
Pop-Refinement

Alessandro Coglio

Kestrel Institute
http://www.kestrel.edu/~coglio

March 17, 2025

http://www.kestrel.edu/~coglio

Abstract

Pop-refinement is an approach to stepwise refinement, carried out inside an
interactive theorem prover by constructing a monotonically decreasing sequence
of predicates over deeply embedded target programs. The sequence starts with
a predicate that characterizes the possible implementations, and ends with a
predicate that characterizes a unique program in explicit syntactic form.

Compared to existing refinement approaches, pop-refinement enables more
requirements (e.g. program-level and non-functional) to be captured in the ini-
tial specification and preserved through refinement. Security requirements ex-
pressed as hyperproperties (i.e. predicates over sets of traces) are always pre-
served by pop-refinement, unlike the popular notion of refinement as trace set
inclusion.

After introducing the concept of pop-refinement, two simple examples in Is-
abelle/HOL are presented, featuring program-level requirements, non-functional
requirements, and hyperproperties. General remarks about pop-refinement fol-
low. Finally, related and future work are discussed.

Contents

1 Definition 3

2 First Example 4
2.1 Target Programming Language 4

2.1.1 Syntax . 4
2.1.2 Static Semantics . 5
2.1.3 Dynamic Semantics . 5
2.1.4 Performance . 7

2.2 Requirement Specification . 7
2.3 Stepwise Refinement . 8

2.3.1 Step 1 . 8
2.3.2 Step 2 . 9
2.3.3 Step 3 . 10
2.3.4 Step 4 . 10
2.3.5 Step 5 . 11
2.3.6 Step 6 . 12
2.3.7 Step 7 . 13

3 Second Example 14
3.1 Hyperproperties . 14
3.2 Target Programming Language 15

3.2.1 Syntax . 16
3.2.2 Static Semantics . 16
3.2.3 Dynamic Semantics . 17

3.3 Requirement Specification . 20
3.3.1 Input/Output Variables 20
3.3.2 Low Processing . 20
3.3.3 High Processing . 21
3.3.4 All Requirements . 21
3.3.5 Generalized Non-Interference 21

3.4 Stepwise Refinement . 22
3.4.1 Step 1 . 23
3.4.2 Step 2 . 24
3.4.3 Step 3 . 26

1

3.4.4 Step 4 . 27
3.4.5 Step 5 . 28
3.4.6 Step 6 . 28

4 General Remarks 30
4.1 Program-Level Requirements . 30
4.2 Non-Functional Requirements . 30
4.3 Links with High-Level Requirements 31
4.4 Non-Determinism and Under-Specification 31
4.5 Specialized Formalisms . 32
4.6 Strict and Non-Strict Refinement Steps 32
4.7 Final Predicate . 32
4.8 Proof Coverage . 33
4.9 Generality and Flexibility . 34

5 Related Work 35

6 Future Work 37
6.1 Populating the Framework . 37
6.2 Automated Transformations . 37
6.3 Other Kinds of Design Objects 37

2

Chapter 1

Definition

In stepwise refinement [4, 18], a program is derived from a specification via a
sequence of intermediate specifications.

Pop-refinement (where ‘pop’ stands for ‘predicates over programs’) is an ap-
proach to stepwise refinement, carried out inside an interactive theorem prover
(e.g. Isabelle/HOL, HOL4, Coq, PVS, ACL2) as follows:

1. Formalize the syntax and semantics of (the needed subset of) the target
programming language (and libraries), as a deep embedding.

2. Specify the requirements by defining a predicate over programs that char-
acterizes the possible implementations.

3. Refine the specification stepwise by defining monotonically decreasing
predicates over programs (decreasing with respect to inclusion, i.e. log-
ical implication), according to decisions that narrow down the possible
implementations.

4. Conclude the derivation with a predicate that characterizes a unique pro-
gram in explicit syntactic form, from which the program text is readily
obtained.

3

Chapter 2

First Example

Pop-refinement is illustrated via a simple derivation, in Isabelle/HOL, of a pro-
gram that includes non-functional aspects.

2.1 Target Programming Language

In the target language used in this example, a program consists of a list of
distinct variables (the parameters of the program) and an arithmetic expression
(the body of the program). The body is built out of parameters, non-negative
integer constants, addition operations, and doubling (i.e. multiplication by 2)
operations. The program is executed by supplying non-negative integers to the
parameters and evaluating the body to obtain a non-negative integer result.

For instance, executing the program

prog (a,b) {3 + 2 * (a + b)}

with 5 and 7 supplied to a and b yields 27. The syntax and semantics of this
language are formalized as follows.

2.1.1 Syntax

Variables are identified by names.

type-synonym name = string

Expressions are built out of constants, variables, doubling operations, and ad-
dition operations.

datatype expr = Const nat | Var name | Double expr | Add expr expr

4

A program consists of a list of parameter variables and a body expression.

record prog =
para :: name list
body :: expr

2.1.2 Static Semantics

A context is a set of variables.

type-synonym ctxt = name set

Given a context, an expression is well-formed iff all its variables are in the
context.

fun wfe :: ctxt ⇒ expr ⇒ bool
where

wfe Γ (Const c) ←→ True |
wfe Γ (Var v) ←→ v ∈ Γ |
wfe Γ (Double e) ←→ wfe Γ e |
wfe Γ (Add e1 e2) ←→ wfe Γ e1 ∧ wfe Γ e2

The context of a program consists of the parameters.

definition ctxt :: prog ⇒ ctxt
where ctxt p ≡ set (para p)

A program is well-formed iff the parameters are distinct and the body is well-
formed in the context of the program.

definition wfp :: prog ⇒ bool
where wfp p ≡ distinct (para p) ∧ wfe (ctxt p) (body p)

2.1.3 Dynamic Semantics

An environment associates values (non-negative integers) to variables.

type-synonym env = name ⇀ nat

An environment matches a context iff environment and context have the same
variables.

definition match :: env ⇒ ctxt ⇒ bool
where match E Γ ≡ dom E = Γ

Evaluating an expression in an environment yields a value, or an error (None)
if the expression contains a variable not in the environment.

definition mul-opt :: nat option ⇒ nat option ⇒ nat option (infixl ‹⊗› 70)
— Lifting of multiplication to nat option.

5

where U 1 ⊗ U 2 ≡
case (U 1, U 2) of (Some u1, Some u2) ⇒ Some (u1 ∗ u2) | - ⇒ None

definition add-opt :: nat option ⇒ nat option ⇒ nat option (infixl ‹⊕› 65)
— Lifting of addition to nat option.
where U 1 ⊕ U 2 ≡

case (U 1, U 2) of (Some u1, Some u2) ⇒ Some (u1 + u2) | - ⇒ None

fun eval :: env ⇒ expr ⇒ nat option
where

eval E (Const c) = Some c |
eval E (Var v) = E v |
eval E (Double e) = Some 2 ⊗ eval E e |
eval E (Add e1 e2) = eval E e1 ⊕ eval E e2

Evaluating a well-formed expression never yields an error, if the environment
matches the context.

lemma eval-wfe:
wfe Γ e =⇒ match E Γ =⇒ eval E e 6= None
〈proof 〉

The environments of a program are the ones that match the context of the
program.

definition envs :: prog ⇒ env set
where envs p ≡ {E . match E (ctxt p)}

Evaluating the body of a well-formed program in an environment of the program
never yields an error.

lemma eval-wfp:
wfp p =⇒ E ∈ envs p =⇒ eval E (body p) 6= None
〈proof 〉

Executing a program with values supplied to the parameters yields a non-
negative integer result, or an error (None) if the parameters are not distinct,
the number of supplied values differs from the number of parameters, or the
evaluation of the body yields an error.

definition supply :: prog ⇒ nat list ⇒ env option
where supply p us ≡

let vs = para p in
if distinct vs ∧ length us = length vs
then Some (map-of (zip vs us))
else None

definition exec :: prog ⇒ nat list ⇒ nat option
where exec p us ≡

6

case supply p us of Some E ⇒ eval E (body p) | None ⇒ None

Executing a well-formed program with the same number of values as the number
of parameters never yields an error.

lemma supply-wfp:
wfp p =⇒
length us = length (para p) =⇒
∃E ∈ envs p. supply p us = Some E
〈proof 〉

lemma exec-wfp:
wfp p =⇒ length us = length (para p) =⇒ exec p us 6= None
〈proof 〉

2.1.4 Performance

As a non-functional semantic aspect, the cost (e.g. time and power) to execute
a program is modeled as the number of doubling and addition operations.

fun coste :: expr ⇒ nat
where

coste (Const c) = 0 |
coste (Var v) = 0 |
coste (Double e) = 1 + coste e |
coste (Add e1 e2) = 1 + coste e1 + coste e2

definition costp :: prog ⇒ nat
where costp p ≡ coste (body p)

2.2 Requirement Specification

The target program must:

1. Be well-formed.

2. Have exactly the two parameters ′′x ′′ and ′′y ′′, in this order.

3. Produce the result f x y when x and y are supplied to ′′x ′′ and ′′y ′′, where
f is defined below.

4. Not exceed cost 3.

definition f :: nat ⇒ nat ⇒ nat
where f x y ≡ 3 ∗ x + 2 ∗ y

7

definition spec0 :: prog ⇒ bool
where spec0 p ≡

wfp p ∧
para p = [′′x ′′, ′′y ′′] ∧
(∀ x y. exec p [x, y] = Some (f x y)) ∧
costp p ≤ 3

f is used by spec0 to express a functional requirement on the execution of the
program. spec0 includes the non-functional requirement costp p ≤ 3 and the
syntactic interface requirement para p = [′′x ′′, ′′y ′′], which are not expressed by
f alone and are expressible only in terms of programs. f can be computed by a
program with cost higher than 3 and with more or different parameters; it can
also be computed by programs in different target languages.

2.3 Stepwise Refinement

It is not difficult to write a program that satisfies spec0 and to prove that it does.
But with more complex target languages and requirement specifications, writing
a program and proving that it satisfies the requirements is notoriously difficult.
Stepwise refinement decomposes the proof into manageable pieces, constructing
the implementation along the way. The following sequence of refinement steps
may be overkill for obtaining an implementation of spec0, but illustrates concepts
that should apply to more complex cases.

2.3.1 Step 1

The second conjunct in spec0 determines the parameters, leaving only the body
to be determined. That conjunct also reduces the well-formedness of the pro-
gram to the well-formedness of the body, and the execution of the program to
the evaluation of the body.
abbreviation Γxy :: ctxt
where Γxy ≡ { ′′x ′′, ′′y ′′}

abbreviation Exy :: nat ⇒ nat ⇒ env
where Exy x y ≡ [′′x ′′ 7→ x, ′′y ′′ 7→ y]

lemma reduce-prog-to-body:
para p = [′′x ′′, ′′y ′′] =⇒
wfp p = wfe Γxy (body p) ∧
exec p [x, y] = eval (Exy x y) (body p)
〈proof 〉

Using lemma reduce-prog-to-body, and using the definition of costp to reduce the
cost of the program to the cost of the body, spec0 is refined as follows.

8

definition spec1 :: prog ⇒ bool
where spec1 p ≡

wfe Γxy (body p) ∧
para p = [′′x ′′, ′′y ′′] ∧
(∀ x y. eval (Exy x y) (body p) = Some (f x y)) ∧
coste (body p) ≤ 3

lemma step-1-correct:
spec1 p =⇒ spec0 p
〈proof 〉

spec1 and spec0 are actually equivalent, but the definition of spec1 is “closer”
to the implementation than the definition of spec0: the latter states constraints
on the whole program, while the former states simpler constraints on the body,
given that the parameters are already determined. The proof of step-1-correct
can also be used to prove the equivalence of spec1 and spec0, but in general
proving inclusion is easier than proving equivalence. Some of the following
refinement steps yield non-equivalent predicates.

2.3.2 Step 2

The third conjunct in spec1 says that the body computes f x y, which depends
on both x and y, and which yields an odd result for some values of x and y.
Thus the body cannot be a constant, a variable, or a double, leaving a sum as
the only option. Adding ∃ e1 e2. body p = Add e1 e2 as a conjunct to spec1 and
re-arranging the other conjuncts, moving some of them under the existential
quantification so that they can be simplified in the next refinement step, spec1
is refined as follows.

definition spec2 :: prog ⇒ bool
where spec2 p ≡

para p = [′′x ′′, ′′y ′′] ∧
(∃ e1 e2.

body p = Add e1 e2 ∧
wfe Γxy (body p) ∧
(∀ x y. eval (Exy x y) (body p) = Some (f x y)) ∧
coste (body p) ≤ 3)

lemma step-2-correct:
spec2 p =⇒ spec1 p
〈proof 〉

This refinement step is guided by an analysis of the constraints in spec1.

9

2.3.3 Step 3

The fact that the body is a sum reduces the well-formedness, evaluation, and
cost of the body to the well-formedness, evaluation, and cost of the addends.

lemma reduce-body-to-addends:
body p = Add e1 e2 =⇒
wfe Γxy (body p) = (wfe Γxy e1 ∧ wfe Γxy e2) ∧
eval (Exy x y) (body p) = eval (Exy x y) e1 ⊕ eval (Exy x y) e2 ∧
coste (body p) = 1 + coste e1 + coste e2
〈proof 〉

Using reduce-body-to-addends and arithmetic simplification, spec2 is refined as
follows.

definition spec3 :: prog ⇒ bool
where spec3 p ≡

para p = [′′x ′′, ′′y ′′] ∧
(∃ e1 e2.

body p = Add e1 e2 ∧
wfe Γxy e1 ∧
wfe Γxy e2 ∧
(∀ x y. eval (Exy x y) e1 ⊕ eval (Exy x y) e2 = Some (f x y)) ∧
coste e1 + coste e2 ≤ 2)

lemma step-3-correct:
spec3 p =⇒ spec2 p
〈proof 〉

This refinement step defines the top-level structure of the body, reducing the
constraints on the body to simpler constraints on its components.

2.3.4 Step 4

The second-to-last conjunct in spec3 suggests to split f x y into two addends to
be computed by e1 and e2.

The addends 3 ∗ x and 2 ∗ y suggested by the definition of f would lead to
a blind alley, where the cost constraints could not be satisfied—the resulting
spec4 would be always false. The refinement step would be “correct” (by strict
inclusion) but the refinement sequence could never reach an implementation. It
would be necessary to backtrack to spec3 and split f x y differently.

To avoid the blind alley, the definition of f is rephrased as follows.

lemma f-rephrased:
f x y = x + (2 ∗ x + 2 ∗ y)

10

〈proof 〉

This rephrased definition of f does not use the multiplication by 3 of the original
definition, which is not (directly) supported by the target language; it only uses
operations supported by the language.

Using f-rephrased, spec3 is refined as follows.
definition spec4 :: prog ⇒ bool
where spec4 p ≡

para p = [′′x ′′, ′′y ′′] ∧
(∃ e1 e2.

body p = Add e1 e2 ∧
wfe Γxy e1 ∧
wfe Γxy e2 ∧
(∀ x y. eval (Exy x y) e1 = Some x) ∧
(∀ x y. eval (Exy x y) e2 = Some (2 ∗ x + 2 ∗ y)) ∧
coste e1 + coste e2 ≤ 2)

lemma step-4-correct:
spec4 p =⇒ spec3 p
〈proof 〉

This refinement step reduces the functional constraint on the body to simpler
functional constraints on the addends. The functional constraint can be decom-
posed in different ways, some of which are incompatible with the non-functional
cost constraint: blind alleys are avoided by taking the non-functional constraint
into account.

2.3.5 Step 5

The term x in the third-to-last conjunct in spec4 is a shallow embedding of
the program expression x, whose deep embedding is the term Var ′′x ′′. Using
the latter as e1, the third-to-last conjunct in spec4 is satisfied; the expression is
well-formed and has cost 0.
lemma first-addend:

e1 = Var ′′x ′′ =⇒
eval (Exy x y) e1 = Some x ∧
wfe Γxy e1 ∧
coste e1 = 0
〈proof 〉

Adding e1 = Var ′′x ′′ as a conjunct to spec4 and simplifying, spec4 is refined as
follows.
definition spec5 :: prog ⇒ bool
where spec5 p ≡

11

para p = [′′x ′′, ′′y ′′] ∧
(∃ e2.

body p = Add (Var ′′x ′′) e2 ∧
wfe Γxy e2 ∧
(∀ x y. eval (Exy x y) e2 = Some (2 ∗ x + 2 ∗ y)) ∧
coste e2 ≤ 2)

lemma step-5-correct:
spec5 p =⇒ spec4 p
〈proof 〉

This refinement step determines the first addend of the body, leaving only the
second addend to be determined.

2.3.6 Step 6

The term 2 ∗ x + 2 ∗ y in the second-to-last conjunct of spec5 is a shallow
embedding of the program expression 2 * x + 2 * y, whose deep embedding
is the term Add (Double (Var ′′x ′′)) (Double (Var ′′y ′′)). Using the latter as e2,
the second-to-last conjunct in spec5 is satisfied, but the last conjunct is not. The
following factorization of the shallowly embedded expression leads to a reduced
cost of the corresponding deeply embedded expression.

lemma factorization:
(2 ::nat) ∗ x + 2 ∗ y = 2 ∗ (x + y)
〈proof 〉

The deeply embedded expression Double (Add (Var ′′x ′′) (Var ′′y ′′)), which
corresponds to the shallowly embedded expression 2 ∗ (x + y), satisfies the
second-to-last conjunct of spec5, is well-formed, and has cost 2.

lemma second-addend:
e2 = Double (Add (Var ′′x ′′) (Var ′′y ′′)) =⇒
eval (Exy x y) e2 = Some (2 ∗ x + 2 ∗ y) ∧
wfe Γxy e2 ∧
coste e2 = 2
〈proof 〉

Adding e2 = Double (Add (Var ′′x ′′) (Var ′′y ′′)) as a conjunct to spec5 and
simplifying, spec5 is refined as follows.

definition spec6 :: prog ⇒ bool
where spec6 p ≡

para p = [′′x ′′, ′′y ′′] ∧
body p = Add (Var ′′x ′′) (Double (Add (Var ′′x ′′) (Var ′′y ′′)))

lemma step-6-correct:

12

spec6 p =⇒ spec5 p
〈proof 〉

This refinement step determines the second addend of the body, leaving nothing
else to be determined.

This and the previous refinement step turn semantic constraints on the program
components e1 and e2 into syntactic definitions of such components.

2.3.7 Step 7

spec6, which defines the parameters and body, is refined to characterize a unique
program in explicit syntactic form.

abbreviation p0 :: prog
where p0 ≡
(|para = [′′x ′′, ′′y ′′],
body = Add (Var ′′x ′′) (Double (Add (Var ′′x ′′) (Var ′′y ′′)))|)

definition spec7 :: prog ⇒ bool
where spec7 p ≡ p = p0

lemma step-7-correct:
spec7 p =⇒ spec6 p
〈proof 〉

The program satisfies spec0 by construction. The program witnesses the consis-
tency of the requirements, i.e. the fact that spec0 is not always false.

lemma p0-sat-spec0:
spec0 p0

〈proof 〉

From p0, the program text

prog (x,y) {x + 2 * (x + y)}

is easily obtained.

13

Chapter 3

Second Example

Pop-refinement is illustrated via a simple derivation, in Isabelle/HOL, of a non-
deterministic program that satisfies a hyperproperty.

3.1 Hyperproperties

Hyperproperties are predicates over sets of traces [3]. Hyperproperties capture
security policies like non-interference [5], which applies to deterministic systems,
and generalized non-interference (GNI) [11], which generalizes non-interference
to non-deterministic systems.

The formulation of GNI in [3], which is derived from [12], is based on:

• A notion of traces as infinite streams of abstract states.

• Functions that map each state to low and high inputs and outputs, where
‘low’ and ‘high’ have the usual security meaning (e.g. ‘low’ means ‘unclas-
sified’ and ‘high’ means ‘classified’). These functions are homomorphically
extended to map each trace to infinite streams of low and high inputs and
outputs.

The following formulation is slightly more general, because the functions that
return low and high inputs and outputs operate directly on abstract traces.

GNI says that for any two traces τ1 and τ2, there is always a trace τ3 with
the same high inputs as τ1 and the same low inputs and low outputs as τ2.
Intuitively, this means that a low observer (i.e. one that only observes low inputs
and low outputs of traces) cannot gain any information about high inputs (i.e.
high inputs cannot interfere with low outputs) because observing a trace τ2 is
indistinguishable from observing some other trace τ3 that has the same high
inputs as an arbitrary trace τ1.

14

locale generalized-non-interference =
fixes low-in :: ′τ ⇒ ′i — low inputs
fixes low-out :: ′τ ⇒ ′o — low outputs
fixes high-in :: ′τ ⇒ ′i — high inputs
fixes high-out :: ′τ ⇒ ′o — high outputs

definition (in generalized-non-interference) GNI :: ′τ set ⇒ bool
where GNI T ≡
∀ τ1 ∈ T . ∀ τ2 ∈ T . ∃ τ3 ∈ T .

high-in τ3 = high-in τ1 ∧ low-in τ3 = low-in τ2 ∧ low-out τ3 = low-out τ2

3.2 Target Programming Language

In the target language used in this example,1 a program consists of a list of
distinct state variables and a body of statements. The statements modify
the variables by deterministically assigning results of expressions and by non-
deterministically assigning random values. Expressions are built out of non-
negative integer constants, state variables, and addition operations. Statements
are combined via conditionals, whose tests compare expressions for equality,
and via sequencing. Each variable stores a non-negative integer. Executing the
body in a state yields a new state. Because of non-determinism, different new
states are possible, i.e. executing the body in the same state may yield different
new states at different times.

For instance, executing the body of the program

prog {
vars {

x
y

}
body {

if (x == y + 1) {
x = 0;

} else {
x = y + 3;

}
randomize y;
y = y + 2;

}
}

in the state where x contains 4 and y contains 7, yields a new state where x
always contains 10 and y may contain any number in {2, 3, . . .}.

1Even though this language has many similarities with the language in Section 2.1, the
two languages are defined separately to keep Chapter 2 simpler.

15

3.2.1 Syntax

Variables are identified by names.

type-synonym name = string

Expressions are built out of constants, variables, and addition operations.

datatype expr = Const nat | Var name | Add expr expr

Statements are built out of deterministic assignments, non-deterministic assign-
ments, conditionals, and sequencing.

datatype stmt =
Assign name expr |
Random name |
IfEq expr expr stmt stmt |
Seq stmt stmt

A program consists of a list of state variables and a body statement.

record prog =
vars :: name list
body :: stmt

3.2.2 Static Semantics

A context is a set of variables.

type-synonym ctxt = name set

Given a context, an expression is well-formed iff all its variables are in the
context.

fun wfe :: ctxt ⇒ expr ⇒ bool
where

wfe Γ (Const c) ←→ True |
wfe Γ (Var v) ←→ v ∈ Γ |
wfe Γ (Add e1 e2) ←→ wfe Γ e1 ∧ wfe Γ e2

Given a context, a statement is well-formed iff its deterministic assignments
assign well-formed expressions to variables in the context, its non-deterministic
assignments operate on variables in the context, and its conditional tests com-
pare well-formed expressions.

fun wfs :: ctxt ⇒ stmt ⇒ bool
where

wfs Γ (Assign v e) ←→ v ∈ Γ ∧ wfe Γ e |
wfs Γ (Random v) ←→ v ∈ Γ |
wfs Γ (IfEq e1 e2 s1 s2) ←→ wfe Γ e1 ∧ wfe Γ e2 ∧ wfs Γ s1 ∧ wfs Γ s2 |

16

wfs Γ (Seq s1 s2) ←→ wfs Γ s1 ∧ wfs Γ s2

The context of a program consists of the state variables.

definition ctxt :: prog ⇒ ctxt
where ctxt p ≡ set (vars p)

A program is well-formed iff the variables are distinct and the body is well-
formed in the context of the program.

definition wfp :: prog ⇒ bool
where wfp p ≡ distinct (vars p) ∧ wfs (ctxt p) (body p)

3.2.3 Dynamic Semantics

A state associates values (non-negative integers) to variables.

type-synonym state = name ⇀ nat

A state matches a context iff state and context have the same variables.

definition match :: state ⇒ ctxt ⇒ bool
where match σ Γ ≡ dom σ = Γ

Evaluating an expression in a state yields a value, or an error (None) if the
expression contains a variable not in the state.

definition add-opt :: nat option ⇒ nat option ⇒ nat option (infixl ‹⊕› 65)
— Lifting of addition to nat option.
where U 1 ⊕ U 2 ≡

case (U 1, U 2) of (Some u1, Some u2) ⇒ Some (u1 + u2) | - ⇒ None

fun eval :: state ⇒ expr ⇒ nat option
where
eval σ (Const c) = Some c |
eval σ (Var v) = σ v |
eval σ (Add e1 e2) = eval σ e1 ⊕ eval σ e2

Evaluating a well-formed expression never yields an error, if the state matches
the context.

lemma eval-wfe:
wfe Γ e =⇒ match σ Γ =⇒ eval σ e 6= None
〈proof 〉

Executing a statement in a state yields a new state, or an error (None) if the
evaluation of an expression yields an error or if an assignment operates on a
variable not in the state. Non-determinism is modeled via a relation between
old states and results, where a result is either a new state or an error.

inductive exec :: stmt ⇒ state ⇒ state option ⇒ bool

17

(‹- B - -› [50 , 50 , 50] 50)
where

ExecAssignNoVar :
v /∈ dom σ =⇒ Assign v e B σ None |

ExecAssignEvalError :
eval σ e = None =⇒ Assign v e B σ None |

ExecAssignOK :
v ∈ dom σ =⇒
eval σ e = Some u =⇒
Assign v e B σ Some (σ(v 7→ u)) |

ExecRandomNoVar :
v /∈ dom σ =⇒ Random v B σ None |

ExecRandomOK :
v ∈ dom σ =⇒ Random v B σ Some (σ(v 7→ u)) |

ExecCondEvalError1 :
eval σ e1 = None =⇒ IfEq e1 e2 s1 s2 B σ None |

ExecCondEvalError2 :
eval σ e2 = None =⇒ IfEq e1 e2 s1 s2 B σ None |

ExecCondTrue:
eval σ e1 = Some u1 =⇒
eval σ e2 = Some u2 =⇒
u1 = u2 =⇒
s1 B σ % =⇒
IfEq e1 e2 s1 s2 B σ % |

ExecCondFalse:
eval σ e1 = Some u1 =⇒
eval σ e2 = Some u2 =⇒
u1 6= u2 =⇒
s2 B σ % =⇒
IfEq e1 e2 s1 s2 B σ % |

ExecSeqError :
s1 B σ None =⇒ Seq s1 s2 B σ None |

ExecSeqOK :
s1 B σ Some σ ′ =⇒ s2 B σ ′ % =⇒ Seq s1 s2 B σ %

The execution of any statement in any state always yields a result.
lemma exec-always:
∃ %. s B σ %
〈proof 〉

Executing a well-formed statement in a state that matches the context never
yields an error and always yields states that match the context.
lemma exec-wfs-match:

wfs Γ s =⇒ match σ Γ =⇒ s B σ Some σ ′ =⇒ match σ ′ Γ
〈proof 〉

18

lemma exec-wfs-no-error :
wfs Γ s =⇒ match σ Γ =⇒ ¬ (s B σ None)
〈proof 〉

lemma exec-wfs-always-match:
wfs Γ s =⇒ match σ Γ =⇒ ∃σ ′. s B σ Some σ ′ ∧ match σ ′ Γ
〈proof 〉

The states of a program are the ones that match the context of the program.
definition states :: prog ⇒ state set
where states p ≡ {σ. match σ (ctxt p)}

Executing the body of a well-formed program in a state of the program always
yields some state of the program, and never an error.
lemma exec-wfp-no-error :

wfp p =⇒ σ ∈ states p =⇒ ¬ (body p B σ None)
〈proof 〉

lemma exec-wfp-in-states:
wfp p =⇒ σ ∈ states p =⇒ body p B σ Some σ ′ =⇒ σ ′ ∈ states p
〈proof 〉

lemma exec-wfp-always-in-states:
wfp p =⇒ σ ∈ states p =⇒ ∃σ ′. body p B σ Some σ ′ ∧ σ ′ ∈ states p
〈proof 〉

Program execution can be described in terms of the trace formalism in [3].
Every possible (non-erroneous) execution of a program can be described by a
trace of two states—initial and final. In this definition, erroneous executions
do not contribute to the traces of a program; only well-formed programs are
of interest, which, as proved above, never execute erroneously. Due to non-
determinism, there may be traces with the same initial state and different final
states.
record trace =

initial :: state
final :: state

inductive-set traces :: prog ⇒ trace set
for p::prog
where [intro!]:
σ ∈ states p =⇒
body p B σ Some σ ′ =⇒
(|initial = σ, final = σ ′|) ∈ traces p

The finite traces of a program could be turned into infinite traces by infinitely
stuttering the final state, obtaining the ‘executions’ defined in [3]. However, such

19

infinite traces carry no additional information compared to the finite traces from
which they are derived: for programs in this language, the infinite executions
of [3] are modeled as finite traces of type trace.

3.3 Requirement Specification

The target program must process low and high inputs to yield low and high
outputs, according to constraints that involve both non-determinism and under-
specification, with no information flowing from high inputs to low outputs.2

3.3.1 Input/Output Variables

Even though the language defined in Section 3.2 has no explicit features for input
and output, an external agent could write values into some variables, execute
the program body, and read values from some variables. Thus, variables may be
regarded as holding inputs (in the initial state) and outputs (in the final state).

In the target program, four variables are required:

• A variable ′′lowIn ′′ to hold low inputs.

• A variable ′′lowOut ′′ to hold low outputs.

• A variable ′′highIn ′′ to hold high inputs.

• A variable ′′highOut ′′ to hold high outputs.

Other variables are allowed but not required.

definition io-vars :: prog ⇒ bool
where io-vars p ≡ ctxt p ⊇ { ′′lowIn ′′, ′′lowOut ′′, ′′highIn ′′, ′′highOut ′′}

3.3.2 Low Processing

If the low input is not 0, the low output must be 1 plus the low input. That is,
for every possible execution of the program where the initial state’s low input
is not 0, the final state’s low output must be 1 plus the low input. If there are
multiple possible final states for the same initial state due to non-determinism,
all of them must have the same required low output. Thus, processing of non-0
low inputs must be deterministic.

definition low-proc-non0 :: prog ⇒ bool
where low-proc-non0 p ≡

2As in Section 3.1, ‘low’ and ‘high’ have the usual security meaning, e.g. ‘low’ means
‘unclassified’ and ‘high’ means ‘classified’.

20

∀σ ∈ states p. ∀σ ′.
the (σ ′′lowIn ′′) 6= 0 ∧
body p B σ Some σ ′ −→
the (σ ′ ′′lowOut ′′) = the (σ ′′lowIn ′′) + 1

If the low input is 0, the low output must be a random value. That is, for every
possible initial state of the program whose low input is 0, and for every possible
value, there must exist an execution of the program whose final state has that
value as low output. Executions corresponding to all possible values must be
possible. Thus, processing of the 0 low input must be non-deterministic.
definition low-proc-0 :: prog ⇒ bool
where low-proc-0 p ≡
∀σ ∈ states p. ∀ u.

the (σ ′′lowIn ′′) = 0 −→
(∃σ ′. body p B σ Some σ ′ ∧ the (σ ′ ′′lowOut ′′) = u)

3.3.3 High Processing

The high output must be at least as large as the sum of the low and high
inputs. That is, for every possible execution of the program, the final state’s
high output must satisfy the constraint. If there are multiple possible final states
for the same initial state due to non-determinism, all of them must contain a high
output that satisfies the constraint. Since different high outputs may satisfy the
constraint given the same inputs, not all the possible final states from a given
initial state must have the same high output. Thus, processing of high inputs
is under-specified; it can be realized deterministically or non-deterministically.
definition high-proc :: prog ⇒ bool
where high-proc p ≡
∀σ ∈ states p. ∀σ ′.

body p B σ Some σ ′ −→
the (σ ′ ′′highOut ′′) ≥ the (σ ′′lowIn ′′) + the (σ ′′highIn ′′)

3.3.4 All Requirements

Besides satisfying the above requirements on input/output variables, low pro-
cessing, and high processing, the target program must be well-formed.
definition spec0 :: prog ⇒ bool
where spec0 p ≡

wfp p ∧ io-vars p ∧ low-proc-non0 p ∧ low-proc-0 p ∧ high-proc p

3.3.5 Generalized Non-Interference

The parameters of the GNI formulation in Section 3.1 are instantiated according
to the target program under consideration. In an execution of the program:

21

• The value of the variable ′′lowIn ′′ in the initial state is the low input.

• The value of the variable ′′lowOut ′′ in the final state is the low output.

• The value of the variable ′′highIn ′′ in the initial state is the high input.

• The value of the variable ′′highOut ′′ in the final state is the high output.

definition low-in :: trace ⇒ nat
where low-in τ ≡ the (initial τ ′′lowIn ′′)

definition low-out :: trace ⇒ nat
where low-out τ ≡ the (final τ ′′lowOut ′′)

definition high-in :: trace ⇒ nat
where high-in τ ≡ the (initial τ ′′highIn ′′)

definition high-out :: trace ⇒ nat
where high-out τ ≡ the (final τ ′′highOut ′′)

interpretation
Target: generalized-non-interference low-in low-out high-in high-out 〈proof 〉

abbreviation GNI :: trace set ⇒ bool
where GNI ≡ Target.GNI

The requirements in spec0 imply that the set of traces of the target program
satisfies GNI.

lemma spec0-GNI :
spec0 p =⇒ GNI (traces p)
〈proof 〉

Since GNI is implied by spec0 and since every pop-refinement of spec0 implies
spec0, GNI is preserved through every pop-refinement of spec0. Pop-refinement
differs from the popular notion of refinement as inclusion of sets of traces
(e.g. [1]), which does not preserve GNI [3].

3.4 Stepwise Refinement

The remark at the beginning of Section 2.3 applies here as well: the following
sequence of refinement steps may be overkill for obtaining an implementation
of spec0, but illustrates concepts that should apply to more complex cases.

22

3.4.1 Step 1

The program needs no other variables besides those prescribed by io-vars. Thus,
io-vars is refined to a stronger condition that constrains the program to contain
exactly those variables, in a certain order.

abbreviation vars0 :: name list
where vars0 ≡ [′′lowIn ′′, ′′lowOut ′′, ′′highIn ′′, ′′highOut ′′]
— The order of the variables in the list is arbitrary.

lemma vars0-correct:
vars p = vars0 =⇒ io-vars p
〈proof 〉

The refinement of io-vars reduces the well-formedness of the program to the
well-formedness of the body.

abbreviation Γ0 :: ctxt
where Γ0 ≡ { ′′lowIn ′′, ′′lowOut ′′, ′′highIn ′′, ′′highOut ′′}

lemma reduce-wf-prog-to-body:
vars p = vars0 =⇒ wfp p ←→ wfs Γ0 (body p)
〈proof 〉

The refinement of io-vars induces a simplification of the processing constraints:
since the context of the program is now defined to be Γ0, the σ ∈ states p
conditions are replaced with match σ Γ0 conditions.

definition low-proc-non0 1 :: prog ⇒ bool
where low-proc-non0 1 p ≡
∀σ σ ′.

match σ Γ0 ∧
the (σ ′′lowIn ′′) 6= 0 ∧
body p B σ Some σ ′ −→
the (σ ′ ′′lowOut ′′) = the (σ ′′lowIn ′′) + 1

lemma low-proc-non0 1-correct:
vars p = vars0 =⇒ low-proc-non0 1 p ←→ low-proc-non0 p
〈proof 〉

definition low-proc-0 1 :: prog ⇒ bool
where low-proc-0 1 p ≡
∀σ u.

match σ Γ0 ∧
the (σ ′′lowIn ′′) = 0 −→
(∃σ ′. body p B σ Some σ ′ ∧ the (σ ′ ′′lowOut ′′) = u)

lemma low-proc-0 1-correct:

23

vars p = vars0 =⇒ low-proc-0 1 p ←→ low-proc-0 p
〈proof 〉

definition high-proc1 :: prog ⇒ bool
where high-proc1 p ≡
∀σ σ ′.

match σ Γ0 ∧
body p B σ Some σ ′ −→
the (σ ′ ′′highOut ′′) ≥ the (σ ′′lowIn ′′) + the (σ ′′highIn ′′)

lemma high-proc1-correct:
vars p = vars0 =⇒ high-proc1 p ←→ high-proc p
〈proof 〉

The refinement of spec0 consists of the refinement of io-vars and of the simplified
constraints.

definition spec1 :: prog ⇒ bool
where spec1 p ≡

vars p = vars0 ∧
wfs Γ0 (body p) ∧
low-proc-non0 1 p ∧
low-proc-0 1 p ∧
high-proc1 p

lemma step-1-correct:
spec1 p =⇒ spec0 p
〈proof 〉

3.4.2 Step 2

The body of the target program is split into two sequential statements—one to
compute the low output and one to compute the high output.

definition body-split :: prog ⇒ stmt ⇒ stmt ⇒ bool
where body-split p sL sH ≡ body p = Seq sL sH
— The order of the two statements in the body is arbitrary.

The splitting reduces the well-formedness of the body to the well-formedness of
the two statements.

lemma reduce-wf-body-to-stmts:
body-split p sL sH =⇒ wfs Γ0 (body p) ←→ wfs Γ0 sL ∧ wfs Γ0 sH
〈proof 〉

The processing predicates over programs are refined to predicates over the state-
ments sL and sH . Since sH follows sL:

24

• sH must not change the low output, which is computed by sL.

• sL must not change the low and high inputs, which are used by sH .

definition low-proc-non0 2 :: stmt ⇒ bool
where low-proc-non0 2 sL ≡
∀σ σ ′.

match σ Γ0 ∧
the (σ ′′lowIn ′′) 6= 0 ∧
sL B σ Some σ ′ −→
the (σ ′ ′′lowOut ′′) = the (σ ′′lowIn ′′) + 1

definition low-proc-0 2 :: stmt ⇒ bool
where low-proc-0 2 sL ≡
∀σ u.

match σ Γ0 ∧
the (σ ′′lowIn ′′) = 0 −→
(∃σ ′. sL B σ Some σ ′ ∧ the (σ ′ ′′lowOut ′′) = u)

definition low-proc-no-input-change :: stmt ⇒ bool
where low-proc-no-input-change sL ≡
∀σ σ ′.

match σ Γ0 ∧
sL B σ Some σ ′ −→
the (σ ′ ′′lowIn ′′) = the (σ ′′lowIn ′′) ∧
the (σ ′ ′′highIn ′′) = the (σ ′′highIn ′′)

definition high-proc2 :: stmt ⇒ bool
where high-proc2 sH ≡
∀σ σ ′.

match σ Γ0 ∧
sH B σ Some σ ′ −→
the (σ ′ ′′highOut ′′) ≥ the (σ ′′lowIn ′′) + the (σ ′′highIn ′′)

definition high-proc-no-low-output-change :: stmt ⇒ bool
where high-proc-no-low-output-change sH ≡
∀σ σ ′.

match σ Γ0 ∧
sH B σ Some σ ′ −→
the (σ ′ ′′lowOut ′′) = the (σ ′′lowOut ′′)

lemma proc2-correct:
assumes Body: body-split p sL sH
assumes WfLow: wfs Γ0 sL
assumes WfHigh: wfs Γ0 sH
assumes LowNon0 : low-proc-non0 2 sL

25

assumes Low0 : low-proc-0 2 sL
assumes LowSame: low-proc-no-input-change sL
assumes High: high-proc2 sH
assumes HighSame: high-proc-no-low-output-change sH
shows low-proc-non0 1 p ∧ low-proc-0 1 p ∧ high-proc1 p
〈proof 〉

The refined specification consists of the splitting of the body into the two se-
quential statements and the refined well-formedness and processing constraints.
definition spec2 :: prog ⇒ bool
where spec2 p ≡

vars p = vars0 ∧
(∃ sL sH .

body-split p sL sH ∧
wfs Γ0 sL ∧
wfs Γ0 sH ∧
low-proc-non0 2 sL ∧
low-proc-0 2 sL ∧
low-proc-no-input-change sL ∧
high-proc2 sH ∧
high-proc-no-low-output-change sH)

lemma step-2-correct:
spec2 p =⇒ spec1 p
〈proof 〉

3.4.3 Step 3

The processing constraints low-proc-non0 2 and low-proc-0 2 on sL suggest the
use of a conditional that randomizes ′′lowOut ′′ if ′′lowIn ′′ is 0, and stores 1 plus
′′lowIn ′′ into ′′lowOut ′′ otherwise.
abbreviation sL0 :: stmt
where sL0 ≡

IfEq
(Var ′′lowIn ′′)
(Const 0)
(Random ′′lowOut ′′)
(Assign ′′lowOut ′′ (Add (Var ′′lowIn ′′) (Const 1)))

lemma wfs-sL0:
wfs Γ0 sL0

〈proof 〉

lemma low-proc-non0-sL0:
low-proc-non0 2 sL0

26

〈proof 〉

lemma low-proc-0-sL0:
low-proc-0 2 sL0

〈proof 〉

lemma low-proc-no-input-change-sL0:
low-proc-no-input-change sL0

〈proof 〉

The refined specification is obtained by simplification using the definition of sL.
definition spec3 :: prog ⇒ bool
where spec3 p ≡

vars p = vars0 ∧
(∃ sH .

body-split p sL0 sH ∧
wfs Γ0 sH ∧
high-proc2 sH ∧
high-proc-no-low-output-change sH)

lemma step-3-correct:
spec3 p =⇒ spec2 p
〈proof 〉

The non-determinism required by low-proc-0 cannot be pop-refined away. In
particular, sL cannot be defined to copy the high input to the low output when
the low input is 0, which would lead to a program that does not satisfy GNI.

3.4.4 Step 4

The processing constraint high-proc2 on sH can be satisfied in different ways. A
simple way is to pick the sum of the low and high inputs: high-proc2 is refined
by replacing the inequality with an equality.
definition high-proc4 :: stmt ⇒ bool
where high-proc4 sH ≡
∀σ σ ′.

match σ Γ0 ∧
sH B σ Some σ ′ −→
the (σ ′ ′′highOut ′′) = the (σ ′′lowIn ′′) + the (σ ′′highIn ′′)

lemma high-proc4-correct:
high-proc4 sH =⇒ high-proc2 sH
〈proof 〉

The refined specification is obtained by substituting the refined processing con-
straint on sH .

27

definition spec4 :: prog ⇒ bool
where spec4 p ≡

vars p = vars0 ∧
(∃ sH .

body-split p sL0 sH ∧
wfs Γ0 sH ∧
high-proc4 sH ∧
high-proc-no-low-output-change sH)

lemma step-4-correct:
spec4 p =⇒ spec3 p
〈proof 〉

3.4.5 Step 5

The refined processing constraint high-proc4 on sH suggest the use of an assign-
ment that stores the sum of ′′lowIn ′′ and ′′highIn ′′ into ′′highOut ′′.

abbreviation sH0 :: stmt
where sH0 ≡ Assign ′′highOut ′′ (Add (Var ′′lowIn ′′) (Var ′′highIn ′′))

lemma wfs-sH0:
wfs Γ0 sH0

〈proof 〉

lemma high-proc4-sH0:
high-proc4 sH0

〈proof 〉

lemma high-proc-no-low-output-change-sH0:
high-proc-no-low-output-change sH0

〈proof 〉

The refined specification is obtained by simplification using the definition of sH .

definition spec5 :: prog ⇒ bool
where spec5 p ≡ vars p = vars0 ∧ body-split p sL0 sH0

lemma step-5-correct:
spec5 p =⇒ spec4 p
〈proof 〉

3.4.6 Step 6

spec5, which defines the variables and the body, is refined to characterize a
unique program in explicit syntactic form.

28

abbreviation p0 :: prog
where p0 ≡ (|vars = vars0, body = Seq sL0 sH0|)

definition spec6 :: prog ⇒ bool
where spec6 p ≡ p = p0

lemma step-6-correct:
spec6 p =⇒ spec5 p
〈proof 〉

The program satisfies spec0 by construction. The program witnesses the consis-
tency of the requirements, i.e. the fact that spec0 is not always false.

lemma p0-sat-spec0:
spec0 p0

〈proof 〉

From p0, the program text

prog {
vars {

lowIn
lowOut
highIn
highOut

}
body {

if (lowIn == 0) {
randomize lowOut;

} else {
lowOut = lowIn + 1;

}
highOut = lowIn + highIn;

}
}

is easily obtained.

29

Chapter 4

General Remarks

The following remarks apply to pop-refinement in general, beyond the examples
in Chapter 2 and Chapter 3.

4.1 Program-Level Requirements

By predicating directly over programs, a pop-refinement specification (like spec0
in Section 2.2 and Section 3.3) can express program-level requirements that are
defined in terms of the vocabulary of the target language, e.g. constraints on
memory footprint (important for embedded software), restrictions on calls to
system libraries to avoid or limit information leaks (important for security),
conformance to coding standards (important for certain certifications), and use
or provision of interfaces (important for integration with existing code). Simple
examples are wfp p in Section 2.2 and Section 3.3, para p = [′′x ′′, ′′y ′′] in
Section 2.2, and iovars p in Section 3.3.

4.2 Non-Functional Requirements

Besides functional requirements, a pop-refinement specification can express non-
functional requirements, e.g. constraints on computational complexity, timing,
power consumption, etc.1 A simple example is costp p ≤ 3 in Section 2.2.

1In order to express these requirements, the formalized semantics of the target language
must suitably include non-functional aspects, as in the simple model in Section 2.1.4.

30

4.3 Links with High-Level Requirements

A pop-refinement specification can explicate links between high-level require-
ments and target programs.

For example, ∀ x y. exec p [x, y] = Some (f x y) in spec0 in Section 2.2 links the
high-level functional requirement expressed by f to the target program p.2

As another example, a function sort :: nat list ⇒ nat list, defined to map each list
of natural numbers to its sorted permutation, expresses a high-level functional
requirement that can be realized in different ways. An option is a procedure
that destructively sorts an array in place. Another option is a procedure that
returns a newly created sorted linked list from a linked list passed as argument
and left unmodified. A pop-refinement specification can pin down the choice,
which matters to external code that uses the procedure.

As a third example, a high-level model of a video game or physical simulator
could use real numbers and differential equations. A pop-refinement specifica-
tion could state required bounds on how the idealized model is approximated by
an implementation that uses floating point numbers and difference equations.

Different pop-refinement specifications could use the same high-level require-
ments to constrain programs in different target languages or in different ways,
as in the sort example above. As another example, the high-level behavior of an
operating system could be described by a state transition system that abstractly
models internal states and system calls; the same state transition system could
be used in a pop-refinement specification of a Haskell simulator that runs on
a desktop, as well as in a pop-refinement specification of a C/Assembly imple-
mentation that runs on a specific hardware platform.

4.4 Non-Determinism and Under-Specification

The interaction of refinement with non-determinism and under-specification is
delicate in general. The one-to-many associations of a relational specification
(e.g. a state transition system where the next-state relation may associate mul-
tiple new states to each old state) could be interpreted as non-determinism (i.e.
different outcomes at different times, from the same state) or under-specification
(i.e. any outcome is allowed, deterministically or non-deterministically). Hyper-
properties like GNI are consistent with the interpretation as non-determinism,
because security depends on the ability to yield different outcomes, e.g. gener-
ating a nonce in a cryptographic protocol. The popular notion of refinement

2Similarly, the functional requirements in Section 3.3 could be expressed abstractly in terms
of mappings between low and high inputs and outputs (without reference to program variables
and executions) and linked to program variables and executions. But Section 3.3 expresses
such functional requirements directly in terms of programs to keep the example (whose focus
is on hyperproperties) simpler.

31

as inclusion of sets of traces (e.g. [1]) is consistent with the interpretation as
under-specification, because a refined specification is allowed to reduce the pos-
sible outcomes. Thus, hyperproperties are not always preserved by refinement
as trace set inclusion [3].

As exemplified in Section 3.3, a pop-refinement specification can explicitly dis-
tinguish non-determinism and under-specification. Each pop-refinement step
preserves all the hyperproperties expressed or implied by the requirement spec-
ification.3

4.5 Specialized Formalisms

Specialized formalisms (e.g. state machines, temporal logic), shallowly or deeply
embedded into the logic of the theorem prover (e.g. [7, 6]), can be used to express
some of the requirements of a pop-refinement specification. The logic of the
theorem prover provides semantic integration of different specialized formalisms.

4.6 Strict and Non-Strict Refinement Steps

In a pop-refinement step from speci to speci+1, the two predicates may be equiv-
alent, i.e. speci+1 = speci. But the formulation of speci+1 should be “closer”
to the implementation than the formulation of speci. An example is in Sec-
tion 2.3.1.

When the implication speci+1 p =⇒ speci p is strict, potential implementations
are eliminated. Since the final predicate of a pop-refinement derivation must
characterize a unique program, some refinement steps must be strict—unless
the initial predicate spec0 is satisfiable by a unique program, which is unlikely.

A strict refinement step may lead to a blind alley where speci+1 = λp. False,
which cannot lead to a final predicate that characterizes a unique program. An
example is discussed in Section 2.3.4.

4.7 Final Predicate

The predicate that concludes a pop-refinement derivation must have the form
specn p ≡ p = p0, where p0 is the representation of a program’s abstract syntax

3Besides security hyperproperties expressed in terms of non-determinism, pop-refinement
can handle more explicit security randomness properties. The formalized semantics of a target
language could manipulate probability distributions over values (instead of just values), with
random number generation libraries that return known distributions (e.g. uniform), and with
language operators that transform distributions. A pop-refinement specification could include
randomness requirements on program outcomes expressed in terms of distributions, and each
pop-refinement step would preserve such requirements.

32

in the theorem prover, as in Section 2.3.7 and Section 3.4.6. This form guaran-
tees that the predicate characterizes exactly one program and that the program
is explicitly determined. p0 witnesses the consistency of the requirements, i.e.
the fact that spec0 is not always false; inconsistent requirements cannot lead to
a predicate of this form.

A predicate of the form speci ≡ p = p0 ∧ Φ p may not characterize a unique
program: if Φ p0 is false, speci is always false. To conclude the derivation, Φ
p0 must be proved. But it may be easier to prove the constraints expressed by
Φ as p0 is constructed in the derivation. For example, deriving a program from
spec0 in Section 2.2 based on the functional constraint and ignoring the cost
constraint would lead to a predicate speci ≡ p = p0 ∧ costp p ≤ 3, where costp
p0 ≤ 3 must be proved to conclude the derivation; instead, the derivation in
Section 2.3 proves the cost constraint as p0 is constructed. Taking all constraints
into account at each stage of the derivation can help choose the next refinement
step and reduce the chance of blind alleys (cf. Section 2.3.4).

The final predicate specn expresses a purely syntactic requirement, while the ini-
tial predicate spec0 usually includes semantic requirements. A pop-refinement
derivation progressively turns semantic requirements into syntactic requirements.
This may involve rephrasing functional requirements to use only operations sup-
ported by the target language (e.g. lemma f-rephrased in Section 2.3.4), obtain-
ing shallowly embedded program fragments, and turning them into their deeply
embedded counterparts (e.g. Section 2.3.5 and Section 2.3.6).4

4.8 Proof Coverage

In a chain of predicate inclusions as in Section 2.3 and Section 3.4, the proofs
checked by the theorem prover encompass the range from the specified require-
ments to the implementation code. No separate code generator is needed to turn
low-level specifications into code: pop-refinement folds code generation into the
refinement sequence, providing fine-grained control on the implementation code.

A purely syntactic pretty-printer is needed to turn program abstract syntax, as
in Section 2.3.7 and Section 3.4.6, to concrete syntax. This pretty-printer can
be eliminated by formalizing in the theorem prover the concrete syntax of the
target language and its relation to the abstract syntax, and by defining the speci
predicates over program concrete syntax—thus, folding pretty-printing into the
refinement sequence.

4In Section 3.4, program fragments are introduced directly, without going through shallow
embeddings.

33

4.9 Generality and Flexibility

Inclusion of predicates over programs is a general and flexible notion of refine-
ment. More specialized notions of refinement (e.g. [8, 14]) can be used for any
auxiliary types, functions, etc. out of which the speci predicates may be con-
structed, as long as the top-level implication speci+1 p =⇒ speci p holds at
every step.

34

Chapter 5

Related Work

In existing approaches to stepwise refinement (e.g. [2, 17, 9, 15]), specifications
express requirements less directly than pop-refinement: a specification implicitly
characterizes its possible implementations as the set of programs that can be
derived from the specification via refinement (and code generation). This is a
more restrictive way to characterize a set of programs than defining a predicate
over deeply embedded programs in a theorem prover’s general-purpose logic (as
in pop-refinement).

This restrictiveness precludes some of the abilities discussed in Chapter 4, e.g.
the ability to express, and guarantee through refinement, certain program-level
requirements like constraints on memory footprint. A derivation may be steered
to produce a program that satisfies desired requirements not expressed by the
specification, but the derivation or program must be examined in order to assess
that, instead of just examining the specification and letting the theorem prover
automatically check the sequence of refinement steps (as with pop-refinement).
Existing refinement approaches could be extended to handle additional kinds
of requirements (e.g. non-functional), but for pop-refinement no theorem prover
extensions are necessary.

In existing refinement approaches, each refinement step yields a new specifi-
cation that characterizes a (strict or non-strict) subset of the implementations
characterized by the old specification, analogously to pop-refinement. However,
the restrictiveness explained above, together with any inherent constraints im-
posed by the refinement relation over specifications, limits the choice of the
subset, providing less fine-grained control than pop-refinement.

In existing refinement approaches, the “indirection” between a specification and
its set of implementations may create a disconnect between properties of a
specification and properties of its implementations. For example, along the lines
discussed in Section 4.4, a relational specification may satisfy a hyperproperty
but some of its implementations may not, because the refinement relation may
reduce the possible behaviors. Since a pop-refinement specification directly

35

makes statements about the possible implementations of the requirements, this
kind of disconnect is avoided.

36

Chapter 6

Future Work

6.1 Populating the Framework

Pop-refinement provides a framework, which must be populated with re-usable
concepts, methodologies, and theorem prover libraries for full fruition. The
simple examples in Chapter 2 and Chapter 3, and the discussion in Chapter 4,
suggests a few initial ideas. Working out examples of increasing complexity
should suggest more ideas.

6.2 Automated Transformations

A pop-refinement step from speci can be performed manually, by writing down
speci+1 and proving speci+1 p =⇒ speci p. It is sometimes possible to generate
speci+1 from speci, along with a proof of speci+1 p =⇒ speci p, using auto-
mated transformation techniques like term rewriting, application of algorithmic
templates, and term construction by witness finding, e.g. [16, 10]. Automated
transformations may require parameters to be provided and applicability condi-
tions to be proved, but should generally save effort and make derivations more
robust against changes in requirement specifications. Extending existing theo-
rem provers with automated transformation capabilities would be advantageous
for pop-refinement.

6.3 Other Kinds of Design Objects

It has been suggested [13] that pop-refinement could be used to develop other
kinds of design objects than programs, e.g. protocols, digital circuits, and hy-
brid systems. Perhaps pop-refinement could be used to develop engines, cars,

37

buildings, etc. So long as these design objects can be described by languages
amenable to formalization, pop-refinement should be applicable.

38

Bibliography

[1] Martín Abadi and Leslie Lamport. The existence of refinement mappings.
Journal of Theoretical Computer Science, 82(2):253–284, 1991.

[2] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[3] Michael Clarkson and Fred Schneider. Hyperproperties. Journal of Com-
puter Security, 18(6):1157–1210, 2010.

[4] Edsger W. Dijkstra. A constructive approach to the problem of program
correctness. BIT, 8(3):174–186, 1968.

[5] Joseph Goguen and José Meseguer. Security policies and security models.
In Proc. IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[6] Gudmund Grov and Stephan Merz. A definitional encoding of TLA* in
Isabelle/HOL. Archive of Formal Proofs, 2011. http://isa-afp.org/entries/
TLA.shtml, Formal proof development.

[7] Steffen Helke and Florian Kammüller. Formalizing Statecharts using hi-
erarchical automata. Archive of Formal Proofs, 2010. http://isa-afp.org/
entries/Statecharts.shtml, Formal proof development.

[8] C. A. R. Hoare. Proof of correctness of data representations. Acta Infor-
matica, 1(4):271–281, 1972.

[9] Cliff Jones. Systematic Software Development using VDM. Prentice Hall,
second edition, 1990.

[10] Kestrel Institute. Specware. http://www.specware.org.

[11] Daryl McCullough. Specifications for multi-level security and a hook-
up property. In Proc. IEEE Symposium on Security and Privacy, pages
161–166, 1987.

[12] John McLean. A general theory of composition for a class of “possibilistic”
properties. IEEE Transactions on Software Engineering, 22(1):53–67, 1996.

[13] Lambert Meertens. Private communication, 2012.

39

http://isa-afp.org/entries/TLA.shtml
http://isa-afp.org/entries/TLA.shtml
http://isa-afp.org/entries/Statecharts.shtml
http://isa-afp.org/entries/Statecharts.shtml
http://www.specware.org

[14] Robin Milner. An algebraic definition of simulation between programs.
Technical Report CS-205, Stanford University, 1971.

[15] Carroll Morgan. Programming from Specifications. Prentice Hall, second
edition, 1998.

[16] Douglas R. Smith. Mechanizing the development of software. In Manfred
Broy, editor, Calculational System Design, Proc. Marktoberdorf Summer
School. IOS Press, 1999.

[17] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, second
edition, 1992.

[18] Niklaus Wirth. Program development by stepwise refinement. Communi-
cations of the ACM, 14(4):221–227, 1971.

40

	Definition
	First Example
	Target Programming Language
	Syntax
	Static Semantics
	Dynamic Semantics
	Performance

	Requirement Specification
	Stepwise Refinement
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

	Second Example
	Hyperproperties
	Target Programming Language
	Syntax
	Static Semantics
	Dynamic Semantics

	Requirement Specification
	Input/Output Variables
	Low Processing
	High Processing
	All Requirements
	Generalized Non-Interference

	Stepwise Refinement
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6

	General Remarks
	Program-Level Requirements
	Non-Functional Requirements
	Links with High-Level Requirements
	Non-Determinism and Under-Specification
	Specialized Formalisms
	Strict and Non-Strict Refinement Steps
	Final Predicate
	Proof Coverage
	Generality and Flexibility

	Related Work
	Future Work
	Populating the Framework
	Automated Transformations
	Other Kinds of Design Objects

