
Power Sum Polynomials
and the Girard–Newton Theorem

Manuel Eberl

March 17, 2025

Abstract

This article provides a formalisation of the symmetric multivariate
polynomials known as power sum polynomials. These are of the form
pn(X1, . . . , Xk) = Xn

1 + . . . + Xn
k . A formal proof of the Girard–

Newton Theorem is also given. This theorem relates the power sum
polynomials to the elementary symmetric polynomials sk in the form
of a recurrence relation (−1)kksk =

∑k−1
i=0 (−1)isipk−i .

As an application, this is then used to solve a generalised form of
a puzzle given as an exercise in Dummit and Foote’s Abstract Algebra:
For k complex unknowns x1, . . . , xk, define pj := xj

1 + . . .+ xj
k. Then

for each vector a ∈ Ck, show that there is exactly one solution to the
system p1 = a1, . . . , pk = ak up to permutation of the xi and determine
the value of pi for i > k.

Contents
1 Auxiliary material 2

1.1 Miscellaneous . 2
1.2 The set of roots of a univariate polynomial 7

2 Power sum polynomials 13
2.1 Definition . 13
2.2 The Girard–Newton Theorem 16

3 Power sum puzzles 22
3.1 General setting and results 22
3.2 Existence of solutions . 25
3.3 A specific puzzle . 28

1

1 Auxiliary material
theory Power-Sum-Polynomials-Library
imports

Polynomial-Factorization.Fundamental-Theorem-Algebra-Factorized
Symmetric-Polynomials.Symmetric-Polynomials
HOL−Computational-Algebra.Computational-Algebra

begin

unbundle multiset.lifting

1.1 Miscellaneous
lemma atLeastAtMost-nat-numeral:

atLeastAtMost m (numeral k :: nat) =
(if m ≤ numeral k then insert (numeral k) (atLeastAtMost m (pred-numeral

k))
else {})

by (simp add: numeral-eq-Suc atLeastAtMostSuc-conv)

lemma sum-in-Rats [intro]: (
∧

x. x ∈ A =⇒ f x ∈ �) =⇒ sum f A ∈ �
by (induction A rule: infinite-finite-induct) auto

lemma (in monoid-mult) prod-list-distinct-conv-prod-set:
distinct xs =⇒ prod-list (map f xs) = prod f (set xs)
by (induct xs) simp-all

lemma (in monoid-mult) interv-prod-list-conv-prod-set-nat:
prod-list (map f [m..<n]) = prod f (set [m..<n])
by (simp add: prod-list-distinct-conv-prod-set)

lemma (in monoid-mult) prod-list-prod-nth:
prod-list xs = (

∏
i = 0 ..< length xs. xs ! i)

using interv-prod-list-conv-prod-set-nat [of (!) xs 0 length xs] by (simp add:
map-nth)

lemma gcd-poly-code-aux-reduce:
gcd-poly-code-aux p 0 = normalize p
q 6= 0 =⇒ gcd-poly-code-aux p q = gcd-poly-code-aux q (primitive-part (pseudo-mod

p q))
by (subst gcd-poly-code-aux.simps; simp)+

lemma coprimeI-primes:
fixes a b :: ′a :: factorial-semiring
assumes a 6= 0 ∨ b 6= 0
assumes

∧
p. prime p =⇒ p dvd a =⇒ p dvd b =⇒ False

shows coprime a b
proof (rule coprimeI)

2

fix d assume d: d dvd a d dvd b
with assms(1) have [simp]: d 6= 0 by auto
show is-unit d
proof (rule ccontr)

assume ¬is-unit d
then obtain p where p: prime p p dvd d

using prime-divisor-exists[of d] by auto
from assms(2)[of p] and p and d show False

using dvd-trans by auto
qed

qed

lemma coprime-pderiv-imp-squarefree:
assumes coprime p (pderiv p)
shows squarefree p

proof (rule squarefreeI)
fix d assume d: d ^ 2 dvd p
then obtain q where q: p = d ^ 2 ∗ q

by (elim dvdE)
hence d dvd p d dvd pderiv p

by (auto simp: pderiv-mult pderiv-power-Suc numeral-2-eq-2)
with assms show is-unit d

using not-coprimeI by blast
qed

lemma squarefree-field-poly-iff :
fixes p :: ′a :: {field-char-0 ,euclidean-ring-gcd,semiring-gcd-mult-normalize} poly
assumes [simp]: p 6= 0
shows squarefree p ←→ coprime p (pderiv p)

proof
assume squarefree p
show coprime p (pderiv p)
proof (rule coprimeI-primes)

fix d assume d: d dvd p d dvd pderiv p prime d
from d(1) obtain q where q: p = d ∗ q

by (elim dvdE)
from d(2) and q have d dvd q ∗ pderiv d

by (simp add: pderiv-mult dvd-add-right-iff)
with ‹prime d› have d dvd q ∨ d dvd pderiv d

using prime-dvd-mult-iff by blast
thus False
proof

assume d dvd q
hence d ^ 2 dvd p

by (auto simp: q power2-eq-square)
with ‹squarefree p› show False

using d(3) not-prime-unit squarefreeD by blast
next

assume d dvd pderiv d

3

hence Polynomial.degree d = 0 by simp
moreover have d 6= 0 using d by auto
ultimately show False

using d(3) is-unit-iff-degree not-prime-unit by blast
qed

qed auto
qed (use coprime-pderiv-imp-squarefree[of p] in auto)

lemma coprime-pderiv-imp-rsquarefree:
assumes coprime (p :: ′a :: field-char-0 poly) (pderiv p)
shows rsquarefree p
unfolding rsquarefree-roots

proof safe
fix x assume poly p x = 0 poly (pderiv p) x = 0
hence [:−x, 1 :] dvd p [:−x, 1 :] dvd pderiv p

by (auto simp: poly-eq-0-iff-dvd)
with assms have is-unit [:−x, 1 :]

using not-coprimeI by blast
thus False by auto

qed

lemma poly-of-nat [simp]: poly (of-nat n) x = of-nat n
by (induction n) auto

lemma poly-of-int [simp]: poly (of-int n) x = of-int n
by (cases n) auto

lemma order-eq-0-iff : p 6= 0 =⇒ order x p = 0 ←→ poly p x 6= 0
by (auto simp: order-root)

lemma order-pos-iff : p 6= 0 =⇒ order x p > 0 ←→ poly p x = 0
by (auto simp: order-root)

lemma order-prod:
assumes

∧
x. x ∈ A =⇒ f x 6= 0

shows order x (
∏

y∈A. f y) = (
∑

y∈A. order x (f y))
using assms by (induction A rule: infinite-finite-induct) (auto simp: order-mult)

lemma order-prod-mset:
assumes 0 /∈# A
shows order x (prod-mset A) = sum-mset (image-mset (order x) A)
using assms by (induction A) (auto simp: order-mult)

lemma order-prod-list:
assumes 0 /∈ set xs
shows order x (prod-list xs) = sum-list (map (order x) xs)
using assms by (induction xs) (auto simp: order-mult)

lemma order-power : p 6= 0 =⇒ order x (p ^ n) = n ∗ order x p

4

by (induction n) (auto simp: order-mult)

lemma smult-0-right [simp]: MPoly-Type.smult p 0 = 0
by (transfer , transfer) auto

lemma mult-smult-right [simp]:
fixes c :: ′a :: comm-semiring-0
shows p ∗ MPoly-Type.smult c q = MPoly-Type.smult c (p ∗ q)
by (simp add: smult-conv-mult mult-ac)

lemma mapping-single-eq-iff [simp]:
Poly-Mapping.single a b = Poly-Mapping.single c d ←→ b = 0 ∧ d = 0 ∨ a =

c ∧ b = d
by transfer (unfold fun-eq-iff when-def , metis)

lemma monom-of-set-plus-monom-of-set:
assumes A ∩ B = {} finite A finite B
shows monom-of-set A + monom-of-set B = monom-of-set (A ∪ B)
using assms by transfer (auto simp: fun-eq-iff)

lemma mpoly-monom-0-eq-Const: monom 0 c = Const c
by (intro mpoly-eqI) (auto simp: coeff-monom when-def mpoly-coeff-Const)

lemma mpoly-Const-0 [simp]: Const 0 = 0
by (intro mpoly-eqI) (auto simp: mpoly-coeff-Const mpoly-coeff-0)

lemma mpoly-Const-1 [simp]: Const 1 = 1
by (intro mpoly-eqI) (auto simp: mpoly-coeff-Const mpoly-coeff-1)

lemma mpoly-Const-uminus: Const (−a) = −Const a
by (intro mpoly-eqI) (auto simp: mpoly-coeff-Const)

lemma mpoly-Const-add: Const (a + b) = Const a + Const b
by (intro mpoly-eqI) (auto simp: mpoly-coeff-Const)

lemma mpoly-Const-mult: Const (a ∗ b) = Const a ∗ Const b
unfolding mpoly-monom-0-eq-Const [symmetric] mult-monom by simp

lemma mpoly-Const-power : Const (a ^ n) = Const a ^ n
by (induction n) (auto simp: mpoly-Const-mult)

lemma of-nat-mpoly-eq: of-nat n = Const (of-nat n)
proof (induction n)

case 0
have 0 = (Const 0 :: ′a mpoly)

by (intro mpoly-eqI) (auto simp: mpoly-coeff-Const)
thus ?case

by simp

5

next
case (Suc n)
have 1 + Const (of-nat n) = Const (1 + of-nat n)

by (intro mpoly-eqI) (auto simp: mpoly-coeff-Const mpoly-coeff-1)
thus ?case

using Suc by auto
qed

lemma insertion-of-nat [simp]: insertion f (of-nat n) = of-nat n
by (simp add: of-nat-mpoly-eq)

lemma insertion-monom-of-set [simp]:
insertion f (monom (monom-of-set X) c) = c ∗ (

∏
i∈X . f i)

proof (cases finite X)
case [simp]: True
have insertion f (monom (monom-of-set X) c) = c ∗ (

∏
a. f a ^ (if a ∈ X then

1 else 0))
by (auto simp: lookup-monom-of-set)

also have (
∏

a. f a ^ (if a ∈ X then 1 else 0)) = (
∏

i∈X . f i ^ (if i ∈ X then 1
else 0))

by (intro Prod-any.expand-superset) auto
also have . . . = (

∏
i∈X . f i)

by (intro prod.cong) auto
finally show ?thesis .

qed (auto simp: lookup-monom-of-set)

lemma symmetric-mpoly-symmetric-sum:
assumes

∧
π. π permutes A =⇒ g π permutes X

assumes
∧

x π. x ∈ X =⇒ π permutes A =⇒ mpoly-map-vars π (f x) = f (g π
x)

shows symmetric-mpoly A (
∑

x∈X . f x)
unfolding symmetric-mpoly-def

proof safe
fix π assume π: π permutes A
have mpoly-map-vars π (sum f X) = (

∑
x∈X . mpoly-map-vars π (f x))

by simp
also have . . . = (

∑
x∈X . f (g π x))

by (intro sum.cong assms π refl)
also have . . . = (

∑
x∈g π‘X . f x)

using assms(1)[OF π] by (subst sum.reindex) (auto simp: permutes-inj-on)
also have g π ‘ X = X

using assms(1)[OF π] by (simp add: permutes-image)
finally show mpoly-map-vars π (sum f X) = sum f X .

qed

lemma sym-mpoly-0 [simp]:
assumes finite A

6

shows sym-mpoly A 0 = 1
using assms by (transfer , transfer) (auto simp: fun-eq-iff when-def)

lemma sym-mpoly-eq-0 [simp]:
assumes k > card A
shows sym-mpoly A k = 0

proof (transfer fixing: A k, transfer fixing: A k, intro ext)
fix mon
have ¬(finite A ∧ (∃Y⊆A. card Y = k ∧ mon = monom-of-set Y))
proof safe

fix Y assume Y : finite A Y ⊆ A k = card Y mon = monom-of-set Y
hence card Y ≤ card A by (intro card-mono) auto
with Y and assms show False by simp

qed
thus (if finite A ∧ (∃Y⊆A. card Y = k ∧ mon = monom-of-set Y) then 1 else

0) = 0
by auto

qed

lemma coeff-sym-mpoly-monom-of-set-eq-0 :
assumes finite X Y ⊆ X card Y 6= k
shows MPoly-Type.coeff (sym-mpoly X k) (monom-of-set Y) = 0
using assms finite-subset[of - X] by (auto simp: coeff-sym-mpoly)

lemma coeff-sym-mpoly-monom-of-set-eq-0 ′:
assumes finite X ¬Y ⊆ X finite Y
shows MPoly-Type.coeff (sym-mpoly X k) (monom-of-set Y) = 0
using assms finite-subset[of - X] by (auto simp: coeff-sym-mpoly)

1.2 The set of roots of a univariate polynomial
lift-definition poly-roots :: ′a :: idom poly ⇒ ′a multiset is
λp x. if p = 0 then 0 else order x p

proof −
fix p :: ′a poly
show finite {x. 0 < (if p = 0 then 0 else order x p)}

by (cases p = 0) (auto simp: order-pos-iff poly-roots-finite)
qed

lemma poly-roots-0 [simp]: poly-roots 0 = {#}
by transfer auto

lemma poly-roots-1 [simp]: poly-roots 1 = {#}
by transfer auto

lemma count-poly-roots [simp]:
assumes p 6= 0
shows count (poly-roots p) x = order x p
using assms by transfer auto

7

lemma in-poly-roots-iff [simp]: p 6= 0 =⇒ x ∈# poly-roots p ←→ poly p x = 0
by (subst count-greater-zero-iff [symmetric], subst count-poly-roots) (auto simp:

order-pos-iff)

lemma set-mset-poly-roots: p 6= 0 =⇒ set-mset (poly-roots p) = {x. poly p x = 0}
using in-poly-roots-iff [of p] by blast

lemma count-poly-roots ′: count (poly-roots p) x = (if p = 0 then 0 else order x p)
by transfer ′ auto

lemma poly-roots-const [simp]: poly-roots [:c:] = {#}
by (intro multiset-eqI) (auto simp: count-poly-roots ′ order-eq-0-iff)

lemma poly-roots-linear [simp]: poly-roots [:−x, 1 :] = {#x#}
by (intro multiset-eqI) (auto simp: count-poly-roots ′ order-eq-0-iff)

lemma poly-roots-monom [simp]: c 6= 0 =⇒ poly-roots (Polynomial.monom c n)
= replicate-mset n 0

by (intro multiset-eqI) (auto simp: count-poly-roots ′ order-eq-0-iff poly-monom)

lemma poly-roots-smult [simp]: c 6= 0 =⇒ poly-roots (Polynomial.smult c p) =
poly-roots p

by (intro multiset-eqI) (auto simp: count-poly-roots ′ order-smult)

lemma poly-roots-mult: p 6= 0 =⇒ q 6= 0 =⇒ poly-roots (p ∗ q) = poly-roots p +
poly-roots q

by (intro multiset-eqI) (auto simp: count-poly-roots ′ order-mult)

lemma poly-roots-prod:
assumes

∧
x. x ∈ A =⇒ f x 6= 0

shows poly-roots (prod f A) = (
∑

x∈A. poly-roots (f x))
using assms by (induction A rule: infinite-finite-induct) (auto simp: poly-roots-mult)

lemma poly-roots-prod-mset:
assumes 0 /∈# A
shows poly-roots (prod-mset A) = sum-mset (image-mset poly-roots A)
using assms by (induction A) (auto simp: poly-roots-mult)

lemma poly-roots-prod-list:
assumes 0 /∈ set xs
shows poly-roots (prod-list xs) = sum-list (map poly-roots xs)
using assms by (induction xs) (auto simp: poly-roots-mult)

lemma poly-roots-power : p 6= 0 =⇒ poly-roots (p ^ n) = repeat-mset n (poly-roots
p)

by (induction n) (auto simp: poly-roots-mult)

lemma rsquarefree-poly-roots-eq:

8

assumes rsquarefree p
shows poly-roots p = mset-set {x. poly p x = 0}

proof (rule multiset-eqI)
fix x :: ′a
from assms show count (poly-roots p) x = count (mset-set {x. poly p x = 0}) x

by (cases poly p x = 0) (auto simp: poly-roots-finite order-eq-0-iff rsquare-
free-def)
qed

lemma rsquarefree-imp-distinct-roots:
assumes rsquarefree p and mset xs = poly-roots p
shows distinct xs

proof (cases p = 0)
case [simp]: False
have ∗: mset xs = mset-set {x. poly p x = 0}

using assms by (simp add: rsquarefree-poly-roots-eq)
hence set-mset (mset xs) = set-mset (mset-set {x. poly p x = 0})

by (simp only:)
hence [simp]: set xs = {x. poly p x = 0}

by (simp add: poly-roots-finite)
from ∗ show ?thesis

by (subst distinct-count-atmost-1) (auto simp: poly-roots-finite)
qed (use assms in auto)

lemma poly-roots-factorization:
fixes p c A
assumes [simp]: c 6= 0
defines p ≡ Polynomial.smult c (prod-mset (image-mset (λx. [:−x, 1 :]) A))
shows poly-roots p = A

proof −
have poly-roots p = poly-roots (

∏
x∈#A. [:−x, 1 :])

by (auto simp: p-def)
also have . . . = A

by (subst poly-roots-prod-mset) (auto simp: image-mset.compositionality o-def)
finally show ?thesis .

qed

lemma fundamental-theorem-algebra-factorized ′:
fixes p :: complex poly
shows p = Polynomial.smult (Polynomial.lead-coeff p)

(prod-mset (image-mset (λx. [:−x, 1 :]) (poly-roots p)))
proof (cases p = 0)

case [simp]: False
obtain xs where

xs: Polynomial.smult (Polynomial.lead-coeff p) (
∏

x←xs. [:−x, 1 :]) = p
length xs = Polynomial.degree p

using fundamental-theorem-algebra-factorized[of p] by auto
define A where A = mset xs

9

note xs(1)
also have (

∏
x←xs. [:−x, 1 :]) = prod-mset (image-mset (λx. [:−x, 1 :]) A)

unfolding A-def by (induction xs) auto
finally have ∗: Polynomial.smult (Polynomial.lead-coeff p) (

∏
x∈#A. [:− x, 1 :])

= p .
also have A = poly-roots p

using poly-roots-factorization[of Polynomial.lead-coeff p A]
by (subst ∗ [symmetric]) auto

finally show ?thesis ..
qed auto

lemma poly-roots-eq-imp-eq:
fixes p q :: complex poly
assumes Polynomial.lead-coeff p = Polynomial.lead-coeff q
assumes poly-roots p = poly-roots q
shows p = q

proof (cases p = 0 ∨ q = 0)
case False
hence [simp]: p 6= 0 q 6= 0

by auto
have p = Polynomial.smult (Polynomial.lead-coeff p)

(prod-mset (image-mset (λx. [:−x, 1 :]) (poly-roots p)))
by (rule fundamental-theorem-algebra-factorized ′)

also have . . . = Polynomial.smult (Polynomial.lead-coeff q)
(prod-mset (image-mset (λx. [:−x, 1 :]) (poly-roots q)))

by (simp add: assms)
also have . . . = q

by (rule fundamental-theorem-algebra-factorized ′ [symmetric])
finally show ?thesis .

qed (use assms in auto)

lemma Sum-any-zeroI ′: (
∧

x. P x =⇒ f x = 0) =⇒ Sum-any (λx. f x when P x)
= 0

by (auto simp: Sum-any.expand-set)

lemma sym-mpoly-insert:
assumes finite X x /∈ X
shows (sym-mpoly (insert x X) (Suc k) :: ′a :: semiring-1 mpoly) =

monom (monom-of-set {x}) 1 ∗ sym-mpoly X k + sym-mpoly X (Suc
k) (is ?lhs = ?A + ?B)
proof (rule mpoly-eqI)

fix mon
show coeff ?lhs mon = coeff (?A + ?B) mon
proof (cases ∀ i. lookup mon i ≤ 1 ∧ (i /∈ insert x X −→ lookup mon i = 0))

case False
then obtain i where i: lookup mon i > 1 ∨ i /∈ insert x X ∧ lookup mon i >

0
by (auto simp: not-le)

10

have coeff ?A mon = prod-fun (coeff (monom (monom-of-set {x}) 1))
(coeff (sym-mpoly X k)) mon

by (simp add: coeff-mpoly-times)
also have . . . = (

∑
l.

∑
q. coeff (monom (monom-of-set {x}) 1) l ∗ coeff

(sym-mpoly X k) q
when mon = l + q)

unfolding prod-fun-def
by (intro Sum-any.cong, subst Sum-any-right-distrib, force)

(auto simp: Sum-any-right-distrib when-def intro!: Sum-any.cong)
also have . . . = 0
proof (rule Sum-any-zeroI , rule Sum-any-zeroI ′)

fix ma mb assume ∗: mon = ma + mb
show coeff (monom (monom-of-set {x}) (1 :: ′a)) ma ∗ coeff (sym-mpoly X k)

mb = 0
proof (cases i = x)

case [simp]: True
show ?thesis
proof (cases lookup mb i > 0)

case True
hence coeff (sym-mpoly X k) mb = 0 using ‹x /∈ X›

by (auto simp: coeff-sym-mpoly lookup-monom-of-set split: if-splits)
thus ?thesis

using mult-not-zero by blast
next

case False
hence coeff (monom (monom-of-set {x}) 1) ma = 0

using i by (auto simp: coeff-monom when-def ∗ lookup-add)
thus ?thesis

using mult-not-zero by blast
qed

next
case [simp]: False
show ?thesis
proof (cases lookup ma i > 0)

case False
hence lookup mb i = lookup mon i

using ∗ by (auto simp: lookup-add)
hence coeff (sym-mpoly X k) mb = 0 using i

by (auto simp: coeff-sym-mpoly lookup-monom-of-set split: if-splits)
thus ?thesis

using mult-not-zero by blast
next

case True
hence coeff (monom (monom-of-set {x}) 1) ma = 0

using i by (auto simp: coeff-monom when-def ∗ lookup-add)
thus ?thesis

using mult-not-zero by blast
qed

11

qed
qed
finally have coeff ?A mon = 0 .
moreover from False have coeff ?lhs mon = 0

by (subst coeff-sym-mpoly) (auto simp: lookup-monom-of-set split: if-splits)
moreover from False have coeff (sym-mpoly X (Suc k)) mon = 0

by (subst coeff-sym-mpoly) (auto simp: lookup-monom-of-set split: if-splits)
ultimately show ?thesis

by auto
next

case True
define A where A = keys mon
have A: A ⊆ insert x X

using True by (auto simp: A-def)
have [simp]: mon = monom-of-set A

unfolding A-def using True by transfer (force simp: fun-eq-iff le-Suc-eq)
have finite A

using finite-subset A assms by blast
show ?thesis
proof (cases x ∈ A)

case False
have coeff ?A mon = prod-fun (coeff (monom (monom-of-set {x}) 1))

(coeff (sym-mpoly X k)) (monom-of-set A)
by (simp add: coeff-mpoly-times)

also have . . . = (
∑

l.
∑

q. coeff (monom (monom-of-set {x}) 1) l ∗ coeff
(sym-mpoly X k) q

when monom-of-set A = l + q)
unfolding prod-fun-def
by (intro Sum-any.cong, subst Sum-any-right-distrib, force)

(auto simp: Sum-any-right-distrib when-def intro!: Sum-any.cong)
also have . . . = 0
proof (rule Sum-any-zeroI , rule Sum-any-zeroI ′)

fix ma mb assume ∗: monom-of-set A = ma + mb
hence keys ma ⊆ A

using ‹finite A› by transfer (auto simp: fun-eq-iff split: if-splits)
thus coeff (monom (monom-of-set {x}) (1 :: ′a)) ma ∗ coeff (sym-mpoly X

k) mb = 0
using ‹x /∈ A› by (auto simp: coeff-monom when-def)

qed
finally show ?thesis

using False A assms finite-subset[of - insert x X] finite-subset[of - X]
by (auto simp: coeff-sym-mpoly)

next
case True
have mon = monom-of-set {x} + monom-of-set (A − {x})

using ‹x ∈ A› ‹finite A› by (auto simp: monom-of-set-plus-monom-of-set)
also have coeff ?A . . . = coeff (sym-mpoly X k) (monom-of-set (A − {x}))

by (subst coeff-monom-mult) auto
also have . . . = (if card A = Suc k then 1 else 0)

12

proof (cases card A = Suc k)
case True
thus ?thesis

using assms ‹finite A› ‹x ∈ A› A
by (subst coeff-sym-mpoly-monom-of-set) auto

next
case False
thus ?thesis

using assms ‹x ∈ A› A ‹finite A› card-Suc-Diff1 [of A x]
by (subst coeff-sym-mpoly-monom-of-set-eq-0) auto

qed
moreover have coeff ?B (monom-of-set A) = 0

using assms ‹x ∈ A› ‹finite A›
by (subst coeff-sym-mpoly-monom-of-set-eq-0 ′) auto

moreover have coeff ?lhs (monom-of-set A) = (if card A = Suc k then 1 else
0)

using assms A ‹finite A› finite-subset[of - insert x X] by (auto simp:
coeff-sym-mpoly)

ultimately show ?thesis by simp
qed

qed
qed

lifting-update multiset.lifting
lifting-forget multiset.lifting

end

2 Power sum polynomials
theory Power-Sum-Polynomials
imports

Symmetric-Polynomials.Symmetric-Polynomials
HOL−Computational-Algebra.Field-as-Ring
Power-Sum-Polynomials-Library

begin

2.1 Definition

For n indeterminates X1, . . . , Xn, we define the k-th power sum polynomial
as

pk(X1, . . . , Xn) = Xk
1 + . . .+Xk

n .

lift-definition powsum-mpoly-aux :: nat set ⇒ nat ⇒ (nat ⇒0 nat) ⇒0
′a ::

{semiring-1 ,zero-neq-one} is
λX k mon. if infinite X ∨ k = 0 ∧ mon 6= 0 then 0

else if k = 0 ∧ mon = 0 then of-nat (card X)
else if finite X ∧ (∃ x∈X . mon = Poly-Mapping.single x k) then 1 else 0

13

by auto

lemma lookup-powsum-mpoly-aux:
Poly-Mapping.lookup (powsum-mpoly-aux X k) mon =

(if infinite X ∨ k = 0 ∧ mon 6= 0 then 0
else if k = 0 ∧ mon = 0 then of-nat (card X)
else if finite X ∧ (∃ x∈X . mon = Poly-Mapping.single x k) then 1 else

0)
by transfer ′ simp

lemma lookup-sym-mpoly-aux-monom-singleton [simp]:
assumes finite X x ∈ X k > 0
shows Poly-Mapping.lookup (powsum-mpoly-aux X k) (Poly-Mapping.single x

k) = 1
using assms by (auto simp: lookup-powsum-mpoly-aux)

lemma lookup-sym-mpoly-aux-monom-singleton ′:
assumes finite X k > 0
shows Poly-Mapping.lookup (powsum-mpoly-aux X k) (Poly-Mapping.single x

k) = (if x ∈ X then 1 else 0)
using assms by (auto simp: lookup-powsum-mpoly-aux)

lemma keys-powsum-mpoly-aux: m ∈ keys (powsum-mpoly-aux A k) =⇒ keys m
⊆ A

by transfer ′ (auto split: if-splits simp: keys-monom-of-set)

lift-definition powsum-mpoly :: nat set ⇒ nat ⇒ ′a :: {semiring-1 ,zero-neq-one}
mpoly is

powsum-mpoly-aux .

lemma vars-powsum-mpoly-subset: vars (powsum-mpoly A k) ⊆ A
using keys-powsum-mpoly-aux by (auto simp: vars-def powsum-mpoly.rep-eq)

lemma powsum-mpoly-infinite: ¬finite A =⇒ powsum-mpoly A k = 0
by (transfer , transfer) auto

lemma coeff-powsum-mpoly:
MPoly-Type.coeff (powsum-mpoly X k) mon =

(if infinite X ∨ k = 0 ∧ mon 6= 0 then 0
else if k = 0 ∧ mon = 0 then of-nat (card X)
else if finite X ∧ (∃ x∈X . mon = Poly-Mapping.single x k) then 1 else

0)
by transfer ′ (simp add: lookup-powsum-mpoly-aux)

lemma coeff-powsum-mpoly-0-right:
MPoly-Type.coeff (powsum-mpoly X 0) mon = (if mon = 0 then of-nat (card X)

else 0)
by transfer ′ (auto simp add: lookup-powsum-mpoly-aux)

14

lemma coeff-powsum-mpoly-singleton:
assumes finite X k > 0
shows MPoly-Type.coeff (powsum-mpoly X k) (Poly-Mapping.single x k) = (if

x ∈ X then 1 else 0)
using assms by transfer ′ (simp add: lookup-powsum-mpoly-aux)

lemma coeff-powsum-mpoly-singleton-eq-1 [simp]:
assumes finite X x ∈ X k > 0
shows MPoly-Type.coeff (powsum-mpoly X k) (Poly-Mapping.single x k) = 1
using assms by (simp add: coeff-powsum-mpoly-singleton)

lemma coeff-powsum-mpoly-singleton-eq-0 [simp]:
assumes finite X x /∈ X k > 0
shows MPoly-Type.coeff (powsum-mpoly X k) (Poly-Mapping.single x k) = 0
using assms by (simp add: coeff-powsum-mpoly-singleton)

lemma powsum-mpoly-0 [simp]: powsum-mpoly X 0 = of-nat (card X)
by (intro mpoly-eqI ext) (auto simp: coeff-powsum-mpoly-0-right of-nat-mpoly-eq

mpoly-coeff-Const)

lemma powsum-mpoly-empty [simp]: powsum-mpoly {} k = 0
by (intro mpoly-eqI) (auto simp: coeff-powsum-mpoly)

lemma powsum-mpoly-altdef : powsum-mpoly X k = (
∑

x∈X . monom (Poly-Mapping.single
x k) 1)
proof (cases finite X)

case [simp]: True
show ?thesis
proof (cases k = 0)

case True
thus ?thesis by auto

next
case False
show ?thesis
proof (intro mpoly-eqI , goal-cases)

case (1 mon)
show ?case using False

by (cases ∃ x∈X . mon = Poly-Mapping.single x k)
(auto simp: coeff-powsum-mpoly coeff-monom when-def)

qed
qed

qed (auto simp: powsum-mpoly-infinite)

Power sum polynomials are symmetric:
lemma symmetric-powsum-mpoly [intro]:

assumes A ⊆ B
shows symmetric-mpoly A (powsum-mpoly B k)
unfolding powsum-mpoly-altdef

15

proof (rule symmetric-mpoly-symmetric-sum)
fix x π
assume x ∈ B π permutes A
thus mpoly-map-vars π (MPoly-Type.monom (Poly-Mapping.single x k) 1) =

MPoly-Type.monom (Poly-Mapping.single (π x) k) 1
using assms by (auto simp: mpoly-map-vars-monom permutes-bij permutep-single

bij-imp-bij-inv permutes-inv-inv)
qed (use assms in ‹auto simp: permutes-subset›)

lemma insertion-powsum-mpoly [simp]: insertion f (powsum-mpoly X k) = (
∑

i∈X .
f i ^ k)

unfolding powsum-mpoly-altdef insertion-sum insertion-single by simp

lemma powsum-mpoly-nz:
assumes finite X X 6= {} k > 0
shows (powsum-mpoly X k :: ′a :: {semiring-1 , zero-neq-one} mpoly) 6= 0

proof −
from assms obtain x where x ∈ X by auto
hence coeff (powsum-mpoly X k) (Poly-Mapping.single x k) = (1 :: ′a)

using assms by (auto simp: coeff-powsum-mpoly)
thus ?thesis by auto

qed

lemma powsum-mpoly-eq-0-iff :
assumes k > 0
shows powsum-mpoly X k = 0 ←→ infinite X ∨ X = {}
using assms powsum-mpoly-nz[of X k] by (auto simp: powsum-mpoly-infinite)

2.2 The Girard–Newton Theorem

The following is a nice combinatorial proof of the Girard–Newton Theorem
due to Doron Zeilberger [2].
The precise statement is this:
Let ek denote the k-th elementary symmetric polynomial in X1, . . . , Xn.
This is the sum of all monomials that can be formed by taking the product
of k distinct variables.
Next, let pk = Xk

1 + . . .+Xk
n denote that k-th symmetric power sum poly-

nomial in X1, . . . , Xn.
Then the following equality holds:

(−1)kkek +
k−1∑
i=0

(−1)ieipk−i

theorem Girard-Newton:
assumes finite X
shows (−1) ^ k ∗ of-nat k ∗ sym-mpoly X k +

(
∑

i<k. (−1) ^ i ∗ sym-mpoly X i ∗ powsum-mpoly X (k − i)) =

16

(0 :: ′a :: comm-ring-1 mpoly)
(is ?lhs = 0)

proof −
write Poly-Mapping.single (‹sng›)

define n where n = card X
define A :: (nat set × nat) set

where A = {(A, j). A ⊆ X ∧ card A ≤ k ∧ j ∈ X ∧ (card A = k −→ j ∈ A)}
define A1 :: (nat set × nat) set

where A1 = {A∈Pow X . card A < k} × X
define A2 :: (nat set × nat) set

where A2 = (SIGMA A:{A∈Pow X . card A = k}. A)

have A-split: A = A1 ∪ A2 A1 ∩ A2 = {}
by (auto simp: A-def A1-def A2-def)

have [intro]: finite A1 finite A2
using assms finite-subset[of - X] by (auto simp: A1-def A2-def intro!: fi-

nite-SigmaI)
have [intro]: finite A

by (subst A-split) auto

— We define a ‘weight’ function w from A to the ring of polynomials as

w(A, j) = (−1)|A|x
k−|A|
j

∏
i∈A

xi .

define w :: nat set × nat ⇒ ′a mpoly
where w = (λ(A, j). monom (monom-of-set A + sng j (k − card A)) ((−1) ^

card A))

— The sum of these weights over all of A is precisely the sum that we want to
show equals 0:

have ?lhs = (
∑

x∈A. w x)
proof −

have (
∑

x∈A. w x) = (
∑

x∈A1 . w x) + (
∑

x∈A2 . w x)
by (subst A-split, subst sum.union-disjoint, use A-split(2) in auto)

also have (
∑

x∈A1 . w x) = (
∑

i<k. (−1) ^ i ∗ sym-mpoly X i ∗ powsum-mpoly
X (k − i))

proof −
have (

∑
x∈A1 . w x) = (

∑
A | A ⊆ X ∧ card A < k.

∑
j∈X . w (A, j))

using assms by (subst sum.Sigma) (auto simp: A1-def)
also have . . . = (

∑
A | A ⊆ X ∧ card A < k.

∑
j∈X .

monom (monom-of-set A) ((−1) ^ card A) ∗ monom (sng j (k
− card A)) 1)

unfolding w-def by (intro sum.cong) (auto simp: mult-monom)
also have . . . = (

∑
A | A ⊆ X ∧ card A < k. monom (monom-of-set A)

((−1) ^ card A) ∗
powsum-mpoly X (k − card A))

by (simp add: sum-distrib-left powsum-mpoly-altdef)

17

also have . . . = (
∑

(i,A) ∈ (SIGMA i:{..<k}. {A. A ⊆ X ∧ card A = i}).
monom (monom-of-set A) ((−1) ^ i) ∗ powsum-mpoly X (k −

i))
by (rule sum.reindex-bij-witness[of - snd λA. (card A, A)]) auto

also have . . . = (
∑

i<k.
∑

A | A ⊆ X ∧ card A = i.
monom (monom-of-set A) 1 ∗ monom 0 ((−1) ^ i) ∗

powsum-mpoly X (k − i))
using assms by (subst sum.Sigma) (auto simp: mult-monom)

also have . . . = (
∑

i<k. (−1) ^ i ∗ sym-mpoly X i ∗ powsum-mpoly X (k −
i))

by (simp add: sum-distrib-left sum-distrib-right mpoly-monom-0-eq-Const
mpoly-Const-power mpoly-Const-uminus algebra-simps

sym-mpoly-altdef)
finally show ?thesis .

qed

also have (
∑

x∈A2 . w x) = (−1) ^ k ∗ of-nat k ∗ sym-mpoly X k
proof −

have (
∑

x∈A2 . w x) = (
∑

(A,j)∈A2 . monom (monom-of-set A) ((− 1) ^
k))

by (intro sum.cong) (auto simp: A2-def w-def mpoly-monom-0-eq-Const
intro!: sum.cong)

also have . . . = (
∑

A | A ⊆ X ∧ card A = k.
∑

j∈A. monom (monom-of-set
A) ((− 1) ^ k))

using assms finite-subset[of - X] by (subst sum.Sigma) (auto simp: A2-def)
also have (λA. monom (monom-of-set A) ((− 1) ^ k) :: ′a mpoly) =

(λA. monom 0 ((−1) ^ k) ∗ monom (monom-of-set A) 1)
by (auto simp: fun-eq-iff mult-monom)

also have monom 0 ((−1) ^ k) = (−1) ^ k
by (auto simp: mpoly-monom-0-eq-Const mpoly-Const-power mpoly-Const-uminus)

also have (
∑

A | A ⊆ X ∧ card A = k.
∑

j∈A. (− 1) ^ k ∗ monom
(monom-of-set A) 1) =

((−1) ^ k ∗ of-nat k ∗ sym-mpoly X k :: ′a mpoly)
by (auto simp: sum-distrib-left sum-distrib-right mult-ac sym-mpoly-altdef)

finally show ?thesis .
qed

finally show ?thesis by (simp add: algebra-simps)
qed

— Next, we show that the weights sum to 0:
also have (

∑
x∈A. w x) = 0

proof −
— We define a function T that is a involutory permutation of A. To be more

precise, it bijectively maps those elements (A,j) of A with j ∈ A to those where j /∈
A and the other way round. ‘Involutory’ means that T is its own inverse function,
i. e. T (T (x)) = x.

define T :: nat set × nat ⇒ nat set × nat
where T = (λ(A, j). if j ∈ A then (A − {j}, j) else (insert j A, j))

18

have [simp]: T (T x) = x for x
by (auto simp: T-def split: prod.splits)

have [simp]: T x ∈ A if x ∈ A for x
proof −

have [simp]: n ≤ n − Suc 0 ←→ n = 0 for n
by auto

show ?thesis using that assms finite-subset[of - X]
by (auto simp: T-def A-def split: prod.splits)

qed
have snd (T x) ∈ fst (T x) ←→ snd x /∈ fst x if x ∈ A for x

by (auto simp: T-def split: prod.splits)
hence bij: bij-betw T {x∈A. snd x ∈ fst x} {x∈A. snd x /∈ fst x}

by (intro bij-betwI [of - - - T]) auto

— Crucially, we show that T flips the weight of each element:
have [simp]: w (T x) = −w x if x ∈ A for x
proof −

obtain A j where [simp]: x = (A, j) by force

— Since T is an involution, we can assume w. l. o. g. that j ∈ A:
have aux: w (T (A, j)) = − w (A, j) if (A, j) ∈ A j ∈ A for j A
proof −

from that have [simp]: j ∈ A A ⊆ X and k > 0
using finite-subset[OF - assms, of A] by (auto simp: A-def intro!: Nat.gr0I)
have [simp]: finite A

using finite-subset[OF - assms, of A] by auto
from that have card A ≤ k

by (auto simp: A-def)

have card: card A = Suc (card (A − {j}))
using card.remove[of A j] by auto

hence card-less: card (A − {j}) < card A by linarith

have w (T (A, j)) = monom (monom-of-set (A − {j}) + sng j (k − card
(A − {j})))

((− 1) ^ card (A − {j})) by (simp add: w-def T-def)
also have (− 1) ^ card (A − {j}) = ((− 1) ^ Suc (Suc (card (A − {j})))

:: ′a)
by simp

also have Suc (card (A − {j})) = card A
using card by simp

also have k − card (A − {j}) = Suc (k − card A)
using ‹k > 0 › ‹card A ≤ k› card-less by (subst card) auto

also have monom-of-set (A − {j}) + sng j (Suc (k − card A)) =
monom-of-set A + sng j (k − card A)

by (transfer fixing: A j k) (auto simp: fun-eq-iff)
also have monom . . . ((−1)^ Suc (card A)) = −w (A, j)

by (simp add: w-def monom-uminus)
finally show ?thesis .

19

qed

show ?thesis
proof (cases j ∈ A)

case True
with aux[of A j] that show ?thesis by auto

next
case False
hence snd (T x) ∈ fst (T x)

by (auto simp: T-def split: prod.splits)
with aux[of fst (T x) snd (T x)] that show ?thesis by auto

qed
qed

We can now show fairly easily that the sum is equal to zero.
have ∗: A = {x∈A. snd x ∈ fst x} ∪ {x∈A. snd x /∈ fst x}

by auto
have (

∑
x∈A. w x) = (

∑
x | x ∈ A ∧ snd x ∈ fst x. w x) + (

∑
x | x ∈ A ∧

snd x /∈ fst x. w x)
using ‹finite A› by (subst ∗, subst sum.union-disjoint) auto

also have (
∑

x | x ∈ A ∧ snd x /∈ fst x. w x) = (
∑

x | x ∈ A ∧ snd x ∈ fst
x. w (T x))

using sum.reindex-bij-betw[OF bij, of w] by simp
also have . . . = −(

∑
x | x ∈ A ∧ snd x ∈ fst x. w x)

by (simp add: sum-negf)
finally show (

∑
x∈A. w x) = 0

by simp
qed

finally show ?thesis .
qed

The following variant of the theorem holds for k > n. Note that this is
now a linear recurrence relation with constant coefficients for pk in terms of
e0, . . . , en.
corollary Girard-Newton ′:

assumes finite X and k > card X
shows (

∑
i≤card X . (−1) ^ i ∗ sym-mpoly X i ∗ powsum-mpoly X (k − i)) =

(0 :: ′a :: comm-ring-1 mpoly)
proof −

have (0 :: ′a mpoly) = (
∑

i<k. (− 1) ^ i ∗ sym-mpoly X i ∗ powsum-mpoly X
(k − i))

using Girard-Newton[of X k] assms by simp
also have . . . = (

∑
i≤card X . (− 1) ^ i ∗ sym-mpoly X i ∗ powsum-mpoly X

(k − i))
using assms by (intro sum.mono-neutral-right) auto

finally show ?thesis ..
qed

20

The following variant is the Newton–Girard Theorem solved for ek, giving
us an explicit way to determine ek from e0, . . . , ek−1 and p1, . . . , pk:
corollary sym-mpoly-recurrence:

assumes k: k > 0 and finite X
shows (sym-mpoly X k :: ′a :: field-char-0 mpoly) =

−smult (1 / of-nat k) (
∑

i=1 ..k. (−1) ^ i ∗ sym-mpoly X (k − i) ∗
powsum-mpoly X i)
proof −

define e p :: nat ⇒ ′a mpoly where [simp]: e = sym-mpoly X p = powsum-mpoly
X

have ∗: 0 = (−1) ^ k ∗ of-nat k ∗ e k +
(
∑

i<k. (− 1) ^ i ∗ e i ∗ p (k − i) :: ′a mpoly)
using Girard-Newton[of X k] assms by simp

have 0 = (−1) ^ k ∗ smult (1 / of-nat k) (0 :: ′a mpoly)
by simp

also have . . . = smult (1 / of-nat k) (of-nat k) ∗ e k +
smult (1 / of-nat k) (

∑
i<k. (−1)^(k+i) ∗ e i ∗ p (k − i))

unfolding smult-conv-mult
using k by (subst ∗) (simp add: power-add sum-distrib-left sum-distrib-right

field-simps
del: div-mult-self3 div-mult-self4 div-mult-self2 div-mult-self1)

also have smult (1 / of-nat k :: ′a) (of-nat k) = 1
using k by (simp add: of-nat-monom smult-conv-mult mult-monom del: monom-of-nat)

also have (
∑

i<k. (−1) ^ (k+i) ∗ e i ∗ p (k − i)) = (
∑

i=1 ..k. (−1) ^ i ∗ e
(k−i) ∗ p i)

by (intro sum.reindex-bij-witness[of - λi. k − i λi. k − i])
(auto simp: minus-one-power-iff)

finally show ?thesis unfolding e-p-def by algebra
qed

Analogously, the following is the theorem solved for pk, giving us a way to
determine pk from e0, . . . , ek and p1, . . . , pk−1:
corollary powsum-mpoly-recurrence:

assumes k: k > 0 and X : finite X
shows (powsum-mpoly X k :: ′a :: comm-ring-1 mpoly) =

(−1) ^ (k + 1) ∗ of-nat k ∗ sym-mpoly X k −
(
∑

i=1 ..<k. (−1) ^ i ∗ sym-mpoly X i ∗ powsum-mpoly X (k − i))
proof −

define e p :: nat ⇒ ′a mpoly where [simp]: e = sym-mpoly X p = powsum-mpoly
X

have ∗: 0 = (−1) ^ k ∗ of-nat k ∗ e k +
(
∑

i<k. (−1) ^ i ∗ e i ∗ p (k − i) :: ′a mpoly)
using Girard-Newton[of X k] assms by simp

also have {..<k} = insert 0 {1 ..<k}
using assms by auto

finally have (−1) ^ k ∗ of-nat k ∗ e k + (
∑

i=1 ..<k. (−1) ^ i ∗ e i ∗ p (k −
i)) + p k = 0

using assms by (simp add: algebra-simps)

21

from add.inverse-unique[OF this] show ?thesis by simp
qed

Again, if we assume k > n, the above takes a much simpler form and is, in
fact, a linear recurrence with constant coefficients:
lemma powsum-mpoly-recurrence ′:

assumes k: k > card X and X : finite X
shows (powsum-mpoly X k :: ′a :: comm-ring-1 mpoly) =

−(
∑

i=1 ..card X . (−1) ^ i ∗ sym-mpoly X i ∗ powsum-mpoly X (k −
i))
proof −

define e p :: nat ⇒ ′a mpoly where [simp]: e = sym-mpoly X p = powsum-mpoly
X

have p k = (−1) ^ (k + 1) ∗ of-nat k ∗ e k − (
∑

i=1 ..<k. (−1) ^ i ∗ e i ∗ p
(k − i))

unfolding e-p-def using assms by (intro powsum-mpoly-recurrence) auto
also have . . . = −(

∑
i=1 ..<k. (−1) ^ i ∗ e i ∗ p (k − i))

using assms by simp
also have (

∑
i=1 ..<k. (−1) ^ i ∗ e i ∗ p (k − i)) = (

∑
i=1 ..card X . (−1) ^

i ∗ e i ∗ p (k − i))
using assms by (intro sum.mono-neutral-right) auto

finally show ?thesis by simp
qed

end

3 Power sum puzzles
theory Power-Sum-Puzzle
imports

Power-Sum-Polynomials
Polynomial-Factorization.Rational-Root-Test

begin

3.1 General setting and results

We now consider the following situation: Given unknown complex numbers
x1, . . . , xn, define pk = xk1+ . . .+xkn. Also, define ek := ek(x1, . . . , xn) where
ek(X1, . . . , Xn) is the k-th elementary symmetric polynomial.
What is the relationship between the sequences ek and pk; in particular, how
can we determine one from the other?
locale power-sum-puzzle =

fixes x :: nat ⇒ complex
fixes n :: nat

begin

We first introduce the notation pk := xk1 + . . .+ xkn:

22

definition p where p k = (
∑

i<n. x i ^ k)

lemma p-0 [simp]: p 0 = of-nat n
by (simp add: p-def)

lemma p-altdef : p k = insertion x (powsum-mpoly {..<n} k)
by (simp add: p-def)

Similarly, we introduce the notation ek = ek(x1, . . . , xn) where ek(X1, . . . , Xn)
is the k-th elementary symmetric polynomial (i. e. the sum of all monomials
that can be formed by taking the product of exactly k distinct variables).
definition e where e k = (

∑
Y | Y ⊆ {..<n} ∧ card Y = k. prod x Y)

lemma e-altdef : e k = insertion x (sym-mpoly {..<n} k)
by (simp add: e-def insertion-sym-mpoly)

It is clear that ek vanishes for k > n.
lemma e-eq-0 [simp]: k > n =⇒ e k = 0

by (simp add: e-altdef)

lemma e-0 [simp]: e 0 = 1
by (simp add: e-altdef)

The recurrences we got from the Girard–Newton Theorem earlier now di-
rectly give us analogous recurrences for ek and pk:
lemma e-recurrence:

assumes k: k > 0
shows e k = −(

∑
i=1 ..k. (− 1) ^ i ∗ e (k − i) ∗ p i) / of-nat k

using assms unfolding e-altdef p-altdef
by (subst sym-mpoly-recurrence)

(auto simp: insertion-sum insertion-add insertion-mult insertion-power inser-
tion-sym-mpoly)

lemma p-recurrence:
assumes k: k > 0
shows p k = −of-nat k ∗ (−1) ^ k ∗ e k − (

∑
i=1 ..<k. (−1) ^ i ∗ e i ∗ p (k

− i))
using assms unfolding e-altdef p-altdef
by (subst powsum-mpoly-recurrence)

(auto simp: insertion-sum insertion-add insertion-mult insertion-diff
insertion-power insertion-sym-mpoly)

lemma p-recurrence ′′:
assumes k: k > n
shows p k = −(

∑
i=1 ..n. (−1) ^ i ∗ e i ∗ p (k − i))

using assms unfolding e-altdef p-altdef
by (subst powsum-mpoly-recurrence ′)

(auto simp: insertion-sum insertion-add insertion-mult insertion-diff

23

insertion-power insertion-sym-mpoly)

It is clear from this recurrence that if p1 to pn are rational, then so are the
ek:
lemma e-in-Rats:

assumes
∧

k. k ∈ {1 ..n} =⇒ p k ∈ �
shows e k ∈ �

proof (cases k ≤ n)
case True
thus ?thesis
proof (induction k rule: less-induct)

case (less k)
show ?case
proof (cases k = 0)

case False
thus ?thesis using assms less

by (subst e-recurrence) (auto intro!: Rats-divide)
qed auto

qed
qed auto

Analogously, if p1 to pn are rational, then so are all the other pk:
lemma p-in-Rats:

assumes
∧

k. k ∈ {1 ..n} =⇒ p k ∈ �
shows p k ∈ �

proof (induction k rule: less-induct)
case (less k)
consider k = 0 | k ∈ {1 ..n} | k > n

by force
thus ?case
proof cases

assume k > n
thus ?thesis
using less assms by (subst p-recurrence ′′) (auto intro!: sum-in-Rats Rats-mult

e-in-Rats)
qed (use assms in auto)

qed

Next, we define the unique monic polynomial that has x1, . . . , xn as its roots
(respecting multiplicity):
definition Q :: complex poly where Q = (

∏
i<n. [:−x i, 1 :])

lemma degree-Q [simp]: Polynomial.degree Q = n
by (simp add: Q-def degree-prod-eq-sum-degree)

lemma lead-coeff-Q [simp]: Polynomial.coeff Q n = 1
using monic-prod[of {..<n} λi. [:−x i, 1 :]]
by (simp add: Q-def degree-prod-eq-sum-degree)

24

By Vieta’s Theorem, we then have:

Q(X) =

n∑
k=0

(−1)n−ken−kX
k

In other words: The above allows us to determine the x1, . . . , xn explicitly.
They are, in fact, precisely the roots of the above polynomial (respecting
multiplicity). Since this polynomial depends only on the ek, which are in
turn determined by p1, . . . , pn, this means that these are the only solutions
of this puzzle (up to permutation of the xi).
lemma coeff-Q: Polynomial.coeff Q k = (if k > n then 0 else (−1) ^ (n − k) ∗ e
(n − k))
proof (cases k ≤ n)

case True
thus ?thesis

using coeff-poly-from-roots[of {..<n} k x] by (auto simp: Q-def e-def)
qed (auto simp: Polynomial.coeff-eq-0)

lemma Q-altdef : Q = (
∑

k≤n. Polynomial.monom ((−1) ^ (n − k) ∗ e (n − k))
k)

by (subst poly-as-sum-of-monoms [symmetric]) (simp add: coeff-Q)

The following theorem again shows that x1, . . . , xn are precisely the roots of
Q, respecting multiplicity.
theorem mset-x-eq-poly-roots-Q: {#x i. i ∈# mset-set {..<n}#} = poly-roots Q
proof −

have poly-roots Q = (
∑

i<n. {#x i#})
by (simp add: Q-def poly-roots-prod)

also have . . . = {#x i. i ∈# mset-set {..<n}#}
by (induction n) (auto simp: lessThan-Suc)

finally show ?thesis ..
qed

end

3.2 Existence of solutions

So far, we have assumed a solution to the puzzle and then shown the prop-
erties that this solution must fulfil. However, we have not yet shown that
there is a solution. We will do that now.
Let n be a natural number and fk some sequence of complex numbers.
We will show that there are x1, . . . , xn so that xk1 + . . . + xkn = fk for any
1 ≤ k ≤ n.
locale power-sum-puzzle-existence =

fixes f :: nat ⇒ complex and n :: nat
begin

25

First, we define a sequence of numbers e ′ analogously to the sequence e
before, except that we replace all occurrences of the power sum pk with fk
(recall that in the end we want pk = fk).
fun e ′ :: nat ⇒ complex

where e ′ k = (if k = 0 then 1 else if k > n then 0
else −(

∑
i=1 ..k. (−1) ^ i ∗ e ′ (k − i) ∗ f i) / of-nat k)

lemmas [simp del] = e ′.simps

lemma e ′-0 [simp]: e ′ 0 = 1
by (simp add: e ′.simps)

lemma e ′-eq-0 [simp]: k > n =⇒ e ′ k = 0
by (auto simp: e ′.simps)

Just as before, we can show the following recurrence for f in terms of e ′:
lemma f-recurrence:

assumes k: k > 0 k ≤ n
shows f k = −of-nat k ∗ (−1) ^ k ∗ e ′ k − (

∑
i=1 ..<k. (− 1) ^ i ∗ e ′ i ∗ f

(k − i))
proof −

have −of-nat k ∗ e ′ k = (
∑

i=1 ..k. (− 1) ^ i ∗ e ′ (k − i) ∗ f i)
using assms by (subst e ′.simps) (simp add: field-simps)

hence (−1)^k ∗ (−of-nat k ∗ e ′ k) = (−1)^k ∗ (
∑

i=1 ..k. (− 1) ^ i ∗ e ′ (k −
i) ∗ f i)

by simp
also have . . . = f k + (−1) ^ k ∗ (

∑
i=1 ..<k. (− 1) ^ i ∗ e ′ (k − i) ∗ f i)

using assms by (subst sum.last-plus) (auto simp: minus-one-power-iff)
also have (−1) ^ k ∗ (

∑
i=1 ..<k. (− 1) ^ i ∗ e ′ (k − i) ∗ f i) =

(
∑

i=1 ..<k. (− 1) ^ (k − i) ∗ e ′ (k − i) ∗ f i)
unfolding sum-distrib-left by (intro sum.cong) (auto simp: minus-one-power-iff)

also have . . . = (
∑

i=1 ..<k. (− 1) ^ i ∗ e ′ i ∗ f (k − i))
by (intro sum.reindex-bij-witness[of - λi. k − i λi. k − i]) auto

finally show ?thesis
by (simp add: algebra-simps)

qed

We now define a polynomial whose roots will be precisely the solution
x1, . . . , xn to our problem.
lift-definition Q ′ :: complex poly is λk. if k > n then 0 else (−1) ^ (n − k) ∗ e ′

(n − k)
using eventually-gt-at-top[of n] unfolding cofinite-eq-sequentially
by eventually-elim auto

lemma coeff-Q ′: Polynomial.coeff Q ′ k = (if k > n then 0 else (−1) ^ (n − k) ∗
e ′ (n − k))

by transfer auto

26

lemma lead-coeff-Q ′: Polynomial.coeff Q ′ n = 1
by (simp add: coeff-Q ′)

lemma degree-Q ′ [simp]: Polynomial.degree Q ′ = n
proof (rule antisym)

show Polynomial.degree Q ′ ≥ n
by (rule le-degree) (auto simp: coeff-Q ′)

show Polynomial.degree Q ′ ≤ n
by (rule degree-le) (auto simp: coeff-Q ′)

qed

Since the complex numbers are algebraically closed, this polynomial splits
into linear factors:
definition Root :: nat ⇒ complex

where Root = (SOME Root. Q ′ = (
∏

i<n. [:−Root i, 1 :]))

lemma Root: Q ′ = (
∏

i<n. [:−Root i, 1 :])
proof −

obtain rs where rs: (
∏

r←rs. [:−r , 1 :]) = Q ′ length rs = n
using fundamental-theorem-algebra-factorized[of Q ′] lead-coeff-Q ′ by auto

have Q ′ = (
∏

r←rs. [:−r , 1 :])
by (simp add: rs)

also have . . . = (
∏

r=0 ..<n. [:−rs ! r , 1 :])
by (subst prod-list-prod-nth) (auto simp: rs)

also have {0 ..<n} = {..<n}
by auto

finally have ∃Root. Q ′ = (
∏

i<n. [:−Root i, 1 :])
by blast

thus ?thesis
unfolding Root-def by (rule someI-ex)

qed

We can therefore now use the results from before for these x1, . . . , xn.
sublocale power-sum-puzzle Root n .

Vieta’s theorem gives us an expression for the coefficients of Q ′ in terms of
ek(x1, . . . , xn). This shows that our e ′ is indeed exactly the same as e.
lemma e ′-eq-e: e ′ k = e k
proof (cases k ≤ n)

case True
from True have e ′ k = (−1) ^ k ∗ poly.coeff Q ′ (n − k)

by (simp add: coeff-Q ′)
also have Q ′ = (

∏
x<n. [:−Root x, 1 :])

using Root by simp
also have (−1) ^ k ∗ poly.coeff . . . (n − k) = e k

using True coeff-poly-from-roots[of {..<n} n − k Root]
by (simp add: insertion-sym-mpoly e-altdef)

finally show e ′ k = e k .

27

qed auto

It then follows by a simple induction that pk = fk for 1 ≤ k ≤ n, as intended:
lemma p-eq-f :

assumes k > 0 k ≤ n
shows p k = f k
using assms

proof (induction k rule: less-induct)
case (less k)
thus p k = f k

using p-recurrence[of k] f-recurrence[of k] less by (simp add: e ′-eq-e)
qed

end

Here is a more condensed form of the above existence theorem:
theorem power-sum-puzzle-has-solution:

fixes f :: nat ⇒ complex
shows ∃Root. ∀ k∈{1 ..n}. (

∑
i<n. Root i ^ k) = f k

proof −
interpret power-sum-puzzle-existence f .
from p-eq-f have ∀ k∈{1 ..n}. (

∑
i<n. Root i ^ k) = f k

by (auto simp: p-def)
thus ?thesis by blast

qed

3.3 A specific puzzle

We now look at one particular instance of this puzzle, which was given as an
exercise in Abstract Algebra by Dummit and Foote (Exercise 23 in Section
14.6) [1].
Suppose we know that x+ y+ z = 1, x2+ y2+ z2 = 2, and x3+ y3+ z3 = 3.
Then what is x5 + y5 + z5? What about any arbitrary xn + yn + zn?
locale power-sum-puzzle-example =

fixes x y z :: complex
assumes xyz: x + y + z = 1

x^2 + y^2 + z^2 = 2
x^3 + y^3 + z^3 = 3

begin

We reuse the results we have shown in the general case before.
definition f where f n = [x,y,z] ! n

sublocale power-sum-puzzle f 3 .

We can simplify p a bit more now.
lemma p-altdef ′: p k = x ^ k + y ^ k + z ^ k

28

unfolding p-def f-def by (simp add: eval-nat-numeral)

lemma p-base [simp]: p (Suc 0) = 1 p 2 = 2 p 3 = 3
using xyz by (simp-all add: p-altdef ′)

We can easily compute all the non-zero values of e recursively:
lemma e-Suc-0 [simp]: e (Suc 0) = 1

by (subst e-recurrence; simp)

lemma e-2 [simp]: e 2 = −1/2
by (subst e-recurrence; simp add: atLeastAtMost-nat-numeral)

lemma e-3 [simp]: e 3 = 1/6
by (subst e-recurrence; simp add: atLeastAtMost-nat-numeral)

Plugging in all the values, the recurrence relation for p now looks like this:
lemma p-recurrence ′′′: k > 3 =⇒ p k = p (k−3) / 6 + p (k−2) / 2 + p (k−1)

using p-recurrence ′′[of k] by (simp add: atLeastAtMost-nat-numeral)

Also note again that all pk are rational:
lemma p-in-Rats ′: p k ∈ �
proof −

have ∗: {1 ..3} = {1 , 2 , (3 ::nat)}
by auto

also have ∀ k∈. . . . p k ∈ �
by auto

finally show ?thesis
using p-in-Rats[of k] by simp

qed

The above recurrence has the characteristic polynomial X3 −X2 − 1
2X −

1
6

(which is exactly our Q), so we know that can now specify x, y, and z more
precisely: They are the roots of that polynomial (in unspecified order).
lemma xyz-eq: {#x, y, z#} = poly-roots [:−1/6 , −1/2 , −1 , 1 :]
proof −

have image-mset f (mset-set {..<3}) = poly-roots Q
using mset-x-eq-poly-roots-Q .

also have image-mset f (mset-set {..<3}) = {#x, y, z#}
by (simp add: numeral-3-eq-3 lessThan-Suc f-def Multiset.union-ac)

also have Q = [:−1/6 , −1/2 , −1 , 1 :]
by (simp add: Q-altdef atMost-nat-numeral Polynomial.monom-altdef

power3-eq-cube power2-eq-square)
finally show ?thesis .

qed

Using the rational root test, we can easily show that x, y, and z are irrational.
lemma xyz-irrational: set-mset (poly-roots [:−1/6 , −1/2 , −1 , 1 ::complex:]) ∩ �
= {}

29

proof −
define p :: rat poly where p = [:−1/6 , −1/2 , −1 , 1 :]
have rational-root-test p = None

unfolding p-def by code-simp
hence ¬(∃ x::rat. poly p x = 0)

by (rule rational-root-test)
hence ¬(∃ x∈�. poly (map-poly of-rat p) x = (0 :: complex))

by (auto simp: Rats-def)
also have map-poly of-rat p = [:−1/6 , −1/2 , −1 , 1 :: complex:]

by (simp add: p-def of-rat-minus of-rat-divide)
finally show ?thesis

by auto
qed

This polynomial is squarefree, so these three roots are, in fact, unique (so
that there are indeed 3! = 6 possible permutations).
lemma rsquarefree: rsquarefree [:−1/6 , −1/2 , −1 , 1 :: complex:]

by (rule coprime-pderiv-imp-rsquarefree)
(auto simp: pderiv-pCons coprime-iff-gcd-eq-1 gcd-poly-code gcd-poly-code-def

content-def
primitive-part-def gcd-poly-code-aux-reduce pseudo-mod-def pseudo-divmod-def

Let-def Polynomial.monom-altdef normalize-poly-def)

lemma distinct-xyz: distinct [x, y, z]
by (rule rsquarefree-imp-distinct-roots[OF rsquarefree]) (simp-all add: xyz-eq)

While these roots can be written more explicitly in radical form, they are
not very pleasant to look at. We therefore only compute a few values of p
just for fun:
lemma p 4 = 25 / 6 and p 5 = 6 and p 10 = 15539 / 432

by (simp-all add: p-recurrence ′′′)

Lastly, let us (informally) examine the asymptotics of this problem.
Two of the roots have a norm of roughly β ≈ 0.341, while the remaining root
α is roughly 1.431. Consequently, xn + yn + zn is asymptotically equivalent
to αn, with the error being bounded by 2 · βn and therefore goes to 0 very
quickly.
For p(10) = 15539

432 ≈ 35.97, for instance, this approximation is correct up to
6 decimals (a relative error of about 0.0001 %).
end

To really emphasise that the above puzzle has a solution and the locale is not
‘vacuous’, here is an interpretation of the locale using the existence theorem
from before:
notepad
begin

define f :: nat ⇒ complex where f = (λk. [1 ,2 ,3] ! (k − 1))

30

obtain Root :: nat ⇒ complex where Root:
∧

k. k ∈ {1 ..3} =⇒ (
∑

i<3 . Root
i ^ k) = f k

using power-sum-puzzle-has-solution[of 3 f] by metis
define x y z where x = Root 0 y = Root 1 z = Root 2
have x + y + z = 1 and x^2 + y^2 + z^2 = 2 and x^3 + y^3 + z^3 = 3

using Root[of 1] Root[of 2] Root[of 3] by (simp-all add: eval-nat-numeral
x-y-z-def f-def)

then interpret power-sum-puzzle-example x y z
by unfold-locales

have p 5 = 6
by (simp add: p-recurrence ′′′)

end

end

References

[1] D. S. Dummit and R. M. Foote. Abstract Algebra. Wiley, 2003.

[2] D. Zeilberger. A combinatorial proof of Newton’s identities. Discrete
Mathematics, 49(3):319, 1984.

31

	Auxiliary material
	Miscellaneous
	The set of roots of a univariate polynomial

	Power sum polynomials
	Definition
	The Girard–Newton Theorem

	Power sum puzzles
	General setting and results
	Existence of solutions
	A specific puzzle

