Two theorems about the geometry of the critical
points of a complex polynomial

Manuel Eberl

November 21, 2023

Abstract

This entry formalises two well-known results about the geometric
relation between the roots of a complex polynomial and its critical
points, i.e. the roots of its derivative.

The first of these is the Gaufi—Lucas Theorem: The critical points
of a complex polynomial lie inside the convex hull of its roots.

The second one is Jensen’s Theorem: Every non-real critical point
of a real polynomial lies inside a disc between two conjugate roots.
These discs are called the Jensen discs: the Jensen disc of a pair of
conjugate roots a £ bi is the smallest disc that contains both of them,
i.e. the disc with centre a and radius b.
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1 Missing Library Material

theory Polynomial_ Crit_Geometry_Library

imports
"HOL-Computational_Algebra.Computational_Algebra"
"HOL-Library.FuncSet"
"Formal_Puiseux_Series.Formal_Puiseux_Series"

begin

1.1 Multisets

lemma size_repeat_mset [simp]: "size (repeat_mset n A) = n * size A"
{proof )

lemma count_image_mset_inj:
"inj f = count (image_mset f A) (f x) = count A x"

(proof)

lemma count_le_size: "count A x < size A"

{proof)

lemma image_mset_cong_simp:
"M=M — (Ax. x €# M =simp=> f x = g x) — {#f x. x €# M#} = {#g
X. X €# M'#}"

(proof)
lemma sum_mset_nonneg:
fixes A :: "'a :: ordered_comm_monoid_add multiset"
assumes "Ax. x €# A — x > 0"
shows "sum_mset A > 0"
(proof )

lemma sum_mset_pos:
fixes A :: "'a :: ordered_comm_monoid_add multiset"
assumes "A #* {#}"
assumes "Ax. x €# A = x > 0"
shows "sum_mset A > 0"

(proof)

1.2 Polynomials

lemma order_pos_iff: "p # 0 = order x p > 0 «— poly p x = 0"

(proof)

lemma order_prod_mset:

"0 ¢# P — order x (prod_mset P) = sum_mset (image_mset (Ap. order
x p) P)"

(proof)

lemma order_prod:



"(Ax. x € I = f x # 0) = order x (prod f I) = () i€I. order x
(f i))"
(proof)

lemma order_ linear factor:
assumes "a # 0 V b # 0"
shows "order x [:a, b:] = (if b * x + a = 0 then 1 else 0)"

(proof)

lemma order_linear_factor' [simp]:
assumes "a # 0 V b # 0" "b * x + a = 0"
shows "order x [:a, b:] = 1"
(proof)

lemma degree_prod_mset_eq: "O ¢# P —> degree (prod_mset P) = (D pE#P.
degree p)"

for P :: "'a::idom poly multiset"

(proof)

lemma degree_prod_list_eq: "0 ¢ set ps —> degree (prod_list ps) = (O p<ps.

degree p)"
for ps ::
{proof )

ni

a::idom poly list"

lemma order_conv_multiplicity:
assumes "p # 0"
shows  '"order x p = multiplicity [:-x, 1:] p"

(proof)

1.3 Polynomials over algebraically closed fields

lemma irreducible_alg_closed_imp_degree_1:

assumes "irreducible (p :: 'a :: alg closed_field poly)"
shows  "degree p = 1"
(proof)
lemma prime_poly_alg closedE:
assumes '"prime (q :: 'a :: {alg closed_field, field_gcd} poly)"
obtains ¢ where "q = [:-c, 1:]" "poly q ¢ = 0"
(proof)

lemma prime_factors_alg_closed_poly_bij_betw:
assumes "p # (0 :: 'a :: {alg closed_field, field_gcd} poly)"
shows "bij_betw (Ax. [:-x, 1:]) {x. poly p x = O} (prime_factors p)"
(proof)

lemma alg closed_imp_factorization':
assumes "p # (0 :: 'a :: alg _closed_field poly)"
shows "p = smult (lead_coeff p) ([[x | poly p x = 0. [:-x, 1:] ~ order



x p)u
(proof)

1.4 Complex polynomials and conjugation

lemma complex_poly_real_coeffsE:
assumes '"set (coeffs p) C R"
obtains p' where "p = map_poly complex_of_real p'"

(proof)

lemma order_map_poly_cnj:
assumes "p # 0"
shows  "order x (map_poly cnj p) = order (cnj x) p"

(proof)

1.5 n-ary product rule for the derivative

lemma has_field_derivative_prod_mset [derivative_intros]:
assumes "Ax. x €# A — (f x has_field_derivative f' x) (at z)"
shows  "((\u. [[x€#A. f x u) has_field_derivative () xc#A. f' x *
([yc#h-{#x#}. £y z))) (at z)"
(proof )

lemma has_field_derivative_prod [derivative_intros]:

assumes "Ax. x € A = (f x has_field_derivative f' x) (at z)"

shows  "((Au. [[x€A. f x u) has_field_derivative () x€A. f' x * ([[yca-{x}.
fyz)) (at z)"

(proof )

lemma has_field_derivative_prod_mset':
assumes "Ax. x €# A = f x z # 0"
assumes "Ax. x €# A = (f x has_field_derivative f' x) (at z)"
defines "P = (M u. [[xe#A. £ x w"
shows "(P A has_field_derivative (P A z * (O _x€#A. f' x / f x 2)))
(at z)"

(proof)

lemma has_field_derivative_prod':
assumes "Ax. x € A = f x z # 0"
assumes "Ax. x € A = (f x has_field derivative f' x) (at z)"
defines "P = (M u. [[x€4. £ x w"
shows "(P A has_field_derivative (P A z * (D x€A. f' x / £ x 2)))
(at z)"

(proof)

1.6 Facts about complex numbers

lemma Re_sum_mset: "Re (sum_mset X) = (O xE#X. Re x)"

(proof)



lemma Im_sum_mset: "Im (sum_mset X) = (O xc#X. Im x)"
(proof )

lemma Re_sum_mset': "Re (O xe#X. f x) = (O_x€#X. Re (f x))"

(proof)

lemma Im_sum_mset': "Im () x€#X. f x)
(proof)

O xe#X. Im (£ x))"

lemma inverse_complex_altdef: "inverse z = cnj z / norm z ~ 2"
(proof )

end

theory Polynomial_Crit_Geometry

imports
"HOL-Computational_Algebra.Computational_Algebra"
"HOL-Analysis.Analysis"
Polynomial_Crit_Geometry_Library

begin



Figure 1: Example for the Gaufi—Lucas Theorem: The roots (e) and critical
points (o) of 27 — 220 + 2% + 2% — (1 +4)23 — 15i2% — 4(1 — i)z — 7.
The critical points all lie inside the convex hull of the roots ([]).

2 The Gau3—Lucas Theorem

The following result is known as the Gaufi—Lucas Theorem: The critical
points of a non-constant complex polynomial lie inside the convex hull of its
roots.

The proof is relatively straightforward by writing the polynomial in the form

from which we get the derivative

n

P@) =pla)- 3

i=1

a;

x—x;

With some more calculations, one can then see that every root z of p’ can

be written as
n
U

—_— x’L
U
i=1

xr =

where u; = |z_“7;1|2 and U = Y1 | u;.

theorem pderiv_roots_in_convex_hull:



fixes p :: "complex poly"

assumes "degree p # 0"

shows  "{z. poly (pderiv p) z = 0} C convex hull {z. poly p z = O}"
(proof)



Figure 2: Example for Jensen’s Theorem: The roots (e) and critical points
(o) of the polynomial 27 — 325 + 22° + 82% + 1023 — 10z + 1.

It can be seen that all the non-real critical points lie inside a Jensen disc
(©), whereas there can be real critical points that do not lie inside a Jensen
disc.

3 Jensen’s Theorem

For each root w of a real polynomial p, the Jensen disc of w is the smallest
disc containing both w and w, i.e. the disc with centre Re(w) and radius
[Im(w)].

We now show that if p is a real polynomial, every non-real critical point of
p lies inside a Jensen disc of one of its non-real roots.

definition jensen_disc :: "complex = complex set" where
"jensen_disc w = cball (of_real (Re w)) |Im w|"

theorem pderiv_root_in_jensen_disc:
fixes p :: "complex poly"
assumes "set (coeffs p) C R" and "degree p # 0"
assumes "poly (pderiv p) z = 0" and "z ¢ R"
shows "Jw. w ¢ R A poly pw =0 A z € jensen_disc w"

(proof)



end
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