Power Sum Polynomials and the Girard–Newton Theorem

Manuel Eberl

March 17, 2025

Abstract

This article provides a formalisation of the symmetric multivariate polynomials known as power sum polynomials. These are of the form $p_n(X_1,\ldots,X_k)=X_1^n+\ldots+X_k^n$. A formal proof of the Girard–Newton Theorem is also given. This theorem relates the power sum polynomials to the elementary symmetric polynomials s_k in the form of a recurrence relation $(-1)^k k s_k = \sum_{i=0}^{k-1} (-1)^i s_i p_{k-i}$. As an application, this is then used to solve a generalised form of

As an application, this is then used to solve a generalised form of a puzzle given as an exercise in Dummit and Foote's Abstract Algebra: For k complex unknowns x_1, \ldots, x_k , define $p_j := x_1^j + \ldots + x_k^j$. Then for each vector $a \in \mathbb{C}^k$, show that there is exactly one solution to the system $p_1 = a_1, \ldots, p_k = a_k$ up to permutation of the x_i and determine the value of p_i for i > k.

Contents

1	Auxiliary material		2
	1.1	Miscellaneous	2
	1.2	The set of roots of a univariate polynomial	7
2	Power sum polynomials		13
	2.1	Definition	13
	2.2	The Girard–Newton Theorem	16
3	Power sum puzzles		22
	3.1	General setting and results	22
	3.2	Existence of solutions	25
	3.3	A specific puzzle	28

1 Auxiliary material

theory Power-Sum-Polynomials-Library

```
imports
  Polynomial \hbox{-} Factorization. Fundamental \hbox{-} Theorem \hbox{-} Algebra \hbox{-} Factorized
  Symmetric	ext{-}Polynomials. Symmetric	ext{-}Polynomials
  HOL-Computational-Algebra.\ Computational-Algebra
begin
unbundle multiset.lifting
1.1
        Miscellaneous
\mathbf{lemma}\ atLeastAtMost-nat-numeral:
  atLeastAtMost\ m\ (numeral\ k::nat) =
     (if \ m \leq numeral \ k \ then \ insert \ (numeral \ k) \ (atLeastAtMost \ m \ (pred-numeral \ k))
k))
 by (simp add: numeral-eq-Suc atLeastAtMostSuc-conv)
lemma sum-in-Rats [intro]: (\bigwedge x. \ x \in A \Longrightarrow f \ x \in \mathbb{Q}) \Longrightarrow sum \ f \ A \in \mathbb{Q}
 by (induction A rule: infinite-finite-induct) auto
lemma (in monoid-mult) prod-list-distinct-conv-prod-set:
  distinct \ xs \Longrightarrow prod\text{-}list \ (map \ f \ xs) = prod \ f \ (set \ xs)
  by (induct xs) simp-all
lemma (in monoid-mult) interv-prod-list-conv-prod-set-nat:
  prod-list (map \ f \ [m.. < n]) = prod \ f \ (set \ [m.. < n])
  \mathbf{by}\ (simp\ add\colon prod\text{-}list\text{-}distinct\text{-}conv\text{-}prod\text{-}set)
lemma (in monoid-mult) prod-list-prod-nth:
  prod-list xs = (\prod i = 0.. < length xs. xs! i)
  using interv-prod-list-conv-prod-set-nat [of (!) xs 0 length xs] by (simp add:
map-nth)
lemma gcd-poly-code-aux-reduce:
  qcd-poly-code-aux p 0 = normalize p
 q \neq 0 \Longrightarrow gcd-poly-code-aux p \neq gcd-poly-code-aux q (primitive-part (pseudo-mod
p(q)
  by (subst\ gcd\text{-}poly\text{-}code\text{-}aux.simps;\ simp)+
lemma coprimeI-primes:
  fixes a b :: 'a :: factorial-semiring
  assumes a \neq 0 \lor b \neq 0
  assumes \bigwedge p. prime p \Longrightarrow p \ dvd \ a \Longrightarrow p \ dvd \ b \Longrightarrow False
  shows coprime a b
proof (rule coprimeI)
```

```
fix d assume d: d dvd a d dvd b
 with assms(1) have [simp]: d \neq 0 by auto
 show is-unit d
 proof (rule ccontr)
   assume \neg is-unit d
   then obtain p where p: prime p p dvd d
     using prime-divisor-exists[of d] by auto
   from assms(2)[of p] and p and d show False
     using dvd-trans by auto
 \mathbf{qed}
qed
\mathbf{lemma}\ \textit{coprime-pderiv-imp-squarefree} :
 assumes coprime \ p \ (pderiv \ p)
 shows squarefree p
proof (rule squarefreeI)
 fix d assume d: d ^2 dvd p
 then obtain q where q: p = d^2 * q
   by (elim \ dvdE)
 hence d dvd p d dvd pderiv p
   by (auto simp: pderiv-mult pderiv-power-Suc numeral-2-eq-2)
 with assms show is-unit d
   using not-coprimeI by blast
qed
lemma squarefree-field-poly-iff:
 fixes p :: 'a :: \{field-char-0, euclidean-ring-qcd, semiring-qcd-mult-normalize\} poly
 assumes [simp]: p \neq 0
 shows squarefree p \longleftrightarrow coprime \ p \ (pderiv \ p)
proof
 assume squarefree p
 show coprime \ p \ (pderiv \ p)
 proof (rule coprimeI-primes)
   fix d assume d: d dvd p d dvd pderiv p prime d
   from d(1) obtain q where q: p = d * q
     by (elim\ dvdE)
   from d(2) and q have d \ dvd \ q * pderiv \ d
     by (simp add: pderiv-mult dvd-add-right-iff)
   with \langle prime \ d \rangle have d \ dvd \ q \lor d \ dvd \ pderiv \ d
     using prime-dvd-mult-iff by blast
   thus False
   proof
     assume d \, dvd \, q
     hence d \, \hat{} \, 2 \, dvd \, p
      by (auto simp: q power2-eq-square)
     with ⟨squarefree p⟩ show False
      using d(3) not-prime-unit squarefreeD by blast
   next
     assume d dvd pderiv d
```

```
hence Polynomial.degree d = 0 by simp
     moreover have d \neq 0 using d by auto
     {\bf ultimately \ show} \ {\it False}
       using d(3) is-unit-iff-degree not-prime-unit by blast
   qed
  qed auto
\mathbf{qed}\ (\mathit{use\ coprime-pderiv-imp-squarefree}[\mathit{of}\ \mathit{p}]\ \mathbf{in}\ \mathit{auto})
lemma coprime-pderiv-imp-rsquarefree:
  assumes coprime (p :: 'a :: field\text{-}char\text{-}0 poly) (pderiv p)
 shows rsquarefree p
  unfolding rsquarefree-roots
proof safe
  fix x assume poly p x = 0 poly (pderiv p) x = 0
 hence [:-x, 1:] dvd p [:-x, 1:] dvd pderiv p
   by (auto simp: poly-eq-0-iff-dvd)
  with assms have is-unit [:-x, 1:]
   using not-coprime  by blast
  thus False by auto
qed
lemma poly-of-nat [simp]: poly (of-nat\ n)\ x = of-nat\ n
 by (induction \ n) auto
lemma poly-of-int [simp]: poly (of\text{-int } n) x = of\text{-int } n
  by (cases \ n) auto
lemma order-eq-0-iff: p \neq 0 \Longrightarrow order \ x \ p = 0 \longleftrightarrow poly \ p \ x \neq 0
 by (auto simp: order-root)
lemma order-pos-iff: p \neq 0 \Longrightarrow order \ x \ p > 0 \longleftrightarrow poly \ p \ x = 0
 by (auto simp: order-root)
lemma order-prod:
 assumes \bigwedge x. \ x \in A \Longrightarrow f \ x \neq 0
 shows order x (\prod y \in A. f y) = (\sum y \in A. order x (f y))
 using assms by (induction A rule: infinite-finite-induct) (auto simp: order-mult)
lemma order-prod-mset:
  assumes \theta \notin A
 shows order\ x\ (prod\text{-}mset\ A) = sum\text{-}mset\ (image\text{-}mset\ (order\ x)\ A)
  using assms by (induction A) (auto simp: order-mult)
lemma order-prod-list:
  assumes 0 \notin set xs
  shows order\ x\ (prod\text{-}list\ xs) = sum\text{-}list\ (map\ (order\ x)\ xs)
  using assms by (induction xs) (auto simp: order-mult)
lemma order-power: p \neq 0 \Longrightarrow order \ x \ (p \ \hat{} \ n) = n * order \ x \ p
```

```
by (induction \ n) (auto \ simp: \ order-mult)
lemma smult-0-right [simp]: MPoly-Type.smult p \theta = \theta
 by (transfer, transfer) auto
lemma mult-smult-right [simp]:
  fixes c :: 'a :: comm\text{-}semiring\text{-}0
 shows p * MPoly-Type.smult c q = MPoly-Type.smult c <math>(p * q)
 by (simp add: smult-conv-mult mult-ac)
lemma mapping-single-eq-iff [simp]:
  Poly-Mapping.single a \ b = Poly-Mapping.single \ c \ d \longleftrightarrow b = 0 \land d = 0 \lor a =
c \wedge b = d
 by transfer (unfold fun-eq-iff when-def, metis)
lemma monom-of-set-plus-monom-of-set:
 assumes A \cap B = \{\} finite A finite B
 shows monom-of-set A + monom-of-set B = monom-of-set (A \cup B)
 using assms by transfer (auto simp: fun-eq-iff)
lemma mpoly-monom-\theta-eq-Const: monom <math>\theta c = Const c
 by (intro mpoly-eqI) (auto simp: coeff-monom when-def mpoly-coeff-Const)
lemma mpoly-Const-\theta [simp]: Const \theta = \theta
 \mathbf{by}\ (\mathit{intro}\ \mathit{mpoly-eqI})\ (\mathit{auto}\ \mathit{simp}\colon \mathit{mpoly-coeff-Const}\ \mathit{mpoly-coeff-0})
lemma mpoly-Const-1 [simp]: Const 1 = 1
 by (intro mpoly-eqI) (auto simp: mpoly-coeff-Const mpoly-coeff-1)
lemma mpoly-Const-uminus: Const (-a) = -Const a
 by (intro mpoly-eqI) (auto simp: mpoly-coeff-Const)
lemma mpoly-Const-add: Const (a + b) = Const a + Const b
 by (intro mpoly-eqI) (auto simp: mpoly-coeff-Const)
lemma mpoly-Const-mult: Const (a * b) = Const a * Const b
  unfolding mpoly-monom-0-eq-Const [symmetric] mult-monom by simp
lemma mpoly-Const-power: Const (a \hat{n}) = Const a \hat{n}
 by (induction n) (auto simp: mpoly-Const-mult)
lemma of-nat-mpoly-eq: of-nat n = Const (of-nat n)
proof (induction \ n)
 case \theta
 have \theta = (Const \ \theta :: 'a \ mpoly)
   by (intro mpoly-eqI) (auto simp: mpoly-coeff-Const)
  thus ?case
   by simp
```

```
next
  case (Suc \ n)
 have 1 + Const (of-nat n) = Const (1 + of-nat n)
   by (intro mpoly-eqI) (auto simp: mpoly-coeff-Const mpoly-coeff-1)
  thus ?case
    using Suc by auto
\mathbf{qed}
lemma insertion-of-nat [simp]: insertion f (of-nat n) = of-nat n
 by (simp add: of-nat-mpoly-eq)
lemma insertion-monom-of-set [simp]:
  insertion f (monom (monom-of-set X) c) = c * (\prod i \in X. fi)
proof (cases finite X)
  \mathbf{case}\ [\mathit{simp}] \colon \mathit{True}
 have insertion f (monom (monom-of-set X) c) = c * (\prod a. f a \cap (if a \in X then
1 else 0))
   by (auto simp: lookup-monom-of-set)
 also have (\prod a. f \ a \ \widehat{} (if \ a \in X \ then \ 1 \ else \ 0)) = (\prod i \in X. f \ i \ \widehat{} (if \ i \in X \ then \ 1))
else \ 0))
   by (intro Prod-any.expand-superset) auto
  also have \dots = (\prod i \in X. f i)
   by (intro prod.cong) auto
  finally show ?thesis.
qed (auto simp: lookup-monom-of-set)
\mathbf{lemma}\ symmetric\text{-}mpoly\text{-}symmetric\text{-}sum:
  assumes \bigwedge \pi. \pi permutes A \Longrightarrow g \pi permutes X
 assumes \bigwedge x \pi. \ x \in X \Longrightarrow \pi \ permutes \ A \Longrightarrow mpoly-map-vars \ \pi \ (f \ x) = f \ (g \ \pi)
 shows symmetric-mpoly A (\sum x \in X. f x)
  unfolding symmetric-mpoly-def
proof safe
  fix \pi assume \pi: \pi permutes A
  have mpoly-map-vars \pi (sum f(X) = (\sum x \in X. mpoly-map-vars \pi (f(x)))
  also have ... = (\sum x \in X. f(g \pi x))
   \mathbf{by}\ (\mathit{intro\ sum.cong\ assms}\ \pi\ \mathit{refl})
  also have ... = (\sum x \in g \ \pi' X. \ f \ x)
   using assms(1)[\overline{OF} \ \pi] by (subst sum.reindex) (auto simp: permutes-inj-on)
  also have g \pi ' X = X
   using assms(1)[OF \pi] by (simp \ add: permutes-image)
  finally show mpoly-map-vars \pi (sum f(X) = sum f(X).
qed
lemma sym-mpoly-\theta [simp]:
 assumes finite A
```

```
shows sym-mpoly A \theta = 1
 using assms by (transfer, transfer) (auto simp: fun-eq-iff when-def)
lemma sym-mpoly-eq-\theta [simp]:
 assumes k > card A
 shows sym-mpoly A k = 0
proof (transfer fixing: A k, transfer fixing: A k, intro ext)
 have \neg(finite\ A\ \land\ (\exists\ Y\subseteq A.\ card\ Y=k\ \land\ mon=monom-of-set\ Y))
 proof safe
   fix Y assume Y: finite A Y \subseteq A k = card Y mon = monom-of-set Y
   hence card Y \leq card A by (intro card-mono) auto
   with Y and assms show False by simp
 qed
 thus (if finite A \wedge (\exists Y \subseteq A. \ card \ Y = k \wedge mon = monom-of-set \ Y) then 1 else
\theta = 0
   by auto
qed
lemma coeff-sym-mpoly-monom-of-set-eq-0:
 assumes finite X Y \subseteq X card Y \neq k
 shows MPoly-Type.coeff (sym-mpoly X k) (monom-of-set Y) = 0
 using assms finite-subset[of - X] by (auto simp: coeff-sym-mpoly)
lemma coeff-sym-mpoly-monom-of-set-eq-0':
 assumes finite X \neg Y \subseteq X finite Y
 shows MPoly-Type.coeff (sym-mpoly X k) (monom-of-set Y) = 0
 using assms finite-subset[of - X] by (auto simp: coeff-sym-mpoly)
       The set of roots of a univariate polynomial
lift-definition poly-roots :: 'a :: idom poly \Rightarrow 'a multiset is
 \lambda p \ x. \ if \ p = 0 \ then \ 0 \ else \ order \ x \ p
proof -
 fix p :: 'a poly
 show finite \{x. \ 0 < (if \ p = 0 \ then \ 0 \ else \ order \ x \ p)\}
   by (cases p = 0) (auto simp: order-pos-iff poly-roots-finite)
ged
lemma poly-roots-0 [simp]: poly-roots \theta = \{\#\}
 by transfer auto
lemma poly-roots-1 [simp]: poly-roots 1 = \{\#\}
 by transfer auto
lemma count-poly-roots [simp]:
 assumes p \neq 0
 shows count (poly-roots p) x = order x p
 using assms by transfer auto
```

```
lemma in-poly-roots-iff [simp]: p \neq 0 \Longrightarrow x \in \# poly-roots p \longleftrightarrow poly p \ x = 0
  by (subst count-greater-zero-iff [symmetric], subst count-poly-roots) (auto simp:
order-pos-iff)
lemma set-mset-poly-roots: p \neq 0 \Longrightarrow set-mset (poly-roots\ p) = \{x.\ poly\ p\ x = 0\}
  using in-poly-roots-iff[of p] by blast
lemma count-poly-roots': count (poly-roots p) x = (if p = 0 then 0 else order x p)
 by transfer' auto
lemma poly-roots-const [simp]: poly-roots [:c:] = \{\#\}
 by (intro multiset-eqI) (auto simp: count-poly-roots' order-eq-0-iff)
lemma poly-roots-linear [simp]: poly-roots [:-x, 1:] = \{\#x\#\}
 by (intro multiset-eqI) (auto simp: count-poly-roots' order-eq-0-iff)
lemma poly-roots-monom [simp]: c \neq 0 \implies poly-roots (Polynomial.monom c n)
= replicate-mset \ n \ \theta
 by (intro multiset-eqI) (auto simp: count-poly-roots' order-eq-0-iff poly-monom)
lemma poly-roots-smult [simp]: c \neq 0 \implies poly-roots (Polynomial.smult c p) =
 by (intro multiset-eqI) (auto simp: count-poly-roots' order-smult)
lemma poly-roots-mult: p \neq 0 \Longrightarrow q \neq 0 \Longrightarrow poly-roots (p * q) = poly-roots p +
 by (intro multiset-eqI) (auto simp: count-poly-roots' order-mult)
lemma poly-roots-prod:
 assumes \bigwedge x. x \in A \Longrightarrow f x \neq 0
 \mathbf{shows} \quad \textit{poly-roots} \ (\textit{prod} \ f \ A) = (\sum x {\in} A. \ \textit{poly-roots} \ (f \ x))
 using assms by (induction A rule: infinite-finite-induct) (auto simp: poly-roots-mult)
lemma poly-roots-prod-mset:
 assumes 0 \notin \# A
 shows poly-roots (prod-mset A) = sum-mset (image-mset poly-roots A)
 using assms by (induction A) (auto simp: poly-roots-mult)
lemma poly-roots-prod-list:
 assumes 0 \notin set xs
 shows poly-roots (prod-list xs) = sum-list (map poly-roots xs)
 using assms by (induction xs) (auto simp: poly-roots-mult)
lemma poly-roots-power: p \neq 0 \Longrightarrow poly-roots (p \cap n) = repeat\text{-mset } n \text{ (poly-roots)}
 by (induction n) (auto simp: poly-roots-mult)
```

lemma rsquarefree-poly-roots-eq:

```
assumes rsquarefree p
 shows poly-roots p = mset\text{-set } \{x. \ poly \ p \ x = 0\}
proof (rule multiset-eqI)
 \mathbf{fix} \ x :: 'a
 from assms show count (poly-roots p) x = count (mset-set \{x. poly p \mid x = 0\}) x = 0
    by (cases poly p \ x = 0) (auto simp: poly-roots-finite order-eq-0-iff rsquare-
free-def)
qed
lemma rsquarefree-imp-distinct-roots:
 assumes rsquarefree p and mset xs = poly-roots p
 shows distinct xs
proof (cases p = 0)
 case [simp]: False
 have *: mset xs = mset\text{-}set \{x. poly p x = 0\}
   using assms by (simp add: rsquarefree-poly-roots-eq)
 hence set-mset (mset xs) = set-mset (mset-set \{x. poly p \mid x = 0\})
   by (simp only: )
 hence [simp]: set xs = \{x. \ poly \ p \ x = 0\}
   by (simp add: poly-roots-finite)
 from * show ?thesis
   by (subst distinct-count-atmost-1) (auto simp: poly-roots-finite)
qed (use assms in auto)
lemma poly-roots-factorization:
 fixes p \ c \ A
 assumes [simp]: c \neq 0
 defines p \equiv Polynomial.smult\ c\ (prod-mset\ (image-mset\ (\lambda x.\ [:-x,\ 1:])\ A))
 shows poly-roots p = A
proof -
 have poly-roots p = poly-roots (\prod x \in \#A. [:-x, 1:])
   by (auto simp: p-def)
 also have \dots = A
   by (subst poly-roots-prod-mset) (auto simp: image-mset.compositionality o-def)
 finally show ?thesis.
qed
lemma fundamental-theorem-algebra-factorized':
 fixes p :: complex poly
 shows p = Polynomial.smult (Polynomial.lead-coeff p)
             (prod\text{-}mset\ (image\text{-}mset\ (\lambda x.\ [:-x,\ 1:])\ (poly\text{-}roots\ p)))
proof (cases p = \theta)
 case [simp]: False
 obtain xs where
   xs: Polynomial.smult (Polynomial.lead-coeff p) (\prod x \leftarrow xs. [:-x, 1:]) = p
       length xs = Polynomial.degree p
   using fundamental-theorem-algebra-factorized[of p] by auto
  define A where A = mset xs
```

```
note xs(1)
 also have (\prod x \leftarrow xs. [:-x, 1:]) = prod\text{-}mset (image\text{-}mset (\lambda x. [:-x, 1:]) A)
   unfolding A-def by (induction xs) auto
 finally have *: Polynomial.smult (Polynomial.lead-coeff p) (\prod x \in \#A. [:- x, 1:])
= p.
 also have A = poly\text{-}roots p
   using poly-roots-factorization[of Polynomial.lead-coeff p A]
   by (subst * [symmetric]) auto
  finally show ?thesis ..
\mathbf{qed} auto
lemma poly-roots-eq-imp-eq:
 fixes p \ q :: complex \ poly
 assumes Polynomial.lead-coeff p = Polynomial.lead-coeff q
 assumes poly-roots p = poly-roots q
 shows p = q
proof (cases p = 0 \lor q = 0)
 case False
 hence [simp]: p \neq 0 \ q \neq 0
   by auto
 have p = Polynomial.smult (Polynomial.lead-coeff p)
             (prod\text{-}mset\ (image\text{-}mset\ (\lambda x.\ [:-x,\ 1:])\ (poly\text{-}roots\ p)))
   by (rule fundamental-theorem-algebra-factorized')
 also have \dots = Polynomial.smult (Polynomial.lead-coeff q)
                 (prod\text{-}mset\ (image\text{-}mset\ (\lambda x.\ [:-x,\ 1:])\ (poly\text{-}roots\ q)))
   by (simp add: assms)
 also have \dots = q
   by (rule fundamental-theorem-algebra-factorized' [symmetric])
 finally show ?thesis.
qed (use assms in auto)
lemma Sum-any-zeroI': (\bigwedge x. P x \Longrightarrow f x = 0) \Longrightarrow Sum-any (\lambda x. f x \text{ when } P x)
= 0
 by (auto simp: Sum-any.expand-set)
lemma sym-mpoly-insert:
 assumes finite X x \notin X
           (sym\text{-}mpoly\ (insert\ x\ X)\ (Suc\ k)::'a::semiring-1\ mpoly) =
            monom\ (monom-of-set\ \{x\})\ 1\ *\ sym-mpoly\ X\ k\ +\ sym-mpoly\ X\ (Suc
k) (is ?lhs = ?A + ?B)
proof (rule mpoly-eqI)
 fix mon
 show coeff ?lhs mon = coeff (?A + ?B) mon
 proof (cases \forall i. lookup mon i \leq 1 \land (i \notin insert \ x \ X \longrightarrow lookup \ mon \ i = 0))
   then obtain i where i: lookup mon i > 1 \lor i \notin insert \ x \ X \land lookup \ mon \ i >
0
     by (auto simp: not-le)
```

```
have coeff? A mon = prod-fun (coeff (monom (monom-of-set <math>\{x\}) 1))
                            (coeff\ (sym\text{-}mpoly\ X\ k))\ mon
    by (simp add: coeff-mpoly-times)
    also have ... = (\sum l. \sum q. coeff \ (monom \ (monom-of-set \ \{x\}) \ 1) \ l * coeff
(sym\text{-}mpoly\ X\ k)\ q
                     when mon = l + q)
      unfolding prod-fun-def
      by (intro Sum-any.cong, subst Sum-any-right-distrib, force)
         (auto simp: Sum-any-right-distrib when-def intro!: Sum-any.cong)
   also have \dots = 0
   proof (rule Sum-any-zeroI, rule Sum-any-zeroI')
     \mathbf{fix} \ ma \ mb \ \mathbf{assume} \ *: \ mon = ma + mb
    show coeff (monom (monom-of-set \{x\}) (1::'a)) ma * coeff (sym-mpoly X k)
mb = 0
     proof (cases i = x)
      case [simp]: True
      show ?thesis
      proof (cases lookup mb \ i > 0)
        case True
        hence coeff (sym-mpoly X k) mb = 0 using \langle x \notin X \rangle
          by (auto simp: coeff-sym-mpoly lookup-monom-of-set split: if-splits)
        thus ?thesis
          using mult-not-zero by blast
      next
        case False
        hence coeff (monom (monom-of-set \{x\}) 1) ma = 0
          using i by (auto simp: coeff-monom when-def * lookup-add)
        thus ?thesis
          using mult-not-zero by blast
      qed
     next
      case [simp]: False
      show ?thesis
      proof (cases lookup ma i > 0)
        case False
        hence lookup \ mb \ i = lookup \ mon \ i
          using * by (auto simp: lookup-add)
        hence coeff (sym-mpoly X k) mb = 0 using i
          by (auto simp: coeff-sym-mpoly lookup-monom-of-set split: if-splits)
        thus ?thesis
          using mult-not-zero by blast
      next
        case True
        hence coeff (monom (monom-of-set \{x\}) \ 1) \ ma = 0
          using i by (auto simp: coeff-monom when-def * lookup-add)
        thus ?thesis
          using mult-not-zero by blast
      qed
```

```
qed
   qed
   finally have coeff ?A mon = 0.
   moreover from False have coeff? the mon = 0
     by (subst coeff-sym-mpoly) (auto simp: lookup-monom-of-set split: if-splits)
   moreover from False have coeff (sym-mpoly X (Suc k)) mon = 0
     by (subst coeff-sym-mpoly) (auto simp: lookup-monom-of-set split: if-splits)
   ultimately show ?thesis
     by auto
  next
   case True
   define A where A = keys mon
   have A: A \subseteq insert \ x \ X
     using True by (auto simp: A-def)
   have [simp]: mon = monom-of-set A
     unfolding A-def using True by transfer (force simp: fun-eq-iff le-Suc-eq)
   have finite A
     using finite-subset A assms by blast
   show ?thesis
   proof (cases x \in A)
     case False
     have coeff ?A mon = prod-fun (coeff (monom (monom-of-set <math>\{x\}) 1))
                               (coeff\ (sym\text{-}mpoly\ X\ k))\ (monom\text{-}of\text{-}set\ A)
       by (simp add: coeff-mpoly-times)
     also have \ldots = (\sum l. \sum q. coeff \pmod{monom-of-set} \{x\}) \ 1) \ l*coeff
(sym\text{-}mpoly\ X\ k)\ q
                      when monom-of-set A = l + q)
       unfolding prod-fun-def
       \mathbf{by}\ (intro\ Sum\text{-}any.cong,\ subst\ Sum\text{-}any\text{-}right\text{-}distrib,\ force)
         (auto simp: Sum-any-right-distrib when-def intro!: Sum-any.cong)
     also have \dots = 0
     proof (rule Sum-any-zeroI, rule Sum-any-zeroI')
       \mathbf{fix} \ ma \ mb \ \mathbf{assume} \ *: \ monom-of-set \ A = ma + mb
      hence keys ma \subseteq A
        using \(\langle finite A \rangle \) by transfer (auto simp: fun-eq-iff split: if-splits)
       thus coeff (monom (monom-of-set \{x\}) (1::'a)) ma * coeff (sym-mpoly X)
k) mb = 0
        using \langle x \notin A \rangle by (auto simp: coeff-monom when-def)
     finally show ?thesis
       using False A assms finite-subset[of - insert x X] finite-subset[of - X]
       by (auto simp: coeff-sym-mpoly)
   \mathbf{next}
     case True
     have mon = monom-of-set \{x\} + monom-of-set (A - \{x\})
       using \langle x \in A \rangle \langle finite A \rangle by (auto simp: monom-of-set-plus-monom-of-set)
     also have coeff ?A \dots = coeff (sym-mpoly X k) (monom-of-set (A - \{x\}))
       by (subst coeff-monom-mult) auto
     also have ... = (if \ card \ A = Suc \ k \ then \ 1 \ else \ 0)
```

```
proof (cases card A = Suc \ k)
       {f case} True
       thus ?thesis
         using assms \langle finite \ A \rangle \ \langle x \in A \rangle \ A
         by (subst coeff-sym-mpoly-monom-of-set) auto
     next
       case False
       thus ?thesis
         using assms \langle x \in A \rangle A \langle finite A \rangle card-Suc-Diff1 [of A x]
         by (subst coeff-sym-mpoly-monom-of-set-eq-0) auto
     qed
     moreover have coeff ?B (monom-of-set A) = 0
       using assms \langle x \in A \rangle \langle finite A \rangle
       by (subst coeff-sym-mpoly-monom-of-set-eq-0') auto
     moreover have coeff ? lhs (monom-of-set A) = (if card A = Suc k then 1 else
\theta)
          using assms A \land finite A \land finite\text{-subset}[of - insert \ x \ X] by (auto simp:
coeff-sym-mpoly)
     ultimately show ?thesis by simp
   qed
 qed
qed
lifting-update multiset.lifting
lifting-forget multiset.lifting
```

2 Power sum polynomials

```
theory Power-Sum-Polynomials
imports
Symmetric-Polynomials.Symmetric-Polynomials
HOL-Computational-Algebra.Field-as-Ring
Power-Sum-Polynomials-Library
begin
```

2.1 Definition

end

For n indeterminates X_1, \ldots, X_n , we define the k-th power sum polynomial as

$$p_k(X_1,\ldots,X_n)=X_1^k+\ldots+X_n^k.$$

lift-definition powsum-mpoly-aux :: nat set \Rightarrow nat \Rightarrow (nat \Rightarrow_0 nat) \Rightarrow_0 'a :: {semiring-1,zero-neq-one} is $\lambda X \ k \ mon.$ if infinite $X \lor k = 0 \land mon \neq 0$ then 0 else if $k = 0 \land mon = 0$ then of-nat (card X) else if finite $X \land (\exists x \in X. \ mon = Poly-Mapping.single x k)$ then 1 else 0

```
by auto
```

```
\mathbf{lemma}\ lookup\text{-}powsum\text{-}mpoly\text{-}aux:
 Poly-Mapping.lookup (powsum-mpoly-aux X k) mon =
    (if infinite X \vee k = 0 \wedge mon \neq 0 then 0
           else if k = 0 \land mon = 0 then of-nat (card X)
           else if finite X \wedge (\exists x \in X. mon = Poly-Mapping.single x k) then 1 else
0)
 by transfer' simp
lemma lookup-sym-mpoly-aux-monom-singleton [simp]:
 assumes finite X x \in X k > 0
          Poly-Mapping.lookup (powsum-mpoly-aux X k) (Poly-Mapping.single x
 shows
k) = 1
 using assms by (auto simp: lookup-powsum-mpoly-aux)
lemma lookup-sym-mpoly-aux-monom-singleton':
 assumes finite X k > 0
 shows Poly-Mapping.lookup (powsum-mpoly-aux X k) (Poly-Mapping.single x
k) = (if x \in X then 1 else 0)
 using assms by (auto simp: lookup-powsum-mpoly-aux)
lemma keys-powsum-mpoly-aux: m \in keys (powsum-mpoly-aux A k) \Longrightarrow keys m
 by transfer' (auto split: if-splits simp: keys-monom-of-set)
lift-definition powsum-mpoly :: nat set \Rightarrow nat \Rightarrow 'a :: {semiring-1,zero-neq-one}
mpoly is
 powsum-mpoly-aux.
lemma vars-powsum-mpoly-subset: vars (powsum-mpoly A \ k) \subseteq A
 using keys-powsum-mpoly-aux by (auto simp: vars-def powsum-mpoly.rep-eq)
lemma powsum-mpoly-infinite: \neg finite\ A \Longrightarrow powsum-mpoly\ A\ k=0
 by (transfer, transfer) auto
lemma coeff-powsum-mpoly:
 MPoly-Type.coeff (powsum-mpoly X k) mon =
    (if infinite X \vee k = 0 \wedge mon \neq 0 then 0
           else if k = 0 \land mon = 0 then of-nat (card X)
           else if finite X \wedge (\exists x \in X. mon = Poly-Mapping.single x k) then 1 else
\theta)
 by transfer' (simp add: lookup-powsum-mpoly-aux)
\mathbf{lemma}\ \textit{coeff-powsum-mpoly-0-right}:
 MPoly-Type.coeff (powsum-mpoly X \ \theta) mon = (if mon = \theta then of-nat (card <math>X))
else 0)
 by transfer' (auto simp add: lookup-powsum-mpoly-aux)
```

```
\textbf{lemma} \ \textit{coeff-powsum-mpoly-singleton} :
 assumes finite X k > 0
 shows MPoly-Type.coeff (powsum-mpoly X k) (Poly-Mapping.single x k) = (if
x \in X \ then \ 1 \ else \ 0
 using assms by transfer' (simp add: lookup-powsum-mpoly-aux)
lemma coeff-powsum-mpoly-singleton-eq-1 [simp]:
 assumes finite X x \in X k > 0
 shows MPoly-Type.coeff (powsum-mpoly X k) (Poly-Mapping.single x k) = 1
 using assms by (simp add: coeff-powsum-mpoly-singleton)
lemma coeff-powsum-mpoly-singleton-eq-0 [simp]:
 assumes finite X x \notin X k > 0
 shows MPoly-Type.coeff (powsum-mpoly X k) (Poly-Mapping.single x k) = 0
 using assms by (simp add: coeff-powsum-mpoly-singleton)
lemma powsum-mpoly-0 [simp]: powsum-mpoly X = 0 of-nat (card X)
 by (intro mpoly-eqI ext) (auto simp: coeff-powsum-mpoly-0-right of-nat-mpoly-eq
mpoly-coeff-Const)
lemma powsum-mpoly-empty [simp]: powsum-mpoly \{\}\ k=0
 by (intro mpoly-eqI) (auto simp: coeff-powsum-mpoly)
lemma powsum-mpoly-altdef: powsum-mpoly X k = (\sum x \in X. monom (Poly-Mapping.single))
x k) 1)
proof (cases finite X)
 case [simp]: True
 show ?thesis
 proof (cases k = 0)
   case True
   thus ?thesis by auto
 next
   case False
   show ?thesis
   proof (intro mpoly-eqI, goal-cases)
    case (1 mon)
    show ?case using False
      by (cases \exists x \in X. mon = Poly-Mapping.single x k)
        (auto simp: coeff-powsum-mpoly coeff-monom when-def)
   qed
 qed
qed (auto simp: powsum-mpoly-infinite)
Power sum polynomials are symmetric:
lemma symmetric-powsum-mpoly [intro]:
 assumes A \subseteq B
 shows symmetric-mpoly A (powsum-mpoly B k)
 unfolding powsum-mpoly-altdef
```

```
proof (rule symmetric-mpoly-symmetric-sum)
 \mathbf{fix} \ x \ \pi
 assume x \in B \pi permutes A
 thus mpoly-map-vars \pi (MPoly-Type.monom (Poly-Mapping.single x k) 1) =
      MPoly-Type.monom\ (Poly-Mapping.single\ (\pi\ x)\ k)\ 1
  using assms by (auto simp: mpoly-map-vars-monom permutes-bij permutep-single
                         bij-imp-bij-inv permutes-inv-inv)
qed (use assms in \(\lambda auto \) simp: permutes-subset\(\rangle\)
lemma insertion-powsum-mpoly [simp]: insertion f (powsum-mpoly X k) = (\sum i \in X).
fi^k
 unfolding powsum-mpoly-altdef insertion-sum insertion-single by simp
lemma powsum-mpoly-nz:
 assumes finite X X \neq \{\} k > 0
 \mathbf{shows}
          (powsum-mpoly\ X\ k:: 'a:: \{semiring-1, zero-neg-one\}\ mpoly) \neq 0
proof -
 from assms obtain x where x \in X by auto
 hence coeff (powsum-mpoly X k) (Poly-Mapping.single x k) = (1 :: 'a)
   using assms by (auto simp: coeff-powsum-mpoly)
 thus ?thesis by auto
\mathbf{qed}
lemma powsum-mpoly-eq-0-iff:
 assumes k > 0
 shows powsum-mpoly X k = 0 \iff infinite X \lor X = \{\}
 using assms powsum-mpoly-nz[of X k] by (auto simp: powsum-mpoly-infinite)
```

2.2 The Girard–Newton Theorem

The following is a nice combinatorial proof of the Girard–Newton Theorem due to Doron Zeilberger [2].

The precise statement is this:

Let e_k denote the k-th elementary symmetric polynomial in X_1, \ldots, X_n . This is the sum of all monomials that can be formed by taking the product of k distinct variables.

Next, let $p_k = X_1^k + \ldots + X_n^k$ denote that k-th symmetric power sum polynomial in X_1, \ldots, X_n .

Then the following equality holds:

$$(-1)^k k e_k + \sum_{i=0}^{k-1} (-1)^i e_i p_{k-i}$$

theorem Girard-Newton:

assumes finite X shows (-1) $^{\hat{}}k * of$ -nat k * sym-mpoly X $k + (\sum i < k. (-1)$ $^{\hat{}}i * sym$ -mpoly X i * powsum-mpoly X (k - i)) =

```
(is ?lhs = 0)
proof -
  write Poly-Mapping.single (\langle sng \rangle)
  define n where n = card X
  define A :: (nat \ set \times nat) \ set
    where A = \{(A, j). A \subseteq X \land card A \leq k \land j \in X \land (card A = k \longrightarrow j \in A)\}
  define A1 :: (nat \ set \times nat) \ set
    where A1 = \{A \in Pow \ X. \ card \ A < k\} \times X
  define A2 :: (nat \ set \times nat) \ set
    where A2 = (SIGMA \ A: \{A \in Pow \ X. \ card \ A = k\}. \ A)
  have A-split: A = A1 \cup A2 A1 \cap A2 = \{\}
    by (auto simp: A-def A1-def A2-def)
  have [intro]: finite A1 finite A2
     using assms finite-subset [of - X] by (auto simp: A1-def A2-def intro!: fi-
nite-SigmaI)
 have [intro]: finite A
    by (subst A-split) auto
 — We define a 'weight' function w from A to the ring of polynomials as
                               w(A,j) = (-1)^{|A|} x_j^{k-|A|} \prod_{i \in A} x_i.
  define w :: nat set \times nat \Rightarrow 'a mpoly
    where w = (\lambda(A, j). monom (monom-of-set A + sng j (k - card A)) ((-1) ^
card A))
  — The sum of these weights over all of \mathcal{A} is precisely the sum that we want to
show equals 0:
  have ?lhs = (\sum x \in A. \ w \ x)
  proof -
    have (\sum x \in A. \ w \ x) = (\sum x \in A1. \ w \ x) + (\sum x \in A2. \ w \ x)
      by (subst A-split, subst sum.union-disjoint, use A-split(2) in auto)
   also have (\sum x \in A1. \ w \ x) = (\sum i < k. \ (-1) \ \hat{i} * sym-mpoly \ X \ i * powsum-mpoly
X(k-i)
    proof -
      \begin{array}{l} \mathbf{have} \ (\sum x \in \mathcal{A}1. \ w \ x) = (\sum A \mid A \subseteq X \land \ card \ A < k. \ \sum j \in X. \ w \ (A, \ j)) \\ \mathbf{using} \ assms \ \mathbf{by} \ (subst \ sum.Sigma) \ (auto \ simp: \ \mathcal{A}1\text{-}def) \end{array}
      also have ... = (\sum A \mid A \subseteq X \land card \ A < k. \sum j \in X.

monom \ (monom-of-set \ A) \ ((-1) \cap card \ A) * monom \ (sng \ j \ (k))
- card A)) 1)
        unfolding w-def by (intro sum.cong) (auto simp: mult-monom)
       also have ... = (\sum A \mid A \subseteq X \land card A < k. monom (monom-of-set A)
((-1) \cap card A) *
                        powsum-mpoly\ X\ (k-card\ A))
        by (simp add: sum-distrib-left powsum-mpoly-altdef)
```

(0 :: 'a :: comm-ring-1 mpoly)

```
also have ... = (\sum (i,A) \in (SIGMA \ i:\{..< k\}. \{A. \ A \subseteq X \land card \ A = i\}).
                      monom\ (monom\text{-}of\text{-}set\ A)\ ((-1)\ \widehat{\ }i)*powsum\text{-}mpoly\ X\ (k-1)
i))
       by (rule sum.reindex-bij-witness[of - snd \lambda A. (card A, A)]) auto
     also have ... = (\sum i < k. \sum A \mid A \subseteq X \land card A = i.
                             monom \ (monom-of-set \ A) \ 1 \ * \ monom \ 0 \ ((-1) \ \widehat{\ } i) \ *
powsum-mpoly\ X\ (k-i)
       using assms by (subst sum.Sigma) (auto simp: mult-monom)
     also have ... = (\sum i < k. (-1) \hat{i} * sym-mpoly X i * powsum-mpoly X (k - i))
i))
       by (simp add: sum-distrib-left sum-distrib-right mpoly-monom-0-eq-Const
                              mpoly-Const-power mpoly-Const-uninus algebra-simps
sym-mpoly-altdef)
     finally show ?thesis.
   qed
   also have (\sum x \in A2. \ w \ x) = (-1) \ \hat{\ } k * of-nat \ k * sym-mpoly \ X \ k
      have (\sum x \in A2. \ w \ x) = (\sum (A,j) \in A2. \ monom \ (monom-of-set \ A) \ ((-1) \ ^)
k))
         by (intro sum.cong) (auto simp: A2-def w-def mpoly-monom-0-eq-Const
intro!: sum.cong)
     also have ... = (\sum A \mid A \subseteq X \land card A = k. \sum j \in A. monom (monom-of-set)
A) ((-1) \hat{k})
      using assms finite-subset [of - X] by (subst\ sum.Sigma) (auto\ simp:\ \mathcal{A2}\text{-}def)
     also have (\lambda A. monom (monom-of-set A) ((-1) \hat{k}) :: 'a mpoly) =
                 (\lambda A. monom \ 0 \ ((-1) \ \hat{\ } k) * monom \ (monom-of-set \ A) \ 1)
       by (auto simp: fun-eq-iff mult-monom)
     also have monom \theta ((-1) \hat{k}) = (-1) \hat{k}
     \mathbf{by}\ (\textit{auto simp: mpoly-monom-0-eq-Const-mpoly-Const-power mpoly-Const-uminus})
       also have (\sum A \mid A \subseteq X \land card A = k. \sum j \in A. (-1) \land k * monom
(monom-of-set A) 1) =
                 ((-1) \hat{k} * of\text{-}nat \ k * sym\text{-}mpoly \ X \ k :: 'a \ mpoly)
       by (auto simp: sum-distrib-left sum-distrib-right mult-ac sym-mpoly-altdef)
     finally show ?thesis.
   qed
   finally show ?thesis by (simp add: algebra-simps)
 qed
 — Next, we show that the weights sum to 0:
 also have (\sum x \in A. \ w \ x) = 0
 proof -
       We define a function T that is a involutory permutation of A. To be more
precise, it bijectively maps those elements (A,j) of \mathcal{A} with j \in A to those where j \notin A
A and the other way round. 'Involutory' means that T is its own inverse function,
i. e. T(T(x)) = x.
   define T :: nat \ set \times nat \Rightarrow nat \ set \times nat
     where T = (\lambda(A, j)). if j \in A then (A - \{j\}, j) else (insert j \in A, j))
```

```
have [simp]: T(Tx) = x for x
     by (auto simp: T-def split: prod.splits)
   have [simp]: T x \in \mathcal{A} if x \in \mathcal{A} for x
   proof -
     have [simp]: n \leq n - Suc \ \theta \longleftrightarrow n = \theta for n
     show ?thesis using that assms finite-subset[of - X]
       by (auto simp: T-def A-def split: prod.splits)
   qed
   have snd (T x) \in fst (T x) \longleftrightarrow snd x \notin fst x if x \in \mathcal{A} for x
     \mathbf{by}\ (\mathit{auto}\ \mathit{simp}\colon \mathit{T-def}\ \mathit{split}\colon \mathit{prod}.\mathit{splits})
   hence bij: bij-betw T \{x \in A. \ snd \ x \in fst \ x\} \{x \in A. \ snd \ x \notin fst \ x\}
     by (intro\ bij-betwI[of - - - T]) auto
    — Crucially, we show that T flips the weight of each element:
   have [simp]: w(Tx) = -wx if x \in A for x
   proof -
     obtain A j where [simp]: x = (A, j) by force
     — Since T is an involution, we can assume w. l. o. g. that j \in A:
     have aux: w(T(A, j)) = -w(A, j) if (A, j) \in A j \in A for j A
     proof -
       from that have [simp]: j \in A \ A \subseteq X \ \text{and} \ k > 0
       using finite-subset [OF - assms, of A] by (auto simp: A-def intro!: Nat.gr0I)
       have [simp]: finite A
         using finite-subset[OF - assms, of A] by auto
       from that have card A \leq k
         by (auto simp: A-def)
       have card: card A = Suc (card (A - \{j\}))
         using card.remove[of A j] by auto
       hence card-less: card (A - \{j\}) < card A by linarith
       have w(T(A, j)) = monom (monom-of-set(A - \{j\}) + sng j(k - card))
(A - \{j\})))
                       ((-1) \ \widehat{}\ card\ (A-\{j\})) by (simp\ add:\ w\text{-}def\ T\text{-}def)
       also have (-1) \hat{} card (A - \{j\}) = ((-1) \hat{} Suc (Suc\ (card\ (A - \{j\})))
:: 'a)
         by simp
       also have Suc\ (card\ (A - \{j\})) = card\ A
         using card by simp
       also have k - card(A - \{j\}) = Suc(k - card A)
         using \langle k \rangle \theta \rangle \langle card A \leq k \rangle card-less by (subst card) auto
       also have monom-of-set (A - \{j\}) + sng \ j \ (Suc \ (k - card \ A)) =
                  monom\text{-}of\text{-}set\ A+sng\ j\ (k-card\ A)
         by (transfer\ fixing:\ A\ j\ k)\ (auto\ simp:\ fun-eq-iff)
       also have monom ... ((-1)^{\hat{}} Suc (card A)) = -w (A, j)
         by (simp add: w-def monom-uminus)
       finally show ?thesis.
```

```
qed
                show ?thesis
                proof (cases j \in A)
                     \mathbf{case} \ \mathit{True}
                     with aux[of A j] that show ?thesis by auto
                \mathbf{next}
                     case False
                     hence snd (T x) \in fst (T x)
                           by (auto simp: T-def split: prod.splits)
                     with aux[of fst (T x) snd (T x)] that show ?thesis by auto
                qed
          qed
We can now show fairly easily that the sum is equal to zero.
          \mathbf{have} \, *: \mathcal{A} = \{x {\in} \mathcal{A}. \; snd \; x \in \mathit{fst} \; x\} \, \cup \, \{x {\in} \mathcal{A}. \; snd \; x \notin \mathit{fst} \; x\}
                by auto
          have (\sum x \in \mathcal{A}. \ w \ x) = (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ w \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst \ x. \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ x) + (\sum x \mid x \in \mathcal{A} \land snd \ 
snd \ x \notin fst \ x. \ w \ x)
                using \langle finite \ A \rangle by (subst *, subst sum.union-disjoint) auto
           also have (\sum x \mid x \in \mathcal{A} \land snd \ x \notin fst \ x. \ w \ x) = (\sum x \mid x \in \mathcal{A} \land snd \ x \in fst)
x. w (T x)
                \mathbf{using}\ \mathit{sum.reindex-bij-betw}[\mathit{OF}\ \mathit{bij},\ \mathit{of}\ \mathit{w}]\ \mathbf{by}\ \mathit{simp}
          also have ... = -(\sum x \mid x \in A \land snd \ x \in fst \ x. \ w \ x)
                by (simp add: sum-negf)
          finally show (\sum x \in A. \ w \ x) = 0
                by simp
      qed
     finally show ?thesis.
qed
The following variant of the theorem holds for k > n. Note that this is
now a linear recurrence relation with constant coefficients for p_k in terms of
e_0,\ldots,e_n.
corollary Girard-Newton':
     assumes finite X and k > card X
                                 (\sum i \leq card \ X. \ (-1) \ \hat{\ } i * sym-mpoly \ X \ i * powsum-mpoly \ X \ (k-i)) =
                                   (0 :: 'a :: comm-ring-1 mpoly)
proof -
     have (0 :: 'a mpoly) = (\sum i < k. (-1) \hat{i} * sym-mpoly X i * powsum-mpoly X
          using Girard-Newton[of X k] assms by simp
     also have ... = (\sum i \leq card X. (-1) \hat{i} * sym-mpoly X i * powsum-mpoly X)
          using assms by (intro sum.mono-neutral-right) auto
     finally show ?thesis ..
qed
```

```
us an explicit way to determine e_k from e_0, \ldots, e_{k-1} and p_1, \ldots, p_k:
corollary sym-mpoly-recurrence:
 assumes k: k > 0 and finite X
 \mathbf{shows} \quad (\textit{sym-mpoly X k} :: 'a :: \textit{field-char-0 mpoly}) =
             -smult (1 / of-nat k) (\sum i=1..k. (-1) \hat{i} * sym-mpoly X (k - i) *
powsum-mpoly X i)
proof -
 define e \ p :: nat \Rightarrow 'a \ mpoly \ \mathbf{where} \ [simp]: e = sym-mpoly \ X \ p = powsum-mpoly
 have *: \theta = (-1) ^ k * of-nat k * e k + (\sum i < k. (-1) ^ i * e i * p (k - i) :: 'a mpoly) using <math>Girard-Newton[of \ X \ k] assms by simp
 have \theta = (-1) \hat{k} * smult (1 / of-nat k) (\theta :: 'a mpoly)
   by simp
 also have ... = smult (1 / of-nat k) (of-nat k) * e k +
                 smult (1 / of\text{-}nat k) (\sum i < k. (-1) \hat{\ } (k+i) * e i * p (k-i))
   unfolding smult-conv-mult
    using k by (subst *) (simp add: power-add sum-distrib-left sum-distrib-right
field-simps
                        del: div-mult-self3 div-mult-self4 div-mult-self2 div-mult-self1)
  also have smult (1 / of\text{-}nat \ k :: 'a) (of\text{-}nat \ k) = 1
  using k by (simp\ add: of-nat-monom smult-conv-mult mult-monom del: monom-of-nat)
  also have (\sum i < k. (-1) \hat{k} + i) * e i * p (k - i)) = (\sum i = 1..k. (-1) \hat{i} * e
   by (intro sum.reindex-bij-witness[of - \lambda i. k - i \lambda i. k - i)
      (auto simp: minus-one-power-iff)
 finally show ?thesis unfolding e-p-def by algebra
Analogously, the following is the theorem solved for p_k, giving us a way to
determine p_k from e_0, \ldots, e_k and p_1, \ldots, p_{k-1}:
corollary powsum-mpoly-recurrence:
 assumes k: k > 0 and X: finite X
 shows (powsum-mpoly\ X\ k:: 'a:: comm-ring-1\ mpoly) =
            (-1) ^{(k+1)} * of-nat k * sym-mpoly X k -
            \sum_{i=1}^{n} (-1)^{n} i * sym-mpoly X i * powsum-mpoly X (k-i))
 define e \ p :: nat \Rightarrow 'a \ mpoly \ \mathbf{where} \ [simp]: \ e = sym-mpoly \ X \ p = powsum-mpoly
 have *: \theta = (-1) \hat{k} * of\text{-nat } k * e k + (\sum i < k. (-1) \hat{i} * e i * p (k - i) :: 'a mpoly)
   using Girard-Newton[of X k] assms by simp
 also have \{..< k\} = insert \ 0 \ \{1..< k\}
   using assms by auto
 finally have (-1) \hat{k} * of-nat k * e k + (\sum i=1..< k. (-1) \hat{i} * e i * p (k-1))
(i)) + (p)^{k} = 0
   using assms by (simp add: algebra-simps)
```

The following variant is the Newton-Girard Theorem solved for e_k , giving

```
from add.inverse-unique[OF this] show ?thesis by simp ged
```

Again, if we assume k > n, the above takes a much simpler form and is, in fact, a linear recurrence with constant coefficients:

```
lemma powsum-mpoly-recurrence':
 assumes k: k > card X and X: finite X
           (powsum-mpoly\ X\ k:: 'a:: comm-ring-1\ mpoly) =
            -(\sum i=1...card\ X.\ (-1)\ \hat{\ }i*\ sym-mpoly\ X\ i*\ powsum-mpoly\ X\ (k-1)
i))
proof -
 define e \ p :: nat \Rightarrow 'a \ mpoly \ \mathbf{where} \ [simp]: e = sym-mpoly \ X \ p = powsum-mpoly
 have p \ k = (-1) \ \hat{\ } (k+1) * of-nat \ k * e \ k - (\sum i=1... < k. \ (-1) \ \hat{\ } i * e \ i * p
   unfolding e-p-def using assms by (intro powsum-mpoly-recurrence) auto
  also have ... = -(\sum i=1..< k. (-1) \hat{i} * e i * p (k-i))
   using assms by simp
 also have (\sum_{i=1}^{n} i + k \cdot (-1)) = (\sum_{i=1}^{n} i + k \cdot (-1)) = (\sum_{i=1}^{n} i - k \cdot (-1))
i * e i * p (k - i)
   using assms by (intro sum.mono-neutral-right) auto
 finally show ?thesis by simp
qed
```

3 Power sum puzzles

end

```
theory Power-Sum-Puzzle
imports
Power-Sum-Polynomials
Polynomial-Factorization.Rational-Root-Test
begin
```

3.1 General setting and results

We now consider the following situation: Given unknown complex numbers x_1, \ldots, x_n , define $p_k = x_1^k + \ldots + x_n^k$. Also, define $e_k := e_k(x_1, \ldots, x_n)$ where $e_k(X_1, \ldots, X_n)$ is the k-th elementary symmetric polynomial.

What is the relationship between the sequences e_k and p_k ; in particular, how can we determine one from the other?

```
locale power-sum-puzzle = fixes x :: nat \Rightarrow complex fixes n :: nat begin
```

We first introduce the notation $p_k := x_1^k + \ldots + x_n^k$:

```
definition p where p k = (\sum i < n. \ x \ i \ k)
lemma p-\theta [simp]: p \theta = of-nat n
   by (simp \ add: \ p\text{-}def)
lemma p-altdef: p \ k = insertion \ x \ (powsum-mpoly \{..< n\} \ k)
    by (simp \ add: \ p\text{-}def)
Similarly, we introduce the notation e_k = e_k(x_1, \ldots, x_n) where e_k(X_1, \ldots, X_n)
is the k-th elementary symmetric polynomial (i. e. the sum of all monomials
that can be formed by taking the product of exactly k distinct variables).
definition e where e \ k = (\sum Y \mid Y \subseteq \{... < n\} \land card \ Y = k. \ prod \ x \ Y)
lemma e-altdef: e \ k = insertion \ x \ (sym-mpoly \{..< n\} \ k)
   by (simp add: e-def insertion-sym-mpoly)
It is clear that e_k vanishes for k > n.
lemma e-eq-\theta [simp]: k > n \Longrightarrow e \ k = \theta
    by (simp add: e-altdef)
lemma e-\theta [simp]: e \theta = 1
    by (simp add: e-altdef)
The recurrences we got from the Girard–Newton Theorem earlier now di-
rectly give us analogous recurrences for e_k and p_k:
lemma e-recurrence:
    assumes k: k > 0
   shows e \ k = -(\sum i=1..k. \ (-1) \ \widehat{\ } i*e \ (k-i)*p \ i) \ / \ \textit{of-nat} \ k
    using assms unfolding e-altdef p-altdef
    by (subst sym-mpoly-recurrence)
          (auto simp: insertion-sum insertion-add insertion-mult insertion-power inser-
tion-sym-mpoly)
lemma p-recurrence:
    assumes k: k > 0
   shows p \ k = -of\text{-}nat \ k * (-1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ i * p \ (k = 1) \ \hat{k} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (-1) \ \hat{i} * e \ k - (\sum i = 1... < k. \ (
    using assms unfolding e-altdef p-altdef
    by (subst powsum-mpoly-recurrence)
         (auto simp: insertion-sum insertion-add insertion-mult insertion-diff
                                 insertion-power insertion-sym-mpoly)
lemma p-recurrence'':
    assumes k: k > n
    shows p \ k = -(\sum i=1..n. \ (-1) \ \hat{i} * e \ i * p \ (k-i))
    using assms unfolding e-altdef p-altdef
    by (subst powsum-mpoly-recurrence')
         (auto simp: insertion-sum insertion-add insertion-mult insertion-diff
```

It is clear from this recurrence that if p_1 to p_n are rational, then so are the e_k :

```
lemma e-in-Rats:
 assumes \bigwedge k. k \in \{1..n\} \Longrightarrow p \ k \in \mathbb{Q}
 shows e k \in \mathbb{Q}
proof (cases k \leq n)
 {f case}\ True
  thus ?thesis
 proof (induction k rule: less-induct)
   case (less k)
   show ?case
   proof (cases k = \theta)
     case False
     thus ?thesis using assms less
       by (subst e-recurrence) (auto intro!: Rats-divide)
   qed auto
 qed
\mathbf{qed} auto
Analogously, if p_1 to p_n are rational, then so are all the other p_k:
lemma p-in-Rats:
 assumes \bigwedge k. k \in \{1..n\} \Longrightarrow p \ k \in \mathbb{Q}
 shows p \ k \in \mathbb{Q}
proof (induction k rule: less-induct)
 case (less k)
 consider k = 0 \mid k \in \{1..n\} \mid k > n
   by force
 thus ?case
 proof cases
   assume k > n
   thus ?thesis
    using less assms by (subst p-recurrence") (auto intro!: sum-in-Rats Rats-mult
e-in-Rats)
 qed (use assms in auto)
Next, we define the unique monic polynomial that has x_1, \ldots, x_n as its roots
(respecting multiplicity):
definition Q :: complex poly where <math>Q = (\prod i < n. [:-x i, 1:])
lemma degree-Q [simp]: Polynomial.degree Q = n
 by (simp add: Q-def degree-prod-eq-sum-degree)
lemma lead-coeff-Q [simp]: Polynomial.coeff Q n = 1
 using monic-prod[of {...< n} \lambda i. [:-x i, 1:]]
 by (simp add: Q-def degree-prod-eq-sum-degree)
```

By Vieta's Theorem, we then have:

$$Q(X) = \sum_{k=0}^{n} (-1)^{n-k} e_{n-k} X^{k}$$

In other words: The above allows us to determine the x_1, \ldots, x_n explicitly. They are, in fact, precisely the roots of the above polynomial (respecting multiplicity). Since this polynomial depends only on the e_k , which are in turn determined by p_1, \ldots, p_n , this means that these are the *only* solutions of this puzzle (up to permutation of the x_i).

```
lemma coeff-Q: Polynomial.coeff Q k = (if k > n then 0 else (-1) ^(n - k) * e
(n-k)
proof (cases k \leq n)
 case True
 thus ?thesis
   using coeff-poly-from-roots[of {..<n} k x] by (auto simp: Q-def e-def)
qed (auto simp: Polynomial.coeff-eq-0)
lemma Q-altdef: Q = (\sum k \le n. \ Polynomial.monom ((-1) \cap (n-k) * e (n-k))
 by (subst poly-as-sum-of-monoms [symmetric]) (simp add: coeff-Q)
The following theorem again shows that x_1, \ldots, x_n are precisely the roots of
Q, respecting multiplicity.
theorem mset-x-eq-poly-roots-Q: \{\#x \ i. \ i \in \# \ mset-set \ \{... < n\}\#\} = poly-roots \ Q
proof -
 have poly-roots Q = (\sum i < n. \{\#x \ i\#\})
   by (simp add: Q-def poly-roots-prod)
 also have ... = \{ \#x \ i. \ i \in \# \ mset\text{-set} \ \{.. < n\} \# \}
   by (induction \ n) (auto \ simp: \ lessThan-Suc)
 finally show ?thesis ..
qed
```

3.2 Existence of solutions

end

So far, we have assumed a solution to the puzzle and then shown the properties that this solution must fulfil. However, we have not yet shown that there *is* a solution. We will do that now.

Let n be a natural number and f_k some sequence of complex numbers. We will show that there are x_1, \ldots, x_n so that $x_1^k + \ldots + x_n^k = f_k$ for any $1 \le k \le n$.

```
locale power-sum-puzzle-existence = fixes f :: nat \Rightarrow complex and n :: nat begin
```

First, we define a sequence of numbers e' analogously to the sequence e before, except that we replace all occurrences of the power sum p_k with f_k (recall that in the end we want $p_k = f_k$).

```
fun e' :: nat \Rightarrow complex
   where e' k = (if k = 0 \text{ then } 1 \text{ else } if k > n \text{ then } 0

else -(\sum i = 1..k. (-1) \hat{i} * e' (k - i) * f i) / of-nat k)
lemmas [simp \ del] = e'.simps
lemma e'-\theta [simp]: e' \theta = 1
    by (simp add: e'.simps)
lemma e'-eq-\theta [simp]: k > n \Longrightarrow e' k = \theta
    by (auto simp: e'.simps)
Just as before, we can show the following recurrence for f in terms of e':
lemma f-recurrence:
    assumes k: k > 0 \ k \le n
    shows f k = -of\text{-}nat \ k * (-1) \ \hat{\ } k * e' \ k - (\sum i = 1.. < k. \ (-1) \ \hat{\ } i * e' \ i * f
(k-i)
proof -
    have -of-nat k * e' k = (\sum i=1..k. (-1) \hat{i} * e' (k-i) * f i)
        using assms by (subst e'.simps) (simp add: field-simps)
    hence (-1)^{\hat{}}k * (-of\text{-}nat \ k * e' \ k) = (-1)^{\hat{}}k * (\sum i=1..k. \ (-1)^{\hat{}}i * e' \ (k-1)^{\hat{}}k * (-1)^{\hat{}}k * (
i) * f i)
        by simp
    also have ... = f k + (-1) \hat{k} * (\sum i=1.. < k. (-1) \hat{i} * e' (k-i) * f i)
        using assms by (subst sum.last-plus) (auto simp: minus-one-power-iff)
    also have (-1) k*(\sum i=1...< k. (-1) i*e'(k-i)*fi) = (\sum i=1...< k. (-1) (k-i)*e'(k-i)*fi)
     unfolding sum-distrib-left by (intro sum.cong) (auto simp: minus-one-power-iff)
    also have ... = (\sum i=1..< k. (-1) \hat{i} * e' i * f (k-i))
        by (intro sum.reindex-bij-witness[of - \lambda i. k - i \lambda i. k - i]) auto
    finally show ?thesis
        by (simp add: algebra-simps)
qed
We now define a polynomial whose roots will be precisely the solution
x_1, \ldots, x_n to our problem.
lift-definition Q':: complex poly is \lambda k. if k > n then 0 else (-1) (n - k) * e'
(n-k)
    using eventually-gt-at-top[of n] unfolding cofinite-eq-sequentially
    by eventually-elim auto
lemma coeff-Q': Polynomial.coeff Q'(k) = (if(k) > n) then 0 else (-1) (n-k) *
e'(n-k)
```

by transfer auto

```
lemma lead-coeff-Q': Polynomial.coeff Q' n = 1
 by (simp add: coeff-Q')
lemma degree-Q' [simp]: Polynomial.degree Q' = n
proof (rule antisym)
 show Polynomial.degree Q' \geq n
   by (rule le-degree) (auto simp: coeff-Q')
 show Polynomial.degree Q' \leq n
   by (rule degree-le) (auto simp: coeff-Q')
qed
Since the complex numbers are algebraically closed, this polynomial splits
into linear factors:
definition Root :: nat \Rightarrow complex
 where Root = (SOME\ Root.\ Q' = (\prod i < n.\ [:-Root\ i,\ 1:]))
lemma Root: Q' = (\prod i < n. [:-Root i, 1:])
proof
 obtain rs where rs: (\prod r \leftarrow rs. [:-r, 1:]) = Q' \text{ length } rs = n
   using fundamental-theorem-algebra-factorized of Q' lead-coeff-Q' by auto
 have Q' = (\prod r \leftarrow rs. [:-r, 1:])
   by (simp add: rs)
 also have ... = (\prod r = 0.. < n. [:-rs! r, 1:])
   by (subst prod-list-prod-nth) (auto simp: rs)
 also have \{0..< n\} = \{..< n\}
   by auto
 finally have \exists Root. \ Q' = (\prod i < n. \ [:-Root \ i, \ 1:])
   by blast
 thus ?thesis
   unfolding Root-def by (rule some I-ex)
We can therefore now use the results from before for these x_1, \ldots, x_n.
sublocale power-sum-puzzle Root n.
Vieta's theorem gives us an expression for the coefficients of Q' in terms of
e_k(x_1,\ldots,x_n). This shows that our e' is indeed exactly the same as e.
lemma e'-eq-e: e' k = e k
proof (cases k \leq n)
 case True
 from True have e' k = (-1) \hat{k} * poly.coeff Q' (n - k)
   by (simp \ add: coeff-Q')
 also have Q' = (\prod x < n. [:-Root x, 1:])
   using Root by simp
 also have (-1) \hat{k} * poly.coeff ... <math>(n - k) = e k
   using True coeff-poly-from-roots[of \{..< n\} n - k Root]
   by (simp add: insertion-sym-mpoly e-altdef)
 finally show e' k = e k.
```

```
qed auto
```

It then follows by a simple induction that $p_k = f_k$ for $1 \le k \le n$, as intended:

```
\begin{array}{l} \mathbf{lemma} \ p\text{-}eq\text{-}f\text{:} \\ \mathbf{assumes} \ k > 0 \ k \leq n \\ \mathbf{shows} \quad p \ k = f \ k \\ \mathbf{using} \ assms \\ \mathbf{proof} \ (induction \ k \ rule\text{:} \ less\text{-}induct) \\ \mathbf{case} \ (less \ k) \\ \mathbf{thus} \ p \ k = f \ k \\ \mathbf{using} \ p\text{-}recurrence[of \ k] \ f\text{-}recurrence[of \ k] \ less \ \mathbf{by} \ (simp \ add\text{:} \ e'\text{-}eq\text{-}e) \\ \mathbf{qed} \end{array}
```

end

Here is a more condensed form of the above existence theorem:

```
{\bf theorem}\ power-sum-puzzle-has-solution:
```

```
fixes f :: nat \Rightarrow complex

shows \exists Root. \ \forall \ k \in \{1..n\}. \ (\sum i < n. \ Root \ i \ \hat{\ } \ k) = f \ k

proof —

interpret power-sum-puzzle-existence f.

from p-eq-f have \forall \ k \in \{1..n\}. \ (\sum i < n. \ Root \ i \ \hat{\ } \ k) = f \ k

by (auto \ simp: \ p\text{-}def)

thus ?thesis by blast

qed
```

3.3 A specific puzzle

We now look at one particular instance of this puzzle, which was given as an exercise in *Abstract Algebra* by Dummit and Foote (Exercise 23 in Section 14.6) [1].

Suppose we know that x+y+z=1, $x^2+y^2+z^2=2$, and $x^3+y^3+z^3=3$. Then what is $x^5+y^5+z^5$? What about any arbitrary $x^n+y^n+z^n$?

```
{\bf locale}\ power-sum-puzzle-example =
```

```
fixes x \ y \ z :: complex

assumes xyz: x + y + z = 1

x^2 + y^2 + z^2 = 2

x^3 + y^3 + z^3 = 3
```

begin

We reuse the results we have shown in the general case before.

```
definition f where f n = [x,y,z] ! n
```

sublocale power-sum-puzzle f 3.

We can simplify p a bit more now.

lemma *p-altdef'*:
$$p \ k = x \hat{k} + y \hat{k} + z \hat{k}$$

```
unfolding p-def f-def by (simp add: eval-nat-numeral)
lemma p-base [simp]: p (Suc 0) = 1 p 2 = 2 p 3 = 3
 using xyz by (simp-all add: p-altdef')
We can easily compute all the non-zero values of e recursively:
lemma e-Suc-\theta [simp]: e (Suc \theta) = 1
 by (subst e-recurrence; simp)
lemma e-2 [simp]: e 2 = -1/2
 by (subst e-recurrence; simp add: atLeastAtMost-nat-numeral)
lemma e-3 [simp]: e \ 3 = 1/6
 by (subst e-recurrence; simp add: atLeastAtMost-nat-numeral)
Plugging in all the values, the recurrence relation for p now looks like this:
lemma p-recurrence''': k > 3 \Longrightarrow p \ k = p \ (k-3) \ / \ 6 + p \ (k-2) \ / \ 2 + p \ (k-1)
 using p-recurrence''[of k] by (simp add: atLeastAtMost-nat-numeral)
Also note again that all p_k are rational:
lemma p-in-Rats': p \ k \in \mathbb{Q}
proof -
 have *: \{1..3\} = \{1, 2, (3::nat)\}
   by auto
 also have \forall k \in \dots p \ k \in \mathbb{Q}
   by auto
 finally show ?thesis
   using p-in-Rats[of k] by simp
qed
The above recurrence has the characteristic polynomial X^3 - X^2 - \frac{1}{2}X - \frac{1}{6}
(which is exactly our Q), so we know that can now specify x, y, and z more
precisely: They are the roots of that polynomial (in unspecified order).
lemma xyz-eq: \{\#x, y, z\#\} = poly-roots [:-1/6, -1/2, -1, 1:]
proof -
 have image-mset f (mset-set \{..<3\}) = poly-roots Q
   using mset-x-eq-poly-roots-Q.
 also have image-mset f (mset-set \{..<3\}) = \{\#x, y, z\#\}
   by (simp add: numeral-3-eq-3 lessThan-Suc f-def Multiset.union-ac)
 also have Q = [:-1/6, -1/2, -1, 1:]
   by (simp add: Q-altdef atMost-nat-numeral Polynomial.monom-altdef
              power3-eq-cube power2-eq-square)
 finally show ?thesis.
qed
Using the rational root test, we can easily show that x, y, and z are irrational.
lemma xyz-irrational: set-mset (poly-roots [:-1/6, -1/2, -1, 1::complex:]) \cap \mathbb{Q}
= \{\}
```

```
proof – define p:: rat\ poly\ where p=[:-1/6,\,-1/2,\,-1,\,1:] have rational-root-test p=None unfolding p-def by code-simp hence \neg(\exists x::rat.\ poly\ p\ x=0) by (rule\ rational-root-test) hence \neg(\exists x\in\mathbb{Q}.\ poly\ (map\text{-poly\ of-rat\ }p)\ x=(0::complex)) by (auto\ simp:\ Rats\text{-def}) also have map\text{-poly\ of-rat\ }p=[:-1/6,\,-1/2,\,-1,\,1::complex:] by (simp\ add:\ p\text{-def\ of-rat-minus\ of-rat-divide}) finally show ?thesis by auto qed
```

This polynomial is *squarefree*, so these three roots are, in fact, unique (so that there are indeed 3! = 6 possible permutations).

```
 \begin{array}{l} \textbf{lemma} \ rsquarefree: rsquarefree \ [:-1/6, \, -1/2, \, -1, \, 1 \, :: \, complex:] \\ \textbf{by} \ (rule \ coprime-pderiv-imp-rsquarefree) \\ (auto \ simp: \ pderiv-pCons \ coprime-iff-gcd-eq-1 \ gcd-poly-code \ gcd-poly-code-def \ content-def \\ \end{array}
```

 $primitive-part-def\ gcd-poly-code-aux-reduce\ pseudo-mod-def\ pseudo-divmod-def\ Let-def\ Polynomial.monom-altdef\ normalize-poly-def)$

```
lemma distinct-xyz: distinct [x, y, z]
by (rule rsquarefree-imp-distinct-roots[OF rsquarefree]) (simp-all add: xyz-eq)
```

While these roots can be written more explicitly in radical form, they are not very pleasant to look at. We therefore only compute a few values of p just for fun:

```
lemma p \ 4 = 25 \ / \ 6 and p \ 5 = 6 and p \ 10 = 15539 \ / \ 432 by (simp-all \ add: \ p-recurrence''')
```

Lastly, let us (informally) examine the asymptotics of this problem.

Two of the roots have a norm of roughly $\beta \approx 0.341$, while the remaining root α is roughly 1.431. Consequently, $x^n + y^n + z^n$ is asymptotically equivalent to α^n , with the error being bounded by $2 \cdot \beta^n$ and therefore goes to 0 very quickly.

For $p(10) = \frac{15539}{432} \approx 35.97$, for instance, this approximation is correct up to 6 decimals (a relative error of about 0.0001%).

end

To really emphasise that the above puzzle has a solution and the locale is not 'vacuous', here is an interpretation of the locale using the existence theorem from before:

```
notepad begin define f :: nat \Rightarrow complex where f = (\lambda k. [1,2,3] ! (k-1))
```

```
obtain Root: nat \Rightarrow complex where Root: \land k. \ k \in \{1..3\} \Longrightarrow (\sum i < 3. \ Root \ i \ \widehat{\ } k) = f \ k
using power-sum-puzzle-has-solution [of\ 3\ f] by metis
define x\ y\ z where x = Root\ 0\ y = Root\ 1\ z = Root\ 2
have x + y + z = 1 and x \ 2 + y \ 2 + z \ 2 = 2 and x \ 3 + y \ 3 + z \ 3 = 3
using Root[of\ 1]\ Root[of\ 2]\ Root[of\ 3] by (simp-all\ add:\ eval-nat-numeral\ x-y-z-def\ f-def)
then interpret power-sum-puzzle-example x\ y\ z
by unfold-locales
have p\ 5 = 6
by (simp\ add:\ p-recurrence"')
end
```

References

- [1] D. S. Dummit and R. M. Foote. Abstract Algebra. Wiley, 2003.
- [2] D. Zeilberger. A combinatorial proof of Newton's identities. *Discrete Mathematics*, 49(3):319, 1984.