Power Sum Polynomials
and the Girard-Newton Theorem

Manuel Eberl

March 17, 2025

Abstract

This article provides a formalisation of the symmetric multivariate
polynomials known as power sum polynomials. These are of the form
Pn(X1,..., Xg) = X7+ ...+ XJ. A formal proof of the Girard-
Newton Theorem is also given. This theorem relates the power sum
polynomials to the elementary symmetric polynomials s, in the form
of a recurrence relation (—1)*ks; = Zi:ol(—l)isipk,i .

As an application, this is then used to solve a generalised form of
a puzzle given as an exercise in Dummit and Foote’s Abstract Algebra:
For k complex unknowns 1, ..., 2y, define p; := 2] + ...+ . Then
for each vector a € CF, show that there is exactly one solution to the
system p; = a1, ..., P = a; up to permutation of the x; and determine
the value of p; for i > k.

Contents

1 Auxiliary material
1.1 Miscellaneous oo
1.2 The set of roots of a univariate polynomial

2 Power sum polynomials
2.1 Definition
2.2 The Girard—Newton Theorem

3 Power sum puzzles
3.1 General setting and results
3.2 Existence of solutions
3.3 Aspecificpuzzle oL

[\)

1 Auxiliary material

theory Power-Sum-Polynomials-Library

imports
Polynomial-Factorization. Fundamental- Theorem-Algebra- Factorized
Symmetric- Polynomials. Symmetric- Polynomials
HOL— Computational-Algebra. Computational-Algebra

begin

unbundle multiset.lifting

1.1 Miscellaneous

lemma atLeastAtMost-nat-numeral:
atLeastAtMost m (numeral k :: nat) =
(if m < numeral k then insert (numeral k) (atLeastAtMost m (pred-numeral
k)

else {})

by (simp add: numeral-eq-Suc atLeastAtMostSuc-conv)

lemma sum-in-Rats [intro]: (N\z. 2 € A = fz € Q) = sum fA € Q
by (induction A rule: infinite-finite-induct) auto

lemma (in monoid-mult) prod-list-distinct-conv-prod-set:
distinct xs = prod-list (map f xs) = prod f (set xs)
by (induct zs) simp-all

lemma (in monoid-mult) interv-prod-list-conv-prod-set-nat:
prod-list (map f [m..<n]) = prod f (set [m..<n])
by (simp add: prod-list-distinct-conv-prod-set)

lemma (in monoid-mult) prod-list-prod-nth:

prod-list ks = ([¢ = 0..< length xs. zs ! i)

using interv-prod-list-conv-prod-set-nat [of (1) xs 0 length zs] by (simp add:
map-nth)

lemma gcd-poly-code-auz-reduce:

gcd-poly-code-aux p 0 = normalize p

q # 0 = gcd-poly-code-aux p ¢ = ged-poly-code-auz g (primitive-part (pseudo-mod
P q))

by (subst ged-poly-code-auz.simps; simp)+

lemma coprimel-primes:
fixes a b :: 'a :: factorial-semiring
assumes a # 0 V b # 0
assumes Ap. prime p = p dvd a = p dvd b = Fulse
shows coprime a b

proof (rule coprimel)

fix d assume d: d dvd a d dvd b
with assms(1) have [simp|: d # 0 by auto
show is-unit d
proof (rule ccontr)
assume —is-unit d
then obtain p where p: prime p p dvd d
using prime-divisor-ezists|of d] by auto
from assms(2)[of p] and p and d show Fualse
using dvd-trans by auto
qged
qed

lemma coprime-pderiv-imp-squarefree:
assumes coprime p (pderiv p)
shows squarefree p
proof (rule squarefreel)
fix d assume d: d ~ 2 dvd p
then obtain ¢ where ¢: p =d ~ 2 % ¢
by (elim dvdE)
hence d dvd p d dvd pderiv p
by (auto simp: pderiv-mult pderiv-power-Suc numeral-2-eq-2)
with assms show is-unit d
using not-coprimel by blast
qed

lemma squarefree-field-poly-iff:
fixes p :: a :: {field-char-0,euclidean-ring-gcd,semiring-gcd-mult-normalize} poly
assumes [simp]: p # 0
shows squarefree p «— coprime p (pderiv p)
proof
assume squarefree p
show coprime p (pderiv p)
proof (rule coprimel-primes)
fix d assume d: d dvd p d dvd pderiv p prime d
from d(1) obtain ¢ where ¢: p = d % ¢
by (elim dvdE)
from d(2) and ¢ have d dvd g * pderiv d
by (simp add: pderiv-mult dvd-add-right-iff)
with <prime d» have d dvd q V d dvd pderiv d
using prime-dvd-mult-iff by blast
thus Fulse
proof
assume d dvd g
hence d ~ 2 dvd p
by (auto simp: q power2-eq-square)
with <squarefree p> show Fulse
using d(3) not-prime-unit squarefreeD by blast
next
assume d dvd pderiv d

hence Polynomial.degree d = 0 by simp
moreover have d # 0 using d by auto
ultimately show Fulse
using d(3) is-unit-iff-degree not-prime-unit by blast
qed
qed auto
qed (use coprime-pderiv-imp-squarefree[of p| in auto)

lemma coprime-pderiv-imp-rsquarefree:
assumes coprime (p :: 'a :: field-char-0 poly) (pderiv p)
shows rsquarefree p
unfolding rsquarefree-roots
proof safe
fix z assume poly p z = 0 poly (pderiv p) x = 0
hence [:—z, 1:] dvd p [:—=, 1:] dvd pderiv p
by (auto simp: poly-eq-0-iff-dvd)
with assms have is-unit [:—z, 1:
using not-coprimel by blast
thus Fulse by auto
qed

lemma poly-of-nat [simp]: poly (of-nat n) z = of-nat n
by (induction n) auto

lemma poly-of-int [simp]: poly (of-int n) z = of-int n
by (cases n) auto

lemma order-eq-0-iff: p # 0 = order z p = 0 <— poly p x # 0
by (auto simp: order-root)

lemma order-pos-iff: p # 0 = order xp > 0 +— polyp x = 0
by (auto simp: order-root)

lemma order-prod:
assumes A\z. z € A = fx # 0
shows order z (J[[y€A. fy) = O yeA. order z (fy))
using assms by (induction A rule: infinite-finite-induct) (auto simp: order-mult)

lemma order-prod-mset:
assumes 0 ¢# A
shows order x (prod-mset A) = sum-mset (image-mset (order z) A)
using assms by (induction A) (auto simp: order-mult)

lemma order-prod-list:
assumes 0 ¢ set s
shows order z (prod-list xs) = sum-list (map (order x) xs)
using assms by (induction xs) (auto simp: order-mult)

lemma order-power: p # 0 = order x (p ~n) = n * order x p

by (induction n) (auto simp: order-mult)

lemma smult-0-right [simp]: MPoly-Type.smult p 0 = 0
by (transfer, transfer) auto

lemma mult-smult-right [simp]:
fixes c :: 'a :: comm-semiring-0
shows p x MPoly-Type.smult ¢ ¢ = MPoly-Type.smult ¢ (p * q)

by (simp add: smult-conv-mult mult-ac)

lemma mapping-single-eq-iff [simp):

Poly-Mapping.single a b = Poly-Mapping.single c d <— b =0ANd =0V a =
cANb=d

by transfer (unfold fun-eq-iff when-def, metis)

lemma monom-of-set-plus-monom-of-set:
assumes A N B = {} finite A finite B
shows monom-of-set A + monom-of-set B = monom-of-set (A U B)
using assms by transfer (auto simp: fun-eq-iff)

lemma mpoly-monom-0-eq-Const: monom 0 ¢ = Const ¢
by (intro mpoly-eql) (auto simp: coeff-monom when-def mpoly-coeff-Const)

lemma mpoly-Const-0 [simp]: Const 0 = 0
by (intro mpoly-eql) (auto simp: mpoly-coeff-Const mpoly-coeff-0)

lemma mpoly-Const-1 [simp]: Const 1 = 1
by (intro mpoly-eql) (auto simp: mpoly-coeff-Const mpoly-coeff-1)

lemma mpoly-Const-uminus: Const (—a) = —Const a
by (intro mpoly-eql) (auto simp: mpoly-coeff-Const)

lemma mpoly-Const-add: Const (a + b) = Const a + Const b
by (intro mpoly-eql) (auto simp: mpoly-coeff-Const)

lemma mpoly-Const-mult: Const (a x b) = Const a x Const b
unfolding mpoly-monom-0-eq-Const [symmetric] mult-monom by simp

lemma mpoly-Const-power: Const (a ~n) = Const a " n
by (induction n) (auto simp: mpoly-Const-mult)

lemma of-nat-mpoly-eq: of-nat n = Const (of-nat n)
proof (induction n)
case ()
have 0 = (Const 0 :: 'a mpoly)
by (intro mpoly-eql) (auto simp: mpoly-coeff-Const)
thus ?case
by simp

next
case (Suc n)
have 1 + Const (of-nat n) = Const (1 + of-nat n)
by (intro mpoly-eql) (auto simp: mpoly-coeff-Const mpoly-coeff-1)
thus Zcase
using Suc by auto
qed

lemma insertion-of-nat [simp|: insertion f (of-nat n) = of-nat n
by (simp add: of-nat-mpoly-eq)

lemma insertion-monom-of-set [simp):

insertion f (monom (monom-of-set X) ¢) = ¢ * ([[i€X. f1)
proof (cases finite X)

case [simp]: True

have insertion f (monom (monom-of-set X) ¢) = ¢ * ([[a. fa ~ (if a € X then
1 else 0))

by (auto simp: lookup-monom-of-set)
also have (J[Ja. fa ~(ifa € X then I else 0)) = ([[i€X. fi ~(if i € X then 1

else 0))
by (intro Prod-any.expand-superset) auto
also have ... = ([[ieX. f1)

by (intro prod.cong) auto
finally show ?thesis .
qed (auto simp: lookup-monom-of-set)

lemma symmetric-mpoly-symmetric-sum:

assumes Aw. 7 permutes A = g 7 permutes X

assumes Az 7. ¢ € X = 7 permutes A = mpoly-map-vars = (fz) = f (g =
x)

shows symmetric-mpoly A (3. zeX. f x)

unfolding symmetric-mpoly-def
proof safe

fix 7 assume 7: ™ permutes A

have mpoly-map-vars © (sum f X) = (3 z€X. mpoly-map-vars 7 (f x))

by simp

also have ... = (D zeX. f (9 7 z))
by (intro sum.cong assms w refl)
also have ... = D zeg n‘X. fz)

using assms(1)[OF w| by (subst sum.reindex) (auto simp: permutes-inj-on)
alsohave gm ‘X = X
using assms(1)[OF w] by (simp add: permutes-image)
finally show mpoly-map-vars © (sum f X) = sum f X .
qed

lemma sym-mpoly-0 [simp]:
assumes finite A

shows sym-mpoly A 0 = 1
using assms by (transfer, transfer) (auto simp: fun-eq-iff when-def)

lemma sym-mpoly-eq-0 [simp]:
assumes k > card A
shows sym-mpoly A k = 0
proof (transfer fizing: A k, transfer fizing: A k, intro ext)
fix mon
have —(finite A A (3YCA. card Y = k A mon = monom-of-set Y'))
proof safe
fix Y assume Y: finite A Y C A k = card Y mon = monom-of-set Y
hence card Y < card A by (intro card-mono) auto
with Y and assms show Fulse by simp
qed
thus (if finite A A (3YCA. card Y = k A mon = monom-of-set Y') then 1 else
0)=20
by auto
qed

lemma coeff-sym-mpoly-monom-of-set-eq-0:
assumes finite X Y C X card Y # k
shows MPoly-Type.coeff (sym-mpoly X k) (monom-of-set Y) = 0
using assms finite-subset|of - X| by (auto simp: coeff-sym-mpoly)

lemma coeff-sym-mpoly-monom-of-set-eq-0":
assumes finite X =Y C X finite Y
shows MPoly-Type.coeff (sym-mpoly X k) (monom-of-set Y) = 0
using assms finite-subset|of - X| by (auto simp: coeff-sym-mpoly)

1.2 The set of roots of a univariate polynomial

lift-definition poly-roots :: 'a :: idom poly = 'a multiset is

Ap z. if p = 0 then 0 else order x p
proof —
fix p :: 'a poly
show finite {z. 0 < (if p = 0 then 0 else order z p)}
by (cases p = 0) (auto simp: order-pos-iff poly-roots-finite)
qed

lemma poly-roots-0 [simp]: poly-roots 0 = {#}
by transfer auto

lemma poly-roots-1 [simp|: poly-roots 1 = {#}
by transfer auto

lemma count-poly-roots [simp):
assumes p # 0
shows count (poly-roots p) x = order z p
using assms by transfer auto

lemma in-poly-roots-iff [simp|: p # 0 = x €F# poly-roots p +— poly p x = 0
by (subst count-greater-zero-iff [symmetric], subst count-poly-roots) (auto simp:
order-pos-iff)

lemma set-mset-poly-roots: p # 0 = set-mset (poly-roots p) = {x. poly p x = 0}
using in-poly-roots-iff[of p] by blast

lemma count-poly-roots”: count (poly-roots p) x = (if p = 0 then 0 else order z p)
by transfer’ auto

lemma poly-roots-const [simp: poly-roots [:c:] = {#}
by (intro multiset-eql) (auto simp: count-poly-roots’ order-eq-0-iff)

lemma poly-roots-linear [simp]: poly-roots [:—x, 1:] = {F#x#}
by (intro multiset-eql) (auto simp: count-poly-roots’ order-eq-0-iff)

lemma poly-roots-monom [simpl: ¢ # 0 = poly-roots (Polynomial.monom c n)
= replicate-mset n 0
by (intro multiset-eql) (auto simp: count-poly-roots’ order-eq-0-iff poly-monom)

lemma poly-roots-smult [simp]: ¢ # 0 = poly-roots (Polynomial.smult ¢ p) =
poly-roots p
by (intro multiset-eql) (auto simp: count-poly-roots’ order-smult)

lemma poly-roots-mult: p # 0 = q # 0 = poly-roots (p * q) = poly-roots p +
poly-roots q
by (intro multiset-eql) (auto simp: count-poly-roots’ order-mult)

lemma poly-roots-prod:
assumes \z. 2 € A = fz # 0
shows poly-roots (prod f A) = (D" xz€A. poly-roots (f z))
using assms by (induction A rule: infinite-finite-induct) (auto simp: poly-roots-mult)

lemma poly-roots-prod-mset:
assumes 0 ¢# A
shows poly-roots (prod-mset A) = sum-mset (image-mset poly-roots A)
using assms by (induction A) (auto simp: poly-roots-mult)

lemma poly-roots-prod-list:
assumes 0 ¢ set s
shows poly-roots (prod-list xs) = sum-list (map poly-roots xs)
using assms by (induction zs) (auto simp: poly-roots-mult)

lemma poly-roots-power: p # 0 = poly-roots (p ~ n) = repeat-mset n (poly-roots
p)

by (induction n) (auto simp: poly-roots-mult)

lemma rsquarefree-poly-roots-eq:

assumes rsquarefree p

shows poly-roots p = mset-set {x. poly p x = 0}
proof (rule multiset-eql)

fixz:'a

from assms show count (poly-roots p) © = count (mset-set {z. poly p x = 0}) x

by (cases poly p © = 0) (auto simp: poly-roots-finite order-eq-0-iff rsquare-

free-def)
qed

lemma rsquarefree-imp-distinct-roots:
assumes rsquarefree p and mset xs = poly-roots p
shows distinct zs
proof (cases p = 0)
case [simp|: False
have *: mset s = mset-set {z. poly p x = 0}
using assms by (simp add: rsquarefree-poly-roots-eq)
hence set-mset (mset zs) = set-mset (mset-set {z. poly p x = 0})
by (simp only:)
hence [simp]: set s = {z. poly p z = 0}
by (simp add: poly-roots-finite)
from * show ?%thesis
by (subst distinct-count-atmost-1) (auto simp: poly-roots-finite)
qed (use assms in auto)

lemma poly-roots-factorization:
fixes pc A
assumes [simp]: ¢ # 0
defines p = Polynomial.smult ¢ (prod-mset (image-mset (Az. [:—z, 1:]) A))
shows poly-roots p = A
proof —
have poly-roots p = poly-roots (] t€#A. [:—z, 1:])
by (auto simp: p-def)
also have ... = A
by (subst poly-roots-prod-mset) (auto simp: image-mset.compositionality o-def)
finally show ?thesis .
qed

lemma fundamental-theorem-algebra-factorized':
fixes p :: complex poly
shows p = Polynomial.smult (Polynomial.lead-coeff p)
(prod-mset (image-mset (Az. [:—z, 1:]) (poly-roots p)))
proof (cases p = 0)
case [simp]: False
obtain zs where
zs: Polynomial.smult (Polynomial.lead-coeff p) ([] x+xs. [i—z, 1:]) = p
length xs = Polynomial.degree p
using fundamental-theorem-algebra-factorized|of p| by auto
define A where A = mset s

note zs(1)
also have ([[z<+=s. [:—x, 1:]) = prod-mset (image-mset (A\z. [:—z, 1:]) A)
unfolding A-def by (induction xs) auto
finally have *: Polynomial.smult (Polynomial.lead-coeff p) ([z€#A. [:— =, 1:])
= p .
also have A = poly-roots p
using poly-roots-factorization|of Polynomial.lead-coeff p A]
by (subst * [symmetric]) auto
finally show ?thesis ..
qed auto

lemma poly-roots-eq-imp-eq:
fixes p q :: complex poly
assumes Polynomial.lead-coeff p = Polynomial.lead-coeff q
assumes poly-roots p = poly-roots q
shows p =g
proof (casesp =0V ¢ = 0)
case Fulse
hence [simp|: p # 0 q # 0
by auto
have p = Polynomial.smult (Polynomial.lead-coeff p)
(prod-mset (image-mset (Ax. [:—z, 1:]) (poly-roots p)))
by (rule fundamental-theorem-algebra-factorized”)
also have ... = Polynomial.smult (Polynomial.lead-coeff q)
(prod-mset (image-mset (Az. [:—z, 1:]) (poly-roots q)))
by (simp add: assms)
also have ... = ¢
by (rule fundamental-theorem-algebra-factorized’ [symmetric])
finally show ?thesis .
qed (use assms in auto)

lemma Sum-any-zerol”: (Nz. Pt = fz = 0) = Sum-any (Az. f x when P z)
=0
by (auto simp: Sum-any.expand-set)

lemma sym-mpoly-insert:
assumes finite X © ¢ X
shows (sym-mpoly (insert x X) (Suc k) == 'a = semiring-1 mpoly) =
monom (monom-of-set {z}) 1 * sym-mpoly X k + sym-mpoly X (Suc
k) (is ?lhs = ?A + ?B)
proof (rule mpoly-eql)
fix mon
show coeff ?lhs mon = coeff (?A + ?B) mon
proof (cases Vi. lookup mon i < 1 A (i ¢ insert ¥ X — lookup mon i = 0))
case Fulse
then obtain i where i: lookup mon i > 1 V i ¢ insert x X A lookup mon i >
0
by (auto simp: not-le)

10

have coeff ?A mon = prod-fun (coeff (monom (monom-of-set {z}) 1))
(coeff (sym-mpoly X k)) mon
by (simp add: coeff-mpoly-times)
also have ... = (3] 1. > q. coeff (monom (monom-of-set {z}) 1) 1 * coeff
(sym-mpoly X k) ¢
when mon = 1 + q)
unfolding prod-fun-def
by (intro Sum-any.cong, subst Sum-any-right-distrib, force)
(auto simp: Sum-any-right-distrib when-def intro!: Sum-any.cong)
also have ... = 0
proof (rule Sum-any-zerol, rule Sum-any-zerol’)
fix ma mb assume x: mon = ma + mb
show coeff (monom (monom-of-set {z}) (1::'a)) ma * coeff (sym-mpoly X k)
mb = 0
proof (cases i = x)
case [simp]: True
show ?thesis
proof (cases lookup mb i > 0)
case True
hence coeff (sym-mpoly X k) mb = 0 using «x ¢ X»
by (auto simp: coeff-sym-mpoly lookup-monom-of-set split: if-splits)
thus ?thesis
using mult-not-zero by blast
next
case Fulse
hence coeff (monom (monom-of-set {z}) 1) ma = 0
using i by (auto simp: coeff-monom when-def * lookup-add)
thus ?thesis
using mult-not-zero by blast
qed
next
case [simp]: False
show ?thesis
proof (cases lookup ma i > 0)
case Fulse
hence lookup mb i = lookup mon i
using * by (auto simp: lookup-add)
hence coeff (sym-mpoly X k) mb = 0 using ¢
by (auto simp: coeff-sym-mpoly lookup-monom-of-set split: if-splits)
thus ?thesis
using mult-not-zero by blast
next
case True
hence coeff (monom (monom-of-set {z}) 1) ma = 0
using i by (auto simp: coeff-monom when-def * lookup-add)
thus ?thesis
using mult-not-zero by blast
qged

11

qed
qed
finally have coeff A mon = 0 .
moreover from Fualse have coeff ?lhs mon = 0
by (subst coeff-sym-mpoly) (auto simp: lookup-monom-of-set split: if-splits)
moreover from Fulse have coeff (sym-mpoly X (Suc k)) mon = 0
by (subst coeff-sym-mpoly) (auto simp: lookup-monom-of-set split: if-splits)
ultimately show ?thesis
by auto
next
case True
define A where A = keys mon
have A: A C insert z X
using True by (auto simp: A-def)
have [simp]: mon = monom-of-set A
unfolding A-def using True by transfer (force simp: fun-eq-iff le-Suc-eq)
have finite A
using finite-subset A assms by blast
show ?thesis
proof (cases z € A)
case Fulse
have coeff ?A mon = prod-fun (coeff (monom (monom-of-set {z}) 1))
(coeff (sym-mpoly X k)) (monom-of-set A)
by (simp add: coeff-mpoly-times)
also have ... = (3_1. > q. coeff (monom (monom-of-set {x}) 1) 1 * coeff
(sym-mpoly X k) q
when monom-of-set A = 1 + q)
unfolding prod-fun-def
by (intro Sum-any.cong, subst Sum-any-right-distrib, force)
(auto simp: Sum-any-right-distrib when-def intro!: Sum-any.cong)
also have ... =0
proof (rule Sum-any-zerol, rule Sum-any-zerol’)
fix ma mb assume *: monom-of-set A = ma + mb
hence keys ma C A
using «finite Ay by transfer (auto simp: fun-eq-iff split: if-splits)
thus coeff (monom (monom-of-set {z}) (1::'a)) ma * coeff (sym-mpoly X
k) mb=0
using <z ¢ A> by (auto simp: coeff-monom when-def)
qed
finally show ?thesis
using Fualse A assms finite-subset|[of - insert z X| finite-subset[of - X
by (auto simp: coeff-sym-mpoly)
next
case True
have mon = monom-of-set {z} + monom-of-set (A — {z})
using <z € Ay (finite A> by (auto simp: monom-of-set-plus-monom-of-set)

also have coeff ?A ... = coeff (sym-mpoly X k) (monom-of-set (A — {z}))
by (subst coeff-monom-mult) auto
also have ... = (if card A = Suc k then 1 else 0)

12

proof (cases card A = Suc k)
case True
thus ?thesis
using assms <finite A> «x € A» A
by (subst coeff-sym-mpoly-monom-of-set) auto
next
case Fulse
thus ?thesis
using assms «x € A A «finite Ay card-Suc-Diff1[of A x)
by (subst coeff-sym-mpoly-monom-of-set-eq-0) auto
qed
moreover have coeff ?B (monom-of-set A) = 0
using assms «x € Ay <finite A»
by (subst coeff-sym-mpoly-monom-of-set-eq-0") auto
moreover have coeff ?lhs (monom-of-set A) = (if card A = Suc k then 1 else
0)
using assms A <finite Ay finite-subset|of - insert © X] by (auto simp:
coeff-sym-mpoly)
ultimately show ?thesis by simp
qed
qged
qged

lifting-update multiset.lifting
lifting-forget multiset.lifting

end

2 Power sum polynomials

theory Power-Sum-Polynomials

imports
Symmetric- Polynomials. Symmetric- Polynomials
HOL- Computational-Algebra. Field-as-Ring
Power-Sum-Polynomials-Library

begin

2.1 Definition

For n indeterminates X1, ..., X,, we define the k-th power sum polynomial

as
pk(Xl,...,Xn):Xf-i-...-i-Xﬁ.

lift-definition powsum-mpoly-aux :: nat set = nat = (nat = nat) =¢ ’'a =
{semiring-1,zero-neq-one} is
AX k mon. if infinite X V k= 0 N mon # 0 then 0
else if k = 0 A mon = 0 then of-nat (card X)
else if finite X A (3z€X. mon = Poly-Mapping.single z k) then 1 else 0

13

by auto

lemma lookup-powsum-mpoly-auz:
Poly-Mapping.lookup (powsum-mpoly-aux X k) mon =
(if infinite X V k = 0 A mon # 0 then 0
else if k = 0 A\ mon = 0 then of-nat (card X)
else if finite X N (z€X. mon = Poly-Mapping.single = k) then 1 else
0)
by transfer’ simp

lemma lookup-sym-mpoly-auz-monom-singleton [simp]:

assumes finite Xz € Xk > 0

shows Poly-Mapping.lookup (powsum-mpoly-aux X k) (Poly-Mapping.single
k) =1

using assms by (auto simp: lookup-powsum-mpoly-aur)

lemma lookup-sym-mpoly-auz-monom-singleton’:

assumes finite X k > 0

shows Poly-Mapping.lookup (powsum-mpoly-auz X k) (Poly-Mapping.single
k) = (if € X then 1 else 0)

using assms by (auto simp: lookup-powsum-mpoly-auz)

lemma keys-powsum-mpoly-auz: m € keys (powsum-mpoly-aux A k) = keys m
cA
by transfer’ (auto split: if-splits simp: keys-monom-of-set)

lift-definition powsum-mpoly :: nat set = nat = 'a :: {semiring-1,zero-neg-one}
mpoly is
powsum-mpoly-aux .

lemma vars-powsum-mpoly-subset: vars (powsum-mpoly A k) C A
using keys-powsum-mpoly-auz by (auto simp: vars-def powsum-mpoly.rep-eq)

lemma powsum-mpoly-infinite: —finite A = powsum-mpoly A k = 0
by (transfer, transfer) auto

lemma coeff-powsum-mpoly:
MPoly-Type.coeff (powsum-mpoly X k) mon =
(if infinite X V k = 0 A mon # 0 then 0
else if k = 0 A mon = 0 then of-nat (card X)
else if finite X A (3z€X. mon = Poly-Mapping.single z k) then 1 else
0)

by transfer’ (simp add: lookup-powsum-mpoly-auz)

lemma coeff-powsum-mpoly-0-right:

MPoly-Type.coeff (powsum-mpoly X 0) mon = (if mon = 0 then of-nat (card X)
else 0)

by transfer’ (auto simp add: lookup-powsum-mpoly-aur)

14

lemma coeff-powsum-mpoly-singleton:

assumes finite X k > 0

shows MPoly-Type.coeff (powsum-mpoly X k) (Poly-Mapping.single x k) = (if
z € X then 1 else 0)

using assms by transfer’ (simp add: lookup-powsum-mpoly-aux)

lemma coeff-powsum-mpoly-singleton-eq-1 [simp]:
assumes finite Xz € X k> 0
shows MPoly-Type.coeff (powsum-mpoly X k) (Poly-Mapping.single x k) = 1
using assms by (simp add: coeff-powsum-mpoly-singleton)

lemma coeff-powsum-mpoly-singleton-eq-0 [simpl:
assumes finite Xt ¢ X k > 0
shows MPoly-Type.coeff (powsum-mpoly X k) (Poly-Mapping.single x k) = 0
using assms by (simp add: coeff-powsum-mpoly-singleton)

lemma powsum-mpoly-0 [simp]: powsum-mpoly X 0 = of-nat (card X)
by (intro mpoly-eql ext) (auto simp: coeff-powsum-mpoly-0-right of-nat-mpoly-eq
mpoly-coeff-Const)

lemma powsum-mpoly-empty [simp]: powsum-mpoly {} k = 0
by (intro mpoly-eql) (auto simp: coeff-powsum-mpoly)

lemma powsum-mpoly-altdef: powsum-mpoly X k = (> z€X. monom (Poly-Mapping.single
zk) 1)
proof (cases finite X)
case [simp]: True
show ?thesis
proof (cases k = 0)
case True
thus ?thesis by auto
next
case Fulse
show ?thesis
proof (intro mpoly-eql, goal-cases)
case (1 mon)
show ?case using Fulse
by (cases z€X. mon = Poly-Mapping.single z k)
(auto simp: coeff-powsum-mpoly coeff-monom when-def)
qed
qed
qed (auto simp: powsum-mpoly-infinite)

Power sum polynomials are symmetric:

lemma symmetric-powsum-mpoly [intro]:
assumes A C B
shows symmetric-mpoly A (powsum-mpoly B k)
unfolding powsum-mpoly-altdef

15

proof (rule symmetric-mpoly-symmetric-sum)
fixzm
assume z € B w permutes A
thus mpoly-map-vars © (MPoly-Type.monom (Poly-Mapping.single x k) 1) =
MPoly-Type.monom (Poly-Mapping.single (7 z) k) 1
using assms by (auto simp: mpoly-map-vars-monom permutes-bij permutep-single
bij-imp-bij-inv permutes-inv-inv)
qed (use assms in <auto simp: permutes-subset))

lemma insertion-powsum-mpoly [simp): insertion f (powsum-mpoly X k) = (3 i€ X.

fi™ k)

unfolding powsum-mpoly-altdef insertion-sum insertion-single by simp

lemma powsum-mpoly-nz:

assumes finite X X # {} k> 0

shows (powsum-mpoly X k :: 'a :: {semiring-1, zero-neg-one} mpoly) # 0
proof —

from assms obtain x where z € X by auto

hence coeff (powsum-mpoly X k) (Poly-Mapping.single z k) = (1 :: 'a)

using assms by (auto simp: coeff-powsum-mpoly)

thus ?thesis by auto

qged

lemma powsum-mpoly-eq-0-iff:
assumes k > 0
shows powsum-mpoly X k = 0 <— infinite X V X = {}
using assms powsum-mpoly-nz[of X k] by (auto simp: powsum-mpoly-infinite)

2.2 The Girard—Newton Theorem

The following is a nice combinatorial proof of the Girard—Newton Theorem
due to Doron Zeilberger [2].

The precise statement is this:

Let e; denote the k-th elementary symmetric polynomial in Xy,..., X,,.
This is the sum of all monomials that can be formed by taking the product
of k distinct variables.
Next, let p, = X {“ +...+ Xﬁ denote that k-th symmetric power sum poly-
nomial in X1,..., X,.

Then the following equality holds:
k—1 '
(1) ke + > (—1)eipr—;
i=0

theorem Girard-Newton:
assumes finite X
shows (—1) "~k x of-nat k x sym-mpoly X k +
S i<k. (—1) T i * sym-mpoly X i * powsum-mpoly X (k — 7)) =

16

(0 :: 'a :: comm-ring-1 mpoly)
(is ?lhs = 0)
proof —
write Poly-Mapping.single (<sng»)

define n where n = card X
define A :: (nat set x nat) set
where A={(4,j) ACXANcardA<kANjeEXA(card A=k — je A)}
define A7 :: (nat set x nat) set
where Al = {AcPow X. card A < k} x X
define A2 :: (nat set x nat) set
where A2 = (SIGMA A:{Ac€Pow X. card A = k}. A)

have A-split: A = A1 U A2 A1 N A2 = {}
by (auto simp: A-def Al-def A2-def)
have [intro]: finite Al finite A2
using assms finite-subset[of - X] by (auto simp: Al-def A2-def introl: fi-
nite-Sigmal)
have [intro|: finite A
by (subst A-split) auto

— We define a ‘weight’ function w from A to the ring of polynomials as

w(A,) = (=)t] a2,
€A

define w :: nat set X nat = 'a mpoly
where w = (A\(4, 7). monom (monom-of-set A + sng j (k — card A)) ((—1)
card A))

o~

— The sum of these weights over all of A is precisely the sum that we want to
show equals 0:
have ?lhs = (> z€A. w 1)
proof —
have (3} zeA wz) = (D zcAl. wz) + (O z€A2. wx)
by (subst A-split, subst sum.union-disjoint, use A-split(2) in auto)

also have (> zcAl. wz) = (> i<k. (—1) " i x sym-mpoly X i * powsum-mpoly
X (k= 1)
proof —
have (> zcAl. wx) =3 A| AC X Acard A < k. > jeX. w (A4, j))
using assms by (subst sum.Sigma) (auto simp: Al-def)
alsohave ... = (D A|AC X ANcard A < k. Y jeX.
monom (monom-of-set A) ((—1) ~ card A) x monom (sng j (k

— card A)) 1)
unfolding w-def by (intro sum.cong) (auto simp: mult-monom)
also have ... = (DA | A C X A card A < k. monom (monom-of-set A)

((=1) " card A) *
powsum-mpoly X (k — card A))
by (simp add: sum-distrib-left powsum-mpoly-altdef)

17

also have ... = (3 (i,4) € (SIGMA i:{..<k}. {A. A C X A card A = i}).
monom (monom-of-set A) ((—1) ~ i) * powsum-mpoly X (k —
)
by (rule sum.reindex-bij-witness[of - snd AA. (card A, A)]) auto
also have ... = (3> i<k. > A| AC X A card A = 1.
monom (monom-of-set A) 1 * monom 0 ((—1)
powsum-mpoly X (k — 1))
using assms by (subst sum.Sigma) (auto simp: mult-monom)
also have ... = (Y i<k. (—1) ~ i * sym-mpoly X i * powsum-mpoly X (k —

~

i)
by (simp add: sum-distrib-left sum-distrib-right mpoly-monom-0-eq-Const
mpoly-Const-power mpoly-Const-uminus algebra-simps
sym-mpoly-altdef)
finally show ?Zthesis .
qed

also have (D z€A2. wx) = (—1) "k x of-nat k * sym-mpoly X k
proof —
have (> zcA2. wz) = (3 (4,j)€A2. monom (monom-of-set A) ((— 1) ~
k)

by (intro sum.cong) (auto simp: A2-def w-def mpoly-monom-0-eq-Const
introl: sum.cong)
alsohave ... = (3 A | AC X A card A = k. > jeA. monom (monom-of-set
4) (1) " k)
using assms finite-subset|of - X| by (subst sum.Sigma) (auto simp: A2-def)
also have (AA. monom (monom-of-set A) ((— 1) " k) :: 'a mpoly) =
(M. monom 0 ((—1) " k) = monom (monom-of-set A) 1)
by (auto simp: fun-eq-iff mult-monom,)
also have monom 0 ((—1) " k) =(—1) "k
by (auto simp: mpoly-monom-0-eq-Const mpoly- Const-power mpoly-Const-uminus)
also have (DA | A C X A card A = k. Y jeA. (= 1) ~ k = monom
(monom-of-set A) 1) =
((=1) "k = of-nat k * sym-mpoly X k :: 'a mpoly)
by (auto simp: sum-distrib-left sum-distrib-right mult-ac sym-mpoly-altdef)
finally show ?thesis .
qed

finally show ?thesis by (simp add: algebra-simps)
qed

— Next, we show that the weights sum to 0:
also have (3} zcA. wz) =0
proof —

— We define a function T that is a involutory permutation of A. To be more
precise, it bijectively maps those elements (A,j) of A with j € A to those where j ¢
A and the other way round. ‘Involutory’ means that T is its own inverse function,
ie. T(T(x)) = x.

define T :: nat set x nat = nat set X nat

where T = (A(4, 7). if j € A then (A — {j}, j) else (insert j A, 7))

18

have [simp]: T (T z) = z for z
by (auto simp: T-def split: prod.splits)
have [simp]: Tz € Aif x € A for ¢
proof —
have [simp]: n < n — Suc 0 +— n = 0 for n
by auto
show %thesis using that assms finite-subset[of - X|
by (auto simp: T-def A-def split: prod.splits)
qed
have snd (T z) € fst (T z) «— snd z ¢ fst z if z € A for x
by (auto simp: T-def split: prod.splits)
hence bij: bij-betw T {z€A. snd x € fst x} {z€A. snd = ¢ fst z}
by (intro bij-betwl[of - - - T]) auto

— Crucially, we show that T flips the weight of each element:
have [simp]: w (T z) = —wz if z € A for z
proof —

obtain A j where [simp]: © = (A, j) by force

— Since T is an involution, we can assume w.l.0.g. that j € A:
have auz: w (T (A, j)) = — w (A, j)if (4,j) e Aje AforjA
proof —
from that have [simp]: j€ A AC X and k > 0
using finite-subset|OF - assms, of A] by (auto simp: A-def intro!: Nat.gr0I)
have [simp]: finite A
using finite-subset[OF - assms, of A] by auto
from that have card A < k
by (auto simp: A-def)

have card: card A = Suc (card (A — {j}))
using card.remove[of A j] by auto
hence card-less: card (A — {j}) < card A by linarith

have w (T (4, j)) = monom (monom-of-set (A — {j}) + sng j (k — card

(4)
((= 1) " card (A — {j})) by (simp add: w-def T-def)
also have (— 1) “card (A — {j}) = (= 1) ~ Suc (Suc (card (A — {5})))
i 'a)
by simp
also have Suc (card (A — {j})) = card A
using card by simp
also have k — card (A — {j}) = Suc (k — card A)
using <k > 0» <card A < k» card-less by (subst card) auto
also have monom-of-set (A — {j}) + sng j (Suc (k — card A)) =
monom-of-set A + sng j (k — card A)
by (transfer fizing: A j k) (auto simp: fun-eq-iff)
also have monom ... ((=1)" Suc (card A)) = —w (4, j)
by (simp add: w-def monom-uminus)
finally show ?thesis .

19

qed

show ?thesis
proof (casesj € A)
case True
with auz[of A j] that show Zthesis by auto
next
case Fulse
hence snd (T z) € fst (T z)
by (auto simp: T-def split: prod.splits)
with auz[of fst (T z) snd (T z)|] that show ?thesis by auto
qed
qed

We can now show fairly easily that the sum is equal to zero.

have x: A = {z€A. snd z € fst 2} U {z€A. snd z ¢ fst z}
by auto

have (3 zcA wz) =D z|z e ANsndz € fstz.wz)+ O z|ze AN

snd x ¢ fst xz. wx)

using «finite A> by (subst *, subst sum.union-disjoint) auto

also have D"z |z € AAsndz ¢ fstxz. wa)= O x|z € AN sndz € fst
using sum.reindex-bij-betw|OF bij, of w] by simp

alsohave ... = -z |z € AA sndz € fst z. wx)
by (simp add: sum-negf)

finally show (> zcA. wz) =0
by simp

qed

finally show ?thesis .
qed

The following variant of the theorem holds for & > n. Note that this is
now a linear recurrence relation with constant coefficients for pg in terms of
€0y.--5En.

corollary Girard-Newton':
assumes finite X and k > card X
shows (> i<card X. (—1) i % sym-mpoly X i * powsum-mpoly X (k — i)) =
(0 :: 'a :: comm-ring-1 mpoly)
proof —
have (0 :: 'a mpoly) = (> i<k. (— 1) ~ i * sym-mpoly X i * powsum-mpoly X
(k- 1))
using Girard-Newton[of X k] assms by simp
also have ... = (Y i<card X. (— 1) ~ i % sym-mpoly X © x powsum-mpoly X
(k- 1))
using assms by (intro sum.mono-neutral-right) auto
finally show ?thesis ..
qged

20

The following variant is the Newton—Girard Theorem solved for ey, giving
us an explicit way to determine e from eq,...,ex_1 and p1, ..., pg:

corollary sym-mpoly-recurrence:
assumes k: k > 0 and finite X
shows (sym-mpoly X k :: 'a :: field-char-0 mpoly) =
—smult (1 / of-nat k) > i=1..k. (—1) ~ i * sym-mpoly X (k — 7) *
powsum-mpoly X 1)
proof —
define e p :: nat = 'a mpoly where [simp]: e = sym-mpoly X p = powsum-mpoly
X
have x: 0 = (—1) "k *x of-natk x e k +
>Ti<k. (— 1) Tixeixp(k— 1) 'a mpoly)
using Girard-Newton[of X k] assms by simp

have 0 = (—1) ~k x smult (1 / of-nat k) (0 :: 'a mpoly)
by simp
also have ... = smult (1 / of-nat k) (of-nat k) = e k +
smult (1] of-nat k) (O i<k. (—1)7(k+i) x ei x p (k — 7))
unfolding smult-conv-mult
using k by (subst *) (simp add: power-add sum-distrib-left sum-distrib-right
field-simps
del: div-mult-self3 div-mult-self4 div-mult-self2 div-mult-self1)
also have smult (1 / of-nat k :: 'a) (of-nat k) = 1
using k by (simp add: of-nat-monom smult-conv-mult mult-monom del: monom-of-nat)
also have (> i<k. (—1) “(k+i) xeixp (k — 1) = O i=1..k. (1) "ixe
(k1) * p i
by (intro sum.reindez-bij-witness[of - Xi. k — i Xi. k — 1))
(auto simp: minus-one-power-iff)
finally show ?thesis unfolding e-p-def by algebra
qged

Analogously, the following is the theorem solved for py, giving us a way to
determine py from eq,...,ex and p1,...,Pr_1:

corollary powsum-mpoly-recurrence:
assumes k: k > 0 and X: finite X
shows (powsum-mpoly X k :: 'a :: comm-ring-1 mpoly) =
(=1) " (k+ 1) * of-nat k * sym-mpoly X k —
Ooi=1..<k. (—1) " i * sym-mpoly X i * powsum-mpoly X (k — 7))
proof —
define e p :: nat = ‘a mpoly where [simp]: e = sym-mpoly X p = powsum-mpoly
X
have x: 0 = (—1) "k x of-nat k x e k +
Sli<k. (—1) Tixeixp (k— i) 'a mpoly)
using Girard-Newton[of X k] assms by simp
also have {..<k} = insert 0 {1..<k}
using assms by auto
finally have (—1) "k *x of-natk « ek + (O i=1..<k. (—1) " ixeixp (k —
) +pk=20
using assms by (simp add: algebra-simps)

21

from add.inverse-unique| OF this] show ?thesis by simp
qed

Again, if we assume k > n, the above takes a much simpler form and is, in
fact, a linear recurrence with constant coefficients:

lemma powsum-mpoly-recurrence’:
assumes k: k > card X and X: finite X
shows (powsum-mpoly X k :: 'a :: comm-ring-1 mpoly) =
—(>i=1..card X. (—1) " i * sym-mpoly X i * powsum-mpoly X (k —
i)
proof —
define e p :: nat = 'a mpoly where [simp]: e = sym-mpoly X p = powsum-mpoly
X
have pk=(—1) “(k+ 1) x ofnatkxek — > i=1..<k. (—=1) "ixeix*xp
(k - 1))
unfolding e-p-def using assms by (intro powsum-mpoly-recurrence) auto
also have ... = = i=1..<k. (—1) “ixeixp (k— 1))
using assms by simp
also have (> i=1..<k. (—1) "ixeixp (k—14) = i=1l..card X. (—1) ~
ixeixp(k—1))
using assms by (intro sum.mono-neutral-right) auto
finally show ?thesis by simp
qed

end

3 Power sum puzzles

theory Power-Sum-Puzzle
imports
Power-Sum-Polynomials
Polynomial-Factorization. Rational-Root- Test
begin

3.1 General setting and results

We now consider the following situation: Given unknown complex numbers
T1,...,In, define p, = x'f+. ..+zF. Also, define ey, := ex (21, ..., x,) where
ex(Xy,...,X,) is the k-th elementary symmetric polynomial.

What is the relationship between the sequences e; and pyg; in particular, how
can we determine one from the other?

locale power-sum-puzzle =
fixes z :: nat = complex
fixes n :: nat

begin

We first introduce the notation py, := 2% + ... + zF:

22

definition p where p k = (> i<n. z ¢ " k)

lemma p-0 [simp]: p 0 = of-nat n
by (simp add: p-def)

lemma p-altdef: p k = insertion x (powsum-mpoly {..<n} k)
by (simp add: p-def)

Similarly, we introduce the notation ey = e (1, ..., x,) where e (X1, ..., X,)
is the k-th elementary symmetric polynomial (i.e. the sum of all monomials
that can be formed by taking the product of exactly k distinct variables).

definition e where e k= (3 Y | Y C {.<n} Acard Y = k. prod x V)

lemma e-altdef: e k = insertion x (sym-mpoly {..<n} k)
by (simp add: e-def insertion-sym-mpoly)

It is clear that e; vanishes for £ > n.

lemma e-eg-0 [simp]: k > n = ek =0
by (simp add: e-altdef)

lemma e-0 [simp]: e 0 = 1
by (simp add: e-altdef)

The recurrences we got from the Girard—Newton Theorem earlier now di-
rectly give us analogous recurrences for ey and py:

lemma e-recurrence:
assumes k: k > 0
shows ek=—->i=1.k.(— 1) "ixe(k—1)%pi)/ of-natk
using assms unfolding e-altdef p-altdef
by (subst sym-mpoly-recurrence)
(auto simp: insertion-sum insertion-add insertion-mult insertion-power inser-
tion-sym-mpoly)

lemma p-recurrence:

assumes k: k > 0

shows pk=—ofnatkx*(—1) " kxek— O i=1..<k.(—=1) "ixeixp(k
—)

using assms unfolding e-altdef p-altdef

by (subst powsum-mpoly-recurrence)

(auto simp: insertion-sum insertion-add insertion-mult insertion-diff
insertion-power insertion-sym-mpoly)

lemma p-recurrence’”:
assumes k: k> n
shows pk=—-0 i=1..n.(—1) "ixeixp(k—1)
using assms unfolding e-altdef p-altdef
by (subst powsum-mpoly-recurrence’)
(auto simp: insertion-sum insertion-add insertion-mult insertion-diff

23

insertion-power insertion-sym-mpoly)

It is clear from this recurrence that if p; to p,, are rational, then so are the
(&%

lemma e-in-Rats:
assumes Ak. ke {I.n} = pkeQ
shows ek eQ
proof (cases k < n)
case True
thus ?thesis
proof (induction k rule: less-induct)
case (less k)
show ?case
proof (cases k = 0)
case Fulse
thus “thesis using assms less
by (subst e-recurrence) (auto intro!: Rats-divide)
qed auto
qed
qed auto

Analogously, if p; to p, are rational, then so are all the other py:

lemma p-in-Rats:
assumes Ak. ke {I.n} = pkeQ
shows pkeQ
proof (induction k rule: less-induct)
case (less k)
consider k=0 | ke {Il.n} | k>n
by force
thus ?case
proof cases
assume k > n
thus ?thesis
using less assms by (subst p-recurrence’’) (auto introl: sum-in-Rats Rats-mult
e-in-Rats)
qed (use assms in auto)
qed

Next, we define the unique monic polynomial that has z1, ..., z, as its roots
(respecting multiplicity):
definition @ :: complex poly where Q = ([[i<n. [:—z i, 1:])

lemma degree-Q [simp]: Polynomial.degree Q = n
by (simp add: Q-def degree-prod-eq-sum-degree)

lemma lead-coeff-Q [simp]: Polynomial.coeff Q n = 1

using monic-prod[of {..<n} Ai. [i—z i, 1:]]
by (simp add: Q-def degree-prod-eq-sum-degree)

24

By Vieta’s Theorem, we then have:

n

Q) = (-1 e,y Xt

k=0

In other words: The above allows us to determine the z1,...,z, explicitly.
They are, in fact, precisely the roots of the above polynomial (respecting
multiplicity). Since this polynomial depends only on the ey, which are in
turn determined by py, ..., pn, this means that these are the only solutions
of this puzzle (up to permutation of the x;).

lemma coeff-Q: Polynomial.coeff Q k = (if k > n then 0 else (—1) ~(n — k) x ¢
(n —)
proof (cases k < n)
case True
thus ?thesis
using coeff-poly-from-roots|of {..<n} k z] by (auto simp: Q-def e-def)
qed (auto simp: Polynomial.coeff-eq-0)

lemma Q-altdef: @ = (> k<n. Polynomial.monom ((—1) ~(n — k) x e (n — k))
k)
by (subst poly-as-sum-of-monoms [symmetric]) (simp add: coeff-Q)

The following theorem again shows that x1, ..., z, are precisely the roots of
@), respecting multiplicity.
theorem mset-z-eq-poly-roots-Q: {#x i. i €# mset-set {..<n}#} = poly-roots Q

proof —
have poly-roots Q = (3 i<n. {#x i#})
by (simp add: Q-def poly-roots-prod)
also have ... = {#xz i. i €# mset-set {..<n}#}
by (induction n) (auto simp: lessThan-Suc)
finally show ?thesis ..
qed

end

3.2 Existence of solutions

So far, we have assumed a solution to the puzzle and then shown the prop-
erties that this solution must fulfil. However, we have not yet shown that
there is a solution. We will do that now.

Let n be a natural number and f; some sequence of complex numbers.
We will show that there are z1,...,x, so that x'f +...4+ xﬁ = fi for any
1<k <n.

locale power-sum-puzzle-existence =
fixes f :: nat = complex and n :: nat
begin

25

First, we define a sequence of numbers e’ analogously to the sequence e
before, except that we replace all occurrences of the power sum p, with fg
(recall that in the end we want p = fx).

fun e’ :: nat = complex
where e’ k = (if k = 0 then 1 else if k > n then 0
else —(>i=1..k. (—1) "ixe' (k— 1) * fi)/ of-nat k)

lemmas [simp del] = e’.simps

lemma e’-0 [simp]: e’ 0 = 1
by (simp add: e’.simps)

lemma e’-eq-0 [simpl: k > n = ¢ k=10
by (auto simp: e’.simps)

Just as before, we can show the following recurrence for f in terms of e”

lemma f-recurrence:
assumes k: k> 0k <n
shows [k = —ofnatkx*(—1) "kxe' k- (O i=1.<k.(—1) "ixeixf
(k — 1))
proof —
have —of-nat k x e’ k= (> i=1..k. (— 1) "ixe' (k— 1) f1)
using assms by (subst e’.simps) (simp add: field-simps)
hence (—1)7k * (—of-natk « e’ k) = (—=1)"k « O i=1..k. (— 1) "ixe' (k—
by simp
alsohave ... = fk+ (—1) "k« O i=1.<k. (— 1) Tixe' (k— 1) *fi)
using assms by (subst sum.last-plus) (auto simp: minus-one-power-iff)
also have (—1) "k« O i=1.<k. (= 1) "ixe' (k—19) *xfi)=
Si=1.<k. (= 1) T(k—i)xe (k—1)xf1)
unfolding sum-distrib-left by (intro sum.cong) (auto simp: minus-one-power-iff)
also have ... = (Y i=1..<k. (— 1) Tixe'ixf (k— 1))
by (intro sum.reindez-bij-witness[of - Xi. k — i Xi. k — i]) auto
finally show ?thesis
by (simp add: algebra-simps)
qed

We now define a polynomial whose roots will be precisely the solution
T1,...,Ty to our problem.
lift-definition Q' :: complex poly is Ak. if k > n then 0 else (—1) " (n — k) * €’
(n — k)

using eventually-gt-at-top[of n] unfolding cofinite-eq-sequentially

by eventually-elim auto

lemma coeff-Q": Polynomial.coeff Q" k = (if k > n then 0 else (—1) ~(n — k) *
e’ (n — k))

by transfer auto

26

lemma lead-coeff-Q": Polynomial.coeff Q' n = 1
by (simp add: coeff-Q")

lemma degree-Q’ [simp]: Polynomial.degree Q' = n
proof (rule antisym)
show Polynomial.degree Q' > n
by (rule le-degree) (auto simp: coeff-Q’)
show Polynomial.degree Q' < n
by (rule degree-le) (auto simp: coeff-Q’)
qed

Since the complex numbers are algebraically closed, this polynomial splits
into linear factors:

definition Root :: nat = complex
where Root = (SOME Root. Q' = (] i<n. [:—Root i, 1:]))

lemma Root: Q' = (][] i<n. [:—Root i, 1:])
proof —
obtain 7s where rs: ([[r<rs. [[—r, 1:]) = Q' length rs = n
using fundamental-theorem-algebra-factorized|of Q') lead-coeff-Q’ by auto
have Q' = ([[r«rs. [i—r, 13])
by (simp add: s)
also have ... = ([[r=0..<n. [=rs ! r, 1:])
by (subst prod-list-prod-nth) (auto simp: rs)
also have {0..<n} = {..<n}
by auto
finally have 3 Root. Q' = ([[i<n. [:—Root i, 1:])
by blast
thus ?thesis
unfolding Root-def by (rule somel-ex)
qed

We can therefore now use the results from before for these x1, ..., z,.

sublocale power-sum-puzzle Root n .

Vieta’s theorem gives us an expression for the coefficients of Q' in terms of
ek(x1,...,xy). This shows that our e’is indeed exactly the same as e.

lemma e’-eq-e: e’ k= ek
proof (cases k < n)
case True
from True have e’ k = (—1) ~ k * poly.coeff Q' (n — k)
by (simp add: coeff-Q")
also have Q' = ([[z<n. [:—Root z, 1:])
using Root by simp
also have (—1) "k * poly.coeff ... (n — k) = ek
using True coeff-poly-from-roots[of {..<n} n — k Root]
by (simp add: insertion-sym-mpoly e-altdef)
finally show ¢’ k = ¢ k .

27

qed auto

It then follows by a simple induction that pi = fj, for 1 < k < n, as intended:

lemma p-eqg-f:

assumes k£ > 0k < n

shows pk=fk

using assms
proof (induction k rule: less-induct)

case (less k)

thus p k= fk

using p-recurrence[of k] f-recurrencelof k| less by (simp add: e’-eg-e)

qed

end

Here is a more condensed form of the above existence theorem:

theorem power-sum-puzzle-has-solution:

fixes f :: nat = complex

shows 3 Root. Vke{1..n}. (3 i<n. Rooti " k) = fk
proof —

interpret power-sum-puzzle-existence f .

from p-eqg-f have Vke{1..n}. (3 i<n. Rooti " k) = fk

by (auto simp: p-def)

thus ?thesis by blast

qed

3.3 A specific puzzle

We now look at one particular instance of this puzzle, which was given as an
exercise in Abstract Algebra by Dummit and Foote (Exercise 23 in Section
14.6) [1].

Suppose we know that z +y+2 =1, 22+ 3%+ 22 =2, and 23 + > + 23 = 3.
Then what is 2° + 3® + 257 What about any arbitrary 2™ + y™ + 2"?

locale power-sum-puzzle-example =
fixes z y z :: complex
assumes zyz: r +y + 2z =1
T24+y2+4+22=2
r34+y3+28=23
begin
We reuse the results we have shown in the general case before.

definition f where fn = [z,y,2] | n
sublocale power-sum-puzzle f 3 .

We can simplify p a bit more now.

lemma p-altdef” pk=xz " k+vy " k+2 "k

28

unfolding p-def f-def by (simp add: eval-nat-numeral)

lemma p-base [simp]: p (Suc 0) = 1p2=2p 3 =23

using zyz by (simp-all add: p-altdef”’)
We can easily compute all the non-zero values of e recursively:
lemma e-Suc-0 [simp]: e (Suc 0) = 1

by (subst e-recurrence; simp)

lemma e-2 [simp]: e 2 = —1/2
by (subst e-recurrence; simp add: atLeastAtMost-nat-numeral)

lemma e-3 [simp]: e 3 = 1/6
by (subst e-recurrence; simp add: atLeastAtMost-nat-numeral)
Plugging in all the values, the recurrence relation for p now looks like this:

lemma p-recurrence’: k> 3 = pk=p (k—3) /6 +p (k—2)/ 2 + p (k—1)
using p-recurrence’[of k] by (simp add: atLeastAtMost-nat-numeral)

Also note again that all p are rational:

lemma p-in-Rats”: p k € Q

proof —
have x: {1..3} = {1, 2, (3::nat)}
by auto
also have Vke....pk € Q
by auto

finally show ?thesis
using p-in-Rats[of k] by simp
qed

The above recurrence has the characteristic polynomial X3 — X2 — %X — %
(which is exactly our @), so we know that can now specify x, y, and z more
precisely: They are the roots of that polynomial (in unspecified order).

lemma zyz-eq: {#z, y, 24} = poly-roots (—1/6, —1/2, —1, 1:]
proof —
have image-mset f (mset-set {..<3}) = poly-roots Q
using mset-z-eq-poly-roots-Q) .
also have image-mset f (mset-set {..<3}) = {#=z, y, 2#}
by (simp add: numeral-3-eq-3 lessThan-Suc f-def Multiset.union-ac)
also have Q = [:—1/6, —1/2, —1, 1}]
by (simp add: Q-altdef atMost-nat-numeral Polynomial.monom-altdef
power3-eq-cube power2-eq-square)
finally show ?thesis .
qed

Using the rational root test, we can easily show that z, y, and z are irrational.

lemma zyz-irrational: set-mset (poly-roots :—1/6, —1/2, —1, 1::complex:]) N Q

={}

29

proof —
define p :: rat poly where p = —1/6, —1/2, —1, 1]
have rational-root-test p = None
unfolding p-def by code-simp
hence —~ (3 z::rat. poly p x = 0)
by (rule rational-root-test)
hence —~(3z€Q. poly (map-poly of-rat p) z = (0 :: complex))
by (auto simp: Rats-def)
also have map-poly of-rat p = :—1/6, —1/2, —1, 1 :: complex:]
by (simp add: p-def of-rat-minus of-rat-divide)
finally show ?thesis
by auto
qed

This polynomial is squarefree, so these three roots are, in fact, unique (so
that there are indeed 3! = 6 possible permutations).
lemma rsquarefree: rsquarefree [:(—1/6, —1/2, —1, 1 :: complez:]
by (rule coprime-pderiv-imp-rsquarefree)

(auto simp: pderiv-pCons coprime-iff-gcd-eq-1 ged-poly-code ged-poly-code-def

content-def
primitive-part-def ged-poly-code-auz-reduce pseudo-mod-def pseudo-divmod-def
Let-def Polynomial.monom-altdef normalize-poly-def)

lemma distinct-zyz: distinct [z, y, |
by (rule rsquarefree-imp-distinct-roots| OF rsquarefree]) (simp-all add: zyz-eq)

While these roots can be written more explicitly in radical form, they are
not very pleasant to look at. We therefore only compute a few values of p
just for fun:

lemma p/ =25/6and p5 =6 and p 10 = 15539 | 452
by (simp-all add: p-recurrence’”’)

Lastly, let us (informally) examine the asymptotics of this problem.

Two of the roots have a norm of roughly 8 ~ 0.341, while the remaining root
« is roughly 1.431. Consequently, ™ + y™ + 2™ is asymptotically equivalent
to ™, with the error being bounded by 2 - 8™ and therefore goes to 0 very
quickly.

15539

For p(10) = I35~ ~ 35.97, for instance, this approximation is correct up to

6 decimals (a relative error of about 0.0001 %).
end
To really emphasise that the above puzzle has a solution and the locale is not

‘vacuous’, here is an interpretation of the locale using the existence theorem
from before:

notepad
begin
define f :: nat = complex where f = (\k. [1,2,3] ! (k — 1))

30

obtain Root :: nat = compler where Root: Nk. k € {1..3} = (>_i<3. Root
i k)=[k
using power-sum-puzzle-has-solution[of 3 f] by metis
define z y z where x = Root 0 y = Root 1 z = Root 2
havez +y+z=1landz 2 +y 2+z2z2=2andz 3 +y 3+23=23
using Rootlof 1] Root[of 2] Root[of 3] by (simp-all add: eval-nat-numeral
x-y-z-def f-def)
then interpret power-sum-puzzle-example x y z
by unfold-locales
havep 5 = 6
by (simp add: p-recurrence’”’)
end

end

References

[1] D. S. Dummit and R. M. Foote. Abstract Algebra. Wiley, 2003.

[2] D. Zeilberger. A combinatorial proof of Newton’s identities. Discrete
Mathematics, 49(3):319, 1984.

31

	Auxiliary material
	Miscellaneous
	The set of roots of a univariate polynomial

	Power sum polynomials
	Definition
	The Girard–Newton Theorem

	Power sum puzzles
	General setting and results
	Existence of solutions
	A specific puzzle

