
Executable multivariate polynomials

Christian Sternagel and René Thiemann and Fabian Immler and Alexander Maletzky∗

March 17, 2025

Abstract

We define multivariate polynomials over arbitrary (ordered) semir-
ings in combination with (executable) operations like addition, mul-
tiplication, and substitution. We also define (weak) monotonicity of
polynomials and comparison of polynomials where we provide standard
estimations like absolute positiveness or the more recent approach of
[3]. Moreover, it is proven that strongly normalizing (monotone) orders
can be lifted to strongly normalizing (monotone) orders over polyno-
mials.

Our formalization was performed as part of the IsaFoR/CeTA-system
[5]1 which contains several termination techniques. The provided the-
ories have been essential to formalize polynomial-interpretations [1, 2].

This formalization also contains an abstract representation as co-
efficient functions with finite support and a type of power-products.
If this type is ordered by a linear (term) ordering, various additional
notions, such as leading power-product, leading coefficient etc., are
introduced as well. Furthermore, a lot of generic properties of, and
functions on, multivariate polynomials are formalized, including the
substitution and evaluation homomorphisms, embeddings of polyno-
mial rings into larger rings (i.e. with one additional indeterminate),
homogenization and dehomogenization of polynomials, and the canon-
ical isomorphism between R[X,Y] and R[X][Y].

Contents
1 Utilities 7

1.1 Lists . 11
1.2 Sums and Products . 16

2 An abstract type for multivariate polynomials 18
2.1 Abstract type definition . 18
2.2 Additive structure . 18

∗Supported by the Austrian Science Fund (FWF): grant no. W1214-N15, project DK1
1http://cl-informatik.uibk.ac.at/software/ceta

1

http://cl-informatik.uibk.ac.at/software/ceta

2.3 Multiplication by a coefficient 19
2.4 Multiplicative structure . 20
2.5 Monomials . 21
2.6 Constants and Indeterminates 22
2.7 Integral domains . 23
2.8 Monom coefficient lookup . 23
2.9 Insertion morphism . 23
2.10 Degree . 26
2.11 Pseudo-division of polynomials 26
2.12 Primitive poly, etc . 28

3 MPpoly Mapping extenion 29

4 MPoly extension 31

5 Nested MPoly 37

6 Abstract Power-Products 45
6.1 Constant Keys . 45
6.2 Constant except . 47
6.3 ’Divisibility’ on Additive Structures 52
6.4 Dickson Classes . 58
6.5 Additive Linear Orderings . 64
6.6 Ordered Power-Products . 67
6.7 Functions as Power-Products 71

6.7.1 ′a ⇒ ′b belongs to class comm-powerprod 72
6.7.2 ′a ⇒ ′b belongs to class ninv-comm-monoid-add . . . 73
6.7.3 ′a ⇒ ′b belongs to class lcs-powerprod 73
6.7.4 ′a ⇒ ′b belongs to class ulcs-powerprod 75
6.7.5 Power-products in a given set of indeterminates 75
6.7.6 Dickson’s lemma for power-products in finitely many

indeterminates . 76
6.7.7 Lexicographic Term Order 78
6.7.8 Degree . 84
6.7.9 General Degree-Orders 85
6.7.10 Degree-Lexicographic Term Order 90
6.7.11 Degree-Reverse-Lexicographic Term Order 91

6.8 Type poly-mapping . 92
6.8.1 ′a ⇒0

′b belongs to class comm-powerprod 94
6.8.2 ′a ⇒0

′b belongs to class ninv-comm-monoid-add . . . 94
6.8.3 ′a ⇒0

′b belongs to class lcs-powerprod 94
6.8.4 ′a ⇒0

′b belongs to class ulcs-powerprod 95
6.8.5 Power-products in a given set of indeterminates. . . . 95

2

6.8.6 Dickson’s lemma for power-products in finitely many
indeterminates . 95

6.8.7 Lexicographic Term Order 98
6.8.8 Degree . 99
6.8.9 General Degree-Orders 99
6.8.10 Degree-Lexicographic Term Order 101
6.8.11 Degree-Reverse-Lexicographic Term Order 102

7 Modules over Commutative Rings 103
7.1 Submodules Spanned by Sets of Module-Elements 103

8 Ideals over Commutative Rings 108

9 Type-Class-Multivariate Polynomials 113
9.1 keys . 114
9.2 Monomials . 114
9.3 Vector-Polynomials . 118

9.3.1 Additive Structure of Terms 119
9.3.2 Projections and Conversions 124

9.4 Scalar Multiplication by Monomials 129
9.5 Component-wise Lifting . 134
9.6 Component-wise Multiplication 135
9.7 Scalar Multiplication . 138
9.8 Sums and Products . 143
9.9 Submodules . 147
9.10 Interpretations . 156

9.10.1 Isomorphism between ′a and ′a × unit 156
9.10.2 Interpretation of term-powerprod by ′a × ′k 157
9.10.3 Simplifier Setup . 157

10 Type-Class-Multivariate Polynomials in Ordered Terms 157
10.1 Interpretations . 160

10.1.1 Unit . 160
10.2 Definitions . 161
10.3 Leading Term and Leading Coefficient: lt and lc 161
10.4 Trailing Term and Trailing Coefficient: tt and tc 173
10.5 higher and lower . 179
10.6 tail . 189
10.7 Order Relation on Polynomials 195
10.8 Monomials . 208
10.9 Lists of Keys . 210
10.10Multiplication . 214
10.11dgrad-p-set and dgrad-p-set-le 219
10.12Dickson’s Lemma for Sequences of Terms 225

3

10.13Well-foundedness . 226
10.14More Interpretations . 235
10.15TODO: move! . 236
10.16Utilities . 236
10.17Implementation of Polynomial Mappings as Association Lists 238

10.17.1 Constructors . 239

11 Executable Representation of Polynomial Mappings as As-
sociation Lists 239
11.1 Power Products . 240

11.1.1 Computations . 241
11.2 Implementation of Multivariate Polynomials as Association

Lists . 242
11.2.1 Unordered Power-Products 242
11.2.2 restore constructor view 245
11.2.3 Ordered Power-Products 246

11.3 Computations . 249
11.3.1 Scalar Polynomials . 249
11.3.2 Vector-Polynomials . 251

11.4 Code setup for type MPoly 253
11.5 lookup-pp, keys-pp and single-pp 254
11.6 Additive Structure . 255
11.7 ′a ⇒0

′b belongs to class comm-powerprod 256
11.8 ′a ⇒0

′b belongs to class ninv-comm-monoid-add 256
11.9 (′a, ′b) pp belongs to class lcs-powerprod 256
11.10(′a, ′b) pp belongs to class ulcs-powerprod 257
11.11Dickson’s lemma for power-products in finitely many indeter-

minates . 257
11.12Lexicographic Term Order . 258
11.13Degree . 259
11.14Degree-Lexicographic Term Order 259
11.15Degree-Reverse-Lexicographic Term Order 260

12 Associative Lists with Sorted Keys 261
12.1 Preliminaries . 261
12.2 Type key-order . 264
12.3 Invariant in Context comparator 267
12.4 Operations on Lists of Pairs in Context comparator 270

12.4.1 lookup-pair . 272
12.4.2 update-by-pair . 279
12.4.3 update-by-fun-pair and update-by-fun-gr-pair 283
12.4.4 map-pair . 285
12.4.5 map2-val-pair . 289
12.4.6 lex-ord-pair . 299

4

12.4.7 prod-ord-pair . 310
12.4.8 sort-oalist . 311

12.5 Invariant on Pairs . 315
12.6 Operations on Raw Ordered Associative Lists 315

12.6.1 sort-oalist-aux . 317
12.6.2 lookup-raw . 317
12.6.3 sorted-domain-raw . 318
12.6.4 tl-raw . 318
12.6.5 min-key-val-raw . 319
12.6.6 filter-raw . 321
12.6.7 update-by-raw . 322
12.6.8 update-by-fun-raw and update-by-fun-gr-raw 322
12.6.9 map-raw and map-val-raw 323
12.6.10 map2-val-raw . 325
12.6.11 lex-ord-raw . 329
12.6.12 prod-ord-raw . 331
12.6.13 oalist-eq-raw . 332
12.6.14 sort-oalist-raw . 333

12.7 Fundamental Operations on One List 334
12.7.1 Invariant . 335
12.7.2 lookup . 336
12.7.3 sorted-domain . 336
12.7.4 local.empty and Singletons 336
12.7.5 reorder . 336
12.7.6 local.hd and local.tl . 337
12.7.7 min-key-val . 337
12.7.8 except-min . 338
12.7.9 local.insert . 339
12.7.10 update-by-fun and update-by-fun-gr 339
12.7.11 local.filter . 339
12.7.12 map2-val-neutr . 339
12.7.13 oalist-eq . 340

12.8 Fundamental Operations on Three Lists 340
12.8.1 map-val . 341
12.8.2 map2-val and map2-val-rneutr 341
12.8.3 lex-ord and prod-ord 342

12.9 Type oalist . 343
12.10Type oalist-tc . 346

12.10.1 OAlist-tc-lookup . 348
12.10.2 OAlist-tc-sorted-domain 349
12.10.3 OAlist-tc-empty and Singletons 349
12.10.4 OAlist-tc-except-min 349
12.10.5 OAlist-tc-min-key-val 350
12.10.6 OAlist-tc-insert . 351

5

12.10.7 OAlist-tc-update-by-fun and OAlist-tc-update-by-fun-gr 351
12.10.8 OAlist-tc-filter . 351
12.10.9 OAlist-tc-map-val . 352
12.10.10OAlist-tc-map2-val OAlist-tc-map2-val-rneutr and OAl-

ist-tc-map2-val-neutr 352
12.10.11OAlist-tc-lex-ord and OAlist-tc-prod-ord 353
12.10.12Instance of equal . 355

12.11Experiment . 355

13 Ordered Associative Lists for Polynomials 356

14 Computable Term Orders 367
14.1 Type Class nat . 368
14.2 Term Orders . 371

14.2.1 Type Classes . 371
14.2.2 LEX, DRLEX, DEG and POT 384
14.2.3 Equality of Term Orders 388

15 Executable Representation of Polynomial Mappings as As-
sociation Lists 401
15.1 Power-Products Represented by oalist-tc 401

15.1.1 Constructor . 404
15.1.2 Computations . 404

15.2 MP-oalist . 406
15.2.1 Special case of addition: adding monomials 411
15.2.2 Constructors . 411
15.2.3 Changing the Internal Order 412
15.2.4 Ordered Power-Products 412

15.3 Interpretations . 416
15.4 Computations . 420
15.5 Code setup for type MPoly 423

16 Quasi-Poly-Mapping Power-Products 423

17 Multivariate Polynomials with Power-Products Represented
by Polynomial Mappings 429
17.1 Degree . 430
17.2 Indeterminates . 438

17.2.1 indets . 439
17.2.2 PPs . 443
17.2.3 Polys . 447

17.3 Substitution Homomorphism 450
17.4 Evaluating Polynomials . 461
17.5 Replacing Indeterminates . 464

6

17.6 Homogeneity . 471
17.6.1 Homogenization and Dehomogenization 487

17.7 Embedding Polynomial Rings in Larger Polynomial Rings
(With One Additional Indeterminate) 503

17.8 Canonical Isomorphisms between P[X ,Y] and P[X][Y]: focus
and flatten . 513

17.9 Locale pm-powerprod . 526

18 Polynomials 532
18.1 Polynomials represented as trees 533
18.2 Polynomials represented in normal form as lists of monomials 533
18.3 Computing normal forms of polynomials 545
18.4 Powers and substitutions of polynomials 546
18.5 Polynomial orders . 550
18.6 Degree of polynomials . 557
18.7 Executable and sufficient criteria to compare polynomials and

ensure monotonicity . 559

19 Displaying Polynomials 575

20 Monotonicity criteria of Neurauter, Zankl, and Middeldorp576

1 Utilities
theory Utils

imports Main Well-Quasi-Orders.Almost-Full-Relations
begin

lemma subset-imageE-inj:
assumes B ⊆ f ‘ A
obtains C where C ⊆ A and B = f ‘ C and inj-on f C

proof −
define g where g = (λx. SOME a. a ∈ A ∧ f a = x)
have g b ∈ A ∧ f (g b) = b if b ∈ B for b
proof −

from that assms have b ∈ f ‘ A ..
then obtain a where a ∈ A and b = f a ..
hence a ∈ A ∧ f a = b by simp
thus ?thesis unfolding g-def by (rule someI)

qed
hence 1 :

∧
b. b ∈ B =⇒ g b ∈ A and 2 :

∧
b. b ∈ B =⇒ f (g b) = b by simp-all

let ?C = g ‘ B
show ?thesis
proof

show ?C ⊆ A by (auto intro: 1)
next

show B = f ‘ ?C

7

proof (rule set-eqI)
fix b
show b ∈ B ←→ b ∈ f ‘ ?C
proof

assume b ∈ B
moreover from this have f (g b) = b by (rule 2)
ultimately show b ∈ f ‘ ?C by force

next
assume b ∈ f ‘ ?C
then obtain b ′ where b ′ ∈ B and b = f (g b ′) unfolding image-image ..
moreover from this(1) have f (g b ′) = b ′ by (rule 2)
ultimately show b ∈ B by simp

qed
qed

next
show inj-on f ?C
proof

fix x y
assume x ∈ ?C
then obtain bx where bx ∈ B and x: x = g bx ..
moreover from this(1) have f (g bx) = bx by (rule 2)
ultimately have ∗: f x = bx by simp
assume y ∈ ?C
then obtain by where by ∈ B and y: y = g by ..
moreover from this(1) have f (g by) = by by (rule 2)
ultimately have f y = by by simp
moreover assume f x = f y
ultimately have bx = by using ∗ by simp
thus x = y by (simp only: x y)

qed
qed

qed

lemma wfP-chain:
assumes ¬(∃ f . ∀ i. r (f (Suc i)) (f i))
shows wfP r

proof −
from assms wf-iff-no-infinite-down-chain[of {(x, y). r x y}] have wf {(x, y). r

x y} by auto
thus wfP r unfolding wfp-def .

qed

lemma transp-sequence:
assumes transp r and

∧
i. r (seq (Suc i)) (seq i) and i < j

shows r (seq j) (seq i)
proof −

have
∧

k. r (seq (i + Suc k)) (seq i)
proof −

fix k::nat

8

show r (seq (i + Suc k)) (seq i)
proof (induct k)

case 0
from assms(2) have r (seq (Suc i)) (seq i) .
thus ?case by simp

next
case (Suc k)
note assms(1)
moreover from assms(2) have r (seq (Suc (Suc i + k))) (seq (Suc (i + k)))

by simp
moreover have r (seq (Suc (i + k))) (seq i) using Suc.hyps by simp
ultimately have r (seq (Suc (Suc i + k))) (seq i) by (rule transpD)
thus ?case by simp

qed
qed
hence r (seq (i + Suc(j − i − 1))) (seq i) .
thus r (seq j) (seq i) using ‹i < j› by simp

qed

lemma almost-full-on-finite-subsetE :
assumes reflp P and almost-full-on P S
obtains T where finite T and T ⊆ S and

∧
s. s ∈ S =⇒ (∃ t∈T . P t s)

proof −
define crit where crit = (λU s. s ∈ S ∧ (∀ u∈U . ¬ P u s))
have critD: s /∈ U if crit U s for U s
proof

assume s ∈ U
from ‹crit U s› have ∀ u∈U . ¬ P u s unfolding crit-def ..
from this ‹s ∈ U › have ¬ P s s ..
moreover from assms(1) have P s s by (rule reflpD)
ultimately show False ..

qed
define fun

where fun = (λU . (if (∃ s. crit U s) then
insert (SOME s. crit U s) U

else
U

))
define seq where seq = rec-nat {} (λ-. fun)
have seq-Suc: seq (Suc i) = fun (seq i) for i by (simp add: seq-def)

have seq-incr-Suc: seq i ⊆ seq (Suc i) for i by (auto simp add: seq-Suc fun-def)
have seq-incr : i ≤ j =⇒ seq i ⊆ seq j for i j
proof −

assume i ≤ j
hence i = j ∨ i < j by auto
thus seq i ⊆ seq j
proof

assume i = j

9

thus ?thesis by simp
next

assume i < j
with - seq-incr-Suc show ?thesis by (rule transp-sequence, simp add: transp-def)
qed

qed
have sub: seq i ⊆ S for i
proof (induct i, simp add: seq-def , simp add: seq-Suc fun-def , rule)

fix i
assume Ex (crit (seq i))
hence crit (seq i) (Eps (crit (seq i))) by (rule someI-ex)
thus Eps (crit (seq i)) ∈ S by (simp add: crit-def)

qed
have ∃ i. seq (Suc i) = seq i
proof (rule ccontr , simp)

assume ∀ i. seq (Suc i) 6= seq i
with seq-incr-Suc have seq i ⊂ seq (Suc i) for i by blast
define seq1 where seq1 = (λn. (SOME s. s ∈ seq (Suc n) ∧ s /∈ seq n))
have seq1 : seq1 n ∈ seq (Suc n) ∧ seq1 n /∈ seq n for n unfolding seq1-def
proof (rule someI-ex)

from ‹seq n ⊂ seq (Suc n)› show ∃ x. x ∈ seq (Suc n) ∧ x /∈ seq n by blast
qed
have seq1 i ∈ S for i
proof

from seq1 [of i] show seq1 i ∈ seq (Suc i) ..
qed (fact sub)
with assms(2) obtain a b where a < b and P (seq1 a) (seq1 b) by (rule

almost-full-onD)
from ‹a < b› have Suc a ≤ b by simp
from seq1 have seq1 a ∈ seq (Suc a) ..
also from ‹Suc a ≤ b› have ... ⊆ seq b by (rule seq-incr)
finally have seq1 a ∈ seq b .
from seq1 have seq1 b ∈ seq (Suc b) and seq1 b /∈ seq b by blast+
hence crit (seq b) (seq1 b) by (simp add: seq-Suc fun-def someI split: if-splits)
hence ∀ u∈seq b. ¬ P u (seq1 b) by (simp add: crit-def)
from this ‹seq1 a ∈ seq b› have ¬ P (seq1 a) (seq1 b) ..
from this ‹P (seq1 a) (seq1 b)› show False ..

qed
then obtain i where seq (Suc i) = seq i ..
show ?thesis
proof

show finite (seq i) by (induct i, simp-all add: seq-def fun-def)
next

fix s
assume s ∈ S
let ?s = Eps (crit (seq i))
show ∃ t∈seq i. P t s
proof (rule ccontr , simp)

assume ∀ t∈seq i. ¬ P t s

10

with ‹s ∈ S› have crit (seq i) s by (simp only: crit-def)
hence crit (seq i) ?s and eq: seq (Suc i) = insert ?s (seq i)

by (auto simp add: seq-Suc fun-def intro: someI)
from this(1) have ?s /∈ seq i by (rule critD)
hence seq (Suc i) 6= seq i unfolding eq by blast
from this ‹seq (Suc i) = seq i› show False ..

qed
qed (fact sub)

qed

1.1 Lists
lemma map-upt: map (λi. f (xs ! i)) [0 ..<length xs] = map f xs

by (auto intro: nth-equalityI)

lemma map-upt-zip:
assumes length xs = length ys
shows map (λi. f (xs ! i) (ys ! i)) [0 ..<length ys] = map (λ(x, y). f x y) (zip xs

ys) (is ?l = ?r)
proof −

have len-l: length ?l = length ys by simp
from assms have len-r : length ?r = length ys by simp
show ?thesis
proof (simp only: list-eq-iff-nth-eq len-l len-r , rule, rule, intro allI impI)

fix i
assume i < length ys
hence i < length ?l and i < length ?r by (simp-all only: len-l len-r)
thus map (λi. f (xs ! i) (ys ! i)) [0 ..<length ys] ! i = map (λ(x, y). f x y) (zip

xs ys) ! i
by simp

qed
qed

lemma distinct-sorted-wrt-irrefl:
assumes irreflp rel and transp rel and sorted-wrt rel xs
shows distinct xs
using assms(3)

proof (induct xs)
case Nil
show ?case by simp

next
case (Cons x xs)
from Cons(2) have sorted-wrt rel xs and ∗: ∀ y∈set xs. rel x y

by (simp-all)
from this(1) have distinct xs by (rule Cons(1))
show ?case
proof (simp add: ‹distinct xs›, rule)

assume x ∈ set xs
with ∗ have rel x x ..

11

with assms(1) show False by (simp add: irreflp-def)
qed

qed

lemma distinct-sorted-wrt-imp-sorted-wrt-strict:
assumes distinct xs and sorted-wrt rel xs
shows sorted-wrt (λx y. rel x y ∧ ¬ x = y) xs
using assms

proof (induct xs)
case Nil
show ?case by simp

next
case step: (Cons x xs)
show ?case
proof (cases xs)

case Nil
thus ?thesis by simp

next
case (Cons y zs)
from step(2) have x 6= y and 1 : distinct (y # zs) by (simp-all add: Cons)
from step(3) have rel x y and 2 : sorted-wrt rel (y # zs) by (simp-all add:

Cons)
from 1 2 have sorted-wrt (λx y. rel x y ∧ x 6= y) (y # zs) by (rule step(1)[simplified

Cons])
with ‹x 6= y› ‹rel x y› show ?thesis using step.prems by (auto simp: Cons)

qed
qed

lemma sorted-wrt-distinct-set-unique:
assumes antisymp rel
assumes sorted-wrt rel xs distinct xs sorted-wrt rel ys distinct ys set xs = set ys
shows xs = ys

proof −
from assms have 1 : length xs = length ys by (auto dest!: distinct-card)
from assms(2−6) show ?thesis
proof(induct rule:list-induct2 [OF 1])

case 1
show ?case by simp

next
case (2 x xs y ys)
from 2 (4) have x /∈ set xs and distinct xs by simp-all
from 2 (6) have y /∈ set ys and distinct ys by simp-all
have x = y
proof (rule ccontr)

assume x 6= y
from 2 (3) have ∀ z∈set xs. rel x z by (simp)
moreover from ‹x 6= y› have y ∈ set xs using 2 (7) by auto
ultimately have ∗: rel x y ..
from 2 (5) have ∀ z∈set ys. rel y z by (simp)

12

moreover from ‹x 6= y› have x ∈ set ys using 2 (7) by auto
ultimately have rel y x ..
with assms(1) ∗ have x = y by (rule antisympD)
with ‹x 6= y› show False ..

qed
from 2 (3) have sorted-wrt rel xs by (simp)
moreover note ‹distinct xs›
moreover from 2 (5) have sorted-wrt rel ys by (simp)
moreover note ‹distinct ys›
moreover from 2 (7) ‹x /∈ set xs› ‹y /∈ set ys› have set xs = set ys by (auto

simp add: ‹x = y›)
ultimately have xs = ys by (rule 2 (2))
with ‹x = y› show ?case by simp

qed
qed

lemma sorted-wrt-refl-nth-mono:
assumes reflp P and sorted-wrt P xs and i ≤ j and j < length xs
shows P (xs ! i) (xs ! j)

proof (cases i < j)
case True
from assms(2) this assms(4) show ?thesis by (rule sorted-wrt-nth-less)

next
case False
with assms(3) have i = j by simp
from assms(1) show ?thesis unfolding ‹i = j› by (rule reflpD)

qed

fun merge-wrt :: (′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ ′a list ⇒ ′a list where
merge-wrt - xs [] = xs|
merge-wrt rel [] ys = ys|
merge-wrt rel (x # xs) (y # ys) =
(if x = y then

y # (merge-wrt rel xs ys)
else if rel x y then

x # (merge-wrt rel xs (y # ys))
else

y # (merge-wrt rel (x # xs) ys)
)

lemma set-merge-wrt: set (merge-wrt rel xs ys) = set xs ∪ set ys
proof (induct rel xs ys rule: merge-wrt.induct)

case (1 rel xs)
show ?case by simp

next
case (2 rel y ys)
show ?case by simp

next
case (3 rel x xs y ys)

13

show ?case
proof (cases x = y)

case True
thus ?thesis by (simp add: 3 (1))

next
case False
show ?thesis
proof (cases rel x y)

case True
with ‹x 6= y› show ?thesis by (simp add: 3 (2) insert-commute)

next
case False
with ‹x 6= y› show ?thesis by (simp add: 3 (3))

qed
qed

qed

lemma sorted-merge-wrt:
assumes transp rel and

∧
x y. x 6= y =⇒ rel x y ∨ rel y x

and sorted-wrt rel xs and sorted-wrt rel ys
shows sorted-wrt rel (merge-wrt rel xs ys)
using assms

proof (induct rel xs ys rule: merge-wrt.induct)
case (1 rel xs)
from 1 (3) show ?case by simp

next
case (2 rel y ys)
from 2 (4) show ?case by simp

next
case (3 rel x xs y ys)
show ?case
proof (cases x = y)

case True
show ?thesis
proof (auto simp add: True)

fix z
assume z ∈ set (merge-wrt rel xs ys)
hence z ∈ set xs ∪ set ys by (simp only: set-merge-wrt)
thus rel y z
proof

assume z ∈ set xs
with 3 (6) show ?thesis by (simp add: True)

next
assume z ∈ set ys
with 3 (7) show ?thesis by (simp)

qed
next

note True 3 (4 , 5)
moreover from 3 (6) have sorted-wrt rel xs by (simp)

14

moreover from 3 (7) have sorted-wrt rel ys by (simp)
ultimately show sorted-wrt rel (merge-wrt rel xs ys) by (rule 3 (1))

qed
next

case False
show ?thesis
proof (cases rel x y)

case True
show ?thesis
proof (auto simp add: False True)

fix z
assume z ∈ set (merge-wrt rel xs (y # ys))
hence z ∈ insert y (set xs ∪ set ys) by (simp add: set-merge-wrt)
thus rel x z
proof

assume z = y
with True show ?thesis by simp

next
assume z ∈ set xs ∪ set ys
thus ?thesis
proof

assume z ∈ set xs
with 3 (6) show ?thesis by (simp)

next
assume z ∈ set ys
with 3 (7) have rel y z by (simp)
with 3 (4) True show ?thesis by (rule transpD)

qed
qed

next
note False True 3 (4 , 5)
moreover from 3 (6) have sorted-wrt rel xs by (simp)
ultimately show sorted-wrt rel (merge-wrt rel xs (y # ys)) using 3 (7) by

(rule 3 (2))
qed

next
assume ¬ rel x y
from ‹x 6= y› have rel x y ∨ rel y x by (rule 3 (5))
with ‹¬ rel x y› have ∗: rel y x by simp
show ?thesis
proof (auto simp add: False ‹¬ rel x y›)

fix z
assume z ∈ set (merge-wrt rel (x # xs) ys)
hence z ∈ insert x (set xs ∪ set ys) by (simp add: set-merge-wrt)
thus rel y z
proof

assume z = x
with ∗ show ?thesis by simp

next

15

assume z ∈ set xs ∪ set ys
thus ?thesis
proof

assume z ∈ set xs
with 3 (6) have rel x z by (simp)
with 3 (4) ∗ show ?thesis by (rule transpD)

next
assume z ∈ set ys
with 3 (7) show ?thesis by (simp)

qed
qed

next
note False ‹¬ rel x y› 3 (4 , 5 , 6)
moreover from 3 (7) have sorted-wrt rel ys by (simp)
ultimately show sorted-wrt rel (merge-wrt rel (x # xs) ys) by (rule 3 (3))

qed
qed

qed
qed

lemma set-fold:
assumes

∧
x ys. set (f (g x) ys) = set (g x) ∪ set ys

shows set (fold (λx. f (g x)) xs ys) = (
⋃

x∈set xs. set (g x)) ∪ set ys
proof (induct xs arbitrary: ys)

case Nil
show ?case by simp

next
case (Cons x xs)
have eq: set (fold (λx. f (g x)) xs (f (g x) ys)) = (

⋃
x∈set xs. set (g x)) ∪ set

(f (g x) ys)
by (rule Cons)

show ?case by (simp add: o-def assms set-merge-wrt eq ac-simps)
qed

1.2 Sums and Products
lemma additive-implies-homogenous:
assumes

∧
x y. f (x + y) = f x + ((f (y:: ′a::monoid-add)):: ′b::cancel-comm-monoid-add)

shows f 0 = 0
proof −

have f (0 + 0) = f 0 + f 0 by (rule assms)
hence f 0 = f 0 + f 0 by simp
thus f 0 = 0 by simp

qed

lemma fun-sum-commute:
assumes f 0 = 0 and

∧
x y. f (x + y) = f x + f y

shows f (sum g A) = (
∑

a∈A. f (g a))
proof (cases finite A)

16

case True
thus ?thesis
proof (induct A)

case empty
thus ?case by (simp add: assms(1))

next
case step: (insert a A)
show ?case by (simp add: sum.insert[OF step(1) step(2)] assms(2) step(3))

qed
next

case False
thus ?thesis by (simp add: assms(1))

qed

lemma fun-sum-commute-canc:
assumes

∧
x y. f (x + y) = f x + ((f y):: ′a::cancel-comm-monoid-add)

shows f (sum g A) = (
∑

a∈A. f (g a))
by (rule fun-sum-commute, rule additive-implies-homogenous, fact+)

lemma fun-sum-list-commute:
assumes f 0 = 0 and

∧
x y. f (x + y) = f x + f y

shows f (sum-list xs) = sum-list (map f xs)
proof (induct xs)

case Nil
thus ?case by (simp add: assms(1))

next
case (Cons x xs)
thus ?case by (simp add: assms(2))

qed

lemma fun-sum-list-commute-canc:
assumes

∧
x y. f (x + y) = f x + ((f y):: ′a::cancel-comm-monoid-add)

shows f (sum-list xs) = sum-list (map f xs)
by (rule fun-sum-list-commute, rule additive-implies-homogenous, fact+)

lemma sum-set-upt-eq-sum-list: (
∑

i = m..<n. f i) = (
∑

i←[m..<n]. f i)
using sum-set-upt-conv-sum-list-nat by auto

lemma sum-list-upt: (
∑

i←[0 ..<(length xs)]. f (xs ! i)) = (
∑

x←xs. f x)
by (simp only: map-upt)

lemma sum-list-upt-zip:
assumes length xs = length ys
shows (

∑
i←[0 ..<(length ys)]. f (xs ! i) (ys ! i)) = (

∑
(x, y)←(zip xs ys). f x

y)
by (simp only: map-upt-zip[OF assms])

lemma sum-list-zeroI :
assumes set xs ⊆ {0}

17

shows sum-list xs = 0
using assms by (induct xs, auto)

lemma fun-prod-commute:
assumes f 1 = 1 and

∧
x y. f (x ∗ y) = f x ∗ f y

shows f (prod g A) = (
∏

a∈A. f (g a))
proof (cases finite A)

case True
thus ?thesis
proof (induct A)

case empty
thus ?case by (simp add: assms(1))

next
case step: (insert a A)
show ?case by (simp add: prod.insert[OF step(1) step(2)] assms(2) step(3))

qed
next

case False
thus ?thesis by (simp add: assms(1))

qed

end

2 An abstract type for multivariate polynomials
theory MPoly-Type
imports HOL−Library.Poly-Mapping
begin

2.1 Abstract type definition
typedef (overloaded) ′a mpoly =

UNIV :: ((nat ⇒0 nat) ⇒0
′a::zero) set

morphisms mapping-of MPoly
..

setup-lifting type-definition-mpoly

thm mapping-of-inverse thm MPoly-inverse
thm mapping-of-inject thm MPoly-inject
thm mapping-of-induct thm MPoly-induct
thm mapping-of-cases thm MPoly-cases

2.2 Additive structure
instantiation mpoly :: (zero) zero
begin

18

lift-definition zero-mpoly :: ′a mpoly
is 0 :: (nat ⇒0 nat) ⇒0

′a .

instance ..

end

instantiation mpoly :: (monoid-add) monoid-add
begin

lift-definition plus-mpoly :: ′a mpoly ⇒ ′a mpoly ⇒ ′a mpoly
is Groups.plus :: ((nat ⇒0 nat) ⇒0

′a) ⇒ - .

instance
by intro-classes (transfer , simp add: fun-eq-iff add.assoc)+

end

instance mpoly :: (comm-monoid-add) comm-monoid-add
by intro-classes (transfer , simp add: fun-eq-iff ac-simps)+

instantiation mpoly :: (cancel-comm-monoid-add) cancel-comm-monoid-add
begin

lift-definition minus-mpoly :: ′a mpoly ⇒ ′a mpoly ⇒ ′a mpoly
is Groups.minus :: ((nat ⇒0 nat) ⇒0

′a) ⇒ - .

instance
by intro-classes (transfer , simp add: fun-eq-iff diff-diff-add)+

end

instantiation mpoly :: (ab-group-add) ab-group-add
begin

lift-definition uminus-mpoly :: ′a mpoly ⇒ ′a mpoly
is Groups.uminus :: ((nat ⇒0 nat) ⇒0

′a) ⇒ - .

instance
by intro-classes (transfer , simp add: fun-eq-iff add-uminus-conv-diff)+

end

2.3 Multiplication by a coefficient
lift-definition smult :: ′a::{times,zero} ⇒ ′a mpoly ⇒ ′a mpoly

is λa. Poly-Mapping.map (Groups.times a) :: ((nat ⇒0 nat) ⇒0
′a) ⇒ - .

19

2.4 Multiplicative structure
instantiation mpoly :: (zero-neq-one) zero-neq-one
begin

lift-definition one-mpoly :: ′a mpoly
is 1 :: ((nat ⇒0 nat) ⇒0

′a) .

instance
by intro-classes (transfer , simp)

end

instantiation mpoly :: (semiring-0) semiring-0
begin

lift-definition times-mpoly :: ′a mpoly ⇒ ′a mpoly ⇒ ′a mpoly
is Groups.times :: ((nat ⇒0 nat) ⇒0

′a) ⇒ - .

instance
by intro-classes (transfer , simp add: algebra-simps)+

end

instance mpoly :: (comm-semiring-0) comm-semiring-0
by intro-classes (transfer , simp add: algebra-simps)+

instance mpoly :: (semiring-0-cancel) semiring-0-cancel
..

instance mpoly :: (comm-semiring-0-cancel) comm-semiring-0-cancel
..

instance mpoly :: (semiring-1) semiring-1
by intro-classes (transfer , simp)+

instance mpoly :: (comm-semiring-1) comm-semiring-1
by intro-classes (transfer , simp)+

instance mpoly :: (semiring-1-cancel) semiring-1-cancel
..

instance mpoly :: (ring) ring
..

instance mpoly :: (comm-ring) comm-ring
..

20

instance mpoly :: (ring-1) ring-1
..

instance mpoly :: (comm-ring-1) comm-ring-1
..

2.5 Monomials
Terminology is not unique here, so we use the notions as follows: A "mono-
mial" and a "coefficient" together give a "term". These notions are significant
in connection with "leading", "leading term", "leading coefficient" and "lead-
ing monomial", which all rely on a monomial order.
lift-definition monom :: (nat ⇒0 nat) ⇒ ′a::zero ⇒ ′a mpoly

is Poly-Mapping.single :: (nat ⇒0 nat) ⇒ - .

lemma mapping-of-monom [simp]:
mapping-of (monom m a) = Poly-Mapping.single m a
by(fact monom.rep-eq)

lemma monom-zero [simp]:
monom 0 0 = 0
by transfer simp

lemma monom-one [simp]:
monom 0 1 = 1
by transfer simp

lemma monom-add:
monom m (a + b) = monom m a + monom m b
by transfer (simp add: single-add)

lemma monom-uminus:
monom m (− a) = − monom m a
by transfer (simp add: single-uminus)

lemma monom-diff :
monom m (a − b) = monom m a − monom m b
by transfer (simp add: single-diff)

lemma monom-numeral [simp]:
monom 0 (numeral n) = numeral n
by (induct n) (simp-all only: numeral.simps numeral-add monom-zero monom-one

monom-add)

lemma monom-of-nat [simp]:
monom 0 (of-nat n) = of-nat n
by (induct n) (simp-all add: monom-add)

lemma of-nat-monom:

21

of-nat = monom 0 ◦ of-nat
by (simp add: fun-eq-iff)

lemma inj-monom [iff]:
inj (monom m)

proof (rule injI , transfer)
fix a b :: ′a and m :: nat ⇒0 nat
assume Poly-Mapping.single m a = Poly-Mapping.single m b
with injD [of Poly-Mapping.single m a b]
show a = b by simp

qed

lemma mult-monom: monom x a ∗ monom y b = monom (x + y) (a ∗ b)
by transfer ′ (simp add: Poly-Mapping.mult-single)

instance mpoly :: (semiring-char-0) semiring-char-0
by intro-classes (auto simp add: of-nat-monom inj-of-nat intro: inj-compose)

instance mpoly :: (ring-char-0) ring-char-0
..

lemma monom-of-int [simp]:
monom 0 (of-int k) = of-int k
apply (cases k)
apply simp-all
unfolding monom-diff monom-uminus
apply simp
done

2.6 Constants and Indeterminates
Embedding of indeterminates and constants in type-class polynomials, can
be used as constructors.
definition Var0 :: ′a ⇒ (′a ⇒0 nat) ⇒0

′b::{one,zero} where
Var0 n ≡ Poly-Mapping.single (Poly-Mapping.single n 1) 1

definition Const0 :: ′b⇒ (′a⇒0 nat)⇒0
′b::zero where Const0 c ≡ Poly-Mapping.single

0 c

lemma Const0-one: Const0 1 = 1
by (simp add: Const0-def)

lemma Const0-numeral: Const0 (numeral x) = numeral x
by (auto intro!: poly-mapping-eqI simp: Const0-def lookup-numeral)

lemma Const0-minus: Const0 (− x) = − Const0 x
by (simp add: Const0-def single-uminus)

lemma Const0-zero: Const0 0 = 0
by (auto intro!: poly-mapping-eqI simp: Const0-def)

22

lemma Var0-power : Var0 v ^ n = Poly-Mapping.single (Poly-Mapping.single v n)
1

by (induction n) (auto simp: Var0-def mult-single single-add[symmetric])

lift-definition Var ::nat ⇒ ′b::{one,zero} mpoly is Var0 .
lift-definition Const:: ′b::zero ⇒ ′b mpoly is Const0 .

2.7 Integral domains
instance mpoly :: (ring-no-zero-divisors) ring-no-zero-divisors

by intro-classes (transfer , simp)

instance mpoly :: (ring-1-no-zero-divisors) ring-1-no-zero-divisors
..

instance mpoly :: (idom) idom
..

2.8 Monom coefficient lookup
definition coeff :: ′a::zero mpoly ⇒ (nat ⇒0 nat) ⇒ ′a
where

coeff p = Poly-Mapping.lookup (mapping-of p)

2.9 Insertion morphism
definition insertion-fun-natural :: (nat ⇒ ′a)⇒ ((nat ⇒ nat)⇒ ′a)⇒ ′a::comm-semiring-1
where

insertion-fun-natural f p = (
∑

m. p m ∗ (
∏

v. f v ^ m v))

definition insertion-fun :: (nat ⇒ ′a)⇒ ((nat ⇒0 nat)⇒ ′a)⇒ ′a::comm-semiring-1
where

insertion-fun f p = (
∑

m. p m ∗ (
∏

v. f v ^ Poly-Mapping.lookup m v))

N.b. have been unable to relate this to insertion-fun-natural using lifting!
lift-definition insertion-aux :: (nat ⇒ ′a)⇒ ((nat ⇒0 nat)⇒0

′a)⇒ ′a::comm-semiring-1
is insertion-fun .

lift-definition insertion :: (nat ⇒ ′a) ⇒ ′a mpoly ⇒ ′a::comm-semiring-1
is insertion-aux .

lemma aux:
Poly-Mapping.lookup f = (λ-. 0) ←→ f = 0
apply transfer apply simp done

lemma insertion-trivial [simp]:
insertion (λ-. 0) p = coeff p 0

proof −
{ fix f :: (nat ⇒0 nat) ⇒0

′a

23

have insertion-aux (λ-. 0) f = Poly-Mapping.lookup f 0
apply (simp add: insertion-aux-def insertion-fun-def power-Sum-any [symmetric])

apply (simp add: zero-power-eq mult-when aux)
done

}
then show ?thesis by (simp add: coeff-def insertion-def)

qed

lemma insertion-zero [simp]:
insertion f 0 = 0
by transfer (simp add: insertion-aux-def insertion-fun-def)

lemma insertion-fun-add:
fixes f p q
shows insertion-fun f (Poly-Mapping.lookup (p + q)) =

insertion-fun f (Poly-Mapping.lookup p) +
insertion-fun f (Poly-Mapping.lookup q)

unfolding insertion-fun-def
apply (subst Sum-any.distrib [symmetric])
apply (simp-all add: plus-poly-mapping.rep-eq algebra-simps)
apply (rule finite-mult-not-eq-zero-rightI)
apply simp
apply (rule finite-mult-not-eq-zero-rightI)
apply simp
done

lemma insertion-add:
insertion f (p + q) = insertion f p + insertion f q
by transfer (simp add: insertion-aux-def insertion-fun-add)

lemma insertion-one [simp]:
insertion f 1 = 1
by transfer (simp add: insertion-aux-def insertion-fun-def one-poly-mapping.rep-eq

when-mult)

lemma insertion-fun-mult:
fixes f p q
shows insertion-fun f (Poly-Mapping.lookup (p ∗ q)) =

insertion-fun f (Poly-Mapping.lookup p) ∗
insertion-fun f (Poly-Mapping.lookup q)

proof −
{ fix m :: nat ⇒0 nat

have finite {v. Poly-Mapping.lookup m v 6= 0}
by simp

then have finite {v. f v ^ Poly-Mapping.lookup m v 6= 1}
by (rule rev-finite-subset) (auto intro: ccontr)

}
moreover define g where g m = (

∏
v. f v ^ Poly-Mapping.lookup m v) for m

ultimately have ∗:
∧

a b. g (a + b) = g a ∗ g b

24

by (simp add: plus-poly-mapping.rep-eq power-add Prod-any.distrib)
have bij: bij (λ(l, n, m). (m, l, n))

by (auto intro!: bijI injI simp add: image-def)
let ?P = {l. Poly-Mapping.lookup p l 6= 0}
let ?Q = {n. Poly-Mapping.lookup q n 6= 0}
let ?PQ = {l + n | l n. l ∈ Poly-Mapping.keys p ∧ n ∈ Poly-Mapping.keys q}
have finite {l + n | l n. Poly-Mapping.lookup p l 6= 0 ∧ Poly-Mapping.lookup q

n 6= 0}
by (rule finite-not-eq-zero-sumI) simp-all

then have fin-PQ: finite ?PQ
by (simp add: in-keys-iff)

have (
∑

m. Poly-Mapping.lookup (p ∗ q) m ∗ g m) =
(
∑

m. (
∑

l. Poly-Mapping.lookup p l ∗ (
∑

n. Poly-Mapping.lookup q n when m
= l + n)) ∗ g m)

by (simp add: times-poly-mapping.rep-eq prod-fun-def)
also have . . . = (

∑
m. (

∑
l. (

∑
n. g m ∗ (Poly-Mapping.lookup p l ∗ Poly-Mapping.lookup

q n) when m = l + n)))
apply (subst Sum-any-left-distrib)
apply (auto intro: finite-mult-not-eq-zero-rightI)
apply (subst Sum-any-right-distrib)
apply (auto intro: finite-mult-not-eq-zero-rightI)
apply (subst Sum-any-left-distrib)
apply (auto intro: finite-mult-not-eq-zero-leftI)
apply (simp add: ac-simps mult-when)
done

also have . . . = (
∑

m. (
∑

(l, n). g m ∗ (Poly-Mapping.lookup p l ∗ Poly-Mapping.lookup
q n) when m = l + n))

apply (subst (2) Sum-any.cartesian-product [of ?P × ?Q])
apply (auto dest!: mult-not-zero)
done

also have . . . = (
∑

(m, l, n). g m ∗ (Poly-Mapping.lookup p l ∗ Poly-Mapping.lookup
q n) when m = l + n)

apply (subst Sum-any.cartesian-product [of ?PQ × (?P × ?Q)])
apply (auto dest!: mult-not-zero simp add: fin-PQ)

apply (auto simp: in-keys-iff)
done

also have . . . = (
∑

(l, n, m). g m ∗ (Poly-Mapping.lookup p l ∗ Poly-Mapping.lookup
q n) when m = l + n)

using bij by (rule Sum-any.reindex-cong [of λ(l, n, m). (m, l, n)]) (simp add:
fun-eq-iff)
also have . . . = (

∑
(l, n).

∑
m. g m ∗ (Poly-Mapping.lookup p l ∗ Poly-Mapping.lookup

q n) when m = l + n)
apply (subst Sum-any.cartesian-product2 [of (?P × ?Q) × ?PQ])
apply (auto dest!: mult-not-zero simp add: fin-PQ)
apply (auto simp: in-keys-iff)
done

also have . . . = (
∑

(l, n). (g l ∗ g n) ∗ (Poly-Mapping.lookup p l ∗ Poly-Mapping.lookup
q n))

by (simp add: ∗)

25

also have . . . = (
∑

l.
∑

n. (g l ∗ g n) ∗ (Poly-Mapping.lookup p l ∗ Poly-Mapping.lookup
q n))

apply (subst Sum-any.cartesian-product [of ?P × ?Q])
apply (auto dest!: mult-not-zero)
done

also have . . . = (
∑

l.
∑

n. (Poly-Mapping.lookup p l ∗ g l) ∗ (Poly-Mapping.lookup
q n ∗ g n))

by (simp add: ac-simps)
also have . . . =
(
∑

m. Poly-Mapping.lookup p m ∗ g m) ∗
(
∑

m. Poly-Mapping.lookup q m ∗ g m)
by (rule Sum-any-product [symmetric]) (auto intro: finite-mult-not-eq-zero-rightI)

finally show ?thesis by (simp add: insertion-fun-def g-def)
qed

lemma insertion-mult:
insertion f (p ∗ q) = insertion f p ∗ insertion f q
by transfer (simp add: insertion-aux-def insertion-fun-mult)

2.10 Degree
lift-definition degree :: ′a::zero mpoly ⇒ nat ⇒ nat
is λp v. Max (insert 0 ((λm. Poly-Mapping.lookup m v) ‘ Poly-Mapping.keys p)) .

lift-definition total-degree :: ′a::zero mpoly ⇒ nat
is λp. Max (insert 0 ((λm. sum (Poly-Mapping.lookup m) (Poly-Mapping.keys m))
‘ Poly-Mapping.keys p)) .

lemma degree-zero [simp]:
degree 0 v = 0
by transfer simp

lemma total-degree-zero [simp]:
total-degree 0 = 0
by transfer simp

lemma degree-one [simp]:
degree 1 v = 0
by transfer simp

lemma total-degree-one [simp]:
total-degree 1 = 0
by transfer simp

2.11 Pseudo-division of polynomials
lemma smult-conv-mult: smult s p = monom 0 s ∗ p
by transfer (simp add: mult-map-scale-conv-mult)

26

lemma smult-monom [simp]:
fixes c :: - :: mult-zero
shows smult c (monom x c ′) = monom x (c ∗ c ′)

by transfer simp

lemma smult-0 [simp]:
fixes p :: - :: mult-zero mpoly
shows smult 0 p = 0

by transfer(simp add: map-eq-zero-iff)

lemma mult-smult-left: smult s p ∗ q = smult s (p ∗ q)
by(simp add: smult-conv-mult mult.assoc)

lift-definition sdiv :: ′a::euclidean-ring ⇒ ′a mpoly ⇒ ′a mpoly
is λa. Poly-Mapping.map (λb. b div a) :: ((nat ⇒0 nat) ⇒0

′a) ⇒ -
.

‘Polynomial division’ is only possible on univariate polynomials K [x]
over a field K, all other kinds of polynomials only allow pseudo-division
[1]p.40/41":
∀ x y :: ′a mpoly. y 6= 0 ⇒ ∃ a q r . smult a x = q ∗ y + r
The introduction of pseudo-division below generalises ~~/src/HOL/Computational_Algebra/

Polynomial.thy. [1] Winkler, Polynomial Algorithms, 1996. The generali-
sation raises issues addressed by Wenda Li and commented below. Florian
replied to the issues conjecturing, that the abstract mpoly needs not be
aware of the issues, in case these are only concerned with executability.
definition pseudo-divmod-rel
:: ′a::euclidean-ring => ′a mpoly => ′a mpoly => ′a mpoly => ′a mpoly =>

bool
where

pseudo-divmod-rel a x y q r ←→
smult a x = q ∗ y + r ∧ (if y = 0 then q = 0 else r = 0 ∨ degree r < degree y)

definition pdiv :: ′a::euclidean-ring mpoly ⇒ ′a mpoly ⇒ (′a × ′a mpoly) (infixl
‹pdiv› 70)
where

x pdiv y = (THE (a, q). ∃ r . pseudo-divmod-rel a x y q r)

definition pmod :: ′a::euclidean-ring mpoly ⇒ ′a mpoly ⇒ ′a mpoly (infixl ‹pmod›
70)
where

x pmod y = (THE r . ∃ a q. pseudo-divmod-rel a x y q r)

definition pdivmod :: ′a::euclidean-ring mpoly ⇒ ′a mpoly ⇒ (′a × ′a mpoly) ×
′a mpoly
where

27

pdivmod p q = (p pdiv q, p pmod q)

lemma pdiv-code:
p pdiv q = fst (pdivmod p q)
by (simp add: pdivmod-def)

lemma pmod-code:
p pmod q = snd (pdivmod p q)
by (simp add: pdivmod-def)

2.12 Primitive poly, etc
lift-definition coeffs :: ′a :: zero mpoly ⇒ ′a set
is Poly-Mapping.range :: ((nat ⇒0 nat) ⇒0

′a) ⇒ - .

lemma finite-coeffs [simp]: finite (coeffs p)
by transfer simp

[1]p.82 A "primitive’" polynomial has coefficients with GCD equal to
1. A polynomial is factored into "content" and "primitive part" for many
different purposes.
definition primitive :: ′a::{euclidean-ring,semiring-Gcd} mpoly ⇒ bool
where

primitive p ←→ Gcd (coeffs p) = 1

definition content-primitive :: ′a::{euclidean-ring,GCD.Gcd} mpoly ⇒ ′a × ′a
mpoly
where

content-primitive p = (
let d = Gcd (coeffs p)
in (d, sdiv d p))

value let p = M [1 ,2 ,3] (4 ::int) + M [2 ,0 ,4] 6 + M [2 ,0 ,5] 8
in content-primitive p

end

theory More-MPoly-Type
imports MPoly-Type
begin

abbreviation lookup == Poly-Mapping.lookup
abbreviation keys == Poly-Mapping.keys

28

3 MPpoly Mapping extenion
lemma lookup-Abs-poly-mapping-when-finite:
assumes finite S
shows lookup (Abs-poly-mapping (λx. f x when x∈S)) = (λx. f x when x∈S)
proof −

have finite {x. (f x when x∈S) 6= 0} using assms by auto
then show ?thesis using lookup-Abs-poly-mapping by fast

qed

definition remove-key:: ′a ⇒ (′a ⇒0
′b::monoid-add) ⇒ (′a ⇒0

′b) where
remove-key k0 f = Abs-poly-mapping (λk. lookup f k when k 6= k0)

lemma remove-key-lookup:
lookup (remove-key k0 f) k = (lookup f k when k 6= k0)

unfolding remove-key-def using finite-subset by (simp add: lookup-Abs-poly-mapping)

lemma remove-key-keys: keys f − {k} = keys (remove-key k f) (is ?A = ?B)
proof (rule antisym; rule subsetI)

fix x assume x ∈ ?A
then show x ∈ ?B using remove-key-lookup lookup-not-eq-zero-eq-in-keys DiffD1

DiffD2 insertCI
by (metis (mono-tags, lifting) when-def)

next
fix x assume x ∈ ?B
then have lookup (remove-key k f) x 6= 0 by blast
then show x ∈ ?A

by (simp add: lookup-not-eq-zero-eq-in-keys remove-key-lookup)
qed

lemma remove-key-sum: remove-key k f + Poly-Mapping.single k (lookup f k) = f
proof −

{
fix k ′

have rem:(lookup f k ′ when k ′ 6= k) = lookup (remove-key k f) k ′

using when-def by (simp add: remove-key-lookup)
have sin:(lookup f k when k ′=k) = lookup (Poly-Mapping.single k (lookup f k))

k ′

by (simp add: lookup-single-not-eq when-def)
have lookup f k ′ = (lookup f k ′ when k ′ 6= k) + ((lookup f k) when k ′=k)

unfolding when-def by fastforce
with rem sin have lookup f k ′ = lookup ((remove-key k f) + Poly-Mapping.single

k (lookup f k)) k ′

using lookup-add by metis
}
then show ?thesis by (metis poly-mapping-eqI)

qed

29

lemma remove-key-single[simp]: remove-key v (Poly-Mapping.single v n) = 0
proof −
have 0 :

∧
k. (lookup (Poly-Mapping.single v n) k when k 6= v) = 0 by (simp add:

lookup-single-not-eq when-def)
show ?thesis unfolding remove-key-def 0

by auto
qed

lemma remove-key-add: remove-key v m + remove-key v m ′ = remove-key v (m
+ m ′)
by (rule poly-mapping-eqI ; simp add: lookup-add remove-key-lookup when-add-distrib)

lemma poly-mapping-induct [case-names single sum]:
fixes P::(′a, ′b::monoid-add) poly-mapping ⇒ bool
assumes single:

∧
k v. P (Poly-Mapping.single k v)

and sum:(
∧

f g k v. P f =⇒ P g =⇒ g = (Poly-Mapping.single k v) =⇒ k /∈ keys
f =⇒ P (f+g))
shows P f using finite-keys[of f]
proof (induction keys f arbitrary: f rule: finite-induct)

case (empty)
then show ?case using single[of - 0] by (metis (full-types) aux empty-iff not-in-keys-iff-lookup-eq-zero

single-zero)
next

case (insert k K f)
obtain f1 f2 where f12-def : f1 = remove-key k f f2 = Poly-Mapping.single k

(lookup f k) by blast
have P f1
proof −

have Suc (card (keys f1)) = card (keys f)
using remove-key-keys finite-keys f12-def (1) by (metis (no-types) Diff-insert-absorb

card-insert-disjoint insert.hyps(2) insert.hyps(4))
then show ?thesis using insert lessI by (metis Diff-insert-absorb f12-def (1)

remove-key-keys)
qed
have P f2 by (simp add: single f12-def (2))
have f1 + f2 = f using remove-key-sum f12-def by auto
have k /∈ keys f1 using remove-key-keys f12-def by fast
then show ?case using ‹P f1 › ‹P f2 › sum[of f1 f2 k lookup f k] ‹f1 + f2 = f ›

f12-def by auto
qed

lemma map-lookup:
assumes g 0 = 0
shows lookup (Poly-Mapping.map g f) x = g ((lookup f) x)
proof −

have (g (lookup f x) when lookup f x 6= 0) = g (lookup f x)
by (metis (mono-tags, lifting) assms when-def)

then have (g (lookup f x) when x ∈ keys f) = g (lookup f x)

30

using lookup-not-eq-zero-eq-in-keys [of f] by simp
then show ?thesis

by (simp add: Poly-Mapping.map-def map-fun-def in-keys-iff)
qed

lemma keys-add:
assumes keys f ∩ keys g = {}
shows keys f ∪ keys g = keys (f+g)
proof

have keys f ⊆ keys (f+g)
proof

fix x assume x∈keys f
then have lookup (f+g) x = lookup f x by (metis add.right-neutral assms

disjoint-iff-not-equal not-in-keys-iff-lookup-eq-zero plus-poly-mapping.rep-eq)
then show x∈keys (f+g) using ‹x∈keys f › by (metis not-in-keys-iff-lookup-eq-zero)

qed
moreover have keys g ⊆ keys (f+g)
proof

fix x assume x∈keys g
then have lookup (f+g) x = lookup g x by (metis IntI add.left-neutral assms

empty-iff not-in-keys-iff-lookup-eq-zero plus-poly-mapping.rep-eq)
then show x∈keys (f+g) using ‹x∈keys g› by (metis not-in-keys-iff-lookup-eq-zero)

qed
ultimately show keys f ∪ keys g ⊆ keys (f+g) by simp

next
show keys (f + g) ⊆ keys f ∪ keys g by (simp add: keys-add)

qed

lemma fun-when:
f 0 = 0 =⇒ f (a when P) = (f a when P) by (simp add: when-def)

4 MPoly extension
lemma coeff-all-0 :(

∧
m. coeff p m = 0) =⇒ p=0

by (metis aux coeff-def mapping-of-inject zero-mpoly.rep-eq)

definition vars:: ′a::zero mpoly ⇒ nat set where
vars p =

⋃
(keys ‘ keys (mapping-of p))

lemma vars-finite: finite (vars p) unfolding vars-def by auto

lemma vars-monom-single: vars (monom (Poly-Mapping.single v k) a) ⊆ {v}
proof

fix w assume w ∈ vars (monom (Poly-Mapping.single v k) a)
then have w = v using vars-def by (metis UN-E lookup-eq-zero-in-keys-contradict

lookup-single-not-eq monom.rep-eq)
then show w ∈ {v} by auto

qed

31

lemma vars-monom-keys:
assumes a 6=0
shows vars (monom m a) = keys m
proof (rule antisym; rule subsetI)

fix w assume w ∈ vars (monom m a)
then have lookup m w 6= 0 using vars-def by (metis UN-E lookup-eq-zero-in-keys-contradict

lookup-single-not-eq monom.rep-eq)
then show w ∈ keys m by (meson lookup-not-eq-zero-eq-in-keys)

next
fix w assume w ∈ keys m
then have lookup m w 6= 0 by (meson lookup-not-eq-zero-eq-in-keys)
then show w ∈ vars (monom m a) unfolding vars-def using assms by (metis

UN-iff lookup-not-eq-zero-eq-in-keys lookup-single-eq monom.rep-eq)
qed

lemma vars-monom-subset:
shows vars (monom m a) ⊆ keys m

by (cases a=0 ; simp add: vars-def vars-monom-keys)

lemma vars-monom-single-cases: vars (monom (Poly-Mapping.single v k) a) = (if
k=0 ∨ a=0 then {} else {v})
proof(cases k=0)

assume k=0
then have (Poly-Mapping.single v k) = 0 by simp
then have vars (monom (Poly-Mapping.single v k) a) = {}

by (metis (mono-tags, lifting) single-zero singleton-inject subset-singletonD
vars-monom-single zero-neq-one)

then show ?thesis using ‹k=0 › by auto
next

assume k 6=0
then show ?thesis
proof (cases a=0)

assume a=0
then have monom (Poly-Mapping.single v k) a = 0 by (metis monom.abs-eq

monom-zero single-zero)
then show ?thesis by (metis (mono-tags, opaque-lifting) ‹k 6= 0 › ‹a=0 ›

monom.abs-eq single-zero singleton-inject subset-singletonD vars-monom-single)
next

assume a 6=0
then have v ∈ vars (monom (Poly-Mapping.single v k) a) by (simp add: ‹k 6=

0 › vars-def)
then show ?thesis using ‹a 6=0 › ‹k 6= 0 › vars-monom-single by fastforce

qed
qed

lemma vars-monom:
assumes a 6=0
shows vars (monom m (1 :: ′a::zero-neq-one)) = vars (monom m (a:: ′a))
unfolding vars-monom-keys[OF assms] using vars-monom-keys[of 1] one-neq-zero

32

by blast

lemma vars-add: vars (p1 + p2) ⊆ vars p1 ∪ vars p2
proof

fix w assume w ∈ vars (p1 + p2)
then obtain m where w ∈ keys m m ∈ keys (mapping-of (p1 + p2)) by (metis

UN-E vars-def)
then have m ∈ keys (mapping-of (p1)) ∪ keys (mapping-of (p2))

by (metis Poly-Mapping.keys-add plus-mpoly.rep-eq subset-iff)
then show w ∈ vars p1 ∪ vars p2 using vars-def ‹w ∈ keys m› by fastforce

qed

lemma vars-mult: vars (p∗q) ⊆ vars p ∪ vars q
proof

fix x assume x∈vars (p∗q)
then obtain m where m∈keys (mapping-of (p∗q)) x∈keys m

using vars-def by blast
then have m∈keys (mapping-of p ∗ mapping-of q)

by (simp add: times-mpoly.rep-eq)
then obtain a b where m=a + b a ∈ keys (mapping-of p) b ∈ keys (mapping-of

q)
using keys-mult by blast

then have x ∈ keys a ∪ keys b
using Poly-Mapping.keys-add ‹x ∈ keys m› by force

then show x ∈ vars p ∪ vars q unfolding vars-def
using ‹a ∈ keys (mapping-of p)› ‹b ∈ keys (mapping-of q)› by blast

qed

lemma vars-add-monom:
assumes p2 = monom m a m /∈ keys (mapping-of p1)
shows vars (p1 + p2) = vars p1 ∪ vars p2
proof −

have keys (mapping-of p2) ⊆ {m} using monom-def keys-single assms by auto
have keys (mapping-of (p1+p2)) = keys (mapping-of p1) ∪ keys (mapping-of

p2)
using keys-add by (metis Int-insert-right-if0 ‹keys (mapping-of p2) ⊆ {m}›

assms(2) inf-bot-right plus-mpoly.rep-eq subset-singletonD)
then show ?thesis unfolding vars-def by simp

qed

lemma vars-setsum: finite S =⇒ vars (
∑

m∈S . f m) ⊆ (
⋃

m∈S . vars (f m))
proof (induction S rule:finite-induct)

case empty
then show ?case by (metis UN-empty eq-iff monom-zero sum.empty single-zero

vars-monom-single-cases)
next

case (insert s S)
then have vars (sum f (insert s S)) = vars (f s + sum f S) by (metis sum.insert)
also have ... ⊆ vars (f s) ∪ vars (sum f S) by (simp add: vars-add)

33

also have ... ⊆ (
⋃

m∈insert s S . vars (f m)) using insert.IH by auto
finally show ?case by metis

qed

lemma coeff-monom: coeff (monom m a) m ′ = (a when m ′=m)
by (simp add: coeff-def lookup-single-not-eq when-def)

lemma coeff-add: coeff p m + coeff q m = coeff (p+q) m
by (simp add: coeff-def lookup-add plus-mpoly.rep-eq)

lemma coeff-eq: coeff p = coeff q ←→ p=q by (simp add: coeff-def lookup-inject
mapping-of-inject)

lemma coeff-monom-mult: coeff ((monom m ′ a) ∗ q) (m ′ + m) = a ∗ coeff q m
unfolding coeff-def times-mpoly.rep-eq lookup-mult mapping-of-monom lookup-single

when-mult
Sum-any-when-equal ′ Groups.cancel-semigroup-add-class.add-left-cancel by metis

lemma one-term-is-monomial:
assumes card (keys (mapping-of p)) ≤ 1
obtains m where p = monom m (coeff p m)
proof (cases keys (mapping-of p) = {})

case True
then show ?thesis using aux coeff-def empty-iff mapping-of-inject mapping-of-monom

not-in-keys-iff-lookup-eq-zero single-zero by (metis (no-types) that)
next

case False
then obtain m where keys (mapping-of p) = {m} using assms by (metis

One-nat-def Suc-leI antisym card-0-eq card-eq-SucD finite-keys neq0-conv)
have p = monom m (coeff p m)

unfolding mapping-of-inject[symmetric]
by (rule poly-mapping-eqI , metis (no-types, lifting) ‹keys (mapping-of p) =

{m}›
coeff-def keys-single lookup-single-eq mapping-of-monom not-in-keys-iff-lookup-eq-zero
singletonD)

then show ?thesis ..
qed

definition remove-term::(nat ⇒0 nat) ⇒ ′a::zero mpoly ⇒ ′a mpoly where
remove-term m0 p = MPoly (Abs-poly-mapping (λm. coeff p m when m 6= m0))

lemma remove-term-coeff : coeff (remove-term m0 p) m = (coeff p m when m 6=
m0)
proof −

have {m. (coeff p m when m 6= m0) 6= 0} ⊆ {m. coeff p m 6= 0} by auto
then have finite {m. (coeff p m when m 6= m0) 6= 0} unfolding coeff-def using

finite-subset by auto
then have lookup (Abs-poly-mapping (λm. coeff p m when m 6= m0)) m = (coeff

34

p m when m 6= m0) using lookup-Abs-poly-mapping by fastforce
then show ?thesis unfolding remove-term-def using coeff-def by (metis (mono-tags,

lifting) Quotient-mpoly Quotient-rep-abs-fold-unmap)
qed

lemma coeff-keys: m ∈ keys (mapping-of p) ←→ coeff p m 6= 0
by (simp add: coeff-def in-keys-iff)

lemma remove-term-keys:
shows keys (mapping-of p) − {m} = keys (mapping-of (remove-term m p)) (is
?A = ?B)
proof

show ?A ⊆ ?B
proof

fix m ′ assume m ′∈?A
then show m ′ ∈ ?B by (simp add: coeff-keys remove-term-coeff)

qed
show ?B ⊆ ?A
proof

fix m ′ assume m ′∈ ?B
then show m ′ ∈ ?A by (simp add: coeff-keys remove-term-coeff)

qed
qed

lemma remove-term-sum: remove-term m p + monom m (coeff p m) = p
proof −

have coeff p = (λm ′. (coeff p m ′ when m ′ 6= m) + ((coeff p m) when m ′=m))
unfolding when-def by fastforce

moreover have coeff (remove-term m p + monom m (coeff p m)) = ...
using remove-term-coeff coeff-monom coeff-add by (metis (no-types))

ultimately show ?thesis using coeff-eq by auto
qed

lemma mpoly-induct [case-names monom sum]:
assumes monom:

∧
m a. P (monom m a)

and sum:(
∧

p1 p2 m a. P p1 =⇒ P p2 =⇒ p2 = (monom m a) =⇒ m /∈ keys
(mapping-of p1) =⇒ P (p1+p2))
shows P p using assms
using poly-mapping-induct[of λp :: (nat ⇒0 nat)⇒0

′a. P (MPoly p)] MPoly-induct
monom.abs-eq plus-mpoly.abs-eq

by (metis (no-types) MPoly-inverse UNIV-I)

lemma monom-pow:monom (Poly-Mapping.single v n0) a ^ n = monom (Poly-Mapping.single
v (n0∗n)) (a ^ n)
apply (induction n)
apply auto
by (metis (no-types, lifting) mult-monom single-add)

35

lemma insertion-fun-single: insertion-fun f (λm. (a when (Poly-Mapping.single
(v::nat) (n::nat)) = m)) = a ∗ f v ^ n (is ?i = -)
proof −

have setsum-single:
∧

a f . (
∑

m∈{a}. f m) = f a
by (metis add.right-neutral empty-Diff finite.emptyI sum.empty sum.insert-remove)

have 1 :?i = (
∑

m. (a when Poly-Mapping.single v n = m) ∗ (
∏

v. f v ^ lookup
m v))

unfolding insertion-fun-def by metis
have ∀m. m 6= Poly-Mapping.single v n −→ (a when Poly-Mapping.single v n =

m) = 0 by simp

have (
∑

m∈{Poly-Mapping.single v n}. (a when Poly-Mapping.single v n = m)
∗ (

∏
v. f v ^ lookup m v)) = ?i

unfolding 1 when-mult unfolding when-def by auto
then have 2 :?i = a ∗ (

∏
va. f va ^ lookup (Poly-Mapping.single v n) va)

unfolding setsum-single[of λm. (a when Poly-Mapping.single v n = m) ∗ (
∏

v.
f v ^ lookup m v) Poly-Mapping.single k v]

by auto
have ∀ v0 . v0 6=v −→ lookup (Poly-Mapping.single v n) v0 = 0 by (simp add:

lookup-single-not-eq)
then have ∀ va. va 6=v −→ f va ^ lookup (Poly-Mapping.single v n) va = 1 by

simp
then have a ∗ (

∏
va∈{v}. f va ^ lookup (Poly-Mapping.single v n) va) = ?i

unfolding 2
using Prod-any.expand-superset[of {v} λva. f va ^ lookup (Poly-Mapping.single

v n) va, simplified]
by fastforce

then show ?thesis by simp
qed

lemma insertion-single[simp]: insertion f (monom (Poly-Mapping.single (v::nat)
(n::nat)) a) = a ∗ f v ^ n

using insertion-fun-single Sum-any.cong insertion.rep-eq insertion-aux.rep-eq
insertion-fun-def

mapping-of-monom single.rep-eq by (metis (no-types, lifting))

lemma insertion-fun-irrelevant-vars:
fixes p::((nat ⇒0 nat) ⇒ ′a::comm-ring-1)
assumes

∧
m v. p m 6= 0 =⇒ lookup m v 6= 0 =⇒ f v = g v

shows insertion-fun f p = insertion-fun g p
proof −

{
fix m::nat⇒0nat
assume p m 6= 0
then have (

∏
v. f v ^ lookup m v) = (

∏
v. g v ^ lookup m v)

using assms by (metis power-0)
}
then show ?thesis unfolding insertion-fun-def by (metis (no-types, lifting)

36

mult-not-zero)
qed

lemma insertion-aux-irrelevant-vars:
fixes p::((nat ⇒0 nat) ⇒0

′a::comm-ring-1)
assumes

∧
m v. lookup p m 6= 0 =⇒ lookup m v 6= 0 =⇒ f v = g v

shows insertion-aux f p = insertion-aux g p
using insertion-fun-irrelevant-vars[of lookup p f g] assms
by (metis insertion-aux.rep-eq)

lemma insertion-irrelevant-vars:
fixes p:: ′a::comm-ring-1 mpoly
assumes

∧
v. v∈vars p =⇒ f v = g v

shows insertion f p = insertion g p
proof −

{
fix m v assume lookup (mapping-of p) m 6= 0 lookup m v 6= 0

then have v ∈ vars p unfolding vars-def by (meson UN-I lookup-not-eq-zero-eq-in-keys)
then have f v = g v using assms by auto

}
then show ?thesis

unfolding insertion-def using insertion-aux-irrelevant-vars[of mapping-of p]
by (metis insertion.rep-eq insertion-def)

qed

5 Nested MPoly
definition reduce-nested-mpoly:: ′a::comm-ring-1 mpoly mpoly ⇒ ′a mpoly where

reduce-nested-mpoly pp = insertion (λv. monom (Poly-Mapping.single v 1) 1) pp

lemma reduce-nested-mpoly-sum:
fixes p1 :: ′a::comm-ring-1 mpoly mpoly
shows reduce-nested-mpoly (p1 + p2) = reduce-nested-mpoly p1 + reduce-nested-mpoly
p2

by (simp add: insertion-add reduce-nested-mpoly-def)

lemma reduce-nested-mpoly-prod:
fixes p1 :: ′a::comm-ring-1 mpoly mpoly
shows reduce-nested-mpoly (p1 ∗ p2) = reduce-nested-mpoly p1 ∗ reduce-nested-mpoly
p2

by (simp add: insertion-mult reduce-nested-mpoly-def)

lemma reduce-nested-mpoly-0 :
shows reduce-nested-mpoly 0 = 0 by (simp add: reduce-nested-mpoly-def)

lemma insertion-nested-poly:
fixes pp:: ′a::comm-ring-1 mpoly mpoly
shows insertion f (insertion (λv. monom 0 (f v)) pp) = insertion f (reduce-nested-mpoly
pp)

37

proof (induction pp rule:mpoly-induct)
case (monom m a)
then show ?case
proof (induction m arbitrary:a rule:poly-mapping-induct)

case (single v n)
show ?case unfolding reduce-nested-mpoly-def

apply (simp add: insertion-mult monom-pow)
using monom-pow[of 0 0 f v n] apply simp
using insertion-single[of f 0 0] by auto

next
case (sum m1 m2 k v)
then have insertion f (insertion (λv. monom 0 (f v)) (monom m1 a ∗ monom

m2 1))
= insertion f (reduce-nested-mpoly (monom m1 a ∗ monom m2 1))

unfolding reduce-nested-mpoly-prod insertion-mult by metis
then show ?case using mult-monom[of m1 a m2 1] by auto

qed
next

case (sum p1 p2 m a)
then show ?case by (simp add: reduce-nested-mpoly-sum insertion-add)

qed

definition extract-var :: ′a::comm-ring-1 mpoly ⇒ nat ⇒ ′a::comm-ring-1 mpoly
mpoly where
extract-var p v = (

∑
m. monom (remove-key v m) (monom (Poly-Mapping.single

v (lookup m v)) (coeff p m)))

lemma extract-var-finite-set:
assumes {m ′. coeff p m ′ 6= 0} ⊆ S
assumes finite S
shows extract-var p v = (

∑
m∈S . monom (remove-key v m) (monom (Poly-Mapping.single

v (lookup m v)) (coeff p m)))
proof−

{
fix m ′ assume coeff p m ′ = 0
then have monom (remove-key v m ′) (monom (Poly-Mapping.single v (lookup

m ′ v)) (coeff p m ′)) = 0
using monom.abs-eq monom-zero single-zero by metis

}
then have 0 :{a. monom (remove-key v a) (monom (Poly-Mapping.single v

(lookup a v)) (coeff p a)) 6= 0} ⊆ S
using ‹{m ′. coeff p m ′ 6= 0} ⊆ S› by fastforce

then show ?thesis
unfolding extract-var-def using Sum-any.expand-superset [OF ‹finite S› 0]

by metis
qed

lemma extract-var-non-zero-coeff : extract-var p v = (
∑

m∈{m ′. coeff p m ′ 6= 0}.
monom (remove-key v m) (monom (Poly-Mapping.single v (lookup m v)) (coeff p

38

m)))
using extract-var-finite-set coeff-def finite-lookup order-refl by (metis (no-types,

lifting) Collect-cong sum.cong)

lemma extract-var-sum: extract-var (p+p ′) v = extract-var p v + extract-var p ′ v
proof −

define S where S = {m. coeff p m 6= 0} ∪ {m. coeff p ′ m 6= 0} ∪ {m. coeff
(p+p ′) m 6= 0}

have subsets:{m. coeff p m 6= 0} ⊆ S {m. coeff p ′ m 6= 0} ⊆ S {m. coeff (p+p ′)
m 6= 0} ⊆ S

unfolding S-def by auto
have finite S unfolding S-def using coeff-def finite-lookup

by (metis (mono-tags) Collect-disj-eq finite-Collect-disjI)
then show ?thesis unfolding

extract-var-finite-set[OF subsets(1) ‹finite S›]
extract-var-finite-set[OF subsets(2) ‹finite S›]
extract-var-finite-set[OF subsets(3) ‹finite S›]
coeff-add[symmetric] monom-add sum.distrib
by metis

qed

lemma extract-var-monom:
shows extract-var (monom m a) v = monom (remove-key v m) (monom (Poly-Mapping.single
v (lookup m v)) a)
proof (cases a = 0)

assume a 6= 0
have 0 :{m ′. coeff (monom m a) m ′ 6= 0} = {m}

unfolding coeff-monom using ‹a 6= 0 › by auto
show ?thesis

unfolding extract-var-non-zero-coeff unfolding 0 unfolding coeff-monom
using sum.insert[OF finite.emptyI , unfolded sum.empty add.right-neutral] when-def
by auto

next
assume a = 0
have 0 :{m ′. coeff (monom m a) m ′ 6= 0} = {}

unfolding coeff-monom using ‹a = 0 › by auto
show ?thesis unfolding extract-var-non-zero-coeff 0

using ‹a = 0 › monom.abs-eq monom-zero sum.empty single-zero by (metis
(no-types, lifting))
qed

lemma extract-var-monom-mult:
shows extract-var (monom (m+m ′) (a∗b)) v = extract-var (monom m a) v ∗
extract-var (monom m ′ b) v
unfolding extract-var-monom remove-key-add lookup-add single-add mult-monom
by auto

39

lemma extract-var-single: extract-var (monom (Poly-Mapping.single v n) a) v =
monom 0 (monom (Poly-Mapping.single v n) a)
unfolding extract-var-monom by simp

lemma extract-var-single ′:
assumes v 6= v ′

shows extract-var (monom (Poly-Mapping.single v n) a) v ′= monom (Poly-Mapping.single
v n) (monom 0 a)
unfolding extract-var-monom using assms by (metis add.right-neutral lookup-single-not-eq
remove-key-sum single-zero)

lemma reduce-nested-mpoly-extract-var :
fixes p:: ′a::comm-ring-1 mpoly
shows reduce-nested-mpoly (extract-var p v) = p
proof (induction p rule:mpoly-induct)

case (monom m a)
then show ?case
proof (induction m arbitrary:a rule:poly-mapping-induct)

case (single v ′ n)
show ?case
proof (cases v ′ = v)

case True
then show ?thesis

by (metis (no-types, lifting) insertion-single mult.right-neutral power-0
reduce-nested-mpoly-def single-zero extract-var-single)

next
case False

then show ?thesis unfolding extract-var-single ′[OF False] reduce-nested-mpoly-def
insertion-single

by (simp add: monom-pow mult-monom)
qed

next
case (sum m m ′ v n a)
then show ?case

using extract-var-monom-mult[of m m ′ a 1] reduce-nested-mpoly-prod by
(metis mult.right-neutral mult-monom)

qed
next

case (sum p1 p2 m a)
then show ?case unfolding extract-var-sum reduce-nested-mpoly-sum by auto

qed

lemma vars-extract-var-subset: vars (extract-var p v) ⊆ vars p
proof

have finite {m ′. coeff p m ′ 6= 0} by (simp add: coeff-def)
fix x assume x ∈ vars (extract-var p v)
then have x ∈ vars (

∑
m∈{m ′. coeff p m ′ 6= 0}. monom (remove-key v m)

40

(monom (Poly-Mapping.single v (lookup m v)) (coeff p m)))
unfolding extract-var-non-zero-coeff by metis

then have x ∈ (
⋃

m∈{m ′. coeff p m ′ 6= 0}. vars (monom (remove-key v m)
(monom (Poly-Mapping.single v (lookup m v)) (coeff p m))))

using vars-setsum[OF ‹finite {m ′. coeff p m ′ 6= 0}›] by auto
then obtain m where m∈{m ′. coeff p m ′ 6= 0} x ∈ vars (monom (remove-key

v m) (monom (Poly-Mapping.single v (lookup m v)) (coeff p m)))
by blast

show x ∈ vars p by (metis (mono-tags, lifting) DiffD1 UN-I ‹m ∈ {m ′. coeff p
m ′ 6= 0}›

‹x ∈ vars (monom (remove-key v m) (monom (Poly-Mapping.single v (lookup
m v)) (coeff p m)))›

coeff-keys mem-Collect-eq remove-key-keys subsetCE vars-def vars-monom-subset)
qed

lemma v-not-in-vars-extract-var : v /∈ vars (extract-var p v)
proof −

have finite {m ′. coeff p m ′ 6= 0} by (simp add: coeff-def)
have

∧
m. m∈{m ′. coeff p m ′ 6= 0} =⇒ v /∈ vars (monom (remove-key v m)

(monom (Poly-Mapping.single v (lookup m v)) (coeff p m)))
by (metis Diff-iff remove-key-keys singletonI subsetCE vars-monom-subset)

then have v /∈ (
⋃

m∈{m ′. coeff p m ′ 6= 0}. vars (monom (remove-key v m)
(monom (Poly-Mapping.single v (lookup m v)) (coeff p m))))

by simp
then show ?thesis
unfolding extract-var-non-zero-coeff using vars-setsum[OF ‹finite {m ′. coeff p

m ′ 6= 0}›] by blast
qed

lemma vars-coeff-extract-var : vars (coeff (extract-var p v) j) ⊆ {v}
proof (induction p rule:mpoly-induct)

case (monom m a)
then show ?case unfolding extract-var-monom coeff-monom vars-monom-single-cases

by (metis monom-zero single-zero vars-monom-single when-def)
next

case (sum p1 p2 m a)
then show ?case unfolding extract-var-sum coeff-add[symmetric]

by (metis (no-types, lifting) Un-insert-right insert-absorb2 subset-insertI2 sub-
set-singletonD sup-bot.right-neutral vars-add)
qed

definition replace-coeff
where replace-coeff f p = MPoly (Abs-poly-mapping (λm. f (lookup (mapping-of
p) m)))

lemma coeff-replace-coeff :
assumes f 0 = 0
shows coeff (replace-coeff f p) m = f (coeff p m)
proof −

41

have 0 :finite {m. f (lookup (mapping-of p) m) 6= 0}
unfolding coeff-def [symmetric] by (metis (mono-tags, lifting) Collect-mono

assms(1) coeff-def finite-lookup finite-subset)+
then show ?thesis unfolding replace-coeff-def coeff-def using lookup-Abs-poly-mapping[OF

0]
by (metis (mono-tags, lifting) Quotient-mpoly Quotient-rep-abs-fold-unmap)

qed

lemma replace-coeff-monom:
assumes f 0 = 0
shows replace-coeff f (monom m a) = monom m (f a)

unfolding replace-coeff-def
unfolding mapping-of-inject[symmetric] lookup-inject[symmetric] apply (rule

HOL.ext)
unfolding lookup-single mapping-of-monom fun-when[of f , OF ‹f 0 = 0 ›]
by (metis coeff-def coeff-monom lookup-single lookup-single-not-eq monom.abs-eq

single.abs-eq)

lemma replace-coeff-add:
assumes f 0 = 0
assumes

∧
a b. f (a+b) = f a + f b

shows replace-coeff f (p1 + p2) = replace-coeff f p1 + replace-coeff f p2
proof −

have finite {m. f (lookup (mapping-of p1) m) 6= 0}
finite {m. f (lookup (mapping-of p2) m) 6= 0}

unfolding coeff-def [symmetric] by (metis (mono-tags, lifting) Collect-mono
assms(1) coeff-def finite-lookup finite-subset)+

then show ?thesis
unfolding replace-coeff-def plus-mpoly.rep-eq unfolding Poly-Mapping.plus-poly-mapping.rep-eq
unfolding assms(2) plus-mpoly.abs-eq using Poly-Mapping.plus-poly-mapping.abs-eq[unfolded

eq-onp-def] by fastforce
qed

lemma insertion-replace-coeff :
fixes pp:: ′a::comm-ring-1 mpoly mpoly
shows insertion f (replace-coeff (insertion f) pp) = insertion f (reduce-nested-mpoly
pp)
proof (induction pp rule:mpoly-induct)

case (monom m a)
then show ?case
proof (induction m arbitrary:a rule:poly-mapping-induct)

case (single v n)
show ?case unfolding reduce-nested-mpoly-def unfolding replace-coeff-monom[of

insertion f , OF insertion-zero]
insertion-single insertion-mult using insertion-single by (simp add: monom-pow)

next
case (sum m1 m2 k v)
have replace-coeff (insertion f) (monom m1 a ∗ monom m2 1) = replace-coeff

(insertion f) (monom m1 a) ∗ replace-coeff (insertion f) (monom m2 1)

42

by (simp add: mult-monom replace-coeff-monom)
then have insertion f (replace-coeff (insertion f) (monom m1 a ∗ monom m2

1)) = insertion f (reduce-nested-mpoly (monom m1 a ∗ monom m2 1))
unfolding reduce-nested-mpoly-prod insertion-mult
by (simp add: insertion-mult sum.IH (1) sum.IH (2))

then show ?case using mult-monom[of m1 a m2 1] by auto
qed

next
case (sum p1 p2 m a)
then show ?case using reduce-nested-mpoly-sum insertion-add

replace-coeff-add[of insertion f , OF insertion-zero insertion-add] by metis
qed

lemma replace-coeff-extract-var-cong:
assumes f v = g v
shows replace-coeff (insertion f) (extract-var p v) = replace-coeff (insertion g)
(extract-var p v)
by (induction p rule:mpoly-induct;simp add: assms extract-var-monom replace-coeff-monom
extract-var-sum insertion-add replace-coeff-add)

lemma vars-replace-coeff :
assumes f 0 = 0
shows vars (replace-coeff f p) ⊆ vars p

unfolding vars-def apply (rule subsetI) unfolding mem-simps(8) coeff-keys
using assms coeff-replace-coeff by (metis coeff-keys)

definition polyfun :: nat set ⇒ ((nat ⇒ ′a::comm-semiring-1) ⇒ ′a) ⇒ bool
where polyfun N f = (∃ p. vars p ⊆ N ∧ (∀ x. insertion x p = f x))

lemma polyfunI : (
∧

P. (
∧

p. vars p ⊆ N =⇒ (
∧

x. insertion x p = f x) =⇒ P)
=⇒ P) =⇒ polyfun N f

unfolding polyfun-def by metis

lemma polyfun-subset: N⊆N ′ =⇒ polyfun N f =⇒ polyfun N ′ f
unfolding polyfun-def by blast

lemma polyfun-const: polyfun N (λ-. c)
proof −

have
∧

x. insertion x (monom 0 c) = c using insertion-single by (metis inser-
tion-one monom-one mult.commute mult.right-neutral single-zero)
then show ?thesis unfolding polyfun-def by (metis (full-types) empty-iff keys-single

single-zero subsetI subset-antisym vars-monom-subset)
qed

lemma polyfun-add:
assumes polyfun N f polyfun N g
shows polyfun N (λx. f x + g x)

43

proof −
obtain p1 p2 where vars p1 ⊆ N ∀ x. insertion x p1 = f x

vars p2 ⊆ N ∀ x. insertion x p2 = g x
using polyfun-def assms by metis

then have vars (p1 + p2) ⊆ N ∀ x. insertion x (p1 + p2) = f x + g x
using vars-add using Un-iff subsetCE subsetI apply blast
by (simp add: ‹∀ x. insertion x p1 = f x› ‹∀ x. insertion x p2 = g x› inser-

tion-add)
then show ?thesis using polyfun-def by blast

qed

lemma polyfun-mult:
assumes polyfun N f polyfun N g
shows polyfun N (λx. f x ∗ g x)
proof −

obtain p1 p2 where vars p1 ⊆ N ∀ x. insertion x p1 = f x
vars p2 ⊆ N ∀ x. insertion x p2 = g x

using polyfun-def assms by metis
then have vars (p1 ∗ p2) ⊆ N ∀ x. insertion x (p1 ∗ p2) = f x ∗ g x

using vars-mult using Un-iff subsetCE subsetI apply blast
by (simp add: ‹∀ x. insertion x p1 = f x› ‹∀ x. insertion x p2 = g x› inser-

tion-mult)
then show ?thesis using polyfun-def by blast

qed

lemma polyfun-Sum:
assumes finite I
assumes

∧
i. i∈I =⇒ polyfun N (f i)

shows polyfun N (λx.
∑

i∈I . f i x)
using assms
apply (induction I rule:finite-induct)
apply (simp add: polyfun-const)
using comm-monoid-add-class.sum.insert polyfun-add by fastforce

lemma polyfun-Prod:
assumes finite I
assumes

∧
i. i∈I =⇒ polyfun N (f i)

shows polyfun N (λx.
∏

i∈I . f i x)
using assms
apply (induction I rule:finite-induct)
apply (simp add: polyfun-const)
using comm-monoid-add-class.sum.insert polyfun-mult by fastforce

lemma polyfun-single:
assumes i∈N
shows polyfun N (λx. x i)
proof −

have ∀ f . insertion f (monom (Poly-Mapping.single i 1) 1) = f i using inser-
tion-single by simp

44

then show ?thesis unfolding polyfun-def
using vars-monom-single[of i 1 1] One-nat-def assms singletonD subset-eq
by blast

qed

end

6 Abstract Power-Products
theory Power-Products

imports Complex-Main
HOL−Library.Function-Algebras
HOL−Library.Countable
More-MPoly-Type
Utils
Well-Quasi-Orders.Well-Quasi-Orders

begin

This theory formalizes the concept of "power-products". A power-product
can be thought of as the product of some indeterminates, such as x, x2 y,
x y3 z7, etc., without any scalar coefficient.

The approach in this theory is to capture the notion of "power-product"
(also called "monomial") as type class. A canonical instance for power-
product is the type ′var ⇒0 nat, which is interpreted as mapping from
variables in the power-product to exponents.

A slightly unintuitive (but fitting better with the standard type class
instantiations of ′a ⇒0

′b) approach is to write addition to denote "multi-
plication" of power products. For example, x2y would be represented as a
function p = (X 7→ 2 , Y 7→ 1), xz as a function q = (X 7→ 1 , Z 7→ 1).
With the (pointwise) instantiation of addition of ′a ⇒0

′b, we will write p
+ q = (X 7→ 3 , Y 7→ 1 , Z 7→ 1) for the product x2y · xz = x3yz

6.1 Constant Keys
Legacy:
lemmas keys-eq-empty-iff = keys-eq-empty

definition Keys :: (′a ⇒0
′b::zero) set ⇒ ′a set

where Keys F =
⋃

(keys ‘ F)

lemma in-Keys: s ∈ Keys F ←→ (∃ f∈F . s ∈ keys f)
unfolding Keys-def by simp

lemma in-KeysI :
assumes s ∈ keys f and f ∈ F
shows s ∈ Keys F
unfolding in-Keys using assms ..

45

lemma in-KeysE :
assumes s ∈ Keys F
obtains f where s ∈ keys f and f ∈ F
using assms unfolding in-Keys ..

lemma Keys-mono:
assumes A ⊆ B
shows Keys A ⊆ Keys B
using assms by (auto simp add: Keys-def)

lemma Keys-insert: Keys (insert a A) = keys a ∪ Keys A
by (simp add: Keys-def)

lemma Keys-Un: Keys (A ∪ B) = Keys A ∪ Keys B
by (simp add: Keys-def)

lemma finite-Keys:
assumes finite A
shows finite (Keys A)
unfolding Keys-def by (rule, fact assms, rule finite-keys)

lemma Keys-not-empty:
assumes a ∈ A and a 6= 0
shows Keys A 6= {}

proof
assume Keys A = {}
from ‹a 6= 0 › have keys a 6= {} using aux by fastforce
then obtain s where s ∈ keys a by blast
from this assms(1) have s ∈ Keys A by (rule in-KeysI)
with ‹Keys A = {}› show False by simp

qed

lemma Keys-empty [simp]: Keys {} = {}
by (simp add: Keys-def)

lemma Keys-zero [simp]: Keys {0} = {}
by (simp add: Keys-def)

lemma keys-subset-Keys:
assumes f ∈ F
shows keys f ⊆ Keys F
using in-KeysI [OF - assms] by auto

lemma Keys-minus: Keys (A − B) ⊆ Keys A
by (auto simp add: Keys-def)

lemma Keys-minus-zero: Keys (A − {0}) = Keys A
proof (cases 0 ∈ A)

46

case True
hence (A − {0}) ∪ {0} = A by auto
hence Keys A = Keys ((A − {0}) ∪ {0}) by simp
also have ... = Keys (A − {0}) ∪ Keys {0 ::(′a ⇒0

′b)} by (fact Keys-Un)
also have ... = Keys (A − {0}) by simp
finally show ?thesis by simp

next
case False
hence A − {0} = A by simp
thus ?thesis by simp

qed

6.2 Constant except
definition except-fun :: (′a ⇒ ′b) ⇒ ′a set ⇒ (′a ⇒ ′b::zero)

where except-fun f S = (λx. (f x when x /∈ S))

lift-definition except :: (′a ⇒0
′b) ⇒ ′a set ⇒ (′a ⇒0

′b::zero) is except-fun
proof −

fix p:: ′a ⇒ ′b and S :: ′a set
assume finite {t. p t 6= 0}
show finite {t. except-fun p S t 6= 0}
proof (rule finite-subset[of - {t. p t 6= 0}], rule)

fix u
assume u ∈ {t. except-fun p S t 6= 0}
hence p u 6= 0 by (simp add: except-fun-def)
thus u ∈ {t. p t 6= 0} by simp

qed fact
qed

lemma lookup-except-when: lookup (except p S) = (λt. lookup p t when t /∈ S)
by (auto simp: except.rep-eq except-fun-def)

lemma lookup-except: lookup (except p S) = (λt. if t ∈ S then 0 else lookup p t)
by (rule ext) (simp add: lookup-except-when)

lemma lookup-except-singleton: lookup (except p {t}) t = 0
by (simp add: lookup-except)

lemma except-zero [simp]: except 0 S = 0
by (rule poly-mapping-eqI) (simp add: lookup-except)

lemma lookup-except-eq-idI :
assumes t /∈ S
shows lookup (except p S) t = lookup p t
using assms by (simp add: lookup-except)

lemma lookup-except-eq-zeroI :
assumes t ∈ S

47

shows lookup (except p S) t = 0
using assms by (simp add: lookup-except)

lemma except-empty [simp]: except p {} = p
by (rule poly-mapping-eqI) (simp add: lookup-except)

lemma except-eq-zeroI :
assumes keys p ⊆ S
shows except p S = 0

proof (rule poly-mapping-eqI , simp)
fix t
show lookup (except p S) t = 0
proof (cases t ∈ S)

case True
thus ?thesis by (rule lookup-except-eq-zeroI)

next
case False then show ?thesis

by (metis assms in-keys-iff lookup-except-eq-idI subset-eq)
qed

qed

lemma except-eq-zeroE :
assumes except p S = 0
shows keys p ⊆ S
by (metis assms aux in-keys-iff lookup-except-eq-idI subset-iff)

lemma except-eq-zero-iff : except p S = 0 ←→ keys p ⊆ S
by (rule, elim except-eq-zeroE , elim except-eq-zeroI)

lemma except-keys [simp]: except p (keys p) = 0
by (rule except-eq-zeroI , rule subset-refl)

lemma plus-except: p = Poly-Mapping.single t (lookup p t) + except p {t}
by (rule poly-mapping-eqI , simp add: lookup-add lookup-single lookup-except when-def

split: if-split)

lemma keys-except: keys (except p S) = keys p − S
by (transfer , auto simp: except-fun-def)

lemma except-single: except (Poly-Mapping.single u c) S = (Poly-Mapping.single
u c when u /∈ S)

by (rule poly-mapping-eqI) (simp add: lookup-except lookup-single when-def)

lemma except-plus: except (p + q) S = except p S + except q S
by (rule poly-mapping-eqI) (simp add: lookup-except lookup-add)

lemma except-minus: except (p − q) S = except p S − except q S
by (rule poly-mapping-eqI) (simp add: lookup-except lookup-minus)

48

lemma except-uminus: except (− p) S = − except p S
by (rule poly-mapping-eqI) (simp add: lookup-except)

lemma except-except: except (except p S) T = except p (S ∪ T)
by (rule poly-mapping-eqI) (simp add: lookup-except)

lemma poly-mapping-keys-eqI :
assumes a1 : keys p = keys q and a2 :

∧
t. t ∈ keys p =⇒ lookup p t = lookup q

t
shows p = q

proof (rule poly-mapping-eqI)
fix t
show lookup p t = lookup q t
proof (cases t ∈ keys p)

case True
thus ?thesis by (rule a2)

next
case False
moreover from this have t /∈ keys q unfolding a1 .
ultimately have lookup p t = 0 and lookup q t = 0 unfolding in-keys-iff by

simp-all
thus ?thesis by simp

qed
qed

lemma except-id-iff : except p S = p ←→ keys p ∩ S = {}
by (metis Diff-Diff-Int Diff-eq-empty-iff Diff-triv inf-le2 keys-except lookup-except-eq-idI

lookup-except-eq-zeroI not-in-keys-iff-lookup-eq-zero poly-mapping-keys-eqI)

lemma keys-subset-wf :
wfP (λp q::(′a, ′b::zero) poly-mapping. keys p ⊂ keys q)

unfolding wfp-def
proof (intro wfI-min)

fix x::(′a, ′b) poly-mapping and Q
assume x-in: x ∈ Q
let ?Q0 = card ‘ keys ‘ Q
from x-in have card (keys x) ∈ ?Q0 by simp
from wfE-min[OF wf this] obtain z0

where z0-in: z0 ∈ ?Q0 and z0-min:
∧

y. (y, z0) ∈ {(x, y). x < y} =⇒ y /∈
?Q0 by auto

from z0-in obtain z where z0-def : z0 = card (keys z) and z ∈ Q by auto
show ∃ z∈Q. ∀ y. (y, z) ∈ {(p, q). keys p ⊂ keys q} −→ y /∈ Q
proof (intro bexI [of - z], rule, rule)

fix y::(′a, ′b) poly-mapping
let ?y0 = card (keys y)
assume (y, z) ∈ {(p, q). keys p ⊂ keys q}
hence keys y ⊂ keys z by simp
hence ?y0 < z0 unfolding z0-def by (simp add: psubset-card-mono)
hence (?y0 , z0) ∈ {(x, y). x < y} by simp

49

from z0-min[OF this] show y /∈ Q by auto
qed (fact)

qed

lemma poly-mapping-except-induct:
assumes base: P 0 and ind:

∧
p t. p 6= 0 =⇒ t ∈ keys p =⇒ P (except p {t})

=⇒ P p
shows P p

proof (induct rule: wfp-induct[OF keys-subset-wf])
fix p::(′a, ′b) poly-mapping
assume ∀ q. keys q ⊂ keys p −→ P q
hence IH :

∧
q. keys q ⊂ keys p =⇒ P q by simp

show P p
proof (cases p = 0)

case True
thus ?thesis using base by simp

next
case False
hence keys p 6= {} by simp
then obtain t where t ∈ keys p by blast
show ?thesis

proof (rule ind, fact, fact, rule IH , simp only: keys-except, rule, rule Diff-subset,
rule)

assume keys p − {t} = keys p
hence t /∈ keys p by blast
from this ‹t ∈ keys p› show False ..

qed
qed

qed

lemma poly-mapping-except-induct ′:
assumes

∧
p. (

∧
t. t ∈ keys p =⇒ P (except p {t})) =⇒ P p

shows P p
proof (induct card (keys p) arbitrary: p)

case 0
with finite-keys[of p] have keys p = {} by simp
show ?case by (rule assms, simp add: ‹keys p = {}›)

next
case step: (Suc n)
show ?case
proof (rule assms)

fix t
assume t ∈ keys p
show P (except p {t})
proof (rule step(1), simp add: keys-except)

from step(2) ‹t ∈ keys p› finite-keys[of p] show n = card (keys p − {t}) by
simp

qed
qed

50

qed

lemma poly-mapping-plus-induct:
assumes P 0 and

∧
p c t. c 6= 0 =⇒ t /∈ keys p =⇒ P p =⇒ P (Poly-Mapping.single

t c + p)
shows P p

proof (induct card (keys p) arbitrary: p)
case 0
with finite-keys[of p] have keys p = {} by simp
hence p = 0 by simp
with assms(1) show ?case by simp

next
case step: (Suc n)
from step(2) obtain t where t: t ∈ keys p by (metis card-eq-SucD insert-iff)
define c where c = lookup p t
define q where q = except p {t}
have ∗: p = Poly-Mapping.single t c + q
by (rule poly-mapping-eqI , simp add: lookup-add lookup-single Poly-Mapping.when-def ,

intro conjI impI ,
simp add: q-def lookup-except c-def , simp add: q-def lookup-except-eq-idI)

show ?case
proof (simp only: ∗, rule assms(2))

from t show c 6= 0
using c-def by auto

next
show t /∈ keys q by (simp add: q-def keys-except)

next
show P q
proof (rule step(1))
from step(2) ‹t ∈ keys p› show n = card (keys q) unfolding q-def keys-except

by (metis Suc-inject card.remove finite-keys)
qed

qed
qed

lemma except-Diff-singleton: except p (keys p − {t}) = Poly-Mapping.single t
(lookup p t)

by (rule poly-mapping-eqI) (simp add: lookup-single in-keys-iff lookup-except
when-def)

lemma except-Un-plus-Int: except p (U ∪ V) + except p (U ∩ V) = except p U
+ except p V

by (rule poly-mapping-eqI) (simp add: lookup-except lookup-add)

corollary except-Int:
assumes keys p ⊆ U ∪ V
shows except p (U ∩ V) = except p U + except p V

proof −
from assms have except p (U ∪ V) = 0 by (rule except-eq-zeroI)

51

hence except p (U ∩ V) = except p (U ∪ V) + except p (U ∩ V) by simp
also have . . . = except p U + except p V by (fact except-Un-plus-Int)
finally show ?thesis .

qed

lemma except-keys-Int [simp]: except p (keys p ∩ U) = except p U
by (rule poly-mapping-eqI) (simp add: in-keys-iff lookup-except)

lemma except-Int-keys [simp]: except p (U ∩ keys p) = except p U
by (simp only: Int-commute[of U] except-keys-Int)

lemma except-keys-Diff : except p (keys p − U) = except p (− U)
proof −

have except p (keys p − U) = except p (keys p ∩ (− U)) by (simp only: Diff-eq)
also have . . . = except p (− U) by simp
finally show ?thesis .

qed

lemma except-decomp: p = except p U + except p (− U)
by (rule poly-mapping-eqI) (simp add: lookup-except lookup-add)

corollary except-Compl: except p (− U) = p − except p U
by (metis add-diff-cancel-left ′ except-decomp)

6.3 ’Divisibility’ on Additive Structures
context plus begin

definition adds :: ′a ⇒ ′a ⇒ bool (infix ‹adds› 50)
where b adds a ←→ (∃ k. a = b + k)

lemma addsI [intro?]: a = b + k =⇒ b adds a
unfolding adds-def ..

lemma addsE [elim?]: b adds a =⇒ (
∧

k. a = b + k =⇒ P) =⇒ P
unfolding adds-def by blast

end

context comm-monoid-add
begin

lemma adds-refl [simp]: a adds a
proof

show a = a + 0 by simp
qed

lemma adds-trans [trans]:
assumes a adds b and b adds c

52

shows a adds c
proof −

from assms obtain v where b = a + v
by (auto elim!: addsE)

moreover from assms obtain w where c = b + w
by (auto elim!: addsE)

ultimately have c = a + (v + w)
by (simp add: add.assoc)

then show ?thesis ..
qed

lemma subset-divisors-adds: {c. c adds a} ⊆ {c. c adds b} ←→ a adds b
by (auto simp add: subset-iff intro: adds-trans)

lemma strict-subset-divisors-adds: {c. c adds a} ⊂ {c. c adds b} ←→ a adds b ∧
¬ b adds a

by (auto simp add: subset-iff intro: adds-trans)

lemma zero-adds [simp]: 0 adds a
by (auto intro!: addsI)

lemma adds-plus-right [simp]: a adds c =⇒ a adds (b + c)
by (auto intro!: add.left-commute addsI elim!: addsE)

lemma adds-plus-left [simp]: a adds b =⇒ a adds (b + c)
using adds-plus-right [of a b c] by (simp add: ac-simps)

lemma adds-triv-right [simp]: a adds b + a
by (rule adds-plus-right) (rule adds-refl)

lemma adds-triv-left [simp]: a adds a + b
by (rule adds-plus-left) (rule adds-refl)

lemma plus-adds-mono:
assumes a adds b

and c adds d
shows a + c adds b + d

proof −
from ‹a adds b› obtain b ′ where b = a + b ′ ..
moreover from ‹c adds d› obtain d ′ where d = c + d ′ ..
ultimately have b + d = (a + c) + (b ′ + d ′)

by (simp add: ac-simps)
then show ?thesis ..

qed

lemma plus-adds-left: a + b adds c =⇒ a adds c
by (simp add: adds-def add.assoc) blast

lemma plus-adds-right: a + b adds c =⇒ b adds c

53

using plus-adds-left [of b a c] by (simp add: ac-simps)

end

class ninv-comm-monoid-add = comm-monoid-add +
assumes plus-eq-zero: s + t = 0 =⇒ s = 0

begin

lemma plus-eq-zero-2 : t = 0 if s + t = 0
using that
by (simp only: add-commute[of s t] plus-eq-zero)

lemma adds-zero: s adds 0 ←→ (s = 0)
proof

assume s adds 0
from this obtain k where 0 = s + k unfolding adds-def ..
from this plus-eq-zero[of s k] show s = 0

by blast
next

assume s = 0
thus s adds 0 by simp

qed

end

context canonically-ordered-monoid-add
begin
subclass ninv-comm-monoid-add by (standard, simp)
end

class comm-powerprod = cancel-comm-monoid-add
begin

lemma adds-canc: s + u adds t + u ←→ s adds t for s t u:: ′a
unfolding adds-def
apply auto
apply (metis local.add.left-commute local.add-diff-cancel-left ′ local.add-diff-cancel-right ′)
using add-assoc add-commute by auto

lemma adds-canc-2 : u + s adds u + t ←→ s adds t
by (simp add: adds-canc ac-simps)

lemma add-minus-2 : (s + t) − s = t
by simp

lemma adds-minus:
assumes s adds t
shows (t − s) + s = t

proof −

54

from assms adds-def [of s t] obtain u where u: t = u + s by (auto simp:
ac-simps)

then have t − s = u
by simp

thus ?thesis using u by simp
qed

lemma plus-adds-0 :
assumes (s + t) adds u
shows s adds (u − t)

proof −
from assms have (s + t) adds ((u − t) + t) using adds-minus local.plus-adds-right

by presburger
thus ?thesis using adds-canc[of s t u − t] by simp

qed

lemma plus-adds-2 :
assumes t adds u and s adds (u − t)
shows (s + t) adds u
by (metis adds-canc adds-minus assms)

lemma plus-adds:
shows (s + t) adds u ←→ (t adds u ∧ s adds (u − t))

proof
assume a1 : (s + t) adds u
show t adds u ∧ s adds (u − t)
proof

from plus-adds-right[OF a1] show t adds u .
next

from plus-adds-0 [OF a1] show s adds (u − t) .
qed

next
assume t adds u ∧ s adds (u − t)
hence t adds u and s adds (u − t) by auto
from plus-adds-2 [OF ‹t adds u› ‹s adds (u − t)›] show (s + t) adds u .

qed

lemma minus-plus:
assumes s adds t
shows (t − s) + u = (t + u) − s

proof −
from assms obtain k where k: t = s + k unfolding adds-def ..
hence t − s = k by simp
also from k have (t + u) − s = k + u

by (simp add: add-assoc)
finally show ?thesis by simp

qed

lemma minus-plus-minus:

55

assumes s adds t and u adds v
shows (t − s) + (v − u) = (t + v) − (s + u)
using add-commute assms(1) assms(2) diff-diff-add minus-plus by auto

lemma minus-plus-minus-cancel:
assumes u adds t and s adds u
shows (t − u) + (u − s) = t − s
by (metis assms(1) assms(2) local.add-diff-cancel-left ′ local.add-diff-cancel-right

local.addsE minus-plus)

end

Instances of class lcs-powerprod are types of commutative power-products
admitting (not necessarily unique) least common sums (inspired from least
common multiplies). Note that if the components of indeterminates are ar-
bitrary integers (as for instance in Laurent polynomials), then no unique
lcss exist.
class lcs-powerprod = comm-powerprod +

fixes lcs:: ′a ⇒ ′a ⇒ ′a
assumes adds-lcs: s adds (lcs s t)
assumes lcs-adds: s adds u =⇒ t adds u =⇒ (lcs s t) adds u
assumes lcs-comm: lcs s t = lcs t s

begin

lemma adds-lcs-2 : t adds (lcs s t)
by (simp only: lcs-comm[of s t], rule adds-lcs)

lemma lcs-adds-plus: lcs s t adds s + t by (simp add: lcs-adds)

"gcs" stands for "greatest common summand".
definition gcs :: ′a ⇒ ′a ⇒ ′a where gcs s t = (s + t) − (lcs s t)

lemma gcs-plus-lcs: (gcs s t) + (lcs s t) = s + t
unfolding gcs-def by (rule adds-minus, fact lcs-adds-plus)

lemma gcs-adds: (gcs s t) adds s
proof −

have t adds (lcs s t) (is t adds ?l) unfolding lcs-comm[of s t] by (fact adds-lcs)
then obtain u where eq1 : ?l = t + u unfolding adds-def ..
from lcs-adds-plus[of s t] obtain v where eq2 : s + t = ?l + v unfolding

adds-def ..
hence t + s = t + (u + v) unfolding eq1 by (simp add: ac-simps)
hence s: s = u + v unfolding add-left-cancel .
show ?thesis unfolding eq2 gcs-def unfolding s by simp

qed

lemma gcs-comm: gcs s t = gcs t s unfolding gcs-def by (simp add: lcs-comm
ac-simps)

56

lemma gcs-adds-2 : (gcs s t) adds t
by (simp only: gcs-comm[of s t], rule gcs-adds)

end

class ulcs-powerprod = lcs-powerprod + ninv-comm-monoid-add
begin

lemma adds-antisym:
assumes s adds t t adds s
shows s = t

proof −
from ‹s adds t› obtain u where u-def : t = s + u unfolding adds-def ..
from ‹t adds s› obtain v where v-def : s = t + v unfolding adds-def ..
from u-def v-def have s = (s + u) + v by (simp add: ac-simps)
hence s + 0 = s + (u + v) by (simp add: ac-simps)
hence u + v = 0 by simp
hence u = 0 using plus-eq-zero[of u v] by simp
thus ?thesis using u-def by simp

qed

lemma lcs-unique:
assumes s adds l and t adds l and ∗:

∧
u. s adds u =⇒ t adds u =⇒ l adds u

shows l = lcs s t
by (rule adds-antisym, rule ∗, fact adds-lcs, fact adds-lcs-2 , rule lcs-adds, fact+)

lemma lcs-zero: lcs 0 t = t
by (rule lcs-unique[symmetric], fact zero-adds, fact adds-refl)

lemma lcs-plus-left: lcs (u + s) (u + t) = u + lcs s t
proof (rule lcs-unique[symmetric], simp-all only: adds-canc-2 , fact adds-lcs, fact
adds-lcs-2 ,

simp add: add.commute[of u] plus-adds)
fix v
assume u adds v ∧ s adds v − u
hence s adds v − u ..
assume t adds v − u
with ‹s adds v − u› show lcs s t adds v − u by (rule lcs-adds)

qed

lemma lcs-plus-right: lcs (s + u) (t + u) = (lcs s t) + u
using lcs-plus-left[of u s t] by (simp add: ac-simps)

lemma adds-gcs:
assumes u adds s and u adds t
shows u adds (gcs s t)

proof −
from assms have s + u adds s + t and t + u adds t + s

by (simp-all add: plus-adds-mono)

57

hence lcs (s + u) (t + u) adds s + t
by (auto intro: lcs-adds simp add: ac-simps)

hence u + (lcs s t) adds s + t unfolding lcs-plus-right by (simp add: ac-simps)
hence u adds (s + t) − (lcs s t) unfolding plus-adds ..
thus ?thesis unfolding gcs-def .

qed

lemma gcs-unique:
assumes g adds s and g adds t and ∗:

∧
u. u adds s =⇒ u adds t =⇒ u adds g

shows g = gcs s t
by (rule adds-antisym, rule adds-gcs, fact, fact, rule ∗, fact gcs-adds, fact gcs-adds-2)

lemma gcs-plus-left: gcs (u + s) (u + t) = u + gcs s t
proof −

have u + s + (u + t) − (u + lcs s t) = u + s + (u + t) − u − lcs s t by (simp
only: diff-diff-add)

also have ... = u + s + t + (u − u) − lcs s t by (simp add: add.left-commute)
also have ... = u + s + t − lcs s t by simp
also have ... = u + (s + t − lcs s t)

using add-assoc add-commute local.lcs-adds-plus local.minus-plus by auto
finally show ?thesis unfolding gcs-def lcs-plus-left .

qed

lemma gcs-plus-right: gcs (s + u) (t + u) = (gcs s t) + u
using gcs-plus-left[of u s t] by (simp add: ac-simps)

lemma lcs-same [simp]: lcs s s = s
proof −

have lcs s s adds s by (rule lcs-adds, simp-all)
moreover have s adds lcs s s by (rule adds-lcs)
ultimately show ?thesis by (rule adds-antisym)

qed

lemma gcs-same [simp]: gcs s s = s
proof −

have gcs s s adds s by (rule gcs-adds)
moreover have s adds gcs s s by (rule adds-gcs, simp-all)
ultimately show ?thesis by (rule adds-antisym)

qed

end

6.4 Dickson Classes
definition (in plus) dickson-grading :: (′a ⇒ nat) ⇒ bool

where dickson-grading d ←→
((∀ s t. d (s + t) = max (d s) (d t)) ∧ (∀n::nat. almost-full-on (adds) {x.

d x ≤ n}))

58

definition dgrad-set :: (′a ⇒ nat) ⇒ nat ⇒ ′a set
where dgrad-set d m = {t. d t ≤ m}

definition dgrad-set-le :: (′a ⇒ nat) ⇒ (′a set) ⇒ (′a set) ⇒ bool
where dgrad-set-le d S T ←→ (∀ s∈S . ∃ t∈T . d s ≤ d t)

lemma dickson-gradingI :
assumes

∧
s t. d (s + t) = max (d s) (d t)

assumes
∧

n::nat. almost-full-on (adds) {x. d x ≤ n}
shows dickson-grading d
unfolding dickson-grading-def using assms by blast

lemma dickson-gradingD1 : dickson-grading d =⇒ d (s + t) = max (d s) (d t)
by (auto simp add: dickson-grading-def)

lemma dickson-gradingD2 : dickson-grading d =⇒ almost-full-on (adds) {x. d x ≤
n}

by (auto simp add: dickson-grading-def)

lemma dickson-gradingD2 ′:
assumes dickson-grading (d:: ′a::comm-monoid-add ⇒ nat)
shows wqo-on (adds) {x. d x ≤ n}

proof (intro wqo-onI transp-onI)
fix x y z :: ′a
assume x adds y and y adds z
thus x adds z by (rule adds-trans)

next
from assms show almost-full-on (adds) {x. d x ≤ n} by (rule dickson-gradingD2)

qed

lemma dickson-gradingE :
assumes dickson-grading d and

∧
i::nat. d ((seq::nat ⇒ ′a::plus) i) ≤ n

obtains i j where i < j and seq i adds seq j
proof −
from assms(1) have almost-full-on (adds) {x. d x ≤ n} by (rule dickson-gradingD2)
moreover from assms(2) have

∧
i. seq i ∈ {x. d x ≤ n} by simp

ultimately obtain i j where i < j and seq i adds seq j by (rule almost-full-onD)
thus ?thesis ..

qed

lemma dickson-grading-adds-imp-le:
assumes dickson-grading d and s adds t
shows d s ≤ d t

proof −
from assms(2) obtain u where t = s + u ..
hence d t = max (d s) (d u) by (simp only: dickson-gradingD1 [OF assms(1)])
thus ?thesis by simp

qed

59

lemma dickson-grading-minus:
assumes dickson-grading d and s adds (t:: ′a::cancel-ab-semigroup-add)
shows d (t − s) ≤ d t

proof −
from assms(2) obtain u where t = s + u ..
hence t − s = u by simp
from assms(1) have d t = ord-class.max (d s) (d u) unfolding ‹t = s + u› by

(rule dickson-gradingD1)
thus ?thesis by (simp add: ‹t − s = u›)

qed

lemma dickson-grading-lcs:
assumes dickson-grading d
shows d (lcs s t) ≤ max (d s) (d t)

proof −
from assms have d (lcs s t) ≤ d (s + t) by (rule dickson-grading-adds-imp-le,

intro lcs-adds-plus)
thus ?thesis by (simp only: dickson-gradingD1 [OF assms])

qed

lemma dickson-grading-lcs-minus:
assumes dickson-grading d
shows d (lcs s t − s) ≤ max (d s) (d t)

proof −
from assms have d (lcs s t − s) ≤ d (lcs s t) by (rule dickson-grading-minus,

intro adds-lcs)
also from assms have ... ≤ max (d s) (d t) by (rule dickson-grading-lcs)
finally show ?thesis .

qed

lemma dgrad-set-leI :
assumes

∧
s. s ∈ S =⇒ ∃ t∈T . d s ≤ d t

shows dgrad-set-le d S T
using assms by (auto simp: dgrad-set-le-def)

lemma dgrad-set-leE :
assumes dgrad-set-le d S T and s ∈ S
obtains t where t ∈ T and d s ≤ d t
using assms by (auto simp: dgrad-set-le-def)

lemma dgrad-set-exhaust-expl:
assumes finite F
shows F ⊆ dgrad-set d (Max (d ‘ F))

proof
fix f
assume f ∈ F
hence d f ∈ d ‘ F by simp
with - have d f ≤ Max (d ‘ F)
proof (rule Max-ge)

60

from assms show finite (d ‘ F) by auto
qed
hence dgrad-set d (d f) ⊆ dgrad-set d (Max (d ‘ F)) by (auto simp: dgrad-set-def)
moreover have f ∈ dgrad-set d (d f) by (simp add: dgrad-set-def)
ultimately show f ∈ dgrad-set d (Max (d ‘ F)) ..

qed

lemma dgrad-set-exhaust:
assumes finite F
obtains m where F ⊆ dgrad-set d m

proof
from assms show F ⊆ dgrad-set d (Max (d ‘ F)) by (rule dgrad-set-exhaust-expl)

qed

lemma dgrad-set-le-trans [trans]:
assumes dgrad-set-le d S T and dgrad-set-le d T U
shows dgrad-set-le d S U
unfolding dgrad-set-le-def

proof
fix s
assume s ∈ S
with assms(1) obtain t where t ∈ T and 1 : d s ≤ d t by (auto simp add:

dgrad-set-le-def)
from assms(2) this(1) obtain u where u ∈ U and 2 : d t ≤ d u by (auto simp

add: dgrad-set-le-def)
from this(1) show ∃ u∈U . d s ≤ d u
proof

from 1 2 show d s ≤ d u by (rule le-trans)
qed

qed

lemma dgrad-set-le-Un: dgrad-set-le d (S ∪ T) U ←→ (dgrad-set-le d S U ∧
dgrad-set-le d T U)

by (auto simp add: dgrad-set-le-def)

lemma dgrad-set-le-subset:
assumes S ⊆ T
shows dgrad-set-le d S T
unfolding dgrad-set-le-def using assms by blast

lemma dgrad-set-le-refl: dgrad-set-le d S S
by (rule dgrad-set-le-subset, fact subset-refl)

lemma dgrad-set-le-dgrad-set:
assumes dgrad-set-le d F G and G ⊆ dgrad-set d m
shows F ⊆ dgrad-set d m

proof
fix f
assume f ∈ F

61

with assms(1) obtain g where g ∈ G and ∗: d f ≤ d g by (auto simp add:
dgrad-set-le-def)

from assms(2) this(1) have g ∈ dgrad-set d m ..
hence d g ≤ m by (simp add: dgrad-set-def)
with ∗ have d f ≤ m by (rule le-trans)
thus f ∈ dgrad-set d m by (simp add: dgrad-set-def)

qed

lemma dgrad-set-dgrad: p ∈ dgrad-set d (d p)
by (simp add: dgrad-set-def)

lemma dgrad-setI [intro]:
assumes d t ≤ m
shows t ∈ dgrad-set d m
using assms by (auto simp: dgrad-set-def)

lemma dgrad-setD:
assumes t ∈ dgrad-set d m
shows d t ≤ m
using assms by (simp add: dgrad-set-def)

lemma dgrad-set-zero [simp]: dgrad-set (λ-. 0) m = UNIV
by auto

lemma subset-dgrad-set-zero: F ⊆ dgrad-set (λ-. 0) m
by simp

lemma dgrad-set-subset:
assumes m ≤ n
shows dgrad-set d m ⊆ dgrad-set d n
using assms by (auto simp: dgrad-set-def)

lemma dgrad-set-closed-plus:
assumes dickson-grading d and s ∈ dgrad-set d m and t ∈ dgrad-set d m
shows s + t ∈ dgrad-set d m

proof −
from assms(1) have d (s + t) = ord-class.max (d s) (d t) by (rule dick-

son-gradingD1)
also from assms(2 , 3) have ... ≤ m by (simp add: dgrad-set-def)
finally show ?thesis by (simp add: dgrad-set-def)

qed

lemma dgrad-set-closed-minus:
assumes dickson-grading d and s ∈ dgrad-set d m and t adds (s:: ′a::cancel-ab-semigroup-add)
shows s − t ∈ dgrad-set d m

proof −
from assms(1 , 3) have d (s − t) ≤ d s by (rule dickson-grading-minus)
also from assms(2) have ... ≤ m by (simp add: dgrad-set-def)
finally show ?thesis by (simp add: dgrad-set-def)

62

qed

lemma dgrad-set-closed-lcs:
assumes dickson-grading d and s ∈ dgrad-set d m and t ∈ dgrad-set d m
shows lcs s t ∈ dgrad-set d m

proof −
from assms(1) have d (lcs s t) ≤ ord-class.max (d s) (d t) by (rule dick-

son-grading-lcs)
also from assms(2 , 3) have ... ≤ m by (simp add: dgrad-set-def)
finally show ?thesis by (simp add: dgrad-set-def)

qed

lemma dickson-gradingD-dgrad-set: dickson-grading d =⇒ almost-full-on (adds)
(dgrad-set d m)

by (auto dest: dickson-gradingD2 simp: dgrad-set-def)

lemma ex-finite-adds:
assumes dickson-grading d and S ⊆ dgrad-set d m
obtains T where finite T and T ⊆ S and

∧
s. s ∈ S =⇒ (∃ t∈T . t adds

(s:: ′a::cancel-comm-monoid-add))
proof −

have reflp ((adds):: ′a ⇒ -) by (simp add: reflp-def)
moreover from assms(2) have almost-full-on (adds) S
proof (rule almost-full-on-subset)

from assms(1) show almost-full-on (adds) (dgrad-set d m) by (rule dick-
son-gradingD-dgrad-set)

qed
ultimately obtain T where finite T and T ⊆ S and

∧
s. s ∈ S =⇒ (∃ t∈T .

t adds s)
by (rule almost-full-on-finite-subsetE , blast)

thus ?thesis ..
qed

class graded-dickson-powerprod = ulcs-powerprod +
assumes ex-dgrad: ∃ d:: ′a ⇒ nat. dickson-grading d

begin

definition dgrad-dummy where dgrad-dummy = (SOME d. dickson-grading d)

lemma dickson-grading-dgrad-dummy: dickson-grading dgrad-dummy
unfolding dgrad-dummy-def using ex-dgrad by (rule someI-ex)

end

class dickson-powerprod = ulcs-powerprod +
assumes dickson: almost-full-on (adds) UNIV

begin

lemma dickson-grading-zero: dickson-grading (λ-:: ′a. 0)

63

by (simp add: dickson-grading-def dickson)

subclass graded-dickson-powerprod by (standard, rule, fact dickson-grading-zero)

end

Class graded-dickson-powerprod is a slightly artificial construction. It is
needed, because type nat ⇒0 nat does not satisfy the usual conditions of
a "Dickson domain" (as formulated in class dickson-powerprod), but we still
want to use that type as the type of power-products in the computation of
Gröbner bases. So, we exploit the fact that in a finite set of polynomials
(which is the input of Buchberger’s algorithm) there is always some "highest"
indeterminate that occurs with non-zero exponent, and no "higher" indeter-
minates are generated during the execution of the algorithm. This allows us
to prove that the algorithm terminates, even though there are in principle
infinitely many indeterminates.

6.5 Additive Linear Orderings
lemma group-eq-aux: a + (b − a) = (b:: ′a::ab-group-add)
proof −

have a + (b − a) = b − a + a by simp
also have ... = b by simp
finally show ?thesis .

qed

class semi-canonically-ordered-monoid-add = ordered-comm-monoid-add +
assumes le-imp-add: a ≤ b =⇒ (∃ c. b = a + c)

context canonically-ordered-monoid-add
begin
subclass semi-canonically-ordered-monoid-add

by (standard, simp only: le-iff-add)
end

class add-linorder-group = ordered-ab-semigroup-add-imp-le + ab-group-add + linorder

class add-linorder = ordered-ab-semigroup-add-imp-le + cancel-comm-monoid-add
+ semi-canonically-ordered-monoid-add + linorder
begin

subclass ordered-comm-monoid-add ..

subclass ordered-cancel-comm-monoid-add ..

lemma le-imp-inv:
assumes a ≤ b
shows b = a + (b − a)

64

using le-imp-add[OF assms] by auto

lemma max-eq-sum:
obtains y where max a b = a + y
unfolding max-def

proof (cases a ≤ b)
case True
hence b = a + (b − a) by (rule le-imp-inv)
then obtain c where eq: b = a + c ..
show ?thesis
proof

from True show max a b = a + c unfolding max-def eq by simp
qed

next
case False
show ?thesis
proof

from False show max a b = a + 0 unfolding max-def by simp
qed

qed

lemma min-plus-max:
shows (min a b) + (max a b) = a + b

proof (cases a ≤ b)
case True
thus ?thesis unfolding min-def max-def by simp

next
case False
thus ?thesis unfolding min-def max-def by (simp add: ac-simps)

qed

end

class add-linorder-min = add-linorder +
assumes zero-min: 0 ≤ x

begin

subclass ninv-comm-monoid-add
proof

fix x y
assume ∗: x + y = 0
show x = 0
proof −

from zero-min[of x] have 0 = x ∨ x > 0 by auto
thus ?thesis
proof

assume x > 0
have 0 ≤ y by (fact zero-min)
also have ... = 0 + y by simp

65

also from ‹x > 0 › have ... < x + y by (rule add-strict-right-mono)
finally have 0 < x + y .
hence x + y 6= 0 by simp
from this ∗ show ?thesis ..

qed simp
qed

qed

lemma leq-add-right:
shows x ≤ x + y
using add-left-mono[OF zero-min[of y], of x] by simp

lemma leq-add-left:
shows x ≤ y + x
using add-right-mono[OF zero-min[of y], of x] by simp

subclass canonically-ordered-monoid-add
by (standard, rule, elim le-imp-add, elim exE , simp add: leq-add-right)

end

class add-wellorder = add-linorder-min + wellorder

instantiation nat :: add-linorder
begin

instance by (standard, simp)

end

instantiation nat :: add-linorder-min
begin
instance by (standard, simp)
end

instantiation nat :: add-wellorder
begin
instance ..
end

context add-linorder-group
begin

subclass add-linorder
proof (standard, intro exI)

fix a b
show b = a + (b − a) using add-commute local.diff-add-cancel by auto

qed

66

end

instantiation int :: add-linorder-group
begin
instance ..
end

instantiation rat :: add-linorder-group
begin
instance ..
end

instantiation real :: add-linorder-group
begin
instance ..
end

6.6 Ordered Power-Products
locale ordered-powerprod =

ordered-powerprod-lin: linorder ord ord-strict
for ord:: ′a ⇒ ′a::comm-powerprod ⇒ bool (infixl ‹�› 50)
and ord-strict:: ′a ⇒ ′a::comm-powerprod ⇒ bool (infixl ‹≺› 50) +
assumes zero-min: 0 � t
assumes plus-monotone: s � t =⇒ s + u � t + u

begin

Conceal these relations defined in Equipollence
no-notation lesspoll (infixl ‹≺› 50)
no-notation lepoll (infixl ‹.› 50)

abbreviation ord-conv (infixl ‹�› 50) where ord-conv ≡ (�)−1−1

abbreviation ord-strict-conv (infixl ‹�› 50) where ord-strict-conv ≡ (≺)−1−1

lemma ord-canc:
assumes s + u � t + u
shows s � t

proof (rule ordered-powerprod-lin.le-cases[of s t], simp)
assume t � s
from assms plus-monotone[OF this, of u] have t + u = s + u

using ordered-powerprod-lin.order .eq-iff by simp
hence t = s by simp
thus s � t by simp

qed

lemma ord-adds:
assumes s adds t
shows s � t

proof −
from assms have ∃ u. t = s + u unfolding adds-def by simp

67

then obtain k where t = s + k ..
thus ?thesis using plus-monotone[OF zero-min[of k], of s] by (simp add: ac-simps)

qed

lemma ord-canc-left:
assumes u + s � u + t
shows s � t
using assms unfolding add.commute[of u] by (rule ord-canc)

lemma ord-strict-canc:
assumes s + u ≺ t + u
shows s ≺ t
using assms ord-canc[of s u t] add-right-cancel[of s u t]
ordered-powerprod-lin.le-imp-less-or-eq ordered-powerprod-lin.order .strict-implies-order

by blast

lemma ord-strict-canc-left:
assumes u + s ≺ u + t
shows s ≺ t
using assms unfolding add.commute[of u] by (rule ord-strict-canc)

lemma plus-monotone-left:
assumes s � t
shows u + s � u + t
using assms
by (simp add: add.commute, rule plus-monotone)

lemma plus-monotone-strict:
assumes s ≺ t
shows s + u ≺ t + u
using assms
by (simp add: ordered-powerprod-lin.order .strict-iff-order plus-monotone)

lemma plus-monotone-strict-left:
assumes s ≺ t
shows u + s ≺ u + t
using assms
by (simp add: ordered-powerprod-lin.order .strict-iff-order plus-monotone-left)

end

locale gd-powerprod =
ordered-powerprod ord ord-strict
for ord:: ′a ⇒ ′a::graded-dickson-powerprod ⇒ bool (infixl ‹�› 50)
and ord-strict (infixl ‹≺› 50)

begin

definition dickson-le :: (′a ⇒ nat) ⇒ nat ⇒ ′a ⇒ ′a ⇒ bool
where dickson-le d m s t ←→ (d s ≤ m ∧ d t ≤ m ∧ s � t)

68

definition dickson-less :: (′a ⇒ nat) ⇒ nat ⇒ ′a ⇒ ′a ⇒ bool
where dickson-less d m s t ←→ (d s ≤ m ∧ d t ≤ m ∧ s ≺ t)

lemma dickson-leI :
assumes d s ≤ m and d t ≤ m and s � t
shows dickson-le d m s t
using assms by (simp add: dickson-le-def)

lemma dickson-leD1 :
assumes dickson-le d m s t
shows d s ≤ m
using assms by (simp add: dickson-le-def)

lemma dickson-leD2 :
assumes dickson-le d m s t
shows d t ≤ m
using assms by (simp add: dickson-le-def)

lemma dickson-leD3 :
assumes dickson-le d m s t
shows s � t
using assms by (simp add: dickson-le-def)

lemma dickson-le-trans:
assumes dickson-le d m s t and dickson-le d m t u
shows dickson-le d m s u
using assms by (auto simp add: dickson-le-def)

lemma dickson-lessI :
assumes d s ≤ m and d t ≤ m and s ≺ t
shows dickson-less d m s t
using assms by (simp add: dickson-less-def)

lemma dickson-lessD1 :
assumes dickson-less d m s t
shows d s ≤ m
using assms by (simp add: dickson-less-def)

lemma dickson-lessD2 :
assumes dickson-less d m s t
shows d t ≤ m
using assms by (simp add: dickson-less-def)

lemma dickson-lessD3 :
assumes dickson-less d m s t
shows s ≺ t
using assms by (simp add: dickson-less-def)

69

lemma dickson-less-irrefl: ¬ dickson-less d m t t
by (simp add: dickson-less-def)

lemma dickson-less-trans:
assumes dickson-less d m s t and dickson-less d m t u
shows dickson-less d m s u
using assms by (auto simp add: dickson-less-def)

lemma transp-dickson-less: transp (dickson-less d m)
by (rule transpI , fact dickson-less-trans)

lemma wfp-on-ord-strict:
assumes dickson-grading d
shows wfp-on (≺) {x. d x ≤ n}

proof −
let ?A = {x. d x ≤ n}
have strict (�) = (≺) by (intro ext, simp only: ordered-powerprod-lin.less-le-not-le)
have qo-on (adds) ?A by (auto simp: qo-on-def reflp-on-def transp-on-def dest:

adds-trans)
moreover from assms have wqo-on (adds) ?A by (rule dickson-gradingD2 ′)
ultimately have (∀Q. (∀ x∈?A. ∀ y∈?A. x adds y −→ Q x y) ∧ qo-on Q ?A −→

wfp-on (strict Q) ?A)
by (simp only: wqo-extensions-wf-conv)

hence (∀ x∈?A. ∀ y∈?A. x adds y −→ x � y) ∧ qo-on (�) ?A −→ wfp-on (strict
(�)) ?A ..

thus ?thesis unfolding ‹strict (�) = (≺)›
proof

show (∀ x∈?A. ∀ y∈?A. x adds y −→ x � y) ∧ qo-on (�) ?A
proof (intro conjI ballI impI ord-adds)

show qo-on (�) ?A by (auto simp: qo-on-def reflp-on-def transp-on-def)
qed

qed
qed

lemma wf-dickson-less:
assumes dickson-grading d
shows wfP (dickson-less d m)

proof (rule wfP-chain)
show ¬ (∃ seq. ∀ i. dickson-less d m (seq (Suc i)) (seq i))
proof

assume ∃ seq. ∀ i. dickson-less d m (seq (Suc i)) (seq i)
then obtain seq::nat ⇒ ′a where ∀ i. dickson-less d m (seq (Suc i)) (seq i) ..
hence ∗:

∧
i. dickson-less d m (seq (Suc i)) (seq i) ..

with transp-dickson-less have seq-decr :
∧

i j. i < j =⇒ dickson-less d m (seq
j) (seq i)

by (rule transp-sequence)

from assms obtain i j where i < j and i-adds-j: seq i adds seq j
proof (rule dickson-gradingE)

70

fix i
from ∗ show d (seq i) ≤ m by (rule dickson-lessD2)

qed
from ‹i < j› have dickson-less d m (seq j) (seq i) by (rule seq-decr)
hence seq j ≺ seq i by (rule dickson-lessD3)
moreover from i-adds-j have seq i � seq j by (rule ord-adds)
ultimately show False by simp

qed
qed

end

gd-powerprod stands for graded ordered Dickson power-products.
locale od-powerprod =

ordered-powerprod ord ord-strict
for ord:: ′a ⇒ ′a::dickson-powerprod ⇒ bool (infixl ‹�› 50)
and ord-strict (infixl ‹≺› 50)

begin

sublocale gd-powerprod by standard

lemma wf-ord-strict: wfP (≺)
proof (rule wfP-chain)

show ¬ (∃ seq. ∀ i. seq (Suc i) ≺ seq i)
proof

assume ∃ seq. ∀ i. seq (Suc i) ≺ seq i
then obtain seq::nat ⇒ ′a where ∀ i. seq (Suc i) ≺ seq i ..
hence

∧
i. seq (Suc i) ≺ seq i ..

with ordered-powerprod-lin.transp-on-less have seq-decr :
∧

i j. i < j =⇒ (seq
j) ≺ (seq i)

by (rule transp-sequence)

from dickson obtain i j::nat where i < j and i-adds-j: seq i adds seq j
by (auto elim!: almost-full-onD)

from seq-decr [OF ‹i < j›] have seq j � seq i ∧ seq j 6= seq i by auto
hence seq j � seq i and seq j 6= seq i by simp-all
from ‹seq j 6= seq i› ‹seq j � seq i› ord-adds[OF i-adds-j]

ordered-powerprod-lin.order .eq-iff [of seq j seq i]
show False by simp

qed
qed

end

od-powerprod stands for ordered Dickson power-products.

6.7 Functions as Power-Products
lemma finite-neq-0 :

71

assumes fin-A: finite {x. f x 6= 0} and fin-B: finite {x. g x 6= 0} and
∧

x. h x
0 0 = 0

shows finite {x. h x (f x) (g x) 6= 0}
proof −

from fin-A fin-B have finite ({x. f x 6= 0} ∪ {x. g x 6= 0}) by (intro finite-UnI)
hence finite-union: finite {x. (f x 6= 0) ∨ (g x 6= 0)} by (simp only: Col-

lect-disj-eq)
have {x. h x (f x) (g x) 6= 0} ⊆ {x. (f x 6= 0) ∨ (g x 6= 0)}
proof (intro Collect-mono, rule)

fix x:: ′a
assume h-not-zero: h x (f x) (g x) 6= 0
have f x = 0 =⇒ g x 6= 0
proof

assume f x = 0 g x = 0
thus False using h-not-zero ‹h x 0 0 = 0 › by simp

qed
thus f x 6= 0 ∨ g x 6= 0 by auto

qed
from finite-subset[OF this] finite-union show finite {x. h x (f x) (g x) 6= 0} .

qed

lemma finite-neq-0 ′:
assumes finite {x. f x 6= 0} and finite {x. g x 6= 0} and h 0 0 = 0
shows finite {x. h (f x) (g x) 6= 0}
using assms by (rule finite-neq-0)

lemma finite-neq-0-inv:
assumes fin-A: finite {x. h x (f x) (g x) 6= 0} and fin-B: finite {x. f x 6= 0}

and
∧

x y. h x 0 y = y
shows finite {x. g x 6= 0}

proof −
from fin-A and fin-B have finite ({x. h x (f x) (g x) 6= 0} ∪ {x. f x 6= 0}) by

(intro finite-UnI)
hence finite-union: finite {x. (h x (f x) (g x) 6= 0) ∨ f x 6= 0} by (simp only:

Collect-disj-eq)
have {x. g x 6= 0} ⊆ {x. (h x (f x) (g x) 6= 0) ∨ f x 6= 0}

by (intro Collect-mono, rule, rule disjCI , simp add: assms(3))
from this finite-union show finite {x. g x 6= 0} by (rule finite-subset)

qed

lemma finite-neq-0-inv ′:
assumes inf-A: finite {x. h (f x) (g x) 6= 0} and fin-B: finite {x. f x 6= 0} and∧
x. h 0 x = x
shows finite {x. g x 6= 0}
using assms by (rule finite-neq-0-inv)

6.7.1 ′a ⇒ ′b belongs to class comm-powerprod
instance fun :: (type, cancel-comm-monoid-add) comm-powerprod

72

by standard

6.7.2 ′a ⇒ ′b belongs to class ninv-comm-monoid-add
instance fun :: (type, ninv-comm-monoid-add) ninv-comm-monoid-add

by (standard, simp only: plus-fun-def zero-fun-def fun-eq-iff , intro allI , rule
plus-eq-zero, auto)

6.7.3 ′a ⇒ ′b belongs to class lcs-powerprod
instantiation fun :: (type, add-linorder) lcs-powerprod
begin

definition lcs-fun::(′a ⇒ ′b) ⇒ (′a ⇒ ′b) ⇒ (′a ⇒ ′b) where lcs f g = (λx. max
(f x) (g x))

lemma adds-funI :
assumes s ≤ t
shows s adds (t:: ′a ⇒ ′b)

proof (rule addsI , rule)
fix x
from assms have s x ≤ t x unfolding le-fun-def ..
hence t x = s x + (t x − s x) by (rule le-imp-inv)
thus t x = (s + (t − s)) x by simp

qed

lemma adds-fun-iff : f adds (g:: ′a ⇒ ′b) ←→ (∀ x. f x adds g x)
unfolding adds-def plus-fun-def by metis

lemma adds-fun-iff ′: f adds (g:: ′a ⇒ ′b) ←→ (∀ x. ∃ y. g x = f x + y)
unfolding adds-fun-iff unfolding adds-def plus-fun-def ..

lemma adds-lcs-fun:
shows s adds (lcs s (t:: ′a ⇒ ′b))
by (rule adds-funI , simp only: le-fun-def lcs-fun-def , auto simp: max-def)

lemma lcs-comm-fun: lcs s t = lcs t (s:: ′a ⇒ ′b)
unfolding lcs-fun-def
by (auto simp: max-def intro!: ext)

lemma lcs-adds-fun:
assumes s adds u and t adds (u:: ′a ⇒ ′b)
shows (lcs s t) adds u
using assms unfolding lcs-fun-def adds-fun-iff ′

proof −
assume a1 : ∀ x. ∃ y. u x = s x + y and a2 : ∀ x. ∃ y. u x = t x + y
show ∀ x. ∃ y. u x = max (s x) (t x) + y
proof

fix x
from a1 have b1 : ∃ y. u x = s x + y ..

73

from a2 have b2 : ∃ y. u x = t x + y ..
show ∃ y. u x = max (s x) (t x) + y unfolding max-def

by (split if-split, intro conjI impI , rule b2 , rule b1)
qed

qed

instance
apply standard
subgoal by (rule adds-lcs-fun)
subgoal by (rule lcs-adds-fun)
subgoal by (rule lcs-comm-fun)
done

end

lemma leq-lcs-fun-1 : s ≤ (lcs s (t:: ′a ⇒ ′b::add-linorder))
by (simp add: lcs-fun-def le-fun-def)

lemma leq-lcs-fun-2 : t ≤ (lcs s (t:: ′a ⇒ ′b::add-linorder))
by (simp add: lcs-fun-def le-fun-def)

lemma lcs-leq-fun:
assumes s ≤ u and t ≤ (u:: ′a ⇒ ′b::add-linorder)
shows (lcs s t) ≤ u
using assms by (simp add: lcs-fun-def le-fun-def)

lemma adds-fun: s adds t ←→ s ≤ t
for s t:: ′a ⇒ ′b::add-linorder-min

proof
assume s adds t
from this obtain k where t = s + k ..
show s ≤ t unfolding ‹t = s + k› le-fun-def plus-fun-def le-iff-add by (simp

add: leq-add-right)
qed (rule adds-funI)

lemma gcs-fun: gcs s (t:: ′a ⇒ (′b::add-linorder)) = (λx. min (s x) (t x))
proof −

show ?thesis unfolding gcs-def lcs-fun-def fun-diff-def
proof (simp, rule)

fix x
have eq: s x + t x = max (s x) (t x) + min (s x) (t x) by (metis add.commute

min-def max-def)
thus s x + t x − max (s x) (t x) = min (s x) (t x) by simp

qed
qed

lemma gcs-leq-fun-1 : (gcs s (t:: ′a ⇒ ′b::add-linorder)) ≤ s
by (simp add: gcs-fun le-fun-def)

74

lemma gcs-leq-fun-2 : (gcs s (t:: ′a ⇒ ′b::add-linorder)) ≤ t
by (simp add: gcs-fun le-fun-def)

lemma leq-gcs-fun:
assumes u ≤ s and u ≤ (t:: ′a ⇒ ′b::add-linorder)
shows u ≤ (gcs s t)
using assms by (simp add: gcs-fun le-fun-def)

6.7.4 ′a ⇒ ′b belongs to class ulcs-powerprod
instance fun :: (type, add-linorder-min) ulcs-powerprod ..

6.7.5 Power-products in a given set of indeterminates
definition supp-fun::(′a ⇒ ′b::zero) ⇒ ′a set where supp-fun f = {x. f x 6= 0}

supp-fun for general functions is like keys for poly-mapping, but does not
need to be finite.
lemma keys-eq-supp: keys s = supp-fun (lookup s)

unfolding supp-fun-def by (transfer , rule)

lemma supp-fun-zero [simp]: supp-fun 0 = {}
by (auto simp: supp-fun-def)

lemma supp-fun-eq-zero-iff : supp-fun f = {} ←→ f = 0
by (auto simp: supp-fun-def)

lemma sub-supp-empty: supp-fun s ⊆ {} ←→ (s = 0)
by (auto simp: supp-fun-def)

lemma except-fun-idI : supp-fun f ∩ V = {} =⇒ except-fun f V = f
by (auto simp: except-fun-def supp-fun-def when-def intro!: ext)

lemma supp-except-fun: supp-fun (except-fun s V) = supp-fun s − V
by (auto simp: except-fun-def supp-fun-def)

lemma supp-fun-plus-subset: supp-fun (s + t) ⊆ supp-fun s ∪ supp-fun (t:: ′a ⇒
′b::monoid-add)

unfolding supp-fun-def by force

lemma fun-eq-zeroI :
assumes

∧
x. x ∈ supp-fun f =⇒ f x = 0

shows f = 0
proof (rule, simp)

fix x
show f x = 0
proof (cases x ∈ supp-fun f)

case True
then show ?thesis by (rule assms)

next

75

case False
then show ?thesis by (simp add: supp-fun-def)

qed
qed

lemma except-fun-cong1 :
supp-fun s ∩ ((V − U) ∪ (U − V)) ⊆ {} =⇒ except-fun s V = except-fun s U
by (auto simp: except-fun-def when-def supp-fun-def intro!: ext)

lemma adds-except-fun:
s adds t = (except-fun s V adds except-fun t V ∧ except-fun s (− V) adds

except-fun t (− V))
for s t :: ′a ⇒ ′b::add-linorder
by (auto simp: supp-fun-def except-fun-def adds-fun-iff when-def)

lemma adds-except-fun-singleton: s adds t = (except-fun s {v} adds except-fun t
{v} ∧ s v adds t v)

for s t :: ′a ⇒ ′b::add-linorder
by (auto simp: supp-fun-def except-fun-def adds-fun-iff when-def)

6.7.6 Dickson’s lemma for power-products in finitely many inde-
terminates

lemma Dickson-fun:
assumes finite V
shows almost-full-on (adds) {x:: ′a ⇒ ′b::add-wellorder . supp-fun x ⊆ V }
using assms

proof (induct V)
case empty
have finite {0} by simp
moreover have reflp-on {0 :: ′a ⇒ ′b} (adds) by (simp add: reflp-on-def)
ultimately have almost-full-on (adds) {0 :: ′a⇒ ′b} by (rule finite-almost-full-on)
thus ?case by (simp add: supp-fun-eq-zero-iff)

next
case (insert v V)
show ?case
proof (rule almost-full-onI)

fix seq::nat ⇒ ′a ⇒ ′b
assume ∀ i. seq i ∈ {x. supp-fun x ⊆ insert v V }
hence a: supp-fun (seq i) ⊆ insert v V for i by simp
define seq ′ where seq ′ = (λi. (except-fun (seq i) {v}, except-fun (seq i) V))
have almost-full-on (adds) {x:: ′a ⇒ ′b. supp-fun x ⊆ {v}}
proof (rule almost-full-onI)

fix f ::nat ⇒ ′a ⇒ ′b
assume ∀ i. f i ∈ {x. supp-fun x ⊆ {v}}
hence b: supp-fun (f i) ⊆ {v} for i by simp
let ?f = λi. f i v
have wfP ((<):: ′b ⇒ -) by (simp add: wf wfp-def)
hence @ f :: - ⇒ ′b. ∀ i. f (Suc i) < f i

76

unfolding wf-iff-no-infinite-down-chain[to-pred] .
hence ∀ f ::nat ⇒ ′b. ∃ i. f i ≤ f (Suc i)

by (simp add: not-less)
hence ∃ i. ?f i ≤ ?f (Suc i) ..
then obtain i where ?f i ≤ ?f (Suc i) ..
have i < Suc i by simp
moreover have f i adds f (Suc i) unfolding adds-fun-iff
proof

fix x
show f i x adds f (Suc i) x
proof (cases x = v)

case True
with ‹?f i ≤ ?f (Suc i)› show ?thesis by (simp add: adds-def le-iff-add)

next
case False
with b have x /∈ supp-fun (f i) and x /∈ supp-fun (f (Suc i)) by blast+
thus ?thesis by (simp add: supp-fun-def)

qed
qed
ultimately show good (adds) f by (meson goodI)

qed
with insert(3) have

almost-full-on (prod-le (adds) (adds)) ({x:: ′a ⇒ ′b. supp-fun x ⊆ V } × {x:: ′a
⇒ ′b. supp-fun x ⊆ {v}})

(is almost-full-on ?P ?A) by (rule almost-full-on-Sigma)
moreover from a have seq ′ i ∈ ?A for i by (auto simp add: seq ′-def

supp-except-fun)
ultimately obtain i j where i < j and ?P (seq ′ i) (seq ′ j) by (rule al-

most-full-onD)
have seq i adds seq j unfolding adds-except-fun[where s=seq i and V=V]
proof

from ‹?P (seq ′ i) (seq ′ j)› show except-fun (seq i) V adds except-fun (seq j)
V

by (simp add: prod-le-def seq ′-def)
next

from ‹?P (seq ′ i) (seq ′ j)› have except-fun (seq i) {v} adds except-fun (seq
j) {v}

by (simp add: prod-le-def seq ′-def)
moreover have except-fun (seq i) (− V) = except-fun (seq i) {v}

by (rule except-fun-cong1 ; use a[of i] insert.hyps(2) in blast)
moreover have except-fun (seq j) (− V) = except-fun (seq j) {v}

by (rule except-fun-cong1 ; use a[of j] insert.hyps(2) in blast)
ultimately show except-fun (seq i) (− V) adds except-fun (seq j) (− V) by

simp
qed
with ‹i < j› show good (adds) seq by (meson goodI)

qed
qed

77

instance fun :: (finite, add-wellorder) dickson-powerprod
proof

have finite (UNIV :: ′a set) by simp
hence almost-full-on (adds) {x:: ′a ⇒ ′b. supp-fun x ⊆ UNIV } by (rule Dick-

son-fun)
thus almost-full-on (adds) (UNIV ::(′a ⇒ ′b) set) by simp

qed

6.7.7 Lexicographic Term Order

Term orders are certain linear orders on power-products, satisfying addi-
tional requirements. Further information on term orders can be found, e. g.,
in [4].
context wellorder
begin

lemma neq-fun-alt:
assumes s 6= (t:: ′a ⇒ ′b)
obtains x where s x 6= t x and

∧
y. s y 6= t y =⇒ x ≤ y

proof −
from assms ext[of s t] have ∃ x. s x 6= t x by auto
with exists-least-iff [of λx. s x 6= t x]
obtain x where x1 : s x 6= t x and x2 :

∧
y. y < x =⇒ s y = t y

by auto
show ?thesis
proof

from x1 show s x 6= t x .
next

fix y
assume s y 6= t y
with x2 [of y] have ¬ y < x by auto
thus x ≤ y by simp

qed
qed

definition lex-fun::(′a ⇒ ′b) ⇒ (′a ⇒ ′b::order) ⇒ bool where
lex-fun s t ≡ (∀ x. s x ≤ t x ∨ (∃ y<x. s y 6= t y))

definition lex-fun-strict s t ←→ lex-fun s t ∧ ¬ lex-fun t s

Attention! lex-fun reverses the order of the indeterminates: if x is smaller
than y w.r.t. the order on ′a, then the power-product x is greater than the
power-product y.
lemma lex-fun-alt:

shows lex-fun s t = (s = t ∨ (∃ x. s x < t x ∧ (∀ y<x. s y = t y))) (is ?L = ?R)
proof

assume ?L
show ?R

78

proof (cases s = t)
assume s = t
thus ?R by simp

next
assume s 6= t
from neq-fun-alt[OF this] obtain x0

where x0-neq: s x0 6= t x0 and x0-min:
∧

z. s z 6= t z =⇒ x0 ≤ z by auto
show ?R
proof (intro disjI2 , rule exI [of - x0], intro conjI)
from ‹?L› have s x0 ≤ t x0 ∨ (∃ y. y < x0 ∧ s y 6= t y) unfolding lex-fun-def

..
thus s x0 < t x0
proof

assume s x0 ≤ t x0
from this x0-neq show ?thesis by simp

next
assume ∃ y. y < x0 ∧ s y 6= t y
then obtain y where y < x0 and y-neq: s y 6= t y by auto
from ‹y < x0 › x0-min[OF y-neq] show ?thesis by simp

qed
next

show ∀ y<x0 . s y = t y
proof (rule, rule)

fix y
assume y < x0
hence ¬ x0 ≤ y by simp
from this x0-min[of y] show s y = t y by auto

qed
qed

qed
next

assume ?R
thus ?L
proof

assume s = t
thus ?thesis by (simp add: lex-fun-def)

next
assume ∃ x. s x < t x ∧ (∀ y<x. s y = t y)
then obtain y where y: s y < t y and y-min: ∀ z<y. s z = t z by auto
show ?thesis unfolding lex-fun-def
proof

fix x
show s x ≤ t x ∨ (∃ y<x. s y 6= t y)
proof (cases s x ≤ t x)

assume s x ≤ t x
thus ?thesis by simp

next
assume x: ¬ s x ≤ t x
show ?thesis

79

proof (intro disjI2 , rule exI [of - y], intro conjI)
have ¬ x ≤ y
proof

assume x ≤ y
hence x < y ∨ y = x by auto
thus False
proof

assume x < y
from x y-min[rule-format, OF this] show ?thesis by simp

next
assume y = x
from this x y show ?thesis

by (auto simp: preorder-class.less-le-not-le)
qed

qed
thus y < x by simp

next
from y show s y 6= t y by simp

qed
qed

qed
qed

qed

lemma lex-fun-refl: lex-fun s s
unfolding lex-fun-alt by simp

lemma lex-fun-antisym:
assumes lex-fun s t and lex-fun t s
shows s = t

proof
fix x
from assms(1) have s = t ∨ (∃ x. s x < t x ∧ (∀ y<x. s y = t y))

unfolding lex-fun-alt .
thus s x = t x
proof

assume s = t
thus ?thesis by simp

next
assume ∃ x. s x < t x ∧ (∀ y<x. s y = t y)
then obtain x0 where x0 : s x0 < t x0 and x0-min: ∀ y<x0 . s y = t y by

auto
from assms(2) have t = s ∨ (∃ x. t x < s x ∧ (∀ y<x. t y = s y)) unfolding

lex-fun-alt .
thus ?thesis
proof

assume t = s
thus ?thesis by simp

next

80

assume ∃ x. t x < s x ∧ (∀ y<x. t y = s y)
then obtain x1 where x1 : t x1 < s x1 and x1-min: ∀ y<x1 . t y = s y by

auto
have x0 < x1 ∨ x1 < x0 ∨ x1 = x0 using local.antisym-conv3 by auto
show ?thesis
proof (rule linorder-cases[of x0 x1])

assume x1 < x0
from x0-min[rule-format, OF this] x1 show ?thesis by simp

next
assume x0 = x1
from this x0 x1 show ?thesis by simp

next
assume x0 < x1
from x1-min[rule-format, OF this] x0 show ?thesis by simp

qed
qed

qed
qed

lemma lex-fun-trans:
assumes lex-fun s t and lex-fun t u
shows lex-fun s u

proof −
from assms(1) have s = t ∨ (∃ x. s x < t x ∧ (∀ y<x. s y = t y)) unfolding

lex-fun-alt .
thus ?thesis
proof

assume s = t
from this assms(2) show ?thesis by simp

next
assume ∃ x. s x < t x ∧ (∀ y<x. s y = t y)
then obtain x0 where x0 : s x0 < t x0 and x0-min: ∀ y<x0 . s y = t y

by auto
from assms(2) have t = u ∨ (∃ x. t x < u x ∧ (∀ y<x. t y = u y)) unfolding

lex-fun-alt .
thus ?thesis
proof

assume t = u
from this assms(1) show ?thesis by simp

next
assume ∃ x. t x < u x ∧ (∀ y<x. t y = u y)
then obtain x1 where x1 : t x1 < u x1 and x1-min: ∀ y<x1 . t y = u y by

auto
show ?thesis unfolding lex-fun-alt
proof (intro disjI2)

show ∃ x. s x < u x ∧ (∀ y<x. s y = u y)
proof (rule linorder-cases[of x0 x1])

assume x1 < x0
show ?thesis

81

proof (rule exI [of - x1], intro conjI)
from x0-min[rule-format, OF ‹x1 < x0 ›] x1 show s x1 < u x1 by simp

next
show ∀ y<x1 . s y = u y
proof (intro allI , intro impI)

fix y
assume y < x1
from this ‹x1 < x0 › have y < x0 by simp
from x0-min[rule-format, OF this] x1-min[rule-format, OF ‹y < x1 ›]

show s y = u y by simp
qed

qed
next

assume x0 < x1
show ?thesis
proof (rule exI [of - x0], intro conjI)
from x1-min[rule-format, OF ‹x0 < x1 ›] x0 show s x0 < u x0 by simp

next
show ∀ y<x0 . s y = u y
proof (intro allI , intro impI)

fix y
assume y < x0
from this ‹x0 < x1 › have y < x1 by simp
from x0-min[rule-format, OF ‹y < x0 ›] x1-min[rule-format, OF this]

show s y = u y by simp
qed

qed
next

assume x0 = x1
show ?thesis
proof (rule exI [of - x1], intro conjI)

from ‹x0 = x1 › x0 x1 show s x1 < u x1 by simp
next

show ∀ y<x1 . s y = u y
proof (intro allI , intro impI)

fix y
assume y < x1
hence y < x0 using ‹x0 = x1 › by simp
from x0-min[rule-format, OF this] x1-min[rule-format, OF ‹y < x1 ›]

show s y = u y by simp
qed

qed
qed

qed
qed

qed
qed

lemma lex-fun-lin: lex-fun s t ∨ lex-fun t s for s t:: ′a⇒ ′b::{ordered-comm-monoid-add,

82

linorder}
proof (intro disjCI)

assume ¬ lex-fun t s
hence a: ∀ x. ¬ (t x < s x) ∨ (∃ y<x. t y 6= s y) unfolding lex-fun-alt by auto
show lex-fun s t unfolding lex-fun-def
proof

fix x
from a have ¬ (t x < s x) ∨ (∃ y<x. t y 6= s y) ..
thus s x ≤ t x ∨ (∃ y<x. s y 6= t y) by auto

qed
qed

corollary lex-fun-strict-alt [code]:
lex-fun-strict s t = (¬ lex-fun t s) for s t:: ′a ⇒ ′b::{ordered-comm-monoid-add,

linorder}
unfolding lex-fun-strict-def using lex-fun-lin[of s t] by auto

lemma lex-fun-zero-min: lex-fun 0 s for s:: ′a ⇒ ′b::add-linorder-min
by (simp add: lex-fun-def zero-min)

lemma lex-fun-plus-monotone:
lex-fun (s + u) (t + u) if lex-fun s t
for s t:: ′a ⇒ ′b::ordered-cancel-comm-monoid-add

unfolding lex-fun-def
proof

fix x
from that have s x ≤ t x ∨ (∃ y<x. s y 6= t y) unfolding lex-fun-def ..
thus (s + u) x ≤ (t + u) x ∨ (∃ y<x. (s + u) y 6= (t + u) y)
proof

assume a1 : s x ≤ t x
show ?thesis
proof (intro disjI1)

from a1 show (s + u) x ≤ (t + u) x by (auto simp: add-right-mono)
qed

next
assume ∃ y<x. s y 6= t y
then obtain y where y < x and a2 : s y 6= t y by auto
show ?thesis
proof (intro disjI2 , rule exI [of - y], intro conjI , fact)

from a2 show (s + u) y 6= (t + u) y by (auto simp: add-right-mono)
qed

qed
qed

end

83

6.7.8 Degree
definition deg-fun::(′a⇒ ′b::comm-monoid-add)⇒ ′b where deg-fun s ≡

∑
x∈(supp-fun

s). s x

lemma deg-fun-zero[simp]: deg-fun 0 = 0
by (auto simp: deg-fun-def)

lemma deg-fun-eq-0-iff :
assumes finite (supp-fun (s:: ′a ⇒ ′b::add-linorder-min))
shows deg-fun s = 0 ←→ s = 0

proof
assume deg-fun s = 0
hence ∗: (

∑
x∈(supp-fun s). s x) = 0 by (simp only: deg-fun-def)

have ∗∗:
∧

x. 0 ≤ s x by (rule zero-min)
from ∗ have

∧
x. x ∈ supp-fun s =⇒ s x = 0 by (simp only: sum-nonneg-eq-0-iff [OF

assms ∗∗])
thus s = 0 by (rule fun-eq-zeroI)

qed simp

lemma deg-fun-superset:
fixes A:: ′a set
assumes supp-fun s ⊆ A and finite A
shows deg-fun s = (

∑
x∈A. s x)

unfolding deg-fun-def
proof (rule sum.mono-neutral-cong-left, fact, fact, rule)

fix x
assume x ∈ A − supp-fun s
hence x /∈ supp-fun s by simp
thus s x = 0 by (simp add: supp-fun-def)

qed rule

lemma deg-fun-plus:
assumes finite (supp-fun s) and finite (supp-fun t)
shows deg-fun (s + t) = deg-fun s + deg-fun (t:: ′a ⇒ ′b::comm-monoid-add)

proof −
from assms have fin: finite (supp-fun s ∪ supp-fun t) by simp
have deg-fun (s + t) = (

∑
x∈(supp-fun (s + t)). s x + t x) by (simp add:

deg-fun-def)
also from fin have ... = (

∑
x∈(supp-fun s ∪ supp-fun t). s x + t x)

proof (rule sum.mono-neutral-cong-left)
show ∀ x∈supp-fun s ∪ supp-fun t − supp-fun (s + t). s x + t x = 0
proof

fix x
assume x ∈ supp-fun s ∪ supp-fun t − supp-fun (s + t)
hence x /∈ supp-fun (s + t) by simp
thus s x + t x = 0 by (simp add: supp-fun-def)

qed
qed (rule supp-fun-plus-subset, rule)
also have . . . = (

∑
x∈(supp-fun s ∪ supp-fun t). s x) + (

∑
x∈(supp-fun s ∪

84

supp-fun t). t x)
by (rule sum.distrib)

also from fin have (
∑

x∈(supp-fun s ∪ supp-fun t). s x) = deg-fun s unfolding
deg-fun-def

proof (rule sum.mono-neutral-cong-right)
show ∀ x∈supp-fun s ∪ supp-fun t − supp-fun s. s x = 0
proof

fix x
assume x ∈ supp-fun s ∪ supp-fun t − supp-fun s
hence x /∈ supp-fun s by simp
thus s x = 0 by (simp add: supp-fun-def)

qed
qed simp-all
also from fin have (

∑
x∈(supp-fun s ∪ supp-fun t). t x) = deg-fun t unfolding

deg-fun-def
proof (rule sum.mono-neutral-cong-right)
show ∀ x∈supp-fun s ∪ supp-fun t − supp-fun t. t x = 0

proof
fix x
assume x ∈ supp-fun s ∪ supp-fun t − supp-fun t
hence x /∈ supp-fun t by simp
thus t x = 0 by (simp add: supp-fun-def)

qed
qed simp-all
finally show ?thesis .

qed

lemma deg-fun-leq:
assumes finite (supp-fun s) and finite (supp-fun t) and s ≤ (t:: ′a⇒ ′b::ordered-comm-monoid-add)
shows deg-fun s ≤ deg-fun t

proof −
let ?A = supp-fun s ∪ supp-fun t
from assms(1) assms(2) have 1 : finite ?A by simp
have s: supp-fun s ⊆ ?A and t: supp-fun t ⊆ ?A by simp-all
show ?thesis unfolding deg-fun-superset[OF s 1] deg-fun-superset[OF t 1]
proof (rule sum-mono)

fix i
from assms(3) show s i ≤ t i unfolding le-fun-def ..

qed
qed

6.7.9 General Degree-Orders
context linorder
begin

lemma ex-min:
assumes finite (A:: ′a set) and A 6= {}
shows ∃ y∈A. (∀ z∈A. y ≤ z)

85

using assms
proof (induct rule: finite-induct)

assume {} 6= {}
thus ∃ y∈{}. ∀ z∈{}. y ≤ z by simp

next
fix a:: ′a and A:: ′a set
assume a /∈ A and IH : A 6= {} =⇒ ∃ y∈A. (∀ z∈A. y ≤ z)
show ∃ y∈insert a A. (∀ z∈insert a A. y ≤ z)
proof (cases A = {})

case True
show ?thesis
proof (rule bexI [of - a], intro ballI)

fix z
assume z ∈ insert a A
from this True have z = a by simp
thus a ≤ z by simp

qed (simp)
next

case False
from IH [OF False] obtain y where y ∈ A and y-min: ∀ z∈A. y ≤ z by auto
from linear [of a y] show ?thesis
proof

assume y ≤ a
show ?thesis
proof (rule bexI [of - y], intro ballI)

fix z
assume z ∈ insert a A
hence z = a ∨ z ∈ A by simp
thus y ≤ z
proof

assume z = a
from this ‹y ≤ a› show y ≤ z by simp

next
assume z ∈ A
from y-min[rule-format, OF this] show y ≤ z .

qed
next

from ‹y ∈ A› show y ∈ insert a A by simp
qed

next
assume a ≤ y
show ?thesis
proof (rule bexI [of - a], intro ballI)

fix z
assume z ∈ insert a A
hence z = a ∨ z ∈ A by simp
thus a ≤ z
proof

assume z = a

86

from this show a ≤ z by simp
next

assume z ∈ A
from y-min[rule-format, OF this] ‹a ≤ y› show a ≤ z by simp

qed
qed (simp)

qed
qed

qed

definition dord-fun::((′a ⇒ ′b::ordered-comm-monoid-add) ⇒ (′a ⇒ ′b) ⇒ bool)
⇒ (′a ⇒ ′b) ⇒ (′a ⇒ ′b) ⇒ bool

where dord-fun ord s t ≡ (let d1 = deg-fun s; d2 = deg-fun t in (d1 < d2 ∨ (d1
= d2 ∧ ord s t)))

lemma dord-fun-degD:
assumes dord-fun ord s t
shows deg-fun s ≤ deg-fun t
using assms unfolding dord-fun-def Let-def by auto

lemma dord-fun-refl:
assumes ord s s
shows dord-fun ord s s
using assms unfolding dord-fun-def by simp

lemma dord-fun-antisym:
assumes ord-antisym: ord s t =⇒ ord t s =⇒ s = t and dord-fun ord s t and

dord-fun ord t s
shows s = t

proof −
from assms(3) have ts: deg-fun t < deg-fun s ∨ (deg-fun t = deg-fun s ∧ ord t

s)
unfolding dord-fun-def Let-def .

from assms(2) have st: deg-fun s < deg-fun t ∨ (deg-fun s = deg-fun t ∧ ord s
t)

unfolding dord-fun-def Let-def .
thus ?thesis
proof

assume deg-fun s < deg-fun t
thus ?thesis using ts by auto

next
assume deg-fun s = deg-fun t ∧ ord s t
hence deg-fun s = deg-fun t and ord s t by simp-all
from ‹deg-fun s = deg-fun t› ts have ord t s by simp
with ‹ord s t› show ?thesis by (rule ord-antisym)

qed
qed

lemma dord-fun-trans:

87

assumes ord-trans: ord s t =⇒ ord t u =⇒ ord s u and dord-fun ord s t and
dord-fun ord t u

shows dord-fun ord s u
proof −

from assms(3) have ts: deg-fun t < deg-fun u ∨ (deg-fun t = deg-fun u ∧ ord t
u)

unfolding dord-fun-def Let-def .
from assms(2) have st: deg-fun s < deg-fun t ∨ (deg-fun s = deg-fun t ∧ ord s

t)
unfolding dord-fun-def Let-def .

thus ?thesis
proof

assume deg-fun s < deg-fun t
from this dord-fun-degD[OF assms(3)] have deg-fun s < deg-fun u by simp
thus ?thesis by (simp add: dord-fun-def Let-def)

next
assume deg-fun s = deg-fun t ∧ ord s t
hence deg-fun s = deg-fun t and ord s t by simp-all
from ts show ?thesis
proof

assume deg-fun t < deg-fun u
hence deg-fun s < deg-fun u using ‹deg-fun s = deg-fun t› by simp
thus ?thesis by (simp add: dord-fun-def Let-def)

next
assume deg-fun t = deg-fun u ∧ ord t u
hence deg-fun t = deg-fun u and ord t u by simp-all
from ord-trans[OF ‹ord s t› ‹ord t u›] ‹deg-fun s = deg-fun t› ‹deg-fun t =

deg-fun u› show ?thesis
by (simp add: dord-fun-def Let-def)

qed
qed

qed

lemma dord-fun-lin:
dord-fun ord s t ∨ dord-fun ord t s
if ord s t ∨ ord t s
for s t:: ′a ⇒ ′b::{ordered-comm-monoid-add, linorder}

proof (intro disjCI)
assume ¬ dord-fun ord t s
hence deg-fun s ≤ deg-fun t ∧ (deg-fun t 6= deg-fun s ∨ ¬ ord t s)

unfolding dord-fun-def Let-def by auto
hence deg-fun s ≤ deg-fun t and dis1 : deg-fun t 6= deg-fun s ∨ ¬ ord t s by

simp-all
show dord-fun ord s t unfolding dord-fun-def Let-def
proof (intro disjCI)

assume ¬ (deg-fun s = deg-fun t ∧ ord s t)
hence dis2 : deg-fun s 6= deg-fun t ∨ ¬ ord s t by simp
show deg-fun s < deg-fun t
proof (cases deg-fun s = deg-fun t)

88

case True
from True dis1 have ¬ ord t s by simp
from True dis2 have ¬ ord s t by simp
from ‹¬ ord s t› ‹¬ ord t s› that show ?thesis by simp

next
case False
from this ‹deg-fun s ≤ deg-fun t› show ?thesis by simp

qed
qed

qed

lemma dord-fun-zero-min:
fixes s t:: ′a ⇒ ′b::add-linorder-min
assumes ord-refl:

∧
t. ord t t and finite (supp-fun s)

shows dord-fun ord 0 s
unfolding dord-fun-def Let-def deg-fun-zero

proof (rule disjCI)
assume ¬ (0 = deg-fun s ∧ ord 0 s)
hence dis: deg-fun s 6= 0 ∨ ¬ ord 0 s by simp
show 0 < deg-fun s
proof (cases deg-fun s = 0)

case True
hence s = 0 using deg-fun-eq-0-iff [OF assms(2)] by auto
hence ord 0 s using ord-refl by simp
with True dis show ?thesis by simp

next
case False
thus ?thesis by (auto simp: zero-less-iff-neq-zero)

qed
qed

lemma dord-fun-plus-monotone:
fixes s t u :: ′a⇒ ′b::{ordered-comm-monoid-add, ordered-ab-semigroup-add-imp-le}
assumes ord-monotone: ord s t =⇒ ord (s + u) (t + u) and finite (supp-fun s)

and finite (supp-fun t) and finite (supp-fun u) and dord-fun ord s t
shows dord-fun ord (s + u) (t + u)

proof −
from assms(5) have deg-fun s < deg-fun t ∨ (deg-fun s = deg-fun t ∧ ord s t)

unfolding dord-fun-def Let-def .
thus ?thesis
proof

assume deg-fun s < deg-fun t
hence deg-fun (s + u) < deg-fun (t + u) by (auto simp: deg-fun-plus[OF -

assms(4)] assms(2) assms(3))
thus ?thesis unfolding dord-fun-def Let-def by simp

next
assume deg-fun s = deg-fun t ∧ ord s t
hence deg-fun s = deg-fun t and ord s t by simp-all
from ‹deg-fun s = deg-fun t› have deg-fun (s + u) = deg-fun (t + u)

89

by (auto simp: deg-fun-plus[OF - assms(4)] assms(2) assms(3))
from this ord-monotone[OF ‹ord s t›] show ?thesis unfolding dord-fun-def

Let-def by simp
qed

qed

end

context wellorder
begin

6.7.10 Degree-Lexicographic Term Order
definition dlex-fun::(′a ⇒ ′b::ordered-comm-monoid-add) ⇒ (′a ⇒ ′b) ⇒ bool

where dlex-fun ≡ dord-fun lex-fun

definition dlex-fun-strict s t ←→ dlex-fun s t ∧ ¬ dlex-fun t s

lemma dlex-fun-refl:
shows dlex-fun s s

unfolding dlex-fun-def by (rule dord-fun-refl, rule lex-fun-refl)

lemma dlex-fun-antisym:
assumes dlex-fun s t and dlex-fun t s
shows s = t
by (rule dord-fun-antisym, erule lex-fun-antisym, assumption,

simp-all only: dlex-fun-def [symmetric], fact+)

lemma dlex-fun-trans:
assumes dlex-fun s t and dlex-fun t u
shows dlex-fun s u
by (simp only: dlex-fun-def , rule dord-fun-trans, erule lex-fun-trans, assumption,

simp-all only: dlex-fun-def [symmetric], fact+)

lemma dlex-fun-lin: dlex-fun s t ∨ dlex-fun t s
for s t::(′a ⇒ ′b::{ordered-comm-monoid-add, linorder})
unfolding dlex-fun-def by (rule dord-fun-lin, rule lex-fun-lin)

corollary dlex-fun-strict-alt [code]:
dlex-fun-strict s t = (¬ dlex-fun t s) for s t:: ′a ⇒ ′b::{ordered-comm-monoid-add,

linorder}
unfolding dlex-fun-strict-def using dlex-fun-lin by auto

lemma dlex-fun-zero-min:
fixes s t::(′a ⇒ ′b::add-linorder-min)
assumes finite (supp-fun s)
shows dlex-fun 0 s
unfolding dlex-fun-def by (rule dord-fun-zero-min, rule lex-fun-refl, fact)

90

lemma dlex-fun-plus-monotone:
fixes s t u:: ′a⇒ ′b::{ordered-cancel-comm-monoid-add, ordered-ab-semigroup-add-imp-le}
assumes finite (supp-fun s) and finite (supp-fun t) and finite (supp-fun u) and

dlex-fun s t
shows dlex-fun (s + u) (t + u)
using lex-fun-plus-monotone[of s t u] assms unfolding dlex-fun-def
by (rule dord-fun-plus-monotone)

6.7.11 Degree-Reverse-Lexicographic Term Order
abbreviation rlex-fun::(′a ⇒ ′b) ⇒ (′a ⇒ ′b::order) ⇒ bool where

rlex-fun s t ≡ lex-fun t s

Note that rlex-fun is not precisely the reverse-lexicographic order relation
on power-products. Normally, the last (i. e. highest) indeterminate whose
exponent differs in the two power-products to be compared is taken, but
since we do not require the domain to be finite, there might not be such a
last indeterminate. Therefore, we simply take the converse of lex-fun.
definition drlex-fun::(′a ⇒ ′b::ordered-comm-monoid-add) ⇒ (′a ⇒ ′b) ⇒ bool

where drlex-fun ≡ dord-fun rlex-fun

definition drlex-fun-strict s t ←→ drlex-fun s t ∧ ¬ drlex-fun t s

lemma drlex-fun-refl:
shows drlex-fun s s
unfolding drlex-fun-def by (rule dord-fun-refl, fact lex-fun-refl)

lemma drlex-fun-antisym:
assumes drlex-fun s t and drlex-fun t s
shows s = t
by (rule dord-fun-antisym, erule lex-fun-antisym, assumption,

simp-all only: drlex-fun-def [symmetric], fact+)

lemma drlex-fun-trans:
assumes drlex-fun s t and drlex-fun t u
shows drlex-fun s u
by (simp only: drlex-fun-def , rule dord-fun-trans, erule lex-fun-trans, assumption,

simp-all only: drlex-fun-def [symmetric], fact+)

lemma drlex-fun-lin: drlex-fun s t ∨ drlex-fun t s
for s t::(′a ⇒ ′b::{ordered-comm-monoid-add, linorder})
unfolding drlex-fun-def by (rule dord-fun-lin, rule lex-fun-lin)

corollary drlex-fun-strict-alt [code]:
drlex-fun-strict s t = (¬ drlex-fun t s) for s t:: ′a⇒ ′b::{ordered-comm-monoid-add,

linorder}
unfolding drlex-fun-strict-def using drlex-fun-lin by auto

lemma drlex-fun-zero-min:

91

fixes s t::(′a ⇒ ′b::add-linorder-min)
assumes finite (supp-fun s)
shows drlex-fun 0 s
unfolding drlex-fun-def by (rule dord-fun-zero-min, rule lex-fun-refl, fact)

lemma drlex-fun-plus-monotone:
fixes s t u:: ′a⇒ ′b::{ordered-cancel-comm-monoid-add, ordered-ab-semigroup-add-imp-le}
assumes finite (supp-fun s) and finite (supp-fun t) and finite (supp-fun u) and

drlex-fun s t
shows drlex-fun (s + u) (t + u)
using lex-fun-plus-monotone[of t s u] assms unfolding drlex-fun-def
by (rule dord-fun-plus-monotone)

end

Every finite linear ordering is also a well-ordering. This fact is particu-
larly useful when working with fixed finite sets of indeterminates.
class finite-linorder = finite + linorder
begin

subclass wellorder
proof

fix P:: ′a ⇒ bool and a
assume hyp:

∧
x. (

∧
y. (y < x) =⇒ P y) =⇒ P x

show P a
proof (rule ccontr)

assume ¬ P a
have finite {x. ¬ P x} (is finite ?A) by simp
from ‹¬ P a› have a ∈ ?A by simp
hence ?A 6= {} by auto
from ex-min[OF ‹finite ?A› this] obtain b where b ∈ ?A and b-min: ∀ y∈?A.

b ≤ y by auto
from ‹b ∈ ?A› have ¬ P b by simp
with hyp[of b] obtain y where y < b and ¬ P y by auto
from ‹¬ P y› have y ∈ ?A by simp
with b-min have b ≤ y by simp
with ‹y < b› show False by simp

qed
qed

end

6.8 Type poly-mapping
lemma poly-mapping-eq-zeroI :

assumes keys s = {}
shows s = (0 ::(′a, ′b::zero) poly-mapping)

proof (rule poly-mapping-eqI , simp)
fix x

92

from assms show lookup s x = 0 by auto
qed

lemma keys-plus-ninv-comm-monoid-add: keys (s + t) = keys s ∪ keys (t:: ′a ⇒0
′b::ninv-comm-monoid-add)
proof (rule, fact Poly-Mapping.keys-add, rule)

fix x
assume x ∈ keys s ∪ keys t
thus x ∈ keys (s + t)
proof

assume x ∈ keys s
thus ?thesis

by (metis in-keys-iff lookup-add plus-eq-zero)
next

assume x ∈ keys t
thus ?thesis

by (metis in-keys-iff lookup-add plus-eq-zero-2)
qed

qed

lemma lookup-zero-fun: lookup 0 = 0
by (simp only: zero-poly-mapping.rep-eq zero-fun-def)

lemma lookup-plus-fun: lookup (s + t) = lookup s + lookup t
by (simp only: plus-poly-mapping.rep-eq plus-fun-def)

lemma lookup-uminus-fun: lookup (− s) = − lookup s
by (fact uminus-poly-mapping.rep-eq)

lemma lookup-minus-fun: lookup (s − t) = lookup s − lookup t
by (simp only: minus-poly-mapping.rep-eq, rule, simp only: minus-apply)

lemma poly-mapping-adds-iff : s adds t ←→ lookup s adds lookup t
unfolding adds-def

proof
assume ∃ k. t = s + k
then obtain k where ∗: t = s + k ..
show ∃ k. lookup t = lookup s + k
proof

from ∗ show lookup t = lookup s + lookup k by (simp only: lookup-plus-fun)
qed

next
assume ∃ k. lookup t = lookup s + k
then obtain k where ∗: lookup t = lookup s + k ..
have ∗∗: k ∈ {f . finite {x. f x 6= 0}}
proof

have finite {x. lookup t x 6= 0} by transfer
hence finite {x. lookup s x + k x 6= 0} by (simp only: ∗ plus-fun-def)
moreover have finite {x. lookup s x 6= 0} by transfer

93

ultimately show finite {x. k x 6= 0} by (rule finite-neq-0-inv ′, simp)
qed
show ∃ k. t = s + k
proof

show t = s + Abs-poly-mapping k
by (rule poly-mapping-eqI , simp add: ∗ lookup-add Abs-poly-mapping-inverse[OF

∗∗])
qed

qed

6.8.1 ′a ⇒0
′b belongs to class comm-powerprod

instance poly-mapping :: (type, cancel-comm-monoid-add) comm-powerprod
by standard

6.8.2 ′a ⇒0
′b belongs to class ninv-comm-monoid-add

instance poly-mapping :: (type, ninv-comm-monoid-add) ninv-comm-monoid-add
proof (standard, transfer)

fix s t:: ′a ⇒ ′b
assume (λk. s k + t k) = (λ-. 0)
hence s + t = 0 by (simp only: plus-fun-def zero-fun-def)
hence s = 0 by (rule plus-eq-zero)
thus s = (λ-. 0) by (simp only: zero-fun-def)

qed

6.8.3 ′a ⇒0
′b belongs to class lcs-powerprod

instantiation poly-mapping :: (type, add-linorder) lcs-powerprod
begin

lift-definition lcs-poly-mapping::(′a ⇒0
′b) ⇒ (′a ⇒0

′b) ⇒ (′a ⇒0
′b) is λs t.

λx. max (s x) (t x)
proof −

fix fun1 fun2 :: ′a ⇒ ′b
assume finite {t. fun1 t 6= 0} and finite {t. fun2 t 6= 0}
from finite-neq-0 ′[OF this, of max] show finite {t. max (fun1 t) (fun2 t) 6= 0}

by (auto simp: max-def)
qed

lemma adds-poly-mappingI :
assumes lookup s ≤ lookup (t:: ′a ⇒0

′b)
shows s adds t
unfolding poly-mapping-adds-iff using assms by (rule adds-funI)

lemma lookup-lcs-fun: lookup (lcs s t) = lcs (lookup s) (lookup (t:: ′a ⇒0
′b))

by (simp only: lcs-poly-mapping.rep-eq lcs-fun-def)

instance

94

by (standard, simp-all only: poly-mapping-adds-iff lookup-lcs-fun, rule adds-lcs,
elim lcs-adds,

assumption, rule poly-mapping-eqI , simp only: lookup-lcs-fun lcs-comm)

end

lemma adds-poly-mapping: s adds t ←→ lookup s ≤ lookup t
for s t:: ′a ⇒0

′b::add-linorder-min
by (simp only: poly-mapping-adds-iff adds-fun)

lemma lookup-gcs-fun: lookup (gcs s (t:: ′a ⇒0 (′b::add-linorder))) = gcs (lookup
s) (lookup t)
proof

fix x
show lookup (gcs s t) x = gcs (lookup s) (lookup t) x

by (simp add: gcs-def lookup-minus lookup-add lookup-lcs-fun)
qed

6.8.4 ′a ⇒0
′b belongs to class ulcs-powerprod

instance poly-mapping :: (type, add-linorder-min) ulcs-powerprod ..

6.8.5 Power-products in a given set of indeterminates.
lemma adds-except:

s adds t = (except s V adds except t V ∧ except s (− V) adds except t (− V))
for s t :: ′a ⇒0

′b::add-linorder
by (simp add: poly-mapping-adds-iff adds-except-fun[of lookup s, where V=V]

except.rep-eq)

lemma adds-except-singleton:
s adds t ←→ (except s {v} adds except t {v} ∧ lookup s v adds lookup t v)
for s t :: ′a ⇒0

′b::add-linorder
by (simp add: poly-mapping-adds-iff adds-except-fun-singleton[of lookup s, where

v=v] except.rep-eq)

6.8.6 Dickson’s lemma for power-products in finitely many inde-
terminates

context countable
begin

definition elem-index :: ′a ⇒ nat where elem-index = (SOME f . inj f)

lemma inj-elem-index: inj elem-index
unfolding elem-index-def using ex-inj by (rule someI-ex)

lemma elem-index-inj:
assumes elem-index x = elem-index y
shows x = y

95

using inj-elem-index assms by (rule injD)

lemma finite-nat-seg: finite {x. elem-index x < n}
proof (rule finite-imageD)

have elem-index ‘ {x. elem-index x < n} ⊆ {0 ..<n} by auto
moreover have finite
ultimately show finite (elem-index ‘ {x. elem-index x < n}) by (rule finite-subset)

next
from inj-elem-index show inj-on elem-index {x. elem-index x < n} using

inj-on-subset by blast
qed

end

lemma Dickson-poly-mapping:
assumes finite V
shows almost-full-on (adds) {x:: ′a ⇒0

′b::add-wellorder . keys x ⊆ V }
proof (rule almost-full-onI)

fix seq::nat ⇒ ′a ⇒0
′b

assume a: ∀ i. seq i ∈ {x:: ′a ⇒0
′b. keys x ⊆ V }

define seq ′ where seq ′ = (λi. lookup (seq i))
from assms have almost-full-on (adds) {x:: ′a ⇒ ′b. supp-fun x ⊆ V } by (rule

Dickson-fun)
moreover from a have

∧
i. seq ′ i ∈ {x:: ′a ⇒ ′b. supp-fun x ⊆ V }

by (auto simp: seq ′-def keys-eq-supp)
ultimately obtain i j where i < j and seq ′ i adds seq ′ j by (rule almost-full-onD)
from this(2) have seq i adds seq j by (simp add: seq ′-def poly-mapping-adds-iff)
with ‹i < j› show good (adds) seq by (rule goodI)

qed

definition varnum :: ′x set ⇒ (′x::countable ⇒0
′b::zero) ⇒ nat

where varnum X t = (if keys t − X = {} then 0 else Suc (Max (elem-index ‘
(keys t − X))))

lemma elem-index-less-varnum:
assumes x ∈ keys t
obtains x ∈ X | elem-index x < varnum X t

proof (cases x ∈ X)
case True
thus ?thesis ..

next
case False
with assms have 1 : x ∈ keys t − X by simp
hence keys t − X 6= {} by blast
hence eq: varnum X t = Suc (Max (elem-index ‘ (keys t − X))) by (simp add:

varnum-def)
hence elem-index x < varnum X t using 1 by (simp add: less-Suc-eq-le)
thus ?thesis ..

qed

96

lemma varnum-plus:
varnum X (s + t) = max (varnum X s) (varnum X (t:: ′x::countable⇒0

′b::ninv-comm-monoid-add))
proof (simp add: varnum-def keys-plus-ninv-comm-monoid-add image-Un Un-Diff
del: diff-shunt-var , intro impI)

assume 1 : keys s − X 6= {} and 2 : keys t − X 6= {}
have finite (elem-index ‘ (keys s − X)) by simp
moreover from 1 have elem-index ‘ (keys s − X) 6= {} by simp
moreover have finite (elem-index ‘ (keys t − X)) by simp
moreover from 2 have elem-index ‘ (keys t − X) 6= {} by simp
ultimately show Max (elem-index ‘ (keys s − X) ∪ elem-index ‘ (keys t − X))

=
max (Max (elem-index ‘ (keys s − X))) (Max (elem-index ‘ (keys

t − X)))
by (rule Max-Un)

qed

lemma dickson-grading-varnum:
assumes finite X
shows dickson-grading ((varnum X)::(′x::countable ⇒0

′b::add-wellorder)⇒ nat)
using varnum-plus

proof (rule dickson-gradingI)
fix m::nat
let ?V = X ∪ {x. elem-index x < m}
have {t:: ′x ⇒0

′b. varnum X t ≤ m} ⊆ {t. keys t ⊆ ?V }
proof (rule, simp, intro subsetI , simp)

fix t:: ′x ⇒0
′b and x:: ′x

assume varnum X t ≤ m
assume x ∈ keys t
thus x ∈ X ∨ elem-index x < m
proof (rule elem-index-less-varnum)

assume x ∈ X
thus ?thesis ..

next
assume elem-index x < varnum X t
hence elem-index x < m using ‹varnum X t ≤ m› by (rule less-le-trans)
thus ?thesis ..

qed
qed
thus almost-full-on (adds) {t:: ′x ⇒0

′b. varnum X t ≤ m}
proof (rule almost-full-on-subset)

from assms finite-nat-seg have finite ?V by (rule finite-UnI)
thus almost-full-on (adds) {t:: ′x ⇒0

′b. keys t ⊆ ?V } by (rule Dickson-poly-mapping)
qed

qed

corollary dickson-grading-varnum-empty:
dickson-grading ((varnum {})::(- ⇒0 -::add-wellorder) ⇒ nat)
using finite.emptyI by (rule dickson-grading-varnum)

97

lemma varnum-le-iff : varnum X t ≤ n ←→ keys t ⊆ X ∪ {x. elem-index x < n}
by (auto simp: varnum-def Suc-le-eq)

lemma varnum-zero [simp]: varnum X 0 = 0
by (simp add: varnum-def)

lemma varnum-empty-eq-zero-iff : varnum {} t = 0 ←→ t = 0
proof

assume varnum {} t = 0
hence keys t = {} by (simp add: varnum-def split: if-splits)
thus t = 0 by (rule poly-mapping-eq-zeroI)

qed simp

instance poly-mapping :: (countable, add-wellorder) graded-dickson-powerprod
by standard (rule, fact dickson-grading-varnum-empty)

instance poly-mapping :: (finite, add-wellorder) dickson-powerprod
proof

have finite (UNIV :: ′a set) by simp
hence almost-full-on (adds) {x:: ′a ⇒0

′b. keys x ⊆ UNIV } by (rule Dick-
son-poly-mapping)

thus almost-full-on (adds) (UNIV ::(′a ⇒0
′b) set) by simp

qed

6.8.7 Lexicographic Term Order
definition lex-pm :: (′a ⇒0

′b) ⇒ (′a::linorder ⇒0
′b::{zero,linorder}) ⇒ bool

where lex-pm = (≤)

definition lex-pm-strict :: (′a ⇒0
′b) ⇒ (′a::linorder ⇒0

′b::{zero,linorder}) ⇒
bool

where lex-pm-strict = (<)

lemma lex-pm-alt: lex-pm s t = (s = t ∨ (∃ x. lookup s x < lookup t x ∧ (∀ y<x.
lookup s y = lookup t y)))

unfolding lex-pm-def by (metis less-eq-poly-mapping.rep-eq less-funE less-funI
poly-mapping-eq-iff)

lemma lex-pm-refl: lex-pm s s
by (simp add: lex-pm-def)

lemma lex-pm-antisym: lex-pm s t =⇒ lex-pm t s =⇒ s = t
by (simp add: lex-pm-def)

lemma lex-pm-trans: lex-pm s t =⇒ lex-pm t u =⇒ lex-pm s u
by (simp add: lex-pm-def)

lemma lex-pm-lin: lex-pm s t ∨ lex-pm t s

98

by (simp add: lex-pm-def linear)

corollary lex-pm-strict-alt [code]: lex-pm-strict s t = (¬ lex-pm t s)
by (auto simp: lex-pm-strict-def lex-pm-def)

lemma lex-pm-zero-min: lex-pm 0 s for s::- ⇒0 -::add-linorder-min
proof (rule ccontr)

assume ¬ lex-pm 0 s
hence lex-pm-strict s 0 by (simp add: lex-pm-strict-alt)
thus False by (simp add: lex-pm-strict-def less-poly-mapping.rep-eq less-fun-def)

qed

lemma lex-pm-plus-monotone: lex-pm s t =⇒ lex-pm (s + u) (t + u)
for s t::- ⇒0 -::{ordered-comm-monoid-add, ordered-ab-semigroup-add-imp-le}
by (simp add: lex-pm-def add-right-mono)

6.8.8 Degree
lift-definition deg-pm::(′a ⇒0

′b::comm-monoid-add) ⇒ ′b is deg-fun .

lemma deg-pm-zero[simp]: deg-pm 0 = 0
by (simp add: deg-pm.rep-eq lookup-zero-fun)

lemma deg-pm-eq-0-iff [simp]: deg-pm s = 0 ←→ s = 0 for s:: ′a⇒0
′b::add-linorder-min

by (simp only: deg-pm.rep-eq poly-mapping-eq-iff lookup-zero-fun, rule deg-fun-eq-0-iff ,
simp add: keys-eq-supp[symmetric])

lemma deg-pm-superset:
assumes keys s ⊆ A and finite A
shows deg-pm s = (

∑
x∈A. lookup s x)

using assms by (simp only: deg-pm.rep-eq keys-eq-supp, elim deg-fun-superset)

lemma deg-pm-plus: deg-pm (s + t) = deg-pm s + deg-pm (t:: ′a⇒0
′b::comm-monoid-add)

by (simp only: deg-pm.rep-eq lookup-plus-fun, rule deg-fun-plus, simp-all add:
keys-eq-supp[symmetric])

lemma deg-pm-single: deg-pm (Poly-Mapping.single x k) = k
proof −

have keys (Poly-Mapping.single x k) ⊆ {x} by simp
moreover have finite {x} by simp
ultimately have deg-pm (Poly-Mapping.single x k) = (

∑
y∈{x}. lookup (Poly-Mapping.single

x k) y)
by (rule deg-pm-superset)

also have ... = k by simp
finally show ?thesis .

qed

6.8.9 General Degree-Orders
context linorder

99

begin

lift-definition dord-pm::((′a ⇒0
′b::ordered-comm-monoid-add) ⇒ (′a ⇒0

′b) ⇒
bool) ⇒ (′a ⇒0

′b) ⇒ (′a ⇒0
′b) ⇒ bool

is dord-fun by (metis local.dord-fun-def)

lemma dord-pm-alt: dord-pm ord = (λx y. deg-pm x < deg-pm y ∨ (deg-pm x =
deg-pm y ∧ ord x y))

by (intro ext) (transfer , simp add: dord-fun-def Let-def)

lemma dord-pm-degD:
assumes dord-pm ord s t
shows deg-pm s ≤ deg-pm t
using assms by (simp only: dord-pm.rep-eq deg-pm.rep-eq, elim dord-fun-degD)

lemma dord-pm-refl:
assumes ord s s
shows dord-pm ord s s
using assms by (simp only: dord-pm.rep-eq, intro dord-fun-refl, simp add: lookup-inverse)

lemma dord-pm-antisym:
assumes ord s t =⇒ ord t s =⇒ s = t and dord-pm ord s t and dord-pm ord t s
shows s = t
using assms

proof (simp only: dord-pm.rep-eq poly-mapping-eq-iff)
assume 1 : (ord s t =⇒ ord t s =⇒ lookup s = lookup t)
assume 2 : dord-fun (map-fun Abs-poly-mapping id ◦ ord ◦ Abs-poly-mapping)

(lookup s) (lookup t)
assume 3 : dord-fun (map-fun Abs-poly-mapping id ◦ ord ◦ Abs-poly-mapping)

(lookup t) (lookup s)
from - 2 3 show lookup s = lookup t by (rule dord-fun-antisym, simp add:

lookup-inverse 1)
qed

lemma dord-pm-trans:
assumes ord s t =⇒ ord t u =⇒ ord s u and dord-pm ord s t and dord-pm ord

t u
shows dord-pm ord s u
using assms

proof (simp only: dord-pm.rep-eq poly-mapping-eq-iff)
assume 1 : (ord s t =⇒ ord t u =⇒ ord s u)
assume 2 : dord-fun (map-fun Abs-poly-mapping id ◦ ord ◦ Abs-poly-mapping)

(lookup s) (lookup t)
assume 3 : dord-fun (map-fun Abs-poly-mapping id ◦ ord ◦ Abs-poly-mapping)

(lookup t) (lookup u)
from - 2 3 show dord-fun (map-fun Abs-poly-mapping id ◦ ord ◦ Abs-poly-mapping)

(lookup s) (lookup u)
by (rule dord-fun-trans, simp add: lookup-inverse 1)

qed

100

lemma dord-pm-lin:
dord-pm ord s t ∨ dord-pm ord t s
if ord s t ∨ ord t s
for s t:: ′a ⇒0

′b::{ordered-comm-monoid-add, linorder}
using that by (simp only: dord-pm.rep-eq, intro dord-fun-lin, simp add: lookup-inverse)

lemma dord-pm-zero-min: dord-pm ord 0 s
if ord-refl:

∧
t. ord t t

for s t:: ′a ⇒0
′b::add-linorder-min

using that
by (simp only: dord-pm.rep-eq lookup-zero-fun, intro dord-fun-zero-min,

simp add: lookup-inverse, simp add: keys-eq-supp[symmetric])

lemma dord-pm-plus-monotone:
fixes s t u :: ′a⇒0

′b::{ordered-comm-monoid-add, ordered-ab-semigroup-add-imp-le}
assumes ord s t =⇒ ord (s + u) (t + u) and dord-pm ord s t
shows dord-pm ord (s + u) (t + u)
using assms
by (simp only: dord-pm.rep-eq lookup-plus-fun, intro dord-fun-plus-monotone,

simp add: lookup-inverse lookup-plus-fun[symmetric],
simp add: keys-eq-supp[symmetric],
simp add: keys-eq-supp[symmetric],
simp add: keys-eq-supp[symmetric],
simp add: lookup-inverse)

end

6.8.10 Degree-Lexicographic Term Order
definition dlex-pm::(′a::linorder ⇒0

′b::{ordered-comm-monoid-add,linorder}) ⇒
(′a ⇒0

′b) ⇒ bool
where dlex-pm ≡ dord-pm lex-pm

definition dlex-pm-strict s t ←→ dlex-pm s t ∧ ¬ dlex-pm t s

lemma dlex-pm-refl: dlex-pm s s
unfolding dlex-pm-def using lex-pm-refl by (rule dord-pm-refl)

lemma dlex-pm-antisym: dlex-pm s t =⇒ dlex-pm t s =⇒ s = t
unfolding dlex-pm-def using lex-pm-antisym by (rule dord-pm-antisym)

lemma dlex-pm-trans: dlex-pm s t =⇒ dlex-pm t u =⇒ dlex-pm s u
unfolding dlex-pm-def using lex-pm-trans by (rule dord-pm-trans)

lemma dlex-pm-lin: dlex-pm s t ∨ dlex-pm t s
unfolding dlex-pm-def using lex-pm-lin by (rule dord-pm-lin)

corollary dlex-pm-strict-alt [code]: dlex-pm-strict s t = (¬ dlex-pm t s)

101

unfolding dlex-pm-strict-def using dlex-pm-lin by auto

lemma dlex-pm-zero-min: dlex-pm 0 s
for s t::(- ⇒0 -::add-linorder-min)
unfolding dlex-pm-def using lex-pm-refl by (rule dord-pm-zero-min)

lemma dlex-pm-plus-monotone: dlex-pm s t =⇒ dlex-pm (s + u) (t + u)
for s t::-⇒0 -::{ordered-ab-semigroup-add-imp-le, ordered-cancel-comm-monoid-add}
unfolding dlex-pm-def using lex-pm-plus-monotone by (rule dord-pm-plus-monotone)

6.8.11 Degree-Reverse-Lexicographic Term Order
definition drlex-pm::(′a::linorder ⇒0

′b::{ordered-comm-monoid-add,linorder})⇒
(′a ⇒0

′b) ⇒ bool
where drlex-pm ≡ dord-pm (λs t. lex-pm t s)

definition drlex-pm-strict s t ←→ drlex-pm s t ∧ ¬ drlex-pm t s

lemma drlex-pm-refl: drlex-pm s s
unfolding drlex-pm-def using lex-pm-refl by (rule dord-pm-refl)

lemma drlex-pm-antisym: drlex-pm s t =⇒ drlex-pm t s =⇒ s = t
unfolding drlex-pm-def using lex-pm-antisym by (rule dord-pm-antisym)

lemma drlex-pm-trans: drlex-pm s t =⇒ drlex-pm t u =⇒ drlex-pm s u
unfolding drlex-pm-def using lex-pm-trans by (rule dord-pm-trans)

lemma drlex-pm-lin: drlex-pm s t ∨ drlex-pm t s
unfolding drlex-pm-def using lex-pm-lin by (rule dord-pm-lin)

corollary drlex-pm-strict-alt [code]: drlex-pm-strict s t = (¬ drlex-pm t s)
unfolding drlex-pm-strict-def using drlex-pm-lin by auto

lemma drlex-pm-zero-min: drlex-pm 0 s
for s t::(- ⇒0 -::add-linorder-min)
unfolding drlex-pm-def using lex-pm-refl by (rule dord-pm-zero-min)

lemma drlex-pm-plus-monotone: drlex-pm s t =⇒ drlex-pm (s + u) (t + u)
for s t::-⇒0 -::{ordered-ab-semigroup-add-imp-le, ordered-cancel-comm-monoid-add}
unfolding drlex-pm-def using lex-pm-plus-monotone by (rule dord-pm-plus-monotone)

end

theory More-Modules
imports HOL.Modules

begin

More facts about modules.

102

7 Modules over Commutative Rings
context module
begin

lemma scale-minus-both [simp]: (− a) ∗s (− x) = a ∗s x
by simp

7.1 Submodules Spanned by Sets of Module-Elements
lemma span-insertI :

assumes p ∈ span B
shows p ∈ span (insert r B)

proof −
have B ⊆ insert r B by blast
hence span B ⊆ span (insert r B) by (rule span-mono)
with assms show ?thesis ..

qed

lemma span-insertD:
assumes p ∈ span (insert r B) and r ∈ span B
shows p ∈ span B
using assms(1)

proof (induct p rule: span-induct-alt)
case base
show 0 ∈ span B by (fact span-zero)

next
case step: (step q b a)
from step(1) have b = r ∨ b ∈ B by simp
thus q ∗s b + a ∈ span B
proof

assume eq: b = r
from step(2) assms(2) show ?thesis unfolding eq by (intro span-add span-scale)

next
assume b ∈ B
hence b ∈ span B using span-superset ..
with step(2) show ?thesis by (intro span-add span-scale)

qed
qed

lemma span-insert-idI :
assumes r ∈ span B
shows span (insert r B) = span B

proof (intro subset-antisym subsetI)
fix p
assume p ∈ span (insert r B)
from this assms show p ∈ span B by (rule span-insertD)

next
fix p
assume p ∈ span B

103

thus p ∈ span (insert r B) by (rule span-insertI)
qed

lemma span-insert-zero: span (insert 0 B) = span B
using span-zero by (rule span-insert-idI)

lemma span-Diff-zero: span (B − {0}) = span B
by (metis span-insert-zero insert-Diff-single)

lemma span-insert-subset:
assumes span A ⊆ span B and r ∈ span B
shows span (insert r A) ⊆ span B

proof
fix p
assume p ∈ span (insert r A)
thus p ∈ span B
proof (induct p rule: span-induct-alt)

case base
show ?case by (fact span-zero)

next
case step: (step q b a)
show ?case
proof (intro span-add span-scale)

from ‹b ∈ insert r A› show b ∈ span B
proof

assume b = r
thus b ∈ span B using assms(2) by simp

next
assume b ∈ A
hence b ∈ span A using span-superset ..
thus b ∈ span B using assms(1) ..

qed
qed fact

qed
qed

lemma replace-span:
assumes q ∈ span B
shows span (insert q (B − {p})) ⊆ span B
by (rule span-insert-subset, rule span-mono, fact Diff-subset, fact)

lemma sum-in-spanI : (
∑

b∈B. q b ∗s b) ∈ span B
by (auto simp: intro: span-sum span-scale dest: span-base)

lemma span-closed-sum-list: (
∧

x. x ∈ set xs =⇒ x ∈ span B) =⇒ sum-list xs ∈
span B

by (induct xs) (auto intro: span-zero span-add)

lemma spanE :

104

assumes p ∈ span B
obtains A q where finite A and A ⊆ B and p = (

∑
b∈A. (q b) ∗s b)

using assms by (auto simp: span-explicit)

lemma span-finite-subset:
assumes p ∈ span B
obtains A where finite A and A ⊆ B and p ∈ span A

proof −
from assms obtain A q where finite A and A ⊆ B and p: p = (

∑
a∈A. q a

∗s a)
by (rule spanE)

note this(1 , 2)
moreover have p ∈ span A unfolding p by (rule sum-in-spanI)
ultimately show ?thesis ..

qed

lemma span-finiteE :
assumes finite B and p ∈ span B
obtains q where p = (

∑
b∈B. (q b) ∗s b)

using assms by (auto simp: span-finite)

lemma span-subset-spanI :
assumes A ⊆ span B
shows span A ⊆ span B
using assms subspace-span by (rule span-minimal)

lemma span-insert-cong:
assumes span A = span B
shows span (insert p A) = span (insert p B) (is ?l = ?r)

proof
have 1 : span (insert p C1) ⊆ span (insert p C2) if span C1 = span C2 for C1

C2
proof (rule span-subset-spanI)

show insert p C1 ⊆ span (insert p C2)
proof (rule insert-subsetI)

show p ∈ span (insert p C2) by (rule span-base) simp
next

have C1 ⊆ span C1 by (rule span-superset)
also from that have . . . = span C2 .
also have . . . ⊆ span (insert p C2) by (rule span-mono) blast
finally show C1 ⊆ span (insert p C2) .

qed
qed
from assms show ?l ⊆ ?r by (rule 1)
from assms[symmetric] show ?r ⊆ ?l by (rule 1)

qed

lemma span-induct ′ [consumes 1 , case-names base step]:
assumes p ∈ span B and P 0

105

and
∧

a q p. a ∈ span B =⇒ P a =⇒ p ∈ B =⇒ q 6= 0 =⇒ P (a + q ∗s p)
shows P p
using assms(1 , 1)

proof (induct p rule: span-induct-alt)
case base
from assms(2) show ?case .

next
case (step q b a)
from step.hyps(1) have b ∈ span B by (rule span-base)
hence q ∗s b ∈ span B by (rule span-scale)
with step.prems have a ∈ span B by (simp only: span-add-eq)
hence P a by (rule step.hyps)
show ?case
proof (cases q = 0)

case True
from ‹P a› show ?thesis by (simp add: True)

next
case False
with ‹a ∈ span B› ‹P a› step.hyps(1) have P (a + q ∗s b) by (rule assms(3))
thus ?thesis by (simp only: add.commute)

qed
qed

lemma span-INT-subset: span (
⋂

a∈A. f a) ⊆ (
⋂

a∈A. span (f a)) (is ?l ⊆ ?r)
proof

fix p
assume p ∈ ?l
show p ∈ ?r
proof

fix a
assume a ∈ A
from ‹p ∈ ?l› show p ∈ span (f a)
proof (induct p rule: span-induct ′)

case base
show ?case by (fact span-zero)

next
case (step p q b)
from step(3) ‹a ∈ A› have b ∈ f a ..
hence b ∈ span (f a) by (rule span-base)
with step(2) show ?case by (intro span-add span-scale)

qed
qed

qed

lemma span-INT : span (
⋂

a∈A. span (f a)) = (
⋂

a∈A. span (f a)) (is ?l = ?r)
proof

have ?l ⊆ (
⋂

a∈A. span (span (f a))) by (rule span-INT-subset)
also have ... = ?r by (simp add: span-span)
finally show ?l ⊆ ?r .

106

qed (fact span-superset)

lemma span-Int-subset: span (A ∩ B) ⊆ span A ∩ span B
proof −

have span (A ∩ B) = span (
⋂

x∈{A, B}. x) by simp
also have . . . ⊆ (

⋂
x∈{A, B}. span x) by (fact span-INT-subset)

also have . . . = span A ∩ span B by simp
finally show ?thesis .

qed

lemma span-Int: span (span A ∩ span B) = span A ∩ span B
proof −

have span (span A ∩ span B) = span (
⋂

x∈{A, B}. span x) by simp
also have . . . = (

⋂
x∈{A, B}. span x) by (fact span-INT)

also have . . . = span A ∩ span B by simp
finally show ?thesis .

qed

lemma span-image-scale-eq-image-scale: span ((∗s) q ‘ F) = (∗s) q ‘ span F (is
?A = ?B)
proof (intro subset-antisym subsetI)

fix p
assume p ∈ ?A
thus p ∈ ?B
proof (induct p rule: span-induct ′)

case base
from span-zero show ?case by (rule rev-image-eqI) simp

next
case (step p r a)
from step.hyps(2) obtain p ′ where p ′ ∈ span F and p: p = q ∗s p ′ ..
from step.hyps(3) obtain a ′ where a ′ ∈ F and a: a = q ∗s a ′ ..
from this(1) have a ′ ∈ span F by (rule span-base)
hence r ∗s a ′ ∈ span F by (rule span-scale)
with ‹p ′ ∈ span F› have p ′ + r ∗s a ′ ∈ span F by (rule span-add)
hence q ∗s (p ′ + r ∗s a ′) ∈ ?B by (rule imageI)
also have q ∗s (p ′ + r ∗s a ′) = p + r ∗s a by (simp add: a p algebra-simps)
finally show ?case .

qed
next

fix p
assume p ∈ ?B
then obtain p ′ where p ′ ∈ span F and p = q ∗s p ′ ..
from this(1) show p ∈ ?A unfolding ‹p = q ∗s p ′›
proof (induct p ′ rule: span-induct ′)

case base
show ?case by (simp add: span-zero)

next
case (step p r a)
from step.hyps(3) have q ∗s a ∈ (∗s) q ‘ F by (rule imageI)

107

hence q ∗s a ∈ ?A by (rule span-base)
hence r ∗s (q ∗s a) ∈ ?A by (rule span-scale)
with step.hyps(2) have q ∗s p + r ∗s (q ∗s a) ∈ ?A by (rule span-add)

also have q ∗s p + r ∗s (q ∗s a) = q ∗s (p + r ∗s a) by (simp add: algebra-simps)
finally show ?case .

qed
qed

end

8 Ideals over Commutative Rings
lemma module-times: module (∗)

by (standard, simp-all add: algebra-simps)

interpretation ideal: module times
by (fact module-times)

declare ideal.scale-scale[simp del]

abbreviation ideal ≡ ideal.span

lemma ideal-eq-UNIV-iff-contains-one: ideal B = UNIV ←→ 1 ∈ ideal B
proof

assume ∗: 1 ∈ ideal B
show ideal B = UNIV
proof

show UNIV ⊆ ideal B
proof

fix x
from ∗ have x ∗ 1 ∈ ideal B by (rule ideal.span-scale)
thus x ∈ ideal B by simp

qed
qed simp

qed simp

lemma ideal-eq-zero-iff [iff]: ideal F = {0} ←→ F ⊆ {0}
by (metis empty-subsetI ideal.span-empty ideal.span-eq)

lemma ideal-field-cases:
obtains ideal B = {0} | ideal (B:: ′a::field set) = UNIV

proof (cases ideal B = {0})
case True
thus ?thesis ..

next
case False
hence ¬ B ⊆ {0} by simp
then obtain b where b ∈ B and b 6= 0 by blast
from this(1) have b ∈ ideal B by (rule ideal.span-base)

108

hence inverse b ∗ b ∈ ideal B by (rule ideal.span-scale)
with ‹b 6= 0 › have ideal B = UNIV by (simp add: ideal-eq-UNIV-iff-contains-one)
thus ?thesis ..

qed

corollary ideal-field-disj: ideal B = {0} ∨ ideal (B:: ′a::field set) = UNIV
by (rule ideal-field-cases) blast+

lemma image-ideal-subset:
assumes

∧
x y. h (x + y) = h x + h y and

∧
x y. h (x ∗ y) = h x ∗ h y

shows h ‘ ideal F ⊆ ideal (h ‘ F)
proof (intro subsetI , elim imageE)

fix g f
assume g: g = h f
assume f ∈ ideal F
thus g ∈ ideal (h ‘ F) unfolding g
proof (induct f rule: ideal.span-induct-alt)

case base
have h 0 = h (0 + 0) by simp
also have . . . = h 0 + h 0 by (simp only: assms(1))
finally show ?case by (simp add: ideal.span-zero)

next
case (step c f g)
from step.hyps(1) have h f ∈ ideal (h ‘ F)

by (intro ideal.span-base imageI)
hence h c ∗ h f ∈ ideal (h ‘ F) by (rule ideal.span-scale)
hence h c ∗ h f + h g ∈ ideal (h ‘ F)

using step.hyps(2) by (rule ideal.span-add)
thus ?case by (simp only: assms)

qed
qed

lemma image-ideal-eq-surj:
assumes

∧
x y. h (x + y) = h x + h y and

∧
x y. h (x ∗ y) = h x ∗ h y and

surj h
shows h ‘ ideal B = ideal (h ‘ B)

proof
from assms(1 , 2) show h ‘ ideal B ⊆ ideal (h ‘ B) by (rule image-ideal-subset)

next
show ideal (h ‘ B) ⊆ h ‘ ideal B
proof

fix b
assume b ∈ ideal (h ‘ B)
thus b ∈ h ‘ ideal B
proof (induct b rule: ideal.span-induct-alt)

case base
have h 0 = h (0 + 0) by simp
also have . . . = h 0 + h 0 by (simp only: assms(1))
finally have 0 = h 0 by simp

109

with ideal.span-zero show ?case by (rule rev-image-eqI)
next

case (step c b a)
from assms(3) obtain c ′ where c: c = h c ′ by (rule surjE)
from step.hyps(2) obtain a ′ where a ′ ∈ ideal B and a: a = h a ′ ..
from step.hyps(1) obtain b ′ where b ′ ∈ B and b: b = h b ′ ..
from this(1) have b ′ ∈ ideal B by (rule ideal.span-base)
hence c ′ ∗ b ′ ∈ ideal B by (rule ideal.span-scale)
hence c ′ ∗ b ′ + a ′ ∈ ideal B using ‹a ′ ∈ -› by (rule ideal.span-add)
moreover have c ∗ b + a = h (c ′ ∗ b ′ + a ′)

by (simp add: c b a assms(1 , 2))
ultimately show ?case by (rule rev-image-eqI)

qed
qed

qed

context
fixes h :: ′a ⇒ ′a::comm-ring-1
assumes h-plus: h (x + y) = h x + h y
assumes h-times: h (x ∗ y) = h x ∗ h y
assumes h-idem: h (h x) = h x

begin

lemma in-idealE-homomorphism-finite:
assumes finite B and B ⊆ range h and p ∈ range h and p ∈ ideal B
obtains q where

∧
b. q b ∈ range h and p = (

∑
b∈B. q b ∗ b)

proof −
from assms(1 , 4) obtain q0 where p: p = (

∑
b∈B. q0 b ∗ b) by (rule ideal.span-finiteE)

define q where q = (λb. h (q0 b))
show ?thesis
proof

fix b
show q b ∈ range h unfolding q-def by (rule rangeI)

next
from assms(3) obtain p ′ where p = h p ′ ..
hence p = h p by (simp only: h-idem)
also from ‹finite B› have . . . = (

∑
b∈B. q b ∗ h b) unfolding p

proof (induct B)
case empty
have h 0 = h (0 + 0) by simp
also have . . . = h 0 + h 0 by (simp only: h-plus)
finally show ?case by simp

next
case (insert b B)
thus ?case by (simp add: h-plus h-times q-def)

qed
also from refl have . . . = (

∑
b∈B. q b ∗ b)

proof (rule sum.cong)
fix b

110

assume b ∈ B
hence b ∈ range h using assms(2) ..
then obtain b ′ where b = h b ′ ..
thus q b ∗ h b = q b ∗ b by (simp only: h-idem)

qed
finally show p = (

∑
b∈B. q b ∗ b) .

qed
qed

corollary in-idealE-homomorphism:
assumes B ⊆ range h and p ∈ range h and p ∈ ideal B
obtains A q where finite A and A ⊆ B and

∧
b. q b ∈ range h and p =

(
∑

b∈A. q b ∗ b)
proof −

from assms(3) obtain A where finite A and A ⊆ B and p ∈ ideal A
by (rule ideal.span-finite-subset)

from this(2) assms(1) have A ⊆ range h by (rule subset-trans)
with ‹finite A› obtain q where

∧
b. q b ∈ range h and p = (

∑
b∈A. q b ∗ b)

using assms(2) ‹p ∈ ideal A› by (rule in-idealE-homomorphism-finite) blast
with ‹finite A› ‹A ⊆ B› show ?thesis ..

qed

lemma ideal-induct-homomorphism [consumes 3 , case-names 0 plus]:
assumes B ⊆ range h and p ∈ range h and p ∈ ideal B
assumes P 0 and

∧
c b a. c ∈ range h =⇒ b ∈ B =⇒ P a =⇒ a ∈ range h =⇒

P (c ∗ b + a)
shows P p

proof −
from assms(1−3) obtain A q where finite A and A ⊆ B and rl:

∧
f . q f ∈

range h
and p: p = (

∑
f∈A. q f ∗ f) by (rule in-idealE-homomorphism) blast

show ?thesis unfolding p using ‹finite A› ‹A ⊆ B›
proof (induct A)

case empty
from assms(4) show ?case by simp

next
case (insert a A)
from insert.hyps(1 , 2) have (

∑
f∈insert a A. q f ∗ f) = q a ∗ a + (

∑
f∈A.

q f ∗ f) by simp
also from rl have P . . .
proof (rule assms(5))

have a ∈ insert a A by simp
thus a ∈ B using insert.prems ..

next
from insert.prems have A ⊆ B by simp
thus P (

∑
f∈A. q f ∗ f) by (rule insert.hyps)

next
from insert.prems have A ⊆ B by simp
hence A ⊆ range h using assms(1) by (rule subset-trans)

111

with ‹finite A› show (
∑

f∈A. q f ∗ f) ∈ range h
proof (induct A)

case empty
have h 0 = h (0 + 0) by simp
also have . . . = h 0 + h 0 by (simp only: h-plus)
finally have (

∑
f∈{}. q f ∗ f) = h 0 by simp

thus ?case by (rule image-eqI) simp
next

case (insert a A)
from insert.prems have a ∈ range h and A ⊆ range h by simp-all
from this(1) obtain a ′ where a: a = h a ′ ..
from ‹q a ∈ range h› obtain q ′ where q: q a = h q ′ ..
from ‹A ⊆ -› have (

∑
f∈A. q f ∗ f) ∈ range h by (rule insert.hyps)

then obtain m where eq: (
∑

f∈A. q f ∗ f) = h m ..
from insert.hyps(1 , 2) have (

∑
f∈insert a A. q f ∗ f) = q a ∗ a + (

∑
f∈A.

q f ∗ f) by simp
also have . . . = h (q ′ ∗ a ′ + m) unfolding q by (simp add: a eq h-plus

h-times)
also have . . . ∈ range h by (rule rangeI)
finally show ?case .

qed
qed
finally show ?case .

qed
qed

lemma image-ideal-eq-Int: h ‘ ideal B = ideal (h ‘ B) ∩ range h
proof

from h-plus h-times have h ‘ ideal B ⊆ ideal (h ‘ B) by (rule image-ideal-subset)
thus h ‘ ideal B ⊆ ideal (h ‘ B) ∩ range h by blast

next
show ideal (h ‘ B) ∩ range h ⊆ h ‘ ideal B
proof

fix b
assume b ∈ ideal (h ‘ B) ∩ range h
hence b ∈ ideal (h ‘ B) and b ∈ range h by simp-all
have h ‘ B ⊆ range h by blast
thus b ∈ h ‘ ideal B using ‹b ∈ range h› ‹b ∈ ideal (h ‘ B)›
proof (induct b rule: ideal-induct-homomorphism)

case 0
have h 0 = h (0 + 0) by simp
also have . . . = h 0 + h 0 by (simp only: h-plus)
finally have 0 = h 0 by simp
with ideal.span-zero show ?case by (rule rev-image-eqI)

next
case (plus c b a)
from plus.hyps(1) obtain c ′ where c: c = h c ′ ..
from plus.hyps(3) obtain a ′ where a ′ ∈ ideal B and a: a = h a ′ ..
from plus.hyps(2) obtain b ′ where b ′ ∈ B and b: b = h b ′ ..

112

from this(1) have b ′ ∈ ideal B by (rule ideal.span-base)
hence c ′ ∗ b ′ ∈ ideal B by (rule ideal.span-scale)
hence c ′ ∗ b ′ + a ′ ∈ ideal B using ‹a ′ ∈ -› by (rule ideal.span-add)
moreover have c ∗ b + a = h (c ′ ∗ b ′ + a ′) by (simp add: a b c h-plus

h-times)
ultimately show ?case by (rule rev-image-eqI)

qed
qed

qed

end

end

9 Type-Class-Multivariate Polynomials
theory MPoly-Type-Class

imports
Utils
Power-Products
More-Modules

begin

This theory views ′a ⇒0
′b as multivariate polynomials, where type class

constraints on ′a ensure that ′a represents something like monomials.
lemma when-distrib: f (a when b) = (f a when b) if ¬ b =⇒ f 0 = 0

using that by (auto simp: when-def)

definition mapp-2 :: (′a ⇒ ′b ⇒ ′c ⇒ ′d) ⇒ (′a ⇒0
′b::zero) ⇒ (′a ⇒0

′c::zero)
⇒ (′a ⇒0

′d::zero)
where mapp-2 f p q = Abs-poly-mapping (λk. f k (lookup p k) (lookup q k) when

k ∈ keys p ∪ keys q)

lemma lookup-mapp-2 :
lookup (mapp-2 f p q) k = (f k (lookup p k) (lookup q k) when k ∈ keys p ∪ keys

q)
proof −

have lookup (Abs-poly-mapping (λk. f k (lookup p k) (lookup q k) when k ∈ keys
p ∪ keys q)) =

(λk. f k (lookup p k) (lookup q k) when k ∈ keys p ∪ keys q)
by (rule Abs-poly-mapping-inverse, simp)

thus ?thesis by (simp add: mapp-2-def)
qed

lemma lookup-mapp-2-homogenous:
assumes f k 0 0 = 0
shows lookup (mapp-2 f p q) k = f k (lookup p k) (lookup q k)
by (simp add: lookup-mapp-2 when-def in-keys-iff assms)

113

lemma mapp-2-cong [fundef-cong]:
assumes p = p ′ and q = q ′

assumes
∧

k. k ∈ keys p ′ ∪ keys q ′ =⇒ f k (lookup p ′ k) (lookup q ′ k) = f ′ k
(lookup p ′ k) (lookup q ′ k)

shows mapp-2 f p q = mapp-2 f ′ p ′ q ′

by (rule poly-mapping-eqI , simp add: assms(1 , 2) lookup-mapp-2 , rule when-cong,
fact refl, rule assms(3), blast)

lemma keys-mapp-subset: keys (mapp-2 f p q) ⊆ keys p ∪ keys q
proof

fix t
assume t ∈ keys (mapp-2 f p q)
hence lookup (mapp-2 f p q) t 6= 0 by (simp add: in-keys-iff)
thus t ∈ keys p ∪ keys q by (simp add: lookup-mapp-2 when-def split: if-split-asm)

qed

lemma mapp-2-mapp: mapp-2 (λt a. f t) 0 p = Poly-Mapping.mapp f p
by (rule poly-mapping-eqI , simp add: lookup-mapp lookup-mapp-2)

9.1 keys
lemma in-keys-plusI1 :

assumes t ∈ keys p and t /∈ keys q
shows t ∈ keys (p + q)
using assms unfolding in-keys-iff lookup-add by simp

lemma in-keys-plusI2 :
assumes t ∈ keys q and t /∈ keys p
shows t ∈ keys (p + q)
using assms unfolding in-keys-iff lookup-add by simp

lemma keys-plus-eqI :
assumes keys p ∩ keys q = {}
shows keys (p + q) = (keys p ∪ keys q)

proof
show keys (p + q) ⊆ keys p ∪ keys q

by (simp add: Poly-Mapping.keys-add)
show keys p ∪ keys q ⊆ keys (p + q)

by (simp add: More-MPoly-Type.keys-add assms)
qed

lemma keys-uminus: keys (− p) = keys p
by (transfer , auto)

lemma keys-minus: keys (p − q) ⊆ (keys p ∪ keys q)
by (transfer , auto)

9.2 Monomials
abbreviation monomial ≡ (λc t. Poly-Mapping.single t c)

114

lemma keys-of-monomial:
assumes c 6= 0
shows keys (monomial c t) = {t}
using assms by simp

lemma monomial-uminus:
shows − monomial c s = monomial (− c) s
by (transfer , rule ext, simp add: Poly-Mapping.when-def)

lemma monomial-inj:
assumes monomial c s = monomial (d:: ′b::zero-neq-one) t
shows (c = 0 ∧ d = 0) ∨ (c = d ∧ s = t)
using assms unfolding poly-mapping-eq-iff
by (metis (mono-tags, opaque-lifting) lookup-single-eq lookup-single-not-eq)

definition is-monomial :: (′a ⇒0
′b::zero) ⇒ bool

where is-monomial p ←→ card (keys p) = 1

lemma monomial-is-monomial:
assumes c 6= 0
shows is-monomial (monomial c t)
using keys-single[of t c] assms by (simp add: is-monomial-def)

lemma is-monomial-monomial:
assumes is-monomial p
obtains c t where c 6= 0 and p = monomial c t

proof −
from assms have card (keys p) = 1 unfolding is-monomial-def .
then obtain t where sp: keys p = {t} by (rule card-1-singletonE)
let ?c = lookup p t
from sp have ?c 6= 0 by fastforce
show ?thesis
proof

show p = monomial ?c t
proof (intro poly-mapping-keys-eqI)

from sp show keys p = keys (monomial ?c t) using ‹?c 6= 0 › by simp
next

fix s
assume s ∈ keys p
with sp have s = t by simp
show lookup p s = lookup (monomial ?c t) s by (simp add: ‹s = t›)

qed
qed fact

qed

lemma is-monomial-uminus: is-monomial (−p) ←→ is-monomial p
unfolding is-monomial-def keys-uminus ..

115

lemma monomial-not-0 :
assumes is-monomial p
shows p 6= 0
using assms unfolding is-monomial-def by auto

lemma keys-subset-singleton-imp-monomial:
assumes keys p ⊆ {t}
shows monomial (lookup p t) t = p

proof (rule poly-mapping-eqI , simp add: lookup-single when-def , rule)
fix s
assume t 6= s
hence s /∈ keys p using assms by blast
thus lookup p s = 0 by (simp add: in-keys-iff)

qed

lemma monomial-0I :
assumes c = 0
shows monomial c t = 0
using assms by transfer (auto)

lemma monomial-0D:
assumes monomial c t = 0
shows c = 0
using assms by transfer (auto simp: fun-eq-iff when-def ; meson)

corollary monomial-0-iff : monomial c t = 0 ←→ c = 0
by (rule, erule monomial-0D, erule monomial-0I)

lemma lookup-times-monomial-left: lookup (monomial c t ∗ p) s = (c ∗ lookup p
(s − t) when t adds s)

for c:: ′b::semiring-0 and t:: ′a::comm-powerprod
proof (induct p rule: poly-mapping-except-induct, simp)

fix p:: ′a ⇒0
′b and w

assume p 6= 0 and w ∈ keys p
and IH : lookup (monomial c t ∗ except p {w}) s =

(c ∗ lookup (except p {w}) (s − t) when t adds s) (is - = ?x)
have monomial c t ∗ p = monomial c t ∗ (monomial (lookup p w) w + except p
{w})

by (simp only: plus-except[symmetric])
also have ... = monomial c t ∗ monomial (lookup p w) w + monomial c t ∗

except p {w}
by (simp add: algebra-simps)

also have ... = monomial (c ∗ lookup p w) (t + w) + monomial c t ∗ except p
{w}

by (simp only: mult-single)
finally have lookup (monomial c t ∗ p) s = lookup (monomial (c ∗ lookup p w)

(t + w)) s + ?x
by (simp only: lookup-add IH)

also have ... = (lookup (monomial (c ∗ lookup p w) (t + w)) s +

116

c ∗ lookup (except p {w}) (s − t) when t adds s)
by (rule when-distrib, auto simp add: lookup-single when-def)

also from refl have ... = (c ∗ lookup p (s − t) when t adds s)
proof (rule when-cong)

assume t adds s
then obtain u where u: s = t + u ..
show lookup (monomial (c ∗ lookup p w) (t + w)) s + c ∗ lookup (except p

{w}) (s − t) =
c ∗ lookup p (s − t)

by (simp add: u, cases u = w, simp-all add: lookup-except lookup-single
add.commute)

qed
finally show lookup (monomial c t ∗ p) s = (c ∗ lookup p (s − t) when t adds

s) .
qed

lemma lookup-times-monomial-right: lookup (p ∗ monomial c t) s = (lookup p (s
− t) ∗ c when t adds s)

for c:: ′b::semiring-0 and t:: ′a::comm-powerprod
proof (induct p rule: poly-mapping-except-induct, simp)

fix p:: ′a ⇒0
′b and w

assume p 6= 0 and w ∈ keys p
and IH : lookup (except p {w} ∗ monomial c t) s =

((lookup (except p {w}) (s − t)) ∗ c when t adds s)
(is - = ?x)

have p ∗ monomial c t = (monomial (lookup p w) w + except p {w}) ∗ monomial
c t

by (simp only: plus-except[symmetric])
also have ... = monomial (lookup p w) w ∗ monomial c t + except p {w} ∗

monomial c t
by (simp add: algebra-simps)

also have ... = monomial (lookup p w ∗ c) (w + t) + except p {w} ∗ monomial
c t

by (simp only: mult-single)
finally have lookup (p ∗ monomial c t) s = lookup (monomial (lookup p w ∗ c)

(w + t)) s + ?x
by (simp only: lookup-add IH)

also have ... = (lookup (monomial (lookup p w ∗ c) (w + t)) s +
lookup (except p {w}) (s − t) ∗ c when t adds s)

by (rule when-distrib, auto simp add: lookup-single when-def)
also from refl have ... = (lookup p (s − t) ∗ c when t adds s)
proof (rule when-cong)

assume t adds s
then obtain u where u: s = t + u ..
show lookup (monomial (lookup p w ∗ c) (w + t)) s + lookup (except p {w})

(s − t) ∗ c =
lookup p (s − t) ∗ c

by (simp add: u, cases u = w, simp-all add: lookup-except lookup-single
add.commute)

117

qed
finally show lookup (p ∗ monomial c t) s = (lookup p (s − t) ∗ c when t adds

s) .
qed

9.3 Vector-Polynomials
From now on we consider multivariate vector-polynomials, i. e. vectors of
scalar polynomials. We do this by adding a component to each power-
product, yielding terms. Vector-polynomials are then again just linear com-
binations of terms. Note that a term is not the same as a vector of power-
products!

We use define terms in a locale, such that later on we can interpret the
locale also by ordinary power-products (without components), exploiting the
canonical isomorphism between ′a and ′a × unit.
named-theorems term-simps simplification rules for terms

locale term-powerprod =
fixes pair-of-term:: ′t ⇒ (′a::comm-powerprod × ′k::linorder)
fixes term-of-pair ::(′a × ′k) ⇒ ′t
assumes term-pair [term-simps]: term-of-pair (pair-of-term v) = v
assumes pair-term [term-simps]: pair-of-term (term-of-pair p) = p

begin

lemma pair-of-term-injective:
assumes pair-of-term u = pair-of-term v
shows u = v

proof −
from assms have term-of-pair (pair-of-term u) = term-of-pair (pair-of-term v)

by (simp only:)
thus ?thesis by (simp add: term-simps)

qed

corollary pair-of-term-inj: inj pair-of-term
using pair-of-term-injective by (rule injI)

lemma term-of-pair-injective:
assumes term-of-pair p = term-of-pair q
shows p = q

proof −
from assms have pair-of-term (term-of-pair p) = pair-of-term (term-of-pair q)

by (simp only:)
thus ?thesis by (simp add: term-simps)

qed

corollary term-of-pair-inj: inj term-of-pair
using term-of-pair-injective by (rule injI)

118

definition pp-of-term :: ′t ⇒ ′a
where pp-of-term v = fst (pair-of-term v)

definition component-of-term :: ′t ⇒ ′k
where component-of-term v = snd (pair-of-term v)

lemma term-of-pair-pair [term-simps]: term-of-pair (pp-of-term v, component-of-term
v) = v

by (simp add: pp-of-term-def component-of-term-def term-pair)

lemma pp-of-term-of-pair [term-simps]: pp-of-term (term-of-pair (t, k)) = t
by (simp add: pp-of-term-def pair-term)

lemma component-of-term-of-pair [term-simps]: component-of-term (term-of-pair
(t, k)) = k

by (simp add: component-of-term-def pair-term)

9.3.1 Additive Structure of Terms
definition splus :: ′a ⇒ ′t ⇒ ′t (infixl ‹⊕› 75)

where splus t v = term-of-pair (t + pp-of-term v, component-of-term v)

definition sminus :: ′t ⇒ ′a ⇒ ′t (infixl ‹	› 75)
where sminus v t = term-of-pair (pp-of-term v − t, component-of-term v)

Note that the argument order in () is reversed compared to the order
in (⊕).
definition adds-pp :: ′a ⇒ ′t ⇒ bool (infix ‹addsp› 50)

where adds-pp t v ←→ t adds pp-of-term v

definition adds-term :: ′t ⇒ ′t ⇒ bool (infix ‹addst› 50)
where adds-term u v ←→ component-of-term u = component-of-term v ∧ pp-of-term

u adds pp-of-term v

lemma pp-of-term-splus [term-simps]: pp-of-term (t ⊕ v) = t + pp-of-term v
by (simp add: splus-def term-simps)

lemma component-of-term-splus [term-simps]: component-of-term (t ⊕ v) = com-
ponent-of-term v

by (simp add: splus-def term-simps)

lemma pp-of-term-sminus [term-simps]: pp-of-term (v 	 t) = pp-of-term v − t
by (simp add: sminus-def term-simps)

lemma component-of-term-sminus [term-simps]: component-of-term (v 	 t) =
component-of-term v

by (simp add: sminus-def term-simps)

lemma splus-sminus [term-simps]: (t ⊕ v) 	 t = v

119

by (simp add: sminus-def term-simps)

lemma splus-zero [term-simps]: 0 ⊕ v = v
by (simp add: splus-def term-simps)

lemma sminus-zero [term-simps]: v 	 0 = v
by (simp add: sminus-def term-simps)

lemma splus-assoc [ac-simps]: (s + t) ⊕ v = s ⊕ (t ⊕ v)
by (simp add: splus-def ac-simps term-simps)

lemma splus-left-commute [ac-simps]: s ⊕ (t ⊕ v) = t ⊕ (s ⊕ v)
by (simp add: splus-def ac-simps term-simps)

lemma splus-right-canc [term-simps]: t ⊕ v = s ⊕ v ←→ t = s
by (metis add-right-cancel pp-of-term-splus)

lemma splus-left-canc [term-simps]: t ⊕ v = t ⊕ u ←→ v = u
by (metis splus-sminus)

lemma adds-ppI [intro?]:
assumes v = t ⊕ u
shows t addsp v
by (simp add: adds-pp-def assms splus-def term-simps)

lemma adds-ppE [elim?]:
assumes t addsp v
obtains u where v = t ⊕ u

proof −
from assms obtain s where ∗: pp-of-term v = t + s unfolding adds-pp-def ..
have v = t ⊕ (term-of-pair (s, component-of-term v))

by (simp add: splus-def term-simps, metis ∗ add.commute term-of-pair-pair)
thus ?thesis ..

qed

lemma adds-pp-alt: t addsp v ←→ (∃ u. v = t ⊕ u)
by (meson adds-ppE adds-ppI)

lemma adds-pp-refl [term-simps]: (pp-of-term v) addsp v
by (simp add: adds-pp-def)

lemma adds-pp-trans [trans]:
assumes s adds t and t addsp v
shows s addsp v

proof −
note assms(1)
also from assms(2) have t adds pp-of-term v by (simp only: adds-pp-def)
finally show ?thesis by (simp only: adds-pp-def)

qed

120

lemma zero-adds-pp [term-simps]: 0 addsp v
by (simp add: adds-pp-def)

lemma adds-pp-splus:
assumes t addsp v
shows t addsp s ⊕ v
using assms by (simp add: adds-pp-def term-simps)

lemma adds-pp-triv [term-simps]: t addsp t ⊕ v
by (simp add: adds-pp-def term-simps)

lemma plus-adds-pp-mono:
assumes s adds t

and u addsp v
shows s + u addsp t ⊕ v
using assms by (simp add: adds-pp-def term-simps) (rule plus-adds-mono)

lemma plus-adds-pp-left:
assumes s + t addsp v
shows s addsp v
using assms by (simp add: adds-pp-def plus-adds-left)

lemma plus-adds-pp-right:
assumes s + t addsp v
shows t addsp v
using assms by (simp add: adds-pp-def plus-adds-right)

lemma adds-pp-sminus:
assumes t addsp v
shows t ⊕ (v 	 t) = v

proof −
from assms adds-pp-alt[of t v] obtain u where u: v = t ⊕ u by (auto simp:

ac-simps)
hence v 	 t = u by (simp add: term-simps)
thus ?thesis using u by simp

qed

lemma adds-pp-canc: t + s addsp (t ⊕ v) ←→ s addsp v
by (simp add: adds-pp-def adds-canc-2 term-simps)

lemma adds-pp-canc-2 : s + t addsp (t ⊕ v) ←→ s addsp v
by (simp add: adds-pp-canc add.commute[of s t])

lemma plus-adds-pp-0 :
assumes (s + t) addsp v
shows s addsp (v 	 t)
using assms by (simp add: adds-pp-def term-simps) (rule plus-adds-0)

121

lemma plus-adds-ppI-1 :
assumes t addsp v and s addsp (v 	 t)
shows (s + t) addsp v
using assms by (simp add: adds-pp-def term-simps) (rule plus-adds-2)

lemma plus-adds-ppI-2 :
assumes t addsp v and s addsp (v 	 t)
shows (t + s) addsp v
unfolding add.commute[of t s] using assms by (rule plus-adds-ppI-1)

lemma plus-adds-pp: (s + t) addsp v ←→ (t addsp v ∧ s addsp (v 	 t))
by (simp add: adds-pp-def plus-adds term-simps)

lemma minus-splus:
assumes s adds t
shows (t − s) ⊕ v = (t ⊕ v) 	 s
by (simp add: assms minus-plus sminus-def splus-def term-simps)

lemma minus-splus-sminus:
assumes s adds t and u addsp v
shows (t − s) ⊕ (v 	 u) = (t ⊕ v) 	 (s + u)
using assms minus-plus-minus term-powerprod.adds-pp-def term-powerprod-axioms

sminus-def
splus-def term-simps by fastforce

lemma minus-splus-sminus-cancel:
assumes s adds t and t addsp v
shows (t − s) ⊕ (v 	 t) = v 	 s
by (simp add: adds-pp-sminus assms minus-splus)

lemma sminus-plus:
assumes s addsp v and t addsp (v 	 s)
shows v 	 (s + t) = (v 	 s) 	 t
by (simp add: diff-diff-add sminus-def term-simps)

lemma adds-termI [intro?]:
assumes v = t ⊕ u
shows u addst v
by (simp add: adds-term-def assms splus-def term-simps)

lemma adds-termE [elim?]:
assumes u addst v
obtains t where v = t ⊕ u

proof −
from assms have eq: component-of-term u = component-of-term v and pp-of-term

u adds pp-of-term v
by (simp-all add: adds-term-def)

from this(2) obtain s where ∗: s + pp-of-term u = pp-of-term v unfolding
adds-term-def

122

using adds-minus by blast
have v = s ⊕ u by (simp add: splus-def eq ∗ term-simps)
thus ?thesis ..

qed

lemma adds-term-alt: u addst v ←→ (∃ t. v = t ⊕ u)
by (meson adds-termE adds-termI)

lemma adds-term-refl [term-simps]: v addst v
by (simp add: adds-term-def)

lemma adds-term-trans [trans]:
assumes u addst v and v addst w
shows u addst w
using assms unfolding adds-term-def using adds-trans by auto

lemma adds-term-splus:
assumes u addst v
shows u addst s ⊕ v
using assms by (simp add: adds-term-def term-simps)

lemma adds-term-triv [term-simps]: v addst t ⊕ v
by (simp add: adds-term-def term-simps)

lemma splus-adds-term-mono:
assumes s adds t

and u addst v
shows s ⊕ u addst t ⊕ v
using assms by (auto simp: adds-term-def term-simps intro: plus-adds-mono)

lemma splus-adds-term:
assumes t ⊕ u addst v
shows u addst v
using assms by (auto simp add: adds-term-def term-simps elim: plus-adds-right)

lemma adds-term-adds-pp:
u addst v ←→ (component-of-term u = component-of-term v ∧ pp-of-term u addsp

v)
by (simp add: adds-term-def adds-pp-def)

lemma adds-term-canc: t ⊕ u addst t ⊕ v ←→ u addst v
by (simp add: adds-term-def adds-canc-2 term-simps)

lemma adds-term-canc-2 : s ⊕ v addst t ⊕ v ←→ s adds t
by (simp add: adds-term-def adds-canc term-simps)

lemma splus-adds-term-0 :
assumes t ⊕ u addst v
shows u addst (v 	 t)

123

using assms by (simp add: adds-term-def add.commute[of t] term-simps) (auto
intro: plus-adds-0)

lemma splus-adds-termI-1 :
assumes t addsp v and u addst (v 	 t)
shows t ⊕ u addst v
using assms apply (simp add: adds-term-def term-simps) by (metis add.commute

adds-pp-def plus-adds-2)

lemma splus-adds-term-iff : t ⊕ u addst v ←→ (t addsp v ∧ u addst (v 	 t))
by (metis adds-ppI adds-pp-splus adds-termE splus-adds-termI-1 splus-adds-term-0)

lemma adds-minus-splus:
assumes pp-of-term u adds t
shows (t − pp-of-term u) ⊕ u = term-of-pair (t, component-of-term u)
by (simp add: splus-def adds-minus[OF assms])

9.3.2 Projections and Conversions
lift-definition proj-poly :: ′k ⇒ (′t ⇒0

′b) ⇒ (′a ⇒0
′b::zero)

is λk p t. p (term-of-pair (t, k))
proof −

fix k:: ′k and p:: ′t ⇒ ′b
assume fin: finite {v. p v 6= 0}
have {t. p (term-of-pair (t, k)) 6= 0} ⊆ pp-of-term ‘ {v. p v 6= 0}
proof (rule, simp)

fix t
assume p (term-of-pair (t, k)) 6= 0
hence ∗: term-of-pair (t, k) ∈ {v. p v 6= 0} by simp

have t = pp-of-term (term-of-pair (t, k)) by (simp add: pp-of-term-def pair-term)
from this ∗ show t ∈ pp-of-term ‘ {v. p v 6= 0} ..

qed
moreover from fin have finite (pp-of-term ‘ {v. p v 6= 0}) by (rule finite-imageI)
ultimately show finite {t. p (term-of-pair (t, k)) 6= 0} by (rule finite-subset)

qed

definition vectorize-poly :: (′t ⇒0
′b) ⇒ (′k ⇒0 (′a ⇒0

′b::zero))
where vectorize-poly p = Abs-poly-mapping (λk. proj-poly k p)

definition atomize-poly :: (′k ⇒0 (′a ⇒0
′b)) ⇒ (′t ⇒0

′b::zero)
where atomize-poly p = Abs-poly-mapping (λv. lookup (lookup p (component-of-term

v)) (pp-of-term v))

lemma lookup-proj-poly: lookup (proj-poly k p) t = lookup p (term-of-pair (t, k))
by (transfer , simp)

lemma lookup-vectorize-poly: lookup (vectorize-poly p) k = proj-poly k p
proof −

have lookup (Abs-poly-mapping (λk. proj-poly k p)) = (λk. proj-poly k p)

124

proof (rule Abs-poly-mapping-inverse, simp)
have {k. proj-poly k p 6= 0} ⊆ component-of-term ‘ keys p
proof (rule, simp)

fix k
assume proj-poly k p 6= 0
hence keys (proj-poly k p) 6= {} using poly-mapping-eq-zeroI by blast
then obtain t where lookup (proj-poly k p) t 6= 0 by blast
hence term-of-pair (t, k) ∈ keys p by (simp add: lookup-proj-poly in-keys-iff)
hence component-of-term (term-of-pair (t, k)) ∈ component-of-term ‘ keys p

by fastforce
thus k ∈ component-of-term ‘ keys p by (simp add: term-simps)

qed
moreover from finite-keys have finite (component-of-term ‘ keys p) by (rule

finite-imageI)
ultimately show finite {k. proj-poly k p 6= 0} by (rule finite-subset)

qed
thus ?thesis by (simp add: vectorize-poly-def)

qed

lemma lookup-atomize-poly:
lookup (atomize-poly p) v = lookup (lookup p (component-of-term v)) (pp-of-term

v)
proof −

have lookup (Abs-poly-mapping (λv. lookup (lookup p (component-of-term v))
(pp-of-term v))) =

(λv. lookup (lookup p (component-of-term v)) (pp-of-term v))
proof (rule Abs-poly-mapping-inverse, simp)

have {v. pp-of-term v ∈ keys (lookup p (component-of-term v))} ⊆
(
⋃

k∈keys p. (λt. term-of-pair (t, k)) ‘ keys (lookup p k)) (is - ⊆ ?A)
proof (rule, simp)

fix v
assume ∗: pp-of-term v ∈ keys (lookup p (component-of-term v))
hence keys (lookup p (component-of-term v)) 6= {} by blast
hence lookup p (component-of-term v) 6= 0 by auto
hence component-of-term v ∈ keys p (is ?k ∈ -)

by (simp add: in-keys-iff)
thus ∃ k∈keys p. v ∈ (λt. term-of-pair (t, k)) ‘ keys (lookup p k)
proof

have v = term-of-pair (pp-of-term v, component-of-term v) by (simp add:
term-simps)

from this ∗ show v ∈ (λt. term-of-pair (t, ?k)) ‘ keys (lookup p ?k) ..
qed

qed
moreover have finite ?A by (rule, fact finite-keys, rule finite-imageI , rule

finite-keys)
ultimately show finite {x. lookup (lookup p (component-of-term x)) (pp-of-term

x) 6= 0}
by (simp add: finite-subset in-keys-iff)

qed

125

thus ?thesis by (simp add: atomize-poly-def)
qed

lemma keys-proj-poly: keys (proj-poly k p) = pp-of-term ‘ {x∈keys p. compo-
nent-of-term x = k}
proof

show keys (proj-poly k p) ⊆ pp-of-term ‘ {x∈keys p. component-of-term x = k}
proof

fix t
assume t ∈ keys (proj-poly k p)
hence lookup (proj-poly k p) t 6= 0 by (simp add: in-keys-iff)
hence term-of-pair (t, k) ∈ keys p by (simp add: in-keys-iff lookup-proj-poly)
hence term-of-pair (t, k) ∈ {x∈keys p. component-of-term x = k} by (simp

add: term-simps)
hence pp-of-term (term-of-pair (t, k)) ∈ pp-of-term ‘ {x∈keys p. compo-

nent-of-term x = k} by (rule imageI)
thus t ∈ pp-of-term ‘ {x∈keys p. component-of-term x = k} by (simp only:

pp-of-term-of-pair)
qed

next
show pp-of-term ‘ {x∈keys p. component-of-term x = k} ⊆ keys (proj-poly k p)
proof

fix t
assume t ∈ pp-of-term ‘ {x∈keys p. component-of-term x = k}
then obtain x where x ∈ {x∈keys p. component-of-term x = k} and t =

pp-of-term x ..
from this(1) have x ∈ keys p and k = component-of-term x by simp-all
from this(2) have x = term-of-pair (t, k) by (simp add: term-of-pair-pair ‹t

= pp-of-term x›)
with ‹x ∈ keys p› have lookup p (term-of-pair (t, k)) 6= 0 by (simp add:

in-keys-iff)
hence lookup (proj-poly k p) t 6= 0 by (simp add: lookup-proj-poly)
thus t ∈ keys (proj-poly k p) by (simp add: in-keys-iff)

qed
qed

lemma keys-vectorize-poly: keys (vectorize-poly p) = component-of-term ‘ keys p
proof

show keys (vectorize-poly p) ⊆ component-of-term ‘ keys p
proof

fix k
assume k ∈ keys (vectorize-poly p)
hence lookup (vectorize-poly p) k 6= 0 by (simp add: in-keys-iff)
hence proj-poly k p 6= 0 by (simp add: lookup-vectorize-poly)
then obtain t where lookup (proj-poly k p) t 6= 0 using aux by blast
hence term-of-pair (t, k) ∈ keys p by (simp add: lookup-proj-poly in-keys-iff)
hence component-of-term (term-of-pair (t, k)) ∈ component-of-term ‘ keys p

by (rule imageI)
thus k ∈ component-of-term ‘ keys p by (simp only: component-of-term-of-pair)

126

qed
next

show component-of-term ‘ keys p ⊆ keys (vectorize-poly p)
proof

fix k
assume k ∈ component-of-term ‘ keys p
then obtain x where x ∈ keys p and k = component-of-term x ..

from this(2) have term-of-pair (pp-of-term x, k) = x by (simp add: term-of-pair-pair)
with ‹x ∈ keys p› have lookup p (term-of-pair (pp-of-term x, k)) 6= 0 by (simp

add: in-keys-iff)
hence lookup (proj-poly k p) (pp-of-term x) 6= 0 by (simp add: lookup-proj-poly)
hence proj-poly k p 6= 0 by auto
hence lookup (vectorize-poly p) k 6= 0 by (simp add: lookup-vectorize-poly)
thus k ∈ keys (vectorize-poly p) by (simp add: in-keys-iff)

qed
qed

lemma keys-atomize-poly:
keys (atomize-poly p) = (

⋃
k∈keys p. (λt. term-of-pair (t, k)) ‘ keys (lookup p

k)) (is ?l = ?r)
proof

show ?l ⊆ ?r
proof

fix v
assume v ∈ ?l
hence lookup (atomize-poly p) v 6= 0 by (simp add: in-keys-iff)
hence ∗: pp-of-term v ∈ keys (lookup p (component-of-term v)) by (simp add:

in-keys-iff lookup-atomize-poly)
hence lookup p (component-of-term v) 6= 0 by fastforce
hence component-of-term v ∈ keys p by (simp add: in-keys-iff)
thus v ∈ ?r
proof

from ∗ have term-of-pair (pp-of-term v, component-of-term v) ∈
(λt. term-of-pair (t, component-of-term v)) ‘ keys (lookup p

(component-of-term v))
by (rule imageI)
thus v ∈ (λt. term-of-pair (t, component-of-term v)) ‘ keys (lookup p

(component-of-term v))
by (simp only: term-of-pair-pair)

qed
qed

next
show ?r ⊆ ?l
proof

fix v
assume v ∈ ?r
then obtain k where k ∈ keys p and v ∈ (λt. term-of-pair (t, k)) ‘ keys

(lookup p k) ..
from this(2) obtain t where t ∈ keys (lookup p k) and v: v = term-of-pair

127

(t, k) ..
from this(1) have lookup (atomize-poly p) v 6= 0 by (simp add: v lookup-atomize-poly

in-keys-iff term-simps)
thus v ∈ ?l by (simp add: in-keys-iff)

qed
qed

lemma proj-atomize-poly [term-simps]: proj-poly k (atomize-poly p) = lookup p k
by (rule poly-mapping-eqI , simp add: lookup-proj-poly lookup-atomize-poly term-simps)

lemma vectorize-atomize-poly [term-simps]: vectorize-poly (atomize-poly p) = p
by (rule poly-mapping-eqI , simp add: lookup-vectorize-poly term-simps)

lemma atomize-vectorize-poly [term-simps]: atomize-poly (vectorize-poly p) = p
by (rule poly-mapping-eqI , simp add: lookup-atomize-poly lookup-vectorize-poly

lookup-proj-poly term-simps)

lemma proj-zero [term-simps]: proj-poly k 0 = 0
by (rule poly-mapping-eqI , simp add: lookup-proj-poly)

lemma proj-plus: proj-poly k (p + q) = proj-poly k p + proj-poly k q
by (rule poly-mapping-eqI , simp add: lookup-proj-poly lookup-add)

lemma proj-uminus [term-simps]: proj-poly k (− p) = − proj-poly k p
by (rule poly-mapping-eqI , simp add: lookup-proj-poly)

lemma proj-minus: proj-poly k (p − q) = proj-poly k p − proj-poly k q
by (rule poly-mapping-eqI , simp add: lookup-proj-poly lookup-minus)

lemma vectorize-zero [term-simps]: vectorize-poly 0 = 0
by (rule poly-mapping-eqI , simp add: lookup-vectorize-poly term-simps)

lemma vectorize-plus: vectorize-poly (p + q) = vectorize-poly p + vectorize-poly q
by (rule poly-mapping-eqI , simp add: lookup-vectorize-poly lookup-add proj-plus)

lemma vectorize-uminus [term-simps]: vectorize-poly (− p) = − vectorize-poly p
by (rule poly-mapping-eqI , simp add: lookup-vectorize-poly term-simps)

lemma vectorize-minus: vectorize-poly (p − q) = vectorize-poly p − vectorize-poly
q
by (rule poly-mapping-eqI , simp add: lookup-vectorize-poly lookup-minus proj-minus)

lemma atomize-zero [term-simps]: atomize-poly 0 = 0
by (rule poly-mapping-eqI , simp add: lookup-atomize-poly)

lemma atomize-plus: atomize-poly (p + q) = atomize-poly p + atomize-poly q
by (rule poly-mapping-eqI , simp add: lookup-atomize-poly lookup-add)

lemma atomize-uminus [term-simps]: atomize-poly (− p) = − atomize-poly p

128

by (rule poly-mapping-eqI , simp add: lookup-atomize-poly)

lemma atomize-minus: atomize-poly (p − q) = atomize-poly p − atomize-poly q
by (rule poly-mapping-eqI , simp add: lookup-atomize-poly lookup-minus)

lemma proj-monomial:
proj-poly k (monomial c v) = (monomial c (pp-of-term v) when component-of-term

v = k)
proof (rule poly-mapping-eqI , simp add: lookup-proj-poly lookup-single when-def
term-simps, intro impI)

fix t
assume 1 : pp-of-term v = t and 2 : component-of-term v = k
assume v 6= term-of-pair (t, k)
moreover have v = term-of-pair (t, k) by (simp add: 1 [symmetric] 2 [symmetric]

term-simps)
ultimately show c = 0 ..

qed

lemma vectorize-monomial:
vectorize-poly (monomial c v) = monomial (monomial c (pp-of-term v)) (component-of-term

v)
by (rule poly-mapping-eqI , simp add: lookup-vectorize-poly proj-monomial lookup-single)

lemma atomize-monomial-monomial:
atomize-poly (monomial (monomial c t) k) = monomial c (term-of-pair (t, k))

proof −
define v where v = term-of-pair (t, k)
have t: t = pp-of-term v and k: k = component-of-term v by (simp-all add:

v-def term-simps)
show ?thesis by (simp add: t k vectorize-monomial[symmetric] term-simps)

qed

lemma poly-mapping-eqI-proj:
assumes

∧
k. proj-poly k p = proj-poly k q

shows p = q
proof (rule poly-mapping-eqI)

fix v:: ′t
have proj-poly (component-of-term v) p = proj-poly (component-of-term v) q by

(rule assms)
hence lookup (proj-poly (component-of-term v) p) (pp-of-term v) =

lookup (proj-poly (component-of-term v) q) (pp-of-term v) by simp
thus lookup p v = lookup q v by (simp add: lookup-proj-poly term-simps)

qed

9.4 Scalar Multiplication by Monomials
definition monom-mult :: ′b::semiring-0 ⇒ ′a::comm-powerprod ⇒ (′t ⇒0

′b) ⇒
(′t ⇒0

′b)
where monom-mult c t p = Abs-poly-mapping (λv. if t addsp v then c ∗ (lookup

129

p (v 	 t)) else 0)

lemma keys-monom-mult-aux:
{v. (if t addsp v then c ∗ lookup p (v 	 t) else 0) 6= 0} ⊆ (⊕) t ‘ keys p (is ?l ⊆

?r)
for c:: ′b::semiring-0

proof
fix v:: ′t
assume v ∈ ?l
hence (if t addsp v then c ∗ lookup p (v 	 t) else 0) 6= 0 by simp
hence t addsp v and cp-not-zero: c ∗ lookup p (v 	 t) 6= 0 by (simp-all split:

if-split-asm)
show v ∈ ?r
proof

from adds-pp-sminus[OF ‹t addsp v›] show v = t ⊕ (v 	 t) by simp
next

from mult-not-zero[OF cp-not-zero] show v 	 t ∈ keys p
by (simp add: in-keys-iff)

qed
qed

lemma lookup-monom-mult:
lookup (monom-mult c t p) v = (if t addsp v then c ∗ lookup p (v 	 t) else 0)

proof −
have lookup (monom-mult c t p) = (λv. if t addsp v then c ∗ lookup p (v 	 t)

else 0)
unfolding monom-mult-def

proof (rule Abs-poly-mapping-inverse)
from finite-keys have finite ((⊕) t ‘ keys p) ..
with keys-monom-mult-aux have finite {v. (if t addsp v then c ∗ lookup p (v

	 t) else 0) 6= 0}
by (rule finite-subset)

thus (λv. if t addsp v then c ∗ lookup p (v 	 t) else 0) ∈ {f . finite {x. f x 6=
0}} by simp

qed
thus ?thesis by simp

qed

lemma lookup-monom-mult-plus:
lookup (monom-mult c t p) (t ⊕ v) = (c:: ′b::semiring-0) ∗ lookup p v
by (simp add: lookup-monom-mult term-simps)

lemma monom-mult-assoc: monom-mult c s (monom-mult d t p) = monom-mult
(c ∗ d) (s + t) p
proof (rule poly-mapping-eqI , simp add: lookup-monom-mult sminus-plus ac-simps,
intro conjI impI)

fix v
assume s addsp v and t addsp v 	 s
hence s + t addsp v by (rule plus-adds-ppI-2)

130

moreover assume ¬ s + t addsp v
ultimately show c ∗ (d ∗ lookup p (v 	 s 	 t)) = 0 by simp

next
fix v
assume s + t addsp v
hence s addsp v by (rule plus-adds-pp-left)
moreover assume ¬ s addsp v
ultimately show c ∗ (d ∗ lookup p (v 	 (s + t))) = 0 by simp

next
fix v
assume s + t addsp v
hence t addsp v 	 s by (simp add: add.commute plus-adds-pp-0)
moreover assume ¬ t addsp v 	 s
ultimately show c ∗ (d ∗ lookup p (v 	 (s + t))) = 0 by simp

qed

lemma monom-mult-uminus-left: monom-mult (− c) t p = − monom-mult (c:: ′b::ring)
t p

by (rule poly-mapping-eqI , simp add: lookup-monom-mult)

lemma monom-mult-uminus-right: monom-mult c t (− p) = − monom-mult (c:: ′b::ring)
t p

by (rule poly-mapping-eqI , simp add: lookup-monom-mult)

lemma uminus-monom-mult: − p = monom-mult (−1 :: ′b::comm-ring-1) 0 p
by (rule poly-mapping-eqI , simp add: lookup-monom-mult term-simps)

lemma monom-mult-dist-left: monom-mult (c + d) t p = (monom-mult c t p) +
(monom-mult d t p)
by (rule poly-mapping-eqI , simp add: lookup-monom-mult lookup-add algebra-simps)

lemma monom-mult-dist-left-minus:
monom-mult (c − d) t p = (monom-mult c t p) − (monom-mult (d:: ′b::ring) t p)
using monom-mult-dist-left[of c −d t p] monom-mult-uminus-left[of d t p] by

simp

lemma monom-mult-dist-right:
monom-mult c t (p + q) = (monom-mult c t p) + (monom-mult c t q)
by (rule poly-mapping-eqI , simp add: lookup-monom-mult lookup-add algebra-simps)

lemma monom-mult-dist-right-minus:
monom-mult c t (p − q) = (monom-mult c t p) − (monom-mult (c:: ′b::ring) t q)
using monom-mult-dist-right[of c t p −q] monom-mult-uminus-right[of c t q] by

simp

lemma monom-mult-zero-left [simp]: monom-mult 0 t p = 0
by (rule poly-mapping-eqI , simp add: lookup-monom-mult)

lemma monom-mult-zero-right [simp]: monom-mult c t 0 = 0

131

by (rule poly-mapping-eqI , simp add: lookup-monom-mult)

lemma monom-mult-one-left [simp]: (monom-mult (1 :: ′b::semiring-1) 0 p) = p
by (rule poly-mapping-eqI , simp add: lookup-monom-mult term-simps)

lemma monom-mult-monomial:
monom-mult c s (monomial d v) = monomial (c ∗ (d:: ′b::semiring-0)) (s ⊕ v)
by (rule poly-mapping-eqI , auto simp add: lookup-monom-mult lookup-single

adds-pp-alt when-def term-simps, metis)

lemma monom-mult-eq-zero-iff : (monom-mult c t p = 0)←→ ((c:: ′b::semiring-no-zero-divisors)
= 0 ∨ p = 0)
proof

assume eq: monom-mult c t p = 0
show c = 0 ∨ p = 0
proof (rule ccontr , simp)

assume c 6= 0 ∧ p 6= 0
hence c 6= 0 and p 6= 0 by simp-all
from lookup-zero poly-mapping-eq-iff [of p 0] ‹p 6= 0 › obtain v where lookup

p v 6= 0 by fastforce
from eq lookup-zero have lookup (monom-mult c t p) (t ⊕ v) = 0 by simp
hence c ∗ lookup p v = 0 by (simp only: lookup-monom-mult-plus)
with ‹c 6= 0 › ‹lookup p v 6= 0 › show False by auto

qed
next

assume c = 0 ∨ p = 0
with monom-mult-zero-left[of t p] monom-mult-zero-right[of c t] show monom-mult

c t p = 0 by auto
qed

lemma lookup-monom-mult-zero: lookup (monom-mult c 0 p) t = c ∗ lookup p t
proof −

have lookup (monom-mult c 0 p) t = lookup (monom-mult c 0 p) (0 ⊕ t) by
(simp add: term-simps)

also have ... = c ∗ lookup p t by (rule lookup-monom-mult-plus)
finally show ?thesis .

qed

lemma monom-mult-inj-1 :
assumes monom-mult c1 t p = monom-mult c2 t p

and (p::(- ⇒0
′b::semiring-no-zero-divisors-cancel)) 6= 0

shows c1 = c2
proof −

from assms(2) have keys p 6= {} using poly-mapping-eq-zeroI by blast
then obtain v where v ∈ keys p by blast
hence ∗: lookup p v 6= 0 by (simp add: in-keys-iff)
from assms(1) have lookup (monom-mult c1 t p) (t ⊕ v) = lookup (monom-mult

c2 t p) (t ⊕ v)
by simp

132

hence c1 ∗ lookup p v = c2 ∗ lookup p v by (simp only: lookup-monom-mult-plus)
with ∗ show ?thesis by auto

qed

Multiplication by a monomial is injective in the second argument (the
power-product) only in context ordered-powerprod; see lemma monom-mult-inj-2
below.
lemma monom-mult-inj-3 :
assumes monom-mult c t p1 = monom-mult c t (p2 ::(-⇒0

′b::semiring-no-zero-divisors-cancel))
and c 6= 0

shows p1 = p2
proof (rule poly-mapping-eqI)

fix v
from assms(1) have lookup (monom-mult c t p1) (t ⊕ v) = lookup (monom-mult

c t p2) (t ⊕ v)
by simp

hence c ∗ lookup p1 v = c ∗ lookup p2 v by (simp only: lookup-monom-mult-plus)
with assms(2) show lookup p1 v = lookup p2 v by simp

qed

lemma keys-monom-multI :
assumes v ∈ keys p and c 6= (0 :: ′b::semiring-no-zero-divisors)
shows t ⊕ v ∈ keys (monom-mult c t p)
using assms unfolding in-keys-iff lookup-monom-mult-plus by simp

lemma keys-monom-mult-subset: keys (monom-mult c t p) ⊆ ((⊕) t) ‘ (keys p)
proof −

have keys (monom-mult c t p) ⊆ {v. (if t addsp v then c ∗ lookup p (v 	 t) else
0) 6= 0} (is - ⊆ ?A)

proof
fix v
assume v ∈ keys (monom-mult c t p)
hence lookup (monom-mult c t p) v 6= 0 by (simp add: in-keys-iff)
thus v ∈ ?A unfolding lookup-monom-mult by simp

qed
also note keys-monom-mult-aux
finally show ?thesis .

qed

lemma keys-monom-multE :
assumes v ∈ keys (monom-mult c t p)
obtains u where u ∈ keys p and v = t ⊕ u

proof −
note assms
also have keys (monom-mult c t p) ⊆ ((⊕) t) ‘ (keys p) by (fact keys-monom-mult-subset)
finally have v ∈ ((⊕) t) ‘ (keys p) .
then obtain u where u ∈ keys p and v = t ⊕ u ..
thus ?thesis ..

qed

133

lemma keys-monom-mult:
assumes c 6= (0 :: ′b::semiring-no-zero-divisors)
shows keys (monom-mult c t p) = ((⊕) t) ‘ (keys p)

proof (rule, fact keys-monom-mult-subset, rule)
fix v
assume v ∈ (⊕) t ‘ keys p
then obtain u where u ∈ keys p and v: v = t ⊕ u ..
from ‹u ∈ keys p› assms show v ∈ keys (monom-mult c t p) unfolding v by

(rule keys-monom-multI)
qed

lemma monom-mult-when: monom-mult c t (p when P) = ((monom-mult c t p)
when P)

by (cases P, simp-all)

lemma when-monom-mult: monom-mult (c when P) t p = ((monom-mult c t p)
when P)

by (cases P, simp-all)

lemma monomial-power : (monomial c t) ^ n = monomial (c ^ n) (
∑

i=0 ..<n.
t)

by (induct n, simp-all add: mult-single monom-mult-monomial add.commute)

9.5 Component-wise Lifting
Component-wise lifting of functions on ′a ⇒0

′b to functions on ′t ⇒0
′b.

definition lift-poly-fun-2 :: ((′a ⇒0
′b) ⇒ (′a ⇒0

′b) ⇒ (′a ⇒0
′b)) ⇒ (′t ⇒0

′b)
⇒ (′t ⇒0

′b) ⇒ (′t ⇒0
′b::zero)

where lift-poly-fun-2 f p q = atomize-poly (mapp-2 (λ-. f) (vectorize-poly p)
(vectorize-poly q))

definition lift-poly-fun :: ((′a ⇒0
′b)⇒ (′a ⇒0

′b))⇒ (′t ⇒0
′b)⇒ (′t ⇒0

′b::zero)
where lift-poly-fun f p = lift-poly-fun-2 (λ-. f) 0 p

lemma lookup-lift-poly-fun-2 :
lookup (lift-poly-fun-2 f p q) v =
(lookup (f (proj-poly (component-of-term v) p) (proj-poly (component-of-term

v) q)) (pp-of-term v)
when component-of-term v ∈ keys (vectorize-poly p) ∪ keys (vectorize-poly

q))
by (simp add: lift-poly-fun-2-def lookup-atomize-poly lookup-mapp-2 lookup-vectorize-poly

when-distrib[of - λq. lookup q (pp-of-term v), OF lookup-zero])

lemma lookup-lift-poly-fun:
lookup (lift-poly-fun f p) v =

(lookup (f (proj-poly (component-of-term v) p)) (pp-of-term v) when compo-
nent-of-term v ∈ keys (vectorize-poly p))

by (simp add: lift-poly-fun-def lookup-lift-poly-fun-2 term-simps)

134

lemma lookup-lift-poly-fun-2-homogenous:
assumes f 0 0 = 0
shows lookup (lift-poly-fun-2 f p q) v =

lookup (f (proj-poly (component-of-term v) p) (proj-poly (component-of-term
v) q)) (pp-of-term v)

by (simp add: lookup-lift-poly-fun-2 when-def in-keys-iff lookup-vectorize-poly
assms)

lemma proj-lift-poly-fun-2-homogenous:
assumes f 0 0 = 0
shows proj-poly k (lift-poly-fun-2 f p q) = f (proj-poly k p) (proj-poly k q)
by (rule poly-mapping-eqI ,

simp add: lookup-proj-poly lookup-lift-poly-fun-2-homogenous[of f , OF assms]
term-simps)

lemma lookup-lift-poly-fun-homogenous:
assumes f 0 = 0
shows lookup (lift-poly-fun f p) v = lookup (f (proj-poly (component-of-term v)

p)) (pp-of-term v)
by (simp add: lookup-lift-poly-fun when-def in-keys-iff lookup-vectorize-poly assms)

lemma proj-lift-poly-fun-homogenous:
assumes f 0 = 0
shows proj-poly k (lift-poly-fun f p) = f (proj-poly k p)
by (rule poly-mapping-eqI ,

simp add: lookup-proj-poly lookup-lift-poly-fun-homogenous[of f , OF assms]
term-simps)

9.6 Component-wise Multiplication
definition mult-vec :: (′t ⇒0

′b) ⇒ (′t ⇒0
′b) ⇒ (′t ⇒0

′b::semiring-0) (infixl
‹∗∗› 75)

where mult-vec = lift-poly-fun-2 (∗)

lemma lookup-mult-vec:
lookup (p ∗∗ q) v = lookup ((proj-poly (component-of-term v) p) ∗ (proj-poly

(component-of-term v) q)) (pp-of-term v)
unfolding mult-vec-def by (rule lookup-lift-poly-fun-2-homogenous, simp)

lemma proj-mult-vec [term-simps]: proj-poly k (p ∗∗ q) = (proj-poly k p) ∗ (proj-poly
k q)

unfolding mult-vec-def by (rule proj-lift-poly-fun-2-homogenous, simp)

lemma mult-vec-zero-left: 0 ∗∗ p = 0
by (rule poly-mapping-eqI-proj, simp add: term-simps)

lemma mult-vec-zero-right: p ∗∗ 0 = 0
by (rule poly-mapping-eqI-proj, simp add: term-simps)

135

lemma mult-vec-assoc: (p ∗∗ q) ∗∗ r = p ∗∗ (q ∗∗ r)
by (rule poly-mapping-eqI-proj, simp add: ac-simps term-simps)

lemma mult-vec-distrib-right: (p + q) ∗∗ r = p ∗∗ r + q ∗∗ r
by (rule poly-mapping-eqI-proj, simp add: algebra-simps proj-plus term-simps)

lemma mult-vec-distrib-left: r ∗∗ (p + q) = r ∗∗ p + r ∗∗ q
by (rule poly-mapping-eqI-proj, simp add: algebra-simps proj-plus term-simps)

lemma mult-vec-minus-mult-left: (− p) ∗∗ q = − (p ∗∗ q)
by (rule sym, rule minus-unique, simp add: mult-vec-distrib-right[symmetric]

mult-vec-zero-left)

lemma mult-vec-minus-mult-right: p ∗∗ (− q) = − (p ∗∗ q)
by (rule sym, rule minus-unique, simp add: mult-vec-distrib-left [symmetric]

mult-vec-zero-right)

lemma minus-mult-vec-minus: (− p) ∗∗ (− q) = p ∗∗ q
by (simp add: mult-vec-minus-mult-left mult-vec-minus-mult-right)

lemma minus-mult-vec-commute: (− p) ∗∗ q = p ∗∗ (− q)
by (simp add: mult-vec-minus-mult-left mult-vec-minus-mult-right)

lemma mult-vec-right-diff-distrib: r ∗∗ (p − q) = r ∗∗ p − r ∗∗ q
for r ::- ⇒0

′b::ring
using mult-vec-distrib-left [of r p − q] by (simp add: mult-vec-minus-mult-right)

lemma mult-vec-left-diff-distrib: (p − q) ∗∗ r = p ∗∗ r − q ∗∗ r
for p::- ⇒0

′b::ring
using mult-vec-distrib-right [of p − q r] by (simp add: mult-vec-minus-mult-left)

lemma mult-vec-commute: p ∗∗ q = q ∗∗ p for p::- ⇒0
′b::comm-semiring-0

by (rule poly-mapping-eqI-proj, simp add: term-simps ac-simps)

lemma mult-vec-left-commute: p ∗∗ (q ∗∗ r) = q ∗∗ (p ∗∗ r)
for p::- ⇒0

′b::comm-semiring-0
by (rule poly-mapping-eqI-proj, simp add: term-simps ac-simps)

lemma mult-vec-monomial-monomial:
(monomial c u) ∗∗ (monomial d v) =

(monomial (c ∗ d) (term-of-pair (pp-of-term u + pp-of-term v, compo-
nent-of-term u)) when

component-of-term u = component-of-term v)
by (rule poly-mapping-eqI-proj, simp add: proj-monomial mult-single when-def

term-simps)

lemma mult-vec-rec-left: p ∗∗ q = monomial (lookup p v) v ∗∗ q + (except p {v})
∗∗ q

136

proof −
from plus-except[of p v] have p ∗∗ q = (monomial (lookup p v) v + except p
{v}) ∗∗ q by simp

also have ... = monomial (lookup p v) v ∗∗ q + except p {v} ∗∗ q
by (simp only: mult-vec-distrib-right)

finally show ?thesis .
qed

lemma mult-vec-rec-right: p ∗∗ q = p ∗∗ monomial (lookup q v) v + p ∗∗ except
q {v}
proof −

have p ∗∗ monomial (lookup q v) v + p ∗∗ except q {v} = p ∗∗ (monomial
(lookup q v) v + except q {v})

by (simp only: mult-vec-distrib-left)
also have ... = p ∗∗ q by (simp only: plus-except[of q v, symmetric])
finally show ?thesis by simp

qed

lemma in-keys-mult-vecE :
assumes w ∈ keys (p ∗∗ q)
obtains u v where u ∈ keys p and v ∈ keys q and component-of-term u =

component-of-term v
and w = term-of-pair (pp-of-term u + pp-of-term v, component-of-term u)

proof −
from assms have 0 6= lookup (p ∗∗ q) w by (simp add: in-keys-iff)
also have lookup (p ∗∗ q) w =

lookup ((proj-poly (component-of-term w) p) ∗ (proj-poly (component-of-term
w) q)) (pp-of-term w)

by (fact lookup-mult-vec)
finally have pp-of-term w ∈ keys ((proj-poly (component-of-term w) p) ∗ (proj-poly

(component-of-term w) q))
by (simp add: in-keys-iff)

from this keys-mult
have pp-of-term w ∈ {t + s |t s. t ∈ keys (proj-poly (component-of-term w) p) ∧

s ∈ keys (proj-poly (component-of-term w) q)} ..
then obtain t s where 1 : t ∈ keys (proj-poly (component-of-term w) p)

and 2 : s ∈ keys (proj-poly (component-of-term w) q)
and eq: pp-of-term w = t + s by fastforce

let ?u = term-of-pair (t, component-of-term w)
let ?v = term-of-pair (s, component-of-term w)
from 1 have ?u ∈ keys p by (simp only: in-keys-iff lookup-proj-poly not-False-eq-True)
moreover from 2 have ?v ∈ keys q by (simp only: in-keys-iff lookup-proj-poly

not-False-eq-True)
moreover have component-of-term ?u = component-of-term ?v by (simp add:

term-simps)
moreover have w = term-of-pair (pp-of-term ?u + pp-of-term ?v, compo-

nent-of-term ?u)
by (simp add: eq[symmetric] term-simps)

ultimately show ?thesis ..

137

qed

lemma lookup-mult-vec-monomial-left:
lookup (monomial c v ∗∗ p) u =

(c ∗ lookup p (term-of-pair (pp-of-term u − pp-of-term v, component-of-term
u)) when v addst u)
proof −

have eq1 : lookup ((monomial c (pp-of-term v) when component-of-term v =
component-of-term u) ∗ proj-poly (component-of-term u) p)

(pp-of-term u) =
(lookup ((monomial c (pp-of-term v)) ∗ proj-poly (component-of-term u) p)

(pp-of-term u) when
component-of-term v = component-of-term u)

by (rule when-distrib, simp)
show ?thesis

by (simp add: lookup-mult-vec proj-monomial eq1 lookup-times-monomial-left
when-when

adds-term-def lookup-proj-poly conj-commute)
qed

lemma lookup-mult-vec-monomial-right:
lookup (p ∗∗ monomial c v) u =

(lookup p (term-of-pair (pp-of-term u − pp-of-term v, component-of-term
u)) ∗ c when v addst u)
proof −

have eq1 : lookup (proj-poly (component-of-term u) p ∗ (monomial c (pp-of-term
v) when component-of-term v = component-of-term u))

(pp-of-term u) =
(lookup (proj-poly (component-of-term u) p ∗ (monomial c (pp-of-term v)))

(pp-of-term u) when
component-of-term v = component-of-term u)

by (rule when-distrib, simp)
show ?thesis

by (simp add: lookup-mult-vec proj-monomial eq1 lookup-times-monomial-right
when-when

adds-term-def lookup-proj-poly conj-commute)
qed

9.7 Scalar Multiplication
definition mult-scalar :: (′a ⇒0

′b) ⇒ (′t ⇒0
′b) ⇒ (′t ⇒0

′b::semiring-0) (infixl
‹�› 75)

where mult-scalar p = lift-poly-fun ((∗) p)

lemma lookup-mult-scalar :
lookup (p � q) v = lookup (p ∗ (proj-poly (component-of-term v) q)) (pp-of-term

v)
unfolding mult-scalar-def by (rule lookup-lift-poly-fun-homogenous, simp)

138

lemma lookup-mult-scalar-explicit:
lookup (p � q) u = (

∑
t∈keys p. lookup p t ∗ (

∑
v∈keys q. lookup q v when u =

t ⊕ v))
proof −

let ?f = λt s. lookup (proj-poly (component-of-term u) q) s when pp-of-term u =
t + s

note lookup-mult-scalar
also have lookup (p ∗ proj-poly (component-of-term u) q) (pp-of-term u) =

(
∑

t. lookup p t ∗ (Sum-any (?f t)))
by (fact lookup-mult)

also from finite-keys have . . . = (
∑

t∈keys p. lookup p t ∗ (Sum-any (?f t)))
by (rule Sum-any.expand-superset) (auto simp: in-keys-iff dest: mult-not-zero)

also from refl have . . . = (
∑

t∈keys p. lookup p t ∗ (
∑

v∈keys q. lookup q v
when u = t ⊕ v))

proof (rule sum.cong)
fix t
assume t ∈ keys p

from finite-keys have Sum-any (?f t) = (
∑

s∈keys (proj-poly (component-of-term
u) q). ?f t s)

by (rule Sum-any.expand-superset) (auto simp: in-keys-iff)
also have . . . = (

∑
v∈{x ∈ keys q. component-of-term x = component-of-term

u}. ?f t (pp-of-term v))
unfolding keys-proj-poly

proof (intro sum.reindex[simplified o-def] inj-onI)
fix v1 v2
assume v1 ∈ {x ∈ keys q. component-of-term x = component-of-term u}

and v2 ∈ {x ∈ keys q. component-of-term x = component-of-term u}
hence component-of-term v1 = component-of-term v2 by simp
moreover assume pp-of-term v1 = pp-of-term v2
ultimately show v1 = v2 by (metis term-of-pair-pair)

qed
also from finite-keys have . . . = (

∑
v∈keys q. lookup q v when u = t ⊕ v)

proof (intro sum.mono-neutral-cong-left ballI)
fix v
assume v ∈ keys q − {x ∈ keys q. component-of-term x = component-of-term

u}
hence u 6= t ⊕ v by (auto simp: component-of-term-splus)
thus (lookup q v when u = t ⊕ v) = 0 by simp

next
fix v
assume v ∈ {x ∈ keys q. component-of-term x = component-of-term u}
hence eq[symmetric]: component-of-term v = component-of-term u by simp
have u = t ⊕ v ←→ pp-of-term u = t + pp-of-term v
proof

assume pp-of-term u = t + pp-of-term v
hence pp-of-term u = pp-of-term (t ⊕ v) by (simp only: pp-of-term-splus)
moreover have component-of-term u = component-of-term (t ⊕ v)

by (simp only: eq component-of-term-splus)
ultimately show u = t ⊕ v by (metis term-of-pair-pair)

139

qed (simp add: pp-of-term-splus)
thus ?f t (pp-of-term v) = (lookup q v when u = t ⊕ v)

by (simp add: lookup-proj-poly eq term-of-pair-pair)
qed auto
finally show lookup p t ∗ (Sum-any (?f t)) = lookup p t ∗ (

∑
v∈keys q. lookup

q v when u = t ⊕ v)
by (simp only:)

qed
finally show ?thesis .

qed

lemma proj-mult-scalar [term-simps]: proj-poly k (p � q) = p ∗ (proj-poly k q)
unfolding mult-scalar-def by (rule proj-lift-poly-fun-homogenous, simp)

lemma mult-scalar-zero-left [simp]: 0 � p = 0
by (rule poly-mapping-eqI-proj, simp add: term-simps)

lemma mult-scalar-zero-right [simp]: p � 0 = 0
by (rule poly-mapping-eqI-proj, simp add: term-simps)

lemma mult-scalar-one [simp]: (1 ::- ⇒0
′b::semiring-1) � p = p

by (rule poly-mapping-eqI-proj, simp add: term-simps)

lemma mult-scalar-assoc [ac-simps]: (p ∗ q) � r = p � (q � r)
by (rule poly-mapping-eqI-proj, simp add: ac-simps term-simps)

lemma mult-scalar-distrib-right [algebra-simps]: (p + q) � r = p � r + q � r
by (rule poly-mapping-eqI-proj, simp add: algebra-simps proj-plus term-simps)

lemma mult-scalar-distrib-left [algebra-simps]: r � (p + q) = r � p + r � q
by (rule poly-mapping-eqI-proj, simp add: algebra-simps proj-plus term-simps)

lemma mult-scalar-minus-mult-left [simp]: (− p) � q = − (p � q)
by (rule sym, rule minus-unique, simp add: mult-scalar-distrib-right[symmetric])

lemma mult-scalar-minus-mult-right [simp]: p � (− q) = − (p � q)
by (rule sym, rule minus-unique, simp add: mult-scalar-distrib-left [symmetric])

lemma minus-mult-scalar-minus [simp]: (− p) � (− q) = p � q
by simp

lemma minus-mult-scalar-commute: (− p) � q = p � (− q)
by simp

lemma mult-scalar-right-diff-distrib [algebra-simps]: r � (p − q) = r � p − r �
q

for r ::- ⇒0
′b::ring

using mult-scalar-distrib-left [of r p − q] by simp

140

lemma mult-scalar-left-diff-distrib [algebra-simps]: (p − q) � r = p � r − q � r
for p::- ⇒0

′b::ring
using mult-scalar-distrib-right [of p − q r] by simp

lemma sum-mult-scalar-distrib-left: r � (sum f A) = (
∑

a∈A. r � f a)
by (induct A rule: infinite-finite-induct, simp-all add: algebra-simps)

lemma sum-mult-scalar-distrib-right: (sum f A) � v = (
∑

a∈A. f a � v)
by (induct A rule: infinite-finite-induct, simp-all add: algebra-simps)

lemma mult-scalar-monomial-monomial: (monomial c t) � (monomial d v) =
monomial (c ∗ d) (t ⊕ v)

by (rule poly-mapping-eqI-proj, simp add: proj-monomial mult-single when-def
term-simps)

lemma mult-scalar-monomial: (monomial c t) � p = monom-mult c t p
by (rule poly-mapping-eqI-proj, rule poly-mapping-eqI ,

auto simp add: lookup-times-monomial-left lookup-proj-poly lookup-monom-mult
when-def

adds-pp-def sminus-def term-simps)

lemma mult-scalar-rec-left: p � q = monom-mult (lookup p t) t q + (except p {t})
� q
proof −

from plus-except[of p t] have p � q = (monomial (lookup p t) t + except p {t})
� q by simp

also have ... = monomial (lookup p t) t � q + except p {t} � q by (simp only:
algebra-simps)

finally show ?thesis by (simp only: mult-scalar-monomial)
qed

lemma mult-scalar-rec-right: p � q = p � monomial (lookup q v) v + p � except
q {v}
proof −

have p � monomial (lookup q v) v + p � except q {v} = p � (monomial (lookup
q v) v + except q {v})

by (simp only: mult-scalar-distrib-left)
also have ... = p � q by (simp only: plus-except[of q v, symmetric])
finally show ?thesis by simp

qed

lemma in-keys-mult-scalarE :
assumes v ∈ keys (p � q)
obtains t u where t ∈ keys p and u ∈ keys q and v = t ⊕ u

proof −
from assms have 0 6= lookup (p � q) v by (simp add: in-keys-iff)
also have lookup (p � q) v = lookup (p ∗ (proj-poly (component-of-term v) q))

(pp-of-term v)
by (fact lookup-mult-scalar)

141

finally have pp-of-term v ∈ keys (p ∗ proj-poly (component-of-term v) q) by
(simp add: in-keys-iff)

from this keys-mult have pp-of-term v ∈ {t + s |t s. t ∈ keys p ∧ s ∈ keys
(proj-poly (component-of-term v) q)} ..

then obtain t s where t ∈ keys p and ∗: s ∈ keys (proj-poly (component-of-term
v) q)

and eq: pp-of-term v = t + s by fastforce
note this(1)
moreover from ∗ have term-of-pair (s, component-of-term v) ∈ keys q

by (simp only: in-keys-iff lookup-proj-poly not-False-eq-True)
moreover have v = t ⊕ term-of-pair (s, component-of-term v)

by (simp add: splus-def eq[symmetric] term-simps)
ultimately show ?thesis ..

qed

lemma lookup-mult-scalar-monomial-right:
lookup (p � monomial c v) u = (lookup p (pp-of-term u − pp-of-term v) ∗ c when

v addst u)
proof −

have eq1 : lookup (p ∗ (monomial c (pp-of-term v) when component-of-term v =
component-of-term u)) (pp-of-term u) =

(lookup (p ∗ (monomial c (pp-of-term v))) (pp-of-term u) when compo-
nent-of-term v = component-of-term u)

by (rule when-distrib, simp)
show ?thesis
by (simp add: lookup-mult-scalar eq1 proj-monomial lookup-times-monomial-right

when-when
adds-term-def lookup-proj-poly conj-commute)

qed

lemma lookup-mult-scalar-monomial-right-plus: lookup (p � monomial c v) (t ⊕
v) = lookup p t ∗ c

by (simp add: lookup-mult-scalar-monomial-right term-simps)

lemma keys-mult-scalar-monomial-right-subset: keys (p � monomial c v) ⊆ (λt. t
⊕ v) ‘ keys p
proof

fix u
assume u ∈ keys (p � monomial c v)
then obtain t w where t ∈ keys p and w ∈ keys (monomial c v) and u = t ⊕

w
by (rule in-keys-mult-scalarE)

from this(2) have w = v by (metis empty-iff insert-iff keys-single)
from ‹t ∈ keys p› show u ∈ (λt. t ⊕ v) ‘ keys p unfolding ‹u = t ⊕ w› ‹w =

v› by fastforce
qed

lemma keys-mult-scalar-monomial-right:
assumes c 6= (0 :: ′b::semiring-no-zero-divisors)

142

shows keys (p � monomial c v) = (λt. t ⊕ v) ‘ keys p
proof

show (λt. t ⊕ v) ‘ keys p ⊆ keys (p � monomial c v)
proof

fix u
assume u ∈ (λt. t ⊕ v) ‘ keys p
then obtain t where t ∈ keys p and u = t ⊕ v ..
have lookup (p � monomial c v) (t ⊕ v) = lookup p t ∗ c

by (fact lookup-mult-scalar-monomial-right-plus)
also from ‹t ∈ keys p› assms have ... 6= 0 by (simp add: in-keys-iff)
finally show u ∈ keys (p � monomial c v) by (simp add: in-keys-iff ‹u = t ⊕

v›)
qed

qed (fact keys-mult-scalar-monomial-right-subset)

end

9.8 Sums and Products
lemma sum-poly-mapping-eq-zeroI :

assumes p ‘ A ⊆ {0}
shows sum p A = (0 ::(- ⇒0

′b::comm-monoid-add))
proof (rule ccontr)

assume sum p A 6= 0
then obtain a where a ∈ A and p a 6= 0

by (rule comm-monoid-add-class.sum.not-neutral-contains-not-neutral)
with assms show False by auto

qed

lemma lookup-sum-list: lookup (sum-list ps) a = sum-list (map (λp. lookup p a)
ps)
proof (induct ps)

case Nil
show ?case by simp

next
case (Cons p ps)
thus ?case by (simp add: lookup-add)

qed

Legacy:
lemmas keys-sum-subset = Poly-Mapping.keys-sum

lemma keys-sum-list-subset: keys (sum-list ps) ⊆ Keys (set ps)
proof (induct ps)

case Nil
show ?case by simp

next
case (Cons p ps)
have keys (sum-list (p # ps)) = keys (p + sum-list ps) by simp
also have . . . ⊆ keys p ∪ keys (sum-list ps) by (fact Poly-Mapping.keys-add)

143

also from Cons have . . . ⊆ keys p ∪ Keys (set ps) by blast
also have . . . = Keys (set (p # ps)) by (simp add: Keys-insert)
finally show ?case .

qed

lemma keys-sum:
assumes finite A and

∧
a1 a2 . a1 ∈ A =⇒ a2 ∈ A =⇒ a1 6= a2 =⇒ keys (f

a1) ∩ keys (f a2) = {}
shows keys (sum f A) = (

⋃
a∈A. keys (f a))

using assms
proof (induct A)

case empty
show ?case by simp

next
case (insert a A)
have IH : keys (sum f A) = (

⋃
i∈A. keys (f i)) by (rule insert(3), rule in-

sert.prems, simp-all)
have keys (sum f (insert a A)) = keys (f a) ∪ keys (sum f A)
proof (simp only: comm-monoid-add-class.sum.insert[OF insert(1) insert(2)],

rule keys-add[symmetric])
have keys (f a) ∩ keys (sum f A) = (

⋃
i∈A. keys (f a) ∩ keys (f i))

by (simp only: IH Int-UN-distrib)
also have ... = {}
proof −

have i ∈ A =⇒ keys (f a) ∩ keys (f i) = {} for i
proof (rule insert.prems)

assume i ∈ A
with insert(2) show a 6= i by blast

qed simp-all
thus ?thesis by simp

qed
finally show keys (f a) ∩ keys (sum f A) = {} .

qed
also have ... = (

⋃
a∈insert a A. keys (f a)) by (simp add: IH)

finally show ?case .
qed

lemma poly-mapping-sum-monomials: (
∑

a∈keys p. monomial (lookup p a) a) =
p
proof (induct p rule: poly-mapping-plus-induct)

case 1
show ?case by simp

next
case step: (2 p c t)
from step(2) have lookup p t = 0 by (simp add: in-keys-iff)
have ∗: keys (monomial c t + p) = insert t (keys p)
proof −

from step(1) have a: keys (monomial c t) = {t} by simp
with step(2) have keys (monomial c t) ∩ keys p = {} by simp

144

hence keys (monomial c t + p) = {t} ∪ keys p by (simp only: a keys-plus-eqI)
thus ?thesis by simp

qed
have ∗∗: (

∑
ta∈keys p. monomial ((c when t = ta) + lookup p ta) ta) =

(
∑

ta∈keys p. monomial (lookup p ta) ta)
proof (rule comm-monoid-add-class.sum.cong, rule refl)

fix s
assume s ∈ keys p
with step(2) have t 6= s by auto
thus monomial ((c when t = s) + lookup p s) s = monomial (lookup p s) s by

simp
qed
show ?case by (simp only: ∗ comm-monoid-add-class.sum.insert[OF finite-keys

step(2)],
simp add: lookup-add lookup-single ‹lookup p t = 0 › ∗∗ step(3))

qed

lemma monomial-sum: monomial (sum f C) a = (
∑

c∈C . monomial (f c) a)
by (rule fun-sum-commute, simp-all add: single-add)

lemma monomial-Sum-any:
assumes finite {c. f c 6= 0}
shows monomial (Sum-any f) a = (

∑
c. monomial (f c) a)

proof −
have {c. monomial (f c) a 6= 0} ⊆ {c. f c 6= 0} by (rule, auto)
with assms show ?thesis
by (simp add: Groups-Big-Fun.comm-monoid-add-class.Sum-any.expand-superset

monomial-sum)
qed

context term-powerprod
begin

lemma proj-sum: proj-poly k (sum f A) = (
∑

a∈A. proj-poly k (f a))
using proj-zero proj-plus by (rule fun-sum-commute)

lemma proj-sum-list: proj-poly k (sum-list xs) = sum-list (map (proj-poly k) xs)
using proj-zero proj-plus by (rule fun-sum-list-commute)

lemma mult-scalar-sum-monomials: q � p = (
∑

t∈keys q. monom-mult (lookup q
t) t p)
by (rule poly-mapping-eqI-proj, simp add: proj-sum mult-scalar-monomial[symmetric]

sum-distrib-right[symmetric] poly-mapping-sum-monomials term-simps)

lemma fun-mult-scalar-commute:
assumes f 0 = 0 and

∧
x y. f (x + y) = f x + f y

and
∧

c t. f (monom-mult c t p) = monom-mult c t (f p)
shows f (q � p) = q � (f p)
by (simp add: mult-scalar-sum-monomials assms(3)[symmetric], rule fun-sum-commute,

145

fact+)

lemma fun-mult-scalar-commute-canc:
assumes

∧
x y. f (x + y) = f x + f y and

∧
c t. f (monom-mult c t p) =

monom-mult c t (f p)
shows f (q � p) = q � (f (p:: ′t ⇒0

′b::{semiring-0 ,cancel-comm-monoid-add}))
by (simp add: mult-scalar-sum-monomials assms(2)[symmetric], rule fun-sum-commute-canc,

fact)

lemma monom-mult-sum-left: monom-mult (sum f C) t p = (
∑

c∈C . monom-mult
(f c) t p)

by (rule fun-sum-commute, simp-all add: monom-mult-dist-left)

lemma monom-mult-sum-right: monom-mult c t (sum f P) = (
∑

p∈P. monom-mult
c t (f p))

by (rule fun-sum-commute, simp-all add: monom-mult-dist-right)

lemma monom-mult-Sum-any-left:
assumes finite {c. f c 6= 0}
shows monom-mult (Sum-any f) t p = (

∑
c. monom-mult (f c) t p)

proof −
have {c. monom-mult (f c) t p 6= 0} ⊆ {c. f c 6= 0} by (rule, auto)
with assms show ?thesis
by (simp add: Groups-Big-Fun.comm-monoid-add-class.Sum-any.expand-superset

monom-mult-sum-left)
qed

lemma monom-mult-Sum-any-right:
assumes finite {p. f p 6= 0}
shows monom-mult c t (Sum-any f) = (

∑
p. monom-mult c t (f p))

proof −
have {p. monom-mult c t (f p) 6= 0} ⊆ {p. f p 6= 0} by (rule, auto)
with assms show ?thesis
by (simp add: Groups-Big-Fun.comm-monoid-add-class.Sum-any.expand-superset

monom-mult-sum-right)
qed

lemma monomial-prod-sum: monomial (prod c I) (sum a I) = (
∏

i∈I . monomial
(c i) (a i))
proof (cases finite I)

case True
thus ?thesis
proof (induct I)

case empty
show ?case by simp

next
case (insert i I)
show ?case

by (simp only: comm-monoid-add-class.sum.insert[OF insert(1) insert(2)]

146

comm-monoid-mult-class.prod.insert[OF insert(1) insert(2)] insert(3)
mult-single[symmetric])

qed
next

case False
thus ?thesis by simp

qed

9.9 Submodules
sublocale pmdl: module mult-scalar

apply standard
subgoal by (rule poly-mapping-eqI-proj, simp add: algebra-simps proj-plus)
subgoal by (rule poly-mapping-eqI-proj, simp add: algebra-simps proj-plus)
subgoal by (rule poly-mapping-eqI-proj, simp add: ac-simps)
subgoal by (rule poly-mapping-eqI-proj, simp)
done

lemmas [simp del] = pmdl.scale-one pmdl.scale-zero-left pmdl.scale-zero-right pmdl.scale-scale
pmdl.scale-minus-left pmdl.scale-minus-right pmdl.span-eq-iff

lemmas [algebra-simps del] = pmdl.scale-left-distrib pmdl.scale-right-distrib
pmdl.scale-left-diff-distrib pmdl.scale-right-diff-distrib

abbreviation pmdl ≡ pmdl.span

lemma pmdl-closed-monom-mult:
assumes p ∈ pmdl B
shows monom-mult c t p ∈ pmdl B
unfolding mult-scalar-monomial[symmetric] using assms by (rule pmdl.span-scale)

lemma monom-mult-in-pmdl: b ∈ B =⇒ monom-mult c t b ∈ pmdl B
by (intro pmdl-closed-monom-mult pmdl.span-base)

lemma pmdl-induct [consumes 1 , case-names module-0 module-plus]:
assumes p ∈ pmdl B and P 0

and
∧

a p c t. a ∈ pmdl B =⇒ P a =⇒ p ∈ B =⇒ c 6= 0 =⇒ P (a +
monom-mult c t p)

shows P p
using assms(1)

proof (induct p rule: pmdl.span-induct ′)
case base
from assms(2) show ?case .

next
case (step a q b)
from this(1) this(2) show ?case
proof (induct q arbitrary: a rule: poly-mapping-except-induct)

case 1
thus ?case by simp

147

next
case step: (2 q0 t)
from this(4) step(5) ‹b ∈ B› have P (a + monomial (lookup q0 t) t � b)

unfolding mult-scalar-monomial
proof (rule assms(3))

from step(2) show lookup q0 t 6= 0 by (simp add: in-keys-iff)
qed
with - have P ((a + monomial (lookup q0 t) t � b) + except q0 {t} � b)
proof (rule step(3))

from ‹b ∈ B› have b ∈ pmdl B by (rule pmdl.span-base)
hence monomial (lookup q0 t) t � b ∈ pmdl B by (rule pmdl.span-scale)
with step(4) show a + monomial (lookup q0 t) t � b ∈ pmdl B by (rule

pmdl.span-add)
qed
hence P (a + (monomial (lookup q0 t) t + except q0 {t}) � b) by (simp add:

algebra-simps)
thus ?case by (simp only: plus-except[of q0 t, symmetric])

qed
qed

lemma components-pmdl: component-of-term ‘ Keys (pmdl B) = component-of-term
‘ Keys B
proof

show component-of-term ‘ Keys (pmdl B) ⊆ component-of-term ‘ Keys B
proof

fix k
assume k ∈ component-of-term ‘ Keys (pmdl B)
then obtain v where v ∈ Keys (pmdl B) and k = component-of-term v ..
from this(1) obtain b where b ∈ pmdl B and v ∈ keys b by (rule in-KeysE)
thus k ∈ component-of-term ‘ Keys B
proof (induct b rule: pmdl-induct)

case module-0
thus ?case by simp

next
case ind: (module-plus a p c t)

from ind.prems Poly-Mapping.keys-add have v ∈ keys a ∪ keys (monom-mult
c t p) ..

thus ?case
proof

assume v ∈ keys a
thus ?thesis by (rule ind.hyps(2))

next
assume v ∈ keys (monom-mult c t p)
from this keys-monom-mult-subset have v ∈ (⊕) t ‘ keys p ..
then obtain u where u ∈ keys p and v = t ⊕ u ..
have k = component-of-term u by (simp add: ‹k = component-of-term v›

‹v = t ⊕ u› term-simps)
moreover from ‹u ∈ keys p› ind.hyps(3) have u ∈ Keys B by (rule

in-KeysI)

148

ultimately show ?thesis ..
qed

qed
qed

next
show component-of-term ‘ Keys B ⊆ component-of-term ‘ Keys (pmdl B)

by (rule image-mono, rule Keys-mono, fact pmdl.span-superset)
qed

lemma pmdl-idI :
assumes 0 ∈ B and

∧
b1 b2 . b1 ∈ B =⇒ b2 ∈ B =⇒ b1 + b2 ∈ B

and
∧

c t b. b ∈ B =⇒ monom-mult c t b ∈ B
shows pmdl B = B

proof
show pmdl B ⊆ B
proof

fix p
assume p ∈ pmdl B
thus p ∈ B
proof (induct p rule: pmdl-induct)

case module-0
show ?case by (fact assms(1))

next
case step: (module-plus a b c t)
from step(2) show ?case
proof (rule assms(2))

from step(3) show monom-mult c t b ∈ B by (rule assms(3))
qed

qed
qed

qed (fact pmdl.span-superset)

definition full-pmdl :: ′k set ⇒ (′t ⇒0
′b::zero) set

where full-pmdl K = {p. component-of-term ‘ keys p ⊆ K}

definition is-full-pmdl :: (′t ⇒0
′b::comm-ring-1) set ⇒ bool

where is-full-pmdl B ←→ (∀ p. component-of-term ‘ keys p ⊆ component-of-term
‘ Keys B −→ p ∈ pmdl B)

lemma full-pmdl-iff : p ∈ full-pmdl K ←→ component-of-term ‘ keys p ⊆ K
by (simp add: full-pmdl-def)

lemma full-pmdlI :
assumes

∧
v. v ∈ keys p =⇒ component-of-term v ∈ K

shows p ∈ full-pmdl K
using assms by (auto simp add: full-pmdl-iff)

lemma full-pmdlD:
assumes p ∈ full-pmdl K and v ∈ keys p

149

shows component-of-term v ∈ K
using assms by (auto simp add: full-pmdl-iff)

lemma full-pmdl-empty: full-pmdl {} = {0}
by (simp add: full-pmdl-def)

lemma full-pmdl-UNIV : full-pmdl UNIV = UNIV
by (simp add: full-pmdl-def)

lemma zero-in-full-pmdl: 0 ∈ full-pmdl K
by (simp add: full-pmdl-iff)

lemma full-pmdl-closed-plus:
assumes p ∈ full-pmdl K and q ∈ full-pmdl K
shows p + q ∈ full-pmdl K

proof (rule full-pmdlI)
fix v
assume v ∈ keys (p + q)
also have ... ⊆ keys p ∪ keys q by (fact Poly-Mapping.keys-add)
finally show component-of-term v ∈ K
proof

assume v ∈ keys p
with assms(1) show ?thesis by (rule full-pmdlD)

next
assume v ∈ keys q
with assms(2) show ?thesis by (rule full-pmdlD)

qed
qed

lemma full-pmdl-closed-monom-mult:
assumes p ∈ full-pmdl K
shows monom-mult c t p ∈ full-pmdl K

proof (rule full-pmdlI)
fix v
assume v ∈ keys (monom-mult c t p)
also have ... ⊆ (⊕) t ‘ keys p by (fact keys-monom-mult-subset)
finally obtain u where u ∈ keys p and v: v = t ⊕ u ..
have component-of-term v = component-of-term u by (simp add: v term-simps)
also from assms ‹u ∈ keys p› have ... ∈ K by (rule full-pmdlD)
finally show component-of-term v ∈ K .

qed

lemma pmdl-full-pmdl: pmdl (full-pmdl K) = full-pmdl K
using zero-in-full-pmdl full-pmdl-closed-plus full-pmdl-closed-monom-mult by

(rule pmdl-idI)

lemma components-full-pmdl-subset:
component-of-term ‘ Keys ((full-pmdl K)::(′t ⇒0

′b::zero) set) ⊆ K (is ?l ⊆ -)
proof

150

let ?M = (full-pmdl K)::(′t ⇒0
′b) set

fix k
assume k ∈ ?l
then obtain v where v ∈ Keys ?M and k: k = component-of-term v ..
from this(1) obtain p where p ∈ ?M and v ∈ keys p by (rule in-KeysE)
thus k ∈ K unfolding k by (rule full-pmdlD)

qed

lemma components-full-pmdl:
component-of-term ‘ Keys ((full-pmdl K)::(′t ⇒0

′b::zero-neq-one) set) = K (is
?l = -)
proof

let ?M = (full-pmdl K)::(′t ⇒0
′b) set

show K ⊆ ?l
proof

fix k
assume k ∈ K
hence monomial 1 (term-of-pair (0 , k)) ∈ ?M by (simp add: full-pmdl-iff

term-simps)
hence keys (monomial (1 :: ′b) (term-of-pair (0 , k))) ⊆ Keys ?M by (rule

keys-subset-Keys)
hence term-of-pair (0 , k) ∈ Keys ?M by simp
hence component-of-term (term-of-pair (0 , k)) ∈ component-of-term ‘ Keys

?M by (rule imageI)
thus k ∈ ?l by (simp only: component-of-term-of-pair)

qed
qed (fact components-full-pmdl-subset)

lemma is-full-pmdlI :
assumes

∧
p. component-of-term ‘ keys p ⊆ component-of-term ‘ Keys B =⇒ p

∈ pmdl B
shows is-full-pmdl B
unfolding is-full-pmdl-def using assms by blast

lemma is-full-pmdlD:
assumes is-full-pmdl B and component-of-term ‘ keys p ⊆ component-of-term ‘

Keys B
shows p ∈ pmdl B
using assms unfolding is-full-pmdl-def by blast

lemma is-full-pmdl-alt: is-full-pmdl B ←→ pmdl B = full-pmdl (component-of-term
‘ Keys B)
proof −

have b ∈ pmdl B =⇒ v ∈ keys b =⇒ component-of-term v ∈ component-of-term
‘ Keys B for b v

by (metis components-pmdl image-eqI in-KeysI)
thus ?thesis by (auto simp add: is-full-pmdl-def full-pmdl-def)

qed

151

lemma is-full-pmdl-pmdl: is-full-pmdl (pmdl B) ←→ is-full-pmdl B
by (simp only: is-full-pmdl-def pmdl.span-span components-pmdl)

lemma is-full-pmdl-subset:
assumes is-full-pmdl B1 and is-full-pmdl B2

and component-of-term ‘ Keys B1 ⊆ component-of-term ‘ Keys B2
shows pmdl B1 ⊆ pmdl B2

proof
fix p
assume p ∈ pmdl B1
from assms(2) show p ∈ pmdl B2
proof (rule is-full-pmdlD)

have component-of-term ‘ keys p ⊆ component-of-term ‘ Keys (pmdl B1)
by (rule image-mono, rule keys-subset-Keys, fact)

also have ... = component-of-term ‘ Keys B1 by (fact components-pmdl)
finally show component-of-term ‘ keys p ⊆ component-of-term ‘ Keys B2 using

assms(3)
by (rule subset-trans)

qed
qed

lemma is-full-pmdl-eq:
assumes is-full-pmdl B1 and is-full-pmdl B2

and component-of-term ‘ Keys B1 = component-of-term ‘ Keys B2
shows pmdl B1 = pmdl B2

proof
have component-of-term ‘ Keys B1 ⊆ component-of-term ‘ Keys B2 by (simp

add: assms(3))
with assms(1 , 2) show pmdl B1 ⊆ pmdl B2 by (rule is-full-pmdl-subset)

next
have component-of-term ‘ Keys B2 ⊆ component-of-term ‘ Keys B1 by (simp

add: assms(3))
with assms(2 , 1) show pmdl B2 ⊆ pmdl B1 by (rule is-full-pmdl-subset)

qed

end

definition map-scale :: ′b ⇒ (′a ⇒0
′b) ⇒ (′a ⇒0

′b::mult-zero) (infixr ‹·› 71)
where map-scale c = Poly-Mapping.map ((∗) c)

If the polynomial mapping p is interpreted as a power-product, then c · p
corresponds to exponentiation; if it is interpreted as a (vector-) polynomial,
then c · p corresponds to multiplication by scalar from the coefficient type.
lemma lookup-map-scale [simp]: lookup (c · p) = (λx. c ∗ lookup p x)

by (auto simp: map-scale-def map.rep-eq when-def)

lemma map-scale-single [simp]: k · Poly-Mapping.single x l = Poly-Mapping.single
x (k ∗ l)

by (simp add: map-scale-def)

152

lemma map-scale-zero-left [simp]: 0 · t = 0
by (rule poly-mapping-eqI) simp

lemma map-scale-zero-right [simp]: k · 0 = 0
by (rule poly-mapping-eqI) simp

lemma map-scale-eq-0-iff : c · t = 0 ←→ ((c::-::semiring-no-zero-divisors) = 0 ∨
t = 0)

by (metis aux lookup-map-scale mult-eq-0-iff)

lemma keys-map-scale-subset: keys (k · t) ⊆ keys t
by (metis in-keys-iff lookup-map-scale mult-zero-right subsetI)

lemma keys-map-scale: keys ((k:: ′b::semiring-no-zero-divisors) · t) = (if k = 0
then {} else keys t)
proof (split if-split, intro conjI impI)

assume k = 0
thus keys (k · t) = {} by simp

next
assume k 6= 0
show keys (k · t) = keys t
proof
show keys t ⊆ keys (k · t) by rule (simp add: ‹k 6= 0 › flip: lookup-not-eq-zero-eq-in-keys)

qed (fact keys-map-scale-subset)
qed

lemma map-scale-one-left [simp]: (1 :: ′b::{mult-zero,monoid-mult}) · t = t
by (rule poly-mapping-eqI) simp

lemma map-scale-assoc [ac-simps]: c · d · t = (c ∗ d) · (t::-⇒0 -::{semigroup-mult,zero})
by (rule poly-mapping-eqI) (simp add: ac-simps)

lemma map-scale-distrib-left [algebra-simps]: (k:: ′b::semiring-0) · (s + t) = k · s
+ k · t

by (rule poly-mapping-eqI) (simp add: lookup-add distrib-left)

lemma map-scale-distrib-right [algebra-simps]: (k + (l:: ′b::semiring-0)) · t = k · t
+ l · t

by (rule poly-mapping-eqI) (simp add: lookup-add distrib-right)

lemma map-scale-Suc: (Suc k) · t = k · t + t
by (rule poly-mapping-eqI) (simp add: lookup-add distrib-right)

lemma map-scale-uminus-left: (− k:: ′b::ring) · p = − (k · p)
by (rule poly-mapping-eqI) auto

lemma map-scale-uminus-right: (k:: ′b::ring) · (− p) = − (k · p)
by (rule poly-mapping-eqI) auto

153

lemma map-scale-uminus-uminus [simp]: (− k:: ′b::ring) · (− p) = k · p
by (simp add: map-scale-uminus-left map-scale-uminus-right)

lemma map-scale-minus-distrib-left [algebra-simps]:
(k:: ′b::comm-semiring-1-cancel) · (p − q) = k · p − k · q
by (rule poly-mapping-eqI) (auto simp add: lookup-minus right-diff-distrib ′)

lemma map-scale-minus-distrib-right [algebra-simps]:
(k − (l:: ′b::comm-semiring-1-cancel)) · f = k · f − l · f
by (rule poly-mapping-eqI) (auto simp add: lookup-minus left-diff-distrib ′)

lemma map-scale-sum-distrib-left: (k:: ′b::semiring-0) · (sum f A) = (
∑

a∈A. k ·
f a)

by (induct A rule: infinite-finite-induct) (simp-all add: map-scale-distrib-left)

lemma map-scale-sum-distrib-right: (sum (f ::-⇒ ′b::semiring-0) A) · p = (
∑

a∈A.
f a · p)

by (induct A rule: infinite-finite-induct) (simp-all add: map-scale-distrib-right)

lemma deg-pm-map-scale: deg-pm (k · t) = (k:: ′b::semiring-0) ∗ deg-pm t
proof −

from keys-map-scale-subset finite-keys have deg-pm (k · t) = sum (lookup (k ·
t)) (keys t)

by (rule deg-pm-superset)
also have . . . = k ∗ sum (lookup t) (keys t) by (simp add: sum-distrib-left)
also from subset-refl finite-keys have sum (lookup t) (keys t) = deg-pm t

by (rule deg-pm-superset[symmetric])
finally show ?thesis .

qed

interpretation phull: module map-scale
apply standard
subgoal by (fact map-scale-distrib-left)
subgoal by (fact map-scale-distrib-right)
subgoal by (fact map-scale-assoc)
subgoal by (fact map-scale-one-left)
done

Since the following lemmas are proved for more general ring-types above,
we do not need to have them in the simpset.
lemmas [simp del] = phull.scale-one phull.scale-zero-left phull.scale-zero-right phull.scale-scale

phull.scale-minus-left phull.scale-minus-right phull.span-eq-iff

lemmas [algebra-simps del] = phull.scale-left-distrib phull.scale-right-distrib
phull.scale-left-diff-distrib phull.scale-right-diff-distrib

abbreviation phull ≡ phull.span

phull B is a module over the coefficient ring ′b, whereas λterm-of-pair .

154

module.span (term-powerprod.mult-scalar B term-of-pair) is a module over
the (scalar) polynomial ring ′a ⇒0

′b. Nevertheless, both modules can be
sets of vector-polynomials of type ′t ⇒0

′b.
context term-powerprod
begin

lemma map-scale-eq-monom-mult: c · p = monom-mult c 0 p
by (rule poly-mapping-eqI) (simp only: lookup-map-scale lookup-monom-mult-zero)

lemma map-scale-eq-mult-scalar : c · p = monomial c 0 � p
by (simp only: map-scale-eq-monom-mult mult-scalar-monomial)

lemma phull-closed-mult-scalar : p ∈ phull B =⇒ monomial c 0 � p ∈ phull B
unfolding map-scale-eq-mult-scalar [symmetric] by (rule phull.span-scale)

lemma mult-scalar-in-phull: b ∈ B =⇒ monomial c 0 � b ∈ phull B
by (intro phull-closed-mult-scalar phull.span-base)

lemma phull-subset-module: phull B ⊆ pmdl B
proof

fix p
assume p ∈ phull B
thus p ∈ pmdl B
proof (induct p rule: phull.span-induct ′)

case base
show ?case by (fact pmdl.span-zero)

next
case (step a c p)
from step(3) have p ∈ pmdl B by (rule pmdl.span-base)

hence c · p ∈ pmdl B unfolding map-scale-eq-monom-mult by (rule pmdl-closed-monom-mult)
with step(2) show ?case by (rule pmdl.span-add)

qed
qed

lemma components-phull: component-of-term ‘ Keys (phull B) = component-of-term
‘ Keys B
proof

have component-of-term ‘ Keys (phull B) ⊆ component-of-term ‘ Keys (pmdl B)
by (rule image-mono, rule Keys-mono, fact phull-subset-module)

also have ... = component-of-term ‘ Keys B by (fact components-pmdl)
finally show component-of-term ‘ Keys (phull B) ⊆ component-of-term ‘ Keys

B .
next

show component-of-term ‘ Keys B ⊆ component-of-term ‘ Keys (phull B)
by (rule image-mono, rule Keys-mono, fact phull.span-superset)

qed

end

155

9.10 Interpretations
9.10.1 Isomorphism between ′a and ′a × unit
definition to-pair-unit :: ′a ⇒ (′a × unit)

where to-pair-unit x = (x, ())

lemma fst-to-pair-unit: fst (to-pair-unit x) = x
by (simp add: to-pair-unit-def)

lemma to-pair-unit-fst: to-pair-unit (fst x) = (x::- × unit)
by (metis (full-types) old.unit.exhaust prod.collapse to-pair-unit-def)

interpretation punit: term-powerprod to-pair-unit fst
apply standard
subgoal by (fact fst-to-pair-unit)
subgoal by (fact to-pair-unit-fst)
done

For technical reasons it seems to be better not to put the following
lemmas as rewrite-rules of interpretation punit.
lemma punit-pp-of-term [simp]: punit.pp-of-term = (λx. x)

by (rule, simp add: punit.pp-of-term-def punit.term-pair)

lemma punit-component-of-term [simp]: punit.component-of-term = (λ-. ())
by (rule, simp add: punit.component-of-term-def)

lemma punit-splus [simp]: punit.splus = (+)
by (rule, rule, simp add: punit.splus-def)

lemma punit-sminus [simp]: punit.sminus = (−)
by (rule, rule, simp add: punit.sminus-def)

lemma punit-adds-pp [simp]: punit.adds-pp = (adds)
by (rule, rule, simp add: punit.adds-pp-def)

lemma punit-adds-term [simp]: punit.adds-term = (adds)
by (rule, rule, simp add: punit.adds-term-def)

lemma punit-proj-poly [simp]: punit.proj-poly = (λ-. id)
by (rule, rule, rule poly-mapping-eqI , simp add: punit.lookup-proj-poly)

lemma punit-mult-vec [simp]: punit.mult-vec = (∗)
by (rule, rule, rule poly-mapping-eqI , simp add: punit.lookup-mult-vec)

lemma punit-mult-scalar [simp]: punit.mult-scalar = (∗)
by (rule, rule, rule poly-mapping-eqI , simp add: punit.lookup-mult-scalar)

context term-powerprod
begin

156

lemma proj-monom-mult: proj-poly k (monom-mult c t p) = punit.monom-mult c
t (proj-poly k p)
by (metis mult-scalar-monomial proj-mult-scalar punit.mult-scalar-monomial punit-mult-scalar)

lemma mult-scalar-monom-mult: (punit.monom-mult c t p) � q = monom-mult c
t (p � q)
by (simp add: punit.mult-scalar-monomial[symmetric] mult-scalar-assoc mult-scalar-monomial)

end

9.10.2 Interpretation of term-powerprod by ′a × ′k
interpretation pprod: term-powerprod (λx:: ′a::comm-powerprod × ′k::linorder . x)
λx. x

by (standard, simp)

lemma pprod-pp-of-term [simp]: pprod.pp-of-term = fst
by (rule, simp add: pprod.pp-of-term-def)

lemma pprod-component-of-term [simp]: pprod.component-of-term = snd
by (rule, simp add: pprod.component-of-term-def)

9.10.3 Simplifier Setup

There is no reason to keep the interpreted theorems as simplification rules.
lemmas [term-simps del] = term-simps

lemmas times-monomial-monomial = punit.mult-scalar-monomial-monomial[simplified]
lemmas times-monomial-left = punit.mult-scalar-monomial[simplified]
lemmas times-rec-left = punit.mult-scalar-rec-left[simplified]
lemmas times-rec-right = punit.mult-scalar-rec-right[simplified]
lemmas in-keys-timesE = punit.in-keys-mult-scalarE [simplified]
lemmas punit-monom-mult-monomial = punit.monom-mult-monomial[simplified]
lemmas lookup-times = punit.lookup-mult-scalar-explicit[simplified]
lemmas map-scale-eq-times = punit.map-scale-eq-mult-scalar [simplified]

end

10 Type-Class-Multivariate Polynomials in Ordered
Terms

theory MPoly-Type-Class-Ordered
imports MPoly-Type-Class

begin

class the-min = linorder +
fixes the-min:: ′a

157

assumes the-min-min: the-min ≤ x

Type class the-min guarantees that a least element exists. Instances of
the-min should provide computable definitions of that element.
instantiation nat :: the-min
begin

definition the-min-nat = (0 ::nat)
instance by (standard, simp add: the-min-nat-def)

end

instantiation unit :: the-min
begin

definition the-min-unit = ()
instance by (standard, simp add: the-min-unit-def)

end

locale ordered-term =
term-powerprod pair-of-term term-of-pair +
ordered-powerprod ord ord-strict +
ord-term-lin: linorder ord-term ord-term-strict

for pair-of-term:: ′t ⇒ (′a::comm-powerprod × ′k::{the-min,wellorder})
and term-of-pair ::(′a × ′k) ⇒ ′t
and ord:: ′a ⇒ ′a ⇒ bool (infixl ‹�› 50)
and ord-strict (infixl ‹≺› 50)
and ord-term:: ′t ⇒ ′t ⇒ bool (infixl ‹�t› 50)
and ord-term-strict:: ′t ⇒ ′t ⇒ bool (infixl ‹≺t› 50) +

assumes splus-mono: v �t w =⇒ t ⊕ v �t t ⊕ w
assumes ord-termI : pp-of-term v � pp-of-term w =⇒ component-of-term v ≤

component-of-term w =⇒ v �t w
begin

abbreviation ord-term-conv (infixl ‹�t› 50) where ord-term-conv ≡ (�t)
−1−1

abbreviation ord-term-strict-conv (infixl ‹�t› 50) where ord-term-strict-conv ≡
(≺t)

−1−1

The definition of ordered-term only covers TOP and POT orderings.
These two types of orderings are the only interesting ones.
definition min-term ≡ term-of-pair (0 , the-min)

lemma min-term-min: min-term �t v
proof (rule ord-termI)

show pp-of-term min-term � pp-of-term v by (simp add: min-term-def zero-min
term-simps)
next
show component-of-term min-term ≤ component-of-term v by (simp add: min-term-def

the-min-min term-simps)
qed

lemma splus-mono-strict:

158

assumes v ≺t w
shows t ⊕ v ≺t t ⊕ w

proof −
from assms have v �t w and v 6= w by simp-all
from this(1) have t ⊕ v �t t ⊕ w by (rule splus-mono)
moreover from ‹v 6= w› have t ⊕ v 6= t ⊕ w by (simp add: term-simps)
ultimately show ?thesis using ord-term-lin.antisym-conv1 by blast

qed

lemma splus-mono-left:
assumes s � t
shows s ⊕ v �t t ⊕ v

proof (rule ord-termI , simp-all add: term-simps)
from assms show s + pp-of-term v � t + pp-of-term v by (rule plus-monotone)

qed

lemma splus-mono-strict-left:
assumes s ≺ t
shows s ⊕ v ≺t t ⊕ v

proof −
from assms have s � t and s 6= t by simp-all
from this(1) have s ⊕ v �t t ⊕ v by (rule splus-mono-left)
moreover from ‹s 6= t› have s ⊕ v 6= t ⊕ v by (simp add: term-simps)
ultimately show ?thesis using ord-term-lin.antisym-conv1 by blast

qed

lemma ord-term-canc:
assumes t ⊕ v �t t ⊕ w
shows v �t w

proof (rule ccontr)
assume ¬ v �t w
hence w ≺t v by simp
hence t ⊕ w ≺t t ⊕ v by (rule splus-mono-strict)
with assms show False by simp

qed

lemma ord-term-strict-canc:
assumes t ⊕ v ≺t t ⊕ w
shows v ≺t w

proof (rule ccontr)
assume ¬ v ≺t w
hence w �t v by simp
hence t ⊕ w �t t ⊕ v by (rule splus-mono)
with assms show False by simp

qed

lemma ord-term-canc-left:
assumes t ⊕ v �t s ⊕ v
shows t � s

159

proof (rule ccontr)
assume ¬ t � s
hence s ≺ t by simp
hence s ⊕ v ≺t t ⊕ v by (rule splus-mono-strict-left)
with assms show False by simp

qed

lemma ord-term-strict-canc-left:
assumes t ⊕ v ≺t s ⊕ v
shows t ≺ s

proof (rule ccontr)
assume ¬ t ≺ s
hence s � t by simp
hence s ⊕ v �t t ⊕ v by (rule splus-mono-left)
with assms show False by simp

qed

lemma ord-adds-term:
assumes u addst v
shows u �t v

proof −
from assms have ∗: component-of-term u ≤ component-of-term v and pp-of-term

u adds pp-of-term v
by (simp-all add: adds-term-def)

from this(2) have pp-of-term u � pp-of-term v by (rule ord-adds)
from this ∗ show ?thesis by (rule ord-termI)

qed

end

10.1 Interpretations
context ordered-powerprod
begin

10.1.1 Unit
sublocale punit: ordered-term to-pair-unit fst (�) (≺) (�) (≺)

apply standard
subgoal by (simp, fact plus-monotone-left)
subgoal by (simp only: punit-pp-of-term punit-component-of-term)
done

lemma punit-min-term [simp]: punit.min-term = 0
by (simp add: punit.min-term-def)

end

160

10.2 Definitions
context ordered-term
begin

definition higher :: (′t ⇒0
′b) ⇒ ′t ⇒ (′t ⇒0

′b::zero)
where higher p t = except p {s. s �t t}

definition lower :: (′t ⇒0
′b) ⇒ ′t ⇒ (′t ⇒0

′b::zero)
where lower p t = except p {s. t �t s}

definition lt :: (′t ⇒0
′b::zero) ⇒ ′t

where lt p = (if p = 0 then min-term else ord-term-lin.Max (keys p))

abbreviation lp p ≡ pp-of-term (lt p)

definition lc :: (′t ⇒0
′b::zero) ⇒ ′b

where lc p = lookup p (lt p)

definition tt :: (′t ⇒0
′b::zero) ⇒ ′t

where tt p = (if p = 0 then min-term else ord-term-lin.Min (keys p))

abbreviation tp p ≡ pp-of-term (tt p)

definition tc :: (′t ⇒0
′b::zero) ⇒ ′b

where tc p ≡ lookup p (tt p)

definition tail :: (′t ⇒0
′b) ⇒ (′t ⇒0

′b::zero)
where tail p ≡ lower p (lt p)

10.3 Leading Term and Leading Coefficient: lt and lc
lemma lt-zero [simp]: lt 0 = min-term

by (simp add: lt-def)

lemma lc-zero [simp]: lc 0 = 0
by (simp add: lc-def)

lemma lt-uminus [simp]: lt (− p) = lt p
by (simp add: lt-def keys-uminus)

lemma lc-uminus [simp]: lc (− p) = − lc p
by (simp add: lc-def)

lemma lt-alt:
assumes p 6= 0
shows lt p = ord-term-lin.Max (keys p)
using assms unfolding lt-def by simp

lemma lt-max:

161

assumes lookup p v 6= 0
shows v �t lt p

proof −
from assms have t-in: v ∈ keys p by (simp add: in-keys-iff)
hence keys p 6= {} by auto
hence p 6= 0 using keys-zero by blast
from lt-alt[OF this] ord-term-lin.Max-ge[OF finite-keys t-in] show ?thesis by

simp
qed

lemma lt-eqI :
assumes lookup p v 6= 0 and

∧
u. lookup p u 6= 0 =⇒ u �t v

shows lt p = v
proof −

from assms(1) have v ∈ keys p by (simp add: in-keys-iff)
hence keys p 6= {} by auto
hence p 6= 0

using keys-zero by blast
have u �t v if u ∈ keys p for u
proof −

from that have lookup p u 6= 0 by (simp add: in-keys-iff)
thus u �t v by (rule assms(2))

qed
from lt-alt[OF ‹p 6= 0 ›] ord-term-lin.Max-eqI [OF finite-keys this ‹v ∈ keys p›]

show ?thesis by simp
qed

lemma lt-less:
assumes p 6= 0 and

∧
u. v �t u =⇒ lookup p u = 0

shows lt p ≺t v
proof −

from ‹p 6= 0 › have keys p 6= {}
by simp

have ∀ u∈keys p. u ≺t v
proof

fix u:: ′t
assume u ∈ keys p
hence lookup p u 6= 0 by (simp add: in-keys-iff)
hence ¬ v �t u using assms(2)[of u] by auto
thus u ≺t v by simp

qed
with lt-alt[OF assms(1)] ord-term-lin.Max-less-iff [OF finite-keys ‹keys p 6= {}›]

show ?thesis by simp
qed

lemma lt-le:
assumes

∧
u. v ≺t u =⇒ lookup p u = 0

shows lt p �t v
proof (cases p = 0)

162

case True
show ?thesis by (simp add: True min-term-min)

next
case False
hence keys p 6= {} by simp
have ∀ u∈keys p. u �t v
proof

fix u:: ′t
assume u ∈ keys p
hence lookup p u 6= 0 unfolding keys-def by simp
hence ¬ v ≺t u using assms[of u] by auto
thus u �t v by simp

qed
with lt-alt[OF False] ord-term-lin.Max-le-iff [OF finite-keys[of p] ‹keys p 6= {}›]

show ?thesis by simp
qed

lemma lt-gr :
assumes lookup p s 6= 0 and t ≺t s
shows t ≺t lt p
using assms lt-max ord-term-lin.order .strict-trans2 by blast

lemma lc-not-0 :
assumes p 6= 0
shows lc p 6= 0

proof −
from keys-zero assms have keys p 6= {} by auto
from lt-alt[OF assms] ord-term-lin.Max-in[OF finite-keys this] show ?thesis by

(simp add: in-keys-iff lc-def)
qed

lemma lc-eq-zero-iff : lc p = 0 ←→ p = 0
using lc-not-0 lc-zero by blast

lemma lt-in-keys:
assumes p 6= 0
shows lt p ∈ (keys p)
by (metis assms in-keys-iff lc-def lc-not-0)

lemma lt-monomial:
lt (monomial c t) = t if c 6= 0
using that by (auto simp add: lt-def dest: monomial-0D)

lemma lc-monomial [simp]: lc (monomial c t) = c
proof (cases c = 0)

case True
thus ?thesis by simp

next
case False

163

thus ?thesis by (simp add: lc-def lt-monomial)
qed

lemma lt-le-iff : lt p �t v ←→ (∀ u. v ≺t u −→ lookup p u = 0) (is ?L ←→ ?R)
proof

assume ?L
show ?R
proof (intro allI impI)

fix u
note ‹lt p �t v›
also assume v ≺t u
finally have lt p ≺t u .
hence ¬ u �t lt p by simp
with lt-max[of p u] show lookup p u = 0 by blast

qed
next

assume ?R
thus ?L using lt-le by auto

qed

lemma lt-plus-eqI :
assumes lt p ≺t lt q
shows lt (p + q) = lt q

proof (cases q = 0)
case True
with assms have lt p ≺t min-term by (simp add: lt-def)
with min-term-min[of lt p] show ?thesis by simp

next
case False
show ?thesis
proof (intro lt-eqI)

from lt-gr [of p lt q lt p] assms have lookup p (lt q) = 0 by blast
with lookup-add[of p q lt q] lc-not-0 [OF False] show lookup (p + q) (lt q) 6= 0

unfolding lc-def by simp
next

fix u
assume lookup (p + q) u 6= 0
show u �t lt q
proof (rule ccontr)

assume ¬ u �t lt q
hence qs: lt q ≺t u by simp
with assms have lt p ≺t u by simp
with lt-gr [of p u lt p] have lookup p u = 0 by blast
moreover from qs lt-gr [of q u lt q] have lookup q u = 0 by blast
ultimately show False using ‹lookup (p + q) u 6= 0 › lookup-add[of p q u]

by auto
qed

qed
qed

164

lemma lt-plus-eqI-2 :
assumes lt q ≺t lt p
shows lt (p + q) = lt p

proof (cases p = 0)
case True
with assms have lt q ≺t min-term by (simp add: lt-def)
with min-term-min[of lt q] show ?thesis by simp

next
case False
show ?thesis
proof (intro lt-eqI)

from lt-gr [of q lt p lt q] assms have lookup q (lt p) = 0 by blast
with lookup-add[of p q lt p] lc-not-0 [OF False] show lookup (p + q) (lt p) 6= 0

unfolding lc-def by simp
next

fix u
assume lookup (p + q) u 6= 0
show u �t lt p
proof (rule ccontr)

assume ¬ u �t lt p
hence ps: lt p ≺t u by simp
with assms have lt q ≺t u by simp
with lt-gr [of q u lt q] have lookup q u = 0 by blast
also from ps lt-gr [of p u lt p] have lookup p u = 0 by blast
ultimately show False using ‹lookup (p + q) u 6= 0 › lookup-add[of p q u]

by auto
qed

qed
qed

lemma lt-plus-eqI-3 :
assumes lt q = lt p and lc p + lc q 6= 0
shows lt (p + q) = lt (p:: ′t ⇒0

′b::monoid-add)
proof (rule lt-eqI)

from assms(2) show lookup (p + q) (lt p) 6= 0 by (simp add: lookup-add lc-def
assms(1))
next

fix u
assume lookup (p + q) u 6= 0
hence lookup p u + lookup q u 6= 0 by (simp add: lookup-add)
hence lookup p u 6= 0 ∨ lookup q u 6= 0 by auto
thus u �t lt p
proof

assume lookup p u 6= 0
thus ?thesis by (rule lt-max)

next
assume lookup q u 6= 0
hence u �t lt q by (rule lt-max)

165

thus ?thesis by (simp only: assms(1))
qed

qed

lemma lt-plus-lessE :
assumes lt p ≺t lt (p + q)
shows lt p ≺t lt q

proof (rule ccontr)
assume ¬ lt p ≺t lt q
hence lt p = lt q ∨ lt q ≺t lt p by auto
thus False
proof

assume lt-eq: lt p = lt q
have lt (p + q) �t lt p
proof (rule lt-le)

fix u
assume lt p ≺t u
with lt-gr [of p u lt p] have lookup p u = 0 by blast
from ‹lt p ≺t u› have lt q ≺t u using lt-eq by simp
with lt-gr [of q u lt q] have lookup q u = 0 by blast
with ‹lookup p u = 0 › show lookup (p + q) u = 0 by (simp add: lookup-add)

qed
with assms show False by simp

next
assume lt q ≺t lt p
from lt-plus-eqI-2 [OF this] assms show False by simp

qed
qed

lemma lt-plus-lessE-2 :
assumes lt q ≺t lt (p + q)
shows lt q ≺t lt p

proof (rule ccontr)
assume ¬ lt q ≺t lt p
hence lt q = lt p ∨ lt p ≺t lt q by auto
thus False
proof

assume lt-eq: lt q = lt p
have lt (p + q) �t lt q
proof (rule lt-le)

fix u
assume lt q ≺t u
with lt-gr [of q u lt q] have lookup q u = 0 by blast
from ‹lt q ≺t u› have lt p ≺t u using lt-eq by simp
with lt-gr [of p u lt p] have lookup p u = 0 by blast
with ‹lookup q u = 0 › show lookup (p + q) u = 0 by (simp add: lookup-add)

qed
with assms show False by simp

next

166

assume lt p ≺t lt q
from lt-plus-eqI [OF this] assms show False by simp

qed
qed

lemma lt-plus-lessI ′:
fixes p q :: ′t ⇒0

′b::monoid-add
assumes p + q 6= 0 and lt-eq: lt q = lt p and lc-eq: lc p + lc q = 0
shows lt (p + q) ≺t lt p

proof (rule ccontr)
assume ¬ lt (p + q) ≺t lt p
hence lt (p + q) = lt p ∨ lt p ≺t lt (p + q) by auto
thus False
proof

assume lt (p + q) = lt p
have lookup (p + q) (lt p) = (lookup p (lt p)) + (lookup q (lt q)) unfolding

lt-eq lookup-add ..
also have ... = lc p + lc q unfolding lc-def ..
also have ... = 0 unfolding lc-eq by simp
finally have lookup (p + q) (lt p) = 0 .
hence lt (p + q) 6= lt p using lc-not-0 [OF ‹p + q 6= 0 ›] unfolding lc-def by

auto
with ‹lt (p + q) = lt p› show False by simp

next
assume lt p ≺t lt (p + q)
have lt p ≺t lt q by (rule lt-plus-lessE , fact+)
hence lt p 6= lt q by simp
with lt-eq show False by simp

qed
qed

corollary lt-plus-lessI :
fixes p q :: ′t ⇒0

′b::group-add
assumes p + q 6= 0 and lt q = lt p and lc q = − lc p
shows lt (p + q) ≺t lt p
using assms(1 , 2)

proof (rule lt-plus-lessI ′)
from assms(3) show lc p + lc q = 0 by simp

qed

lemma lt-plus-distinct-eq-max:
assumes lt p 6= lt q
shows lt (p + q) = ord-term-lin.max (lt p) (lt q)

proof (rule ord-term-lin.linorder-cases)
assume a: lt p ≺t lt q
hence lt (p + q) = lt q by (rule lt-plus-eqI)
also from a have ... = ord-term-lin.max (lt p) (lt q)

by (simp add: ord-term-lin.max.absorb2)
finally show ?thesis .

167

next
assume a: lt q ≺t lt p
hence lt (p + q) = lt p by (rule lt-plus-eqI-2)
also from a have ... = ord-term-lin.max (lt p) (lt q)

by (simp add: ord-term-lin.max.absorb1)
finally show ?thesis .

next
assume lt p = lt q
with assms show ?thesis ..

qed

lemma lt-plus-le-max: lt (p + q) �t ord-term-lin.max (lt p) (lt q)
proof (cases lt p = lt q)

case True
show ?thesis
proof (rule lt-le)

fix u
assume ord-term-lin.max (lt p) (lt q) ≺t u
hence lt p ≺t u and lt q ≺t u by simp-all
hence lookup p u = 0 and lookup q u = 0 using lt-max ord-term-lin.leD by

blast+
thus lookup (p + q) u = 0 by (simp add: lookup-add)

qed
next

case False
hence lt (p + q) = ord-term-lin.max (lt p) (lt q) by (rule lt-plus-distinct-eq-max)
thus ?thesis by simp

qed

lemma lt-minus-eqI : lt p ≺t lt q =⇒ lt (p − q) = lt q for p q :: ′t ⇒0
′b::ab-group-add

by (metis lt-plus-eqI-2 lt-uminus uminus-add-conv-diff)

lemma lt-minus-eqI-2 : lt q ≺t lt p =⇒ lt (p − q) = lt p for p q :: ′t ⇒0
′b::ab-group-add

by (metis lt-minus-eqI lt-uminus minus-diff-eq)

lemma lt-minus-eqI-3 :
assumes lt q = lt p and lc q 6= lc p
shows lt (p − q) = lt (p:: ′t ⇒0

′b::ab-group-add)
proof (rule lt-eqI)

from assms(2) show lookup (p − q) (lt p) 6= 0 by (simp add: lookup-minus
lc-def assms(1))
next

fix u
assume lookup (p − q) u 6= 0
hence lookup p u 6= lookup q u by (simp add: lookup-minus)
hence lookup p u 6= 0 ∨ lookup q u 6= 0 by auto
thus u �t lt p
proof

168

assume lookup p u 6= 0
thus ?thesis by (rule lt-max)

next
assume lookup q u 6= 0
hence u �t lt q by (rule lt-max)
thus ?thesis by (simp only: assms(1))

qed
qed

lemma lt-minus-distinct-eq-max:
assumes lt p 6= lt (q:: ′t ⇒0

′b::ab-group-add)
shows lt (p − q) = ord-term-lin.max (lt p) (lt q)

proof (rule ord-term-lin.linorder-cases)
assume a: lt p ≺t lt q
hence lt (p − q) = lt q by (rule lt-minus-eqI)
also from a have ... = ord-term-lin.max (lt p) (lt q)

by (simp add: ord-term-lin.max.absorb2)
finally show ?thesis .

next
assume a: lt q ≺t lt p
hence lt (p − q) = lt p by (rule lt-minus-eqI-2)
also from a have ... = ord-term-lin.max (lt p) (lt q)

by (simp add: ord-term-lin.max.absorb1)
finally show ?thesis .

next
assume lt p = lt q
with assms show ?thesis ..

qed

lemma lt-minus-lessE : lt p ≺t lt (p − q) =⇒ lt p ≺t lt q for p q :: ′t ⇒0
′b::ab-group-add

using lt-minus-eqI-2 by fastforce

lemma lt-minus-lessE-2 : lt q ≺t lt (p − q) =⇒ lt q ≺t lt p for p q :: ′t ⇒0
′b::ab-group-add

using lt-plus-eqI-2 by fastforce

lemma lt-minus-lessI : p − q 6= 0 =⇒ lt q = lt p =⇒ lc q = lc p =⇒ lt (p − q)
≺t lt p

for p q :: ′t ⇒0
′b::ab-group-add

by (metis (no-types, opaque-lifting) diff-diff-eq2 diff-self group-eq-aux lc-def lc-not-0
lookup-minus

lt-minus-eqI ord-term-lin.antisym-conv3)

lemma lt-max-keys:
assumes v ∈ keys p
shows v �t lt p

proof (rule lt-max)
from assms show lookup p v 6= 0 by (simp add: in-keys-iff)

169

qed

lemma lt-eqI-keys:
assumes v ∈ keys p and a2 :

∧
u. u ∈ keys p =⇒ u �t v

shows lt p = v
by (rule lt-eqI , simp-all only: in-keys-iff [symmetric], fact+)

lemma lt-gr-keys:
assumes u ∈ keys p and v ≺t u
shows v ≺t lt p

proof (rule lt-gr)
from assms(1) show lookup p u 6= 0 by (simp add: in-keys-iff)

qed fact

lemma lt-plus-eq-maxI :
assumes lt p = lt q =⇒ lc p + lc q 6= 0
shows lt (p + q) = ord-term-lin.max (lt p) (lt q)

proof (cases lt p = lt q)
case True
show ?thesis
proof (rule lt-eqI-keys)

from True have lc p + lc q 6= 0 by (rule assms)
thus ord-term-lin.max (lt p) (lt q) ∈ keys (p + q)

by (simp add: in-keys-iff lc-def lookup-add True)
next

fix u
assume u ∈ keys (p + q)
hence u �t lt (p + q) by (rule lt-max-keys)
also have ... �t ord-term-lin.max (lt p) (lt q) by (fact lt-plus-le-max)
finally show u �t ord-term-lin.max (lt p) (lt q) .

qed
next

case False
thus ?thesis by (rule lt-plus-distinct-eq-max)

qed

lemma lt-monom-mult:
assumes c 6= (0 :: ′b::semiring-no-zero-divisors) and p 6= 0
shows lt (monom-mult c t p) = t ⊕ lt p

proof (intro lt-eqI)
from assms(1) show lookup (monom-mult c t p) (t ⊕ lt p) 6= 0
proof (simp add: lookup-monom-mult-plus)

show lookup p (lt p) 6= 0
using assms(2) lt-in-keys by auto

qed
next

fix u:: ′t
assume lookup (monom-mult c t p) u 6= 0
hence u ∈ keys (monom-mult c t p) by (simp add: in-keys-iff)

170

also have ... ⊆ (⊕) t ‘ keys p by (fact keys-monom-mult-subset)
finally obtain v where v ∈ keys p and u = t ⊕ v ..
show u �t t ⊕ lt p unfolding ‹u = t ⊕ v›
proof (rule splus-mono)

from ‹v ∈ keys p› show v �t lt p by (rule lt-max-keys)
qed

qed

lemma lt-monom-mult-zero:
assumes c 6= (0 :: ′b::semiring-no-zero-divisors)
shows lt (monom-mult c 0 p) = lt p

proof (cases p = 0)
case True
show ?thesis by (simp add: True)

next
case False
with assms show ?thesis by (simp add: lt-monom-mult term-simps)

qed

corollary lt-map-scale: c 6= (0 :: ′b::semiring-no-zero-divisors) =⇒ lt (c · p) = lt p
by (simp add: map-scale-eq-monom-mult lt-monom-mult-zero)

lemma lc-monom-mult [simp]: lc (monom-mult c t p) = (c:: ′b::semiring-no-zero-divisors)
∗ lc p
proof (cases c = 0)

case True
thus ?thesis by simp

next
case False
show ?thesis
proof (cases p = 0)

case True
thus ?thesis by simp

next
case False

with ‹c 6= 0 › show ?thesis by (simp add: lc-def lt-monom-mult lookup-monom-mult-plus)
qed

qed

corollary lc-map-scale [simp]: lc (c · p) = (c:: ′b::semiring-no-zero-divisors) ∗ lc p
by (simp add: map-scale-eq-monom-mult)

lemma (in ordered-term) lt-mult-scalar-monomial-right:
assumes c 6= (0 :: ′b::semiring-no-zero-divisors) and p 6= 0
shows lt (p � monomial c v) = punit.lt p ⊕ v

proof (intro lt-eqI)
from assms(1) show lookup (p � monomial c v) (punit.lt p ⊕ v) 6= 0
proof (simp add: lookup-mult-scalar-monomial-right-plus)

from assms(2) show lookup p (punit.lt p) 6= 0

171

using in-keys-iff punit.lt-in-keys by fastforce
qed

next
fix u:: ′t
assume lookup (p � monomial c v) u 6= 0
hence u ∈ keys (p � monomial c v) by (simp add: in-keys-iff)
also have ... ⊆ (λt. t ⊕ v) ‘ keys p by (fact keys-mult-scalar-monomial-right-subset)
finally obtain t where t ∈ keys p and u = t ⊕ v ..
show u �t punit.lt p ⊕ v unfolding ‹u = t ⊕ v›
proof (rule splus-mono-left)

from ‹t ∈ keys p› show t � punit.lt p by (rule punit.lt-max-keys)
qed

qed

lemma lc-mult-scalar-monomial-right:
lc (p � monomial c v) = punit.lc p ∗ (c:: ′b::semiring-no-zero-divisors)

proof (cases c = 0)
case True
thus ?thesis by simp

next
case False
show ?thesis
proof (cases p = 0)

case True
thus ?thesis by simp

next
case False
with ‹c 6= 0 › show ?thesis
by (simp add: punit.lc-def lc-def lt-mult-scalar-monomial-right lookup-mult-scalar-monomial-right-plus)

qed
qed

lemma lookup-monom-mult-eq-zero:
assumes s ⊕ lt p ≺t v
shows lookup (monom-mult (c:: ′b::semiring-no-zero-divisors) s p) v = 0
by (metis assms aux lt-gr lt-monom-mult monom-mult-zero-left monom-mult-zero-right

ord-term-lin.order .strict-implies-not-eq)

lemma in-keys-monom-mult-le:
assumes v ∈ keys (monom-mult c t p)
shows v �t t ⊕ lt p

proof −
from keys-monom-mult-subset assms have v ∈ (⊕) t ‘ (keys p) ..
then obtain u where u ∈ keys p and v = t ⊕ u ..
from ‹u ∈ keys p› have u �t lt p by (rule lt-max-keys)
thus v �t t ⊕ lt p unfolding ‹v = t ⊕ u› by (rule splus-mono)

qed

lemma lt-monom-mult-le: lt (monom-mult c t p) �t t ⊕ lt p

172

by (metis aux in-keys-monom-mult-le lt-in-keys lt-le-iff)

lemma monom-mult-inj-2 :
assumes monom-mult c t1 p = monom-mult c t2 p

and c 6= 0 and (p:: ′t ⇒0
′b::semiring-no-zero-divisors) 6= 0

shows t1 = t2
proof −

from assms(1) have lt (monom-mult c t1 p) = lt (monom-mult c t2 p) by simp
with ‹c 6= 0 › ‹p 6= 0 › have t1 ⊕ lt p = t2 ⊕ lt p by (simp add: lt-monom-mult)
thus ?thesis by (simp add: term-simps)

qed

10.4 Trailing Term and Trailing Coefficient: tt and tc
lemma tt-zero [simp]: tt 0 = min-term

by (simp add: tt-def)

lemma tc-zero [simp]: tc 0 = 0
by (simp add: tc-def)

lemma tt-alt:
assumes p 6= 0
shows tt p = ord-term-lin.Min (keys p)
using assms unfolding tt-def by simp

lemma tt-min-keys:
assumes v ∈ keys p
shows tt p �t v

proof −
from assms have keys p 6= {} by auto
hence p 6= 0 by simp
from tt-alt[OF this] ord-term-lin.Min-le[OF finite-keys assms] show ?thesis by

simp
qed

lemma tt-min:
assumes lookup p v 6= 0
shows tt p �t v

proof −
from assms have v ∈ keys p unfolding keys-def by simp
thus ?thesis by (rule tt-min-keys)

qed

lemma tt-in-keys:
assumes p 6= 0
shows tt p ∈ keys p
unfolding tt-alt[OF assms]
by (rule ord-term-lin.Min-in, fact finite-keys, simp add: assms)

173

lemma tt-eqI :
assumes v ∈ keys p and

∧
u. u ∈ keys p =⇒ v �t u

shows tt p = v
proof −

from assms(1) have keys p 6= {} by auto
hence p 6= 0 by simp
from assms(1) have tt p �t v by (rule tt-min-keys)
moreover have v �t tt p by (rule assms(2), rule tt-in-keys, fact ‹p 6= 0 ›)
ultimately show ?thesis by simp

qed

lemma tt-gr :
assumes

∧
u. u ∈ keys p =⇒ v ≺t u and p 6= 0

shows v ≺t tt p
proof −

from ‹p 6= 0 › have keys p 6= {} by simp
show ?thesis by (rule assms(1), rule tt-in-keys, fact ‹p 6= 0 ›)

qed

lemma tt-less:
assumes u ∈ keys p and u ≺t v
shows tt p ≺t v

proof −
from ‹u ∈ keys p› have tt p �t u by (rule tt-min-keys)
also have ... ≺t v by fact
finally show tt p ≺t v .

qed

lemma tt-ge:
assumes

∧
u. u ≺t v =⇒ lookup p u = 0 and p 6= 0

shows v �t tt p
proof −

from ‹p 6= 0 › have keys p 6= {} by simp
have ∀ u∈keys p. v �t u
proof

fix u:: ′t
assume u ∈ keys p
hence lookup p u 6= 0 unfolding keys-def by simp
hence ¬ u ≺t v using assms(1)[of u] by auto
thus v �t u by simp

qed
with tt-alt[OF ‹p 6= 0 ›] ord-term-lin.Min-ge-iff [OF finite-keys[of p] ‹keys p 6=
{}›]

show ?thesis by simp
qed

lemma tt-ge-keys:
assumes

∧
u. u ∈ keys p =⇒ v �t u and p 6= 0

shows v �t tt p

174

by (rule assms(1), rule tt-in-keys, fact)

lemma tt-ge-iff : v �t tt p ←→ ((p 6= 0 ∨ v = min-term) ∧ (∀ u. u ≺t v −→
lookup p u = 0))
(is ?L ←→ (?A ∧ ?B))

proof
assume ?L
show ?A ∧ ?B
proof (intro conjI allI impI)

show p 6= 0 ∨ v = min-term
proof (cases p = 0)

case True
show ?thesis
proof (rule disjI2)

from ‹?L› True have v �t min-term by (simp add: tt-def)
with min-term-min[of v] show v = min-term by simp

qed
next

case False
thus ?thesis ..

qed
next

fix u
assume u ≺t v
also note ‹v �t tt p›
finally have u ≺t tt p .
hence ¬ tt p �t u by simp
with tt-min[of p u] show lookup p u = 0 by blast

qed
next

assume ?A ∧ ?B
hence ?A and ?B by simp-all
show ?L
proof (cases p = 0)

case True
with ‹?A› have v = min-term by simp
with True show ?thesis by (simp add: tt-def)

next
case False
from ‹?B› show ?thesis using tt-ge[OF - False] by auto

qed
qed

lemma tc-not-0 :
assumes p 6= 0
shows tc p 6= 0
unfolding tc-def in-keys-iff [symmetric] using assms by (rule tt-in-keys)

lemma tt-monomial:

175

assumes c 6= 0
shows tt (monomial c v) = v

proof (rule tt-eqI)
from keys-of-monomial[OF assms, of v] show v ∈ keys (monomial c v) by simp

next
fix u
assume u ∈ keys (monomial c v)
with keys-of-monomial[OF assms, of v] have u = v by simp
thus v �t u by simp

qed

lemma tc-monomial [simp]: tc (monomial c t) = c
proof (cases c = 0)

case True
thus ?thesis by simp

next
case False
thus ?thesis by (simp add: tc-def tt-monomial)

qed

lemma tt-plus-eqI :
assumes p 6= 0 and tt p ≺t tt q
shows tt (p + q) = tt p

proof (intro tt-eqI)
from tt-less[of tt p q tt q] ‹tt p ≺t tt q› have tt p /∈ keys q by blast
with lookup-add[of p q tt p] tc-not-0 [OF ‹p 6= 0 ›] show tt p ∈ keys (p + q)

unfolding in-keys-iff tc-def by simp
next

fix u
assume u ∈ keys (p + q)
show tt p �t u
proof (rule ccontr)

assume ¬ tt p �t u
hence sp: u ≺t tt p by simp
hence u ≺t tt q using ‹tt p ≺t tt q› by simp
with tt-less[of u q tt q] have u /∈ keys q by blast
moreover from sp tt-less[of u p tt p] have u /∈ keys p by blast
ultimately show False using ‹u ∈ keys (p + q)› Poly-Mapping.keys-add[of p

q] by auto
qed

qed

lemma tt-plus-lessE :
fixes p q
assumes p + q 6= 0 and tt: tt (p + q) ≺t tt p
shows tt q ≺t tt p

proof (cases p = 0)
case True
with tt show ?thesis by simp

176

next
case False
show ?thesis
proof (rule ccontr)

assume ¬ tt q ≺t tt p
hence tt p = tt q ∨ tt p ≺t tt q by auto
thus False
proof

assume tt-eq: tt p = tt q
have tt p �t tt (p + q)
proof (rule tt-ge-keys)

fix u
assume u ∈ keys (p + q)
hence u ∈ keys p ∪ keys q
proof

show keys (p + q) ⊆ keys p ∪ keys q by (fact Poly-Mapping.keys-add)
qed
thus tt p �t u
proof

assume u ∈ keys p
thus ?thesis by (rule tt-min-keys)

next
assume u ∈ keys q
thus ?thesis unfolding tt-eq by (rule tt-min-keys)

qed
qed (fact ‹p + q 6= 0 ›)
with tt show False by simp

next
assume tt p ≺t tt q
from tt-plus-eqI [OF False this] tt show False by (simp add: ac-simps)

qed
qed

qed

lemma tt-plus-lessI :
fixes p q :: - ⇒0

′b::ring
assumes p + q 6= 0 and tt-eq: tt q = tt p and tc-eq: tc q = − tc p
shows tt p ≺t tt (p + q)

proof (rule ccontr)
assume ¬ tt p ≺t tt (p + q)
hence tt p = tt (p + q) ∨ tt (p + q) ≺t tt p by auto
thus False
proof

assume tt p = tt (p + q)
have lookup (p + q) (tt p) = (lookup p (tt p)) + (lookup q (tt q)) unfolding

tt-eq lookup-add ..
also have ... = tc p + tc q unfolding tc-def ..
also have ... = 0 unfolding tc-eq by simp
finally have lookup (p + q) (tt p) = 0 .

177

hence tt (p + q) 6= tt p using tc-not-0 [OF ‹p + q 6= 0 ›] unfolding tc-def by
auto

with ‹tt p = tt (p + q)› show False by simp
next

assume tt (p + q) ≺t tt p
have tt q ≺t tt p by (rule tt-plus-lessE , fact+)
hence tt q 6= tt p by simp
with tt-eq show False by simp

qed
qed

lemma tt-uminus [simp]: tt (− p) = tt p
by (simp add: tt-def keys-uminus)

lemma tc-uminus [simp]: tc (− p) = − tc p
by (simp add: tc-def)

lemma tt-monom-mult:
assumes c 6= (0 :: ′b::semiring-no-zero-divisors) and p 6= 0
shows tt (monom-mult c t p) = t ⊕ tt p

proof (intro tt-eqI , rule keys-monom-multI , rule tt-in-keys, fact, fact)
fix u
assume u ∈ keys (monom-mult c t p)
then obtain v where v ∈ keys p and u: u = t ⊕ v by (rule keys-monom-multE)
show t ⊕ tt p �t u unfolding u add.commute[of t] by (rule splus-mono, rule

tt-min-keys, fact)
qed

lemma tt-map-scale: c 6= (0 :: ′b::semiring-no-zero-divisors) =⇒ tt (c · p) = tt p
by (cases p = 0) (simp-all add: map-scale-eq-monom-mult tt-monom-mult term-simps)

lemma tc-monom-mult [simp]: tc (monom-mult c t p) = (c:: ′b::semiring-no-zero-divisors)
∗ tc p
proof (cases c = 0)

case True
thus ?thesis by simp

next
case False
show ?thesis
proof (cases p = 0)

case True
thus ?thesis by simp

next
case False

with ‹c 6= 0 › show ?thesis by (simp add: tc-def tt-monom-mult lookup-monom-mult-plus)
qed

qed

corollary tc-map-scale [simp]: tc (c · p) = (c:: ′b::semiring-no-zero-divisors) ∗ tc p

178

by (simp add: map-scale-eq-monom-mult)

lemma in-keys-monom-mult-ge:
assumes v ∈ keys (monom-mult c t p)
shows t ⊕ tt p �t v

proof −
from keys-monom-mult-subset assms have v ∈ (⊕) t ‘ (keys p) ..
then obtain u where u ∈ keys p and v = t ⊕ u ..
from ‹u ∈ keys p› have tt p �t u by (rule tt-min-keys)
thus t ⊕ tt p �t v unfolding ‹v = t ⊕ u› by (rule splus-mono)

qed

lemma lt-ge-tt: tt p �t lt p
proof (cases p = 0)

case True
show ?thesis unfolding True lt-def tt-def by simp

next
case False
show ?thesis by (rule lt-max-keys, rule tt-in-keys, fact False)

qed

lemma lt-eq-tt-monomial:
assumes is-monomial p
shows lt p = tt p

proof −
from assms obtain c v where c 6= 0 and p: p = monomial c v by (rule

is-monomial-monomial)
from ‹c 6= 0 › have lt p = v and tt p = v unfolding p by (rule lt-monomial,

rule tt-monomial)
thus ?thesis by simp

qed

10.5 higher and lower
lemma lookup-higher : lookup (higher p u) v = (if u ≺t v then lookup p v else 0)

by (auto simp add: higher-def lookup-except)

lemma lookup-higher-when: lookup (higher p u) v = (lookup p v when u ≺t v)
by (auto simp add: lookup-higher when-def)

lemma higher-plus: higher (p + q) v = higher p v + higher q v
by (rule poly-mapping-eqI , simp add: lookup-add lookup-higher)

lemma higher-uminus [simp]: higher (− p) v = −(higher p v)
by (rule poly-mapping-eqI , simp add: lookup-higher)

lemma higher-minus: higher (p − q) v = higher p v − higher q v
by (auto intro!: poly-mapping-eqI simp: lookup-minus lookup-higher)

179

lemma higher-zero [simp]: higher 0 t = 0
by (rule poly-mapping-eqI , simp add: lookup-higher)

lemma higher-eq-iff : higher p v = higher q v ←→ (∀ u. v ≺t u −→ lookup p u =
lookup q u) (is ?L ←→ ?R)
proof

assume ?L
show ?R
proof (intro allI impI)

fix u
assume v ≺t u
moreover from ‹?L› have lookup (higher p v) u = lookup (higher q v) u by

simp
ultimately show lookup p u = lookup q u by (simp add: lookup-higher)

qed
next

assume ?R
show ?L
proof (rule poly-mapping-eqI , simp add: lookup-higher , rule)

fix u
assume v ≺t u
with ‹?R› show lookup p u = lookup q u by simp

qed
qed

lemma higher-eq-zero-iff : higher p v = 0 ←→ (∀ u. v ≺t u −→ lookup p u = 0)
proof −

have higher p v = higher 0 v ←→ (∀ u. v ≺t u −→ lookup p u = lookup 0 u) by
(rule higher-eq-iff)

thus ?thesis by simp
qed

lemma keys-higher : keys (higher p v) = {u∈keys p. v ≺t u}
by (rule set-eqI , simp only: in-keys-iff , simp add: lookup-higher)

lemma higher-higher : higher (higher p u) v = higher p (ord-term-lin.max u v)
by (rule poly-mapping-eqI , simp add: lookup-higher)

lemma lookup-lower : lookup (lower p u) v = (if v ≺t u then lookup p v else 0)
by (auto simp add: lower-def lookup-except)

lemma lookup-lower-when: lookup (lower p u) v = (lookup p v when v ≺t u)
by (auto simp add: lookup-lower when-def)

lemma lower-plus: lower (p + q) v = lower p v + lower q v
by (rule poly-mapping-eqI , simp add: lookup-add lookup-lower)

lemma lower-uminus [simp]: lower (− p) v = − lower p v
by (rule poly-mapping-eqI , simp add: lookup-lower)

180

lemma lower-minus: lower (p − (q::- ⇒0
′b::ab-group-add)) v = lower p v −

lower q v
by (auto intro!: poly-mapping-eqI simp: lookup-minus lookup-lower)

lemma lower-zero [simp]: lower 0 v = 0
by (rule poly-mapping-eqI , simp add: lookup-lower)

lemma lower-eq-iff : lower p v = lower q v ←→ (∀ u. u ≺t v −→ lookup p u =
lookup q u) (is ?L ←→ ?R)
proof

assume ?L
show ?R
proof (intro allI impI)

fix u
assume u ≺t v
moreover from ‹?L› have lookup (lower p v) u = lookup (lower q v) u by

simp
ultimately show lookup p u = lookup q u by (simp add: lookup-lower)

qed
next

assume ?R
show ?L
proof (rule poly-mapping-eqI , simp add: lookup-lower , rule)

fix u
assume u ≺t v
with ‹?R› show lookup p u = lookup q u by simp

qed
qed

lemma lower-eq-zero-iff : lower p v = 0 ←→ (∀ u. u ≺t v −→ lookup p u = 0)
proof −

have lower p v = lower 0 v ←→ (∀ u. u ≺t v −→ lookup p u = lookup 0 u) by
(rule lower-eq-iff)

thus ?thesis by simp
qed

lemma keys-lower : keys (lower p v) = {u∈keys p. u ≺t v}
by (rule set-eqI , simp only: in-keys-iff , simp add: lookup-lower)

lemma lower-lower : lower (lower p u) v = lower p (ord-term-lin.min u v)
by (rule poly-mapping-eqI , simp add: lookup-lower)

lemma lt-higher :
assumes v ≺t lt p
shows lt (higher p v) = lt p

proof (rule lt-eqI-keys, simp-all add: keys-higher , rule conjI , rule lt-in-keys, rule)
assume p = 0
hence lt p = min-term by (simp add: lt-def)

181

with min-term-min[of v] assms show False by simp
next

fix u
assume u ∈ keys p ∧ v ≺t u
hence u ∈ keys p ..
thus u �t lt p by (rule lt-max-keys)

qed fact

lemma lc-higher :
assumes v ≺t lt p
shows lc (higher p v) = lc p
by (simp add: lc-def lt-higher assms lookup-higher)

lemma higher-eq-zero-iff ′: higher p v = 0 ←→ lt p �t v
by (simp add: higher-eq-zero-iff lt-le-iff)

lemma higher-id-iff : higher p v = p ←→ (p = 0 ∨ v ≺t tt p) (is ?L ←→ ?R)
proof

assume ?L
show ?R
proof (cases p = 0)

case True
thus ?thesis ..

next
case False
show ?thesis
proof (rule disjI2 , rule tt-gr)

fix u
assume u ∈ keys p
hence lookup p u 6= 0 by (simp add: in-keys-iff)
from ‹?L› have lookup (higher p v) u = lookup p u by simp

hence lookup p u = (if v ≺t u then lookup p u else 0) by (simp only:
lookup-higher)

hence ¬ v ≺t u =⇒ lookup p u = 0 by simp
with ‹lookup p u 6= 0 › show v ≺t u by auto

qed fact
qed

next
assume ?R
show ?L
proof (cases p = 0)

case True
thus ?thesis by simp

next
case False
with ‹?R› have v ≺t tt p by simp
show ?thesis
proof (rule poly-mapping-eqI , simp add: lookup-higher , intro impI)

fix u

182

assume ¬ v ≺t u
hence u �t v by simp
from this ‹v ≺t tt p› have u ≺t tt p by simp
hence ¬ tt p �t u by simp
with tt-min[of p u] show lookup p u = 0 by blast

qed
qed

qed

lemma tt-lower :
assumes tt p ≺t v
shows tt (lower p v) = tt p

proof (cases p = 0)
case True
thus ?thesis by simp

next
case False
show ?thesis
proof (rule tt-eqI , simp-all add: keys-lower , rule, rule tt-in-keys)

fix u
assume u ∈ keys p ∧ u ≺t v
hence u ∈ keys p ..
thus tt p �t u by (rule tt-min-keys)

qed fact+
qed

lemma tc-lower :
assumes tt p ≺t v
shows tc (lower p v) = tc p
by (simp add: tc-def tt-lower assms lookup-lower)

lemma lt-lower : lt (lower p v) �t lt p
proof (cases lower p v = 0)

case True
thus ?thesis by (simp add: lt-def min-term-min)

next
case False
show ?thesis
proof (rule lt-le, simp add: lookup-lower , rule impI , rule ccontr)

fix u
assume lookup p u 6= 0
hence u �t lt p by (rule lt-max)
moreover assume lt p ≺t u
ultimately show False by simp

qed
qed

lemma lt-lower-less:
assumes lower p v 6= 0

183

shows lt (lower p v) ≺t v
using assms

proof (rule lt-less)
fix u
assume v �t u
thus lookup (lower p v) u = 0 by (simp add: lookup-lower-when)

qed

lemma lt-lower-eq-iff : lt (lower p v) = lt p ←→ (lt p = min-term ∨ lt p ≺t v) (is
?L ←→ ?R)
proof

assume ?L
show ?R
proof (rule ccontr , simp, elim conjE)

assume lt p 6= min-term
hence min-term ≺t lt p using min-term-min ord-term-lin.dual-order .not-eq-order-implies-strict

by blast
assume ¬ lt p ≺t v
hence v �t lt p by simp
have lt (lower p v) ≺t lt p
proof (cases lower p v = 0)

case True
thus ?thesis using ‹min-term ≺t lt p› by (simp add: lt-def)

next
case False
show ?thesis
proof (rule lt-less)

fix u
assume lt p �t u
with ‹v �t lt p› have ¬ u ≺t v by simp
thus lookup (lower p v) u = 0 by (simp add: lookup-lower)

qed fact
qed
with ‹?L› show False by simp

qed
next

assume ?R
show ?L
proof (cases lt p = min-term)

case True
hence lt p �t lt (lower p v) by (simp add: min-term-min)
with lt-lower [of p v] show ?thesis by simp

next
case False
with ‹?R› have lt p ≺t v by simp
show ?thesis
proof (rule lt-eqI-keys, simp-all add: keys-lower , rule conjI , rule lt-in-keys,

rule)
assume p = 0

184

hence lt p = min-term by (simp add: lt-def)
with False show False ..

next
fix u
assume u ∈ keys p ∧ u ≺t v
hence u ∈ keys p ..
thus u �t lt p by (rule lt-max-keys)

qed fact
qed

qed

lemma tt-higher :
assumes v ≺t lt p
shows tt p �t tt (higher p v)

proof (rule tt-ge-keys, simp add: keys-higher)
fix u
assume u ∈ keys p ∧ v ≺t u
hence u ∈ keys p ..
thus tt p �t u by (rule tt-min-keys)

next
show higher p v 6= 0
proof (simp add: higher-eq-zero-iff , intro exI conjI)

have p 6= 0
proof

assume p = 0
hence lt p �t v by (simp add: lt-def min-term-min)
with assms show False by simp

qed
thus lookup p (lt p) 6= 0

using lt-in-keys by auto
qed fact

qed

lemma tt-higher-eq-iff :
tt (higher p v) = tt p ←→ ((lt p �t v ∧ tt p = min-term) ∨ v ≺t tt p) (is ?L
←→ ?R)
proof

assume ?L
show ?R
proof (rule ccontr , simp, elim conjE)

assume a: lt p �t v −→ tt p 6= min-term
assume ¬ v ≺t tt p
hence tt p �t v by simp
have tt p ≺t tt (higher p v)
proof (cases higher p v = 0)

case True
with ‹?L› have tt p = min-term by (simp add: tt-def)
with a have v ≺t lt p by auto
have lt p 6= min-term

185

proof
assume lt p = min-term
with ‹v ≺t lt p› show False using min-term-min[of v] by auto

qed
hence p 6= 0 by (auto simp add: lt-def)
from ‹v ≺t lt p› have higher p v 6= 0 by (simp add: higher-eq-zero-iff ′)
from this True show ?thesis ..

next
case False
show ?thesis
proof (rule tt-gr)

fix u
assume u ∈ keys (higher p v)
hence v ≺t u by (simp add: keys-higher)
with ‹tt p �t v› show tt p ≺t u by simp

qed fact
qed
with ‹?L› show False by simp

qed
next

assume ?R
show ?L
proof (cases lt p �t v ∧ tt p = min-term)

case True
hence lt p �t v and tt p = min-term by simp-all
from ‹lt p �t v› have higher p v = 0 by (simp add: higher-eq-zero-iff ′)
with ‹tt p = min-term› show ?thesis by (simp add: tt-def)

next
case False
with ‹?R› have v ≺t tt p by simp
show ?thesis
proof (rule tt-eqI , simp-all add: keys-higher , rule conjI , rule tt-in-keys, rule)

assume p = 0
hence tt p = min-term by (simp add: tt-def)
with ‹v ≺t tt p› min-term-min[of v] show False by simp

next
fix u
assume u ∈ keys p ∧ v ≺t u
hence u ∈ keys p ..
thus tt p �t u by (rule tt-min-keys)

qed fact
qed

qed

lemma lower-eq-zero-iff ′: lower p v = 0 ←→ (p = 0 ∨ v �t tt p)
by (auto simp add: lower-eq-zero-iff tt-ge-iff)

lemma lower-id-iff : lower p v = p ←→ (p = 0 ∨ lt p ≺t v) (is ?L ←→ ?R)
proof

186

assume ?L
show ?R
proof (cases p = 0)

case True
thus ?thesis ..

next
case False
show ?thesis
proof (rule disjI2 , rule lt-less)

fix u
assume v �t u
from ‹?L› have lookup (lower p v) u = lookup p u by simp

hence lookup p u = (if u ≺t v then lookup p u else 0) by (simp only:
lookup-lower)

hence v �t u =⇒ lookup p u = 0 by (meson ord-term-lin.leD)
with ‹v �t u› show lookup p u = 0 by simp

qed fact
qed

next
assume ?R
show ?L
proof (cases p = 0 , simp)

case False
with ‹?R› have lt p ≺t v by simp
show ?thesis
proof (rule poly-mapping-eqI , simp add: lookup-lower , intro impI)

fix u
assume ¬ u ≺t v
hence v �t u by simp
with ‹lt p ≺t v› have lt p ≺t u by simp
hence ¬ u �t lt p by simp
with lt-max[of p u] show lookup p u = 0 by blast

qed
qed

qed

lemma lower-higher-commute: higher (lower p s) t = lower (higher p t) s
by (rule poly-mapping-eqI , simp add: lookup-higher lookup-lower)

lemma lt-lower-higher :
assumes v ≺t lt (lower p u)
shows lt (lower (higher p v) u) = lt (lower p u)
by (simp add: lower-higher-commute[symmetric] lt-higher [OF assms])

lemma lc-lower-higher :
assumes v ≺t lt (lower p u)
shows lc (lower (higher p v) u) = lc (lower p u)
using assms by (simp add: lc-def lt-lower-higher lookup-lower lookup-higher)

187

lemma trailing-monomial-higher :
assumes p 6= 0
shows p = (higher p (tt p)) + monomial (tc p) (tt p)

proof (rule poly-mapping-eqI , simp only: lookup-add)
fix v
show lookup p v = lookup (higher p (tt p)) v + lookup (monomial (tc p) (tt p)) v
proof (cases tt p �t v)

case True
show ?thesis
proof (cases v = tt p)

assume v = tt p
hence ¬ tt p ≺t v by simp
hence lookup (higher p (tt p)) v = 0 by (simp add: lookup-higher)
moreover from ‹v = tt p› have lookup (monomial (tc p) (tt p)) v = tc p by

(simp add: lookup-single)
moreover from ‹v = tt p› have lookup p v = tc p by (simp add: tc-def)
ultimately show ?thesis by simp

next
assume v 6= tt p
from this True have tt p ≺t v by simp
hence lookup (higher p (tt p)) v = lookup p v by (simp add: lookup-higher)
moreover from ‹v 6= tt p› have lookup (monomial (tc p) (tt p)) v = 0 by

(simp add: lookup-single)
ultimately show ?thesis by simp

qed
next

case False
hence v ≺t tt p by simp
hence tt p 6= v by simp
from False have ¬ tt p ≺t v by simp
have lookup p v = 0
proof (rule ccontr)

assume lookup p v 6= 0
from tt-min[OF this] False show False by simp

qed
moreover from ‹tt p 6= v› have lookup (monomial (tc p) (tt p)) v = 0 by

(simp add: lookup-single)
moreover from ‹¬ tt p ≺t v› have lookup (higher p (tt p)) v = 0 by (simp

add: lookup-higher)
ultimately show ?thesis by simp

qed
qed

lemma higher-lower-decomp: higher p v + monomial (lookup p v) v + lower p v
= p
proof (rule poly-mapping-eqI)

fix u
show lookup (higher p v + monomial (lookup p v) v + lower p v) u = lookup p u
proof (rule ord-term-lin.linorder-cases)

188

assume u ≺t v
thus ?thesis by (simp add: lookup-add lookup-higher-when lookup-single lookup-lower-when)

next
assume u = v

thus ?thesis by (simp add: lookup-add lookup-higher-when lookup-single lookup-lower-when)
next

assume v ≺t u
thus ?thesis by (simp add: lookup-add lookup-higher-when lookup-single lookup-lower-when)

qed
qed

10.6 tail
lemma lookup-tail: lookup (tail p) v = (if v ≺t lt p then lookup p v else 0)

by (simp add: lookup-lower tail-def)

lemma lookup-tail-when: lookup (tail p) v = (lookup p v when v ≺t lt p)
by (simp add: lookup-lower-when tail-def)

lemma lookup-tail-2 : lookup (tail p) v = (if v = lt p then 0 else lookup p v)
proof (rule ord-term-lin.linorder-cases[of v lt p])

assume v ≺t lt p
hence v 6= lt p by simp
from this ‹v ≺t lt p› lookup-tail[of p v] show ?thesis by simp

next
assume v = lt p
hence ¬ v ≺t lt p by simp
from ‹v = lt p› this lookup-tail[of p v] show ?thesis by simp

next
assume lt p ≺t v
hence ¬ v �t lt p by simp
hence cp: lookup p v = 0

using lt-max by blast
from ‹¬ v �t lt p› have ¬ v = lt p and ¬ v ≺t lt p by simp-all
thus ?thesis using cp lookup-tail[of p v] by simp

qed

lemma leading-monomial-tail: p = monomial (lc p) (lt p) + tail p for p::- ⇒0
′b::comm-monoid-add
proof (rule poly-mapping-eqI)

fix v
have lookup p v = lookup (monomial (lc p) (lt p)) v + lookup (tail p) v
proof (cases v �t lt p)

case True
show ?thesis
proof (cases v = lt p)

assume v = lt p
hence ¬ v ≺t lt p by simp
hence c3 : lookup (tail p) v = 0 unfolding lookup-tail[of p v] by simp

189

from ‹v = lt p› have c2 : lookup (monomial (lc p) (lt p)) v = lc p by simp
from ‹v = lt p› have c1 : lookup p v = lc p by (simp add: lc-def)
from c1 c2 c3 show ?thesis by simp

next
assume v 6= lt p
from this True have v ≺t lt p by simp
hence c2 : lookup (tail p) v = lookup p v unfolding lookup-tail[of p v] by

simp
from ‹v 6= lt p› have c1 : lookup (monomial (lc p) (lt p)) v = 0 by (simp

add: lookup-single)
from c1 c2 show ?thesis by simp

qed
next

case False
hence lt p ≺t v by simp
hence lt p 6= v by simp
from False have ¬ v ≺t lt p by simp
have c1 : lookup p v = 0
proof (rule ccontr)

assume lookup p v 6= 0
from lt-max[OF this] False show False by simp

qed
from ‹lt p 6= v› have c2 : lookup (monomial (lc p) (lt p)) v = 0 by (simp add:

lookup-single)
from ‹¬ v ≺t lt p› lookup-tail[of p v] have c3 : lookup (tail p) v = 0 by simp
from c1 c2 c3 show ?thesis by simp

qed
thus lookup p v = lookup (monomial (lc p) (lt p) + tail p) v by (simp add:

lookup-add)
qed

lemma tail-alt: tail p = except p {lt p}
by (rule poly-mapping-eqI , simp add: lookup-tail-2 lookup-except)

corollary tail-alt-2 : tail p = p − monomial (lc p) (lt p)
proof −

have p = monomial (lc p) (lt p) + tail p by (fact leading-monomial-tail)
also have ... = tail p + monomial (lc p) (lt p) by (simp only: add.commute)
finally have p − monomial (lc p) (lt p) = (tail p + monomial (lc p) (lt p)) −

monomial (lc p) (lt p) by simp
thus ?thesis by simp

qed

lemma tail-zero [simp]: tail 0 = 0
by (simp only: tail-alt except-zero)

lemma lt-tail:
assumes tail p 6= 0
shows lt (tail p) ≺t lt p

190

proof (intro lt-less)
fix u
assume lt p �t u
hence ¬ u ≺t lt p by simp
thus lookup (tail p) u = 0 unfolding lookup-tail[of p u] by simp

qed fact

lemma keys-tail: keys (tail p) = keys p − {lt p}
by (simp add: tail-alt keys-except)

lemma tail-monomial: tail (monomial c v) = 0
by (metis (no-types, lifting) lookup-tail-2 lookup-single-not-eq lt-less lt-monomial

ord-term-lin.dual-order .strict-implies-not-eq single-zero tail-zero)

lemma (in ordered-term) mult-scalar-tail-rec-left:
p � q = monom-mult (punit.lc p) (punit.lt p) q + (punit.tail p) � q
unfolding punit.lc-def punit.tail-alt by (fact mult-scalar-rec-left)

lemma mult-scalar-tail-rec-right: p � q = p � monomial (lc q) (lt q) + p � tail q
unfolding tail-alt lc-def by (rule mult-scalar-rec-right)

lemma lt-tail-max:
assumes tail p 6= 0 and v ∈ keys p and v ≺t lt p
shows v �t lt (tail p)

proof (rule lt-max-keys, simp add: keys-tail assms(2))
from assms(3) show v 6= lt p by auto

qed

lemma keys-tail-less-lt:
assumes v ∈ keys (tail p)
shows v ≺t lt p
using assms by (meson in-keys-iff lookup-tail)

lemma tt-tail:
assumes tail p 6= 0
shows tt (tail p) = tt p

proof (rule tt-eqI , simp-all add: keys-tail)
from assms have p 6= 0 using tail-zero by auto
show tt p ∈ keys p ∧ tt p 6= lt p
proof (rule conjI , rule tt-in-keys, fact)

have tt p ≺t lt p
by (metis assms lower-eq-zero-iff ′ tail-def ord-term-lin.le-less-linear)

thus tt p 6= lt p by simp
qed

next
fix u
assume u ∈ keys p ∧ u 6= lt p
hence u ∈ keys p ..
thus tt p �t u by (rule tt-min-keys)

191

qed

lemma tc-tail:
assumes tail p 6= 0
shows tc (tail p) = tc p

proof (simp add: tc-def tt-tail[OF assms] lookup-tail-2 , rule)
assume tt p = lt p
moreover have tt p ≺t lt p

by (metis assms lower-eq-zero-iff ′ tail-def ord-term-lin.le-less-linear)
ultimately show lookup p (lt p) = 0 by simp

qed

lemma tt-tail-min:
assumes s ∈ keys p
shows tt (tail p) �t s

proof (cases tail p = 0)
case True
hence tt (tail p) = min-term by (simp add: tt-def)
thus ?thesis by (simp add: min-term-min)

next
case False
from assms show ?thesis by (simp add: tt-tail[OF False], rule tt-min-keys)

qed

lemma tail-monom-mult:
tail (monom-mult c t p) = monom-mult (c:: ′b::semiring-no-zero-divisors) t (tail

p)
proof (cases p = 0)

case True
hence tail p = 0 and monom-mult c t p = 0 by simp-all
thus ?thesis by simp

next
case False
show ?thesis
proof (cases c = 0)

case True
hence monom-mult c t p = 0 and monom-mult c t (tail p) = 0 by simp-all
thus ?thesis by simp

next
case False
let ?a = monom-mult c t p
let ?b = monom-mult c t (tail p)
from ‹p 6= 0 › False have ?a 6= 0 by (simp add: monom-mult-eq-zero-iff)
from False ‹p 6= 0 › have lt-a: lt ?a = t ⊕ lt p by (rule lt-monom-mult)
show ?thesis
proof (rule poly-mapping-eqI , simp add: lookup-tail lt-a, intro conjI impI)

fix u
assume u ≺t t ⊕ lt p
show lookup (monom-mult c t p) u = lookup (monom-mult c t (tail p)) u

192

proof (cases t addsp u)
case True
then obtain v where u = t ⊕ v by (rule adds-ppE)

from ‹u ≺t t ⊕ lt p› have v ≺t lt p unfolding ‹u = t ⊕ v› by (rule
ord-term-strict-canc)

hence lookup p v = lookup (tail p) v by (simp add: lookup-tail)
thus ?thesis by (simp add: ‹u = t ⊕ v› lookup-monom-mult-plus)

next
case False
hence lookup ?a u = 0 by (simp add: lookup-monom-mult)
moreover have lookup ?b u = 0
proof (rule ccontr , simp only: in-keys-iff [symmetric] keys-monom-mult[OF

‹c 6= 0 ›])
assume u ∈ (⊕) t ‘ keys (tail p)
then obtain v where u = t ⊕ v by auto
hence t addsp u by (simp add: term-simps)
with False show False ..

qed
ultimately show ?thesis by simp

qed
next

fix u
assume ¬ u ≺t t ⊕ lt p
hence t ⊕ lt p �t u by simp
show lookup (monom-mult c t (tail p)) u = 0
proof (rule ccontr , simp only: in-keys-iff [symmetric] keys-monom-mult[OF

False])
assume u ∈ (⊕) t ‘ keys (tail p)
then obtain v where v ∈ keys (tail p) and u = t ⊕ v by auto

from ‹t ⊕ lt p �t u› have lt p �t v unfolding ‹u = t ⊕ v› by (rule
ord-term-canc)

from ‹v ∈ keys (tail p)› have v ∈ keys p and v 6= lt p by (simp-all add:
keys-tail)

from ‹v ∈ keys p› have v �t lt p by (rule lt-max-keys)
with ‹lt p �t v› have v = lt p by simp
with ‹v 6= lt p› show False ..

qed
qed

qed
qed

lemma keys-plus-eq-lt-tt-D:
assumes keys (p + q) = {lt p, tt q} and lt q ≺t lt p and tt q ≺t tt (p::- ⇒0

′b::comm-monoid-add)
shows tail p + higher q (tt q) = 0

proof −
note assms(3)
also have ... �t lt p by (rule lt-ge-tt)
finally have tt q ≺t lt p .

193

hence lt p 6= tt q by simp
have q 6= 0
proof

assume q = 0
hence tt q = min-term by (simp add: tt-def)
with ‹q = 0 › assms(1) have keys p = {lt p, min-term} by simp
hence min-term ∈ keys p by simp
hence tt p �t tt q unfolding ‹tt q = min-term› by (rule tt-min-keys)
with assms(3) show False by simp

qed
hence tc q 6= 0 by (rule tc-not-0)
have p = monomial (lc p) (lt p) + tail p by (rule leading-monomial-tail)
moreover from ‹q 6= 0 › have q = higher q (tt q) + monomial (tc q) (tt q) by

(rule trailing-monomial-higher)
ultimately have pq: p + q = (monomial (lc p) (lt p) + monomial (tc q) (tt q))

+ (tail p + higher q (tt q))
(is - = (?m1 + ?m2) + ?b) by (simp add: algebra-simps)

have keys-m1 : keys ?m1 = {lt p}
proof (rule keys-of-monomial, rule lc-not-0 , rule)

assume p = 0
with assms(2) have lt q ≺t min-term by (simp add: lt-def)
with min-term-min[of lt q] show False by simp

qed
moreover from ‹tc q 6= 0 › have keys-m2 : keys ?m2 = {tt q} by (rule keys-of-monomial)
ultimately have keys-m1-m2 : keys (?m1 + ?m2) = {lt p, tt q}

using ‹lt p 6= tt q› keys-plus-eqI [of ?m1 ?m2] by auto
show ?thesis
proof (rule ccontr)

assume ?b 6= 0
hence keys ?b 6= {} by simp
then obtain t where t ∈ keys ?b by blast
hence t-in: t ∈ keys (tail p) ∪ keys (higher q (tt q))

using Poly-Mapping.keys-add[of tail p higher q (tt q)] by blast
hence t 6= lt p
proof (rule, simp add: keys-tail, simp add: keys-higher , elim conjE)

assume t ∈ keys q
hence t �t lt q by (rule lt-max-keys)
from this assms(2) show ?thesis by simp

qed
moreover from t-in have t 6= tt q
proof (rule, simp add: keys-tail, elim conjE)

assume t ∈ keys p
hence tt p �t t by (rule tt-min-keys)
with assms(3) show ?thesis by simp

next
assume t ∈ keys (higher q (tt q))
thus ?thesis by (auto simp only: keys-higher)

qed
ultimately have t /∈ keys (?m1 + ?m2) by (simp add: keys-m1-m2)

194

moreover from in-keys-plusI2 [OF ‹t ∈ keys ?b› this] have t ∈ keys (?m1 +
?m2)

by (simp only: keys-m1-m2 pq[symmetric] assms(1))
ultimately show False ..

qed
qed

10.7 Order Relation on Polynomials
definition ord-strict-p :: (′t ⇒0

′b::zero) ⇒ (′t ⇒0
′b) ⇒ bool (infixl ‹≺p› 50)

where
p ≺p q ←→ (∃ v. lookup p v = 0 ∧ lookup q v 6= 0 ∧ (∀ u. v ≺t u −→ lookup p

u = lookup q u))

definition ord-p :: (′t ⇒0
′b::zero) ⇒ (′t ⇒0

′b) ⇒ bool (infixl ‹�p› 50) where
ord-p p q ≡ (p ≺p q ∨ p = q)

lemma ord-strict-pI :
assumes lookup p v = 0 and lookup q v 6= 0 and

∧
u. v ≺t u =⇒ lookup p u =

lookup q u
shows p ≺p q
unfolding ord-strict-p-def using assms by blast

lemma ord-strict-pE :
assumes p ≺p q
obtains v where lookup p v = 0 and lookup q v 6= 0 and

∧
u. v ≺t u =⇒

lookup p u = lookup q u
using assms unfolding ord-strict-p-def by blast

lemma not-ord-pI :
assumes lookup p v 6= lookup q v and lookup p v 6= 0 and

∧
u. v ≺t u =⇒

lookup p u = lookup q u
shows ¬ p �p q

proof
assume p �p q
hence p ≺p q ∨ p = q by (simp only: ord-p-def)
thus False
proof

assume p ≺p q
then obtain v ′ where 1 : lookup p v ′ = 0 and 2 : lookup q v ′ 6= 0
and 3 :

∧
u. v ′ ≺t u =⇒ lookup p u = lookup q u by (rule ord-strict-pE , blast)

from 1 2 have lookup p v ′ 6= lookup q v ′ by simp
hence ¬ v ≺t v ′ using assms(3) by blast
hence v ′ ≺t v ∨ v ′ = v by auto
thus ?thesis
proof

assume v ′ ≺t v
hence lookup p v = lookup q v by (rule 3)
with assms(1) show ?thesis ..

195

next
assume v ′ = v
with assms(2) 1 show ?thesis by auto

qed
next

assume p = q
hence lookup p v = lookup q v by simp
with assms(1) show ?thesis ..

qed
qed

corollary not-ord-strict-pI :
assumes lookup p v 6= lookup q v and lookup p v 6= 0 and

∧
u. v ≺t u =⇒

lookup p u = lookup q u
shows ¬ p ≺p q

proof −
from assms have ¬ p �p q by (rule not-ord-pI)
thus ?thesis by (simp add: ord-p-def)

qed

lemma ord-strict-higher : p ≺p q ←→ (∃ v. lookup p v = 0 ∧ lookup q v 6= 0 ∧
higher p v = higher q v)

unfolding ord-strict-p-def higher-eq-iff ..

lemma ord-strict-p-asymmetric:
assumes p ≺p q
shows ¬ q ≺p p
using assms unfolding ord-strict-p-def

proof
fix v1 :: ′t
assume lookup p v1 = 0 ∧ lookup q v1 6= 0 ∧ (∀ u. v1 ≺t u −→ lookup p u =

lookup q u)
hence lookup p v1 = 0 and lookup q v1 6= 0 and v1 : ∀ u. v1 ≺t u −→ lookup

p u = lookup q u
by auto

show ¬ (∃ v. lookup q v = 0 ∧ lookup p v 6= 0 ∧ (∀ u. v ≺t u −→ lookup q u =
lookup p u))

proof (intro notI , erule exE)
fix v2 :: ′t
assume lookup q v2 = 0 ∧ lookup p v2 6= 0 ∧ (∀ u. v2 ≺t u −→ lookup q u =

lookup p u)
hence lookup q v2 = 0 and lookup p v2 6= 0 and v2 : ∀ u. v2 ≺t u −→ lookup

q u = lookup p u
by auto

show False
proof (rule ord-term-lin.linorder-cases)

assume v1 ≺t v2
from v1 [rule-format, OF this] ‹lookup q v2 = 0 › ‹lookup p v2 6= 0 › show

?thesis by simp

196

next
assume v1 = v2
thus ?thesis using ‹lookup p v1 = 0 › ‹lookup p v2 6= 0 › by simp

next
assume v2 ≺t v1
from v2 [rule-format, OF this] ‹lookup p v1 = 0 › ‹lookup q v1 6= 0 › show

?thesis by simp
qed

qed
qed

lemma ord-strict-p-irreflexive: ¬ p ≺p p
unfolding ord-strict-p-def

proof (intro notI , erule exE)
fix v:: ′t
assume lookup p v = 0 ∧ lookup p v 6= 0 ∧ (∀ u. v ≺t u −→ lookup p u = lookup

p u)
hence lookup p v = 0 and lookup p v 6= 0 by auto
thus False by simp

qed

lemma ord-strict-p-transitive:
assumes a ≺p b and b ≺p c
shows a ≺p c

proof −
from ‹a ≺p b› obtain v1 where lookup a v1 = 0

and lookup b v1 6= 0
and v1 [rule-format]: (∀ u. v1 ≺t u −→ lookup a u = lookup

b u)
unfolding ord-strict-p-def by auto

from ‹b ≺p c› obtain v2 where lookup b v2 = 0
and lookup c v2 6= 0

and v2 [rule-format]: (∀ u. v2 ≺t u −→ lookup b u = lookup
c u)

unfolding ord-strict-p-def by auto
show a ≺p c
proof (rule ord-term-lin.linorder-cases)

assume v1 ≺t v2
show ?thesis unfolding ord-strict-p-def
proof

show lookup a v2 = 0 ∧ lookup c v2 6= 0 ∧ (∀ u. v2 ≺t u −→ lookup a u =
lookup c u)

proof (intro conjI allI impI)
from ‹lookup b v2 = 0 › v1 [OF ‹v1 ≺t v2 ›] show lookup a v2 = 0 by simp

next
from ‹lookup c v2 6= 0 › show lookup c v2 6= 0 .

next
fix u
assume v2 ≺t u

197

from ord-term-lin.less-trans[OF ‹v1 ≺t v2 › this] have v1 ≺t u .
from v2 [OF ‹v2 ≺t u›] v1 [OF this] show lookup a u = lookup c u by simp

qed
qed

next
assume v2 ≺t v1
show ?thesis unfolding ord-strict-p-def
proof

show lookup a v1 = 0 ∧ lookup c v1 6= 0 ∧ (∀ u. v1 ≺t u −→ lookup a u =
lookup c u)

proof (intro conjI allI impI)
from ‹lookup a v1 = 0 › show lookup a v1 = 0 .

next
from ‹lookup b v1 6= 0 › v2 [OF ‹v2 ≺t v1 ›] show lookup c v1 6= 0 by simp

next
fix u
assume v1 ≺t u
from ord-term-lin.less-trans[OF ‹v2 ≺t v1 › this] have v2 ≺t u .
from v1 [OF ‹v1 ≺t u›] v2 [OF this] show lookup a u = lookup c u by simp

qed
qed

next
assume v1 = v2
thus ?thesis using ‹lookup b v1 6= 0 › ‹lookup b v2 = 0 › by simp

qed
qed

sublocale order ord-p ord-strict-p
proof (intro order-strictI)

fix p q :: ′t ⇒0
′b

show (p �p q) = (p ≺p q ∨ p = q) unfolding ord-p-def ..
next

fix p q :: ′t ⇒0
′b

assume p ≺p q
thus ¬ q ≺p p by (rule ord-strict-p-asymmetric)

next
fix p:: ′t ⇒0

′b
show ¬ p ≺p p by (fact ord-strict-p-irreflexive)

next
fix a b c :: ′t ⇒0

′b
assume a ≺p b and b ≺p c
thus a ≺p c by (rule ord-strict-p-transitive)

qed

lemma ord-p-zero-min: 0 �p p
unfolding ord-p-def ord-strict-p-def

proof (cases p = 0)
case True
thus (∃ v. lookup 0 v = 0 ∧ lookup p v 6= 0 ∧ (∀ u. v ≺t u −→ lookup 0 u =

198

lookup p u)) ∨ 0 = p
by auto

next
case False
show (∃ v. lookup 0 v = 0 ∧ lookup p v 6= 0 ∧ (∀ u. v ≺t u −→ lookup 0 u =

lookup p u)) ∨ 0 = p
proof

show (∃ v. lookup 0 v = 0 ∧ lookup p v 6= 0 ∧ (∀ u. v ≺t u −→ lookup 0 u =
lookup p u))

proof
show lookup 0 (lt p) = 0 ∧ lookup p (lt p) 6= 0 ∧ (∀ u. (lt p) ≺t u −→ lookup

0 u = lookup p u)
proof (intro conjI allI impI)

show lookup 0 (lt p) = 0 by (transfer , simp)
next

from lc-not-0 [OF False] show lookup p (lt p) 6= 0 unfolding lc-def .
next

fix u
assume lt p ≺t u
hence ¬ u �t lt p by simp
hence lookup p u = 0 using lt-max[of p u] by metis
thus lookup 0 u = lookup p u by simp

qed
qed

qed
qed

lemma lt-ord-p:
assumes lt p ≺t lt q
shows p ≺p q

proof −
have q 6= 0
proof

assume q = 0
with assms have lt p ≺t min-term by (simp add: lt-def)
with min-term-min[of lt p] show False by simp

qed
show ?thesis unfolding ord-strict-p-def
proof (intro exI conjI allI impI)

show lookup p (lt q) = 0
proof (rule ccontr)

assume lookup p (lt q) 6= 0
from lt-max[OF this] ‹lt p ≺t lt q› show False by simp

qed
next

from lc-not-0 [OF ‹q 6= 0 ›] show lookup q (lt q) 6= 0 unfolding lc-def .
next

fix u
assume lt q ≺t u

199

hence lt p ≺t u using ‹lt p ≺t lt q› by simp
have c1 : lookup q u = 0
proof (rule ccontr)

assume lookup q u 6= 0
from lt-max[OF this] ‹lt q ≺t u› show False by simp

qed
have c2 : lookup p u = 0
proof (rule ccontr)

assume lookup p u 6= 0
from lt-max[OF this] ‹lt p ≺t u› show False by simp

qed
from c1 c2 show lookup p u = lookup q u by simp

qed
qed

lemma ord-p-lt:
assumes p �p q
shows lt p �t lt q

proof (rule ccontr)
assume ¬ lt p �t lt q
hence lt q ≺t lt p by simp
from lt-ord-p[OF this] ‹p �p q› show False by simp

qed

lemma ord-p-tail:
assumes p 6= 0 and lt p = lt q and p ≺p q
shows tail p ≺p tail q
using assms unfolding ord-strict-p-def

proof −
assume p 6= 0 and lt p = lt q

and ∃ v. lookup p v = 0 ∧ lookup q v 6= 0 ∧ (∀ u. v ≺t u −→ lookup p u =
lookup q u)

then obtain v where lookup p v = 0
and lookup q v 6= 0
and a: ∀ u. v ≺t u −→ lookup p u = lookup q u by auto

from lt-max[OF ‹lookup q v 6= 0 ›] ‹lt p = lt q› have v ≺t lt p ∨ v = lt p by
auto

hence v ≺t lt p
proof

assume v ≺t lt p
thus ?thesis .

next
assume v = lt p
thus ?thesis using lc-not-0 [OF ‹p 6= 0 ›] ‹lookup p v = 0 › unfolding lc-def

by auto
qed
have pt: lookup (tail p) v = lookup p v using lookup-tail[of p v] ‹v ≺t lt p› by

simp
have q 6= 0

200

proof
assume q = 0
hence p ≺p 0 using ‹p ≺p q› by simp
hence ¬ 0 �p p by auto
thus False using ord-p-zero-min[of p] by simp

qed
have qt: lookup (tail q) v = lookup q v

using lookup-tail[of q v] ‹v ≺t lt p› ‹lt p = lt q› by simp
show ∃w. lookup (tail p) w = 0 ∧ lookup (tail q) w 6= 0 ∧

(∀ u. w ≺t u −→ lookup (tail p) u = lookup (tail q) u)
proof (intro exI conjI allI impI)

from pt ‹lookup p v = 0 › show lookup (tail p) v = 0 by simp
next

from qt ‹lookup q v 6= 0 › show lookup (tail q) v 6= 0 by simp
next

fix u
assume v ≺t u
from a[rule-format, OF ‹v ≺t u›] lookup-tail[of p u] lookup-tail[of q u]

‹lt p = lt q› show lookup (tail p) u = lookup (tail q) u by simp
qed

qed

lemma tail-ord-p:
assumes p 6= 0
shows tail p ≺p p

proof (cases tail p = 0)
case True
with ord-p-zero-min[of p] ‹p 6= 0 › show ?thesis by simp

next
case False
from lt-tail[OF False] show ?thesis by (rule lt-ord-p)

qed

lemma higher-lookup-eq-zero:
assumes pt: lookup p v = 0 and hp: higher p v = 0 and le: q �p p
shows (lookup q v = 0) ∧ (higher q v) = 0

using le unfolding ord-p-def
proof

assume q ≺p p
thus ?thesis unfolding ord-strict-p-def
proof

fix w
assume lookup q w = 0 ∧ lookup p w 6= 0 ∧ (∀ u. w ≺t u −→ lookup q u =

lookup p u)
hence qs: lookup q w = 0 and ps: lookup p w 6= 0 and u: ∀ u. w ≺t u −→

lookup q u = lookup p u
by auto

from hp have pu: ∀ u. v ≺t u −→ lookup p u = 0 by (simp only: higher-eq-zero-iff)
from pu[rule-format, of w] ps have ¬ v ≺t w by auto

201

hence w �t v by simp
hence w ≺t v ∨ w = v by auto
hence st: w ≺t v
proof (rule disjE , simp-all)

assume w = v
from this pt ps show False by simp

qed
show ?thesis
proof

from u[rule-format, OF st] pt show lookup q v = 0 by simp
next

have ∀ u. v ≺t u −→ lookup q u = 0
proof (intro allI , intro impI)

fix u
assume v ≺t u
from this st have w ≺t u by simp
from u[rule-format, OF this] pu[rule-format, OF ‹v ≺t u›] show lookup q

u = 0 by simp
qed
thus higher q v = 0 by (simp only: higher-eq-zero-iff)

qed
qed

next
assume q = p
thus ?thesis using assms by simp

qed

lemma ord-strict-p-recI :
assumes lt p = lt q and lc p = lc q and tail: tail p ≺p tail q
shows p ≺p q

proof −
from tail obtain v where pt: lookup (tail p) v = 0

and qt: lookup (tail q) v 6= 0
and a: ∀ u. v ≺t u −→ lookup (tail p) u = lookup (tail q) u

unfolding ord-strict-p-def by auto
from qt lookup-zero[of v] have tail q 6= 0 by auto
from lt-max[OF qt] lt-tail[OF this] have v ≺t lt q by simp
hence v ≺t lt p using ‹lt p = lt q› by simp
show ?thesis unfolding ord-strict-p-def
proof (rule exI [of - v], intro conjI allI impI)

from lookup-tail[of p v] ‹v ≺t lt p› pt show lookup p v = 0 by simp
next

from lookup-tail[of q v] ‹v ≺t lt q› qt show lookup q v 6= 0 by simp
next

fix u
assume v ≺t u
from this a have s: lookup (tail p) u = lookup (tail q) u by simp
show lookup p u = lookup q u
proof (cases u = lt p)

202

case True
from True ‹lc p = lc q› ‹lt p = lt q› show ?thesis unfolding lc-def by simp

next
case False
from False s lookup-tail-2 [of p u] lookup-tail-2 [of q u] ‹lt p = lt q› show

?thesis by simp
qed

qed
qed

lemma ord-strict-p-recE1 :
assumes p ≺p q
shows q 6= 0

proof
assume q = 0
from this assms ord-p-zero-min[of p] show False by simp

qed

lemma ord-strict-p-recE2 :
assumes p 6= 0 and p ≺p q and lt p = lt q
shows lc p = lc q

proof −
from ‹p ≺p q› obtain v where pt: lookup p v = 0

and qt: lookup q v 6= 0
and a: ∀ u. v ≺t u −→ lookup p u = lookup q u

unfolding ord-strict-p-def by auto
show ?thesis
proof (cases v ≺t lt p)

case True
from this a have lookup p (lt p) = lookup q (lt p) by simp
thus ?thesis using ‹lt p = lt q› unfolding lc-def by simp

next
case False
from this lt-max[OF qt] ‹lt p = lt q› have v = lt p by simp
from this lc-not-0 [OF ‹p 6= 0 ›] pt show ?thesis unfolding lc-def by auto

qed
qed

lemma ord-strict-p-rec [code]:
p ≺p q =
(q 6= 0 ∧
(p = 0 ∨
(let v1 = lt p; v2 = lt q in
(v1 ≺t v2 ∨ (v1 = v2 ∧ lookup p v1 = lookup q v2 ∧ lower p v1 ≺p lower

q v2))
)

)
)
(is ?L = ?R)

203

proof
assume ?L
show ?R
proof (intro conjI , rule ord-strict-p-recE1 , fact)

have ((lt p = lt q ∧ lc p = lc q ∧ tail p ≺p tail q) ∨ lt p ≺t lt q) ∨ p = 0
proof (intro disjCI)

assume p 6= 0 and nl: ¬ lt p ≺t lt q
from ‹?L› have p �p q by simp
from ord-p-lt[OF this] nl have lt p = lt q by simp
show lt p = lt q ∧ lc p = lc q ∧ tail p ≺p tail q

by (intro conjI , fact, rule ord-strict-p-recE2 , fact+, rule ord-p-tail, fact+)
qed
thus p = 0 ∨

(let v1 = lt p; v2 = lt q in
(v1 ≺t v2 ∨ v1 = v2 ∧ lookup p v1 = lookup q v2 ∧ lower p v1 ≺p

lower q v2)
)

unfolding lc-def tail-def by auto
qed

next
assume ?R
hence q 6= 0

and dis: p = 0 ∨
(let v1 = lt p; v2 = lt q in
(v1 ≺t v2 ∨ v1 = v2 ∧ lookup p v1 = lookup q v2 ∧ lower p v1 ≺p

lower q v2)
)

by simp-all
show ?L
proof (cases p = 0)

assume p = 0
hence p �p q using ord-p-zero-min[of q] by simp
thus ?thesis using ‹p = 0 › ‹q 6= 0 › by simp

next
assume p 6= 0
hence let v1 = lt p; v2 = lt q in

(v1 ≺t v2 ∨ v1 = v2 ∧ lookup p v1 = lookup q v2 ∧ lower p v1 ≺p lower
q v2)

using dis by simp
hence lt p ≺t lt q ∨ (lt p = lt q ∧ lc p = lc q ∧ tail p ≺p tail q)

unfolding lc-def tail-def by (simp add: Let-def)
thus ?thesis
proof

assume lt p ≺t lt q
from lt-ord-p[OF this] show ?thesis .

next
assume lt p = lt q ∧ lc p = lc q ∧ tail p ≺p tail q
hence lt p = lt q and lc p = lc q and tail p ≺p tail q by simp-all
thus ?thesis by (rule ord-strict-p-recI)

204

qed
qed

qed

lemma ord-strict-p-monomial-iff : p ≺p monomial c v ←→ (c 6= 0 ∧ (p = 0 ∨ lt
p ≺t v))
proof −

from ord-p-zero-min[of tail p] have ∗: ¬ tail p ≺p 0 by auto
show ?thesis
by (simp add: ord-strict-p-rec[of p] Let-def tail-def [symmetric] lc-def [symmetric]

monomial-0-iff tail-monomial ∗, simp add: lt-monomial cong: conj-cong)
qed

corollary ord-strict-p-monomial-plus:
assumes p ≺p monomial c v and q ≺p monomial c v
shows p + q ≺p monomial c v

proof −
from assms(1) have c 6= 0 and p = 0 ∨ lt p ≺t v by (simp-all add: ord-strict-p-monomial-iff)
from this(2) show ?thesis
proof

assume p = 0
with assms(2) show ?thesis by simp

next
assume lt p ≺t v

from assms(2) have q = 0 ∨ lt q ≺t v by (simp add: ord-strict-p-monomial-iff)
thus ?thesis
proof

assume q = 0
with assms(1) show ?thesis by simp

next
assume lt q ≺t v
with ‹lt p ≺t v› have lt (p + q) ≺t v
using lt-plus-le-max ord-term-lin.dual-order .strict-trans2 ord-term-lin.max-less-iff-conj

by blast
with ‹c 6= 0 › show ?thesis by (simp add: ord-strict-p-monomial-iff)

qed
qed

qed

lemma ord-strict-p-monom-mult:
assumes p ≺p q and c 6= (0 :: ′b::semiring-no-zero-divisors)
shows monom-mult c t p ≺p monom-mult c t q

proof −
from assms(1) obtain v where 1 : lookup p v = 0 and 2 : lookup q v 6= 0

and 3 :
∧

u. v ≺t u =⇒ lookup p u = lookup q u unfolding ord-strict-p-def by
auto

show ?thesis unfolding ord-strict-p-def
proof (intro exI conjI allI impI)
from 1 show lookup (monom-mult c t p) (t ⊕ v) = 0 by (simp add: lookup-monom-mult-plus)

205

next
from 2 assms(2) show lookup (monom-mult c t q) (t ⊕ v) 6= 0 by (simp add:

lookup-monom-mult-plus)
next

fix u
assume t ⊕ v ≺t u
show lookup (monom-mult c t p) u = lookup (monom-mult c t q) u
proof (cases t addsp u)

case True
then obtain w where u: u = t ⊕ w ..
from ‹t ⊕ v ≺t u› have v ≺t w unfolding u by (rule ord-term-strict-canc)
hence lookup p w = lookup q w by (rule 3)
thus ?thesis by (simp add: u lookup-monom-mult-plus)

next
case False
thus ?thesis by (simp add: lookup-monom-mult)

qed
qed

qed

lemma ord-strict-p-plus:
assumes p ≺p q and keys r ∩ keys q = {}
shows p + r ≺p q + r

proof −
from assms(1) obtain v where 1 : lookup p v = 0 and 2 : lookup q v 6= 0

and 3 :
∧

u. v ≺t u =⇒ lookup p u = lookup q u unfolding ord-strict-p-def by
auto

have eq: lookup r v = 0
by (meson 2 assms(2) disjoint-iff-not-equal in-keys-iff)

show ?thesis unfolding ord-strict-p-def
proof (intro exI conjI allI impI , simp-all add: lookup-add)

from 1 show lookup p v + lookup r v = 0 by (simp add: eq)
next

from 2 show lookup q v + lookup r v 6= 0 by (simp add: eq)
next

fix u
assume v ≺t u
hence lookup p u = lookup q u by (rule 3)
thus lookup p u + lookup r u = lookup q u + lookup r u by simp

qed
qed

lemma poly-mapping-tail-induct [case-names 0 tail]:
assumes P 0 and

∧
p. p 6= 0 =⇒ P (tail p) =⇒ P p

shows P p
proof (induct card (keys p) arbitrary: p)

case 0
with finite-keys[of p] have keys p = {} by simp
hence p = 0 by simp

206

from ‹P 0 › show ?case unfolding ‹p = 0 › .
next

case ind: (Suc n)
from ind(2) have keys p 6= {} by auto
hence p 6= 0 by simp
thus ?case
proof (rule assms(2))

show P (tail p)
proof (rule ind(1))

from ‹p 6= 0 › have lt p ∈ keys p by (rule lt-in-keys)
hence card (keys (tail p)) = card (keys p) − 1 by (simp add: keys-tail)
also have ... = n unfolding ind(2)[symmetric] by simp
finally show n = card (keys (tail p)) by simp

qed
qed

qed

lemma poly-mapping-neqE :
assumes p 6= q
obtains v where v ∈ keys p ∪ keys q and lookup p v 6= lookup q v

and
∧

u. v ≺t u =⇒ lookup p u = lookup q u
proof −

let ?A = {v. lookup p v 6= lookup q v}
define v where v = ord-term-lin.Max ?A
have ?A ⊆ keys p ∪ keys q

using UnI2 in-keys-iff by fastforce
also have finite ... by (rule finite-UnI) (fact finite-keys)+
finally(finite-subset) have fin: finite ?A .
moreover have ?A 6= {}
proof

assume ?A = {}
hence p = q

using poly-mapping-eqI by fastforce
with assms show False ..

qed
ultimately have v ∈ ?A unfolding v-def by (rule ord-term-lin.Max-in)
show ?thesis
proof

from ‹?A ⊆ keys p ∪ keys q› ‹v ∈ ?A› show v ∈ keys p ∪ keys q ..
next

from ‹v ∈ ?A› show lookup p v 6= lookup q v by simp
next

fix u
assume v ≺t u
show lookup p u = lookup q u
proof (rule ccontr)

assume lookup p u 6= lookup q u
hence u ∈ ?A by simp
with fin have u �t v unfolding v-def by (rule ord-term-lin.Max-ge)

207

with ‹v ≺t u› show False by simp
qed

qed
qed

10.8 Monomials
lemma keys-monomial:

assumes is-monomial p
shows keys p = {lt p}
using assms by (metis is-monomial-monomial lt-monomial keys-of-monomial)

lemma monomial-eq-itself :
assumes is-monomial p
shows monomial (lc p) (lt p) = p

proof −
from assms have p 6= 0 by (rule monomial-not-0)
hence lc p 6= 0 by (rule lc-not-0)
hence keys1 : keys (monomial (lc p) (lt p)) = {lt p} by (rule keys-of-monomial)
show ?thesis

by (rule poly-mapping-keys-eqI , simp only: keys-monomial[OF assms] keys1 ,
simp only: keys1 lookup-single Poly-Mapping.when-def , auto simp add: lc-def)

qed

lemma lt-eq-min-term-monomial:
assumes lt p = min-term
shows monomial (lc p) min-term = p

proof (rule poly-mapping-eqI)
fix v
from min-term-min[of v] have v = min-term ∨ min-term ≺t v by auto
thus lookup (monomial (lc p) min-term) v = lookup p v
proof

assume v = min-term
thus ?thesis by (simp add: lookup-single lc-def assms)

next
assume min-term ≺t v
moreover have v /∈ keys p
proof

assume v ∈ keys p
hence v �t lt p by (rule lt-max-keys)
with ‹min-term ≺t v› show False by (simp add: assms)

qed
ultimately show ?thesis by (simp add: lookup-single in-keys-iff)

qed
qed

lemma is-monomial-monomial-ordered:
assumes is-monomial p
obtains c v where c 6= 0 and lc p = c and lt p = v and p = monomial c v

208

proof −
from assms obtain c v where c 6= 0 and p-eq: p = monomial c v by (rule

is-monomial-monomial)
note this(1)
moreover have lc p = c unfolding p-eq by (rule lc-monomial)
moreover from ‹c 6= 0 › have lt p = v unfolding p-eq by (rule lt-monomial)
ultimately show ?thesis using p-eq ..

qed

lemma monomial-plus-not-0 :
assumes c 6= 0 and lt p ≺t v
shows monomial c v + p 6= 0

proof
assume monomial c v + p = 0
hence 0 = lookup (monomial c v + p) v by simp
also have ... = c + lookup p v by (simp add: lookup-add)
also have ... = c
proof −

from assms(2) have ¬ v �t lt p by simp
with lt-max[of p v] have lookup p v = 0 by blast
thus ?thesis by simp

qed
finally show False using ‹c 6= 0 › by simp

qed

lemma lt-monomial-plus:
assumes c 6= (0 :: ′b::comm-monoid-add) and lt p ≺t v
shows lt (monomial c v + p) = v

proof −
have eq: lt (monomial c v) = v by (simp only: lt-monomial[OF ‹c 6= 0 ›])
moreover have lt (p + monomial c v) = lt (monomial c v) by (rule lt-plus-eqI ,

simp only: eq, fact)
ultimately show ?thesis by (simp add: add.commute)

qed

lemma lc-monomial-plus:
assumes c 6= (0 :: ′b::comm-monoid-add) and lt p ≺t v
shows lc (monomial c v + p) = c

proof −
from assms(2) have ¬ v �t lt p by simp
with lt-max[of p v] have lookup p v = 0 by blast
thus ?thesis by (simp add: lc-def lt-monomial-plus[OF assms] lookup-add)

qed

lemma tt-monomial-plus:
assumes p 6= (0 ::- ⇒0

′b::comm-monoid-add) and lt p ≺t v
shows tt (monomial c v + p) = tt p

proof (cases c = 0)
case True

209

thus ?thesis by (simp add: monomial-0I)
next

case False
have eq: tt (monomial c v) = v by (simp only: tt-monomial[OF ‹c 6= 0 ›])
moreover have tt (p + monomial c v) = tt p
proof (rule tt-plus-eqI , fact, simp only: eq)

from lt-ge-tt[of p] assms(2) show tt p ≺t v by simp
qed
ultimately show ?thesis by (simp add: ac-simps)

qed

lemma tc-monomial-plus:
assumes p 6= (0 ::- ⇒0

′b::comm-monoid-add) and lt p ≺t v
shows tc (monomial c v + p) = tc p

proof (simp add: tc-def tt-monomial-plus[OF assms] lookup-add lookup-single Poly-Mapping.when-def ,
rule impI)

assume v = tt p
with assms(2) have lt p ≺t tt p by simp
with lt-ge-tt[of p] show c + lookup p (tt p) = lookup p (tt p) by simp

qed

lemma tail-monomial-plus:
assumes c 6= (0 :: ′b::comm-monoid-add) and lt p ≺t v
shows tail (monomial c v + p) = p (is tail ?q = -)

proof −
from assms have lt ?q = v by (rule lt-monomial-plus)
moreover have lower (monomial c v) v = 0

by (simp add: lower-eq-zero-iff ′, rule disjI2 , simp add: tt-monomial[OF ‹c 6=
0 ›])

ultimately show ?thesis by (simp add: tail-def lower-plus lower-id-iff , intro
disjI2 assms(2))
qed

10.9 Lists of Keys
In algorithms one very often needs to compute the sorted list of all terms
appearing in a list of polynomials.
definition pps-to-list :: ′t set ⇒ ′t list where

pps-to-list S = rev (ord-term-lin.sorted-list-of-set S)

definition keys-to-list :: (′t ⇒0
′b::zero) ⇒ ′t list

where keys-to-list p = pps-to-list (keys p)

definition Keys-to-list :: (′t ⇒0
′b::zero) list ⇒ ′t list

where Keys-to-list ps = fold (λp ts. merge-wrt (�t) (keys-to-list p) ts) ps []

Function pps-to-list turns finite sets of terms into sorted lists, where the
lists are sorted descending (i. e. greater elements come before smaller ones).
lemma distinct-pps-to-list: distinct (pps-to-list S)

210

unfolding pps-to-list-def distinct-rev by (rule ord-term-lin.distinct-sorted-list-of-set)

lemma set-pps-to-list:
assumes finite S
shows set (pps-to-list S) = S
unfolding pps-to-list-def set-rev using assms by simp

lemma length-pps-to-list: length (pps-to-list S) = card S
proof (cases finite S)

case True
from distinct-card[OF distinct-pps-to-list] have length (pps-to-list S) = card (set

(pps-to-list S))
by simp

also from True have ... = card S by (simp only: set-pps-to-list)
finally show ?thesis .

next
case False
thus ?thesis by (simp add: pps-to-list-def)

qed

lemma pps-to-list-sorted-wrt: sorted-wrt (�t) (pps-to-list S)
proof −

have sorted-wrt (�t) (pps-to-list S)
proof −

have tr : transp (�t) using transp-def by fastforce
have ∗: (λx y. y �t x) = (�t) by simp
show ?thesis

by (simp only: ∗ pps-to-list-def sorted-wrt-rev,
rule ord-term-lin.sorted-sorted-list-of-set)

qed
with distinct-pps-to-list have sorted-wrt (λx y. x �t y ∧ x 6= y) (pps-to-list S)

by (rule distinct-sorted-wrt-imp-sorted-wrt-strict)
moreover have (�t) = (λx y. x �t y ∧ x 6= y)

using ord-term-lin.dual-order .order-iff-strict by auto
ultimately show ?thesis by simp

qed

lemma pps-to-list-nth-leI :
assumes j ≤ i and i < card S
shows (pps-to-list S) ! i �t (pps-to-list S) ! j

proof (cases j = i)
case True
show ?thesis by (simp add: True)

next
case False
with assms(1) have j < i by simp
let ?ts = pps-to-list S
from pps-to-list-sorted-wrt ‹j < i› have (≺t)

−1−1 (?ts ! j) (?ts ! i)
proof (rule sorted-wrt-nth-less)

211

from assms(2) show i < length ?ts by (simp only: length-pps-to-list)
qed
thus ?thesis by simp

qed

lemma pps-to-list-nth-lessI :
assumes j < i and i < card S
shows (pps-to-list S) ! i ≺t (pps-to-list S) ! j

proof −
let ?ts = pps-to-list S
from assms(1) have j ≤ i and i 6= j by simp-all
with assms(2) have i < length ?ts and j < length ?ts by (simp-all only:

length-pps-to-list)
show ?thesis
proof (rule ord-term-lin.neq-le-trans)

from ‹i 6= j› show ?ts ! i 6= ?ts ! j
by (simp add: nth-eq-iff-index-eq[OF distinct-pps-to-list ‹i < length ?ts› ‹j <

length ?ts›])
next

from ‹j ≤ i› assms(2) show ?ts ! i �t ?ts ! j by (rule pps-to-list-nth-leI)
qed

qed

lemma pps-to-list-nth-leD:
assumes (pps-to-list S) ! i �t (pps-to-list S) ! j and j < card S
shows j ≤ i

proof (rule ccontr)
assume ¬ j ≤ i
hence i < j by simp
from this ‹j < card S› have (pps-to-list S) ! j ≺t (pps-to-list S) ! i by (rule

pps-to-list-nth-lessI)
with assms(1) show False by simp

qed

lemma pps-to-list-nth-lessD:
assumes (pps-to-list S) ! i ≺t (pps-to-list S) ! j and j < card S
shows j < i

proof (rule ccontr)
assume ¬ j < i
hence i ≤ j by simp
from this ‹j < card S› have (pps-to-list S) ! j �t (pps-to-list S) ! i by (rule

pps-to-list-nth-leI)
with assms(1) show False by simp

qed

lemma set-keys-to-list: set (keys-to-list p) = keys p
by (simp add: keys-to-list-def set-pps-to-list)

lemma length-keys-to-list: length (keys-to-list p) = card (keys p)

212

by (simp only: keys-to-list-def length-pps-to-list)

lemma keys-to-list-zero [simp]: keys-to-list 0 = []
by (simp add: keys-to-list-def pps-to-list-def)

lemma Keys-to-list-Nil [simp]: Keys-to-list [] = []
by (simp add: Keys-to-list-def)

lemma set-Keys-to-list: set (Keys-to-list ps) = Keys (set ps)
proof −

have set (Keys-to-list ps) = (
⋃

p∈set ps. set (keys-to-list p)) ∪ set []
unfolding Keys-to-list-def by (rule set-fold, simp only: set-merge-wrt)

also have ... = Keys (set ps) by (simp add: Keys-def set-keys-to-list)
finally show ?thesis .

qed

lemma Keys-to-list-sorted-wrt-aux:
assumes sorted-wrt (�t) ts
shows sorted-wrt (�t) (fold (λp ts. merge-wrt (�t) (keys-to-list p) ts) ps ts)
using assms

proof (induct ps arbitrary: ts)
case Nil
thus ?case by simp

next
case (Cons p ps)
show ?case
proof (simp only: fold.simps o-def , rule Cons(1), rule sorted-merge-wrt)

show transp (�t) unfolding transp-def by fastforce
next

fix x y :: ′t
assume x 6= y
thus x �t y ∨ y �t x by auto

next
show sorted-wrt (�t) (keys-to-list p) unfolding keys-to-list-def

by (fact pps-to-list-sorted-wrt)
qed fact

qed

corollary Keys-to-list-sorted-wrt: sorted-wrt (�t) (Keys-to-list ps)
unfolding Keys-to-list-def

proof (rule Keys-to-list-sorted-wrt-aux)
show sorted-wrt (�t) [] by simp

qed

corollary distinct-Keys-to-list: distinct (Keys-to-list ps)
proof (rule distinct-sorted-wrt-irrefl)

show irreflp (�t) by (simp add: irreflp-def)
next

show transp (�t) unfolding transp-def by fastforce

213

next
show sorted-wrt (�t) (Keys-to-list ps) by (fact Keys-to-list-sorted-wrt)

qed

lemma length-Keys-to-list: length (Keys-to-list ps) = card (Keys (set ps))
proof −

from distinct-Keys-to-list have card (set (Keys-to-list ps)) = length (Keys-to-list
ps)

by (rule distinct-card)
thus ?thesis by (simp only: set-Keys-to-list)

qed

lemma Keys-to-list-eq-pps-to-list: Keys-to-list ps = pps-to-list (Keys (set ps))
using - Keys-to-list-sorted-wrt distinct-Keys-to-list pps-to-list-sorted-wrt distinct-pps-to-list

proof (rule sorted-wrt-distinct-set-unique)
show antisymp (�t) unfolding antisymp-def by fastforce

next
from finite-set have fin: finite (Keys (set ps)) by (rule finite-Keys)
show set (Keys-to-list ps) = set (pps-to-list (Keys (set ps)))

by (simp add: set-Keys-to-list set-pps-to-list[OF fin])
qed

10.10 Multiplication
lemma in-keys-mult-scalar-le:

assumes v ∈ keys (p � q)
shows v �t punit.lt p ⊕ lt q

proof −
from assms obtain t u where t ∈ keys p and u ∈ keys q and v = t ⊕ u

by (rule in-keys-mult-scalarE)
from ‹t ∈ keys p› have t � punit.lt p by (rule punit.lt-max-keys)
from ‹u ∈ keys q› have u �t lt q by (rule lt-max-keys)
hence v �t t ⊕ lt q unfolding ‹v = t ⊕ u› by (rule splus-mono)
also from ‹t � punit.lt p› have ... �t punit.lt p ⊕ lt q by (rule splus-mono-left)
finally show ?thesis .

qed

lemma in-keys-mult-scalar-ge:
assumes v ∈ keys (p � q)
shows punit.tt p ⊕ tt q �t v

proof −
from assms obtain t u where t ∈ keys p and u ∈ keys q and v = t ⊕ u

by (rule in-keys-mult-scalarE)
from ‹t ∈ keys p› have punit.tt p � t by (rule punit.tt-min-keys)
from ‹u ∈ keys q› have tt q �t u by (rule tt-min-keys)
hence punit.tt p ⊕ tt q �t punit.tt p ⊕ u by (rule splus-mono)
also from ‹punit.tt p � t› have ... �t v unfolding ‹v = t ⊕ u› by (rule

splus-mono-left)
finally show ?thesis .

214

qed

lemma (in ordered-term) lookup-mult-scalar-lt-lt:
lookup (p � q) (punit.lt p ⊕ lt q) = punit.lc p ∗ lc q

proof (induct p rule: punit.poly-mapping-tail-induct)
case 0
show ?case by simp

next
case step: (tail p)
from step(1) have punit.lc p 6= 0 by (rule punit.lc-not-0)
let ?t = punit.lt p ⊕ lt q
show ?case
proof (cases is-monomial p)

case True
then obtain c t where c 6= 0 and punit.lt p = t and punit.lc p = c and

p-eq: p = monomial c t
by (rule punit.is-monomial-monomial-ordered)

hence p � q = monom-mult (punit.lc p) (punit.lt p) q by (simp add: mult-scalar-monomial)
thus ?thesis by (simp add: lookup-monom-mult-plus lc-def)

next
case False
have punit.lt (punit.tail p) 6= punit.lt p
proof (simp add: punit.tail-def punit.lt-lower-eq-iff , rule)

assume punit.lt p = 0
have keys p ⊆ {punit.lt p}
proof (rule, simp)

fix s
assume s ∈ keys p
hence s � punit.lt p by (rule punit.lt-max-keys)

moreover have punit.lt p � s unfolding ‹punit.lt p = 0 › by (rule zero-min)
ultimately show s = punit.lt p by simp

qed
hence card (keys p) = 0 ∨ card (keys p) = 1 using subset-singletonD by

fastforce
thus False
proof

assume card (keys p) = 0
hence p = 0 by (meson card-0-eq keys-eq-empty finite-keys)
with step(1) show False ..

next
assume card (keys p) = 1
with False show False unfolding is-monomial-def ..

qed
qed
with punit.lt-lower [of p punit.lt p] have punit.lt (punit.tail p) ≺ punit.lt p

by (simp add: punit.tail-def)
have eq: lookup ((punit.tail p) � q) ?t = 0
proof (rule ccontr)

assume lookup ((punit.tail p) � q) ?t 6= 0

215

hence ?t �t punit.lt (punit.tail p) ⊕ lt q
by (meson in-keys-mult-scalar-le lookup-not-eq-zero-eq-in-keys)

hence punit.lt p � punit.lt (punit.tail p) by (rule ord-term-canc-left)
also have ... ≺ punit.lt p by fact
finally show False ..

qed
from step(2) have lookup (monom-mult (punit.lc p) (punit.lt p) q) ?t = punit.lc

p ∗ lc q
by (simp only: lookup-monom-mult-plus lc-def)

thus ?thesis by (simp add: mult-scalar-tail-rec-left[of p q] lookup-add eq)
qed

qed

lemma lookup-mult-scalar-tt-tt: lookup (p � q) (punit.tt p ⊕ tt q) = punit.tc p ∗
tc q
proof (induct p rule: punit.poly-mapping-tail-induct)

case 0
show ?case by simp

next
case step: (tail p)
from step(1) have punit.lc p 6= 0 by (rule punit.lc-not-0)
let ?t = punit.tt p ⊕ tt q
show ?case
proof (cases is-monomial p)

case True
then obtain c t where c 6= 0 and punit.lt p = t and punit.lc p = c and

p-eq: p = monomial c t
by (rule punit.is-monomial-monomial-ordered)

from ‹c 6= 0 › have punit.tt p = t and punit.tc p = c by (simp-all add: p-eq
punit.tt-monomial)

with p-eq have p � q = monom-mult (punit.tc p) (punit.tt p) q by (simp add:
mult-scalar-monomial)

thus ?thesis by (simp add: lookup-monom-mult-plus tc-def)
next

case False
from step(1) have keys p 6= {} by simp
with finite-keys have card (keys p) 6= 0 by auto
with False have 2 ≤ card (keys p) unfolding is-monomial-def by linarith
then obtain s t where s ∈ keys p and t ∈ keys p and s ≺ t

by (metis (mono-tags, lifting) card.empty card.infinite card-insert-disjoint
card-mono empty-iff

finite.emptyI insertCI lessI not-less numeral-2-eq-2 ordered-powerprod-lin.infinite-growing
ordered-powerprod-lin.neqE preorder-class.less-le-trans subsetI)

from this(1) this(3) have punit.tt p ≺ t by (rule punit.tt-less)
also from ‹t ∈ keys p› have t � punit.lt p by (rule punit.lt-max-keys)
finally have punit.tt p ≺ punit.lt p .
hence tt-tail: punit.tt (punit.tail p) = punit.tt p and tc-tail: punit.tc (punit.tail

p) = punit.tc p
unfolding punit.tail-def by (rule punit.tt-lower , rule punit.tc-lower)

216

have eq: lookup (monom-mult (punit.lc p) (punit.lt p) q) ?t = 0
proof (rule ccontr)

assume lookup (monom-mult (punit.lc p) (punit.lt p) q) ?t 6= 0
hence punit.lt p ⊕ tt q �t ?t

by (meson in-keys-iff in-keys-monom-mult-ge)
hence punit.lt p � punit.tt p by (rule ord-term-canc-left)
also have ... ≺ punit.lt p by fact
finally show False ..

qed
from step(2) have lookup (punit.tail p � q) ?t = punit.tc p ∗ tc q by (simp

only: tt-tail tc-tail)
thus ?thesis by (simp add: mult-scalar-tail-rec-left[of p q] lookup-add eq)

qed
qed

lemma lt-mult-scalar :
assumes p 6= 0 and q 6= (0 :: ′t ⇒0

′b::semiring-no-zero-divisors)
shows lt (p � q) = punit.lt p ⊕ lt q

proof (rule lt-eqI-keys, simp only: in-keys-iff lookup-mult-scalar-lt-lt)
from assms(1) have punit.lc p 6= 0 by (rule punit.lc-not-0)
moreover from assms(2) have lc q 6= 0 by (rule lc-not-0)
ultimately show punit.lc p ∗ lc q 6= 0 by simp

qed (rule in-keys-mult-scalar-le)

lemma tt-mult-scalar :
assumes p 6= 0 and q 6= (0 :: ′t ⇒0

′b::semiring-no-zero-divisors)
shows tt (p � q) = punit.tt p ⊕ tt q

proof (rule tt-eqI , simp only: in-keys-iff lookup-mult-scalar-tt-tt)
from assms(1) have punit.tc p 6= 0 by (rule punit.tc-not-0)
moreover from assms(2) have tc q 6= 0 by (rule tc-not-0)
ultimately show punit.tc p ∗ tc q 6= 0 by simp

qed (rule in-keys-mult-scalar-ge)

lemma lc-mult-scalar : lc (p � q) = punit.lc p ∗ lc (q:: ′t ⇒0
′b::semiring-no-zero-divisors)

proof (cases p = 0)
case True
thus ?thesis by (simp add: lc-def)

next
case False
show ?thesis
proof (cases q = 0)

case True
thus ?thesis by (simp add: lc-def)

next
case False

with ‹p 6= 0 › show ?thesis by (simp add: lc-def lt-mult-scalar lookup-mult-scalar-lt-lt)
qed

qed

217

lemma tc-mult-scalar : tc (p � q) = punit.tc p ∗ tc (q:: ′t ⇒0
′b::semiring-no-zero-divisors)

proof (cases p = 0)
case True
thus ?thesis by (simp add: tc-def)

next
case False
show ?thesis
proof (cases q = 0)

case True
thus ?thesis by (simp add: tc-def)

next
case False

with ‹p 6= 0 › show ?thesis by (simp add: tc-def tt-mult-scalar lookup-mult-scalar-tt-tt)
qed

qed

lemma mult-scalar-not-zero:
assumes p 6= 0 and q 6= (0 :: ′t ⇒0

′b::semiring-no-zero-divisors)
shows p � q 6= 0

proof
assume p � q = 0
hence 0 = lc (p � q) by (simp add: lc-def)
also have ... = punit.lc p ∗ lc q by (rule lc-mult-scalar)
finally have punit.lc p ∗ lc q = 0 by simp
moreover from assms(1) have punit.lc p 6= 0 by (rule punit.lc-not-0)
moreover from assms(2) have lc q 6= 0 by (rule lc-not-0)
ultimately show False by simp

qed

end

context ordered-powerprod
begin

lemmas in-keys-times-le = punit.in-keys-mult-scalar-le[simplified]
lemmas in-keys-times-ge = punit.in-keys-mult-scalar-ge[simplified]
lemmas lookup-times-lp-lp = punit.lookup-mult-scalar-lt-lt[simplified]
lemmas lookup-times-tp-tp = punit.lookup-mult-scalar-tt-tt[simplified]
lemmas lookup-times-monomial-right-plus = punit.lookup-mult-scalar-monomial-right-plus[simplified]
lemmas lookup-times-monomial-right = punit.lookup-mult-scalar-monomial-right[simplified]
lemmas lp-times = punit.lt-mult-scalar [simplified]
lemmas tp-times = punit.tt-mult-scalar [simplified]
lemmas lc-times = punit.lc-mult-scalar [simplified]
lemmas tc-times = punit.tc-mult-scalar [simplified]
lemmas times-not-zero = punit.mult-scalar-not-zero[simplified]
lemmas times-tail-rec-left = punit.mult-scalar-tail-rec-left[simplified]
lemmas times-tail-rec-right = punit.mult-scalar-tail-rec-right[simplified]
lemmas punit-in-keys-monom-mult-le = punit.in-keys-monom-mult-le[simplified]
lemmas punit-in-keys-monom-mult-ge = punit.in-keys-monom-mult-ge[simplified]

218

lemmas lp-monom-mult = punit.lt-monom-mult[simplified]
lemmas tp-monom-mult = punit.tt-monom-mult[simplified]

end

10.11 dgrad-p-set and dgrad-p-set-le
locale gd-term =

ordered-term pair-of-term term-of-pair ord ord-strict ord-term ord-term-strict
for pair-of-term:: ′t ⇒ (′a::graded-dickson-powerprod × ′k::{the-min,wellorder})

and term-of-pair ::(′a × ′k) ⇒ ′t
and ord:: ′a ⇒ ′a ⇒ bool (infixl ‹�› 50)
and ord-strict (infixl ‹≺› 50)
and ord-term:: ′t ⇒ ′t ⇒ bool (infixl ‹�t› 50)
and ord-term-strict:: ′t ⇒ ′t ⇒ bool (infixl ‹≺t› 50)

begin

sublocale gd-powerprod ..

lemma adds-term-antisym:
assumes u addst v and v addst u
shows u = v
using assms unfolding adds-term-def using adds-antisym by (metis term-of-pair-pair)

definition dgrad-p-set :: (′a ⇒ nat) ⇒ nat ⇒ (′t ⇒0
′b::zero) set

where dgrad-p-set d m = {p. pp-of-term ‘ keys p ⊆ dgrad-set d m}

definition dgrad-p-set-le :: (′a ⇒ nat) ⇒ ((′t ⇒0
′b) set) ⇒ ((′t ⇒0

′b::zero) set)
⇒ bool
where dgrad-p-set-le d F G ←→ (dgrad-set-le d (pp-of-term ‘ Keys F) (pp-of-term

‘ Keys G))

lemma in-dgrad-p-set-iff : p ∈ dgrad-p-set d m ←→ (∀ v∈keys p. d (pp-of-term v)
≤ m)

by (auto simp add: dgrad-p-set-def dgrad-set-def)

lemma dgrad-p-setI [intro]:
assumes

∧
v. v ∈ keys p =⇒ d (pp-of-term v) ≤ m

shows p ∈ dgrad-p-set d m
using assms by (auto simp: in-dgrad-p-set-iff)

lemma dgrad-p-setD:
assumes p ∈ dgrad-p-set d m and v ∈ keys p
shows d (pp-of-term v) ≤ m
using assms by (simp only: in-dgrad-p-set-iff)

lemma zero-in-dgrad-p-set: 0 ∈ dgrad-p-set d m
by (rule, simp)

219

lemma dgrad-p-set-zero [simp]: dgrad-p-set (λ-. 0) m = UNIV
by auto

lemma subset-dgrad-p-set-zero: F ⊆ dgrad-p-set (λ-. 0) m
by simp

lemma dgrad-p-set-subset:
assumes m ≤ n
shows dgrad-p-set d m ⊆ dgrad-p-set d n
using assms by (auto simp: dgrad-p-set-def dgrad-set-def)

lemma dgrad-p-setD-lp:
assumes p ∈ dgrad-p-set d m and p 6= 0
shows d (lp p) ≤ m
by (rule dgrad-p-setD, fact, rule lt-in-keys, fact)

lemma dgrad-p-set-exhaust-expl:
assumes finite F
shows F ⊆ dgrad-p-set d (Max (d ‘ pp-of-term ‘ Keys F))

proof
fix f
assume f ∈ F
from assms have finite (Keys F) by (rule finite-Keys)
have fin: finite (d ‘ pp-of-term ‘ Keys F) by (intro finite-imageI , fact)
show f ∈ dgrad-p-set d (Max (d ‘ pp-of-term ‘ Keys F))
proof (rule dgrad-p-setI)

fix v
assume v ∈ keys f
from this ‹f ∈ F› have v ∈ Keys F by (rule in-KeysI)
hence d (pp-of-term v) ∈ d ‘ pp-of-term ‘ Keys F by simp
with fin show d (pp-of-term v) ≤ Max (d ‘ pp-of-term ‘ Keys F) by (rule

Max-ge)
qed

qed

lemma dgrad-p-set-exhaust:
assumes finite F
obtains m where F ⊆ dgrad-p-set d m

proof
from assms show F ⊆ dgrad-p-set d (Max (d ‘ pp-of-term ‘ Keys F)) by (rule

dgrad-p-set-exhaust-expl)
qed

lemma dgrad-p-set-insert:
assumes F ⊆ dgrad-p-set d m
obtains n where m ≤ n and f ∈ dgrad-p-set d n and F ⊆ dgrad-p-set d n

proof −
have finite {f } by simp
then obtain m1 where {f } ⊆ dgrad-p-set d m1 by (rule dgrad-p-set-exhaust)

220

hence f ∈ dgrad-p-set d m1 by simp
define n where n = ord-class.max m m1
have m ≤ n and m1 ≤ n by (simp-all add: n-def)
from this(1) show ?thesis
proof
from ‹m1 ≤ n› have dgrad-p-set d m1 ⊆ dgrad-p-set d n by (rule dgrad-p-set-subset)
with ‹f ∈ dgrad-p-set d m1 › show f ∈ dgrad-p-set d n ..

next
from ‹m ≤ n› have dgrad-p-set d m ⊆ dgrad-p-set d n by (rule dgrad-p-set-subset)
with assms show F ⊆ dgrad-p-set d n by (rule subset-trans)

qed
qed

lemma dgrad-p-set-leI :
assumes

∧
f . f ∈ F =⇒ dgrad-p-set-le d {f } G

shows dgrad-p-set-le d F G
unfolding dgrad-p-set-le-def dgrad-set-le-def

proof
fix s
assume s ∈ pp-of-term ‘ Keys F
then obtain v where v ∈ Keys F and s = pp-of-term v ..
from this(1) obtain f where f ∈ F and v ∈ keys f by (rule in-KeysE)
from this(2) have s ∈ pp-of-term ‘ Keys {f } by (simp add: ‹s = pp-of-term v›

Keys-insert)
from ‹f ∈ F› have dgrad-p-set-le d {f } G by (rule assms)
from this ‹s ∈ pp-of-term ‘ Keys {f }› show ∃ t∈pp-of-term ‘ Keys G. d s ≤ d t

unfolding dgrad-p-set-le-def dgrad-set-le-def ..
qed

lemma dgrad-p-set-le-trans [trans]:
assumes dgrad-p-set-le d F G and dgrad-p-set-le d G H
shows dgrad-p-set-le d F H
using assms unfolding dgrad-p-set-le-def by (rule dgrad-set-le-trans)

lemma dgrad-p-set-le-subset:
assumes F ⊆ G
shows dgrad-p-set-le d F G
unfolding dgrad-p-set-le-def by (rule dgrad-set-le-subset, rule image-mono, rule

Keys-mono, fact)

lemma dgrad-p-set-leI-insert-keys:
assumes dgrad-p-set-le d F G and dgrad-set-le d (pp-of-term ‘ keys f) (pp-of-term

‘ Keys G)
shows dgrad-p-set-le d (insert f F) G
using assms by (simp add: dgrad-p-set-le-def Keys-insert dgrad-set-le-Un im-

age-Un)

lemma dgrad-p-set-leI-insert:
assumes dgrad-p-set-le d F G and dgrad-p-set-le d {f } G

221

shows dgrad-p-set-le d (insert f F) G
using assms by (simp add: dgrad-p-set-le-def Keys-insert dgrad-set-le-Un im-

age-Un)

lemma dgrad-p-set-leI-Un:
assumes dgrad-p-set-le d F1 G and dgrad-p-set-le d F2 G
shows dgrad-p-set-le d (F1 ∪ F2) G
using assms by (auto simp: dgrad-p-set-le-def dgrad-set-le-def Keys-Un)

lemma dgrad-p-set-le-dgrad-p-set:
assumes dgrad-p-set-le d F G and G ⊆ dgrad-p-set d m
shows F ⊆ dgrad-p-set d m

proof
fix f
assume f ∈ F
show f ∈ dgrad-p-set d m
proof (rule dgrad-p-setI)

fix v
assume v ∈ keys f
from this ‹f ∈ F› have v ∈ Keys F by (rule in-KeysI)
hence pp-of-term v ∈ pp-of-term ‘ Keys F by simp
with assms(1) obtain s where s ∈ pp-of-term ‘ Keys G and d (pp-of-term

v) ≤ d s
unfolding dgrad-p-set-le-def by (rule dgrad-set-leE)

from this(1) obtain u where u ∈ Keys G and s: s = pp-of-term u ..
from this(1) obtain g where g ∈ G and u ∈ keys g by (rule in-KeysE)
from this(1) assms(2) have g ∈ dgrad-p-set d m ..
from this ‹u ∈ keys g› have d s ≤ m unfolding s by (rule dgrad-p-setD)
with ‹d (pp-of-term v) ≤ d s› show d (pp-of-term v) ≤ m by (rule le-trans)

qed
qed

lemma dgrad-p-set-le-except: dgrad-p-set-le d {except p S} {p}
by (auto simp add: dgrad-p-set-le-def Keys-insert keys-except intro: dgrad-set-le-subset)

lemma dgrad-p-set-le-tail: dgrad-p-set-le d {tail p} {p}
by (simp only: tail-def lower-def , fact dgrad-p-set-le-except)

lemma dgrad-p-set-le-plus: dgrad-p-set-le d {p + q} {p, q}
by (simp add: dgrad-p-set-le-def Keys-insert, rule dgrad-set-le-subset, rule im-

age-mono, fact Poly-Mapping.keys-add)

lemma dgrad-p-set-le-uminus: dgrad-p-set-le d {−p} {p}
by (simp add: dgrad-p-set-le-def Keys-insert keys-uminus, fact dgrad-set-le-refl)

lemma dgrad-p-set-le-minus: dgrad-p-set-le d {p − q} {p, q}
by (simp add: dgrad-p-set-le-def Keys-insert, rule dgrad-set-le-subset, rule im-

age-mono, fact keys-minus)

222

lemma dgrad-set-le-monom-mult:
assumes dickson-grading d
shows dgrad-set-le d (pp-of-term ‘ keys (monom-mult c t p)) (insert t (pp-of-term

‘ keys p))
proof (rule dgrad-set-leI)

fix s
assume s ∈ pp-of-term ‘ keys (monom-mult c t p)
with keys-monom-mult-subset have s ∈ pp-of-term ‘ ((⊕) t ‘ keys p) by fastforce
then obtain v where v ∈ keys p and s: s = pp-of-term (t ⊕ v) by fastforce
have d s = ord-class.max (d t) (d (pp-of-term v))

by (simp only: s pp-of-term-splus dickson-gradingD1 [OF assms(1)])
hence d s = d t ∨ d s = d (pp-of-term v) by auto
thus ∃ t∈insert t (pp-of-term ‘ keys p). d s ≤ d t
proof

assume d s = d t
thus ?thesis by simp

next
assume d s = d (pp-of-term v)
show ?thesis
proof

from ‹d s = d (pp-of-term v)› show d s ≤ d (pp-of-term v) by simp
next
from ‹v ∈ keys p› show pp-of-term v ∈ insert t (pp-of-term ‘ keys p) by simp

qed
qed

qed

lemma dgrad-p-set-closed-plus:
assumes p ∈ dgrad-p-set d m and q ∈ dgrad-p-set d m
shows p + q ∈ dgrad-p-set d m

proof −
from dgrad-p-set-le-plus have {p + q} ⊆ dgrad-p-set d m
proof (rule dgrad-p-set-le-dgrad-p-set)

from assms show {p, q} ⊆ dgrad-p-set d m by simp
qed
thus ?thesis by simp

qed

lemma dgrad-p-set-closed-uminus:
assumes p ∈ dgrad-p-set d m
shows −p ∈ dgrad-p-set d m

proof −
from dgrad-p-set-le-uminus have {−p} ⊆ dgrad-p-set d m
proof (rule dgrad-p-set-le-dgrad-p-set)

from assms show {p} ⊆ dgrad-p-set d m by simp
qed
thus ?thesis by simp

qed

223

lemma dgrad-p-set-closed-minus:
assumes p ∈ dgrad-p-set d m and q ∈ dgrad-p-set d m
shows p − q ∈ dgrad-p-set d m

proof −
from dgrad-p-set-le-minus have {p − q} ⊆ dgrad-p-set d m
proof (rule dgrad-p-set-le-dgrad-p-set)

from assms show {p, q} ⊆ dgrad-p-set d m by simp
qed
thus ?thesis by simp

qed

lemma dgrad-p-set-closed-monom-mult:
assumes dickson-grading d and d t ≤ m and p ∈ dgrad-p-set d m
shows monom-mult c t p ∈ dgrad-p-set d m

proof (rule dgrad-p-setI)
fix v
assume v ∈ keys (monom-mult c t p)
hence pp-of-term v ∈ pp-of-term ‘ keys (monom-mult c t p) by simp
with dgrad-set-le-monom-mult[OF assms(1)] obtain s where s ∈ insert t (pp-of-term

‘ keys p)
and d (pp-of-term v) ≤ d s by (rule dgrad-set-leE)

from this(1) have s = t ∨ s ∈ pp-of-term ‘ keys p by simp
thus d (pp-of-term v) ≤ m
proof

assume s = t
with ‹d (pp-of-term v) ≤ d s› assms(2) show ?thesis by simp

next
assume s ∈ pp-of-term ‘ keys p
then obtain u where u ∈ keys p and s = pp-of-term u ..
from assms(3) this(1) have d s ≤ m unfolding ‹s = pp-of-term u› by (rule

dgrad-p-setD)
with ‹d (pp-of-term v) ≤ d s› show ?thesis by (rule le-trans)

qed
qed

lemma dgrad-p-set-closed-monom-mult-zero:
assumes p ∈ dgrad-p-set d m
shows monom-mult c 0 p ∈ dgrad-p-set d m

proof (rule dgrad-p-setI)
fix v
assume v ∈ keys (monom-mult c 0 p)
hence pp-of-term v ∈ pp-of-term ‘ keys (monom-mult c 0 p) by simp
then obtain u where u ∈ keys (monom-mult c 0 p) and eq: pp-of-term v =

pp-of-term u ..
from this(1) have u ∈ keys p by (metis keys-monom-multE splus-zero)
with assms have d (pp-of-term u) ≤ m by (rule dgrad-p-setD)
thus d (pp-of-term v) ≤ m by (simp only: eq)

qed

224

lemma dgrad-p-set-closed-except:
assumes p ∈ dgrad-p-set d m
shows except p S ∈ dgrad-p-set d m
by (rule dgrad-p-setI , rule dgrad-p-setD, rule assms, simp add: keys-except)

lemma dgrad-p-set-closed-tail:
assumes p ∈ dgrad-p-set d m
shows tail p ∈ dgrad-p-set d m
unfolding tail-def lower-def using assms by (rule dgrad-p-set-closed-except)

10.12 Dickson’s Lemma for Sequences of Terms
lemma Dickson-term:

assumes dickson-grading d and finite K
shows almost-full-on (addst) {t. pp-of-term t ∈ dgrad-set d m ∧ component-of-term

t ∈ K}
(is almost-full-on - ?A)

proof (rule almost-full-onI)
fix seq :: nat ⇒ ′t
assume ∗: ∀ i. seq i ∈ ?A
define seq ′ where seq ′ = (λi. (pp-of-term (seq i), component-of-term (seq i)))
have pp-of-term ‘ ?A ⊆ {x. d x ≤ m} by (auto dest: dgrad-setD)
moreover from assms(1) have almost-full-on (adds) {x. d x ≤ m} by (rule

dickson-gradingD2)
ultimately have almost-full-on (adds) (pp-of-term ‘ ?A) by (rule almost-full-on-subset)
moreover have almost-full-on (=) (component-of-term ‘ ?A)
proof (rule eq-almost-full-on-finite-set)

have component-of-term ‘ ?A ⊆ K by blast
thus finite (component-of-term ‘ ?A) using assms(2) by (rule finite-subset)

qed
ultimately have almost-full-on (prod-le (adds) (=)) (pp-of-term ‘ ?A × compo-

nent-of-term ‘ ?A)
by (rule almost-full-on-Sigma)

moreover from ∗ have
∧

i. seq ′ i ∈ pp-of-term ‘ ?A × component-of-term ‘ ?A
by (simp add: seq ′-def)

ultimately obtain i j where i < j and prod-le (adds) (=) (seq ′ i) (seq ′ j)
by (rule almost-full-onD)

from this(2) have seq i addst seq j by (simp add: seq ′-def prod-le-def adds-term-def)
with ‹i < j› show good (addst) seq by (rule goodI)

qed

corollary Dickson-termE :
assumes dickson-grading d and finite (component-of-term ‘ range (f ::nat ⇒ ′t))

and pp-of-term ‘ range f ⊆ dgrad-set d m
obtains i j where i < j and f i addst f j

proof −
let ?A = {t. pp-of-term t ∈ dgrad-set d m ∧ component-of-term t ∈ compo-

nent-of-term ‘ range f }
from assms(1 , 2) have almost-full-on (addst) ?A by (rule Dickson-term)

225

moreover from assms(3) have
∧

i. f i ∈ ?A by blast
ultimately obtain i j where i < j and f i addst f j by (rule almost-full-onD)
thus ?thesis ..

qed

lemma ex-finite-adds-term:
assumes dickson-grading d and finite (component-of-term ‘ S) and pp-of-term

‘ S ⊆ dgrad-set d m
obtains T where finite T and T ⊆ S and

∧
s. s ∈ S =⇒ (∃ t∈T . t addst s)

proof −
let ?A = {t. pp-of-term t ∈ dgrad-set d m ∧ component-of-term t ∈ compo-

nent-of-term ‘ S}
have reflp ((addst):: ′t ⇒ -) by (simp add: reflp-def adds-term-refl)
moreover have almost-full-on (addst) S
proof (rule almost-full-on-subset)

from assms(3) show S ⊆ ?A by blast
next

from assms(1 , 2) show almost-full-on (addst) ?A by (rule Dickson-term)
qed
ultimately obtain T where finite T and T ⊆ S and

∧
s. s ∈ S =⇒ (∃ t∈T .

t addst s)
by (rule almost-full-on-finite-subsetE , blast)

thus ?thesis ..
qed

10.13 Well-foundedness
definition dickson-less-v :: (′a ⇒ nat) ⇒ nat ⇒ ′t ⇒ ′t ⇒ bool

where dickson-less-v d m v u ←→ (d (pp-of-term v) ≤ m ∧ d (pp-of-term u) ≤
m ∧ v ≺t u)

definition dickson-less-p :: (′a ⇒ nat) ⇒ nat ⇒ (′t ⇒0
′b) ⇒ (′t ⇒0

′b::zero) ⇒
bool

where dickson-less-p d m p q ←→ ({p, q} ⊆ dgrad-p-set d m ∧ p ≺p q)

lemma dickson-less-vI :
assumes d (pp-of-term v) ≤ m and d (pp-of-term u) ≤ m and v ≺t u
shows dickson-less-v d m v u
using assms by (simp add: dickson-less-v-def)

lemma dickson-less-vD1 :
assumes dickson-less-v d m v u
shows d (pp-of-term v) ≤ m
using assms by (simp add: dickson-less-v-def)

lemma dickson-less-vD2 :
assumes dickson-less-v d m v u
shows d (pp-of-term u) ≤ m
using assms by (simp add: dickson-less-v-def)

226

lemma dickson-less-vD3 :
assumes dickson-less-v d m v u
shows v ≺t u
using assms by (simp add: dickson-less-v-def)

lemma dickson-less-v-irrefl: ¬ dickson-less-v d m v v
by (simp add: dickson-less-v-def)

lemma dickson-less-v-trans:
assumes dickson-less-v d m v u and dickson-less-v d m u w
shows dickson-less-v d m v w
using assms by (auto simp add: dickson-less-v-def)

lemma wf-dickson-less-v-aux1 :
assumes dickson-grading d and

∧
i::nat. dickson-less-v d m (seq (Suc i)) (seq i)

obtains i where
∧

j. j > i =⇒ component-of-term (seq j) < component-of-term
(seq i)
proof −

let ?Q = pp-of-term ‘ range seq
have pp-of-term (seq 0) ∈ ?Q by simp
with wf-dickson-less[OF assms(1)] obtain t where t ∈ ?Q and ∗:

∧
s. dick-

son-less d m s t =⇒ s /∈ ?Q
by (rule wfE-min[to-pred], blast)

from this(1) obtain i where t: t = pp-of-term (seq i) by fastforce
show ?thesis
proof

fix j
assume i < j
with - assms(2) have dlv: dickson-less-v d m (seq j) (seq i)
proof (rule transp-sequence)
from dickson-less-v-trans show transp (dickson-less-v d m) by (rule transpI)

qed
hence seq j ≺t seq i by (rule dickson-less-vD3)
define s where s = pp-of-term (seq j)
have pp-of-term (seq j) ∈ ?Q by simp
hence ¬ dickson-less d m s t unfolding s-def using ∗ by blast
moreover from dlv have d s ≤ m and d t ≤ m unfolding s-def t

by (rule dickson-less-vD1 , rule dickson-less-vD2)
ultimately have t � s by (simp add: dickson-less-def)
show component-of-term (seq j) < component-of-term (seq i)
proof (rule ccontr , simp only: not-less)

assume component-of-term (seq i) ≤ component-of-term (seq j)
with ‹t � s› have seq i �t seq j unfolding s-def t by (rule ord-termI)
moreover from dlv have seq j ≺t seq i by (rule dickson-less-vD3)
ultimately show False by simp

qed
qed

qed

227

lemma wf-dickson-less-v-aux2 :
assumes dickson-grading d and

∧
i::nat. dickson-less-v d m (seq (Suc i)) (seq i)

and
∧

i::nat. component-of-term (seq i) < k
shows thesis
using assms(2 , 3)

proof (induct k arbitrary: seq thesis rule: less-induct)
case (less k)
from assms(1) less(2) obtain i where ∗:

∧
j. j > i =⇒ component-of-term (seq

j) < component-of-term (seq i)
by (rule wf-dickson-less-v-aux1 , blast)

define seq1 where seq1 = (λj. seq (Suc (i + j)))
from less(3) show ?case
proof (rule less(1))

fix j
show dickson-less-v d m (seq1 (Suc j)) (seq1 j) by (simp add: seq1-def , fact

less(2))
next

fix j
show component-of-term (seq1 j) < component-of-term (seq i) by (simp add:

seq1-def ∗)
qed

qed

lemma wf-dickson-less-v:
assumes dickson-grading d
shows wfP (dickson-less-v d m)

proof (rule wfP-chain, rule, elim exE)
fix seq::nat ⇒ ′t
assume ∀ i. dickson-less-v d m (seq (Suc i)) (seq i)
hence ∗:

∧
i. dickson-less-v d m (seq (Suc i)) (seq i) ..

with assms obtain i where ∗∗:
∧

j. j > i =⇒ component-of-term (seq j) <
component-of-term (seq i)

by (rule wf-dickson-less-v-aux1 , blast)
define seq1 where seq1 = (λj. seq (Suc (i + j)))
from assms show False
proof (rule wf-dickson-less-v-aux2)

fix j
show dickson-less-v d m (seq1 (Suc j)) (seq1 j) by (simp add: seq1-def , fact ∗)

next
fix j
show component-of-term (seq1 j) < component-of-term (seq i) by (simp add:

seq1-def ∗∗)
qed

qed

lemma dickson-less-v-zero: dickson-less-v (λ-. 0) m = (≺t)
by (rule, rule, simp add: dickson-less-v-def)

228

lemma dickson-less-pI :
assumes p ∈ dgrad-p-set d m and q ∈ dgrad-p-set d m and p ≺p q
shows dickson-less-p d m p q
using assms by (simp add: dickson-less-p-def)

lemma dickson-less-pD1 :
assumes dickson-less-p d m p q
shows p ∈ dgrad-p-set d m
using assms by (simp add: dickson-less-p-def)

lemma dickson-less-pD2 :
assumes dickson-less-p d m p q
shows q ∈ dgrad-p-set d m
using assms by (simp add: dickson-less-p-def)

lemma dickson-less-pD3 :
assumes dickson-less-p d m p q
shows p ≺p q
using assms by (simp add: dickson-less-p-def)

lemma dickson-less-p-irrefl: ¬ dickson-less-p d m p p
by (simp add: dickson-less-p-def)

lemma dickson-less-p-trans:
assumes dickson-less-p d m p q and dickson-less-p d m q r
shows dickson-less-p d m p r
using assms by (auto simp add: dickson-less-p-def)

lemma dickson-less-p-mono:
assumes dickson-less-p d m p q and m ≤ n
shows dickson-less-p d n p q

proof −
from assms(2) have dgrad-p-set d m ⊆ dgrad-p-set d n by (rule dgrad-p-set-subset)
moreover from assms(1) have p ∈ dgrad-p-set d m and q ∈ dgrad-p-set d m

and p ≺p q
by (rule dickson-less-pD1 , rule dickson-less-pD2 , rule dickson-less-pD3)

ultimately have p ∈ dgrad-p-set d n and q ∈ dgrad-p-set d n by auto
from this ‹p ≺p q› show ?thesis by (rule dickson-less-pI)

qed

lemma dickson-less-p-zero: dickson-less-p (λ-. 0) m = (≺p)
by (rule, rule, simp add: dickson-less-p-def)

lemma wf-dickson-less-p-aux:
assumes dickson-grading d
assumes x ∈ Q and ∀ y∈Q. y 6= 0 −→ (y ∈ dgrad-p-set d m ∧ dickson-less-v d

m (lt y) u)
shows ∃ p∈Q. (∀ q∈Q. ¬ dickson-less-p d m q p)
using assms(2) assms(3)

229

proof (induct u arbitrary: x Q rule: wfp-induct[OF wf-dickson-less-v, OF assms(1)])
fix u:: ′t and x:: ′t ⇒0

′b and Q::(′t ⇒0
′b) set

assume hyp: ∀ u0 . dickson-less-v d m u0 u −→ (∀ x0 Q0 ::(′t ⇒0
′b) set. x0 ∈

Q0 −→
(∀ y∈Q0 . y 6= 0 −→ (y ∈ dgrad-p-set d m ∧ dickson-less-v

d m (lt y) u0)) −→
(∃ p∈Q0 . ∀ q∈Q0 . ¬ dickson-less-p d m q p))

assume x ∈ Q
assume ∀ y∈Q. y 6= 0 −→ (y ∈ dgrad-p-set d m ∧ dickson-less-v d m (lt y) u)
hence bounded:

∧
y. y ∈ Q =⇒ y 6= 0 =⇒ (y ∈ dgrad-p-set d m ∧ dickson-less-v

d m (lt y) u) by auto
show ∃ p∈Q. ∀ q∈Q. ¬ dickson-less-p d m q p
proof (cases 0 ∈ Q)

case True
show ?thesis
proof (rule, rule, rule)

fix q:: ′t ⇒0
′b

assume dickson-less-p d m q 0
hence q ≺p 0 by (rule dickson-less-pD3)
thus False using ord-p-zero-min[of q] by simp

next
from True show 0 ∈ Q .

qed
next

case False
define Q1 where Q1 = {lt p | p. p ∈ Q}
from ‹x ∈ Q› have lt x ∈ Q1 unfolding Q1-def by auto
with wf-dickson-less-v[OF assms(1)] obtain v

where v ∈ Q1 and v-min-1 :
∧

q. dickson-less-v d m q v =⇒ q /∈ Q1
by (rule wfE-min[to-pred], auto)

have v-min:
∧

q. q ∈ Q =⇒ ¬ dickson-less-v d m (lt q) v
proof −

fix q
assume q ∈ Q
hence lt q ∈ Q1 unfolding Q1-def by auto
thus ¬ dickson-less-v d m (lt q) v using v-min-1 by auto

qed
from ‹v ∈ Q1 › obtain p where lt p = v and p ∈ Q unfolding Q1-def by

auto
hence p 6= 0 using False by auto
with ‹p ∈ Q› have p ∈ dgrad-p-set d m ∧ dickson-less-v d m (lt p) u by (rule

bounded)
hence p ∈ dgrad-p-set d m and dickson-less-v d m (lt p) u by simp-all
moreover from this(1) ‹p 6= 0 › have d (pp-of-term (lt p)) ≤ m by (rule

dgrad-p-setD-lp)
ultimately have d (pp-of-term v) ≤ m by (simp only: ‹lt p = v›)
define Q2 where Q2 = {tail p | p. p ∈ Q ∧ lt p = v}
from ‹p ∈ Q› ‹lt p = v› have tail p ∈ Q2 unfolding Q2-def by auto
have ∀ q∈Q2 . q 6= 0 −→ (q ∈ dgrad-p-set d m ∧ dickson-less-v d m (lt q) (lt

230

p))
proof (intro ballI impI)

fix q
assume q ∈ Q2
then obtain q0 where q: q = tail q0 and lt q0 = lt p and q0 ∈ Q

using ‹lt p = v› by (auto simp add: Q2-def)
assume q 6= 0
hence tail q0 6= 0 using ‹q = tail q0 › by simp
hence q0 6= 0 by auto
with ‹q0 ∈ Q› have q0 ∈ dgrad-p-set d m ∧ dickson-less-v d m (lt q0) u by

(rule bounded)
hence q0 ∈ dgrad-p-set d m and dickson-less-v d m (lt q0) u by simp-all

from this(1) have q ∈ dgrad-p-set d m unfolding q by (rule dgrad-p-set-closed-tail)
show q ∈ dgrad-p-set d m ∧ dickson-less-v d m (lt q) (lt p)
proof

show dickson-less-v d m (lt q) (lt p)
proof (rule dickson-less-vI)

from ‹q ∈ dgrad-p-set d m› ‹q 6= 0 › show d (pp-of-term (lt q)) ≤ m by
(rule dgrad-p-setD-lp)

next
from ‹dickson-less-v d m (lt p) u› show d (pp-of-term (lt p)) ≤ m by

(rule dickson-less-vD1)
next

from lt-tail[OF ‹tail q0 6= 0 ›] ‹q = tail q0 › ‹lt q0 = lt p› show lt q ≺t lt
p by simp

qed
qed fact

qed
with hyp ‹dickson-less-v d m (lt p) u› ‹tail p ∈ Q2 › have ∃ p∈Q2 . ∀ q∈Q2 . ¬

dickson-less-p d m q p
by blast

then obtain q where q ∈ Q2 and q-min: ∀ r∈Q2 . ¬ dickson-less-p d m r q ..
from ‹q ∈ Q2 › obtain q0 where q = tail q0 and q0 ∈ Q and lt q0 = v

unfolding Q2-def by auto
from q-min ‹q = tail q0 › have q0-tail-min:

∧
r . r ∈ Q2 =⇒ ¬ dickson-less-p

d m r (tail q0) by simp
from ‹q0 ∈ Q› show ?thesis
proof

show ∀ r∈Q. ¬ dickson-less-p d m r q0
proof (intro ballI notI)

fix r
assume dickson-less-p d m r q0
hence r ∈ dgrad-p-set d m and q0 ∈ dgrad-p-set d m and r ≺p q0

by (rule dickson-less-pD1 , rule dickson-less-pD2 , rule dickson-less-pD3)
from this(3) have lt r �t lt q0 by (simp add: ord-p-lt)
with ‹lt q0 = v› have lt r �t v by simp
assume r ∈ Q
hence ¬ dickson-less-v d m (lt r) v by (rule v-min)
from False ‹r ∈ Q› have r 6= 0 using False by blast

231

with ‹r ∈ dgrad-p-set d m› have d (pp-of-term (lt r)) ≤ m by (rule
dgrad-p-setD-lp)

have ¬ lt r ≺t v
proof

assume lt r ≺t v
with ‹d (pp-of-term (lt r)) ≤ m› ‹d (pp-of-term v) ≤ m› have dickson-less-v

d m (lt r) v
by (rule dickson-less-vI)

with ‹¬ dickson-less-v d m (lt r) v› show False ..
qed
with ‹lt r �t v› have lt r = v by simp
with ‹r ∈ Q› have tail r ∈ Q2 by (auto simp add: Q2-def)
have dickson-less-p d m (tail r) (tail q0)
proof (rule dickson-less-pI)

show tail r ∈ dgrad-p-set d m by (rule dgrad-p-set-closed-tail, fact)
next

show tail q0 ∈ dgrad-p-set d m by (rule dgrad-p-set-closed-tail, fact)
next

have lt r = lt q0 by (simp only: ‹lt r = v› ‹lt q0 = v›)
from ‹r 6= 0 › this ‹r ≺p q0 › show tail r ≺p tail q0 by (rule ord-p-tail)

qed
with q0-tail-min[OF ‹tail r ∈ Q2 ›] show False ..

qed
qed

qed
qed

theorem wf-dickson-less-p:
assumes dickson-grading d
shows wfP (dickson-less-p d m)

proof (rule wfI-min[to-pred])
fix Q::(′t ⇒0

′b) set and x
assume x ∈ Q
show ∃ z∈Q. ∀ y. dickson-less-p d m y z −→ y /∈ Q
proof (cases 0 ∈ Q)

case True
show ?thesis
proof (rule, rule, rule)

from True show 0 ∈ Q .
next

fix q:: ′t ⇒0
′b

assume dickson-less-p d m q 0
hence q ≺p 0 by (rule dickson-less-pD3)
thus q /∈ Q using ord-p-zero-min[of q] by simp

qed
next

case False
show ?thesis
proof (cases Q ⊆ dgrad-p-set d m)

232

case True
let ?L = lt ‘ Q
from ‹x ∈ Q› have lt x ∈ ?L by simp
with wf-dickson-less-v[OF assms] obtain v where v ∈ ?L
and v-min:

∧
u. dickson-less-v d m u v =⇒ u /∈ ?L by (rule wfE-min[to-pred],

blast)
from this(1) obtain x1 where x1 ∈ Q and v = lt x1 ..
from this(1) True False have x1 ∈ dgrad-p-set d m and x1 6= 0 by auto
hence d (pp-of-term v) ≤ m unfolding ‹v = lt x1 › by (rule dgrad-p-setD-lp)
define Q1 where Q1 = {tail p | p. p ∈ Q ∧ lt p = v}
from ‹x1 ∈ Q› have tail x1 ∈ Q1 by (auto simp add: Q1-def ‹v = lt x1 ›)
with assms have ∃ p∈Q1 . ∀ q∈Q1 . ¬ dickson-less-p d m q p
proof (rule wf-dickson-less-p-aux)

show ∀ y∈Q1 . y 6= 0 −→ y ∈ dgrad-p-set d m ∧ dickson-less-v d m (lt y) v
proof (intro ballI impI)

fix y
assume y ∈ Q1 and y 6= 0
from this(1) obtain y1 where y1 ∈ Q and v = lt y1 and y = tail y1

unfolding Q1-def
by blast

from this(1) True have y1 ∈ dgrad-p-set d m ..
hence y ∈ dgrad-p-set d m unfolding ‹y = tail y1 › by (rule dgrad-p-set-closed-tail)

thus y ∈ dgrad-p-set d m ∧ dickson-less-v d m (lt y) v
proof

show dickson-less-v d m (lt y) v
proof (rule dickson-less-vI)

from ‹y ∈ dgrad-p-set d m› ‹y 6= 0 › show d (pp-of-term (lt y)) ≤ m
by (rule dgrad-p-setD-lp)

next
from ‹y 6= 0 › show lt y ≺t v unfolding ‹v = lt y1 › ‹y = tail y1 › by

(rule lt-tail)
qed fact

qed
qed

qed
then obtain p0 where p0 ∈ Q1 and p0-min:

∧
q. q ∈ Q1 =⇒ ¬ dickson-less-p

d m q p0 by blast
from this(1) obtain p where p ∈ Q and v = lt p and p0 = tail p unfolding

Q1-def
by blast

from this(1) False have p 6= 0 by blast
show ?thesis
proof (intro bexI allI impI notI)

fix y
assume y ∈ Q
hence y 6= 0 using False by blast
assume dickson-less-p d m y p
hence y ∈ dgrad-p-set d m and p ∈ dgrad-p-set d m and y ≺p p

by (rule dickson-less-pD1 , rule dickson-less-pD2 , rule dickson-less-pD3)

233

from this(3) have y �p p by simp
hence lt y �t lt p by (rule ord-p-lt)
moreover have ¬ lt y ≺t lt p
proof

assume lt y ≺t lt p
have dickson-less-v d m (lt y) v unfolding ‹v = lt p›
by (rule dickson-less-vI , rule dgrad-p-setD-lp, fact+, rule dgrad-p-setD-lp,

fact+)
hence lt y /∈ ?L by (rule v-min)
hence y /∈ Q by fastforce
from this ‹y ∈ Q› show False ..

qed
ultimately have lt y = lt p by simp
from ‹y 6= 0 › this ‹y ≺p p› have tail y ≺p tail p by (rule ord-p-tail)
from ‹y ∈ Q› have tail y ∈ Q1 by (auto simp add: Q1-def ‹v = lt p› ‹lt y

= lt p›[symmetric])
hence ¬ dickson-less-p d m (tail y) p0 by (rule p0-min)
moreover have dickson-less-p d m (tail y) p0 unfolding ‹p0 = tail p›

by (rule dickson-less-pI , rule dgrad-p-set-closed-tail, fact, rule dgrad-p-set-closed-tail,
fact+)

ultimately show False ..
qed fact

next
case False
then obtain q where q ∈ Q and q /∈ dgrad-p-set d m by blast
from this(1) show ?thesis
proof

show ∀ y. dickson-less-p d m y q −→ y /∈ Q
proof (intro allI impI)

fix y
assume dickson-less-p d m y q
hence q ∈ dgrad-p-set d m by (rule dickson-less-pD2)
with ‹q /∈ dgrad-p-set d m› show y /∈ Q ..

qed
qed

qed
qed

qed

corollary ord-p-minimum-dgrad-p-set:
assumes dickson-grading d and x ∈ Q and Q ⊆ dgrad-p-set d m
obtains q where q ∈ Q and

∧
y. y ≺p q =⇒ y /∈ Q

proof −
from assms(1) have wfP (dickson-less-p d m) by (rule wf-dickson-less-p)
from this assms(2) obtain q where q ∈ Q and ∗:

∧
y. dickson-less-p d m y q

=⇒ y /∈ Q
by (rule wfE-min[to-pred], auto)

from assms(3) ‹q ∈ Q› have q ∈ dgrad-p-set d m ..
from ‹q ∈ Q› show ?thesis

234

proof
fix y
assume y ≺p q
show y /∈ Q
proof

assume y ∈ Q
with assms(3) have y ∈ dgrad-p-set d m ..
from this ‹q ∈ dgrad-p-set d m› ‹y ≺p q› have dickson-less-p d m y q

by (rule dickson-less-pI)
hence y /∈ Q by (rule ∗)
from this ‹y ∈ Q› show False ..

qed
qed

qed

lemma ord-term-minimum-dgrad-set:
assumes dickson-grading d and v ∈ V and pp-of-term ‘ V ⊆ dgrad-set d m
obtains u where u ∈ V and

∧
w. w ≺t u =⇒ w /∈ V

proof −
from assms(1) have wfP (dickson-less-v d m) by (rule wf-dickson-less-v)
then obtain u where u ∈ V and ∗:

∧
w. dickson-less-v d m w u =⇒ w /∈ V

using assms(2)
by (rule wfE-min[to-pred]) blast

from this(1) have pp-of-term u ∈ pp-of-term ‘ V by (rule imageI)
with assms(3) have pp-of-term u ∈ dgrad-set d m ..
hence d (pp-of-term u) ≤ m by (rule dgrad-setD)
from ‹u ∈ V › show ?thesis
proof

fix w
assume w ≺t u
show w /∈ V
proof

assume w ∈ V
hence pp-of-term w ∈ pp-of-term ‘ V by (rule imageI)
with assms(3) have pp-of-term w ∈ dgrad-set d m ..
hence d (pp-of-term w) ≤ m by (rule dgrad-setD)
from this ‹d (pp-of-term u) ≤ m› ‹w ≺t u› have dickson-less-v d m w u

by (rule dickson-less-vI)
hence w /∈ V by (rule ∗)
from this ‹w ∈ V › show False ..

qed
qed

qed

end

10.14 More Interpretations
context gd-powerprod

235

begin

sublocale punit: gd-term to-pair-unit fst (�) (≺) (�) (≺) ..

end

locale od-term =
ordered-term pair-of-term term-of-pair ord ord-strict ord-term ord-term-strict

for pair-of-term:: ′t ⇒ (′a::dickson-powerprod × ′k::{the-min,wellorder})
and term-of-pair ::(′a × ′k) ⇒ ′t
and ord:: ′a ⇒ ′a ⇒ bool (infixl ‹�› 50)
and ord-strict (infixl ‹≺› 50)
and ord-term:: ′t ⇒ ′t ⇒ bool (infixl ‹�t› 50)
and ord-term-strict:: ′t ⇒ ′t ⇒ bool (infixl ‹≺t› 50)

begin

sublocale gd-term ..

lemma ord-p-wf : wfP (≺p)
proof −
from dickson-grading-zero have wfP (dickson-less-p (λ-. 0) 0) by (rule wf-dickson-less-p)
thus ?thesis by (simp only: dickson-less-p-zero)

qed

end

end

theory Poly-Mapping-Finite-Map
imports

More-MPoly-Type
HOL−Library.Finite-Map

begin

10.15 TODO: move!
lemma fmdom ′-fmap-of-list: fmdom ′ (fmap-of-list xs) = set (map fst xs)

by (auto simp: fmdom ′-def fmdom ′I fmap-of-list.rep-eq weak-map-of-SomeI)
(metis map-of-eq-None-iff option.distinct(1))

In this theory, type ′a ⇒0
′b is represented as association lists. Code

equations are proved in order actually perform computations (addition, mul-
tiplication, etc.).

10.16 Utilities
instantiation poly-mapping :: (type, {equal, zero}) equal
begin
definition equal-poly-mapping::(′a, ′b) poly-mapping ⇒ (′a, ′b) poly-mapping ⇒
bool where

236

equal-poly-mapping p q ≡ (∀ t. lookup p t = lookup q t)

instance by standard (auto simp add: equal-poly-mapping-def poly-mapping-eqI)
end

definition clearjunk0 m = fmfilter (λk. fmlookup m k 6= Some 0) m

definition fmlookup-default d m x = (case fmlookup m x of Some v ⇒ v | None
⇒ d)
abbreviation lookup0 ≡ fmlookup-default 0

lemma fmlookup-default-fmmap:
fmlookup-default d (fmmap f M) x = (if x ∈ fmdom ′ M then f (fmlookup-default

d M x) else d)
by (auto simp: fmlookup-default-def fmdom ′-notI split: option.splits)

lemma fmlookup-default-fmmap-keys: fmlookup-default d (fmmap-keys f M) x =
(if x ∈ fmdom ′ M then f x (fmlookup-default d M x) else d)
by (auto simp: fmlookup-default-def fmdom ′-notI split: option.splits)

lemma fmlookup-default-add[simp]:
fmlookup-default d (m ++f n) x =
(if x |∈| fmdom n then the (fmlookup n x)
else fmlookup-default d m x)

by (auto simp: fmlookup-default-def)

lemma fmlookup-default-if [simp]:
fmlookup ys a = Some r =⇒ fmlookup-default d ys a = r
fmlookup ys a = None =⇒ fmlookup-default d ys a = d
by (auto simp: fmlookup-default-def)

lemma finite-lookup-default:
finite {x. fmlookup-default d xs x 6= d}

proof −
have {x. fmlookup-default d xs x 6= d} ⊆ fmdom ′ xs

by (auto simp: fmlookup-default-def fmdom ′I split: option.splits)
also have finite . . .

by simp
finally (finite-subset) show ?thesis .

qed

lemma lookup0-clearjunk0 : lookup0 xs s = lookup0 (clearjunk0 xs) s
unfolding clearjunk0-def fmlookup-default-def
by auto

lemma clearjunk0-nonzero:
assumes t ∈ fmdom ′ (clearjunk0 xs)
shows fmlookup xs t 6= Some 0
using assms unfolding clearjunk0-def by simp

237

lemma clearjunk0-map-of-SomeD:
assumes a1 : fmlookup xs t = Some c and c 6= 0
shows t ∈ fmdom ′ (clearjunk0 xs)
using assms
by (auto simp: clearjunk0-def fmdom ′I)

10.17 Implementation of Polynomial Mappings as Associa-
tion Lists

lift-definition Pm-fmap::(′a, ′b::zero) fmap ⇒ ′a ⇒0
′b is lookup0

by (rule finite-lookup-default)

lemmas [simp] = Pm-fmap.rep-eq

code-datatype Pm-fmap

lemma PM-clearjunk0-cong:
Pm-fmap (clearjunk0 xs) = Pm-fmap xs
by (metis Pm-fmap.rep-eq lookup0-clearjunk0 poly-mapping-eqI)

lemma PM-all-2 :
assumes P 0 0
shows (∀ x. P (lookup (Pm-fmap xs) x) (lookup (Pm-fmap ys) x)) =

fmpred (λk v. P (lookup0 xs k) (lookup0 ys k)) (xs ++f ys)
using assms unfolding list-all-def
by (force simp: fmlookup-default-def fmlookup-dom-iff

split: option.splits if-splits)

lemma compute-keys-pp[code]: keys (Pm-fmap xs) = fmdom ′ (clearjunk0 xs)
by transfer
(auto simp: fmlookup-dom ′-iff clearjunk0-def fmlookup-default-def fmdom ′I split:

option.splits)

lemma compute-zero-pp[code]: 0 = Pm-fmap fmempty
by (auto intro!: poly-mapping-eqI simp: fmlookup-default-def)

lemma compute-plus-pp [code]:
Pm-fmap xs + Pm-fmap ys = Pm-fmap (clearjunk0 (fmmap-keys (λk v. lookup0

xs k + lookup0 ys k) (xs ++f ys)))
by (auto intro!: poly-mapping-eqI

simp: fmlookup-default-def lookup-add fmlookup-dom-iff PM-clearjunk0-cong
split: option.splits)

lemma compute-lookup-pp[code]:
lookup (Pm-fmap xs) x = lookup0 xs x
by (transfer , simp)

lemma compute-minus-pp [code]:

238

Pm-fmap xs − Pm-fmap ys = Pm-fmap (clearjunk0 (fmmap-keys (λk v. lookup0
xs k − lookup0 ys k) (xs ++f ys)))

by (auto intro!: poly-mapping-eqI
simp: fmlookup-default-def lookup-minus fmlookup-dom-iff PM-clearjunk0-cong
split: option.splits)

lemma compute-uminus-pp[code]:
− Pm-fmap ys = Pm-fmap (fmmap-keys (λk v. − lookup0 ys k) ys)
by (auto intro!: poly-mapping-eqI

simp: fmlookup-default-def
split: option.splits)

lemma compute-equal-pp[code]:
equal-class.equal (Pm-fmap xs) (Pm-fmap ys) = fmpred (λk v. lookup0 xs k =

lookup0 ys k) (xs ++f ys)
unfolding equal-poly-mapping-def by (simp only: PM-all-2)

lemma compute-map-pp[code]:
Poly-Mapping.map f (Pm-fmap xs) = Pm-fmap (fmmap (λx. f x when x 6= 0) xs)
by (auto intro!: poly-mapping-eqI

simp: fmlookup-default-def map.rep-eq
split: option.splits)

lemma fmran ′-fmfilter-eq: fmran ′ (fmfilter p fm) = {y | y. ∃ x ∈ fmdom ′ fm. p x
∧ fmlookup fm x = Some y}

by (force simp: fmlookup-ran ′-iff fmdom ′I split: if-splits)

lemma compute-range-pp[code]:
Poly-Mapping.range (Pm-fmap xs) = fmran ′ (clearjunk0 xs)
by (force simp: range.rep-eq clearjunk0-def fmran ′-fmfilter-eq fmdom ′I

fmlookup-default-def split: option.splits)

10.17.1 Constructors
definition sparse0 xs = Pm-fmap (fmap-of-list xs) — sparse representation
definition dense0 xs = Pm-fmap (fmap-of-list (zip [0 ..<length xs] xs)) — dense
representation

lemma compute-single[code]: Poly-Mapping.single k v = sparse0 [(k, v)]
by (auto simp: sparse0-def fmlookup-default-def lookup-single intro!: poly-mapping-eqI

)

end

11 Executable Representation of Polynomial Map-
pings as Association Lists

theory MPoly-Type-Class-FMap

239

imports
MPoly-Type-Class-Ordered
Poly-Mapping-Finite-Map

begin

In this theory, (type class) multivariate polynomials of type ′a ⇒0
′b are

represented as association lists.
It is important to note that theory MPoly-Type-Class-OAlist, which rep-

resents polynomials as ordered associative lists, is much better suited for
doing actual computations. This theory is only included for being able to
compare the two representations in terms of efficiency.

11.1 Power Products
lemma compute-lcs-pp[code]:

lcs (Pm-fmap xs) (Pm-fmap ys) =
Pm-fmap (fmmap-keys (λk v. Orderings.max (lookup0 xs k) (lookup0 ys k)) (xs

++f ys))
by (rule poly-mapping-eqI)
(auto simp add: fmlookup-default-fmmap-keys fmlookup-dom-iff fmdom ′-notI

lcs-poly-mapping.rep-eq fmdom ′-notD)

lemma compute-deg-pp[code]:
deg-pm (Pm-fmap xs) = sum (the o fmlookup xs) (fmdom ′ xs)

proof −
have deg-pm (Pm-fmap xs) = sum (lookup (Pm-fmap xs)) (keys (Pm-fmap xs))

by (rule deg-pm-superset) auto
also have . . . = sum (the o fmlookup xs) (fmdom ′ xs)

by (rule sum.mono-neutral-cong-left)
(auto simp: fmlookup-dom ′-iff fmdom ′I in-keys-iff fmlookup-default-def

split: option.splits)
finally show ?thesis .

qed

definition adds-pp-add-linorder :: (′b ⇒0
′a::add-linorder) ⇒ - ⇒ bool

where [code-abbrev]: adds-pp-add-linorder = (adds)

lemma compute-adds-pp[code]:
adds-pp-add-linorder (Pm-fmap xs) (Pm-fmap ys) =
(fmpred (λk v. lookup0 xs k ≤ lookup0 ys k) (xs ++f ys))

for xs ys::(′a, ′b::add-linorder-min) fmap
unfolding adds-pp-add-linorder-def
unfolding adds-poly-mapping
using fmdom-notI
by (force simp: fmlookup-dom-iff le-fun-def

split: option.splits if-splits)

Computing lex as below is certainly not the most efficient way, but it
works.

240

lemma lex-pm-iff : lex-pm s t = (∀ x. lookup s x ≤ lookup t x ∨ (∃ y<x. lookup s y
6= lookup t y))
proof −

have lex-pm s t = (¬ lex-pm-strict t s) by (simp add: lex-pm-strict-alt)
also have . . . = (∀ x. lookup s x ≤ lookup t x ∨ (∃ y<x. lookup s y 6= lookup t y))

by (simp add: lex-pm-strict-def less-poly-mapping-def less-fun-def) (metis leD
leI)

finally show ?thesis .
qed

lemma compute-lex-pp[code]:
(lex-pm (Pm-fmap xs) (Pm-fmap (ys::(-, -::ordered-comm-monoid-add) fmap)))

=
(let zs = xs ++f ys in

fmpred (λx v.
lookup0 xs x ≤ lookup0 ys x ∨
¬ fmpred (λy w. y ≥ x ∨ lookup0 xs y = lookup0 ys y) zs) zs

)
unfolding Let-def lex-pm-iff fmpred-iff Pm-fmap.rep-eq fmlookup-add fmlookup-dom-iff
apply (intro iffI)
apply (metis fmdom ′-notD fmlookup-default-if (2) fmlookup-dom ′-iff leD)

apply (metis eq-iff not-le fmdom ′-notD fmlookup-default-if (2) fmlookup-dom ′-iff)
done

lemma compute-dord-pp[code]:
(dord-pm ord (Pm-fmap xs) (Pm-fmap (ys::(′a::wellorder , ′b::ordered-comm-monoid-add)

fmap))) =
(let dx = deg-pm (Pm-fmap xs) in let dy = deg-pm (Pm-fmap ys) in

dx < dy ∨ (dx = dy ∧ ord (Pm-fmap xs) (Pm-fmap ys))
)

by (auto simp: Let-def deg-pm.rep-eq dord-fun-def dord-pm.rep-eq)
(simp-all add: Pm-fmap.abs-eq)

11.1.1 Computations
experiment begin

abbreviation X ≡ 0 ::nat
abbreviation Y ≡ 1 ::nat
abbreviation Z ≡ 2 ::nat

lemma
sparse0 [(X , 2 ::nat), (Z , 7)] + sparse0 [(Y , 3), (Z , 2)] = sparse0 [(X , 2), (Z ,

9), (Y , 3)]
dense0 [2 , 0 , 7 ::nat] + dense0 [0 , 3 , 2] = dense0 [2 , 3 , 9]
by eval+

lemma
sparse0 [(X , 2 ::nat), (Z , 7)] − sparse0 [(X , 2), (Z , 2)] = sparse0 [(Z , 5)]

241

by eval

lemma
lcs (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 7)]) (sparse0 [(Y , 3), (Z , 2)]) = sparse0

[(X , 2), (Y , 3), (Z , 7)]
by eval

lemma
(sparse0 [(X , 2 ::nat), (Z , 1)]) adds (sparse0 [(X , 3), (Y , 2), (Z , 1)])
by eval

lemma
lookup (sparse0 [(X , 2 ::nat), (Z , 3)]) X = 2
by eval

lemma
deg-pm (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 3), (X , 1)]) = 6
by eval

lemma
lex-pm (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 3)]) (sparse0 [(X , 4)])

by eval

lemma
lex-pm (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 3)]) (sparse0 [(X , 4)])
by eval

lemma
¬ (dlex-pm (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 3)]) (sparse0 [(X , 4)]))
by eval

lemma
dlex-pm (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 2)]) (sparse0 [(X , 5)])
by eval

lemma
¬ (drlex-pm (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 2)]) (sparse0 [(X , 5)]))
by eval

end

11.2 Implementation of Multivariate Polynomials as Associ-
ation Lists

11.2.1 Unordered Power-Products
lemma compute-monomial [code]:

monomial c t = (if c = 0 then 0 else sparse0 [(t, c)])
by (auto intro!: poly-mapping-eqI simp: sparse0-def fmlookup-default-def lookup-single)

242

lemma compute-one-poly-mapping [code]: 1 = sparse0 [(0 , 1)]
by (metis compute-monomial single-one zero-neq-one)

lemma compute-except-poly-mapping [code]:
except (Pm-fmap xs) S = Pm-fmap (fmfilter (λk. k /∈ S) xs)
by (auto simp: fmlookup-default-def lookup-except split: option.splits intro!: poly-mapping-eqI)

lemma lookup0-fmap-of-list-simps:
lookup0 (fmap-of-list ((x, y)#xs)) i = (if x = i then y else lookup0 (fmap-of-list

xs) i)
lookup0 (fmap-of-list []) i = 0
by (auto simp: fmlookup-default-def fmlookup-of-list split: if-splits option.splits)

lemma if-poly-mapping-eq-iff :
(if x = y then a else b) =
(if (∀ i∈keys x ∪ keys y. lookup x i = lookup y i) then a else b)

by simp (metis UnI1 UnI2 in-keys-iff poly-mapping-eqI)

lemma keys-add-eq: keys (a + b) = keys a ∪ keys b − {x ∈ keys a ∩ keys b. lookup
a x + lookup b x = 0}

by (auto simp: in-keys-iff lookup-add add-eq-0-iff)

context term-powerprod
begin

context includes fmap.lifting begin

lift-definition shift-keys:: ′a ⇒ (′t, ′b) fmap ⇒ (′t, ′b) fmap
is λt m x. if t addsp x then m (x 	 t) else None

proof −
fix t and f :: ′t ⇒ ′b option
assume finite (dom f)
have dom (λx. if t addsp x then f (x 	 t) else None) ⊆ (⊕) t ‘ dom f

by (auto simp: adds-pp-alt domI term-simps split: if-splits)
also have finite . . .

using ‹finite (dom f)› by simp
finally (finite-subset) show finite (dom (λx. if t addsp x then f (x 	 t) else

None)) .
qed

definition shift-map-keys t f m = fmmap f (shift-keys t m)

lemma compute-shift-map-keys[code]:
shift-map-keys t f (fmap-of-list xs) = fmap-of-list (map (λ(k, v). (t ⊕ k, f v)) xs)
unfolding shift-map-keys-def
apply transfer
subgoal for f t xs
proof −

show ?thesis

243

apply (rule ext)
subgoal for x

apply (cases t addsp x)
subgoal by (induction xs) (auto simp: adds-pp-alt term-simps)
subgoal by (induction xs) (auto simp: adds-pp-alt term-simps)
done

done
qed
done

end

lemmas [simp] = compute-zero-pp[symmetric]

lemma compute-monom-mult-poly-mapping [code]:
monom-mult c t (Pm-fmap xs) = Pm-fmap (if c = 0 then fmempty else shift-map-keys

t ((∗) c) xs)
proof (cases c = 0)

case True
hence monom-mult c t (Pm-fmap xs) = 0 using monom-mult-zero-left by simp
thus ?thesis using True

by simp
next

case False
thus ?thesis
by (auto simp: simp: fmlookup-default-def shift-map-keys-def lookup-monom-mult

adds-def group-eq-aux shift-keys.rep-eq
intro!: poly-mapping-eqI split: option.splits)

qed

lemma compute-mult-scalar-poly-mapping [code]:
Pm-fmap (fmap-of-list xs) � q = (case xs of ((t, c) # ys) ⇒
(monom-mult c t q + except (Pm-fmap (fmap-of-list ys)) {t} � q) | - ⇒
Pm-fmap fmempty)

proof (split list.splits, simp, intro conjI impI allI , goal-cases)
case (1 t c ys)
have Pm-fmap (fmupd t c (fmap-of-list ys)) = sparse0 [(t, c)] + except (sparse0

ys) {t}
by (auto simp: sparse0-def fmlookup-default-def lookup-add lookup-except

split: option.splits intro!: poly-mapping-eqI)
also have sparse0 [(t, c)] = monomial c t
by (auto simp: sparse0-def lookup-single fmlookup-default-def intro!: poly-mapping-eqI)

finally show ?case
by (simp add: algebra-simps mult-scalar-monomial sparse0-def)

qed

end

244

11.2.2 restore constructor view
named-theorems mpoly-simps

definition monomial1 pp = monomial 1 pp

lemma monomial1-Nil[mpoly-simps]: monomial1 0 = 1
by (simp add: monomial1-def)

lemma monomial-mp: monomial c (pp:: ′a⇒0nat) = Const0 c ∗ monomial1 pp
for c:: ′b::comm-semiring-1
by (auto intro!: poly-mapping-eqI simp: monomial1-def Const0-def mult-single)

lemma monomial1-add: (monomial1 (a + b)::(′a::monoid-add⇒0
′b::comm-semiring-1))

= monomial1 a ∗ monomial1 b
by (auto simp: monomial1-def mult-single)

lemma monomial1-monomial: monomial1 (monomial n v) = (Var0 v::-⇒0(
′b::comm-semiring-1))^n

by (auto intro!: poly-mapping-eqI simp: monomial1-def Var0-power lookup-single
when-def)

lemma Ball-True: (∀ x∈X . True) ←→ True by auto
lemma Collect-False: {x. False} = {} by simp

lemma Pm-fmap-sum: Pm-fmap f = (
∑

x ∈ fmdom ′ f . monomial (lookup0 f x)
x)

including fmap.lifting
by (auto intro!: poly-mapping-eqI sum.neutral

simp: fmlookup-default-def lookup-sum lookup-single when-def fmdom ′I
split: option.splits)

lemma MPoly-numeral: MPoly (numeral x) = numeral x
by (metis monom.abs-eq monom-numeral single-numeral)

lemma MPoly-power : MPoly (x ^ n) = MPoly x ^ n
by (induction n) (auto simp: one-mpoly-def times-mpoly.abs-eq[symmetric])

lemmas [mpoly-simps] = Pm-fmap-sum
add.assoc[symmetric] mult.assoc[symmetric]
add-0 add-0-right mult-1 mult-1-right mult-zero-left mult-zero-right power-0 power-one-right
fmdom ′-fmap-of-list
list.map fst-conv
sum.insert-remove finite-insert finite.emptyI
lookup0-fmap-of-list-simps
num.simps rel-simps
if-True if-False
insert-Diff-if insert-iff empty-Diff empty-iff
simp-thms
sum.empty
if-poly-mapping-eq-iff

245

keys-zero keys-one
keys-add-eq
keys-single
Un-insert-left Un-empty-left
Int-insert-left Int-empty-left
Collect-False
lookup-add lookup-single lookup-zero lookup-one
Set.ball-simps
when-simps
monomial-mp
monomial1-add
monomial1-monomial
Const0-one Const0-zero Const0-numeral Const0-minus
set-simps

A simproc for postprocessing with mpoly-simps and not polluting [code-post]:
simproc-setup passive mpoly (Pm-fmap mpp::(- ⇒0 nat) ⇒0 -) =

‹K (fn ctxt => fn ct =>
SOME (Simplifier .rewrite (put-simpset HOL-basic-ss ctxt addsimps
(Named-Theorems.get ctxt (named-theorems ‹mpoly-simps›))) ct))›

11.2.3 Ordered Power-Products
lemma foldl-assoc:

assumes
∧

x y z. f (f x y) z = f x (f y z)
shows foldl f (f a b) xs = f a (foldl f b xs)

proof (induct xs arbitrary: a b)
fix a b
show foldl f (f a b) [] = f a (foldl f b []) by simp

next
fix a b x xs
assume

∧
a b. foldl f (f a b) xs = f a (foldl f b xs)

from assms[of a b x] this[of a f b x]
show foldl f (f a b) (x # xs) = f a (foldl f b (x # xs)) unfolding foldl-Cons

by simp
qed

context ordered-term
begin

definition list-max:: ′t list ⇒ ′t where
list-max xs ≡ foldl ord-term-lin.max min-term xs

lemma list-max-Cons: list-max (x # xs) = ord-term-lin.max x (list-max xs)
unfolding list-max-def foldl-Cons

proof −
have foldl ord-term-lin.max (ord-term-lin.max x min-term) xs =

ord-term-lin.max x (foldl ord-term-lin.max min-term xs)
by (rule foldl-assoc, rule ord-term-lin.max.assoc)

from this ord-term-lin.max.commute[of min-term x]

246

show foldl ord-term-lin.max (ord-term-lin.max min-term x) xs =
ord-term-lin.max x (foldl ord-term-lin.max min-term xs) by simp

qed

lemma list-max-empty: list-max [] = min-term
unfolding list-max-def by simp

lemma list-max-in-list:
assumes xs 6= []
shows list-max xs ∈ set xs
using assms

proof (induct xs, simp)
fix x xs
assume IH : xs 6= [] =⇒ list-max xs ∈ set xs
show list-max (x # xs) ∈ set (x # xs)
proof (cases xs = [])

case True
hence list-max (x # xs) = ord-term-lin.max min-term x unfolding list-max-def

by simp
also have . . . = x unfolding ord-term-lin.max-def by (simp add: min-term-min)
finally show ?thesis by simp

next
assume xs 6= []
show ?thesis
proof (cases x �t list-max xs)

case True
hence list-max (x # xs) = list-max xs

unfolding list-max-Cons ord-term-lin.max-def by simp
thus ?thesis using IH [OF ‹xs 6= []›] by simp

next
case False
hence list-max (x # xs) = x unfolding list-max-Cons ord-term-lin.max-def

by simp
thus ?thesis by simp

qed
qed

qed

lemma list-max-maximum:
assumes a ∈ set xs
shows a �t (list-max xs)
using assms

proof (induct xs)
assume a ∈ set []
thus a �t list-max [] by simp

next
fix x xs
assume IH : a ∈ set xs =⇒ a �t list-max xs and a-in: a ∈ set (x # xs)
from a-in have a = x ∨ a ∈ set xs by simp

247

thus a �t list-max (x # xs) unfolding list-max-Cons
proof

assume a = x
thus a �t ord-term-lin.max x (list-max xs) by simp

next
assume a ∈ set xs
from IH [OF this] show a �t ord-term-lin.max x (list-max xs)

by (simp add: ord-term-lin.le-max-iff-disj)
qed

qed

lemma list-max-nonempty:
assumes xs 6= []
shows list-max xs = ord-term-lin.Max (set xs)

proof −
have fin: finite (set xs) by simp
have ord-term-lin.Max (set xs) = list-max xs
proof (rule ord-term-lin.Max-eqI [OF fin, of list-max xs])

fix y
assume y ∈ set xs
from list-max-maximum[OF this] show y �t list-max xs .

next
from list-max-in-list[OF assms] show list-max xs ∈ set xs .

qed
thus ?thesis by simp

qed

lemma in-set-clearjunk-iff-map-of-eq-Some:
(a, b) ∈ set (AList.clearjunk xs) ←→ map-of xs a = Some b
by (metis Some-eq-map-of-iff distinct-clearjunk map-of-clearjunk)

lemma Pm-fmap-of-list-eq-zero-iff :
Pm-fmap (fmap-of-list xs) = 0 ←→ [(k, v)←AList.clearjunk xs . v 6= 0] = []
by (auto simp: poly-mapping-eq-iff fmlookup-default-def fun-eq-iff

in-set-clearjunk-iff-map-of-eq-Some filter-empty-conv fmlookup-of-list split: op-
tion.splits)

lemma fmdom ′-clearjunk0 : fmdom ′ (clearjunk0 xs) = fmdom ′ xs − {x. fmlookup
xs x = Some 0}

by (metis (no-types, lifting) clearjunk0-def fmdom ′-drop-set fmfilter-alt-defs(2)
fmfilter-cong ′ mem-Collect-eq)

lemma compute-lt-poly-mapping[code]:
lt (Pm-fmap (fmap-of-list xs)) = list-max (map fst [(k, v) ← AList.clearjunk xs.

v 6= 0])
proof −

have keys (Pm-fmap (fmap-of-list xs)) = fst ‘ {x ∈ set (AList.clearjunk xs). case
x of (k, v) ⇒ v 6= 0}

by (auto simp: compute-keys-pp fmdom ′-clearjunk0 fmap-of-list.rep-eq

248

in-set-clearjunk-iff-map-of-eq-Some fmdom ′I image-iff fmlookup-dom ′-iff)
then show ?thesis

unfolding lt-def
by (auto simp: Pm-fmap-of-list-eq-zero-iff list-max-empty list-max-nonempty)

qed

lemma compute-higher-poly-mapping [code]:
higher (Pm-fmap xs) t = Pm-fmap (fmfilter (λk. t ≺t k) xs)
unfolding higher-def compute-except-poly-mapping
by (metis mem-Collect-eq ord-term-lin.leD ord-term-lin.leI)

lemma compute-lower-poly-mapping [code]:
lower (Pm-fmap xs) t = Pm-fmap (fmfilter (λk. k ≺t t) xs)
unfolding lower-def compute-except-poly-mapping
by (metis mem-Collect-eq ord-term-lin.leD ord-term-lin.leI)

end

lifting-update poly-mapping.lifting
lifting-forget poly-mapping.lifting

11.3 Computations
11.3.1 Scalar Polynomials
type-synonym ′a mpoly-tc = (nat ⇒0 nat)⇒0

′a

definition shift-map-keys-punit = term-powerprod.shift-map-keys to-pair-unit fst

lemma compute-shift-map-keys-punit [code]:
shift-map-keys-punit t f (fmap-of-list xs) = fmap-of-list (map (λ(k, v). (t + k, f

v)) xs)
by (simp add: punit.compute-shift-map-keys shift-map-keys-punit-def)

global-interpretation punit: term-powerprod to-pair-unit fst
rewrites punit.adds-term = (adds)
and punit.pp-of-term = (λx. x)
and punit.component-of-term = (λ-. ())
defines monom-mult-punit = punit.monom-mult
and mult-scalar-punit = punit.mult-scalar
apply (fact MPoly-Type-Class.punit.term-powerprod-axioms)
apply (fact MPoly-Type-Class.punit-adds-term)
apply (fact MPoly-Type-Class.punit-pp-of-term)
apply (fact MPoly-Type-Class.punit-component-of-term)
done

lemma compute-monom-mult-punit [code]:
monom-mult-punit c t (Pm-fmap xs) = Pm-fmap (if c = 0 then fmempty else

shift-map-keys-punit t ((∗) c) xs)
by (simp add: monom-mult-punit-def punit.compute-monom-mult-poly-mapping

249

shift-map-keys-punit-def)

lemma compute-mult-scalar-punit [code]:
Pm-fmap (fmap-of-list xs) ∗ q = (case xs of ((t, c) # ys) ⇒
(monom-mult-punit c t q + except (Pm-fmap (fmap-of-list ys)) {t} ∗ q) | - ⇒
Pm-fmap fmempty)

by (simp only: punit-mult-scalar [symmetric] punit.compute-mult-scalar-poly-mapping
monom-mult-punit-def)

locale trivariate0-rat
begin

abbreviation X ::rat mpoly-tc where X ≡ Var0 (0 ::nat)
abbreviation Y ::rat mpoly-tc where Y ≡ Var0 (1 ::nat)
abbreviation Z ::rat mpoly-tc where Z ≡ Var0 (2 ::nat)

end

locale trivariate
begin

abbreviation X ≡ Var 0
abbreviation Y ≡ Var 1
abbreviation Z ≡ Var 2

end

experiment begin interpretation trivariate0-rat .

lemma
keys (X2 ∗ Z ^ 3 + 2 ∗ Y ^ 3 ∗ Z2) =
{monomial 2 0 + monomial 3 2 , monomial 3 1 + monomial 2 2}

by eval

lemma
keys (X2 ∗ Z ^ 3 + 2 ∗ Y ^ 3 ∗ Z2) =
{monomial 2 0 + monomial 3 2 , monomial 3 1 + monomial 2 2}

by eval

lemma
− 1 ∗ X2 ∗ Z ^ 7 + − 2 ∗ Y ^ 3 ∗ Z2 = − X2 ∗ Z ^ 7 + − 2 ∗ Y ^ 3 ∗ Z2

by eval

lemma
X2 ∗ Z ^ 7 + 2 ∗ Y ^ 3 ∗ Z2 + X2 ∗ Z ^ 4 + − 2 ∗ Y ^ 3 ∗ Z2 = X2 ∗ Z ^

7 + X2 ∗ Z ^ 4
by eval

lemma

250

X2 ∗ Z ^ 7 + 2 ∗ Y ^ 3 ∗ Z2 − X2 ∗ Z ^ 4 + − 2 ∗ Y ^ 3 ∗ Z2 =
X2 ∗ Z ^ 7 − X2 ∗ Z ^ 4

by eval

lemma
lookup (X2 ∗ Z ^ 7 + 2 ∗ Y ^ 3 ∗ Z2 + 2) (sparse0 [(0 , 2), (2 , 7)]) = 1
by eval

lemma
X2 ∗ Z ^ 7 + 2 ∗ Y ^ 3 ∗ Z2 6=
X2 ∗ Z ^ 4 + − 2 ∗ Y ^ 3 ∗ Z2

by eval

lemma
0 ∗ X^2 ∗ Z^7 + 0 ∗ Y^3∗Z2 = 0
by eval

lemma
monom-mult-punit 3 (sparse0 [(1 , 2 ::nat)]) (X2 ∗ Z + 2 ∗ Y ^ 3 ∗ Z2) =

3 ∗ Y 2 ∗ Z ∗ X2 + 6 ∗ Y ^ 5 ∗ Z2

by eval

lemma
monomial (−4) (sparse0 [(0 , 2 ::nat)]) = − 4 ∗ X2

by eval

lemma monomial (0 ::rat) (sparse0 [(0 ::nat, 2 ::nat)]) = 0
by eval

lemma
(X2 ∗ Z + 2 ∗ Y ^ 3 ∗ Z2) ∗ (X2 ∗ Z ^ 3 + − 2 ∗ Y ^ 3 ∗ Z2) =

X ^ 4 ∗ Z ^ 4 + − 2 ∗ X2 ∗ Z ^ 3 ∗ Y ^ 3 +
− 4 ∗ Y ^ 6 ∗ Z ^ 4 + 2 ∗ Y ^ 3 ∗ Z ^ 5 ∗ X2

by eval

end

11.3.2 Vector-Polynomials
type-synonym ′a vmpoly-tc = ((nat ⇒0 nat) × nat) ⇒0

′a

definition shift-map-keys-pprod = pprod.shift-map-keys

global-interpretation pprod: term-powerprod λx. x λx. x
rewrites pprod.pp-of-term = fst
and pprod.component-of-term = snd
defines splus-pprod = pprod.splus
and monom-mult-pprod = pprod.monom-mult

251

and mult-scalar-pprod = pprod.mult-scalar
and adds-term-pprod = pprod.adds-term
apply (fact MPoly-Type-Class.pprod.term-powerprod-axioms)
apply (fact MPoly-Type-Class.pprod-pp-of-term)
apply (fact MPoly-Type-Class.pprod-component-of-term)
done

lemma compute-adds-term-pprod [code-unfold]:
adds-term-pprod u v = (snd u = snd v ∧ adds-pp-add-linorder (fst u) (fst v))
by (simp add: adds-term-pprod-def pprod.adds-term-def adds-pp-add-linorder-def)

lemma compute-splus-pprod [code]: splus-pprod t (s, i) = (t + s, i)
by (simp add: splus-pprod-def pprod.splus-def)

lemma compute-shift-map-keys-pprod [code]:
shift-map-keys-pprod t f (fmap-of-list xs) = fmap-of-list (map (λ(k, v). (splus-pprod

t k, f v)) xs)
by (simp add: pprod.compute-shift-map-keys shift-map-keys-pprod-def splus-pprod-def)

lemma compute-monom-mult-pprod [code]:
monom-mult-pprod c t (Pm-fmap xs) = Pm-fmap (if c = 0 then fmempty else

shift-map-keys-pprod t ((∗) c) xs)
by (simp add: monom-mult-pprod-def pprod.compute-monom-mult-poly-mapping

shift-map-keys-pprod-def)

lemma compute-mult-scalar-pprod [code]:
mult-scalar-pprod (Pm-fmap (fmap-of-list xs)) q = (case xs of ((t, c) # ys) ⇒
(monom-mult-pprod c t q + mult-scalar-pprod (except (Pm-fmap (fmap-of-list

ys)) {t}) q) | - ⇒
Pm-fmap fmempty)

by (simp only: mult-scalar-pprod-def pprod.compute-mult-scalar-poly-mapping monom-mult-pprod-def)

definition Vec0 :: nat ⇒ ((′a ⇒0 nat) ⇒0
′b) ⇒ ((′a ⇒0 nat) × nat) ⇒0

′b::semiring-1 where
Vec0 i p = mult-scalar-pprod p (Poly-Mapping.single (0 , i) 1)

experiment begin interpretation trivariate0-rat .

lemma
keys (Vec0 0 (X2 ∗ Z ^ 3) + Vec0 1 (2 ∗ Y ^ 3 ∗ Z2)) =
{(sparse0 [(0 , 2), (2 , 3)], 0), (sparse0 [(1 , 3), (2 , 2)], 1)}

by eval

lemma
keys (Vec0 0 (X2 ∗ Z ^ 3) + Vec0 2 (2 ∗ Y ^ 3 ∗ Z2)) =
{(sparse0 [(0 , 2), (2 , 3)], 0), (sparse0 [(1 , 3), (2 , 2)], 2)}

by eval

lemma

252

Vec0 1 (X2 ∗ Z ^ 7 + 2 ∗ Y ^ 3 ∗ Z2) + Vec0 3 (X2 ∗ Z ^ 4) + Vec0 1 (− 2
∗ Y ^ 3 ∗ Z2) =

Vec0 1 (X2 ∗ Z ^ 7) + Vec0 3 (X2 ∗ Z ^ 4)
by eval

lemma
lookup (Vec0 0 (X2 ∗ Z ^ 7) + Vec0 1 (2 ∗ Y ^ 3 ∗ Z2 + 2)) (sparse0 [(0 , 2),

(2 , 7)], 0) = 1
by eval

lemma
lookup (Vec0 0 (X2 ∗ Z ^ 7) + Vec0 1 (2 ∗ Y ^ 3 ∗ Z2 + 2)) (sparse0 [(0 , 2),

(2 , 7)], 1) = 0
by eval

lemma
Vec0 0 (0 ∗ X^2 ∗ Z^7) + Vec0 1 (0 ∗ Y^3∗Z2) = 0
by eval

lemma
monom-mult-pprod 3 (sparse0 [(1 , 2 ::nat)]) (Vec0 0 (X2 ∗ Z) + Vec0 1 (2 ∗ Y

^ 3 ∗ Z2)) =
Vec0 0 (3 ∗ Y 2 ∗ Z ∗ X2) + Vec0 1 (6 ∗ Y ^ 5 ∗ Z2)

by eval

end

11.4 Code setup for type MPoly
postprocessing from Var0, Const0 to Var , Const.
lemmas [code-post] =

plus-mpoly.abs-eq[symmetric]
times-mpoly.abs-eq[symmetric]
MPoly-numeral
MPoly-power
one-mpoly-def [symmetric]
Var .abs-eq[symmetric]
Const.abs-eq[symmetric]

instantiation mpoly::({equal, zero})equal begin

lift-definition equal-mpoly:: ′a mpoly ⇒ ′a mpoly ⇒ bool is HOL.equal .

instance proof standard qed (transfer , rule equal-eq)

end

experiment begin interpretation trivariate .

253

lemmas [mpoly-simps] = plus-mpoly.abs-eq

lemma content-primitive (4 ∗ X ∗ Y^2 ∗ Z^3 + 6 ∗ X2 ∗ Y^4 + 8 ∗ X2 ∗ Y^5)
=

(2 ::int, 2 ∗ X ∗ Y 2 ∗ Z ^ 3 + 3 ∗ X2 ∗ Y ^ 4 + 4 ∗ X2 ∗ Y ^ 5)
by eval

end

end

theory PP-Type
imports Power-Products

begin

For code generation, we must introduce a copy of type ′a ⇒0
′b for

power-products.
typedef (overloaded) (′a, ′b) pp = UNIV ::(′a ⇒0

′b) set
morphisms mapping-of PP ..

setup-lifting type-definition-pp

lift-definition pp-of-fun :: (′a ⇒ ′b) ⇒ (′a, ′b::zero) pp
is Abs-poly-mapping .

11.5 lookup-pp, keys-pp and single-pp
lift-definition lookup-pp :: (′a, ′b::zero) pp ⇒ ′a ⇒ ′b is lookup .

lift-definition keys-pp :: (′a, ′b::zero) pp ⇒ ′a set is keys .

lift-definition single-pp :: ′a ⇒ ′b ⇒ (′a, ′b::zero) pp is Poly-Mapping.single .

lemma lookup-pp-of-fun: finite {x. f x 6= 0} =⇒ lookup-pp (pp-of-fun f) = f
by (transfer , rule Abs-poly-mapping-inverse, simp)

lemma pp-of-lookup: pp-of-fun (lookup-pp t) = t
by (transfer , fact lookup-inverse)

lemma pp-eqI : (
∧

u. lookup-pp s u = lookup-pp t u) =⇒ s = t
by (transfer , rule poly-mapping-eqI)

lemma pp-eq-iff : (s = t) ←→ (lookup-pp s = lookup-pp t)
by (auto intro: pp-eqI)

lemma keys-pp-iff : x ∈ keys-pp t ←→ (lookup-pp t x 6= 0)
by (simp add: in-keys-iff keys-pp.rep-eq lookup-pp.rep-eq)

254

lemma pp-eqI ′:
assumes

∧
u. u ∈ keys-pp s ∪ keys-pp t =⇒ lookup-pp s u = lookup-pp t u

shows s = t
proof (rule pp-eqI)

fix u
show lookup-pp s u = lookup-pp t u
proof (cases u ∈ keys-pp s ∪ keys-pp t)

case True
thus ?thesis by (rule assms)

next
case False
thus ?thesis by (simp add: keys-pp-iff)

qed
qed

lemma lookup-single-pp: lookup-pp (single-pp x e) y = (e when x = y)
by (transfer , simp only: lookup-single)

11.6 Additive Structure
instantiation pp :: (type, zero) zero
begin

lift-definition zero-pp :: (′a, ′b) pp is 0 :: ′a ⇒0
′b .

lemma lookup-zero-pp [simp]: lookup-pp 0 = 0
by (transfer , simp add: lookup-zero-fun)

instance ..

end

lemma single-pp-zero [simp]: single-pp x 0 = 0
by (rule pp-eqI , simp add: lookup-single-pp)

instantiation pp :: (type, monoid-add) monoid-add
begin

lift-definition plus-pp :: (′a, ′b) pp ⇒ (′a, ′b) pp ⇒ (′a, ′b) pp is (+)::(′a ⇒0
′b)

⇒ - .

lemma lookup-plus-pp: lookup-pp (s + t) = lookup-pp s + lookup-pp t
by (transfer , simp add: lookup-plus-fun)

instance by intro-classes (transfer , simp add: fun-eq-iff add.assoc)+

end

lemma single-pp-plus: single-pp x a + single-pp x b = single-pp x (a + b)

255

by (rule pp-eqI , simp add: lookup-single-pp lookup-plus-pp when-def)

instance pp :: (type, comm-monoid-add) comm-monoid-add
by intro-classes (transfer , simp add: fun-eq-iff ac-simps)+

instantiation pp :: (type, cancel-comm-monoid-add) cancel-comm-monoid-add
begin

lift-definition minus-pp :: (′a, ′b) pp ⇒ (′a, ′b) pp ⇒ (′a, ′b) pp is (−)::(′a ⇒0
′b) ⇒ - .

lemma lookup-minus-pp: lookup-pp (s − t) = lookup-pp s − lookup-pp t
by (transfer , simp only: lookup-minus-fun)

instance by intro-classes (transfer , simp add: fun-eq-iff diff-diff-add)+

end

11.7 ′a ⇒0
′b belongs to class comm-powerprod

instance poly-mapping :: (type, cancel-comm-monoid-add) comm-powerprod
by standard

11.8 ′a ⇒0
′b belongs to class ninv-comm-monoid-add

instance poly-mapping :: (type, ninv-comm-monoid-add) ninv-comm-monoid-add
proof (standard, transfer)

fix s t:: ′a ⇒ ′b
assume (λk. s k + t k) = (λ-. 0)
hence s + t = 0 by (simp only: plus-fun-def zero-fun-def)
hence s = 0 by (rule plus-eq-zero)
thus s = (λ-. 0) by (simp only: zero-fun-def)

qed

11.9 (′a, ′b) pp belongs to class lcs-powerprod
lemma adds-pp-iff : (s adds t) ←→ (mapping-of s adds mapping-of t)

unfolding adds-def by (transfer , fact refl)

instantiation pp :: (type, add-linorder) lcs-powerprod
begin

lift-definition lcs-pp :: (′a, ′b) pp⇒ (′a, ′b) pp⇒ (′a, ′b) pp is lcs-powerprod-class.lcs
.

lemma lookup-lcs-pp: lookup-pp (lcs s t) x = max (lookup-pp s x) (lookup-pp t x)
by (transfer , simp add: lookup-lcs-fun lcs-fun-def)

instance
apply (intro-classes, simp-all only: adds-pp-iff)

256

subgoal by (transfer , rule adds-lcs)
subgoal by (transfer , elim lcs-adds)
subgoal by (transfer , rule lcs-comm)
done

end

11.10 (′a, ′b) pp belongs to class ulcs-powerprod
instance pp :: (type, add-linorder-min) ulcs-powerprod by intro-classes (transfer ,
elim plus-eq-zero)

11.11 Dickson’s lemma for power-products in finitely many
indeterminates

lemma almost-full-on-pp-iff :
almost-full-on (adds) A ←→ almost-full-on (adds) (mapping-of ‘ A) (is ?l ←→

?r)
proof

assume ?l
with - show ?r
proof (rule almost-full-on-hom)

fix x y :: (′a, ′b) pp
assume x adds y
thus mapping-of x adds mapping-of y by (simp only: adds-pp-iff)

qed
next

assume ?r
hence almost-full-on (λx y. mapping-of x adds mapping-of y) A

using subset-refl by (rule almost-full-on-map)
thus ?l by (simp only: adds-pp-iff [symmetric])

qed

lift-definition varnum-pp :: (′a::countable, ′b::zero) pp ⇒ nat is varnum {} .

lemma dickson-grading-varnum-pp:
dickson-grading (varnum-pp::(′a::countable, ′b::add-wellorder) pp ⇒ nat)

proof (rule dickson-gradingI)
fix s t :: (′a, ′b) pp
show varnum-pp (s + t) = max (varnum-pp s) (varnum-pp t) by (transfer , rule

varnum-plus)
next

fix m::nat
show almost-full-on (adds) {x::(′a, ′b) pp. varnum-pp x ≤ m} unfolding al-

most-full-on-pp-iff
proof (transfer , simp)

fix m::nat
from dickson-grading-varnum-empty show almost-full-on (adds) {x:: ′a ⇒0

′b.
varnum {} x ≤ m}

257

by (rule dickson-gradingD2)
qed

qed

instance pp :: (countable, add-wellorder) graded-dickson-powerprod
by (standard, rule, fact dickson-grading-varnum-pp)

instance pp :: (finite, add-wellorder) dickson-powerprod
proof
have eq: range mapping-of = UNIV by (rule surjI , rule PP-inverse, rule UNIV-I)
show almost-full-on (adds) (UNIV ::(′a, ′b) pp set) by (simp add: almost-full-on-pp-iff

eq dickson)
qed

11.12 Lexicographic Term Order
lift-definition lex-pp :: (′a, ′b) pp ⇒ (′a::linorder , ′b::{zero,linorder}) pp ⇒ bool
is lex-pm .

lift-definition lex-pp-strict :: (′a, ′b) pp ⇒ (′a::linorder , ′b::{zero,linorder}) pp ⇒
bool is lex-pm-strict .

lemma lex-pp-alt: lex-pp s t = (s = t ∨ (∃ x. lookup-pp s x < lookup-pp t x ∧
(∀ y<x. lookup-pp s y = lookup-pp t y)))

by (transfer , fact lex-pm-alt)

lemma lex-pp-refl: lex-pp s s
by (transfer , fact lex-pm-refl)

lemma lex-pp-antisym: lex-pp s t =⇒ lex-pp t s =⇒ s = t
by (transfer , intro lex-pm-antisym)

lemma lex-pp-trans: lex-pp s t =⇒ lex-pp t u =⇒ lex-pp s u
by (transfer , rule lex-pm-trans)

lemma lex-pp-lin: lex-pp s t ∨ lex-pp t s
by (transfer , fact lex-pm-lin)

lemma lex-pp-lin ′: ¬ lex-pp t s =⇒ lex-pp s t
using lex-pp-lin by blast — Better suited for auto.

corollary lex-pp-strict-alt [code]:
lex-pp-strict s t = (¬ lex-pp t s) for s t::(-, -::ordered-comm-monoid-add) pp
by (transfer , fact lex-pm-strict-alt)

lemma lex-pp-zero-min: lex-pp 0 s for s::(-, -::add-linorder-min) pp
by (transfer , fact lex-pm-zero-min)

lemma lex-pp-plus-monotone: lex-pp s t =⇒ lex-pp (s + u) (t + u)

258

for s t::(-, -::{ordered-comm-monoid-add, ordered-ab-semigroup-add-imp-le}) pp
by (transfer , intro lex-pm-plus-monotone)

lemma lex-pp-plus-monotone ′: lex-pp s t =⇒ lex-pp (u + s) (u + t)
for s t::(-, -::{ordered-comm-monoid-add, ordered-ab-semigroup-add-imp-le}) pp
unfolding add.commute[of u] by (rule lex-pp-plus-monotone)

instantiation pp :: (linorder , {ordered-comm-monoid-add, linorder}) linorder
begin

definition less-eq-pp :: (′a, ′b) pp ⇒ (′a, ′b) pp ⇒ bool
where less-eq-pp = lex-pp

definition less-pp :: (′a, ′b) pp ⇒ (′a, ′b) pp ⇒ bool
where less-pp = lex-pp-strict

instance by intro-classes (auto simp: less-eq-pp-def less-pp-def lex-pp-refl lex-pp-strict-alt
intro: lex-pp-antisym lex-pp-lin ′ elim: lex-pp-trans)

end

11.13 Degree
lift-definition deg-pp :: (′a, ′b::comm-monoid-add) pp ⇒ ′b is deg-pm .

lemma deg-pp-alt: deg-pp s = sum (lookup-pp s) (keys-pp s)
by (transfer , transfer , simp add: deg-fun-def supp-fun-def)

lemma deg-pp-zero [simp]: deg-pp 0 = 0
by (transfer , fact deg-pm-zero)

lemma deg-pp-eq-0-iff [simp]: deg-pp s = 0 ←→ s = 0 for s::(′a, ′b::add-linorder-min)
pp

by (transfer , fact deg-pm-eq-0-iff)

lemma deg-pp-plus: deg-pp (s + t) = deg-pp s + deg-pp (t::(′a, ′b::comm-monoid-add)
pp)

by (transfer , fact deg-pm-plus)

lemma deg-pp-single: deg-pp (single-pp x k) = k
by (transfer , fact deg-pm-single)

11.14 Degree-Lexicographic Term Order
lift-definition dlex-pp :: (′a::linorder , ′b::{ordered-comm-monoid-add,linorder})
pp ⇒ (′a, ′b) pp ⇒ bool

is dlex-pm .

lift-definition dlex-pp-strict :: (′a::linorder , ′b::{ordered-comm-monoid-add,linorder})
pp ⇒ (′a, ′b) pp ⇒ bool

259

is dlex-pm-strict .

lemma dlex-pp-alt: dlex-pp s t ←→ (deg-pp s < deg-pp t ∨ (deg-pp s = deg-pp t
∧ lex-pp s t))

by transfer (simp only: dlex-pm-def dord-pm-alt)

lemma dlex-pp-refl: dlex-pp s s
by (transfer) (fact dlex-pm-refl)

lemma dlex-pp-antisym: dlex-pp s t =⇒ dlex-pp t s =⇒ s = t
by (transfer , elim dlex-pm-antisym)

lemma dlex-pp-trans: dlex-pp s t =⇒ dlex-pp t u =⇒ dlex-pp s u
by (transfer , rule dlex-pm-trans)

lemma dlex-pp-lin: dlex-pp s t ∨ dlex-pp t s
by (transfer , fact dlex-pm-lin)

corollary dlex-pp-strict-alt [code]: dlex-pp-strict s t = (¬ dlex-pp t s)
by (transfer , fact dlex-pm-strict-alt)

lemma dlex-pp-zero-min: dlex-pp 0 s
for s t::(-, -::add-linorder-min) pp
by (transfer , fact dlex-pm-zero-min)

lemma dlex-pp-plus-monotone: dlex-pp s t =⇒ dlex-pp (s + u) (t + u)
for s t::(-, -::{ordered-ab-semigroup-add-imp-le, ordered-cancel-comm-monoid-add})

pp
by (transfer , rule dlex-pm-plus-monotone)

11.15 Degree-Reverse-Lexicographic Term Order
lift-definition drlex-pp :: (′a::linorder , ′b::{ordered-comm-monoid-add,linorder})
pp ⇒ (′a, ′b) pp ⇒ bool

is drlex-pm .

lift-definition drlex-pp-strict :: (′a::linorder , ′b::{ordered-comm-monoid-add,linorder})
pp ⇒ (′a, ′b) pp ⇒ bool

is drlex-pm-strict .

lemma drlex-pp-alt: drlex-pp s t ←→ (deg-pp s < deg-pp t ∨ (deg-pp s = deg-pp t
∧ lex-pp t s))

by transfer (simp only: drlex-pm-def dord-pm-alt)

lemma drlex-pp-refl: drlex-pp s s
by (transfer , fact drlex-pm-refl)

lemma drlex-pp-antisym: drlex-pp s t =⇒ drlex-pp t s =⇒ s = t
by (transfer , rule drlex-pm-antisym)

260

lemma drlex-pp-trans: drlex-pp s t =⇒ drlex-pp t u =⇒ drlex-pp s u
by (transfer , rule drlex-pm-trans)

lemma drlex-pp-lin: drlex-pp s t ∨ drlex-pp t s
by (transfer , fact drlex-pm-lin)

corollary drlex-pp-strict-alt [code]: drlex-pp-strict s t = (¬ drlex-pp t s)
by (transfer , fact drlex-pm-strict-alt)

lemma drlex-pp-zero-min: drlex-pp 0 s
for s t::(-, -::add-linorder-min) pp
by (transfer , fact drlex-pm-zero-min)

lemma drlex-pp-plus-monotone: drlex-pp s t =⇒ drlex-pp (s + u) (t + u)
for s t::(-, -::{ordered-ab-semigroup-add-imp-le, ordered-cancel-comm-monoid-add})

pp
by (transfer , rule drlex-pm-plus-monotone)

end

12 Associative Lists with Sorted Keys
theory OAlist

imports Deriving.Comparator
begin

We define the type of ordered associative lists (oalist). An oalist is an
associative list (i. e. a list of pairs) such that the keys are distinct and
sorted wrt. some linear order relation, and no key is mapped to 0. The
latter invariant allows to implement various functions operating on oalists
more efficiently.

The ordering of the keys in an oalist xs is encoded as an additional
parameter of xs. This means that oalists may be ordered wrt. different
orderings, even if they are of the same type. Operations operating on more
than one oalists, like map2-val, typically ensure that the orderings of their
arguments are identical by re-ordering one argument wrt. the order relation
of the other. This, however, implies that equality of order relations must be
effectively decidable if executable code is to be generated.

12.1 Preliminaries
fun min-list-param :: (′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ ′a where

min-list-param rel (x # xs) = (case xs of [] ⇒ x | - ⇒ (let m = min-list-param
rel xs in if rel x m then x else m))

lemma min-list-param-in:

261

assumes xs 6= []
shows min-list-param rel xs ∈ set xs
using assms

proof (induct xs)
case Nil
thus ?case by simp

next
case (Cons x xs)
show ?case
proof (simp add: min-list-param.simps[of rel x xs] Let-def del: min-list-param.simps

set-simps(2) split: list.split,
intro conjI impI allI , simp, simp)

fix y ys
assume xs: xs = y # ys
have min-list-param rel (y # ys) = min-list-param rel xs by (simp only: xs)
also have ... ∈ set xs by (rule Cons(1), simp add: xs)
also have ... ⊆ set (x # y # ys) by (auto simp: xs)
finally show min-list-param rel (y # ys) ∈ set (x # y # ys) .

qed
qed

lemma min-list-param-minimal:
assumes transp rel and

∧
x y. x ∈ set xs =⇒ y ∈ set xs =⇒ rel x y ∨ rel y x

and z ∈ set xs
shows rel (min-list-param rel xs) z
using assms(2 , 3)

proof (induct xs)
case Nil
from Nil(2) show ?case by simp

next
case (Cons x xs)
from Cons(3) have disj1 : z = x ∨ z ∈ set xs by simp
have x ∈ set (x # xs) by simp
hence disj2 : rel x z ∨ rel z x using Cons(3) by (rule Cons(2))
have ∗: rel (min-list-param rel xs) z if z ∈ set xs using - that
proof (rule Cons(1))

fix a b
assume a ∈ set xs and b ∈ set xs
hence a ∈ set (x # xs) and b ∈ set (x # xs) by simp-all
thus rel a b ∨ rel b a by (rule Cons(2))

qed
show ?case
proof (simp add: min-list-param.simps[of rel x xs] Let-def del: min-list-param.simps

set-simps(2) split: list.split,
intro conjI impI allI)

assume xs = []
with disj1 disj2 show rel x z by simp

next
fix y ys

262

assume xs = y # ys and rel x (min-list-param rel (y # ys))
hence rel x (min-list-param rel xs) by simp
from disj1 show rel x z
proof

assume z = x
thus ?thesis using disj2 by simp

next
assume z ∈ set xs
hence rel (min-list-param rel xs) z by (rule ∗)
with assms(1) ‹rel x (min-list-param rel xs)› show ?thesis by (rule transpD)

qed
next

fix y ys
assume xs: xs = y # ys and ¬ rel x (min-list-param rel (y # ys))
from disj1 show rel (min-list-param rel (y # ys)) z
proof

assume z = x
have min-list-param rel (y # ys) ∈ set (y # ys) by (rule min-list-param-in,

simp)
hence min-list-param rel (y # ys) ∈ set (x # xs) by (simp add: xs)

with ‹x ∈ set (x # xs)› have rel x (min-list-param rel (y # ys)) ∨ rel
(min-list-param rel (y # ys)) x

by (rule Cons(2))
with ‹¬ rel x (min-list-param rel (y # ys))› have rel (min-list-param rel (y

ys)) x by simp
thus ?thesis by (simp only: ‹z = x›)

next
assume z ∈ set xs
hence rel (min-list-param rel xs) z by (rule ∗)
thus ?thesis by (simp only: xs)

qed
qed

qed

definition comp-of-ord :: (′a ⇒ ′a ⇒ bool) ⇒ ′a comparator where
comp-of-ord le x y = (if le x y then if x = y then Eq else Lt else Gt)

lemma comp-of-ord-eq-comp-of-ords:
assumes antisymp le
shows comp-of-ord le = comp-of-ords le (λx y. le x y ∧ ¬ le y x)
by (intro ext, auto simp: comp-of-ord-def comp-of-ords-def intro: assms anti-

sympD)

lemma comparator-converse:
assumes comparator cmp
shows comparator (λx y. cmp y x)

proof −
from assms interpret comp?: comparator cmp .
show ?thesis by (unfold-locales, auto simp: comp.eq comp.sym intro: comp-trans)

263

qed

lemma comparator-composition:
assumes comparator cmp and inj f
shows comparator (λx y. cmp (f x) (f y))

proof −
from assms(1) interpret comp?: comparator cmp .
from assms(2) have ∗: x = y if f x = f y for x y using that by (rule injD)
show ?thesis by (unfold-locales, auto simp: comp.sym comp.eq ∗ intro: comp-trans)

qed

12.2 Type key-order
typedef ′a key-order = {compare :: ′a comparator . comparator compare}

morphisms key-compare Abs-key-order
proof −

from well-order-on obtain r where well-order-on (UNIV :: ′a set) r ..
hence linear-order r by (simp only: well-order-on-def)
hence lin: (x, y) ∈ r ∨ (y, x) ∈ r for x y
by (metis Diff-iff Linear-order-in-diff-Id UNIV-I ‹well-order r› well-order-on-Field)

have antisym: (x, y) ∈ r =⇒ (y, x) ∈ r =⇒ x = y for x y
by (meson ‹linear-order r› antisymD linear-order-on-def partial-order-on-def)

have trans: (x, y) ∈ r =⇒ (y, z) ∈ r =⇒ (x, z) ∈ r for x y z
by (meson ‹linear-order r› linear-order-on-def order-on-defs(1) partial-order-on-def

trans-def)
define comp where comp = (λx y. if (x, y) ∈ r then if (y, x) ∈ r then Eq else

Lt else Gt)
show ?thesis
proof (rule, simp)

show comparator comp
proof (standard, simp-all add: comp-def split: if-splits, intro impI)

fix x y
assume (x, y) ∈ r and (y, x) ∈ r
thus x = y by (rule antisym)

next
fix x y
assume (x, y) /∈ r
with lin show (y, x) ∈ r by blast

next
fix x y z
assume (y, x) /∈ r and (z, y) /∈ r
assume (x, y) ∈ r and (y, z) ∈ r
hence (x, z) ∈ r by (rule trans)
moreover have (z, x) /∈ r
proof

assume (z, x) ∈ r
with ‹(x, z) ∈ r› have x = z by (rule antisym)
from ‹(z, y) /∈ r› ‹(x, y) ∈ r› show False unfolding ‹x = z› ..

qed

264

ultimately show (z, x) /∈ r ∧ ((z, x) /∈ r −→ (x, z) ∈ r) by simp
qed

qed
qed

lemma comparator-key-compare [simp, intro!]: comparator (key-compare ko)
using key-compare[of ko] by simp

instantiation key-order :: (type) equal
begin

definition equal-key-order :: ′a key-order ⇒ ′a key-order ⇒ bool where equal-key-order
= (=)

instance by (standard, simp add: equal-key-order-def)

end

setup-lifting type-definition-key-order

instantiation key-order :: (type) uminus
begin

lift-definition uminus-key-order :: ′a key-order ⇒ ′a key-order is λc x y. c y x
by (fact comparator-converse)

instance ..

end

lift-definition le-of-key-order :: ′a key-order ⇒ ′a⇒ ′a⇒ bool is λcmp. le-of-comp
cmp .

lift-definition lt-of-key-order :: ′a key-order ⇒ ′a ⇒ ′a ⇒ bool is λcmp. lt-of-comp
cmp .

definition key-order-of-ord :: (′a ⇒ ′a ⇒ bool) ⇒ ′a key-order
where key-order-of-ord ord = Abs-key-order (comp-of-ord ord)

lift-definition key-order-of-le :: ′a::linorder key-order is comparator-of
by (fact comparator-of)

interpretation key-order-lin: linorder le-of-key-order ko lt-of-key-order ko
proof transfer

fix comp:: ′a comparator
assume comparator comp
then interpret comp: comparator comp .
show class.linorder comp.le comp.lt by (fact comp.linorder)

qed

265

lemma le-of-key-order-alt: le-of-key-order ko x y = (key-compare ko x y 6= Gt)
by (transfer , simp add: comparator .nGt-le-conv)

lemma lt-of-key-order-alt: lt-of-key-order ko x y = (key-compare ko x y = Lt)
by (transfer , meson comparator .Lt-lt-conv)

lemma key-compare-Gt: key-compare ko x y = Gt ←→ key-compare ko y x = Lt
by (transfer , meson comparator .nGt-le-conv comparator .nLt-le-conv)

lemma key-compare-Eq: key-compare ko x y = Eq ←→ x = y
by (transfer , simp add: comparator .eq)

lemma key-compare-same [simp]: key-compare ko x x = Eq
by (simp add: key-compare-Eq)

lemma uminus-key-compare [simp]: invert-order (key-compare ko x y) = key-compare
ko y x

by (transfer , simp add: comparator .sym)

lemma key-compare-uminus [simp]: key-compare (− ko) x y = key-compare ko y x
by (transfer , rule refl)

lemma uminus-key-order-sameD:
assumes − ko = (ko:: ′a key-order)
shows x = (y:: ′a)

proof (rule ccontr)
assume x 6= y
hence key-compare ko x y 6= Eq by (simp add: key-compare-Eq)
hence key-compare ko x y 6= invert-order (key-compare ko x y)

by (metis invert-order .elims order .distinct(5))
also have invert-order (key-compare ko x y) = key-compare (− ko) x y by simp
finally have − ko 6= ko by (auto simp del: key-compare-uminus)
thus False using assms ..

qed

lemma key-compare-key-order-of-ord:
assumes antisymp ord and transp ord and

∧
x y. ord x y ∨ ord y x

shows key-compare (key-order-of-ord ord) = (λx y. if ord x y then if x = y then
Eq else Lt else Gt)
proof −

have eq: key-compare (key-order-of-ord ord) = comp-of-ord ord
unfolding key-order-of-ord-def comp-of-ord-eq-comp-of-ords[OF assms(1)]

proof (rule Abs-key-order-inverse, simp, rule comp-of-ords, unfold-locales)
fix x
from assms(3) show ord x x by blast

next
fix x y z
assume ord x y and ord y z

266

with assms(2) show ord x z by (rule transpD)
next

fix x y
assume ord x y and ord y x
with assms(1) show x = y by (rule antisympD)

qed (rule refl, rule assms(3))
have ∗: x = y if ord x y and ord y x for x y using assms(1) that by (rule

antisympD)
show ?thesis by (rule, rule, auto simp: eq comp-of-ord-def intro: ∗)

qed

lemma key-compare-key-order-of-le:
key-compare key-order-of-le = (λx y. if x < y then Lt else if x = y then Eq else

Gt)
by (transfer , intro ext, fact comparator-of-def)

12.3 Invariant in Context comparator
context comparator
begin

definition oalist-inv-raw :: (′a × ′b::zero) list ⇒ bool
where oalist-inv-raw xs ←→ (0 /∈ snd ‘ set xs ∧ sorted-wrt lt (map fst xs))

lemma oalist-inv-rawI :
assumes 0 /∈ snd ‘ set xs and sorted-wrt lt (map fst xs)
shows oalist-inv-raw xs
unfolding oalist-inv-raw-def using assms unfolding fst-conv snd-conv by blast

lemma oalist-inv-rawD1 :
assumes oalist-inv-raw xs
shows 0 /∈ snd ‘ set xs
using assms unfolding oalist-inv-raw-def fst-conv by blast

lemma oalist-inv-rawD2 :
assumes oalist-inv-raw xs
shows sorted-wrt lt (map fst xs)
using assms unfolding oalist-inv-raw-def fst-conv snd-conv by blast

lemma oalist-inv-raw-Nil: oalist-inv-raw []
by (simp add: oalist-inv-raw-def)

lemma oalist-inv-raw-singleton: oalist-inv-raw [(k, v)] ←→ (v 6= 0)
by (auto simp: oalist-inv-raw-def)

lemma oalist-inv-raw-ConsI :
assumes oalist-inv-raw xs and v 6= 0 and xs 6= [] =⇒ lt k (fst (hd xs))
shows oalist-inv-raw ((k, v) # xs)

proof (rule oalist-inv-rawI)

267

from assms(1) have 0 /∈ snd ‘ set xs by (rule oalist-inv-rawD1)
with assms(2) show 0 /∈ snd ‘ set ((k, v) # xs) by simp

next
show sorted-wrt lt (map fst ((k, v) # xs))
proof (cases xs = [])

case True
thus ?thesis by simp

next
case False
then obtain k ′ v ′ xs ′ where xs: xs = (k ′, v ′) # xs ′ by (metis list.exhaust

prod.exhaust)
from assms(3)[OF False] have lt k k ′ by (simp add: xs)

moreover from assms(1) have sorted-wrt lt (map fst xs) by (rule oal-
ist-inv-rawD2)

ultimately show sorted-wrt lt (map fst ((k, v) # xs))
by (simp add: xs sorted-wrt2 [OF transp-on-less] del: sorted-wrt.simps)

qed
qed

lemma oalist-inv-raw-ConsD1 :
assumes oalist-inv-raw (x # xs)
shows oalist-inv-raw xs

proof (rule oalist-inv-rawI)
from assms have 0 /∈ snd ‘ set (x # xs) by (rule oalist-inv-rawD1)
thus 0 /∈ snd ‘ set xs by simp

next
from assms have sorted-wrt lt (map fst (x # xs)) by (rule oalist-inv-rawD2)
thus sorted-wrt lt (map fst xs) by simp

qed

lemma oalist-inv-raw-ConsD2 :
assumes oalist-inv-raw ((k, v) # xs)
shows v 6= 0

proof −
from assms have 0 /∈ snd ‘ set ((k, v) # xs) by (rule oalist-inv-rawD1)
thus ?thesis by auto

qed

lemma oalist-inv-raw-ConsD3 :
assumes oalist-inv-raw ((k, v) # xs) and k ′ ∈ fst ‘ set xs
shows lt k k ′

proof −
from assms(2) obtain x where x ∈ set xs and k ′ = fst x by fastforce
from assms(1) have sorted-wrt lt (map fst ((k, v) # xs)) by (rule oalist-inv-rawD2)
hence ∀ x∈set xs. lt k (fst x) by simp
hence lt k (fst x) using ‹x ∈ set xs› ..
thus ?thesis by (simp only: ‹k ′ = fst x›)

qed

268

lemma oalist-inv-raw-tl:
assumes oalist-inv-raw xs
shows oalist-inv-raw (tl xs)

proof (rule oalist-inv-rawI)
from assms have 0 /∈ snd ‘ set xs by (rule oalist-inv-rawD1)
thus 0 /∈ snd ‘ set (tl xs) by (metis (no-types, lifting) image-iff list.set-sel(2)

tl-Nil)
next

show sorted-wrt lt (map fst (tl xs))
by (metis hd-Cons-tl oalist-inv-rawD2 oalist-inv-raw-ConsD1 assms tl-Nil)

qed

lemma oalist-inv-raw-filter :
assumes oalist-inv-raw xs
shows oalist-inv-raw (filter P xs)

proof (rule oalist-inv-rawI)
from assms have 0 /∈ snd ‘ set xs by (rule oalist-inv-rawD1)
thus 0 /∈ snd ‘ set (filter P xs) by auto

next
from assms have sorted-wrt lt (map fst xs) by (rule oalist-inv-rawD2)
thus sorted-wrt lt (map fst (filter P xs)) by (induct xs, simp, simp)

qed

lemma oalist-inv-raw-map:
assumes oalist-inv-raw xs

and
∧

a. snd (f a) = 0 =⇒ snd a = 0
and

∧
a b. comp (fst (f a)) (fst (f b)) = comp (fst a) (fst b)

shows oalist-inv-raw (map f xs)
proof (rule oalist-inv-rawI)

show 0 /∈ snd ‘ set (map f xs)
proof (simp, rule)

assume 0 ∈ snd ‘ f ‘ set xs
then obtain a where a ∈ set xs and snd (f a) = 0 by fastforce
from this(2) have snd a = 0 by (rule assms(2))
from assms(1) have 0 /∈ snd ‘ set xs by (rule oalist-inv-rawD1)
moreover from ‹a ∈ set xs› have 0 ∈ snd ‘ set xs by (simp add: ‹snd a =

0 ›[symmetric])
ultimately show False ..

qed
next

from assms(1) have sorted-wrt lt (map fst xs) by (rule oalist-inv-rawD2)
hence sorted-wrt (λx y. comp (fst x) (fst y) = Lt) xs

by (simp only: sorted-wrt-map Lt-lt-conv)
thus sorted-wrt lt (map fst (map f xs))

by (simp add: sorted-wrt-map Lt-lt-conv[symmetric] assms(3))
qed

lemma oalist-inv-raw-induct [consumes 1 , case-names Nil Cons]:
assumes oalist-inv-raw xs

269

assumes P []
assumes

∧
k v xs. oalist-inv-raw ((k, v) # xs) =⇒ oalist-inv-raw xs =⇒ v 6= 0

=⇒
(
∧

k ′. k ′ ∈ fst ‘ set xs =⇒ lt k k ′) =⇒ P xs =⇒ P ((k, v) # xs)
shows P xs
using assms(1)

proof (induct xs)
case Nil
from assms(2) show ?case .

next
case (Cons x xs)
obtain k v where x: x = (k, v) by fastforce
from Cons(2) have oalist-inv-raw ((k, v) # xs) and oalist-inv-raw xs and v 6=

0 unfolding x
by (this, rule oalist-inv-raw-ConsD1 , rule oalist-inv-raw-ConsD2)

moreover from Cons(2) have lt k k ′ if k ′ ∈ fst ‘ set xs for k ′ using that
unfolding x by (rule oalist-inv-raw-ConsD3)

moreover from ‹oalist-inv-raw xs› have P xs by (rule Cons(1))
ultimately show ?case unfolding x by (rule assms(3))

qed

12.4 Operations on Lists of Pairs in Context comparator
type-synonym (in −) (′a, ′b) comp-opt = ′a ⇒ ′b ⇒ (order option)

definition (in −) lookup-dflt :: (′a × ′b) list ⇒ ′a ⇒ ′b::zero
where lookup-dflt xs k = (case map-of xs k of Some v ⇒ v | None ⇒ 0)

lookup-dflt is only an auxiliary function needed for proving some lemmas.
fun lookup-pair :: (′a × ′b) list ⇒ ′a ⇒ ′b::zero
where

lookup-pair [] x = 0 |
lookup-pair ((k, v) # xs) x =
(case comp x k of

Lt ⇒ 0
| Eq ⇒ v
| Gt ⇒ lookup-pair xs x)

fun update-by-pair :: (′a × ′b) ⇒ (′a × ′b) list ⇒ (′a × ′b::zero) list
where

update-by-pair (k, v) [] = (if v = 0 then [] else [(k, v)])
| update-by-pair (k, v) ((k ′, v ′) # xs) =
(case comp k k ′ of Lt ⇒ (if v = 0 then (k ′, v ′) # xs else (k, v) # (k ′, v ′) # xs)

| Eq ⇒ (if v = 0 then xs else (k, v) # xs)
| Gt ⇒ (k ′, v ′) # update-by-pair (k, v) xs)

definition sort-oalist :: (′a × ′b) list ⇒ (′a × ′b::zero) list
where sort-oalist xs = foldr update-by-pair xs []

270

fun update-by-fun-pair :: ′a ⇒ (′b ⇒ ′b) ⇒ (′a × ′b) list ⇒ (′a × ′b::zero) list
where

update-by-fun-pair k f [] = (let v = f 0 in if v = 0 then [] else [(k, v)])
| update-by-fun-pair k f ((k ′, v ′) # xs) =
(case comp k k ′ of Lt ⇒ (let v = f 0 in if v = 0 then (k ′, v ′) # xs else (k, v) #

(k ′, v ′) # xs)
| Eq ⇒ (let v = f v ′ in if v = 0 then xs else (k, v) # xs)
| Gt ⇒ (k ′, v ′) # update-by-fun-pair k f xs)

definition update-by-fun-gr-pair :: ′a ⇒ (′b⇒ ′b)⇒ (′a × ′b) list ⇒ (′a × ′b::zero)
list

where update-by-fun-gr-pair k f xs =
(if xs = [] then
(let v = f 0 in if v = 0 then [] else [(k, v)])

else if comp k (fst (last xs)) = Gt then
(let v = f 0 in if v = 0 then xs else xs @ [(k, v)])

else
update-by-fun-pair k f xs

)

fun (in −) map-pair :: ((′a × ′b) ⇒ (′a × ′c)) ⇒ (′a × ′b::zero) list ⇒ (′a ×
′c::zero) list
where

map-pair f [] = []
| map-pair f (kv # xs) =

(let (k, v) = f kv; aux = map-pair f xs in if v = 0 then aux else (k, v) # aux)

The difference between map and map-pair is that the latter removes 0
values, whereas the former does not.
abbreviation (in −) map-val-pair :: (′a ⇒ ′b ⇒ ′c) ⇒ (′a × ′b::zero) list ⇒ (′a
× ′c::zero) list

where map-val-pair f ≡ map-pair (λ(k, v). (k, f k v))

fun map2-val-pair :: (′a ⇒ ′b ⇒ ′c ⇒ ′d) ⇒ ((′a × ′b) list ⇒ (′a × ′d) list) ⇒
((′a × ′c) list ⇒ (′a × ′d) list) ⇒
(′a × ′b::zero) list ⇒ (′a × ′c::zero) list ⇒ (′a × ′d::zero) list

where
map2-val-pair f g h xs [] = g xs
| map2-val-pair f g h [] ys = h ys
| map2-val-pair f g h ((kx, vx) # xs) ((ky, vy) # ys) =

(case comp kx ky of
Lt ⇒ (let v = f kx vx 0 ; aux = map2-val-pair f g h xs ((ky, vy) # ys)

in if v = 0 then aux else (kx, v) # aux)
| Eq ⇒ (let v = f kx vx vy; aux = map2-val-pair f g h xs ys in if v = 0

then aux else (kx, v) # aux)
| Gt ⇒ (let v = f ky 0 vy; aux = map2-val-pair f g h ((kx, vx) # xs) ys

in if v = 0 then aux else (ky, v) # aux))

271

fun lex-ord-pair :: (′a ⇒ ((′b, ′c) comp-opt)) ⇒ ((′a × ′b::zero) list, (′a × ′c::zero)
list) comp-opt
where

lex-ord-pair f [] [] = Some Eq|
lex-ord-pair f [] ((ky, vy) # ys) =
(let aux = f ky 0 vy in if aux = Some Eq then lex-ord-pair f [] ys else aux)|

lex-ord-pair f ((kx, vx) # xs) [] =
(let aux = f kx vx 0 in if aux = Some Eq then lex-ord-pair f xs [] else aux)|

lex-ord-pair f ((kx, vx) # xs) ((ky, vy) # ys) =
(case comp kx ky of

Lt ⇒ (let aux = f kx vx 0 in if aux = Some Eq then lex-ord-pair f xs
((ky, vy) # ys) else aux)

| Eq ⇒ (let aux = f kx vx vy in if aux = Some Eq then lex-ord-pair f xs
ys else aux)

| Gt ⇒ (let aux = f ky 0 vy in if aux = Some Eq then lex-ord-pair f ((kx,
vx) # xs) ys else aux))

fun prod-ord-pair :: (′a ⇒ ′b ⇒ ′c ⇒ bool) ⇒ (′a × ′b::zero) list ⇒ (′a × ′c::zero)
list ⇒ bool
where

prod-ord-pair f [] [] = True|
prod-ord-pair f [] ((ky, vy) # ys) = (f ky 0 vy ∧ prod-ord-pair f [] ys)|
prod-ord-pair f ((kx, vx) # xs) [] = (f kx vx 0 ∧ prod-ord-pair f xs [])|
prod-ord-pair f ((kx, vx) # xs) ((ky, vy) # ys) =
(case comp kx ky of

Lt ⇒ (f kx vx 0 ∧ prod-ord-pair f xs ((ky, vy) # ys))
| Eq ⇒ (f kx vx vy ∧ prod-ord-pair f xs ys)
| Gt ⇒ (f ky 0 vy ∧ prod-ord-pair f ((kx, vx) # xs) ys))

prod-ord-pair is actually just a special case of lex-ord-pair, as proved
below in lemma prod-ord-pair-eq-lex-ord-pair.

12.4.1 lookup-pair
lemma lookup-pair-eq-0 :

assumes oalist-inv-raw xs
shows lookup-pair xs k = 0 ←→ (k /∈ fst ‘ set xs)
using assms

proof (induct xs rule: oalist-inv-raw-induct)
case Nil
show ?case by simp

next
case (Cons k ′ v ′ xs)
show ?case
proof (simp add: Cons(3) eq split: order .splits, rule, simp-all only: atomize-imp[symmetric])

assume comp k k ′ = Lt
hence k 6= k ′ by auto
moreover have k /∈ fst ‘ set xs
proof

272

assume k ∈ fst ‘ set xs
hence lt k ′ k by (rule Cons(4))
with ‹comp k k ′ = Lt› show False by (simp add: Lt-lt-conv)

qed
ultimately show k 6= k ′ ∧ k /∈ fst ‘ set xs ..

next
assume comp k k ′ = Gt
hence k 6= k ′ by auto

thus (lookup-pair xs k = 0) = (k 6= k ′ ∧ k /∈ fst ‘ set xs) by (simp add: Cons(5))
qed

qed

lemma lookup-pair-eq-value:
assumes oalist-inv-raw xs and v 6= 0
shows lookup-pair xs k = v ←→ ((k, v) ∈ set xs)
using assms(1)

proof (induct xs rule: oalist-inv-raw-induct)
case Nil
from assms(2) show ?case by simp

next
case (Cons k ′ v ′ xs)
have ∗: (k ′, u) /∈ set xs for u
proof

assume (k ′, u) ∈ set xs
hence fst (k ′, u) ∈ fst ‘ set xs by fastforce
hence k ′ ∈ fst ‘ set xs by simp
hence lt k ′ k ′ by (rule Cons(4))
thus False by (simp add: lt-of-key-order-alt[symmetric])

qed
show ?case
proof (simp add: assms(2) Cons(5) eq split: order .split, intro conjI impI)

assume comp k k ′ = Lt
show (k, v) /∈ set xs
proof

assume (k, v) ∈ set xs
hence fst (k, v) ∈ fst ‘ set xs by fastforce
hence k ∈ fst ‘ set xs by simp
hence lt k ′ k by (rule Cons(4))
with ‹comp k k ′ = Lt› show False by (simp add: Lt-lt-conv)

qed
qed (auto simp: ∗)

qed

lemma lookup-pair-eq-valueI :
assumes oalist-inv-raw xs and (k, v) ∈ set xs
shows lookup-pair xs k = v

proof −
from assms(2) have v ∈ snd ‘ set xs by force
moreover from assms(1) have 0 /∈ snd ‘ set xs by (rule oalist-inv-rawD1)

273

ultimately have v 6= 0 by blast
with assms show ?thesis by (simp add: lookup-pair-eq-value)

qed

lemma lookup-dflt-eq-lookup-pair :
assumes oalist-inv-raw xs
shows lookup-dflt xs = lookup-pair xs

proof (rule, simp add: lookup-dflt-def split: option.split, intro conjI impI allI)
fix k
assume map-of xs k = None
with assms show lookup-pair xs k = 0 by (simp add: lookup-pair-eq-0 map-of-eq-None-iff)

next
fix k v
assume map-of xs k = Some v
hence (k, v) ∈ set xs by (rule map-of-SomeD)
with assms have lookup-pair xs k = v by (rule lookup-pair-eq-valueI)
thus v = lookup-pair xs k by (rule HOL.sym)

qed

lemma lookup-pair-inj:
assumes oalist-inv-raw xs and oalist-inv-raw ys and lookup-pair xs = lookup-pair

ys
shows xs = ys
using assms

proof (induct xs arbitrary: ys rule: oalist-inv-raw-induct)
case Nil
thus ?case
proof (induct ys rule: oalist-inv-raw-induct)

case Nil
show ?case by simp

next
case (Cons k ′ v ′ ys)
have v ′ = lookup-pair ((k ′, v ′) # ys) k ′ by simp
also have ... = lookup-pair [] k ′ by (simp only: Cons(6))
also have ... = 0 by simp
finally have v ′ = 0 .
with Cons(3) show ?case ..

qed
next

case ∗: (Cons k v xs)
from ∗(6 , 7) show ?case
proof (induct ys rule: oalist-inv-raw-induct)

case Nil
have v = lookup-pair ((k, v) # xs) k by simp
also have ... = lookup-pair [] k by (simp only: Nil)
also have ... = 0 by simp
finally have v = 0 .
with ∗(3) show ?case ..

next

274

case (Cons k ′ v ′ ys)
show ?case
proof (cases comp k k ′)

case Lt
hence ¬ lt k ′ k by (simp add: Lt-lt-conv)
with Cons(4) have k /∈ fst ‘ set ys by blast
moreover from Lt have k 6= k ′ by auto
ultimately have k /∈ fst ‘ set ((k ′, v ′) # ys) by simp
hence 0 = lookup-pair ((k ′, v ′) # ys) k

by (simp add: lookup-pair-eq-0 [OF Cons(1)] del: lookup-pair .simps)
also have ... = lookup-pair ((k, v) # xs) k by (simp only: Cons(6))
also have ... = v by simp
finally have v = 0 by simp
with ∗(3) show ?thesis ..

next
case Eq
hence k ′ = k by (simp only: eq)
have v ′ = lookup-pair ((k ′, v ′) # ys) k ′ by simp
also have ... = lookup-pair ((k, v) # xs) k by (simp only: Cons(6) ‹k ′ = k›)
also have ... = v by simp
finally have v ′ = v .
moreover note ‹k ′ = k›
moreover from Cons(2) have xs = ys
proof (rule ∗(5))

show lookup-pair xs = lookup-pair ys
proof

fix k0
show lookup-pair xs k0 = lookup-pair ys k0
proof (cases lt k k0)

case True
hence eq: comp k0 k = Gt

by (simp add: Gt-lt-conv)
have lookup-pair xs k0 = lookup-pair ((k, v) # xs) k0 by (simp add: eq)

also have ... = lookup-pair ((k, v ′) # ys) k0 by (simp only: Cons(6)
‹k ′ = k›)

also have ... = lookup-pair ys k0 by (simp add: eq)
finally show ?thesis .

next
case False
with ∗(4) have k0 /∈ fst ‘ set xs by blast

with ∗(2) have eq: lookup-pair xs k0 = 0 by (simp add: lookup-pair-eq-0)
from False Cons(4) have k0 /∈ fst ‘ set ys unfolding ‹k ′ = k› by blast

with Cons(2) have lookup-pair ys k0 = 0 by (simp add: lookup-pair-eq-0)
with eq show ?thesis by simp

qed
qed

qed
ultimately show ?thesis by simp

next

275

case Gt
hence ¬ lt k k ′ by (simp add: Gt-lt-conv)
with ∗(4) have k ′ /∈ fst ‘ set xs by blast
moreover from Gt have k ′ 6= k by auto
ultimately have k ′ /∈ fst ‘ set ((k, v) # xs) by simp
hence 0 = lookup-pair ((k, v) # xs) k ′

by (simp add: lookup-pair-eq-0 [OF ∗(1)] del: lookup-pair .simps)
also have ... = lookup-pair ((k ′, v ′) # ys) k ′ by (simp only: Cons(6))
also have ... = v ′ by simp
finally have v ′ = 0 by simp
with Cons(3) show ?thesis ..

qed
qed

qed

lemma lookup-pair-tl:
assumes oalist-inv-raw xs
shows lookup-pair (tl xs) k = (if (∀ k ′∈fst ‘ set xs. le k k ′) then 0 else lookup-pair

xs k)
proof −

from assms have 1 : oalist-inv-raw (tl xs) by (rule oalist-inv-raw-tl)
show ?thesis
proof (split if-split, intro conjI impI)

assume ∗: ∀ x∈fst ‘ set xs. le k x
show lookup-pair (tl xs) k = 0
proof (simp add: lookup-pair-eq-0 [OF 1], rule)

assume k-in: k ∈ fst ‘ set (tl xs)
hence xs 6= [] by auto

then obtain k ′ v ′ ys where xs: xs = (k ′, v ′) # ys using prod.exhaust
list.exhaust by metis

have k ′ ∈ fst ‘ set xs unfolding xs by fastforce
with ∗ have le k k ′ ..
from assms have oalist-inv-raw ((k ′, v ′) # ys) by (simp only: xs)
moreover from k-in have k ∈ fst ‘ set ys by (simp add: xs)
ultimately have lt k ′ k by (rule oalist-inv-raw-ConsD3)
with ‹le k k ′› show False by simp

qed
next

assume ¬ (∀ k ′∈fst ‘ set xs. le k k ′)
hence ∃ x∈fst ‘ set xs. ¬ le k x by simp
then obtain k ′′ where k ′′-in: k ′′ ∈ fst ‘ set xs and ¬ le k k ′′ ..
from this(2) have lt k ′′ k by simp
from k ′′-in have xs 6= [] by auto

then obtain k ′ v ′ ys where xs: xs = (k ′, v ′) # ys using prod.exhaust
list.exhaust by metis

from k ′′-in have k ′′ = k ′ ∨ k ′′ ∈ fst ‘ set ys by (simp add: xs)
hence lt k ′ k
proof

assume k ′′ = k ′

276

with ‹lt k ′′ k› show ?thesis by simp
next

from assms have oalist-inv-raw ((k ′, v ′) # ys) by (simp only: xs)
moreover assume k ′′ ∈ fst ‘ set ys
ultimately have lt k ′ k ′′ by (rule oalist-inv-raw-ConsD3)
thus ?thesis using ‹lt k ′′ k› by (rule less-trans)

qed
hence comp k k ′ = Gt by (simp add: Gt-lt-conv)

thus lookup-pair (tl xs) k = lookup-pair xs k by (simp add: xs lt-of-key-order-alt)
qed

qed

lemma lookup-pair-tl ′:
assumes oalist-inv-raw xs
shows lookup-pair (tl xs) k = (if k = fst (hd xs) then 0 else lookup-pair xs k)

proof −
from assms have 1 : oalist-inv-raw (tl xs) by (rule oalist-inv-raw-tl)
show ?thesis
proof (split if-split, intro conjI impI)

assume k: k = fst (hd xs)
show lookup-pair (tl xs) k = 0
proof (simp add: lookup-pair-eq-0 [OF 1], rule)

assume k-in: k ∈ fst ‘ set (tl xs)
hence xs 6= [] by auto

then obtain k ′ v ′ ys where xs: xs = (k ′, v ′) # ys using prod.exhaust
list.exhaust by metis

from assms have oalist-inv-raw ((k ′, v ′) # ys) by (simp only: xs)
moreover from k-in have k ′ ∈ fst ‘ set ys by (simp add: k xs)
ultimately have lt k ′ k ′ by (rule oalist-inv-raw-ConsD3)
thus False by simp

qed
next

assume k 6= fst (hd xs)
show lookup-pair (tl xs) k = lookup-pair xs k
proof (cases xs = [])

case True
show ?thesis by (simp add: True)

next
case False

then obtain k ′ v ′ ys where xs: xs = (k ′, v ′) # ys using prod.exhaust
list.exhaust by metis

show ?thesis
proof (simp add: xs eq Lt-lt-conv split: order .split, intro conjI impI)

from ‹k 6= fst (hd xs)› have k 6= k ′ by (simp add: xs)
moreover assume k = k ′

ultimately show lookup-pair ys k ′ = v ′ ..
next

assume lt k k ′

from assms have oalist-inv-raw ys unfolding xs by (rule oalist-inv-raw-ConsD1)

277

moreover have k /∈ fst ‘ set ys
proof

assume k ∈ fst ‘ set ys
with assms have lt k ′ k unfolding xs by (rule oalist-inv-raw-ConsD3)
with ‹lt k k ′› show False by simp

qed
ultimately show lookup-pair ys k = 0 by (simp add: lookup-pair-eq-0)

qed
qed

qed
qed

lemma lookup-pair-filter :
assumes oalist-inv-raw xs
shows lookup-pair (filter P xs) k = (let v = lookup-pair xs k in if P (k, v) then

v else 0)
using assms

proof (induct xs rule: oalist-inv-raw-induct)
case Nil
show ?case by simp

next
case (Cons k ′ v ′ xs)
show ?case
proof (simp add: Cons(5) Let-def eq split: order .split, intro conjI impI)

show lookup-pair xs k ′ = 0
proof (simp add: lookup-pair-eq-0 Cons(2), rule)

assume k ′ ∈ fst ‘ set xs
hence lt k ′ k ′ by (rule Cons(4))
thus False by simp

qed
next

assume comp k k ′ = Lt
hence lt k k ′ by (simp only: Lt-lt-conv)
show lookup-pair xs k = 0
proof (simp add: lookup-pair-eq-0 Cons(2), rule)

assume k ∈ fst ‘ set xs
hence lt k ′ k by (rule Cons(4))
with ‹lt k k ′› show False by simp

qed
qed

qed

lemma lookup-pair-map:
assumes oalist-inv-raw xs

and
∧

k ′. snd (f (k ′, 0)) = 0
and

∧
a b. comp (fst (f a)) (fst (f b)) = comp (fst a) (fst b)

shows lookup-pair (map f xs) (fst (f (k, v))) = snd (f (k, lookup-pair xs k))
using assms(1)

proof (induct xs rule: oalist-inv-raw-induct)

278

case Nil
show ?case by (simp add: assms(2))

next
case (Cons k ′ v ′ xs)
obtain k ′′ v ′′ where f : f (k ′, v ′) = (k ′′, v ′′) by fastforce
have comp k k ′ = comp (fst (f (k, v))) (fst (f (k ′, v ′)))

by (simp add: assms(3))
also have ... = comp (fst (f (k, v))) k ′′ by (simp add: f)
finally have eq0 : comp k k ′ = comp (fst (f (k, v))) k ′′ .
show ?case
proof (simp add: assms(2) split: order .split, intro conjI impI , simp add: eq)

assume k = k ′

hence lookup-pair (f (k ′, v ′) # map f xs) (fst (f (k ′, v))) =
lookup-pair (f (k ′, v ′) # map f xs) (fst (f (k, v))) by simp

also have ... = snd (f (k ′, v ′)) by (simp add: f eq0 [symmetric], simp add: ‹k
= k ′›)

finally show lookup-pair (f (k ′, v ′) # map f xs) (fst (f (k ′, v))) = snd (f (k ′,
v ′)) .

qed (simp-all add: f eq0 Cons(5))
qed

lemma lookup-pair-Cons:
assumes oalist-inv-raw ((k, v) # xs)
shows lookup-pair ((k, v) # xs) k0 = (if k = k0 then v else lookup-pair xs k0)

proof (simp add: eq split: order .split, intro impI)
assume comp k0 k = Lt
from assms have inv: oalist-inv-raw xs by (rule oalist-inv-raw-ConsD1)
show lookup-pair xs k0 = 0
proof (simp only: lookup-pair-eq-0 [OF inv], rule)

assume k0 ∈ fst ‘ set xs
with assms have lt k k0 by (rule oalist-inv-raw-ConsD3)
with ‹comp k0 k = Lt› show False by (simp add: Lt-lt-conv)

qed
qed

lemma lookup-pair-single: lookup-pair [(k, v)] k0 = (if k = k0 then v else 0)
by (simp add: eq split: order .split)

12.4.2 update-by-pair
lemma set-update-by-pair-subset: set (update-by-pair kv xs) ⊆ insert kv (set xs)
proof (induct xs arbitrary: kv)

case Nil
obtain k v where kv: kv = (k, v) by fastforce
thus ?case by simp

next
case (Cons x xs)
obtain k ′ v ′ where x: x = (k ′, v ′) by fastforce
obtain k v where kv: kv = (k, v) by fastforce

279

have 1 : set xs ⊆ insert a (insert b (set xs)) for a b by auto
have 2 : set (update-by-pair kv xs) ⊆ insert kv (insert (k ′, v ′) (set xs)) for kv

using Cons by blast
show ?case by (simp add: x kv 1 2 split: order .split)

qed

lemma update-by-pair-sorted:
assumes sorted-wrt lt (map fst xs)
shows sorted-wrt lt (map fst (update-by-pair kv xs))
using assms

proof (induct xs arbitrary: kv)
case Nil
obtain k v where kv: kv = (k, v) by fastforce
thus ?case by simp

next
case (Cons x xs)
obtain k ′ v ′ where x: x = (k ′, v ′) by fastforce
obtain k v where kv: kv = (k, v) by fastforce
from Cons(2) have 1 : sorted-wrt lt (k ′ # (map fst xs)) by (simp add: x)
hence 2 : sorted-wrt lt (map fst xs) using sorted-wrt.elims(3) by fastforce
hence 3 : sorted-wrt lt (map fst (update-by-pair (k, u) xs)) for u by (rule

Cons(1))
have 4 : sorted-wrt lt (k ′ # map fst (update-by-pair (k, u) xs))

if ∗: comp k k ′ = Gt for u
proof (simp, intro conjI ballI)

fix y
assume y ∈ set (update-by-pair (k, u) xs)
also from set-update-by-pair-subset have ... ⊆ insert (k, u) (set xs) .
finally have y = (k, u) ∨ y ∈ set xs by simp
thus lt k ′ (fst y)
proof

assume y = (k, u)
hence fst y = k by simp
with ∗ show ?thesis by (simp only: Gt-lt-conv)

next
from 1 have 5 : ∀ y ∈ fst ‘ set xs. lt k ′ y by simp
assume y ∈ set xs
hence fst y ∈ fst ‘ set xs by simp
with 5 show ?thesis ..

qed
qed (fact 3)
show ?case

by (simp add: kv x 1 2 4 sorted-wrt2 split: order .split del: sorted-wrt.simps,
intro conjI impI , simp add: 1 eq del: sorted-wrt.simps, simp add: Lt-lt-conv)

qed

lemma update-by-pair-not-0 :
assumes 0 /∈ snd ‘ set xs
shows 0 /∈ snd ‘ set (update-by-pair kv xs)

280

using assms
proof (induct xs arbitrary: kv)

case Nil
obtain k v where kv: kv = (k, v) by fastforce
thus ?case by simp

next
case (Cons x xs)
obtain k ′ v ′ where x: x = (k ′, v ′) by fastforce
obtain k v where kv: kv = (k, v) by fastforce
from Cons(2) have 1 : v ′ 6= 0 and 2 : 0 /∈ snd ‘ set xs by (auto simp: x)
from 2 have 3 : 0 /∈ snd ‘ set (update-by-pair (k, u) xs) for u by (rule Cons(1))
show ?case by (auto simp: kv x 1 2 3 split: order .split)

qed

corollary oalist-inv-raw-update-by-pair :
assumes oalist-inv-raw xs
shows oalist-inv-raw (update-by-pair kv xs)

proof (rule oalist-inv-rawI)
from assms have 0 /∈ snd ‘ set xs by (rule oalist-inv-rawD1)
thus 0 /∈ snd ‘ set (update-by-pair kv xs) by (rule update-by-pair-not-0)

next
from assms have sorted-wrt lt (map fst xs) by (rule oalist-inv-rawD2)
thus sorted-wrt lt (map fst (update-by-pair kv xs)) by (rule update-by-pair-sorted)

qed

lemma update-by-pair-less:
assumes v 6= 0 and xs = [] ∨ comp k (fst (hd xs)) = Lt
shows update-by-pair (k, v) xs = (k, v) # xs
using assms(2)

proof (induct xs)
case Nil

from assms(1) show ?case by simp
next

case (Cons x xs)
obtain k ′ v ′ where x: x = (k ′, v ′) by fastforce
from Cons(2) have comp k k ′ = Lt by (simp add: x)
with assms(1) show ?case by (simp add: x)

qed

lemma lookup-pair-update-by-pair :
assumes oalist-inv-raw xs
shows lookup-pair (update-by-pair (k1 , v) xs) k2 = (if k1 = k2 then v else

lookup-pair xs k2)
using assms

proof (induct xs arbitrary: v rule: oalist-inv-raw-induct)
case Nil
show ?case by (simp split: order .split, simp add: eq)

next
case (Cons k ′ v ′ xs)

281

show ?case
proof (split if-split, intro conjI impI)

assume k1 = k2
with Cons(5) have eq0 : lookup-pair (update-by-pair (k2 , u) xs) k2 = u for u

by (simp del: update-by-pair .simps)
show lookup-pair (update-by-pair (k1 , v) ((k ′, v ′) # xs)) k2 = v
proof (simp add: ‹k1 = k2 › eq0 split: order .split, intro conjI impI)

assume comp k2 k ′ = Eq
hence ¬ lt k ′ k2 by (simp add: eq)
with Cons(4) have k2 /∈ fst ‘ set xs by auto
thus lookup-pair xs k2 = 0 using Cons(2) by (simp add: lookup-pair-eq-0)

qed
next

assume k1 6= k2
with Cons(5) have eq0 : lookup-pair (update-by-pair (k1 , u) xs) k2 = lookup-pair

xs k2 for u
by (simp del: update-by-pair .simps)

have ∗: lookup-pair xs k2 = 0 if lt k2 k ′

proof −
from ‹lt k2 k ′› have ¬ lt k ′ k2 by auto
with Cons(4) have k2 /∈ fst ‘ set xs by auto
thus lookup-pair xs k2 = 0 using Cons(2) by (simp add: lookup-pair-eq-0)

qed
show lookup-pair (update-by-pair (k1 , v) ((k ′, v ′) # xs)) k2 = lookup-pair ((k ′,

v ′) # xs) k2
by (simp add: ‹k1 6= k2 › eq0 split: order .split,

auto intro: ∗ simp: ‹k1 6= k2 ›[symmetric] eq Gt-lt-conv Lt-lt-conv)
qed

qed

corollary update-by-pair-id:
assumes oalist-inv-raw xs and lookup-pair xs k = v
shows update-by-pair (k, v) xs = xs

proof (rule lookup-pair-inj, rule oalist-inv-raw-update-by-pair)
show lookup-pair (update-by-pair (k, v) xs) = lookup-pair xs
proof

fix k0
from assms(2) show lookup-pair (update-by-pair (k, v) xs) k0 = lookup-pair

xs k0
by (auto simp: lookup-pair-update-by-pair [OF assms(1)])

qed
qed fact+

lemma set-update-by-pair :
assumes oalist-inv-raw xs and v 6= 0
shows set (update-by-pair (k, v) xs) = insert (k, v) (set xs − range (Pair k)) (is

?A = ?B)
proof (rule set-eqI)

fix x:: ′a × ′b

282

obtain k ′ v ′ where x: x = (k ′, v ′) by fastforce
from assms(1) have inv: oalist-inv-raw (update-by-pair (k, v) xs)

by (rule oalist-inv-raw-update-by-pair)
show (x ∈ ?A) ←→ (x ∈ ?B)
proof (cases v ′ = 0)

case True
have 0 /∈ snd ‘ set (update-by-pair (k, v) xs) and 0 /∈ snd ‘ set xs

by (rule oalist-inv-rawD1 , fact)+
hence (k ′, 0) /∈ set (update-by-pair (k, v) xs) and (k ′, 0) /∈ set xs

using image-iff by fastforce+
thus ?thesis by (simp add: x True assms(2))

next
case False
show ?thesis
by (auto simp: x lookup-pair-eq-value[OF inv False, symmetric] lookup-pair-eq-value[OF

assms(1) False]
lookup-pair-update-by-pair [OF assms(1)])

qed
qed

lemma set-update-by-pair-zero:
assumes oalist-inv-raw xs
shows set (update-by-pair (k, 0) xs) = set xs − range (Pair k) (is ?A = ?B)

proof (rule set-eqI)
fix x:: ′a × ′b
obtain k ′ v ′ where x: x = (k ′, v ′) by fastforce
from assms(1) have inv: oalist-inv-raw (update-by-pair (k, 0) xs)

by (rule oalist-inv-raw-update-by-pair)
show (x ∈ ?A) ←→ (x ∈ ?B)
proof (cases v ′ = 0)

case True
have 0 /∈ snd ‘ set (update-by-pair (k, 0) xs) and 0 /∈ snd ‘ set xs

by (rule oalist-inv-rawD1 , fact)+
hence (k ′, 0) /∈ set (update-by-pair (k, 0) xs) and (k ′, 0) /∈ set xs

using image-iff by fastforce+
thus ?thesis by (simp add: x True)

next
case False
show ?thesis
by (auto simp: x lookup-pair-eq-value[OF inv False, symmetric] lookup-pair-eq-value[OF

assms False]
lookup-pair-update-by-pair [OF assms] False)

qed
qed

12.4.3 update-by-fun-pair and update-by-fun-gr-pair
lemma update-by-fun-pair-eq-update-by-pair :

assumes oalist-inv-raw xs

283

shows update-by-fun-pair k f xs = update-by-pair (k, f (lookup-pair xs k)) xs
using assms by (induct xs rule: oalist-inv-raw-induct, simp, simp split: or-

der .split)

corollary oalist-inv-raw-update-by-fun-pair :
assumes oalist-inv-raw xs
shows oalist-inv-raw (update-by-fun-pair k f xs)
unfolding update-by-fun-pair-eq-update-by-pair [OF assms] using assms by (rule

oalist-inv-raw-update-by-pair)

corollary lookup-pair-update-by-fun-pair :
assumes oalist-inv-raw xs
shows lookup-pair (update-by-fun-pair k1 f xs) k2 = (if k1 = k2 then f else id)

(lookup-pair xs k2)
by (simp add: update-by-fun-pair-eq-update-by-pair [OF assms] lookup-pair-update-by-pair [OF

assms])

lemma update-by-fun-pair-gr :
assumes oalist-inv-raw xs and xs = [] ∨ comp k (fst (last xs)) = Gt
shows update-by-fun-pair k f xs = xs @ (if f 0 = 0 then [] else [(k, f 0)])
using assms

proof (induct xs rule: oalist-inv-raw-induct)
case Nil
show ?case by simp

next
case (Cons k ′ v ′ xs)
from Cons(6) have 1 : comp k (fst (last ((k ′, v ′) # xs))) = Gt by simp
have eq1 : comp k k ′ = Gt
proof (cases xs = [])

case True
with 1 show ?thesis by simp

next
case False
have lt k ′ (fst (last xs)) by (rule Cons(4), simp add: False)
from False 1 have comp k (fst (last xs)) = Gt by simp
moreover from ‹lt k ′ (fst (last xs))› have comp (fst (last xs)) k ′ = Gt

by (simp add: Gt-lt-conv)
ultimately show ?thesis

by (meson Gt-lt-conv less-trans Lt-lt-conv[symmetric])
qed
have eq2 : update-by-fun-pair k f xs = xs @ (if f 0 = 0 then [] else [(k, f 0)])
proof (rule Cons(5), simp only: disj-commute[of xs = []], rule disjCI)

assume xs 6= []
with 1 show comp k (fst (last xs)) = Gt by simp

qed
show ?case by (simp split: order .split add: Let-def eq1 eq2)

qed

corollary update-by-fun-gr-pair-eq-update-by-fun-pair :

284

assumes oalist-inv-raw xs
shows update-by-fun-gr-pair k f xs = update-by-fun-pair k f xs
by (simp add: update-by-fun-gr-pair-def Let-def update-by-fun-pair-gr [OF assms]

split: order .split)

corollary oalist-inv-raw-update-by-fun-gr-pair :
assumes oalist-inv-raw xs
shows oalist-inv-raw (update-by-fun-gr-pair k f xs)
unfolding update-by-fun-pair-eq-update-by-pair [OF assms] update-by-fun-gr-pair-eq-update-by-fun-pair [OF

assms]
using assms by (rule oalist-inv-raw-update-by-pair)

corollary lookup-pair-update-by-fun-gr-pair :
assumes oalist-inv-raw xs
shows lookup-pair (update-by-fun-gr-pair k1 f xs) k2 = (if k1 = k2 then f else

id) (lookup-pair xs k2)
by (simp add: update-by-fun-pair-eq-update-by-pair [OF assms]

update-by-fun-gr-pair-eq-update-by-fun-pair [OF assms] lookup-pair-update-by-pair [OF
assms])

12.4.4 map-pair
lemma map-pair-cong:

assumes
∧

kv. kv ∈ set xs =⇒ f kv = g kv
shows map-pair f xs = map-pair g xs
using assms

proof (induct xs)
case Nil
show ?case by simp

next
case (Cons x xs)
have f x = g x by (rule Cons(2), simp)
moreover have map-pair f xs = map-pair g xs by (rule Cons(1), rule Cons(2),

simp)
ultimately show ?case by simp

qed

lemma map-pair-subset: set (map-pair f xs) ⊆ f ‘ set xs
proof (induct xs rule: map-pair .induct)

case (1 f)
show ?case by simp

next
case (2 f kv xs)
obtain k v where f : f kv = (k, v) by fastforce
from f [symmetric] HOL.refl have ∗: set (map-pair f xs) ⊆ f ‘ set xs

by (rule 2)
show ?case by (simp add: f Let-def , intro conjI impI subset-insertI2 ∗)

qed

285

lemma oalist-inv-raw-map-pair :
assumes oalist-inv-raw xs

and
∧

a b. comp (fst (f a)) (fst (f b)) = comp (fst a) (fst b)
shows oalist-inv-raw (map-pair f xs)
using assms(1)

proof (induct xs rule: oalist-inv-raw-induct)
case Nil
from oalist-inv-raw-Nil show ?case by simp

next
case (Cons k v xs)
obtain k ′ v ′ where f : f (k, v) = (k ′, v ′) by fastforce
show ?case
proof (simp add: f Let-def Cons(5), rule)

assume v ′ 6= 0
with Cons(5) show oalist-inv-raw ((k ′, v ′) # map-pair f xs)
proof (rule oalist-inv-raw-ConsI)

assume map-pair f xs 6= []
hence hd (map-pair f xs) ∈ set (map-pair f xs) by simp
also have ... ⊆ f ‘ set xs by (fact map-pair-subset)
finally obtain x where x ∈ set xs and eq: hd (map-pair f xs) = f x ..
from this(1) have fst x ∈ fst ‘ set xs by fastforce
hence lt k (fst x) by (rule Cons(4))
hence lt (fst (f (k, v))) (fst (f x))

by (simp add: Lt-lt-conv[symmetric] assms(2))
thus lt k ′ (fst (hd (map-pair f xs))) by (simp add: f eq)

qed
qed

qed

lemma lookup-pair-map-pair :
assumes oalist-inv-raw xs and snd (f (k, 0)) = 0

and
∧

a b. comp (fst (f a)) (fst (f b)) = comp (fst a) (fst b)
shows lookup-pair (map-pair f xs) (fst (f (k, v))) = snd (f (k, lookup-pair xs k))
using assms(1)

proof (induct xs rule: oalist-inv-raw-induct)
case Nil
show ?case by (simp add: assms(2))

next
case (Cons k ′ v ′ xs)
obtain k ′′ v ′′ where f : f (k ′, v ′) = (k ′′, v ′′) by fastforce
have comp (fst (f (k, v))) k ′′ = comp (fst (f (k, v))) (fst (f (k ′, v ′)))

by (simp add: f)
also have ... = comp k k ′

by (simp add: assms(3))
finally have eq0 : comp (fst (f (k, v))) k ′′ = comp k k ′ .
have ∗: lookup-pair xs k = 0 if comp k k ′ 6= Gt
proof (simp add: lookup-pair-eq-0 [OF Cons(2)], rule)

assume k ∈ fst ‘ set xs
hence lt k ′ k by (rule Cons(4))

286

hence comp k k ′ = Gt by (simp add: Gt-lt-conv)
with ‹comp k k ′ 6= Gt› show False ..

qed
show ?case
proof (simp add: assms(2) f Let-def eq0 Cons(5) split: order .split, intro conjI

impI)
assume comp k k ′ = Lt
hence comp k k ′ 6= Gt by simp
hence lookup-pair xs k = 0 by (rule ∗)
thus snd (f (k, lookup-pair xs k)) = 0 by (simp add: assms(2))

next
assume v ′′ = 0
assume comp k k ′ = Eq
hence k = k ′ and comp k k ′ 6= Gt by (simp only: eq, simp)
from this(2) have lookup-pair xs k = 0 by (rule ∗)
hence snd (f (k, lookup-pair xs k)) = 0 by (simp add: assms(2))
also have ... = snd (f (k, v ′)) by (simp add: ‹k = k ′› f ‹v ′′ = 0 ›)
finally show snd (f (k, lookup-pair xs k)) = snd (f (k, v ′)) .

qed (simp add: f eq)
qed

lemma lookup-dflt-map-pair :
assumes distinct (map fst xs) and snd (f (k, 0)) = 0

and
∧

a b. (fst (f a) = fst (f b)) ←→ (fst a = fst b)
shows lookup-dflt (map-pair f xs) (fst (f (k, v))) = snd (f (k, lookup-dflt xs k))
using assms(1)

proof (induct xs)
case Nil
show ?case by (simp add: lookup-dflt-def assms(2))

next
case (Cons x xs)
obtain k ′ v ′ where x: x = (k ′, v ′) by fastforce
obtain k ′′ v ′′ where f : f (k ′, v ′) = (k ′′, v ′′) by fastforce
from Cons(2) have distinct (map fst xs) and k ′ /∈ fst ‘ set xs by (simp-all add:

x)
from this(1) have eq1 : lookup-dflt (map-pair f xs) (fst (f (k, v))) = snd (f (k,

lookup-dflt xs k))
by (rule Cons(1))

have eq2 : lookup-dflt ((a, b) # ys) c = (if c = a then b else lookup-dflt ys c)
for a b c and ys::(′b × ′e::zero) list by (simp add: lookup-dflt-def map-of-Cons-code)

from ‹k ′ /∈ fst ‘ set xs› have map-of xs k ′= None by (simp add: map-of-eq-None-iff)
hence eq3 : lookup-dflt xs k ′ = 0 by (simp add: lookup-dflt-def)
show ?case
proof (simp add: f Let-def x eq1 eq2 eq3 , intro conjI impI)

assume k = k ′

hence snd (f (k ′, 0)) = snd (f (k, 0)) by simp
also have ... = 0 by (fact assms(2))
finally show snd (f (k ′, 0)) = 0 .

next

287

assume fst (f (k ′, v)) 6= k ′′

hence fst (f (k ′, v)) 6= fst (f (k ′, v ′)) by (simp add: f)
thus snd (f (k ′, 0)) = v ′′ by (simp add: assms(3))

next
assume k 6= k ′

assume fst (f (k, v)) = k ′′

also have ... = fst (f (k ′, v ′)) by (simp add: f)
finally have k = k ′ by (simp add: assms(3))
with ‹k 6= k ′› show v ′′ = snd (f (k, lookup-dflt xs k)) ..

qed
qed

lemma distinct-map-pair :
assumes distinct (map fst xs) and

∧
a b. fst (f a) = fst (f b) =⇒ fst a = fst b

shows distinct (map fst (map-pair f xs))
using assms(1)

proof (induct xs)
case Nil
show ?case by simp

next
case (Cons x xs)
obtain k v where x: x = (k, v) by fastforce
obtain k ′ v ′ where f : f (k, v) = (k ′, v ′) by fastforce
from Cons(2) have distinct (map fst xs) and k /∈ fst ‘ set xs by (simp-all add:

x)
from this(1) have 1 : distinct (map fst (map-pair f xs)) by (rule Cons(1))
show ?case
proof (simp add: x f Let-def 1 , intro impI notI)

assume v ′ 6= 0
assume k ′ ∈ fst ‘ set (map-pair f xs)
then obtain y where y ∈ set (map-pair f xs) and k ′ = fst y ..
from this(1) map-pair-subset have y ∈ f ‘ set xs ..
then obtain z where z ∈ set xs and y = f z ..
from this(2) have fst (f z) = k ′ by (simp add: ‹k ′ = fst y›)
also have ... = fst (f (k, v)) by (simp add: f)
finally have fst z = fst (k, v) by (rule assms(2))
also have ... = k by simp
finally have k ∈ fst ‘ set xs using ‹z ∈ set xs› by blast
with ‹k /∈ fst ‘ set xs› show False ..

qed
qed

lemma map-val-pair-cong:
assumes

∧
k v. (k, v) ∈ set xs =⇒ f k v = g k v

shows map-val-pair f xs = map-val-pair g xs
proof (rule map-pair-cong)

fix kv
assume kv ∈ set xs
moreover obtain k v where kv = (k, v) by fastforce

288

ultimately show (case kv of (k, v) ⇒ (k, f k v)) = (case kv of (k, v) ⇒ (k, g k
v))

by (simp add: assms)
qed

lemma oalist-inv-raw-map-val-pair :
assumes oalist-inv-raw xs
shows oalist-inv-raw (map-val-pair f xs)
by (rule oalist-inv-raw-map-pair , fact assms, auto)

lemma lookup-pair-map-val-pair :
assumes oalist-inv-raw xs and f k 0 = 0
shows lookup-pair (map-val-pair f xs) k = f k (lookup-pair xs k)

proof −
let ?f = λ(k ′, v ′). (k ′, f k ′ v ′)
have lookup-pair (map-val-pair f xs) k = lookup-pair (map-val-pair f xs) (fst (?f

(k, 0)))
by simp

also have ... = snd (?f (k, local.lookup-pair xs k))
by (rule lookup-pair-map-pair , fact assms(1), auto simp: assms(2))

also have ... = f k (lookup-pair xs k) by simp
finally show ?thesis .

qed

lemma map-pair-id:
assumes oalist-inv-raw xs
shows map-pair id xs = xs
using assms

proof (induct xs rule: oalist-inv-raw-induct)
case Nil
show ?case by simp

next
case (Cons k v xs ′)
show ?case by (simp add: Let-def Cons(3 , 5) id-def [symmetric])

qed

12.4.5 map2-val-pair
definition map2-val-compat :: ((′a × ′b::zero) list ⇒ (′a × ′c::zero) list) ⇒ bool

where map2-val-compat f ←→ (∀ zs. (oalist-inv-raw zs −→
(oalist-inv-raw (f zs) ∧ fst ‘ set (f zs) ⊆ fst ‘ set zs)))

lemma map2-val-compatI :
assumes

∧
zs. oalist-inv-raw zs =⇒ oalist-inv-raw (f zs)

and
∧

zs. oalist-inv-raw zs =⇒ fst ‘ set (f zs) ⊆ fst ‘ set zs
shows map2-val-compat f
unfolding map2-val-compat-def using assms by blast

lemma map2-val-compatD1 :

289

assumes map2-val-compat f and oalist-inv-raw zs
shows oalist-inv-raw (f zs)
using assms unfolding map2-val-compat-def by blast

lemma map2-val-compatD2 :
assumes map2-val-compat f and oalist-inv-raw zs
shows fst ‘ set (f zs) ⊆ fst ‘ set zs
using assms unfolding map2-val-compat-def by blast

lemma map2-val-compat-Nil:
assumes map2-val-compat (f ::(′a × ′b::zero) list ⇒ (′a × ′c::zero) list)
shows f [] = []

proof −
from assms oalist-inv-raw-Nil have fst ‘ set (f []) ⊆ fst ‘ set ([]::(′a × ′b) list)

by (rule map2-val-compatD2)
thus ?thesis by simp

qed

lemma map2-val-compat-id: map2-val-compat id
by (rule map2-val-compatI , auto)

lemma map2-val-compat-map-val-pair : map2-val-compat (map-val-pair f)
proof (rule map2-val-compatI , erule oalist-inv-raw-map-val-pair)

fix zs
from map-pair-subset image-iff show fst ‘ set (map-val-pair f zs) ⊆ fst ‘ set zs

by fastforce
qed

lemma fst-map2-val-pair-subset:
assumes oalist-inv-raw xs and oalist-inv-raw ys
assumes map2-val-compat g and map2-val-compat h
shows fst ‘ set (map2-val-pair f g h xs ys) ⊆ fst ‘ set xs ∪ fst ‘ set ys
using assms

proof (induct f g h xs ys rule: map2-val-pair .induct)
case (1 f g h xs)
show ?case by (simp, rule map2-val-compatD2 , fact+)

next
case (2 f g h v va)
show ?case by (simp del: set-simps(2), rule map2-val-compatD2 , fact+)

next
case (3 f g h kx vx xs ky vy ys)
from 3 (4) have oalist-inv-raw xs by (rule oalist-inv-raw-ConsD1)
from 3 (5) have oalist-inv-raw ys by (rule oalist-inv-raw-ConsD1)
show ?case
proof (simp split: order .split, intro conjI impI)

assume comp kx ky = Lt
hence fst ‘ set (map2-val-pair f g h xs ((ky, vy) # ys)) ⊆ fst ‘ set xs ∪ fst ‘ set

((ky, vy) # ys)
using HOL.refl ‹oalist-inv-raw xs› 3 (5 , 6 , 7) by (rule 3 (2))

290

thus fst ‘ set (let v = f kx vx 0 ; aux = map2-val-pair f g h xs ((ky, vy) # ys)
in if v = 0 then aux else (kx, v) # aux)

⊆ insert ky (insert kx (fst ‘ set xs ∪ fst ‘ set ys)) by (auto simp: Let-def)
next

assume comp kx ky = Eq
hence fst ‘ set (map2-val-pair f g h xs ys) ⊆ fst ‘ set xs ∪ fst ‘ set ys

using HOL.refl ‹oalist-inv-raw xs› ‹oalist-inv-raw ys› 3 (6 , 7) by (rule 3 (1))
thus fst ‘ set (let v = f kx vx vy; aux = map2-val-pair f g h xs ys in if v = 0

then aux else (kx, v) # aux)
⊆ insert ky (insert kx (fst ‘ set xs ∪ fst ‘ set ys)) by (auto simp: Let-def)

next
assume comp kx ky = Gt
hence fst ‘ set (map2-val-pair f g h ((kx, vx) # xs) ys) ⊆ fst ‘ set ((kx, vx) #

xs) ∪ fst ‘ set ys
using HOL.refl 3 (4) ‹oalist-inv-raw ys› 3 (6 , 7) by (rule 3 (3))

thus fst ‘ set (let v = f ky 0 vy; aux = map2-val-pair f g h ((kx, vx) # xs) ys
in if v = 0 then aux else (ky, v) # aux)

⊆ insert ky (insert kx (fst ‘ set xs ∪ fst ‘ set ys)) by (auto simp: Let-def)
qed

qed

lemma oalist-inv-raw-map2-val-pair :
assumes oalist-inv-raw xs and oalist-inv-raw ys
assumes map2-val-compat g and map2-val-compat h
shows oalist-inv-raw (map2-val-pair f g h xs ys)
using assms(1 , 2)

proof (induct xs arbitrary: ys rule: oalist-inv-raw-induct)
case Nil
show ?case
proof (cases ys)

case Nil
show ?thesis by (simp add: Nil, rule map2-val-compatD1 , fact assms(3), fact

oalist-inv-raw-Nil)
next

case (Cons y ys ′)
show ?thesis by (simp add: Cons, rule map2-val-compatD1 , fact assms(4),

simp only: Cons[symmetric], fact Nil)
qed

next
case ∗: (Cons k v xs)
from ∗(6) show ?case
proof (induct ys rule: oalist-inv-raw-induct)

case Nil
show ?case by (simp, rule map2-val-compatD1 , fact assms(3), fact ∗(1))

next
case (Cons k ′ v ′ ys)
show ?case
proof (simp split: order .split, intro conjI impI)

assume comp k k ′ = Lt

291

hence 0 : lt k k ′ by (simp only: Lt-lt-conv)
from Cons(1) have 1 : oalist-inv-raw (map2-val-pair f g h xs ((k ′, v ′) # ys))

by (rule ∗(5))
show oalist-inv-raw (let v = f k v 0 ; aux = map2-val-pair f g h xs ((k ′, v ′) #

ys)
in if v = 0 then aux else (k, v) # aux)

proof (simp add: Let-def , intro conjI impI)
assume f k v 0 6= 0
with 1 show oalist-inv-raw ((k, f k v 0) # map2-val-pair f g h xs ((k ′, v ′)

ys))
proof (rule oalist-inv-raw-ConsI)

define k0 where k0 = fst (hd (local.map2-val-pair f g h xs ((k ′, v ′) #
ys)))

assume map2-val-pair f g h xs ((k ′, v ′) # ys) 6= []
hence k0 ∈ fst ‘ set (map2-val-pair f g h xs ((k ′, v ′) # ys)) by (simp add:

k0-def)
also from ∗(2) Cons(1) assms(3 , 4) have ... ⊆ fst ‘ set xs ∪ fst ‘ set ((k ′,

v ′) # ys)
by (rule fst-map2-val-pair-subset)

finally have k0 ∈ fst ‘ set xs ∨ k0 = k ′ ∨ k0 ∈ fst ‘ set ys by auto
thus lt k k0
proof (elim disjE)

assume k0 = k ′

with 0 show ?thesis by simp
next

assume k0 ∈ fst ‘ set ys
hence lt k ′ k0 by (rule Cons(4))
with 0 show ?thesis by (rule less-trans)

qed (rule ∗(4))
qed

qed (rule 1)
next

assume comp k k ′ = Eq
hence k = k ′ by (simp only: eq)
from Cons(2) have 1 : oalist-inv-raw (map2-val-pair f g h xs ys) by (rule

∗(5))
show oalist-inv-raw (let v = f k v v ′; aux = map2-val-pair f g h xs ys in if v

= 0 then aux else (k, v) # aux)
proof (simp add: Let-def , intro conjI impI)

assume f k v v ′ 6= 0
with 1 show oalist-inv-raw ((k, f k v v ′) # map2-val-pair f g h xs ys)
proof (rule oalist-inv-raw-ConsI)

define k0 where k0 = fst (hd (map2-val-pair f g h xs ys))
assume map2-val-pair f g h xs ys 6= []
hence k0 ∈ fst ‘ set (map2-val-pair f g h xs ys) by (simp add: k0-def)
also from ∗(2) Cons(2) assms(3 , 4) have ... ⊆ fst ‘ set xs ∪ fst ‘ set ys

by (rule fst-map2-val-pair-subset)
finally show lt k k0
proof

292

assume k0 ∈ fst ‘ set ys
hence lt k ′ k0 by (rule Cons(4))
thus ?thesis by (simp only: ‹k = k ′›)

qed (rule ∗(4))
qed

qed (rule 1)
next

assume comp k k ′ = Gt
hence 0 : lt k ′ k by (simp only: Gt-lt-conv)
show oalist-inv-raw (let va = f k ′ 0 v ′; aux = map2-val-pair f g h ((k, v) #

xs) ys
in if va = 0 then aux else (k ′, va) # aux)

proof (simp add: Let-def , intro conjI impI)
assume f k ′ 0 v ′ 6= 0
with Cons(5) show oalist-inv-raw ((k ′, f k ′ 0 v ′) # map2-val-pair f g h ((k,

v) # xs) ys)
proof (rule oalist-inv-raw-ConsI)

define k0 where k0 = fst (hd (map2-val-pair f g h ((k, v) # xs) ys))
assume map2-val-pair f g h ((k, v) # xs) ys 6= []
hence k0 ∈ fst ‘ set (map2-val-pair f g h ((k, v) # xs) ys) by (simp add:

k0-def)
also from ∗(1) Cons(2) assms(3 , 4) have ... ⊆ fst ‘ set ((k, v) # xs) ∪

fst ‘ set ys
by (rule fst-map2-val-pair-subset)

finally have k0 = k ∨ k0 ∈ fst ‘ set xs ∨ k0 ∈ fst ‘ set ys by auto
thus lt k ′ k0
proof (elim disjE)

assume k0 = k
with 0 show ?thesis by simp

next
assume k0 ∈ fst ‘ set xs
hence lt k k0 by (rule ∗(4))
with 0 show ?thesis by (rule less-trans)

qed (rule Cons(4))
qed

qed (rule Cons(5))
qed

qed
qed

lemma lookup-pair-map2-val-pair :
assumes oalist-inv-raw xs and oalist-inv-raw ys
assumes map2-val-compat g and map2-val-compat h
assumes

∧
zs. oalist-inv-raw zs =⇒ g zs = map-val-pair (λk v. f k v 0) zs

and
∧

zs. oalist-inv-raw zs =⇒ h zs = map-val-pair (λk. f k 0) zs
and

∧
k. f k 0 0 = 0

shows lookup-pair (map2-val-pair f g h xs ys) k0 = f k0 (lookup-pair xs k0)
(lookup-pair ys k0)

using assms(1 , 2)

293

proof (induct xs arbitrary: ys rule: oalist-inv-raw-induct)
case Nil
show ?case
proof (cases ys)

case Nil
show ?thesis by (simp add: Nil map2-val-compat-Nil[OF assms(3)] assms(7))

next
case (Cons y ys ′)
then obtain k v ys ′ where ys: ys = (k, v) # ys ′ by fastforce
from Nil have lookup-pair (h ys) k0 = lookup-pair (map-val-pair (λk. f k 0)

ys) k0
by (simp only: assms(6))

also have ... = f k0 0 (lookup-pair ys k0) by (rule lookup-pair-map-val-pair ,
fact Nil, fact assms(7))

finally have lookup-pair (h ((k, v) # ys ′)) k0 = f k0 0 (lookup-pair ((k, v) #
ys ′) k0)

by (simp only: ys)
thus ?thesis by (simp add: ys)

qed
next

case ∗: (Cons k v xs)
from ∗(6) show ?case
proof (induct ys rule: oalist-inv-raw-induct)

case Nil
from ∗(1) have lookup-pair (g ((k, v) # xs)) k0 = lookup-pair (map-val-pair

(λk v. f k v 0) ((k, v) # xs)) k0
by (simp only: assms(5))

also have ... = f k0 (lookup-pair ((k, v) # xs) k0) 0
by (rule lookup-pair-map-val-pair , fact ∗(1), fact assms(7))

finally show ?case by simp
next

case (Cons k ′ v ′ ys)
show ?case
proof (cases comp k0 k = Lt ∧ comp k0 k ′ = Lt)

case True
hence 1 : comp k0 k = Lt and 2 : comp k0 k ′ = Lt by simp-all
hence eq: f k0 (lookup-pair ((k, v) # xs) k0) (lookup-pair ((k ′, v ′) # ys) k0)

= 0
by (simp add: assms(7))

from ∗(1) Cons(1) assms(3 , 4) have inv: oalist-inv-raw (map2-val-pair f g
h ((k, v) # xs) ((k ′, v ′) # ys))

by (rule oalist-inv-raw-map2-val-pair)
show ?thesis
proof (simp only: eq lookup-pair-eq-0 [OF inv], rule)

assume k0 ∈ fst ‘ set (local.map2-val-pair f g h ((k, v) # xs) ((k ′, v ′) #
ys))

also from ∗(1) Cons(1) assms(3 , 4) have ... ⊆ fst ‘ set ((k, v) # xs) ∪ fst
‘ set ((k ′, v ′) # ys)

by (rule fst-map2-val-pair-subset)

294

finally have k0 ∈ fst ‘ set xs ∨ k0 ∈ fst ‘ set ys using 1 2 by auto
thus False
proof

assume k0 ∈ fst ‘ set xs
hence lt k k0 by (rule ∗(4))
with 1 show ?thesis by (simp add: Lt-lt-conv)

next
assume k0 ∈ fst ‘ set ys
hence lt k ′ k0 by (rule Cons(4))
with 2 show ?thesis by (simp add: Lt-lt-conv)

qed
qed

next
case False
show ?thesis
proof (simp split: order .split del: lookup-pair .simps, intro conjI impI)

assume comp k k ′ = Lt
with False have comp k0 k 6= Lt by (auto simp: Lt-lt-conv)
show lookup-pair (let v = f k v 0 ; aux = map2-val-pair f g h xs ((k ′, v ′) #

ys)
in if v = 0 then aux else (k, v) # aux) k0 =

f k0 (lookup-pair ((k, v) # xs) k0) (lookup-pair ((k ′, v ′) # ys) k0)
proof (cases comp k0 k)

case Lt
with ‹comp k0 k 6= Lt› show ?thesis ..

next
case Eq
hence k0 = k by (simp only: eq)
with ‹comp k k ′ = Lt› have comp k0 k ′ = Lt by simp
hence eq1 : lookup-pair ((k ′, v ′) # ys) k = 0 by (simp add: ‹k0 = k›)
have eq2 : lookup-pair ((k, v) # xs) k = v by simp
show ?thesis
proof (simp add: Let-def eq1 eq2 ‹k0 = k› del: lookup-pair .simps, intro

conjI impI)
from ∗(2) Cons(1) assms(3 , 4) have inv: oalist-inv-raw (map2-val-pair

f g h xs ((k ′, v ′) # ys))
by (rule oalist-inv-raw-map2-val-pair)

show lookup-pair (map2-val-pair f g h xs ((k ′, v ′) # ys)) k = 0
proof (simp only: lookup-pair-eq-0 [OF inv], rule)

assume k ∈ fst ‘ set (local.map2-val-pair f g h xs ((k ′, v ′) # ys))
also from ∗(2) Cons(1) assms(3 , 4) have ... ⊆ fst ‘ set xs ∪ fst ‘ set

((k ′, v ′) # ys)
by (rule fst-map2-val-pair-subset)

finally have k ∈ fst ‘ set xs ∨ k ∈ fst ‘ set ys using ‹comp k k ′ = Lt›
by auto

thus False
proof

assume k ∈ fst ‘ set xs
hence lt k k by (rule ∗(4))

295

thus ?thesis by simp
next

assume k ∈ fst ‘ set ys
hence lt k ′ k by (rule Cons(4))
with ‹comp k k ′ = Lt› show ?thesis by (simp add: Lt-lt-conv)

qed
qed

qed simp
next

case Gt
hence eq1 : lookup-pair ((k, v) # xs) k0 = lookup-pair xs k0

and eq2 : lookup-pair ((k, f k v 0) # map2-val-pair f g h xs ((k ′, v ′) #
ys)) k0 =

lookup-pair (map2-val-pair f g h xs ((k ′, v ′) # ys)) k0 by simp-all
show ?thesis

by (simp add: Let-def eq1 eq2 del: lookup-pair .simps, rule ∗(5), fact
Cons(1))

qed
next

assume comp k k ′ = Eq
hence k = k ′ by (simp only: eq)
with False have comp k0 k ′ 6= Lt by (auto simp: Lt-lt-conv)
show lookup-pair (let v = f k v v ′; aux = map2-val-pair f g h xs ys in

if v = 0 then aux else (k, v) # aux) k0 =
f k0 (lookup-pair ((k, v) # xs) k0) (lookup-pair ((k ′, v ′) # ys) k0)

proof (cases comp k0 k ′)
case Lt
with ‹comp k0 k ′ 6= Lt› show ?thesis ..

next
case Eq
hence k0 = k ′ by (simp only: eq)
show ?thesis
proof (simp add: Let-def ‹k = k ′› ‹k0 = k ′›, intro impI)
from ∗(2) Cons(2) assms(3 , 4) have inv: oalist-inv-raw (map2-val-pair

f g h xs ys)
by (rule oalist-inv-raw-map2-val-pair)

show lookup-pair (map2-val-pair f g h xs ys) k ′ = 0
proof (simp only: lookup-pair-eq-0 [OF inv], rule)

assume k ′ ∈ fst ‘ set (map2-val-pair f g h xs ys)
also from ∗(2) Cons(2) assms(3 , 4) have ... ⊆ fst ‘ set xs ∪ fst ‘ set

ys
by (rule fst-map2-val-pair-subset)

finally show False
proof

assume k ′ ∈ fst ‘ set ys
hence lt k ′ k ′ by (rule Cons(4))
thus ?thesis by simp

next
assume k ′ ∈ fst ‘ set xs

296

hence lt k k ′ by (rule ∗(4))
thus ?thesis by (simp add: ‹k = k ′›)

qed
qed

qed
next

case Gt
hence eq1 : lookup-pair ((k, v) # xs) k0 = lookup-pair xs k0

and eq2 : lookup-pair ((k ′, v ′) # ys) k0 = lookup-pair ys k0
and eq3 : lookup-pair ((k, f k v v ′) # map2-val-pair f g h xs ys) k0 =

lookup-pair (map2-val-pair f g h xs ys) k0 by (simp-all add: ‹k =
k ′›)

show ?thesis by (simp add: Let-def eq1 eq2 eq3 del: lookup-pair .simps, rule
∗(5), fact Cons(2))

qed
next

assume comp k k ′ = Gt
hence comp k ′ k = Lt by (simp only: Gt-lt-conv Lt-lt-conv)
with False have comp k0 k ′ 6= Lt by (auto simp: Lt-lt-conv)
show lookup-pair (let va = f k ′ 0 v ′; aux = map2-val-pair f g h ((k, v) #

xs) ys
in if va = 0 then aux else (k ′, va) # aux) k0 =

f k0 (lookup-pair ((k, v) # xs) k0) (lookup-pair ((k ′, v ′) # ys) k0)
proof (cases comp k0 k ′)

case Lt
with ‹comp k0 k ′ 6= Lt› show ?thesis ..

next
case Eq
hence k0 = k ′ by (simp only: eq)
with ‹comp k ′ k = Lt› have comp k0 k = Lt by simp
hence eq1 : lookup-pair ((k, v) # xs) k ′ = 0 by (simp add: ‹k0 = k ′›)
have eq2 : lookup-pair ((k ′, v ′) # ys) k ′ = v ′ by simp
show ?thesis
proof (simp add: Let-def eq1 eq2 ‹k0 = k ′› del: lookup-pair .simps, intro

conjI impI)
from ∗(1) Cons(2) assms(3 , 4) have inv: oalist-inv-raw (map2-val-pair

f g h ((k, v) # xs) ys)
by (rule oalist-inv-raw-map2-val-pair)

show lookup-pair (map2-val-pair f g h ((k, v) # xs) ys) k ′ = 0
proof (simp only: lookup-pair-eq-0 [OF inv], rule)

assume k ′ ∈ fst ‘ set (map2-val-pair f g h ((k, v) # xs) ys)
also from ∗(1) Cons(2) assms(3 , 4) have ... ⊆ fst ‘ set ((k, v) # xs)

∪ fst ‘ set ys
by (rule fst-map2-val-pair-subset)

finally have k ′ ∈ fst ‘ set xs ∨ k ′ ∈ fst ‘ set ys using ‹comp k ′ k = Lt›
by auto

thus False
proof

assume k ′ ∈ fst ‘ set ys

297

hence lt k ′ k ′ by (rule Cons(4))
thus ?thesis by simp

next
assume k ′ ∈ fst ‘ set xs
hence lt k k ′ by (rule ∗(4))
with ‹comp k ′ k = Lt› show ?thesis by (simp add: Lt-lt-conv)

qed
qed

qed simp
next

case Gt
hence eq1 : lookup-pair ((k ′, v ′) # ys) k0 = lookup-pair ys k0

and eq2 : lookup-pair ((k ′, f k ′ 0 v ′) # map2-val-pair f g h ((k, v) # xs)
ys) k0 =

lookup-pair (map2-val-pair f g h ((k, v) # xs) ys) k0 by simp-all
show ?thesis by (simp add: Let-def eq1 eq2 del: lookup-pair .simps, rule

Cons(5))
qed

qed
qed

qed
qed

lemma map2-val-pair-singleton-eq-update-by-fun-pair :
assumes oalist-inv-raw xs
assumes

∧
k x. f k x 0 = x and

∧
zs. oalist-inv-raw zs =⇒ g zs = zs

and h [(k, v)] = map-val-pair (λk. f k 0) [(k, v)]
shows map2-val-pair f g h xs [(k, v)] = update-by-fun-pair k (λx. f k x v) xs
using assms(1)

proof (induct xs rule: oalist-inv-raw-induct)
case Nil
show ?case by (simp add: Let-def assms(4))

next
case (Cons k ′ v ′ xs)
show ?case
proof (cases comp k ′ k)

case Lt
hence gr : comp k k ′ = Gt by (simp only: Gt-lt-conv Lt-lt-conv)
show ?thesis by (simp add: Lt gr Let-def assms(2) Cons(3 , 5))

next
case Eq
hence eq1 : comp k k ′ = Eq and eq2 : k = k ′ by (simp-all only: eq)
show ?thesis by (simp add: Eq eq1 eq2 Let-def assms(3)[OF Cons(2)])

next
case Gt
hence less: comp k k ′ = Lt by (simp only: Gt-lt-conv Lt-lt-conv)
show ?thesis by (simp add: Gt less Let-def assms(3)[OF Cons(1)])

qed
qed

298

12.4.6 lex-ord-pair
lemma lex-ord-pair-EqI :

assumes oalist-inv-raw xs and oalist-inv-raw ys
and

∧
k. k ∈ fst ‘ set xs ∪ fst ‘ set ys =⇒ f k (lookup-pair xs k) (lookup-pair ys

k) = Some Eq
shows lex-ord-pair f xs ys = Some Eq
using assms

proof (induct xs arbitrary: ys rule: oalist-inv-raw-induct)
case Nil
thus ?case
proof (induct ys rule: oalist-inv-raw-induct)

case Nil
show ?case by simp

next
case (Cons k v ys)
show ?case
proof (simp add: Let-def , intro conjI impI , rule Cons(5))

fix k0
assume k0 ∈ fst ‘ set [] ∪ fst ‘ set ys
hence k0 ∈ fst ‘ set ys by simp
hence lt k k0 by (rule Cons(4))
hence f k0 (lookup-pair [] k0) (lookup-pair ys k0) = f k0 (lookup-pair [] k0)

(lookup-pair ((k, v) # ys) k0)
by (auto simp add: lookup-pair-Cons[OF Cons(1)] simp del: lookup-pair .simps)
also have ... = Some Eq by (rule Cons(6), simp add: ‹k0 ∈ fst ‘ set ys›)
finally show f k0 (lookup-pair [] k0) (lookup-pair ys k0) = Some Eq .

next
have f k 0 v = f k (lookup-pair [] k) (lookup-pair ((k, v) # ys) k) by simp
also have ... = Some Eq by (rule Cons(6), simp)
finally show f k 0 v = Some Eq .

qed
qed

next
case ∗: (Cons k v xs)
from ∗(6 , 7) show ?case
proof (induct ys rule: oalist-inv-raw-induct)

case Nil
show ?case
proof (simp add: Let-def , intro conjI impI , rule ∗(5), rule oalist-inv-raw-Nil)

fix k0
assume k0 ∈ fst ‘ set xs ∪ fst ‘ set []
hence k0 ∈ fst ‘ set xs by simp
hence lt k k0 by (rule ∗(4))
hence f k0 (lookup-pair xs k0) (lookup-pair [] k0) = f k0 (lookup-pair ((k, v)

xs) k0) (lookup-pair [] k0)
by (auto simp add: lookup-pair-Cons[OF ∗(1)] simp del: lookup-pair .simps)

also have ... = Some Eq by (rule Nil, simp add: ‹k0 ∈ fst ‘ set xs›)
finally show f k0 (lookup-pair xs k0) (lookup-pair [] k0) = Some Eq .

next

299

have f k v 0 = f k (lookup-pair ((k, v) # xs) k) (lookup-pair [] k) by simp
also have ... = Some Eq by (rule Nil, simp)
finally show f k v 0 = Some Eq .

qed
next

case (Cons k ′ v ′ ys)
show ?case
proof (simp split: order .split, intro conjI impI)

assume comp k k ′ = Lt
show (let aux = f k v 0 in if aux = Some Eq then lex-ord-pair f xs ((k ′, v ′)

ys) else aux) = Some Eq
proof (simp add: Let-def , intro conjI impI , rule ∗(5), rule Cons(1))

fix k0
assume k0-in: k0 ∈ fst ‘ set xs ∪ fst ‘ set ((k ′, v ′) # ys)
hence k0 ∈ fst ‘ set xs ∨ k0 = k ′ ∨ k0 ∈ fst ‘ set ys by auto
hence k0 6= k
proof (elim disjE)

assume k0 ∈ fst ‘ set xs
hence lt k k0 by (rule ∗(4))
thus ?thesis by simp

next
assume k0 = k ′

with ‹comp k k ′ = Lt› show ?thesis by auto
next

assume k0 ∈ fst ‘ set ys
hence lt k ′ k0 by (rule Cons(4))
with ‹comp k k ′ = Lt› show ?thesis by (simp add: Lt-lt-conv)

qed
hence f k0 (lookup-pair xs k0) (lookup-pair ((k ′, v ′) # ys) k0) =

f k0 (lookup-pair ((k, v) # xs) k0) (lookup-pair ((k ′, v ′) # ys) k0)
by (auto simp add: lookup-pair-Cons[OF ∗(1)] simp del: lookup-pair .simps)
also have ... = Some Eq by (rule Cons(6), rule rev-subsetD, fact k0-in,

auto)
finally show f k0 (lookup-pair xs k0) (lookup-pair ((k ′, v ′) # ys) k0) =

Some Eq .
next

have f k v 0 = f k (lookup-pair ((k, v) # xs) k) (lookup-pair ((k ′, v ′) # ys)
k)

by (simp add: ‹comp k k ′ = Lt›)
also have ... = Some Eq by (rule Cons(6), simp)
finally show f k v 0 = Some Eq .

qed
next

assume comp k k ′ = Eq
hence k = k ′ by (simp only: eq)
show (let aux = f k v v ′ in if aux = Some Eq then lex-ord-pair f xs ys else

aux) = Some Eq
proof (simp add: Let-def , intro conjI impI , rule ∗(5), rule Cons(2))

fix k0

300

assume k0-in: k0 ∈ fst ‘ set xs ∪ fst ‘ set ys
hence k0 6= k ′

proof
assume k0 ∈ fst ‘ set xs
hence lt k k0 by (rule ∗(4))
thus ?thesis by (simp add: ‹k = k ′›)

next
assume k0 ∈ fst ‘ set ys
hence lt k ′ k0 by (rule Cons(4))
thus ?thesis by simp

qed
hence f k0 (lookup-pair xs k0) (lookup-pair ys k0) =

f k0 (lookup-pair ((k, v) # xs) k0) (lookup-pair ((k ′, v ′) # ys) k0)
by (simp add: lookup-pair-Cons[OF ∗(1)] lookup-pair-Cons[OF Cons(1)]

del: lookup-pair .simps,
auto simp: ‹k = k ′›)

also have ... = Some Eq by (rule Cons(6), rule rev-subsetD, fact k0-in,
auto)

finally show f k0 (lookup-pair xs k0) (lookup-pair ys k0) = Some Eq .
next
have f k v v ′ = f k (lookup-pair ((k, v) # xs) k) (lookup-pair ((k ′, v ′) # ys)

k)
by (simp add: ‹k = k ′›)

also have ... = Some Eq by (rule Cons(6), simp)
finally show f k v v ′ = Some Eq .

qed
next

assume comp k k ′ = Gt
hence comp k ′ k = Lt by (simp only: Gt-lt-conv Lt-lt-conv)
show (let aux = f k ′ 0 v ′ in if aux = Some Eq then lex-ord-pair f ((k, v) #

xs) ys else aux) = Some Eq
proof (simp add: Let-def , intro conjI impI , rule Cons(5))

fix k0
assume k0-in: k0 ∈ fst ‘ set ((k, v) # xs) ∪ fst ‘ set ys
hence k0 ∈ fst ‘ set xs ∨ k0 = k ∨ k0 ∈ fst ‘ set ys by auto
hence k0 6= k ′

proof (elim disjE)
assume k0 ∈ fst ‘ set xs
hence lt k k0 by (rule ∗(4))
with ‹comp k ′ k = Lt› show ?thesis by (simp add: Lt-lt-conv)

next
assume k0 = k
with ‹comp k ′ k = Lt› show ?thesis by auto

next
assume k0 ∈ fst ‘ set ys
hence lt k ′ k0 by (rule Cons(4))
thus ?thesis by simp

qed
hence f k0 (lookup-pair ((k, v) # xs) k0) (lookup-pair ys k0) =

301

f k0 (lookup-pair ((k, v) # xs) k0) (lookup-pair ((k ′, v ′) # ys) k0)
by (auto simp add: lookup-pair-Cons[OF Cons(1)] simp del: lookup-pair .simps)

also have ... = Some Eq by (rule Cons(6), rule rev-subsetD, fact k0-in,
auto)

finally show f k0 (lookup-pair ((k, v) # xs) k0) (lookup-pair ys k0) = Some
Eq .

next
have f k ′ 0 v ′ = f k ′ (lookup-pair ((k, v) # xs) k ′) (lookup-pair ((k ′, v ′) #

ys) k ′)
by (simp add: ‹comp k ′ k = Lt›)

also have ... = Some Eq by (rule Cons(6), simp)
finally show f k ′ 0 v ′ = Some Eq .

qed
qed

qed
qed

lemma lex-ord-pair-valI :
assumes oalist-inv-raw xs and oalist-inv-raw ys and aux 6= Some Eq
assumes k ∈ fst ‘ set xs ∪ fst ‘ set ys and aux = f k (lookup-pair xs k) (lookup-pair

ys k)
and

∧
k ′. k ′ ∈ fst ‘ set xs ∪ fst ‘ set ys =⇒ lt k ′ k =⇒
f k ′ (lookup-pair xs k ′) (lookup-pair ys k ′) = Some Eq

shows lex-ord-pair f xs ys = aux
using assms(1 , 2 , 4 , 5 , 6)

proof (induct xs arbitrary: ys rule: oalist-inv-raw-induct)
case Nil
thus ?case
proof (induct ys rule: oalist-inv-raw-induct)

case Nil
from Nil(1) show ?case by simp

next
case (Cons k ′ v ′ ys)
from Cons(6) have k = k ′ ∨ k ∈ fst ‘ set ys by simp
thus ?case
proof

assume k = k ′

with Cons(7) have f k ′ 0 v ′ = aux by simp
thus ?thesis by (simp add: Let-def ‹k = k ′› assms(3))

next
assume k ∈ fst ‘set ys
hence lt k ′ k by (rule Cons(4))
hence comp k k ′ = Gt by (simp add: Gt-lt-conv)
hence eq1 : lookup-pair ((k ′, v ′) # ys) k = lookup-pair ys k by simp
have f k ′ (lookup-pair [] k ′) (lookup-pair ((k ′, v ′) # ys) k ′) = Some Eq

by (rule Cons(8), simp, fact)
hence eq2 : f k ′ 0 v ′ = Some Eq by simp
show ?thesis
proof (simp add: Let-def eq2 , rule Cons(5))

302

from ‹k ∈ fst ‘set ys› show k ∈ fst ‘ set [] ∪ fst ‘ set ys by simp
next
show aux = f k (lookup-pair [] k) (lookup-pair ys k) by (simp only: Cons(7)

eq1)
next

fix k0
assume lt k0 k
assume k0 ∈ fst ‘ set [] ∪ fst ‘ set ys
hence k0-in: k0 ∈ fst ‘ set ys by simp
hence lt k ′ k0 by (rule Cons(4))
hence comp k0 k ′ = Gt by (simp add: Gt-lt-conv)
hence f k0 (lookup-pair [] k0) (lookup-pair ys k0) =

f k0 (lookup-pair [] k0) (lookup-pair ((k ′, v ′) # ys) k0) by simp
also have ... = Some Eq by (rule Cons(8), simp add: k0-in, fact)
finally show f k0 (lookup-pair [] k0) (lookup-pair ys k0) = Some Eq .

qed
qed

qed
next

case ∗: (Cons k ′ v ′ xs)
from ∗(6 , 7 , 8 , 9) show ?case
proof (induct ys rule: oalist-inv-raw-induct)

case Nil
from Nil(1) have k = k ′ ∨ k ∈ fst ‘ set xs by simp
thus ?case
proof

assume k = k ′

with Nil(2) have f k ′ v ′ 0 = aux by simp
thus ?thesis by (simp add: Let-def ‹k = k ′› assms(3))

next
assume k ∈ fst ‘ set xs
hence lt k ′ k by (rule ∗(4))
hence comp k k ′ = Gt by (simp add: Gt-lt-conv)
hence eq1 : lookup-pair ((k ′, v ′) # xs) k = lookup-pair xs k by simp
have f k ′ (lookup-pair ((k ′, v ′) # xs) k ′) (lookup-pair [] k ′) = Some Eq

by (rule Nil(3), simp, fact)
hence eq2 : f k ′ v ′ 0 = Some Eq by simp
show ?thesis
proof (simp add: Let-def eq2 , rule ∗(5), fact oalist-inv-raw-Nil)

from ‹k ∈ fst ‘set xs› show k ∈ fst ‘ set xs ∪ fst ‘ set [] by simp
next

show aux = f k (lookup-pair xs k) (lookup-pair [] k) by (simp only: Nil(2)
eq1)

next
fix k0
assume lt k0 k
assume k0 ∈ fst ‘ set xs ∪ fst ‘ set []
hence k0-in: k0 ∈ fst ‘ set xs by simp
hence lt k ′ k0 by (rule ∗(4))

303

hence comp k0 k ′ = Gt by (simp add: Gt-lt-conv)
hence f k0 (lookup-pair xs k0) (lookup-pair [] k0) =

f k0 (lookup-pair ((k ′, v ′) # xs) k0) (lookup-pair [] k0) by simp
also have ... = Some Eq by (rule Nil(3), simp add: k0-in, fact)
finally show f k0 (lookup-pair xs k0) (lookup-pair [] k0) = Some Eq .

qed
qed

next
case (Cons k ′′ v ′′ ys)

have 0 : thesis if 1 : lt k k ′ and 2 : lt k k ′′ for thesis
proof −

from 1 have k 6= k ′ by simp
moreover from 2 have k 6= k ′′ by simp
ultimately have k ∈ fst ‘ set xs ∨ k ∈ fst ‘ set ys using Cons(6) by simp
thus ?thesis
proof

assume k ∈ fst ‘ set xs
hence lt k ′ k by (rule ∗(4))
with 1 show ?thesis by simp

next
assume k ∈ fst ‘ set ys
hence lt k ′′ k by (rule Cons(4))
with 2 show ?thesis by simp

qed
qed

show ?case
proof (simp split: order .split, intro conjI impI)

assume Lt: comp k ′ k ′′ = Lt
show (let aux = f k ′ v ′ 0 in if aux = Some Eq then lex-ord-pair f xs ((k ′′, v ′′)

ys) else aux) = aux
proof (simp add: Let-def split: order .split, intro conjI impI)

assume f k ′ v ′ 0 = Some Eq
have k 6= k ′

proof
assume k = k ′

have aux = f k v ′ 0 by (simp add: Cons(7) ‹k = k ′› Lt)
with ‹f k ′ v ′ 0 = Some Eq› assms(3) show False by (simp add: ‹k = k ′›)

qed
from Cons(1) show lex-ord-pair f xs ((k ′′, v ′′) # ys) = aux
proof (rule ∗(5))

from Cons(6) ‹k 6= k ′› show k ∈ fst ‘ set xs ∪ fst ‘ set ((k ′′, v ′′) # ys)
by simp

next
show aux = f k (lookup-pair xs k) (lookup-pair ((k ′′, v ′′) # ys) k)

by (simp add: Cons(7) lookup-pair-Cons[OF ∗(1)] ‹k 6= k ′›[symmetric]
del: lookup-pair .simps)

next

304

fix k0
assume lt k0 k
assume k0-in: k0 ∈ fst ‘ set xs ∪ fst ‘ set ((k ′′, v ′′) # ys)

also have ... ⊆ fst ‘ set ((k ′, v ′) # xs) ∪ fst ‘ set ((k ′′, v ′′) # ys) by
fastforce

finally have k0-in ′: k0 ∈ fst ‘ set ((k ′, v ′) # xs) ∪ fst ‘ set ((k ′′, v ′′) #
ys) .

have k ′ 6= k0
proof

assume k ′ = k0
with k0-in have k ′ ∈ fst ‘ set xs ∪ fst ‘ set ((k ′′, v ′′) # ys) by simp
with Lt have k ′ ∈ fst ‘ set xs ∨ k ′ ∈ fst ‘ set ys by auto
thus False
proof

assume k ′ ∈ fst ‘ set xs
hence lt k ′ k ′ by (rule ∗(4))
thus ?thesis by simp

next
assume k ′ ∈ fst ‘ set ys
hence lt k ′′ k ′ by (rule Cons(4))
with Lt show ?thesis by (simp add: Lt-lt-conv)

qed
qed
hence f k0 (lookup-pair xs k0) (lookup-pair ((k ′′, v ′′) # ys) k0) =

f k0 (lookup-pair ((k ′, v ′) # xs) k0) (lookup-pair ((k ′′, v ′′) # ys) k0)
by (simp add: lookup-pair-Cons[OF ∗(1)] del: lookup-pair .simps)

also from k0-in ′ ‹lt k0 k› have ... = Some Eq by (rule Cons(8))
finally show f k0 (lookup-pair xs k0) (lookup-pair ((k ′′, v ′′) # ys) k0) =

Some Eq .
qed

next
assume f k ′ v ′ 0 6= Some Eq
have ¬ lt k ′ k
proof

have k ′ ∈ fst ‘ set ((k ′, v ′) # xs) ∪ fst ‘ set ((k ′′, v ′′) # ys) by simp
moreover assume lt k ′ k
ultimately have f k ′ (lookup-pair ((k ′, v ′) # xs) k ′) (lookup-pair ((k ′′,

v ′′) # ys) k ′) = Some Eq
by (rule Cons(8))

hence f k ′ v ′ 0 = Some Eq by (simp add: Lt)
with ‹f k ′ v ′ 0 6= Some Eq› show False ..

qed
moreover have ¬ lt k k ′

proof
assume lt k k ′

moreover from this Lt have lt k k ′′ by (simp add: Lt-lt-conv)
ultimately show False by (rule 0)

qed
ultimately have k = k ′ by simp

305

show f k ′ v ′ 0 = aux by (simp add: Cons(7) ‹k = k ′› Lt)
qed

next
assume comp k ′ k ′′ = Eq
hence k ′ = k ′′ by (simp only: eq)
show (let aux = f k ′ v ′ v ′′ in if aux = Some Eq then lex-ord-pair f xs ys else

aux) = aux
proof (simp add: Let-def ‹k ′ = k ′′› split: order .split, intro conjI impI)

assume f k ′′ v ′ v ′′ = Some Eq
have k 6= k ′′

proof
assume k = k ′′

have aux = f k v ′ v ′′ by (simp add: Cons(7) ‹k = k ′′› ‹k ′ = k ′′›)
with ‹f k ′′ v ′ v ′′ = Some Eq› assms(3) show False by (simp add: ‹k =

k ′′›)
qed
from Cons(2) show lex-ord-pair f xs ys = aux
proof (rule ∗(5))

from Cons(6) ‹k 6= k ′′› show k ∈ fst ‘ set xs ∪ fst ‘ set ys by (simp add:
‹k ′ = k ′′›)

next
show aux = f k (lookup-pair xs k) (lookup-pair ys k)

by (simp add: Cons(7) lookup-pair-Cons[OF ∗(1)] lookup-pair-Cons[OF
Cons(1)] del: lookup-pair .simps,

simp add: ‹k ′ = k ′′› ‹k 6= k ′′›[symmetric])
next

fix k0
assume lt k0 k
assume k0-in: k0 ∈ fst ‘ set xs ∪ fst ‘ set ys

also have ... ⊆ fst ‘ set ((k ′, v ′) # xs) ∪ fst ‘ set ((k ′′, v ′′) # ys) by
fastforce

finally have k0-in ′: k0 ∈ fst ‘ set ((k ′, v ′) # xs) ∪ fst ‘ set ((k ′′, v ′′) #
ys) .

have k ′′ 6= k0
proof

assume k ′′ = k0
with k0-in have k ′′ ∈ fst ‘ set xs ∪ fst ‘ set ys by simp
thus False
proof

assume k ′′ ∈ fst ‘ set xs
hence lt k ′ k ′′ by (rule ∗(4))
thus ?thesis by (simp add: ‹k ′ = k ′′›)

next
assume k ′′ ∈ fst ‘ set ys
hence lt k ′′ k ′′ by (rule Cons(4))
thus ?thesis by simp

qed
qed
hence f k0 (lookup-pair xs k0) (lookup-pair ys k0) =

306

f k0 (lookup-pair ((k ′, v ′) # xs) k0) (lookup-pair ((k ′′, v ′′) # ys) k0)
by (simp add: lookup-pair-Cons[OF ∗(1)] lookup-pair-Cons[OF Cons(1)]

del: lookup-pair .simps,
simp add: ‹k ′ = k ′′›)

also from k0-in ′ ‹lt k0 k› have ... = Some Eq by (rule Cons(8))
finally show f k0 (lookup-pair xs k0) (lookup-pair ys k0) = Some Eq .

qed
next

assume f k ′′ v ′ v ′′ 6= Some Eq
have ¬ lt k ′′ k
proof

have k ′′ ∈ fst ‘ set ((k ′, v ′) # xs) ∪ fst ‘ set ((k ′′, v ′′) # ys) by simp
moreover assume lt k ′′ k
ultimately have f k ′′ (lookup-pair ((k ′, v ′) # xs) k ′′) (lookup-pair ((k ′′,

v ′′) # ys) k ′′) = Some Eq
by (rule Cons(8))

hence f k ′′ v ′ v ′′ = Some Eq by (simp add: ‹k ′ = k ′′›)
with ‹f k ′′ v ′ v ′′ 6= Some Eq› show False ..

qed
moreover have ¬ lt k k ′′

proof
assume lt k k ′′

hence lt k k ′ by (simp only: ‹k ′ = k ′′›)
thus False using ‹lt k k ′′› by (rule 0)

qed
ultimately have k = k ′′ by simp
show f k ′′ v ′ v ′′ = aux by (simp add: Cons(7) ‹k = k ′′› ‹k ′ = k ′′›)

qed
next

assume Gt: comp k ′ k ′′ = Gt
hence Lt: comp k ′′ k ′ = Lt by (simp only: Gt-lt-conv Lt-lt-conv)
show (let aux = f k ′′ 0 v ′′ in if aux = Some Eq then lex-ord-pair f ((k ′, v ′)

xs) ys else aux) = aux
proof (simp add: Let-def split: order .split, intro conjI impI)

assume f k ′′ 0 v ′′ = Some Eq
have k 6= k ′′

proof
assume k = k ′′

have aux = f k 0 v ′′ by (simp add: Cons(7) ‹k = k ′′› Lt)
with ‹f k ′′ 0 v ′′ = Some Eq› assms(3) show False by (simp add: ‹k =

k ′′›)
qed
show lex-ord-pair f ((k ′, v ′) # xs) ys = aux
proof (rule Cons(5))

from Cons(6) ‹k 6= k ′′› show k ∈ fst ‘ set ((k ′, v ′) # xs) ∪ fst ‘ set ys
by simp

next
show aux = f k (lookup-pair ((k ′, v ′) # xs) k) (lookup-pair ys k)
by (simp add: Cons(7) lookup-pair-Cons[OF Cons(1)] ‹k 6= k ′′›[symmetric]

307

del: lookup-pair .simps)
next

fix k0
assume lt k0 k
assume k0-in: k0 ∈ fst ‘ set ((k ′, v ′) # xs) ∪ fst ‘ set ys

also have ... ⊆ fst ‘ set ((k ′, v ′) # xs) ∪ fst ‘ set ((k ′′, v ′′) # ys) by
fastforce

finally have k0-in ′: k0 ∈ fst ‘ set ((k ′, v ′) # xs) ∪ fst ‘ set ((k ′′, v ′′) #
ys) .

have k ′′ 6= k0
proof

assume k ′′ = k0
with k0-in have k ′′ ∈ fst ‘ set ((k ′, v ′) # xs) ∪ fst ‘ set ys by simp
with Lt have k ′′ ∈ fst ‘ set xs ∨ k ′′ ∈ fst ‘ set ys by auto
thus False
proof

assume k ′′ ∈ fst ‘ set xs
hence lt k ′ k ′′ by (rule ∗(4))
with Lt show ?thesis by (simp add: Lt-lt-conv)

next
assume k ′′ ∈ fst ‘ set ys
hence lt k ′′ k ′′ by (rule Cons(4))
thus ?thesis by simp

qed
qed
hence f k0 (lookup-pair ((k ′, v ′) # xs) k0) (lookup-pair ys k0) =

f k0 (lookup-pair ((k ′, v ′) # xs) k0) (lookup-pair ((k ′′, v ′′) # ys) k0)
by (simp add: lookup-pair-Cons[OF Cons(1)] del: lookup-pair .simps)

also from k0-in ′ ‹lt k0 k› have ... = Some Eq by (rule Cons(8))
finally show f k0 (lookup-pair ((k ′, v ′) # xs) k0) (lookup-pair ys k0) =

Some Eq .
qed

next
assume f k ′′ 0 v ′′ 6= Some Eq
have ¬ lt k ′′ k
proof

have k ′′ ∈ fst ‘ set ((k ′, v ′) # xs) ∪ fst ‘ set ((k ′′, v ′′) # ys) by simp
moreover assume lt k ′′ k
ultimately have f k ′′ (lookup-pair ((k ′, v ′) # xs) k ′′) (lookup-pair ((k ′′,

v ′′) # ys) k ′′) = Some Eq
by (rule Cons(8))

hence f k ′′ 0 v ′′ = Some Eq by (simp add: Lt)
with ‹f k ′′ 0 v ′′ 6= Some Eq› show False ..

qed
moreover have ¬ lt k k ′′

proof
assume lt k k ′′

with Lt have lt k k ′ by (simp add: Lt-lt-conv)
thus False using ‹lt k k ′′› by (rule 0)

308

qed
ultimately have k = k ′′ by simp
show f k ′′ 0 v ′′ = aux by (simp add: Cons(7) ‹k = k ′′› Lt)

qed
qed

qed
qed

lemma lex-ord-pair-EqD:
assumes oalist-inv-raw xs and oalist-inv-raw ys and lex-ord-pair f xs ys = Some

Eq
and k ∈ fst ‘ set xs ∪ fst ‘ set ys

shows f k (lookup-pair xs k) (lookup-pair ys k) = Some Eq
proof (rule ccontr)

let ?A = (fst ‘ set xs ∪ fst ‘ set ys) ∩ {k. f k (lookup-pair xs k) (lookup-pair ys
k) 6= Some Eq}

define k0 where k0 = Min ?A
have finite ?A by auto
assume f k (lookup-pair xs k) (lookup-pair ys k) 6= Some Eq
with assms(4) have k ∈ ?A by simp
hence ?A 6= {} by blast
with ‹finite ?A› have k0 ∈ ?A unfolding k0-def by (rule Min-in)
hence k0-in: k0 ∈ fst ‘ set xs ∪ fst ‘ set ys

and neq: f k0 (lookup-pair xs k0) (lookup-pair ys k0) 6= Some Eq by simp-all
have le k0 k ′ if k ′ ∈ ?A for k ′ unfolding k0-def using ‹finite ?A› that

by (rule Min-le)
hence f k ′ (lookup-pair xs k ′) (lookup-pair ys k ′) = Some Eq

if k ′ ∈ fst ‘ set xs ∪ fst ‘ set ys and lt k ′ k0 for k ′ using that by fastforce
with assms(1 , 2) neq k0-in HOL.refl have lex-ord-pair f xs ys = f k0 (lookup-pair

xs k0) (lookup-pair ys k0)
by (rule lex-ord-pair-valI)

with assms(3) neq show False by simp
qed

lemma lex-ord-pair-valE :
assumes oalist-inv-raw xs and oalist-inv-raw ys and lex-ord-pair f xs ys = aux

and aux 6= Some Eq
obtains k where k ∈ fst ‘ set xs ∪ fst ‘ set ys and aux = f k (lookup-pair xs k)

(lookup-pair ys k)
and

∧
k ′. k ′ ∈ fst ‘ set xs ∪ fst ‘ set ys =⇒ lt k ′ k =⇒
f k ′ (lookup-pair xs k ′) (lookup-pair ys k ′) = Some Eq

proof −
let ?A = (fst ‘ set xs ∪ fst ‘ set ys) ∩ {k. f k (lookup-pair xs k) (lookup-pair ys

k) 6= Some Eq}
define k where k = Min ?A
have finite ?A by auto
have ∃ k ∈ fst ‘ set xs ∪ fst ‘ set ys. f k (lookup-pair xs k) (lookup-pair ys k) 6=

Some Eq (is ?prop)
proof (rule ccontr)

309

assume ¬ ?prop
hence f k (lookup-pair xs k) (lookup-pair ys k) = Some Eq

if k ∈ fst ‘ set xs ∪ fst ‘ set ys for k using that by auto
with assms(1 , 2) have lex-ord-pair f xs ys = Some Eq by (rule lex-ord-pair-EqI)
with assms(3 , 4) show False by simp

qed
then obtain k0 where k0 ∈ fst ‘ set xs ∪ fst ‘ set ys

and f k0 (lookup-pair xs k0) (lookup-pair ys k0) 6= Some Eq ..
hence k0 ∈ ?A by simp
hence ?A 6= {} by blast
with ‹finite ?A› have k ∈ ?A unfolding k-def by (rule Min-in)
hence k-in: k ∈ fst ‘ set xs ∪ fst ‘ set ys

and neq: f k (lookup-pair xs k) (lookup-pair ys k) 6= Some Eq by simp-all
have le k k ′ if k ′ ∈ ?A for k ′ unfolding k-def using ‹finite ?A› that

by (rule Min-le)
hence ∗:

∧
k ′. k ′ ∈ fst ‘ set xs ∪ fst ‘ set ys =⇒ lt k ′ k =⇒

f k ′ (lookup-pair xs k ′) (lookup-pair ys k ′) = Some Eq by fastforce
with assms(1 , 2) neq k-in HOL.refl have lex-ord-pair f xs ys = f k (lookup-pair

xs k) (lookup-pair ys k)
by (rule lex-ord-pair-valI)

hence aux = f k (lookup-pair xs k) (lookup-pair ys k) by (simp only: assms(3))
with k-in show ?thesis using ∗ ..

qed

12.4.7 prod-ord-pair
lemma prod-ord-pair-eq-lex-ord-pair :

prod-ord-pair P xs ys = (lex-ord-pair (λk x y. if P k x y then Some Eq else None)
xs ys = Some Eq)
proof (induct P xs ys rule: prod-ord-pair .induct)

case (1 P)
show ?case by simp

next
case (2 P ky vy ys)
thus ?case by simp

next
case (3 P kx vx xs)
thus ?case by simp

next
case (4 P kx vx xs ky vy ys)
show ?case
proof (cases comp kx ky)

case Lt
thus ?thesis by (simp add: 4 (2)[OF Lt])

next
case Eq
thus ?thesis by (simp add: 4 (1)[OF Eq])

next
case Gt

310

thus ?thesis by (simp add: 4 (3)[OF Gt])
qed

qed

lemma prod-ord-pairI :
assumes oalist-inv-raw xs and oalist-inv-raw ys

and
∧

k. k ∈ fst ‘ set xs ∪ fst ‘ set ys =⇒ P k (lookup-pair xs k) (lookup-pair
ys k)

shows prod-ord-pair P xs ys
unfolding prod-ord-pair-eq-lex-ord-pair by (rule lex-ord-pair-EqI , fact, fact, simp

add: assms(3))

lemma prod-ord-pairD:
assumes oalist-inv-raw xs and oalist-inv-raw ys and prod-ord-pair P xs ys

and k ∈ fst ‘ set xs ∪ fst ‘ set ys
shows P k (lookup-pair xs k) (lookup-pair ys k)

proof −
from assms have (if P k (lookup-pair xs k) (lookup-pair ys k) then Some Eq else

None) = Some Eq
unfolding prod-ord-pair-eq-lex-ord-pair by (rule lex-ord-pair-EqD)

thus ?thesis by (simp split: if-splits)
qed

corollary prod-ord-pair-alt:
assumes oalist-inv-raw xs and oalist-inv-raw ys
shows (prod-ord-pair P xs ys) ←→ (∀ k∈fst ‘ set xs ∪ fst ‘ set ys. P k (lookup-pair

xs k) (lookup-pair ys k))
using prod-ord-pairI [OF assms] prod-ord-pairD[OF assms] by meson

12.4.8 sort-oalist
lemma oalist-inv-raw-foldr-update-by-pair :

assumes oalist-inv-raw ys
shows oalist-inv-raw (foldr update-by-pair xs ys)

proof (induct xs)
case Nil
from assms show ?case by simp

next
case (Cons x xs)
hence oalist-inv-raw (update-by-pair x (foldr update-by-pair xs ys))

by (rule oalist-inv-raw-update-by-pair)
thus ?case by simp

qed

corollary oalist-inv-raw-sort-oalist: oalist-inv-raw (sort-oalist xs)
proof −

from oalist-inv-raw-Nil have oalist-inv-raw (foldr local.update-by-pair xs [])
by (rule oalist-inv-raw-foldr-update-by-pair)

thus oalist-inv-raw (sort-oalist xs) by (simp only: sort-oalist-def)

311

qed

lemma sort-oalist-id:
assumes oalist-inv-raw xs
shows sort-oalist xs = xs

proof −
have foldr update-by-pair xs ys = xs @ ys if oalist-inv-raw (xs @ ys) for ys using

assms that
proof (induct xs rule: oalist-inv-raw-induct)

case Nil
show ?case by simp

next
case (Cons k v xs)
from Cons(6) have ∗: oalist-inv-raw ((k, v) # (xs @ ys)) by simp
hence 1 : oalist-inv-raw (xs @ ys) by (rule oalist-inv-raw-ConsD1)
hence 2 : foldr update-by-pair xs ys = xs @ ys by (rule Cons(5))
show ?case
proof (simp add: 2 , rule update-by-pair-less)

from ∗ show v 6= 0 by (auto simp: oalist-inv-raw-def)
next

have comp k (fst (hd (xs @ ys))) = Lt ∨ xs @ ys = []
proof (rule disjCI)

assume xs @ ys 6= []
then obtain k ′′ v ′′ zs where eq0 : xs @ ys = (k ′′, v ′′) # zs

using list.exhaust prod.exhaust by metis
from ∗ have lt k k ′′ by (simp add: eq0 oalist-inv-raw-def)
thus comp k (fst (hd (xs @ ys))) = Lt by (simp add: eq0 Lt-lt-conv)

qed
thus xs @ ys = [] ∨ comp k (fst (hd (xs @ ys))) = Lt by auto

qed
qed
with assms show ?thesis by (simp add: sort-oalist-def)

qed

lemma set-sort-oalist:
assumes distinct (map fst xs)
shows set (sort-oalist xs) = {kv. kv ∈ set xs ∧ snd kv 6= 0}
using assms

proof (induct xs)
case Nil
show ?case by (simp add: sort-oalist-def)

next
case (Cons x xs)
obtain k v where x: x = (k, v) by fastforce
from Cons(2) have distinct (map fst xs) and k /∈ fst ‘ set xs by (simp-all add:

x)
from this(1) have set (sort-oalist xs) = {kv ∈ set xs. snd kv 6= 0} by (rule

Cons(1))
with ‹k /∈ fst ‘ set xs› have eq: set (sort-oalist xs) − range (Pair k) = {kv ∈ set

312

xs. snd kv 6= 0}
by (auto simp: image-iff)

have set (sort-oalist (x # xs)) = set (update-by-pair (k, v) (sort-oalist xs))
by (simp add: sort-oalist-def x)

also have ... = {kv ∈ set (x # xs). snd kv 6= 0}
proof (cases v = 0)

case True
have set (update-by-pair (k, v) (sort-oalist xs)) = set (sort-oalist xs) − range

(Pair k)
unfolding True using oalist-inv-raw-sort-oalist by (rule set-update-by-pair-zero)
also have ... = {kv ∈ set (x # xs). snd kv 6= 0} by (auto simp: eq x True)
finally show ?thesis .

next
case False
with oalist-inv-raw-sort-oalist
have set (update-by-pair (k, v) (sort-oalist xs)) = insert (k, v) (set (sort-oalist

xs) − range (Pair k))
by (rule set-update-by-pair)

also have ... = {kv ∈ set (x # xs). snd kv 6= 0} by (auto simp: eq x False)
finally show ?thesis .

qed
finally show ?case .

qed

lemma lookup-pair-sort-oalist ′:
assumes distinct (map fst xs)
shows lookup-pair (sort-oalist xs) = lookup-dflt xs
using assms

proof (induct xs)
case Nil
show ?case by (simp add: sort-oalist-def lookup-dflt-def)

next
case (Cons x xs)
obtain k v where x: x = (k, v) by fastforce
from Cons(2) have distinct (map fst xs) and k /∈ fst ‘ set xs by (simp-all add:

x)
from this(1) have eq1 : lookup-pair (sort-oalist xs) = lookup-dflt xs by (rule

Cons(1))
have eq2 : sort-oalist (x # xs) = update-by-pair (k, v) (sort-oalist xs) by (simp

add: x sort-oalist-def)
show ?case
proof

fix k ′

have lookup-pair (sort-oalist (x # xs)) k ′ = (if k = k ′ then v else lookup-dflt
xs k ′)

by (simp add: eq1 eq2 lookup-pair-update-by-pair [OF oalist-inv-raw-sort-oalist])
also have ... = lookup-dflt (x # xs) k ′ by (simp add: x lookup-dflt-def)
finally show lookup-pair (sort-oalist (x # xs)) k ′ = lookup-dflt (x # xs) k ′ .

qed

313

qed

end

locale comparator2 = comparator comp1 + cmp2 : comparator comp2 for comp1
comp2 :: ′a comparator
begin

lemma set-sort-oalist:
assumes cmp2 .oalist-inv-raw xs
shows set (sort-oalist xs) = set xs

proof −
have rl: set (foldr update-by-pair xs ys) = set xs ∪ set ys

if oalist-inv-raw ys and fst ‘ set xs ∩ fst ‘ set ys = {} for ys
using assms that(2)

proof (induct xs rule: cmp2 .oalist-inv-raw-induct)
case Nil
show ?case by simp

next
case (Cons k v xs)
from Cons(6) have k /∈ fst ‘ set ys and fst ‘ set xs ∩ fst ‘ set ys = {} by

simp-all
from this(2) have eq1 : set (foldr update-by-pair xs ys) = set xs ∪ set ys by

(rule Cons(5))
have ¬ cmp2 .lt k k by auto
with Cons(4) have k /∈ fst ‘ set xs by blast
with ‹k /∈ fst ‘ set ys› have k /∈ fst ‘ (set xs ∪ set ys) by (simp add: image-Un)
hence (set xs ∪ set ys) ∩ range (Pair k) = {} by (smt (verit) Int-emptyI fstI

image-iff)
hence eq2 : (set xs ∪ set ys) − range (Pair k) = set xs ∪ set ys by (rule

Diff-triv)
from ‹oalist-inv-raw ys› have oalist-inv-raw (foldr update-by-pair xs ys)

by (rule oalist-inv-raw-foldr-update-by-pair)
hence set (update-by-pair (k, v) (foldr update-by-pair xs ys)) =

insert (k, v) (set (foldr update-by-pair xs ys) − range (Pair k))
using Cons(3) by (rule set-update-by-pair)

also have ... = insert (k, v) (set xs ∪ set ys) by (simp only: eq1 eq2)
finally show ?case by simp

qed
have set (foldr update-by-pair xs []) = set xs ∪ set []

by (rule rl, fact oalist-inv-raw-Nil, simp)
thus ?thesis by (simp add: sort-oalist-def)

qed

lemma lookup-pair-eqI :
assumes oalist-inv-raw xs and cmp2 .oalist-inv-raw ys and set xs = set ys
shows lookup-pair xs = cmp2 .lookup-pair ys

proof
fix k

314

show lookup-pair xs k = cmp2 .lookup-pair ys k
proof (cases cmp2 .lookup-pair ys k = 0)

case True
with assms(2) have k /∈ fst ‘ set ys by (simp add: cmp2 .lookup-pair-eq-0)

with assms(1) show ?thesis by (simp add: True assms(3)[symmetric] lookup-pair-eq-0)
next

case False
define v where v = cmp2 .lookup-pair ys k
from False have v 6= 0 by (simp add: v-def)

with assms(2) v-def [symmetric] have (k, v) ∈ set ys by (simp add: cmp2 .lookup-pair-eq-value)
with assms(1) ‹v 6= 0 › have lookup-pair xs k = v

by (simp add: assms(3)[symmetric] lookup-pair-eq-value)
thus ?thesis by (simp only: v-def)

qed
qed

corollary lookup-pair-sort-oalist:
assumes cmp2 .oalist-inv-raw xs
shows lookup-pair (sort-oalist xs) = cmp2 .lookup-pair xs
by (rule lookup-pair-eqI , rule oalist-inv-raw-sort-oalist, fact, rule set-sort-oalist,

fact)

end

12.5 Invariant on Pairs
type-synonym (′a, ′b, ′c) oalist-raw = (′a × ′b) list × ′c

locale oalist-raw = fixes rep-key-order :: ′o ⇒ ′a key-order
begin

sublocale comparator key-compare (rep-key-order x)
by (fact comparator-key-compare)

definition oalist-inv :: (′a, ′b::zero, ′o) oalist-raw ⇒ bool
where oalist-inv xs ←→ oalist-inv-raw (snd xs) (fst xs)

lemma oalist-inv-alt: oalist-inv (xs, ko) ←→ oalist-inv-raw ko xs
by (simp add: oalist-inv-def)

12.6 Operations on Raw Ordered Associative Lists
fun sort-oalist-aux :: ′o ⇒ (′a, ′b, ′o) oalist-raw ⇒ (′a × ′b::zero) list

where sort-oalist-aux ko (xs, ox) = (if ko = ox then xs else sort-oalist ko xs)

fun lookup-raw :: (′a, ′b, ′o) oalist-raw ⇒ ′a ⇒ ′b::zero
where lookup-raw (xs, ko) = lookup-pair ko xs

definition sorted-domain-raw :: ′o ⇒ (′a, ′b::zero, ′o) oalist-raw ⇒ ′a list
where sorted-domain-raw ko xs = map fst (sort-oalist-aux ko xs)

315

fun tl-raw :: (′a, ′b, ′o) oalist-raw ⇒ (′a, ′b::zero, ′o) oalist-raw
where tl-raw (xs, ko) = (List.tl xs, ko)

fun min-key-val-raw :: ′o ⇒ (′a, ′b, ′o) oalist-raw ⇒ (′a × ′b::zero)
where min-key-val-raw ko (xs, ox) =

(if ko = ox then List.hd else min-list-param (λx y. le ko (fst x) (fst y))) xs

fun update-by-raw :: (′a × ′b)⇒ (′a, ′b, ′o) oalist-raw ⇒ (′a, ′b::zero, ′o) oalist-raw
where update-by-raw kv (xs, ko) = (update-by-pair ko kv xs, ko)

fun update-by-fun-raw :: ′a ⇒ (′b ⇒ ′b) ⇒ (′a, ′b, ′o) oalist-raw ⇒ (′a, ′b::zero,
′o) oalist-raw

where update-by-fun-raw k f (xs, ko) = (update-by-fun-pair ko k f xs, ko)

fun update-by-fun-gr-raw :: ′a ⇒ (′b ⇒ ′b) ⇒ (′a, ′b, ′o) oalist-raw ⇒ (′a, ′b::zero,
′o) oalist-raw

where update-by-fun-gr-raw k f (xs, ko) = (update-by-fun-gr-pair ko k f xs, ko)

fun (in −) filter-raw :: (′a ⇒ bool) ⇒ (′a list × ′b) ⇒ (′a list × ′b)
where filter-raw P (xs, ko) = (filter P xs, ko)

fun (in −) map-raw :: ((′a × ′b) ⇒ (′a × ′c)) ⇒ ((′a × ′b::zero) list × ′d) ⇒ (′a
× ′c::zero) list × ′d

where map-raw f (xs, ko) = (map-pair f xs, ko)

abbreviation (in −) map-val-raw f ≡ map-raw (λ(k, v). (k, f k v))

fun map2-val-raw :: (′a ⇒ ′b ⇒ ′c ⇒ ′d) ⇒ ((′a, ′b, ′o) oalist-raw ⇒ (′a, ′d, ′o)
oalist-raw) ⇒

((′a, ′c, ′o) oalist-raw ⇒ (′a, ′d, ′o) oalist-raw) ⇒
(′a, ′b::zero, ′o) oalist-raw ⇒ (′a, ′c::zero, ′o) oalist-raw ⇒
(′a, ′d::zero, ′o) oalist-raw

where map2-val-raw f g h (xs, ox) ys =
(map2-val-pair ox f (λzs. fst (g (zs, ox))) (λzs. fst (h (zs, ox)))

xs (sort-oalist-aux ox ys), ox)

definition lex-ord-raw :: ′o ⇒ (′a ⇒ ((′b, ′c) comp-opt)) ⇒
((′a, ′b::zero, ′o) oalist-raw, (′a, ′c::zero, ′o) oalist-raw) comp-opt

where lex-ord-raw ko f xs ys = lex-ord-pair ko f (sort-oalist-aux ko xs) (sort-oalist-aux
ko ys)

fun prod-ord-raw :: (′a ⇒ ′b ⇒ ′c ⇒ bool) ⇒ (′a, ′b::zero, ′o) oalist-raw ⇒
(′a, ′c::zero, ′o) oalist-raw ⇒ bool

where prod-ord-raw f (xs, ox) ys = prod-ord-pair ox f xs (sort-oalist-aux ox ys)

fun oalist-eq-raw :: (′a, ′b, ′o) oalist-raw ⇒ (′a, ′b::zero, ′o) oalist-raw ⇒ bool
where oalist-eq-raw (xs, ox) ys = (xs = (sort-oalist-aux ox ys))

316

fun sort-oalist-raw :: (′a, ′b, ′o) oalist-raw ⇒ (′a, ′b::zero, ′o) oalist-raw
where sort-oalist-raw (xs, ko) = (sort-oalist ko xs, ko)

12.6.1 sort-oalist-aux
lemma set-sort-oalist-aux:

assumes oalist-inv xs
shows set (sort-oalist-aux ko xs) = set (fst xs)

proof −
obtain xs ′ ko ′ where xs: xs = (xs ′, ko ′) by fastforce
interpret ko2 : comparator2 key-compare (rep-key-order ko) key-compare (rep-key-order

ko ′) ..
from assms show ?thesis by (simp add: xs oalist-inv-alt ko2 .set-sort-oalist)

qed

lemma oalist-inv-raw-sort-oalist-aux:
assumes oalist-inv xs
shows oalist-inv-raw ko (sort-oalist-aux ko xs)

proof −
obtain xs ′ ko ′ where xs: xs = (xs ′, ko ′) by fastforce
from assms show ?thesis by (simp add: xs oalist-inv-alt oalist-inv-raw-sort-oalist)

qed

lemma oalist-inv-sort-oalist-aux:
assumes oalist-inv xs
shows oalist-inv (sort-oalist-aux ko xs, ko)
unfolding oalist-inv-alt using assms by (rule oalist-inv-raw-sort-oalist-aux)

lemma lookup-pair-sort-oalist-aux:
assumes oalist-inv xs
shows lookup-pair ko (sort-oalist-aux ko xs) = lookup-raw xs

proof −
obtain xs ′ ko ′ where xs: xs = (xs ′, ko ′) by fastforce
interpret ko2 : comparator2 key-compare (rep-key-order ko) key-compare (rep-key-order

ko ′) ..
from assms show ?thesis by (simp add: xs oalist-inv-alt ko2 .lookup-pair-sort-oalist)

qed

12.6.2 lookup-raw
lemma lookup-raw-eq-value:

assumes oalist-inv xs and v 6= 0
shows lookup-raw xs k = v ←→ ((k, v) ∈ set (fst xs))

proof −
obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
from assms(1) have oalist-inv-raw ox xs ′ by (simp add: xs oalist-inv-def)
show ?thesis by (simp add: xs, rule lookup-pair-eq-value, fact+)

qed

lemma lookup-raw-eq-valueI :

317

assumes oalist-inv xs and (k, v) ∈ set (fst xs)
shows lookup-raw xs k = v

proof −
obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
from assms(1) have oalist-inv-raw ox xs ′ by (simp add: xs oalist-inv-def)
from assms(2) have (k, v) ∈ set xs ′ by (simp add: xs)
show ?thesis by (simp add: xs, rule lookup-pair-eq-valueI , fact+)

qed

lemma lookup-raw-inj:
assumes oalist-inv (xs, ko) and oalist-inv (ys, ko) and lookup-raw (xs, ko) =

lookup-raw (ys, ko)
shows xs = ys
using assms unfolding lookup-raw.simps oalist-inv-alt by (rule lookup-pair-inj)

12.6.3 sorted-domain-raw
lemma set-sorted-domain-raw:

assumes oalist-inv xs
shows set (sorted-domain-raw ko xs) = fst ‘ set (fst xs)
using assms by (simp add: sorted-domain-raw-def set-sort-oalist-aux)

corollary in-sorted-domain-raw-iff-lookup-raw:
assumes oalist-inv xs
shows k ∈ set (sorted-domain-raw ko xs) ←→ (lookup-raw xs k 6= 0)
unfolding set-sorted-domain-raw[OF assms]

proof −
obtain xs ′ ko ′ where xs: xs = (xs ′, ko ′) by fastforce
from assms show k ∈ fst ‘ set (fst xs) ←→ (lookup-raw xs k 6= 0)

by (simp add: xs oalist-inv-alt lookup-pair-eq-0)
qed

lemma sorted-sorted-domain-raw:
assumes oalist-inv xs
shows sorted-wrt (lt-of-key-order (rep-key-order ko)) (sorted-domain-raw ko xs)
unfolding sorted-domain-raw-def oalist-inv-alt lt-of-key-order .rep-eq
by (rule oalist-inv-rawD2 , rule oalist-inv-raw-sort-oalist-aux, fact)

12.6.4 tl-raw
lemma oalist-inv-tl-raw:

assumes oalist-inv xs
shows oalist-inv (tl-raw xs)

proof −
obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms show ?thesis unfolding xs tl-raw.simps oalist-inv-alt by (rule oal-

ist-inv-raw-tl)
qed

lemma lookup-raw-tl-raw:

318

assumes oalist-inv xs
shows lookup-raw (tl-raw xs) k =

(if (∀ k ′∈fst ‘ set (fst xs). le (snd xs) k k ′) then 0 else lookup-raw xs k)
proof −

obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms show ?thesis by (simp add: xs lookup-pair-tl oalist-inv-alt split del:

if-split cong: if-cong)
qed

lemma lookup-raw-tl-raw ′:
assumes oalist-inv xs
shows lookup-raw (tl-raw xs) k = (if k = fst (List.hd (fst xs)) then 0 else

lookup-raw xs k)
proof −

obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms show ?thesis by (simp add: xs lookup-pair-tl ′ oalist-inv-alt)

qed

12.6.5 min-key-val-raw
lemma min-key-val-raw-alt:

assumes oalist-inv xs and fst xs 6= []
shows min-key-val-raw ko xs = List.hd (sort-oalist-aux ko xs)

proof −
obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
from assms(2) have xs ′ 6= [] by (simp add: xs)
interpret ko2 : comparator2 key-compare (rep-key-order ko) key-compare (rep-key-order

ox) ..
from assms(1) have oalist-inv-raw ox xs ′ by (simp only: xs oalist-inv-alt)
hence set-sort: set (sort-oalist ko xs ′) = set xs ′ by (rule ko2 .set-sort-oalist)
also from ‹xs ′ 6= []› have ... 6= {} by simp
finally have sort-oalist ko xs ′ 6= [] by simp
then obtain k v xs ′′ where eq: sort-oalist ko xs ′ = (k, v) # xs ′′

using prod.exhaust list.exhaust by metis
hence (k, v) ∈ set xs ′ by (simp add: set-sort[symmetric])
have ∗: le ko k k ′ if k ′ ∈ fst ‘ set xs ′ for k ′

proof −
from that have k ′ = k ∨ k ′ ∈ fst ‘ set xs ′′ by (simp add: set-sort[symmetric]

eq)
thus ?thesis
proof

assume k ′ = k
thus ?thesis by simp

next
have oalist-inv-raw ko ((k, v) # xs ′′) unfolding eq[symmetric] by (fact

oalist-inv-raw-sort-oalist)
moreover assume k ′ ∈ fst ‘ set xs ′′

ultimately have lt ko k k ′ by (rule oalist-inv-raw-ConsD3)
thus ?thesis by simp

319

qed
qed
from ‹xs ′ 6= []› have min-list-param (λx y. le ko (fst x) (fst y)) xs ′ ∈ set xs ′ by

(rule min-list-param-in)
with ‹oalist-inv-raw ox xs ′› have lookup-pair ox xs ′ (fst (min-list-param (λx y.

le ko (fst x) (fst y)) xs ′)) =
snd (min-list-param (λx y. le ko (fst x) (fst y)) xs ′) by (auto intro: lookup-pair-eq-valueI)

moreover have 1 : fst (min-list-param (λx y. le ko (fst x) (fst y)) xs ′) = k
proof (rule antisym)

from order-trans
have transp (λx y. le ko (fst x) (fst y)) by (rule transpI)
hence le ko (fst (min-list-param (λx y. le ko (fst x) (fst y)) xs ′)) (fst (k, v))

using linear ‹(k, v) ∈ set xs ′› by (rule min-list-param-minimal)
thus le ko (fst (min-list-param (λx y. le ko (fst x) (fst y)) xs ′)) k by simp

next
show le ko k (fst (min-list-param (λx y. le ko (fst x) (fst y)) xs ′)) by (rule ∗,

rule imageI , fact)
qed
ultimately have snd (min-list-param (λx y. le ko (fst x) (fst y)) xs ′) = lookup-pair

ox xs ′ k
by simp

also from ‹oalist-inv-raw ox xs ′› ‹(k, v) ∈ set xs ′› have ... = v by (rule
lookup-pair-eq-valueI)

finally have snd (min-list-param (λx y. le ko (fst x) (fst y)) xs ′) = v .
with 1 have min-list-param (λx y. le ko (fst x) (fst y)) xs ′ = (k, v) by auto
thus ?thesis by (simp add: xs eq)

qed

lemma min-key-val-raw-in:
assumes fst xs 6= []
shows min-key-val-raw ko xs ∈ set (fst xs)

proof −
obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
from assms have xs ′ 6= [] by (simp add: xs)
show ?thesis unfolding xs
proof (simp, intro conjI impI)

from ‹xs ′ 6= []› show hd xs ′ ∈ set xs ′ by simp
next

from ‹xs ′ 6= []› show min-list-param (λx y. le ko (fst x) (fst y)) xs ′ ∈ set xs ′

by (rule min-list-param-in)
qed

qed

lemma snd-min-key-val-raw:
assumes oalist-inv xs and fst xs 6= []
shows snd (min-key-val-raw ko xs) = lookup-raw xs (fst (min-key-val-raw ko xs))

proof −
obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
from assms(1) have oalist-inv-raw ox xs ′ by (simp only: xs oalist-inv-alt)

320

from assms(2) have min-key-val-raw ko xs ∈ set (fst xs) by (rule min-key-val-raw-in)
hence ∗: min-key-val-raw ko (xs ′, ox) ∈ set xs ′ by (simp add: xs)
show ?thesis unfolding xs lookup-raw.simps
by (rule HOL.sym, rule lookup-pair-eq-valueI , fact, simp add: ∗ del: min-key-val-raw.simps)

qed

lemma min-key-val-raw-minimal:
assumes oalist-inv xs and z ∈ set (fst xs)
shows le ko (fst (min-key-val-raw ko xs)) (fst z)

proof −
obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
from assms have oalist-inv (xs ′, ox) and z ∈ set xs ′ by (simp-all add: xs)
show ?thesis unfolding xs
proof (simp, intro conjI impI)

from ‹z ∈ set xs ′› have xs ′ 6= [] by auto
then obtain k v ys where xs ′: xs ′ = (k, v) # ys using prod.exhaust list.exhaust

by metis
from ‹z ∈ set xs ′› have z = (k, v) ∨ z ∈ set ys by (simp add: xs ′)
thus le ox (fst (hd xs ′)) (fst z)
proof

assume z = (k, v)
show ?thesis by (simp add: xs ′ ‹z = (k, v)›)

next
assume z ∈ set ys
hence fst z ∈ fst ‘ set ys by fastforce
with ‹oalist-inv (xs ′, ox)› have lt ox k (fst z)
unfolding xs ′ oalist-inv-alt lt-of-key-order .rep-eq by (rule oalist-inv-raw-ConsD3)
thus ?thesis by (simp add: xs ′)

qed
next

show le ko (fst (min-list-param (λx y. le ko (fst x) (fst y)) xs ′)) (fst z)
proof (rule min-list-param-minimal[of λx y. le ko (fst x) (fst y)])

thm trans local.trans order .trans local.order-trans
print-context

show transp (λx y. le ko (fst x) (fst y)) by (metis (no-types, lifting) order-trans
transpI)

qed (auto intro: ‹z ∈ set xs ′›)
qed

qed

12.6.6 filter-raw
lemma oalist-inv-filter-raw:

assumes oalist-inv xs
shows oalist-inv (filter-raw P xs)

proof −
obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms show ?thesis unfolding xs filter-raw.simps oalist-inv-alt

by (rule oalist-inv-raw-filter)

321

qed

lemma lookup-raw-filter-raw:
assumes oalist-inv xs
shows lookup-raw (filter-raw P xs) k = (let v = lookup-raw xs k in if P (k, v)

then v else 0)
proof −

obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms show ?thesis unfolding xs lookup-raw.simps filter-raw.simps oal-

ist-inv-alt
by (rule lookup-pair-filter)

qed

12.6.7 update-by-raw
lemma oalist-inv-update-by-raw:

assumes oalist-inv xs
shows oalist-inv (update-by-raw kv xs)

proof −
obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms show ?thesis unfolding xs update-by-raw.simps oalist-inv-alt

by (rule oalist-inv-raw-update-by-pair)
qed

lemma lookup-raw-update-by-raw:
assumes oalist-inv xs
shows lookup-raw (update-by-raw (k1 , v) xs) k2 = (if k1 = k2 then v else

lookup-raw xs k2)
proof −

obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms show ?thesis unfolding xs lookup-raw.simps update-by-raw.simps

oalist-inv-alt
by (rule lookup-pair-update-by-pair)

qed

12.6.8 update-by-fun-raw and update-by-fun-gr-raw
lemma update-by-fun-raw-eq-update-by-raw:

assumes oalist-inv xs
shows update-by-fun-raw k f xs = update-by-raw (k, f (lookup-raw xs k)) xs

proof −
obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms have oalist-inv-raw ko xs ′ by (simp only: xs oalist-inv-alt)
show ?thesis unfolding xs update-by-fun-raw.simps lookup-raw.simps update-by-raw.simps
by (rule, rule conjI , rule update-by-fun-pair-eq-update-by-pair , fact, fact HOL.refl)

qed

corollary oalist-inv-update-by-fun-raw:
assumes oalist-inv xs
shows oalist-inv (update-by-fun-raw k f xs)

322

unfolding update-by-fun-raw-eq-update-by-raw[OF assms] using assms by (rule
oalist-inv-update-by-raw)

corollary lookup-raw-update-by-fun-raw:
assumes oalist-inv xs
shows lookup-raw (update-by-fun-raw k1 f xs) k2 = (if k1 = k2 then f else id)

(lookup-raw xs k2)
using assms by (simp add: update-by-fun-raw-eq-update-by-raw lookup-raw-update-by-raw)

lemma update-by-fun-gr-raw-eq-update-by-fun-raw:
assumes oalist-inv xs
shows update-by-fun-gr-raw k f xs = update-by-fun-raw k f xs

proof −
obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms have oalist-inv-raw ko xs ′ by (simp only: xs oalist-inv-alt)
show ?thesis unfolding xs update-by-fun-raw.simps lookup-raw.simps update-by-fun-gr-raw.simps

by (rule, rule conjI , rule update-by-fun-gr-pair-eq-update-by-fun-pair , fact, fact
HOL.refl)
qed

corollary oalist-inv-update-by-fun-gr-raw:
assumes oalist-inv xs
shows oalist-inv (update-by-fun-gr-raw k f xs)
unfolding update-by-fun-gr-raw-eq-update-by-fun-raw[OF assms] using assms by

(rule oalist-inv-update-by-fun-raw)

corollary lookup-raw-update-by-fun-gr-raw:
assumes oalist-inv xs
shows lookup-raw (update-by-fun-gr-raw k1 f xs) k2 = (if k1 = k2 then f else id)

(lookup-raw xs k2)
using assms by (simp add: update-by-fun-gr-raw-eq-update-by-fun-raw lookup-raw-update-by-fun-raw)

12.6.9 map-raw and map-val-raw
lemma map-raw-cong:

assumes
∧

kv. kv ∈ set (fst xs) =⇒ f kv = g kv
shows map-raw f xs = map-raw g xs

proof −
obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms have f kv = g kv if kv ∈ set xs ′ for kv using that by (simp add:

xs)
thus ?thesis by (simp add: xs, rule map-pair-cong)

qed

lemma map-raw-subset: set (fst (map-raw f xs)) ⊆ f ‘ set (fst xs)
proof −

obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
show ?thesis by (simp add: xs map-pair-subset)

qed

323

lemma oalist-inv-map-raw:
assumes oalist-inv xs

and
∧

a b. key-compare (rep-key-order (snd xs)) (fst (f a)) (fst (f b)) =
key-compare (rep-key-order (snd xs)) (fst a) (fst b)

shows oalist-inv (map-raw f xs)
proof −

obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms(1) have oalist-inv (xs ′, ko) by (simp only: xs)
moreover from assms(2)
have

∧
a b. key-compare (rep-key-order ko) (fst (f a)) (fst (f b)) = key-compare

(rep-key-order ko) (fst a) (fst b)
by (simp add: xs)

ultimately show ?thesis unfolding xs map-raw.simps oalist-inv-alt by (rule
oalist-inv-raw-map-pair)
qed

lemma lookup-raw-map-raw:
assumes oalist-inv xs and snd (f (k, 0)) = 0

and
∧

a b. key-compare (rep-key-order (snd xs)) (fst (f a)) (fst (f b)) =
key-compare (rep-key-order (snd xs)) (fst a) (fst b)

shows lookup-raw (map-raw f xs) (fst (f (k, v))) = snd (f (k, lookup-raw xs k))
proof −

obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms(1) have oalist-inv (xs ′, ko) by (simp only: xs)
moreover note assms(2)
moreover from assms(3)
have

∧
a b. key-compare (rep-key-order ko) (fst (f a)) (fst (f b)) = key-compare

(rep-key-order ko) (fst a) (fst b)
by (simp add: xs)

ultimately show ?thesis unfolding xs lookup-raw.simps map-raw.simps oal-
ist-inv-alt

by (rule lookup-pair-map-pair)
qed

lemma map-raw-id:
assumes oalist-inv xs
shows map-raw id xs = xs

proof −
obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms have oalist-inv-raw ko xs ′ by (simp only: xs oalist-inv-alt)
hence map-pair id xs ′ = xs ′

proof (induct xs ′ rule: oalist-inv-raw-induct)
case Nil
show ?case by simp

next
case (Cons k v xs ′)
show ?case by (simp add: Let-def Cons(3 , 5) id-def [symmetric])

qed

324

thus ?thesis by (simp add: xs)
qed

lemma map-val-raw-cong:
assumes

∧
k v. (k, v) ∈ set (fst xs) =⇒ f k v = g k v

shows map-val-raw f xs = map-val-raw g xs
proof (rule map-raw-cong)

fix kv
assume kv ∈ set (fst xs)
moreover obtain k v where kv = (k, v) by fastforce
ultimately show (case kv of (k, v) ⇒ (k, f k v)) = (case kv of (k, v) ⇒ (k, g k

v))
by (simp add: assms)

qed

lemma oalist-inv-map-val-raw:
assumes oalist-inv xs
shows oalist-inv (map-val-raw f xs)

proof −
obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms show ?thesis unfolding xs map-raw.simps oalist-inv-alt by (rule

oalist-inv-raw-map-val-pair)
qed

lemma lookup-raw-map-val-raw:
assumes oalist-inv xs and f k 0 = 0
shows lookup-raw (map-val-raw f xs) k = f k (lookup-raw xs k)

proof −
obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms show ?thesis unfolding xs map-raw.simps lookup-raw.simps oal-

ist-inv-alt
by (rule lookup-pair-map-val-pair)

qed

12.6.10 map2-val-raw
definition map2-val-compat ′ :: ((′a, ′b::zero, ′o) oalist-raw ⇒ (′a, ′c::zero, ′o) oal-
ist-raw) ⇒ bool

where map2-val-compat ′ f ←→
(∀ zs. (oalist-inv zs −→ (oalist-inv (f zs) ∧ snd (f zs) = snd zs ∧ fst ‘ set (fst

(f zs)) ⊆ fst ‘ set (fst zs))))

lemma map2-val-compat ′I :
assumes

∧
zs. oalist-inv zs =⇒ oalist-inv (f zs)

and
∧

zs. oalist-inv zs =⇒ snd (f zs) = snd zs
and

∧
zs. oalist-inv zs =⇒ fst ‘ set (fst (f zs)) ⊆ fst ‘ set (fst zs)

shows map2-val-compat ′ f
unfolding map2-val-compat ′-def using assms by blast

325

lemma map2-val-compat ′D1 :
assumes map2-val-compat ′ f and oalist-inv zs
shows oalist-inv (f zs)
using assms unfolding map2-val-compat ′-def by blast

lemma map2-val-compat ′D2 :
assumes map2-val-compat ′ f and oalist-inv zs
shows snd (f zs) = snd zs
using assms unfolding map2-val-compat ′-def by blast

lemma map2-val-compat ′D3 :
assumes map2-val-compat ′ f and oalist-inv zs
shows fst ‘ set (fst (f zs)) ⊆ fst ‘ set (fst zs)
using assms unfolding map2-val-compat ′-def by blast

lemma map2-val-compat ′-map-val-raw: map2-val-compat ′ (map-val-raw f)
proof (rule map2-val-compat ′I , erule oalist-inv-map-val-raw)

fix zs::(′a, ′b, ′o) oalist-raw
obtain zs ′ ko where zs = (zs ′, ko) by fastforce
thus snd (map-val-raw f zs) = snd zs by simp

next
fix zs::(′a, ′b, ′o) oalist-raw
obtain zs ′ ko where zs: zs = (zs ′, ko) by fastforce
show fst ‘ set (fst (map-val-raw f zs)) ⊆ fst ‘ set (fst zs)
proof (simp add: zs)

from map-pair-subset have fst ‘ set (map-val-pair f zs ′) ⊆ fst ‘ (λ(k, v). (k, f
k v)) ‘ set zs ′

by (rule image-mono)
also have ... = fst ‘ set zs ′ by force
finally show fst ‘ set (map-val-pair f zs ′) ⊆ fst ‘ set zs ′ .

qed
qed

lemma map2-val-compat ′-id: map2-val-compat ′ id
by (rule map2-val-compat ′I , auto)

lemma map2-val-compat ′-imp-map2-val-compat:
assumes map2-val-compat ′ g
shows map2-val-compat ko (λzs. fst (g (zs, ko)))

proof (rule map2-val-compatI)
fix zs::(′a × ′b) list
assume a: oalist-inv-raw ko zs
hence oalist-inv (zs, ko) by (simp only: oalist-inv-alt)
with assms have oalist-inv (g (zs, ko)) by (rule map2-val-compat ′D1)
hence oalist-inv (fst (g (zs, ko)), snd (g (zs, ko))) by simp
thus oalist-inv-raw ko (fst (g (zs, ko))) using assms a by (simp add: oalist-inv-alt

map2-val-compat ′D2)
next

fix zs::(′a × ′b) list

326

assume a: oalist-inv-raw ko zs
hence oalist-inv (zs, ko) by (simp only: oalist-inv-alt)
with assms have fst ‘ set (fst (g (zs, ko))) ⊆ fst ‘ set (fst (zs, ko)) by (rule

map2-val-compat ′D3)
thus fst ‘ set (fst (g (zs, ko))) ⊆ fst ‘ set zs by simp

qed

lemma oalist-inv-map2-val-raw:
assumes oalist-inv xs and oalist-inv ys
assumes map2-val-compat ′ g and map2-val-compat ′ h
shows oalist-inv (map2-val-raw f g h xs ys)

proof −
obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
let ?ys = sort-oalist-aux ox ys
from assms(1) have oalist-inv-raw ox xs ′ by (simp add: xs oalist-inv-alt)
moreover from assms(2) have oalist-inv-raw ox (sort-oalist-aux ox ys)

by (rule oalist-inv-raw-sort-oalist-aux)
moreover from assms(3) have map2-val-compat ko (λzs. fst (g (zs, ko))) for

ko
by (rule map2-val-compat ′-imp-map2-val-compat)

moreover from assms(4) have map2-val-compat ko (λzs. fst (h (zs, ko))) for
ko

by (rule map2-val-compat ′-imp-map2-val-compat)
ultimately have oalist-inv-raw ox (map2-val-pair ox f (λzs. fst (g (zs, ox)))

(λzs. fst (h (zs, ox))) xs ′ ?ys)
by (rule oalist-inv-raw-map2-val-pair)

thus ?thesis by (simp add: xs oalist-inv-alt)
qed

lemma lookup-raw-map2-val-raw:
assumes oalist-inv xs and oalist-inv ys
assumes map2-val-compat ′ g and map2-val-compat ′ h
assumes

∧
zs. oalist-inv zs =⇒ g zs = map-val-raw (λk v. f k v 0) zs

and
∧

zs. oalist-inv zs =⇒ h zs = map-val-raw (λk. f k 0) zs
and

∧
k. f k 0 0 = 0

shows lookup-raw (map2-val-raw f g h xs ys) k0 = f k0 (lookup-raw xs k0)
(lookup-raw ys k0)
proof −

obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
let ?ys = sort-oalist-aux ox ys
from assms(1) have oalist-inv-raw ox xs ′ by (simp add: xs oalist-inv-alt)
moreover from assms(2) have oalist-inv-raw ox (sort-oalist-aux ox ys) by (rule

oalist-inv-raw-sort-oalist-aux)
moreover from assms(3) have map2-val-compat ko (λzs. fst (g (zs, ko))) for

ko
by (rule map2-val-compat ′-imp-map2-val-compat)

moreover from assms(4) have map2-val-compat ko (λzs. fst (h (zs, ko))) for
ko

by (rule map2-val-compat ′-imp-map2-val-compat)

327

ultimately have lookup-pair ox (map2-val-pair ox f (λzs. fst (g (zs, ox))) (λzs.
fst (h (zs, ox))) xs ′ ?ys) k0 =

f k0 (lookup-pair ox xs ′ k0) (lookup-pair ox ?ys k0) using - -
assms(7)

proof (rule lookup-pair-map2-val-pair)
fix zs::(′a × ′b) list
assume oalist-inv-raw ox zs
hence oalist-inv (zs, ox) by (simp only: oalist-inv-alt)
hence g (zs, ox) = map-val-raw (λk v. f k v 0) (zs, ox) by (rule assms(5))
thus fst (g (zs, ox)) = map-val-pair (λk v. f k v 0) zs by simp

next
fix zs::(′a × ′c) list
assume oalist-inv-raw ox zs
hence oalist-inv (zs, ox) by (simp only: oalist-inv-alt)
hence h (zs, ox) = map-val-raw (λk. f k 0) (zs, ox) by (rule assms(6))
thus fst (h (zs, ox)) = map-val-pair (λk. f k 0) zs by simp

qed
also from assms(2) have ... = f k0 (lookup-pair ox xs ′ k0) (lookup-raw ys k0)

by (simp only: lookup-pair-sort-oalist-aux)
finally have ∗: lookup-pair ox (map2-val-pair ox f (λzs. fst (g (zs, ox))) (λzs. fst

(h (zs, ox))) xs ′ ?ys) k0 =
f k0 (lookup-pair ox xs ′ k0) (lookup-raw ys k0) .

thus ?thesis by (simp add: xs)
qed

lemma map2-val-raw-singleton-eq-update-by-fun-raw:
assumes oalist-inv xs
assumes

∧
k x. f k x 0 = x and

∧
zs. oalist-inv zs =⇒ g zs = zs

and
∧

ko. h ([(k, v)], ko) = map-val-raw (λk. f k 0) ([(k, v)], ko)
shows map2-val-raw f g h xs ([(k, v)], ko) = update-by-fun-raw k (λx. f k x v) xs

proof −
obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
let ?ys = sort-oalist ox [(k, v)]
from assms(1) have inv: oalist-inv (xs ′, ox) by (simp only: xs)
hence inv-raw: oalist-inv-raw ox xs ′ by (simp only: oalist-inv-alt)
show ?thesis
proof (simp add: xs, intro conjI impI)

assume ox = ko
from inv-raw have oalist-inv-raw ko xs ′ by (simp only: ‹ox = ko›)
thus map2-val-pair ko f (λzs. fst (g (zs, ko))) (λzs. fst (h (zs, ko))) xs ′ [(k, v)]

=
update-by-fun-pair ko k (λx. f k x v) xs ′

using assms(2)
proof (rule map2-val-pair-singleton-eq-update-by-fun-pair)

fix zs::(′a × ′b) list
assume oalist-inv-raw ko zs
hence oalist-inv (zs, ko) by (simp only: oalist-inv-alt)
hence g (zs, ko) = (zs, ko) by (rule assms(3))
thus fst (g (zs, ko)) = zs by simp

328

next
show fst (h ([(k, v)], ko)) = map-val-pair (λk. f k 0) [(k, v)] by (simp add:

assms(4))
qed

next
show map2-val-pair ox f (λzs. fst (g (zs, ox))) (λzs. fst (h (zs, ox))) xs ′

(sort-oalist ox [(k, v)]) =
update-by-fun-pair ox k (λx. f k x v) xs ′

proof (cases v = 0)
case True
have eq1 : sort-oalist ox [(k, 0)] = [] by (simp add: sort-oalist-def)
from inv have eq2 : g (xs ′, ox) = (xs ′, ox) by (rule assms(3))
show ?thesis
by (simp add: True eq1 eq2 assms(2) update-by-fun-pair-eq-update-by-pair [OF

inv-raw],
rule HOL.sym, rule update-by-pair-id, fact inv-raw, fact HOL.refl)

next
case False
hence oalist-inv-raw ox [(k, v)] by (simp add: oalist-inv-raw-singleton)
hence eq: sort-oalist ox [(k, v)] = [(k, v)] by (rule sort-oalist-id)
show ?thesis unfolding eq using inv-raw assms(2)
proof (rule map2-val-pair-singleton-eq-update-by-fun-pair)

fix zs::(′a × ′b) list
assume oalist-inv-raw ox zs
hence oalist-inv (zs, ox) by (simp only: oalist-inv-alt)
hence g (zs, ox) = (zs, ox) by (rule assms(3))
thus fst (g (zs, ox)) = zs by simp

next
show fst (h ([(k, v)], ox)) = map-val-pair (λk. f k 0) [(k, v)] by (simp add:

assms(4))
qed

qed
qed

qed

12.6.11 lex-ord-raw
lemma lex-ord-raw-EqI :

assumes oalist-inv xs and oalist-inv ys
and

∧
k. k ∈ fst ‘ set (fst xs) ∪ fst ‘ set (fst ys) =⇒ f k (lookup-raw xs k)

(lookup-raw ys k) = Some Eq
shows lex-ord-raw ko f xs ys = Some Eq
unfolding lex-ord-raw-def
by (rule lex-ord-pair-EqI , simp-all add: assms oalist-inv-raw-sort-oalist-aux lookup-pair-sort-oalist-aux

set-sort-oalist-aux)

lemma lex-ord-raw-valI :
assumes oalist-inv xs and oalist-inv ys and aux 6= Some Eq
assumes k ∈ fst ‘ set (fst xs) ∪ fst ‘ set (fst ys) and aux = f k (lookup-raw xs

329

k) (lookup-raw ys k)
and

∧
k ′. k ′ ∈ fst ‘ set (fst xs) ∪ fst ‘ set (fst ys) =⇒ lt ko k ′ k =⇒
f k ′ (lookup-raw xs k ′) (lookup-raw ys k ′) = Some Eq

shows lex-ord-raw ko f xs ys = aux
unfolding lex-ord-raw-def
using oalist-inv-sort-oalist-aux[OF assms(1)] oalist-inv-raw-sort-oalist-aux[OF

assms(2)] assms(3)
unfolding oalist-inv-alt

proof (rule lex-ord-pair-valI)
from assms(1 , 2 , 4) show k ∈ fst ‘ set (sort-oalist-aux ko xs) ∪ fst ‘ set

(sort-oalist-aux ko ys)
by (simp add: set-sort-oalist-aux)

next
from assms(1 , 2 , 5) show aux = f k (lookup-pair ko (sort-oalist-aux ko xs) k)

(lookup-pair ko (sort-oalist-aux ko ys) k)
by (simp add: lookup-pair-sort-oalist-aux)

next
fix k ′

assume k ′ ∈ fst ‘ set (sort-oalist-aux ko xs) ∪ fst ‘ set (sort-oalist-aux ko ys)
with assms(1 , 2) have k ′ ∈ fst ‘ set (fst xs) ∪ fst ‘ set (fst ys) by (simp add:

set-sort-oalist-aux)
moreover assume lt ko k ′ k
ultimately have f k ′ (lookup-raw xs k ′) (lookup-raw ys k ′) = Some Eq by (rule

assms(6))
with assms(1 , 2) show f k ′ (lookup-pair ko (sort-oalist-aux ko xs) k ′) (lookup-pair

ko (sort-oalist-aux ko ys) k ′) = Some Eq
by (simp add: lookup-pair-sort-oalist-aux)

qed

lemma lex-ord-raw-EqD:
assumes oalist-inv xs and oalist-inv ys and lex-ord-raw ko f xs ys = Some Eq

and k ∈ fst ‘ set (fst xs) ∪ fst ‘ set (fst ys)
shows f k (lookup-raw xs k) (lookup-raw ys k) = Some Eq

proof −
have f k (lookup-pair ko (sort-oalist-aux ko xs) k) (lookup-pair ko (sort-oalist-aux

ko ys) k) = Some Eq
by (rule lex-ord-pair-EqD[where f=f],

simp-all add: oalist-inv-raw-sort-oalist-aux assms lex-ord-raw-def [symmetric]
set-sort-oalist-aux del: Un-iff)

with assms(1 , 2) show ?thesis by (simp add: lookup-pair-sort-oalist-aux)
qed

lemma lex-ord-raw-valE :
assumes oalist-inv xs and oalist-inv ys and lex-ord-raw ko f xs ys = aux

and aux 6= Some Eq
obtains k where k ∈ fst ‘ set (fst xs) ∪ fst ‘ set (fst ys)

and aux = f k (lookup-raw xs k) (lookup-raw ys k)
and

∧
k ′. k ′ ∈ fst ‘ set (fst xs) ∪ fst ‘ set (fst ys) =⇒ lt ko k ′ k =⇒
f k ′ (lookup-raw xs k ′) (lookup-raw ys k ′) = Some Eq

330

proof −
let ?xs = sort-oalist-aux ko xs
let ?ys = sort-oalist-aux ko ys
from assms(3) have lex-ord-pair ko f ?xs ?ys = aux by (simp only: lex-ord-raw-def)
with oalist-inv-sort-oalist-aux[OF assms(1)] oalist-inv-sort-oalist-aux[OF assms(2)]
obtain k where a: k ∈ fst ‘ set ?xs ∪ fst ‘ set ?ys

and b: aux = f k (lookup-pair ko ?xs k) (lookup-pair ko ?ys k)
and c:

∧
k ′. k ′ ∈ fst ‘ set ?xs ∪ fst ‘ set ?ys =⇒ lt ko k ′ k =⇒

f k ′ (lookup-pair ko ?xs k ′) (lookup-pair ko ?ys k ′) = Some Eq
using assms(4) unfolding oalist-inv-alt by (rule lex-ord-pair-valE , blast)

from a have k ∈ fst ‘ set (fst xs) ∪ fst ‘ set (fst ys)
by (simp add: set-sort-oalist-aux assms(1 , 2))

moreover from b have aux = f k (lookup-raw xs k) (lookup-raw ys k)
by (simp add: lookup-pair-sort-oalist-aux assms(1 , 2))

moreover have f k ′ (lookup-raw xs k ′) (lookup-raw ys k ′) = Some Eq
if k ′-in: k ′ ∈ fst ‘ set (fst xs) ∪ fst ‘ set (fst ys) and k ′-less: lt ko k ′ k for k ′

proof −
have f k ′ (lookup-raw xs k ′) (lookup-raw ys k ′) = f k ′ (lookup-pair ko ?xs k ′)

(lookup-pair ko ?ys k ′)
by (simp add: lookup-pair-sort-oalist-aux assms(1 , 2))

also have ... = Some Eq
proof (rule c)

from k ′-in show k ′ ∈ fst ‘ set ?xs ∪ fst ‘ set ?ys
by (simp add: set-sort-oalist-aux assms(1 , 2))

next
from k ′-less show lt ko k ′ k by (simp only: lt-of-key-order .rep-eq)

qed
finally show ?thesis .

qed
ultimately show ?thesis ..

qed

12.6.12 prod-ord-raw
lemma prod-ord-rawI :

assumes oalist-inv xs and oalist-inv ys
and

∧
k. k ∈ fst ‘ set (fst xs) ∪ fst ‘ set (fst ys) =⇒ P k (lookup-raw xs k)

(lookup-raw ys k)
shows prod-ord-raw P xs ys

proof −
obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
from assms(1) have oalist-inv-raw ox xs ′ by (simp only: xs oalist-inv-alt)
hence ∗: prod-ord-pair ox P xs ′ (sort-oalist-aux ox ys) using oalist-inv-raw-sort-oalist-aux
proof (rule prod-ord-pairI)

fix k
assume k ∈ fst ‘ set xs ′ ∪ fst ‘ set (sort-oalist-aux ox ys)
hence k ∈ fst ‘ set (fst xs) ∪ fst ‘ set (fst ys) by (simp add: xs set-sort-oalist-aux

assms(2))
hence P k (lookup-raw xs k) (lookup-raw ys k) by (rule assms(3))

331

thus P k (lookup-pair ox xs ′ k) (lookup-pair ox (sort-oalist-aux ox ys) k)
by (simp add: xs lookup-pair-sort-oalist-aux assms(2))

qed fact
thus ?thesis by (simp add: xs)

qed

lemma prod-ord-rawD:
assumes oalist-inv xs and oalist-inv ys and prod-ord-raw P xs ys

and k ∈ fst ‘ set (fst xs) ∪ fst ‘ set (fst ys)
shows P k (lookup-raw xs k) (lookup-raw ys k)

proof −
obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
from assms(1) have oalist-inv-raw ox xs ′ by (simp only: xs oalist-inv-alt)
moreover note oalist-inv-raw-sort-oalist-aux[OF assms(2)]
moreover from assms(3) have prod-ord-pair ox P xs ′ (sort-oalist-aux ox ys) by

(simp add: xs)
moreover from assms(4) have k ∈ fst ‘ set xs ′ ∪ fst ‘ set (sort-oalist-aux ox

ys)
by (simp add: xs set-sort-oalist-aux assms(2))

ultimately have ∗: P k (lookup-pair ox xs ′ k) (lookup-pair ox (sort-oalist-aux ox
ys) k)

by (rule prod-ord-pairD)
thus ?thesis by (simp add: xs lookup-pair-sort-oalist-aux assms(2))

qed

corollary prod-ord-raw-alt:
assumes oalist-inv xs and oalist-inv ys
shows prod-ord-raw P xs ys ←→

(∀ k∈fst ‘ set (fst xs) ∪ fst ‘ set (fst ys). P k (lookup-raw xs k) (lookup-raw
ys k))

using prod-ord-rawI [OF assms] prod-ord-rawD[OF assms] by meson

12.6.13 oalist-eq-raw
lemma oalist-eq-rawI :

assumes oalist-inv xs and oalist-inv ys
and

∧
k. k ∈ fst ‘ set (fst xs) ∪ fst ‘ set (fst ys) =⇒ lookup-raw xs k = lookup-raw

ys k
shows oalist-eq-raw xs ys

proof −
obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
from assms(1) have oalist-inv-raw ox xs ′ by (simp only: xs oalist-inv-alt)
hence ∗: xs ′= sort-oalist-aux ox ys using oalist-inv-raw-sort-oalist-aux[OF assms(2)]
proof (rule lookup-pair-inj)

show lookup-pair ox xs ′ = lookup-pair ox (sort-oalist-aux ox ys)
proof

fix k
show lookup-pair ox xs ′ k = lookup-pair ox (sort-oalist-aux ox ys) k
proof (cases k ∈ fst ‘ set xs ′ ∪ fst ‘ set (sort-oalist-aux ox ys))

332

case True
hence k ∈ fst ‘ set (fst xs) ∪ fst ‘ set (fst ys) by (simp add: xs set-sort-oalist-aux

assms(2))
hence lookup-raw xs k = lookup-raw ys k by (rule assms(3))
thus ?thesis by (simp add: xs lookup-pair-sort-oalist-aux assms(2))

next
case False
hence k /∈ fst ‘ set xs ′ and k /∈ fst ‘ set (sort-oalist-aux ox ys) by simp-all
with ‹oalist-inv-raw ox xs ′› oalist-inv-raw-sort-oalist-aux[OF assms(2)]
have lookup-pair ox xs ′ k = 0 and lookup-pair ox (sort-oalist-aux ox ys) k

= 0
by (simp-all add: lookup-pair-eq-0)

thus ?thesis by simp
qed

qed
qed
thus ?thesis by (simp add: xs)

qed

lemma oalist-eq-rawD:
assumes oalist-inv ys and oalist-eq-raw xs ys
shows lookup-raw xs = lookup-raw ys

proof −
obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
from assms(2) have xs ′ = sort-oalist-aux ox ys by (simp add: xs)
hence lookup-pair ox xs ′ = lookup-pair ox (sort-oalist-aux ox ys) by simp
thus ?thesis by (simp add: xs lookup-pair-sort-oalist-aux assms(1))

qed

lemma oalist-eq-raw-alt:
assumes oalist-inv xs and oalist-inv ys
shows oalist-eq-raw xs ys ←→ (lookup-raw xs = lookup-raw ys)
using oalist-eq-rawI [OF assms] oalist-eq-rawD[OF assms(2)] by metis

12.6.14 sort-oalist-raw
lemma oalist-inv-sort-oalist-raw: oalist-inv (sort-oalist-raw xs)
proof −

obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
show ?thesis by (simp add: xs oalist-inv-raw-sort-oalist oalist-inv-alt)

qed

lemma sort-oalist-raw-id:
assumes oalist-inv xs
shows sort-oalist-raw xs = xs

proof −
obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms have oalist-inv-raw ko xs ′ by (simp only: xs oalist-inv-alt)
hence sort-oalist ko xs ′ = xs ′ by (rule sort-oalist-id)

333

thus ?thesis by (simp add: xs)
qed

lemma set-sort-oalist-raw:
assumes distinct (map fst (fst xs))
shows set (fst (sort-oalist-raw xs)) = {kv. kv ∈ set (fst xs) ∧ snd kv 6= 0}

proof −
obtain xs ′ ko where xs: xs = (xs ′, ko) by fastforce
from assms have distinct (map fst xs ′) by (simp add: xs)
hence set (sort-oalist ko xs ′) = {kv ∈ set xs ′. snd kv 6= 0} by (rule set-sort-oalist)
thus ?thesis by (simp add: xs)

qed

end

12.7 Fundamental Operations on One List
locale oalist-abstract = oalist-raw rep-key-order for rep-key-order :: ′o⇒ ′a key-order
+

fixes list-of-oalist :: ′x ⇒ (′a, ′b::zero, ′o) oalist-raw
fixes oalist-of-list :: (′a, ′b, ′o) oalist-raw ⇒ ′x
assumes oalist-inv-list-of-oalist: oalist-inv (list-of-oalist x)
and list-of-oalist-of-list: list-of-oalist (oalist-of-list xs) = sort-oalist-raw xs
and oalist-of-list-of-oalist: oalist-of-list (list-of-oalist x) = x

begin

lemma list-of-oalist-of-list-id:
assumes oalist-inv xs
shows list-of-oalist (oalist-of-list xs) = xs

proof −
obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
from assms show ?thesis by (simp add: xs list-of-oalist-of-list sort-oalist-id oal-

ist-inv-alt)
qed

definition lookup :: ′x ⇒ ′a ⇒ ′b
where lookup xs = lookup-raw (list-of-oalist xs)

definition sorted-domain :: ′o ⇒ ′x ⇒ ′a list
where sorted-domain ko xs = sorted-domain-raw ko (list-of-oalist xs)

definition empty :: ′o ⇒ ′x
where empty ko = oalist-of-list ([], ko)

definition reorder :: ′o ⇒ ′x ⇒ ′x
where reorder ko xs = oalist-of-list (sort-oalist-aux ko (list-of-oalist xs), ko)

definition tl :: ′x ⇒ ′x
where tl xs = oalist-of-list (tl-raw (list-of-oalist xs))

334

definition hd :: ′x ⇒ (′a × ′b)
where hd xs = List.hd (fst (list-of-oalist xs))

definition except-min :: ′o ⇒ ′x ⇒ ′x
where except-min ko xs = tl (reorder ko xs)

definition min-key-val :: ′o ⇒ ′x ⇒ (′a × ′b)
where min-key-val ko xs = min-key-val-raw ko (list-of-oalist xs)

definition insert :: (′a × ′b) ⇒ ′x ⇒ ′x
where insert x xs = oalist-of-list (update-by-raw x (list-of-oalist xs))

definition update-by-fun :: ′a ⇒ (′b ⇒ ′b) ⇒ ′x ⇒ ′x
where update-by-fun k f xs = oalist-of-list (update-by-fun-raw k f (list-of-oalist

xs))

definition update-by-fun-gr :: ′a ⇒ (′b ⇒ ′b) ⇒ ′x ⇒ ′x
where update-by-fun-gr k f xs = oalist-of-list (update-by-fun-gr-raw k f (list-of-oalist

xs))

definition filter :: ((′a × ′b) ⇒ bool) ⇒ ′x ⇒ ′x
where filter P xs = oalist-of-list (filter-raw P (list-of-oalist xs))

definition map2-val-neutr :: (′a ⇒ ′b ⇒ ′b ⇒ ′b) ⇒ ′x ⇒ ′x ⇒ ′x
where map2-val-neutr f xs ys = oalist-of-list (map2-val-raw f id id (list-of-oalist

xs) (list-of-oalist ys))

definition oalist-eq :: ′x ⇒ ′x ⇒ bool
where oalist-eq xs ys = oalist-eq-raw (list-of-oalist xs) (list-of-oalist ys)

12.7.1 Invariant
lemma zero-notin-list-of-oalist: 0 /∈ snd ‘ set (fst (list-of-oalist xs))
proof −
from oalist-inv-list-of-oalist have oalist-inv-raw (snd (list-of-oalist xs)) (fst (list-of-oalist

xs))
by (simp only: oalist-inv-def)

thus ?thesis by (rule oalist-inv-rawD1)
qed

lemma list-of-oalist-sorted: sorted-wrt (lt (snd (list-of-oalist xs))) (map fst (fst
(list-of-oalist xs)))
proof −
from oalist-inv-list-of-oalist have oalist-inv-raw (snd (list-of-oalist xs)) (fst (list-of-oalist

xs))
by (simp only: oalist-inv-def)

thus ?thesis by (rule oalist-inv-rawD2)
qed

335

12.7.2 lookup
lemma lookup-eq-value: v 6= 0 =⇒ lookup xs k = v ←→ ((k, v) ∈ set (fst (list-of-oalist
xs)))

unfolding lookup-def using oalist-inv-list-of-oalist by (rule lookup-raw-eq-value)

lemma lookup-eq-valueI : (k, v) ∈ set (fst (list-of-oalist xs)) =⇒ lookup xs k = v
unfolding lookup-def using oalist-inv-list-of-oalist by (rule lookup-raw-eq-valueI)

lemma lookup-oalist-of-list:
distinct (map fst xs) =⇒ lookup (oalist-of-list (xs, ko)) = lookup-dflt xs
by (simp add: list-of-oalist-of-list lookup-def lookup-pair-sort-oalist ′)

12.7.3 sorted-domain
lemma set-sorted-domain: set (sorted-domain ko xs) = fst ‘ set (fst (list-of-oalist
xs))
unfolding sorted-domain-def using oalist-inv-list-of-oalist by (rule set-sorted-domain-raw)

lemma in-sorted-domain-iff-lookup: k ∈ set (sorted-domain ko xs) ←→ (lookup xs
k 6= 0)

unfolding sorted-domain-def lookup-def using oalist-inv-list-of-oalist
by (rule in-sorted-domain-raw-iff-lookup-raw)

lemma sorted-sorted-domain: sorted-wrt (lt ko) (sorted-domain ko xs)
unfolding sorted-domain-def lt-of-key-order .rep-eq[symmetric]
using oalist-inv-list-of-oalist by (rule sorted-sorted-domain-raw)

12.7.4 local.empty and Singletons
lemma list-of-oalist-empty [simp, code abstract]: list-of-oalist (empty ko) = ([], ko)

by (simp add: empty-def sort-oalist-def list-of-oalist-of-list)

lemma lookup-empty: lookup (empty ko) k = 0
by (simp add: lookup-def)

lemma lookup-oalist-of-list-single:
lookup (oalist-of-list ([(k, v)], ko)) k ′ = (if k = k ′ then v else 0)
by (simp add: lookup-def list-of-oalist-of-list sort-oalist-def key-compare-Eq split:

order .split)

12.7.5 reorder
lemma list-of-oalist-reorder [simp, code abstract]:

list-of-oalist (reorder ko xs) = (sort-oalist-aux ko (list-of-oalist xs), ko)
unfolding reorder-def
by (rule list-of-oalist-of-list-id, simp add: oalist-inv-def , rule oalist-inv-raw-sort-oalist-aux,

fact oalist-inv-list-of-oalist)

lemma lookup-reorder : lookup (reorder ko xs) k = lookup xs k

336

by (simp add: lookup-def lookup-pair-sort-oalist-aux oalist-inv-list-of-oalist)

12.7.6 local.hd and local.tl
lemma list-of-oalist-tl [simp, code abstract]: list-of-oalist (tl xs) = tl-raw (list-of-oalist
xs)

unfolding tl-def
by (rule list-of-oalist-of-list-id, rule oalist-inv-tl-raw, fact oalist-inv-list-of-oalist)

lemma lookup-tl:
lookup (tl xs) k =

(if (∀ k ′∈fst ‘ set (fst (list-of-oalist xs)). le (snd (list-of-oalist xs)) k k ′) then
0 else lookup xs k)

by (simp add: lookup-def lookup-raw-tl-raw oalist-inv-list-of-oalist)

lemma hd-in:
assumes fst (list-of-oalist xs) 6= []
shows hd xs ∈ set (fst (list-of-oalist xs))
unfolding hd-def using assms by (rule hd-in-set)

lemma snd-hd:
assumes fst (list-of-oalist xs) 6= []
shows snd (hd xs) = lookup xs (fst (hd xs))

proof −
from assms have ∗: hd xs ∈ set (fst (list-of-oalist xs)) by (rule hd-in)
show ?thesis by (rule HOL.sym, rule lookup-eq-valueI , simp add: ∗)

qed

lemma lookup-tl ′: lookup (tl xs) k = (if k = fst (hd xs) then 0 else lookup xs k)
by (simp add: lookup-def lookup-raw-tl-raw ′ oalist-inv-list-of-oalist hd-def)

lemma hd-tl:
assumes fst (list-of-oalist xs) 6= []
shows list-of-oalist xs = ((hd xs) # (fst (list-of-oalist (tl xs))), snd (list-of-oalist

(tl xs)))
proof −

obtain xs ′ ko where xs: list-of-oalist xs = (xs ′, ko) by fastforce
from assms obtain x xs ′′ where xs ′: xs ′ = x # xs ′′ unfolding xs fst-conv using

list.exhaust by blast
show ?thesis by (simp add: xs xs ′ hd-def)

qed

12.7.7 min-key-val
lemma min-key-val-alt:

assumes fst (list-of-oalist xs) 6= []
shows min-key-val ko xs = hd (reorder ko xs)
using assms oalist-inv-list-of-oalist by (simp add: min-key-val-def hd-def min-key-val-raw-alt)

lemma min-key-val-in:

337

assumes fst (list-of-oalist xs) 6= []
shows min-key-val ko xs ∈ set (fst (list-of-oalist xs))
unfolding min-key-val-def using assms by (rule min-key-val-raw-in)

lemma snd-min-key-val:
assumes fst (list-of-oalist xs) 6= []
shows snd (min-key-val ko xs) = lookup xs (fst (min-key-val ko xs))
unfolding lookup-def min-key-val-def using oalist-inv-list-of-oalist assms by

(rule snd-min-key-val-raw)

lemma min-key-val-minimal:
assumes z ∈ set (fst (list-of-oalist xs))
shows le ko (fst (min-key-val ko xs)) (fst z)
unfolding min-key-val-def
by (rule min-key-val-raw-minimal, fact oalist-inv-list-of-oalist, fact)

12.7.8 except-min
lemma list-of-oalist-except-min [simp, code abstract]:

list-of-oalist (except-min ko xs) = (List.tl (sort-oalist-aux ko (list-of-oalist xs)),
ko)

by (simp add: except-min-def)

lemma except-min-Nil:
assumes fst (list-of-oalist xs) = []
shows fst (list-of-oalist (except-min ko xs)) = []

proof −
obtain xs ′ ox where eq: list-of-oalist xs = (xs ′, ox) by fastforce
from assms have xs ′ = [] by (simp add: eq)
show ?thesis by (simp add: eq ‹xs ′ = []› sort-oalist-def)

qed

lemma lookup-except-min:
lookup (except-min ko xs) k =

(if (∀ k ′∈fst ‘ set (fst (list-of-oalist xs)). le ko k k ′) then 0 else lookup xs k)
by (simp add: except-min-def lookup-tl set-sort-oalist-aux oalist-inv-list-of-oalist

lookup-reorder)

lemma lookup-except-min ′:
lookup (except-min ko xs) k = (if k = fst (min-key-val ko xs) then 0 else lookup

xs k)
proof (cases fst (list-of-oalist xs) = [])

case True
hence lookup xs k = 0 by (metis empty-def lookup-empty oalist-of-list-of-oalist

prod.collapse)
thus ?thesis by (simp add: lookup-except-min True)

next
case False
thus ?thesis by (simp add: except-min-def lookup-tl ′ min-key-val-alt lookup-reorder)

338

qed

12.7.9 local.insert
lemma list-of-oalist-insert [simp, code abstract]:

list-of-oalist (insert x xs) = update-by-raw x (list-of-oalist xs)
unfolding insert-def
by (rule list-of-oalist-of-list-id, rule oalist-inv-update-by-raw, fact oalist-inv-list-of-oalist)

lemma lookup-insert: lookup (insert (k, v) xs) k ′ = (if k = k ′ then v else lookup
xs k ′)

by (simp add: lookup-def lookup-raw-update-by-raw oalist-inv-list-of-oalist split
del: if-split cong: if-cong)

12.7.10 update-by-fun and update-by-fun-gr
lemma list-of-oalist-update-by-fun [simp, code abstract]:

list-of-oalist (update-by-fun k f xs) = update-by-fun-raw k f (list-of-oalist xs)
unfolding update-by-fun-def
by (rule list-of-oalist-of-list-id, rule oalist-inv-update-by-fun-raw, fact oalist-inv-list-of-oalist)

lemma lookup-update-by-fun:
lookup (update-by-fun k f xs) k ′ = (if k = k ′ then f else id) (lookup xs k ′)
by (simp add: lookup-def lookup-raw-update-by-fun-raw oalist-inv-list-of-oalist split

del: if-split cong: if-cong)

lemma list-of-oalist-update-by-fun-gr [simp, code abstract]:
list-of-oalist (update-by-fun-gr k f xs) = update-by-fun-gr-raw k f (list-of-oalist xs)
unfolding update-by-fun-gr-def
by (rule list-of-oalist-of-list-id, rule oalist-inv-update-by-fun-gr-raw, fact oalist-inv-list-of-oalist)

lemma update-by-fun-gr-eq-update-by-fun: update-by-fun-gr = update-by-fun
by (rule, rule, rule,

simp add: update-by-fun-gr-def update-by-fun-def update-by-fun-gr-raw-eq-update-by-fun-raw
oalist-inv-list-of-oalist)

12.7.11 local.filter
lemma list-of-oalist-filter [simp, code abstract]:

list-of-oalist (filter P xs) = filter-raw P (list-of-oalist xs)
unfolding filter-def
by (rule list-of-oalist-of-list-id, rule oalist-inv-filter-raw, fact oalist-inv-list-of-oalist)

lemma lookup-filter : lookup (filter P xs) k = (let v = lookup xs k in if P (k, v)
then v else 0)

by (simp add: lookup-def lookup-raw-filter-raw oalist-inv-list-of-oalist)

12.7.12 map2-val-neutr
lemma list-of-oalist-map2-val-neutr [simp, code abstract]:

339

list-of-oalist (map2-val-neutr f xs ys) = map2-val-raw f id id (list-of-oalist xs)
(list-of-oalist ys)

unfolding map2-val-neutr-def
by (rule list-of-oalist-of-list-id, rule oalist-inv-map2-val-raw,

fact oalist-inv-list-of-oalist, fact oalist-inv-list-of-oalist,
fact map2-val-compat ′-id, fact map2-val-compat ′-id)

lemma lookup-map2-val-neutr :
assumes

∧
k x. f k x 0 = x and

∧
k x. f k 0 x = x

shows lookup (map2-val-neutr f xs ys) k = f k (lookup xs k) (lookup ys k)
proof (simp add: lookup-def , rule lookup-raw-map2-val-raw)

fix zs::(′a, ′b, ′o) oalist-raw
assume oalist-inv zs
thus id zs = map-val-raw (λk v. f k v 0) zs by (simp add: assms(1) map-raw-id)

next
fix zs::(′a, ′b, ′o) oalist-raw
assume oalist-inv zs
thus id zs = map-val-raw (λk. f k 0) zs by (simp add: assms(2) map-raw-id)

qed (fact oalist-inv-list-of-oalist, fact oalist-inv-list-of-oalist,
fact map2-val-compat ′-id, fact map2-val-compat ′-id, simp only: assms(1))

12.7.13 oalist-eq
lemma oalist-eq-alt: oalist-eq xs ys ←→ (lookup xs = lookup ys)

by (simp add: oalist-eq-def lookup-def oalist-eq-raw-alt oalist-inv-list-of-oalist)

end

12.8 Fundamental Operations on Three Lists
locale oalist-abstract3 =

oalist-abstract rep-key-order list-of-oalistx oalist-of-listx +
oay: oalist-abstract rep-key-order list-of-oalisty oalist-of-listy +
oaz: oalist-abstract rep-key-order list-of-oalistz oalist-of-listz
for rep-key-order :: ′o ⇒ ′a key-order
and list-of-oalistx :: ′x ⇒ (′a, ′b::zero, ′o) oalist-raw
and oalist-of-listx :: (′a, ′b, ′o) oalist-raw ⇒ ′x
and list-of-oalisty :: ′y ⇒ (′a, ′c::zero, ′o) oalist-raw
and oalist-of-listy :: (′a, ′c, ′o) oalist-raw ⇒ ′y
and list-of-oalistz :: ′z ⇒ (′a, ′d::zero, ′o) oalist-raw
and oalist-of-listz :: (′a, ′d, ′o) oalist-raw ⇒ ′z

begin

definition map-val :: (′a ⇒ ′b ⇒ ′c) ⇒ ′x ⇒ ′y
where map-val f xs = oalist-of-listy (map-val-raw f (list-of-oalistx xs))

definition map2-val :: (′a ⇒ ′b ⇒ ′c ⇒ ′d) ⇒ ′x ⇒ ′y ⇒ ′z
where map2-val f xs ys =

oalist-of-listz (map2-val-raw f (map-val-raw (λk b. f k b 0)) (map-val-raw
(λk. f k 0))

340

(list-of-oalistx xs) (list-of-oalisty ys))

definition map2-val-rneutr :: (′a ⇒ ′b ⇒ ′c ⇒ ′b) ⇒ ′x ⇒ ′y ⇒ ′x
where map2-val-rneutr f xs ys =

oalist-of-listx (map2-val-raw f id (map-val-raw (λk. f k 0)) (list-of-oalistx
xs) (list-of-oalisty ys))

definition lex-ord :: ′o ⇒ (′a ⇒ (′b, ′c) comp-opt) ⇒ (′x, ′y) comp-opt
where lex-ord ko f xs ys = lex-ord-raw ko f (list-of-oalistx xs) (list-of-oalisty ys)

definition prod-ord :: (′a ⇒ ′b ⇒ ′c ⇒ bool) ⇒ ′x ⇒ ′y ⇒ bool
where prod-ord f xs ys = prod-ord-raw f (list-of-oalistx xs) (list-of-oalisty ys)

12.8.1 map-val
lemma map-val-cong:

assumes
∧

k v. (k, v) ∈ set (fst (list-of-oalistx xs)) =⇒ f k v = g k v
shows map-val f xs = map-val g xs
unfolding map-val-def by (rule arg-cong[where f=oalist-of-listy], rule map-val-raw-cong,

elim assms)

lemma list-of-oalist-map-val [simp, code abstract]:
list-of-oalisty (map-val f xs) = map-val-raw f (list-of-oalistx xs)
unfolding map-val-def
by (rule oay.list-of-oalist-of-list-id, rule oalist-inv-map-val-raw, fact oalist-inv-list-of-oalist)

lemma lookup-map-val: f k 0 = 0 =⇒ oay.lookup (map-val f xs) k = f k (lookup
xs k)
by (simp add: oay.lookup-def lookup-def lookup-raw-map-val-raw oalist-inv-list-of-oalist)

12.8.2 map2-val and map2-val-rneutr
lemma list-of-oalist-map2-val [simp, code abstract]:

list-of-oalistz (map2-val f xs ys) =
map2-val-raw f (map-val-raw (λk b. f k b 0)) (map-val-raw (λk. f k 0))

(list-of-oalistx xs) (list-of-oalisty ys)
unfolding map2-val-def
by (rule oaz.list-of-oalist-of-list-id, rule oalist-inv-map2-val-raw,

fact oalist-inv-list-of-oalist, fact oay.oalist-inv-list-of-oalist,
fact map2-val-compat ′-map-val-raw, fact map2-val-compat ′-map-val-raw)

lemma list-of-oalist-map2-val-rneutr [simp, code abstract]:
list-of-oalistx (map2-val-rneutr f xs ys) =

map2-val-raw f id (map-val-raw (λk c. f k 0 c)) (list-of-oalistx xs) (list-of-oalisty
ys)

unfolding map2-val-rneutr-def
by (rule list-of-oalist-of-list-id, rule oalist-inv-map2-val-raw,

fact oalist-inv-list-of-oalist, fact oay.oalist-inv-list-of-oalist,
fact map2-val-compat ′-id, fact map2-val-compat ′-map-val-raw)

341

lemma lookup-map2-val:
assumes

∧
k. f k 0 0 = 0

shows oaz.lookup (map2-val f xs ys) k = f k (lookup xs k) (oay.lookup ys k)
by (simp add: oaz.lookup-def oay.lookup-def lookup-def lookup-raw-map2-val-raw

map2-val-compat ′-map-val-raw assms oalist-inv-list-of-oalist oay.oalist-inv-list-of-oalist)

lemma lookup-map2-val-rneutr :
assumes

∧
k x. f k x 0 = x

shows lookup (map2-val-rneutr f xs ys) k = f k (lookup xs k) (oay.lookup ys k)
proof (simp add: lookup-def oay.lookup-def , rule lookup-raw-map2-val-raw)

fix zs::(′a, ′b, ′o) oalist-raw
assume oalist-inv zs
thus id zs = map-val-raw (λk v. f k v 0) zs by (simp add: assms map-raw-id)

qed (fact oalist-inv-list-of-oalist, fact oay.oalist-inv-list-of-oalist,
fact map2-val-compat ′-id, fact map2-val-compat ′-map-val-raw, rule HOL.refl,

simp only: assms)

lemma map2-val-rneutr-singleton-eq-update-by-fun:
assumes

∧
a x. f a x 0 = x and list-of-oalisty ys = ([(k, v)], oy)

shows map2-val-rneutr f xs ys = update-by-fun k (λx. f k x v) xs
by (simp add: map2-val-rneutr-def update-by-fun-def assms map2-val-raw-singleton-eq-update-by-fun-raw

oalist-inv-list-of-oalist)

12.8.3 lex-ord and prod-ord
lemma lex-ord-EqI :
(
∧

k. k ∈ fst ‘ set (fst (list-of-oalistx xs)) ∪ fst ‘ set (fst (list-of-oalisty ys)) =⇒
f k (lookup xs k) (oay.lookup ys k) = Some Eq) =⇒

lex-ord ko f xs ys = Some Eq
by (simp add: lex-ord-def lookup-def oay.lookup-def , rule lex-ord-raw-EqI ,

rule oalist-inv-list-of-oalist, rule oay.oalist-inv-list-of-oalist, blast)

lemma lex-ord-valI :
assumes aux 6= Some Eq and k ∈ fst ‘ set (fst (list-of-oalistx xs)) ∪ fst ‘ set (fst

(list-of-oalisty ys))
shows aux = f k (lookup xs k) (oay.lookup ys k) =⇒

(
∧

k ′. k ′ ∈ fst ‘ set (fst (list-of-oalistx xs)) ∪ fst ‘ set (fst (list-of-oalisty ys))
=⇒

lt ko k ′ k =⇒ f k ′ (lookup xs k ′) (oay.lookup ys k ′) = Some Eq) =⇒
lex-ord ko f xs ys = aux

by (simp (no-asm-use) add: lex-ord-def lookup-def oay.lookup-def , rule lex-ord-raw-valI ,
rule oalist-inv-list-of-oalist, rule oay.oalist-inv-list-of-oalist, rule assms(1), rule

assms(2), blast+)

lemma lex-ord-EqD:
lex-ord ko f xs ys = Some Eq =⇒
k ∈ fst ‘ set (fst (list-of-oalistx xs)) ∪ fst ‘ set (fst (list-of-oalisty ys)) =⇒
f k (lookup xs k) (oay.lookup ys k) = Some Eq

by (simp add: lex-ord-def lookup-def oay.lookup-def , rule lex-ord-raw-EqD[where

342

f=f],
rule oalist-inv-list-of-oalist, rule oay.oalist-inv-list-of-oalist, assumption, simp)

lemma lex-ord-valE :
assumes lex-ord ko f xs ys = aux and aux 6= Some Eq
obtains k where k ∈ fst ‘ set (fst (list-of-oalistx xs)) ∪ fst ‘ set (fst (list-of-oalisty

ys))
and aux = f k (lookup xs k) (oay.lookup ys k)
and

∧
k ′. k ′ ∈ fst ‘ set (fst (list-of-oalistx xs)) ∪ fst ‘ set (fst (list-of-oalisty ys))

=⇒
lt ko k ′ k =⇒ f k ′ (lookup xs k ′) (oay.lookup ys k ′) = Some Eq

proof −
note oalist-inv-list-of-oalist oay.oalist-inv-list-of-oalist
moreover from assms(1) have lex-ord-raw ko f (list-of-oalistx xs) (list-of-oalisty

ys) = aux
by (simp only: lex-ord-def)

ultimately obtain k where 1 : k ∈ fst ‘ set (fst (list-of-oalistx xs)) ∪ fst ‘ set
(fst (list-of-oalisty ys))

and aux = f k (lookup-raw (list-of-oalistx xs) k) (lookup-raw (list-of-oalisty ys)
k)

and
∧

k ′. k ′ ∈ fst ‘ set (fst (list-of-oalistx xs)) ∪ fst ‘ set (fst (list-of-oalisty ys))
=⇒

lt ko k ′ k =⇒
f k ′ (lookup-raw (list-of-oalistx xs) k ′) (lookup-raw (list-of-oalisty ys) k ′)

= Some Eq
using assms(2) by (rule lex-ord-raw-valE , blast)

from this(2 , 3) have aux = f k (lookup xs k) (oay.lookup ys k)
and

∧
k ′. k ′ ∈ fst ‘ set (fst (list-of-oalistx xs)) ∪ fst ‘ set (fst (list-of-oalisty ys))

=⇒
lt ko k ′ k =⇒ f k ′ (lookup xs k ′) (oay.lookup ys k ′) = Some Eq

by (simp-all only: lookup-def oay.lookup-def)
with 1 show ?thesis ..

qed

lemma prod-ord-alt:
prod-ord P xs ys ←→

(∀ k∈fst ‘ set (fst (list-of-oalistx xs)) ∪ fst ‘ set (fst (list-of-oalisty
ys)).

P k (lookup xs k) (oay.lookup ys k))
by (simp add: prod-ord-def lookup-def oay.lookup-def prod-ord-raw-alt oalist-inv-list-of-oalist

oay.oalist-inv-list-of-oalist)

end

12.9 Type oalist
global-interpretation ko: comparator key-compare ko

defines lookup-pair-ko = ko.lookup-pair
and update-by-pair-ko = ko.update-by-pair

343

and update-by-fun-pair-ko = ko.update-by-fun-pair
and update-by-fun-gr-pair-ko = ko.update-by-fun-gr-pair
and map2-val-pair-ko = ko.map2-val-pair
and lex-ord-pair-ko = ko.lex-ord-pair
and prod-ord-pair-ko = ko.prod-ord-pair
and sort-oalist-ko ′ = ko.sort-oalist
by (fact comparator-key-compare)

lemma ko-le: ko.le = le-of-key-order
by (intro ext, simp add: le-of-comp-def le-of-key-order-alt split: order .split)

global-interpretation ko: oalist-raw λx. x
rewrites comparator .lookup-pair (key-compare ko) = lookup-pair-ko ko
and comparator .update-by-pair (key-compare ko) = update-by-pair-ko ko
and comparator .update-by-fun-pair (key-compare ko) = update-by-fun-pair-ko ko
and comparator .update-by-fun-gr-pair (key-compare ko) = update-by-fun-gr-pair-ko

ko
and comparator .map2-val-pair (key-compare ko) = map2-val-pair-ko ko
and comparator .lex-ord-pair (key-compare ko) = lex-ord-pair-ko ko
and comparator .prod-ord-pair (key-compare ko) = prod-ord-pair-ko ko
and comparator .sort-oalist (key-compare ko) = sort-oalist-ko ′ ko
defines sort-oalist-aux-ko = ko.sort-oalist-aux
and lookup-ko = ko.lookup-raw
and sorted-domain-ko = ko.sorted-domain-raw
and tl-ko = ko.tl-raw
and min-key-val-ko = ko.min-key-val-raw
and update-by-ko = ko.update-by-raw
and update-by-fun-ko = ko.update-by-fun-raw
and update-by-fun-gr-ko = ko.update-by-fun-gr-raw
and map2-val-ko = ko.map2-val-raw
and lex-ord-ko = ko.lex-ord-raw
and prod-ord-ko = ko.prod-ord-raw
and oalist-eq-ko = ko.oalist-eq-raw
and sort-oalist-ko = ko.sort-oalist-raw
subgoal by (simp only: lookup-pair-ko-def)
subgoal by (simp only: update-by-pair-ko-def)
subgoal by (simp only: update-by-fun-pair-ko-def)
subgoal by (simp only: update-by-fun-gr-pair-ko-def)
subgoal by (simp only: map2-val-pair-ko-def)
subgoal by (simp only: lex-ord-pair-ko-def)
subgoal by (simp only: prod-ord-pair-ko-def)
subgoal by (simp only: sort-oalist-ko ′-def)
done

typedef (overloaded) (′a, ′b) oalist = {xs::(′a, ′b::zero, ′a key-order) oalist-raw.
ko.oalist-inv xs}

morphisms list-of-oalist Abs-oalist
by (auto simp: ko.oalist-inv-def intro: ko.oalist-inv-raw-Nil)

344

lemma oalist-eq-iff : xs = ys ←→ list-of-oalist xs = list-of-oalist ys
by (simp add: list-of-oalist-inject)

lemma oalist-eqI : list-of-oalist xs = list-of-oalist ys =⇒ xs = ys
by (simp add: oalist-eq-iff)

Formal, totalized constructor for (′a, ′b) oalist:
definition OAlist :: (′a × ′b) list × ′a key-order ⇒ (′a, ′b::zero) oalist where

OAlist xs = Abs-oalist (sort-oalist-ko xs)

definition oalist-of-list = OAlist

lemma oalist-inv-list-of-oalist: ko.oalist-inv (list-of-oalist xs)
using list-of-oalist [of xs] by simp

lemma list-of-oalist-OAlist: list-of-oalist (OAlist xs) = sort-oalist-ko xs
proof −

obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
show ?thesis by (simp add: xs OAlist-def Abs-oalist-inverse ko.oalist-inv-raw-sort-oalist

ko.oalist-inv-alt)
qed

lemma OAlist-list-of-oalist [code abstype]: OAlist (list-of-oalist xs) = xs
proof −

obtain xs ′ ox where xs: list-of-oalist xs = (xs ′, ox) by fastforce
have ko.oalist-inv-raw ox xs ′ by (simp add: xs[symmetric] ko.oalist-inv-alt[symmetric]

oalist-inv-list-of-oalist)
thus ?thesis by (simp add: xs OAlist-def ko.sort-oalist-id, simp add: list-of-oalist-inverse

xs[symmetric])
qed

lemma [code abstract]: list-of-oalist (oalist-of-list xs) = sort-oalist-ko xs
by (simp add: list-of-oalist-OAlist oalist-of-list-def)

global-interpretation oa: oalist-abstract λx. x list-of-oalist OAlist
defines OAlist-lookup = oa.lookup
and OAlist-sorted-domain = oa.sorted-domain
and OAlist-empty = oa.empty
and OAlist-reorder = oa.reorder
and OAlist-tl = oa.tl
and OAlist-hd = oa.hd
and OAlist-except-min = oa.except-min
and OAlist-min-key-val = oa.min-key-val
and OAlist-insert = oa.insert
and OAlist-update-by-fun = oa.update-by-fun
and OAlist-update-by-fun-gr = oa.update-by-fun-gr
and OAlist-filter = oa.filter
and OAlist-map2-val-neutr = oa.map2-val-neutr
and OAlist-eq = oa.oalist-eq

345

apply standard
subgoal by (fact oalist-inv-list-of-oalist)
subgoal by (simp only: list-of-oalist-OAlist sort-oalist-ko-def)
subgoal by (fact OAlist-list-of-oalist)
done

global-interpretation oa: oalist-abstract3 λx. x
list-of-oalist::(′a, ′b) oalist ⇒ (′a, ′b::zero, ′a key-order) oalist-raw OAlist
list-of-oalist::(′a, ′c) oalist ⇒ (′a, ′c::zero, ′a key-order) oalist-raw OAlist
list-of-oalist::(′a, ′d) oalist ⇒ (′a, ′d::zero, ′a key-order) oalist-raw OAlist

defines OAlist-map-val = oa.map-val
and OAlist-map2-val = oa.map2-val
and OAlist-map2-val-rneutr = oa.map2-val-rneutr
and OAlist-lex-ord = oa.lex-ord
and OAlist-prod-ord = oa.prod-ord ..

lemmas OAlist-lookup-single = oa.lookup-oalist-of-list-single[folded oalist-of-list-def]

12.10 Type oalist-tc
“tc” stands for “type class”.
global-interpretation tc: comparator comparator-of

defines lookup-pair-tc = tc.lookup-pair
and update-by-pair-tc = tc.update-by-pair
and update-by-fun-pair-tc = tc.update-by-fun-pair
and update-by-fun-gr-pair-tc = tc.update-by-fun-gr-pair
and map2-val-pair-tc = tc.map2-val-pair
and lex-ord-pair-tc = tc.lex-ord-pair
and prod-ord-pair-tc = tc.prod-ord-pair
and sort-oalist-tc = tc.sort-oalist
by (fact comparator-of)

lemma tc-le-lt [simp]: tc.le = (≤) tc.lt = (<)
by (auto simp: le-of-comp-def lt-of-comp-def comparator-of-def intro!: ext split:

order .split-asm if-split-asm)

typedef (overloaded) (′a, ′b) oalist-tc = {xs::(′a::linorder × ′b::zero) list. tc.oalist-inv-raw
xs}

morphisms list-of-oalist-tc Abs-oalist-tc
by (auto intro: tc.oalist-inv-raw-Nil)

lemma oalist-tc-eq-iff : xs = ys ←→ list-of-oalist-tc xs = list-of-oalist-tc ys
by (simp add: list-of-oalist-tc-inject)

lemma oalist-tc-eqI : list-of-oalist-tc xs = list-of-oalist-tc ys =⇒ xs = ys
by (simp add: oalist-tc-eq-iff)

Formal, totalized constructor for (′a, ′b) oalist-tc:
definition OAlist-tc :: (′a × ′b) list ⇒ (′a::linorder , ′b::zero) oalist-tc where

346

OAlist-tc xs = Abs-oalist-tc (sort-oalist-tc xs)

definition oalist-tc-of-list = OAlist-tc

lemma oalist-inv-list-of-oalist-tc: tc.oalist-inv-raw (list-of-oalist-tc xs)
using list-of-oalist-tc[of xs] by simp

lemma list-of-oalist-OAlist-tc: list-of-oalist-tc (OAlist-tc xs) = sort-oalist-tc xs
by (simp add: OAlist-tc-def Abs-oalist-tc-inverse tc.oalist-inv-raw-sort-oalist)

lemma OAlist-list-of-oalist-tc [code abstype]: OAlist-tc (list-of-oalist-tc xs) = xs
by (simp add: OAlist-tc-def tc.sort-oalist-id list-of-oalist-tc-inverse oalist-inv-list-of-oalist-tc)

lemma list-of-oalist-tc-of-list [code abstract]: list-of-oalist-tc (oalist-tc-of-list xs) =
sort-oalist-tc xs

by (simp add: list-of-oalist-OAlist-tc oalist-tc-of-list-def)

lemma list-of-oalist-tc-of-list-id:
assumes tc.oalist-inv-raw xs
shows list-of-oalist-tc (OAlist-tc xs) = xs
using assms by (simp add: list-of-oalist-OAlist-tc tc.sort-oalist-id)

It is better to define the following operations directly instead of interpret-
ing oalist-abstract, because oalist-abstract defines the operations via their
-raw analogues, whereas in this case we can define them directly via their
-pair analogues.
definition OAlist-tc-lookup :: (′a::linorder , ′b::zero) oalist-tc ⇒ ′a ⇒ ′b

where OAlist-tc-lookup xs = lookup-pair-tc (list-of-oalist-tc xs)

definition OAlist-tc-sorted-domain :: (′a::linorder , ′b::zero) oalist-tc ⇒ ′a list
where OAlist-tc-sorted-domain xs = map fst (list-of-oalist-tc xs)

definition OAlist-tc-empty :: (′a::linorder , ′b::zero) oalist-tc
where OAlist-tc-empty = OAlist-tc []

definition OAlist-tc-except-min :: (′a, ′b) oalist-tc ⇒ (′a::linorder , ′b::zero) oal-
ist-tc

where OAlist-tc-except-min xs = OAlist-tc (tl (list-of-oalist-tc xs))

definition OAlist-tc-min-key-val :: (′a::linorder , ′b::zero) oalist-tc ⇒ (′a × ′b)
where OAlist-tc-min-key-val xs = hd (list-of-oalist-tc xs)

definition OAlist-tc-insert :: (′a × ′b)⇒ (′a, ′b) oalist-tc ⇒ (′a::linorder , ′b::zero)
oalist-tc

where OAlist-tc-insert x xs = OAlist-tc (update-by-pair-tc x (list-of-oalist-tc xs))

definition OAlist-tc-update-by-fun :: ′a⇒ (′b⇒ ′b)⇒ (′a, ′b) oalist-tc⇒ (′a::linorder ,
′b::zero) oalist-tc
where OAlist-tc-update-by-fun k f xs = OAlist-tc (update-by-fun-pair-tc k f (list-of-oalist-tc

347

xs))

definition OAlist-tc-update-by-fun-gr :: ′a ⇒ (′b ⇒ ′b) ⇒ (′a, ′b) oalist-tc ⇒
(′a::linorder , ′b::zero) oalist-tc

where OAlist-tc-update-by-fun-gr k f xs = OAlist-tc (update-by-fun-gr-pair-tc k f
(list-of-oalist-tc xs))

definition OAlist-tc-filter :: ((′a × ′b) ⇒ bool) ⇒ (′a, ′b) oalist-tc ⇒ (′a::linorder ,
′b::zero) oalist-tc

where OAlist-tc-filter P xs = OAlist-tc (filter P (list-of-oalist-tc xs))

definition OAlist-tc-map-val :: (′a⇒ ′b⇒ ′c)⇒ (′a, ′b::zero) oalist-tc⇒ (′a::linorder ,
′c::zero) oalist-tc

where OAlist-tc-map-val f xs = OAlist-tc (map-val-pair f (list-of-oalist-tc xs))

definition OAlist-tc-map2-val :: (′a ⇒ ′b ⇒ ′c ⇒ ′d) ⇒ (′a, ′b::zero) oalist-tc ⇒
(′a, ′c::zero) oalist-tc ⇒

(′a::linorder , ′d::zero) oalist-tc
where OAlist-tc-map2-val f xs ys =

OAlist-tc (map2-val-pair-tc f (map-val-pair (λk b. f k b 0)) (map-val-pair
(λk. f k 0))

(list-of-oalist-tc xs) (list-of-oalist-tc ys))

definition OAlist-tc-map2-val-rneutr :: (′a ⇒ ′b ⇒ ′c ⇒ ′b) ⇒ (′a, ′b) oalist-tc
⇒ (′a, ′c::zero) oalist-tc ⇒

(′a::linorder , ′b::zero) oalist-tc
where OAlist-tc-map2-val-rneutr f xs ys =

OAlist-tc (map2-val-pair-tc f id (map-val-pair (λk. f k 0)) (list-of-oalist-tc
xs) (list-of-oalist-tc ys))

definition OAlist-tc-map2-val-neutr :: (′a ⇒ ′b ⇒ ′b ⇒ ′b) ⇒ (′a, ′b) oalist-tc ⇒
(′a, ′b) oalist-tc ⇒ (′a::linorder , ′b::zero) oalist-tc

where OAlist-tc-map2-val-neutr f xs ys = OAlist-tc (map2-val-pair-tc f id id
(list-of-oalist-tc xs) (list-of-oalist-tc ys))

definition OAlist-tc-lex-ord :: (′a ⇒ (′b, ′c) comp-opt) ⇒ ((′a, ′b::zero) oalist-tc,
(′a::linorder , ′c::zero) oalist-tc) comp-opt
where OAlist-tc-lex-ord f xs ys = lex-ord-pair-tc f (list-of-oalist-tc xs) (list-of-oalist-tc

ys)

definition OAlist-tc-prod-ord :: (′a ⇒ ′b ⇒ ′c ⇒ bool) ⇒ (′a, ′b::zero) oalist-tc ⇒
(′a::linorder , ′c::zero) oalist-tc ⇒ bool
where OAlist-tc-prod-ord f xs ys = prod-ord-pair-tc f (list-of-oalist-tc xs) (list-of-oalist-tc

ys)

12.10.1 OAlist-tc-lookup
lemma OAlist-tc-lookup-eq-valueI : (k, v) ∈ set (list-of-oalist-tc xs) =⇒ OAlist-tc-lookup
xs k = v

348

unfolding OAlist-tc-lookup-def using oalist-inv-list-of-oalist-tc by (rule tc.lookup-pair-eq-valueI)

lemma OAlist-tc-lookup-inj: OAlist-tc-lookup xs = OAlist-tc-lookup ys =⇒ xs =
ys
by (simp add: OAlist-tc-lookup-def oalist-inv-list-of-oalist-tc oalist-tc-eqI tc.lookup-pair-inj)

lemma OAlist-tc-lookup-oalist-of-list:
distinct (map fst xs) =⇒ OAlist-tc-lookup (oalist-tc-of-list xs) = lookup-dflt xs
by (simp add: OAlist-tc-lookup-def list-of-oalist-tc-of-list tc.lookup-pair-sort-oalist ′)

12.10.2 OAlist-tc-sorted-domain
lemma set-OAlist-tc-sorted-domain: set (OAlist-tc-sorted-domain xs) = fst ‘ set
(list-of-oalist-tc xs)

unfolding OAlist-tc-sorted-domain-def by simp

lemma in-OAlist-tc-sorted-domain-iff-lookup: k ∈ set (OAlist-tc-sorted-domain xs)
←→ (OAlist-tc-lookup xs k 6= 0)
unfolding OAlist-tc-sorted-domain-def OAlist-tc-lookup-def using oalist-inv-list-of-oalist-tc

tc.lookup-pair-eq-0
by fastforce

lemma sorted-OAlist-tc-sorted-domain: sorted-wrt (<) (OAlist-tc-sorted-domain
xs)
unfolding OAlist-tc-sorted-domain-def tc-le-lt[symmetric] using oalist-inv-list-of-oalist-tc
by (rule tc.oalist-inv-rawD2)

12.10.3 OAlist-tc-empty and Singletons
lemma list-of-oalist-OAlist-tc-empty [simp, code abstract]: list-of-oalist-tc OAlist-tc-empty
= []
unfolding OAlist-tc-empty-def using tc.oalist-inv-raw-Nil by (rule list-of-oalist-tc-of-list-id)

lemma lookup-OAlist-tc-empty: OAlist-tc-lookup OAlist-tc-empty k = 0
by (simp add: OAlist-tc-lookup-def)

lemma OAlist-tc-lookup-single:
OAlist-tc-lookup (oalist-tc-of-list [(k, v)]) k ′ = (if k = k ′ then v else 0)
by (simp add: OAlist-tc-lookup-def list-of-oalist-tc-of-list tc.sort-oalist-def com-

parator-of-def split: order .split)

12.10.4 OAlist-tc-except-min
lemma list-of-oalist-OAlist-tc-except-min [simp, code abstract]:

list-of-oalist-tc (OAlist-tc-except-min xs) = tl (list-of-oalist-tc xs)
unfolding OAlist-tc-except-min-def
by (rule list-of-oalist-tc-of-list-id, rule tc.oalist-inv-raw-tl, fact oalist-inv-list-of-oalist-tc)

lemma lookup-OAlist-tc-except-min:
OAlist-tc-lookup (OAlist-tc-except-min xs) k =

349

(if (∀ k ′∈fst ‘ set (list-of-oalist-tc xs). k ≤ k ′) then 0 else OAlist-tc-lookup xs
k)

by (simp add: OAlist-tc-lookup-def tc.lookup-pair-tl oalist-inv-list-of-oalist-tc split
del: if-split cong: if-cong)

12.10.5 OAlist-tc-min-key-val
lemma OAlist-tc-min-key-val-in:

assumes list-of-oalist-tc xs 6= []
shows OAlist-tc-min-key-val xs ∈ set (list-of-oalist-tc xs)
unfolding OAlist-tc-min-key-val-def using assms by simp

lemma snd-OAlist-tc-min-key-val:
assumes list-of-oalist-tc xs 6= []
shows snd (OAlist-tc-min-key-val xs) = OAlist-tc-lookup xs (fst (OAlist-tc-min-key-val

xs))
proof −

let ?xs = list-of-oalist-tc xs
from assms have ∗: OAlist-tc-min-key-val xs ∈ set ?xs by (rule OAlist-tc-min-key-val-in)
show ?thesis unfolding OAlist-tc-lookup-def

by (rule HOL.sym, rule tc.lookup-pair-eq-valueI , fact oalist-inv-list-of-oalist-tc,
simp add: ∗)
qed

lemma OAlist-tc-min-key-val-minimal:
assumes z ∈ set (list-of-oalist-tc xs)
shows fst (OAlist-tc-min-key-val xs) ≤ fst z

proof −
let ?xs = list-of-oalist-tc xs
from assms have ?xs 6= [] by auto
hence OAlist-tc-sorted-domain xs 6= [] by (simp add: OAlist-tc-sorted-domain-def)
then obtain h xs ′ where eq: OAlist-tc-sorted-domain xs = h # xs ′ using

list.exhaust by blast
with sorted-OAlist-tc-sorted-domain[of xs] have ∗: ∀ y∈set xs ′. h < y by simp
from assms have fst z ∈ set (OAlist-tc-sorted-domain xs) by (simp add: OAl-

ist-tc-sorted-domain-def)
hence disj: fst z = h ∨ fst z ∈ set xs ′ by (simp add: eq)
from ‹?xs 6= []› have fst (OAlist-tc-min-key-val xs) = hd (OAlist-tc-sorted-domain

xs)
by (simp add: OAlist-tc-min-key-val-def OAlist-tc-sorted-domain-def hd-map)

also have ... = h by (simp add: eq)
also from disj have ... ≤ fst z
proof

assume fst z = h
thus ?thesis by simp

next
assume fst z ∈ set xs ′

with ∗ have h < fst z ..
thus ?thesis by simp

350

qed
finally show ?thesis .

qed

12.10.6 OAlist-tc-insert
lemma list-of-oalist-OAlist-tc-insert [simp, code abstract]:

list-of-oalist-tc (OAlist-tc-insert x xs) = update-by-pair-tc x (list-of-oalist-tc xs)
unfolding OAlist-tc-insert-def
by (rule list-of-oalist-tc-of-list-id, rule tc.oalist-inv-raw-update-by-pair , fact oal-

ist-inv-list-of-oalist-tc)

lemma lookup-OAlist-tc-insert: OAlist-tc-lookup (OAlist-tc-insert (k, v) xs) k ′ =
(if k = k ′ then v else OAlist-tc-lookup xs k ′)
by (simp add: OAlist-tc-lookup-def tc.lookup-pair-update-by-pair oalist-inv-list-of-oalist-tc

split del: if-split cong: if-cong)

12.10.7 OAlist-tc-update-by-fun and OAlist-tc-update-by-fun-gr
lemma list-of-oalist-OAlist-tc-update-by-fun [simp, code abstract]:
list-of-oalist-tc (OAlist-tc-update-by-fun k f xs) = update-by-fun-pair-tc k f (list-of-oalist-tc

xs)
unfolding OAlist-tc-update-by-fun-def
by (rule list-of-oalist-tc-of-list-id, rule tc.oalist-inv-raw-update-by-fun-pair , fact

oalist-inv-list-of-oalist-tc)

lemma lookup-OAlist-tc-update-by-fun:
OAlist-tc-lookup (OAlist-tc-update-by-fun k f xs) k ′ = (if k = k ′ then f else id)

(OAlist-tc-lookup xs k ′)
by (simp add: OAlist-tc-lookup-def tc.lookup-pair-update-by-fun-pair oalist-inv-list-of-oalist-tc

split del: if-split cong: if-cong)

lemma list-of-oalist-OAlist-tc-update-by-fun-gr [simp, code abstract]:
list-of-oalist-tc (OAlist-tc-update-by-fun-gr k f xs) = update-by-fun-gr-pair-tc k f

(list-of-oalist-tc xs)
unfolding OAlist-tc-update-by-fun-gr-def
by (rule list-of-oalist-tc-of-list-id, rule tc.oalist-inv-raw-update-by-fun-gr-pair , fact

oalist-inv-list-of-oalist-tc)

lemma OAlist-tc-update-by-fun-gr-eq-OAlist-tc-update-by-fun: OAlist-tc-update-by-fun-gr
= OAlist-tc-update-by-fun

by (rule, rule, rule,
simp add: OAlist-tc-update-by-fun-gr-def OAlist-tc-update-by-fun-def

tc.update-by-fun-gr-pair-eq-update-by-fun-pair oalist-inv-list-of-oalist-tc)

12.10.8 OAlist-tc-filter
lemma list-of-oalist-OAlist-tc-filter [simp, code abstract]:

list-of-oalist-tc (OAlist-tc-filter P xs) = filter P (list-of-oalist-tc xs)
unfolding OAlist-tc-filter-def

351

by (rule list-of-oalist-tc-of-list-id, rule tc.oalist-inv-raw-filter , fact oalist-inv-list-of-oalist-tc)

lemma lookup-OAlist-tc-filter : OAlist-tc-lookup (OAlist-tc-filter P xs) k = (let v =
OAlist-tc-lookup xs k in if P (k, v) then v else 0)

by (simp add: OAlist-tc-lookup-def tc.lookup-pair-filter oalist-inv-list-of-oalist-tc)

12.10.9 OAlist-tc-map-val
lemma list-of-oalist-OAlist-tc-map-val [simp, code abstract]:

list-of-oalist-tc (OAlist-tc-map-val f xs) = map-val-pair f (list-of-oalist-tc xs)
unfolding OAlist-tc-map-val-def
by (rule list-of-oalist-tc-of-list-id, rule tc.oalist-inv-raw-map-val-pair , fact oal-

ist-inv-list-of-oalist-tc)

lemma OAlist-tc-map-val-cong:
assumes

∧
k v. (k, v) ∈ set (list-of-oalist-tc xs) =⇒ f k v = g k v

shows OAlist-tc-map-val f xs = OAlist-tc-map-val g xs
unfolding OAlist-tc-map-val-def by (rule arg-cong[where f=OAlist-tc], rule

tc.map-val-pair-cong, elim assms)

lemma lookup-OAlist-tc-map-val: f k 0 = 0 =⇒ OAlist-tc-lookup (OAlist-tc-map-val
f xs) k = f k (OAlist-tc-lookup xs k)
by (simp add: OAlist-tc-lookup-def tc.lookup-pair-map-val-pair oalist-inv-list-of-oalist-tc)

12.10.10 OAlist-tc-map2-val OAlist-tc-map2-val-rneutr and OAlist-tc-map2-val-neutr
lemma list-of-oalist-map2-val [simp, code abstract]:

list-of-oalist-tc (OAlist-tc-map2-val f xs ys) =
map2-val-pair-tc f (map-val-pair (λk b. f k b 0)) (map-val-pair (λk. f k 0))

(list-of-oalist-tc xs) (list-of-oalist-tc ys)
unfolding OAlist-tc-map2-val-def
by (rule list-of-oalist-tc-of-list-id, rule tc.oalist-inv-raw-map2-val-pair ,

fact oalist-inv-list-of-oalist-tc, fact oalist-inv-list-of-oalist-tc,
fact tc.map2-val-compat-map-val-pair , fact tc.map2-val-compat-map-val-pair)

lemma list-of-oalist-OAlist-tc-map2-val-rneutr [simp, code abstract]:
list-of-oalist-tc (OAlist-tc-map2-val-rneutr f xs ys) =

map2-val-pair-tc f id (map-val-pair (λk c. f k 0 c)) (list-of-oalist-tc xs)
(list-of-oalist-tc ys)

unfolding OAlist-tc-map2-val-rneutr-def
by (rule list-of-oalist-tc-of-list-id, rule tc.oalist-inv-raw-map2-val-pair ,

fact oalist-inv-list-of-oalist-tc, fact oalist-inv-list-of-oalist-tc,
fact tc.map2-val-compat-id, fact tc.map2-val-compat-map-val-pair)

lemma list-of-oalist-OAlist-tc-map2-val-neutr [simp, code abstract]:
list-of-oalist-tc (OAlist-tc-map2-val-neutr f xs ys) = map2-val-pair-tc f id id (list-of-oalist-tc

xs) (list-of-oalist-tc ys)
unfolding OAlist-tc-map2-val-neutr-def
by (rule list-of-oalist-tc-of-list-id, rule tc.oalist-inv-raw-map2-val-pair ,

fact oalist-inv-list-of-oalist-tc, fact oalist-inv-list-of-oalist-tc,

352

fact tc.map2-val-compat-id, fact tc.map2-val-compat-id)

lemma lookup-OAlist-tc-map2-val:
assumes

∧
k. f k 0 0 = 0

shows OAlist-tc-lookup (OAlist-tc-map2-val f xs ys) k = f k (OAlist-tc-lookup xs
k) (OAlist-tc-lookup ys k)

by (simp add: OAlist-tc-lookup-def tc.lookup-pair-map2-val-pair
tc.map2-val-compat-map-val-pair assms oalist-inv-list-of-oalist-tc)

lemma lookup-OAlist-tc-map2-val-rneutr :
assumes

∧
k x. f k x 0 = x

shows OAlist-tc-lookup (OAlist-tc-map2-val-rneutr f xs ys) k = f k (OAlist-tc-lookup
xs k) (OAlist-tc-lookup ys k)
proof (simp add: OAlist-tc-lookup-def , rule tc.lookup-pair-map2-val-pair)

fix zs::(′a × ′b) list
assume tc.oalist-inv-raw zs
thus id zs = map-val-pair (λk v. f k v 0) zs by (simp add: assms tc.map-pair-id)

qed (fact oalist-inv-list-of-oalist-tc, fact oalist-inv-list-of-oalist-tc,
fact tc.map2-val-compat-id, fact tc.map2-val-compat-map-val-pair , rule refl, simp

only: assms)

lemma lookup-OAlist-tc-map2-val-neutr :
assumes

∧
k x. f k x 0 = x and

∧
k x. f k 0 x = x

shows OAlist-tc-lookup (OAlist-tc-map2-val-neutr f xs ys) k = f k (OAlist-tc-lookup
xs k) (OAlist-tc-lookup ys k)
proof (simp add: OAlist-tc-lookup-def , rule tc.lookup-pair-map2-val-pair)

fix zs::(′a × ′b) list
assume tc.oalist-inv-raw zs
thus id zs = map-val-pair (λk v. f k v 0) zs by (simp add: assms(1) tc.map-pair-id)

next
fix zs::(′a × ′b) list
assume tc.oalist-inv-raw zs
thus id zs = map-val-pair (λk. f k 0) zs by (simp add: assms(2) tc.map-pair-id)

qed (fact oalist-inv-list-of-oalist-tc, fact oalist-inv-list-of-oalist-tc,
fact tc.map2-val-compat-id, fact tc.map2-val-compat-id, simp only: assms(1))

lemma OAlist-tc-map2-val-rneutr-singleton-eq-OAlist-tc-update-by-fun:
assumes

∧
a x. f a x 0 = x and list-of-oalist-tc ys = [(k, v)]

shows OAlist-tc-map2-val-rneutr f xs ys = OAlist-tc-update-by-fun k (λx. f k x
v) xs

by (simp add: OAlist-tc-map2-val-rneutr-def OAlist-tc-update-by-fun-def assms
tc.map2-val-pair-singleton-eq-update-by-fun-pair oalist-inv-list-of-oalist-tc)

12.10.11 OAlist-tc-lex-ord and OAlist-tc-prod-ord
lemma OAlist-tc-lex-ord-EqI :
(
∧

k. k ∈ fst ‘ set (list-of-oalist-tc xs) ∪ fst ‘ set (list-of-oalist-tc ys) =⇒
f k (OAlist-tc-lookup xs k) (OAlist-tc-lookup ys k) = Some Eq) =⇒

OAlist-tc-lex-ord f xs ys = Some Eq

353

by (simp add: OAlist-tc-lex-ord-def OAlist-tc-lookup-def , rule tc.lex-ord-pair-EqI ,
rule oalist-inv-list-of-oalist-tc, rule oalist-inv-list-of-oalist-tc, blast)

lemma OAlist-tc-lex-ord-valI :
assumes aux 6= Some Eq and k ∈ fst ‘ set (list-of-oalist-tc xs) ∪ fst ‘ set

(list-of-oalist-tc ys)
shows aux = f k (OAlist-tc-lookup xs k) (OAlist-tc-lookup ys k) =⇒

(
∧

k ′. k ′ ∈ fst ‘ set (list-of-oalist-tc xs) ∪ fst ‘ set (list-of-oalist-tc ys) =⇒
k ′ < k =⇒ f k ′ (OAlist-tc-lookup xs k ′) (OAlist-tc-lookup ys k ′) = Some

Eq) =⇒
OAlist-tc-lex-ord f xs ys = aux

by (simp (no-asm-use) add: OAlist-tc-lex-ord-def OAlist-tc-lookup-def , rule tc.lex-ord-pair-valI ,
rule oalist-inv-list-of-oalist-tc, rule oalist-inv-list-of-oalist-tc, rule assms(1),

rule assms(2), simp-all)

lemma OAlist-tc-lex-ord-EqD:
OAlist-tc-lex-ord f xs ys = Some Eq =⇒
k ∈ fst ‘ set (list-of-oalist-tc xs) ∪ fst ‘ set (list-of-oalist-tc ys) =⇒
f k (OAlist-tc-lookup xs k) (OAlist-tc-lookup ys k) = Some Eq

by (simp add: OAlist-tc-lex-ord-def OAlist-tc-lookup-def , rule tc.lex-ord-pair-EqD[where
f=f],

rule oalist-inv-list-of-oalist-tc, rule oalist-inv-list-of-oalist-tc, assumption, simp)

lemma OAlist-tc-lex-ord-valE :
assumes OAlist-tc-lex-ord f xs ys = aux and aux 6= Some Eq
obtains k where k ∈ fst ‘ set (list-of-oalist-tc xs) ∪ fst ‘ set (list-of-oalist-tc ys)

and aux = f k (OAlist-tc-lookup xs k) (OAlist-tc-lookup ys k)
and

∧
k ′. k ′ ∈ fst ‘ set (list-of-oalist-tc xs) ∪ fst ‘ set (list-of-oalist-tc ys) =⇒
k ′ < k =⇒ f k ′ (OAlist-tc-lookup xs k ′) (OAlist-tc-lookup ys k ′) = Some

Eq
proof −

note oalist-inv-list-of-oalist-tc oalist-inv-list-of-oalist-tc
moreover from assms(1) have lex-ord-pair-tc f (list-of-oalist-tc xs) (list-of-oalist-tc

ys) = aux
by (simp only: OAlist-tc-lex-ord-def)

ultimately obtain k where 1 : k ∈ fst ‘ set (list-of-oalist-tc xs) ∪ fst ‘ set
(list-of-oalist-tc ys)

and aux = f k (lookup-pair-tc (list-of-oalist-tc xs) k) (lookup-pair-tc (list-of-oalist-tc
ys) k)

and
∧

k ′. k ′ ∈ fst ‘ set (list-of-oalist-tc xs) ∪ fst ‘ set (list-of-oalist-tc ys) =⇒
k ′ < k =⇒

f k ′ (lookup-pair-tc (list-of-oalist-tc xs) k ′) (lookup-pair-tc (list-of-oalist-tc
ys) k ′) = Some Eq

using assms(2) unfolding tc-le-lt[symmetric] by (rule tc.lex-ord-pair-valE ,
blast)

from this(2 , 3) have aux = f k (OAlist-tc-lookup xs k) (OAlist-tc-lookup ys k)
and

∧
k ′. k ′ ∈ fst ‘ set (list-of-oalist-tc xs) ∪ fst ‘ set (list-of-oalist-tc ys) =⇒
k ′ < k =⇒ f k ′ (OAlist-tc-lookup xs k ′) (OAlist-tc-lookup ys k ′) = Some

Eq

354

by (simp-all only: OAlist-tc-lookup-def)
with 1 show ?thesis ..

qed

lemma OAlist-tc-prod-ord-alt:
OAlist-tc-prod-ord P xs ys ←→

(∀ k∈fst ‘ set (list-of-oalist-tc xs) ∪ fst ‘ set (list-of-oalist-tc ys).
P k (OAlist-tc-lookup xs k) (OAlist-tc-lookup ys k))

by (simp add: OAlist-tc-prod-ord-def OAlist-tc-lookup-def tc.prod-ord-pair-alt oal-
ist-inv-list-of-oalist-tc)

12.10.12 Instance of equal
instantiation oalist-tc :: (linorder , zero) equal
begin

definition equal-oalist-tc :: (′a, ′b) oalist-tc ⇒ (′a, ′b) oalist-tc ⇒ bool
where equal-oalist-tc xs ys = (list-of-oalist-tc xs = list-of-oalist-tc ys)

instance by (intro-classes, simp add: equal-oalist-tc-def list-of-oalist-tc-inject)

end

12.11 Experiment
lemma oalist-tc-of-list [(0 ::nat, 4 ::nat), (1 , 3), (0 , 2), (1 , 1)] = oalist-tc-of-list
[(0 , 4), (1 , 3)]

by eval

lemma OAlist-tc-except-min (oalist-tc-of-list ([(1 , 3), (0 ::nat, 4 ::nat), (0 , 2), (1 ,
1)])) = oalist-tc-of-list [(1 , 3)]

by eval

lemma OAlist-tc-min-key-val (oalist-tc-of-list [(1 , 3), (0 ::nat, 4 ::nat), (0 , 2), (1 ,
1)]) = (0 , 4)

by eval

lemma OAlist-tc-lookup (oalist-tc-of-list [(0 ::nat, 4 ::nat), (1 , 3), (0 , 2), (1 , 1)])
1 = 3

by eval

lemma OAlist-tc-prod-ord (λ-. greater-eq)
(oalist-tc-of-list [(1 , 4), (0 ::nat, 4 ::nat), (1 , 3), (0 , 2), (3 , 1)])
(oalist-tc-of-list [(0 , 4), (1 , 3), (2 , 2), (1 , 1)]) = False

by eval

lemma OAlist-tc-map2-val-rneutr (λ-. minus)
(oalist-tc-of-list [(1 , 4), (0 ::nat, 4 ::int), (1 , 3), (0 , 2), (3 , 1)])
(oalist-tc-of-list [(0 , 4), (1 , 3), (2 , 2), (1 , 1)]) =

oalist-tc-of-list [(1 , 1), (2 , − 2), (3 , 1)]

355

by eval

end

13 Ordered Associative Lists for Polynomials
theory OAlist-Poly-Mapping

imports PP-Type MPoly-Type-Class-Ordered OAlist
begin

We introduce a dedicated type for ordered associative lists (oalists) rep-
resenting polynomials. To that end, we require the order relation the oalists
are sorted wrt. to be admissible term orders, and furthermore sort the lists
descending rather than ascending, because this allows to implement various
operations more efficiently. For technical reasons, we must restrict the type
of terms to types embeddable into (nat, nat) pp × nat, though. All types
we are interested in meet this requirement.
lemma comparator-lexicographic:

fixes f :: ′a ⇒ ′b and g:: ′a ⇒ ′c
assumes comparator c1 and comparator c2 and

∧
x y. f x = f y =⇒ g x = g y

=⇒ x = y
shows comparator (λx y. case c1 (f x) (f y) of Eq ⇒ c2 (g x) (g y) | val ⇒ val)

(is comparator ?c3)
proof −

from assms(1) interpret c1 : comparator c1 .
from assms(2) interpret c2 : comparator c2 .
show ?thesis
proof

fix x y :: ′a
show invert-order (?c3 x y) = ?c3 y x

by (simp add: c1 .eq c2 .eq split: order .split,
metis invert-order .simps(1) invert-order .simps(2) c1 .sym c2 .sym or-

der .distinct(5))
next

fix x y :: ′a
assume ?c3 x y = Eq
hence f x = f y and g x = g y by (simp-all add: c1 .eq c2 .eq split: order .splits

if-split-asm)
thus x = y by (rule assms(3))

next
fix x y z :: ′a
assume ?c3 x y = Lt
hence d1 : c1 (f x) (f y) = Lt ∨ (c1 (f x) (f y) = Eq ∧ c2 (g x) (g y) = Lt)

by (simp split: order .splits)
assume ?c3 y z = Lt
hence d2 : c1 (f y) (f z) = Lt ∨ (c1 (f y) (f z) = Eq ∧ c2 (g y) (g z) = Lt)

by (simp split: order .splits)
from d1 show ?c3 x z = Lt

356

proof
assume 1 : c1 (f x) (f y) = Lt
from d2 show ?thesis
proof

assume c1 (f y) (f z) = Lt
with 1 have c1 (f x) (f z) = Lt by (rule c1 .comp-trans)
thus ?thesis by simp

next
assume c1 (f y) (f z) = Eq ∧ c2 (g y) (g z) = Lt
hence f z = f y and c2 (g y) (g z) = Lt by (simp-all add: c1 .eq)
with 1 show ?thesis by simp

qed
next

assume c1 (f x) (f y) = Eq ∧ c2 (g x) (g y) = Lt
hence 1 : f x = f y and 2 : c2 (g x) (g y) = Lt by (simp-all add: c1 .eq)
from d2 show ?thesis
proof

assume c1 (f y) (f z) = Lt
thus ?thesis by (simp add: 1)

next
assume c1 (f y) (f z) = Eq ∧ c2 (g y) (g z) = Lt
hence 3 : f y = f z and c2 (g y) (g z) = Lt by (simp-all add: c1 .eq)
from 2 this(2) have c2 (g x) (g z) = Lt by (rule c2 .comp-trans)
thus ?thesis by (simp add: 1 3)

qed
qed

qed
qed

class nat-term =
fixes rep-nat-term :: ′a ⇒ ((nat, nat) pp × nat)

and splus :: ′a ⇒ ′a ⇒ ′a
assumes rep-nat-term-inj: rep-nat-term x = rep-nat-term y =⇒ x = y

and full-component: snd (rep-nat-term x) = i =⇒ (∃ y. rep-nat-term y = (t,
i))

and splus-term: rep-nat-term (splus x y) = pprod.splus (fst (rep-nat-term x))
(rep-nat-term y)
begin

definition lex-comp-aux = (λx y. case comp-of-ord lex-pp (fst (rep-nat-term x))
(fst (rep-nat-term y)) of

Eq ⇒ comparator-of (snd (rep-nat-term x)) (snd
(rep-nat-term y)) | val ⇒ val)

lemma full-componentE :
assumes snd (rep-nat-term x) = i
obtains y where rep-nat-term y = (t, i)

proof −
from assms have ∃ y. rep-nat-term y = (t, i) by (rule full-component)

357

then obtain y where rep-nat-term y = (t, i) ..
thus ?thesis ..

qed

end

class nat-pp-term = nat-term + zero + plus +
assumes rep-nat-term-zero: rep-nat-term 0 = (0 , 0)

and splus-pp-term: splus = (+)

definition nat-term-comp :: ′a::nat-term comparator ⇒ bool
where nat-term-comp cmp ←→

(∀ u v. snd (rep-nat-term u) = snd (rep-nat-term v) −→ fst (rep-nat-term
u) = 0 −→ cmp u v 6= Gt) ∧

(∀ u v. fst (rep-nat-term u) = fst (rep-nat-term v) −→ snd (rep-nat-term
u) < snd (rep-nat-term v) −→ cmp u v = Lt) ∧

(∀ t u v. cmp u v = Lt −→ cmp (splus t u) (splus t v) = Lt) ∧
(∀ u v a b. fst (rep-nat-term u) = fst (rep-nat-term a) −→ fst (rep-nat-term

v) = fst (rep-nat-term b) −→
snd (rep-nat-term u) = snd (rep-nat-term v) −→ snd (rep-nat-term

a) = snd (rep-nat-term b) −→
cmp a b = Lt −→ cmp u v = Lt)

lemma nat-term-compI :
assumes

∧
u v. snd (rep-nat-term u) = snd (rep-nat-term v) =⇒ fst (rep-nat-term

u) = 0 =⇒ cmp u v 6= Gt
and

∧
u v. fst (rep-nat-term u) = fst (rep-nat-term v) =⇒ snd (rep-nat-term

u) < snd (rep-nat-term v) =⇒ cmp u v = Lt
and

∧
t u v. cmp u v = Lt =⇒ cmp (splus t u) (splus t v) = Lt

and
∧

u v a b. fst (rep-nat-term u) = fst (rep-nat-term a) =⇒ fst (rep-nat-term
v) = fst (rep-nat-term b) =⇒

snd (rep-nat-term u) = snd (rep-nat-term v) =⇒ snd (rep-nat-term
a) = snd (rep-nat-term b) =⇒

cmp a b = Lt =⇒ cmp u v = Lt
shows nat-term-comp cmp
unfolding nat-term-comp-def fst-conv snd-conv using assms by blast

lemma nat-term-compD1 :
assumes nat-term-comp cmp and snd (rep-nat-term u) = snd (rep-nat-term v)

and fst (rep-nat-term u) = 0
shows cmp u v 6= Gt
using assms unfolding nat-term-comp-def fst-conv by blast

lemma nat-term-compD2 :
assumes nat-term-comp cmp and fst (rep-nat-term u) = fst (rep-nat-term v)

and snd (rep-nat-term u) < snd (rep-nat-term v)
shows cmp u v = Lt
using assms unfolding nat-term-comp-def fst-conv snd-conv by blast

358

lemma nat-term-compD3 :
assumes nat-term-comp cmp and cmp u v = Lt
shows cmp (splus t u) (splus t v) = Lt
using assms unfolding nat-term-comp-def snd-conv by blast

lemma nat-term-compD4 :
assumes nat-term-comp cmp and fst (rep-nat-term u) = fst (rep-nat-term a)

and fst (rep-nat-term v) = fst (rep-nat-term b) and snd (rep-nat-term u) =
snd (rep-nat-term v)

and snd (rep-nat-term a) = snd (rep-nat-term b) and cmp a b = Lt
shows cmp u v = Lt
using assms unfolding nat-term-comp-def snd-conv by blast

lemma nat-term-compD1 ′:
assumes comparator cmp and nat-term-comp cmp and snd (rep-nat-term u) ≤

snd (rep-nat-term v)
and fst (rep-nat-term u) = 0

shows cmp u v 6= Gt
proof (cases snd (rep-nat-term u) = snd (rep-nat-term v))

case True
with assms(2) show ?thesis using assms(4) by (rule nat-term-compD1)

next
from assms(1) interpret cmp: comparator cmp .
case False
with assms(3) have a: snd (rep-nat-term u) < snd (rep-nat-term v) by simp
from refl obtain w:: ′a where eq: rep-nat-term w = (0 , snd (rep-nat-term v))

by (rule full-componentE)
have cmp u w = Lt by (rule nat-term-compD2 , fact assms(2), simp-all add: eq

assms(4) a)
moreover have cmp w v 6= Gt by (rule nat-term-compD1 , fact assms(2),

simp-all add: eq)
ultimately show cmp u v 6= Gt by (simp add: cmp.nGt-le-conv cmp.Lt-lt-conv)

qed

lemma nat-term-compD4 ′:
assumes comparator cmp and nat-term-comp cmp and fst (rep-nat-term u) =

fst (rep-nat-term a)
and fst (rep-nat-term v) = fst (rep-nat-term b) and snd (rep-nat-term u) =

snd (rep-nat-term v)
and snd (rep-nat-term a) = snd (rep-nat-term b)

shows cmp u v = cmp a b
proof −

from assms(1) interpret cmp: comparator cmp .
show ?thesis
proof (cases cmp a b)

case Eq
hence fst (rep-nat-term u) = fst (rep-nat-term v) by (simp add: cmp.eq assms(3 ,

4))
hence rep-nat-term u = rep-nat-term v using assms(5) by (rule prod-eqI)

359

hence u = v by (rule rep-nat-term-inj)
thus ?thesis by (simp add: Eq)

next
case Lt
with assms(2 , 3 , 4 , 5 , 6) have cmp u v = Lt by (rule nat-term-compD4)
thus ?thesis by (simp add: Lt)

next
case Gt
hence cmp b a = Lt by (simp only: cmp.Gt-lt-conv cmp.Lt-lt-conv)
with assms(2 , 4 , 3) assms(5 , 6)[symmetric] have cmp v u = Lt by (rule

nat-term-compD4)
hence cmp u v = Gt by (simp only: cmp.Gt-lt-conv cmp.Lt-lt-conv)
thus ?thesis by (simp add: Gt)

qed
qed

lemma nat-term-compD4 ′′:
assumes comparator cmp and nat-term-comp cmp and fst (rep-nat-term u) =

fst (rep-nat-term a)
and fst (rep-nat-term v) = fst (rep-nat-term b) and snd (rep-nat-term u) ≤

snd (rep-nat-term v)
and snd (rep-nat-term a) = snd (rep-nat-term b) and cmp a b 6= Gt

shows cmp u v 6= Gt
proof (cases snd (rep-nat-term u) = snd (rep-nat-term v))

case True
with assms(1 , 2 , 3 , 4) have cmp u v = cmp a b using assms(6) by (rule

nat-term-compD4 ′)
thus ?thesis using assms(7) by simp

next
case False
from assms(1) interpret cmp: comparator cmp .
from refl obtain w:: ′a where w: rep-nat-term w = (fst (rep-nat-term u), snd

(rep-nat-term v))
by (rule full-componentE)

have 1 : fst (rep-nat-term w) = fst (rep-nat-term a) and 2 : snd (rep-nat-term
w) = snd (rep-nat-term v)

by (simp-all add: w assms(3))
from False assms(5) have ∗: snd (rep-nat-term u) < snd (rep-nat-term v) by

simp
have cmp u w = Lt by (rule nat-term-compD2 , fact assms(2), simp-all add: ∗

w)
moreover from assms(1 , 2) 1 assms(4) 2 assms(6) have cmp w v = cmp a b

by (rule nat-term-compD4 ′)
ultimately show ?thesis using assms(7) by (metis cmp.nGt-le-conv cmp.nLt-le-conv

cmp.comp-trans)
qed

lemma comparator-lex-comp-aux: comparator (lex-comp-aux:: ′a::nat-term compara-
tor)

360

unfolding lex-comp-aux-def
proof (rule comparator-composition)

from lex-pp-antisym have as: antisymp lex-pp by (rule antisympI)
have comparator (comp-of-ord (lex-pp::(nat, nat) pp ⇒ -))

unfolding comp-of-ord-eq-comp-of-ords[OF as]
by (rule comp-of-ords, unfold-locales,

auto simp: lex-pp-refl intro: lex-pp-trans lex-pp-lin ′ elim!: lex-pp-antisym)
thus comparator (λx y::((nat, nat) pp × nat). case comp-of-ord lex-pp (fst x) (fst

y) of
Eq ⇒ comparator-of (snd x) (snd y) | val ⇒ val)

using comparator-of prod-eqI by (rule comparator-lexicographic)
next

from rep-nat-term-inj show inj rep-nat-term by (rule injI)
qed

lemma nat-term-comp-lex-comp-aux: nat-term-comp (lex-comp-aux:: ′a::nat-term
comparator)
proof −

from lex-pp-antisym have as: antisymp lex-pp by (rule antisympI)
interpret lex: comparator comp-of-ord (lex-pp::(nat, nat) pp ⇒ -)

unfolding comp-of-ord-eq-comp-of-ords[OF as]
by (rule comp-of-ords, unfold-locales,

auto simp: lex-pp-refl intro: lex-pp-trans lex-pp-lin ′ elim!: lex-pp-antisym)
show ?thesis
proof (rule nat-term-compI)

fix u v :: ′a
assume 1 : snd (rep-nat-term u) = snd (rep-nat-term v) and 2 : fst (rep-nat-term

u) = 0
show lex-comp-aux u v 6= Gt
by (simp add: lex-comp-aux-def 1 2 split: order .split, simp add: comp-of-ord-def

lex-pp-zero-min)
next

fix u v :: ′a
assume 1 : fst (rep-nat-term u) = fst (rep-nat-term v) and 2 : snd (rep-nat-term

u) < snd (rep-nat-term v)
show lex-comp-aux u v = Lt
by (simp add: lex-comp-aux-def 1 split: order .split, simp add: comparator-of-def

2)
next

fix t u v :: ′a
show lex-comp-aux u v = Lt =⇒ lex-comp-aux (splus t u) (splus t v) = Lt

by (auto simp: lex-comp-aux-def splus-term pprod.splus-def comp-of-ord-def
lex-pp-refl

split: order .splits if-splits intro: lex-pp-plus-monotone ′)
next

fix u v a b :: ′a
assume fst (rep-nat-term u) = fst (rep-nat-term a) and fst (rep-nat-term v)

= fst (rep-nat-term b)
and snd (rep-nat-term a) = snd (rep-nat-term b) and lex-comp-aux a b = Lt

361

thus lex-comp-aux u v = Lt by (simp add: lex-comp-aux-def split: order .splits)
qed

qed

typedef (overloaded) ′a nat-term-order =
{cmp:: ′a::nat-term comparator . comparator cmp ∧ nat-term-comp cmp}
morphisms nat-term-compare Abs-nat-term-order

proof (rule, simp)
from comparator-lex-comp-aux nat-term-comp-lex-comp-aux
show comparator lex-comp-aux ∧ nat-term-comp lex-comp-aux ..

qed

lemma nat-term-compare-Abs-nat-term-order-id:
assumes comparator cmp and nat-term-comp cmp
shows nat-term-compare (Abs-nat-term-order cmp) = cmp
by (rule Abs-nat-term-order-inverse, simp add: assms)

instantiation nat-term-order :: (type) equal
begin

definition equal-nat-term-order :: ′a nat-term-order ⇒ ′a nat-term-order ⇒ bool
where equal-nat-term-order = (=)

instance by (standard, simp add: equal-nat-term-order-def)

end

definition nat-term-compare-inv :: ′a nat-term-order ⇒ ′a::nat-term comparator
where nat-term-compare-inv to = (λx y. nat-term-compare to y x)

definition key-order-of-nat-term-order :: ′a nat-term-order ⇒ ′a::nat-term key-order
where key-order-of-nat-term-order-def [code del]:

key-order-of-nat-term-order to = Abs-key-order (nat-term-compare to)

definition key-order-of-nat-term-order-inv :: ′a nat-term-order ⇒ ′a::nat-term key-order
where key-order-of-nat-term-order-inv-def [code del]:

key-order-of-nat-term-order-inv to = Abs-key-order (nat-term-compare-inv to)

definition le-of-nat-term-order :: ′a nat-term-order ⇒ ′a ⇒ ′a::nat-term ⇒ bool
where le-of-nat-term-order to = le-of-key-order (key-order-of-nat-term-order to)

definition lt-of-nat-term-order :: ′a nat-term-order ⇒ ′a ⇒ ′a::nat-term ⇒ bool
where lt-of-nat-term-order to = lt-of-key-order (key-order-of-nat-term-order to)

definition nat-term-order-of-le :: ′a::{linorder ,nat-term} nat-term-order
where nat-term-order-of-le = Abs-nat-term-order (comparator-of)

lemma comparator-nat-term-compare: comparator (nat-term-compare to)
using nat-term-compare by blast

362

lemma nat-term-comp-nat-term-compare: nat-term-comp (nat-term-compare to)
using nat-term-compare by blast

lemma nat-term-compare-splus: nat-term-compare to (splus t u) (splus t v) =
nat-term-compare to u v
proof −
from comparator-nat-term-compare interpret cmp: comparator nat-term-compare

to .
show ?thesis
proof (cases nat-term-compare to u v)

case Eq
hence splus t u = splus t v by (simp add: cmp.eq)
thus ?thesis by (simp add: cmp.eq Eq)

next
case Lt
moreover from nat-term-comp-nat-term-compare this have nat-term-compare

to (splus t u) (splus t v) = Lt
by (rule nat-term-compD3)

ultimately show ?thesis by simp
next

case Gt
hence nat-term-compare to v u = Lt using cmp.Gt-lt-conv cmp.Lt-lt-conv by

auto
with nat-term-comp-nat-term-compare have nat-term-compare to (splus t v)

(splus t u) = Lt
by (rule nat-term-compD3)

hence nat-term-compare to (splus t u) (splus t v) = Gt using cmp.Gt-lt-conv
cmp.Lt-lt-conv by auto

with Gt show ?thesis by simp
qed

qed

lemma nat-term-compare-conv: nat-term-compare to = key-compare (key-order-of-nat-term-order
to)

unfolding key-order-of-nat-term-order-def
by (rule sym, rule Abs-key-order-inverse, simp add: comparator-nat-term-compare)

lemma comparator-nat-term-compare-inv: comparator (nat-term-compare-inv to)
unfolding nat-term-compare-inv-def using comparator-nat-term-compare by (rule

comparator-converse)

lemma nat-term-compare-inv-conv: nat-term-compare-inv to = key-compare (key-order-of-nat-term-order-inv
to)

unfolding key-order-of-nat-term-order-inv-def
by (rule sym, rule Abs-key-order-inverse, simp add: comparator-nat-term-compare-inv)

lemma nat-term-compare-inv-alt [code-unfold]: nat-term-compare-inv to x y = nat-term-compare
to y x

363

by (simp only: nat-term-compare-inv-def)

lemma le-of-nat-term-order [code]: le-of-nat-term-order to x y = (nat-term-compare
to x y 6= Gt)

by (simp add: le-of-key-order-alt le-of-nat-term-order-def nat-term-compare-conv)

lemma lt-of-nat-term-order [code]: lt-of-nat-term-order to x y = (nat-term-compare
to x y = Lt)

by (simp add: lt-of-key-order-alt lt-of-nat-term-order-def nat-term-compare-conv)

lemma le-of-nat-term-order-alt:
le-of-nat-term-order to = (λu v. ko.le (key-order-of-nat-term-order-inv to) v u)
by (intro ext, simp add: le-of-comp-def nat-term-compare-inv-conv[symmetric]

le-of-nat-term-order-def
le-of-key-order-def nat-term-compare-conv[symmetric] nat-term-compare-inv-alt)

lemma lt-of-nat-term-order-alt:
lt-of-nat-term-order to = (λu v. ko.lt (key-order-of-nat-term-order-inv to) v u)
by (intro ext, simp add: lt-of-comp-def nat-term-compare-inv-conv[symmetric]

lt-of-nat-term-order-def
lt-of-key-order-def nat-term-compare-conv[symmetric] nat-term-compare-inv-alt)

lemma linorder-le-of-nat-term-order : class.linorder (le-of-nat-term-order to) (lt-of-nat-term-order
to)

unfolding le-of-nat-term-order-alt lt-of-nat-term-order-alt using ko.linorder
by (rule linorder .dual-linorder)

lemma le-of-nat-term-order-zero-min: le-of-nat-term-order to 0 (t:: ′a::nat-pp-term)
unfolding le-of-nat-term-order
by (rule nat-term-compD1 ′, fact comparator-nat-term-compare, fact nat-term-comp-nat-term-compare,

simp-all add: rep-nat-term-zero)

lemma le-of-nat-term-order-plus-monotone:
assumes le-of-nat-term-order to s (t:: ′a::nat-pp-term)
shows le-of-nat-term-order to (u + s) (u + t)
using assms by (simp add: le-of-nat-term-order splus-pp-term[symmetric] nat-term-compare-splus)

global-interpretation ko-ntm: comparator nat-term-compare-inv ko
defines lookup-pair-ko-ntm = ko-ntm.lookup-pair
and update-by-pair-ko-ntm = ko-ntm.update-by-pair
and update-by-fun-pair-ko-ntm = ko-ntm.update-by-fun-pair
and update-by-fun-gr-pair-ko-ntm = ko-ntm.update-by-fun-gr-pair
and map2-val-pair-ko-ntm = ko-ntm.map2-val-pair
and lex-ord-pair-ko-ntm = ko-ntm.lex-ord-pair
and prod-ord-pair-ko-ntm = ko-ntm.prod-ord-pair
and sort-oalist-ko-ntm ′ = ko-ntm.sort-oalist
by (fact comparator-nat-term-compare-inv)

lemma ko-ntm-le: ko-ntm.le to = (λx y. le-of-nat-term-order to y x)

364

by (intro ext, simp add: le-of-comp-def le-of-nat-term-order nat-term-compare-inv-def
split: order .split)

global-interpretation ko-ntm: oalist-raw key-order-of-nat-term-order-inv
rewrites comparator .lookup-pair (key-compare (key-order-of-nat-term-order-inv

ko)) = lookup-pair-ko-ntm ko
and comparator .update-by-pair (key-compare (key-order-of-nat-term-order-inv ko))

= update-by-pair-ko-ntm ko
and comparator .update-by-fun-pair (key-compare (key-order-of-nat-term-order-inv

ko)) = update-by-fun-pair-ko-ntm ko
and comparator .update-by-fun-gr-pair (key-compare (key-order-of-nat-term-order-inv

ko)) = update-by-fun-gr-pair-ko-ntm ko
and comparator .map2-val-pair (key-compare (key-order-of-nat-term-order-inv ko))

= map2-val-pair-ko-ntm ko
and comparator .lex-ord-pair (key-compare (key-order-of-nat-term-order-inv ko))

= lex-ord-pair-ko-ntm ko
and comparator .prod-ord-pair (key-compare (key-order-of-nat-term-order-inv ko))

= prod-ord-pair-ko-ntm ko
and comparator .sort-oalist (key-compare (key-order-of-nat-term-order-inv ko)) =

sort-oalist-ko-ntm ′ ko
defines sort-oalist-aux-ko-ntm = ko-ntm.sort-oalist-aux
and lookup-ko-ntm = ko-ntm.lookup-raw
and sorted-domain-ko-ntm = ko-ntm.sorted-domain-raw
and tl-ko-ntm = ko-ntm.tl-raw
and min-key-val-ko-ntm = ko-ntm.min-key-val-raw
and update-by-ko-ntm = ko-ntm.update-by-raw
and update-by-fun-ko-ntm = ko-ntm.update-by-fun-raw
and update-by-fun-gr-ko-ntm = ko-ntm.update-by-fun-gr-raw
and map2-val-ko-ntm = ko-ntm.map2-val-raw
and lex-ord-ko-ntm = ko-ntm.lex-ord-raw
and prod-ord-ko-ntm = ko-ntm.prod-ord-raw
and oalist-eq-ko-ntm = ko-ntm.oalist-eq-raw
and sort-oalist-ko-ntm = ko-ntm.sort-oalist-raw
subgoal by (simp only: lookup-pair-ko-ntm-def nat-term-compare-inv-conv)
subgoal by (simp only: update-by-pair-ko-ntm-def nat-term-compare-inv-conv)
subgoal by (simp only: update-by-fun-pair-ko-ntm-def nat-term-compare-inv-conv)
subgoal by (simp only: update-by-fun-gr-pair-ko-ntm-def nat-term-compare-inv-conv)
subgoal by (simp only: map2-val-pair-ko-ntm-def nat-term-compare-inv-conv)
subgoal by (simp only: lex-ord-pair-ko-ntm-def nat-term-compare-inv-conv)
subgoal by (simp only: prod-ord-pair-ko-ntm-def nat-term-compare-inv-conv)
subgoal by (simp only: sort-oalist-ko-ntm ′-def nat-term-compare-inv-conv)
done

lemma compute-min-key-val-ko-ntm [code]:
min-key-val-ko-ntm ko (xs, ox) =

(if ko = ox then hd else min-list-param (λx y. (le-of-nat-term-order ko) (fst y)
(fst x))) xs
proof −

have ko.le (key-order-of-nat-term-order-inv ko) = (λx y. le-of-nat-term-order ko

365

y x)
by (metis ko.nGt-le-conv le-of-nat-term-order nat-term-compare-inv-conv nat-term-compare-inv-def)

thus ?thesis by (simp only: min-key-val-ko-ntm-def oalist-raw.min-key-val-raw.simps)
qed

typedef (overloaded) (′a, ′b) oalist-ntm =
{xs::(′a, ′b::zero, ′a::nat-term nat-term-order) oalist-raw. ko-ntm.oalist-inv xs}

morphisms list-of-oalist-ntm Abs-oalist-ntm
by (auto simp: ko-ntm.oalist-inv-def intro: ko.oalist-inv-raw-Nil)

lemma oalist-ntm-eq-iff : xs = ys ←→ list-of-oalist-ntm xs = list-of-oalist-ntm ys
by (simp add: list-of-oalist-ntm-inject)

lemma oalist-ntm-eqI : list-of-oalist-ntm xs = list-of-oalist-ntm ys =⇒ xs = ys
by (simp add: oalist-ntm-eq-iff)

Formal, totalized constructor for (′a, ′b) oalist-ntm:
definition OAlist-ntm :: (′a × ′b) list × ′a nat-term-order ⇒ (′a::nat-term, ′b::zero)
oalist-ntm

where OAlist-ntm xs = Abs-oalist-ntm (sort-oalist-ko-ntm xs)

definition oalist-of-list-ntm = OAlist-ntm

lemma oalist-inv-list-of-oalist-ntm: ko-ntm.oalist-inv (list-of-oalist-ntm xs)
using list-of-oalist-ntm[of xs] by simp

lemma list-of-oalist-OAlist-ntm: list-of-oalist-ntm (OAlist-ntm xs) = sort-oalist-ko-ntm
xs
proof −

obtain xs ′ ox where xs: xs = (xs ′, ox) by fastforce
have ko-ntm.oalist-inv (sort-oalist-ko-ntm ′ ox xs ′, ox)

using ko-ntm.oalist-inv-sort-oalist-raw by fastforce
thus ?thesis by (simp add: xs OAlist-ntm-def Abs-oalist-ntm-inverse)

qed

lemma OAlist-list-of-oalist-ntm [simp, code abstype]: OAlist-ntm (list-of-oalist-ntm
xs) = xs
proof −

obtain xs ′ ox where xs: list-of-oalist-ntm xs = (xs ′, ox) by fastforce
have ko-ntm.oalist-inv-raw ox xs ′

by (simp add: xs[symmetric] ko-ntm.oalist-inv-alt[symmetric] nat-term-compare-inv-conv
oalist-inv-list-of-oalist-ntm)

thus ?thesis by (simp add: xs OAlist-ntm-def ko-ntm.sort-oalist-id, simp add:
list-of-oalist-ntm-inverse xs[symmetric])
qed

lemma [code abstract]: list-of-oalist-ntm (oalist-of-list-ntm xs) = sort-oalist-ko-ntm
xs

by (simp add: list-of-oalist-OAlist-ntm oalist-of-list-ntm-def)

366

global-interpretation oa-ntm: oalist-abstract key-order-of-nat-term-order-inv list-of-oalist-ntm
OAlist-ntm

defines OAlist-lookup-ntm = oa-ntm.lookup
and OAlist-sorted-domain-ntm = oa-ntm.sorted-domain
and OAlist-empty-ntm = oa-ntm.empty
and OAlist-reorder-ntm = oa-ntm.reorder
and OAlist-tl-ntm = oa-ntm.tl
and OAlist-hd-ntm = oa-ntm.hd
and OAlist-except-min-ntm = oa-ntm.except-min
and OAlist-min-key-val-ntm = oa-ntm.min-key-val
and OAlist-insert-ntm = oa-ntm.insert
and OAlist-update-by-fun-ntm = oa-ntm.update-by-fun
and OAlist-update-by-fun-gr-ntm = oa-ntm.update-by-fun-gr
and OAlist-filter-ntm = oa-ntm.filter
and OAlist-map2-val-neutr-ntm = oa-ntm.map2-val-neutr
and OAlist-eq-ntm = oa-ntm.oalist-eq
apply unfold-locales
subgoal by (fact oalist-inv-list-of-oalist-ntm)
subgoal by (simp only: list-of-oalist-OAlist-ntm sort-oalist-ko-ntm-def)
subgoal by (fact OAlist-list-of-oalist-ntm)
done

global-interpretation oa-ntm: oalist-abstract3 key-order-of-nat-term-order-inv
list-of-oalist-ntm::(′a, ′b) oalist-ntm ⇒ (′a, ′b::zero, ′a::nat-term nat-term-order)

oalist-raw OAlist-ntm
list-of-oalist-ntm::(′a, ′c) oalist-ntm ⇒ (′a, ′c::zero, ′a nat-term-order) oalist-raw

OAlist-ntm
list-of-oalist-ntm::(′a, ′d) oalist-ntm ⇒ (′a, ′d::zero, ′a nat-term-order) oalist-raw

OAlist-ntm
defines OAlist-map-val-ntm = oa-ntm.map-val
and OAlist-map2-val-ntm = oa-ntm.map2-val
and OAlist-map2-val-rneutr-ntm = oa-ntm.map2-val-rneutr
and OAlist-lex-ord-ntm = oa-ntm.lex-ord
and OAlist-prod-ord-ntm = oa-ntm.prod-ord ..

lemmas OAlist-lookup-ntm-single = oa-ntm.lookup-oalist-of-list-single[folded oal-
ist-of-list-ntm-def]

end

14 Computable Term Orders
theory Term-Order

imports OAlist-Poly-Mapping HOL−Library.Product-Lexorder
begin

367

14.1 Type Class nat
class nat = zero + plus + minus + order + equal +

fixes rep-nat :: ′a ⇒ nat
and abs-nat :: nat ⇒ ′a

assumes rep-inverse [simp]: abs-nat (rep-nat x) = x
and abs-inverse [simp]: rep-nat (abs-nat n) = n
and abs-zero [simp]: abs-nat 0 = 0
and abs-plus: abs-nat m + abs-nat n = abs-nat (m + n)
and abs-minus: abs-nat m − abs-nat n = abs-nat (m − n)
and abs-ord: m ≤ n =⇒ abs-nat m ≤ abs-nat n

begin

lemma rep-inj:
assumes rep-nat x = rep-nat y
shows x = y

proof −
have abs-nat (rep-nat x) = abs-nat (rep-nat y) by (simp only: assms)
thus ?thesis by (simp only: rep-inverse)

qed

corollary rep-eq-iff : (rep-nat x = rep-nat y) ←→ (x = y)
by (auto elim: rep-inj)

lemma abs-inj:
assumes abs-nat m = abs-nat n
shows m = n

proof −
have rep-nat (abs-nat m) = rep-nat (abs-nat n) by (simp only: assms)
thus ?thesis by (simp only: abs-inverse)

qed

corollary abs-eq-iff : (abs-nat m = abs-nat n) ←→ (m = n)
by (auto elim: abs-inj)

lemma rep-zero [simp]: rep-nat 0 = 0
using abs-inverse abs-zero by fastforce

lemma rep-zero-iff : (rep-nat x = 0) ←→ (x = 0)
using rep-eq-iff by fastforce

lemma plus-eq: x + y = abs-nat (rep-nat x + rep-nat y)
by (metis abs-plus rep-inverse)

lemma rep-plus: rep-nat (x + y) = rep-nat x + rep-nat y
by (simp add: plus-eq)

lemma minus-eq: x − y = abs-nat (rep-nat x − rep-nat y)
by (metis abs-minus rep-inverse)

368

lemma rep-minus: rep-nat (x − y) = rep-nat x − rep-nat y
by (simp add: minus-eq)

lemma ord-iff :
x ≤ y ←→ rep-nat x ≤ rep-nat y (is ?thesis1)
x < y ←→ rep-nat x < rep-nat y (is ?thesis2)

proof −
show ?thesis1
proof

assume x ≤ y
show rep-nat x ≤ rep-nat y
proof (rule ccontr)

assume ¬ rep-nat x ≤ rep-nat y
hence rep-nat y ≤ rep-nat x and rep-nat x 6= rep-nat y by simp-all

from this(1) have abs-nat (rep-nat y) ≤ abs-nat (rep-nat x) by (rule abs-ord)
hence y ≤ x by (simp only: rep-inverse)
moreover from ‹rep-nat x 6= rep-nat y› have y 6= x using rep-inj by auto
ultimately have y < x by simp
with ‹x ≤ y› show False by simp

qed
next

assume rep-nat x ≤ rep-nat y
hence abs-nat (rep-nat x) ≤ abs-nat (rep-nat y) by (rule abs-ord)
thus x ≤ y by (simp only: rep-inverse)

qed
thus ?thesis2 using rep-inj[of x y] by (auto simp: less-le Nat.nat-less-le)

qed

lemma ex-iff-abs: (∃ x:: ′a. P x) ←→ (∃n::nat. P (abs-nat n))
by (metis rep-inverse)

lemma ex-iff-abs ′: (∃ x<abs-nat m. P x) ←→ (∃n::nat<m. P (abs-nat n))
by (metis abs-inverse rep-inverse ord-iff (2))

lemma all-iff-abs: (∀ x:: ′a. P x) ←→ (∀n::nat. P (abs-nat n))
by (metis rep-inverse)

lemma all-iff-abs ′: (∀ x<abs-nat m. P x) ←→ (∀n::nat<m. P (abs-nat n))
by (metis abs-inverse rep-inverse ord-iff (2))

subclass linorder by (standard, auto simp: ord-iff rep-inj)

lemma comparator-of-rep [simp]: comparator-of (rep-nat x) (rep-nat y) = com-
parator-of x y

by (simp add: comparator-of-def linorder-class.comparator-of-def ord-iff rep-inj)

subclass wellorder
proof

fix P:: ′a ⇒ bool and a:: ′a

369

let ?P = λn::nat. P (abs-nat n)
assume a:

∧
x. (

∧
y. y < x =⇒ P y) =⇒ P x

have P (abs-nat (rep-nat a))
proof (rule less-induct[of - rep-nat a])

fix n::nat
assume b:

∧
m. m < n =⇒ ?P m

show ?P n
proof (rule a)

fix y
assume y < abs-nat n
hence rep-nat y < n by (simp only: ord-iff abs-inverse)
hence ?P (rep-nat y) by (rule b)
thus P y by (simp only: rep-inverse)

qed
qed
thus P a by (simp only: rep-inverse)

qed

subclass comm-monoid-add by (standard, auto simp: plus-eq intro: arg-cong)

lemma sum-rep: sum (rep-nat ◦ f) A = rep-nat (sum f A) for f :: ′b ⇒ ′a and
A :: ′b set
proof (induct A rule: infinite-finite-induct)

case (infinite A)
thus ?case by simp

next
case empty
show ?case by simp

next
case (insert a A)
from insert(1 , 2) show ?case by (simp del: comp-apply add: insert(3) rep-plus,

simp)
qed

subclass ordered-comm-monoid-add by (standard, simp add: ord-iff plus-eq)

subclass countable by intro-classes (intro exI [of - rep-nat] injI , elim rep-inj)

subclass cancel-comm-monoid-add
apply standard
subgoal by (simp add: minus-eq rep-plus)
subgoal by (simp add: minus-eq rep-plus)
done

subclass add-wellorder
apply standard
subgoal by (simp add: ord-iff rep-plus)
subgoal unfolding ord-iff by (drule le-imp-add, metis abs-plus rep-inverse)
subgoal by (simp add: ord-iff)

370

done

end

lemma the-min-eq-zero: the-min = (0 :: ′a::{the-min,nat})
proof −

have the-min ≤ (0 :: ′a) by (fact the-min-min)
hence rep-nat (the-min:: ′a) ≤ rep-nat (0 :: ′a) by (simp only: ord-iff)
also have ... = 0 by simp
finally have rep-nat (the-min:: ′a) = 0 by simp
thus ?thesis by (simp only: rep-zero-iff)

qed

instantiation nat :: nat
begin

definition rep-nat-nat :: nat ⇒ nat where rep-nat-nat-def [code-unfold]: rep-nat-nat
= (λx. x)
definition abs-nat-nat :: nat ⇒ nat where abs-nat-nat-def [code-unfold]: abs-nat-nat
= (λx. x)

instance by (standard, simp-all add: rep-nat-nat-def abs-nat-nat-def)

end

instantiation natural :: nat
begin

definition rep-nat-natural :: natural ⇒ nat
where rep-nat-natural-def [code-unfold]: rep-nat-natural = nat-of-natural

definition abs-nat-natural :: nat ⇒ natural
where abs-nat-natural-def [code-unfold]: abs-nat-natural = natural-of-nat

instance by (standard, simp-all add: rep-nat-natural-def abs-nat-natural-def , metis
minus-natural.rep-eq nat-of-natural-of-nat of-nat-of-natural)

end

14.2 Term Orders
14.2.1 Type Classes
class nat-pp-compare = linorder + zero + plus +

fixes rep-nat-pp :: ′a ⇒ (nat, nat) pp
and abs-nat-pp :: (nat, nat) pp ⇒ ′a
and lex-comp ′ :: ′a comparator
and deg ′ :: ′a ⇒ nat

assumes rep-nat-pp-inverse [simp]: abs-nat-pp (rep-nat-pp x) = x
and abs-nat-pp-inverse [simp]: rep-nat-pp (abs-nat-pp t) = t
and lex-comp ′: lex-comp ′ x y = comp-of-ord lex-pp (rep-nat-pp x) (rep-nat-pp

371

y)
and deg ′: deg ′ x = deg-pp (rep-nat-pp x)
and le-pp: rep-nat-pp x ≤ rep-nat-pp y =⇒ x ≤ y
and zero-pp: rep-nat-pp 0 = 0
and plus-pp: rep-nat-pp (x + y) = rep-nat-pp x + rep-nat-pp y

begin

lemma less-pp:
assumes rep-nat-pp x < rep-nat-pp y
shows x < y

proof −
from assms have 1 : rep-nat-pp x ≤ rep-nat-pp y and 2 : rep-nat-pp x 6= rep-nat-pp

y by simp-all
from 1 have x ≤ y by (rule le-pp)
moreover from 2 have x 6= y by auto
ultimately show ?thesis by simp

qed

lemma rep-nat-pp-inj:
assumes rep-nat-pp x = rep-nat-pp y
shows x = y

proof −
have abs-nat-pp (rep-nat-pp x) = abs-nat-pp (rep-nat-pp y) by (simp only: assms)
thus ?thesis by simp

qed

lemma lex-comp ′-EqD:
assumes lex-comp ′ x y = Eq
shows x = y

proof (rule rep-nat-pp-inj)
from assms show rep-nat-pp x = rep-nat-pp y by (simp add: lex-comp ′ comp-of-ord-def

split: if-split-asm)
qed

lemma lex-comp ′-valE :
assumes lex-comp ′ s t 6= Eq
obtains x where x ∈ keys-pp (rep-nat-pp s) ∪ keys-pp (rep-nat-pp t)

and comparator-of (lookup-pp (rep-nat-pp s) x) (lookup-pp (rep-nat-pp t) x) =
lex-comp ′ s t

and
∧

y. y < x =⇒ lookup-pp (rep-nat-pp s) y = lookup-pp (rep-nat-pp t) y
proof (cases lex-comp ′ s t)

case Eq
with assms show ?thesis ..

next
case Lt
hence rep-nat-pp s 6= rep-nat-pp t and lex-pp (rep-nat-pp s) (rep-nat-pp t)

by (auto simp: lex-comp ′ comp-of-ord-def split: if-split-asm)
hence ∃ x. lookup-pp (rep-nat-pp s) x < lookup-pp (rep-nat-pp t) x ∧

(∀ y<x. lookup-pp (rep-nat-pp s) y = lookup-pp (rep-nat-pp t) y)

372

by (simp add: lex-pp-alt)
then obtain x where 1 : lookup-pp (rep-nat-pp s) x < lookup-pp (rep-nat-pp t)

x
and 2 :

∧
y. y < x =⇒ lookup-pp (rep-nat-pp s) y = lookup-pp (rep-nat-pp t) y

by blast
show ?thesis
proof

show x ∈ keys-pp (rep-nat-pp s) ∪ keys-pp (rep-nat-pp t)
proof (rule ccontr)

assume x /∈ keys-pp (rep-nat-pp s) ∪ keys-pp (rep-nat-pp t)
with 1 show False by (simp add: keys-pp-iff)

qed
next

show comparator-of (lookup-pp (rep-nat-pp s) x) (lookup-pp (rep-nat-pp t) x)
= lex-comp ′ s t

by (simp add: linorder-class.comparator-of-def 1 Lt)
qed (fact 2)

next
case Gt
hence ¬ lex-pp (rep-nat-pp s) (rep-nat-pp t)

by (auto simp: lex-comp ′ comp-of-ord-def split: if-split-asm)
hence lex-pp (rep-nat-pp t) (rep-nat-pp s) by (rule lex-pp-lin ′)
moreover have rep-nat-pp t 6= rep-nat-pp s
proof

assume rep-nat-pp t = rep-nat-pp s
moreover from this have lex-pp (rep-nat-pp s) (rep-nat-pp t) by (simp add:

lex-pp-refl)
ultimately have lex-comp ′ s t = Eq by (simp add: lex-comp ′ comp-of-ord-def)
with Gt show False by simp

qed
ultimately have ∃ x. lookup-pp (rep-nat-pp t) x < lookup-pp (rep-nat-pp s) x ∧

(∀ y<x. lookup-pp (rep-nat-pp t) y = lookup-pp (rep-nat-pp s) y)
by (simp add: lex-pp-alt)

then obtain x where 1 : lookup-pp (rep-nat-pp t) x < lookup-pp (rep-nat-pp s)
x

and 2 :
∧

y. y < x =⇒ lookup-pp (rep-nat-pp t) y = lookup-pp (rep-nat-pp s) y
by blast

show ?thesis
proof

show x ∈ keys-pp (rep-nat-pp s) ∪ keys-pp (rep-nat-pp t)
proof (rule ccontr)

assume x /∈ keys-pp (rep-nat-pp s) ∪ keys-pp (rep-nat-pp t)
with 1 show False by (simp add: keys-pp-iff)

qed
next

from 1 have ¬ lookup-pp (rep-nat-pp s) x < lookup-pp (rep-nat-pp t) x
and lookup-pp (rep-nat-pp s) x 6= lookup-pp (rep-nat-pp t) x by simp-all

thus comparator-of (lookup-pp (rep-nat-pp s) x) (lookup-pp (rep-nat-pp t) x) =
lex-comp ′ s t

373

by (simp add: linorder-class.comparator-of-def Gt)
qed (simp add: 2)

qed

end

class nat-term-compare = linorder + nat-term +
fixes is-scalar :: ′a itself ⇒ bool

and lex-comp :: ′a comparator
and deg-comp :: ′a comparator ⇒ ′a comparator
and pot-comp :: ′a comparator ⇒ ′a comparator

assumes zero-component: ∃ x. snd (rep-nat-term x) = 0
and is-scalar : is-scalar = (λ-. ∀ x. snd (rep-nat-term x) = 0)

and lex-comp: lex-comp = lex-comp-aux — For being able to implement lex-comp
efficiently.

and deg-comp: deg-comp cmp = (λx y. case comparator-of (deg-pp (fst (rep-nat-term
x))) (deg-pp (fst (rep-nat-term y))) of Eq ⇒ cmp x y | val ⇒ val)

and pot-comp: pot-comp cmp = (λx y. case comparator-of (snd (rep-nat-term
x)) (snd (rep-nat-term y)) of Eq ⇒ cmp x y | val ⇒ val)

and le-term: rep-nat-term x ≤ rep-nat-term y =⇒ x ≤ y
begin

There is no need to add something like top-comp for TOP orders to class
nat-term-compare, because by default all comparators should first compare
power-products and then positions. lex-comp obviously does.
lemma less-term:

assumes rep-nat-term x < rep-nat-term y
shows x < y

proof −
from assms have 1 : rep-nat-term x ≤ rep-nat-term y and 2 : rep-nat-term x 6=

rep-nat-term y by simp-all
from 1 have x ≤ y by (rule le-term)
moreover from 2 have x 6= y by auto
ultimately show ?thesis by simp

qed

lemma lex-comp-alt: lex-comp = (comparator-of :: ′a comparator)
proof −

from lex-pp-antisym have as: antisymp lex-pp by (rule antisympI)
interpret lex: comparator comp-of-ord (lex-pp::(nat, nat) pp ⇒ -)

unfolding comp-of-ord-eq-comp-of-ords[OF as]
by (rule comp-of-ords, unfold-locales,

auto simp: lex-pp-refl intro: lex-pp-trans lex-pp-lin ′ elim!: lex-pp-antisym)

have 1 : x = y if fst (rep-nat-term x) = fst (rep-nat-term y)
and snd (rep-nat-term x) = snd (rep-nat-term y) for x y

by (rule rep-nat-term-inj, rule prod-eqI , fact+)
have 2 : x < y if fst (rep-nat-term x) = fst (rep-nat-term y)

and snd (rep-nat-term x) < snd (rep-nat-term y) for x y

374

by (rule less-term, simp add: less-prod-def that)
have 3 : False if fst (rep-nat-term x) = fst (rep-nat-term y)

and ¬ snd (rep-nat-term x) < snd (rep-nat-term y) and x < y for x
y

proof −
from that(2) have a: snd (rep-nat-term y) ≤ snd (rep-nat-term x) by simp
have y ≤ x by (rule le-term, simp add: less-eq-prod-def that(1) a)
also have ... < y by fact
finally show False ..

qed
have 4 : x < y if fst (rep-nat-term x) 6= fst (rep-nat-term y)

and lex-pp (fst (rep-nat-term x)) (fst (rep-nat-term y)) for x y
proof −

from that(2) have fst (rep-nat-term x) ≤ fst (rep-nat-term y) by (simp only:
less-eq-pp-def)

with that(1) have fst (rep-nat-term x) < fst (rep-nat-term y) by simp
hence rep-nat-term x < rep-nat-term y by (simp add: less-prod-def)
thus ?thesis by (rule less-term)

qed
have 5 : False if fst (rep-nat-term x) 6= fst (rep-nat-term y)

and ¬ lex-pp (fst (rep-nat-term x)) (fst (rep-nat-term y)) and x < y
for x y

proof −
from that(2) have a: lex-pp (fst (rep-nat-term y)) (fst (rep-nat-term x)) by

(rule lex-pp-lin ′)
with that(1)[symmetric] have y < x by (rule 4)
also have ... < y by fact
finally show False ..

qed

show ?thesis
by (intro ext, simp add: lex-comp lex-comp-aux-def comparator-of-def linorder-class.comparator-of-def

lex.eq split: order .splits,
auto simp: lex-pp-refl comp-of-ord-def elim: 1 2 3 4 5)

qed

lemma full-component-zeroE : obtains x where rep-nat-term x = (t, 0)
proof −

from zero-component obtain x ′ where snd (rep-nat-term x ′) = 0 ..
then obtain x where rep-nat-term x = (t, 0) by (rule full-componentE)
thus ?thesis ..

qed

end

lemma comparator-lex-comp: comparator lex-comp
unfolding lex-comp by (fact comparator-lex-comp-aux)

375

lemma nat-term-comp-lex-comp: nat-term-comp lex-comp
unfolding lex-comp by (fact nat-term-comp-lex-comp-aux)

lemma comparator-deg-comp:
assumes comparator cmp
shows comparator (deg-comp cmp)
unfolding deg-comp using comparator-of assms by (rule comparator-lexicographic)

lemma comparator-pot-comp:
assumes comparator cmp
shows comparator (pot-comp cmp)
unfolding pot-comp using comparator-of assms by (rule comparator-lexicographic)

lemma deg-comp-zero-min:
assumes comparator cmp and snd (rep-nat-term u) = snd (rep-nat-term v) and

fst (rep-nat-term u) = 0
shows deg-comp cmp u v 6= Gt

proof (simp add: deg-comp assms(3) comparator-of-def split: order .split, intro
impI)

assume fst (rep-nat-term v) = 0
with assms(3) have fst (rep-nat-term u) = fst (rep-nat-term v) by simp
hence rep-nat-term u = rep-nat-term v using assms(2) by (rule prod-eqI)
hence u = v by (rule rep-nat-term-inj)
from assms(1) interpret c: comparator cmp .
show cmp u v 6= Gt by (simp add: ‹u = v›)

qed

lemma deg-comp-pos:
assumes cmp u v = Lt and fst (rep-nat-term u) = fst (rep-nat-term v)
shows deg-comp cmp u v = Lt
by (simp add: deg-comp assms split: order .split)

lemma deg-comp-monotone:
assumes cmp u v = Lt =⇒ cmp (splus t u) (splus t v) = Lt and deg-comp cmp

u v = Lt
shows deg-comp cmp (splus t u) (splus t v) = Lt
using assms(2) by (auto simp: deg-comp splus-term pprod.splus-def compara-

tor-of-def deg-pp-plus
split: order .splits if-splits intro: assms(1))

lemma pot-comp-zero-min:
assumes cmp u v 6= Gt and snd (rep-nat-term u) = snd (rep-nat-term v)
shows pot-comp cmp u v 6= Gt
by (simp add: pot-comp comparator-of-def assms split: order .split)

lemma pot-comp-pos:
assumes snd (rep-nat-term u) < snd (rep-nat-term v)
shows pot-comp cmp u v = Lt

376

by (simp add: pot-comp comparator-of-def assms split: order .split)

lemma pot-comp-monotone:
assumes cmp u v = Lt =⇒ cmp (splus t u) (splus t v) = Lt and pot-comp cmp

u v = Lt
shows pot-comp cmp (splus t u) (splus t v) = Lt
using assms(2) by (auto simp: pot-comp splus-term pprod.splus-def compara-

tor-of-def deg-pp-plus
split: order .splits if-splits intro: assms(1))

lemma deg-comp-cong:
assumes deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term v)) =⇒ to1 u

v = to2 u v
shows deg-comp to1 u v = deg-comp to2 u v
using assms by (simp add: deg-comp comparator-of-def split: order .split)

lemma pot-comp-cong:
assumes snd (rep-nat-term u) = snd (rep-nat-term v) =⇒ to1 u v = to2 u v
shows pot-comp to1 u v = pot-comp to2 u v
using assms by (simp add: pot-comp comparator-of-def split: order .split)

instantiation pp :: (nat, nat) nat-pp-compare
begin

definition rep-nat-pp-pp :: (′a, ′b) pp ⇒ (nat, nat) pp
where rep-nat-pp-pp-def [code del]: rep-nat-pp-pp x = pp-of-fun (λn::nat. rep-nat

(lookup-pp x (abs-nat n)))

definition abs-nat-pp-pp :: (nat, nat) pp ⇒ (′a, ′b) pp
where abs-nat-pp-pp-def [code del]: abs-nat-pp-pp t = pp-of-fun (λn:: ′a. abs-nat

(lookup-pp t (rep-nat n)))

definition lex-comp ′-pp :: (′a, ′b) pp comparator
where lex-comp ′-pp-def [code del]: lex-comp ′-pp = comp-of-ord lex-pp

definition deg ′-pp :: (′a, ′b) pp ⇒ nat
where deg ′-pp x = rep-nat (deg-pp x)

lemma lookup-rep-nat-pp-pp:
lookup-pp (rep-nat-pp t) = (λn::nat. rep-nat (lookup-pp t (abs-nat n)))
unfolding rep-nat-pp-pp-def

proof (rule lookup-pp-of-fun)
have {n. lookup-pp t (abs-nat n) 6= 0} ⊆ rep-nat ‘ {x. lookup-pp t x 6= 0}
proof

fix n
have n = rep-nat (abs-nat n) by (simp only: nat-class.abs-inverse)
assume n ∈ {n. lookup-pp t (abs-nat n) 6= 0}
hence abs-nat n ∈ {x. lookup-pp t x 6= 0} by simp
with ‹n = rep-nat (abs-nat n)› show n ∈ rep-nat ‘ {x. lookup-pp t x 6= 0} ..

377

qed
also have finite ... by (rule finite-imageI , transfer , simp)
also (finite-subset) have {n. lookup-pp t (abs-nat n) 6= 0} = {n. rep-nat (lookup-pp

t (abs-nat n)) 6= 0}
by (metis rep-inj rep-zero)

finally show finite {x. rep-nat (lookup-pp t (abs-nat x)) 6= 0} .
qed

lemma lookup-abs-nat-pp-pp:
lookup-pp (abs-nat-pp t) = (λn:: ′a. abs-nat (lookup-pp t (rep-nat n)))
unfolding abs-nat-pp-pp-def

proof (rule lookup-pp-of-fun)
have {n:: ′a. lookup-pp t (rep-nat n) 6= 0} ⊆ abs-nat ‘ {x. lookup-pp t x 6= 0}
proof

fix n :: ′a
have n = abs-nat (rep-nat n) by (simp only: nat-class.rep-inverse)
assume n ∈ {n. lookup-pp t (rep-nat n) 6= 0}
hence rep-nat n ∈ {x. lookup-pp t x 6= 0} by simp
with ‹n = abs-nat (rep-nat n)› show n ∈ abs-nat ‘ {x. lookup-pp t x 6= 0} ..

qed
also have finite ... by (rule finite-imageI , transfer , simp)
also (finite-subset) have {n:: ′a. lookup-pp t (rep-nat n) 6= 0} = {n. abs-nat

(lookup-pp t (rep-nat n)) 6= 0}
by (metis abs-inverse abs-zero)

finally show finite {n:: ′a. abs-nat (lookup-pp t (rep-nat n)) 6= 0} .
qed

lemma keys-rep-nat-pp-pp: keys-pp (rep-nat-pp t) = rep-nat ‘ keys-pp t
by (rule set-eqI ,

simp add: keys-pp-iff lookup-rep-nat-pp-pp image-iff Bex-def ex-iff-abs[where
′a= ′a] rep-zero-iff del: neq0-conv)

lemma rep-nat-pp-pp-inverse: abs-nat-pp (rep-nat-pp x) = x for x::(′a, ′b) pp
by (rule pp-eqI , simp add: lookup-abs-nat-pp-pp lookup-rep-nat-pp-pp)

lemma abs-nat-pp-pp-inverse: rep-nat-pp ((abs-nat-pp t)::(′a, ′b) pp) = t
by (rule pp-eqI , simp add: lookup-abs-nat-pp-pp lookup-rep-nat-pp-pp)

corollary rep-nat-pp-pp-inj:
fixes x y :: (′a, ′b) pp
assumes rep-nat-pp x = rep-nat-pp y
shows x = y
by (metis (no-types) rep-nat-pp-pp-inverse assms)

corollary rep-nat-pp-pp-eq-iff : (rep-nat-pp x = rep-nat-pp y) ←→ (x = y) for x y
:: (′a, ′b) pp

by (auto elim: rep-nat-pp-pp-inj)

lemma lex-rep-nat-pp: lex-pp (rep-nat-pp x) (rep-nat-pp y) ←→ lex-pp x y

378

by (simp add: lex-pp-alt rep-nat-pp-pp-eq-iff lookup-rep-nat-pp-pp rep-eq-iff
ord-iff [symmetric] ex-iff-abs[where ′a= ′a] all-iff-abs ′)

corollary lex-comp ′-pp: lex-comp ′ x y = comp-of-ord lex-pp (rep-nat-pp x) (rep-nat-pp
y) for x y :: (′a, ′b) pp
by (simp add: lex-comp ′-pp-def comp-of-ord-def rep-nat-pp-pp-eq-iff lex-rep-nat-pp)

corollary le-pp-pp: rep-nat-pp x ≤ rep-nat-pp y =⇒ x ≤ y for x y :: (′a, ′b) pp
by (simp only: less-eq-pp-def lex-rep-nat-pp)

lemma deg-rep-nat-pp: deg-pp (rep-nat-pp t) = rep-nat (deg-pp t) for t :: (′a, ′b)
pp
proof −

have keys-pp (rep-nat-pp t) = rep-nat ‘ keys-pp t
by (rule set-eqI , simp add: keys-pp-iff image-iff lookup-rep-nat-pp-pp Bex-def

ex-iff-abs[where ′a= ′a] rep-zero-iff del: neq0-conv)
hence deg-pp (rep-nat-pp t) = sum (lookup-pp (rep-nat-pp t)) (rep-nat ‘ keys-pp

t)
by (simp add: deg-pp-alt)

also have ... = sum (lookup-pp (rep-nat-pp t) ◦ rep-nat) (keys-pp t)
by (rule sum.reindex, rule inj-onI , elim rep-inj)

also have ... = sum (rep-nat ◦ (lookup-pp t)) (keys-pp t)
by (simp add: lookup-rep-nat-pp-pp)

also have ... = rep-nat (deg-pp t) by (simp only: deg-pp-alt sum-rep)
finally show ?thesis .

qed

corollary deg ′-pp: deg ′ t = deg-pp (rep-nat-pp t) for t :: (′a, ′b) pp
by (simp add: deg ′-pp-def deg-rep-nat-pp)

lemma zero-pp-pp: rep-nat-pp (0 ::(′a, ′b) pp) = 0
by (rule pp-eqI , simp add: lookup-rep-nat-pp-pp)

lemma plus-pp-pp: rep-nat-pp (x + y) = rep-nat-pp x + rep-nat-pp y
for x y :: (′a, ′b) pp
by (rule pp-eqI , simp add: lookup-rep-nat-pp-pp lookup-plus-pp rep-plus)

instance
apply intro-classes
subgoal by (fact rep-nat-pp-pp-inverse)
subgoal by (fact abs-nat-pp-pp-inverse)
subgoal by (fact lex-comp ′-pp)
subgoal by (fact deg ′-pp)
subgoal by (rule le-pp-pp)
subgoal by (fact zero-pp-pp)
subgoal by (fact plus-pp-pp)
done

end

379

instantiation pp :: (nat, nat) nat-term
begin

definition rep-nat-term-pp :: (′a, ′b) pp ⇒ (nat, nat) pp × nat
where rep-nat-term-pp-def [code del]: rep-nat-term-pp t = (rep-nat-pp t, 0)

definition splus-pp :: (′a, ′b) pp ⇒ (′a, ′b) pp ⇒ (′a, ′b) pp
where splus-pp-def [code del]: splus-pp = (+)

instance proof
fix x y :: (′a, ′b) pp
assume rep-nat-term x = rep-nat-term y
hence rep-nat-pp x = rep-nat-pp y by (simp add: rep-nat-term-pp-def)
thus x = y by (rule rep-nat-pp-pp-inj)

next
fix x::(′a, ′b) pp and i t
assume snd (rep-nat-term x) = i
hence i = 0 by (simp add: rep-nat-term-pp-def)
show ∃ y::(′a, ′b) pp. rep-nat-term y = (t, i) unfolding ‹i = 0 ›
proof
show rep-nat-term ((abs-nat-pp t)::(′a, ′b) pp) = (t, 0) by (simp add: rep-nat-term-pp-def)

qed
next

fix x y :: (′a, ′b) pp
show rep-nat-term (splus x y) = pprod.splus (fst (rep-nat-term x)) (rep-nat-term

y)
by (simp add: splus-pp-def rep-nat-term-pp-def pprod.splus-def plus-pp-pp)

qed

end

instantiation pp :: (nat, nat) nat-term-compare
begin

definition is-scalar-pp :: (′a, ′b) pp itself ⇒ bool
where is-scalar-pp-def [code-unfold]: is-scalar-pp = (λ-. True)

definition lex-comp-pp :: (′a, ′b) pp comparator
where lex-comp-pp-def [code-unfold]: lex-comp-pp = lex-comp ′

definition deg-comp-pp :: (′a, ′b) pp comparator ⇒ (′a, ′b) pp comparator
where deg-comp-pp-def : deg-comp-pp cmp = (λx y. case comparator-of (deg-pp

x) (deg-pp y) of Eq ⇒ cmp x y | val ⇒ val)

definition pot-comp-pp :: (′a, ′b) pp comparator ⇒ (′a, ′b) pp comparator
where pot-comp-pp-def [code-unfold]: pot-comp-pp = (λcmp. cmp)

instance proof

380

show ∃ x::(′a, ′b) pp. snd (rep-nat-term x) = 0
proof
show snd (rep-nat-term (0 ::(′a, ′b) pp)) = 0 by (simp add: rep-nat-term-pp-def)

qed
next

show is-scalar = (λ-::(′a, ′b) pp itself . ∀ x::(′a, ′b) pp. snd (rep-nat-term x) =
0)

by (simp add: is-scalar-pp-def rep-nat-term-pp-def)
next

show lex-comp = (lex-comp-aux::(′a, ′b) pp comparator)
by (auto simp: lex-comp-pp-def lex-comp-aux-def rep-nat-term-pp-def lex-comp ′-pp

split: order .split intro!: ext)
next

fix cmp :: (′a, ′b) pp comparator
show deg-comp cmp =

(λx y. case comparator-of (deg-pp (fst (rep-nat-term x))) (deg-pp (fst
(rep-nat-term y))) of Eq ⇒ cmp x y

| Lt ⇒ Lt | Gt ⇒ Gt)
by (simp add: rep-nat-term-pp-def deg-comp-pp-def deg-rep-nat-pp compara-

tor-of-rep)
next

fix cmp :: (′a, ′b) pp comparator
show pot-comp cmp =

(λx y. case comparator-of (snd (rep-nat-term x)) (snd (rep-nat-term y)) of
Eq ⇒ cmp x y | Lt ⇒ Lt | Gt ⇒ Gt)

by (simp add: rep-nat-term-pp-def pot-comp-pp-def)
next

fix x y :: (′a, ′b) pp
assume rep-nat-term x ≤ rep-nat-term y
hence rep-nat-pp x ≤ rep-nat-pp y by (auto simp: rep-nat-term-pp-def)
thus x ≤ y by (rule le-pp-pp)

qed

end

instance pp :: (nat, nat) nat-pp-term
proof

show rep-nat-term (0 ::(′a, ′b) pp) = (0 , 0)
by (simp add: rep-nat-term-pp-def) (metis deg-pp-eq-0-iff deg-rep-nat-pp rep-zero)

next
show splus = ((+)::(′a, ′b) pp ⇒ -) by (simp add: splus-pp-def)

qed

instantiation prod :: ({nat-pp-compare, comm-powerprod}, nat) nat-term
begin

definition rep-nat-term-prod :: (′a × ′b) ⇒ ((nat, nat) pp × nat)
where rep-nat-term-prod-def [code del]: rep-nat-term-prod u = (rep-nat-pp (fst

u), rep-nat (snd u))

381

definition splus-prod :: (′a × ′b) ⇒ (′a × ′b) ⇒ (′a × ′b)
where splus-prod-def [code del]: splus-prod t u = pprod.splus (fst t) u

instance proof
fix x y :: ′a × ′b
assume rep-nat-term x = rep-nat-term y
hence 1 : rep-nat-pp (fst x) = rep-nat-pp (fst y) and 2 : rep-nat (snd x) = rep-nat

(snd y)
by (simp-all add: rep-nat-term-prod-def)

from 1 have fst x = fst y by (rule rep-nat-pp-inj)
moreover from 2 have snd x = snd y by (rule rep-inj)
ultimately show x = y by (rule prod-eqI)

next
fix i t
show ∃ y:: ′a × ′b. rep-nat-term y = (t, i)
proof
show rep-nat-term (abs-nat-pp t, abs-nat i) = (t, i) by (simp add: rep-nat-term-prod-def)

qed
next

fix x y :: ′a × ′b
show rep-nat-term (splus x y) = pprod.splus (fst (rep-nat-term x)) (rep-nat-term

y)
by (simp add: splus-prod-def rep-nat-term-prod-def pprod.splus-def plus-pp)

qed

end

instantiation prod :: ({nat-pp-compare, comm-powerprod}, nat) nat-term-compare
begin

definition is-scalar-prod :: (′a × ′b) itself ⇒ bool
where is-scalar-prod-def [code-unfold]: is-scalar-prod = (λ-. False)

definition lex-comp-prod :: (′a × ′b) comparator
where lex-comp-prod = (λu v. case lex-comp ′ (fst u) (fst v) of Eq ⇒ comparator-of

(snd u) (snd v) | val ⇒ val)

definition deg-comp-prod :: (′a × ′b) comparator ⇒ (′a × ′b) comparator
where deg-comp-prod-def : deg-comp-prod cmp = (λx y. case comparator-of (deg ′

(fst x)) (deg ′ (fst y)) of Eq ⇒ cmp x y | val ⇒ val)

definition pot-comp-prod :: (′a × ′b) comparator ⇒ (′a × ′b) comparator
where pot-comp-prod cmp = (λu v. case comparator-of (snd u) (snd v) of Eq ⇒

cmp u v | val ⇒ val)

instance proof
show ∃ x:: ′a × ′b. snd (rep-nat-term x) = 0
proof

382

show snd (rep-nat-term (abs-nat-pp 0 , 0)) = 0 by (simp add: rep-nat-term-prod-def)
qed

next
have ¬ (∀ a. rep-nat (a:: ′b) = 0)
proof

assume ∀ a. rep-nat (a:: ′b) = 0
hence rep-nat ((abs-nat 1):: ′b) = 0 by blast
hence ((abs-nat 1):: ′b) = 0 by (simp only: rep-zero-iff)
hence (1 ::nat) = 0 by (metis abs-inj abs-zero)
thus False by simp

qed
thus is-scalar = (λ-::(′a × ′b) itself . ∀ x. snd (rep-nat-term (x:: ′a × ′b)) = 0)

by (auto simp add: is-scalar-prod-def rep-nat-term-prod-def intro!: ext)
next

show lex-comp = (lex-comp-aux::(′a × ′b) comparator)
by (auto simp: lex-comp-prod-def lex-comp-aux-def rep-nat-term-prod-def lex-comp ′

comparator-of-rep split: order .split intro!: ext)
next

fix cmp :: (′a × ′b) comparator
show deg-comp cmp =

(λx y. case comparator-of (deg-pp (fst (rep-nat-term x))) (deg-pp (fst
(rep-nat-term y))) of Eq ⇒ cmp x y

| Lt ⇒ Lt | Gt ⇒ Gt)
by (simp add: rep-nat-term-prod-def deg-comp-prod-def deg ′)

next
fix cmp :: (′a × ′b) comparator
show pot-comp cmp =

(λx y. case comparator-of (snd (rep-nat-term x)) (snd (rep-nat-term y)) of
Eq ⇒ cmp x y | Lt ⇒ Lt | Gt ⇒ Gt)

by (simp add: rep-nat-term-prod-def pot-comp-prod-def comparator-of-rep)
next

fix x y :: ′a × ′b
assume rep-nat-term x ≤ rep-nat-term y
hence rep-nat-pp (fst x) < rep-nat-pp (fst y) ∨ (rep-nat-pp (fst x) ≤ rep-nat-pp

(fst y) ∧ rep-nat (snd x) ≤ rep-nat (snd y))
by (simp add: rep-nat-term-prod-def)

thus x ≤ y by (auto simp: less-eq-prod-def ord-iff [symmetric] intro: le-pp less-pp)
qed

end

lemmas [code del] = deg-pp.rep-eq plus-pp.abs-eq minus-pp.abs-eq

lemma rep-nat-pp-nat [code-unfold]: (rep-nat-pp::(nat, nat) pp ⇒ (nat, nat) pp)
= (λx. x)
by (intro ext pp-eqI , simp add: lookup-rep-nat-pp-pp abs-nat-nat-def rep-nat-nat-def)

383

14.2.2 LEX, DRLEX, DEG and POT
definition LEX :: ′a::nat-term-compare nat-term-order where LEX = Abs-nat-term-order
lex-comp

definition DRLEX :: ′a::nat-term-compare nat-term-order
where DRLEX = Abs-nat-term-order (deg-comp (pot-comp (λx y. lex-comp y

x)))

definition DEG :: ′a::nat-term-compare nat-term-order ⇒ ′a nat-term-order
where DEG to = Abs-nat-term-order (deg-comp (nat-term-compare to))

definition POT :: ′a::nat-term-compare nat-term-order ⇒ ′a nat-term-order
where POT to = Abs-nat-term-order (pot-comp (nat-term-compare to))

DRLEX must apply pot-comp, for otherwise it does not satisfy the second
condition of nat-term-comp.

Instead of DRLEX one could also introduce another unary constructor
DEGREV, analogous to DEG and POT. Then, however, proving (in)equal-
ities of the term orders gets really messy (think of DEG (POT to) = DE-
GREV (DEGREV to), for instance). So, we restrict the formalization to
DRLEX only.
abbreviation DLEX ≡ DEG LEX

code-datatype LEX DRLEX DEG POT

lemma nat-term-compare-LEX [code]: nat-term-compare LEX = lex-comp
unfolding LEX-def using comparator-lex-comp nat-term-comp-lex-comp
by (rule nat-term-compare-Abs-nat-term-order-id)

lemma nat-term-compare-DRLEX [code]: nat-term-compare DRLEX = deg-comp
(pot-comp (λx y. lex-comp y x))
proof −

have cmp: comparator (pot-comp (λx y. lex-comp y x))
by (rule comparator-pot-comp, rule comparator-converse, fact comparator-lex-comp)

show ?thesis unfolding DRLEX-def
proof (rule nat-term-compare-Abs-nat-term-order-id)

from cmp show comparator (deg-comp (pot-comp (λx y:: ′a. lex-comp y x)))
by (rule comparator-deg-comp)

next
show nat-term-comp (deg-comp (pot-comp (λx y:: ′a. lex-comp y x)))
proof (rule nat-term-compI)

fix u v :: ′a
assume snd (rep-nat-term u) = snd (rep-nat-term v) and fst (rep-nat-term

u) = 0
with cmp show deg-comp (pot-comp (λx y:: ′a. lex-comp y x)) u v 6= Gt

by (rule deg-comp-zero-min)
next

fix u v :: ′a

384

assume snd (rep-nat-term u) < snd (rep-nat-term v)
hence pot-comp (λx y. lex-comp y x) u v = Lt by (rule pot-comp-pos)
moreover assume fst (rep-nat-term u) = fst (rep-nat-term v)
ultimately show deg-comp (pot-comp (λx y. lex-comp y x)) u v = Lt by

(rule deg-comp-pos)
next

fix t u v :: ′a
have pot-comp (λx y. lex-comp y x) (splus t u) (splus t v) = Lt

if pot-comp (λx y. lex-comp y x) u v = Lt using - that
proof (rule pot-comp-monotone)

assume lex-comp v u = Lt
with nat-term-comp-lex-comp show lex-comp (splus t v) (splus t u) = Lt

by (rule nat-term-compD3)
qed
moreover assume deg-comp (pot-comp (λx y. lex-comp y x)) u v = Lt
ultimately show deg-comp (pot-comp (λx y. lex-comp y x)) (splus t u) (splus

t v) = Lt
by (rule deg-comp-monotone)

next
fix u v a b :: ′a
assume fst (rep-nat-term v) = fst (rep-nat-term b) and fst (rep-nat-term u)

= fst (rep-nat-term a)
and snd (rep-nat-term u) = snd (rep-nat-term v) and snd (rep-nat-term a)

= snd (rep-nat-term b)
moreover from comparator-lex-comp nat-term-comp-lex-comp this(1 , 2)

this(3 , 4)[symmetric]
have lex-comp v u = lex-comp b a by (rule nat-term-compD4 ′)
moreover assume deg-comp (pot-comp (λx y. lex-comp y x)) a b = Lt
ultimately show deg-comp (pot-comp (λx y. lex-comp y x)) u v = Lt

by (simp add: deg-comp pot-comp split: order .splits)
qed

qed
qed

lemma nat-term-compare-DEG [code]: nat-term-compare (DEG to) = deg-comp
(nat-term-compare to)

unfolding DEG-def
proof (rule nat-term-compare-Abs-nat-term-order-id)
from comparator-nat-term-compare show comparator (deg-comp (nat-term-compare

to))
by (rule comparator-deg-comp)

next
show nat-term-comp (deg-comp (nat-term-compare to))
proof (rule nat-term-compI)

fix u v :: ′a
assume snd (rep-nat-term u) = snd (rep-nat-term v) and fst (rep-nat-term u)

= 0
with comparator-nat-term-compare show deg-comp (nat-term-compare to) u v

6= Gt

385

by (rule deg-comp-zero-min)
next

fix u v :: ′a
assume a: fst (rep-nat-term u) = fst (rep-nat-term v) and snd (rep-nat-term

u) < snd (rep-nat-term v)
with nat-term-comp-nat-term-compare have nat-term-compare to u v = Lt by

(rule nat-term-compD2)
thus deg-comp (nat-term-compare to) u v = Lt using a by (rule deg-comp-pos)

next
fix t u v :: ′a
from nat-term-comp-nat-term-compare
have nat-term-compare to u v = Lt =⇒ nat-term-compare to (splus t u) (splus

t v) = Lt
by (rule nat-term-compD3)

moreover assume deg-comp (nat-term-compare to) u v = Lt
ultimately show deg-comp (nat-term-compare to) (splus t u) (splus t v) = Lt

by (rule deg-comp-monotone)
next

fix u v a b :: ′a
assume fst (rep-nat-term u) = fst (rep-nat-term a) and fst (rep-nat-term v)

= fst (rep-nat-term b)
and snd (rep-nat-term u) = snd (rep-nat-term v) and snd (rep-nat-term a)

= snd (rep-nat-term b)
moreover from comparator-nat-term-compare nat-term-comp-nat-term-compare

this
have nat-term-compare to u v = nat-term-compare to a b

by (rule nat-term-compD4 ′)
moreover assume deg-comp (nat-term-compare to) a b = Lt
ultimately show deg-comp (nat-term-compare to) u v = Lt

by (simp add: deg-comp split: order .splits)
qed

qed

lemma nat-term-compare-POT [code]: nat-term-compare (POT to) = pot-comp
(nat-term-compare to)

unfolding POT-def
proof (rule nat-term-compare-Abs-nat-term-order-id)
from comparator-nat-term-compare show comparator (pot-comp (nat-term-compare

to))
by (rule comparator-pot-comp)

next
show nat-term-comp (pot-comp (nat-term-compare to))
proof (rule nat-term-compI)

fix u v :: ′a
assume a: snd (rep-nat-term u) = snd (rep-nat-term v) and fst (rep-nat-term

u) = 0
with nat-term-comp-nat-term-compare have nat-term-compare to u v 6= Gt by

(rule nat-term-compD1)
thus pot-comp (nat-term-compare to) u v 6= Gt using a by (rule pot-comp-zero-min)

386

next
fix u v :: ′a
assume snd (rep-nat-term u) < snd (rep-nat-term v)
thus pot-comp (nat-term-compare to) u v = Lt by (rule pot-comp-pos)

next
fix t u v :: ′a
from nat-term-comp-nat-term-compare
have nat-term-compare to u v = Lt =⇒ nat-term-compare to (splus t u) (splus

t v) = Lt
by (rule nat-term-compD3)

moreover assume pot-comp (nat-term-compare to) u v = Lt
ultimately show pot-comp (nat-term-compare to) (splus t u) (splus t v) = Lt

by (rule pot-comp-monotone)
next

fix u v a b :: ′a
assume fst (rep-nat-term u) = fst (rep-nat-term a) and fst (rep-nat-term v)

= fst (rep-nat-term b)
and snd (rep-nat-term u) = snd (rep-nat-term v) and snd (rep-nat-term a)

= snd (rep-nat-term b)
moreover from comparator-nat-term-compare nat-term-comp-nat-term-compare

this
have nat-term-compare to u v = nat-term-compare to a b

by (rule nat-term-compD4 ′)
moreover assume pot-comp (nat-term-compare to) a b = Lt
ultimately show pot-comp (nat-term-compare to) u v = Lt

by (simp add: pot-comp split: order .splits)
qed

qed

lemma nat-term-compare-POT-DRLEX [code]:
nat-term-compare (POT DRLEX) = pot-comp (deg-comp (λx y. lex-comp y x))
unfolding nat-term-compare-POT nat-term-compare-DRLEX
by (intro ext pot-comp-cong deg-comp-cong, simp add: pot-comp)

lemma compute-lex-pp [code]: lex-pp p q = (lex-comp ′ p q 6= Gt)
by (simp add: lex-comp ′-pp-def comp-of-ord-def)

lemma compute-dlex-pp [code]: dlex-pp p q = (deg-comp lex-comp ′ p q 6= Gt)
by (simp add: deg-comp-pp-def dlex-pp-alt compute-lex-pp comparator-of-def)

lemma compute-drlex-pp [code]: drlex-pp p q = (deg-comp (λx y. lex-comp ′ y x) p
q 6= Gt)

by (simp add: deg-comp-pp-def drlex-pp-alt compute-lex-pp comparator-of-def)

lemma nat-pp-order-of-le-nat-pp [code]: nat-term-order-of-le = LEX
by (simp add: nat-term-order-of-le-def LEX-def lex-comp-alt)

387

14.2.3 Equality of Term Orders
definition nat-term-order-eq :: ′a nat-term-order ⇒ ′a::nat-term-compare nat-term-order
⇒ bool ⇒ bool ⇒ bool

where nat-term-order-eq-def [code del]:
nat-term-order-eq to1 to2 dg ps =

(∀ u v. (dg −→ deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term
v))) −→

(ps −→ snd (rep-nat-term u) = snd (rep-nat-term v)) −→
nat-term-compare to1 u v = nat-term-compare to2 u v)

lemma nat-term-order-eqI :
assumes

∧
u v. (dg =⇒ deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term

v))) =⇒
(ps =⇒ snd (rep-nat-term u) = snd (rep-nat-term v)) =⇒
nat-term-compare to1 u v = nat-term-compare to2 u v

shows nat-term-order-eq to1 to2 dg ps
unfolding nat-term-order-eq-def using assms by blast

lemma nat-term-order-eqD:
assumes nat-term-order-eq to1 to2 dg ps

and dg =⇒ deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term v))
and ps =⇒ snd (rep-nat-term u) = snd (rep-nat-term v)

shows nat-term-compare to1 u v = nat-term-compare to2 u v
using assms unfolding nat-term-order-eq-def by blast

lemma nat-term-order-eq-sym: nat-term-order-eq to1 to2 dg ps←→ nat-term-order-eq
to2 to1 dg ps

by (auto simp: nat-term-order-eq-def)

lemma nat-term-order-eq-DEG-dg:
nat-term-order-eq (DEG to1) to2 True ps ←→ nat-term-order-eq to1 to2 True ps
by (auto simp: nat-term-order-eq-def nat-term-compare-DEG deg-comp)

lemma nat-term-order-eq-DEG-dg ′:
nat-term-order-eq to1 (DEG to2) True ps ←→ nat-term-order-eq to1 to2 True ps
by (simp add: nat-term-order-eq-sym[of to1] nat-term-order-eq-DEG-dg)

lemma nat-term-order-eq-POT-ps:
assumes ps ∨ is-scalar TYPE(′a::nat-term-compare)
shows nat-term-order-eq (POT (to1 :: ′a nat-term-order)) to2 dg ps←→ nat-term-order-eq

to1 to2 dg ps
using assms

proof
assume ps
thus ?thesis by (auto simp: nat-term-order-eq-def nat-term-compare-POT pot-comp)

next
assume is-scalar TYPE(′a)
hence snd (rep-nat-term x) = 0 for x:: ′a by (simp add: is-scalar)
thus ?thesis by (auto simp: nat-term-order-eq-def nat-term-compare-POT pot-comp)

388

qed

lemma nat-term-order-eq-POT-ps ′:
assumes ps ∨ is-scalar TYPE(′a::nat-term-compare)
shows nat-term-order-eq to1 (POT (to2 :: ′a nat-term-order)) dg ps←→ nat-term-order-eq

to1 to2 dg ps
using assms by (simp add: nat-term-order-eq-sym[of to1] nat-term-order-eq-POT-ps)

lemma snd-rep-nat-term-eqI :
assumes ps ∨ is-scalar TYPE(′a::nat-term-compare) and ps =⇒ snd (rep-nat-term

(u:: ′a)) = snd (rep-nat-term (v:: ′a))
shows snd (rep-nat-term u) = snd (rep-nat-term v)
using assms(1)

proof
assume is-scalar TYPE(′a)
thus ?thesis by (simp add: is-scalar)

qed (fact assms(2))

definition of-exps :: nat ⇒ nat ⇒ nat ⇒ ′a::nat-term-compare
where of-exps a b i =

(THE u. rep-nat-term u = (pp-of-fun (λx. if x = 0 then a else if x = 1 then
b else 0),

if (∃ v:: ′a. snd (rep-nat-term v) = i) then i else 0))

of-exps is an auxiliary function needed for proving the equalities of the
various term orders.
lemma rep-nat-term-of-exps:

rep-nat-term ((of-exps a b i):: ′a::nat-term-compare) =
(pp-of-fun (λx::nat. if x = 0 then a else if x = 1 then b else 0), if (∃ y:: ′a. snd

(rep-nat-term y) = i) then i else 0)
proof (cases ∃ y:: ′a. snd (rep-nat-term y) = i)

case True
then obtain y:: ′a where snd (rep-nat-term y) = i ..
then obtain u:: ′a where u: rep-nat-term u = (pp-of-fun (λx::nat. if x = 0 then

a else if x = 1 then b else 0), i)
by (rule full-componentE)

from True have eq: (if ∃ y:: ′a. snd (rep-nat-term y) = i then i else 0) = i by
simp

show ?thesis unfolding of-exps-def eq
proof (rule theI)

fix v :: ′a
assume rep-nat-term v = (pp-of-fun (λx::nat. if x = 0 then a else if x = 1 then

b else 0), i)
thus v = u unfolding u[symmetric] by (rule rep-nat-term-inj)

qed (fact u)
next

case False
hence eq: (if ∃ y:: ′a. snd (rep-nat-term y) = i then i else 0) = 0 by simp
obtain u:: ′a where u: rep-nat-term u = (pp-of-fun (λx::nat. if x = 0 then a else

389

if x = 1 then b else 0), 0)
by (rule full-component-zeroE)

show ?thesis unfolding of-exps-def eq
proof (rule theI)

fix v :: ′a
assume rep-nat-term v = (pp-of-fun (λx::nat. if x = 0 then a else if x = 1 then

b else 0), 0)
thus v = u unfolding u[symmetric] by (rule rep-nat-term-inj)

qed (fact u)
qed

lemma lookup-pp-of-exps:
lookup-pp (fst (rep-nat-term (of-exps a b i))) = (λx. if x = 0 then a else if x =

1 then b else 0)
unfolding rep-nat-term-of-exps fst-conv

proof (rule lookup-pp-of-fun)
have {x. (if x = 0 then a else if x = 1 then b else 0) 6= 0} ⊆ {0 , 1}

by (rule, simp split: if-split-asm)
also have finite ... by simp
finally(finite-subset) show finite {x. (if x = 0 then a else if x = 1 then b else 0)
6= 0} .
qed

lemma keys-pp-of-exps: keys-pp (fst (rep-nat-term (of-exps a b i))) ⊆ {0 , 1}
by (rule, simp add: keys-pp-iff lookup-pp-of-exps split: if-split-asm)

lemma deg-pp-of-exps [simp]: deg-pp (fst (rep-nat-term ((of-exps a b i):: ′a::nat-term-compare)))
= a + b
proof −

let ?u = (of-exps a b i):: ′a
have sum (lookup-pp (fst (rep-nat-term ?u))) (keys-pp (fst (rep-nat-term ?u)))

=
sum (lookup-pp (fst (rep-nat-term ?u))) {0 , 1}

proof (rule sum.mono-neutral-left, simp, fact keys-pp-of-exps, intro ballI)
fix x
assume x ∈ {0 , 1} − keys-pp (fst (rep-nat-term ?u))
thus lookup-pp (fst (rep-nat-term ?u)) x = 0 by (simp add: keys-pp-iff)

qed
also have ... = a + b by (simp add: lookup-pp-of-exps)
finally show ?thesis by (simp only: deg-pp-alt)

qed

lemma snd-of-exps:
assumes snd (rep-nat-term (x:: ′a)) = i
shows snd (rep-nat-term ((of-exps a b i):: ′a::nat-term-compare)) = i

proof −
from assms have ∃ x:: ′a. snd (rep-nat-term (x:: ′a)) = i ..
thus ?thesis by (simp add: rep-nat-term-of-exps)

qed

390

lemma snd-of-exps-zero [simp]: snd (rep-nat-term ((of-exps a b 0):: ′a::nat-term-compare))
= 0
proof −

from zero-component obtain x:: ′a where snd (rep-nat-term (x:: ′a)) = 0 ..
thus ?thesis by (rule snd-of-exps)

qed

lemma eq-of-exps:
(fst (rep-nat-term (of-exps a1 b1 i)) = fst (rep-nat-term (of-exps a2 b2 j))) ←→

(a1 = a2 ∧ b1 = b2)
proof −

have a1 = a2 ∧ b1 = b2
if (λx::nat. if x = 0 then a1 else if x = 1 then b1 else 0) = (λx. if x = 0 then

a2 else if x = 1 then b2 else 0)
proof

from fun-cong[OF that, of 0] show a1 = a2 by simp
next

from fun-cong[OF that, of 1] show b1 = b2 by simp
qed
thus ?thesis by (auto simp: pp-eq-iff lookup-pp-of-exps)

qed

lemma lex-pp-of-exps:
lex-pp (fst (rep-nat-term ((of-exps a1 b1 i):: ′a))) (fst (rep-nat-term ((of-exps a2

b2 j):: ′a::nat-term-compare))) ←→
(a1 < a2 ∨ (a1 = a2 ∧ b1 ≤ b2)) (is ?L ←→ ?R)

proof −
let ?u = fst (rep-nat-term ((of-exps a1 b1 i):: ′a))
let ?v = fst (rep-nat-term ((of-exps a2 b2 j):: ′a))
show ?thesis
proof

assume ?L
hence ?u = ?v ∨ (∃ x. lookup-pp ?u x < lookup-pp ?v x ∧ (∀ y<x. lookup-pp

?u y = lookup-pp ?v y))
by (simp only: lex-pp-alt)

thus ?R
proof

assume ?u = ?v
thus ?thesis by (simp add: eq-of-exps)

next
assume ∃ x. lookup-pp ?u x < lookup-pp ?v x ∧ (∀ y<x. lookup-pp ?u y =

lookup-pp ?v y)
then obtain x where 1 : lookup-pp ?u x < lookup-pp ?v x and 2 :

∧
y. y <

x =⇒ lookup-pp ?u y = lookup-pp ?v y
by auto

from 1 have lookup-pp ?v x 6= 0 by simp
hence x ∈ keys-pp ?v by (simp add: keys-pp-iff)
also have ... ⊆ {0 , 1} by (fact keys-pp-of-exps)

391

finally have x = 0 ∨ x = 1 by simp
thus ?thesis
proof

assume x = 0
from 1 show ?thesis by (simp add: lookup-pp-of-exps ‹x = 0 ›)

next
assume x = 1
hence 0 < x by simp
hence lookup-pp ?u 0 = lookup-pp ?v 0 by (rule 2)
hence a1 = a2 by (simp add: lookup-pp-of-exps)
from 1 show ?thesis by (simp add: lookup-pp-of-exps ‹x = 1 › ‹a1 = a2 ›)

qed
qed

next
assume ?R
thus ?L
proof

assume a1 < a2
show ?thesis unfolding lex-pp-alt
proof (intro disjI2 exI conjI allI impI)

from ‹a1 < a2 › show lookup-pp ?u 0 < lookup-pp ?v 0 by (simp add:
lookup-pp-of-exps)

next
fix y::nat
assume y < 0
thus lookup-pp ?u y = lookup-pp ?v y by simp

qed
next

assume a1 = a2 ∧ b1 ≤ b2
hence a1 = a2 and b1 ≤ b2 by simp-all
from this(2) have b1 < b2 ∨ b1 = b2 by auto
thus ?thesis
proof

assume b1 < b2
show ?thesis unfolding lex-pp-alt
proof (intro disjI2 exI conjI allI impI)

from ‹b1 < b2 › show lookup-pp ?u 1 < lookup-pp ?v 1 by (simp add:
lookup-pp-of-exps)

next
fix y::nat
assume y < 1
hence y = 0 by simp
show lookup-pp ?u y = lookup-pp ?v y by (simp add: lookup-pp-of-exps ‹y

= 0 › ‹a1 = a2 ›)
qed

next
assume b1 = b2
show ?thesis by (simp add: lex-pp-alt eq-of-exps ‹a1 = a2 › ‹b1 = b2 ›)

qed

392

qed
qed

qed

lemma LEX-eq [code]:
nat-term-order-eq LEX (LEX :: ′a nat-term-order) dg ps = True (is ?thesis1)
nat-term-order-eq LEX (DRLEX :: ′a nat-term-order) dg ps = False (is ?thesis2)
nat-term-order-eq LEX (DEG (to:: ′a nat-term-order)) dg ps =
(dg ∧ nat-term-order-eq LEX to dg ps) (is ?thesis3)

nat-term-order-eq LEX (POT (to:: ′a nat-term-order)) dg ps =
((ps ∨ is-scalar TYPE(′a::nat-term-compare)) ∧ nat-term-order-eq LEX to dg

ps) (is ?thesis4)
proof −

show ?thesis1 by (simp add: nat-term-order-eq-def)
next

show ?thesis2
proof (intro iffI)

assume a: nat-term-order-eq LEX (DRLEX :: ′a nat-term-order) dg ps
let ?u = (of-exps 0 1 0):: ′a
let ?v = (of-exps 1 0 0):: ′a
have nat-term-compare LEX ?u ?v = nat-term-compare DRLEX ?u ?v

by (rule nat-term-order-eqD, fact a, simp-all)
thus False
by (simp add: nat-term-compare-LEX lex-comp lex-comp-aux-def nat-term-compare-DRLEX

deg-comp
pot-comp comparator-of-def comp-of-ord-def lex-pp-of-exps eq-of-exps)

qed (rule FalseE)
next

show ?thesis3
proof (intro iffI)

assume a: nat-term-order-eq LEX (DEG to) dg ps
have dg
proof (rule ccontr)

assume ¬ dg
let ?u = (of-exps 0 2 0):: ′a
let ?v = (of-exps 1 0 0):: ′a
have nat-term-compare LEX ?u ?v = nat-term-compare (DEG to) ?u ?v

by (rule nat-term-order-eqD, fact a, simp-all add: ‹¬ dg›)
thus False
by (simp add: nat-term-compare-LEX lex-comp lex-comp-aux-def nat-term-compare-DEG

deg-comp
comparator-of-def comp-of-ord-def lex-pp-of-exps eq-of-exps)

qed
show dg ∧ nat-term-order-eq LEX to dg ps
proof (intro conjI ‹dg› nat-term-order-eqI)

fix u v :: ′a
assume 1 : dg =⇒ deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term

v))
from ‹dg› have eq: deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term

393

v)) by (rule 1)
assume ps =⇒ snd (rep-nat-term u) = snd (rep-nat-term v)
with a 1 have nat-term-compare LEX u v = nat-term-compare (DEG to) u v

by (rule nat-term-order-eqD)
also have ... = nat-term-compare to u v by (simp add: nat-term-compare-DEG

deg-comp eq)
finally show nat-term-compare LEX u v = nat-term-compare to u v .

qed
next

assume dg ∧ nat-term-order-eq LEX to dg ps
hence dg and a: nat-term-order-eq LEX to dg ps by auto
show nat-term-order-eq LEX (DEG to) dg ps
proof (rule nat-term-order-eqI)

fix u v :: ′a
assume 1 : dg =⇒ deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term

v))
from ‹dg› have eq: deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term

v)) by (rule 1)
assume ps =⇒ snd (rep-nat-term u) = snd (rep-nat-term v)
with a 1 have nat-term-compare LEX u v = nat-term-compare to u v by

(rule nat-term-order-eqD)
also have ... = nat-term-compare (DEG to) u v by (simp add: nat-term-compare-DEG

deg-comp eq)
finally show nat-term-compare LEX u v = nat-term-compare (DEG to) u v .

qed
qed

next
show ?thesis4
proof (intro iffI)

assume a: nat-term-order-eq LEX (POT to) dg ps
have ∗: ps ∨ is-scalar TYPE(′a)
proof (rule ccontr)

assume ¬ (ps ∨ is-scalar TYPE(′a))
hence ¬ ps and ¬ is-scalar TYPE(′a) by simp-all

from this(2) obtain x:: ′a where snd (rep-nat-term x) 6= 0 unfolding
is-scalar by auto

moreover define i::nat where i = snd (rep-nat-term x)
ultimately have i 6= 0 by simp
let ?u = (of-exps 0 1 i):: ′a
let ?v = (of-exps 1 0 0):: ′a

from i-def [symmetric] have eq: snd (rep-nat-term ?u) = i by (rule snd-of-exps)
have nat-term-compare LEX ?u ?v = nat-term-compare (POT to) ?u ?v

by (rule nat-term-order-eqD, fact a, simp-all add: ‹¬ ps›)
thus False

by (simp add: nat-term-compare-LEX lex-comp lex-comp-aux-def pot-comp
nat-term-compare-POT

comparator-of-def comp-of-ord-def lex-pp-of-exps eq-of-exps eq ‹i 6= 0 ›
del: One-nat-def)

qed

394

show (ps ∨ is-scalar TYPE(′a)) ∧ nat-term-order-eq LEX to dg ps
proof (intro conjI ∗ nat-term-order-eqI)

fix u v :: ′a
assume 1 : dg =⇒ deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term

v))
assume 2 : ps =⇒ snd (rep-nat-term u) = snd (rep-nat-term v)

with ∗ have eq: snd (rep-nat-term u) = snd (rep-nat-term v) by (rule
snd-rep-nat-term-eqI)

from a 1 2 have nat-term-compare LEX u v = nat-term-compare (POT to)
u v

by (rule nat-term-order-eqD)
also have ... = nat-term-compare to u v by (simp add: nat-term-compare-POT

eq pot-comp)
finally show nat-term-compare LEX u v = nat-term-compare to u v .

qed
next

assume (ps ∨ is-scalar TYPE(′a)) ∧ nat-term-order-eq LEX to dg ps
hence ∗: ps ∨ is-scalar TYPE(′a) and a: nat-term-order-eq LEX to dg ps by

auto
show nat-term-order-eq LEX (POT to) dg ps
proof (rule nat-term-order-eqI)

fix u v :: ′a
assume 1 : dg =⇒ deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term

v))
assume 2 : ps =⇒ snd (rep-nat-term u) = snd (rep-nat-term v)

with ∗ have eq: snd (rep-nat-term u) = snd (rep-nat-term v) by (rule
snd-rep-nat-term-eqI)

from a 1 2 have nat-term-compare LEX u v = nat-term-compare to u v by
(rule nat-term-order-eqD)

also have ... = nat-term-compare (POT to) u v by (simp add: nat-term-compare-POT
eq pot-comp)

finally show nat-term-compare LEX u v = nat-term-compare (POT to) u v .
qed

qed
qed

lemma DRLEX-eq [code]:
nat-term-order-eq DRLEX (LEX :: ′a nat-term-order) dg ps = False (is ?thesis1)
nat-term-order-eq DRLEX DRLEX dg ps = True (is ?thesis2)
nat-term-order-eq DRLEX (DEG (to:: ′a nat-term-order)) dg ps =

nat-term-order-eq DRLEX to True ps (is ?thesis3)
nat-term-order-eq DRLEX (POT (to:: ′a nat-term-order)) dg ps =
((dg ∨ ps ∨ is-scalar TYPE(′a::nat-term-compare)) ∧ nat-term-order-eq DRLEX

to dg True) (is ?thesis4)
proof −

from nat-term-order-eq-sym[of DRLEX :: ′a nat-term-order] show ?thesis1 by
(simp only: LEX-eq)
next

show ?thesis2 by (simp add: nat-term-order-eq-def)

395

next
show ?thesis3
proof (intro iffI)

assume a: nat-term-order-eq DRLEX (DEG to) dg ps
show nat-term-order-eq DRLEX to True ps
proof (rule nat-term-order-eqI)

fix u v :: ′a
assume 1 : True =⇒ deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term

v))
and ps =⇒ snd (rep-nat-term u) = snd (rep-nat-term v)

with a have nat-term-compare DRLEX u v = nat-term-compare (DEG to) u
v

by (rule nat-term-order-eqD, blast+)
also have ... = nat-term-compare to u v by (simp add: nat-term-compare-DEG

deg-comp 1)
finally show nat-term-compare DRLEX u v = nat-term-compare to u v .

qed
next

assume a: nat-term-order-eq DRLEX to True ps
show nat-term-order-eq DRLEX (DEG to) dg ps
proof (rule nat-term-order-eqI)

fix u v :: ′a
assume 1 : ps =⇒ snd (rep-nat-term u) = snd (rep-nat-term v)
show nat-term-compare DRLEX u v = nat-term-compare (DEG to) u v

proof (simp add: nat-term-compare-DRLEX nat-term-compare-DEG deg-comp
comparator-of-def split: order .split, rule)

assume 2 : deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term v))
with a have nat-term-compare DRLEX u v = nat-term-compare to u v

using 1 by (rule nat-term-order-eqD)
thus pot-comp (λx y. lex-comp y x) u v = nat-term-compare to u v

by (simp add: nat-term-compare-DRLEX deg-comp 2)
qed

qed
qed

next
show ?thesis4
proof (intro iffI)

assume a: nat-term-order-eq DRLEX (POT to) dg ps
have ∗: dg ∨ ps ∨ is-scalar TYPE(′a)
proof (rule ccontr)

assume ¬ (dg ∨ ps ∨ is-scalar TYPE(′a))
hence ¬ dg and ¬ ps and ¬ is-scalar TYPE(′a) by simp-all

from this(3) obtain x:: ′a where snd (rep-nat-term x) 6= 0 unfolding
is-scalar by auto

moreover define i::nat where i = snd (rep-nat-term x)
ultimately have i 6= 0 by simp
let ?u = (of-exps 1 0 i):: ′a
let ?v = (of-exps 2 0 0):: ′a

from i-def [symmetric] have eq: snd (rep-nat-term ?u) = i by (rule snd-of-exps)

396

have nat-term-compare DRLEX ?u ?v = nat-term-compare (POT to) ?u ?v
by (rule nat-term-order-eqD, fact a, simp-all add: ‹¬ ps› ‹¬ dg›)

thus False
by (simp add: nat-term-compare-DRLEX deg-comp pot-comp nat-term-compare-POT

comparator-of-def eq ‹i 6= 0 › del: One-nat-def)
qed
show (dg ∨ ps ∨ is-scalar TYPE(′a)) ∧ nat-term-order-eq DRLEX to dg True
proof (intro conjI ∗ nat-term-order-eqI)

fix u v :: ′a
assume 1 : dg =⇒ deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term

v))
assume 2 : True =⇒ snd (rep-nat-term u) = snd (rep-nat-term v)
from a 1 2 have nat-term-compare DRLEX u v = nat-term-compare (POT

to) u v
by (rule nat-term-order-eqD, blast+)

also have ... = nat-term-compare to u v by (simp add: nat-term-compare-POT
2 pot-comp)

finally show nat-term-compare DRLEX u v = nat-term-compare to u v .
qed

next
assume (dg ∨ ps ∨ is-scalar TYPE(′a)) ∧ nat-term-order-eq DRLEX to dg

True
hence disj: dg ∨ ps ∨ is-scalar TYPE(′a) and a: nat-term-order-eq DRLEX

to dg True by auto
show nat-term-order-eq DRLEX (POT to) dg ps
proof (rule nat-term-order-eqI)

fix u v :: ′a
assume 1 : dg =⇒ deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term

v))
assume 2 : ps =⇒ snd (rep-nat-term u) = snd (rep-nat-term v)
from disj show nat-term-compare DRLEX u v = nat-term-compare (POT

to) u v
proof

assume dg
hence eq1 : deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term v)) by

(rule 1)
show ?thesis

proof (simp add: nat-term-compare-DRLEX deg-comp eq1 nat-term-compare-POT
pot-comp comparator-of-def split: order .split, rule)

assume eq2 : snd (rep-nat-term u) = snd (rep-nat-term v)
with a 1 have nat-term-compare DRLEX u v = nat-term-compare to u v

by (rule nat-term-order-eqD)
thus lex-comp v u = nat-term-compare to u v

by (simp add: nat-term-compare-DRLEX deg-comp eq1 pot-comp eq2)
qed

next
assume ps ∨ is-scalar TYPE(′a)
hence eq: snd (rep-nat-term u) = snd (rep-nat-term v) using 2 by (rule

snd-rep-nat-term-eqI)

397

with a 1 have nat-term-compare DRLEX u v = nat-term-compare to u v
by (rule nat-term-order-eqD)

also have ... = nat-term-compare (POT to) u v by (simp add: nat-term-compare-POT
pot-comp eq)

finally show ?thesis .
qed

qed
qed

qed

lemma DEG-eq [code]:
nat-term-order-eq (DEG to) (LEX :: ′a nat-term-order) dg ps = nat-term-order-eq

LEX (DEG to) dg ps
nat-term-order-eq (DEG to) (DRLEX :: ′a nat-term-order) dg ps = nat-term-order-eq

DRLEX (DEG to) dg ps
nat-term-order-eq (DEG to1) (DEG (to2 :: ′a nat-term-order)) dg ps =

nat-term-order-eq to1 to2 True ps (is ?thesis3)
nat-term-order-eq (DEG to1) (POT (to2 :: ′a nat-term-order)) dg ps =
(if dg then nat-term-order-eq to1 (POT to2) dg ps
else ((ps ∨ is-scalar TYPE(′a::nat-term-compare)) ∧ nat-term-order-eq (DEG

to1) to2 dg ps)) (is ?thesis4)
proof −

show ?thesis3
proof (rule iffI)

assume a: nat-term-order-eq (DEG to1) (DEG to2) dg ps
show nat-term-order-eq to1 to2 True ps
proof (rule nat-term-order-eqI)

fix u v :: ′a
assume b: True =⇒ deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term

v))
and ps =⇒ snd (rep-nat-term u) = snd (rep-nat-term v)

with a have nat-term-compare (DEG to1) u v = nat-term-compare (DEG
to2) u v

by (rule nat-term-order-eqD, blast+)
thus nat-term-compare to1 u v = nat-term-compare to2 u v

by (simp add: nat-term-compare-DEG deg-comp comparator-of-def b)
qed

next
assume a: nat-term-order-eq to1 to2 True ps
show nat-term-order-eq (DEG to1) (DEG to2) dg ps
proof (rule nat-term-order-eqI)

fix u v :: ′a
assume b: ps =⇒ snd (rep-nat-term u) = snd (rep-nat-term v)
show nat-term-compare (DEG to1) u v = nat-term-compare (DEG to2) u v
proof (simp add: nat-term-compare-DEG deg-comp comparator-of-def split:

order .split, rule impI)
assume deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term v))
with a show nat-term-compare to1 u v = nat-term-compare to2 u v using

b by (rule nat-term-order-eqD)

398

qed
qed

qed
next

show ?thesis4
proof (simp add: nat-term-order-eq-DEG-dg split: if-split, intro impI)

show nat-term-order-eq (DEG to1) (POT to2) False ps =
((ps ∨ is-scalar TYPE(′a)) ∧ nat-term-order-eq (DEG to1) to2 False ps)

proof (intro iffI)
assume a: nat-term-order-eq (DEG to1) (POT to2) False ps
have ∗: ps ∨ is-scalar TYPE(′a)
proof (rule ccontr)

assume ¬ (ps ∨ is-scalar TYPE(′a))
hence ¬ ps and ¬ is-scalar TYPE(′a) by simp-all

from this(2) obtain x:: ′a where snd (rep-nat-term x) 6= 0 unfolding
is-scalar by auto

moreover define i::nat where i = snd (rep-nat-term x)
ultimately have i 6= 0 by simp
let ?u = (of-exps 1 0 i):: ′a
let ?v = (of-exps 2 0 0):: ′a

from i-def [symmetric] have eq: snd (rep-nat-term ?u) = i by (rule
snd-of-exps)

have nat-term-compare (DEG to1) ?u ?v = nat-term-compare (POT to2)
?u ?v

by (rule nat-term-order-eqD, fact a, simp-all add: ‹¬ ps›)
thus False

by (simp add: nat-term-compare-DEG deg-comp pot-comp nat-term-compare-POT
comparator-of-def comp-of-ord-def lex-pp-of-exps eq-of-exps eq ‹i 6= 0 ›

del: One-nat-def)
qed
moreover from this a have nat-term-order-eq (DEG to1) to2 False ps by

(simp add: nat-term-order-eq-POT-ps ′)
ultimately show (ps ∨ is-scalar TYPE(′a)) ∧ nat-term-order-eq (DEG to1)

to2 False ps ..
qed (simp add: nat-term-order-eq-POT-ps ′)

qed
qed (fact nat-term-order-eq-sym)+

lemma POT-eq [code]:
nat-term-order-eq (POT to) LEX dg ps = nat-term-order-eq LEX (POT to) dg

ps
nat-term-order-eq (POT to1) (DEG to2) dg ps = nat-term-order-eq (DEG to2)

(POT to1) dg ps
nat-term-order-eq (POT to1) DRLEX dg ps = nat-term-order-eq DRLEX (POT

to1) dg ps
nat-term-order-eq (POT to1) (POT (to2 :: ′a::nat-term-compare nat-term-order))

dg ps =
nat-term-order-eq to1 to2 dg True (is ?thesis4)

proof −

399

show ?thesis4
proof (rule iffI)

assume a: nat-term-order-eq (POT to1) (POT to2) dg ps
show nat-term-order-eq to1 to2 dg True
proof (rule nat-term-order-eqI)

fix u v :: ′a
assume dg =⇒ deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term v))

and b: True =⇒ snd (rep-nat-term u) = snd (rep-nat-term v)
with a have nat-term-compare (POT to1) u v = nat-term-compare (POT

to2) u v
by (rule nat-term-order-eqD, blast+)

thus nat-term-compare to1 u v = nat-term-compare to2 u v
by (simp add: nat-term-compare-POT pot-comp comparator-of-def b)

qed
next

assume a: nat-term-order-eq to1 to2 dg True
show nat-term-order-eq (POT to1) (POT to2) dg ps
proof (rule nat-term-order-eqI)

fix u v :: ′a
assume b: dg =⇒ deg-pp (fst (rep-nat-term u)) = deg-pp (fst (rep-nat-term

v))
show nat-term-compare (POT to1) u v = nat-term-compare (POT to2) u v
proof (simp add: nat-term-compare-POT pot-comp comparator-of-def split:

order .split, rule impI)
assume snd (rep-nat-term u) = snd (rep-nat-term v)
with a b show nat-term-compare to1 u v = nat-term-compare to2 u v by

(rule nat-term-order-eqD)
qed

qed
qed

qed (fact nat-term-order-eq-sym)+

lemma nat-term-order-equal [code]: HOL.equal to1 to2 = nat-term-order-eq to1
to2 False False
by (auto simp: nat-term-order-eq-def equal-eq nat-term-compare-inject[symmetric])

hide-const (open) of-exps

value [code] DEG (POT DRLEX) = (DRLEX ::((nat, nat) pp × nat) nat-term-order)

value [code] POT LEX = (LEX ::((nat, nat) pp × nat) nat-term-order)

value [code] POT LEX = (LEX ::(nat, nat) pp nat-term-order)

end

400

15 Executable Representation of Polynomial Map-
pings as Association Lists

theory MPoly-Type-Class-OAlist
imports Term-Order

begin

instantiation pp :: (type, {equal, zero}) equal
begin

definition equal-pp :: (′a, ′b) pp ⇒ (′a, ′b) pp ⇒ bool where
equal-pp p q ≡ (∀ t. lookup-pp p t = lookup-pp q t)

instance by standard (auto simp: equal-pp-def intro: pp-eqI)

end

instantiation poly-mapping :: (type, {equal, zero}) equal
begin

definition equal-poly-mapping :: (′a, ′b) poly-mapping ⇒ (′a, ′b) poly-mapping ⇒
bool where

equal-poly-mapping-def [code del]: equal-poly-mapping p q ≡ (∀ t. lookup p t =
lookup q t)

instance by standard (auto simp: equal-poly-mapping-def intro: poly-mapping-eqI)

end

15.1 Power-Products Represented by oalist-tc
definition PP-oalist :: (′a::linorder , ′b::zero) oalist-tc ⇒ (′a, ′b) pp

where PP-oalist xs = pp-of-fun (OAlist-tc-lookup xs)

code-datatype PP-oalist

lemma lookup-PP-oalist [simp, code]: lookup-pp (PP-oalist xs) = OAlist-tc-lookup
xs

unfolding PP-oalist-def
proof (rule lookup-pp-of-fun)

have {x. OAlist-tc-lookup xs x 6= 0} ⊆ fst ‘ set (list-of-oalist-tc xs)
proof (rule, simp)

fix x
assume OAlist-tc-lookup xs x 6= 0
thus x ∈ fst ‘ set (list-of-oalist-tc xs)

using in-OAlist-tc-sorted-domain-iff-lookup set-OAlist-tc-sorted-domain by
blast

qed
also have finite ... by simp

401

finally (finite-subset) show finite {x. OAlist-tc-lookup xs x 6= 0} .
qed

lemma keys-PP-oalist [code]: keys-pp (PP-oalist xs) = set (OAlist-tc-sorted-domain
xs)

by (rule set-eqI , simp add: keys-pp-iff in-OAlist-tc-sorted-domain-iff-lookup)

lemma lex-comp-PP-oalist [code]:
lex-comp ′ (PP-oalist xs) (PP-oalist ys) =

the (OAlist-tc-lex-ord (λ- x y. Some (comparator-of x y)) xs ys)
for xs ys::(′a::nat, ′b::nat) oalist-tc

proof (cases lex-comp ′ (PP-oalist xs) (PP-oalist ys) = Eq)
case True
hence PP-oalist xs = PP-oalist ys by (rule lex-comp ′-EqD)
hence eq: OAlist-tc-lookup xs = OAlist-tc-lookup ys by (simp add: pp-eq-iff)
have OAlist-tc-lex-ord (λ- x y. Some (comparator-of x y)) xs ys = Some Eq

by (rule OAlist-tc-lex-ord-EqI , simp add: eq)
thus ?thesis by (simp add: True)

next
case False
then obtain x where 1 : x ∈ keys-pp (rep-nat-pp (PP-oalist xs)) ∪ keys-pp

(rep-nat-pp (PP-oalist ys))
and 2 : comparator-of (lookup-pp (rep-nat-pp (PP-oalist xs)) x) (lookup-pp

(rep-nat-pp (PP-oalist ys)) x) =
lex-comp ′ (PP-oalist xs) (PP-oalist ys)

and 3 :
∧

y. y < x =⇒ lookup-pp (rep-nat-pp (PP-oalist xs)) y = lookup-pp
(rep-nat-pp (PP-oalist ys)) y

by (rule lex-comp ′-valE , blast)
have OAlist-tc-lex-ord (λ- x y. Some (comparator-of x y)) xs ys = Some (lex-comp ′

(PP-oalist xs) (PP-oalist ys))
proof (rule OAlist-tc-lex-ord-valI)

from False show Some (lex-comp ′ (PP-oalist xs) (PP-oalist ys)) 6= Some Eq
by simp

next
from 1 have abs-nat x ∈ abs-nat ‘ (keys-pp (rep-nat-pp (PP-oalist xs)) ∪

keys-pp (rep-nat-pp (PP-oalist ys)))
by (rule imageI)

also have ... = fst ‘ set (list-of-oalist-tc xs) ∪ fst ‘ set (list-of-oalist-tc ys)
by (simp add: keys-rep-nat-pp-pp keys-PP-oalist OAlist-tc-sorted-domain-def

image-Un image-image)
finally show abs-nat x ∈ fst ‘ set (list-of-oalist-tc xs) ∪ fst ‘ set (list-of-oalist-tc

ys) .
next

show Some (lex-comp ′ (PP-oalist xs) (PP-oalist ys)) =
Some (comparator-of (OAlist-tc-lookup xs (abs-nat x)) (OAlist-tc-lookup ys

(abs-nat x)))
by (simp add: 2 [symmetric] lookup-rep-nat-pp-pp)

next
fix y:: ′a

402

assume y < abs-nat x
hence rep-nat y < x by (metis abs-inverse ord-iff (2))
hence lookup-pp (rep-nat-pp (PP-oalist xs)) (rep-nat y) = lookup-pp (rep-nat-pp

(PP-oalist ys)) (rep-nat y)
by (rule 3)

hence OAlist-tc-lookup xs y = OAlist-tc-lookup ys y by (auto simp: lookup-rep-nat-pp-pp
elim: rep-inj)

thus Some (comparator-of (OAlist-tc-lookup xs y) (OAlist-tc-lookup ys y)) =
Some Eq by simp

qed
thus ?thesis by simp

qed

lemma zero-PP-oalist [code]: (0 ::(′a::linorder , ′b::zero) pp) = PP-oalist OAlist-tc-empty
by (rule pp-eqI , simp add: lookup-OAlist-tc-empty)

lemma plus-PP-oalist [code]:
PP-oalist xs + PP-oalist ys = PP-oalist (OAlist-tc-map2-val-neutr (λ-. (+)) xs

ys)
by (rule pp-eqI , simp add: lookup-plus-pp, rule lookup-OAlist-tc-map2-val-neutr [symmetric],

simp-all)

lemma minus-PP-oalist [code]:
PP-oalist xs − PP-oalist ys = PP-oalist (OAlist-tc-map2-val-rneutr (λ-. (−)) xs

ys)
by (rule pp-eqI , simp add: lookup-minus-pp, rule lookup-OAlist-tc-map2-val-rneutr [symmetric],

simp)

lemma equal-PP-oalist [code]: equal-class.equal (PP-oalist xs) (PP-oalist ys) = (xs
= ys)

by (simp add: equal-eq pp-eq-iff , auto elim: OAlist-tc-lookup-inj)

lemma lcs-PP-oalist [code]:
lcs (PP-oalist xs) (PP-oalist ys) = PP-oalist (OAlist-tc-map2-val-neutr (λ-. max)

xs ys)
for xs ys :: (′a::linorder , ′b::add-linorder-min) oalist-tc
by (rule pp-eqI , simp add: lookup-lcs-pp, rule lookup-OAlist-tc-map2-val-neutr [symmetric],

simp-all add: max-def)

lemma deg-pp-PP-oalist [code]: deg-pp (PP-oalist xs) = sum-list (map snd (list-of-oalist-tc
xs))
proof −

have irreflp ((<)::-::linorder ⇒ -) by (rule irreflpI , simp)
have deg-pp (PP-oalist xs) = sum (OAlist-tc-lookup xs) (set (OAlist-tc-sorted-domain

xs))
by (simp add: deg-pp-alt keys-PP-oalist)

also have ... = sum-list (map (OAlist-tc-lookup xs) (OAlist-tc-sorted-domain xs))
by (rule sum.distinct-set-conv-list, rule distinct-sorted-wrt-irrefl,

fact, fact transp-on-less, fact sorted-OAlist-tc-sorted-domain)

403

also have ... = sum-list (map snd (list-of-oalist-tc xs))
by (rule arg-cong[where f=sum-list], simp add: OAlist-tc-sorted-domain-def

OAlist-tc-lookup-eq-valueI)
finally show ?thesis .

qed

lemma single-PP-oalist [code]: single-pp x e = PP-oalist (oalist-tc-of-list [(x, e)])
by (rule pp-eqI , simp add: lookup-single-pp OAlist-tc-lookup-single)

definition adds-pp-add-linorder :: (′b, ′a::add-linorder) pp ⇒ - ⇒ bool
where [code-abbrev]: adds-pp-add-linorder = (adds)

lemma adds-pp-PP-oalist [code]:
adds-pp-add-linorder (PP-oalist xs) (PP-oalist ys) = OAlist-tc-prod-ord (λ-. less-eq)

xs ys
for xs ys::(′a::linorder , ′b::add-linorder-min) oalist-tc

proof (simp add: adds-pp-add-linorder-def adds-pp-iff adds-poly-mapping lookup-pp.rep-eq[symmetric]
OAlist-tc-prod-ord-alt le-fun-def ,

intro iffI allI ballI)
fix k
assume ∀ x. OAlist-tc-lookup xs x ≤ OAlist-tc-lookup ys x
thus OAlist-tc-lookup xs k ≤ OAlist-tc-lookup ys k by blast

next
fix x
assume ∗: ∀ k∈fst ‘ set (list-of-oalist-tc xs) ∪ fst ‘ set (list-of-oalist-tc ys).

OAlist-tc-lookup xs k ≤ OAlist-tc-lookup ys k
show OAlist-tc-lookup xs x ≤ OAlist-tc-lookup ys x
proof (cases x ∈ fst ‘ set (list-of-oalist-tc xs) ∪ fst ‘ set (list-of-oalist-tc ys))

case True
with ∗ show ?thesis ..

next
case False

hence x /∈ set (OAlist-tc-sorted-domain xs) and x /∈ set (OAlist-tc-sorted-domain
ys)

by (simp-all add: set-OAlist-tc-sorted-domain)
thus ?thesis by (simp add: in-OAlist-tc-sorted-domain-iff-lookup)

qed
qed

15.1.1 Constructor
definition sparse0 xs = PP-oalist (oalist-tc-of-list xs) — sparse representation

15.1.2 Computations
experiment begin

abbreviation X ≡ 0 ::nat
abbreviation Y ≡ 1 ::nat
abbreviation Z ≡ 2 ::nat

404

value [code] sparse0 [(X , 2 ::nat), (Z , 7)]

lemma
sparse0 [(X , 2 ::nat), (Z , 7)] − sparse0 [(X , 2), (Z , 2)] = sparse0 [(Z , 5)]
by eval

lemma
lcs (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 7)]) (sparse0 [(Y , 3), (Z , 2)]) = sparse0

[(X , 2), (Y , 3), (Z , 7)]
by eval

lemma
(sparse0 [(X , 2 ::nat), (Z , 1)]) adds (sparse0 [(X , 3), (Y , 2), (Z , 1)])
by eval

lemma
lookup-pp (sparse0 [(X , 2 ::nat), (Z , 3)]) X = 2
by eval

lemma
deg-pp (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 3), (X , 1)]) = 6
by eval

lemma
lex-comp (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 3)]) (sparse0 [(X , 4)]) = Lt
by eval

lemma
lex-comp (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 3)], 3 ::nat) (sparse0 [(X , 4)], 2) =

Lt
by eval

lemma
lex-pp (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 3)]) (sparse0 [(X , 4)])
by eval

lemma
lex-pp (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 3)]) (sparse0 [(X , 4)])
by eval

lemma
¬ dlex-pp (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 3)]) (sparse0 [(X , 4)])
by eval

lemma
dlex-pp (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 2)]) (sparse0 [(X , 5)])
by eval

405

lemma
¬ drlex-pp (sparse0 [(X , 2 ::nat), (Y , 1), (Z , 2)]) (sparse0 [(X , 5)])
by eval

end

15.2 MP-oalist
lift-definition MP-oalist :: (′a::nat-term, ′b::zero) oalist-ntm ⇒ ′a ⇒0

′b
is OAlist-lookup-ntm

proof −
fix xs :: (′a, ′b) oalist-ntm
have {x. OAlist-lookup-ntm xs x 6= 0} ⊆ fst ‘ set (fst (list-of-oalist-ntm xs))
proof (rule, simp)

fix x
assume OAlist-lookup-ntm xs x 6= 0
thus x ∈ fst ‘ set (fst (list-of-oalist-ntm xs))

using oa-ntm.in-sorted-domain-iff-lookup oa-ntm.set-sorted-domain by blast
qed
also have finite ... by simp
finally (finite-subset) show finite {x. OAlist-lookup-ntm xs x 6= 0} .

qed

lemmas [simp, code] = MP-oalist.rep-eq

code-datatype MP-oalist

lemma keys-MP-oalist [code]: keys (MP-oalist xs) = set (map fst (fst (list-of-oalist-ntm
xs)))
by (rule set-eqI , simp add: in-keys-iff oa-ntm.in-sorted-domain-iff-lookup[simplified

oa-ntm.set-sorted-domain])

lemma MP-oalist-empty [simp]: MP-oalist (OAlist-empty-ntm ko) = 0
by (rule poly-mapping-eqI , simp add: oa-ntm.lookup-empty)

lemma zero-MP-oalist [code]: (0 ::(′a::{linorder ,nat-term} ⇒0
′b::zero)) = MP-oalist

(OAlist-empty-ntm nat-term-order-of-le)
by simp

definition is-zero :: (′a ⇒0
′b::zero) ⇒ bool

where [code-abbrev]: is-zero p ←→ (p = 0)

lemma is-zero-MP-oalist [code]: is-zero (MP-oalist xs) = List.null (fst (list-of-oalist-ntm
xs))

unfolding is-zero-def List.null-def
proof

assume MP-oalist xs = 0
hence OAlist-lookup-ntm xs k = 0 for k by (simp add: poly-mapping-eq-iff)
thus fst (list-of-oalist-ntm xs) = []

406

by (metis image-eqI ko-ntm.min-key-val-raw-in oa-ntm.in-sorted-domain-iff-lookup
oa-ntm.set-sorted-domain)
next

assume fst (list-of-oalist-ntm xs) = []
hence OAlist-lookup-ntm xs k = 0 for k

by (metis oa-ntm.list-of-oalist-empty oa-ntm.lookup-empty oalist-ntm-eqI sur-
jective-pairing)

thus MP-oalist xs = 0 by (simp add: poly-mapping-eq-iff ext)
qed

lemma plus-MP-oalist [code]: MP-oalist xs + MP-oalist ys = MP-oalist (OAlist-map2-val-neutr-ntm
(λ-. (+)) xs ys)
by (rule poly-mapping-eqI , simp add: lookup-plus-fun, rule oa-ntm.lookup-map2-val-neutr [symmetric],

simp-all)

lemma minus-MP-oalist [code]: MP-oalist xs −MP-oalist ys = MP-oalist (OAlist-map2-val-rneutr-ntm
(λ-. (−)) xs ys)
by (rule poly-mapping-eqI , simp add: lookup-minus-fun, rule oa-ntm.lookup-map2-val-rneutr [symmetric],

simp)

lemma uminus-MP-oalist [code]: − MP-oalist xs = MP-oalist (OAlist-map-val-ntm
(λ-. uminus) xs)

by (rule poly-mapping-eqI , simp, rule oa-ntm.lookup-map-val[symmetric], simp)

lemma equal-MP-oalist [code]: equal-class.equal (MP-oalist xs) (MP-oalist ys) =
(OAlist-eq-ntm xs ys)

by (simp add: oa-ntm.oalist-eq-alt equal-eq poly-mapping-eq-iff)

lemma map-MP-oalist [code]: Poly-Mapping.map f (MP-oalist xs) = MP-oalist
(OAlist-map-val-ntm (λ-. f) xs)
proof −

have eq: OAlist-map-val-ntm (λ-. f) xs = OAlist-map-val-ntm (λ- c. f c when c
6= 0) xs

proof (rule oa-ntm.map-val-cong)
fix t c
assume ∗: (t, c) ∈ set (fst (list-of-oalist-ntm xs))
hence fst (t, c) ∈ fst ‘ set (fst (list-of-oalist-ntm xs)) by (rule imageI)
hence OAlist-lookup-ntm xs t 6= 0
by (simp add: oa-ntm.in-sorted-domain-iff-lookup[simplified oa-ntm.set-sorted-domain])

moreover from ∗ have OAlist-lookup-ntm xs t = c by (rule oa-ntm.lookup-eq-valueI)
ultimately have c 6= 0 by simp
thus f c = (f c when c 6= 0) by simp

qed
show ?thesis
by (rule poly-mapping-eqI , simp add: Poly-Mapping.map.rep-eq eq, rule oa-ntm.lookup-map-val[symmetric],

simp)
qed

lemma range-MP-oalist [code]: Poly-Mapping.range (MP-oalist xs) = set (map snd

407

(fst (list-of-oalist-ntm xs)))
proof (simp add: Poly-Mapping.range.rep-eq, intro set-eqI iffI)

fix c
assume c ∈ range (OAlist-lookup-ntm xs) − {0}
hence c ∈ range (OAlist-lookup-ntm xs) and c 6= 0 by simp-all
from this(1) obtain t where OAlist-lookup-ntm xs t = c by fastforce
with ‹c 6= 0 › have (t, c) ∈ set (fst (list-of-oalist-ntm xs)) by (simp add:

oa-ntm.lookup-eq-value)
hence snd (t, c) ∈ snd ‘ set (fst (list-of-oalist-ntm xs)) by (rule imageI)
thus c ∈ snd ‘ set (fst (list-of-oalist-ntm xs)) by simp

next
fix c
assume c ∈ snd ‘ set (fst (list-of-oalist-ntm xs))
then obtain t where ∗: (t, c) ∈ set (fst (list-of-oalist-ntm xs)) by fastforce
hence fst (t, c) ∈ fst ‘ set (fst (list-of-oalist-ntm xs)) by (rule imageI)
hence OAlist-lookup-ntm xs t 6= 0
by (simp add: oa-ntm.in-sorted-domain-iff-lookup[simplified oa-ntm.set-sorted-domain])

moreover from ∗ have OAlist-lookup-ntm xs t = c by (rule oa-ntm.lookup-eq-valueI)
ultimately show c ∈ range (OAlist-lookup-ntm xs) − {0} by fastforce

qed

lemma if-poly-mapping-eq-iff :
(if x = y then a else b) = (if (∀ i∈keys x ∪ keys y. lookup x i = lookup y i) then

a else b)
by simp (metis UnI1 UnI2 in-keys-iff poly-mapping-eqI)

lemma keys-add-eq: keys (a + b) = keys a ∪ keys b − {x ∈ keys a ∩ keys b. lookup
a x + lookup b x = 0}

by (auto simp: in-keys-iff lookup-add add-eq-0-iff
simp del: lookup-not-eq-zero-eq-in-keys)

locale gd-nat-term =
gd-term pair-of-term term-of-pair

λs t. le-of-nat-term-order cmp-term (term-of-pair (s, the-min)) (term-of-pair
(t, the-min))

λs t. lt-of-nat-term-order cmp-term (term-of-pair (s, the-min)) (term-of-pair
(t, the-min))

le-of-nat-term-order cmp-term
lt-of-nat-term-order cmp-term

for pair-of-term:: ′t::nat-term ⇒ (′a::{nat-term,graded-dickson-powerprod} ×
′k::{countable,the-min,wellorder})

and term-of-pair ::(′a × ′k) ⇒ ′t
and cmp-term +

assumes splus-eq-splus: t ⊕ u = nat-term-class.splus (term-of-pair (t, the-min))
u
begin

definition shift-map-keys :: ′a⇒ (′b⇒ ′b)⇒ (′t, ′b) oalist-ntm ⇒ (′t, ′b::semiring-0)
oalist-ntm

408

where shift-map-keys t f xs = OAlist-ntm (map-raw (λkv. (t ⊕ fst kv, f (snd
kv))) (list-of-oalist-ntm xs))

lemma list-of-oalist-shift-keys:
list-of-oalist-ntm (shift-map-keys t f xs) = (map-raw (λkv. (t ⊕ fst kv, f (snd

kv))) (list-of-oalist-ntm xs))
unfolding shift-map-keys-def
by (rule oa-ntm.list-of-oalist-of-list-id, rule ko-ntm.oalist-inv-map-raw, fact oal-

ist-inv-list-of-oalist-ntm,
simp add: nat-term-compare-inv-conv[symmetric] nat-term-compare-inv-def

splus-eq-splus nat-term-compare-splus)

lemma lookup-shift-map-keys-plus:
lookup (MP-oalist (shift-map-keys t ((∗) c) xs)) (t ⊕ u) = c ∗ lookup (MP-oalist

xs) u (is ?l = ?r)
proof −

let ?f = λkv. (t ⊕ fst kv, c ∗ snd kv)
have ?l = lookup-ko-ntm (map-raw ?f (list-of-oalist-ntm xs)) (fst (?f (u, c)))

by (simp add: oa-ntm.lookup-def list-of-oalist-shift-keys)
also have ... = snd (?f (u, lookup-ko-ntm (list-of-oalist-ntm xs) u))

by (rule ko-ntm.lookup-raw-map-raw, fact oalist-inv-list-of-oalist-ntm, simp,
simp add: nat-term-compare-inv-conv[symmetric] nat-term-compare-inv-def

splus-eq-splus nat-term-compare-splus)
also have ... = ?r by (simp add: oa-ntm.lookup-def)
finally show ?thesis .

qed

lemma keys-shift-map-keys-subset:
keys (MP-oalist (shift-map-keys t ((∗) c) xs)) ⊆ ((⊕) t) ‘ keys (MP-oalist xs) (is

?l ⊆ ?r)
proof −

let ?f = λkv. (t ⊕ fst kv, c ∗ snd kv)
have ?l = fst ‘ set (fst (map-raw ?f (list-of-oalist-ntm xs)))

by (simp add: keys-MP-oalist list-of-oalist-shift-keys)
also from ko-ntm.map-raw-subset have ... ⊆ fst ‘ ?f ‘ set (fst (list-of-oalist-ntm

xs))
by (rule image-mono)

also have ... ⊆ ?r by (simp add: keys-MP-oalist image-image)
finally show ?thesis .

qed

lemma monom-mult-MP-oalist [code]:
monom-mult c t (MP-oalist xs) =

MP-oalist (if c = 0 then OAlist-empty-ntm (snd (list-of-oalist-ntm xs)) else
shift-map-keys t ((∗) c) xs)
proof (cases c = 0)

case True
hence monom-mult c t (MP-oalist xs) = 0 using monom-mult-zero-left by simp
thus ?thesis using True by simp

409

next
case False
have monom-mult c t (MP-oalist xs) = MP-oalist (shift-map-keys t ((∗) c) xs)
proof (rule poly-mapping-eqI , simp add: lookup-monom-mult del: MP-oalist.rep-eq,

intro conjI impI)
fix u
assume t addsp u
then obtain v where u = t ⊕ v by (rule adds-ppE)
thus c ∗ lookup (MP-oalist xs) (u 	 t) = lookup (MP-oalist (shift-map-keys t

((∗) c) xs)) u
by (simp add: splus-sminus lookup-shift-map-keys-plus del: MP-oalist.rep-eq)

next
fix u
assume ¬ t addsp u
have u /∈ keys (MP-oalist (shift-map-keys t ((∗) c) xs))
proof

assume u ∈ keys (MP-oalist (shift-map-keys t ((∗) c) xs))
also have ... ⊆ ((⊕) t) ‘ keys (MP-oalist xs) by (fact keys-shift-map-keys-subset)

finally obtain v where u = t ⊕ v ..
hence t addsp u by (rule adds-ppI)
with ‹¬ t addsp u› show False ..

qed
thus lookup (MP-oalist (shift-map-keys t ((∗) c) xs)) u = 0 by (simp add:

in-keys-iff)
qed
thus ?thesis by (simp add: False)

qed

lemma mult-scalar-MP-oalist [code]:
(MP-oalist xs) � (MP-oalist ys) =

(if is-zero (MP-oalist xs) then
MP-oalist (OAlist-empty-ntm (snd (list-of-oalist-ntm ys)))

else
let ct = OAlist-hd-ntm xs in
monom-mult (snd ct) (fst ct) (MP-oalist ys) + (MP-oalist (OAlist-tl-ntm

xs)) � (MP-oalist ys))
proof (split if-split, intro conjI impI)

assume is-zero (MP-oalist xs)
thus MP-oalist xs �MP-oalist ys = MP-oalist (OAlist-empty-ntm (snd (list-of-oalist-ntm

ys)))
by (simp add: is-zero-def)

next
assume ¬ is-zero (MP-oalist xs)
hence ∗: fst (list-of-oalist-ntm xs) 6= [] by (simp add: is-zero-MP-oalist List.null-def)
define ct where ct = OAlist-hd-ntm xs
have eq: except (MP-oalist xs) {fst ct} = MP-oalist (OAlist-tl-ntm xs)

by (rule poly-mapping-eqI , simp add: lookup-except ct-def oa-ntm.lookup-tl ′)
have MP-oalist xs � MP-oalist ys =

monom-mult (lookup (MP-oalist xs) (fst ct)) (fst ct) (MP-oalist ys) +

410

except (MP-oalist xs) {fst ct} � MP-oalist ys by (fact mult-scalar-rec-left)
also have ... = monom-mult (snd ct) (fst ct) (MP-oalist ys) + except (MP-oalist

xs) {fst ct} � MP-oalist ys
using ∗ by (simp add: ct-def oa-ntm.snd-hd)

also have ... = monom-mult (snd ct) (fst ct) (MP-oalist ys) + MP-oalist (OAlist-tl-ntm
xs) � MP-oalist ys

by (simp only: eq)
finally show MP-oalist xs � MP-oalist ys =

(let ct = OAlist-hd-ntm xs in
monom-mult (snd ct) (fst ct) (MP-oalist ys) + MP-oalist (OAlist-tl-ntm

xs) � MP-oalist ys)
by (simp add: ct-def Let-def)

qed

end

15.2.1 Special case of addition: adding monomials
definition plus-monomial-less :: (′a ⇒0

′b) ⇒ ′b ⇒ ′a ⇒ (′a ⇒0
′b::monoid-add)

where plus-monomial-less p c u = p + monomial c u

plus-monomial-less is useful when adding a monomial to a polynomial,
where the term of the monomial is known to be smaller than all terms in
the polynomial, because it can be implemented more efficiently than general
addition.
lemma plus-monomial-less-MP-oalist [code]:

plus-monomial-less (MP-oalist xs) c u = MP-oalist (OAlist-update-by-fun-gr-ntm
u (λc0 . c0 + c) xs)

unfolding plus-monomial-less-def oa-ntm.update-by-fun-gr-eq-update-by-fun
by (rule poly-mapping-eqI , simp add: lookup-plus-fun oa-ntm.lookup-update-by-fun

lookup-single)

plus-monomial-less is computed by OAlist-update-by-fun-gr-ntm, because
greater terms come before smaller ones in oalist-ntm.

15.2.2 Constructors
definition distr0 ko xs = MP-oalist (oalist-of-list-ntm (xs, ko)) — sparse repre-
sentation

definition V 0 :: ′a ⇒ (′a, nat) pp ⇒0
′b::{one,zero} where

V 0 n ≡ monomial 1 (single-pp n 1)

definition C 0 :: ′b ⇒ (′a, nat) pp ⇒0
′b::zero where C 0 c ≡ monomial c 0

lemma C 0-one: C 0 1 = 1
by (simp add: C 0-def)

lemma C 0-numeral: C 0 (numeral x) = numeral x

411

by (auto intro!: poly-mapping-eqI simp: C 0-def lookup-numeral)

lemma C 0-minus: C 0 (− x) = − C 0 x
by (simp add: C 0-def single-uminus)

lemma C 0-zero: C 0 0 = 0
by (auto intro!: poly-mapping-eqI simp: C 0-def)

lemma V 0-power : V 0 v ^ n = monomial 1 (single-pp v n)
by (induction n) (auto simp: V 0-def mult-single single-pp-plus)

lemma single-MP-oalist [code]: Poly-Mapping.single k v = distr0 nat-term-order-of-le
[(k, v)]

unfolding distr0-def by (rule poly-mapping-eqI , simp add: lookup-single OAl-
ist-lookup-ntm-single)

lemma one-MP-oalist [code]: 1 = distr0 nat-term-order-of-le [(0 , 1)]
by (metis single-MP-oalist single-one)

lemma except-MP-oalist [code]: except (MP-oalist xs) S = MP-oalist (OAlist-filter-ntm
(λkv. fst kv /∈ S) xs)

by (rule poly-mapping-eqI , simp add: lookup-except oa-ntm.lookup-filter)

15.2.3 Changing the Internal Order
definition change-ord :: ′a::nat-term-compare nat-term-order ⇒ (′a ⇒0

′b) ⇒ (′a
⇒0

′b)
where change-ord to = (λx. x)

lemma change-ord-MP-oalist [code]: change-ord to (MP-oalist xs) = MP-oalist
(OAlist-reorder-ntm to xs)

by (rule poly-mapping-eqI , simp add: change-ord-def oa-ntm.lookup-reorder)

15.2.4 Ordered Power-Products
lemma foldl-assoc:

assumes
∧

x y z. f (f x y) z = f x (f y z)
shows foldl f (f a b) xs = f a (foldl f b xs)

proof (induct xs arbitrary: a b)
fix a b
show foldl f (f a b) [] = f a (foldl f b []) by simp

next
fix a b x xs
assume

∧
a b. foldl f (f a b) xs = f a (foldl f b xs)

from assms[of a b x] this[of a f b x]
show foldl f (f a b) (x # xs) = f a (foldl f b (x # xs)) unfolding foldl-Cons

by simp
qed

context gd-nat-term

412

begin

definition ord-pp :: ′a ⇒ ′a ⇒ bool
where ord-pp s t = le-of-nat-term-order cmp-term (term-of-pair (s, the-min))

(term-of-pair (t, the-min))

definition ord-pp-strict :: ′a ⇒ ′a ⇒ bool
where ord-pp-strict s t = lt-of-nat-term-order cmp-term (term-of-pair (s, the-min))

(term-of-pair (t, the-min))

lemma lt-MP-oalist [code]:
lt (MP-oalist xs) = (if is-zero (MP-oalist xs) then min-term else fst (OAlist-min-key-val-ntm

cmp-term xs))
proof (split if-split, intro conjI impI)

assume is-zero (MP-oalist xs)
thus lt (MP-oalist xs) = min-term by (simp add: is-zero-def)

next
assume ¬ is-zero (MP-oalist xs)
hence fst (list-of-oalist-ntm xs) 6= [] by (simp add: is-zero-MP-oalist List.null-def)
show lt (MP-oalist xs) = fst (OAlist-min-key-val-ntm cmp-term xs)
proof (rule lt-eqI-keys)

show fst (OAlist-min-key-val-ntm cmp-term xs) ∈ keys (MP-oalist xs)
by (simp add: keys-MP-oalist, rule imageI , rule oa-ntm.min-key-val-in, fact)

next
fix u
assume u ∈ keys (MP-oalist xs)

also have ... = fst ‘ set (fst (list-of-oalist-ntm xs)) by (simp add: keys-MP-oalist)
finally obtain z where z ∈ set (fst (list-of-oalist-ntm xs)) and u = fst z ..

from this(1) have ko.le (key-order-of-nat-term-order-inv cmp-term) (fst (OAlist-min-key-val-ntm
cmp-term xs)) u

unfolding ‹u = fst z› by (rule oa-ntm.min-key-val-minimal)
thus le-of-nat-term-order cmp-term u (fst (OAlist-min-key-val-ntm cmp-term

xs))
by (simp add: le-of-nat-term-order-alt)

qed
qed

lemma lc-MP-oalist [code]:
lc (MP-oalist xs) = (if is-zero (MP-oalist xs) then 0 else snd (OAlist-min-key-val-ntm

cmp-term xs))
proof (split if-split, intro conjI impI)

assume is-zero (MP-oalist xs)
thus lc (MP-oalist xs) = 0 by (simp add: is-zero-def)

next
assume ¬ is-zero (MP-oalist xs)
moreover from this have fst (list-of-oalist-ntm xs) 6= [] by (simp add: is-zero-MP-oalist

List.null-def)
ultimately show lc (MP-oalist xs) = snd (OAlist-min-key-val-ntm cmp-term xs)

by (simp add: lc-def lt-MP-oalist oa-ntm.snd-min-key-val)

413

qed

lemma tail-MP-oalist [code]: tail (MP-oalist xs) = MP-oalist (OAlist-except-min-ntm
cmp-term xs)
proof (cases is-zero (MP-oalist xs))

case True
hence fst (list-of-oalist-ntm xs) = [] by (simp add: is-zero-MP-oalist List.null-def)
hence fst (list-of-oalist-ntm (OAlist-except-min-ntm cmp-term xs)) = []

by (rule oa-ntm.except-min-Nil)
hence is-zero (MP-oalist (OAlist-except-min-ntm cmp-term xs))

by (simp add: is-zero-MP-oalist List.null-def)
with True show ?thesis by (simp add: is-zero-def)

next
case False
show ?thesis by (rule poly-mapping-eqI , simp add: lookup-tail-2 oa-ntm.lookup-except-min ′

lt-MP-oalist False)
qed

definition comp-opt-p :: (′t ⇒0
′c::zero, ′t ⇒0

′c) comp-opt
where comp-opt-p p q =

(if p = q then Some Eq else if ord-strict-p p q then Some Lt else if
ord-strict-p q p then Some Gt else None)

lemma comp-opt-p-MP-oalist [code]:
comp-opt-p (MP-oalist xs) (MP-oalist ys) =

OAlist-lex-ord-ntm cmp-term (λ- x y. if x = y then Some Eq else if x = 0 then
Some Lt else if y = 0 then Some Gt else None) xs ys
proof −

let ?f = λ- x y. if x = y then Some Eq else if x = 0 then Some Lt else if y = 0
then Some Gt else None

show ?thesis
proof (cases comp-opt-p (MP-oalist xs) (MP-oalist ys) = Some Eq)

case True
hence MP-oalist xs = MP-oalist ys by (simp add: comp-opt-p-def split: if-splits)
hence lookup (MP-oalist xs) = lookup (MP-oalist ys) by (rule arg-cong)
hence eq: OAlist-lookup-ntm xs = OAlist-lookup-ntm ys by simp
have OAlist-lex-ord-ntm cmp-term ?f xs ys = Some Eq

by (rule oa-ntm.lex-ord-EqI , simp add: eq)
with True show ?thesis by simp

next
case False
hence neq: MP-oalist xs 6= MP-oalist ys by (simp add: comp-opt-p-def split:

if-splits)
then obtain v where 1 : v ∈ keys (MP-oalist xs) ∪ keys (MP-oalist ys)

and 2 : lookup (MP-oalist xs) v 6= lookup (MP-oalist ys) v
and 3 :

∧
u. lt-of-nat-term-order cmp-term v u =⇒ lookup (MP-oalist xs) u =

lookup (MP-oalist ys) u
by (rule poly-mapping-neqE , blast)

show ?thesis

414

proof (rule HOL.sym, rule oa-ntm.lex-ord-valI)
from 1 show v ∈ fst ‘ set (fst (list-of-oalist-ntm xs)) ∪ fst ‘ set (fst

(list-of-oalist-ntm ys))
by (simp add: keys-MP-oalist)

next
from 2 have 4 : OAlist-lookup-ntm xs v 6= OAlist-lookup-ntm ys v by simp
show comp-opt-p (MP-oalist xs) (MP-oalist ys) =

(if OAlist-lookup-ntm xs v = OAlist-lookup-ntm ys v then Some Eq
else if OAlist-lookup-ntm xs v = 0 then Some Lt
else if OAlist-lookup-ntm ys v = 0 then Some Gt else None)

proof (simp add: 4 , intro conjI impI)
assume OAlist-lookup-ntm ys v = 0 and OAlist-lookup-ntm xs v = 0
with 4 show comp-opt-p (MP-oalist xs) (MP-oalist ys) = Some Lt by simp

next
assume OAlist-lookup-ntm xs v 6= 0 and OAlist-lookup-ntm ys v = 0
hence lookup (MP-oalist ys) v = 0 and lookup (MP-oalist xs) v 6= 0 by

simp-all
hence ord-strict-p (MP-oalist ys) (MP-oalist xs) using 3 [symmetric]

by (rule ord-strict-pI)
with neq show comp-opt-p (MP-oalist xs) (MP-oalist ys) = Some Gt by

(auto simp: comp-opt-p-def)
next

assume OAlist-lookup-ntm ys v 6= 0 and OAlist-lookup-ntm xs v = 0
hence lookup (MP-oalist xs) v = 0 and lookup (MP-oalist ys) v 6= 0 by

simp-all
hence ord-strict-p (MP-oalist xs) (MP-oalist ys) using 3 by (rule ord-strict-pI)

with neq show comp-opt-p (MP-oalist xs) (MP-oalist ys) = Some Lt by
(auto simp: comp-opt-p-def)

next
assume OAlist-lookup-ntm xs v 6= 0
hence lookup (MP-oalist xs) v 6= 0 by simp
with 2 have a: ¬ ord-strict-p (MP-oalist xs) (MP-oalist ys) using 3 by

(rule not-ord-strict-pI)
assume OAlist-lookup-ntm ys v 6= 0
hence lookup (MP-oalist ys) v 6= 0 by simp
with 2 [symmetric] have ¬ ord-strict-p (MP-oalist ys) (MP-oalist xs)

using 3 [symmetric] by (rule not-ord-strict-pI)
with neq a show comp-opt-p (MP-oalist xs) (MP-oalist ys) = None by (auto

simp: comp-opt-p-def)
qed

next
fix u
assume ko.lt (key-order-of-nat-term-order-inv cmp-term) u v

hence lt-of-nat-term-order cmp-term v u by (simp only: lt-of-nat-term-order-alt)
hence lookup (MP-oalist xs) u = lookup (MP-oalist ys) u by (rule 3)
thus (if OAlist-lookup-ntm xs u = OAlist-lookup-ntm ys u then Some Eq

else if OAlist-lookup-ntm xs u = 0 then Some Lt
else if OAlist-lookup-ntm ys u = 0 then Some Gt else None) = Some Eq

by simp

415

qed fact
qed

qed

lemma compute-ord-p [code]: ord-p p q = (let aux = comp-opt-p p q in aux =
Some Lt ∨ aux = Some Eq)

by (auto simp: ord-p-def comp-opt-p-def)

lemma compute-ord-p-strict [code]: ord-strict-p p q = (comp-opt-p p q = Some Lt)
by (auto simp: comp-opt-p-def)

lemma keys-to-list-MP-oalist [code]: keys-to-list (MP-oalist xs) = OAlist-sorted-domain-ntm
cmp-term xs
proof −

have eq: ko.lt (key-order-of-nat-term-order-inv cmp-term) = ord-term-strict-conv
by (intro ext, simp add: lt-of-nat-term-order-alt)

have 1 : irreflp ord-term-strict-conv by (rule irreflpI , simp)
have 2 : transp ord-term-strict-conv by (rule transpI , simp)
have antisymp ord-term-strict-conv by (rule antisympI , simp)
moreover have 3 : sorted-wrt ord-term-strict-conv (keys-to-list (MP-oalist xs))

unfolding keys-to-list-def by (fact pps-to-list-sorted-wrt)
moreover note -
moreover have 4 : sorted-wrt ord-term-strict-conv (OAlist-sorted-domain-ntm

cmp-term xs)
unfolding eq[symmetric] by (fact oa-ntm.sorted-sorted-domain)

ultimately show ?thesis
proof (rule sorted-wrt-distinct-set-unique)
from 1 2 3 show distinct (keys-to-list (MP-oalist xs)) by (rule distinct-sorted-wrt-irrefl)

next
from 1 2 4 show distinct (OAlist-sorted-domain-ntm cmp-term xs) by (rule

distinct-sorted-wrt-irrefl)
next
show set (keys-to-list (MP-oalist xs)) = set (OAlist-sorted-domain-ntm cmp-term

xs)
by (simp add: set-keys-to-list keys-MP-oalist oa-ntm.set-sorted-domain)

qed
qed

end

lifting-update poly-mapping.lifting
lifting-forget poly-mapping.lifting

15.3 Interpretations
lemma term-powerprod-gd-term:
fixes pair-of-term :: ′t::nat-term ⇒ (′a::{graded-dickson-powerprod,nat-pp-compare}
× ′k::{the-min,wellorder})

assumes term-powerprod pair-of-term term-of-pair

416

and
∧

v. fst (rep-nat-term v) = rep-nat-pp (fst (pair-of-term v))
and

∧
t. snd (rep-nat-term (term-of-pair (t, the-min))) = 0

and
∧

v w. snd (pair-of-term v) ≤ snd (pair-of-term w) =⇒ snd (rep-nat-term
v) ≤ snd (rep-nat-term w)

and
∧

s t k. term-of-pair (s + t, k) = splus (term-of-pair (s, k)) (term-of-pair
(t, k))

and
∧

t v. term-powerprod.splus pair-of-term term-of-pair t v = splus (term-of-pair
(t, the-min)) v

shows gd-term pair-of-term term-of-pair
(λs t. le-of-nat-term-order cmp-term (term-of-pair (s, the-min)) (term-of-pair

(t, the-min)))
(λs t. lt-of-nat-term-order cmp-term (term-of-pair (s, the-min)) (term-of-pair

(t, the-min)))
(le-of-nat-term-order cmp-term)
(lt-of-nat-term-order cmp-term)

proof −
from assms(1) interpret tp: term-powerprod pair-of-term term-of-pair .
let ?f = λx. term-of-pair (x, the-min)
show ?thesis
proof (intro gd-term.intro ordered-term.intro)

from assms(1) show term-powerprod pair-of-term term-of-pair .
next

show ordered-powerprod (λs t. le-of-nat-term-order cmp-term (?f s) (?f t))
(λs t. lt-of-nat-term-order cmp-term (?f s) (?f t))

proof (intro ordered-powerprod.intro ordered-powerprod-axioms.intro)
show class.linorder (λs t. le-of-nat-term-order cmp-term (?f s) (?f t))

(λs t. lt-of-nat-term-order cmp-term (?f s) (?f t))
proof (unfold-locales, simp-all add: lt-of-nat-term-order-alt le-of-nat-term-order-alt

ko.linear ko.less-le-not-le)
fix x y
assume ko.le (key-order-of-nat-term-order-inv cmp-term) (term-of-pair (x,

the-min)) (term-of-pair (y, the-min))
and ko.le (key-order-of-nat-term-order-inv cmp-term) (term-of-pair (y,

the-min)) (term-of-pair (x, the-min))
hence term-of-pair (x, the-min) = term-of-pair (y, the-min)

by (rule ko.antisym)
hence (x, the-min) = (y, the-min:: ′k) by (rule tp.term-of-pair-injective)
thus x = y by simp

qed
next

fix t
show le-of-nat-term-order cmp-term (?f 0) (?f t)

unfolding le-of-nat-term-order
by (rule nat-term-compD1 ′, fact comparator-nat-term-compare, fact nat-term-comp-nat-term-compare,

simp add: assms(3), simp add: assms(2) zero-pp tp.pair-term)
next

fix s t u
assume le-of-nat-term-order cmp-term (?f s) (?f t)
hence le-of-nat-term-order cmp-term (?f (u + s)) (?f (u + t))

417

by (simp add: le-of-nat-term-order assms(5) nat-term-compare-splus)
thus le-of-nat-term-order cmp-term (?f (s + u)) (?f (t + u)) by (simp only:

ac-simps)
qed

next
show class.linorder (le-of-nat-term-order cmp-term) (lt-of-nat-term-order cmp-term)

by (fact linorder-le-of-nat-term-order)
next

show ordered-term-axioms pair-of-term term-of-pair (λs t. le-of-nat-term-order
cmp-term (?f s) (?f t))

(le-of-nat-term-order cmp-term)
proof

fix v w t
assume le-of-nat-term-order cmp-term v w
thus le-of-nat-term-order cmp-term (t ⊕ v) (t ⊕ w)

by (simp add: le-of-nat-term-order assms(6) nat-term-compare-splus)
next

fix v w
assume le-of-nat-term-order cmp-term (?f (tp.pp-of-term v)) (?f (tp.pp-of-term

w))
hence 3 : nat-term-compare cmp-term (?f (tp.pp-of-term v)) (?f (tp.pp-of-term

w)) 6= Gt
by (simp add: le-of-nat-term-order)

assume tp.component-of-term v ≤ tp.component-of-term w
hence 4 : snd (rep-nat-term v) ≤ snd (rep-nat-term w)

by (simp add: tp.component-of-term-def assms(4))
note comparator-nat-term-compare nat-term-comp-nat-term-compare
moreover have fst (rep-nat-term v) = fst (rep-nat-term (?f (tp.pp-of-term

v)))
by (simp add: assms(2) tp.pp-of-term-def tp.pair-term)

moreover have fst (rep-nat-term w) = fst (rep-nat-term (?f (tp.pp-of-term
w)))

by (simp add: assms(2) tp.pp-of-term-def tp.pair-term)
moreover note 4

moreover have snd (rep-nat-term (?f (tp.pp-of-term v))) = snd (rep-nat-term
(?f (tp.pp-of-term w)))

by (simp add: assms(3))
ultimately show le-of-nat-term-order cmp-term v w unfolding le-of-nat-term-order

using 3
by (rule nat-term-compD4 ′′)

qed
qed

qed

lemma gd-term-to-pair-unit:
gd-term (to-pair-unit:: ′a::{nat-term-compare,nat-pp-term,graded-dickson-powerprod}
⇒ -) fst

(λs t. le-of-nat-term-order cmp-term (fst (s, the-min)) (fst (t, the-min)))
(λs t. lt-of-nat-term-order cmp-term (fst (s, the-min)) (fst (t, the-min)))

418

(le-of-nat-term-order cmp-term)
(lt-of-nat-term-order cmp-term)

proof (intro gd-term.intro ordered-term.intro)
show term-powerprod to-pair-unit fst by unfold-locales

next
show ordered-powerprod (λs t. le-of-nat-term-order cmp-term (fst (s, the-min))

(fst (t, the-min)))
(λs t. lt-of-nat-term-order cmp-term (fst (s, the-min)) (fst (t,

the-min)))
unfolding fst-conv using linorder-le-of-nat-term-order

proof (intro ordered-powerprod.intro)
from le-of-nat-term-order-zero-min show ordered-powerprod-axioms (le-of-nat-term-order

cmp-term)
proof (unfold-locales)

fix s t u
assume le-of-nat-term-order cmp-term s t

hence le-of-nat-term-order cmp-term (u + s) (u + t) by (rule le-of-nat-term-order-plus-monotone)
thus le-of-nat-term-order cmp-term (s + u) (t + u) by (simp only: ac-simps)

qed
qed

next
show class.linorder (le-of-nat-term-order cmp-term) (lt-of-nat-term-order cmp-term)

by (fact linorder-le-of-nat-term-order)
next

show ordered-term-axioms to-pair-unit fst (λs t. le-of-nat-term-order cmp-term
(fst (s, the-min)) (fst (t, the-min)))

(le-of-nat-term-order cmp-term) by (unfold-locales, auto intro: le-of-nat-term-order-plus-monotone)
qed

corollary gd-nat-term-to-pair-unit:
gd-nat-term (to-pair-unit:: ′a::{nat-term-compare,nat-pp-term,graded-dickson-powerprod}
⇒ -) fst cmp-term
by (rule gd-nat-term.intro, fact gd-term-to-pair-unit, rule gd-nat-term-axioms.intro,

simp add: splus-pp-term)

lemma gd-term-id:
gd-term (λx::(′a::{nat-term-compare,nat-pp-compare,nat-pp-term,graded-dickson-powerprod}
× ′b::{nat,the-min}). x) (λx. x)

(λs t. le-of-nat-term-order cmp-term (s, the-min) (t, the-min))
(λs t. lt-of-nat-term-order cmp-term (s, the-min) (t, the-min))
(le-of-nat-term-order cmp-term)
(lt-of-nat-term-order cmp-term)

apply (rule term-powerprod-gd-term)
subgoal by unfold-locales
subgoal by (simp add: rep-nat-term-prod-def)
subgoal by (simp add: rep-nat-term-prod-def the-min-eq-zero)
subgoal by (simp add: rep-nat-term-prod-def ord-iff [symmetric])
subgoal by (simp add: splus-prod-def pprod.splus-def)
subgoal by (simp add: splus-prod-def)

419

done

corollary gd-nat-term-id: gd-nat-term (λx. x) (λx. x) cmp-term
for cmp-term :: (′a::{nat-term-compare,nat-pp-compare,nat-pp-term,graded-dickson-powerprod}
× ′c::{nat,the-min}) nat-term-order

by (rule gd-nat-term.intro, fact gd-term-id, rule gd-nat-term-axioms.intro, simp
add: splus-prod-def)

15.4 Computations
type-synonym ′a mpoly-tc = (nat, nat) pp ⇒0

′a

global-interpretation punit0 : gd-nat-term to-pair-unit:: ′a::{nat-term-compare,nat-pp-term,graded-dickson-powerprod}
⇒ - fst cmp-term

rewrites punit.adds-term = (adds)
and punit.pp-of-term = (λx. x)
and punit.component-of-term = (λ-. ())
for cmp-term
defines monom-mult-punit = punit.monom-mult
and mult-scalar-punit = punit.mult-scalar
and shift-map-keys-punit = punit0 .shift-map-keys
and ord-pp-punit = punit0 .ord-pp
and ord-pp-strict-punit = punit0 .ord-pp-strict
and min-term-punit = punit0 .min-term
and lt-punit = punit0 .lt
and lc-punit = punit0 .lc
and tail-punit = punit0 .tail
and comp-opt-p-punit = punit0 .comp-opt-p
and ord-p-punit = punit0 .ord-p
and ord-strict-p-punit = punit0 .ord-strict-p
and keys-to-list-punit = punit0 .keys-to-list
subgoal by (fact gd-nat-term-to-pair-unit)
subgoal by (fact punit-adds-term)
subgoal by (fact punit-pp-of-term)
subgoal by (fact punit-component-of-term)
done

lemma shift-map-keys-punit-MP-oalist [code abstract]:
list-of-oalist-ntm (shift-map-keys-punit t f xs) = map-raw (λ(k, v). (t + k, f v))

(list-of-oalist-ntm xs)
by (simp add: punit0 .list-of-oalist-shift-keys case-prod-beta ′)

lemmas [code] = punit0 .mult-scalar-MP-oalist[unfolded mult-scalar-punit-def punit-mult-scalar]
punit0 .punit-min-term

lemma ord-pp-punit-alt [code-unfold]: ord-pp-punit = le-of-nat-term-order
by (intro ext, simp add: punit0 .ord-pp-def)

lemma ord-pp-strict-punit-alt [code-unfold]: ord-pp-strict-punit = lt-of-nat-term-order

420

by (intro ext, simp add: punit0 .ord-pp-strict-def)

lemma gd-powerprod-ord-pp-punit: gd-powerprod (ord-pp-punit cmp-term) (ord-pp-strict-punit
cmp-term)

unfolding punit0 .ord-pp-def punit0 .ord-pp-strict-def ..

locale trivariate0-rat
begin

abbreviation X ::rat mpoly-tc where X ≡ V 0 (0 ::nat)
abbreviation Y ::rat mpoly-tc where Y ≡ V 0 (1 ::nat)
abbreviation Z ::rat mpoly-tc where Z ≡ V 0 (2 ::nat)

end

experiment begin interpretation trivariate0-rat .

value [code] X ^ 2

value [code] X2 ∗ Z + 2 ∗ Y ^ 3 ∗ Z2

value [code] distr0 DRLEX [(sparse0 [(0 ::nat, 3 ::nat)], 1 ::rat)] = distr0 DRLEX
[(sparse0 [(0 , 3)], 1)]

lemma
ord-strict-p-punit DRLEX (X2 ∗ Z + 2 ∗ Y ^ 3 ∗ Z2) (X2 ∗ Z2 + 2 ∗ Y ^ 3 ∗

Z2)
by eval

lemma
tail-punit DLEX (X2 ∗ Z + 2 ∗ Y ^ 3 ∗ Z2) = X2 ∗ Z
by eval

value [code] min-term-punit::(nat, nat) pp

value [code] is-zero (distr0 DRLEX [(sparse0 [(0 ::nat, 3 ::nat)], 1 ::rat)])

value [code] lt-punit DRLEX (distr0 DRLEX [(sparse0 [(0 ::nat, 3 ::nat)], 1 ::rat)])

lemma
lt-punit DRLEX (X2 ∗ Z + 2 ∗ Y ^ 3 ∗ Z2) = sparse0 [(1 , 3), (2 , 2)]
by eval

lemma
lt-punit DRLEX (X + Y + Z) = sparse0 [(2 , 1)]
by eval

lemma
keys (X2 ∗ Z ^ 3 + 2 ∗ Y ^ 3 ∗ Z2) =

421

{sparse0 [(0 , 2), (2 , 3)], sparse0 [(1 , 3), (2 , 2)]}
by eval

lemma
− 1 ∗ X2 ∗ Z ^ 7 + − 2 ∗ Y ^ 3 ∗ Z2 = − X2 ∗ Z ^ 7 + − 2 ∗ Y ^ 3 ∗ Z2

by eval

lemma
X2 ∗ Z ^ 7 + 2 ∗ Y ^ 3 ∗ Z2 + X2 ∗ Z ^ 4 + − 2 ∗ Y ^ 3 ∗ Z2 = X2 ∗ Z ^

7 + X2 ∗ Z ^ 4
by eval

lemma
X2 ∗ Z ^ 7 + 2 ∗ Y ^ 3 ∗ Z2 − X2 ∗ Z ^ 4 + − 2 ∗ Y ^ 3 ∗ Z2 =

X2 ∗ Z ^ 7 − X2 ∗ Z ^ 4
by eval

lemma
lookup (X2 ∗ Z ^ 7 + 2 ∗ Y ^ 3 ∗ Z2 + 2) (sparse0 [(0 , 2), (2 , 7)]) = 1
by eval

lemma
X2 ∗ Z ^ 7 + 2 ∗ Y ^ 3 ∗ Z2 6=
X2 ∗ Z ^ 4 + − 2 ∗ Y ^ 3 ∗ Z2

by eval

lemma
0 ∗ X^2 ∗ Z^7 + 0 ∗ Y^3∗Z2 = 0
by eval

lemma
monom-mult-punit 3 (sparse0 [(1 , 2 ::nat)]) (X2 ∗ Z + 2 ∗ Y ^ 3 ∗ Z2) =

3 ∗ Y 2 ∗ Z ∗ X2 + 6 ∗ Y ^ 5 ∗ Z2

by eval

lemma
monomial (−4) (sparse0 [(0 , 2 ::nat)]) = − 4 ∗ X2

by eval

lemma monomial (0 ::rat) (sparse0 [(0 ::nat, 2 ::nat)]) = 0
by eval

lemma
(X2 ∗ Z + 2 ∗ Y ^ 3 ∗ Z2) ∗ (X2 ∗ Z ^ 3 + − 2 ∗ Y ^ 3 ∗ Z2) =

X ^ 4 ∗ Z ^ 4 + − 2 ∗ X2 ∗ Z ^ 3 ∗ Y ^ 3 +
− 4 ∗ Y ^ 6 ∗ Z ^ 4 + 2 ∗ Y ^ 3 ∗ Z ^ 5 ∗ X2

by eval

end

422

15.5 Code setup for type MPoly
postprocessing from Var0, Const0 to Var , Const.
lemmas [code-post] =

plus-mpoly.abs-eq[symmetric]
times-mpoly.abs-eq[symmetric]
one-mpoly-def [symmetric]
Var .abs-eq[symmetric]
Const.abs-eq[symmetric]

instantiation mpoly::({equal, zero})equal begin

lift-definition equal-mpoly:: ′a mpoly ⇒ ′a mpoly ⇒ bool is HOL.equal .

instance proof standard qed (transfer , rule equal-eq)

end

end

16 Quasi-Poly-Mapping Power-Products
theory Quasi-PM-Power-Products

imports MPoly-Type-Class-Ordered
begin

In this theory we introduce a subclass of graded-dickson-powerprod that
approximates polynomial mappings even closer. We need this class for
signature-based Gröbner basis algorithms.
definition (in monoid-add) hom-grading-fun :: (′a ⇒ nat) ⇒ (nat ⇒ ′a ⇒ ′a) ⇒
bool

where hom-grading-fun d f ←→ (∀n. (∀ s t. f n (s + t) = f n s + f n t) ∧
(∀ t. d (f n t) ≤ n ∧ (d t ≤ n −→ f n t = t)))

definition (in monoid-add) hom-grading :: (′a ⇒ nat) ⇒ bool
where hom-grading d ←→ (∃ f . hom-grading-fun d f)

definition (in monoid-add) decr-grading :: (′a ⇒ nat) ⇒ nat ⇒ ′a ⇒ ′a
where decr-grading d = (SOME f . hom-grading-fun d f)

lemma decr-grading:
assumes hom-grading d
shows hom-grading-fun d (decr-grading d)

proof −
from assms obtain f where hom-grading-fun d f unfolding hom-grading-def

..
thus ?thesis unfolding decr-grading-def by (metis someI)

qed

423

lemma decr-grading-plus:
hom-grading d =⇒ decr-grading d n (s + t) = decr-grading d n s + decr-grading

d n t
using decr-grading unfolding hom-grading-fun-def by blast

lemma decr-grading-zero:
assumes hom-grading d
shows decr-grading d n 0 = (0 :: ′a::cancel-comm-monoid-add)

proof −
have decr-grading d n 0 = decr-grading d n (0 + 0) by simp
also from assms have ... = decr-grading d n 0 + decr-grading d n 0 by (rule

decr-grading-plus)
finally show ?thesis by simp

qed

lemma decr-grading-le: hom-grading d =⇒ d (decr-grading d n t) ≤ n
using decr-grading unfolding hom-grading-fun-def by blast

lemma decr-grading-idI : hom-grading d =⇒ d t ≤ n =⇒ decr-grading d n t = t
using decr-grading unfolding hom-grading-fun-def by blast

class quasi-pm-powerprod = ulcs-powerprod +
assumes ex-hgrad: ∃ d:: ′a ⇒ nat. dickson-grading d ∧ hom-grading d

begin

subclass graded-dickson-powerprod
proof

from ex-hgrad show ∃ d. dickson-grading d by blast
qed

end

lemma hom-grading-varnum:
hom-grading ((varnum X)::(′x::countable ⇒0

′b::add-wellorder) ⇒ nat)
proof −

define f where f = (λn t. (except t (− (X ∪ {x. elem-index x < n}))):: ′x ⇒0
′b)

show ?thesis unfolding hom-grading-def hom-grading-fun-def
proof (intro exI allI conjI impI)

fix n s t
show f n (s + t) = f n s + f n t by (simp only: f-def except-plus)

next
fix n t
show varnum X (f n t) ≤ n by (auto simp: varnum-le-iff keys-except f-def)

next
fix n t
show varnum X t ≤ n =⇒ f n t = t by (auto simp: f-def except-id-iff var-

num-le-iff)

424

qed
qed

instance poly-mapping :: (countable, add-wellorder) quasi-pm-powerprod
by (standard, intro exI conjI , fact dickson-grading-varnum-empty, fact hom-grading-varnum)

context term-powerprod
begin

definition decr-grading-term :: (′a ⇒ nat) ⇒ nat ⇒ ′t ⇒ ′t
where decr-grading-term d n v = term-of-pair (decr-grading d n (pp-of-term v),

component-of-term v)

definition decr-grading-p :: (′a⇒ nat)⇒ nat ⇒ (′t ⇒0
′b)⇒ (′t ⇒0

′b::comm-monoid-add)
where decr-grading-p d n p = (

∑
v∈keys p. monomial (lookup p v) (decr-grading-term

d n v))

lemma decr-grading-term-splus:
hom-grading d =⇒ decr-grading-term d n (t ⊕ v) = decr-grading d n t ⊕

decr-grading-term d n v
by (simp add: decr-grading-term-def term-simps decr-grading-plus splus-def)

lemma decr-grading-term-le: hom-grading d =⇒ d (pp-of-term (decr-grading-term
d n v)) ≤ n

by (simp add: decr-grading-term-def term-simps decr-grading-le)

lemma decr-grading-term-idI : hom-grading d =⇒ d (pp-of-term v) ≤ n =⇒ decr-grading-term
d n v = v

by (simp add: decr-grading-term-def term-simps decr-grading-idI)

lemma punit-decr-grading-term: punit.decr-grading-term = decr-grading
by (intro ext, simp add: punit.decr-grading-term-def)

lemma decr-grading-p-zero: decr-grading-p d n 0 = 0
by (simp add: decr-grading-p-def)

lemma decr-grading-p-monomial: decr-grading-p d n (monomial c v) = monomial
c (decr-grading-term d n v)

by (simp add: decr-grading-p-def)

lemma decr-grading-p-plus:
decr-grading-p d n (p + q) = (decr-grading-p d n p) + (decr-grading-p d n q)

proof −
from finite-keys finite-keys have fin: finite (keys p ∪ keys q) by (rule finite-UnI)
hence eq1 : (

∑
v∈keys p ∪ keys q. monomial (lookup p v) (decr-grading-term d

n v)) =
(
∑

v∈keys p. monomial (lookup p v) (decr-grading-term d n v))
proof (rule sum.mono-neutral-right)

show ∀ v∈keys p ∪ keys q − keys p. monomial (lookup p v) (decr-grading-term

425

d n v) = 0
by (simp add: in-keys-iff)

qed simp
from fin have eq2 : (

∑
v∈keys p ∪ keys q. monomial (lookup q v) (decr-grading-term

d n v)) =
(
∑

v∈keys q. monomial (lookup q v) (decr-grading-term d n v))
proof (rule sum.mono-neutral-right)

show ∀ v∈keys p ∪ keys q − keys q. monomial (lookup q v) (decr-grading-term
d n v) = 0

by (simp add: in-keys-iff)
qed simp
from fin Poly-Mapping.keys-add
have decr-grading-p d n (p + q) =

(
∑

v∈keys p ∪ keys q. monomial (lookup (p + q) v) (decr-grading-term
d n v))

unfolding decr-grading-p-def
proof (rule sum.mono-neutral-left)

show ∀ v∈keys p ∪ keys q − keys (p + q). monomial (lookup (p + q) v)
(decr-grading-term d n v) = 0

by (simp add: in-keys-iff)
qed
also have ... = (

∑
v∈keys p ∪ keys q. monomial (lookup p v) (decr-grading-term

d n v)) +
(
∑

v∈keys p ∪ keys q. monomial (lookup q v) (decr-grading-term d
n v))

by (simp only: lookup-add single-add sum.distrib)
also have ... = (decr-grading-p d n p) + (decr-grading-p d n q)

by (simp only: eq1 eq2 decr-grading-p-def)
finally show ?thesis .

qed

corollary decr-grading-p-sum: decr-grading-p d n (sum f A) = (
∑

a∈A. decr-grading-p
d n (f a))

using decr-grading-p-zero decr-grading-p-plus by (rule fun-sum-commute)

lemma decr-grading-p-monom-mult:
assumes hom-grading d
shows decr-grading-p d n (monom-mult c t p) = monom-mult c (decr-grading d

n t) (decr-grading-p d n p)
proof (induct p rule: poly-mapping-plus-induct)

case 1
show ?case by (simp add: decr-grading-p-zero)

next
case (2 p a s)
from assms show ?case
by (simp add: monom-mult-dist-right decr-grading-p-plus 2 (3) monom-mult-monomial

decr-grading-p-monomial decr-grading-term-splus)
qed

426

lemma decr-grading-p-mult-scalar :
assumes hom-grading d
shows decr-grading-p d n (p � q) = punit.decr-grading-p d n p � decr-grading-p

d n q
proof (induct p rule: poly-mapping-plus-induct)

case 1
show ?case by (simp add: punit.decr-grading-p-zero decr-grading-p-zero)

next
case (2 p a s)
from assms show ?case
by (simp add: mult-scalar-distrib-right decr-grading-p-plus punit.decr-grading-p-plus

2 (3)
punit.decr-grading-p-monomial mult-scalar-monomial decr-grading-p-monom-mult

punit-decr-grading-term)
qed

lemma decr-grading-p-keys-subset: keys (decr-grading-p d n p) ⊆ decr-grading-term
d n ‘ keys p
proof

fix v
assume v ∈ keys (decr-grading-p d n p)
also have ... ⊆ (

⋃
u∈keys p. keys (monomial (lookup p u) (decr-grading-term d

n u)))
unfolding decr-grading-p-def by (fact keys-sum-subset)

finally obtain u where u ∈ keys p and v ∈ keys (monomial (lookup p u)
(decr-grading-term d n u)) ..

from this(2) have eq: v = decr-grading-term d n u by (simp split: if-split-asm)
show v ∈ decr-grading-term d n ‘ keys p unfolding eq using ‹u ∈ keys p› by

(rule imageI)
qed

lemma decr-grading-p-idI ′:
assumes hom-grading d and

∧
v. v ∈ keys p =⇒ d (pp-of-term v) ≤ n

shows decr-grading-p d n p = p
proof −

have decr-grading-p d n p = (
∑

v ∈ keys p. monomial (lookup p v) v) unfolding
decr-grading-p-def

using refl
proof (rule sum.cong)

fix v
assume v ∈ keys p
hence d (pp-of-term v) ≤ n by (rule assms(2))

with assms(1) have decr-grading-term d n v = v by (rule decr-grading-term-idI)
thus monomial (lookup p v) (decr-grading-term d n v) = monomial (lookup p

v) v by simp
qed
also have ... = p by (fact poly-mapping-sum-monomials)
finally show ?thesis .

qed

427

end

context gd-term
begin

lemma decr-grading-p-idI :
assumes hom-grading d and p ∈ dgrad-p-set d m
shows decr-grading-p d m p = p

proof −
from assms(2) have

∧
v. v ∈ keys p =⇒ d (pp-of-term v) ≤ m

by (auto simp: dgrad-p-set-def dgrad-set-def)
with assms(1) show ?thesis by (rule decr-grading-p-idI ′)

qed

lemma decr-grading-p-dgrad-p-setI :
assumes hom-grading d
shows decr-grading-p d m p ∈ dgrad-p-set d m

proof (rule dgrad-p-setI)
fix v
assume v ∈ keys (decr-grading-p d m p)
hence v ∈ decr-grading-term d m ‘ keys p using decr-grading-p-keys-subset ..
then obtain u where v = decr-grading-term d m u ..
with assms show d (pp-of-term v) ≤ m by (simp add: decr-grading-term-le)

qed

lemma (in gd-term) in-pmdlE-dgrad-p-set:
assumes hom-grading d and B ⊆ dgrad-p-set d m and p ∈ dgrad-p-set d m and

p ∈ pmdl B
obtains A q where finite A and A ⊆ B and

∧
b. q b ∈ punit.dgrad-p-set d m

and p = (
∑

b∈A. q b � b)
proof −

from assms(4) obtain A q0 where finite A and A ⊆ B and p: p = (
∑

b∈A.
q0 b � b)

by (rule pmdl.spanE)
define q where q = (λb. punit.decr-grading-p d m (q0 b))
from ‹finite A› ‹A ⊆ B› show ?thesis
proof

fix b
show q b ∈ punit.dgrad-p-set d m unfolding q-def using assms(1) by (rule

punit.decr-grading-p-dgrad-p-setI)
next
from assms(1 , 3) have p = decr-grading-p d m p by (simp only: decr-grading-p-idI)
also from assms(1) have ... = (

∑
b∈A. q b � (decr-grading-p d m b))

by (simp add: p q-def decr-grading-p-sum decr-grading-p-mult-scalar)
also from refl have ... = (

∑
b∈A. q b � b)

proof (rule sum.cong)
fix b
assume b ∈ A

428

hence b ∈ B using ‹A ⊆ B› ..
hence b ∈ dgrad-p-set d m using assms(2) ..
with assms(1) have decr-grading-p d m b = b by (rule decr-grading-p-idI)
thus q b � decr-grading-p d m b = q b � b by simp

qed
finally show p = (

∑
b∈A. q b � b) .

qed
qed

end

end

17 Multivariate Polynomials with Power-Products
Represented by Polynomial Mappings

theory MPoly-PM
imports Quasi-PM-Power-Products

begin

Many notions introduced in this theory for type (′x ⇒0
′a) ⇒0

′b closely
resemble those introduced in Polynomials.MPoly-Type for type ′a mpoly.
lemma monomial-single-power :
(monomial c (Poly-Mapping.single x k)) ^ n = monomial (c ^ n) (Poly-Mapping.single

x (k ∗ n))
proof −

have eq: (
∑

i = 0 ..<n. Poly-Mapping.single x k) = Poly-Mapping.single x (k ∗
n)

by (induct n, simp-all add: add.commute single-add)
show ?thesis by (simp add: punit.monomial-power eq)

qed

lemma monomial-power-map-scale: (monomial c t) ^ n = monomial (c ^ n) (n ·
t)
proof −

have (
∑

i = 0 ..<n. t) = (
∑

i = 0 ..<n. 1) · t
by (simp only: map-scale-sum-distrib-right map-scale-one-left)

thus ?thesis by (simp add: punit.monomial-power)
qed

lemma times-canc-left:
assumes h ∗ p = h ∗ q and h 6= (0 ::(′x::linorder ⇒0 nat)⇒0

′a::ring-no-zero-divisors)
shows p = q

proof (rule ccontr)
assume p 6= q
hence p − q 6= 0 by simp
with assms(2) have h ∗ (p − q) 6= 0 by simp
hence h ∗ p 6= h ∗ q by (simp add: algebra-simps)

429

thus False using assms(1) ..
qed

lemma times-canc-right:
assumes p ∗ h = q ∗ h and h 6= (0 ::(′x::linorder ⇒0 nat)⇒0

′a::ring-no-zero-divisors)
shows p = q

proof (rule ccontr)
assume p 6= q
hence p − q 6= 0 by simp
hence (p − q) ∗ h 6= 0 using assms(2) by simp
hence p ∗ h 6= q ∗ h by (simp add: algebra-simps)
thus False using assms(1) ..

qed

17.1 Degree
lemma plus-minus-assoc-pm-nat-1 : s + t − u = (s − (u − t)) + (t − (u::- ⇒0

nat))
by (rule poly-mapping-eqI , simp add: lookup-add lookup-minus)

lemma plus-minus-assoc-pm-nat-2 :
s + (t − u) = (s + (except (u − t) (− keys s))) + t − (u::- ⇒0 nat)

proof (rule poly-mapping-eqI)
fix x
show lookup (s + (t − u)) x = lookup (s + except (u − t) (− keys s) + t − u) x
proof (cases x ∈ keys s)

case True
thus ?thesis
by (simp add: plus-minus-assoc-pm-nat-1 lookup-add lookup-minus lookup-except)

next
case False
hence lookup s x = 0 by (simp add: in-keys-iff)
with False show ?thesis

by (simp add: lookup-add lookup-minus lookup-except)
qed

qed

lemma deg-pm-sum: deg-pm (sum t A) = (
∑

a∈A. deg-pm (t a))
by (induct A rule: infinite-finite-induct) (auto simp: deg-pm-plus)

lemma deg-pm-mono: s adds t =⇒ deg-pm s ≤ deg-pm (t::-⇒0 -::add-linorder-min)
by (metis addsE deg-pm-plus le-iff-add)

lemma adds-deg-pm-antisym: s adds t =⇒ deg-pm t ≤ deg-pm (s::-⇒0 -::add-linorder-min)
=⇒ s = t

by (metis (no-types, lifting) add.right-neutral add.right-neutral add-left-cancel
addsE

deg-pm-eq-0-iff deg-pm-mono deg-pm-plus dual-order .antisym)

430

lemma deg-pm-minus:
assumes s adds (t::- ⇒0 -::comm-monoid-add)
shows deg-pm (t − s) = deg-pm t − deg-pm s

proof −
from assms have (t − s) + s = t by (rule adds-minus)
hence deg-pm t = deg-pm ((t − s) + s) by simp
also have . . . = deg-pm (t − s) + deg-pm s by (simp only: deg-pm-plus)
finally show ?thesis by simp

qed

lemma adds-group [simp]: s adds (t:: ′a ⇒0
′b::ab-group-add)

proof (rule addsI)
show t = s + (t − s) by simp

qed

lemmas deg-pm-minus-group = deg-pm-minus[OF adds-group]

lemma deg-pm-minus-le: deg-pm (t − s) ≤ deg-pm (t::- ⇒0 nat)
proof −

have keys (t − s) ⊆ keys t by (rule, simp add: lookup-minus in-keys-iff)
hence deg-pm (t − s) = (

∑
x∈keys t. lookup (t − s) x) using finite-keys by

(rule deg-pm-superset)
also have . . . ≤ (

∑
x∈keys t. lookup t x) by (rule sum-mono) (simp add:

lookup-minus)
also have . . . = deg-pm t by (rule sym, rule deg-pm-superset, fact subset-refl,

fact finite-keys)
finally show ?thesis .

qed

lemma minus-id-iff : t − s = t ←→ keys t ∩ keys (s::- ⇒0 nat) = {}
proof

assume t − s = t
{

fix x
assume x ∈ keys t and x ∈ keys s
hence 0 < lookup t x and 0 < lookup s x by (simp-all add: in-keys-iff)
hence lookup (t − s) x 6= lookup t x by (simp add: lookup-minus)
with ‹t − s = t› have False by simp

}
thus keys t ∩ keys s = {} by blast

next
assume ∗: keys t ∩ keys s = {}
show t − s = t
proof (rule poly-mapping-eqI)

fix x
have lookup t x − lookup s x = lookup t x
proof (cases x ∈ keys t)

case True
with ∗ have x /∈ keys s by blast

431

thus ?thesis by (simp add: in-keys-iff)
next

case False
thus ?thesis by (simp add: in-keys-iff)

qed
thus lookup (t − s) x = lookup t x by (simp only: lookup-minus)

qed
qed

lemma deg-pm-minus-id-iff : deg-pm (t − s) = deg-pm t ←→ keys t ∩ keys (s::-
⇒0 nat) = {}
proof

assume eq: deg-pm (t − s) = deg-pm t
{

fix x
assume x ∈ keys t and x ∈ keys s
hence 0 < lookup t x and 0 < lookup s x by (simp-all add: in-keys-iff)
hence ∗: lookup (t − s) x < lookup t x by (simp add: lookup-minus)
have keys (t − s) ⊆ keys t by (rule, simp add: lookup-minus in-keys-iff)
hence deg-pm (t − s) = (

∑
x∈keys t. lookup (t − s) x) using finite-keys by

(rule deg-pm-superset)
also from finite-keys have . . . < (

∑
x∈keys t. lookup t x)

proof (rule sum-strict-mono-ex1)
show ∀ x∈keys t. lookup (t − s) x ≤ lookup t x by (simp add: lookup-minus)

next
from ‹x ∈ keys t› ∗ show ∃ x∈keys t. lookup (t − s) x < lookup t x ..

qed
also have . . . = deg-pm t by (rule sym, rule deg-pm-superset, fact subset-refl,

fact finite-keys)
finally have False by (simp add: eq)

}
thus keys t ∩ keys s = {} by blast

next
assume keys t ∩ keys s = {}
hence t − s = t by (simp only: minus-id-iff)
thus deg-pm (t − s) = deg-pm t by (simp only:)

qed

definition poly-deg :: ((′x ⇒0
′a::add-linorder) ⇒0

′b::zero) ⇒ ′a where
poly-deg p = (if keys p = {} then 0 else Max (deg-pm ‘ keys p))

definition maxdeg :: ((′x ⇒0
′a::add-linorder) ⇒0

′b::zero) set ⇒ ′a where
maxdeg A = Max (poly-deg ‘ A)

definition mindeg :: ((′x ⇒0
′a::add-linorder) ⇒0

′b::zero) set ⇒ ′a where
mindeg A = Min (poly-deg ‘ A)

lemma poly-deg-monomial: poly-deg (monomial c t) = (if c = 0 then 0 else deg-pm
t)

432

by (simp add: poly-deg-def)

lemma poly-deg-monomial-zero [simp]: poly-deg (monomial c 0) = 0
by (simp add: poly-deg-monomial)

lemma poly-deg-zero [simp]: poly-deg 0 = 0
by (simp only: single-zero[of 0 , symmetric] poly-deg-monomial-zero)

lemma poly-deg-one [simp]: poly-deg 1 = 0
by (simp only: single-one[symmetric] poly-deg-monomial-zero)

lemma poly-degE :
assumes p 6= 0
obtains t where t ∈ keys p and poly-deg p = deg-pm t

proof −
from assms have poly-deg p = Max (deg-pm ‘ keys p) by (simp add: poly-deg-def)
also have . . . ∈ deg-pm ‘ keys p
proof (rule Max-in)

from assms show deg-pm ‘ keys p 6= {} by simp
qed simp
finally obtain t where t ∈ keys p and poly-deg p = deg-pm t ..
thus ?thesis ..

qed

lemma poly-deg-max-keys: t ∈ keys p =⇒ deg-pm t ≤ poly-deg p
using finite-keys by (auto simp: poly-deg-def)

lemma poly-deg-leI : (
∧

t. t ∈ keys p =⇒ deg-pm t ≤ (d:: ′a::add-linorder-min)) =⇒
poly-deg p ≤ d

using finite-keys by (auto simp: poly-deg-def)

lemma poly-deg-lessI :
p 6= 0 =⇒ (

∧
t. t ∈ keys p =⇒ deg-pm t < (d:: ′a::add-linorder-min)) =⇒ poly-deg

p < d
using finite-keys by (auto simp: poly-deg-def)

lemma poly-deg-zero-imp-monomial:
assumes poly-deg p = (0 :: ′a::add-linorder-min)
shows monomial (lookup p 0) 0 = p

proof (rule keys-subset-singleton-imp-monomial, rule)
fix t
assume t ∈ keys p
have t = 0
proof (rule ccontr)

assume t 6= 0
hence deg-pm t 6= 0 by simp
hence 0 < deg-pm t using not-gr-zero by blast
also from ‹t ∈ keys p› have ... ≤ poly-deg p by (rule poly-deg-max-keys)
finally have poly-deg p 6= 0 by simp

433

from this assms show False ..
qed
thus t ∈ {0} by simp

qed

lemma poly-deg-plus-le:
poly-deg (p + q) ≤ max (poly-deg p) (poly-deg (q::(- ⇒0

′a::add-linorder-min) ⇒0

-))
proof (rule poly-deg-leI)

fix t
assume t ∈ keys (p + q)
also have ... ⊆ keys p ∪ keys q by (fact Poly-Mapping.keys-add)
finally show deg-pm t ≤ max (poly-deg p) (poly-deg q)
proof

assume t ∈ keys p
hence deg-pm t ≤ poly-deg p by (rule poly-deg-max-keys)
thus ?thesis by (simp add: le-max-iff-disj)

next
assume t ∈ keys q
hence deg-pm t ≤ poly-deg q by (rule poly-deg-max-keys)
thus ?thesis by (simp add: le-max-iff-disj)

qed
qed

lemma poly-deg-uminus [simp]: poly-deg (−p) = poly-deg p
by (simp add: poly-deg-def keys-uminus)

lemma poly-deg-minus-le:
poly-deg (p − q) ≤ max (poly-deg p) (poly-deg (q::(- ⇒0

′a::add-linorder-min) ⇒0

-))
proof (rule poly-deg-leI)

fix t
assume t ∈ keys (p − q)
also have ... ⊆ keys p ∪ keys q by (fact keys-minus)
finally show deg-pm t ≤ max (poly-deg p) (poly-deg q)
proof

assume t ∈ keys p
hence deg-pm t ≤ poly-deg p by (rule poly-deg-max-keys)
thus ?thesis by (simp add: le-max-iff-disj)

next
assume t ∈ keys q
hence deg-pm t ≤ poly-deg q by (rule poly-deg-max-keys)
thus ?thesis by (simp add: le-max-iff-disj)

qed
qed

lemma poly-deg-times-le:
poly-deg (p ∗ q) ≤ poly-deg p + poly-deg (q::(- ⇒0

′a::add-linorder-min) ⇒0 -)
proof (rule poly-deg-leI)

434

fix t
assume t ∈ keys (p ∗ q)
then obtain u v where u ∈ keys p and v ∈ keys q and t = u + v by (rule

in-keys-timesE)
from ‹u ∈ keys p› have deg-pm u ≤ poly-deg p by (rule poly-deg-max-keys)
moreover from ‹v ∈ keys q› have deg-pm v ≤ poly-deg q by (rule poly-deg-max-keys)
ultimately show deg-pm t ≤ poly-deg p + poly-deg q by (simp add: ‹t = u +

v› deg-pm-plus add-mono)
qed

lemma poly-deg-times:
assumes p 6= 0 and q 6= (0 ::(′x::linorder ⇒0

′a::add-linorder-min)⇒0
′b::semiring-no-zero-divisors)

shows poly-deg (p ∗ q) = poly-deg p + poly-deg q
using poly-deg-times-le

proof (rule antisym)
let ?A = λf . {u. deg-pm u < poly-deg f }
define p1 where p1 = except p (?A p)
define p2 where p2 = except p (− ?A p)
define q1 where q1 = except q (?A q)
define q2 where q2 = except q (− ?A q)
have deg-p1 : deg-pm t = poly-deg p if t ∈ keys p1 for t
proof −

from that have t ∈ keys p and poly-deg p ≤ deg-pm t
by (simp-all add: p1-def keys-except not-less)

from this(1) have deg-pm t ≤ poly-deg p by (rule poly-deg-max-keys)
thus ?thesis using ‹poly-deg p ≤ deg-pm t› by (rule antisym)

qed
have deg-p2 : t ∈ keys p2 =⇒ deg-pm t < poly-deg p for t by (simp add: p2-def

keys-except)
have deg-q1 : deg-pm t = poly-deg q if t ∈ keys q1 for t
proof −

from that have t ∈ keys q and poly-deg q ≤ deg-pm t
by (simp-all add: q1-def keys-except not-less)

from this(1) have deg-pm t ≤ poly-deg q by (rule poly-deg-max-keys)
thus ?thesis using ‹poly-deg q ≤ deg-pm t› by (rule antisym)

qed
have deg-q2 : t ∈ keys q2 =⇒ deg-pm t < poly-deg q for t by (simp add: q2-def

keys-except)
have p: p = p1 + p2 unfolding p1-def p2-def by (fact except-decomp)
have p1 6= 0
proof −
from assms(1) obtain t where t ∈ keys p and poly-deg p = deg-pm t by (rule

poly-degE)
hence t ∈ keys p1 by (simp add: p1-def keys-except)
thus ?thesis by auto

qed
have q: q = q1 + q2 unfolding q1-def q2-def by (fact except-decomp)
have q1 6= 0
proof −

435

from assms(2) obtain t where t ∈ keys q and poly-deg q = deg-pm t by (rule
poly-degE)

hence t ∈ keys q1 by (simp add: q1-def keys-except)
thus ?thesis by auto

qed
with ‹p1 6= 0 › have p1 ∗ q1 6= 0 by simp
hence keys (p1 ∗ q1) 6= {} by simp
then obtain u where u ∈ keys (p1 ∗ q1) by blast
then obtain s t where s ∈ keys p1 and t ∈ keys q1 and u: u = s + t by (rule

in-keys-timesE)
from ‹s ∈ keys p1 › have deg-pm s = poly-deg p by (rule deg-p1)
moreover from ‹t ∈ keys q1 › have deg-pm t = poly-deg q by (rule deg-q1)
ultimately have eq: poly-deg p + poly-deg q = deg-pm u by (simp only: u

deg-pm-plus)
also have . . . ≤ poly-deg (p ∗ q)
proof (rule poly-deg-max-keys)

have u /∈ keys (p1 ∗ q2 + p2 ∗ q)
proof

assume u ∈ keys (p1 ∗ q2 + p2 ∗ q)
also have . . . ⊆ keys (p1 ∗ q2) ∪ keys (p2 ∗ q) by (rule Poly-Mapping.keys-add)

finally have deg-pm u < poly-deg p + poly-deg q
proof

assume u ∈ keys (p1 ∗ q2)
then obtain s ′ t ′ where s ′ ∈ keys p1 and t ′ ∈ keys q2 and u: u = s ′ + t ′

by (rule in-keys-timesE)
from ‹s ′ ∈ keys p1 › have deg-pm s ′ = poly-deg p by (rule deg-p1)

moreover from ‹t ′ ∈ keys q2 › have deg-pm t ′ < poly-deg q by (rule deg-q2)
ultimately show ?thesis by (simp add: u deg-pm-plus)

next
assume u ∈ keys (p2 ∗ q)
then obtain s ′ t ′ where s ′ ∈ keys p2 and t ′ ∈ keys q and u: u = s ′ + t ′

by (rule in-keys-timesE)
from ‹s ′ ∈ keys p2 › have deg-pm s ′ < poly-deg p by (rule deg-p2)

moreover from ‹t ′ ∈ keys q› have deg-pm t ′ ≤ poly-deg q by (rule
poly-deg-max-keys)

ultimately show ?thesis by (simp add: u deg-pm-plus add-less-le-mono)
qed
thus False by (simp only: eq)

qed
with ‹u ∈ keys (p1 ∗ q1)› have u ∈ keys (p1 ∗ q1 + (p1 ∗ q2 + p2 ∗ q)) by

(rule in-keys-plusI1)
thus u ∈ keys (p ∗ q) by (simp only: p q algebra-simps)

qed
finally show poly-deg p + poly-deg q ≤ poly-deg (p ∗ q) .

qed

corollary poly-deg-monom-mult-le:
poly-deg (punit.monom-mult c (t::- ⇒0

′a::add-linorder-min) p) ≤ deg-pm t +
poly-deg p

436

proof −
have poly-deg (punit.monom-mult c t p) ≤ poly-deg (monomial c t) + poly-deg p

by (simp only: times-monomial-left[symmetric] poly-deg-times-le)
also have ... ≤ deg-pm t + poly-deg p by (simp add: poly-deg-monomial)
finally show ?thesis .

qed

lemma poly-deg-monom-mult:
assumes c 6= 0 and p 6= (0 ::(-⇒0

′a::add-linorder-min)⇒0
′b::semiring-no-zero-divisors)

shows poly-deg (punit.monom-mult c t p) = deg-pm t + poly-deg p
proof (rule order .antisym, fact poly-deg-monom-mult-le)

from assms(2) obtain s where s ∈ keys p and poly-deg p = deg-pm s by (rule
poly-degE)

have deg-pm t + poly-deg p = deg-pm (t + s) by (simp add: ‹poly-deg p = deg-pm
s› deg-pm-plus)

also have ... ≤ poly-deg (punit.monom-mult c t p)
proof (rule poly-deg-max-keys)

from ‹s ∈ keys p› show t + s ∈ keys (punit.monom-mult c t p)
unfolding punit.keys-monom-mult[OF assms(1)] by fastforce

qed
finally show deg-pm t + poly-deg p ≤ poly-deg (punit.monom-mult c t p) .

qed

lemma poly-deg-map-scale:
poly-deg (c · p) = (if c = (0 ::-::semiring-no-zero-divisors) then 0 else poly-deg p)
by (simp add: poly-deg-def keys-map-scale)

lemma poly-deg-sum-le: ((poly-deg (sum f A)):: ′a::add-linorder-min) ≤Max (poly-deg
‘ f ‘ A)
proof (cases finite A)

case True
thus ?thesis
proof (induct A)

case empty
show ?case by simp

next
case (insert a A)
show ?case
proof (cases A = {})

case True
thus ?thesis by simp

next
case False
have poly-deg (sum f (insert a A)) ≤ max (poly-deg (f a)) (poly-deg (sum f

A))
by (simp only: comm-monoid-add-class.sum.insert[OF insert(1) insert(2)]

poly-deg-plus-le)
also have ... ≤ max (poly-deg (f a)) (Max (poly-deg ‘ f ‘ A))

using insert(3) max.mono by blast

437

also have ... = (Max (poly-deg ‘ f ‘ (insert a A))) using False by (simp add:
insert(1))

finally show ?thesis .
qed

qed
next

case False
thus ?thesis by simp

qed

lemma poly-deg-prod-le: ((poly-deg (prod f A)):: ′a::add-linorder-min) ≤ (
∑

a∈A.
poly-deg (f a))
proof (cases finite A)

case True
thus ?thesis
proof (induct A)

case empty
show ?case by simp

next
case (insert a A)
have poly-deg (prod f (insert a A)) ≤ (poly-deg (f a)) + (poly-deg (prod f A))

by (simp only: comm-monoid-mult-class.prod.insert[OF insert(1) insert(2)]
poly-deg-times-le)

also have ... ≤ (poly-deg (f a)) + (
∑

a∈A. poly-deg (f a))
using insert(3) add-le-cancel-left by blast
also have ... = (

∑
a∈insert a A. poly-deg (f a)) by (simp add: insert(1)

insert(2))
finally show ?case .

qed
next

case False
thus ?thesis by simp

qed

lemma maxdeg-max:
assumes finite A and p ∈ A
shows poly-deg p ≤ maxdeg A
unfolding maxdeg-def using assms by auto

lemma mindeg-min:
assumes finite A and p ∈ A
shows mindeg A ≤ poly-deg p
unfolding mindeg-def using assms by auto

17.2 Indeterminates
definition indets :: ((′x ⇒0 nat) ⇒0

′b::zero) ⇒ ′x set
where indets p =

⋃
(keys ‘ keys p)

438

definition PPs :: ′x set ⇒ (′x ⇒0 nat) set (‹.[(-)]›)
where PPs X = {t. keys t ⊆ X}

definition Polys :: ′x set ⇒ ((′x ⇒0 nat) ⇒0
′b::zero) set (‹P[(-)]›)

where Polys X = {p. keys p ⊆ .[X]}

17.2.1 indets
lemma in-indetsI :

assumes x ∈ keys t and t ∈ keys p
shows x ∈ indets p
using assms by (auto simp add: indets-def)

lemma in-indetsE :
assumes x ∈ indets p
obtains t where t ∈ keys p and x ∈ keys t
using assms by (auto simp add: indets-def)

lemma keys-subset-indets: t ∈ keys p =⇒ keys t ⊆ indets p
by (auto dest: in-indetsI)

lemma indets-empty-imp-monomial:
assumes indets p = {}
shows monomial (lookup p 0) 0 = p

proof (rule keys-subset-singleton-imp-monomial, rule)
fix t
assume t ∈ keys p
have t = 0
proof (rule ccontr)

assume t 6= 0
hence keys t 6= {} by simp
then obtain x where x ∈ keys t by blast
from this ‹t ∈ keys p› have x ∈ indets p by (rule in-indetsI)
with assms show False by simp

qed
thus t ∈ {0} by simp

qed

lemma finite-indets: finite (indets p)
by (simp only: indets-def , rule finite-UN-I , (rule finite-keys)+)

lemma indets-zero [simp]: indets 0 = {}
by (simp add: indets-def)

lemma indets-one [simp]: indets 1 = {}
by (simp add: indets-def)

lemma indets-monomial-single-subset: indets (monomial c (Poly-Mapping.single v
k)) ⊆ {v}

439

proof
fix x assume x ∈ indets (monomial c (Poly-Mapping.single v k))
then have x = v unfolding indets-def

by (metis UN-E lookup-eq-zero-in-keys-contradict lookup-single-not-eq)
thus x ∈ {v} by simp

qed

lemma indets-monomial-single:
assumes c 6= 0 and k 6= 0
shows indets (monomial c (Poly-Mapping.single v k)) = {v}

proof (rule, fact indets-monomial-single-subset, simp)
from assms show v ∈ indets (monomial c (monomial k v)) by (simp add:

indets-def)
qed

lemma indets-monomial:
assumes c 6= 0
shows indets (monomial c t) = keys t

proof (rule antisym; rule subsetI)
fix x
assume x ∈ indets (monomial c t)
then have lookup t x 6= 0 unfolding indets-def

by (metis UN-E lookup-eq-zero-in-keys-contradict lookup-single-not-eq)
thus x ∈ keys t by (meson lookup-not-eq-zero-eq-in-keys)

next
fix x
assume x ∈ keys t
then have lookup t x 6= 0 by (meson lookup-not-eq-zero-eq-in-keys)
thus x ∈ indets (monomial c t) unfolding indets-def using assms

by (metis UN-iff lookup-not-eq-zero-eq-in-keys lookup-single-eq)
qed

lemma indets-monomial-subset: indets (monomial c t) ⊆ keys t
by (cases c = 0 , simp-all add: indets-def)

lemma indets-monomial-zero [simp]: indets (monomial c 0) = {}
by (simp add: indets-def)

lemma indets-plus-subset: indets (p + q) ⊆ indets p ∪ indets q
proof

fix x
assume x ∈ indets (p + q)
then obtain t where x ∈ keys t and t ∈ keys (p + q) by (metis UN-E indets-def)
hence t ∈ keys p ∪ keys q by (metis Poly-Mapping.keys-add subsetCE)
thus x ∈ indets p ∪ indets q using indets-def ‹x ∈ keys t› by fastforce

qed

lemma indets-uminus [simp]: indets (−p) = indets p
by (simp add: indets-def keys-uminus)

440

lemma indets-minus-subset: indets (p − q) ⊆ indets p ∪ indets q
proof

fix x
assume x ∈ indets (p − q)
then obtain t where x ∈ keys t and t ∈ keys (p − q) by (metis UN-E indets-def)
hence t ∈ keys p ∪ keys q by (metis keys-minus subsetCE)
thus x ∈ indets p ∪ indets q using indets-def ‹x ∈ keys t› by fastforce

qed

lemma indets-times-subset: indets (p ∗ q) ⊆ indets p ∪ indets (q::(-⇒0 -::cancel-comm-monoid-add)
⇒0 -)
proof

fix x
assume x ∈ indets (p ∗ q)
then obtain t where t ∈ keys (p ∗ q) and x ∈ keys t unfolding indets-def by

blast
from this(1) obtain u v where u ∈ keys p v ∈ keys q and t = u + v by (rule

in-keys-timesE)
hence x ∈ keys u ∪ keys v by (metis ‹x ∈ keys t› Poly-Mapping.keys-add sub-

setCE)
thus x ∈ indets p ∪ indets q unfolding indets-def using ‹u ∈ keys p› ‹v ∈ keys

q› by blast
qed

corollary indets-monom-mult-subset: indets (punit.monom-mult c t p) ⊆ keys t ∪
indets p
proof −

have indets (punit.monom-mult c t p) ⊆ indets (monomial c t) ∪ indets p
by (simp only: times-monomial-left[symmetric] indets-times-subset)

also have ... ⊆ keys t ∪ indets p using indets-monomial-subset[of t c] by blast
finally show ?thesis .

qed

lemma indets-monom-mult:
assumes c 6= 0 and p 6= (0 ::(′x ⇒0 nat) ⇒0

′b::semiring-no-zero-divisors)
shows indets (punit.monom-mult c t p) = keys t ∪ indets p

proof (rule, fact indets-monom-mult-subset, rule)
fix x
assume x ∈ keys t ∪ indets p
thus x ∈ indets (punit.monom-mult c t p)
proof

assume x ∈ keys t
from assms(2) have keys p 6= {} by simp
then obtain s where s ∈ keys p by blast
hence t + s ∈ (+) t ‘ keys p by fastforce
also from assms(1) have ... = keys (punit.monom-mult c t p) by (simp add:

punit.keys-monom-mult)
finally have t + s ∈ keys (punit.monom-mult c t p) .

441

show ?thesis
proof (rule in-indetsI)
from ‹x ∈ keys t› show x ∈ keys (t + s) by (simp add: keys-plus-ninv-comm-monoid-add)
qed fact

next
assume x ∈ indets p
then obtain s where s ∈ keys p and x ∈ keys s by (rule in-indetsE)
from this(1) have t + s ∈ (+) t ‘ keys p by fastforce
also from assms(1) have ... = keys (punit.monom-mult c t p) by (simp add:

punit.keys-monom-mult)
finally have t + s ∈ keys (punit.monom-mult c t p) .
show ?thesis
proof (rule in-indetsI)
from ‹x ∈ keys s› show x ∈ keys (t + s) by (simp add: keys-plus-ninv-comm-monoid-add)
qed fact

qed
qed

lemma indets-sum-subset: indets (sum f A) ⊆ (
⋃

a∈A. indets (f a))
proof (cases finite A)

case True
thus ?thesis
proof (induct A)

case empty
show ?case by simp

next
case (insert a A)
have indets (sum f (insert a A)) ⊆ indets (f a) ∪ indets (sum f A)

by (simp only: comm-monoid-add-class.sum.insert[OF insert(1) insert(2)]
indets-plus-subset)

also have ... ⊆ indets (f a) ∪ (
⋃

a∈A. indets (f a)) using insert(3) by blast
also have ... = (

⋃
a∈insert a A. indets (f a)) by simp

finally show ?case .
qed

next
case False
thus ?thesis by simp

qed

lemma indets-prod-subset:
indets (prod (f ::- ⇒ ((- ⇒0 -::cancel-comm-monoid-add) ⇒0 -)) A) ⊆ (

⋃
a∈A.

indets (f a))
proof (cases finite A)

case True
thus ?thesis
proof (induct A)

case empty
show ?case by simp

next

442

case (insert a A)
have indets (prod f (insert a A)) ⊆ indets (f a) ∪ indets (prod f A)

by (simp only: comm-monoid-mult-class.prod.insert[OF insert(1) insert(2)]
indets-times-subset)

also have ... ⊆ indets (f a) ∪ (
⋃

a∈A. indets (f a)) using insert(3) by blast
also have ... = (

⋃
a∈insert a A. indets (f a)) by simp

finally show ?case .
qed

next
case False
thus ?thesis by simp

qed

lemma indets-power-subset: indets (p ^ n) ⊆ indets (p::(′x ⇒0 nat)⇒0
′b::comm-semiring-1)

proof −
have p ^ n = (

∏
i=0 ..<n. p) by simp

also have indets ... ⊆ (
⋃

i∈{0 ..<n}. indets p) by (fact indets-prod-subset)
also have ... ⊆ indets p by simp
finally show ?thesis .

qed

lemma indets-empty-iff-poly-deg-zero: indets p = {} ←→ poly-deg p = 0
proof

assume indets p = {}
hence monomial (lookup p 0) 0 = p by (rule indets-empty-imp-monomial)
moreover have poly-deg (monomial (lookup p 0) 0) = 0 by simp
ultimately show poly-deg p = 0 by metis

next
assume poly-deg p = 0
hence monomial (lookup p 0) 0 = p by (rule poly-deg-zero-imp-monomial)
moreover have indets (monomial (lookup p 0) 0) = {} by simp
ultimately show indets p = {} by metis

qed

17.2.2 PPs
lemma PPsI : keys t ⊆ X =⇒ t ∈ .[X]

by (simp add: PPs-def)

lemma PPsD: t ∈ .[X] =⇒ keys t ⊆ X
by (simp add: PPs-def)

lemma PPs-empty [simp]: .[{}] = {0}
by (simp add: PPs-def)

lemma PPs-UNIV [simp]: .[UNIV] = UNIV
by (simp add: PPs-def)

lemma PPs-singleton: .[{x}] = range (Poly-Mapping.single x)

443

proof (rule set-eqI)
fix t
show t ∈ .[{x}] ←→ t ∈ range (Poly-Mapping.single x)
proof

assume t ∈ .[{x}]
hence keys t ⊆ {x} by (rule PPsD)

hence Poly-Mapping.single x (lookup t x) = t by (rule keys-subset-singleton-imp-monomial)
from this[symmetric] UNIV-I show t ∈ range (Poly-Mapping.single x) ..

next
assume t ∈ range (Poly-Mapping.single x)
then obtain e where t = Poly-Mapping.single x e ..
thus t ∈ .[{x}] by (simp add: PPs-def)

qed
qed

lemma zero-in-PPs: 0 ∈ .[X]
by (simp add: PPs-def)

lemma PPs-mono: X ⊆ Y =⇒ .[X] ⊆ .[Y]
by (auto simp: PPs-def)

lemma PPs-closed-single:
assumes x ∈ X
shows Poly-Mapping.single x e ∈ .[X]

proof (rule PPsI)
have keys (Poly-Mapping.single x e) ⊆ {x} by simp
also from assms have ... ⊆ X by simp
finally show keys (Poly-Mapping.single x e) ⊆ X .

qed

lemma PPs-closed-plus:
assumes s ∈ .[X] and t ∈ .[X]
shows s + t ∈ .[X]

proof −
have keys (s + t) ⊆ keys s ∪ keys t by (fact Poly-Mapping.keys-add)
also from assms have ... ⊆ X by (simp add: PPs-def)
finally show ?thesis by (rule PPsI)

qed

lemma PPs-closed-minus:
assumes s ∈ .[X]
shows s − t ∈ .[X]

proof −
have keys (s − t) ⊆ keys s by (metis lookup-minus lookup-not-eq-zero-eq-in-keys

subsetI zero-diff)
also from assms have ... ⊆ X by (rule PPsD)
finally show ?thesis by (rule PPsI)

qed

444

lemma PPs-closed-adds:
assumes s ∈ .[X] and t adds s
shows t ∈ .[X]

proof −
from assms(2) have s − (s − t) = t by (metis add-minus-2 adds-minus)
moreover from assms(1) have s − (s − t) ∈ .[X] by (rule PPs-closed-minus)
ultimately show ?thesis by simp

qed

lemma PPs-closed-gcs:
assumes s ∈ .[X]
shows gcs s t ∈ .[X]
using assms gcs-adds by (rule PPs-closed-adds)

lemma PPs-closed-lcs:
assumes s ∈ .[X] and t ∈ .[X]
shows lcs s t ∈ .[X]

proof −
from assms have s + t ∈ .[X] by (rule PPs-closed-plus)
hence (s + t) − gcs s t ∈ .[X] by (rule PPs-closed-minus)
thus ?thesis by (simp add: gcs-plus-lcs[of s t, symmetric])

qed

lemma PPs-closed-except ′: t ∈ .[X] =⇒ except t Y ∈ .[X − Y]
by (auto simp: keys-except PPs-def)

lemma PPs-closed-except: t ∈ .[X] =⇒ except t Y ∈ .[X]
by (auto simp: keys-except PPs-def)

lemma PPs-UnI :
assumes tx ∈ .[X] and ty ∈ .[Y] and t = tx + ty
shows t ∈ .[X ∪ Y]

proof −
from assms(1) have tx ∈ .[X ∪ Y] by rule (simp add: PPs-mono)
moreover from assms(2) have ty ∈ .[X ∪ Y] by rule (simp add: PPs-mono)
ultimately show ?thesis unfolding assms(3) by (rule PPs-closed-plus)

qed

lemma PPs-UnE :
assumes t ∈ .[X ∪ Y]
obtains tx ty where tx ∈ .[X] and ty ∈ .[Y] and t = tx + ty

proof −
from assms have keys t ⊆ X ∪ Y by (rule PPsD)
define tx where tx = except t (− X)
have keys tx ⊆ X by (simp add: tx-def keys-except)
hence tx ∈ .[X] by (simp add: PPs-def)
have tx adds t by (simp add: tx-def adds-poly-mappingI le-fun-def lookup-except)
from adds-minus[OF this] have t = tx + (t − tx) by (simp only: ac-simps)
have t − tx ∈ .[Y]

445

proof (rule PPsI , rule)
fix x
assume x ∈ keys (t − tx)
also have ... ⊆ keys t ∪ keys tx by (rule keys-minus)
also from ‹keys t ⊆ X ∪ Y › ‹keys tx ⊆ X› have ... ⊆ X ∪ Y by blast
finally show x ∈ Y
proof

assume x ∈ X
hence x /∈ keys (t − tx) by (simp add: tx-def lookup-except lookup-minus

in-keys-iff)
thus ?thesis using ‹x ∈ keys (t − tx)› ..

qed
qed
with ‹tx ∈ .[X]› show ?thesis using ‹t = tx + (t − tx)› ..

qed

lemma PPs-Un: .[X ∪ Y] = (
⋃

t∈.[X]. (+) t ‘ .[Y]) (is ?A = ?B)
proof (rule set-eqI)

fix t
show t ∈ ?A ←→ t ∈ ?B
proof

assume t ∈ ?A
then obtain tx ty where tx ∈ .[X] and ty ∈ .[Y] and t = tx + ty by (rule

PPs-UnE)
from this(2) have t ∈ (+) tx ‘ .[Y] unfolding ‹t = tx + ty› by (rule imageI)
with ‹tx ∈ .[X]› show t ∈ ?B ..

next
assume t ∈ ?B
then obtain tx where tx ∈ .[X] and t ∈ (+) tx ‘ .[Y] ..
from this(2) obtain ty where ty ∈ .[Y] and t = tx + ty ..
with ‹tx ∈ .[X]› show t ∈ ?A by (rule PPs-UnI)

qed
qed

corollary PPs-insert: .[insert x X] = (
⋃

e. (+) (Poly-Mapping.single x e) ‘ .[X])
proof −

have .[insert x X] = .[{x} ∪ X] by simp
also have ... = (

⋃
t∈.[{x}]. (+) t ‘ .[X]) by (fact PPs-Un)

also have ... = (
⋃

e. (+) (Poly-Mapping.single x e) ‘ .[X]) by (simp add:
PPs-singleton)

finally show ?thesis .
qed

corollary PPs-insertI :
assumes tx ∈ .[X] and t = Poly-Mapping.single x e + tx
shows t ∈ .[insert x X]

proof −
from assms(1) have t ∈ (+) (Poly-Mapping.single x e) ‘ .[X] unfolding assms(2)

by (rule imageI)

446

with UNIV-I show ?thesis unfolding PPs-insert by (rule UN-I)
qed

corollary PPs-insertE :
assumes t ∈ .[insert x X]
obtains e tx where tx ∈ .[X] and t = Poly-Mapping.single x e + tx

proof −
from assms obtain e where t ∈ (+) (Poly-Mapping.single x e) ‘ .[X] unfolding

PPs-insert ..
then obtain tx where tx ∈ .[X] and t = Poly-Mapping.single x e + tx ..
thus ?thesis ..

qed

lemma PPs-Int: .[X ∩ Y] = .[X] ∩ .[Y]
by (auto simp: PPs-def)

lemma PPs-INT : .[
⋂

X] =
⋂

(PPs ‘ X)
by (auto simp: PPs-def)

17.2.3 Polys
lemma Polys-alt: P[X] = {p. indets p ⊆ X}

by (auto simp: Polys-def PPs-def indets-def)

lemma PolysI : keys p ⊆ .[X] =⇒ p ∈ P[X]
by (simp add: Polys-def)

lemma PolysI-alt: indets p ⊆ X =⇒ p ∈ P[X]
by (simp add: Polys-alt)

lemma PolysD:
assumes p ∈ P[X]
shows keys p ⊆ .[X] and indets p ⊆ X
using assms by (simp add: Polys-def , simp add: Polys-alt)

lemma Polys-empty: P[{}] = ((range (Poly-Mapping.single 0))::((′x ⇒0 nat) ⇒0
′b::zero) set)
proof (rule set-eqI)

fix p :: (′x ⇒0 nat) ⇒0
′b::zero

show p ∈ P[{}] ←→ p ∈ range (Poly-Mapping.single 0)
proof

assume p ∈ P[{}]
hence keys p ⊆ .[{}] by (rule PolysD)
also have ... = {0} by simp
finally have keys p ⊆ {0} .

hence Poly-Mapping.single 0 (lookup p 0) = p by (rule keys-subset-singleton-imp-monomial)
from this[symmetric] UNIV-I show p ∈ range (Poly-Mapping.single 0) ..

next
assume p ∈ range (Poly-Mapping.single 0)

447

then obtain c where p = monomial c 0 ..
thus p ∈ P[{}] by (simp add: Polys-def)

qed
qed

lemma Polys-UNIV [simp]: P[UNIV] = UNIV
by (simp add: Polys-def)

lemma zero-in-Polys: 0 ∈ P[X]
by (simp add: Polys-def)

lemma one-in-Polys: 1 ∈ P[X]
by (simp add: Polys-def zero-in-PPs)

lemma Polys-mono: X ⊆ Y =⇒ P[X] ⊆ P[Y]
by (auto simp: Polys-alt)

lemma Polys-closed-monomial: t ∈ .[X] =⇒ monomial c t ∈ P[X]
using indets-monomial-subset[where c=c and t=t] by (auto simp: Polys-alt

PPs-def)

lemma Polys-closed-plus: p ∈ P[X] =⇒ q ∈ P[X] =⇒ p + q ∈ P[X]
using indets-plus-subset[of p q] by (auto simp: Polys-alt PPs-def)

lemma Polys-closed-uminus: p ∈ P[X] =⇒ −p ∈ P[X]
by (simp add: Polys-def keys-uminus)

lemma Polys-closed-minus: p ∈ P[X] =⇒ q ∈ P[X] =⇒ p − q ∈ P[X]
using indets-minus-subset[of p q] by (auto simp: Polys-alt PPs-def)

lemma Polys-closed-monom-mult: t ∈ .[X] =⇒ p ∈ P[X] =⇒ punit.monom-mult
c t p ∈ P[X]

using indets-monom-mult-subset[of c t p] by (auto simp: Polys-alt PPs-def)

corollary Polys-closed-map-scale: p ∈ P[X] =⇒ (c::-::semiring-0) · p ∈ P[X]
unfolding punit.map-scale-eq-monom-mult using zero-in-PPs by (rule Polys-closed-monom-mult)

lemma Polys-closed-times: p ∈ P[X] =⇒ q ∈ P[X] =⇒ p ∗ q ∈ P[X]
using indets-times-subset[of p q] by (auto simp: Polys-alt PPs-def)

lemma Polys-closed-power : p ∈ P[X] =⇒ p ^ m ∈ P[X]
by (induct m) (auto intro: one-in-Polys Polys-closed-times)

lemma Polys-closed-sum: (
∧

a. a ∈ A =⇒ f a ∈ P[X]) =⇒ sum f A ∈ P[X]
by (induct A rule: infinite-finite-induct) (auto intro: zero-in-Polys Polys-closed-plus)

lemma Polys-closed-prod: (
∧

a. a ∈ A =⇒ f a ∈ P[X]) =⇒ prod f A ∈ P[X]
by (induct A rule: infinite-finite-induct) (auto intro: one-in-Polys Polys-closed-times)

448

lemma Polys-closed-sum-list: (
∧

x. x ∈ set xs =⇒ x ∈ P[X]) =⇒ sum-list xs ∈
P[X]

by (induct xs) (auto intro: zero-in-Polys Polys-closed-plus)

lemma Polys-closed-except: p ∈ P[X] =⇒ except p T ∈ P[X]
by (auto intro!: PolysI simp: keys-except dest!: PolysD(1))

lemma times-in-PolysD:
assumes p ∗ q ∈ P[X] and p ∈ P[X] and p 6= (0 ::(′x::linorder ⇒0 nat) ⇒0

′a::semiring-no-zero-divisors)
shows q ∈ P[X]

proof −
define qX where qX = except q (− .[X])
define qY where qY = except q .[X]
have q: q = qX + qY by (simp only: qX-def qY-def add.commute flip: ex-

cept-decomp)
have qX ∈ P[X] by (rule PolysI) (simp add: qX-def keys-except)
with assms(2) have p ∗ qX ∈ P[X] by (rule Polys-closed-times)
show ?thesis
proof (cases qY = 0)

case True
with ‹qX ∈ P[X]› show ?thesis by (simp add: q)

next
case False
with assms(3) have p ∗ qY 6= 0 by simp
hence keys (p ∗ qY) 6= {} by simp
then obtain t where t ∈ keys (p ∗ qY) by blast

then obtain t1 t2 where t2 ∈ keys qY and t: t = t1 + t2 by (rule
in-keys-timesE)

have t /∈ .[X] unfolding t
proof

assume t1 + t2 ∈ .[X]
hence t1 + t2 − t1 ∈ .[X] by (rule PPs-closed-minus)
hence t2 ∈ .[X] by simp
with ‹t2 ∈ keys qY › show False by (simp add: qY-def keys-except)

qed
have t /∈ keys (p ∗ qX)
proof

assume t ∈ keys (p ∗ qX)
also from ‹p ∗ qX ∈ P[X]› have . . . ⊆ .[X] by (rule PolysD)
finally have t ∈ .[X] .
with ‹t /∈ .[X]› show False ..

qed
with ‹t ∈ keys (p ∗ qY)› have t ∈ keys (p ∗ qX + p ∗ qY) by (rule

in-keys-plusI2)
also have . . . = keys (p ∗ q) by (simp only: q algebra-simps)
finally have p ∗ q /∈ P[X] using ‹t /∈ .[X]› by (auto simp: Polys-def)
thus ?thesis using assms(1) ..

qed

449

qed

lemma poly-mapping-plus-induct-Polys [consumes 1 , case-names 0 plus]:
assumes p ∈ P[X] and P 0

and
∧

p c t. t ∈ .[X] =⇒ p ∈ P[X] =⇒ c 6= 0 =⇒ t /∈ keys p =⇒ P p =⇒ P
(monomial c t + p)

shows P p
using assms(1)

proof (induct p rule: poly-mapping-plus-induct)
case 1
show ?case by (fact assms(2))

next
case step: (2 p c t)
from step.hyps(1) have 1 : keys (monomial c t) = {t} by simp
also from step.hyps(2) have . . . ∩ keys p = {} by simp
finally have keys (monomial c t + p) = keys (monomial c t) ∪ keys p by (rule

keys-add[symmetric])
hence keys (monomial c t + p) = insert t (keys p) by (simp only: 1 flip: in-

sert-is-Un)
moreover from step.prems(1) have keys (monomial c t + p) ⊆ .[X] by (rule

PolysD)
ultimately have t ∈ .[X] and keys p ⊆ .[X] by blast+
from this(2) have p ∈ P[X] by (rule PolysI)
hence P p by (rule step.hyps)
with ‹t ∈ .[X]› ‹p ∈ P[X]› step.hyps(1 , 2) show ?case by (rule assms(3))

qed

lemma Polys-Int: P[X ∩ Y] = P[X] ∩ P[Y]
by (auto simp: Polys-def PPs-Int)

lemma Polys-INT : P[
⋂

X] =
⋂

(Polys ‘ X)
by (auto simp: Polys-def PPs-INT)

17.3 Substitution Homomorphism
The substitution homomorphism defined here is more general than insertion,
since it replaces indeterminates by polynomials rather than coefficients, and
therefore constructs new polynomials.
definition subst-pp :: (′x ⇒ ((′y ⇒0 nat) ⇒0

′a)) ⇒ (′x ⇒0 nat) ⇒ ((′y ⇒0 nat)
⇒0

′a::comm-semiring-1)
where subst-pp f t = (

∏
x∈keys t. (f x) ^ (lookup t x))

definition poly-subst :: (′x ⇒ ((′y ⇒0 nat) ⇒0
′a)) ⇒ ((′x ⇒0 nat) ⇒0

′a) ⇒
((′y ⇒0 nat) ⇒0

′a::comm-semiring-1)
where poly-subst f p = (

∑
t∈keys p. punit.monom-mult (lookup p t) 0 (subst-pp

f t))

lemma subst-pp-alt: subst-pp f t = (
∏

x. (f x) ^ (lookup t x))
proof −

450

from finite-keys have subst-pp f t = (
∏

x. if x ∈ keys t then (f x) ^ (lookup t x)
else 1)

unfolding subst-pp-def by (rule Prod-any.conditionalize)
also have ... = (

∏
x. (f x) ^ (lookup t x)) by (rule Prod-any.cong) (simp add:

in-keys-iff)
finally show ?thesis .

qed

lemma subst-pp-zero [simp]: subst-pp f 0 = 1
by (simp add: subst-pp-def)

lemma subst-pp-trivial-not-zero:
assumes t 6= 0
shows subst-pp (λ-. 0) t = (0 ::(- ⇒0

′b::comm-semiring-1))
unfolding subst-pp-def using finite-keys

proof (rule prod-zero)
from assms have keys t 6= {} by simp
then obtain x where x ∈ keys t by blast
thus ∃ x∈keys t. 0 ^ lookup t x = (0 ::(- ⇒0

′b))
proof

from ‹x ∈ keys t› have 0 < lookup t x by (simp add: in-keys-iff)
thus 0 ^ lookup t x = (0 ::(-⇒0

′b)) by (rule Power .semiring-1-class.zero-power)
qed

qed

lemma subst-pp-single: subst-pp f (Poly-Mapping.single x e) = (f x) ^ e
by (simp add: subst-pp-def)

corollary subst-pp-trivial: subst-pp (λ-. 0) t = (if t = 0 then 1 else 0)
by (simp split: if-split add: subst-pp-trivial-not-zero)

lemma power-lookup-not-one-subset-keys: {x. f x ^ (lookup t x) 6= 1} ⊆ keys t
proof (rule, simp)

fix x
assume f x ^ (lookup t x) 6= 1
thus x ∈ keys t unfolding in-keys-iff by (metis power-0)

qed

corollary finite-power-lookup-not-one: finite {x. f x ^ (lookup t x) 6= 1}
by (rule finite-subset, fact power-lookup-not-one-subset-keys, fact finite-keys)

lemma subst-pp-plus: subst-pp f (s + t) = subst-pp f s ∗ subst-pp f t
by (simp add: subst-pp-alt lookup-add power-add, rule Prod-any.distrib, (fact

finite-power-lookup-not-one)+)

lemma subst-pp-id:
assumes

∧
x. x ∈ keys t =⇒ f x = monomial 1 (Poly-Mapping.single x 1)

shows subst-pp f t = monomial 1 t
proof −

451

have subst-pp f t = (
∏

x∈keys t. monomial 1 (Poly-Mapping.single x (lookup t
x)))

proof (simp only: subst-pp-def , rule prod.cong, fact refl)
fix x
assume x ∈ keys t
thus f x ^ lookup t x = monomial 1 (Poly-Mapping.single x (lookup t x))

by (simp add: assms monomial-single-power)
qed
also have ... = monomial 1 t
by (simp add: punit.monomial-prod-sum[symmetric] poly-mapping-sum-monomials)

finally show ?thesis .
qed

lemma in-indets-subst-ppE :
assumes x ∈ indets (subst-pp f t)
obtains y where y ∈ keys t and x ∈ indets (f y)

proof −
note assms
also have indets (subst-pp f t) ⊆ (

⋃
y∈keys t. indets ((f y) ^ (lookup t y)))

unfolding subst-pp-def
by (rule indets-prod-subset)

finally obtain y where y ∈ keys t and x ∈ indets ((f y) ^ (lookup t y)) ..
note this(2)
also have indets ((f y) ^ (lookup t y)) ⊆ indets (f y) by (rule indets-power-subset)
finally have x ∈ indets (f y) .
with ‹y ∈ keys t› show ?thesis ..

qed

lemma subst-pp-by-monomials:
assumes

∧
y. y ∈ keys t =⇒ f y = monomial (c y) (s y)

shows subst-pp f t = monomial (
∏

y∈keys t. (c y) ^ lookup t y) (
∑

y∈keys t.
lookup t y · s y)
by (simp add: subst-pp-def assms monomial-power-map-scale punit.monomial-prod-sum)

lemma poly-deg-subst-pp-eq-zeroI :
assumes

∧
x. x ∈ keys t =⇒ poly-deg (f x) = 0

shows poly-deg (subst-pp f t) = 0
proof −

have poly-deg (subst-pp f t) ≤ (
∑

x∈keys t. poly-deg ((f x) ^ (lookup t x)))
unfolding subst-pp-def by (fact poly-deg-prod-le)

also have ... = 0
proof (rule sum.neutral, rule)

fix x
assume x ∈ keys t
hence poly-deg (f x) = 0 by (rule assms)
have f x ^ lookup t x = (

∏
i=0 ..<lookup t x. f x) by simp

also have poly-deg ... ≤ (
∑

i=0 ..<lookup t x. poly-deg (f x)) by (rule poly-deg-prod-le)
also have ... = 0 by (simp add: ‹poly-deg (f x) = 0 ›)
finally show poly-deg (f x ^ lookup t x) = 0 by simp

452

qed
finally show ?thesis by simp

qed

lemma poly-deg-subst-pp-le:
assumes

∧
x. x ∈ keys t =⇒ poly-deg (f x) ≤ 1

shows poly-deg (subst-pp f t) ≤ deg-pm t
proof −

have poly-deg (subst-pp f t) ≤ (
∑

x∈keys t. poly-deg ((f x) ^ (lookup t x)))
unfolding subst-pp-def by (fact poly-deg-prod-le)

also have ... ≤ (
∑

x∈keys t. lookup t x)
proof (rule sum-mono)

fix x
assume x ∈ keys t
hence poly-deg (f x) ≤ 1 by (rule assms)
have f x ^ lookup t x = (

∏
i=0 ..<lookup t x. f x) by simp

also have poly-deg ... ≤ (
∑

i=0 ..<lookup t x. poly-deg (f x)) by (rule poly-deg-prod-le)
also from ‹poly-deg (f x) ≤ 1 › have ... ≤ (

∑
i=0 ..<lookup t x. 1) by (rule

sum-mono)
finally show poly-deg (f x ^ lookup t x) ≤ lookup t x by simp

qed
also have ... = deg-pm t by (rule deg-pm-superset[symmetric], fact subset-refl,

fact finite-keys)
finally show ?thesis by simp

qed

lemma poly-subst-alt: poly-subst f p = (
∑

t. punit.monom-mult (lookup p t) 0
(subst-pp f t))
proof −

from finite-keys have poly-subst f p = (
∑

t. if t ∈ keys p then punit.monom-mult
(lookup p t) 0 (subst-pp f t) else 0)

unfolding poly-subst-def by (rule Sum-any.conditionalize)
also have . . . = (

∑
t. punit.monom-mult (lookup p t) 0 (subst-pp f t))

by (rule Sum-any.cong) (simp add: in-keys-iff)
finally show ?thesis .

qed

lemma poly-subst-trivial [simp]: poly-subst (λ-. 0) p = monomial (lookup p 0) 0
by (simp add: poly-subst-def subst-pp-trivial if-distrib in-keys-iff cong: if-cong)

(metis mult.right-neutral times-monomial-left)

lemma poly-subst-zero [simp]: poly-subst f 0 = 0
by (simp add: poly-subst-def)

lemma monom-mult-lookup-not-zero-subset-keys:
{t. punit.monom-mult (lookup p t) 0 (subst-pp f t) 6= 0} ⊆ keys p

proof (rule, simp)
fix t
assume punit.monom-mult (lookup p t) 0 (subst-pp f t) 6= 0

453

thus t ∈ keys p unfolding in-keys-iff by (metis punit.monom-mult-zero-left)
qed

corollary finite-monom-mult-lookup-not-zero:
finite {t. punit.monom-mult (lookup p t) 0 (subst-pp f t) 6= 0}
by (rule finite-subset, fact monom-mult-lookup-not-zero-subset-keys, fact finite-keys)

lemma poly-subst-plus: poly-subst f (p + q) = poly-subst f p + poly-subst f q
by (simp add: poly-subst-alt lookup-add punit.monom-mult-dist-left, rule Sum-any.distrib,

(fact finite-monom-mult-lookup-not-zero)+)

lemma poly-subst-uminus: poly-subst f (−p) = − poly-subst f (p::(′x ⇒0 nat) ⇒0
′b::comm-ring-1)
by (simp add: poly-subst-def keys-uminus punit.monom-mult-uminus-left sum-negf)

lemma poly-subst-minus:
poly-subst f (p − q) = poly-subst f p − poly-subst f (q::(′x ⇒0 nat)⇒0

′b::comm-ring-1)
proof −

have poly-subst f (p + (−q)) = poly-subst f p + poly-subst f (−q) by (fact
poly-subst-plus)

thus ?thesis by (simp add: poly-subst-uminus)
qed

lemma poly-subst-monomial: poly-subst f (monomial c t) = punit.monom-mult c
0 (subst-pp f t)

by (simp add: poly-subst-def lookup-single)

corollary poly-subst-one [simp]: poly-subst f 1 = 1
by (simp add: single-one[symmetric] poly-subst-monomial punit.monom-mult-monomial

del: single-one)

lemma poly-subst-times: poly-subst f (p ∗ q) = poly-subst f p ∗ poly-subst f q
proof −

have bij: bij (λ(l, n, m). (m, l, n))
by (auto intro!: bijI injI simp add: image-def)

let ?P = keys p
let ?Q = keys q
let ?PQ = {s + t | s t. lookup p s 6= 0 ∧ lookup q t 6= 0}
have fin-PQ: finite ?PQ

by (rule finite-not-eq-zero-sumI , simp-all)
have fin-1 : finite {l. lookup p l ∗ (

∑
qa. lookup q qa when t = l + qa) 6= 0} for

t
proof (rule finite-subset)

show {l. lookup p l ∗ (
∑

qa. lookup q qa when t = l + qa) 6= 0} ⊆ keys p
by (rule, auto simp: in-keys-iff)

qed (fact finite-keys)
have fin-2 : finite {v. (lookup q v when t = u + v) 6= 0} for t u
proof (rule finite-subset)

show {v. (lookup q v when t = u + v) 6= 0} ⊆ keys q

454

by (rule, auto simp: in-keys-iff)
qed (fact finite-keys)
have fin-3 : finite {v. (lookup p u ∗ lookup q v when t = u + v) 6= 0} for t u
proof (rule finite-subset)

show {v. (lookup p u ∗ lookup q v when t = u + v) 6= 0} ⊆ keys q
by (rule, auto simp add: in-keys-iff simp del: lookup-not-eq-zero-eq-in-keys)

qed (fact finite-keys)
have (

∑
t. punit.monom-mult (lookup (p ∗ q) t) 0 (subst-pp f t)) =

(
∑

t.
∑

u. punit.monom-mult (lookup p u ∗ (
∑

v. lookup q v when t = u +
v)) 0 (subst-pp f t))

by (simp add: times-poly-mapping.rep-eq prod-fun-def punit.monom-mult-Sum-any-left[OF
fin-1])

also have . . . = (
∑

t.
∑

u.
∑

v. (punit.monom-mult (lookup p u ∗ lookup q v)
0 (subst-pp f t)) when t = u + v)

by (simp add: Sum-any-right-distrib[OF fin-2] punit.monom-mult-Sum-any-left[OF
fin-3] mult-when punit.when-monom-mult)

also have . . . = (
∑

t. (
∑

(u, v). (punit.monom-mult (lookup p u ∗ lookup q v)
0 (subst-pp f t)) when t = u + v))

by (subst (2) Sum-any.cartesian-product [of ?P × ?Q]) (auto simp: in-keys-iff)
also have . . . = (

∑
(t, u, v). punit.monom-mult (lookup p u ∗ lookup q v) 0

(subst-pp f t) when t = u + v)
apply (subst Sum-any.cartesian-product [of ?PQ × (?P × ?Q)])
apply (auto simp: fin-PQ in-keys-iff)
apply (metis monomial-0I mult-not-zero times-monomial-left)
done

also have . . . = (
∑

(u, v, t). punit.monom-mult (lookup p u ∗ lookup q v) 0
(subst-pp f t) when t = u + v)

using bij by (rule Sum-any.reindex-cong [of λ(u, v, t). (t, u, v)]) (simp add:
fun-eq-iff)

also have . . . = (
∑

(u, v).
∑

t. punit.monom-mult (lookup p u ∗ lookup q v) 0
(subst-pp f t) when t = u + v)

apply (subst Sum-any.cartesian-product2 [of (?P × ?Q) × ?PQ])
apply (auto simp: fin-PQ in-keys-iff)
apply (metis monomial-0I mult-not-zero times-monomial-left)
done

also have . . . = (
∑

(u, v). punit.monom-mult (lookup p u ∗ lookup q v) 0
(subst-pp f u ∗ subst-pp f v))

by (simp add: subst-pp-plus)
also have . . . = (

∑
u.

∑
v. punit.monom-mult (lookup p u ∗ lookup q v) 0

(subst-pp f u ∗ subst-pp f v))
by (subst Sum-any.cartesian-product [of ?P × ?Q]) (auto simp: in-keys-iff)

also have . . . = (
∑

u.
∑

v. (punit.monom-mult (lookup p u) 0 (subst-pp f u)) ∗
(punit.monom-mult (lookup q v) 0 (subst-pp f v)))

by (simp add: times-monomial-left[symmetric] ac-simps mult-single)
also have . . . = (

∑
t. punit.monom-mult (lookup p t) 0 (subst-pp f t)) ∗

(
∑

t. punit.monom-mult (lookup q t) 0 (subst-pp f t))
by (rule Sum-any-product [symmetric], (fact finite-monom-mult-lookup-not-zero)+)

finally show ?thesis by (simp add: poly-subst-alt)
qed

455

corollary poly-subst-monom-mult:
poly-subst f (punit.monom-mult c t p) = punit.monom-mult c 0 (subst-pp f t ∗

poly-subst f p)
by (simp only: times-monomial-left[symmetric] poly-subst-times poly-subst-monomial

mult.assoc)

corollary poly-subst-monom-mult ′:
poly-subst f (punit.monom-mult c t p) = (punit.monom-mult c 0 (subst-pp f t))
∗ poly-subst f p
by (simp only: times-monomial-left[symmetric] poly-subst-times poly-subst-monomial)

lemma poly-subst-sum: poly-subst f (sum p A) = (
∑

a∈A. poly-subst f (p a))
by (rule fun-sum-commute, simp-all add: poly-subst-plus)

lemma poly-subst-prod: poly-subst f (prod p A) = (
∏

a∈A. poly-subst f (p a))
by (rule fun-prod-commute, simp-all add: poly-subst-times)

lemma poly-subst-power : poly-subst f (p ^ n) = (poly-subst f p) ^ n
by (induct n, simp-all add: poly-subst-times)

lemma poly-subst-subst-pp: poly-subst f (subst-pp g t) = subst-pp (λx. poly-subst f
(g x)) t

by (simp only: subst-pp-def poly-subst-prod poly-subst-power)

lemma poly-subst-poly-subst: poly-subst f (poly-subst g p) = poly-subst (λx. poly-subst
f (g x)) p
proof −

have poly-subst f (poly-subst g p) =
poly-subst f (

∑
t∈keys p. punit.monom-mult (lookup p t) 0 (subst-pp g t))

by (simp only: poly-subst-def)
also have . . . = (

∑
t∈keys p. punit.monom-mult (lookup p t) 0 (subst-pp (λx.

poly-subst f (g x)) t))
by (simp add: poly-subst-sum poly-subst-monom-mult poly-subst-subst-pp)

also have . . . = poly-subst (λx. poly-subst f (g x)) p by (simp only: poly-subst-def)
finally show ?thesis .

qed

lemma poly-subst-id:
assumes

∧
x. x ∈ indets p =⇒ f x = monomial 1 (Poly-Mapping.single x 1)

shows poly-subst f p = p
proof −

have poly-subst f p = (
∑

t∈keys p. monomial (lookup p t) t)
proof (simp only: poly-subst-def , rule sum.cong, fact refl)

fix t
assume t ∈ keys p
have eq: subst-pp f t = monomial 1 t

by (rule subst-pp-id, rule assms, erule in-indetsI , fact ‹t ∈ keys p›)
show punit.monom-mult (lookup p t) 0 (subst-pp f t) = monomial (lookup p t)

456

t
by (simp add: eq punit.monom-mult-monomial)

qed
also have ... = p by (simp only: poly-mapping-sum-monomials)
finally show ?thesis .

qed

lemma in-keys-poly-substE :
assumes t ∈ keys (poly-subst f p)
obtains s where s ∈ keys p and t ∈ keys (subst-pp f s)

proof −
note assms
also have keys (poly-subst f p) ⊆ (

⋃
t∈keys p. keys (punit.monom-mult (lookup

p t) 0 (subst-pp f t)))
unfolding poly-subst-def by (rule keys-sum-subset)

finally obtain s where s ∈ keys p and t ∈ keys (punit.monom-mult (lookup p
s) 0 (subst-pp f s)) ..

note this(2)
also have . . . ⊆ (+) 0 ‘ keys (subst-pp f s) by (rule punit.keys-monom-mult-subset[simplified])
also have . . . = keys (subst-pp f s) by simp
finally have t ∈ keys (subst-pp f s) .
with ‹s ∈ keys p› show ?thesis ..

qed

lemma in-indets-poly-substE :
assumes x ∈ indets (poly-subst f p)
obtains y where y ∈ indets p and x ∈ indets (f y)

proof −
note assms
also have indets (poly-subst f p) ⊆ (

⋃
t∈keys p. indets (punit.monom-mult

(lookup p t) 0 (subst-pp f t)))
unfolding poly-subst-def by (rule indets-sum-subset)

finally obtain t where t ∈ keys p and x ∈ indets (punit.monom-mult (lookup
p t) 0 (subst-pp f t)) ..

note this(2)
also have indets (punit.monom-mult (lookup p t) 0 (subst-pp f t)) ⊆ keys (0 ::(′a
⇒0 nat)) ∪ indets (subst-pp f t)

by (rule indets-monom-mult-subset)
also have ... = indets (subst-pp f t) by simp
finally obtain y where y ∈ keys t and x ∈ indets (f y) by (rule in-indets-subst-ppE)
from this(1) ‹t ∈ keys p› have y ∈ indets p by (rule in-indetsI)
from this ‹x ∈ indets (f y)› show ?thesis ..

qed

lemma poly-deg-poly-subst-eq-zeroI :
assumes

∧
x. x ∈ indets p =⇒ poly-deg (f x) = 0

shows poly-deg (poly-subst (f ::-⇒ ((′y ⇒0 -)⇒0 -)) (p::(′x ⇒0 -)⇒0
′b::comm-semiring-1))

= 0
proof (cases p = 0)

457

case True
thus ?thesis by simp

next
case False
have poly-deg (poly-subst f p) ≤ Max (poly-deg ‘ (λt. punit.monom-mult (lookup

p t) 0 (subst-pp f t)) ‘ keys p)
unfolding poly-subst-def by (fact poly-deg-sum-le)

also have ... ≤ 0
proof (rule Max.boundedI)

show finite (poly-deg ‘ (λt. punit.monom-mult (lookup p t) 0 (subst-pp f t)) ‘
keys p)

by (simp add: finite-image-iff)
next

from False show poly-deg ‘ (λt. punit.monom-mult (lookup p t) 0 (subst-pp f
t)) ‘ keys p 6= {} by simp

next
fix d
assume d ∈ poly-deg ‘ (λt. punit.monom-mult (lookup p t) 0 (subst-pp f t)) ‘

keys p
then obtain t where t ∈ keys p and d: d = poly-deg (punit.monom-mult

(lookup p t) 0 (subst-pp f t))
by fastforce

have d ≤ deg-pm (0 :: ′y ⇒0 nat) + poly-deg (subst-pp f t)
unfolding d by (fact poly-deg-monom-mult-le)

also have ... = poly-deg (subst-pp f t) by simp
also have ... = 0 by (rule poly-deg-subst-pp-eq-zeroI , rule assms, erule in-indetsI ,

fact)
finally show d ≤ 0 .

qed
finally show ?thesis by simp

qed

lemma poly-deg-poly-subst-le:
assumes

∧
x. x ∈ indets p =⇒ poly-deg (f x) ≤ 1

shows poly-deg (poly-subst (f ::-⇒ ((′y ⇒0 -)⇒0 -)) (p::(′x ⇒0 nat)⇒0
′b::comm-semiring-1))

≤ poly-deg p
proof (cases p = 0)

case True
thus ?thesis by simp

next
case False
have poly-deg (poly-subst f p) ≤ Max (poly-deg ‘ (λt. punit.monom-mult (lookup

p t) 0 (subst-pp f t)) ‘ keys p)
unfolding poly-subst-def by (fact poly-deg-sum-le)

also have ... ≤ poly-deg p
proof (rule Max.boundedI)

show finite (poly-deg ‘ (λt. punit.monom-mult (lookup p t) 0 (subst-pp f t)) ‘
keys p)

by (simp add: finite-image-iff)

458

next
from False show poly-deg ‘ (λt. punit.monom-mult (lookup p t) 0 (subst-pp f

t)) ‘ keys p 6= {} by simp
next

fix d
assume d ∈ poly-deg ‘ (λt. punit.monom-mult (lookup p t) 0 (subst-pp f t)) ‘

keys p
then obtain t where t ∈ keys p and d: d = poly-deg (punit.monom-mult

(lookup p t) 0 (subst-pp f t))
by fastforce

have d ≤ deg-pm (0 :: ′y ⇒0 nat) + poly-deg (subst-pp f t)
unfolding d by (fact poly-deg-monom-mult-le)

also have ... = poly-deg (subst-pp f t) by simp
also have ... ≤ deg-pm t by (rule poly-deg-subst-pp-le, rule assms, erule

in-indetsI , fact)
also from ‹t ∈ keys p› have ... ≤ poly-deg p by (rule poly-deg-max-keys)
finally show d ≤ poly-deg p .

qed
finally show ?thesis by simp

qed

lemma subst-pp-cong: s = t =⇒ (
∧

x. x ∈ keys t =⇒ f x = g x) =⇒ subst-pp f s
= subst-pp g t

by (simp add: subst-pp-def)

lemma poly-subst-cong:
assumes p = q and

∧
x. x ∈ indets q =⇒ f x = g x

shows poly-subst f p = poly-subst g q
proof (simp add: poly-subst-def assms(1), rule sum.cong)

fix t
assume t ∈ keys q
{

fix x
assume x ∈ keys t
with ‹t ∈ keys q› have x ∈ indets q by (auto simp: indets-def)
hence f x = g x by (rule assms(2))

}
thus punit.monom-mult (lookup q t) 0 (subst-pp f t) = punit.monom-mult (lookup

q t) 0 (subst-pp g t)
by (simp cong: subst-pp-cong)

qed (fact refl)

lemma Polys-homomorphismE :
obtains h where

∧
p q. h (p + q) = h p + h q and

∧
p q. h (p ∗ q) = h p ∗ h q

and
∧

p::(′x ⇒0 nat) ⇒0
′a::comm-ring-1 . h (h p) = h p and range h = P[X]

proof −
let ?f = λx. if x ∈ X then monomial (1 :: ′a) (Poly-Mapping.single x 1) else 1

have 1 : poly-subst ?f p = p if p ∈ P[X] for p

459

proof (rule poly-subst-id)
fix x
assume x ∈ indets p
also from that have . . . ⊆ X by (rule PolysD)
finally show ?f x = monomial 1 (Poly-Mapping.single x 1) by simp

qed

have 2 : poly-subst ?f p ∈ P[X] for p
proof (intro PolysI-alt subsetI)

fix x
assume x ∈ indets (poly-subst ?f p)
then obtain y where x ∈ indets (?f y) by (rule in-indets-poly-substE)
thus x ∈ X by (simp add: indets-monomial split: if-split-asm)

qed

from poly-subst-plus poly-subst-times show ?thesis
proof

fix p
from 2 show poly-subst ?f (poly-subst ?f p) = poly-subst ?f p by (rule 1)

next
show range (poly-subst ?f) = P[X]
proof (intro set-eqI iffI)

fix p :: - ⇒0
′a

assume p ∈ P[X]
hence p = poly-subst ?f p by (simp only: 1)
thus p ∈ range (poly-subst ?f) by (rule image-eqI) simp

qed (auto intro: 2)
qed

qed

lemma in-idealE-Polys-finite:
assumes finite B and B ⊆ P[X] and p ∈ P[X] and (p::(′x ⇒0 nat) ⇒0

′a::comm-ring-1) ∈ ideal B
obtains q where

∧
b. q b ∈ P[X] and p = (

∑
b∈B. q b ∗ b)

proof −
obtain h where

∧
p q. h (p + q) = h p + h q and

∧
p q. h (p ∗ q) = h p ∗ h q

and
∧

p::(′x ⇒0 nat) ⇒0
′a. h (h p) = h p and rng[symmetric]: range h =

P[X]
by (rule Polys-homomorphismE) blast

from this(1−3) assms obtain q where
∧

b. q b ∈ P[X] and p = (
∑

b∈B. q b
∗ b)

unfolding rng by (rule in-idealE-homomorphism-finite) blast
thus ?thesis ..

qed

corollary in-idealE-Polys:
assumes B ⊆ P[X] and p ∈ P[X] and p ∈ ideal B
obtains A q where finite A and A ⊆ B and

∧
b. q b ∈ P[X] and p = (

∑
b∈A.

q b ∗ b)

460

proof −
from assms(3) obtain A where finite A and A ⊆ B and p ∈ ideal A

by (rule ideal.span-finite-subset)
from this(2) assms(1) have A ⊆ P[X] by (rule subset-trans)
with ‹finite A› obtain q where

∧
b. q b ∈ P[X] and p = (

∑
b∈A. q b ∗ b)

using assms(2) ‹p ∈ ideal A› by (rule in-idealE-Polys-finite) blast
with ‹finite A› ‹A ⊆ B› show ?thesis ..

qed

lemma ideal-induct-Polys [consumes 3 , case-names 0 plus]:
assumes F ⊆ P[X] and p ∈ P[X] and p ∈ ideal F
assumes P 0 and

∧
c q h. c ∈ P[X] =⇒ q ∈ F =⇒ P h =⇒ h ∈ P[X] =⇒ P

(c ∗ q + h)
shows P (p::(′x ⇒0 nat) ⇒0

′a::comm-ring-1)
proof −

obtain h where
∧

p q. h (p + q) = h p + h q and
∧

p q. h (p ∗ q) = h p ∗ h q
and

∧
p::(′x ⇒0 nat) ⇒0

′a. h (h p) = h p and rng[symmetric]: range h =
P[X]

by (rule Polys-homomorphismE) blast
from this(1−3) assms show ?thesis

unfolding rng by (rule ideal-induct-homomorphism) blast
qed

lemma image-poly-subst-ideal-subset: poly-subst g ‘ ideal F ⊆ ideal (poly-subst g ‘
F)
proof (intro subsetI , elim imageE)

fix h f
assume h: h = poly-subst g f
assume f ∈ ideal F
thus h ∈ ideal (poly-subst g ‘ F) unfolding h
proof (induct f rule: ideal.span-induct-alt)

case base
show ?case by (simp add: ideal.span-zero)

next
case (step c f h)
from step.hyps(1) have poly-subst g f ∈ ideal (poly-subst g ‘ F)

by (intro ideal.span-base imageI)
hence poly-subst g c ∗ poly-subst g f ∈ ideal (poly-subst g ‘ F) by (rule

ideal.span-scale)
hence poly-subst g c ∗ poly-subst g f + poly-subst g h ∈ ideal (poly-subst g ‘ F)

using step.hyps(2) by (rule ideal.span-add)
thus ?case by (simp only: poly-subst-plus poly-subst-times)

qed
qed

17.4 Evaluating Polynomials
lemma lookup-times-zero:
lookup (p ∗ q) 0 = lookup p 0 ∗ lookup q (0 :: ′a::{comm-powerprod,ninv-comm-monoid-add})

461

proof −
have eq: (

∑
v∈keys q. lookup q v when t + v = 0) = (lookup q 0 when t = 0)

for t
proof −

have (
∑

v∈keys q. lookup q v when t + v = 0) = (
∑

v∈keys q ∩ {0}. lookup
q v when t + v = 0)

proof (intro sum.mono-neutral-right ballI)
fix v
assume v ∈ keys q − keys q ∩ {0}
hence v 6= 0 by blast
hence t + v 6= 0 using plus-eq-zero-2 by blast
thus (lookup q v when t + v = 0) = 0 by simp

qed simp-all
also have . . . = (lookup q 0 when t = 0) by (cases 0 ∈ keys q) (simp-all add:

in-keys-iff)
finally show ?thesis .

qed
have (

∑
t∈keys p. lookup p t ∗ lookup q 0 when t = 0) =

(
∑

t∈keys p ∩ {0}. lookup p t ∗ lookup q 0 when t = 0)
proof (intro sum.mono-neutral-right ballI)

fix t
assume t ∈ keys p − keys p ∩ {0}
hence t 6= 0 by blast
thus (lookup p t ∗ lookup q 0 when t = 0) = 0 by simp

qed simp-all
also have . . . = lookup p 0 ∗ lookup q 0 by (cases 0 ∈ keys p) (simp-all add:

in-keys-iff)
finally show ?thesis by (simp add: lookup-times eq when-distrib)

qed

corollary lookup-prod-zero:
lookup (prod f I) 0 = (

∏
i∈I . lookup (f i) (0 ::-::{comm-powerprod,ninv-comm-monoid-add}))

by (induct I rule: infinite-finite-induct) (simp-all add: lookup-times-zero)

corollary lookup-power-zero:
lookup (p ^ k) 0 = lookup p (0 ::-::{comm-powerprod,ninv-comm-monoid-add}) ^

k
by (induct k) (simp-all add: lookup-times-zero)

definition poly-eval :: (′x ⇒ ′a) ⇒ ((′x ⇒0 nat) ⇒0
′a) ⇒ ′a::comm-semiring-1

where poly-eval a p = lookup (poly-subst (λy. monomial (a y) (0 :: ′x ⇒0 nat))
p) 0

lemma poly-eval-alt: poly-eval a p = (
∑

t∈keys p. lookup p t ∗ (
∏

x∈keys t. a x ^
lookup t x))
by (simp add: poly-eval-def poly-subst-def lookup-sum lookup-times-zero subst-pp-def

lookup-prod-zero lookup-power-zero flip: times-monomial-left)

lemma poly-eval-monomial: poly-eval a (monomial c t) = c ∗ (
∏

x∈keys t. a x ^

462

lookup t x)
by (simp add: poly-eval-def poly-subst-monomial subst-pp-def punit.lookup-monom-mult

lookup-prod-zero lookup-power-zero)

lemma poly-eval-zero [simp]: poly-eval a 0 = 0
by (simp only: poly-eval-def poly-subst-zero lookup-zero)

lemma poly-eval-zero-left [simp]: poly-eval 0 p = lookup p 0
by (simp add: poly-eval-def)

lemma poly-eval-plus: poly-eval a (p + q) = poly-eval a p + poly-eval a q
by (simp only: poly-eval-def poly-subst-plus lookup-add)

lemma poly-eval-uminus [simp]: poly-eval a (− p) = − poly-eval (a::-::comm-ring-1)
p

by (simp only: poly-eval-def poly-subst-uminus lookup-uminus)

lemma poly-eval-minus: poly-eval a (p − q) = poly-eval a p − poly-eval (a::-::comm-ring-1)
q

by (simp only: poly-eval-def poly-subst-minus lookup-minus)

lemma poly-eval-one [simp]: poly-eval a 1 = 1
by (simp add: poly-eval-def lookup-one)

lemma poly-eval-times: poly-eval a (p ∗ q) = poly-eval a p ∗ poly-eval a q
by (simp only: poly-eval-def poly-subst-times lookup-times-zero)

lemma poly-eval-power : poly-eval a (p ^ m) = poly-eval a p ^ m
by (induct m) (simp-all add: poly-eval-times)

lemma poly-eval-sum: poly-eval a (sum f I) = (
∑

i∈I . poly-eval a (f i))
by (induct I rule: infinite-finite-induct) (simp-all add: poly-eval-plus)

lemma poly-eval-prod: poly-eval a (prod f I) = (
∏

i∈I . poly-eval a (f i))
by (induct I rule: infinite-finite-induct) (simp-all add: poly-eval-times)

lemma poly-eval-cong: p = q =⇒ (
∧

x. x ∈ indets q =⇒ a x = b x) =⇒ poly-eval
a p = poly-eval b q

by (simp add: poly-eval-def cong: poly-subst-cong)

lemma indets-poly-eval-subset:
indets (poly-eval a p) ⊆

⋃
(indets ‘ a ‘ indets p) ∪

⋃
(indets ‘ lookup p ‘ keys p)

proof (induct p rule: poly-mapping-plus-induct)
case 1
show ?case by simp

next
case (2 p c t)
have keys (monomial c t + p) = keys (monomial c t) ∪ keys p

by (rule keys-plus-eqI) (simp add: 2 (2))

463

with 2 (1) have eq1 : keys (monomial c t + p) = insert t (keys p) by simp
hence eq2 : indets (monomial c t + p) = keys t ∪ indets p by (simp add:

indets-def)
from 2 (2) have eq3 : lookup (monomial c t + p) t = c by (simp add: lookup-add

in-keys-iff)
have eq4 : lookup (monomial c t + p) s = lookup p s if s ∈ keys p for s

using that 2 (2) by (auto simp: lookup-add lookup-single when-def)
have indets (poly-eval a (monomial c t + p)) =

indets (c ∗ (
∏

x∈keys t. a x ^ lookup t x) + poly-eval a p)
by (simp only: poly-eval-plus poly-eval-monomial)

also have . . . ⊆ indets (c ∗ (
∏

x∈keys t. a x ^ lookup t x)) ∪ indets (poly-eval a
p)

by (fact indets-plus-subset)
also have . . . ⊆ indets c ∪ (

⋃
(indets ‘ a ‘ keys t)) ∪

(
⋃

(indets ‘ a ‘ indets p) ∪
⋃

(indets ‘ lookup p ‘ keys p))
proof (intro Un-mono 2 (3))

have indets (c ∗ (
∏

x∈keys t. a x ^ lookup t x)) ⊆ indets c ∪ indets (
∏

x∈keys
t. a x ^ lookup t x)

by (fact indets-times-subset)
also have indets (

∏
x∈keys t. a x ^ lookup t x) ⊆ (

⋃
x∈keys t. indets (a x ^

lookup t x))
by (fact indets-prod-subset)
also have . . . ⊆ (

⋃
x∈keys t. indets (a x)) by (intro UN-mono subset-refl

indets-power-subset)
also have . . . =

⋃
(indets ‘ a ‘ keys t) by simp

finally show indets (c ∗ (
∏

x∈keys t. a x ^ lookup t x)) ⊆ indets c ∪
⋃

(indets
‘ a ‘ keys t)

by blast
qed
also have . . . =

⋃
(indets ‘ a ‘ indets (monomial c t + p)) ∪⋃

(indets ‘ lookup (monomial c t + p) ‘ keys (monomial c t + p))
by (simp add: eq1 eq2 eq3 eq4 Un-commute Un-assoc Un-left-commute)

finally show ?case .
qed

lemma image-poly-eval-ideal: poly-eval a ‘ ideal F = ideal (poly-eval a ‘ F)
proof (intro image-ideal-eq-surj poly-eval-plus poly-eval-times surjI)

fix x
show poly-eval a (monomial x 0) = x by (simp add: poly-eval-monomial)

qed

17.5 Replacing Indeterminates
definition map-indets where map-indets f = poly-subst (λx. monomial 1 (Poly-Mapping.single
(f x) 1))

lemma
shows map-indets-zero [simp]: map-indets f 0 = 0

and map-indets-one [simp]: map-indets f 1 = 1

464

and map-indets-uminus [simp]: map-indets f (− r) = − map-indets f (r ::- ⇒0

-::comm-ring-1)
and map-indets-plus: map-indets f (p + q) = map-indets f p + map-indets f q
and map-indets-minus: map-indets f (r − s) = map-indets f r − map-indets f

s
and map-indets-times: map-indets f (p ∗ q) = map-indets f p ∗ map-indets f q
and map-indets-power [simp]: map-indets f (p ^ m) = map-indets f p ^ m
and map-indets-sum: map-indets f (sum g A) = (

∑
a∈A. map-indets f (g a))

and map-indets-prod: map-indets f (prod g A) = (
∏

a∈A. map-indets f (g a))
by (simp-all add: map-indets-def poly-subst-uminus poly-subst-plus poly-subst-minus

poly-subst-times
poly-subst-power poly-subst-sum poly-subst-prod)

lemma map-indets-monomial:
map-indets f (monomial c t) = monomial c (

∑
x∈keys t. Poly-Mapping.single (f

x) (lookup t x))
by (simp add: map-indets-def poly-subst-monomial subst-pp-def monomial-power-map-scale

punit.monom-mult-monomial flip: punit.monomial-prod-sum)

lemma map-indets-id: (
∧

x. x ∈ indets p =⇒ f x = x) =⇒ map-indets f p = p
by (simp add: map-indets-def poly-subst-id)

lemma map-indets-map-indets: map-indets f (map-indets g p) = map-indets (f ◦
g) p
by (simp add: map-indets-def poly-subst-poly-subst poly-subst-monomial subst-pp-single)

lemma map-indets-cong: p = q =⇒ (
∧

x. x ∈ indets q =⇒ f x = g x) =⇒
map-indets f p = map-indets g q

unfolding map-indets-def by (simp cong: poly-subst-cong)

lemma poly-subst-map-indets: poly-subst f (map-indets g p) = poly-subst (f ◦ g) p
by (simp add: map-indets-def poly-subst-poly-subst poly-subst-monomial subst-pp-single

comp-def)

lemma poly-eval-map-indets: poly-eval a (map-indets g p) = poly-eval (a ◦ g) p
by (simp add: poly-eval-def poly-subst-map-indets comp-def)
(simp add: poly-subst-def lookup-sum lookup-times-zero subst-pp-def lookup-prod-zero

lookup-power-zero flip: times-monomial-left)

lemma map-indets-inverseE-Polys:
assumes inj-on f X and p ∈ P[X]
shows map-indets (the-inv-into X f) (map-indets f p) = p
unfolding map-indets-map-indets

proof (rule map-indets-id)
fix x
assume x ∈ indets p
also from assms(2) have . . . ⊆ X by (rule PolysD)
finally show (the-inv-into X f ◦ f) x = x using assms(1) by (auto intro:

the-inv-into-f-f)

465

qed

lemma map-indets-inverseE :
assumes inj f
obtains g where g = the-inv f and g ◦ f = id and map-indets g ◦ map-indets

f = id
proof −

define g where g = the-inv f
moreover from assms have eq: g ◦ f = id by (auto intro!: ext the-inv-f-f simp:

g-def)
moreover have map-indets g ◦ map-indets f = id

by (rule ext) (simp add: map-indets-map-indets eq map-indets-id)
ultimately show ?thesis ..

qed

lemma indets-map-indets-subset: indets (map-indets f (p::-⇒0
′a::comm-semiring-1))

⊆ f ‘ indets p
proof

fix x
assume x ∈ indets (map-indets f p)
then obtain y where y ∈ indets p and x ∈ indets (monomial (1 :: ′a) (Poly-Mapping.single

(f y) 1))
unfolding map-indets-def by (rule in-indets-poly-substE)

from this(2) have x: x = f y by (simp add: indets-monomial)
from ‹y ∈ indets p› show x ∈ f ‘ indets p unfolding x by (rule imageI)

qed

corollary map-indets-in-Polys: map-indets f p ∈ P[f ‘ indets p]
using indets-map-indets-subset by (rule PolysI-alt)

lemma indets-map-indets:
assumes inj-on f (indets p)
shows indets (map-indets f p) = f ‘ indets p
using indets-map-indets-subset

proof (rule subset-antisym)
let ?g = the-inv-into (indets p) f
have p = map-indets ?g (map-indets f p) unfolding map-indets-map-indets

by (rule sym, rule map-indets-id) (simp add: assms the-inv-into-f-f)
also have indets . . . ⊆ ?g ‘ indets (map-indets f p) by (fact indets-map-indets-subset)
finally have f ‘ indets p ⊆ f ‘ ?g ‘ indets (map-indets f p) by (rule image-mono)
also have . . . = (λx. x) ‘ indets (map-indets f p) unfolding image-image using

refl
proof (rule image-cong)

fix x
assume x ∈ indets (map-indets f p)
with indets-map-indets-subset have x ∈ f ‘ indets p ..
with assms show f (?g x) = x by (rule f-the-inv-into-f)

qed
finally show f ‘ indets p ⊆ indets (map-indets f p) by simp

466

qed

lemma image-map-indets-Polys: map-indets f ‘ P[X] = (P[f ‘ X]::(-⇒0
′a::comm-semiring-1)

set)
proof (intro set-eqI iffI)

fix p :: - ⇒0
′a

assume p ∈ map-indets f ‘ P[X]
then obtain q where q ∈ P[X] and p = map-indets f q ..
note this(2)
also have map-indets f q ∈ P[f ‘ indets q] by (fact map-indets-in-Polys)
also from ‹q ∈ -› have . . . ⊆ P[f ‘ X] by (auto intro!: Polys-mono imageI dest:

PolysD)
finally show p ∈ P[f ‘ X] .

next
fix p :: - ⇒0

′a
assume p ∈ P[f ‘ X]
define g where g = (λy. SOME x. x ∈ X ∧ f x = y)
have g y ∈ X ∧ f (g y) = y if y ∈ indets p for y
proof −

note that
also from ‹p ∈ -› have indets p ⊆ f ‘ X by (rule PolysD)
finally obtain x where x ∈ X and y = f x ..
hence x ∈ X ∧ f x = y by simp
thus ?thesis unfolding g-def by (rule someI)

qed
hence 1 : g y ∈ X and 2 : f (g y) = y if y ∈ indets p for y using that by

simp-all
show p ∈ map-indets f ‘ P[X]
proof

show p = map-indets f (map-indets g p)
by (rule sym) (simp add: map-indets-map-indets map-indets-id 2)

next
have map-indets g p ∈ P[g ‘ indets p] by (fact map-indets-in-Polys)
also have . . . ⊆ P[X] by (auto intro!: Polys-mono 1)
finally show map-indets g p ∈ P[X] .

qed
qed

corollary range-map-indets: range (map-indets f) = P[range f]
proof −

have range (map-indets f) = map-indets f ‘ P[UNIV] by simp
also have . . . = P[range f] by (simp only: image-map-indets-Polys)
finally show ?thesis .

qed

lemma in-keys-map-indetsE :
assumes t ∈ keys (map-indets f (p::- ⇒0

′a::comm-semiring-1))
obtains s where s ∈ keys p and t = (

∑
x∈keys s. Poly-Mapping.single (f x)

(lookup s x))

467

proof −
let ?f = (λx. monomial (1 :: ′a) (Poly-Mapping.single (f x) 1))
from assms obtain s where s ∈ keys p and t ∈ keys (subst-pp ?f s) unfolding

map-indets-def
by (rule in-keys-poly-substE)

note this(2)
also have . . . ⊆ {

∑
x∈keys s. Poly-Mapping.single (f x) (lookup s x)}

by (simp add: subst-pp-def monomial-power-map-scale flip: punit.monomial-prod-sum)
finally have t = (

∑
x∈keys s. Poly-Mapping.single (f x) (lookup s x)) by simp

with ‹s ∈ keys p› show ?thesis ..
qed

lemma keys-map-indets-subset:
keys (map-indets f p) ⊆ (λt.

∑
x∈keys t. Poly-Mapping.single (f x) (lookup t x))

‘ keys p
by (auto elim: in-keys-map-indetsE)

lemma keys-map-indets:
assumes inj-on f (indets p)
shows keys (map-indets f p) = (λt.

∑
x∈keys t. Poly-Mapping.single (f x) (lookup

t x)) ‘ keys p
using keys-map-indets-subset

proof (rule subset-antisym)
let ?g = the-inv-into (indets p) f
have p = map-indets ?g (map-indets f p) unfolding map-indets-map-indets

by (rule sym, rule map-indets-id) (simp add: assms the-inv-into-f-f)
also have keys . . . ⊆ (λt.

∑
x∈keys t. monomial (lookup t x) (?g x)) ‘ keys

(map-indets f p)
by (rule keys-map-indets-subset)

finally have (λt.
∑

x∈keys t. Poly-Mapping.single (f x) (lookup t x)) ‘ keys p ⊆
(λt.

∑
x∈keys t. Poly-Mapping.single (f x) (lookup t x)) ‘

(λt.
∑

x∈keys t. Poly-Mapping.single (?g x) (lookup t x)) ‘ keys
(map-indets f p)

by (rule image-mono)
also from refl have . . . = (λt.

∑
x. Poly-Mapping.single (f x) (lookup t x)) ‘

(λt.
∑

x∈keys t. Poly-Mapping.single (?g x) (lookup t x)) ‘ keys
(map-indets f p)

by (rule image-cong)
(smt (verit) Sum-any.conditionalize Sum-any.cong finite-keys not-in-keys-iff-lookup-eq-zero

single-zero)
also have . . . = (λt. t) ‘ keys (map-indets f p) unfolding image-image using

refl
proof (rule image-cong)

fix t
assume t ∈ keys (map-indets f p)
have (

∑
x. monomial (lookup (

∑
y∈keys t. Poly-Mapping.single (?g y) (lookup

t y)) x) (f x)) =
(
∑

x.
∑

y∈keys t. monomial (lookup t y when ?g y = x) (f x))
by (simp add: lookup-sum lookup-single monomial-sum)

468

also have . . . = (
∑

x∈indets p.
∑

y∈keys t. Poly-Mapping.single (f x) (lookup
t y when ?g y = x))

proof (intro Sum-any.expand-superset finite-indets subsetI)
fix x
assume x ∈ {a. (

∑
y∈keys t. Poly-Mapping.single (f a) (lookup t y when ?g

y = a)) 6= 0}
hence (

∑
y∈keys t. Poly-Mapping.single (f x) (lookup t y when ?g y = x)) 6=

0 by simp
then obtain y where y ∈ keys t and ∗: Poly-Mapping.single (f x) (lookup t

y when ?g y = x) 6= 0
by (rule sum.not-neutral-contains-not-neutral)
from this(1) have y ∈ indets (map-indets f p) using ‹t ∈ -› by (rule

in-indetsI)
with indets-map-indets-subset have y ∈ f ‘ indets p ..
from ∗ have x = ?g y by (simp add: when-def split: if-split-asm)
also from assms ‹y ∈ f ‘ indets p› subset-refl have . . . ∈ indets p by (rule

the-inv-into-into)
finally show x ∈ indets p .

qed
also have . . . = (

∑
y∈keys t.

∑
x∈indets p. Poly-Mapping.single (f x) (lookup

t y when ?g y = x))
by (fact sum.swap)

also from refl have . . . = (
∑

y∈keys t. Poly-Mapping.single y (lookup t y))
proof (rule sum.cong)

fix x
assume x ∈ keys t
hence x ∈ indets (map-indets f p) using ‹t ∈ -› by (rule in-indetsI)
with indets-map-indets-subset have x ∈ f ‘ indets p ..
with assms have ?g x ∈ indets p using subset-refl by (rule the-inv-into-into)
hence {?g x} ⊆ indets p by simp
with finite-indets have (

∑
y∈indets p. Poly-Mapping.single (f y) (lookup t x

when ?g x = y)) =
(
∑

y∈{?g x}. Poly-Mapping.single (f y) (lookup t x when
?g x = y))

by (rule sum.mono-neutral-right) (simp add: monomial-0-iff when-def)
also from assms ‹x ∈ f ‘ indets p› have . . . = Poly-Mapping.single x (lookup

t x)
by (simp add: f-the-inv-into-f)

finally show (
∑

y∈indets p. Poly-Mapping.single (f y) (lookup t x when ?g x
= y)) =

Poly-Mapping.single x (lookup t x) .
qed
also have . . . = t by (fact poly-mapping-sum-monomials)
finally show (

∑
x. monomial (lookup (

∑
y∈keys t. Poly-Mapping.single (?g

y) (lookup t y)) x) (f x)) = t .
qed
also have . . . = keys (map-indets f p) by simp
finally show (λt.

∑
x∈keys t. Poly-Mapping.single (f x) (lookup t x)) ‘ keys p

⊆ keys (map-indets f p) .

469

qed

lemma poly-deg-map-indets-le: poly-deg (map-indets f p) ≤ poly-deg p
proof (rule poly-deg-leI)

fix t
assume t ∈ keys (map-indets f p)
then obtain s where s ∈ keys p and t: t = (

∑
x∈keys s. Poly-Mapping.single

(f x) (lookup s x))
by (rule in-keys-map-indetsE)

from this(1) have deg-pm s ≤ poly-deg p by (rule poly-deg-max-keys)
thus deg-pm t ≤ poly-deg p

by (simp add: t deg-pm-sum deg-pm-single deg-pm-superset[OF subset-refl])
qed

lemma poly-deg-map-indets:
assumes inj-on f (indets p)
shows poly-deg (map-indets f p) = poly-deg p

proof −
from assms have deg-pm ‘ keys (map-indets f p) = deg-pm ‘ keys p

by (simp add: keys-map-indets image-image deg-pm-sum deg-pm-single
flip: deg-pm-superset[OF subset-refl])

thus ?thesis by (auto simp: poly-deg-def)
qed

lemma map-indets-inj-on-PolysI :
assumes inj-on (f :: ′x ⇒ ′y) X
shows inj-on ((map-indets f)::- ⇒ - ⇒0

′a::comm-semiring-1) P[X]
proof (rule inj-onI)

fix p q :: - ⇒0
′a

assume p ∈ P[X]
with assms have 1 : map-indets (the-inv-into X f) (map-indets f p) = p (is

map-indets ?g - = -)
by (rule map-indets-inverseE-Polys)

assume q ∈ P[X]
with assms have map-indets ?g (map-indets f q) = q by (rule map-indets-inverseE-Polys)
moreover assume map-indets f p = map-indets f q
ultimately show p = q using 1 by (simp add: map-indets-map-indets)

qed

lemma map-indets-injI :
assumes inj f
shows inj (map-indets f)

proof −
from assms have inj-on (map-indets f) P[UNIV] by (rule map-indets-inj-on-PolysI)
thus ?thesis by simp

qed

lemma image-map-indets-ideal:
assumes inj f

470

shows map-indets f ‘ ideal F = ideal (map-indets f ‘ (F ::(- ⇒0
′a::comm-ring-1)

set)) ∩ P[range f]
proof

from map-indets-plus map-indets-times have map-indets f ‘ ideal F ⊆ ideal
(map-indets f ‘ F)

by (rule image-ideal-subset)
moreover from subset-UNIV have map-indets f ‘ ideal F ⊆ range (map-indets

f) by (rule image-mono)
ultimately show map-indets f ‘ ideal F ⊆ ideal (map-indets f ‘ F) ∩ P[range f]

unfolding range-map-indets by blast
next

show ideal (map-indets f ‘ F) ∩ P[range f] ⊆ map-indets f ‘ ideal F
proof

fix p
assume p ∈ ideal (map-indets f ‘ F) ∩ P[range f]
hence p ∈ ideal (map-indets f ‘ F) and p ∈ range (map-indets f)

by (simp-all add: range-map-indets)
from this(1) obtain F0 q where F0 ⊆ map-indets f ‘ F and p: p = (

∑
f ′∈F0 .

q f ′ ∗ f ′)
by (rule ideal.spanE)

from this(1) obtain F ′ where F ′ ⊆ F and F0 : F0 = map-indets f ‘ F ′ by
(rule subset-imageE)

from assms obtain g where map-indets g ◦ map-indets f = (id::- ⇒ - ⇒0
′a)

by (rule map-indets-inverseE)
hence eq: map-indets g (map-indets f p ′) = p ′ for p ′::- ⇒0

′a
by (simp add: pointfree-idE)

from assms have inj (map-indets f) by (rule map-indets-injI)
from this subset-UNIV have inj-on (map-indets f) F ′ by (rule inj-on-subset)
from ‹p ∈ range -› obtain p ′ where p = map-indets f p ′ ..
hence p = map-indets f (map-indets g p) by (simp add: eq)
also from ‹inj-on - F ′› have . . . = map-indets f (

∑
f ′∈F ′. map-indets g (q

(map-indets f f ′)) ∗ f ′)
by (simp add: p F0 sum.reindex map-indets-sum map-indets-times eq)

finally have p = map-indets f (
∑

f ′∈F ′. map-indets g (q (map-indets f f ′)) ∗
f ′) .

moreover have (
∑

f ′∈F ′. map-indets g (q (map-indets f f ′)) ∗ f ′) ∈ ideal F
proof

show (
∑

f ′∈F ′. map-indets g (q (map-indets f f ′)) ∗ f ′) ∈ ideal F ′ by (rule
ideal.sum-in-spanI)

next
from ‹F ′ ⊆ F› show ideal F ′ ⊆ ideal F by (rule ideal.span-mono)

qed
ultimately show p ∈ map-indets f ‘ ideal F by (rule image-eqI)

qed
qed

17.6 Homogeneity
definition homogeneous :: ((′x ⇒0 nat) ⇒0

′a::zero) ⇒ bool

471

where homogeneous p ←→ (∀ s∈keys p. ∀ t∈keys p. deg-pm s = deg-pm t)

definition hom-component :: ((′x ⇒0 nat) ⇒0
′a) ⇒ nat ⇒ ((′x ⇒0 nat) ⇒0

′a::zero)
where hom-component p n = except p {t. deg-pm t 6= n}

definition hom-components :: ((′x ⇒0 nat) ⇒0
′a) ⇒ ((′x ⇒0 nat) ⇒0

′a::zero)
set

where hom-components p = hom-component p ‘ deg-pm ‘ keys p

definition homogeneous-set :: ((′x ⇒0 nat) ⇒0
′a::zero) set ⇒ bool

where homogeneous-set A ←→ (∀ a∈A. ∀n. hom-component a n ∈ A)

lemma homogeneousI : (
∧

s t. s ∈ keys p =⇒ t ∈ keys p =⇒ deg-pm s = deg-pm
t) =⇒ homogeneous p

unfolding homogeneous-def by blast

lemma homogeneousD: homogeneous p =⇒ s ∈ keys p =⇒ t ∈ keys p =⇒ deg-pm
s = deg-pm t

unfolding homogeneous-def by blast

lemma homogeneousD-poly-deg:
assumes homogeneous p and t ∈ keys p
shows deg-pm t = poly-deg p

proof (rule antisym)
from assms(2) show deg-pm t ≤ poly-deg p by (rule poly-deg-max-keys)

next
show poly-deg p ≤ deg-pm t
proof (rule poly-deg-leI)

fix s
assume s ∈ keys p
with assms(1) have deg-pm s = deg-pm t using assms(2) by (rule homoge-

neousD)
thus deg-pm s ≤ deg-pm t by simp

qed
qed

lemma homogeneous-monomial [simp]: homogeneous (monomial c t)
by (auto split: if-split-asm intro: homogeneousI)

corollary homogeneous-zero [simp]: homogeneous 0 and homogeneous-one [simp]:
homogeneous 1

by (simp-all only: homogeneous-monomial flip: single-zero[of 0] single-one)

lemma homogeneous-uminus-iff [simp]: homogeneous (− p) ←→ homogeneous p
by (auto intro!: homogeneousI dest: homogeneousD simp: keys-uminus)

lemma homogeneous-monom-mult: homogeneous p =⇒ homogeneous (punit.monom-mult
c t p)

472

by (auto intro!: homogeneousI elim!: punit.keys-monom-multE simp: deg-pm-plus
dest: homogeneousD)

lemma homogeneous-monom-mult-rev:
assumes c 6= (0 :: ′a::semiring-no-zero-divisors) and homogeneous (punit.monom-mult

c t p)
shows homogeneous p

proof (rule homogeneousI)
fix s s ′

assume s ∈ keys p
hence 1 : t + s ∈ keys (punit.monom-mult c t p)

using assms(1) by (rule punit.keys-monom-multI [simplified])
assume s ′ ∈ keys p
hence t + s ′ ∈ keys (punit.monom-mult c t p)

using assms(1) by (rule punit.keys-monom-multI [simplified])
with assms(2) 1 have deg-pm (t + s) = deg-pm (t + s ′) by (rule homogeneousD)
thus deg-pm s = deg-pm s ′ by (simp add: deg-pm-plus)

qed

lemma homogeneous-times:
assumes homogeneous p and homogeneous q
shows homogeneous (p ∗ q)

proof (rule homogeneousI)
fix s t
assume s ∈ keys (p ∗ q)
then obtain sp sq where sp: sp ∈ keys p and sq: sq ∈ keys q and s: s = sp +

sq
by (rule in-keys-timesE)

assume t ∈ keys (p ∗ q)
then obtain tp tq where tp: tp ∈ keys p and tq: tq ∈ keys q and t: t = tp + tq

by (rule in-keys-timesE)
from assms(1) sp tp have deg-pm sp = deg-pm tp by (rule homogeneousD)
moreover from assms(2) sq tq have deg-pm sq = deg-pm tq by (rule homoge-

neousD)
ultimately show deg-pm s = deg-pm t by (simp only: s t deg-pm-plus)

qed

lemma lookup-hom-component: lookup (hom-component p n) = (λt. lookup p t
when deg-pm t = n)

by (rule ext) (simp add: hom-component-def lookup-except)

lemma keys-hom-component: keys (hom-component p n) = {t. t ∈ keys p ∧ deg-pm
t = n}

by (auto simp: hom-component-def keys-except)

lemma keys-hom-componentD:
assumes t ∈ keys (hom-component p n)
shows t ∈ keys p and deg-pm t = n
using assms by (simp-all add: keys-hom-component)

473

lemma homogeneous-hom-component: homogeneous (hom-component p n)
by (auto dest: keys-hom-componentD intro: homogeneousI)

lemma hom-component-zero [simp]: hom-component 0 = 0
by (rule ext) (simp add: hom-component-def)

lemma hom-component-zero-iff : hom-component p n = 0 ←→ (∀ t∈keys p. deg-pm
t 6= n)

by (metis (mono-tags, lifting) empty-iff keys-eq-empty-iff keys-hom-component
mem-Collect-eq subsetI subset-antisym)

lemma hom-component-uminus [simp]: hom-component (− p) = − hom-component
p

by (intro ext poly-mapping-eqI) (simp add: hom-component-def lookup-except)

lemma hom-component-plus: hom-component (p + q) n = hom-component p n +
hom-component q n
by (rule poly-mapping-eqI) (simp add: hom-component-def lookup-except lookup-add)

lemma hom-component-minus: hom-component (p − q) n = hom-component p n
− hom-component q n
by (rule poly-mapping-eqI) (simp add: hom-component-def lookup-except lookup-minus)

lemma hom-component-monom-mult:
punit.monom-mult c t (hom-component p n) = hom-component (punit.monom-mult

c t p) (deg-pm t + n)
by (auto simp: hom-component-def lookup-except punit.lookup-monom-mult deg-pm-minus

deg-pm-mono intro!: poly-mapping-eqI)

lemma hom-component-inject:
assumes t ∈ keys p and hom-component p (deg-pm t) = hom-component p n
shows deg-pm t = n

proof −
from assms(1) have t ∈ keys (hom-component p (deg-pm t)) by (simp add:

keys-hom-component)
hence 0 6= lookup (hom-component p (deg-pm t)) t by (simp add: in-keys-iff)
also have lookup (hom-component p (deg-pm t)) t = lookup (hom-component p

n) t
by (simp only: assms(2))

also have . . . = (lookup p t when deg-pm t = n) by (simp only: lookup-hom-component)
finally show ?thesis by simp

qed

lemma hom-component-of-homogeneous:
assumes homogeneous p
shows hom-component p n = (p when n = poly-deg p)

proof (cases n = poly-deg p)
case True

474

have hom-component p n = p
proof (rule poly-mapping-eqI)

fix t
show lookup (hom-component p n) t = lookup p t
proof (cases t ∈ keys p)

case True
with assms have deg-pm t = n unfolding ‹n = poly-deg p› by (rule homo-

geneousD-poly-deg)
thus ?thesis by (simp add: lookup-hom-component)

next
case False
moreover from this have t /∈ keys (hom-component p n) by (simp add:

keys-hom-component)
ultimately show ?thesis by (simp add: in-keys-iff)

qed
qed
with True show ?thesis by simp

next
case False
have hom-component p n = 0 unfolding hom-component-zero-iff
proof (intro ballI notI)

fix t
assume t ∈ keys p
with assms have deg-pm t = poly-deg p by (rule homogeneousD-poly-deg)
moreover assume deg-pm t = n
ultimately show False using False by simp

qed
with False show ?thesis by simp

qed

lemma hom-components-zero [simp]: hom-components 0 = {}
by (simp add: hom-components-def)

lemma hom-components-zero-iff [simp]: hom-components p = {} ←→ p = 0
by (simp add: hom-components-def)

lemma hom-components-uminus: hom-components (− p) = uminus ‘ hom-components
p

by (simp add: hom-components-def keys-uminus image-image)

lemma hom-components-monom-mult:
hom-components (punit.monom-mult c t p) = (if c = 0 then {} else punit.monom-mult

c t ‘ hom-components p)
for c:: ′a::semiring-no-zero-divisors
by (simp add: hom-components-def punit.keys-monom-mult image-image deg-pm-plus

hom-component-monom-mult)

lemma hom-componentsI : q = hom-component p (deg-pm t) =⇒ t ∈ keys p =⇒
q ∈ hom-components p

475

unfolding hom-components-def by blast

lemma hom-componentsE :
assumes q ∈ hom-components p
obtains t where t ∈ keys p and q = hom-component p (deg-pm t)
using assms unfolding hom-components-def by blast

lemma hom-components-of-homogeneous:
assumes homogeneous p
shows hom-components p = (if p = 0 then {} else {p})

proof (split if-split, intro conjI impI)
assume p 6= 0
have deg-pm ‘ keys p = {poly-deg p}
proof (rule set-eqI)

fix n
have n ∈ deg-pm ‘ keys p ←→ n = poly-deg p
proof

assume n ∈ deg-pm ‘ keys p
then obtain t where t ∈ keys p and n = deg-pm t ..

from assms this(1) have deg-pm t = poly-deg p by (rule homogeneousD-poly-deg)
thus n = poly-deg p by (simp only: ‹n = deg-pm t›)

next
assume n = poly-deg p
from ‹p 6= 0 › have keys p 6= {} by simp
then obtain t where t ∈ keys p by blast
with assms have deg-pm t = poly-deg p by (rule homogeneousD-poly-deg)
hence n = deg-pm t by (simp only: ‹n = poly-deg p›)
with ‹t ∈ keys p› show n ∈ deg-pm ‘ keys p by (rule rev-image-eqI)

qed
thus n ∈ deg-pm ‘ keys p ←→ n ∈ {poly-deg p} by simp

qed
with assms show hom-components p = {p}

by (simp add: hom-components-def hom-component-of-homogeneous)
qed simp

lemma finite-hom-components: finite (hom-components p)
unfolding hom-components-def using finite-keys by (intro finite-imageI)

lemma hom-components-homogeneous: q ∈ hom-components p =⇒ homogeneous
q

by (elim hom-componentsE) (simp only: homogeneous-hom-component)

lemma hom-components-nonzero: q ∈ hom-components p =⇒ q 6= 0
by (auto elim!: hom-componentsE simp: hom-component-zero-iff)

lemma deg-pm-hom-components:
assumes q1 ∈ hom-components p and q2 ∈ hom-components p and t1 ∈ keys

q1 and t2 ∈ keys q2
shows deg-pm t1 = deg-pm t2 ←→ q1 = q2

476

proof −
from assms(1) obtain s1 where s1 ∈ keys p and q1 : q1 = hom-component p

(deg-pm s1)
by (rule hom-componentsE)

from assms(3) have t1 : deg-pm t1 = deg-pm s1 unfolding q1 by (rule keys-hom-componentD)
from assms(2) obtain s2 where s2 ∈ keys p and q2 : q2 = hom-component p

(deg-pm s2)
by (rule hom-componentsE)

from assms(4) have t2 : deg-pm t2 = deg-pm s2 unfolding q2 by (rule keys-hom-componentD)
from ‹s1 ∈ keys p› show ?thesis by (auto simp: q1 q2 t1 t2 dest: hom-component-inject)

qed

lemma poly-deg-hom-components:
assumes q1 ∈ hom-components p and q2 ∈ hom-components p
shows poly-deg q1 = poly-deg q2 ←→ q1 = q2

proof −
from assms(1) have homogeneous q1 and q1 6= 0

by (rule hom-components-homogeneous, rule hom-components-nonzero)
from this(2) have keys q1 6= {} by simp
then obtain t1 where t1 ∈ keys q1 by blast
with ‹homogeneous q1 › have t1 : deg-pm t1 = poly-deg q1 by (rule homoge-

neousD-poly-deg)
from assms(2) have homogeneous q2 and q2 6= 0

by (rule hom-components-homogeneous, rule hom-components-nonzero)
from this(2) have keys q2 6= {} by simp
then obtain t2 where t2 ∈ keys q2 by blast
with ‹homogeneous q2 › have t2 : deg-pm t2 = poly-deg q2 by (rule homoge-

neousD-poly-deg)
from assms ‹t1 ∈ keys q1 › ‹t2 ∈ keys q2 › have deg-pm t1 = deg-pm t2 ←→ q1

= q2
by (rule deg-pm-hom-components)

thus ?thesis by (simp only: t1 t2)
qed

lemma hom-components-keys-disjoint:
assumes q1 ∈ hom-components p and q2 ∈ hom-components p and q1 6= q2
shows keys q1 ∩ keys q2 = {}

proof (rule ccontr)
assume keys q1 ∩ keys q2 6= {}
then obtain t where t ∈ keys q1 and t ∈ keys q2 by blast
with assms(1 , 2) have deg-pm t = deg-pm t ←→ q1 = q2 by (rule deg-pm-hom-components)
with assms(3) show False by simp

qed

lemma Keys-hom-components: Keys (hom-components p) = keys p
by (auto simp: Keys-def hom-components-def keys-hom-component)

lemma lookup-hom-components: q ∈ hom-components p =⇒ t ∈ keys q =⇒ lookup
q t = lookup p t

477

by (auto elim!: hom-componentsE simp: keys-hom-component lookup-hom-component)

lemma poly-deg-hom-components-le:
assumes q ∈ hom-components p
shows poly-deg q ≤ poly-deg p

proof (rule poly-deg-leI)
fix t
assume t ∈ keys q
also from assms have . . . ⊆ Keys (hom-components p) by (rule keys-subset-Keys)
also have . . . = keys p by (fact Keys-hom-components)
finally show deg-pm t ≤ poly-deg p by (rule poly-deg-max-keys)

qed

lemma sum-hom-components:
∑

(hom-components p) = p
proof (rule poly-mapping-eqI)

fix t
show lookup (

∑
(hom-components p)) t = lookup p t unfolding lookup-sum

proof (cases t ∈ keys p)
case True

also have keys p = Keys (hom-components p) by (simp only: Keys-hom-components)
finally obtain q where q: q ∈ hom-components p and t: t ∈ keys q by (rule

in-KeysE)
from this(1) have (

∑
q0∈hom-components p. lookup q0 t) =

(
∑

q0∈insert q (hom-components p). lookup q0 t)
by (simp only: insert-absorb)

also from finite-hom-components have . . . = lookup q t + (
∑

q0∈hom-components
p − {q}. lookup q0 t)

by (rule sum.insert-remove)
also from q t have . . . = lookup p t + (

∑
q0∈hom-components p − {q}. lookup

q0 t)
by (simp only: lookup-hom-components)

also have (
∑

q0∈hom-components p − {q}. lookup q0 t) = 0
proof (intro sum.neutral ballI)

fix q0
assume q0 ∈ hom-components p − {q}
hence q0 ∈ hom-components p and q 6= q0 by blast+
with q have keys q ∩ keys q0 = {} by (rule hom-components-keys-disjoint)
with t have t /∈ keys q0 by blast
thus lookup q0 t = 0 by (simp add: in-keys-iff)

qed
finally show (

∑
q∈hom-components p. lookup q t) = lookup p t by simp

next
case False
hence t /∈ Keys (hom-components p) by (simp add: Keys-hom-components)

hence ∀ q∈hom-components p. lookup q t = 0 by (simp add: Keys-def in-keys-iff)
hence (

∑
q∈hom-components p. lookup q t) = 0 by (rule sum.neutral)

also from False have . . . = lookup p t by (simp add: in-keys-iff)
finally show (

∑
q∈hom-components p. lookup q t) = lookup p t .

qed

478

qed

lemma homogeneous-setI : (
∧

a n. a ∈ A =⇒ hom-component a n ∈ A) =⇒ ho-
mogeneous-set A

by (simp add: homogeneous-set-def)

lemma homogeneous-setD: homogeneous-set A =⇒ a ∈ A =⇒ hom-component a
n ∈ A

by (simp add: homogeneous-set-def)

lemma homogeneous-set-Polys: homogeneous-set (P[X]::(- ⇒0
′a::zero) set)

proof (intro homogeneous-setI PolysI subsetI)
fix p::- ⇒0

′a and n t
assume p ∈ P[X]
assume t ∈ keys (hom-component p n)
hence t ∈ keys p by (rule keys-hom-componentD)
also from ‹p ∈ P[X]› have . . . ⊆ .[X] by (rule PolysD)
finally show t ∈ .[X] .

qed

lemma homogeneous-set-IntI : homogeneous-set A =⇒ homogeneous-set B =⇒ ho-
mogeneous-set (A ∩ B)

by (simp add: homogeneous-set-def)

lemma homogeneous-setD-hom-components:
assumes homogeneous-set A and a ∈ A and b ∈ hom-components a
shows b ∈ A

proof −
from assms(3) obtain t:: ′a ⇒0 nat where b = hom-component a (deg-pm t)

by (rule hom-componentsE)
also from assms(1 , 2) have . . . ∈ A by (rule homogeneous-setD)
finally show ?thesis .

qed

lemma zero-in-homogeneous-set:
assumes homogeneous-set A and A 6= {}
shows 0 ∈ A

proof −
from assms(2) obtain a where a ∈ A by blast
have lookup a t = 0 if deg-pm t = Suc (poly-deg a) for t
proof (rule ccontr)

assume lookup a t 6= 0
hence t ∈ keys a by (simp add: in-keys-iff)
hence deg-pm t ≤ poly-deg a by (rule poly-deg-max-keys)
thus False by (simp add: that)

qed
hence 0 = hom-component a (Suc (poly-deg a))

by (intro poly-mapping-eqI) (simp add: lookup-hom-component when-def)
also from assms(1) ‹a ∈ A› have . . . ∈ A by (rule homogeneous-setD)

479

finally show ?thesis .
qed

lemma homogeneous-ideal:
assumes

∧
f . f ∈ F =⇒ homogeneous f and p ∈ ideal F

shows hom-component p n ∈ ideal F
proof −

from assms(2) have p ∈ punit.pmdl F by simp
thus ?thesis
proof (induct p rule: punit.pmdl-induct)

case module-0
show ?case by (simp add: ideal.span-zero)

next
case (module-plus a f c t)
let ?f = punit.monom-mult c t f

from module-plus.hyps(3) have f ∈ punit.pmdl F by (simp add: ideal.span-base)
hence ∗: ?f ∈ punit.pmdl F by (rule punit.pmdl-closed-monom-mult)
from module-plus.hyps(3) have homogeneous f by (rule assms(1))
hence homogeneous ?f by (rule homogeneous-monom-mult)

hence hom-component ?f n = (?f when n = poly-deg ?f) by (rule hom-component-of-homogeneous)
also from ∗ have . . . ∈ ideal F by (simp add: when-def ideal.span-zero)
finally have hom-component ?f n ∈ ideal F .
with module-plus.hyps(2) show ?case unfolding hom-component-plus by (rule

ideal.span-add)
qed

qed

corollary homogeneous-set-homogeneous-ideal:
(
∧

f . f ∈ F =⇒ homogeneous f) =⇒ homogeneous-set (ideal F)
by (auto intro: homogeneous-setI homogeneous-ideal)

corollary homogeneous-ideal ′:
assumes

∧
f . f ∈ F =⇒ homogeneous f and p ∈ ideal F and q ∈ hom-components

p
shows q ∈ ideal F
using - assms(2 , 3)

proof (rule homogeneous-setD-hom-components)
from assms(1) show homogeneous-set (ideal F) by (rule homogeneous-set-homogeneous-ideal)

qed

lemma homogeneous-idealE-homogeneous:
assumes

∧
f . f ∈ F =⇒ homogeneous f and p ∈ ideal F and homogeneous p

obtains F ′ q where finite F ′ and F ′ ⊆ F and p = (
∑

f∈F ′. q f ∗ f) and
∧

f .
homogeneous (q f)

and
∧

f . f ∈ F ′ =⇒ poly-deg (q f ∗ f) = poly-deg p and
∧

f . f /∈ F ′ =⇒ q f =
0
proof −
from assms(2) obtain F ′′ q ′ where finite F ′′ and F ′′⊆ F and p: p = (

∑
f∈F ′′.

q ′ f ∗ f)

480

by (rule ideal.spanE)
let ?A = λf . {h ∈ hom-components (q ′ f). poly-deg h + poly-deg f = poly-deg p}
let ?B = λf . {h ∈ hom-components (q ′ f). poly-deg h + poly-deg f 6= poly-deg p}
define F ′ where F ′ = {f ∈ F ′′. (

∑
(?A f)) ∗ f 6= 0}

define q where q = (λf . (
∑

(?A f)) when f ∈ F ′)
have F ′ ⊆ F ′′ by (simp add: F ′-def)
hence F ′ ⊆ F using ‹F ′′ ⊆ F› by (rule subset-trans)
have 1 : deg-pm t + poly-deg f = poly-deg p if f ∈ F ′ and t ∈ keys (q f) for f t
proof −

from that have t ∈ keys (
∑

(?A f)) by (simp add: q-def)
also have . . . ⊆ (

⋃
h∈?A f . keys h) by (fact keys-sum-subset)

finally obtain h where h ∈ ?A f and t ∈ keys h ..
from this(1) have h ∈ hom-components (q ′ f) and eq: poly-deg h + poly-deg f

= poly-deg p
by simp-all

from this(1) have homogeneous h by (rule hom-components-homogeneous)
hence deg-pm t = poly-deg h using ‹t ∈ keys h› by (rule homogeneousD-poly-deg)
thus ?thesis by (simp only: eq)

qed
have 2 : deg-pm t = poly-deg p if f ∈ F ′ and t ∈ keys (q f ∗ f) for f t
proof −

from that(1) ‹F ′ ⊆ F› have f ∈ F ..
hence homogeneous f by (rule assms(1))
from that(2) obtain s1 s2 where s1 ∈ keys (q f) and s2 ∈ keys f and t: t

= s1 + s2
by (rule in-keys-timesE)

from that(1) this(1) have deg-pm s1 + poly-deg f = poly-deg p by (rule 1)
moreover from ‹homogeneous f › ‹s2 ∈ keys f › have deg-pm s2 = poly-deg f

by (rule homogeneousD-poly-deg)
ultimately show ?thesis by (simp add: t deg-pm-plus)

qed
from ‹F ′ ⊆ F ′′› ‹finite F ′′› have finite F ′ by (rule finite-subset)
thus ?thesis using ‹F ′ ⊆ F›
proof

note p
also from refl have (

∑
f∈F ′′. q ′ f ∗ f) = (

∑
f∈F ′′. (

∑
(?A f) ∗ f) + (

∑
(?B

f) ∗ f))
proof (rule sum.cong)

fix f
assume f ∈ F ′′

from sum-hom-components have q ′ f = (
∑

(hom-components (q ′ f))) by
(rule sym)

also have . . . = (
∑

(?A f ∪ ?B f)) by (rule arg-cong[where f=sum (λx.
x)]) blast

also have . . . =
∑

(?A f) +
∑

(?B f)
proof (rule sum.union-disjoint)

have ?A f ⊆ hom-components (q ′ f) by blast
thus finite (?A f) using finite-hom-components by (rule finite-subset)

next

481

have ?B f ⊆ hom-components (q ′ f) by blast
thus finite (?B f) using finite-hom-components by (rule finite-subset)

qed blast
finally show q ′ f ∗ f = (

∑
(?A f) ∗ f) + (

∑
(?B f) ∗ f)

by (metis (no-types, lifting) distrib-right)
qed
also have . . . = (

∑
f∈F ′′.

∑
(?A f) ∗ f) + (

∑
f∈F ′′.

∑
(?B f) ∗ f) by (rule

sum.distrib)
also from ‹finite F ′′› ‹F ′ ⊆ F ′′› have (

∑
f∈F ′′.

∑
(?A f) ∗ f) = (

∑
f∈F ′. q

f ∗ f)
proof (intro sum.mono-neutral-cong-right ballI)

fix f
assume f ∈ F ′′ − F ′

thus
∑

(?A f) ∗ f = 0 by (simp add: F ′-def)
next

fix f
assume f ∈ F ′

thus
∑

(?A f) ∗ f = q f ∗ f by (simp add: q-def)
qed
finally have p[symmetric]: p = (

∑
f∈F ′. q f ∗ f) + (

∑
f∈F ′′.

∑
(?B f) ∗ f) .

moreover have keys (
∑

f∈F ′′.
∑

(?B f) ∗ f) = {}
proof (rule, rule)

fix t
assume t-in: t ∈ keys (

∑
f∈F ′′.

∑
(?B f) ∗ f)

also have . . . ⊆ (
⋃

f∈F ′′. keys (
∑

(?B f) ∗ f)) by (fact keys-sum-subset)
finally obtain f where f ∈ F ′′ and t ∈ keys (

∑
(?B f) ∗ f) ..

from this(2) obtain s1 s2 where s1 ∈ keys (
∑

(?B f)) and s2 ∈ keys f
and t: t = s1 + s2

by (rule in-keys-timesE)
from ‹f ∈ F ′′› ‹F ′′ ⊆ F› have f ∈ F ..
hence homogeneous f by (rule assms(1))
note ‹s1 ∈ keys (

∑
(?B f))›

also have keys (
∑

(?B f)) ⊆ (
⋃

h∈?B f . keys h) by (fact keys-sum-subset)
finally obtain h where h ∈ ?B f and s1 ∈ keys h ..
from this(1) have h ∈ hom-components (q ′ f) and neq: poly-deg h + poly-deg

f 6= poly-deg p
by simp-all

from this(1) have homogeneous h by (rule hom-components-homogeneous)
hence deg-pm s1 = poly-deg h using ‹s1 ∈ keys h› by (rule homoge-

neousD-poly-deg)
moreover from ‹homogeneous f › ‹s2 ∈ keys f › have deg-pm s2 = poly-deg f

by (rule homogeneousD-poly-deg)
ultimately have deg-pm t 6= poly-deg p using neq by (simp add: t deg-pm-plus)

have t /∈ keys (
∑

f∈F ′. q f ∗ f)
proof

assume t ∈ keys (
∑

f∈F ′. q f ∗ f)
also have . . . ⊆ (

⋃
f∈F ′. keys (q f ∗ f)) by (fact keys-sum-subset)

finally obtain f where f ∈ F ′ and t ∈ keys (q f ∗ f) ..
hence deg-pm t = poly-deg p by (rule 2)

482

with ‹deg-pm t 6= poly-deg p› show False ..
qed
with t-in have t ∈ keys ((

∑
f∈F ′. q f ∗ f) + (

∑
f∈F ′′.

∑
(?B f) ∗ f))

by (rule in-keys-plusI2)
hence t ∈ keys p by (simp only: p)
with assms(3) have deg-pm t = poly-deg p by (rule homogeneousD-poly-deg)
with ‹deg-pm t 6= poly-deg p› show t ∈ {} ..

qed (fact empty-subsetI)
ultimately show p = (

∑
f∈F ′. q f ∗ f) by simp

next
fix f
show homogeneous (q f)
proof (cases f ∈ F ′)

case True
show ?thesis
proof (rule homogeneousI)

fix s t
assume s ∈ keys (q f)
with True have ∗: deg-pm s + poly-deg f = poly-deg p by (rule 1)
assume t ∈ keys (q f)
with True have deg-pm t + poly-deg f = poly-deg p by (rule 1)
with ∗ show deg-pm s = deg-pm t by simp

qed
next

case False
thus ?thesis by (simp add: q-def)

qed

assume f ∈ F ′

show poly-deg (q f ∗ f) = poly-deg p
proof (intro antisym)

show poly-deg (q f ∗ f) ≤ poly-deg p
proof (rule poly-deg-leI)

fix t
assume t ∈ keys (q f ∗ f)
with ‹f ∈ F ′› have deg-pm t = poly-deg p by (rule 2)
thus deg-pm t ≤ poly-deg p by simp

qed
next

from ‹f ∈ F ′› have q f ∗ f 6= 0 by (simp add: q-def F ′-def)
hence keys (q f ∗ f) 6= {} by simp
then obtain t where t ∈ keys (q f ∗ f) by blast
with ‹f ∈ F ′› have deg-pm t = poly-deg p by (rule 2)
moreover from ‹t ∈ keys (q f ∗ f)› have deg-pm t ≤ poly-deg (q f ∗ f) by

(rule poly-deg-max-keys)
ultimately show poly-deg p ≤ poly-deg (q f ∗ f) by simp

qed
qed (simp add: q-def)

qed

483

corollary homogeneous-idealE :
assumes

∧
f . f ∈ F =⇒ homogeneous f and p ∈ ideal F

obtains F ′ q where finite F ′ and F ′ ⊆ F and p = (
∑

f∈F ′. q f ∗ f)
and

∧
f . poly-deg (q f ∗ f) ≤ poly-deg p and

∧
f . f /∈ F ′ =⇒ q f = 0

proof (cases p = 0)
case True
show ?thesis
proof

show p = (
∑

f∈{}. (λ-. 0) f ∗ f) by (simp add: True)
qed simp-all

next
case False
define P where P = (λh qf . finite (fst qf) ∧ fst qf ⊆ F ∧ h = (

∑
f∈fst qf . snd

qf f ∗ f) ∧
(∀ f∈fst qf . poly-deg (snd qf f ∗ f) = poly-deg h) ∧ (∀ f . f /∈ fst qf

−→ snd qf f = 0))
define q0 where q0 = (λh. SOME qf . P h qf)
have 1 : P h (q0 h) if h ∈ hom-components p for h
proof −

note assms(1)
moreover from assms that have h ∈ ideal F by (rule homogeneous-ideal ′)

moreover from that have homogeneous h by (rule hom-components-homogeneous)
ultimately obtain F ′ q where finite F ′ and F ′ ⊆ F and h = (

∑
f∈F ′. q f

∗ f)
and

∧
f . f ∈ F ′ =⇒ poly-deg (q f ∗ f) = poly-deg h and

∧
f . f /∈ F ′ =⇒ q f

= 0
by (rule homogeneous-idealE-homogeneous) blast+

hence P h (F ′, q) by (simp add: P-def)
thus ?thesis unfolding q0-def by (rule someI)

qed
define F ′ where F ′ = (

⋃
h∈hom-components p. fst (q0 h))

define q where q = (λf .
∑

h∈hom-components p. snd (q0 h) f)
show ?thesis
proof

have finite F ′ ∧ F ′ ⊆ F unfolding F ′-def UN-subset-iff finite-UN [OF fi-
nite-hom-components]

proof (intro conjI ballI)
fix h
assume h ∈ hom-components p
hence P h (q0 h) by (rule 1)
thus finite (fst (q0 h)) and fst (q0 h) ⊆ F by (simp-all only: P-def)

qed
thus finite F ′ and F ′ ⊆ F by simp-all

from sum-hom-components have p = (
∑

(hom-components p)) by (rule sym)
also from refl have . . . = (

∑
h∈hom-components p.

∑
f∈F ′. snd (q0 h) f ∗

f)
proof (rule sum.cong)

484

fix h
assume h ∈ hom-components p
hence P h (q0 h) by (rule 1)
hence h = (

∑
f∈fst (q0 h). snd (q0 h) f ∗ f) and 2 :

∧
f . f /∈ fst (q0 h) =⇒

snd (q0 h) f = 0
by (simp-all add: P-def)

note this(1)
also from ‹finite F ′› have (

∑
f∈fst (q0 h). (snd (q0 h)) f ∗ f) = (

∑
f∈F ′.

snd (q0 h) f ∗ f)
proof (intro sum.mono-neutral-left ballI)

show fst (q0 h) ⊆ F ′ unfolding F ′-def using ‹h ∈ hom-components p› by
blast

next
fix f
assume f ∈ F ′ − fst (q0 h)
hence f /∈ fst (q0 h) by simp
hence snd (q0 h) f = 0 by (rule 2)
thus snd (q0 h) f ∗ f = 0 by simp

qed
finally show h = (

∑
f∈F ′. snd (q0 h) f ∗ f) .

qed
also have . . . = (

∑
f∈F ′.

∑
h∈hom-components p. snd (q0 h) f ∗ f) by (rule

sum.swap)
also have . . . = (

∑
f∈F ′. q f ∗ f) by (simp only: q-def sum-distrib-right)

finally show p = (
∑

f∈F ′. q f ∗ f) .

fix f
have poly-deg (q f ∗ f) = poly-deg (

∑
h∈hom-components p. snd (q0 h) f ∗ f)

by (simp only: q-def sum-distrib-right)
also have . . . ≤ Max (poly-deg ‘ (λh. snd (q0 h) f ∗ f) ‘ hom-components p)

by (rule poly-deg-sum-le)
also have . . . = Max ((λh. poly-deg (snd (q0 h) f ∗ f)) ‘ hom-components p)
(is - = Max (?f ‘ -)) by (simp only: image-image)

also have . . . ≤ poly-deg p
proof (rule Max.boundedI)

from finite-hom-components show finite (?f ‘ hom-components p) by (rule
finite-imageI)

next
from False show ?f ‘ hom-components p 6= {} by simp

next
fix d
assume d ∈ ?f ‘ hom-components p
then obtain h where h ∈ hom-components p and d: d = ?f h ..
from this(1) have P h (q0 h) by (rule 1)
hence 2 :

∧
f . f ∈ fst (q0 h) =⇒ poly-deg (snd (q0 h) f ∗ f) = poly-deg h

and 3 :
∧

f . f /∈ fst (q0 h) =⇒ snd (q0 h) f = 0 by (simp-all add: P-def)
show d ≤ poly-deg p
proof (cases f ∈ fst (q0 h))

case True

485

hence poly-deg (snd (q0 h) f ∗ f) = poly-deg h by (rule 2)
hence d = poly-deg h by (simp only: d)

also from ‹h ∈ hom-components p› have . . . ≤ poly-deg p by (rule
poly-deg-hom-components-le)

finally show ?thesis .
next

case False
hence snd (q0 h) f = 0 by (rule 3)
thus ?thesis by (simp add: d)

qed
qed
finally show poly-deg (q f ∗ f) ≤ poly-deg p .

assume f /∈ F ′

show q f = 0 unfolding q-def
proof (intro sum.neutral ballI)

fix h
assume h ∈ hom-components p
hence P h (q0 h) by (rule 1)
hence 2 :

∧
f . f /∈ fst (q0 h) =⇒ snd (q0 h) f = 0 by (simp add: P-def)

show snd (q0 h) f = 0
proof (intro 2 notI)

assume f ∈ fst (q0 h)
hence f ∈ F ′ unfolding F ′-def using ‹h ∈ hom-components p› by blast
with ‹f /∈ F ′› show False ..

qed
qed

qed
qed

corollary homogeneous-idealE-finite:
assumes finite F and

∧
f . f ∈ F =⇒ homogeneous f and p ∈ ideal F

obtains q where p = (
∑

f∈F . q f ∗ f) and
∧

f . poly-deg (q f ∗ f) ≤ poly-deg p
and

∧
f . f /∈ F =⇒ q f = 0

proof −
from assms(2 , 3) obtain F ′ q where F ′ ⊆ F and p: p = (

∑
f∈F ′. q f ∗ f)

and
∧

f . poly-deg (q f ∗ f) ≤ poly-deg p and 1 :
∧

f . f /∈ F ′ =⇒ q f = 0
by (rule homogeneous-idealE) blast+

show ?thesis
proof

from assms(1) ‹F ′ ⊆ F› have (
∑

f∈F ′. q f ∗ f) = (
∑

f∈F . q f ∗ f)
proof (intro sum.mono-neutral-left ballI)

fix f
assume f ∈ F − F ′

hence f /∈ F ′ by simp
hence q f = 0 by (rule 1)
thus q f ∗ f = 0 by simp

qed
thus p = (

∑
f∈F . q f ∗ f) by (simp only: p)

486

next
fix f
show poly-deg (q f ∗ f) ≤ poly-deg p by fact

assume f /∈ F
with ‹F ′ ⊆ F› have f /∈ F ′ by blast
thus q f = 0 by (rule 1)

qed
qed

17.6.1 Homogenization and Dehomogenization
definition homogenize :: ′x ⇒ ((′x ⇒0 nat)⇒0

′a)⇒ ((′x ⇒0 nat)⇒0
′a::semiring-1)

where homogenize x p = (
∑

t∈keys p. monomial (lookup p t) (Poly-Mapping.single
x (poly-deg p − deg-pm t) + t))

definition dehomo-subst :: ′x ⇒ ′x ⇒ ((′x ⇒0 nat) ⇒0
′a::zero-neq-one)

where dehomo-subst x = (λy. if y = x then 1 else monomial 1 (Poly-Mapping.single
y 1))

definition dehomogenize :: ′x ⇒ ((′x ⇒0 nat)⇒0
′a)⇒ ((′x ⇒0 nat)⇒0

′a::comm-semiring-1)
where dehomogenize x = poly-subst (dehomo-subst x)

lemma homogenize-zero [simp]: homogenize x 0 = 0
by (simp add: homogenize-def)

lemma homogenize-uminus [simp]: homogenize x (− p) = − homogenize x (p::-
⇒0

′a::ring-1)
by (simp add: homogenize-def keys-uminus sum.reindex inj-on-def single-uminus

sum-negf)

lemma homogenize-monom-mult [simp]:
homogenize x (punit.monom-mult c t p) = punit.monom-mult c t (homogenize x

p)
for c:: ′a::{semiring-1 ,semiring-no-zero-divisors-cancel}

proof (cases p = 0)
case True
thus ?thesis by simp

next
case False
show ?thesis
proof (cases c = 0)

case True
thus ?thesis by simp

next
case False
show ?thesis
by (simp add: homogenize-def punit.keys-monom-mult ‹p 6= 0 › False sum.reindex

punit.lookup-monom-mult punit.monom-mult-sum-right poly-deg-monom-mult

487

punit.monom-mult-monomial ac-simps deg-pm-plus)
qed

qed

lemma homogenize-alt:
homogenize x p = (

∑
q∈hom-components p. punit.monom-mult 1 (Poly-Mapping.single

x (poly-deg p − poly-deg q)) q)
proof −

have homogenize x p = (
∑

t∈Keys (hom-components p). monomial (lookup p t)
(Poly-Mapping.single x (poly-deg p − deg-pm t) + t))

by (simp only: homogenize-def Keys-hom-components)
also have . . . = (

∑
t∈(

⋃
(keys ‘ hom-components p)). monomial (lookup p t)

(Poly-Mapping.single x (poly-deg p − deg-pm t) + t))
by (simp only: Keys-def)

also have . . . = (
∑

q∈hom-components p. (
∑

t∈keys q. monomial (lookup p t)
(Poly-Mapping.single x (poly-deg p − deg-pm t) + t)))

by (auto intro!: sum.UNION-disjoint finite-hom-components finite-keys dest:
hom-components-keys-disjoint)
also have . . . = (

∑
q∈hom-components p. punit.monom-mult 1 (Poly-Mapping.single

x (poly-deg p − poly-deg q)) q)
using refl

proof (rule sum.cong)
fix q
assume q: q ∈ hom-components p
hence homogeneous q by (rule hom-components-homogeneous)
have (

∑
t∈keys q. monomial (lookup p t) (Poly-Mapping.single x (poly-deg p

− deg-pm t) + t)) =
(
∑

t∈keys q. punit.monom-mult 1 (Poly-Mapping.single x (poly-deg p −
poly-deg q)) (monomial (lookup q t) t))

using refl
proof (rule sum.cong)

fix t
assume t ∈ keys q

with ‹homogeneous q› have deg-pm t = poly-deg q by (rule homogeneousD-poly-deg)
moreover from q ‹t ∈ keys q› have lookup q t = lookup p t by (rule

lookup-hom-components)
ultimately show monomial (lookup p t) (Poly-Mapping.single x (poly-deg p

− deg-pm t) + t) =
punit.monom-mult 1 (Poly-Mapping.single x (poly-deg p − poly-deg q))

(monomial (lookup q t) t)
by (simp add: punit.monom-mult-monomial)

qed
also have . . . = punit.monom-mult 1 (Poly-Mapping.single x (poly-deg p −

poly-deg q)) q
by (simp only: poly-mapping-sum-monomials flip: punit.monom-mult-sum-right)
finally show (

∑
t∈keys q. monomial (lookup p t) (Poly-Mapping.single x

(poly-deg p − deg-pm t) + t)) =
punit.monom-mult 1 (Poly-Mapping.single x (poly-deg p − poly-deg

q)) q .

488

qed
finally show ?thesis .

qed

lemma keys-homogenizeE :
assumes t ∈ keys (homogenize x p)
obtains t ′ where t ′ ∈ keys p and t = Poly-Mapping.single x (poly-deg p −

deg-pm t ′) + t ′

proof −
note assms
also have keys (homogenize x p) ⊆

(
⋃

t∈keys p. keys (monomial (lookup p t) (Poly-Mapping.single x (poly-deg
p − deg-pm t) + t)))

unfolding homogenize-def by (rule keys-sum-subset)
finally obtain t ′ where t ′ ∈ keys p

and t ∈ keys (monomial (lookup p t ′) (Poly-Mapping.single x (poly-deg p −
deg-pm t ′) + t ′)) ..

from this(2) have t = Poly-Mapping.single x (poly-deg p − deg-pm t ′) + t ′

by (simp split: if-split-asm)
with ‹t ′ ∈ keys p› show ?thesis ..

qed

lemma keys-homogenizeE-alt:
assumes t ∈ keys (homogenize x p)
obtains q t ′ where q ∈ hom-components p and t ′ ∈ keys q

and t = Poly-Mapping.single x (poly-deg p − poly-deg q) + t ′

proof −
note assms
also have keys (homogenize x p) ⊆

(
⋃

q∈hom-components p. keys (punit.monom-mult 1 (Poly-Mapping.single
x (poly-deg p − poly-deg q)) q))

unfolding homogenize-alt by (rule keys-sum-subset)
finally obtain q where q: q ∈ hom-components p

and t ∈ keys (punit.monom-mult 1 (Poly-Mapping.single x (poly-deg p −
poly-deg q)) q) ..

note this(2)
also have . . . ⊆ (+) (Poly-Mapping.single x (poly-deg p − poly-deg q)) ‘ keys q

by (rule punit.keys-monom-mult-subset[simplified])
finally obtain t ′ where t ′ ∈ keys q and t = Poly-Mapping.single x (poly-deg p
− poly-deg q) + t ′ ..

with q show ?thesis ..
qed

lemma deg-pm-homogenize:
assumes t ∈ keys (homogenize x p)
shows deg-pm t = poly-deg p

proof −
from assms obtain q t ′ where q: q ∈ hom-components p and t ′ ∈ keys q

and t: t = Poly-Mapping.single x (poly-deg p − poly-deg q) + t ′ by (rule

489

keys-homogenizeE-alt)
from q have homogeneous q by (rule hom-components-homogeneous)
hence deg-pm t ′= poly-deg q using ‹t ′∈ keys q› by (rule homogeneousD-poly-deg)
moreover from q have poly-deg q ≤ poly-deg p by (rule poly-deg-hom-components-le)
ultimately show ?thesis by (simp add: t deg-pm-plus deg-pm-single)

qed

corollary homogeneous-homogenize: homogeneous (homogenize x p)
proof (rule homogeneousI)

fix s t
assume s ∈ keys (homogenize x p)
hence ∗: deg-pm s = poly-deg p by (rule deg-pm-homogenize)
assume t ∈ keys (homogenize x p)
hence deg-pm t = poly-deg p by (rule deg-pm-homogenize)
with ∗ show deg-pm s = deg-pm t by simp

qed

corollary poly-deg-homogenize-le: poly-deg (homogenize x p) ≤ poly-deg p
proof (rule poly-deg-leI)

fix t
assume t ∈ keys (homogenize x p)
hence deg-pm t = poly-deg p by (rule deg-pm-homogenize)
thus deg-pm t ≤ poly-deg p by simp

qed

lemma homogenize-id-iff [simp]: homogenize x p = p ←→ homogeneous p
proof

assume homogenize x p = p
moreover have homogeneous (homogenize x p) by (fact homogeneous-homogenize)
ultimately show homogeneous p by simp

next
assume homogeneous p
hence hom-components p = (if p = 0 then {} else {p}) by (rule hom-components-of-homogeneous)
thus homogenize x p = p by (simp add: homogenize-alt split: if-split-asm)

qed

lemma homogenize-homogenize [simp]: homogenize x (homogenize x p) = homog-
enize x p

by (simp add: homogeneous-homogenize)

lemma homogenize-monomial: homogenize x (monomial c t) = monomial c t
by (simp only: homogenize-id-iff homogeneous-monomial)

lemma indets-homogenize-subset: indets (homogenize x p) ⊆ insert x (indets p)
proof

fix y
assume y ∈ indets (homogenize x p)
then obtain t where t ∈ keys (homogenize x p) and y ∈ keys t by (rule

in-indetsE)

490

from this(1) obtain t ′ where t ′ ∈ keys p
and t: t = Poly-Mapping.single x (poly-deg p − deg-pm t ′) + t ′ by (rule

keys-homogenizeE)
note ‹y ∈ keys t›
also have keys t ⊆ keys (Poly-Mapping.single x (poly-deg p − deg-pm t ′)) ∪ keys

t ′

unfolding t by (rule Poly-Mapping.keys-add)
finally show y ∈ insert x (indets p)
proof

assume y ∈ keys (Poly-Mapping.single x (poly-deg p − deg-pm t ′))
thus ?thesis by (simp split: if-split-asm)

next
assume y ∈ keys t ′

hence y ∈ indets p using ‹t ′ ∈ keys p› by (rule in-indetsI)
thus ?thesis by simp

qed
qed

lemma homogenize-in-Polys: p ∈ P[X] =⇒ homogenize x p ∈ P[insert x X]
using indets-homogenize-subset[of x p] by (auto simp: Polys-alt)

lemma lookup-homogenize:
assumes x /∈ indets p and x /∈ keys t
shows lookup (homogenize x p) (Poly-Mapping.single x (poly-deg p − deg-pm t)

+ t) = lookup p t
proof −

let ?p = homogenize x p
let ?t = Poly-Mapping.single x (poly-deg p − deg-pm t) + t
have eq: (

∑
s∈keys p − {t}. lookup (monomial (lookup p s) (Poly-Mapping.single

x (poly-deg p − deg-pm s) + s)) ?t) = 0
proof (intro sum.neutral ballI)

fix s
assume s ∈ keys p − {t}
hence s ∈ keys p and s 6= t by simp-all
from this(1) have keys s ⊆ indets p by (simp add: in-indetsI subsetI)
with assms(1) have x /∈ keys s by blast
have ?t 6= Poly-Mapping.single x (poly-deg p − deg-pm s) + s
proof

assume a: ?t = Poly-Mapping.single x (poly-deg p − deg-pm s) + s
hence lookup ?t x = lookup (Poly-Mapping.single x (poly-deg p − deg-pm s)

+ s) x
by simp

moreover from assms(2) have lookup t x = 0 by (simp add: in-keys-iff)
moreover from ‹x /∈ keys s› have lookup s x = 0 by (simp add: in-keys-iff)
ultimately have poly-deg p − deg-pm t = poly-deg p − deg-pm s by (simp

add: lookup-add)
with a have s = t by simp
with ‹s 6= t› show False ..

qed

491

thus lookup (monomial (lookup p s) (Poly-Mapping.single x (poly-deg p −
deg-pm s) + s)) ?t = 0

by (simp add: lookup-single)
qed
show ?thesis
proof (cases t ∈ keys p)

case True
have lookup ?p ?t = (

∑
s∈keys p. lookup (monomial (lookup p s) (Poly-Mapping.single

x (poly-deg p − deg-pm s) + s)) ?t)
by (simp add: homogenize-def lookup-sum)

also have . . . = lookup (monomial (lookup p t) ?t) ?t +
(
∑

s∈keys p − {t}. lookup (monomial (lookup p s) (Poly-Mapping.single
x (poly-deg p − deg-pm s) + s)) ?t)

using finite-keys True by (rule sum.remove)
also have . . . = lookup p t by (simp add: eq)
finally show ?thesis .

next
case False
hence 1 : keys p − {t} = keys p by simp

have lookup ?p ?t = (
∑

s∈keys p − {t}. lookup (monomial (lookup p s)
(Poly-Mapping.single x (poly-deg p − deg-pm s) + s)) ?t)

by (simp add: homogenize-def lookup-sum 1)
also have . . . = 0 by (simp only: eq)
also from False have . . . = lookup p t by (simp add: in-keys-iff)
finally show ?thesis .

qed
qed

lemma keys-homogenizeI :
assumes x /∈ indets p and t ∈ keys p
shows Poly-Mapping.single x (poly-deg p − deg-pm t) + t ∈ keys (homogenize x

p) (is ?t ∈ keys ?p)
proof −

from assms(2) have keys t ⊆ indets p by (simp add: in-indetsI subsetI)
with assms(1) have x /∈ keys t by blast
with assms(1) have lookup ?p ?t = lookup p t by (rule lookup-homogenize)
also from assms(2) have . . . 6= 0 by (simp add: in-keys-iff)
finally show ?thesis by (simp add: in-keys-iff)

qed

lemma keys-homogenize:
x /∈ indets p =⇒ keys (homogenize x p) = (λt. Poly-Mapping.single x (poly-deg

p − deg-pm t) + t) ‘ keys p
by (auto intro: keys-homogenizeI elim: keys-homogenizeE)

lemma card-keys-homogenize:
assumes x /∈ indets p
shows card (keys (homogenize x p)) = card (keys p)
unfolding keys-homogenize[OF assms]

492

proof (intro card-image inj-onI)
fix s t
assume s ∈ keys p and t ∈ keys p
with assms have x /∈ keys s and x /∈ keys t by (auto dest: in-indetsI simp only:)
let ?s = Poly-Mapping.single x (poly-deg p − deg-pm s)
let ?t = Poly-Mapping.single x (poly-deg p − deg-pm t)
assume ?s + s = ?t + t
hence lookup (?s + s) x = lookup (?t + t) x by simp
with ‹x /∈ keys s› ‹x /∈ keys t› have ?s = ?t by (simp add: lookup-add in-keys-iff)
with ‹?s + s = ?t + t› show s = t by simp

qed

lemma poly-deg-homogenize:
assumes x /∈ indets p
shows poly-deg (homogenize x p) = poly-deg p

proof (cases p = 0)
case True
thus ?thesis by simp

next
case False
then obtain t where t ∈ keys p and 1 : poly-deg p = deg-pm t by (rule poly-degE)
from assms this(1) have Poly-Mapping.single x (poly-deg p − deg-pm t) + t ∈

keys (homogenize x p)
by (rule keys-homogenizeI)

hence t ∈ keys (homogenize x p) by (simp add: 1)
hence poly-deg p ≤ poly-deg (homogenize x p) unfolding 1 by (rule poly-deg-max-keys)
with poly-deg-homogenize-le show ?thesis by (rule antisym)

qed

lemma maxdeg-homogenize:
assumes x /∈

⋃
(indets ‘ F)

shows maxdeg (homogenize x ‘ F) = maxdeg F
unfolding maxdeg-def image-image

proof (rule arg-cong[where f=Max], rule set-eqI)
fix d
show d ∈ (λf . poly-deg (homogenize x f)) ‘ F ←→ d ∈ poly-deg ‘ F
proof

assume d ∈ (λf . poly-deg (homogenize x f)) ‘ F
then obtain f where f ∈ F and d: d = poly-deg (homogenize x f) ..
from assms this(1) have x /∈ indets f by blast
hence d = poly-deg f by (simp add: d poly-deg-homogenize)
with ‹f ∈ F› show d ∈ poly-deg ‘ F by (rule rev-image-eqI)

next
assume d ∈ poly-deg ‘ F
then obtain f where f ∈ F and d: d = poly-deg f ..
from assms this(1) have x /∈ indets f by blast
hence d = poly-deg (homogenize x f) by (simp add: d poly-deg-homogenize)

with ‹f ∈ F› show d ∈ (λf . poly-deg (homogenize x f)) ‘ F by (rule rev-image-eqI)
qed

493

qed

lemma homogeneous-ideal-homogenize:
assumes

∧
f . f ∈ F =⇒ homogeneous f and p ∈ ideal F

shows homogenize x p ∈ ideal F
proof −
have homogenize x p = (

∑
q∈hom-components p. punit.monom-mult 1 (Poly-Mapping.single

x (poly-deg p − poly-deg q)) q)
by (fact homogenize-alt)

also have . . . ∈ ideal F
proof (rule ideal.span-sum)

fix q
assume q ∈ hom-components p
with assms have q ∈ ideal F by (rule homogeneous-ideal ′)
thus punit.monom-mult 1 (Poly-Mapping.single x (poly-deg p − poly-deg q)) q

∈ ideal F
by (rule punit.pmdl-closed-monom-mult[simplified])

qed
finally show ?thesis .

qed

lemma subst-pp-dehomo-subst [simp]:
subst-pp (dehomo-subst x) t = monomial (1 :: ′b::comm-semiring-1) (except t {x})

proof −
have subst-pp (dehomo-subst x) t = ((

∏
y∈keys t. dehomo-subst x y ^ lookup t

y)::- ⇒0
′b)

by (fact subst-pp-def)
also have . . . = (

∏
y∈keys t − {y0 . dehomo-subst x y0 ^ lookup t y0 = (1 ::- ⇒0

′b)}. dehomo-subst x y ^ lookup t y)
by (rule sym, rule prod.setdiff-irrelevant, fact finite-keys)

also have . . . = (
∏

y∈keys t − {x}. monomial 1 (Poly-Mapping.single y 1) ^
lookup t y)

proof (rule prod.cong)
have dehomo-subst x x ^ lookup t x = 1 by (simp add: dehomo-subst-def)
moreover {

fix y
assume y 6= x
hence dehomo-subst x y ^ lookup t y = monomial 1 (Poly-Mapping.single y

(lookup t y))
by (simp add: dehomo-subst-def monomial-single-power)

moreover assume dehomo-subst x y ^ lookup t y = 1
ultimately have Poly-Mapping.single y (lookup t y) = 0

by (smt (verit) single-one monomial-inj zero-neq-one)
hence lookup t y = 0 by (rule monomial-0D)
moreover assume y ∈ keys t
ultimately have False by (simp add: in-keys-iff)

}
ultimately show keys t − {y0 . dehomo-subst x y0 ^ lookup t y0 = 1} = keys

t − {x} by auto

494

qed (simp add: dehomo-subst-def)
also have . . . = (

∏
y∈keys t − {x}. monomial 1 (Poly-Mapping.single y (lookup

t y)))
by (simp add: monomial-single-power)

also have . . . = monomial 1 (
∑

y∈keys t − {x}. Poly-Mapping.single y (lookup
t y))

by (simp flip: punit.monomial-prod-sum)
also have (

∑
y∈keys t − {x}. Poly-Mapping.single y (lookup t y)) = except t

{x}
proof (rule poly-mapping-eqI , simp add: lookup-sum lookup-except lookup-single,

rule)
fix y
assume y 6= x
show (

∑
z∈keys t − {x}. lookup t z when z = y) = lookup t y

proof (cases y ∈ keys t)
case True
have finite (keys t − {x}) by simp
moreover from True ‹y 6= x› have y ∈ keys t − {x} by simp
ultimately have (

∑
z∈keys t − {x}. lookup t z when z = y) =

(lookup t y when y = y) + (
∑

z∈keys t − {x} − {y}. lookup t
z when z = y)

by (rule sum.remove)
also have (

∑
z∈keys t − {x} − {y}. lookup t z when z = y) = 0 by auto

finally show ?thesis by simp
next

case False
hence (

∑
z∈keys t − {x}. lookup t z when z = y) = 0 by (auto simp:

when-def)
also from False have . . . = lookup t y by (simp add: in-keys-iff)
finally show ?thesis .

qed
qed
finally show ?thesis .

qed

lemma
shows dehomogenize-zero [simp]: dehomogenize x 0 = 0

and dehomogenize-one [simp]: dehomogenize x 1 = 1
and dehomogenize-monomial: dehomogenize x (monomial c t) = monomial c

(except t {x})
and dehomogenize-plus: dehomogenize x (p + q) = dehomogenize x p + deho-

mogenize x q
and dehomogenize-uminus: dehomogenize x (− r) = − dehomogenize x (r ::-

⇒0 -::comm-ring-1)
and dehomogenize-minus: dehomogenize x (r − r ′) = dehomogenize x r −

dehomogenize x r ′

and dehomogenize-times: dehomogenize x (p ∗ q) = dehomogenize x p ∗ deho-
mogenize x q

and dehomogenize-power : dehomogenize x (p ^ n) = dehomogenize x p ^ n

495

and dehomogenize-sum: dehomogenize x (sum f A) = (
∑

a∈A. dehomogenize x
(f a))

and dehomogenize-prod: dehomogenize x (prod f A) = (
∏

a∈A. dehomogenize
x (f a))
by (simp-all add: dehomogenize-def poly-subst-monomial poly-subst-plus poly-subst-uminus

poly-subst-minus poly-subst-times poly-subst-power poly-subst-sum poly-subst-prod
punit.monom-mult-monomial)

corollary dehomogenize-monom-mult:
dehomogenize x (punit.monom-mult c t p) = punit.monom-mult c (except t {x})

(dehomogenize x p)
by (simp only: times-monomial-left[symmetric] dehomogenize-times dehomoge-

nize-monomial)

lemma poly-deg-dehomogenize-le: poly-deg (dehomogenize x p) ≤ poly-deg p
unfolding dehomogenize-def dehomo-subst-def
by (rule poly-deg-poly-subst-le) (simp add: poly-deg-monomial deg-pm-single)

lemma indets-dehomogenize: indets (dehomogenize x p) ⊆ indets p − {x}
for p::(′x ⇒0 nat) ⇒0

′a::comm-semiring-1
proof

fix y:: ′x
assume y ∈ indets (dehomogenize x p)
then obtain y ′ where y ′ ∈ indets p and y ∈ indets ((dehomo-subst x y ′)::- ⇒0

′a)
unfolding dehomogenize-def by (rule in-indets-poly-substE)

from this(2) have y = y ′ and y ′ 6= x
by (simp-all add: dehomo-subst-def indets-monomial split: if-split-asm)

with ‹y ′ ∈ indets p› show y ∈ indets p − {x} by simp
qed

lemma dehomogenize-id-iff [simp]: dehomogenize x p = p ←→ x /∈ indets p
proof

assume eq: dehomogenize x p = p
from indets-dehomogenize[of x p] show x /∈ indets p by (auto simp: eq)

next
assume a: x /∈ indets p
show dehomogenize x p = p unfolding dehomogenize-def
proof (rule poly-subst-id)

fix y
assume y ∈ indets p
with a have y 6= x by blast
thus dehomo-subst x y = monomial 1 (Poly-Mapping.single y 1) by (simp add:

dehomo-subst-def)
qed

qed

lemma dehomogenize-dehomogenize [simp]: dehomogenize x (dehomogenize x p) =
dehomogenize x p

496

proof −
from indets-dehomogenize[of x p] have x /∈ indets (dehomogenize x p) by blast
thus ?thesis by simp

qed

lemma dehomogenize-homogenize [simp]: dehomogenize x (homogenize x p) = de-
homogenize x p
proof −
have dehomogenize x (homogenize x p) = sum (dehomogenize x) (hom-components

p)
by (simp add: homogenize-alt dehomogenize-sum dehomogenize-monom-mult

except-single)
also have . . . = dehomogenize x p by (simp only: sum-hom-components flip:

dehomogenize-sum)
finally show ?thesis .

qed

corollary dehomogenize-homogenize-id: x /∈ indets p =⇒ dehomogenize x (homogenize
x p) = p

by simp

lemma range-dehomogenize: range (dehomogenize x) = (P[− {x}] :: (-⇒0
′a::comm-semiring-1)

set)
proof (intro subset-antisym subsetI PolysI-alt range-eqI)

fix p::- ⇒0
′a and y

assume p ∈ range (dehomogenize x)
then obtain q where p: p = dehomogenize x q ..
assume y ∈ indets p
hence y ∈ indets (dehomogenize x q) by (simp only: p)
with indets-dehomogenize have y ∈ indets q − {x} ..
thus y ∈ − {x} by simp

next
fix p::- ⇒0

′a
assume p ∈ P[− {x}]
hence x /∈ indets p by (auto dest: PolysD)
thus p = dehomogenize x (homogenize x p) by (rule dehomogenize-homogenize-id[symmetric])

qed

lemma dehomogenize-alt: dehomogenize x p = (
∑

t∈keys p. monomial (lookup p
t) (except t {x}))
proof −

have dehomogenize x p = dehomogenize x (
∑

t∈keys p. monomial (lookup p t)
t)

by (simp only: poly-mapping-sum-monomials)
also have . . . = (

∑
t∈keys p. monomial (lookup p t) (except t {x}))

by (simp only: dehomogenize-sum dehomogenize-monomial)
finally show ?thesis .

qed

497

lemma keys-dehomogenizeE :
assumes t ∈ keys (dehomogenize x p)
obtains s where s ∈ keys p and t = except s {x}

proof −
note assms
also have keys (dehomogenize x p) ⊆ (

⋃
s∈keys p. keys (monomial (lookup p s)

(except s {x})))
unfolding dehomogenize-alt by (rule keys-sum-subset)

finally obtain s where s ∈ keys p and t ∈ keys (monomial (lookup p s) (except
s {x})) ..

from this(2) have t = except s {x} by (simp split: if-split-asm)
with ‹s ∈ keys p› show ?thesis ..

qed

lemma except-inj-on-keys-homogeneous:
assumes homogeneous p
shows inj-on (λt. except t {x}) (keys p)

proof
fix s t
assume s ∈ keys p and t ∈ keys p
from assms this(1) have deg-pm s = poly-deg p by (rule homogeneousD-poly-deg)
moreover from assms ‹t ∈ keys p› have deg-pm t = poly-deg p by (rule homo-

geneousD-poly-deg)
ultimately have deg-pm (Poly-Mapping.single x (lookup s x) + except s {x}) =

deg-pm (Poly-Mapping.single x (lookup t x) + except t {x})
by (simp only: flip: plus-except)

moreover assume 1 : except s {x} = except t {x}
ultimately have 2 : lookup s x = lookup t x

by (simp only: deg-pm-plus deg-pm-single)
show s = t
proof (rule poly-mapping-eqI)

fix y
show lookup s y = lookup t y
proof (cases y = x)

case True
with 2 show ?thesis by simp

next
case False
hence lookup s y = lookup (except s {x}) y and lookup t y = lookup (except

t {x}) y
by (simp-all add: lookup-except)

with 1 show ?thesis by simp
qed

qed
qed

lemma lookup-dehomogenize:
assumes homogeneous p and t ∈ keys p
shows lookup (dehomogenize x p) (except t {x}) = lookup p t

498

proof −
let ?t = except t {x}
have eq: (

∑
s∈keys p − {t}. lookup (monomial (lookup p s) (except s {x})) ?t)

= 0
proof (intro sum.neutral ballI)

fix s
assume s ∈ keys p − {t}
hence s ∈ keys p and s 6= t by simp-all
have ?t 6= except s {x}
proof
from assms(1) have inj-on (λt. except t {x}) (keys p) by (rule except-inj-on-keys-homogeneous)

moreover assume ?t = except s {x}
ultimately have t = s using assms(2) ‹s ∈ keys p› by (rule inj-onD)
with ‹s 6= t› show False by simp

qed
thus lookup (monomial (lookup p s) (except s {x})) ?t = 0 by (simp add:

lookup-single)
qed
have lookup (dehomogenize x p) ?t = (

∑
s∈keys p. lookup (monomial (lookup p

s) (except s {x})) ?t)
by (simp only: dehomogenize-alt lookup-sum)

also have . . . = lookup (monomial (lookup p t) ?t) ?t +
(
∑

s∈keys p − {t}. lookup (monomial (lookup p s) (except s {x}))
?t)

using finite-keys assms(2) by (rule sum.remove)
also have . . . = lookup p t by (simp add: eq)
finally show ?thesis .

qed

lemma keys-dehomogenizeI :
assumes homogeneous p and t ∈ keys p
shows except t {x} ∈ keys (dehomogenize x p)

proof −
from assms have lookup (dehomogenize x p) (except t {x}) = lookup p t by (rule

lookup-dehomogenize)
also from assms(2) have . . . 6= 0 by (simp add: in-keys-iff)
finally show ?thesis by (simp add: in-keys-iff)

qed

lemma homogeneous-homogenize-dehomogenize:
assumes homogeneous p
obtains d where d = poly-deg p − poly-deg (homogenize x (dehomogenize x p))
and punit.monom-mult 1 (Poly-Mapping.single x d) (homogenize x (dehomogenize

x p)) = p
proof (cases p = 0)

case True
hence 0 = poly-deg p − poly-deg (homogenize x (dehomogenize x p))
and punit.monom-mult 1 (Poly-Mapping.single x 0) (homogenize x (dehomogenize

x p)) = p

499

by simp-all
thus ?thesis ..

next
case False
let ?q = dehomogenize x p
let ?p = homogenize x ?q
define d where d = poly-deg p − poly-deg ?p
show ?thesis
proof

have punit.monom-mult 1 (Poly-Mapping.single x d) ?p =
(
∑

t∈keys ?q. monomial (lookup ?q t) (Poly-Mapping.single x (d + (poly-deg
?q − deg-pm t)) + t))

by (simp add: homogenize-def punit.monom-mult-sum-right punit.monom-mult-monomial
flip: add.assoc single-add)

also have . . . = (
∑

t∈keys ?q. monomial (lookup ?q t) (Poly-Mapping.single x
(poly-deg p − deg-pm t) + t))

using refl
proof (rule sum.cong)

fix t
assume t ∈ keys ?q
have poly-deg ?p = poly-deg ?q
proof (rule poly-deg-homogenize)

from indets-dehomogenize show x /∈ indets ?q by fastforce
qed
hence d: d = poly-deg p − poly-deg ?q by (simp only: d-def)
thm poly-deg-dehomogenize-le
from ‹t ∈ keys ?q› have d + (poly-deg ?q − deg-pm t) = (d + poly-deg ?q)

− deg-pm t
by (intro add-diff-assoc poly-deg-max-keys)

also have d + poly-deg ?q = poly-deg p by (simp add: d poly-deg-dehomogenize-le)
finally show monomial (lookup ?q t) (Poly-Mapping.single x (d + (poly-deg

?q − deg-pm t)) + t) =
monomial (lookup ?q t) (Poly-Mapping.single x (poly-deg p −

deg-pm t) + t)
by (simp only:)

qed
also have . . . = (

∑
t∈(λs. except s {x}) ‘ keys p.

monomial (lookup ?q t) (Poly-Mapping.single x (poly-deg p −
deg-pm t) + t))

proof (rule sum.mono-neutral-left)
show keys (dehomogenize x p) ⊆ (λs. except s {x}) ‘ keys p
proof

fix t
assume t ∈ keys (dehomogenize x p)

then obtain s where s ∈ keys p and t = except s {x} by (rule keys-dehomogenizeE)
thus t ∈ (λs. except s {x}) ‘ keys p by (rule rev-image-eqI)

qed
qed (simp-all add: in-keys-iff)
also from assms have . . . = (

∑
t∈keys p. monomial (lookup ?q (except t {x}))

500

(Poly-Mapping.single x (poly-deg p − deg-pm (except t {x})) + except
t {x}))

by (intro sum.reindex[unfolded comp-def] except-inj-on-keys-homogeneous)
also from refl have . . . = (

∑
t∈keys p. monomial (lookup p t) t)

proof (rule sum.cong)
fix t
assume t ∈ keys p

with assms have lookup ?q (except t {x}) = lookup p t by (rule lookup-dehomogenize)
moreover have Poly-Mapping.single x (poly-deg p − deg-pm (except t {x}))

+ except t {x} = t
(is ?l = -)

proof (rule poly-mapping-eqI)
fix y
show lookup ?l y = lookup t y
proof (cases y = x)

case True
from assms ‹t ∈ keys p› have deg-pm t = poly-deg p by (rule homoge-

neousD-poly-deg)
also have deg-pm t = deg-pm (Poly-Mapping.single x (lookup t x) + except

t {x})
by (simp flip: plus-except)
also have . . . = lookup t x + deg-pm (except t {x}) by (simp only:

deg-pm-plus deg-pm-single)
finally have poly-deg p − deg-pm (except t {x}) = lookup t x by simp
thus ?thesis by (simp add: True lookup-add lookup-except lookup-single)

next
case False
thus ?thesis by (simp add: lookup-add lookup-except lookup-single)

qed
qed
ultimately show monomial (lookup ?q (except t {x}))

(Poly-Mapping.single x (poly-deg p − deg-pm (except t {x})) + except
t {x}) =

monomial (lookup p t) t by (simp only:)
qed
also have . . . = p by (fact poly-mapping-sum-monomials)
finally show punit.monom-mult 1 (Poly-Mapping.single x d) ?p = p .

qed (simp only: d-def)
qed

lemma dehomogenize-zeroD:
assumes dehomogenize x p = 0 and homogeneous p
shows p = 0

proof −
from assms(2) obtain d
where punit.monom-mult 1 (Poly-Mapping.single x d) (homogenize x (dehomogenize

x p)) = p
by (rule homogeneous-homogenize-dehomogenize)

thus ?thesis by (simp add: assms(1))

501

qed

lemma dehomogenize-ideal: dehomogenize x ‘ ideal F = ideal (dehomogenize x ‘
F) ∩ P[− {x}]

unfolding range-dehomogenize[symmetric]
using dehomogenize-plus dehomogenize-times dehomogenize-dehomogenize by

(rule image-ideal-eq-Int)

corollary dehomogenize-ideal-subset: dehomogenize x ‘ ideal F ⊆ ideal (dehomogenize
x ‘ F)

by (simp add: dehomogenize-ideal)

lemma ideal-dehomogenize:
assumes ideal G = ideal (homogenize x ‘ F) and F ⊆ P[UNIV − {x}]
shows ideal (dehomogenize x ‘ G) = ideal F

proof −
have eq: dehomogenize x (homogenize x f) = f if f ∈ F for f
proof (rule dehomogenize-homogenize-id)

from that assms(2) have f ∈ P[UNIV − {x}] ..
thus x /∈ indets f by (auto simp: Polys-alt)

qed
show ?thesis
proof (intro Set.equalityI ideal.span-subset-spanI)

show dehomogenize x ‘ G ⊆ ideal F
proof

fix q
assume q ∈ dehomogenize x ‘ G
then obtain g where g ∈ G and q: q = dehomogenize x g ..
from this(1) have g ∈ ideal G by (rule ideal.span-base)
also have . . . = ideal (homogenize x ‘ F) by fact
finally have q ∈ dehomogenize x ‘ ideal (homogenize x ‘ F) using q by (rule

rev-image-eqI)
also have . . . ⊆ ideal (dehomogenize x ‘ homogenize x ‘ F) by (rule dehomog-

enize-ideal-subset)
also have dehomogenize x ‘ homogenize x ‘ F = F

by (auto simp: eq image-image simp del: dehomogenize-homogenize intro!:
image-eqI)

finally show q ∈ ideal F .
qed

next
show F ⊆ ideal (dehomogenize x ‘ G)
proof

fix f
assume f ∈ F
hence homogenize x f ∈ homogenize x ‘ F by (rule imageI)
also have . . . ⊆ ideal (homogenize x ‘ F) by (rule ideal.span-superset)
also from assms(1) have . . . = ideal G by (rule sym)
finally have dehomogenize x (homogenize x f) ∈ dehomogenize x ‘ ideal G

by (rule imageI)

502

with ‹f ∈ F› have f ∈ dehomogenize x ‘ ideal G by (simp only: eq)
also have . . . ⊆ ideal (dehomogenize x ‘ G) by (rule dehomogenize-ideal-subset)
finally show f ∈ ideal (dehomogenize x ‘ G) .

qed
qed

qed

17.7 Embedding Polynomial Rings in Larger Polynomial Rings
(With One Additional Indeterminate)

We define a homomorphism for embedding a polynomial ring in a larger
polynomial ring, and its inverse. This is mainly needed for homogenizing
wrt. a fresh indeterminate.
definition extend-indets-subst :: ′x ⇒ (′x option ⇒0 nat)⇒0

′a::comm-semiring-1
where extend-indets-subst x = monomial 1 (Poly-Mapping.single (Some x) 1)

definition extend-indets :: ((′x ⇒0 nat)⇒0
′a)⇒ (′x option ⇒0 nat)⇒0

′a::comm-semiring-1
where extend-indets = poly-subst extend-indets-subst

definition restrict-indets-subst :: ′x option ⇒ ′x ⇒0 nat
where restrict-indets-subst x = (case x of Some y ⇒ Poly-Mapping.single y 1 |

- ⇒ 0)

definition restrict-indets :: ((′x option ⇒0 nat)⇒0
′a)⇒ (′x ⇒0 nat)⇒0

′a::comm-semiring-1
where restrict-indets = poly-subst (λx. monomial 1 (restrict-indets-subst x))

definition restrict-indets-pp :: (′x option ⇒0 nat) ⇒ (′x ⇒0 nat)
where restrict-indets-pp t = (

∑
x∈keys t. lookup t x · restrict-indets-subst x)

lemma lookup-extend-indets-subst-aux:
lookup (

∑
y∈keys t. Poly-Mapping.single (Some y) (lookup t y)) = (λx. case x of

Some y ⇒ lookup t y | - ⇒ 0)
proof −

have (
∑

x∈keys t. lookup t x when x = y) = lookup t y for y
proof (cases y ∈ keys t)

case True
hence (

∑
x∈keys t. lookup t x when x = y) = (

∑
x∈insert y (keys t). lookup t

x when x = y)
by (simp only: insert-absorb)

also have . . . = lookup t y + (
∑

x∈keys t − {y}. lookup t x when x = y)
by (simp add: sum.insert-remove)

also have (
∑

x∈keys t − {y}. lookup t x when x = y) = 0
by (auto simp: when-def intro: sum.neutral)

finally show ?thesis by simp
next

case False
hence (

∑
x∈keys t. lookup t x when x = y) = 0 by (auto simp: when-def intro:

sum.neutral)
with False show ?thesis by (simp add: in-keys-iff)

503

qed
thus ?thesis by (auto simp: lookup-sum lookup-single split: option.split)

qed

lemma keys-extend-indets-subst-aux:
keys (

∑
y∈keys t. Poly-Mapping.single (Some y) (lookup t y)) = Some ‘ keys t

by (auto simp: lookup-extend-indets-subst-aux simp flip: lookup-not-eq-zero-eq-in-keys
split: option.splits)

lemma subst-pp-extend-indets-subst:
subst-pp extend-indets-subst t = monomial 1 (

∑
y∈keys t. Poly-Mapping.single

(Some y) (lookup t y))
proof −

have subst-pp extend-indets-subst t =
monomial (

∏
y∈keys t. 1 ^ lookup t y) (

∑
y∈keys t. lookup t y · Poly-Mapping.single

(Some y) 1)
by (rule subst-pp-by-monomials) (simp only: extend-indets-subst-def)

also have . . . = monomial 1 (
∑

y∈keys t. Poly-Mapping.single (Some y) (lookup
t y))

by simp
finally show ?thesis .

qed

lemma keys-extend-indets:
keys (extend-indets p) = (λt.

∑
y∈keys t. Poly-Mapping.single (Some y) (lookup

t y)) ‘ keys p
proof −

have keys (extend-indets p) = (
⋃

t∈keys p. keys (punit.monom-mult (lookup p
t) 0 (subst-pp extend-indets-subst t)))

unfolding extend-indets-def poly-subst-def using finite-keys
proof (rule keys-sum)

fix s t :: ′a ⇒0 nat
assume s 6= t
then obtain x where lookup s x 6= lookup t x by (meson poly-mapping-eqI)
have (

∑
y∈keys t. monomial (lookup t y) (Some y)) 6= (

∑
y∈keys s. monomial

(lookup s y) (Some y))
(is ?l 6= ?r)

proof
assume ?l = ?r
hence lookup ?l (Some x) = lookup ?r (Some x) by (simp only:)
hence lookup s x = lookup t x by (simp add: lookup-extend-indets-subst-aux)
with ‹lookup s x 6= lookup t x› show False ..

qed
thus keys (punit.monom-mult (lookup p s) 0 (subst-pp extend-indets-subst s))

∩
keys (punit.monom-mult (lookup p t) 0 (subst-pp extend-indets-subst t)) =
{}

by (simp add: subst-pp-extend-indets-subst punit.monom-mult-monomial)
qed

504

also have . . . = (λt.
∑

y∈keys t. monomial (lookup t y) (Some y)) ‘ keys p
by (auto simp: subst-pp-extend-indets-subst punit.monom-mult-monomial split:

if-split-asm)
finally show ?thesis .

qed

lemma indets-extend-indets: indets (extend-indets p) = Some ‘ indets (p::- ⇒0
′a::comm-semiring-1)
proof (rule set-eqI)

fix x
show x ∈ indets (extend-indets p) ←→ x ∈ Some ‘ indets p
proof

assume x ∈ indets (extend-indets p)
then obtain y where y ∈ indets p and x ∈ indets (monomial (1 :: ′a) (Poly-Mapping.single

(Some y) 1))
unfolding extend-indets-def extend-indets-subst-def by (rule in-indets-poly-substE)
from this(2) indets-monomial-single-subset have x ∈ {Some y} ..
hence x = Some y by simp
with ‹y ∈ indets p› show x ∈ Some ‘ indets p by (rule rev-image-eqI)

next
assume x ∈ Some ‘ indets p
then obtain y where y ∈ indets p and x: x = Some y ..
from this(1) obtain t where t ∈ keys p and y ∈ keys t by (rule in-indetsE)
from this(2) have Some y ∈ keys (

∑
y∈keys t. Poly-Mapping.single (Some y)

(lookup t y))
unfolding keys-extend-indets-subst-aux by (rule imageI)

moreover have (
∑

y∈keys t. Poly-Mapping.single (Some y) (lookup t y)) ∈
keys (extend-indets p)

unfolding keys-extend-indets using ‹t ∈ keys p› by (rule imageI)
ultimately show x ∈ indets (extend-indets p) unfolding x by (rule in-indetsI)

qed
qed

lemma poly-deg-extend-indets [simp]: poly-deg (extend-indets p) = poly-deg p
proof −

have eq: deg-pm ((
∑

y∈keys t. Poly-Mapping.single (Some y) (lookup t y))) =
deg-pm t

for t:: ′a ⇒0 nat
proof −

have deg-pm ((
∑

y∈keys t. Poly-Mapping.single (Some y) (lookup t y))) =
(
∑

y∈keys t. lookup t y)
by (simp add: deg-pm-sum deg-pm-single)

also from subset-refl finite-keys have . . . = deg-pm t by (rule deg-pm-superset[symmetric])
finally show ?thesis .

qed
show ?thesis
proof (rule antisym)

show poly-deg (extend-indets p) ≤ poly-deg p
proof (rule poly-deg-leI)

505

fix t
assume t ∈ keys (extend-indets p)
then obtain s where s ∈ keys p and t = (

∑
y∈keys s. Poly-Mapping.single

(Some y) (lookup s y))
unfolding keys-extend-indets ..

from this(2) have deg-pm t = deg-pm s by (simp only: eq)
also from ‹s ∈ keys p› have . . . ≤ poly-deg p by (rule poly-deg-max-keys)
finally show deg-pm t ≤ poly-deg p .

qed
next

show poly-deg p ≤ poly-deg (extend-indets p)
proof (rule poly-deg-leI)

fix t
assume t ∈ keys p
hence ∗: (

∑
y∈keys t. Poly-Mapping.single (Some y) (lookup t y)) ∈ keys

(extend-indets p)
unfolding keys-extend-indets by (rule imageI)

have deg-pm t = deg-pm (
∑

y∈keys t. Poly-Mapping.single (Some y) (lookup
t y))

by (simp only: eq)
also from ∗ have . . . ≤ poly-deg (extend-indets p) by (rule poly-deg-max-keys)
finally show deg-pm t ≤ poly-deg (extend-indets p) .

qed
qed

qed

lemma
shows extend-indets-zero [simp]: extend-indets 0 = 0

and extend-indets-one [simp]: extend-indets 1 = 1
and extend-indets-monomial: extend-indets (monomial c t) = punit.monom-mult

c 0 (subst-pp extend-indets-subst t)
and extend-indets-plus: extend-indets (p + q) = extend-indets p + extend-indets

q
and extend-indets-uminus: extend-indets (− r) = − extend-indets (r ::- ⇒0

-::comm-ring-1)
and extend-indets-minus: extend-indets (r − r ′) = extend-indets r − ex-

tend-indets r ′

and extend-indets-times: extend-indets (p ∗ q) = extend-indets p ∗ extend-indets
q

and extend-indets-power : extend-indets (p ^ n) = extend-indets p ^ n
and extend-indets-sum: extend-indets (sum f A) = (

∑
a∈A. extend-indets (f

a))
and extend-indets-prod: extend-indets (prod f A) = (

∏
a∈A. extend-indets (f

a))
by (simp-all add: extend-indets-def poly-subst-monomial poly-subst-plus poly-subst-uminus

poly-subst-minus poly-subst-times poly-subst-power poly-subst-sum poly-subst-prod)

lemma extend-indets-zero-iff [simp]: extend-indets p = 0 ←→ p = 0
by (metis (no-types, lifting) imageE imageI keys-extend-indets lookup-zero

506

not-in-keys-iff-lookup-eq-zero poly-deg-extend-indets poly-deg-zero poly-deg-zero-imp-monomial)

lemma extend-indets-inject:
assumes extend-indets p = extend-indets (q::- ⇒0 -::comm-ring-1)
shows p = q

proof −
from assms have extend-indets (p − q) = 0 by (simp add: extend-indets-minus)
thus ?thesis by simp

qed

corollary inj-extend-indets: inj (extend-indets::- ⇒ - ⇒0 -::comm-ring-1)
using extend-indets-inject by (intro injI)

lemma poly-subst-extend-indets: poly-subst f (extend-indets p) = poly-subst (f ◦
Some) p
by (simp add: extend-indets-def poly-subst-poly-subst extend-indets-subst-def poly-subst-monomial

subst-pp-single o-def)

lemma poly-eval-extend-indets: poly-eval a (extend-indets p) = poly-eval (a ◦ Some)
p
proof −

have eq: poly-eval a (extend-indets (monomial c t)) = poly-eval (λx. a (Some x))
(monomial c t)

for c t
by (simp add: extend-indets-monomial poly-eval-times poly-eval-monomial poly-eval-prod

poly-eval-power
subst-pp-def extend-indets-subst-def flip: times-monomial-left)

show ?thesis
by (induct p rule: poly-mapping-plus-induct) (simp-all add: extend-indets-plus

poly-eval-plus eq)
qed

lemma lookup-restrict-indets-pp: lookup (restrict-indets-pp t) = (λx. lookup t (Some
x))
proof −
let ?f = λz x. lookup t x ∗ lookup (case x of None⇒ 0 | Some y ⇒ Poly-Mapping.single

y 1) z
have sum (?f z) (keys t) = lookup t (Some z) for z
proof (cases Some z ∈ keys t)

case True
hence sum (?f z) (keys t) = sum (?f z) (insert (Some z) (keys t))

by (simp only: insert-absorb)
also have . . . = lookup t (Some z) + sum (?f z) (keys t − {Some z})

by (simp add: sum.insert-remove)
also have sum (?f z) (keys t − {Some z}) = 0

by (auto simp: when-def lookup-single intro: sum.neutral split: option.splits)
finally show ?thesis by simp

next
case False

507

hence sum (?f z) (keys t) = 0
by (auto simp: when-def lookup-single intro: sum.neutral split: option.splits)

with False show ?thesis by (simp add: in-keys-iff)
qed
thus ?thesis by (auto simp: restrict-indets-pp-def restrict-indets-subst-def lookup-sum)

qed

lemma keys-restrict-indets-pp: keys (restrict-indets-pp t) = the ‘ (keys t − {None})
proof (rule set-eqI)

fix x
show x ∈ keys (restrict-indets-pp t) ←→ x ∈ the ‘ (keys t − {None})
proof

assume x ∈ keys (restrict-indets-pp t)
hence Some x ∈ keys t by (simp add: lookup-restrict-indets-pp flip: lookup-not-eq-zero-eq-in-keys)
hence Some x ∈ keys t − {None} by blast
moreover have x = the (Some x) by simp
ultimately show x ∈ the ‘ (keys t − {None}) by (rule rev-image-eqI)

next
assume x ∈ the ‘ (keys t − {None})
then obtain y where y ∈ keys t − {None} and x = the y ..
hence Some x ∈ keys t by auto
thus x ∈ keys (restrict-indets-pp t)

by (simp add: lookup-restrict-indets-pp flip: lookup-not-eq-zero-eq-in-keys)
qed

qed

lemma subst-pp-restrict-indets-subst:
subst-pp (λx. monomial 1 (restrict-indets-subst x)) t = monomial 1 (restrict-indets-pp

t)
by (simp add: subst-pp-def monomial-power-map-scale restrict-indets-pp-def flip:

punit.monomial-prod-sum)

lemma restrict-indets-pp-zero [simp]: restrict-indets-pp 0 = 0
by (simp add: restrict-indets-pp-def)

lemma restrict-indets-pp-plus: restrict-indets-pp (s + t) = restrict-indets-pp s +
restrict-indets-pp t

by (rule poly-mapping-eqI) (simp add: lookup-add lookup-restrict-indets-pp)

lemma restrict-indets-pp-except-None [simp]:
restrict-indets-pp (except t {None}) = restrict-indets-pp t
by (rule poly-mapping-eqI) (simp add: lookup-add lookup-restrict-indets-pp lookup-except)

lemma deg-pm-restrict-indets-pp: deg-pm (restrict-indets-pp t) + lookup t None =
deg-pm t
proof −

have deg-pm t = sum (lookup t) (insert None (keys t)) by (rule deg-pm-superset)
auto

also from finite-keys have . . . = lookup t None + sum (lookup t) (keys t −

508

{None})
by (rule sum.insert-remove)

also have sum (lookup t) (keys t − {None}) = (
∑

x∈keys t. lookup t x ∗ deg-pm
(restrict-indets-subst x))

by (intro sum.mono-neutral-cong-left) (auto simp: restrict-indets-subst-def deg-pm-single)
also have . . . = deg-pm (restrict-indets-pp t)

by (simp only: restrict-indets-pp-def deg-pm-sum deg-pm-map-scale)
finally show ?thesis by simp

qed

lemma keys-restrict-indets-subset: keys (restrict-indets p) ⊆ restrict-indets-pp ‘
keys p
proof

fix t
assume t ∈ keys (restrict-indets p)
also have . . . = keys (

∑
t∈keys p. monomial (lookup p t) (restrict-indets-pp t))

by (simp add: restrict-indets-def poly-subst-def subst-pp-restrict-indets-subst
punit.monom-mult-monomial)

also have . . . ⊆ (
⋃

t∈keys p. keys (monomial (lookup p t) (restrict-indets-pp t)))
by (rule keys-sum-subset)

also have . . . = restrict-indets-pp ‘ keys p by (auto split: if-split-asm)
finally show t ∈ restrict-indets-pp ‘ keys p .

qed

lemma keys-restrict-indets:
assumes None /∈ indets p
shows keys (restrict-indets p) = restrict-indets-pp ‘ keys p

proof −
have keys (restrict-indets p) = keys (

∑
t∈keys p. monomial (lookup p t) (restrict-indets-pp

t))
by (simp add: restrict-indets-def poly-subst-def subst-pp-restrict-indets-subst

punit.monom-mult-monomial)
also from finite-keys have . . . = (

⋃
t∈keys p. keys (monomial (lookup p t)

(restrict-indets-pp t)))
proof (rule keys-sum)

fix s t
assume s ∈ keys p
hence keys s ⊆ indets p by (rule keys-subset-indets)
with assms have None /∈ keys s by blast
assume t ∈ keys p
hence keys t ⊆ indets p by (rule keys-subset-indets)
with assms have None /∈ keys t by blast
assume s 6= t

then obtain x where neq: lookup s x 6= lookup t x by (meson poly-mapping-eqI)
have x 6= None
proof

assume x = None
with ‹None /∈ keys s› and ‹None /∈ keys t› have x /∈ keys s and x /∈ keys t

by blast+

509

with neq show False by (simp add: in-keys-iff)
qed
then obtain y where x: x = Some y by blast
have restrict-indets-pp t 6= restrict-indets-pp s
proof

assume restrict-indets-pp t = restrict-indets-pp s
hence lookup (restrict-indets-pp t) y = lookup (restrict-indets-pp s) y by

(simp only:)
hence lookup s x = lookup t x by (simp add: x lookup-restrict-indets-pp)
with neq show False ..

qed
thus keys (monomial (lookup p s) (restrict-indets-pp s)) ∩

keys (monomial (lookup p t) (restrict-indets-pp t)) = {}
by (simp add: subst-pp-extend-indets-subst)

qed
also have . . . = restrict-indets-pp ‘ keys p by (auto split: if-split-asm)
finally show ?thesis .

qed

lemma indets-restrict-indets-subset: indets (restrict-indets p) ⊆ the ‘ (indets p −
{None})
proof

fix x
assume x ∈ indets (restrict-indets p)
then obtain t where t ∈ keys (restrict-indets p) and x ∈ keys t by (rule

in-indetsE)
from this(1) keys-restrict-indets-subset have t ∈ restrict-indets-pp ‘ keys p ..
then obtain s where s ∈ keys p and t = restrict-indets-pp s ..
from ‹x ∈ keys t› this(2) have x ∈ the ‘ (keys s − {None}) by (simp only:

keys-restrict-indets-pp)
also from ‹s ∈ keys p› have . . . ⊆ the ‘ (indets p − {None})

by (intro image-mono Diff-mono keys-subset-indets subset-refl)
finally show x ∈ the ‘ (indets p − {None}) .

qed

lemma poly-deg-restrict-indets-le: poly-deg (restrict-indets p) ≤ poly-deg p
proof (rule poly-deg-leI)

fix t
assume t ∈ keys (restrict-indets p)
hence t ∈ restrict-indets-pp ‘ keys p using keys-restrict-indets-subset ..
then obtain s where s ∈ keys p and t = restrict-indets-pp s ..
from this(2) have deg-pm t + lookup s None = deg-pm s

by (simp only: deg-pm-restrict-indets-pp)
also from ‹s ∈ keys p› have . . . ≤ poly-deg p by (rule poly-deg-max-keys)
finally show deg-pm t ≤ poly-deg p by simp

qed

lemma
shows restrict-indets-zero [simp]: restrict-indets 0 = 0

510

and restrict-indets-one [simp]: restrict-indets 1 = 1
and restrict-indets-monomial: restrict-indets (monomial c t) = monomial c

(restrict-indets-pp t)
and restrict-indets-plus: restrict-indets (p + q) = restrict-indets p + restrict-indets

q
and restrict-indets-uminus: restrict-indets (− r) = − restrict-indets (r ::- ⇒0

-::comm-ring-1)
and restrict-indets-minus: restrict-indets (r − r ′) = restrict-indets r − re-

strict-indets r ′

and restrict-indets-times: restrict-indets (p ∗ q) = restrict-indets p ∗ re-
strict-indets q

and restrict-indets-power : restrict-indets (p ^ n) = restrict-indets p ^ n
and restrict-indets-sum: restrict-indets (sum f A) = (

∑
a∈A. restrict-indets (f

a))
and restrict-indets-prod: restrict-indets (prod f A) = (

∏
a∈A. restrict-indets (f

a))
by (simp-all add: restrict-indets-def poly-subst-monomial poly-subst-plus poly-subst-uminus

poly-subst-minus poly-subst-times poly-subst-power poly-subst-sum poly-subst-prod
subst-pp-restrict-indets-subst punit.monom-mult-monomial)

lemma restrict-extend-indets [simp]: restrict-indets (extend-indets p) = p
unfolding extend-indets-def restrict-indets-def poly-subst-poly-subst
by (rule poly-subst-id)
(simp add: extend-indets-subst-def restrict-indets-subst-def poly-subst-monomial

subst-pp-single)

lemma extend-restrict-indets:
assumes None /∈ indets p
shows extend-indets (restrict-indets p) = p
unfolding extend-indets-def restrict-indets-def poly-subst-poly-subst

proof (rule poly-subst-id)
fix x
assume x ∈ indets p
with assms have x 6= None by meson
then obtain y where x: x = Some y by blast
thus poly-subst extend-indets-subst (monomial 1 (restrict-indets-subst x)) =

monomial 1 (Poly-Mapping.single x 1)
by (simp add: extend-indets-subst-def restrict-indets-subst-def poly-subst-monomial

subst-pp-single)
qed

lemma restrict-indets-dehomogenize [simp]: restrict-indets (dehomogenize None p)
= restrict-indets p
proof −

have eq: poly-subst (λx. (monomial 1 (restrict-indets-subst x))) (dehomo-subst
None y) =

monomial 1 (restrict-indets-subst y) for y:: ′x option
by (auto simp: restrict-indets-subst-def dehomo-subst-def poly-subst-monomial

subst-pp-single)

511

show ?thesis by (simp only: dehomogenize-def restrict-indets-def poly-subst-poly-subst
eq)
qed

corollary restrict-indets-comp-dehomogenize: restrict-indets ◦ dehomogenize None
= restrict-indets

by (rule ext) (simp only: o-def restrict-indets-dehomogenize)

corollary extend-restrict-indets-eq-dehomogenize:
extend-indets (restrict-indets p) = dehomogenize None p

proof −
have extend-indets (restrict-indets p) = extend-indets (restrict-indets (dehomogenize

None p))
by simp

also have . . . = dehomogenize None p
proof (intro extend-restrict-indets notI)

assume None ∈ indets (dehomogenize None p)
hence None ∈ indets p − {None} using indets-dehomogenize ..
thus False by simp

qed
finally show ?thesis .

qed

corollary extend-indets-comp-restrict-indets: extend-indets ◦ restrict-indets = de-
homogenize None

by (rule ext) (simp only: o-def extend-restrict-indets-eq-dehomogenize)

lemma restrict-homogenize-extend-indets [simp]:
restrict-indets (homogenize None (extend-indets p)) = p

proof −
have restrict-indets (homogenize None (extend-indets p)) =

restrict-indets (dehomogenize None (homogenize None (extend-indets p)))
by (simp only: restrict-indets-dehomogenize)

also have . . . = restrict-indets (dehomogenize None (extend-indets p))
by (simp only: dehomogenize-homogenize)

also have . . . = p by simp
finally show ?thesis .

qed

lemma dehomogenize-extend-indets [simp]: dehomogenize None (extend-indets p)
= extend-indets p

by (simp add: indets-extend-indets)

lemma restrict-indets-ideal: restrict-indets ‘ ideal F = ideal (restrict-indets ‘ F)
using restrict-indets-plus restrict-indets-times

proof (rule image-ideal-eq-surj)
from restrict-extend-indets show surj restrict-indets by (rule surjI)

qed

512

lemma ideal-restrict-indets:
ideal G = ideal (homogenize None ‘ extend-indets ‘ F) =⇒ ideal (restrict-indets

‘ G) = ideal F
by (simp flip: restrict-indets-ideal) (simp add: restrict-indets-ideal image-image)

lemma extend-indets-ideal: extend-indets ‘ ideal F = ideal (extend-indets ‘ F) ∩
P[− {None}]
proof −
have extend-indets ‘ ideal F = extend-indets ‘ restrict-indets ‘ ideal (extend-indets

‘ F)
by (simp add: restrict-indets-ideal image-image)

also have . . . = ideal (extend-indets ‘ F) ∩ P[− {None}]
by (simp add: extend-restrict-indets-eq-dehomogenize dehomogenize-ideal im-

age-image)
finally show ?thesis .

qed

corollary extend-indets-ideal-subset: extend-indets ‘ ideal F ⊆ ideal (extend-indets
‘ F)

by (simp add: extend-indets-ideal)

17.8 Canonical Isomorphisms between P[X ,Y] and P[X][Y]:
focus and flatten

definition focus :: ′x set ⇒ ((′x ⇒0 nat) ⇒0
′a) ⇒ ((′x ⇒0 nat) ⇒0 (′x ⇒0 nat)

⇒0
′a::comm-monoid-add)

where focus X p = (
∑

t∈keys p. monomial (monomial (lookup p t) (except t X))
(except t (− X)))

definition flatten :: (′a ⇒0
′a ⇒0

′b) ⇒ (′a::comm-powerprod ⇒0
′b::semiring-1)

where flatten p = (
∑

t∈keys p. punit.monom-mult 1 t (lookup p t))

lemma focus-superset:
assumes finite A and keys p ⊆ A
shows focus X p = (

∑
t∈A. monomial (monomial (lookup p t) (except t X))

(except t (− X)))
unfolding focus-def using assms by (rule sum.mono-neutral-left) (simp add:

in-keys-iff)

lemma keys-focus: keys (focus X p) = (λt. except t (− X)) ‘ keys p
proof

have keys (focus X p) ⊆ (
⋃

t∈keys p. keys (monomial (monomial (lookup p t)
(except t X)) (except t (− X))))

unfolding focus-def by (rule keys-sum-subset)
also have . . . ⊆ (

⋃
t∈keys p. {except t (− X)}) by (intro UN-mono subset-refl)

simp
also have . . . = (λt. except t (− X)) ‘ keys p by (rule UNION-singleton-eq-range)
finally show keys (focus X p) ⊆ (λt. except t (− X)) ‘ keys p .

next

513

{
fix s
assume s ∈ keys p
have lookup (focus X p) (except s (− X)) =

(
∑

t∈keys p. monomial (lookup p t) (except t X) when except t (− X)
= except s (− X))

(is - = ?p)
by (simp only: focus-def lookup-sum lookup-single)

also have . . . 6= 0
proof

have lookup ?p (except s X) =
(
∑

t∈keys p. lookup p t when except t X = except s X ∧ except t (− X)
= except s (− X))

by (simp add: lookup-sum lookup-single when-def if-distrib if-distribR)
(metis (no-types, opaque-lifting) lookup-single-eq lookup-single-not-eq

lookup-zero)
also have . . . = (

∑
t∈{s}. lookup p t)

proof (intro sum.mono-neutral-cong-right ballI)
fix t
assume t ∈ keys p − {s}
hence t 6= s by simp
hence except t X + except t (− X) 6= except s X + except s (− X)

by (simp flip: except-decomp)
thus (lookup p t when except t X = except s X ∧ except t (− X) = except s

(− X)) = 0
by (auto simp: when-def)

next
from ‹s ∈ keys p› show {s} ⊆ keys p by simp

qed simp-all
also from ‹s ∈ keys p› have . . . 6= 0 by (simp add: in-keys-iff)
finally have except s X ∈ keys ?p by (simp add: in-keys-iff)
moreover assume ?p = 0
ultimately show False by simp

qed
finally have except s (− X) ∈ keys (focus X p) by (simp add: in-keys-iff)

}
thus (λt. except t (− X)) ‘ keys p ⊆ keys (focus X p) by blast

qed

lemma keys-coeffs-focus-subset:
assumes c ∈ range (lookup (focus X p))
shows keys c ⊆ (λt. except t X) ‘ keys p

proof −
from assms obtain s where c = lookup (focus X p) s ..
hence keys c = keys (lookup (focus X p) s) by (simp only:)
also have . . . ⊆ (

⋃
t∈keys p. keys (lookup (monomial (monomial (lookup p t)

(except t X)) (except t (− X))) s))
unfolding focus-def lookup-sum by (rule keys-sum-subset)

also from subset-refl have . . . ⊆ (
⋃

t∈keys p. {except t X})

514

by (rule UN-mono) (simp add: lookup-single when-def)
also have . . . = (λt. except t X) ‘ keys p by (rule UNION-singleton-eq-range)
finally show ?thesis .

qed

lemma focus-in-Polys ′:
assumes p ∈ P[Y]
shows focus X p ∈ P[Y ∩ X]

proof (intro PolysI subsetI)
fix t
assume t ∈ keys (focus X p)
then obtain s where s ∈ keys p and t: t = except s (− X) unfolding keys-focus

..
note this(1)
also from assms have keys p ⊆ .[Y] by (rule PolysD)
finally have keys s ⊆ Y by (rule PPsD)
hence keys t ⊆ Y ∩ X by (simp add: t keys-except le-infI1)
thus t ∈ .[Y ∩ X] by (rule PPsI)

qed

corollary focus-in-Polys: focus X p ∈ P[X]
proof −

have p ∈ P[UNIV] by simp
hence focus X p ∈ P[UNIV ∩ X] by (rule focus-in-Polys ′)
thus ?thesis by simp

qed

lemma focus-coeffs-subset-Polys ′:
assumes p ∈ P[Y]
shows range (lookup (focus X p)) ⊆ P[Y − X]

proof (intro subsetI PolysI)
fix c t
assume c ∈ range (lookup (focus X p))
hence keys c ⊆ (λt. except t X) ‘ keys p by (rule keys-coeffs-focus-subset)
moreover assume t ∈ keys c
ultimately have t ∈ (λt. except t X) ‘ keys p ..
then obtain s where s ∈ keys p and t: t = except s X ..
note this(1)
also from assms have keys p ⊆ .[Y] by (rule PolysD)
finally have keys s ⊆ Y by (rule PPsD)
hence keys t ⊆ Y − X by (simp add: t keys-except Diff-mono)
thus t ∈ .[Y − X] by (rule PPsI)

qed

corollary focus-coeffs-subset-Polys: range (lookup (focus X p)) ⊆ P[− X]
proof −

have p ∈ P[UNIV] by simp
hence range (lookup (focus X p)) ⊆ P[UNIV − X] by (rule focus-coeffs-subset-Polys ′)
thus ?thesis by (simp only: Compl-eq-Diff-UNIV)

515

qed

corollary lookup-focus-in-Polys: lookup (focus X p) t ∈ P[− X]
using focus-coeffs-subset-Polys by blast

lemma focus-zero [simp]: focus X 0 = 0
by (simp add: focus-def)

lemma focus-eq-zero-iff [iff]: focus X p = 0 ←→ p = 0
by (simp only: keys-focus flip: keys-eq-empty-iff) simp

lemma focus-one [simp]: focus X 1 = 1
by (simp add: focus-def)

lemma focus-monomial: focus X (monomial c t) = monomial (monomial c (except
t X)) (except t (− X))

by (simp add: focus-def)

lemma focus-uminus [simp]: focus X (− p) = − focus X p
by (simp add: focus-def keys-uminus single-uminus sum-negf)

lemma focus-plus: focus X (p + q) = focus X p + focus X q
proof −

have finite (keys p ∪ keys q) by simp
moreover have keys (p + q) ⊆ keys p ∪ keys q by (rule Poly-Mapping.keys-add)
ultimately show ?thesis

by (simp add: focus-superset[where A=keys p ∪ keys q] lookup-add single-add
sum.distrib)
qed

lemma focus-minus: focus X (p − q) = focus X p − focus X (q::-⇒0 -::ab-group-add)
by (simp only: diff-conv-add-uminus focus-plus focus-uminus)

lemma focus-times: focus X (p ∗ q) = focus X p ∗ focus X q
proof −

have eq: focus X (monomial c s ∗ q) = focus X (monomial c s) ∗ focus X q for
c s

proof −
have focus X (monomial c s ∗ q) = focus X (punit.monom-mult c s q)

by (simp only: times-monomial-left)
also have . . . = (

∑
t∈(+) s ‘ keys q. monomial (monomial (lookup (punit.monom-mult

c s q) t)
(except t X)) (except t (− X)))

by (rule focus-superset) (simp-all add: punit.keys-monom-mult-subset[simplified])
also have . . . = (

∑
t∈keys q. ((λt. monomial (monomial (lookup (punit.monom-mult

c s q) t)
(except t X)) (except t (− X))) ◦ ((+) s)) t)

by (rule sum.reindex) simp
also have . . . = monomial (monomial c (except s X)) (except s (− X)) ∗

516

(
∑

t∈keys q. monomial (monomial (lookup q t) (except t X))
(except t (− X)))

by (simp add: o-def punit.lookup-monom-mult except-plus times-monomial-monomial
sum-distrib-left)

also have . . . = focus X (monomial c s) ∗ focus X q
by (simp only: focus-monomial focus-def [where p=q])

finally show ?thesis .
qed
show ?thesis by (induct p rule: poly-mapping-plus-induct) (simp-all add: ring-distribs

focus-plus eq)
qed

lemma focus-sum: focus X (sum f I) = (
∑

i∈I . focus X (f i))
by (induct I rule: infinite-finite-induct) (simp-all add: focus-plus)

lemma focus-prod: focus X (prod f I) = (
∏

i∈I . focus X (f i))
by (induct I rule: infinite-finite-induct) (simp-all add: focus-times)

lemma focus-power [simp]: focus X (f ^ m) = focus X f ^ m
by (induct m) (simp-all add: focus-times)

lemma focus-Polys:
assumes p ∈ P[X]
shows focus X p = (

∑
t∈keys p. monomial (monomial (lookup p t) 0) t)

unfolding focus-def
proof (rule sum.cong)

fix t
assume t ∈ keys p
also from assms have . . . ⊆ .[X] by (rule PolysD)
finally have keys t ⊆ X by (rule PPsD)
hence except t X = 0 and except t (− X) = t by (rule except-eq-zeroI , auto

simp: except-id-iff)
thus monomial (monomial (lookup p t) (except t X)) (except t (− X)) =

monomial (monomial (lookup p t) 0) t by simp
qed (fact refl)

corollary lookup-focus-Polys: p ∈ P[X] =⇒ lookup (focus X p) t = monomial
(lookup p t) 0

by (simp add: focus-Polys lookup-sum lookup-single when-def in-keys-iff)

lemma focus-Polys-Compl:
assumes p ∈ P[− X]
shows focus X p = monomial p 0

proof −
have focus X p = (

∑
t∈keys p. monomial (monomial (lookup p t) t) 0) unfolding

focus-def
proof (rule sum.cong)

fix t
assume t ∈ keys p

517

also from assms have . . . ⊆ .[− X] by (rule PolysD)
finally have keys t ⊆ − X by (rule PPsD)
hence except t (− X) = 0 and except t X = t by (rule except-eq-zeroI , auto

simp: except-id-iff)
thus monomial (monomial (lookup p t) (except t X)) (except t (− X)) =

monomial (monomial (lookup p t) t) 0 by simp
qed (fact refl)
also have . . . = monomial (

∑
t∈keys p. monomial (lookup p t) t) 0 by (simp

only: monomial-sum)
also have . . . = monomial p 0 by (simp only: poly-mapping-sum-monomials)
finally show ?thesis .

qed

corollary focus-empty [simp]: focus {} p = monomial p 0
by (rule focus-Polys-Compl) simp

lemma focus-Int:
assumes p ∈ P[Y]
shows focus (X ∩ Y) p = focus X p
unfolding focus-def using refl

proof (rule sum.cong)
fix t
assume t ∈ keys p
also from assms have . . . ⊆ .[Y] by (rule PolysD)
finally have keys t ⊆ Y by (rule PPsD)
hence keys t ⊆ X ∪ Y by blast
hence except t (X ∩ Y) = except t X + except t Y by (rule except-Int)
also from ‹keys t ⊆ Y › have except t Y = 0 by (rule except-eq-zeroI)
finally have eq: except t (X ∩ Y) = except t X by simp
have except t (− (X ∩ Y)) = except (except t (− Y)) (− X) by (simp add:

except-except Un-commute)
also from ‹keys t ⊆ Y › have except t (− Y) = t by (auto simp: except-id-iff)
finally show monomial (monomial (lookup p t) (except t (X ∩ Y))) (except t

(− (X ∩ Y))) =
monomial (monomial (lookup p t) (except t X)) (except t (− X)) by

(simp only: eq)
qed

lemma range-focusD:
assumes p ∈ range (focus X)
shows p ∈ P[X] and range (lookup p) ⊆ P[− X] and lookup p t ∈ P[− X]
using assms by (auto intro: focus-in-Polys lookup-focus-in-Polys)

lemma range-focusI :
assumes p ∈ P[X] and lookup p ‘ keys (p::- ⇒0 - ⇒0 -::semiring-1) ⊆ P[− X]
shows p ∈ range (focus X)
using assms

proof (induct p rule: poly-mapping-plus-induct-Polys)
case 0

518

show ?case by simp
next

case (plus p c t)
from plus.hyps(3) have 1 : keys (monomial c t) = {t} by simp
also from plus.hyps(4) have . . . ∩ keys p = {} by simp
finally have keys (monomial c t + p) = keys (monomial c t) ∪ keys p by (rule

keys-add[symmetric])
hence 2 : keys (monomial c t + p) = insert t (keys p) by (simp only: 1 flip:

insert-is-Un)
from ‹t ∈ .[X]› have keys t ⊆ X by (rule PPsD)
hence eq1 : except t X = 0 and eq2 : except t (− X) = t

by (rule except-eq-zeroI , auto simp: except-id-iff)
from plus.hyps(3 , 4) plus.prems have c ∈ P[− X] and lookup p ‘ keys p ⊆ P[−

X]
by (simp-all add: 2 lookup-add lookup-single in-keys-iff)
(smt (verit) add.commute add.right-neutral image-cong plus.hyps(4) when-simps(2))

from this(2) have p ∈ range (focus X) by (rule plus.hyps)
then obtain q where p: p = focus X q ..
moreover from ‹c ∈ P[− X]› have monomial c t = focus X (monomial 1 t ∗

c)
by (simp add: focus-times focus-monomial eq1 eq2 focus-Polys-Compl times-monomial-monomial)

ultimately have monomial c t + p = focus X (monomial 1 t ∗ c + q) by (simp
only: focus-plus)

thus ?case by (rule range-eqI)
qed

lemma inj-focus: inj ((focus X) :: ((′x ⇒0 nat) ⇒0
′a::ab-group-add) ⇒ -)

proof (rule injI)
fix p q :: (′x ⇒0 nat) ⇒0

′a
assume focus X p = focus X q
hence focus X (p − q) = 0 by (simp add: focus-minus)
thus p = q by simp

qed

lemma flatten-superset:
assumes finite A and keys p ⊆ A
shows flatten p = (

∑
t∈A. punit.monom-mult 1 t (lookup p t))

unfolding flatten-def using assms by (rule sum.mono-neutral-left) (simp add:
in-keys-iff)

lemma keys-flatten-subset: keys (flatten p) ⊆ (
⋃

t∈keys p. (+) t ‘ keys (lookup p
t))
proof −

have keys (flatten p) ⊆ (
⋃

t∈keys p. keys (punit.monom-mult 1 t (lookup p t)))
unfolding flatten-def by (rule keys-sum-subset)

also from subset-refl have . . . ⊆ (
⋃

t∈keys p. (+) t ‘ keys (lookup p t))
by (rule UN-mono) (rule punit.keys-monom-mult-subset[simplified])

finally show ?thesis .
qed

519

lemma flatten-in-Polys:
assumes p ∈ P[X] and lookup p ‘ keys p ⊆ P[Y]
shows flatten p ∈ P[X ∪ Y]

proof (intro PolysI subsetI)
fix t
assume t ∈ keys (flatten p)
also have . . . ⊆ (

⋃
t∈keys p. (+) t ‘ keys (lookup p t)) by (rule keys-flatten-subset)

finally obtain s where s ∈ keys p and t ∈ (+) s ‘ keys (lookup p s) ..
from this(2) obtain s ′ where s ′ ∈ keys (lookup p s) and t: t = s + s ′ ..
from assms(1) have keys p ⊆ .[X] by (rule PolysD)
with ‹s ∈ keys p› have s ∈ .[X] ..
also have . . . ⊆ .[X ∪ Y] by (rule PPs-mono) simp
finally have 1 : s ∈ .[X ∪ Y] .
from ‹s ∈ keys p› have lookup p s ∈ lookup p ‘ keys p by (rule imageI)
also have . . . ⊆ P[Y] by fact
finally have keys (lookup p s) ⊆ .[Y] by (rule PolysD)
with ‹s ′ ∈ -› have s ′ ∈ .[Y] ..
also have . . . ⊆ .[X ∪ Y] by (rule PPs-mono) simp
finally have s ′ ∈ .[X ∪ Y] .
with 1 show t ∈ .[X ∪ Y] unfolding t by (rule PPs-closed-plus)

qed

lemma flatten-zero [simp]: flatten 0 = 0
by (simp add: flatten-def)

lemma flatten-one [simp]: flatten 1 = 1
by (simp add: flatten-def)

lemma flatten-monomial: flatten (monomial c t) = punit.monom-mult 1 t c
by (simp add: flatten-def)

lemma flatten-uminus [simp]: flatten (− p) = − flatten (p::- ⇒0 - ⇒0 -::ring)
by (simp add: flatten-def keys-uminus punit.monom-mult-uminus-right sum-negf)

lemma flatten-plus: flatten (p + q) = flatten p + flatten q
proof −

have finite (keys p ∪ keys q) by simp
moreover have keys (p + q) ⊆ keys p ∪ keys q by (rule Poly-Mapping.keys-add)
ultimately show ?thesis
by (simp add: flatten-superset[where A=keys p ∪ keys q] punit.monom-mult-dist-right

lookup-add
sum.distrib)

qed

lemma flatten-minus: flatten (p − q) = flatten p − flatten (q::- ⇒0 - ⇒0 -::ring)
by (simp only: diff-conv-add-uminus flatten-plus flatten-uminus)

lemma flatten-times: flatten (p ∗ q) = flatten p ∗ flatten (q::-⇒0 -⇒0
′b::comm-semiring-1)

520

proof −
have eq: flatten (monomial c s ∗ q) = flatten (monomial c s) ∗ flatten q for c s
proof −

have eq: monomial 1 (t + s) = monomial 1 s ∗ monomial (1 :: ′b) t for t
by (simp add: times-monomial-monomial add.commute)

have flatten (monomial c s ∗ q) = flatten (punit.monom-mult c s q)
by (simp only: times-monomial-left)

also have . . . = (
∑

t∈(+) s ‘ keys q. punit.monom-mult 1 t (lookup (punit.monom-mult
c s q) t))

by (rule flatten-superset) (simp-all add: punit.keys-monom-mult-subset[simplified])
also have . . . = (

∑
t∈keys q. ((λt. punit.monom-mult 1 t (lookup (punit.monom-mult

c s q) t)) ◦ (+) s) t)
by (rule sum.reindex) simp

thm times-monomial-left
also have . . . = punit.monom-mult 1 s c ∗

(
∑

t∈keys q. punit.monom-mult 1 t (lookup q t))
by (simp add: o-def punit.lookup-monom-mult sum-distrib-left)

(simp add: algebra-simps eq flip: times-monomial-left)
also have . . . = flatten (monomial c s) ∗ flatten q

by (simp only: flatten-monomial flatten-def [where p=q])
finally show ?thesis .

qed
show ?thesis by (induct p rule: poly-mapping-plus-induct) (simp-all add: ring-distribs

flatten-plus eq)
qed

lemma flatten-monom-mult:
flatten (punit.monom-mult c t p) = punit.monom-mult 1 t (c ∗ flatten (p::- ⇒0

- ⇒0
′b::comm-semiring-1))

by (simp only: flatten-times flatten-monomial mult.assoc flip: times-monomial-left)

lemma flatten-sum: flatten (sum f I) = (
∑

i∈I . flatten (f i))
by (induct I rule: infinite-finite-induct) (simp-all add: flatten-plus)

lemma flatten-prod: flatten (prod f I) = (
∏

i∈I . flatten (f i :: -⇒0 -::comm-semiring-1))
by (induct I rule: infinite-finite-induct) (simp-all add: flatten-times)

lemma flatten-power [simp]: flatten (f ^ m) = flatten (f :: -⇒0 -::comm-semiring-1)
^ m

by (induct m) (simp-all add: flatten-times)

lemma surj-flatten: surj flatten
proof (rule surjI)

fix p
show flatten (monomial p 0) = p by (simp add: flatten-monomial)

qed

lemma flatten-focus [simp]: flatten (focus X p) = p
by (induct p rule: poly-mapping-plus-induct)

521

(simp-all add: focus-plus flatten-plus focus-monomial flatten-monomial
punit.monom-mult-monomial add.commute flip: except-decomp)

lemma focus-flatten:
assumes p ∈ P[X] and lookup p ‘ keys p ⊆ P[− X]
shows focus X (flatten p) = p

proof −
from assms have p ∈ range (focus X) by (rule range-focusI)
then obtain q where p = focus X q ..
thus ?thesis by simp

qed

lemma image-focus-ideal: focus X ‘ ideal F = ideal (focus X ‘ F) ∩ range (focus
X)
proof

from focus-plus focus-times have focus X ‘ ideal F ⊆ ideal (focus X ‘ F)
by (rule image-ideal-subset)

moreover from subset-UNIV have focus X ‘ ideal F ⊆ range (focus X) by (rule
image-mono)

ultimately show focus X ‘ ideal F ⊆ ideal (focus X ‘ F) ∩ range (focus X) by
blast
next

show ideal (focus X ‘ F) ∩ range (focus X) ⊆ focus X ‘ ideal F
proof

fix p
assume p ∈ ideal (focus X ‘ F) ∩ range (focus X)
hence p ∈ ideal (focus X ‘ F) and p ∈ range (focus X) by simp-all
from this(1) obtain F0 q where F0 ⊆ focus X ‘ F and p: p = (

∑
f ′∈F0 . q

f ′ ∗ f ′)
by (rule ideal.spanE)

from this(1) obtain F ′ where F ′ ⊆ F and F0 : F0 = focus X ‘ F ′ by (rule
subset-imageE)

from inj-focus subset-UNIV have inj-on (focus X) F ′ by (rule inj-on-subset)
from ‹p ∈ range -› obtain p ′ where p = focus X p ′ ..
hence p = focus X (flatten p) by simp
also from ‹inj-on - F ′› have . . . = focus X (

∑
f ′∈F ′. flatten (q (focus X f ′))

∗ f ′)
by (simp add: p F0 sum.reindex flatten-sum flatten-times)

finally have p = focus X (
∑

f ′∈F ′. flatten (q (focus X f ′)) ∗ f ′) .
moreover have (

∑
f ′∈F ′. flatten (q (focus X f ′)) ∗ f ′) ∈ ideal F

proof
show (

∑
f ′∈F ′. flatten (q (focus X f ′)) ∗ f ′) ∈ ideal F ′ by (rule ideal.sum-in-spanI)

next
from ‹F ′ ⊆ F› show ideal F ′ ⊆ ideal F by (rule ideal.span-mono)

qed
ultimately show p ∈ focus X ‘ ideal F by (rule image-eqI)

qed
qed

522

lemma image-flatten-ideal: flatten ‘ ideal F = ideal (flatten ‘ F)
using flatten-plus flatten-times surj-flatten by (rule image-ideal-eq-surj)

lemma poly-eval-focus:
poly-eval a (focus X p) = poly-subst (λx. if x ∈ X then a x else monomial 1

(Poly-Mapping.single x 1)) p
proof −

let ?b = λx. if x ∈ X then a x else monomial 1 (Poly-Mapping.single x 1)
have ∗: lookup (punit.monom-mult (monomial (lookup p t) (except t X)) 0

(subst-pp (λx. monomial (a x) 0) (except t (− X)))) 0 =
punit.monom-mult (lookup p t) 0 (subst-pp ?b t) for t

proof −
have 1 : subst-pp ?b (except t X) = monomial 1 (except t X)

by (rule subst-pp-id) (simp add: keys-except)
from refl have 2 : subst-pp ?b (except t (− X)) = subst-pp a (except t (−X))

by (rule subst-pp-cong) (simp add: keys-except)
have lookup (punit.monom-mult (monomial (lookup p t) (except t X)) 0

(subst-pp (λx. monomial (a x) 0) (except t (− X)))) 0 =
punit.monom-mult (lookup p t) (except t X) (subst-pp a (except t (− X)))

by (simp add: lookup-times-zero subst-pp-def lookup-prod-zero lookup-power-zero
flip: times-monomial-left)

also have . . . = punit.monom-mult (lookup p t) 0 (monomial 1 (except t X) ∗
subst-pp a (except t (− X)))

by (simp add: times-monomial-monomial flip: times-monomial-left mult.assoc)
also have . . . = punit.monom-mult (lookup p t) 0 (subst-pp ?b (except t X +

except t (− X)))
by (simp only: subst-pp-plus 1 2)

also have . . . = punit.monom-mult (lookup p t) 0 (subst-pp ?b t) by (simp flip:
except-decomp)

finally show ?thesis .
qed
show ?thesis by (simp add: poly-eval-def focus-def poly-subst-sum lookup-sum

poly-subst-monomial ∗
flip: poly-subst-def)

qed

corollary poly-eval-poly-eval-focus:
poly-eval a (poly-eval b (focus X p)) = poly-eval (λx:: ′x. if x ∈ X then poly-eval

a (b x) else a x) p
proof −

have eq: monomial (lookup (poly-subst (λy. monomial (a y) (0 :: ′x ⇒0 nat)) q)
0) 0 =

poly-subst (λy. monomial (a y) (0 :: ′x ⇒0 nat)) q for q
by (intro poly-deg-zero-imp-monomial poly-deg-poly-subst-eq-zeroI) simp

show ?thesis unfolding poly-eval-focus
by (simp add: poly-eval-def poly-subst-poly-subst if-distrib poly-subst-monomial

subst-pp-single eq
cong: if-cong)

qed

523

lemma indets-poly-eval-focus-subset:
indets (poly-eval a (focus X p)) ⊆

⋃
(indets ‘ a ‘ X) ∪ (indets p − X)

proof
fix x
assume x ∈ indets (poly-eval a (focus X p))
also have . . . = indets (poly-subst (λx. if x ∈ X then a x else monomial 1

(Poly-Mapping.single x 1)) p)
(is - = indets (poly-subst ?f -)) by (simp only: poly-eval-focus)

finally obtain y where y ∈ indets p and x ∈ indets (?f y) by (rule in-indets-poly-substE)
from this(2) have (x /∈ X ∧ x = y) ∨ (y ∈ X ∧ x ∈ indets (a y))

by (simp add: indets-monomial split: if-split-asm)
thus x ∈

⋃
(indets ‘ a ‘ X) ∪ (indets p − X)

proof (elim disjE conjE)
assume x /∈ X and x = y
with ‹y ∈ indets p› have x ∈ indets p − X by simp
thus ?thesis ..

next
assume y ∈ X and x ∈ indets (a y)
hence x ∈

⋃
(indets ‘ a ‘ X) by blast

thus ?thesis ..
qed

qed

lemma lookup-poly-eval-focus:
lookup (poly-eval (λx. monomial (a x) 0) (focus X p)) t = poly-eval a (lookup

(focus (− X) p) t)
proof −
let ?f = λx. if x ∈ X then monomial (a x) 0 else monomial 1 (Poly-Mapping.single

x 1)
have eq: subst-pp ?f s = monomial (

∏
x∈keys s ∩ X . a x ^ lookup s x) (except

s X) for s
proof −

have subst-pp ?f s = (
∏

x∈(keys s ∩ X) ∪ (keys s − X). ?f x ^ lookup s x)
unfolding subst-pp-def by (rule prod.cong) blast+

also have . . . = (
∏

x∈keys s ∩ X . ?f x ^ lookup s x) ∗ (
∏

x∈keys s − X . ?f x
^ lookup s x)

by (rule prod.union-disjoint) auto
also have . . . = monomial (

∏
x∈keys s ∩ X . a x ^ lookup s x)

(
∑

x∈keys s − X . Poly-Mapping.single x (lookup s x))
by (simp add: monomial-power-map-scale times-monomial-monomial flip:

punit.monomial-prod-sum)
also have (

∑
x∈keys s − X . Poly-Mapping.single x (lookup s x)) = except s X

by (metis (mono-tags, lifting) DiffD2 keys-except lookup-except-eq-idI
poly-mapping-sum-monomials sum.cong)

finally show ?thesis .
qed
show ?thesis
by (simp add: poly-eval-focus poly-subst-def lookup-sum eq flip: punit.map-scale-eq-monom-mult)

524

(simp add: focus-def lookup-sum poly-eval-sum lookup-single when-distrib
poly-eval-monomial

keys-except lookup-except-when)
qed

lemma keys-poly-eval-focus-subset:
keys (poly-eval (λx. monomial (a x) 0) (focus X p)) ⊆ (λt. except t X) ‘ keys p

proof
fix t
assume t ∈ keys (poly-eval (λx. monomial (a x) 0) (focus X p))
hence lookup (poly-eval (λx. monomial (a x) 0) (focus X p)) t 6= 0 by (simp

add: in-keys-iff)
hence poly-eval a (lookup (focus (− X) p) t) 6= 0 by (simp add: lookup-poly-eval-focus)
hence t ∈ keys (focus (− X) p) by (auto simp flip: lookup-not-eq-zero-eq-in-keys)
thus t ∈ (λt. except t X) ‘ keys p by (simp add: keys-focus)

qed

lemma poly-eval-focus-in-Polys:
assumes p ∈ P[X]
shows poly-eval (λx. monomial (a x) 0) (focus Y p) ∈ P[X − Y]

proof (rule PolysI-alt)
have indets (poly-eval (λx. monomial (a x) 0) (focus Y p)) ⊆⋃

(indets ‘ (λx. monomial (a x) 0) ‘ Y) ∪ (indets p − Y)
by (fact indets-poly-eval-focus-subset)

also have . . . = indets p − Y by simp
also from assms have . . . ⊆ X − Y by (auto dest: PolysD)
finally show indets (poly-eval (λx. monomial (a x) 0) (focus Y p)) ⊆ X − Y .

qed

lemma image-poly-eval-focus-ideal:
poly-eval (λx. monomial (a x) 0) ‘ focus X ‘ ideal F =

ideal (poly-eval (λx. monomial (a x) 0) ‘ focus X ‘ F) ∩
(P[− X]::((′x ⇒0 nat) ⇒0

′a::comm-ring-1) set)
proof −

let ?h = λf . poly-eval (λx. monomial (a x) 0) (focus X f)
have h-id: ?h p = p if p ∈ P[− X] for p
proof −

from that have focus X p ∈ P[− X ∩ X] by (rule focus-in-Polys ′)
also have . . . = P[{}] by simp
finally obtain c where eq: focus X p = monomial c 0 unfolding Polys-empty

..
hence flatten (focus X p) = flatten (monomial c 0) by (rule arg-cong)
hence c = p by (simp add: flatten-monomial)
thus ?h p = p by (simp add: eq poly-eval-monomial)

qed
have rng: range ?h = P[− X]
proof (intro subset-antisym subsetI , elim rangeE)

fix b f
assume b: b = ?h f

525

have ?h f ∈ P[UNIV − X] by (rule poly-eval-focus-in-Polys) simp
thus b ∈ P[− X] by (simp add: b Compl-eq-Diff-UNIV)

next
fix p :: (′x ⇒0 nat) ⇒0

′a
assume p ∈ P[− X]
hence ?h p = p by (rule h-id)
hence p = ?h p by (rule sym)
thus p ∈ range ?h by (rule range-eqI)

qed
have poly-eval (λx. monomial (a x) 0) ‘ focus X ‘ ideal F = ?h ‘ ideal F by

(fact image-image)
also have . . . = ideal (?h ‘ F) ∩ range ?h
proof (rule image-ideal-eq-Int)

fix p
have ?h p ∈ range ?h by (fact rangeI)
also have . . . = P[− X] by fact
finally show ?h (?h p) = ?h p by (rule h-id)

qed (simp-all only: focus-plus poly-eval-plus focus-times poly-eval-times)
also have . . . = ideal (poly-eval (λx. monomial (a x) 0) ‘ focus X ‘ F) ∩ P[−

X]
by (simp only: image-image rng)

finally show ?thesis .
qed

17.9 Locale pm-powerprod
lemma varnum-eq-zero-iff : varnum X t = 0 ←→ t ∈ .[X]

by (auto simp: varnum-def PPs-def)

lemma dgrad-set-varnum: dgrad-set (varnum X) 0 = .[X]
by (simp add: dgrad-set-def PPs-def varnum-eq-zero-iff)

context ordered-powerprod
begin

abbreviation lcf ≡ punit.lc
abbreviation tcf ≡ punit.tc
abbreviation lpp ≡ punit.lt
abbreviation tpp ≡ punit.tt

end

locale pm-powerprod =
ordered-powerprod ord ord-strict
for ord::(′x::{countable,linorder} ⇒0 nat) ⇒ (′x ⇒0 nat) ⇒ bool (infixl ‹�› 50)
and ord-strict (infixl ‹≺› 50)

begin

sublocale gd-powerprod ..

526

lemma PPs-closed-lpp:
assumes p ∈ P[X]
shows lpp p ∈ .[X]

proof (cases p = 0)
case True
thus ?thesis by (simp add: zero-in-PPs)

next
case False
hence lpp p ∈ keys p by (rule punit.lt-in-keys)
also from assms have . . . ⊆ .[X] by (rule PolysD)
finally show ?thesis .

qed

lemma PPs-closed-tpp:
assumes p ∈ P[X]
shows tpp p ∈ .[X]

proof (cases p = 0)
case True
thus ?thesis by (simp add: zero-in-PPs)

next
case False
hence tpp p ∈ keys p by (rule punit.tt-in-keys)
also from assms have . . . ⊆ .[X] by (rule PolysD)
finally show ?thesis .

qed

corollary PPs-closed-image-lpp: F ⊆ P[X] =⇒ lpp ‘ F ⊆ .[X]
by (auto intro: PPs-closed-lpp)

corollary PPs-closed-image-tpp: F ⊆ P[X] =⇒ tpp ‘ F ⊆ .[X]
by (auto intro: PPs-closed-tpp)

lemma hom-component-lpp:
assumes p 6= 0
shows hom-component p (deg-pm (lpp p)) 6= 0 (is ?p 6= 0)

and lpp (hom-component p (deg-pm (lpp p))) = lpp p
proof −

from assms have lpp p ∈ keys p by (rule punit.lt-in-keys)
hence ∗: lpp p ∈ keys ?p by (simp add: keys-hom-component)
thus ?p 6= 0 by auto

from ∗ show lpp ?p = lpp p
proof (rule punit.lt-eqI-keys)

fix t
assume t ∈ keys ?p
hence t ∈ keys p by (simp add: keys-hom-component)
thus t � lpp p by (rule punit.lt-max-keys)

qed

527

qed

definition is-hom-ord :: ′x ⇒ bool
where is-hom-ord x ←→ (∀ s t. deg-pm s = deg-pm t −→ (s � t ←→ except s
{x} � except t {x}))

lemma is-hom-ordD: is-hom-ord x =⇒ deg-pm s = deg-pm t =⇒ s � t ←→ except
s {x} � except t {x}

by (simp add: is-hom-ord-def)

lemma dgrad-p-set-varnum: punit.dgrad-p-set (varnum X) 0 = P[X]
by (simp add: punit.dgrad-p-set-def dgrad-set-varnum Polys-def)

end

We must create a copy of pm-powerprod to avoid infinite chains of inter-
pretations.
instantiation option :: (linorder) linorder
begin

fun less-eq-option :: ′a option ⇒ ′a option ⇒ bool where
less-eq-option None - = True |
less-eq-option (Some x) None = False |
less-eq-option (Some x) (Some y) = (x ≤ y)

definition less-option :: ′a option ⇒ ′a option ⇒ bool
where less-option x y ←→ x ≤ y ∧ ¬ y ≤ x

instance proof
fix x :: ′a option
show x ≤ x using less-eq-option.elims(3) by fastforce

qed (auto simp: less-option-def elim!: less-eq-option.elims)

end

locale extended-ord-pm-powerprod = pm-powerprod
begin

definition extended-ord :: (′a option ⇒0 nat) ⇒ (′a option ⇒0 nat) ⇒ bool
where extended-ord s t ←→ (restrict-indets-pp s ≺ restrict-indets-pp t ∨

(restrict-indets-pp s = restrict-indets-pp t ∧ lookup s None ≤
lookup t None))

definition extended-ord-strict :: (′a option ⇒0 nat) ⇒ (′a option ⇒0 nat) ⇒ bool
where extended-ord-strict s t ←→ (restrict-indets-pp s ≺ restrict-indets-pp t ∨

(restrict-indets-pp s = restrict-indets-pp t ∧ lookup s None <
lookup t None))

sublocale extended-ord: pm-powerprod extended-ord extended-ord-strict

528

proof −
have 1 : s = t if lookup s None = lookup t None and restrict-indets-pp s =

restrict-indets-pp t
for s t :: ′a option ⇒0 nat

proof (rule poly-mapping-eqI)
fix y
show lookup s y = lookup t y
proof (cases y)

case None
with that(1) show ?thesis by simp

next
case y: (Some z)

have lookup s y = lookup (restrict-indets-pp s) z by (simp only: lookup-restrict-indets-pp
y)

also have . . . = lookup (restrict-indets-pp t) z by (simp only: that(2))
also have . . . = lookup t y by (simp only: lookup-restrict-indets-pp y)
finally show ?thesis .

qed
qed
have 2 : 0 ≺ t if t 6= 0 for t:: ′a ⇒0 nat
using that zero-min by (rule ordered-powerprod-lin.dual-order .not-eq-order-implies-strict)

show pm-powerprod extended-ord extended-ord-strict
by standard (auto simp: extended-ord-def extended-ord-strict-def restrict-indets-pp-plus

lookup-add 1
dest: plus-monotone-strict 2)

qed

lemma extended-ord-is-hom-ord: extended-ord.is-hom-ord None
by (auto simp add: extended-ord-def lookup-restrict-indets-pp lookup-except ex-

tended-ord.is-hom-ord-def
simp flip: deg-pm-restrict-indets-pp)

end

end

theory MPoly-Type-Univariate
imports

More-MPoly-Type
HOL−Computational-Algebra.Polynomial

begin

This file connects univariate MPolys to the theory of univariate polyno-
mials from HOL−Computational-Algebra.Polynomial.
definition poly-to-mpoly::nat ⇒ ′a::comm-monoid-add poly ⇒ ′a mpoly
where poly-to-mpoly v p = MPoly (Abs-poly-mapping (λm. (coeff p (Poly-Mapping.lookup
m v)) when Poly-Mapping.keys m ⊆ {v}))

lemma poly-to-mpoly-finite: finite {m::nat ⇒0 nat. (coeff p (Poly-Mapping.lookup

529

m v) when Poly-Mapping.keys m ⊆ {v}) 6= 0} (is finite ?M)
proof −

have ?M ⊆ Poly-Mapping.single v ‘ {x. Polynomial.coeff p x 6= 0}
proof

fix m assume m ∈ ?M
then have

∧
v ′. v ′6=v =⇒ Poly-Mapping.lookup m v ′ = 0 by (fastforce simp

add: in-keys-iff)
then have m = Poly-Mapping.single v (Poly-Mapping.lookup m v)

using Poly-Mapping.poly-mapping-eqI by (metis (full-types) lookup-single-eq
lookup-single-not-eq)

then show m ∈ (Poly-Mapping.single v) ‘ {x. Polynomial.coeff p x 6= 0} using
‹m ∈ ?M › by auto

qed
then show ?thesis using finite-surj[OF MOST-coeff-eq-0 [unfolded eventually-cofinite]]

by blast
qed

lemma coeff-poly-to-mpoly: MPoly-Type.coeff (poly-to-mpoly v p) (Poly-Mapping.single
v k) = Polynomial.coeff p k
unfolding poly-to-mpoly-def coeff-def MPoly-inverse[OF Set.UNIV-I] lookup-Abs-poly-mapping[OF

poly-to-mpoly-finite]
using empty-subsetI keys-single lookup-single order-refl when-simps(1) by simp

definition mpoly-to-poly::nat ⇒ ′a::comm-monoid-add mpoly ⇒ ′a poly
where mpoly-to-poly v p = Abs-poly (λk. MPoly-Type.coeff p (Poly-Mapping.single
v k))

lemma coeff-mpoly-to-poly[simp]: Polynomial.coeff (mpoly-to-poly v p) k = MPoly-Type.coeff
p (Poly-Mapping.single v k)
proof −
have 0 :Poly-Mapping.single v ‘ {x. Poly-Mapping.lookup (mapping-of p) (Poly-Mapping.single

v x) 6= 0}
⊆ {k. Poly-Mapping.lookup (mapping-of p) k 6= 0}

by auto
have ∀∞ k. MPoly-Type.coeff p (Poly-Mapping.single v k) = 0 unfolding co-

eff-def eventually-cofinite
using finite-imageD[OF finite-subset[OF 0 Poly-Mapping.finite-lookup]] inj-single

by (metis inj-eq inj-onI)
then show ?thesis

unfolding mpoly-to-poly-def by (simp add: Abs-poly-inverse)
qed

lemma mpoly-to-poly-inverse:
assumes vars p ⊆ {v}
shows poly-to-mpoly v (mpoly-to-poly v p) = p
proof −
define f where f = (λm. Polynomial.coeff (mpoly-to-poly v p) (Poly-Mapping.lookup

m v) when Poly-Mapping.keys m ⊆ {v})
have finite {m. f m 6= 0} unfolding f-def using poly-to-mpoly-finite by blast

530

have Abs-poly-mapping f = mapping-of p
proof (rule Poly-Mapping.poly-mapping-eqI)

fix m
show Poly-Mapping.lookup (Abs-poly-mapping f) m = Poly-Mapping.lookup

(mapping-of p) m
proof (cases Poly-Mapping.keys m ⊆ {v})

assume Poly-Mapping.keys m ⊆ {v}
then show ?thesis unfolding Poly-Mapping.lookup-Abs-poly-mapping[OF

‹finite {m. f m 6= 0}›] unfolding f-def
unfolding coeff-mpoly-to-poly coeff-def using when-simps(1) apply simp
using keys-single lookup-not-eq-zero-eq-in-keys lookup-single-eq
lookup-single-not-eq poly-mapping-eqI subset-singletonD
by (metis (no-types, lifting) aux lookup-eq-zero-in-keys-contradict)

next
assume ¬Poly-Mapping.keys m ⊆ {v}

then show ?thesis unfolding Poly-Mapping.lookup-Abs-poly-mapping[OF
‹finite {m. f m 6= 0}›] unfolding f-def

using ‹vars p ⊆ {v}› unfolding vars-def by (metis (no-types, lifting) UN-I
lookup-not-eq-zero-eq-in-keys subsetCE subsetI when-def)

qed
qed
then show ?thesis

unfolding poly-to-mpoly-def f-def by (simp add: mapping-of-inverse)
qed

lemma poly-to-mpoly-inverse: mpoly-to-poly v (poly-to-mpoly v p) = p
unfolding mpoly-to-poly-def coeff-poly-to-mpoly by (simp add: coeff-inverse)

lemma poly-to-mpoly0 : poly-to-mpoly v 0 = 0
proof −
have

∧
m. (Polynomial.coeff 0 (Poly-Mapping.lookup m v) when Poly-Mapping.keys

m ⊆ {v}) = 0 by simp
have Abs-poly-mapping (λm. Polynomial.coeff 0 (Poly-Mapping.lookup m v) when

Poly-Mapping.keys m ⊆ {v}) = 0
apply (rule Poly-Mapping.poly-mapping-eqI) unfolding lookup-Abs-poly-mapping[OF

poly-to-mpoly-finite] by auto
then show ?thesis using poly-to-mpoly-def zero-mpoly.abs-eq by (metis (no-types))

qed

lemma mpoly-to-poly-add: mpoly-to-poly v (p1 + p2) = mpoly-to-poly v p1 +
mpoly-to-poly v p2
unfolding Polynomial.plus-poly.abs-eq More-MPoly-Type.coeff-add coeff-mpoly-to-poly
using mpoly-to-poly-def by auto

lemma poly-eq-insertion:
assumes vars p ⊆ {v}
shows poly (mpoly-to-poly v p) x = insertion (λv. x) p
using assms proof (induction p rule:mpoly-induct)

case (monom m a)

531

then show ?case
proof (cases a=0)

case True
then show ?thesis
by (metis MPoly-Type.monom.abs-eq insertion-zero monom-zero poly-0 poly-to-mpoly0

poly-to-mpoly-inverse single-zero)
next

case False
then have Poly-Mapping.keys m ⊆ {v} using monom unfolding vars-def

MPoly-Type.mapping-of-monom keys-single by simp
then have

∧
v ′. v ′6=v =⇒ Poly-Mapping.lookup m v ′ = 0 unfolding vars-def

by (auto simp: in-keys-iff)
then have m = Poly-Mapping.single v (Poly-Mapping.lookup m v)

by (metis lookup-single-eq lookup-single-not-eq poly-mapping-eqI)
then have 0 :insertion (λv. x) (MPoly-Type.monom m a) = a ∗ x ^ (Poly-Mapping.lookup

m v)
using insertion-single by metis

have
∧

k. Poly-Mapping.single v k = m ←→ Poly-Mapping.lookup m v = k
using ‹m = Poly-Mapping.single v (Poly-Mapping.lookup m v)› by auto

then have monom a (Poly-Mapping.lookup m v) = (Abs-poly (λk. if Poly-Mapping.single
v k = m then a else 0))

by (simp add: Polynomial.monom.abs-eq)
then show ?thesis unfolding mpoly-to-poly-def More-MPoly-Type.coeff-monom

0 when-def by (metis poly-monom)
qed

next
case (sum p1 p2 m a)
then have poly (mpoly-to-poly v p1) x = insertion (λv. x) p1

poly (mpoly-to-poly v p2) x = insertion (λv. x) p2
by (simp-all add: vars-add-monom)

then show ?case unfolding insertion-add mpoly-to-poly-add by simp
qed

Using the new connection between MPoly and univariate polynomials,
we can transfer:
lemma univariate-mpoly-roots-finite:
fixes p:: ′a::idom mpoly
assumes vars p ⊆ {v} p 6= 0
shows finite {x. insertion (λv. x) p = 0}
using poly-roots-finite[of mpoly-to-poly v p, unfolded poly-eq-insertion[OF ‹vars p
⊆ {v}›]]
using assms(1) assms(2) mpoly-to-poly-inverse poly-to-mpoly0 by fastforce

end

18 Polynomials
theory Polynomials
imports

532

Abstract−Rewriting.SN-Orders
Matrix.Utility

begin

18.1 Polynomials represented as trees
datatype (vars-tpoly: ′v, nums-tpoly: ′a)tpoly = PVar ′v | PNum ′a | PSum
(′v, ′a)tpoly list | PMult (′v, ′a)tpoly list

type-synonym (′v, ′a)assign = ′v ⇒ ′a

primrec eval-tpoly :: (′v, ′a::{monoid-add,monoid-mult})assign ⇒ (′v, ′a)tpoly ⇒
′a
where eval-tpoly α (PVar x) = α x
| eval-tpoly α (PNum a) = a
| eval-tpoly α (PSum ps) = sum-list (map (eval-tpoly α) ps)
| eval-tpoly α (PMult ps) = prod-list (map (eval-tpoly α) ps)

18.2 Polynomials represented in normal form as lists of mono-
mials

The internal representation of polynomials is a sum of products of monomials
with coefficients where all coefficients are non-zero, and all monomials are
different

Definition of type monom
type-synonym ′v monom-list = (′v × nat)list

• [(x, n), (y,m)] represent xn · ym

• invariants: all powers are ≥ 1 and each variable occurs at most once
hence: [(x, 1), (y, 2), (x, 2)] will not occur, but [(x, 3), (y, 2)]; [(x, 1), (y, 0)]
will not occur, but [(x, 1)]

context linorder
begin
definition monom-inv :: ′a monom-list ⇒ bool where

monom-inv m ≡ (∀ (x,n) ∈ set m. 1 ≤ n) ∧ distinct (map fst m) ∧ sorted (map
fst m)

fun eval-monom-list :: (′a, ′b :: comm-semiring-1)assign ⇒ (′a monom-list) ⇒ ′b
where

eval-monom-list α [] = 1
| eval-monom-list α ((x,p) # m) = eval-monom-list α m ∗ (α x)^p

lemma eval-monom-list[simp]: eval-monom-list α (m @ n) = eval-monom-list α
m ∗ eval-monom-list α n

by (induct m, auto simp: field-simps)

533

definition sum-var-list :: ′a monom-list ⇒ ′a ⇒ nat where
sum-var-list m x ≡ sum-list (map (λ (y,c). if x = y then c else 0) m)

lemma sum-var-list-not: x /∈ fst ‘ set m =⇒ sum-var-list m x = 0
unfolding sum-var-list-def by (induct m, auto)

show that equality of monomials is equivalent to statement that all vari-
ables occur with the same (accumulated) power; afterwards properties like
transitivity, etc. are easy to prove
lemma monom-inv-Cons: assumes monom-inv ((x,p) # m)

and y ≤ x shows y /∈ fst ‘ set m
proof −

define M where M = map fst m
from assms[unfolded monom-inv-def]
have distinct (x # map fst m) sorted (x # map fst m) by auto
with assms(2) have y /∈ set (map fst m) unfolding M-def [symmetric]

by (induct M , auto)
thus ?thesis by auto

qed

lemma eq-monom-sum-var-list: assumes monom-inv m and monom-inv n
shows (m = n) = (∀ x. sum-var-list m x = sum-var-list n x) (is ?l = ?r)

using assms
proof (induct m arbitrary: n)

case Nil
show ?case
proof (cases n)

case (Cons yp nn)
obtain y p where yp: yp = (y,p) by (cases yp, auto)
with Cons Nil(2)[unfolded monom-inv-def] have p: 0 < p by auto
show ?thesis by (simp add: Cons, rule exI [of - y], simp add: sum-var-list-def

yp p)
qed simp

next
case (Cons xp m)
obtain x p where xp: xp = (x,p) by (cases xp, auto)
with Cons(2) have p: 0 < p and x: x /∈ fst ‘ set m and m: monom-inv m

unfolding monom-inv-def
by (auto)

show ?case
proof (cases n)

case Nil
thus ?thesis by (auto simp: xp sum-var-list-def p intro!: exI [of - x])

next
case n: (Cons yq n ′)

from Cons(3)[unfolded n] have n ′: monom-inv n ′ by (auto simp: monom-inv-def)
show ?thesis
proof (cases yq = xp)

534

case True
show ?thesis unfolding n True using Cons(1)[OF m n ′] by (auto simp: xp

sum-var-list-def)
next

case False
obtain y q where yq: yq = (y,q) by force
from Cons(3)[unfolded n yq monom-inv-def] have q: q > 0 by auto
define z where z = min x y
have zm: z /∈ fst ‘ set m using Cons(2) unfolding xp z-def

by (rule monom-inv-Cons, simp)
have zn ′: z /∈ fst ‘ set n ′ using Cons(3) unfolding n yq z-def

by (rule monom-inv-Cons, simp)
have smz: sum-var-list (xp # m) z = sum-var-list [(x,p)] z

using sum-var-list-not[OF zm] by (simp add: sum-var-list-def xp)
also have . . . 6= sum-var-list [(y,q)] z using False unfolding xp yq

by (auto simp: sum-var-list-def z-def p q min-def)
also have sum-var-list [(y,q)] z = sum-var-list n z

using sum-var-list-not[OF zn ′] by (simp add: sum-var-list-def n yq)
finally show ?thesis using False unfolding n by auto

qed
qed

qed

equality of monomials is also a complete for several carriers, e.g. the
naturals, integers, where xp = xq implies p = q. note that it is not complete
for carriers like the Booleans where e.g. xSuc(m) = xSuc(n) for all n,m.
abbreviation (input) monom-list-vars :: ′a monom-list ⇒ ′a set

where monom-list-vars m ≡ fst ‘ set m

fun monom-mult-list :: ′a monom-list ⇒ ′a monom-list ⇒ ′a monom-list where
monom-mult-list [] n = n
| monom-mult-list ((x,p) # m) n = (case n of

Nil ⇒ (x,p) # m
| (y,q) # n ′⇒ if x = y then (x,p + q) # monom-mult-list m n ′ else

if x < y then (x,p) # monom-mult-list m n else (y,q) # monom-mult-list
((x,p) # m) n ′)

lemma monom-list-mult-list-vars: monom-list-vars (monom-mult-list m1 m2) =
monom-list-vars m1 ∪ monom-list-vars m2

by (induct m1 m2 rule: monom-mult-list.induct, auto split: list.splits)

lemma monom-mult-list-inv: monom-inv m1 =⇒ monom-inv m2 =⇒ monom-inv
(monom-mult-list m1 m2)
proof (induct m1 m2 rule: monom-mult-list.induct)

case (2 x p m n ′)
note IH = 2 (1−3)
note xpm = 2 (4)
note n ′ = 2 (5)

535

show ?case
proof (cases n ′)

case Nil
with xpm show ?thesis by auto

next
case (Cons yq n)
then obtain y q where id: n ′ = ((y,q) # n) by (cases yq, auto)
from xpm have m: monom-inv m and p: p > 0 and x: x /∈ fst ‘ set m

and xm:
∧

z. z ∈ fst ‘ set m =⇒ x ≤ z
unfolding monom-inv-def by (auto)

from n ′[unfolded id] have n: monom-inv n and q: q > 0 and y: y /∈ fst ‘ set
n

and yn:
∧

z. z ∈ fst ‘ set n =⇒ y ≤ z
unfolding monom-inv-def by (auto)

show ?thesis
proof (cases x = y)

case True
hence res: monom-mult-list ((x, p) # m) n ′ = (x, p + q) # monom-mult-list

m n
by (simp add: id)

from IH (1)[OF id refl True m n] have inv: monom-inv (monom-mult-list m
n) by simp

show ?thesis unfolding res using inv p x y True xm yn
by (fastforce simp add: monom-inv-def monom-list-mult-list-vars)

next
case False
show ?thesis
proof (cases x < y)

case True
hence res: monom-mult-list ((x, p) # m) n ′ = (x,p) # monom-mult-list m

n ′

by (auto simp add: id)
from IH (2)[OF id refl False True m n ′] have inv: monom-inv (monom-mult-list

m n ′) .
show ?thesis unfolding res using inv p x y True xm yn unfolding id

by (fastforce simp add: monom-inv-def monom-list-mult-list-vars)
next

case gt: False
with False have lt: y < x by auto
hence res: monom-mult-list ((x, p) # m) n ′ = (y,q) # monom-mult-list

((x, p) # m) n
using False by (auto simp add: id)

from lt have zm: z ≤ x =⇒ (z,b) /∈ set m for z b using xm[of z] x by force
from zm[of y] lt have ym: (y,b) /∈ set m for b by auto
from yn have yn ′: (a, b) ∈ set n =⇒ y ≤ a for a b by force

from IH (3)[OF id refl False gt xpm n] have inv: monom-inv (monom-mult-list
((x, p) # m) n) .

define xpm where xpm = ((x,p) # m)
have xpm ′: fst ‘ set xpm = insert x (fst ‘ set m) unfolding xpm-def by

536

auto
show ?thesis unfolding res using inv p q x y False gt ym lt xm yn ′ zm

xpm ′ unfolding id xpm-def [symmetric]
by (auto simp add: monom-inv-def monom-list-mult-list-vars)

qed
qed

qed
qed auto

lemma monom-inv-ConsD: monom-inv (x # xs) =⇒ monom-inv xs
by (auto simp: monom-inv-def)

lemma sum-var-list-monom-mult-list: sum-var-list (monom-mult-list m n) x =
sum-var-list m x + sum-var-list n x
proof (induct m n rule: monom-mult-list.induct)

case (2 x p m n)
thus ?case by (cases n; cases hd n, auto split: if-splits simp: sum-var-list-def)

qed (auto simp: sum-var-list-def)

lemma monom-mult-list-inj: assumes m: monom-inv m and m1 : monom-inv m1
and m2 : monom-inv m2

and eq: monom-mult-list m m1 = monom-mult-list m m2
shows m1 = m2

proof −
from eq sum-var-list-monom-mult-list[of m] show ?thesis

by (auto simp: eq-monom-sum-var-list[OF m1 m2] eq-monom-sum-var-list[OF
monom-mult-list-inv[OF m m1] monom-mult-list-inv[OF m m2]])
qed

lemma monom-mult-list[simp]: eval-monom-list α (monom-mult-list m n) = eval-monom-list
α m ∗ eval-monom-list α n

by (induct m n rule: monom-mult-list.induct, auto split: list.splits prod.splits
simp: field-simps power-add)
end

declare monom-mult-list.simps[simp del]

typedef (overloaded) ′v monom = Collect (monom-inv :: ′v :: linorder monom-list
⇒ bool)

by (rule exI [of - Nil], auto simp: monom-inv-def)

setup-lifting type-definition-monom

lift-definition eval-monom :: (′v :: linorder , ′a :: comm-semiring-1)assign ⇒ ′v
monom ⇒ ′a

is eval-monom-list .

lift-definition sum-var :: ′v :: linorder monom ⇒ ′v ⇒ nat is sum-var-list .

537

instantiation monom :: (linorder) comm-monoid-mult
begin

lift-definition times-monom :: ′a monom ⇒ ′a monom ⇒ ′a monom is monom-mult-list
using monom-mult-list-inv by auto

lift-definition one-monom :: ′a monom is Nil
by (auto simp: monom-inv-def)

instance
proof

fix a b c :: ′a monom
show a ∗ b ∗ c = a ∗ (b ∗ c)
by (transfer , auto simp: eq-monom-sum-var-list monom-mult-list-inv sum-var-list-monom-mult-list)

show a ∗ b = b ∗ a
by (transfer , auto simp: eq-monom-sum-var-list monom-mult-list-inv sum-var-list-monom-mult-list)

show 1 ∗ a = a
by (transfer , auto simp: eq-monom-sum-var-list monom-mult-list-inv sum-var-list-monom-mult-list

monom-mult-list.simps)
qed
end

lemma eq-monom-sum-var : m = n ←→ (∀ x. sum-var m x = sum-var n x)
by (transfer , auto simp: eq-monom-sum-var-list)

lemma eval-monom-mult[simp]: eval-monom α (m ∗ n) = eval-monom α m ∗
eval-monom α n

by (transfer , rule monom-mult-list)

lemma sum-var-monom-mult: sum-var (m ∗ n) x = sum-var m x + sum-var n x
by (transfer , rule sum-var-list-monom-mult-list)

lemma monom-mult-inj: fixes m1 :: - monom
shows m ∗ m1 = m ∗ m2 =⇒ m1 = m2
by (transfer , rule monom-mult-list-inj, auto)

lemma one-monom-inv-sum-var-inv[simp]: sum-var 1 x = 0
by (transfer , auto simp: sum-var-list-def)

lemma eval-monom-1 [simp]: eval-monom α 1 = 1
by (transfer , auto)

lift-definition var-monom :: ′v :: linorder ⇒ ′v monom is λ x. [(x,1)]
by (auto simp: monom-inv-def)

lemma var-monom-1 [simp]: var-monom x 6= 1
by (transfer , auto)

538

lemma eval-var-monom[simp]: eval-monom α (var-monom x) = α x
by (transfer , auto)

lemma sum-var-monom-var : sum-var (var-monom x) y = (if x = y then 1 else 0)
by (transfer , auto simp: sum-var-list-def)

instantiation monom :: ({equal,linorder})equal
begin

lift-definition equal-monom :: ′a monom ⇒ ′a monom ⇒ bool is (=) .

instance by (standard, transfer , auto)
end

Polynomials are represented with as sum of monomials multiplied by
some coefficient
type-synonym (′v, ′a)poly = (′v monom × ′a)list

The polynomials we construct satisfy the following invariants:

• all coefficients are non-zero

• the monomial list is distinct

definition poly-inv :: (′v, ′a :: zero)poly ⇒ bool
where poly-inv p ≡ (∀ c ∈ snd ‘ set p. c 6= 0) ∧ distinct (map fst p)

abbreviation eval-monomc where eval-monomc α mc ≡ eval-monom α (fst mc)
∗ (snd mc)

primrec eval-poly :: (′v :: linorder , ′a :: comm-semiring-1)assign ⇒ (′v, ′a)poly ⇒
′a where

eval-poly α [] = 0
| eval-poly α (mc # p) = eval-monomc α mc + eval-poly α p

definition poly-const :: ′a :: zero ⇒ (′v :: linorder , ′a)poly where
poly-const a = (if a = 0 then [] else [(1 ,a)])

lemma poly-const[simp]: eval-poly α (poly-const a) = a
unfolding poly-const-def by auto

lemma poly-const-inv: poly-inv (poly-const a)
unfolding poly-const-def poly-inv-def by auto

fun poly-add :: (′v, ′a)poly ⇒ (′v, ′a :: semiring-0)poly ⇒ (′v, ′a)poly where
poly-add [] q = q
| poly-add ((m,c) # p) q = (case List.extract (λ mc. fst mc = m) q of

None ⇒ (m,c) # poly-add p q

539

| Some (q1 ,(-,d),q2) ⇒ if (c+d = 0) then poly-add p (q1 @ q2) else (m,c+d) #
poly-add p (q1 @ q2))

lemma eval-poly-append[simp]: eval-poly α (mc1 @ mc2) = eval-poly α mc1 +
eval-poly α mc2

by (induct mc1 , auto simp: field-simps)

abbreviation poly-monoms :: (′v, ′a)poly ⇒ ′v monom set
where poly-monoms p ≡ fst ‘ set p

lemma poly-add-monoms: poly-monoms (poly-add p1 p2) ⊆ poly-monoms p1 ∪
poly-monoms p2
proof (induct p1 arbitrary: p2)

case (Cons mc p)
obtain m c where mc: mc = (m,c) by (cases mc, auto)
hence m: m ∈ poly-monoms (mc # p1) by auto
show ?case
proof (cases List.extract (λ nd. fst nd = m) p2)

case None
with Cons m show ?thesis by (auto simp: mc)

next
case (Some res)
obtain q1 md q2 where res: res = (q1 ,md,q2) by (cases res, auto)
from extract-SomeE [OF Some[simplified res]] res obtain d where q: p2 = q1

@ (m,d) # q2 and res: res = (q1 ,(m,d),q2) by (cases md, auto)
show ?thesis

by (simp add: mc Some res, rule subset-trans[OF Cons[of q1 @ q2]], auto
simp: q)

qed
qed simp

lemma poly-add-inv: poly-inv p =⇒ poly-inv q =⇒ poly-inv (poly-add p q)
proof (induct p arbitrary: q)

case (Cons mc p)
obtain m c where mc: mc = (m,c) by (cases mc, auto)
with Cons(2) have p: poly-inv p and c: c 6= 0 and mp: ∀ mm ∈ fst ‘ set p. (¬

mm = m) unfolding poly-inv-def by auto
show ?case
proof (cases List.extract (λ mc. fst mc = m) q)

case None
hence mq: ∀ mm ∈ fst ‘ set q. ¬ mm = m by (auto simp: extract-None-iff)
{

fix mm
assume mm ∈ fst ‘ set (poly-add p q)
then obtain dd where (mm,dd) ∈ set (poly-add p q) by auto
with poly-add-monoms have mm ∈ poly-monoms p ∨ mm ∈ poly-monoms q

by force
hence ¬ mm = m using mp mq by auto

540

} note main = this
show ?thesis using Cons(1)[OF p Cons(3)] unfolding poly-inv-def using

main by (auto simp add: None mc c)
next

case (Some res)
obtain q1 md q2 where res: res = (q1 ,md,q2) by (cases res, auto)
from extract-SomeE [OF Some[simplified res]] res obtain d where q: q = q1

@ (m,d) # q2 and res: res = (q1 ,(m,d),q2) by (cases md, auto)
from q Cons(3) have q1q2 : poly-inv (q1 @ q2) unfolding poly-inv-def by

auto
from Cons(1)[OF p q1q2] have main1 : poly-inv (poly-add p (q1 @ q2)) .
{

fix mm
assume mm ∈ fst ‘ set (poly-add p (q1 @ q2))
then obtain dd where (mm,dd) ∈ set (poly-add p (q1 @ q2)) by auto
with poly-add-monoms have mm ∈ poly-monoms p ∨ mm ∈ poly-monoms

(q1 @ q2) by force
hence mm 6= m
proof

assume mm ∈ poly-monoms p
thus ?thesis using mp by auto

next
assume member : mm ∈ poly-monoms (q1 @ q2)
from member have mm ∈ poly-monoms q1 ∨ mm ∈ poly-monoms q2 by

auto
thus mm 6= m
proof

assume mm ∈ poly-monoms q2
with Cons(3)[simplified q]
show ?thesis unfolding poly-inv-def by auto

next
assume mm ∈ poly-monoms q1
with Cons(3)[simplified q]
show ?thesis unfolding poly-inv-def by auto

qed
qed

} note main2 = this
show ?thesis using main1 [unfolded poly-inv-def] main2

by (auto simp: poly-inv-def mc Some res)
qed

qed simp

lemma poly-add[simp]: eval-poly α (poly-add p q) = eval-poly α p + eval-poly α q
proof (induct p arbitrary: q)

case (Cons mc p)
obtain m c where mc: mc = (m,c) by (cases mc, auto)
show ?case
proof (cases List.extract (λ mc. fst mc = m) q)

case None

541

show ?thesis by (simp add: Cons[of q] mc None field-simps)
next

case (Some res)
obtain q1 md q2 where res: res = (q1 ,md,q2) by (cases res, auto)
from extract-SomeE [OF Some[simplified res]] res obtain d where q: q = q1

@ (m,d) # q2 and res: res = (q1 ,(m,d),q2) by (cases md, auto)
{

fix x
assume c: c + d = 0
have c ∗ x + d ∗ x = (c + d) ∗ x by (auto simp: field-simps)
also have . . . = 0 ∗ x by (simp only: c)
finally have c ∗ x + d ∗ x = 0 by simp

} note id = this
show ?thesis

by (simp add: Cons[of q1 @ q2] mc Some res, simp only: q, simp add:
field-simps, auto simp: field-simps id)

qed
qed simp

declare poly-add.simps[simp del]

fun monom-mult-poly :: (′v :: linorder monom × ′a) ⇒ (′v, ′a :: semiring-0)poly
⇒ (′v, ′a)poly where

monom-mult-poly - [] = []
| monom-mult-poly (m,c) ((m ′,d) # p) = (if c ∗ d = 0 then monom-mult-poly
(m,c) p else (m ∗ m ′, c ∗ d) # monom-mult-poly (m,c) p)

lemma monom-mult-poly-inv: poly-inv p =⇒ poly-inv (monom-mult-poly (m,c) p)
proof (induct p)

case Nil thus ?case by (simp add: poly-inv-def)
next

case (Cons md p)
obtain m ′ d where md: md = (m ′,d) by (cases md, auto)
with Cons(2) have p: poly-inv p unfolding poly-inv-def by auto
from Cons(1)[OF p] have prod: poly-inv (monom-mult-poly (m,c) p) .
{

fix mm
assume mm ∈ fst ‘ set (monom-mult-poly (m,c) p)

and two: mm = m ∗ m ′

then obtain dd where one: (mm,dd) ∈ set (monom-mult-poly (m,c) p) by
auto

have poly-monoms (monom-mult-poly (m,c) p) ⊆ (∗) m ‘ poly-monoms p
proof (induct p, simp)

case (Cons md p)
thus ?case

by (cases md, auto)
qed
with one have mm ∈ (∗) m ‘ poly-monoms p by force
then obtain mmm where mmm: mmm ∈ poly-monoms p and mm: mm = m

542

∗ mmm by blast
from Cons(2)[simplified md] mmm have not1 : ¬ mmm = m ′ unfolding

poly-inv-def by auto
from mm two have m ∗ mmm = m ∗ m ′ by simp
from monom-mult-inj[OF this] not1
have False by simp

}
thus ?case

by (simp add: md prod, intro impI , auto simp: poly-inv-def prod[simplified
poly-inv-def])
qed

lemma monom-mult-poly[simp]: eval-poly α (monom-mult-poly mc p) = eval-monomc
α mc ∗ eval-poly α p
proof (cases mc)

case (Pair m c)
show ?thesis
proof (simp add: Pair , induct p)

case (Cons nd q)
obtain n d where nd: nd = (n,d) by (cases nd, auto)
show ?case
proof (cases c ∗ d = 0)

case False
thus ?thesis by (simp add: nd Cons field-simps)

next
case True
let ?l = c ∗ (d ∗ (eval-monom α m ∗ eval-monom α n))
have ?l = (c ∗ d) ∗ (eval-monom α m ∗ eval-monom α n)

by (simp only: field-simps)
also have . . . = 0 by (simp only: True, simp add: field-simps)
finally have l: ?l = 0 .
show ?thesis

by (simp add: nd Cons True, simp add: field-simps l)
qed

qed simp
qed

declare monom-mult-poly.simps[simp del]

definition poly-minus :: (′v :: linorder , ′a :: ring-1)poly ⇒ (′v, ′a)poly ⇒ (′v, ′a)poly
where

poly-minus f g = poly-add f (monom-mult-poly (1 ,−1) g)

lemma poly-minus[simp]: eval-poly α (poly-minus f g) = eval-poly α f − eval-poly
α g

unfolding poly-minus-def by simp

lemma poly-minus-inv: poly-inv f =⇒ poly-inv g =⇒ poly-inv (poly-minus f g)
unfolding poly-minus-def by (intro poly-add-inv monom-mult-poly-inv)

543

fun poly-mult :: (′v :: linorder , ′a :: semiring-0)poly ⇒ (′v, ′a)poly ⇒ (′v, ′a)poly
where

poly-mult [] q = []
| poly-mult (mc # p) q = poly-add (monom-mult-poly mc q) (poly-mult p q)

lemma poly-mult-inv: assumes p: poly-inv p and q: poly-inv q
shows poly-inv (poly-mult p q)

using p
proof (induct p)

case Nil thus ?case by (simp add: poly-inv-def)
next

case (Cons mc p)
obtain m c where mc: mc = (m,c) by (cases mc, auto)
with Cons(2) have p: poly-inv p unfolding poly-inv-def by auto
show ?case
by (simp add: mc, rule poly-add-inv[OF monom-mult-poly-inv[OF q] Cons(1)[OF

p]])
qed

lemma poly-mult[simp]: eval-poly α (poly-mult p q) = eval-poly α p ∗ eval-poly α
q

by (induct p, auto simp: field-simps)

declare poly-mult.simps[simp del]

definition zero-poly :: (′v, ′a)poly
where zero-poly ≡ []

lemma zero-poly-inv: poly-inv zero-poly unfolding zero-poly-def poly-inv-def by
auto

definition one-poly :: (′v :: linorder , ′a :: semiring-1)poly where
one-poly ≡ [(1 ,1)]

lemma one-poly-inv: poly-inv one-poly unfolding one-poly-def poly-inv-def monom-inv-def
by auto

lemma poly-one[simp]: eval-poly α one-poly = 1
unfolding one-poly-def by simp

lemma poly-zero-add: poly-add zero-poly p = p unfolding zero-poly-def using
poly-add.simps by auto

lemma poly-zero-mult: poly-mult zero-poly p = zero-poly unfolding zero-poly-def
using poly-mult.simps by auto

equality of polynomials
definition eq-poly :: (′v :: linorder , ′a :: comm-semiring-1)poly ⇒ (′v, ′a)poly ⇒

544

bool (infix ‹=p› 51)
where p =p q ≡ ∀ α. eval-poly α p = eval-poly α q

lemma poly-one-mult: poly-mult one-poly p =p p
unfolding eq-poly-def one-poly-def by simp

lemma eq-poly-refl[simp]: p =p p unfolding eq-poly-def by auto

lemma eq-poly-trans[trans]: [[p1 =p p2 ; p2 =p p3]] =⇒ p1 =p p3
unfolding eq-poly-def by auto

lemma poly-add-comm: poly-add p q =p poly-add q p unfolding eq-poly-def by
(auto simp: field-simps)

lemma poly-add-assoc: poly-add p1 (poly-add p2 p3) =p poly-add (poly-add p1 p2)
p3 unfolding eq-poly-def by (auto simp: field-simps)

lemma poly-mult-comm: poly-mult p q =p poly-mult q p unfolding eq-poly-def by
(auto simp: field-simps)

lemma poly-mult-assoc: poly-mult p1 (poly-mult p2 p3) =p poly-mult (poly-mult
p1 p2) p3 unfolding eq-poly-def by (auto simp: field-simps)

lemma poly-distrib: poly-mult p (poly-add q1 q2) =p poly-add (poly-mult p q1)
(poly-mult p q2) unfolding eq-poly-def by (auto simp: field-simps)

18.3 Computing normal forms of polynomials
fun

poly-of :: (′v :: linorder , ′a :: comm-semiring-1)tpoly ⇒ (′v, ′a)poly
where poly-of (PNum i) = (if i = 0 then [] else [(1 ,i)])
| poly-of (PVar x) = [(var-monom x,1)]
| poly-of (PSum []) = zero-poly
| poly-of (PSum (p # ps)) = (poly-add (poly-of p) (poly-of (PSum ps)))
| poly-of (PMult []) = one-poly
| poly-of (PMult (p # ps)) = (poly-mult (poly-of p) (poly-of (PMult ps)))

evaluation is preserved by poly_of
lemma poly-of : eval-poly α (poly-of p) = eval-tpoly α p
by (induct p rule: poly-of .induct, (simp add: zero-poly-def one-poly-def)+)

poly_of only generates polynomials that satisfy the invariant
lemma poly-of-inv: poly-inv (poly-of p)
by (induct p rule: poly-of .induct,

simp add: poly-inv-def monom-inv-def ,
simp add: poly-inv-def monom-inv-def ,
simp add: zero-poly-inv,
simp add: poly-add-inv,
simp add: one-poly-inv,
simp add: poly-mult-inv)

545

18.4 Powers and substitutions of polynomials
fun poly-power :: (′v :: linorder , ′a :: comm-semiring-1)poly ⇒ nat ⇒ (′v, ′a)poly
where

poly-power - 0 = one-poly
| poly-power p (Suc n) = poly-mult p (poly-power p n)

lemma poly-power [simp]: eval-poly α (poly-power p n) = (eval-poly α p) ^ n
by (induct n, auto simp: one-poly-def)

lemma poly-power-inv: assumes p: poly-inv p
shows poly-inv (poly-power p n)
by (induct n, simp add: one-poly-inv, simp add: poly-mult-inv[OF p])

declare poly-power .simps[simp del]

fun monom-list-subst :: (′v ⇒ (′w :: linorder , ′a :: comm-semiring-1)poly) ⇒ ′v
monom-list ⇒ (′w, ′a)poly where

monom-list-subst σ [] = one-poly
| monom-list-subst σ ((x,p) # m) = poly-mult (poly-power (σ x) p) (monom-list-subst
σ m)

lift-definition monom-list :: ′v :: linorder monom ⇒ ′v monom-list is λ x. x .

definition monom-subst :: (′v :: linorder ⇒ (′w :: linorder , ′a :: comm-semiring-1)poly)
⇒ ′v monom ⇒ (′w, ′a)poly where

monom-subst σ m = monom-list-subst σ (monom-list m)

lemma monom-list-subst-inv: assumes sub:
∧

x. poly-inv (σ x)
shows poly-inv (monom-list-subst σ m)

proof (induct m)
case Nil thus ?case by (simp add: one-poly-inv)

next
case (Cons xp m)
obtain x p where xp: xp = (x,p) by (cases xp, auto)
show ?case by (simp add: xp, rule poly-mult-inv[OF poly-power-inv[OF sub]

Cons])
qed

lemma monom-subst-inv: assumes sub:
∧

x. poly-inv (σ x)
shows poly-inv (monom-subst σ m)
unfolding monom-subst-def by (rule monom-list-subst-inv[OF sub])

lemma monom-subst[simp]: eval-poly α (monom-subst σ m) = eval-monom (λ v.
eval-poly α (σ v)) m

unfolding monom-subst-def
proof (transfer fixing: α σ, clarsimp)

fix m
show monom-inv m =⇒ eval-poly α (monom-list-subst σ m) = eval-monom-list

(λv. eval-poly α (σ v)) m

546

by (induct m, simp add: one-poly-def , auto simp: field-simps monom-inv-ConsD)
qed

fun poly-subst :: (′v :: linorder ⇒ (′w :: linorder , ′a :: comm-semiring-1)poly) ⇒
(′v, ′a)poly ⇒ (′w, ′a)poly where

poly-subst σ [] = zero-poly
| poly-subst σ ((m,c) # p) = poly-add (poly-mult [(1 ,c)] (monom-subst σ m))
(poly-subst σ p)

lemma poly-subst-inv: assumes sub:
∧

x. poly-inv (σ x) and p: poly-inv p
shows poly-inv (poly-subst σ p)

using p
proof (induct p)

case Nil thus ?case by (simp add: zero-poly-inv)
next

case (Cons mc p)
obtain m c where mc: mc = (m,c) by (cases mc, auto)
with Cons(2) have c: c 6= 0 and p: poly-inv p unfolding poly-inv-def by auto
from c have c: poly-inv [(1 ,c)] unfolding poly-inv-def monom-inv-def by auto
show ?case
by (simp add: mc, rule poly-add-inv[OF poly-mult-inv[OF c monom-subst-inv[OF

sub]] Cons(1)[OF p]])
qed

lemma poly-subst: eval-poly α (poly-subst σ p) = eval-poly (λ v. eval-poly α (σ v))
p

by (induct p, simp add: zero-poly-def , auto simp: field-simps)

lemma eval-poly-subst:
assumes eq:

∧
w. f w = eval-poly g (q w)

shows eval-poly f p = eval-poly g (poly-subst q p)
proof (induct p)

case Nil thus ?case by (simp add: zero-poly-def)
next

case (Cons mc p)
obtain m c where mc: mc = (m,c) by (cases mc, auto)
have id: eval-monom f m = eval-monom (λv. eval-poly g (q v)) m
proof (transfer fixing: f g q, clarsimp)

fix m
show eval-monom-list f m = eval-monom-list (λv. eval-poly g (q v)) m
proof (induct m)

case (Cons wp m)
obtain w p where wp: wp = (w,p) by (cases wp, auto)
show ?case

by (simp add: wp Cons eq)
qed simp

qed
show ?case

by (simp add: mc Cons id, simp add: field-simps)

547

qed

lift-definition monom-vars-list :: ′v :: linorder monom ⇒ ′v list is map fst .

lemma monom-vars-list-subst: assumes
∧

w. w ∈ set (monom-vars-list m) =⇒
f w = g w

shows monom-subst f m = monom-subst g m
unfolding monom-subst-def using assms

proof (transfer fixing: f g)
fix m :: ′a monom-list
assume eq:

∧
w. w ∈ set (map fst m) =⇒ f w = g w

thus monom-list-subst f m = monom-list-subst g m
proof (induct m)

case (Cons wn m)
hence rec: monom-list-subst f m = monom-list-subst g m and eq: f (fst wn) =

g (fst wn) by auto
show ?case
proof (cases wn)

case (Pair w n)
with eq rec show ?thesis by auto

qed
qed simp

qed

lemma eval-monom-vars-list: assumes
∧

x. x ∈ set (monom-vars-list xs) =⇒ α
x = β x

shows eval-monom α xs = eval-monom β xs using assms
proof (transfer fixing: α β)

fix xs :: ′a monom-list
assume eq:

∧
w. w ∈ set (map fst xs) =⇒ α w = β w

thus eval-monom-list α xs = eval-monom-list β xs
proof (induct xs)

case (Cons xi xs)
hence IH : eval-monom-list α xs = eval-monom-list β xs by auto
obtain x i where xi: xi = (x,i) by force
from Cons(2) xi have α x = β x by auto
with IH show ?case unfolding xi by auto

qed simp
qed

definition monom-vars where monom-vars m = set (monom-vars-list m)

lemma monom-vars-list-1 [simp]: monom-vars-list 1 = []
by transfer auto

lemma monom-vars-list-var-monom[simp]: monom-vars-list (var-monom x) = [x]

by transfer auto

548

lemma monom-vars-eval-monom:
(
∧

x. x ∈ monom-vars m =⇒ f x = g x) =⇒ eval-monom f m = eval-monom g
m

by (rule eval-monom-vars-list, auto simp: monom-vars-def)

definition poly-vars-list :: (′v :: linorder , ′a)poly ⇒ ′v list where
poly-vars-list p = remdups (concat (map (monom-vars-list o fst) p))

definition poly-vars :: (′v :: linorder , ′a)poly ⇒ ′v set where
poly-vars p = set (concat (map (monom-vars-list o fst) p))

lemma poly-vars-list[simp]: set (poly-vars-list p) = poly-vars p
unfolding poly-vars-list-def poly-vars-def by auto

lemma poly-vars: assumes eq:
∧

w. w ∈ poly-vars p =⇒ f w = g w
shows poly-subst f p = poly-subst g p

using eq
proof (induct p)

case (Cons mc p)
hence rec: poly-subst f p = poly-subst g p unfolding poly-vars-def by auto
show ?case
proof (cases mc)

case (Pair m c)
with Cons(2) have

∧
w. w ∈ set (monom-vars-list m) =⇒ f w = g w unfolding

poly-vars-def by auto
hence monom-subst f m = monom-subst g m

by (rule monom-vars-list-subst)
with rec Pair show ?thesis by auto

qed
qed simp

lemma poly-var : assumes pv: v /∈ poly-vars p and diff :
∧

w. v 6= w =⇒ f w =
g w

shows poly-subst f p = poly-subst g p
proof (rule poly-vars)

fix w
assume w ∈ poly-vars p
thus f w = g w using pv diff by (cases v = w, auto)

qed

lemma eval-poly-vars: assumes
∧

x. x ∈ poly-vars p =⇒ α x = β x
shows eval-poly α p = eval-poly β p

using assms
proof (induct p)

case Nil thus ?case by simp
next

549

case (Cons m p)
from Cons(2) have

∧
x. x ∈ poly-vars p =⇒ α x = β x unfolding poly-vars-def

by auto
from Cons(1)[OF this] have IH : eval-poly α p = eval-poly β p .
obtain xs c where m: m = (xs,c) by force
from Cons(2) have

∧
x. x ∈ set (monom-vars-list xs) =⇒ α x = β x unfolding

poly-vars-def m by auto
hence eval-monom α xs = eval-monom β xs

by (rule eval-monom-vars-list)
thus ?case unfolding eval-poly.simps IH m by auto

qed

declare poly-subst.simps[simp del]

18.5 Polynomial orders
definition pos-assign :: (′v, ′a :: ordered-semiring-0)assign ⇒ bool
where pos-assign α = (∀ x. α x ≥ 0)

definition poly-ge :: (′v :: linorder , ′a :: poly-carrier)poly ⇒ (′v, ′a)poly ⇒ bool
(infix ‹≥p› 51)
where p ≥p q = (∀ α. pos-assign α −→ eval-poly α p ≥ eval-poly α q)

lemma poly-ge-refl[simp]: p ≥p p
unfolding poly-ge-def using ge-refl by auto

lemma poly-ge-trans[trans]: [[p1 ≥p p2 ; p2 ≥p p3]] =⇒ p1 ≥p p3
unfolding poly-ge-def using ge-trans by blast

lemma pos-assign-monom-list: fixes α :: (′v :: linorder , ′a :: poly-carrier)assign
assumes pos: pos-assign α
shows eval-monom-list α m ≥ 0

proof (induct m)
case Nil thus ?case by (simp add: one-ge-zero)

next
case (Cons xp m)
show ?case
proof (cases xp)

case (Pair x p)
from pos[unfolded pos-assign-def] have ge: α x ≥ 0 by simp
have ge: α x ^ p ≥ 0
proof (induct p)

case 0 thus ?case by (simp add: one-ge-zero)
next

case (Suc p)
from ge-trans[OF times-left-mono[OF ge Suc] times-right-mono[OF ge-refl

ge]]

550

show ?case by (simp add: field-simps)
qed
from ge-trans[OF times-right-mono[OF Cons ge] times-left-mono[OF ge-refl

Cons]]
show ?thesis

by (simp add: Pair)
qed

qed

lemma pos-assign-monom: fixes α :: (′v :: linorder , ′a :: poly-carrier)assign
assumes pos: pos-assign α
shows eval-monom α m ≥ 0
by (transfer fixing: α, rule pos-assign-monom-list[OF pos])

lemma pos-assign-poly: assumes pos: pos-assign α
and p: p ≥p zero-poly
shows eval-poly α p ≥ 0

proof −
from p[unfolded poly-ge-def zero-poly-def] pos
show ?thesis by auto

qed

lemma poly-add-ge-mono: assumes p1 ≥p p2 shows poly-add p1 q ≥p poly-add
p2 q
using assms unfolding poly-ge-def by (auto simp: field-simps plus-left-mono)

lemma poly-mult-ge-mono: assumes p1 ≥p p2 and q ≥p zero-poly
shows poly-mult p1 q ≥p poly-mult p2 q

using assms unfolding poly-ge-def zero-poly-def by (auto simp: times-left-mono)

context poly-order-carrier
begin

definition poly-gt :: (′v :: linorder , ′a)poly ⇒ (′v, ′a)poly ⇒ bool (infix ‹>p› 51)
where p >p q = (∀ α. pos-assign α −→ eval-poly α p � eval-poly α q)

lemma poly-gt-imp-poly-ge: p >p q =⇒ p ≥p q unfolding poly-ge-def poly-gt-def
using gt-imp-ge by blast

abbreviation poly-GT :: (′v :: linorder , ′a)poly rel
where poly-GT ≡ {(p,q) | p q. p >p q ∧ q ≥p zero-poly}

lemma poly-compat: [[p1 ≥p p2 ; p2 >p p3]] =⇒ p1 >p p3
unfolding poly-ge-def poly-gt-def using compat by blast

lemma poly-compat2 : [[p1 >p p2 ; p2 ≥p p3]] =⇒ p1 >p p3
unfolding poly-ge-def poly-gt-def using compat2 by blast

551

lemma poly-gt-trans[trans]: [[p1 >p p2 ; p2 >p p3]] =⇒ p1 >p p3
unfolding poly-gt-def using gt-trans by blast

lemma poly-GT-SN : SN poly-GT
proof

fix f :: nat ⇒ (′c :: linorder , ′a)poly
assume f : ∀ i. (f i, f (Suc i)) ∈ poly-GT
have pos: pos-assign ((λ x. 0) :: (′v, ′a)assign) (is pos-assign ?ass) unfolding

pos-assign-def using ge-refl by auto
obtain g where g:

∧
i. g i = eval-poly ?ass (f i) by auto

from f pos have ∀ i. g (Suc i) ≥ 0 ∧ g i � g (Suc i) unfolding poly-gt-def g
using pos-assign-poly by auto

with SN show False unfolding SN-defs by blast
qed
end

monotonicity of polynomials
lemma eval-monom-list-mono: assumes fg:

∧
x. (f :: (′v :: linorder , ′a :: poly-carrier)assign)

x ≥ g x
and g:

∧
x. g x ≥ 0

shows eval-monom-list f m ≥ eval-monom-list g m eval-monom-list g m ≥ 0
proof (atomize(full), induct m)

case Nil show ?case using one-ge-zero by (auto simp: ge-refl)
next

case (Cons xd m)
hence IH1 : eval-monom-list f m ≥ eval-monom-list g m and IH2 : eval-monom-list

g m ≥ 0 by auto
obtain x d where xd: xd = (x,d) by force
from pow-mono[OF fg g, of x d] have fgd: f x ^ d ≥ g x ^ d and gd: g x ^ d ≥

0 by auto
show ?case unfolding xd eval-monom-list.simps
proof (rule conjI , rule ge-trans[OF times-left-mono[OF pow-ge-zero IH1] times-right-mono[OF

IH2 fgd]])
show f x ≥ 0 by (rule ge-trans[OF fg g])
show eval-monom-list g m ∗ g x ^ d ≥ 0

by (rule mult-ge-zero[OF IH2 gd])
qed

qed

lemma eval-monom-mono: assumes fg:
∧

x. (f :: (′v :: linorder , ′a :: poly-carrier)assign)
x ≥ g x

and g:
∧

x. g x ≥ 0
shows eval-monom f m ≥ eval-monom g m eval-monom g m ≥ 0

by (atomize(full), transfer fixing: f g, insert eval-monom-list-mono[of g f , OF fg
g], auto)

definition poly-weak-mono-all :: (′v :: linorder , ′a :: poly-carrier)poly ⇒ bool where

552

poly-weak-mono-all p ≡ ∀ (α :: (′v, ′a)assign) β. (∀ x. α x ≥ β x)
−→ pos-assign β −→ eval-poly α p ≥ eval-poly β p

lemma poly-weak-mono-all-E : assumes p: poly-weak-mono-all p and
ge:

∧
x. f x ≥p g x ∧ g x ≥p zero-poly

shows poly-subst f p ≥p poly-subst g p
unfolding poly-ge-def poly-subst

proof (intro allI impI , rule p[unfolded poly-weak-mono-all-def , rule-format])
fix α :: (′c, ′b)assign and x
show pos-assign α =⇒ eval-poly α (f x) ≥ eval-poly α (g x) using ge[of x]

unfolding poly-ge-def by auto
next

fix α :: (′c, ′b)assign
assume alpha: pos-assign α
show pos-assign (λv. eval-poly α (g v))

unfolding pos-assign-def
proof

fix x
show eval-poly α (g x) ≥ 0
using ge[of x] unfolding poly-ge-def zero-poly-def using alpha by auto

qed
qed

definition poly-weak-mono :: (′v :: linorder , ′a :: poly-carrier)poly ⇒ ′v ⇒ bool
where

poly-weak-mono p v ≡ ∀ (α :: (′v, ′a)assign) β. (∀ x. v 6= x −→ α x = β x) −→
pos-assign β −→ α v ≥ β v −→ eval-poly α p ≥ eval-poly β p

lemma poly-weak-mono-E : assumes p: poly-weak-mono p v
and fgw:

∧
w. v 6= w =⇒ f w = g w

and g:
∧

w. g w ≥p zero-poly
and fgv: f v ≥p g v
shows poly-subst f p ≥p poly-subst g p
unfolding poly-ge-def poly-subst

proof (intro allI impI , rule p[unfolded poly-weak-mono-def , rule-format])
fix α :: (′c, ′b)assign
show pos-assign α =⇒ eval-poly α (f v) ≥ eval-poly α (g v) using fgv unfolding

poly-ge-def by auto
next

fix α :: (′c, ′b)assign
assume alpha: pos-assign α
show pos-assign (λv. eval-poly α (g v))

unfolding pos-assign-def
proof

fix x
show eval-poly α (g x) ≥ 0
using g[of x] unfolding poly-ge-def zero-poly-def using alpha by auto

qed

553

next
fix α :: (′c, ′b)assign and x
assume v: v 6= x
show pos-assign α =⇒ eval-poly α (f x) = eval-poly α (g x) using fgw[OF v]

unfolding poly-ge-def by auto
qed

definition poly-weak-anti-mono :: (′v :: linorder , ′a :: poly-carrier)poly ⇒ ′v ⇒ bool
where

poly-weak-anti-mono p v ≡ ∀ (α :: (′v, ′a)assign) β. (∀ x. v 6= x −→ α x = β x)
−→ pos-assign β −→ α v ≥ β v −→ eval-poly β p ≥ eval-poly α p

lemma poly-weak-anti-mono-E : assumes p: poly-weak-anti-mono p v
and fgw:

∧
w. v 6= w =⇒ f w = g w

and g:
∧

w. g w ≥p zero-poly
and fgv: f v ≥p g v
shows poly-subst g p ≥p poly-subst f p
unfolding poly-ge-def poly-subst

proof (intro allI impI , rule p[unfolded poly-weak-anti-mono-def , rule-format])
fix α :: (′c, ′b)assign
show pos-assign α =⇒ eval-poly α (f v) ≥ eval-poly α (g v) using fgv unfolding

poly-ge-def by auto
next

fix α :: (′c, ′b)assign
assume alpha: pos-assign α
show pos-assign (λv. eval-poly α (g v))

unfolding pos-assign-def
proof

fix x
show eval-poly α (g x) ≥ 0
using g[of x] unfolding poly-ge-def zero-poly-def using alpha by auto

qed
next

fix α :: (′c, ′b)assign and x
assume v: v 6= x
show pos-assign α =⇒ eval-poly α (f x) = eval-poly α (g x) using fgw[OF v]

unfolding poly-ge-def by auto
qed

lemma poly-weak-mono: fixes p :: (′v :: linorder , ′a :: poly-carrier)poly
assumes mono:

∧
v. v ∈ poly-vars p =⇒ poly-weak-mono p v

shows poly-weak-mono-all p
unfolding poly-weak-mono-all-def
proof (intro allI impI)

fix α β :: (′v, ′a)assign
assume all: ∀ x. α x ≥ β x
assume pos: pos-assign β
let ?ab = λ vs v. if (v ∈ set vs) then α v else β v
{

554

fix vs :: ′v list
assume set vs ⊆ poly-vars p
hence eval-poly (?ab vs) p ≥ eval-poly β p
proof (induct vs)

case Nil show ?case by (simp add: ge-refl)
next

case (Cons v vs)
hence subset: set vs ⊆ poly-vars p and v: v ∈ poly-vars p by auto
show ?case

proof (rule ge-trans[OF mono[OF v, unfolded poly-weak-mono-def , rule-format]
Cons(1)[OF subset]])

show pos-assign (?ab vs) unfolding pos-assign-def
proof

fix x
from pos[unfolded pos-assign-def] have beta: β x ≥ 0 by simp
from ge-trans[OF all[rule-format] this] have alpha: α x ≥ 0 .
from alpha beta show ?ab vs x ≥ 0 by auto

qed
show (?ab (v # vs) v) ≥ (?ab vs v) using all ge-refl by auto

next
fix x
assume v 6= x
thus (?ab (v # vs) x) = (?ab vs x) by simp

qed
qed

}
from this[of poly-vars-list p, unfolded poly-vars-list]
have eval-poly (λv. if v ∈ poly-vars p then α v else β v) p ≥ eval-poly β p by

auto
also have eval-poly (λv. if v ∈ poly-vars p then α v else β v) p = eval-poly α p

by (rule eval-poly-vars, auto)
finally
show eval-poly α p ≥ eval-poly β p .

qed

lemma poly-weak-mono-all: fixes p :: (′v :: linorder , ′a :: poly-carrier)poly
assumes p: poly-weak-mono-all p
shows poly-weak-mono p v

unfolding poly-weak-mono-def
proof (intro allI impI)

fix α β :: (′v, ′a)assign
assume all: ∀ x. v 6= x −→ α x = β x
assume pos: pos-assign β
assume v: α v ≥ β v
show eval-poly α p ≥ eval-poly β p
proof (rule p[unfolded poly-weak-mono-all-def , rule-format, OF - pos])

fix x
show α x ≥ β x
using v all ge-refl[of β x] by auto

555

qed
qed

lemma poly-weak-mono-all-pos:
fixes p :: (′v :: linorder , ′a :: poly-carrier)poly
assumes pos-at-zero: eval-poly (λ w. 0) p ≥ 0
and mono: poly-weak-mono-all p
shows p ≥p zero-poly

unfolding poly-ge-def zero-poly-def
proof (intro allI impI , simp)

fix α :: (′v, ′a)assign
assume pos: pos-assign α
show eval-poly α p ≥ 0
proof −

let ?id = λ w. poly-of (PVar w)
let ?z = λ w. zero-poly
have poly-subst ?id p ≥p poly-subst ?z p

by (rule poly-weak-mono-all-E [OF mono],
simp, simp add: poly-ge-def zero-poly-def pos-assign-def)

hence eval-poly α (poly-subst ?id p) ≥ eval-poly α (poly-subst ?z p) (is - ≥
?res)

unfolding poly-ge-def using pos by simp
also have ?res = eval-poly (λ w. 0) p by (simp add: poly-subst zero-poly-def)
also have . . . ≥ 0 by (rule pos-at-zero)
finally show ?thesis by (simp add: poly-subst)

qed
qed

context poly-order-carrier
begin

definition poly-strict-mono :: (′v :: linorder , ′a)poly ⇒ ′v ⇒ bool where
poly-strict-mono p v ≡ ∀ (α :: (′v, ′a)assign) β. (∀ x. (v 6= x −→ α x = β x))
−→ pos-assign β −→ α v � β v −→ eval-poly α p � eval-poly β p

lemma poly-strict-mono-E : assumes p: poly-strict-mono p v
and fgw:

∧
w. v 6= w =⇒ f w = g w

and g:
∧

w. g w ≥p zero-poly
and fgv: f v >p g v
shows poly-subst f p >p poly-subst g p
unfolding poly-gt-def poly-subst

proof (intro allI impI , rule p[unfolded poly-strict-mono-def , rule-format])
fix α :: (′c, ′a)assign
show pos-assign α =⇒ eval-poly α (f v) � eval-poly α (g v) using fgv unfolding

poly-gt-def by auto
next

fix α :: (′c, ′a)assign
assume alpha: pos-assign α
show pos-assign (λv. eval-poly α (g v))

556

unfolding pos-assign-def
proof

fix x
show eval-poly α (g x) ≥ 0
using g[of x] unfolding poly-ge-def zero-poly-def using alpha by auto

qed
next

fix α :: (′c, ′a)assign and x
assume v: v 6= x
show pos-assign α =⇒ eval-poly α (f x) = eval-poly α (g x) using fgw[OF v]

unfolding poly-ge-def by auto
qed

lemma poly-add-gt-mono: assumes p1 >p p2 shows poly-add p1 q >p poly-add
p2 q
using assms unfolding poly-gt-def by (auto simp: field-simps plus-gt-left-mono)

lemma poly-mult-gt-mono:
fixes q :: (′v :: linorder , ′a)poly
assumes gt: p1 >p p2 and mono: q ≥p one-poly
shows poly-mult p1 q >p poly-mult p2 q

proof (unfold poly-gt-def , intro impI allI)
fix α :: (′v, ′a)assign
assume p: pos-assign α
with gt have gt: eval-poly α p1 � eval-poly α p2 unfolding poly-gt-def by simp
from mono p have one: eval-poly α q ≥ 1 unfolding poly-ge-def one-poly-def

by auto
show eval-poly α (poly-mult p1 q) � eval-poly α (poly-mult p2 q)

using times-gt-mono[OF gt one] by simp
qed
end

18.6 Degree of polynomials
definition monom-list-degree :: ′v monom-list ⇒ nat where

monom-list-degree xps ≡ sum-list (map snd xps)

lift-definition monom-degree :: ′v :: linorder monom ⇒ nat is monom-list-degree
.

definition poly-degree :: (-, ′a) poly ⇒ nat where
poly-degree p ≡ max-list (map (λ (m,c). monom-degree m) p)

definition poly-coeff-sum :: (′v, ′a :: ordered-ab-semigroup) poly ⇒ ′a where
poly-coeff-sum p ≡ sum-list (map (λ mc. max 0 (snd mc)) p)

lemma monom-list-degree: eval-monom-list (λ -. x) m = x ^ monom-list-degree m
unfolding monom-list-degree-def

proof (induct m)

557

case Nil show ?case by simp
next

case (Cons mc m)
thus ?case by (cases mc, auto simp: power-add field-simps)

qed

lemma monom-list-var-monom[simp]: monom-list (var-monom x) = [(x,1)]
by (transfer , simp)

lemma monom-list-1 [simp]: monom-list 1 = []
by (transfer , simp)

lemma monom-degree: eval-monom (λ -. x) m = x ^ monom-degree m
by (transfer , rule monom-list-degree)

lemma poly-coeff-sum: poly-coeff-sum p ≥ 0
unfolding poly-coeff-sum-def

proof (induct p)
case Nil show ?case by (simp add: ge-refl)

next
case (Cons mc p)
have (

∑
mc←mc # p. max 0 (snd mc)) = max 0 (snd mc) + (

∑
mc←p. max

0 (snd mc)) by auto
also have . . . ≥ 0 + 0

by (rule ge-trans[OF plus-left-mono plus-right-mono[OF Cons]], auto)
finally show ?case by simp

qed

lemma poly-degree: assumes x: x ≥ (1 :: ′a :: poly-carrier)
shows poly-coeff-sum p ∗ (x ^ poly-degree p) ≥ eval-poly (λ -. x) p

proof (induct p)
case Nil show ?case by (simp add: ge-refl poly-degree-def poly-coeff-sum-def)

next
case (Cons mc p)
obtain m c where mc: mc = (m,c) by force
from ge-trans[OF x one-ge-zero] have x0 : x ≥ 0 .
have id1 : eval-poly (λ-. x) (mc # p) = x ^ monom-degree m ∗ c + eval-poly

(λ-. x) p unfolding mc by (simp add: monom-degree)
have id2 : poly-coeff-sum (mc # p) ∗ x ^ poly-degree (mc # p) =

x ^ max (monom-degree m) (poly-degree p) ∗ (max 0 c) + poly-coeff-sum p ∗ x
^ max (monom-degree m) (poly-degree p)

unfolding poly-coeff-sum-def poly-degree-def by (simp add: mc field-simps)
show poly-coeff-sum (mc # p) ∗ x ^ poly-degree (mc # p) ≥ eval-poly (λ-. x)

(mc # p)
unfolding id1 id2

proof (rule ge-trans[OF plus-left-mono plus-right-mono])
show x ^ max (monom-degree m) (poly-degree p) ∗ max 0 c ≥ x ^ monom-degree

m ∗ c
by (rule ge-trans[OF times-left-mono[OF - pow-mono-exp] times-right-mono[OF

558

pow-ge-zero]], insert x x0 , auto)
show poly-coeff-sum p ∗ x ^ max (monom-degree m) (poly-degree p) ≥ eval-poly

(λ-. x) p
by (rule ge-trans[OF times-right-mono[OF poly-coeff-sum pow-mono-exp[OF

x]] Cons], auto)
qed

qed

lemma poly-degree-bound: assumes x: x ≥ (1 :: ′a :: poly-carrier)
and c: c ≥ poly-coeff-sum p
and d: d ≥ poly-degree p
shows c ∗ (x ^ d) ≥ eval-poly (λ -. x) p
by (rule ge-trans[OF ge-trans[OF

times-left-mono[OF pow-ge-zero[OF ge-trans[OF x one-ge-zero]] c]
times-right-mono[OF poly-coeff-sum pow-mono-exp[OF x d]]] poly-degree[OF x]])

18.7 Executable and sufficient criteria to compare polyno-
mials and ensure monotonicity

poly_split extracts the coefficient for a given monomial and returns addi-
tionally the remaining polynomial
definition poly-split :: (′v monom) ⇒ (′v, ′a :: zero)poly ⇒ ′a × (′v, ′a)poly

where poly-split m p ≡ case List.extract (λ (n,-). m = n) p of None ⇒ (0 ,p) |
Some (p1 ,(-,c),p2) ⇒ (c, p1 @ p2)

lemma poly-split: assumes poly-split m p = (c,q)
shows p =p (m,c) # q

proof (cases List.extract (λ (n,-). m = n) p)
case None
with assms have (c,q) = (0 ,p) unfolding poly-split-def by auto
thus ?thesis unfolding eq-poly-def by auto

next
case (Some res)
obtain p1 mc p2 where res = (p1 ,mc,p2) by (cases res, auto)
with extract-SomeE [OF Some[simplified this]] obtain a where p: p = p1 @

(m,a) # p2 and res: res = (p1 ,(m,a),p2) by (cases mc, auto)
from Some res assms have c: c = a and q: q = p1 @ p2 unfolding poly-split-def

by auto
show ?thesis unfolding eq-poly-def by (simp add: p c q field-simps)

qed

lemma poly-split-eval: assumes poly-split m p = (c,q)
shows eval-poly α p = (eval-monom α m ∗ c) + eval-poly α q

using poly-split[OF assms] unfolding eq-poly-def by auto

fun check-poly-eq :: (′v, ′a :: semiring-0)poly ⇒ (′v, ′a)poly ⇒ bool where
check-poly-eq [] q = (q = [])
| check-poly-eq ((m,c) # p) q = (case List.extract (λ nd. fst nd = m) q of

559

None ⇒ False
| Some (q1 ,(-,d),q2) ⇒ c = d ∧ check-poly-eq p (q1 @ q2))

lemma check-poly-eq: fixes p :: (′v :: linorder , ′a :: poly-carrier)poly
assumes chk: check-poly-eq p q
shows p =p q unfolding eq-poly-def

proof
fix α
from chk show eval-poly α p = eval-poly α q
proof (induct p arbitrary: q)

case Nil
thus ?case by auto

next
case (Cons mc p)
obtain m c where mc: mc = (m,c) by (cases mc, auto)
show ?case
proof (cases List.extract (λ mc. fst mc = m) q)

case None
with Cons(2) show ?thesis unfolding mc by simp

next
case (Some res)
obtain q1 md q2 where res = (q1 ,md,q2) by (cases res, auto)
with extract-SomeE [OF Some[simplified this]] obtain d where q: q = q1 @

(m,d) # q2 and res: res = (q1 ,(m,d),q2)
by (cases md, auto)

from Cons(2) Some mc res have rec: check-poly-eq p (q1 @ q2) and c: c =
d by auto

from Cons(1)[OF rec] have p: eval-poly α p = eval-poly α (q1 @ q2) .
show ?thesis unfolding mc eval-poly.simps c p q by (simp add: ac-simps)

qed
qed

qed

declare check-poly-eq.simps[simp del]

fun check-poly-ge :: (′v, ′a :: ordered-semiring-0)poly ⇒ (′v, ′a)poly ⇒ bool where
check-poly-ge [] q = list-all (λ (-,d). 0 ≥ d) q
| check-poly-ge ((m,c) # p) q = (case List.extract (λ nd. fst nd = m) q of

None ⇒ c ≥ 0 ∧ check-poly-ge p q
| Some (q1 ,(-,d),q2) ⇒ c ≥ d ∧ check-poly-ge p (q1 @ q2))

lemma check-poly-ge: fixes p :: (′v :: linorder , ′a :: poly-carrier)poly
shows check-poly-ge p q =⇒ p ≥p q

proof (induct p arbitrary: q)
case Nil
hence ∀ (n,d) ∈ set q. 0 ≥ d using list-all-iff [of - q] by auto
hence [] ≥p q
proof (induct q)

560

case Nil thus ?case by (simp)
next

case (Cons nd q)
hence rec: [] ≥p q by simp
show ?case
proof (cases nd)

case (Pair n d)
with Cons have ge: 0 ≥ d by auto
show ?thesis
proof (simp only: Pair , unfold poly-ge-def , intro allI impI)

fix α :: (′v, ′a)assign
assume pos: pos-assign α
have ge: 0 ≥ eval-monom α n ∗ d

using times-right-mono[OF pos-assign-monom[OF pos, of n] ge] by simp
from rec[unfolded poly-ge-def] pos have ge2 : 0 ≥ eval-poly α q by auto

show eval-poly α [] ≥ eval-poly α ((n,d) # q) using ge-trans[OF plus-left-mono[OF
ge] plus-right-mono[OF ge2]]

by simp
qed

qed
qed
thus ?case by simp

next
case (Cons mc p)
obtain m c where mc: mc = (m,c) by (cases mc, auto)
show ?case
proof (cases List.extract (λ mc. fst mc = m) q)

case None
with Cons(2) have rec: check-poly-ge p q and c: c ≥ 0 using mc by auto
from Cons(1)[OF rec] have rec: p ≥p q .
show ?thesis
proof (simp only: mc, unfold poly-ge-def , intro allI impI)

fix α :: (′v, ′a)assign
assume pos: pos-assign α
have ge: eval-monom α m ∗ c ≥ 0

using times-right-mono[OF pos-assign-monom[OF pos, of m] c] by simp
from rec have pq: eval-poly α p ≥ eval-poly α q unfolding poly-ge-def using

pos by auto
show eval-poly α ((m,c) # p) ≥ eval-poly α q

using ge-trans[OF plus-left-mono[OF ge] plus-right-mono[OF pq]] by simp
qed

next
case (Some res)
obtain q1 md q2 where res = (q1 ,md,q2) by (cases res, auto)
with extract-SomeE [OF Some[simplified this]] obtain d where q: q = q1 @

(m,d) # q2 and res: res = (q1 ,(m,d),q2)
by (cases md, auto)

from Cons(2) Some mc res have rec: check-poly-ge p (q1 @ q2) and c: c ≥ d
by auto

561

from Cons(1)[OF rec] have p: p ≥p q1 @ q2 .
show ?thesis
proof (simp only: mc, unfold poly-ge-def , intro allI impI)

fix α :: (′v, ′a)assign
assume pos: pos-assign α
have ge: eval-monom α m ∗ c ≥ eval-monom α m ∗ d

using times-right-mono[OF pos-assign-monom[OF pos, of m] c]
by simp

from p have ge2 : eval-poly α p ≥ eval-poly α (q1 @ q2) unfolding poly-ge-def
using pos by auto

show eval-poly α ((m,c) # p) ≥ eval-poly α q using ge-trans[OF plus-left-mono[OF
ge] plus-right-mono[OF ge2]]

by (simp add: q field-simps)
qed

qed
qed

declare check-poly-ge.simps[simp del]

definition check-poly-weak-mono-all :: (′v, ′a :: ordered-semiring-0)poly ⇒ bool
where check-poly-weak-mono-all p ≡ list-all (λ (m,c). c ≥ 0) p

lemma check-poly-weak-mono-all: fixes p :: (′v :: linorder , ′a :: poly-carrier)poly
assumes check-poly-weak-mono-all p shows poly-weak-mono-all p

unfolding poly-weak-mono-all-def
proof (intro allI impI)

fix f g :: (′v, ′a)assign
assume fg: ∀ x. f x ≥ g x
and pos: pos-assign g
hence fg:

∧
x. f x ≥ g x by auto

from pos[unfolded pos-assign-def] have g:
∧

x. g x ≥ 0 ..
from assms have

∧
m c. (m,c) ∈ set p =⇒ c ≥ 0 unfolding check-poly-weak-mono-all-def

by (auto simp: list-all-iff)
thus eval-poly f p ≥ eval-poly g p
proof (induct p)

case Nil thus ?case by (simp add: ge-refl)
next

case (Cons mc p)
hence IH : eval-poly f p ≥ eval-poly g p by auto
show ?case
proof (cases mc)

case (Pair m c)
with Cons have c: c ≥ 0 by auto
show ?thesis unfolding Pair eval-poly.simps fst-conv snd-conv

proof (rule ge-trans[OF plus-left-mono[OF times-left-mono[OF c]] plus-right-mono[OF
IH]])

show eval-monom f m ≥ eval-monom g m
by (rule eval-monom-mono(1)[OF fg g])

qed

562

qed
qed

qed

lemma check-poly-weak-mono-all-pos:
assumes check-poly-weak-mono-all p shows p ≥p zero-poly

unfolding zero-poly-def
proof (rule check-poly-ge)
from assms have

∧
m c. (m,c) ∈ set p =⇒ c ≥ 0 unfolding check-poly-weak-mono-all-def

by (auto simp: list-all-iff)
thus check-poly-ge p []
by (induct p, simp add: check-poly-ge.simps, clarify, auto simp: check-poly-ge.simps

extract-Nil-code)
qed

better check for weak monotonicity for discrete carriers: p is monotone
in v if p(. . . v + 1 . . .) ≥ p(. . . v . . .)

definition check-poly-weak-mono-discrete :: (′v :: linorder , ′a :: poly-carrier)poly ⇒
′v ⇒ bool
where check-poly-weak-mono-discrete p v ≡ check-poly-ge (poly-subst (λ w. poly-of

(if w = v then PSum [PNum 1 , PVar v] else PVar w)) p) p

definition check-poly-weak-mono-and-pos :: bool ⇒ (′v :: linorder , ′a :: poly-carrier)poly
⇒ bool

where check-poly-weak-mono-and-pos discrete p ≡
if discrete then list-all (λ v. check-poly-weak-mono-discrete p v)

(poly-vars-list p) ∧ eval-poly (λ w. 0) p ≥ 0
else check-poly-weak-mono-all p

definition check-poly-weak-anti-mono-discrete :: (′v :: linorder , ′a :: poly-carrier)poly
⇒ ′v ⇒ bool

where check-poly-weak-anti-mono-discrete p v ≡ check-poly-ge p (poly-subst (λ
w. poly-of (if w = v then PSum [PNum 1 , PVar v] else PVar w)) p)

context poly-order-carrier
begin

lemma check-poly-weak-mono-discrete:
fixes v :: ′v :: linorder and p :: (′v, ′a)poly
assumes discrete and check: check-poly-weak-mono-discrete p v
shows poly-weak-mono p v

unfolding poly-weak-mono-def
proof (intro allI impI)

fix f g :: (′v, ′a)assign
assume fgw: ∀ w. (v 6= w −→ f w = g w)
and gass: pos-assign g
and v: f v ≥ g v
from fgw have w:

∧
w. v 6= w =⇒ f w = g w by auto

from assms check-poly-ge have ge: poly-ge (poly-subst (λ w. poly-of (if w = v

563

then PSum [PNum 1 , PVar v] else PVar w)) p) p (is poly-ge ?p1 p) unfolding
check-poly-weak-mono-discrete-def by blast

from discrete[OF ‹discrete› v] obtain k ′ where id: f v = (((+) 1)^^k ′) (g v)
by auto

show eval-poly f p ≥ eval-poly g p
proof (cases k ′)

case 0
{

fix x
have f x = g x using id 0 w by (cases x = v, auto)

}
hence f = g ..
thus ?thesis using ge-refl by simp

next
case (Suc k)
with id have f v = (((+) 1)^^(Suc k)) (g v) by simp
with w gass show eval-poly f p ≥ eval-poly g p
proof (induct k arbitrary: f g rule: less-induct)

case (less k)
show ?case
proof (cases k)

case 0
with less have id0 : f v = 1 + g v by simp
have id1 : eval-poly f p = eval-poly g ?p1
proof (rule eval-poly-subst)

fix w
show f w = eval-poly g (poly-of (if w = v then PSum [PNum 1 , PVar v]

else PVar w))
proof (cases w = v)

case True
show ?thesis by (simp add: True id0 zero-poly-def)

next
case False
with less have f w = g w by simp
thus ?thesis by (simp add: False)

qed
qed
have eval-poly g ?p1 ≥ eval-poly g p using ge less unfolding poly-ge-def

by simp
with id1 show ?thesis by simp

next
case (Suc kk)
obtain g ′ where g ′: g ′ = (λ w. if (w = v) then 1 + g w else g w) by auto
have (1 :: ′a) + g v ≥ 1 + 0

by (rule plus-right-mono, simp add: less(3)[unfolded pos-assign-def])
also have 1 + (0 :: ′a) = 1 by simp
also have . . . ≥ 0 by (rule one-ge-zero)
finally have g ′pos: pos-assign g ′ using less(3) unfolding pos-assign-def

by (simp add: g ′)

564

{
fix w
assume v 6= w
hence f w = g ′ w

unfolding g ′ by (simp add: less)
} note w = this
have eq: f v = ((+) (1 :: ′a) ^^ Suc kk) ((g ′ v))

by (simp add: less(4) g ′ Suc, rule arg-cong[where f = (+) 1], induct kk,
auto)

from Suc have kk: kk < k by simp
from less(1)[OF kk w g ′pos] eq
have rec1 : eval-poly f p ≥ eval-poly g ′ p by simp
{

fix w
assume v 6= w
hence g ′ w = g w

unfolding g ′ by simp
} note w = this
from Suc have z: 0 < k by simp
from less(1)[OF z w less(3)] g ′

have rec2 : eval-poly g ′ p ≥ eval-poly g p by simp
show ?thesis by (rule ge-trans[OF rec1 rec2])

qed
qed

qed
qed

lemma check-poly-weak-anti-mono-discrete:
fixes v :: ′v :: linorder and p :: (′v, ′a)poly
assumes discrete and check: check-poly-weak-anti-mono-discrete p v
shows poly-weak-anti-mono p v

unfolding poly-weak-anti-mono-def
proof (intro allI impI)

fix f g :: (′v, ′a)assign
assume fgw: ∀ w. (v 6= w −→ f w = g w)
and gass: pos-assign g
and v: f v ≥ g v
from fgw have w:

∧
w. v 6= w =⇒ f w = g w by auto

from assms check-poly-ge have ge: poly-ge p (poly-subst (λ w. poly-of (if w =
v then PSum [PNum 1 , PVar v] else PVar w)) p) (is poly-ge p ?p1) unfolding
check-poly-weak-anti-mono-discrete-def by blast

from discrete[OF ‹discrete› v] obtain k ′ where id: f v = (((+) 1)^^k ′) (g v)
by auto

show eval-poly g p ≥ eval-poly f p
proof (cases k ′)

case 0
{

fix x
have f x = g x using id 0 w by (cases x = v, auto)

565

}
hence f = g ..
thus ?thesis using ge-refl by simp

next
case (Suc k)
with id have f v = (((+) 1)^^(Suc k)) (g v) by simp
with w gass show eval-poly g p ≥ eval-poly f p
proof (induct k arbitrary: f g rule: less-induct)

case (less k)
show ?case
proof (cases k)

case 0
with less have id0 : f v = 1 + g v by simp
have id1 : eval-poly f p = eval-poly g ?p1
proof (rule eval-poly-subst)

fix w
show f w = eval-poly g (poly-of (if w = v then PSum [PNum 1 , PVar v]

else PVar w))
proof (cases w = v)

case True
show ?thesis by (simp add: True id0 zero-poly-def)

next
case False
with less have f w = g w by simp
thus ?thesis by (simp add: False)

qed
qed
have eval-poly g p ≥ eval-poly g ?p1 using ge less unfolding poly-ge-def

by simp
with id1 show ?thesis by simp

next
case (Suc kk)
obtain g ′ where g ′: g ′ = (λ w. if (w = v) then 1 + g w else g w) by auto
have (1 :: ′a) + g v ≥ 1 + 0

by (rule plus-right-mono, simp add: less(3)[unfolded pos-assign-def])
also have (1 :: ′a) + 0 = 1 by simp
also have . . . ≥ 0 by (rule one-ge-zero)
finally have g ′pos: pos-assign g ′ using less(3) unfolding pos-assign-def

by (simp add: g ′)
{

fix w
assume v 6= w
hence f w = g ′ w

unfolding g ′ by (simp add: less)
} note w = this
have eq: f v = ((+) (1 :: ′a) ^^ Suc kk) ((g ′ v))

by (simp add: less(4) g ′ Suc, rule arg-cong[where f = (+) 1], induct kk,
auto)

from Suc have kk: kk < k by simp

566

from less(1)[OF kk w g ′pos] eq
have rec1 : eval-poly g ′ p ≥ eval-poly f p by simp
{

fix w
assume v 6= w
hence g ′ w = g w

unfolding g ′ by simp
} note w = this
from Suc have z: 0 < k by simp
from less(1)[OF z w less(3)] g ′

have rec2 : eval-poly g p ≥ eval-poly g ′ p by simp
show ?thesis by (rule ge-trans[OF rec2 rec1])

qed
qed

qed
qed

lemma check-poly-weak-mono-and-pos:
fixes p :: (′v :: linorder , ′a)poly
assumes check-poly-weak-mono-and-pos discrete p
shows poly-weak-mono-all p ∧ (p ≥p zero-poly)

proof (cases discrete)
case False
with assms have c: check-poly-weak-mono-all p unfolding check-poly-weak-mono-and-pos-def

by auto
from check-poly-weak-mono-all[OF c] check-poly-weak-mono-all-pos[OF c] show

?thesis by auto
next

case True
with assms have c: list-all (λ v. check-poly-weak-mono-discrete p v) (poly-vars-list

p) and g: eval-poly (λ w. 0) p ≥ 0
unfolding check-poly-weak-mono-and-pos-def by auto

have m: poly-weak-mono-all p
proof (rule poly-weak-mono)

fix v :: ′v
assume v: v ∈ poly-vars p
show poly-weak-mono p v
by (rule check-poly-weak-mono-discrete[OF True], insert c[unfolded list-all-iff]

v, auto)
qed
have m ′: poly-weak-mono-all p
proof (rule poly-weak-mono)

fix v :: ′v
assume v: v ∈ poly-vars p
show poly-weak-mono p v
by (rule check-poly-weak-mono-discrete[OF True], insert c[unfolded list-all-iff]

v, auto)
qed
from poly-weak-mono-all-pos[OF g m ′] m show ?thesis by auto

567

qed

end

definition check-poly-weak-mono :: (′v :: linorder , ′a :: ordered-semiring-0)poly ⇒
′v ⇒ bool

where check-poly-weak-mono p v ≡ list-all (λ (m,c). c ≥ 0 ∨ v /∈ monom-vars
m) p

lemma check-poly-weak-mono: fixes p :: (′v :: linorder , ′a :: poly-carrier)poly
assumes check-poly-weak-mono p v shows poly-weak-mono p v

unfolding poly-weak-mono-def
proof (intro allI impI)

fix f g :: (′v, ′a)assign
assume ∀ x. v 6= x −→ f x = g x
and pos: pos-assign g
and ge: f v ≥ g v
hence fg:

∧
x. v 6= x =⇒ f x = g x by auto

from pos[unfolded pos-assign-def] have g:
∧

x. g x ≥ 0 ..
from assms have

∧
m c. (m,c) ∈ set p =⇒ c ≥ 0 ∨ v /∈ monom-vars m

unfolding check-poly-weak-mono-def by (auto simp: list-all-iff)
thus eval-poly f p ≥ eval-poly g p
proof (induct p)

case (Cons mc p)
hence IH : eval-poly f p ≥ eval-poly g p by auto
obtain m c where mc: mc = (m,c) by force
with Cons have c: c ≥ 0 ∨ v /∈ monom-vars m by auto
show ?case unfolding mc eval-poly.simps fst-conv snd-conv
proof (rule ge-trans[OF plus-left-mono plus-right-mono[OF IH]])

from c show eval-monom f m ∗ c ≥ eval-monom g m ∗ c
proof

assume c: c ≥ 0
show ?thesis
proof (rule times-left-mono[OF c], rule eval-monom-mono(1)[OF - g])

fix x
show f x ≥ g x using ge fg[of x] by (cases x = v, auto simp: ge-refl)

qed
next

assume v: v /∈ monom-vars m
have eval-monom f m = eval-monom g m

by (rule monom-vars-eval-monom, insert fg v, fast)
thus ?thesis by (simp add: ge-refl)

qed
qed

qed (simp add: ge-refl)
qed

definition check-poly-weak-mono-smart :: bool ⇒ (′v :: linorder , ′a :: poly-carrier)poly
⇒ ′v ⇒ bool

568

where check-poly-weak-mono-smart discrete ≡ if discrete then check-poly-weak-mono-discrete
else check-poly-weak-mono

lemma (in poly-order-carrier) check-poly-weak-mono-smart: fixes p :: (′v :: linorder , ′a
:: poly-carrier)poly

shows check-poly-weak-mono-smart discrete p v =⇒ poly-weak-mono p v
unfolding check-poly-weak-mono-smart-def
using check-poly-weak-mono check-poly-weak-mono-discrete by (cases discrete,

auto)

definition check-poly-weak-anti-mono :: (′v :: linorder , ′a :: ordered-semiring-0)poly
⇒ ′v ⇒ bool
where check-poly-weak-anti-mono p v ≡ list-all (λ (m,c). 0 ≥ c ∨ v /∈ monom-vars

m) p

lemma check-poly-weak-anti-mono: fixes p :: (′v :: linorder , ′a :: poly-carrier)poly
assumes check-poly-weak-anti-mono p v shows poly-weak-anti-mono p v

unfolding poly-weak-anti-mono-def
proof (intro allI impI)

fix f g :: (′v, ′a)assign
assume ∀ x. v 6= x −→ f x = g x
and pos: pos-assign g
and ge: f v ≥ g v
hence fg:

∧
x. v 6= x =⇒ f x = g x by auto

from pos[unfolded pos-assign-def] have g:
∧

x. g x ≥ 0 ..
from assms have

∧
m c. (m,c) ∈ set p =⇒ 0 ≥ c ∨ v /∈ monom-vars m

unfolding check-poly-weak-anti-mono-def by (auto simp: list-all-iff)
thus eval-poly g p ≥ eval-poly f p
proof (induct p)

case Nil thus ?case by (simp add: ge-refl)
next

case (Cons mc p)
hence IH : eval-poly g p ≥ eval-poly f p by auto
obtain m c where mc: mc = (m,c) by force
with Cons have c: 0 ≥ c ∨ v /∈ monom-vars m by auto
show ?case unfolding mc eval-poly.simps fst-conv snd-conv
proof (rule ge-trans[OF plus-left-mono plus-right-mono[OF IH]])

from c show eval-monom g m ∗ c ≥ eval-monom f m ∗ c
proof

assume c: 0 ≥ c
show ?thesis
proof (rule times-left-anti-mono[OF eval-monom-mono(1)[OF - g] c])

fix x
show f x ≥ g x using ge fg[of x] by (cases x = v, auto simp: ge-refl)

qed
next

assume v: v /∈ monom-vars m
have eval-monom f m = eval-monom g m

by (rule monom-vars-eval-monom, insert fg v, fast)

569

thus ?thesis by (simp add: ge-refl)
qed

qed
qed

qed

definition check-poly-weak-anti-mono-smart :: bool ⇒ (′v :: linorder , ′a :: poly-carrier)poly
⇒ ′v ⇒ bool
where check-poly-weak-anti-mono-smart discrete ≡ if discrete then check-poly-weak-anti-mono-discrete

else check-poly-weak-anti-mono

lemma (in poly-order-carrier) check-poly-weak-anti-mono-smart: fixes p :: (′v ::
linorder , ′a :: poly-carrier)poly

shows check-poly-weak-anti-mono-smart discrete p v =⇒ poly-weak-anti-mono p
v

unfolding check-poly-weak-anti-mono-smart-def
using check-poly-weak-anti-mono[of p v] check-poly-weak-anti-mono-discrete[of p

v]
by (cases discrete, auto)

definition check-poly-gt :: (′a⇒ ′a⇒ bool)⇒ (′v :: linorder , ′a :: ordered-semiring-0)poly
⇒ (′v, ′a)poly ⇒ bool
where check-poly-gt gt p q ≡ let (a1 ,p1) = poly-split 1 p; (b1 ,q1) = poly-split 1 q
in gt a1 b1 ∧ check-poly-ge p1 q1

fun univariate-power-list :: ′v ⇒ ′v monom-list ⇒ nat option where
univariate-power-list x [(y,n)] = (if x = y then Some n else None)
| univariate-power-list - - = None

lemma univariate-power-list: assumes monom-inv m univariate-power-list x m =
Some n

shows sum-var-list m = (λ y. if x = y then n else 0)
eval-monom-list α m = ((α x)^n)
n ≥ 1

proof −
have m: m = [(x,n)] using assms

by (induct x m rule: univariate-power-list.induct, auto split: if-splits)
show eval-monom-list α m = ((α x)^n) sum-var-list m = (λ y. if x = y then n

else 0)
n ≥ 1 using assms(1)
unfolding m monom-inv-def by (auto simp: sum-var-list-def)

qed

lift-definition univariate-power :: ′v :: linorder ⇒ ′v monom ⇒ nat option
is univariate-power-list .

lemma univariate-power : assumes univariate-power x m = Some n
shows sum-var m = (λ y. if x = y then n else 0)
eval-monom α m = ((α x)^n)

570

n ≥ 1
by (atomize(full), insert assms, transfer , auto dest: univariate-power-list)

lemma univariate-power-var-monom: univariate-power y (var-monom x) = (if x
= y then Some 1 else None)

by (transfer , auto)

definition check-monom-strict-mono :: bool ⇒ ′v :: linorder monom ⇒ ′v ⇒ bool
where

check-monom-strict-mono pm m v ≡ case univariate-power v m of
Some p ⇒ pm ∨ p = 1
| None ⇒ False

definition check-poly-strict-mono :: bool ⇒ (′v :: linorder , ′a :: poly-carrier)poly
⇒ ′v ⇒ bool
where check-poly-strict-mono pm p v ≡ list-ex (λ (m,c). (c ≥ 1) ∧ check-monom-strict-mono

pm m v) p

definition check-poly-strict-mono-discrete :: (′a :: poly-carrier ⇒ ′a ⇒ bool) ⇒
(′v :: linorder , ′a)poly ⇒ ′v ⇒ bool

where check-poly-strict-mono-discrete gt p v ≡ check-poly-gt gt (poly-subst (λ w.
poly-of (if w = v then PSum [PNum 1 , PVar v] else PVar w)) p) p

definition check-poly-strict-mono-smart :: bool ⇒ bool ⇒ (′a :: poly-carrier ⇒ ′a
⇒ bool) ⇒ (′v :: linorder , ′a)poly ⇒ ′v ⇒ bool

where check-poly-strict-mono-smart discrete pm gt p v ≡
if discrete then check-poly-strict-mono-discrete gt p v else check-poly-strict-mono

pm p v

context poly-order-carrier
begin
lemma check-monom-strict-mono: fixes α β :: (′v :: linorder , ′a)assign and v :: ′v
and m :: ′v monom

assumes check: check-monom-strict-mono power-mono m v
and gt: α v � β v
and ge: β v ≥ 0

shows eval-monom α m � eval-monom β m
proof −

from check[unfolded check-monom-strict-mono-def] obtain n where
uni: univariate-power v m = Some n and 1 : ¬ power-mono =⇒ n = 1
by (auto split: option.splits)

from univariate-power [OF uni]
have n1 : n ≥ 1 and eval: eval-monom a m = a v ^ n for a :: (′v, ′a)assign

by auto
show ?thesis
proof (cases power-mono)

case False
with gt 1 [OF this] show ?thesis unfolding eval by auto

next

571

case True
from power-mono[OF True gt ge n1] show ?thesis unfolding eval .

qed
qed

lemma check-poly-strict-mono:
assumes check1 : check-poly-strict-mono power-mono p v
and check2 : check-poly-weak-mono-all p
shows poly-strict-mono p v

unfolding poly-strict-mono-def
proof (intro allI impI)

fix f g :: (′b, ′a)assign
assume fgw: ∀ w. (v 6= w −→ f w = g w)
and pos: pos-assign g
and fgv: f v � g v
from pos[unfolded pos-assign-def] have g:

∧
x. g x ≥ 0 ..

{
fix w
have f w ≥ g w
proof (cases v = w)

case False
with fgw ge-refl show ?thesis by auto

next
case True
from fgv[unfolded True] show ?thesis by (rule gt-imp-ge)

qed
} note fgw2 = this
let ?e = eval-poly
show ?e f p � ?e g p

using check1 [unfolded check-poly-strict-mono-def , simplified list-ex-iff]
check2 [unfolded check-poly-weak-mono-all-def , simplified list-all-iff , THEN

bspec]
proof (induct p)

case Nil thus ?case by simp
next

case (Cons mc p)
obtain m c where mc: mc = (m,c) by (cases mc, auto)
show ?case
proof (cases c ≥ 1 ∧ check-monom-strict-mono power-mono m v)

case True
hence c: c ≥ 1 and m: check-monom-strict-mono power-mono m v by blast+
from times-gt-mono[OF check-monom-strict-mono[OF m, of f g, OF fgv g] c]
have gt: eval-monom f m ∗ c � eval-monom g m ∗ c .

from Cons(3) have check-poly-weak-mono-all p unfolding check-poly-weak-mono-all-def
list-all-iff by auto

from check-poly-weak-mono-all[OF this, unfolded poly-weak-mono-all-def ,
rule-format, OF fgw2 pos]

have ge: ?e f p ≥ ?e g p .
from compat2 [OF plus-gt-left-mono[OF gt] plus-right-mono[OF ge]]

572

show ?thesis unfolding mc by simp
next

case False
with Cons(2) mc have ∃ mc ∈ set p. (λ (m,c). c ≥ 1 ∧ check-monom-strict-mono

power-mono m v) mc by auto
from Cons(1)[OF this] Cons(3) have rec: ?e f p � ?e g p by simp
from Cons(3) mc have c: c ≥ 0 by auto
from times-left-mono[OF c eval-monom-mono(1)[OF fgw2 g]]
have ge: eval-monom f m ∗ c ≥ eval-monom g m ∗ c .
from compat2 [OF plus-gt-left-mono[OF rec] plus-right-mono[OF ge]]
show ?thesis by (simp add: mc field-simps)

qed
qed

qed

lemma check-poly-gt:
fixes p :: (′v :: linorder , ′a)poly
assumes check-poly-gt gt p q shows p >p q

proof −
obtain a1 p1 where p: poly-split 1 p = (a1 ,p1) by force
obtain b1 q1 where q: poly-split 1 q = (b1 ,q1) by force
from p q assms have gt: a1 � b1 and ge: p1 ≥p q1 unfolding check-poly-gt-def

using check-poly-ge[of p1 q1] by auto
show ?thesis
proof (unfold poly-gt-def , intro impI allI)

fix α :: (′v, ′a)assign
assume pos-assign α
with ge have ge: eval-poly α p1 ≥ eval-poly α q1 unfolding poly-ge-def by

simp
from plus-gt-left-mono[OF gt] compat[OF plus-left-mono[OF ge]] have gt: a1

+ eval-poly α p1 � b1 + eval-poly α q1 by (force simp: field-simps)
show eval-poly α p � eval-poly α q

by (simp add: poly-split[OF p, unfolded eq-poly-def] poly-split[OF q, unfolded
eq-poly-def] gt)

qed
qed

lemma check-poly-strict-mono-discrete:
fixes v :: ′v :: linorder and p :: (′v, ′a)poly
assumes discrete and check: check-poly-strict-mono-discrete gt p v
shows poly-strict-mono p v

unfolding poly-strict-mono-def
proof (intro allI impI)

fix f g :: (′v, ′a)assign
assume fgw: ∀ w. (v 6= w −→ f w = g w)
and gass: pos-assign g
and v: f v � g v
from gass have g:

∧
x. g x ≥ 0 unfolding pos-assign-def ..

573

from fgw have w:
∧

w. v 6= w =⇒ f w = g w by auto
from assms check-poly-gt have gt: poly-gt (poly-subst (λ w. poly-of (if w = v

then PSum [PNum 1 , PVar v] else PVar w)) p) p (is poly-gt ?p1 p) unfolding
check-poly-strict-mono-discrete-def by blast

from discrete[OF ‹discrete› gt-imp-ge[OF v]] obtain k ′ where id: f v = (((+)
1)^^k ′) (g v) by auto

{
assume k ′ = 0
from v[unfolded id this] have g v � g v by simp
hence False using SN g[of v] unfolding SN-defs by auto

}
with id obtain k where id: f v = (((+) 1)^^(Suc k)) (g v) by (cases k ′, auto)
with w gass
show eval-poly f p � eval-poly g p
proof (induct k arbitrary: f g rule: less-induct)

case (less k)
show ?case
proof (cases k)

case 0
with less(4) have id0 : f v = 1 + g v by simp
have id1 : eval-poly f p = eval-poly g ?p1
proof (rule eval-poly-subst)

fix w
show f w = eval-poly g (poly-of (if w = v then PSum [PNum 1 , PVar v]

else PVar w))
proof (cases w = v)

case True
show ?thesis by (simp add: True id0 zero-poly-def)

next
case False
with less have f w = g w by simp
thus ?thesis by (simp add: False)

qed
qed
have eval-poly g ?p1 � eval-poly g p using gt less unfolding poly-gt-def by

simp
with id1 show ?thesis by simp

next
case (Suc kk)
obtain g ′ where g ′: g ′ = (λ w. if (w = v) then 1 + g w else g w) by auto
have (1 :: ′a) + g v ≥ 1 + 0

by (rule plus-right-mono, simp add: less(3)[unfolded pos-assign-def])
also have (1 :: ′a) + 0 = 1 by simp
also have . . . ≥ 0 by (rule one-ge-zero)
finally have g ′pos: pos-assign g ′ using less(3) unfolding pos-assign-def

by (simp add: g ′)
{

fix w
assume v 6= w

574

hence f w = g ′ w
unfolding g ′ by (simp add: less)

} note w = this
have eq: f v = ((+) (1 :: ′a) ^^ Suc kk) ((g ′ v))

by (simp add: less(4) g ′ Suc, rule arg-cong[where f = (+) 1], induct kk,
auto)

from Suc have kk: kk < k by simp
from less(1)[OF kk w g ′pos] eq
have rec1 : eval-poly f p � eval-poly g ′ p by simp
{

fix w
assume v 6= w
hence g ′ w = g w

unfolding g ′ by simp
} note w = this
from Suc have z: 0 < k by simp
from less(1)[OF z w less(3)] g ′

have rec2 : eval-poly g ′ p � eval-poly g p by simp
show ?thesis by (rule gt-trans[OF rec1 rec2])

qed
qed

qed

lemma check-poly-strict-mono-smart:
assumes check1 : check-poly-strict-mono-smart discrete power-mono gt p v
and check2 : check-poly-weak-mono-and-pos discrete p
shows poly-strict-mono p v

proof (cases discrete)
case True
with check1 [unfolded check-poly-strict-mono-smart-def]

check-poly-strict-mono-discrete[OF True]
show ?thesis by auto

next
case False
from check-poly-strict-mono[OF check1 [unfolded check-poly-strict-mono-smart-def ,

simplified False, simplified]]
check2 [unfolded check-poly-weak-mono-and-pos-def , simplified False, simplified]

show ?thesis by auto
qed

end

end

19 Displaying Polynomials
theory Show-Polynomials
imports

Polynomials

575

Show.Show-Instances
begin

fun shows-monom-list :: (′v :: {linorder ,show})monom-list ⇒ string ⇒ string
where

shows-monom-list [(x,p)] = (if p = 1 then shows x else shows x +@+ shows-string
′′̂ ′′ +@+ shows p)
| shows-monom-list ((x,p) # m) = ((if p = 1 then shows x else shows x +@+
shows-string ′′̂ ′′ +@+ shows p) +@+ shows-string ′′∗ ′′ +@+ shows-monom-list
m)
| shows-monom-list [] = shows-string ′′1 ′′

instantiation monom :: ({linorder ,show}) show
begin

lift-definition shows-prec-monom :: nat ⇒ ′a monom ⇒ shows is λ n. shows-monom-list
.

lemma shows-prec-monom-append [show-law-simps]:
shows-prec d (m :: ′a monom) (r @ s) = shows-prec d m r @ s

proof (transfer fixing: d r s)
fix m :: ′a monom-list
show shows-monom-list m (r @ s) = shows-monom-list m r @ s
by (induct m arbitrary: r s rule: shows-monom-list.induct, auto simp: show-law-simps)

qed

definition shows-list (ts :: ′a monom list) = showsp-list shows-prec 0 ts

instance by (standard, auto simp: show-law-simps shows-list-monom-def)
end

fun shows-poly :: (′v :: {show,linorder}, ′a :: {one,show})poly ⇒ string ⇒ string
where

shows-poly [] = shows-string ′′0 ′′

| shows-poly ((m,c) # p) = ((if c = 1 then shows m else if m = 1 then shows c
else shows c +@+

shows-string ′′∗ ′′ +@+ shows m) +@+ (if p = [] then shows-string [] else
shows-string ′′ + ′′ +@+ shows-poly p))
end

20 Monotonicity criteria of Neurauter, Zankl, and
Middeldorp

theory NZM
imports Abstract−Rewriting.SN-Order-Carrier Polynomials
begin

We show that our check on monotonicity is strong enough to capture the
exact criterion for polynomials of degree 2 that is presented in [3]:

576

• ax2 + bx+ c is monotone if b+ a > 0 and a ≥ 0

• ax2 + bx+ c is weakly monotone if b+ a ≥ 0 and a ≥ 0

lemma var-monom-x-x [simp]: var-monom x ∗ var-monom x 6= 1
by (unfold eq-monom-sum-var , auto simp: sum-var-monom-mult sum-var-monom-var)

lemma monom-list-x-x[simp]: monom-list (var-monom x ∗ var-monom x) = [(x,2)]
by (transfer , auto simp: monom-mult-list.simps)

lemma assumes b: b + a > 0 and a: (a :: int) ≥ 0
shows check-poly-strict-mono-discrete (>) (poly-of (PSum [PNum c, PMult [PNum

b, PVar x], PMult [PNum a, PVar x, PVar x]])) x
proof −
note [simp] = poly-add.simps poly-mult.simps monom-mult-poly.simps zero-poly-def

one-poly-def
extract-def check-poly-strict-mono-discrete-def poly-subst.simps monom-subst-def

poly-power .simps
check-poly-gt-def poly-split-def check-poly-ge.simps

show ?thesis
proof (cases a = 0)

case True
with b have b: b > 0 ∧ b 6= 0 by auto
show ?thesis using b True by simp

next
case False
have [simp]: 2 = Suc (Suc 0) by simp
show ?thesis using False a b by simp

qed
qed

lemma assumes b: b + a ≥ 0 and a: (a :: int) ≥ 0
shows check-poly-weak-mono-discrete (poly-of (PSum [PNum c, PMult [PNum

b, PVar x], PMult [PNum a, PVar x, PVar x]])) x
proof −
note [simp] = poly-add.simps poly-mult.simps monom-mult-poly.simps zero-poly-def

one-poly-def
extract-def check-poly-weak-mono-discrete-def poly-subst.simps monom-subst-def

poly-power .simps
check-poly-gt-def poly-split-def check-poly-ge.simps

show ?thesis
proof (cases a = 0)

case True
with b have b: 0 ≤ b by auto
show ?thesis using b True by simp

next
case False
have [simp]: 2 = Suc (Suc 0) by simp
show ?thesis using False a b by simp

qed

577

qed

end

References
[1] D. Lankford. On proving term rewriting systems are Noetherian. Tech-

nical Report MTP-3, Louisiana Technical University, Ruston, LA, USA,
1979.

[2] S. Lucas. Polynomials over the reals in proofs of termination: From
theory to practice. RAIRO Theoretical Informatics and Applications,
39(3):547–586, 2005.

[3] F. Neurauter, H. Zankl, and A. Middeldorp. Monotonicity criteria for
polynomial interpretations over the naturals. In Proceedings of the 5th
International Joint Conference on Automated Reasoning, LNAI 6173,
pages 502–517, 2010.

[4] L. Robbiano. On the Theory of Graded Structures. Journal of Symbolic
Computation, 2:138–170, 1985.

[5] R. Thiemann and C. Sternagel. Certification of termination proofs using
CeTA. In Proc. TPHOLs’09, LNCS 5674, pages 452–468, 2009.

578

	Utilities
	Lists
	Sums and Products

	An abstract type for multivariate polynomials
	Abstract type definition
	Additive structure
	Multiplication by a coefficient
	Multiplicative structure
	Monomials
	Constants and Indeterminates
	Integral domains
	Monom coefficient lookup
	Insertion morphism
	Degree
	Pseudo-division of polynomials
	Primitive poly, etc

	MPpoly Mapping extenion
	MPoly extension
	Nested MPoly
	Abstract Power-Products
	Constant 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Keys
	Constant 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 except
	'Divisibility' on Additive Structures
	Dickson Classes
	Additive Linear Orderings
	Ordered Power-Products
	Functions as Power-Products
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua 2mu'-2mub belongs to class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 comm-powerprod
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua 2mu'-2mub belongs to class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ninv-comm-monoid-add
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua 2mu'-2mub belongs to class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lcs-powerprod
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua 2mu'-2mub belongs to class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ulcs-powerprod
	Power-products in a given set of indeterminates
	Dickson's lemma for power-products in finitely many indeterminates
	Lexicographic Term Order
	Degree
	General Degree-Orders
	Degree-Lexicographic Term Order
	Degree-Reverse-Lexicographic Term Order

	Type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 poly-mapping
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua 0 2mu'-2mub belongs to class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 comm-powerprod
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua 0 2mu'-2mub belongs to class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ninv-comm-monoid-add
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua 0 2mu'-2mub belongs to class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lcs-powerprod
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua 0 2mu'-2mub belongs to class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ulcs-powerprod
	Power-products in a given set of indeterminates.
	Dickson's lemma for power-products in finitely many indeterminates
	Lexicographic Term Order
	Degree
	General Degree-Orders
	Degree-Lexicographic Term Order
	Degree-Reverse-Lexicographic Term Order

	Modules over Commutative Rings
	Submodules Spanned by Sets of Module-Elements

	Ideals over Commutative Rings
	Type-Class-Multivariate Polynomials
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 keys
	Monomials
	Vector-Polynomials
	Additive Structure of Terms
	Projections and Conversions

	Scalar Multiplication by Monomials
	Component-wise Lifting
	Component-wise Multiplication
	Scalar Multiplication
	Sums and Products
	Submodules
	Interpretations
	Isomorphism between 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua unit
	Interpretation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 term-powerprod by 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua 2mu'-2muk
	Simplifier Setup

	Type-Class-Multivariate Polynomials in Ordered Terms
	Interpretations
	Unit

	Definitions
	Leading Term and Leading Coefficient: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lt and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lc
	Trailing Term and Trailing Coefficient: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 tt and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 tc
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 higher and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lower
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 tail
	Order Relation on Polynomials
	Monomials
	Lists of Keys
	Multiplication
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dgrad-p-set and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dgrad-p-set-le
	Dickson's Lemma for Sequences of Terms
	Well-foundedness
	More Interpretations
	TODO: move!
	Utilities
	Implementation of Polynomial Mappings as Association Lists
	Constructors

	Executable Representation of Polynomial Mappings as Association Lists
	Power Products
	Computations

	Implementation of Multivariate Polynomials as Association Lists
	Unordered Power-Products
	restore constructor view
	Ordered Power-Products

	Computations
	Scalar Polynomials
	Vector-Polynomials

	Code setup for type MPoly
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lookup-pp, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 keys-pp and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 single-pp
	Additive Structure
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua 0 2mu'-2mub belongs to class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 comm-powerprod
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua 0 2mu'-2mub belongs to class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ninv-comm-monoid-add
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (2mu'-2mua, 2mu'-2mub) pp belongs to class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lcs-powerprod
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (2mu'-2mua, 2mu'-2mub) pp belongs to class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ulcs-powerprod
	Dickson's lemma for power-products in finitely many indeterminates
	Lexicographic Term Order
	Degree
	Degree-Lexicographic Term Order
	Degree-Reverse-Lexicographic Term Order

	Associative Lists with Sorted Keys
	Preliminaries
	Type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 key-order
	Invariant in Context 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 comparator
	Operations on Lists of Pairs in Context 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 comparator
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lookup-pair
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 update-by-pair
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 update-by-fun-pair and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 update-by-fun-gr-pair
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map-pair
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map2-val-pair
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lex-ord-pair
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 prod-ord-pair
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sort-oalist

	Invariant on Pairs
	Operations on Raw Ordered Associative Lists
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sort-oalist-aux
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lookup-raw
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sorted-domain-raw
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 tl-raw
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 min-key-val-raw
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 filter-raw
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 update-by-raw
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 update-by-fun-raw and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 update-by-fun-gr-raw
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map-raw and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map-val-raw
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map2-val-raw
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lex-ord-raw
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 prod-ord-raw
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 oalist-eq-raw
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sort-oalist-raw

	Fundamental Operations on One List
	Invariant
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lookup
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sorted-domain
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 local.empty and Singletons
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 reorder
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 local.hd and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 local.tl
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 min-key-val
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 except-min
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 local.insert
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 update-by-fun and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 update-by-fun-gr
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 local.filter
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map2-val-neutr
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 oalist-eq

	Fundamental Operations on Three Lists
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map-val
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map2-val and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map2-val-rneutr
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lex-ord and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 prod-ord

	Type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 oalist
	Type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 oalist-tc
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-lookup
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-sorted-domain
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-empty and Singletons
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-except-min
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-min-key-val
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-insert
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-update-by-fun and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-update-by-fun-gr
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-filter
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-map-val
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-map2-val 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-map2-val-rneutr and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-map2-val-neutr
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-lex-ord and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OAlist-tc-prod-ord
	Instance of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 equal

	Experiment

	Ordered Associative Lists for Polynomials
	Computable Term Orders
	Type Class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat
	Term Orders
	Type Classes
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 LEX, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 DRLEX, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 DEG and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 POT
	Equality of Term Orders

	Executable Representation of Polynomial Mappings as Association Lists
	Power-Products Represented by 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 oalist-tc
	Constructor
	Computations

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 MP-oalist
	Special case of addition: adding monomials
	Constructors
	Changing the Internal Order
	Ordered Power-Products

	Interpretations
	Computations
	Code setup for type MPoly

	Quasi-Poly-Mapping Power-Products
	Multivariate Polynomials with Power-Products Represented by Polynomial Mappings
	Degree
	Indeterminates
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 indets
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 PPs
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Polys

	Substitution Homomorphism
	Evaluating Polynomials
	Replacing Indeterminates
	Homogeneity
	Homogenization and Dehomogenization

	Embedding Polynomial Rings in Larger Polynomial Rings (With One Additional Indeterminate)
	Canonical Isomorphisms between 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P[X,Y] and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P[X][Y]: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 focus and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 flatten
	Locale 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 pm-powerprod

	Polynomials
	Polynomials represented as trees
	Polynomials represented in normal form as lists of monomials
	Computing normal forms of polynomials
	Powers and substitutions of polynomials
	Polynomial orders
	Degree of polynomials
	Executable and sufficient criteria to compare polynomials and ensure monotonicity

	Displaying Polynomials
	Monotonicity criteria of Neurauter, Zankl, and Middeldorp

