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1 Additions to HOL-Analysis
theory Analysis-Misc

imports
Ordinary-Differential-Equations.ODE-Analysis

begin

1.1 Unsorted Lemmas (TODO: sort!)
lemma uminus-uminus-image: uminus ‘ uminus ‘ S = S

for S :: ′r ::ab-group-add set
by (auto simp: image-image)

lemma in-uminus-image-iff [simp]: x ∈ uminus ‘ S ←→ − x ∈ S
for S :: ′r ::ab-group-add set
by force

lemma closed-subsegmentI :
w + t ∗R (z − w) ∈ {x−−y}
if w ∈ {x −− y} z ∈ {x −− y} and t: 0 ≤ t t≤ 1

proof −
from that obtain u v where

w-def : w = (1 − u) ∗R x + u ∗R y and u: 0 ≤ u u ≤ 1
and z-def : z = (1 − v) ∗R x + v ∗R y and v: 0 ≤ v v ≤ 1
by (auto simp: in-segment)

have w + t ∗R (z − w) =
(1 − (u − t ∗ (u − v))) ∗R x + (u − t ∗ (u − v)) ∗R y
by (simp add: algebra-simps w-def z-def )

also have . . . ∈ {x −− y}
unfolding closed-segment-image-interval
apply (rule imageI )
using t u v
apply auto

apply (metis (full-types) diff-0-right diff-left-mono linear mult-left-le-one-le
mult-nonneg-nonpos order .trans)

by (smt mult-left-le-one-le mult-nonneg-nonneg vector-space-over-itself .scale-right-diff-distrib)
finally show ?thesis .

qed
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lemma tendsto-minus-cancel-right: ((λx. −g x) −−−→ l) F ←→ (g −−−→ −l) F
— cf (?f −−−→ − ?y) ?F = ((λx. − ?f x) −−−→ ?y) ?F
for g::- ⇒ ′b::topological-group-add
by (simp add: tendsto-minus-cancel-left)

lemma tendsto-nhds-continuousI : (f −−−→ l) (nhds x) if (f −−−→ l) (at x) f x = l
— TODO: the assumption is continuity of f at x

proof (rule topological-tendstoI )
fix S :: ′b set assume open S l ∈ S
from topological-tendstoD[OF that(1 ) this]
have ∀ F x in at x. f x ∈ S .
then show ∀ F x in nhds x. f x ∈ S

unfolding eventually-at-filter
by eventually-elim (auto simp: that ‹l ∈ S›)

qed

lemma inj-composeD:
assumes inj (λx. g (t x))
shows inj t
using assms
by (auto simp: inj-def )

lemma compact-sequentialE :
fixes S T :: ′a::first-countable-topology set
assumes compact S
assumes infinite T
assumes T ⊆ S
obtains t::nat ⇒ ′a and l:: ′a
where

∧
n. t n ∈ T

∧
n. t n 6= l t −−−−→ l l ∈ S

proof −
from Heine-Borel-imp-Bolzano-Weierstrass[OF assms]
obtain l where l ∈ S l islimpt T by metis
then obtain t where t n ∈ T t n 6= l t −−−−→ l l ∈ S for n unfolding

islimpt-sequential
by auto

then show ?thesis ..
qed

lemma infinite-countable-subsetE :
fixes S :: ′a set
assumes infinite S
obtains g::nat⇒ ′a where inj g range g ⊆ S
using assms
by atomize-elim (simp add: infinite-countable-subset)

lemma real-quad-ge: 2 ∗ (an ∗ bn) ≤ an ∗ an + bn ∗ bn for an bn::real
by (sos (((A<0 ∗ R<1 ) + (R<1 ∗ (R<1 ∗ [an + ∼1∗bn]^2 )))))
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lemma inner-quad-ge: 2 ∗ (a · b) ≤ a · a + b · b
for a b:: ′a::euclidean-space— generalize?

proof −
show ?thesis

by (subst (1 2 3 ) euclidean-inner)
(auto simp add: sum.distrib[symmetric] sum-distrib-left intro!: sum-mono

real-quad-ge)
qed

lemma inner-quad-gt: 2 ∗ (a · b) < a · a + b · b
if a 6= b
for a b:: ′a::euclidean-space— generalize?

proof −
from that obtain i where i ∈ Basis a · i 6= b · i

by (auto simp: euclidean-eq-iff [where ′a= ′a])
then have 2 ∗ (a · i ∗ (b · i)) < a · i ∗ (a · i) + b · i ∗ (b · i)

using sum-sqs-eq[of a·i b·i]
by (auto intro!: le-neq-trans real-quad-ge)

then show ?thesis
by (subst (1 2 3 ) euclidean-inner)
(auto simp add: ‹i ∈ Basis› sum.distrib[symmetric] sum-distrib-left

intro!: sum-strict-mono-ex1 real-quad-ge)
qed

lemma closed-segment-line-hyperplanes:
{a −− b} = range (λu. a + u ∗R (b − a)) ∩ {x. a · (b − a) ≤ x · (b − a) ∧ x

· (b − a) ≤ b · (b − a)}
if a 6= b
for a b:: ′a::euclidean-space

proof safe
fix x assume x: x ∈ {a−−b}
then obtain u where u: 0 ≤ u u ≤ 1 and x-eq: x = a + u ∗R (b − a)

by (auto simp add: in-segment algebra-simps)
show x ∈ range (λu. a + u ∗R (b − a)) using x-eq by auto
have 2 ∗ (a · b) ≤ a · a + b · b

by (rule inner-quad-ge)
then have u ∗ (2 ∗ (a · b) − a · a − b · b) ≤ 0

0 ≤ (1 − u) ∗ (a · a + b · b − a · b ∗ 2 )
by (simp-all add: mult-le-0-iff u)

then show a · (b − a) ≤ x · (b − a) x · (b − a) ≤ b · (b − a)
by (auto simp: x-eq algebra-simps power2-eq-square inner-commute)

next
fix u assume

a · (b − a) ≤ (a + u ∗R (b − a)) · (b − a)
(a + u ∗R (b − a)) · (b − a) ≤ b · (b − a)

then have 0 ≤ u ∗ ((b − a) · (b − a)) 0 ≤ (1 − u) ∗ ((b − a) · (b − a))
by (auto simp: algebra-simps)

then have 0 ≤ u u ≤ 1
using inner-ge-zero[of (b − a)] that
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by (auto simp add: zero-le-mult-iff )
then show a + u ∗R (b − a) ∈ {a−−b}

by (auto simp: in-segment algebra-simps)
qed

lemma open-segment-line-hyperplanes:
{a <−−< b} = range (λu. a + u ∗R (b − a)) ∩ {x. a · (b − a) < x · (b − a)
∧ x · (b − a) < b · (b − a)}

if a 6= b
for a b:: ′a::euclidean-space

proof safe
fix x assume x: x ∈ {a<−−<b}
then obtain u where u: 0 < u u < 1 and x-eq: x = a + u ∗R (b − a)

by (auto simp add: in-segment algebra-simps)
show x ∈ range (λu. a + u ∗R (b − a)) using x-eq by auto
have 2 ∗ (a · b) < a · a + b · b using that

by (rule inner-quad-gt)
then have u ∗ (2 ∗ (a · b) − a · a − b · b) < 0

0 < (1 − u) ∗ (a · a + b · b − a · b ∗ 2 )
by (simp-all add: mult-less-0-iff u)

then show a · (b − a) < x · (b − a) x · (b − a) < b · (b − a)
by (auto simp: x-eq algebra-simps power2-eq-square inner-commute)

next
fix u assume

a · (b − a) < (a + u ∗R (b − a)) · (b − a)
(a + u ∗R (b − a)) · (b − a) < b · (b − a)

then have 0 < u ∗ ((b − a) · (b − a)) 0 < (1 − u) ∗ ((b − a) · (b − a))
by (auto simp: algebra-simps)

then have 0 < u u < 1
using inner-ge-zero[of (b − a)] that
by (auto simp add: zero-less-mult-iff )

then show a + u ∗R (b − a) ∈ {a<−−<b}
by (auto simp: in-segment algebra-simps that)

qed

lemma at-within-interior : NO-MATCH UNIV S =⇒ x ∈ interior S =⇒ at x within
S = at x

by (auto intro: at-within-interior)

lemma tendsto-at-topI :
(f −−−→ l) at-top if

∧
e. 0 < e =⇒ ∃ x0 . ∀ x≥x0 . dist (f x) l < e

for f :: ′a::linorder-topology ⇒ ′b::metric-space
using that
apply (intro tendstoI )
unfolding eventually-at-top-linorder
by auto

lemma tendsto-at-topE :
fixes f :: ′a::linorder-topology ⇒ ′b::metric-space
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assumes (f −−−→ l) at-top
assumes e > 0
obtains x0 where

∧
x. x ≥ x0 =⇒ dist (f x) l < e

proof −
from assms(1 )[THEN tendstoD, OF assms(2 )]
have ∀ F x in at-top. dist (f x) l < e .
then show ?thesis

unfolding eventually-at-top-linorder
by (auto intro: that)

qed
lemma tendsto-at-top-iff : (f −−−→ l) at-top ←→ (∀ e>0 . ∃ x0 . ∀ x≥x0 . dist (f x)
l < e)

for f :: ′a::linorder-topology ⇒ ′b::metric-space
by (auto intro!: tendsto-at-topI elim!: tendsto-at-topE)

lemma tendsto-at-top-eq-left:
fixes f g:: ′a::linorder-topology ⇒ ′b::metric-space
assumes (f −−−→ l) at-top
assumes

∧
x. x ≥ x0 =⇒ f x = g x

shows (g −−−→ l) at-top
unfolding tendsto-at-top-iff
by (metis (no-types, opaque-lifting) assms(1 ) assms(2 ) linear order-trans tend-

sto-at-topE)

lemma lim-divide-n: (λx. e / real x) −−−−→ 0
proof −

have (λx. e ∗ inverse (real x)) −−−−→ 0
by (auto intro: tendsto-eq-intros lim-inverse-n)

then show ?thesis by (simp add: inverse-eq-divide)
qed

definition at-top-within :: ( ′a::order) set ⇒ ′a filter
where at-top-within s = (INF k ∈ s. principal ({k ..} ∩ s))

lemma at-top-within-at-top[simp]:
shows at-top-within UNIV = at-top
unfolding at-top-within-def at-top-def
by (auto)

lemma at-top-within-empty[simp]:
shows at-top-within {} = top
unfolding at-top-within-def
by (auto)

definition nhds-set X = (INF S∈{S . open S ∧ X ⊆ S}. principal S)

lemma eventually-nhds-set:
(∀ F x in nhds-set X . P x) ←→ (∃S . open S ∧ X ⊆ S ∧ (∀ x∈S . P x))
unfolding nhds-set-def by (subst eventually-INF-base) (auto simp: eventually-principal)
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term filterlim f (nhds-set (frontier X)) F — f tends to the boundary of X?

somewhat inspired by ?l islimpt range ?f =⇒ ∃ r . strict-mono r ∧ (?f ◦
r) −−−−→ ?l and its dependencies. The class constraints seem somewhat
arbitrary, perhaps this can be generalized in some way.
lemma limpt-closed-imp-exploding-subsequence:— TODO: improve name?!
fixes f :: ′a::{heine-borel,real-normed-vector} ⇒ ′b::{first-countable-topology, t2-space}
assumes cont[THEN continuous-on-compose2 , continuous-intros]: continuous-on

T f
assumes closed: closed T
assumes bound:

∧
t. t ∈ T =⇒ f t 6= l

assumes limpt: l islimpt (f ‘ T )
obtains s where
(f ◦ s) −−−−→ l∧

i. s i ∈ T∧
C . compact C =⇒ C ⊆ T =⇒ ∀ F i in sequentially. s i /∈ C

proof −
from countable-basis-at-decseq[of l]
obtain A where A:

∧
i. open (A i)

∧
i. l ∈ A i

and evA:
∧

S . open S =⇒ l ∈ S =⇒ eventually (λi. A i ⊆ S) sequentially
by blast

from closed-Union-compact-subsets[OF closed]
obtain C

where C : (
∧

n. compact (C n)) (
∧

n. C n ⊆ T ) (
∧

n. C n ⊆ C (Suc n))
⋃

(range C ) = T
and evC : (

∧
K . compact K =⇒ K ⊆ T =⇒ ∀ F i in sequentially. K ⊆ C i)

by (metis eventually-sequentially)

have AC : l ∈ A i − f ‘ C i open (A i − f ‘ C i) for i
using C bound
by (fastforce intro!: open-Diff A compact-imp-closed compact-continuous-image

continuous-intros)+

from islimptE [OF limpt AC ] have ∃ t∈T . f t ∈ A i − f ‘ C i ∧ f t 6= l for i by
blast

then obtain t where t:
∧

i. t i ∈ T
∧

i. f (t i) ∈ A i − f ‘ C i
∧

i. f (t i) 6= l
by metis

have (f o t) −−−−→ l
using t
by (auto intro!: topological-tendstoI dest!: evA elim!: eventually-mono)

moreover
have

∧
i. t i ∈ T by fact

moreover
have ∀ F i in sequentially. t i /∈ K if compact K K ⊆ T for K

using evC [OF that]
by eventually-elim (use t in auto)
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ultimately show ?thesis ..
qed

lemma Inf-islimpt: bdd-below S =⇒ Inf S /∈ S =⇒ S 6= {} =⇒ Inf S islimpt S for
S ::real set

by (auto simp: islimpt-in-closure intro!: closure-contains-Inf )

context linorder
begin

HOL-analysis doesn’t seem to have these, maybe they were never needed.
Some variants are around {?a..?b} ∩ {?c..?d} = {max ?a ?c..min ?b ?d},
but with old-style naming conventions. Change to the "modern" I.. conven-
tion there?
lemma Int-Ico[simp]:

shows {a..} ∩ {b..} = {max a b ..}
by (auto)

lemma Int-Ici-Ico[simp]:
shows {a..} ∩ {b..<c} = {max a b ..<c}
by auto

lemma Int-Ico-Ici[simp]:
shows {a..<c} ∩ {b..} = {max a b ..<c}
by auto

lemma subset-Ico-iff [simp]:
{a..<b} ⊆ {c..<b} ←→ b ≤ a ∨ c ≤ a
unfolding atLeastLessThan-def
by auto

lemma Ico-subset-Ioo-iff [simp]:
{a..<b} ⊆ {c<..<b} ←→ b ≤ a ∨ c < a
unfolding greaterThanLessThan-def atLeastLessThan-def
by auto

lemma Icc-Un-Ici[simp]:
shows {a..b} ∪ {b..} = {min a b..}
unfolding atLeastAtMost-def atLeast-def atMost-def min-def
by auto

end

lemma at-top-within-at-top-unbounded-right:
fixes a:: ′a::linorder
shows at-top-within {a..} = at-top
unfolding at-top-within-def at-top-def
apply (auto intro!: INF-eq)
by (metis linorder-class.linear linorder-class.max.cobounded1 linorder-class.max.idem
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ord-class.atLeast-iff )

lemma at-top-within-at-top-unbounded-rightI :
fixes a:: ′a::linorder
assumes {a..} ⊆ s
shows at-top-within s = at-top
unfolding at-top-within-def at-top-def
apply (auto intro!: INF-eq)
apply (meson Ici-subset-Ioi-iff Ioi-le-Ico assms dual-order .refl dual-order .trans

leI )
by (metis assms atLeast-iff atLeast-subset-iff inf .cobounded1 linear subsetD)

lemma at-top-within-at-top-bounded-right:
fixes a b:: ′a::{dense-order ,linorder-topology}
assumes a < b
shows at-top-within {a..<b} = at-left b
unfolding at-top-within-def at-left-eq[OF assms(1 )]
apply (auto intro!: INF-eq)

apply (smt atLeastLessThan-iff greaterThanLessThan-iff le-less lessThan-iff
max.absorb1 subset-eq)
by (metis assms atLeastLessThan-iff dense linear max.absorb1 not-less order-trans)

lemma at-top-within-at-top-bounded-right ′:
fixes a b:: ′a::{dense-order ,linorder-topology}
assumes a < b
shows at-top-within {..<b} = at-left b
unfolding at-top-within-def at-left-eq[OF assms(1 )]
apply (auto intro!: INF-eq)
apply (meson atLeast-iff greaterThanLessThan-iff le-less lessThan-iff subset-eq)

by (metis Ico-subset-Ioo-iff atLeastLessThan-def dense lessThan-iff )

lemma eventually-at-top-within-linorder :
assumes sn:s 6= {}
shows eventually P (at-top-within s) ←→ (∃ x0 :: ′a::{linorder-topology} ∈ s. ∀ x
≥ x0 . x∈ s −→ P x)

unfolding at-top-within-def
apply (subst eventually-INF-base)

apply (auto simp:eventually-principal sn)
by (metis atLeast-subset-iff inf .coboundedI2 inf-commute linear)

lemma tendsto-at-top-withinI :
fixes f :: ′a::linorder-topology ⇒ ′b::metric-space
assumes s 6= {}
assumes

∧
e. 0 < e =⇒ ∃ x0 ∈ s. ∀ x ∈ {x0 ..} ∩ s. dist (f x) l < e

shows (f −−−→ l) (at-top-within s)
apply(intro tendstoI )
unfolding at-top-within-def apply (subst eventually-INF-base)

apply (auto simp:eventually-principal assms)
by (metis atLeast-subset-iff inf .coboundedI2 inf-commute linear)
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lemma tendsto-at-top-withinE :
fixes f :: ′a::linorder-topology ⇒ ′b::metric-space
assumes s 6= {}
assumes (f −−−→ l) (at-top-within s)
assumes e > 0
obtains x0 where x0 ∈ s

∧
x. x ∈ {x0 ..} ∩ s =⇒ dist (f x) l < e

proof −
from assms(2 )[THEN tendstoD, OF assms(3 )]
have ∀ F x in at-top-within s. dist (f x) l < e .
then show ?thesis unfolding eventually-at-top-within-linorder [OF ‹s 6= {}›]

by (auto intro: that)
qed

lemma tendsto-at-top-within-iff :
fixes f :: ′a::linorder-topology ⇒ ′b::metric-space
assumes s 6= {}
shows (f −−−→ l) (at-top-within s) ←→ (∀ e>0 . ∃ x0 ∈ s. ∀ x ∈ {x0 ..} ∩ s. dist

(f x) l < e)
by (auto intro!: tendsto-at-top-withinI [OF ‹s 6= {}›] elim!: tendsto-at-top-withinE [OF

‹s 6= {}›])

lemma filterlim-at-top-at-top-within-bounded-right:
fixes a b:: ′a::{dense-order ,linorder-topology}
fixes f :: ′a ⇒ real
assumes a < b
shows filterlim f at-top (at-top-within {..<b}) = (f −−−→ ∞) (at-left b)
unfolding filterlim-at-top-dense

at-top-within-at-top-bounded-right ′[OF assms(1 )]
eventually-at-left[OF assms(1 )]
tendsto-PInfty

by auto

Extract a sequence (going to infinity) bounded away from l
lemma not-tendsto-frequentlyE :

assumes ¬((f −−−→ l) F)
obtains S where open S l ∈ S ∃ F x in F . f x /∈ S
using assms
by (auto simp: tendsto-def not-eventually)

lemma not-tendsto-frequently-metricE :
assumes ¬((f −−−→ l) F)
obtains e where e > 0 ∃ F x in F . e ≤ dist (f x) l
using assms
by (auto simp: tendsto-iff not-eventually not-less)

lemma eventually-frequently-conj: frequently P F =⇒ eventually Q F =⇒ fre-
quently (λx. P x ∧ Q x) F

unfolding frequently-def
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apply (erule contrapos-nn)
subgoal premises prems

using prems by eventually-elim auto
done

lemma frequently-at-top:
(∃ F t in at-top. P t) ←→ (∀ t0 . ∃ t>t0 . P t)
for P:: ′a::{linorder ,no-top}⇒bool
by (auto simp: frequently-def eventually-at-top-dense)

lemma frequently-at-topE :
fixes P::nat ⇒ ′a::{linorder ,no-top}⇒-
assumes freq[rule-format]: ∀n. ∃ F a in at-top. P n a
obtains s::nat⇒ ′a
where

∧
i. P i (s i) strict-mono s

proof −
have ∃ f . ∀n. P n (f n) ∧ f n < f (Suc n)
proof (rule dependent-nat-choice)

from frequently-ex[OF freq[of 0 ]] show ∃ x. P 0 x .
fix x n assume P n x
from freq[unfolded frequently-at-top, rule-format, of x Suc n]
obtain y where P (Suc n) y y > x by auto
then show ∃ y. P (Suc n) y ∧ x < y

by auto
qed
then obtain s where

∧
i. P i (s i) strict-mono s

unfolding strict-mono-Suc-iff by auto
then show ?thesis ..

qed

lemma frequently-at-topE ′:
fixes P::nat ⇒ ′a::{linorder ,no-top}⇒-
assumes freq[rule-format]: ∀n. ∃ F a in at-top. P n a

and g: filterlim g at-top sequentially
obtains s::nat⇒ ′a
where

∧
i. P i (s i) strict-mono s

∧
n. g n ≤ s n

proof −
have ∀n. ∃ F a in at-top. P n a ∧ g n ≤ a

using freq
by (auto intro!: eventually-frequently-conj)

from frequently-at-topE [OF this] obtain s where
∧

i. P i (s i) strict-mono s∧
n. g n ≤ s n

by metis
then show ?thesis ..

qed

lemma frequently-at-top-at-topE :
fixes P::nat ⇒ ′a::{linorder ,no-top}⇒- and g::nat⇒ ′a
assumes ∀n. ∃ F a in at-top. P n a filterlim g at-top sequentially
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obtains s::nat⇒ ′a
where

∧
i. P i (s i) filterlim s at-top sequentially

proof −
from frequently-at-topE ′[OF assms]
obtain s where s: (

∧
i. P i (s i)) strict-mono s (

∧
n. g n ≤ s n) by blast

have s-at-top: filterlim s at-top sequentially
by (rule filterlim-at-top-mono) (use assms s in auto)

with s(1 ) show ?thesis ..
qed

lemma not-tendsto-convergent-seq:
fixes f ::real ⇒ ′a::metric-space
assumes X : compact (X :: ′a set)
assumes im:

∧
x. x ≥ 0 =⇒ f x ∈ X

assumes nl: ¬ ((f −−−→ (l:: ′a)) at-top)
obtains s k where

k ∈ X k 6= l (f ◦ s) −−−−→ k strict-mono s ∀n. s n ≥ n
proof −

from not-tendsto-frequentlyE [OF nl]
obtain S where open S l ∈ S ∃ F x in at-top. f x /∈ S .
have ∀n. ∃ F x in at-top. f x /∈ S ∧ real n ≤ x

apply (rule allI )
apply (rule eventually-frequently-conj)
apply fact

by (rule eventually-ge-at-top)
from frequently-at-topE [OF this]
obtain s where

∧
i. f (s i) /∈ S and s: strict-mono s and s-ge: (

∧
i. real i ≤ s

i) by metis
then have 0 ≤ s i for i using dual-order .trans of-nat-0-le-iff by blast
then have ∀n. (f ◦ s) n ∈ X using im by auto
from X [unfolded compact-def , THEN spec, THEN mp, OF this]
obtain k r where k: k ∈ X and r : strict-mono r and kLim: (f ◦ s ◦ r) −−−−→

k by metis
have k ∈ X − S

by (rule Lim-in-closed-set[of X − S , OF - - - kLim])
(auto simp: im ‹0 ≤ s -› ‹

∧
i. f (s i) /∈ S› intro!: ‹open S› X intro: com-

pact-imp-closed)

note k
moreover have k 6= l using ‹k ∈ X − S› ‹l ∈ S› by auto
moreover have (f ◦ (s ◦ r)) −−−−→ k using kLim by (simp add: o-assoc)
moreover have strict-mono (s ◦ r) using s r by (rule strict-mono-o)
moreover have ∀n. (s ◦ r) n ≥ n using s-ge r

by (metis comp-apply dual-order .trans of-nat-le-iff seq-suble)
ultimately show ?thesis ..

qed

lemma harmonic-bound:
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shows 1 / 2 ^(Suc n) < 1 / real (Suc n)
proof (induction n)

case 0
then show ?case by auto

next
case (Suc n)
then show ?case

by (smt frac-less2 of-nat-0-less-iff of-nat-less-two-power zero-less-Suc)
qed

lemma INF-bounded-imp-convergent-seq:
fixes f ::real ⇒ real
assumes cont: continuous-on {a..} f
assumes bound:

∧
t. t ≥ a =⇒ f t > l

assumes inf : (INF t∈{a..}. f t) = l
obtains s where
(f ◦ s) −−−−→ l∧

i. s i ∈ {a..}
filterlim s at-top sequentially

proof −
have bound ′: t ∈ {a..} =⇒ f t 6= l for t using bound[of t] by auto
have limpt: l islimpt f ‘ {a..}
proof −

have Inf (f ‘ {a..}) islimpt f ‘ {a..}
by (rule Inf-islimpt) (auto simp: inf intro!: bdd-belowI2 [where m=l] dest:

bound)
then show ?thesis by (simp add: inf )

qed
from limpt-closed-imp-exploding-subsequence[OF cont closed-atLeast bound ′ limpt]
obtain s where s: (f ◦ s) −−−−→ l∧

i. s i ∈ {a..}
compact C =⇒ C ⊆ {a..} =⇒ ∀ F i in sequentially. s i /∈ C for C
by metis

have ∀ F i in sequentially. s i ≥ n for n
using s(3 )[of {a..n}] s(2 )
by (auto elim!: eventually-mono)

then have filterlim s at-top sequentially
unfolding filterlim-at-top
by auto

from s(1 ) s(2 ) this
show ?thesis ..

qed

lemma filterlim-at-top-strict-mono:
fixes s :: - ⇒ ′a::linorder
fixes r :: nat ⇒ -
assumes strict-mono s
assumes strict-mono r
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assumes filterlim s at-top F
shows filterlim (s ◦ r) at-top F
apply (rule filterlim-at-top-mono[OF assms(3 )])
by (simp add: assms(1 ) assms(2 ) seq-suble strict-mono-leD)

lemma LIMSEQ-lb:
assumes fl: s −−−−→ (l::real)
assumes u: l < u
shows ∃n0 . ∀n≥n0 . s n < u

proof −
from fl have ∃no>0 . ∀n≥no. dist (s n) l < u−l unfolding LIMSEQ-iff-nz

using u
by simp

thus ?thesis using dist-real-def by fastforce
qed

lemma filterlim-at-top-choose-lower :
assumes filterlim s at-top sequentially
assumes (f ◦ s) −−−−→ l
obtains t where

filterlim t at-top sequentially
(f ◦ t) −−−−→ l
∀n. t n ≥ (b::real)

proof −
obtain k where k: ∀n ≥ k. s n ≥ b using assms(1 )

unfolding filterlim-at-top eventually-sequentially by blast
define t where t = (λn. s (n+k))
then have ∀n. t n ≥ b using k by simp
have filterlim t at-top sequentially using assms(1 )

unfolding filterlim-at-top eventually-sequentially t-def
by (metis (full-types) add.commute trans-le-add2 )

from LIMSEQ-ignore-initial-segment[OF assms(2 ), of k]
have (λn. (f ◦ s) (n + k)) −−−−→ l .
then have (f ◦ t) −−−−→ l unfolding t-def o-def by simp
show ?thesis

using ‹(f ◦ t) −−−−→ l› ‹∀n. b ≤ t n› ‹filterlim t at-top sequentially› that by
blast
qed

lemma frequently-at-top-realE :
fixes P::nat ⇒ real ⇒ bool
assumes ∀n. ∃ F t in at-top. P n t
obtains s::nat⇒real
where

∧
i. P i (s i) filterlim s at-top at-top

by (metis assms frequently-at-top-at-topE [OF - filterlim-real-sequentially])

lemma approachable-sequenceE :
fixes f ::real ⇒ ′a::metric-space
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assumes
∧

t e. 0 ≤ t =⇒ 0 < e =⇒ ∃ tt≥t. dist (f tt) p < e
obtains s where filterlim s at-top sequentially (f ◦ s) −−−−→ p

proof −
have ∀n. ∃ F i in at-top. dist (f i) p < 1/real (Suc n)

unfolding frequently-at-top
apply (auto )
subgoal for n m

using assms[of max 0 (m+1 ) 1/(Suc n)]
by force

done
from frequently-at-top-realE [OF this]
obtain s where s:

∧
i. dist (f (s i)) p < 1 / real (Suc i) filterlim s at-top

sequentially
by metis

note this(2 )
moreover
have (f o s) −−−−→ p
proof (rule tendstoI )

fix e::real assume e > 0
have ∀ F i in sequentially. 1 / real (Suc i) < e

apply (rule order-tendstoD[OF - ‹0 < e›])
apply (rule real-tendsto-divide-at-top)
apply (rule tendsto-intros)

by (rule filterlim-compose[OF filterlim-real-sequentially filterlim-Suc])
then show ∀ F x in sequentially. dist ((f ◦ s) x) p < e

by eventually-elim (use dual-order .strict-trans s ‹e > 0 › in auto)
qed
ultimately show ?thesis ..

qed

lemma mono-inc-bdd-above-has-limit-at-topI :
fixes f ::real ⇒ real
assumes mono f
assumes

∧
x. f x ≤ u

shows ∃ l. (f −−−→ l) at-top
proof −

define l where l = Sup (range (λn. f (real n)))
have t:(λn. f (real n)) −−−−→ l unfolding l-def

apply (rule LIMSEQ-incseq-SUP)
apply (meson assms(2 ) bdd-aboveI2 )

by (meson assms(1 ) mono-def of-nat-mono)
from tendsto-at-topI-sequentially-real[OF assms(1 ) t]
have (f −−−→ l) at-top .
thus ?thesis by blast

qed

lemma gen-mono-inc-bdd-above-has-limit-at-topI :
fixes f ::real ⇒ real
assumes

∧
x y. x ≥ b =⇒ x ≤ y =⇒ f x ≤ f y
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assumes
∧

x. x ≥ b =⇒ f x ≤ u
shows ∃ l. (f −−−→ l) at-top

proof −
define ff where ff = (λx. if x ≥ b then f x else f b)
have m1 :mono ff unfolding ff-def mono-def using assms(1 ) by simp
have m2 :

∧
x. ff x ≤ u unfolding ff-def using assms(2 ) by simp

from mono-inc-bdd-above-has-limit-at-topI [OF m1 m2 ]
obtain l where (ff −−−→ l) at-top by blast
thus ?thesis

by (meson ‹(ff −−−→ l) at-top› ff-def tendsto-at-top-eq-left)
qed

lemma gen-mono-dec-bdd-below-has-limit-at-topI :
fixes f ::real ⇒ real
assumes

∧
x y. x ≥ b =⇒ x ≤ y =⇒ f x ≥ f y

assumes
∧

x. x ≥ b =⇒ f x ≥ u
shows ∃ l. (f −−−→ l) at-top

proof −
define ff where ff = (λx. if x ≥ b then f x else f b)
have m1 :mono (−ff ) unfolding ff-def mono-def using assms(1 ) by simp
have m2 :

∧
x. (−ff ) x ≤ −u unfolding ff-def using assms(2 ) by simp

from mono-inc-bdd-above-has-limit-at-topI [OF m1 m2 ]
obtain l where (−ff −−−→ l) at-top by blast
then have (ff −−−→ −l) at-top

using tendsto-at-top-eq-left tendsto-minus-cancel-left by fastforce
thus ?thesis

by (meson ‹(ff −−−→ −l) at-top› ff-def tendsto-at-top-eq-left)
qed

lemma infdist-closed:
shows closed ({z. infdist z S ≥ e})
by (auto intro!:closed-Collect-le simp add:continuous-on-infdist)

lemma LIMSEQ-norm-0-pow:
assumes k > 0 b > 1
assumes

∧
n::nat. norm (s n) ≤ k / b^n

shows s −−−−→ 0
proof (rule metric-LIMSEQ-I )

fix e
assume e > (0 ::real)
then have k / e > 0 using assms(1 ) by auto
obtain N where N : b^(N ::nat) > k / e using assms(2 )

using real-arch-pow by blast
then have norm (s n) < e if n ≥ N for n
proof −

have k / b^n ≤ k / b^N
by (smt assms(1 ) assms(2 ) frac-le leD power-less-imp-less-exp that zero-less-power)
also have ... < e using N

16



by (metis ‹0 < e› assms(2 ) less-trans mult.commute pos-divide-less-eq
zero-less-one zero-less-power)

finally show ?thesis
by (meson assms less-eq-real-def not-le order-trans)

qed
then show ∃no. ∀n≥no. dist (s n) 0 < e

by auto
qed

lemma filterlim-apply-filtermap:
assumes g: filterlim g G F
shows filterlim (λx. m (g x)) (filtermap m G) F
by (metis filterlim-def filterlim-filtermap filtermap-mono g)

lemma eventually-at-right-field-le:
eventually P (at-right x) ←→ (∃ b>x. ∀ y>x. y ≤ b −→ P y)
for x :: ′a::{linordered-field, linorder-topology}
by (smt dense eventually-at-right-field le-less-trans less-le-not-le order .strict-trans1 )

1.2 indexing euclidean space with natural numbers
definition nth-eucl :: ′a::executable-euclidean-space ⇒ nat ⇒ real where

nth-eucl x i = x · (Basis-list ! i)
— TODO: why is that and some sort of lambda-eucl nowhere available?

definition lambda-eucl :: (nat ⇒ real) ⇒ ′a::executable-euclidean-space where
lambda-eucl (f ::nat⇒real) = (

∑
i<DIM ( ′a). f i ∗R Basis-list ! i)

lemma eucl-eq-iff : x = y ←→ (∀ i<DIM ( ′a). nth-eucl x i = nth-eucl y i)
for x y:: ′a::executable-euclidean-space
apply (auto simp: nth-eucl-def euclidean-eq-iff [where ′a= ′a])
by (metis eucl-of-list-list-of-eucl list-of-eucl-eq-iff )

open-bundle eucl-syntax
begin
notation nth-eucl (infixl ‹$e› 90 )
end

lemma eucl-of-list-eucl-nth:
(eucl-of-list xs:: ′a) $e i = xs ! i
if length xs = DIM ( ′a::executable-euclidean-space)

i < DIM ( ′a)
using that
apply (auto simp: nth-eucl-def )
by (metis list-of-eucl-eucl-of-list list-of-eucl-nth)

lemma eucl-of-list-inner :
(eucl-of-list xs:: ′a) · eucl-of-list ys = (

∑
(x,y)←zip xs ys. x ∗ y)

if length xs = DIM ( ′a::executable-euclidean-space)
length ys = DIM ( ′a::executable-euclidean-space)
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using that
by (auto simp: nth-eucl-def eucl-of-list-inner-eq inner-lv-rel-def )

lemma self-eq-eucl-of-list: x = eucl-of-list (map (λi. x $e i) [0 ..<DIM ( ′a)])
for x:: ′a::executable-euclidean-space
by (auto simp: eucl-eq-iff [where ′a= ′a] eucl-of-list-eucl-nth)

lemma inner-nth-eucl: x · y = (
∑

i<DIM ( ′a). x $e i ∗ y $e i)
for x y:: ′a::executable-euclidean-space
apply (subst self-eq-eucl-of-list[where x=x])
apply (subst self-eq-eucl-of-list[where x=y])
apply (subst eucl-of-list-inner)
by (auto simp: map2-map-map atLeast-upt interv-sum-list-conv-sum-set-nat)

lemma norm-nth-eucl: norm x = L2-set (λi. x $e i) {..<DIM ( ′a)}
for x:: ′a::executable-euclidean-space
unfolding norm-eq-sqrt-inner inner-nth-eucl L2-set-def
by (auto simp: power2-eq-square)

lemma plus-nth-eucl: (x + y) $e i = x $e i + y $e i
and minus-nth-eucl: (x − y) $e i = x $e i − y $e i
and uminus-nth-eucl: (−x) $e i = − x $e i
and scaleR-nth-eucl: (c ∗R x) $e i = c ∗R (x $e i)
by (auto simp: nth-eucl-def algebra-simps)

lemma inf-nth-eucl: inf x y $e i = min (x $e i) (y $e i)
if i < DIM ( ′a)
for x:: ′a::executable-euclidean-space
by (auto simp: nth-eucl-def algebra-simps inner-Basis-inf-left that inf-min)

lemma sup-nth-eucl: sup x y $e i = max (x $e i) (y $e i)
if i < DIM ( ′a)
for x:: ′a::executable-euclidean-space
by (auto simp: nth-eucl-def algebra-simps inner-Basis-sup-left that sup-max)

lemma le-iff-le-nth-eucl: x ≤ y ←→ (∀ i<DIM ( ′a). (x $e i) ≤ (y $e i))
for x:: ′a::executable-euclidean-space
apply (auto simp: nth-eucl-def algebra-simps eucl-le[where ′a= ′a])
by (meson eucl-le eucl-le-Basis-list-iff )

lemma eucl-less-iff-less-nth-eucl: eucl-less x y ←→ (∀ i<DIM ( ′a). (x $e i) < (y
$e i))

for x:: ′a::executable-euclidean-space
apply (auto simp: nth-eucl-def algebra-simps eucl-less-def [where ′a= ′a])
by (metis Basis-zero eucl-eq-iff inner-not-same-Basis inner-zero-left length-Basis-list

nth-Basis-list-in-Basis nth-eucl-def )

lemma continuous-on-nth-eucl[continuous-intros]:
continuous-on X (λx. f x $e i)
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if continuous-on X f
by (auto simp: nth-eucl-def intro!: continuous-intros that)

1.3 derivatives
lemma eventually-at-ne[intro, simp]: ∀ F x in at x0 . x 6= x0

by (auto simp: eventually-at-filter)

lemma has-vector-derivative-withinD:
fixes f ::real ⇒ ′b::euclidean-space
assumes (f has-vector-derivative f ′) (at x0 within S)
shows ((λx. (f x − f x0 ) /R (x − x0 )) −−−→ f ′) (at x0 within S)
apply (rule LIM-zero-cancel)
apply (rule tendsto-norm-zero-cancel)
apply (rule Lim-transform-eventually)

proof −
show ∀ F x in at x0 within S . norm ((f x − f x0 − (x − x0 ) ∗R f ′) /R norm (x
− x0 )) =

norm ((f x − f x0 ) /R (x − x0 ) − f ′)
(is ∀ F x in -. ?th x)
unfolding eventually-at-filter

proof (safe intro!: eventuallyI )
fix x assume x: x 6= x0
then have norm ((f x − f x0 ) /R (x − x0 ) − f ′) = norm (sgn (x − x0 ) ∗R

((f x − f x0 ) /R (x − x0 ) − f ′))
by simp

also have sgn (x − x0 ) ∗R ((f x − f x0 ) /R (x − x0 ) − f ′) = ((f x − f x0 ) /R
norm (x − x0 ) − (x − x0 ) ∗R f ′ /R norm (x − x0 ))

by (auto simp add: algebra-simps sgn-div-norm divide-simps)
(metis add.commute add-divide-distrib diff-add-cancel scaleR-add-left)

also have . . . = (f x − f x0 − (x − x0 ) ∗R f ′) /R norm (x − x0 ) by (simp
add: algebra-simps)

finally show ?th x ..
qed
show ((λx. norm ((f x − f x0 − (x − x0 ) ∗R f ′) /R norm (x − x0 ))) −−−→ 0 )

(at x0 within S)
by (rule tendsto-norm-zero)
(use assms in ‹auto simp: has-vector-derivative-def has-derivative-at-within›)

qed

A path-connected set S entering both T and −T must cross the frontier of
T
lemma path-connected-frontier :

fixes S :: ′a::real-normed-vector set
assumes path-connected S
assumes S ∩ T 6= {}
assumes S ∩ −T 6= {}
obtains s where s ∈ S s ∈ frontier T

proof −
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obtain st where st:st ∈ S ∩ T using assms(2 ) by blast
obtain sn where sn:sn ∈ S ∩ −T using assms(3 ) by blast
obtain g where g: path g path-image g ⊆ S

pathstart g = st pathfinish g = sn
using assms(1 ) st sn unfolding path-connected-def by blast

have a1 :pathstart g ∈ closure T using st g(3 ) closure-Un-frontier by fastforce
have a2 :pathfinish g /∈ T using sn g(4 ) by auto
from exists-path-subpath-to-frontier [OF g(1 ) a1 a2 ]
obtain h where path-image h ⊆ path-image g pathfinish h ∈ frontier T by metis
thus ?thesis using g(2 )

by (meson in-mono pathfinish-in-path-image that)
qed

lemma path-connected-not-frontier-subset:
fixes S :: ′a::real-normed-vector set
assumes path-connected S
assumes S ∩ T 6= {}
assumes S ∩ frontier T = {}
shows S ⊆ T
using path-connected-frontier assms by auto

lemma compact-attains-bounds:
fixes f :: ′a::topological-space ⇒ ′b::linorder-topology
assumes compact: compact S
assumes ne: S 6= {}
assumes cont: continuous-on S f
obtains l u where l ∈ S u ∈ S

∧
x. x ∈ S =⇒ f x ∈ {f l .. f u}

proof −
from compact-continuous-image[OF cont compact]
have compact-image: compact (f ‘ S) .
have ne-image: f ‘ S 6= {} using ne by simp
from compact-attains-inf [OF compact-image ne-image]
obtain l where l ∈ S

∧
x. x ∈ S =⇒ f l ≤ f x by auto

moreover
from compact-attains-sup[OF compact-image ne-image]
obtain u where u ∈ S

∧
x. x ∈ S =⇒ f x ≤ f u by auto

ultimately
have l ∈ S u ∈ S

∧
x. x ∈ S =⇒ f x ∈ {f l .. f u} by auto

then show ?thesis ..
qed

lemma uniform-limit-const[uniform-limit-intros]:
uniform-limit S (λx y. f x) (λ-. l) F if (f −−−→ l) F
apply (auto simp: uniform-limit-iff )
subgoal for e

using tendstoD[OF that(1 ), of e]
by (auto simp: eventually-mono)

done
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1.4 Segments

closed-segment throws away the order that our intuition keeps
definition line:: ′a::real-vector ⇒ ′a ⇒ real ⇒ ′a
(‹{- −− -}-›)
where {a −− b}u = a + u ∗R (b − a)

abbreviation line-image a b U ≡(λu. {a −− b}u) ‘ U
notation line-image (‹{- −− -}‘-›)

lemma in-closed-segment-iff-line: x ∈ {a −− b} ←→ (∃ c∈{0 ..1}. x = line a b c)
by (auto simp: in-segment line-def algebra-simps)

lemma in-open-segment-iff-line: x ∈ {a <−−< b} ←→ (∃ c∈{0<..<1}. a 6= b ∧
x = line a b c)

by (auto simp: in-segment line-def algebra-simps)

lemma line-convex-combination1 : (1 − u) ∗R line a b i + u ∗R b = line a b (i +
u − i ∗ u)

by (auto simp: line-def algebra-simps)

lemma line-convex-combination2 : (1 − u) ∗R a + u ∗R line a b i = line a b (i∗u)
by (auto simp: line-def algebra-simps)

lemma line-convex-combination12 : (1 − u) ∗R line a b i + u ∗R line a b j = line
a b (i + u ∗ (j − i))

by (auto simp: line-def algebra-simps)

lemma mult-less-one-less-self : 0 < x =⇒ i < 1 =⇒ i ∗ x < x for i x::real
by auto

lemma plus-times-le-one-lemma: i + u − i ∗ u ≤ 1 if i ≤ 1 u ≤ 1 for i u::real
by (simp add: diff-le-eq sum-le-prod1 that)

lemma plus-times-less-one-lemma: i + u − i ∗ u < 1 if i < 1 u < 1 for i u::real
proof −

have u ∗ (1 − i) < 1 − i
using that by force

then show ?thesis by (simp add: algebra-simps)
qed

lemma line-eq-endpoint-iff [simp]:
line a b i = b ←→ (a = b ∨ i = 1 )
a = line a b i ←→ (a = b ∨ i = 0 )
by (auto simp: line-def algebra-simps)

lemma line-eq-iff [simp]: line a b x = line a b y ←→ (x = y ∨ a = b)
by (auto simp: line-def )
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lemma line-open-segment-iff :
{line a b i<−−<b} = line a b ‘ {i<..<1}
if i < 1 a 6= b
using that
apply (auto simp: in-segment line-convex-combination1 plus-times-less-one-lemma)
subgoal for j

apply (rule exI [where x=(j − i)/(1 − i)])
apply (auto simp: divide-simps algebra-simps)

by (metis add-diff-cancel less-numeral-extra(4 ) mult-2-right plus-times-less-one-lemma
that(1 ))

done

lemma open-segment-line-iff :
{a<−−<line a b i} = line a b ‘ {0<..<i}
if 0 < i a 6= b
using that
apply (auto simp: in-segment line-convex-combination2 plus-times-less-one-lemma)
subgoal for j

apply (rule exI [where x=j/i])
by auto

done

lemma line-closed-segment-iff :
{line a b i−−b} = line a b ‘ {i..1}
if i ≤ 1 a 6= b
using that
apply (auto simp: in-segment line-convex-combination1 mult-le-cancel-right2 plus-times-le-one-lemma)
subgoal for j

apply (rule exI [where x=(j − i)/(1 − i)])
apply (auto simp: divide-simps algebra-simps)

by (metis add-diff-cancel less-numeral-extra(4 ) mult-2-right plus-times-less-one-lemma
that(1 ))

done

lemma closed-segment-line-iff :
{a−−line a b i} = line a b ‘ {0 ..i}
if 0 < i a 6= b
using that
apply (auto simp: in-segment line-convex-combination2 plus-times-less-one-lemma)
subgoal for j

apply (rule exI [where x=j/i])
by auto

done

lemma closed-segment-line-line-iff : {line a b i1−−line a b i2} = line a b ‘ {i1 ..i2}
if i1 ≤ i2

using that
apply (auto simp: in-segment line-convex-combination12 intro!: imageI )
apply (smt mult-left-le-one-le)
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subgoal for u
by (rule exI [where x=(u − i1 )/(i2−i1 )]) auto

done

lemma line-line1 : line (line a b c) b x = line a b (c + x − c ∗ x)
by (simp add: line-def algebra-simps)

lemma line-line2 : line a (line a b c) x = line a b (c∗x)
by (simp add: line-def algebra-simps)

lemma line-in-subsegment:
i1 < 1 =⇒ i2 < 1 =⇒ a 6= b =⇒ line a b i1 ∈ {line a b i2<−−<b} ←→ i2 <

i1
by (auto simp: line-open-segment-iff intro!: imageI )

lemma line-in-subsegment2 :
0 < i2 =⇒ 0 < i1 =⇒ a 6= b =⇒ line a b i1 ∈ {a<−−<line a b i2} ←→ i1 <

i2
by (auto simp: open-segment-line-iff intro!: imageI )

lemma line-in-open-segment-iff [simp]:
line a b i ∈ {a<−−<b} ←→ (a 6= b ∧ 0 < i ∧ i < 1 )
by (auto simp: in-open-segment-iff-line)

1.5 Open Segments
lemma open-segment-subsegment:

assumes x1 ∈ {x0<−−<x3}
x2 ∈ {x1<−−<x3}

shows x1 ∈ {x0<−−<x2}
using assms

proof −— TODO: use line
from assms obtain u v::real where

ne: x0 6= x3 (1 − u) ∗R x0 + u ∗R x3 6= x3
and x1-def : x1 = (1 − u) ∗R x0 + u ∗R x3
and x2-def : x2 = (1 − v) ∗R ((1 − u) ∗R x0 + u ∗R x3 ) + v ∗R x3
and uv: ‹0 < u› ‹0 < v› ‹u < 1 › ‹v < 1 ›
by (auto simp: in-segment)

let ?d = (u + v − u ∗ v)
have ?d > 0 using uv

by (auto simp: add-nonneg-pos pos-add-strict)
with ‹x0 6= x3 › have 0 6= ?d ∗R (x3 − x0 ) by simp
moreover
define ua where ua = u / ?d
have ua ∗ (u ∗ v − u − v) − − u = 0

by (auto simp: ua-def algebra-simps divide-simps)
(metis uv add-less-same-cancel1 add-strict-mono mult.right-neutral
mult-less-cancel-left-pos not-real-square-gt-zero vector-space-over-itself .scale-zero-left)

then have (ua ∗ (u ∗ v − u − v) − − u) ∗R (x3 − x0 ) = 0
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by simp
moreover
have 0 < ua ua < 1

using ‹0 < u› ‹0 < v› ‹u < 1 › ‹v < 1 ›
by (auto simp: ua-def pos-add-strict intro!: divide-pos-pos)

ultimately show ?thesis
unfolding x1-def x2-def
by (auto intro!: exI [where x=ua] simp: algebra-simps in-segment)

qed

1.6 Syntax
abbreviation sequentially-at-top::(nat⇒real)⇒bool
(‹- −−−−→ ∞›) — the is to disambiguate syntax...
where s −−−−→ ∞ ≡ filterlim s at-top sequentially

abbreviation sequentially-at-bot::(nat⇒real)⇒bool
(‹- −−−−→ −∞›)
where s −−−−→ −∞ ≡ filterlim s at-bot sequentially

1.7 Paths
lemma subpath0-linepath:

shows subpath 0 u (linepath t t ′) = linepath t (t + u ∗ (t ′ − t))
unfolding subpath-def linepath-def
apply (rule ext)
apply auto

proof −
fix x :: real
have f1 :

∧
r ra rb rc. (r ::real) + ra ∗ rb − ra ∗ rc = r − ra ∗ (rc − rb)

by (simp add: right-diff-distrib ′)
have f2 :

∧
r ra. (r ::real) − r ∗ ra = r ∗ (1 − ra)

by (simp add: right-diff-distrib ′)
have f3 :

∧
r ra rb. (r ::real) − ra + rb + ra − r = rb

by auto
have f4 :

∧
r . (r ::real) + (1 − 1 ) = r

by linarith
have f5 :

∧
r ra. (r ::real) + ra = ra + r

by force
have f6 :

∧
r ra. (r ::real) + (1 − (r + 1 ) + ra) = ra

by linarith
have t − x ∗ (t − (t + u ∗ (t ′ − t))) = t ′ ∗ (u ∗ x) + (t − t ∗ (u ∗ x))

by (simp add: right-diff-distrib ′)
then show (1 − u ∗ x) ∗ t + u ∗ x ∗ t ′ = (1 − x) ∗ t + x ∗ (t + u ∗ (t ′ − t))

using f6 f5 f4 f3 f2 f1 by (metis (no-types) mult.commute)
qed

lemma linepath-image0-right-open-real:
assumes t < (t ′::real)
shows linepath t t ′ ‘ {0 ..<1} = {t..<t ′}
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unfolding linepath-def
apply auto

apply (metis add.commute add-diff-cancel-left ′ assms diff-diff-eq2 diff-le-eq
less-eq-real-def mult.commute mult.right-neutral mult-right-mono right-diff-distrib ′)

apply (smt assms comm-semiring-class.distrib mult-diff-mult semiring-normalization-rules(2 )
zero-le-mult-iff )
proof −

fix x
assume t ≤ x x < t ′

let ?u = (x−t)/(t ′−t)
have ?u ≥ 0

using ‹t ≤ x› assms by auto
moreover have ?u < 1

by (simp add: ‹x < t ′› assms)
moreover have x = (1−?u) ∗ t + ?u∗t ′

proof −
have f1 : ∀ r ra. (ra::real) ∗ − r = r ∗ − ra

by simp
have t + (t ′ + − t) ∗ ((x + − t) / (t ′ + − t)) = x

using assms by force
then have t ′ ∗ ((x + − t) / (t ′ + − t)) + t ∗ (1 + − ((x + − t) / (t ′ + −

t))) = x
using f1 by (metis (no-types) add.left-commute distrib-left mult.commute

mult.right-neutral)
then show ?thesis

by (simp add: mult.commute)
qed
ultimately show x ∈ (λx. (1 − x) ∗ t + x ∗ t ′) ‘ {0 ..<1}

using atLeastLessThan-iff by blast
qed

lemma oriented-subsegment-scale:
assumes x1 ∈ {a<−−<b}
assumes x2 ∈ {x1<−−<b}
obtains e where e > 0 b−a = e ∗R (x2−x1 )

proof −
from assms(1 ) obtain u where u : u > 0 u < 1 x1 = (1 − u) ∗R a + u ∗R b

unfolding in-segment by blast
from assms(2 ) obtain v where v: v > 0 v < 1 x2 = (1 − v) ∗R x1 + v ∗R b

unfolding in-segment by blast
have x2−x1 = −v ∗R x1 + v ∗R b using v

by (metis add.commute add-diff-cancel-right diff-minus-eq-add scaleR-collapse
scaleR-left.minus)

also have ... = (−v) ∗R ((1 − u) ∗R a + u ∗R b) + v ∗R b using u by auto
also have ... = v ∗R ((1−u)∗R b − (1−u)∗R a )
by (smt add-diff-cancel diff-diff-add diff-minus-eq-add minus-diff-eq scaleR-collapse

scale-minus-left scale-right-diff-distrib)
finally have x2x1 :x2−x1 = (v ∗(1−u)) ∗R (b − a)

by (metis scaleR-scaleR scale-right-diff-distrib)
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have v ∗ (1−u) > 0 using u(2 ) v(1 ) by simp
then have (x2−x1 )/R (v ∗ (1−u)) = (b−a) unfolding x2x1

by (smt field-class.field-inverse scaleR-one scaleR-scaleR)
thus ?thesis

using ‹0 < v ∗ (1 − u)› positive-imp-inverse-positive that by fastforce
qed

end

2 Additions to the ODE Library
theory ODE-Misc

imports
Ordinary-Differential-Equations.ODE-Analysis
Analysis-Misc

begin

lemma local-lipschitz-compact-bicomposeE :
assumes ll: local-lipschitz T X f
assumes cf :

∧
x. x ∈ X =⇒ continuous-on I (λt. f t x)

assumes cI : compact I
assumes I ⊆ T
assumes cv: continuous-on I v
assumes cw: continuous-on I w
assumes v: v ‘ I ⊆ X
assumes w: w ‘ I ⊆ X
obtains L where L > 0

∧
x. x ∈ I =⇒ dist (f x (v x)) (f x (w x)) ≤ L ∗ dist

(v x) (w x)
proof −

from v w have v ‘ I ∪ w ‘ I ⊆ X by auto
with ll ‹I ⊆ T › have llI :local-lipschitz I (v ‘ I ∪ w ‘ I ) f

by (rule local-lipschitz-subset)
have cvwI : compact (v ‘ I ∪ w ‘ I )

by (auto intro!: compact-continuous-image cv cw cI )

from local-lipschitz-compact-implies-lipschitz[OF llI cvwI ‹compact I › cf ]
obtain L where L:

∧
t. t ∈ I =⇒ L−lipschitz-on (v ‘ I ∪ w ‘ I ) (f t)

using v w
by blast

define L ′ where L ′ = max L 1
with L have L ′ > 0

∧
x. x ∈ I =⇒ dist (f x (v x)) (f x (w x)) ≤ L ′ ∗ dist (v x)

(w x)
apply (auto simp: lipschitz-on-def L ′-def )

by (smt Un-iff image-eqI mult-right-mono zero-le-dist)
then show ?thesis ..

qed
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2.1 Comparison Principle
lemma comparison-principle-le:

fixes f ::real ⇒ real ⇒ real
and ϕ ψ::real ⇒ real

assumes ll: local-lipschitz X Y f
assumes cf :

∧
x. x ∈ Y =⇒ continuous-on {a..b} (λt. f t x)

assumes abX : {a .. b} ⊆ X
assumes ϕ ′:

∧
x. x ∈ {a .. b} =⇒ (ϕ has-real-derivative ϕ ′ x) (at x)

assumes ψ ′:
∧

x. x ∈ {a .. b} =⇒ (ψ has-real-derivative ψ ′ x) (at x)
assumes ϕ-in: ϕ ‘ {a..b} ⊆ Y
assumes ψ-in: ψ ‘ {a..b} ⊆ Y
assumes init: ϕ a ≤ ψ a
assumes defect:

∧
x. x ∈ {a .. b} =⇒ ϕ ′ x − f x (ϕ x) ≤ ψ ′ x − f x (ψ x)

shows ∀ x ∈ {a .. b}. ϕ x ≤ ψ x (is ?th1 )

unfolding atomize-conj
apply (cases a ≤ b)
defer subgoal by simp

proof −
assume a ≤ b
note ϕ-cont = has-real-derivative-imp-continuous-on[OF ϕ ′]
note ψ-cont = has-real-derivative-imp-continuous-on[OF ψ ′]
from local-lipschitz-compact-bicomposeE [OF ll cf compact-Icc abX ϕ-cont ψ-cont
ϕ-in ψ-in]

obtain L where L: L > 0
∧

x. x ∈ {a..b} =⇒ dist (f x (ϕ x)) (f x (ψ x)) ≤ L
∗ dist (ϕ x) (ψ x) by blast

define w where w x = ψ x − ϕ x for x

have w ′[derivative-intros]:
∧

x. x ∈ {a .. b} =⇒ (w has-real-derivative ψ ′ x − ϕ ′

x) (at x)
using ϕ ′ ψ ′

by (auto simp: has-vderiv-on-def w-def [abs-def ] intro!: derivative-eq-intros)
note w-cont[continuous-intros] = has-real-derivative-imp-continuous-on[OF w ′,

THEN continuous-on-compose2 ]
have w d ≥ 0 if d ∈ {a .. b} for d
proof (rule ccontr , unfold not-le)

assume w d < 0
let ?N = (w −‘ {..0} ∩ {a .. d})
from ‹w d < 0 › that have d ∈ ?N by auto
then have ?N 6= {} by auto
have closed ?N

unfolding compact-eq-bounded-closed
using that
by (intro conjI closed-vimage-Int) (auto intro!: continuous-intros)

let ?N ′ = {a0 ∈ {a .. d}. w ‘ {a0 .. d} ⊆ {..0}}
from ‹w d < 0 › that have d ∈ ?N ′ by simp
then have ?N ′ 6= {} by auto
have compact ?N ′
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unfolding compact-eq-bounded-closed
proof

have ?N ′ ⊆ {a .. d} using that by auto
then show bounded ?N ′

by (rule bounded-subset[rotated]) simp
have w u ≤ 0 if (∀n. x n ∈ ?N ′) x −−−−→ l l ≤ u u ≤ d for x l u
proof cases

assume l = u
have ∀n. x n ∈ ?N using that(1 ) by force
from closed-sequentially[OF ‹closed ?N ›] this ‹x −−−−→ l›
show ?thesis

using ‹l = u› by blast
next

assume l 6= u with that have l < u by auto
from order-tendstoD(2 )[OF ‹x −−−−→ l› ‹l < u›] obtain n where x n < u

by (auto dest: eventually-happens)
with that show ?thesis using ‹l < u›

by (auto dest!: spec[where x=n] simp: image-subset-iff )
qed
then show closed ?N ′

unfolding closed-sequential-limits
by (auto simp: Lim-bounded Lim-bounded2 )

qed

from compact-attains-inf [OF ‹compact ?N ′› ‹?N ′ 6= {}›]
obtain a0 where a0 : a ≤ a0 a0 ≤ d w ‘ {a0 ..d} ⊆ {..0}

and a0-least:
∧

x. a ≤ x =⇒ x ≤ d =⇒ w ‘ {x..d} ⊆ {..0} =⇒ a0 ≤ x
by auto

have a0d: {a0 .. d} ⊆ {a .. b} using that a0
by auto

have L-w-bound: L ∗ w x ≤ ψ ′ x − ϕ ′ x if x ∈ {a0 .. d} for x
proof −

from set-mp[OF a0d that] have x ∈ {a .. b} .
from defect[OF this]
have ϕ ′ x − ψ ′ x ≤ dist (f x (ϕ x)) (f x (ψ x))

by (simp add: dist-real-def )
also have . . . ≤ L ∗ dist (ϕ x) (ψ x)

using ‹x ∈ {a .. b}›
by (rule L)

also have . . . ≤ −L ∗ w x
using ‹0 < L› a0 that
by (force simp add: dist-real-def abs-real-def w-def algebra-split-simps )

finally show ?thesis
by simp

qed
have mono: mono-on {a0 ..d} (λx. w x ∗ exp(−L∗x))

apply (rule mono-onI )
apply (rule DERIV-nonneg-imp-nondecreasing, assumption)
using a0d
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by (auto intro!: exI [where x=(ψ ′ x − ϕ ′ x) ∗ exp (− (L ∗ x)) − exp (− (L
∗ x)) ∗ L ∗ w x for x]

derivative-eq-intros L-w-bound simp: )
then have w a0 ∗ exp (−L ∗ a0 ) ≤ w d ∗ exp (−L ∗ d)

by (rule mono-onD) (use that a0 in auto)
also have . . . < 0 using ‹w d < 0 › by (simp add: algebra-split-simps)
finally have w a0 ∗ exp (− L ∗ a0 ) < 0 .
then have w a0 < 0 by (simp add: algebra-split-simps)
have a0 ≤ a
proof (rule ccontr , unfold not-le)

assume a < a0
have continuous-on {a.. a0} w

by (rule continuous-intros, assumption) (use a0 a0d in auto)
from continuous-on-Icc-at-leftD[OF this ‹a < a0 ›]
have (w −−−→ w a0 ) (at-left a0 ) .
from order-tendstoD(2 )[OF this ‹w a0 < 0 ›] have ∀ F x in at-left a0 . w x <

0 .
moreover have ∀ F x in at-left a0 . a < x

by (rule order-tendstoD) (auto intro!: ‹a < a0 ›)
ultimately have ∀ F x in at-left a0 . a < x ∧ w x < 0 by eventually-elim

auto
then obtain a1 ′ where a1 ′<a0 and a1-neg:

∧
y. y > a1 ′ =⇒ y < a0 =⇒

a < y ∧ w y < 0
unfolding eventually-at-left-field by auto

define a1 where a1 = (a1 ′ + a0 )/2
have a1 < a0 using ‹a1 ′ < a0 › by (auto simp: a1-def )
have a ≤ a1

using ‹a < a0 › a1-neg by (force simp: a1-def )
moreover have a1 ≤ d

using ‹a1 ′ < a0 › a0 (2 ) by (auto simp: a1-def )
moreover have w ‘ {a1 ..a0} ⊆ {..0}

using ‹w a0 < 0 › a1-neg a0 (3 )
by (auto simp: a1-def ) smt

moreover have w ‘ {a0 ..d} ⊆ {..0} using a0 by auto
ultimately
have a0 ≤ a1

apply (intro a0-least) apply assumption apply assumption
by (smt atLeastAtMost-iff image-subset-iff )

with ‹a1<a0 › show False by simp
qed
then have a0 = a using ‹a ≤ a0 › by simp
with ‹w a0 < 0 › have w a < 0 by simp
with init show False

by (auto simp: w-def )
qed
then show ?thesis

by (auto simp: w-def )
qed
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lemma local-lipschitz-mult:
shows local-lipschitz (UNIV ::real set) (UNIV ::real set) (∗)
apply (auto intro!: c1-implies-local-lipschitz[where f ′=λp. blinfun-mult-left (fst

p)])
apply (simp add: has-derivative-mult-right mult-commute-abs)

by (auto intro!: continuous-intros)

lemma comparison-principle-le-linear :
fixes ϕ :: real ⇒ real
assumes continuous-on {a..b} g
assumes (

∧
t. t ∈ {a..b} =⇒ (ϕ has-real-derivative ϕ ′ t) (at t))

assumes ϕ a ≤ 0
assumes (

∧
t. t ∈ {a..b} =⇒ ϕ ′ t ≤ g t ∗R ϕ t)

shows ∀ t∈{a..b}. ϕ t ≤ 0
proof −

have ∗:
∧

x. continuous-on {a..b} (λt. g t ∗ x)
using assms(1 ) continuous-on-mult-right by blast

then have local-lipschitz (g‘{a..b}) UNIV (∗)
using local-lipschitz-subset[OF local-lipschitz-mult] by blast

from local-lipschitz-compose1 [OF this assms(1 )]
have local-lipschitz {a..b} UNIV (λt. (∗) (g t)) .
from comparison-principle-le[OF this - - assms(2 ) - - - assms(3 ), of b λt.0 ] ∗

assms(4 )
show ?thesis by auto

qed

2.2 Locally Lipschitz ODEs
context ll-on-open-it begin

lemma flow-lipschitzE :
assumes {a .. b} ⊆ existence-ivl t0 x
obtains L where L−lipschitz-on {a .. b} (flow t0 x)

proof −
have f ′: (flow t0 x has-derivative (λi. i ∗R f t (flow t0 x t))) (at t within {a ..

b}) if t ∈ {a .. b} for t
using flow-has-derivative[of t x] assms that
by (auto simp: has-derivative-at-withinI )

have compact ((λt. f t (flow t0 x t)) ‘ {a .. b})
using assms
apply (auto intro!: compact-continuous-image continuous-intros)
using local.existence-ivl-empty2 apply fastforce
apply (meson atLeastAtMost-iff general.existence-ivl-subset in-mono)

by (simp add: general.flow-in-domain subset-iff )
then obtain C where t ∈ {a .. b} =⇒ norm (f t (flow t0 x t)) ≤ C for t

by (fastforce dest!: compact-imp-bounded simp: bounded-iff intro: that)
then have t ∈ {a..b} =⇒ onorm (λi. i ∗R f t (flow t0 x t)) ≤ max 0 C for t

apply (subst onorm-scaleR-left)
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apply (auto simp: onorm-id max-def )
by (metis diff-0-right diff-mono diff-self norm-ge-zero)

from bounded-derivative-imp-lipschitz[OF f ′ - this]
have (max 0 C )−lipschitz-on {a..b} (flow t0 x)

by auto
then show ?thesis ..

qed

lemma flow-undefined0 : t /∈ existence-ivl t0 x =⇒ flow t0 x t = 0
unfolding flow-def by auto

lemma csols-undefined: x /∈ X =⇒ csols t0 x = {}
apply (auto simp: csols-def )
using general.existence-ivl-empty2 general.existence-ivl-maximal-segment
apply blast
done

lemmas existence-ivl-undefined = existence-ivl-empty2

end

2.3 Reverse flow as Sublocale
lemma range-preflect-0 [simp]: range (preflect 0 ) = UNIV

by (auto simp: preflect-def )
lemma range-uminus[simp]: range uminus = (UNIV :: ′a::ab-group-add set)

by auto

context auto-ll-on-open begin

sublocale rev: auto-ll-on-open −f rewrites −(−f ) = f
apply unfold-locales

using auto-local-lipschitz auto-open-domain
unfolding fun-Compl-def local-lipschitz-minus
by auto

lemma existence-ivl-eq-rev0 : existence-ivl0 y = uminus ‘ rev.existence-ivl0 y for y
by (auto simp: existence-ivl-eq-rev rev.existence-ivl0-def preflect-def )

lemma rev-existence-ivl-eq0 : rev.existence-ivl0 y = uminus ‘ existence-ivl0 y for y
using uminus-uminus-image[of rev.existence-ivl0 y]
by (simp add: existence-ivl-eq-rev0 )

lemma flow-eq-rev0 : flow0 y t = rev.flow0 y (−t) for y t
apply (cases t ∈ existence-ivl0 y)
subgoal

apply (subst flow-eq-rev(2 ), assumption)
apply (subst rev.flow0-def )
by (simp add: preflect-def )
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subgoal
apply (frule flow-undefined0 )
by (auto simp: existence-ivl-eq-rev0 rev.flow-undefined0 )

done

lemma rev-eq-flow: rev.flow0 y t = flow0 y (−t) for y t
apply (subst flow-eq-rev0 )
using uminus-uminus-image[of rev.existence-ivl0 y]
apply −
apply (subst (asm) existence-ivl-eq-rev0 [symmetric])
by auto

lemma rev-flow-image-eq: rev.flow0 x ‘ S = flow0 x ‘ (uminus ‘ S)
unfolding rev-eq-flow[abs-def ]
by force

lemma flow-image-eq-rev: flow0 x ‘ S = rev.flow0 x ‘ (uminus ‘ S)
unfolding rev-eq-flow[abs-def ]
by force

end

context c1-on-open begin

sublocale rev: c1-on-open −f −f ′ rewrites −(−f ) = f and −(−f ′) = f ′

by (rule c1-on-open-rev) auto

end

context c1-on-open-euclidean begin

sublocale rev: c1-on-open-euclidean −f −f ′ rewrites −(−f ) = f and −(−f ′) =
f ′

by unfold-locales auto

end

2.4 Autonomous LL ODE : Existence Interval and trapping
on the interval

lemma bdd-above-is-intervalI : bdd-above I
if is-interval I a ≤ b a ∈ I b /∈ I for I ::real set
by (meson bdd-above-def is-interval-1 le-cases that)

lemma bdd-below-is-intervalI : bdd-below I
if is-interval I a ≤ b a /∈ I b ∈ I for I ::real set
by (meson bdd-below-def is-interval-1 le-cases that)

context auto-ll-on-open begin
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lemma open-existence-ivl0 :
assumes x : x ∈ X
shows ∃ a b. a < 0 ∧ 0 < b ∧ {a..b} ⊆ existence-ivl0 x

proof −
have a1 :0 ∈ existence-ivl0 x

by (simp add: x)
have a2 : open (existence-ivl0 x)

by (simp add: x)
from a1 a2 obtain d where d > 0 ball 0 d ⊆ existence-ivl0 x

using openE by blast
have {−d/2 ..d/2} ⊆ ball 0 d

using ‹0 < d› dist-norm mem-ball by auto
thus ?thesis

by (smt ‹0 < d› ‹ball 0 d ⊆ existence-ivl0 x› divide-minus-left half-gt-zero
order-trans)
qed

lemma open-existence-ivl ′:
assumes x : x ∈ X
obtains a where a > 0 {−a..a} ⊆ existence-ivl0 x

proof −
from open-existence-ivl0 [OF assms(1 )]
obtain a b where ab: a < 0 0 < b {a..b} ⊆ existence-ivl0 x by auto
then have min (−a) b > 0 by linarith
have {−min (−a) b .. min(−a) b} ⊆ {a..b} by auto
thus ?thesis using ab(3 ) that[OF ‹min (−a) b > 0 ›] by blast

qed

lemma open-existence-ivl-on-compact:
assumes C : C ⊆ X and compact C C 6= {}
obtains a where a > 0

∧
x. x ∈ C =⇒ {−a..a} ⊆ existence-ivl0 x

proof −
from existence-ivl-cballs
have ∀ x∈C . ∃ e>0 . ∃ t>0 . ∀ y∈cball x e. cball 0 t⊆existence-ivl0 y

by (metis (full-types) C Int-absorb1 Int-iff UNIV-I )
then
obtain d ′ t ′ where ∗:
∀ x∈C . 0 < d ′ x ∧ t ′ x > 0 ∧ (∀ y∈cball x (d ′ x). cball 0 (t ′ x) ⊆ existence-ivl0

y)
by metis

with compactE-image[OF ‹compact C ›, of C λx. ball x (d ′ x)]
obtain C ′ where C ′ ⊆ C and [simp]: finite C ′ and C-subset: C ⊆ (

⋃
c∈C ′.

ball c (d ′ c))
by force

from C-subset ‹C 6= {}› have [simp]: C ′ 6= {} by auto
define d where d = Min (d ′ ‘ C ′)
define t where t = Min (t ′ ‘ C ′)
have t > 0 using ∗ ‹C ′ ⊆ C ›
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by (auto simp: t-def )
moreover have {−t .. t} ⊆ existence-ivl0 x if x ∈ C for x
proof −

from C-subset that ‹C ′ ⊆ C ›
obtain c where c: c ∈ C ′ x ∈ ball c (d ′ c) c ∈ C by force
then have {−t .. t} ⊆ cball 0 (t ′ c)

by (auto simp: abs-real-def t-def minus-le-iff )
also
from c have cball 0 (t ′ c) ⊆ existence-ivl0 x

using ∗[rule-format, OF ‹c ∈ C ›] by auto
finally show ?thesis .

qed
ultimately show ?thesis ..

qed

definition trapped-forward x K ←→ (flow0 x ‘ (existence-ivl0 x ∩ {0 ..}) ⊆ K )
— TODO: use this for backwards trapped, invariant, and all assumptions

definition trapped-backward x K ←→ (flow0 x ‘ (existence-ivl0 x ∩ {..0}) ⊆ K )

definition trapped x K ←→ trapped-forward x K ∧ trapped-backward x K

lemma trapped-iff-on-existence-ivl0 :
trapped x K ←→ (flow0 x ‘ (existence-ivl0 x) ⊆ K )
unfolding trapped-def trapped-forward-def trapped-backward-def
apply (auto)
by (metis IntI atLeast-iff atMost-iff image-subset-iff less-eq-real-def linorder-not-less)

end

context auto-ll-on-open begin

lemma infinite-rev-existence-ivl0-rewrites:
{0 ..} ⊆ rev.existence-ivl0 x ←→ {..0} ⊆ existence-ivl0 x
{..0} ⊆ rev.existence-ivl0 x ←→ {0 ..} ⊆ existence-ivl0 x
apply (auto simp add: rev.rev-existence-ivl-eq0 subset-iff )

using neg-le-0-iff-le apply fastforce
using neg-0-le-iff-le by fastforce

lemma trapped-backward-iff-rev-trapped-forward:
trapped-backward x K ←→ rev.trapped-forward x K
unfolding trapped-backward-def rev.trapped-forward-def
by (auto simp add: rev-flow-image-eq existence-ivl-eq-rev0 image-subset-iff )

If solution is trapped in a compact set at some time on its existence interval
then it is trapped forever
lemma trapped-sol-right:

— TODO: when building on afp-devel (??? outdated): https://bitbucket.org/
isa-afp/afp-devel/commits/0c3edf9248d5389197f248c723b625c419e4d3eb

assumes compact K K ⊆ X
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assumes x ∈ X trapped-forward x K
shows {0 ..} ⊆ existence-ivl0 x

proof (rule ccontr)
assume ¬ {0 ..} ⊆ existence-ivl0 x
from this obtain t where 0 ≤ t t /∈ existence-ivl0 x by blast
then have bdd: bdd-above (existence-ivl0 x)

by (auto intro!: bdd-above-is-intervalI ‹x ∈ X›)
from flow-leaves-compact-ivl-right [OF UNIV-I ‹x ∈ X› bdd UNIV-I assms(1−2 )]
show False by (metis assms(4 ) trapped-forward-def IntI atLeast-iff image-subset-iff )

qed

lemma trapped-sol-right-gen:
assumes compact K K ⊆ X
assumes t ∈ existence-ivl0 x trapped-forward (flow0 x t) K
shows {t..} ⊆ existence-ivl0 x

proof −
have x ∈ X

using assms(3 ) local.existence-ivl-empty-iff by fastforce
have xtk: flow0 x t ∈ X

by (simp add: assms(3 ) local.flow-in-domain)
from trapped-sol-right[OF assms(1−2 ) xtk assms(4 )] have {0 ..} ⊆ existence-ivl0

(flow0 x t) .
thus {t..} ⊆ existence-ivl0 x

using existence-ivl-trans[OF assms(3 )]
by (metis add.commute atLeast-iff diff-add-cancel le-add-same-cancel1 subset-iff )

qed

lemma trapped-sol-left:
— TODO: when building on afp-devel: https://bitbucket.org/isa-afp/afp-devel/

commits/0c3edf9248d5389197f248c723b625c419e4d3eb
assumes compact K K ⊆ X
assumes x ∈ X trapped-backward x K
shows {..0} ⊆ existence-ivl0 x

proof (rule ccontr)
assume ¬ {..0} ⊆ existence-ivl0 x
from this obtain t where t ≤ 0 t /∈ existence-ivl0 x by blast
then have bdd: bdd-below (existence-ivl0 x)

by (auto intro!: bdd-below-is-intervalI ‹x ∈ X›)
from flow-leaves-compact-ivl-left [OF UNIV-I ‹x ∈ X› bdd UNIV-I assms(1−2 )]
show False
by (metis IntI assms(4 ) atMost-iff auto-ll-on-open.trapped-backward-def auto-ll-on-open-axioms

image-subset-iff )
qed

lemma trapped-sol-left-gen:
assumes compact K K ⊆ X
assumes t ∈ existence-ivl0 x trapped-backward (flow0 x t) K
shows {..t} ⊆ existence-ivl0 x

proof −

35

https://bitbucket.org/isa-afp/afp-devel/commits/0c3edf9248d5389197f248c723b625c419e4d3eb
https://bitbucket.org/isa-afp/afp-devel/commits/0c3edf9248d5389197f248c723b625c419e4d3eb


have x ∈ X
using assms(3 ) local.existence-ivl-empty-iff by fastforce

have xtk: flow0 x t ∈ X
by (simp add: assms(3 ) local.flow-in-domain)

from trapped-sol-left[OF assms(1−2 ) xtk assms(4 )] have {..0} ⊆ existence-ivl0
(flow0 x t) .

thus {..t} ⊆ existence-ivl0 x
using existence-ivl-trans[OF assms(3 )]

by (metis add.commute add-le-same-cancel1 atMost-iff diff-add-cancel subset-eq)
qed

lemma trapped-sol:
assumes compact K K ⊆ X
assumes x ∈ X trapped x K
shows existence-ivl0 x = UNIV
by (metis (mono-tags, lifting) assms existence-ivl-zero image-subset-iff interval lo-

cal.existence-ivl-initial-time-iff local.existence-ivl-subset local.subset-mem-compact-implies-subset-existence-interval
order-refl subset-antisym trapped-iff-on-existence-ivl0 )

lemma regular-locally-noteq:— TODO: should be true in ll-on-open-it
assumes x ∈ X f x 6= 0
shows eventually (λt. flow0 x t 6= x) (at 0 )

proof −
have nf :norm (f x) > 0 by (simp add: assms(2 ))

obtain a where
a: a>0
{−a−−a} ⊆ existence-ivl0 x
0 ∈ {−a−−a}∧

t. t ∈ {−a−−a} =⇒ norm(f (flow0 x t) − f (flow0 x 0 )) ≤ norm(f x)/2
proof −

from open-existence-ivl ′[OF assms(1 )]
obtain a1 where a1 : a1 > 0 {−a1 ..a1} ⊆ existence-ivl0 x .
have continuous (at 0 ) (λt. norm(f (flow0 x t) − f (flow0 x 0 ) ))

apply (auto intro!: continuous-intros)
by (simp add: assms(1 ) local.f-flow-continuous)

then obtain a2 where a2>0
∀ t. norm t < a2 −→

norm (f (flow0 x t) − f (flow0 x 0 )) < norm(f x)/2
unfolding continuous-at-real-range
by (metis abs-norm-cancel cancel-comm-monoid-add-class.diff-cancel diff-zero

half-gt-zero nf norm-zero)
then have
t:

∧
t. t ∈ {−a2<−−<a2} =⇒ norm(f (flow0 x t) − f (flow0 x 0 )) ≤ norm(f

x)/2
by (smt open-segment-bound(2 ) open-segment-bound1 real-norm-def )

define a where a = min a1 (a2/2 )
have t1 :a > 0 unfolding a-def using ‹a1 > 0 › ‹a2 > 0 › by auto
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then have t3 :0 ∈{−a−−a}
using closed-segment-eq-real-ivl by auto

have {−a−−a} ⊆ {−a1 ..a1} unfolding a-def using ‹a1 > 0 › ‹a2 > 0 ›
using ODE-Auxiliarities.closed-segment-eq-real-ivl by auto

then have t2 :{−a−−a} ⊆ existence-ivl0 x using a1 by auto
have {−a−−a} ⊆ {−a2<−−<a2} unfolding a-def using ‹a1 > 0 › ‹a2 >

0 ›
by (smt Diff-iff closed-segment-eq-real-ivl atLeastAtMost-iff empty-iff half-gt-zero

insert-iff pos-half-less segment(1 ) subset-eq)
then have t4 :

∧
t. t ∈ {−a−−a} =⇒ norm(f (flow0 x t) − f (flow0 x 0 )) ≤

norm(f x)/2 using t by auto
show ?thesis using t1 t2 t3 t4 that by auto

qed
have

∧
t. t ∈ {−a−−a} =⇒ (flow0 x has-vector-derivative f (flow0 x t)) (at t

within {−a−−a})
apply (rule has-vector-derivative-at-within)
using a(2 ) by (auto intro!:flow-has-vector-derivative)

from vector-differentiable-bound-linearization[OF this - a(4 )]
have nb:

∧
c d. {c−−d} ⊆ {−a−−a} =⇒

norm (flow0 x d − flow0 x c − (d − c) ∗R f (flow0 x 0 )) ≤ norm (d − c) ∗
(norm (f x) / 2 )

using a(3 ) by blast
have

∧
t. dist t 0 < a =⇒ t 6= 0 =⇒ flow0 x t 6= x

proof (rule ccontr)
fix t
assume dist t 0 < a t 6= 0 ¬ flow0 x t 6= x
then have tx:flow0 x t = x by auto
have t ∈ {−a−−a}

using closed-segment-eq-real-ivl ‹dist t 0 < a› by auto
have t > 0 ∨ t < 0 using ‹t 6= 0 › by linarith
moreover {

assume t > 0
then have {0−−t} ⊆ {−a−−a}

by (simp add: ‹t ∈ {−a−−a}› a(3 ) subset-closed-segment)
from nb[OF this] have

norm (flow0 x t − x − t ∗R f x) ≤ norm t ∗ (norm (f x) / 2 )
by (simp add: assms(1 ))

then have norm (t ∗R f x) ≤ norm t ∗ (norm (f x) / 2 ) using tx by auto
then have False using nf

using ‹0 < t› by auto
}
moreover {

assume t < 0
then have {t−−0} ⊆ {−a−−a}

by (simp add: ‹t ∈ {−a−−a}› a(3 ) subset-closed-segment)
from nb[OF this] have

norm (x − flow0 x t + t ∗R f x) ≤ norm t ∗ (norm (f x) / 2 )
by (simp add: assms(1 ))

then have norm (t ∗R f x) ≤ norm t ∗ (norm (f x) / 2 ) using tx by auto
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then have False using nf
using ‹t < 0 › by auto

}
ultimately show False by blast

qed
thus ?thesis unfolding eventually-at

using a(1 ) by blast
qed

lemma compact-max-time-flow-in-closed:
assumes closed M and t-ex: t ∈ existence-ivl0 x
shows compact {s ∈ {0 ..t}. flow0 x ‘ {0 ..s} ⊆ M} (is compact ?C )
unfolding compact-eq-bounded-closed

proof
have bounded {0 .. t} by auto
then show bounded ?C

by (rule bounded-subset) auto
show closed ?C

unfolding closed-def
proof (rule topological-space-class.openI , clarsimp)

— TODO: there must be a more abstract argument for this, e.g., with [[closed
?s; continuous-on ?s ?f ; closed ?B]] =⇒ closed (?f −‘ ?B ∩ ?s) and then reasoning
about the connected component around 0?

fix s
assume notM : s ≤ t −→ 0 ≤ s −→ ¬ flow0 x ‘ {0 ..s} ⊆ M
consider 0 ≤ s s ≤ t flow0 x s /∈ M | 0 ≤ s s ≤ t flow0 x s ∈ M | s < 0 | s

> t
by arith

then show ∃T . open T ∧ s ∈ T ∧ T ⊆ − {s. 0 ≤ s ∧ s ≤ t ∧ flow0 x ‘ {0 ..s}
⊆ M}

proof cases
assume s: 0 ≤ s s ≤ t and sM : flow0 x s /∈ M
have isCont (flow0 x) s

using s ivl-subset-existence-ivl[OF t-ex]
by (auto intro!: flow-continuous)

from this[unfolded continuous-at-open, rule-format, of −M ] sM ‹closed M ›
obtain S where open S s ∈ S (∀ x ′∈S . flow0 x x ′ ∈ − M )

by auto
then show ?thesis

by (force intro!: exI [where x=S ])
next

assume s: 0 ≤ s s ≤ t and sM : flow0 x s ∈ M
from this notM obtain s0 where s0 : 0 ≤ s0 s0 < s flow0 x s0 /∈ M

by force
from order-tendstoD(1 )[OF tendsto-ident-at ‹s0 < s›, of UNIV , unfolded

eventually-at-topological]
obtain S where open S s ∈ S

∧
x. x ∈ S =⇒ x 6= s =⇒ s0 < x

by auto
then show ?thesis using s0
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by (auto simp: intro!: exI [where x=S ]) (smt atLeastAtMost-iff image-subset-iff )
qed (force intro: exI [where x={t<..}] exI [where x={..<0}])+

qed
qed

lemma flow-in-closed-max-timeE :
assumes closed M t ∈ existence-ivl0 x 0 ≤ t x ∈ M
obtains T where 0 ≤ T T ≤ t flow0 x ‘ {0 ..T} ⊆ M∧

s ′. 0 ≤ s ′ =⇒ s ′ ≤ t =⇒ flow0 x ‘ {0 ..s ′} ⊆ M =⇒ s ′ ≤ T
proof −

let ?C = {s ∈ {0 ..t}. flow0 x ‘ {0 ..s} ⊆ M}
have ?C 6= {}

using assms
using local.mem-existence-ivl-iv-defined
by (auto intro!: exI [where x=0 ])

from compact-max-time-flow-in-closed[OF assms(1 ,2 )]
have compact ?C .
from compact-attains-sup[OF this ‹?C 6= {}›]
obtain s where s: 0 ≤ s s ≤ t flow0 x ‘ {0 ..s} ⊆ M

and s-max:
∧

s ′. 0 ≤ s ′ =⇒ s ′ ≤ t =⇒ flow0 x ‘ {0 ..s ′} ⊆ M =⇒ s ′ ≤ s
by auto

then show ?thesis ..
qed

lemma flow-leaves-closed-at-frontierE :
assumes closed M and t-ex: t ∈ existence-ivl0 x and 0 ≤ t x ∈ M flow0 x t /∈

M
obtains s where 0 ≤ s s < t flow0 x ‘ {0 ..s} ⊆ M

flow0 x s ∈ frontier M
∃ F s ′ in at-right s. flow0 x s ′ /∈ M

proof −
from flow-in-closed-max-timeE [OF assms(1−4 )] assms(5 )
obtain s where s: 0 ≤ s s < t flow0 x ‘ {0 ..s} ⊆ M

and s-max:
∧

s ′. 0 ≤ s ′ =⇒ s ′ ≤ t =⇒ flow0 x ‘ {0 ..s ′} ⊆ M =⇒ s ′ ≤ s
by (smt atLeastAtMost-iff image-subset-iff )

note s
moreover
have flow0 x s /∈ interior M
proof

assume interior : flow0 x s ∈ interior M
have s ∈ existence-ivl0 x using ivl-subset-existence-ivl[OF ‹t ∈ -›] s by auto
from flow-continuous[OF this, THEN isContD, THEN topological-tendstoD,

OF open-interior interior ]
have ∀ F s ′ in at s. flow0 x s ′ ∈ interior M by auto
then have ∀ F s ′ in at-right s. flow0 x s ′ ∈ interior M

by (auto simp: eventually-at-split)
moreover have ∀ F s ′ in at-right s. s ′ < t

using tendsto-ident-at ‹s < t›
by (rule order-tendstoD)
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ultimately have ∀ F s ′ in at-right s. flow0 x s ′ ∈ M ∧ s ′ < t
by eventually-elim (use interior-subset[of M ] in auto)

then obtain s ′ where s ′: s < s ′ s ′ < t
∧

y. y > s =⇒ y ≤ s ′ =⇒ flow0 x y ∈
M

by (auto simp: eventually-at-right-field-le)
have s ′-ivl: flow0 x ‘ {0 ..s ′} ⊆ M
proof safe

fix s ′′ assume s ′′ ∈ {0 .. s ′}
then show flow0 x s ′′ ∈ M

using s interior-subset[of M ] s ′

by (cases s ′′ ≤ s) auto
qed
with s-max[of s ′] ‹s ′ < t› ‹0 ≤ s› ‹s < s ′› show False by auto

qed
then have flow0 x s ∈ frontier M

using s closure-subset[of M ]
by (force simp: frontier-def )

moreover
have compact (flow0 x −‘ M ∩ {s..t}) (is compact ?C )

unfolding compact-eq-bounded-closed
proof

have bounded {s .. t} by simp
then show bounded ?C

by (rule bounded-subset) auto
show closed ?C
using ‹closed M › assms mem-existence-ivl-iv-defined(2 )[OF t-ex] ivl-subset-existence-ivl[OF

t-ex] ‹0 ≤ s›
by (intro closed-vimage-Int) (auto intro!: continuous-intros)

qed
have ∃ F s ′ in at-right s. flow0 x s ′ /∈ M

apply (rule ccontr)
unfolding not-frequently

proof −
assume ∀ F s ′ in at-right s. ¬ flow0 x s ′ /∈ M
moreover have ∀ F s ′ in at-right s. s ′ < t

using tendsto-ident-at ‹s < t›
by (rule order-tendstoD)

ultimately have ∀ F s ′ in at-right s. flow0 x s ′ ∈ M ∧ s ′< t by eventually-elim
auto

then obtain s ′ where s ′: s < s ′∧
y. y > s =⇒ y < s ′ =⇒ flow0 x y ∈ M∧
y. y > s =⇒ y < s ′ =⇒ y < t

by (auto simp: eventually-at-right-field)
define s ′′ where s ′′ = (s + s ′) / 2
have 0 ≤ s ′′ s ′′ ≤ t s < s ′′ s ′′ < s ′

using s s ′

by (auto simp del: divide-le-eq-numeral1 le-divide-eq-numeral1 simp: s ′′-def )
fastforce

then have flow0 x ‘ {0 ..s ′′} ⊆ M
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using s s ′

apply auto
subgoal for u

by (cases u≤s) auto
done

from s-max[OF ‹0 ≤ s ′′› ‹s ′′≤ t› this] ‹s ′′ > s›
show False by simp

qed
ultimately show ?thesis ..

qed

2.5 Connectedness
lemma fcontX :

shows continuous-on X f
using auto-local-lipschitz local-lipschitz-continuous-on by blast

lemma fcontx:
assumes x ∈ X
shows continuous (at x) f

proof −
have open X by simp
from continuous-on-eq-continuous-at[OF this]
show ?thesis using fcontX assms(1 ) by blast

qed

lemma continuous-at-imp-cball:
assumes continuous (at x) g
assumes g x > (0 ::real)
obtains r where r > 0 ∀ y ∈ cball x r . g y > 0

proof −
from assms(1 )
obtain d where d>0 g ‘ (ball x d) ⊆ ball (g x) ((g x)/2 )

by (meson assms(2 ) continuous-at-ball half-gt-zero)
then have ∀ y ∈ cball x (d/2 ). g y > 0

by (smt assms(2 ) dist-norm image-subset-iff mem-ball mem-cball pos-half-less
real-norm-def )

thus ?thesis
using ‹0 < d› that half-gt-zero by blast

qed

flow0 is path-connected
lemma flow0-path-connected-time:

assumes ts ⊆ existence-ivl0 x path-connected ts
shows path-connected (flow0 x ‘ ts)

proof −
have continuous-on ts (flow0 x)

by (meson assms continuous-on-sequentially flow-continuous-on subsetD)
from path-connected-continuous-image[OF this assms(2 )]
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show ?thesis .
qed

lemma flow0-path-connected:
assumes path-connected D

path-connected ts∧
x. x ∈ D =⇒ ts ⊆ existence-ivl0 x

shows path-connected ( (λ(x, y). flow0 x y) ‘ (D × ts))
proof −

have D × ts ⊆ Sigma X existence-ivl0
using assms(3 ) subset-iff by fastforce

then have a1 :continuous-on (D × ts) (λ(x, y). flow0 x y)
using flow-continuous-on-state-space continuous-on-subset by blast

have a2 : path-connected (D × ts) using path-connected-Times assms by auto
from path-connected-continuous-image[OF a1 a2 ]
show ?thesis .

qed

end

2.6 Return Time and Implicit Function Theorem
context c1-on-open-euclidean begin

lemma flow-implicit-function:
— TODO: generalization of [[returns-to {x ∈ ?S . ?s x = 0} ?x; closed ?S ;

∧
x.

(?s has-derivative blinfun-apply (?Ds x)) (at x); isCont ?Ds (poincare-map {x ∈
?S . ?s x = 0} ?x); blinfun-apply (?Ds (poincare-map {x ∈ ?S . ?s x = 0} ?x)) (f
(poincare-map {x ∈ ?S . ?s x = 0} ?x)) 6= 0 ;

∧
u e. [[?s (flow0 ?x (u ?x)) = 0 ; u ?x

= return-time {x ∈ ?S . ?s x = 0} ?x;
∧

y. y ∈ cball ?x e =⇒ ?s (flow0 y (u y)) =
0 ; continuous-on (cball ?x e) u; (λt. (t, u t)) ‘ cball ?x e ⊆ Sigma X existence-ivl0 ;
0 < e; (u has-derivative blinfun-apply (− blinfun-scaleR-left (inverse (blinfun-apply
(?Ds (poincare-map {x ∈ ?S . ?s x = 0} ?x)) (f (poincare-map {x ∈ ?S . ?s x = 0}
?x)))) oL (?Ds (poincare-map {x ∈ ?S . ?s x = 0} ?x) oL flowderiv ?x (return-time
{x ∈ ?S . ?s x = 0} ?x)) oL embed1-blinfun)) (at ?x)]] =⇒ ?thesis]] =⇒ ?thesis!

fixes s:: ′a::euclidean-space ⇒ real and S :: ′a set
assumes t: t ∈ existence-ivl0 x and x: x ∈ X and st: s (flow0 x t) = 0
assumes Ds:

∧
x. (s has-derivative blinfun-apply (Ds x)) (at x)

assumes DsC : isCont Ds (flow0 x t)
assumes nz: Ds (flow0 x t) (f (flow0 x t)) 6= 0
obtains u e
where s (flow0 x (u x)) = 0

u x = t
(
∧

y. y ∈ cball x e =⇒ s (flow0 y (u y)) = 0 )
continuous-on (cball x e) u
(λt. (t, u t)) ‘ cball x e ⊆ Sigma X existence-ivl0
0 < e (u has-derivative (− blinfun-scaleR-left

(inverse (blinfun-apply (Ds (flow0 x t)) (f (flow0 x t)))) oL

(Ds (flow0 x t) oL flowderiv x t) oL embed1-blinfun)) (at x)
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proof −
note [derivative-intros] = has-derivative-compose[OF - Ds]
have cont-s: continuous-on UNIV s by (rule has-derivative-continuous-on[OF

Ds])
note cls[simp, intro] = closed-levelset[OF cont-s]
then have xt1 : (x, t) ∈ Sigma X existence-ivl0

by (auto simp: t x)
have D: (

∧
x. x ∈ Sigma X existence-ivl0 =⇒

((λ(x, t). s (flow0 x t)) has-derivative
blinfun-apply (Ds (flow0 (fst x) (snd x)) oL (flowderiv (fst x) (snd x))))
(at x))

by (auto intro!: derivative-eq-intros)
have C : isCont (λx. Ds (flow0 (fst x) (snd x)) oL flowderiv (fst x) (snd x))
(x, t)
using flowderiv-continuous-on[unfolded continuous-on-eq-continuous-within,

rule-format, OF xt1 ]
using at-within-open[OF xt1 open-state-space]
by (auto intro!: continuous-intros tendsto-eq-intros x t

isCont-tendsto-compose[OF DsC , unfolded poincare-map-def ]
simp: split-beta ′ isCont-def )

have Z : (case (x, t) of (x, t) ⇒ s (flow0 x t)) = 0
by (auto simp: st)

have I1 : blinfun-scaleR-left (inverse (Ds (flow0 x t)(f (flow0 x t)))) oL

((Ds (flow0 (fst (x, t))
(snd (x, t))) oL

flowderiv (fst (x, t))
(snd (x, t))) oL

embed2-blinfun)
= 1L

using nz
by (auto intro!: blinfun-eqI

simp: flowderiv-def blinfun.bilinear-simps inverse-eq-divide poincare-map-def )
have I2 : ((Ds (flow0 (fst (x, t))

(snd (x, t))) oL

flowderiv (fst (x, t))
(snd (x, t))) oL

embed2-blinfun) oL blinfun-scaleR-left (inverse (Ds (flow0 x t)(f (flow0 x t))))
= 1L

using nz
by (auto intro!: blinfun-eqI

simp: flowderiv-def blinfun.bilinear-simps inverse-eq-divide poincare-map-def )
show ?thesis

apply (rule implicit-function-theorem[where f=λ(x, t). s (flow0 x t)
and S=Sigma X existence-ivl0 , OF D xt1 open-state-space order-refl C Z

I1 I2 ])
apply blast

unfolding split-beta ′ fst-conv snd-conv poincare-map-def [symmetric]
..

qed
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lemma flow-implicit-function-at:
fixes s:: ′a::euclidean-space ⇒ real and S :: ′a set
assumes x: x ∈ X and st: s x = 0
assumes Ds:

∧
x. (s has-derivative blinfun-apply (Ds x)) (at x)

assumes DsC : isCont Ds x
assumes nz: Ds x (f x) 6= 0
assumes pos: e > 0
obtains u d
where

0 < d
u x = 0∧

y. y ∈ cball x d =⇒ s (flow0 y (u y)) = 0∧
y. y ∈ cball x d =⇒ |u y| < e∧
y. y ∈ cball x d =⇒ u y ∈ existence-ivl0 y

continuous-on (cball x d) u
(u has-derivative −Ds x /R (Ds x) (f x)) (at x)

proof −
have x0 : flow0 x 0 = x by (simp add: x)
from flow-implicit-function[OF existence-ivl-zero[OF x] x, unfolded x0 , of s, OF

st Ds DsC nz]
obtain u d0 where

s0 : s (flow0 x (u x)) = 0
and u0 : u x = 0
and u:

∧
y. y ∈ cball x d0 =⇒ s (flow0 y (u y)) = 0

and uc: continuous-on (cball x d0 ) u
and uex: (λt. (t, u t)) ‘ cball x d0 ⊆ Sigma X existence-ivl0
and d0 : 0 < d0
and u ′: (u has-derivative
blinfun-apply

(− blinfun-scaleR-left (inverse (blinfun-apply (Ds x) (f x))) oL (Ds x oL

flowderiv x 0 ) oL embed1-blinfun))
(at x)

by blast
have at x within cball x d0 = at x by (rule at-within-interior) (auto simp: ‹0 <

d0 ›)
then have (u −−−→ 0 ) (at x)

using uc d0 by (auto simp: continuous-on-def u0 dest!: bspec[where x=x])
from tendstoD[OF this ‹0 < e›] pos u0
obtain d1 where d1 : 0 < d1

∧
xa. dist xa x ≤ d1 =⇒ |u xa| < e

unfolding eventually-at-le
by force

define d where d = min d0 d1
have 0 < d by (auto simp: d-def d0 d1 )
moreover note u0
moreover have

∧
y. y ∈ cball x d =⇒ s (flow0 y (u y)) = 0 by (auto intro!: u

simp: d-def )
moreover have

∧
y. y ∈ cball x d =⇒ |u y| < e using d1 by (auto simp: d-def

dist-commute)
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moreover have
∧

y. y ∈ cball x d =⇒ u y ∈ existence-ivl0 y
using uex by (force simp: d-def )

moreover have continuous-on (cball x d) u
using uc by (rule continuous-on-subset) (auto simp: d-def )

moreover
have (u has-derivative −Ds x /R (Ds x) (f x)) (at x)

using u ′

by (rule has-derivative-subst) (auto intro!: ext simp: x x0 flowderiv-def blin-
fun.bilinear-simps)

ultimately show ?thesis ..
qed

lemma returns-to-implicit-function-gen:
— TODO: generalizes proof of [[returns-to {x ∈ ?S . ?s x = 0} ?x; closed ?S ;

∧
x.

(?s has-derivative blinfun-apply (?Ds x)) (at x); isCont ?Ds (poincare-map {x ∈
?S . ?s x = 0} ?x); blinfun-apply (?Ds (poincare-map {x ∈ ?S . ?s x = 0} ?x)) (f
(poincare-map {x ∈ ?S . ?s x = 0} ?x)) 6= 0 ;

∧
u e. [[?s (flow0 ?x (u ?x)) = 0 ; u ?x

= return-time {x ∈ ?S . ?s x = 0} ?x;
∧

y. y ∈ cball ?x e =⇒ ?s (flow0 y (u y)) =
0 ; continuous-on (cball ?x e) u; (λt. (t, u t)) ‘ cball ?x e ⊆ Sigma X existence-ivl0 ;
0 < e; (u has-derivative blinfun-apply (− blinfun-scaleR-left (inverse (blinfun-apply
(?Ds (poincare-map {x ∈ ?S . ?s x = 0} ?x)) (f (poincare-map {x ∈ ?S . ?s x = 0}
?x)))) oL (?Ds (poincare-map {x ∈ ?S . ?s x = 0} ?x) oL flowderiv ?x (return-time
{x ∈ ?S . ?s x = 0} ?x)) oL embed1-blinfun)) (at ?x)]] =⇒ ?thesis]] =⇒ ?thesis!

fixes s:: ′a::euclidean-space ⇒ real
assumes rt: returns-to {x ∈ S . s x = 0} x (is returns-to ?P x)
assumes cS : closed S
assumes Ds:

∧
x. (s has-derivative blinfun-apply (Ds x)) (at x)

isCont Ds (poincare-map ?P x)
Ds (poincare-map ?P x) (f (poincare-map ?P x)) 6= 0

obtains u e
where s (flow0 x (u x)) = 0

u x = return-time ?P x
(
∧

y. y ∈ cball x e =⇒ s (flow0 y (u y)) = 0 )
continuous-on (cball x e) u
(λt. (t, u t)) ‘ cball x e ⊆ Sigma X existence-ivl0
0 < e (u has-derivative (− blinfun-scaleR-left

(inverse (blinfun-apply (Ds (poincare-map ?P x)) (f (poincare-map
?P x)))) oL

(Ds (poincare-map ?P x) oL flowderiv x (return-time ?P x)) oL

embed1-blinfun)) (at x)
proof −

note [derivative-intros] = has-derivative-compose[OF - Ds(1 )]
have cont-s: continuous-on UNIV s by (rule has-derivative-continuous-on[OF

Ds(1 )])
note cls[simp, intro] = closed-levelset[OF cont-s]
let ?t1 = return-time ?P x
have cls[simp, intro]: closed {x ∈ S . s x = 0}
by (rule closed-levelset-within) (auto intro!: cS continuous-on-subset[OF cont-s])
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have ∗: poincare-map ?P x = flow0 x (return-time {x ∈ S . s x = 0} x)
by (simp add: poincare-map-def )

have return-time {x ∈ S . s x = 0} x ∈ existence-ivl0 x
x ∈ X
s (poincare-map ?P x) = 0
using poincare-map-returns rt
by (auto intro!: return-time-exivl rt)

note E = flow-implicit-function[of return-time ?P x x s Ds, OF this[unfolded ∗]
Ds[unfolded ∗],

folded ∗]
show ?thesis

by (rule E) rule
qed

c.f. Perko Section 3.7 Lemma 2 part 1.
lemma flow-transversal-surface-finite-intersections:

fixes s:: ′a ⇒ ′b::real-normed-vector
and Ds:: ′a ⇒ ′a ⇒L

′b
assumes closed S
assumes

∧
x. (s has-derivative (Ds x)) (at x)

assumes
∧

x. x ∈ S =⇒ s x = 0 =⇒ Ds x (f x) 6= 0
assumes a ≤ b {a .. b} ⊆ existence-ivl0 x
shows finite {t∈{a..b}. flow0 x t ∈ {x ∈ S . s x = 0}}

— TODO: define notion of (compact/closed)-(continuous/differentiable/C1)-
surface?
proof cases

note Ds = ‹
∧

x. (s has-derivative (Ds x)) (at x)›
note transversal = ‹

∧
x. x ∈ S =⇒ s x = 0 =⇒ Ds x (f x) 6= 0 ›

assume a < b
show ?thesis
proof (rule ccontr)

let ?S = {x ∈ S . s x = 0}
let ?T = {t∈{a..b}. flow0 x t ∈ {x ∈ S . s x = 0}}
define ϕ where ϕ = flow0 x
have [THEN continuous-on-compose2 , continuous-intros]: continuous-on S s
by (auto simp: intro!: has-derivative-continuous-on Ds intro: has-derivative-at-withinI )
assume infinite ?T
from compact-sequentialE [OF compact-Icc[of a b] this]
obtain t tl where t: t n ∈ ?T flow0 x (t n) ∈ ?S t n ∈ {a .. b} t n 6= tl

and tl: t −−−−→ tl tl ∈ {a..b}
for n

by force
have tl-ex: tl ∈ existence-ivl0 x using ‹{a .. b} ⊆ existence-ivl0 x› ‹tl ∈ {a ..

b}› by auto
have closed ?S

by (auto intro!: closed-levelset-within ‹closed S› continuous-intros)
moreover
have ∀n. flow0 x (t n) ∈ ?S

using t by auto
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moreover
have flow-t: (λn. flow0 x (t n)) −−−−→ flow0 x tl

by (auto intro!: tendsto-eq-intros tl-ex tl)
ultimately have flow0 x tl ∈ ?S

by (metis (no-types, lifting) closed-sequentially)

let ?qt = λt. (flow0 x t − flow0 x tl) /R (t − tl)
from flow-has-vector-derivative[OF tl-ex, THEN has-vector-derivative-withinD]
have qt-tendsto: ?qt −tl→ f (flow0 x tl) .
let ?q = λn. ?qt (t n)
have filterlim t (at tl) sequentially

using tl(1 )
by (rule filterlim-atI ) (simp add: t)

with qt-tendsto have ?q −−−−→ f (flow0 x tl)
by (rule filterlim-compose)

then have ((λn. Ds (flow0 x tl) (?q n))) −−−−→ Ds (flow0 x tl) (f (flow0 x tl))
by (auto intro!: tendsto-intros)

moreover

from flow-lipschitzE [OF ‹{a .. b} ⊆ existence-ivl0 x›] obtain L ′ where L ′:
L ′−lipschitz-on {a..b} (flow0 x) .

define L where L = L ′ + 1
from lipschitz-on-le[OF L ′, of L] lipschitz-on-nonneg[OF L ′]
have L: L−lipschitz-on {a .. b} (flow0 x) and L > 0

by (auto simp: L-def )
from flow-lipschitzE [OF ‹{a .. b} ⊆ existence-ivl0 x›] obtain L ′ where

L ′−lipschitz-on {a..b} (flow0 x) .
— TODO: is this reasoning (below) with this Lipschitz constant really

necessary?
have s[simp]: s (flow0 x (t n)) = 0s (flow0 x tl) = 0

for n
using t ‹flow0 x tl ∈ ?S›
by auto

from Ds(1 )[of flow0 x tl, unfolded has-derivative-within]
have (λy. (1 / norm (y − flow0 x tl)) ∗R (s y − (s (flow0 x tl) + blinfun-apply

(Ds (flow0 x tl)) (y − flow0 x tl)))) −flow0 x tl→ 0
by auto

then have ((λy. (1 / norm (y − flow0 x tl)) ∗R (s y − (s (flow0 x tl) +
blinfun-apply (Ds (flow0 x tl)) (y − flow0 x tl)))) −−−→ 0 )

(nhds (flow0 x tl))
by (rule tendsto-nhds-continuousI ) simp

from filterlim-compose[OF this flow-t]
have (λxa. (blinfun-apply (Ds (flow0 x tl)) (flow0 x (t xa) − flow0 x tl)) /R

norm (flow0 x (t xa) − flow0 x tl))
−−−−→ 0
using t
by (auto simp: inverse-eq-divide tendsto-minus-cancel-right)

47



from tendsto-mult[OF tendsto-const[of L] tendsto-norm[OF this, simplified,
simplified divide-inverse-commute[symmetric]]]— TODO: uuugly

have Ds0 : (λxa. norm (blinfun-apply (Ds (flow0 x tl)) (flow0 x (t xa) − flow0
x tl)) / (norm (flow0 x (t xa) − flow0 x tl)/(L))) −−−−→ 0

by (auto simp: ac-simps)

from - Ds0 have ((λn. Ds (flow0 x tl) (?q n)) −−−−→ 0 )
apply (rule Lim-null-comparison)
apply (rule eventuallyI )

unfolding norm-scaleR blinfun.scaleR-right abs-inverse divide-inverse-commute[symmetric]
subgoal for n

apply (cases flow0 x (t n) = flow0 x tl)
subgoal by (simp add: blinfun.bilinear-simps)
subgoal

apply (rule divide-left-mono)
using lipschitz-onD[OF L, of t n tl] ‹0 < L› t(3 ) tl(2 )

by (auto simp: algebra-split-simps zero-less-divide-iff dist-norm pos-divide-le-eq
intro!: add-pos-nonneg)

done
done

ultimately have Ds (flow0 x tl) (f (flow0 x tl)) = 0
by (rule LIMSEQ-unique)

moreover have Ds (flow0 x tl) (f (flow0 x tl)) 6= 0
by (rule transversal) (use ‹flow0 x tl ∈ ?S› in auto)

ultimately show False by auto
qed

qed (use assms in auto)

lemma uniform-limit-flow0-state:— TODO: is that something more general?
assumes compact C
assumes C ⊆ X
shows uniform-limit C (λs x. flow0 x s) (λx. flow0 x 0 ) (at 0 )

proof (cases C = {})
case True then show ?thesis by auto

next
case False show ?thesis
proof (rule uniform-limitI )

fix e::real assume 0 < e
{

fix x assume x ∈ C
with assms have x ∈ X by auto
from existence-ivl-cballs[OF UNIV-I ‹x ∈ X›]
obtain t L u where

∧
y. y ∈ cball x u =⇒ cball 0 t ⊆ existence-ivl0 y∧

s y. y ∈ cball x u =⇒ s ∈ cball 0 t =⇒ flow0 y s ∈ cball y u
L−lipschitz-on (cball 0 t×cball x u) (λ(t, x). flow0 x t)∧

y. y ∈ cball x u =⇒ cball y u ⊆ X
0 < t 0 < u
by metis

then have ∃L. ∃ u>0 . ∃ t>0 . L−lipschitz-on (cball 0 t×cball x u) (λ(t, x).
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flow0 x t) by blast
} then have ∀ x∈C . ∃L. ∃ u>0 . ∃ t>0 . L−lipschitz-on (cball 0 t×cball x u)

(λ(t, x). flow0 x t) ..
then obtain L d ′ u ′ where

L:
∧

x. x ∈ C =⇒ (L x)−lipschitz-on (cball 0 (d ′ x)×cball x (u ′ x)) (λ(t, x).
flow0 x t)

and d ′:
∧

x. x ∈ C =⇒ d ′ x > 0
and u ′:

∧
x. x ∈ C =⇒ u ′ x > 0

by metis
have C ⊆ (

⋃
c∈C . ball c (u ′ c)) using u ′ by auto

from compactE-image[OF ‹compact C › - this]
obtain C ′ where C ′ ⊆ C and [simp]: finite C ′ and C ′-cover : C ⊆ (

⋃
c∈C ′.

ball c (u ′ c))
by auto

from C ′-cover obtain c ′ where c ′: x ∈ C =⇒ x ∈ ball (c ′ x) (u ′ (c ′ x)) x ∈
C =⇒ c ′ x ∈ C ′ for x

by (auto simp: subset-iff ) metis
have ∀ F s in at 0 . ∀ x∈ball c (u ′ c). dist (flow0 x s) (flow0 x 0 ) < e if c ∈ C ′

for c
proof −

have cC : c ∈ C
using c ′ ‹c ∈ C ′› d ′ ‹C ′ ⊆ C ›
by auto

have ∗: dist (flow0 x s) (flow0 x 0 ) ≤ L c ∗ |s|
if x∈ball c (u ′ c)

s ∈ cball 0 (d ′ c)
for x s

proof −
from L[OF cC , THEN lipschitz-onD, of (0 , x) (s, x)] d ′[OF cC ] that
show ?thesis

by (auto simp: dist-prod-def dist-commute)
qed
have ∀ F s in at 0 . abs s < d ′ c

by (rule order-tendstoD tendsto-intros)+ (use d ′ cC in auto)
moreover have ∀ F s in at 0 . L c ∗ |s| < e

by (rule order-tendstoD tendsto-intros)+ (use ‹0 < e› in auto)
ultimately show ?thesis

apply eventually-elim
apply (use ∗ in auto)
by smt

qed
then have ∀ F s in at 0 . ∀ c∈C ′. ∀ x∈ball c (u ′ c). dist (flow0 x s) (flow0 x 0 )

< e
by (simp add: eventually-ball-finite-distrib)

then show ∀ F s in at 0 . ∀ x∈C . dist (flow0 x s) (flow0 x 0 ) < e
apply eventually-elim
apply auto
subgoal for s x

apply (drule bspec[where x=c ′ x])
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apply (simp add: c ′(2 ))
apply (drule bspec) prefer 2 apply assumption
apply auto
using c ′(1 ) by auto

done
qed

qed

end

2.7 Fixpoints
context auto-ll-on-open begin

lemma fixpoint-sol:
assumes x ∈ X f x = 0
shows existence-ivl0 x = UNIV flow0 x t = x

proof −
have sol: ((λt::real. x) solves-ode (λ-. f )) UNIV X

apply (rule solves-odeI )
by(auto simp add: assms intro!: derivative-intros)

from maximal-existence-flow[OF sol] have
UNIV ⊆ existence-ivl0 x flow0 x t = x by auto

thus existence-ivl0 x = UNIV flow0 x t = x by auto
qed

end

end

3 Invariance
theory Invariance

imports ODE-Misc
begin

context auto-ll-on-open begin

definition invariant M ←→ (∀ x∈M . trapped x M )

definition positively-invariant M ←→ (∀ x∈M . trapped-forward x M )

definition negatively-invariant M ←→ (∀ x∈M . trapped-backward x M )

lemma positively-invariant-iff :
positively-invariant M ←→
(
⋃

x∈M . flow0 x ‘ (existence-ivl0 x ∩ {0 ..})) ⊆ M
unfolding positively-invariant-def trapped-forward-def
by auto

50



lemma negatively-invariant-iff :
negatively-invariant M ←→
(
⋃

x∈M . flow0 x ‘ (existence-ivl0 x ∩ {..0})) ⊆ M
unfolding negatively-invariant-def trapped-backward-def
by auto

lemma invariant-iff-pos-and-neg-invariant:
invariant M ←→ positively-invariant M ∧ negatively-invariant M
unfolding invariant-def trapped-def positively-invariant-def negatively-invariant-def
by blast

lemma invariant-iff :
invariant M ←→ (

⋃
x∈M . flow0 x ‘ (existence-ivl0 x)) ⊆ M

unfolding invariant-iff-pos-and-neg-invariant positively-invariant-iff negatively-invariant-iff
by (metis (mono-tags) SUP-le-iff invariant-def invariant-iff-pos-and-neg-invariant

negatively-invariant-iff positively-invariant-iff trapped-iff-on-existence-ivl0 )

lemma positively-invariant-restrict-dom: positively-invariant M = positively-invariant
(M ∩ X)

unfolding positively-invariant-def trapped-forward-def
by (auto intro!: flow-in-domain dest: mem-existence-ivl-iv-defined)

lemma negatively-invariant-restrict-dom: negatively-invariant M = negatively-invariant
(M ∩ X)

unfolding negatively-invariant-def trapped-backward-def
by (auto intro!: flow-in-domain dest: mem-existence-ivl-iv-defined)

lemma invariant-restrict-dom: invariant M = invariant (M ∩ X)
using invariant-iff-pos-and-neg-invariant

negatively-invariant-restrict-dom
positively-invariant-restrict-dom by auto

end context auto-ll-on-open begin

lemma positively-invariant-eq-rev: positively-invariant M = rev.negatively-invariant
M

unfolding positively-invariant-def rev.negatively-invariant-def
by (simp add: rev.trapped-backward-iff-rev-trapped-forward)

lemma negatively-invariant-eq-rev: negatively-invariant M = rev.positively-invariant
M

unfolding negatively-invariant-def rev.positively-invariant-def
by (simp add: trapped-backward-iff-rev-trapped-forward)

lemma invariant-eq-rev: invariant M = rev.invariant M
unfolding invariant-iff-pos-and-neg-invariant rev.invariant-iff-pos-and-neg-invariant

positively-invariant-eq-rev negatively-invariant-eq-rev by auto
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lemma negatively-invariant-complI : negatively-invariant (X−M ) if positively-invariant
M

unfolding negatively-invariant-def trapped-backward-def
proof clarsimp

fix x t
assume x: x ∈ X x /∈ M t ∈ existence-ivl0 x t ≤ 0
have a1 :flow0 x t ∈ X using x

using flow-in-domain by blast
have a2 :flow0 x t /∈ M
proof (rule ccontr)

assume ¬ flow0 x t /∈ M
then have trapped-forward (flow0 x t) M

using positively-invariant-def that by auto
moreover have flow0 (flow0 x t) (−t) = x

using ‹t ∈ existence-ivl0 x› flows-reverse by auto
moreover have −t ∈ existence-ivl0 (flow0 x t) ∩ {0 ..}

using existence-ivl-reverse x(3 ) x(4 ) by auto
ultimately have x ∈ M unfolding trapped-forward-def

by (metis image-subset-iff )
thus False using x(2 ) by auto

qed
show flow0 x t ∈ X ∧ flow0 x t /∈ M using a1 a2 by auto

qed

end context auto-ll-on-open begin

lemma negatively-invariant-complD: positively-invariant M if negatively-invariant
(X−M )
proof −

have rev.positively-invariant (X−M ) using that
by (simp add: negatively-invariant-eq-rev)

then have rev.negatively-invariant (X−(X−M ))
by (simp add: rev.negatively-invariant-complI )

then have positively-invariant (X−(X−M ))
using rev.negatively-invariant-eq-rev by auto

thus ?thesis using Diff-Diff-Int
by (metis inf-commute positively-invariant-restrict-dom)

qed

lemma pos-invariant-iff-compl-neg-invariant: positively-invariant M ←→ negatively-invariant
(X − M )

by (safe intro!: negatively-invariant-complI dest!: negatively-invariant-complD)

lemma neg-invariant-iff-compl-pos-invariant:
shows negatively-invariant M ←→ positively-invariant (X − M )
by (simp add: auto-ll-on-open.pos-invariant-iff-compl-neg-invariant negatively-invariant-eq-rev

positively-invariant-eq-rev rev.auto-ll-on-open-axioms)

52



lemma invariant-iff-compl-invariant:
shows invariant M ←→ invariant (X − M )
using invariant-iff-pos-and-neg-invariant neg-invariant-iff-compl-pos-invariant pos-invariant-iff-compl-neg-invariant

by blast

lemma invariant-iff-pos-invariant-and-compl-pos-invariant:
shows invariant M ←→ positively-invariant M ∧ positively-invariant (X−M )
by (simp add: invariant-iff-pos-and-neg-invariant neg-invariant-iff-compl-pos-invariant)

end

3.1 Tools for proving invariance
context auto-ll-on-open begin

lemma positively-invariant-left-inter :
assumes positively-invariant C
assumes ∀ x ∈ C ∩ D. trapped-forward x D
shows positively-invariant (C ∩ D)
using assms positively-invariant-def trapped-forward-def by auto

lemma trapped-forward-le:
fixes V :: ′a ⇒ real
assumes V x ≤ 0
assumes contg: continuous-on (flow0 x ‘ (existence-ivl0 x ∩ {0 ..})) g
assumes

∧
x. (V has-derivative V ′ x) (at x)

assumes
∧

s. s ∈ existence-ivl0 x ∩ {0 ..} =⇒ V ′ (flow0 x s) (f (flow0 x s)) ≤ g
(flow0 x s) ∗ V (flow0 x s)

shows trapped-forward x {x. V x ≤ 0}
unfolding trapped-forward-def

proof clarsimp
fix t
assume t: t ∈ existence-ivl0 x 0 ≤ t
then have ex:{0 ..t} ⊆ existence-ivl0 x

by (simp add: local.ivl-subset-existence-ivl)
have contV : continuous-on UNIV V

using assms(3 ) has-derivative-continuous-on by blast
have 1 : continuous-on {0 ..t} (g ◦ flow0 x)

apply (rule continuous-on-compose)
using continuous-on-subset ex local.flow-continuous-on apply blast

by (meson Int-subset-iff atLeastAtMost-iff atLeast-iff contg continuous-on-subset
ex image-mono subsetI )

have 2 : (
∧

s. s ∈ {0 ..t} =⇒
(V ◦ flow0 x has-real-derivative (V ′ (flow0 x s) ◦ f ◦ flow0 x) s) (at s))

apply (auto simp add:o-def has-field-derivative-def )
proof −

fix s
assume 0 ≤ s s ≤ t
then have s ∈ existence-ivl0 x using ex by auto
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from flow-has-derivative[OF this] have
(flow0 x has-derivative (λi. i ∗R f (flow0 x s))) (at s) .

from has-derivative-compose[OF this assms(3 )]
have ((λt. V (flow0 x t)) has-derivative (λt. V ′ (flow0 x s) (t ∗R f (flow0 x

s)))) (at s) .
moreover have linear (V ′ (flow0 x s)) using assms(3 ) has-derivative-linear

by blast
ultimately
have ((λt. V (flow0 x t)) has-derivative (λt. t ∗R V ′ (flow0 x s) (f (flow0 x

s)))) (at s)
unfolding linear-cmul[OF ‹linear (V ′ (flow0 x s))›] by blast

thus ((λt. V (flow0 x t)) has-derivative (∗) (V ′ (flow0 x s) (f (flow0 x s)))) (at
s)

by (auto intro!: derivative-eq-intros simp add: mult-commute-abs)
qed
have 3 : (

∧
s. s ∈ {0 ..t} =⇒

(V ′ (flow0 x s) ◦ f ◦ flow0 x) s ≤ (g ◦ flow0 x) s ∗R (V ◦ flow0 x) s)
using ex by (auto intro!:assms(4 ))

from comparison-principle-le-linear [OF 1 2 - 3 ] assms(1 )
have ∀ s ∈ {0 ..t}. (V ◦ flow0 x) s ≤ 0

using local.mem-existence-ivl-iv-defined(2 ) t(1 ) by auto
thus V (flow0 x t) ≤ 0

by (simp add: t(2 ))
qed

lemma positively-invariant-le-domain:
fixes V :: ′a ⇒ real
assumes positively-invariant D
assumes contg: continuous-on D g
assumes

∧
x. (V has-derivative V ′ x) (at x)

assumes
∧

s. s ∈ D =⇒ V ′ s (f s) ≤ g s ∗ V s
shows positively-invariant (D ∩ {x. V x ≤ 0})
apply (auto intro!:positively-invariant-left-inter [OF assms(1 )])

proof −
fix x
assume x ∈ D V x ≤ 0
have continuous-on (flow0 x ‘ (existence-ivl0 x ∩ {0 ..})) g
by (meson ‹x ∈ D› assms(1 ) contg continuous-on-subset positively-invariant-def

trapped-forward-def )
from trapped-forward-le[OF ‹V x ≤ 0 › this assms(3 )]
show trapped-forward x {x. V x ≤ 0} using assms(4 )

using ‹x ∈ D› assms(1 ) positively-invariant-def trapped-forward-def by auto
qed

lemma positively-invariant-barrier-domain:
fixes V :: ′a ⇒ real
assumes positively-invariant D
assumes

∧
x. (V has-derivative V ′ x) (at x)

assumes continuous-on D (λx. V ′ x (f x))
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assumes
∧

s. s ∈ D =⇒ V s = 0 =⇒ V ′ s (f s) < 0
shows positively-invariant (D ∩ {x. V x ≤ 0})
apply (auto intro!:positively-invariant-left-inter [OF assms(1 )])

proof −
fix x
assume x ∈ D V x ≤ 0
have contV : continuous-on UNIV V using assms(2 ) has-derivative-continuous-on

by blast
then have ∗: continuous-on (flow0 x ‘ (existence-ivl0 x ∩ {0 ..})) V

using continuous-on-subset by blast
have sub: flow0 x ‘ (existence-ivl0 x ∩ {0 ..}) ⊆ D

using ‹x ∈ D› assms(1 ) positively-invariant-def trapped-forward-def by auto
then have contV ′: continuous-on (flow0 x ‘ (existence-ivl0 x ∩ {0 ..})) (λx. V ′

x (f x))
by (metis assms(3 ) continuous-on-subset)

have nz:
∧

i t. t ∈ existence-ivl0 x =⇒
0 ≤ t =⇒ max (−V ′ (flow0 x t) (f (flow0 x t))) ((V (flow0 x t))2) > 0

proof −
fix i t
assume t ∈ existence-ivl0 x 0 ≤ t
then have flow0 x t ∈ D

using ‹x ∈ D› assms(1 ) positively-invariant-def trapped-forward-def by auto
then have V (flow0 x t) = 0 =⇒ − V ′ (flow0 x t) (f (flow0 x t)) > 0 using

assms(4 ) by simp
then have (V (flow0 x t))^2 > 0 ∨ − V ′ (flow0 x t) (f (flow0 x t)) > 0 by

simp
thus max (−V ′ (flow0 x t) (f (flow0 x t))) ((V (flow0 x t))2) > 0 unfolding

less-max-iff-disj
by auto

qed
have ∗: continuous-on (flow0 x ‘ (existence-ivl0 x ∩ {0 ..})) (λx. V ′ x (f x) ∗ V

x / max (− V ′ x (f x)) ((V x)^2 ))
apply (auto intro!:continuous-intros continuous-on-max simp add: ∗ contV ′)
using nz by fastforce

have (
∧

t. t ∈ existence-ivl0 x ∩ {0 ..} =⇒
V ′ (flow0 x t) (f (flow0 x t)) ≤
(V ′ (flow0 x t) (f (flow0 x t)) ∗ V (flow0 x t)
/ max (− V ′ (flow0 x t) (f (flow0 x t))) ((V (flow0 x t))2)) ∗ V (flow0 x t))

proof clarsimp
fix t
assume t ∈ existence-ivl0 x 0 ≤ t
then have p: max (−V ′ (flow0 x t) (f (flow0 x t))) ((V (flow0 x t))2) > 0

using nz by auto
have V ′ (flow0 x t) (f (flow0 x t)) ∗ max (− V ′ (flow0 x t) (f (flow0 x t)))

((V (flow0 x t))2)
≤ V ′ (flow0 x t) (f (flow0 x t)) ∗ (V (flow0 x t))2

by (smt mult-minus-left mult-minus-right power2-eq-square mult-le-cancel-left-pos)
then have V ′ (flow0 x t) (f (flow0 x t))
≤ V ′ (flow0 x t) (f (flow0 x t)) ∗ (V (flow0 x t))2
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/ max (− V ′ (flow0 x t) (f (flow0 x t))) ((V (flow0 x t))2)
using p pos-le-divide-eq by blast

thus V ′ (flow0 x t) (f (flow0 x t))
≤ V ′ (flow0 x t) (f (flow0 x t)) ∗ (V (flow0 x t)) ∗ V (flow0 x t) /

max (− V ′ (flow0 x t) (f (flow0 x t))) ((V (flow0 x t))2)
by (simp add: power2-eq-square)

qed
from trapped-forward-le[OF ‹V x ≤ 0 › ∗ assms(2 ) this]
show trapped-forward x {x. V x ≤ 0} by auto

qed

lemma positively-invariant-UNIV :
shows positively-invariant UNIV
using positively-invariant-iff by blast

lemma positively-invariant-conj:
assumes positively-invariant C
assumes positively-invariant D
shows positively-invariant (C ∩ D)
using assms positively-invariant-def
using positively-invariant-left-inter by auto

lemma positively-invariant-le:
fixes V :: ′a ⇒ real
assumes contg: continuous-on UNIV g
assumes

∧
x. (V has-derivative V ′ x) (at x)

assumes
∧

s. V ′ s (f s) ≤ g s ∗ V s
shows positively-invariant {x. V x ≤ 0}

proof −
from positively-invariant-le-domain[OF positively-invariant-UNIV assms]
have positively-invariant (UNIV ∩ {x. V x ≤ 0}) .
thus ?thesis by auto

qed

lemma positively-invariant-barrier :
fixes V :: ′a ⇒ real
assumes

∧
x. (V has-derivative V ′ x) (at x)

assumes continuous-on UNIV (λx. V ′ x (f x))
assumes

∧
s. V s = 0 =⇒ V ′ s (f s) < 0

shows positively-invariant {x. V x ≤ 0}
proof −

from positively-invariant-barrier-domain[OF positively-invariant-UNIV assms]
have positively-invariant (UNIV ∩ {x. V x ≤ 0}) .
thus ?thesis by auto

qed

end

end
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4 Limit Sets
theory Limit-Set

imports Invariance
begin

context auto-ll-on-open begin

Positive limit point, assuming {0 ..} ⊆ existence-ivl0 x
definition ω-limit-point x p ←→
{0 ..} ⊆ existence-ivl0 x ∧
(∃ s. s −−−−→ ∞ ∧ (flow0 x ◦ s) −−−−→ p)

Also called the ω-limit set of x
definition ω-limit-set x = {p. ω-limit-point x p}

definition α-limit-point x p ←→
{..0} ⊆ existence-ivl0 x ∧
(∃ s. s −−−−→ −∞ ∧ (flow0 x ◦ s) −−−−→ p)

Also called the α-limit set of x
definition α-limit-set x =
{p. α-limit-point x p}

end context auto-ll-on-open begin

lemma α-limit-point-eq-rev: α-limit-point x p = rev.ω-limit-point x p
unfolding α-limit-point-def rev.ω-limit-point-def
apply (auto simp: rev-eq-flow[abs-def ] o-def filterlim-uminus-at-bot rev-existence-ivl-eq0

subset-iff
intro: exI [where x=uminus o s for s])

using neg-0-le-iff-le by fastforce

lemma α-limit-set-eq-rev: α-limit-set x = rev.ω-limit-set x
unfolding α-limit-set-def rev.ω-limit-set-def α-limit-point-eq-rev ..

lemma ω-limit-pointE :
assumes ω-limit-point x p
obtains s where

filterlim s at-top sequentially
(flow0 x ◦ s) −−−−→ p
∀n. b ≤ s n

using assms filterlim-at-top-choose-lower ω-limit-point-def by blast

lemma ω-limit-set-eq:
assumes {0 ..} ⊆ existence-ivl0 x
shows ω-limit-set x = (INF τ ∈ {0 ..}. closure (flow0 x ‘ {τ ..}))
unfolding ω-limit-set-def

proof safe

57



fix p t
assume pt: 0 ≤ (t::real) ω-limit-point x p
from ω-limit-pointE [OF pt(2 )]
obtain s where

filterlim s at-top sequentially
(flow0 x ◦ s) −−−−→ p
∀n. t ≤ s n by blast

thus p ∈ closure (flow0 x ‘ {t..}) unfolding closure-sequential
by (metis atLeast-iff comp-apply imageI )

next
fix p
assume p ∈ (

⋂
τ∈{0 ..}. closure (flow0 x ‘ {τ ..}))

then have
∧

t. t ≥0 =⇒ p ∈ closure (flow0 x ‘ {t..}) by blast
then have

∧
t e. t ≥0 =⇒ e > 0 =⇒ (∃ tt ≥ t. dist (flow0 x tt) p < e)

unfolding closure-approachable
by fastforce

from approachable-sequenceE [OF this]
obtain s where filterlim s at-top sequentially (flow0 x ◦ s) −−−−→ p by auto
thus ω-limit-point x p unfolding ω-limit-point-def using assms by auto

qed

lemma ω-limit-set-empty:
assumes ¬ ({0 ..} ⊆ existence-ivl0 x)
shows ω-limit-set x = {}
unfolding ω-limit-set-def ω-limit-point-def
by (simp add: assms)

lemma ω-limit-set-closed: closed (ω-limit-set x)
using ω-limit-set-eq
by (metis ω-limit-set-empty closed-INT closed-closure closed-empty)

lemma ω-limit-set-positively-invariant:
shows positively-invariant (ω-limit-set x)
unfolding positively-invariant-def trapped-forward-def

proof safe
fix dummy p t
assume xa: p ∈ ω-limit-set x

t ∈ existence-ivl0 p
0 ≤ t

have p ∈ X using mem-existence-ivl-iv-defined(2 ) xa(2 ) by blast
have exist: {0 ..} ⊆ existence-ivl0 x using xa(1 )

unfolding ω-limit-set-def ω-limit-point-def by auto
from xa(1 )
obtain s where s:

filterlim s at-top sequentially
(flow0 x ◦ s) −−−−→ p
∀n. 0 ≤ s n
unfolding ω-limit-set-def by (auto elim!:ω-limit-pointE)
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define r where r = (λn. t + s n)
have rlim: filterlim r at-top sequentially unfolding r-def

by (auto intro: filterlim-tendsto-add-at-top[OF - s(1 )])
define dom where dom = image (flow0 x) {0 ..} ∪ {p}
have domin: ∀n. (flow0 x ◦ s) n ∈ dom p ∈ dom unfolding dom-def o-def

using exist by(auto simp add: s(3 ))
have xt:

∧
x. x ∈ dom =⇒ t ∈ existence-ivl0 x unfolding dom-def using xa(2 )

apply auto
apply (rule existence-ivl-trans ′)
using exist xa(3 ) apply auto[1 ]
using exist by auto

have cont: continuous-on dom (λx. flow0 x t)
apply (rule flow-continuous-on-compose)

apply auto
using ‹p ∈ X› exist local.dom-def local.flow-in-domain apply auto[1 ]
using xt .

then have f1 : ((λx. flow0 x t) ◦ (flow0 x ◦ s)) −−−−→ flow0 p t using domin
s(2 )

unfolding continuous-on-sequentially
by blast

have ff :
∧

n. (flow0 x ◦ r) n = ((λx. flow0 x t) ◦ (flow0 x ◦ s)) n
unfolding o-def r-def

proof −
fix n
have s:s n ∈ existence-ivl0 x

using s(3 ) exist by auto
then have t:t ∈ existence-ivl0 (flow0 x (s n))

using domin(1 ) xt by auto
from flow-trans[OF s t]
show flow0 x (t + s n) = flow0 (flow0 x (s n)) t

by (simp add: add.commute)
qed
have f2 : (flow0 x ◦ r) −−−−→ flow0 p t using f1 unfolding ff .
show flow0 p t ∈ ω-limit-set x using exist f2 rlim

unfolding ω-limit-set-def ω-limit-point-def
using flow-in-domain r-def s(3 ) xa(2 ) xa(3 ) by auto

qed

lemma ω-limit-set-invariant:
shows invariant (ω-limit-set x)
unfolding invariant-iff-pos-invariant-and-compl-pos-invariant

proof safe
show positively-invariant (ω-limit-set x)

using ω-limit-set-positively-invariant .
next

show positively-invariant (X − ω-limit-set x)
unfolding positively-invariant-def trapped-forward-def
apply safe
using local.flow-in-domain apply blast
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proof −
fix dummy p t
assume xa: p ∈ X p /∈ ω-limit-set x

t ∈ existence-ivl0 p 0 ≤ t
and f : flow0 p t ∈ ω-limit-set x

have exist: {0 ..} ⊆ existence-ivl0 x using f
unfolding ω-limit-set-def ω-limit-point-def by auto

from f
obtain s where s:

filterlim s at-top sequentially
(flow0 x ◦ s) −−−−→ flow0 p t
∀n. t ≤ s n
unfolding ω-limit-set-def by (auto elim!:ω-limit-pointE)

define r where r = (λn. (−t) + s n)
have (λx. −t) −−−−→ −t by simp
from filterlim-tendsto-add-at-top[OF this s(1 )]
have rlim: filterlim r at-top sequentially unfolding r-def by simp
define dom where dom = image (flow0 x) {t..} ∪ {flow0 p t}
have domin: ∀n. (flow0 x ◦ s) n ∈ dom flow0 p t ∈ dom unfolding dom-def

o-def
using exist by(auto simp add: s(3 ))

have xt:
∧

x. x ∈ dom =⇒ −t ∈ existence-ivl0 x unfolding dom-def using
xa(2 )

apply auto
using local.existence-ivl-reverse xa(3 ) apply auto[1 ]

by (metis exist atLeast-iff diff-conv-add-uminus diff-ge-0-iff-ge linordered-ab-group-add-class.zero-le-double-add-iff-zero-le-single-add
local.existence-ivl-trans ′ order-trans subset-iff xa(4 ))

have cont: continuous-on dom (λx. flow0 x (−t))
apply (rule flow-continuous-on-compose)

apply auto
using local.mem-existence-ivl-iv-defined(2 ) xt apply blast
by (simp add: xt)

then have f1 : ((λx. flow0 x (−t)) ◦ (flow0 x ◦ s)) −−−−→ flow0 (flow0 p t)
(−t) using domin s(2 )

unfolding continuous-on-sequentially
by blast

have ff :
∧

n. (flow0 x ◦ r) n = ((λx. flow0 x (−t)) ◦ (flow0 x ◦ s)) n
unfolding o-def r-def

proof −
fix n
have s:s n ∈ existence-ivl0 x

using s(3 ) exist ‹0≤ t› by (meson atLeast-iff order-trans subset-eq)
then have t:−t ∈ existence-ivl0 (flow0 x (s n))

using domin(1 ) xt by auto
from flow-trans[OF s t]
show flow0 x (−t + s n) = flow0 (flow0 x (s n)) (−t)

by (simp add: add.commute)
qed
have (flow0 x ◦ r) −−−−→ flow0 (flow0 p t) (−t) using f1 unfolding ff .
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then have f2 : (flow0 x ◦ r) −−−−→ p using flows-reverse xa(3 ) by auto
then have p ∈ ω-limit-set x unfolding ω-limit-set-def ω-limit-point-def

using rlim exist by auto
thus False using xa(2 ) by auto

qed
qed

end context auto-ll-on-open begin

lemma α-limit-set-eq:
assumes {..0} ⊆ existence-ivl0 x
shows α-limit-set x = (INF τ ∈ {..0}. closure (flow0 x ‘ {..τ}))
using rev.ω-limit-set-eq[of x, OF assms[folded infinite-rev-existence-ivl0-rewrites]]
unfolding α-limit-set-eq-rev rev-flow-image-eq image-uminus-atLeast
by (smt INT-extend-simps(10 ) Sup.SUP-cong image-uminus-atMost)

lemma α-limit-set-closed:
shows closed (α-limit-set x)
unfolding α-limit-set-eq-rev by (rule rev.ω-limit-set-closed)

lemma α-limit-set-positively-invariant:
shows negatively-invariant (α-limit-set x)
unfolding negatively-invariant-eq-rev α-limit-set-eq-rev
by (simp add: rev.ω-limit-set-positively-invariant)

lemma α-limit-set-invariant:
shows invariant (α-limit-set x)
unfolding invariant-eq-rev α-limit-set-eq-rev
by (simp add: rev.ω-limit-set-invariant)

Fundamental properties of the positive limit set
context

fixes x K
assumes K : compact K K ⊆ X
assumes x: x ∈ X trapped-forward x K

begin

Bunch of facts for what’s to come
private lemma props:

shows {0 ..} ⊆ existence-ivl0 x seq-compact K
apply (rule trapped-sol-right)

using x K by (auto simp add: compact-imp-seq-compact)

private lemma flowimg:
shows flow0 x ‘ (existence-ivl0 x ∩ {0 ..}) = flow0 x ‘ {0 ..}
using props(1 ) by auto

lemma ω-limit-set-in-compact-subset:
shows ω-limit-set x ⊆ K
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unfolding ω-limit-set-def
proof safe

fix p s
assume ω-limit-point x p
from ω-limit-pointE [OF this]
obtain s where s:

filterlim s at-top sequentially
(flow0 x ◦ s) −−−−→ p
∀n. 0 ≤ s n by blast

then have fin: ∀n. (flow0 x ◦ s) n ∈ K using s(3 ) x K props(1 )
unfolding trapped-forward-def
by (simp add: subset-eq)

from seq-compactE [OF props(2 ) fin]
show p ∈ K using s(2 )

by (metis LIMSEQ-subseq-LIMSEQ LIMSEQ-unique)
qed

lemma ω-limit-set-in-compact-compact:
shows compact (ω-limit-set x)

proof −
from ω-limit-set-in-compact-subset
have bounded (ω-limit-set x)

using bounded-subset compact-imp-bounded
using K (1 ) by auto

thus ?thesis using ω-limit-set-closed
by (simp add: compact-eq-bounded-closed)

qed

lemma ω-limit-set-in-compact-nonempty:
shows ω-limit-set x 6= {}

proof −
have fin: ∀n. (flow0 x ◦ real) n ∈ K using x K props(1 )

by (simp add: flowimg image-subset-iff trapped-forward-def )
from seq-compactE [OF props(2 ) this]
obtain r l where l ∈ K strict-mono r (flow0 x ◦ real ◦ r) −−−−→ l by blast
then have ω-limit-point x l unfolding ω-limit-point-def using props(1 )

by (smt comp-def filterlim-sequentially-iff-filterlim-real filterlim-subseq tend-
sto-at-top-eq-left)

thus ?thesis unfolding ω-limit-set-def by auto
qed

lemma ω-limit-set-in-compact-existence:
shows

∧
y. y ∈ ω-limit-set x =⇒ existence-ivl0 y = UNIV

proof −
fix y
assume y: y ∈ ω-limit-set x
then have y ∈ X using ω-limit-set-in-compact-subset K by blast
from ω-limit-set-invariant
have

∧
t. t ∈ existence-ivl0 y =⇒ flow0 y t ∈ ω-limit-set x
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unfolding invariant-def trapped-iff-on-existence-ivl0 using y by blast
then have t:

∧
t. t ∈ existence-ivl0 y =⇒ flow0 y t ∈ K

using ω-limit-set-in-compact-subset by blast
thus existence-ivl0 y = UNIV
by (meson ‹y ∈ X› existence-ivl-zero existence-ivl-initial-time-iff existence-ivl-subset

mem-compact-implies-subset-existence-interval subset-antisym K )
qed

lemma ω-limit-set-in-compact-tendsto:
shows ((λt. infdist (flow0 x t) (ω-limit-set x)) −−−→ 0 ) at-top

proof (rule ccontr)
assume ¬ ((λt. infdist (flow0 x t) (ω-limit-set x)) −−−→ 0 ) at-top
from not-tendsto-frequentlyE [OF this]
obtain S where S : open S 0 ∈ S
∃ F t in at-top. infdist (flow0 x t) (ω-limit-set x) /∈ S .

then obtain e where e > 0 ball 0 e ⊆ S using openE by blast
then have

∧
x. x ≥0 =⇒ x /∈ S =⇒ x ≥ e by force

then have ∀ xa. infdist (flow0 x xa) (ω-limit-set x) /∈ S −→
infdist (flow0 x xa) (ω-limit-set x) ≥ e using infdist-nonneg by blast

from frequently-mono[OF this S(3 )]
have ∃ F t in at-top. infdist (flow0 x t) (ω-limit-set x) ≥ e by blast
then have ∀n. ∃ F t in at-top. infdist (flow0 x t) (ω-limit-set x) ≥ e ∧ real n ≤

t
by (auto intro!: eventually-frequently-conj)

from frequently-at-topE [OF this]
obtain s where s:

∧
i. e ≤ infdist (flow0 x (s i)) (ω-limit-set x)∧

i. real i ≤ s i strict-mono s by force
then have sf : filterlim s at-top sequentially

using filterlim-at-top-mono filterlim-real-sequentially not-eventuallyD by blast
have fin: ∀n. (flow0 x ◦ s) n ∈ K using x K props(1 ) s unfolding flowimg

trapped-forward-def
by (metis atLeast-iff comp-apply image-subset-iff of-nat-0-le-iff order-trans)

from seq-compactE [OF props(2 ) this]
obtain r l where r :strict-mono r and l: l ∈ K (flow0 x ◦ s ◦ r) −−−−→ l by

blast
moreover from filterlim-at-top-strict-mono[OF s(3 ) r(1 ) sf ]
have filterlim (s ◦ r) at-top sequentially .
moreover have ω-limit-point x l unfolding ω-limit-point-def using props(1 )

calculation
by (metis comp-assoc)

ultimately have infdist l (ω-limit-set x) = 0 by (simp add: ω-limit-set-def )
then have c1 :((λy. infdist y (ω-limit-set x)) ◦ (flow0 x ◦ s ◦ r)) −−−−→ 0

by (auto intro!: tendsto-compose-at[OF l(2 )] tendsto-eq-intros)
have c2 :

∧
i. e ≤ infdist (flow0 x ((s ◦ r) i)) (ω-limit-set x) using s(1 ) by simp

show False using c1 c2 ‹e > 0 › unfolding o-def
using Lim-bounded2
by (metis (no-types, lifting) ball-eq-empty centre-in-ball empty-iff )

qed
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lemma ω-limit-set-in-compact-connected:
shows connected (ω-limit-set x)
unfolding connected-closed-set[OF ω-limit-set-closed]

proof clarsimp
fix Apre Bpre
assume pre: closed Apre Apre ∪ Bpre = ω-limit-set x closed Bpre

Apre 6= {} Bpre 6= {} Apre ∩ Bpre = {}

then obtain A B where Apre ⊆ A Bpre ⊆ B open A open B and disj:A ∩ B
= {}

by (meson t4-space)
then have ω-limit-set x ⊆ A ∪ B
ω-limit-set x ∩ A 6= {} ω-limit-set x ∩ B 6= {} using pre by auto

then obtain p q where
p: ω-limit-point x p p ∈ A
and q: ω-limit-point x q q ∈ B
using ω-limit-set-def by auto

from ω-limit-pointE [OF p(1 )]
obtain ps where ps: filterlim ps at-top sequentially
(flow0 x ◦ ps) −−−−→ p ∀n. 0 ≤ ps n by blast

from ω-limit-pointE [OF q(1 )]
obtain qs where qs: filterlim qs at-top sequentially
(flow0 x ◦ qs) −−−−→ q ∀n. 0 ≤ qs n by blast

have ∀n. ∃ F t in at-top. flow0 x t /∈ A ∧ flow0 x t /∈ B unfolding fre-
quently-at-top

proof safe
fix dummy mpre
obtain m where m ≥ (0 ::real) m > mpre

by (meson approximation-preproc-push-neg(1 ) gt-ex le-cases order-trans)
from ps obtain a where a:a > m (flow0 x a) ∈ A
using ‹open A› p unfolding tendsto-def filterlim-at-top eventually-sequentially

by (metis approximation-preproc-push-neg(1 ) comp-apply gt-ex le-cases or-
der-trans)

from qs obtain b where b:b > a (flow0 x b) ∈ B
using ‹open B› q unfolding tendsto-def filterlim-at-top eventually-sequentially

by (metis approximation-preproc-push-neg(1 ) comp-apply gt-ex le-cases or-
der-trans)

have continuous-on {a..b} (flow0 x)
by (metis Icc-subset-Ici-iff ‹0 ≤ m› ‹m < a› approximation-preproc-push-neg(2 )

atMost-iff atMost-subset-iff continuous-on-subset le-cases local.flow-continuous-on
props(1 ) subset-eq)

from connected-continuous-image[OF this connected-Icc]
have c:connected (flow0 x ‘ {a..b}) .
have ∃ t∈ {a..b}. flow0 x t /∈ A ∧ flow0 x t /∈ B
proof (rule ccontr)

assume ¬ (∃ t∈{a..b}. flow0 x t /∈ A ∧ flow0 x t /∈ B)
then have flow0 x ‘ {a..b} ⊆ A ∪ B by blast
from topological-space-class.connectedD[OF c ‹open A› ‹open B› - this]
show False using a b disj by force
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qed
thus ∃n>mpre. flow0 x n /∈ A ∧ flow0 x n /∈ B

by (smt ‹mpre < m› a(1 ) atLeastAtMost-iff )
qed
from frequently-at-topE ′[OF this filterlim-real-sequentially]
obtain s where s: ∀ i. flow0 x (s i) /∈ A ∧ flow0 x (s i) /∈ B

strict-mono s
∧

n. real n ≤ s n by blast
then have ∀n. (flow0 x ◦ s) n ∈ K
by (smt atLeast-iff comp-apply flowimg image-subset-iff of-nat-0-le-iff trapped-forward-def

x(2 ))
from seq-compactE [OF props(2 ) this]
obtain r l where r : l ∈ K strict-mono r (flow0 x ◦ s ◦ r) −−−−→ l by blast
have filterlim s at-top sequentially
using s filterlim-at-top-mono filterlim-real-sequentially not-eventuallyD by blast

from filterlim-at-top-strict-mono[OF s(2 ) r(2 ) this]
have filterlim (s ◦ r) at-top sequentially .
then have ω-limit-point x l unfolding ω-limit-point-def using props(1 ) r

by (metis comp-assoc)
moreover have l /∈ A using s(1 ) r(3 ) ‹open A› unfolding tendsto-def by auto
moreover have l /∈ B using s(1 ) r(3 ) ‹open B› unfolding tendsto-def by auto
ultimately show False using ‹ω-limit-set x ⊆ A ∪ B› unfolding ω-limit-set-def

by auto
qed

lemma ω-limit-set-in-compact-ω-limit-set-contained:
shows ∀ y ∈ ω-limit-set x. ω-limit-set y ⊆ ω-limit-set x

proof safe
fix y z
assume y ∈ ω-limit-set x z ∈ ω-limit-set y
then have ω-limit-point y z unfolding ω-limit-set-def by auto
from ω-limit-pointE [OF this]
obtain s where s: (flow0 y ◦ s) −−−−→ z .
have ∀n. (flow0 y ◦ s) n ∈ ω-limit-set x

using ‹y ∈ ω-limit-set x› invariant-def
ω-limit-set-in-compact-existence ω-limit-set-invariant trapped-iff-on-existence-ivl0
by force

thus z ∈ ω-limit-set x using closed-sequential-limits s ω-limit-set-closed
by blast

qed

lemma ω-limit-set-in-compact-α-limit-set-contained:
assumes zpx: z ∈ ω-limit-set x
shows α-limit-set z ⊆ ω-limit-set x

proof
fix w assume w ∈ α-limit-set z
then obtain s where s: (flow0 z ◦ s) −−−−→ w

unfolding α-limit-set-def α-limit-point-def
by auto
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from ω-limit-set-invariant have invariant (ω-limit-set x) .
then have ∀n. (flow0 z ◦ s) n ∈ ω-limit-set x

using ω-limit-set-in-compact-existence[OF zpx] zpx
using invariant-def trapped-iff-on-existence-ivl0 by fastforce

from closed-sequentially[OF ω-limit-set-closed] this s
show w ∈ ω-limit-set x

by blast
qed

end

Fundamental properties of the negative limit set
end context auto-ll-on-open begin

context
fixes x K
assumes x: x ∈ X trapped-backward x K
assumes K : compact K K ⊆ X

begin

private lemma xrev: x ∈ X rev.trapped-forward x K
using trapped-backward-iff-rev-trapped-forward x(2 )
by (auto simp: rev-existence-ivl-eq0 rev-eq-flow x(1 ))

lemma α-limit-set-in-compact-subset: α-limit-set x ⊆ K
and α-limit-set-in-compact-compact: compact (α-limit-set x)
and α-limit-set-in-compact-nonempty: α-limit-set x 6= {}
and α-limit-set-in-compact-connected: connected (α-limit-set x)
and α-limit-set-in-compact-α-limit-set-contained:
∀ y ∈ α-limit-set x. α-limit-set y ⊆ α-limit-set x
and α-limit-set-in-compact-tendsto: ((λt. infdist (flow0 x t) (α-limit-set x)) −−−→

0 ) at-bot
using rev.ω-limit-set-in-compact-subset[OF K xrev]
using rev.ω-limit-set-in-compact-compact[OF K xrev]
using rev.ω-limit-set-in-compact-nonempty[OF K xrev]
using rev.ω-limit-set-in-compact-connected[OF K xrev]
using rev.ω-limit-set-in-compact-ω-limit-set-contained[OF K xrev]
using rev.ω-limit-set-in-compact-tendsto[OF K xrev]
unfolding invariant-eq-rev α-limit-set-eq-rev existence-ivl-eq-rev flow-eq-rev0 fil-

terlim-at-bot-mirror
minus-minus

.

lemma α-limit-set-in-compact-existence:
shows

∧
y. y ∈ α-limit-set x =⇒ existence-ivl0 y = UNIV

using rev.ω-limit-set-in-compact-existence[OF K xrev]
unfolding α-limit-set-eq-rev existence-ivl-eq-rev0
by auto
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end
end

end

5 Periodic Orbits
theory Periodic-Orbit

imports
Ordinary-Differential-Equations.ODE-Analysis
Analysis-Misc
ODE-Misc
Limit-Set

begin

Definition of closed and periodic orbits and their associated properties
context auto-ll-on-open
begin

TODO: not sure if the "closed orbit" terminology is standard Closed orbits
have some non-zero recurrence time T where the flow returns to the initial
state The period of a closed orbit is the infimum of all positive recurrence
times Periodic orbits are the subset of closed orbits where the period is
non-zero
definition closed-orbit x ←→
(∃T ∈ existence-ivl0 x. T 6= 0 ∧ flow0 x T = x)

definition period x =
Inf {T ∈ existence-ivl0 x. T > 0 ∧ flow0 x T = x}

definition periodic-orbit x ←→
closed-orbit x ∧ period x > 0

lemma recurrence-time-flip-sign:
assumes T ∈ existence-ivl0 x flow0 x T = x
shows −T ∈ existence-ivl0 x flow0 x (−T ) = x
using assms existence-ivl-reverse apply fastforce
using assms flows-reverse by fastforce

lemma closed-orbit-recurrence-times-nonempty:
assumes closed-orbit x
shows {T ∈ existence-ivl0 x. T > 0 ∧ flow0 x T = x} 6= {}
apply auto
using assms(1 ) unfolding closed-orbit-def
by (smt recurrence-time-flip-sign)

lemma closed-orbit-recurrence-times-bdd-below:
shows bdd-below {T ∈ existence-ivl0 x. T > 0 ∧ flow0 x T = x}
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unfolding bdd-below-def
by (auto) (meson le-cases not-le)

lemma closed-orbit-period-nonneg:
assumes closed-orbit x
shows period x ≥ 0
unfolding period-def
using assms(1 ) unfolding closed-orbit-def apply (auto intro!:cInf-greatest)
by (smt recurrence-time-flip-sign)

lemma closed-orbit-in-domain:
assumes closed-orbit x
shows x ∈ X
using assms unfolding closed-orbit-def
using local.mem-existence-ivl-iv-defined(2 ) by blast

lemma closed-orbit-global-existence:
assumes closed-orbit x
shows existence-ivl0 x = UNIV

proof −
obtain Tp where Tp 6= 0 Tp ∈ existence-ivl0 x flow0 x Tp = x using assms

unfolding closed-orbit-def by blast
then obtain T where T : T > 0 T ∈ existence-ivl0 x flow0 x T = x

by (smt recurrence-time-flip-sign)
have apos: real n ∗ T ∈ existence-ivl0 x ∧ flow0 x (real n ∗ T ) = x for n
proof (induction n)

case 0
then show ?case using closed-orbit-in-domain assms by auto

next
case (Suc n)
fix n
assume ih:real n ∗ T ∈ existence-ivl0 x ∧ flow0 x (real n ∗ T ) = x
then have T ∈ existence-ivl0 (flow0 x (real n ∗ T )) using T by metis
then have l:real n ∗ T + T ∈ existence-ivl0 x using ih

using existence-ivl-trans by blast
have flow0 (flow0 x (real n ∗ T )) T = x using ih T by metis
then have r : flow0 x (real n ∗ T + T ) = x

by (simp add: T (2 ) ih local.flow-trans)
show real (Suc n) ∗ T ∈ existence-ivl0 x ∧ flow0 x (real (Suc n) ∗ T ) = x

using l r
by (simp add: add.commute distrib-left mult.commute)

qed
then have aneg: −real n ∗ T ∈ existence-ivl0 x ∧ flow0 x (−real n ∗ T ) = x

for n
by (simp add: recurrence-time-flip-sign)

have ∀ t. t ∈ existence-ivl0 x
proof safe

fix t
have t ≥ 0 ∨ t ≤ (0 ::real) by linarith
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moreover {
assume t ≥ 0
obtain k where real k ∗ T > t

using T (1 ) ex-less-of-nat-mult by blast
then have t ∈ existence-ivl0 x using apos
by (meson ‹0 ≤ t› atLeastAtMost-iff less-eq-real-def local.ivl-subset-existence-ivl

subset-eq)
}
moreover {

assume t ≤ 0
obtain k where − real k ∗ T < t
by (metis T (1 ) add.inverse-inverse ex-less-of-nat-mult mult.commute mult-minus-right

neg-less-iff-less)
then have t ∈ existence-ivl0 x using aneg

by (smt apos atLeastAtMost-iff calculation(2 ) local.existence-ivl-trans ′ lo-
cal.ivl-subset-existence-ivl mult-minus-left subset-eq)

}
ultimately show t ∈ existence-ivl0 x by blast

qed
thus ?thesis by auto

qed

lemma recurrence-time-multiples:
fixes n::nat
assumes T ∈ existence-ivl0 x T 6= 0 flow0 x T = x
shows

∧
t. flow0 x (t+T∗n) = flow0 x t

proof (induction n)
case 0
then show ?case by auto

next
case (Suc n)
fix n t
assume ih : (

∧
t. flow0 x (t + T ∗ real n) = flow0 x t)

have closed-orbit x using assms unfolding closed-orbit-def by auto
from closed-orbit-global-existence[OF this] have ex:existence-ivl0 x = UNIV .
have flow0 x (t + T ∗ real (Suc n)) = flow0 x (t+T∗real n + T )

by (simp add: Groups.add-ac(3 ) add.commute distrib-left)
also have ... = flow0 (flow0 x (t+ T∗real n)) T using ex

by (simp add: local.existence-ivl-trans ′ local.flow-trans)
also have ... = flow0 (flow0 x t) T using ih by auto
also have ... = flow0 (flow0 x T ) t using ex

by (metis UNIV-I add.commute local.existence-ivl-trans ′ local.flow-trans)
finally show flow0 x (t + T ∗ real (Suc n)) = flow0 x t using assms(3 ) by

simp
qed

lemma nasty-arithmetic1 :
fixes t T ::real
assumes T > 0 t ≥ 0
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obtains q r where t = (q::nat) ∗ T + r 0 ≤ r r < T
proof −

define q where q = floor (t / T )
have q:q ≥ 0 using assms unfolding q-def by auto
from floor-divide-lower [OF assms(1 ), of t]
have ql: q ∗ T ≤ t unfolding q-def .
from floor-divide-upper [OF assms(1 ), of t]
have qu: t < (q + 1 )∗ T unfolding q-def by auto
define r where r = t − q ∗ T
have rl:0 ≤ r using ql unfolding r-def by auto
have ru:r < T using qu unfolding r-def by (simp add: distrib-right)
show ?thesis using q r-def rl ru
by (metis le-add-diff-inverse of-int-of-nat-eq plus-int-code(2 ) ql that zle-iff-zadd)

qed

lemma nasty-arithmetic2 :
fixes t T ::real
assumes T > 0 t ≤ 0
obtains q r where t = (q::nat) ∗ (−T ) + r 0 ≤ r r < T

proof −
have −t ≥ 0 using assms(2 ) by linarith
from nasty-arithmetic1 [OF assms(1 ) this]
obtain q r where qr : −t = (q::nat) ∗ T + r 0 ≤ r r < T by blast
then have t = q ∗ (−T ) − r by auto
then have t = (q+(1 ::nat)) ∗ (−T ) + (T−r) by (simp add: distrib-right)
thus ?thesis using qr(2−3 )

by (smt ‹t = real q ∗ − T − r› that)
qed

lemma recurrence-time-restricts-compact-flow:
assumes T ∈ existence-ivl0 x T > 0 flow0 x T = x
shows flow0 x ‘ UNIV = flow0 x ‘ {0 ..T}
apply auto

proof −
fix t
have t ≥ 0 ∨ t ≤ (0 ::real) by linarith
moreover {

assume t ≥ 0
from nasty-arithmetic1 [OF assms(2 ) this]
obtain q r where qr :t = (q::nat) ∗ T + r 0 ≤ r r < T by blast
have T 6= 0 using assms(2 ) by auto
from recurrence-time-multiples[OF assms(1 ) this assms(3 ),of r q]
have flow0 x t = flow0 x r

by (simp add: qr(1 ) add.commute mult.commute)
then have flow0 x t ∈ flow0 x ‘ {0 ..<T} using qr by auto

}
moreover {

assume t ≤ 0
from nasty-arithmetic2 [OF assms(2 ) this]
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obtain q r where qr :t = (q::nat) ∗ (−T ) + r 0 ≤ r r < T by blast
have −T ∈ existence-ivl0 x −T 6= 0 flow0 x (−T ) = x using recurrence-time-flip-sign

assms by auto
from recurrence-time-multiples[OF this, of r q]
have flow0 x t = flow0 x r

by (simp add: mult.commute qr(1 ))
then have flow0 x t ∈ flow0 x ‘ {0 ..<T} using qr by auto

}
ultimately show flow0 x t ∈ flow0 x ‘ {0 ..T}

by auto
qed

lemma closed-orbitI :
assumes t 6= t ′ t ∈ existence-ivl0 y t ′ ∈ existence-ivl0 y
assumes flow0 y t = flow0 y t ′

shows closed-orbit y
unfolding closed-orbit-def
by (smt assms local.existence-ivl-reverse local.existence-ivl-trans local.flow-trans

local.flows-reverse)

lemma flow0-image-UNIV :
assumes existence-ivl0 x = UNIV
shows flow0 (flow0 x t) ‘ S = flow0 x ‘ (λs. s + t) ‘ S
apply auto

apply (metis UNIV-I add.commute assms image-eqI local.existence-ivl-trans ′

local.flow-trans)
by (metis UNIV-I add.commute assms imageI local.existence-ivl-trans ′ local.flow-trans)

lemma recurrence-time-restricts-compact-flow ′:
assumes t < t ′ t ∈ existence-ivl0 y t ′ ∈ existence-ivl0 y
assumes flow0 y t = flow0 y t ′

shows flow0 y ‘ UNIV = flow0 y ‘ {t..t ′}
proof −

have closed-orbit y
using assms(1−4 ) closed-orbitI inf .strict-order-iff by blast

from closed-orbit-global-existence[OF this]
have yex: existence-ivl0 y = UNIV .
have a1 :t ′− t ∈ existence-ivl0 (flow0 y t)

by (simp add: assms(2−3 ) local.existence-ivl-trans ′)
have a2 :t ′ −t > 0 using assms(1 ) by auto
have a3 :flow0 (flow0 y t) (t ′ − t) = flow0 y t

using a1 assms(2 ) assms(4 ) local.flow-trans by fastforce
from recurrence-time-restricts-compact-flow[OF a1 a2 a3 ]
have eq:flow0 (flow0 y t) ‘ UNIV = flow0 (flow0 y t) ‘ {0 .. t ′−t} .
from flow0-image-UNIV [OF yex, of - UNIV ]
have eql:flow0 (flow0 y t) ‘ UNIV = flow0 y ‘ UNIV

by (metis (no-types) add.commute surj-def surj-plus)
from flow0-image-UNIV [OF yex, of - {0 ..t ′−t}]
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have eqr :flow0 (flow0 y t) ‘ {0 .. t ′−t} = flow0 y ‘ {t..t ′} by auto
show ?thesis using eq eql eqr by auto

qed

lemma closed-orbitE ′:
assumes closed-orbit x
obtains T where T > 0

∧
t (n::nat). flow0 x (t+T∗n) = flow0 x t

proof −
obtain Tp where Tp 6= 0 Tp ∈ existence-ivl0 x flow0 x Tp = x using assms

unfolding closed-orbit-def by blast
then obtain T where T : T > 0 T ∈ existence-ivl0 x flow0 x T = x

by (smt recurrence-time-flip-sign)
thus ?thesis using recurrence-time-multiples T that by blast

qed

lemma closed-orbitE :
assumes closed-orbit x
obtains T where T > 0

∧
t. flow0 x (t+T ) = flow0 x t

using closed-orbitE ′

by (metis assms mult.commute reals-Archimedean3 )

lemma closed-orbit-flow-compact:
assumes closed-orbit x
shows compact(flow0 x ‘ UNIV )

proof −
obtain Tp where Tp 6= 0 Tp ∈ existence-ivl0 x flow0 x Tp = x using assms

unfolding closed-orbit-def by blast
then obtain T where T : T ∈ existence-ivl0 x T > 0 flow0 x T = x

by (smt recurrence-time-flip-sign)
from recurrence-time-restricts-compact-flow[OF this]
have feq: flow0 x ‘ UNIV = flow0 x ‘ {0 ..T} .
have continuous-on {0 ..T} (flow0 x)

by (meson T (1 ) continuous-on-sequentially in-mono local.flow-continuous-on
local.ivl-subset-existence-ivl)

from compact-continuous-image[OF this]
have compact (flow0 x ‘ {0 ..T}) by auto
thus ?thesis using feq by auto

qed

lemma fixed-point-imp-closed-orbit-period-zero:
assumes x ∈ X
assumes f x = 0
shows closed-orbit x period x = 0

proof −
from fixpoint-sol[OF assms] have fp:existence-ivl0 x = UNIV

∧
t. flow0 x t = x

by auto
then have co:closed-orbit x unfolding closed-orbit-def by blast
have a: ∀ y>0 . ∃ a∈{T ∈ existence-ivl0 x. 0 < T ∧ flow0 x T = x}. a < y

apply auto
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using fp
by (simp add: dense)

from cInf-le-iff [OF closed-orbit-recurrence-times-nonempty[OF co]
closed-orbit-recurrence-times-bdd-below , of 0 ]

have period x ≤ 0 unfolding period-def using a by auto
from closed-orbit-period-nonneg[OF co] have period x ≥ 0 .
then have period x = 0 using ‹period x ≤ 0 › by linarith
thus closed-orbit x period x = 0 using co by auto

qed

lemma closed-orbit-period-zero-fixed-point:
assumes closed-orbit x period x = 0
shows f x = 0

proof (rule ccontr)
assume f x 6= 0
from regular-locally-noteq[OF closed-orbit-in-domain[OF assms(1 )] this]
have ∀ F t in at 0 . flow0 x t 6= x .
then obtain r where r>0 ∀ t. t 6= 0 ∧ dist t 0 < r −→ flow0 x t 6= x unfolding

eventually-at
by auto

then have period x ≥ r unfolding period-def
apply (auto intro!:cInf-greatest)
apply (meson assms(1 ) closed-orbit-def linorder-neqE-linordered-idom neg-0-less-iff-less

recurrence-time-flip-sign)
using not-le by force

thus False using assms(2 ) ‹r >0 › by linarith
qed

lemma closed-orbit-subset-ω-limit-set:
assumes closed-orbit x
shows flow0 x ‘ UNIV ⊆ ω-limit-set x
unfolding ω-limit-set-def ω-limit-point-def

proof clarsimp
fix t
from closed-orbitE ′[OF assms]
obtain T where T : 0 < T

∧
t n. flow0 x (t + T∗ real n) = flow0 x t by blast

define s where s = (λn::nat. t + T ∗ real n)
have exist: {0 ..} ⊆ existence-ivl0 x

by (simp add: assms closed-orbit-global-existence)
have l:filterlim s at-top sequentially unfolding s-def

using T (1 )
by (auto intro!:filterlim-tendsto-add-at-top filterlim-tendsto-pos-mult-at-top

simp add: filterlim-real-sequentially)
have flow0 x ◦ s = (λn. flow0 x t) unfolding o-def s-def using T (2 ) by simp
then have r :(flow0 x ◦ s) −−−−→ flow0 x t by auto
show {0 ..} ⊆ existence-ivl0 x ∧ (∃ s. s −−−−→ ∞ ∧ (flow0 x ◦ s) −−−−→ flow0

x t)
using exist l r by blast

qed
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lemma closed-orbit-ω-limit-set:
assumes closed-orbit x
shows flow0 x ‘ UNIV = ω-limit-set x

proof −
have ω-limit-set x ⊆ flow0 x ‘ UNIV

using closed-orbit-global-existence[OF assms]
by (intro ω-limit-set-in-compact-subset)
(auto intro!: flow-in-domain

simp add: assms closed-orbit-in-domain image-subset-iff trapped-forward-def
closed-orbit-flow-compact)

thus ?thesis using closed-orbit-subset-ω-limit-set[OF assms] by auto
qed

lemma flow0-inj-on:
assumes t ≤ t ′

assumes {t..t ′} ⊆ existence-ivl0 x
assumes

∧
s. t < s =⇒ s ≤ t ′ =⇒ flow0 x s 6= flow0 x t

shows inj-on (flow0 x) {t..t ′}
apply (rule inj-onI )

proof (rule ccontr)
fix u v
assume uv: u ∈ {t..t ′} v ∈ {t..t ′} flow0 x u = flow0 x v u 6= v
have u < v ∨ v < u using uv(4 ) by linarith
moreover {

assume u < v
from recurrence-time-restricts-compact-flow ′[OF this - - uv(3 )]
have flow0 x ‘ UNIV = flow0 x ‘ {u..v} using uv(1−2 ) assms(2 ) by blast
then have flow0 x t ∈ flow0 x ‘ {u..v} by auto
moreover have u = t ∨ flow0 x t /∈ flow0 x ‘ {u..v} using assms(3 )

by (smt atLeastAtMost-iff image-iff uv(1 ) uv(2 ))
ultimately have False using uv assms(3 )

by force
}
moreover {

assume v < u
from recurrence-time-restricts-compact-flow ′[OF this - - ]
have flow0 x ‘ UNIV = flow0 x ‘ {v..u}

by (metis assms(2 ) subset-iff uv(1 ) uv(2 ) uv(3 ))
then have flow0 x t ∈ flow0 x ‘ {v..u} by auto
moreover have v = t ∨ flow0 x t /∈ flow0 x ‘ {v..u} using assms(3 )

by (smt atLeastAtMost-iff image-iff uv(1 ) uv(2 ))
ultimately have False using uv assms(3 ) by force

}
ultimately show False by blast

qed

lemma finite-ω-limit-set-in-compact-imp-unique-fixed-point:
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assumes compact K K ⊆ X
assumes x ∈ X trapped-forward x K
assumes finite (ω-limit-set x)
obtains y where ω-limit-set x = {y} f y = 0

proof −
from connected-finite-iff-sing[OF ω-limit-set-in-compact-connected]
obtain y where y: ω-limit-set x = {y}

using ω-limit-set-in-compact-nonempty assms by auto
have f y = 0
proof (rule ccontr)

assume fy:f y 6= 0
from ω-limit-set-in-compact-existence[OF assms(1−4 )]
have yex: existence-ivl0 y = UNIV

by (simp add: y)
then have y ∈ X

by (simp add: local.mem-existence-ivl-iv-defined(2 ))
from regular-locally-noteq[OF this fy]
have ∀ F t in at 0 . flow0 y t 6= y .
then obtain r where r : r>0 ∀ t. t 6= 0 ∧ dist t 0 < r −→ flow0 y t 6= flow0

y 0
unfolding eventually-at using ‹y ∈ X›
by auto

then have
∧

s. 0 < s =⇒ s ≤ r/2 =⇒ flow0 y s 6= flow0 y 0 by simp
from flow0-inj-on[OF - - this, of r/2 ]
obtain inj-on(flow0 y) {0 ..r/2} using r yex by simp
then have infinite (flow0 y‘{0 ..r/2}) by (simp add: finite-image-iff r(1 ))
moreover from ω-limit-set-invariant[of x]
have flow0 y ‘{0 ..r/2} ⊆ ω-limit-set x using y yex

unfolding invariant-def trapped-iff-on-existence-ivl0 by auto
ultimately show False using y

by (metis assms(5 ) finite.emptyI subset-singleton-iff )
qed
thus ?thesis using that y by auto

qed

lemma closed-orbit-periodic:
assumes closed-orbit x f x 6= 0
shows periodic-orbit x
unfolding periodic-orbit-def
using assms(1 ) apply auto

proof (rule ccontr)
assume closed-orbit x
from closed-orbit-period-nonneg[OF assms(1 )] have nneg: period x ≥ 0 .
assume ¬ 0 < period x
then have period x = 0 using nneg by linarith
from closed-orbit-period-zero-fixed-point[OF assms(1 ) this]
have f x = 0 .
thus False using assms(2 ) by linarith

qed
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lemma periodic-orbitI :
assumes t 6= t ′ t ∈ existence-ivl0 y t ′ ∈ existence-ivl0 y
assumes flow0 y t = flow0 y t ′

assumes f y 6= 0
shows periodic-orbit y

proof −
have y:y ∈ X

using assms(3 ) local.mem-existence-ivl-iv-defined(2 ) by blast
from closed-orbitI [OF assms(1−4 )] have closed-orbit y .
from closed-orbit-periodic[OF this assms(5 )]
show ?thesis .

qed

lemma periodic-orbit-recurrence-times-closed:
assumes periodic-orbit x
shows closed {T ∈ existence-ivl0 x. T > 0 ∧ flow0 x T = x}

proof −
have a1 :x ∈ X

using assms closed-orbit-in-domain periodic-orbit-def by auto
have a2 :f x 6= 0

using assms closed-orbit-in-domain fixed-point-imp-closed-orbit-period-zero(2 )
periodic-orbit-def by auto

from regular-locally-noteq[OF a1 a2 ] have
∀ F t in at 0 . flow0 x t 6= x .

then obtain r where r :r>0 ∀ t. t 6= 0 ∧ dist t 0 < r −→ flow0 x t 6= x
unfolding eventually-at

by auto
show ?thesis
proof (auto intro!:discrete-imp-closed[OF r(1 )])

fix t1 t2
assume t12 : t1 > 0 flow0 x t1 = x t2 > 0 flow0 x t2 = x dist t2 t1 < r
then have fx: flow0 x (t1−t2 ) = x
by (smt a1 assms closed-orbit-global-existence existence-ivl-zero general.existence-ivl-initial-time-iff

local.flow-trans periodic-orbit-def )
have dist (t1−t2 ) 0 < r using t12 (5 )

by (simp add: dist-norm)
thus t2 = t1 using r fx

by smt
qed

qed

lemma periodic-orbit-period:
assumes periodic-orbit x
shows period x > 0 flow0 x (period x) = x

proof −
from periodic-orbit-recurrence-times-closed[OF assms(1 )]
have cl: closed {T ∈ existence-ivl0 x. T > 0 ∧ flow0 x T = x} .
have closed-orbit x using assms(1 ) unfolding periodic-orbit-def by auto
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from closed-contains-Inf [OF closed-orbit-recurrence-times-nonempty[OF this]
closed-orbit-recurrence-times-bdd-below cl]

have period x ∈ {T ∈ existence-ivl0 x. T > 0 ∧ flow0 x T = x} unfolding
period-def .

thus period x > 0 flow0 x (period x) = x by auto
qed

lemma closed-orbit-flow0 :
assumes closed-orbit x
shows closed-orbit (flow0 x t)

proof −
from closed-orbit-global-existence[OF assms]
have existence-ivl0 x = UNIV .
from closed-orbitE [OF assms]
obtain T where T > 0 flow0 x (t+T ) = flow0 x t

by metis
thus ?thesis unfolding closed-orbit-def
by (metis UNIV-I ‹existence-ivl0 x = UNIV › less-irrefl local.existence-ivl-trans ′

local.flow-trans)
qed

lemma periodic-orbit-imp-flow0-regular :
assumes periodic-orbit x
shows f (flow0 x t) 6= 0
by (metis UNIV-I assms closed-orbit-flow0 closed-orbit-global-existence closed-orbit-in-domain

fixed-point-imp-closed-orbit-period-zero(2 ) fixpoint-sol(2 ) less-irrefl local.flows-reverse
periodic-orbit-def )

lemma fixed-point-imp-ω-limit-set:
assumes x ∈ X f x = 0
shows ω-limit-set x = {x}

proof −
have closed-orbit x

by (metis assms fixed-point-imp-closed-orbit-period-zero(1 ))
from closed-orbit-ω-limit-set[OF this]
have flow0 x ‘ UNIV = ω-limit-set x .
thus ?thesis

by (metis assms(1 ) assms(2 ) fixpoint-sol(2 ) image-empty image-insert im-
age-subset-iff insertI1 rangeI subset-antisym)
qed

end

context auto-ll-on-open begin

lemma closed-orbit-eq-rev: closed-orbit x = rev.closed-orbit x
unfolding closed-orbit-def rev.closed-orbit-def rev-eq-flow rev-existence-ivl-eq0
by auto
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lemma closed-orbit-α-limit-set:
assumes closed-orbit x
shows flow0 x ‘ UNIV = α-limit-set x
using rev.closed-orbit-ω-limit-set assms
unfolding closed-orbit-eq-rev α-limit-set-eq-rev flow-image-eq-rev range-uminus

.

lemma fixed-point-imp-α-limit-set:
assumes x ∈ X f x = 0
shows α-limit-set x = {x}
using rev.fixed-point-imp-ω-limit-set assms
unfolding α-limit-set-eq-rev
by auto

lemma finite-α-limit-set-in-compact-imp-unique-fixed-point:
assumes compact K K ⊆ X
assumes x ∈ X trapped-backward x K
assumes finite (α-limit-set x)
obtains y where α-limit-set x = {y} f y = 0

proof −
from rev.finite-ω-limit-set-in-compact-imp-unique-fixed-point[OF

assms(1−5 )[unfolded trapped-backward-iff-rev-trapped-forward α-limit-set-eq-rev]]
show ?thesis using that

unfolding α-limit-set-eq-rev
by auto

qed
end

end

6 Poincare Bendixson Theory
theory Poincare-Bendixson

imports
Ordinary-Differential-Equations.ODE-Analysis
Analysis-Misc ODE-Misc Periodic-Orbit

begin

6.1 Flow to Path
context auto-ll-on-open begin

definition flow-to-path x t t ′ = flow0 x ◦ linepath t t ′

lemma pathstart-flow-to-path[simp]:
shows pathstart (flow-to-path x t t ′) = flow0 x t
unfolding flow-to-path-def
by (auto simp add: pathstart-compose)
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lemma pathfinish-flow-to-path[simp]:
shows pathfinish (flow-to-path x t t ′) = flow0 x t ′

unfolding flow-to-path-def
by (auto simp add: pathfinish-compose)

lemma flow-to-path-unfold:
shows flow-to-path x t t ′ s = flow0 x ((1 − s) ∗ t + s ∗ t ′)
unfolding flow-to-path-def o-def linepath-def by auto

lemma subpath0-flow-to-path:
shows (subpath 0 u (flow-to-path x t t ′)) = flow-to-path x t (t + u∗(t ′−t))
unfolding flow-to-path-def subpath-image subpath0-linepath
by auto

lemma path-image-flow-to-path[simp]:
assumes t ≤ t ′

shows path-image (flow-to-path x t t ′) = flow0 x ‘ {t..t ′}
unfolding flow-to-path-def path-image-compose path-image-linepath
using assms real-Icc-closed-segment by auto

lemma flow-to-path-image0-right-open[simp]:
assumes t < t ′

shows flow-to-path x t t ′ ‘ {0 ..<1} = flow0 x ‘{t..<t ′}
unfolding flow-to-path-def image-comp[symmetric] linepath-image0-right-open-real[OF

assms]
by auto

lemma flow-to-path-path:
assumes t ≤ t ′

assumes {t..t ′} ⊆ existence-ivl0 x
shows path (flow-to-path x t t ′)

proof −
have x ∈ X

using assms(1 ) assms(2 ) subset-empty by fastforce
have

∧
xa. 0 ≤ xa =⇒ xa ≤ 1 =⇒ (1 − xa) ∗ t + xa ∗ t ′ ≤ t ′

by (simp add: assms(1 ) convex-bound-le)
moreover have

∧
xa. 0 ≤ xa =⇒ xa ≤ 1 =⇒ t ≤ (1 − xa) ∗ t + xa ∗ t ′ using

assms(1 )
by (metis add.commute add-diff-cancel-left ′ diff-diff-eq2 diff-le-eq mult.commute

mult.right-neutral mult-right-mono right-diff-distrib ′)
ultimately have

∧
xa. 0 ≤ xa =⇒ xa ≤ 1 =⇒ (1 − xa) ∗ t + xa ∗ t ′ ∈

existence-ivl0 x
using assms(2 ) by auto

thus ?thesis unfolding path-def flow-to-path-def linepath-def
by (auto intro!:continuous-intros simp add :‹x ∈ X›)

qed

lemma flow-to-path-arc:
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assumes t ≤ t ′

assumes {t..t ′} ⊆ existence-ivl0 x
assumes ∀ s ∈ {t<..<t ′}. flow0 x s 6= flow0 x t
assumes flow0 x t 6= flow0 x t ′

shows arc (flow-to-path x t t ′)
unfolding arc-def

proof safe
from flow-to-path-path[OF assms(1−2 )]
show path (flow-to-path x t t ′) .

next
show inj-on (flow-to-path x t t ′) {0 ..1}

unfolding flow-to-path-def
apply (rule comp-inj-on)
apply (metis assms(4 ) inj-on-linepath)

using assms path-image-linepath[of t t ′] apply (auto intro!:flow0-inj-on)
using flow0-inj-on greaterThanLessThan-iff linepath-image-01 real-Icc-closed-segment

by fastforce
qed

end

locale c1-on-open-R2 = c1-on-open-euclidean f f ′ X for f :: ′a::executable-euclidean-space
⇒ - and f ′ and X +

assumes dim2 : DIM ( ′a) = 2
begin

6.2 2D Line segments

Line segments are specified by two endpoints The closed line segment from
x to y is given by the set x–y and x<–<y for the open segment

Rotates a vector clockwise 90 degrees
definition rot (v:: ′a) = (eucl-of-list [nth-eucl v 1 , −nth-eucl v 0 ]:: ′a)

lemma exhaust2-nat: (∀ i<(2 ::nat). P i) ←→ P 0 ∧ P 1
using less-2-cases by auto

lemma sum2-nat: (
∑

i<(2 ::nat). P i) = P 0 + P 1
by (simp add: eval-nat-numeral)

lemmas vec-simps =
eucl-eq-iff [where ′a= ′a] dim2 eucl-of-list-eucl-nth exhaust2-nat
plus-nth-eucl
minus-nth-eucl
uminus-nth-eucl
scaleR-nth-eucl
inner-nth-eucl
sum2-nat
algebra-simps
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lemma minus-expand:
shows (x:: ′a)−y = (eucl-of-list [x$e0 − y$e0 , x$e1 − y$e1 ])
by (simp add:vec-simps)

lemma dot-ortho[simp]: x · rot x = 0
unfolding rot-def minus-expand
by (simp add: vec-simps)

lemma nrm-dot:
shows ((x:: ′a)−y) · (rot (x−y)) = 0
unfolding rot-def minus-expand
by (simp add: vec-simps)

lemma nrm-reverse: a · (rot (x−y)) = − a · (rot (y−x)) for x y:: ′a
unfolding rot-def
by (simp add:vec-simps)

lemma norm-rot: norm (rot v) = norm v for v:: ′a
unfolding rot-def
by (simp add:vec-simps norm-nth-eucl L2-set-def )

lemma rot-rot[simp]:
shows rot (rot v) = −v
unfolding rot-def
by (simp add:vec-simps)

lemma rot-scaleR[simp]:
shows rot ( u ∗R v) = u ∗R (rot v)
unfolding rot-def
by (simp add:vec-simps)

lemma rot-0 [simp]: rot 0 = 0
using rot-scaleR[of 0 ] by simp

lemma rot-eq-0-iff [simp]: rot x = 0 ←→ x = 0
apply (auto simp: rot-def )
apply (metis One-nat-def norm-eq-zero norm-rot norm-zero rot-def )

using rot-0 rot-def by auto

lemma in-segment-inner-rot:
(x − a) · rot (b − a) = 0
if x ∈ {a−−b}

proof −
from that obtain u where x: x = a + u ∗R (b − a) 0 ≤ u u ≤ 1

by (auto simp: in-segment algebra-simps)
show ?thesis

unfolding x
by (simp add: inner-add-left nrm-dot)

qed
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lemma inner-rot-in-segment:
x ∈ range (λu. a + u ∗R (b − a))
if (x − a) · rot (b − a) = 0 a 6= b

proof −
from that have

x0 : b $e 0 = a $e 0 =⇒ x $e 0 =
(a $e 0 ∗ b $e Suc 0 − b $e 0 ∗ a $e Suc 0 + (b $e 0 − a $e 0 ) ∗ x $e Suc

0 ) /
(b $e Suc 0 − a $e Suc 0 )

and x1 : b $e 0 6= a $e 0 =⇒ x $e Suc 0 =
((b $e Suc 0 − a $e Suc 0 ) ∗ x $e 0 − a $e 0 ∗ b $e Suc 0 + b $e 0 ∗ a $e

Suc 0 ) / (b $e 0 − a $e 0 )
by (auto simp: rot-def vec-simps divide-simps)

define u where u = (if b $e 0 − a $e 0 6= 0
then ((x $e 0 − a $e 0 ) / (b $e 0 − a $e 0 ))
else ((x $e 1 − a $e 1 ) / (b $e 1 − a $e 1 )))

show ?thesis
apply (cases b $e 0 − a $e 0 = 0 )
subgoal

using that(2 )
apply (auto intro!: image-eqI [where x=((x $e 1 − a $e 1 ) / (b $e 1 − a $e

1 ))]
simp: vec-simps x0 divide-simps algebra-simps)

apply (metis ab-semigroup-mult-class.mult-ac(1 ) mult.commute sum-sqs-eq)
by (metis mult.commute mult.left-commute sum-sqs-eq)

subgoal
apply (auto intro!: image-eqI [where x=((x $e 0 − a $e 0 ) / (b $e 0 − a $e

0 ))]
simp: vec-simps x1 divide-simps algebra-simps)

apply (metis ab-semigroup-mult-class.mult-ac(1 ) mult.commute sum-sqs-eq)
by (metis mult.commute mult.left-commute sum-sqs-eq)

done
qed

lemma in-open-segment-iff-rot:
x ∈ {a<−−<b} ←→ (x − a) · rot (b − a) = 0 ∧ x · (b − a) ∈ {a·(b − a) <..<

b · (b − a)}
if a 6= b
unfolding open-segment-line-hyperplanes[OF that]
by (auto simp: nrm-dot intro!: inner-rot-in-segment)

lemma in-open-segment-rotD:
x ∈ {a<−−<b} =⇒ (x − a) · rot (b − a) = 0 ∧ x · (b − a) ∈ {a·(b − a) <..<

b · (b − a)}
by (subst in-open-segment-iff-rot[symmetric]) auto

lemma in-closed-segment-iff-rot:
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x ∈ {a−−b} ←→ (x − a) · rot (b − a) = 0 ∧ x · (b − a) ∈ {a·(b − a) .. b · (b
− a)}

if a 6= b
unfolding closed-segment-line-hyperplanes[OF that] using that
by (auto simp: nrm-dot intro!: inner-rot-in-segment)

lemma in-segment-inner-rot2 :
(x − y) · rot (a − b) = 0
if x ∈ {a−−b} y ∈ {a−−b}

proof −
from that obtain u where x: x = a + u ∗R (b − a) 0 ≤ u u ≤ 1

by (auto simp: in-segment algebra-simps)
from that obtain v where y: y = a + v ∗R (b − a) 0 ≤ v v ≤ 1

by (auto simp: in-segment algebra-simps)
show ?thesis

unfolding x y
apply (auto simp: inner-add-left )
by (smt add-diff-cancel-left ′ in-segment-inner-rot inner-diff-left minus-diff-eq

nrm-reverse that(1 ) that(2 ) x(1 ) y(1 ))
qed

lemma closed-segment-surface:
a 6= b =⇒ {a−−b} = { x ∈ {x. x · (b − a) ∈ {a·(b − a) .. b · (b − a)}}. (x −

a) · rot (b − a) = 0}
by (auto simp: in-closed-segment-iff-rot)

lemma rot-diff-commute: rot (b − a) = −rot(a − b)
apply (auto simp: rot-def algebra-simps)
by (metis One-nat-def minus-diff-eq rot-def rot-rot)

6.3 Bijection Real-Complex for Jordan Curve Theorem
definition complex-of (x:: ′a) = x$e0 + i ∗ x$e1

definition real-of (x::complex) = (eucl-of-list [Re x, Im x]:: ′a)

lemma complex-of-linear :
shows linear complex-of
unfolding complex-of-def
apply (auto intro!:linearI simp add: distrib-left plus-nth-eucl)
by (simp add: of-real-def scaleR-add-right scaleR-nth-eucl)

lemma complex-of-bounded-linear :
shows bounded-linear complex-of
unfolding complex-of-def
apply (auto intro!:bounded-linearI ′ simp add: distrib-left plus-nth-eucl)
by (simp add: of-real-def scaleR-add-right scaleR-nth-eucl)

lemma real-of-linear :
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shows linear real-of
unfolding real-of-def
by (auto intro!:linearI simp add: vec-simps)

lemma real-of-bounded-linear :
shows bounded-linear real-of
unfolding real-of-def
by (auto intro!:bounded-linearI ′ simp add: vec-simps)

lemma complex-of-real-of :
(complex-of ◦ real-of ) = id
unfolding complex-of-def real-of-def
using complex-eq by (auto simp add:vec-simps)

lemma real-of-complex-of :
(real-of ◦ complex-of ) = id
unfolding complex-of-def real-of-def
using complex-eq by (auto simp add:vec-simps)

lemma complex-of-bij:
shows bij (complex-of )
using o-bij[OF real-of-complex-of complex-of-real-of ] .

lemma real-of-bij:
shows bij (real-of )
using o-bij[OF complex-of-real-of real-of-complex-of ] .

lemma real-of-inj:
shows inj (real-of )
using real-of-bij
using bij-betw-imp-inj-on by auto

lemma Jordan-curve-R2 :
fixes c :: real ⇒ ′a
assumes simple-path c pathfinish c = pathstart c
obtains inside outside where

inside 6= {} open inside connected inside
outside 6= {} open outside connected outside
bounded inside ¬ bounded outside
inside ∩ outside = {}
inside ∪ outside = − path-image c
frontier inside = path-image c
frontier outside = path-image c

proof −
from simple-path-linear-image-eq[OF complex-of-linear ]
have a1 :simple-path (complex-of ◦ c) using assms(1 ) complex-of-bij

using bij-betw-imp-inj-on by blast
have a2 :pathfinish (complex-of ◦ c) = pathstart (complex-of ◦ c)

using assms(2 ) by (simp add:pathstart-compose pathfinish-compose)
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from Jordan-curve[OF a1 a2 ]
obtain inside outside where io:

inside 6= {} open inside connected inside
outside 6= {} open outside connected outside
bounded inside ¬ bounded outside inside ∩ outside = {}
inside ∪ outside = − path-image (complex-of ◦ c)
frontier inside = path-image (complex-of ◦ c)
frontier outside = path-image (complex-of ◦ c) by blast

let ?rin = real-of ‘ inside
let ?rout = real-of ‘ outside
have i: inside = complex-of ‘ ?rin using complex-of-real-of unfolding im-

age-comp
by auto

have o: outside = complex-of ‘ ?rout using complex-of-real-of unfolding im-
age-comp

by auto
have c: path-image(complex-of ◦ c) = complex-of ‘ (path-image c)

by (simp add: path-image-compose)
have ?rin 6= {} using io by auto
moreover from open-bijective-linear-image-eq[OF real-of-linear real-of-bij]
have open ?rin using io by auto
moreover from connected-linear-image[OF real-of-linear ]
have connected ?rin using io by auto
moreover have ?rout 6= {} using io by auto
moreover from open-bijective-linear-image-eq[OF real-of-linear real-of-bij]
have open ?rout using io by auto
moreover from connected-linear-image[OF real-of-linear ]
have connected ?rout using io by auto
moreover from bounded-linear-image[OF io(7 ) real-of-bounded-linear ]
have bounded ?rin .
moreover from bounded-linear-image[OF - complex-of-bounded-linear ]
have ¬ bounded ?rout using io(8 ) o

by force
from image-Int[OF real-of-inj]
have ?rin ∩ ?rout = {} using io(9 ) by auto
moreover from bij-image-Compl-eq[OF complex-of-bij]
have ?rin ∪ ?rout = − path-image c using io(10 ) unfolding c
by (metis id-apply image-Un image-comp image-cong image-ident real-of-complex-of )

moreover from closure-injective-linear-image[OF real-of-linear real-of-inj]
have frontier ?rin = path-image c using io(11 )

unfolding frontier-closures c
by (metis ‹

∧
B A. real-of ‘ (A ∩ B) = real-of ‘ A ∩ real-of ‘ B› bij-image-Compl-eq

c calculation(9 ) compl-sup double-compl io(10 ) real-of-bij)
moreover from closure-injective-linear-image[OF real-of-linear real-of-inj]
have frontier ?rout = path-image c using io(12 )

unfolding frontier-closures c
by (metis ‹

∧
B A. real-of ‘ (A ∩ B) = real-of ‘ A ∩ real-of ‘ B› bij-image-Compl-eq

c calculation(10 ) frontier-closures io(11 ) real-of-bij)
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ultimately show ?thesis
by (meson ‹¬ bounded (real-of ‘ outside)› that)

qed

corollary Jordan-inside-outside-R2 :
fixes c :: real ⇒ ′a
assumes simple-path c pathfinish c = pathstart c
shows inside(path-image c) 6= {} ∧

open(inside(path-image c)) ∧
connected(inside(path-image c)) ∧
outside(path-image c) 6= {} ∧
open(outside(path-image c)) ∧
connected(outside(path-image c)) ∧
bounded(inside(path-image c)) ∧
¬ bounded(outside(path-image c)) ∧
inside(path-image c) ∩ outside(path-image c) = {} ∧
inside(path-image c) ∪ outside(path-image c) =
− path-image c ∧
frontier(inside(path-image c)) = path-image c ∧
frontier(outside(path-image c)) = path-image c

proof −
obtain inner outer

where ∗: inner 6= {} open inner connected inner
outer 6= {} open outer connected outer
bounded inner ¬ bounded outer inner ∩ outer = {}
inner ∪ outer = − path-image c
frontier inner = path-image c
frontier outer = path-image c

using Jordan-curve-R2 [OF assms] by blast
then have inner : inside(path-image c) = inner

by (metis dual-order .antisym inside-subset interior-eq interior-inside-frontier)
have outer : outside(path-image c) = outer

using ‹inner ∪ outer = − path-image c› ‹inside (path-image c) = inner›
outside-inside ‹inner ∩ outer = {}› by auto

show ?thesis
using ∗ by (auto simp: inner outer)

qed

lemma jordan-points-inside-outside:
fixes p :: real ⇒ ′a
assumes 0 < e
assumes jordan: simple-path p pathfinish p = pathstart p
assumes x: x ∈ path-image p
obtains y z where y ∈ inside (path-image p) y ∈ ball x e

z ∈ outside (path-image p) z ∈ ball x e
proof −

from Jordan-inside-outside-R2 [OF jordan]
have xi: x ∈ frontier(inside (path-image p)) and

86



xo: x ∈ frontier(outside (path-image p))
using x by auto

obtain y where y:y ∈ inside (path-image p) y ∈ ball x e using ‹0 < e› xi
unfolding frontier-straddle
by auto

obtain z where z:z ∈ outside (path-image p) z ∈ ball x e using ‹0 < e› xo
unfolding frontier-straddle
by auto

show ?thesis using y z that by blast
qed

lemma eventually-at-open-segment:
assumes x ∈ {a<−−<b}
shows ∀ F y in at x. (y−a) · rot(a−b) = 0 −→ y ∈ {a <−−< b}

proof −
from assms have a 6= b by auto
from assms have x: (x − a) · rot (b − a) = 0 x · (b − a) ∈ {a · (b − a)<..<b

· (b − a)}
unfolding in-open-segment-iff-rot[OF ‹a 6= b›]
by auto

then have ∀ F y in at x. y · (b − a) ∈ {a · (b − a)<..<b · (b − a)}
by (intro topological-tendstoD) (auto intro!: tendsto-intros)

then show ?thesis
by eventually-elim (auto simp: in-open-segment-iff-rot[OF ‹a 6= b›] nrm-reverse[of

- a b] algebra-simps dist-commute)
qed

lemma linepath-ball:
assumes x ∈ {a<−−<b}
obtains e where e > 0 ball x e ∩ {y. (y−a) · rot(a−b) = 0} ⊆ {a <−−< b}

proof −
from eventually-at-open-segment[OF assms] assms
obtain e where 0 < e ball x e ∩ {y. (y − a) · rot (a − b) = 0} ⊆ {a<−−<b}

by (force simp: eventually-at in-open-segment-iff-rot dist-commute)
then show ?thesis ..

qed

lemma linepath-ball-inside-outside:
fixes p :: real ⇒ ′a
assumes jordan: simple-path (p +++ linepath a b) pathfinish p = a pathstart p

= b
assumes x: x ∈ {a<−−<b}
obtains e where e > 0 ball x e ∩ path-image p = {}

ball x e ∩ {y. (y−a) · rot (a−b) > 0} ⊆ inside (path-image (p +++ linepath
a b)) ∧

ball x e ∩ {y. (y−a) · rot (a−b) < 0} ⊆ outside (path-image (p +++ linepath
a b))
∨
ball x e ∩ {y. (y−a) · rot (a−b) < 0} ⊆ inside (path-image (p +++ linepath
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a b)) ∧
ball x e ∩ {y. (y−a) · rot (a−b) > 0} ⊆ outside (path-image (p +++ linepath

a b))
proof −

let ?lp = p +++ linepath a b
have a 6= b using x by auto
have pp:path p using jordan path-join pathfinish-linepath simple-path-imp-path

by fastforce
have path-image p ∩ path-image (linepath a b) ⊆ {a,b}

using jordan simple-path-join-loop-eq
by (metis (no-types, lifting) inf-sup-aci(1 ) insert-commute path-join-path-ends

path-linepath simple-path-imp-path simple-path-joinE)
then have x /∈ path-image p using x unfolding path-image-linepath

by (metis DiffE Int-iff le-iff-inf open-segment-def )
then have ∀ F y in at x. y /∈ path-image p

by (intro eventually-not-in-closed) (auto simp: closed-path-image ‹path p›)
moreover
have ∀ F y in at x. (y − a) · rot (a − b) = 0 −→ y ∈ {a<−−<b}

by (rule eventually-at-open-segment[OF x])
ultimately have ∀ F y in at x. y /∈ path-image p ∧ ((y − a) · rot (a − b) = 0
−→ y ∈ {a<−−<b})

by eventually-elim auto
then obtain e where e: e > 0 ball x e ∩ path-image p = {}

ball x e ∩ {y. (y − a) · rot (a − b) = 0} ⊆ {a<−−<b}
using ‹x /∈ path-image p› x in-open-segment-rotD[OF x]
apply (auto simp: eventually-at subset-iff dist-commute dest!: )
by (metis Int-iff all-not-in-conv dist-commute mem-ball)

have a1 : pathfinish ?lp = pathstart ?lp
by (auto simp add: jordan)

have x ∈ path-image ?lp
using jordan(1 ) open-closed-segment path-image-join path-join-path-ends sim-

ple-path-imp-path x by fastforce
from jordan-points-inside-outside[OF e(1 ) jordan(1 ) a1 this]
obtain y z where y: y ∈ inside (path-image ?lp) y ∈ ball x e

and z: z ∈ outside (path-image ?lp) z ∈ ball x e by blast
have jordancurve:

inside (path-image ?lp) ∩ outside(path-image ?lp) = {}
frontier (inside (path-image ?lp)) = path-image ?lp
frontier (outside (path-image ?lp)) = path-image ?lp
using Jordan-inside-outside-R2 [OF jordan(1 ) a1 ] by auto

define b1 where b1 = ball x e ∩ {y. (y−a) · rot (a−b) > 0}
define b2 where b2 = ball x e ∩ {y. (y−a) · rot (a−b) < 0}
define b3 where b3 = ball x e ∩ {y. (y−a) · rot (a−b) = 0}
have path-connected b1 unfolding b1-def
apply (auto intro!: convex-imp-path-connected convex-Int simp add:inner-diff-left)
using convex-halfspace-gt[of a · rot (a − b) rot(a−b)] inner-commute
by (metis (no-types, lifting) Collect-cong)

have path-connected b2 unfolding b2-def
apply (auto intro!: convex-imp-path-connected convex-Int simp add:inner-diff-left)
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using convex-halfspace-lt[of rot(a−b) a · rot (a − b)] inner-commute
by (metis (no-types, lifting) Collect-cong)

have b1 ∩ path-image(linepath a b) = {} unfolding path-image-linepath b1-def
using closed-segment-surface[OF ‹a 6= b›] in-segment-inner-rot2 by auto

then have b1i:b1 ∩ path-image ?lp = {}
by (metis IntD2 b1-def disjoint-iff-not-equal e(2 ) inf-sup-aci(1 ) not-in-path-image-join)

have b2 ∩ path-image(linepath a b) = {} unfolding path-image-linepath b2-def
using closed-segment-surface[OF ‹a 6= b›] in-segment-inner-rot2 by auto

then have b2i:b2 ∩ path-image ?lp = {}
by (metis IntD2 b2-def disjoint-iff-not-equal e(2 ) inf-sup-aci(1 ) not-in-path-image-join)

have bsplit: ball x e = b1 ∪ b2 ∪ b3
unfolding b1-def b2-def b3-def
by auto

have z /∈ b3
proof clarsimp

assume z ∈ b3
then have z ∈ {a<−−<b} unfolding b3-def using e by blast
then have z ∈ path-image(linepath a b) by (auto simp add: open-segment-def )
then have z ∈ path-image ?lp

by (simp add: jordan(2 ) path-image-join)
thus False using z

using inside-Un-outside by fastforce
qed
then have z12 : z ∈ b1 ∨ z ∈ b2 using z bsplit by blast
have y /∈ b3
proof clarsimp

assume y ∈ b3
then have y ∈ {a<−−<b} unfolding b3-def using e by auto
then have y ∈ path-image(linepath a b) by (auto simp add: open-segment-def )
then have y ∈ path-image ?lp

by (simp add: jordan(2 ) path-image-join)
thus False using y

using inside-Un-outside by fastforce
qed
then have y ∈ b1 ∨ y ∈ b2 using y bsplit by blast
moreover {

assume y ∈ b1
then have b1 ∩ inside (path-image ?lp) 6= {} using y by blast
from path-connected-not-frontier-subset[OF ‹path-connected b1 › this]
have 1 :b1 ⊆ inside (path-image ?lp) unfolding jordancurve using b1i

by blast
then have z ∈ b2 using jordancurve(1 ) z(1 ) z12 by blast
then have b2 ∩ outside (path-image ?lp) 6= {} using z by blast
from path-connected-not-frontier-subset[OF ‹path-connected b2 › this]
have 2 :b2 ⊆ outside (path-image ?lp) unfolding jordancurve using b2i

by blast
note conjI [OF 1 2 ]

}
moreover {
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assume y ∈ b2
then have b2 ∩ inside (path-image ?lp) 6= {} using y by blast
from path-connected-not-frontier-subset[OF ‹path-connected b2 › this]
have 1 :b2 ⊆ inside (path-image ?lp) unfolding jordancurve using b2i

by blast
then have z ∈ b1 using jordancurve(1 ) z(1 ) z12 by blast
then have b1 ∩ outside (path-image ?lp) 6= {} using z by blast
from path-connected-not-frontier-subset[OF ‹path-connected b1 › this]
have 2 :b1 ⊆ outside (path-image ?lp) unfolding jordancurve using b1i

by blast
note conjI [OF 1 2 ]

}
ultimately show ?thesis unfolding b1-def b2-def using that[OF e(1−2 )] by

auto
qed

6.4 Transversal Segments
definition transversal-segment a b ←→

a 6= b ∧ {a−−b} ⊆ X ∧
(∀ z ∈ {a−−b}. f z · rot (a−b) 6= 0 )

lemma transversal-segment-reverse:
assumes transversal-segment x y
shows transversal-segment y x
unfolding transversal-segment-def
by (metis (no-types, opaque-lifting) add.left-neutral add-uminus-conv-diff assms

closed-segment-commute inner-diff-left inner-zero-left nrm-reverse transversal-segment-def )

lemma transversal-segment-commute: transversal-segment x y ←→ transversal-segment
y x

using transversal-segment-reverse by blast

lemma transversal-segment-neg:
assumes transversal-segment x y
assumes w: w ∈ {x −− y} and f w · rot (x−y) < 0
shows ∀ z ∈ {x−−y}. f (z) · rot (x−y) < 0

proof (rule ccontr)
assume ¬ (∀ z∈{x−−y}. f z · rot (x−y) < 0 )
then obtain z where z: z ∈ {x−−y} f z · rot (x−y) ≥ 0 by auto
define ff where ff = (λs. f (w + s ∗R (z − w)) · rot (x−y))
have f0 :ff 0 ≤ 0 unfolding ff-def using assms(3 )

by simp
have fu:ff 1 ≥ 0

by (auto simp: ff-def z)
from assms(2 ) obtain u where u: 0 ≤ u u ≤ 1 w = (1 − u) ∗R x + u ∗R y

unfolding in-segment by blast
have {x−−y} ⊆ X using assms(1 ) unfolding transversal-segment-def by blast
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then have continuous-on {0 ..1} ff unfolding ff-def
using assms(2 )
by (auto intro!:continuous-intros closed-subsegmentI z elim!: set-mp)

from IVT ′[of ff , OF f0 fu zero-le-one this]
obtain s where s: s ≥ 0 s ≤ 1 ff s = 0 by blast
have w + s ∗R (z − w) ∈ {x −− y}

by (auto intro!: closed-subsegmentI z s w)
with ‹ff s = 0 › show False

using s assms(1 ) unfolding transversal-segment-def ff-def by blast
qed

lemmas transversal-segment-sign-less = transversal-segment-neg[OF - ends-in-segment(1 )]

lemma transversal-segment-pos:
assumes transversal-segment x y
assumes w: w ∈ {x −− y} f w · rot (x−y) > 0
shows ∀ z ∈ {x−−y}. f (z) · rot (x−y) > 0
using transversal-segment-neg[OF transversal-segment-reverse[OF assms(1 )], of

w] w
by (auto simp: rot-diff-commute[of x y] closed-segment-commute)

lemma transversal-segment-posD:
assumes transversal-segment x y

and pos: z ∈ {x −− y} f z · rot (x − y) > 0
shows x 6= y {x−−y} ⊆ X

∧
z. z ∈ {x−−y} =⇒ f z · rot (x−y) > 0

using assms(1 ) transversal-segment-pos[OF assms]
by (auto simp: transversal-segment-def )

lemma transversal-segment-negD:
assumes transversal-segment x y

and pos: z ∈ {x −− y} f z · rot (x − y) < 0
shows x 6= y {x−−y} ⊆ X

∧
z. z ∈ {x−−y} =⇒ f z · rot (x−y) < 0

using assms(1 ) transversal-segment-neg[OF assms]
by (auto simp: transversal-segment-def )

lemma transversal-segmentE :
assumes transversal-segment x y
obtains x 6= y {x −− y} ⊆ X

∧
z. z ∈ {x−−y} =⇒ f z · rot (x − y) > 0

| x 6= y {x −− y} ⊆ X
∧

z. z ∈ {x−−y} =⇒ f z · rot (y − x) > 0
proof (cases f x · rot (x − y) < 0 )

case True
from transversal-segment-negD[OF assms ends-in-segment(1 ) True]
have x 6= y {x −− y} ⊆ X

∧
z. z ∈ {x−−y} =⇒ f z · rot (y − x) > 0

by (auto simp: rot-diff-commute[of x y])
then show ?thesis ..

next
case False
then have f x · rot (x − y) > 0 using assms
by (auto simp: transversal-segment-def algebra-split-simps not-less order .order-iff-strict)
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from transversal-segment-posD[OF assms ends-in-segment(1 ) this]
show ?thesis ..

qed

lemma dist-add-vec:
shows dist (x + s ∗R v) x = abs s ∗ norm v
by (simp add: dist-cancel-add1 )

lemma transversal-segment-exists:
assumes x ∈ X f x 6= 0
obtains a b where x ∈ {a<−−<b}

transversal-segment a b
proof −

define l where l = (λs::real. x + (s/norm(f x)) ∗R rot (f x))
have norm (f x) > 0 using assms(2 ) using zero-less-norm-iff by blast
then have distl: ∀ s. dist (l s) x = abs s unfolding l-def dist-add-vec

by (auto simp add: norm-rot)
obtain d where d:d > 0 cball x d ⊆ X

by (meson UNIV-I assms(1 ) local.local-unique-solution)
then have lb: l‘{−d..d} ⊆ cball x d using distl by (simp add: abs-le-iff dist-commute

image-subset-iff )
from fcontx[OF assms(1 )] have continuous (at x) f .
then have c:continuous (at 0 ) ((λy. (f y · f x)) ◦ l) unfolding l-def

by (auto intro!:continuous-intros simp add: assms(2 ))
have ((λy. f y · f x) ◦ l) 0 > 0 using assms(2 ) unfolding l-def o-def by auto
from continuous-at-imp-cball[OF c this]
obtain r where r :r > 0 ∀ z∈cball 0 r . 0 < ((λy. f y · f x) ◦ l) z by blast
then have rc:∀ z ∈ l‘{−r ..r}. 0 < f z · f x using real-norm-def by auto
define dr where dr = min r d
have t1 :l (−dr) 6= l dr unfolding l-def dr-def

by (smt ‹0 < d› ‹0 < norm (f x)› ‹0 < r› add-left-imp-eq divide-cancel-right
norm-rot norm-zero scale-cancel-right)

have x = midpoint (l (−dr)) (l dr) unfolding midpoint-def l-def by auto
then have xin:x ∈ {l (−dr)<−−<(l dr)} using t1 by auto

have lsub:{l (−dr)−−l dr} ⊆ l‘{−dr ..dr}
proof safe

fix z
assume z ∈ {l (− dr)−−l dr}
then obtain u where u: 0 ≤ u u ≤ 1 z = (1 − u) ∗R (l (−dr)) + u ∗R (l dr)

unfolding in-segment by blast
then have z = x − (1−u) ∗R (dr/norm(f x)) ∗R rot (f x) + u ∗R (dr/norm(f

x)) ∗R rot (f x)
unfolding l-def
by (simp add: l-def scaleR-add-right scale-right-diff-distrib u(3 ))

also have ... = x − (1 − 2 ∗ u) ∗R (dr/norm(f x)) ∗R rot (f x)
by (auto simp add: algebra-simps divide-simps simp flip: scaleR-add-left)

also have ... = x + (((2 ∗ u − 1 ) ∗ dr)/norm(f x)) ∗R rot (f x)
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by (smt add-uminus-conv-diff scaleR-scaleR scale-minus-left times-divide-eq-right)
finally have zeq: z = l ((2∗u−1 )∗dr) unfolding l-def .
have ub: 2∗ u − 1 ≤ 1 ∧ −1 ≤ 2∗ u − 1 using u by linarith
thus z ∈ l ‘ {− dr ..dr} using zeq

by (smt atLeastAtMost-iff d(1 ) dr-def image-eqI mult.commute mult-left-le
mult-minus-left r(1 ))

qed
have t2 : {l (− dr)−−l dr} ⊆ X using lsub
by (smt atLeastAtMost-iff d(2 ) dist-commute distl dr-def image-subset-iff mem-cball

order-trans)
have l (− dr) − l dr = −2 ∗R (dr/norm(f x)) ∗R rot (f x) unfolding l-def

by (simp add: algebra-simps flip: scaleR-add-left)
then have req: rot (l (− dr) − l dr) = (2 ∗ dr/norm(f x)) ∗R f x

by auto (metis add.inverse-inverse rot-rot rot-scaleR)
have l‘{−dr ..dr} ⊆ l ‘ {−r ..r}

by (simp add: dr-def image-mono)
then have {l (− dr)−−l dr} ⊆ l ‘ {−r .. r} using lsub by auto
then have ∀ z ∈ {l (− dr)−−l dr}. 0 < f z · f x using rc by blast
moreover have (dr / norm (f x)) > 0

using ‹0 < norm (f x)› d(1 ) dr-def r(1 ) by auto
ultimately have t3 : ∀ z ∈ {l (− dr)−−l dr}. f z · rot (l (− dr)− l dr) > 0

unfolding req
by (smt divide-divide-eq-right inner-scaleR-right mult-2 norm-not-less-zero scaleR-2

times-divide-eq-left times-divide-eq-right zero-less-divide-iff )
have transversal-segment (l (−dr)) (l dr) using t1 t2 t3 unfolding transver-

sal-segment-def by auto
thus ?thesis using xin

using that by auto
qed

Perko Section 3.7 Lemma 2 part 1.
lemma flow-transversal-segment-finite-intersections:

assumes transversal-segment a b
assumes t ≤ t ′ {t .. t ′} ⊆ existence-ivl0 x
shows finite {s∈{t..t ′}. flow0 x s ∈ {a−−b}}

proof −
from assms have a 6= b by (simp add: transversal-segment-def )
show ?thesis

unfolding closed-segment-surface[OF ‹a 6= b›]
apply (rule flow-transversal-surface-finite-intersections[where Ds=λ-. blin-

fun-inner-left (rot (b − a))])
by
(use assms in ‹auto intro!: closed-Collect-conj closed-halfspace-component-ge

closed-halfspace-component-le
derivative-eq-intros

simp: transversal-segment-def nrm-reverse[where x=a] in-closed-segment-iff-rot›)
qed

lemma transversal-bound-posE :
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assumes transversal: transversal-segment a b
assumes direction: z ∈ {a −− b} f z · (rot (a − b)) > 0
obtains d B where d > 0 0 < B∧

x y. x ∈ {a −− b} =⇒ dist x y ≤ d =⇒ f y · (rot (a − b)) ≥ B
proof −

let ?a = (λy. (f y) · (rot (a − b)))
from transversal-segment-posD[OF transversal direction]
have seg: a 6= b {a−−b} ⊆ X z ∈ {a−−b} =⇒ 0 < f z · rot (a − b) for z

by auto
{

fix x
assume x ∈ {a−−b}
then have x ∈ X f x 6= 0 a 6= b using transversal by (auto simp: transver-

sal-segment-def )
then have ?a −x→ ?a x

by (auto intro!: tendsto-eq-intros)
moreover have ?a x > 0

using seg ‹x ∈ {a −− b}› ‹f x 6= 0 ›
by (auto simp: simp del: divide-const-simps

intro!: divide-pos-pos mult-pos-pos)
ultimately have ∀ F x in at x. ?a x > 0

by (rule order-tendstoD)
moreover have ∀ F x in at x. x ∈ X

by (rule topological-tendstoD[OF tendsto-ident-at open-dom ‹x ∈ X›])
moreover have ∀ F x in at x. f x 6= 0

by (rule tendsto-imp-eventually-ne tendsto-intros ‹x ∈ X› ‹f x 6= 0 ›)+
ultimately have ∀ F x in at x. ?a x>0 ∧ x ∈ X ∧ f x 6= 0 by eventually-elim

auto
then obtain d where d: 0 < d

∧
y. y ∈ cball x d =⇒ ?a y > 0 ∧ y ∈ X ∧ f

y 6= 0
using ‹?a x > 0 › ‹x ∈ X›
by (force simp: eventually-at-le dist-commute)

have continuous-on (cball x d) ?a
using d ‹a 6= b›
by (auto intro!: continuous-intros)

from compact-continuous-image[OF this compact-cball]
have compact (?a ‘ cball x d) .
from compact-attains-inf [OF this] obtain s where s ∈ cball x d ∀ x∈cball x

d. ?a x ≥ ?a s
using ‹d > 0 ›
by auto

then have ∃ d>0 . ∃ b>0 . ∀ x ∈ cball x d. ?a x ≥ b
using d
by (force simp: intro: exI [where x=?a s])

} then obtain dx Bx where dB:∧
x y. x ∈ {a −− b} =⇒ y∈cball x (dx x) =⇒ ?a y ≥ Bx x∧
x. x ∈ {a −− b} =⇒ Bx x > 0∧
x. x ∈ {a −− b} =⇒ dx x > 0
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by metis
define d ′ where d ′ = (λx. dx x / 2 )
have d ′:∧

x. x ∈ {a −− b} =⇒ ∀ y∈cball x (d ′ x). ?a y ≥ Bx x∧
x. x ∈ {a −− b} =⇒ d ′ x > 0

using dB(1 ,3 ) by (force simp: d ′-def )+
have d ′B:

∧
x. x ∈ {a −− b} =⇒ ∀ y∈cball x (d ′ x). ?a y ≥ Bx x

using d ′ by auto
have {a−−b} ⊆

⋃
((λx. ball x (d ′ x)) ‘ {a −− b})

using d ′(2 ) by auto
from compactE-image[OF compact-segment - this]
obtain X where X : X ⊆ {a−−b}

and [simp]: finite X
and cover : {a−−b} ⊆ (

⋃
x∈X . ball x (d ′ x))

by auto
have [simp]: X 6= {} using X cover by auto
define d where d = Min (d ′ ‘ X)
define B where B = Min (Bx ‘ X)
have d > 0

using X d ′

by (auto simp: d-def d ′-def )
moreover have B > 0

using X dB
by (auto simp: B-def simp del: divide-const-simps)

moreover have B ≤ ?a y if x ∈ {a −− b} dist x y ≤ d for x y
proof −

from ‹x ∈ {a −− b}› obtain xc where xc: xc ∈ X x ∈ ball xc (d ′ xc)
using cover by auto

have ?a y ≥ Bx xc
proof (rule dB)

show xc ∈ {a −− b} using xc ‹X ⊆ -› by auto
have dist xc y ≤ dist xc x + dist x y by norm
also have dist xc x ≤ d ′ xc using xc by auto
also note ‹dist x y ≤ d›
also have d ≤ d ′ xc

using xc
by (auto simp: d-def )

also have d ′ xc + d ′ xc = dx xc by (simp add: d ′-def )
finally show y ∈ cball xc (dx xc) by simp

qed
also have B ≤ Bx xc

using xc
unfolding B-def
by (auto simp: B-def )

finally (xtrans) show ?thesis .
qed
ultimately show ?thesis ..

qed
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lemma transversal-bound-negE :
assumes transversal: transversal-segment a b
assumes direction: z ∈ {a −− b} f z · (rot (a − b)) < 0
obtains d B where d > 0 0 < B∧

x y. x ∈ {a −− b} =⇒ dist x y ≤ d =⇒ f y · (rot (b − a)) ≥ B
proof −

from direction have z ∈ {b −− a} f z · (rot (b − a)) > 0
by (auto simp: closed-segment-commute rot-diff-commute[of b a])

from transversal-bound-posE [OF transversal-segment-reverse[OF transversal] this]
obtain d B where d > 0 0 < B∧

x y. x ∈ {a −− b} =⇒ dist x y ≤ d =⇒ f y · (rot (b − a)) ≥ B
by (auto simp: closed-segment-commute)

then show ?thesis ..
qed

lemma leaves-transversal-segmentE :
assumes transversal: transversal-segment a b
obtains T n where T > 0 n = a − b ∨ n = b − a∧

x. x ∈ {a −− b} =⇒ {−T ..T} ⊆ existence-ivl0 x∧
x s. x ∈ {a −− b} =⇒ 0 < s =⇒ s ≤ T =⇒

(flow0 x s − x) · rot n > 0∧
x s. x ∈ {a −− b} =⇒ −T ≤ s =⇒ s < 0 =⇒

(flow0 x s − x) · rot n < 0
proof −

from transversal-segmentE [OF assms(1 )] obtain n
where n: n = (a − b) ∨ n = (b − a)

and seg: a 6= b {a −− b} ⊆ X
∧

z. z ∈ {a−−b} =⇒ f z · rot n > 0
by metis

from open-existence-ivl-on-compact[OF ‹{a −− b} ⊆ X›]
obtain t where 0 < t and t: x ∈ {a−−b} =⇒ {− t..t} ⊆ existence-ivl0 x for x

by auto
from n obtain d B where B: 0 < d 0 < B (

∧
x y. x ∈ {a−−b} =⇒ dist x y ≤

d =⇒ B ≤ f y · rot n)
proof

assume n-def : n = a − b
with seg have pos: 0 < f a · rot (a − b)

by auto
from transversal-bound-posE [OF transversal ends-in-segment(1 ) pos, folded

n-def ]
show ?thesis using that by blast

next
assume n-def : n = b − a
with seg have pos: 0 > f a · rot (a − b)

by (auto simp: rot-diff-commute[of a b])
from transversal-bound-negE [OF transversal ends-in-segment(1 ) this, folded

n-def ]
show ?thesis using that by blast

qed
define S where S =

⋃
((λx. ball x d) ‘ {a −− b})
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have S : x ∈ S =⇒ B ≤ f x · rot n for x
by (auto simp: S-def intro!: B)

have open S by (auto simp: S-def )
have {a −− b} ⊆ S

by (auto simp: S-def ‹0 < d›)
have ∀ F (t, x) in at (0 , x). flow0 x t ∈ S if x ∈ {a −− b} for x

unfolding split-beta ′

apply (rule topological-tendstoD tendsto-intros)+
using set-mp[OF ‹{a −− b} ⊆ X› that] ‹0 < d› that ‹open S› ‹{a −− b} ⊆

S›
by force+

then obtain d ′ where d ′:∧
x. x ∈ {a−−b} =⇒ d ′ x > 0∧
x y s. x ∈ {a−−b} =⇒ (s = 0 −→ y 6= x) =⇒ dist (s, y) (0 , x) < d ′ x =⇒

flow0 y s ∈ S
by (auto simp: eventually-at) metis

define d2 where d2 x = d ′ x / 2 for x
have d2 :

∧
x. x ∈ {a−−b} =⇒ d2 x > 0 using d ′ by (auto simp: d2-def )

have C : {a−−b} ⊆
⋃
((λx. ball x (d2 x)) ‘ {a −− b})

using d2 by auto
from compactE-image[OF compact-segment - C ]
obtain C ′ where C ′ ⊆ {a−−b} and [simp]: finite C ′

and C ′-cover : {a−−b} ⊆ (
⋃

c∈C ′. ball c (d2 c)) by auto

define T where T = Min (insert t (d2 ‘ C ′))

have T > 0
using ‹0 < t› d2 ‹C ′ ⊆ -›
by (auto simp: T-def )

moreover
note n
moreover
have T-ex: {−T ..T} ⊆ existence-ivl0 x if x ∈ {a−−b} for x

by (rule order-trans[OF - t[OF that]]) (auto simp: T-def )
moreover
have B-le: B ≤ f (flow0 x ξ) · rot n

if x ∈ {a −− b}
and c ′: c ′ ∈ C ′ x ∈ ball c ′ (d2 c ′)
and ξ 6= 0 and ξ-le: |ξ| < d2 c ′

for x c ′ ξ
proof −

have c ′ ∈ {a −− b} using c ′ ‹C ′ ⊆ -› by auto
moreover have ξ = 0 −→ x 6= c ′ using ‹ξ 6= 0 › by simp
moreover have dist (ξ, x) (0 , c ′) < d ′ c ′

proof −
have dist (ξ, x) (0 , c ′) ≤ dist (ξ, x) (ξ, c ′) + dist (ξ, c ′) (0 , c ′)

by norm
also have dist (ξ, x) (ξ, c ′) < d2 c ′

using c ′
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by (simp add: dist-prod-def dist-commute)
also
have T ≤ d2 c ′ using c ′

by (auto simp: T-def )
then have dist (ξ, c ′) (0 , c ′) < d2 c ′

using ξ-le
by (simp add: dist-prod-def )

also have d2 c ′ + d2 c ′ = d ′ c ′ by (simp add: d2-def )
finally show ?thesis by simp

qed
ultimately have flow0 x ξ ∈ S

by (rule d ′)
then show ?thesis

by (rule S)
qed
let ?g = (λx t. (flow0 x t − x) · rot n)
have cont: continuous-on {−T .. T} (?g x)

if x ∈ {a−−b} for x
using T-ex that
by (force intro!: continuous-intros)

have deriv: −T ≤ s ′ =⇒ s ′ ≤ T =⇒ ((?g x) has-derivative
(λt. t ∗ (f (flow0 x s ′) · rot n))) (at s ′)

if x ∈ {a−−b} for x s ′

using T-ex that
by (force intro!: derivative-eq-intros simp: flowderiv-def blinfun.bilinear-simps)

have (flow0 x s − x) · rot n > 0 if x ∈ {a −− b} 0 < s s ≤ T for x s
proof (rule ccontr , unfold not-less)

have [simp]: x ∈ X using that ‹{a −− b} ⊆ X› by auto
assume H : (flow0 x s − x) · rot n ≤ 0
have cont: continuous-on {0 .. s} (?g x)

using cont by (rule continuous-on-subset) (use that in auto)
from mvt[OF ‹0 < s› cont deriv] that
obtain ξ where ξ: 0 < ξ ξ < s (flow0 x s − x) · rot n = s ∗ (f (flow0 x ξ) ·

rot n)
by (auto intro: continuous-on-subset)

note ‹0 < B›
also
from C ′-cover that obtain c ′ where c ′: c ′ ∈ C ′ x ∈ ball c ′ (d2 c ′) by auto
have B ≤ f (flow0 x ξ) · rot n
proof (rule B-le[OF that(1 ) c ′])

show ξ 6= 0 using ‹0 < ξ› by simp
have T ≤ d2 c ′ using c ′

by (auto simp: T-def )
then show |ξ| < d2 c ′

using ‹0 < ξ› ‹ξ < s› ‹s ≤ T ›
by (simp add: dist-prod-def )

qed
also from ξ H have . . . ≤ 0
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by (auto simp add: algebra-split-simps not-less split: if-splits)
finally show False by simp

qed
moreover
have (flow0 x s − x) · rot n < 0 if x ∈ {a −− b} −T ≤ s s < 0 for x s
proof (rule ccontr , unfold not-less)

have [simp]: x ∈ X using that ‹{a −− b} ⊆ X› by auto
assume H : (flow0 x s − x) · rot n ≥ 0
have cont: continuous-on {s .. 0} (?g x)

using cont by (rule continuous-on-subset) (use that in auto)
from mvt[OF ‹s < 0 › cont deriv] that
obtain ξ where ξ: s < ξ ξ < 0 (flow0 x s − x) · rot n = s ∗ (f (flow0 x ξ) ·

rot n)
by auto

note ‹0 < B›
also
from C ′-cover that obtain c ′ where c ′: c ′ ∈ C ′ x ∈ ball c ′ (d2 c ′) by auto
have B ≤ (f (flow0 x ξ) · rot n)
proof (rule B-le[OF that(1 ) c ′])

show ξ 6= 0 using ‹0 > ξ› by simp
have T ≤ d2 c ′ using c ′

by (auto simp: T-def )
then show |ξ| < d2 c ′

using ‹0 > ξ› ‹ξ > s› ‹s ≥ − T ›
by (simp add: dist-prod-def )

qed
also from ξ H have . . . ≤ 0

by (simp add: algebra-split-simps)
finally show False by simp

qed
ultimately show ?thesis ..

qed

lemma inner-rot-pos-move-base: (x − a) · rot (a − b) > 0
if (x − y) · rot (a − b) > 0 y ∈ {a −− b}
by (smt in-segment-inner-rot inner-diff-left inner-minus-right minus-diff-eq rot-rot

that)

lemma inner-rot-neg-move-base: (x − a) · rot (a − b) < 0
if (x − y) · rot (a − b) < 0 y ∈ {a −− b}
by (smt in-segment-inner-rot inner-diff-left inner-minus-right minus-diff-eq rot-rot

that)

lemma inner-pos-move-base: (x − a) · n > 0
if (a − b) · n = 0 (x − y) · n > 0 y ∈ {a −− b}

proof −
from that(3 ) obtain u where y-def : y = (1 − u) ∗R a + u ∗R b and u: 0 ≤

u u ≤ 1
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by (auto simp: in-segment)
have (x − a) · n = (x − y) · n − u ∗ ((a − b) · n)

by (simp add: algebra-simps y-def )
also have . . . = (x − y) · n

by (simp add: that)
also note ‹. . . > 0 ›
finally show ?thesis .

qed

lemma inner-neg-move-base: (x − a) · n < 0
if (a − b) · n = 0 (x − y) · n < 0 y ∈ {a −− b}

proof −
from that(3 ) obtain u where y-def : y = (1 − u) ∗R a + u ∗R b and u: 0 ≤

u u ≤ 1
by (auto simp: in-segment)

have (x − a) · n = (x − y) · n − u ∗ ((a − b) · n)
by (simp add: algebra-simps y-def )

also have . . . = (x − y) · n
by (simp add: that)

also note ‹. . . < 0 ›
finally show ?thesis .

qed

lemma rot-same-dir :
assumes x1 ∈ {a<−−<b}
assumes x2 ∈ {x1<−−<b}
shows (y · rot (a−b) > 0 ) = (y · rot(x1−x2 ) > 0 ) (y · rot (a−b) < 0 ) = (y ·

rot(x1−x2 ) < 0 )
using oriented-subsegment-scale[OF assms]
apply (smt inner-scaleR-right nrm-reverse rot-scaleR zero-less-mult-iff )

by (smt ‹
∧

thesis. (
∧

e. [[0 < e; b − a = e ∗R (x2 − x1 )]] =⇒ thesis) =⇒ thesis›
inner-minus-right inner-scaleR-right rot-diff-commute rot-scaleR zero-less-mult-iff )

6.5 Monotone Step Lemma
lemma flow0-transversal-segment-monotone-step:

assumes transversal-segment a b
assumes t1 ≤ t2 {t1 ..t2} ⊆ existence-ivl0 x
assumes x1 : flow0 x t1 ∈ {a<−−<b}
assumes x2 : flow0 x t2 ∈ {flow0 x t1<−−<b}
assumes

∧
t. t ∈ {t1<..<t2} =⇒ flow0 x t /∈ {a<−−<b}

assumes t > t2 t ∈ existence-ivl0 x
shows flow0 x t /∈ {a<−−<flow0 x t2}

proof −
note exist = ‹{t1 ..t2} ⊆ existence-ivl0 x›
note t1t2 = ‹

∧
t. t ∈ {t1<..<t2} =⇒ flow0 x t /∈ {a<−−<b}›

have x1neqx2 : flow0 x t1 6= flow0 x t2
using open-segment-def x2 by force

100



then have t1neqt2 : t1 6= t2 by auto

have [simp]: a 6= b and ‹{a −− b} ⊆ X› using ‹transversal-segment a b›
by (auto simp: transversal-segment-def )

from x1 obtain i1 where i1 : flow0 x t1 = line a b i1 0 < i1 i1 < 1
by (auto simp: in-open-segment-iff-line)

from x2 obtain i2 where i2 : flow0 x t2 = line a b i2 0 < i1 i1 < i2
by (auto simp: i1 line-open-segment-iff )

have {a <−−< flow0 x t1} ⊆ {a<−−<b}
by (simp add: open-closed-segment subset-open-segment x1 )

have t12sub: {flow0 x t1−−flow0 x t2} ⊆ {a<−−<b}
by (metis ends-in-segment(2 ) open-closed-segment subset-co-segment subset-eq

subset-open-segment x1 x2 )
have subr : {flow0 x t1<−−<flow0 x t2} ⊆ {flow0 x t1 <−−<b}

by (simp add: open-closed-segment subset-open-segment x2 )
have flow0 x t1 ∈ {a <−−<flow0 x t2} using x1 x2

by (rule open-segment-subsegment)
then have subl: {flow0 x t1<−−<flow0 x t2} ⊆ {a <−−< flow0 x t2} using

x1 x2
by (simp add: open-closed-segment subset-open-segment x2 )

then have subl2 : {flow0 x t1−−<flow0 x t2} ⊆ {a <−−< flow0 x t2} using
x1 x2

by (smt DiffE DiffI ‹flow0 x t1 ∈ {a<−−<flow0 x t2}› half-open-segment-def
insert-iff open-segment-def subset-eq)

have sub1b: {flow0 x t1−−b} ⊆ {a−−b}
by (simp add: open-closed-segment subset-closed-segment x1 )

have suba2 : {a−−flow0 x t2} ⊆ {a −− b}
using open-closed-segment subset-closed-segment t12sub by blast

then have suba2o: {a<−−<flow0 x t2} ⊆ {a −− b}
using open-closed-segment subset-closed-segment t12sub by blast

have x2-notmem: flow0 x t2 /∈ {a−−flow0 x t1}
using i1 i2
by (auto simp: closed-segment-line-iff )

have suba12 : {a−−flow0 x t1} ⊆ {a−−flow0 x t2}
by (simp add: ‹flow0 x t1 ∈ {a<−−<flow0 x t2}› open-closed-segment sub-

set-closed-segment)
then have suba12-open: {a<−−<flow0 x t1} ⊆ {a<−−<flow0 x t2}

using x2-notmem
by (auto simp: open-segment-def )

have flow0 x t2 ∈ {a−−b}
using suba2 by auto

have intereq:
∧

t. t1 ≤ t =⇒ t ≤ t2 =⇒ flow0 x t ∈ {a<−−<b} =⇒ t = t1 ∨
t = t2

proof (rule ccontr)
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fix t
assume t: t1 ≤ t t ≤ t2 flow0 x t ∈ {a<−−<b} ¬(t= t1 ∨ t = t2 )
then have t ∈ {t1<..<t2} by auto
then have flow0 x t /∈ {a<−−<b} using t1t2 by blast
thus False using t by auto

qed
then have intereqt12 :

∧
t. t1 ≤ t =⇒ t ≤ t2 =⇒ flow0 x t ∈ {flow0 x t1−−flow0

x t2} =⇒ t = t1 ∨ t = t2
using t12sub by blast

define J1 where J1 = flow-to-path x t1 t2
define J2 where J2 = linepath (flow0 x t2 ) (flow0 x t1 )
define J where J = J1 +++ J2

have pathfinish J = pathstart J unfolding J-def J1-def J2-def
by (auto simp add: pathstart-compose pathfinish-compose)

have piJ : path-image J = path-image J1 ∪ path-image J2
unfolding J-def J1-def J2-def
apply (rule path-image-join)
by auto

have flow0 x t1 ∈ flow0 x ‘ {t1 ..t2} ∧ flow0 x t2 ∈ flow0 x ‘ {t1 ..t2}
using atLeastAtMost-iff ‹t1 ≤ t2 › by blast

then have piD: path-image J = path-image J1 ∪ {flow0 x t1 <−−<flow0 x t2}
unfolding piJ J1-def J2-def path-image-flow-to-path[OF ‹t1 ≤ t2 ›]

path-image-linepath open-segment-def
by (smt Diff-idemp Diff-insert2 Un-Diff-cancel closed-segment-commute mk-disjoint-insert)

have ∀ s∈{t1<..<t2}. flow0 x s 6= flow0 x t1
using x1 t1t2 by fastforce

from flow-to-path-arc[OF ‹t1 ≤ t2 › exist this x1neqx2 ]
have arc J1 using J1-def assms flow-to-path-arc by auto
then have simple-path J unfolding J-def
using ‹arc J1 › J1-def J2-def assms x1neqx2 t1neqt2 apply (auto intro!:simple-path-join-loop)
using intereqt12 closed-segment-commute by blast

from Jordan-inside-outside-R2 [OF this ‹pathfinish J = pathstart J ›]
obtain inner outer where inner-def : inner = inside (path-image J )

and outer-def : outer = outside (path-image J )
and io:
inner 6= {} open inner connected inner
outer 6= {} open outer connected outer
bounded inner ¬ bounded outer inner ∩ outer = {}
inner ∪ outer = − path-image J
frontier inner = path-image J
frontier outer = path-image J by metis

from io have io2 : outer ∩ inner = {} outer ∪ inner = − path-image J by auto

have swap-side:
∧

y t. y ∈ side2 =⇒
0 ≤ t =⇒ t ∈ existence-ivl0 y =⇒
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flow0 y t ∈ closure side1 =⇒
∃T . 0 < T ∧ T ≤ t ∧ (∀ s ∈{0 ..<T}. flow0 y s ∈ side2 ) ∧

flow0 y T ∈ {flow0 x t1−−<flow0 x t2}
if side1 ∩ side2 = {}

open side2
frontier side1 = path-image J
frontier side2 = path-image J
side1 ∪ side2 = − path-image J

for side1 side2
proof −

fix y t
assume yt: y ∈ side2 0 ≤ t t ∈ existence-ivl0 y

flow0 y t ∈ closure side1
define fp where fp = flow-to-path y 0 t
have ex:{0 ..t} ⊆ existence-ivl0 y

using ivl-subset-existence-ivl yt(3 ) by blast
then have y0 :flow0 y 0 = y

using mem-existence-ivl-iv-defined(2 ) yt(3 ) by auto
then have tpos: t > 0 using yt(2 ) ‹side1 ∩ side2 = {}›

using yt(1 ) yt(4 )
by (metis closure-iff-nhds-not-empty less-eq-real-def order-refl that(2 ))

from flow-to-path-path[OF yt(2 ) ex]
have a1 : path fp unfolding fp-def .
have y ∈ closure side2 using yt(1 )

by (simp add: assms closure-def )
then have a2 : pathstart fp ∈ closure side2 unfolding fp-def using y0 by auto
have a3 :pathfinish fp /∈ side2 using yt(4 ) ‹side1 ∩ side2 = {}›

unfolding fp-def apply auto
using closure-iff-nhds-not-empty that(2 ) by blast

from subpath-to-frontier-strong[OF a1 a3 ]
obtain u where u:0 ≤ u u ≤ 1

fp u /∈ interior side2
u = 0 ∨
(∀ x. 0 ≤ x ∧ x < 1 −→

subpath 0 u fp x ∈ interior side2 ) ∧ fp u ∈ closure side2 by blast
have p1 :path-image (subpath 0 u fp) = flow0 y ‘ {0 .. u∗t}

unfolding fp-def subpath0-flow-to-path using path-image-flow-to-path
by (simp add: u(1 ) yt(2 ))

have p2 :fp u = flow0 y (u∗t) unfolding fp-def flow-to-path-unfold by simp
have inout:interior side2 = side2 using ‹open side2 ›

by (simp add: interior-eq)
then have iemp: side2 ∩ path-image J = {}

using ‹frontier side2 = path-image J ›
by (metis frontier-disjoint-eq inf-sup-aci(1 ) interior-eq)

have u 6= 0 using inout u(3 ) y0 p2 yt(1 ) by force
then have c1 :u ∗ t > 0 using tpos u y0 ‹side1 ∩ side2 = {}›

using frontier-disjoint-eq io(5 ) yt(1 ) zero-less-mult-iff by fastforce
have uim:fp u ∈ path-image J using u ‹u 6= 0 ›

using ‹frontier side2 = path-image J ›
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by (metis ComplI IntI closure-subset frontier-closures inout subsetD)
have c2 :u ∗ t ≤ t using u(1−2 ) tpos by auto
have(flow-to-path y 0 (u ∗ t) ‘ {0 ..<1} ⊆ side2 )

using ‹u 6= 0 › u inout unfolding fp-def subpath0-flow-to-path by auto
then have c3 :∀ s ∈{0 ..<u∗t}. flow0 y s ∈ side2 by auto
have c4 : flow0 y (u∗t) ∈ path-image J

using uim path-image-join-subset
by (simp add: p2 )

have flow0 y (u∗t) /∈ path-image J1 ∨ flow0 y (u∗t) = flow0 x t1
proof clarsimp

assume flow0 y (u∗t) ∈ path-image J1
then obtain s where s: t1 ≤ s s ≤ t2 flow0 x s = flow0 y (u∗t)

using J1-def ‹t1 ≤ t2 › by auto
have s = t1
proof (rule ccontr)

assume s 6= t1
then have st1 :s > t1 using s(1 ) by linarith
define sc where sc = min (s−t1 ) (u∗t)
have scd: s−sc ∈ {t1 ..t2} unfolding sc-def

using c1 s(1 ) s(2 ) by auto
then have ∗:flow0 x (s−sc) ∈ path-image J1 unfolding J1-def path-image-flow-to-path[OF

‹t1 ≤ t2 ›]
by blast

have flow0 x (s−sc) = flow0 (flow0 x s) (−sc)
by (smt exist atLeastAtMost-iff existence-ivl-trans ′ flow-trans s(1 ) s(2 ) scd

subsetD)
then have ∗∗:flow0 (flow0 y (u∗t)) (−sc) ∈ path-image J1

using s(3 ) ∗ by auto
have b:u∗t − sc ∈ {0 ..<u∗t} unfolding sc-def by (simp add: st1 c1 s(1 ))
then have u∗t − sc ∈ existence-ivl0 y

using c2 ex by auto
then have flow0 y (u∗t − sc) ∈ path-image J1 using ∗∗

by (smt atLeastAtMost-iff diff-existence-ivl-trans ex flow-trans mult-left-le-one-le
mult-nonneg-nonneg subset-eq u(1 ) u(2 ) yt(2 ))

thus False using b c3 iemp piJ by blast
qed
thus flow0 y (u ∗ t) = flow0 x t1 using s by simp

qed
thus ∃T>0 . T ≤ t ∧ (∀ s∈{0 ..<T}. flow0 y s ∈ side2 ) ∧

flow0 y T ∈ {flow0 x t1−−<flow0 x t2}
using c1 c2 c3 c4 unfolding piD
by (metis DiffE UnE ends-in-segment(1 ) half-open-segment-closed-segmentI

insertCI open-segment-def x1neqx2 )
qed
have outside-in:

∧
y t. y ∈ outer =⇒

0 ≤ t =⇒ t ∈ existence-ivl0 y =⇒
flow0 y t ∈ closure inner =⇒
∃T . 0 < T ∧ T ≤ t ∧ (∀ s ∈{0 ..<T}. flow0 y s ∈ outer) ∧

flow0 y T ∈ {flow0 x t1−−<flow0 x t2}
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by (rule swap-side; (rule io | assumption))
have inside-out:

∧
y t. y ∈ inner =⇒

0 ≤ t =⇒ t ∈ existence-ivl0 y =⇒
flow0 y t ∈ closure outer =⇒
∃T . 0 < T ∧ T ≤ t ∧ (∀ s ∈{0 ..<T}. flow0 y s ∈ inner) ∧

flow0 y T ∈ {flow0 x t1−−<flow0 x t2}
by (rule swap-side; (rule io2 io | assumption))

from leaves-transversal-segmentE [OF assms(1 )]
obtain d n where d: d > (0 ::real)

and n: n = a − b ∨ n = b − a
and d-ex:

∧
x. x ∈ {a −− b} =⇒ {−d..d} ⊆ existence-ivl0 x

and d-above:
∧

x s. x ∈ {a −− b} =⇒ 0 < s =⇒ s ≤ d =⇒ (flow0 x s − x) ·
rot n > 0

and d-below:
∧

x s. x ∈ {a −− b} =⇒ −d ≤ s =⇒ s < 0 =⇒ (flow0 x s − x)
· rot n < 0

by blast

have ortho: (a − b) · rot n = 0
using n by (auto simp: algebra-simps)

define r1 where r1 = (λ(x, y). flow0 x y)‘({flow0 x t1<−−<b} × {0<..<d})
have r1a1 : path-connected {flow0 x t1 <−−<b} by simp
have r1a2 : path-connected {0<..<d} by simp
have {flow0 x t1<−−<b} ⊆ {a−−b}

by (simp add: open-closed-segment subset-oc-segment x1 )
then have r1a3 : y ∈ {flow0 x t1<−−<b} =⇒ {0<..<d} ⊆ existence-ivl0 y for

y
using d-ex[of y]
by force

from flow0-path-connected[OF r1a1 r1a2 r1a3 ]
have pcr1 :path-connected r1 unfolding r1-def by auto
have pir1J1 : r1 ∩ path-image J1 = {}

unfolding J1-def path-image-flow-to-path[OF ‹t1 ≤ t2 ›]
proof (rule ccontr)

assume r1 ∩ flow0 x ‘ {t1 ..t2} 6= {}
then obtain xx tt ss where

eq: flow0 xx tt = flow0 x ss
and xx: xx ∈ {flow0 x t1<−−<b}
and ss: t1 ≤ ss ss ≤ t2
and tt: 0 < tt tt < d
unfolding r1-def
by force

have xx ∈ {a −− b}
using sub1b
apply (rule set-mp)
using xx by (simp add: open-closed-segment)

then have [simp]: xx ∈ X using ‹transversal-segment a b› by (auto simp:
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transversal-segment-def )
from ss have ss-ex: ss ∈ existence-ivl0 x using exist

by auto
from d-ex[OF ‹xx ∈ {a −− b}›] tt
have tt-ex: tt ∈ existence-ivl0 xx by auto
then have neg-tt-ex: − tt ∈ existence-ivl0 (flow0 xx tt)

by (rule existence-ivl-reverse[simplified])
from eq have flow0 (flow0 xx tt) (−tt) = flow0 (flow0 x ss) (−tt)

by simp
then have xx = flow0 x (ss − tt)

apply (subst (asm) flow-trans[symmetric])
apply (rule tt-ex)

apply (rule neg-tt-ex)
apply (subst (asm) flow-trans[symmetric])

apply (rule ss-ex)
apply (subst eq[symmetric])
apply (rule neg-tt-ex)

by simp
moreover
define e where e = ss − t1
consider e > tt | e ≤ tt by arith
then show False
proof cases

case 1
have flow0 (flow0 x ss) (−tt) /∈ {a<−−<b}

apply (subst flow-trans[symmetric])
apply fact

subgoal using neg-tt-ex eq by simp
apply (rule t1t2 )
using 1 ss tt
unfolding e-def
by auto

moreover have flow0 (flow0 x ss) (−tt) ∈ {a<−−<b}
unfolding eq[symmetric] using tt-ex xx
apply (subst flow-trans[symmetric])

apply (auto simp add: neg-tt-ex)
by (metis (no-types, opaque-lifting) sub1b subset-eq subset-open-segment)

ultimately show ?thesis by simp
next

case 2
have les: 0 ≤ tt − e tt − e ≤ d

using tt ss 2 e-def
by auto

have xxtte: flow0 xx (tt − e) = flow0 x t1
apply (simp add: e-def )
by (smt ‹0 ≤ tt − e› ‹{− d..d} ⊆ existence-ivl0 xx› atLeastAtMost-iff e-def

eq
local.existence-ivl-reverse local.existence-ivl-trans local.flow-trans ss(1 )

ss-ex subset-iff tt(2 ))
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show False
proof (cases tt = e)

case True
with xxtte have xx = flow0 x t1

by simp
with xx show ?thesis

apply auto
by (auto simp: open-segment-def )

next
case False
with les have 0 < tt − e by (simp)
from d-above[OF ‹xx ∈ {a −− b}› this ‹tt − e ≤ d›]
have flow0 xx (tt − e) /∈ {a −− b}

apply (simp add: in-closed-segment-iff-rot[OF ‹a 6= b›]
not-le )

by (smt ‹xx ∈ {a−−b}› inner-minus-right inner-rot-neg-move-base in-
ner-rot-pos-move-base n rot-diff-commute)

with xxtte show ?thesis
using ‹flow0 x t1 ∈ {a<−−<flow0 x t2}› suba2o by auto

qed
qed

qed

moreover
have pir1J2 : r1 ∩ path-image J2 = {}
proof −

have r1 ⊆ {x. (x − a) · rot n > 0}
unfolding r1-def

proof safe
fix aa ba
assume aa ∈ {flow0 x t1<−−<b} ba ∈ {0<..<d}
with sub1b show 0 < (flow0 aa ba − a) · rot n

using segment-open-subset-closed[of flow0 x t1 b]
by (intro inner-pos-move-base[OF ortho d-above]) auto

qed
also have . . . ∩ {a −− b} = {}

using in-segment-inner-rot in-segment-inner-rot2 n by auto
finally show ?thesis

unfolding J2-def path-image-linepath
using t12sub open-closed-segment
by (force simp: closed-segment-commute)

qed
ultimately have pir1 :r1 ∩ (path-image J ) = {} unfolding J-def

by (metis disjoint-iff-not-equal not-in-path-image-join)

define r2 where r2 =(λ(x, y). flow0 x y)‘({a <−−< flow0 x t2} × {−d<..<0})
have r2a1 :path-connected {a <−−< flow0 x t2} by simp
have r2a2 :path-connected {−d<..<0} by simp
have {a <−−< flow0 x t2} ⊆ {a −− b}
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by (meson ends-in-segment(1 ) open-closed-segment subset-co-segment subset-oc-segment
t12sub)

then have r2a3 : y ∈ {a <−−< flow0 x t2} =⇒ {−d<..<0} ⊆ existence-ivl0 y
for y

using d-ex[of y]
by force

from flow0-path-connected[OF r2a1 r2a2 r2a3 ]
have pcr2 :path-connected r2 unfolding r2-def by auto
have pir2J2 : r2 ∩ path-image J1 = {}

unfolding J1-def path-image-flow-to-path[OF ‹t1 ≤ t2 ›]
proof (rule ccontr)

assume r2 ∩ flow0 x ‘ {t1 ..t2} 6= {}
then obtain xx tt ss where

eq: flow0 xx tt = flow0 x ss
and xx: xx ∈ {a<−−<flow0 x t2}
and ss: t1 ≤ ss ss ≤ t2
and tt: −d < tt tt < 0
unfolding r2-def
by force

have xx ∈ {a −− b}
using suba2
apply (rule set-mp)
using xx by (simp add: open-closed-segment)

then have [simp]: xx ∈ X using ‹transversal-segment a b› by (auto simp:
transversal-segment-def )

from ss have ss-ex: ss ∈ existence-ivl0 x using exist
by auto

from d-ex[OF ‹xx ∈ {a −− b}›] tt
have tt-ex: tt ∈ existence-ivl0 xx by auto
then have neg-tt-ex: − tt ∈ existence-ivl0 (flow0 xx tt)

by (rule existence-ivl-reverse[simplified])
from eq have flow0 (flow0 xx tt) (−tt) = flow0 (flow0 x ss) (−tt)

by simp
then have xx = flow0 x (ss − tt)

apply (subst (asm) flow-trans[symmetric])
apply (rule tt-ex)

apply (rule neg-tt-ex)
apply (subst (asm) flow-trans[symmetric])

apply (rule ss-ex)
apply (subst eq[symmetric])
apply (rule neg-tt-ex)

by simp
moreover
define e where e = t2 − ss
consider e > − tt | e ≤ −tt by arith
then show False
proof cases

case 1
have flow0 (flow0 x ss) (−tt) /∈ {a<−−<b}
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apply (subst flow-trans[symmetric])
apply fact

subgoal using neg-tt-ex eq by simp
apply (rule t1t2 )
using 1 ss tt
unfolding e-def
by auto

moreover have flow0 (flow0 x ss) (−tt) ∈ {a<−−<b}
unfolding eq[symmetric] using tt-ex xx
apply (subst flow-trans[symmetric])

apply (auto simp add: neg-tt-ex)
by (metis (no-types, opaque-lifting) suba2 subset-eq subset-open-segment)

ultimately show ?thesis by simp
next

case 2
have les: tt + e ≤ 0 −d ≤ tt + e

using tt ss 2 e-def
by auto

have xxtte: flow0 xx (tt + e) = flow0 x t2
apply (simp add: e-def )
by (smt atLeastAtMost-iff calculation eq exist local.existence-ivl-trans ′ lo-

cal.flow-trans neg-tt-ex ss-ex subset-iff ‹t1 ≤ t2 ›)
show False
proof (cases tt=−e)

case True
with xxtte have xx = flow0 x t2

by simp
with xx show ?thesis

apply auto
by (auto simp: open-segment-def )

next
case False
with les have tt+e < 0 by simp
from d-below[OF ‹xx ∈ {a −− b}› ‹−d ≤ tt + e› this]
have flow0 xx (tt + e) /∈ {a −− b}

apply (simp add: in-closed-segment-iff-rot[OF ‹a 6= b›]
not-le )

by (smt ‹xx ∈ {a−−b}› inner-minus-right inner-rot-neg-move-base in-
ner-rot-pos-move-base n rot-diff-commute)

with xxtte show ?thesis
using ‹flow0 x t2 ∈ {a−−b}› by simp

qed
qed

qed
moreover
have pir2J2 : r2 ∩ path-image J2 = {}
proof −

have r2 ⊆ {x. (x − a) · rot n < 0}
unfolding r2-def
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proof safe
fix aa ba
assume aa ∈ {a<−−<flow0 x t2} ba ∈ {−d<..<0}
with suba2 show 0 > (flow0 aa ba − a) · rot n

using segment-open-subset-closed[of a flow0 x t2 ]
by (intro inner-neg-move-base[OF ortho d-below]) auto

qed
also have . . . ∩ {a −− b} = {}

using in-segment-inner-rot in-segment-inner-rot2 n by auto
finally show ?thesis

unfolding J2-def path-image-linepath
using t12sub open-closed-segment
by (force simp: closed-segment-commute)

qed
ultimately have pir2 :r2 ∩ (path-image J ) = {}

unfolding J-def
by (metis disjoint-iff-not-equal not-in-path-image-join)

define rp where rp = midpoint (flow0 x t1 ) (flow0 x t2 )
have rpi: rp ∈ {flow0 x t1<−−<flow0 x t2} unfolding rp-def

by (simp add: x1neqx2 )
have rp ∈ {a −− b}

using rpi suba2o subl by blast
then have [simp]: rp ∈ X

using ‹{a−−b} ⊆ X› by blast

have ∗: pathfinish J1 = flow0 x t2
pathstart J1 = flow0 x t1
rp ∈ {flow0 x t2<−−<flow0 x t1}
using rpi
by (auto simp: open-segment-commute J1-def )

have {y. 0 < (y − flow0 x t2 ) · rot (flow0 x t2 − flow0 x t1 )} = {y. 0 < (y −
rp) · rot (flow0 x t2 − flow0 x t1 )}

by (smt Collect-cong in-open-segment-rotD inner-diff-left nrm-dot rpi)
also have ... = {y. 0 > (y − rp) · rot (flow0 x t1 − flow0 x t2 )}

by (smt Collect-cong inner-minus-left nrm-reverse)
also have ... = {y. 0 > (y − rp) · rot (a − b) }

by (metis rot-same-dir(2 ) x1 x2 )
finally have side1 : {y. 0 < (y − flow0 x t2 ) · rot (flow0 x t2 − flow0 x t1 )} =
{y. 0 > (y − rp) · rot (a − b) }

(is - = ?lower1 ) .
have {y. (y − flow0 x t2 ) · rot (flow0 x t2 − flow0 x t1 ) < 0} = {y. (y − rp) ·

rot (flow0 x t2 − flow0 x t1 ) < 0}
by (smt Collect-cong in-open-segment-rotD inner-diff-left nrm-dot rpi)

also have ... = {y. (y − rp) · rot (flow0 x t1 − flow0 x t2 ) > 0}
by (smt Collect-cong inner-minus-left nrm-reverse)

also have ... = {y. 0 < (y − rp) · rot (a − b) }
by (metis rot-same-dir(1 ) x1 x2 )
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finally have side2 : {y. (y − flow0 x t2 ) · rot (flow0 x t2 − flow0 x t1 ) < 0} =
{y. 0 < (y − rp) · rot (a − b) }

(is - = ?upper1 ) .
from linepath-ball-inside-outside[OF ‹simple-path J ›[unfolded J-def J2-def ] ∗,

folded J2-def J-def , unfolded side1 side2 ]
obtain e where e0 : 0 < e

ball rp e ∩ path-image J1 = {}
ball rp e ∩ ?lower1 ⊆ inner ∧

ball rp e ∩ ?upper1 ⊆ outer ∨
ball rp e ∩ ?upper1 ⊆ inner ∧
ball rp e ∩ ?lower1 ⊆ outer

by (auto simp: inner-def outer-def )

let ?lower = {y. 0 > (y − rp) · rot n }
let ?upper = {y. 0 < (y − rp) · rot n }
have ?lower1 = {y. 0 < (y − rp) · rot n } ∧ ?upper1 = {y. 0 > (y − rp) · rot

n } ∨
?lower1 = {y. 0 > (y − rp) · rot n } ∧ ?upper1 = {y. 0 < (y − rp) · rot n

}
using n rot-diff-commute[of a b]
by auto

from this e0 have e: 0 < e
ball rp e ∩ path-image J1 = {}
ball rp e ∩ ?lower ⊆ inner ∧

ball rp e ∩ ?upper ⊆ outer ∨
ball rp e ∩ ?upper ⊆ inner ∧
ball rp e ∩ ?lower ⊆ outer

by auto

have ∀ F t in at-right 0 . t < d
by (auto intro!: order-tendstoD ‹0 < d›)

then have evr : ∀ F t in at-right 0 . 0 < (flow0 rp t − rp) · rot n
unfolding eventually-at-filter
by eventually-elim (auto intro!: ‹rp ∈ {a−−b}› d-above)

have ∀ F t in at-left 0 . t > −d
by (auto intro!: order-tendstoD ‹0 < d›)

then have evl: ∀ F t in at-left 0 . 0 > (flow0 rp t − rp) · rot n
unfolding eventually-at-filter
by eventually-elim (auto intro!: ‹rp ∈ {a−−b}› d-below)

have ∀ F t in at 0 . flow0 rp t ∈ ball rp e
unfolding mem-ball
apply (subst dist-commute)
apply (rule tendstoD)
by (auto intro!: tendsto-eq-intros ‹0 < e›)

then have evl2 : (∀ F t in at-left 0 . flow0 rp t ∈ ball rp e)
and evr2 : (∀ F t in at-right 0 . flow0 rp t ∈ ball rp e)
unfolding eventually-at-split by auto

have evl3 : (∀ F t in at-left 0 . t > −d)
and evr3 : (∀ F t in at-right 0 . t < d)
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by (auto intro!: order-tendstoD ‹0 < d›)
have evl4 : (∀ F t in at-left 0 . t < 0 )

and evr4 : (∀ F t in at-right 0 . t > 0 )
by (auto simp: eventually-at-filter)

from evl evl2 evl3 evl4
have ∀ F t in at-left 0 . (flow0 rp t − rp) · rot n < 0 ∧ flow0 rp t ∈ ball rp e ∧

t > −d ∧ t < 0
by eventually-elim auto

from eventually-happens[OF this]
obtain dl where dl: (flow0 rp dl − rp) · rot n < 0 flow0 rp dl ∈ ball rp e − d

< dl dl < 0
by auto

from evr evr2 evr3 evr4
have ∀ F t in at-right 0 . (flow0 rp t − rp) · rot n > 0 ∧ flow0 rp t ∈ ball rp e
∧ t < d ∧ t > 0

by eventually-elim auto
from eventually-happens[OF this]
obtain dr where dr : (flow0 rp dr − rp) · rot n > 0 flow0 rp dr ∈ ball rp e d >

dr dr > 0
by auto

have rp ∈ {flow0 x t1<−−<b} using rpi subr by auto
then have rpr1 :flow0 rp (dr) ∈ r1 unfolding r1-def using ‹d > dr› ‹dr > 0 ›

by auto
have rp ∈ {a<−−<flow0 x t2} using rpi subl by auto
then have rpr2 :flow0 rp (dl) ∈ r2 unfolding r2-def using ‹−d < dl› ‹dl < 0 ›

by auto

from e(3 ) dr dl
have flow0 rp (dr) ∈ outer ∧ flow0 rp (dl) ∈ inner ∨ flow0 rp (dr) ∈ inner ∧

flow0 rp (dl) ∈ outer
by auto

moreover {
assume flow0 rp dr ∈ outer flow0 rp dl ∈ inner
then have

r1o: r1 ∩ outer 6= {} and
r2i: r2 ∩ inner 6= {} using rpr1 rpr2 by auto

from path-connected-not-frontier-subset[OF pcr1 r1o]
have r1 ⊆ outer using pir1 by (simp add: io(12 ))
from path-connected-not-frontier-subset[OF pcr2 r2i]
have r2 ⊆ inner using pir2 by (simp add: io(11 ))
have (λ(x, y). flow0 x y)‘({flow0 x t2} × {0<..<d}) ⊆ r1 unfolding r1-def

by (auto intro!:image-mono simp add: x2 )
then have ∗:

∧
t. 0 < t =⇒ t < d =⇒ flow0 (flow0 x t2 ) t ∈ outer

by (smt ‹r1 ⊆ outer› greaterThanLessThan-iff mem-Sigma-iff pair-imageI
r1-def subset-eq x2 )

then have t2o:
∧

t. 0 < t =⇒ t < d =⇒ flow0 x (t2 + t) ∈ outer
using r1a3 [OF x2 ] exist flow-trans
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by (metis (no-types, opaque-lifting) closed-segment-commute ends-in-segment(1 )
local.existence-ivl-trans ′ local.flow-undefined0 real-Icc-closed-segment subset-eq ‹t1
≤ t2 ›)

have inner : {a <−−< flow0 x t2} ⊆ closure inner
proof (rule subsetI )

fix y
assume y: y ∈ {a <−−< flow0 x t2}
have [simp]: y ∈ X

using y suba12-open suba2o ‹{a −− b} ⊆ X›
by auto

have (∀n. flow0 y (− d / real (Suc (Suc n))) ∈ inner)
using y
using suba12-open ‹0 < d› suba2o ‹{a −− b} ⊆ X›
by (auto intro!: set-mp[OF ‹r2 ⊆ inner›] image-eqI [where x=(y, −d/Suc

(Suc n)) for n]
simp: r2-def divide-simps)

moreover
have d-over-0 : (λs. − d / real (Suc (Suc s))) −−−−→ 0

by (rule real-tendsto-divide-at-top)
(auto intro!: filterlim-tendsto-add-at-top filterlim-real-sequentially)

have (λn. flow0 y (− d / real (Suc (Suc n)))) −−−−→ y
apply (rule tendsto-eq-intros)

apply (rule tendsto-intros)
apply (rule d-over-0 )

by auto
ultimately show y ∈ closure inner

unfolding closure-sequential
by (intro exI [where x=λn. flow0 y (−d/Suc (Suc n))]) (rule conjI )

qed
then have {a <−−< flow0 x t1} ⊆ closure inner

using suba12-open by blast
then have {flow0 x t1 −− flow0 x t2} ⊆ closure inner
by (metis (no-types, lifting) closure-closure closure-mono closure-open-segment

dual-order .trans inner subl x1neqx2 )
have outer :

∧
t. t > t2 =⇒ t ∈ existence-ivl0 x =⇒ flow0 x t ∈ outer

proof (rule ccontr)
fix t
assume t: t > t2 t ∈ existence-ivl0 x flow0 x t /∈ outer
have 0 ≤ t− (t2+d) using t2o t by smt
then have a2 :0 ≤ t − (t2+dr) using d ‹0 < dr› ‹dr < d› by linarith
have t2d2-ex: t2 + dr ∈ existence-ivl0 x

using ‹t1 ≤ t2 › exist d-ex[of flow0 x t2 ] ‹flow0 x t2 ∈ {a−−b}› ‹0 < d› ‹0
< dr› ‹dr < d›

by (intro existence-ivl-trans) auto
then have a3 : t − (t2 + dr) ∈ existence-ivl0 (flow0 x (t2 + dr))

using t(2 )
by (intro diff-existence-ivl-trans) auto
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then have flow0 (flow0 x (t2 + dr)) (t − (t2 + dr)) = flow0 x t
by (subst flow-trans[symmetric]) (auto simp: t2d2-ex)

moreover have flow0 x t ∈ closure inner using t(3 ) io
by (metis ComplI Un-iff closure-Un-frontier)

ultimately have a4 : flow0 (flow0 x (t2 + dr)) (t − (t2 + dr)) ∈ closure
inner by auto

have a1 : flow0 x (t2+dr) ∈ outer
by (simp add: d t2o ‹0 < dr› ‹dr < d›)

from outside-in[OF a1 a2 a3 a4 ]
obtain T where T : T > 0 T ≤ t − (t2 + dr)
(∀ s∈{0 ..<T}. flow0 (flow0 x (t2 + dr)) s ∈ outer)
flow0 (flow0 x (t2 + dr)) T ∈ {flow0 x t1 −−< flow0 x t2} by blast

define y where y = flow0 (flow0 x (t2 + dr)) T
have y ∈ {a <−−< flow0 x t2} unfolding y-def using T (4 )

using subl2 by blast
then have (λ(x, y). flow0 x y)‘({y} × {−d<..<0}) ⊆ r2 unfolding r2-def

by (auto intro!:image-mono)
then have ∗:

∧
t. −d < t =⇒ t < 0 =⇒ flow0 y t ∈ r2

by (simp add: pair-imageI subsetD)
have max (−T/2 ) dl < 0 using d T ‹0 > dl› ‹dl > −d› by auto
moreover have −d < max (−T/2 ) dl using d T ‹0 > dl› ‹dl > −d› by

auto
ultimately have inner : flow0 y (max (−T/2 ) dl) ∈ inner using ∗ ‹r2 ⊆

inner› by blast
have 0≤(T+(max (−T/2 ) dl)) using T (1 ) by linarith
moreover have (T+(max (−T/2 ) dl)) < T using T (1 ) d ‹0 > dl› ‹dl >

−d› by linarith
ultimately have outer : flow0 (flow0 x (t2 + dr)) (T+(max (−T/2 ) dl))

∈ outer
using T by auto

have T-ex: T ∈ existence-ivl0 (flow0 x (t2 + dr))
apply (subst flow-trans)
using exist ‹t1 ≤ t2 ›
using d-ex[of flow0 x t2 ] ‹flow0 x t2 ∈ {a −− b}› ‹d > 0 › T ‹0 < dr› ‹dr

< d›
apply auto

apply (rule set-rev-mp[where A={0 .. t − (t2 + dr)}], force)
apply (rule ivl-subset-existence-ivl)
apply (rule existence-ivl-trans ′)
apply (rule existence-ivl-trans ′)

by (auto simp: t)
have T-ex2 : dr + T ∈ existence-ivl0 (flow0 x t2 )
by (smt T-ex ends-in-segment(2 ) exist local.existence-ivl-trans local.existence-ivl-trans ′

real-Icc-closed-segment subset-eq t2d2-ex ‹t1 ≤ t2 ›)
thus False using T ‹t1 ≤ t2 › exist

by (smt T-ex diff-existence-ivl-trans disjoint-iff-not-equal inner io(9 ) lo-
cal.flow-trans local.flow-undefined0 outer y-def )

qed
have closure inner ∩ outer = {}
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by (simp add: inf-sup-aci(1 ) io(5 ) io(9 ) open-Int-closure-eq-empty)
then have flow0 x t /∈ {a<−−<flow0 x t2}

using ‹t > t2 › ‹t ∈ existence-ivl0 x› inner outer by blast
}
moreover {

assume flow0 rp dr ∈ inner flow0 rp dl ∈ outer
then have

r1i: r1 ∩ inner 6= {} and
r2o: r2 ∩ outer 6= {} using rpr1 rpr2 by auto

from path-connected-not-frontier-subset[OF pcr1 r1i]
have r1 ⊆ inner using pir1 by (simp add: io(11 ))
from path-connected-not-frontier-subset[OF pcr2 r2o]
have r2 ⊆ outer using pir2 by (simp add: io(12 ))

have (λ(x, y). flow0 x y)‘({flow0 x t2} × {0<..<d}) ⊆ r1 unfolding r1-def
by (auto intro!:image-mono simp add: x2 )

then have
∗:
∧

t. 0 < t =⇒ t < d =⇒ flow0 (flow0 x t2 ) t ∈ inner
by (smt ‹r1 ⊆ inner› greaterThanLessThan-iff mem-Sigma-iff pair-imageI

r1-def subset-eq x2 )

then have t2o:
∧

t. 0 < t =⇒ t < d =⇒ flow0 x (t2 + t) ∈ inner
using r1a3 [OF x2 ] exist flow-trans

by (metis (no-types, opaque-lifting) closed-segment-commute ends-in-segment(1 )
local.existence-ivl-trans ′ local.flow-undefined0 real-Icc-closed-segment subset-eq ‹t1
≤ t2 ›)

have outer : {a <−−< flow0 x t2} ⊆ closure outer
proof (rule subsetI )

fix y
assume y: y ∈ {a <−−< flow0 x t2}
have [simp]: y ∈ X

using y suba12-open suba2o ‹{a −− b} ⊆ X›
by auto

have (∀n. flow0 y (− d / real (Suc (Suc n))) ∈ outer)
using y
using suba12-open ‹0 < d› suba2o ‹{a −− b} ⊆ X›
by (auto intro!: set-mp[OF ‹r2 ⊆ outer›] image-eqI [where x=(y, −d/Suc

(Suc n)) for n]
simp: r2-def divide-simps)

moreover
have d-over-0 : (λs. − d / real (Suc (Suc s))) −−−−→ 0

by (rule real-tendsto-divide-at-top)
(auto intro!: filterlim-tendsto-add-at-top filterlim-real-sequentially)

have (λn. flow0 y (− d / real (Suc (Suc n)))) −−−−→ y
apply (rule tendsto-eq-intros)

apply (rule tendsto-intros)
apply (rule d-over-0 )
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by auto
ultimately show y ∈ closure outer

unfolding closure-sequential
by (intro exI [where x=λn. flow0 y (−d/Suc (Suc n))]) (rule conjI )

qed
then have {a <−−< flow0 x t1} ⊆ closure outer

using suba12-open by blast
then have {flow0 x t1 −− flow0 x t2} ⊆ closure outer
by (metis (no-types, lifting) closure-closure closure-mono closure-open-segment

dual-order .trans outer subl x1neqx2 )

have inner :
∧

t. t > t2 =⇒ t ∈ existence-ivl0 x =⇒ flow0 x t ∈ inner
proof (rule ccontr)

fix t
assume t: t > t2 t ∈ existence-ivl0 x flow0 x t /∈ inner
have 0 ≤ t− (t2+d) using t2o t by smt
then have a2 :0 ≤ t − (t2+dr) using d ‹0 < dr› ‹dr < d› by linarith
have t2d2-ex: t2 + dr ∈ existence-ivl0 x

using ‹t1 ≤ t2 › exist d-ex[of flow0 x t2 ] ‹flow0 x t2 ∈ {a−−b}› ‹0 < d› ‹0
< dr› ‹dr < d›

by (intro existence-ivl-trans) auto
then have a3 : t − (t2 + dr) ∈ existence-ivl0 (flow0 x (t2 + dr))

using t(2 )
by (intro diff-existence-ivl-trans) auto

then have flow0 (flow0 x (t2 + dr)) (t − (t2 + dr)) = flow0 x t
by (subst flow-trans[symmetric]) (auto simp: t2d2-ex)

moreover have flow0 x t ∈ closure outer using t(3 ) io
by (metis ComplI Un-iff closure-Un-frontier)

ultimately have a4 : flow0 (flow0 x (t2 + dr)) (t − (t2 + dr)) ∈ closure
outer by auto

have a1 : flow0 x (t2+dr) ∈ inner
by (simp add: d t2o ‹0 < dr› ‹dr < d›)

from inside-out[OF a1 a2 a3 a4 ]
obtain T where T : T > 0 T ≤ t − (t2 + dr)
(∀ s∈{0 ..<T}. flow0 (flow0 x (t2 + dr)) s ∈ inner)
flow0 (flow0 x (t2 + dr)) T ∈ {flow0 x t1 −−< flow0 x t2} by blast

define y where y = flow0 (flow0 x (t2 + dr)) T
have y ∈ {a <−−< flow0 x t2} unfolding y-def using T (4 )

using subl2 by blast
then have (λ(x, y). flow0 x y)‘({y} × {−d<..<0}) ⊆ r2 unfolding r2-def

by (auto intro!:image-mono)
then have ∗:

∧
t. −d < t =⇒ t < 0 =⇒ flow0 y t ∈ r2

by (simp add: pair-imageI subsetD)
have max (−T/2 ) dl < 0 using d T ‹0 > dl› ‹dl > −d› by auto
moreover have −d < max (−T/2 ) dl using d T ‹0 > dl› ‹dl > −d› by

auto
ultimately have outer : flow0 y (max (−T/2 ) dl) ∈ outer using ∗ ‹r2 ⊆

outer› by blast
have 0≤(T+(max (−T/2 ) dl)) using T (1 ) by linarith
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moreover have (T+(max (−T/2 ) dl)) < T using T (1 ) d ‹0 > dl› ‹dl >
−d› by linarith

ultimately have inner : flow0 (flow0 x (t2 + dr)) (T+(max (−T/2 ) dl))
∈ inner

using T by auto
have T-ex: T ∈ existence-ivl0 (flow0 x (t2 + dr))

apply (subst flow-trans)
using exist ‹t1 ≤ t2 ›
using d-ex[of flow0 x t2 ] ‹flow0 x t2 ∈ {a −− b}› ‹d > 0 › T ‹0 < dr› ‹dr

< d›
apply auto

apply (rule set-rev-mp[where A={0 .. t − (t2 + dr)}], force)
apply (rule ivl-subset-existence-ivl)
apply (rule existence-ivl-trans ′)
apply (rule existence-ivl-trans ′)

by (auto simp: t)
have T-ex2 : dr + T ∈ existence-ivl0 (flow0 x t2 )
by (smt T-ex ends-in-segment(2 ) exist local.existence-ivl-trans local.existence-ivl-trans ′

real-Icc-closed-segment subset-eq t2d2-ex ‹t1 ≤ t2 ›)
thus False using T ‹t1 ≤ t2 › exist

by (smt T-ex diff-existence-ivl-trans disjoint-iff-not-equal inner io(9 ) lo-
cal.flow-trans local.flow-undefined0 outer y-def )

qed
have closure outer ∩ inner = {}

by (metis inf-sup-aci(1 ) io(2 ) io2 (1 ) open-Int-closure-eq-empty)
then have flow0 x t /∈ {a<−−<flow0 x t2}

using ‹t > t2 › ‹t ∈ existence-ivl0 x› inner outer by blast
}
ultimately show

flow0 x t /∈ {a<−−<flow0 x t2} by auto
qed

lemma open-segment-trichotomy:
fixes x y a b:: ′a
assumes x:x ∈ {a<−−<b}
assumes y:y ∈ {a<−−<b}
shows x = y ∨ y ∈ {x<−−<b} ∨ y ∈ {a<−−<x}

proof −
from Un-open-segment[OF y]
have {a<−−<y} ∪ {y} ∪ {y<−−<b} = {a<−−<b} .
then have x ∈ {a<−−<y} ∨ x = y ∨ x ∈ {y <−−<b} using x by blast
moreover {

assume x ∈ {a<−−<y}
then have y ∈ {x<−−<b} using open-segment-subsegment

using open-segment-commute y by blast
}
moreover {

assume x ∈ {y<−−<b}
from open-segment-subsegment[OF y this]
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have y ∈ {a<−−<x} .
}
ultimately show ?thesis by blast

qed

sublocale rev: c1-on-open-R2 −f −f ′ rewrites −(−f ) = f and −(−f ′) = f ′

by unfold-locales (auto simp: dim2 )

lemma rev-transversal-segment: rev.transversal-segment a b = transversal-segment
a b

by (auto simp: transversal-segment-def rev.transversal-segment-def )

lemma flow0-transversal-segment-monotone-step-reverse:
assumes transversal-segment a b
assumes t1 ≤ t2
assumes {t1 ..t2} ⊆ existence-ivl0 x
assumes x1 : flow0 x t1 ∈ {a<−−<b}
assumes x2 : flow0 x t2 ∈ {a<−−<flow0 x t1}
assumes

∧
t. t ∈ {t1<..<t2} =⇒ flow0 x t /∈ {a<−−<b}

assumes t < t1 t ∈ existence-ivl0 x
shows flow0 x t /∈ {a<−−<flow0 x t1}

proof −
note exist = ‹{t1 ..t2} ⊆ existence-ivl0 x›
note t1t2 = ‹

∧
t. t ∈ {t1<..<t2} =⇒ flow0 x t /∈ {a<−−<b}›

from ‹transversal-segment a b› have [simp]: a 6= b by (simp add: transver-
sal-segment-def )

from x1 obtain i1 where i1 : flow0 x t1 = line a b i1 0 < i1 i1 < 1
by (auto simp: in-open-segment-iff-line)

from x2 obtain i2 where i2 : flow0 x t2 = line a b i2 0 < i2 i2 < i1
by (auto simp: i1 open-segment-line-iff )

have t2-exist[simp]: t2 ∈ existence-ivl0 x
using ‹t1 ≤ t2 › exist by auto

have t2-mem: flow0 x t2 ∈ {a<−−<b}
and x1-mem: flow0 x t1 ∈ {flow0 x t2<−−<b}
using i1 i2
by (auto simp: line-in-subsegment line-line1 )

have transversal ′: rev.transversal-segment a b
using ‹transversal-segment a b› unfolding rev-transversal-segment .

have time ′: 0 ≤ t2 − t1 using ‹t1 ≤ t2 › by simp
have [simp, intro]: flow0 x t2 ∈ X

using exist ‹t1 ≤ t2 ›
by auto

have exivl ′: {0 ..t2 − t1} ⊆ rev.existence-ivl0 (flow0 x t2 )
using exist ‹t1 ≤ t2 ›
by (force simp add: rev-existence-ivl-eq0 intro!: existence-ivl-trans ′)

have step ′: rev.flow0 (flow0 x t2 ) (t2−t) /∈ {a<−−<rev.flow0 (flow0 x t2 ) (t2
− t1 )}
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apply (rule rev.flow0-transversal-segment-monotone-step[OF transversal ′ time ′

exivl ′])
using exist ‹t1 ≤ t2 › x1 x2 t2-mem x1-mem t1t2 ‹t < t1 › ‹t ∈ existence-ivl0

x›
apply (auto simp: rev-existence-ivl-eq0 rev-eq-flow existence-ivl-trans ′ flow-trans[symmetric])

by (subst (asm) flow-trans[symmetric]) (auto intro!: existence-ivl-trans ′)
then show ?thesis

unfolding rev-eq-flow
using ‹t1 ≤ t2 › exist ‹t < t1 › ‹t ∈ existence-ivl0 x›
by (auto simp: flow-trans[symmetric] existence-ivl-trans ′)

qed

lemma flow0-transversal-segment-monotone-step-reverse2 :
assumes transversal: transversal-segment a b
assumes time: t1 ≤ t2
assumes exist: {t1 ..t2} ⊆ existence-ivl0 x
assumes t1 : flow0 x t1 ∈ {a<−−<b}
assumes t2 : flow0 x t2 ∈ {flow0 x t1<−−<b}
assumes t1t2 :

∧
t. t ∈ {t1<..<t2} =⇒ flow0 x t /∈ {a<−−<b}

assumes t: t < t1 t ∈ existence-ivl0 x
shows flow0 x t /∈ {flow0 x t1<−−<b}
using flow0-transversal-segment-monotone-step-reverse[of b a, OF - time exist,

of t]
assms

by (auto simp: open-segment-commute transversal-segment-commute)

lemma flow0-transversal-segment-monotone-step2 :
assumes transversal: transversal-segment a b
assumes time: t1 ≤ t2
assumes exist: {t1 ..t2} ⊆ existence-ivl0 x
assumes t1 : flow0 x t1 ∈ {a<−−<b}
assumes t2 : flow0 x t2 ∈ {a<−−<flow0 x t1}
assumes t1t2 :

∧
t. t ∈ {t1<..<t2} =⇒ flow0 x t /∈ {a<−−<b}

shows
∧

t. t > t2 =⇒ t ∈ existence-ivl0 x =⇒ flow0 x t /∈ {flow0 x t2<−−<b}
using flow0-transversal-segment-monotone-step[of b a, OF - time exist]

assms
by (auto simp: transversal-segment-commute open-segment-commute)

lemma flow0-transversal-segment-monotone:
assumes transversal-segment a b
assumes t1 ≤ t2
assumes {t1 ..t2} ⊆ existence-ivl0 x
assumes x1 : flow0 x t1 ∈ {a<−−<b}
assumes x2 : flow0 x t2 ∈ {flow0 x t1<−−<b}
assumes t > t2 t ∈ existence-ivl0 x
shows flow0 x t /∈ {a<−−<flow0 x t2}

proof −
note exist = ‹{t1 ..t2} ⊆ existence-ivl0 x›
note t = ‹t > t2 › ‹t ∈ existence-ivl0 x›
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have x1neqx2 : flow0 x t1 6= flow0 x t2
using open-segment-def x2 by force

then have t1neqt2 : t1 6= t2 by auto
with ‹t1 ≤ t2 › have t1 < t2 by simp

from ‹transversal-segment a b› have [simp]: a 6= b by (simp add: transver-
sal-segment-def )

from x1 obtain i1 where i1 : flow0 x t1 = line a b i1 0 < i1 i1 < 1
by (auto simp: in-open-segment-iff-line)

from x2 i1 obtain i2 where i2 : flow0 x t2 = line a b i2 i1 < i2 i2 < 1
by (auto simp: line-open-segment-iff )

have t2-in: flow0 x t2 ∈ {a<−−<b}
using i1 i2
by simp

let ?T = {s ∈ {t1 ..t2}. flow0 x s ∈ {a−−b}}
let ?T ′ = {s ∈ {t1 ..<t2}. flow0 x s ∈ {a<−−<b}}
from flow-transversal-segment-finite-intersections[OF ‹transversal-segment a b›

‹t1 ≤ t2 › exist]
have finite ?T .
then have finite ?T ′ by (rule finite-subset[rotated]) (auto simp: open-closed-segment)
have ?T ′ 6= {}

by (auto intro!: exI [where x=t1 ] ‹t1 < t2 › x1 )
note tm-defined = ‹finite ?T ′› ‹?T ′ 6= {}›
define tm where tm = Max ?T ′

have tm ∈ ?T ′

unfolding tm-def
using tm-defined by (rule Max-in)

have tm-in: flow0 x tm ∈ {a<−−<b}
using ‹tm ∈ ?T ′›
by auto

have tm: t1 ≤ tm tm < t2 tm ≤ t2
using ‹tm ∈ ?T ′› by auto

have tm-Max: t ≤ tm if t ∈ ?T ′ for t
unfolding tm-def
using tm-defined(1 ) that
by (rule Max-ge)

have tm-exclude: flow0 x t /∈ {a<−−<b} if t ∈ {tm<..<t2} for t
using ‹tm ∈ ?T ′› tm-Max that

by auto (meson approximation-preproc-push-neg(2 ) dual-order .strict-trans2
le-cases)

have {tm..t2} ⊆ existence-ivl0 x
using exist tm by auto

from open-segment-trichotomy[OF tm-in t2-in]
consider

flow0 x t2 ∈ {flow0 x tm<−−<b} |
flow0 x t2 ∈ {a<−−<flow0 x tm} |
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flow0 x tm = flow0 x t2
by blast

then show flow0 x t /∈ {a<−−<flow0 x t2}
proof cases

case 1
from flow0-transversal-segment-monotone-step[OF ‹transversal-segment a b›

‹tm ≤ t2 ›
‹{tm..t2} ⊆ existence-ivl0 x› tm-in 1 tm-exclude t]

show ?thesis .
next

case 2
have t1 6= tm

using 2 x2 i1 i2
by (auto simp: line-in-subsegment line-in-subsegment2 )

then have t1 < tm using ‹t1 ≤ tm› by simp
from flow0-transversal-segment-monotone-step-reverse[OF ‹transversal-segment

a b› ‹tm ≤ t2 ›
‹{tm..t2} ⊆ existence-ivl0 x› tm-in 2 tm-exclude ‹t1 < tm›] exist ‹t1 ≤ t2 ›

have flow0 x t1 /∈ {a<−−<flow0 x tm} by auto
then have False

using x1 x2 2 i1 i2
apply (auto simp: line-in-subsegment line-in-subsegment2 )
by (smt greaterThanLessThan-iff in-open-segment-iff-line line-in-subsegment2

tm-in)
then show ?thesis by simp

next
case 3
have t1 6= tm

using 3 x2
by (auto simp: open-segment-def )

then have t1 < tm using ‹t1 ≤ tm› by simp
have range (flow0 x) = flow0 x ‘ {tm..t2}

apply (rule recurrence-time-restricts-compact-flow ′[OF ‹tm < t2 › - - 3 ])
using exist ‹t1 ≤ t2 › ‹t1 < tm› ‹tm < t2 ›
by auto

also have . . . = flow0 x ‘ (insert t2 {tm<..<t2})
using ‹tm ≤ t2 › 3
apply auto
by (smt greaterThanLessThan-iff image-eqI )

finally have flow0 x t1 ∈ flow0 x ‘ (insert t2 {tm<..<t2})
by auto

then have flow0 x t1 ∈ flow0 x ‘ {tm<..<t2} using x1neqx2
by auto

moreover have . . . ∩ {a<−−<b} = {}
using tm-exclude
by auto

ultimately have False using x1 by auto
then show ?thesis by blast

qed
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qed

6.6 Straightening

This lemma uses the implicit function theorem
lemma cross-time-continuous:

assumes transversal-segment a b
assumes x ∈ {a<−−<b}
assumes e > 0
obtains d t where d > 0 continuous-on (ball x d) t∧

y. y ∈ ball x d =⇒ flow0 y (t y) ∈ {a<−−<b}∧
y. y ∈ ball x d =⇒ |t y| < e

continuous-on (ball x d) t
t x = 0

proof −
have x ∈ X using assms segment-open-subset-closed[of a b]

by (auto simp: transversal-segment-def )
have a 6= b using assms by auto
define s where s x = (x − a) · rot (b − a) for x
have s x = 0

unfolding s-def
by (subst in-segment-inner-rot) (auto intro!: assms open-closed-segment)

have Ds: (s has-derivative blinfun-inner-left (rot (b − a))) (at x)
(is (- has-derivative blinfun-apply (?Ds x)) -)
for x
unfolding s-def
by (auto intro!: derivative-eq-intros)

have Dsc: isCont ?Ds x by (auto intro!: continuous-intros)
have nz: ?Ds x (f x) 6= 0

using assms apply auto
unfolding transversal-segment-def
by (smt inner-minus-left nrm-reverse open-closed-segment)

from flow-implicit-function-at[OF ‹x ∈ X›, of s, OF ‹s x = 0 › Ds Dsc nz ‹e >
0 ›]

obtain t d1 where 0 < d1
and t0 : t x = 0
and d1 : (

∧
y. y ∈ cball x d1 =⇒ s (flow0 y (t y)) = 0 )

(
∧

y. y ∈ cball x d1 =⇒ |t y| < e)
(
∧

y. y ∈ cball x d1 =⇒ t y ∈ existence-ivl0 y)
and tc: continuous-on (cball x d1 ) t
and t ′: (t has-derivative

(− blinfun-inner-left (rot (b − a)) /R (blinfun-inner-left (rot (b − a))) (f
x)))

(at x)
by metis

from tc
have t −x→ 0

using ‹0 < d1 ›
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by (auto simp: continuous-on-def at-within-interior t0 dest!: bspec[where x=x])
then have ftc: ((λy. flow0 y (t y)) −−−→ x) (at x)

by (auto intro!: tendsto-eq-intros simp: ‹x ∈ X›)

define e2 where e2 = min (dist a x) (dist b x)
have e2 > 0

using assms
by (auto simp: e2-def open-segment-def )

from tendstoD[OF ftc this] have ∀ F y in at x. dist (flow0 y (t y)) x < e2 .
moreover
let ?S = {x. a · (b − a) < x · (b − a) ∧ x · (b − a) < b · (b − a)}
have open ?S x ∈ ?S

using ‹x ∈ {a<−−<b}›
by (auto simp add: open-segment-line-hyperplanes ‹a 6= b›

intro!: open-Collect-conj open-halfspace-component-gt open-halfspace-component-lt)
from topological-tendstoD[OF ftc this] have ∀ F y in at x. flow0 y (t y) ∈ ?S .
ultimately
have ∀ F y in at x . flow0 y (t y) ∈ ball x e2 ∩ ?S by eventually-elim (auto simp:

dist-commute)
then obtain d2 where 0 < d2 and

∧
y. x 6= y =⇒ dist y x < d2 =⇒ flow0 y

(t y) ∈ ball x e2 ∩ ?S
by (force simp: eventually-at)

then have d2 : dist y x < d2 =⇒ flow0 y (t y) ∈ ball x e2 ∩ ?S for y
using ‹0 < e2 › ‹x ∈ X› t0 ‹x ∈ ?S›
by (cases y = x) auto

define d where d = min d1 d2
have d > 0 using ‹0 < d1 › ‹0 < d2 › by (simp add: d-def )
moreover have continuous-on (ball x d) t

by (auto intro!:continuous-on-subset[OF tc] simp add: d-def )
moreover
have ball x e2 ∩ ?S ∩ {x. s x = 0} ⊆ {a<−−<b}

by (auto simp add: in-open-segment-iff-rot ‹a 6= b›) (auto simp: s-def e2-def
in-segment)

then have
∧

y. y ∈ ball x d =⇒ flow0 y (t y) ∈ {a<−−<b}
apply (rule set-mp)
using d1 d2 ‹0 < d2 ›
by (auto simp: d-def e2-def dist-commute)

moreover have
∧

y. y ∈ ball x d =⇒ |t y| < e
using d1 by (auto simp: d-def )

moreover have continuous-on (ball x d) t
using tc by (rule continuous-on-subset) (auto simp: d-def )

moreover have t x = 0 by (simp add: t0 )
ultimately show ?thesis ..

qed
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lemma ω-limit-crossings:
assumes transversal-segment a b
assumes pos-ex: {0 ..} ⊆ existence-ivl0 x
assumes ω-limit-point x p
assumes p ∈ {a<−−<b}
obtains s where

s −−−−→ ∞
(flow0 x ◦ s) −−−−→ p
∀ F n in sequentially. flow0 x (s n) ∈ {a<−−<b} ∧ s n ∈ existence-ivl0 x

proof −
from assms have p ∈ X by (auto simp: transversal-segment-def open-closed-segment)
from assms(3 )
obtain t where

t −−−−→ ∞ (flow0 x ◦ t) −−−−→ p
by (auto simp: ω-limit-point-def )

note t = ‹t −−−−→ ∞› ‹(flow0 x ◦ t) −−−−→ p›
note [tendsto-intros] = t(2 )
from cross-time-continuous[OF assms(1 ,4 ) zero-less-one— TODO ??]
obtain τ δ

where 0 < δ continuous-on (ball p δ) τ
τ p = 0 (

∧
y. y ∈ ball p δ =⇒ |τ y| < 1 )

(
∧

y. y ∈ ball p δ =⇒ flow0 y (τ y) ∈ {a<−−<b})
by metis

note τ =
‹(
∧

y. y ∈ ball p δ =⇒ flow0 y (τ y) ∈ {a<−−<b})›
‹(
∧

y. y ∈ ball p δ =⇒ |τ y| < 1 )›
‹continuous-on (ball p δ) τ› ‹τ p = 0 ›

define s where s n = t n + τ (flow0 x (t n)) for n
have ev-in-ball: ∀ F n in at-top. flow0 x (t n) ∈ ball p δ

apply simp
apply (subst dist-commute)
apply (rule tendstoD)
apply (rule t[unfolded o-def ])

apply (rule ‹0 < δ›)
done

have filterlim s at-top sequentially
proof (rule filterlim-at-top-mono)

show filterlim (λn. −1 + t n) at-top sequentially
by (rule filterlim-tendsto-add-at-top) (auto intro!: filterlim-tendsto-add-at-top

t)
from ev-in-ball show ∀ F x in sequentially. −1 + t x ≤ s x

apply eventually-elim
using τ
by (force simp : s-def )

qed
moreover
have τ -cont: τ −p→ τ p

using τ(3 ) ‹0 < δ›
by (auto simp: continuous-on-def at-within-ball dest!: bspec[where x=p])
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note [tendsto-intros] = tendsto-compose-at[OF - this, simplified]
have ev1 : ∀ F n in sequentially. t n > 1

using filterlim-at-top-dense t(1 ) by auto
then have ev-eq: ∀ F n in sequentially. flow0 ((flow0 x o t) n) ((τ o (flow0 x o

t)) n) = (flow0 x o s) n
using ev-in-ball
apply (eventually-elim)
apply (drule τ(2 ))
unfolding o-def
apply (subst flow-trans[symmetric])
using pos-ex

apply (auto simp: s-def )
apply (rule existence-ivl-trans ′)
by auto

then
have ∀ F n in sequentially.
(flow0 x o s) n = flow0 ((flow0 x o t) n) ((τ o (flow0 x o t)) n)

by (simp add: eventually-mono)
from ‹(flow0 x ◦ t) −−−−→ p› and ‹τ −p→ τ p›
have
(λn. flow0 ((flow0 x ◦ t) n) ((τ ◦ (flow0 x ◦ t)) n))
−−−−→
flow0 p (τ p)

using ‹τ p = 0 › τ -cont ‹p ∈ X›
by (intro tendsto-eq-intros) auto

then have (flow0 x o s) −−−−→ flow0 p (τ p)
using ev-eq by (rule Lim-transform-eventually)

then have (flow0 x o s) −−−−→ p
using ‹p ∈ X› ‹τ p = 0 ›
by simp

moreover
{

have ∀ F n in sequentially. flow0 x (s n) ∈ {a<−−<b}
using ev-eq ev-in-ball
apply eventually-elim
apply (drule sym)
apply simp
apply (rule τ) by simp

moreover have ∀ F n in sequentially. s n ∈ existence-ivl0 x
using ev-in-ball ev1
apply (eventually-elim)
apply (drule τ(2 ))
using pos-ex
by (auto simp: s-def )

ultimately have ∀ F n in sequentially. flow0 x (s n) ∈ {a<−−<b} ∧ s n ∈
existence-ivl0 x

by eventually-elim auto
}
ultimately show ?thesis ..
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qed

lemma filterlim-at-top-tendstoE :
assumes e > 0
assumes filterlim s at-top sequentially
assumes (flow0 x ◦ s) −−−−→ u
assumes ∀ F n in sequentially. P (s n)
obtains m where m > b P m dist (flow0 x m) u < e

proof −
from assms(2 ) have ∀ F n in sequentially. b < s n

by (simp add: filterlim-at-top-dense)
moreover have ∀ F n in sequentially. norm ((flow0 x ◦ s) n − u) < e

using assms(3 )[THEN tendstoD, OF assms(1 )] by (simp add: dist-norm)
moreover note assms(4 )
ultimately have ∀ F n in sequentially. b < s n ∧ norm ((flow0 x ◦ s) n − u)

< e ∧ P (s n)
by eventually-elim auto

then obtain m where m > b P m dist (flow0 x m) u < e
by (auto simp add: eventually-sequentially dist-norm)

then show ?thesis ..
qed

lemma open-segment-separate-left:
fixes u v x a b:: ′a
assumes u:u ∈ {a <−−< b}
assumes v:v ∈ {u <−−< b}
assumes x: dist x u < dist u v x ∈ {a <−−< b}
shows x ∈ {a <−−< v}

proof −
have v 6= x

by (smt dist-commute x(1 ))
moreover have x /∈ {v<−−<b}

by (smt dist-commute dist-in-open-segment open-segment-subsegment v x(1 ))
moreover have v ∈ {a<−−<b} using v
by (metis ends-in-segment(1 ) segment-open-subset-closed subset-eq subset-segment(4 )

u)
ultimately show ?thesis using open-segment-trichotomy[OF - x(2 )]

by blast
qed

lemma open-segment-separate-right:
fixes u v x a b:: ′a
assumes u:u ∈ {a <−−< b}
assumes v:v ∈ {a <−−< u}
assumes x: dist x u < dist u v x ∈ {a <−−< b}
shows x ∈ {v <−−< b}

proof −
have v 6= x
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by (smt dist-commute x(1 ))
moreover have x /∈ {a<−−<v}
by (smt dist-commute dist-in-open-segment open-segment-commute open-segment-subsegment

v x(1 ))
moreover have v ∈ {a<−−<b} using v
by (metis ends-in-segment(1 ) segment-open-subset-closed subset-eq subset-segment(4 )

u)
ultimately show ?thesis using open-segment-trichotomy[OF - x(2 )]

by blast
qed

lemma no-two-ω-limit-points:
assumes transversal: transversal-segment a b
assumes ex-pos: {0 ..} ⊆ existence-ivl0 x
assumes u: ω-limit-point x u u ∈ {a<−−<b}
assumes v: ω-limit-point x v v ∈ {a<−−<b}
assumes uv: v ∈ {u<−−<b}
shows False

proof −
have unotv: u 6= v using uv

using dist-in-open-segment by blast
define duv where duv = dist u v / 2
have duv: duv > 0 unfolding duv-def using unotv by simp
from ω-limit-crossings[OF transversal ex-pos u]
obtain su where su: filterlim su at-top sequentially
(flow0 x ◦ su) −−−−→ u
∀ F n in sequentially. flow0 x (su n) ∈ {a<−−<b} ∧ su n ∈ existence-ivl0 x

by blast
from ω-limit-crossings[OF transversal ex-pos v]
obtain sv where sv: filterlim sv at-top sequentially
(flow0 x ◦ sv) −−−−→ v
∀ F n in sequentially. flow0 x (sv n) ∈ {a<−−<b} ∧ sv n ∈ existence-ivl0 x by

blast
from filterlim-at-top-tendstoE [OF duv su]
obtain su1 where su1 :su1 > 0 flow0 x su1 ∈ {a<−−<b}

su1 ∈ existence-ivl0 x dist (flow0 x su1 ) u < duv by auto
from filterlim-at-top-tendstoE [OF duv sv, of su1 ]
obtain su2 where su2 :su2 > su1 flow0 x su2 ∈ {a<−−<b}

su2 ∈ existence-ivl0 x dist (flow0 x su2 ) v < duv by auto
from filterlim-at-top-tendstoE [OF duv su, of su2 ]
obtain su3 where su3 :su3 > su2 flow0 x su3 ∈ {a<−−<b}

su3 ∈ existence-ivl0 x dist (flow0 x su3 ) u < duv by auto
have ∗: su1 ≤ su2 {su1 ..su2} ⊆ existence-ivl0 x using su1 su2

apply linarith
by (metis atLeastatMost-empty-iff empty-iff mvar .closed-segment-subset-domain

real-Icc-closed-segment su1 (3 ) su2 (3 ) subset-eq)

have d1 : dist (flow0 x su1 ) v ≥ (dist u v)/2 using su1 (4 ) duv unfolding duv-def
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by (smt dist-triangle-half-r)
have dist (flow0 x su1 ) u < dist u v using su1 (4 ) duv unfolding duv-def by

linarith
from open-segment-separate-left[OF u(2 ) uv this su1 (2 )]
have su1l:flow0 x su1 ∈ {a<−−<v} .
have dist (flow0 x su2 ) v < dist v (flow0 x su1 ) using d1

by (smt dist-commute duv-def su2 (4 ))
from open-segment-separate-right[OF v(2 ) su1l this su2 (2 )]
have su2l:flow0 x su2 ∈ {flow0 x su1<−−<b} .
then have su2ll:flow0 x su2 ∈ {u<−−<b}

by (smt dist-commute dist-pos-lt duv-def open-segment-subsegment pos-half-less
open-segment-separate-right su2 (2 ) su2 (4 ) u(2 ) uv v(2 ) unotv)

have dist (flow0 x su2 ) u ≥ (dist u v)/2 using su2 (4 ) duv unfolding duv-def
by (smt dist-triangle-half-r)

then have dist (flow0 x su3 ) u < dist u (flow0 x su2 )
by (smt dist-commute duv-def su3 (4 ))

from open-segment-separate-left[OF u(2 ) su2ll this su3 (2 )]
have su3l:flow0 x su3 ∈ {a<−−<flow0 x su2} .

from flow0-transversal-segment-monotone[OF transversal ∗ su1 (2 ) su2l su3 (1 )
su3 (3 )]

have flow0 x su3 /∈ {a <−−<flow0 x su2} .
thus False using su3l by auto

qed

6.7 Unique Intersection

Perko Section 3.7 Remark 2
lemma unique-transversal-segment-intersection:

assumes transversal-segment a b
assumes {0 ..} ⊆ existence-ivl0 x
assumes u ∈ ω-limit-set x ∩ {a<−−<b}
shows ω-limit-set x ∩ {a<−−<b} = {u}

proof (rule ccontr)
assume ω-limit-set x ∩ {a<−−<b} 6= {u}
then
obtain v where uv: u 6= v
and v: ω-limit-point x v v ∈ {a<−−<b} using assms unfolding ω-limit-set-def
by fastforce

have u:ω-limit-point x u u ∈ {a<−−<b} using assms unfolding ω-limit-set-def
by auto

show False using no-two-ω-limit-points[OF ‹transversal-segment a b›]
by (smt dist-commute dist-in-open-segment open-segment-trichotomy u uv v

assms)
qed

Adapted from Perko Section 3.7 Lemma 4 (+ Chicone )
lemma periodic-imp-ω-limit-set:
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assumes compact K K ⊆ X
assumes x ∈ X trapped-forward x K
assumes periodic-orbit y

flow0 y ‘ UNIV ⊆ ω-limit-set x
shows flow0 y ‘UNIV = ω-limit-set x

proof (rule ccontr)
note y = ‹periodic-orbit y› ‹flow0 y ‘ UNIV ⊆ ω-limit-set x›
from trapped-sol-right[OF assms(1−4 )]
have ex-pos: {0 ..} ⊆ existence-ivl0 x by blast
assume flow0 y ‘UNIV 6= ω-limit-set x
obtain p where p: p ∈ ω-limit-set x p /∈ flow0 y ‘ UNIV

using y(2 ) apply auto
using ‹range (flow0 y) 6= ω-limit-set x› by blast

from ω-limit-set-in-compact-connected[OF assms(1−4 )] have
wcon: connected (ω-limit-set x) .

from ω-limit-set-invariant have
invariant (ω-limit-set x) .

from ω-limit-set-in-compact-compact[OF assms(1−4 )] have
compact (ω-limit-set x) .

then have sc: seq-compact (ω-limit-set x)
using compact-imp-seq-compact by blast

have y1 :closed (flow0 y ‘ UNIV )
using closed-orbit-ω-limit-set periodic-orbit-def ω-limit-set-closed y(1 ) by auto

have y2 : flow0 y ‘ UNIV 6= {} by simp
let ?py = infdist p (range (flow0 y))
have 0 < ?py

using y1 y2 p(2 )
by (rule infdist-pos-not-in-closed)

have ∀n::nat. ∃ z. z ∈ ω-limit-set x − flow0 y ‘ UNIV ∧
infdist z (flow0 y ‘ UNIV ) < ?py/2^n

proof (rule ccontr)
assume ¬ (∀n. ∃ z. z ∈ ω-limit-set x − range (flow0 y) ∧

infdist z (range (flow0 y))
< infdist p (range (flow0 y)) / 2 ^ n)

then obtain n where n: (∀ z ∈ ω-limit-set x − range (flow0 y).
infdist z (range (flow0 y)) ≥ ?py / 2 ^ n)
using not-less by blast

define A where A = flow0 y ‘ UNIV
define B where B = {z. infdist z (range (flow0 y)) ≥ ?py / 2 ^ n}
have Ac:closed A unfolding A-def using y1 by auto
have Bc:closed B unfolding B-def using infdist-closed by auto
have A ∩ B = {}
proof (rule ccontr)

assume A ∩ B 6= {}
then obtain q where q: q ∈ A q ∈ B by blast
have qz:infdist q (range(flow0 y)) = 0 using q(1 ) unfolding A-def

by simp
note ‹0 < ?py›
moreover have 2 ^ n > (0 ::real) by auto
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ultimately have infdist p (range (flow0 y)) / 2 ^ n > (0 ::real)
by simp

then have qnz: infdist q(range (flow0 y)) > 0 using q(2 ) unfolding B-def
by auto

show False using qz qnz by auto
qed
then have a1 :A ∩ B ∩ ω-limit-set x = {} by auto
have ω-limit-set x − range(flow0 y) ⊆ B using n B-def by blast
then have a2 :ω-limit-set x ⊆ A ∪ B using A-def by auto
from connected-closedD[OF wcon a1 a2 Ac Bc]
have A ∩ ω-limit-set x = {} ∨ B ∩ ω-limit-set x = {} .
moreover {

assume A ∩ ω-limit-set x = {}
then have False unfolding A-def using y(2 ) by blast

}
moreover {

assume B ∩ ω-limit-set x = {}
then have False unfolding B-def using p

using A-def B-def a2 by blast
}
ultimately show False by blast

qed
then obtain s where s: ∀n::nat. (s::nat ⇒ -) n ∈ ω-limit-set x − flow0 y ‘

UNIV ∧
infdist (s n) (flow0 y ‘ UNIV ) < ?py/2^n

by metis
then have ∀n. s n ∈ ω-limit-set x by blast
from seq-compactE [OF sc this]
obtain l r where lr : l ∈ ω-limit-set x strict-mono r (s ◦ r) −−−−→ l by blast
have

∧
n. infdist (s n) (range (flow0 y)) ≤ ?py / 2 ^ n using s

using less-eq-real-def by blast
then have

∧
n. norm(infdist (s n) (range (flow0 y))) ≤ ?py / 2 ^ n

by (auto simp add: infdist-nonneg)
from LIMSEQ-norm-0-pow[OF ‹0 < ?py› - this]
have ((λz. infdist z (flow0 y ‘ UNIV )) ◦ s) −−−−→ 0

by (auto simp add:o-def )
from LIMSEQ-subseq-LIMSEQ[OF this lr(2 )]
have ((λz. infdist z (flow0 y ‘ UNIV )) ◦ (s ◦ r)) −−−−→ 0 by (simp add: o-assoc)
moreover have ((λz. infdist z (flow0 y ‘ UNIV )) ◦ (s ◦ r)) −−−−→ infdist l

(flow0 y ‘ UNIV )
by (auto intro!: tendsto-eq-intros tendsto-compose-at[OF lr(3 )])

ultimately have infdist l (flow0 y ‘UNIV ) = 0 using LIMSEQ-unique by auto
then have lu: l ∈ flow0 y ‘ UNIV using in-closed-iff-infdist-zero[OF y1 y2 ] by

auto
then have l1 :l ∈ X

using closed-orbit-global-existence periodic-orbit-def y(1 ) by auto

have l2 :f l 6= 0
by (smt ‹l ∈ X› ‹l ∈ range (flow0 y)› closed-orbit-global-existence fixed-point-imp-closed-orbit-period-zero(2 )
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fixpoint-sol(2 ) image-iff local.flows-reverse periodic-orbit-def y(1 ))
from transversal-segment-exists[OF l1 l2 ]
obtain a b where ab: transversal-segment a b l ∈ {a<−−<b} by blast
then have l ∈ ω-limit-set x ∩ {a<−−<b} using lr by auto
from unique-transversal-segment-intersection[OF ab(1 ) ex-pos this]
have luniq: ω-limit-set x ∩ {a<−−<b} = {l} .
from cross-time-continuous[OF ab, of 1 ]
obtain d t where dt: 0 < d
(
∧

y. y ∈ ball l d =⇒ flow0 y (t y) ∈ {a<−−<b})
(
∧

y. y ∈ ball l d =⇒ |t y| < 1 )
continuous-on (ball l d) t t l = 0
by auto

obtain n where (s ◦ r) n ∈ ball l d using lr(3 ) dt(1 ) unfolding LIMSEQ-iff-nz
by (metis dist-commute mem-ball order-refl)

then have flow0 ((s ◦ r) n) (t ((s ◦ r) n )) ∈ {a<−−<b} using dt by auto
moreover have sr : (s ◦ r) n ∈ ω-limit-set x (s ◦ r) n /∈ flow0 y ‘ UNIV

using s by auto
moreover have flow0 ((s ◦ r) n) (t ((s ◦ r) n )) ∈ ω-limit-set x
using ‹invariant (ω-limit-set x)› calculation unfolding invariant-def trapped-def
by (smt ω-limit-set-in-compact-subset ‹invariant (ω-limit-set x)› assms(1−4 )

invariant-def order-trans range-eqI subsetD trapped-iff-on-existence-ivl0 trapped-sol)
ultimately have flow0 ((s ◦ r) n) (t ((s ◦ r) n )) ∈ ω-limit-set x ∩ {a<−−<b}

by auto
from unique-transversal-segment-intersection[OF ab(1 ) ex-pos this]
have flow0 ((s ◦ r) n) (t ((s ◦ r) n )) = l using luniq by auto
then have ((s ◦ r) n) = flow0 l (−(t ((s ◦ r) n )))
by (smt UNIV-I ‹(s ◦ r) n ∈ ω-limit-set x› flows-reverse ω-limit-set-in-compact-existence

assms(1−4 ))
thus False using sr(2 ) lu

‹flow0 ((s ◦ r) n) (t ((s ◦ r) n)) = l› ‹flow0 ((s ◦ r) n) (t ((s ◦ r) n)) ∈
ω-limit-set x›

closed-orbit-global-existence image-iff local.flow-trans periodic-orbit-def ω-limit-set-in-compact-existence
range-eqI assms y(1 )

by smt
qed

end context c1-on-open-R2 begin

lemma α-limit-crossings:
assumes transversal-segment a b
assumes pos-ex: {..0} ⊆ existence-ivl0 x
assumes α-limit-point x p
assumes p ∈ {a<−−<b}
obtains s where

s −−−−→ −∞
(flow0 x ◦ s) −−−−→ p
∀ F n in sequentially.
flow0 x (s n) ∈ {a<−−<b} ∧
s n ∈ existence-ivl0 x
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proof −
from pos-ex have {0 ..} ⊆ uminus ‘ existence-ivl0 x by force
from rev.ω-limit-crossings[unfolded rev-transversal-segment rev-existence-ivl-eq0

rev-eq-flow
α-limit-point-eq-rev[symmetric], OF assms(1 ) this assms(3 ,4 )]

obtain s where filterlim s at-top sequentially ((λt. flow0 x (− t)) ◦ s) −−−−→ p
∀ F n in sequentially. flow0 x (− s n) ∈ {a<−−<b} ∧ s n ∈ uminus ‘ exis-

tence-ivl0 x .
then have filterlim (−s) at-bot sequentially
(flow0 x ◦ (−s)) −−−−→ p
∀ F n in sequentially. flow0 x ((−s) n) ∈ {a<−−<b} ∧ (−s) n ∈ existence-ivl0

x
by (auto simp: fun-Compl-def o-def filterlim-uminus-at-top)

then show ?thesis ..
qed

If a positive limit point has a regular point in its positive limit set then it is
periodic
lemma ω-limit-point-ω-limit-set-regular-imp-periodic:

assumes compact K K ⊆ X
assumes x ∈ X trapped-forward x K
assumes y: y ∈ ω-limit-set x f y 6= 0
assumes z: z ∈ ω-limit-set y ∪ α-limit-set y f z 6= 0
shows periodic-orbit y ∧ flow0 y ‘ UNIV = ω-limit-set x

proof −
from trapped-sol-right[OF assms(1−4 )] have ex-pos: {0 ..} ⊆ existence-ivl0 x by

blast
from ω-limit-set-in-compact-existence[OF assms(1−4 ) y(1 )]
have yex: existence-ivl0 y = UNIV .
from ω-limit-set-invariant
have invariant (ω-limit-set x) .
then have yinv: flow0 y ‘ UNIV ⊆ ω-limit-set x using yex unfolding invari-

ant-def
using trapped-iff-on-existence-ivl0 y(1 ) by blast

have zy: ω-limit-point y z ∨ α-limit-point y z
using z unfolding ω-limit-set-def α-limit-set-def by auto

from ω-limit-set-in-compact-ω-limit-set-contained[OF assms(1−4 )]
ω-limit-set-in-compact-α-limit-set-contained[OF assms(1−4 )]

have zx:z ∈ ω-limit-set x using zy y
using z(1 ) by blast

then have z ∈ X
by (metis UNIV-I local.existence-ivl-initial-time-iff ω-limit-set-in-compact-existence

assms(1−4 ))
from transversal-segment-exists[OF this z(2 )]
obtain a b where ab: transversal-segment a b z ∈ {a<−−<b} by blast

from zy
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obtain t1 t2 where t1 : flow0 y t1 ∈ {a<−−<b} and t2 : flow0 y t2 ∈ {a<−−<b}
and t1 6= t2

proof
assume zy: ω-limit-point y z
from ω-limit-crossings[OF ab(1 ) - zy ab(2 ), unfolded yex]
obtain s where s: filterlim s at-top sequentially
(flow0 y ◦ s) −−−−→ z
∀ F n in sequentially. flow0 y (s n) ∈ {a<−−<b}
by auto
from eventually-happens[OF this(3 )] obtain t1 where t1 : flow0 y t1 ∈

{a<−−<b} by auto
have ∀ F n in sequentially. s n > t1

using filterlim-at-top-dense s(1 ) by auto
with s(3 ) have ∀ F n in sequentially. flow0 y (s n) ∈ {a<−−<b} ∧ s n > t1

by eventually-elim simp
from eventually-happens[OF this] obtain t2 where t2 : flow0 y t2 ∈ {a<−−<b}

and t1 6= t2
by auto

from t1 this show ?thesis ..
next

assume zy: α-limit-point y z
from α-limit-crossings[OF ab(1 ) - zy ab(2 ), unfolded yex]
obtain s where s: filterlim s at-bot sequentially
(flow0 y ◦ s) −−−−→ z
∀ F n in sequentially. flow0 y (s n) ∈ {a<−−<b}
by auto
from eventually-happens[OF this(3 )] obtain t1 where t1 : flow0 y t1 ∈

{a<−−<b} by auto
have ∀ F n in sequentially. s n < t1

using filterlim-at-bot-dense s(1 ) by auto
with s(3 ) have ∀ F n in sequentially. flow0 y (s n) ∈ {a<−−<b} ∧ s n < t1

by eventually-elim simp
from eventually-happens[OF this] obtain t2 where t2 : flow0 y t2 ∈ {a<−−<b}

and t1 6= t2
by auto

from t1 this show ?thesis ..
qed
have flow0 y t1 ∈ ω-limit-set x ∩ {a<−−<b} using t1 UNIV-I yinv by auto
moreover have flow0 y t2 ∈ ω-limit-set x ∩ {a<−−<b} using t2 UNIV-I yinv

by auto
ultimately have feq:flow0 y t1 = flow0 y t2

using unique-transversal-segment-intersection[OF ‹transversal-segment a b›
ex-pos]

by blast
have t1 6= t2 t1 ∈ existence-ivl0 y t2 ∈ existence-ivl0 y using ‹t1 6= t2 ›

apply blast
apply (simp add: yex)

by (simp add: yex)
from periodic-orbitI [OF this feq y(2 )]
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have 1 : periodic-orbit y .
from periodic-imp-ω-limit-set[OF assms(1−4 ) this yinv]
have 2 : flow0 y‘ UNIV = ω-limit-set x .
show ?thesis using 1 2 by auto

qed

6.8 Poincare Bendixson Theorems

Perko Section 3.7 Theorem 1
theorem poincare-bendixson:

assumes compact K K ⊆ X
assumes x ∈ X trapped-forward x K
assumes 0 /∈ f ‘ (ω-limit-set x)
obtains y where periodic-orbit y

flow0 y ‘ UNIV = ω-limit-set x
proof −

note f = ‹0 /∈ f ‘ (ω-limit-set x)›
from ω-limit-set-in-compact-nonempty[OF assms(1−4 )]
obtain y where y: y ∈ ω-limit-set x by fastforce
from ω-limit-set-in-compact-existence[OF assms(1−4 ) y]
have yex: existence-ivl0 y = UNIV .
from ω-limit-set-invariant
have invariant (ω-limit-set x) .
then have yinv: flow0 y ‘ UNIV ⊆ ω-limit-set x using yex unfolding invari-

ant-def
using trapped-iff-on-existence-ivl0 y by blast

from ω-limit-set-in-compact-subset[OF assms(1−4 )]
have ω-limit-set x ⊆ K .
then have flow0 y ‘ UNIV ⊆ K using yinv by auto
then have yk:trapped-forward y K

by (simp add: image-subsetI range-subsetD trapped-forward-def )
have y ∈ X

by (simp add: local.mem-existence-ivl-iv-defined(2 ) yex)

from ω-limit-set-in-compact-nonempty[OF assms(1−2 ) this -]
obtain z where z: z ∈ ω-limit-set y using yk by blast
from ω-limit-set-in-compact-ω-limit-set-contained[OF assms(1−4 )]
have zx:z ∈ ω-limit-set x using ‹z ∈ ω-limit-set y› y by auto

have yreg : f y 6= 0 using f y
by (metis rev-image-eqI )

have zreg : f z 6= 0 using f zx
by (metis rev-image-eqI )

from ω-limit-point-ω-limit-set-regular-imp-periodic[OF assms(1−4 ) y yreg - zreg]
z

show ?thesis using that by blast
qed

lemma fixed-point-in-ω-limit-set-imp-ω-limit-set-singleton-fixed-point:
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assumes compact K K ⊆ X
assumes x ∈ X trapped-forward x K
assumes fp: yfp ∈ ω-limit-set x f yfp = 0
assumes zpx: z ∈ ω-limit-set x
assumes finite-fp: finite {y ∈ K . f y = 0} (is finite ?S)
shows (∃ p1 ∈ ω-limit-set x. f p1 = 0 ∧ ω-limit-set z = {p1}) ∧
(∃ p2 ∈ ω-limit-set x. f p2 = 0 ∧ α-limit-set z = {p2})

proof −
let ?weq = {y ∈ ω-limit-set x. f y = 0}
from ω-limit-set-in-compact-subset[OF assms(1−4 )]
have wxK : ω-limit-set x ⊆ K .
from ω-limit-set-in-compact-ω-limit-set-contained[OF assms(1−4 )]
have zx: ω-limit-set z ⊆ ω-limit-set x using zpx by auto
have zX : z ∈ X using subset-trans[OF wxK assms(2 )]

by (metis subset-iff zpx)
from ω-limit-set-in-compact-subset[OF assms(1−4 )]
have ?weq ⊆ ?S

by (smt Collect-mono-iff Int-iff inf .absorb-iff1 )
then have finite ?weq using ‹finite ?S›

by (blast intro: rev-finite-subset)

consider f z = 0 | f z 6= 0 by auto
then show ?thesis
proof cases

assume f z = 0
from fixed-point-imp-ω-limit-set[OF zX this]

fixed-point-imp-α-limit-set[OF zX this]
show ?thesis

by (metis (mono-tags) ‹f z = 0 › zpx)
next

assume f z 6= 0
have zweq: ω-limit-set z ⊆ ?weq

apply clarsimp
proof (rule ccontr)

fix k assume k: k ∈ ω-limit-set z ¬ (k ∈ ω-limit-set x ∧ f k = 0 )
then have f k 6= 0 using zx k by auto
from ω-limit-point-ω-limit-set-regular-imp-periodic[OF assms(1−4 ) zpx ‹f z

6= 0 › - this] k(1 )
have periodic-orbit z range(flow0 z) = ω-limit-set x by auto
then have 0 /∈ f ‘ (ω-limit-set x)

by (metis image-iff periodic-orbit-imp-flow0-regular)
thus False using fp

by (metis (mono-tags, lifting) empty-Collect-eq image-eqI )
qed
have zweq0 : α-limit-set z ⊆ ?weq

apply clarsimp
proof (rule ccontr)

fix k assume k: k ∈ α-limit-set z ¬ (k ∈ ω-limit-set x ∧ f k = 0 )
then have f k 6= 0 using zx k
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ω-limit-set-in-compact-α-limit-set-contained[OF assms(1−4 ), of z] zpx
by auto

from ω-limit-point-ω-limit-set-regular-imp-periodic[OF assms(1−4 ) zpx ‹f z
6= 0 › - this] k(1 )

have periodic-orbit z range(flow0 z) = ω-limit-set x by auto
then have 0 /∈ f ‘ (ω-limit-set x)

by (metis image-iff periodic-orbit-imp-flow0-regular)
thus False using fp

by (metis (mono-tags, lifting) empty-Collect-eq image-eqI )
qed
from ω-limit-set-in-compact-existence[OF assms(1−4 ) zpx]
have zex: existence-ivl0 z = UNIV .
from ω-limit-set-invariant
have invariant (ω-limit-set x) .
then have zinv: flow0 z ‘ UNIV ⊆ ω-limit-set x using zex unfolding invari-

ant-def
using trapped-iff-on-existence-ivl0 zpx by blast

then have flow0 z ‘ UNIV ⊆ K using wxK by auto
then have a2 : trapped-forward z K trapped-backward z K

using trapped-def trapped-iff-on-existence-ivl0 apply fastforce
using ‹range (flow0 z) ⊆ K › trapped-def trapped-iff-on-existence-ivl0 by blast

have a3 : finite (ω-limit-set z)
by (metis ‹finite ?weq› finite-subset zweq)

from finite-ω-limit-set-in-compact-imp-unique-fixed-point[OF assms(1−2 ) zX
a2 (1 ) a3 ]

obtain p1 where p1 : ω-limit-set z = {p1} f p1 = 0 by blast
then have p1 ∈ ?weq using zweq by blast
moreover
have finite (α-limit-set z)

by (metis ‹finite ?weq› finite-subset zweq0 )
from finite-α-limit-set-in-compact-imp-unique-fixed-point[OF assms(1−2 ) zX

a2 (2 ) this]
obtain p2 where p2 : α-limit-set z = {p2} f p2 = 0 by blast
then have p2 ∈ ?weq using zweq0 by blast
ultimately show ?thesis

by (simp add: p1 p2 )
qed

qed

end context c1-on-open-R2 begin

Perko Section 3.7 Theorem 2
theorem poincare-bendixson-general:

assumes compact K K ⊆ X
assumes x ∈ X trapped-forward x K
assumes S = {y ∈ K . f y = 0} finite S
shows
(∃ y ∈ S . ω-limit-set x = {y}) ∨

(∃ y. periodic-orbit y ∧
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flow0 y ‘ UNIV = ω-limit-set x) ∨
(∃P R. ω-limit-set x = P ∪ R ∧

P ⊆ S ∧ 0 /∈ f ‘ R ∧ R 6= {} ∧
(∀ z ∈ R.
(∃ p1 ∈ P. ω-limit-set z = {p1}) ∧
(∃ p2 ∈ P. α-limit-set z = {p2})))

proof −
note S = ‹S = {y ∈ K . f y = 0}›
let ?wreg = {y ∈ ω-limit-set x. f y 6= 0}
let ?weq = {y ∈ ω-limit-set x. f y = 0}
have wreqweq: ?wreg ∪ ?weq = ω-limit-set x

by (smt Collect-cong Collect-disj-eq mem-Collect-eq ω-limit-set-def )

from trapped-sol-right[OF assms(1−4 )] have ex-pos: {0 ..} ⊆ existence-ivl0 x by
blast

from ω-limit-set-in-compact-subset[OF assms(1−4 )]
have wxK : ω-limit-set x ⊆ K .
then have ?weq ⊆ S using S

by (smt Collect-mono-iff Int-iff inf .absorb-iff1 )
then have finite ?weq using ‹finite S›

by (metis rev-finite-subset)
from ω-limit-set-invariant
have xinv: invariant (ω-limit-set x) .

from ω-limit-set-in-compact-nonempty[OF assms(1−4 )] wreqweq
consider ?wreg = {} |

?weq = {} |
?weq 6= {} ?wreg 6= {} by auto

then show ?thesis
proof cases

assume ?wreg = {}
then have finite (ω-limit-set x)

by (metis (mono-tags, lifting) ‹{y ∈ ω-limit-set x . f y = 0} ⊆ S› ‹finite S›
rev-finite-subset sup-bot.left-neutral wreqweq)

from finite-ω-limit-set-in-compact-imp-unique-fixed-point[OF assms(1−4 ) this]
obtain y where y: ω-limit-set x = {y} f y = 0 by blast
then have y ∈ S

by (metis Un-empty-left ‹?weq ⊆ S› ‹?wreg = {}› insert-subset wreqweq)
then show ?thesis using y by auto

next

assume ?weq = {}
then have 0 /∈ f ‘ ω-limit-set x

by (smt empty-Collect-eq imageE)
from poincare-bendixson[OF assms(1−4 ) this]
have (∃ y. periodic-orbit y ∧ flow0 y ‘ UNIV = ω-limit-set x)

by metis
then show ?thesis by blast
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next

assume ?weq 6= {} ?wreg 6= {}
then obtain yfp where yfp: yfp ∈ ω-limit-set x f yfp = 0 by auto
have 0 /∈ f ‘ ?wreg by auto
have (∃ p1∈ω-limit-set x. f p1 = 0 ∧ ω-limit-set z = {p1}) ∧
(∃ p2∈ω-limit-set x. f p2 = 0 ∧ α-limit-set z = {p2})
if zpx: z ∈ ω-limit-set x for z
using fixed-point-in-ω-limit-set-imp-ω-limit-set-singleton-fixed-point[

OF assms(1−4 ) yfp zpx ‹finite S›[unfolded S ]] by auto
then have ω-limit-set x = ?weq ∪ ?wreg ∧

?weq ⊆ S ∧ 0 /∈ f ‘ ?wreg ∧ ?wreg 6= {} ∧
(∀ z ∈ ?wreg.
(∃ p1 ∈ ?weq. ω-limit-set z = {p1}) ∧
(∃ p2 ∈ ?weq. α-limit-set z = {p2}))

using wreqweq ‹?weq ⊆ S› ‹?wreg 6= {}› ‹0 /∈ f ‘ ?wreg›
by blast

then show ?thesis by blast
qed

qed

corollary poincare-bendixson-applied:
assumes compact K K ⊆ X
assumes K 6= {} positively-invariant K
assumes 0 /∈ f ‘ K
obtains y where periodic-orbit y flow0 y ‘ UNIV ⊆ K

proof −
from assms(1−4 ) obtain x where x ∈ K x ∈ X by auto
have ∗: trapped-forward x K

using assms(4 ) ‹x ∈ K ›
by (auto simp: positively-invariant-def )

have subs: ω-limit-set x ⊆ K
by (rule ω-limit-set-in-compact-subset[OF assms(1−2 ) ‹x ∈ X› ∗])

with assms(5 ) have 0 /∈ f ‘ ω-limit-set x by auto
from poincare-bendixson[OF assms(1−2 ) ‹x ∈ X› ∗ this]
obtain y where periodic-orbit y range (flow0 y) = ω-limit-set x

by force
then have periodic-orbit y flow0 y ‘ UNIV ⊆ K using subs by auto
then show ?thesis ..

qed

definition limit-cycle y ←→
periodic-orbit y ∧
(∃ x. x /∈ flow0 y ‘ UNIV ∧
(flow0 y ‘ UNIV = ω-limit-set x ∨ flow0 y ‘ UNIV = α-limit-set x))

corollary poincare-bendixson-limit-cycle:
assumes compact K K ⊆ X
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assumes x ∈ K positively-invariant K
assumes 0 /∈ f ‘ K
assumes rev.flow0 x t /∈ K
obtains y where limit-cycle y flow0 y ‘ UNIV ⊆ K

proof −
have x ∈ X using assms(2−3 ) by blast
have ∗: trapped-forward x K

using assms(3−4 )
by (auto simp: positively-invariant-def )

have subs: ω-limit-set x ⊆ K
by (rule ω-limit-set-in-compact-subset[OF assms(1−2 ) ‹x ∈ X› ∗])

with assms(5 ) have 0 /∈ f ‘ ω-limit-set x by auto
from poincare-bendixson[OF assms(1−2 ) ‹x ∈ X› ∗ this]
obtain y where y: periodic-orbit y range (flow0 y) = ω-limit-set x

by force
then have c2 : flow0 y ‘ UNIV ⊆ K using subs by auto
have exy: existence-ivl0 y = UNIV

using closed-orbit-global-existence periodic-orbit-def y(1 ) by blast
have x /∈ flow0 y ‘ UNIV
proof clarsimp

fix tt
assume x = flow0 y tt
then have rev.flow0 (flow0 y tt) t /∈ K using assms(6 ) by auto

moreover have rev.flow0 (flow0 y tt) t ∈ flow0 y ‘ UNIV using exy unfolding
rev-eq-flow

using UNIV-I ‹x = flow0 y tt› closed-orbit-ω-limit-set closed-orbit-flow0
periodic-orbit-def y by auto

ultimately show False using c2 by blast
qed
then have limit-cycle y flow0 y ‘ UNIV ⊆ K using y c2 unfolding limit-cycle-def

by auto
then show ?thesis ..

qed

end

end
theory Affine-Arithmetic-Misc

imports HOL−ODE−Numerics.ODE-Numerics
begin

7 Branch-And-Bound Arithmetic
primrec prove-nonneg::(nat ∗ nat ∗ string) list ⇒ nat ⇒ nat ⇒ slp ⇒ real aform
list list ⇒ bool where

prove-nonneg prnt 0 p slp X = (let - = if prnt 6= [] then print (STR ′′# depth
limit exceeded ←↩ ′′) else () in False)
| prove-nonneg prnt (Suc i) p slp XXS =

(case XXS of [] ⇒ True | (X#XS) ⇒
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let RS = approx-slp-outer p 1 slp X
in if RS 6=None ∧ Inf-aform ′ p (hd (the RS)) ≥ 0

then
let - = if prnt 6= [] then print (STR ′′# Success ←↩ ′′) else ();
- = if prnt 6= [] then print (String.implode ((shows ′′# ′′ o shows-box-of-aforms-hr

X) ′′←↩ ′′)) else ();
- = fold (λ(a, b, c) -. print (String.implode (shows-segments-of-aform a

b X c ′′←↩ ′′))) prnt ()
in prove-nonneg prnt i p slp XS
else let - = if prnt 6= [] then print (STR ′′# Split ←↩ ′′) else () in case

split-aforms-largest-uncond X of (a, b) ⇒
prove-nonneg prnt i p slp (a#b#XS))

lemma prove-nonneg-simps[simp]:
prove-nonneg prnt 0 p slp X = False
prove-nonneg prnt (Suc i) p slp XXS =
(case XXS of [] ⇒ True | (X#XS) ⇒

let RS = approx-slp-outer p 1 slp X
in if RS 6=None ∧ Inf-aform ′ p (hd (the RS)) ≥ 0

then prove-nonneg prnt i p slp XS
else case split-aforms-largest-uncond X of (a, b) ⇒ prove-nonneg prnt i p slp

(a#b#XS))
by (auto simp: Let-def split: if-splits option.splits list.splits)

lemmas [simp del] = prove-nonneg.simps

lemma split-aforms-lemma:
fixes xs::real list
assumes split-aforms XS i = (YS , ZS)
assumes xs ∈ Joints XS
shows xs ∈ Joints YS ∪ Joints ZS
using set-rev-mp[OF assms(2 ) Joints-map-split-aform[of XS i]] assms(1 )
by (auto simp: split-aforms-def o-def )

lemma prove-nonneg-empty[simp]: prove-nonneg prnt (Suc i) p slp []
by simp

lemma prove-nonneg-fuel-mono:
prove-nonneg prnt (Suc i) p (slp-of-fas [fa]) YSS
if prove-nonneg prnt i p (slp-of-fas [fa]) YSS
using that

proof (induction i arbitrary: YSS)
case 0
then show ?case by simp

next
case (Suc i)
from Suc.prems show ?case

supply [simp del] = prove-nonneg-simps
apply (subst prove-nonneg-simps)
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apply (auto simp: Let-def split: if-splits option.splits list.splits)
subgoal apply (rule Suc.IH )

apply (subst (asm) prove-nonneg-simps)
by (auto simp: Let-def split: if-splits option.splits list.splits)

subgoal apply (rule Suc.IH )
apply (subst (asm) prove-nonneg.simps)
by (auto simp: Let-def split: if-splits option.splits list.splits)

subgoal apply (rule Suc.IH )
apply (subst (asm) prove-nonneg.simps)
by (auto simp: Let-def split: if-splits option.splits list.splits)

done
qed

lemma prove-nonneg-mono:
prove-nonneg prnt i p (slp-of-fas [fa]) YSS if prove-nonneg prnt i p (slp-of-fas

[fa]) (YS # YSS)
using that

proof (induction i arbitrary: YS YSS)
case 0
then show ?case by auto

next
case (Suc i)
from Suc.prems show ?case

supply [simp del] = prove-nonneg-simps
apply (subst (asm) prove-nonneg-simps)
apply (auto simp: Let-def split: if-splits option.splits list.splits)
subgoal by (rule prove-nonneg-fuel-mono)
subgoal for x y apply (rule prove-nonneg-fuel-mono)

apply (rule Suc.IH [of y])
by (rule Suc.IH [of x])

subgoal for x y apply (rule prove-nonneg-fuel-mono)
apply (rule Suc.IH [of y])
by (rule Suc.IH [of x])

done
qed

lemma prove-nonneg:
assumes prove-nonneg prnt i p (slp-of-fas [fa]) XSS
shows ∀XS ∈ set XSS . ∀ xs ∈ Joints XS . interpret-floatarith fa xs ≥ 0
using assms

proof (induction i arbitrary: XSS)
case 0
then show ?case

by (auto )
next

case (Suc i)
show ?case
proof (cases XSS)

case Nil then show ?thesis by auto
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next
case (Cons YS YSS)
show ?thesis

unfolding Cons
apply auto
subgoal for xs using Suc.prems

apply (auto simp: Cons Let-def split: if-splits option.splits)
subgoal for ys

apply (drule approx-slp-outer-plain)
apply (rule refl)

apply force
apply assumption

apply simp
apply (frule Joints-imp-length-eq[where XS=ys])
apply (auto simp: Suc-length-conv)
by (smt Inf-aform ′-Affine-le)

subgoal
apply (simp add: split-aforms-largest-uncond-def split: prod.splits)
apply (drule Suc.IH )
apply (drule split-aforms-lemma, assumption)
by auto

subgoal
apply (simp add: split-aforms-largest-uncond-def split: prod.splits)
apply (drule Suc.IH )
apply (drule split-aforms-lemma, assumption)
by auto

done
subgoal for XS xs using Suc.prems

apply (auto simp: Cons Let-def split: if-splits option.splits)
subgoal for ys by (rule Suc.IH [rule-format], assumption, assumption,

assumption)
subgoal for ys

apply (drule prove-nonneg-mono)
apply (drule prove-nonneg-mono)
by (rule Suc.IH [rule-format], assumption, assumption, assumption)

subgoal for ys
apply (drule prove-nonneg-mono)
apply (drule prove-nonneg-mono)
by (rule Suc.IH [rule-format], assumption, assumption, assumption)

done
done

qed
qed

end

8 Examples
theory Examples
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imports Poincare-Bendixson
HOL−ODE−Numerics.ODE-Numerics
Affine-Arithmetic-Misc

begin

8.1 Simple
context
begin

coordinate functions
definition cx x y = −y + x ∗ (1 − x^2 − y^2 )
definition cy x y = x + y ∗ (1 − x^2 − y^2 )

lemmas c-defs = cx-def cy-def

partial derivatives
definition C11 ::real⇒real⇒real where C11 x y = 1 − 3 ∗ x^2 − y^2
definition C12 ::real⇒real⇒real where C12 x y = −1 − 2 ∗ x ∗ y
definition C21 ::real⇒real⇒real where C21 x y = 1 − 2 ∗ x ∗ y
definition C22 ::real⇒real⇒real where C22 x y = 1 − x^2 − 3 ∗ y^2

lemmas C-partials = C11-def C12-def C21-def C22-def

Jacobian as linear map
definition C :: real ⇒ real ⇒ (real × real) ⇒L (real × real) where

C x y = blinfun-of-matrix
((λ- -. 0 )
((1 ,0 ) := (λ-. 0 )((1 , 0 ):=C11 x y, (0 , 1 ):=C12 x y),
(0 , 1 ):= (λ-. 0 )((1 , 0 ):=C21 x y, (0 , 1 ):=C22 x y)))

lemma C-simp[simp]: blinfun-apply (C x y) (dx, dy) =
(dx ∗ C11 x y + dy ∗ C12 x y,
dx ∗ C21 x y + dy ∗ C22 x y)

by (auto simp: C-def blinfun-of-matrix-apply Basis-prod-def )

lemma C-continuous[continuous-intros]:
continuous-on S (λx. local.C (f x) (g x))
if continuous-on S f continuous-on S g
unfolding C-def
by (auto intro!: continuous-on-blinfun-of-matrix continuous-intros that

simp: Basis-prod-def C-partials)

interpretation c: c1-on-open-R2 λ(x::real, y::real). (cx x y, cy x y)::real∗real
λ(x, y). C x y UNIV
by unfold-locales

(auto intro!: derivative-eq-intros ext continuous-intros simp: split-beta alge-
bra-simps

c-defs C-partials power2-eq-square)
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definition trapC = cball (0 ::real,0 ::real) 2 − ball (0 ::real,0 ::real) (1/2 )

lemma trapC-eq:
shows trapC = {p. (fst p)^2 + (snd p)^2 − 4 ≤ 0} ∩ {p. 1/4 − ((fst p)^2 +

(snd p)^2 ) ≤ 0}
unfolding trapC-def
apply (auto simp add: dist-Pair-Pair)
using real-sqrt-le-iff apply fastforce

apply (smt four-x-squared one-le-power real-sqrt-ge-0-iff real-sqrt-pow2 )
using real-sqrt-le-mono apply fastforce

proof −
fix a :: real and b :: real
assume a1 : sqrt (a2 + b2) ∗ 2 < 1
assume a2 : 1 ≤ a2 ∗ 4 + b2 ∗ 4
have ∀ r . 1 ≤ sqrt r ∨ ¬ 1 ≤ r

by simp
then show False

using a2 a1 by (metis (no-types) Groups.mult-ac(2 ) distrib-left linorder-not-le
real-sqrt-four real-sqrt-mult)
qed

lemma x-in-trapC :
shows (2 ,0 ) ∈ trapC
unfolding trapC-def
by (auto simp add: dist-Pair-Pair)

lemma compact-trapC :
shows compact trapC
unfolding trapC-def
using compact-cball compact-diff by blast

lemma nonempty-trapC :
shows trapC 6= {}
using x-in-trapC by auto

lemma origin-fixpoint:
assumes (λ(x, y). (cx x y, cy x y)) (a,b) = 0
shows a = (0 ::real) b = (0 ::real)
using assms unfolding cx-def cy-def zero-prod-def apply auto
apply (sos ((((A<0 ∗ R<1 ) + (([28859/65536∗a + 5089/8192∗b + ∼1/2 ]
∗ A=0 ) + (([∼5089/8192∗a + 17219/65536∗b + ∼1/2 ] ∗ A=1 ) + (R<1 ∗
((R<11853/65536 ∗ [∼16384/11853∗a^2 + ∼11585/11853∗b^2 + 302/1317∗a∗b
+ a + 1940/3951∗b]^2 ) + ((R<73630271/776798208 ∗ [a^2 + 64177444/73630271∗b^2
+ 44531712/73630271∗a∗b + ∼131061126/73630271∗b]^2 ) + ((R<70211653911/4825433440256
∗ [∼77895776116/70211653911∗b^2 + 5825642465/10030236273∗a∗b + b]^2 ) +
((R<48375415273/657341564387328 ∗ [∼36776393918/48375415273∗b^2 + a∗b]^2 )
+ (R<18852430195/11096159253659648 ∗ [b^2 ]^2 )))))))))) & (((A<0 ∗ (A<0 ∗
R<1 )) + (([b] ∗ A=0 ) + (([∼1∗a] ∗ A=1 ) + (R<1 ∗ (R<1 ∗ [b]^2 ))))))))
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proof −
assume a1 : a ∗ (1 − a2 − b2) = b
assume a2 : a + b ∗ (1 − a2 − b2) = 0
have f3 : ∀ r ra. − (ra::real) ∗ r = ra ∗ − r

by simp
have − b ∗ (1 − a2 − b2) = a

using a2 by simp
then have ∃ r ra. b ∗ b − ra ∗ (r ∗ (ra ∗ − r)) = 0

using f3 a1 by (metis (no-types) c.vec-simps(15 ) right-minus-eq)
then have ∃ r . b ∗ b − r ∗ − r = 0

using f3 by (metis (no-types) c.vec-simps(14 ))
then show b = 0

by simp
qed

lemma origin-not-trapC :
shows 0 /∈ trapC
unfolding trapC-def zero-prod-def
by auto

lemma regular-trapC :
shows 0 /∈ (λ(x, y). (cx x y, cy x y)) ‘ trapC
using origin-fixpoint origin-not-trapC
by (smt UNIV-I UNIV-I UNIV-def case-prodE2 imageE c.flow-initial-time-if

c.rev.flow-initial-time-if mem-Collect-eq zero-prod-def )

lemma positively-invariant-outer :
shows c.positively-invariant {p. (λp. (fst p)2 + (snd p)2 − 4 ) p ≤ 0}
apply (rule c.positively-invariant-le[of λp.−2∗((fst p)^2+(snd p)^2 ) - λx p. 2
∗ fst x ∗ fst p + 2 ∗ snd x ∗ snd p ])

apply (auto intro!: continuous-intros derivative-eq-intros)
unfolding cx-def cy-def
by (sos (((A<0 ∗ R<1 ) + (R<1 ∗ ((R<6 ∗ [a]^2 ) + (R<6 ∗ [b]^2 ))))))

lemma positively-invariant-inner :
shows c.positively-invariant {p. (λp. 1/4 − ((fst p)2 + (snd p)2)) p ≤ 0}
apply (rule c.positively-invariant-le[of λp.−2∗((fst p)^2+(snd p)^2 ) - λx p. −

2 ∗ fst x ∗ fst p − 2 ∗ snd x ∗ snd p])
apply (auto intro!: continuous-intros derivative-eq-intros)

unfolding cx-def cy-def
by (sos (((A<0 ∗ R<1 ) + (R<1 ∗ ((R<3/2 ∗ [a]^2 ) + (R<3/2 ∗ [b]^2 ))))))

lemma positively-invariant-trapC :
shows c.positively-invariant trapC
unfolding trapC-eq
apply (rule c.positively-invariant-conj)
using positively-invariant-outer
apply (metis (no-types, lifting) Collect-cong case-prodE case-prodI2 case-prod-conv)
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using positively-invariant-inner
by (metis (no-types, lifting) Collect-cong case-prodE case-prodI2 case-prod-conv)

theorem c-has-periodic-orbit:
obtains y where c.periodic-orbit y c.flow0 y ‘ UNIV ⊆ trapC

proof −
from c.poincare-bendixson-applied[OF compact-trapC - nonempty-trapC posi-

tively-invariant-trapC regular-trapC ]
show ?thesis using that by blast

qed

Real-Arithmetic
schematic-goal c-fas:
[−(−(X !1 ) + (X !0 ) ∗ (1 − (X !0 )^2 − (X !1 )^2 )), −((X !0 ) + (X !1 ) ∗ (1 −

(X !0 )^2 − (X !1 )^2 ))] = interpret-floatariths ?fas X
by (reify-floatariths)

concrete-definition c-fas uses c-fas

interpretation crev: ode-interpretation true-form UNIV c-fas
−(λ(x, y). (cx x y, cy x y)::real∗real)
d::2 for d
by unfold-locales (auto simp: c-fas-def less-Suc-eq-0-disj nth-Basis-list-prod Ba-

sis-list-real-def
cx-def cy-def eval-nat-numeral
mk-ode-ops-def eucl-of-list-prod power2-eq-square intro!: isFDERIV-I )

lemma crev: t ∈ {1/8 .. 1/8} −→ (x, y) ∈ {(2 , 0 ) .. (2 , 0 )} −→
t ∈ c.rev.existence-ivl0 (x, y) ∧ c.rev.flow0 (x, y) t ∈ {(5 .15 , −0 .651 )..(5 .18 ,

−0 .647 )}
by (tactic ‹ode-bnds-tac @{thms c-fas-def } 30 20 7 12 [(0 , 1 , 0x000000)] (∗

crev.out ∗) @{context} 1 ›)

theorem c-has-limit-cycle:
obtains y where c.limit-cycle y range (c.flow0 y) ⊆ trapC

proof −
define E where E = {(5 .15 , −0 .651 )..(5 .18 , −0 .647 )::real∗real}
from crev have c.rev.flow0 (2 , 0 ) (1/8 ) ∈ E

by (auto simp: E-def )
moreover
have E ∩ trapC = {}
proof −

have norm x > 2 if x ∈ E for x
using that
apply (auto simp: norm-prod-def less-eq-prod-def E-def )
by (smt power2-less-eq-zero-iff real-less-rsqrt zero-compare-simps(9 ))

moreover have norm x ≤ 2 if x ∈ trapC for x
using that
by (auto simp: trapC-def dist-prod-def norm-prod-def )
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ultimately show ?thesis by force
qed
ultimately have c.rev.flow0 (2 , 0 ) (1 / 8 ) /∈ trapC by blast
from c.poincare-bendixson-limit-cycle[OF compact-trapC subset-UNIV x-in-trapC

positively-invariant-trapC regular-trapC this] that
show ?thesis by blast

qed

end

8.2 Glycolysis

Strogatz, Example 7.3.2
context
begin

coordinate functions
definition gx x y = −x + 0 .08 ∗ y + x2 ∗ y
definition gy x y = 0 .6 − 0 .08 ∗ y − x2 ∗ y

lemmas g-defs = gx-def gy-def

partial derivatives
definition A11 ::real⇒real⇒real where A11 x y = −1 + 2 ∗ x ∗ y
definition A12 ::real⇒real⇒real where A12 x y = (0 .08 + x2)
definition A21 ::real⇒real⇒real where A21 x y = −2∗x∗y
definition A22 ::real⇒real⇒real where A22 x y = −(0 .08 + x2)

lemmas A-partials = A11-def A12-def A21-def A22-def

Jacobian as linear map
definition A :: real ⇒ real ⇒ (real × real) ⇒L (real × real) where

A x y = blinfun-of-matrix
((λ- -. 0 )
((1 ,0 ) := (λ-. 0 )((1 , 0 ):=A11 x y, (0 , 1 ):=A12 x y),
(0 , 1 ):= (λ-. 0 )((1 , 0 ):=A21 x y, (0 , 1 ):=A22 x y)))

lemma A-simp[simp]: blinfun-apply (A x y) (dx, dy) =
(dx ∗ A11 x y + dy ∗ A12 x y,
dx ∗ A21 x y + dy ∗ A22 x y)

by (auto simp: A-def blinfun-of-matrix-apply Basis-prod-def )

lemma A-continuous[continuous-intros]:
continuous-on S (λx. local.A (f x) (g x))
if continuous-on S f continuous-on S g
unfolding A-def
by (auto intro!: continuous-on-blinfun-of-matrix continuous-intros that

simp: Basis-prod-def A-partials)
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interpretation g: c1-on-open-R2 λ(x::real, y::real). (gx x y, gy x y)::real∗real
λ(x, y). A x y UNIV
by unfold-locales

(auto intro!: derivative-eq-intros ext continuous-intros simp: split-beta alge-
bra-simps

g-defs A-partials)

definition (pos-quad::(real × real) set) = {p . − snd p ≤ 0} ∩ {p . − fst p ≤ 0}

definition (trapG1 ::(real × real) set) = pos-quad ∩ ({p. (snd p) − 751/100 ≤ 0}
∩ {p. (fst p) + (snd p) − 812/100 ≤ 0})

lemma positively-invariant-y:
shows g.positively-invariant {p . − snd p ≤ 0}
apply (rule g.positively-invariant-le[of λp. −(0 .08 + (fst p)^2 ) - λx p. − snd

p])
apply (auto intro!: continuous-intros derivative-eq-intros)

unfolding gy-def
by (sos ())

lemma positively-invariant-pos-quad:
shows g.positively-invariant pos-quad
unfolding pos-quad-def
apply (rule g.positively-invariant-le-domain[OF positively-invariant-y, of λp. fst

p ∗ snd p −1 ])
apply (auto intro!: continuous-intros derivative-eq-intros)

unfolding gx-def
by (sos (((A<0 ∗ R<1 ) + (((A<0 ∗ R<1 ) ∗ (R<11/14 ∗ [1 ]^2 )) + ((A<=0
∗ R<1 ) ∗ (R<1/7 ∗ [1 ]^2 ))))))

lemma positively-invariant-y-upper :
shows g.positively-invariant {p. (snd p) − 751/100 ≤ 0}
apply (rule g.positively-invariant-barrier)

apply (auto intro!: continuous-intros derivative-eq-intros)
unfolding gy-def
by (sos ((R<1 + ((R<1 ∗ (R<18775/2 ∗ [a]^2 )) + ((A<=0 ∗ R<1 ) ∗ (R<1250
∗ [1 ]^2 ))))))

lemma arith2 :
shows (y::real) ≤ 751/100 ∧ x + (y::real) = 812/100 =⇒ 3/5 − (x::real) < 0
by linarith

lemma positively-invariant-trapG1 :
shows g.positively-invariant trapG1
unfolding trapG1-def
apply (rule g.positively-invariant-conj[OF positively-invariant-pos-quad])
apply (rule g.positively-invariant-barrier-domain[OF positively-invariant-y-upper ])
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apply (auto intro!: continuous-intros derivative-eq-intros)
unfolding gx-def gy-def by auto

definition p1 (x::real) (y::real) = −(21/34 ) − (69∗x)/38 + (19∗x^2 )/15 −
(9∗x^3 )/28 − (6∗x^4 )/43 + ( 14∗y)/29 + (31∗x∗y)/21 + (182∗x^2∗y)/47 −
(35∗x^3∗y)/16 − ( 3∗y^2 )/17 − (2∗x∗y^2 )/9 − (31∗x^2∗y^2 )/20 +y^3/102
+ (x∗y^3 )/59

definition p1d x xa = 38 ∗ (fst xa ∗ fst x) / 15 − 69 ∗ fst xa / 38 −
27 ∗ (fst xa ∗ (fst x)2) / 28 −
24 ∗ (fst xa ∗ fst x ^ 3 ) / 43 +
14 ∗ snd xa / 29 +
(651 ∗ (fst x ∗ snd xa) +
651 ∗ (fst xa ∗ snd x)) /

441 +
(8554 ∗ ((fst x)2 ∗ snd xa) +
17108 ∗ (fst xa ∗ (fst x ∗ snd x))) /

2209 −
(560 ∗ (fst x ^ 3 ∗ snd xa) +
1680 ∗ (fst xa ∗ ((fst x)2 ∗ snd x))) /

256 −
6 ∗ (snd xa ∗ snd x) / 17 −
(36 ∗ (fst x ∗ (snd xa ∗ snd x)) +
18 ∗ (fst xa ∗ (snd x)2)) /

81 −
(1240 ∗ ((fst x)2 ∗ (snd xa ∗ snd x)) +
1240 ∗ (fst xa ∗ (fst x ∗ (snd x)2))) /

400 +
snd xa ∗ (snd x)2 / 34 +
(177 ∗ (fst x ∗ (snd xa ∗ (snd x)2)) +
fst xa ∗ snd x ^ 3 ∗ 59 ) /

3481

lemma p1-has-derivative:
shows ((λx. p1 (fst x) (snd x)) has-derivative p1d x) (at x)
unfolding p1-def p1d-def
by (auto intro!: continuous-intros derivative-eq-intros)

lemma p1-not-equil:
shows p1 x y ≤ 0 =⇒ gx x y 6= 0 ∨ gy x y 6= 0
unfolding gx-def gy-def p1-def
by (sos ())

definition trapG = trapG1 ∩ {p. p1 (fst p) (snd p) ≤ 0}

Real-Arithmetic
definition g-arith a b = (− (27 / 25 ) − a2 + 2 ∗ a ∗ b) ∗ p1 a b − p1d (a, b)
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(gx a b, gy a b)

schematic-goal g-arith-fas:
[g-arith (X !0 ) (X !1 )] = interpret-floatariths ?fas X
unfolding g-arith-def p1-def p1d-def gx-def gy-def fst-conv snd-conv
by (reify-floatariths)

concrete-definition g-arith-fas uses g-arith-fas

lemma list-interval2 : list-interval [a, b] [c, d] = {[x, y] | x y. x ∈ {a .. c} ∧ y ∈
{b .. d}}

apply (auto simp: list-interval-def )
subgoal for x

apply (cases x)
apply auto
subgoal for y zs

apply (cases zs)
by auto

done
done

lemma g-arith-nonneg: g-arith a b ≥ 0
if a: 0 ≤ a a ≤ 8 .24 and b: 0 ≤ b b ≤ 7 .51

proof −
have prove-nonneg [(0 , 1 , ′′0x000000 ′′)] 1000000 30 (slp-of-fas [hd g-arith-fas])

[aforms-of-ivls [0 , 0 ]
[float-divr 30 824 100 , float-divr 30 751 100 ]]
by eval— slow: 60s

from prove-nonneg[OF this]
have 0 ≤ interpret-floatarith (hd g-arith-fas) [a, b]

apply (auto simp: g-arith-fas)
apply (subst (asm) Joints-aforms-of-ivls)
apply (auto )
apply (smt divide-nonneg-nonneg float-divr float-numeral rel-simps(27 ))

apply (smt divide-nonneg-nonneg float-divr float-numeral rel-simps(27 ))
apply (subst (asm) list-interval2 )
apply auto
apply (drule spec[where x=[a, b]])
using a b
apply auto
subgoal by (rule order-trans[OF - float-divr ]) simp
subgoal by (rule order-trans[OF - float-divr ]) simp
done

also have . . . = g-arith a b
by (auto simp: g-arith-fas-def g-arith-def p1-def p1d-def gx-def gy-def )

finally show ?thesis .
qed

lemma trap-arithmetic:
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p1d (a, b) (gx a b, gy a b) ≤ (− (27 / 25 ) − a2 + 2 ∗ a ∗ b) ∗ p1 a b if (a, b)
∈ trapG1
proof −

from that
have b: 0 ≤ b b ≤ 7 .51

and a: 0 ≤ a a ≤ 8 .24
by (auto simp: trapG1-def pos-quad-def )

from g-arith-nonneg[OF a b] show ?thesis
by (simp add: g-arith-def )

qed

lemma positively-invariant-trapG:
shows g.positively-invariant trapG
unfolding trapG-def
apply (rule g.positively-invariant-le-domain[OF positively-invariant-trapG1 - p1-has-derivative,

of λp. −1 .08 − (fst p)^2 + 2 ∗ fst p ∗ snd p])
subgoal by (auto intro!: continuous-intros derivative-eq-intros simp add: pos-quad-def )
apply auto
by (rule trap-arithmetic)

lemma regular-trapG:
shows 0 /∈ (λ(x, y). (gx x y, gy x y)) ‘ trapG
unfolding trapG-def apply auto using p1-not-equil
by force

lemma arith:∧
a b::real. 0 ≤ b =⇒

0 ≤ a =⇒
b ∗ 100 ≤ 751 =⇒
a ∗ 25 + b ∗ 25 ≤ 203 =⇒ norm a + norm b ≤ 20

by auto

lemma trapG1-subset:
shows trapG1 ⊆ cball (0 ::real × real) 20
unfolding trapG1-def pos-quad-def
apply auto
using arith norm-Pair-le
by smt

lemma compact-subset-closed:
assumes compact S closed T
assumes T ⊆ S
shows compact T
using compact-Int-closed[OF assms(1−2 )] assms(3 )
by (simp add: inf-absorb2 )

lemma compact-trapG1 :
shows compact trapG1
apply (auto intro!: compact-subset-closed[OF - - trapG1-subset])
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unfolding trapG1-def pos-quad-def
by (auto intro!: closed-Collect-le continuous-intros)

lemma compact-trapG:
shows compact trapG
unfolding trapG-def
by (auto intro!: compact-Int-closed compact-trapG1 closed-Collect-le continu-

ous-intros simp add: p1-def )

lemma x-in-trapG:
shows (1 ,0 ) ∈ trapG
unfolding trapG-def trapG1-def pos-quad-def p1-def
by (auto simp add: dist-Pair-Pair)

schematic-goal g-fas:
[− (− (X !0 ) + 8 / 100 ∗ (X !1 ) + (X !0 )^2 ∗ (X !1 )),−( 6 / 10 − 8 / 100 ∗

(X !1 ) − (X !0 )^2 ∗ (X !1 ))] = interpret-floatariths ?fas X
by (reify-floatariths)

concrete-definition g-fas uses g-fas

interpretation grev: ode-interpretation true-form UNIV g-fas
−(λ(x, y). (gx x y, gy x y)::real∗real)
d::2 for d
by unfold-locales (auto simp: g-fas-def less-Suc-eq-0-disj nth-Basis-list-prod Ba-

sis-list-real-def
gx-def gy-def eval-nat-numeral
mk-ode-ops-def eucl-of-list-prod power2-eq-square intro!: isFDERIV-I )

lemma grev: t ∈ {1/8 .. 1/8} −→ (x, y) ∈ {(1 , 0 ) .. (1 , 0 )} −→
t ∈ g.rev.existence-ivl0 (x, y) ∧ g.rev.flow0 (x, y) t ∈
{(1 .1 , −0 .09 ) .. (1 .2 , −0 .08 )}

by (tactic ‹ode-bnds-tac @{thms g-fas-def } 30 20 7 12 [(0 , 1 , 0x000000)] (∗
grev.out ∗) @{context} 1 ›)

theorem g-has-limit-cycle:
obtains y where g.limit-cycle y range (g.flow0 y) ⊆ trapG

proof −
define E ::(real∗real) set where E = {(1 .1 , −0 .09 ) .. (1 .2 , −0 .08 )}
from grev have g.rev.flow0 (1 , 0 ) (1/8 ) ∈ E

by (auto simp: E-def )
moreover
have E ∩ trapG = {}

by (auto simp: trapG-def E-def trapG1-def pos-quad-def )
ultimately have g.rev.flow0 (1 , 0 ) (1 / 8 ) /∈ trapG by blast
from g.poincare-bendixson-limit-cycle[OF compact-trapG subset-UNIV x-in-trapG

positively-invariant-trapG regular-trapG this] that
show ?thesis by blast

qed
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end

end
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