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Abstract

This entry formalises two well-known results about the geometric
relation between the roots of a complex polynomial and its critical
points, i.e. the roots of its derivative.

The first of these is the Gauß–Lucas Theorem: The critical points
of a complex polynomial lie inside the convex hull of its roots.

The second one is Jensen’s Theorem: Every non-real critical point
of a real polynomial lies inside a disc between two conjugate roots.
These discs are called the Jensen discs: the Jensen disc of a pair of
conjugate roots a± bi is the smallest disc that contains both of them,
i.e. the disc with centre a and radius b.
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1 Missing Library Material
theory Polynomial_Crit_Geometry_Library
imports
"HOL-Computational_Algebra.Computational_Algebra"
"HOL-Library.FuncSet"
"Formal_Puiseux_Series.Formal_Puiseux_Series"

begin

1.1 Multisets
lemma size_repeat_mset [simp]: "size (repeat_mset n A) = n * size A"

by (induction n) auto

lemma count_image_mset_inj:
"inj f =⇒ count (image_mset f A) (f x) = count A x"
by (induction A) (auto dest!: injD)

lemma count_le_size: "count A x ≤ size A"
by (induction A) auto

lemma image_mset_cong_simp:
"M = M' =⇒ (

∧
x. x ∈# M =simp=> f x = g x) =⇒ {#f x. x ∈# M#} = {#g

x. x ∈# M'#}"
unfolding simp_implies_def by (auto intro: image_mset_cong)

lemma sum_mset_nonneg:
fixes A :: "'a :: ordered_comm_monoid_add multiset"
assumes "

∧
x. x ∈# A =⇒ x ≥ 0"

shows "sum_mset A ≥ 0"
using assms by (induction A) auto

lemma sum_mset_pos:
fixes A :: "'a :: ordered_comm_monoid_add multiset"
assumes "A 6= {#}"
assumes "

∧
x. x ∈# A =⇒ x > 0"

shows "sum_mset A > 0"
proof -

from assms obtain x where "x ∈# A"
by auto

hence "A = {#x#} + (A - {#x#})"
by auto

also have "sum_mset . . . = x + sum_mset (A - {#x#})"
by simp

also have ". . . > 0"
proof (rule add_pos_nonneg)

show "x > 0"
using ‹x ∈# A› assms by auto

show "sum_mset (A - {#x#}) ≥ 0"
using assms sum_mset_nonneg by (metis in_diffD order_less_imp_le)
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qed
finally show ?thesis .

qed

1.2 Polynomials
lemma order_pos_iff: "p 6= 0 =⇒ order x p > 0 ←→ poly p x = 0"

by (cases "order x p = 0") (auto simp: order_root order_0I)

lemma order_prod_mset:
"0 /∈# P =⇒ order x (prod_mset P) = sum_mset (image_mset (λp. order

x p) P)"
by (induction P) (auto simp: order_mult)

lemma order_prod:
"(

∧
x. x ∈ I =⇒ f x 6= 0) =⇒ order x (prod f I) = (

∑
i∈I. order x

(f i))"
by (induction I rule: infinite_finite_induct) (auto simp: order_mult)

lemma order_linear_factor:
assumes "a 6= 0 ∨ b 6= 0"
shows "order x [:a, b:] = (if b * x + a = 0 then 1 else 0)"

proof (cases "b * x + a = 0")
case True
have "order x [:a, b:] ≤ degree [:a, b:]"

using assms by (intro order_degree) auto
also have ". . . ≤ 1"

by simp
finally have "order x [:a, b:] ≤ 1" .
moreover have "order x [:a, b:] > 0"

using assms True by (subst order_pos_iff) (auto simp: algebra_simps)
ultimately have "order x [:a, b:] = 1"

by linarith
with True show ?thesis

by simp
qed (auto intro!: order_0I simp: algebra_simps)

lemma order_linear_factor' [simp]:
assumes "a 6= 0 ∨ b 6= 0" "b * x + a = 0"
shows "order x [:a, b:] = 1"
using assms by (subst order_linear_factor) auto

lemma degree_prod_mset_eq: "0 /∈# P =⇒ degree (prod_mset P) = (
∑

p∈#P.
degree p)"

for P :: "'a::idom poly multiset"
by (induction P) (auto simp: degree_mult_eq)

lemma degree_prod_list_eq: "0 /∈ set ps =⇒ degree (prod_list ps) = (
∑

p←ps.
degree p)"
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for ps :: "'a::idom poly list"
by (induction ps) (auto simp: degree_mult_eq)

lemma order_conv_multiplicity:
assumes "p 6= 0"
shows "order x p = multiplicity [:-x, 1:] p"
using assms order[of p x] multiplicity_eqI by metis

1.3 Polynomials over algebraically closed fields
lemma irreducible_alg_closed_imp_degree_1:

assumes "irreducible (p :: 'a :: alg_closed_field poly)"
shows "degree p = 1"

proof -
have "¬(degree p > 1)"

using assms alg_closed_imp_reducible by blast
moreover from assms have "degree p 6= 0"

by (intro notI) auto
ultimately show ?thesis

by linarith
qed

lemma prime_poly_alg_closedE:
assumes "prime (q :: 'a :: {alg_closed_field, field_gcd} poly)"
obtains c where "q = [:-c, 1:]" "poly q c = 0"

proof -
from assms have "degree q = 1"

by (intro irreducible_alg_closed_imp_degree_1 prime_elem_imp_irreducible)
auto

then obtain a b where q: "q = [:a, b:]"
by (metis One_nat_def degree_pCons_eq_if nat.distinct(1) nat.inject

pCons_cases)
have "unit_factor q = 1"

using assms by auto
thus ?thesis

using that[of "-a"] q ‹degree q = 1›
by (auto simp: unit_factor_poly_def one_pCons split: if_splits)

qed

lemma prime_factors_alg_closed_poly_bij_betw:
assumes "p 6= (0 :: 'a :: {alg_closed_field, field_gcd} poly)"
shows "bij_betw (λx. [:-x, 1:]) {x. poly p x = 0} (prime_factors p)"

proof (rule bij_betwI[of _ _ _ "λq. -poly q 0"], goal_cases)
case 1
have [simp]: "p div [:1:] = p" for p :: "'a poly"

by (simp add: pCons_one)
show ?case using assms

by (auto simp: in_prime_factors_iff dvd_iff_poly_eq_0 prime_def
prime_elem_linear_field_poly normalize_poly_def one_pCons)
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qed (auto simp: in_prime_factors_iff elim!: prime_poly_alg_closedE dvdE)

lemma alg_closed_imp_factorization':
assumes "p 6= (0 :: 'a :: alg_closed_field poly)"
shows "p = smult (lead_coeff p) (

∏
x | poly p x = 0. [:-x, 1:] ^ order

x p)"
proof -

obtain A where A: "size A = degree p" "p = smult (lead_coeff p) (
∏

x∈#A.
[:- x, 1:])"

using alg_closed_imp_factorization[OF assms] by blast
have "set_mset A = {x. poly p x = 0}" using assms

by (subst A(2)) (auto simp flip: poly_hom.prod_mset_image simp: image_image)

note A(2)
also have "(

∏
x∈#A. [:- x, 1:]) =

(
∏

x∈(λx. [:- x, 1:]) ` set_mset A. x ^ count {#[:- x,
1:]. x ∈# A#} x)"

by (subst prod_mset_multiplicity) simp_all
also have "set_mset A = {x. poly p x = 0}" using assms

by (subst A(2)) (auto simp flip: poly_hom.prod_mset_image simp: image_image)
also have "(

∏
x∈(λx. [:- x, 1:]) ` {x. poly p x = 0}. x ^ count {#[:-

x, 1:]. x ∈# A#} x) =
(
∏

x | poly p x = 0. [:- x, 1:] ^ count {#[:- x, 1:]. x ∈#
A#} [:- x, 1:])"

by (subst prod.reindex) (auto intro: inj_onI)
also have "(λx. count {#[:- x, 1:]. x ∈# A#} [:- x, 1:]) = count A"

by (subst count_image_mset_inj) (auto intro!: inj_onI)
also have "count A = (λx. order x p)"
proof

fix x :: 'a
have "order x p = order x (

∏
x∈#A. [:- x, 1:])"

using assms by (subst A(2)) (auto simp: order_smult order_prod_mset)
also have ". . . = (

∑
y∈#A. order x [:-y, 1:])"

by (subst order_prod_mset) (auto simp: multiset.map_comp o_def)
also have "image_mset (λy. order x [:-y, 1:]) A = image_mset (λy.

if y = x then 1 else 0) A"
using order_power_n_n[of y 1 for y :: 'a]
by (intro image_mset_cong) (auto simp: order_0I)

also have ". . . = replicate_mset (count A x) 1 + replicate_mset (size
A - count A x) 0"

by (induction A) (auto simp: add_ac Suc_diff_le count_le_size)
also have "sum_mset . . . = count A x"

by simp
finally show "count A x = order x p" ..

qed
finally show ?thesis .

qed
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1.4 Complex polynomials and conjugation
lemma complex_poly_real_coeffsE:

assumes "set (coeffs p) ⊆ �"
obtains p' where "p = map_poly complex_of_real p'"

proof (rule that)
have "coeff p n ∈ �" for n

using assms by (metis Reals_0 coeff_in_coeffs in_mono le_degree zero_poly.rep_eq)
thus "p = map_poly complex_of_real (map_poly Re p)"

by (subst map_poly_map_poly) (auto simp: poly_eq_iff o_def coeff_map_poly)
qed

lemma order_map_poly_cnj:
assumes "p 6= 0"
shows "order x (map_poly cnj p) = order (cnj x) p"

proof -
have "order x (map_poly cnj p) ≤ order (cnj x) p" if p: "p 6= 0" for

p :: "complex poly" and x
proof (rule order_max)

interpret map_poly_idom_hom cnj
by standard auto

interpret field_hom cnj
by standard auto

have "[:-x, 1:] ^ order x (map_poly cnj p) dvd map_poly cnj p"
using order[of "map_poly cnj p" x] p by simp

also have "[:-x, 1:] ^ order x (map_poly cnj p) =
map_poly cnj ([:-cnj x, 1:] ^ order x (map_poly cnj p))"

by (simp add: hom_power)
finally show "[:-cnj x, 1:] ^ order x (map_poly cnj p) dvd p"

by (rule dvd_map_poly_hom_imp_dvd)
qed fact+
from this[of p x] and this[of "map_poly cnj p" "cnj x"] and assms show

?thesis
by (simp add: map_poly_map_poly o_def)

qed

1.5 n-ary product rule for the derivative
lemma has_field_derivative_prod_mset [derivative_intros]:

assumes "
∧
x. x ∈# A =⇒ (f x has_field_derivative f' x) (at z)"

shows "((λu.
∏

x∈#A. f x u) has_field_derivative (
∑

x∈#A. f' x *
(
∏

y∈#A-{#x#}. f y z))) (at z)"
using assms

proof (induction A)
case (add x A)
note [derivative_intros] = add
note [cong] = image_mset_cong_simp
show ?case

by (auto simp: field_simps multiset.map_comp o_def intro!: derivative_eq_intros)
qed auto
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lemma has_field_derivative_prod [derivative_intros]:
assumes "

∧
x. x ∈ A =⇒ (f x has_field_derivative f' x) (at z)"

shows "((λu.
∏

x∈A. f x u) has_field_derivative (
∑

x∈A. f' x * (
∏

y∈A-{x}.
f y z))) (at z)"

using assms
proof (cases "finite A")

case [simp, intro]: True
have "((λu.

∏
x∈A. f x u) has_field_derivative

(
∑

x∈A. f' x * (
∏

y∈#mset_set A-{#x#}. f y z))) (at z)"
using has_field_derivative_prod_mset[of "mset_set A" f f' z] assms
by (simp add: prod_unfold_prod_mset sum_unfold_sum_mset)

also have "(
∑

x∈A. f' x * (
∏

y∈#mset_set A-{#x#}. f y z)) =
(
∑

x∈A. f' x * (
∏

y∈#mset_set (A-{x}). f y z))"
by (intro sum.cong) (auto simp: mset_set_Diff)

finally show ?thesis
by (simp add: prod_unfold_prod_mset)

qed auto

lemma has_field_derivative_prod_mset':
assumes "

∧
x. x ∈# A =⇒ f x z 6= 0"

assumes "
∧
x. x ∈# A =⇒ (f x has_field_derivative f' x) (at z)"

defines "P ≡ (λA u.
∏

x∈#A. f x u)"
shows "(P A has_field_derivative (P A z * (

∑
x∈#A. f' x / f x z)))

(at z)"
using assms
by (auto intro!: derivative_eq_intros cong: image_mset_cong_simp

simp: sum_distrib_right mult_ac prod_mset_diff image_mset_Diff
multiset.map_comp o_def)

lemma has_field_derivative_prod':
assumes "

∧
x. x ∈ A =⇒ f x z 6= 0"

assumes "
∧
x. x ∈ A =⇒ (f x has_field_derivative f' x) (at z)"

defines "P ≡ (λA u.
∏

x∈A. f x u)"
shows "(P A has_field_derivative (P A z * (

∑
x∈A. f' x / f x z)))

(at z)"
proof (cases "finite A")

case True
show ?thesis using assms True

by (auto intro!: derivative_eq_intros
simp: prod_diff1 sum_distrib_left sum_distrib_right mult_ac)

qed (auto simp: P_def)

1.6 Facts about complex numbers
lemma Re_sum_mset: "Re (sum_mset X) = (

∑
x∈#X. Re x)"

by (induction X) auto

lemma Im_sum_mset: "Im (sum_mset X) = (
∑

x∈#X. Im x)"
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by (induction X) auto

lemma Re_sum_mset': "Re (
∑

x∈#X. f x) = (
∑

x∈#X. Re (f x))"
by (induction X) auto

lemma Im_sum_mset': "Im (
∑

x∈#X. f x) = (
∑

x∈#X. Im (f x))"
by (induction X) auto

lemma inverse_complex_altdef: "inverse z = cnj z / norm z ^ 2"
by (metis complex_div_cnj inverse_eq_divide mult_1)

end

theory Polynomial_Crit_Geometry
imports
"HOL-Computational_Algebra.Computational_Algebra"
"HOL-Analysis.Analysis"
Polynomial_Crit_Geometry_Library

begin
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Figure 1: Example for the Gauß–Lucas Theorem: The roots ( ) and critical
points ( ) of x7 − 2x6 + x5 + x4 − (1 + i)x3 − 15ix2 − 4(1− i)x− 7.
The critical points all lie inside the convex hull of the roots ( ).

2 The Gauß–Lucas Theorem

The following result is known as the Gauß–Lucas Theorem: The critical
points of a non-constant complex polynomial lie inside the convex hull of its
roots.
The proof is relatively straightforward by writing the polynomial in the form

p(x) =
n∏

i=1

(x− xi)ai ,

from which we get the derivative

p′(x) = p(x) ·
n∑

i=1

ai

x− xi
.

With some more calculations, one can then see that every root x of p′ can
be written as

x =
n∑

i=1

ui

U
· xi

where ui = ai
|x−xi|2 and U =

∑n
i=1 ui.

theorem pderiv_roots_in_convex_hull:
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fixes p :: "complex poly"
assumes "degree p 6= 0"
shows "{z. poly (pderiv p) z = 0} ⊆ convex hull {z. poly p z = 0}"

proof safe
fix z :: complex
assume "poly (pderiv p) z = 0"
show "z ∈ convex hull {z. poly p z = 0}"
proof (cases "poly p z = 0")

case True
thus ?thesis by (simp add: hull_inc)

next
case False
hence [simp]: "p 6= 0" by auto
define α where "α = lead_coeff p"
have p_eq: "p = smult α (

∏
z | poly p z = 0. [:- z, 1:] ^ order z

p)"
unfolding α_def by (rule alg_closed_imp_factorization') fact

have poly_p: "poly p = (λw. α * (
∏

z | poly p z = 0. (w - z) ^ order
z p))"

by (subst p_eq) (simp add: poly_prod fun_eq_iff)

define S where "S = (
∑

w | poly p w = 0. of_nat (order w p) / (z
- w))"

define u :: "complex ⇒ real" where "u = (λw. of_nat (order w p) /
norm (z - w) ^ 2)"

define U where "U = (
∑

w | poly p w = 0. u w)"
have u_pos: "u w > 0" if "poly p w = 0" for w

using that False by (auto simp: u_def order_pos_iff intro!: divide_pos_pos)
hence "U > 0" unfolding U_def

using assms fundamental_theorem_of_algebra[of p] False
by (intro sum_pos poly_roots_finite) (auto simp: constant_degree)

note [derivative_intros del] = has_field_derivative_prod
note [derivative_intros] = has_field_derivative_prod'
have "(poly p has_field_derivative poly p z *

(
∑

w | poly p w = 0. of_nat (order w p) *
(z - w) ^ (order w p - 1) / (z - w) ^ order w p) ) (at

z)"
(is "(_ has_field_derivative _ * ?S') _") using False
by (subst (1 2) poly_p)

(auto intro!: derivative_eq_intros simp: order_pos_iff mult_ac
power_diff S_def)

also have "?S' = S" unfolding S_def
proof (intro sum.cong refl, goal_cases)

case (1 w)
with False have "w 6= z" and "order w p > 0"

by (auto simp: order_pos_iff)
thus ?case by (simp add: power_diff)

qed
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finally have "(poly p has_field_derivative poly p z * S) (at z)" .
hence "poly (pderiv p) z = poly p z * S"

by (rule sym[OF DERIV_unique]) (auto intro: poly_DERIV)
with ‹poly (pderiv p) z = 0› and ‹poly p z 6= 0› have "S = 0" by

simp

also have "S = (
∑

w | poly p w = 0. of_nat (order w p) * cnj z / norm
(z - w) ^ 2 -

of_nat (order w p) * cnj w / norm
(z - w) ^ 2)"

unfolding S_def by (intro sum.cong refl, subst complex_div_cnj)
(auto simp: diff_divide_distrib ring_distribs)

also have ". . . = cnj z * (
∑

w | poly p w = 0. u w) - (
∑

w | poly p
w = 0. u w * cnj w)"

by (simp add: sum_subtractf sum_distrib_left mult_ac u_def)
finally have "cnj z * (

∑
w | poly p w = 0. of_real (u w)) =

(
∑

w | poly p w = 0. of_real (u w) * cnj w)" by simp
from arg_cong[OF this, of cnj]
have "z * of_real U = (

∑
w | poly p w = 0. of_real (u w) * w)"

unfolding complex_cnj_mult by (simp add: U_def)
hence "z = (

∑
w | poly p w = 0. of_real (u w) * w) / of_real U"

using ‹U > 0› by (simp add: divide_simps)
also have ". . . = (

∑
w | poly p w = 0. (u w / U) *R w)"

by (subst sum_divide_distrib) (auto simp: scaleR_conv_of_real)
finally have z_eq: "z = (

∑
w | poly p w = 0. (u w / U) *R w)" .

show "z ∈ convex hull {z. poly p z = 0}"
proof (subst z_eq, rule convex_sum)

have "(
∑

i∈{w. poly p w = 0}. u i / U) = U / U"
by (subst (2) U_def) (simp add: sum_divide_distrib)

also have ". . . = 1" using ‹U > 0› by simp
finally show "(

∑
i∈{w. poly p w = 0}. u i / U) = 1" .

qed (insert ‹U > 0› u_pos,
auto simp: hull_inc intro!: divide_nonneg_pos less_imp_le poly_roots_finite)

qed
qed
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Figure 2: Example for Jensen’s Theorem: The roots ( ) and critical points
( ) of the polynomial x7 − 3x6 + 2x5 + 8x4 + 10x3 − 10x + 1.
It can be seen that all the non-real critical points lie inside a Jensen disc
( ), whereas there can be real critical points that do not lie inside a Jensen
disc.

3 Jensen’s Theorem

For each root w of a real polynomial p, the Jensen disc of w is the smallest
disc containing both w and w, i.e. the disc with centre Re(w) and radius
|Im(w)|.
We now show that if p is a real polynomial, every non-real critical point of
p lies inside a Jensen disc of one of its non-real roots.
definition jensen_disc :: "complex ⇒ complex set" where
"jensen_disc w = cball (of_real (Re w)) |Im w|"

theorem pderiv_root_in_jensen_disc:
fixes p :: "complex poly"
assumes "set (coeffs p) ⊆ �" and "degree p 6= 0"
assumes "poly (pderiv p) z = 0" and "z /∈ �"
shows "∃ w. w /∈ � ∧ poly p w = 0 ∧ z ∈ jensen_disc w"

proof (rule ccontr)
have real_coeffs: "coeff p n ∈ �" for n
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using assms(1) by (metis Reals_0 coeff_0 coeff_in_coeffs le_degree
subsetD)

define d where "d = (λx. dist z (Re x) ^ 2 - Im x ^ 2)"

assume *: "¬(∃ w. w /∈ � ∧ poly p w = 0 ∧ z ∈ jensen_disc w)"
have d_pos: "d w > 0" if "poly p w = 0" "w /∈ �" for w
proof -

have "dist z (Re w) > |Im w|"
using * that unfolding d_def jensen_disc_def by (auto simp: dist_commute)

hence "dist z (Re w) ^ 2 > |Im w| ^ 2"
by (intro power_strict_mono) auto

thus ?thesis
by (simp add: d_def)

qed

have "poly p z 6= 0"
using d_pos[of z] assms by (auto simp: d_def dist_norm cmod_power2)

hence [simp]: "p 6= 0" by auto
define α where "α = lead_coeff p"
have [simp]: "α 6= 0"

using assms(4) by (auto simp: α_def)
obtain A where p_eq: "p = smult α (

∏
x∈#A. [:-x, 1:])"

unfolding α_def using alg_closed_imp_factorization[of p] by auto
have poly_p: "poly p = (λw. α * (

∏
z∈#A. w - z))"

by (subst p_eq) (simp add: poly_prod_mset fun_eq_iff)
have [simp]: "poly p z = 0 ←→ z ∈# A" for z

by (auto simp: poly_p α_def)

define Apos where "Apos = filter_mset (λw. Im w > 0) A"
define Aneg where "Aneg = filter_mset (λw. Im w < 0) A"
define A0 where "A0 = filter_mset (λw. Im w = 0) A"
have "A = Apos + Aneg + A0"

unfolding Apos_def Aneg_def A0_def by (induction A) auto

have count_A: "count A w = order w p" for w
proof -

have "0 /∈# {#[:- x, 1:]. x ∈# A#}"
by auto

hence "order w p = (
∑

x∈#A. order w [:- x, 1:])"
by (simp add: p_eq order_smult order_prod_mset multiset.map_comp

o_def)
also have ". . . = (

∑
x∈#A. if w = x then 1 else 0)"

by (simp add: order_linear_factor)
also have ". . . = count A w"

by (induction A) auto
finally show ?thesis ..

qed

have "Aneg = image_mset cnj Apos"
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proof (rule multiset_eqI)
fix x :: complex
have "order (cnj x) (map_poly cnj p) = order x p"

by (subst order_map_poly_cnj) auto
also have "map_poly cnj p = p"

using assms(1) by (metis Reals_cnj_iff map_poly_idI' subsetD)
finally have [simp]: "order (cnj x) p = order x p" .

have "count (image_mset cnj Apos) (cnj (cnj x)) = count Apos (cnj
x)"

by (subst count_image_mset_inj) (auto simp: inj_on_def)
also have ". . . = count Aneg x"

by (simp add: Apos_def Aneg_def count_A)
finally show "count Aneg x = count (image_mset cnj Apos) x"

by simp
qed

have [simp]: "cnj x ∈# A ←→ x ∈# A" for x
proof -

have "cnj x ∈# A ←→ poly p (cnj x) = 0"
by simp

also have "poly p (cnj x) = cnj (poly (map_poly cnj p) x)"
by simp

also have "map_poly cnj p = p"
using real_coeffs by (intro poly_eqI) (auto simp: coeff_map_poly

Reals_cnj_iff)
finally show ?thesis

by simp
qed

define N where "N = (λx. norm ((z - x) * (z - cnj x)))"
have N_pos: "N x > 0" if "x ∈# A" for x

using that ‹poly p z 6= 0› by (auto simp: N_def)
have N_nonneg: "N x ≥ 0" and [simp]: "N x 6= 0" if "x ∈# A" for x

using N_pos[OF that] by simp_all

We show that (
∑

x∈#A. 1 / (z - x)) = 0 (which is relatively obvious) and
then that the imaginary part of this sum is positive, which is a contradiction.

define S where "S = (
∑

x∈#A. 1 / (z - x))"
note [derivative_intros del] = has_field_derivative_prod_mset
note [derivative_intros] = has_field_derivative_prod_mset'
have "(poly p has_field_derivative poly p z * S) (at z)"

using ‹poly p z 6= 0› unfolding S_def
by (subst (1 2) poly_p)

(auto intro!: derivative_eq_intros simp: order_pos_iff mult_ac
power_diff multiset.map_comp o_def)

hence "poly (pderiv p) z = poly p z * S"
by (rule sym[OF DERIV_unique]) (auto intro: poly_DERIV)

with ‹poly (pderiv p) z = 0› and ‹poly p z 6= 0› have "S = 0" by simp
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For determining Im S, we decompose the sum into real roots and pairs of
conjugate and merge the sum of each pair of conjugate roots.

have "Im S = (
∑

x∈#Apos. Im (1 / (z - x))) + (
∑

x∈#Aneg. Im (1 / (z
- x))) + (

∑
x∈#A0. Im (1 / (z - x)))"

by (simp add: S_def ‹A = Apos + Aneg + A0› Im_sum_mset')
also have "Aneg = image_mset cnj Apos"

by fact
also have "(

∑
x∈#. . . . Im (1 / (z - x))) = (

∑
x∈#Apos. Im (1 / (z -

cnj x)))"
by (simp add: multiset.map_comp o_def)

also have "(
∑

x∈#Apos. Im (1 / (z - x))) + (
∑

x∈#Apos. Im (1 / (z -
cnj x))) =

(
∑

x∈#Apos. Im (1 / (z - x) + 1 / (z - cnj x)))"
by (subst sum_mset.distrib [symmetric]) simp_all

also have "image_mset (λx. Im (1 / (z - x) + 1 / (z - cnj x))) Apos
=

image_mset (λx. - 2 * Im z * d x / N x ^ 2) Apos"
proof (intro image_mset_cong, goal_cases)

case (1 x)
have "1 / (z - x) + 1 / (z - cnj x) = (2 * z - (x + cnj x)) * inverse

((z - x) * (z - cnj x))"
using ‹poly p z 6= 0› 1
by (auto simp: divide_simps Apos_def complex_is_Real_iff simp flip:

Reals_cnj_iff)
also have "x + cnj x = 2 * Re x"

by (subst complex_add_cnj) auto
also have "inverse ((z - x) * (z - cnj x)) = (cnj z - cnj x) * (cnj

z - x) / N x ^ 2"
by (subst inverse_complex_altdef) (simp_all add: N_def)

also have "Im ((2 * z - complex_of_real (2 * Re x)) * ((cnj z - cnj
x) * (cnj z - x) / N x ^ 2)) =

(-2 * Im z * (Im z ^ 2 - Im x ^ 2 + (Re x - Re z) ^ 2))
/ N x ^ 2"

by (simp add: algebra_simps power2_eq_square)
also have "Im z ^ 2 - Im x ^ 2 + (Re x - Re z) ^ 2 = d x"

unfolding dist_norm cmod_power2 d_def by (simp add: power2_eq_square
algebra_simps)

finally show ?case .
qed
also have "sum_mset . . . = -Im z * (

∑
x∈#Apos. 2 * d x / N x ^ 2)"

by (subst sum_mset_distrib_left) (simp_all add: multiset.map_comp
o_def mult_ac)

also have "image_mset (λx. Im (1 / (z - x))) A0 = image_mset (λx. -Im
z / N x) A0"

proof (intro image_mset_cong, goal_cases)
case (1 x)
have [simp]: "Im x = 0"

using 1 by (auto simp: A0_def)
have [simp]: "cnj x = x"
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by (auto simp: complex_eq_iff)
show "Im (1 / (z - x)) = -Im z / N x"

by (simp add: Im_divide N_def cmod_power2 norm_power flip: power2_eq_square)
qed
also have "sum_mset . . . = -Im z * (

∑
x∈#A0. 1 / N x)"

by (simp add: sum_mset_distrib_left multiset.map_comp o_def)
also have "-Im z * (

∑
x∈#Apos. 2 * d x / N x ^ 2) + . . . =

-Im z * ((
∑

x∈#Apos. 2 * d x / N x ^ 2) + (
∑

x∈#A0. 1 /
N x))"

by algebra
also have "Im S = 0"

using ‹S = 0› by simp
finally have "((

∑
x∈#Apos. 2 * d x / N x ^ 2) + (

∑
x∈#A0. 1 / N x))

= 0"
using ‹z /∈ �› by (simp add: complex_is_Real_iff)

moreover have "((
∑

x∈#Apos. 2 * d x / N x ^ 2) + (
∑

x∈#A0. 1 / N
x)) > 0"

proof -
have "A 6= {#}"

using ‹degree p 6= 0› p_eq by fastforce
hence "Apos 6= {#} ∨ A0 6= {#}"

using ‹Aneg = image_mset cnj Apos› ‹A = Apos + Aneg + A0› by auto
thus ?thesis
proof

assume "Apos 6= {#}"
hence "(

∑
x∈#Apos. 2 * d x / N x ^ 2) > 0"

by (intro sum_mset_pos)
(auto intro!: mult_pos_pos divide_pos_pos d_pos simp: Apos_def

complex_is_Real_iff)
thus ?thesis

by (intro add_pos_nonneg sum_mset_nonneg) (auto intro!: N_nonneg
simp: A0_def)

next
assume "A0 6= {#}"
hence "(

∑
x∈#A0. 1 / N x) > 0"

by (intro sum_mset_pos) (auto intro!: divide_pos_pos N_pos simp:
A0_def)

thus ?thesis
by (intro add_nonneg_pos sum_mset_nonneg)

(auto intro!: N_pos less_imp_le[OF d_pos] mult_nonneg_nonneg
divide_nonneg_pos

simp: Apos_def complex_is_Real_iff)
qed

qed

ultimately show False
by simp

qed
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end
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