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Abstract

Based on existing libraries for polynomial interpolation and ma-
trices, we formalized several factorization algorithms for polynomials,
including Kronecker’s algorithm for integer polynomials, Yun’s square-
free factorization algorithm for field polynomials, and a factorization
algorithm which delivers root-free polynomials.

As side products, we developed division algorithms for polyno-
mials over integral domains, as well as primality-testing and prime-
factorization algorithms for integers.

Contents
1 Introduction 2

1.1 Missing List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 merging functions . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Preliminaries 35
2.1 Missing Multiset . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Precomputation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Order of Polynomial Roots . . . . . . . . . . . . . . . . . . . 39

3 Explicit Formulas for Roots 43

4 Division of Polynomials over Integers 46

5 More on Polynomials 53

6 Gauss Lemma 60

7 Prime Factorization 72
7.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

∗Supported by FWF (Austrian Science Fund) project Y757.

1



8 Rational Root Test 89

9 Kronecker Factorization 92
9.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.2 Code setup for divisors . . . . . . . . . . . . . . . . . . . . . . 93
9.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10 Polynomial Divisibility 101
10.1 Fundamental Theorem of Algebra for Factorizations . . . . . 102

11 Square Free Factorization 104
11.1 Yun’s factorization algorithm . . . . . . . . . . . . . . . . . . 110
11.2 Yun factorization and homomorphisms . . . . . . . . . . . . . 134

12 GCD of rational polynomials via GCD for integer polyno-
mials 136

13 Rational Factorization 138

1 Introduction
The details of the factorization algorithms have mostly been extracted from
Knuth’s Art of Computer Programming [1]. Also Wikipedia provided valu-
able help.

As a first fast preprocessing for factorization we integrated Yun’s factor-
ization algorithm which identifies duplicate factors [2]. In contrast to the
existing formalized result that the GCD of p and p′ has no duplicate factors
(and the same roots as p), Yun’s algorithm decomposes a polynomial p into
p11 · . . . · pnn such that no pi has a duplicate factor and there is no common
factor of pi and pj for i 6= j. As a comparison, the GCD of p and p′ is
exactly p1 · . . . · pn, but without decomposing this product into the list of
pi’s.

Factorization over Q is reduced to factorization over Z with the help of
Gauss’ Lemma.

Kronecker’s algorithm for factorization over Z requires both polynomial
interpolation over Z and prime factorization over N. Whereas the former
is available as a separate AFP-entry, for prime factorization we mechanized
a simple algorithm depicted in [1]: For a given number n, the algorithm
iteratively checks divisibility by numbers until

√
n, with some optimizations:

it uses a precomputed set of small primes (all primes up to 1000), and if
n mod 30 = 11, the next test candidates in the range [n, n + 30) are only
the 8 numbers n, n+ 2, n+ 6, n+ 8, n+ 12, n+ 18, n+ 20, n+ 26.

2



However, in theory and praxis it turned out that Kronecker’s algorithm
is too inefficient. Therefore, in a separate AFP-entry we formalized the
Berlekamp-Zassenhaus factorization.1

There also is a combined factorization algorithm: For polynomials of de-
gree 2, the closed form for the roots of quadratic polynomials is applied. For
polynomials of degree 3, the rational root test determines whether the poly-
nomial is irreducible or not, and finally for degree 4 and higher, Kronecker’s
factorization algorithm is applied.

1.1 Missing List
The provides some standard algorithms and lemmas on lists.
theory Missing-List
imports

Matrix.Utility
HOL−Library.Monad-Syntax

begin

fun concat-lists :: ′a list list ⇒ ′a list list where
concat-lists [] = [[]]
| concat-lists (as # xs) = concat (map (λvec. map (λa. a # vec) as) (concat-lists
xs))

lemma concat-lists-listset: set (concat-lists xs) = listset (map set xs)
by (induct xs, auto simp: set-Cons-def )

lemma sum-list-concat: sum-list (concat ls) = sum-list (map sum-list ls)
by (induct ls, auto)

lemma listset: listset xs = { ys. length ys = length xs ∧ (∀ i < length xs. ys ! i ∈
xs ! i)}
proof (induct xs)

case (Cons x xs)
let ?n = length xs
from Cons
have ?case = (set-Cons x {ys. length ys = ?n ∧ (∀ i < ?n. ys ! i ∈ xs ! i)} =
{ys. length ys = Suc ?n ∧ ys ! 0 ∈ x ∧ (∀ i < ?n. ys ! Suc i ∈ xs ! i)})
(is - = (?L = ?R))
by (auto simp: all-Suc-conv)

also have ?L = ?R
by (auto simp: set-Cons-def , case-tac xa, auto)

finally show ?case by simp
1The Berlekamp-Zassenhaus AFP-entry was originally not present and at that time,

this AFP-entry contained an implementation of Berlekamp-Zassenhaus as a non-certified
function.
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qed auto

lemma set-concat-lists[simp]: set (concat-lists xs) = {as. length as = length xs ∧
(∀ i<length xs. as ! i ∈ set (xs ! i))}

unfolding concat-lists-listset listset by simp

declare concat-lists.simps[simp del]

fun find-map-filter :: ( ′a ⇒ ′b) ⇒ ( ′b ⇒ bool) ⇒ ′a list ⇒ ′b option where
find-map-filter f p [] = None
| find-map-filter f p (a # as) = (let b = f a in if p b then Some b else find-map-filter
f p as)

lemma find-map-filter-Some: find-map-filter f p as = Some b =⇒ p b ∧ b ∈ f ‘ set
as

by (induct f p as rule: find-map-filter .induct, auto simp: Let-def split: if-splits)

lemma find-map-filter-None: find-map-filter f p as = None =⇒ ∀ b ∈ f ‘ set as.
¬ p b

by (induct f p as rule: find-map-filter .induct, auto simp: Let-def split: if-splits)

lemma remdups-adj-sorted-distinct[simp]: sorted xs =⇒ distinct (remdups-adj xs)
by (induct xs rule: remdups-adj.induct) (auto)

lemma subseqs-length-simple:
assumes b ∈ set (subseqs xs) shows length b ≤ length xs
using assms by(induct xs arbitrary:b;auto simp:Let-def Suc-leD)

lemma subseqs-length-simple-False:
assumes b ∈ set (subseqs xs) length xs < length b shows False
using assms subseqs-length-simple by fastforce

lemma empty-subseqs[simp]: [] ∈ set (subseqs xs) by (induct xs, auto simp: Let-def )

lemma full-list-subseqs: {ys. ys ∈ set (subseqs xs) ∧ length ys = length xs} = {xs}

proof (induct xs)
case (Cons x xs)
have ?case = ({ys ∈ (#) x ‘ set (subseqs xs) ∪ set (subseqs xs).

length ys = Suc (length xs)} = (#) x ‘ {xs}) (is - = (?l = ?r))
by (auto simp: Let-def )

also have ?l = {ys ∈ (#) x ‘ set (subseqs xs). length ys = Suc (length xs)}
using length-subseqs[of xs]
using subseqs-length-simple-False by force

also have . . . = (#) x ‘ {ys ∈ set (subseqs xs). length ys = length xs}
by auto

also have . . . = (#) x ‘ {xs} unfolding Cons by auto
finally show ?case by simp

qed simp
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lemma nth-concat-split: assumes i < length (concat xs)
shows ∃ j k. j < length xs ∧ k < length (xs ! j) ∧ concat xs ! i = xs ! j ! k
using assms

proof (induct xs arbitrary: i)
case (Cons x xs i)
define I where I = i − length x
show ?case
proof (cases i < length x)

case True note l = this
hence i: concat (Cons x xs) ! i = x ! i by (auto simp: nth-append)
show ?thesis unfolding i

by (rule exI [of - 0 ], rule exI [of - i], insert Cons l, auto)
next

case False note l = this
from l Cons(2 ) have i: i = length x + I I < length (concat xs) unfolding

I-def by auto
hence iI : concat (Cons x xs) ! i = concat xs ! I by (auto simp: nth-append)
from Cons(1 )[OF i(2 )] obtain j k where

IH : j < length xs ∧ k < length (xs ! j) ∧ concat xs ! I = xs ! j ! k by auto
show ?thesis unfolding iI

by (rule exI [of - Suc j], rule exI [of - k], insert IH , auto)
qed

qed simp

lemma nth-concat-diff : assumes i1 < length (concat xs) i2 < length (concat xs)
i1 6= i2

shows ∃ j1 k1 j2 k2 . (j1 ,k1 ) 6= (j2 ,k2 ) ∧ j1 < length xs ∧ j2 < length xs
∧ k1 < length (xs ! j1 ) ∧ k2 < length (xs ! j2 )
∧ concat xs ! i1 = xs ! j1 ! k1 ∧ concat xs ! i2 = xs ! j2 ! k2

using assms
proof (induct xs arbitrary: i1 i2 )

case (Cons x xs)
define I1 where I1 = i1 − length x
define I2 where I2 = i2 − length x
show ?case
proof (cases i1 < length x)

case True note l1 = this
hence i1 : concat (Cons x xs) ! i1 = x ! i1 by (auto simp: nth-append)
show ?thesis
proof (cases i2 < length x)

case True note l2 = this
hence i2 : concat (Cons x xs) ! i2 = x ! i2 by (auto simp: nth-append)
show ?thesis unfolding i1 i2

by (rule exI [of - 0 ], rule exI [of - i1 ], rule exI [of - 0 ], rule exI [of - i2 ],
insert Cons(4 ) l1 l2 , auto)

next
case False note l2 = this

from l2 Cons(3 ) have i22 : i2 = length x + I2 I2 < length (concat xs)
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unfolding I2-def by auto
hence i2 : concat (Cons x xs) ! i2 = concat xs ! I2 by (auto simp: nth-append)
from nth-concat-split[OF i22 (2 )] obtain j2 k2 where
∗: j2 < length xs ∧ k2 < length (xs ! j2 ) ∧ concat xs ! I2 = xs ! j2 ! k2 by

auto
show ?thesis unfolding i1 i2

by (rule exI [of - 0 ], rule exI [of - i1 ], rule exI [of - Suc j2 ], rule exI [of - k2 ],
insert ∗ l1 , auto)

qed
next

case False note l1 = this
from l1 Cons(2 ) have i11 : i1 = length x + I1 I1 < length (concat xs) unfolding

I1-def by auto
hence i1 : concat (Cons x xs) ! i1 = concat xs ! I1 by (auto simp: nth-append)
show ?thesis
proof (cases i2 < length x)

case False note l2 = this
from l2 Cons(3 ) have i22 : i2 = length x + I2 I2 < length (concat xs)

unfolding I2-def by auto
hence i2 : concat (Cons x xs) ! i2 = concat xs ! I2 by (auto simp: nth-append)
from Cons(4 ) i11 i22 have diff : I1 6= I2 by auto
from Cons(1 )[OF i11 (2 ) i22 (2 ) diff ] obtain j1 k1 j2 k2

where IH : (j1 ,k1 ) 6= (j2 ,k2 ) ∧ j1 < length xs ∧ j2 < length xs
∧ k1 < length (xs ! j1 ) ∧ k2 < length (xs ! j2 )
∧ concat xs ! I1 = xs ! j1 ! k1 ∧ concat xs ! I2 = xs ! j2 ! k2 by auto

show ?thesis unfolding i1 i2
by (rule exI [of - Suc j1 ], rule exI [of - k1 ], rule exI [of - Suc j2 ], rule exI [of

- k2 ],
insert IH , auto)

next
case True note l2 = this
hence i2 : concat (Cons x xs) ! i2 = x ! i2 by (auto simp: nth-append)
from nth-concat-split[OF i11 (2 )] obtain j1 k1 where
∗: j1 < length xs ∧ k1 < length (xs ! j1 ) ∧ concat xs ! I1 = xs ! j1 ! k1 by

auto
show ?thesis unfolding i1 i2

by (rule exI [of - Suc j1 ], rule exI [of - k1 ], rule exI [of - 0 ], rule exI [of - i2 ],
insert ∗ l2 , auto)

qed
qed

qed auto

lemma list-all2-map-map: (
∧

x. x ∈ set xs =⇒ R (f x) (g x)) =⇒ list-all2 R (map
f xs) (map g xs)

by (induct xs, auto)
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1.2 Partitions
Check whether a list of sets forms a partition, i.e., whether the sets are
pairwise disjoint.
definition is-partition :: ( ′a set) list ⇒ bool where

is-partition cs ←→ (∀ j<length cs. ∀ i<j. cs ! i ∩ cs ! j = {})

definition is-partition-alt :: ( ′a set) list ⇒ bool where
is-partition-alt cs ←→ (∀ i j. i < length cs ∧ j < length cs ∧ i 6= j −→ cs!i ∩

cs!j = {})

lemma is-partition-alt: is-partition = is-partition-alt
proof (intro ext)

fix cs :: ′a set list
{

assume is-partition-alt cs
hence is-partition cs unfolding is-partition-def is-partition-alt-def by auto

}
moreover
{

assume part: is-partition cs
have is-partition-alt cs unfolding is-partition-alt-def
proof (intro allI impI )

fix i j
assume i < length cs ∧ j < length cs ∧ i 6= j
with part show cs ! i ∩ cs ! j = {}

unfolding is-partition-def
by (cases i < j, simp, cases j < i, force, simp)

qed
}
ultimately
show is-partition cs = is-partition-alt cs by auto

qed

lemma is-partition-Nil:
is-partition [] = True unfolding is-partition-def by auto

lemma is-partition-Cons:
is-partition (x#xs) ←→ is-partition xs ∧ x ∩

⋃
(set xs) = {} (is ?l = ?r)

proof
assume ?l
have one: is-partition xs
proof (unfold is-partition-def , intro allI impI )

fix j i assume j < length xs and i < j
hence Suc j < length(x#xs) and Suc i < Suc j by auto
from ‹?l›[unfolded is-partition-def ,THEN spec,THEN mp,THEN spec,THEN

mp,OF this]
have (x#xs)!(Suc i) ∩ (x#xs)!(Suc j) = {} .
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thus xs!i ∩ xs!j = {} by simp
qed
have two: x ∩

⋃
(set xs) = {}

proof (rule ccontr)
assume x ∩

⋃
(set xs) 6= {}

then obtain y where y ∈ x and y ∈
⋃
(set xs) by auto

then obtain z where z ∈ set xs and y ∈ z by auto
then obtain i where i < length xs and xs!i = z using in-set-conv-nth[of z

xs] by auto
with ‹y ∈ z› have y ∈ (x#xs)!Suc i by auto
moreover with ‹y ∈ x› have y ∈ (x#xs)!0 by simp
ultimately have (x#xs)!0 ∩ (x#xs)!Suc i 6= {} by auto
moreover from ‹i < length xs› have Suc i < length(x#xs) by simp
ultimately show False using ‹?l›[unfolded is-partition-def ] by best

qed
from one two show ?r ..

next
assume ?r
show ?l
proof (unfold is-partition-def , intro allI impI )

fix j i
assume j: j < length (x # xs)
assume i: i < j
from i obtain j ′ where j ′: j = Suc j ′ by (cases j, auto)
with j have j ′len: j ′ < length xs and j ′elem: (x # xs) ! j = xs ! j ′ by auto
show (x # xs) ! i ∩ (x # xs) ! j = {}
proof (cases i)

case 0
with j ′elem have (x # xs) ! i ∩ (x # xs) ! j = x ∩ xs ! j ′ by auto
also have . . . ⊆ x ∩

⋃
(set xs) using j ′len by force

finally show ?thesis using ‹?r› by auto
next

case (Suc i ′)
with i j ′ have i ′j ′: i ′ < j ′ by auto
from Suc j ′ have (x # xs) ! i ∩ (x # xs) ! j = xs ! i ′ ∩ xs ! j ′ by auto
with ‹?r› i ′j ′ j ′len show ?thesis unfolding is-partition-def by auto

qed
qed

qed

lemma is-partition-sublist:
assumes is-partition (us @ xs @ ys @ zs @ vs)
shows is-partition (xs @ zs)

proof (rule ccontr)
assume ¬ is-partition (xs @ zs)
then obtain i j where j:j < length (xs @ zs) and i:i < j and ∗:(xs @ zs) ! i ∩

(xs @ zs) ! j 6= {}
unfolding is-partition-def by blast

then show False
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proof (cases j < length xs)
case True
let ?m = j + length us
let ?n = i + length us
from True have ?m < length (us @ xs @ ys @ zs @ vs) by auto
moreover from i have ?n < ?m by auto
moreover have (us @ xs @ ys @ zs @ vs) ! ?n ∩ (us @ xs @ ys @ zs @ vs) !

?m 6= {}
using i True ∗ nth-append

by (metis (no-types, lifting) add-diff-cancel-right ′ not-add-less2 order .strict-trans)
ultimately show False using assms unfolding is-partition-def by auto

next
case False
let ?m = j + length us + length ys
from j have m:?m < length (us @ xs @ ys @ zs @ vs) by auto
have mj:(us @ (xs @ ys @ zs @ vs)) ! ?m = (xs @ zs) ! j unfolding nth-append

using False j by auto
show False
proof (cases i < length xs)

case True
let ?n = i + length us
from i have ?n < ?m by auto
moreover have (us @ xs @ ys @ zs @ vs) ! ?n = (xs @ zs) ! i by (simp add:

True nth-append)
ultimately show False using ∗ m assms mj unfolding is-partition-def by

blast
next

case False
let ?n = i + length us + length ys
from i have i:?n < ?m by auto
moreover have (us @ xs @ ys @ zs @ vs) ! ?n = (xs @ zs) ! i

unfolding nth-append using False i j less-diff-conv2 by auto
ultimately show False using ∗ m assms mj unfolding is-partition-def by

blast
qed

qed
qed

lemma is-partition-inj-map:
assumes is-partition xs
and inj-on f (

⋃
x ∈ set xs. x)

shows is-partition (map ((‘) f ) xs)
proof (rule ccontr)

assume ¬ is-partition (map ((‘) f ) xs)
then obtain i j where neq:i 6= j

and i:i < length (map ((‘) f ) xs) and j:j < length (map ((‘) f ) xs)
and map ((‘) f ) xs ! i ∩ map ((‘) f ) xs ! j 6= {}
unfolding is-partition-alt is-partition-alt-def by auto

then obtain x where x ∈ map ((‘) f ) xs ! i and x ∈ map ((‘) f ) xs ! j by auto
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then obtain y z where yi:y ∈ xs ! i and yx:f y = x and zj:z ∈ xs ! j and zx:f
z = x

using i j by auto
show False
proof (cases y = z)

case True
with zj yi neq assms(1 ) i j show ?thesis by (auto simp: is-partition-alt

is-partition-alt-def )
next

case False
have y ∈ (

⋃
x ∈ set xs. x) using yi i by force

moreover have z ∈ (
⋃

x ∈ set xs. x) using zj j by force
ultimately show ?thesis using assms(2 ) inj-on-def [of f (

⋃
x∈set xs. x)] False

zx yx by blast
qed

qed

context
begin
private fun is-partition-impl :: ′a set list ⇒ ′a set option where

is-partition-impl [] = Some {}
| is-partition-impl (as # rest) = do {

all ← is-partition-impl rest;
if as ∩ all = {} then Some (all ∪ as) else None
}

lemma is-partition-code[code]: is-partition as = (is-partition-impl as 6= None)
proof −

note [simp] = is-partition-Cons is-partition-Nil
have

∧
bs. (is-partition as = (is-partition-impl as 6= None)) ∧

(is-partition-impl as = Some bs −→ bs =
⋃

(set as))
proof (induct as)

case (Cons as rest bs)
show ?case
proof (cases is-partition rest)

case False
thus ?thesis using Cons by auto

next
case True
with Cons obtain c where rest: is-partition-impl rest = Some c

by (cases is-partition-impl rest, auto)
with Cons True show ?thesis by auto

qed
qed auto
thus ?thesis by blast

qed
end

lemma case-prod-partition:
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case-prod f (partition p xs) = f (filter p xs) (filter (Not ◦ p) xs)
by simp

lemmas map-id[simp] = list.map-id

1.3 merging functions
definition fun-merge :: ( ′a ⇒ ′b)list ⇒ ′a set list ⇒ ′a ⇒ ′b

where fun-merge fs as a ≡ (fs ! (LEAST i. i < length as ∧ a ∈ as ! i)) a

lemma fun-merge: assumes
i: i < length as

and a: a ∈ as ! i
and ident:

∧
i j a. i < length as =⇒ j < length as =⇒ a ∈ as ! i =⇒ a ∈ as ! j

=⇒ (fs ! i) a = (fs ! j) a
shows fun-merge fs as a = (fs ! i) a

proof −
let ?p = λ i. i < length as ∧ a ∈ as ! i
let ?l = LEAST i. ?p i
have p: ?p ?l

by (rule LeastI , insert i a, auto)
show ?thesis unfolding fun-merge-def

by (rule ident[OF - i - a], insert p, auto)
qed

lemma fun-merge-part: assumes
part: is-partition as

and i: i < length as
and a: a ∈ as ! i
shows fun-merge fs as a = (fs ! i) a

proof(rule fun-merge[OF i a])
fix i j a
assume i < length as and j < length as and a ∈ as ! i and a ∈ as ! j
hence i = j using part[unfolded is-partition-alt is-partition-alt-def ] by (cases i

= j, auto)
thus (fs ! i) a = (fs ! j) a by simp

qed

lemma map-nth-conv: map f ss = map g ts =⇒ ∀ i < length ss. f (ss!i) = g(ts!i)
proof (intro allI impI )

fix i show map f ss = map g ts =⇒ i < length ss =⇒ f (ss!i) = g(ts!i)
proof (induct ss arbitrary: i ts)

case Nil thus ?case by (induct ts) auto
next

case (Cons s ss) thus ?case
by (induct ts, simp, (cases i, auto))

qed
qed
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lemma distinct-take-drop:
assumes dist: distinct vs and len: i < length vs shows distinct(take i vs @ drop

(Suc i) vs) (is distinct(?xs@?ys))
proof −

from id-take-nth-drop[OF len] have vs[symmetric]: vs = ?xs @ vs!i # ?ys .
with dist have distinct ?xs and distinct(vs!i#?ys) and set ?xs ∩ set(vs!i#?ys)

= {} using distinct-append[of ?xs vs!i#?ys] by auto
hence distinct ?ys and set ?xs ∩ set ?ys = {} by auto
with ‹distinct ?xs› show ?thesis using distinct-append[of ?xs ?ys] vs by simp

qed

lemma map-nth-eq-conv:
assumes len: length xs = length ys
shows (map f xs = ys) = (∀ i<length ys. f (xs ! i) = ys ! i) (is ?l = ?r)

proof −
have (map f xs = ys) = (map f xs = map id ys) by auto
also have ... = (∀ i < length ys. f (xs ! i) = id (ys ! i))

using map-nth-conv[of f xs id ys] nth-map-conv[OF len, of f id] unfolding len
by blast

finally show ?thesis by auto
qed

lemma map-upt-len-conv:
map (λ i . f (xs!i)) [0 ..<length xs] = map f xs
by (rule nth-equalityI , auto)

lemma map-upt-add ′:
map f [a..<a+b] = map (λ i. f (a + i)) [0 ..<b]
by (induct b, auto)

definition generate-lists :: nat ⇒ ′a list ⇒ ′a list list
where generate-lists n xs ≡ concat-lists (map (λ -. xs) [0 ..< n])

lemma set-generate-lists[simp]: set (generate-lists n xs) = {as. length as = n ∧
set as ⊆ set xs}
proof −

{
fix as
have (length as = n ∧ (∀ i<n. as ! i ∈ set xs)) = (length as = n ∧ set as ⊆

set xs)
proof −

{
assume length as = n
hence n: n = length as by auto
have (∀ i<n. as ! i ∈ set xs) = (set as ⊆ set xs) unfolding n

unfolding all-set-conv-all-nth[of as λ x. x ∈ set xs, symmetric] by auto
}
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thus ?thesis by auto
qed

}
thus ?thesis unfolding generate-lists-def unfolding set-concat-lists by auto

qed

lemma nth-append-take:
assumes i ≤ length xs shows (take i xs @ y#ys)!i = y

proof −
from assms have a: length(take i xs) = i by simp
have (take i xs @ y#ys)!(length(take i xs)) = y by (rule nth-append-length)
thus ?thesis unfolding a .

qed

lemma nth-append-take-is-nth-conv:
assumes i < j and j ≤ length xs shows (take j xs @ ys)!i = xs!i

proof −
from assms have i < length(take j xs) by simp
hence (take j xs @ ys)!i = take j xs ! i unfolding nth-append by simp
thus ?thesis unfolding nth-take[OF assms(1 )] .

qed

lemma nth-append-drop-is-nth-conv:
assumes j < i and j ≤ length xs and i ≤ length xs
shows (take j xs @ y # drop (Suc j) xs)!i = xs!i

proof −
from ‹j < i› obtain n where ij: Suc(j + n) = i using less-imp-Suc-add by

auto
with assms have i: i = length(take j xs) + Suc n by auto
have len: Suc j + n ≤ length xs using assms i by auto
have (take j xs @ y # drop (Suc j) xs)!i =
(y # drop (Suc j) xs)!(i − length(take j xs)) unfolding nth-append i by auto

also have . . . = (y # drop (Suc j) xs)!(Suc n) unfolding i by simp
also have . . . = (drop (Suc j) xs)!n by simp
finally show ?thesis using ij len by simp

qed

lemma nth-append-take-drop-is-nth-conv:
assumes i ≤ length xs and j ≤ length xs and i 6= j
shows (take j xs @ y # drop (Suc j) xs)!i = xs!i

proof −
from assms have i < j ∨ i > j by auto
thus ?thesis using assms

by (auto simp: nth-append-take-is-nth-conv nth-append-drop-is-nth-conv)
qed

lemma take-drop-imp-nth: [[take i ss @ x # drop (Suc i) ss = ss]] =⇒ x = ss!i
proof (induct ss arbitrary: i)
case (Cons s ss)
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from ‹take i (s#ss) @ x # drop (Suc i) (s#ss) = (s#ss)› show ?case
proof (induct i)
case (Suc i)
from Cons have IH : take i ss @ x # drop (Suc i) ss = ss =⇒ x = ss!i by auto
from Suc have take i ss @ x # drop (Suc i) ss = ss by auto
with IH show ?case by auto

qed auto
qed auto

lemma take-drop-update-first: assumes j < length ds and length cs = length ds
shows (take j ds @ drop j cs)[j := ds ! j] = take (Suc j) ds @ drop (Suc j) cs

using assms
proof (induct j arbitrary: ds cs)

case 0
then obtain d dds c ccs where ds: ds = d # dds and cs: cs = c # ccs by

(cases ds, simp, cases cs, auto)
show ?case unfolding ds cs by auto

next
case (Suc j)
then obtain d dds c ccs where ds: ds = d # dds and cs: cs = c # ccs by

(cases ds, simp, cases cs, auto)
from Suc(1 )[of dds ccs] Suc(2 ) Suc(3 ) show ?case unfolding ds cs by auto

qed

lemma take-drop-update-second: assumes j < length ds and length cs = length
ds

shows (take j ds @ drop j cs)[j := cs ! j] = take j ds @ drop j cs
using assms
proof (induct j arbitrary: ds cs)

case 0
then obtain d dds c ccs where ds: ds = d # dds and cs: cs = c # ccs by

(cases ds, simp, cases cs, auto)
show ?case unfolding ds cs by auto

next
case (Suc j)
then obtain d dds c ccs where ds: ds = d # dds and cs: cs = c # ccs by

(cases ds, simp, cases cs, auto)
from Suc(1 )[of dds ccs] Suc(2 ) Suc(3 ) show ?case unfolding ds cs by auto

qed

lemma nth-take-prefix:
length ys ≤ length xs =⇒ ∀ i < length ys. xs!i = ys!i =⇒ take (length ys) xs = ys

proof (induct xs ys rule: list-induct2 ′)
case (4 x xs y ys)
have take (length ys) xs = ys

by (rule 4 (1 ), insert 4 (2−3 ), auto)
moreover from 4 (3 ) have x = y by auto
ultimately show ?case by auto
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qed auto

lemma take-upt-idx:
assumes i: i < length ls
shows take i ls = [ ls ! j . j ← [0 ..<i]]

proof −
have e: 0 + i ≤ i by auto
show ?thesis

using take-upt[OF e] take-map map-nth
by (metis (opaque-lifting, no-types) add.left-neutral i nat-less-le take-upt)

qed

fun distinct-eq :: ( ′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ bool where
distinct-eq - [] = True
| distinct-eq eq (x # xs) = ((∀ y ∈ set xs. ¬ (eq y x)) ∧ distinct-eq eq xs)

lemma distinct-eq-append: distinct-eq eq (xs @ ys) = (distinct-eq eq xs ∧ distinct-eq
eq ys ∧ (∀ x ∈ set xs. ∀ y ∈ set ys. ¬ (eq y x)))

by (induct xs, auto)

lemma append-Cons-nth-left:
assumes i < length xs
shows (xs @ u # ys) ! i = xs ! i
using assms nth-append[of xs - i] by simp

lemma append-Cons-nth-middle:
assumes i = length xs
shows (xs @ y # zs) ! i = y

using assms by auto

lemma append-Cons-nth-right:
assumes i > length xs
shows (xs @ u # ys) ! i = (xs @ z # ys) ! i
by (simp add: assms nth-append)

lemma append-Cons-nth-not-middle:
assumes i 6= length xs
shows (xs @ u # ys) ! i = (xs @ z # ys) ! i
by (metis assms list-update-length nth-list-update-neq)

lemmas append-Cons-nth = append-Cons-nth-middle append-Cons-nth-not-middle

lemma concat-all-nth:
assumes length xs = length ys

and
∧

i. i < length xs =⇒ length (xs ! i) = length (ys ! i)
and

∧
i j. i < length xs =⇒ j < length (xs ! i) =⇒ P (xs ! i ! j) (ys ! i ! j)

shows ∀ k<length (concat xs). P (concat xs ! k) (concat ys ! k)
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using assms
proof (induct xs ys rule: list-induct2 )

case (Cons x xs y ys)
from Cons(3 )[of 0 ] have xy: length x = length y by simp
from Cons(4 )[of 0 ] xy have pxy:

∧
j. j < length x =⇒ P (x ! j) (y ! j) by auto

{
fix i
assume i: i < length xs
with Cons(3 )[of Suc i]
have len: length (xs ! i) = length (ys ! i) by simp
from Cons(4 )[of Suc i] i have

∧
j. j < length (xs ! i) =⇒ P (xs ! i ! j) (ys !

i ! j)
by auto

note len and this
}
from Cons(2 )[OF this] have ind:

∧
k. k < length (concat xs) =⇒ P (concat xs

! k) (concat ys ! k)
by auto

show ?case unfolding concat.simps
proof (intro allI impI )

fix k
assume k: k < length (x @ concat xs)
show P ((x @ concat xs) ! k) ((y @ concat ys) ! k)
proof (cases k < length x)

case True
show ?thesis unfolding nth-append using True xy pxy[OF True]

by simp
next

case False
with k have k − (length x) < length (concat xs) by auto
then obtain n where n: k − length x = n and nxs: n < length (concat xs)

by auto
show ?thesis unfolding nth-append n n[unfolded xy] using False xy ind[OF

nxs]
by auto

qed
qed

qed auto

lemma eq-length-concat-nth:
assumes length xs = length ys

and
∧

i. i < length xs =⇒ length (xs ! i) = length (ys ! i)
shows length (concat xs) = length (concat ys)

using assms
proof (induct xs ys rule: list-induct2 )

case (Cons x xs y ys)
from Cons(3 )[of 0 ] have xy: length x = length y by simp
{

fix i

16



assume i < length xs
with Cons(3 )[of Suc i]
have length (xs ! i) = length (ys ! i) by simp

}
from Cons(2 )[OF this] have ind: length (concat xs) = length (concat ys) by

simp
show ?case using xy ind by auto

qed auto

primrec
list-union :: ′a list ⇒ ′a list ⇒ ′a list

where
list-union [] ys = ys
| list-union (x # xs) ys = (let zs = list-union xs ys in if x ∈ set zs then zs else x
# zs)

lemma set-list-union[simp]: set (list-union xs ys) = set xs ∪ set ys
proof (induct xs)

case (Cons x xs) thus ?case by (cases x ∈ set (list-union xs ys)) (auto)
qed simp

declare list-union.simps[simp del]

fun list-inter :: ′a list ⇒ ′a list ⇒ ′a list where
list-inter [] bs = []
| list-inter (a#as) bs =

(if a ∈ set bs then a # list-inter as bs else list-inter as bs)

lemma set-list-inter [simp]:
set (list-inter xs ys) = set xs ∩ set ys
by (induct rule: list-inter .induct) simp-all

declare list-inter .simps[simp del]

primrec list-diff :: ′a list ⇒ ′a list ⇒ ′a list where
list-diff [] ys = []
| list-diff (x # xs) ys = (let zs = list-diff xs ys in if x ∈ set ys then zs else x # zs)

lemma set-list-diff [simp]:
set (list-diff xs ys) = set xs − set ys

proof (induct xs)
case (Cons x xs) thus ?case by (cases x ∈ set ys) (auto)

qed simp

declare list-diff .simps[simp del]

lemma nth-drop-0 : 0 < length ss =⇒ (ss!0 )#drop (Suc 0 ) ss = ss
by (simp add: Cons-nth-drop-Suc)
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lemma set-foldr-remdups-set-map-conv[simp]:
set (foldr (λx xs. remdups (f x @ xs)) xs []) =

⋃
(set (map (set ◦ f ) xs))

by (induct xs) auto

lemma subset-set-code[code-unfold]: set xs ⊆ set ys ←→ list-all (λx. x ∈ set ys)
xs

unfolding list-all-iff by auto

fun union-list-sorted where
union-list-sorted (x # xs) (y # ys) =
(if x = y then x # union-list-sorted xs ys
else if x < y then x # union-list-sorted xs (y # ys)
else y # union-list-sorted (x # xs) ys)

| union-list-sorted [] ys = ys
| union-list-sorted xs [] = xs

lemma [simp]: set (union-list-sorted xs ys) = set xs ∪ set ys
by (induct xs ys rule: union-list-sorted.induct, auto)

fun subtract-list-sorted :: ( ′a :: linorder) list ⇒ ′a list ⇒ ′a list where
subtract-list-sorted (x # xs) (y # ys) =
(if x = y then subtract-list-sorted xs (y # ys)
else if x < y then x # subtract-list-sorted xs (y # ys)
else subtract-list-sorted (x # xs) ys)

| subtract-list-sorted [] ys = []
| subtract-list-sorted xs [] = xs

lemma set-subtract-list-sorted[simp]: sorted xs =⇒ sorted ys =⇒
set (subtract-list-sorted xs ys) = set xs − set ys

proof (induct xs ys rule: subtract-list-sorted.induct)
case (1 x xs y ys)
have xxs: sorted (x # xs) by fact
have yys: sorted (y # ys) by fact
have xs: sorted xs using xxs by (simp)
show ?case
proof (cases x = y)

case True
thus ?thesis using 1 (1 )[OF True xs yys] by auto

next
case False note neq = this
note IH = 1 (2−3 )[OF this]
show ?thesis

by (cases x < y, insert IH xxs yys False, auto)
qed

qed auto
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lemma subset-subtract-listed-sorted: set (subtract-list-sorted xs ys) ⊆ set xs
by (induct xs ys rule: subtract-list-sorted.induct, auto)

lemma set-subtract-list-distinct[simp]: distinct xs =⇒ distinct (subtract-list-sorted
xs ys)
by (induct xs ys rule: subtract-list-sorted.induct, insert subset-subtract-listed-sorted,

auto)

definition remdups-sort xs = remdups-adj (sort xs)

lemma remdups-sort[simp]: sorted (remdups-sort xs) set (remdups-sort xs) = set
xs

distinct (remdups-sort xs)
by (simp-all add: remdups-sort-def )

maximum and minimum
lemma max-list-mono: assumes

∧
x. x ∈ set xs − set ys =⇒ ∃ y. y ∈ set ys ∧

x ≤ y
shows max-list xs ≤ max-list ys
using assms

proof (induct xs)
case (Cons x xs)
have x ≤ max-list ys
proof (cases x ∈ set ys)

case True
from max-list[OF this] show ?thesis .

next
case False
with Cons(2 )[of x] obtain y where y: y ∈ set ys

and xy: x ≤ y by auto
from xy max-list[OF y] show ?thesis by arith

qed
moreover have max-list xs ≤ max-list ys

by (rule Cons(1 )[OF Cons(2 )], auto)
ultimately show ?case by auto

qed auto

fun min-list :: ( ′a :: linorder) list ⇒ ′a where
min-list [x] = x
| min-list (x # xs) = min x (min-list xs)

lemma min-list: (x :: ′a :: linorder) ∈ set xs =⇒ min-list xs ≤ x
proof (induct xs)

case oCons : (Cons y ys)
show ?case
proof (cases ys)

case Nil
thus ?thesis using oCons by auto

next
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case (Cons z zs)
hence min-list (y # ys) = min y (min-list ys)

by auto
then show ?thesis

using min-le-iff-disj oCons.hyps oCons.prems by auto
qed

qed simp

lemma min-list-Cons:
assumes xy: x ≤ y

and len: length xs = length ys
and xsys: min-list xs ≤ min-list ys

shows min-list (x # xs) ≤ min-list (y # ys)
by (metis min-list.simps len length-greater-0-conv min.mono nth-drop-0 xsys xy)

lemma min-list-nth:
assumes length xs = length ys

and
∧

i. i < length ys =⇒ xs ! i ≤ ys ! i
shows min-list xs ≤ min-list ys

using assms
proof (induct xs arbitrary: ys)

case (Cons x xs zs)
from Cons(2 ) obtain y ys where zs: zs = y # ys by (cases zs, auto)
note Cons = Cons[unfolded zs]
from Cons(2 ) have len: length xs = length ys by simp
from Cons(3 )[of 0 ] have xy: x ≤ y by simp
{

fix i
assume i < length xs
with Cons(3 )[of Suc i] Cons(2 )
have xs ! i ≤ ys ! i by simp

}
from Cons(1 )[OF len this] Cons(2 ) have ind: min-list xs ≤ min-list ys by simp
show ?case unfolding zs

by (rule min-list-Cons[OF xy len ind])
qed auto

lemma min-list-ex:
assumes xs 6= [] shows ∃ x∈set xs. min-list xs = x
using assms

proof (induct xs)
case oCons : (Cons x xs)
show ?case
proof (cases xs)

case (Cons y ys)
hence id: min-list (x # xs) = min x (min-list xs) and nNil: xs 6= [] by auto
show ?thesis
proof (cases x ≤ min-list xs)

case True
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show ?thesis unfolding id
by (rule bexI [of - x], insert True, auto simp: min-def )

next
case False
show ?thesis unfolding id min-def

using oCons(1 )[OF nNil] False by auto
qed

qed auto
qed auto

lemma min-list-subset:
assumes subset: set ys ⊆ set xs and mem: min-list xs ∈ set ys
shows min-list xs = min-list ys
by (metis antisym empty-iff empty-set mem min-list min-list-ex subset subsetD)

Apply a permutation to a list.
primrec permut-aux :: ′a list ⇒ (nat ⇒ nat) ⇒ ′a list ⇒ ′a list where

permut-aux [] - - = [] |
permut-aux (a # as) f bs = (bs ! f 0 ) # (permut-aux as (λn. f (Suc n)) bs)

definition permut :: ′a list ⇒ (nat ⇒ nat) ⇒ ′a list where
permut as f = permut-aux as f as

declare permut-def [simp]

lemma permut-aux-sound:
assumes i < length as
shows permut-aux as f bs ! i = bs ! (f i)

using assms proof (induct as arbitrary: i f bs)
case (Cons x xs)
show ?case
proof (cases i)

case (Suc j)
with Cons(2 ) have j < length xs by simp
from Cons(1 )[OF this] and Suc show ?thesis by simp

qed simp
qed simp

lemma permut-sound:
assumes i < length as
shows permut as f ! i = as ! (f i)

using assms and permut-aux-sound by simp

lemma permut-aux-length:
assumes bij-betw f {..<length as} {..<length bs}
shows length (permut-aux as f bs) = length as

by (induct as arbitrary: f bs, simp-all)

lemma permut-length:
assumes bij-betw f {..< length as} {..< length as}
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shows length (permut as f ) = length as
using permut-aux-length[OF assms] by simp

declare permut-def [simp del]

lemma foldl-assoc:
fixes b :: ( ′a ⇒ ′a) ⇒ ( ′a ⇒ ′a) ⇒ ′a ⇒ ′a (infixl ‹·› 55 )
assumes

∧
f g h. f · (g · h) = f · g · h

shows foldl (·) (x · y) zs = x · foldl (·) y zs
using assms[symmetric] by (induct zs arbitrary: y) simp-all

lemma foldr-assoc:
assumes

∧
f g h. b (b f g) h = b f (b g h)

shows foldr b xs (b y z) = b (foldr b xs y) z
using assms by (induct xs) simp-all

lemma foldl-foldr-o-id:
foldl (◦) id fs = foldr (◦) fs id

proof (induct fs)
case (Cons f fs)
have id ◦ f = f ◦ id by simp
with Cons [symmetric] show ?case

by (simp only: foldl-Cons foldr-Cons o-apply [of - - id] foldl-assoc o-assoc)
qed simp

lemma foldr-o-o-id[simp]:
foldr ((◦) ◦ f ) xs id a = foldr f xs a
by (induct xs) simp-all

lemma Ex-list-of-length-P:
assumes ∀ i<n. ∃ x. P x i
shows ∃ xs. length xs = n ∧ (∀ i<n. P (xs ! i) i)

proof −
from assms have ∀ i. ∃ x. i < n −→ P x i by simp
from choice[OF this] obtain xs where xs:

∧
i. i < n =⇒ P (xs i) i by auto

show ?thesis
by (rule exI [of - map xs [0 ..< n]], insert xs, auto)

qed

lemma ex-set-conv-ex-nth: (∃ x∈set xs. P x) = (∃ i<length xs. P (xs ! i))
using in-set-conv-nth[of - xs] by force

lemma map-eq-set-zipD [dest]:
assumes map f xs = map f ys

and (x, y) ∈ set (zip xs ys)
shows f x = f y

using assms
proof (induct xs arbitrary: ys)

case (Cons x xs)
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then show ?case by (cases ys) auto
qed simp

fun span :: ( ′a ⇒ bool) ⇒ ′a list ⇒ ′a list × ′a list where
span P (x # xs) =
(if P x then let (ys, zs) = span P xs in (x # ys, zs)
else ([], x # xs)) |

span - [] = ([], [])

lemma span[simp]: span P xs = (takeWhile P xs, dropWhile P xs)
by (induct xs, auto)

declare span.simps[simp del]

lemma parallel-list-update: assumes
one-update:

∧
xs i y. length xs = n =⇒ i < n =⇒ r (xs ! i) y =⇒ p xs =⇒ p

(xs[i := y])
and init: length xs = n p xs
and rel: length ys = n

∧
i. i < n =⇒ r (xs ! i) (ys ! i)

shows p ys
proof −

note len = rel(1 ) init(1 )
{

fix i
assume i ≤ n
hence p (take i ys @ drop i xs)
proof (induct i)

case 0 with init show ?case by simp
next

case (Suc i)
hence IH : p (take i ys @ drop i xs) by simp
from Suc have i: i < n by simp
let ?xs = (take i ys @ drop i xs)
have length ?xs = n using i len by simp
from one-update[OF this i - IH , of ys ! i] rel(2 )[OF i] i len
show ?case by (simp add: nth-append take-drop-update-first)

qed
}
from this[of n] show ?thesis using len by auto

qed

lemma nth-concat-two-lists:
i < length (concat (xs :: ′a list list)) =⇒ length (ys :: ′b list list) = length xs
=⇒ (

∧
i. i < length xs =⇒ length (ys ! i) = length (xs ! i))

=⇒ ∃ j k. j < length xs ∧ k < length (xs ! j) ∧ (concat xs) ! i = xs ! j ! k ∧
(concat ys) ! i = ys ! j ! k

proof (induct xs arbitrary: i ys)
case (Cons x xs i yys)
then obtain y ys where yys: yys = y # ys by (cases yys, auto)
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note Cons = Cons[unfolded yys]
from Cons(4 )[of 0 ] have [simp]: length y = length x by simp
show ?case
proof (cases i < length x)

case True
show ?thesis unfolding yys

by (rule exI [of - 0 ], rule exI [of - i], insert True Cons(2−4 ), auto simp:
nth-append)

next
case False
let ?i = i − length x
from False Cons(2−3 ) have ?i < length (concat xs) length ys = length xs by

auto
note IH = Cons(1 )[OF this]
{

fix i
assume i < length xs
with Cons(4 )[of Suc i] have length (ys ! i) = length (xs ! i) by simp

}
from IH [OF this]
obtain j k where IH1 : j < length xs k < length (xs ! j)

concat xs ! ?i = xs ! j ! k
concat ys ! ?i = ys ! j ! k by auto

show ?thesis unfolding yys
by (rule exI [of - Suc j], rule exI [of - k], insert IH1 False, auto simp: nth-append)

qed
qed simp

Removing duplicates w.r.t. some function.
fun remdups-gen :: ( ′a ⇒ ′b) ⇒ ′a list ⇒ ′a list where

remdups-gen f [] = []
| remdups-gen f (x # xs) = x # remdups-gen f [y <− xs. ¬ f x = f y]

lemma remdups-gen-subset: set (remdups-gen f xs) ⊆ set xs
by (induct f xs rule: remdups-gen.induct, auto)

lemma remdups-gen-elem-imp-elem: x ∈ set (remdups-gen f xs) =⇒ x ∈ set xs
using remdups-gen-subset[of f xs] by blast

lemma elem-imp-remdups-gen-elem: x ∈ set xs =⇒ ∃ y ∈ set (remdups-gen f xs).
f x = f y
proof (induct f xs rule: remdups-gen.induct)

case (2 f z zs)
show ?case
proof (cases f x = f z)

case False
with 2 (2 ) have x ∈ set [y←zs . f z 6= f y] by auto
from 2 (1 )[OF this] show ?thesis by auto

qed auto
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qed auto

lemma take-nth-drop-concat:
assumes i < length xss and xss ! i = ys

and j < length ys and ys ! j = z
shows ∃ k < length (concat xss).

take k (concat xss) = concat (take i xss) @ take j ys ∧
concat xss ! k = xss ! i ! j ∧
drop (Suc k) (concat xss) = drop (Suc j) ys @ concat (drop (Suc i) xss)

using assms(1 , 2 )
proof (induct xss arbitrary: i rule: List.rev-induct)

case (snoc xs xss)
then show ?case using assms by (cases i < length xss) (auto simp: nth-append)

qed simp

lemma concat-map-empty [simp]:
concat (map (λ-. []) xs) = []
by simp

lemma map-upt-len-same-len-conv:
assumes length xs = length ys
shows map (λi. f (xs ! i)) [0 ..< length ys] = map f xs
unfolding assms [symmetric] by (rule map-upt-len-conv)

lemma concat-map-concat [simp]:
concat (map concat xs) = concat (concat xs)
by (induct xs) simp-all

lemma concat-concat-map:
concat (concat (map f xs)) = concat (map (concat ◦ f ) xs)
by (induct xs) simp-all

lemma UN-upt-len-conv [simp]:
length xs = n =⇒ (

⋃
i ∈ {0 ..< n}. f (xs ! i)) =

⋃
(set (map f xs))

by (force simp: in-set-conv-nth)

lemma Ball-at-Least0LessThan-conv [simp]:
length xs = n =⇒
(∀ i ∈ {0 ..< n}. P (xs ! i)) ←→ (∀ x ∈ set xs. P x)

by (metis atLeast0LessThan in-set-conv-nth lessThan-iff )

lemma sum-list-replicate-length [simp]:
sum-list (replicate (length xs) (Suc 0 )) = length xs
by (induct xs) simp-all

lemma list-all2-in-set2 :
assumes list-all2 P xs ys and y ∈ set ys
obtains x where x ∈ set xs and P x y
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using assms by (induct) auto

lemma map-eq-conv ′:
map f xs = map g ys ←→ length xs = length ys ∧ (∀ i < length xs. f (xs ! i) = g

(ys ! i))
using map-equality-iff map-equality-iff nth-map-conv by auto

lemma list-3-cases[case-names Nil 1 2 ]:
assumes xs = [] =⇒ P

and
∧

x. xs = [x] =⇒ P
and

∧
x y ys. xs = x#y#ys =⇒ P

shows P
using assms by (rule remdups-adj.cases)

lemma list-4-cases[case-names Nil 1 2 3 ]:
assumes xs = [] =⇒ P

and
∧

x. xs = [x] =⇒ P
and

∧
x y. xs = [x,y] =⇒ P

and
∧

x y z zs. xs = x # y # z # zs =⇒ P
shows P
using assms by (cases xs; cases tl xs; cases tl (tl xs), auto)

lemma foldr-append2 [simp]:
foldr ((@) ◦ f ) xs (ys @ zs) = foldr ((@) ◦ f ) xs ys @ zs
by (induct xs) simp-all

lemma foldr-append2-Nil [simp]:
foldr ((@) ◦ f ) xs [] @ zs = foldr ((@) ◦ f ) xs zs
unfolding foldr-append2 [symmetric] by simp

lemma UNION-set-zip:
(
⋃

x ∈ set (zip [0 ..<length xs] (map f xs)). g x) = (
⋃

i < length xs. g (i, f (xs !
i)))

by (auto simp: set-conv-nth)

lemma zip-fst: p ∈ set (zip as bs) =⇒ fst p ∈ set as
by (metis in-set-zipE prod.collapse)

lemma zip-snd: p ∈ set (zip as bs) =⇒ snd p ∈ set bs
by (metis in-set-zipE prod.collapse)

lemma zip-size-aux: size-list (size o snd) (zip ts ls) ≤ (size-list size ls)
proof (induct ls arbitrary: ts)

case (Cons l ls ts)
thus ?case by (cases ts, auto)

qed auto

We definie the function that remove the nth element of a list. It uses
take and drop and the soundness is therefore not too hard to prove thanks
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to the already existing lemmas.
definition remove-nth :: nat ⇒ ′a list ⇒ ′a list where

remove-nth n xs ≡ (take n xs) @ (drop (Suc n) xs)

declare remove-nth-def [simp]

lemma remove-nth-len:
assumes i: i < length xs
shows length xs = Suc (length (remove-nth i xs))

proof −
show ?thesis unfolding arg-cong[where f = length, OF id-take-nth-drop[OF i]]

unfolding remove-nth-def by simp
qed

lemma remove-nth-length :
assumes n-bd: n < length xs
shows length (remove-nth n xs) = length xs − 1
using n-bd by force

lemma remove-nth-id : length xs ≤ n =⇒ remove-nth n xs = xs
by simp

lemma remove-nth-sound-l :
assumes p-ub: p < n
shows (remove-nth n xs) ! p = xs ! p

proof (cases n < length xs)
case True
from length-take and True have ltk: length (take n xs) = n by simp
{

assume pltn: p < n
from this and ltk have plttk: p < length (take n xs) by simp
with nth-append[of take n xs - p]
have ((take n xs) @ (drop (Suc n) xs)) ! p = take n xs ! p by auto
with pltn and nth-take have ((take n xs) @ (drop (Suc n) xs)) ! p = xs ! p

by simp
}

from this and ltk and p-ub show ?thesis by simp
next
case False
hence length xs ≤ n by arith
with remove-nth-id show ?thesis by force

qed

lemma remove-nth-sound-r :
assumes n ≤ p and p < length xs
shows (remove-nth n xs) ! p = xs ! (Suc p)

proof−
from ‹n ≤ p› and ‹p < length xs› have n-ub: n < length xs by arith
from length-take and n-ub have ltk: length (take n xs) = n by simp
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from ‹n ≤ p› and ltk and nth-append[of take n xs - p]
have Hrew: ((take n xs) @ (drop (Suc n) xs)) ! p = drop (Suc n) xs ! (p − n) by

auto
from ‹n ≤ p› have idx: Suc n + (p − n) = Suc p by arith
from ‹p < length xs› have Sp-ub: Suc p ≤ length xs by arith
from idx and Sp-ub and nth-drop have Hrew ′: drop (Suc n) xs ! (p − n) = xs !
(Suc p) by simp
from Hrew and Hrew ′ show ?thesis by simp

qed

lemma nth-remove-nth-conv:
assumes i < length (remove-nth n xs)
shows remove-nth n xs ! i = xs ! (if i < n then i else Suc i)

using assms remove-nth-sound-l remove-nth-sound-r [of n i xs] by auto

lemma remove-nth-P-compat :
assumes aslbs: length as = length bs
and Pab: ∀ i. i < length as −→ P (as ! i) (bs ! i)
shows ∀ i. i < length (remove-nth p as) −→ P (remove-nth p as ! i) (remove-nth

p bs ! i)
proof (cases p < length as)
case True
hence p-ub: p < length as by assumption
with remove-nth-length have lr-ub: length (remove-nth p as) = length as − 1 by

auto
{

fix i assume i-ub: i < length (remove-nth p as)
have P (remove-nth p as ! i) (remove-nth p bs ! i)
proof (cases i < p)
case True
from i-ub and lr-ub have i-ub2 : i < length as by arith
from i-ub2 and Pab have P: P (as ! i) (bs ! i) by blast
from P and remove-nth-sound-l[OF True, of as] and remove-nth-sound-l[OF

True, of bs]
show ?thesis by simp

next
case False
hence p-ub2 : p ≤ i by arith
from i-ub and lr-ub have Si-ub: Suc i < length as by arith
with Pab have P: P (as ! Suc i) (bs ! Suc i) by blast
from i-ub and lr-ub have i-uba: i < length as by arith
from i-uba and aslbs have i-ubb: i < length bs by simp
from P and p-ub and aslbs and remove-nth-sound-r [OF p-ub2 i-uba]
and remove-nth-sound-r [OF p-ub2 i-ubb]
show ?thesis by auto

qed
}
thus ?thesis by simp

next
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case False
hence p-lba: length as ≤ p by arith
with aslbs have p-lbb: length bs ≤ p by simp
from remove-nth-id[OF p-lba] and remove-nth-id[OF p-lbb] and Pab
show ?thesis by simp

qed

declare remove-nth-def [simp del]

definition adjust-idx :: nat ⇒ nat ⇒ nat where
adjust-idx i j ≡ (if j < i then j else (Suc j))

definition adjust-idx-rev :: nat ⇒ nat ⇒ nat where
adjust-idx-rev i j ≡ (if j < i then j else j − Suc 0 )

lemma adjust-idx-rev1 : adjust-idx-rev i (adjust-idx i j) = j
using adjust-idx-def adjust-idx-rev-def by auto

lemma adjust-idx-rev2 :
assumes j 6= i shows adjust-idx i (adjust-idx-rev i j) = j
using adjust-idx-def adjust-idx-rev-def assms by auto

lemma adjust-idx-i:
adjust-idx i j 6= i
using adjust-idx-def lessI less-irrefl-nat by auto

lemma adjust-idx-nth:
assumes i: i < length xs
shows remove-nth i xs ! j = xs ! adjust-idx i j (is ?l = ?r)

proof −
let ?j = adjust-idx i j
from i have ltake: length (take i xs) = i by simp
note nth-xs = arg-cong[where f = λ xs. xs ! ?j, OF id-take-nth-drop[OF i],

unfolded nth-append ltake]
show ?thesis
proof (cases j < i)

case True
hence j: ?j = j unfolding adjust-idx-def by simp
show ?thesis unfolding nth-xs unfolding j remove-nth-def nth-append ltake

using True by simp
next

case False
hence j: ?j = Suc j unfolding adjust-idx-def by simp
from i have lxs: min (length xs) i = i by simp
show ?thesis unfolding nth-xs unfolding j remove-nth-def nth-append

using False by (simp add: lxs)
qed

qed
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lemma adjust-idx-rev-nth:
assumes i: i < length xs

and ji: j 6= i
shows remove-nth i xs ! adjust-idx-rev i j = xs ! j (is ?l = ?r)
by (simp add: adjust-idx-nth adjust-idx-rev2 i ji)

lemma adjust-idx-length:
assumes i: i < length xs

and j: j < length (remove-nth i xs)
shows adjust-idx i j < length xs
using adjust-idx-def i j remove-nth-len by fastforce

lemma adjust-idx-rev-length:
assumes i < length xs

and j < length xs
and j 6= i

shows adjust-idx-rev i j < length (remove-nth i xs)
by (metis adjust-idx-def adjust-idx-rev2 assms not-less-eq remove-nth-len)

If a binary relation holds on two couples of lists, then it holds on the
concatenation of the two couples.
lemma P-as-bs-extend:

assumes lab: length as = length bs
and lcd: length cs = length ds
and nsab: ∀ i. i < length bs −→ P (as ! i) (bs ! i)
and nscd: ∀ i. i < length ds −→ P (cs ! i) (ds ! i)
shows ∀ i. i < length (bs @ ds) −→ P ((as @ cs) ! i) ((bs @ ds) ! i)
by (simp add: lab nsab nscd nth-append)

Extension of filter and partition to binary relations.
fun filter2 :: ( ′a ⇒ ′b ⇒ bool) ⇒ ′a list ⇒ ′b list ⇒ ( ′a list × ′b list) where

filter2 P [] - = ([], []) |
filter2 P - [] = ([], []) |
filter2 P (a # as) (b # bs) = (if P a b

then (a # fst (filter2 P as bs), b # snd (filter2 P as bs))
else filter2 P as bs)

lemma filter2-length:
length (fst (filter2 P as bs)) ≡ length (snd (filter2 P as bs))

proof (induct as arbitrary: bs)
case Nil
show ?case by simp

next
case (Cons a as) note IH = this
thus ?case proof (cases bs)

case Nil
thus ?thesis by simp

next
case (Cons b bs)
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thus ?thesis proof (cases P a b)
case True
with Cons and IH show ?thesis by simp

next
case False
with Cons and IH show ?thesis by simp

qed
qed

qed

lemma filter2-sound: ∀ i. i < length (fst (filter2 P as bs)) −→ P (fst (filter2 P as
bs) ! i) (snd (filter2 P as bs) ! i)
proof (induct as arbitrary: bs)
case Nil
thus ?case by simp

next
case (Cons a as) note IH = this
thus ?case proof (cases bs)

case Nil
thus ?thesis by simp

next
case (Cons b bs)
thus ?thesis proof (cases P a b)
case False
with Cons and IH show ?thesis by simp

next
case True
{

fix i
assume i-bd: i < length (fst (filter2 P (a # as) (b # bs)))
have P (fst (filter2 P (a # as) (b # bs)) ! i) (snd (filter2 P (a # as) (b

# bs)) ! i) proof (cases i)
case 0
with True show ?thesis by simp

next
case (Suc j)
with i-bd and True have j < length (fst (filter2 P as bs)) by auto
with Suc and IH and True show ?thesis by simp

qed
}
with Cons show ?thesis by simp

qed
qed

qed

definition partition2 :: ( ′a ⇒ ′b ⇒ bool) ⇒ ′a list ⇒ ′b list ⇒ ( ′a list × ′b list)
× ( ′a list × ′b list) where

partition2 P as bs ≡ ((filter2 P as bs) , (filter2 (λa b. ¬ (P a b)) as bs))
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lemma partition2-sound-P: ∀ i. i < length (fst (fst (partition2 P as bs))) −→
P (fst (fst (partition2 P as bs)) ! i) (snd (fst (partition2 P as bs)) ! i)
by (simp add: filter2-sound partition2-def )

lemma partition2-sound-nP: ∀ i. i < length (fst (snd (partition2 P as bs))) −→
¬ P (fst (snd (partition2 P as bs)) ! i) (snd (snd (partition2 P as bs)) ! i)
by (metis filter2-sound partition2-def snd-conv)

Membership decision function that actually returns the value of the index
where the value can be found.
fun mem-idx :: ′a ⇒ ′a list ⇒ nat Option.option where

mem-idx - [] = None |
mem-idx x (a # as) = (if x = a then Some 0 else map-option Suc (mem-idx x

as))

lemma mem-idx-sound-output:
assumes mem-idx x as = Some i
shows i < length as ∧ as ! i = x

using assms proof (induct as arbitrary: i)
case Nil thus ?case by simp
next
case (Cons a as) note IH = this
thus ?case proof (cases x = a)

case True with IH (2 ) show ?thesis by simp
next
case False note neq-x-a = this
show ?thesis proof (cases mem-idx x as)
case None with IH (2 ) and neq-x-a show ?thesis by simp
next
case (Some j)
with IH (2 ) and neq-x-a have i = Suc j by simp
with IH (1 ) and Some show ?thesis by simp

qed
qed

qed

lemma mem-idx-sound-output2 :
assumes mem-idx x as = Some i
shows ∀ j. j < i −→ as ! j 6= x

using assms proof (induct as arbitrary: i)
case Nil thus ?case by simp
next
case (Cons a as) note IH = this
thus ?case proof (cases x = a)

case True with IH show ?thesis by simp
next
case False note neq-x-a = this
show ?thesis proof (cases mem-idx x as)
case None with IH (2 ) and neq-x-a show ?thesis by simp
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next
case (Some j)
with IH (2 ) and neq-x-a have eq-i-Sj: i = Suc j by simp
{

fix k assume k-bd: k < i
have (a # as) ! k 6= x
proof (cases k)
case 0 with neq-x-a show ?thesis by simp
next
case (Suc l)

with k-bd and eq-i-Sj have l-bd: l < j by arith
with IH (1 ) and Some have as ! l 6= x by simp
with Suc show ?thesis by simp

qed
}
thus ?thesis by simp

qed
qed

qed

lemma mem-idx-sound:
(x ∈ set as) = (∃ i. mem-idx x as = Some i)

proof (induct as)
case Nil thus ?case by simp
next
case (Cons a as) note IH = this
show ?case proof (cases x = a)
case True thus ?thesis by simp
next
case False
{

assume x ∈ set (a # as)
with False have x ∈ set as by simp
with IH obtain i where Some-i: mem-idx x as = Some i by auto
with False have mem-idx x (a # as) = Some (Suc i) by simp

hence ∃ i. mem-idx x (a # as) = Some i by simp
}
moreover
{

assume ∃ i. mem-idx x (a # as) = Some i
then obtain i where Some-i: mem-idx x (a # as) = Some i by fast
have x ∈ set as proof (cases i)

case 0 with mem-idx-sound-output[OF Some-i] and False show ?thesis
by simp

next
case (Suc j)
with Some-i and False have mem-idx x as = Some j by simp
hence ∃ i. mem-idx x as = Some i by simp
with IH show ?thesis by simp
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qed
hence x ∈ set (a # as) by simp

}
ultimately show ?thesis by fast

qed
qed

lemma mem-idx-sound2 :
(x /∈ set as) = (mem-idx x as = None)
unfolding mem-idx-sound by auto

lemma sum-list-replicate-mono: assumes w1 ≤ (w2 :: nat)
shows sum-list (replicate n w1 ) ≤ sum-list (replicate n w2 )

proof (induct n)
case (Suc n)
thus ?case using ‹w1 ≤ w2 › by auto

qed simp

lemma all-gt-0-sum-list-map:
assumes ∗:

∧
x. f x > (0 ::nat)

and x: x ∈ set xs and len: 1 < length xs
shows f x < (

∑
x←xs. f x)

using x len
proof (induct xs)

case (Cons y xs)
show ?case
proof (cases y = x)

case True
with ∗[of hd xs] Cons(3 ) show ?thesis by (cases xs, auto)

next
case False
with Cons(2 ) have x: x ∈ set xs by auto
then obtain z zs where xs: xs = z # zs by (cases xs, auto)
show ?thesis
proof (cases length zs)

case 0
with x xs ∗[of y] show ?thesis by auto

next
case (Suc n)
with xs have 1 < length xs by auto
from Cons(1 )[OF x this] show ?thesis by simp

qed
qed

qed simp

lemma map-of-filter :
assumes P x
shows map-of [(x ′,y) ← ys. P x ′] x = map-of ys x

proof (induct ys)
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case (Cons xy ys)
obtain x ′ y where xy: xy = (x ′,y) by force
show ?case

using assms local.Cons by auto
qed simp

lemma set-subset-insertI : set xs ⊆ set (List.insert x xs)
by auto

lemma set-removeAll-subset: set (removeAll x xs) ⊆ set xs
by auto

lemma map-of-append-Some:
map-of xs y = Some z =⇒ map-of (xs @ ys) y = Some z
by simp

lemma map-of-append-None:
map-of xs y = None =⇒ map-of (xs @ ys) y = map-of ys y
by (simp add: map-add-def )

end

2 Preliminaries
2.1 Missing Multiset
This theory provides some definitions and lemmas on multisets which we
did not find in the Isabelle distribution.
theory Missing-Multiset
imports

HOL−Library.Multiset
Missing-List

begin

lemma remove-nth-soundness:
assumes n < length as
shows mset (remove-nth n as) = mset as − {#(as!n)#}

using assms
proof (induct as arbitrary: n)

case (Cons a as)
note [simp] = remove-nth-def
show ?case
proof (cases n)

case (Suc n)
with Cons have n-bd: n < length as by auto
with Cons have mset (remove-nth n as) = mset as − {#as ! n#} by auto
hence G: mset (remove-nth (Suc n) (a # as)) = mset as − {#as ! n#} +
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{#a#}
by simp

thus ?thesis
proof (cases a = as!n)

case True
with G and Suc and insert-DiffM2 [symmetric]

and insert-DiffM2 [of - {#as ! n#}]
and nth-mem-mset[of n as] and n-bd

show ?thesis by auto
next

case False
from G and Suc and diff-union-swap[OF this[symmetric], symmetric] show

?thesis by simp
qed

qed auto
qed auto

lemma multiset-subset-insert: {ps. ps ⊆# add-mset x xs} =
{ps. ps ⊆# xs} ∪ add-mset x ‘ {ps. ps ⊆# xs} (is ?l = ?r)

proof −
{

fix ps
have (ps ∈ ?l) = (ps ⊆# xs + {# x #}) by auto
also have . . . = (ps ∈ ?r)
proof (cases x ∈# ps)

case True
then obtain qs where ps: ps = qs + {#x#} by (metis insert-DiffM2 )
show ?thesis unfolding ps mset-subset-eq-mono-add-right-cancel

by (auto dest: mset-subset-eq-insertD)
next

case False
hence id: (ps ⊆# xs + {#x#}) = (ps ⊆# xs)

by (simp add: subset-mset.inf .absorb-iff2 inter-add-left1 )
show ?thesis unfolding id using False by auto

qed
finally have (ps ∈ ?l) = (ps ∈ ?r) .

}
thus ?thesis by auto

qed

lemma multiset-of-subseqs: mset ‘ set (subseqs xs) = { ps. ps ⊆# mset xs}
proof (induct xs)

case (Cons x xs)
show ?case (is ?l = ?r)
proof −

have id: ?r = {ps. ps ⊆# mset xs} ∪ (add-mset x) ‘ {ps. ps ⊆# mset xs}
by (simp add: multiset-subset-insert)

show ?thesis unfolding id Cons[symmetric]
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by (auto simp add: Let-def ) (metis UnCI image-iff mset.simps(2 ))
qed

qed simp

lemma remove1-mset: w ∈ set vs =⇒ mset (remove1 w vs) + {#w#} = mset vs
by (induct vs) auto

lemma fold-remove1-mset: mset ws ⊆# mset vs =⇒ mset (fold remove1 ws vs) +
mset ws = mset vs
proof (induct ws arbitrary: vs)

case (Cons w ws vs)
from Cons(2 ) have w ∈ set vs using set-mset-mono by force
from remove1-mset[OF this] have vs: mset vs = mset (remove1 w vs) + {#w#}

by simp
from Cons(2 )[unfolded vs] have mset ws ⊆# mset (remove1 w vs) by auto
from Cons(1 )[OF this,symmetric]
show ?case unfolding vs by (simp add: ac-simps)

qed simp

lemma subseqs-sub-mset: ws ∈ set (subseqs vs) =⇒ mset ws ⊆# mset vs
proof (induct vs arbitrary: ws)

case (Cons v vs Ws)
note mem = Cons(2 )
note IH = Cons(1 )
show ?case
proof (cases Ws)

case (Cons w ws)
show ?thesis
proof (cases v = w)

case True
from mem Cons have ws ∈ set (subseqs vs) by (auto simp: Let-def Cons-in-subseqsD[of

- ws vs])
from IH [OF this]
show ?thesis unfolding Cons True by simp

next
case False

with mem Cons have Ws ∈ set (subseqs vs) by (auto simp: Let-def Cons-in-subseqsD[of
- ws vs])

note IH = mset-subset-eq-count[OF IH [OF this]]
with IH [of v] show ?thesis by (intro mset-subset-eqI , auto, linarith)

qed
qed simp

qed simp

lemma filter-mset-inequality: filter-mset f xs 6= xs =⇒ ∃ x ∈# xs. ¬ f x
by (induct xs, auto)

end
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2.2 Precomputation
This theory contains precomputation functions, which take another function
f and a finite set of inputs, and provide the same function f as output, except
that now all values f i are precomputed if i is contained in the set of finite
inputs.
theory Precomputation
imports

Containers.RBT-Set2
HOL−Library.RBT-Mapping

begin

lemma lookup-tabulate: x ∈ set xs =⇒ Mapping.lookup (Mapping.tabulate xs f ) x
= Some (f x)

by (transfer , simp add: map-of-map-Pair-key)

lemma lookup-tabulate2 : Mapping.lookup (Mapping.tabulate xs f ) x = Some y =⇒
y = f x

by transfer (metis map-of-map-Pair-key option.distinct(1 ) option.sel)

definition memo-int :: int ⇒ int ⇒ (int ⇒ ′a) ⇒ (int ⇒ ′a) where
memo-int low up f ≡ let m = Mapping.tabulate [low .. up] f

in (λ x. if x ≥ low ∧ x ≤ up then the (Mapping.lookup m x) else f x)

lemma memo-int[simp]: memo-int low up f = f
proof (intro ext)

fix x
show memo-int low up f x = f x
proof (cases x ≥ low ∧ x ≤ up)

case False
thus ?thesis unfolding memo-int-def by auto

next
case True
from True have x: x ∈ set [low .. up] by auto
with True lookup-tabulate[OF this, of f ]
show ?thesis unfolding memo-int-def by auto

qed
qed

definition memo-nat :: nat ⇒ nat ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a) where
memo-nat low up f ≡ let m = Mapping.tabulate [low ..< up] f

in (λ x. if x ≥ low ∧ x < up then the (Mapping.lookup m x) else f x)

lemma memo-nat[simp]: memo-nat low up f = f
proof (intro ext)

fix x
show memo-nat low up f x = f x
proof (cases x ≥ low ∧ x < up)

case False
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thus ?thesis unfolding memo-nat-def by auto
next

case True
from True have x: x ∈ set [low ..< up] by auto
with True lookup-tabulate[OF this, of f ]
show ?thesis unfolding memo-nat-def by auto

qed
qed

definition memo :: ′a list ⇒ ( ′a ⇒ ′b) ⇒ ( ′a ⇒ ′b) where
memo xs f ≡ let m = Mapping.tabulate xs f

in (λ x. case Mapping.lookup m x of None ⇒ f x | Some y ⇒ y)

lemma memo[simp]: memo xs f = f
proof (intro ext)

fix x
show memo xs f x = f x
proof (cases Mapping.lookup (Mapping.tabulate xs f ) x)

case None
thus ?thesis unfolding memo-def by auto

next
case (Some y)
with lookup-tabulate2 [OF this]
show ?thesis unfolding memo-def by auto

qed
qed

end

2.3 Order of Polynomial Roots
We extend the collection of results on the order of roots of polynomials.
Moreover, we provide code-equations to compute the order for a given root
and polynomial.
theory Order-Polynomial
imports

Polynomial-Interpolation.Missing-Polynomial
begin

lemma order-linear [simp]: order a [:− a, 1 :] = Suc 0 unfolding order-def
proof (rule Least-equality, intro notI )

assume [:− a, 1 :] ^ Suc (Suc 0 ) dvd [:− a, 1 :]
from dvd-imp-degree-le[OF this] show False by auto

next
fix n
assume ∗: ¬ [:− a, 1 :] ^ Suc n dvd [:− a, 1 :]
thus Suc 0 ≤ n

by (cases n, auto)
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qed

declare order-power-n-n[simp]

lemma linear-power-nonzero: [: a, 1 :] ^ n 6= 0
proof

assume [: a, 1 :]^n = 0
with arg-cong[OF this, of degree, unfolded degree-linear-power ]
show False by auto

qed

lemma order-linear-power ′: order a ([: b, 1 :]^Suc n) = (if b = −a then Suc n else
0 )
proof (cases b = −a)

case True
thus ?thesis unfolding True order-power-n-n by simp

next
case False
let ?p = [: b, 1 :]^Suc n
from linear-power-nonzero have ?p 6= 0 .
have p: ?p = (

∏
a← replicate (Suc n) b. [:a, 1 :]) by auto

{
assume order a ?p 6= 0
then obtain m where ord: order a ?p = Suc m by (cases order a ?p, auto)
from order [OF ‹?p 6= 0 ›, of a, unfolded ord] have dvd: [:− a, 1 :] ^ Suc m dvd

?p by auto
from poly-linear-exp-linear-factors[OF dvd[unfolded p]] False have False by

auto
}
hence order a ?p = 0 by auto
with False show ?thesis by simp

qed

lemma order-linear-power : order a ([: b, 1 :]^n) = (if b = −a then n else 0 )
proof (cases n)

case (Suc m)
show ?thesis unfolding Suc order-linear-power ′ by simp

qed simp

lemma order-linear ′: order a [: b, 1 :] = (if b = −a then 1 else 0 )
using order-linear-power ′[of a b 0 ] by simp

lemma degree-div-less:
assumes p: (p:: ′a::field poly) 6= 0 and dvd: r dvd p and deg: degree r 6= 0
shows degree (p div r) < degree p

proof −
from dvd obtain q where prq: p = r ∗ q unfolding dvd-def by auto
have degree p = degree r + degree q
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unfolding prq
by (rule degree-mult-eq, insert p prq, auto)

with deg have deg: degree q < degree p by auto
from prq have q = p div r

using deg p by auto
with deg show ?thesis by auto

qed

lemma order-sum-degree: assumes p 6= 0
shows sum (λ a. order a p) { a. poly p a = 0 } ≤ degree p

proof −
define n where n = degree p
have degree p ≤ n unfolding n-def by auto
thus ?thesis using ‹p 6= 0 ›
proof (induct n arbitrary: p)

case (0 p)
define a where a = coeff p 0
from 0 have degree p = 0 by auto
hence p: p = [: a :] unfolding a-def

by (metis degree-0-id)
with 0 have a 6= 0 by auto
thus ?case unfolding p by auto

next
case (Suc m p)
note order = order [OF ‹p 6= 0 ›]
show ?case
proof (cases ∃ a. poly p a = 0 )

case True
then obtain a where root: poly p a = 0 by auto
with order-root[of p a] Suc obtain n where orda: order a p = Suc n

by (cases order a p, auto)
let ?a = [: −a, 1 :] ^ Suc n
from order-decomp[OF ‹p 6= 0 ›, of a, unfolded orda]

obtain q where p: p = ?a ∗ q and ndvd: ¬ [:− a, 1 :] dvd q by auto
from ‹p 6= 0 ›[unfolded p] have nz: ?a 6= 0 q 6= 0 by auto
hence deg: degree p = degree ?a + degree q unfolding p

by (subst degree-mult-eq, auto)
have ord:

∧
a. order a p = order a ?a + order a q

unfolding p
by (subst order-mult, insert nz, auto)

have roots: { a. poly p a = 0 } = insert a ({ a. poly q a = 0} − {a}) using
root

unfolding p poly-mult by auto
have fin: finite {a. poly q a = 0} by (rule poly-roots-finite[OF ‹q 6= 0 ›])
have Suc n = order a p using orda by simp
also have . . . = Suc n + order a q unfolding ord order-linear-power ′ by

simp
finally have order a q = 0 by auto
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with order-root[of q a] ‹q 6= 0 › have qa: poly q a 6= 0 by auto
have (

∑
a∈{a. poly q a = 0} − {a}. order a p) = (

∑
a∈{a. poly q a = 0}

− {a}. order a q)
proof (rule sum.cong[OF refl])

fix b
assume b ∈ {a. poly q a = 0} − {a}
hence b 6= a by auto
hence order b ?a = 0 unfolding order-linear-power ′ by simp
thus order b p = order b q unfolding ord by simp

qed
also have . . . = (

∑
a∈{a. poly q a = 0}. order a q) using qa by auto

also have . . . ≤ degree q
by (rule Suc(1 )[OF - ‹q 6= 0 ›],
insert deg[unfolded degree-linear-power ] Suc(2 ), auto)

finally have (
∑

a∈{a. poly q a = 0} − {a}. order a p) ≤ degree q .
thus ?thesis unfolding roots deg using fin

by (subst sum.insert, simp-all only: degree-linear-power , auto simp: orda)
qed auto

qed
qed

lemma order-code[code]: order (a:: ′a::idom-divide) p =
(if p = 0 then Code.abort (STR ′′order of polynomial 0 undefined ′′) (λ -. order a

p)
else if poly p a 6= 0 then 0 else Suc (order a (p div [: −a, 1 :])))

proof (cases p = 0 )
case False note p = this
note order = order [OF p]
show ?thesis
proof (cases poly p a = 0 )

case True
with order-root[of p a] p obtain n where ord: order a p = Suc n

by (cases order a p, auto)
from this(1 ) have [: −a, 1 :] dvd p

using True poly-eq-0-iff-dvd by blast
then obtain q where p: p = [: −a, 1 :] ∗ q unfolding dvd-def by auto
have ord: order a p = order a [: −a, 1 :] + order a q

using p False order-mult[of [: −a, 1 :] q] by auto
have q: p div [: −a, 1 :] = q using False p

by (metis mult-zero-left nonzero-mult-div-cancel-left)
show ?thesis unfolding ord q using False True by auto

next
case False
with order-root[of p a] p show ?thesis by auto

qed
qed auto

end
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3 Explicit Formulas for Roots
We provide algorithms which use the explicit formulas to compute the roots
of polynomials of degree up to 2. For polynomials of degree 3 and 4 have a
look at the AFP entry "Cubic-Quartic-Equations".
theory Explicit-Roots
imports

Polynomial-Interpolation.Missing-Polynomial
Sqrt-Babylonian.Sqrt-Babylonian

begin

lemma roots0 : assumes p: p 6= 0 and p0 : degree p = 0
shows {x. poly p x = 0} = {}
using degree0-coeffs[OF p0 ] p by auto

definition roots1 :: ′a :: field poly ⇒ ′a where
roots1 p = (− coeff p 0 / coeff p 1 )

lemma roots1 : fixes p :: ′a :: field poly
assumes p1 : degree p = 1
shows {x. poly p x = 0} = {roots1 p}

proof −
obtain a b where p = [: b, a :] a 6= 0

by (meson degree1-coeffs p1 )
then show ?thesis unfolding roots1-def

by (auto simp: add-eq-0-iff nonzero-neg-divide-eq-eq2 )
qed

lemma roots2 : fixes p :: ′a :: field-char-0 poly
assumes p2 : p = [: c, b, a :] and a: a 6= 0
shows {x. poly p x = 0} = { − ( b / (2 ∗ a)) + e | e. e^2 = ( b / (2 ∗ a))^2
− c/a} (is ?l = ?r)
proof −

define b2a where b2a = b / (2 ∗ a)
{

fix x
have (x ∈ ?l) = (x ∗ x ∗ a + x ∗ b + c = 0 ) unfolding p2 by (simp add:

field-simps)
also have . . . = ((x ∗ x + 2 ∗ x ∗ b2a) + c/a = 0 ) using a by (auto simp:

b2a-def field-simps)
also have x ∗ x + 2 ∗ x ∗ b2a = (x ∗ x + 2 ∗ x ∗ b2a + b2a^2 ) − b2a^2 by

simp
also have . . . = (x + b2a) ^ 2 − b2a ^ 2

by (simp add: field-simps power2-eq-square)
also have (. . . + c / a = 0 ) = ((x + b2a) ^ 2 = b2a^2 − c/a) by algebra

also have . . . = (x ∈ ?r) unfolding b2a-def [symmetric] by (auto simp:
field-simps)

finally have (x ∈ ?l) = (x ∈ ?r) .
}
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thus ?thesis by auto
qed

definition croots2 :: complex poly ⇒ complex list where
croots2 p = (let a = coeff p 2 ; b = coeff p 1 ; c = coeff p 0 ; b2a = b / (2 ∗ a);

bac = b2a^2 − c/a;
e = csqrt bac
in
remdups [− b2a + e, − b2a − e])

definition complex-rat :: complex ⇒ bool where
complex-rat x = (Re x ∈ � ∧ Im x ∈ �)

lemma croots2 : assumes degree p = 2
shows {x. poly p x = 0} = set (croots2 p)

proof −
from degree2-coeffs[OF assms] obtain a b c
where p: p = [:c, b, a:] and a: a 6= 0 by metis
note main = roots2 [OF p a]
have 2 : 2 = Suc (Suc 0 ) by simp
have coeff : coeff p 2 = a coeff p 1 = b coeff p 0 = c unfolding p by (auto simp:

2 )
let ?b2a = b / (2 ∗ a)
define b2a where b2a = ?b2a
let ?bac = b2a^2 − c/a
define bac where bac = ?bac
have roots: set (croots2 p) = {− b2a + csqrt bac, − b2a − csqrt bac}

unfolding croots2-def Let-def coeff b2a-def [symmetric] bac-def [symmetric]
by (auto split: if-splits)

show ?thesis unfolding roots main b2a-def [symmetric] bac-def [symmetric]
using power2-eq-iff by fastforce

qed

definition rroots2 :: real poly ⇒ real list where
rroots2 p = (let a = coeff p 2 ; b = coeff p 1 ; c = coeff p 0 ; b2a = b / (2 ∗ a);

bac = b2a^2 − c/a
in if bac = 0 then [− b2a] else if bac < 0 then []

else let e = sqrt bac
in
[− b2a + e, − b2a − e])

definition rat-roots2 :: rat poly ⇒ rat list where
rat-roots2 p = (let a = coeff p 2 ; b = coeff p 1 ; c = coeff p 0 ; b2a = b / (2 ∗ a);

bac = b2a^2 − c/a
in map (λ e. − b2a + e) (sqrt-rat bac))

lemma rroots2 : assumes degree p = 2
shows {x. poly p x = 0} = set (rroots2 p)

proof −
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from degree2-coeffs[OF assms] obtain a b c
where p: p = [:c, b, a:] and a: a 6= 0 by metis
note main = roots2 [OF p a]
have 2 : 2 = Suc (Suc 0 ) by simp
have coeff : coeff p 2 = a coeff p 1 = b coeff p 0 = c unfolding p by (auto simp:

2 )
let ?b2a = b / (2 ∗ a)
define b2a where b2a = ?b2a
let ?bac = b2a^2 − c/a
define bac where bac = ?bac
have roots: set (rroots2 p) = (if bac < 0 then {} else {− b2a + sqrt bac, − b2a
− sqrt bac})

unfolding rroots2-def Let-def coeff b2a-def [symmetric] bac-def [symmetric]
by (auto split: if-splits)

show ?thesis unfolding roots main b2a-def [symmetric] bac-def [symmetric]
by auto

qed

lemma rat-roots2 : assumes degree p = 2
shows {x. poly p x = 0} = set (rat-roots2 p)

proof −
from degree2-coeffs[OF assms] obtain a b c
where p: p = [:c, b, a:] and a: a 6= 0 by metis
note main = roots2 [OF p a]
have 2 : 2 = Suc (Suc 0 ) by simp
have coeff : coeff p 2 = a coeff p 1 = b coeff p 0 = c unfolding p by (auto simp:

2 )
let ?b2a = b / (2 ∗ a)
define b2a where b2a = ?b2a
let ?bac = b2a^2 − c/a
define bac where bac = ?bac
have roots: (rat-roots2 p) = (map (λ e. −b2a + e) (sqrt-rat bac))

unfolding rat-roots2-def Let-def coeff b2a-def [symmetric] bac-def [symmetric]
by auto

show ?thesis unfolding roots main b2a-def [symmetric] bac-def [symmetric]
by (auto simp: power2-eq-square)

qed

Determinining roots of complex polynomials of degree up to 2.
definition croots :: complex poly ⇒ complex list where

croots p = (if p = 0 ∨ degree p > 2 then []
else (if degree p = 0 then [] else if degree p = 1 then [roots1 p]
else croots2 p))

lemma croots: assumes p 6= 0 degree p ≤ 2
shows set (croots p) = {x. poly p x = 0}
using assms unfolding croots-def
using roots0 [of p] roots1 [of p] croots2 [of p]
by (auto split: if-splits)
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Determinining roots of real polynomials of degree up to 2.
definition rroots :: real poly ⇒ real list where

rroots p = (if p = 0 ∨ degree p > 2 then []
else (if degree p = 0 then [] else if degree p = 1 then [roots1 p]
else rroots2 p))

lemma rroots: assumes p 6= 0 degree p ≤ 2
shows set (rroots p) = {x. poly p x = 0}
using assms unfolding rroots-def
using roots0 [of p] roots1 [of p] rroots2 [of p]
by (auto split: if-splits)

end

4 Division of Polynomials over Integers
This theory contains an algorithm to efficiently compute divisibility of two
integer polynomials.
theory Dvd-Int-Poly
imports

Polynomial-Interpolation.Ring-Hom-Poly
Polynomial-Interpolation.Divmod-Int
Polynomial-Interpolation.Is-Rat-To-Rat

begin

definition div-int-poly-step :: int poly ⇒ int ⇒ (int poly × int poly) option ⇒ (int
poly × int poly) option where
div-int-poly-step q = (λa sro. case sro of Some (s, r) ⇒

let ar = pCons a r ; (b,m) = divmod-int (coeff ar (degree q)) (coeff q (degree
q))

in if m = 0 then Some (pCons b s, ar − smult b q) else None | None ⇒ None)

declare div-int-poly-step-def [code-unfold]

definition div-mod-int-poly :: int poly ⇒ int poly ⇒ (int poly × int poly) option
where
div-mod-int-poly p q = (if q = 0 then None

else (let n = degree q; qn = coeff q n
in fold-coeffs (div-int-poly-step q) p (Some (0 , 0 ))))

definition div-int-poly :: int poly ⇒ int poly ⇒ int poly option where
div-int-poly p q =
(case div-mod-int-poly p q of None ⇒ None | Some (d,m) ⇒ if m = 0 then

Some d else None)

definition div-rat-poly-step :: ′a::field poly ⇒ ′a ⇒ ′a poly × ′a poly ⇒ ′a poly ×
′a poly where

div-rat-poly-step q = (λa (s, r).
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let b = coeff (pCons a r) (degree q) / coeff q (degree q)
in (pCons b s, pCons a r − smult b q))

lemma foldr-cong-plus:
assumes f-is-g :

∧
a b c. b ∈ s =⇒ f ′ a = f b (f ′ c) =⇒ g ′ a = g b (g ′ c)

and f ′-inj :
∧

a b. f ′ a = f ′ b =⇒ a = b
and f-bit-sur :

∧
a b c. f ′ a = f b c =⇒ ∃ c ′. c = f ′ c ′

and lst-in-s : set lst ⊆ s
shows f ′ a = foldr f lst (f ′ b) =⇒ g ′ a = foldr g lst (g ′ b)

using lst-in-s
proof (induct lst arbitrary: a)

case (Cons x xs)
have prems: f ′ a = (f x ◦ foldr f xs) (f ′ b) using Cons.prems unfolding

foldr-Cons by auto
hence ∃ c ′. f ′ c ′ = foldr f xs (f ′ b) using f-bit-sur by fastforce
then obtain c ′ where c ′-def : f ′ c ′ = foldr f xs (f ′ b) by blast
hence f ′ a = f x (f ′ c ′) using prems by simp
hence g ′ a = g x (g ′ c ′) using f-is-g Cons.prems(2 ) by simp
also have g ′ c ′ = foldr g xs (g ′ b) using Cons.hyps[of c ′] c ′-def Cons.prems(2 )

by auto
finally have g ′ a = (g x ◦ foldr g xs) (g ′ b) by simp
thus ?case using foldr-Cons by simp

qed (insert f ′-inj, auto)

abbreviation (input) rp :: int poly ⇒ rat poly where
rp ≡ map-poly rat-of-int

lemma rat-int-poly-step-agree :
assumes coeff (pCons b c2 ) (degree q) mod coeff q (degree q) = 0
shows (rp a1 ,rp a2 ) = (div-rat-poly-step (rp q) ◦ rat-of-int) b (rp c1 ,rp c2 )

←→ Some (a1 ,a2 ) = div-int-poly-step q b (Some (c1 ,c2 ))
proof −

have coeffs: coeff (pCons b c2 ) (degree q) mod coeff q (degree q) = 0 using
assms by auto

let ?ri = rat-of-int
let ?withDiv1 = pCons (?ri (coeff (pCons b c2 ) (degree q) div coeff q (degree

q))) (rp c1 )
let ?withSls1 = pCons (coeff (pCons (?ri b) (rp c2 )) (degree q) / coeff (rp q)

(degree q)) (rp c1 )
let ?ident1 = ?withDiv1 = ?withSls1
let ?withDiv2 = rp (pCons b c2 − smult (coeff (pCons b c2 ) (degree q) div coeff

q (degree q)) q)
let ?withSls2 = pCons (?ri b) (rp c2 ) − smult (coeff (pCons (?ri b) (rp c2 ))

(degree q) / coeff (rp q) (degree q)) (rp q)
let ?ident2 = ?withDiv2 = ?withSls2
note simps = div-int-poly-step-def option.simps Let-def prod.simps
have id1 :?ri (coeff (pCons b c2 ) (degree q) div coeff q (degree q)) =

?ri (coeff (pCons b c2 ) (degree q)) / ?ri (coeff q (degree q)) using coeffs
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by auto
have id2 :?ident1 unfolding id1

by (simp, fold of-int-hom.coeff-map-poly-hom of-int-hom.map-poly-pCons-hom,
simp)

hence id3 :?ident2 using id2 by (auto simp: hom-distribs)

have c1 :((rp (pCons (coeff (pCons b c2 ) (degree q) div coeff q (degree q)) c1 )
,rp (pCons b c2 − smult (coeff (pCons b c2 ) (degree q) div coeff q (degree

q)) q))
= div-rat-poly-step (rp q) (?ri b) (rp c1 ,rp c2 )) ←→ (?ident1 ∧ ?ident2 )

unfolding div-rat-poly-step-def simps
by (simp add: hom-distribs)

have ((rp a1 , rp a2 ) = (div-rat-poly-step (rp q) ◦ rat-of-int) b (rp c1 , rp c2 ))
←→

(rp a1 = ?withSls1 ∧ rp a2 = ?withSls2 )
unfolding div-rat-poly-step-def simps by simp

also have . . . ←→
((a1 = pCons (coeff (pCons b c2 ) (degree q) div coeff q (degree q)) c1 ) ∧
(a2 = pCons b c2 − smult (coeff (pCons b c2 ) (degree q) div coeff q (degree

q)) q))
by (fold id2 id3 of-int-hom.map-poly-pCons-hom, unfold of-int-poly-hom.eq-iff ,

auto)
also have c0 :. . . ←→ Some (a1 ,a2 ) = div-int-poly-step q b (Some (c1 ,c2 ))

unfolding divmod-int-def div-int-poly-step-def option.simps Let-def prod.simps
using coeffs by (auto split: option.splits prod.splits if-splits)

finally show ?thesis .
qed

lemma int-step-then-rat-poly-step :
assumes Some:Some (a1 ,a2 ) = div-int-poly-step q b (Some (c1 ,c2 ))
shows (rp a1 ,rp a2 ) = (div-rat-poly-step (rp q) ◦ rat-of-int) b (rp c1 ,rp c2 )

proof −
note simps = div-int-poly-step-def option.simps Let-def divmod-int-def prod.simps
from Some[unfolded simps] have mod0 : coeff (pCons b c2 ) (degree q) mod coeff

q (degree q) = 0
by (auto split: option.splits prod.splits if-splits)

thus ?thesis using assms rat-int-poly-step-agree by auto
qed

lemma is-int-rat-division :
assumes y 6= 0
shows is-int-rat (rat-of-int x / rat-of-int y) ←→ x mod y = 0

proof
assume is-int-rat (rat-of-int x / rat-of-int y)
then obtain v where v-def :rat-of-int v = rat-of-int x / rat-of-int y

using int-of-rat(2 ) is-int-rat by fastforce
hence v = brat-of-int x / rat-of-int yc by linarith
hence v ∗ y = x − x mod y using div-is-floor-divide-rat mod-div-equality-int by

simp
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hence rat-of-int v ∗ rat-of-int y = rat-of-int x − rat-of-int (x mod y)
by (fold hom-distribs, unfold of-int-hom.eq-iff )

hence (rat-of-int x / rat-of-int y) ∗ rat-of-int y = rat-of-int x − rat-of-int (x mod
y)

using v-def by simp
hence rat-of-int x = rat-of-int x − rat-of-int (x mod y) by (simp add: assms)
thus x mod y = 0 by simp

qed (force)

lemma pCons-of-rp-contains-ints :
assumes rp a = pCons b c

shows is-int-rat b
proof −

have
∧

b n. rp a = b =⇒ is-int-rat (coeff b n) by auto
hence rp a = pCons b c =⇒ is-int-rat (coeff (pCons b c) 0 ).
thus ?thesis using assms by auto

qed

lemma rat-step-then-int-poly-step :
assumes q 6= 0

and (rp a1 ,rp a2 ) = (div-rat-poly-step (rp q) ◦ rat-of-int) b2 (rp c1 ,rp c2 )
shows Some (a1 ,a2 ) = div-int-poly-step q b2 (Some (c1 ,c2 ))

proof −
let ?mustbeint = rat-of-int (coeff (pCons b2 c2 ) (degree q)) / rat-of-int (coeff q

(degree q))
let ?mustbeint2 = coeff (pCons (rat-of-int b2 ) (rp c2 )) (degree (rp q))
/ coeff (rp q) (degree (rp q))

have mustbeint : ?mustbeint = ?mustbeint2 by (fold hom-distribs of-int-hom.coeff-map-poly-hom,
simp)
note simps = div-int-poly-step-def option.simps Let-def divmod-int-def prod.simps
from assms leading-coeff-neq-0 [of q] have q0 :coeff q (degree q) 6= 0 by simp

have rp a1 = pCons ?mustbeint2 (rp c1 )
using assms(2 ) unfolding div-rat-poly-step-def by (simp add:div-int-poly-step-def

Let-def )
hence is-int-rat ?mustbeint2

unfolding div-rat-poly-step-def using pCons-of-rp-contains-ints by simp
hence is-int-rat ?mustbeint unfolding mustbeint by simp
hence coeff (pCons b2 c2 ) (degree q) mod coeff q (degree q) = 0

using is-int-rat-division q0 by simp
thus ?thesis using rat-int-poly-step-agree assms by simp

qed

lemma div-int-poly-step-surjective : Some a = div-int-poly-step q b c =⇒ ∃ c ′. c
= Some c ′

unfolding div-int-poly-step-def by(cases c, simp-all)

lemma div-mod-int-poly-then-pdivmod:
assumes div-mod-int-poly p q = Some (r ,m)
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shows (rp p div rp q, rp p mod rp q) = (rp r , rp m)
and q 6= 0

proof −
let ?rpp = (λ (a,b). (rp a,rp b))
let ?p = rp p
let ?q = rp q
let ?r = rp r
let ?m = rp m
let ?div-rat-step = div-rat-poly-step ?q
let ?div-int-step = div-int-poly-step q
from assms show q0 : q 6= 0 using div-mod-int-poly-def by auto
hence div-mod-int-poly p q = Some (r ,m)←→ Some (r ,m) = foldr (div-int-poly-step

q) (coeffs p) (Some (0 , 0 ))
unfolding div-mod-int-poly-def fold-coeffs-def by (auto split: option.splits prod.splits

if-splits)
hence innerRes: Some (r ,m) = foldr (?div-int-step) (coeffs p) (Some (0 , 0 ))

using assms by simp
{ fix oldRes res :: int poly × int poly

fix lst :: int list
have Some res = foldr ?div-int-step lst (Some oldRes) =⇒

?rpp res = foldr (?div-rat-step ◦ rat-of-int) lst (?rpp oldRes)
using foldr-cong-plus[of set lst Some ?div-int-step ?rpp ?div-rat-step ◦ rat-of-int

lst res oldRes] int-step-then-rat-poly-step div-int-poly-step-surjective by auto
hence Some res = foldr ?div-int-step lst (Some oldRes)
=⇒ ?rpp res = foldr ?div-rat-step (map rat-of-int lst) (?rpp oldRes)
using foldr-map[of ?div-rat-step rat-of-int lst] by simp

}
hence equal-foldr : Some (r ,m) = foldr (?div-int-step) (coeffs p) (Some (0 ,0 ))
=⇒ ?rpp (r ,m) = foldr (?div-rat-step) (map rat-of-int (coeffs p)) (?rpp (0 ,0 )).

have (map rat-of-int (coeffs p) = coeffs ?p) by simp
hence (?r ,?m) = (foldr (?div-rat-step) (coeffs ?p) (0 ,0 )) using equal-foldr in-

nerRes by simp
thus (?p div ?q, ?p mod ?q) = (?r ,?m)

using fold-coeffs-def [of ?div-rat-step ?p] q0
div-mod-fold-coeffs [of ?p ?q]

unfolding div-rat-poly-step-def by auto
qed

lemma div-rat-poly-step-sur :
assumes (case a of (a, b) ⇒ (rp a, rp b)) = (div-rat-poly-step (rp q) ◦ rat-of-int)

x pair
shows ∃ c ′. pair = (case c ′ of (a, b) ⇒ (rp a, rp b))

proof −
obtain b1 b2 where pair : pair = (b1 , b2 ) by (cases pair) simp
define p12 where p12 = coeff (pCons (rat-of-int x) b2 ) (degree (rp q)) / coeff

(rp q) (degree (rp q))
obtain a1 a2 where a = (a1 , a2 ) by (cases a) simp
with assms pair have (rp a1 , rp a2 ) = div-rat-poly-step (rp q) (rat-of-int x) (b1 ,
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b2 )
by simp

then have a1 : rp a1 = pCons p12 b1
and rp a2 = pCons (rat-of-int x) b2 − smult p12 (rp q)
by (auto split: prod.splits simp add: Let-def div-rat-poly-step-def p12-def )

then obtain p21 p22 where rp p21 = pCons p22 b2
apply (simp add: field-simps)

apply (metis coeff-pCons-0 of-int-hom.map-poly-hom-add of-int-hom.map-poly-hom-smult
of-int-hom.coeff-map-poly-hom)

done
moreover obtain p21 ′ p21q where p21 = pCons p21 ′ p21q

by (rule pCons-cases)
ultimately obtain p2 where b2 = rp p2

by (auto simp: hom-distribs)
moreover obtain a1 ′ a1q where a1 = pCons a1 ′ a1q

by (rule pCons-cases)
with a1 obtain p1 where b1 = rp p1

by (auto simp: hom-distribs)
ultimately have pair = (rp p1 , rp p2 ) using pair by simp
then show ?thesis by auto

qed

lemma pdivmod-then-div-mod-int-poly:
assumes q0 : q 6= 0 and (rp p div rp q, rp p mod rp q) = (rp r , rp m)
shows div-mod-int-poly p q = Some (r ,m)

proof −
let ?rpp = (λ (a,b). (rp a,rp b))
let ?p = rp p
let ?q = rp q
let ?r = rp r
let ?m = rp m
let ?div-rat-step = div-rat-poly-step ?q
let ?div-int-step = div-int-poly-step q
{ fix oldRes res :: int poly × int poly

fix lst :: int list
have inj: (

∧
a b. (case a of (a, b) ⇒ (rp a, rp b)) = (case b of (a, b) ⇒ (rp a,

rp b)) =⇒ a = b)
by auto

have (
∧

a b c. b ∈ set lst =⇒
(case a of (a, b) ⇒ (map-poly rat-of-int a, map-poly rat-of-int b)) =
(div-rat-poly-step (map-poly rat-of-int q) ◦ rat-of-int) b
(case c of (a, b) ⇒ (map-poly rat-of-int a, map-poly rat-of-int b)) =⇒
Some a = div-int-poly-step q b (Some c))

using rat-step-then-int-poly-step[OF q0 ] by auto
hence ?rpp res = foldr (?div-rat-step ◦ rat-of-int) lst (?rpp oldRes)

=⇒ Some res = foldr ?div-int-step lst (Some oldRes)
using foldr-cong-plus[of set lst ?rpp ?div-rat-step ◦ rat-of-int Some ?div-int-step

lst res oldRes]
div-rat-poly-step-sur inj by simp
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hence ?rpp res = foldr ?div-rat-step (map rat-of-int lst) (?rpp oldRes)
=⇒ Some res = foldr ?div-int-step lst (Some oldRes)
using foldr-map[of ?div-rat-step rat-of-int lst] by auto

}
hence equal-foldr : ?rpp (r ,m) = foldr (?div-rat-step) (map rat-of-int (coeffs p))

(?rpp (0 ,0 ))
=⇒ Some (r ,m) = foldr (?div-int-step) (coeffs p) (Some (0 ,0 ))

by simp
have (?r ,?m) = (foldr (?div-rat-step) (coeffs ?p) (0 ,0 ))

using fold-coeffs-def [of ?div-rat-step ?p] assms
div-mod-fold-coeffs [of ?p ?q]

unfolding div-rat-poly-step-def by auto
hence Some (r ,m) = foldr (?div-int-step) (coeffs p) (Some (0 ,0 ))

using equal-foldr by simp
thus ?thesis using q0 unfolding div-mod-int-poly-def by (simp add: fold-coeffs-def )

qed

lemma div-int-then-rqp:
assumes div-int-poly p q = Some r
shows r ∗ q = p

and q 6= 0
proof −

let ?rpp = (λ (a,b). (rp a,rp b))
let ?p = rp p
let ?q = rp q
let ?r = rp r
have Some (r ,0 ) = div-mod-int-poly p q using assms unfolding div-int-poly-def

by (auto split: option.splits prod.splits if-splits)
with div-mod-int-poly-then-pdivmod[of p q r 0 ]
have ?p div ?q = ?r ∧ ?p mod ?q = 0 by simp
with div-mult-mod-eq[of ?p ?q]
have ?p = ?r ∗ ?q by auto
also have . . . = rp (r ∗ q) by (simp add: hom-distribs)
finally have ?p = rp (r ∗ q).
thus r ∗ q = p by simp
show q 6= 0 using assms unfolding div-int-poly-def div-mod-int-poly-def

by (auto split: option.splits prod.splits if-splits)
qed

lemma rqp-then-div-int:
assumes r ∗ q = p

and q0 :q 6= 0
shows div-int-poly p q = Some r

proof −
let ?rpp = (λ (a,b). (rp a,rp b))
let ?p = rp p
let ?q = rp q
let ?r = rp r
have ?p = ?r ∗ ?q using assms(1 ) by (auto simp: hom-distribs)
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hence ?p div ?q = ?r and ?p mod ?q = 0
using q0 by simp-all

hence (rp p div rp q, rp p mod rp q) = (rp r , 0 ) by (auto split: prod.splits)
hence (rp p div rp q, rp p mod rp q) = (rp r , rp 0 ) by simp
hence Some (r ,0 ) = div-mod-int-poly p q

using pdivmod-then-div-mod-int-poly[OF q0 ,of p r 0 ] by simp
thus ?thesis unfolding div-mod-int-poly-def div-int-poly-def using q0

by (metis (mono-tags, lifting) option.simps(5 ) split-conv)
qed

lemma div-int-poly: (div-int-poly p q = Some r) ←→ (q 6= 0 ∧ p = r ∗ q)
using div-int-then-rqp rqp-then-div-int by blast

definition dvd-int-poly :: int poly ⇒ int poly ⇒ bool where
dvd-int-poly q p = (if q = 0 then p = 0 else div-int-poly p q 6= None)

lemma dvd-int-poly[simp]: dvd-int-poly q p = (q dvd p)
unfolding dvd-def dvd-int-poly-def using div-int-poly[of p q]
by (cases q = 0 , auto)

definition dvd-int-poly-non-0 :: int poly ⇒ int poly ⇒ bool where
dvd-int-poly-non-0 q p = (div-int-poly p q 6= None)

lemma dvd-int-poly-non-0 [simp]: q 6= 0 =⇒ dvd-int-poly-non-0 q p = (q dvd p)
unfolding dvd-def dvd-int-poly-non-0-def using div-int-poly[of p q] by auto

lemma [code-unfold]: p dvd q ←→ dvd-int-poly p q by simp

hide-const rp
end

5 More on Polynomials
This theory contains several results on content, gcd, primitive part, etc..
Moreover, there is a slightly improved code-equation for computing the gcd.
theory Missing-Polynomial-Factorial

imports HOL−Computational-Algebra.Polynomial-Factorial
Polynomial-Interpolation.Missing-Polynomial

begin

Improved code equation for gcd-poly-code which avoids computing the
content twice.
lemma gcd-poly-code-code[code]: gcd-poly-code p q =

(if p = 0 then normalize q else if q = 0 then normalize p else let
c1 = content p;
c2 = content q;
p ′ = map-poly (λ x. x div c1 ) p;
q ′ = map-poly (λ x. x div c2 ) q
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in smult (gcd c1 c2 ) (gcd-poly-code-aux p ′ q ′))
unfolding gcd-poly-code-def Let-def primitive-part-def by simp

lemma gcd-smult: fixes f g :: ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize}
poly

defines cf : cf ≡ content f
and cg: cg ≡ content g

shows gcd (smult a f ) g = (if a = 0 ∨ f = 0 then normalize g else
smult (gcd a (cg div (gcd cf cg))) (gcd f g))

proof (cases a = 0 ∨ f = 0 )
case False
let ?c = content
let ?pp = primitive-part
let ?ua = unit-factor a
let ?na = normalize a
define H where H = gcd (?c f ) (?c g)
have H dvd ?c f unfolding H-def by auto
then obtain F where fh: ?c f = H ∗ F unfolding dvd-def by blast
from False have cf0 : ?c f 6= 0 by auto
hence H : H 6= 0 unfolding H-def by auto
from arg-cong[OF fh, of λ f . f div H ] H have F : F = ?c f div H by auto
have H dvd ?c g unfolding H-def by auto
then obtain G where gh: ?c g = H ∗ G unfolding dvd-def by blast
from arg-cong[OF gh, of λ f . f div H ] H have G: G = ?c g div H by auto
have coprime F G using H unfolding F G H-def

using cf0 div-gcd-coprime by blast
have is-unit ?ua using False by simp
then have ua: is-unit [: ?ua :]

by (simp add: is-unit-const-poly-iff )
have gcd (smult a f ) g = smult (gcd (?na ∗ ?c f ) (?c g))

(gcd (smult ?ua (?pp f )) (?pp g))
unfolding gcd-poly-decompose[of smult a f ]
content-smult primitive-part-smult by simp

also have smult ?ua (?pp f ) = ?pp f ∗ [: ?ua :] by simp
also have gcd . . . (?pp g) = gcd (?pp f ) (?pp g)

unfolding gcd-mult-unit1 [OF ua] ..
also have gcd (?na ∗ ?c f ) (?c g) = gcd ((?na ∗ F) ∗ H ) (G ∗ H )

unfolding fh gh by (simp add: ac-simps)
also have . . . = gcd (?na ∗ F) G ∗ normalize H unfolding gcd-mult-right

gcd.commute[of G]
by (simp add: normalize-mult)

also have normalize H = H by (metis H-def normalize-gcd)
finally
have gcd (smult a f ) g = smult (gcd (?na ∗ F) G) (smult H (gcd (?pp f ) (?pp

g))) by simp
also have smult H (gcd (?pp f ) (?pp g)) = gcd f g unfolding H-def

by (rule gcd-poly-decompose[symmetric])
also have gcd (?na ∗ F) G = gcd (F ∗ ?na) G by (simp add: ac-simps)
also have . . . = gcd ?na G
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using ‹coprime F G› by (simp add: gcd-mult-right-left-cancel ac-simps)
finally show ?thesis unfolding G H-def cg cf using False by simp

next
case True
hence gcd (smult a f ) g = normalize g by (cases a = 0 , auto)
thus ?thesis using True by simp

qed

lemma gcd-smult-ex: assumes a 6= 0
shows ∃ b. gcd (smult a f ) g = smult b (gcd f g) ∧ b 6= 0

proof (cases f = 0 )
case True
thus ?thesis by (intro exI [of - 1 ], auto)

next
case False
hence id: (a = 0 ∨ f = 0 ) = False using assms by auto
show ?thesis unfolding gcd-smult id if-False

by (intro exI conjI , rule refl, insert assms, auto)
qed

lemma primitive-part-idemp[simp]:
fixes f :: ′a :: {semiring-gcd,normalization-semidom-multiplicative} poly
shows primitive-part (primitive-part f ) = primitive-part f
by (metis content-primitive-part[of f ] primitive-part-eq-0-iff primitive-part-prim)

lemma content-gcd-primitive:
f 6= 0 =⇒ content (gcd (primitive-part f ) g) = 1
f 6= 0 =⇒ content (gcd (primitive-part f ) (primitive-part g)) = 1

by (metis (no-types, lifting) content-dvd-contentI content-primitive-part gcd-dvd1
is-unit-content-iff )+

lemma content-gcd-content: content (gcd f g) = gcd (content f ) (content g)
(is ?l = ?r)

proof −
let ?c = content
have ?l = normalize (gcd (?c f ) (?c g)) ∗

?c (gcd (primitive-part f ) (primitive-part g))
unfolding gcd-poly-decompose[of f g] content-smult ..

also have . . . = gcd (?c f ) (?c g) ∗
?c (gcd (primitive-part f ) (primitive-part g)) by simp

also have . . . = ?r using content-gcd-primitive[of f g]
by (metis (no-types, lifting) content-dvd-contentI content-eq-zero-iff
content-primitive-part gcd-dvd2 gcd-eq-0-iff is-unit-content-iff mult-cancel-left1 )

finally show ?thesis .
qed

lemma gcd-primitive-part:
gcd (primitive-part f ) (primitive-part g) = normalize (primitive-part (gcd f g))
proof(cases f = 0 )
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case True
show ?thesis unfolding gcd-poly-decompose[of f g] gcd-0-left primitive-part-0

True
by (simp add: associatedI primitive-part-dvd-primitive-partI )

next
case False
have normalize 1 = normalize (unit-factor (gcd (content f ) (content g)))

by (simp add: False)
then show ?thesis unfolding gcd-poly-decompose[of f g]
by (metis (no-types) Polynomial.normalize-smult content-gcd-primitive(1 )[OF

False] content-times-primitive-part normalize-gcd primitive-part-smult)
qed

lemma primitive-part-gcd: primitive-part (gcd f g)
= unit-factor (gcd f g) ∗ gcd (primitive-part f ) (primitive-part g)
unfolding gcd-primitive-part
by (metis (no-types, lifting)
content-times-primitive-part gcd.normalize-idem mult-cancel-left2 mult-smult-left
normalize-eq-0-iff normalize-mult-unit-factor primitive-part-eq-0-iff
smult-content-normalize-primitive-part unit-factor-mult-normalize)

lemma primitive-part-normalize:
fixes f :: ′a :: {semiring-gcd,idom-divide,normalization-semidom-multiplicative}

poly
shows primitive-part (normalize f ) = normalize (primitive-part f )

proof (cases f = 0 )
case True
thus ?thesis by simp

next
case False
have normalize (content (normalize (primitive-part f ))) = 1

using content-primitive-part[OF False] content-dvd content-const
content-dvd-contentI dvd-normalize-iff is-unit-content-iff by (metis (no-types))

then have content (normalize (primitive-part f )) = 1 by fastforce
then have content (normalize f ) = 1 ∗ content f

by (metis (no-types) content-smult mult.commute normalize-content
smult-content-normalize-primitive-part)

then have content f = content (normalize f )
by simp

then show ?thesis unfolding smult-content-normalize-primitive-part[of f ,symmetric]
by (metis (no-types) False content-times-primitive-part mult.commute mult-cancel-left

mult-smult-right smult-content-normalize-primitive-part)
qed

lemma length-coeffs-primitive-part[simp]: length (coeffs (primitive-part f )) = length
(coeffs f )
proof (cases f = 0 )

case False
hence length (coeffs f ) 6= 0 length (coeffs (primitive-part f )) 6= 0 by auto
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thus ?thesis using degree-primitive-part[of f , unfolded degree-eq-length-coeffs] by
linarith
qed simp

lemma degree-unit-factor [simp]: degree (unit-factor f ) = 0
by (simp add: monom-0 unit-factor-poly-def )

lemma degree-normalize[simp]: degree (normalize f ) = degree f
proof (cases f = 0 )

case False
have degree f = degree (unit-factor f ∗ normalize f ) by simp
also have . . . = degree (unit-factor f ) + degree (normalize f )

by (rule degree-mult-eq, insert False, auto)
finally show ?thesis by simp

qed simp

lemma content-iff : x dvd content p ←→ (∀ c ∈ set (coeffs p). x dvd c)
by (simp add: content-def dvd-gcd-list-iff )

lemma is-unit-field-poly[simp]: (p:: ′a::field poly) dvd 1 ←→ p 6= 0 ∧ degree p = 0
proof(intro iffI conjI , unfold conj-imp-eq-imp-imp)

assume is-unit p
then obtain q where ∗: p ∗ q = 1 by (elim dvdE , auto)
from ∗ show p0 : p 6= 0 by auto
from ∗ have q0 : q 6= 0 by auto
from ∗ degree-mult-eq[OF p0 q0 ]
show degree p = 0 by auto

next
assume degree p = 0
from degree0-coeffs[OF this]
obtain c where c: p = [:c:] by auto
assume p 6= 0
with c have c 6= 0 by auto
with c have 1 = p ∗ [:1/c:] by auto
from dvdI [OF this] show is-unit p.

qed

definition primitive where
primitive f ←→ (∀ x. (∀ y ∈ set (coeffs f ). x dvd y) −→ x dvd 1 )

lemma primitiveI :
assumes (

∧
x. (

∧
y. y ∈ set (coeffs f ) =⇒ x dvd y) =⇒ x dvd 1 )

shows primitive f by (insert assms, auto simp: primitive-def )

lemma primitiveD:
assumes primitive f
shows (

∧
y. y ∈ set (coeffs f ) =⇒ x dvd y) =⇒ x dvd 1

by (insert assms, auto simp: primitive-def )
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lemma not-primitiveE :
assumes ¬ primitive f

and
∧

x. (
∧

y. y ∈ set (coeffs f ) =⇒ x dvd y) =⇒ ¬ x dvd 1 =⇒ thesis
shows thesis by (insert assms, auto simp: primitive-def )

lemma primitive-iff-content-eq-1 [simp]:
fixes f :: ′a :: semiring-gcd poly
shows primitive f ←→ content f = 1

proof(intro iffI primitiveI )
fix x
assume (

∧
y. y ∈ set (coeffs f ) =⇒ x dvd y)

from gcd-list-greatest[of coeffs f , OF this]
have x dvd content f by (simp add: content-def )
also assume content f = 1
finally show x dvd 1 .

next
assume primitive f
from primitiveD[OF this list-gcd[of - coeffs f ], folded content-def ]
show content f = 1 by simp

qed

lemma primitive-prod-list:
fixes fs :: ′a :: {factorial-semiring,semiring-Gcd,normalization-semidom-multiplicative}

poly list
assumes primitive (prod-list fs) and f ∈ set fs shows primitive f

proof (insert assms, induct fs arbitrary: f )
case (Cons f ′ fs)
from Cons.prems
have is-unit (content f ′ ∗ content (prod-list fs)) by (auto simp: content-mult)
from this[unfolded is-unit-mult-iff ]
have content f ′ = 1 and content (prod-list fs) = 1 by auto
moreover from Cons.prems have f = f ′ ∨ f ∈ set fs by auto
ultimately show ?case using Cons.hyps[of f ] by auto

qed auto

lemma irreducible-imp-primitive:
fixes f :: ′a :: {idom,semiring-gcd} poly
assumes irr : irreducible f and deg: degree f 6= 0 shows primitive f

proof (rule ccontr)
assume not: ¬ ?thesis
then have ¬ [:content f :] dvd 1 by simp
moreover have f = [:content f :] ∗ primitive-part f by simp

note Factorial-Ring.irreducibleD[OF irr this]
ultimately
have primitive-part f dvd 1 by auto
from this[unfolded poly-dvd-1 ] have degree f = 0 by auto
with deg show False by auto

qed
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lemma irreducible-primitive-connect:
fixes f :: ′a :: {idom,semiring-gcd} poly
assumes cf : primitive f shows irreducibled f ←→ irreducible f (is ?l ←→ ?r)

proof
assume l: ?l show ?r
proof(rule ccontr , elim not-irreducibleE)

from l have deg: degree f > 0 by (auto dest: irreducibledD)
from cf have f0 : f 6= 0 by auto
then show f = 0 =⇒ False by auto
show f dvd 1 =⇒ False using deg by (auto simp:poly-dvd-1 )
fix a b assume fab: f = a ∗ b and a1 : ¬ a dvd 1 and b1 : ¬ b dvd 1
then have af : a dvd f and bf : b dvd f by auto
with f0 have a0 : a 6= 0 and b0 : b 6= 0 by auto
from irreducibledD(2 )[OF l, of a] af dvd-imp-degree-le[OF af f0 ]
have degree a = 0 ∨ degree a = degree f

by (metis degree-smult-le irreducibled-dvd-smult l le-antisym Nat.neq0-conv)
then show False
proof(elim disjE)

assume degree a = 0
then obtain c where ac: a = [:c:] by (auto dest: degree0-coeffs)
from fab[unfolded ac] have c dvd content f by (simp add: content-iff co-

effs-smult)
with cf have c dvd 1 by simp
then have a dvd 1 by (auto simp: ac)
with a1 show False by auto

next
assume dega: degree a = degree f

with f0 degree-mult-eq[OF a0 b0 ] fab have degree b = 0 by (auto simp:
ac-simps)

then obtain c where bc: b = [:c:] by (auto dest: degree0-coeffs)
from fab[unfolded bc] have c dvd content f by (simp add: content-iff co-

effs-smult)
with cf have c dvd 1 by simp
then have b dvd 1 by (auto simp: bc)
with b1 show False by auto

qed
qed

next
assume r : ?r
show ?l
proof(intro irreducibledI )

show degree f > 0
proof (rule ccontr)

assume ¬degree f > 0
then obtain f0 where f : f = [:f0 :] by (auto dest: degree0-coeffs)
from cf [unfolded this] have normalize f0 = 1 by auto
then have f0 dvd 1 by (unfold normalize-1-iff )
with r [unfolded f irreducible-const-poly-iff ] show False by auto

qed
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next
fix g h assume deg-g: degree g > 0 and deg-gf : degree g < degree f and fgh: f

= g ∗ h
with r have g dvd 1 ∨ h dvd 1 by auto
with deg-g have degree h = 0 by (auto simp: poly-dvd-1 )
with deg-gf [unfolded fgh] degree-mult-eq[of g h] show False by (cases g = 0 ∨

h = 0 , auto)
qed

qed

lemma deg-not-zero-imp-not-unit:
fixes f :: ′a::{idom-divide,semidom-divide-unit-factor} poly
assumes deg-f : degree f > 0
shows ¬ is-unit f

proof −
have degree (normalize f ) > 0

using deg-f degree-normalize by auto
hence normalize f 6= 1

by fastforce
thus ¬ is-unit f using normalize-1-iff by auto

qed

lemma content-pCons[simp]: content (pCons a p) = gcd a (content p)
proof(induct p arbitrary: a)

case 0 show ?case by simp
next

case (pCons c p)
then show ?case by (cases p = 0 , auto simp: content-def cCons-def )

qed

lemma content-field-poly:
fixes f :: ′a :: {field,semiring-gcd} poly
shows content f = (if f = 0 then 0 else 1 )
by(induct f , auto simp: dvd-field-iff is-unit-normalize)

end

6 Gauss Lemma
We formalized Gauss Lemma, that the content of a product of two polyno-
mials p and q is the product of the contents of p and q. As a corollary we
provide an algorithm to convert a rational factor of an integer polynomial
into an integer factor.

In contrast to the theory on unique factorization domains – where Gauss
Lemma is also proven in a more generic setting – we are here in an executable
setting and do not use the unspecified some−gcd function. Moreover, there
is a slight difference in the definition of content: in this theory it is only
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defined for integer-polynomials, whereas in the UFD theory, the content is
defined for polynomials in the fraction field.
theory Gauss-Lemma
imports

HOL−Computational-Algebra.Primes
HOL−Computational-Algebra.Field-as-Ring
Polynomial-Interpolation.Ring-Hom-Poly
Missing-Polynomial-Factorial

begin

lemma primitive-part-alt-def :
primitive-part p = sdiv-poly p (content p)
by (simp add: primitive-part-def sdiv-poly-def )

definition common-denom :: rat list ⇒ int × int list where
common-denom xs ≡ let

nds = map quotient-of xs;
denom = list-lcm (map snd nds);
ints = map (λ (n,d). n ∗ denom div d) nds

in (denom, ints)

definition rat-to-int-poly :: rat poly ⇒ int × int poly where
rat-to-int-poly p ≡ let

ais = coeffs p;
d = fst (common-denom ais)

in (d, map-poly (λ x. case quotient-of x of (p,q) ⇒ p ∗ d div q) p)

definition rat-to-normalized-int-poly :: rat poly ⇒ rat × int poly where
rat-to-normalized-int-poly p ≡ if p = 0 then (1 ,0 ) else case rat-to-int-poly p of

(s,q)
⇒ (of-int (content q) / of-int s, primitive-part q)

lemma rat-to-normalized-int-poly-code[code]:
rat-to-normalized-int-poly p = (if p = 0 then (1 ,0 ) else case rat-to-int-poly p of

(s,q)
⇒ let c = content q in (of-int c / of-int s, sdiv-poly q c))
unfolding Let-def rat-to-normalized-int-poly-def primitive-part-alt-def ..

lemma common-denom: assumes cd: common-denom xs = (dd,ys)
shows xs = map (λ i. of-int i / of-int dd) ys dd > 0∧

x. x ∈ set xs =⇒ rat-of-int (case quotient-of x of (n, x) ⇒ n ∗ dd div x) /
rat-of-int dd = x
proof −

let ?nds = map quotient-of xs
define nds where nds = ?nds
let ?denom = list-lcm (map snd nds)
let ?ints = map (λ (n,d). n ∗ dd div d) nds
from cd[unfolded common-denom-def Let-def ]
have dd: dd = ?denom and ys: ys = ?ints unfolding nds-def by auto
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show dd0 : dd > 0 unfolding dd
by (intro list-lcm-pos(3 ), auto simp: nds-def quotient-of-nonzero)

{
fix x
assume x: x ∈ set xs
obtain p q where quot: quotient-of x = (p,q) by force
from x have (p,q) ∈ set nds unfolding nds-def using quot by force
hence q ∈ set (map snd nds) by force
from list-lcm[OF this] have q: q dvd dd unfolding dd .
show rat-of-int (case quotient-of x of (n, x) ⇒ n ∗ dd div x) / rat-of-int dd =

x
unfolding quot split unfolding quotient-of-div[OF quot]

proof −
have f1 : q ∗ (dd div q) = dd

using dvd-mult-div-cancel q by blast
have rat-of-int (dd div q) 6= 0

using dd0 dvd-mult-div-cancel q by fastforce
thus rat-of-int (p ∗ dd div q) / rat-of-int dd = rat-of-int p / rat-of-int q

using f1 by (metis (no-types) div-mult-swap mult-divide-mult-cancel-right
of-int-mult q)

qed
} note main = this
show xs = map (λ i. of-int i / of-int dd) ys unfolding ys map-map o-def nds-def

by (rule sym, rule map-idI , rule main)
qed

lemma rat-to-int-poly: assumes rat-to-int-poly p = (d,q)
shows p = smult (inverse (of-int d)) (map-poly of-int q) d > 0

proof −
let ?f = λ x. case quotient-of x of (pa, x) ⇒ pa ∗ d div x
define f where f = ?f
from assms[unfolded rat-to-int-poly-def Let-def ]

obtain xs where cd: common-denom (coeffs p) = (d,xs)
and q: q = map-poly f p unfolding f-def by (cases common-denom (coeffs p),

auto)
from common-denom[OF cd] have d: d > 0 and

id:
∧

x. x ∈ set (coeffs p) =⇒ rat-of-int (f x) / rat-of-int d = x
unfolding f-def by auto

have f0 : f 0 = 0 unfolding f-def by auto
have id: rat-of-int (f (coeff p n)) / rat-of-int d = coeff p n for n

using id[of coeff p n] f0 range-coeff by (cases coeff p n = 0 , auto)
show d > 0 by fact
show p = smult (inverse (of-int d)) (map-poly of-int q)

unfolding q smult-as-map-poly using id f0
by (intro poly-eqI , auto simp: field-simps coeff-map-poly)

qed

lemma content-ge-0-int: content p ≥ (0 :: int)
unfolding content-def
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by (cases coeffs p, auto)

lemma abs-content-int[simp]: fixes p :: int poly
shows abs (content p) = content p using content-ge-0-int[of p] by auto

lemma content-smult-int: fixes p :: int poly
shows content (smult a p) = abs a ∗ content p by simp

lemma normalize-non-0-smult: ∃ a. (a :: ′a :: semiring-gcd) 6= 0 ∧ smult a
(primitive-part p) = p

by (cases p = 0 , rule exI [of - 1 ], simp, rule exI [of - content p], auto)

lemma rat-to-normalized-int-poly: assumes rat-to-normalized-int-poly p = (d,q)
shows p = smult d (map-poly of-int q) d > 0 p 6= 0 =⇒ content q = 1 degree q

= degree p
proof −

have p = smult d (map-poly of-int q) ∧ d > 0 ∧ (p 6= 0 −→ content q = 1 )
proof (cases p = 0 )

case True
thus ?thesis using assms unfolding rat-to-normalized-int-poly-def

by (auto simp: eval-poly-def )
next

case False
hence p0 : p 6= 0 by auto
obtain s r where id: rat-to-int-poly p = (s,r) by force
let ?cr = rat-of-int (content r)
let ?s = rat-of-int s
let ?q = map-poly rat-of-int q
from rat-to-int-poly[OF id] have p: p = smult (inverse ?s) (map-poly of-int r)
and s: s > 0 by auto
let ?q = map-poly rat-of-int q
from p0 assms[unfolded rat-to-normalized-int-poly-def id split]
have d: d = ?cr / ?s and q: q = primitive-part r by auto
from content-times-primitive-part[of r , folded q] have qr : smult (content r) q

= r .
have smult d ?q = smult (?cr / ?s) ?q

unfolding d by simp
also have ?cr / ?s = ?cr ∗ inverse ?s by (rule divide-inverse)
also have . . . = inverse ?s ∗ ?cr by simp
also have smult (inverse ?s ∗ ?cr) ?q = smult (inverse ?s) (smult ?cr ?q) by

simp
also have smult ?cr ?q = map-poly of-int (smult (content r) q) by (simp add:

hom-distribs)
also have . . . = map-poly of-int r unfolding qr ..
finally have pq: p = smult d ?q unfolding p by simp
from p p0 have r0 : r 6= 0 by auto
from content-eq-zero-iff [of r ] content-ge-0-int[of r ] r0 have cr : ?cr > 0 by

linarith
with s have d0 : d > 0 unfolding d by auto
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from content-primitive-part[OF r0 ] have cq: content q = 1 unfolding q .
from pq d0 cq show ?thesis by auto

qed
thus p: p = smult d (map-poly of-int q) and d: d > 0 and p 6= 0 =⇒ content

q = 1 by auto
show degree q = degree p unfolding p smult-as-map-poly

by (rule sym, subst map-poly-map-poly, force+, rule degree-map-poly, insert d,
auto)
qed

lemma content-dvd-1 :
content g = 1 if content f = (1 :: ′a :: semiring-gcd) g dvd f

proof −
from ‹g dvd f › have content g dvd content f

by (rule content-dvd-contentI )
with ‹content f = 1 › show ?thesis

by simp
qed

lemma dvd-smult-int: fixes c :: int assumes c: c 6= 0
and dvd: q dvd (smult c p)
shows primitive-part q dvd p

proof (cases p = 0 )
case True thus ?thesis by auto

next
case False note p0 = this
let ?cp = smult c p
from p0 c have cp0 : ?cp 6= 0 by auto
from dvd obtain r where prod: ?cp = q ∗ r unfolding dvd-def by auto
from prod cp0 have q0 : q 6= 0 and r0 : r 6= 0 by auto
let ?c = content :: int poly ⇒ int
let ?n = primitive-part :: int poly ⇒ int poly
let ?pn = λ p. smult (?c p) (?n p)
have cq: (?c q = 0 ) = False using content-eq-zero-iff q0 by auto
from prod have id1 : ?cp = ?pn q ∗ ?pn r unfolding content-times-primitive-part

by simp
from arg-cong[OF this, of content, unfolded content-smult-int content-mult

content-primitive-part[OF r0 ] content-primitive-part[OF q0 ], symmetric]
p0 [folded content-eq-zero-iff ] c

have abs c dvd ?c q ∗ ?c r unfolding dvd-def by auto
hence c dvd ?c q ∗ ?c r by auto
then obtain d where id: ?c q ∗ ?c r = c ∗ d unfolding dvd-def by auto
have ?cp = ?pn q ∗ ?pn r by fact
also have . . . = smult (c ∗ d) (?n q ∗ ?n r) unfolding id [symmetric]

by (metis content-mult content-times-primitive-part primitive-part-mult)
finally have id: ?cp = smult c (?n q ∗ smult d (?n r)) by (simp add: mult.commute)
interpret map-poly-inj-zero-hom (∗) c using c by (unfold-locales, auto)
have p = ?n q ∗ smult d (?n r) using id[unfolded smult-as-map-poly[of c]] by

auto
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thus dvd: ?n q dvd p unfolding dvd-def by blast
qed

lemma irreducibled-primitive-part:
fixes p :: int poly
shows irreducibled (primitive-part p) ←→ irreducibled p (is ?l ←→ ?r)

proof (rule iffI , rule irreducibledI )
assume l: ?l
show degree p > 0 using l by auto
have dpp: degree (primitive-part p) = degree p by simp
fix q r
assume deg: degree q < degree p degree r < degree p and p = q ∗ r
then have pp: primitive-part p = primitive-part q ∗ primitive-part r by (simp

add: primitive-part-mult)
have ¬ irreducibled (primitive-part p)

apply (intro reducibledI , rule exI [of - primitive-part q], rule exI [of - primi-
tive-part r ], unfold dpp)

using deg pp by auto
with l show False by auto

next
show ?r =⇒ ?l by (metis irreducibled-smultI normalize-non-0-smult)

qed

lemma irreducibled-smult-int:
fixes c :: int assumes c: c 6= 0
shows irreducibled (smult c p) = irreducibled p (is ?l = ?r)
using irreducibled-primitive-part[of smult c p, unfolded primitive-part-smult] c
apply (cases c < 0 , simp)
apply (metis add.inverse-inverse add.inverse-neutral c irreducibled-smultI nor-

malize-non-0-smult smult-1-left smult-minus-left)
apply (simp add: irreducibled-primitive-part)
done

lemma irreducibled-as-irreducible:
fixes p :: int poly
shows irreducibled p ←→ irreducible (primitive-part p)
using irreducible-primitive-connect[of primitive-part p]
by (cases p = 0 , auto simp: irreducibled-primitive-part)

lemma rat-to-int-factor-content-1 : fixes p :: int poly
assumes cp: content p = 1
and pgh: map-poly rat-of-int p = g ∗ h
and g: rat-to-normalized-int-poly g = (r ,rg)
and h: rat-to-normalized-int-poly h = (s,sh)
and p: p 6= 0
shows p = rg ∗ sh

proof −
let ?r = rat-of-int
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let ?rp = map-poly ?r
from p have rp0 : ?rp p 6= 0 by simp
with pgh have g0 : g 6= 0 and h0 : h 6= 0 by auto
from rat-to-normalized-int-poly[OF g] g0
have r : r > 0 r 6= 0 and g: g = smult r (?rp rg) and crg: content rg = 1 by

auto
from rat-to-normalized-int-poly[OF h] h0
have s: s > 0 s 6= 0 and h: h = smult s (?rp sh) and csh: content sh = 1 by

auto
let ?irs = inverse (r ∗ s)
from r s have irs0 : ?irs 6= 0 by (auto simp: field-simps)
have ?rp (rg ∗ sh) = ?rp rg ∗ ?rp sh by (simp add: hom-distribs)
also have . . . = smult ?irs (?rp p) unfolding pgh g h using r s

by (simp add: field-simps)
finally have id: ?rp (rg ∗ sh) = smult ?irs (?rp p) by auto
have rsZ : ?irs ∈ �
proof (rule ccontr)

assume not: ¬ ?irs ∈ �
obtain n d where irs ′: quotient-of ?irs = (n,d) by force
from quotient-of-denom-pos[OF irs ′] have d > 0 .
from not quotient-of-div[OF irs ′] have d 6= 1 d 6= 0 and irs: ?irs = ?r n / ?r

d by auto
with irs0 have n0 : n 6= 0 by auto
from ‹d > 0 › ‹d 6= 1 › have d ≥ 2 and ¬ d dvd 1 by auto
with content-iff [of d p, unfolded cp] obtain c where

c: c ∈ set (coeffs p) and dc: ¬ d dvd c
by auto

from c range-coeff [of p] obtain i where c = coeff p i by auto
from arg-cong[OF id, of λ p. coeff p i,

unfolded coeff-smult of-int-hom.coeff-map-poly-hom this[symmetric] irs]
have ?r n / ?r d ∗ ?r c ∈ � by (metis Ints-of-int)
also have ?r n / ?r d ∗ ?r c = ?r (n ∗ c) / ?r d by simp
finally have inZ : ?r (n ∗ c) / ?r d ∈ � .
have cop: coprime n d by (rule quotient-of-coprime[OF irs ′])

define prod where prod = ?r (n ∗ c) / ?r d
obtain n ′ d ′ where quot: quotient-of prod = (n ′,d ′) by force
have qr :

∧
x. quotient-of (?r x) = (x, 1 )

using Rat.of-int-def quotient-of-int by auto
from quotient-of-denom-pos[OF quot] have d ′ > 0 .
with quotient-of-div[OF quot] inZ [folded prod-def ] have d ′ = 1

by (metis Ints-cases Rat.of-int-def old.prod.inject quot quotient-of-int)
with quotient-of-div[OF quot] have prod = ?r n ′ by auto

from arg-cong[OF this, of quotient-of , unfolded prod-def rat-divide-code qr
Let-def split]

have Rat.normalize (n ∗ c, d) = (n ′,1 ) by simp
from normalize-crossproduct[OF ‹d 6= 0 ›, of 1 n ∗ c n ′, unfolded this]
have id: n ∗ c = n ′ ∗ d by auto
from quotient-of-coprime[OF irs ′] have coprime n d .
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with id have d dvd c
by (metis coprime-commute coprime-dvd-mult-right-iff dvd-triv-right)

with dc show False ..
qed
then obtain irs where irs: ?irs = ?r irs unfolding Ints-def by blast
from id[unfolded irs, folded hom-distribs, unfolded of-int-poly-hom.eq-iff ]
have p: rg ∗ sh = smult irs p by auto
have content (rg ∗ sh) = 1 unfolding content-mult crg csh by auto
from this[unfolded p content-smult-int cp] have abs irs = 1 by simp
hence abs ?irs = 1 using irs by auto
with r s have ?irs = 1 by auto
with irs have irs = 1 by auto
with p show p: p = rg ∗ sh by auto

qed

lemma rat-to-int-factor-explicit: fixes p :: int poly
assumes pgh: map-poly rat-of-int p = g ∗ h
and g: rat-to-normalized-int-poly g = (r ,rg)
shows ∃ r . p = rg ∗ smult (content p) r

proof −
show ?thesis
proof (cases p = 0 )

case True
show ?thesis unfolding True

by (rule exI [of - 0 ], auto simp: degree-monom-eq)
next

case False
hence p: p 6= 0 by auto
let ?r = rat-of-int
let ?rp = map-poly ?r
define q where q = primitive-part p
from content-times-primitive-part[of p, folded q-def ] content-eq-zero-iff [of p] p

obtain a where a: a 6= 0 and pq: p = smult a q and acp: content p = a by
metis

from a pq p have ra: ?r a 6= 0 and q0 : q 6= 0 by auto
from content-primitive-part[OF p, folded q-def ] have cq: content q = 1 by auto
obtain s sh where h: rat-to-normalized-int-poly (smult (inverse (?r a)) h) =

(s,sh) by force
from arg-cong[OF pgh[unfolded pq], of smult (inverse (?r a))] ra
have ?rp q = g ∗ smult (inverse (?r a)) h by (auto simp: hom-distribs)
from rat-to-int-factor-content-1 [OF cq this g h q0 ]
have qrs: q = rg ∗ sh .
show ?thesis unfolding acp unfolding pq qrs

by (rule exI [of - sh], auto)
qed

qed

lemma rat-to-int-factor : fixes p :: int poly
assumes pgh: map-poly rat-of-int p = g ∗ h
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shows ∃ g ′ h ′. p = g ′ ∗ h ′ ∧ degree g ′ = degree g ∧ degree h ′ = degree h
proof(cases p = 0 )

case True
with pgh have g = 0 ∨ h = 0 by auto
then show ?thesis
by (metis True degree-0 mult-hom.hom-zero mult-zero-left rat-to-normalized-int-poly(4 )

surj-pair)
next

case False
obtain r rg where ri: rat-to-normalized-int-poly (smult (1 / of-int (content p))

g) = (r ,rg) by force
obtain q qh where ri2 : rat-to-normalized-int-poly h = (q,qh) by force
show ?thesis
proof (intro exI conjI )

have of-int-poly (primitive-part p) = smult (1 / of-int (content p)) (g ∗ h)
apply (auto simp: primitive-part-def pgh[symmetric] smult-map-poly map-poly-map-poly

o-def intro!: map-poly-cong)
by (metis (no-types, lifting) content-dvd-coeffs div-by-0 dvd-mult-div-cancel

floor-of-int nonzero-mult-div-cancel-left of-int-hom.hom-zero of-int-mult)
also have . . . = smult (1 / of-int (content p)) g ∗ h by simp
finally have of-int-poly (primitive-part p) = . . ..
note main = rat-to-int-factor-content-1 [OF - this ri ri2 , simplified, OF False]
show p = smult (content p) rg ∗ qh by (simp add: main[symmetric])
from ri2 show degree qh = degree h by (fact rat-to-normalized-int-poly)
from rat-to-normalized-int-poly(4 )[OF ri] False
show degree (smult (content p) rg) = degree g by auto

qed
qed

lemma rat-to-int-factor-normalized-int-poly: fixes p :: rat poly
assumes pgh: p = g ∗ h
and p: rat-to-normalized-int-poly p = (i,ip)
shows ∃ g ′ h ′. ip = g ′ ∗ h ′ ∧ degree g ′ = degree g

proof −
from rat-to-normalized-int-poly[OF p]
have p: p = smult i (map-poly rat-of-int ip) and i: i 6= 0 by auto
from arg-cong[OF p, of smult (inverse i), unfolded pgh] i
have map-poly rat-of-int ip = g ∗ smult (inverse i) h by auto
from rat-to-int-factor [OF this] show ?thesis by auto

qed

lemma irreducible-smult [simp]:
fixes c :: ′a :: field
shows irreducible (smult c p) ←→ irreducible p ∧ c 6= 0
using irreducible-mult-unit-left[of [:c:], simplified] by force

A polynomial with integer coefficients is irreducible over the rationals, if
it is irreducible over the integers.
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theorem irreducibled-int-rat: fixes p :: int poly
assumes p: irreducibled p
shows irreducibled (map-poly rat-of-int p)

proof (rule irreducibledI )
from irreducibledD[OF p]
have p: degree p 6= 0 and irr :

∧
q r . degree q < degree p =⇒ degree r < degree

p =⇒ p 6= q ∗ r by auto
let ?r = rat-of-int
let ?rp = map-poly ?r
from p show rp: degree (?rp p) > 0 by auto
from p have p0 : p 6= 0 by auto
fix g h :: rat poly
assume deg: degree g > 0 degree g < degree (?rp p) degree h > 0 degree h <

degree (?rp p) and pgh: ?rp p = g ∗ h
from rat-to-int-factor [OF pgh] obtain g ′ h ′ where p: p = g ′ ∗ h ′ and dg: degree

g ′ = degree g degree h ′ = degree h
by auto

from irr [of g ′ h ′] deg[unfolded dg]
show False using degree-mult-eq[of g ′ h ′] by (auto simp: p dg)

qed

corollary irreducibled-rat-to-normalized-int-poly:
assumes rp: rat-to-normalized-int-poly rp = (a, ip)
and ip: irreducibled ip
shows irreducibled rp

proof −
from rat-to-normalized-int-poly[OF rp]
have rp: rp = smult a (map-poly rat-of-int ip) and a: a 6= 0 by auto
with irreducibled-int-rat[OF ip] show ?thesis by auto

qed

lemma dvd-content-dvd: assumes dvd: content f dvd content g primitive-part f dvd
primitive-part g

shows f dvd g
proof −

let ?cf = content f let ?nf = primitive-part f
let ?cg = content g let ?ng = primitive-part g
have f dvd g = (smult ?cf ?nf dvd smult ?cg ?ng)

unfolding content-times-primitive-part by auto
from dvd(1 ) obtain ch where cg: ?cg = ?cf ∗ ch unfolding dvd-def by auto
from dvd(2 ) obtain nh where ng: ?ng = ?nf ∗ nh unfolding dvd-def by auto
have f dvd g = (smult ?cf ?nf dvd smult ?cg ?ng)

unfolding content-times-primitive-part[of f ] content-times-primitive-part[of g]
by auto

also have . . . = (smult ?cf ?nf dvd smult ?cf ?nf ∗ smult ch nh) unfolding cg
ng

by (metis mult.commute mult-smult-right smult-smult)
also have . . . by (rule dvd-triv-left)
finally show ?thesis .
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qed

lemma sdiv-poly-smult: c 6= 0 =⇒ sdiv-poly (smult c f ) c = f
by (intro poly-eqI , unfold coeff-sdiv-poly coeff-smult, auto)

lemma primitive-part-smult-int: fixes f :: int poly shows
primitive-part (smult d f ) = smult (sgn d) (primitive-part f )

proof (cases d = 0 ∨ f = 0 )
case False
obtain cf where cf : content f = cf by auto
with False have 0 : d 6= 0 f 6= 0 cf 6= 0 by auto
show ?thesis
proof (rule poly-eqI , unfold primitive-part-alt-def coeff-sdiv-poly content-smult-int

coeff-smult cf )
fix n
consider (pos) d > 0 | (neg) d < 0 using 0 (1 ) by linarith
thus d ∗ coeff f n div (|d| ∗ cf ) = sgn d ∗ (coeff f n div cf )
proof cases

case neg
hence ?thesis = (d ∗ coeff f n div − (d ∗ cf ) = − (coeff f n div cf )) by auto
also have d ∗ coeff f n div − (d ∗ cf ) = − (d ∗ coeff f n div (d ∗ cf ))

by (subst dvd-div-neg, insert 0 (1 ), auto simp: cf [symmetric])
also have d ∗ coeff f n div (d ∗ cf ) = coeff f n div cf using 0 (1 ) by auto
finally show ?thesis by simp

qed auto
qed

qed auto

lemma gcd-smult-left: assumes c 6= 0
shows gcd (smult c f ) g = gcd f (g :: ′b :: {field-gcd} poly)

proof −
from assms have normalize c = 1

by (meson dvd-field-iff is-unit-normalize)
then show ?thesis
by (metis (no-types) Polynomial.normalize-smult gcd.commute gcd.left-commute

gcd-left-idem gcd-self smult-1-left)
qed

lemma gcd-smult-right: c 6= 0 =⇒ gcd f (smult c g) = gcd f (g :: ′b :: {field-gcd}
poly)

using gcd-smult-left[of c g f ] by (simp add: gcd.commute)

lemma gcd-rat-to-gcd-int: gcd (of-int-poly f :: rat poly) (of-int-poly g) =
smult (inverse (of-int (lead-coeff (gcd f g)))) (of-int-poly (gcd f g))

proof (cases f = 0 ∧ g = 0 )
case True
thus ?thesis by simp

next
case False
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let ?r = rat-of-int
let ?rp = map-poly ?r
from False have gcd0 : gcd f g 6= 0 by auto
hence lc0 : lead-coeff (gcd f g) 6= 0 by auto
hence inv: inverse (?r (lead-coeff (gcd f g))) 6= 0 by auto
show ?thesis
proof (rule sym, rule gcdI , goal-cases)

case 1
have gcd f g dvd f by auto
then obtain h where f : f = gcd f g ∗ h unfolding dvd-def by auto
show ?case by (rule smult-dvd[OF - inv], insert arg-cong[OF f , of ?rp], simp

add: hom-distribs)
next

case 2
have gcd f g dvd g by auto
then obtain h where g: g = gcd f g ∗ h unfolding dvd-def by auto
show ?case by (rule smult-dvd[OF - inv], insert arg-cong[OF g, of ?rp], simp

add: hom-distribs)
next

case (3 h)
show ?case
proof (rule dvd-smult)

obtain ch ph where h: rat-to-normalized-int-poly h = (ch, ph) by force
from 3 obtain ff where f : ?rp f = h ∗ ff unfolding dvd-def by auto
from 3 obtain gg where g: ?rp g = h ∗ gg unfolding dvd-def by auto
from rat-to-int-factor-explicit[OF f h] obtain f ′ where f : f = ph ∗ f ′ by

blast
from rat-to-int-factor-explicit[OF g h] obtain g ′ where g: g = ph ∗ g ′ by

blast
from f g have ph dvd gcd f g by auto
then obtain gg where gcd: gcd f g = ph ∗ gg unfolding dvd-def by auto
note ∗ = rat-to-normalized-int-poly[OF h]
show h dvd ?rp (gcd f g) unfolding gcd ∗(1 )

by (rule smult-dvd, insert ∗(2 ), auto)
qed

next
case 4
have [simp]: [:1 :] = 1 by simp
show ?case unfolding normalize-poly-def

by (rule poly-eqI , simp)
qed

qed

end
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7 Prime Factorization
This theory contains not-completely naive algorithms to test primality and
to perform prime factorization. More precisely, it corresponds to prime
factorization algorithm A in Knuth’s textbook [1].
theory Prime-Factorization
imports

HOL−Computational-Algebra.Primes
Missing-List
Missing-Multiset

begin

7.1 Definitions
definition primes-1000 :: nat list where

primes-1000 = [2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 ,
61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 ,

103 , 107 , 109 , 113 , 127 , 131 , 137 , 139 , 149 , 151 , 157 , 163 , 167 , 173 , 179 ,
181 , 191 , 193 , 197 , 199 ,

211 , 223 , 227 , 229 , 233 , 239 , 241 , 251 , 257 , 263 , 269 , 271 , 277 , 281 , 283 ,
293 , 307 , 311 , 313 , 317 ,

331 , 337 , 347 , 349 , 353 , 359 , 367 , 373 , 379 , 383 , 389 , 397 , 401 , 409 , 419 ,
421 , 431 , 433 , 439 , 443 ,

449 , 457 , 461 , 463 , 467 , 479 , 487 , 491 , 499 , 503 , 509 , 521 , 523 , 541 , 547 ,
557 , 563 , 569 , 571 , 577 ,

587 , 593 , 599 , 601 , 607 , 613 , 617 , 619 , 631 , 641 , 643 , 647 , 653 , 659 , 661 ,
673 , 677 , 683 , 691 , 701 ,

709 , 719 , 727 , 733 , 739 , 743 , 751 , 757 , 761 , 769 , 773 , 787 , 797 , 809 , 811 ,
821 , 823 , 827 , 829 , 839 ,

853 , 857 , 859 , 863 , 877 , 881 , 883 , 887 , 907 , 911 , 919 , 929 , 937 , 941 , 947 ,
953 , 967 , 971 , 977 , 983 ,

991 , 997 ]

lemma primes-1000 : primes-1000 = filter prime [0 ..<1001 ]
by eval

definition next-candidates :: nat ⇒ nat × nat list where
next-candidates n = (if n = 0 then (1001 ,primes-1000 ) else (n + 30 ,
[n,n+2 ,n+6 ,n+8 ,n+12 ,n+18 ,n+20 ,n+26 ]))

definition candidate-invariant n = (n = 0 ∨ n mod 30 = (11 :: nat))

partial-function (tailrec) remove-prime-factor :: nat ⇒ nat ⇒ nat list ⇒ nat ×
nat list where
[code]: remove-prime-factor p n ps = (case Euclidean-Rings.divmod-nat n p of

(n ′,m) ⇒
if m = 0 then remove-prime-factor p n ′ (p # ps) else (n,ps))

partial-function (tailrec) prime-factorization-nat-main
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:: nat ⇒ nat ⇒ nat list ⇒ nat list ⇒ nat list where
[code]: prime-factorization-nat-main n j is ps = (case is of

[] ⇒
(case next-candidates j of (j,is) ⇒ prime-factorization-nat-main n j is ps)

| (i # is) ⇒ (case Euclidean-Rings.divmod-nat n i of (n ′,m) ⇒
if m = 0 then case remove-prime-factor i n ′ (i # ps)
of (n ′,ps ′) ⇒ if n ′ = 1 then ps ′ else

prime-factorization-nat-main n ′ j is ps ′

else if i ∗ i ≤ n then prime-factorization-nat-main n j is ps
else (n # ps)))

partial-function (tailrec) prime-nat-main
:: nat ⇒ nat ⇒ nat list ⇒ bool where
[code]: prime-nat-main n j is = (case is of
[] ⇒ (case next-candidates j of (j,is) ⇒ prime-nat-main n j is)
| (i # is) ⇒ (if i dvd n then i ≥ n else if i ∗ i ≤ n then prime-nat-main n j is

else True))

definition prime-nat :: nat ⇒ bool where
prime-nat n ≡ if n < 2 then False else — TODO: integrate precomputed map

case next-candidates 0 of (j,is) ⇒ prime-nat-main n j is

definition prime-factorization-nat :: nat ⇒ nat list where
prime-factorization-nat n ≡ rev (if n < 2 then [] else

case next-candidates 0 of (j,is) ⇒ prime-factorization-nat-main n j is [])

definition divisors-nat :: nat ⇒ nat list where
divisors-nat n ≡ if n = 0 then [] else

remdups-adj (sort (map prod-list (subseqs (prime-factorization-nat n))))

definition divisors-int-pos :: int ⇒ int list where
divisors-int-pos x ≡ map int (divisors-nat (nat (abs x)))

definition divisors-int :: int ⇒ int list where
divisors-int x ≡ let xs = divisors-int-pos x in xs @ (map uminus xs)

7.2 Proofs
lemma remove-prime-factor : assumes res: remove-prime-factor i n ps = (m,qs)

and i: i > 1
and n: n 6= 0
shows ∃ rs. qs = rs @ ps ∧ n = m ∗ prod-list rs ∧ ¬ i dvd m ∧ set rs ⊆ {i}
using res n

proof (induct n arbitrary: ps rule: less-induct)
case (less n ps)
obtain n ′ mo where dm: Euclidean-Rings.divmod-nat n i = (n ′,mo) by force
hence n ′: n ′= n div i and mo: mo = n mod i by (auto simp: Euclidean-Rings.divmod-nat-def )
from less(2 )[unfolded remove-prime-factor .simps[of i n] dm]
have res: (if mo = 0 then remove-prime-factor i n ′ (i # ps) else (n, ps)) = (m,
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qs) by auto
from less(3 ) have n: n 6= 0 by auto
with n ′ i have n ′ < n by auto
note IH = less(1 )[OF this]
show ?case
proof (cases mo = 0 )

case True
with mo n ′ have n: n = n ′ ∗ i by auto
with ‹n 6= 0 › have n ′: n ′ 6= 0 by auto
from True res have remove-prime-factor i n ′ (i # ps) = (m,qs) by auto
from IH [OF this n ′] obtain rs where

qs = rs @ i # ps and n ′ = m ∗ prod-list rs ∧ ¬ i dvd m ∧ set rs ⊆ {i} by
auto

thus ?thesis
by (intro exI [of - rs @ [i]], unfold n, auto)

next
case False
with mo have i-n: ¬ i dvd n by auto
from False res have id: m = n qs = ps by auto
show ?thesis unfolding id using i-n by auto

qed
qed

lemma prime-sqrtI : assumes n: n ≥ 2
and small:

∧
j. 2 ≤ j =⇒ j < i =⇒ ¬ j dvd n

and i: ¬ i ∗ i ≤ n
shows prime (n::nat) unfolding prime-nat-iff

proof (intro conjI impI allI )
show 1 < n using n by auto
fix j
assume jn: j dvd n
from jn obtain k where njk: n = j ∗ k unfolding dvd-def by auto
with ‹1 < n› have jn: j ≤ n by (metis dvd-imp-le jn neq0-conv not-less0 )
show j = 1 ∨ j = n
proof (rule ccontr)

assume ¬ ?thesis
with njk n have j1 : j > 1 ∧ j 6= n by simp
have ∃ j k. 1 < j ∧ j ≤ k ∧ n = j ∗ k
proof (cases j ≤ k)

case True
thus ?thesis unfolding njk using j1 by blast

next
case False
show ?thesis by (rule exI [of - k], rule exI [of - j], insert ‹1 < n› j1 njk False,

auto)
(metis Suc-lessI mult-0-right neq0-conv)

qed
then obtain j k where j1 : 1 < j and jk: j ≤ k and njk: n = j ∗ k by auto
with small[of j] have ji: j ≥ i unfolding dvd-def by force
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from mult-mono[OF ji ji] have i ∗ i ≤ j ∗ j by auto
with i have j ∗ j > n by auto
from this[unfolded njk] have k < j by auto
with jk show False by auto

qed
qed

lemma candidate-invariant-0 : candidate-invariant 0
unfolding candidate-invariant-def by auto

lemma next-candidates: assumes res: next-candidates n = (m,ps)
and n: candidate-invariant n
shows candidate-invariant m sorted ps {i. prime i ∧ n ≤ i ∧ i < m} ⊆ set ps

set ps ⊆ {2 ..} ∩ {n..<m} distinct ps ps 6= [] n < m
unfolding candidate-invariant-def

proof −
note res = res[unfolded next-candidates-def ]
note n = n[unfolded candidate-invariant-def ]
show m = 0 ∨ m mod 30 = 11 using res n by (auto split: if-splits)
show sorted ps using res n by (auto split: if-splits simp: primes-1000-def sorted2-simps

simp del: sorted-wrt.simps(2 ))
show set ps ⊆ {2 ..} ∩ {n..<m} using res n by (auto split: if-splits simp:

primes-1000-def )
show distinct ps using res n by (auto split: if-splits simp: primes-1000-def )
show ps 6= [] using res n by (auto split: if-splits simp: primes-1000-def )
show n < m using res by (auto split: if-splits)
show {i. prime i ∧ n ≤ i ∧ i < m} ⊆ set ps
proof (cases n = 0 )

case True
hence ∗: m = 1001 ps = primes-1000 using res by auto
show ?thesis unfolding ∗ True primes-1000 by auto

next
case False

hence n: n mod 30 = 11 and m: m = n + 30 and ps: ps = [n,n+2 ,n+6 ,n+8 ,n+12 ,n+18 ,n+20 ,n+26 ]

using res n by auto
{

fix i
assume ∗: prime i n ≤ i i < n + 30 i /∈ set ps
from n ∗ have i11 : i ≥ 11 by auto
define j where j = i − n
have i: i = n + j using ‹n ≤ i› j-def by auto
have i mod 30 = (j + n) mod 30 using ‹n ≤ i› unfolding j-def by simp
also have . . . = (j mod 30 + n mod 30 ) mod 30

by (simp add: mod-simps)
also have . . . = (j mod 30 + 11 ) mod 30 unfolding n by simp
finally have i30 : i mod 30 = (j mod 30 + 11 ) mod 30 by simp
have 2 : 2 dvd (30 :: nat) and 112 : 11 mod (2 :: nat) = 1 by simp-all
have (j + 11 ) mod 2 = (j + 1 ) mod 2
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by (rule mod-add-cong) simp-all
with arg-cong [OF i30 , of λj. j mod 2 ]
have 2 : i mod 2 = (j mod 2 + 1 ) mod 2

by (simp add: mod-simps mod-mod-cancel [OF 2 ])
have 3 : 3 dvd (30 :: nat) and 113 : 11 mod (3 :: nat) = 2 by simp-all
have (j + 11 ) mod 3 = (j + 2 ) mod 3

by (rule mod-add-cong) simp-all
with arg-cong [OF i30 , of λ j. j mod 3 ] have 3 : i mod 3 = (j mod 3 + 2 )

mod 3
by (simp add: mod-simps mod-mod-cancel [OF 3 ])

have 5 : 5 dvd (30 :: nat) and 115 : 11 mod (5 :: nat) = 1 by simp-all
have (j + 11 ) mod 5 = (j + 1 ) mod 5

by (rule mod-add-cong) simp-all
with arg-cong [OF i30 , of λ j. j mod 5 ] have 5 : i mod 5 = (j mod 5 + 1 )

mod 5
by (simp add: mod-simps mod-mod-cancel [OF 5 ])

from n ∗(2−)[unfolded ps i, simplified] have
j ∈ {1 ,3 ,5 ,7 ,9 ,11 ,13 ,15 ,17 ,19 ,21 ,23 ,25 ,27 ,29} ∨ j ∈ {4 ,10 ,16 ,22 ,28} ∨

j ∈ {14 ,24}
(is j ∈ ?j2 ∨ j ∈ ?j3 ∨ j ∈ ?j5 )
by simp presburger

moreover
{

assume j ∈ ?j2
hence j mod 2 = 1 by auto
with 2 have i mod 2 = 0 by auto
with i11 have 2 dvd i i 6= 2 by auto
with ∗(1 ) have False unfolding prime-nat-iff by auto

}
moreover
{

assume j ∈ ?j3
hence j mod 3 = 1 by auto
with 3 have i mod 3 = 0 by auto
with i11 have 3 dvd i i 6= 3 by auto
with ∗(1 ) have False unfolding prime-nat-iff by auto

}
moreover
{

assume j ∈ ?j5
hence j mod 5 = 4 by auto
with 5 have i mod 5 = 0 by auto
with i11 have 5 dvd i i 6= 5 by auto
with ∗(1 ) have False unfolding prime-nat-iff by auto

}
ultimately have False by blast

}
thus ?thesis unfolding m ps by auto
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qed
qed

lemma prime-test-iterate2 : assumes small:
∧

j. 2 ≤ j =⇒ j < (i :: nat) =⇒ ¬
j dvd n

and odd: odd n
and n: n ≥ 3
and i: i ≥ 3 odd i
and mod: ¬ i dvd n
and j: 2 ≤ j j < i + 2
shows ¬ j dvd n

proof
assume dvd: j dvd n
with small[OF j(1 )] have j ≥ i by linarith
with dvd mod have j > i by (cases i = j, auto)
with j have j = Suc i by simp
with i have even j by auto
with dvd j(1 ) have 2 dvd n by (metis dvd-trans)
with odd show False by auto

qed

lemma prime-divisor : assumes j ≥ 2 and j dvd n shows
∃ p :: nat. prime p ∧ p dvd j ∧ p dvd n

proof −
let ?pf = prime-factors j
from assms have j > 0 by auto
from prime-factorization-nat[OF this]
have j = (

∏
p∈?pf . p ^ multiplicity p j) by auto

with ‹j ≥ 2 › have ?pf 6= {} by auto
then obtain p where p: p ∈ ?pf by auto
hence pr : prime p by auto
define rem where rem = (

∏
p∈?pf − {p}. p ^ multiplicity p j)

from p have mult: multiplicity p j 6= 0
by (auto simp: prime-factors-multiplicity)

have finite ?pf by simp
have j = (

∏
p∈?pf . p ^ multiplicity p j) by fact

also have ?pf = (insert p (?pf − {p})) using p by auto
also have (

∏
p∈insert p (?pf − {p}). p ^ multiplicity p j) =

p ^ multiplicity p j ∗ rem unfolding rem-def
by (subst prod.insert, auto)

also have . . . = p ∗ (p ^ (multiplicity p j − 1 ) ∗ rem) using mult
by (cases multiplicity p j, auto)

finally have pj: p dvd j unfolding dvd-def by blast
with ‹j dvd n› have p dvd n by (metis dvd-trans)
with pj pr show ?thesis by blast

qed

lemma prime-nat-main: ni = (n,i,is) =⇒ i ≥ 2 =⇒ n ≥ 2 =⇒
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(
∧

j. 2 ≤ j =⇒ j < i =⇒ ¬ (j dvd n)) =⇒
(
∧

j. i ≤ j =⇒ j < jj =⇒ prime j =⇒ j ∈ set is) =⇒ i ≤ jj =⇒
sorted is =⇒ distinct is =⇒ candidate-invariant jj =⇒ set is ⊆ {i..<jj} =⇒
res = prime-nat-main n jj is =⇒
res = prime n

proof (induct ni arbitrary: n i is jj res rule: wf-induct[OF
wf-measures[of [λ (n,i,is). n − i, λ (n,i,is). if is = [] then 1 else 0 ]]])

case (1 ni n i is jj res)
note res = 1 (12 )
from 1 (3−4 ) have i: i ≥ 2 and i2 : Suc i ≥ 2 and n: n ≥ 2 by auto
from 1 (5 ) have dvd:

∧
j. 2 ≤ j =⇒ j < i =⇒ ¬ j dvd n .

from 1 (7 ) have ijj: i ≤ jj .
note sort-dist = 1 (8−9 )
have is:

∧
j. i ≤ j =⇒ j < jj =⇒ prime j =⇒ j ∈ set is by (rule 1 (6 ))

note simps = prime-nat-main.simps[of n jj is]
note IH = 1 (1 )[rule-format, unfolded 1 (2 ), OF - refl]
show ?case
proof (cases is)

case Nil
obtain jjj iis where can: next-candidates jj = (jjj,iis) by force
from res[unfolded simps, unfolded Nil can split] have res: res = prime-nat-main

n jjj iis by auto
from next-candidates[OF can 1 (10 )] have can:

sorted iis distinct iis candidate-invariant jjj
{i. prime i ∧ jj ≤ i ∧ i < jjj} ⊆ set iis set iis ⊆ {2 ..} ∩ {jj..<jjj}
iis 6= [] jj < jjj by blast+

from can ijj have i ≤ jjj by auto
note IH = IH [OF - i n dvd - this can(1−3 ) - res]
show ?thesis
proof (rule IH , force simp: Nil can(6 ))

fix x
assume ix: i ≤ x and xj: x < jjj and px: prime x
from is[OF ix - px] Nil have jx: jj ≤ x by force
with can(4 ) xj px show x ∈ set iis by auto

qed (insert can(5 ) ijj, auto)
next

case (Cons i ′ iis)
with res[unfolded simps]
have res: res = (if i ′ dvd n then n ≤ i ′ else if i ′ ∗ i ′ ≤ n then prime-nat-main

n jj iis else True)
by simp

from 1 (11 ) Cons have iis: set iis ⊆ {i..<jj} and i ′: i ≤ i ′ i ′ < jj Suc i ′ ≤ jj
by auto

from sort-dist have sd-iis: sorted iis distinct iis and i ′ /∈ set iis by(auto simp:
Cons)

from sort-dist(1 ) have set iis ⊆ {i ′..} by(auto simp: Cons)
with iis have set iis ⊆ {i ′..<jj} by force
with ‹i ′ /∈ set iis› have iis: set iis ⊆ {Suc i ′..<jj}

by (auto, case-tac x = i ′, auto)
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{
fix j
assume j: 2 ≤ j j < i ′
have ¬ j dvd n
proof

assume j dvd n
from prime-divisor [OF j(1 ) this] obtain p where

p: prime p p dvd j p dvd n by auto
have pj: p ≤ j

by (rule dvd-imp-le[OF p(2 )], insert j, auto)
have p2 : 2 ≤ p using p(1 ) by (rule prime-ge-2-nat)
from dvd[OF p2 ] p(3 ) have pi: p ≥ i by force
from pj j(2 ) i ′ is[OF pi - p(1 )] have p ∈ set is by auto
with ‹sorted is› have i ′ ≤ p by(auto simp: Cons)
with pj j(2 ) show False by arith

qed
} note dvd = this
from i ′ i have i ′2 : 2 ≤ Suc i ′ by auto
note IH = IH [OF - i ′2 n - - i ′(3 ) sd-iis 1 (10 ) iis]
show ?thesis
proof (cases i ′ dvd n)

case False note dvdi = this
{

fix j
assume j: 2 ≤ j j < Suc i ′
have ¬ j dvd n
proof (cases j = i ′)

case False
with j have j < i ′ by auto
from dvd[OF j(1 ) this] show ?thesis .

qed (insert False, auto)
} note dvds = this
show ?thesis
proof (cases i ′ ∗ i ′ ≤ n)

case True note iin = this
with res False have res: res = prime-nat-main n jj iis by auto
from iin have i-n: i ′ < n

using dvd dvdi n nat-neq-iff dvd-refl by blast
{

fix x
assume Suc i ′ ≤ x x < jj prime x
hence i ≤ x x < jj prime x using i ′ by auto
from is[OF this] have x ∈ set is .
with ‹Suc i ′ ≤ x› have x ∈ set iis unfolding Cons by auto

} note iis = this
show ?thesis

by (rule IH [OF - dvds iis res], insert i-n i ′, auto)
next

case False
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with res dvdi have res: res = True by auto
have n: prime n

by (rule prime-sqrtI [OF n dvd False])
thus ?thesis unfolding res by auto

qed
next

case True
have i ′ ≥ 2 using i i ′ by auto
from ‹i ′ dvd n› obtain k where n = i ′ ∗ k ..
with n have k 6= 0 by (cases k = 0 , auto)
with ‹n = i ′ ∗ k› have ∗: i ′ < n ∨ i ′ = n

by auto
with True res have res ←→ i ′ = n

by auto
also have . . . = prime n
using ∗ proof

assume i ′ < n
with ‹i ′ ≥ 2 › ‹i ′ dvd n› have ¬ prime n

by (auto simp add: prime-nat-iff )
with ‹i ′ < n› show ?thesis

by auto
next

assume i ′ = n
with dvd n have prime n

by (simp add: prime-nat-iff ′)
with ‹i ′ = n› show ?thesis

by auto
qed
finally show ?thesis .

qed
qed

qed

lemma prime-factorization-nat-main: ni = (n,i,is) =⇒ i ≥ 2 =⇒ n ≥ 2 =⇒
(
∧

j. 2 ≤ j =⇒ j < i =⇒ ¬ (j dvd n)) =⇒
(
∧

j. i ≤ j =⇒ j < jj =⇒ prime j =⇒ j ∈ set is) =⇒ i ≤ jj =⇒
sorted is =⇒ distinct is =⇒ candidate-invariant jj =⇒ set is ⊆ {i..<jj} =⇒
res = prime-factorization-nat-main n jj is ps =⇒
∃ qs. res = qs @ ps ∧ Ball (set qs) prime ∧ n = prod-list qs

proof (induct ni arbitrary: n i is jj res ps rule: wf-induct[OF
wf-measures[of [λ (n,i,is). n − i, λ (n,i,is). if is = [] then 1 else 0 ]]])
case (1 ni n i is jj res ps)
note res = 1 (12 )
from 1 (3−4 ) have i: i ≥ 2 and i2 : Suc i ≥ 2 and n: n ≥ 2 by auto
from 1 (5 ) have dvd:

∧
j. 2 ≤ j =⇒ j < i =⇒ ¬ j dvd n .

from 1 (7 ) have ijj: i ≤ jj .
note sort-dist = 1 (8−9 )
have is:

∧
j. i ≤ j =⇒ j < jj =⇒ prime j =⇒ j ∈ set is by (rule 1 (6 ))

note simps = prime-factorization-nat-main.simps[of n jj is]
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note IH = 1 (1 )[rule-format, unfolded 1 (2 ), OF - refl]
show ?case
proof (cases is)

case Nil
obtain jjj iis where can: next-candidates jj = (jjj,iis) by force

from res[unfolded simps, unfolded Nil can split] have res: res = prime-factorization-nat-main
n jjj iis ps by auto

from next-candidates[OF can 1 (10 )] have can:
sorted iis distinct iis candidate-invariant jjj
{i. prime i ∧ jj ≤ i ∧ i < jjj} ⊆ set iis set iis ⊆ {2 ..} ∩ {jj..<jjj}
iis 6= [] jj < jjj by blast+

from can ijj have i ≤ jjj by auto
note IH = IH [OF - i n dvd - this can(1−3 ) - res]
show ?thesis
proof (rule IH , force simp: Nil can(6 ))

fix x
assume ix: i ≤ x and xj: x < jjj and px: prime x
from is[OF ix - px] Nil have jx: jj ≤ x by force
with can(4 ) xj px show x ∈ set iis by auto

qed (insert can(5 ) ijj, auto)
next

case (Cons i ′ iis)
obtain n ′ m where dm: Euclidean-Rings.divmod-nat n i ′ = (n ′,m) by force

hence n ′: n ′= n div i ′ and m: m = n mod i ′ by (auto simp: Euclidean-Rings.divmod-nat-def )
have m: (m = 0 ) = (i ′ dvd n) unfolding m by auto
from Cons res[unfolded simps] dm m n ′

have res: res = (
if i ′ dvd n then case remove-prime-factor i ′ (n div i ′) (i ′ # ps) of

(n ′, ps ′) ⇒ if n ′ = 1 then ps ′ else prime-factorization-nat-main n ′ jj iis
ps ′

else if i ′ ∗ i ′ ≤ n then prime-factorization-nat-main n jj iis ps else n # ps)
by simp

from 1 (11 ) i Cons have iis: set iis ⊆ {i..<jj} and i ′: i ≤ i ′ i ′ < jj Suc i ′ ≤
jj i ′ > 1 by auto

from sort-dist have sd-iis: sorted iis distinct iis and i ′ /∈ set iis by(auto simp:
Cons)

from sort-dist(1 ) Cons have set iis ⊆ {i ′..} by(auto)
with iis have set iis ⊆ {i ′..<jj} by force
with ‹i ′ /∈ set iis› have iis: set iis ⊆ {Suc i ′..<jj}

by (auto, case-tac x = i ′, auto)
{

fix j
assume j: 2 ≤ j j < i ′
have ¬ j dvd n
proof

assume j dvd n
from prime-divisor [OF j(1 ) this] obtain p where

p: prime p p dvd j p dvd n by auto
have pj: p ≤ j

81



by (rule dvd-imp-le[OF p(2 )], insert j, auto)
have p2 : 2 ≤ p using p(1 ) by (rule prime-ge-2-nat)
from dvd[OF p2 ] p(3 ) have pi: p ≥ i by force
from pj j(2 ) i ′ is[OF pi - p(1 )] have p ∈ set is by auto
with ‹sorted is› have i ′ ≤ p by (auto simp: Cons)
with pj j(2 ) show False by arith

qed
} note dvd = this
from i ′ i have i ′2 : 2 ≤ Suc i ′ by auto
note IH = IH [OF - i ′2 - - - i ′(3 ) sd-iis 1 (10 ) iis]
{

fix x
assume Suc i ′ ≤ x x < jj prime x
hence i ≤ x x < jj prime x using i ′ by auto
from is[OF this] have x ∈ set is .
with ‹Suc i ′ ≤ x› have x ∈ set iis unfolding Cons by auto

} note iis = this
show ?thesis
proof (cases i ′ dvd n)

case False note dvdi = this
{

fix j
assume j: 2 ≤ j j < Suc i ′
have ¬ j dvd n
proof (cases j = i ′)

case False
with j have j < i ′ by auto
from dvd[OF j(1 ) this] show ?thesis .

qed (insert False, auto)
} note dvds = this
show ?thesis
proof (cases i ′ ∗ i ′ ≤ n)

case True note iin = this
with res False have res: res = prime-factorization-nat-main n jj iis ps by

auto
from iin have i-n: i ′ < n using dvd dvdi n nat-neq-iff dvd-refl by blast
show ?thesis

by (rule IH [OF - n dvds iis res], insert i-n i ′, auto)
next

case False
with res dvdi have res: res = n # ps by auto
have n: prime n

by (rule prime-sqrtI [OF n dvd False])
thus ?thesis unfolding res by auto

qed
next

case True note i-n = this
obtain n ′′ qs where rp: remove-prime-factor i ′ (n div i ′) (i ′ # ps) = (n ′′,qs)

by force
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with res True
have res: res = (if n ′′ = 1 then qs else prime-factorization-nat-main n ′′ jj iis

qs) by auto
have pi: prime i ′ unfolding prime-nat-iff
proof (intro conjI allI impI )

show 1 < i ′ using i ′ i by auto
fix j
assume ji: j dvd i ′
with i ′ i have j0 : j 6= 0 by (cases j = 0 , auto)
from ji i-n have jn: j dvd n by (metis dvd-trans)
with dvd[of j] have j: 2 > j ∨ j ≥ i ′ by linarith
from ji ‹1 < i ′› have j ≤ i ′ unfolding dvd-def

by (simp add: dvd-imp-le ji)
with j j0 show j = 1 ∨ j = i ′ by linarith

qed
from True n ′ have id: n = n ′ ∗ i ′ by auto
from n id have n ′ 6= 0 by (cases n = 0 , auto)
with id have i ′ ≤ n by auto
from remove-prime-factor [OF rp[folded n ′] ‹1 < i ′› ‹n ′ 6= 0 ›] obtain rs

where qs: qs = rs @ i ′ # ps and n ′: n ′ = n ′′ ∗ prod-list rs and i-n ′′: ¬ i ′
dvd n ′′

and rs: set rs ⊆ {i ′} by auto
{

fix j
assume j dvd n ′′

hence j dvd n unfolding id n ′ by auto
} note dvd ′ = this
show ?thesis
proof (cases n ′′ = 1 )

case False
with res have res: res = prime-factorization-nat-main n ′′ jj iis qs

by simp
from i i ′ have i ′ ≥ 2 by simp
from False n ′ ‹n ′ 6= 0 › have n2 : n ′′ ≥ 2 by (cases n ′′ = 0 ; auto)
have lrs: prod-list rs 6= 0 using n ′ ‹n ′ 6= 0 › by (cases prod-list rs = 0 ,

auto)
with ‹i ′ ≥ 2 › have prod-list rs ∗ i ′ ≥ 2 by (cases prod-list rs, auto)
hence nn ′′: n > n ′′ unfolding id n ′ using n2 by simp
have i ′ 6= n unfolding id n ′ using pi False by fastforce
with ‹i ′ ≤ n› i ′ have n > i by auto
with nn ′′ i i ′ have less: n − i > n ′′ − Suc i ′ by simp
{

fix j
assume 2 : 2 ≤ j and ji: j < Suc i ′
have ¬ j dvd n ′′

proof (cases j = i ′)
case False
with ji have j < i ′ by auto
from dvd ′ dvd[OF 2 this] show ?thesis by blast
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qed (insert i-n ′′, auto)
}
from IH [OF - n2 this iis res] less obtain ss where

res: res = ss @ qs ∧ Ball (set ss) prime ∧ n ′′ = prod-list ss by auto
thus ?thesis unfolding id n ′ qs using pi rs by auto

next
case True
with res have res: res = qs by auto
show ?thesis unfolding id n ′ res qs True using rs ‹prime i ′›

by (intro exI [of - rs @ [i ′]], auto)
qed

qed
qed

qed

lemma prime-nat[simp]: prime-nat n = prime n
proof (cases n < 2 )

case True
thus ?thesis unfolding prime-nat-def prime-nat-iff by auto

next
case False
hence n: n ≥ 2 by auto
obtain jj is where can: next-candidates 0 = (jj,is) by force
from next-candidates[OF this candidate-invariant-0 ]
have cann: sorted is distinct is candidate-invariant jj
{i. prime i ∧ 0 ≤ i ∧ i < jj} ⊆ set is
set is ⊆ {2 ..} ∩ {0 ..<jj} distinct is is 6= [] by auto

from cann have sub: set is ⊆ {2 ..<jj} by force
with ‹is 6= []› have jj: jj ≥ 2 by (cases is, auto)
from n can have res: prime-nat n = prime-nat-main n jj is

unfolding prime-nat-def by auto
show ?thesis using prime-nat-main[OF refl le-refl n - - jj cann(1−3 ) sub res]

cann(4 ) by auto
qed

lemma prime-factorization-nat: fixes n :: nat
defines pf ≡ prime-factorization-nat n
shows Ball (set pf ) prime
and n 6= 0 =⇒ prod-list pf = n
and n = 0 =⇒ pf = []

proof −
note pf = pf-def [unfolded prime-factorization-nat-def ]
have Ball (set pf ) prime ∧ (n 6= 0 −→ prod-list pf = n) ∧ (n = 0 −→ pf = [])
proof (cases n < 2 )

case True
thus ?thesis using pf by auto

next
case False
hence n: n ≥ 2 by auto
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obtain jj is where can: next-candidates 0 = (jj,is) by force
from next-candidates[OF this candidate-invariant-0 ]
have cann: sorted is distinct is candidate-invariant jj
{i. prime i ∧ 0 ≤ i ∧ i < jj} ⊆ set is
set is ⊆ {2 ..} ∩ {0 ..<jj} distinct is is 6= [] by auto

from cann have sub: set is ⊆ {2 ..<jj} by force
with ‹is 6= []› have jj: jj ≥ 2 by (cases is, auto)
let ?pfm = prime-factorization-nat-main n jj is []
from pf [unfolded can] False
have res: pf = rev ?pfm by simp
from prime-factorization-nat-main[OF refl le-refl n - - jj cann(1−3 ) sub refl,

of Nil] cann(4 )
have Ball (set ?pfm) prime n = prod-list ?pfm by auto
thus ?thesis unfolding res using n by auto

qed
thus Ball (set pf ) prime n 6= 0 =⇒ prod-list pf = n n = 0 =⇒ pf = [] by auto

qed

lemma prod-mset-multiset-prime-factorization-nat [simp]:
(x::nat) 6= 0 =⇒ prod-mset (prime-factorization x) = x
by simp

lemma prime-factorization-unique ′′:
fixes A :: ′a :: {factorial-semiring-multiplicative} multiset
assumes

∧
p. p ∈# A =⇒ prime p

assumes prod-mset A = normalize x
shows prime-factorization x = A

proof −
have prod-mset A 6= 0 by (auto dest: assms(1 ))
with assms(2 ) have x 6= 0 by simp
hence prod-mset (prime-factorization x) = prod-mset A

by (simp add: assms prod-mset-prime-factorization)
with assms show ?thesis

by (intro prime-factorization-unique ′) auto
qed

lemma multiset-prime-factorization-nat-correct:
prime-factorization n = mset (prime-factorization-nat n)

proof −
note pf = prime-factorization-nat[of n]
show ?thesis
proof (cases n = 0 )

case True
thus ?thesis using pf (3 ) by simp

next
case False
note pf = pf (1 ) pf (2 )[OF False]
show ?thesis
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proof (rule prime-factorization-unique ′′)
show prime p if p ∈# mset (prime-factorization-nat n) for p

using pf (1 ) that by simp
let ?l =

∏
i∈#prime-factorization n. i

let ?r =
∏

i∈#mset (prime-factorization-nat n). i
show prod-mset (mset (prime-factorization-nat n)) = normalize n

by (simp add: pf (2 ) prod-mset-prod-list)
qed

qed
qed

lemma multiset-prime-factorization-code[code-unfold]:
prime-factorization = (λn. mset (prime-factorization-nat n))
by (intro ext multiset-prime-factorization-nat-correct)

lemma divisors-nat:
n 6= 0 =⇒ set (divisors-nat n) = {p. p dvd n} distinct (divisors-nat n) divisors-nat

0 = []
proof −

show distinct (divisors-nat n) divisors-nat 0 = [] unfolding divisors-nat-def by
auto

assume n: n 6= 0
from n have n > 0 by auto
{

fix x
have (x dvd n) = (x 6= 0 ∧ (∀ p. multiplicity p x ≤ multiplicity p n))
proof (cases x = 0 )

case False
with ‹n > 0 › show ?thesis by (auto simp: dvd-multiplicity-eq)

next
case True
with n show ?thesis by auto

qed
} note dvd = this
let ?dn = set (divisors-nat n)
let ?mf = λ (n :: nat). prime-factorization n
have ?dn = prod-list ‘ set (subseqs (prime-factorization-nat n)) unfolding divi-

sors-nat-def
using n by auto

also have . . . = prod-mset ‘ mset ‘ set (subseqs (prime-factorization-nat n))
by (force simp: prod-mset-prod-list)

also have mset ‘ set (subseqs (prime-factorization-nat n))
= { ps. ps ⊆# mset (prime-factorization-nat n)}
unfolding multiset-of-subseqs by simp

also have . . . = { ps. ps ⊆# ?mf n}
thm multiset-prime-factorization-code[symmetric]
unfolding multiset-prime-factorization-nat-correct[symmetric] by auto

also have prod-mset ‘ . . . = {p. p dvd n} (is ?l = ?r)
proof −
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{
fix x
assume x dvd n
from this[unfolded dvd] have x: x 6= 0 by auto
from ‹x dvd n› ‹x 6= 0 › ‹n 6= 0 › have sub: ?mf x ⊆# ?mf n

by (subst prime-factorization-subset-iff-dvd) auto
have prod-mset (?mf x) = x using x

by (simp add: prime-factorization-nat)
hence x ∈ ?l using sub by force

}
moreover
{

fix x
assume x ∈ ?l
then obtain ps where x: x = prod-mset ps and sub: ps ⊆# ?mf n by auto
have x dvd n using prod-mset-subset-imp-dvd[OF sub] n x by simp

}
ultimately show ?thesis by blast

qed
finally show set (divisors-nat n) = {p. p dvd n} .

qed

lemma divisors-int-pos: x 6= 0 =⇒ set (divisors-int-pos x) = {i. i dvd x ∧ i > 0}
distinct (divisors-int-pos x)

divisors-int-pos 0 = []
proof −

show divisors-int-pos 0 = [] by code-simp
show distinct (divisors-int-pos x)

unfolding divisors-int-pos-def using divisors-nat(2 )[of nat (abs x)]
by (simp add: distinct-map inj-on-def )

assume x: x 6= 0
let ?x = nat (abs x)
from x have xx: ?x 6= 0 by auto
from x have 0 :

∧
y. y dvd x =⇒ y 6= 0 by auto

have id: int ‘ {p. int p dvd x} = {i. i dvd x ∧ 0 < i} (is ?l = ?r)
proof −

{
fix y
assume y ∈ ?l
then obtain p where y: y = int p and dvd: int p dvd x by auto
have y ∈ ?r unfolding y using dvd 0 [OF dvd] by auto

}
moreover
{

fix y
assume y ∈ ?r
hence dvd: y dvd x and y0 : y > 0 by auto
define n where n = nat y
from y0 have y: y = int n unfolding n-def by auto
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with dvd have y ∈ ?l by auto
}
ultimately show ?thesis by blast

qed
from xx show set (divisors-int-pos x) = {i. i dvd x ∧ i > 0}

by (simp add: divisors-int-pos-def divisors-nat id)
qed

lemma divisors-int: x 6= 0 =⇒ set (divisors-int x) = {i. i dvd x} distinct (divisors-int
x)

divisors-int 0 = []
proof −

show divisors-int 0 = [] by code-simp
show distinct (divisors-int x)
proof (cases x = 0 )

case True
show ?thesis unfolding True by code-simp

next
case False
from divisors-int-pos(1 )[OF False] divisors-int-pos(2 )
show ?thesis unfolding divisors-int-def Let-def distinct-append distinct-map

inj-on-def by auto
qed
assume x: x 6= 0
show set (divisors-int x) = {i. i dvd x}
unfolding divisors-int-def Let-def set-append set-map divisors-int-pos(1 )[OF x]

using x
by auto (metis (no-types, lifting) dvd-mult-div-cancel image-eqI linorder-neqE-linordered-idom

mem-Collect-eq minus-dvd-iff minus-minus mult-zero-left neg-less-0-iff-less)
qed

definition divisors-fun :: ( ′a ⇒ ( ′a :: {comm-monoid-mult,zero}) list) ⇒ bool
where

divisors-fun df ≡ (∀ x. x 6= 0 −→ set (df x) = { d. d dvd x }) ∧ (∀ x. distinct
(df x))

lemma divisors-funD: divisors-fun df =⇒ x 6= 0 =⇒ d dvd x =⇒ d ∈ set (df x)
unfolding divisors-fun-def by auto

definition divisors-pos-fun :: ( ′a ⇒ ( ′a :: {comm-monoid-mult,zero,ord}) list) ⇒
bool where

divisors-pos-fun df ≡ (∀ x. x 6= 0 −→ set (df x) = { d. d dvd x ∧ d > 0}) ∧ (∀
x. distinct (df x))

lemma divisors-pos-funD: divisors-pos-fun df =⇒ x 6= 0 =⇒ d dvd x =⇒ d > 0
=⇒ d ∈ set (df x)

unfolding divisors-pos-fun-def by auto
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lemma divisors-fun-nat: divisors-fun divisors-nat
unfolding divisors-fun-def using divisors-nat by auto

lemma divisors-fun-int: divisors-fun divisors-int
unfolding divisors-fun-def using divisors-int by auto

lemma divisors-pos-fun-int: divisors-pos-fun divisors-int-pos
unfolding divisors-pos-fun-def using divisors-int-pos by auto

end

8 Rational Root Test
This theory contains a formalization of the rational root test, i.e., a decision
procedure to test whether a polynomial over the rational numbers has a
rational root.
theory Rational-Root-Test
imports

Gauss-Lemma
Missing-List
Prime-Factorization

begin

definition rational-root-test-main ::
(int ⇒ int list) ⇒ (int ⇒ int list) ⇒ rat poly ⇒ rat option where
rational-root-test-main df dp p ≡ let ip = snd (rat-to-normalized-int-poly p);

a0 = coeff ip 0 ; an = coeff ip (degree ip)
in if a0 = 0 then Some 0 else
let d0 = df a0 ; dn = dp an
in map-option fst
(find-map-filter (λ x. (x,poly p x))
(λ (-, res). res = 0 ) [rat-of-int b0 / of-int bn . b0 <− d0 , bn <− dn, coprime

b0 bn ])

definition rational-root-test :: rat poly ⇒ rat option where
rational-root-test p =

rational-root-test-main divisors-int divisors-int-pos p

lemma rational-root-test-main:
rational-root-test-main df dp p = Some x =⇒ poly p x = 0
divisors-fun df =⇒ divisors-pos-fun dp =⇒ rational-root-test-main df dp p =

None =⇒ ¬ (∃ x. poly p x = 0 )
proof −

let ?r = rat-of-int
let ?rp = map-poly ?r
obtain a ip where rp: rat-to-normalized-int-poly p = (a,ip) by force
from rat-to-normalized-int-poly[OF this] have p: p = smult a (?rp ip) and a00 :

a 6= 0
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and cip: p 6= 0 =⇒ content ip = 1 by auto
let ?a0 = coeff ip 0
let ?an = coeff ip (degree ip)
let ?d0 = df ?a0
let ?dn = dp ?an
let ?ip = ?rp ip
define tests where tests = [rat-of-int b0 / rat-of-int bn . b0 <− ?d0 , bn <−

?dn, coprime b0 bn ]
let ?f = (λ x. (x,poly p x))
let ?test = (λ (-, res). res = 0 )
define mo where mo = find-map-filter ?f ?test tests
note d = rational-root-test-main-def [of df dp p, unfolded Let-def rp snd-conv

mo-def [symmetric] tests-def [symmetric]]
{

assume rational-root-test-main df dp p = Some x
from this[unfolded d] have ?a0 = 0 ∧ x = 0 ∨ map-option fst mo = Some x

by (auto split: if-splits)
thus poly p x = 0
proof

assume ∗: ?a0 = 0 ∧ x = 0
hence coeff p 0 = 0 unfolding p coeff-smult by simp
hence poly p 0 = 0 by (cases p, auto)
with ∗ show ?thesis by auto

next
assume map-option fst mo = Some x
then obtain pair where find: find-map-filter ?f ?test tests = Some pair and

x: x = fst pair
unfolding mo-def by (auto split: option.splits)

then obtain z where pair : pair = (x,z) by (cases pair , auto)
from find-map-filter-Some[OF find, unfolded pair split] show poly p x = 0

by auto
qed

}
assume df : divisors-fun df and dp: divisors-pos-fun dp and res: rational-root-test-main

df dp p = None
note df = divisors-funD[OF df ] note dp = divisors-pos-funD[OF dp]
from res[unfolded d] have a0 : ?a0 6= 0 and res: map-option fst mo = None by

(auto split: if-splits)
from res[unfolded mo-def ] have find: find-map-filter ?f ?test tests = None by

auto
show ¬ (∃ x. poly p x = 0 )
proof

assume ∃ x. poly p x = 0
then obtain x where poly p x = 0 by auto
from this[unfolded p] a00 have poly (?rp ip) x = 0 by auto
from this[unfolded poly-eq-0-iff-dvd] have [: −x , 1 :] dvd ?ip by auto
then obtain q where ip-id: ?ip = [: −x, 1 :] ∗ q unfolding dvd-def by auto
obtain c q where x1 : rat-to-normalized-int-poly [: −x, 1 :] = (c, q) by force
from rat-to-int-factor-explicit[OF ip-id x1 ] obtain r where ip: ip = q ∗ r by
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blast
from rat-to-normalized-int-poly(4 )[OF x1 ] have deg: degree q = 1 by auto
from degree1-coeffs[OF deg] obtain a b where q: q = [: b, a :] and a: a 6= 0

by metis
have ipr : ip = [: b, a :] ∗ r using ip q by auto
from arg-cong[OF ipr , of λ p. coeff p 0 ] have ba0 : b dvd ?a0 by auto
have rpq: ?rp q = [: ?r b, ?r a :] unfolding q
proof (rule poly-eqI , unfold of-int-hom.coeff-map-poly-hom)

fix n
show ?r (coeff [:b, a:] n) = coeff [: ?r b, ?r a:] n

unfolding coeff-pCons
by (cases n, force, cases n − 1 , auto)

qed
from arg-cong[OF ip, of ?rp, unfolded of-int-poly-hom.hom-mult rpq] have [:

?r b, ?r a :] dvd ?rp ip
unfolding dvd-def by blast

hence smult (inverse (?r a)) [: ?r b , ?r a :] dvd ?rp ip
by (rule smult-dvd, insert a, auto)

also have smult (inverse (?r a)) [: ?r b , ?r a :] = [: ?r b / ?r a, 1 :] using a
by (simp add: field-simps)

finally have [: − (− ?r b / ?r a), 1 :] dvd ?rp ip by simp
from this[unfolded poly-eq-0-iff-dvd[symmetric]]
have rt: poly (?rp ip) (− ?r b / ?r a) = 0 .
hence rt: poly p (− ?r b / ?r a) = 0

unfolding p using a00 by simp
obtain aa bb where quot: quotient-of (− ?r b / ?r a) = (bb,aa) by force
hence quotient-of (?r (−b) / ?r a) = (bb, aa) by simp
from quotient-of-int-div[OF this ‹a 6= 0 ›] obtain z where

z: z 6= 0 and b: − b = z ∗ bb and a: a = z ∗ aa by auto
from rt[unfolded quotient-of-div[OF quot]] have rt: poly p (?r bb / ?r aa) = 0

by auto
from quotient-of-coprime[OF quot] have cop: coprime bb aa coprime (− bb) aa

by auto
from quotient-of-denom-pos[OF quot] have aa: aa > 0 by auto

from ba0 arg-cong[OF b, of uminus] z have bba0 : bb dvd ?a0 unfolding dvd-def
by (metis ba0 dvdE dvd-mult-right minus-dvd-iff )

hence bb0 : bb 6= 0 using a0 by auto
from df [OF a0 bba0 ] have bb: bb ∈ set ?d0 by auto
from a0 have ip0 : ip 6= 0 by auto
hence an0 : ?an 6= 0 by auto
from ipr ip0 have r 6= 0 by auto
from degree-mult-eq[OF - this, of [:b,a:], folded ipr ] ‹a 6= 0 › ipr
have deg: degree ip = Suc (degree r) by auto
from arg-cong[OF ipr , of λ p. coeff p (degree ip)] have ba0 : a dvd ?an

unfolding deg by (auto simp: coeff-eq-0 )
hence aa dvd ?an using ‹a 6= 0 › unfolding a by (auto simp: dvd-def )
from dp[OF an0 this aa] have aa: aa ∈ set ?dn .
from find-map-filter-None[OF find] rt have (?r bb / ?r aa) /∈ set tests by auto
note test = this[unfolded tests-def , simplified, rule-format, of - aa]
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from this[of bb] cop bb aa
show False by auto

qed
qed

lemma rational-root-test:
rational-root-test p = Some x =⇒ poly p x = 0
rational-root-test p = None =⇒ ¬ (∃ x. poly p x = 0 )
using rational-root-test-main(1 ) rational-root-test-main(2 )[OF divisors-fun-int

divisors-pos-fun-int]
unfolding rational-root-test-def by blast+

end

9 Kronecker Factorization
This theory contains Kronecker’s factorization algorithm to factor integer
or rational polynomials.
theory Kronecker-Factorization
imports

Polynomial-Interpolation.Polynomial-Interpolation
Sqrt-Babylonian.Sqrt-Babylonian-Auxiliary
Missing-List
Prime-Factorization
Precomputation
Gauss-Lemma
Dvd-Int-Poly

begin

9.1 Definitions
context

fixes df :: int ⇒ int list
and dp :: int ⇒ int list
and bnd :: nat

begin

definition kronecker-samples :: nat ⇒ int list where
kronecker-samples n ≡ let min = − int (n div 2 ) in [min .. min + int n]

lemma kronecker-samples-0 : 0 ∈ set (kronecker-samples n) unfolding kronecker-samples-def
by auto

Since 0 is always a samples value, we make a case analysis: we only take
positive divisors of p(0), and consider all divisors for other p(j).
definition kronecker-factorization-main :: int poly ⇒ int poly option where

kronecker-factorization-main p ≡ if degree p ≤ 1 then None else let
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p = primitive-part p;
js = kronecker-samples bnd;
cjs = map (λ j. (poly p j, j)) js

in (case map-of cjs 0 of
Some j ⇒ Some ([:− j, 1 :])
| None ⇒ let djs = map (λ (v,j). map (Pair j) (if j = 0 then dp v else df v)) cjs

in
map-option the (find-map-filter newton-interpolation-poly-int
(λ go. case go of None ⇒ False | Some g ⇒ dvd-int-poly-non-0 g p ∧ degree g

≥ 1 )
(concat-lists djs)))

definition kronecker-factorization-rat-main :: rat poly ⇒ rat poly option where
kronecker-factorization-rat-main p ≡ map-option (map-poly of-int)

(kronecker-factorization-main (snd (rat-to-normalized-int-poly p)))
end

definition kronecker-factorization :: int poly ⇒ int poly option where
kronecker-factorization p =

kronecker-factorization-main divisors-int divisors-int-pos (degree p div 2 ) p

definition kronecker-factorization-rat :: rat poly ⇒ rat poly option where
kronecker-factorization-rat p =

kronecker-factorization-rat-main divisors-int divisors-int-pos (degree p div 2 ) p

9.2 Code setup for divisors
definition divisors-nat-copy n ≡ if n = 0 then [] else remdups-adj (sort (map
prod-list (subseqs (prime-factorization-nat n))))

lemma divisors-nat-copy[simp]: divisors-nat-copy = divisors-nat
unfolding divisors-nat-def [abs-def ] divisors-nat-copy-def [abs-def ] ..

definition memo-divisors-nat ≡ memo-nat 0 100 divisors-nat-copy

lemma memo-divisors-nat[code-unfold]: divisors-nat = memo-divisors-nat
unfolding memo-divisors-nat-def by simp

9.3 Proofs
context
begin

lemma rat-to-int-poly-of-int: assumes rp: rat-to-int-poly (map-poly of-int p) =
(c,q)

shows c = 1 q = p
proof −

define xs where xs = map (snd ◦ quotient-of ) (coeffs (map-poly rat-of-int p))
have xs: set xs ⊆ {1} unfolding xs-def by auto
from assms[unfolded rat-to-int-poly-def Let-def ]
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have c: c = fst (common-denom (coeffs (map-poly rat-of-int p))) by auto
also have . . . = list-lcm xs

unfolding common-denom-def Let-def xs-def by (simp add: o-assoc)
also have . . . = 1 using xs

by (induct xs, auto)
finally show c: c = 1 by auto
from rat-to-int-poly[OF rp, unfolded c] show q = p by auto

qed

lemma rat-to-normalized-int-poly-of-int: assumes rat-to-normalized-int-poly (map-poly
of-int p) = (c,q)

shows c ∈ � p 6= 0 =⇒ c = of-int (content p) ∧ q = primitive-part p
proof −

obtain d r where ri: rat-to-int-poly (map-poly rat-of-int p) = (d,r) by force
from rat-to-int-poly-of-int[OF ri]

assms[unfolded rat-to-normalized-int-poly-def ri split]
show c ∈ � p 6= 0 =⇒ c = of-int (content p) ∧ q = primitive-part p

by (auto split: if-splits)
qed

lemma dvd-poly-int-content-1 : assumes c-x: content x = 1
shows (x dvd y) = (map-poly rat-of-int x dvd map-poly of-int y)

proof −
let ?r = rat-of-int
let ?rp = map-poly ?r
show ?thesis
proof

assume x dvd y
then obtain z where y = x ∗ z unfolding dvd-def by auto
from arg-cong[OF this, of ?rp]
show ?rp x dvd ?rp y by auto

next
assume dvd: ?rp x dvd ?rp y
show x dvd y
proof (cases y = 0 )

case True
thus ?thesis by auto

next
case False note y0 = this
hence ?rp y 6= 0 by simp
hence rx0 : ?rp x 6= 0 using dvd by auto
hence x0 : x 6= 0 by simp
from dvd obtain z where prod: ?rp y = ?rp x ∗ z unfolding dvd-def by

auto
obtain cx xx where x: rat-to-normalized-int-poly (?rp x) = (cx, xx) by force
from rat-to-int-factor-explicit[OF prod x] obtain z where y: y = xx ∗ smult

(content y) z by auto
from rat-to-normalized-int-poly[OF x ] rx0 have xx: ?rp x = smult cx (?rp

xx)
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and cxx: content xx = 1 and cx0 : cx > 0 by auto
obtain cn cd where quot: quotient-of cx = (cn,cd) by force
from quotient-of-div[OF quot] have cx: cx = ?r cn / ?r cd by auto
from quotient-of-denom-pos[OF quot] have cd0 : cd > 0 by auto
with cx cx0 have cn0 : cn > 0 by (simp add: zero-less-divide-iff )
from arg-cong[OF xx, of smult (?r cd)] have smult (?r cd) (?rp x) = smult

(?r cn) (?rp xx)
unfolding cx using cd0 by (auto simp: field-simps)

from this have id: smult cd x = smult cn xx by (fold hom-distribs, unfold
of-int-poly-hom.eq-iff )

from arg-cong[OF this, of content, unfolded content-smult-int cxx] cn0 cd0
have cn: cn = cd ∗ content x by auto
from quotient-of-coprime[OF quot, unfolded cn] cd0 have cd = 1 by auto
with cx have cx: cx = ?r cn by auto
from xx[unfolded this] have x: x = smult cn xx by (fold hom-distribs, simp)
from arg-cong[OF this, of content, unfolded content-smult-int c-x cxx] cn0

have cn = 1 by auto
with x have xx: xx = x by auto
show x dvd y using y[unfolded xx] unfolding dvd-def by blast

qed
qed

qed

lemma content-x-minus-const-int[simp]: content [: c, 1 :] = (1 :: int)
unfolding content-def by auto

lemma length-upto-add-nat[simp]: length [a .. a + int n] = Suc n
proof (induct n arbitrary: a)

case (0 a)
show ?case using upto.simps[of a a] by auto

next
case (Suc n a)
from Suc[of a + 1 ]
show ?case using upto.simps[of a a + int (Suc n)] by (auto simp: ac-simps)

qed

lemma kronecker-samples: distinct (kronecker-samples n) length (kronecker-samples
n) = Suc n

unfolding kronecker-samples-def Let-def length-upto-add-nat by auto

lemma dvd-int-poly-non-0-degree-1 [simp]: degree q ≥ 1 =⇒ dvd-int-poly-non-0 q
p = (q dvd p)

by (intro dvd-int-poly-non-0 , auto)

context fixes df dp :: int ⇒ int list
and bnd :: nat

begin
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lemma kronecker-factorization-main-sound: assumes some: kronecker-factorization-main
df dp bnd p = Some q

and bnd: degree p ≥ 2 =⇒ bnd ≥ 1
shows degree q ≥ 1 degree q ≤ bnd q dvd p

proof −
let ?r = rat-of-int
let ?rp = map-poly ?r
note res = some[unfolded kronecker-factorization-main-def Let-def ]
from res have dp: degree p ≥ 2 and (degree p ≤ 1 ) = False by (auto split:

if-splits)
note res = res[unfolded this if-False]
note bnd = bnd[OF dp]
define P where P = primitive-part p
have degP: degree P = degree p unfolding P-def by simp
define js where js = kronecker-samples bnd
define filt where filt = (case-option False (λg. dvd-int-poly-non-0 g P ∧ 1 ≤

degree g))
define tests where tests = concat-lists (map (λ(v, j). map (Pair j) (if j = 0

then dp v else df v)) (map (λj. (poly P j, j)) js))
note res = res[folded P-def , folded js-def filt-def , folded tests-def ]
let ?zero = map (λj. (poly P j, j)) js
from res have res: (case map-of ?zero 0 of

None ⇒ map-option the (find-map-filter newton-interpolation-poly-int filt tests)
| Some j ⇒ Some [:− j, 1 :]) =

Some q by auto
have degree q ≥ 1 ∧ degree q ≤ bnd ∧ q dvd P
proof (cases map-of ?zero 0 )

case (Some j)
with res have q: q = [: − j, 1 :] by auto
from map-of-SomeD[OF Some] have 0 : poly P j = 0 by auto
hence poly (?rp P) (?r j) = 0 by simp
hence [: − ?r j, 1 :] dvd ?rp P using poly-eq-0-iff-dvd by blast
also have [: − ?r j, 1 :] = ?rp q unfolding q by simp
finally have dvd: ?rp q dvd ?rp P .
have q dvd P

by (subst dvd-poly-int-content-1 , insert dvd q, auto)
with q dp bnd show ?thesis by auto

next
case None
from res[unfolded None]

have res: map-option the (find-map-filter newton-interpolation-poly-int filt tests)
= Some q by auto

then obtain qq where
res: find-map-filter newton-interpolation-poly-int filt tests = Some qq and q:

q = the qq
by (auto split: option.splits)

from find-map-filter-Some[OF res]
have filt: filt qq and tests: qq ∈ newton-interpolation-poly-int ‘ set tests by auto
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from filt[unfolded filt-def ] q obtain g where dvd: g dvd P and dg: 1 ≤ degree
g and qq: qq = Some g

by (cases qq, auto)
from q qq have gq: g = q by auto
from tests obtain t where t: t ∈ set tests and l: newton-interpolation-poly-int

t = Some g unfolding qq
by auto

from t[unfolded tests-def ]
have lent: length t = length js and

∧
i. i < length js =⇒ map fst t ! i = js !

i by auto
hence id: map fst t = js

by (intro nth-equalityI , auto)
have dist: distinct js and lenj: length js = Suc bnd unfolding js-def degP

using kronecker-samples by auto
from newton-interpolation-poly-int-Some[OF dist[folded id] l, unfolded lent lenj]
have degree g ≤ bnd by auto
with dvd dg show ?thesis unfolding gq by auto

qed note main = this
thus degree q ≥ 1 degree q ≤ bnd by auto
from content-times-primitive-part[of p] have p = smult (content p) P unfolding

P-def by auto
with main show q dvd p by (metis dvd-smult)

qed

lemma kronecker-factorization-rat-main-sound: assumes
some: kronecker-factorization-rat-main df dp bnd p = Some q
and bnd: degree p ≥ 2 =⇒ bnd ≥ 1
shows degree q ≥ 1 degree q ≤ bnd q dvd p

proof −
let ?r = rat-of-int
let ?rp = map-poly ?r
let ?p = rat-to-normalized-int-poly p
obtain a P where rp: ?p = (a,P) by force
from rat-to-normalized-int-poly[OF this] have p: p = smult a (?rp P) and a: a
6= 0

and deg: degree P = degree p by auto
from some[unfolded kronecker-factorization-rat-main-def rp]
obtain Q where some: kronecker-factorization-main df dp bnd P = Some Q and

q: q = ?rp Q by auto
from kronecker-factorization-main-sound[OF some bnd] have dQ: 1 ≤ degree Q

degree Q ≤ bnd
and dvd: Q dvd P unfolding deg by auto

from dvd obtain R where PQR: P = Q ∗ R unfolding dvd-def by auto
from p[unfolded arg-cong[OF this, of ?rp]]
have p = q ∗ smult a (?rp R) unfolding q by (auto simp: hom-distribs)
thus q dvd p unfolding dvd-def by blast
from q dQ show degree q ≥ 1 degree q ≤ bnd by auto

qed
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context
assumes df : divisors-fun df and dpf : divisors-pos-fun dp

begin

lemma kronecker-factorization-main-complete: assumes
none: kronecker-factorization-main df dp bnd p = None
and dp: degree p ≥ 2
shows ¬ (∃ q. 1 ≤ degree q ∧ degree q ≤ bnd ∧ q dvd p)

proof −
let ?r = rat-of-int
let ?rp = map-poly ?r
from dp have (degree p ≤ 1 ) = False by auto
note res = none[unfolded kronecker-factorization-main-def Let-def this if-False]
define P where P = primitive-part p
have degP: degree P = degree p unfolding P-def by simp
define js where js = kronecker-samples bnd
define filt where filt = (case-option False (λg. dvd-int-poly-non-0 g P ∧ 1 ≤

degree g))
define tests where tests = concat-lists (map (λ(v, j). map (Pair j) (if j = 0

then dp v else df v)) (map (λj. (poly P j, j)) js))
note res = res[folded P-def , folded js-def filt-def , folded tests-def ]
let ?zero = map (λj. (poly P j, j)) js
from res have res: (case map-of ?zero 0 of

None ⇒ map-option the (find-map-filter newton-interpolation-poly-int filt tests)
| Some j ⇒ Some [:− j, 1 :]) =

None by auto
hence zero: map-of ?zero 0 = None by (auto split: option.splits)
with res have res: find-map-filter newton-interpolation-poly-int filt tests = None

by auto
{

fix qq
assume qq: 1 ≤ degree qq degree qq ≤ bnd and dvd: qq dvd p
define q ′ where q ′ = primitive-part qq
define q where q = (if poly q ′ 0 > 0 then q ′ else −q ′)
from qq have q ′: 1 ≤ degree q ′ degree q ′ ≤ bnd unfolding q ′-def by auto
hence q: 1 ≤ degree q degree q ≤ bnd unfolding q-def by auto
from dvd have qq dvd (smult (content p) P)

using content-times-primitive-part[of p] unfolding P-def by simp
from dvd-smult-int[OF - this] dp have q ′ dvd P unfolding q ′-def

by force
hence dvd: q dvd P unfolding q-def by auto
then obtain r where P: P = q ∗ r unfolding dvd-def by auto
{

fix j
assume j: j ∈ set js
from P have id: poly P j = poly q j ∗ poly r j by auto
hence dvd: poly q j dvd poly P j by auto
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from j have (poly P j, j) ∈ set ?zero by auto
with zero have zero: poly P j 6= 0 unfolding map-of-eq-None-iff by force
with id have poly q j 6= 0 by auto
hence j = 0 =⇒ poly q j > 0 unfolding q-def by auto
from divisors-funD[OF df zero dvd] divisors-pos-funD[OF dpf zero dvd this]
have poly q j ∈ set (df (poly P j)) j = 0 =⇒ poly q j ∈ set (dp (poly P j)) .

} note mem1 = this
define t where t = map (λ j. (j, poly q j)) js
have t: t ∈ set tests unfolding tests-def concat-lists-listset listset length-map

map-map o-def
proof (rule, intro conjI allI impI )

show length t = length js unfolding t-def by simp
fix i
assume i: i < length js
hence jsi: js ! i ∈ set js by auto
have ti: t ! i = (js ! i, poly q (js ! i)) unfolding t-def using i by auto
let ?f = (λx. set (case (poly P x , x) of (v, j) ⇒ map (Pair j) (if j = 0 then

dp v else df v)))
show t ! i ∈ map ?f js ! i

unfolding ti nth-map[OF i] split using mem1 [OF jsi] by auto
qed
have dist: distinct js and lenj: length js = Suc bnd unfolding js-def degP

using kronecker-samples by auto
have map-fst: map fst t = js unfolding t-def

by (rule nth-equalityI , auto)
with dist have dist: distinct (map fst t) by simp
from lenj q degP have degq: degree q < length t unfolding t-def by auto
from find-map-filter-None[OF res] t
have nfilt: ¬ filt (newton-interpolation-poly-int t) by auto
have qt:

∧
x y. (x, y) ∈ set t =⇒ poly q x = y unfolding t-def by auto

from interpolation-poly-int-None[OF dist - qt degq, of Newton] have
newton-interpolation-poly-int t 6= None by auto

then obtain g where lt: newton-interpolation-poly-int t = Some g by auto
from newton-interpolation-poly-int-Some[OF dist lt]
have gt:

∧
x y. (x, y) ∈ set t =⇒ poly g x = y and degg: degree g < length t

using degq by auto
from uniqueness-of-interpolation-point-list[OF dist qt degq gt degg]
have g: g = q by auto
from nfilt[unfolded lt g] have ¬ filt (Some q) .
from this[unfolded filt-def ] q dvd have False by auto

} note main = this
thus ?thesis by auto

qed

lemma kronecker-factorization-rat-main-complete: assumes
none: kronecker-factorization-rat-main df dp bnd p = None
and dp: degree p ≥ 2
shows ¬ (∃ q. 1 ≤ degree q ∧ degree q ≤ bnd ∧ q dvd p)

proof
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assume ∃ q. 1 ≤ degree q ∧ degree q ≤ bnd ∧ q dvd p
then obtain q where q: 1 ≤ degree q degree q ≤ bnd and dvd: q dvd p by auto
from dvd obtain r where prod: p = q ∗ r unfolding dvd-def by auto
let ?r = rat-of-int
let ?rp = map-poly ?r
let ?p = rat-to-normalized-int-poly p
obtain a P where rp: ?p = (a,P) by force
from rat-to-normalized-int-poly[OF this] have deg: degree P = degree p by auto
from rat-to-int-factor-normalized-int-poly[OF prod rp]

obtain g ′ where dvd: g ′ dvd P and dg: degree g ′ = degree q by (auto intro:
dvdI )

have kronecker-factorization-main df dp bnd P = None
using none[unfolded kronecker-factorization-rat-main-def rp] by auto

from kronecker-factorization-main-complete[OF this dp[folded deg]] dg dvd q show
False by auto
qed
end
end

lemma kronecker-factorization:
kronecker-factorization p = Some q =⇒

degree q ≥ 1 ∧ degree q < degree p ∧ q dvd p
kronecker-factorization p = None =⇒ degree p ≥ 1 =⇒ irreducibled p

proof −
note d = kronecker-factorization-def
{

assume kronecker-factorization p = Some q
from kronecker-factorization-main-sound[OF this[unfolded d]]
show degree q ≥ 1 ∧ degree q < degree p ∧ q dvd p by auto linarith

}
assume kf : kronecker-factorization p = None and deg: degree p ≥ 1
show irreducibled p
proof (cases degree p = 1 )

case True
thus ?thesis by (rule linear-irreducibled)

next
case False
with deg have degree p ≥ 2 by auto

with kronecker-factorization-main-complete[OF divisors-fun-int divisors-pos-fun-int
kf [unfolded d] this]

show ?thesis
by (intro irreducibledI2 , auto)

qed
qed

lemma kronecker-factorization-rat:
kronecker-factorization-rat p = Some q =⇒

degree q ≥ 1 ∧ degree q < degree p ∧ q dvd p
kronecker-factorization-rat p = None =⇒ degree p ≥ 1 =⇒ irreducibled p
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proof −
note d = kronecker-factorization-rat-def
{

assume kronecker-factorization-rat p = Some q
from kronecker-factorization-rat-main-sound[OF this[unfolded d]]
show degree q ≥ 1 ∧ degree q < degree p ∧ q dvd p by auto linarith

}
assume kf : kronecker-factorization-rat p = None and deg: degree p ≥ 1
show irreducibled p
proof (cases degree p = 1 )

case True
thus ?thesis by (rule linear-irreducibled)

next
case False
with deg have degree p ≥ 2 by auto

with kronecker-factorization-rat-main-complete[OF divisors-fun-int divisors-pos-fun-int
kf [unfolded d] this]

show ?thesis
by (intro irreducibledI2 , auto)

qed
qed

end
end

10 Polynomial Divisibility
We make a connection between irreducibility of Missing-Polynomial and
Factorial-Ring.
theory Polynomial-Irreducibility
imports

Polynomial-Interpolation.Missing-Polynomial
begin

lemma dvd-gcd-mult: fixes p :: ′a :: semiring-gcd
assumes dvd: k dvd p ∗ q k dvd p ∗ r
shows k dvd p ∗ gcd q r
by (rule dvd-trans, rule gcd-greatest[OF dvd])

(auto intro!: mult-dvd-mono simp: gcd-mult-left)

lemma poly-gcd-monic-factor :
monic p =⇒ gcd (p ∗ q) (p ∗ r) = p ∗ gcd q r
by (rule gcdI [symmetric]) (simp-all add: normalize-mult normalize-monic dvd-gcd-mult)

context
assumes SORT-CONSTRAINT ( ′a :: field)

begin
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lemma field-poly-irreducible-dvd-mult[simp]:
assumes irr : irreducible (p :: ′a poly)
shows p dvd q ∗ r ←→ p dvd q ∨ p dvd r
using field-poly-irreducible-imp-prime[OF irr ] by (simp add: prime-elem-dvd-mult-iff )

lemma irreducible-dvd-pow:
fixes p :: ′a poly
assumes irr : irreducible p
shows p dvd q ^ n =⇒ p dvd q
using field-poly-irreducible-imp-prime[OF irr ] by (rule prime-elem-dvd-power)

lemma irreducible-dvd-prod: fixes p :: ′a poly
assumes irr : irreducible p
and dvd: p dvd prod f as
shows ∃ a ∈ as. p dvd f a
by (insert dvd, induct as rule: infinite-finite-induct, insert irr , auto)

lemma irreducible-dvd-prod-list: fixes p :: ′a poly
assumes irr : irreducible p
and dvd: p dvd prod-list as
shows ∃ a ∈ set as. p dvd a
by (insert dvd, induct as, insert irr , auto)

lemma dvd-mult-imp-degree: fixes p :: ′a poly
assumes p dvd q ∗ r
and degree p > 0

shows ∃ s t. irreducible s ∧ p = s ∗ t ∧ (s dvd q ∨ s dvd r)
proof −

from irreducibled-factor [OF assms(2 )] obtain s t
where irred: irreducible s and p: p = s ∗ t by auto
from ‹p dvd q ∗ r› p have s: s dvd q ∗ r unfolding dvd-def by auto
from s p irred show ?thesis by auto

qed

end

end

10.1 Fundamental Theorem of Algebra for Factorizations
Via the existing formulation of the fundamental theorem of algebra, we prove
that we always get a linear factorization of a complex polynomial. Using
this factorization we show that root-square-freeness of complex polynomial
is identical to the statement that the cardinality of the set of all roots is
equal to the degree of the polynomial.
theory Fundamental-Theorem-Algebra-Factorized
imports
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Order-Polynomial
HOL−Computational-Algebra.Fundamental-Theorem-Algebra

begin

lemma fundamental-theorem-algebra-factorized: fixes p :: complex poly
shows ∃ as. smult (coeff p (degree p)) (

∏
a ← as. [:− a, 1 :]) = p ∧ length as

= degree p
proof −

define n where n = degree p
have degree p = n unfolding n-def by simp
thus ?thesis
proof (induct n arbitrary: p)

case (0 p)
hence ∃ c. p = [: c :] by (cases p, auto split: if-splits)
thus ?case by (intro exI [of - Nil], auto)

next
case (Suc n p)
have dp: degree p = Suc n by fact
hence ¬ constant (poly p) by (simp add: constant-degree)
from fundamental-theorem-of-algebra[OF this] obtain c where rt: poly p c =

0 by auto
hence [:−c,1 :] dvd p by (simp add: dvd-iff-poly-eq-0 )
then obtain q where p: p = q ∗ [: −c,1 :] by (metis dvd-def mult.commute)
from ‹degree p = Suc n› have dq: degree q = n using p
by simp (metis add.right-neutral degree-synthetic-div diff-Suc-1 mult.commute

mult-left-cancel p pCons-eq-0-iff rt synthetic-div-correct ′ zero-neq-one)
from Suc(1 )[OF this] obtain as where q: [:coeff q (degree q):] ∗ (

∏
a←as. [:−

a, 1 :]) = q
and deg: length as = degree q by auto

have dc: degree p = degree q + degree [: −c, 1 :] unfolding dq dp by simp
have cq: coeff q (degree q) = coeff p (degree p) unfolding dc unfolding p

coeff-mult-degree-sum unfolding dq by simp
show ?case using p[unfolded q[unfolded cq, symmetric]]

by (intro exI [of - c # as], auto simp: ac-simps, insert deg dc, auto)
qed

qed

lemma rsquarefree-card-degree: assumes p0 : (p :: complex poly) 6= 0
shows rsquarefree p = (card {x. poly p x = 0} = degree p)

proof −
from fundamental-theorem-algebra-factorized[of p] obtain c as

where p: p = smult c (
∏

a ← as. [:− a, 1 :]) and pas: degree p = length as
and c: c = coeff p (degree p) by metis

let ?prod = (
∏

a←as. [:− a, 1 :])
from p0 have c: c 6= 0 unfolding c by auto
have roots: {x. poly p x = 0} = set as unfolding p poly-smult-zero-iff poly-prod-list

prod-list-zero-iff
using c by auto

have idr : (card {x. poly p x = 0} = degree p) = distinct as unfolding roots pas
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using card-distinct distinct-card by blast
have id:

∧
q. (p 6= 0 ∧ q) = q using p0 by simp

have dist: distinct as = (∀ a. (
∑

x←as. if x = a then 1 else 0 ) ≤ Suc 0 ) (is ?l
= (∀ a. ?r a))

proof (cases distinct as)
case False
from not-distinct-decomp[OF this] obtain xs ys zs a where as = xs @ [a] @

ys @ [a] @ zs by auto
hence ¬ ?r a by auto
thus ?thesis using False by auto

next
case True
{

fix a
from True have ?r a
proof (induct as)

case (Cons b bs)
show ?case
proof (cases a = b)

case False
with Cons show ?thesis by auto

next
case True
with Cons(2 ) have a /∈ set bs by auto
hence (

∑
x← bs. if x = a then 1 else 0 ) = (0 :: nat) by (induct bs, auto)

thus ?thesis unfolding True by auto
qed

qed simp
}
thus ?thesis using True by auto

qed
have rsquarefree p = distinct as unfolding rsquarefree-def ′ id unfolding p

order-smult[OF c]
by (subst order-prod-list, auto simp: o-def order-linear ′ dist)

thus ?thesis unfolding idr by simp
qed

end

11 Square Free Factorization
We implemented Yun’s algorithm to perform a square-free factorization of
a polynomial. We further show properties of a square-free factorization,
namely that the exponents in the square-free factorization are exactly the
orders of the roots. We also show that factorizing the result of square-free
factorization further will again result in a square-free factorization, and that
square-free factorizations can be lifted homomorphically.
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theory Square-Free-Factorization
imports

Matrix.Utility
Polynomial-Irreducibility
Order-Polynomial
Fundamental-Theorem-Algebra-Factorized
Polynomial-Interpolation.Ring-Hom-Poly

begin

definition square-free :: ′a :: comm-semiring-1 poly ⇒ bool where
square-free p = (p 6= 0 ∧ (∀ q. degree q > 0 −→ ¬ (q ∗ q dvd p)))

lemma square-freeI :
assumes

∧
q. degree q > 0 =⇒ q 6= 0 =⇒ q ∗ q dvd p =⇒ False

and p: p 6= 0
shows square-free p unfolding square-free-def

proof (intro allI conjI [OF p] impI notI , goal-cases)
case (1 q)
from assms(1 )[OF 1 (1 ) - 1 (2 )] 1 (1 ) show False by (cases q = 0 , auto)

qed

lemma square-free-multD:
assumes sf : square-free (f ∗ g)
shows h dvd f =⇒ h dvd g =⇒ degree h = 0 square-free f square-free g

proof −
from sf [unfolded square-free-def ] have 0 : f 6= 0 g 6= 0

and dvd:
∧

q. q ∗ q dvd f ∗ g =⇒ degree q = 0 by auto
then show square-free f square-free g by (auto simp: square-free-def )
assume h dvd f h dvd g
then have h ∗ h dvd f ∗ g by (rule mult-dvd-mono)
from dvd[OF this] show degree h = 0 .

qed

lemma irreducibled-square-free:
fixes p :: ′a :: {comm-semiring-1 , semiring-no-zero-divisors} poly
shows irreducibled p =⇒ square-free p
by (metis degree-0 degree-mult-eq degree-mult-eq-0 irreducibledD(1 ) irreducibledD(2 )

irreducibled-dvd-smult irreducibled-smultI less-add-same-cancel2 not-gr-zero square-free-def )

lemma square-free-factor : assumes dvd: a dvd p
and sf : square-free p
shows square-free a

proof (intro square-freeI )
fix q
assume q: degree q > 0 and q ∗ q dvd a
hence q ∗ q dvd p using dvd dvd-trans sf square-free-def by blast
with sf [unfolded square-free-def ] q show False by auto

qed (insert dvd sf , auto simp: square-free-def )
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lemma square-free-prod-list-distinct:
assumes sf : square-free (prod-list us :: ′a :: idom poly)
and us:

∧
u. u ∈ set us =⇒ degree u > 0

shows distinct us
proof (rule ccontr)

assume ¬ distinct us
from not-distinct-decomp[OF this] obtain xs ys zs u where

us = xs @ u # ys @ u # zs by auto
hence dvd: u ∗ u dvd prod-list us and u: u ∈ set us by auto
from dvd us[OF u] sf have prod-list us = 0 unfolding square-free-def by auto
hence 0 ∈ set us by (simp add: prod-list-zero-iff )
from us[OF this] show False by auto

qed

definition separable where
separable f = coprime f (pderiv f )

lemma separable-imp-square-free:
assumes sep: separable (f :: ′a::{field, factorial-ring-gcd, semiring-gcd-mult-normalize}

poly)
shows square-free f

proof (rule ccontr)
note sep = sep[unfolded separable-def ]
from sep have f0 : f 6= 0 by (cases f , auto)
assume ¬ square-free f
then obtain g where g: degree g 6= 0 and g ∗ g dvd f using f0 unfolding

square-free-def by auto
then obtain h where f : f = g ∗ (g ∗ h) unfolding dvd-def by (auto simp:

ac-simps)
have pderiv f = g ∗ ((g ∗ pderiv h + h ∗ pderiv g) + h ∗ pderiv g)

unfolding f pderiv-mult[of g] by (simp add: field-simps)
hence g dvd pderiv f unfolding dvd-def by blast
moreover have g dvd f unfolding f dvd-def by blast
ultimately have dvd: g dvd (gcd f (pderiv f )) by simp
have gcd f (pderiv f ) 6= 0 using f0 by simp
with g dvd have degree (gcd f (pderiv f )) 6= 0

by (simp add: sep poly-dvd-1 )
hence ¬ coprime f (pderiv f ) by auto
with sep show False by simp

qed

lemma square-free-rsquarefree: assumes f : square-free f
shows rsquarefree f
unfolding rsquarefree-def

proof (intro conjI allI )
fix x
show order x f = 0 ∨ order x f = 1
proof (rule ccontr)

assume ¬ ?thesis
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then obtain n where ord: order x f = Suc (Suc n)
by (cases order x f ; cases order x f − 1 ; auto)

define p where p = [:−x,1 :]
from order-divides[of x Suc (Suc 0 ) f , unfolded ord]
have p ∗ p dvd f degree p 6= 0 unfolding p-def by auto
hence ¬ square-free f using f (1 ) unfolding square-free-def by auto
with assms show False by auto

qed
qed (insert f , auto simp: square-free-def )

lemma square-free-prodD:
fixes fs :: ′a :: {field,euclidean-ring-gcd,semiring-gcd-mult-normalize} poly set
assumes sf : square-free (

∏
fs)

and fin: finite fs
and f : f ∈ fs
and g: g ∈ fs
and fg: f 6= g
shows coprime f g

proof −
have (

∏
fs) = f ∗ (

∏
(fs − {f }))

by (rule prod.remove[OF fin f ])
also have (

∏
(fs − {f })) = g ∗ (

∏
(fs − {f } − {g}))

by (rule prod.remove, insert fin g fg, auto)
finally obtain k where sf : square-free (f ∗ g ∗ k) using sf by (simp add:

ac-simps)
from sf [unfolded square-free-def ] have 0 : f 6= 0 g 6= 0

and dvd:
∧

q. q ∗ q dvd f ∗ g ∗ k =⇒ degree q = 0
by auto

have gcd f g ∗ gcd f g dvd f ∗ g ∗ k by (simp add: mult-dvd-mono)
from dvd[OF this] have degree (gcd f g) = 0 .
moreover have gcd f g 6= 0 using 0 by auto
ultimately show coprime f g using is-unit-gcd[of f g] is-unit-iff-degree[of gcd f

g] by simp
qed

lemma rsquarefree-square-free-complex: assumes rsquarefree (p :: complex poly)
shows square-free p

proof (rule square-freeI )
fix q
assume d: degree q > 0 and dvd: q ∗ q dvd p
from d have ¬ constant (poly q) by (simp add: constant-degree)
from fundamental-theorem-of-algebra[OF this] obtain x where poly q x = 0 by

auto
hence [:−x,1 :] dvd q by (simp add: poly-eq-0-iff-dvd)
then obtain k where q: q = [:−x,1 :] ∗ k unfolding dvd-def by auto
from dvd obtain l where p: p = q ∗ q ∗ l unfolding dvd-def by auto
from p[unfolded q] have p = [:−x,1 :]^2 ∗ (k ∗ k ∗ l) by algebra
hence [:−x,1 :]^2 dvd p unfolding dvd-def by blast
from this[unfolded order-divides] have p = 0 ∨ ¬ order x p ≤ 1 by auto
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thus False using assms unfolding rsquarefree-def ′ by auto
qed (insert assms, auto simp: rsquarefree-def )

lemma square-free-separable-main:
fixes f :: ′a :: {field,factorial-ring-gcd,semiring-gcd-mult-normalize} poly
assumes square-free f
and sep: ¬ separable f
shows ∃ g k. f = g ∗ k ∧ degree g 6= 0 ∧ pderiv g = 0

proof −
note cop = sep[unfolded separable-def ]
from assms have f : f 6= 0 unfolding square-free-def by auto
let ?g = gcd f (pderiv f )
define G where G = ?g
from poly-gcd-monic[of f pderiv f ] f have mon: monic ?g

by auto
have deg: degree G > 0
proof (cases degree G)

case 0
from degree0-coeffs[OF this] cop mon show ?thesis

by (auto simp: G-def coprime-iff-gcd-eq-1 )
qed auto
have gf : G dvd f unfolding G-def by auto
have gf ′: G dvd pderiv f unfolding G-def by auto
from irreducibled-factor [OF deg] obtain g r where g: irreducible g and G: G

= g ∗ r by auto
from gf have gf : g dvd f unfolding G by (rule dvd-mult-left)
from gf ′ have gf ′: g dvd pderiv f unfolding G by (rule dvd-mult-left)
have g0 : degree g 6= 0 using g unfolding irreducibled-def by auto
from gf obtain k where fgk: f = g ∗ k unfolding dvd-def by auto
have id1 : pderiv f = g ∗ pderiv k + k ∗ pderiv g unfolding fgk pderiv-mult by

simp
from gf ′ obtain h where pderiv f = g ∗ h unfolding dvd-def by auto
from id1 [unfolded this] have k ∗ pderiv g = g ∗ (h − pderiv k) by (simp add:

field-simps)
hence dvd: g dvd k ∗ pderiv g unfolding dvd-def by auto
{

assume g dvd k
then obtain h where k: k = g ∗ h unfolding dvd-def by auto
with fgk have g ∗ g dvd f by auto
with g0 have ¬ square-free f unfolding square-free-def using f by auto
with assms have False by simp

}
with g dvd
have g dvd pderiv g by auto
from divides-degree[OF this] degree-pderiv-le[of g] g0
have pderiv g = 0 by linarith
with fgk g0 show ?thesis by auto

qed
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lemma square-free-imp-separable: fixes f :: ′a :: {field-char-0 ,factorial-ring-gcd,semiring-gcd-mult-normalize}
poly

assumes square-free f
shows separable f

proof (rule ccontr)
assume ¬ separable f
from square-free-separable-main[OF assms this]
obtain g k where ∗: f = g ∗ k degree g 6= 0 pderiv g = 0 by auto
hence g dvd pderiv g by auto
thus False unfolding dvd-pderiv-iff using ∗ by auto

qed

lemma square-free-iff-separable:
square-free (f :: ′a :: {field-char-0 ,factorial-ring-gcd,semiring-gcd-mult-normalize}

poly) = separable f
using separable-imp-square-free[of f ] square-free-imp-separable[of f ] by auto

context
assumes SORT-CONSTRAINT ( ′a::{field,factorial-ring-gcd})

begin
lemma square-free-smult: c 6= 0 =⇒ square-free (f :: ′a poly) =⇒ square-free (smult
c f )

by (unfold square-free-def , insert dvd-smult-cancel[of - c], auto)

lemma square-free-smult-iff [simp]: c 6= 0 =⇒ square-free (smult c f ) = square-free
(f :: ′a poly)

using square-free-smult[of c f ] square-free-smult[of inverse c smult c f ] by auto
end

context
assumes SORT-CONSTRAINT ( ′a::factorial-ring-gcd)

begin
definition square-free-factorization :: ′a poly ⇒ ′a × ( ′a poly × nat) list ⇒ bool
where

square-free-factorization p cbs ≡ case cbs of (c,bs) ⇒
(p = smult c (

∏
(a, i)∈ set bs. a ^ i))

∧ (p = 0 −→ c = 0 ∧ bs = [])
∧ (∀ a i. (a,i) ∈ set bs −→ square-free a ∧ degree a > 0 ∧ i > 0 )
∧ (∀ a i b j. (a,i) ∈ set bs −→ (b,j) ∈ set bs −→ (a,i) 6= (b,j) −→ coprime a b)
∧ distinct bs

lemma square-free-factorizationD: assumes square-free-factorization p (c,bs)
shows p = smult c (

∏
(a, i)∈ set bs. a ^ i)

(a,i) ∈ set bs =⇒ square-free a ∧ degree a 6= 0 ∧ i > 0
(a,i) ∈ set bs =⇒ (b,j) ∈ set bs =⇒ (a,i) 6= (b,j) =⇒ coprime a b
p = 0 =⇒ c = 0 ∧ bs = []
distinct bs
using assms unfolding square-free-factorization-def split by blast+
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lemma square-free-factorization-prod-list: assumes square-free-factorization p (c,bs)
shows p = smult c (prod-list (map (λ (a,i). a ^ i) bs))

proof −
note sff = square-free-factorizationD[OF assms]
show ?thesis unfolding sff (1 )

by (simp add: prod.distinct-set-conv-list[OF sff (5 )])
qed
end

11.1 Yun’s factorization algorithm
locale yun-gcd =

fixes Gcd :: ′a :: factorial-ring-gcd poly ⇒ ′a poly ⇒ ′a poly
begin

partial-function (tailrec) yun-factorization-main ::
′a poly ⇒ ′a poly ⇒

nat ⇒ ( ′a poly × nat)list ⇒ ( ′a poly × nat)list where
[code]: yun-factorization-main bn cn i sqr = (

if bn = 1 then sqr
else (
let

dn = cn − pderiv bn;
an = Gcd bn dn

in yun-factorization-main (bn div an) (dn div an) (Suc i) ((an,Suc i) # sqr)))

definition yun-monic-factorization :: ′a poly ⇒ ( ′a poly × nat)list where
yun-monic-factorization p = (let

pp = pderiv p;
u = Gcd p pp;
b0 = p div u;
c0 = pp div u
in
(filter (λ (a,i). a 6= 1 ) (yun-factorization-main b0 c0 0 [])))

definition square-free-monic-poly :: ′a poly ⇒ ′a poly where
square-free-monic-poly p = (p div (Gcd p (pderiv p)))

end

declare yun-gcd.yun-monic-factorization-def [code]
declare yun-gcd.yun-factorization-main.simps [code]
declare yun-gcd.square-free-monic-poly-def [code]

context
fixes Gcd :: ′a :: {field-char-0 ,euclidean-ring-gcd} poly ⇒ ′a poly ⇒ ′a poly

begin
interpretation yun-gcd Gcd .
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definition square-free-poly :: ′a poly ⇒ ′a poly where
square-free-poly p = (if p = 0 then 0 else

square-free-monic-poly (smult (inverse (coeff p (degree p))) p))

definition yun-factorization :: ′a poly ⇒ ′a × ( ′a poly × nat)list where
yun-factorization p = (if p = 0

then (0 ,[]) else (let
c = coeff p (degree p);
q = smult (inverse c) p

in (c, yun-monic-factorization q)))

lemma yun-factorization-0 [simp]: yun-factorization 0 = (0 ,[])
unfolding yun-factorization-def by simp

end

locale monic-factorization =
fixes as :: ( ′a :: {field-char-0 ,euclidean-ring-gcd,semiring-gcd-mult-normalize}

poly × nat) set
and p :: ′a poly
assumes p: p = prod (λ (a,i). a ^ Suc i) as
and fin: finite as
assumes as-distinct:

∧
a i b j. (a,i) ∈ as =⇒ (b,j) ∈ as =⇒ (a,i) 6= (b,j) =⇒

a 6= b
and as-irred:

∧
a i. (a,i) ∈ as =⇒ irreducibled a

and as-monic:
∧

a i. (a,i) ∈ as =⇒ monic a
begin

lemma poly-exp-expand:
p = (prod (λ (a,i). a ^ i) as) ∗ prod (λ (a,i). a) as
unfolding p prod.distrib[symmetric]
by (rule prod.cong, auto)

lemma pderiv-exp-prod:
pderiv p = (prod (λ (a,i). a ^ i) as ∗ sum (λ (a,i).

prod (λ (b,j). b) (as − {(a,i)}) ∗ smult (of-nat (Suc i)) (pderiv a)) as)
unfolding p pderiv-prod sum-distrib-left

proof (rule sum.cong[OF refl])
fix x
assume x ∈ as
then obtain a i where x: x = (a,i) and mem: (a,i) ∈ as by (cases x, auto)
let ?si = smult (of-nat (Suc i)) :: ′a poly ⇒ ′a poly
show (

∏
(a, i)∈as − {x}. a ^ Suc i) ∗ pderiv (case x of (a, i) ⇒ a ^ Suc i) =

(
∏

(a, i)∈as. a ^ i) ∗
(case x of (a, i) ⇒ (

∏
(a, i)∈as − {(a, i)}. a) ∗ smult (of-nat (Suc i))

(pderiv a))
unfolding x split pderiv-power-Suc

proof −
let ?prod =

∏
(a, i)∈as − {(a, i)}. a ^ Suc i
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let ?l = ?prod ∗ (?si (a ^ i) ∗ pderiv a)
let ?r = (

∏
(a, i)∈as. a ^ i) ∗ ((

∏
(a, i)∈as − {(a, i)}. a) ∗ ?si (pderiv a))

have ?r = a ^ i ∗ ((
∏

(a, i)∈as − {(a, i)}. a ^ i) ∗ (
∏

(a, i)∈as − {(a, i)}.
a) ∗ ?si (pderiv a))

unfolding prod.remove[OF fin mem] by (simp add: ac-simps)
also have (

∏
(a, i)∈as − {(a, i)}. a ^ i) ∗ (

∏
(a, i)∈as − {(a, i)}. a)

= ?prod unfolding prod.distrib[symmetric]
by (rule prod.cong[OF refl], auto)

finally show ?l = ?r
by (simp add: ac-simps)

qed
qed

lemma monic-gen: assumes bs ⊆ as
shows monic (

∏
(a, i) ∈ bs. a)

by (rule monic-prod, insert assms as-monic, auto)

lemma nonzero-gen: assumes bs ⊆ as
shows (

∏
(a, i) ∈ bs. a) 6= 0

using monic-gen[OF assms] by auto

lemma monic-Prod: monic ((
∏

(a, i)∈as. a ^ i))
by (rule monic-prod, insert as-monic, auto intro: monic-power)

lemma coprime-generic:
assumes bs: bs ⊆ as
and f :

∧
a i. (a,i) ∈ bs =⇒ f i > 0

shows coprime (
∏

(a, i) ∈ bs. a)
(
∑

(a, i)∈ bs. (
∏

(b, j)∈ bs − {(a, i)} . b) ∗ smult (of-nat (f i)) (pderiv a))
(is coprime ?single ?onederiv)

proof −
have single: ?single 6= 0 by (rule nonzero-gen[OF bs])
show ?thesis
proof (rule gcd-eq-1-imp-coprime, rule gcdI [symmetric])

fix k
assume dvd: k dvd ?single k dvd ?onederiv
note bs-monic = as-monic[OF subsetD[OF bs]]
from dvd(1 ) single have k: k 6= 0 by auto
show k dvd 1
proof (cases degree k > 0 )

case False
with k obtain c where k = [:c:]

by (auto dest: degree0-coeffs)
with k have c 6= 0

by auto
with ‹k = [:c:]› show is-unit k

using dvdI [of 1 [:c:] [:1 / c:]] by auto
next

case True
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from irreducibled-factor [OF this]
obtain p q where k: k = p ∗ q and p: irreducible p by auto
from k dvd have dvd: p dvd ?single p dvd ?onederiv unfolding dvd-def by

auto
from irreducible-dvd-prod[OF p dvd(1 )] obtain a i where ai: (a,i) ∈ bs and

pa: p dvd a
by force

then obtain q where a: a = p ∗ q unfolding dvd-def by auto
from p[unfolded irreducibled-def ] have p0 : degree p > 0 by auto
from irreducibled-dvd-smult[OF p0 as-irred pa] ai bs

obtain c where c: c 6= 0 and ap: a = smult c p by auto
hence ap ′: p = smult (1/c) a by auto
let ?prod = λ a i. (

∏
(b, j)∈bs − {(a, i)}. b) ∗ smult (of-nat (f i)) (pderiv a)

let ?prod ′ = λ aa ii a i. (
∏

(b, j)∈bs − {(a, i),(aa,ii)}. b) ∗ smult (of-nat (f
i)) (pderiv a)

define factor where factor = sum (λ (b,j). ?prod ′ a i b j ) (bs − {(a,i)})
define fac where fac = q ∗ factor
from fin finite-subset[OF bs] have fin: finite bs by auto
have ?onederiv = ?prod a i + sum (λ (b,j). ?prod b j) (bs − {(a,i)})

by (subst sum.remove[OF fin ai], auto)
also have sum (λ (b,j). ?prod b j) (bs − {(a,i)})
= a ∗ factor
unfolding factor-def sum-distrib-left

proof (rule sum.cong[OF refl])
fix bj
assume mem: bj ∈ bs − {(a,i)}
obtain b j where bj: bj = (b,j) by force
from mem bj ai have ai: (a,i) ∈ bs − {(b,j)} by auto
have id: bs − {(b, j)} − {(a, i)} = bs − {(b,j),(a,i)} by auto
show (λ (b,j). ?prod b j) bj = a ∗ (λ (b,j). ?prod ′ a i b j) bj

unfolding bj split
by (subst prod.remove[OF - ai], insert fin, auto simp: id ac-simps)

qed
finally have ?onederiv = ?prod a i + p ∗ fac unfolding fac-def a by simp
from dvd(2 )[unfolded this] have p dvd ?prod a i by algebra
from this[unfolded field-poly-irreducible-dvd-mult[OF p]]
have False
proof

assume p dvd (
∏

(b, j)∈bs − {(a, i)}. b)
from irreducible-dvd-prod[OF p this] obtain b j where bj ′: (b,j) ∈ bs −

{(a,i)}
and pb: p dvd b by auto

hence bj: (b,j) ∈ bs by auto
from as-irred bj bs have irreducibled b by auto
from irreducibled-dvd-smult[OF p0 this pb] obtain d where d: d 6= 0

and b: b = smult d p by auto
with ap c have id: smult (c/d) b = a and deg: degree a = degree b by auto

from coeff-smult[of c/d b degree b, unfolded id] deg bs-monic[OF ai]
bs-monic[OF bj]
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have c / d = 1 by simp
from id[unfolded this] have a = b by simp
with as-distinct[OF subsetD[OF bs ai] subsetD[OF bs bj]] bj ′
show False by auto

next
from f [OF ai] obtain k where fi: f i = Suc k by (cases f i, auto)
assume p dvd smult (of-nat (f i)) (pderiv a)
hence p dvd (pderiv a) unfolding fi using dvd-smult-cancel of-nat-eq-0-iff

by blast
from this[unfolded ap] have p dvd pderiv p using c

by (metis ‹p dvd pderiv a› ap ′ dvd-trans dvd-triv-right mult.left-neutral
pderiv-smult smult-dvd-cancel)

with not-dvd-pderiv p0 show False by auto
qed
thus k dvd 1 by simp

qed
qed (insert ‹?single 6= 0 ›, auto)

qed

lemma pderiv-exp-gcd:
gcd p (pderiv p) = (

∏
(a, i)∈as. a ^ i) (is - = ?prod)

proof −
let ?sum = (

∑
(a, i)∈as. (

∏
(b, j)∈as − {(a, i)}. b) ∗ smult (of-nat (Suc i))

(pderiv a))
let ?single = (

∏
(a, i)∈as. a)

let ?prd = λ a i. (
∏

(b, j)∈as − {(a, i)}. b) ∗ smult (of-nat (Suc i)) (pderiv a)
let ?onederiv =

∑
(a, i)∈as. ?prd a i

have pp: pderiv p = ?prod ∗ ?sum by (rule pderiv-exp-prod)
have p: p = ?prod ∗ ?single by (rule poly-exp-expand)
have monic: monic ?prod by (rule monic-Prod)
have gcd: coprime ?single ?onederiv

by (rule coprime-generic, auto)
then have gcd: gcd ?single ?onederiv = 1

by simp
show ?thesis unfolding pp unfolding p poly-gcd-monic-factor [OF monic] gcd

by simp
qed

lemma p-div-gcd-p-pderiv: p div (gcd p (pderiv p)) = (
∏

(a, i)∈as. a)
unfolding pderiv-exp-gcd unfolding poly-exp-expand
by (rule nonzero-mult-div-cancel-left, insert monic-Prod, auto)

fun A B C D :: nat ⇒ ′a poly where
A n = gcd (B n) (D n)
| B 0 = p div (gcd p (pderiv p))
| B (Suc n) = B n div A n
| C 0 = pderiv p div (gcd p (pderiv p))
| C (Suc n) = D n div A n
| D n = C n − pderiv (B n)
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lemma A-B-C-D: A n = (
∏

(a, i) ∈ as ∩ UNIV × {n}. a)
B n = (

∏
(a, i) ∈ as − UNIV × {0 ..< n}. a)

C n = (
∑

(a, i)∈as − UNIV × {0 ..< n}.
(
∏

(b, j)∈as − UNIV × {0 ..< n} − {(a, i)}. b) ∗ smult (of-nat (Suc i − n))
(pderiv a))

D n = (
∏

(a, i) ∈ as ∩ UNIV × {n}. a) ∗
(
∑

(a,i)∈as − UNIV × {0 ..< Suc n}.
(
∏

(b, j)∈ as − UNIV × {0 ..< Suc n} − {(a, i)}. b) ∗ (smult (of-nat (i −
n)) (pderiv a)))
proof (induct n and n and n and n rule: A-B-C-D.induct)

case (1 n)
note Bn = 1 (1 )
note Dn = 1 (2 )
have (

∏
(a, i)∈as − UNIV × {0 ..< n}. a) = (

∏
(a, i)∈as ∩ UNIV × {n}. a)

∗ (
∏

(a, i)∈as − UNIV × {0 ..<Suc n}. a)
by (subst prod.union-disjoint[symmetric], auto, insert fin, auto intro: prod.cong)

note Bn ′ = Bn[unfolded this]
let ?an = (

∏
(a, i) ∈ as ∩ UNIV × {n}. a)

let ?bn = (
∏

(a, i)∈as − UNIV × {0 ..<Suc n}. a)
show A n = ?an unfolding A.simps
proof (rule gcdI [symmetric, OF - - - normalize-monic[OF monic-gen]])

have monB1 : monic (B n) unfolding Bn by (rule monic-gen, auto)
hence B n 6= 0 by auto
let ?dn = (

∑
(a,i)∈as − UNIV × {0 ..< Suc n}.

(
∏

(b, j)∈ as − UNIV × {0 ..< Suc n} − {(a, i)}. b) ∗ (smult (of-nat (i
− n)) (pderiv a)))

have Dn: D n = ?an ∗ ?dn unfolding Dn by auto
show dvd1 : ?an dvd B n unfolding Bn ′ dvd-def by blast
show dvd2 : ?an dvd D n unfolding Dn dvd-def by blast
{

fix k
assume k dvd B n k dvd D n
from dvd-gcd-mult[OF this[unfolded Bn ′ Dn]]
have k dvd ?an ∗ (gcd ?bn ?dn) .
moreover have coprime ?bn ?dn

by (rule coprime-generic, auto)
ultimately show k dvd ?an by simp

}
qed auto

next
case 2
have as: as − UNIV × {0 ..<0} = as by auto
show ?case unfolding B.simps as p-div-gcd-p-pderiv by auto

next
case (3 n)
have id: (

∏
(a, i)∈as − UNIV × {0 ..< n}. a) = (

∏
(a, i)∈as − UNIV ×

{0 ..<Suc n}. a) ∗ (
∏

(a, i)∈as ∩ UNIV × {n}. a)
by (subst prod.union-disjoint[symmetric], auto, insert fin, auto intro: prod.cong)

115



show ?case unfolding B.simps 3 id
by (subst nonzero-mult-div-cancel-right[OF nonzero-gen], auto)

next
case 4
have as: as − UNIV × {0 ..<0} = as

∧
i. Suc i − 0 = Suc i by auto

show ?case unfolding C .simps pderiv-exp-gcd unfolding pderiv-exp-prod as
by (rule nonzero-mult-div-cancel-left, insert monic-Prod, auto)

next
case (5 n)
show ?case unfolding C .simps 5

by (subst nonzero-mult-div-cancel-left, rule nonzero-gen, auto)
next

case (6 n)
let ?f = λ (a,i). (

∏
(b, j)∈as − UNIV × {0 ..< n} − {(a, i)}. b) ∗ (smult

(of-nat (i − n)) (pderiv a))
have D n = (

∑
(a,i)∈as − UNIV × {0 ..< n}. (

∏
(b, j)∈as − UNIV × {0

..< n} − {(a, i)}. b) ∗
(smult (of-nat (Suc i − n)) (pderiv a) − pderiv a))
unfolding D.simps 6 pderiv-prod sum-subtractf [symmetric] right-diff-distrib
by (rule sum.cong, auto)

also have . . . = sum ?f (as − UNIV × {0 ..< n})
proof (rule sum.cong[OF refl])

fix x
assume x ∈ as − UNIV × {0 ..< n}
then obtain a i where x: x = (a,i) and i: Suc i > n by (cases x, auto)
hence id: Suc i − n = Suc (i − n) by arith
have id: of-nat (Suc i − n) = of-nat (i − n) + (1 :: ′a) unfolding id by simp
have id: smult (of-nat (Suc i − n)) (pderiv a) − pderiv a = smult (of-nat (i

− n)) (pderiv a)
unfolding id smult-add-left by auto

have cong:
∧

x y z :: ′a poly. x = y =⇒ x ∗ z = y ∗ z by auto
show (case x of

(a, i) ⇒
(
∏

(b, j)∈as − UNIV × {0 ..<n} − {(a, i)}. b) ∗
(smult (of-nat (Suc i − n)) (pderiv a) − pderiv a)) =

(case x of
(a, i) ⇒ (

∏
(b, j)∈as − UNIV × {0 ..<n} − {(a, i)}. b) ∗ smult (of-nat

(i − n)) (pderiv a))
unfolding x split id
by (rule cong, auto)

qed
also have . . . = sum ?f (as − UNIV × {0 ..< Suc n}) + sum ?f (as ∩ UNIV
× {n})

by (subst sum.union-disjoint[symmetric], insert fin, auto intro: sum.cong)
also have sum ?f (as ∩ UNIV × {n}) = 0

by (rule sum.neutral, auto)
finally have id: D n = sum ?f (as − UNIV × {0 ..< Suc n}) by simp
show ?case unfolding id sum-distrib-left
proof (rule sum.cong[OF refl])
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fix x
assume mem: x ∈ as − UNIV × {0 ..< Suc n}
obtain a i where x: x = (a,i) by force
with mem have i: i > n by auto
have cong:

∧
x y z v :: ′a poly. x = y ∗ v =⇒ x ∗ z = y ∗ (v ∗ z) by auto

show (case x of
(a, i) ⇒ (

∏
(b, j)∈as − UNIV × {0 ..<n} − {(a, i)}. b) ∗ smult (of-nat

(i − n)) (pderiv a)) =
(
∏

(a, i)∈as ∩ UNIV × {n}. a) ∗
(case x of (a, i) ⇒

(
∏

(b, j)∈as − UNIV × {0 ..<Suc n} − {(a, i)}. b) ∗ smult (of-nat (i
− n)) (pderiv a))

unfolding x split
by (rule cong, subst prod.union-disjoint[symmetric], insert fin, (auto)[3 ],

rule prod.cong, insert i, auto)
qed

qed

lemmas A = A-B-C-D(1 )
lemmas B = A-B-C-D(2 )

lemmas ABCD-simps = A.simps B.simps C .simps D.simps
declare ABCD-simps[simp del]

lemma prod-A:
(
∏

i = 0 ..< n. A i ^ Suc i) = (
∏

(a, i)∈ as ∩ UNIV × {0 ..< n}. a ^ Suc i)
proof (induct n)

case (Suc n)
have id: {0 ..< Suc n} = insert n {0 ..< n} by auto
have id2 : as ∩ UNIV × {0 ..< Suc n} = as ∩ UNIV × {n} ∪ as ∩ UNIV ×
{0 ..< n} by auto

have cong:
∧

x y z. x = y =⇒ x ∗ z = y ∗ z by auto
show ?case unfolding id2 unfolding id
proof (subst prod.insert; (subst prod.union-disjoint)?; (unfold Suc)?;
(unfold A, rule cong)?)
show (

∏
(a, i)∈as ∩ UNIV × {n}. a) ^ Suc n = (

∏
(a, i)∈as ∩ UNIV × {n}.

a ^ Suc i)
unfolding prod-power-distrib
by (rule prod.cong, auto)

qed (insert fin, auto)
qed simp

lemma prod-A-is-p-unknown: assumes
∧

a i. (a,i) ∈ as =⇒ i < n
shows p = (

∏
i = 0 ..< n. A i ^ Suc i)

proof −
have p = (

∏
(a, i)∈as. a ^ Suc i) by (rule p)

also have . . . = (
∏

i = 0 ..< n. A i ^ Suc i) unfolding prod-A
by (rule prod.cong, insert assms, auto)

finally show ?thesis .
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qed

definition bound :: nat where
bound = Suc (Max (snd ‘ as))

lemma bound: assumes m: m ≥ bound
shows B m = 1

proof −
let ?set = as − UNIV × {0 ..<m}
{

fix a i
assume ai: (a,i) ∈ ?set
hence i ∈ snd ‘ as by force
from Max-ge[OF - this] fin have i ≤ Max (snd ‘ as) by auto
with ai m[unfolded bound-def ] have False by auto

}
hence id: ?set = {} by force
show B m = 1 unfolding B id by simp

qed

lemma coprime-A-A: assumes i 6= j
shows coprime (A i) (A j)

proof (rule coprimeI )
fix k
assume dvd: k dvd A i k dvd A j
have Ai: A i 6= 0 unfolding A

by (rule nonzero-gen, auto)
with dvd have k: k 6= 0 by auto
show is-unit k
proof (cases degree k > 0 )

case False
then obtain c where kc: k = [: c :] by (auto dest: degree0-coeffs)
with k have 1 = k ∗ [:1 / c:]

by simp
thus ?thesis unfolding dvd-def by blast

next
case True
from irreducible-monic-factor [OF this]
obtain q r where k: k = q ∗ r and q: irreducible q and mq: monic q by auto
with dvd have dvd: q dvd A i q dvd A j unfolding dvd-def by auto
from q have q0 : degree q > 0 unfolding irreducibled-def by auto
from irreducible-dvd-prod[OF q dvd(1 )[unfolded A]]

obtain a where ai: (a,i) ∈ as and qa: q dvd a by auto
from irreducible-dvd-prod[OF q dvd(2 )[unfolded A]]

obtain b where bj: (b,j) ∈ as and qb: q dvd b by auto
from as-distinct[OF ai bj] assms have neq: a 6= b by auto
from irreducibled-dvd-smult[OF q0 as-irred[OF ai] qa]

irreducibled-dvd-smult[OF q0 as-irred[OF bj] qb]
obtain c d where c 6= 0 d 6= 0 a = smult c q b = smult d q by auto
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hence ab: a = smult (c / d) b and c / d 6= 0 by auto
with as-monic[OF bj] as-monic[OF ai] arg-cong[OF ab, of λ p. coeff p (degree

p)]
have a = b unfolding coeff-smult degree-smult-eq by auto
with neq show ?thesis by auto

qed
qed

lemma A-monic: monic (A i)
unfolding A by (rule monic-gen, auto)

lemma A-square-free: square-free (A i)
proof (rule square-freeI )

fix q k
have mon: monic (A i) by (rule A-monic)
hence Ai: A i 6= 0 by auto
assume q: degree q > 0 and dvd: q ∗ q dvd A i
from irreducible-monic-factor [OF q] obtain r s where q: q = r ∗ s and

irr : irreducible r and mr : monic r by auto
from dvd[unfolded q] have dvd2 : r ∗ r dvd A i and dvd1 : r dvd A i unfolding

dvd-def by auto
from irreducible-dvd-prod[OF irr dvd1 [unfolded A]]

obtain a where ai: (a,i) ∈ as and ra: r dvd a by auto
let ?rem = (

∏
(a, i)∈as ∩ UNIV × {i} − {(a,i)}. a)

have a: irreducibled a by (rule as-irred[OF ai])
from irreducibled-dvd-smult[OF - a ra] irr

obtain c where ar : a = smult c r and c 6= 0 by force
with mr as-monic[OF ai] arg-cong[OF ar , of λ p. coeff p (degree p)]
have a = r unfolding coeff-smult degree-smult-eq by auto
with dvd2 have dvd: a ∗ a dvd A i by simp
have id: A i = a ∗ ?rem unfolding A

by (subst prod.remove[of - (a,i)], insert ai fin, auto)
with dvd have a dvd ?rem using a id Ai by auto
from irreducible-dvd-prod[OF - this] a obtain b where bi: (b,i) ∈ as

and neq: b 6= a and ab: a dvd b by auto
from as-irred[OF bi] have b: irreducibled b .
from irreducibled-dvd-smult[OF - b ab] a[unfolded irreducibled-def ]
obtain c where c 6= 0 and ba: b = smult c a by auto
with as-monic[OF bi] as-monic[OF ai] arg-cong[OF ba, of λ p. coeff p (degree

p)]
have a = b unfolding coeff-smult degree-smult-eq by auto
with neq show False by auto

qed (insert A-monic[of i], auto)

lemma prod-A-is-p-B-bound: assumes B n = 1
shows p = (

∏
i = 0 ..< n. A i ^ Suc i)

proof (rule prod-A-is-p-unknown)
fix a i
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assume ai: (a,i) ∈ as
let ?rem = (

∏
(a, i)∈as − UNIV × {0 ..<n} − {(a,i)}. a)

have rem: ?rem 6= 0
by (rule nonzero-gen, auto)

have irreducibled a using as-irred[OF ai] .
hence a: a 6= 0 degree a 6= 0 unfolding irreducibled-def by auto
show i < n
proof (rule ccontr)

assume ¬ ?thesis
hence i ≥ n by auto
with ai have mem: (a,i) ∈ as − UNIV × {0 ..< n} by auto
have 0 = degree (

∏
(a, i)∈as − UNIV × {0 ..<n}. a) using assms unfolding

B by simp
also have . . . = degree (a ∗ ?rem)

by (subst prod.remove[OF - mem], insert fin, auto)
also have . . . = degree a + degree ?rem

by (rule degree-mult-eq[OF a(1 ) rem])
finally show False using a(2 ) by auto

qed
qed

interpretation yun-gcd gcd .

lemma square-free-monic-poly: (poly (square-free-monic-poly p) x = 0 ) = (poly p
x = 0 )
proof −
show ?thesis unfolding square-free-monic-poly-def unfolding p-div-gcd-p-pderiv

unfolding p poly-prod prod-zero-iff [OF fin] by force
qed

lemma yun-factorization-induct: assumes base:
∧

bn cn. bn = 1 =⇒ P bn cn
and step:

∧
bn cn. bn 6= 1 =⇒ P (bn div (gcd bn (cn − pderiv bn)))

((cn − pderiv bn) div (gcd bn (cn − pderiv bn))) =⇒ P bn cn
and id: bn = p div gcd p (pderiv p) cn = pderiv p div gcd p (pderiv p)
shows P bn cn

proof −
define n where n = (0 :: nat)
let ?m = λ n. bound − n
have P (B n) (C n)
proof (induct n rule: wf-induct[OF wf-measure[of ?m]])

case (1 n)
note IH = 1 (1 )[rule-format]
show ?case
proof (cases B n = 1 )

case True
with base show ?thesis by auto

next
case False note Bn = this
with bound[of n] have ¬ bound ≤ n by auto
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hence (Suc n, n) ∈ measure ?m by auto
note IH = IH [OF this]
show ?thesis

by (rule step[OF Bn], insert IH , simp add: D.simps C .simps B.simps
A.simps)

qed
qed
thus ?thesis unfolding id n-def B.simps C .simps .

qed

lemma yun-factorization-main: assumes yun-factorization-main (B n) (C n) n
bs = cs

set bs = {(A i, Suc i) | i. i < n} distinct (map snd bs)
shows ∃ m. set cs = {(A i, Suc i) | i. i < m} ∧ B m = 1 ∧ distinct (map snd

cs)
using assms

proof −
let ?m = λ n. bound − n
show ?thesis using assms
proof (induct n arbitrary: bs rule: wf-induct[OF wf-measure[of ?m]])

case (1 n)
note IH = 1 (1 )[rule-format]
have res: yun-factorization-main (B n) (C n) n bs = cs by fact
note res = res[unfolded yun-factorization-main.simps[of B n]]
have bs: set bs = {(A i, Suc i) |i. i < n} distinct (map snd bs) by fact+
show ?case
proof (cases B n = 1 )

case True
with res have bs = cs by auto
with True bs show ?thesis by auto

next
case False note Bn = this
with bound[of n] have ¬ bound ≤ n by auto
hence (Suc n, n) ∈ measure ?m by auto
note IH = IH [OF this]
from Bn res[unfolded Let-def , folded D.simps C .simps B.simps A.simps]
have res: yun-factorization-main (B (Suc n)) (C (Suc n)) (Suc n) ((A n, Suc

n) # bs) = cs
by simp

note IH = IH [OF this]
{

fix i
assume i < Suc n ¬ i < n
hence n = i by arith

} note missing = this
have set ((A n, Suc n) # bs) = {(A i, Suc i) |i. i < Suc n}

unfolding list.simps bs by (auto, subst missing, auto)
note IH = IH [OF this]
from bs have distinct (map snd ((A n, Suc n) # bs)) by auto
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note IH = IH [OF this]
show ?thesis by (rule IH )

qed
qed

qed

lemma yun-monic-factorization-res: assumes res: yun-monic-factorization p = bs
shows ∃ m. set bs = {(A i, Suc i) | i. i < m ∧ A i 6= 1} ∧ B m = 1 ∧ distinct

(map snd bs)
proof −

from res[unfolded yun-monic-factorization-def Let-def ,
folded B.simps C .simps]

obtain cs where yun: yun-factorization-main (B 0 ) (C 0 ) 0 [] = cs and bs: bs
= filter (λ (a,i). a 6= 1 ) cs

by auto
from yun-factorization-main[OF yun] obtain m where set cs = {(A i, Suc i)
|i. i < m}

B m = 1 distinct (map snd cs)
by auto

thus ?thesis unfolding bs by (auto simp: distinct-map-filter)
qed

lemma yun-monic-factorization: assumes yun: yun-monic-factorization p = bs
shows square-free-factorization p (1 ,bs) (b,i) ∈ set bs =⇒ monic b distinct (map

snd bs)
proof −

from yun-monic-factorization-res[OF yun]
obtain m where bs: set bs = {(A i, Suc i) | i. i < m ∧ A i 6= 1} and B: B m

= 1
and dist: distinct (map snd bs) by auto

have id: {0 ..< m} = {i. i < m ∧ A i = 1} ∪ {i. i < m ∧ A i 6= 1} (is - =
?ignore ∪ -) by auto

have p = (
∏

i = 0 ..<m. A i ^ Suc i)
by (rule prod-A-is-p-B-bound[OF B])

also have . . . = prod (λ i. A i ^ Suc i) {i. i < m ∧ A i 6= 1}
unfolding id by (subst prod.union-disjoint, (force+)[3 ],

subst prod.neutral[of ?ignore], auto)
also have . . . = (

∏
(a, i)∈ set bs. a ^ i) unfolding bs

by (rule prod.reindex-cong[of (λ n. n − 1 ) o snd], auto simp: inj-on-def , force)
finally have 1 : p = (

∏
(a, i)∈ set bs. a ^ i) .

{
fix a i
assume (a,i) ∈ set bs
then obtain j where A: a = A j A j 6= 1 and i: i 6= 0 unfolding bs by auto
with A-square-free[of j] A-monic[of j] have square-free a ∧ degree a 6= 0 monic

a i 6= 0
by (auto simp: monic-degree-0 )

} note 2 = this
{
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fix a i b j
assume ai: (a,i) ∈ set bs and bj: (b,j) ∈ set bs and neq: (a,i) 6= (b,j)
then obtain i ′ j ′ where a: a = A i ′ and b: b = A j ′ and ij ′: i = Suc i ′ j =

Suc j ′
unfolding bs by auto

from neq dist ai bj have neq: i ′ 6= j ′ using a b ij ′ by blast
from coprime-A-A [OF neq] have coprime a b unfolding a b .

} note 3 = this
have monic p unfolding p

by (rule monic-prod, insert as-monic, auto intro: monic-power monic-mult)
hence 4 : p 6= 0 by auto
from dist have 5 : distinct bs unfolding distinct-map ..
show square-free-factorization p (1 ,bs)

unfolding square-free-factorization-def using 1 2 3 4 5
by auto

show (b,i) ∈ set bs =⇒ monic b using 2 by auto
show distinct (map snd bs) by fact

qed
end

lemma monic-factorization: assumes monic p
shows ∃ as. monic-factorization as p

proof −
from monic-irreducible-factorization[OF assms]
obtain as f where fin: finite as and p: p = (

∏
a∈as. a ^ Suc (f a))

and as: as ⊆ {q. irreducibled q ∧ monic q}
by auto

define cs where cs = {(a, f a) | a. a ∈ as}
show ?thesis
proof (rule exI , standard)

show finite cs unfolding cs-def using fin by auto
{

fix a i
assume (a,i) ∈ cs
thus irreducibled a monic a unfolding cs-def using as by auto

} note irr = this
show

∧
a i b j. (a, i) ∈ cs =⇒ (b, j) ∈ cs =⇒ (a, i) 6= (b, j) =⇒ a 6= b

unfolding cs-def by auto
show p = (

∏
(a, i)∈cs. a ^ Suc i) unfolding p cs-def

by (rule prod.reindex-cong, auto, auto simp: inj-on-def )
qed

qed

lemma square-free-monic-poly:
assumes monic (p :: ′a :: {field-char-0 , euclidean-ring-gcd,semiring-gcd-mult-normalize}

poly)
shows (poly (yun-gcd.square-free-monic-poly gcd p) x = 0 ) = (poly p x = 0 )

proof −
from monic-factorization[OF assms] obtain as where monic-factorization as p
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..
from monic-factorization.square-free-monic-poly[OF this] show ?thesis .

qed

lemma yun-factorization-induct:
assumes base:

∧
bn cn. bn = 1 =⇒ P bn cn

and step:
∧

bn cn. bn 6= 1 =⇒ P (bn div (gcd bn (cn − pderiv bn)))
((cn − pderiv bn) div (gcd bn (cn − pderiv bn))) =⇒ P bn cn

and id: bn = p div gcd p (pderiv p) cn = pderiv p div gcd p (pderiv p)
and monic: monic (p :: ′a :: {field-char-0 ,euclidean-ring-gcd,semiring-gcd-mult-normalize}

poly)
shows P bn cn

proof −
from monic-factorization[OF monic] obtain as where monic-factorization as p

..
from monic-factorization.yun-factorization-induct[OF this base step id] show

?thesis .
qed

lemma square-free-poly:
(poly (square-free-poly gcd p) x = 0 ) = (poly p x = 0 )

proof (cases p = 0 )
case True
thus ?thesis unfolding square-free-poly-def by auto

next
case False
let ?c = coeff p (degree p)
let ?ic = inverse ?c
have id: square-free-poly gcd p = yun-gcd.square-free-monic-poly gcd (smult ?ic

p)
unfolding square-free-poly-def using False by auto

from False have mon: monic (smult ?ic p) and ic: ?ic 6= 0 by auto
show ?thesis unfolding id square-free-monic-poly[OF mon]

using ic by simp
qed

lemma yun-monic-factorization:
fixes p :: ′a :: {field-char-0 ,euclidean-ring-gcd,semiring-gcd-mult-normalize} poly

assumes res: yun-gcd.yun-monic-factorization gcd p = bs
and monic: monic p
shows square-free-factorization p (1 ,bs) (b,i) ∈ set bs =⇒ monic b distinct (map

snd bs)
proof −

from monic-factorization[OF monic] obtain as where monic-factorization as p
..

from monic-factorization.yun-monic-factorization[OF this res]
show square-free-factorization p (1 ,bs) (b,i) ∈ set bs =⇒ monic b distinct (map
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snd bs)
by auto

qed

lemma square-free-factorization-smult: assumes c: c 6= 0
and sf : square-free-factorization p (d,bs)
shows square-free-factorization (smult c p) (c ∗ d, bs)

proof −
from sf [unfolded square-free-factorization-def split]
have p: p = smult d (

∏
(a, i)∈set bs. a ^ i)

and eq: p = 0 −→ d = 0 ∧ bs = [] by blast+
from eq c have eq: smult c p = 0 −→ c ∗ d = 0 ∧ bs = [] by auto
from p have p: smult c p = smult (c ∗ d) (

∏
(a, i)∈set bs. a ^ i) by auto

from eq p sf show ?thesis unfolding square-free-factorization-def by blast
qed

lemma yun-factorization: assumes res: yun-factorization gcd p = c-bs
shows square-free-factorization p c-bs (b,i) ∈ set (snd c-bs) =⇒ monic b

proof −
interpret yun-gcd gcd .
note res = res[unfolded yun-factorization-def Let-def ]
have square-free-factorization p c-bs ∧ ((b,i) ∈ set (snd c-bs) −→ monic b)
proof (cases p = 0 )

case True
with res have c-bs = (0 , []) by auto
thus ?thesis unfolding True by (auto simp: square-free-factorization-def )

next
case False
let ?c = coeff p (degree p)
let ?ic = inverse ?c
obtain c bs where cbs: c-bs = (c,bs) by force
with False res
have c: c = ?c ?c 6= 0 and fact: yun-monic-factorization (smult ?ic p) = bs

by auto
from False have mon: monic (smult ?ic p) by auto
from yun-monic-factorization[OF fact mon]
have sff : square-free-factorization (smult ?ic p) (1 , bs) (b, i) ∈ set bs =⇒ monic

b by auto
have id: smult ?c (smult ?ic p) = p using False by auto
from square-free-factorization-smult[OF c(2 ) sff (1 ), unfolded id] sff
show ?thesis unfolding cbs c by simp

qed
thus square-free-factorization p c-bs (b,i) ∈ set (snd c-bs) =⇒ monic b by blast+

qed

lemma prod-list-pow: (
∏

x←bs. (x :: ′a :: comm-monoid-mult) ^ i)
= prod-list bs ^ i
by (induct bs, auto simp: field-simps)
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declare irreducible-linear-field-poly[intro!]

context
assumes SORT-CONSTRAINT ( ′a :: {field, factorial-ring-gcd,semiring-gcd-mult-normalize})

begin
lemma square-free-factorization-order-root-mem:

assumes sff : square-free-factorization p (c,bs)
and p: p 6= (0 :: ′a poly)
and ai: (a,i) ∈ set bs and rt: poly a x = 0

shows order x p = i
proof −

note sff = square-free-factorizationD[OF sff ]
let ?prod = (

∏
(a, i)∈set bs. a ^ i)

from sff have pf : p = smult c ?prod by blast
with p have c: c 6= 0 by auto
have ord: order x p = order x ?prod unfolding pf

using order-smult[OF c] by auto
define q where q = [: −x, 1 :]
have q0 : q 6= 0 unfolding q-def by auto
have iq: irreducible q by (auto simp: q-def )
from rt have qa: q dvd a unfolding q-def poly-eq-0-iff-dvd .
then obtain b where aqb: a = q ∗ b unfolding dvd-def by auto
from sff (2 )[OF ai] have sq: square-free a and mon: degree a 6= 0 by auto
let ?rem = (

∏
(a, i)∈set bs − {(a,i)}. a ^ i)

have p0 : ?prod 6= 0 using p pf by auto
have ?prod = a ^ i ∗ ?rem

by (subst prod.remove[OF - ai], auto)
also have a ^ i = q ^ i ∗ b ^ i unfolding aqb by (simp add: field-simps)
finally have id: ?prod = q ^ i ∗ (b ^ i ∗ ?rem) by simp
hence dvd: q ^ i dvd ?prod by auto
{

assume q ^ Suc i dvd ?prod
hence q dvd ?prod div q ^ i

by (metis dvd dvd-0-left-iff dvd-div-iff-mult p0 power-Suc)
also have ?prod div q ^ i = b ^ i ∗ ?rem

unfolding id by (rule nonzero-mult-div-cancel-left, insert q0 , auto)
finally have q dvd b ∨ q dvd ?rem

using iq irreducible-dvd-pow[OF iq] by auto
hence False
proof

assume q dvd b
with aqb have q ∗ q dvd a by auto
with sq[unfolded square-free-def ] mon iq show False

unfolding irreducibled-def by auto
next

assume q dvd ?rem
from irreducible-dvd-prod[OF iq this]
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obtain b j where bj: (b,j) ∈ set bs and neq: (a,i) 6= (b,j) and dvd: q dvd b
^ j by auto

from irreducible-dvd-pow[OF iq dvd] have qb: q dvd b .
from sff (3 )[OF ai bj neq] have gcd: coprime a b .
from qb qa have q dvd gcd a b by simp
from dvd-imp-degree-le[OF this[unfolded gcd]] iq q0 show False

using gcd by auto
qed

}
hence ndvd: ¬ q ^ Suc i dvd ?prod by blast
with dvd have order x ?prod = i unfolding q-def

by (metis order-unique-lemma)
thus ?thesis unfolding ord .

qed

lemma square-free-factorization-order-root-no-mem:
assumes sff : square-free-factorization p (c,bs)

and p: p 6= (0 :: ′a poly)
and no-root:

∧
a i. (a,i) ∈ set bs =⇒ poly a x 6= 0

shows order x p = 0
proof (rule ccontr)

assume o0 : order x p 6= 0
with order-root[of p x] p have 0 : poly p x = 0 by auto
note sff = square-free-factorizationD[OF sff ]
let ?prod = (

∏
(a, i)∈set bs. a ^ i)

from sff have pf : p = smult c ?prod by blast
with p have c: c 6= 0 by auto
with 0 have 0 : poly ?prod x = 0 unfolding pf by auto
define q where q = [: −x, 1 :]
from 0 have dvd: q dvd ?prod unfolding poly-eq-0-iff-dvd by (simp add: q-def )

have q0 : q 6= 0 unfolding q-def by auto
have iq: irreducible q by (unfold q-def , auto intro:)
from irreducible-dvd-prod[OF iq dvd]
obtain a i where ai: (a,i) ∈ set bs and dvd: q dvd a ^ Suc i by auto
from irreducible-dvd-pow[OF iq dvd] have dvd: q dvd a .
hence poly a x = 0 unfolding q-def by (simp add: poly-eq-0-iff-dvd q-def )
with no-root[OF ai] show False by simp

qed

lemma square-free-factorization-order-root:
assumes sff : square-free-factorization p (c,bs)

and p: p 6= (0 :: ′a poly)
shows order x p = i ←→ (i = 0 ∧ (∀ a j. (a,j) ∈ set bs −→ poly a x 6= 0 )
∨ (∃ a j. (a,j) ∈ set bs ∧ poly a x = 0 ∧ i = j)) (is ?l = (?r1 ∨ ?r2 ))

proof −
note mem = square-free-factorization-order-root-mem[OF sff p]
note no-mem = square-free-factorization-order-root-no-mem[OF sff p]
show ?thesis
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proof
assume ?r1 ∨ ?r2
thus ?l
proof

assume ?r2
then obtain a j where aj: (a,j) ∈ set bs poly a x = 0 and i: i = j by auto
from mem[OF aj] i show ?l by simp

next
assume ?r1
with no-mem[of x] show ?l by auto

qed
next

assume ?l
show ?r1 ∨ ?r2
proof (cases ∃ a j. (a, j) ∈ set bs ∧ poly a x = 0 )

case True
then obtain a j where (a, j) ∈ set bs poly a x = 0 by auto
with mem[OF this] ‹?l›
have ?r2 by auto
thus ?thesis ..

next
case False
with no-mem[of x] ‹?l› have ?r1 by auto
thus ?thesis ..

qed
qed

qed

lemma square-free-factorization-root:
assumes sff : square-free-factorization p (c,bs)

and p: p 6= (0 :: ′a poly)
shows {x. poly p x = 0} = {x. ∃ a i. (a,i) ∈ set bs ∧ poly a x = 0}
using square-free-factorization-order-root[OF sff p] p

square-free-factorizationD(2 )[OF sff ]
unfolding order-root by auto

lemma square-free-factorizationD ′: fixes p :: ′a poly
assumes sf : square-free-factorization p (c, bs)
shows p = smult c (

∏
(a, i) ← bs. a ^ i)

and square-free (prod-list (map fst bs))
and

∧
b i. (b,i) ∈ set bs =⇒ degree b > 0 ∧ i > 0

and p = 0 =⇒ c = 0 ∧ bs = []
proof −

note sf = square-free-factorizationD[OF sf ]
show p = smult c (

∏
(a, i) ← bs. a ^ i) unfolding sf (1 ) using sf (5 )

by (simp add: prod.distinct-set-conv-list)
show bs:

∧
b i. (b,i) ∈ set bs =⇒ degree b > 0 ∧ i > 0 using sf (2 ) by auto

show p = 0 =⇒ c = 0 ∧ bs = [] using sf (4 ) .
show square-free (prod-list (map fst bs))
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proof (rule square-freeI )
from bs have

∧
b. b ∈ set (map fst bs) =⇒ b 6= 0 by fastforce

thus prod-list (map fst bs) 6= 0 unfolding prod-list-zero-iff by auto
fix q
assume degree q > 0 q ∗ q dvd prod-list (map fst bs)
from irreducibled-factor [OF this(1 )] this(2 ) obtain q where

irr : irreducible q and dvd: q ∗ q dvd prod-list (map fst bs) unfolding dvd-def
by auto

hence dvd ′: q dvd prod-list (map fst bs) unfolding dvd-def by auto
from irreducible-dvd-prod-list[OF irr dvd ′] obtain b i where

mem: (b,i) ∈ set bs and dvd1 : q dvd b by auto
from dvd1 obtain k where b: b = q ∗ k unfolding dvd-def by auto
from split-list[OF mem] b obtain bs1 bs2 where bs: bs = bs1 @ (b, i) # bs2

by auto
from irr have q0 : q 6= 0 and dq: degree q > 0 unfolding irreducibled-def by

auto
from sf (2 )[OF mem, unfolded b] have square-free (q ∗ k) by auto
from this[unfolded square-free-def , THEN conjunct2 , rule-format, OF dq]
have qk: ¬ q dvd k by simp
from dvd[unfolded bs b] have q ∗ q dvd q ∗ (k ∗ prod-list (map fst (bs1 @

bs2 )))
by (auto simp: ac-simps)

with q0 have q dvd k ∗ prod-list (map fst (bs1 @ bs2 )) by auto
with irr qk have q dvd prod-list (map fst (bs1 @ bs2 )) by auto
from irreducible-dvd-prod-list[OF irr this] obtain b ′ i ′ where

mem ′: (b ′,i ′) ∈ set (bs1 @ bs2 ) and dvd2 : q dvd b ′ by fastforce
from dvd1 dvd2 have q dvd gcd b b ′ by auto
with dq is-unit-iff-degree[OF q0 ] have cop: ¬ coprime b b ′ by force
from mem ′ have (b ′,i ′) ∈ set bs unfolding bs by auto
from sf (3 )[OF mem this] cop have b ′: (b ′,i ′) = (b,i)

by (auto simp add: coprime-iff-gcd-eq-1 )
with mem ′ sf (5 )[unfolded bs] show False by auto

qed
qed

lemma square-free-factorizationI ′: fixes p :: ′a poly
assumes prod: p = smult c (

∏
(a, i) ← bs. a ^ i)

and sf : square-free (prod-list (map fst bs))
and deg:

∧
b i. (b,i) ∈ set bs =⇒ degree b > 0 ∧ i > 0

and 0 : p = 0 =⇒ c = 0 ∧ bs = []
shows square-free-factorization p (c, bs)
unfolding square-free-factorization-def split

proof (intro conjI impI allI )
show p = 0 =⇒ c = 0 p = 0 =⇒ bs = [] using 0 by auto
{

fix b i
assume bi: (b,i) ∈ set bs
from deg[OF this] show degree b > 0 0 < i by auto
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have b dvd prod-list (map fst bs)
by (intro prod-list-dvd, insert bi, force)

from square-free-factor [OF this sf ] show square-free b .
}
show dist: distinct bs
proof (rule ccontr)

assume ¬ ?thesis
from not-distinct-decomp[OF this] obtain bs1 bs2 bs3 b i where

bs: bs = bs1 @ [(b,i)] @ bs2 @ [(b,i)] @ bs3 by force
hence b ∗ b dvd prod-list (map fst bs) by auto
with sf [unfolded square-free-def , THEN conjunct2 , rule-format, of b]
have db: degree b = 0 by auto
from bs have (b,i) ∈ set bs by auto
from deg[OF this] db show False by auto

qed
show p = smult c (

∏
(a, i)∈set bs. a ^ i) unfolding prod using dist

by (simp add: prod.distinct-set-conv-list)
{

fix a i b j
assume ai: (a, i) ∈ set bs and bj: (b, j) ∈ set bs and diff : (a, i) 6= (b, j)
from split-list[OF ai] obtain bs1 bs2 where bs: bs = bs1 @ (a,i) # bs2 by

auto
with bj diff have (b,j) ∈ set (bs1 @ bs2 ) by auto
from split-list[OF this] obtain cs1 cs2 where cs: bs1 @ bs2 = cs1 @ (b,j) #

cs2 by auto
have prod-list (map fst bs) = a ∗ prod-list (map fst (bs1 @ bs2 )) unfolding bs

by simp
also have . . . = a ∗ b ∗ prod-list (map fst (cs1 @ cs2 )) unfolding cs by simp
finally obtain c where lp: prod-list (map fst bs) = a ∗ b ∗ c by auto
from deg[OF ai] have 0 : gcd a b 6= 0 by auto
have gcd: gcd a b ∗ gcd a b dvd prod-list (map fst bs)

unfolding lp by (simp add: mult-dvd-mono)
{

assume degree (gcd a b) > 0
from sf [unfolded square-free-def , THEN conjunct2 , rule-format, OF this] gcd
have False by simp

}
hence degree (gcd a b) = 0 by auto
with 0 show coprime a b using is-unit-gcd is-unit-iff-degree by blast

}
qed

lemma square-free-factorization-def ′: fixes p :: ′a poly
shows square-free-factorization p (c,bs) ←→
(p = smult c (

∏
(a, i) ← bs. a ^ i)) ∧

(square-free (prod-list (map fst bs))) ∧
(∀ b i. (b,i) ∈ set bs −→ degree b > 0 ∧ i > 0 ) ∧
(p = 0 −→ c = 0 ∧ bs = [])
using square-free-factorizationD ′[of p c bs]
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square-free-factorizationI ′[of p c bs] by blast

lemma square-free-factorization-smult-prod-listI : fixes p :: ′a poly
assumes sff : square-free-factorization p (c, bs1 @ (smult b (prod-list bs),i) #

bs2 )
and bs:

∧
b. b ∈ set bs =⇒ degree b > 0

shows square-free-factorization p (c ∗ b^i, bs1 @ map (λ b. (b,i)) bs @ bs2 )
proof −

from square-free-factorizationD ′(3 )[OF sff , of smult b (prod-list bs) i]
have b: b 6= 0 by auto
note sff = square-free-factorizationD ′[OF sff ]
show ?thesis
proof (intro square-free-factorizationI ′, goal-cases)

case 1
thus ?case unfolding sff (1 ) by (simp add: o-def ac-simps smult-power prod-list-pow)

next
case 2
show ?case using sff (2 ) by (simp add: ac-simps o-def square-free-smult-iff [OF

b])
next

case 3
with sff (3 ) bs show ?case by auto

next
case 4
from sff (4 )[OF this] show ?case by simp

qed
qed

lemma square-free-factorization-further-factorization: fixes p :: ′a poly
assumes sff : square-free-factorization p (c, bs)
and bs:

∧
b i d fs. (b,i) ∈ set bs =⇒ f b = (d,fs)

=⇒ b = smult d (prod-list fs) ∧ (∀ f ∈ set fs. degree f > 0 )
and h: h = (λ (b,i). case f b of (d,fs) ⇒ (d^i,map (λ f . (f ,i)) fs))
and gs: gs = map h bs
and d: d = c ∗ prod-list (map fst gs)
and es: es = concat (map snd gs)
shows square-free-factorization p (d, es)

proof −
note sff = square-free-factorizationD ′[OF sff ]
show ?thesis
proof (rule square-free-factorizationI ′)

assume p = 0
from sff (4 )[OF this] show d = 0 ∧ es = [] unfolding d es gs by auto

next
have id: (

∏
(a, i)←bs. a ^ i) = smult (prod-list (map fst gs)) (

∏
(a, i)←es. a

^ i)
unfolding es gs h map-map o-def using bs

proof (induct bs)
case (Cons bi bs)
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obtain b i where bi: bi = (b,i) by force
obtain d fs where f : f b = (d,fs) by force
from Cons(2 )[OF - f , of i] have b: b = smult d (prod-list fs) unfolding bi

by auto
note IH = Cons(1 )[OF Cons(2 ), of λ - i - - . i]
show ?case unfolding bi

by (simp add: f o-def , simp add: b ac-simps, subst IH ,
auto simp: smult-power prod-list-pow ac-simps)

qed simp
show p = smult d (

∏
(a, i)←es. a ^ i) unfolding sff (1 ) using id

by (simp add: d)
next

fix fi i
assume fi: (fi, i) ∈ set es
from this[unfolded es] obtain G where G: G ∈ snd ‘ set gs and fi: (fi,i) ∈

set G by auto
from G[unfolded gs] fi obtain b where bi: (b,i) ∈ set bs

and G: G = snd (h (b,i)) by (auto simp: h split: prod.splits)
from sff (3 )[OF bi] have i: i > 0 ..
obtain d fs where f : f b = (d,fs) by force
have degree fi > 0

by (rule bs[THEN conjunct2 , rule-format, OF bi f ], insert fi G f , unfold h,
auto)

with i show degree fi > 0 ∧ i > 0 by auto
next

have id: ∃ c. prod-list (map fst bs) = smult c (prod-list (map fst es))
unfolding es gs map-map o-def using bs

proof (induct bs)
case (Cons bi bs)
obtain b i where bi: bi = (b,i) by force
obtain d fs where f : f b = (d,fs) by force
from Cons(2 )[OF - f , of i] have b: b = smult d (prod-list fs) unfolding bi

by auto
have ∃ c. prod-list (map fst bs) = smult c (prod-list (map fst (concat (map

(λx. snd (h x)) bs))))
by (rule Cons(1 ), rule Cons(2 ), auto)

then obtain c where
IH : prod-list (map fst bs) = smult c (prod-list (map fst (concat (map (λx.

snd (h x)) bs)))) by auto
show ?case unfolding bi

by (intro exI [of - c ∗ d], auto simp: b IH , auto simp: h f [unfolded b] o-def )
qed (intro exI [of - 1 ], auto)
then obtain c where prod-list (map fst bs) = smult c (prod-list (map fst es))

by blast
from sff (2 )[unfolded this] show square-free (prod-list (map fst es))

by (metis smult-eq-0-iff square-free-def square-free-smult-iff )
qed

qed
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lemma square-free-factorization-prod-listI : fixes p :: ′a poly
assumes sff : square-free-factorization p (c, bs1 @ ((prod-list bs),i) # bs2 )
and bs:

∧
b. b ∈ set bs =⇒ degree b > 0

shows square-free-factorization p (c, bs1 @ map (λ b. (b,i)) bs @ bs2 )
using square-free-factorization-smult-prod-listI [of p c bs1 1 bs i bs2 ] sff bs by

auto

lemma square-free-factorization-factorI : fixes p :: ′a poly
assumes sff : square-free-factorization p (c, bs1 @ (a,i) # bs2 )
and r : degree r 6= 0 and s: degree s 6= 0
and a: a = r ∗ s
shows square-free-factorization p (c, bs1 @ ((r ,i) # (s,i) # bs2 ))
using square-free-factorization-prod-listI [of p c bs1 [r ,s] i bs2 ] sff r s a by auto

end

lemma monic-square-free-irreducible-factorization: assumes mon: monic (f :: ′b
:: field poly)

and sf : square-free f
shows ∃ P. finite P ∧ f =

∏
P ∧ P ⊆ {q. irreducible q ∧ monic q}

proof −
from mon have f0 : f 6= 0 by auto
from monic-irreducible-factorization[OF assms(1 )] obtain P n where

P: finite P P ⊆ {q. irreducibled q ∧ monic q} and f : f = (
∏

a∈P. a ^ Suc (n
a)) by auto

have ∗: ∀ a ∈ P. n a = 0
proof (rule ccontr)

assume ¬ ?thesis
then obtain a where a: a ∈ P and n: n a 6= 0 by auto
have f = a ^ (Suc (n a)) ∗ (

∏
b∈P − {a}. b ^ Suc (n b))

unfolding f by (rule prod.remove[OF P(1 ) a])
with n have a ∗ a dvd f by (cases n a, auto)
with sf [unfolded square-free-def ] f0 have degree a = 0 by auto
with a P(2 )[unfolded irreducibled-def ] show False by auto

qed
have f =

∏
P unfolding f

by (rule prod.cong[OF refl], insert ∗, auto)
with P show ?thesis by auto

qed

context
assumes SORT-CONSTRAINT ( ′a :: {field, factorial-ring-gcd})

begin
lemma monic-factorization-uniqueness:
fixes P:: ′a poly set
assumes finite-P: finite P

and PQ:
∏

P =
∏

Q
and P: P ⊆ {q. irreducibled q ∧ monic q}

and finite-Q: finite Q
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and Q: Q ⊆ {q. irreducibled q ∧ monic q}
shows P = Q
proof (rule; rule subsetI )

fix x assume x: x ∈ P
have irr-x: irreducible x using x P by auto
then have ∃ a∈Q. x dvd id a
proof (rule irreducible-dvd-prod)

show x dvd prod id Q using PQ x
by (metis dvd-refl dvd-prod finite-P id-apply prod.cong)

qed
from this obtain a where a: a∈Q and x-dvd-a: x dvd a unfolding id-def by

blast
have x=a using x P a Q irreducibled-dvd-eq[OF - - x-dvd-a] by fast
thus x ∈ Q using a by simp

next
fix x assume x: x ∈ Q
have irr-x: irreducible x using x Q by auto
then have ∃ a∈P. x dvd id a
proof (rule irreducible-dvd-prod)

show x dvd prod id P using PQ x
by (metis dvd-refl dvd-prod finite-Q id-apply prod.cong)

qed
from this obtain a where a: a∈P and x-dvd-a: x dvd a unfolding id-def by

blast
have x=a using x P a Q irreducibled-dvd-eq[OF - - x-dvd-a] by fast
thus x ∈ P using a by simp

qed
end

11.2 Yun factorization and homomorphisms
locale field-hom-0 ′ = field-hom hom

for hom :: ′a :: {field-char-0 ,field-gcd} ⇒
′b :: {field-char-0 ,field-gcd}

begin
sublocale field-hom ′ ..

end

lemma (in field-hom-0 ′) yun-factorization-main-hom:
defines hp: hp ≡ map-poly hom
defines hpi: hpi ≡ map (λ (f ,i). (hp f , i :: nat))
assumes monic: monic p and f : f = p div gcd p (pderiv p) and g: g = pderiv p

div gcd p (pderiv p)
shows yun-gcd.yun-factorization-main gcd (hp f ) (hp g) i (hpi as) = hpi (yun-gcd.yun-factorization-main

gcd f g i as)
proof −

let ?P = λ f g. ∀ i as. yun-gcd.yun-factorization-main gcd (hp f ) (hp g) i (hpi
as) = hpi (yun-gcd.yun-factorization-main gcd f g i as)

note ind = yun-factorization-induct[OF - - f g monic, of ?P, rule-format]
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interpret map-poly-hom: map-poly-inj-comm-ring-hom..
interpret p: inj-comm-ring-hom hp unfolding hp..
note homs = map-poly-gcd[folded hp]

map-poly-pderiv[folded hp]
p.hom-minus
map-poly-div[folded hp]

show ?thesis
proof (induct rule: ind)

case (1 f g i as)
show ?case unfolding yun-gcd.yun-factorization-main.simps[of - hp f ] yun-gcd.yun-factorization-main.simps[of

- f ]
unfolding 1 by simp

next
case (2 f g i as)
have id:

∧
f i fis. hpi ((f ,i) # fis) = (hp f , i) # hpi fis unfolding hpi by auto

show ?case unfolding yun-gcd.yun-factorization-main.simps[of - hp f ] yun-gcd.yun-factorization-main.simps[of
- f ]

unfolding p.hom-1-iff
unfolding Let-def
unfolding homs[symmetric] id[symmetric]
unfolding 2 (2 ) by simp

qed
qed

lemma square-free-square-free-factorization:
square-free (p :: ′a :: {field,factorial-ring-gcd,semiring-gcd-mult-normalize} poly)

=⇒
degree p 6= 0 =⇒ square-free-factorization p (1 ,[(p,1 )])

by (intro square-free-factorizationI ′, auto)

lemma constant-square-free-factorization:
degree p = 0 =⇒ square-free-factorization p (coeff p 0 ,[])
by (drule degree0-coeffs [of p]) (auto simp: square-free-factorization-def )

lemma (in field-hom-0 ′) yun-monic-factorization:
defines hp: hp ≡ map-poly hom
defines hpi: hpi ≡ map (λ (f ,i). (hp f , i :: nat))
assumes monic: monic f
shows yun-gcd.yun-monic-factorization gcd (hp f ) = hpi (yun-gcd.yun-monic-factorization

gcd f )
proof −

interpret map-poly-hom: map-poly-inj-comm-ring-hom..
interpret p: inj-ring-hom hp unfolding hp..
have hpiN : hpi [] = [] unfolding hpi by simp
obtain res where res =

yun-gcd.yun-factorization-main gcd (f div gcd f (pderiv f )) (pderiv f div gcd f
(pderiv f )) 0 [] by auto

note homs = map-poly-gcd[folded hp]
map-poly-pderiv[folded hp]
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p.hom-minus
map-poly-div[folded hp]
yun-factorization-main-hom[folded hp, folded hpi, symmetric, OF monic refl

refl, of - Nil, unfolded hpiN ]
this

show ?thesis
unfolding yun-gcd.yun-monic-factorization-def Let-def
unfolding homs[symmetric]
unfolding hpi

by (induct res, auto)
qed

lemma (in field-hom-0 ′) yun-factorization-hom:
defines hp: hp ≡ map-poly hom
defines hpi: hpi ≡ map (λ (f ,i). (hp f , i :: nat))
shows yun-factorization gcd (hp f ) = map-prod hom hpi (yun-factorization gcd

f )
using yun-monic-factorization[of smult (inverse (coeff f (degree f ))) f ]
unfolding yun-factorization-def Let-def hp hpi
by (auto simp: hom-distribs)

lemma (in field-hom-0 ′) square-free-map-poly:
square-free (map-poly hom f ) = square-free f

proof −
interpret map-poly-hom: map-poly-inj-comm-ring-hom..
show ?thesis unfolding square-free-iff-separable separable-def

by (simp only: hom-distribs [symmetric] )
(simp add: coprime-iff-gcd-eq-1 map-poly-gcd [symmetric])

qed

end

12 GCD of rational polynomials via GCD for in-
teger polynomials

This theory contains an algorithm to compute GCDs of rational polynomi-
als via a conversion to integer polynomials and then invoking the integer
polynomial GCD algorithm.
theory Gcd-Rat-Poly
imports

Gauss-Lemma
HOL−Computational-Algebra.Field-as-Ring

begin

definition gcd-rat-poly :: rat poly ⇒ rat poly ⇒ rat poly where
gcd-rat-poly f g = (let
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f ′ = snd (rat-to-int-poly f );
g ′ = snd (rat-to-int-poly g);
h = map-poly rat-of-int (gcd f ′ g ′)

in smult (inverse (lead-coeff h)) h)

lemma gcd-rat-poly[simp]: gcd-rat-poly = gcd
proof (intro ext)

fix f g
let ?ri = map-poly rat-of-int
obtain a ′ f ′ where faf ′: rat-to-int-poly f = (a ′,f ′) by force
from rat-to-int-poly[OF this] obtain a where

f : f = smult a (?ri f ′) and a: a 6= 0 by auto
obtain b ′ g ′ where gbg ′: rat-to-int-poly g = (b ′,g ′) by force
from rat-to-int-poly[OF this] obtain b where

g: g = smult b (?ri g ′) and b: b 6= 0 by auto
define h where h = gcd f ′ g ′

let ?h = ?ri h
define lc where lc = inverse (coeff ?h (degree ?h))
let ?gcd = smult lc ?h
have id: gcd-rat-poly f g = ?gcd

unfolding lc-def h-def gcd-rat-poly-def Let-def faf ′ gbg ′ snd-conv by auto
show gcd-rat-poly f g = gcd f g unfolding id
proof (rule gcdI )

have h dvd f ′ unfolding h-def by auto
hence ?h dvd ?ri f ′ unfolding dvd-def by (auto simp: hom-distribs)
hence ?h dvd f unfolding f by (rule dvd-smult)
thus dvd-f : ?gcd dvd f

by (metis dvdE inverse-zero-imp-zero lc-def leading-coeff-neq-0 mult-eq-0-iff
smult-dvd-iff )

have h dvd g ′ unfolding h-def by auto
hence ?h dvd ?ri g ′ unfolding dvd-def by (auto simp: hom-distribs)
hence ?h dvd g unfolding g by (rule dvd-smult)
thus dvd-g: ?gcd dvd g

by (metis dvdE inverse-zero-imp-zero lc-def leading-coeff-neq-0 mult-eq-0-iff
smult-dvd-iff )

show normalize ?gcd = ?gcd
by (cases lc = 0 )
(simp-all add: normalize-poly-def pCons-one field-simps lc-def )

fix k
assume dvd: k dvd f k dvd g
obtain k ′ c where kck: rat-to-normalized-int-poly k = (c,k ′) by force
from rat-to-normalized-int-poly[OF this] have k: k = smult c (?ri k ′) and c: c

6= 0 by auto
from dvd(1 ) have kf : k dvd ?ri f ′ unfolding f using a by (rule dvd-smult-cancel)
from dvd(2 ) have kg: k dvd ?ri g ′ unfolding g using b by (rule dvd-smult-cancel)

from kf kg obtain kf kg where kf : ?ri f ′ = k ∗ kf and kg: ?ri g ′ = k ∗ kg
unfolding dvd-def by auto

from rat-to-int-factor-explicit[OF kf kck] have kf : k ′ dvd f ′ unfolding dvd-def
by blast
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from rat-to-int-factor-explicit[OF kg kck] have kg: k ′ dvd g ′ unfolding dvd-def
by blast

from kf kg have k ′ dvd h unfolding h-def by simp
hence ?ri k ′ dvd ?ri h unfolding dvd-def by (auto simp: hom-distribs)
hence k dvd ?ri h unfolding k using c by (rule smult-dvd)
thus k dvd ?gcd by (rule dvd-smult)

qed
qed

lemma gcd-rat-poly-unfold[code-unfold]: gcd = gcd-rat-poly by simp
end

13 Rational Factorization
We combine the rational root test, the formulas for explicit roots, and the
Kronecker’s factorization algorithm to provide a basic factorization algo-
rithm for polynomial over rational numbers. Moreover, also the roots of a
rational polynomial can be determined.
theory Rational-Factorization
imports

Explicit-Roots
Kronecker-Factorization
Square-Free-Factorization
Rational-Root-Test
Gcd-Rat-Poly
Show.Show-Poly

begin

function roots-of-rat-poly-main :: rat poly ⇒ rat list where
roots-of-rat-poly-main p = (let n = degree p in if n = 0 then [] else if n = 1 then

[roots1 p]
else if n = 2 then rat-roots2 p else
case rational-root-test p of None ⇒ [] | Some x ⇒ x # roots-of-rat-poly-main (p

div [:−x,1 :]))
by pat-completeness auto

termination by (relation measure degree,
auto dest: rational-root-test(1 ) intro!: degree-div-less simp: poly-eq-0-iff-dvd)

lemma roots-of-rat-poly-main-code[code]: roots-of-rat-poly-main p = (let n = degree
p in if n = 0 then [] else if n = 1 then [roots1 p]

else if n = 2 then rat-roots2 p else
case rational-root-test p of None ⇒ [] | Some x ⇒ x # roots-of-rat-poly-main (p

div [:−x,1 :]))
proof −

note d = roots-of-rat-poly-main.simps[of p] Let-def
show ?thesis
proof (cases rational-root-test p)
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case (Some x)
let ?x = [:−x,1 :]
from rational-root-test(1 )[OF Some] have ?x dvd p

by (simp add: poly-eq-0-iff-dvd)
from dvd-mult-div-cancel[OF this]
have pp: p div ?x = ?x ∗ (p div ?x) div ?x by simp
then show ?thesis unfolding d Some by auto

qed (simp add: d)
qed

lemma roots-of-rat-poly-main: p 6= 0 =⇒ set (roots-of-rat-poly-main p) = {x. poly
p x = 0}
proof (induct p rule: roots-of-rat-poly-main.induct)

case (1 p)
note IH = 1 (1 )
note p = 1 (2 )
let ?n = degree p
let ?rr = roots-of-rat-poly-main
show ?case
proof (cases ?n = 0 )

case True
from roots0 [OF p True] True show ?thesis by simp

next
case False note 0 = this
show ?thesis
proof (cases ?n = 1 )

case True
from roots1 [OF True] True show ?thesis by simp

next
case False note 1 = this
show ?thesis
proof (cases ?n = 2 )

case True
from rat-roots2 [OF True] True show ?thesis by simp

next
case False note 2 = this
from 0 1 2 have id: ?rr p = (case rational-root-test p of None ⇒ [] | Some

x ⇒
x # ?rr (p div [: −x, 1 :])) by simp

show ?thesis
proof (cases rational-root-test p)

case None
from rational-root-test(2 )[OF None] None id show ?thesis by simp

next
case (Some x)
from rational-root-test(1 )[OF Some] have [: −x, 1 :] dvd p

by (simp add: poly-eq-0-iff-dvd)
from dvd-mult-div-cancel[OF this]
have pp: p = [: −x, 1 :] ∗ (p div [: −x, 1 :]) by simp
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with p have p: p div [:− x, 1 :] 6= 0 by auto
from arg-cong[OF pp, of λ p. {x. poly p x = 0}]

rational-root-test(1 )[OF Some] IH [OF refl 0 1 2 Some p] show ?thesis
unfolding id Some by auto

qed
qed

qed
qed

qed

declare roots-of-rat-poly-main.simps[simp del]

definition roots-of-rat-poly :: rat poly ⇒ rat list where
roots-of-rat-poly p ≡ let (c,pis) = yun-factorization gcd-rat-poly p in

concat (map (roots-of-rat-poly-main o fst) pis)

lemma roots-of-rat-poly: assumes p: p 6= 0
shows set (roots-of-rat-poly p) = {x. poly p x = 0}

proof −
obtain c pis where yun: yun-factorization gcd p = (c,pis) by force
from yun
have res: roots-of-rat-poly p = concat (map (roots-of-rat-poly-main ◦ fst) pis)

by (auto simp: roots-of-rat-poly-def split: if-splits)
note yun = square-free-factorizationD(1 ,2 ,4 )[OF yun-factorization(1 )[OF yun]]
from yun(1 ) p have c: c 6= 0 by auto
from yun(1 ) have p: p = smult c (

∏
(a, i)∈set pis. a ^ i) .

have {x. poly p x = 0} = {x. poly (
∏

(a, i)∈set pis. a ^ i) x = 0}
unfolding p using c by auto

also have . . . =
⋃

((λ p. {x. poly p x = 0}) ‘ fst ‘ set pis) (is - = ?r)
using yun(2 ) by (subst poly-prod-0 , force+)

finally have r : {x. poly p x = 0} = ?r .
{

fix p i
assume p: (p,i) ∈ set pis
have set (roots-of-rat-poly-main p) = {x. poly p x = 0}

by (rule roots-of-rat-poly-main, insert yun(2 ) p, force)
} note main = this
have set (roots-of-rat-poly p) =

⋃
((λ (p, i). set (roots-of-rat-poly-main p)) ‘ set

pis)
unfolding res o-def by auto

also have . . . = ?r using main by auto
finally show ?thesis unfolding r by simp

qed

definition root-free :: ′a :: comm-semiring-0 poly ⇒ bool where
root-free p = (degree p = 1 ∨ (∀ x. poly p x 6= 0 ))

lemma irreducible-root-free:
fixes p :: ′a :: idom poly
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assumes irreducible p shows root-free p
proof−

from assms have p0 : p 6= 0 by auto
{

fix x
assume poly p x = 0 and degp: degree p 6= 1
hence [:−x,1 :] dvd p using poly-eq-0-iff-dvd by blast
then obtain q where p: p = [:−x,1 :] ∗ q by (elim dvdE)
with p0 have q0 : q 6= 0 by auto
from irreducibleD[OF assms p]
have q dvd 1 by (metis one-neq-zero poly-1 poly-eq-0-iff-dvd)
then have degree q = 0 by (simp add: poly-dvd-1 )
with degree-mult-eq[of [:−x,1 :] q, folded p] q0 degp
have False by auto

}
thus ?thesis unfolding root-free-def by auto

qed

partial-function (tailrec) factorize-root-free-main :: rat poly ⇒ rat list ⇒ rat poly
list ⇒ rat × rat poly list where
[code]: factorize-root-free-main p xs fs = (case xs of Nil ⇒

let l = coeff p (degree p); q = smult (inverse l) p in (l, (if q = 1 then fs else q
# fs) )
| x # xs ⇒

if poly p x = 0 then factorize-root-free-main (p div [:−x,1 :]) (x # xs) ([:−x,1 :]
# fs)

else factorize-root-free-main p xs fs)

definition factorize-root-free :: rat poly ⇒ rat × rat poly list where
factorize-root-free p = (if degree p = 0 then (coeff p 0 ,[]) else

factorize-root-free-main p (roots-of-rat-poly p) [])

lemma factorize-root-free-0 [simp]: factorize-root-free 0 = (0 ,[])
unfolding factorize-root-free-def by simp

lemma factorize-root-free: assumes res: factorize-root-free p = (c,qs)
shows p = smult c (prod-list qs)∧

q. q ∈ set qs =⇒ root-free q ∧ monic q ∧ degree q 6= 0
proof −

have p = smult c (prod-list qs) ∧ (∀ q ∈ set qs. root-free q ∧ monic q ∧ degree
q 6= 0 )

proof (cases degree p = 0 )
case True
thus ?thesis using res unfolding factorize-root-free-def by (auto dest: de-

gree0-coeffs)
next

case False
hence p0 : p 6= 0 by auto
define fs where fs = ([] :: rat poly list)
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define xs where xs = roots-of-rat-poly p
define q where q = p
obtain n where n: n = degree q + length xs by auto
have prod: p = q ∗ prod-list fs unfolding q-def fs-def by auto
have sub: {x. poly q x = 0} ⊆ set xs using roots-of-rat-poly[OF p0 ] unfolding

q-def xs-def by auto
have fs:

∧
q. q ∈ set fs =⇒ root-free q ∧ monic q ∧ degree q 6= 0 unfolding

fs-def by auto
have res: factorize-root-free-main q xs fs = (c,qs) using res False

unfolding xs-def fs-def q-def factorize-root-free-def by auto
from False have q 6= 0 unfolding q-def by auto
from prod sub fs res n this show ?thesis
proof (induct n arbitrary: q fs xs rule: wf-induct[OF wf-less])

case (1 n q fs xs)
note simp = factorize-root-free-main.simps[of q xs fs]
note IH = 1 (1 )[rule-format]
note 0 = 1 (2−)[unfolded simp]
show ?case
proof (cases xs)

case Nil
note 0 = 0 [unfolded Nil Let-def ]
hence no-rt:

∧
x. poly q x 6= 0 by auto

hence q: q 6= 0 by auto
let ?r = smult (inverse c) q
define r where r = ?r
from 0 (4−5 ) have c: c = coeff q (degree q) and qs: qs = (if r = 1 then fs

else r # fs) by (auto simp: r-def )
from q c qs 0 (1 ) have c0 : c 6= 0 and p: p = smult c (prod-list (r # fs))

by (auto simp: r-def )
from p have p: p = smult c (prod-list qs) unfolding qs by auto
from 0 (2 ,5 ) c0 c have root-free ?r monic ?r

unfolding root-free-def by auto
with 0 (3 ) have

∧
q. q ∈ set qs =⇒ root-free q ∧ monic q ∧ degree q 6= 0

unfolding qs
by (cases degree q = 0 , insert degree0-coeffs[of q], auto split: if-splits simp:

r-def )
with p show ?thesis by auto

next
case (Cons x xs)
note 0 = 0 [unfolded Cons]
show ?thesis
proof (cases poly q x = 0 )

case True
let ?q = q div [:−x,1 :]
let ?x = [:−x,1 :]
let ?fs = ?x # fs
let ?xs = x # xs
from True have q: q = ?q ∗ ?x

by (metis dvd-mult-div-cancel mult.commute poly-eq-0-iff-dvd)
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with 0 (6 ) have q ′: ?q 6= 0 by auto
have deg: degree q = Suc (degree ?q) unfolding arg-cong[OF q, of degree]

by (subst degree-mult-eq[OF q ′], auto)
hence n: degree ?q + length ?xs < n unfolding 0 (5 ) by auto
from arg-cong[OF q, of poly] 0 (2 ) have rt: {x. poly ?q x = 0} ⊆ set ?xs

by auto
have p: p = ?q ∗ prod-list ?fs unfolding prod-list.Cons 0 (1 ) mult.assoc[symmetric]

q[symmetric] ..
have root-free ?x unfolding root-free-def by auto
with 0 (3 ) have rf :

∧
f . f ∈ set ?fs =⇒ root-free f ∧ monic f ∧ degree f

6= 0 by auto
from True 0 (4 ) have res: factorize-root-free-main ?q ?xs ?fs = (c,qs) by

simp
show ?thesis

by (rule IH [OF - p rt rf res refl q ′], insert n, auto)
next

case False
with 0 (4 ) have res: factorize-root-free-main q xs fs = (c,qs) by simp
from 0 (5 ) obtain m where m: m = degree q + length xs and n: n =

Suc m by auto
from False 0 (2 ) have rt: {x. poly q x = 0} ⊆ set xs by auto
show ?thesis by (rule IH [OF - 0 (1 ) rt 0 (3 ) res m 0 (6 )], unfold n, auto)

qed
qed

qed
qed
thus p = smult c (prod-list qs)∧

q. q ∈ set qs =⇒ root-free q ∧ monic q ∧ degree q 6= 0 by auto
qed

definition rational-proper-factor :: rat poly ⇒ rat poly option where
rational-proper-factor p = (if degree p ≤ 1 then None

else if degree p = 2 then (case rat-roots2 p of Nil ⇒ None | Cons x xs ⇒ Some
[:−x,1 :])

else if degree p = 3 then (case rational-root-test p of None ⇒ None | Some x
⇒ Some [:−x,1 :])

else kronecker-factorization-rat p)

lemma degree-1-dvd-root: assumes q: degree (q :: ′a :: field poly) = 1
and rt:

∧
x. poly p x 6= 0

shows ¬ q dvd p
proof −

from degree1-coeffs[OF q] obtain a b where q: q = [: b, a :] and a: a 6= 0
by metis

have q: q = smult a [: − (− b / a), 1 :] unfolding q
by (rule poly-eqI , unfold coeff-smult, insert a, auto simp: field-simps coeff-pCons

split: nat.splits)
show ?thesis unfolding q smult-dvd-iff poly-eq-0-iff-dvd[symmetric, of - p] using
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a rt by auto
qed

lemma rational-proper-factor :
degree p > 0 =⇒ rational-proper-factor p = None =⇒ irreducibled p
rational-proper-factor p = Some q =⇒ q dvd p ∧ degree q ≥ 1 ∧ degree q <

degree p
proof −

let ?rp = rational-proper-factor p
let ?rr = rational-root-test
note d = rational-proper-factor-def [of p]
have (degree p > 0 −→ ?rp = None −→ irreducibled p) ∧

(?rp = Some q −→ q dvd p ∧ degree q ≥ 1 ∧ degree q < degree p)
proof (cases degree p = 0 )

case True
thus ?thesis unfolding d by auto

next
case False note 0 = this
show ?thesis
proof (cases degree p = 1 )

case True
hence ?rp = None unfolding d by auto
with linear-irreducibled[OF True] show ?thesis by auto

next
case False note 1 = this
show ?thesis
proof (cases degree p = 2 )

case True
hence rp: ?rp = (case rat-roots2 p of Nil ⇒ None | Cons x xs ⇒ Some

[:−x,1 :]) unfolding d by auto
show ?thesis
proof (cases rat-roots2 p)

case Nil
with rp have rp: ?rp = None by auto
from Nil rat-roots2 [OF True] have nex: ¬ (∃ x. poly p x = 0 ) by auto
have irreducibled p
proof (rule irreducibledI )

fix q r :: rat poly
assume degree q > 0 degree q < degree p and p: p = q ∗ r
with True have dq: degree q = 1 by auto
have ¬ q dvd p by (rule degree-1-dvd-root[OF dq], insert nex, auto)
with p show False by auto

qed (insert True, auto)
with rp show ?thesis by auto

next
case (Cons x xs)
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from Cons rat-roots2 [OF True] have poly p x = 0 by auto
from this[unfolded poly-eq-0-iff-dvd] have x: [: −x , 1 :] dvd p by auto
from Cons rp have rp: ?rp = Some ([: − x, 1 :]) by auto
show ?thesis using True x unfolding rp by auto

qed
next

case False note 2 = this
show ?thesis
proof (cases degree p = 3 )

case True
hence rp: ?rp = (case ?rr p of None ⇒ None | Some x ⇒ Some [:− x,

1 :]) unfolding d by auto
show ?thesis
proof (cases ?rr p)

case None
from rational-root-test(2 )[OF None] have nex: ¬ (∃ x. poly p x = 0 )

by auto
from rp[unfolded None] have rp: ?rp = None by auto
have irreducibled p
proof (rule irreducibledI2 )

fix q :: rat poly
assume degree q > 0 degree q ≤ degree p div 2
with True have dq: degree q = 1 by auto
show ¬ q dvd p

by (rule degree-1-dvd-root[OF dq], insert nex, auto)
qed (insert True, auto)
with rp show ?thesis by auto

next
case (Some x)
from rational-root-test(1 )[OF Some] have poly p x = 0 .
from this[unfolded poly-eq-0-iff-dvd] have x: [: −x , 1 :] dvd p by auto
from Some rp have rp: ?rp = Some ([: − x, 1 :]) by auto
show ?thesis using True x unfolding rp by auto

qed
next

case False note 3 = this
let ?kp = kronecker-factorization-rat p
from 0 1 2 3 have d4 : degree p ≥ 4 and d1 : degree p ≥ 1 by auto
hence rp: ?rp = ?kp using d4 d by auto
show ?thesis
proof (cases ?kp)

case None
with rp kronecker-factorization-rat(2 )[OF None d1 ] show ?thesis by

auto
next

case (Some q)
with rp kronecker-factorization-rat(1 )[OF Some] show ?thesis by auto

qed
qed
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qed
qed

qed
thus degree p > 0 =⇒ rational-proper-factor p = None =⇒ irreducibled p

rational-proper-factor p = Some q =⇒ q dvd p ∧ degree q ≥ 1 ∧ degree q <
degree p by auto
qed

function factorize-rat-poly-main :: rat ⇒ rat poly list ⇒ rat poly list ⇒ rat × rat
poly list where

factorize-rat-poly-main c irr [] = (c,irr)
| factorize-rat-poly-main c irr (p # ps) = (if degree p = 0

then factorize-rat-poly-main (c ∗ coeff p 0 ) irr ps
else (case rational-proper-factor p of

None ⇒ factorize-rat-poly-main c (p # irr) ps
| Some q ⇒ factorize-rat-poly-main c irr (q # p div q # ps)))

by pat-completeness auto

definition factorize-rat-poly-main-wf-rel = inv-image (mult1 {(x, y). x < y}) (λ(c,
irr , ps). mset (map degree ps))

lemma wf-factorize-rat-poly-main-wf-rel: wf factorize-rat-poly-main-wf-rel
unfolding factorize-rat-poly-main-wf-rel-def using wf-mult1 [OF wf-less] by auto

lemma factorize-rat-poly-main-wf-rel-sub:
((a, b, ps), (c, d, p # ps)) ∈ factorize-rat-poly-main-wf-rel
unfolding factorize-rat-poly-main-wf-rel-def
by (auto intro: mult1I [of - - - - {#}])

lemma factorize-rat-poly-main-wf-rel-two: assumes degree q < degree p degree r
< degree p

shows ((a,b,q # r # ps), (c,d,p # ps)) ∈ factorize-rat-poly-main-wf-rel
unfolding factorize-rat-poly-main-wf-rel-def mult1-def
using add-eq-conv-ex assms ab-semigroup-add-class.add-ac

by fastforce

termination
proof (relation factorize-rat-poly-main-wf-rel,

rule wf-factorize-rat-poly-main-wf-rel, rule factorize-rat-poly-main-wf-rel-sub,
rule factorize-rat-poly-main-wf-rel-sub, rule factorize-rat-poly-main-wf-rel-two)
fix p q
assume rf : rational-proper-factor p = Some q and dp: degree p 6= 0
from rational-proper-factor(2 )[OF rf ]
have dvd: q dvd p and deg: 1 ≤ degree q degree q < degree p by auto
show degree q < degree p by fact
from dvd have p = q ∗ (p div q) by auto
from arg-cong[OF this, of degree]
have degree p = degree q + degree (p div q)

by (subst degree-mult-eq[symmetric], insert dp, auto)
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with deg
show degree (p div q) < degree p by simp

qed

declare factorize-rat-poly-main.simps[simp del]

lemma factorize-rat-poly-main:
assumes factorize-rat-poly-main c irr ps = (d,qs)

and Ball (set irr) irreducibled
shows Ball (set qs) irreducibled (is ?g1 )

and smult c (prod-list (irr @ ps)) = smult d (prod-list qs) (is ?g2 )
proof (atomize(full), insert assms, induct c irr ps rule: factorize-rat-poly-main.induct)

case (1 c irr)
thus ?case by (auto simp: factorize-rat-poly-main.simps)

next
case (2 c irr p ps)
note IH = 2 (1−3 )
note res = 2 (4 )[unfolded factorize-rat-poly-main.simps(2 )[of c irr p ps]]
note irr = 2 (5 )
let ?f = factorize-rat-poly-main
show ?case
proof (cases degree p = 0 )

case True
with res have res: ?f (c ∗ coeff p 0 ) irr ps = (d,qs) by simp
from degree0-coeffs[OF True] obtain a where p: p = [: a :] by auto
from IH (1 )[OF True res irr ]
show ?thesis using p by simp

next
case False
note IH = IH (2−)[OF False]
from False have (degree p = 0 ) = False by auto
note res = res[unfolded this if-False]
let ?rf = rational-proper-factor p
show ?thesis
proof (cases ?rf )

case None
with res have res: ?f c (p # irr) ps = (d,qs) by auto
from rational-proper-factor(1 )[OF - None] False
have irp: irreducibled p by auto
note IH (1 )[OF None res, unfolded atomize-imp imp-conjR, simplified]
note 1 = conjunct1 [OF this, rule-format] conjunct2 [OF this, rule-format]
from irr irp show ?thesis by (auto intro:1 simp: ac-simps)

next
case (Some q)
define pq where pq = p div q
from Some res have res: ?f c irr (q # pq # ps) = (d,qs) unfolding pq-def

by auto
from rational-proper-factor(2 )[OF Some] have q dvd p by auto
hence p: p = q ∗ pq unfolding pq-def by auto
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from IH (2 )[OF Some, folded pq-def , OF res irr ] show ?thesis unfolding p
by (auto simp: ac-simps)

qed
qed

qed

definition factorize-rat-poly-basic p = factorize-rat-poly-main 1 [] [p]

lemma factorize-rat-poly-basic: assumes res: factorize-rat-poly-basic p = (c,qs)
shows p = smult c (prod-list qs)∧

q. q ∈ set qs =⇒ irreducibled q
using factorize-rat-poly-main[OF res[unfolded factorize-rat-poly-basic-def ]] by

auto

We removed the factorize-rat-poly function from this theory, since the
one in Berlekamp-Zassenhaus is easier to use and implements a more efficient
algorithm.
end
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