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Abstract
We describe formalization of the Poincaré disc model of hyperbolic geometry within the Isabelle/HOL

proof assistant. The model is defined within the extended complex plane (one dimensional complex projective
space CP 1), formalized in the AFP entry “Complex Geometry” [6]. Points, lines, congruence of pairs of
points, betweenness of triples of points, circles, and isometries are defined within the model. It is shown that
the model satisfies all Tarski’s axioms except the Euclid’s axiom. It is shown that it satisfies its negation
and the limiting parallels axiom (which proves it to be a model of hyperbolic geometry).
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1 Introduction
Poincaré disc is a model of hyperbolic geometry. That fact has been a mathematical folklore for more than
100 years. However, up to the best of our knowledge, fully precise, formal proofs of this fact are lacking. In
this paper we present a formalization of the Poincaré disc model in Isabelle/HOL, introduce its basic notions
(h-points, h-lines, h-congruence, h-isometries, h-betweenness) and prove that it models Tarski’s axioms except
for Euclid’s axiom. We shown that is satisfies the negation of Euclid’s axiom, and, moreover, the existence of
limiting parallels axiom. The model is defined within the extended complex plane, which has been described
quite precisely by Schwerdfeger [8] and formalized in the previous work of the first two authors [5].

Related work. In 1840 Lobachevsky [3] published developments about non-Euclidean geometry. Hyperbolic
geometry is studied through many of its models. The concept of a projective disc model was introduced by Klein
while Poincaré investigated the half-plane model proposed by Liouville and Beltrami and primarily studied the
isometries of the hyperbolic plane that preserve orientation. In this paper, we focus on the formalization of the
latter.
Regarding non-Euclidean geometry, Makarios showed the independence of Euclid’s axiom [4]. He did so by
formalizing that the Klein–Beltrami model is a model of Tarski’s axioms at the exception of Euclid’s axiom.
Latter Coghetto formalized the Klein-Beltrami model within Mizar [1, 2].

2 Background theories
2.1 Hyperbolic Functions
In this section hyperbolic cosine and hyperbolic sine functions are introduced and some of their properties
needed for further development are proved.
theory Hyperbolic-Functions

imports Complex-Main Complex-Geometry.More-Complex
begin

lemma arcosh-eq-iff :
fixes x y::real
assumes x ≥ 1 y ≥ 1
shows arcosh x = arcosh y ←→ x = y
〈proof 〉

lemma cosh-gt-1 [simp]:
fixes x ::real
assumes x > 0
shows cosh x > 1
〈proof 〉

lemma cosh-eq-iff :
fixes x y::real
assumes x ≥ 0 y ≥ 0
shows cosh x = cosh y ←→ x = y
〈proof 〉

lemma arcosh-mono:
fixes x y::real
assumes x ≥ 1 y ≥ 1
shows arcosh x ≥ arcosh y ←→ x ≥ y
〈proof 〉

lemma arcosh-add:
fixes x y::real
assumes x ≥ 1 y ≥ 1
shows arcosh x + arcosh y = arcosh (x∗y + sqrt((x2 − 1 )∗(y2 − 1 )))
〈proof 〉
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lemma arcosh-double:
fixes x :: real
assumes x ≥ 1
shows 2 ∗ arcosh x = arcosh (2∗x2 − 1 )
〈proof 〉

end

3 Tarski axioms
In this section we introduce axioms of Tarski [7] trough a series of locales.
theory Tarski
imports Main
begin

The first locale assumes all Tarski axioms except for the Euclid’s axiom and the continuity axiom and corresponds
to absolute geometry.
locale TarskiAbsolute =

fixes cong :: ′p ⇒ ′p ⇒ ′p ⇒ ′p ⇒ bool
fixes betw :: ′p ⇒ ′p ⇒ ′p ⇒ bool
assumes cong-reflexive: cong x y y x
assumes cong-transitive: cong x y z u ∧ cong x y v w −→ cong z u v w
assumes cong-identity: cong x y z z −→ x = y
assumes segment-construction: ∃ z. betw x y z ∧ cong y z a b
assumes five-segment: x 6= y ∧ betw x y z ∧ betw x ′ y ′ z ′ ∧ cong x y x ′ y ′ ∧ cong y z y ′ z ′ ∧ cong x u x ′ u ′ ∧ cong

y u y ′ u ′ −→ cong z u z ′ u ′

assumes betw-identity: betw x y x −→ x = y
assumes Pasch: betw x u z ∧ betw y v z −→ (∃ a. betw u a y ∧ betw x a v)
assumes lower-dimension: ∃ a. ∃ b. ∃ c. ¬ betw a b c ∧ ¬ betw b c a ∧ ¬ betw c a b
assumes upper-dimension: cong x u x v ∧ cong y u y v ∧ cong z u z v ∧ u 6= v −→ betw x y z ∨ betw y z x ∨ betw z

x y
begin

The following definitions are used to specify axioms in the following locales.

Point p is on line ab.
definition on-line where

on-line p a b ←→ betw p a b ∨ betw a p b ∨ betw a b p

Point p is on ray ab.
definition on-ray where

on-ray p a b ←→ betw a p b ∨ betw a b p

Point p is inside angle abc.
definition in-angle where

in-angle p a b c ←→ b 6= a ∧ b 6= c ∧ p 6= b ∧ (∃ x. betw a x c ∧ x 6= a ∧ x 6= c ∧ on-ray p b x)

Ray rarb meets the line lalb.
definition ray-meets-line where

ray-meets-line ra rb la lb ←→ (∃ x. on-ray x ra rb ∧ on-line x la lb)

end

The second locales adds the negation of Euclid’s axiom and limiting parallels and corresponds to hyperbolic
geometry.
locale TarskiHyperbolic = TarskiAbsolute +

assumes euclid-negation: ∃ a b c d t. betw a d t ∧ betw b d c ∧ a 6= d ∧ (∀ x y. betw a b x ∧ betw a c y −→ ¬ betw
x t y)

assumes limiting-parallels: ¬ on-line a x1 x2 =⇒
(∃ a1 a2 . ¬ on-line a a1 a2 ∧

¬ ray-meets-line a a1 x1 x2 ∧
¬ ray-meets-line a a2 x1 x2 ∧
(∀ a ′. in-angle a ′ a1 a a2 −→ ray-meets-line a a ′ x1 x2 ))
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The third locale adds the continuity axiom and corresponds to elementary hyperbolic geometry.
locale ElementaryTarskiHyperbolic = TarskiHyperbolic +

assumes continuity: [[∃ a. ∀ x. ∀ y. ϕ x ∧ ψ y −→ betw a x y]] =⇒ ∃ b. ∀ x. ∀ y. ϕ x ∧ ψ y −→ betw x b y

end

4 H-lines in the Poincaré model
theory Poincare-Lines

imports Complex-Geometry.Unit-Circle-Preserving-Moebius Complex-Geometry.Circlines-Angle
begin

4.1 Definition and basic properties of h-lines
H-lines in the Poincaré model are either line segments passing trough the origin or segments (within the unit
disc) of circles that are perpendicular to the unit circle. Algebraically these are circlines that are represented
by Hermitean matrices of the form

H =
(
A B
B A

)
,

for A ∈ R, and B ∈ C, and |B|2 > A2, where the circline equation is the usual one: z∗Hz = 0, for homogenous
coordinates z.
definition is-poincare-line-cmat :: complex-mat ⇒ bool where

[simp]: is-poincare-line-cmat H ←→
(let (A, B, C , D) = H

in hermitean (A, B, C , D) ∧ A = D ∧ (cmod B)2 > (cmod A)2)

lift-definition is-poincare-line-clmat :: circline-mat ⇒ bool is is-poincare-line-cmat
〈proof 〉

We introduce the predicate that checks if a given complex matrix is a matrix of a h-line in the Poincaré model,
and then by means of the lifting package lift it to the type of non-zero Hermitean matrices, and then to circlines
(that are equivalence classes of such matrices).
lift-definition is-poincare-line :: circline ⇒ bool is is-poincare-line-clmat
〈proof 〉

lemma is-poincare-line-mk-circline:
assumes (A, B, C , D) ∈ hermitean-nonzero
shows is-poincare-line (mk-circline A B C D) ←→ (cmod B)2 > (cmod A)2 ∧ A = D
〈proof 〉

Abstract characterisation of is-poincare-line predicate: H-lines in the Poincaré model are real circlines (circlines
with the negative determinant) perpendicular to the unit circle.
lemma is-poincare-line-iff :

shows is-poincare-line H ←→ circline-type H = −1 ∧ perpendicular H unit-circle
〈proof 〉

The x-axis is an h-line.
lemma is-poincare-line-x-axis [simp]:

shows is-poincare-line x-axis
〈proof 〉

The unit-circle is not an h-line.
lemma not-is-poincare-line-unit-circle [simp]:

shows ¬ is-poincare-line unit-circle
〈proof 〉

4.1.1 Collinear points

Points are collinear if they all belong to an h-line.
definition poincare-collinear :: complex-homo set ⇒ bool where

poincare-collinear S ←→ (∃ p. is-poincare-line p ∧ S ⊆ circline-set p)
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4.1.2 H-lines and inversion

Every h-line in the Poincaré model contains the inverse (wrt. the unit circle) of each of its points (note that at
most one of them belongs to the unit disc).
lemma is-poincare-line-inverse-point:

assumes is-poincare-line H u ∈ circline-set H
shows inversion u ∈ circline-set H
〈proof 〉

Every h-line in the Poincaré model and is invariant under unit circle inversion.
lemma circline-inversion-poincare-line:

assumes is-poincare-line H
shows circline-inversion H = H
〈proof 〉

4.1.3 Classification of h-lines into Euclidean segments and circles

If an h-line contains zero, than it also contains infinity (the inverse point of zero) and is by definition an
Euclidean line.
lemma is-poincare-line-trough-zero-trough-infty [simp]:

assumes is-poincare-line l and 0 h ∈ circline-set l
shows ∞h ∈ circline-set l
〈proof 〉

lemma is-poincare-line-trough-zero-is-line:
assumes is-poincare-line l and 0 h ∈ circline-set l
shows is-line l
〈proof 〉

If an h-line does not contain zero, than it also does not contain infinity (the inverse point of zero) and is by
definition an Euclidean circle.
lemma is-poincare-line-not-trough-zero-not-trough-infty [simp]:

assumes is-poincare-line l
assumes 0 h /∈ circline-set l
shows ∞h /∈ circline-set l
〈proof 〉

lemma is-poincare-line-not-trough-zero-is-circle:
assumes is-poincare-line l 0 h /∈ circline-set l
shows is-circle l
〈proof 〉

4.1.4 Points on h-line

Each h-line in the Poincaré model contains at least two different points within the unit disc.

First we prove an auxiliary lemma.
lemma ex-is-poincare-line-points ′:

assumes i12 : i1 ∈ circline-set H ∩ unit-circle-set
i2 ∈ circline-set H ∩ unit-circle-set
i1 6= i2

assumes a: a ∈ circline-set H a /∈ unit-circle-set
shows ∃ b. b 6= i1 ∧ b 6= i2 ∧ b 6= a ∧ b 6= inversion a ∧ b ∈ circline-set H
〈proof 〉

Now we can prove the statement.
lemma ex-is-poincare-line-points:

assumes is-poincare-line H
shows ∃ u v. u ∈ unit-disc ∧ v ∈ unit-disc ∧ u 6= v ∧ {u, v} ⊆ circline-set H
〈proof 〉
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4.1.5 H-line uniqueness

There is no more than one h-line that contains two different h-points (in the disc).
lemma unique-is-poincare-line:

assumes in-disc: u ∈ unit-disc v ∈ unit-disc u 6= v
assumes pl: is-poincare-line l1 is-poincare-line l2
assumes on-l: {u, v} ⊆ circline-set l1 ∩ circline-set l2
shows l1 = l2
〈proof 〉

For the rest of our formalization it is often useful to consider points on h-lines that are not within the unit disc.
Many lemmas in the rest of this section will have such generalizations.

There is no more than one h-line that contains two different and not mutually inverse points (not necessary in
the unit disc).
lemma unique-is-poincare-line-general:

assumes different: u 6= v u 6= inversion v
assumes pl: is-poincare-line l1 is-poincare-line l2
assumes on-l: {u, v} ⊆ circline-set l1 ∩ circline-set l2
shows l1 = l2
〈proof 〉

The only h-line that goes trough zero and a non-zero point on the x-axis is the x-axis.
lemma is-poincare-line-0-real-is-x-axis:

assumes is-poincare-line l 0 h ∈ circline-set l
x ∈ circline-set l ∩ circline-set x-axis x 6= 0 h x 6= ∞h

shows l = x-axis
〈proof 〉

The only h-line that goes trough zero and a non-zero point on the y-axis is the y-axis.
lemma is-poincare-line-0-imag-is-y-axis:

assumes is-poincare-line l 0 h ∈ circline-set l
y ∈ circline-set l ∩ circline-set y-axis y 6= 0 h y 6= ∞h

shows l = y-axis
〈proof 〉

4.1.6 H-isometries preserve h-lines

H-isometries are defined as homographies (actions of Möbius transformations) and antihomographies (compo-
sitions of actions of Möbius transformations with conjugation) that fix the unit disc (map it onto itself). They
also map h-lines onto h-lines

We prove a bit more general lemma that states that all Möbius transformations that fix the unit circle (not
necessary the unit disc) map h-lines onto h-lines
lemma unit-circle-fix-preserve-is-poincare-line [simp]:

assumes unit-circle-fix M is-poincare-line H
shows is-poincare-line (moebius-circline M H )
〈proof 〉

lemma unit-circle-fix-preserve-is-poincare-line-iff [simp]:
assumes unit-circle-fix M
shows is-poincare-line (moebius-circline M H ) ←→ is-poincare-line H
〈proof 〉

Since h-lines are preserved by transformations that fix the unit circle, so is collinearity.
lemma unit-disc-fix-preserve-poincare-collinear [simp]:

assumes unit-circle-fix M poincare-collinear A
shows poincare-collinear (moebius-pt M ‘ A)
〈proof 〉

lemma unit-disc-fix-preserve-poincare-collinear-iff [simp]:
assumes unit-circle-fix M
shows poincare-collinear (moebius-pt M ‘ A) ←→ poincare-collinear A
〈proof 〉
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lemma unit-disc-fix-preserve-poincare-collinear3 [simp]:
assumes unit-disc-fix M
shows poincare-collinear {moebius-pt M u, moebius-pt M v, moebius-pt M w} ←→

poincare-collinear {u, v, w}
〈proof 〉

Conjugation is also an h-isometry and it preserves h-lines.
lemma is-poincare-line-conjugate-circline [simp]:

assumes is-poincare-line H
shows is-poincare-line (conjugate-circline H )
〈proof 〉

lemma is-poincare-line-conjugate-circline-iff [simp]:
shows is-poincare-line (conjugate-circline H ) ←→ is-poincare-line H
〈proof 〉

Since h-lines are preserved by conjugation, so is collinearity.
lemma conjugate-preserve-poincare-collinear [simp]:

assumes poincare-collinear A
shows poincare-collinear (conjugate ‘ A)
〈proof 〉

lemma conjugate-conjugate [simp]: conjugate ‘ conjugate ‘ A = A
〈proof 〉

lemma conjugate-preserve-poincare-collinear-iff [simp]:
shows poincare-collinear (conjugate ‘ A) ←→ poincare-collinear A
〈proof 〉

4.1.7 Mapping h-lines to x-axis

Each h-line in the Poincaré model can be mapped onto the x-axis (by a unit-disc preserving Möbius transfor-
mation).
lemma ex-unit-disc-fix-is-poincare-line-to-x-axis:

assumes is-poincare-line l
shows ∃ M . unit-disc-fix M ∧ moebius-circline M l = x-axis
〈proof 〉

When proving facts about h-lines, without loss of generality it can be assumed that h-line is the x-axis (if the
property being proved is invariant under Möbius transformations that fix the unit disc).
lemma wlog-line-x-axis:

assumes is-line: is-poincare-line H
assumes x-axis: P x-axis
assumes preserves:

∧
M . [[unit-disc-fix M ; P (moebius-circline M H )]] =⇒ P H

shows P H
〈proof 〉

4.2 Construction of the h-line between the two given points
Next we show how to construct the (unique) h-line between the two given points in the Poincaré model

Geometrically, h-line can be constructed by finding the inverse point of one of the two points and by constructing
the circle (or line) trough it and the two given points.
Algebraically, for two given points u and v in C, the h-line matrix coefficients can be A = i · (uv − vu) and
B = i · (v(|u|2 + 1)− u(|v|2 + 1)).
We need to extend this to homogenous coordinates. There are several degenerate cases.
- If {z, w} = {0h,∞h} then there is no unique h-line (any line trough zero is an h-line).
- If z and w are mutually inverse, then the construction fails (both geometric and algebraic).
- If z and w are different points on the unit circle, then the standard construction fails (only geometric).
- None of this problematic cases occur when z and w are inside the unit disc.
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We express the construction algebraically, and construct the Hermitean circline matrix for the two points given
in homogenous coordinates. It works correctly in all cases except when the two points are the same or are
mutually inverse.
definition mk-poincare-line-cmat :: real ⇒ complex ⇒ complex-mat where

[simp]: mk-poincare-line-cmat A B = (cor A, B, cnj B, cor A)

lemma mk-poincare-line-cmat-zero-iff :
mk-poincare-line-cmat A B = mat-zero ←→ A = 0 ∧ B = 0
〈proof 〉

lemma mk-poincare-line-cmat-hermitean
[simp]: hermitean (mk-poincare-line-cmat A B)
〈proof 〉

lemma mk-poincare-line-cmat-scale:
cor k ∗sm mk-poincare-line-cmat A B = mk-poincare-line-cmat (k ∗ A) (k ∗ B)
〈proof 〉

definition poincare-line-cvec-cmat :: complex-vec ⇒ complex-vec ⇒ complex-mat where
[simp]: poincare-line-cvec-cmat z w =

(let (z1 , z2 ) = z;
(w1 , w2 ) = w;
nom = w1∗cnj w2∗(z1∗cnj z1 + z2∗cnj z2 ) − z1∗cnj z2∗(w1∗cnj w1 + w2∗cnj w2 );
den = z1∗cnj z2∗cnj w1∗w2 − w1∗cnj w2∗cnj z1∗z2

in if den 6= 0 then
mk-poincare-line-cmat (Re(i∗den)) (i∗nom)

else if z1∗cnj z2 6= 0 then
mk-poincare-line-cmat 0 (i∗z1∗cnj z2 )

else if w1∗cnj w2 6= 0 then
mk-poincare-line-cmat 0 (i∗w1∗cnj w2 )

else
mk-poincare-line-cmat 0 i)

lemma poincare-line-cvec-cmat-AeqD:
assumes poincare-line-cvec-cmat z w = (A, B, C , D)
shows A = D
〈proof 〉

lemma poincare-line-cvec-cmat-hermitean [simp]:
shows hermitean (poincare-line-cvec-cmat z w)
〈proof 〉

lemma poincare-line-cvec-cmat-nonzero [simp]:
assumes z 6= vec-zero w 6= vec-zero
shows poincare-line-cvec-cmat z w 6= mat-zero
〈proof 〉

lift-definition poincare-line-hcoords-clmat :: complex-homo-coords⇒ complex-homo-coords⇒ circline-mat is poincare-line-cvec-cmat
〈proof 〉

lift-definition poincare-line :: complex-homo ⇒ complex-homo ⇒ circline is poincare-line-hcoords-clmat
〈proof 〉

4.2.1 Correctness of the construction

For finite points, our definition matches the classic algebraic definition for points in C (given in ordinary, not
homogenous coordinates).
lemma poincare-line-non-homogenous:

assumes u 6= ∞h v 6= ∞h u 6= v u 6= inversion v
shows let u ′ = to-complex u; v ′ = to-complex v;

A = i ∗ (u ′ ∗ cnj v ′ − v ′ ∗ cnj u ′);
B = i ∗ (v ′ ∗ ((cmod u ′)2 + 1 ) − u ′ ∗ ((cmod v ′)2 + 1 ))

in poincare-line u v = mk-circline A B (cnj B) A
〈proof 〉
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Our construction (in homogenous coordinates) always yields an h-line that contain two starting points (this
also holds for all degenerate cases except when points are the same).
lemma poincare-line [simp]:

assumes z 6= w
shows on-circline (poincare-line z w) z

on-circline (poincare-line z w) w
〈proof 〉

lemma poincare-line-circline-set [simp]:
assumes z 6= w
shows z ∈ circline-set (poincare-line z w)

w ∈ circline-set (poincare-line z w)
〈proof 〉

When the points are different, the constructed line matrix always has a negative determinant
lemma poincare-line-type:

assumes z 6= w
shows circline-type (poincare-line z w) = −1
〈proof 〉

The constructed line is an h-line in the Poincaré model (in all cases when the two points are different)
lemma is-poincare-line-poincare-line [simp]:

assumes z 6= w
shows is-poincare-line (poincare-line z w)
〈proof 〉

When the points are different, the constructed h-line between two points also contains their inverses
lemma poincare-line-inversion:

assumes z 6= w
shows on-circline (poincare-line z w) (inversion z)

on-circline (poincare-line z w) (inversion w)
〈proof 〉

When the points are different, the onstructed h-line between two points contains the inverse of its every point
lemma poincare-line-inversion-full:

assumes u 6= v
assumes on-circline (poincare-line u v) x
shows on-circline (poincare-line u v) (inversion x)
〈proof 〉

4.2.2 Existence of h-lines

There is an h-line trough every point in the Poincaré model
lemma ex-poincare-line-one-point:

shows ∃ l. is-poincare-line l ∧ z ∈ circline-set l
〈proof 〉

lemma poincare-collinear-singleton [simp]:
assumes u ∈ unit-disc
shows poincare-collinear {u}
〈proof 〉

There is an h-line trough every two points in the Poincaré model
lemma ex-poincare-line-two-points:

assumes z 6= w
shows ∃ l. is-poincare-line l ∧ z ∈ circline-set l ∧ w ∈ circline-set l
〈proof 〉

lemma poincare-collinear-doubleton [simp]:
assumes u ∈ unit-disc v ∈ unit-disc
shows poincare-collinear {u, v}
〈proof 〉
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4.2.3 Uniqueness of h-lines

The only h-line between two points is the one obtained by the line-construction.

First we show this only for two different points inside the disc.
lemma unique-poincare-line:

assumes in-disc: u 6= v u ∈ unit-disc v ∈ unit-disc
assumes on-l: u ∈ circline-set l v ∈ circline-set l is-poincare-line l
shows l = poincare-line u v
〈proof 〉

The assumption that the points are inside the disc can be relaxed.
lemma unique-poincare-line-general:

assumes in-disc: u 6= v u 6= inversion v
assumes on-l: u ∈ circline-set l v ∈ circline-set l is-poincare-line l
shows l = poincare-line u v
〈proof 〉

The explicit line construction enables us to prove that there exists a unique h-line through any given two
h-points (uniqueness part was already shown earlier).

First we show this only for two different points inside the disc.
lemma ex1-poincare-line:

assumes u 6= v u ∈ unit-disc v ∈ unit-disc
shows ∃ ! l. is-poincare-line l ∧ u ∈ circline-set l ∧ v ∈ circline-set l
〈proof 〉

The assumption that the points are in the disc can be relaxed.
lemma ex1-poincare-line-general:

assumes u 6= v u 6= inversion v
shows ∃ ! l. is-poincare-line l ∧ u ∈ circline-set l ∧ v ∈ circline-set l
〈proof 〉

4.2.4 Some consequences of line uniqueness

H-line uv is the same as the h-line vu.
lemma poincare-line-sym:

assumes u ∈ unit-disc v ∈ unit-disc u 6= v
shows poincare-line u v = poincare-line v u
〈proof 〉

lemma poincare-line-sym-general:
assumes u 6= v u 6= inversion v
shows poincare-line u v = poincare-line v u
〈proof 〉

Each h-line is the h-line constructed out of its two arbitrary different points.
lemma ex-poincare-line-points:

assumes is-poincare-line H
shows ∃ u v. u ∈ unit-disc ∧ v ∈ unit-disc ∧ u 6= v ∧ H = poincare-line u v
〈proof 〉

If an h-line contains two different points on x-axis/y-axis then it is the x-axis/y-axis.
lemma poincare-line-0-real-is-x-axis:

assumes x ∈ circline-set x-axis x 6= 0 h x 6= ∞h

shows poincare-line 0 h x = x-axis
〈proof 〉

lemma poincare-line-0-imag-is-y-axis:
assumes y ∈ circline-set y-axis y 6= 0 h y 6= ∞h

shows poincare-line 0 h y = y-axis
〈proof 〉

lemma poincare-line-x-axis:
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assumes x ∈ unit-disc y ∈ unit-disc x ∈ circline-set x-axis y ∈ circline-set x-axis x 6= y
shows poincare-line x y = x-axis
〈proof 〉

lemma poincare-line-minus-one-one [simp]:
shows poincare-line (of-complex (−1 )) (of-complex 1 ) = x-axis
〈proof 〉

4.2.5 Transformations of constructed lines

Unit dics preserving Möbius transformations preserve the h-line construction
lemma unit-disc-fix-preserve-poincare-line [simp]:

assumes unit-disc-fix M u ∈ unit-disc v ∈ unit-disc u 6= v
shows poincare-line (moebius-pt M u) (moebius-pt M v) = moebius-circline M (poincare-line u v)
〈proof 〉

Conjugate preserve the h-line construction
lemma conjugate-preserve-poincare-line [simp]:

assumes u ∈ unit-disc v ∈ unit-disc u 6= v
shows poincare-line (conjugate u) (conjugate v) = conjugate-circline (poincare-line u v)
〈proof 〉

4.2.6 Collinear points and h-lines
lemma poincare-collinear3-poincare-line-general:

assumes poincare-collinear {a, a1 , a2} a1 6= a2 a1 6= inversion a2
shows a ∈ circline-set (poincare-line a1 a2 )
〈proof 〉

lemma poincare-line-poincare-collinear3-general:
assumes a ∈ circline-set (poincare-line a1 a2 ) a1 6= a2
shows poincare-collinear {a, a1 , a2}
〈proof 〉

lemma poincare-collinear3-poincare-lines-equal-general:
assumes poincare-collinear {a, a1 , a2} a 6= a1 a 6= a2 a 6= inversion a1 a 6= inversion a2
shows poincare-line a a1 = poincare-line a a2
〈proof 〉

4.2.7 Points collinear with 0 h

lemma poincare-collinear-zero-iff :
assumes of-complex y ′ ∈ unit-disc and of-complex z ′ ∈ unit-disc and

y ′ 6= z ′ and y ′ 6= 0 and z ′ 6= 0
shows poincare-collinear {0 h, of-complex y ′, of-complex z ′} ←→

y ′∗cnj z ′ = cnj y ′∗z ′ (is ?lhs ←→ ?rhs)
〈proof 〉

lemma poincare-collinear-zero-polar-form:
assumes poincare-collinear {0 h, of-complex x, of-complex y} and

x 6= 0 and y 6= 0 and of-complex x ∈ unit-disc and of-complex y ∈ unit-disc
shows ∃ ϕ rx ry. x = cor rx ∗ cis ϕ ∧ y = cor ry ∗ cis ϕ ∧ rx 6= 0 ∧ ry 6= 0
〈proof 〉

end
theory Poincare-Lines-Ideal-Points
imports Poincare-Lines
begin

4.3 Ideal points of h-lines
Ideal points of an h-line are points where the h-line intersects the unit disc.
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4.3.1 Calculation of ideal points

We decided to define ideal points constructively, i.e., we calculate the coordinates of ideal points for a given
h-line explicitly. Namely, if the h-line is determined by A and B, the two intersection points are

B

|B|2
(
−A± i ·

√
|B|2 −A2

)
.

definition calc-ideal-point1-cvec :: complex ⇒ complex ⇒ complex-vec where
[simp]: calc-ideal-point1-cvec A B =

(let discr = Re ((cmod B)2 − (Re A)2) in
(B∗(−A − i∗sqrt(discr)), (cmod B)2))

definition calc-ideal-point2-cvec :: complex ⇒ complex ⇒ complex-vec where
[simp]: calc-ideal-point2-cvec A B =

(let discr = Re ((cmod B)2 − (Re A)2) in
(B∗(−A + i∗sqrt(discr)), (cmod B)2))

definition calc-ideal-points-cmat-cvec :: complex-mat ⇒ complex-vec set where
[simp]: calc-ideal-points-cmat-cvec H =

(if is-poincare-line-cmat H then
let (A, B, C , D) = H
in {calc-ideal-point1-cvec A B, calc-ideal-point2-cvec A B}

else
{(−1 , 1 ), (1 , 1 )})

lift-definition calc-ideal-points-clmat-hcoords :: circline-mat ⇒ complex-homo-coords set is calc-ideal-points-cmat-cvec
〈proof 〉

lift-definition calc-ideal-points :: circline ⇒ complex-homo set is calc-ideal-points-clmat-hcoords
〈proof 〉

Correctness of the calculation

We show that for every h-line its two calculated ideal points are different and are on the intersection of that
line and the unit circle.

Calculated ideal points are on the unit circle
lemma calc-ideal-point-1-unit:

assumes is-real A (cmod B)2 > (cmod A)2

assumes (z1 , z2 ) = calc-ideal-point1-cvec A B
shows z1 ∗ cnj z1 = z2 ∗ cnj z2
〈proof 〉

lemma calc-ideal-point-2-unit:
assumes is-real A (cmod B)2 > (cmod A)2

assumes (z1 , z2 ) = calc-ideal-point2-cvec A B
shows z1 ∗ cnj z1 = z2 ∗ cnj z2
〈proof 〉

lemma calc-ideal-points-on-unit-circle:
shows ∀ z ∈ calc-ideal-points H . z ∈ circline-set unit-circle
〈proof 〉

Calculated ideal points are on the h-line
lemma calc-ideal-point1-sq:

assumes (z1 , z2 ) = calc-ideal-point1-cvec A B is-real A (cmod B)2 > (cmod A)2

shows z1 ∗ cnj z1 + z2 ∗ cnj z2 = 2 ∗ (B ∗ cnj B)2

〈proof 〉

lemma calc-ideal-point2-sq:
assumes (z1 , z2 ) = calc-ideal-point2-cvec A B is-real A (cmod B)2 > (cmod A)2

shows z1 ∗ cnj z1 + z2 ∗ cnj z2 = 2 ∗ (B ∗ cnj B)2

〈proof 〉

lemma calc-ideal-point1-mix:
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assumes (z1 , z2 ) = calc-ideal-point1-cvec A B is-real A (cmod B)2 > (cmod A)2

shows B ∗ cnj z1 ∗ z2 + cnj B ∗ z1 ∗ cnj z2 = − 2 ∗ A ∗ (B ∗ cnj B)2

〈proof 〉

lemma calc-ideal-point2-mix:
assumes (z1 , z2 ) = calc-ideal-point2-cvec A B is-real A (cmod B)2 > (cmod A)2

shows B ∗ cnj z1 ∗ z2 + cnj B ∗ z1 ∗ cnj z2 = − 2 ∗ A ∗ (B ∗ cnj B)2

〈proof 〉

lemma calc-ideal-point1-on-circline:
assumes (z1 , z2 ) = calc-ideal-point1-cvec A B is-real A (cmod B)2 > (cmod A)2

shows A∗z1∗cnj z1 + B∗cnj z1∗z2 + cnj B∗z1∗cnj z2 + A∗z2∗cnj z2 = 0 (is ?lhs = 0 )
〈proof 〉

lemma calc-ideal-point2-on-circline:
assumes (z1 , z2 ) = calc-ideal-point2-cvec A B is-real A (cmod B)2 > (cmod A)2

shows A∗z1∗cnj z1 + B∗cnj z1∗z2 + cnj B∗z1∗cnj z2 + A∗z2∗cnj z2 = 0 (is ?lhs = 0 )
〈proof 〉

lemma calc-ideal-points-on-circline:
assumes is-poincare-line H
shows ∀ z ∈ calc-ideal-points H . z ∈ circline-set H
〈proof 〉

Calculated ideal points of an h-line are different
lemma calc-ideal-points-cvec-different [simp]:

assumes (cmod B)2 > (cmod A)2 is-real A
shows ¬ (calc-ideal-point1-cvec A B ≈v calc-ideal-point2-cvec A B)
〈proof 〉

lemma calc-ideal-points-different:
assumes is-poincare-line H
shows ∃ i1 ∈ (calc-ideal-points H ). ∃ i2 ∈ (calc-ideal-points H ). i1 6= i2
〈proof 〉

lemma two-calc-ideal-points [simp]:
assumes is-poincare-line H
shows card (calc-ideal-points H ) = 2
〈proof 〉

4.3.2 Ideal points

Next we give a genuine definition of ideal points – these are the intersections of the h-line with the unit circle
definition ideal-points :: circline ⇒ complex-homo set where

ideal-points H = circline-intersection H unit-circle

Ideal points are on the unit circle and on the h-line
lemma ideal-points-on-unit-circle:

shows ∀ z ∈ ideal-points H . z ∈ circline-set unit-circle
〈proof 〉

lemma ideal-points-on-circline:
shows ∀ z ∈ ideal-points H . z ∈ circline-set H
〈proof 〉

For each h-line there are exactly two ideal points
lemma two-ideal-points:

assumes is-poincare-line H
shows card (ideal-points H ) = 2
〈proof 〉

They are exactly the two points that our calculation finds
lemma ideal-points-unique:

assumes is-poincare-line H
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shows ideal-points H = calc-ideal-points H
〈proof 〉

For each h-line we can obtain two different ideal points
lemma obtain-ideal-points:

assumes is-poincare-line H
obtains i1 i2 where i1 6= i2 ideal-points H = {i1 , i2}
〈proof 〉

Ideal points of each h-line constructed from two points in the disc are different than those two points
lemma ideal-points-different:

assumes u ∈ unit-disc v ∈ unit-disc u 6= v
assumes ideal-points (poincare-line u v) = {i1 , i2}
shows i1 6= i2 u 6= i1 u 6= i2 v 6= i1 v 6= i2
〈proof 〉

H-line is uniquely determined by its ideal points
lemma ideal-points-line-unique:

assumes is-poincare-line H ideal-points H = {i1 , i2}
shows H = poincare-line i1 i2
〈proof 〉

Ideal points of some special h-lines

Ideal points of x-axis
lemma ideal-points-x-axis

[simp]: ideal-points x-axis = {of-complex (−1 ), of-complex 1}
〈proof 〉

Ideal points are proportional vectors only if h-line is a line segment passing trough zero
lemma ideal-points-proportional:

assumes is-poincare-line H ideal-points H = {i1 , i2} to-complex i1 = cor k ∗ to-complex i2
shows 0 h ∈ circline-set H
〈proof 〉

Transformations of ideal points

Möbius transformations that fix the unit disc when acting on h-lines map their ideal points to ideal points.
lemma ideal-points-moebius-circline [simp]:

assumes unit-circle-fix M is-poincare-line H
shows ideal-points (moebius-circline M H ) = (moebius-pt M ) ‘ (ideal-points H ) (is ?I ′ = ?M ‘ ?I )
〈proof 〉

lemma ideal-points-poincare-line-moebius [simp]:
assumes unit-disc-fix M u ∈ unit-disc v ∈ unit-disc u 6= v
assumes ideal-points (poincare-line u v) = {i1 , i2}
shows ideal-points (poincare-line (moebius-pt M u) (moebius-pt M v)) = {moebius-pt M i1 , moebius-pt M i2}
〈proof 〉

Conjugation also maps ideal points to ideal points
lemma ideal-points-conjugate [simp]:

assumes is-poincare-line H
shows ideal-points (conjugate-circline H ) = conjugate ‘ (ideal-points H ) (is ?I ′ = ?M ‘ ?I )
〈proof 〉

lemma ideal-points-poincare-line-conjugate [simp]:
assumesu ∈ unit-disc v ∈ unit-disc u 6= v
assumes ideal-points (poincare-line u v) = {i1 , i2}
shows ideal-points (poincare-line (conjugate u) (conjugate v)) = {conjugate i1 , conjugate i2}
〈proof 〉

end
theory Poincare-Distance

imports Poincare-Lines-Ideal-Points Hyperbolic-Functions
begin
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5 H-distance in the Poincaré model
Informally, the h-distance between the two h-points is defined as the absolute value of the logarithm of the cross
ratio between those two points and the two ideal points.
abbreviation Re-cross-ratio where Re-cross-ratio z u v w ≡ Re (to-complex (cross-ratio z u v w))

definition calc-poincare-distance :: complex-homo ⇒ complex-homo ⇒ complex-homo ⇒ complex-homo ⇒ real where
[simp]: calc-poincare-distance u i1 v i2 = abs (ln (Re-cross-ratio u i1 v i2 ))

definition poincare-distance-pred :: complex-homo ⇒ complex-homo ⇒ real ⇒ bool where
[simp]: poincare-distance-pred u v d ←→

(u = v ∧ d = 0 ) ∨ (u 6= v ∧ (∀ i1 i2 . ideal-points (poincare-line u v) = {i1 , i2} −→ d = calc-poincare-distance
u i1 v i2 ))

definition poincare-distance :: complex-homo ⇒ complex-homo ⇒ real where
poincare-distance u v = (THE d. poincare-distance-pred u v d)

We shown that the described cross-ratio is always finite, positive real number.
lemma distance-cross-ratio-real-positive:

assumes u ∈ unit-disc and v ∈ unit-disc and u 6= v
shows ∀ i1 i2 . ideal-points (poincare-line u v) = {i1 , i2} −→

cross-ratio u i1 v i2 6= ∞h ∧ is-real (to-complex (cross-ratio u i1 v i2 )) ∧ Re-cross-ratio u i1 v i2 > 0
(is ?P u v)
〈proof 〉

Next we can show that for every different points from the unit disc there is exactly one number that satisfies
the h-distance predicate.
lemma distance-unique:

assumes u ∈ unit-disc and v ∈ unit-disc
shows ∃ ! d. poincare-distance-pred u v d
〈proof 〉

lemma poincare-distance-satisfies-pred [simp]:
assumes u ∈ unit-disc and v ∈ unit-disc
shows poincare-distance-pred u v (poincare-distance u v)
〈proof 〉

lemma poincare-distance-I :
assumes u ∈ unit-disc and v ∈ unit-disc and u 6= v and ideal-points (poincare-line u v) = {i1 , i2}
shows poincare-distance u v = calc-poincare-distance u i1 v i2
〈proof 〉

lemma poincare-distance-refl [simp]:
assumes u ∈ unit-disc
shows poincare-distance u u = 0
〈proof 〉

Unit disc preserving Möbius transformations preserve h-distance.
lemma unit-disc-fix-preserve-poincare-distance [simp]:

assumes unit-disc-fix M and u ∈ unit-disc and v ∈ unit-disc
shows poincare-distance (moebius-pt M u) (moebius-pt M v) = poincare-distance u v
〈proof 〉

Knowing ideal points for x-axis, we can easily explicitly calculate distances.
lemma poincare-distance-x-axis-x-axis:

assumes x ∈ unit-disc and y ∈ unit-disc and x ∈ circline-set x-axis and y ∈ circline-set x-axis
shows poincare-distance x y =

(let x ′ = to-complex x; y ′ = to-complex y
in abs (ln (Re (((1 + x ′) ∗ (1 − y ′)) / ((1 − x ′) ∗ (1 + y ′))))))

〈proof 〉

lemma poincare-distance-zero-x-axis:
assumes x ∈ unit-disc and x ∈ circline-set x-axis
shows poincare-distance 0 h x = (let x ′ = to-complex x in abs (ln (Re ((1 − x ′) / (1 + x ′)))))
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〈proof 〉

lemma poincare-distance-zero:
assumes x ∈ unit-disc
shows poincare-distance 0 h x = (let x ′ = to-complex x in abs (ln (Re ((1 − cmod x ′) / (1 + cmod x ′))))) (is ?P x)
〈proof 〉

lemma poincare-distance-zero-opposite [simp]:
assumes of-complex z ∈ unit-disc
shows poincare-distance 0 h (of-complex (− z)) = poincare-distance 0 h (of-complex z)
〈proof 〉

5.1 Distance explicit formula
Instead of the h-distance itself, very frequently its hyperbolic cosine is analyzed.
abbreviation cosh-dist u v ≡ cosh (poincare-distance u v)

lemma cosh-poincare-distance-cross-ratio-average:
assumes u ∈ unit-disc v ∈ unit-disc u 6= v ideal-points (poincare-line u v) = {i1 , i2}
shows cosh-dist u v =

((Re-cross-ratio u i1 v i2 ) + (Re-cross-ratio v i1 u i2 )) / 2
〈proof 〉

definition poincare-distance-formula ′ :: complex ⇒ complex ⇒ real where
[simp]: poincare-distance-formula ′ u v = 1 + 2 ∗ ((cmod (u − v))2 / ((1 − (cmod u)2) ∗ (1 − (cmod v)2)))

Next we show that the following formula expresses h-distance between any two h-points (note that the ideal
points do not figure anymore).
definition poincare-distance-formula :: complex ⇒ complex ⇒ real where

[simp]: poincare-distance-formula u v = arcosh (poincare-distance-formula ′ u v)

lemma blaschke-preserve-distance-formula [simp]:
assumes of-complex k ∈ unit-disc u ∈ unit-disc v ∈ unit-disc
shows poincare-distance-formula (to-complex (moebius-pt (blaschke k) u)) (to-complex (moebius-pt (blaschke k) v)) =

poincare-distance-formula (to-complex u) (to-complex v)
〈proof 〉

To prove the equivalence between the h-distance definition and the distance formula, we shall employ the without
loss of generality principle. Therefore, we must show that the distance formula is preserved by h-isometries.

Rotation preserve poincare-distance-formula.
lemma rotation-preserve-distance-formula [simp]:

assumes u ∈ unit-disc v ∈ unit-disc
shows poincare-distance-formula (to-complex (moebius-pt (moebius-rotation ϕ) u)) (to-complex (moebius-pt (moebius-rotation
ϕ) v)) =

poincare-distance-formula (to-complex u) (to-complex v)
〈proof 〉

Unit disc fixing Möbius preserve poincare-distance-formula.
lemma unit-disc-fix-preserve-distance-formula [simp]:

assumes unit-disc-fix M u ∈ unit-disc v ∈ unit-disc
shows poincare-distance-formula (to-complex (moebius-pt M u)) (to-complex (moebius-pt M v)) =

poincare-distance-formula (to-complex u) (to-complex v) (is ?P ′ u v M )
〈proof 〉

The equivalence between the two h-distance representations.
lemma poincare-distance-formula:

assumes u ∈ unit-disc and v ∈ unit-disc
shows poincare-distance u v = poincare-distance-formula (to-complex u) (to-complex v) (is ?P u v)
〈proof 〉

Some additional properties proved easily using the distance formula.

poincare-distance is symmetric.
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lemma poincare-distance-sym:
assumes u ∈ unit-disc and v ∈ unit-disc
shows poincare-distance u v = poincare-distance v u
〈proof 〉

lemma poincare-distance-formula ′-ge-1 :
assumes u ∈ unit-disc and v ∈ unit-disc
shows 1 ≤ poincare-distance-formula ′ (to-complex u) (to-complex v)
〈proof 〉

poincare-distance is non-negative.
lemma poincare-distance-ge0 :

assumes u ∈ unit-disc and v ∈ unit-disc
shows poincare-distance u v ≥ 0
〈proof 〉

lemma cosh-dist:
assumes u ∈ unit-disc and v ∈ unit-disc
shows cosh-dist u v = poincare-distance-formula ′ (to-complex u) (to-complex v)
〈proof 〉

poincare-distance is zero only if the two points are equal.
lemma poincare-distance-eq-0-iff :

assumes u ∈ unit-disc and v ∈ unit-disc
shows poincare-distance u v = 0 ←→ u = v
〈proof 〉

Conjugate preserve poincare-distance-formula.
lemma conjugate-preserve-poincare-distance [simp]:

assumes u ∈ unit-disc and v ∈ unit-disc
shows poincare-distance (conjugate u) (conjugate v) = poincare-distance u v
〈proof 〉

5.2 Existence and uniqueness of points with a given distance
lemma ex-x-axis-poincare-distance-negative ′:

fixes d :: real
assumes d ≥ 0
shows let z = (1 − exp d) / (1 + exp d)

in is-real z ∧ Re z ≤ 0 ∧ Re z > −1 ∧
of-complex z ∈ unit-disc ∧ of-complex z ∈ circline-set x-axis ∧
poincare-distance 0 h (of-complex z) = d

〈proof 〉

lemma ex-x-axis-poincare-distance-negative:
assumes d ≥ 0
shows ∃ z. is-real z ∧ Re z ≤ 0 ∧ Re z > −1 ∧

of-complex z ∈ unit-disc ∧ of-complex z ∈ circline-set x-axis ∧
poincare-distance 0 h (of-complex z) = d (is ∃ z. ?P z)

〈proof 〉

For each real number d there is exactly one point on the positive x-axis such that h-distance between 0 and
that point is d.
lemma unique-x-axis-poincare-distance-negative:

assumes d ≥ 0
shows ∃ ! z. is-real z ∧ Re z ≤ 0 ∧ Re z > −1 ∧

poincare-distance 0 h (of-complex z) = d (is ∃ ! z. ?P z)
〈proof 〉

lemma ex-x-axis-poincare-distance-positive:
assumes d ≥ 0
shows ∃ z. is-real z ∧ Re z ≥ 0 ∧ Re z < 1 ∧

of-complex z ∈ unit-disc ∧ of-complex z ∈ circline-set x-axis ∧
poincare-distance 0 h (of-complex z) = d (is ∃ z. is-real z ∧ Re z ≥ 0 ∧ Re z < 1 ∧ ?P z)

〈proof 〉
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lemma unique-x-axis-poincare-distance-positive:
assumes d ≥ 0
shows ∃ ! z. is-real z ∧ Re z ≥ 0 ∧ Re z < 1 ∧

poincare-distance 0 h (of-complex z) = d (is ∃ ! z. is-real z ∧ Re z ≥ 0 ∧ Re z < 1 ∧ ?P z)
〈proof 〉

Equal distance implies that segments are isometric - this means that congruence could be defined either by two
segments having the same distance or by requiring existence of an isometry that maps one segment to the other.
lemma poincare-distance-eq-ex-moebius:

assumes in-disc: u ∈ unit-disc and v ∈ unit-disc and u ′ ∈ unit-disc and v ′ ∈ unit-disc
assumes poincare-distance u v = poincare-distance u ′ v ′

shows ∃ M . unit-disc-fix M ∧ moebius-pt M u = u ′ ∧ moebius-pt M v = v ′ (is ?P ′ u v u ′ v ′)
〈proof 〉

lemma unique-midpoint-x-axis:
assumes x: is-real x −1 < Re x Re x < 1 and

y: is-real y −1 < Re y Re y < 1 and
x 6= y

shows ∃ ! z. −1 < Re z ∧ Re z < 1 ∧ is-real z ∧ poincare-distance (of-complex z) (of-complex x) = poincare-distance
(of-complex z) (of-complex y) (is ∃ ! z. ?R z (of-complex x) (of-complex y))
〈proof 〉

5.3 Triangle inequality
lemma poincare-distance-formula-zero-sum:

assumes u ∈ unit-disc and v ∈ unit-disc
shows poincare-distance u 0 h + poincare-distance 0 h v =

(let u ′ = cmod (to-complex u); v ′ = cmod (to-complex v)
in arcosh (((1 + u ′2) ∗ (1 + v ′2) + 4 ∗ u ′ ∗ v ′) / ((1 − u ′2) ∗ (1 − v ′2))))

〈proof 〉

lemma poincare-distance-triangle-inequality:
assumes u ∈ unit-disc and v ∈ unit-disc and w ∈ unit-disc
shows poincare-distance u v + poincare-distance v w ≥ poincare-distance u w (is ?P ′ u v w)
〈proof 〉

end
theory Poincare-Circles

imports Poincare-Distance
begin

6 H-circles in the Poincaré model
Circles consist of points that are at the same distance from the center.
definition poincare-circle :: complex-homo ⇒ real ⇒ complex-homo set where

poincare-circle z r = {z ′. z ′ ∈ unit-disc ∧ poincare-distance z z ′ = r}

Each h-circle in the Poincaré model is represented by an Euclidean circle in the model — the center and radius
of that euclidean circle are determined by the following formulas.
definition poincare-circle-euclidean :: complex-homo ⇒ real ⇒ euclidean-circle where

poincare-circle-euclidean z r =
(let R = (cosh r − 1 ) / 2 ;

z ′ = to-complex z;
cz = 1 − (cmod z ′)2;
k = cz ∗ R + 1

in (z ′ / k, cz ∗ sqrt(R ∗ (R + 1 )) / k))

That Euclidean circle has a positive radius and is always fully within the disc.
lemma poincare-circle-in-disc:

assumes r > 0 and z ∈ unit-disc and (ze, re) = poincare-circle-euclidean z r
shows cmod ze < 1 re > 0 ∀ x ∈ circle ze re. cmod x < 1
〈proof 〉
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The connection between the points on the h-circle and its corresponding Euclidean circle.
lemma poincare-circle-is-euclidean-circle:

assumes z ∈ unit-disc and r > 0
shows let (Ze, Re) = poincare-circle-euclidean z r

in of-complex ‘ (circle Ze Re) = poincare-circle z r
〈proof 〉

6.1 Intersection of circles in special positions
Two h-circles centered at the x-axis intersect at mutually conjugate points
lemma intersect-poincare-circles-x-axis:

assumes z: is-real z1 and is-real z2 and r1 > 0 and r2 > 0 and
−1 < Re z1 and Re z1 < 1 and −1 < Re z2 and Re z2 < 1 and
z1 6= z2

assumes x1 : x1 ∈ poincare-circle (of-complex z1 ) r1 ∩ poincare-circle (of-complex z2 ) r2 and
x2 : x2 ∈ poincare-circle (of-complex z1 ) r1 ∩ poincare-circle (of-complex z2 ) r2 and

x1 6= x2
shows x1 = conjugate x2
〈proof 〉

Two h-circles of the same radius centered at mutually conjugate points intersect at the x-axis
lemma intersect-poincare-circles-conjugate-centers:

assumes in-disc: z1 ∈ unit-disc z2 ∈ unit-disc and
z1 6= z2 and z1 = conjugate z2 and r > 0 and
u: u ∈ poincare-circle z1 r ∩ poincare-circle z2 r

shows is-real (to-complex u)
〈proof 〉

6.2 Congruent triangles
For every pair of triangles such that its three pairs of sides are pairwise equal there is an h-isometry (a unit disc
preserving Möbius transform, eventually composed with a conjugation) that maps one triangle onto the other.
lemma unit-disc-fix-f-congruent-triangles:

assumes
in-disc: u ∈ unit-disc v ∈ unit-disc w ∈ unit-disc and
in-disc ′: u ′ ∈ unit-disc v ′ ∈ unit-disc w ′ ∈ unit-disc and
d: poincare-distance u v = poincare-distance u ′ v ′

poincare-distance v w = poincare-distance v ′ w ′

poincare-distance u w = poincare-distance u ′ w ′

shows
∃ M . unit-disc-fix-f M ∧ M u = u ′ ∧ M v = v ′ ∧ M w = w ′

〈proof 〉

end
theory Poincare-Between

imports Poincare-Distance
begin

7 H-betweenness in the Poincaré model
7.1 H-betwenness expressed by a cross-ratio
The point v is h-between u and w if the cross-ratio between the pairs u and w and v and inverse of v is real
and negative.
definition poincare-between :: complex-homo ⇒ complex-homo ⇒ complex-homo ⇒ bool where

poincare-between u v w ←→
u = v ∨ v = w ∨
(let cr = cross-ratio u v w (inversion v)

in is-real (to-complex cr) ∧ Re (to-complex cr) < 0 )
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7.1.1 H-betwenness is preserved by h-isometries

Since they preserve cross-ratio and inversion, h-isometries (unit disc preserving Möbius transformations and
conjugation) preserve h-betweeness.
lemma unit-disc-fix-moebius-preserve-poincare-between [simp]:

assumes unit-disc-fix M and u ∈ unit-disc and v ∈ unit-disc and w ∈ unit-disc
shows poincare-between (moebius-pt M u) (moebius-pt M v) (moebius-pt M w) ←→

poincare-between u v w
〈proof 〉

lemma conjugate-preserve-poincare-between [simp]:
assumes u ∈ unit-disc and v ∈ unit-disc and w ∈ unit-disc
shows poincare-between (conjugate u) (conjugate v) (conjugate w) ←→

poincare-between u v w
〈proof 〉

7.1.2 Some elementary properties of h-betwenness
lemma poincare-between-nonstrict [simp]:

shows poincare-between u u v and poincare-between u v v
〈proof 〉

lemma poincare-between-sandwich:
assumes u ∈ unit-disc and v ∈ unit-disc
assumes poincare-between u v u
shows u = v
〈proof 〉

lemma poincare-between-rev:
assumes u ∈ unit-disc and v ∈ unit-disc and w ∈ unit-disc
shows poincare-between u v w ←→ poincare-between w v u
〈proof 〉

7.1.3 H-betwenness and h-collinearity

Three points can be in an h-between relation only when they are h-collinear.
lemma poincare-between-poincare-collinear [simp]:

assumes in-disc: u ∈ unit-disc v ∈ unit-disc w ∈ unit-disc
assumes betw: poincare-between u v w
shows poincare-collinear {u, v, w}
〈proof 〉

lemma poincare-between-poincare-line-uvz:
assumes u 6= v and u ∈ unit-disc and v ∈ unit-disc and

z ∈ unit-disc and poincare-between u v z
shows z ∈ circline-set (poincare-line u v)
〈proof 〉

lemma poincare-between-poincare-line-uzv:
assumes u 6= v and u ∈ unit-disc and v ∈ unit-disc and

z ∈ unit-disc poincare-between u z v
shows z ∈ circline-set (poincare-line u v)
〈proof 〉

7.1.4 H-betweeness on Euclidean segments

If the three points lie on an h-line that is a Euclidean line (e.g., if it contains zero), h-betweenness can be
characterized much simpler than in the definition.
lemma poincare-between-x-axis-u0v:

assumes is-real u ′ and u ′ 6= 0 and v ′ 6= 0
shows poincare-between (of-complex u ′) 0 h (of-complex v ′) ←→ is-real v ′ ∧ Re u ′ ∗ Re v ′ < 0
〈proof 〉

lemma poincare-between-u0v:
assumes u ∈ unit-disc and v ∈ unit-disc and u 6= 0 h and v 6= 0 h
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shows poincare-between u 0 h v ←→ (∃ k < 0 . to-complex u = cor k ∗ to-complex v) (is ?P u v)
〈proof 〉

lemma poincare-between-u0v-polar-form:
assumes x ∈ unit-disc and y ∈ unit-disc and x 6= 0 h and y 6= 0 h and

to-complex x = cor rx ∗ cis ϕ to-complex y = cor ry ∗ cis ϕ
shows poincare-between x 0 h y ←→ rx ∗ ry < 0 (is ?P x y rx ry)
〈proof 〉

lemma poincare-between-x-axis-0uv:
fixes x y :: real
assumes −1 < x and x < 1 and x 6= 0
assumes −1 < y and y < 1 and y 6= 0
shows poincare-between 0 h (of-complex x) (of-complex y) ←→

(x < 0 ∧ y < 0 ∧ y ≤ x) ∨ (x > 0 ∧ y > 0 ∧ x ≤ y) (is ?lhs ←→ ?rhs)
〈proof 〉

lemma poincare-between-0uv:
assumes u ∈ unit-disc and v ∈ unit-disc and u 6= 0 h and v 6= 0 h

shows poincare-between 0 h u v ←→
(let u ′ = to-complex u; v ′ = to-complex v in Arg u ′ = Arg v ′ ∧ cmod u ′ ≤ cmod v ′) (is ?P u v)

〈proof 〉

lemma poincare-between-y-axis-0uv:
fixes x y :: real
assumes −1 < x and x < 1 and x 6= 0
assumes −1 < y and y < 1 and y 6= 0
shows poincare-between 0 h (of-complex (i ∗ x)) (of-complex (i ∗ y)) ←→

(x < 0 ∧ y < 0 ∧ y ≤ x) ∨ (x > 0 ∧ y > 0 ∧ x ≤ y) (is ?lhs ←→ ?rhs)
〈proof 〉

lemma poincare-between-x-axis-uvw:
fixes x y z :: real
assumes −1 < x and x < 1
assumes −1 < y and y < 1 and y 6= x
assumes −1 < z and z < 1 and z 6= x
shows poincare-between (of-complex x) (of-complex y) (of-complex z) ←→

(y < x ∧ z < x ∧ z ≤ y) ∨ (y > x ∧ z > x ∧ y ≤ z) (is ?lhs ←→ ?rhs)
〈proof 〉

7.1.5 H-betweenness and h-collinearity

For three h-collinear points at least one of the three possible h-betweeness relations must hold.
lemma poincare-collinear3-between:

assumes u ∈ unit-disc and v ∈ unit-disc and w ∈ unit-disc
assumes poincare-collinear {u, v, w}
shows poincare-between u v w ∨ poincare-between u w v ∨ poincare-between v u w (is ?P ′ u v w)
〈proof 〉

lemma poincare-collinear3-iff :
assumes u ∈ unit-disc v ∈ unit-disc w ∈ unit-disc
shows poincare-collinear {u, v, w} ←→ poincare-between u v w ∨ poincare-between v u w ∨ poincare-between v w u
〈proof 〉

7.2 Some properties of betweenness
lemma poincare-between-transitivity:

assumes a ∈ unit-disc and x ∈ unit-disc and b ∈ unit-disc and y ∈ unit-disc and
poincare-between a x b and poincare-between a b y

shows poincare-between x b y
〈proof 〉

7.3 Poincare between - sum distances
Another possible definition of the h-betweenness relation is given in terms of h-distances between pairs of points.
We prove it as a characterization equivalent to our cross-ratio based definition.
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lemma poincare-between-sum-distances-x-axis-u0v:
assumes of-complex u ′ ∈ unit-disc of-complex v ′ ∈ unit-disc
assumes is-real u ′ u ′ 6= 0 v ′ 6= 0
shows poincare-distance (of-complex u ′) 0 h + poincare-distance 0 h (of-complex v ′) = poincare-distance (of-complex

u ′) (of-complex v ′) ←→
is-real v ′ ∧ Re u ′ ∗ Re v ′ < 0 (is ?P u ′ v ′ ←→ ?Q u ′ v ′)

〈proof 〉

Different proof of the previous theorem relying on the cross-ratio definition, and not the distance formula. We
suppose that this could be also used to prove the triangle inequality.
lemma poincare-between-sum-distances-x-axis-u0v-different-proof :

assumes of-complex u ′ ∈ unit-disc of-complex v ′ ∈ unit-disc
assumes is-real u ′ u ′ 6= 0 v ′ 6= 0 is-real v ′

shows poincare-distance (of-complex u ′) 0 h + poincare-distance 0 h (of-complex v ′) = poincare-distance (of-complex
u ′) (of-complex v ′) ←→

Re u ′ ∗ Re v ′ < 0 (is ?P u ′ v ′ ←→ ?Q u ′ v ′)
〈proof 〉

lemma poincare-between-sum-distances:
assumes u ∈ unit-disc and v ∈ unit-disc and w ∈ unit-disc
shows poincare-between u v w ←→

poincare-distance u v + poincare-distance v w = poincare-distance u w (is ?P ′ u v w)
〈proof 〉

7.4 Some more properties of h-betweenness.
Some lemmas proved earlier are proved almost directly using the sum of distances characterization.
lemma unit-disc-fix-moebius-preserve-poincare-between ′:

assumes unit-disc-fix M and u ∈ unit-disc and v ∈ unit-disc and w ∈ unit-disc
shows poincare-between (moebius-pt M u) (moebius-pt M v) (moebius-pt M w) ←→

poincare-between u v w
〈proof 〉

lemma conjugate-preserve-poincare-between ′:
assumes u ∈ unit-disc v ∈ unit-disc w ∈ unit-disc
shows poincare-between (conjugate u) (conjugate v) (conjugate w) ←→ poincare-between u v w
〈proof 〉

There is a unique point on a ray on the given distance from the given starting point
lemma unique-poincare-distance-on-ray:

assumes d ≥ 0 u 6= v u ∈ unit-disc v ∈ unit-disc
assumes y ∈ unit-disc poincare-distance u y = d poincare-between u v y
assumes z ∈ unit-disc poincare-distance u z = d poincare-between u v z
shows y = z
〈proof 〉

end
theory Poincare-Lines-Axis-Intersections

imports Poincare-Between
begin

8 Intersection of h-lines with the x-axis in the Poincaré model
8.1 Betweeness of x-axis intersection
The intersection point of the h-line determined by points u and v and the x-axis is between u and v, then u
and v are in the opposite half-planes (one must be in the upper, and the other one in the lower half-plane).
lemma poincare-between-x-axis-intersection:

assumes u ∈ unit-disc and v ∈ unit-disc and z ∈ unit-disc and u 6= v
assumes u /∈ circline-set x-axis and v /∈ circline-set x-axis
assumes z ∈ circline-set (poincare-line u v) ∩ circline-set x-axis
shows poincare-between u z v ←→ Arg (to-complex u) ∗ Arg (to-complex v) < 0
〈proof 〉
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8.2 Check if an h-line intersects the x-axis
lemma x-axis-intersection-equation:

assumes
H = mk-circline A B C D and
(A, B, C , D) ∈ hermitean-nonzero

shows of-complex z ∈ circline-set x-axis ∩ circline-set H ←→
A∗z2 + 2∗Re B∗z + D = 0 ∧ is-real z (is ?lhs ←→ ?rhs)

〈proof 〉

Check if an h-line intersects x-axis within the unit disc - this could be generalized to checking if an arbitrary
circline intersects the x-axis, but we do not need that.
definition intersects-x-axis-cmat :: complex-mat ⇒ bool where

[simp]: intersects-x-axis-cmat H = (let (A, B, C , D) = H in A = 0 ∨ (Re B)2 > (Re A)2)

lift-definition intersects-x-axis-clmat :: circline-mat ⇒ bool is intersects-x-axis-cmat
〈proof 〉

lift-definition intersects-x-axis :: circline ⇒ bool is intersects-x-axis-clmat
〈proof 〉

lemma intersects-x-axis-mk-circline:
assumes is-real A and A 6= 0 ∨ B 6= 0
shows intersects-x-axis (mk-circline A B (cnj B) A) ←→ A = 0 ∨ (Re B)2 > (Re A)2

〈proof 〉

lemma intersects-x-axis-iff :
assumes is-poincare-line H
shows (∃ x ∈ unit-disc. x ∈ circline-set H ∩ circline-set x-axis) ←→ intersects-x-axis H
〈proof 〉

8.3 Check if a Poincaré line intersects the y-axis
definition intersects-y-axis-cmat :: complex-mat ⇒ bool where

[simp]: intersects-y-axis-cmat H = (let (A, B, C , D) = H in A = 0 ∨ (Im B)2 > (Re A)2)

lift-definition intersects-y-axis-clmat :: circline-mat ⇒ bool is intersects-y-axis-cmat
〈proof 〉

lift-definition intersects-y-axis :: circline ⇒ bool is intersects-y-axis-clmat
〈proof 〉

lemma intersects-x-axis-intersects-y-axis [simp]:
shows intersects-x-axis (moebius-circline (moebius-rotation (pi/2 )) H ) ←→ intersects-y-axis H
〈proof 〉

lemma intersects-y-axis-iff :
assumes is-poincare-line H
shows (∃ y ∈ unit-disc. y ∈ circline-set H ∩ circline-set y-axis) ←→ intersects-y-axis H (is ?lhs ←→ ?rhs)
〈proof 〉

8.4 Intersection point of a Poincaré line with the x-axis in the unit disc
definition calc-x-axis-intersection-cvec :: complex ⇒ complex ⇒ complex-vec where
[simp]: calc-x-axis-intersection-cvec A B =

(let discr = (Re B)2 − (Re A)2 in
(−Re(B) + sgn (Re B) ∗ sqrt(discr), A))

definition calc-x-axis-intersection-cmat-cvec :: complex-mat ⇒ complex-vec where [simp]:
calc-x-axis-intersection-cmat-cvec H =

(let (A, B, C , D) = H in
if A 6= 0 then

calc-x-axis-intersection-cvec A B
else

(0 , 1 )

24



)

lift-definition calc-x-axis-intersection-clmat-hcoords :: circline-mat ⇒ complex-homo-coords is calc-x-axis-intersection-cmat-cvec
〈proof 〉

lift-definition calc-x-axis-intersection :: circline ⇒ complex-homo is calc-x-axis-intersection-clmat-hcoords
〈proof 〉

lemma calc-x-axis-intersection-in-unit-disc:
assumes is-poincare-line H intersects-x-axis H
shows calc-x-axis-intersection H ∈ unit-disc
〈proof 〉

lemma calc-x-axis-intersection:
assumes is-poincare-line H and intersects-x-axis H
shows calc-x-axis-intersection H ∈ circline-set H ∩ circline-set x-axis
〈proof 〉

lemma unique-calc-x-axis-intersection:
assumes is-poincare-line H and H 6= x-axis
assumes x ∈ unit-disc and x ∈ circline-set H ∩ circline-set x-axis
shows x = calc-x-axis-intersection H
〈proof 〉

8.5 Check if an h-line intersects the positive part of the x-axis
definition intersects-x-axis-positive-cmat :: complex-mat ⇒ bool where

[simp]: intersects-x-axis-positive-cmat H = (let (A, B, C , D) = H in Re A 6= 0 ∧ Re B / Re A < −1 )

lift-definition intersects-x-axis-positive-clmat :: circline-mat ⇒ bool is intersects-x-axis-positive-cmat
〈proof 〉

lift-definition intersects-x-axis-positive :: circline ⇒ bool is intersects-x-axis-positive-clmat
〈proof 〉

lemma intersects-x-axis-positive-mk-circline:
assumes is-real A and A 6= 0 ∨ B 6= 0
shows intersects-x-axis-positive (mk-circline A B (cnj B) A) ←→ Re B / Re A < −1
〈proof 〉

lemma intersects-x-axis-positive-intersects-x-axis [simp]:
assumes intersects-x-axis-positive H
shows intersects-x-axis H
〈proof 〉

lemma add-less-abs-positive-iff :
fixes a b :: real
assumes abs b < abs a
shows a + b > 0 ←→ a > 0
〈proof 〉

lemma calc-x-axis-intersection-positive-abs ′:
fixes A B :: real
assumes B2 > A2 and A 6= 0
shows abs (sgn(B) ∗ sqrt(B2 − A2) / A) < abs(−B/A)
〈proof 〉

lemma calc-intersect-x-axis-positive-lemma:
assumes B2 > A2 and A 6= 0
shows (−B + sgn B ∗ sqrt(B2 − A2)) / A > 0 ←→ −B/A > 1
〈proof 〉

lemma intersects-x-axis-positive-iff ′:
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assumes is-poincare-line H
shows intersects-x-axis-positive H ←→

calc-x-axis-intersection H ∈ unit-disc ∧ calc-x-axis-intersection H ∈ circline-set H ∩ positive-x-axis (is ?lhs ←→
?rhs)
〈proof 〉

lemma intersects-x-axis-positive-iff :
assumes is-poincare-line H and H 6= x-axis
shows intersects-x-axis-positive H ←→

(∃ x. x ∈ unit-disc ∧ x ∈ circline-set H ∩ positive-x-axis) (is ?lhs ←→ ?rhs)
〈proof 〉

8.6 Check if an h-line intersects the positive part of the y-axis
definition intersects-y-axis-positive-cmat :: complex-mat ⇒ bool where

[simp]: intersects-y-axis-positive-cmat H = (let (A, B, C , D) = H in Re A 6= 0 ∧ Im B / Re A < −1 )

lift-definition intersects-y-axis-positive-clmat :: circline-mat ⇒ bool is intersects-y-axis-positive-cmat
〈proof 〉

lift-definition intersects-y-axis-positive :: circline ⇒ bool is intersects-y-axis-positive-clmat
〈proof 〉

lemma intersects-x-axis-positive-intersects-y-axis-positive [simp]:
shows intersects-x-axis-positive (moebius-circline (moebius-rotation (−pi/2 )) H ) ←→ intersects-y-axis-positive H
〈proof 〉

lemma intersects-y-axis-positive-iff :
assumes is-poincare-line H H 6= y-axis
shows (∃ y ∈ unit-disc. y ∈ circline-set H ∩ positive-y-axis) ←→ intersects-y-axis-positive H (is ?lhs ←→ ?rhs)
〈proof 〉

8.7 Position of the intersection point in the unit disc
Check if the intersection point of one h-line with the x-axis is located more outward the edge of the disc than
the intersection point of another h-line.
definition outward-cmat :: complex-mat ⇒ complex-mat ⇒ bool where
[simp]: outward-cmat H1 H2 = (let (A1 , B1 , C1 , D1 ) = H1 ; (A2 , B2 , C2 , D2 ) = H2

in −Re B1/Re A1 ≤ −Re B2/Re A2 )
lift-definition outward-clmat :: circline-mat ⇒ circline-mat ⇒ bool is outward-cmat
〈proof 〉

lift-definition outward :: circline ⇒ circline ⇒ bool is outward-clmat
〈proof 〉

lemma outward-mk-circline:
assumes is-real A1 and is-real A2 and A1 6= 0 ∨ B1 6= 0 and A2 6= 0 ∨ B2 6= 0
shows outward (mk-circline A1 B1 (cnj B1 ) A1 ) (mk-circline A2 B2 (cnj B2 ) A2 ) ←→ − Re B1 / Re A1 ≤ − Re

B2 / Re A2
〈proof 〉

lemma calc-x-axis-intersection-fun-mono:
fixes x1 x2 :: real
assumes x1 > 1 and x2 > x1
shows x1 − sqrt(x1 2 − 1 ) > x2 − sqrt(x2 2 − 1 )
〈proof 〉

lemma calc-x-axis-intersection-mono:
fixes a1 b1 a2 b2 :: real
assumes −b1/a1 > 1 and a1 6= 0 and −b2/a2 ≥ −b1/a1 and a2 6= 0
shows (−b1 + sgn b1 ∗ sqrt(b1 2 − a1 2)) / a1 ≥ (−b2 + sgn b2 ∗ sqrt(b2 2 − a2 2)) / a2 (is ?lhs ≥ ?rhs)
〈proof 〉

lemma outward:
assumes is-poincare-line H1 and is-poincare-line H2
assumes intersects-x-axis-positive H1 and intersects-x-axis-positive H2
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assumes outward H1 H2
shows Re (to-complex (calc-x-axis-intersection H1 )) ≥ Re (to-complex (calc-x-axis-intersection H2 ))
〈proof 〉

8.8 Ideal points and x-axis intersection
lemma ideal-points-intersects-x-axis:

assumes is-poincare-line H and ideal-points H = {i1 , i2} and H 6= x-axis
shows intersects-x-axis H ←→ Im (to-complex i1 ) ∗ Im (to-complex i2 ) < 0
〈proof 〉

end
theory Poincare-Perpendicular

imports Poincare-Lines-Axis-Intersections
begin

9 H-perpendicular h-lines in the Poincaré model
definition perpendicular-to-x-axis-cmat :: complex-mat ⇒ bool where
[simp]: perpendicular-to-x-axis-cmat H ←→ (let (A, B, C , D) = H in is-real B)

lift-definition perpendicular-to-x-axis-clmat :: circline-mat ⇒ bool is perpendicular-to-x-axis-cmat
〈proof 〉

lift-definition perpendicular-to-x-axis :: circline ⇒ bool is perpendicular-to-x-axis-clmat
〈proof 〉

lemma perpendicular-to-x-axis:
assumes is-poincare-line H
shows perpendicular-to-x-axis H ←→ perpendicular x-axis H
〈proof 〉

lemma perpendicular-to-x-axis-y-axis:
assumes perpendicular-to-x-axis (poincare-line 0 h (of-complex z)) z 6= 0
shows is-imag z
〈proof 〉

lemma wlog-perpendicular-axes:
assumes in-disc: u ∈ unit-disc v ∈ unit-disc z ∈ unit-disc
assumes perpendicular : is-poincare-line H1 is-poincare-line H2 perpendicular H1 H2
assumes z ∈ circline-set H1 ∩ circline-set H2 u ∈ circline-set H1 v ∈ circline-set H2
assumes axes:

∧
x y. [[is-real x; 0 ≤ Re x; Re x < 1 ; is-imag y; 0 ≤ Im y; Im y < 1 ]] =⇒ P 0 h (of-complex x)

(of-complex y)
assumes moebius:

∧
M u v w. [[unit-disc-fix M ; u ∈ unit-disc; v ∈ unit-disc; w ∈ unit-disc; P (moebius-pt M u)

(moebius-pt M v) (moebius-pt M w) ]] =⇒ P u v w
assumes conjugate:

∧
u v w. [[u ∈ unit-disc; v ∈ unit-disc; w ∈ unit-disc; P (conjugate u) (conjugate v) (conjugate

w) ]] =⇒ P u v w
shows P z u v
〈proof 〉

lemma wlog-perpendicular-foot:
assumes in-disc: u ∈ unit-disc v ∈ unit-disc w ∈ unit-disc z ∈ unit-disc
assumes perpendicular : u 6= v is-poincare-line H perpendicular (poincare-line u v) H
assumes z ∈ circline-set (poincare-line u v) ∩ circline-set H w ∈ circline-set H
assumes axes:

∧
u v w. [[is-real u; 0 < Re u; Re u < 1 ; is-real v; −1 < Re v; Re v < 1 ; Re u 6= Re v; is-imag w; 0

≤ Im w; Im w < 1 ]] =⇒ P 0 h (of-complex u) (of-complex v) (of-complex w)
assumes moebius:

∧
M z u v w. [[unit-disc-fix M ; u ∈ unit-disc; v ∈ unit-disc; w ∈ unit-disc; z ∈ unit-disc; P

(moebius-pt M z) (moebius-pt M u) (moebius-pt M v) (moebius-pt M w) ]] =⇒ P z u v w
assumes conjugate:

∧
z u v w. [[u ∈ unit-disc; v ∈ unit-disc; w ∈ unit-disc; P (conjugate z) (conjugate u) (conjugate

v) (conjugate w) ]] =⇒ P z u v w
assumes perm: P z v u w =⇒ P z u v w
shows P z u v w
〈proof 〉

lemma perpendicular-to-x-axis-intersects-x-axis:
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assumes is-poincare-line H perpendicular-to-x-axis H
shows intersects-x-axis H
〈proof 〉

lemma perpendicular-intersects:
assumes is-poincare-line H1 is-poincare-line H2
assumes perpendicular H1 H2
shows ∃ z. z ∈ unit-disc ∧ z ∈ circline-set H1 ∩ circline-set H2 (is ?P ′ H1 H2 )
〈proof 〉

definition calc-perpendicular-to-x-axis-cmat :: complex-vec ⇒ complex-mat where
[simp]: calc-perpendicular-to-x-axis-cmat z =

(let (z1 , z2 ) = z
in if z1∗cnj z2 + z2∗cnj z1 = 0 then

(0 , 1 , 1 , 0 )
else

let A = z1∗cnj z2 + z2∗cnj z1 ;
B = −(z1∗cnj z1 + z2∗cnj z2 )

in (A, B, B, A)
)

lift-definition calc-perpendicular-to-x-axis-clmat :: complex-homo-coords⇒ circline-mat is calc-perpendicular-to-x-axis-cmat
〈proof 〉

lift-definition calc-perpendicular-to-x-axis :: complex-homo ⇒ circline is calc-perpendicular-to-x-axis-clmat
〈proof 〉

lemma calc-perpendicular-to-x-axis:
assumes z 6= of-complex 1 z 6= of-complex (−1 )
shows z ∈ circline-set (calc-perpendicular-to-x-axis z) ∧

is-poincare-line (calc-perpendicular-to-x-axis z) ∧
perpendicular-to-x-axis (calc-perpendicular-to-x-axis z)

〈proof 〉

lemma ex-perpendicular :
assumes is-poincare-line H z ∈ unit-disc
shows ∃ H ′. is-poincare-line H ′ ∧ perpendicular H H ′ ∧ z ∈ circline-set H ′ (is ?P ′ H z)
〈proof 〉

lemma ex-perpendicular-foot:
assumes is-poincare-line H z ∈ unit-disc
shows ∃ H ′. is-poincare-line H ′ ∧ z ∈ circline-set H ′ ∧ perpendicular H H ′ ∧

(∃ z ′ ∈ unit-disc. z ′ ∈ circline-set H ′ ∩ circline-set H )
〈proof 〉

lemma Pythagoras:
assumes in-disc: u ∈ unit-disc v ∈ unit-disc w ∈ unit-disc v 6= w
assumes distinct[u, v, w] −→ perpendicular (poincare-line u v) (poincare-line u w)
shows cosh (poincare-distance v w) = cosh (poincare-distance u v) ∗ cosh (poincare-distance u w) (is ?P ′ u v w)
〈proof 〉

end

10 Poincaré disc model types
In this section we introduce datatypes that represent objects in the Poincaré disc model. The types are defined
as subtypes (e.g., the h-points are defined as elements of CP 1 that lie within the unit disc). The functions on
those types are defined by lifting the functions defined on the carrier type (e.g., h-distance is defined by lifting
the distance function defined for elements of CP 1).
theory Poincare
imports Poincare-Lines Poincare-Between Poincare-Distance Poincare-Circles
begin
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10.1 H-points
typedef p-point = {z. z ∈ unit-disc}
〈proof 〉

setup-lifting type-definition-p-point

Point zero
lift-definition p-zero :: p-point is 0 h

〈proof 〉

Constructing h-points from complex numbers
lift-definition p-of-complex :: complex ⇒ p-point is λ z. if cmod z < 1 then of-complex z else 0 h

〈proof 〉

10.2 H-lines
typedef p-line = {H . is-poincare-line H}
〈proof 〉

setup-lifting type-definition-p-line

lift-definition p-incident :: p-line ⇒ p-point ⇒ bool is on-circline
〈proof 〉

Set of h-points on an h-line
definition p-points :: p-line ⇒ p-point set where

p-points l = {p. p-incident l p}

x-axis is an example of an h-line
lift-definition p-x-axis :: p-line is x-axis
〈proof 〉

Constructing the unique h-line from two h-points
lift-definition p-line :: p-point ⇒ p-point ⇒ p-line is poincare-line
〈proof 〉

Next we show how to lift some lemmas. This could be done for all the lemmas that we have proved earlier, but
we do not do that.

If points are different then the constructed line contains the starting points
lemma p-on-line:

assumes z 6= w
shows p-incident (p-line z w) z

p-incident (p-line z w) w
〈proof 〉

There is a unique h-line passing trough the two different given h-points
lemma

assumes u 6= v
shows ∃ ! l. {u, v} ⊆ p-points l
〈proof 〉

The unique h-line trough zero and a non-zero h-point on the x-axis is the x-axis
lemma

assumes p-zero ∈ p-points l u ∈ p-points l u 6= p-zero u ∈ p-points p-x-axis
shows l = p-x-axis
〈proof 〉

10.3 H-collinearity
lift-definition p-collinear :: p-point set ⇒ bool is poincare-collinear
〈proof 〉
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10.4 H-isometries
H-isometries are functions that map the unit disc onto itself
typedef p-isometry = {f . unit-disc-fix-f f }
〈proof 〉

setup-lifting type-definition-p-isometry

Action of an h-isometry on an h-point
lift-definition p-isometry-pt :: p-isometry ⇒ p-point ⇒ p-point is λ f p. f p
〈proof 〉

Action of an h-isometry on an h-line
lift-definition p-isometry-line :: p-isometry ⇒ p-line ⇒ p-line is λ f l. unit-disc-fix-f-circline f l
〈proof 〉

An example lemma about h-isometries.

H-isometries preserve h-collinearity
lemma p-collinear-p-isometry-pt [simp]:

shows p-collinear (p-isometry-pt M ‘ A) ←→ p-collinear A
〈proof 〉

10.5 H-distance and h-congruence
lift-definition p-dist :: p-point ⇒ p-point ⇒ real is poincare-distance
〈proof 〉

definition p-congruent :: p-point ⇒ p-point ⇒ p-point ⇒ p-point ⇒ bool where
[simp]: p-congruent u v u ′ v ′ ←→ p-dist u v = p-dist u ′ v ′

lemma
assumes p-dist u v = p-dist u ′ v ′

assumes p-dist v w = p-dist v ′ w ′

assumes p-dist u w = p-dist u ′ w ′

shows ∃ f . p-isometry-pt f u = u ′ ∧ p-isometry-pt f v = v ′ ∧ p-isometry-pt f w = w ′

〈proof 〉

We prove that unit disc equipped with Poincaré distance is a metric space, i.e. an instantiation of metric-space
locale.
instantiation p-point :: metric-space
begin
definition dist-p-point = p-dist
definition (uniformity-p-point :: (p-point × p-point) filter) = (INF e∈{0<..}. principal {(x, y). dist-class.dist x y <
e})
definition open-p-point (U :: p-point set) = (∀ x ∈ U . eventually (λ(x ′, y). x ′ = x −→ y ∈ U ) uniformity)
instance
〈proof 〉
end

10.6 H-betweennes
lift-definition p-between :: p-point ⇒ p-point ⇒ p-point ⇒ bool is poincare-between
〈proof 〉

end

11 Poincaré model satisfies Tarski axioms
theory Poincare-Tarski

imports Poincare Poincare-Lines-Axis-Intersections Tarski
begin
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11.1 Pasch axiom
lemma Pasch-fun-mono:

fixes r1 r2 :: real
assumes 0 < r1 and r1 ≤ r2 and r2 < 1
shows r1 + 1/r1 ≥ r2 + 1/r2
〈proof 〉

Pasch axiom, non-degenerative case.
lemma Pasch-nondeg:

assumes x ∈ unit-disc and y ∈ unit-disc and z ∈ unit-disc and u ∈ unit-disc and v ∈ unit-disc
assumes distinct [x, y, z, u, v]
assumes ¬ poincare-collinear {x, y, z}
assumes poincare-between x u z and poincare-between y v z
shows ∃ a. a ∈ unit-disc ∧ poincare-between u a y ∧ poincare-between x a v
〈proof 〉

Pasch axiom, only degenerative cases.
lemma Pasch-deg:

assumes x ∈ unit-disc and y ∈ unit-disc and z ∈ unit-disc and u ∈ unit-disc and v ∈ unit-disc
assumes ¬ distinct [x, y, z, u, v] ∨ poincare-collinear {x, y, z}
assumes poincare-between x u z and poincare-between y v z
shows ∃ a. a ∈ unit-disc ∧ poincare-between u a y ∧ poincare-between x a v
〈proof 〉

Axiom of Pasch
lemma Pasch:

assumes x ∈ unit-disc and y ∈ unit-disc and z ∈ unit-disc and u ∈ unit-disc and v ∈ unit-disc
assumes poincare-between x u z and poincare-between y v z
shows ∃ a. a ∈ unit-disc ∧ poincare-between u a y ∧ poincare-between x a v
〈proof 〉

11.2 Segment construction axiom
lemma segment-construction:

assumes x ∈ unit-disc and y ∈ unit-disc
assumes a ∈ unit-disc and b ∈ unit-disc
shows ∃ z. z ∈ unit-disc ∧ poincare-between x y z ∧ poincare-distance y z = poincare-distance a b
〈proof 〉

11.3 Five segment axiom
lemma five-segment-axiom:

assumes
in-disc: x ∈ unit-disc y ∈ unit-disc z ∈ unit-disc u ∈ unit-disc and
in-disc ′: x ′ ∈ unit-disc y ′ ∈ unit-disc z ′ ∈ unit-disc u ′ ∈ unit-disc and
x 6= y and
betw: poincare-between x y z poincare-between x ′ y ′ z ′ and
xy: poincare-distance x y = poincare-distance x ′ y ′ and
xu: poincare-distance x u = poincare-distance x ′ u ′ and
yu: poincare-distance y u = poincare-distance y ′ u ′ and
yz: poincare-distance y z = poincare-distance y ′ z ′

shows
poincare-distance z u = poincare-distance z ′ u ′

〈proof 〉

11.4 Upper dimension axiom
lemma upper-dimension-axiom:

assumes in-disc: x ∈ unit-disc y ∈ unit-disc z ∈ unit-disc u ∈ unit-disc v ∈ unit-disc
assumes poincare-distance x u = poincare-distance x v

poincare-distance y u = poincare-distance y v
poincare-distance z u = poincare-distance z v
u 6= v

shows poincare-between x y z ∨ poincare-between y z x ∨ poincare-between z x y
〈proof 〉
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11.5 Lower dimension axiom
lemma lower-dimension-axiom:

shows ∃ a ∈ unit-disc. ∃ b ∈ unit-disc. ∃ c ∈ unit-disc.
¬ poincare-between a b c ∧ ¬ poincare-between b c a ∧ ¬ poincare-between c a b

〈proof 〉

11.6 Negated Euclidean axiom
lemma negated-euclidean-axiom-aux:

assumes on-circline H (of-complex (1/2 + i/2 )) and is-poincare-line H
assumes intersects-x-axis-positive H
shows ¬ intersects-y-axis-positive H
〈proof 〉

lemma negated-euclidean-axiom:
shows ∃ a b c d t.

a ∈ unit-disc ∧ b ∈ unit-disc ∧ c ∈ unit-disc ∧ d ∈ unit-disc ∧ t ∈ unit-disc ∧
poincare-between a d t ∧ poincare-between b d c ∧ a 6= d ∧

(∀ x y. x ∈ unit-disc ∧ y ∈ unit-disc ∧
poincare-between a b x ∧ poincare-between x t y −→ ¬ poincare-between a c y)

〈proof 〉

Alternate form of the Euclidean axiom – this one is much easier to prove
lemma negated-euclidean-axiom ′:

shows ∃ a b c.
a ∈ unit-disc ∧ b ∈ unit-disc ∧ c ∈ unit-disc ∧ ¬(poincare-collinear {a, b, c}) ∧
¬(∃ x. x ∈ unit-disc ∧

poincare-distance a x = poincare-distance b x ∧
poincare-distance a x = poincare-distance c x)

〈proof 〉

11.7 Continuity axiom
The set φ is on the left of the set ψ
abbreviation set-order where
set-order A ϕ ψ ≡ ∀ x∈ unit-disc. ∀ y∈ unit-disc. ϕ x ∧ ψ y −→ poincare-between A x y

The point B is between the sets φ and ψ

abbreviation point-between-sets where
point-between-sets ϕ B ψ ≡ ∀ x∈ unit-disc. ∀ y∈ unit-disc. ϕ x ∧ ψ y −→ poincare-between x B y

lemma continuity:
assumes ∃ A ∈ unit-disc. set-order A ϕ ψ
shows ∃ B ∈ unit-disc. point-between-sets ϕ B ψ
〈proof 〉

11.8 Limiting parallels axiom
Auxiliary definitions
definition poincare-on-line where

poincare-on-line p a b ←→ poincare-collinear {p, a, b}

definition poincare-on-ray where
poincare-on-ray p a b ←→ poincare-between a p b ∨ poincare-between a b p

definition poincare-in-angle where
poincare-in-angle p a b c ←→

b 6= a ∧ b 6= c ∧ p 6= b ∧ (∃ x ∈ unit-disc. poincare-between a x c ∧ x 6= a ∧ x 6= c ∧ poincare-on-ray p b x)

definition poincare-ray-meets-line where
poincare-ray-meets-line a b c d ←→ (∃ x ∈ unit-disc. poincare-on-ray x a b ∧ poincare-on-line x c d)

All points on ray are collinear
lemma poincare-on-ray-poincare-collinear :
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assumes p ∈ unit-disc and a ∈ unit-disc and b ∈ unit-disc and poincare-on-ray p a b
shows poincare-collinear {p, a, b}
〈proof 〉

H-isometries preserve all defined auxiliary relations
lemma unit-disc-fix-preserves-poincare-on-line [simp]:

assumes unit-disc-fix M and p ∈ unit-disc a ∈ unit-disc b ∈ unit-disc
shows poincare-on-line (moebius-pt M p) (moebius-pt M a) (moebius-pt M b) ←→ poincare-on-line p a b
〈proof 〉

lemma unit-disc-fix-preserves-poincare-on-ray [simp]:
assumes unit-disc-fix M p ∈ unit-disc a ∈ unit-disc b ∈ unit-disc
shows poincare-on-ray (moebius-pt M p) (moebius-pt M a) (moebius-pt M b) ←→ poincare-on-ray p a b
〈proof 〉

lemma unit-disc-fix-preserves-poincare-in-angle [simp]:
assumes unit-disc-fix M p ∈ unit-disc a ∈ unit-disc b ∈ unit-disc c ∈ unit-disc
shows poincare-in-angle (moebius-pt M p) (moebius-pt M a) (moebius-pt M b) (moebius-pt M c) ←→ poincare-in-angle

p a b c (is ?lhs ←→ ?rhs)
〈proof 〉

lemma unit-disc-fix-preserves-poincare-ray-meets-line [simp]:
assumes unit-disc-fix M a ∈ unit-disc b ∈ unit-disc c ∈ unit-disc d ∈ unit-disc
shows poincare-ray-meets-line (moebius-pt M a) (moebius-pt M b) (moebius-pt M c) (moebius-pt M d)←→ poincare-ray-meets-line

a b c d (is ?lhs ←→ ?rhs)
〈proof 〉

H-lines that intersect on the absolute do not meet (they do not share a common h-point)
lemma tangent-not-meet:

assumes x1 ∈ unit-disc and x2 ∈ unit-disc and x1 6= x2 and ¬ poincare-collinear {0 h, x1 , x2}
assumes i ∈ ideal-points (poincare-line x1 x2 ) a ∈ unit-disc a 6= 0 h poincare-collinear {0 h, a, i}
shows ¬ poincare-ray-meets-line 0 h a x1 x2
〈proof 〉

lemma limiting-parallels:
assumes a ∈ unit-disc and x1 ∈ unit-disc and x2 ∈ unit-disc and ¬ poincare-on-line a x1 x2
shows ∃ a1∈unit-disc. ∃ a2∈unit-disc.

¬ poincare-on-line a a1 a2 ∧
¬ poincare-ray-meets-line a a1 x1 x2 ∧ ¬ poincare-ray-meets-line a a2 x1 x2 ∧
(∀ a ′∈unit-disc. poincare-in-angle a ′ a1 a a2 −→ poincare-ray-meets-line a a ′ x1 x2 ) (is ?P a x1 x2 )

〈proof 〉

11.9 Interpretation of locales
global-interpretation PoincareTarskiAbsolute: TarskiAbsolute where cong = p-congruent and betw = p-between

defines p-on-line = PoincareTarskiAbsolute.on-line and
p-on-ray = PoincareTarskiAbsolute.on-ray and
p-in-angle = PoincareTarskiAbsolute.in-angle and
p-ray-meets-line = PoincareTarskiAbsolute.ray-meets-line

〈proof 〉

interpretation PoincareTarskiHyperbolic: TarskiHyperbolic
where cong = p-congruent and betw = p-between
〈proof 〉

interpretation PoincareElementaryTarskiHyperbolic: ElementaryTarskiHyperbolic p-congruent p-between
〈proof 〉

end
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