s))
using assms by real-asymp
finally show ?thesis
by (rule smallo-imp-asymp-equiv)
qed

lemma zeta-partial-sum-gt-1-asymp-equiv:
fixes s :: real
assumes s >
defines ¢ = Re (zeta s)
shows sum-upto (An. n powr —s) ~[at-top] (Az. ¢)
proof —
have [simp]: ¢ # 0
using assms zeta-Re-gt-1-nonzero|of s| zeta-real[of s] by (auto elim!: Re-
als-cases)
from zeta-partial-sum-le-pos|of s| assms obtain ¢ where
c: ¢ > 0 Va>1. |sum-upto (Ax. real  powr —s) x — (z powr (1 — s) / (1 —
5 + 0l <
¢ x x powr —s by (auto simp: (-def)
hence (\z. sum-upto (Az. real z powr —s) x — ( — x powr (I — s) / (1 — 3))
€ O(Az. z powr —s)
by (intro bigol|of - ¢] eventually-mono[OF eventually-ge-at-top[of 1]]) auto
also have (Az. z powr —s) € o(A-. 1)
using <s > 1) by real-asymp
finally have (Az. sum-upto (Az. real x powr —s) z — ( — = powr (1 — s) / (1
—s) +
zpowr (I —s) /(1 —3s)) € oA 1)
by (rule sum-in-smallo) (use <s > 1» in real-asymp)
thus ?thesis by (simp add: smallo-imp-asymp-equiv)
qed

lemma zeta-partial-sum-pos-bigtheta:
assumes s > 0 s # 1
shows sum-upto (An. n powr —s) € O(Az. z powr maz 0 (1 — s))
proof (cases s > 1)
case Fulse
thus ?thesis
using asymp-equiv-imp-bigtheta| OF zeta-partial-sum-01-asymp-equiv|of s]] assms
by (simp add: max-def)
next
case True
have [simp]: Re (zeta s) # 0
using True zeta-Re-gt-1-nonzero|of s| zeta-real[of s] by (auto elim!: Reals-cases)
show ?thesis
using True asymp-equiv-imp-bigtheta| OF zeta-partial-sum-gt-1-asymp-equiv|of
]
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by (simp add: maz-def)
qed

lemma zeta-partial-sum-le-neg:

assumes s > 0

shows Jc¢>0.Vz>1. |sum-upto (An. n powr s) z — x powr (1 + s) / (1 + s)|
< ¢ * x powr s
proof (rule sum-upto-asymptotics-lift-nat-real)

show (An. (3 k = 1..n. real k powr s) — (real n powr (1 + 5) / (1 + s)))

€ O(An. real n powr s)
using zeta-partial-sum-bigo-neg|OF assms(1)] by (simp add: algebra-simps)

show (An. real n powr (1 +s) / (1 + s) — (real (Suc n) powr (1 +s) / (1 +

s)))
€ O(An. real n powr s)
using assms by real-asymp
show (An. real n powr s) € O(An. real (Suc n) powr s)
by real-asymp
show mono-on {1..} (Aa. a powr s) V mono-on {1..} (Az. — (z powr s))
using assms by (intro disjl1) (auto introl: mono-onl powr-mono2)
show mono-on {1..} (Aa. a powr (1 + )/ (1 + s)) V
mono-on {1..} (Az. — (z powr (1 + s) / (1 + 9)))
using assms by (intro disjI1 divide-right-mono powr-mono2 mono-onl) auto
qed auto

lemma zeta-partial-sum-neg-asymp-equiv:
assumes s > ()
shows sum-upto (An. n powr s) ~[at-top] (Az. x powr (1 + s) / (1 + s))
proof —
from zeta-partial-sum-le-neg|of s| assms obtain ¢ where
c: ¢ > 0Va>1. |sum-upto (Azx. real T powr s) © — x powr (I + s) / (1 + s)|
< ¢ * x powr s
by auto
hence (A\z. sum-upto (Az. real x powr s) x — x powr (1 + s) / (1 + s)) € O(Az.
x powr s)
by (intro bigol|of - c] eventually-mono[OF eventually-ge-at-top[of 1]]) auto
also have (Az. z powr s) € o(Az. z powr (1 + s) / (1 + s))
using assms by real-asymp
finally show ?thesis
by (rule smallo-imp-asymp-equiv)
qed

end

8 The summatory Mobius i function
theory Moebius-Mu-Sum

imports
More-Dirichlet-Misc
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Dirichlet-Series. Partial-Summation
Prime-Number- Theorem. Prime-Counting- Functions
Dirichlet-Series. Arithmetic-Summatory-Asymptotics
Shapiro-Tauberian
Partial-Zeta-Bounds
Prime-Number-Theorem. Prime-Number- Theorem-Library
Prime-Distribution-Elementary-Library

begin

In this section, we shall examine the summatory Mébius p function M (z) :=
> n<z #(n). The main result is that M(z) € o(x) is equivalent to the Prime
Number Theorem.

context

includes prime-counting-syntaz

fixes M H :: real = real

defines M = sum-upto moebius-mu

defines H = sum-upto (An. moebius-mu n * In n)
begin

lemma sum-upto-moebius-mu-integral: x > 1 = ((At. M t / t) has-integral M x
xInz — Hua) {1..x}
and sum-upto-moebius-mu-integrable: a > 1 => (At. M t / t) integrable-on {a..b}
proof —
{
fix a b :: real
assume ab: a > 1 a < b
have ((At. Mt % (1 / t)) has-integral M b x In b — M a % In a —
(>3- nereal —¢ {a<..b}. moebius-mu n * In (real n))) {a..b}
unfolding M-def using ab
by (intro partial-summation-strong [where X = {}])
(auto introl: derivative-eg-intros continuous-intros
sitmp flip: has-real-derivative-iff-has-vector-derivative)
} note x = this
{
fix z :: real assume z: © > 1
have (> nereal —* {1<..x}. moebius-mu n * In (real n)) = H z
unfolding H-def sum-upto-def by (intro sum.mono-neutral-cong-left) (use x
in auto)
thus ((At. Mt / t) has-integral M z x In x — H z) {1..2} using *[of 1 2] z by
stmp
}
{

fix a b :: real assume ab: a > 1
show (A\t. M t / t) integrable-on {a..b}
using *[of a b] ab
by (cases a b rule: linorder-cases) (auto intro: integrable-negligible)

qed
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lemma sum-moebius-mu-bound:
assumes ¢ > ()
shows |Mz| <z
proof —
have |M z| < sum-upto (An. |moebius-mu nl|) =
unfolding M-def sum-upto-def by (rule sum-abs)
also have ... < sum-upto (An. 1)
unfolding sum-upto-def by (intro sum-mono) (auto simp: moebius-mu-def)
also have ... < z using assms
by (simp add: sum-upto-altdef)
finally show ?thesis .
qed

lemma sum-moebius-mu-auzl: Ae. Mz /z — Hz / (z xInzx)) € OAz. 1 / In
z)
proof —
define R where R = (Az. integral {1..x} (At. Mt/ t))
have eventually (Az. Mz /2 — Hz / (x xIlnx) = Rz / (z % In x)) at-top
using eventually-gt-at-top|of 1]
proof eventually-elim
case (elim x)
thus “case
using sum-upto-moebius-mu-integral[of z] by (simp add: R-def has-integral-iff
field-simps)
qed
hence (\e. Mz /z — Hz / (x % Inz)) € ©Az. Rz / (x x In z))
by (intro bigthetal-cong)
also have (A\z. Rz / (z * Inx)) € O(Az. z / (z * In x))
proof (intro landau-o.big.divide-right)
have M € O(\z. 1)
using sum-moebius-mu-bound
by (intro bigol[where ¢ = 1] eventually-mono[OF eventually-ge-at-top[of 0]])
auto
hence (At. Mt / t) € O(At. 1)
by (simp add: landau-divide-simps)
thus R € O(\z. z)
unfolding R-def
by (intro integral-bigo[where g’ = A-. 1])
(auto simp: filterlim-ident has-integral-iff introl: sum-upto-moebius-mu-integrable)
qed (intro eventually-mono[OF eventually-gt-at-toplof 1]], auto)
also have (Az:real. x / (z * In z)) € O(A\x. 1 / In x)
by real-asymp
finally show ?thesis .
qed

lemma sum-moebius-mu-aux2: (Az. Mz [ x — Hz [ (z % In x)) —— 0) at-top
proof —
have (\z. Mz /z — Hz / (z*Inx)) € O(\z. 1 / In x)
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by (rule sum-moebius-mu-auxl)
also have (Az. 1 / In z) € o(A-. 1 :: real)
by real-asymp
finally show ?thesis by (auto dest!: smalloD-tendsto)
qed

lemma sum-moebius-mu-in-eq: H = (Ax. — dirichlet-prod” moebius-mu ¢ x)
proof
fix z :: real
have fds mangoldt = (fds-deriv (fds moebius-mu) * fds-zeta :: real fds)
using fds-mangoldt’ by (simp add: mult-ac)
hence eq: fds-deriv (fds moebius-mu) = fds moebius-mu * (fds mangoldt :: real
fds)
by (subst (asm) fds-moebius-inversion [symmetric])
have —H x = sum-upto (An. —In n * moebius-mu n)
by (simp add: H-def sum-upto-def sum-negf mult-ac)

also have ... = sum-upto (An. dirichlet-prod moebius-mu mangoldt n)
using eq by (intro sum-upto-cong) (auto simp: fds-eq-iff fds-nth-deriv fds-nth-mult)
also have ... = dirichlet-prod’ moebius-mu 1 z
by (subst sum-upto-dirichlet-prod) (simp add: primes-psi-def dirichlet-prod’-def)
finally show H x = —dirichlet-prod’ moebius-mu 1 x
by simp
qed

theorem PNT-implies-sum-moebius-mu-sublinear:
assumes ¢ ~[at-top] (Az. z)
shows M € o(\z. x)
proof —
have (Az. Hz / (z % In )) —— 0) at-top
proof (rule tendstol)
fix &’ :: real assume ¢”: ¢’ > 0
define ¢ where e = ¢’ / 2
from ¢’ have ¢: ¢ > 0 by (simp add: e-def)
from assms have ((\z. ¥ = / ) —— 1) at-top
by (elim asymp-equivD-strong) (auto introl: eventually-mono|OF eventu-
ally-gt-at-top[of 0]])
from tendstoD[OF this €] have eventually (Az. |y z / © — 1| < €) at-top
by (simp add: dist-norm,)
hence eventually (M\z. | © — z| < € % ) at-top
using eventually-gt-at-top|of 0] by eventually-elim (auto simp: abs-if field-simps)
then obtain A’ where A" \z. 2 > A'= | v — x| <exx
by (auto simp: eventually-at-top-linorder)
define A where A = maxz 2 A’
from A’have : A> 2 N\z. 2> A= |z —z|<exux
by (auto simp: A-def)

have H-bound: |Hz| / (xxInz) < (I +e+p A) /Inx+ecifz > Aforz
proof —
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from «z > A» have z > 2 using A(1) by linarith
note x = <z > A <x > 2»

define y where y = nat |floor (z / A)]

have real y = real-of-int |z / A] using A = by (simp add: y-def)
also have real-of-int |z / A] < z / A by linarith

also have ... < z using z A(1) by (simp add: field-simps)

finally have y < z .

have y > 1 using z A(1) by (auto simp: y-def le-nat-iff le-floor-iff)
note y =« > Ly <o

define S1 where [simp]: S1 = sum-upto (Am. moebius-mu m x ¢ (x / m)) y
define 52 where [simp]: S2 = (D> m | m > y A real m < x. moebius-mu m

* ¢ (z/ m))

have fin: finite {m. y < m A real m < z}
by (rule finite-subset[of - {..nat |z]}]) (auto simp: le-nat-iff le-floor-iff)
have H x = —dirichlet-prod’ moebius-mu 1) x
by (simp add: sum-moebius-mu-in-eq)
also have dirichlet-prod’ moebius-mu ) z =
O-m | m>0 A real m < z. moebius-mu m * ¢ (x / m))
unfolding dirichlet-prod’-def sum-upto-def ..
also have {m. m > 0 A real m < z} = {0<.y} U{m. y < m A real m < z}
using z y A(1) by auto
also have (> me.... moebius-mu m x ¢ (x / m)) = S1 + S2
unfolding dirichlet-prod’-def sum-upto-def S1-def S2-def using fin
by (subst sum.union-disjoint) (auto intro: sum.cong)
finally have abs-H-eq: |H z| = |S1 + S2| by simp

define SI1-1 where [simp]: SI-1 = sum-upto (Am. moebius-mu m / m) y
define S1-2 where [simp]: S1-2 = sum-upto (Am. moebius-mu m * (¢ (z /

m) —xz [/ m))y

have |S1| = |z * S1-1 + S1-2|
by (simp add: sum-upto-def sum-distrib-left sum-distrib-right
mult-ac sum-subtractf ring-distribs)
also have ... < z % |SI-1| + |S1-2|
by (rule order.trans|OF abs-triangle-ineq]) (use « in <simp add: abs-mult»)
alsohave ... <zx 1 +exzx(lnz+ 1)
proof (intro add-mono mult-left-mono)
show |S1-1| < 1
using abs-sum-upto-moebius-mu-over-n-le[of y] by simp
next
have |S1-2| < sum-upto (Am. |moebius-mu m x (¢ (x / m) — x / m)|) y
unfolding S1-2-def sum-upto-def by (rule sum-abs)
also have ... < sum-upto (Am. 1 * (¢ * (z / m))) y
unfolding abs-mult sum-upto-def
proof (intro sum-mono mult-mono less-imp-le[OF A(2)])
fix m assume m: m € {i. 0 < i A real i < real y}
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hence real m < real y by simp
also from z A(1) have ... = of-int |z / A] by (simp add: y-def)
also have ... <z / A by linarith
finally show A < z / real m using A(1) m by (simp add: field-simps)
qed (auto simp: moebius-mu-def field-simps)
also have ... = ¢ % z % (> ie{0<..y}. inverse (real 7))
by (simp add: sum-upto-altdef sum-distrib-left divide-simps)
also have (> ie{0<..y}. inverse (real i)) = harm (nat |y|)
unfolding harm-def by (intro sum.cong) auto
also have ... < In (nat |y]) + 1
by (rule harm-le) (use y in auto)
also have in (nat |y|) < Inz
using y by simp
finally show |S1-2| < e z % (In z + 1) using € z by simp
qged (use z in auto)
finally have SI-bound: |SI1| <z +exzxlnz+exzx
by (simp add: algebra-simps)

have [S2| < (O_m | y < m A real m < z. |moebius-mu m * 1 (z / m)|)
unfolding S2-def by (rule sum-abs)
alsohave ... < (O m|y<mArealm<z 1% A)
unfolding abs-mult using y
proof (intro sum-mono mult-mono)
fix m assume m: m € {m. y < m A real m < z}
hence y < m by simp
moreover have y = of-int |z / A] using z A(1) by (simp add: y-def)
ultimately have |z / A| < m by simp
hence z / A < real m by linarith
hence 9 (z / real m) < ¢ A
using m A(1) by (intro ¥-mono) (auto simp: field-simps)
thus |¢ (z / real m)| < ¢ A
by (simp add: ¥-nonneg)
qed (auto simp: moebius-mu-def p-nonneg field-simps intro!: ¥-mono)
also have ... < sum-upto (A\-. 1 x ¢ A) x
unfolding sum-upto-def by (intro sum-mono2) auto
also have ... = real (nat |z]) x ¢ A
by (simp add: sum-upto-altdef)
also have ... <z x¢y A
using z by (intro mult-right-mono) auto
finally have S2-bound: |S2| < z ¢ A .

have |H z| < |S1| + |52| using abs-H-eq by linarith

alsohave ... <z +exxsxlnz+exzx+zxp A
by (intro add-mono S1-bound S2-bound)

finally have |Hz| < (I + e+ A)xx +exxxinz
by (simp add: algebra-simps)

thus |[Hz| /(xxlnz) < (I +e+¢ A) /Inz+¢
using z by (simp add: field-simps)

qed
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have eventually (Az. |[Hz| / (z*xinz) < (I +ec+ Y A) /Inx+ €) at-top
using eventually-ge-at-toplof A] by eventually-elim (use H-bound in auto)
moreover have eventually (Az. (1 + e+ A) / Inz + e < &’) at-top
unfolding e-def using ¢’ by real-asymp
moreover have eventually (A\z. |Hz| / (z *x Inx) = |Hz / (z * In z)|) at-top
using eventually-gt-at-topof 1] by eventually-elim (simp add: abs-mult)
ultimately have eventually (Az. |H z / (z * In z)| < &') at-top
by eventually-elim simp
thus eventually (Az. dist (Hz / (z % In x)) 0 < &) at-top
by (simp add: dist-norm,)
qed
hence (A\z. Hz / (z x In z)) € o(\-. 1)
by (intro smallol-tendsto) auto
hence (\z. Hz / (zxlnz)+ Mz /z— Hz [/ (x xInx))) € o(A-. 1)
proof (rule sum-in-smallo)
have (\z. Mz /z— Hx / (z* Inx)) € O\z. 1 / Inx)
by (rule sum-moebius-mu-auzl)
also have (Az:real. 1 / In z) € o(A-. 1)
by real-asymp
finally show (A\e. Mz /2 — Hz / (z x Inx)) € o(A-. 1) .
qed
thus ?thesis by (simp add: landau-divide-simps)
qed

theorem sum-moebius-mu-sublinear-imp-PNT:
assumes M € o(\z. x)
shows ¢ ~[at-top] (\z. x)
proof —
define o :: nat = real where [simp]: 0 = (An. real (divisor-count n))
define C where [simp]: C = (euler-mascheroni :: real)
define f :: nat = real where f = (An.on —Inn — 2 x C)
define F' where [simp|: F = sum-upto f
write moebius-mu (<u»)

— The proof is based on the fact that ¢(x) —  can be approximated fairly well
by the Dirichlet product }, . >, u(d)f(n/d):

have eq: ¥ © — © = —sum-upto (dirichlet-prod u f) © — fracx — 2 x C if z:
> 1 for x

proof —

have |[z| — Yz — 2% C =
sum-upto (A-. 1) © — sum-upto mangoldt x — sum-upto (An. if n = 1
then 2 * C else 0) x
using z by (simp add: sum-upto-altdef -def le-nat-iff le-floor-iff)

also have ... = sum-upto (An. I — mangoldt n — (if n = 1 then 2 x C else
0)) z
by (simp add: sum-upto-def sum-subtractf)
also have ... = sum-upto (dirichlet-prod p f)
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by (intro sum-upto-cong refl moebius-inversion)
(auto simp: divisor-count-def sum-subtractf mangoldt-sum f-def)
finally show ¢ © — z = —sum-upto (dirichlet-prod p f) x — fracx — 2 x C
by (simp add: algebra-simps frac-def)
qged

— We now obtain a bound of the form |F z| < B * sqrt x.
have F' € O(sqrt)
proof —
have F' € O(Az. (sum-upto o v — (x x Inz + (2%« C — 1) * x)) —
(sum-uptolnx — x x Inz + ) + 2 * C * frac x) (is - € O(%rhs))
by (intro bigthetal-cong eventually-mono|OF eventually-ge-at-top|of 1]])
(auto simp: sum-upto-altdef sum-subtractf f-def frac-def algebra-simps
sum.distrib)
also have ?rhs € O(sqrt)
proof (rule sum-in-bigo, rule sum-in-bigo)
show (Az. sum-upto o x — (z x Inxz + (2% C — 1) x x)) € O(sqrt)
unfolding C-def o-def by (rule summatory-divisor-count-asymptotics)
show (Az. sum-upto (Az. In (real z)) x — x x In z + z) € O(sqrt)
by (rule landau-o.big.trans|OF sum-upto-In-stirling-weak-bigo)) real-asymp
ged (use euler-mascheroni-pos in real-asymp)
finally show ?%thesis .
qed
hence (An. F' (real n)) € O(sqrt)
by (rule landau-o0.big.compose) real-asymp
from natfun-bigoE[OF this, of 1] obtain B :: real
where B: B > 0 An.n > 1 = |F (real n)| < B x sqrt (real n)
by auto
have B |Fz| < B x sqrt z if z > 1 for z
proof —
have |F z| < B * sqrt (nat |z])
using B(2)[of nat | z]] that by (simp add: sum-upto-altdef le-nat-iff le-floor-iff )
also have ... < B * sqrt x
using B(1) that by (intro mult-left-mono) auto
finally show ?thesis .
qed

— Next, we obtain a good bound for 3, _, ﬁ
from zeta-partial-sum-le-pos’’[of 1 / 2] obtain A
where A: A > 0 Az. ¢ > 1 = |sum-upto (An. 1 [ sqrt n) z| < A * sqrt

by (auto simp: maz-def powr-half-sqrt powr-minus field-simps)

— Finally, we show that -, -, >, u(d) f(n/d) € o(z).
have sum-upto (dirichlet-prod p f) € o(Az. x)

proof (rule landau-o.smalll)
fix € :: real
assume ¢: € > 0

have x: eventually (A\x. |sum-upto (dirichlet-prod u f) x| < & * x) at-top
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ifb:b>1AxB/sqtb<e/3B/sqrtb<e/ 3forbd
proof —
define K :: real where K = sum-upto (An. |[fn| / n) b
have C # (1 / 2) using euler-mascheroni-gt-19-over-33 by auto
hence K: K > 0 unfolding K-def f-def sum-upto-def
by (intro sum-pos2[where i = 1]) (use <b > 1) in auto)
have eventually (Az. Mz [/ z| <e/ 38 /| K) at-top
using smalloD-tendsto[OF assms] ¢ K by (auto simp: tendsto-iff dist-norm)
then obtain ¢’ where ¢ A\z. 2 > ¢’ = |[Mz /z|<e /3 /K
by (auto simp: eventually-at-top-linorder)
define ¢ where ¢ = maz 1 ¢’
have ¢: [Mz| <e /3 /K xzifz > cfor z
using c’[of z| that by (simp add: c-def field-simps)

show eventually (Az. |sum-upto (dirichlet-prod p f) z| < & % z) at-top
using eventually-ge-at-top[of b * c| eventually-ge-at-top[of 1] eventu-
ally-ge-at-toplof b
proof eventually-elim
case (elim x)
define a where a = 2 / b
from elim <b> 1> have ab: a > 1b>1axb==x
by (simp-all add: a-def field-simps)
from ab have a x I < a * b by (intro mult-mono) auto
hence a < z by (simp add: ab(3))
from ab have a * 1 < ax band 1 %= b < a * b by (intro mult-mono;
sitmp)+
hence a < z b < = by (simp-all add: ab(3))
have a =z / b b = z / a using ab by (simp-all add: field-simps)
have sum-upto (dirichlet-prod p f) © =
sum-upto (An. un x F (z / n)) a + sum-upto (An. M (z / n) = fn)
b— MaxFb
unfolding M-def F-def by (rule hyperbola-method) (use ab in auto)

alsohave |...|<e/8*xz+e/8xzx+e/3x*x
proof (rule order.trans|OF abs-triangle-ineq)] order.trans|OF abs-triangle-ineq]
add-mono)+

have |sum-upto (An. p n x F (x / real n)) a| < sum-upto (An. | n x F
(z / real n)|) a
unfolding sum-upto-def by (rule sum-abs)
also have ... < sum-upto (An. 1 x (B x sqrt (z / real n))) a
unfolding sum-upto-def abs-mult using <a < x»
by (intro sum-mono mult-mono B') (auto simp: moebius-mu-def)

also have ... = B x sqrt © x sum-upto (An. 1 / sqrt n) a
by (simp add: sum-upto-def sum-distrib-left real-sqrt-divide)
also have ... < B x sqrt z * |sum-upto (An. 1 / sqrt n) al

using B(1) <z > 1» by (intro mult-left-mono) auto
also have ... < B x sqrt « = (A * sqrt a)

using <a > 1) B(1) <z > 1> by (intro mult-left-mono A) auto
also have ... = Ax B/ sqrt b x x
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using ab «x > Iy<x > 1) by (subst <a =z / by) (simp-all add: field-simps
real-sqrt-divide)

also have ... < e/ 3 % z using «x > 1) by (intro mult-right-mono b)
auto
finally show |sum-upto (An. un* F (x / n))al <e/ 8 xz.
next
have |sum-upto (An. M (z / n) * fn) b] < sum-upto (An. |[M (z / n) = f
n|) b
unfolding sum-upto-def by (rule sum-abs)
also have ... < sum-upto (An. e/ 3/ K (x / n)«*|fn|) b
unfolding sum-upto-def abs-mult
proof (intro sum-mono mult-right-mono)
fix n assume n: n € {n. n > 0 A real n < b}
have ¢ > 0 by (simp add: c-def)
with n have ¢ x n < ¢ * b by (intro mult-left-mono) auto
also have ... < r using b x ¢ < z» by (simp add: algebra-simps)
finally show |M (2 / realn)| < e/ 3 / K  (z / real n)
by (intro less-imp-le[OF c]) (use n in <auto simp: field-simps»)
qed auto
also have ... = ¢/ 3 x z / K % sum-upto (An. |fn| / n) b
by (simp add: sum-upto-def sum-distrib-left)
alsohave ... = ¢/ 3 x =z
unfolding K-def [symmetric] using K by simp
finally show |sum-upto (An. M (z / realn) = fn) b| <e /3 xz.
next
have |[M a x F b| < a * (B % sqrt b)
unfolding abs-mult using ab by (intro mult-mono sum-moebius-mu-bound
B’) auto

also have ... = B / sqrt b x x
using ab(1,2) by (simp add: real-sqgrt-mult <b = x / @ real-sqrt-divide
field-simps)

also have ... < e / 3 x z using «x > 1) by (intro mult-right-mono b)
auto

finally show [Ma*x F b <e/ 3 x*ux.

qed

also have ... = ¢ x = by simp

finally show ?case .

qed
qed

have eventually (Ab:real. b > 1 NAx B/ sqtb<e/38ANB/sqth<e]/
3) at-top
using ¢ by (intro eventually-conj; real-asymp)
then obtain b where b > 1 A*x B/ sqrt b<e /3B /sqrtb<e/ 3
by (auto simp: eventually-at-top-linorder)
from *[OF this] have eventually (Az. |sum-upto (dirichlet-prod p f) z| < € *
x) at-top .
thus eventually (Az. norm (sum-upto (dirichlet-prod p f) x) < € % norm x)
at-top
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using eventually-ge-at-top[of 0] by eventually-elim simp

qed
have (A\z. ¥ z — z) € ©(Az. —(sum-upto (dirichlet-prod p f) z + (frac z + 2 *
)
by (intro bigthetal-cong eventually-mono[OF eventually-ge-at-top[of 1]], subst
eq) auto
hence (Az. ¥ © — z) € ©(A\z. sum-upto (dirichlet-prod u f) x + (frac x + 2 =
@)

by (simp only: landau-theta.uminus)
also have (Az. sum-upto (dirichlet-prod p f)  + (frac z + 2 x C)) € o(Az. z)
using <sum-upto (dirichlet-prod p f) € o(Az. z)» by (rule sum-in-smallo)
real-asymp—+
finally show ?thesis by (rule smallo-imp-asymp-equiv)
qed

We now turn to a related fact: For the weighted sum A(z) := 5", . p(n)/n,
the asymptotic relation A(x) € o(1) is also equivalent to the Prime Number
Theorem. Like Apostol, we only show one direction, namely that A(z) €
o(1) implies the PNT.

context
fixes A defines A = sum-upto (An. moebius-mu n / n)
begin

lemma sum-upto-moebius-mu-integral”. © > 1 = (A has-integral x x A © — M
and sum-upto-moebius-mu-integrable”. a > 1 = A integrable-on {a..b}
proof —
{
fix a b :: real
assume ab: a > 1 a<b
have ((At. A t = 1) has-integral A bx b — A a x a —
(>3- nereal —¢ {a<..b}. moebius-mu n / n * n)) {a..b}
unfolding M-def A-def using ab
by (intro partial-summation-strong [where X = {}])
(auto introl: derivative-eg-intros continuous-intros
stmp flip: has-real-derivative-iff-has-vector-derivative)
} note x = this
{
fix = :: real assume z: v > 1
have [simp]: A 1 = 1 by (simp add: A-def)
have (3 nereal —¢ {1<..z}. moebius-mun / n * n) =
(3" neinsert 1 (real —*{1<..x}). moebius-mun / n x n) — 1
using finite-vimage-real-of-nat-greater ThanAtMost[of 1 ] by (subst sum.insert)
auto
also have insert 1 (real —‘{1<..2}) ={n.n > 0 A real n < z}
using z by auto
also have (3" n | 0 < n A real n < z. moebius-mu n / real n * real n) = M x
unfolding M-def sum-upto-def by (intro sum.cong) auto
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finally show (A has-integral z * A v — M z) {1..z} using *[of 1 z] z by (simp
add: mult-ac)

}

{

fix a b :: real assume ab: a > 1
show A integrable-on {a..b}
using *[of a b] ab
by (cases a b rule: linorder-cases) (auto intro: integrable-negligible)

qed

theorem sum-moebius-mu-div-n-smallo-imp-PNT:
assumes smallo: A € o(A-. 1)
shows M € o(\z. z) and ¢ ~at-top] (Az. x)
proof —
have eventually (Az. Mz = x * A x — integral {1..x} A) at-top
using eventually-gt-at-toplof 1]
by eventually-elim (use sum-upto-moebius-mu-integral’ in <simp add: has-integral-iff»)
hence M € O(A\z.  * A © — integral {I..2} A)
by (rule bigthetal-cong)
also have (Az. z x A x — integral {1..x} A) € o(\z. z)
proof (intro sum-in-smallo)
from smallo show (Az. z x A z) € o(\z. )
by (simp add: landau-divide-simps)
show (Az. integral {1..2} A) € o(\x. x)
by (intro integral-smallo[OF smallo] sum-upto-moebius-mu-integrable’)
(auto introl: derivative-eg-intros filterlim-ident)
qed
finally show M € o(Az. z) .
thus ¢ ~[at-top] (A\z. x)
by (rule sum-moebius-mu-sublinear-imp-PNT)
qed

end
end

end

9 Elementary bounds on 7(x) and p,

theory Elementary-Prime-Bounds

imports
Prime-Number- Theorem. Prime-Counting- Functions
Prime-Distribution-Elementary-Library
More-Dirichlet-Misc

begin
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In this section, we will follow Apostol and give elementary proofs of Chebyshev-
type lower and upper bounds for 7(x), i.e. ciz/Inz < w(x) < cox/Inz.
From this, similar bounds for p,, follow as easy corollaries.

9.1 Preliminary lemmas

The following two estimates relating the central Binomial coefficient to pow-
ers of 2 and 4 form the starting point for Apostol’s elementary bounds for
m(x):

lemma twopow-le-central-binomial: 2 ~n < ((2 * n) choose n)
proof —
have 2 " n x fact n = 2 < (fact (2 * n) :: nat)
proof (induction n)
case (Suc n)
have (fact (2 * Sucn) ::nat) = (2 xn+ 1) * (2 xn + 2) * fact (2 x n)
by (simp add: algebra-simps)

have 2 ~ Suc n * fact (Sucn) 2 =2 "nxfactn " 2% 2x(n+1) "2
by (simp add: algebra-simps power2-eq-square)
also have ... < fact (2 n)* 2« (n+1) "2
by (intro mult-right-mono Suc.IH) auto
also have ... = fact (2 *n) * (2% (n+ 1) ~2)
by (simp add: mult-ac)
also have ... < fact (2 n)* (2*xn+ 1) (2*n+ 2))
by (intro mult-left-mono) (auto simp: power2-eq-square)
also have ... = fact (2 * Suc n)
by (simp add: algebra-simps)
finally show ?case .
qed simp-all
also have ... = (2 * n choose n) * fact n ~ 2
using binomial-fact-lemmalof n 2 x n] by (simp add: power2-eq-square mult-ac)
finally show ?thesis by simp
qged

lemma fourpow-gt-central-binomial:
assumes n > 0
shows 4 “n > ((2 * n) choose n)
proof —
have (> ie{..2xn}—{n}. (2 * n) choose 7)) > 0
using assms by (intro sum-pos) (auto simp: subset-iff)
hence ((2 * n) choose n) < (D_i€{..2«n}—{n}. ((2 * n) choose 7)) + ((2 * n)
choose n)
by simp
also have ... = (> i € insert n ({..2xn} — {n}). ((2 * n) choose 7))
by (subst sum.insert) auto
also have insert n ({..2«n} — {n}) = {..2%n} by auto
also have (> i<2xn. ((2 * n) choose ©)) = (1 + 1) ~ (2 x n)
by (subst binomial) simp-all
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alsohave ... =/ " n
by (subst power-mult) (simp add: eval-nat-numeral)
finally show ?thesis .
qed

9.2 Lower bound for 7(x)

context

includes prime-counting-syntaz

fixes S :: nat = nat = int

defines S = (Anp. (3. me{0<..nat [logp (2xn)]}. [2*%n/p"m] — 2 x |[n/p"m)))
begin

We now first prove the bound m(z) > %z/Inz for > 2. The constant
could probably be improved for starting points greater than 2; this is true
for most of the constants in this section.

The first step is to show a slightly stronger bound for even numbers, where
the constant is %1112 ~ 0.347:

lemma
fixes n :: nat
assumes n: n > 1
shows w-bounds-auz: In (fact (2 * n)) — 2 * In (fact n) =
prime-sum-upto (Ap. Snp * In p) (2 % n)
and  w-lower-bound-ge-strong: m (2 xn) > In 2/ 2% (2% n) /In (2 xn)
proof —
define L :: real = nat = nat where L = (A\z p. legendre-auz x p)
have In (fact (2 x n)) — 2 * In (fact n) = sum-upto In (2 * n) — 2 * sum-upto
Inn
by (simp add: In-fact-conv-sum-upto)
also have ... = prime-sum-upto (Ap. L (2 * n) p x In p) (2 * n) —
2 x prime-sum-upto (Ap. L n p x In p) n
by (subst (1 2) legendre-identity) (auto simp: L-def)
also have prime-sum-upto (Ap. L n p * In p) n = prime-sum-upto (Ap. L n p *
Inp) (2 % n)
unfolding prime-sum-upto-altdef2
by (intro sum.mono-neutral-left|OF finite-subset|[of - {..2xn}]])
(auto dest: prime-gt-0-nat legendre-auz-posD
stmp: legendre-aux-eq-0 L-def le-nat-iff le-floor-iff)
also have prime-sum-upto (Ap. L (2xn) p * In p) (2xn) —
2 x prime-sum-upto (Ap. L n p x In p) (2 *x n) =
prime-sum-upto (Ap. (real (L (2xn) p) — 2 = real (L n p)) * In p) (2

* M)
by (simp add: ring-distribs sum-subtractf sum-distrib-left mult.assoc prime-sum-upto-def)
also have ... = prime-sum-upto (Ap. of-int (S n p) * In p) (2xn)

unfolding prime-sum-upto-def

proof (intro sum.cong refl, goal-cases)
case (1 p)
define ub where ub = nat |log p (2xn)]
from 1 have p: primepp > 1 p < 2 % n
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using prime-gt-1-nat[of p] by auto
have L (2 * n) p = (3, me{0<..ub}. nat | 2+n/p m])
unfolding L-def legendre-auz-altdef! using p 1 by (auto simp: ub-def)
moreover have L n p = (> me{0<..ub}. nat |n/p~m|) unfolding L-def
proof (intro legendre-auz-altdef2)
have real n = real p powr log p n
using n p by simp
also have log (real p) 2 > 0 using p by auto
hence log p n < 1 + of-int |log p 2 + log p n| by linarith
hence real p powr log p n < real p powr Suc ub
unfolding ub-def using n p by (intro powr-less-mono) (auto simp: log-mult)
also have ... = p ~ Suc ub
using p by (subst powr-realpow) auto
finally show real n < real p ~ Suc ub by simp
ged (use n p in auto)
ultimately have real (L (2 * n) p) — 2 * real (L n p) =
O- me{0<..ub}. real (nat | 2xn/p m]) — 2 * real (nat [n/p~m]))
by (simp add: sum-subtractf sum-distrib-left)
also have ... = of-int (> me{0<..ub}. [2xn/p"m]| — 2 % |n/p"m])
unfolding of-int-sum by (intro sum.cong) auto
finally show ?case by (simp add: ub-def S-def)
qed
finally show eq: In (fact (2 * n)) — 2 * In (fact n) =
prime-sum-upto (Ap. Snp x Inp) (2 x n) .

have S-nonneg: Snp > 0 for p
unfolding S-def by (intro sum-nonneg) linarith
have S-le: Snp < |log p (2%n)] if prime p for p
proof —
have S np < (3. me{0<..nat |log p (2xn)|}. 1)
unfolding S-def of-nat-mult of-nat-numeral by (intro sum-mono) linarith
thus ?thesis using prime-gt-1-nat[of p] that n by auto
qed

have n x In 2 = In (real (2 " n))
by (simp add: In-realpow)
also have ... < In (real ((2%n) choose n))
using twopow-le-central-binomial]of n)
by (subst In-le-cancel-iff; (unfold of-nat-le-iff)?) auto

also have ... = In (fact (2 * n)) — 2 * In (fact n)
by (simp add: binomial-fact In-div In-mult)
also have ... = prime-sum-upto (Ap. Snp x In p) (2 x n)

by (fact eq)
also have ... < prime-sum-upto (Ap. |log p (2xn)] * In p) (2 * n)
unfolding prime-sum-upto-def using S-le
by (intro sum-mono mult-right-mono) (auto dest: prime-gt-0-nat)
also have ... < prime-sum-upto (Ap. In (2 x n)) (2 % n)
unfolding prime-sum-upto-def
proof (intro sum-mono)
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fix p assume p € {p. prime p A real p < real (2 x n)}
hence p: p > 1 using prime-gt-1-nat|of p] by auto
have real-of-int [log p (2 * n)| = real-of-int |In (2 * n) / In p]
using p n by (simp add: log-def In-mult)
alsohave ... <iIn(2xn)/Inp
by linarith
also have ... x lnp = In (2 * n)
using p by (simp add: field-simps)
finally show real-of-int |log p (2 * n)] = Inp < In (2 x n)
using p by simp
qed
also have ... =in (2 xn) * 7 (2 x n)
by (simp add: w-def prime-sum-upto-def)
finally show 7 (2 xn) > (In 2/ 2) x (2% n) /In (2 xn)
using n by (simp add: field-simps)
qed

lemma [n-2-ge-56-81: In 2 > (56 / 81 :: real)
using In-approx-bounds|of 2 2, simplified, simplified eval-nat-numeral, simplified]
by simp

The bound for any real number x > 2 follows fairly easily, although some
ugly accounting for error terms has to be done.

theorem 7-lower-bound:
fixes z :: real
assumes z: ¢ > 2
shows 7z > (1/6)x*(x/Inx)
proof (cases even (nat |z]))
case True
define n where n = nat |z]
from True assms have n: n > 2 even n
by (auto simp: n-def le-nat-iff le-floor-iff)
have (1 / 6)x(z /Inz) < (In 2/ 4)*(z/Inx)
using In-2-ge-56-81 x by (intro mult-strict-right-mono) auto
alsohave in 2 / 4« (z /Inz)=(1/2)«(In2/ 2z /Inx)
by simp
alsohave ... < (I — 1 /xz)*x(In2/2xz/Inx)
by (intro mult-right-mono) (use assms in <auto simp: field-simps»)
alsohave (1 — 1 /z)*x(In2/2xx/Inx)=mI2/2*x(x—1)/Inz
using assms by (simp add: field-simps)
alsohave in 2 / 2+ (z—1)/Inz<In2/2x%xn/Inn
using = by (intro frac-le mult-mono mult-nonneg-nonneg) (auto simp: n-def)
alsohave in 2 / 2+«n/Inn<mn
using 7-lower-bound-ge-strong[of n div 2] <even ny n by simp
also have 7 n = 7 z by (simp add: n-def)
finally show ?thesis .
next
case Fulse
define n where n = nat |z]
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from Fulse assms have n: n > 2 odd n
by (auto simp: n-def le-nat-iff le-floor-iff)
then obtain k where [simp]: n = 2 x k + 1
by (auto elim!: oddF)
from n have k: k > 0 by simp

from k have 3 < real n by simp
also have real n < z unfolding n-def using z by linarith
finally have z > 3 .

have (1 /6)x(z /Inz)=1/6xz/Inzx
using z by (simp add: field-simps)
alsohave I / 6z /Inx<In2 /2% (2xk)/In(2xk)
proof (intro frac-less)
have z < real n + 1 unfolding n-def by linarith
hence I /6 xx <1 /6% (n+ 1)by simp
also {
have *: (3 % In 2 — 1 = real) > 1
using In-2-ge-56-81 by simp
hence 1 / (8 xIn 2 — 1 :: real) < 1 by simp
also have 1 < real k using k by simp
finally have 1 / 6 x (n+ 1) <in 2/ 2 x real (2 x k)
using * by (simp add: field-simps)
}

finally show 1 / 6 x 2z <In 2 / 2 % real (2 % k) .

next
have real (2 * k) < real n by simp
also have ... < z using x unfolding n-def by linarith

finally show In (real (2 x k)) < In z using k by simp
qed (use k z in auto)
alsohave in 2 / 2 x (2% k) /In (2 k) <7 (2xk)

by (rule w-lower-bound-ge-strong) (use <k > 0> in auto)
also have 7 (2 x k) <7 n

by (rule w-mono) auto

also have ... = 7 z unfolding n-def by simp
finally show ?thesis .
qed

lemma w-at-top: filterlim primes-pi at-top at-top
proof (rule filterlim-at-top-mono)

show eventually (A\z. primes-pix > 1 / 6 = (z / In x)) at-top

using eventually-gt-at-top|of 2] by eventually-elim (intro less-imp-le 7-lower-bound)
qed real-asymp

9.3 Upper bound for ¥(z)

In this section, we prove a linear upper bound for ¢. This is somewhat
unnecessary because we already have a considerably better bound on ¥(z)
using a proof that has roughly the same complexity as this one and also
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only uses elementary means. Nevertheless, here is the proof from Apostol’s
book; it is quite nice and it would be a shame not to formalise it.

The idea is to first show a bound for ¥(2n) — ¥(n) and then deduce one
for ¢¥(2™) from this by telescoping, which then yields one for general x by
monotonicity.

lemma J-double-less:
fixes n :: nat
assumes n: n > 0
shows ¥ (2 x real n) — O (real n) < real n * In 4
proof (cases n > 2)
case Fulse
with assms have n = 1 by force
moreover have 9 2 = In 2 by (simp add: eval-9)
ultimately show ?thesis by auto
next
define P where P = (An:nat. {pe{0<..n}. prime p})
have ¥-eq: 9 n = (> peP n. In p) for n
unfolding J-def prime-sum-upto-def
by (intro sum.cong) (auto simp: P-def dest: prime-gt-0-nat)

have ¥ (2 xn) —dn=(>_p€ P (2xn) — Pn.Inp)
unfolding ¥-eq by (rule Groups-Big.sum-diff [symmetric]) (auto simp: P-def)

also have () peP (2«n) — Pn. Inp) =
(S peP (24n) — P n. ([25n/p) — 2  [n/p)) * In p)
proof (intro sum.cong refl)
fix p assume p: p € P (2xn) — P n
hence *: real n [/ real p < 1 realn / real p > 1 / 2 by (auto simp: P-def)
from x have |real n / real p| = 0 by linarith
moreover from x have |2 % real n / real p| = 1
by linarith
ultimately show In p = (|2xn/p| — 2 % [n/p]) x Inp
by simp
qed

also have (" peP (2+n) — P n. (|[2*n/p] — 2 % |n/p]) * Inp) <
(32 peP (2+n). ([2+n/p| — 2 * [n/p]) = In p)
proof (intro sum-mono2)
fix passume p:p e P (2 xn) — (P (2 xn) — Pn)
have 2 x |real n / real p] < |2 * (real n / real p)|
by linarith
thus 0 < real-of-int (|real (2 x n) / real p| — 2 * |real n / real p|) * In (real
p)
using p by (intro mult-nonneg-nonneg) (auto simp: P-def)
qed (auto simp: P-def)

also have x: 2 x real-of-int |realn [ real p ~m] < 2 x real n / real p ~ m for
pm
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by linarith
have (> me{1}. |2 xrealn / realp “m| — 2 % |n / realp”m]) < Snp
if prime p p < 2 % n for p :: nat
unfolding S-def using prime-gt-1-nat[OF that(1)] that(2) n *[of p]
by (intro sum-mono2) (auto dest: prime-gt-1-nat simp: le-nat-iff le-floor-iff)
hence (3 peP (2xn). (3o me{l}. [2xn/p~m| — 2 x [n/p~m]) * In p) < (3_peP
(2%n). Snp* In p)
by (intro sum-mono mult-right-mono; (unfold of-int-le-iff)?)
(auto dest: prime-gt-1-nat simp: P-def)
hence (> peP (2xn). (|2xn/p] — 2 x |n/p|) * In p) < (O peP (2xn). Snp
* In p)
by simp

also have (> p € P (2xn). S n p * In p) = prime-sum-upto (Ap. S n p * In p)
(2 % n)
unfolding P-def prime-sum-upto-def by (intro sum.cong) (auto simp: P-def
dest: prime-gt-0-nat)

also have ... = In (fact (2 * n)) — 2 * In (fact n)
by (rule m-bounds-aux [symmetric]) (use n in auto)
also have ... = In (real ((2%n) choose n))

by (simp add: binomial-fact In-div In-mult)
also have ... < In (real (4 ~n))
by (subst In-less-cancel-iff; (unfold of-nat-le-iff) %)
(use fourpow-gt-central-binomial[of n] n in auto)
also have ... = n x In 4
by (simp add: In-realpow)
finally show ?thesis by simp
qed

lemma ¥-twopow-less: 9 (2 "r) < 2 " (r+ 1) *in 2
proof —
have 9-twopow-diff: ¥ (2 ~ Suc k) — 9 (2 "k) < 2 " Suck xIn 2 for k
using ¥-double-less[of 2 ~ k] In-realpow[of 2 2] by simp
show 9 (2 "r) <2 " (r+1)*In2
proof (cases > 0)
case True
have (3> k<r. 9 (2 " Suck) — 9 (2 k) < O_k<r. 2 " Suck *In 2)
by (intro sum-strict-mono 9-twopow-diff) (use <r > 0> in auto)
also have (D k<r. ¥ (2 " Suck) — 9 (2 " k) =9 (2 " r)
by (subst sum-lessThan-telescope) auto
also have (> k<r. 2 " Suck xIn 2 :: real) = O k<r. 2 k) *x 2 xIn 2
by (simp add: sum-distrib-right sum-distrib-left mult-ac)
also have (D" k<r. 2 "k ureal) =2 "r — 1
using geometric-sum[of 2 :: real] by simp
also have ... < 2 7 r by simp
finally show ¥ (2 "r) <2 " (r+1)x1In2
by simp
qed auto
qed
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theorem ¥-upper-bound-weak:

fixes n :: nat

assumes n: n > 0

shows Jdn< 4 *xln2=x*n
proof —

define r where r = floor-log n

have ¥ n < 9 (real (2 ~ Suc 1))

unfolding r-def using floor-log-exp2-ge[of n] by (intro ¥-mono, unfold of-nat-le-iff)
auto

also have ... < 4/ xIn 2 % real (2 " r)
using J-twopow-less[of r + 1] by (simp add: mult-ac)
also have ... < / x In 2 % real n unfolding r-def
by (intro mult-left-mono, unfold of-nat-le-iff, intro floor-log-exp2-le) (use n in
auto)
finally show ¥ n < 4 % In 2 x n by simp
qed

9.4 Upper bound for 7(x)

We use our upper bound for ¥(z) (the strong one, not the one from the
previous section) to derive an upper bound for 7(z).

As a first step, we show the following lemma about the global maximum of
the function Inxz/z¢ for ¢ > 0:

lemma 7-upper-bound-auz:
fixes c :: real
assumes c > 0
defines f = (A\z. z powr (—c¢) * In z)
assumes z: z > 0
shows fz < 1/ (c*exp 1)
proof —
define f’ where f' = (Az. £ powr (—c — 1) % (I — ¢ * In 1))
define z where z = exp (1 / ¢)
have z > 0 by (simp add: z-def)
have deriv: (f has-real-derivative f' t) (at t) if ¢ > 0 for ¢
unfolding f-def f’-def using that
by (auto introl: derivative-eq-intros simp: field-simps powr-diff powr-minus)
have [simp]: fz=1/ (c *x exp 1)
by (simp add: z-def f-def powr-def exp-minus field-simps)

show ?thesis
proof (cases x z rule: linorder-cases)
assume z: 1 < 2
from z assms have t: 3t. t >z ANt <zAfz—faz=(z—2)xf't
by (intro MVT2 deriv) auto
then obtain ¢t where t: t >zt < z2fz— fo=(z—z)* f'1
by blast
hence in t < In z using assms by simp
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also have In z = 1 / ¢ by (simp add: z-def)
finally have 0 < (z — z) x f' ¢
unfolding f’-def using (¢ > 0) z
by (intro mult-nonneg-nonneg) (auto simp: z-def field-simps)

also from t have ... = fz — fx by (simp add: algebra-simps)
finally show ?thesis by simp
next

assume 1: T > 2

from z assms <z > 0> have t: It. t > 2 At <z ANfaz—fz=(x—2)*xf't
by (intro MVT2 deriv) auto

then obtain ¢t where t: t >zt <z fz — fz=(x — 2) * f' 1
by blast

hence In z < In t using <z > 0> assms by simp

also have In z = 1 / ¢ by (simp add: z-def)

finally have 0 < (z — z) = f' ¢
unfolding f’-def using ¢ > 0» z

by (intro mult-nonpos-nonpos mult-nonneg-nonpos) (auto simp: z-def field-simps)

also from ¢t have ... = fz — fz by (simp add: algebra-simps)
finally show ?thesis by simp
qed auto
qed

Following Apostol, we first show a generic bound depending on some real-
valued parameter a:

lemma 7-upper-bound-strong:

fixes « :: real and n :: nat

assumes n: n > 2 and a: o € {0<..<1}

showstn< (1 /(I —a)xempl)+ini/a)xn/Inn
proof —

have real n powr o < real n powr 1

using assms n by (intro powr-mono) auto
hence n'”: real n powr a < real n using n by simp

define P where P = (Az. {p. prime p A real p < z})
define @ where Q = {p. prime p A real p € {n powr a<..n}}

have finite-P [intro]: finite (P z) for z
proof (cases z > 0)
case True
hence P z C {..nat |z]}
by (auto simp: le-nat-iff le-floor-iff P-def)
thus ?thesis by (rule finite-subset) auto
qed (auto simp: P-def)

have P-subset: Px C Py ifz < y for z y
using that by (auto simp: P-def)

have Q = P n — P (n powr «) by (auto simp: Q-def P-def)
also have card ... = card (P n) — card (P (n powr «))
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by (intro card-Diff-subset finite-P P-subset n')
also have real ... =71 n — 7 (n powr «)
by (subst of-nat-diff[OF card-mono|OF - P-subset]])
(use n' in <auto simp: w-def prime-sum-upto-def P-def»)
finally have card-Q: real (card Q) = 7 n — w (n powr «) .

have (m n — 7 (n powr @)) * In (n powr o) = (> peQ. In (n powr a))
using card-Q by simp
also have ... < (> peQ. In p)
using n « by (intro sum-mono, subst In-le-cancel-iff) (auto simp: Q-def dest:
prime-gt-0-nat)
also have ... <9 n
unfolding J-def prime-sum-upto-def by (intro sum-mono2) (auto simp: @Q-def
dest: prime-gt-1-nat)
also have ... < In 4 * real n
by (rule 9-upper-bound) (use n in auto)
finally have ineq: (m n — 7 (n powr «)) * In (n powr @) <lIn 4 *n .

with n assms have 7 n < m (n powr a) + (In 4 /o) xn [/ Inn

by (simp add: field-simps In-powr

del: div-mult-self3 div-mult-self div-mult-self2 div-mult-self)

also have 7 (n powr «) < n powr «

by (rule w-le-self) auto
also have n powr a +In4 /a*xn /Inn=

(npowr (—(1 —a))xInn+1Ini/a)*xn/Inn
using n a by (simp add: field-simps powr-diff
del: div-mult-self3 div-mult-self) div-mult-self2 div-mult-self1)

also have n powr (—(1 — @) *lnn <1/ (1 —a)*exp 1)

by (intro w-upper-bound-auzx) (use @ n in auto)
hence (n powr (—(1 —a))*lnn+In4 /a)xn/Inn<

(1/(1—-—a)xexpl)+Ini/a)xn/Inn

using n « by (intro divide-right-mono mult-right-mono add-mono) auto
finally show nn< (1 / (I —a)*xexp 1)+ Inj /a)*xn/Inn

by simp

qed

The choice o := 2 then leads to the upper bound 7(z) < cz/Inz with
c = 3(e7! +1In2) ~ 3.183. This is considerably stronger than Apostol’s
bound.

theorem m-upper-bound:

fixes z :: real

assumes r > 2

shows 7wz <8 x*x(exp(—1)+mm2)*xx/Inx
proof (cases © > 3)

case Fulse

have 7 z = 7 (nat |z]) by simp

also from Fulse and assms have nat |z| = 2

by linarith
finally have m z = 1 by (simp add: eval-r)
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also have ... < 8 x (exp (—1) + In 2) x exp 1

by (simp add: exp-minus field-simps add-pos-pos

del: div-mult-self3 div-mult-self] div-mult-self2 div-mult-self1)

also have ... < 8 x (exp (—1) +In 2) x (z / In z)

using w-upper-bound-aux|of 1 z]

by (intro mult-left-mono) (use assms in <auto simp: field-simps powr-minus»)
finally show ?thesis

using assms by (simp add: field-simps)

next

case True
define n where n = nat |z]
from True have n: n > 3 by (simp add: n-def le-nat-iff le-floor-iff)
have m z =7 n

by (simp add: n-def)
also have 1 n < 3 * (exp (—1) + In 2) * (n / In n)

using w-upper-bound-stronglof n 2 / 3] In-realpow|of 2 2] n

by (simp add: field-simps exp-minus

del: div-mult-self3 div-mult-self] div-mult-self2 div-mult-self1)

also have ... < 3 x (exp (—1) +In 2) x (z / In x)

using n True by (intro mult-left-mono divide-In-mono) (auto simp: n-def)
finally show ?thesis by (simp add: divide-simps)

qged

corollary m-upper-bound’:
fixes x :: real
assumes r > 2
shows 7z < 443/ 139 % (z / In z)
proof —
have 2.71828 < 5837465777 | 2147483648 — inverse (2 ~ 32 :: real)
by simp
also have ... < exp (1 :: real)
using e-approz-32 by linarith
finally have exp 1 > (2.71828 :: real) .
hence e-m1: exp (—1) < (1075 | 271828 :: real) by (simp add: field-simps
exp-minus)

from assms have m © < 3 * (exp (—1) + In 2) * (z / In x)
using w-upper-bound[of ] by (simp add: field-simps)
also have ... < 448 / 139 x (z / In z)
proof (intro mult-right-mono)
have 3 x (exp (—1) + In 2 :: real) < 3 % (1075 | 271828 + 25 | 36)
using e-m1 by (intro mult-left-mono add-mono In2-le-25-over-36)
(auto simp: exp-minus field-simps abs-if split: if-splits)
also have ... < 443 / 139 by simp
finally show 3 x (exp (— 1) + In 2 :: real) < 443 / 139 by simp
qed (use assms in auto)
finally show ?thesis .
qed
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corollary m-upper-bound’”:

fixes z :: real

assumes r > 2

shows 7z < 4 * (z/ Inx)

by (rule less-le-trans|OF w-upper-bound’|OF assms] mult-right-mono)]) (use assms
in auto)

In particular, we have now shown a weak version of the Prime Number
Theorem, namely that m(z) € O(x/Inx):

lemma 7-bigtheta: m € O(A\x. z / In x)
proof
have eventually (Az. |7 2| < 3 x (exp (— 1) + In 2) * |x / In z|) at-top
using eventually-ge-at-top[of 2]
by eventually-elim (use mw-upper-bound in <auto intro!: less-imp-ley)
thus 7 € O(Az. z / In x)
by (intro bigol[where ¢ = 3 * (exp (— 1) + In 2)]) auto
next
have eventually (Az. |m x| > 1 / 6 % |z / In z|) at-top
using eventually-ge-at-toplof 2]
by eventually-elim (use w-lower-bound in <auto introl: less-imp-ley)
thus 7 € Q(\z. z / In z)
by (intro landau-omega.bigl[where ¢ = 1 / 6]) auto
qed

9.5 Bounds for p,

By some rearrangements, the lower and upper bounds for 7(x) give rise to
analogous bounds for p,,:

lemma nth-prime-lower-bound-gen:
assumes c¢: ¢ > 0 and n: n > 0
assumes An. n > 2 = 7 (real n) < (1 / ¢) * (real n / In (real n))
shows nth-prime (n — 1) > ¢ * (real n * In (real n))
proof —
define p where p = nth-prime (n — 1)
have p > 2
by (simp add: p-def nth-prime-ge-2)
have p > n using nth-prime-lower-bound[of n — 1] by (simp add: p-def)

have ¢ x (n x Inn) < ¢ * (n * In p)
using n ¢ <p > n» by (intro mult-left-mono) auto
also {
from «p > 2» have 7 (real p) < (1 / ¢) * (real p / In (real p))
by (rule assms)
also from n have 7 (real p) = n
by (simp add: p-def)
finally have ¢ * (n * Inp) < p
using ¢ (p > 2> n by (simp add: field-simps)
}
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finally show nth-prime (n — 1) > ¢ x (real n x In (real n))
using ¢ n by (simp add: p-def)
qed

corollary nth-prime-lower-bound:
n > 0 = nth-prime (n — 1) > (189 / 443) * (n * In n)
using w-upper-bound’ by (intro nth-prime-lower-bound-gen) auto

corollary nth-prime-upper-bound:
assumes n: n > 0
shows nth-prime (n — 1) < 12 x (nxInn+nx*In (12 / exp 1))
proof —
define p where p = nth-prime (n — 1)
have p > 2
by (simp add: p-def nth-prime-ge-2)

have (1 / 6)*x(p/Inp) <mp

by (intro w-lower-bound) (use <p > 2» in auto)
also have ... = n

using n by (simp add: p-def)
finally have less: p < 6 x n *x Inp

using <p > 2» by (simp add: field-simps)

also have Inp < (2 / exp 1) * sqrt p
using m-upper-bound-aux[of 1 / 2 p] <p > 2>
by (simp add: field-simps powr-minus powr-half-sqrt)
finally have sqrt p x sqrt p < 12 / exp 1 * n * sqrt p
using n by simp
hence sqrt p < 12 / exp 1 x n
by (subst (asm) mult-less-cancel-right) (use <p > 2» in auto)
hence In (sqrt p) < In (12 / exp 1 * n)
using n «<p > 2> by (subst In-less-cancel-iff) auto
also have in (sqrt p) =inp / 2
using <p > 2> by (simp add: In-sqrt)
also have in (12 / exp 1 xn) =Inn+In (12 / exp 1)
using n by (simp add: In-div In-mult)
finally have In-less: Inp < 2 xlnn+ 2 xin (12 / exp 1)
by simp

have p < 6 * n * In p by (fact less)
alsohave ... <6 +xnx*x(2xlnn+ 2xin (12 / exp 1))
by (intro mult-left-mono In-less) auto
alsohave ... = 12 x (nxInn+nxlin (12 / exp 1))
by (simp add: algebra-simps)
finally show ?thesis unfolding p-def .
qed

We can thus also conclude that p, ~ nlnn:

corollary nth-prime-bigtheta: nth-prime € ©(An. n * In n)
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proof
have eventually (An. |nth-prime n| <
12x|n+1)«xIn(n+ 1)+ (n+1)=*in (12 / exp 1)|) at-top
using eventually-ge-at-toplof 2]
proof eventually-elim
case (elim n)
with nth-prime-upper-bound[of n + 1] show ?2case by (auto simp: add-ac)
qed
hence nth-prime € O(An. (n + 1) xIn (n + 1)+ (n+ 1) * In (12 / exp 1))
by (intro bigol[where ¢ = 12]) auto
alsohave (An. (n+ 1) xIn(n+ 1)+ (n+ 1) *In (12 / exp 1)) € O(An::nat.
n * Inn)
by real-asymp
finally show nth-prime € O(An. n x In n) .
next
have eventually (An. |nth-prime n| > 139 / 448 * |(n + 1) = In (n + 1)|) at-top
using eventually-ge-at-top[of 2]
proof eventually-elim
case (elim n)
with nth-prime-lower-bound[of n + 1] show ?Zcase by (auto simp: add-ac)
qged
hence nth-prime € Q(An::nat. real (n + 1) x In (real n + 1))
by (intro landau-omega.bigl[where ¢ = 139 / 443]) (auto simp: add-ac)
also have (An:nat. real (n + 1) % In (real n + 1)) € Q(An. n x In n)
by real-asymp
finally show nth-prime € Q(An. n x In n) .
qed

end

end

10 The asymptotics of the summatory divisor o
function

theory Summatory-Divisor-Sigma-Bounds
imports Partial-Zeta-Bounds More-Dirichlet-Misc
begin

In this section, we analyse the asymptotic behaviour of the summatory di-
visor functions ) ., oq(n) for real a. This essentially tells us what the
average value of these functions is for large 2.

The case o = 0 is not treated here since og is simply the divisor function,
for which precise asymptotics are already available in the AFP.
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10.1 Casel: a=1

If a = 1, 04(n) is simply the sum of all divisors of n. Here, the asymptotics
is

2
Zal(n):ﬁx +O(zInz) .

n<x

theorem summatory-divisor-sum-asymptotics:
sum-upto divisor-sum =o (Ax. pi2 / 12 x x ~ 2) +0 O(Az. = * In 1)
proof —
define ( where ( = Re (zeta 2)
define R1 where R1 = (\z. sum-upto real v — 2° | 2)
define R2 where R2 = (\z. sum-upto (\d. 1 / d*) z — ({ — 1 / z))
obtain ¢! where cl: ¢l > 0 N\z. 2 > 1 = |Rlz| < cl %z
using zeta-partial-sum-le-neg[of 1] by (auto simp: R1-def)
obtain c2 where c2: ¢2 > 0 A\z. x> 1 = |R2z| < ¢2 / 22
using zeta-partial-sum-le-pos|of 2]
by (auto simp: (-def R2-def powr-minus field-simps
simp del: div-mult-self3 div-mult-selfs div-mult-self2 div-mult-self1)

have le: |sum-upto divisor-sumz — ¢ | 2 x 22| < c2 / 2+ 2/ 2 + ¢l x z *
(lnz+ 1)
if z: 2 > 1 for z
proof —
have div-le: real (a div b) < z if a < z for a b :: nat
by (rule order.trans|OF - that(1)]) auto

have real (sum-upto divisor-sum z) = sum-upto (dirichlet-prod real (A-. 1)) z
by (simp add: divisor-sigma-conv-dirichlet-prod [abs-def]
sum-upto-def divisor-sigma-1-left [symmetric])

also have ... = sum-upto (An. > d | d dvd n. real d) z
by (simp add: dirichlet-prod-def)
also have ... = (3 (n, d) € (SIGMA n:{n. n > 0 A real n < z}. {d. d dvd
n}). real d)
unfolding sum-upto-def by (subst sum.Sigma) auto
also have ... = (3 (d, q) € (SIGMA d:{d. d > 0 A real d < z}. {q. ¢ > 0 A

real ¢ < z / d}). real q)
by (rule sum.reindez-bij-witness[of - A\(d, q). (d x q, q) A(n, d). (n div d, d)])
(use div-le in <auto simp: field-simps»)

also have ... = sum-upto (Ad. sum-upto real (x / d)) x
by (simp add: sum-upto-def sum.Sigma)
also have ... = 22 x sum-upto (\d. 1 / d*) x / 2 + sum-upto (\d. R1 (x /
d)) z

by (simp add: R1-def sum-upto-def sum.distrib sum-subtractf sum-divide-distrib
power-divide sum-distrib-left)
also have sum-upto (A\d. 1 / d*)x=( -1 /z+ R2z
by (simp add: R2-def)
finally have eq: real (sum-upto divisor-sum x) =
2% ((—1/z+ R2z)/ 2 + sum-upto (\d. R1 (z / real d))
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have real (sum-upto divisor-sum z) — ( / 2 * 2% =
22/ 2% R2x —x / 2 + sum-upto (\d. R1 (z / real d)) z using =z
by (subst eq)
(simp add: field-simps power2-eq-square del: div-diff div-add
del: div-mult-self3 div-mult-self) div-mult-self2 div-mult-self1)
alsohave |...|<c¢2 /2 +2/ 2+ clxxx(lnz+ 1)
proof (rule order.trans|OF abs-triangle-ineq] order.trans|OF abs-triangle-ineq4]
add-mono)+
have |22 / 2 * R2 x| = 22 / 2 x |R2 1
using z by (simp add: abs-mult)
also have ... < 22 / 2 x (c2 / 2?)
using z by (intro mult-left-mono c2) auto
finally show |22 / 2 x R2xz| < c2 / 2
using = by simp
next
have |sum-upto (Ad. R1 (z / real d)) z| < sum-upto (\d. |R1 (z / real d)|)
unfolding sum-upto-def by (rule sum-abs)
also have ... < sum-upto (Ad. ¢l % (z / real d)) z
unfolding sum-upto-def by (intro sum-mono c1) auto
also have ... = ¢ * z * sum-upto (Ad. 1 / real d) z
by (simp add: sum-upto-def sum-distrib-left)
also have sum-upto (Ad. 1 / real d) x = harm (nat |z])
unfolding sum-upto-altdef harm-def by (intro sum.cong) (auto simp:
field-simps)
also have ... < In (nat |z]) + 1
by (rule harm-le) (use z in <auto simp: le-nat-iff'»)
also have in (nat |z|) < In z using z by simp
finally show |sum-upto (Ad. R1 (x / real d)) x| < ¢l x x x (Inz + 1)
using cI(1) z by simp
qged (use = in auto)
finally show |sum-upto divisor-sum x — ( / 2 x 2?| < c2 / 2+ 2/ 2 + cl
xcx(Inx+1).
qed

have eventually (\z. |sum-upto divisor-sum x — ¢ / 2 * 2°| <
c2/2+x/2+cl*xx*(lnx+ 1)) at-top

using eventually-ge-at-top[of 1] by eventually-elim (use le in auto)

hence eventually (Az. |sum-upto divisor-sum z — ¢ | 2 * 2°| <

[c2/)24+2z/2+cl xzx(Inz+ 1)|) at-top

by eventually-elim linarith

hence (\z. sum-upto divisor-sum x — ¢ / 2 * 22) € OAz. c2 | 2 + x|/ 2 + cl

xz*x (Inx+ 1))

by (intro landau-o0.bigl[of 1]) auto

alsohave (A\z. c2 / 24+ z /24 cl xzx(lnxz+ 1)) € Oz z x Inx)
by real-asymp

finally show ?thesis
by (subst set-minus-plus [symmetric])
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(simp-all add: fun-diff-def algebra-simps (-def zeta-even-numeral)
qed

10.2 Case 2: a >0, a#1

Next, we consider the case a > 0 and o # 1. We then have:

S aaln) = SO ety g (qien)

n<x

theorem summatory-divisor-sigma-asymptotics-pos:
fixes « :: real
assumes a: o > 0 o # 1
defines ¢ = Re (zeta (o + 1))
shows sum-upto (divisor-sigma «) =o
M. ¢/ (a+ 1) % z powr (a + 1)) +0 O(Az. & powr maz 1 «)
proof —
define R1 where R1 = (Az. sum-upto (A\d. real d powr o) x — x powr (a + 1)
/(o + 1))
define R2 where R2 = (Az. sum-upto (Ad. d powr (—a — 1)) z — ({ — = powr
—a /[ a))
define R3 where R3 = (A\z. sum-upto (Ad. d powr —a) z — z powr (1 — «) /
(1 — a))
obtain ¢! where cI: ¢l > 0 Az. z > 1 = |R1 z| < ¢l * z powr «
using zeta-partial-sum-le-neglof «] a by (auto simp: R1-def add-ac)
obtain ¢2 where ¢2: ¢2 > 0 Az. z > 1 = |R2 2| < ¢2 * z powr (—a—1)
using zeta-partial-sum-le-pos[of o + 1] a by (auto simp: (-def R2-def)
obtain ¢3 where ¢3: ¢3 > 0 A\z. z > 1 = |R3 x| < ¢3
using zeta-partial-sum-le-pos’[of o] a by (auto simp: R3-def)
define ub :: real = real where
wb=0Mz.z/(ax(a+1)+c2/(a+1)+cl*(1/(I—a)*xz+ c8*
T powr «))

have le: |sum-upto (divisor-sigma o) x — ¢ [/ (@ + 1) * z powr (o + 1)] < ubx
ifz: 2> 1 for z
proof —
have div-le: real (a div b) < z if a < x for a b :: nat
by (rule order.trans[OF - that(1)]) auto

have sum-upto (divisor-sigma o) © =
sum-upto (dirichlet-prod (An. real n powr «) (A-. 1)) z
by (simp add: divisor-sigma-conv-dirichlet-prod [abs-def]
sum-upto-def divisor-sigma-1-left [symmetric])

also have ... = sum-upto (An. > d | d dvd n. real d powr «) z
by (simp add: dirichlet-prod-def)
also have ... = (3 (n, d) € (SIGMA n:{n. n > 0 A real n < z}. {d. d dvd

n}). real d powr )
unfolding sum-upto-def by (subst sum.Sigma) auto
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also have ... = (3°(d, q) € (SIGMA d:{d. d > 0 A real d < z}. {q. ¢ > 0 A
real ¢ < z / d}). real ¢ powr «)
by (rule sum.reindez-bij-witness[of - A(d, q). (d x q, q) A(n, d). (n div d, d)])
(use div-le in <auto simp: field-simps»)

also have ... = sum-upto (Ad. sum-upto (Aq. ¢ powr &) (z / d)) z
by (simp add: sum-upto-def sum.Sigma)
also have ... = z powr (a + 1) * sum-upto (Ad. 1 / d powr (a + 1)) z / («
+ 1)+

sum-upto (Ad. R1 (z / d)) z
by (simp add: R1-def sum-upto-def sum.distrib sum-subtractf sum-divide-distrib
powr-divide sum-distrib-left)
also have sum-upto (Ad. 1 / d powr (a + 1))z =( — x powr —a / a + R2x
by (simp add: R2-def powr-minus field-simps powr-diff powr-add)
finally have eq: sum-upto (divisor-sigma o) © =
z powr (¢ + 1) % (( — x powr —a / a« + R21z) / (a + 1) + sum-upto (A\d.
R (z / d)) z .

have sum-upto (divisor-sigma o) v — ¢ / (o + 1) * z powr (o + 1) =
-z /(a*x(a+ 1)) +zpowr (o« + 1)/ (a4 1) R2x + sum-upto
(M. R1 (z/ d)) x
using z «
by (subst eq, simp add: divide-simps
del: div-mult-self3 div-mult-selfs div-mult-self2 div-mult-self1)
(simp add: field-simps power2-eq-square powr-add powr-minus del: div-diff
div-add
del: div-mult-self3 div-mult-self div-mult-self2 div-mult-self1)
also have |...| < ub = unfolding ub-def
proof (rule order.trans| OF abs-triangle-ineq] order.trans|OF abs-triangle-ineq}]
add-mono)+
have |z powr (¢ + 1) / (a + 1) * R2z| = x powr (a + 1) / (¢ + 1) % |R2
zl
using z « by (simp add: abs-mult)
also have ... < zpowr (o« + 1) / (a + 1) x (c2 * x powr (—a—1))
using z a by (intro mult-left-mono c2) auto
alsohave ... =c¢2 / (e + 1)
using « = by (simp add: field-simps powr-diff powr-minus powr-add)
finally show |z powr (o« + 1) / (e + 1)« R2z| < c2 / (a+ 1) .
next
have |sum-upto (Ad. R1 (z / real d)) z| < sum-upto (\d. |R1 (z / real d)|)
unfolding sum-upto-def by (rule sum-abs)

also have ... < sum-upto (Ad. ¢l * (z / real d) powr «) z
unfolding sum-upto-def by (intro sum-mono cl1) auto
also have ... = ¢ * z powr « * sum-upto (Ad. 1 / real d powr «)

by (simp add: sum-upto-def sum-distrib-left powr-divide)
also have sum-upto (Ad. 1 / real d powr o) z = z powr (1—«a) / (1—a) +
R3 z
using = by (simp add: R3-def powr-minus field-simps)
also have ¢ * x powr o % (z powr (I — «a) / (I — a) + R3z) =
cl /(1 —a)*xz+ cl *xxpowr ax RS x
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using z by (simp add: powr-diff divide-simps
del: div-mult-self3 div-mult-self] div-mult-self2 div-mult-self1)
(simp add: field-simps)
also have cI * z powr a * R3¢ < ¢l * x powr a x c3
using z ¢1(1) ¢3(2)[of z] by (intro mult-left-mono) auto
finally show |sum-upto (Ad. R1 (x / d)) z| < cl % (1 /(1 —a)* 2+ ¢3
* T powr «)
by (simp add: field-simps)
qged (use a z in simp-all)
finally show |sum-upto (divisor-sigma ) © — ¢ / (a + 1) % z powr (a + 1)]
< ubzx.
qed

have eventually (Az. |sum-upto (divisor-sigma o) x — ¢ / (a+1) * z powr (a+1)|
< ub ) at-top
using eventually-ge-at-toplof 1] by eventually-elim (use le in auto)
hence eventually (Az. |sum-upto (divisor-sigma o) © — (/(a+1) * z powr (a+1)|
< |ub z|) at-top
by eventually-elim linarith
hence (Az. sum-upto (divisor-sigma o) z — (/(a+1) * z powr (a+1)) € O(ub)
by (intro landau-o.bigI[of 1]) auto
also have ub € O(A\z. z powr maz 1 «)
using « unfolding ub-def by (cases o > 1; real-asymp)
finally show ?thesis
by (subst set-minus-plus [symmetric])
(simp-all add: fun-diff-def algebra-simps (-def zeta-even-numeral)
qged

10.3 Case 3: <0

Last, we consider the case of a negative exponent. We have for o > 0:

S 0_a(n) = ((a + Dz + O(R(x))

n<x

where R(z) = Inz if « = 1 and R(z) = 2™(0:1=9) otherwise.

theorem summatory-divisor-sigma-asymptotics-neg:

fixes « :: real

assumes a: o > 0

defines § = maz 0 (1 — «)

defines ¢ = Re (zeta (o + 1))

shows sum-upto (divisor-sigma (—a)) =o (if o = 1 then (A\z. pi®/6 * z) +o
O(ln)

else (Az. ¢ x z) +0 O(Az. z powr §))

proof —

define Ra where Ra = (Az. —sum-upto (Ad. d powr (—a) * frac (z / d)) z)

define R1 where R1 = (Az. sum-upto (Ad. real d powr (—a)) x — (z powr (1
—a) /(1 —a)+0)
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define R2 where R2 = (A\z. sum-upto (Ad. d powr (—a — 1)) z — ({ — = powr
—a / a))
define R3 where R3 = (Az. sum-upto (Ad. d powr —a) © — = powr (I — «) /
(1 - a))
obtain ¢2 where ¢2: ¢2 > 0 Az. z > 1 = |R2z| < ¢2 * z powr (—a—1)
using zeta-partial-sum-le-pos[of a + 1] a by (auto simp: (-def R2-def)
define ub :: real = real where
ub = (A\z. z powr (I — a) / o + 2 % z powr — o + |Ra z|)

have le: [sum-upto (divisor-sigma (—a)) z — ¢ * z| < ub x
if xz: ¢ > 1 for =
proof —
have div-le: real (a div b) < z if a < z for a b :: nat
by (rule order.trans|OF - that(1)]) auto

have sum-upto (divisor-sigma (—«)) z =
sum-upto (dirichlet-prod (An. real n powr (—a)) (A-. 1)) z
by (simp add: divisor-sigma-conv-dirichlet-prod [abs-def]
sum-upto-def divisor-sigma-1-left [symmetric])

also have ... = sum-upto (An. > d | d dvd n. real d powr (—a)) z
by (simp add: dirichlet-prod-def)
also have ... = (3_(n, d) € (SIGMA n:{n. n > 0 A real n < z}. {d. d dvd

n}). real d powr (—a))
unfolding sum-upto-def by (subst sum.Sigma) auto
also have ... = (3" (d, q) € (SIGMA d:{d. d > 0 A real d < z}. {q. ¢ > 0 A
real ¢ < x / d}).
real d powr (—a))
by (rule sum.reindez-bij-witness[of - A(d, q). (d x q, d) X(n, d). (d, n div d)])
(use div-le in <auto simp: field-simps dest: dvd-imp-le»)
also have ... = sum-upto (Ad. sum-upto (\q. d powr (—a)) (z / d)) z
by (simp add: sum-upto-def sum.Sigma [symmetric])
also have ... = sum-upto (Ad. d powr (—a) x |z / d])
using z by (simp add: sum-upto-altdef mult-ac)
also have ... = z x sum-upto (\d. d powr (—a) / d) z + Ra z
by (simp add: frac-def sum-distrib-left sum-distrib-right
sum-subtractf sum-upto-def algebra-simps Ra-def)
also have sum-upto (Ad. d powr (—a) / d) © = sum-upto (Ad. d powr (—a —
1)) x

by (simp add: powr-diff powr-minus powr-add field-simps)

alsohave ... =( —zpowr —a / a+ R2z
by (simp add: R2-def)
finally have sum-upto (divisor-sigma (—a)) x — ( * © = —(x powr (I — «) /

a)+ zx R2x + Rax
using z « by (simp add: powr-diff powr-minus field-simps)

also have |...| < z powr (I — ) / a + ¢2 * z powr —a + |Ra z|
proof (rule order.trans|OF abs-triangle-ineq] order.trans|OF abs-triangle-ineq4]
add-mono)+

from z have |z x R2 z| < z * |R2 z|
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by (simp add: abs-mult)
also from z have ... < z * (¢2 % z powr (—a — 1))
by (intro mult-left-mono ¢2) auto
also have ... = ¢2 x = powr —«
using = by (simp add: field-simps powr-minus powr-diff)
finally show |z * R2z| < ... .
qed (use z « in auto)
finally show |sum-upto (divisor-sigma (— «)) © — ( * z| < ub z
by (simp add: ub-def)
qged

have eventually (Az. |sum-upto (divisor-sigma (—a)) x — ¢ * z| < ub z) at-top
using eventually-ge-at-top[of 1] by eventually-elim (use le in auto)

hence eventually (Az. |sum-upto (divisor-sigma (—a)) z — ¢ * z| < |ub x|) at-top
by eventually-elim linarith

hence bigo: (Az. sum-upto (divisor-sigma (—a)) z — ¢ x ) € O(ub)
by (intro landau-o0.bigl[of 1]) auto

define ub’ :: real = real where ub’ = sum-upto (An. real n powr — «)
have |Ra z| < |ub’ z| if z > 1 for z
proof —
have |Ra z| < sum-upto (An. |real n powr —a * frac (z / n)|) z
unfolding Ra-def abs-minus sum-upto-def by (rule sum-abs)
also have ... < sum-upto (An. real n powr —a * 1) x
unfolding abs-mult sum-upto-def
by (intro sum-mono mult-mono) (auto intro: less-imp-le[OF frac-lt-1])
finally show %thesis by (simp add: ub’-def)
qed
hence Ra € O(ub’)
by (intro bigol[of - 1] eventually-mono[OF eventually-ge-at-top[of 1]]) auto
also have ub’ € O(Az. if a = 1 then In z else & powr 0)
proof (cases a = 1)
case [simp|: True
have sum-upto (An. 1 / n) € O(In)
by (intro asymp-equiv-imp-bigo harm-asymp-equiv)
thus ?thesis by (simp add: ub’-def powr-minus field-simps)
next
case Fulse
have sum-upto (An. real n powr — a) € O(Az. = powr §)
using assms False unfolding d-def by (intro zeta-partial-sum-pos-bigtheta
bigthetaD1)
thus %thesis
using zeta-partial-sum-neg-asymp-equivjof «| o False by (simp add: ub’-def)
qed
finally have Ra-bigo: Ra € ... .

show “thesis

proof (cases a = 1)
case [simp|: True
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with Ra-bigo have Ra: (Az. |Ra z|) € O(In) by simp
note bigo
also have ub € O(Az. In )

unfolding ub-def by (intro sum-in-bigo Ra) real-asymp+
finally have sum-upto (divisor-sigma (—a)) =0 (A\z. (pi® / 6) * z) +o O(In)

by (subst set-minus-plus [symmetric])

(simp-all add: fun-diff-def algebra-simps (-def zeta-even-numeral)
thus %thesis by (simp only: True refl if-True)
next
case False
with Ra-bigo have Ra: (Az. |Ra z|) € O(Az. x powr §) by simp
have *: (A\z. x powr (1 — ) / a) € O(Az. = powr §)
(Az. ¢2 * x powr — a) € O(Az. z powr §)
unfolding J-def using « False by (cases a > 1; real-asymp)+

note bigo
also have ub € O(Az. = powr §)
unfolding ub-def using « False by (intro sum-in-bigo Ra *)
finally have sum-upto (divisor-sigma (—«)) =o (Az. { * ) +0 O(Az. = powr
5)
by (subst set-minus-plus [symmetric])
(simp-all add: fun-diff-def algebra-simps (-def zeta-even-numeral)
thus ?thesis by (simp only: False refl if-False)
qed
qed

end

11 Selberg’s asymptotic formula

theory Selberg-Asymptotic-Formula

imports
More-Dirichlet-Misc
Prime-Number- Theorem. Prime-Counting- Functions
Shapiro-Tauberian
FEuler-MacLaurin. Euler-MacLaurin- Landau
Partial-Zeta-Bounds

begin

Following Apostol, we first show an inversion formula: Consider a function
f(z) for z € R . Define g(z) :=Inxz-> . f(z/n). Then:

n<x

f@) Iz + Y An)f(z/n) =) pln)g(x/n)

n<x n<x

locale selberg-inversion =
fixes F G :: real = 'a :: {real-algebra-1, comm-ring-1}
defines G = (Az. of-real (In z) * sum-upto (An. F (z / n)) x)
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begin

lemma eq:
assumes z > I
shows F z x of-real (In z) + dirichlet-prod’ mangoldt F x = dirichlet-prod’
moebius-mu G x
proof —
have F z * of-real (In x) =
dirichlet-prod’ (An. if n = 1 then 1 else 0) (A\x. F x x of-real (In z)) z
by (subst dirichlet-prod’-one-left) (use <x > 1> in auto)
also have ... = dirichlet-prod’ (An. > d | d dvd n. moebius-mu d) (A\x. F x *
of-real (In z))
by (intro dirichlet-prod’-cong refl, subst sum-moebius-mu-divisors’) auto
finally have eql: F x x of-real (Inz) = ... .

have eq2: dirichlet-prod’ mangoldt F © =
dirichlet-prod’ (dirichlet-prod moebius-mu (An. of-real (In (real n)))) F
T

proof (intro dirichlet-prod’-cong refl)

fix n :: nat assume n: n > 0

thus mangoldt n = dirichlet-prod moebius-mu (An. of-real (In (real n)) :: 'a) n

by (intro moebius-inversion mangoldt-sum [symmetric]) auto

qed

have F z * of-real (In x) + dirichlet-prod’ mangoldt F x =
sum-upto (An. F (z / n) *x (O d | d dvd n.
moebius-mu d x of-real (In (xz / n) + In (n div d)))) =
unfolding eq! eq2 unfolding dirichlet-prod’-def sum-upto-def
by (simp add: algebra-simps sum.distrib dirichlet-prod-def sum-distrib-left sum-distrib-right)
also have ... = sum-upto (An. F (z / n) x (O_d | d dvd n. moebius-mu d x*
of-real (In (z / d)))) z
using <z > 1) by (intro sum-upto-cong refl arg-cong2[where f = Az y. z * ]
sum.cong)
(auto elim!: dvdE simp: In-div In-mult)
also have ... = sum-upto (An. >_d | d dvd n. moebius-mu d * of-real (In (z /
by (simp add: sum-distrib-left sum-distrib-right mult-ac)
also have ... = (3> (n,d)e(SIGMA n:{n. n > 0 A real n < z}. {d. d dvd n}).
moebius-mu d * of-real (In (z / d)) = F (z / n))
unfolding sum-upto-def by (subst sum.Sigma) (auto simp: case-prod-unfold)
also have ... = (> (d,q)e(SIGMA d:{d. d > 0 A real d < x}. {q. ¢ > 0 A real

q <z /d}).
moebius-mu d * of-real (In (z / d)) = F (x / (¢ % d)))
by (rule sum.reindex-bij-witness[of - A(d,q). (d * q, d) A(n,d). (d, n div d)])
(auto simp: Real.real-of-nat-div field-simps dest: dvd-imp-le)
also have ... = sum-upto (Ad. moebius-mu d * of-real (In (z / d)) *
sum-upto (Aq. F (z / (¢ x d))) (z / d)) =
by (subst sum.Sigma [symmetric]) (auto simp: sum-upto-def sum-distrib-left)
also have ... = dirichlet-prod’ moebius-mu G x
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by (simp add: dirichlet-prod’-def G-def mult-ac)
finally show ?thesis .
qed

end

We can now show Selberg’s formula

Y(z)lnx + Z An)Y(z/n) =2xInz + O(z) .

n<lx

theorem selberg-asymptotic-formula:
includes prime-counting-syntax
shows  (A\z. ¢ z % In z + dirichlet-prod’ mangoldt ¢ x) =o
(Az. 2 x z * In z) +0 O(Az. z)
proof —
define C :: real where [simp]: C = euler-mascheroni
define F2 :: real = real where [simp|: F2 = (Az. 2 — C — 1)
define GI1 where GI = (A\z. In z * sum-upto (An. ¢ (z / n)) z)
define G2 where G2 = (\z. In z * sum-upto (An. F2 (z / n)) z)

interpret F1: selberg-inversion ¢ G1
by unfold-locales (simp-all add: G1-def)
interpret F2: selberg-inversion F2 G2
by unfold-locales (simp-all add: G2-def)

have GI-bigo: (A\x. Gl — (z*xInz "2 —zxinz)) € OAz. Inz ~ 2)
proof —
have (Az. In z * (sum-upto (An. ¥ (z / n)) z — z*x Inz 4+ z)) € O(Ax. In x *
In x)
by (intro landau-o0.big.mult-left sum-upto-y-z-over-n-asymptotics)
thus %thesis by (simp add: power2-eq-square G1-def algebra-simps)
qed

have G2-bigo: (M. G2z — (x xInx "2 — z * Inz)) € O(ln)
proof —
define R1 :: real = real where R1 = (Az. z x In z x (harm (nat |z]) — (In =
+ C)))
define R2 :: real = real where R2 = (A\z. (C + 1) * In z * frac z)
have (Az. G222 — (x xInz "2 —x x Inz)) € O(Az. Rl z + R2 x)
proof (intro bigthetal-cong eventually-mono[OF eventually-ge-at-top[of 1]])
fix z :: real assume z: z > 1
have G2z =z * In x * sum-upto (An. I / n)x — (C + 1) x |z] xInz
using z by (simp add: G2-def sum-upto-altdef sum-subtractf
sum-distrib-left sum-distrib-right algebra-simps)
also have sum-upto (An. 1 / n) = harm (nat |z])
using z unfolding sum-upto-def harm-def
by (intro sum.cong) (auto simp: field-simps le-nat-iff le-floor-iff)
also have z  In z % harm (nat |z]) — (C + 1) * [z| x Inz =
xxlnzr "2 —xzxlnz+ Rlz+ R2x
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by (simp add: R1-def R2-def algebra-simps frac-def power2-eq-square)
finally show G2z — (zxlnz "2 — z xInz) = Rl z + R2 z by simp
qed
also have (Az. R1 z + R2 z) € O(in)
proof (intro sum-in-bigo)
have (Az:real. In x — In (nat |z])) € O(A\z. Inz — In (x — 1))
proof (intro bigoI[of - 1] eventually-mono[OF eventually-ge-at-top|of 2]])
fix z :: real assume z: > 2
thus norm (ln z — In (nat |z])) < 1 % norm (lnx — In (x — 1)) by auto
qed
also have (Az::real. Inx — In (x — 1)) € O(\z. 1 / z) by real-asymp
finally have bigo-In-floor: (Az::real. In x — In (nat |z])) € O(\z. 1 / z) .

have (Az. harm (nat |z]|) — (In (nat |z]) + C)) € O(Az. 1 / nat |z])

unfolding C-def using harm-expansion-bigo-simple2

by (rule landau-0.big.compose)

(auto introl: filterlim-compose| OF filterlim-nat-sequentially filterlim-floor-sequentially])
also have (Az. 1 / nat |z]) € O(Az. 1 / z) by real-asymp

finally have (A\z. harm (nat |z]) — (In (nat |z]) + C) — (In z — In (nat

[z])))
€ O(Az. 1 / z) by (rule sum-in-bigo] OF -bigo-In-floor])
hence (Az. harm (nat |z]) — (In z + C)) € O(Az. 1 / z) by (simp add:
algebra-simps)
hence (A\z. z x In z % (harm (nat |z]) — (Inz + C))) € O(A\z. z x In z * (1
/ @)
by (intro landau-o.big. mult-left)
thus R1 € O(In) by (simp add: landau-divide-simps R1-def)
next
have R2 € O(A\z. I s Inz % 1)
unfolding R2-def by (intro landau-o.big.mult landau-o.big-refl) real-asymp+
thus R2 € O(In) by (simp add: R2-def)
qed
finally show (Az. G2z — (z * (In z)? — 2 x In x)) € O(ln) .
qed
hence G2-bigo": (\z. G2z — (z * (In2)?> — 2z x Inx)) € OA\z. Inz ~ 2)
by (rule landau-o.big.trans) real-asymp+

— Now things become a bit hairy. In order to show that the ‘Big-O’ bound is
actually valid for all x > 1, we need to show that G1 x — G2 z is bounded on any
compact interval starting at 1.

have 3¢>0.Vz>1. |Gl z — G2 z| < ¢ * |sqrt z]

proof (rule bigoE-bounded-real-fun)

have (A\z. Gl x — G2z) € O(Az. Inz ~ 2)
using sum-in-bigo(2)[OF G1-bigo G2-bigo’] by simp
also have (Az::real. In z ~ 2) € O(sqrt) by real-asymp
finally show (A\z. G1 z — G2 z) € O(sqrt) .
next
fix = :: real assume z > 1
thus |sgrt z| > 1 by simp
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next
fix b :: real assume b: b > 1
show bounded ((Az. G1 © — G2 ) ‘{1..b})
proof (rule boundedl, safe)
fix z assume z: z € {1..b}
have |G1 z — G2 z| = |ln x x sum-upto (An. ¥ (z / n) — F2 (z / n)) z|
by (simp add: G1-def G2-def sum-upto-def sum-distrib-left ring-distribs
sum-subtractf)
also have ... = In z * |[sum-upto (An. ¢ (z / n) — F2 (z / n)) x|
using = b by (simp add: abs-mult)
also have |sum-upto (An. ¢ (z / n) — F2 (z / n)) z| <
sum-upto (An. |¢ (z / n) — F2 (z / n)|)
unfolding sum-upto-def by (rule sum-abs)
also have ... < sum-upto (An. v z+ (z+ C + 1)) x
unfolding sum-upto-def
proof (intro sum-mono)
fix n assume n: n € {n. n > 0 A real n < z}
hence le: z / n < x / 1 by (intro divide-left-mono) auto
thus [¢ (z /n) — F2 (z /n)|<vz+(x+ C+ 1)
unfolding F2-def using euler-mascheroni-pos x le -nonneg ¥-mono|of
/ n
by (intro order.trans|OF abs-triangle-ineq|
order.trans[OF abs-triangle-ineqf] add-mono) auto
qed
alsohave ... = (Y z 4+ (z+ C + 1)) * |z]
using = by (simp add: sum-upto-altdef)
also have In z x (¢ z + (z + C + 1)) * real-of-int |z]) <
Inbx((¢b+ (b+ C+ 1)) * real-of-int |b])
using euler-mascheroni-pos
by (intro mult-mono add-mono order.refl 1-mono add-nonneg-nonneg
mult-nonneg-nonneg
Y-nonneg) (auto intro: floor-mono)
finally show norm (G1z — G2z) <Ilnbx (¢ b+ (b+ C + 1)) * real-of-int
1))
using z by (simp add: mult-left-mono)
qed
ged auto
then obtain 4 where A: A > 0 A\z. 2 > 1 = |Gl — G2z| < A x sqrt z
by auto

— The rest of the proof now consists merely of combining some asymptotic
estimates.
have (Az. (¢ * — F2 ) % In x + sum-upto (An. mangoldt n * (¢ (x / n) — F2
(& / ) ©)
€ O(Az. sum-upto (An. moebius-mu n x (G1 (z / n) — G2 (x / n))) x)
proof (intro bigthetal-cong eventually-mono|OF eventually-ge-at-top[of 1]])
fix z :: real assume z: z > 1
have (¢ © — F2 z) % In © + sum-upto (An. mangoldt n x (¢ (x / n) — F2 (z

[ m)) z=
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(¢ x * of-real (In x) + dirichlet-prod’ mangoldt ¢ x) —
(F2 z % of-real (In x) + dirichlet-prod’ mangoldt F2 x)
by (simp add: algebra-simps dirichlet-prod’-def sum-upto-def sum-subtractf
sum.distrib)
also have ... = sum-upto (An. moebius-mu n x (G1 (z / n) — G2 (z / n))) =
unfolding F1.eq[OF x| F2.eq[OF «x]
by (simp add: dirichlet-prod’-def sum-upto-def sum-subtractf sum.distrib alge-
bra-simps)
finally show (¢ * — F2 ) % In  + sum-upto (An. mangoldt n x (¢ (z/n) —
qed
also have (\z. sum-upto (An. moebius-mu n x (G1 (z / n) — G2 (z / n))) z) €
O(Az. A * sqrt x * sum-upto (Az. x powr (—1/2)) z)
proof (intro bigol eventually-mono| OF eventually-ge-at-top[of 1]])
fix x :: real assume z: x > 1
have |sum-upto (An. moebius-mu n x (G1 (z / n) — G2 (z / n))) z|
sum-upto (An. |moebius-mu n x (G1 (z / n) — G2 (z / n))|) z
unfolding sum-upto-def by (rule sum-abs)
also have ... < sum-upto (An. 1 x (A * sqrt (z / n))) z
unfolding sum-upto-def abs-mult by (intro A sum-mono mult-mono) (auto
simp: moebius-mu-def)
also have ... = A x sqrt x x sum-upto (\z. z powr (—1/2))
using z by (simp add: sum-upto-def powr-minus powr-half-sqrt sum-distrib-left
sum-distrib-right real-sqrt-divide field-simps)
also have ... < |A x sqrt x * sum-upto (A\z. x powr (—1/2)) x| by simp
finally show norm (sum-upto (An. moebius-mu n * (G1 (z / n) — G2 (z /

n))) z) <

<

1 % norm (A x sqrt z x sum-upto (A\z. z powr (—1/2)) z) by simp
qed
also have (\z. A * sqrt x * sum-upto (Az. z powr (—1/2)) z) € O(Az. I * sqrt
z x z powr (1/2))
using zeta-partial-sum-le-pos-bigolof 1 | 2]
by (intro landau-o0.big.mult ) (auto simp: maz-def)
also have (Az:real. 1 % sqrt z * x powr (1/2)) € O(\x. x)
by real-asymp
finally have bigo: (Az. (¢ © — F2 z) * In  + sum-upto (An. mangoldt n * (¢
(z/n) — F2 (z/n))) z)
€ O(M\z. z) (is ?h € -) .

let ?R = Az. sum-upto (An. mangoldt n / n) x
let ?lhs = Az. ¢ x * In z + dirichlet-prod’ mangoldt 1) x

note bigo
also have ?h = (Az. ?lhsz — (x xInxz — (C + 1) * (Inx + ¢ z)) — z *x ?R x)
by (rule ext) (simp add: algebra-simps dirichlet-prod’-def sum-distrib-right

V-def
sum-upto-def sum-subtractf sum.distrib sum-distrib-left)

finally have (Az. ?lhsz — (z x lnz — (C+ 1)« (Inz + Y x)) —z* Rz +
z* (R x — In 1))
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€ O(\z. z) (is ?n' € -)
proof (rule sum-in-bigo)
have (Az. z * (sum-upto (An. mangoldt n / real n) x — In z)) € O(Az. z * 1)
by (intro landau-o.big.mult-left 1.asymptotics)
thus (Az. z x (sum-upto (An. mangoldt n / real n) x — In z)) € O(Az. z) by
stmp
qed
also have ?h' = (Az. ?lhsx — (2 xxzxInx — (C + 1) * (Inz + ¥ 2)))
by (simp add: fun-eq-iff algebra-simps)
finally have (A\z. ?lhs © — (2xaxlnx — (C+1) * (Inz + ¥ x)) — (C+1) * (In
z + ¢ ) € O(Az. x)
proof (rule sum-in-bigo)
have (Az. In z 4+ ¢ z) € O(\z. x)
by (intro sum-in-bigo bigthetaD1[OF .bigtheta]) real-asymp+
thus (Az. (C + 1) *x (Inz + ¢ z)) € O(A\z. x) by simp
qged
also have (A\z. ?lhs © — (2xzxinz — (C+1) * (lInz + ¢ x)) — (C+1) * (In z
+ ¢ z)) =
(Az. 2lhs x — 2 % x = In z) by (simp add: algebra-simps)
finally show ?thesis
by (subst set-minus-plus [symmetric]) (simp-all add: fun-diff-def algebra-simps)
qged

end

12 Consequences of the Prime Number Theorem

theory PNT-Consequences
imports
Elementary-Prime-Bounds
Prime-Number- Theorem. Mertens- Theorems
Prime-Number- Theorem. Prime-Counting- Functions
Moebius-Mu-Sum
Lem-Nat-Upto
Primorial
Primes-Omega
begin

In this section, we will define a locale that assumes the Prime Number
Theorem in order to explore some of its elementary consequences.

locale prime-number-theorem =
assumes prime-number-theorem [asymp-equiv-intros|: = ~[at-top] (Az. = / In x)
begin

corollary ¥-asymptotics [asymp-equiv-intros]: ¥ ~[at-top] (Az. x)
using prime-number-theorem by (rule PNT1-imp-PNT/)

corollary v-asymptotics [asymp-equiv-intros]: ¢ ~[at-top] (A\z. x)
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using ¥-asymptotics PNT/-imp-PNT5 by simp

corollary In-m-asymptotics [asymp-equiv-intros]: (Az. In (w x)) ~[at-top] In
using prime-number-theorem PNT1-imp-PNT1' by simp

corollary 7-In-w-asymptotics: (A\z. m z * In (7 z)) ~[at-top] (A\z. x)
using prime-number-theorem PNT1-imp-PNT2 by simp

corollary nth-prime-asymptotics [asymp-equiv-intros]:
(An. real (nth-prime n)) ~[at-top] (An. real n * In (real n))
using 7-In-w-asymptotics PNT2-imp-PNT3 by simp

corollary moebius-mu-smallo: sum-upto moebius-mu € o(Az. x)
using PNT-implies-sum-moebius-mu-sublinear 1-asymptotics by simp

lemma In-¥-asymptotics:
includes prime-counting-syntaz
shows (Az. In (9 ) — Inz) € o(A-. 1)
proof —
have [simp]: ¥ 2 = In 2
by (simp add: eval-9)
have ¥-pos: ¥ z > 0 if x > 2 for z

proof —
have 0 < In (2 :: real) by simp
also have ... <9 z

using ¥-mono|OF that] by simp
finally show ?%thesis .
qed

have nz: eventually (Az. ¥ © # 0 V z # 0) at-top
using eventually-gt-at-top[of 0] by eventually-elim auto

have filterlim (Az. ¥ z / z) (nhds 1) at-top
using asymp-equivD-strong[OF ¥-asymptotics nz| .

hence filterlim (Az. In (¢ z / z)) (nhds (In 1)) at-top
by (rule tendsto-In) auto

also have ?this «— filterlim (Az. In (¢ z) — In x) (nhds 0) at-top
by (intro filterlim-cong eventually-mono|OF eventually-ge-at-top[of 2]])

(auto simp: In-divide-pos 9-pos)

finally show (A\z. In (9 z) — Inz) € o(Az. 1)

by (intro smallol-tendsto) auto
qed

lemma In-9-asymp-equiv [asymp-equiv-intros|:
includes prime-counting-syntaz
shows (A\z. In (¥ z)) ~[at-top] In
proof (rule smallo-imp-asymp-equiv)
have (Az. In (¢ z) — In z) € o(A-. 1) by (rule In-¥-asymptotics)
also have (\-. 1) € O(Az::real. In z) by real-asymp
finally show (A\z. In (9 z) — In z) € o(In) .
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qed

lemma In-nth-prime-asymptotics:
(An. In (nth-prime n) — (In n + In (In n))) € o(A-. 1)
proof —
have filterlim (An. In (nth-prime n / (n % In n))) (nhds (In 1)) at-top
by (intro tendsto-In asymp-equivD-strong| OF nth-prime-asymptotics))
(auto introl: eventually-mono[OF eventually-gt-at-top[of 1]])
also have %this «— filterlim (An. In (nth-prime n) — (In n + In (In n))) (nhds
0) at-top
using prime-gt-0-nat[OF prime-nth-prime]
by (intro filterlim-cong refl eventually-mono[OF eventually-gt-at-top[of 1]])
(auto simp: field-simps In-mult In-div)
finally show ?thesis by (intro smallol-tendsto) auto
qed

lemma In-nth-prime-asymp-equiv [asymp-equiv-intros):
(An. In (nth-prime n)) ~[at-top] In
proof —
have (An. In (nth-prime n) — (In n + In (In n))) € o(in)
using In-nth-prime-asymptotics by (rule landau-o.small.trans) real-asymp
hence (An. In (nth-prime n) — (In n + In (In n)) + In (In n)) € o(ln)
by (rule sum-in-smallo) real-asymp
thus ?thesis by (intro smallo-imp-asymp-equiv) auto
qed

The following versions use a little less notation.

corollary prime-number-theorem”. (Ax. m © / (z / In x)) —— 1) at-top

using prime-number-theorem

by (rule asymp-equivD-strong[OF - eventually-mono[OF eventually-gt-at-top|of
11]]) auto

corollary prime-number-theorem'":
(Az. card {p. prime p A real p < z}) ~[at-top] (A\z. z / In x)
proof —
have m = (Az. card {p. prime p A real p < z})
by (intro ext) (simp add: w-def prime-sum-upto-def)
with prime-number-theorem show ?thesis by simp
qged

corollary prime-number-theorem’"”:
(An. card {p. prime p A p < n}) ~[at-top] (An. real n / In (real n))
proof —
have (An. card {p. prime p A real p < real n}) ~[at-top] (An. real n / In (real
n))
using prime-number-theorem’’
by (rule asymp-equiv-compose’) (simp add: filterlim-real-sequentially)
thus ?thesis by simp
qed
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end

12.1 Existence of primes in intervals

For fixed e, The interval (z;ex] contains a prime number for any sufficiently
large x. This proof was taken from A.J. Hildebrand’s lecture notes [2].

lemma (in prime-number-theorem) prime-in-interval-exists:
fixes c :: real
assumes ¢ > 1
shows eventually (Az. Ip. prime p A real p € {x<..cxzx}) at-top
proof —
from <c > 1» have (Az. 7 (¢ * z) / 7 z) ~[at-top] (A\z. ((c * z) / In (¢ * z)) /
(z / In z))
by (intro asymp-equiv-intros asymp-equiv-compose’|OF prime-number-theorem)])
real-asymp—+
also have ... ~[at-top] (Az. ¢)
using ¢<c > 1» by real-asymp
finally have (\z. 7 (¢ x z) / 7 ) ~[at-top] (Aa. ¢) by simp
hence (Az. 7 (¢ x ) / ™ ©) —— ¢) at-top
by (rule asymp-equivD-const)
from this and <c¢ > 1) have eventually (Az. m (¢ x ) / m & > 1) al-top
by (rule order-tendstoD)
moreover have eventually (Az. m > 0) at-top
using 7-at-top by (auto simp: filterlim-at-top-dense)
ultimately show ?thesis using eventually-gt-at-top|of 1]
proof eventually-elim
case (elim x)
define P where P = {p. prime p A real p € {z<..cxx}}
from elim and ¢ > 1» have 1 * z < ¢ * z by (intro mult-strict-right-mono)
auto
hence = < ¢ x z by simp
have P = {p. prime p A real p < ¢ *x z} — {p. prime p A real p < z}
by (auto simp: P-def)

also have card ... = card {p. prime p A real p < ¢ * x} — card {p. prime p
A real p < z}
using <z < ¢ x 1> by (subst card-Diff-subset) (auto intro: finite-primes-le)
also have real ... =7 (c*2) — 7z

using m-monolof x ¢ * z] «x < ¢ * T
by (subst of-nat-diff) (auto simp: primes-pi-def prime-sum-upto-def)
finally have real (card P) = 7 (¢ x ) — 7 = by simp
moreover have 7 (¢ x z) — 7wz > 0
using elim by (auto simp: field-simps)
ultimately have real (card P) > 0 by linarith
hence card P > 0 by simp
hence P # {} by (intro notl) simp
thus ?case by (auto simp: P-def)
qed
qed
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The set of rationals whose numerator and denominator are primes is dense
in R>O

lemma (in prime-number-theorem) prime-fractions-dense:

fixes «a ¢ :: real

assumes « > 0 and € > 0

obtains p ¢ :: nat where prime p and prime ¢ and dist (real p / real q¢) a < €
proof —

define ¢’ where e’ =¢ / 2

from assms have ¢’ > 0 by (simp add: €’-def)

have eventually (Az. Ip. prime p A real p € {z<..(1 + &’/ a) * z}) at-top

using assms ¢’ > 0» by (intro prime-in-interval-ezists) (auto simp: field-simps)

then obtain 20 where z0: Az. x > 20 = Jp. prime p A real p € {z<..(1 +
e’/ a)xx}

by (auto simp: eventually-at-top-linorder)

have 3 q. prime ¢ A ¢ > nat |20 |/ o by (rule bigger-prime)
then obtain ¢ where prime ¢ ¢ > nat |20 / o by blast
hence real ¢ > 20 / o by linarith
with <« > 0> have « * real ¢ > z0 by (simp add: field-simps)
hence 3 p. prime p A real p € {a * real q<..(1 + €'/ a) * (a * real q)}
by (intro z0)
then obtain p where p: prime p real p > a *x real greal p < (1 + ¢’/ a) * («
* real q)
using assms by auto

from p «prime ¢ have real p / real ¢ < (1 + &'/ a) *x «
using assms by (auto simp: field-simps dest: prime-gt-0-nat)
also have ... = a + ¢’
using assms by (simp add: field-simps)
finally have real p / real ¢ < a 4+ €’ .
moreover from p <prime ¢> have real p / real ¢ > « real p / real ¢ < (1 + &’
/ a) x «
using assms by (auto simp: field-simps dest: prime-gt-0-nat)
ultimately have dist (real p / real q) o < &’
by (simp add: dist-norm,)
also have ... < ¢
using « > 0» by (simp add: ¢’-def)
finally show ?thesis using <prime p» <prime ¢> that[of p q] by blast
qed

12.2 The logarithm of the primorial

The PNT directly implies the asymptotics of the logarithm of the primorial
function:

context prime-number-theorem
begin

lemma In-primorial-asymp-equiv [asymp-equiv-intros):
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(Az. In (primorial x)) ~[at-top] (Az. )
by (auto simp: In-primorial 9-asymptotics)

lemma In-In-primorial-asymp-equiv [asymp-equiv-intros]:
(Az. In (In (primorial x))) ~lat-top] (Az. In z)
by (auto simp: In-primorial In-9-asymp-equiv)

lemma In-primorial’-asymp-equiv [asymp-equiv-intros]:
(Ak. In (primorial’ k)) ~[at-top] (Nk. k = In k)
and In-In-primorial’-asymp-equiv [asymp-equiv-intros]:
(Ak. In (In (primorial’ k))) ~[at-top] (Ak. In k)
and In-over-In-In-primorial’-asymp-equiv:
(Mk. In (primorial’ k) / In (In (primorial’ k))) ~[at-top] (k. k)
proof —
have lim1: filterlim (\k. real (nth-prime (k — 1))) at-top at-top
by (rule filterlim-compose| OF filterlim-real-sequentially]
filterlim-compose| OF nth-prime-at-top])+ real-asymp
have lim?2: filterlim (Ak::nat. k — 1) at-top at-top
by real-asymp

have (Ak. In (primorial’ k)) ~lat-top] (An. In (primorial (nth-prime (n — 1))))

by (intro asymp-equiv-refl-ev eventually-mono[OF eventually-gt-at-top[of 0]])
(auto simp: primorial’-conv-primorial)

also have ... ~[at-top] (An. nth-prime (n — 1))
by (intro asymp-equiv-compose’|OF - lim1] asymp-equiv-intros)

also have ... ~[at-top] (An. real (n — 1) * In (real (n — 1)))
by (intro asymp-equiv-compose’|OF - lim2] asymp-equiv-intros)

also have ... ~[at-top] (An. n x In n) by real-asymp

finally show 1: (\k. In (primorial’ k)) ~[at-top] (\k. k * In k) .

have (Ak. In (In (primorial’ k))) ~[at-top] (An. In (In (primorial (nth-prime (n
— 1))
by (intro asymp-equiv-refl-ev eventually-mono[OF eventually-gt-at-top[of 0]))
(auto simp: primorial’-conv-primorial)
also have ... ~[at-top] (An. In (nth-prime (n — 1)))
by (intro asymp-equiv-compose’|OF - lim1] asymp-equiv-intros)
also have ... ~[at-top] (An. In (real (n — 1)))
by (intro asymp-equiv-compose’|OF - lim2] asymp-equiv-intros)
also have ... ~[at-top] (An. In n) by real-asymp
finally show 2: (Ak. In (In (primorial’ k))) ~[at-top] (Ak. In k) .

have (k. In (primorial’ k) / In (In (primorial’ k))) ~[at-top] (Mk. (k * In k) /
In k)
by (intro asymp-equiv-intros 1 2)
also have ... ~[at-top] (\k. k) by real-asymp
finally show (\k. in (primorial’ k) / In (In (primorial’ k))) ~[at-top] (\k. k) .
qed

end
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12.3 Consequences of the asymptotics of ¢ and ¥

Next, we will show some consequences of ¢(z) ~ x and ¥(x) ~ x. To this
end, we first show generically that any function g = e*+°(®) is o(c")ifc>e
and w(c") if c <e.

locale exp-asymp-equiv-linear =
fixes f g :: real = real
assumes f-asymp-equiv: f ~[at-top] (Az. x)
assumes ¢: eventually (A\z. g x = exp (fz)) F
begin

lemma
fixes ¢ :: real assumes ¢ > 0
shows smallo: g € o(Az. exp ((I + €) * 1))
and smallomega: g € w(Az. exp (1 — €) * x))
proof —
have (Az. exp (fz) / exp (I +¢) xz)) € O(Az. exp ((fz — z) /  — ¢€) *x x))
by (intro bigthetal-cong eventually-mono|OF eventually-gt-at-top[of 1]])
(simp-all add: divide-simps ring-distribs flip: exp-add exp-diff)
also have ((Az. exp (((fz — z) / © — €) *x x)) —— 0) at-top
proof (intro filterlim-compose|OF exp-at-bot| filterlim-tendsto-neg-mult-at-bot)
have smallo: (Az. fz — z) € o(Az. z)
using f-asymp-equiv by (rule asymp-equiv-imp-diff-smallo)
show ((Az. (fz —z) /z —e) —— 0 — €) at-top
by (intro tendsto-diff smalloD-tendsto[OF smallo] tendsto-const)
qed (use ¢ > 0> in <auto simp: filterlim-ident))
hence (Az. exp (((fz —2) /2 —¢€) x ) € o(A-. 1)
by (intro smallol-tendsto) auto
finally have (A\z. exp (fz)) € o(Az. exp ((I + &) * z))
by (simp add: landau-divide-simps)
also have %this <— g € o(Az. exp (1 + ¢€) * x))
using g by (intro landau-o.small.in-cong) (simp add: eq-commute)
finally show g € o(Az. exp ((1 + €) * 2)) .
next
have (Az. exp (fz) [ exp (1 —e) xz)) € O(Az. exp (fz — z) / x + &) x 1))
by (intro bigthetal-cong eventually-mono[OF eventually-gt-at-top|of 1]])
(simp add: ring-distribs flip: exp-add exp-diff)
also have filterlim (Az. exp (((fz — z) / © + €) * z)) at-top at-top
proof (intro filterlim-compose|OF exp-at-top| filterlim-tendsto-pos-mult-at-top)
have smallo: (Az. fz — z) € o(Az. z)
using f-asymp-equiv by (rule asymp-equiv-imp-diff-smallo)
show ((Az. (fz —z) /z+¢) —— 0 + €) at-top
by (intro tendsto-add smalloD-tendsto|OF smallo] tendsto-const)
qed (use <¢ > 0> in <auto simp: filterlim-ident))
hence (Az. exp (fz — ) / z + ¢€) * 2)) € w(A-. 1)
by (simp add: filterlim-at-top-iff-smallomega)
finally have (A\z. ezp (fz)) € w(Az. exp ((I — €) * z))
by (simp add: landau-divide-simps)
also have %this «+— g € w(Az. exp ((1 — €) * x))
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using g by (intro landau-omega.small.in-cong) (simp add: eq-commute)
finally show g € w(Az. exp ((I — €) *x z)) .
qed

lemma smallo”:
fixes c :: real assumes ¢ > exp 1
shows g € o(Az. ¢ powr z)
proof —
have ¢ > 0 by (rule le-less-trans|OF - assms]) auto
from <c > 0» assms have exp 1 < exp (In c)
by (subst exp-In) auto
hence in ¢ > 1 by (subst (asm) exp-less-cancel-iff)
hence g € o(Az. exp (1 + (Inc — 1)) * z))
using assms by (intro smallo) auto
also have (Az. exp ((1 + (In ¢ — 1)) x x)) = (Az. ¢ powr x)
using <c > 0» by (simp add: powr-def mult-ac)
finally show ?thesis .
qed

lemma smallomega’”:
fixes ¢ :: real assumes ¢ € {0<..<exp 1}
shows g € w(Az. ¢ powr x)
proof —
from assms have exp 1 > exp (In ¢)
by (subst exp-in) auto
hence In ¢ < 1 by (subst (asm) exp-less-cancel-iff)
hence g € w(Az. exp (1 — (1 — In ¢)) x x))
using assms by (intro smallomega) auto
also have (Az. ezp (1 — (1 — In ¢)) x x)) = (Az. ¢ powr z)
using assms by (simp add: powr-def mult-ac)
finally show ?thesis .
qed

end

I(z)

The primorial fulfils x# = e and is therefore one example of this.

context prime-number-theorem

begin

sublocale primorial: exp-asymp-equiv-linear ¥ Az. real (primorial )
using ¥-asymptotics by unfold-locales (simp-all add: In-primorial [symmetric])

end

The LCM of the first n natural numbers is equal to e?(™ and is therefore
another example.

context prime-number-theorem
begin

102



sublocale Lem-upto: exp-asymp-equiv-linear ¢ Ax. real (Lem {1..nat |z]})
using -asymptotics by unfold-locales (simp-all flip: Lem-upto-real-conv-1))

end

12.4 Bounds on the prime w function

Next, we will examine the asymptotic behaviour of the prime w function
w(n), i.e. the number of distinct prime factors of n. These proofs are again
taken from A.J. Hildebrand’s lecture notes [2].

lemma In-gt-1:
assumes z > (3 :: real)
shows Inx > 1
proof —
have z > exp 1
using exp-le assms by linarith
hence In z > In (exp 1) using assms by (subst In-less-cancel-iff) auto
thus ?thesis by simp
qed

lemma (in prime-number-theorem) primes-omega-primorial’-asymp-equiv:
(Ak. primes-omega (primorial’ k)) ~[at-top]
(k. In (primorial’ k) / In (In (primorial’ k)))
using In-over-In-In-primorial’-asymp-equiv by (simp add: asymp-equiv-sym,)

The number of distinct prime factors of n has maximal order Inn/Inlnn:

theorem (in prime-number-theorem)
limsup-primes-omega: limsup (An. primes-omega n / (Inn / In (In n))) = 1
proof (intro antisym)
have (Ak. primes-omega (primorial’ k) / (In (primorial’ k) / In (In (primorial’
B)) —— 1
using primes-omega-primorial’-asymp-equiv
by (intro asymp-equivD-strong eventually-mono[OF eventually-gt-at-top[of 1]])
auto
hence limsup ((An. primes-omega n / (In n / In (In n))) o primorial’) = ereal 1
by (intro lim-imp-Limsup tendsto-ereal) simp-all
hence 1 = limsup ((An. ereal (primes-omegan / (Inn / In (In n)))) o primorial’)
by (simp add: o-def)
also have ... < limsup (An. primes-omega n / (Inn / In (In n)))
using strict-mono-primorial’ by (rule limsup-subseg-mono)
finally show limsup (An. primes-omega n / (Inn / In (Inn))) > 1 .
next
show limsup (An. primes-omega n / (Inn / In (Inn))) < 1
unfolding Limsup-le-iff
proof safe
fix C':: ereal assume C": C' > 1
from ereal-dense2[OF this] obtain C where C: C > 1 ereal C < C' by auto
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have (\k. primes-omega (primorial’ k) / (In (primorial’ k) / In (In (primorial’

B)) —— 1
(is filterlim ?f - -) using primes-omega-primorial’-asymp-equiv

by (intro asymp-equivD-strong eventually-mono[ OF eventually-gt-at-top|of 1]])
auto

from order-tendstoD(2)[OF this C(1)]

have eventually (M\k. 2f k < C) at-top .

then obtain k0 where k0: N\k. k > k0 = ?f k < C by (auto simp: eventu-
ally-at-top-linorder)

have eventually (An:nat. maz 3 k0 / (Inn / In (In n)) < C) at-top
using <C' > 1) by real-asymp
hence eventually (An. primes-omega n / (Inn / In (In n)) < C) at-top
using eventually-gt-at-top|of primorial’ (maz k0 3))
proof eventually-elim
case (elim n)
define k£ where k = primes-omega n
define m where m = primorial’ k
have primorial’ 3 < primorial’ (maz k0 3)
by (subst strict-mono-less-eq| OF strict-mono-primorial’)) auto
also have ... < n by fact
finally have n > 30 by simp

show ?case
proof (cases k > mazx 3 k0)
case True
hence m > 30
using strict-mono-less-eq[ OF strict-mono-primorial’, of 8 k] by (simp add:
m-def k-def)
have ezp 1 =3 < (8 ~ 3 :: real)
using ezp-le by (intro power-mono) auto
also have ... < m using <m > 30> by simp
finally have In (ezp 1 ~3) < Inm
using <m > 30 by (subst In-less-cancel-iff) auto
hence in m > 3 by (subst (asm) In-realpow) auto

have primorial’ (primes-omega n) < n
using «n > 30y by (intro primorial’-primes-omega-le) auto
hence m < n unfolding m-def k-def using elim
by (auto simp: maz-def)
hence primes-omega n / (Inn /In (Inn)) <k / (Inm / In (In m))
unfolding k-def using elim <m > 30> In-gt-1[of n] <In m > 3»
by (intro frac-le[of primes-omega n] divide-In-mono mult-pos-pos di-
vide-pos-pos) auto
also have ... = ?fk
by (simp add: k-def m-def)
also have ... < C
by (intro k0) (use True in <auto simp: k-def»)
finally show ?thesis by simp
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next
case Fulse
hence primes-omega n / (Inn / In (Inn)) < maz 3 k0 / (Inn / In (In n))
using elim In-gt-1[of n] <n > 30>
by (intro divide-right-mono divide-nonneg-pos) (auto simp: k-def)
also have ... < C
using elim by simp
finally show ?thesis by simp
qed
qed
thus eventually (An. ereal (primes-omega n / (Inn / In (In n))) < C’) at-top
by eventually-elim (rule le-less-trans|OF - C(2)], auto)
qed
qed

12.5 Bounds on the divisor function

In this section, we shall examine the growth of the divisor function og(n).
In particular, we will show that og(n) < 267/ I2Inn for all sufficiently large
n if ¢ > 1 and og(n) > 267/ Inn for infinitely many 7 if ¢ < 1.

An equivalent statement is that In(og(n)) has maximal order In 2-Inn/ InInn.

Following Apostol’s somewhat didactic approach, we first show a generic
bounding lemma for o that depends on some function f that we will specify
later.

lemma divisor-count-bound-gen:
fixes f :: nat = real
assumes eventually (An. fn > 2) at-top
defines ¢ = (8 / In 2 :: real)
defines g = (An. (Inn+ c*x fnxIn (Inn)) / (In (fn))
shows eventually (An. divisor-count n < 2 powr g n) at-top
proof —
include prime-counting-syntax
have eventually (An:nat. 1 + log 2n < Inn ~ 2) at-top by real-asymp
thus eventually (An. divisor-count n < 2 powr g n) at-top
using eventually-gt-at-top[of 2] assms(1)
proof eventually-elim
fix n :: nat
assume n:n > 2and fn>2and I +log2n<lInn "2

define Pr where [simp]: Pr = prime-factors n
define Pri where [simp|: Prl1 = {p€Pr. p < fn}
define Pr2 where [simp|: Pr2 = {pePr. p > fn}

have exp 1 < real n

using e-less-272 «<n > 2 by linarith
hence in (exp 1) < In (real n)

using «<n > 25 by (subst In-less-cancel-iff) auto
hence In (In n) > in (In (exp 1))
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by (subst In-less-cancel-iff) auto
hence in (In n) > 0 by simp

define S2 where S2 = (> pePr2. multiplicity p n)
have fn =52 = ([[pePr2. fn ~ multiplicity p n)
by (simp add: S2-def power-sum)
also have ... < ([[p€Pr2. real p = multiplicity p n)
using «f n > 2> by (intro prod-mono conjl power-mono) auto
also from «n > 2) have ... < ([[p€Pr. real p ~ multiplicity p n)
by (intro prod-mono2 one-le-power) (auto simp: in-prime-factors-iff dest:
prime-gt-0-nat)
also have ... = n
using «<n > 2» by (subst prime-factorization-nat[of n]) auto
finally have fn ~ 52 < n.
hence In (fn = 52) <lInn
using n «f n > 2 by (subst In-le-cancel-iff) auto
hence 52 < inn /in (fn)
using «f n > 2> by (simp add: field-simps In-realpow)

have le-twopow: Suc a < 2 ~a for a :: nat by (induction a) auto
have ([[pePr2. Suc (multiplicity p n)) < ([[p€Pr2. 2 ~ multiplicity p n)
by (intro prod-mono conjl le-twopow) auto

also have ... = 2~ 52
by (simp add: S2-def power-sum)
also have ... = 2 powr real S2

by (subst powr-realpow) auto
also have ... < 2 powr (Inn / In (fn))
by (intro powr-mono <S2 < Inn [/ In (f n)) auto
finally have bound2: real (][ pePr2. Suc (multiplicity p n)) < 2 powr (Inn /

In (f n))
by simp

have multiplicity-le: multiplicity p n < log 2 n if p: p € Pr for p
proof —
from p have 2 ~ multiplicity p n < p ~ multiplicity p n
by (intro power-mono) (auto simp: in-prime-factors-iff dest: prime-gt-1-nat)
also have ... = ([[pe{p}. p ~ multiplicity p n) by simp
also from p have ([ pe{p}. p ~ multiplicity p n) < ([[ p€Pr. p ~ multiplicity
pn)
by (intro dvd-imp-le prod-dvd-prod-subset)
(auto simp: in-prime-factors-iff dest: prime-gt-0-nat)
also have ... = n
using n by (subst prime-factorization-nat[of n]) auto
finally have 2 ~ multiplicity pn < n .
hence log 2 (2 ~ multiplicity p n) < log 2 n
using n by (subst log-le-cancel-iff) auto
thus multiplicity p n < log 2 n
by (subst (asm) log-nat-power) auto
qed
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have ([[pePri. Suc (multiplicity p n)) = exp (> p€Prl. In (multiplicity p n
+ 1)
by (simp add: exp-sum)
also have (> pePri. In (multiplicity p n + 1)) < (3, pePrl. 2 % In (In n))
proof (intro sum-mono)
fix p assume p: p € Pri
have In (multiplicity pn + 1) < In (1 + log 2 n)
using p multiplicity-le[of p] by (subst In-le-cancel-iff) auto
also have ... < in (lnn ~2)
using «n > 2> <1 +log2n <lInn " 2
by (subst In-le-cancel-iff) (auto intro: add-pos-nonneg)
also have ... = 2 x In (In n)
using «n > 2» by (simp add: In-realpow)
finally show In (multiplicity pn + 1) < 2 % In (In n) .
qed
also have ... = 2 x In (In n) x card Prl
by simp
also have finite {p. prime p A real p < fn}
by (rule finite-subset[of - {..nat |f n]}]) (auto simp: le-nat-iff le-floor-iff)
hence card Pr1 < card {p. prime p A real p < fn}
by (intro card-mono) auto
also have real ... =7 (fn)
by (simp add: primes-pi-def prime-sum-upto-def)
also have ... < / x (fn /In (fn))
using «f n > 2) by (intro w-upper-bound’’) auto
also have exp (2 x In (In (real n)) * (4 * (fn / In (fn)))) =
2powr (¢cx fnxlIn(lnn)/In(fn))
by (simp add: powr-def c-def)
finally have boundl: ([][ pePrl. Suc (multiplicity p n)) <
2 powr (¢ x fn*in (In (real n)) / In (f n))
using «In (In n) > 0> by (simp add: mult-strict-left-mono)

have divisor-count n = ([[ p€Pr. Suc (multiplicity p n))
using n by (subst divisor-count.prod-prime-factors’) auto
also have Pr = Pr1 U Pr2 by auto
also have real ([] p€.... Suc (multiplicity p n)) =
real (([] p€Prl. Suc (multiplicity p n)) * (][ p€Pr2. Suc (multiplicity
p )

by (subst prod.union-disjoint) auto
also have ... < 2 powr (¢ x fn *In (In (real n)) / In (fn)) x 2 powr (Inn /
In (f n))
unfolding of-nat-mult
by (intro mult-less-le-imp-less bound! bound2) (auto intro!: prod-nonneg
prod-pos)
also have ... = 2 powr g n
by (simp add: g-def add-divide-distrib powr-add)
finally show real (divisor-count n) < 2 powr g n .
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qed
qed

Now, Apostol explains that one can choose f(n) :=Inn/(Inlnn)? to obtain
the desired bound.

proposition divisor-count-upper-bound:

fixes ¢ :: real

assumes € > 0

shows eventually (An. divisor-count n < 2 powr ((1 4+ €) x Inn / In (In n)))
at-top
proof —

define c :: real where ¢ = 8 / In 2

define f :: nat = real where f = (An. Inn / (In (Inn)) ~2)

define g where g = (An. (lInn + ¢ x fn*in (Inn)) / (In (f n)))

have eventually (An. divisor-count n < 2 powr g n) at-top
unfolding g-def c-def f-def by (rule divisor-count-bound-gen) real-asymp+
moreover have eventually (An. 2 powr g n < 2 powr ((1 +¢€) xInn / In (In
n))) at-top
using (¢ > () unfolding g-def c-def f-def by real-asymp
ultimately show eventually (An. divisor-count n < 2 powr ((I +¢) *xIlnn / In
(In n))) at-top
by eventually-elim (rule less-trans)
qed

Next, we will examine the ‘worst case’. Since any prime factor of n with
multiplicity k& contributes a factor of k + 1, it is intuitively clear that oo(n)
is largest w.r.t. n if it is a product of small distinct primes.

We show that indeed, if n := z# (where z# denotes the primorial), we
have og(n) = 27(*) which, by the Prime Number Theorem, indeed exceeds
clnn/Inlnn.

theorem (in prime-number-theorem) divisor-count-primorial-gt:
assumes ¢ > (
defines h = primorial
shows eventually (Ax. divisor-count (h z) > 2 powr (1 —¢) xIn (hz) / In (In
(h %)) at-top
proof —
have (\z. (1 — &) xIn (hz) / In (In (h 2))) ~[at-top] (Az. (1 — &) * Iz / In
(¥ ))
by (simp add: h-def In-primorial)
also have ... ~at-top] (Az. (I —¢€) x z / In )
by (intro asymp-equiv-intros ¥-asymptotics In-9-asymp-equiv)
finally have *: (Az. (I —¢) * In (hz) / In (In (h 2))) ~[at-top] (Az. (I — &) *
z/ Inx)
by simp
have (Az. (1 —¢) xIln(hz) / (In(In (hx)) — (1 —¢)*xz/Inz) € oAz. (1
—¢e)xz /Inux)
using asymp-equiv-imp-diff-smallo|OF %] by simp
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also have %this «+— (Az. (1 —¢e)xIn(hz) /(In(ln(hx)) —z/Inzx+ecxzx

/ In x)
€oAz. (I —¢)*xz/Inx)
by (intro landau-o.small.in-cong eventually-mono[OF eventually-gt-at-top[of

1))
(auto simp: field-simps)
also have (A\z. (I —¢)*xx /Inz) € OAz. x / In z)
by real-asymp
finally have (Az. (I —¢)*xin (hz) /(In(In (hx)) —z/Inz+ecx*xzx/Inzx)
€ oz.z /Inz).
hence (A\z. (1 —¢)«xIn(hzx)/ (In(In (hz)) —z/Imz+exx/Inz— (mz
—z /Inx)
€ o(Az. z / In x)
by (intro sum-in-smallo[OF - asymp-equiv-imp-diff-smallo] prime-number-theorem)
hence (Az. (1 —¢)xin(hz)/(In(in (hx)) —mz+ex*x(z/Inc)) € ol
ex* (z/Inx))
using <« > 0) by (subst landau-o.small.cmult) (simp-all add: algebra-simps)
hence (A\z. (1 —¢) xIn (hz) / (In (In (h 1)) — 7 z) ~[at-top] (A\z. —€ * (z /
In z))
by (intro smallo-imp-asymp-equiv) auto
hence eventually (Az. (1 — &) xIn(hzx) / (In (In (b)) —7maz <0+
—ex (z [/ Inz) < 0) at-top
by (rule asymp-equiv-eventually-neg-iff)
moreover have eventually (Az. —e * (z / In z) < 0) at-top
using <¢ > 0> by real-asymp
ultimately have eventually (Az. (1 —¢€) xIn (hz) / In (In (b)) < 7 z) at-top
by eventually-elim simp
thus eventually (Az. divisor-count (h ) > 2 powr (1 —€) % In (hz) / In (In
(h 2)))) at-top
proof eventually-elim
case (elim x)
hence 2 powr ((I —¢) xIn (hz) / In (In (h2))) < 2powr 7z
by (intro powr-less-mono) auto
thus ?case by (simp add: divisor-count-primorial h-def)
qed
qed

Since h(z) — oo, this gives us our infinitely many values of n that exceed
the bound.

corollary (in prime-number-theorem) divisor-count-lower-bound:

assumes € > 0

shows  frequently (An. divisor-count n > 2 powr ((I — €) *x Inn / In (In n)))
at-top
proof —

define h where h = primorial

have eventually (An. divisor-count n > 2 powr ((I —€) * Inn / In (In n)))

(filtermap h at-top)
using divisor-count-primorial-gt[OF assms] by (simp add: eventually-filtermayp

h-def)
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hence frequently (An. divisor-count n > 2 powr ((1 — ¢) = In n / In (In n)))
(filtermap h at-top)
by (intro eventually-frequently) (auto simp: filtermap-bot-iff)
moreover from this and primorial-at-top
have filtermap h at-top < at-top by (simp add: filterlim-def h-def)
ultimately show %thesis
by (rule frequently-mono-filter)
qed

A different formulation that is not quite as tedious to prove is this one:

lemma (in prime-number-theorem) In-divisor-count-primorial’-asymp-equiv:
(Ak. In (divisor-count (primorial’ k))) ~[at-top)
(Ak. In 2 * In (primorial’ k) / In (In (primorial’ k)))
proof —
have (A\k. In 2 * (In (primorial’ k) / In (In (primorial’ k)))) ~[at-top] (\k. In 2
* k)
by (intro asymp-equiv-intros In-over-In-In-primorial’-asymp-equiv)
also have ... ~[at-top] (Ak. In (divisor-count (primorial’ k)))
by (simp add: In-realpow mult-ac)
finally show ?thesis by (simp add: asymp-equiv-sym mult-ac)
qed

It follows that the maximal order of the divisor function is In2-Inn/Inlnn.

theorem (in prime-number-theorem) limsup-divisor-count:
limsup (An. In (divisor-count n) = In (Inn) / Inn) = In 2
proof (intro antisym)
let ?h = primorial’
have 2 "k = (1 :: real) «— k = 0 for k :: nat
using power-eq-1-iff [of 2::real k] by auto
hence (\k. In (divisor-count (?h k)) / (In 2 x In (?h k) [/ In (In (?h k)))) ——
1
using In-divisor-count-primorial’-asymp-equiv
by (intro asymp-equivD-strong eventually-mono[OF eventually-gt-at-top[of 1]))
(auto simp: power-eq-1-iff)
hence (Ak. In (divisor-count (?h k)) / (In 2 x In (?h k) / In (In (?h k))) * In 2)
— 1 xIn2
by (rule tendsto-mult) auto
hence (\k. In (divisor-count (?h k)) / (In (?h k) / In (In (¢h k)))) —— In 2
by simp
hence limsup ((An. In (divisor-count n) * In (In n) / In n) o primorial’) = ereal
(In 2)
by (intro lim-imp-Limsup tendsto-ereal) simp-all

hence In 2 = limsup ((An. ereal (In (divisor-count n) * In (In n) / In n)) o
primorial’)
by (simp add: o-def)
also have ... < limsup (An. In (divisor-count n) * In (In n) / In n)

using strict-mono-primorial’ by (rule limsup-subseg-mono)
finally show limsup (An. In (divisor-count n) * In (Inn) /Inn) > In 2 .
next
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show limsup (An. In (divisor-count n) * In (Inn) / Inn) <In 2
unfolding Limsup-le-iff
proof safe
fix C’ assume C’ > ereal (In 2)
from ereal-dense2[OF this| obtain C where C: C > In 2 ereal C < C' by
auto
define ¢ where e = (C' / In 2) — 1
from C have ¢ > 0 by (simp add: e-def)

have eventually (An:nat. In (In n) > 0) at-top by real-asymp
hence eventually (An. In (divisor-count n) * In (Inn) / Inn < C) at-top
using divisor-count-upper-bound[OF <& > 0)] eventually-gt-at-top[of 1]
proof eventually-elim
case (elim n)
hence In (divisor-count n) < In (2 powr ((I +¢) * Inn / In (In n)))
by (subst In-less-cancel-iff ) auto
alsohave ... = (1 +e)*In2xInn /In (Inn)
by (simp add: In-powr)
finally have In (divisor-count n) = In (Inn) / Inn < (1 +¢) * In 2
using elim by (simp add: field-simps)

also have ... = C by (simp add: e-def)
finally show ?case .
qed

thus eventually (An. ereal (In (divisor-count n) * In (Inn) / Inn) < C') at-top
by eventually-elim (rule less-trans|OF - C(2)], auto)
qged
qged

12.6 Mertens’ Third Theorem

In this section, we will show that

I(-5) o)

p<x
with explicit bounds for the factor in the ‘Big-O’. Here, C is the following
constant:

definition third-mertens-const :: real where
third-mertens-const =
exp (—(>_ punat. if prime p then —in (1 — 1 / real p) — 1 / real p else 0) —
meissel-mertens)

This constant is actually equal to e where v is the Euler—-Mascheroni
constant, but showing this is quite a bit of work, which we shall not do here.

lemma third-mertens-const-pos: third-mertens-const > 0
by (simp add: third-mertens-const-def)

theorem
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defines C = third-mertens-const
shows mertens-third-theorem-strong:
eventually (Mz. |([Ip | primep Arealp < z. 1 — 1 /p)— C /Inzl <
10 %« C / Inx ™ 2) at-top
and mertens-third-theorem:
Me. (JIp | primep Arealp <z. 1 — 1 /p)— C /inz)e OXx. 1/
Inx ™ 2)
proof —
define Pr where Pr = (Az. {p. prime p A real p < z})
define a :: nat = real
where a = (Ap. if prime p then —in (1 — 1 / real p) — 1 / real p else 0)
define B where B = suminf a
have C-eq: C = exp (—B — meissel-mertens)
by (simp add: B-def a-def third-mertens-const-def C-def)
have fin: finite (Pr z) for x
by (rule finite-subset[of - {..nat |z|}]) (auto simp: Pr-def le-nat-iff le-floor-iff)

define S where S = (Az. (3 pePrz.in (1 — 1/ p)))
define R where R = (Az. Sz + In (In ) + (B + meissel-mertens))

have exp-S: exp (S z) = ([[pePrz. (1 — 1 / p)) for z
proof —
have exp (S z) = (J[pePrz. exp (In (1 — 1 / p)))
by (simp add: S-def exp-sum fin)
also have ... = ([[pePrz. (I — 1 / p))
by (intro prod.cong) (auto simp: Pr-def dest: prime-gt-1-nat)
finally show ?%thesis .
qed

have a-nonneg: a n > 0 for n
proof (cases prime n)
case True
henceln (1 — 1 /n) < —(1/n)
by (intro In-one-minus-pos-upper-bound) (auto dest: prime-gt-1-nat)
thus ?thesis by (auto simp: a-def)
qed (auto simp: a-def)

have summable a
proof (rule summable-comparison-test-bigo)
have a € O(An. =In (1 — 1 /n)—1/n)
by (intro bigol|of - 1]) (auto simp: a-def)
also have (An:nat. —in (I — 1 /n) —1/n)€ OAn. 1 /n " 2)
by real-asymp
finally show a € O(An. 1 / realn ~ 2) .
next
show summable (An. norm (1 / real n ~ 2))
using inverse-power-summable[of 2] by (simp add: field-simps)
qged
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have eventually (An. an <1/ n — 1/ Sucn) at-top
proof —
have eventually (An:nat. —=ln (I — 1 /n) — 1 /n<1/n— 1/ Sucn)
at-top
by real-asymp
thus %thesis using eventually-gt-at-top[of 1]
by eventually-elim (auto simp: a-def of-nat-diff field-simps)
qed
hence eventually (Am.Vn>m.an <1/ n— 1/ Sucn) at-top
by (rule eventually-all-ge-at-top)
hence eventually (Az. Vn>nat |z]. an <1/ n — 1/ Sucn) at-top
by (rule eventually-compose-filterlim)
(intro filterlim-compose|OF filterlim-nat-sequentially| filterlim-floor-sequentially)
hence eventually (Az. B — sum-upto a x < 1 / x) at-top
using eventually-ge-at-toplof 1::real)
proof eventually-elim
case (elim )
have a-le: an <1 / realn — 1 / real (Suc n) if real n > = for n
proof —
from that and <z > 1» have n > nat |z| by linarith
with elim and that show ?thesis by auto
qed
define m where m = Suc (nat |z])
have telescope: (An. 1 / (n + m) — 1 / (Suc n + m)) sums (1 / real (0 + m)
—0)
by (intro telescope-sums’) real-asymp

have B — (3 n<m. an) = (> n. a (n + m))
unfolding B-def sum-upto-altdef m-def using <summable a)
by (subst suminf-split-initial-segment|of - Suc (nat |z])]) auto
also have (> n<m. a n) = sum-upto a x
unfolding m-def sum-upto-altdef by (intro sum.mono-neutral-right) (auto
simp: a-def)
also have 3 n.a(n+m)) < O.n. 1/ (n+m) — 1/ (Sucn+ m))
proof (intro suminf-le alll)
show summable (An. a (n + m))
by (rule summable-ignore-initial-segment) fact+
next
show summable (An. 1 / (n + m) — 1 / (Suc n + m))
using telescope by (rule sums-summable)
next
fix n :: nat
have z < n 4+ m unfolding m-def using <z > 1) by linarith
thusa(n+m)<1/(n+m)— 1/ (Sucn+ m)
using a-le[of n + m] <x > 1» by simp
qed
alsohave ... =1/ m
using telescope by (simp add: sums-iff)
also have z < mm > 0
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unfolding m-def using <z > 1) by linarith+
hence 1 /m<1/z
using <z > 1) by (intro divide-left-mono) (auto simp: m-def)
finally show ?case .
qed

moreover have eventually (Az::real. 1 / © < 1 / In z) at-top by real-asymp
ultimately have eventually (Az. B — sum-upto a x < 1 / In z) al-top
by eventually-elim (rule order.trans)

hence eventually (A\z. |R z| < 5§ / In z) at-top
using eventually-ge-at-top[of 2]
proof eventually-elim
case (elim x)
have |(B — sum-upto a x) — (prime-sum-upto (Ap. 1 / p) x — In (In z) —
meissel-mertens)| <
1 /Inzx+4/Inz
proof (intro order.trans[OF abs-triangle-ineq} add-mono))
show |prime-sum-upto (Ap. 1 / real p) x — In (In ) — meissel-mertens| < 4
/Inz
by (intro mertens-second-theorem <x > 2))
have sum-upto a © < B
unfolding B-def sum-upto-def by (intro sum-le-suminf <summable a)
a-nonneg balll) auto
thus |B — sum-upto a z| < 1 /Inzx
using elim by linarith
qed
also have sum-upto a x = prime-sum-upto (Ap. —ln (1 — 1 /p) — 1 /p)zx
unfolding sum-upto-def prime-sum-upto-altdef! a-def by (intro sum.cong
alll) auto
also have ... = =Sz — prime-sum-upto (Ap. 1 / p)
by (simp add: a-def S-def Pr-def prime-sum-upto-def sum-subtractf sum-negf)
finally show |[Rz| <5 /Inz
by (simp add: R-def)
qed

moreover have eventually (Az::real. |5 / Inz| < 1/ 2) at-top by real-asymp
ultimately have eventually (Az. exp (Rx) — 1 € {—5 / Inx..10 / In z}) at-top

using eventually-gt-at-toplof 1]
proof eventually-elim

case (elim x)

have exp (R x) < exp (5 / In z)

using elim by simp
alsohave ... <1 + 10 /Inz
using real-ezp-bound-lemmalof 5 / In z] elim by (simp add: abs-if split:
if-splits)
finally have le: exp (Rz) < 1 4+ 10 / Inx .

have 1 + (=5 /Inz) < exp (=5 / In z)
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by (rule exp-ge-add-one-self)
also have ezp (=5 / Inz) < exp (R )
using elim by simp
finally have exp (Rz) > 1 — 5 / In z by simp
with le show ?case by simp
qed

thus eventually (Az. |([[p€Praz. 1 — 1 /realp) — C [/ Inz| <10 % C [/ Inx
= 2) at-top
using eventually-gt-at-top|of exp 1] eventually-gt-at-top[of 1]
proof eventually-elim
case (elim x)
have |ezp (Rz) — 1| < 10 / Inx
using elim by (simp add: abs-if)
from elim have |exp (Sz) — C /Inz| = C /Inz *|exp (R zx) — 1]
by (simp add: R-def exp-add C-eq exp-diff exp-minus field-simps)
alsohave ... < C /Inz* (10 / In x)
using elim by (intro mult-left-mono) (auto simp: C-eq)
finally show ?case by (simp add: exp-S power2-eq-square mult-ac)
qed

thus (A\z. ([[p€Prx. 1 — 1 /realp) — C /Inz) € OXz. 1 [ Inx ™ 2)
by (intro bigol]of - 10 * C]) auto
qed

lemma mertens-third-theorem-asymp-equiv:
(Az. (I1p | prime p A real p < x. 1 — 1 / real p)) ~[at-top)
(Az. third-mertens-const / In x)
by (rule smallo-imp-asymp-equiv] OF landau-o.big-small-trans| OF mertens-third-theorem]])
(use third-mertens-const-pos in real-asymp)

We now show an equivalent version where [[, (1 — 1/p) is replaced by
Hf:1(1 —1/pi):
lemma mertens-third-convert:
assumes n > 0
shows ([[k<n. 1 — 1 / real (nth-prime k)) =
(IIp | prime p A p < nth-prime (n — 1). 1 — 1 / p)
proof —
have primorial’ n = primorial (nth-prime (n — 1))
using assms by (simp add: primorial’-conv-primorial)
also have real (totient ...) =
primorial’ n x ([ p | prime p A p < nth-prime (n — 1). 1 — 1 / p)
using assms by (subst totient-primorial) (auto simp: primorial’-conv-primorial)
finally show ?thesis
by (simp add: totient-primorial’)
qed

lemma (in prime-number-theorem) mertens-third-theorem-asymp-equiv’”:
(An. ([Tk<n. 1 — 1 / nth-prime k)) ~[at-top] (Az. third-mertens-const / In x)
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proof —

have lim: filterlim (An. real (nth-prime (n — 1))) al-top at-top

by (intro filterlim-compose| OF filterlim-real-sequentially]
filterlim-compose[ OF nth-prime-at-top)) real-asymp
have (An. (J[[k<n. I — 1 / nth-prime k)) ~[at-top]
(An. (I]p | prime p A real p < real (nth-prime (n — 1)). 1 — 1 / p))
by (intro asymp-equiv-refl-ev eventually-mono[OF eventually-gt-at-top[of 0]])
(subst mertens-third-convert, auto)

also have ... ~[at-top] (An. third-mertens-const / In (real (nth-prime (n — 1))))
by (intro asymp-equiv-compose’|OF mertens-third-theorem-asymp-equiv lim])
also have ... ~[at-top] (An. third-mertens-const / In (real (n — 1)))

by (intro asymp-equiv-intros asymp-equiv-compose’|OF In-nth-prime-asymp-equiv))
real-asymp
also have ... ~[at-top] (An. third-mertens-const / In (real n))
using third-mertens-const-pos by real-asymp
finally show ?thesis .
qed

12.7 Bounds on Euler’s totient function

Similarly to the divisor function, we will show that ¢(n) has minimal order
Cn/Inlnn.

The first part is to show the lower bound:

theorem totient-lower-bound:

fixes € :: real

assumes € > 0

defines C = third-mertens-const

shows eventually (An. totient n > (1 — ) « C * n / In (In n)) at-top
proof —

include prime-counting-syntax

define f :: nat = nat where f = (An. card {p€prime-factors n. p > In n})

define Ib1 where b1 = (An:nat. ([[p | primep A realp < Inn. 1 — 1/ p))
define b2 where b2 = (An:nat. (1 — 1 / Inn) powr (Inn / In (In n)))
define /b1’ where b1’ = (Anunat. C / In (Inn) — 10 x C [/ In (Inn) ~ 2)

have eventually (An:nat. 1 + log 2n < Inn ~ 2) at-top by real-asymp
hence eventually (An. totient n / n > b1 n * b2 n) at-top

using eventually-gt-at-toplof 2]
proof eventually-elim

fix n :: nat

assume n:n > 2and 1 +log2n <lInn "2

define Pr where [simp|: Pr = prime-factors n
define Pri where [simp]: Prl = {pePr. p < In n}
define Pr2 where [simp]: Pr2 = {pePr. p > In n}

have exp 1 < real n

116



using e-less-272 «n > 2» by linarith
hence in (exp 1) < In (real n)
using «n > 2> by (subst In-less-cancel-iff) auto
hence 1 < In n by simp
hence in (In n) > In (In (exp 1))
by (subst In-less-cancel-iff) auto
hence in (In n) > 0 by simp

have Inn = fn < ([[pePr2. in n)
by (simp add: f-def)
also have ... < real (] p€Pr2. p) unfolding of-nat-prod
by (intro prod-mono) (auto dest: prime-gt-1-nat simp: in-prime-factors-iff)
also {
have ([[pePr2. p) dvd ([ p€Pr2. p ~ multiplicity p n)
by (intro prod-dvd-prod dvd-power) (auto simp: prime-factors-multiplicity)
also have ... dvd ([[p€Pr. p = multiplicity p n)
by (intro prod-dvd-prod-subset2) auto
also have ... = n
using «n > 2) by (subst (2) prime-factorization-nat|of n]) auto
finally have ([[pePr2. p) < n
using <n > 2 by (intro dvd-imp-le) auto
}

finally have In (Inn ~fn) <lInn

using «n > 2» by (subst In-le-cancel-iff) auto
also have In (Inn ~fn) = fn xIn (Inn)

using «n > 2) by (subst In-realpow) auto
finally have f-le: fn <lInn /In (Inn)

using «In (In n) > 0> by (simp add: field-simps)

have (1 — 1 /Inn) powr (Inn / In (Inn)) < (1 — 1 /Inn) powr (real (f n))
using «n > 2) and <In n > 1> by (intro powr-mono’ f-le) auto
also have ... = ([[pePr2. 1 — 1 / Inn)
using <n > 2» and «In n > 1) by (subst powr-realpow) (auto simp: f-def)
also have ... < ([[pePr2.1 — 1/ p)
using <n > 2> and <Inn > 1»
by (intro prod-mono conjl diff-mono divide-left-mono) (auto dest: prime-gt-1-nat)
finally have bound2: ([[pePr2. 1 — 1 / p) > b2 n unfolding [b2-def .

have ([[p | prime p A real p < In n. inverse (1 — 1 / p)) > ([[ p€Prl. inverse
(1—1/7)
using <n > 2» by (intro prod-mono2) (auto intro: finite-primes-le dest:
prime-gt-1-nat simp: in-prime-factors-iff
field-simps)
hence inverse ([[p | prime p A real p < Inn. 1 — 1 / p) > inverse (| p€Prl.
1—-1/p)
by (subst (1 2) prod-inversef [symmetric]) auto
hence bound!: ([[pePri. 1 — 1 / p) > b1 n unfolding Ib1-def
by (rule inverse-le-imp-le)
(auto introl: prod-pos simp: in-prime-factors-iff dest: prime-gt-1-nat)
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have Ib1 n x b2 n < ([[pePri. 1 — 1/ p)=* ([[pePr2. 1 — 1 / p)
by (intro mult-mono boundl bound2 prod-nonneg balll)
(auto simp: in-prime-factors-iff lb1-def 1b2-def dest: prime-gt-1-nat)
also have ... = ([[pePr1 U Pr2. 1 — 1 / p)
by (subst prod.union-disjoint) auto
also have Pri1 U Pr2 = Pr by auto
also have ([[pePr. 1 — 1 / p) = totient n / n
using n by (subst totient-formula2) auto
finally show real (totient n) / real n > b1 n * b2 n
by (simp add: lb1-def 1b2-def)
qed

moreover have eventually (An. |lbIn — C /In (Inn)| < 10« C /in (Inn) ~
2) at-top
unfolding [b1-def C-def using mertens-third-theorem-strong
by (rule eventually-compose-filterlim) real-asymp

moreover have eventually (An. (1 —¢) x C /In (Inn) < 1b1'n = b2 n) at-top
unfolding [b1’-def 1b2-def C-def using third-mertens-const-pos <¢ > 05 by
real-asymp

ultimately show eventually (An. totient n > (1 —¢€) * C xn / In (In n)) at-top
using eventually-gt-at-top[of 0]
proof eventually-elim
case (elim n)
have (1 —¢)« C / In (Inn) < b1’ n x b2 n by fact
also have b1’ n < Ibl n
unfolding [b1’-def using elim by linarith
hence b1’ nx b2n < bl n*Wb2n
by (intro mult-right-mono) (auto simp: 1b2-def)
also have ... < totient n / n by fact
finally show totient n > (1 —¢) * C x n / (In (In n))
using «<n > 0> by (simp add: field-simps)
qed
qed

Next, we examine the ‘worst case’ of p(n) where n is the primorial of z. In
this case, we have ¢(n) < c¢n/Inlnn for any ¢ > C for all sufficiently large
n.

theorem (in prime-number-theorem) totient-primorial-less:

fixes ¢ :: real

defines C = third-mertens-const and h = primorial

assumes € > (

shows eventually (Az. totient (hz) < (I +¢&)* Cxhz /In (In (hz))) at-top
proof —

have C > 0 by (simp add: C-def third-mertens-const-pos)

have (Az. (1 +¢) x C / In (In (h x))) ~[at-top] (Az. (I + &) * C / In (I x))
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by (simp add: In-primorial h-def)
also have ... ~[at-top] (Az. (1 +¢€) x C / In z)
by (intro asymp-equiv-intros In-9-asymp-equiv)
finally have (\x. (1 + &)« C /In(ln(h2)) — (1 +¢)x C /Inzx) € o(Ax. (1
+e)*x C/Inx)
by (rule asymp-equiv-imp-diff-smallo)
also have (Az. (1 +¢)x C /Inz) € OAz. 1 / In x)
by real-asymp
also have (A\z. (1 + )« C /In(In (hz)) — (I +e)x C/Inz)=
M. (1 +e)«C/In(ln(hx)—C/lnx—ecxC/lInzx)
by (simp add: algebra-simps fun-eq-iff add-divide-distrib)
finally have (Az. (I +¢)« C /In(ln (hz) — C /Inz —ex C/Inzx) €
o(Az. 1 / Inzx) .
hence (M\z. (I + &)« C /In(ln(hz)—C/lnz—cxC/Inx—
((ITpe{p. prime p AN real p < z}. 1 — 1 / real p) — C / In z)) € o(Az.
1/ 1Inx)
unfolding C-def
by (rule sum-in-smallo] OF - landau-o.big-small-trans| OF mertens-third-theorem]])
real-asymp—+
hence (Az. (1 +¢)« C /In (In (hz)) — (J] pe{p. prime p A real p < z}. 1 —
1 / real p)) —
(ex C/lInz)) € oAz 1/ Inx)
by (simp add: algebra-simps)
also have (Az. 1 /inz) € OAz. e x C / In )
using <€ > 0» by (simp add: landau-divide-simps C-def third-mertens-const-def)
finally have (A\z. (1 +¢)« C /In (In (hz)) — (J[p | prime p A real p < z. 1
— 1 /)
~lat-top] (A\xz. € x C / In x)
by (rule smallo-imp-asymp-equiv)

hence eventually (Az. (I + &)« C /In (In (hx)) — (I][p | prime p A real p <
z.1—1/p) >0
+—ex*x C/Inz > 0) at-top
by (rule asymp-equiv-eventually-pos-iff)
moreover have eventually (Az. € x C'/ In x> 0) at-top
using « > 0> <C > 0> by real-asymp
ultimately have eventually (Az. (1 + ) x C / In (In (h z)) >
(Ilp | primep A real p < z. 1 — 1 / p)) at-top
by eventually-elim auto
thus ?thesis
proof eventually-elim
case (elim x)
have h z > 0 by (auto simp: h-def primorial-def intro!: prod-pos dest: prime-gt-0-nat)
have hz x ((1 +¢) x C / In (In (h z))) > totient (h x)
using elim primorial-pos|of z] unfolding h-def totient-primorial
by (intro mult-strict-left-mono) auto
thus ?case by (simp add: mult-ac)
qged
qed
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It follows that infinitely many values of n exceed cn/In(Inn) when c¢ is
chosen larger than C.

corollary (in prime-number-theorem) totient-upper-bound:
assumes € > (
defines C = third-mertens-const
shows frequently (An. totient n < (1 +¢) * C xn / In (In n)) at-top
proof —
define h where h = primorial
have eventually (An. totient n < (1 +¢) * C x n / In (In n)) (filtermap h at-top)
using totient-primorial-less|OF assms(1)] by (simp add: eventually-filtermap
C-def h-def)
hence frequently (An. totient n < (1 + ¢) * C x n / In (In n)) (filtermap h
at-top)
by (intro eventually-frequently) (auto simp: filtermap-bot-iff)
moreover from this and primorial-at-top
have filtermap h at-top < at-top by (simp add: filterlim-def h-def)
ultimately show ?thesis
by (rule frequently-mono-filter)
qed

Again, the following alternative formulation is somewhat nicer to prove:

lemma (in prime-number-theorem) totient-primorial’-asymp-equiv:
(Ak. totient (primorial’ k)) ~[at-top] (Ak. third-mertens-const * primorial’ k / In
)
proof —
let ?C = third-mertens-const
have (Ak. totient (primorial’ k)) ~[at-top] (Mk. primorial’ k x ([]i<k. 1 — 1 /
nth-prime 1))
by (subst totient-primorial’) auto
also have ... ~[at-top] (Ak. primorial’ k x (2C [/ In k))
by (intro asymp-equiv-intros mertens-third-theorem-asymp-equiv’)
finally show ?thesis by (simp add: algebra-simps)
qed

lemma (in prime-number-theorem) totient-primorial’-asymp-equiv”:
(Ak. totient (primorial’ k)) ~[at-top]
(A\k. third-mertens-const = primorial’ k / In (In (primorial’ k)))
proof —
let ?C' = third-mertens-const
have (\k. totient (primorial’ k)) ~[at-top] (Ak. third-mertens-const * primorial’
k/Ink)
by (rule totient-primorial’-asymp-equiv)
also have ... ~[at-top] (\k. third-mertens-const * primorial’ k / In (In (primorial’
B)
by (intro asymp-equiv-intros asymp-equiv-symlI|[OF In-In-primorial’-asymp-equiv))
finally show ?thesis .
qged

All in all, ¢(n) has minimal order ¢n/Inlnn:
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theorem (in prime-number-theorem)
liminf-totient: liminf (An. totient n * In (In n) / n) = third-mertens-const
(is - = ereal ?c)
proof (intro antisym)
have (k. totient (primorial’ k) / (?c x primorial’ k / In (In (primorial’ k))))
— 1
using totient-primorial’-asymp-equiv’
by (intro asymp-equivD-strong eventually-mono[OF eventually-gt-at-top[of 1]])
auto
hence (A\k. totient (primorial’ k) / (?c x primorial’ k / In (In (primorial’ k)))
?c)
——— 1 x 2c¢ by (intro tendsto-mult) auto
hence (\k. totient (primorial’ k) / (primorial’ k / In (In (primorial’ k)))) ——
?c
using third-mertens-const-pos by simp
hence liminf ((An. totient n = In (In n) / n) o primorial’) = ereal ?c
by (intro lim-imp-Liminf tendsto-ereal) simp-all
hence ?c = liminf ((An. ereal (totient n * In (In n) / n)) o primorial’)
by (simp add: o-def)
also have ... > liminf (An. totient n * In (In n) / n)
using strict-mono-primorial’ by (rule liminf-subseg-mono)
finally show liminf (An. totient n % In (In n) / n) < ?c.
next
show liminf (An. totient n % In (In n) / n) > %c
unfolding le-Liminf-iff
proof safe
fix C' assume C’ < ereal ?c
from ereal-dense2[OF this] obtain C where C: C < ?c ereal C > C' by auto
define ¢ wheree =1 — C / %
from C have € > 0 using third-mertens-const-pos by (simp add: e-def)

have eventually (An:nat. In (In n) > 0) at-top by real-asymp
hence eventually (An. totient n * In (Inn) / n > C) at-top
using totient-lower-bound|OF <€ > 0)] eventually-gt-at-toplof 1]
proof eventually-elim
case (elim n)
hence totient n * In (lInn) / n> (1 —e) x %c
by (simp add: field-simps)
also have (1 —¢) % %c = C
using third-mertens-const-pos by (simp add: field-simps e-def)
finally show ?Zcase .
qed
thus eventually (An. ereal (totient n x In (In n) / n) > C') at-top
by eventually-elim (rule less-trans|OF C(2)], auto)
qed
qed

end
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