
Pre∗: The Predecessors of a Regular Language
w.r.t. a Context-Free Grammar, with Applications

Tassilo Lemke and Tobias Nipkow

November 18, 2025

Abstract

Let L be a language, G a context-free grammar and let pre∗(L)
be the language of all predecessors (w.r.t. G) of words in L. The
following fact has been rediscovered in the literature repeatedly: If L
is regular, so is pre∗(L). Moreover, given an NFA M for L, an NFA M ′

for pre∗(L) can be computed very elegantly from M . Starting from a
suitable M , simple checks on M ′ provide solutions to many elementary
decision problems concerning G, such as the word-problem, emptiness
problem, and more.

We formalize two algorithms to compute pre∗(L) for a regular L
(using NFAs as representation). The first one is very simple and ele-
gant and works for any CFG, while the second one is more efficient but
is restricted to CFGs in in extended-CNF. All our algorithms are exe-
cutable, allowing many elementary problems on context-free grammars
to be solved automatically.

1

Contents
1 Introduction 3

2 Labeled Transition System 3
2.1 Step Relations . 3
2.2 Reachable States . 7
2.3 Language . 10

3 LTS-based Automata 10
3.1 Sequential Composition of Automata 11
3.2 Concrete Automata . 13

4 Pre∗ 18
4.1 Definition on LTS as Fixpoint 18
4.2 Propagation of Reachability 19
4.3 Correctness . 20
4.4 Termination . 24
4.5 The Automaton Level . 25
4.6 Pre∗ Example . 27

5 Application to Elementary CFG Problems 28
5.1 Preliminaries . 28
5.2 Derivability . 29
5.3 Membership Problem . 29
5.4 Nullable Variables . 29
5.5 Emptiness Problem . 29
5.6 Useless Variables . 31
5.7 Disjointness and Subset Problem 33
5.8 Examples . 33

6 Finiteness of Context-Free Languages 35
6.1 Preliminaries and Assumptions 35
6.2 Criterion of Finiteness . 38
6.3 Finiteness Problem . 44

7 Pre∗ Optimized for Grammars in CNF 44
7.1 Preliminaries . 45
7.2 Procedure . 45
7.3 Correctness . 49
7.4 Termination . 59
7.5 Final Algorithm . 64

References 65

2

1 Introduction

Given a regular language L and a context-free grammar G, the language
of predecessors of L with respect to G, pre∗(L), is also regular. This has
been discovered independently by many authors [BO93, Büc59, Cau92]. We
formalise the algorithm proposed by Book and Otto [BO93] which takes as
input a non-deterministic finite automaton M , enriches it with new transi-
tions, and yields a new automaton M ′ such that L(M ′) = pre∗(L(M)).
This yields a unified framework for deciding many elementary properties of
context-free grammars, as was first described by Esparza and Rossmanith
[ER97].
These theories formalize pre∗, its applications to elementary CFG prob-
lems, and an improved algorithm for grammars in CNF by Bouajjani et al.
[BEF+00].
The theories Labeled_Transition_System and LTS_Automata are auxiliary;
the formalization proper starts with theory Pre_Star.
Closely related work:

• [SSST23] formalizes a version of pre∗ for pushdown systems instead of
CFGs.

• [Lam09] formalizes pre∗ for dynamic pushdown networks, which are a
generalization of pushdown systems.

2 Labeled Transition System

This theory could be unified with AFP/Labeled_Transition_Systems

theory Labeled_Transition_System
imports Main

begin

Labeled Transition Systems are sets of triples of type ’s × ’a × ’s.
type_synonym (’s, ’l) lts = "(’s × ’l × ’s) set"

The following lemma ensure that Isabelle can evaluate set comprehensions
over triples.
lemma Collect_triple_code[code_unfold]:

"{(x,y,z) ∈ A. P x y z} = {p ∈ A. P (fst p) (fst (snd p)) (snd (snd
p))}"

by fastforce

2.1 Step Relations

A step from a state q over a single symbol c is the set of all q’, such that
(q, c, q’) ∈ T :

3

definition step_lts :: "(’s, ’l) lts ⇒ ’l ⇒ ’s ⇒ ’s set" where
"step_lts T c s = (λ(q, c, q’). q’) ‘ {(q, c’, q’) ∈ T. c = c’ ∧ q

= s}"

A step of a single symbol c from a set of states S is the union of step_lts
over S :
definition Step_lts :: "(’s, ’l) lts ⇒ ’l ⇒ ’s set ⇒ ’s set" where

"Step_lts T c S =
⋃

(step_lts T c ‘ S)"

Repeated steps of a word w consisting of multiple letters is achieved using a
standard fold :
definition Steps_lts :: "(’s, ’l) lts ⇒ ’l list ⇒ ’s set ⇒ ’s set" where

"Steps_lts T w s = fold (Step_lts T) w s"

Often, merely a single starting-state is of relevance:
abbreviation steps_lts :: "(’s, ’l) lts ⇒ ’l list ⇒ ’s ⇒ ’s set" where

"steps_lts T w s ≡ Steps_lts T w {s}"

lemmas steps_lts_defs = step_lts_def Step_lts_def Steps_lts_def

We now prove some key properties of this step relation:
lemma Step_union: "Step_lts T w (S1 ∪ S2) = Step_lts T w S1 ∪ Step_lts
T w S2"

unfolding Step_lts_def by blast

lemma Steps_lts_mono: "s1 ⊆ s2 =⇒ Steps_lts T w s1 ⊆ Steps_lts T w
s2"
proof (induction w arbitrary: s1 s2)

case Nil thus ?case by (simp add: Steps_lts_def)
next

case (Cons w ws)

define s1’ where [simp]: "s1’ ≡ Step_lts T w s1"
define s2’ where [simp]: "s2’ ≡ Step_lts T w s2"

have "s1’ ⊆ s2’"
by (simp add: Step_lts_def, use ‹s1 ⊆ s2› in blast)

then have "Steps_lts T ws s1’ ⊆ Steps_lts T ws s2’"
by (elim Cons.IH)

moreover have "Steps_lts T (w#ws) s1 = Steps_lts T ws s1’"
by (simp add: Steps_lts_def)

moreover have "Steps_lts T (w#ws) s2 = Steps_lts T ws s2’"
by (simp add: Steps_lts_def)

ultimately show ?case
by simp

qed

lemma Steps_lts_mono2:

4

assumes "T1 ⊆ T2" and "q1 ⊆ q2"
shows "Steps_lts T1 w q1 ⊆ Steps_lts T2 w q2"

using assms(2) proof (induction w arbitrary: q1 q2)
case Nil thus ?case by (simp add: Steps_lts_def)

next
case (Cons w ws)
have "Step_lts T1 w q1 ⊆ Step_lts T2 w q2"

unfolding steps_lts_defs using assms(1) Cons(2) by blast
then have "Steps_lts T1 ws (Step_lts T1 w q1) ⊆ Steps_lts T1 ws (Step_lts

T2 w q2)"
by (rule Steps_lts_mono)

then have "Steps_lts T1 ws (Step_lts T1 w q1) ⊆ Steps_lts T2 ws (Step_lts
T2 w q2)"

using Cons(1) by blast
then show ?case

by (simp add: Steps_lts_def)
qed

lemma steps_lts_mono: "T1 ⊆ T2 =⇒ steps_lts T1 w q ⊆ steps_lts T2

w q"
using Steps_lts_mono2[of T1 T2 "{q}" "{q}" w] by simp

lemma steps_lts_mono’: "T1 ⊆ T2 =⇒ q’ ∈ steps_lts T1 w q =⇒ q’ ∈
steps_lts T2 w q"
proof -

assume "T1 ⊆ T2"
then have "steps_lts T1 w q ⊆ steps_lts T2 w q"

by (rule steps_lts_mono)
then show "q’ ∈ steps_lts T1 w q =⇒ q’ ∈ steps_lts T2 w q"

by blast
qed

lemma steps_lts_union: "q’ ∈ steps_lts T w q =⇒ q’ ∈ steps_lts (T ∪
T’) w q"
proof -

have "T ⊆ (T ∪ T’)"
by simp

then show "q’ ∈ steps_lts T w q =⇒ q’ ∈ steps_lts (T ∪ T’) w q"
by (rule steps_lts_mono’)

qed

lemma Steps_lts_path:
assumes "qf ∈ Steps_lts T w s"
shows "∃ q0 ∈ s. qf ∈ steps_lts T w q0"

proof (insert assms; induction w arbitrary: s)
case Nil thus ?case by (simp add: Steps_lts_def)

next
case (Cons w ws)
then have "qf ∈ Steps_lts T ws (Step_lts T w s)"

5

by (simp add: Steps_lts_def)
moreover obtain q0 where "q0 ∈ (Step_lts T w s)" and "qf ∈ steps_lts

T ws q0"
using Cons.IH calculation by blast

ultimately obtain q’ where "q0 ∈ step_lts T w q’" and "q’ ∈ s"
unfolding steps_lts_defs by blast

note ‹q0 ∈ step_lts T w q’› and ‹qf ∈ steps_lts T ws q0›
then have "qf ∈ Steps_lts T ws (step_lts T w q’)"

using Steps_lts_mono[of "{q0}"] by blast
moreover have "Steps_lts T ws (step_lts T w q’) = steps_lts T (w#ws)

q’"
by (simp add: steps_lts_defs)

ultimately show ?case
using ‹q’ ∈ s› by blast

qed

lemma Steps_lts_split:
assumes "qf ∈ Steps_lts T (w1@w2) Q0"
shows "∃ q’. q’ ∈ Steps_lts T w1 Q0 ∧ qf ∈ steps_lts T w2 q’"

proof -
define Qf where [simp]: "Qf = Steps_lts T (w1@w2) Q0"
define Q’ where [simp]: "Q’ = Steps_lts T w1 Q0"
have "Qf = Steps_lts T w2 Q’"

by (simp add: Steps_lts_def)
then obtain q’ where "q’ ∈ Q’" and "qf ∈ steps_lts T w2 q’"

using assms Steps_lts_path by force
moreover have "q’ ∈ Steps_lts T w1 Q0"

using calculation by simp
ultimately show ?thesis

by blast
qed

lemma Steps_lts_join:
assumes "q’ ∈ Steps_lts T w1 Q0" and "qf ∈ steps_lts T w2 q’"
shows "qf ∈ Steps_lts T (w1@w2) Q0"

proof -
define Q’ where [simp]: "Q’ = Steps_lts T w1 Q0"
define Qf where [simp]: "Qf = Steps_lts T w2 Q’"

have "{q’} ⊆ Q’"
using assms(1) by simp

then have "Steps_lts T w2 {q’} ⊆ Steps_lts T w2 Q’"
using Steps_lts_mono by blast

then have "qf ∈ Steps_lts T w2 Q’"
using assms(2) by fastforce

moreover have "Qf = Steps_lts T (w1@w2) Q0"
by (simp add: Steps_lts_def)

ultimately show ?thesis

6

by simp
qed

lemma Steps_lts_split3:
assumes "qf ∈ Steps_lts T (w1@w2@w3) Q0"
shows "∃ q’ q’’. q’ ∈ Steps_lts T w1 Q0 ∧ q’’ ∈ steps_lts T w2 q’ ∧

qf ∈ steps_lts T w3 q’’"
proof -

obtain q’ where "q’ ∈ Steps_lts T (w1@w2) Q0 ∧ qf ∈ steps_lts T w3

q’"
using assms Steps_lts_split[where w1 = "w1@w2"] by fastforce

moreover then obtain q’’ where "q’’ ∈ Steps_lts T w1 Q0 ∧ q’ ∈ steps_lts
T w2 q’’"

using Steps_lts_split by fast
ultimately show ?thesis

by blast
qed

lemma Steps_lts_join3:
assumes "q’ ∈ steps_lts T w1 q0" and "q’’ ∈ steps_lts T w2 q’" and

"qf ∈ steps_lts T w3 q’’"
shows "qf ∈ steps_lts T (w1@w2@w3) q0"

proof -
have "qf ∈ steps_lts T (w2@w3) q’"

using assms(2) assms(3) Steps_lts_join by fast
moreover then have "qf ∈ steps_lts T (w1@w2@w3) q0"

using assms(1) Steps_lts_join by fast
ultimately show ?thesis

by blast
qed

lemma Steps_lts_noState: "Steps_lts T w {} = {}"
proof (induction w)

case Nil
then show ?case

by (simp add: Steps_lts_def)
next

case (Cons w ws)
moreover have "Steps_lts T [w] {} = {}"

by (simp add: steps_lts_defs)
ultimately show ?case

by (simp add: Steps_lts_def)
qed

2.2 Reachable States
definition reachable_from :: "(’s, ’l) lts ⇒ ’s ⇒ ’s set" where

"reachable_from T q ≡ {q’. ∃ w. q’ ∈ steps_lts T w q}"

7

lemma reachable_from_computable: "reachable_from T q ⊆ {q} ∪ (snd ‘
snd ‘ T)"
proof

fix q’
assume "q’ ∈ reachable_from T q"
then obtain w where w_def: "q’ ∈ steps_lts T w q"

unfolding reachable_from_def by blast
then consider "w = []" | "∃ ws c. w = ws@[c]"

by (meson rev_exhaust)
then show "q’ ∈ {q} ∪ (snd ‘ snd ‘ T)"
proof (cases)

case 1
then show ?thesis

using w_def Steps_lts_def by force
next

case 2
then obtain ws c where "w = ws@[c]"

by blast
then obtain q1 where "q1 ∈ steps_lts T ws q" and "q’ ∈ steps_lts

T [c] q1"
using Steps_lts_split w_def by fast

then have "(q1, c, q’) ∈ T"
by (auto simp: steps_lts_defs)

then show ?thesis
by force

qed
qed

lemma reachable_from_trans[trans]:
assumes "q1 ∈ reachable_from T q0" and "q2 ∈ reachable_from T q1"
shows "q2 ∈ reachable_from T q0"
using assms Steps_lts_join unfolding reachable_from_def by fast

lemma reachable_add_trans:
assumes "∀ (q1, _, q2) ∈ T’. ∃ w. q2 ∈ steps_lts T w q1"
shows "reachable_from T q = reachable_from (T ∪ T’) q"

proof (standard; standard)
fix q’
assume "q’ ∈ reachable_from T q"
then show "q’ ∈ reachable_from (T ∪ T’) q"

unfolding reachable_from_def using steps_lts_union by fast
next

fix q’
assume "q’ ∈ reachable_from (T ∪ T’) q"
then obtain w where "q’ ∈ steps_lts (T ∪ T’) w q"

unfolding reachable_from_def by blast
then have "∃ w’. q’ ∈ steps_lts T w’ q"
proof (induction w arbitrary: q)

case Nil

8

then have "q = q’" and "q ∈ steps_lts T [] q"
unfolding Steps_lts_def by simp+

then show ?case
by blast

next
case (Cons c w)
then obtain q1 where "q’ ∈ steps_lts (T ∪ T’) w q1" and "q1 ∈ steps_lts

(T ∪ T’) [c] q"
using Steps_lts_split[where w1="[c]" and w2=w] by force

then obtain w’ where w’_def: "q’ ∈ steps_lts T w’ q1"
using Cons by blast

have "q1 ∈ step_lts (T ∪ T’) c q"
using ‹q1 ∈ steps_lts (T ∪ T’) [c] q› by (simp add: steps_lts_defs)

then consider "q1 ∈ step_lts T c q" | "q1 ∈ step_lts T’ c q"
unfolding step_lts_def by blast

then show ?case
proof (cases)

case 1
then have "q1 ∈ steps_lts T [c] q"

by (simp add: steps_lts_defs)
then have "q’ ∈ steps_lts T (c#w’) q"

using w’_def Steps_lts_join by force
then show ?thesis

by blast
next

case 2
then have "(q, c, q1) ∈ T’"

by (auto simp: step_lts_def)
then obtain w’’ where "q1 ∈ steps_lts T w’’ q"

using assms by blast
then have "q’ ∈ steps_lts T (w’’@w’) q"

using w’_def Steps_lts_join by fast
then show ?thesis

by blast
qed

qed
then show "q’ ∈ reachable_from T q"

by (simp add: reachable_from_def)
qed

definition states_lts :: "(’s,’a)lts ⇒ ’s set" where
"states_lts T = (

⋃
(p,a,q)∈T. {p,q})"

lemma Step_states_lts: "states_lts T ⊆ Q =⇒ Q0 ⊆ Q =⇒ Step_lts T
a Q0 ⊆ Q"

unfolding Step_lts_def step_lts_def states_lts_def by auto

9

lemma Steps_states_lts: assumes "states_lts T ⊆ Q" shows "Q0 ⊆ Q =⇒
Steps_lts T u Q0 ⊆ Q"

unfolding Steps_lts_def
apply(induction u arbitrary: Q0)
apply simp

using assms by (simp add: Step_states_lts)

corollary steps_states_lts: " [[states_lts T ⊆ Q; q ∈ Q]] =⇒ steps_lts
T u q ⊆ Q"

using Steps_states_lts[of T Q "{q}"] by blast

lemma states_lts_Un: "states_lts (T ∪ T’) = states_lts T ∪ states_lts
T’"

unfolding states_lts_def by auto

2.3 Language
abbreviation accepts_lts :: "(’s, ’l) lts ⇒ ’s ⇒ ’s set ⇒ ’l list ⇒
bool" where

"accepts_lts T s F w ≡ (steps_lts T w s ∩ F 6= {})"

abbreviation Lang_lts :: "(’s, ’l) lts ⇒ ’s ⇒ ’s set ⇒ (’l list) set"
where

"Lang_lts T S F ≡ { w. accepts_lts T S F w }"

end

3 LTS-based Automata
theory LTS_Automata
imports Labeled_Transition_System
begin

An automaton M is a triple (T, S, F), where T is the transition system, S is
the start state and F are the final states. This is just a thin layer on top of
lts. NB: T may be infinite (but we require to finiteness in crucial places).
record (’s, ’t) auto =

lts :: "(’s, ’t) lts"
start :: ’s
finals :: "’s set"

The language L(M) of an automaton M is defined as the set of words that
reach at least one final state from the start state:
abbreviation accepts_auto :: "(’s, ’t) auto ⇒ ’t list ⇒ bool" where

"accepts_auto M ≡ accepts_lts (lts M) (start M) (finals M)"

10

abbreviation Lang_auto :: "(’s, ’t) auto ⇒ ’t list set" where
"Lang_auto M ≡ Lang_lts (lts M) (start M) (finals M)"

3.1 Sequential Composition of Automata

We will later provide concrete example of automata accepting specific lan-
guages. While proving that an automaton accepts a certain language often
is straightforward, proving that the automaton only accepts that language
is a much more difficult task. The lemma below provides a powerful tool to
make these proofs manageable. It shows that if two automata over disjoint
state sets are connected via a single uni-directional bridge, every word that
reaches from the first set of states to a state within the second set of state
must, at some point, pass this bridge, and have a prefix within the first set
of states and a suffix within the second set.
lemma auto_merge:

assumes "sA ∈ A" and "fA ∈ A" and "sB ∈ B" and "fB ∈ B" and "A
∩ B = {}"

and sideA: "∀ (q,c,q’) ∈ TA. q ∈ A ∧ q’ ∈ A"
and sideB: "∀ (q,c,q’) ∈ TB. q ∈ B ∧ q’ ∈ B"
and "fB ∈ steps_lts (TA ∪ {(fA, c, sB)} ∪ TB) w sA"

shows "∃ wA wB. w = wA@[c]@wB ∧ fA ∈ steps_lts TA wA sA ∧ fB ∈
steps_lts TB wB sB"
using assms(1,8) proof (induction w arbitrary: sA)

case Nil
then have "steps_lts (TA ∪ {(fA, c, sB)} ∪ TB) [] sA = {sA}"

by (simp add: Steps_lts_def)
then show ?case

using Nil.prems assms(4,5) by fast
next

case (Cons a w)
define T where "T ≡ TA ∪ {(fA, c, sB)} ∪ TB"

— Obtain intermediate state after reading a :
note ‹fB ∈ steps_lts (TA ∪ {(fA, c, sB)} ∪ TB) (a#w) sA›
then obtain q where a_step: "q ∈ steps_lts T [a] sA"

and w_step: "fB ∈ steps_lts T w q"
unfolding T_def using Steps_lts_split by force

— There are now two options:
— 1. a directly traverses the bridge to B, so a = c.
— 2. a remains within A and we can use the IH.
then show ?case
proof (cases "(sA, a, q) /∈ TA")

case True
moreover have "(sA, a, q) /∈ TB"

using Cons.prems(1) assms(5,7) by fast
moreover have "(sA, a, q) ∈ T"

using a_step by (auto simp: steps_lts_defs)

11

ultimately have "sA = fA" and "a = c" and "q = sB"
unfolding T_def by simp+

have inB: "sB ∈ B =⇒ fB ∈ steps_lts T w sB =⇒ fB ∈ steps_lts
TB w sB"

proof (induction w arbitrary: sB)
case Nil
then show ?case

by (simp add: Steps_lts_def)
next

case (Cons x xs)
then obtain q where "fB ∈ steps_lts T xs q" and "q ∈ steps_lts

T [x] sB"
using Steps_lts_split by force

then have "(sB, x, q) ∈ T"
by (auto simp: steps_lts_defs)

moreover have "sB ∈ B"
using Cons by simp

ultimately have "(sB, x, q) ∈ TB" and "q ∈ B"
unfolding T_def using assms(2,5,6,7) by blast+

then have "q ∈ steps_lts TB [x] sB"
by (auto simp: steps_lts_defs) force

moreover have "fB ∈ steps_lts TB xs q"
using ‹fB ∈ steps_lts T xs q› ‹q ∈ B› Cons by simp

ultimately show ?case
using Steps_lts_join by force

qed

— The bridge is directly traversed, so A can be ignored:
have "a#w = []@[c]@w"

by (simp add: ‹a = c›)
moreover have "fA ∈ steps_lts TA [] sA"

by (simp add: ‹sA = fA› Steps_lts_def)
moreover have "fB ∈ steps_lts TB w sB"

using w_step assms(3) inB by (simp add: ‹q = sB›)
ultimately show ?thesis

by blast
next

case False
then have a_step’: "q ∈ steps_lts TA [a] sA"

by (auto simp: steps_lts_defs) (force)
then have "q ∈ A"

using False Cons.prems(1) assms(6) by fast

— Introduce the IH:
then have "∃ wA wB. w = wA @[c]@wB ∧ fA ∈ steps_lts TA wA q ∧

fB ∈ steps_lts TB wB sB"
by (rule Cons.IH; use Cons.prems w_step[unfolded T_def] in simp)

then obtain wA wB where "w = wA @[c]@wB" and "fA ∈ steps_lts TA

12

wA q" and "fB ∈ steps_lts TB wB sB"
by blast

moreover then have "fA ∈ steps_lts TA (a#wA) sA"
using a_step’ Steps_lts_join by force

ultimately have "a#w = a#wA@[c]@wB ∧ fA ∈ steps_lts TA (a#wA) sA

∧ fB ∈ steps_lts TB wB sB"
by simp

then show ?thesis
by (intro exI) auto

qed
qed

3.2 Concrete Automata

We now present three concrete automata that accept certain languages.

3.2.1 Universe over specific Alphabet

This automaton accepts exactly the words that only contains letters from a
given alphabet Σ.
definition loop_lts :: "’s ⇒ ’a set ⇒ (’s × ’a × ’s) set" where

"loop_lts q Σ ≡ {q} × Σ × {q}"

lemma loop_lts_fin: "finite Σ =⇒ finite (loop_lts q Σ)"
by (simp add: loop_lts_def)

lemma loop_lts_correct1: "set w ⊆ Σ =⇒ steps_lts (loop_lts q Σ) w
q = {q}"
proof (induction w)

case Nil
then show ?case

by (simp add: Steps_lts_def)
next

case (Cons w ws)
then have "steps_lts (loop_lts q Σ) [w] q = {q}"

unfolding loop_lts_def steps_lts_defs by fastforce
moreover have "steps_lts (loop_lts q Σ) ws q = {q}"

using Cons by simp
ultimately show ?case

by (simp add: Steps_lts_def)
qed

lemma loop_lts_correct2: "¬ set w ⊆ Σ =⇒ steps_lts (loop_lts q Σ)
w q = {}"
proof (induction w)

case Nil
then show ?case

by simp

13

next
case (Cons w ws)
then consider "w /∈ Σ" | "¬ set ws ⊆ Σ"

by auto
then show ?case
proof (cases)

case 1
then have "steps_lts (loop_lts q Σ) [w] q = {}"

by (auto simp: loop_lts_def steps_lts_defs)
moreover have "Steps_lts (loop_lts q Σ) ws {} = {}"

by (meson Steps_lts_path ex_in_conv)
ultimately show ?thesis

by (metis Steps_lts_split all_not_in_conv append_Cons append_Nil)
next

case 2
then have "steps_lts (loop_lts q Σ) ws q = {}"

using Cons by simp
moreover have "steps_lts (loop_lts q Σ) [w] q ⊆ {q}"

by (auto simp: loop_lts_def steps_lts_defs)
ultimately show ?thesis

by (metis Steps_lts_def Steps_lts_mono Un_insert_right ex_in_conv
fold_simps(1,2) insert_absorb insert_not_empty sup.absorb_iff1)

qed
qed

lemmas loop_lts_correct = loop_lts_correct1 loop_lts_correct2

definition auto_univ :: "’a set ⇒ (unit, ’a) auto" where
"auto_univ Σ ≡ (|

lts = loop_lts () Σ,
start = (),
finals = {()}

|)"

lemma auto_univ_lang[simp]: "Lang_auto (auto_univ Σ) = {w. set w ⊆
Σ}"
proof -

define T where "T ≡ loop_lts () Σ"
have "

∧
w. set w ⊆ Σ ←→ () ∈ steps_lts T w ()"

unfolding T_def using loop_lts_correct by fast
then show ?thesis

by (auto simp: T_def auto_univ_def)
qed

3.2.2 Fixed Character with Arbitrary Prefix/Suffix

This automaton accepts exactly those words that contain a specific letter c
at some point, and whose prefix and suffix are contained within the alphabets
Σp and Σs.

14

definition pcs_lts :: "’a set ⇒ ’a ⇒ ’a set ⇒ (nat × ’a × nat) set"
where

"pcs_lts Σp c Σs ≡ loop_lts 0 Σp ∪ {(0, c, 1)} ∪ loop_lts 1 Σs"

lemma pcs_lts_fin: "finite Σp =⇒ finite Σs =⇒ finite (pcs_lts Σp
c Σs)"

by (auto intro: loop_lts_fin simp: pcs_lts_def)

lemma pcs_lts_correct1:
"(∃ p s. w = p@[c]@s ∧ set p ⊆ Σp ∧ set s ⊆ Σs) =⇒ 1 ∈ steps_lts

(pcs_lts Σp c Σs) w 0"
proof -

assume "∃ p s. w = p@[c]@s ∧ set p ⊆ Σp ∧ set s ⊆ Σs"
then obtain p s where "w = p@[c]@s" and "set p ⊆ Σp" and "set s

⊆ Σs"
by blast

moreover hence "0 ∈ steps_lts (pcs_lts Σp c Σs) p 0"
by (metis pcs_lts_def steps_lts_union loop_lts_correct1 singletonI)

moreover have "1 ∈ steps_lts (pcs_lts Σp c Σs) [c] 0"
unfolding pcs_lts_def steps_lts_defs by force

moreover have "1 ∈ steps_lts (pcs_lts Σp c Σs) s 1"
by (metis calculation(3) inf_sup_ord(3) insertI1 pcs_lts_def steps_lts_mono’

loop_lts_correct1 sup_commute)
ultimately show "1 ∈ steps_lts (pcs_lts Σp c Σs) w 0"

using Steps_lts_join by meson
qed

lemma pcs_lts_correct2:
assumes "1 ∈ steps_lts (pcs_lts Σp c Σs) w 0"
shows "∃ p s. w = p@[c]@s ∧ set p ⊆ Σp ∧ set s ⊆ Σs"

proof -
define TA where [simp]: "TA ≡ loop_lts (0::nat) Σp"
define TB where [simp]: "TB ≡ loop_lts (1::nat) Σs"

have "1 ∈ steps_lts (TA ∪ {(0, c, 1)} ∪ TB) w 0"
using assms by (simp add: pcs_lts_def)

then have "∃ wA wB. w = wA@[c]@wB ∧ 0 ∈ steps_lts TA wA 0 ∧ 1 ∈
steps_lts TB wB 1"

by (intro auto_merge[where A="{0}" and B="{1}"]) (simp add: loop_lts_def)+
then obtain wA wB where w_split: "w = wA@[c]@wB" and "0 ∈ steps_lts

TA wA 0" and "1 ∈ steps_lts TB wB 1"
by blast

then have "set wA ⊆ Σp" and "set wB ⊆ Σs"
using loop_lts_correct2 by fastforce+

then show ?thesis
using w_split by blast

qed

lemmas pcs_lts_correct = pcs_lts_correct1 pcs_lts_correct2

15

definition cps_auto :: "’a ⇒ ’a set ⇒ (nat, ’a) auto" where
"cps_auto c Σ ≡ (|

lts = pcs_lts Σ c Σ,
start = 0,
finals = {1}

|)"

lemma cps_auto_lang: "Lang_auto (cps_auto c U) = { α@[c]@β | α β. set
α ⊆ U ∧ set β ⊆ U }"

using pcs_lts_correct unfolding cps_auto_def
by (metis (lifting) disjoint_insert(2) inf_bot_right select_convs(1,2,3))

3.2.3 Singleton Language

Last but not least, the automaton accepting exactly a single word can be
inductively defined.
lemma steps_lts_empty_lts: "w 6= [] =⇒ steps_lts {} w q0 = {}"
proof (induction w)

case Nil
then show ?case

by simp
next

case (Cons w ws)
moreover have "Steps_lts {} [w] {q0} = {}"

by (simp add: steps_lts_defs)
moreover have "Steps_lts {} ws {} = {}"

using Steps_lts_noState by fast
ultimately show ?case

by (simp add: Steps_lts_def)
qed

fun word_lts :: "’a list ⇒ (nat × ’a × nat) set" where
"word_lts (w#ws) = word_lts ws ∪ {(Suc (length ws), w, length ws)}"

|
"word_lts [] = {}"

lemma word_lts_domain:
"(q, c, q’) ∈ word_lts ws =⇒ q ≤ length ws ∧ q’ ≤ length ws"
by (induction ws) auto

definition word_auto :: "’a list ⇒ (nat, ’a) auto" where
"word_auto ws ≡ (| lts = word_lts ws, start = length ws, finals = {0}

|)"

lemma word_lts_correct1:
"0 ∈ steps_lts (word_lts ws) ws (length ws)"

proof (induction ws)
case Nil

16

then show ?case
by (simp add: Steps_lts_def)

next
case (Cons w ws)
have "0 ∈ steps_lts (word_lts ws) ws (length ws)"

using Cons.IH(1) by blast
then have "0 ∈ steps_lts (word_lts (w#ws)) ws (length ws)"

using steps_lts_mono’ by (metis word_lts.simps(1) sup_ge1)
moreover have "length ws ∈ steps_lts (word_lts (w#ws)) [w] (Suc (length

ws))"
proof -

have "(Suc (length ws), w, length ws) ∈ word_lts (w#ws)"
by simp

then show ?thesis
unfolding steps_lts_defs by force

qed
ultimately show ?case

using Steps_lts_join by force
qed

lemma word_lts_correct2:
"0 ∈ steps_lts (word_lts ws) ws’ (length ws) =⇒ ws = ws’"

proof (induction ws arbitrary: ws’)
case Nil
then show ?case

by (simp, metis equals0D steps_lts_empty_lts)
next

case (Cons w ws)

— Preparation to use auto_merge :
define TB where [simp]: "TB ≡ word_lts ws"
define B where [simp]: "B ≡ {n. n ≤ length ws}"
define T where [simp]: "T ≡ {} ∪ {(Suc (length ws), w, length ws)}

∪ TB"

— Apply auto_merge :
have "0 ∈ steps_lts T ws’ (length (w#ws))"

using Cons.prems by simp
moreover have "∀ (q, c, q’)∈TB. q ∈ B ∧ q’ ∈ B"

using word_lts_domain by force
ultimately have "∃ wA wB. ws’ = wA@[w]@wB ∧ (Suc (length ws)) ∈ steps_lts

{} wA (Suc (length ws)) ∧ 0 ∈ steps_lts TB wB (length ws)"
by (intro auto_merge[where A="{Suc (length ws)}" and B=B]) simp+

then obtain wA wB where ws’_split: "ws’ = wA@[w]@wB"
and wA_step: "(length (w#ws)) ∈ steps_lts {} wA (length (w#ws))"
and wB_step: "0 ∈ steps_lts TB wB (length ws)"

by force

have "wA = []"

17

using wA_step steps_lts_empty_lts by fast

— Use IH to show that wB = ws :
have "ws = wB"

by (intro Cons.IH, use wB_step in simp)

then show ?case
using ws’_split by (simp add: ‹wA = []› ‹ws = wB›)

qed

lemmas word_lts_correct = word_lts_correct1 word_lts_correct2

lemma word_auto_lang[simp]: "Lang_auto (word_auto w) = {w}"
unfolding word_auto_def using word_lts_correct[of w] by auto

lemma word_auto_finite_lts: "finite (lts (word_auto w))"
proof -

have "finite (word_lts w)"
by (induction w) simp+

then show ?thesis
by (simp add: word_auto_def)

qed

hide_const (open) lts start finals
term auto.start

end

4 Pre∗

theory Pre_Star
imports

Context_Free_Grammar.Context_Free_Grammar
LTS_Automata
"HOL-Library.While_Combinator"

begin

This theory defines pre∗(L) (pre_star below) and verifies a simple satura-
tion algorithm pre_star_auto that computes pre∗(M) given an NFA M and
a finite set of context-free productions. Most of the work is on the level of
finite LTS (via pre_star_lts).
A closely related formalization is AFP/Pushdown_Systemswhere pre∗ is com-
puted for pushdown systems instead of CFGs.
definition pre_star :: "(’n,’t)Prods ⇒ (’n,’t) syms set ⇒ (’n,’t) syms
set" where
"pre_star P L ≡ {α. ∃β ∈ L. P ` α ⇒* β}"

18

4.1 Definition on LTS as Fixpoint

The algorithm works by repeatedly adding transitions to the LTS, such that
at after every step, the LTS accepts the original language and its direct
predecessors.
Since no new states are added, the number of transitions that can be added
is bounded, which allow to both prove termination and the property of a
fixpoint: At some point, adding another layer of direct predecessors no-longer
changes anything, i.e. the LTS is saturated and pre∗ has been reached.
definition pre_lts :: "(’n,’t) Prods ⇒ ’s set ⇒ (’s, (’n,’t) sym) lts
⇒ (’s, (’n,’t) sym) lts"

where
"pre_lts P Q T =

{ (q, Nt A, q’) | q q’ A. q ∈ Q ∧ (∃β. (A, β) ∈ P ∧ q’ ∈ steps_lts
T β q)}"

lemma pre_lts_code[code]: "pre_lts P Q T =
(
⋃

q ∈ Q.
⋃

(A,β) ∈ P.
⋃

q’ ∈ steps_lts T β q. {(q, Nt A, q’)})"
unfolding pre_lts_def image_def by(auto)

definition pre_star_lts :: "(’n, ’t) Prods ⇒ ’s set
⇒ (’s, (’n, ’t) sym) lts ⇒ (’s, (’n, ’t) sym) lts option" where

"pre_star_lts P Q ≡ while_option (λT. T ∪ pre_lts P Q T 6= T) (λT. T
∪ pre_lts P Q T)"

lemma pre_star_lts_rule:
assumes "

∧
T. H T =⇒ T ∪ pre_lts P Q T 6= T =⇒ H (T ∪ pre_lts P

Q T)"
and "pre_star_lts P Q T = Some T’" and "H T"

shows "H T’"
using assms unfolding pre_star_lts_def by (rule while_option_rule)

lemma pre_star_lts_fp: "pre_star_lts P Q T = Some T’ =⇒ T’ ∪ (pre_lts
P Q T’) = T’"

unfolding pre_star_lts_def using while_option_stop by fast

lemma pre_star_lts_mono: "pre_star_lts P Q T = Some T’ =⇒ T ⊆ T’"
by (rule pre_star_lts_rule) blast+

4.2 Propagation of Reachability

No new states are added. Expressing this fact within the auto model is
to show that the set of reachable states from any given start state remains
unaltered.
lemma pre_lts_reachable:

"reachable_from T q = reachable_from (T ∪ pre_lts P Q T) q"
unfolding pre_lts_def by (rule reachable_add_trans) blast

19

lemma pre_star_lts_reachable:
assumes "pre_star_lts P Q T = Some T’"
shows "reachable_from T q = reachable_from T’ q"
by (rule pre_star_lts_rule; use assms pre_lts_reachable in fast)

lemma states_pre_lts: assumes "states_lts T ⊆ Q" shows "states_lts
(pre_lts P Q T) ⊆ Q"
using steps_states_lts[OF assms] unfolding pre_lts_def states_lts_def
by auto

lemma states_pre_star_lts:
assumes "pre_star_lts P Q T = Some T’" and "states_lts T ⊆ Q"
shows "states_lts T’ ⊆ Q"

apply (rule pre_star_lts_rule[OF _ assms(1)])
apply (simp add: states_lts_Un states_pre_lts)

by(fact assms(2))

4.3 Correctness
lemma pre_lts_keeps:

assumes "q’ ∈ steps_lts T β q"
shows "q’ ∈ steps_lts (T ∪ pre_lts P Q T) β q"
using assms steps_lts_mono by (metis insert_absorb insert_subset sup_ge1)

lemma pre_lts_prod:
assumes "(A, β) ∈ P" and "q ∈ Q" and "q’ ∈ Q" and "q’ ∈ steps_lts

T β q"
shows "q’ ∈ steps_lts (T ∪ pre_lts P Q T) [Nt A] q"
using assms unfolding pre_lts_def Steps_lts_def Step_lts_def step_lts_def

by force

lemma pre_lts_pre:
assumes "P ` wα ⇒ wβ" and "reachable_from T q ⊆ Q" and "q’ ∈ steps_lts

T wβ q"
shows "q’ ∈ steps_lts (T ∪ pre_lts P Q T) wα q"

proof -
obtain wp w s A β where prod: "(A, β) ∈ P"

and wα_split: "wα = wp@[Nt A]@w s"
and wβ_split: "wβ = wp@β@w s"

using assms(1) by (meson derive.cases)

obtain q1 q2 where step_wp: "q1 ∈ steps_lts T wp q"
and step_β: "q2 ∈ steps_lts T β q1"
and step_w s: "q’ ∈ steps_lts T w s q2"

using Steps_lts_split3 assms(3)[unfolded wβ_split] by fast
then have q1_reach: "q1 ∈ reachable_from T q" and "q2 ∈ reachable_from

T q1"
using assms(2) unfolding reachable_from_def by blast+

20

then have q2_reach: "q2 ∈ reachable_from T q"
using assms(2) reachable_from_trans by fast

have "q2 ∈ steps_lts (T ∪ pre_lts P Q T) [Nt A] q1"
by (rule pre_lts_prod; use q1_reach q2_reach assms(2) prod step_β

in blast)
moreover have "q1 ∈ steps_lts (T ∪ pre_lts P Q T) wp q"

and "q’ ∈ steps_lts (T ∪ pre_lts P Q T) w s q2"
using step_wp step_w s pre_lts_keeps by fast+

ultimately have "q’ ∈ steps_lts (T ∪ pre_lts P Q T) wα q"
unfolding wα_split using Steps_lts_join3 by fast

then show ?thesis .
qed

lemma pre_lts_fp:
assumes "P ` wα ⇒* wβ" and "reachable_from T q ⊆ Q" and "q’ ∈ steps_lts

T wβ q"
and fp: "T ∪ pre_lts P Q T = T"

shows "q’ ∈ steps_lts T wα q"
proof (insert assms, induction rule: converse_rtranclp_induct[where r="derive
P"])

case base thus ?case by simp
next

case (step y z)
then show ?case

using pre_lts_pre by fastforce
qed

lemma pre_lts_while:
assumes "P ` wα ⇒* wβ" and "reachable_from T q ⊆ Q" and "q’ ∈ steps_lts

T wβ q"
and "pre_star_lts P Q T = Some T’"

shows "q’ ∈ steps_lts T’ wα q"
proof -

have "T’ ∪ pre_lts P Q T’ = T’"
using assms(4) by (rule pre_star_lts_fp)

moreover have "reachable_from T’ q ⊆ Q"
using assms(2,4) pre_star_lts_reachable by fast

moreover have "q’ ∈ steps_lts T’ wβ q"
by (rule steps_lts_mono’[where T1=T]; use assms(3,4) pre_star_lts_mono

in blast)
ultimately show ?thesis

using assms(1) pre_lts_fp by fast
qed

lemma pre_lts_sub_aux:
assumes "q’ ∈ steps_lts (T ∪ pre_lts P Q T) w q"
shows "∃ w’. P ` w ⇒* w’ ∧ q’ ∈ steps_lts T w’ q"

proof (insert assms, induction w arbitrary: q)

21

case Nil
then show ?case

by (simp add: Steps_lts_def)
next

case (Cons c w)
then obtain q1 where step_w: "q’ ∈ steps_lts (T ∪ pre_lts P Q T) w

q1"
and step_c: "q1 ∈ steps_lts (T ∪ pre_lts P Q T) [c] q"

using Steps_lts_split by (metis (no_types, lifting) append_Cons append_Nil)

obtain w’ where "q’ ∈ steps_lts T w’ q1" and "P ` w ⇒* w’"
using Cons step_w by blast

have "∃ c’. q1 ∈ steps_lts T c’ q ∧ P ` [c] ⇒* c’"
proof (cases "q1 ∈ steps_lts T [c] q")

case True
then show ?thesis

by blast
next

case False
then have "q1 ∈ steps_lts (pre_lts P Q T) [c] q"

using step_c unfolding Steps_lts_def Step_lts_def step_lts_def by
force

then have "(q, c, q1) ∈ pre_lts P Q T"
by (auto simp: Steps_lts_def Step_lts_def step_lts_def)

then obtain A β where "(A, β) ∈ P" and "c = Nt A" and "q1 ∈ steps_lts
T β q"

unfolding pre_lts_def by blast
moreover have "P ` [c] ⇒* β"

using calculation by (simp add: derive_singleton r_into_rtranclp)
ultimately show ?thesis

by blast
qed
then obtain c’ where "q1 ∈ steps_lts T c’ q" and "P ` [c] ⇒* c’"

by blast

have "q’ ∈ steps_lts T (c’@w’) q"
using ‹q1 ∈ steps_lts T c’ q› ‹q’ ∈ steps_lts T w’ q1› Steps_lts_join

by fast
moreover have "P ` (c#w) ⇒* (c’@w’)"

using ‹P ` [c] ⇒* c’› ‹P ` w ⇒* w’›
by (metis (no_types, opaque_lifting) Cons_eq_appendI derives_append_decomp

self_append_conv2)
ultimately show ?case

by blast
qed

lemma pre_lts_sub:
assumes "∀ w. (q’ ∈ steps_lts T’ w q) −→ (∃ w’. P ` w ⇒* w’ ∧ q’

22

∈ steps_lts T w’ q)"
and "q’ ∈ steps_lts (T’ ∪ pre_lts P Q T’) w q"

shows "∃ w’. P ` w ⇒* w’ ∧ q’ ∈ steps_lts T w’ q"
proof -

obtain w’ where "P ` w ⇒* w’" and "q’ ∈ steps_lts T’ w’ q"
using pre_lts_sub_aux assms by fast

then obtain w’’ where "P ` w’ ⇒* w’’" and "q’ ∈ steps_lts T w’’ q"
using assms(1) by blast

moreover have "P ` w ⇒* w’’"
using ‹P ` w ⇒* w’› calculation(1) by simp

ultimately show ?thesis
by blast

qed

lemma pre_star_lts_sub:
assumes "pre_star_lts P Q T = Some T’"
shows "(q’ ∈ steps_lts T’ w q) =⇒ (∃ w’. P ` w ⇒* w’ ∧ q’ ∈ steps_lts

T w’ q)"
proof -

let ?I = "λT’. ∀ w. (q’ ∈ steps_lts T’ w q) −→ (∃ w’. P ` w ⇒* w’ ∧
q’ ∈ steps_lts T w’ q)"

have "
∧

T’. ?I T’ =⇒ ?I (T’ ∪ pre_lts P Q T’)"
by (simp add: pre_lts_sub[where T=T])

then have "?I T’"
by (rule pre_star_lts_rule[where T=T and T’=T’]; use assms in blast)

then show "(q’ ∈ steps_lts T’ w q) =⇒ (∃ w’. P ` w ⇒* w’ ∧ q’ ∈
steps_lts T w’ q)"

by simp
qed

lemma pre_star_lts_correct:
assumes "reachable_from T q0 ⊆ Q" and "pre_star_lts P Q T = Some T’"
shows "Lang_lts T’ q0 F = pre_star P (Lang_lts T q0 F)"

proof (standard; standard)
fix w
assume "w ∈ Lang_lts T’ q0 F"
then obtain qf where "qf ∈ steps_lts T’ w q0" and "qf ∈ F"

by blast
then obtain w’ where "P ` w ⇒* w’" and "qf ∈ steps_lts T w’ q0"

using pre_star_lts_sub assms by fast
moreover have "w’ ∈ Lang_lts T q0 F"

using calculation ‹qf ∈ F› by blast
ultimately show "w ∈ pre_star P (Lang_lts T q0 F)"

unfolding pre_star_def by blast
next

fix w
assume "w ∈ pre_star P (Lang_lts T q0 F)"
then obtain w’ where "P ` w ⇒* w’" and "w’ ∈ Lang_lts T q0 F"

unfolding pre_star_def by blast

23

then obtain qf where "qf ∈ steps_lts T w’ q0" and "qf ∈ F"
by blast

then have "qf ∈ steps_lts T’ w’ q0"
using steps_lts_mono pre_star_lts_mono assms by (metis in_mono)

moreover have "reachable_from T’ q0 ⊆ Q"
using assms pre_star_lts_reachable by fast

moreover have "T’ ∪ pre_lts P Q T’ = T’"
by (rule pre_star_lts_fp; use assms(2) in simp)

moreover note ‹P ` w ⇒* w’›
ultimately have "qf ∈ steps_lts T’ w q0"

by (elim pre_lts_fp) simp+
with ‹qf ∈ F› show "w ∈ Lang_lts T’ q0 F"

by blast
qed

4.4 Termination
lemma while_option_finite_subset_Some’:

fixes C :: "’a set"
assumes "mono f" and "

∧
X. X ⊆ C =⇒ f X ⊆ C" and "finite C" and

"S ⊆ C" and "
∧

X. X ⊆ f X"
shows "∃ P. while_option (λA. f A 6= A) f S = Some P"

proof (rule measure_while_option_Some[where
f= "%A::’a set. card C - card A" and P= "%A. A ⊆ C ∧ A ⊆ f A" and

s=S])
fix A assume A: "A ⊆ C ∧ A ⊆ f A" "f A 6= A"
show "(f A ⊆ C ∧ f A ⊆ f (f A)) ∧ card C - card (f A) < card C -

card A"
(is "?L ∧ ?R")

proof
show ?L by (metis A(1) assms(2) monoD[OF ‹mono f›])
show ?R by (metis A assms(2,3) card_seteq diff_less_mono2 equalityI

linorder_le_less_linear rev_finite_subset)
qed

qed (simp add: assms)

lemma pre_star_lts_terminates:
fixes P :: "(’n, ’t) Prods" and Q :: "’s set" and T0 :: "(’s, (’n,

’t) sym) lts"
assumes "finite P" and "finite Q" and "finite T0" and "states_lts

T0 ⊆ Q"
shows "∃ T. pre_star_lts P Q T0 = Some T"

proof -
define b :: "(’s, (’n, ’t) sym) lts ⇒ bool" where

[simp]: "b = (λT. T ∪ pre_lts P Q T 6= T)"
define f :: "(’s, (’n, ’t) sym) lts ⇒ (’s, (’n, ’t) sym) lts" where

[simp]: "f = (λT. T ∪ pre_lts P Q T)"
then have "mono f"

unfolding mono_def pre_lts_def

24

by (smt (verit, ccfv_threshold) UnCI UnE in_mono mem_Collect_eq Steps_lts_mono2
subsetI)

define U :: "(’s, (’n, ’t) sym) lts" where
"U = { (q, Nt A, q’) | q q’ A. q ∈ Q ∧ (∃β. (A, β) ∈ P ∧ q’ ∈ Q)}

∪ T0"
have "

∧
p a q. (p,a,q) ∈ T0 =⇒ p ∈ Q ∧ q ∈ Q"

using assms(4) unfolding states_lts_def by auto
then have "pre_lts P Q T ⊆ U" if asm: "T ⊆ U" for T

using asm steps_states_lts[of T Q] unfolding U_def pre_lts_def states_lts_def
by fastforce

then have U_bounds: "
∧

X. X ⊆ U =⇒ f X ⊆ U"
by simp

have "finite U"
proof -

define U’ :: "(’s, (’n, ’t) sym) lts" where
[simp]: "U’ = Q × ((λ(A,_). Nt A) ‘ P) × Q"

have "finite ((λ(A,_). Nt A) ‘ P)"
using assms(1) by simp

then have "finite U’"
using assms(2) U’_def by blast

define T’ :: "(’s, (’n, ’t) sym) lts" where
[simp]: "T’ = { (q,Nt A,q’) | q q’ A. q ∈ Q ∧ (∃β. (A, β) ∈ P

∧ q’ ∈ Q)}"
then have "T’ ⊆ U’"

unfolding T’_def U’_def using assms(1) by fast
moreover note ‹finite U’›
ultimately have "finite T’"

using rev_finite_subset[of U’ T’] by blast
then show "finite U"

by (simp add: U_def assms)
qed

note criteria = ‹finite U› U_def f_def U_bounds ‹mono f›
have "∃ P. while_option (λA. f A 6= A) f T0 = Some P"

by (rule while_option_finite_subset_Some’[where C=U]; use criteria
in blast)

then show ?thesis
by (simp add: pre_star_lts_def)

qed

4.5 The Automaton Level
definition pre_star_auto :: "(’n, ’t) Prods ⇒ (’s, (’n, ’t) sym) auto
⇒ (’s, (’n, ’t) sym) auto" where

"pre_star_auto P M ≡ (
let Q = {auto.start M} ∪ states_lts (auto.lts M) in

25

case pre_star_lts P Q (auto.lts M) of
Some T’ ⇒ M (| auto.lts := T’ |)

)"

lemma pre_star_auto_correct:
assumes "finite P" and "finite (auto.lts M)"
shows "Lang_auto (pre_star_auto P M) = pre_star P (Lang_auto M)"

proof -
define T where "T ≡ auto.lts M"
define Q where "Q ≡ {auto.start M} ∪ states_lts T"
then have "finite Q"

unfolding T_def states_lts_def using assms(2) by auto
have MQ: "states_lts (auto.lts M) ⊆ Q" unfolding Q_def T_def by (force)
have "reachable_from T (auto.start M) ⊆ Q"

using reachable_from_computable unfolding Q_def states_lts_def by
fastforce

moreover obtain T’ where T’_def: "pre_star_lts P Q T = Some T’"
using pre_star_lts_terminates[OF assms(1) ‹finite Q› assms(2) MQ]

T_def by blast
ultimately have "Lang_lts T’ (auto.start M) (auto.finals M)

= pre_star P (Lang_lts T (auto.start M) (auto.finals M))"
by (rule pre_star_lts_correct)

then have "Lang_auto (M (| auto.lts := T’ |)) = pre_star P (Lang_auto
M)"

by (simp add: T_def)
then show ?thesis

unfolding pre_star_auto_def using Q_def T’_def T_def
by(force)

qed

lemma pre_star_lts_refl:
assumes "pre_star_lts P Q T = Some T’" and "(A, []) ∈ P" and "q ∈

Q"
shows "(q, Nt A, q) ∈ T’"

proof -
have "q ∈ steps_lts T’ [] q"

unfolding Steps_lts_def using assms by force
then have "(q, Nt A, q) ∈ pre_lts P Q T’"

unfolding pre_lts_def using assms by blast
moreover have "T’ = T’ ∪ pre_lts P Q T’"

using pre_star_lts_fp assms(1) by blast
ultimately show ?thesis

by blast
qed

lemma pre_star_lts_singleton:
assumes "pre_star_lts P Q T = Some T’" and "(A, [B]) ∈ P"

and "(q, B, q’) ∈ T’" and "q ∈ Q" and "q’ ∈ Q"
shows "(q, Nt A, q’) ∈ T’"

26

proof -
have "q’ ∈ steps_lts T’ [B] q"

unfolding steps_lts_defs using assms by force
then have "(q, Nt A, q’) ∈ pre_lts P Q T’"

unfolding pre_lts_def using assms by blast
moreover have "T’ = T’ ∪ (pre_lts P Q T’)"

using pre_star_lts_fp assms(1) by blast
ultimately show ?thesis

by blast
qed

lemma pre_star_lts_impl:
assumes "pre_star_lts P Q T = Some T’" and "(A, [B, C]) ∈ P"

and "(q, B, q’) ∈ T’" and "(q’, C, q’’) ∈ T’"
and "q ∈ Q" and "q’ ∈ Q" and "q’’ ∈ Q"

shows "(q, Nt A, q’’) ∈ T’"
proof -

have "q’’ ∈ steps_lts T’ [B, C] q"
unfolding steps_lts_defs using assms by force

then have "(q, Nt A, q’’) ∈ pre_lts P Q T’"
unfolding pre_lts_def using assms by blast

moreover have "T’ = T’ ∪ pre_lts P Q T’"
using pre_star_lts_fp assms(1) by blast

ultimately show ?thesis
by blast

qed

end

4.6 Pre∗ Example

The algorithm is executable. This theory shows a quick example.
theory Pre_Star_Example

imports Pre_Star
begin

Consider the following grammar, with V = {A,B} and Σ = {a,b}:
datatype n = A | B
datatype t = a | b

definition "P ≡ {
— A → a | BB
(A, [Tm a]),
(A, [Nt B, Nt B]),

— B → AB | b
(B, [Nt A, Nt B]),
(B, [Tm b])

}"

27

The following NFA accepts the regular language, whose predecessors we
want to find:
definition M :: "(nat, (n, t) sym) auto" where "M ≡ (|

auto.lts = {
(0, Tm a, 1),
(1, Tm b, 2),
(2, Tm a, 1)

},
start = 0 :: nat,
finals = {0, 1, 2}

|)"

lemma "pre_star_auto P M =
(|auto.lts =

{(2, Tm a, 1), (1, Tm b, 2), (0, Tm a, 1), (0, Nt A, 1), (0, Nt A,
2), (0, Nt B, 2), (0, Nt A, 1),

(1, Nt A, 2), (1, Nt B, 2), (2, Nt A, 1), (2, Nt A, 2), (2, Nt B,
2), (2, Nt A, 1), (1, Nt A, 2),

(1, Nt B, 2)},
start = 0, finals = {0, 1, 2}|)"

by eval

end

5 Application to Elementary CFG Problems

theory Applications
imports Pre_Star
begin

This theory turns pre_star_auto into executable decision procedures for
different CFG problems. The methos: pre_star_auto is applied to differ-
ent suitable automata/languages. This happens behind the scenes via code
equations.

These lemmas link pre_star to different properties of context-free grammars:
lemma pre_star_term:

"x ∈ pre_star P L ←→ (∃ w. w ∈ L ∧ P ` x ⇒* w)"
unfolding pre_star_def by blast

lemma pre_star_word:
"[Nt S] ∈ pre_star P (map Tm ‘ L) ←→ (∃ w. w ∈ L ∧ w ∈ Lang P S)"
unfolding Lang_def pre_star_def by blast

lemma pre_star_lang:
"Lang P S ∩ L = {} ←→ [(Nt S)] /∈ pre_star P (map Tm ‘ L)"
using pre_star_word[where P=P] by blast

28

5.1 Preliminaries
lemma tms_syms_code[code]:

"tms_syms w =
⋃

((λA. case A of Tm x ⇒ {x} | _ ⇒ {}) ‘ set w)"
by (auto simp: tms_syms_def split: sym.splits)

5.2 Derivability

A decision procedure for derivability can be constructed.
definition is_derivable :: "(’n, ’t) Prods ⇒ (’n, ’t) syms ⇒ (’n, ’t)
syms ⇒ bool" where
[simp]: "is_derivable P α β = (P ` α ⇒* β)"

declare is_derivable_def[symmetric, code_unfold]

theorem pre_star_derivability:
shows "P ` α ⇒* β ←→ α ∈ pre_star P {β}"
by (simp add: Lang_def pre_star_def)

lemma pre_star_derivability_code[code]:
fixes P :: "(’n, ’t) prods"
shows "is_derivable (set P) α β = (α ∈ Lang_auto (pre_star_auto (set

P) (word_auto β)))"
proof -

define M where [simp]: "M ≡ word_auto β"
have "Lang_auto (pre_star_auto (set P) M) = pre_star (set P) (Lang_auto

M)"
by (intro pre_star_auto_correct; simp add: word_auto_finite_lts)

then show ?thesis
using pre_star_derivability by force

qed

5.3 Membership Problem
lemma pre_star_membership[code_unfold]: "(w ∈ Lang P S) = (P ` [Nt S]
⇒* map Tm w)"

by (simp add: Lang_def)

5.4 Nullable Variables
definition is_nullable :: "(’n, ’t) Prods ⇒ ’n ⇒ bool" where

"is_nullable P X ≡ (P ` [Nt X] ⇒* [])"

— Directly follows from derivability:
lemma pre_star_nullable[code]: "is_nullable P X = (P ` [Nt X] ⇒* [])"

by (simp add: is_nullable_def)

5.5 Emptiness Problem
definition is_empty :: "(’n, ’t) Prods ⇒ ’n ⇒ bool" where

29

[simp]: "is_empty P S = (Lang P S = {})"

lemma cfg_derives_Syms:
assumes "P ` α ⇒* β" and "set α ⊆ Syms P"
shows "set β ⊆ Syms P"
using assms proof (induction rule: converse_rtranclp_induct[where r="derive

P"])
case base
then show ?case

by simp
next

case (step y z)
then have "set z ⊆ Syms P"

using derives_set_subset by blast
then show ?case

using step by simp
qed

lemma cfg_Lang_univ: "P ` [Nt X] ⇒* map Tm β =⇒ set β ⊆ Tms P"
proof -

assume "P ` [Nt X] ⇒* map Tm β"
moreover have "Nt X ∈ Syms P"

using Syms_def calculation derives_start1 by fastforce
ultimately have "set (map Tm β) ⊆ Syms P"

using cfg_derives_Syms by force
moreover have "

∧
t. (t ∈ Tms P) ←→ Tm t ∈ Syms P"

unfolding Tms_def Syms_def tms_syms_def by blast
ultimately show "set β ⊆ Tms P"

by force
qed

lemma inj_Tm: "inj Tm"
by (simp add: inj_def)

lemma finite_tms_syms: "finite (tms_syms w)"
proof -

have "Tm ‘ {A. Tm A ∈ set w} ⊆ set w"
by auto

from finite_inverse_image[OF _ inj_Tm] show ?thesis
unfolding tms_syms_def using finite_inverse_image[OF _ inj_Tm] by

auto
qed

lemma finite_Tms: "finite P =⇒ finite (Tms P)"
unfolding Tms_def by (rule finite_Union; auto simp: finite_tms_syms)

definition pre_star_emptiness_auto :: "(’n, ’t) Prods ⇒ (unit, (’n, ’t)
sym) auto" where

30

"pre_star_emptiness_auto P ≡
let T = Tm ‘

⋃
((λA. case A of Nt X ⇒ {} | Tm x ⇒ {x}) ‘

⋃
(set

‘ snd ‘ P)) :: (’n, ’t) sym set in
(| auto.lts = {()} × T × {()}, start = (), finals = {()} |)"

theorem pre_star_emptiness:
fixes P :: "(’n, ’t) Prods"
shows "Lang P S = {} ←→ [(Nt S)] /∈ pre_star P {w. set w ⊆ Tm ‘ Tms

P}"
proof -

have "Lang P S = {} ←→ (@ w. P ` [Nt S] ⇒* map Tm w)"
by (simp add: Lang_def)

also have "... ←→ (@ w. P ` [Nt S] ⇒* map Tm w ∧ set w ⊆ Tms P)"
using cfg_Lang_univ by fast

also have "... ←→ (@ w. P ` [Nt S] ⇒* w ∧ set w ⊆ Tm ‘ Tms P)"
by (smt (verit, best) cfg_Lang_univ ex_map_conv imageE image_mono

list.set_map subset_iff)
also have "... ←→ [Nt S] /∈ pre_star P {w. set w ⊆ Tm ‘ Tms P}"

unfolding pre_star_def by blast
finally show ?thesis .

qed

lemma pre_star_emptiness_code[code]:
fixes P :: "(’n, ’t) prods"
shows "is_empty (set P) S = ([Nt S] /∈ Lang_auto (pre_star_auto (set

P) (auto_univ (Tm ‘ Tms (set P)))))"
proof -

define M :: "(unit, (’n, ’t) sym) auto" where [simp]: "M ≡ auto_univ
(Tm ‘ Tms (set P))"

have "finite (Tm ‘ Tms (set P))"
using finite_Tms by blast

then have "Lang_auto (pre_star_auto (set P) M) = pre_star (set P) (Lang_auto
M)"

by (intro pre_star_auto_correct; auto simp: auto_univ_def intro: loop_lts_fin)
then show ?thesis

using pre_star_emptiness unfolding M_def auto_univ_lang by fastforce
qed

5.6 Useless Variables
definition is_reachable_from :: "(’n, ’t) Prods ⇒ ’n ⇒ ’n ⇒ bool"

("(2_ `/ (_/ ⇒? / _))" [50, 0, 50] 50) where
"(P ` X ⇒? Y) ≡ (∃α β. P ` [Nt X] ⇒* (α@[Nt Y]@β))"

— X ∈ V is useful, iff V can be reached from S and it is productive:
definition is_useful :: "(’n, ’t) Prods ⇒ ’n ⇒ ’n ⇒ bool" where

"is_useful P S X ≡ (P ` S ⇒? X) ∧ Lang P X 6= {}"

definition pre_star_reachable_auto :: "(’n, ’t) Prods ⇒ ’n ⇒ (nat, (’n,

31

’t) sym) auto" where
"pre_star_reachable_auto P X ≡ (

let T =
⋃

(set ‘ snd ‘ P) in
(| auto.lts = ({0} × T × {0}) ∪ ({1} × T × {1}) ∪ {(0, Nt X, 1)},

start = 0, finals = {1} |)
)"

theorem pre_star_reachable:
fixes P :: "(’n, ’t) Prods"
shows "(P ` S ⇒? X) ←→ [Nt S] ∈ pre_star P { α@[Nt X]@β | α β. set

α ⊆ Syms P ∧ set β ⊆ Syms P }"
proof -

define L where "L ≡ { (α::(’n, ’t) syms)@[Nt X]@β | α β. set α ⊆
Syms P ∧ set β ⊆ Syms P }"

have "[Nt S] ∈ pre_star P L ←→ (∃ w. w ∈ L ∧ P ` [Nt S] ⇒* w)"
by (simp add: pre_star_term)

also have "... ←→ (∃α β. P ` [Nt S] ⇒* (α@[Nt X]@β) ∧ set α ⊆ Syms
P ∧ set β ⊆ Syms P)"

unfolding L_def by blast
also have "... ←→ (∃α β. P ` [Nt S] ⇒* (α@[Nt X]@β))"
proof -

have "
∧

w. P ` [Nt S] ⇒ w =⇒ set w ⊆ Syms P"
by (smt (verit, best) Syms_def UN_I UnCI case_prod_conv derive_singleton

subset_eq)
then have "

∧
w. w 6= [Nt S] =⇒ P ` [Nt S] ⇒* w =⇒ set w ⊆ Syms

P"
by (metis cfg_derives_Syms converse_rtranclpE)

then have "
∧
α β. P ` [Nt S] ⇒* (α@[Nt X]@β) =⇒ set α ⊆ Syms P

∧ set β ⊆ Syms P"
by (smt (verit) Cons_eq_append_conv append_is_Nil_conv empty_set

empty_subsetI le_supE list.discI set_append)
then show ?thesis

by blast
qed
finally show ?thesis

by (simp add: is_reachable_from_def L_def)
qed

lemma pre_star_reachable_code[code]:
fixes P :: "(’n, ’t) prods"
shows "(set P ` S ⇒? X) = ([Nt S] ∈ Lang_auto (pre_star_auto (set

P) (cps_auto (Nt X) (Syms (set P)))))"
proof -

define M :: "(nat, (’n, ’t) sym) auto" where [simp]: "M ≡ cps_auto
(Nt X) (Syms (set P))"

have "finite (Syms (set P))"
unfolding Syms_def by fast

then have "Lang_auto (pre_star_auto (set P) M) = pre_star (set P) (Lang_auto
M)"

32

by (intro pre_star_auto_correct; auto simp: cps_auto_def intro: pcs_lts_fin)
then show ?thesis

using pre_star_reachable unfolding M_def cps_auto_lang by fastforce
qed

5.7 Disjointness and Subset Problem
theorem pre_star_disjointness: "Lang P S ∩ L = {} ←→ [(Nt S)] /∈ pre_star
P (map Tm ‘ L)"

by (simp add: pre_star_lang)

theorem pre_star_subset: "Lang P S ⊆ L ←→ [(Nt S)] /∈ pre_star P (map
Tm ‘ (-L))"
proof -

have "Lang P S ⊆ L ←→ Lang P S ∩ -L = {}"
by blast

then show ?thesis
by (simp add: pre_star_disjointness)

qed

end

5.8 Examples
theory Applications_Example
imports Applications
begin

Consider the following grammar, with V = {A,B,C,D} and Σ = {a,b,c,d}:
datatype n = A | B | C | D
datatype t = a | b | c | d

definition P :: "(n, t) Prods" where "P ≡ {
— A → a | BB | C
(A, [Tm a]),
(A, [Nt B, Nt B]),
(A, [Nt C]),

— B → AB | b
(B, [Nt A, Nt B]),
(B, [Tm b]),

— C → c | ε
(C, [Tm c]),
(C, []),

— D → d
(D, [Tm d])

}"

33

Checking whether a symbol is nullable is straight-forward:
value "is_nullable P A"
— True

value "is_nullable P B"
— False

value "is_nullable P C"
— True

value "is_nullable P D"
— False

Instead of using value, it can also be proven by eval in theorems:
lemma "is_nullable P A" by eval

lemma "¬ is_nullable P B" by eval

lemma "is_nullable P C" by eval

lemma "¬ is_nullable P D" by eval

Similarily, derivability can also be checked and proven as simple:
lemma "P ` [Nt A] ⇒* [Nt A, Nt B, Nt B]"

by eval

— But A ⇒* AB is not:
lemma "¬ P ` [Nt A] ⇒* [Nt A, Nt B]"

by eval

Following derivability, the membership problem is straight-forward:
lemma "[a] ∈ Lang P A"

by eval

— While b ∈ L(G):
lemma "[b] /∈ Lang P A"

by eval

— But bb ∈ L(G) again holds:
lemma "[b,b] ∈ Lang P A"

by eval

To check if the accepted language is empty, one first needs to unfold is_empty
?P ?S = (Lang ?P ?S = {}), from which automatic evaluation is again pos-
sible:
lemma "¬ Lang P A = {}"

unfolding is_empty_def[symmetric] by eval

34

Similar to derivability, reachability (i.e., derivability with an arbitrary prefix
and suffix), can also be automated:
lemma "P ` A ⇒? B"

by eval

lemma "P ` B ⇒? A"
by eval

lemma "P ` A ⇒? C"
by eval

lemma "P ` B ⇒? C"
by eval

lemma "¬ P ` C ⇒? A"
by eval

lemma "¬ P ` C ⇒? A"
by eval

end

6 Finiteness of Context-Free Languages
theory Finiteness

imports Applications
begin

Another interesting application, particularly for context-free grammars in
chomsky normal-form (CNF), is the detection of “cyclic” non-terminals.

Particularly, if all non-terminals are reachable (can be reached from the
starting symbol) and productive (i.e., a terminal word can be derived from
each symbol), the following holds:

L(C) = ∞ ←→ ∃ X α β. X ⇒∗ αXβ ∧ aβ 6= ε

Since we have a decision-procedure for derivability, we can work towards
also automating this process. However, to keep proofs simple, this theory
only focuses on grammars in CNF, meaning a conversion is required a priori.

6.1 Preliminaries and Assumptions
locale CFG =

fixes P :: "(’n, ’t) Prods" and S :: ’n
assumes cnf: "

∧
p. p ∈ P =⇒ (∃ A a. p = (A, [Tm a]) ∨ (∃ A B C. p =

(A, [Nt B, Nt C])))"
begin — begin-context CFG

35

definition is_useful_all :: "bool" where
"is_useful_all ≡ (∀ X::’n. is_useful P S X)"

definition is_non_nullable_all :: "bool" where
"is_non_nullable_all ≡ (∀ X::’n. ¬ is_nullable P X)"

lemma derives_concat:
assumes "P ` X1 ⇒* w1" and "P ` X2 ⇒* w2"
shows "P ` (X1@X2) ⇒* (w1@w2)"
using assms derives_append_decomp by blast

lemma derives_split:
assumes "P ` X ⇒* w"
shows "∃ X1 X2 w1 w2. X = X1@X2 ∧ w = w1@w2 ∧ P ` X1 ⇒* w1 ∧ P `

X2 ⇒* w2"
using assms by blast

lemma derives_step:
assumes "P ` X ⇒* (α@w1@β)" and "P ` w1 ⇒* w2"
shows "P ` X ⇒* (α@w2@β)"

proof -
have "P ` w1@β ⇒* w2@β"

using assms(2) by (simp add: derives_concat)
then have "P ` α@w1@β ⇒* α@w2@β"

by (simp add: derives_concat)
then show ?thesis

using assms(1) by simp
qed

lemma is_useful_all_derive:
assumes "is_useful_all"
shows "∃ w. P ` xs ⇒* map Tm w"

using assms proof (induction xs)
case Nil
moreover have "P ` [] ⇒* map Tm []"

by simp
ultimately show ?case

by (elim exI)
next

case (Cons a xs)
then obtain w’ where w’_def: "P ` xs ⇒* map Tm w’"

by blast

have "∃ w. P ` [a] ⇒* map Tm w"
proof (cases a)

case (Nt X)
then have "Lang P X 6= {}"

using Cons(2) by (simp add: is_useful_all_def is_useful_def)

36

then show ?thesis
by (simp add: Nt Lang_def)

next
case (Tm c)
then have "P ` [Tm c] ⇒* map Tm [c]"

by simp
then show ?thesis

using Tm by blast
qed
then obtain w where w_def: "P ` [a] ⇒* map Tm w"

by blast

from w_def w’_def have "P ` (a#xs) ⇒* map Tm (w@w’)"
using derives_concat by fastforce

then show ?case
by blast

qed

lemma is_non_nullable_all_derive:
assumes "is_non_nullable_all" and "P ` xs ⇒* w"
shows "xs = [] ←→ w = []"

proof -
have "

∧
X. ¬ P ` [Nt X] ⇒* []"

using assms(1) by (simp add: is_non_nullable_all_def is_nullable_def)
moreover have "

∧
c. ¬ P ` [Tm c] ⇒* []"

by simp
ultimately have nonNullAll: "

∧
x. ¬ P ` [x] ⇒* []"

using sym.exhaust by metis

have thm1: "xs = [] =⇒ w = []"
using assms(2) derives_from_empty by blast

have thm2: "xs 6= [] =⇒ w 6= []"
proof

assume "xs 6= []"
then obtain x xs’ where "xs = x#xs’"

using list.exhaust by blast
moreover have "P ` ([x]@xs’) ⇒* [] =⇒ (P ` [x] ⇒* [] ∧ P ` xs’

⇒* [])"
using derives_split by (metis Nil_is_append_conv derives_append_decomp)

moreover have "¬ P ` [x] ⇒* []"
by (simp add: nonNullAll)

ultimately show "w = [] =⇒ False"
using assms(2) by simp

qed

show ?thesis
using thm1 thm2 by blast

qed

37

6.2 Criterion of Finiteness

Finally, we introduce the definition is_infinite, which instead of making
use of the language set, uses the criterion introduced above.
definition is_reachable_step :: "’n ⇒ ’n ⇒ bool" (infix "→?" 80) where

"(X →? Y) ≡ (∃α β. P ` [Nt X] ⇒* (α@[Nt Y]@β) ∧ α@β 6= [])"

definition is_infinite :: "bool" where
"is_infinite ≡ (∃ X. X →? X)"

fun is_infinite_derives :: "’n ⇒ (’n, ’t) sym list ⇒ (’n, ’t) sym list
⇒ nat ⇒ (’n, ’t) sym list" where

"is_infinite_derives X α β (Suc n) = α@(is_infinite_derives X α β n)@β"
|

"is_infinite_derives X α β 0 = [Nt X]"

fun is_infinite_words :: "’t list ⇒ ’t list ⇒ ’t list ⇒ nat ⇒ ’t
list" where

"is_infinite_words wX wα wβ (Suc n) = wα@(is_infinite_words wX wα

wβ n)@wβ" |
"is_infinite_words wX wα wβ 0 = wX"

definition reachable_rel :: "(’n × ’n) set" where
"reachable_rel ≡ {(X2, X1). ∃α β. (X1, α@[Nt X2]@β) ∈ P}"

lemma cnf_implies_pumping:
assumes "(Y, α@[Nt X]@β) ∈ P"
shows "Y →? X"

proof -
consider "∃ a. (α@[Nt X]@β) = [Tm a]" | "∃ B C. (α@[Nt X]@β) = [Nt B,

Nt C]"
using assms cnf by blast

then show ?thesis
proof (cases)

case 1
then have "False"

by (simp add: append_eq_Cons_conv)
then show ?thesis

by simp
next

case 2
then obtain B C where BC_def: "(α@[Nt X]@β) = [Nt B, Nt C]"

by blast
then have "X = B ∨ X = C"

by (metis Nil_is_append_conv append_Cons in_set_conv_decomp in_set_conv_decomp_first
set_ConsD sym.inject(1))

then have "P ` [Nt Y] ⇒ []@[Nt X]@[Nt C] | P ` [Nt Y] ⇒ [Nt B]@[Nt
X]@[]"

using BC_def assms(1) derive_singleton by force

38

then show ?thesis
unfolding is_reachable_step_def by (rule disjE) blast+

qed
qed

lemma reachable_rel_tran: "(X, Y) ∈ reachable_rel+ =⇒ Y →? X"
proof (induction rule: trancl.induct)

case (r_into_trancl X Y)
then show "Y →? X"

using cnf cnf_implies_pumping by (auto simp: reachable_rel_def)
next

case (trancl_into_trancl X Y Z)
then have "Z →? Y"

using cnf cnf_implies_pumping by (auto simp: reachable_rel_def)
with trancl_into_trancl(3) have "Z →? X"
proof -

assume "Z →? Y" and "Y →? X"

obtain αZ βZ where z_der: "P ` [Nt Z] ⇒* (αZ@[Nt Y]@βZ)" and "αZ@βZ

6= []"
using ‹Z →? Y›[unfolded is_reachable_step_def] by blast

obtain αY βY where y_der: "P ` [Nt Y] ⇒* (αY @[Nt X]@βY)" and
"αY @βY 6= []"

using ‹Y →? X›[unfolded is_reachable_step_def] by blast

have "P ` [Nt Z] ⇒* (αZ@αY @[Nt X]@βY @βZ)"
using z_der y_der by (metis append.assoc derives_step)

moreover have "αZ@αY @βY @βZ 6= []"
using ‹αZ@βZ 6= []› ‹αY @βY 6= []› by simp

ultimately show "Z →? X"
unfolding is_reachable_step_def by (metis append.assoc)

qed
then show ?case

by simp
qed

lemma reachable_rel_wf:
assumes "finite P"

and cnf: "
∧

p. p ∈ P =⇒ (∃ A a. p = (A, [Tm a]) ∨ (∃ A B C. p = (A,
[Nt B, Nt C])))"

and loopfree: "
∧

X. ¬ X →? X"
shows "wf reachable_rel"

proof -
define Nt2 :: "’n × ’n ⇒ (’n, ’t) sym × (’n, ’t) sym"

where "Nt2 ≡ (λ(a,b). (Nt a, Nt b))"
define S :: "((’n, ’t) sym × (’n, ’t) sym) set"

where "S ≡
⋃

(set ‘ snd ‘ P) × (Nt ‘ fst ‘ P)"

have "finite (
⋃

(set ‘ snd ‘ P))"

39

by (rule finite_Union; use assms(1) in blast)
moreover have "finite (fst ‘ P)"

using assms(1) by simp
ultimately have "finite S"

unfolding S_def by blast
moreover have "(Nt2 ‘ reachable_rel) ⊆ S"

unfolding reachable_rel_def Nt2_def S_def by (auto split: prod.splits
sym.splits, force)

ultimately have "finite (Nt2 ‘ reachable_rel)"
using finite_subset by blast

moreover have "inj_on Nt2 reachable_rel"
unfolding inj_on_def Nt2_def by fast

ultimately have finite: "finite reachable_rel"
using finite_image_iff by blast

have "acyclic reachable_rel"
unfolding acyclic_def using loopfree reachable_rel_tran by blast

from finite_acyclic_wf[OF finite this] show "wf reachable_rel" .
qed

lemma is_infinite_implies_finite:
assumes "finite P"

and loopfree: "
∧

X. ¬ X →? X"
shows "finite {w. P ` [Nt X] ⇒* w}"

proof -
have "wf reachable_rel"

using assms cnf by (simp add: reachable_rel_wf)
then show ?thesis
proof (induction)

case (less X)

have "{w. ∃ a. (X, [Tm a]) ∈ P ∧ P ` [Tm a] ⇒* w} = snd ‘ {(Y, β)
∈ P. X = Y ∧ (∃ a. β = [Tm a])}"

by force
then have finA: "finite {w. ∃ a. (X, [Tm a]) ∈ P ∧ P ` [Tm a] ⇒*

w}"
using assms(1) by (metis (no_types, lifting) case_prod_conv finite_imageI

mem_Collect_eq old.prod.exhaust rev_finite_subset subsetI)

have "
∧

B C. (X, [Nt B, Nt C]) ∈ P =⇒ finite {w. P ` [Nt B, Nt C]
⇒* w}"

proof -
fix B and C
assume "(X, [Nt B, Nt C]) ∈ P"
then have "(X, []@[Nt B]@[Nt C]) ∈ P" and "(X, [Nt B]@[Nt C]@[])

∈ P"
by simp+

then have "(B, X) ∈ reachable_rel" and "(C, X) ∈ reachable_rel"

40

unfolding reachable_rel_def by blast+
then have "finite {w. P ` [Nt B] ⇒* w}" and "finite {w. P ` [Nt

C] ⇒* w}"
using less by simp+

moreover have "{w. P ` [Nt B, Nt C] ⇒* w} = (λ(b,c). b@c) ‘ ({w.
P ` [Nt B] ⇒* w} × {w. P ` [Nt C] ⇒* w})"

proof (standard; standard)
fix w
assume "w ∈ {w. P ` [Nt B, Nt C] ⇒* w}"
then have "P ` [Nt B]@[Nt C] ⇒* w"

by simp
then obtain b c where "P ` [Nt B] ⇒* b" and "P ` [Nt C] ⇒*

c" and "w = b@c"
using derives_append_decomp by blast

then show "w ∈ (λ(b,c). b@c) ‘ ({w. P ` [Nt B] ⇒* w} × {w.
P ` [Nt C] ⇒* w})"

by blast
next

fix w
assume "w ∈ (λ(b,c). b@c) ‘ ({w. P ` [Nt B] ⇒* w} × {w. P `

[Nt C] ⇒* w})"
then obtain b c where "P ` [Nt B] ⇒* b" and "P ` [Nt C] ⇒*

c" and "w = b@c"
by fast

then have "P ` [Nt B]@[Nt C] ⇒* w"
using derives_concat by blast

then show "w ∈ {w. P ` [Nt B, Nt C] ⇒* w}"
by simp

qed
ultimately show "finite {w. P ` [Nt B, Nt C] ⇒* w}"

by simp
qed
moreover have "finite {(B, C). (X, [Nt B, Nt C]) ∈ P}"
proof -

define S :: "(’n × (’n, ’t) sym list) set" where
"S ≡ ((λ(B,C). (X, [Nt B, Nt C])) ‘ {(B, C). (X, [Nt B, Nt

C]) ∈ P})"
have subP: "S ⊆ P"

unfolding S_def by fast
with assms(1) have "finite S"

by (elim finite_subset)
then show ?thesis

unfolding S_def by (rule finite_imageD, simp add: inj_on_def)
qed
ultimately have "finite (

⋃
((λ(B,C). {w. P ` [Nt B, Nt C] ⇒* w})

‘ {(B,C). (X, [Nt B, Nt C]) ∈ P}))"
by (intro finite_Union; fast)

moreover have "{w. ∃ B C. (X, [Nt B, Nt C]) ∈ P ∧ P ` [Nt B, Nt
C] ⇒* w}

41

= (
⋃

((λ(B,C). {w. P ` [Nt B, Nt C] ⇒* w}) ‘ {(B,C). (X, [Nt
B, Nt C]) ∈ P}))"

by blast
ultimately have finB: "finite {w. ∃ B C. (X, [Nt B, Nt C]) ∈ P ∧ P

` [Nt B, Nt C] ⇒* w}"
by simp

let ?P = "λw β. (X, β) ∈ P ∧ P ` β ⇒* w"
have un: "{w. ∃β. ?P w β} = {w. ∃ a. ?P w [Tm a]} ∪ {w. ∃ B C. ?P

w [Nt B, Nt C]}"
using cnf by blast

have "finite {w. ∃β. (X, β) ∈ P ∧ P ` β ⇒* w}"
unfolding un by (intro finite_UnI; use finA finB in simp)

moreover have "
∧

X. {w. P ` [Nt X] ⇒* w} = {[Nt X]} ∪ {w. ∃β. (X,
β) ∈ P ∧ P ` β ⇒* w}"

by (auto split: prod.splits simp: derives_Cons_decomp)
ultimately show ?case

by simp
qed

qed

theorem is_infinite_correct:
assumes "is_useful_all" and "is_non_nullable_all" and "finite P"
shows "¬ finite (Lang P S) ←→ is_infinite"

proof (standard, erule contrapos_pp)
assume "¬ is_infinite"
then have finA: "finite {w. P ` [Nt S] ⇒* w}"

using is_infinite_implies_finite assms(3) by (simp add: is_infinite_def)
have "finite (map Tm ‘ {w. P ` [Nt S] ⇒* map Tm w}::(’n, ’t) sym list

set)"
by (rule finite_subset[where B="{w. P ` [Nt S] ⇒* w}"]; use finA

in blast)
moreover have "inj_on (map Tm) {w. P ` [Nt S] ⇒* map Tm w}"

by (simp add: inj_on_def)
ultimately have "finite {w. P ` [Nt S] ⇒* map Tm w}"

using finite_image_iff[where f="map Tm"] by blast
then show "¬ infinite (Lang P S)"

by (simp add: Lang_def)
next

assume "is_infinite"
then obtain X where "X →? X"

unfolding is_infinite_def by blast
then obtain α β where deriveX: "P ` [Nt X] ⇒* (α@[Nt X]@β)" and

"α@β 6= []"
unfolding is_reachable_step_def by blast

obtain wX where wX_def: "P ` [Nt X] ⇒* map Tm wX"
using assms(1) is_useful_all_derive by blast

42

obtain wα wβ where wα_def: "P ` α ⇒* map Tm wα" and wβ_def: "P `
β ⇒* map Tm wβ"

using assms(1) is_useful_all_derive by blast+
then have "wα@wβ 6= []"

using ‹α@β 6= []› by (simp add: assms(2) is_non_nullable_all_derive)

define fd where "fd ≡ is_infinite_derives X α β"
define fw where "fw ≡ is_infinite_words wX wα wβ"

have "P ` S ⇒? X"
using assms(1) by (simp add: is_useful_all_def is_useful_def)

then obtain p s where "P ` [Nt S] ⇒* (p@[Nt X]@s)"
unfolding is_reachable_from_def by blast

moreover obtain wp where wp_def: "P ` p ⇒* map Tm wp"
using assms(1) is_useful_all_derive by blast

moreover obtain w s where w s_def: "P ` s ⇒* map Tm w s"
using assms(1) is_useful_all_derive by blast

ultimately have fromS: "P ` [Nt S] ⇒* (map Tm wp@[Nt X]@map Tm w s)"
by (meson local.derives_concat rtranclp.rtrancl_refl rtranclp_trans)

have "
∧

i. P ` [Nt X] ⇒* fd i"
subgoal for i

apply (induction i; simp_all add: fd_def)
apply (meson deriveX local.derives_concat rtranclp.rtrancl_refl

rtranclp_trans)
done

done
moreover have "

∧
i. P ` fd i ⇒* map Tm (fw i)"

subgoal for i
by (induction i; simp add: fd_def fw_def wX_def wα_def wβ_def

derives_concat)
done

ultimately have "
∧

i. P ` [Nt X] ⇒* map Tm (fw i)"
using rtranclp_trans by fast

then have "
∧

i. P ` [Nt S] ⇒* (map Tm wp@map Tm (fw i)@map Tm w s)"
using fromS derives_step by presburger

then have "
∧

i. P ` [Nt S] ⇒* (map Tm (wp@(fw i)@w s))"
by simp

moreover define fw’ where fw’_def: "fw’ = (λi. wp @ (fw i) @ w s)"
ultimately have "

∧
i. P ` [Nt S] ⇒* map Tm (fw’ i)"

by simp
then have "

∧
i. fw’ i ∈ Lang P S"

by (simp add: Lang_def)
then have "range fw’ ⊆ Lang P S"

by blast

have "
∧

i. length (fw i) < length (fw (i+1))"
subgoal for i

by (induction i; use fw_def ‹wα@wβ 6= []› in simp)

43

done
then have x: "

∧
i. length (fw’ i) < length (fw’ (i+1))"

by (simp add: fw’_def)
then have "

∧
i n. 0 < n =⇒ length (fw’ i) < length (fw’ (i+n))"

subgoal for i n
apply (induction n, auto)
apply (metis Suc_lessD add_cancel_left_right gr_zeroI less_trans_Suc)
done

done
then have fw’_order: "

∧
i1 i2. i1 < i2 =⇒ length (fw’ i1) < length

(fw’ i2)"
using less_imp_add_positive by blast

then have "inj fw’"
unfolding inj_def by (metis nat_neq_iff)

have "infinite (Lang P S)"
using ‹range fw’ ⊆ Lang P S› ‹inj fw’› infinite_iff_countable_subset

by blast
then show "¬ finite (Lang P S)"

by simp
qed

— Notation only used in this theory.
no_notation is_reachable_step (infix "→?" 80)

6.3 Finiteness Problem
lemma is_infinite_check:

"is_infinite ←→ (∃ X. [Nt X] ∈ pre_star P { α@[Nt X]@β | α β. α@β
6= [] })"

unfolding is_infinite_def is_reachable_step_def by (auto simp: pre_star_term)

theorem is_infinite_by_prestar:
assumes "is_useful_all" and "is_non_nullable_all" and "finite P"
shows "finite (Lang P S) ←→ (∀ X. [Nt X] /∈ pre_star P { α@[Nt X]@β

| α β. α@β 6= [] })"
using assms is_infinite_correct is_infinite_check by blast

end — end-context CFG

end

7 Pre∗ Optimized for Grammars in CNF
theory Pre_Star_CNF
imports Pre_Star
begin

44

Bouajjani et al. [BEF+00] have proposed in an improved algorithm for
grammars in extended Chomsky Normal Form. This theory proves core
properties (correctness and termination) of the algorithm.

7.1 Preliminaries

Extended Chomsky Normal Form:
definition CNF1 :: "(’n, ’t) Prods ⇒ bool" where

"CNF1 P ≡ (∀ (A, β) ∈ P.
— 1. A → ε
(β = []) ∨
— 2. A → a
(∃ a. β = [Tm a]) ∨
— 3. A → B
(∃ B. β = [Nt B]) ∨
— 4. A → BC
(∃ B C. β = [Nt B, Nt C])

)"

type_synonym (’s, ’n, ’t) tran = "’s × (’n, ’t) sym × ’s" — single
transition
type_synonym (’s, ’n, ’t) trans = "(’s, ’n, ’t) tran set" — set of auto.trans
type_synonym (’s, ’n, ’t) directT = "(’s, ’n, ’t) tran ⇒ (’s, ’n, ’t)
trans"
type_synonym (’s, ’n, ’t) implT = "(’s, ’n, ’t) tran ⇒ ((’s, ’n, ’t)
tran × (’s, ’n, ’t) tran) set"

record (’s, ’n, ’t) alg_state =
rel :: "(’s, ’n, ’t) trans"
trans :: "(’s, ’n, ’t) trans"
direct :: "(’s, ’n, ’t) directT"
impl :: "(’s, ’n, ’t) implT"

7.2 Procedure
definition alg_state_new :: "(’n, ’t) Prods ⇒ ’s set ⇒ (’s, ’n, ’t) trans
⇒ (’s, ’n, ’t) alg_state" where

"alg_state_new P Q T ≡ (|
rel = {},
trans = T
∪ { (q, Nt A, q) | q A. (A, []) ∈ P ∧ q ∈ Q }
∪ { (q, Nt A, q’) | q q’ A. ∃ a. (A, [Tm a]) ∈ P ∧ (q, Tm a, q’)

∈ T ∧ q ∈ Q ∧ q’ ∈ Q },
direct = (λ(q, X, q’). case X of

Nt B ⇒ { (q, Nt A, q’) | A. (A, [Nt B]) ∈ P ∧ q ∈ Q ∧ q’ ∈ Q
} |

Tm b ⇒ {}
),

45

impl = (λ(q, X, q’). case X of
Nt B ⇒ { ((q’, Nt C, q’’), (q, Nt A, q’’)) | q’’ A C. (A, [Nt B,

Nt C]) ∈ P ∧ q ∈ Q ∧ q’ ∈ Q ∧ q’’ ∈ Q } |
Tm b ⇒ {}

)
|)"

definition alg_inner_pre :: "(’s, ’n, ’t) alg_state ⇒ (’s, ’n, ’t) tran
⇒ (’s, ’n, ’t) alg_state" where

"alg_inner_pre S t ≡ S (|
— t is added to rel :
rel := (rel S) ∪ {t},
— t is removed, and direct(t) is added to trans :
trans := ((trans S) - {t}) ∪ direct S t,
— direct(t) is cleared:
direct := (direct S) (t := {})

|)"

definition alg_inner_post :: "(’s, ’n, ’t) alg_state ⇒ (’s, ’n, ’t) tran
⇒ (’s, ’n, ’t) alg_state" where

"alg_inner_post S t ≡ (
let i = impl S t in
S (|

— If (t’, t’’) ∈ impl(t) and t’ ∈ rel, then t’’ ∈ trans :
trans := (trans S) ∪

snd ‘ { (t’, t’’) ∈ i. t’ ∈ rel S },
— If (t’, t’’) ∈ impl(t) and t’ /∈ rel, then t’’ ∈ direct(t’):
direct := (λt’. direct S t’ ∪

snd ‘ { (t’2, t’’) ∈ i. t’ = t’2 ∧ t’ /∈ rel S }
),
— Inner while-loop removes everything from impl(t):
impl := (impl S) (t := {})

|)
)"

definition alg_outer_step :: "(’s, ’n, ’t) alg_state ⇒ (’s, ’n, ’t) tran
⇒ (’s, ’n, ’t) alg_state" where

"alg_outer_step S t ≡ alg_inner_post (alg_inner_pre S t) t"

abbreviation "alg_outer_step_lts S t ≡ rel S ∪ {t}"
abbreviation "alg_outer_step_trans S t ≡ (trans S) - {t} ∪ direct S t
∪ snd ‘ { (t’, t’’) ∈ impl S t. t’ ∈ rel S ∪ {t} }"
abbreviation "alg_outer_step_trans’ S t ≡ (trans S) - {t} ∪ direct S
t ∪ {t’’. ∃ t’. (t’, t’’) ∈ impl S t ∧ t’ ∈ rel S ∪ {t} }"
abbreviation "alg_outer_step_direct S t ≡ (λt’. ((direct S) (t := {}))
t’ ∪ snd ‘ { (t’2, t’’) ∈ impl S t. t’ = t’2 ∧ t’ /∈ (rel S) ∪ {t} })"
abbreviation "alg_outer_step_direct’ S t ≡ (λt’. ((direct S) (t := {}))
t’ ∪ {t’’. (t’, t’’) ∈ impl S t ∧ t’ /∈ (rel S) ∪ {t} })"
abbreviation "alg_outer_step_impl S t ≡ (impl S) (t := {})"

46

lemma alg_outer_step_trans_eq[simp]:
"alg_outer_step_trans S t = alg_outer_step_trans’ S t"
by (standard; force)

lemma alg_outer_step_direct_eq[simp]:
"alg_outer_step_direct S t = alg_outer_step_direct’ S t"
by force

lemma alg_outer_step_simps[simp]:
shows "rel (alg_outer_step S t) = alg_outer_step_lts S t"

and "trans (alg_outer_step S t) = alg_outer_step_trans S t"
and "direct (alg_outer_step S t) = alg_outer_step_direct S t"
and "impl (alg_outer_step S t) = alg_outer_step_impl S t"

proof -
define R where "R ≡ rel S ∪ {t}"
define T where "T ≡ ((trans S) - {t}) ∪ direct S t"
define D where "D ≡ (direct S) (t := {})"
define I where "I ≡ impl S"
note defs = R_def T_def D_def I_def

have R_subst: "rel (alg_inner_pre S t) = R"
by (simp add: R_def alg_inner_pre_def)

have T_subst: "trans (alg_inner_pre S t) = T"
by (simp add: T_def alg_inner_pre_def)

have D_subst: "direct (alg_inner_pre S t) = D"
by (simp add: D_def alg_inner_pre_def)

have I_subst: "impl (alg_inner_pre S t) = I"
by (simp add: I_def alg_inner_pre_def)

note substs = R_subst T_subst D_subst I_subst

have "rel (alg_inner_post (alg_inner_pre S t) t) = R ∪ {t}"
unfolding alg_inner_post_def substs
by (metis (no_types, lifting) R_def R_subst Un_absorb Un_insert_right

alg_state.select_convs(1) alg_state.surjective alg_state.update_convs(2,3,4)
sup_bot.right_neutral)

then show "rel (alg_outer_step S t) = rel S ∪ {t}"
by (simp add: substs defs alg_outer_step_def)

have "trans (alg_inner_post (alg_inner_pre S t) t) = T ∪ snd ‘ { (t’,
t’’) ∈ I t. t’ ∈ R }"

unfolding alg_inner_post_def substs
by (metis (no_types, lifting) alg_state.select_convs(2) alg_state.surjective

alg_state.update_convs(2,3,4))
then show "trans (alg_outer_step S t) = alg_outer_step_trans S t"

by (simp add: substs defs alg_outer_step_def)

have "direct (alg_inner_post (alg_inner_pre S t) t) = (λt’. D t’ ∪
snd ‘ { (t’2, t’’) ∈ I t. t’ = t’2 ∧ t’ /∈ R })"

47

unfolding alg_inner_post_def substs
using alg_state.select_convs(3) alg_state.surjective alg_state.update_convs(1,2,3,4)

proof -
have "∀ p. direct (alg_inner_pre S t (|trans := T ∪ snd ‘ {(pa, p).

(pa, p) ∈ I t ∧ pa ∈ R}, direct := λp. D p ∪ snd ‘ {(pb, pa). (pb, pa)
∈ I t ∧ p = pb ∧ p /∈ R}, impl := I(t := {})|)) p = D p ∪ snd ‘ {(pb,
pa). (pb, pa) ∈ I t ∧ p = pb ∧ p /∈ R}"

by simp
then show "direct (let r = I t in alg_inner_pre S t (|trans := T ∪

snd ‘ {(pa, p). (pa, p) ∈ r ∧ pa ∈ R}, direct := λp. D p ∪ snd ‘ {(pb,
pa). (pb, pa) ∈ r ∧ p = pb ∧ p /∈ R}, impl := I(t := {})|)) = (λp. D p
∪ snd ‘ {(pb, pa). (pb, pa) ∈ I t ∧ p = pb ∧ p /∈ R})"

by meson
qed
then show "direct (alg_outer_step S t) = alg_outer_step_direct S t"

by (simp add: substs defs alg_outer_step_def)

have "impl (alg_inner_post (alg_inner_pre S t) t) = I (t := {})"
unfolding alg_inner_post_def substs
by (metis (no_types, lifting) alg_state.select_convs(4) alg_state.surjective

alg_state.update_convs(4))
then show "impl (alg_outer_step S t) = alg_outer_step_impl S t"

by (simp add: substs defs alg_outer_step_def)
qed

definition alg_outer :: "(’s, ’n, ’t) alg_state ⇒ (’s, ’n, ’t) alg_state
option" where

"alg_outer ≡ while_option (λS. trans S 6= {}) (λS. alg_outer_step S
(SOME x. x ∈ trans S))"

lemma alg_outer_rule:
assumes "

∧
S x. P S =⇒ x ∈ trans S =⇒ P (alg_outer_step S x)"

and "alg_outer S = Some S’"
shows "P S =⇒ P S’"

proof -
let ?b = "λS. trans S 6= {}"
let ?c = "λS. alg_outer_step S (SOME x. x ∈ trans S)"
have "

∧
S. P S =⇒ trans S 6= {} =⇒ P (alg_outer_step S (SOME x. x

∈ trans S))"
by (simp add: assms some_in_eq)

with assms(2) show "P S =⇒ P S’"
unfolding alg_outer_def using while_option_rule[where b="?b" and

c="?c"] by blast
qed

48

7.3 Correctness
7.3.1 Subset
definition pre_star_alg_sub_inv :: "(’s, ’n, ’t) trans ⇒ (’s, ’n, ’t)
alg_state ⇒ bool" where

"pre_star_alg_sub_inv T’ S ≡ (
(trans S) ⊆ T’ ∧ (rel S) ⊆ T’ ∧
(∀ t’ ∈ T’. ∀ t ∈ direct S t’. t ∈ T’) ∧
(∀ t ∈ T’. ∀ (t’, t’’) ∈ impl S t. t’ ∈ T’ −→ t’’ ∈ T’)

)"

lemma alg_state_new_inv:
assumes "pre_star_lts P Q T = Some T’"
shows "pre_star_alg_sub_inv T’ (alg_state_new P Q T)"

proof -
define S where "S = alg_state_new P Q T"

have invR: "(rel S) ⊆ T’"
by (simp add: S_def alg_state_new_def)

have invT: "(trans S) ⊆ T’"
using pre_star_lts_mono[OF assms] pre_star_lts_refl[OF assms] pre_star_lts_singleton[OF

assms]
by(auto simp add: S_def alg_state_new_def)

have "
∧

q q’ X t. (q, X, q’) ∈ T’ =⇒ t ∈ direct S (q, X, q’) =⇒ t
∈ T’"

proof -
fix t and q X q’
assume "(q, X, q’) ∈ T’" and t_in: "t ∈ direct S (q, X, q’)"
show "t ∈ T’" proof (cases X)

case (Nt B)
then have "direct S (q, X, q’) = { (q, Nt A, q’) | A. (A, [Nt B])

∈ P ∧ q ∈ Q ∧ q’ ∈ Q }"
by (simp add: S_def alg_state_new_def)

then obtain A where t_split: "t = (q, Nt A, q’)"
and "(A, [Nt B]) ∈ P"
and inQ: "q ∈ Q ∧ q’ ∈ Q"

using prod_cases3 t_in by auto
moreover have "(q, Nt B, q’) ∈ T’"

using ‹(q, X, q’) ∈ T’› Nt by blast
moreover note assms
ultimately have "(q, Nt A, q’) ∈ T’"

by (intro pre_star_lts_singleton) (use inQ in blast)+
then show ?thesis

by (simp add: t_split)
next

case (Tm b)
then have "direct S (q, X, q’) = {}"

49

by (simp add: S_def alg_state_new_def)
then show ?thesis

using t_in by blast
qed

qed
then have invD: "∀ t’ ∈ T’. ∀ t ∈ direct S t’. t ∈ T’"

by fast

have "
∧

t t’ t’’. t ∈ T’ =⇒ (t’, t’’) ∈ impl S t =⇒ t’ ∈ T’ =⇒
t’’ ∈ T’"

proof -
fix t t’ t’’
assume "t ∈ T’" and "(t’, t’’) ∈ impl S t" and "t’ ∈ T’"
obtain q q’ X1 where t_split: "t = (q, X1, q’)"

by (elim prod_cases3)
show "t’’ ∈ T’" proof (cases X1)

case (Nt B)
have "impl S t = {((q’, Nt C, q’’), (q, Nt A, q’’)) |q’’ A C.

(A, [Nt B, Nt C]) ∈ P ∧ q ∈ Q ∧ q’ ∈ Q ∧ q’’ ∈ Q}"
by (simp add: S_def t_split Nt alg_state_new_def)

then obtain q’’ A C where t’_split: "t’ = (q’, Nt C, q’’)"
and t’’_split: "t’’ = (q, Nt A, q’’)" and "(A, [Nt B, Nt C])

∈ P"
and inQ: "q ∈ Q ∧ q’ ∈ Q & q’’ ∈ Q"

using ‹(t’, t’’) ∈ impl S t› by force

note ‹(A, [Nt B, Nt C]) ∈ P› and assms
moreover have "(q’, Nt C, q’’) ∈ T’"

using ‹t’ ∈ T’› by (simp add: t’_split)
moreover have "(q, Nt B, q’) ∈ T’"

using ‹t ∈ T’› by (simp add: t_split Nt)
ultimately have "(q, Nt A, q’’) ∈ T’"

by (intro pre_star_lts_impl) (use inQ in blast)+
then show ?thesis

unfolding t’’_split by assumption
next

case (Tm b)
have "impl S t = {}"

by (simp add: S_def t_split Tm alg_state_new_def)
then show ?thesis

using ‹(t’, t’’) ∈ impl S t› by simp
qed

qed
then have invI: "∀ t ∈ T’. ∀ (t’, t’’) ∈ impl S t. t’ ∈ T’ −→ t’’

∈ T’"
by fast

from invR invT invD invI show ?thesis
unfolding pre_star_alg_sub_inv_def S_def by blast

50

qed

lemma alg_outer_step_inv:
assumes "pre_star_lts P Q T = Some T’" and "t ∈ trans S" and "pre_star_alg_sub_inv

T’ S"
shows "pre_star_alg_sub_inv T’ (alg_outer_step S t)"

proof -
note inv[simp] = assms(3)[unfolded pre_star_alg_sub_inv_def]
have [simp]: "t ∈ T’"

using assms(2) assms(3) unfolding pre_star_alg_sub_inv_def by blast
moreover have invi: "∀ (t’, t’’) ∈ impl (alg_outer_step S t) t. t’

∈ T’ −→ t’’ ∈ T’"
by simp

moreover have invR: "rel (alg_outer_step S t) ⊆ T’"
by simp

moreover have invT: "trans (alg_outer_step S t) ⊆ T’"
unfolding alg_outer_step_simps(2) alg_outer_step_trans_eq
using inv invi ‹t ∈ T’› by blast

moreover have invD: "∀ t’ ∈ T’. ∀ t ∈ direct (alg_outer_step S t) t’.
t ∈ T’"

unfolding alg_outer_step_simps(3) alg_outer_step_direct_eq using inv
invi ‹t ∈ T’›

by (metis (no_types, lifting) Un_iff case_prod_conv empty_iff fun_upd_apply
mem_Collect_eq)

moreover have invI: "∀ t2 ∈ T’. ∀ (t’, t’’) ∈ impl (alg_outer_step
S t) t2. t’ ∈ T’ −→ t’’ ∈ T’"

by simp
ultimately show ?thesis

unfolding pre_star_alg_sub_inv_def by blast
qed

lemma alg_outer_inv:
assumes "pre_star_lts P Q T = Some T’" and "pre_star_alg_sub_inv T’

S"
and "alg_outer S = Some S’"

shows "pre_star_alg_sub_inv T’ S’"
proof -

note assms’ = assms(1,2) assms(3)[unfolded alg_outer_def]
have "

∧
s. pre_star_alg_sub_inv T’ s =⇒ trans s 6= {} =⇒

pre_star_alg_sub_inv T’ (alg_outer_step s (SOME x. x ∈ trans s))"
by (rule alg_outer_step_inv; use assms someI_ex in fast)

then show ?thesis
by (rule while_option_rule[where P="pre_star_alg_sub_inv T’"]) (use

assms’ in blast)+
qed

lemma pre_star_alg_sub:
fixes P and T
assumes "alg_outer (alg_state_new P Q T) = Some S’" and "pre_star_lts

51

P Q T = Some T’"
shows "rel S’ ⊆ T’"

proof -
have "pre_star_alg_sub_inv T’ (alg_state_new P Q T)"

using assms by (elim alg_state_new_inv)
with assms have "pre_star_alg_sub_inv T’ S’"

by (intro alg_outer_inv[where S="alg_state_new P Q T" and T’=T’
and S’=S’]; simp)

then show ?thesis
unfolding pre_star_alg_sub_inv_def by blast

qed

7.3.2 Super-Set
lemma alg_outer_fixpoint: "alg_outer S = Some S’ =⇒ alg_outer S’ = Some
S’"

unfolding alg_outer_def by (metis (lifting) while_option_stop while_option_unfold)

lemma pre_star_alg_trans_empty: "alg_outer S = Some S’ =⇒ trans S’ =
{}"

using while_option_stop unfolding alg_outer_def by fast

lemma alg_outer_step_direct: "t 6= t’ =⇒ direct S t’ ⊆ direct (alg_outer_step
S t) t’"

by simp

lemma alg_outer_step_impl: "(impl S) (t := {}) = impl (alg_outer_step
S t)"

by simp

lemma alg_outer_step_impl_to_trans[intro]:
assumes "(t’, t’’) ∈ impl S t" and "t’ ∈ rel S ∨ t = t’"
shows "t’’ ∈ trans (alg_outer_step S t)"
using assms unfolding alg_outer_step_simps alg_outer_step_trans_eq by

blast

lemma alg_outer_step_impl_to_direct[intro]:
assumes "(t’, t’’) ∈ impl S t" and "t’ /∈ rel S" and "t 6= t’"
shows "t’’ ∈ direct (alg_outer_step S t) t’"
using assms unfolding alg_outer_step_simps alg_outer_step_direct_eq

by blast

— Everything from trans is eventually added to rel :
lemma pre_star_alg_trans_to_lts:

assumes "alg_outer S = Some S’"
shows "trans S ⊆ rel S’"

proof
fix x
assume "x ∈ trans S"

52

have "x ∈ trans S’ ∨ x ∈ rel S’"
by (rule alg_outer_rule[where P="λS. x ∈ trans S ∨ x ∈ rel S"];

use assms ‹x ∈ trans S› in auto)
then show "x ∈ rel S’"

using assms pre_star_alg_trans_empty by blast
qed

— If t is added to rel, then so is direct(t):
lemma pre_star_alg_direct_to_lts:

fixes S0 :: "(’s, ’n, ’t) alg_state"
assumes "alg_outer S0 = Some S’"

and "t /∈ rel S0" and "t ∈ rel S’"
shows "direct S0 t ⊆ rel S’"

proof -
let ?I = "λS. (t /∈ rel S ∧ direct S0 t ⊆ direct S t) ∨ (direct S0

t ⊆ rel S ∪ trans S)"
have "

∧
S t. ?I S =⇒ t ∈ trans S =⇒ ?I (alg_outer_step S t)"

proof -
fix S :: "(’s, ’n, ’t) alg_state" and t’
assume assm1: "(t /∈ rel S ∧ direct S0 t ⊆ direct S t) ∨ (direct

S0 t ⊆ rel S ∪ trans S)"
and assm2: "t’ ∈ trans S"

show "?I (alg_outer_step S t’)"
proof (cases "t = t’")

case True
then show ?thesis

using assm1 by auto
next

case False
consider "t /∈ rel S ∧ direct S0 t ⊆ direct S t" | "direct S0 t

⊆ rel S ∪ trans S"
using assm1 by blast

then show ?thesis
by (cases; auto)

qed
qed
with assms have "?I S’"

by (elim alg_outer_rule[where P="?I"]) simp+
then show ?thesis

using assms pre_star_alg_trans_empty by blast
qed

— If t and t’ are added to rel, then so are all t’’ from (t’, t’’) ∈ impl(t):
lemma pre_star_alg_impl_to_lts:

fixes S0 :: "(’s, ’n, ’t) alg_state"
assumes "alg_outer S0 = Some S’"

and "t /∈ rel S0" and "t’ /∈ rel S0"
and "(t’, t’’) ∈ impl S0 t"

53

and "t ∈ rel S’" and "t’ ∈ rel S’"
shows "t’’ ∈ rel S’"

proof -
let ?I = "λS. (t /∈ rel S ∧ (t’, t’’) ∈ impl S t)

∨ (t’ /∈ rel S ∧ t’’ ∈ direct S t’)
∨ (t’’ ∈ rel S ∪ trans S)"

have "
∧

S x. ?I S =⇒ x ∈ trans S =⇒ ?I (alg_outer_step S x)"
proof -

fix S :: "(’s, ’n, ’t) alg_state" and x
assume "?I S" and "x ∈ trans S"
then show "?I (alg_outer_step S x)"
proof (elim disjE)

assume assm1: "x ∈ trans S" and assm2: "t /∈ rel S ∧ (t’, t’’)
∈ impl S t"

then show "?I (alg_outer_step S x)"
proof (cases "x = t")

case True
then show ?thesis
proof (cases "t’ ∈ rel S ∨ t = t’")

case True
with assm2 have "t’’ ∈ trans (alg_outer_step S t)"

by (intro alg_outer_step_impl_to_trans[of t’ t’’ S t]; simp)
then show ?thesis

by (simp add: ‹x = t›)
next

case False
then have "t’ /∈ rel S ∪ {t}"

using False by blast
then have "t’ /∈ rel (alg_outer_step S t)"

by simp
moreover with False assm2 have "t’’ ∈ direct (alg_outer_step

S t) t’"
by (intro alg_outer_step_impl_to_direct[of t’ t’’ S t]; simp)

ultimately show ?thesis
by (simp add: ‹x = t›)

qed
next

case False
then show ?thesis

using alg_outer_step_impl assm2 by simp
qed

next
assume assm1: "x ∈ trans S" and assm2: "t’ /∈ rel S ∧ t’’ ∈ direct

S t’"
then show "?I (alg_outer_step S x)"

by (cases "x = t’"; simp)
next

assume "x ∈ trans S" and "t’’ ∈ rel S ∪ trans S"

54

then show "?I (alg_outer_step S x)"
by force

qed
qed
with assms have "?I S’"

by (elim alg_outer_rule[where P="?I"]) simp+
then show ?thesis proof (elim disjE)

assume "t /∈ rel S’ ∧ (t’, t’’) ∈ impl S’ t"
then show "t’’ ∈ rel S’"

using assms(5) by blast
next

assume "t’ /∈ rel S’ ∧ t’’ ∈ direct S’ t’"
moreover have "alg_outer S’ = Some S’"

using assms(1) by (rule alg_outer_fixpoint)
ultimately show "t’’ ∈ rel S’"

using pre_star_alg_direct_to_lts assms(6) by blast
next

assume " t’’ ∈ rel S’ ∪ trans S’"
then show "t’’ ∈ rel S’"

using assms(1) pre_star_alg_trans_empty by blast
qed

qed

— Reflexive auto.trans are eventually added to rel :
lemma pre_star_alg_new_refl_to_trans:

assumes "S = alg_state_new P Q T" and "(A, []) ∈ P" and "q ∈ Q"
shows "(q, Nt A, q) ∈ trans S"
using assms by (simp add: alg_state_new_def)

lemma pre_star_alg_refl_to_lts:
assumes "alg_outer (alg_state_new P Q T) = Some S’" and "(A, []) ∈

P" and "q ∈ Q"
shows "(q, Nt A, q) ∈ rel S’"
using assms pre_star_alg_new_refl_to_trans pre_star_alg_trans_to_lts

by fast

— Lemmas for singleton productions, i.e. A → B or A → b :
lemma pre_star_alg_singleton_nt_to_lts:

assumes "alg_outer (alg_state_new P Q T) = Some S’"
and "(A, [Nt B]) ∈ P" and "q ∈ Q" and "q’ ∈ Q"

shows "(q, Nt B, q’) ∈ rel S’ =⇒ (q, Nt A, q’) ∈ rel S’"
proof -

have "(q, Nt A, q’) ∈ direct (alg_state_new P Q T) (q, Nt B, q’)"
using assms by (simp add: alg_state_new_def)

moreover have "(q, Nt B, q’) /∈ rel (alg_state_new P Q T)"
by (simp add: alg_state_new_def)

ultimately show "(q, Nt B, q’) ∈ rel S’ =⇒ (q, Nt A, q’) ∈ rel S’"
using assms(1) pre_star_alg_direct_to_lts by blast

qed

55

lemma pre_star_alg_tm_only_from_delta:
fixes S’ :: "(’s, ’n, ’t) alg_state"
assumes "alg_outer (alg_state_new P Q T) = Some S’"

and "(q, Tm b, q’) ∈ rel S’" and "q ∈ Q" and "q’ ∈ Q"
shows "(q, Tm b, q’) ∈ T"

proof -
define i where "i ≡ (λt. t = (q, Tm b::(’n, ’t) sym, q’) −→ t ∈ T)"
define I :: "(’s, ’n, ’t) alg_state ⇒ bool"

where "I ≡ (λS. (∀ t ∈ rel S. i t) ∧ (∀ t ∈ trans S. i t)
∧ (∀ t. ∀ t’ ∈ direct S t. i t’) ∧ (∀ t. ∀ (t’, t’’) ∈ impl S t.

i t’ ∧ i t’’))"

have "I (alg_state_new P Q T)"
unfolding alg_state_new_def I_def i_def
by (auto split: sym.splits intro: sym.exhaust)

moreover have "
∧

S t. I S =⇒ t ∈ trans S =⇒ I (alg_outer_step S
t)"

unfolding I_def i_def alg_outer_step_simps
by (auto split: sym.splits; blast)

ultimately have "I S’"
using assms(1) by (elim alg_outer_rule)

then show ?thesis
using assms(2) by (simp add: I_def i_def)

qed

lemma pre_star_alg_singleton_tm_to_lts:
assumes "alg_outer (alg_state_new P Q T) = Some S’" and "(A, [Tm b])

∈ P"
and "(q, Tm b, q’) ∈ rel S’" and "q ∈ Q" and "q’ ∈ Q"

shows "(q, Nt A, q’) ∈ rel S’"
proof -

have "(q, Tm b, q’) ∈ T"
using assms pre_star_alg_tm_only_from_delta by fast

then have "(q, Nt A, q’) ∈ trans (alg_state_new P Q T)"
by (auto simp: alg_state_new_def assms)

then show ?thesis
using pre_star_alg_trans_to_lts assms(1) by blast

qed

lemma pre_star_alg_singleton_to_lts:
assumes "alg_outer (alg_state_new P Q T) = Some S’"

and "(A, [X]) ∈ P" and "q ∈ Q" and "q’ ∈ Q"
shows "(q, X, q’) ∈ rel S’ =⇒ (q, Nt A, q’) ∈ rel S’"
using assms pre_star_alg_singleton_nt_to_lts pre_star_alg_singleton_tm_to_lts

by (cases X; fast)

— Lemmas for dual productions, i.e. A → AB :
lemma pre_star_alg_dual_to_lts:

56

assumes "alg_outer (alg_state_new P Q T) = Some S’" and "(A, [Nt B,
Nt C]) ∈ P"

and "(q, Nt B, q’) ∈ rel S’" and "(q’, Nt C, q’’) ∈ rel S’"
and "q ∈ Q" and "q’ ∈ Q" and "q’’ ∈ Q"

shows "(q, Nt A, q’’) ∈ rel S’"
proof -

define S where [simp]: "S ≡ alg_state_new P Q T"
have "(q, Nt B, q’) /∈ rel S" and "(q’, Nt C, q’’) /∈ rel S"

by (simp add: alg_state_new_def)+
moreover have "((q’, Nt C, q’’), (q, Nt A, q’’)) ∈ impl S (q, Nt B,

q’)"
using assms by (simp add: alg_state_new_def)

moreover have "alg_outer S = Some S’"
by (simp add: assms(1))

ultimately show ?thesis
using assms(3,4) by (elim pre_star_alg_impl_to_lts; force)

qed

lemma pre_star_alg_sup:
fixes P and T :: "(’s, ’n, ’t) trans" and q0

defines "Q ≡ {q0} ∪ states_lts T"
defines "S ≡ alg_state_new P Q T"
assumes "alg_outer S = Some S’"

and "pre_star_lts P Q T = Some T’"
and "CNF1 P"

shows "T’ ⊆ rel S’"
proof -

— If t ∈ T, then t is eventually added to rel :
have base: "T ⊆ rel S’" and "Q = {q0} ∪ states_lts T"
proof

fix t
assume "t ∈ T"
then have "t ∈ trans S"

by (simp add: S_def alg_state_new_def)
then show "t ∈ rel S’"

using assms(3) pre_star_alg_trans_to_lts by blast
next

show "Q = {q0} ∪ states_lts T"
by (simp add: Q_def)

qed

define b where "b ≡ (λT::(’s, ’n, ’t) trans. T ∪ pre_lts P Q T 6=
T)"

define c where "c ≡ (λT::(’s, ’n, ’t) trans. T ∪ pre_lts P Q T)"

have "
∧

t T. Q = {q0} ∪ states_lts T =⇒ T ⊆ rel S’ =⇒ t ∈ pre_lts
P Q T =⇒ t ∈ rel S’"

proof -
fix T and t

57

assume q_reach: "Q = {q0} ∪ states_lts T" "T ⊆ rel S’" and t_src:
"t ∈ pre_lts P Q T"

then obtain q q’ A β where t_split: "t = (q, Nt A, q’)" and "(A,
β) ∈ P" and "q’ ∈ steps_lts T β q"

unfolding pre_lts_def by blast
moreover have q_in: "q ∈ Q ∧ q’ ∈ Q"

using t_src calculation steps_states_lts[of T] unfolding pre_lts_def
q_reach(1)

using fst_conv by blast
ultimately consider "β = []" | "∃ X. β = [X]" | "∃ B C. β = [Nt B,

Nt C]"
using assms(5)[unfolded CNF1_def] by fast

then have "(q, Nt A, q’) ∈ rel S’" proof (cases)
case 1
then have "q = q’"

using ‹q’ ∈ steps_lts T β q› by (simp add: Steps_lts_def)
moreover have "(A, []) ∈ P"

using ‹(A, β) ∈ P›[unfolded 1] by assumption
ultimately show ?thesis

using assms(2,3) q_in pre_star_alg_refl_to_lts by fast
next

case 2
then obtain X where β_split: "β = [X]"

by blast
then have "(q, X, q’) ∈ rel S’"

using ‹q’ ∈ steps_lts T β q› ‹T ⊆ rel S’› by (auto simp: Steps_lts_def
Step_lts_def step_lts_def)

moreover have "(A, [X]) ∈ P"
using ‹(A, β) ∈ P›[unfolded β_split] by assumption

ultimately show ?thesis
using assms(2,3) q_in pre_star_alg_singleton_to_lts by fast

next
case 3
then obtain B C where β_split: "β = [Nt B, Nt C]"

by blast
then obtain q’’ where "q’ ∈ steps_lts T [Nt C] q’’" and "q’’

∈ steps_lts T [Nt B] q"
using β_split ‹q’ ∈ steps_lts T β q› Steps_lts_split by force

then have "(q, Nt B, q’’) ∈ rel S’" and "(q’’, Nt C, q’) ∈ rel
S’"

using ‹q’ ∈ steps_lts T β q› ‹T ⊆ rel S’› by (auto simp: steps_lts_defs)
moreover have "(q, Nt B, q’’) ∈ T"

using ‹q’’ ∈ steps_lts T [Nt B] q› by (auto simp: steps_lts_defs)
moreover have "q’’ ∈ Q"

using q_reach(1) steps_states_lts[of T Q q] q_in ‹q’’ ∈ steps_lts
T [Nt B] q› by blast

moreover have "(A, [Nt B, Nt C]) ∈ P"
using ‹(A, β) ∈ P›[unfolded β_split] by assumption

ultimately show ?thesis

58

using assms(2,3) q_in pre_star_alg_dual_to_lts by fast
qed
then show "t ∈ rel S’"

by (simp add: t_split)
qed
moreover have "

∧
T. Q = {q0} ∪ states_lts T =⇒ Q = {q0} ∪ states_lts

(T ∪ pre_lts P Q T)"
using states_pre_lts unfolding states_lts_Un
by (metis Un_assoc Un_upper2 sup.order_iff)

ultimately have step: "
∧

T. (T ⊆ rel S’ ∧ Q = {q0} ∪ states_lts T)
=⇒ T ∪ pre_lts P Q T 6= T

=⇒ (T ∪ pre_lts P Q T ⊆ rel S’ ∧ Q = {q0} ∪ states_lts (T ∪ pre_lts
P Q T))"

by (smt (verit, del_insts) Un_iff subset_eq)

note base step
moreover note assms(4)[unfolded pre_star_lts_def] b_def c_def
ultimately have "T’ ⊆ rel S’ ∧ Q = {q0} ∪ states_lts T’"

by (elim pre_star_lts_rule; use assms in simp)
then show "T’ ⊆ rel S’"

by simp
qed

7.4 Termination
definition "alg_state_m_d S ≡ ({t. direct S t 6= {}})"
definition "alg_state_m_i S ≡ ({t. impl S t 6= {}})"

lemma alg_state_m_i_step_weak:
assumes "t ∈ trans S"
shows "alg_state_m_i (alg_outer_step S t) ⊆ alg_state_m_i S"
by (auto simp: alg_state_m_i_def)

lemma alg_state_m_i_step:
assumes "t ∈ trans S" and "impl S t 6= {}"
shows "alg_state_m_i (alg_outer_step S t) ⊂ alg_state_m_i S"
using assms by (auto simp: alg_state_m_i_def)

lemma alg_state_m_d_step_weak:
assumes "t ∈ trans S" and "impl S t = {}"
shows "alg_state_m_d (alg_outer_step S t) ⊆ alg_state_m_d S"
using assms by (auto simp: alg_state_m_d_def)

lemma alg_state_m_d_step:
assumes "t ∈ trans S" and "impl S t = {}" and "direct S t 6= {}"
shows "alg_state_m_d (alg_outer_step S t) ⊂ alg_state_m_d S"
using assms by (auto simp: alg_state_m_d_def)

lemma alg_state_m_trans_step:

59

assumes "t ∈ trans S" and "impl S t = {}" and "direct S t = {}"
shows "trans (alg_outer_step S t) ⊂ trans S"
using assms by auto

lemmas alg_state_m_intros = alg_state_m_i_step_weak alg_state_m_i_step
alg_state_m_d_step_weak alg_state_m_d_step alg_state_m_trans_step

definition "alg_state_comp ≡ lex_prod less_than (lex_prod less_than less_than)"

definition alg_state_measure :: "(’s, ’n, ’t) alg_state ⇒ (nat × nat
× nat)" where

"alg_state_measure S ≡ (card (alg_state_m_i S), card (alg_state_m_d
S), card (trans S))"

lemma wf_alg_state_comp: "wf (inv_image alg_state_comp alg_state_measure)"
unfolding alg_state_comp_def by (intro wf_inv_image) blast

definition alg_state_fin_inv :: "(’s, ’n, ’t) alg_state ⇒ bool" where
"alg_state_fin_inv S ≡ (

finite (rel S) ∧ finite (trans S) ∧
(∀ t. finite (direct S t)) ∧ finite (alg_state_m_d S) ∧
(∀ t. finite (impl S t)) ∧ finite (alg_state_m_i S)

)"

lemma alg_state_fin_inv_step:
assumes "alg_state_fin_inv S"

and "t ∈ trans S"
shows "alg_state_fin_inv (alg_outer_step S t)"
unfolding alg_state_fin_inv_def

proof (intro conjI)
show "finite (rel (alg_outer_step S t))"

by (simp add: assms[unfolded alg_state_fin_inv_def])
next

have "{t’’. ∃ t’. (t’, t’’) ∈ impl S t ∧ t’ ∈ alg_outer_step_lts S
t} ⊆ snd ‘ impl S t"

by force
moreover have "finite (snd ‘ impl S t)"

using assms[unfolded alg_state_fin_inv_def] by blast
ultimately have "finite {t’’. ∃ t’. (t’, t’’) ∈ impl S t ∧ t’ ∈ alg_outer_step_lts

S t}"
by (elim finite_subset)

then show "finite (trans (alg_outer_step S t))"
using assms[unfolded alg_state_fin_inv_def]
unfolding alg_outer_step_simps alg_outer_step_trans_eq by blast

next
have "

∧
t’. {t’’. (t’, t’’) ∈ impl S t ∧ t’ /∈ alg_outer_step_lts S

t} ⊆ snd ‘ impl S t"
by force

moreover have "finite (snd ‘ impl S t)"

60

using assms[unfolded alg_state_fin_inv_def] by blast
ultimately have "

∧
t’. finite {t’’. (t’, t’’) ∈ impl S t ∧ t’ /∈ alg_outer_step_lts

S t}"
using finite_subset by blast

moreover have "
∧

t’. finite (((direct S)(t := {})) t’)"
using assms[unfolded alg_state_fin_inv_def] by (auto simp: alg_state_m_d_def)

ultimately show "∀ t’. finite (direct (alg_outer_step S t) t’)"
unfolding alg_outer_step_simps alg_outer_step_direct_eq by blast

next
have "alg_state_m_d (alg_outer_step S t) ⊆ alg_state_m_d S ∪ fst ‘

impl S t"
unfolding alg_outer_step_simps alg_state_m_d_def by (auto, force)

moreover have "finite (alg_state_m_d S ∪ fst ‘ impl S t)"
using assms[unfolded alg_state_fin_inv_def] by blast

ultimately show "finite (alg_state_m_d (alg_outer_step S t))"
using finite_subset by blast

next
show "∀ t’. finite (impl (alg_outer_step S t) t’)"

by (simp add: assms[unfolded alg_state_fin_inv_def])
next

have "finite (alg_state_m_i S)"
by (simp add: assms(1)[unfolded alg_state_fin_inv_def])

moreover have "alg_state_m_i (alg_outer_step S t) ⊆ alg_state_m_i
S"

using assms(2) by (rule alg_state_m_i_step_weak)
ultimately show "finite (alg_state_m_i (alg_outer_step S t))"

by (elim finite_subset)
qed

lemma alg_state_fin_inv_step’:
assumes "alg_state_fin_inv s" and "trans s 6= {}"
shows "alg_state_fin_inv (alg_outer_step s (SOME x. x ∈ trans s))"
using assms alg_state_fin_inv_step by (metis some_in_eq)

lemma wf_alg_outer_step:
defines "b ≡ (λS. trans S 6= {})"

and "c ≡ (λS. alg_outer_step S (SOME x. x ∈ trans S))"
shows "wf {(t, s). (alg_state_fin_inv s ∧ b s) ∧ t = c s}"

proof -
have "

∧
S t. t ∈ trans S =⇒ alg_state_fin_inv S =⇒ b S =⇒ (alg_outer_step

S t, S) ∈ inv_image alg_state_comp alg_state_measure"
proof -

fix S and t
assume "t ∈ trans S" and inv: "alg_state_fin_inv S" and "b S"

obtain n1 n2 n3 where n_def: "alg_state_measure S = (n1, n2, n3)"
using prod_cases3 by blast

then have n1_def: "n1 = card (alg_state_m_i S) ∧ finite (alg_state_m_i
S)"

61

and n2_def: "n2 = card (alg_state_m_d S) ∧ finite (alg_state_m_d
S)"

and n3_def: "n3 = card (trans S) ∧ finite (trans S)"
using inv by (simp add: alg_state_measure_def alg_state_fin_inv_def)+

define S’ where "S’ ≡ alg_outer_step S t"

obtain m1 m2 m3 where m_def: "alg_state_measure S’ = (m1, m2, m3)"
using prod_cases3 by blast

moreover have "alg_state_fin_inv S’"
using inv ‹t ∈ trans S› alg_state_fin_inv_step unfolding S’_def

b_def by blast
ultimately have m1_def: "m1 = card (alg_state_m_i S’) ∧ finite (alg_state_m_i

S’)"
and m2_def: "m2 = card (alg_state_m_d S’) ∧ finite (alg_state_m_d

S’)"
and m3_def: "m3 = card (trans S’) ∧ finite (trans S’)"

by (simp add: S’_def alg_state_measure_def alg_state_fin_inv_def)+

consider (red1) "impl S t 6= {}"
| (red2) "impl S t = {} ∧ direct S t 6= {}"
| (red3) "impl S t = {} ∧ direct S t = {}"
by blast

then have "((m1, m2, m3), (n1, n2, n3)) ∈ alg_state_comp"
proof (cases)

case red1
with ‹t ∈ trans S› have "alg_state_m_i S’ ⊂ alg_state_m_i S"

by (simp add: alg_state_m_intros[where t=t and S=S] S’_def)+
then have "m1 < n1"

using m1_def n1_def by (simp add: psubset_card_mono)
then show ?thesis

by (simp add: alg_state_comp_def)
next

case red2
with ‹t ∈ trans S› have "alg_state_m_i S’ ⊆ alg_state_m_i S"

and "alg_state_m_d S’ ⊂ alg_state_m_d S"
by (simp add: alg_state_m_intros[where t=t and S=S] S’_def)+

then have "m1 ≤ n1" and "m2 < n2"
using m1_def m2_def n1_def n2_def
by (simp add: psubset_card_mono card_mono)+

then show ?thesis
by (auto simp: alg_state_comp_def)

next
case red3
then have "alg_state_m_i S’ ⊆ alg_state_m_i S"

and "alg_state_m_d S’ ⊆ alg_state_m_d S"
and "trans S’ ⊂ trans S"
using ‹t ∈ trans S› alg_state_m_intros[where t=t and S=S] by

(simp add: S’_def)+

62

then have "m1 ≤ n1" and "m2 ≤ n2" and "m3 < n3"
using m1_def m2_def m3_def n1_def n2_def n3_def
by (simp add: psubset_card_mono card_mono)+

then show ?thesis
by (auto simp: alg_state_comp_def)

qed
then show "(alg_outer_step S t, S) ∈ inv_image alg_state_comp alg_state_measure"

using m_def n_def by (simp add: S’_def)
qed
then have "{(t, s). (alg_state_fin_inv s ∧ b s) ∧ t = c s} ⊆ inv_image

alg_state_comp alg_state_measure"
unfolding c_def b_def
by (smt (verit, ccfv_SIG) all_not_in_conv mem_Collect_eq old.prod.case

some_eq_imp subrelI)
with wf_alg_state_comp show ?thesis

by (rule wf_subset)
qed

lemma alg_outer_terminates:
assumes "alg_state_fin_inv S"
shows "∃ S’. alg_outer S = Some S’"
unfolding alg_outer_def
by (intro wf_while_option_Some; use wf_alg_outer_step alg_state_fin_inv_step’

assms in fast)

lemma alg_state_new_fin_inv:
fixes T :: "(’s, ’n, ’t) trans"
assumes "finite P" and "finite Q" and "finite T"
shows "alg_state_fin_inv (alg_state_new P Q T)"
unfolding alg_state_fin_inv_def

proof (intro conjI)
show "finite (rel (alg_state_new P Q T))"

by (simp add: alg_state_new_def)
next

note assms(3)
moreover have "finite {(q, Nt A, q) |q A. (A, []) ∈ P ∧ q ∈ Q}"

by (rule finite_subset[where B="Q × (Nt ‘ fst ‘ P) × Q"]; use assms
in force)

moreover have "finite {(q, Nt A, q’) |q q’ A. ∃ a. (A, [Tm a]) ∈ P
∧ (q, Tm a, q’) ∈ T ∧ q ∈ Q ∧ q’ ∈ Q}"

by (rule finite_subset[where B="Q × (Nt ‘ fst ‘ P) × Q"]; use assms
in force)

ultimately show "finite (trans (alg_state_new P Q T))"
by (simp add: alg_state_new_def)

next
have "

∧
q q’ B. finite {(q, Nt A, q’) |A. (A, [Nt B]) ∈ P ∧ q ∈ Q ∧

q’ ∈ Q}"
by (rule finite_subset[where B="Q × (Nt ‘ fst ‘ P) × Q"]; use assms

in force)

63

then show "∀ t. finite (direct (alg_state_new P Q T) t)"
unfolding alg_state_new_def by (auto split: sym.split)

next
have "alg_state_m_d (alg_state_new P Q T) ⊆ Q × hd ‘ snd ‘ P × Q"

unfolding alg_state_new_def alg_state_m_d_def by (auto split: sym.splits)
force

moreover have "finite (hd ‘ snd ‘ P)"
using assms(1) by simp

ultimately show "finite (alg_state_m_d (alg_state_new P Q T))"
using assms(2) finite_subset by blast

next
have "

∧
t. impl (alg_state_new P Q T) t ⊆ (Q × hd ‘ tl ‘ snd ‘ P ×

Q) × (Q × Nt ‘ fst ‘ P × Q)"
unfolding alg_state_new_def by (auto split: sym.splits) force+

moreover have "finite ((Q × hd ‘ tl ‘ snd ‘ P × Q) × (Q × Nt ‘ fst
‘ P × Q))"

using assms(1,2) by simp
ultimately show "∀ t. finite (impl (alg_state_new P Q T) t)"

using finite_subset by blast
next

have "alg_state_m_i (alg_state_new P Q T) ⊆ Q × hd ‘ snd ‘ P × Q"
unfolding alg_state_new_def alg_state_m_i_def by (auto split: sym.splits)

force
moreover have "finite (hd ‘ snd ‘ P)"

using assms(1) by simp
ultimately show "finite (alg_state_m_i (alg_state_new P Q T))"

using assms(2) finite_subset by blast
qed

7.5 Final Algorithm
definition pre_star_code_cnf :: "(’n, ’t) Prods ⇒ (’s, (’n, ’t) sym) auto
⇒ (’s, (’n, ’t) sym) auto" where

"pre_star_code_cnf P M ≡ (
— Construct the set of “interesting” states:
let Q = {auto.start M} ∪ states_lts (auto.lts M) in
let S = alg_state_new P Q (auto.lts M) in
case alg_outer S of

Some S’ ⇒ M (| auto.lts := (rel S’) |)
)"

lemma pre_star_code_cnf_correct:
assumes "finite P" and "finite (auto.lts M)" and cnf: "CNF1 P"
shows "Lang_auto (pre_star_code_cnf P M) = pre_star P (Lang_auto M)"

proof -
define Q where "Q ≡ {auto.start M} ∪ states_lts (auto.lts M)"
have "finite Q"

using assms(2) by (auto simp add: states_lts_def Q_def)

64

define S where "S ≡ alg_state_new P Q (auto.lts M)"
have "alg_state_fin_inv S"

using alg_state_new_fin_inv assms(1,2) ‹finite Q› by (simp add: S_def)
then obtain S’ where S’_def: "alg_outer S = Some S’"

using alg_outer_terminates by blast

obtain T’ where T’_def: "pre_star_lts P Q (auto.lts M) = Some T’"
using pre_star_lts_terminates assms(1,2) ‹finite Q›
by (metis Q_def sup_ge2)

moreover have "rel S’ ⊆ T’"
using S’_def T’_def pre_star_alg_sub unfolding S_def by blast

moreover have "T’ ⊆ rel S’"
using S’_def T’_def cnf pre_star_alg_sup unfolding S_def Q_def by

fast
ultimately have "rel S’ = T’"

by simp

have "pre_star_auto P M = pre_star_code_cnf P M"
unfolding pre_star_auto_def pre_star_code_cnf_def
using T’_def S’_def ‹rel S’ = T’› unfolding S_def Q_def by simp

then show ?thesis
using pre_star_auto_correct assms(1,2) by metis

qed

end

References

[BEF+00] Ahmed Bouajjani, Javier Esparza, Alain Finkel, Oded Maler,
Peter Rossmanith, Bernard Willems, and Pierre Wolper. An effi-
cient automata approach to some problems on context-free gram-
mars. Information Processing Letters, 74(5-6):221–227, 2000.
URL: https://doi.org/10.1016/S0020-0190(00)00055-7.

[BO93] Ronald V Book and Friedrich Otto. String-rewriting systems.
Springer, 1993.

[Büc59] J. Richard Büchi. Regular canonical systems. Technical Report
3105 2794-7-T, Univ. of Michigan, 1959.

[Cau92] Didier Caucal. On the regular structure of prefix rewriting. The-
oretical Computer Science, 106(1):61–86, 1992.

[ER97] Javier Esparza and Peter Rossmanith. An automata approach to
some problems on context-free grammars. In Christian Freksa,
Matthias Jantzen, and Rüdiger Valk, editors, Foundations of
Computer Science: Potential - Theory - Cognition, to Wilfried

65

https://doi.org/10.1016/S0020-0190(00)00055-7

Brauer on the occasion of his sixtieth birthday, volume 1337 of
Lecture Notes in Computer Science, pages 143–152. Springer,
1997. URL: https://doi.org/10.1007/BFb0052083.

[Lam09] Peter Lammich. Formalization of dynamic pushdown networks in
Isabelle/HOL. 2009. URL: https://www21.in.tum.de/~lammich/
isabelle/dpn-document.pdf.

[SSST23] Anders Schlichtkrull, Morten Konggaard Schou, Jiri Srba, and
Dmitriy Traytel. Pushdown systems. Archive of Formal Proofs,
October 2023. https://isa-afp.org/entries/Pushdown_Systems.
html, Formal proof development.

66

https://doi.org/10.1007/BFb0052083
https://www21.in.tum.de/~lammich/isabelle/dpn-document.pdf
https://www21.in.tum.de/~lammich/isabelle/dpn-document.pdf
https://isa-afp.org/entries/Pushdown_Systems.html
https://isa-afp.org/entries/Pushdown_Systems.html

	Introduction
	Labeled Transition System
	Step Relations
	Reachable States
	Language

	LTS-based Automata
	Sequential Composition of Automata
	Concrete Automata

	Pre*
	Definition on LTS as Fixpoint
	Propagation of Reachability
	Correctness
	Termination
	The Automaton Level
	Pre* Example

	Application to Elementary CFG Problems
	Preliminaries
	Derivability
	Membership Problem
	Nullable Variables
	Emptiness Problem
	Useless Variables
	Disjointness and Subset Problem
	Examples

	Finiteness of Context-Free Languages
	Preliminaries and Assumptions
	Criterion of Finiteness
	Finiteness Problem

	Pre* Optimized for Grammars in CNF
	Preliminaries
	Procedure
	Correctness
	Termination
	Final Algorithm

	References

