Power Sum Polynomials
and the Girard-Newton Theorem

Manuel Eberl

March 17, 2025

Abstract

This article provides a formalisation of the symmetric multivariate
polynomials known as power sum polynomials. These are of the form
Pn(X1,..., Xg) = X7+ ...+ XJ. A formal proof of the Girard-
Newton Theorem is also given. This theorem relates the power sum
polynomials to the elementary symmetric polynomials s, in the form
of a recurrence relation (—1)*ks; = Zi:ol(—l)isipk,i .

As an application, this is then used to solve a generalised form of
a puzzle given as an exercise in Dummit and Foote’s Abstract Algebra:
For k complex unknowns 1, ..., 2y, define p; := 2] + ...+ . Then
for each vector a € CF, show that there is exactly one solution to the
system p; = a1, ..., P = a; up to permutation of the x; and determine
the value of p; for i > k.

Contents

1 Auxiliary material 2
1.1 Miscellaneous oo 2
1.2 The set of roots of a univariate polynomial 5)

2 Power sum polynomials 7
2.1 Definition 8
2.2 The Girard—Newton Theorem 10

3 Power sum puzzles 11
3.1 General setting and results 11
3.2 Existence of solutions 13
3.3 Aspecificpuzzle oL 15

1 Auxiliary material

theory Power-Sum-Polynomials-Library

imports
Polynomial-Factorization. Fundamental- Theorem-Algebra- Factorized
Symmetric- Polynomials. Symmetric- Polynomials
HOL— Computational-Algebra. Computational-Algebra

begin

unbundle multiset.lifting

1.1 Miscellaneous

lemma atLeastAtMost-nat-numeral:
atLeastAtMost m (numeral k :: nat) =
(if m < numeral k then insert (numeral k) (atLeastAtMost m (pred-numeral

k)
else {})
{proof)

lemma sum-in-Rats [intro]: (N\z. 2 € A = fz € Q) = sum fA € Q
(proof)

lemma (in monoid-mult) prod-list-distinct-conv-prod-set:
distinct xs = prod-list (map f xs) = prod f (set xs)

{proof)

lemma (in monoid-mult) interv-prod-list-conv-prod-set-nat:
prod-list (map f [m..<n]) = prod f (set [m..<n])
{proof)

lemma (in monoid-mult) prod-list-prod-nth:
prod-list ks = ([¢ = 0..< length xs. zs ! i)

{proof)

lemma gcd-poly-code-auz-reduce:

gcd-poly-code-auz p 0 = normalize p

q # 0 = ged-poly-code-aux p ¢ = ged-poly-code-auz q (primitive-part (pseudo-mod
P q))

(proof)

lemma coprimel-primes:
fixes a b :: 'a :: factorial-semiring
assumes a # 0V b # 0
assumes Ap. prime p = p dvd a = p dvd b = Fulse
shows coprime a b

(proof)

lemma coprime-pderiv-imp-squarefree:
assumes coprime p (pderiv p)
shows squarefree p

(proof)

lemma squarefree-field-poly-iff:
fixes p :: ‘a :: {field-char-0,euclidean-ring-gcd,semiring-gcd-mult-normalize} poly
assumes [simp]: p # 0
shows squarefree p «— coprime p (pderiv p)

{(proof)

lemma coprime-pderiv-imp-rsquarefree:
assumes coprime (p :: 'a :: field-char-0 poly) (pderiv p)
shows rsquarefree p

(proof)

lemma poly-of-nat [simp]: poly (of-nat n) z = of-nat n
(proof)

lemma poly-of-int [simp]: poly (of-int n) z = of-int n
(proof)

lemma order-eq-0-iff: p # 0 = order z p = 0 <— poly p x # 0
(proof)

lemma order-pos-iff: p # 0 = order xp > 0 <— polyp x = 0
(proof)

lemma order-prod:
assumes \z. 2 € A = fz # 0
shows order z ([[y€A. fy) = O yeA. order z (fy))
(proof)

lemma order-prod-mset:
assumes 0 ¢# A
shows order x (prod-mset A) = sum-mset (image-mset (order z) A)

(proof)

lemma order-prod-list:
assumes 0 ¢ set s
shows order x (prod-list s) = sum-list (map (order) xs)

(proof)

lemma order-power: p # 0 = order x (p ~n) = n * order x p
(proof)

lemma smult-0-right [simp]: MPoly-Type.smult p 0 = 0
(proof)

lemma mult-smult-right [simp]:
fixes ¢ :: 'a :: comm-semiring-0
shows p x MPoly-Type.smult ¢ ¢ = MPoly-Type.smult ¢ (p * q)

(proof)

lemma mapping-single-eq-iff [simp):

Poly-Mapping.single a b = Poly-Mapping.single c d +— b =0ANd =0V a =
cANb=d

(proof)

lemma monom-of-set-plus-monom-of-set:
assumes A N B = {} finite A finite B
shows monom-of-set A + monom-of-set B = monom-of-set (A U B)

(proof)

lemma mpoly-monom-0-eq-Const: monom 0 ¢ = Const ¢
(proof)

lemma mpoly-Const-0 [simp]: Const 0 = 0
(proof)

lemma mpoly-Const-1 [simp]: Const 1 = 1
(proof)

lemma mpoly-Const-uminus: Const (—a) = —Const a
(proof)

lemma mpoly-Const-add: Const (a + b) = Const a + Const b
{proof)

lemma mpoly-Const-mult: Const (a * b) = Const a x Const b
{proof)

lemma mpoly-Const-power: Const (a ~n) = Const a " n
(proof)

lemma of-nat-mpoly-eq: of-nat n = Const (of-nat n)
(proof)

lemma insertion-of-nat [simp|: insertion f (of-nat n) = of-nat n
(proof)

lemma insertion-monom-of-set [simp):
insertion f (monom (monom-of-set X) ¢) = ¢ * ([[i€X. f1)
(proof)

lemma symmetric-mpoly-symmetric-sum:

assumes Aw. m permutes A = g m permutes X

assumes A\z 7. ¢ € X = 7 permutes A = mpoly-map-vars © (fz) = f (g7
z)

shows symmetric-mpoly A (3 ze€X. fx)

(proof)

lemma sym-mpoly-0 [simp]:
assumes finite A
shows sym-mpoly A 0 = 1
(proof)

lemma sym-mpoly-eq-0 [simp]:
assumes k > card A
shows sym-mpoly A k = 0
(proof)

lemma coeff-sym-mpoly-monom-of-set-eq-0:
assumes finite X Y C X card Y # k
shows MPoly-Type.coeff (sym-mpoly X k) (monom-of-set Y) = 0
(proof)

lemma coeff-sym-mpoly-monom-of-set-eq-0":
assumes finite X =Y C X finite Y
shows MPoly-Type.coeff (sym-mpoly X k) (monom-of-set Y) = 0
(proof)

1.2 The set of roots of a univariate polynomial
lift-definition poly-roots :: 'a :: idom poly = 'a multiset is
Ap z. if p = 0 then 0 else order = p

(proof)

lemma poly-roots-0 [simp]: poly-roots 0 = {#}
{proof)

lemma poly-roots-1 [simp|: poly-roots 1 = {#}
(proof)

lemma count-poly-roots [simp):
assumes p # 0
shows count (poly-roots p) * = order = p

{proof)

lemma in-poly-roots-iff [simpl: p # 0 = x €# poly-roots p +— poly p x = 0
(proof)

lemma set-mset-poly-roots: p # 0 = set-mset (poly-roots p) = {z. poly p v = 0}
(proof)

lemma count-poly-roots’”: count (poly-roots p) z = (if p = 0 then 0 else order z p)
(proof)

lemma poly-roots-const [simp]: poly-roots [:c:] = {#}
(proof)

lemma poly-roots-linear [simp): poly-roots [:—z, 1:] = {#z#}
(proof)

lemma poly-roots-monom [simpl: ¢ # 0 = poly-roots (Polynomial.monom c n)
= replicate-mset n 0

{proof)

lemma poly-roots-smult [simp]: ¢ # 0 = poly-roots (Polynomial.smult ¢ p) =
poly-roots p
{proof)

lemma poly-roots-mult: p # 0 = q # 0 = poly-roots (p * q) = poly-roots p +
poly-roots q
(proof)

lemma poly-roots-prod:
assumes A\z. 2 € A = fz # 0
shows poly-roots (prod f A) = (> x€A. poly-roots (f x))
(proof)

lemma poly-roots-prod-mset:
assumes 0 ¢# A
shows poly-roots (prod-mset A) = sum-mset (image-mset poly-roots A)

(proof)

lemma poly-roots-prod-list:
assumes 0 ¢ set s
shows poly-roots (prod-list xs) = sum-list (map poly-roots xs)

{proof)

lemma poly-roots-power: p # 0 = poly-roots (p ~ n) = repeat-mset n (poly-roots

p)
(proof)

lemma rsquarefree-poly-roots-eq:

assumes rsquarefree p

shows poly-roots p = mset-set {x. poly p x = 0}
(proof)

lemma rsquarefree-imp-distinct-roots:
assumes rsquarefree p and mset xs = poly-roots p
shows distinct xs

(proof)

lemma poly-roots-factorization:
fixespc A
assumes [simp]: ¢ # 0
defines p = Polynomial.smult ¢ (prod-mset (image-mset (Az. [:—z, 1:]) A))
shows poly-roots p = A
(proof)

lemma fundamental-theorem-algebra-factorized’:
fixes p :: complex poly
shows p = Polynomial.smult (Polynomial.lead-coeff p)
(prod-mset (image-mset (Ax. [:—z, 1:]) (poly-roots p)))
(proof)

lemma poly-roots-eq-imp-eq:
fixes p q :: complex poly
assumes Polynomial.lead-coeff p = Polynomial.lead-coeff q
assumes poly-roots p = poly-roots q
shows p=g¢

(proof)

lemma Sum-any-zerol”: (Nz. Pz = fz = 0) = Sum-any (Az. f x when P)
=0
{proof)

lemma sym-mpoly-insert:
assumes finite X ¢ ¢ X
shows (sym-mpoly (insert © X) (Suc k) :: 'a :: semiring-1 mpoly) =
monom (monom-of-set {x}) 1 x sym-mpoly X k + sym-mpoly X (Suc
k) (is ?lhs = ?A + ?B)
(proof)

lifting-update multiset.lifting
lifting-forget multiset.lifting

end

2 Power sum polynomials

theory Power-Sum-Polynomials

imports
Symmetric- Polynomials. Symmetric- Polynomials
HOL- Computational-Algebra. Field-as-Ring
Power-Sum-Polynomials-Library

begin

2.1 Definition

For n indeterminates Xy, ..., X,,, we define the k-th power sum polynomial
as
(X1, X)) = XP+ .+ XF

lift-definition powsum-mpoly-aux :: nat set = nat = (nat = nat) =¢ ’a =
{semiring-1,zero-neq-one} is
AX k mon. if infinite X V k= 0 N mon # 0 then 0
else if k = 0 A mon = 0 then of-nat (card X)
else if finite X N (3z€X. mon = Poly-Mapping.single z k) then 1 else 0

{proof)

lemma lookup-powsum-mpoly-aux:
Poly-Mapping.lookup (powsum-mpoly-auz X k) mon =
(if infinite X V k = 0 A mon # 0 then 0
else if k = 0 A mon = 0 then of-nat (card X)
else if finite X N (3z€X. mon = Poly-Mapping.single z k) then 1 else
0)
(proof)

lemma lookup-sym-mpoly-auz-monom-singleton [simp]:

assumes finite X x € X k> 0

shows Poly-Mapping.lookup (powsum-mpoly-auz X k) (Poly-Mapping.single x
k) =1

(proof)

lemma lookup-sym-mpoly-auz-monom-singleton’”:

assumes finite X k > 0

shows Poly-Mapping.lookup (powsum-mpoly-auz X k) (Poly-Mapping.single x
k) = (if x € X then 1 else 0)

(proof)

lemma keys-powsum-mpoly-auz: m € keys (powsum-mpoly-aux A k) = keys m
cA
(proof)

lift-definition powsum-mpoly :: nat set = nat = 'a :: {semiring-1,zero-neg-one}
mpoly is
powsum-mpoly-aux (proof)

lemma vars-powsum-mpoly-subset: vars (powsum-mpoly A k) C A
(proof)

lemma powsum-mpoly-infinite: —finite A = powsum-mpoly A k = 0
(proof)

lemma coeff-powsum-mpoly:

MPoly-Type.coeff (powsum-mpoly X k) mon =
(if infinite X V k = 0 A mon # 0 then 0
else if k = 0 A mon = 0 then of-nat (card X)
else if finite X A (3z€X. mon = Poly-Mapping.single z k) then 1 else
0)
(proof)

lemma coeff-powsum-mpoly-0-right:

MPoly-Type.coeff (powsum-mpoly X 0) mon = (if mon = 0 then of-nat (card X)
else 0)

(proof)

lemma coeff-powsum-mpoly-singleton:

assumes finite X k > 0

shows MPoly-Type.coeff (powsum-mpoly X k) (Poly-Mapping.single x k) = (if
x € X then 1 else 0)

(proof)

lemma coeff-powsum-mpoly-singleton-eq-1 [simp]:
assumes finite X x € X k > 0
shows MPoly-Type.coeff (powsum-mpoly X k) (Poly-Mapping.single x k) = 1
(proof)

lemma coeff-powsum-mpoly-singleton-eq-0 [simp]:
assumes finite Xt ¢ X k > 0
shows MPoly-Type.coeff (powsum-mpoly X k) (Poly-Mapping.single x k) = 0
(proof)

lemma powsum-mpoly-0 [simp]: powsum-mpoly X 0 = of-nat (card X)
(proof)

lemma powsum-mpoly-empty [simp|: powsum-mpoly {} k = 0

{proof)

lemma powsum-mpoly-altdef: powsum-mpoly X k = (> z€X. monom (Poly-Mapping.single
zk) 1)
(proof)

Power sum polynomials are symmetric:

lemma symmetric-powsum-mpoly [introl:

assumes A C B

shows symmetric-mpoly A (powsum-mpoly B k)

(proof)
lemma insertion-powsum-mpoly [simp): insertion f (powsum-mpoly X k) = (3 i€ X.
fi k)

(proof)

lemma powsum-mpoly-nz:

assumes finite X X # {} k> 0
shows (powsum-mpoly X k :: 'a :: {semiring-1, zero-negq-one} mpoly) # 0
(proof)

lemma powsum-mpoly-eq-0-iff:
assumes k > 0
shows powsum-mpoly X k = 0 <— infinite X Vv X = {}
(proof)

2.2 The Girard—Newton Theorem

The following is a nice combinatorial proof of the Girard—Newton Theorem
due to Doron Zeilberger [2].

The precise statement is this:

Let e; denote the k-th elementary symmetric polynomial in Xq,..., X,.
This is the sum of all monomials that can be formed by taking the product
of k distinct variables.

Next, let pp = Xf +...+ Xff denote that k-th symmetric power sum poly-
nomial in X1,..., X,.

Then the following equality holds:
k—1 ‘
(1) ke + Y (=1 eipr—i
i=0

theorem Girard-Newton:
assumes finite X
shows (—1) Tk % of-nat k x sym-mpoly X k +
(> i<k. (—1) T i % sym-mpoly X i x powsum-mpoly X (k — i)) =
(0 :: 'a :: comm-ring-1 mpoly)
(is %lhs = 0)
(proof)

The following variant of the theorem holds for £ > n. Note that this is
now a linear recurrence relation with constant coefficients for pg in terms of
€0,---5€En.
corollary Girard-Newton':
assumes finite X and k > card X
shows (Y i<card X. (—1) i % sym-mpoly X i * powsum-mpoly X (k — i)) =
(0 :: 'a 2 comm-ring-1 mpoly)

(proof)
The following variant is the Newton—Girard Theorem solved for ey, giving
us an explicit way to determine e from eq,...,ex_1 and p1, ..., pg:

corollary sym-mpoly-recurrence:
assumes k: k > 0 and finite X
shows (sym-mpoly X k :: 'a :: field-char-0 mpoly) =

10

—smult (1 / of-nat k) O i=1..k. (—1) i * sym-mpoly X (k — 7) x
powsum-mpoly X)
(proof)

Analogously, the following is the theorem solved for py, giving us a way to
determine pg from eg,...,ex and p1,...,pPr_1:

corollary powsum-mpoly-recurrence:
assumes k: k > 0 and X: finite X
shows (powsum-mpoly X k :: 'a :: comm-ring-1 mpoly) =
(=1) 7 (k + 1) * of-nat k * sym-mpoly X k —
Si=1..<k. (—=1) i * sym-mpoly X i *x powsum-mpoly X (k — i))
(proof)

Again, if we assume k > n, the above takes a much simpler form and is, in
fact, a linear recurrence with constant coefficients:
lemma powsum-mpoly-recurrence’:
assumes k: k > card X and X: finite X
shows (powsum-mpoly X k :: 'a :: comm-ring-1 mpoly) =
—(> i=1..card X. (—1) ~ i * sym-mpoly X i x powsum-mpoly X (k —
i)

{(proof)

end

3 Power sum puzzles

theory Power-Sum-Puzzle
imports
Power-Sum-Polynomials
Polynomial-Factorization. Rational-Root- Test
begin

3.1 General setting and results

We now consider the following situation: Given unknown complex numbers
T1,..., Ty, define pp = ¥ 4+.. . +2F. Also, define e}, := ex(1,...,7,) where
ex(Xi,...,X,) is the k-th elementary symmetric polynomial.
What is the relationship between the sequences ex and pg; in particular, how
can we determine one from the other?
locale power-sum-puzzle =

fixes z :: nat = complex

fixes n :: nat
begin

We first introduce the notation py, := 2 + ...+ zk:

definition p where p k = (> i<n. z ¢ " k)

11

lemma p-0 [simp]: p 0 = of-nat n

(proof)
lemma p-altdef: p k = insertion x (powsum-mpoly {..<n} k)
(proof)
Similarly, we introduce the notation e, = e (1, ..., x,) where e (X1, ..., X,)

is the k-th elementary symmetric polynomial (i. e. the sum of all monomials
that can be formed by taking the product of exactly k distinct variables).

definition e where e k= (> Y | Y C {.<n} A card Y = k. prod z Y)

lemma e-altdef: e k = insertion x (sym-mpoly {..<n} k)
(proof)

It is clear that e vanishes for £ > n.

lemma e-eqg-0 [simp]: k > n = ek =0
(proof)

lemma e-0 [simp]: e 0 = 1

(proof)

The recurrences we got from the Girard—Newton Theorem earlier now di-
rectly give us analogous recurrences for e, and pg:

lemma e-recurrence:
assumes k: k > 0
shows ek=—->i=1.k.(— 1) "ixe(k—1)*pi)/ of-natk
(proof)

lemma p-recurrence:

assumes k: k > 0

shows pk=—ofnatk*(—1) "kxek— O i=1..<k.(—=1) "ixeixp(k
— i)

(proof)

lemma p-recurrence’”:
assumes k: k> n
shows pk=—->i=1.n (1) "ixeix*xp(k—1)
(proof)

It is clear from this recurrence that if p; to p,, are rational, then so are the
ek

lemma e-in-Rats:
assumes Ak. k€ {I.n} = pkeQ
shows ek eQ

(proof)

Analogously, if p1 to p, are rational, then so are all the other py:

12

lemma p-in-Rats:
assumes Ak. k€ {I.n} = pkeQ
shows pkeQ

(proof)

Next, we define the unique monic polynomial that has z1, ..., z, as its roots
(respecting multiplicity):
definition @ :: complex poly where Q = ([[i<n. [—z i, 1:])

lemma degree-Q [simp]: Polynomial.degree Q = n
(proof)

lemma lead-coeff-Q [simp]: Polynomial.coeff Q n = 1

(proof)

By Vieta’s Theorem, we then have:
n
QLX) = S (—1)" e,y Xt

k=0
In other words: The above allows us to determine the z1,...,z, explicitly.
They are, in fact, precisely the roots of the above polynomial (respecting
multiplicity). Since this polynomial depends only on the ej, which are in
turn determined by pi, ..., p,, this means that these are the only solutions
of this puzzle (up to permutation of the x;).

lemma coeff-Q: Polynomial.coeff Q k = (if k > n then 0 else (—1) ~(n — k) x e

(n — k)
(proof)
lemma Q-altdef: @ = (3> k<n. Polynomial.monom ((—1) ~(n — k) x e (n — k))
k)
(proof)
The following theorem again shows that x1, ..., z, are precisely the roots of

@, respecting multiplicity.
theorem mset-z-eq-poly-roots-Q: {#x i. i E# mset-set {..<n}#} = poly-roots Q
(proof)

end

3.2 Existence of solutions

So far, we have assumed a solution to the puzzle and then shown the prop-
erties that this solution must fulfil. However, we have not yet shown that
there is a solution. We will do that now.

Let n be a natural number and f; some sequence of complex numbers.
We will show that there are x1,...,x, so that :r:’f + ...+ a:fl = fi for any
1<k <n.

13

locale power-sum-puzzle-existence =
fixes f :: nat = complex and n :: nat
begin

First, we define a sequence of numbers e’ analogously to the sequence e
before, except that we replace all occurrences of the power sum pp with fg
(recall that in the end we want pp = fx).

fun e’ :: nat = complex

where e’ k = (if k = 0 then 1 else if k > n then 0
else —=(>i=1..k. (—1) Tixe' (k— 1) * fi)/ of-nat k)

lemmas [simp del] = e’.simps

lemma e’-0 [simp]: ¢’ 0 = 1
{proof)

lemma e’-eq-0 [simpl: k >n = e k=10

{proof)

Just as before, we can show the following recurrence for f in terms of e’

lemma f-recurrence:

assumes k: k> 0k <n

shows fk=—ofnatk«(—1) "kxe' k— O i=1.<k.(—1) "ixe ixf
(k — 1))
(proof)

We now define a polynomial whose roots will be precisely the solution
z1i,...,T, to our problem.
lift-definition Q' :: complex poly is Ak. if k > n then 0 else (—1) ~(n — k) * €’
(n — k)

(proof)
lemma coeff-Q": Polynomial.coeff Q' k = (if k > n then 0 else (—1) ~(n — k) *
e (n —k))

(proof)

lemma lead-coeff-Q": Polynomial.coeff Q' n = 1
{proof)

lemma degree-Q’ [simp]: Polynomial.degree Q' = n

(proof)

Since the complex numbers are algebraically closed, this polynomial splits
into linear factors:

definition Root :: nat = complex
where Root = (SOME Root. Q' = (] i<n. [:—Root i, 1:]))

lemma Root: Q' = ([[i<n. [:—Root i, 1:])

14

(proof)

We can therefore now use the results from before for these x1, ..., z,.
sublocale power-sum-puzzle Root n (proof)

Vieta’s theorem gives us an expression for the coefficients of @’ in terms of
er(x1,...,xy,). This shows that our e’is indeed exactly the same as e.
lemma e’-eq-e: e’ k= ek

(proof)

It then follows by a simple induction that pi = fj, for 1 < k < n, as intended:

lemma p-eq-f:
assumes k£ > 0k <n
shows pk=fk
(proof)

end

Here is a more condensed form of the above existence theorem:

theorem power-sum-puzzle-has-solution:
fixes f :: nat = complex
shows 3 Root. Vke{1..n}. (D i<n. Root i " k)= [k

(proof)

3.3 A specific puzzle

We now look at one particular instance of this puzzle, which was given as an
exercise in Abstract Algebra by Dummit and Foote (Exercise 23 in Section
14.6) [1].
Suppose we know that z +y+2 =1, 22+ 3>+ 22 =2, and 2> +y> + 22 = 3.
Then what is 2° + 3® 4+ 2°? What about any arbitrary =™ + y™ + 2"?
locale power-sum-puzzle-example =
fixes x y z :: complex
assumes ryz: x +y +z =1
T2 4y 2+ 22 =2
r3+y3+28=23
begin

We reuse the results we have shown in the general case before.
definition f where fn = [z,y,2] | n
sublocale power-sum-puzzle f 8 (proof)

We can simplify p a bit more now.

lemma p-altdef" pk=2 "k+y " k+ 2z "k
(proof)

15

lemma p-base [simp]: p (Suc 0) =1p2=2p3 =23

{proof)
We can easily compute all the non-zero values of e recursively:
lemma e-Suc-0 [simp]: e (Suc 0) = 1

(proof)

lemma e-2 [simp]: e 2 = —1/2
{proof)

lemma e-3 [simp]: e 3 = 1/6
{proof)

Plugging in all the values, the recurrence relation for p now looks like this:

lemma p-recurrence’: k> 8 = pk=p (k—=8)/ 6 +p (k—2)/ 2 + p (k—1)
(proof)

Also note again that all py are rational:

lemma p-in-Rats” p k € Q

(proof)

The above recurrence has the characteristic polynomial X3 — X2 — %X — é
(which is exactly our @), so we know that can now specify x, y, and z more
precisely: They are the roots of that polynomial (in unspecified order).
lemma zyz-eq: {#z, y, 24} = poly-roots (—1/6, —1/2, —1, 1:]

(proof)

Using the rational root test, we can easily show that x, ¢, and z are irrational.

lemma zyz-irrational: set-mset (poly-roots :—1/6, —1/2, —1, 1::complez:]) N Q
={
(proof)

This polynomial is squarefree, so these three roots are, in fact, unique (so
that there are indeed 3! = 6 possible permutations).
lemma rsquarefree: rsquarefree [:(—1/6, —1/2, —1, 1 :: complex:]

{proof)

lemma distinct-zyz: distinct [z, y, 2|
{proof)

While these roots can be written more explicitly in radical form, they are
not very pleasant to look at. We therefore only compute a few values of p
just for fun:
lemmap/ =25/6and pb5=6and p 10 = 15539 | 432

{proof)

16

Lastly, let us (informally) examine the asymptotics of this problem.

Two of the roots have a norm of roughly 8 & 0.341, while the remaining root
« is roughly 1.431. Consequently, 2™ + y™ + 2" is asymptotically equivalent
to ™, with the error being bounded by 2 - 8" and therefore goes to 0 very
quickly.

For p(10) = % ~ 35.97, for instance, this approximation is correct up to
6 decimals (a relative error of about 0.0001 %).

end

To really emphasise that the above puzzle has a solution and the locale is not
‘vacuous’, here is an interpretation of the locale using the existence theorem
from before:

notepad
begin
(proof)

end

end

References

[1] D. S. Dummit and R. M. Foote. Abstract Algebra. Wiley, 2003.

[2] D. Zeilberger. A combinatorial proof of Newton’s identities. Discrete
Mathematics, 49(3):319, 1984.

17

	Auxiliary material
	Miscellaneous
	The set of roots of a univariate polynomial

	Power sum polynomials
	Definition
	The Girard–Newton Theorem

	Power sum puzzles
	General setting and results
	Existence of solutions
	A specific puzzle

