
Polynomial Interpolation∗

René Thiemann and Akihisa Yamada

December 14, 2021

Abstract

We formalized three algorithms for polynomial interpolation over
arbitrary fields: Lagrange’s explicit expression, the recursive algorithm
of Neville and Aitken, and the Newton interpolation in combination
with an efficient implementation of divided differences. Variants of
these algorithms for integer polynomials are also available, where some-
times the interpolation can fail; e.g., there is no linear integer polyno-
mial p such that p(0) = 0 and p(2) = 1. Moreover, for the Newton
interpolation for integer polynomials, we proved that all intermediate
results that are computed during the algorithm must be integers. This
admits an early failure detection in the implementation. Finally, we
proved the uniqueness of polynomial interpolation.

The development also contains improved code equations to speed
up the division of integers in target languages.

Contents
1 Introduction 2

2 Conversions to Rational Numbers 3

3 Divmod-Int 5

4 Improved Code Equations 6
4.1 divmod-integer. 6
4.2 divmod-nat. 7
4.3 (choose) . 8

5 Several Locales for Homomorphisms Between Types. 8
5.1 Basic Homomorphism Locales 8
5.2 Commutativity . 9
5.3 Division . 11
5.4 (Partial) Injectivitiy . 12

∗Supported by FWF (Austrian Science Fund) project Y757.

1

5.5 Surjectivity and Isomorphisms 14
5.6 Example Interpretations . 18

6 Missing Unsorted 18

7 Missing Polynomial 32
7.1 Basic Properties . 32
7.2 Polynomial Composition . 36
7.3 Monic Polynomials . 37
7.4 Roots . 41
7.5 Divisibility . 42
7.6 Map over Polynomial Coefficients 51
7.7 Morphismic properties of pCons (0 :: ′a) 52
7.8 Misc . 52

8 Connecting Polynomials with Homomorphism Locales 61
8.1 map-poly of Homomorphisms 63

8.1.1 Injectivity . 64
8.2 Example Interpretations . 70

9 Newton Interpolation 70

10 Lagrange Interpolation 90

11 Neville Aitken Interpolation 93

12 Polynomial Interpolation 97

1 Introduction
We formalize three basic algorithms for interpolation for univariate field
polynomials and integer polynomials which can be found in various text-
books or on Wikipedia. However, this formalization covers only basic re-
sults, e.g., compared to a specialized textbook on interpolation [1], we only
cover results of the first of the eight chapters.

Given distinct inputs x0, . . . , xn and corresponding outputs y0, . . . , yn,
polynomial interpolation is to provide a polynomial p (of degree at most n)
such that p(xi) = yi for every i < n.

The first solution we formalize is Lagrange’s explicit expression:

p(x) =
∑
i<n

(
yi ·

∏
j<n
j 6=i

x− xj
xi − xj

)

which is however expensive since the computation involves a number of
multiplications and additions of polynomials. Hence we formalize other

2

algorithms, namely, the recursive algorithms of Neville and Aitken, and the
Newton interpolation. We also show that a polynomial interpolation of
degree at most n is unique.

Further, we consider a variant of the interpolation problem where the
base type is restricted to int. In this case the result must be an integer
polynomial (i.e., the coefficients are integers), which does not necessarily
exist even if the specified inputs and outputs are integers. For instance,
there exists no linear integer polynomial p such that p(0) = 0 and p(2) = 1.

We prove that, for the Newton interpolation to produce integer poly-
nomials, the intermediate coefficients computed in the procedure must be
always integers. This result, in practice allows the implementation to detect
failure as early as possible, and in theory shows that there is no integer
polynomial p satisfying p(0) = 0 and p(2) = 1, regardless of the degree of
the polynomial.

The formalization also contains an improved code equations for integer
division.

2 Conversions to Rational Numbers
We define a class which provides tests whether a number is rational, and a
conversion from to rational numbers. These conversion functions are princi-
ple the inverse functions of of-rat, but they can be implemented for individual
types more efficiently.

Similarly, we define tests and conversions between integer and rational
numbers.
theory Is-Rat-To-Rat
imports

Sqrt-Babylonian.Sqrt-Babylonian-Auxiliary
begin

class is-rat = field-char-0 +
fixes is-rat :: ′a ⇒ bool
and to-rat :: ′a ⇒ rat
assumes is-rat[simp]: is-rat x = (x ∈ �)
and to-rat: to-rat x = (if x ∈ � then (THE y. x = of-rat y) else 0)

lemma of-rat-to-rat[simp]: x ∈ � =⇒ of-rat (to-rat x) = x
unfolding to-rat Rats-def by auto

lemma to-rat-of-rat[simp]: to-rat (of-rat x) = x unfolding to-rat by simp

instantiation rat :: is-rat
begin
definition is-rat-rat (x :: rat) = True
definition to-rat-rat (x :: rat) = x

instance

3

by (intro-classes, auto simp: is-rat-rat-def to-rat-rat-def Rats-def)
end

The definition for reals at the moment is not executable, but it will
become executable after loading the real algebraic numbers theory.
instantiation real :: is-rat
begin
definition is-rat-real (x :: real) = (x ∈ �)
definition to-rat-real (x :: real) = (if x ∈ � then (THE y. x = of-rat y) else 0)

instance by (intro-classes, auto simp: is-rat-real-def to-rat-real-def)
end

lemma of-nat-complex: of-nat n = Complex (of-nat n) 0
by (simp add: complex-eqI)

lemma of-int-complex: of-int z = Complex (of-int z) 0
by (simp add: complex-eq-iff)

lemma of-rat-complex: of-rat q = Complex (of-rat q) 0
proof −

obtain d n where dn: quotient-of q = (d,n) by force
from quotient-of-div[OF dn] have q: q = of-int d / of-int n by auto
then have of-rat q = complex-of-real (real-of-rat q) ∨ (0 ::complex) = of-int n ∨

0 = real-of-int n
by (simp add: of-rat-divide q)

then show ?thesis
using Complex-eq-0 complex-of-real-def q by auto

qed

lemma complex-of-real-of-rat[simp]: complex-of-real (real-of-rat q) = of-rat q
unfolding complex-of-real-def of-rat-complex by simp

lemma is-rat-complex-iff : x ∈ � ←→ Re x ∈ � ∧ Im x = 0
proof

assume x ∈ �
then obtain q where x: x = of-rat q unfolding Rats-def by auto
let ?y = Complex (of-rat q) 0
have x − ?y = 0 unfolding x by (simp add: Complex-eq)
hence x: x = ?y by simp
show Re x ∈ � ∧ Im x = 0 unfolding x complex.sel by auto

next
assume Re x ∈ � ∧ Im x = 0
then obtain q where Re x = of-rat q Im x = 0 unfolding Rats-def by auto
hence x = Complex (of-rat q) 0 by (metis complex-surj)
thus x ∈ � by (simp add: Complex-eq)

qed

instantiation complex :: is-rat
begin

4

definition is-rat-complex (x :: complex) = (is-rat (Re x) ∧ Im x = 0)
definition to-rat-complex (x :: complex) = (if is-rat (Re x) ∧ Im x = 0 then to-rat
(Re x) else 0)

instance proof (intro-classes, auto simp: is-rat-complex-def to-rat-complex-def
is-rat-complex-iff)

fix x
assume r : Re x ∈ � and i: Im x = 0
hence x ∈ � unfolding is-rat-complex-iff by auto
then obtain y where x: x = of-rat y unfolding Rats-def by blast
from this[unfolded of-rat-complex] have x: x = Complex (real-of-rat y) 0 by

auto
show to-rat (Re x) = (THE y. x = of-rat y)

by (subst of-rat-eq-iff [symmetric, where ′a = real], unfold of-rat-to-rat[OF r]
of-rat-complex,

unfold x complex.sel, auto)
qed
end

lemma [code-unfold]: (x ∈ �) = (is-rat x) by simp

definition is-int-rat :: rat ⇒ bool where
is-int-rat x ≡ snd (quotient-of x) = 1

definition int-of-rat :: rat ⇒ int where
int-of-rat x ≡ fst (quotient-of x)

lemma is-int-rat[simp]: is-int-rat x = (x ∈ �)
unfolding is-int-rat-def Ints-def
by (metis Ints-def Ints-induct
quotient-of-int is-int-rat-def old.prod.exhaust quotient-of-inject rangeI snd-conv)

lemma int-of-rat[simp]: int-of-rat (rat-of-int x) = x z ∈ � =⇒ rat-of-int (int-of-rat
z) = z
proof (force simp: int-of-rat-def)

assume z ∈ �
thus rat-of-int (int-of-rat z) = z unfolding int-of-rat-def

by (metis Ints-cases Pair-inject quotient-of-int surjective-pairing)
qed

lemma int-of-rat-0 [simp]: (int-of-rat x = 0) = (x = 0) unfolding int-of-rat-def
using quotient-of-div[of x] by (cases quotient-of x, auto)

end

3 Divmod-Int
We provide the divmod-operation on type int for efficiency reasons.

5

theory Divmod-Int
imports Main
begin

definition divmod-int :: int ⇒ int ⇒ int × int where
divmod-int n m = (n div m, n mod m)

We implement divmod-int via divmod-integer instead of invoking both
division and modulo separately.
context
includes integer .lifting
begin

lemma divmod-int-code[code]: divmod-int m n = map-prod int-of-integer int-of-integer

(divmod-integer (integer-of-int m) (integer-of-int n))
unfolding divmod-int-def divmod-integer-def map-prod-def split prod.simps

proof
show m div n = int-of-integer

(integer-of-int m div integer-of-int n)
by (transfer , simp)

show m mod n = int-of-integer
(integer-of-int m mod integer-of-int n)

by (transfer , simp)
qed
end

end

4 Improved Code Equations
This theory contains improved code equations for certain algorithms.
theory Improved-Code-Equations
imports

HOL−Computational-Algebra.Polynomial
HOL−Library.Code-Target-Nat

begin

4.1 divmod-integer.
We improve divmod-integer ?k ?l = (if ?k = 0 then (0 , 0) else if 0 < ?l then
if 0 < ?k then Code-Numeral.divmod-abs ?k ?l else case Code-Numeral.divmod-abs
?k ?l of (r , s) ⇒ if s = 0 then (− r , 0) else (− r − 1 , ?l − s) else if ?l =
0 then (0 , ?k) else apsnd uminus (if ?k < 0 then Code-Numeral.divmod-abs
?k ?l else case Code-Numeral.divmod-abs ?k ?l of (r , s) ⇒ if s = 0 then (−
r , 0) else (− r − 1 , − ?l − s))) by deleting sgn-expressions.

We guard the application of divmod-abs’ with the condition (0 :: ′a) ≤

6

x ∧ (0 :: ′b) ≤ y, so that application can be ensured on non-negative values.
Hence, one can drop "abs" in target language setup.
definition divmod-abs ′ where

x ≥ 0 =⇒ y ≥ 0 =⇒ divmod-abs ′ x y = Code-Numeral.divmod-abs x y

lemma divmod-integer-code ′′[code]: divmod-integer k l =
(if k = 0 then (0 , 0)

else if l > 0 then
(if k > 0 then divmod-abs ′ k l
else case divmod-abs ′ (− k) l of (r , s) ⇒

if s = 0 then (− r , 0) else (− r − 1 , l − s))
else if l = 0 then (0 , k)
else apsnd uminus

(if k < 0 then divmod-abs ′ (−k) (−l)
else case divmod-abs ′ k (−l) of (r , s) ⇒

if s = 0 then (− r , 0) else (− r − 1 , − l − s)))
unfolding divmod-integer-code
by (cases l = 0 ; cases l < 0 ; cases l > 0 ; auto split: prod.splits simp: div-

mod-abs ′-def divmod-abs-def)

code-printing — FIXME illusion of partiality
constant divmod-abs ′ ⇀
(SML) IntInf .divMod/ (-,/ -)
and (Eval) Integer .div ′-mod/ (-)/ (-)
and (OCaml) Z .div ′-rem
and (Haskell) divMod/ (-)/ (-)
and (Scala) !((k: BigInt) => (l: BigInt) =>/ if (l == 0)/ (BigInt(0), k) else/

(k ′/% l))

4.2 divmod-nat.
We implement divmod-nat via divmod-integer instead of invoking both divi-
sion and modulo separately, and we further simplify the case-analysis which
is performed in divmod-integer ?k ?l = (if ?k = 0 then (0 , 0) else if 0 < ?l
then if 0 < ?k then divmod-abs ′ ?k ?l else case divmod-abs ′ (− ?k) ?l of (r ,
s) ⇒ if s = 0 then (− r , 0) else (− r − 1 , ?l − s) else if ?l = 0 then (0 ,
?k) else apsnd uminus (if ?k < 0 then divmod-abs ′ (− ?k) (− ?l) else case
divmod-abs ′ ?k (− ?l) of (r , s) ⇒ if s = 0 then (− r , 0) else (− r − 1 , −
?l − s))).
lemma divmod-nat-code ′[code]: Divides.divmod-nat m n = (

let k = integer-of-nat m; l = integer-of-nat n
in map-prod nat-of-integer nat-of-integer
(if k = 0 then (0 , 0)

else if l = 0 then (0 ,k) else
divmod-abs ′ k l))

using divmod-nat-code [of m n]

7

by (simp add: divmod-abs ′-def integer-of-nat-eq-of-nat Let-def)

4.3 (choose)
lemma binomial-code[code]:

n choose k = (if k ≤ n then fact n div (fact k ∗ fact (n − k)) else 0)
using binomial-eq-0 [of n k] binomial-altdef-nat[of k n] by simp

end

5 Several Locales for Homomorphisms Between
Types.

theory Ring-Hom
imports

HOL.Complex
Main
HOL−Library.Multiset
HOL−Computational-Algebra.Factorial-Ring

begin

hide-const (open) mult

Many standard operations can be interpreted as homomorphisms in some
sense. Since declaring some lemmas as [simp] will interfere with existing
simplification rules, we introduce named theorems that would be added to
the simp set when necessary.

The following collects distribution lemmas for homomorphisms. Its sym-
metric version can often be useful.
named-theorems hom-distribs

5.1 Basic Homomorphism Locales
locale zero-hom =

fixes hom :: ′a :: zero ⇒ ′b :: zero
assumes hom-zero[simp]: hom 0 = 0

locale one-hom =
fixes hom :: ′a :: one ⇒ ′b :: one
assumes hom-one[simp]: hom 1 = 1

locale times-hom =
fixes hom :: ′a :: times ⇒ ′b :: times
assumes hom-mult[hom-distribs]: hom (x ∗ y) = hom x ∗ hom y

locale plus-hom =
fixes hom :: ′a :: plus ⇒ ′b :: plus
assumes hom-add[hom-distribs]: hom (x + y) = hom x + hom y

8

locale semigroup-mult-hom =
times-hom hom for hom :: ′a :: semigroup-mult ⇒ ′b :: semigroup-mult

locale semigroup-add-hom =
plus-hom hom for hom :: ′a :: semigroup-add ⇒ ′b :: semigroup-add

locale monoid-mult-hom = one-hom hom + semigroup-mult-hom hom
for hom :: ′a :: monoid-mult ⇒ ′b :: monoid-mult

begin

Homomorphism distributes over product:
lemma hom-prod-list: hom (prod-list xs) = prod-list (map hom xs)

by (induct xs, auto simp: hom-distribs)

but since it introduces unapplied hom, the reverse direction would be
simp.

lemmas prod-list-map-hom[simp] = hom-prod-list[symmetric]
lemma hom-power [hom-distribs]: hom (x ^ n) = hom x ^ n

by (induct n, auto simp: hom-distribs)
end

locale monoid-add-hom = zero-hom hom + semigroup-add-hom hom
for hom :: ′a :: monoid-add ⇒ ′b :: monoid-add

begin
lemma hom-sum-list: hom (sum-list xs) = sum-list (map hom xs)

by (induct xs, auto simp: hom-distribs)
lemmas sum-list-map-hom[simp] = hom-sum-list[symmetric]
lemma hom-add-eq-zero: assumes x + y = 0 shows hom x + hom y = 0
proof −

have 0 = x + y using assms..
hence hom 0 = hom (x + y) by simp
thus ?thesis by (auto simp: hom-distribs)

qed
end

locale group-add-hom = monoid-add-hom hom
for hom :: ′a :: group-add ⇒ ′b :: group-add

begin
lemma hom-uminus[hom-distribs]: hom (−x) = − hom x

by (simp add: eq-neg-iff-add-eq-0 hom-add-eq-zero)
lemma hom-minus [hom-distribs]: hom (x − y) = hom x − hom y

unfolding diff-conv-add-uminus hom-distribs..
end

5.2 Commutativity
locale ab-semigroup-mult-hom = semigroup-mult-hom hom

for hom :: ′a :: ab-semigroup-mult ⇒ ′b :: ab-semigroup-mult

9

locale ab-semigroup-add-hom = semigroup-add-hom hom
for hom :: ′a :: ab-semigroup-add ⇒ ′b :: ab-semigroup-add

locale comm-monoid-mult-hom = monoid-mult-hom hom
for hom :: ′a :: comm-monoid-mult ⇒ ′b :: comm-monoid-mult

begin
sublocale ab-semigroup-mult-hom..
lemma hom-prod[hom-distribs]: hom (prod f X) = (

∏
x ∈ X . hom (f x))

by (cases finite X , induct rule:finite-induct; simp add: hom-distribs)
lemma hom-prod-mset: hom (prod-mset X) = prod-mset (image-mset hom X)

by (induct X , auto simp: hom-distribs)
lemmas prod-mset-image[simp] = hom-prod-mset[symmetric]
lemma hom-dvd[intro,simp]: assumes p dvd q shows hom p dvd hom q
proof −

from assms obtain r where q = p ∗ r unfolding dvd-def by auto
from arg-cong[OF this, of hom] show ?thesis unfolding dvd-def by (auto

simp: hom-distribs)
qed
lemma hom-dvd-1 [simp]: x dvd 1 =⇒ hom x dvd 1 using hom-dvd[of x 1] by

simp
end

locale comm-monoid-add-hom = monoid-add-hom hom
for hom :: ′a :: comm-monoid-add ⇒ ′b :: comm-monoid-add

begin
sublocale ab-semigroup-add-hom..
lemma hom-sum[hom-distribs]: hom (sum f X) = (

∑
x ∈ X . hom (f x))

by (cases finite X , induct rule:finite-induct; simp add: hom-distribs)
lemma hom-sum-mset[hom-distribs,simp]: hom (sum-mset X) = sum-mset (image-mset

hom X)
by (induct X , auto simp: hom-distribs)

end

locale ab-group-add-hom = group-add-hom hom
for hom :: ′a :: ab-group-add ⇒ ′b :: ab-group-add

begin
sublocale comm-monoid-add-hom..

end

locale semiring-hom = comm-monoid-add-hom hom + monoid-mult-hom hom
for hom :: ′a :: semiring-1 ⇒ ′b :: semiring-1

begin
lemma hom-mult-eq-zero: assumes x ∗ y = 0 shows hom x ∗ hom y = 0
proof −

have 0 = x ∗ y using assms..
hence hom 0 = hom (x ∗ y) by simp
thus ?thesis by (auto simp:hom-distribs)

qed

10

end

locale ring-hom = semiring-hom hom
for hom :: ′a :: ring-1 ⇒ ′b :: ring-1

begin
sublocale ab-group-add-hom hom..

end

locale comm-semiring-hom = semiring-hom hom
for hom :: ′a :: comm-semiring-1 ⇒ ′b :: comm-semiring-1

begin
sublocale comm-monoid-mult-hom..

end

locale comm-ring-hom = ring-hom hom
for hom :: ′a :: comm-ring-1 ⇒ ′b :: comm-ring-1

begin
sublocale comm-semiring-hom..

end

locale idom-hom = comm-ring-hom hom
for hom :: ′a :: idom ⇒ ′b :: idom

5.3 Division
locale idom-divide-hom = idom-hom hom

for hom :: ′a :: idom-divide ⇒ ′b :: idom-divide +
assumes hom-div[hom-distribs]: hom (x div y) = hom x div hom y

begin

end

locale field-hom = idom-hom hom
for hom :: ′a :: field ⇒ ′b :: field

begin

lemma hom-inverse[hom-distribs]: hom (inverse x) = inverse (hom x)
by (metis hom-mult hom-one hom-zero inverse-unique inverse-zero right-inverse)

sublocale idom-divide-hom hom
proof

fix x y
have hom (x / y) = hom (x ∗ inverse y) by (simp add: field-simps)
thus hom (x / y) = hom x / hom y unfolding hom-distribs by (simp add:

field-simps)
qed

end

11

locale field-char-0-hom = field-hom hom
for hom :: ′a :: field-char-0 ⇒ ′b :: field-char-0

5.4 (Partial) Injectivitiy
locale zero-hom-0 = zero-hom +

assumes hom-0 :
∧

x. hom x = 0 =⇒ x = 0
begin

lemma hom-0-iff [iff]: hom x = 0 ←→ x = 0 using hom-0 by auto
end

locale one-hom-1 = one-hom +
assumes hom-1 :

∧
x. hom x = 1 =⇒ x = 1

begin
lemma hom-1-iff [iff]: hom x = 1 ←→ x = 1 using hom-1 by auto

end

Next locales are at this point not interesting. They will retain some
results when we think of polynomials.
locale monoid-mult-hom-1 = monoid-mult-hom + one-hom-1

locale monoid-add-hom-0 = monoid-add-hom + zero-hom-0

locale comm-monoid-mult-hom-1 = monoid-mult-hom-1 hom
for hom :: ′a :: comm-monoid-mult ⇒ ′b :: comm-monoid-mult

locale comm-monoid-add-hom-0 = monoid-add-hom-0 hom
for hom :: ′a :: comm-monoid-add ⇒ ′b :: comm-monoid-add

locale injective =
fixes f :: ′a ⇒ ′b assumes injectivity:

∧
x y. f x = f y =⇒ x = y

begin
lemma eq-iff [simp]: f x = f y ←→ x = y using injectivity by auto
lemma inj-f : inj f by (auto intro: injI)
lemma inv-f-f [simp]: inv f (f x) = x by (fact inv-f-f [OF inj-f])

end

locale inj-zero-hom = zero-hom + injective hom
begin

sublocale zero-hom-0 by (unfold-locales, auto intro: injectivity)
end

locale inj-one-hom = one-hom + injective hom
begin

sublocale one-hom-1 by (unfold-locales, auto intro: injectivity)
end

locale inj-semigroup-mult-hom = semigroup-mult-hom + injective hom

12

locale inj-semigroup-add-hom = semigroup-add-hom + injective hom

locale inj-monoid-mult-hom = monoid-mult-hom + inj-semigroup-mult-hom
begin

sublocale inj-one-hom..
sublocale monoid-mult-hom-1 ..

end

locale inj-monoid-add-hom = monoid-add-hom + inj-semigroup-add-hom
begin

sublocale inj-zero-hom..
sublocale monoid-add-hom-0 ..

end

locale inj-comm-monoid-mult-hom = comm-monoid-mult-hom + inj-monoid-mult-hom
begin

sublocale comm-monoid-mult-hom-1 ..
end

locale inj-comm-monoid-add-hom = comm-monoid-add-hom + inj-monoid-add-hom
begin

sublocale comm-monoid-add-hom-0 ..
end

locale inj-semiring-hom = semiring-hom + injective hom
begin

sublocale inj-comm-monoid-add-hom + inj-monoid-mult-hom..
end

locale inj-comm-semiring-hom = comm-semiring-hom + inj-semiring-hom
begin

sublocale inj-comm-monoid-mult-hom..
end

For groups, injectivity is easily ensured.
locale inj-group-add-hom = group-add-hom + zero-hom-0
begin

sublocale injective hom
proof

fix x y assume hom x = hom y
then have hom (x−y) = 0 by (auto simp: hom-distribs)
then show x = y by simp

qed
sublocale inj-monoid-add-hom..

end

locale inj-ab-group-add-hom = ab-group-add-hom + inj-group-add-hom
begin

13

sublocale inj-comm-monoid-add-hom..
end

locale inj-ring-hom = ring-hom + zero-hom-0
begin

sublocale inj-ab-group-add-hom..
sublocale inj-semiring-hom..

end

locale inj-comm-ring-hom = comm-ring-hom + zero-hom-0
begin

sublocale inj-ring-hom..
sublocale inj-comm-semiring-hom..

end

locale inj-idom-hom = idom-hom + zero-hom-0
begin

sublocale inj-comm-ring-hom..
end

Field homomorphism is always injective.
context field-hom begin

sublocale zero-hom-0
proof (unfold-locales, rule ccontr)

fix x
assume hom x = 0 and x0 : x 6= 0
then have inverse (hom x) = 0 by simp
then have hom (inverse x) = 0 by (simp add: hom-distribs)
then have hom (inverse x ∗ x) = 0 by (simp add: hom-distribs)
with x0 have hom 1 = hom 0 by simp
then have (1 :: ′b) = 0 by simp
then show False by auto

qed
sublocale inj-idom-hom..

end

5.5 Surjectivity and Isomorphisms
locale surjective =

fixes f :: ′a ⇒ ′b
assumes surj: surj f

begin
lemma f-inv-f [simp]: f (inv f x) = x

by (rule cong, auto simp: surj[unfolded surj-iff o-def id-def])
end

locale bijective = injective + surjective

lemma bijective-eq-bij: bijective f = bij f
proof(intro iffI)

14

assume bijective f
then interpret bijective f .
show bij f using injectivity surj by (auto intro!: bijI injI)

next
assume bij f
from this[unfolded bij-def]
show bijective f by (unfold-locales, auto dest: injD)

qed

context bijective
begin

lemmas bij = bijective-axioms[unfolded bijective-eq-bij]
interpretation inv: bijective inv f

using bijective-axioms bij-imp-bij-inv by (unfold bijective-eq-bij)
sublocale inv: surjective inv f ..
sublocale inv: injective inv f ..
lemma inv-inv-f-eq[simp]: inv (inv f) = f using inv-inv-eq[OF bij].
lemma f-eq-iff [simp]: f x = y ←→ x = inv f y by auto
lemma inv-f-eq-iff [simp]: inv f x = y ←→ x = f y by auto

end

locale monoid-mult-isom = inj-monoid-mult-hom + bijective hom
begin

sublocale inv: bijective inv hom..
sublocale inv: inj-monoid-mult-hom inv hom
proof (unfold-locales)

fix hx hy :: ′b
from bij obtain x y where hx: hx = hom x and hy: hy = hom y by (meson

bij-pointE)
show inv hom (hx∗hy) = inv hom hx ∗ inv hom hy by (unfold hx hy, fold

hom-mult, simp)
have inv hom (hom 1) = 1 by (unfold inv-f-f , simp)
then show inv hom 1 = 1 by simp

qed
end

locale monoid-add-isom = inj-monoid-add-hom + bijective hom
begin

sublocale inv: bijective inv hom..
sublocale inv: inj-monoid-add-hom inv hom
proof (unfold-locales)

fix hx hy :: ′b
from bij obtain x y where hx: hx = hom x and hy: hy = hom y by (meson

bij-pointE)
show inv hom (hx+hy) = inv hom hx + inv hom hy by (unfold hx hy, fold

hom-add, simp)
have inv hom (hom 0) = 0 by (unfold inv-f-f , simp)
then show inv hom 0 = 0 by simp

qed

15

end

locale comm-monoid-mult-isom = monoid-mult-isom hom
for hom :: ′a :: comm-monoid-mult ⇒ ′b :: comm-monoid-mult

begin
sublocale inv: monoid-mult-isom inv hom..
sublocale inj-comm-monoid-mult-hom..

lemma hom-dvd-hom[simp]: hom x dvd hom y ←→ x dvd y
proof

assume hom x dvd hom y
then obtain hz where hom y = hom x ∗ hz by (elim dvdE)
moreover obtain z where hz = hom z using bij by (elim bij-pointE)
ultimately have hom y = hom (x ∗ z) by (auto simp: hom-distribs)
from this[unfolded eq-iff] have y = x ∗ z.
then show x dvd y by (intro dvdI)

qed (rule hom-dvd)

lemma hom-dvd-simp[simp]:
shows hom x dvd y ′←→ x dvd inv hom y ′

using hom-dvd-hom[of x inv hom y ′] by simp

end

locale comm-monoid-add-isom = monoid-add-isom hom
for hom :: ′a :: comm-monoid-add ⇒ ′b :: comm-monoid-add

begin
sublocale inv: monoid-add-isom inv hom by (unfold-locales; simp add: hom-distribs)
sublocale inj-comm-monoid-add-hom..

end

locale semiring-isom = inj-semiring-hom hom + bijective hom for hom
begin
sublocale inv: inj-semiring-hom inv hom by (unfold-locales; simp add: hom-distribs)
sublocale inv: bijective inv hom..
sublocale monoid-mult-isom..
sublocale comm-monoid-add-isom..

end

locale comm-semiring-isom = semiring-isom hom
for hom :: ′a :: comm-semiring-1 ⇒ ′b :: comm-semiring-1

begin
sublocale inv: semiring-isom inv hom by (unfold-locales; simp add: hom-distribs)
sublocale comm-monoid-mult-isom..
sublocale inj-comm-semiring-hom..

end

locale ring-isom = inj-ring-hom + surjective hom
begin

16

sublocale semiring-isom..
sublocale inv: inj-ring-hom inv hom by (unfold-locales; simp add: hom-distribs)

end

locale comm-ring-isom = ring-isom hom
for hom :: ′a :: comm-ring-1 ⇒ ′b :: comm-ring-1

begin
sublocale comm-semiring-isom..
sublocale inj-comm-ring-hom..
sublocale inv: ring-isom inv hom by (unfold-locales; simp add: hom-distribs)

end

locale idom-isom = comm-ring-isom + inj-idom-hom
begin
sublocale inv: comm-ring-isom inv hom by (unfold-locales; simp add: hom-distribs)
sublocale inv: inj-idom-hom inv hom..

end

locale field-isom = field-hom + surjective hom
begin

sublocale idom-isom..
sublocale inv: field-hom inv hom by (unfold-locales; simp add: hom-distribs)

end

locale inj-idom-divide-hom = idom-divide-hom hom + inj-idom-hom hom
for hom :: ′a :: idom-divide ⇒ ′b :: idom-divide

begin
lemma hom-dvd-iff [simp]: (hom p dvd hom q) = (p dvd q)
proof (cases p = 0)

case False
show ?thesis
proof

assume hom p dvd hom q from this[unfolded dvd-def] obtain k where
id: hom q = hom p ∗ k by auto

hence (hom q div hom p) = (hom p ∗ k) div hom p by simp
also have . . . = k by (rule nonzero-mult-div-cancel-left, insert False, simp)
also have hom q div hom p = hom (q div p) by (simp add: hom-div)
finally have k = hom (q div p) by auto
from id[unfolded this] have hom q = hom (p ∗ (q div p)) by (simp add:

hom-mult)
hence q = p ∗ (q div p) by simp
thus p dvd q unfolding dvd-def ..

qed simp
qed simp
end

context field-hom
begin
sublocale inj-idom-divide-hom ..

17

end

5.6 Example Interpretations
interpretation of-int-hom: ring-hom of-int by (unfold-locales, auto)
interpretation of-int-hom: comm-ring-hom of-int by (unfold-locales, auto)
interpretation of-int-hom: idom-hom of-int by (unfold-locales, auto)
interpretation of-int-hom: inj-ring-hom of-int :: int ⇒ ′a :: {ring-1 ,ring-char-0}

by (unfold-locales, auto)
interpretation of-int-hom: inj-comm-ring-hom of-int :: int ⇒ ′a :: {comm-ring-1 ,ring-char-0}

by (unfold-locales, auto)
interpretation of-int-hom: inj-idom-hom of-int :: int ⇒ ′a :: {idom,ring-char-0}

by (unfold-locales, auto)

Somehow of-rat is defined only on char-0.
interpretation of-rat-hom: field-char-0-hom of-rat

by (unfold-locales, auto simp: of-rat-add of-rat-mult of-rat-inverse of-rat-minus)

interpretation of-real-hom: inj-ring-hom of-real by (unfold-locales, auto)
interpretation of-real-hom: inj-comm-ring-hom of-real by (unfold-locales, auto)
interpretation of-real-hom: inj-idom-hom of-real by (unfold-locales, auto)
interpretation of-real-hom: field-hom of-real by (unfold-locales, auto)
interpretation of-real-hom: field-char-0-hom of-real by (unfold-locales, auto)

Constant multiplication in a semiring is only a monoid homomorphism.
interpretation mult-hom: comm-monoid-add-hom λx. c ∗ x for c :: ′a :: semir-
ing-1

by (unfold-locales, auto simp: field-simps)

end

6 Missing Unsorted
This theory contains several lemmas which might be of interest to the Is-
abelle distribution. For instance, we prove that bn · nk is bounded by a
constant whenever 0 < b < 1.
theory Missing-Unsorted
imports

HOL.Complex HOL−Computational-Algebra.Factorial-Ring
begin

lemma bernoulli-inequality: assumes x: −1 ≤ (x :: ′a :: linordered-field)
shows 1 + of-nat n ∗ x ≤ (1 + x) ^ n

proof (induct n)
case (Suc n)
have 1 + of-nat (Suc n) ∗ x = 1 + x + of-nat n ∗ x by (simp add: field-simps)
also have . . . ≤ . . . + of-nat n ∗ x ^ 2 by simp

18

also have . . . = (1 + of-nat n ∗ x) ∗ (1 + x) by (simp add: field-simps
power2-eq-square)

also have . . . ≤ (1 + x) ^ n ∗ (1 + x)
by (rule mult-right-mono[OF Suc], insert x, auto)

also have . . . = (1 + x) ^ (Suc n) by simp
finally show ?case .

qed simp

context
fixes b :: ′a :: archimedean-field
assumes b: 0 < b b < 1

begin
private lemma pow-one: b ^ x ≤ 1 using power-Suc-less-one[OF b, of x − 1] by
(cases x, auto)

private lemma pow-zero: 0 < b ^ x using b(1) by simp

lemma exp-tends-to-zero: assumes c: c > 0
shows ∃ x. b ^ x ≤ c

proof (rule ccontr)
assume not: ¬ ?thesis
define bb where bb = inverse b
define cc where cc = inverse c
from b have bb: bb > 1 unfolding bb-def by (rule one-less-inverse)
from c have cc: cc > 0 unfolding cc-def by simp
define bbb where bbb = bb − 1
have id: bb = 1 + bbb and bbb: bbb > 0 and bm1 : bbb ≥ −1 unfolding bbb-def

using bb by auto
have ∃ n. cc / bbb < of-nat n by (rule reals-Archimedean2)
then obtain n where lt: cc / bbb < of-nat n by auto
from not have ¬ b ^ n ≤ c by auto
hence bnc: b ^ n > c by simp
have bb ^ n = inverse (b ^ n) unfolding bb-def by (rule power-inverse)
also have . . . < cc unfolding cc-def

by (rule less-imp-inverse-less[OF bnc c])
also have . . . < bbb ∗ of-nat n using lt bbb by (metis mult.commute pos-divide-less-eq)
also have . . . ≤ bb ^ n

using bernoulli-inequality[OF bm1 , folded id, of n] by (simp add: ac-simps)
finally show False by simp

qed

lemma linear-exp-bound: ∃ p. ∀ x. b ^ x ∗ of-nat x ≤ p
proof −

from b have 1 − b > 0 by simp
from exp-tends-to-zero[OF this]
obtain x0 where x0 : b ^ x0 ≤ 1 − b ..
{

fix x
assume x ≥ x0

19

hence ∃ y. x = x0 + y by arith
then obtain y where x: x = x0 + y by auto
have b ^ x = b ^ x0 ∗ b ^ y unfolding x by (simp add: power-add)
also have . . . ≤ b ^ x0 using pow-one[of y] pow-zero[of x0] by auto
also have . . . ≤ 1 − b by (rule x0)
finally have b ^ x ≤ 1 − b .

} note x0 = this
define bs where bs = insert 1 { b ^ Suc x ∗ of-nat (Suc x) | x . x ≤ x0}
have bs: finite bs unfolding bs-def by auto
define p where p = Max bs
have bs:

∧
b. b ∈ bs =⇒ b ≤ p unfolding p-def using bs by simp

hence p1 : p ≥ 1 unfolding bs-def by auto
show ?thesis
proof (rule exI [of - p], intro allI)

fix x
show b ^ x ∗ of-nat x ≤ p
proof (induct x)

case (Suc x)
show ?case
proof (cases x ≤ x0)

case True
show ?thesis

by (rule bs, unfold bs-def , insert True, auto)
next

case False
let ?x = of-nat x :: ′a
have b ^ (Suc x) ∗ of-nat (Suc x) = b ∗ (b ^ x ∗ ?x) + b ^ Suc x by (simp

add: field-simps)
also have . . . ≤ b ∗ p + b ^ Suc x

by (rule add-right-mono[OF mult-left-mono[OF Suc]], insert b, auto)
also have . . . = p − ((1 − b) ∗ p − b ^ (Suc x)) by (simp add: field-simps)
also have . . . ≤ p − 0
proof −

have b ^ Suc x ≤ 1 − b using x0 [of Suc x] False by auto
also have . . . ≤ (1 − b) ∗ p using b p1 by auto
finally show ?thesis

by (intro diff-left-mono, simp)
qed
finally show ?thesis by simp

qed
qed (insert p1 , auto)

qed
qed

lemma poly-exp-bound: ∃ p. ∀ x. b ^ x ∗ of-nat x ^ deg ≤ p
proof −

show ?thesis
proof (induct deg)

case 0

20

show ?case
by (rule exI [of - 1], intro allI , insert pow-one, auto)

next
case (Suc deg)
then obtain q where IH :

∧
x. b ^ x ∗ (of-nat x) ^ deg ≤ q by auto

define p where p = max 0 q
from IH have IH :

∧
x. b ^ x ∗ (of-nat x) ^ deg ≤ p unfolding p-def using

le-max-iff-disj by blast
have p: p ≥ 0 unfolding p-def by simp
show ?case
proof (cases deg = 0)

case True
thus ?thesis using linear-exp-bound by simp

next
case False note deg = this
define p ′ where p ′ = p∗p ∗ 2 ^ Suc deg ∗ inverse b
let ?f = λ x. b ^ x ∗ (of-nat x) ^ Suc deg
define f where f = ?f
{

fix x
let ?x = of-nat x :: ′a
have f (2 ∗ x) ≤ (2 ^ Suc deg) ∗ (p ∗ p)
proof (cases x = 0)

case False
hence x1 : ?x ≥ 1 by (cases x, auto)
from x1 have x: ?x ^ (deg − 1) ≥ 1 by simp
from x1 have xx: ?x ^ Suc deg ≥ 1 by (rule one-le-power)
define c where c = b ^ x ∗ b ^ x ∗ (2 ^ Suc deg)
have c: c > 0 unfolding c-def using b by auto
have f (2 ∗ x) = ?f (2 ∗ x) unfolding f-def by simp
also have b ^ (2 ∗ x) = (b ^ x) ∗ (b ^ x) by (simp add: power2-eq-square

power-even-eq)
also have of-nat (2 ∗ x) = 2 ∗ ?x by simp
also have (2 ∗ ?x) ^ Suc deg = 2 ^ Suc deg ∗ ?x ^ Suc deg by simp

finally have f (2 ∗ x) = c ∗ ?x ^ Suc deg unfolding c-def by (simp add:
ac-simps)

also have . . . ≤ c ∗ ?x ^ Suc deg ∗ ?x ^ (deg − 1)
proof −

have c ∗ ?x ^ Suc deg > 0 using c xx by simp
thus ?thesis unfolding mult-le-cancel-left1 using x by simp

qed
also have . . . = c ∗ ?x ^ (Suc deg + (deg − 1)) by (simp add: power-add)
also have Suc deg + (deg − 1) = deg + deg using deg by simp

also have ?x ^ (deg + deg) = (?x ^ deg) ∗ (?x ^ deg) by (simp add:
power-add)

also have c ∗ . . . = (2 ^ Suc deg) ∗ ((b ^ x ∗ ?x ^ deg) ∗ (b ^ x ∗ ?x ^
deg))

unfolding c-def by (simp add: ac-simps)
also have . . . ≤ (2 ^ Suc deg) ∗ (p ∗ p)

21

by (rule mult-left-mono[OF mult-mono[OF IH IH p]], insert pow-zero[of
x], auto)

finally show f (2 ∗ x) ≤ (2 ^ Suc deg) ∗ (p ∗ p) .
qed (auto simp: f-def)
hence ?f (2 ∗ x) ≤ (2 ^ Suc deg) ∗ (p ∗ p) unfolding f-def .

} note even = this
show ?thesis
proof (rule exI [of - p ′], intro allI)

fix y
show ?f y ≤ p ′

proof (cases even y)
case True
define x where x = y div 2
have y = 2 ∗ x unfolding x-def using True by simp
from even[of x, folded this] have ?f y ≤ 2 ^ Suc deg ∗ (p ∗ p) .
also have . . . ≤ . . . ∗ inverse b

unfolding mult-le-cancel-left1 using b p
by (simp add: algebra-split-simps one-le-inverse)

also have . . . = p ′ unfolding p ′-def by (simp add: ac-simps)
finally show ?f y ≤ p ′ .

next
case False
define x where x = y div 2
have y = 2 ∗ x + 1 unfolding x-def using False by simp
hence ?f y = ?f (2 ∗ x + 1) by simp
also have . . . ≤ b ^ (2 ∗ x + 1) ∗ of-nat (2 ∗ x + 2) ^ Suc deg

by (rule mult-left-mono[OF power-mono], insert b, auto)
also have b ^ (2 ∗ x + 1) = b ^ (2 ∗ x + 2) ∗ inverse b using b by auto
also have b ^ (2 ∗ x + 2) ∗ inverse b ∗ of-nat (2 ∗ x + 2) ^ Suc deg =

inverse b ∗ ?f (2 ∗ (x + 1)) by (simp add: ac-simps)
also have . . . ≤ inverse b ∗ ((2 ^ Suc deg) ∗ (p ∗ p))

by (rule mult-left-mono[OF even], insert b, auto)
also have . . . = p ′ unfolding p ′-def by (simp add: ac-simps)
finally show ?f y ≤ p ′ .

qed
qed

qed
qed

qed
end

lemma prod-list-replicate[simp]: prod-list (replicate n a) = a ^ n
by (induct n, auto)

lemma prod-list-power : fixes xs :: ′a :: comm-monoid-mult list
shows prod-list xs ^ n = (

∏
x←xs. x ^ n)

by (induct xs, auto simp: power-mult-distrib)

lemma set-upt-Suc: {0 ..< Suc i} = insert i {0 ..< i}

22

by (fact atLeast0-lessThan-Suc)

lemma prod-pow[simp]: (
∏

i = 0 ..<n. p) = (p :: ′a :: comm-monoid-mult) ^ n
by (induct n, auto simp: set-upt-Suc)

lemma dvd-abs-mult-left-int [simp]:
|a| ∗ y dvd x ←→ a ∗ y dvd x for x y a :: int
using abs-dvd-iff [of a ∗ y] abs-dvd-iff [of |a| ∗ y]
by (simp add: abs-mult)

lemma gcd-abs-mult-right-int [simp]:
gcd x (|a| ∗ y) = gcd x (a ∗ y) for x y a :: int
using gcd-abs2-int [of - a ∗ y] gcd-abs2-int [of - |a| ∗ y]
by (simp add: abs-mult)

lemma lcm-abs-mult-right-int [simp]:
lcm x (|a| ∗ y) = lcm x (a ∗ y) for x y a :: int
using lcm-abs2-int [of - a ∗ y] lcm-abs2-int [of - |a| ∗ y]
by (simp add: abs-mult)

lemma gcd-abs-mult-left-int [simp]:
gcd x (a ∗ |y|) = gcd x (a ∗ y) for x y a :: int
using gcd-abs2-int [of - a ∗ |y|] gcd-abs2-int [of - a ∗ y]
by (simp add: abs-mult)

lemma lcm-abs-mult-left-int [simp]:
lcm x (a ∗ |y|) = lcm x (a ∗ y) for x y a :: int
using lcm-abs2-int [of - a ∗ |y|] lcm-abs2-int [of - a ∗ y]
by (simp add: abs-mult)

abbreviation (input) list-gcd :: ′a :: semiring-gcd list ⇒ ′a where
list-gcd ≡ gcd-list

abbreviation (input) list-lcm :: ′a :: semiring-gcd list ⇒ ′a where
list-lcm ≡ lcm-list

lemma list-gcd-simps: list-gcd [] = 0 list-gcd (x # xs) = gcd x (list-gcd xs)
by simp-all

lemma list-gcd: x ∈ set xs =⇒ list-gcd xs dvd x
by (fact Gcd-fin-dvd)

lemma list-gcd-greatest: (
∧

x. x ∈ set xs =⇒ y dvd x) =⇒ y dvd (list-gcd xs)
by (fact gcd-list-greatest)

23

lemma list-gcd-mult-int [simp]:
fixes xs :: int list
shows list-gcd (map (times a) xs) = |a| ∗ list-gcd xs
by (simp add: Gcd-mult abs-mult)

lemma list-lcm-simps: list-lcm [] = 1 list-lcm (x # xs) = lcm x (list-lcm xs)
by simp-all

lemma list-lcm: x ∈ set xs =⇒ x dvd list-lcm xs
by (fact dvd-Lcm-fin)

lemma list-lcm-least: (
∧

x. x ∈ set xs =⇒ x dvd y) =⇒ list-lcm xs dvd y
by (fact lcm-list-least)

lemma lcm-mult-distrib-nat: (k :: nat) ∗ lcm m n = lcm (k ∗ m) (k ∗ n)
by (simp add: lcm-mult-left)

lemma lcm-mult-distrib-int: abs (k::int) ∗ lcm m n = lcm (k ∗ m) (k ∗ n)
by (simp add: lcm-mult-left abs-mult)

lemma list-lcm-mult-int [simp]:
fixes xs :: int list
shows list-lcm (map (times a) xs) = (if xs = [] then 1 else |a| ∗ list-lcm xs)
by (simp add: Lcm-mult abs-mult)

lemma list-lcm-pos:
list-lcm xs ≥ (0 :: int)
0 /∈ set xs =⇒ list-lcm xs 6= 0
0 /∈ set xs =⇒ list-lcm xs > 0

proof −
have 0 ≤ |Lcm (set xs)|

by (simp only: abs-ge-zero)
then have 0 ≤ Lcm (set xs)

by simp
then show list-lcm xs ≥ 0

by simp
assume 0 /∈ set xs
then show list-lcm xs 6= 0

by (simp add: Lcm-0-iff)
with ‹list-lcm xs ≥ 0 › show list-lcm xs > 0

by (simp add: le-less)
qed

lemma quotient-of-nonzero: snd (quotient-of r) > 0 snd (quotient-of r) 6= 0
using quotient-of-denom-pos ′ [of r] by simp-all

lemma quotient-of-int-div: assumes q: quotient-of (of-int x / of-int y) = (a, b)
and y: y 6= 0

24

shows ∃ z. z 6= 0 ∧ x = a ∗ z ∧ y = b ∗ z
proof −

let ?r = rat-of-int
define z where z = gcd x y
define x ′ where x ′ = x div z
define y ′ where y ′ = y div z
have id: x = z ∗ x ′ y = z ∗ y ′ unfolding x ′-def y ′-def z-def by auto
from y have y ′: y ′ 6= 0 unfolding id by auto
have z: z 6= 0 unfolding z-def using y by auto
have cop: coprime x ′ y ′ unfolding x ′-def y ′-def z-def

using div-gcd-coprime y by blast
have ?r x / ?r y = ?r x ′ / ?r y ′ unfolding id using z y y ′ by (auto simp:

field-simps)
from assms[unfolded this] have quot: quotient-of (?r x ′ / ?r y ′) = (a, b) by auto
from quotient-of-coprime[OF quot] have cop ′: coprime a b .
hence cop: coprime b a

by (simp add: ac-simps)
from quotient-of-denom-pos[OF quot] have b: b > 0 b 6= 0 by auto
from quotient-of-div[OF quot] quotient-of-denom-pos[OF quot] y ′

have ?r x ′ ∗ ?r b = ?r a ∗ ?r y ′ by (auto simp: field-simps)
hence id ′: x ′ ∗ b = a ∗ y ′ unfolding of-int-mult[symmetric] by linarith
from id ′[symmetric] have b dvd y ′ ∗ a unfolding mult.commute[of y ′] by auto
with cop y ′ have b dvd y ′

by (simp add: coprime-dvd-mult-left-iff)
then obtain z ′ where ybz: y ′ = b ∗ z ′ unfolding dvd-def by auto
from id[unfolded y ′ this] have y: y = b ∗ (z ∗ z ′) by auto
with ‹y 6= 0 › have zz: z ∗ z ′ 6= 0 by auto
from quotient-of-div[OF q] ‹y 6= 0 › ‹b 6= 0 ›
have ?r x ∗ ?r b = ?r y ∗ ?r a by (auto simp: field-simps)
hence id ′: x ∗ b = y ∗ a unfolding of-int-mult[symmetric] by linarith
from this[unfolded y] b have x: x = a ∗ (z ∗ z ′) by auto
show ?thesis unfolding x y using zz by blast

qed

fun max-list-non-empty :: (′a :: linorder) list ⇒ ′a where
max-list-non-empty [x] = x
| max-list-non-empty (x # xs) = max x (max-list-non-empty xs)

lemma max-list-non-empty: x ∈ set xs =⇒ x ≤ max-list-non-empty xs
proof (induct xs)

case (Cons y ys) note oCons = this
show ?case
proof (cases ys)

case (Cons z zs)
hence id: max-list-non-empty (y # ys) = max y (max-list-non-empty ys) by

simp
from oCons show ?thesis unfolding id by (auto simp: max.coboundedI2)

qed (insert oCons, auto)
qed simp

25

lemma cnj-reals[simp]: (cnj c ∈ �) = (c ∈ �)
using Reals-cnj-iff by fastforce

lemma sgn-real-mono: x ≤ y =⇒ sgn x ≤ sgn (y :: real)
unfolding sgn-real-def
by (auto split: if-splits)

lemma sgn-minus-rat: sgn (− (x :: rat)) = − sgn x
by (fact Rings.sgn-minus)

lemma real-of-rat-sgn: sgn (of-rat x) = real-of-rat (sgn x)
unfolding sgn-real-def sgn-rat-def by auto

lemma inverse-le-iff-sgn: assumes sgn: sgn x = sgn y
shows (inverse (x :: real) ≤ inverse y) = (y ≤ x)

proof (cases x = 0)
case True
with sgn have sgn y = 0 by simp
hence y = 0 unfolding sgn-real-def by (cases y = 0 ; cases y < 0 ; auto)
thus ?thesis using True by simp

next
case False note x = this
show ?thesis
proof (cases x < 0)

case True
with x sgn have sgn y = −1 by simp
hence y < 0 unfolding sgn-real-def by (cases y = 0 ; cases y < 0 , auto)
show ?thesis

by (rule inverse-le-iff-le-neg[OF True ‹y < 0 ›])
next

case False
with x have x: x > 0 by auto
with sgn have sgn y = 1 by auto
hence y > 0 unfolding sgn-real-def by (cases y = 0 ; cases y < 0 , auto)
show ?thesis

by (rule inverse-le-iff-le[OF x ‹y > 0 ›])
qed

qed

lemma inverse-le-sgn: assumes sgn: sgn x = sgn y and xy: x ≤ (y :: real)
shows inverse y ≤ inverse x
using xy inverse-le-iff-sgn[OF sgn] by auto

lemma set-list-update: set (xs [i := k]) =
(if i < length xs then insert k (set (take i xs) ∪ set (drop (Suc i) xs)) else set xs)

proof (induct xs arbitrary: i)
case (Cons x xs i)
thus ?case

26

by (cases i, auto)
qed simp

lemma prod-list-dvd: assumes (x :: ′a :: comm-monoid-mult) ∈ set xs
shows x dvd prod-list xs

proof −
from assms[unfolded in-set-conv-decomp] obtain ys zs where xs: xs = ys @ x

zs by auto
show ?thesis unfolding xs dvd-def by (intro exI [of - prod-list (ys @ zs)], simp

add: ac-simps)
qed

lemma dvd-prod:
fixes A:: ′b set
assumes ∃ b∈A. a dvd f b finite A
shows a dvd prod f A
using assms(2 ,1)
proof (induct A)

case (insert x A)
thus ?case

using comm-monoid-mult-class.dvd-mult dvd-mult2 insert-iff prod.insert by
auto
qed auto

context
fixes xs :: ′a :: comm-monoid-mult list

begin
lemma prod-list-filter : prod-list (filter f xs) ∗ prod-list (filter (λ x. ¬ f x) xs) =
prod-list xs

by (induct xs, auto simp: ac-simps)

lemma prod-list-partition: assumes partition f xs = (ys, zs)
shows prod-list xs = prod-list ys ∗ prod-list zs
using assms by (subst prod-list-filter [symmetric, of f], auto simp: o-def)

end

lemma dvd-imp-mult-div-cancel-left[simp]:
assumes (a :: ′a :: semidom-divide) dvd b
shows a ∗ (b div a) = b

proof(cases b = 0)
case True then show ?thesis by auto

next
case False
with dvdE [OF assms] obtain c where ∗: b = a ∗ c by auto
also with False have a 6= 0 by auto
then have a ∗ c div a = c by auto
also note ∗[symmetric]
finally show ?thesis.

qed

27

lemma (in semidom) prod-list-zero-iff [simp]:
prod-list xs = 0 ←→ 0 ∈ set xs by (induction xs, auto)

context comm-monoid-mult begin

lemma unit-prod [intro]:
shows a dvd 1 =⇒ b dvd 1 =⇒ (a ∗ b) dvd 1
by (subst mult-1-left [of 1 , symmetric]) (rule mult-dvd-mono)

lemma is-unit-mult-iff [simp]:
shows (a ∗ b) dvd 1 ←→ a dvd 1 ∧ b dvd 1
by (auto dest: dvd-mult-left dvd-mult-right)

end

context comm-semiring-1
begin
lemma irreducibleE [elim]:

assumes irreducible p
and p 6= 0 =⇒ ¬ p dvd 1 =⇒ (

∧
a b. p = a ∗ b =⇒ a dvd 1 ∨ b dvd 1) =⇒

thesis
shows thesis using assms by (auto simp: irreducible-def)

lemma not-irreducibleE :
assumes ¬ irreducible x

and x = 0 =⇒ thesis
and x dvd 1 =⇒ thesis
and

∧
a b. x = a ∗ b =⇒ ¬ a dvd 1 =⇒ ¬ b dvd 1 =⇒ thesis

shows thesis using assms unfolding irreducible-def by auto

lemma prime-elem-dvd-prod-list:
assumes p: prime-elem p and pA: p dvd prod-list A shows ∃ a ∈ set A. p dvd a

proof(insert pA, induct A)
case Nil
with p show ?case by (simp add: prime-elem-not-unit)

next
case (Cons a A)
then show ?case by (auto simp: prime-elem-dvd-mult-iff [OF p])

qed

lemma prime-elem-dvd-prod-mset:
assumes p: prime-elem p and pA: p dvd prod-mset A shows ∃ a ∈# A. p dvd a

proof(insert pA, induct A)
case empty
with p show ?case by (simp add: prime-elem-not-unit)

next
case (add a A)

28

then show ?case by (auto simp: prime-elem-dvd-mult-iff [OF p])
qed

lemma mult-unit-dvd-iff [simp]:
assumes b dvd 1
shows a ∗ b dvd c ←→ a dvd c

proof
assume a ∗ b dvd c
with assms show a dvd c using dvd-mult-left[of a b c] by simp

next
assume a dvd c
with assms mult-dvd-mono show a ∗ b dvd c by fastforce

qed

lemma mult-unit-dvd-iff ′[simp]: a dvd 1 =⇒ (a ∗ b) dvd c ←→ b dvd c
using mult-unit-dvd-iff [of a b c] by (simp add: ac-simps)

lemma irreducibleD ′:
assumes irreducible a b dvd a
shows a dvd b ∨ b dvd 1

proof −
from assms obtain c where c: a = b ∗ c by (elim dvdE)
from irreducibleD[OF assms(1) this] have b dvd 1 ∨ c dvd 1 .
thus ?thesis by (auto simp: c)

qed

end

context idom
begin

Following lemmas are adapted and generalized so that they don’t use
"algebraic" classes.
lemma dvd-times-left-cancel-iff [simp]:

assumes a 6= 0
shows a ∗ b dvd a ∗ c ←→ b dvd c
(is ?lhs ←→ ?rhs)

proof
assume ?lhs
then obtain d where a ∗ c = a ∗ b ∗ d ..
with assms have c = b ∗ d by (auto simp add: ac-simps)
then show ?rhs ..

next
assume ?rhs
then obtain d where c = b ∗ d ..
then have a ∗ c = a ∗ b ∗ d by (simp add: ac-simps)
then show ?lhs ..

29

qed

lemma dvd-times-right-cancel-iff [simp]:
assumes a 6= 0
shows b ∗ a dvd c ∗ a ←→ b dvd c
using dvd-times-left-cancel-iff [of a b c] assms by (simp add: ac-simps)

lemma irreducibleI ′:
assumes a 6= 0 ¬ a dvd 1

∧
b. b dvd a =⇒ a dvd b ∨ b dvd 1

shows irreducible a
proof (rule irreducibleI)

fix b c assume a-eq: a = b ∗ c
hence a dvd b ∨ b dvd 1 by (intro assms) simp-all
thus b dvd 1 ∨ c dvd 1
proof

assume a dvd b
hence b ∗ c dvd b ∗ 1 by (simp add: a-eq)
moreover from ‹a 6= 0 › a-eq have b 6= 0 by auto
ultimately show ?thesis using dvd-times-left-cancel-iff by fastforce

qed blast
qed (simp-all add: assms(1 ,2))

lemma irreducible-altdef :
shows irreducible x ←→ x 6= 0 ∧ ¬ x dvd 1 ∧ (∀ b. b dvd x −→ x dvd b ∨ b dvd

1)
using irreducibleI ′[of x] irreducibleD ′[of x] irreducible-not-unit[of x] by auto

lemma dvd-mult-unit-iff :
assumes b: b dvd 1
shows a dvd c ∗ b ←→ a dvd c

proof−
from b obtain b ′ where 1 : b ∗ b ′ = 1 by (elim dvdE , auto)
then have b0 : b 6= 0 by auto
from 1 have a = (a ∗ b ′) ∗ b by (simp add: ac-simps)
also have . . . dvd c ∗ b ←→ a ∗ b ′ dvd c using b0 by auto
finally show ?thesis by (auto intro: dvd-mult-left)

qed

lemma dvd-mult-unit-iff ′: b dvd 1 =⇒ a dvd b ∗ c ←→ a dvd c
using dvd-mult-unit-iff [of b a c] by (simp add: ac-simps)

lemma irreducible-mult-unit-left:
shows a dvd 1 =⇒ irreducible (a ∗ p) ←→ irreducible p
by (auto simp: irreducible-altdef mult.commute[of a] dvd-mult-unit-iff)

lemma irreducible-mult-unit-right:
shows a dvd 1 =⇒ irreducible (p ∗ a) ←→ irreducible p
by (auto simp: irreducible-altdef mult.commute[of a] dvd-mult-unit-iff)

30

lemma prime-elem-imp-irreducible:
assumes prime-elem p
shows irreducible p

proof (rule irreducibleI)
fix a b
assume p-eq: p = a ∗ b
with assms have nz: a 6= 0 b 6= 0 by auto
from p-eq have p dvd a ∗ b by simp
with ‹prime-elem p› have p dvd a ∨ p dvd b by (rule prime-elem-dvd-multD)
with ‹p = a ∗ b› have a ∗ b dvd 1 ∗ b ∨ a ∗ b dvd a ∗ 1 by auto
thus a dvd 1 ∨ b dvd 1
by (simp only: dvd-times-left-cancel-iff [OF nz(1)] dvd-times-right-cancel-iff [OF

nz(2)])
qed (insert assms, simp-all add: prime-elem-def)

lemma unit-imp-dvd [dest]: b dvd 1 =⇒ b dvd a
by (rule dvd-trans [of - 1]) simp-all

lemma unit-mult-left-cancel: a dvd 1 =⇒ a ∗ b = a ∗ c ←→ b = c
using mult-cancel-left [of a b c] by auto

lemma unit-mult-right-cancel: a dvd 1 =⇒ b ∗ a = c ∗ a ←→ b = c
using unit-mult-left-cancel [of a b c] by (auto simp add: ac-simps)

New parts from here
lemma irreducible-multD:

assumes l: irreducible (a∗b)
shows a dvd 1 ∧ irreducible b ∨ b dvd 1 ∧ irreducible a

proof−
from l have a dvd 1 ∨ b dvd 1 using irreducibleD by auto
then show ?thesis
proof(elim disjE)

assume a: a dvd 1
with l have irreducible b

unfolding irreducible-def
by (metis is-unit-mult-iff mult.left-commute mult-not-zero)

with a show ?thesis by auto
next

assume a: b dvd 1
with l have irreducible a

unfolding irreducible-def
by (meson is-unit-mult-iff mult-not-zero semiring-normalization-rules(16))

with a show ?thesis by auto
qed

qed

end

31

lemma (in field) irreducible-field[simp]:
irreducible x ←→ False by (auto simp: dvd-field-iff irreducible-def)

lemma (in idom) irreducible-mult:
shows irreducible (a∗b) ←→ a dvd 1 ∧ irreducible b ∨ b dvd 1 ∧ irreducible a
by (auto dest: irreducible-multD simp: irreducible-mult-unit-left irreducible-mult-unit-right)

end

7 Missing Polynomial
The theory contains some basic results on polynomials which have not been
detected in the distribution, especially on linear factors and degrees.
theory Missing-Polynomial
imports

HOL−Computational-Algebra.Polynomial-Factorial
Missing-Unsorted

begin

7.1 Basic Properties
lemma degree-0-id: assumes degree p = 0

shows [: coeff p 0 :] = p
proof −

have
∧

x. 0 6= Suc x by auto
thus ?thesis using assms
by (metis coeff-pCons-0 degree-pCons-eq-if pCons-cases)

qed

lemma degree0-coeffs: degree p = 0 =⇒
∃ a. p = [: a :]
by (metis degree-pCons-eq-if old.nat.distinct(2) pCons-cases)

lemma degree1-coeffs: degree p = 1 =⇒
∃ a b. p = [: b, a :] ∧ a 6= 0
by (metis One-nat-def degree-pCons-eq-if nat.inject old.nat.distinct(2) pCons-0-0

pCons-cases)

lemma degree2-coeffs: degree p = 2 =⇒
∃ a b c. p = [: c, b, a :] ∧ a 6= 0
by (metis Suc-1 Suc-neq-Zero degree1-coeffs degree-pCons-eq-if nat.inject pCons-cases)

lemma poly-zero:
fixes p :: ′a :: comm-ring-1 poly
assumes x: poly p x = 0 shows p = 0 ←→ degree p = 0

proof
assume degp: degree p = 0

32

hence poly p x = coeff p (degree p) by(subst degree-0-id[OF degp,symmetric],
simp)

hence coeff p (degree p) = 0 using x by auto
thus p = 0 by auto

qed auto

lemma coeff-monom-Suc: coeff (monom a (Suc d) ∗ p) (Suc i) = coeff (monom
a d ∗ p) i

by (simp add: monom-Suc)

lemma coeff-sum-monom:
assumes n: n ≤ d
shows coeff (

∑
i≤d. monom (f i) i) n = f n (is ?l = -)

proof −
have ?l = (

∑
i≤d. coeff (monom (f i) i) n) (is - = sum ?cmf -)

using coeff-sum.
also have {..d} = insert n ({..d}−{n}) using n by auto

hence sum ?cmf {..d} = sum ?cmf ... by auto
also have ... = sum ?cmf ({..d}−{n}) + ?cmf n by (subst sum.insert,auto)
also have sum ?cmf ({..d}−{n}) = 0 by (subst sum.neutral, auto)
finally show ?thesis by simp

qed

lemma linear-poly-root: (a :: ′a :: comm-ring-1) ∈ set as =⇒ poly (
∏

a ← as. [:
− a, 1 :]) a = 0
proof (induct as)

case (Cons b as)
show ?case
proof (cases a = b)

case False
with Cons have a ∈ set as by auto
from Cons(1)[OF this] show ?thesis by simp

qed simp
qed simp

lemma degree-lcoeff-sum: assumes deg: degree (f q) = n
and fin: finite S and q: q ∈ S and degle:

∧
p . p ∈ S − {q} =⇒ degree (f p) <

n
and cong: coeff (f q) n = c
shows degree (sum f S) = n ∧ coeff (sum f S) n = c

proof (cases S = {q})
case True
thus ?thesis using deg cong by simp

next
case False
with q obtain p where p ∈ S − {q} by auto
from degle[OF this] have n: n > 0 by auto
have degree (sum f S) = degree (f q + sum f (S − {q}))

unfolding sum.remove[OF fin q] ..

33

also have . . . = degree (f q)
proof (rule degree-add-eq-left)

have degree (sum f (S − {q})) ≤ n − 1
proof (rule degree-sum-le)

fix p
show p ∈ S − {q} =⇒ degree (f p) ≤ n − 1

using degle[of p] by auto
qed (insert fin, auto)
also have . . . < n using n by simp
finally show degree (sum f (S − {q})) < degree (f q) unfolding deg .

qed
finally show ?thesis unfolding deg[symmetric] cong[symmetric]
proof (rule conjI)

have id: (
∑

x∈S − {q}. coeff (f x) (degree (f q))) = 0
by (rule sum.neutral, rule ballI , rule coeff-eq-0 [OF degle[folded deg]])

show coeff (sum f S) (degree (f q)) = coeff (f q) (degree (f q))
unfolding coeff-sum
by (subst sum.remove[OF - q], unfold id, insert fin, auto)

qed
qed

lemma degree-sum-list-le: (
∧

p . p ∈ set ps =⇒ degree p ≤ n)
=⇒ degree (sum-list ps) ≤ n

proof (induct ps)
case (Cons p ps)
hence degree (sum-list ps) ≤ n degree p ≤ n by auto
thus ?case unfolding sum-list.Cons by (metis degree-add-le)

qed simp

lemma degree-prod-list-le: degree (prod-list ps) ≤ sum-list (map degree ps)
proof (induct ps)

case (Cons p ps)
show ?case unfolding prod-list.Cons

by (rule order .trans[OF degree-mult-le], insert Cons, auto)
qed simp

lemma smult-sum: smult (
∑

i ∈ S . f i) p = (
∑

i ∈ S . smult (f i) p)
by (induct S rule: infinite-finite-induct, auto simp: smult-add-left)

lemma range-coeff : range (coeff p) = insert 0 (set (coeffs p))
by (metis nth-default-coeffs-eq range-nth-default)

lemma smult-power : (smult a p) ^ n = smult (a ^ n) (p ^ n)
by (induct n, auto simp: field-simps)

lemma poly-sum-list: poly (sum-list ps) x = sum-list (map (λ p. poly p x) ps)
by (induct ps, auto)

34

lemma poly-prod-list: poly (prod-list ps) x = prod-list (map (λ p. poly p x) ps)
by (induct ps, auto)

lemma sum-list-neutral: (
∧

x. x ∈ set xs =⇒ x = 0) =⇒ sum-list xs = 0
by (induct xs, auto)

lemma prod-list-neutral: (
∧

x. x ∈ set xs =⇒ x = 1) =⇒ prod-list xs = 1
by (induct xs, auto)

lemma (in comm-monoid-mult) prod-list-map-remove1 :
x ∈ set xs =⇒ prod-list (map f xs) = f x ∗ prod-list (map f (remove1 x xs))
by (induct xs) (auto simp add: ac-simps)

lemma poly-as-sum:
fixes p :: ′a::comm-semiring-1 poly
shows poly p x = (

∑
i≤degree p. x ^ i ∗ coeff p i)

unfolding poly-altdef by (simp add: ac-simps)

lemma poly-prod-0 : finite ps =⇒ poly (prod f ps) x = (0 :: ′a :: field) ←→ (∃ p
∈ ps. poly (f p) x = 0)

by (induct ps rule: finite-induct, auto)

lemma coeff-monom-mult:
shows coeff (monom a d ∗ p) i =
(if d ≤ i then a ∗ coeff p (i−d) else 0) (is ?l = ?r)

proof (cases d ≤ i)
case False thus ?thesis unfolding coeff-mult by simp
next case True

let ?f = λj. coeff (monom a d) j ∗ coeff p (i − j)
have

∧
j. j ∈ {0 ..i} − {d} =⇒ ?f j = 0 by auto

hence 0 = (
∑

j ∈ {0 ..i} − {d}. ?f j) by auto
also have ... + ?f d = (

∑
j ∈ insert d ({0 ..i} − {d}). ?f j)

by(subst sum.insert, auto)
also have ... = (

∑
j ∈ {0 ..i}. ?f j) by (subst insert-Diff , insert True, auto)

also have ... = (
∑

j≤i. ?f j) by (rule sum.cong, auto)
also have ... = ?l unfolding coeff-mult ..
finally show ?thesis using True by auto

qed

lemma poly-eqI2 :
assumes degree p = degree q and

∧
i. i ≤ degree p =⇒ coeff p i = coeff q i

shows p = q
apply(rule poly-eqI) by (metis assms le-degree)

A nice extension rule for polynomials.
lemma poly-ext[intro]:

fixes p q :: ′a :: {ring-char-0 , idom} poly
assumes

∧
x. poly p x = poly q x shows p = q

unfolding poly-eq-poly-eq-iff [symmetric]

35

using assms by (rule ext)

Copied from non-negative variants.
lemma coeff-linear-power-neg[simp]:

fixes a :: ′a::comm-ring-1
shows coeff ([:a, −1 :] ^ n) n = (−1)^n

apply (induct n, simp-all)
apply (subst coeff-eq-0)
apply (auto intro: le-less-trans degree-power-le)
done

lemma degree-linear-power-neg[simp]:
fixes a :: ′a::{idom,comm-ring-1}
shows degree ([:a, −1 :] ^ n) = n

apply (rule order-antisym)
apply (rule ord-le-eq-trans [OF degree-power-le], simp)
apply (rule le-degree)
unfolding coeff-linear-power-neg
apply (auto)
done

7.2 Polynomial Composition
lemmas [simp] = pcompose-pCons

lemma pcompose-eq-0 : fixes q :: ′a :: idom poly
assumes q: degree q 6= 0
shows p ◦p q = 0 ←→ p = 0

proof (induct p)
case 0
show ?case by auto

next
case (pCons a p)
have id: (pCons a p) ◦p q = [:a:] + q ∗ (p ◦p q) by simp
show ?case
proof (cases p = 0)

case True
show ?thesis unfolding id unfolding True by simp

next
case False
with pCons(2) have p ◦p q 6= 0 by auto
from degree-mult-eq[OF - this, of q] q have degree (q ∗ (p ◦p q)) 6= 0 by force
hence deg: degree ([:a:] + q ∗ (p ◦p q)) 6= 0

by (subst degree-add-eq-right, auto)
show ?thesis unfolding id using False deg by auto

qed
qed

declare degree-pcompose[simp]

36

7.3 Monic Polynomials
abbreviation monic where monic p ≡ coeff p (degree p) = 1

lemma unit-factor-field [simp]:
unit-factor (x :: ′a :: {field,normalization-semidom}) = x
by (cases is-unit x) (auto simp: is-unit-unit-factor dvd-field-iff)

lemma poly-gcd-monic:
fixes p :: ′a :: {field,factorial-ring-gcd,semiring-gcd-mult-normalize} poly
assumes p 6= 0 ∨ q 6= 0
shows monic (gcd p q)

proof −
from assms have 1 = unit-factor (gcd p q) by (auto simp: unit-factor-gcd)
also have . . . = [:lead-coeff (gcd p q):] unfolding unit-factor-poly-def

by (simp add: monom-0)
finally show ?thesis

by (metis coeff-pCons-0 degree-1 lead-coeff-1)
qed

lemma normalize-monic: monic p =⇒ normalize p = p
by (simp add: normalize-poly-eq-map-poly is-unit-unit-factor)

lemma lcoeff-monic-mult: assumes monic: monic (p :: ′a :: comm-semiring-1
poly)

shows coeff (p ∗ q) (degree p + degree q) = coeff q (degree q)
proof −

let ?pqi = λ i. coeff p i ∗ coeff q (degree p + degree q − i)
have coeff (p ∗ q) (degree p + degree q) =
(
∑

i≤degree p + degree q. ?pqi i)
unfolding coeff-mult by simp

also have . . . = ?pqi (degree p) + (sum ?pqi ({.. degree p + degree q} − {degree
p}))

by (subst sum.remove[of - degree p], auto)
also have ?pqi (degree p) = coeff q (degree q) unfolding monic by simp
also have (sum ?pqi ({.. degree p + degree q} − {degree p})) = 0
proof (rule sum.neutral, intro ballI)

fix d
assume d: d ∈ {.. degree p + degree q} − {degree p}
show ?pqi d = 0
proof (cases d < degree p)

case True
hence degree p + degree q − d > degree q by auto
hence coeff q (degree p + degree q − d) = 0 by (rule coeff-eq-0)
thus ?thesis by simp

next
case False
with d have d > degree p by auto
hence coeff p d = 0 by (rule coeff-eq-0)
thus ?thesis by simp

37

qed
qed
finally show ?thesis by simp

qed

lemma degree-monic-mult: assumes monic: monic (p :: ′a :: comm-semiring-1
poly)

and q: q 6= 0
shows degree (p ∗ q) = degree p + degree q

proof −
have degree p + degree q ≥ degree (p ∗ q) by (rule degree-mult-le)
also have degree p + degree q ≤ degree (p ∗ q)
proof −

from q have cq: coeff q (degree q) 6= 0 by auto
hence coeff (p ∗ q) (degree p + degree q) 6= 0 unfolding lcoeff-monic-mult[OF

monic] .
thus degree (p ∗ q) ≥ degree p + degree q by (rule le-degree)

qed
finally show ?thesis .

qed

lemma degree-prod-sum-monic: assumes
S : finite S
and nzd: 0 /∈ (degree o f) ‘ S
and monic: (

∧
a . a ∈ S =⇒ monic (f a))

shows degree (prod f S) = (sum (degree o f) S) ∧ coeff (prod f S) (sum (degree
o f) S) = 1
proof −

from S nzd monic
have degree (prod f S) = sum (degree ◦ f) S
∧ (S 6= {} −→ degree (prod f S) 6= 0 ∧ prod f S 6= 0) ∧ coeff (prod f S) (sum

(degree o f) S) = 1
proof (induct S rule: finite-induct)

case (insert a S)
have IH1 : degree (prod f S) = sum (degree o f) S

using insert by auto
have IH2 : coeff (prod f S) (degree (prod f S)) = 1

using insert by auto
have id: degree (prod f (insert a S)) = sum (degree ◦ f) (insert a S)
∧ coeff (prod f (insert a S)) (sum (degree o f) (insert a S)) = 1

proof (cases S = {})
case False
with insert have nz: prod f S 6= 0 by auto
from insert have monic: coeff (f a) (degree (f a)) = 1 by auto
have id: (degree ◦ f) a = degree (f a) by simp

show ?thesis unfolding prod.insert[OF insert(1−2)] sum.insert[OF in-
sert(1−2)] id

unfolding degree-monic-mult[OF monic nz]
unfolding IH1 [symmetric]

38

unfolding lcoeff-monic-mult[OF monic] IH2 by simp
qed (insert insert, auto)
show ?case using id unfolding sum.insert[OF insert(1−2)] using insert by

auto
qed simp
thus ?thesis by auto

qed

lemma degree-prod-monic:
assumes

∧
i. i < n =⇒ degree (f i :: ′a :: comm-semiring-1 poly) = 1

and
∧

i. i < n =⇒ coeff (f i) 1 = 1
shows degree (prod f {0 ..< n}) = n ∧ coeff (prod f {0 ..< n}) n = 1

proof −
from degree-prod-sum-monic[of {0 ..< n} f] show ?thesis using assms by force

qed

lemma degree-prod-sum-lt-n: assumes
∧

i. i < n =⇒ degree (f i :: ′a :: comm-semiring-1
poly) ≤ 1

and i: i < n and fi: degree (f i) = 0
shows degree (prod f {0 ..< n}) < n

proof −
have degree (prod f {0 ..< n}) ≤ sum (degree o f) {0 ..< n}

by (rule degree-prod-sum-le, auto)
also have sum (degree o f) {0 ..< n} = (degree o f) i + sum (degree o f) ({0

..< n} − {i})
by (rule sum.remove, insert i, auto)

also have (degree o f) i = 0 using fi by simp
also have sum (degree o f) ({0 ..< n} − {i}) ≤ sum (λ -. 1) ({0 ..< n} − {i})

by (rule sum-mono, insert assms, auto)
also have . . . = n − 1 using i by simp
also have . . . < n using i by simp
finally show ?thesis by simp

qed

lemma degree-linear-factors: degree (
∏

a ← as. [: f a, 1 :]) = length as
proof (induct as)

case (Cons b as) note IH = this
have id: (

∏
a←b # as. [:f a, 1 :]) = [:f b,1 :] ∗ (

∏
a←as. [:f a, 1 :]) by simp

show ?case unfolding id
by (subst degree-monic-mult, insert IH , auto)

qed simp

lemma monic-mult:
fixes p q :: ′a :: idom poly
assumes monic p monic q
shows monic (p ∗ q)

proof −
from assms have nz: p 6= 0 q 6= 0 by auto
show ?thesis unfolding degree-mult-eq[OF nz] coeff-mult-degree-sum

39

using assms by simp
qed

lemma monic-factor :
fixes p q :: ′a :: idom poly
assumes monic (p ∗ q) monic p
shows monic q

proof −
from assms have nz: p 6= 0 q 6= 0 by auto
from assms[unfolded degree-mult-eq[OF nz] coeff-mult-degree-sum ‹monic p›]
show ?thesis by simp

qed

lemma monic-prod:
fixes f :: ′a ⇒ ′b :: idom poly
assumes

∧
a. a ∈ as =⇒ monic (f a)

shows monic (prod f as) using assms
proof (induct as rule: infinite-finite-induct)

case (insert a as)
hence id: prod f (insert a as) = f a ∗ prod f as

and ∗: monic (f a) monic (prod f as) by auto
show ?case unfolding id by (rule monic-mult[OF ∗])

qed auto

lemma monic-prod-list:
fixes as :: ′a :: idom poly list
assumes

∧
a. a ∈ set as =⇒ monic a

shows monic (prod-list as) using assms
by (induct as, auto intro: monic-mult)

lemma monic-power :
assumes monic (p :: ′a :: idom poly)
shows monic (p ^ n)
by (induct n, insert assms, auto intro: monic-mult)

lemma monic-prod-list-pow: monic (
∏

(x:: ′a::idom, i)←xis. [:− x, 1 :] ^ Suc i)
proof (rule monic-prod-list, goal-cases)

case (1 a)
then obtain x i where a: a = [:−x, 1 :]^Suc i by force
show monic a unfolding a

by (rule monic-power , auto)
qed

lemma monic-degree-0 : monic p =⇒ (degree p = 0) = (p = 1)
using le-degree poly-eq-iff by force

40

7.4 Roots
The following proof structure is completely similar to the one of ?p 6= 0 =⇒
finite {x. poly ?p x = (0 ::? ′a)}.
lemma poly-roots-degree:

fixes p :: ′a::idom poly
shows p 6= 0 =⇒ card {x. poly p x = 0} ≤ degree p

proof (induct n ≡ degree p arbitrary: p)
case (0 p)
then obtain a where a 6= 0 and p = [:a:]

by (cases p, simp split: if-splits)
then show ?case by simp

next
case (Suc n p)
show ?case
proof (cases ∃ x. poly p x = 0)

case True
then obtain a where a: poly p a = 0 ..
then have [:−a, 1 :] dvd p by (simp only: poly-eq-0-iff-dvd)
then obtain k where k: p = [:−a, 1 :] ∗ k ..
with ‹p 6= 0 › have k 6= 0 by auto
with k have degree p = Suc (degree k)

by (simp add: degree-mult-eq del: mult-pCons-left)
with ‹Suc n = degree p› have n = degree k by simp
from Suc.hyps(1)[OF this ‹k 6= 0 ›]
have le: card {x. poly k x = 0} ≤ degree k .
have card {x. poly p x = 0} = card {x. poly ([:−a, 1 :] ∗ k) x = 0} unfolding

k ..
also have {x. poly ([:−a, 1 :] ∗ k) x = 0} = insert a {x. poly k x = 0}

by auto
also have card . . . ≤ Suc (card {x. poly k x = 0})

unfolding card-insert-if [OF poly-roots-finite[OF ‹k 6= 0 ›]] by simp
also have . . . ≤ Suc (degree k) using le by auto
finally show ?thesis using ‹degree p = Suc (degree k)› by simp

qed simp
qed

lemma poly-root-factor : (poly ([: r , 1 :] ∗ q) (k :: ′a :: idom) = 0) = (k = −r ∨
poly q k = 0) (is ?one)
(poly (q ∗ [: r , 1 :]) k = 0) = (k = −r ∨ poly q k = 0) (is ?two)
(poly [: r , 1 :] k = 0) = (k = −r) (is ?three)

proof −
have [simp]: r + k = 0 =⇒ k = − r by (simp add: minus-unique)
show ?one unfolding poly-mult by auto
show ?two unfolding poly-mult by auto
show ?three by auto

qed

lemma poly-root-constant: c 6= 0 =⇒ (poly (p ∗ [:c:]) (k :: ′a :: idom) = 0) =

41

(poly p k = 0)
unfolding poly-mult by auto

lemma poly-linear-exp-linear-factors-rev:
([:b,1 :])^(length (filter ((=) b) as)) dvd (

∏
(a :: ′a :: comm-ring-1) ← as. [: a,

1 :])
proof (induct as)

case (Cons a as)
let ?ls = length (filter ((=) b) (a # as))
let ?l = length (filter ((=) b) as)
have prod: (

∏
a ← Cons a as. [: a, 1 :]) = [: a, 1 :] ∗ (

∏
a ← as. [: a, 1 :]) by

simp
show ?case
proof (cases a = b)

case False
hence len: ?ls = ?l by simp
show ?thesis unfolding prod len using Cons by (rule dvd-mult)

next
case True
hence len: [: b, 1 :] ^ ?ls = [: a, 1 :] ∗ [: b, 1 :] ^ ?l by simp
show ?thesis unfolding prod len using Cons using dvd-refl mult-dvd-mono

by blast
qed

qed simp

lemma order-max: assumes dvd: [: −a, 1 :] ^ k dvd p and p: p 6= 0
shows k ≤ order a p

proof (rule ccontr)
assume ¬ ?thesis
hence ∃ j. k = Suc (order a p + j) by arith
then obtain j where k: k = Suc (order a p + j) by auto
have [: −a, 1 :] ^ Suc (order a p) dvd p

by (rule power-le-dvd[OF dvd[unfolded k]], simp)
with order-2 [OF p, of a] show False by blast

qed

7.5 Divisibility
context

assumes SORT-CONSTRAINT (′a :: idom)
begin
lemma poly-linear-linear-factor : assumes

dvd: [:b,1 :] dvd (
∏

(a :: ′a) ← as. [: a, 1 :])
shows b ∈ set as

proof −
let ?p = λ as. (

∏
a ← as. [: a, 1 :])

let ?b = [:b,1 :]
from assms[unfolded dvd-def] obtain p where id: ?p as = ?b ∗ p ..

42

from arg-cong[OF id, of λ p. poly p (−b)]
have poly (?p as) (−b) = 0 by simp
thus ?thesis
proof (induct as)

case (Cons a as)
have ?p (a # as) = [:a,1 :] ∗ ?p as by simp
from Cons(2)[unfolded this] have poly (?p as) (−b) = 0 ∨ (a − b) = 0 by

simp
with Cons(1) show ?case by auto

qed simp
qed

lemma poly-linear-exp-linear-factors:
assumes dvd: ([:b,1 :])^n dvd (

∏
(a :: ′a) ← as. [: a, 1 :])

shows length (filter ((=) b) as) ≥ n
proof −

let ?p = λ as. (
∏

a ← as. [: a, 1 :])
let ?b = [:b,1 :]
from dvd show ?thesis
proof (induct n arbitrary: as)

case (Suc n as)
have bs: ?b ^ Suc n = ?b ∗ ?b ^ n by simp
from poly-linear-linear-factor [OF dvd-mult-left[OF Suc(2)[unfolded bs]],

unfolded in-set-conv-decomp]
obtain as1 as2 where as: as = as1 @ b # as2 by auto
have ?p as = [:b,1 :] ∗ ?p (as1 @ as2) unfolding as
proof (induct as1)

case (Cons a as1)
have ?p (a # as1 @ b # as2) = [:a,1 :] ∗ ?p (as1 @ b # as2) by simp
also have ?p (as1 @ b # as2) = [:b,1 :] ∗ ?p (as1 @ as2) unfolding Cons

by simp
also have [:a,1 :] ∗ . . . = [:b,1 :] ∗ ([:a,1 :] ∗ ?p (as1 @ as2))

by (metis (no-types, lifting) mult.left-commute)
finally show ?case by simp

qed simp
from Suc(2)[unfolded bs this dvd-mult-cancel-left]
have ?b ^ n dvd ?p (as1 @ as2) by simp
from Suc(1)[OF this] show ?case unfolding as by simp

qed simp
qed
end

lemma const-poly-dvd: ([:a:] dvd [:b:]) = (a dvd b)
proof

assume a dvd b
then obtain c where b = a ∗ c unfolding dvd-def by auto
hence [:b:] = [:a:] ∗ [: c:] by (auto simp: ac-simps)
thus [:a:] dvd [:b:] unfolding dvd-def by blast

next

43

assume [:a:] dvd [:b:]
then obtain pc where [:b:] = [:a:] ∗ pc unfolding dvd-def by blast
from arg-cong[OF this, of λ p. coeff p 0 , unfolded coeff-mult]
have b = a ∗ coeff pc 0 by auto
thus a dvd b unfolding dvd-def by blast

qed

lemma const-poly-dvd-1 [simp]:
[:a:] dvd 1 ←→ a dvd 1
by (metis const-poly-dvd one-poly-eq-simps(2))

lemma poly-dvd-1 :
fixes p :: ′a :: {comm-semiring-1 ,semiring-no-zero-divisors} poly
shows p dvd 1 ←→ degree p = 0 ∧ coeff p 0 dvd 1

proof (cases degree p = 0)
case False
with divides-degree[of p 1] show ?thesis by auto

next
case True
from degree0-coeffs[OF this] obtain a where p: p = [:a:] by auto
show ?thesis unfolding p by auto

qed

Degree based version of irreducibility.
definition irreducibled :: ′a :: comm-semiring-1 poly ⇒ bool where

irreducibled p = (degree p > 0 ∧ (∀ q r . degree q < degree p −→ degree r <
degree p −→ p 6= q ∗ r))

lemma irreducibledI [intro]:
assumes 1 : degree p > 0
and 2 :

∧
q r . degree q > 0 =⇒ degree q < degree p =⇒ degree r > 0 =⇒ degree

r < degree p =⇒ p = q ∗ r =⇒ False
shows irreducibled p

proof (unfold irreducibled-def , intro conjI allI impI notI 1)
fix q r
assume degree q < degree p and degree r < degree p and p = q ∗ r
with degree-mult-le[of q r]
show False by (intro 2 , auto)

qed

lemma irreducibledI2 :
fixes p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes deg: degree p > 0 and ndvd:

∧
q. degree q > 0 =⇒ degree q ≤ degree

p div 2 =⇒ ¬ q dvd p
shows irreducibled p

proof (rule ccontr)
assume ¬ ?thesis
from this[unfolded irreducibled-def] deg obtain q r where dq: degree q < degree

p and dr : degree r < degree p

44

and p: p = q ∗ r by auto
from deg have p0 : p 6= 0 by auto
with p have q 6= 0 r 6= 0 by auto
from degree-mult-eq[OF this] p have dp: degree p = degree q + degree r by simp
show False
proof (cases degree q ≤ degree p div 2)

case True
from ndvd[OF - True] dq dr dp p show False by auto

next
case False
with dp have dr : degree r ≤ degree p div 2 by auto
from p have dvd: r dvd p by auto
from ndvd[OF - dr] dvd dp dq show False by auto

qed
qed

lemma reducibledI :
assumes degree p > 0 =⇒ ∃ q r . degree q < degree p ∧ degree r < degree p ∧ p

= q ∗ r
shows ¬ irreducibled p
using assms by (auto simp: irreducibled-def)

lemma irreducibledE [elim]:
assumes irreducibled p

and degree p > 0 =⇒ (
∧

q r . degree q < degree p =⇒ degree r < degree p =⇒
p 6= q ∗ r) =⇒ thesis

shows thesis
using assms by (auto simp: irreducibled-def)

lemma reducibledE [elim]:
assumes red: ¬ irreducibled p

and 1 : degree p = 0 =⇒ thesis
and 2 :

∧
q r . degree q > 0 =⇒ degree q < degree p =⇒ degree r > 0 =⇒ degree

r < degree p =⇒ p = q ∗ r =⇒ thesis
shows thesis
using red[unfolded irreducibled-def de-Morgan-conj not-not not-all not-imp]

proof (elim disjE exE conjE)
show ¬degree p > 0 =⇒ thesis using 1 by auto

next
fix q r
assume degree q < degree p and degree r < degree p and p = q ∗ r
with degree-mult-le[of q r]
show thesis by (intro 2 , auto)

qed

lemma irreducibledD:
assumes irreducibled p
shows degree p > 0

∧
q r . degree q < degree p =⇒ degree r < degree p =⇒ p 6=

q ∗ r

45

using assms unfolding irreducibled-def by auto

theorem irreducibled-factorization-exists:
assumes degree p > 0
shows ∃ fs. fs 6= [] ∧ (∀ f ∈ set fs. irreducibled f ∧ degree f ≤ degree p) ∧ p =

prod-list fs
and ¬irreducibled p =⇒ ∃ fs. length fs > 1 ∧ (∀ f ∈ set fs. irreducibled f ∧

degree f < degree p) ∧ p = prod-list fs
proof (atomize(full), insert assms, induct degree p arbitrary:p rule: less-induct)

case less
then have deg-f : degree p > 0 by auto
show ?case
proof (cases irreducibled p)

case True
then have set [p] ⊆ Collect irreducibled p = prod-list [p] by auto
with True show ?thesis by (auto intro: exI [of - [p]])

next
case False
with deg-f obtain g h
where deg-g: degree g < degree p degree g > 0

and deg-h: degree h < degree p degree h > 0
and f-gh: p = g ∗ h by auto

from less.hyps[OF deg-g] less.hyps[OF deg-h]
obtain gs hs
where emp: length gs > 0 length hs > 0

and ∀ f ∈ set gs. irreducibled f ∧ degree f ≤ degree g g = prod-list gs
and ∀ f ∈ set hs. irreducibled f ∧ degree f ≤ degree h h = prod-list hs by auto

with f-gh deg-g deg-h
have len: length (gs@hs) > 1
and mem: ∀ f ∈ set (gs@hs). irreducibled f ∧ degree f < degree p
and p: p = prod-list (gs@hs) by (auto simp del: length-greater-0-conv)

with False show ?thesis by (auto intro!: exI [of - gs@hs] simp: less-imp-le)
qed

qed

lemma irreducibled-factor :
fixes p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes degree p > 0
shows ∃ q r . irreducibled q ∧ p = q ∗ r ∧ degree r < degree p using assms

proof (induct degree p arbitrary: p rule: less-induct)
case (less p)
show ?case
proof (cases irreducibled p)

case False
with less(2) obtain q r
where q: degree q < degree p degree q > 0

and r : degree r < degree p degree r > 0
and p: p = q ∗ r
by auto

46

from less(1)[OF q] obtain s t where IH : irreducibled s q = s ∗ t by auto
from p have p: p = s ∗ (t ∗ r) unfolding IH by (simp add: ac-simps)
from less(2) have p 6= 0 by auto
hence degree p = degree s + (degree (t ∗ r)) unfolding p

by (subst degree-mult-eq, insert p, auto)
with irreducibledD[OF IH (1)] have degree p > degree (t ∗ r) by auto
with p IH show ?thesis by auto

next
case True
show ?thesis

by (rule exI [of - p], rule exI [of - 1], insert True less(2), auto)
qed

qed

context mult-zero begin

definition zero-divisor where zero-divisor a ≡ ∃ b. b 6= 0 ∧ a ∗ b = 0

lemma zero-divisorI [intro]:
assumes b 6= 0 and a ∗ b = 0 shows zero-divisor a
using assms by (auto simp: zero-divisor-def)

lemma zero-divisorE [elim]:
assumes zero-divisor a

and
∧

b. b 6= 0 =⇒ a ∗ b = 0 =⇒ thesis
shows thesis
using assms by (auto simp: zero-divisor-def)

end

lemma zero-divisor-0 [simp]:
zero-divisor (0 :: ′a::{mult-zero,zero-neq-one})
by (auto intro!: zero-divisorI [of 1])

lemma not-zero-divisor-1 :
¬ zero-divisor (1 :: ′a :: {monoid-mult,mult-zero})
by auto

lemma zero-divisor-iff-eq-0 [simp]:
fixes a :: ′a :: {semiring-no-zero-divisors, zero-neq-one}
shows zero-divisor a ←→ a = 0 by auto

lemma mult-eq-0-not-zero-divisor-left[simp]:
fixes a b :: ′a :: mult-zero
assumes ¬ zero-divisor a
shows a ∗ b = 0 ←→ b = 0
using assms unfolding zero-divisor-def by force

lemma mult-eq-0-not-zero-divisor-right[simp]:

47

fixes a b :: ′a :: {ab-semigroup-mult,mult-zero}
assumes ¬ zero-divisor b
shows a ∗ b = 0 ←→ a = 0
using assms unfolding zero-divisor-def by (force simp: ac-simps)

lemma degree-smult-not-zero-divisor-left[simp]:
assumes ¬ zero-divisor c
shows degree (smult c p) = degree p

proof(cases p = 0)
case False
then have coeff (smult c p) (degree p) 6= 0 using assms by auto
from le-degree[OF this] degree-smult-le[of c p]
show ?thesis by auto

qed auto

lemma degree-smult-not-zero-divisor-right[simp]:
assumes ¬ zero-divisor (lead-coeff p)
shows degree (smult c p) = (if c = 0 then 0 else degree p)

proof(cases c = 0)
case False
then have coeff (smult c p) (degree p) 6= 0 using assms by auto
from le-degree[OF this] degree-smult-le[of c p]
show ?thesis by auto

qed auto

lemma irreducibled-smult-not-zero-divisor-left:
assumes c0 : ¬ zero-divisor c
assumes L: irreducibled (smult c p)
shows irreducibled p

proof (intro irreducibledI)
from L have degree (smult c p) > 0 by auto
also note degree-smult-le
finally show degree p > 0 by auto
fix q r
assume deg-q: degree q < degree p

and deg-r : degree r < degree p
and p-qr : p = q ∗ r

then have 1 : smult c p = smult c q ∗ r by auto
note degree-smult-le[of c q]
also note deg-q
finally have 2 : degree (smult c q) < degree (smult c p) using c0 by auto
from deg-r have 3 : degree r < . . . using c0 by auto
from irreducibledD(2)[OF L 2 3] 1 show False by auto

qed

lemmas irreducibled-smultI =
irreducibled-smult-not-zero-divisor-left
[where ′a = ′a :: {comm-semiring-1 ,semiring-no-zero-divisors}, simplified]

48

lemma irreducibled-smult-not-zero-divisor-right:
assumes p0 : ¬ zero-divisor (lead-coeff p) and L: irreducibled (smult c p)
shows irreducibled p

proof−
from L have c 6= 0 by auto
with p0 have [simp]: degree (smult c p) = degree p by simp
show irreducibled p
proof (intro iffI irreducibledI conjI)

from L show degree p > 0 by auto
fix q r
assume deg-q: degree q < degree p

and deg-r : degree r < degree p
and p-qr : p = q ∗ r

then have 1 : smult c p = smult c q ∗ r by auto
note degree-smult-le[of c q]
also note deg-q
finally have 2 : degree (smult c q) < degree (smult c p) by simp
from deg-r have 3 : degree r < . . . by simp
from irreducibledD(2)[OF L 2 3] 1 show False by auto

qed
qed

lemma zero-divisor-mult-left:
fixes a b :: ′a :: {ab-semigroup-mult, mult-zero}
assumes zero-divisor a
shows zero-divisor (a ∗ b)

proof−
from assms obtain c where c0 : c 6= 0 and [simp]: a ∗ c = 0 by auto
have a ∗ b ∗ c = a ∗ c ∗ b by (simp only: ac-simps)
with c0 show ?thesis by auto

qed

lemma zero-divisor-mult-right:
fixes a b :: ′a :: {semigroup-mult, mult-zero}
assumes zero-divisor b
shows zero-divisor (a ∗ b)

proof−
from assms obtain c where c0 : c 6= 0 and [simp]: b ∗ c = 0 by auto
have a ∗ b ∗ c = a ∗ (b ∗ c) by (simp only: ac-simps)
with c0 show ?thesis by auto

qed

lemma not-zero-divisor-mult:
fixes a b :: ′a :: {ab-semigroup-mult, mult-zero}
assumes ¬ zero-divisor (a ∗ b)
shows ¬ zero-divisor a and ¬ zero-divisor b
using assms by (auto dest: zero-divisor-mult-right zero-divisor-mult-left)

49

lemma zero-divisor-smult-left:
assumes zero-divisor a
shows zero-divisor (smult a f)

proof−
from assms obtain b where b0 : b 6= 0 and a ∗ b = 0 by auto
then have smult a f ∗ [:b:] = 0 by (simp add: ac-simps)
with b0 show ?thesis by (auto intro!: zero-divisorI [of [:b:]])

qed

lemma unit-not-zero-divisor :
fixes a :: ′a :: {comm-monoid-mult, mult-zero}
assumes a dvd 1
shows ¬zero-divisor a

proof
from assms obtain b where ab: 1 = a ∗ b by (elim dvdE)
assume zero-divisor a
then have zero-divisor (1 :: ′a) by (unfold ab, intro zero-divisor-mult-left)
then show False by auto

qed

lemma linear-irreducibled: assumes degree p = 1
shows irreducibled p
by (rule irreducibledI , insert assms, auto)

lemma irreducibled-dvd-smult:
fixes p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes degree p > 0 irreducibled q p dvd q
shows ∃ c. c 6= 0 ∧ q = smult c p

proof −
from assms obtain r where q: q = p ∗ r by (elim dvdE , auto)
from degree-mult-eq[of p r] assms(1) q
have ¬ degree p < degree q and nz: p 6= 0 q 6= 0

apply (metis assms(2) degree-mult-eq-0 gr-implies-not-zero irreducibledD(2)
less-add-same-cancel2)

using assms by auto
hence deg: degree p ≥ degree q by auto
from ‹p dvd q› obtain k where q: q = k ∗ p unfolding dvd-def by (auto simp:

ac-simps)
with nz have k 6= 0 by auto
from deg[unfolded q degree-mult-eq[OF ‹k 6= 0 › ‹p 6= 0 ›]] have degree k = 0

unfolding q by auto
then obtain c where k: k = [: c :] by (metis degree-0-id)
with ‹k 6= 0 › have c 6= 0 by auto
have q = smult c p unfolding q k by simp
with ‹c 6= 0 › show ?thesis by auto

qed

50

7.6 Map over Polynomial Coefficients
lemma map-poly-simps:

shows map-poly f (pCons c p) =
(if c = 0 ∧ p = 0 then 0 else pCons (f c) (map-poly f p))

proof (cases c = 0)
case True note c0 = this show ?thesis

proof (cases p = 0)
case True thus ?thesis using c0 unfolding map-poly-def by simp
next case False thus ?thesis

unfolding map-poly-def by auto
qed

next case False thus ?thesis
unfolding map-poly-def by auto

qed

lemma map-poly-pCons[simp]:
assumes c 6= 0 ∨ p 6= 0
shows map-poly f (pCons c p) = pCons (f c) (map-poly f p)
unfolding map-poly-simps using assms by auto

lemma map-poly-map-poly:
assumes f0 : f 0 = 0
shows map-poly f (map-poly g p) = map-poly (f ◦ g) p

proof (induct p)
case (pCons a p) show ?case
proof(cases g a 6= 0 ∨ map-poly g p 6= 0)

case True show ?thesis
unfolding map-poly-pCons[OF pCons(1)]
unfolding map-poly-pCons[OF True]
unfolding pCons(2)
by simp

next
case False then show ?thesis

unfolding map-poly-pCons[OF pCons(1)]
unfolding pCons(2)[symmetric]
by (simp add: f0)

qed
qed simp

lemma map-poly-zero:
assumes f : ∀ c. f c = 0 −→ c = 0
shows [simp]: map-poly f p = 0 ←→ p = 0
by (induct p; auto simp: map-poly-simps f)

lemma map-poly-add:
assumes h0 : h 0 = 0

and h-add: ∀ p q. h (p + q) = h p + h q
shows map-poly h (p + q) = map-poly h p + map-poly h q

proof (induct p arbitrary: q)

51

case (pCons a p) note pIH = this
show ?case
proof(induct q)

case (pCons b q) note qIH = this
show ?case

unfolding map-poly-pCons[OF qIH (1)]
unfolding map-poly-pCons[OF pIH (1)]
unfolding add-pCons
unfolding pIH (2)[symmetric]
unfolding h-add[rule-format,symmetric]
unfolding map-poly-simps using h0 by auto

qed auto
qed auto

7.7 Morphismic properties of pCons (0 :: ′a)
lemma monom-pCons-0-monom:

monom (pCons 0 (monom a n)) d = map-poly (pCons 0) (monom (monom a n)
d)

apply (induct d)
unfolding monom-0 unfolding map-poly-simps apply simp
unfolding monom-Suc map-poly-simps by auto

lemma pCons-0-add: pCons 0 (p + q) = pCons 0 p + pCons 0 q by auto

lemma sum-pCons-0-commute:
sum (λi. pCons 0 (f i)) S = pCons 0 (sum f S)
by(induct S rule: infinite-finite-induct;simp)

lemma pCons-0-as-mult:
fixes p:: ′a :: comm-semiring-1 poly
shows pCons 0 p = [:0 ,1 :] ∗ p by auto

7.8 Misc
fun expand-powers :: (nat × ′a)list ⇒ ′a list where

expand-powers [] = []
| expand-powers ((Suc n, a) # ps) = a # expand-powers ((n,a) # ps)
| expand-powers ((0 ,a) # ps) = expand-powers ps

lemma expand-powers: fixes f :: ′a ⇒ ′b :: comm-ring-1
shows (

∏
(n,a) ← n-as. f a ^ n) = (

∏
a ← expand-powers n-as. f a)

by (rule sym, induct n-as rule: expand-powers.induct, auto)

lemma poly-smult-zero-iff : fixes x :: ′a :: idom
shows (poly (smult a p) x = 0) = (a = 0 ∨ poly p x = 0)
by simp

lemma poly-prod-list-zero-iff : fixes x :: ′a :: idom
shows (poly (prod-list ps) x = 0) = (∃ p ∈ set ps. poly p x = 0)

52

by (induct ps, auto)

lemma poly-mult-zero-iff : fixes x :: ′a :: idom
shows (poly (p ∗ q) x = 0) = (poly p x = 0 ∨ poly q x = 0)
by simp

lemma poly-power-zero-iff : fixes x :: ′a :: idom
shows (poly (p^n) x = 0) = (n 6= 0 ∧ poly p x = 0)
by (cases n, auto)

lemma sum-monom-0-iff : assumes fin: finite S
and g:

∧
i j. g i = g j =⇒ i = j

shows sum (λ i. monom (f i) (g i)) S = 0 ←→ (∀ i ∈ S . f i = 0) (is ?l = ?r)
proof −

{
assume ¬ ?r
then obtain i where i: i ∈ S and fi: f i 6= 0 by auto
let ?g = λ i. monom (f i) (g i)
have coeff (sum ?g S) (g i) = f i + sum (λ j. coeff (?g j) (g i)) (S − {i})

by (unfold sum.remove[OF fin i], simp add: coeff-sum)
also have sum (λ j. coeff (?g j) (g i)) (S − {i}) = 0

by (rule sum.neutral, insert g, auto)
finally have coeff (sum ?g S) (g i) 6= 0 using fi by auto
hence ¬ ?l by auto

}
thus ?thesis by auto

qed

lemma degree-prod-list-eq: assumes
∧

p. p ∈ set ps =⇒ (p :: ′a :: idom poly) 6= 0
shows degree (prod-list ps) = sum-list (map degree ps) using assms

proof (induct ps)
case (Cons p ps)
show ?case unfolding prod-list.Cons

by (subst degree-mult-eq, insert Cons, auto simp: prod-list-zero-iff)
qed simp

lemma degree-power-eq: assumes p: p 6= 0
shows degree (p ^ n) = degree (p :: ′a :: idom poly) ∗ n

proof (induct n)
case (Suc n)
from p have pn: p ^ n 6= 0 by auto
show ?case using degree-mult-eq[OF p pn] Suc by auto

qed simp

lemma coeff-Poly: coeff (Poly xs) i = (nth-default 0 xs i)
unfolding nth-default-coeffs-eq[of Poly xs, symmetric] coeffs-Poly by simp

lemma rsquarefree-def ′: rsquarefree p = (p 6= 0 ∧ (∀ a. order a p ≤ 1))

53

proof −
have

∧
a. order a p ≤ 1 ←→ order a p = 0 ∨ order a p = 1 by linarith

thus ?thesis unfolding rsquarefree-def by auto
qed

lemma order-prod-list: (
∧

p. p ∈ set ps =⇒ p 6= 0) =⇒ order x (prod-list ps) =
sum-list (map (order x) ps)

by (induct ps, auto, subst order-mult, auto simp: prod-list-zero-iff)

lemma irreducibled-dvd-eq:
fixes a b :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes irreducibled a and irreducibled b

and a dvd b
and monic a and monic b

shows a = b
using assms
by (metis (no-types, lifting) coeff-smult degree-smult-eq irreducibledD(1) irre-

ducibled-dvd-smult
mult.right-neutral smult-1-left)

lemma monic-gcd-dvd:
assumes fg: f dvd g and mon: monic f and gcd: gcd g h ∈ {1 , g}
shows gcd f h ∈ {1 , f }

proof (cases coprime g h)
case True
with dvd-refl have coprime f h

using fg by (blast intro: coprime-divisors)
then show ?thesis

by simp
next

case False
with gcd have gcd: gcd g h = g

by (simp add: coprime-iff-gcd-eq-1)
with fg have f dvd gcd g h

by simp
then have f dvd h

by simp
then have gcd f h = normalize f

by (simp add: gcd-proj1-iff)
also have normalize f = f

using mon by (rule normalize-monic)
finally show ?thesis

by simp
qed

lemma monom-power : (monom a b)^n = monom (a^n) (b∗n)
by (induct n, auto simp add: mult-monom)

lemma poly-const-pow: [:a:]^b = [:a^b:]

54

by (metis Groups.mult-ac(2) monom-0 monom-power mult-zero-right)

lemma degree-pderiv-le: degree (pderiv f) ≤ degree f − 1
proof (rule ccontr)

assume ¬ ?thesis
hence ge: degree (pderiv f) ≥ Suc (degree f − 1) by auto
hence pderiv f 6= 0 by auto
hence coeff (pderiv f) (degree (pderiv f)) 6= 0 by auto
from this[unfolded coeff-pderiv]
have coeff f (Suc (degree (pderiv f))) 6= 0 by auto
moreover have Suc (degree (pderiv f)) > degree f using ge by auto
ultimately show False by (simp add: coeff-eq-0)

qed

lemma map-div-is-smult-inverse: map-poly (λx. x / (a :: ′a :: field)) p = smult
(inverse a) p

unfolding smult-conv-map-poly
by (simp add: divide-inverse-commute)

lemma normalize-poly-old-def :
normalize (f :: ′a :: {normalization-semidom,field} poly) = smult (inverse (unit-factor

(lead-coeff f))) f
by (simp add: normalize-poly-eq-map-poly map-div-is-smult-inverse)

lemma poly-dvd-antisym:
fixes p q :: ′b::idom poly
assumes coeff : coeff p (degree p) = coeff q (degree q)
assumes dvd1 : p dvd q and dvd2 : q dvd p shows p = q

proof (cases p = 0)
case True with coeff show p = q by simp

next
case False with coeff have q 6= 0 by auto
have degree: degree p = degree q

using ‹p dvd q› ‹q dvd p› ‹p 6= 0 › ‹q 6= 0 ›
by (intro order-antisym dvd-imp-degree-le)

from ‹p dvd q› obtain a where a: q = p ∗ a ..
with ‹q 6= 0 › have a 6= 0 by auto
with degree a ‹p 6= 0 › have degree a = 0

by (simp add: degree-mult-eq)
with coeff a show p = q

by (cases a, auto split: if-splits)
qed

lemma coeff-f-0-code[code-unfold]: coeff f 0 = (case coeffs f of [] ⇒ 0 | x # - ⇒
x)

by (cases f , auto simp: cCons-def)

55

lemma poly-compare-0-code[code-unfold]: (f = 0) = (case coeffs f of [] ⇒ True |
- ⇒ False)

using coeffs-eq-Nil list.disc-eq-case(1) by blast

Getting more efficient code for abbreviation lead-coeff "
definition leading-coeff

where [code-abbrev, simp]: leading-coeff = lead-coeff

lemma leading-coeff-code [code]:
leading-coeff f = (let xs = coeffs f in if xs = [] then 0 else last xs)
by (simp add: last-coeffs-eq-coeff-degree)

lemma nth-coeffs-coeff : i < length (coeffs f) =⇒ coeffs f ! i = coeff f i
by (metis nth-default-coeffs-eq nth-default-def)

definition monom-mult :: nat ⇒ ′a :: comm-semiring-1 poly ⇒ ′a poly
where monom-mult n f = monom 1 n ∗ f

lemma monom-mult-unfold [code-unfold]:
monom 1 n ∗ f = monom-mult n f
f ∗ monom 1 n = monom-mult n f
by (auto simp: monom-mult-def ac-simps)

lemma monom-mult-code [code abstract]:
coeffs (monom-mult n f) = (let xs = coeffs f in

if xs = [] then xs else replicate n 0 @ xs)
by (rule coeffs-eqI)
(auto simp add: Let-def monom-mult-def coeff-monom-mult nth-default-append

nth-default-coeffs-eq)

lemma coeff-pcompose-monom: fixes f :: ′a :: comm-ring-1 poly
assumes n: j < n
shows coeff (f ◦p monom 1 n) (n ∗ i + j) = (if j = 0 then coeff f i else 0)

proof (induct f arbitrary: i)
case (pCons a f i)
note d = pcompose-pCons coeff-add coeff-monom-mult coeff-pCons
show ?case
proof (cases i)

case 0
show ?thesis unfolding d 0 using n by (cases j, auto)

next
case (Suc ii)

have id: n ∗ Suc ii + j − n = n ∗ ii + j using n by (simp add: diff-mult-distrib2)
have id1 : (n ≤ n ∗ Suc ii + j) = True by auto
have id2 : (case n ∗ Suc ii + j of 0 ⇒ a | Suc x ⇒ coeff 0 x) = 0 using n

by (cases n ∗ Suc ii + j, auto)
show ?thesis unfolding d Suc id id1 id2 pCons(2) if-True by auto

qed
qed auto

56

lemma coeff-pcompose-x-pow-n: fixes f :: ′a :: comm-ring-1 poly
assumes n: n 6= 0
shows coeff (f ◦p monom 1 n) (n ∗ i) = coeff f i
using coeff-pcompose-monom[of 0 n f i] n by auto

lemma dvd-dvd-smult: a dvd b =⇒ f dvd g =⇒ smult a f dvd smult b g
unfolding dvd-def by (metis mult-smult-left mult-smult-right smult-smult)

definition sdiv-poly :: ′a :: idom-divide poly ⇒ ′a ⇒ ′a poly where
sdiv-poly p a = (map-poly (λ c. c div a) p)

lemma smult-map-poly: smult a = map-poly ((∗) a)
by (rule ext, rule poly-eqI , subst coeff-map-poly, auto)

lemma smult-exact-sdiv-poly: assumes
∧

c. c ∈ set (coeffs p) =⇒ a dvd c
shows smult a (sdiv-poly p a) = p
unfolding smult-map-poly sdiv-poly-def
by (subst map-poly-map-poly,simp,rule map-poly-idI , insert assms, auto)

lemma coeff-sdiv-poly: coeff (sdiv-poly f a) n = coeff f n div a
unfolding sdiv-poly-def by (rule coeff-map-poly, auto)

lemma poly-pinfty-ge:
fixes p :: real poly
assumes lead-coeff p > 0 degree p 6= 0
shows ∃n. ∀ x ≥ n. poly p x ≥ b

proof −
let ?p = p − [:b − lead-coeff p :]
have id: lead-coeff ?p = lead-coeff p using assms(2)

by (cases p, auto)
with assms(1) have lead-coeff ?p > 0 by auto
from poly-pinfty-gt-lc[OF this, unfolded id] obtain n

where
∧

x. x ≥ n =⇒ 0 ≤ poly p x − b by auto
thus ?thesis by auto

qed

lemma pderiv-sum: pderiv (sum f I) = sum (λ i. (pderiv (f i))) I
by (induct I rule: infinite-finite-induct, auto simp: pderiv-add)

lemma smult-sum2 : smult m (
∑

i ∈ S . f i) = (
∑

i ∈ S . smult m (f i))
by (induct S rule: infinite-finite-induct, auto simp add: smult-add-right)

lemma degree-mult-not-eq:
degree (f ∗ g) 6= degree f + degree g =⇒ lead-coeff f ∗ lead-coeff g = 0
by (rule ccontr , auto simp: coeff-mult-degree-sum degree-mult-le le-antisym le-degree)

lemma irreducibled-multD:
fixes a b :: ′a :: {comm-semiring-1 ,semiring-no-zero-divisors} poly

57

assumes l: irreducibled (a∗b)
shows degree a = 0 ∧ a 6= 0 ∧ irreducibled b ∨ degree b = 0 ∧ b 6= 0 ∧

irreducibled a
proof−

from l have a0 : a 6= 0 and b0 : b 6= 0 by auto
note [simp] = degree-mult-eq[OF this]
from l have degree a = 0 ∨ degree b = 0 apply (unfold irreducibled-def) by

force
then show ?thesis
proof(elim disjE)

assume a: degree a = 0
with l a0 have irreducibled b

by (simp add: irreducibled-def)
(metis degree-mult-eq degree-mult-eq-0 mult.left-commute plus-nat.add-0)

with a a0 show ?thesis by auto
next

assume b: degree b = 0
with l b0 have irreducibled a

unfolding irreducibled-def
by (smt add-cancel-left-right degree-mult-eq degree-mult-eq-0 neq0-conv semir-

ing-normalization-rules(16))
with b b0 show ?thesis by auto

qed
qed

lemma irreducible-connect-field[simp]:
fixes f :: ′a :: field poly
shows irreducibled f = irreducible f (is ?l = ?r)

proof
show ?r =⇒ ?l

apply (intro irreducibledI , force simp:is-unit-iff-degree)
by (auto dest!: irreducible-multD simp: poly-dvd-1)

next
assume l: ?l
show ?r
proof (rule irreducibleI)

from l show f 6= 0 ¬ is-unit f by (auto simp: poly-dvd-1)
fix a b assume f = a ∗ b
from l[unfolded this]

show a dvd 1 ∨ b dvd 1 by (auto dest!: irreducibled-multD simp:is-unit-iff-degree)
qed

qed

lemma is-unit-field-poly[simp]:
fixes p :: ′a::field poly
shows is-unit p ←→ p 6= 0 ∧ degree p = 0
by (cases p=0 , auto simp: is-unit-iff-degree)

lemma irreducible-smult-field[simp]:

58

fixes c :: ′a :: field
shows irreducible (smult c p) ←→ c 6= 0 ∧ irreducible p (is ?L ←→ ?R)

proof (intro iffI conjI irreducibled-smult-not-zero-divisor-left[of c p, simplified])
assume irreducible (smult c p)
then show c 6= 0 by auto

next
assume ?R
then have c0 : c 6= 0 and irr : irreducible p by auto
show ?L
proof (fold irreducible-connect-field, intro irreducibledI , unfold degree-smult-eq

if-not-P[OF c0])
show degree p > 0 using irr by auto
fix q r
from c0 have p = smult (1/c) (smult c p) by simp
also assume smult c p = q ∗ r
finally have [simp]: p = smult (1/c)
assume main: degree q < degree p degree r < degree p
have ¬irreducibled p by (rule reducibledI , rule exI [of - smult (1/c) q], rule

exI [of - r], insert irr c0 main, simp)
with irr show False by auto

qed
qed auto

lemma irreducible-monic-factor : fixes p :: ′a :: field poly
assumes degree p > 0
shows ∃ q r . irreducible q ∧ p = q ∗ r ∧ monic q

proof −
from irreducibled-factorization-exists[OF assms]
obtain fs where fs 6= [] and set fs ⊆ Collect irreducible and p = prod-list fs by

auto
then have q: irreducible (hd fs) and p: p = hd fs ∗ prod-list (tl fs) by (atomize(full),

cases fs, auto)
define c where c = coeff (hd fs) (degree (hd fs))
from q have c: c 6= 0 unfolding c-def irreducibled-def by auto
show ?thesis

by (rule exI [of - smult (1/c) (hd fs)], rule exI [of - smult c (prod-list (tl fs))],
unfold p,

insert q c, auto simp: c-def)
qed

lemma monic-irreducible-factorization: fixes p :: ′a :: field poly
shows monic p =⇒
∃ as f . finite as ∧ p = prod (λ a. a ^ Suc (f a)) as ∧ as ⊆ {q. irreducible q ∧

monic q}
proof (induct degree p arbitrary: p rule: less-induct)

case (less p)
show ?case
proof (cases degree p > 0)

case False

59

with less(2) have p = 1 by (simp add: coeff-eq-0 poly-eq-iff)
thus ?thesis by (intro exI [of - {}], auto)

next
case True
from irreducibled-factor [OF this] obtain q r where p: p = q ∗ r

and q: irreducible q and deg: degree r < degree p by auto
hence q0 : q 6= 0 by auto
define c where c = coeff q (degree q)
let ?q = smult (1/c) q
let ?r = smult c r
from q0 have c: c 6= 0 1 / c 6= 0 unfolding c-def by auto
hence p: p = ?q ∗ ?r unfolding p by auto
have deg: degree ?r < degree p using c deg by auto
let ?Q = {q. irreducible q ∧ monic (q :: ′a poly)}
have mon: monic ?q unfolding c-def using q0 by auto
from monic-factor [OF ‹monic p›[unfolded p] this] have monic ?r .
from less(1)[OF deg this] obtain f as

where as: finite as ?r = (
∏

a ∈as. a ^ Suc (f a))
as ⊆ ?Q by blast

from q c have irred: irreducible ?q by simp
show ?thesis
proof (cases ?q ∈ as)

case False
let ?as = insert ?q as
let ?f = λ a. if a = ?q then 0 else f a
have p = ?q ∗ (

∏
a ∈as. a ^ Suc (f a)) unfolding p as by simp

also have (
∏

a ∈as. a ^ Suc (f a)) = (
∏

a ∈as. a ^ Suc (?f a))
by (rule prod.cong, insert False, auto)

also have ?q ∗ . . . = (
∏

a ∈ ?as. a ^ Suc (?f a))
by (subst prod.insert, insert as False, auto)

finally have p: p = (
∏

a ∈ ?as. a ^ Suc (?f a)) .
from as(1) have fin: finite ?as by auto
from as mon irred have Q: ?as ⊆ ?Q by auto
from fin p Q show ?thesis

by(intro exI [of - ?as] exI [of - ?f], auto)
next

case True
let ?f = λ a. if a = ?q then Suc (f a) else f a
have p = ?q ∗ (

∏
a ∈as. a ^ Suc (f a)) unfolding p as by simp

also have (
∏

a ∈as. a ^ Suc (f a)) = ?q ^ Suc (f ?q) ∗ (
∏

a ∈(as − {?q}).
a ^ Suc (f a))

by (subst prod.remove[OF - True], insert as, auto)
also have (

∏
a ∈(as − {?q}). a ^ Suc (f a)) = (

∏
a ∈(as − {?q}). a ^ Suc

(?f a))
by (rule prod.cong, auto)

also have ?q ∗ (?q ^ Suc (f ?q) ∗ . . .) = ?q ^ Suc (?f ?q) ∗ . . .
by (simp add: ac-simps)

also have . . . = (
∏

a ∈ as. a ^ Suc (?f a))
by (subst prod.remove[OF - True], insert as, auto)

60

finally have p = (
∏

a ∈ as. a ^ Suc (?f a)) .
with as show ?thesis

by (intro exI [of - as] exI [of - ?f], auto)
qed

qed
qed

lemma monic-irreducible-gcd:
monic (f :: ′a::{field,euclidean-ring-gcd,semiring-gcd-mult-normalize,

normalization-euclidean-semiring-multiplicative} poly) =⇒
irreducible f =⇒ gcd f u ∈ {1 ,f }
by (metis gcd-dvd1 irreducible-altdef insertCI is-unit-gcd-iff poly-dvd-antisym

poly-gcd-monic)
end

8 Connecting Polynomials with Homomorphism
Locales

theory Ring-Hom-Poly
imports

HOL−Computational-Algebra.Euclidean-Algorithm
Ring-Hom
Missing-Polynomial

begin

poly as a homomorphism. Note that types differ.
interpretation poly-hom: comm-semiring-hom λp. poly p a by (unfold-locales,
auto)

interpretation poly-hom: comm-ring-hom λp. poly p a..

interpretation poly-hom: idom-hom λp. poly p a..

(◦p) as a homomorphism.
interpretation pcompose-hom: comm-semiring-hom λq. q ◦p p

using pcompose-add pcompose-mult pcompose-1 by (unfold-locales, auto)

interpretation pcompose-hom: comm-ring-hom λq. q ◦p p ..

interpretation pcompose-hom: idom-hom λq. q ◦p p ..

definition eval-poly :: (′a ⇒ ′b :: comm-semiring-1) ⇒ ′a :: zero poly ⇒ ′b ⇒ ′b
where
[code del]: eval-poly h p = poly (map-poly h p)

lemma eval-poly-code[code]: eval-poly h p x = fold-coeffs (λ a b. h a + x ∗ b) p 0

61

by (induct p, auto simp: eval-poly-def)

lemma eval-poly-as-sum:
fixes h :: ′a :: zero ⇒ ′b :: comm-semiring-1
assumes h 0 = 0
shows eval-poly h p x = (

∑
i≤degree p. x^i ∗ h (coeff p i))

unfolding eval-poly-def
proof (induct p)

case 0 show ?case using assms by simp
next case (pCons a p) thus ?case

proof (cases p = 0)
case True show ?thesis by (simp add: True map-poly-simps assms)
next case False show ?thesis

unfolding degree-pCons-eq[OF False]
unfolding sum.atMost-Suc-shift
unfolding map-poly-pCons[OF pCons(1)]
by (simp add: pCons(2) sum-distrib-left mult.assoc)

qed
qed

lemma coeff-const: coeff [: a :] i = (if i = 0 then a else 0)
by (metis coeff-monom monom-0)

lemma x-as-monom: [:0 ,1 :] = monom 1 1
by (simp add: monom-0 monom-Suc)

lemma x-pow-n: monom 1 1 ^ n = monom 1 n
by (induct n) (simp-all add: monom-0 monom-Suc)

lemma map-poly-eval-poly: assumes h0 : h 0 = 0
shows map-poly h p = eval-poly (λ a. [: h a :]) p [:0 ,1 :] (is ?mp = ?ep)

proof (rule poly-eqI)
fix i :: nat
have 2 : (

∑
x≤i.

∑
xa≤degree p. (if xa = x then 1 else 0) ∗ coeff [:h (coeff p

xa):] (i − x))
= h (coeff p i) (is sum ?f ?s = ?r)

proof −
have sum ?f ?s = ?f i + sum ?f ({..i} − {i})

by (rule sum.remove[of - i], auto)
also have sum ?f ({..i} − {i}) = 0

by (rule sum.neutral, intro ballI , rule sum.neutral, auto simp: coeff-const)
also have ?f i = (

∑
xa≤degree p. (if xa = i then 1 else 0) ∗ h (coeff p xa)) (is

- = ?m)
unfolding coeff-const by simp

also have . . . = ?r
proof (cases i ≤ degree p)

case True
show ?thesis

by (subst sum.remove[of - i], insert True, auto)

62

next
case False
hence [simp]: coeff p i = 0 using le-degree by blast
show ?thesis

by (subst sum.neutral, auto simp: h0)
qed
finally show ?thesis by simp

qed
have h ′0 : [: h 0 :] = 0 using h0 by auto
show coeff ?mp i = coeff ?ep i

unfolding coeff-map-poly[of h, OF h0]
unfolding eval-poly-as-sum[of λa. [: h a :], OF h ′0]
unfolding coeff-sum
unfolding x-as-monom x-pow-n coeff-mult
unfolding sum.swap[of - - {..degree p}]
unfolding coeff-monom using 2 by auto

qed

lemma smult-as-map-poly: smult a = map-poly ((∗) a)
by (rule ext, rule poly-eqI , subst coeff-map-poly, auto)

8.1 map-poly of Homomorphisms
context zero-hom begin

We will consider hom is always simpler than map-poly hom.
lemma map-poly-hom-monom[simp]: map-poly hom (monom a i) = monom (hom

a) i
by(rule map-poly-monom, auto)

lemma coeff-map-poly-hom[simp]: coeff (map-poly hom p) i = hom (coeff p i)
by (rule coeff-map-poly, rule hom-zero)

end

locale map-poly-zero-hom = base: zero-hom
begin

sublocale zero-hom map-poly hom by (unfold-locales, auto)
end

map-poly preserves homomorphisms over addition.
context comm-monoid-add-hom
begin

lemma map-poly-hom-add[hom-distribs]:
map-poly hom (p + q) = map-poly hom p + map-poly hom q
by (rule map-poly-add; simp add: hom-distribs)

end

locale map-poly-comm-monoid-add-hom = base: comm-monoid-add-hom
begin
sublocale comm-monoid-add-hom map-poly hom by (unfold-locales, auto simp:hom-distribs)

end

63

To preserve homomorphisms over multiplication, it demands commuta-
tive ring homomorphisms.
context comm-semiring-hom begin

lemma map-poly-pCons-hom[hom-distribs]: map-poly hom (pCons a p) = pCons
(hom a) (map-poly hom p)

unfolding map-poly-simps by auto
lemma map-poly-hom-smult[hom-distribs]:

map-poly hom (smult c p) = smult (hom c) (map-poly hom p)
by (induct p, auto simp: hom-distribs)

lemma poly-map-poly[simp]: poly (map-poly hom p) (hom x) = hom (poly p x)
by (induct p; simp add: hom-distribs)

end

locale map-poly-comm-semiring-hom = base: comm-semiring-hom
begin

sublocale map-poly-comm-monoid-add-hom..
sublocale comm-semiring-hom map-poly hom
proof

show map-poly hom 1 = 1 by simp
fix p q show map-poly hom (p ∗ q) = map-poly hom p ∗ map-poly hom q

by (induct p, auto simp: hom-distribs)
qed

end

locale map-poly-comm-ring-hom = base: comm-ring-hom
begin

sublocale map-poly-comm-semiring-hom..
sublocale comm-ring-hom map-poly hom..

end

locale map-poly-idom-hom = base: idom-hom
begin

sublocale map-poly-comm-ring-hom..
sublocale idom-hom map-poly hom..

end

8.1.1 Injectivity
locale map-poly-inj-zero-hom = base: inj-zero-hom
begin

sublocale inj-zero-hom map-poly hom
proof (unfold-locales)

fix p q :: ′a poly assume map-poly hom p = map-poly hom q
from cong[of λp. coeff p -, OF refl this] show p = q by (auto intro: poly-eqI)

qed simp
end

locale map-poly-inj-comm-monoid-add-hom = base: inj-comm-monoid-add-hom
begin

64

sublocale map-poly-comm-monoid-add-hom..
sublocale map-poly-inj-zero-hom..
sublocale inj-comm-monoid-add-hom map-poly hom..

end

locale map-poly-inj-comm-semiring-hom = base: inj-comm-semiring-hom
begin

sublocale map-poly-comm-semiring-hom..
sublocale map-poly-inj-zero-hom..
sublocale inj-comm-semiring-hom map-poly hom..

end

locale map-poly-inj-comm-ring-hom = base: inj-comm-ring-hom
begin

sublocale map-poly-inj-comm-semiring-hom..
sublocale inj-comm-ring-hom map-poly hom..

end

locale map-poly-inj-idom-hom = base: inj-idom-hom
begin

sublocale map-poly-inj-comm-ring-hom..
sublocale inj-idom-hom map-poly hom..

end

lemma degree-map-poly-le: degree (map-poly f p) ≤ degree p
by(induct p;auto)

lemma coeffs-map-poly:
assumes f (lead-coeff p) = 0 ←→ p = 0
shows coeffs (map-poly f p) = map f (coeffs p)
unfolding coeffs-map-poly using assms by (simp add:coeffs-def)

lemma degree-map-poly:
assumes f (lead-coeff p) = 0 ←→ p = 0
shows degree (map-poly f p) = degree p
unfolding degree-eq-length-coeffs unfolding coeffs-map-poly[of f , OF assms] by

simp

context zero-hom-0 begin
lemma degree-map-poly-hom[simp]: degree (map-poly hom p) = degree p

by (rule degree-map-poly, auto)
lemma coeffs-map-poly-hom[simp]: coeffs (map-poly hom p) = map hom (coeffs

p)
by (rule coeffs-map-poly, auto)

lemma hom-lead-coeff [simp]: lead-coeff (map-poly hom p) = hom (lead-coeff p)
by simp

65

end

context comm-semiring-hom begin

interpretation map-poly-hom: map-poly-comm-semiring-hom..

lemma poly-map-poly-0 [simp]:
poly (map-poly hom p) 0 = hom (poly p 0) (is ?l = ?r)

proof−
have ?l = poly (map-poly hom p) (hom 0) by auto
then show ?thesis unfolding poly-map-poly.

qed

lemma poly-map-poly-1 [simp]:
poly (map-poly hom p) 1 = hom (poly p 1) (is ?l = ?r)

proof−
have ?l = poly (map-poly hom p) (hom 1) by auto
then show ?thesis unfolding poly-map-poly.

qed

lemma map-poly-hom-as-monom-sum:
(
∑

j≤degree p. monom (hom (coeff p j)) j) = map-poly hom p
proof −

show ?thesis
by (subst(6) poly-as-sum-of-monoms ′[OF le-refl, symmetric], simp add:

hom-distribs)
qed

lemma map-poly-pcompose[hom-distribs]:
map-poly hom (f ◦p g) = map-poly hom f ◦p map-poly hom g
by (induct f arbitrary: g; auto simp: hom-distribs)

end

context comm-semiring-hom begin

lemma eval-poly-0 [simp]: eval-poly hom 0 x = 0 unfolding eval-poly-def by simp
lemma eval-poly-monom: eval-poly hom (monom a n) x = hom a ∗ x ^ n

unfolding eval-poly-def
unfolding map-poly-monom[of hom, OF hom-zero] using poly-monom.

lemma poly-map-poly-eval-poly: poly (map-poly hom p) = eval-poly hom p
unfolding eval-poly-def ..

lemma map-poly-eval-poly:
map-poly hom p = eval-poly (λ a. [: hom a :]) p [:0 ,1 :]
by (rule map-poly-eval-poly, simp)

lemma degree-extension: assumes degree p ≤ n

66

shows (
∑

i≤degree p. x ^ i ∗ hom (coeff p i))
= (

∑
i≤n. x ^ i ∗ hom (coeff p i)) (is ?l = ?r)

proof −
let ?f = λ i. x ^ i ∗ hom (coeff p i)
define m where m = n − degree p
have n: n = degree p + m unfolding m-def using assms by auto
have ?r = (

∑
i ≤ degree p + m. ?f i) unfolding n ..

also have . . . = ?l + sum ?f {Suc (degree p) .. degree p + m}
by (subst sum.union-disjoint[symmetric], auto intro: sum.cong)

also have sum ?f {Suc (degree p) .. degree p + m} = 0
by (rule sum.neutral, auto simp: coeff-eq-0)

finally show ?thesis by simp
qed

lemma eval-poly-add[simp]: eval-poly hom (p + q) x = eval-poly hom p x +
eval-poly hom q x

unfolding eval-poly-def hom-distribs..

lemma eval-poly-sum: eval-poly hom (
∑

k∈A. p k) x = (
∑

k∈A. eval-poly hom (p
k) x)
proof (induct A rule: infinite-finite-induct)

case (insert a A)
show ?case

unfolding sum.insert[OF insert(1−2)] insert(3)[symmetric] by simp
qed (auto simp: eval-poly-def)

lemma eval-poly-poly: eval-poly hom p (hom x) = hom (poly p x)
unfolding eval-poly-def by auto

end

context comm-ring-hom begin
interpretation map-poly-hom: map-poly-comm-ring-hom..

lemma pseudo-divmod-main-hom:
pseudo-divmod-main (hom lc) (map-poly hom q) (map-poly hom r) (map-poly

hom d) dr i =
map-prod (map-poly hom) (map-poly hom) (pseudo-divmod-main lc q r d dr i)

proof−
show ?thesis by (induct lc q r d dr i rule:pseudo-divmod-main.induct, auto

simp: Let-def hom-distribs)
qed

end

lemma(in inj-comm-ring-hom) pseudo-divmod-hom:
pseudo-divmod (map-poly hom p) (map-poly hom q) =
map-prod (map-poly hom) (map-poly hom) (pseudo-divmod p q)

unfolding pseudo-divmod-def using pseudo-divmod-main-hom[of - 0] by (cases
q = 0 ,auto)

67

lemma(in inj-idom-hom) pseudo-mod-hom:
pseudo-mod (map-poly hom p) (map-poly hom q) = map-poly hom (pseudo-mod

p q)
using pseudo-divmod-hom unfolding pseudo-mod-def by auto

lemma(in idom-hom) map-poly-pderiv[hom-distribs]:
map-poly hom (pderiv p) = pderiv (map-poly hom p)

proof (induct p rule: pderiv.induct)
case (1 a p)
then show ?case unfolding pderiv.simps map-poly-pCons-hom by (cases p =

0 , auto simp: hom-distribs)
qed

context field-hom
begin

lemma map-poly-pdivmod[hom-distribs]:
map-prod (map-poly hom) (map-poly hom) (p div q, p mod q) =
(map-poly hom p div map-poly hom q, map-poly hom p mod map-poly hom q)

(is ?l = ?r)
proof −

let ?mp = map-poly hom
interpret map-poly-hom: map-poly-idom-hom..
obtain r s where dm: (p div q, p mod q) = (r , s)

by force
hence r : r = p div q and s: s = p mod q

by simp-all
from dm [folded pdivmod-pdivmodrel] have eucl-rel-poly p q (r , s)

by auto
from this[unfolded eucl-rel-poly-iff]
have eq: p = r ∗ q + s and cond: (if q = 0 then r = 0 else s = 0 ∨ degree s <

degree q) by auto
from arg-cong[OF eq, of ?mp, unfolded map-poly-add]
have eq: ?mp p = ?mp q ∗ ?mp r + ?mp s by (auto simp: hom-distribs)
from cond have cond: (if ?mp q = 0 then ?mp r = 0 else ?mp s = 0 ∨ degree

(?mp s) < degree (?mp q))
by simp

from eq cond have eucl-rel-poly (?mp p) (?mp q) (?mp r , ?mp s)
unfolding eucl-rel-poly-iff by auto

from this[unfolded pdivmod-pdivmodrel]
show ?thesis unfolding dm prod.simps by simp

qed

lemma map-poly-div[hom-distribs]: map-poly hom (p div q) = map-poly hom p div
map-poly hom q

using map-poly-pdivmod[of p q] by simp

lemma map-poly-mod[hom-distribs]: map-poly hom (p mod q) = map-poly hom p

68

mod map-poly hom q
using map-poly-pdivmod[of p q] by simp

end

locale field-hom ′ = field-hom hom
for hom :: ′a :: {field-gcd} ⇒ ′b :: {field-gcd}

begin

lemma map-poly-normalize[hom-distribs]: map-poly hom (normalize p) = normal-
ize (map-poly hom p)

by (simp add: normalize-poly-def hom-distribs)

lemma map-poly-gcd[hom-distribs]: map-poly hom (gcd p q) = gcd (map-poly hom
p) (map-poly hom q)

by (induct p q rule: eucl-induct)
(simp-all add: map-poly-normalize ac-simps hom-distribs)

end

definition div-poly :: ′a :: euclidean-semiring ⇒ ′a poly ⇒ ′a poly where
div-poly a p = map-poly (λ c. c div a) p

lemma smult-div-poly: assumes
∧

c. c ∈ set (coeffs p) =⇒ a dvd c
shows smult a (div-poly a p) = p
unfolding smult-as-map-poly div-poly-def
by (subst map-poly-map-poly, force, subst map-poly-idI , insert assms, auto)

lemma coeff-div-poly: coeff (div-poly a f) n = coeff f n div a
unfolding div-poly-def
by (rule coeff-map-poly, auto)

locale map-poly-inj-idom-divide-hom = base: inj-idom-divide-hom
begin
sublocale map-poly-idom-hom ..
sublocale map-poly-inj-zero-hom ..
sublocale inj-idom-hom map-poly hom ..
lemma divide-poly-main-hom: defines hh ≡ map-poly hom

shows hh (divide-poly-main lc f g h i j) = divide-poly-main (hom lc) (hh f) (hh
g) (hh h) i j

unfolding hh-def
proof (induct j arbitrary: lc f g h i)

case (Suc j lc f g h i)
let ?h = map-poly hom
show ?case unfolding divide-poly-main.simps Let-def
unfolding base.coeff-map-poly-hom base.hom-div[symmetric] base.hom-mult[symmetric]

base.eq-iff
if-distrib[of ?h] hom-zero
by (rule if-cong[OF refl - refl], subst Suc, simp add: hom-minus hom-add

69

hom-mult)
qed simp

sublocale inj-idom-divide-hom map-poly hom
proof

fix f g :: ′a poly
let ?h = map-poly hom
show ?h (f div g) = (?h f) div (?h g) unfolding divide-poly-def if-distrib[of ?h]

divide-poly-main-hom by simp
qed

lemma order-hom: order (hom x) (map-poly hom f) = order x f
unfolding Polynomial.order-def unfolding hom-dvd-iff [symmetric]
unfolding hom-power by (simp add: base.hom-uminus)

end

8.2 Example Interpretations
abbreviation of-int-poly ≡ map-poly of-int

interpretation of-int-poly-hom: map-poly-comm-semiring-hom of-int..
interpretation of-int-poly-hom: map-poly-comm-ring-hom of-int..
interpretation of-int-poly-hom: map-poly-idom-hom of-int..
interpretation of-int-poly-hom:

map-poly-inj-comm-ring-hom of-int :: int ⇒ ′a :: {comm-ring-1 ,ring-char-0} ..
interpretation of-int-poly-hom:

map-poly-inj-idom-hom of-int :: int ⇒ ′a :: {idom,ring-char-0} ..

The following operations are homomorphic w.r.t. only monoid-add.
interpretation pCons-0-hom: injective pCons 0 by (unfold-locales, auto)
interpretation pCons-0-hom: zero-hom-0 pCons 0 by (unfold-locales, auto)
interpretation pCons-0-hom: inj-comm-monoid-add-hom pCons 0 by (unfold-locales,
auto)
interpretation pCons-0-hom: inj-ab-group-add-hom pCons 0 by (unfold-locales,
auto)

interpretation monom-hom: injective λx. monom x d by (unfold-locales, auto)
interpretation monom-hom: inj-monoid-add-hom λx. monom x d by (unfold-locales,
auto simp: add-monom)
interpretation monom-hom: inj-comm-monoid-add-hom λx. monom x d..

end

9 Newton Interpolation
We proved the soundness of the Newton interpolation, i.e., a method to
interpolate a polynomial p from a list of points (x1, p(x1)), (x2, p(x2)),
In experiments it performs much faster than the Lagrange interpolation.

70

theory Newton-Interpolation
imports

HOL−Library.Monad-Syntax
Ring-Hom-Poly
Divmod-Int
Is-Rat-To-Rat

begin

For the Newton interpolation, we start with an efficient implementation
(which in prior examples we used as an uncertified oracle). Later on, a
more abstract definition of the algorithm is described for which soundness
is proven, and which is provably equivalent to the efficient implementation.

The implementation is based on divided differences and the Horner
schema.
fun horner-composition :: ′a :: comm-ring-1 list ⇒ ′a list ⇒ ′a poly where

horner-composition [cn] xis = [:cn:]
| horner-composition (ci # cs) (xi # xis) = horner-composition cs xis ∗ [:− xi, 1 :]
+ [:ci:]
| horner-composition - - = 0

lemma (in map-poly-comm-ring-hom) horner-composition-hom:
horner-composition (map hom cs) (map hom xs) = map-poly hom (horner-composition

cs xs)
by (induct cs xs rule: horner-composition.induct, auto simp: hom-distribs)

lemma horner-coeffs-ints: assumes len: length cs ≤ Suc (length ys)
shows (set (coeffs (horner-composition cs (map rat-of-int ys))) ⊆ �) = (set cs
⊆ �)
proof −

let ?ir = int-of-rat
let ?ri = rat-of-int
let ?mir = map ?ir
let ?mri = map ?ri
show ?thesis
proof

define ics where ics = map ?ir cs
assume set cs ⊆ �
hence ics: cs = ?mri ics unfolding ics-def map-map o-def

by (simp add: map-idI subset-code(1))
show set (coeffs (horner-composition cs (?mri ys))) ⊆ �

unfolding ics of-int-poly-hom.horner-composition-hom by auto
next

assume set (coeffs (horner-composition cs (?mri ys))) ⊆ �
thus set cs ⊆ � using len
proof (induct cs arbitrary: ys)

case (Cons c cs xs)
show ?case
proof (cases cs = [] ∨ xs = [])

case True

71

with Cons show ?thesis by (cases c = 0 ; cases cs, auto)
next

case False
then obtain d ds and y ys where cs: cs = d # ds and xs: xs = y # ys

by (cases cs, auto, cases xs, auto)
let ?q = horner-composition cs (?mri ys)
define q where q = ?q
define p where p = q ∗ [:− ?ri y, 1 :] + [:c:]
have id: horner-composition (c # cs) (?mri xs) = p

unfolding cs xs q-def p-def by simp
have coeff : coeff p i ∈ � for i
proof (cases coeff p i ∈ set (coeffs p))

case True
with Cons(2)[unfolded id] show ?thesis by blast

next
case False
hence coeff p i = 0 using range-coeff [of p] by blast
thus ?thesis by simp

qed
{

fix i
let ?f = λ j. coeff [:− ?ri y, 1 :] j ∗ coeff q (Suc i − j)
have coeff p (Suc i) = coeff ([: −?ri y, 1 :] ∗ q) (Suc i) unfolding p-def

by simp
also have . . . = (

∑
j≤Suc i. ?f j) unfolding coeff-mult by simp

also have . . . = ?f 0 + ?f 1 + (
∑

j∈{..Suc i} − {0} − {Suc 0}. ?f j)
by (subst sum.remove[of - 0], force+, subst sum.remove[of - 1], force+)

also have (
∑

j∈{..Suc i} − {0} − {Suc 0}. ?f j) = 0
proof (rule sum.neutral, auto, goal-cases)

case (1 x)
thus ?case by (cases x, auto, cases x − 1 , auto)

qed
also have ?f 0 = − ?ri y ∗ coeff q (Suc i) by simp
also have ?f 1 = coeff q i by simp
finally have int: coeff q i − ?ri y ∗ coeff q (Suc i) ∈ � using coeff [of Suc

i] by auto
assume coeff q (Suc i) ∈ �
hence ?ri y ∗ coeff q (Suc i) ∈ � by simp
hence coeff q i ∈ � using int Ints-diff Ints-minus by force

} note coeff-q = this
{

fix i
assume i ≤ degree q
hence coeff q (degree q − i) ∈ �
proof (induct i)

case 0
from coeff-q[of degree q] show ?case

by (metis Ints-0 Suc-n-not-le-n diff-zero le-degree)
next

72

case (Suc i)
with coeff-q[of i] show ?case

by (metis Suc-diff-Suc Suc-leD Suc-n-not-le-n coeff-q le-less)
qed

} note coeff-q = this
{

fix i
have coeff q i ∈ �
proof (cases i ≤ degree q)

case True
with coeff-q[of degree q − i] show ?thesis by auto

next
case False
hence coeff q i = 0 using le-degree by blast
thus ?thesis by simp

qed
} note coeff-q = this
hence set (coeffs q) ⊆ � by (auto simp: coeffs-def)

from Cons(1)[OF this[unfolded q-def]] Cons(3) xs have IH : set cs ⊆ � by
auto

define r where r = coeff q 0 ∗ (− ?ri y)
have r : r ∈ � using coeff-q[of 0] unfolding r-def by auto
have coeff p 0 ∈ � by fact
also have coeff p 0 = r + c unfolding p-def r-def by simp
finally have c: c ∈ � using r using Ints-diff by force
with IH show ?thesis by auto

qed
qed simp

qed
qed

context
fixes

ty :: ′a :: field itself
and xs :: ′a list
and fs :: ′a list

begin

fun divided-differences-impl :: ′a list ⇒ ′a ⇒ ′a ⇒ ′a list ⇒ ′a list where
divided-differences-impl (xi-j1 # x-j1s) fj xj (xi # xis) = (let

x-js = divided-differences-impl x-j1s fj xj xis;
new = (hd x-js − xi-j1) / (xj − xi)
in new # x-js)

| divided-differences-impl [] fj xj xis = [fj]

fun newton-coefficients-main :: ′a list ⇒ ′a list ⇒ ′a list list where
newton-coefficients-main [fj] xjs = [[fj]]

73

| newton-coefficients-main (fj # fjs) (xj # xjs) = (
let rec = newton-coefficients-main fjs xjs; row = hd rec;

new-row = divided-differences-impl row fj xj xs
in new-row # rec)

| newton-coefficients-main - - = []

definition newton-coefficients :: ′a list where
newton-coefficients = map hd (newton-coefficients-main (rev fs) (rev xs))

definition newton-poly-impl :: ′a poly where
newton-poly-impl = horner-composition (rev newton-coefficients) xs

qualified definition x i = xs ! i
qualified definition f i = fs ! i

private definition xd i j = x i − x j

lemma [simp]: xd i i = 0 xd i j + xd j k = xd i k xd i j + xd k i = xd k j
unfolding xd-def by simp-all

private function xij-f :: nat ⇒ nat ⇒ ′a where
xij-f i j = (if i < j then (xij-f (i + 1) j − xij-f i (j − 1)) / xd j i else f i)
by pat-completeness auto

termination by (relation measure (λ (i,j). j − i), auto)

private definition c :: nat ⇒ ′a where
c i = xij-f 0 i

private definition X j = [: − x j, 1 :]

private function b :: nat ⇒ nat ⇒ ′a poly where
b i n = (if i ≥ n then [:c n:] else b (Suc i) n ∗ X i + [:c i:])
by pat-completeness auto

termination by (relation measure (λ (i,n). Suc n − i), auto)

declare b.simps[simp del]

definition newton-poly :: nat ⇒ ′a poly where
newton-poly n = b 0 n

private definition Xij i j = prod-list (map X [i ..< j])

private definition N i = Xij 0 i

lemma Xii-1 [simp]: Xij i i = 1 unfolding Xij-def by simp
lemma smult-1 [simp]: smult d 1 = [:d:]

74

by (fact smult-one)

private lemma newton-poly-sum:
newton-poly n = sum-list (map (λ i. smult (c i) (N i)) [0 ..< Suc n])
unfolding newton-poly-def N-def

proof −
{

fix j
assume j ≤ n
hence b j n = (

∑
i←[j..<Suc n]. smult (c i) (Xij j i))

proof (induct j n rule: b.induct)
case (1 j n)
show ?case
proof (cases j ≥ n)

case True
with 1 (2) have j: j = n by auto
hence b j n = [:c n:] unfolding b.simps[of j n] by simp
thus ?thesis unfolding j by simp

next
case False
hence b: b j n = b (Suc j) n ∗ X j + [: c j:] unfolding b.simps[of j n] by

simp
define nn where nn = Suc n
from 1 (2) have id: [j..< nn] = j # [Suc j ..< nn] unfolding nn-def by

(simp add: upt-rec)
from False have Suc j ≤ n by auto
note IH = 1 (1)[OF False this]
have id2 : (

∑
x←[Suc j..< nn]. smult (c x) (Xij (Suc j) x ∗ X j)) =

(
∑

i←[Suc j..< nn]. smult (c i) (Xij j i))
proof (rule arg-cong[of - - sum-list], rule map-ext, intro impI , goal-cases)

case (1 i)
hence Xij (Suc j) i ∗ X j = Xij j i by (simp add: Xij-def upt-conv-Cons)
thus ?case by simp

qed
show ?thesis unfolding b IH sum-list-mult-const[symmetric]

unfolding nn-def [symmetric] id
by (simp add: id2)

qed
qed

}
from this[of 0] show b 0 n = (

∑
i←[0 ..<Suc n]. smult (c i) (Xij 0 i)) by simp

qed

private lemma poly-newton-poly: poly (newton-poly n) y = sum-list (map (λ i. c
i ∗ poly (N i) y) [0 ..< Suc n])

unfolding newton-poly-sum poly-sum-list map-map o-def by simp

private definition pprod k i j = (
∏

l←[i..<j]. xd k l)

75

private lemma poly-N-xi: poly (N i) (x j) = pprod j 0 i
proof −

have poly (N i) (x j) = (
∏

l←[0 ..<i]. xd j l)
unfolding N-def Xij-def poly-prod-list X-def [abs-def] map-map o-def xd-def by

simp
also have . . . = pprod j 0 i unfolding pprod-def ..
finally show ?thesis .

qed

private lemma poly-N-xi-cond: poly (N i) (x j) = (if j < i then 0 else pprod j 0
i)
proof −

show ?thesis
proof (cases j < i)

case False
thus ?thesis using poly-N-xi by simp

next
case True
hence j ∈ set [0 ..< i] by auto
from split-list[OF this] obtain bef aft where id2 : [0 ..< i] = bef @ j # aft

by auto
have (

∏
k←[0 ..<i]. xd j k) = 0 unfolding id2 by auto

with True show ?thesis unfolding poly-N-xi pprod-def by auto
qed

qed

private lemma poly-newton-poly-xj: assumes j ≤ n
shows poly (newton-poly n) (x j) = sum-list (map (λ i. c i ∗ poly (N i) (x j)) [0

..< Suc j])
proof −

from assms have id: [0 ..< Suc n] = [0 ..< Suc j] @ [Suc j ..< Suc n]
by (metis Suc-le-mono le-Suc-ex less-eq-nat.simps(1) upt-add-eq-append)

have id2 : (
∑

i←[Suc j..< Suc n]. c i ∗ poly (N i) (x j)) = 0
by (rule sum-list-neutral, unfold poly-N-xi-cond, auto)

show ?thesis unfolding poly-newton-poly id map-append sum-list-append id2 by
simp
qed

declare xij-f .simps[simp del]

context
fixes n
assumes dist:

∧
i j. i < j =⇒ j ≤ n =⇒ x i 6= x j

begin
private lemma xd-diff : i < j =⇒ j ≤ n =⇒ xd i j 6= 0

i < j =⇒ j ≤ n =⇒ xd j i 6= 0 using dist[of i j] dist[of j i] unfolding xd-def
by auto

This is the key technical lemma for soundness of Newton interpolation.

76

private lemma divided-differences-main: assumes k ≤ n i < k
shows sum-list (map (λ j. xij-f i (i + j) ∗ pprod k i (i + j)) [0 ..<Suc k − i]) =
sum-list (map (λ j. xij-f (Suc i) (Suc i + j) ∗ pprod k (Suc i) (Suc i + j))

[0 ..<Suc k − Suc i])
proof −

let ?exp = λ i j. xij-f i (i + j) ∗ pprod k i (i + j)
define ei where ei = ?exp i
define esi where esi = ?exp (Suc i)
let ?ki = k − i
let ?sumi = λ xs. sum-list (map ei xs)
let ?sumsi = λ xs. sum-list (map esi xs)
let ?mid = λ j. xij-f i (k − j) ∗ pprod k (Suc i) (k − j) ∗ xd (k − j) i
let ?sum = λ j. ?sumi [0 ..< ?ki − j] + ?sumsi [?ki − j ..< ?ki] + ?mid j
define fin where fin = ?ki − 1
have fin: fin < ?ki unfolding fin-def using assms by auto
have id: [0 ..< Suc k − i] = [0 ..< ?ki] @ [?ki] and

id2 : [i..<k] = i # [Suc i ..< k] and
id3 : k − (i + (k − Suc i)) = 1 k − (?ki − 1) = Suc i using assms
by (auto simp: Suc-diff-le upt-conv-Cons)

have neq: xd (Suc i) i 6= 0 using xd-diff [of i Suc i] assms by auto
have sum-list (map (λ j. xij-f i (i + j) ∗ pprod k i (i + j)) [0 ..<Suc k − i])
= ?sumi [0 ..< Suc k − i] unfolding ei-def by simp

also have . . . = ?sumi [0 ..< ?ki] + ?sumsi [?ki ..< ?ki] + ei ?ki
unfolding id by simp

also have . . . = ?sum 0
unfolding ei-def using assms by (simp add: pprod-def id2)

also have ?sum 0 = ?sum fin using fin
proof (induct fin)

case (Suc fin)
from Suc(2) assms
have fki: fin < ?ki and ikf : i < k − Suc fin i < k − fin and kfn: k − fin ≤

n by auto
from xd-diff [OF ikf (2) kfn] have nz: xd (k − fin) i 6= 0 by auto
note IH = Suc(1)[OF fki]
have id4 : [0 ..< ?ki − fin] = [0 ..< ?ki − Suc fin] @ [?ki − Suc fin]

i + (k − i − Suc fin) = k − Suc fin
Suc (k − Suc fin) = k − fin using Suc(2) assms ‹fin < ?ki›
by (metis Suc-diff-Suc le0 upt-Suc) (insert Suc(2), auto)

from Suc(2) assms have id5 : [i..<k − Suc fin] = i # [Suc i ..< k − Suc fin]
[Suc i..<k − fin] = [Suc i..<k − Suc fin] @ [k − Suc fin]
by (force simp: upt-rec) (metis Suc-leI id4 (3) ikf (1) upt-Suc)

have ?sum 0 = ?sum fin by (rule IH)
also have . . . = ?sumi [0 ..< ?ki − Suc fin] + ?sumsi [?ki − fin ..< ?ki] +
(ei (?ki − Suc fin) + ?mid fin)
unfolding id4 by simp

also have ?mid fin = (xij-f (Suc i) (k − fin) − xij-f i (k − Suc fin))
∗ pprod k (Suc i) (k − fin) unfolding xij-f .simps[of i k − fin]
using ikf nz by simp

also have . . . = xij-f (Suc i) (k − fin) ∗ pprod k (Suc i) (k − fin) −

77

xij-f i (k − Suc fin) ∗ pprod k (Suc i) (k − fin) by algebra
also have xij-f (Suc i) (k − fin) ∗ pprod k (Suc i) (k − fin) = esi (?ki − Suc

fin)
unfolding esi-def using ikf by (simp add: id4)

also have ei (?ki − Suc fin) = xij-f i (k − Suc fin) ∗ pprod k i (k − Suc fin)

unfolding ei-def id4 using ikf by (simp add: ac-simps)
finally have ?sum 0 = ?sumi [0 ..< ?ki − Suc fin]
+ (esi (?ki − Suc fin) + ?sumsi [?ki − fin ..< ?ki])
+ (xij-f i (k − Suc fin) ∗ (pprod k i (k − Suc fin) − pprod k (Suc i) (k −

fin)))
by algebra

also have esi (?ki − Suc fin) + ?sumsi [?ki − fin ..< ?ki]
= ?sumsi ((?ki − Suc fin) # [?ki − fin ..< ?ki]) by simp

also have (?ki − Suc fin) # [?ki − fin ..< ?ki] = [?ki − Suc fin ..< ?ki]
using Suc(2) by (simp add: Suc-diff-Suc upt-rec)

also have pprod k i (k − Suc fin) − pprod k (Suc i) (k − fin)
= (xd k i) ∗ pprod k (Suc i) (k − Suc fin) − (xd k (k − Suc fin)) ∗ pprod k

(Suc i) (k − Suc fin)
unfolding pprod-def id5 by simp

also have . . . = (xd k i − xd k (k − Suc fin)) ∗ pprod k (Suc i) (k − Suc fin)
by algebra

also have . . . = (xd (k − Suc fin) i) ∗ pprod k (Suc i) (k − Suc fin) unfolding
xd-def by simp

also have xij-f i (k − Suc fin) ∗ . . . = ?mid (Suc fin) by simp
finally show ?case by simp

qed simp
also have . . . = (ei 0 + ?mid (k − i − 1)) + ?sumsi [1 ..< k − i]

unfolding fin-def by (simp add: id3)
also have ei 0 + ?mid (k − i − 1) = esi 0 unfolding id3

unfolding ei-def esi-def xij-f .simps[of i i] using neq assms
by (simp add: field-simps xij-f .simps pprod-def)

also have esi 0 + ?sumsi [1 ..< k − i] = ?sumsi (0 # [1 ..< k − i]) by simp
also have 0 # [1 ..< k − i] = [0 ..< Suc k − Suc i]

using assms by (simp add: upt-rec)
also have ?sumsi . . . = sum-list (map (λ j. xij-f (Suc i) (Suc i + j) ∗

pprod k (Suc i) (Suc i + j)) [0 ..<Suc k − Suc i])
unfolding esi-def using assms by simp

finally show ?thesis .
qed

private lemma divided-differences: assumes kn: k ≤ n and ik: i ≤ k
shows sum-list (map (λ j. xij-f i (i + j) ∗ pprod k i (i + j)) [0 ..<Suc k − i]) =

f k
proof −

{
fix ii
assume i + ii ≤ k
hence sum-list (map (λ j. xij-f i (i + j) ∗ pprod k i (i + j)) [0 ..<Suc k − i])

78

= sum-list (map (λ j. xij-f (i + ii) (i + ii + j) ∗ pprod k (i + ii) (i + ii +
j)) [0 ..<Suc k − (i + ii)])

proof (induct ii)
case (Suc ii)
hence le1 : i + ii ≤ k and le2 : i + ii < k by simp-all

show ?case unfolding Suc(1)[OF le1] unfolding divided-differences-main[OF
kn le2]

using Suc(2) by simp
qed simp

} note main = this
have ik: i + (k − i) ≤ k and id: i + (k − i) = k using ik by simp-all
show ?thesis unfolding main[OF ik] unfolding id

by (simp add: xij-f .simps pprod-def)
qed

lemma newton-poly-sound: assumes k ≤ n
shows poly (newton-poly n) (x k) = f k

proof −
have poly (newton-poly n) (x k) =

sum-list (map (λ j. xij-f 0 (0 + j) ∗ pprod k 0 (0 + j)) [0 ..<Suc k − 0])
unfolding poly-newton-poly-xj[OF assms] c-def poly-N-xi by simp

also have . . . = f k
by (rule divided-differences[OF assms], simp)

finally show ?thesis by simp
qed
end

lemma newton-poly-degree: degree (newton-poly n) ≤ n
proof −

{
fix i
have i ≤ n =⇒ degree (b i n) ≤ n − i
proof (induct i n rule: b.induct)

case (1 i n)
note b = b.simps[of i n]
show ?case
proof (cases n ≤ i)

case True
thus ?thesis unfolding b by auto

next
case False

have degree (b i n) = degree (b (Suc i) n ∗ X i + [:c i:]) using False
unfolding b by simp

also have . . . ≤ max (degree (b (Suc i) n ∗ X i)) (degree [:c i:])
by (rule degree-add-le-max)

also have . . . = degree (b (Suc i) n ∗ X i) by simp
also have . . . ≤ degree (b (Suc i) n) + degree (X i)

by (rule degree-mult-le)
also have . . . ≤ n − Suc i + degree (X i)

79

using 1 (1)[OF False] 1 (2) False add-le-mono1 not-less-eq-eq by blast
also have . . . = n − Suc i + 1 unfolding X-def by simp
also have . . . = n − i using 1 (2) False by auto
finally show ?thesis .

qed
qed

}
from this[of 0] show ?thesis unfolding newton-poly-def by simp

qed

context
fixes n
assumes xs: length xs = n

and fs: length fs = n
begin
lemma newton-coefficients-main:

k < n =⇒ newton-coefficients-main (rev (map f [0 ..<Suc k])) (rev (map x
[0 ..<Suc k]))

= rev (map (λ i. map (λ j. xij-f j i) [0 ..<Suc i]) [0 ..<Suc k])
proof (induct k)

case 0
show ?case

by (simp add: xij-f .simps)
next

case (Suc k)
hence k < n by auto
note IH = Suc(1)[OF this]
have id:

∧
f . rev (map f [0 ..<Suc (Suc k)]) = f (Suc k) # f k # rev (map f

[0 ..< k])
and id2 :

∧
f . f k # rev (map f [0 ..<k]) = rev (map f [0 ..< Suc k]) by simp-all

show ?case unfolding id newton-coefficients-main.simps Let-def
unfolding id2 IH
unfolding list.simps id2 [symmetric]

proof (rule conjI , goal-cases)
case 1
have xs: xs = map x [0 ..< n] using xs unfolding x-def [abs-def]

by (intro nth-equalityI , auto)
define nn where nn = (0 :: nat)
define m where m = Suc k − nn
have prems: m = Suc k − nn nn < Suc (Suc k) unfolding m-def nn-def by

auto
have ?case = (divided-differences-impl (map ((λj. xij-f j k)) [nn..< Suc k]) (f

(Suc k)) (x (Suc k)) (map x [nn ..< n]) =
map ((λj. xij-f j (Suc k))) [nn..<Suc (Suc k)])
unfolding nn-def xs[symmetric] by simp

also have . . . using prems
proof (induct m arbitrary: nn)

case 0
hence nn: nn = Suc k by auto

80

show ?case unfolding nn by (simp add: xij-f .simps)
next

case (Suc m)
with ‹Suc k < n› have nn < n and le: nn < Suc k by auto
with Suc(2−) have id:
[nn..<Suc k] = nn # [Suc nn..< Suc k]
[nn..<n] = nn # [Suc nn..< n]

and id2 : [nn..<Suc (Suc k)] = nn # [Suc nn..<Suc (Suc k)]
[Suc nn..<Suc (Suc k)] = Suc nn # [Suc (Suc nn)..<Suc (Suc k)]
by (auto simp: upt-rec)

from Suc(2−) have m = Suc k − Suc nn Suc nn < Suc (Suc k) by auto
note IH = Suc(1)[OF this]
show ?case unfolding id list.simps divided-differences-impl.simps IH Let-def

unfolding id2 list.simps
using le
by (simp add: xij-f .simps[of nn Suc k] xd-def)

qed
finally show ?case by simp

qed simp
qed

lemma newton-coefficients: newton-coefficients = rev (map c [0 ..< n])
proof (cases n)

case 0
hence xs: xs = [] fs = [] using xs fs by auto
show ?thesis unfolding newton-coefficients-def 0

using newton-coefficients-main.simps
unfolding xs by simp

next
case (Suc nn)
hence sn: Suc nn = n and nn: nn < n by auto
from fs have fs: map f [0 ..<Suc nn] = fs unfolding sn

by (intro nth-equalityI , auto simp: f-def)
from xs have xs: map x [0 ..<Suc nn] = xs unfolding sn

by (intro nth-equalityI , auto simp: x-def)
show ?thesis

unfolding newton-coefficients-def
newton-coefficients-main[OF nn, unfolded fs xs]

unfolding sn rev-map[symmetric] map-map o-def
by (rule arg-cong[of - - rev], subst upt-rec, intro nth-equalityI , auto simp: c-def)

qed

lemma newton-poly-impl: assumes n = Suc nn
shows newton-poly-impl = newton-poly nn

proof −
define i where i = (0 :: nat)
have xs: map x [0 ..<n] = xs using xs

by (intro nth-equalityI , auto simp: x-def)
have i ≤ nn unfolding i-def by simp

81

hence horner-composition (map c [i..<Suc nn]) (map x [i..<Suc nn]) = b i nn
proof (induct i nn rule: b.induct)

case (1 i n)
show ?case
proof (cases n ≤ i)

case True
with 1 (2) have i: i = n by simp
show ?thesis unfolding i b.simps[of n n] by simp

next
case False
hence Suc i ≤ n by simp
note IH = 1 (1)[OF False this]

have bi: b i n = b (Suc i) n ∗ X i + [:c i:] using False by (simp add: b.simps)

from False have id: [i ..< Suc n] = i # [Suc i ..< Suc n] by (simp add:
upt-rec)

from False have id2 : [Suc i ..< Suc n] = Suc i # [Suc (Suc i) ..< Suc n]
by (simp add: upt-rec)

show ?thesis unfolding id bi list.simps horner-composition.simps id2
unfolding IH [unfolded id2 list.simps] by (simp add: X-def)

qed
qed
thus ?thesis
unfolding newton-poly-impl-def newton-coefficients rev-rev-ident newton-poly-def

i-def
assms[symmetric] xs .

qed
end
end

context
fixes xs fs :: int list

begin

fun divided-differences-impl-int :: int list ⇒ int ⇒ int ⇒ int list ⇒ int list option
where

divided-differences-impl-int (xi-j1 # x-j1s) fj xj (xi # xis) = (
case divided-differences-impl-int x-j1s fj xj xis of None ⇒ None
| Some x-js ⇒ let (new,m) = divmod-int (hd x-js − xi-j1) (xj − xi)

in if m = 0 then Some (new # x-js) else None)
| divided-differences-impl-int [] fj xj xis = Some [fj]

fun newton-coefficients-main-int :: int list ⇒ int list ⇒ int list list option where
newton-coefficients-main-int [fj] xjs = Some [[fj]]
| newton-coefficients-main-int (fj # fjs) (xj # xjs) = (do {

rec ← newton-coefficients-main-int fjs xjs;
let row = hd rec;
new-row ← divided-differences-impl-int row fj xj xs;
Some (new-row # rec)})

82

| newton-coefficients-main-int - - = Some []

definition newton-coefficients-int :: int list option where
newton-coefficients-int = map-option (map hd) (newton-coefficients-main-int (rev

fs) (rev xs))

lemma divided-differences-impl-int-Some:
length gs ≤ length ys
=⇒ divided-differences-impl-int gs g x ys = Some res
=⇒ divided-differences-impl (map rat-of-int gs) (rat-of-int g) (rat-of-int x) (map

rat-of-int ys) = map rat-of-int res
∧ length res = Suc (length gs)

proof (induct gs g x ys arbitrary: res rule: divided-differences-impl-int.induct)
case (1 xi-j1 x-j1s fj xj xi xis)
note some = 1 (3)
from 1 (2) have len: length x-j1s ≤ length xis by auto
from some obtain x-js where rec: divided-differences-impl-int x-j1s fj xj xis =

Some x-js
by (auto split: option.splits)

note IH = 1 (1)[OF len rec]
have id: hd (map rat-of-int x-js) = rat-of-int (hd x-js) using IH by (cases x-js,

auto)
from some[simplified, unfolded rec divmod-int-def] have mod: (hd x-js − xi-j1)

mod (xj − xi) = 0
and res: res = (hd x-js − xi-j1) div (xj − xi) # x-js by (auto split: if-splits)

have rat-of-int ((hd x-js − xi-j1) div (xj − xi)) = rat-of-int (hd x-js − xi-j1) /
rat-of-int (xj − xi)

using mod by force
hence (rat-of-int (hd x-js) − rat-of-int xi-j1) / (rat-of-int xj − rat-of-int xi) =

rat-of-int ((hd x-js − xi-j1) div (xj − xi))
by simp

thus ?case by (simp add: IH Let-def res id)
next

case (2 fj xj xis res)
hence res: res = [fj] by simp
thus ?case by simp

qed simp

lemma div-Ints-mod-0 : assumes rat-of-int a / rat-of-int b ∈ � b 6= 0
shows a mod b = 0

proof −
define c where c = int-of-rat (rat-of-int a / rat-of-int b)
have rat-of-int a / rat-of-int b = rat-of-int c unfolding c-def using assms(1)

by simp
hence rat-of-int a = rat-of-int b ∗ rat-of-int c using assms(2)

by (metis divide-cancel-right nonzero-mult-div-cancel-left of-int-eq-0-iff)
hence a: a = b ∗ c by (simp add: of-int-hom.injectivity)
show a mod b = 0 unfolding a by simp

qed

83

lemma divided-differences-impl-int-None:
length gs ≤ length ys
=⇒ divided-differences-impl-int gs g x ys = None
=⇒ x /∈ set (take (length gs) ys)
=⇒ hd (divided-differences-impl (map rat-of-int gs) (rat-of-int g) (rat-of-int x)

(map rat-of-int ys)) /∈ �
proof (induct gs g x ys rule: divided-differences-impl-int.induct)

case (1 xi-j1 x-j1s fj xj xi xis)
note none = 1 (3)
from 1 (2 ,4) have len: length x-j1s ≤ length xis and xj: xj /∈ set (take (length

x-j1s) xis) and xji: xj 6= xi by auto
define d where d = divided-differences-impl (map rat-of-int x-j1s) (rat-of-int fj)

(rat-of-int xj) (map rat-of-int xis)
note IH = 1 (1)[OF len - xj]
show ?case
proof (cases divided-differences-impl-int x-j1s fj xj xis)

case None
from IH [OF None] have d: hd d /∈ � unfolding d-def by auto
{

let ?x = (hd d − rat-of-int xi-j1) / (rat-of-int xj − rat-of-int xi)
assume ?x ∈ �
hence ?x ∗ (of-int (xj − xi)) + rat-of-int xi-j1 ∈ �

using Ints-mult Ints-add Ints-of-int by blast
also have ?x ∗ (of-int (xj − xi)) = hd d − rat-of-int xi-j1 using xji by auto
also have . . . + rat-of-int xi-j1 = hd d by simp
finally have False using d by simp

}
thus ?thesis

by (auto simp: Let-def d-def [symmetric])
next

case (Some res)
from divided-differences-impl-int-Some[OF len Some]
have id: divided-differences-impl (map rat-of-int x-j1s) (rat-of-int fj) (rat-of-int

xj) (map rat-of-int xis) =
map rat-of-int res and res: res 6= [] by auto

have hd: hd (map rat-of-int res) = of-int (hd res) using res by (cases res,
auto)

define a where a = (hd res − xi-j1)
define b where b = xj − xi
from none[simplified, unfolded Some divmod-int-def]
have mod: a mod b 6= 0

by (auto split: if-splits simp: a-def b-def)
{

assume (rat-of-int (hd res) − rat-of-int xi-j1) / (rat-of-int xj − rat-of-int xi)
∈ �

hence rat-of-int a / rat-of-int b ∈ � unfolding a-def b-def by simp
moreover have b 6= 0 using xji unfolding b-def by simp
ultimately have False using mod div-Ints-mod-0 by auto

84

}
thus ?thesis

by (auto simp: id Let-def hd)
qed

qed auto

lemma newton-coefficients-main-int-Some:
length gs = length ys =⇒ length ys ≤ length xs
=⇒ newton-coefficients-main-int gs ys = Some res
=⇒ newton-coefficients-main (map rat-of-int xs) (map rat-of-int gs) (map rat-of-int

ys) = map (map rat-of-int) res
∧ (∀ x ∈ set res. x 6= [] ∧ length x ≤ length ys) ∧ length res = length gs

proof (induct gs ys arbitrary: res rule: newton-coefficients-main-int.induct)
case (2 fv v va xj xjs res)
from 2 (2 ,3) have len: length (v # va) = length xjs length xjs ≤ length xs by

auto
note some = 2 (4)
let ?n = newton-coefficients-main-int (v # va) xjs
let ?ri = rat-of-int
let ?mri = map ?ri
from some obtain rec where n: ?n = Some rec

by (cases ?n, auto)
note some = some[simplified, unfolded n]
let ?d = divided-differences-impl-int (hd rec) fv xj xs
from some obtain dd where d: ?d = Some dd and res: res = dd # rec

by (cases ?d, auto)
note IH = 2 (1)[OF len n]
from IH have lenn: length (hd rec) ≤ length xjs by (cases rec, auto)
with len have length (hd rec) ≤ length xs by auto
note dd = divided-differences-impl-int-Some[OF this d]
have hd: hd (map ?mri rec) = ?mri (hd rec) using IH by (cases rec, auto)
show ?case unfolding newton-coefficients-main.simps list.simps

IH [THEN conjunct1 , unfolded list.simps] Let-def hd
dd[THEN conjunct1] res

proof (intro conjI)
show length (dd # rec) = length (fv # v # va) using len

IH [THEN conjunct2] dd[THEN conjunct2] by auto
show ∀ x∈insert dd (set rec). x 6= [] ∧ length x ≤ length (xj # xjs)

using len IH [THEN conjunct2] dd[THEN conjunct2] lenn by auto
qed auto

qed auto

lemma newton-coefficients-main-int-None: assumes dist: distinct xs
shows length gs = length ys =⇒ length ys ≤ length xs
=⇒ newton-coefficients-main-int gs ys = None
=⇒ ys = drop (length xs − length ys) (rev xs)
=⇒ ∃ row ∈ set (newton-coefficients-main (map rat-of-int xs) (map rat-of-int gs)

(map rat-of-int ys)). hd row /∈ �
proof (induct gs ys rule: newton-coefficients-main-int.induct)

85

case (2 fv v va xj xjs)
from 2 (2 ,3) have len: length (v # va) = length xjs length xjs ≤ length xs by

auto
from arg-cong[OF 2 (5), of tl] 2 (3)
have xjs: xjs = drop (length xs − length xjs) (rev xs)

by (metis 2 (5) butlast-snoc butlast-take length-drop rev.simps(2) rev-drop
rev-rev-ident rev-take)

note none = 2 (4)
let ?n = newton-coefficients-main-int (v # va) xjs
let ?n ′ = newton-coefficients-main (map rat-of-int xs) (map rat-of-int (v # va))

(map rat-of-int xjs)
let ?ri = rat-of-int
let ?mri = map ?ri
show ?case
proof (cases ?n)

case None
from 2 (1)[OF len None xjs] obtain row where

row: row∈set ?n ′ and hd row /∈ � by auto
thus ?thesis by (intro bexI [of - row], auto simp: Let-def)

next
case (Some rec)
note some = newton-coefficients-main-int-Some[OF len this]
hence len ′: length (hd rec) ≤ length xjs by (cases rec, auto)
hence lenn: length (hd rec) ≤ length xs using len by auto
have hd: hd (map ?mri rec) = ?mri (hd rec) using some by (cases rec, auto)
let ?d = divided-differences-impl-int (hd rec) fv xj xs
from none[simplified, unfolded Some]
have none: ?d = None by (cases ?d, auto)
have xj /∈ set (take (length (hd rec)) xs)
proof

assume xj ∈ set (take (length (hd rec)) xs)
then obtain i where i < length (hd rec) and xj: xj = xs ! i

unfolding in-set-conv-nth by auto
with len ′ have i: i < length xjs by simp
have Suc (length xjs) ≤ length xs using 2 (3) by auto
with i have i0 : i 6= 0

by (metis 2 (5) Suc-diff-Suc Suc-le-lessD diff-less dist distinct-conv-nth
hd-drop-conv-nth length-Cons length-drop length-greater-0-conv length-rev

less-le-trans
list.sel(1) list.simps(3) nat-neq-iff rev-nth xj xjs)

have xj ∈ set xjs
by (subst xjs, unfold xj in-set-conv-nth, rule exI [of - length xjs − Suc i],

insert i 2 (3) i0 ,
auto simp: rev-nth)

hence ndist: ¬ distinct (xj # xjs) by auto
from dist have distinct (rev xs) by simp
from distinct-drop[OF this] have distinct (xj # xjs) using 2 (5) by metis
with ndist
show False ..

86

qed
note dd = divided-differences-impl-int-None[OF lenn none this]
show ?thesis

by (rule bexI , rule dd, insert some hd, auto)
qed

qed auto

lemma newton-coefficients-int: assumes dist: distinct xs
and len: length xs = length fs
shows newton-coefficients-int = (let cs = newton-coefficients (map rat-of-int xs)

(map of-int fs)
in if set cs ⊆ � then Some (map int-of-rat cs) else None)

proof −
from len have len: length (rev fs) = length (rev xs) length (rev xs) ≤ length xs

by auto
show ?thesis
proof (cases newton-coefficients-main-int (rev fs) (rev xs))

case (Some res)
have rev:

∧
xs. map rat-of-int (rev xs) = rev (map of-int xs) unfolding rev-map

..
note n = newton-coefficients-main-int-Some[OF len Some, unfolded rev]
{

fix row
assume row ∈ set res
with n have row 6= [] by auto
hence id: hd (map rat-of-int row) = rat-of-int (hd row) by (cases row, auto)
also have . . . ∈ � by auto
finally have int: hd (map rat-of-int row) ∈ � by auto
have hd row = int-of-rat (hd (map rat-of-int row)) unfolding id by simp
note this int

}
thus ?thesis unfolding newton-coefficients-int-def Some newton-coefficients-def

n[THEN conjunct1] Let-def option.simps
by (auto simp: o-def)

next
case None
have rev xs = drop (length xs − length (rev xs)) (rev xs) by simp
from newton-coefficients-main-int-None[OF dist len None this]

show ?thesis unfolding newton-coefficients-int-def newton-coefficients-def None
by (auto simp: Let-def rev-map)

qed
qed

definition newton-poly-impl-int :: int poly option where
newton-poly-impl-int ≡ case newton-coefficients-int of None ⇒ None
| Some nc ⇒ Some (horner-composition (rev nc) xs)

lemma newton-poly-impl-int: assumes len: length xs = length fs

87

and dist: distinct xs
shows newton-poly-impl-int = (let p = newton-poly-impl (map rat-of-int xs) (map

of-int fs)
in if set (coeffs p) ⊆ � then Some (map-poly int-of-rat p) else None)

proof −
let ?ir = int-of-rat
let ?ri = rat-of-int
let ?mir = map ?ir
let ?mri = map ?ri
let ?nc = newton-coefficients (?mri xs) (?mri fs)
have id: newton-poly-impl-int = (if set ?nc ⊆ �

then Some (horner-composition (rev (?mir ?nc)) xs) else None)
unfolding newton-poly-impl-int-def newton-coefficients-int[OF dist len] Let-def

by simp
have len: length (rev ?nc) ≤ Suc (length xs)

unfolding length-rev
by (subst newton-coefficients[OF refl], insert len, auto)

show ?thesis unfolding id
unfolding newton-poly-impl-def
unfolding Let-def set-rev rev-map horner-coeffs-ints[OF len]

proof (rule if-cong[OF refl - refl], rule arg-cong[of - - Some])
define cs where cs = rev ?nc
define ics where ics = map ?ir cs
assume set ?nc ⊆ �
hence set cs ⊆ � unfolding cs-def by auto
hence ics: cs = ?mri ics unfolding ics-def map-map o-def

by (simp add: map-idI subset-code(1))
have id: horner-composition (rev ?nc) (?mri xs) = map-poly ?ri (horner-composition

ics xs)
unfolding cs-def [symmetric] ics
by (rule of-int-poly-hom.horner-composition-hom)

show horner-composition (?mir (rev ?nc)) xs
= map-poly ?ir (horner-composition (rev ?nc) (?mri xs))
unfolding id unfolding cs-def [symmetric] ics-def [symmetric]
by (subst map-poly-map-poly, auto simp: o-def map-poly-idI)

qed
qed
end

definition newton-interpolation-poly :: (′a :: field × ′a)list ⇒ ′a poly where
newton-interpolation-poly x-fs = (let

xs = map fst x-fs; fs = map snd x-fs in
newton-poly-impl xs fs)

definition newton-interpolation-poly-int :: (int × int)list ⇒ int poly option where
newton-interpolation-poly-int x-fs = (let

xs = map fst x-fs; fs = map snd x-fs in
newton-poly-impl-int xs fs)

88

lemma newton-interpolation-poly: assumes dist: distinct (map fst xs-ys)
and p: p = newton-interpolation-poly xs-ys
and xy: (x,y) ∈ set xs-ys
shows poly p x = y

proof (cases length xs-ys)
case 0
thus ?thesis using xy by (cases xs-ys, auto)

next
case (Suc nn)
let ?xs = map fst xs-ys let ?fs = map snd xs-ys let ?n = Suc nn
from xy[unfolded set-conv-nth] obtain i where xy: i ≤ nn x = ?xs ! i y = ?fs !

i
using Suc

by (metis (no-types, lifting) fst-conv in-set-conv-nth less-Suc-eq-le nth-map
snd-conv xy)

have id: newton-interpolation-poly xs-ys = newton-poly ?xs ?fs nn
unfolding newton-interpolation-poly-def Let-def
by (rule newton-poly-impl[OF - - Suc], auto)

show ?thesis
unfolding p id

proof (rule newton-poly-sound[of nn ?xs - ?fs, unfolded
Newton-Interpolation.x-def Newton-Interpolation.f-def , OF - xy(1), folded

xy(2−)])
fix i j
show i < j =⇒ j ≤ nn =⇒ ?xs ! i 6= ?xs ! j using dist Suc nth-eq-iff-index-eq

by fastforce
qed

qed

lemma degree-newton-interpolation-poly:
shows degree (newton-interpolation-poly xs-ys) ≤ length xs-ys − 1

proof (cases length xs-ys)
case 0
hence id: xs-ys = [] by (cases xs-ys, auto)
show ?thesis unfolding

id newton-interpolation-poly-def Let-def list.simps newton-poly-impl-def
Newton-Interpolation.newton-coefficients-def
by simp

next
case (Suc nn)
let ?xs = map fst xs-ys let ?fs = map snd xs-ys let ?n = Suc nn
have id: newton-interpolation-poly xs-ys = newton-poly ?xs ?fs nn

unfolding newton-interpolation-poly-def Let-def
by (rule newton-poly-impl[OF - - Suc], auto)

show ?thesis unfolding id using newton-poly-degree[of ?xs ?fs nn] Suc by simp
qed

For newton-interpolation-poly-int at this point we just prove that it is
equivalent to perfom an interpolation on the rational numbers, and then
check whether all resulting coefficients are integers. That this corresponds

89

to a sound and complete interpolation algorithm on the integers is proven in
the theory Polynomial-Interpolation, cf. lemmas newton-interpolation-poly-
int-Some/None.
lemma newton-interpolation-poly-int: assumes dist: distinct (map fst xs-ys)

shows newton-interpolation-poly-int xs-ys = (let
rxs-ys = map (λ (x,y). (rat-of-int x, rat-of-int y)) xs-ys;
rp = newton-interpolation-poly rxs-ys
in if (∀ x ∈ set (coeffs rp). is-int-rat x) then

Some (map-poly int-of-rat rp) else None)
proof −

have id1 : map fst (map (λ(x, y). (rat-of-int x, rat-of-int y)) xs-ys) = map
rat-of-int (map fst xs-ys)

by (induct xs-ys, auto)
have id2 : map snd (map (λ(x, y). (rat-of-int x, rat-of-int y)) xs-ys) = map

rat-of-int (map snd xs-ys)
by (induct xs-ys, auto)

have id3 : length (map fst xs-ys) = length (map snd xs-ys) by auto
show ?thesis
unfolding newton-interpolation-poly-def newton-interpolation-poly-int-def Let-def

newton-poly-impl-int[OF id3 dist]
unfolding id1 id2
by (rule sym, rule if-cong, auto simp: is-int-rat[abs-def])

qed

hide-const
Newton-Interpolation.x
Newton-Interpolation.f

end

10 Lagrange Interpolation
We formalized the Lagrange interpolation, i.e., a method to interpolate a
polynomial p from a list of points (x1, p(x1)), (x2, p(x2)), The interpola-
tion algorithm is proven to be sound and complete.
theory Lagrange-Interpolation
imports

Missing-Polynomial
begin

definition lagrange-basis-poly :: ′a :: field list ⇒ ′a ⇒ ′a poly where
lagrange-basis-poly xs xj ≡ let ys = filter (λ x. x 6= xj) xs

in prod-list (map (λ xi. smult (inverse (xj − xi)) [: − xi, 1 :]) ys)

definition lagrange-interpolation-poly :: (′a :: field × ′a)list ⇒ ′a poly where
lagrange-interpolation-poly xs-ys ≡ let

xs = map fst xs-ys

90

in sum-list (map (λ (xj,yj). smult yj (lagrange-basis-poly xs xj)) xs-ys)

lemma [code]:
lagrange-basis-poly xs xj = (let ys = filter (λ x. x 6= xj) xs

in prod-list (map (λ xi. let ii = inverse (xj − xi) in [: − ii ∗ xi, ii :]) ys))
unfolding lagrange-basis-poly-def Let-def by simp

lemma degree-lagrange-basis-poly: degree (lagrange-basis-poly xs xj) ≤ length (filter
(λ x. x 6= xj) xs)

unfolding lagrange-basis-poly-def Let-def
by (rule order .trans[OF degree-prod-list-le], rule order-trans[OF sum-list-mono[of

- - λ -. 1]],
auto simp: o-def , induct xs, auto)

lemma degree-lagrange-interpolation-poly:
shows degree (lagrange-interpolation-poly xs-ys) ≤ length xs-ys − 1

proof −
{

fix a b
assume ab: (a,b) ∈ set xs-ys
let ?xs = filter (λx. x 6=a) (map fst xs-ys)
from ab have a ∈ set (map fst xs-ys) by force
hence Suc (length ?xs) ≤ length xs-ys

by (induct xs-ys, auto)
hence length ?xs ≤ length xs-ys − 1 by auto

} note main = this
show ?thesis

unfolding lagrange-interpolation-poly-def Let-def
by (rule degree-sum-list-le, auto, rule order-trans[OF degree-lagrange-basis-poly],

insert main, auto)
qed

lemma lagrange-basis-poly-1 :
poly (lagrange-basis-poly (map fst xs-ys) x) x = 1
unfolding lagrange-basis-poly-def Let-def poly-prod-list
by (rule prod-list-neutral, auto)
(metis field-class.field-inverse mult.commute right-diff-distrib right-minus-eq)

lemma lagrange-basis-poly-0 : assumes x ′ ∈ set (map fst xs-ys) and x ′ 6= x
shows poly (lagrange-basis-poly (map fst xs-ys) x) x ′ = 0

proof −
let ?f = λxi. smult (inverse (x − xi)) [:− xi, 1 :]
let ?xs = filter (λc. c 6=x) (map fst xs-ys)
have mem: ?f x ′ ∈ set (map ?f ?xs) using assms by auto
show ?thesis
unfolding lagrange-basis-poly-def Let-def poly-prod-list prod-list-map-remove1 [OF

mem]
by simp

qed

91

lemma lagrange-interpolation-poly: assumes dist: distinct (map fst xs-ys)
and p: p = lagrange-interpolation-poly xs-ys
shows

∧
x y. (x,y) ∈ set xs-ys =⇒ poly p x = y

proof −
let ?xs = map fst xs-ys
{

fix x y
assume xy: (x,y) ∈ set xs-ys

show poly p x = y unfolding p lagrange-interpolation-poly-def Let-def poly-sum-list
map-map o-def

proof (subst sum-list-map-remove1 [OF xy], unfold split poly-smult lagrange-basis-poly-1 ,
subst sum-list-neutral)
fix v

assume v ∈ set (map (λxa. poly (case xa of (xj, yj)⇒ smult yj (lagrange-basis-poly
?xs xj))

x)
(remove1 (x, y) xs-ys)) (is - ∈ set (map ?f ?xy))

then obtain xy ′ where mem: xy ′ ∈ set ?xy and v: v = ?f xy ′ by auto
obtain x ′ y ′ where xy ′: xy ′ = (x ′,y ′) by force
from v[unfolded this split] have v: v = poly (smult y ′ (lagrange-basis-poly ?xs

x ′)) x .
have neq: x ′ 6= x
proof

assume x ′ = x
with mem[unfolded xy ′] have mem: (x,y ′) ∈ set (remove1 (x,y) xs-ys) by

auto
hence mem ′: (x,y ′) ∈ set xs-ys by (meson notin-set-remove1)
from dist[unfolded distinct-map] have inj: inj-on fst (set xs-ys) by auto
with mem ′ xy have y ′: y ′ = y unfolding inj-on-def by force
from dist have distinct xs-ys using distinct-map by blast
hence (x,y) /∈ set (remove1 (x,y) xs-ys) by simp
with mem[unfolded y ′]
show False by auto

qed
have poly (lagrange-basis-poly ?xs x ′) x = 0
by (rule lagrange-basis-poly-0 , insert xy mem[unfolded xy ′] dist neq, force+)

thus v = 0 unfolding v by simp
qed simp

} note sound = this
qed

end

92

11 Neville Aitken Interpolation
We prove soundness of Neville-Aitken’s polynomial interpolation algorithm
using the recursive formula directly. We further provide an implementation
which avoids the exponential branching in the recursion.
theory Neville-Aitken-Interpolation
imports

HOL−Computational-Algebra.Polynomial
begin

context
fixes x :: nat ⇒ ′a :: field
and f :: nat ⇒ ′a

begin

private definition X :: nat ⇒ ′a poly where [code-unfold]: X i = [:−x i, 1 :]

function neville-aitken-main :: nat ⇒ nat ⇒ ′a poly where
neville-aitken-main i j = (if i < j then

(smult (inverse (x j − x i)) (X i ∗ neville-aitken-main (i + 1) j −
X j ∗ neville-aitken-main i (j − 1)))

else [:f i:])
by pat-completeness auto

termination by (relation measure (λ (i,j). j − i), auto)

definition neville-aitken :: nat ⇒ ′a poly where
neville-aitken = neville-aitken-main 0

declare neville-aitken-main.simps[simp del]

lemma neville-aitken-main: assumes dist:
∧

i j. i < j =⇒ j ≤ n =⇒ x i 6= x j
shows i ≤ k =⇒ k ≤ j =⇒ j ≤ n =⇒ poly (neville-aitken-main i j) (x k) = (f

k)
proof (induct i j arbitrary: k rule: neville-aitken-main.induct)

case (1 i j k)
note neville-aitken-main.simps[of i j, simp]
show ?case
proof (cases i < j)

case False
with 1 (3−) have k = i by auto
with False show ?thesis by auto

next
case True note ij = this
from dist[OF True 1 (5)] have diff : x i 6= x j by auto
from True have id: neville-aitken-main i j =
(smult (inverse (x j − x i)) (X i ∗ neville-aitken-main (i + 1) j − X j
∗ neville-aitken-main i (j − 1))) by simp

note IH = 1 (1−2)[OF True]

93

show ?thesis
proof (cases k = i)

case True
show ?thesis unfolding id True poly-smult using IH (2)[of i] ij 1 (3−) diff

by (simp add: X-def field-simps)
next

case False note ki = this
show ?thesis
proof (cases k = j)

case True
show ?thesis unfolding id True poly-smult using IH (1)[of j] ij 1 (3−) diff

by (simp add: X-def field-simps)
next

case False
with ki show ?thesis unfolding id poly-smult using IH (1−2)[of k] ij

1 (3−) diff
by (simp add: X-def field-simps)

qed
qed

qed
qed

lemma degree-neville-aitken-main: degree (neville-aitken-main i j) ≤ j − i
proof (induct i j rule: neville-aitken-main.induct)

case (1 i j)
note simp = neville-aitken-main.simps[of i j]
show ?case
proof (cases i < j)

case False
thus ?thesis unfolding simp by simp

next
case True
note IH = 1 [OF this]
let ?n = neville-aitken-main
have X :

∧
i. degree (X i) = Suc 0 unfolding X-def by auto

have degree (X i ∗ ?n (i + 1) j) ≤ Suc (degree (?n (i+1) j))
by (rule order .trans[OF degree-mult-le], simp add: X)

also have . . . ≤ Suc (j − (i+1)) using IH (1) by simp
finally have 1 : degree (X i ∗ ?n (i + 1) j) ≤ j − i using True by auto
have degree (X j ∗ ?n i (j − 1)) ≤ Suc (degree (?n i (j − 1)))

by (rule order .trans[OF degree-mult-le], simp add: X)
also have . . . ≤ Suc ((j − 1) − i) using IH (2) by simp
finally have 2 : degree (X j ∗ ?n i (j − 1)) ≤ j − i using True by auto
have id: ?n i j = smult (inverse (x j − x i))

(X i ∗ ?n (i + 1) j − X j ∗ ?n i (j − 1)) unfolding simp using True
by simp

have degree (?n i j) ≤ degree (X i ∗ ?n (i + 1) j − X j ∗ ?n i (j − 1))
unfolding id by simp

also have . . . ≤ max (degree (X i ∗ ?n (i + 1) j)) (degree (X j ∗ ?n i (j −

94

1)))
by (rule degree-diff-le-max)

also have . . . ≤ j − i using 1 2 by auto
finally show ?thesis .

qed
qed

lemma degree-neville-aitken: degree (neville-aitken n) ≤ n
unfolding neville-aitken-def using degree-neville-aitken-main[of 0 n] by simp

fun neville-aitken-merge :: (′a × ′a × ′a poly) list ⇒ (′a × ′a × ′a poly) list where
neville-aitken-merge ((xi,xj,p-ij) # (xsi,xsj,p-sisj) # rest) =

(xi,xsj, smult (inverse (xsj − xi)) ([:−xi,1 :] ∗ p-sisj
+ [:xsj,−1 :] ∗ p-ij)) # neville-aitken-merge ((xsi,xsj,p-sisj) # rest)

| neville-aitken-merge [-] = []
| neville-aitken-merge [] = []

lemma length-neville-aitken-merge[termination-simp]: length (neville-aitken-merge
xs) = length xs − 1

by (induct xs rule: neville-aitken-merge.induct, auto)

fun neville-aitken-impl-main :: (′a × ′a × ′a poly) list ⇒ ′a poly where
neville-aitken-impl-main (e1 # e2 # es) =

neville-aitken-impl-main (neville-aitken-merge (e1 # e2 # es))
| neville-aitken-impl-main [(-,-,p)] = p
| neville-aitken-impl-main [] = 0

lemma neville-aitken-merge:
xs = map (λ i. (x i, x (i + j), neville-aitken-main i (i + j))) [l ..< Suc (l + k)]

=⇒ neville-aitken-merge xs
= (map (λ i. (x i, x (i + Suc j), neville-aitken-main i (i + Suc j))) [l ..< l

+ k])
proof (induct xs arbitrary: l k rule: neville-aitken-merge.induct)

case (1 xi xj p-ij xsi xsj p-sisj rest l k)
let ?n = neville-aitken-main
let ?f = λ j i. (x i, x (i + j), ?n i (i + j))
define f where f = ?f
let ?map = λ j. map (?f j)
note res = 1 (2)
from arg-cong[OF res, of length] obtain kk where k: k = Suc kk by (cases k,

auto)
hence id: [l..<Suc (l + k)] = l # [Suc l ..< Suc (Suc l + kk)]

by (simp add: upt-rec)
from res[unfolded id] have id2 : (xsi, xsj, p-sisj) # rest =

?map j [Suc l..< Suc (Suc l + kk)]
and id3 : xi = x l xj = x (l + j) p-ij = ?n l (l + j)

xsi = x (Suc l) xsj = x (Suc (l + j)) p-sisj = ?n (Suc l) (Suc (l + j))
by (auto simp: upt-rec)

95

note IH = 1 (1)[OF id2]
have X : [:x (Suc (l + j)), − 1 :] = − X (Suc l + j) unfolding X-def by simp
have id4 : (xi, xsj, smult (inverse (xsj − xi)) ([:− xi, 1 :] ∗ p-sisj +

[:xsj, − 1 :] ∗ p-ij)) = (x l, x (l + Suc j), ?n l (l + Suc j))
unfolding id3 neville-aitken-main.simps[of l l + Suc j]

X-def [symmetric] X by simp
have id5 : [l..<l + k] = l # [Suc l ..< Suc l + kk] unfolding k

by (simp add: upt-rec)
show ?case unfolding neville-aitken-merge.simps IH id4

unfolding id5 by simp
qed auto

lemma neville-aitken-impl-main:
xs = map (λ i. (x i, x (i + j), neville-aitken-main i (i + j))) [l ..< Suc (l + k)]

=⇒ neville-aitken-impl-main xs = neville-aitken-main l (l + j + k)
proof (induct xs arbitrary: l k j rule: neville-aitken-impl-main.induct)

case (1 e1 e2 es l k j)
note res = 1 (2)
from res obtain kk where k: k = Suc kk by (cases k, auto)
hence id1 : l + k = Suc (l + kk) by auto
show ?case unfolding neville-aitken-impl-main.simps 1 (1)[OF neville-aitken-merge[OF

1 (2), unfolded id1]]
by (simp add: k)

qed auto

lemma neville-aitken-impl:
xs = map (λ i. (x i, x i, [:f i:])) [0 ..< Suc k]
=⇒ neville-aitken-impl-main xs = neville-aitken k

unfolding neville-aitken-def using neville-aitken-impl-main[of xs 0 0 k]
by (simp add: neville-aitken-main.simps)

end

lemma neville-aitken: assumes
∧

i j. i < j =⇒ j ≤ n =⇒ x i 6= x j
shows j ≤ n =⇒ poly (neville-aitken x f n) (x j) = (f j)
unfolding neville-aitken-def
by (rule neville-aitken-main[OF assms, of n], auto)

definition neville-aitken-interpolation-poly :: (′a :: field × ′a)list ⇒ ′a poly where
neville-aitken-interpolation-poly x-fs = (let

start = map (λ (xi,fi). (xi,xi,[:fi:])) x-fs in
neville-aitken-impl-main start)

lemma neville-aitken-interpolation-impl: assumes x-fs 6= []
shows neville-aitken-interpolation-poly x-fs =
neville-aitken (λ i. fst (x-fs ! i)) (λ i. snd (x-fs ! i)) (length x-fs − 1)

proof −
from assms have id: Suc (length x-fs − 1) = length x-fs by auto
show ?thesis

96

unfolding neville-aitken-interpolation-poly-def Let-def
by (rule neville-aitken-impl, unfold id, rule nth-equalityI , auto split: prod.splits)

qed

lemma neville-aitken-interpolation-poly: assumes dist: distinct (map fst xs-ys)
and p: p = neville-aitken-interpolation-poly xs-ys
and xy: (x,y) ∈ set xs-ys
shows poly p x = y

proof −
have p: p = neville-aitken (λ i. fst (xs-ys ! i)) (λ i. snd (xs-ys ! i)) (length xs-ys
− 1)

unfolding p
by (rule neville-aitken-interpolation-impl, insert xy, auto)

from xy obtain i where i: i < length xs-ys and x: x = fst (xs-ys ! i) and y: y
= snd (xs-ys ! i)

unfolding set-conv-nth by (metis fst-conv in-set-conv-nth snd-conv xy)
show ?thesis unfolding p x y
proof (rule neville-aitken)

fix i j
show i < j =⇒ j ≤ length xs-ys − 1 =⇒ fst (xs-ys ! i) 6= fst (xs-ys ! j) using

dist
by (metis (mono-tags, lifting) One-nat-def diff-less dual-order .strict-trans2

length-map
length-pos-if-in-set lessI less-or-eq-imp-le neq-iff nth-eq-iff-index-eq nth-map

xy)
qed (insert i, auto)

qed

lemma degree-neville-aitken-interpolation-poly:
shows degree (neville-aitken-interpolation-poly xs-ys) ≤ length xs-ys − 1

proof (cases length xs-ys)
case 0
hence id: xs-ys = [] by (cases xs-ys, auto)
show ?thesis unfolding id neville-aitken-interpolation-poly-def Let-def by simp

next
case (Suc nn)
have id: neville-aitken-interpolation-poly xs-ys =

neville-aitken (λ i. fst (xs-ys ! i)) (λ i. snd (xs-ys ! i)) (length xs-ys − 1)
by (rule neville-aitken-interpolation-impl, insert Suc, auto)

show ?thesis unfolding id by (rule degree-neville-aitken)
qed

end

12 Polynomial Interpolation
We combine Newton’s, Lagrange’s, and Neville-Aitken’s interpolation algo-
rithms to a combined interpolation algorithm which is parametric. This

97

parametric algorithm is then further extend from fields to also perform in-
terpolation of integer polynomials.

In experiments it is revealed that Newton’s algorithm performs better
than the one of Lagrange. Moreover, on the integer numbers, only Newton’s
algorithm has been optimized with fast failure capabilities.
theory Polynomial-Interpolation
imports

Improved-Code-Equations
Newton-Interpolation
Lagrange-Interpolation
Neville-Aitken-Interpolation

begin

datatype interpolation-algorithm = Newton | Lagrange | Neville-Aitken

fun interpolation-poly :: interpolation-algorithm ⇒ (′a :: field × ′a)list ⇒ ′a poly
where

interpolation-poly Newton = newton-interpolation-poly
| interpolation-poly Lagrange = lagrange-interpolation-poly
| interpolation-poly Neville-Aitken = neville-aitken-interpolation-poly

fun interpolation-poly-int :: interpolation-algorithm ⇒ (int × int)list ⇒ int poly
option where

interpolation-poly-int Newton xs-ys = newton-interpolation-poly-int xs-ys
| interpolation-poly-int alg xs-ys = (let

rxs-ys = map (λ (x,y). (of-int x, of-int y)) xs-ys;
rp = interpolation-poly alg rxs-ys
in if (∀ x ∈ set (coeffs rp). is-int-rat x) then

Some (map-poly int-of-rat rp) else None)

lemma interpolation-poly-int-def : distinct (map fst xs-ys) =⇒
interpolation-poly-int alg xs-ys = (let

rxs-ys = map (λ (x,y). (of-int x, of-int y)) xs-ys;
rp = interpolation-poly alg rxs-ys
in if (∀ x ∈ set (coeffs rp). is-int-rat x) then

Some (map-poly int-of-rat rp) else None)
by (cases alg, auto simp: newton-interpolation-poly-int)

lemma interpolation-poly: assumes dist: distinct (map fst xs-ys)
and p: p = interpolation-poly alg xs-ys
and xy: (x,y) ∈ set xs-ys
shows poly p x = y

proof (cases alg)
case Newton
thus ?thesis using newton-interpolation-poly[OF dist - xy] p by simp

next
case Lagrange
thus ?thesis using lagrange-interpolation-poly[OF dist - xy] p by simp

98

next
case Neville-Aitken
thus ?thesis using neville-aitken-interpolation-poly[OF dist - xy] p by simp

qed

lemma degree-interpolation-poly:
shows degree (interpolation-poly alg xs-ys) ≤ length xs-ys − 1
using degree-lagrange-interpolation-poly[of xs-ys]

degree-newton-interpolation-poly[of xs-ys]
degree-neville-aitken-interpolation-poly[of xs-ys]

by (cases alg, auto)

lemma uniqueness-of-interpolation: fixes p :: ′a :: idom poly
assumes cS : card S = Suc n
and degree p ≤ n and degree q ≤ n and
id:

∧
x. x ∈ S =⇒ poly p x = poly q x

shows p = q
proof −

define f where f = p − q
let ?R = {x. poly f x = 0}
have sub: S ⊆ ?R unfolding f-def using id by auto
show ?thesis
proof (cases f = 0)

case True thus ?thesis unfolding f-def by simp
next

case False note f = this
let ?R = {x. poly f x = 0}
from poly-roots-finite[OF f] have finite ?R .
from card-mono[OF this sub] poly-roots-degree[OF f]
have Suc n ≤ degree f unfolding cS by auto
also have . . . ≤ n unfolding f-def

by (rule degree-diff-le, insert assms, auto)
finally show ?thesis by auto

qed
qed

lemma uniqueness-of-interpolation-point-list: fixes p :: ′a :: idom poly
assumes dist: distinct (map fst xs-ys)
and p:

∧
x y. (x,y) ∈ set xs-ys =⇒ poly p x = y degree p < length xs-ys

and q:
∧

x y. (x,y) ∈ set xs-ys =⇒ poly q x = y degree q < length xs-ys
shows p = q

proof −
let ?xs = map fst xs-ys
from q obtain n where len: length xs-ys = Suc n and dq: degree q ≤ n by

(cases xs-ys, auto)
from p have dp: degree p ≤ n unfolding len by auto
from dist have card: card (set ?xs) = Suc n unfolding len[symmetric]

using distinct-card by fastforce
show p = q

99

proof (rule uniqueness-of-interpolation[OF card dp dq])
fix x
assume x ∈ set ?xs
then obtain y where (x,y) ∈ set xs-ys by auto
from p(1)[OF this] q(1)[OF this] show poly p x = poly q x by simp

qed
qed

lemma exactly-one-poly-interpolation: assumes xs: xs-ys 6= [] and dist: distinct
(map fst xs-ys)

shows ∃ ! p. degree p < length xs-ys ∧ (∀ x y. (x,y) ∈ set xs-ys −→ poly p x =
(y :: ′a :: field))
proof −

let ?alg = undefined
let ?p = interpolation-poly ?alg xs-ys
note inter = interpolation-poly[OF dist refl]
show ?thesis
proof (rule ex1I [of - ?p], intro conjI allI impI)

show dp: degree ?p < length xs-ys using degree-interpolation-poly[of ?alg xs-ys]
xs by (cases xs-ys, auto)

show
∧

x y. (x, y) ∈ set xs-ys =⇒ poly (interpolation-poly ?alg xs-ys) x = y
by (rule inter)

fix q
assume q: degree q < length xs-ys ∧ (∀ x y. (x, y) ∈ set xs-ys −→ poly q x =

y)
show q = ?p

by (rule uniqueness-of-interpolation-point-list[OF dist - - inter dp], insert q,
auto)

qed
qed

lemma interpolation-poly-int-Some: assumes dist ′: distinct (map fst xs-ys)
and p: interpolation-poly-int alg xs-ys = Some p
shows

∧
x y. (x,y) ∈ set xs-ys =⇒ poly p x = y degree p ≤ length xs-ys − 1

proof −
let ?r = rat-of-int
define rxs-ys where rxs-ys = map (λ(x, y). (?r x, ?r y)) xs-ys
have dist: distinct (map fst rxs-ys) using dist ′ unfolding distinct-map rxs-ys-def

inj-on-def by force
obtain rp where rp: rp = interpolation-poly alg rxs-ys by blast
from p[unfolded interpolation-poly-int-def [OF dist ′] Let-def , folded rxs-ys-def rp]
have p: p = map-poly int-of-rat rp and ball: Ball (set (coeffs rp)) is-int-rat

by (auto split: if-splits)
have id: rp = map-poly ?r p unfolding p

by (rule sym, subst map-poly-map-poly, force, rule map-poly-idI , insert ball,
auto)

note inter = interpolation-poly[OF dist rp]
{

100

fix x y
assume (x,y) ∈ set xs-ys
hence (?r x, ?r y) ∈ set rxs-ys unfolding rxs-ys-def by auto
from inter [OF this] have poly rp (?r x) = ?r y by auto
from this[unfolded id of-int-hom.poly-map-poly] show poly p x = y by auto

}
show degree p ≤ length xs-ys − 1 using degree-interpolation-poly[of alg rxs-ys,

folded rp]
unfolding id rxs-ys-def by simp

qed

lemma interpolation-poly-int-None: assumes dist: distinct (map fst xs-ys)
and p: interpolation-poly-int alg xs-ys = None
and q:

∧
x y. (x,y) ∈ set xs-ys =⇒ poly q x = y

and dq: degree q < length xs-ys
shows False

proof −
let ?r = rat-of-int
let ?rp = map-poly ?r
define rxs-ys where rxs-ys = map (λ(x, y). (?r x, ?r y)) xs-ys
have dist ′: distinct (map fst rxs-ys) using dist unfolding distinct-map rxs-ys-def

inj-on-def by force
obtain rp where rp: rp = interpolation-poly alg rxs-ys by blast
note degrp = degree-interpolation-poly[of alg rxs-ys, folded rp]
from q have q ′:

∧
x y. (x,y) ∈ set rxs-ys =⇒ poly (?rp q) x = y unfolding

rxs-ys-def
by auto

have [simp]: degree (?rp q) = degree q by simp
have id: rp = ?rp q

by (rule uniqueness-of-interpolation-point-list[OF dist ′ interpolation-poly[OF
dist ′ rp]],

insert q ′ dq degrp, auto simp: rxs-ys-def)
from p[unfolded interpolation-poly-int-def [OF dist] Let-def , folded rxs-ys-def rp]
have ∃ c ∈ set (coeffs rp). c /∈ � by (auto split: if-splits)
from this[unfolded id] show False by auto

qed

lemmas newton-interpolation-poly-int-Some =
interpolation-poly-int-Some[where alg = Newton, unfolded interpolation-poly-int.simps]

lemmas newton-interpolation-poly-int-None =
interpolation-poly-int-None[where alg = Newton, unfolded interpolation-poly-int.simps]

We can also use Newton’s improved algorithm for integer polynomials
to show that there is no polynomial p over the integers such that p(0) = 0
and p(2) = 1. The reason is that the intermediate result for computing
the linear interpolant for these two point fails, and so adding further points
(which corresponds to increasing the degree) will also fail. Of course, this

101

can be generalized, showing that whenever you cannot interpolate a set
of n points with an integer polynomial of degree n − 1, then you cannot
interpolate this set of points with any integer polynomial. However, we did
not formally prove this more general fact.
lemma impossible-p-0-is-0-and-p-2-is-1 : ¬ (∃ p. poly p 0 = 0 ∧ poly p 2 = (1 ::
int))
proof

assume ∃ p. poly p 0 = 0 ∧ poly p 2 = (1 :: int)
then obtain p where p: poly p 0 = 0 poly p 2 = (1 :: int) by auto
define xs-ys where xs-ys = map (λ i. (int i, poly p (int i))) [3 ..< 3 + degree

p]
let ?l = λ xs. (0 ,0) # (2 :: int,1 :: int) # xs
let ?xs-ys = ?l xs-ys
define list where list = map fst ?xs-ys
have dist: distinct (map fst ?xs-ys) unfolding xs-ys-def by (auto simp: o-def

distinct-map inj-on-def)
have p:

∧
x y. (x,y) ∈ set ?xs-ys =⇒ poly p x = y unfolding xs-ys-def using

p by auto
have deg: degree p < length ?xs-ys unfolding xs-ys-def by simp
have newton-coefficients-main-int list (rev (map snd ?xs-ys)) (rev (map fst ?xs-ys))

= None
proof (induct xs-ys rule: rev-induct)

case Nil
show ?case unfolding list-def by (simp add: divmod-int-def)

next
case (snoc xy xs-ys) note IH = this
obtain x y where xy: xy = (x,y) by force
show ?case
proof (cases xs-ys rule: rev-cases)

case Nil
show ?thesis unfolding Nil xy

by (simp add: list-def divmod-int-def)
next

case (snoc xs-ys ′ xy ′)
obtain x ′ y ′ where xy ′: xy ′ = (x ′,y ′) by force
show ?thesis using IH unfolding xy ′ snoc xy by simp

qed
qed
hence newton: newton-interpolation-poly-int ?xs-ys = None

unfolding newton-interpolation-poly-int-def Let-def newton-poly-impl-int-def
Newton-Interpolation.newton-coefficients-int-def list-def by simp

from newton-interpolation-poly-int-None[OF dist newton p deg]
show False .

qed

end

102

References
[1] G. M. Phillips. Interpolation and Approximation by Polynomials.

Springer, 2003.

103

	Introduction
	Conversions to Rational Numbers
	Divmod-Int
	Improved Code Equations
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 divmod-integer.
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 divmod-nat.
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (choose)

	Several Locales for Homomorphisms Between Types.
	Basic Homomorphism Locales
	Commutativity
	Division
	(Partial) Injectivitiy
	Surjectivity and Isomorphisms
	Example Interpretations

	Missing Unsorted
	Missing Polynomial
	Basic Properties
	Polynomial Composition
	Monic Polynomials
	Roots
	Divisibility
	Map over Polynomial Coefficients
	Morphismic properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 pCons (0::2mu'-2mua)
	Misc

	Connecting Polynomials with Homomorphism Locales
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map-poly of Homomorphisms
	Injectivity

	Example Interpretations

	Newton Interpolation
	Lagrange Interpolation
	Neville Aitken Interpolation
	Polynomial Interpolation

