
The Poincaré-Bendixson Theorem

Fabian Immler and Yong Kiam Tan

March 17, 2025

Contents
1 Additions to HOL-Analysis 1

1.1 Unsorted Lemmas (TODO: sort!) 1
1.2 indexing euclidean space with natural numbers 16
1.3 derivatives . 18
1.4 Segments . 20
1.5 Open Segments . 22
1.6 Syntax . 23
1.7 Paths . 23

2 Additions to the ODE Library 25
2.1 Comparison Principle . 26
2.2 Locally Lipschitz ODEs . 29
2.3 Reverse flow as Sublocale . 30
2.4 Autonomous LL ODE : Existence Interval and trapping on

the interval . 31
2.5 Connectedness . 40
2.6 Return Time and Implicit Function Theorem 41
2.7 Fixpoints . 49

3 Invariance 49
3.1 Tools for proving invariance 52

4 Limit Sets 56

5 Periodic Orbits 66

6 Poincare Bendixson Theory 77
6.1 Flow to Path . 77
6.2 2D Line segments . 79
6.3 Bijection Real-Complex for Jordan Curve Theorem 82
6.4 Transversal Segments . 89
6.5 Monotone Step Lemma . 99

1

6.6 Straightening . 121
6.7 Unique Intersection . 127
6.8 Poincare Bendixson Theorems 133

7 Branch-And-Bound Arithmetic 138

8 Examples 141
8.1 Simple . 142
8.2 Glycolysis . 146

1 Additions to HOL-Analysis
theory Analysis-Misc

imports
Ordinary-Differential-Equations.ODE-Analysis

begin

1.1 Unsorted Lemmas (TODO: sort!)
lemma uminus-uminus-image: uminus ‘ uminus ‘ S = S

for S :: ′r ::ab-group-add set
by (auto simp: image-image)

lemma in-uminus-image-iff [simp]: x ∈ uminus ‘ S ←→ − x ∈ S
for S :: ′r ::ab-group-add set
by force

lemma closed-subsegmentI :
w + t ∗R (z − w) ∈ {x−−y}
if w ∈ {x −− y} z ∈ {x −− y} and t: 0 ≤ t t≤ 1

proof −
from that obtain u v where

w-def : w = (1 − u) ∗R x + u ∗R y and u: 0 ≤ u u ≤ 1
and z-def : z = (1 − v) ∗R x + v ∗R y and v: 0 ≤ v v ≤ 1
by (auto simp: in-segment)

have w + t ∗R (z − w) =
(1 − (u − t ∗ (u − v))) ∗R x + (u − t ∗ (u − v)) ∗R y
by (simp add: algebra-simps w-def z-def)

also have . . . ∈ {x −− y}
unfolding closed-segment-image-interval
apply (rule imageI)
using t u v
apply auto

apply (metis (full-types) diff-0-right diff-left-mono linear mult-left-le-one-le
mult-nonneg-nonpos order .trans)

by (smt mult-left-le-one-le mult-nonneg-nonneg vector-space-over-itself .scale-right-diff-distrib)
finally show ?thesis .

qed

2

lemma tendsto-minus-cancel-right: ((λx. −g x) −−−→ l) F ←→ (g −−−→ −l) F
— cf (?f −−−→ − ?y) ?F = ((λx. − ?f x) −−−→ ?y) ?F
for g::- ⇒ ′b::topological-group-add
by (simp add: tendsto-minus-cancel-left)

lemma tendsto-nhds-continuousI : (f −−−→ l) (nhds x) if (f −−−→ l) (at x) f x = l
— TODO: the assumption is continuity of f at x

proof (rule topological-tendstoI)
fix S :: ′b set assume open S l ∈ S
from topological-tendstoD[OF that(1) this]
have ∀ F x in at x. f x ∈ S .
then show ∀ F x in nhds x. f x ∈ S

unfolding eventually-at-filter
by eventually-elim (auto simp: that ‹l ∈ S›)

qed

lemma inj-composeD:
assumes inj (λx. g (t x))
shows inj t
using assms
by (auto simp: inj-def)

lemma compact-sequentialE :
fixes S T :: ′a::first-countable-topology set
assumes compact S
assumes infinite T
assumes T ⊆ S
obtains t::nat ⇒ ′a and l:: ′a
where

∧
n. t n ∈ T

∧
n. t n 6= l t −−−−→ l l ∈ S

proof −
from Heine-Borel-imp-Bolzano-Weierstrass[OF assms]
obtain l where l ∈ S l islimpt T by metis
then obtain t where t n ∈ T t n 6= l t −−−−→ l l ∈ S for n unfolding

islimpt-sequential
by auto

then show ?thesis ..
qed

lemma infinite-countable-subsetE :
fixes S :: ′a set
assumes infinite S
obtains g::nat⇒ ′a where inj g range g ⊆ S
using assms
by atomize-elim (simp add: infinite-countable-subset)

lemma real-quad-ge: 2 ∗ (an ∗ bn) ≤ an ∗ an + bn ∗ bn for an bn::real
by (sos (((A<0 ∗ R<1) + (R<1 ∗ (R<1 ∗ [an + ∼1∗bn]^2)))))

3

lemma inner-quad-ge: 2 ∗ (a · b) ≤ a · a + b · b
for a b:: ′a::euclidean-space— generalize?

proof −
show ?thesis

by (subst (1 2 3) euclidean-inner)
(auto simp add: sum.distrib[symmetric] sum-distrib-left intro!: sum-mono

real-quad-ge)
qed

lemma inner-quad-gt: 2 ∗ (a · b) < a · a + b · b
if a 6= b
for a b:: ′a::euclidean-space— generalize?

proof −
from that obtain i where i ∈ Basis a · i 6= b · i

by (auto simp: euclidean-eq-iff [where ′a= ′a])
then have 2 ∗ (a · i ∗ (b · i)) < a · i ∗ (a · i) + b · i ∗ (b · i)

using sum-sqs-eq[of a·i b·i]
by (auto intro!: le-neq-trans real-quad-ge)

then show ?thesis
by (subst (1 2 3) euclidean-inner)
(auto simp add: ‹i ∈ Basis› sum.distrib[symmetric] sum-distrib-left

intro!: sum-strict-mono-ex1 real-quad-ge)
qed

lemma closed-segment-line-hyperplanes:
{a −− b} = range (λu. a + u ∗R (b − a)) ∩ {x. a · (b − a) ≤ x · (b − a) ∧ x

· (b − a) ≤ b · (b − a)}
if a 6= b
for a b:: ′a::euclidean-space

proof safe
fix x assume x: x ∈ {a−−b}
then obtain u where u: 0 ≤ u u ≤ 1 and x-eq: x = a + u ∗R (b − a)

by (auto simp add: in-segment algebra-simps)
show x ∈ range (λu. a + u ∗R (b − a)) using x-eq by auto
have 2 ∗ (a · b) ≤ a · a + b · b

by (rule inner-quad-ge)
then have u ∗ (2 ∗ (a · b) − a · a − b · b) ≤ 0

0 ≤ (1 − u) ∗ (a · a + b · b − a · b ∗ 2)
by (simp-all add: mult-le-0-iff u)

then show a · (b − a) ≤ x · (b − a) x · (b − a) ≤ b · (b − a)
by (auto simp: x-eq algebra-simps power2-eq-square inner-commute)

next
fix u assume

a · (b − a) ≤ (a + u ∗R (b − a)) · (b − a)
(a + u ∗R (b − a)) · (b − a) ≤ b · (b − a)

then have 0 ≤ u ∗ ((b − a) · (b − a)) 0 ≤ (1 − u) ∗ ((b − a) · (b − a))
by (auto simp: algebra-simps)

then have 0 ≤ u u ≤ 1
using inner-ge-zero[of (b − a)] that

4

by (auto simp add: zero-le-mult-iff)
then show a + u ∗R (b − a) ∈ {a−−b}

by (auto simp: in-segment algebra-simps)
qed

lemma open-segment-line-hyperplanes:
{a <−−< b} = range (λu. a + u ∗R (b − a)) ∩ {x. a · (b − a) < x · (b − a)
∧ x · (b − a) < b · (b − a)}

if a 6= b
for a b:: ′a::euclidean-space

proof safe
fix x assume x: x ∈ {a<−−<b}
then obtain u where u: 0 < u u < 1 and x-eq: x = a + u ∗R (b − a)

by (auto simp add: in-segment algebra-simps)
show x ∈ range (λu. a + u ∗R (b − a)) using x-eq by auto
have 2 ∗ (a · b) < a · a + b · b using that

by (rule inner-quad-gt)
then have u ∗ (2 ∗ (a · b) − a · a − b · b) < 0

0 < (1 − u) ∗ (a · a + b · b − a · b ∗ 2)
by (simp-all add: mult-less-0-iff u)

then show a · (b − a) < x · (b − a) x · (b − a) < b · (b − a)
by (auto simp: x-eq algebra-simps power2-eq-square inner-commute)

next
fix u assume

a · (b − a) < (a + u ∗R (b − a)) · (b − a)
(a + u ∗R (b − a)) · (b − a) < b · (b − a)

then have 0 < u ∗ ((b − a) · (b − a)) 0 < (1 − u) ∗ ((b − a) · (b − a))
by (auto simp: algebra-simps)

then have 0 < u u < 1
using inner-ge-zero[of (b − a)] that
by (auto simp add: zero-less-mult-iff)

then show a + u ∗R (b − a) ∈ {a<−−<b}
by (auto simp: in-segment algebra-simps that)

qed

lemma at-within-interior : NO-MATCH UNIV S =⇒ x ∈ interior S =⇒ at x within
S = at x

by (auto intro: at-within-interior)

lemma tendsto-at-topI :
(f −−−→ l) at-top if

∧
e. 0 < e =⇒ ∃ x0 . ∀ x≥x0 . dist (f x) l < e

for f :: ′a::linorder-topology ⇒ ′b::metric-space
using that
apply (intro tendstoI)
unfolding eventually-at-top-linorder
by auto

lemma tendsto-at-topE :
fixes f :: ′a::linorder-topology ⇒ ′b::metric-space

5

assumes (f −−−→ l) at-top
assumes e > 0
obtains x0 where

∧
x. x ≥ x0 =⇒ dist (f x) l < e

proof −
from assms(1)[THEN tendstoD, OF assms(2)]
have ∀ F x in at-top. dist (f x) l < e .
then show ?thesis

unfolding eventually-at-top-linorder
by (auto intro: that)

qed
lemma tendsto-at-top-iff : (f −−−→ l) at-top ←→ (∀ e>0 . ∃ x0 . ∀ x≥x0 . dist (f x)
l < e)

for f :: ′a::linorder-topology ⇒ ′b::metric-space
by (auto intro!: tendsto-at-topI elim!: tendsto-at-topE)

lemma tendsto-at-top-eq-left:
fixes f g:: ′a::linorder-topology ⇒ ′b::metric-space
assumes (f −−−→ l) at-top
assumes

∧
x. x ≥ x0 =⇒ f x = g x

shows (g −−−→ l) at-top
unfolding tendsto-at-top-iff
by (metis (no-types, opaque-lifting) assms(1) assms(2) linear order-trans tend-

sto-at-topE)

lemma lim-divide-n: (λx. e / real x) −−−−→ 0
proof −

have (λx. e ∗ inverse (real x)) −−−−→ 0
by (auto intro: tendsto-eq-intros lim-inverse-n)

then show ?thesis by (simp add: inverse-eq-divide)
qed

definition at-top-within :: (′a::order) set ⇒ ′a filter
where at-top-within s = (INF k ∈ s. principal ({k ..} ∩ s))

lemma at-top-within-at-top[simp]:
shows at-top-within UNIV = at-top
unfolding at-top-within-def at-top-def
by (auto)

lemma at-top-within-empty[simp]:
shows at-top-within {} = top
unfolding at-top-within-def
by (auto)

definition nhds-set X = (INF S∈{S . open S ∧ X ⊆ S}. principal S)

lemma eventually-nhds-set:
(∀ F x in nhds-set X . P x) ←→ (∃S . open S ∧ X ⊆ S ∧ (∀ x∈S . P x))
unfolding nhds-set-def by (subst eventually-INF-base) (auto simp: eventually-principal)

6

term filterlim f (nhds-set (frontier X)) F — f tends to the boundary of X?

somewhat inspired by ?l islimpt range ?f =⇒ ∃ r . strict-mono r ∧ (?f ◦
r) −−−−→ ?l and its dependencies. The class constraints seem somewhat
arbitrary, perhaps this can be generalized in some way.
lemma limpt-closed-imp-exploding-subsequence:— TODO: improve name?!
fixes f :: ′a::{heine-borel,real-normed-vector} ⇒ ′b::{first-countable-topology, t2-space}
assumes cont[THEN continuous-on-compose2 , continuous-intros]: continuous-on

T f
assumes closed: closed T
assumes bound:

∧
t. t ∈ T =⇒ f t 6= l

assumes limpt: l islimpt (f ‘ T)
obtains s where
(f ◦ s) −−−−→ l∧

i. s i ∈ T∧
C . compact C =⇒ C ⊆ T =⇒ ∀ F i in sequentially. s i /∈ C

proof −
from countable-basis-at-decseq[of l]
obtain A where A:

∧
i. open (A i)

∧
i. l ∈ A i

and evA:
∧

S . open S =⇒ l ∈ S =⇒ eventually (λi. A i ⊆ S) sequentially
by blast

from closed-Union-compact-subsets[OF closed]
obtain C

where C : (
∧

n. compact (C n)) (
∧

n. C n ⊆ T) (
∧

n. C n ⊆ C (Suc n))
⋃

(range C) = T
and evC : (

∧
K . compact K =⇒ K ⊆ T =⇒ ∀ F i in sequentially. K ⊆ C i)

by (metis eventually-sequentially)

have AC : l ∈ A i − f ‘ C i open (A i − f ‘ C i) for i
using C bound
by (fastforce intro!: open-Diff A compact-imp-closed compact-continuous-image

continuous-intros)+

from islimptE [OF limpt AC] have ∃ t∈T . f t ∈ A i − f ‘ C i ∧ f t 6= l for i by
blast

then obtain t where t:
∧

i. t i ∈ T
∧

i. f (t i) ∈ A i − f ‘ C i
∧

i. f (t i) 6= l
by metis

have (f o t) −−−−→ l
using t
by (auto intro!: topological-tendstoI dest!: evA elim!: eventually-mono)

moreover
have

∧
i. t i ∈ T by fact

moreover
have ∀ F i in sequentially. t i /∈ K if compact K K ⊆ T for K

using evC [OF that]
by eventually-elim (use t in auto)

7

ultimately show ?thesis ..
qed

lemma Inf-islimpt: bdd-below S =⇒ Inf S /∈ S =⇒ S 6= {} =⇒ Inf S islimpt S for
S ::real set

by (auto simp: islimpt-in-closure intro!: closure-contains-Inf)

context linorder
begin

HOL-analysis doesn’t seem to have these, maybe they were never needed.
Some variants are around {?a..?b} ∩ {?c..?d} = {max ?a ?c..min ?b ?d},
but with old-style naming conventions. Change to the "modern" I.. conven-
tion there?
lemma Int-Ico[simp]:

shows {a..} ∩ {b..} = {max a b ..}
by (auto)

lemma Int-Ici-Ico[simp]:
shows {a..} ∩ {b..<c} = {max a b ..<c}
by auto

lemma Int-Ico-Ici[simp]:
shows {a..<c} ∩ {b..} = {max a b ..<c}
by auto

lemma subset-Ico-iff [simp]:
{a..<b} ⊆ {c..<b} ←→ b ≤ a ∨ c ≤ a
unfolding atLeastLessThan-def
by auto

lemma Ico-subset-Ioo-iff [simp]:
{a..<b} ⊆ {c<..<b} ←→ b ≤ a ∨ c < a
unfolding greaterThanLessThan-def atLeastLessThan-def
by auto

lemma Icc-Un-Ici[simp]:
shows {a..b} ∪ {b..} = {min a b..}
unfolding atLeastAtMost-def atLeast-def atMost-def min-def
by auto

end

lemma at-top-within-at-top-unbounded-right:
fixes a:: ′a::linorder
shows at-top-within {a..} = at-top
unfolding at-top-within-def at-top-def
apply (auto intro!: INF-eq)
by (metis linorder-class.linear linorder-class.max.cobounded1 linorder-class.max.idem

8

ord-class.atLeast-iff)

lemma at-top-within-at-top-unbounded-rightI :
fixes a:: ′a::linorder
assumes {a..} ⊆ s
shows at-top-within s = at-top
unfolding at-top-within-def at-top-def
apply (auto intro!: INF-eq)
apply (meson Ici-subset-Ioi-iff Ioi-le-Ico assms dual-order .refl dual-order .trans

leI)
by (metis assms atLeast-iff atLeast-subset-iff inf .cobounded1 linear subsetD)

lemma at-top-within-at-top-bounded-right:
fixes a b:: ′a::{dense-order ,linorder-topology}
assumes a < b
shows at-top-within {a..<b} = at-left b
unfolding at-top-within-def at-left-eq[OF assms(1)]
apply (auto intro!: INF-eq)

apply (smt atLeastLessThan-iff greaterThanLessThan-iff le-less lessThan-iff
max.absorb1 subset-eq)
by (metis assms atLeastLessThan-iff dense linear max.absorb1 not-less order-trans)

lemma at-top-within-at-top-bounded-right ′:
fixes a b:: ′a::{dense-order ,linorder-topology}
assumes a < b
shows at-top-within {..<b} = at-left b
unfolding at-top-within-def at-left-eq[OF assms(1)]
apply (auto intro!: INF-eq)
apply (meson atLeast-iff greaterThanLessThan-iff le-less lessThan-iff subset-eq)

by (metis Ico-subset-Ioo-iff atLeastLessThan-def dense lessThan-iff)

lemma eventually-at-top-within-linorder :
assumes sn:s 6= {}
shows eventually P (at-top-within s) ←→ (∃ x0 :: ′a::{linorder-topology} ∈ s. ∀ x
≥ x0 . x∈ s −→ P x)

unfolding at-top-within-def
apply (subst eventually-INF-base)

apply (auto simp:eventually-principal sn)
by (metis atLeast-subset-iff inf .coboundedI2 inf-commute linear)

lemma tendsto-at-top-withinI :
fixes f :: ′a::linorder-topology ⇒ ′b::metric-space
assumes s 6= {}
assumes

∧
e. 0 < e =⇒ ∃ x0 ∈ s. ∀ x ∈ {x0 ..} ∩ s. dist (f x) l < e

shows (f −−−→ l) (at-top-within s)
apply(intro tendstoI)
unfolding at-top-within-def apply (subst eventually-INF-base)

apply (auto simp:eventually-principal assms)
by (metis atLeast-subset-iff inf .coboundedI2 inf-commute linear)

9

lemma tendsto-at-top-withinE :
fixes f :: ′a::linorder-topology ⇒ ′b::metric-space
assumes s 6= {}
assumes (f −−−→ l) (at-top-within s)
assumes e > 0
obtains x0 where x0 ∈ s

∧
x. x ∈ {x0 ..} ∩ s =⇒ dist (f x) l < e

proof −
from assms(2)[THEN tendstoD, OF assms(3)]
have ∀ F x in at-top-within s. dist (f x) l < e .
then show ?thesis unfolding eventually-at-top-within-linorder [OF ‹s 6= {}›]

by (auto intro: that)
qed

lemma tendsto-at-top-within-iff :
fixes f :: ′a::linorder-topology ⇒ ′b::metric-space
assumes s 6= {}
shows (f −−−→ l) (at-top-within s) ←→ (∀ e>0 . ∃ x0 ∈ s. ∀ x ∈ {x0 ..} ∩ s. dist

(f x) l < e)
by (auto intro!: tendsto-at-top-withinI [OF ‹s 6= {}›] elim!: tendsto-at-top-withinE [OF

‹s 6= {}›])

lemma filterlim-at-top-at-top-within-bounded-right:
fixes a b:: ′a::{dense-order ,linorder-topology}
fixes f :: ′a ⇒ real
assumes a < b
shows filterlim f at-top (at-top-within {..<b}) = (f −−−→ ∞) (at-left b)
unfolding filterlim-at-top-dense

at-top-within-at-top-bounded-right ′[OF assms(1)]
eventually-at-left[OF assms(1)]
tendsto-PInfty

by auto

Extract a sequence (going to infinity) bounded away from l
lemma not-tendsto-frequentlyE :

assumes ¬((f −−−→ l) F)
obtains S where open S l ∈ S ∃ F x in F . f x /∈ S
using assms
by (auto simp: tendsto-def not-eventually)

lemma not-tendsto-frequently-metricE :
assumes ¬((f −−−→ l) F)
obtains e where e > 0 ∃ F x in F . e ≤ dist (f x) l
using assms
by (auto simp: tendsto-iff not-eventually not-less)

lemma eventually-frequently-conj: frequently P F =⇒ eventually Q F =⇒ fre-
quently (λx. P x ∧ Q x) F

unfolding frequently-def

10

apply (erule contrapos-nn)
subgoal premises prems

using prems by eventually-elim auto
done

lemma frequently-at-top:
(∃ F t in at-top. P t) ←→ (∀ t0 . ∃ t>t0 . P t)
for P:: ′a::{linorder ,no-top}⇒bool
by (auto simp: frequently-def eventually-at-top-dense)

lemma frequently-at-topE :
fixes P::nat ⇒ ′a::{linorder ,no-top}⇒-
assumes freq[rule-format]: ∀n. ∃ F a in at-top. P n a
obtains s::nat⇒ ′a
where

∧
i. P i (s i) strict-mono s

proof −
have ∃ f . ∀n. P n (f n) ∧ f n < f (Suc n)
proof (rule dependent-nat-choice)

from frequently-ex[OF freq[of 0]] show ∃ x. P 0 x .
fix x n assume P n x
from freq[unfolded frequently-at-top, rule-format, of x Suc n]
obtain y where P (Suc n) y y > x by auto
then show ∃ y. P (Suc n) y ∧ x < y

by auto
qed
then obtain s where

∧
i. P i (s i) strict-mono s

unfolding strict-mono-Suc-iff by auto
then show ?thesis ..

qed

lemma frequently-at-topE ′:
fixes P::nat ⇒ ′a::{linorder ,no-top}⇒-
assumes freq[rule-format]: ∀n. ∃ F a in at-top. P n a

and g: filterlim g at-top sequentially
obtains s::nat⇒ ′a
where

∧
i. P i (s i) strict-mono s

∧
n. g n ≤ s n

proof −
have ∀n. ∃ F a in at-top. P n a ∧ g n ≤ a

using freq
by (auto intro!: eventually-frequently-conj)

from frequently-at-topE [OF this] obtain s where
∧

i. P i (s i) strict-mono s∧
n. g n ≤ s n

by metis
then show ?thesis ..

qed

lemma frequently-at-top-at-topE :
fixes P::nat ⇒ ′a::{linorder ,no-top}⇒- and g::nat⇒ ′a
assumes ∀n. ∃ F a in at-top. P n a filterlim g at-top sequentially

11

obtains s::nat⇒ ′a
where

∧
i. P i (s i) filterlim s at-top sequentially

proof −
from frequently-at-topE ′[OF assms]
obtain s where s: (

∧
i. P i (s i)) strict-mono s (

∧
n. g n ≤ s n) by blast

have s-at-top: filterlim s at-top sequentially
by (rule filterlim-at-top-mono) (use assms s in auto)

with s(1) show ?thesis ..
qed

lemma not-tendsto-convergent-seq:
fixes f ::real ⇒ ′a::metric-space
assumes X : compact (X :: ′a set)
assumes im:

∧
x. x ≥ 0 =⇒ f x ∈ X

assumes nl: ¬ ((f −−−→ (l:: ′a)) at-top)
obtains s k where

k ∈ X k 6= l (f ◦ s) −−−−→ k strict-mono s ∀n. s n ≥ n
proof −

from not-tendsto-frequentlyE [OF nl]
obtain S where open S l ∈ S ∃ F x in at-top. f x /∈ S .
have ∀n. ∃ F x in at-top. f x /∈ S ∧ real n ≤ x

apply (rule allI)
apply (rule eventually-frequently-conj)
apply fact

by (rule eventually-ge-at-top)
from frequently-at-topE [OF this]
obtain s where

∧
i. f (s i) /∈ S and s: strict-mono s and s-ge: (

∧
i. real i ≤ s

i) by metis
then have 0 ≤ s i for i using dual-order .trans of-nat-0-le-iff by blast
then have ∀n. (f ◦ s) n ∈ X using im by auto
from X [unfolded compact-def , THEN spec, THEN mp, OF this]
obtain k r where k: k ∈ X and r : strict-mono r and kLim: (f ◦ s ◦ r) −−−−→

k by metis
have k ∈ X − S

by (rule Lim-in-closed-set[of X − S , OF - - - kLim])
(auto simp: im ‹0 ≤ s -› ‹

∧
i. f (s i) /∈ S› intro!: ‹open S› X intro: com-

pact-imp-closed)

note k
moreover have k 6= l using ‹k ∈ X − S› ‹l ∈ S› by auto
moreover have (f ◦ (s ◦ r)) −−−−→ k using kLim by (simp add: o-assoc)
moreover have strict-mono (s ◦ r) using s r by (rule strict-mono-o)
moreover have ∀n. (s ◦ r) n ≥ n using s-ge r

by (metis comp-apply dual-order .trans of-nat-le-iff seq-suble)
ultimately show ?thesis ..

qed

lemma harmonic-bound:

12

shows 1 / 2 ^(Suc n) < 1 / real (Suc n)
proof (induction n)

case 0
then show ?case by auto

next
case (Suc n)
then show ?case

by (smt frac-less2 of-nat-0-less-iff of-nat-less-two-power zero-less-Suc)
qed

lemma INF-bounded-imp-convergent-seq:
fixes f ::real ⇒ real
assumes cont: continuous-on {a..} f
assumes bound:

∧
t. t ≥ a =⇒ f t > l

assumes inf : (INF t∈{a..}. f t) = l
obtains s where
(f ◦ s) −−−−→ l∧

i. s i ∈ {a..}
filterlim s at-top sequentially

proof −
have bound ′: t ∈ {a..} =⇒ f t 6= l for t using bound[of t] by auto
have limpt: l islimpt f ‘ {a..}
proof −

have Inf (f ‘ {a..}) islimpt f ‘ {a..}
by (rule Inf-islimpt) (auto simp: inf intro!: bdd-belowI2 [where m=l] dest:

bound)
then show ?thesis by (simp add: inf)

qed
from limpt-closed-imp-exploding-subsequence[OF cont closed-atLeast bound ′ limpt]
obtain s where s: (f ◦ s) −−−−→ l∧

i. s i ∈ {a..}
compact C =⇒ C ⊆ {a..} =⇒ ∀ F i in sequentially. s i /∈ C for C
by metis

have ∀ F i in sequentially. s i ≥ n for n
using s(3)[of {a..n}] s(2)
by (auto elim!: eventually-mono)

then have filterlim s at-top sequentially
unfolding filterlim-at-top
by auto

from s(1) s(2) this
show ?thesis ..

qed

lemma filterlim-at-top-strict-mono:
fixes s :: - ⇒ ′a::linorder
fixes r :: nat ⇒ -
assumes strict-mono s
assumes strict-mono r

13

assumes filterlim s at-top F
shows filterlim (s ◦ r) at-top F
apply (rule filterlim-at-top-mono[OF assms(3)])
by (simp add: assms(1) assms(2) seq-suble strict-mono-leD)

lemma LIMSEQ-lb:
assumes fl: s −−−−→ (l::real)
assumes u: l < u
shows ∃n0 . ∀n≥n0 . s n < u

proof −
from fl have ∃no>0 . ∀n≥no. dist (s n) l < u−l unfolding LIMSEQ-iff-nz

using u
by simp

thus ?thesis using dist-real-def by fastforce
qed

lemma filterlim-at-top-choose-lower :
assumes filterlim s at-top sequentially
assumes (f ◦ s) −−−−→ l
obtains t where

filterlim t at-top sequentially
(f ◦ t) −−−−→ l
∀n. t n ≥ (b::real)

proof −
obtain k where k: ∀n ≥ k. s n ≥ b using assms(1)

unfolding filterlim-at-top eventually-sequentially by blast
define t where t = (λn. s (n+k))
then have ∀n. t n ≥ b using k by simp
have filterlim t at-top sequentially using assms(1)

unfolding filterlim-at-top eventually-sequentially t-def
by (metis (full-types) add.commute trans-le-add2)

from LIMSEQ-ignore-initial-segment[OF assms(2), of k]
have (λn. (f ◦ s) (n + k)) −−−−→ l .
then have (f ◦ t) −−−−→ l unfolding t-def o-def by simp
show ?thesis

using ‹(f ◦ t) −−−−→ l› ‹∀n. b ≤ t n› ‹filterlim t at-top sequentially› that by
blast
qed

lemma frequently-at-top-realE :
fixes P::nat ⇒ real ⇒ bool
assumes ∀n. ∃ F t in at-top. P n t
obtains s::nat⇒real
where

∧
i. P i (s i) filterlim s at-top at-top

by (metis assms frequently-at-top-at-topE [OF - filterlim-real-sequentially])

lemma approachable-sequenceE :
fixes f ::real ⇒ ′a::metric-space

14

assumes
∧

t e. 0 ≤ t =⇒ 0 < e =⇒ ∃ tt≥t. dist (f tt) p < e
obtains s where filterlim s at-top sequentially (f ◦ s) −−−−→ p

proof −
have ∀n. ∃ F i in at-top. dist (f i) p < 1/real (Suc n)

unfolding frequently-at-top
apply (auto)
subgoal for n m

using assms[of max 0 (m+1) 1/(Suc n)]
by force

done
from frequently-at-top-realE [OF this]
obtain s where s:

∧
i. dist (f (s i)) p < 1 / real (Suc i) filterlim s at-top

sequentially
by metis

note this(2)
moreover
have (f o s) −−−−→ p
proof (rule tendstoI)

fix e::real assume e > 0
have ∀ F i in sequentially. 1 / real (Suc i) < e

apply (rule order-tendstoD[OF - ‹0 < e›])
apply (rule real-tendsto-divide-at-top)
apply (rule tendsto-intros)

by (rule filterlim-compose[OF filterlim-real-sequentially filterlim-Suc])
then show ∀ F x in sequentially. dist ((f ◦ s) x) p < e

by eventually-elim (use dual-order .strict-trans s ‹e > 0 › in auto)
qed
ultimately show ?thesis ..

qed

lemma mono-inc-bdd-above-has-limit-at-topI :
fixes f ::real ⇒ real
assumes mono f
assumes

∧
x. f x ≤ u

shows ∃ l. (f −−−→ l) at-top
proof −

define l where l = Sup (range (λn. f (real n)))
have t:(λn. f (real n)) −−−−→ l unfolding l-def

apply (rule LIMSEQ-incseq-SUP)
apply (meson assms(2) bdd-aboveI2)

by (meson assms(1) mono-def of-nat-mono)
from tendsto-at-topI-sequentially-real[OF assms(1) t]
have (f −−−→ l) at-top .
thus ?thesis by blast

qed

lemma gen-mono-inc-bdd-above-has-limit-at-topI :
fixes f ::real ⇒ real
assumes

∧
x y. x ≥ b =⇒ x ≤ y =⇒ f x ≤ f y

15

assumes
∧

x. x ≥ b =⇒ f x ≤ u
shows ∃ l. (f −−−→ l) at-top

proof −
define ff where ff = (λx. if x ≥ b then f x else f b)
have m1 :mono ff unfolding ff-def mono-def using assms(1) by simp
have m2 :

∧
x. ff x ≤ u unfolding ff-def using assms(2) by simp

from mono-inc-bdd-above-has-limit-at-topI [OF m1 m2]
obtain l where (ff −−−→ l) at-top by blast
thus ?thesis

by (meson ‹(ff −−−→ l) at-top› ff-def tendsto-at-top-eq-left)
qed

lemma gen-mono-dec-bdd-below-has-limit-at-topI :
fixes f ::real ⇒ real
assumes

∧
x y. x ≥ b =⇒ x ≤ y =⇒ f x ≥ f y

assumes
∧

x. x ≥ b =⇒ f x ≥ u
shows ∃ l. (f −−−→ l) at-top

proof −
define ff where ff = (λx. if x ≥ b then f x else f b)
have m1 :mono (−ff) unfolding ff-def mono-def using assms(1) by simp
have m2 :

∧
x. (−ff) x ≤ −u unfolding ff-def using assms(2) by simp

from mono-inc-bdd-above-has-limit-at-topI [OF m1 m2]
obtain l where (−ff −−−→ l) at-top by blast
then have (ff −−−→ −l) at-top

using tendsto-at-top-eq-left tendsto-minus-cancel-left by fastforce
thus ?thesis

by (meson ‹(ff −−−→ −l) at-top› ff-def tendsto-at-top-eq-left)
qed

lemma infdist-closed:
shows closed ({z. infdist z S ≥ e})
by (auto intro!:closed-Collect-le simp add:continuous-on-infdist)

lemma LIMSEQ-norm-0-pow:
assumes k > 0 b > 1
assumes

∧
n::nat. norm (s n) ≤ k / b^n

shows s −−−−→ 0
proof (rule metric-LIMSEQ-I)

fix e
assume e > (0 ::real)
then have k / e > 0 using assms(1) by auto
obtain N where N : b^(N ::nat) > k / e using assms(2)

using real-arch-pow by blast
then have norm (s n) < e if n ≥ N for n
proof −

have k / b^n ≤ k / b^N
by (smt assms(1) assms(2) frac-le leD power-less-imp-less-exp that zero-less-power)
also have ... < e using N

16

by (metis ‹0 < e› assms(2) less-trans mult.commute pos-divide-less-eq
zero-less-one zero-less-power)

finally show ?thesis
by (meson assms less-eq-real-def not-le order-trans)

qed
then show ∃no. ∀n≥no. dist (s n) 0 < e

by auto
qed

lemma filterlim-apply-filtermap:
assumes g: filterlim g G F
shows filterlim (λx. m (g x)) (filtermap m G) F
by (metis filterlim-def filterlim-filtermap filtermap-mono g)

lemma eventually-at-right-field-le:
eventually P (at-right x) ←→ (∃ b>x. ∀ y>x. y ≤ b −→ P y)
for x :: ′a::{linordered-field, linorder-topology}
by (smt dense eventually-at-right-field le-less-trans less-le-not-le order .strict-trans1)

1.2 indexing euclidean space with natural numbers
definition nth-eucl :: ′a::executable-euclidean-space ⇒ nat ⇒ real where

nth-eucl x i = x · (Basis-list ! i)
— TODO: why is that and some sort of lambda-eucl nowhere available?

definition lambda-eucl :: (nat ⇒ real) ⇒ ′a::executable-euclidean-space where
lambda-eucl (f ::nat⇒real) = (

∑
i<DIM (′a). f i ∗R Basis-list ! i)

lemma eucl-eq-iff : x = y ←→ (∀ i<DIM (′a). nth-eucl x i = nth-eucl y i)
for x y:: ′a::executable-euclidean-space
apply (auto simp: nth-eucl-def euclidean-eq-iff [where ′a= ′a])
by (metis eucl-of-list-list-of-eucl list-of-eucl-eq-iff)

open-bundle eucl-syntax
begin
notation nth-eucl (infixl ‹$e› 90)
end

lemma eucl-of-list-eucl-nth:
(eucl-of-list xs:: ′a) $e i = xs ! i
if length xs = DIM (′a::executable-euclidean-space)

i < DIM (′a)
using that
apply (auto simp: nth-eucl-def)
by (metis list-of-eucl-eucl-of-list list-of-eucl-nth)

lemma eucl-of-list-inner :
(eucl-of-list xs:: ′a) · eucl-of-list ys = (

∑
(x,y)←zip xs ys. x ∗ y)

if length xs = DIM (′a::executable-euclidean-space)
length ys = DIM (′a::executable-euclidean-space)

17

using that
by (auto simp: nth-eucl-def eucl-of-list-inner-eq inner-lv-rel-def)

lemma self-eq-eucl-of-list: x = eucl-of-list (map (λi. x $e i) [0 ..<DIM (′a)])
for x:: ′a::executable-euclidean-space
by (auto simp: eucl-eq-iff [where ′a= ′a] eucl-of-list-eucl-nth)

lemma inner-nth-eucl: x · y = (
∑

i<DIM (′a). x $e i ∗ y $e i)
for x y:: ′a::executable-euclidean-space
apply (subst self-eq-eucl-of-list[where x=x])
apply (subst self-eq-eucl-of-list[where x=y])
apply (subst eucl-of-list-inner)
by (auto simp: map2-map-map atLeast-upt interv-sum-list-conv-sum-set-nat)

lemma norm-nth-eucl: norm x = L2-set (λi. x $e i) {..<DIM (′a)}
for x:: ′a::executable-euclidean-space
unfolding norm-eq-sqrt-inner inner-nth-eucl L2-set-def
by (auto simp: power2-eq-square)

lemma plus-nth-eucl: (x + y) $e i = x $e i + y $e i
and minus-nth-eucl: (x − y) $e i = x $e i − y $e i
and uminus-nth-eucl: (−x) $e i = − x $e i
and scaleR-nth-eucl: (c ∗R x) $e i = c ∗R (x $e i)
by (auto simp: nth-eucl-def algebra-simps)

lemma inf-nth-eucl: inf x y $e i = min (x $e i) (y $e i)
if i < DIM (′a)
for x:: ′a::executable-euclidean-space
by (auto simp: nth-eucl-def algebra-simps inner-Basis-inf-left that inf-min)

lemma sup-nth-eucl: sup x y $e i = max (x $e i) (y $e i)
if i < DIM (′a)
for x:: ′a::executable-euclidean-space
by (auto simp: nth-eucl-def algebra-simps inner-Basis-sup-left that sup-max)

lemma le-iff-le-nth-eucl: x ≤ y ←→ (∀ i<DIM (′a). (x $e i) ≤ (y $e i))
for x:: ′a::executable-euclidean-space
apply (auto simp: nth-eucl-def algebra-simps eucl-le[where ′a= ′a])
by (meson eucl-le eucl-le-Basis-list-iff)

lemma eucl-less-iff-less-nth-eucl: eucl-less x y ←→ (∀ i<DIM (′a). (x $e i) < (y
$e i))

for x:: ′a::executable-euclidean-space
apply (auto simp: nth-eucl-def algebra-simps eucl-less-def [where ′a= ′a])
by (metis Basis-zero eucl-eq-iff inner-not-same-Basis inner-zero-left length-Basis-list

nth-Basis-list-in-Basis nth-eucl-def)

lemma continuous-on-nth-eucl[continuous-intros]:
continuous-on X (λx. f x $e i)

18

if continuous-on X f
by (auto simp: nth-eucl-def intro!: continuous-intros that)

1.3 derivatives
lemma eventually-at-ne[intro, simp]: ∀ F x in at x0 . x 6= x0

by (auto simp: eventually-at-filter)

lemma has-vector-derivative-withinD:
fixes f ::real ⇒ ′b::euclidean-space
assumes (f has-vector-derivative f ′) (at x0 within S)
shows ((λx. (f x − f x0) /R (x − x0)) −−−→ f ′) (at x0 within S)
apply (rule LIM-zero-cancel)
apply (rule tendsto-norm-zero-cancel)
apply (rule Lim-transform-eventually)

proof −
show ∀ F x in at x0 within S . norm ((f x − f x0 − (x − x0) ∗R f ′) /R norm (x
− x0)) =

norm ((f x − f x0) /R (x − x0) − f ′)
(is ∀ F x in -. ?th x)
unfolding eventually-at-filter

proof (safe intro!: eventuallyI)
fix x assume x: x 6= x0
then have norm ((f x − f x0) /R (x − x0) − f ′) = norm (sgn (x − x0) ∗R

((f x − f x0) /R (x − x0) − f ′))
by simp

also have sgn (x − x0) ∗R ((f x − f x0) /R (x − x0) − f ′) = ((f x − f x0) /R
norm (x − x0) − (x − x0) ∗R f ′ /R norm (x − x0))

by (auto simp add: algebra-simps sgn-div-norm divide-simps)
(metis add.commute add-divide-distrib diff-add-cancel scaleR-add-left)

also have . . . = (f x − f x0 − (x − x0) ∗R f ′) /R norm (x − x0) by (simp
add: algebra-simps)

finally show ?th x ..
qed
show ((λx. norm ((f x − f x0 − (x − x0) ∗R f ′) /R norm (x − x0))) −−−→ 0)

(at x0 within S)
by (rule tendsto-norm-zero)
(use assms in ‹auto simp: has-vector-derivative-def has-derivative-at-within›)

qed

A path-connected set S entering both T and −T must cross the frontier of
T
lemma path-connected-frontier :

fixes S :: ′a::real-normed-vector set
assumes path-connected S
assumes S ∩ T 6= {}
assumes S ∩ −T 6= {}
obtains s where s ∈ S s ∈ frontier T

proof −

19

obtain st where st:st ∈ S ∩ T using assms(2) by blast
obtain sn where sn:sn ∈ S ∩ −T using assms(3) by blast
obtain g where g: path g path-image g ⊆ S

pathstart g = st pathfinish g = sn
using assms(1) st sn unfolding path-connected-def by blast

have a1 :pathstart g ∈ closure T using st g(3) closure-Un-frontier by fastforce
have a2 :pathfinish g /∈ T using sn g(4) by auto
from exists-path-subpath-to-frontier [OF g(1) a1 a2]
obtain h where path-image h ⊆ path-image g pathfinish h ∈ frontier T by metis
thus ?thesis using g(2)

by (meson in-mono pathfinish-in-path-image that)
qed

lemma path-connected-not-frontier-subset:
fixes S :: ′a::real-normed-vector set
assumes path-connected S
assumes S ∩ T 6= {}
assumes S ∩ frontier T = {}
shows S ⊆ T
using path-connected-frontier assms by auto

lemma compact-attains-bounds:
fixes f :: ′a::topological-space ⇒ ′b::linorder-topology
assumes compact: compact S
assumes ne: S 6= {}
assumes cont: continuous-on S f
obtains l u where l ∈ S u ∈ S

∧
x. x ∈ S =⇒ f x ∈ {f l .. f u}

proof −
from compact-continuous-image[OF cont compact]
have compact-image: compact (f ‘ S) .
have ne-image: f ‘ S 6= {} using ne by simp
from compact-attains-inf [OF compact-image ne-image]
obtain l where l ∈ S

∧
x. x ∈ S =⇒ f l ≤ f x by auto

moreover
from compact-attains-sup[OF compact-image ne-image]
obtain u where u ∈ S

∧
x. x ∈ S =⇒ f x ≤ f u by auto

ultimately
have l ∈ S u ∈ S

∧
x. x ∈ S =⇒ f x ∈ {f l .. f u} by auto

then show ?thesis ..
qed

lemma uniform-limit-const[uniform-limit-intros]:
uniform-limit S (λx y. f x) (λ-. l) F if (f −−−→ l) F
apply (auto simp: uniform-limit-iff)
subgoal for e

using tendstoD[OF that(1), of e]
by (auto simp: eventually-mono)

done

20

1.4 Segments

closed-segment throws away the order that our intuition keeps
definition line:: ′a::real-vector ⇒ ′a ⇒ real ⇒ ′a
(‹{- −− -}-›)
where {a −− b}u = a + u ∗R (b − a)

abbreviation line-image a b U ≡(λu. {a −− b}u) ‘ U
notation line-image (‹{- −− -}‘-›)

lemma in-closed-segment-iff-line: x ∈ {a −− b} ←→ (∃ c∈{0 ..1}. x = line a b c)
by (auto simp: in-segment line-def algebra-simps)

lemma in-open-segment-iff-line: x ∈ {a <−−< b} ←→ (∃ c∈{0<..<1}. a 6= b ∧
x = line a b c)

by (auto simp: in-segment line-def algebra-simps)

lemma line-convex-combination1 : (1 − u) ∗R line a b i + u ∗R b = line a b (i +
u − i ∗ u)

by (auto simp: line-def algebra-simps)

lemma line-convex-combination2 : (1 − u) ∗R a + u ∗R line a b i = line a b (i∗u)
by (auto simp: line-def algebra-simps)

lemma line-convex-combination12 : (1 − u) ∗R line a b i + u ∗R line a b j = line
a b (i + u ∗ (j − i))

by (auto simp: line-def algebra-simps)

lemma mult-less-one-less-self : 0 < x =⇒ i < 1 =⇒ i ∗ x < x for i x::real
by auto

lemma plus-times-le-one-lemma: i + u − i ∗ u ≤ 1 if i ≤ 1 u ≤ 1 for i u::real
by (simp add: diff-le-eq sum-le-prod1 that)

lemma plus-times-less-one-lemma: i + u − i ∗ u < 1 if i < 1 u < 1 for i u::real
proof −

have u ∗ (1 − i) < 1 − i
using that by force

then show ?thesis by (simp add: algebra-simps)
qed

lemma line-eq-endpoint-iff [simp]:
line a b i = b ←→ (a = b ∨ i = 1)
a = line a b i ←→ (a = b ∨ i = 0)
by (auto simp: line-def algebra-simps)

lemma line-eq-iff [simp]: line a b x = line a b y ←→ (x = y ∨ a = b)
by (auto simp: line-def)

21

lemma line-open-segment-iff :
{line a b i<−−<b} = line a b ‘ {i<..<1}
if i < 1 a 6= b
using that
apply (auto simp: in-segment line-convex-combination1 plus-times-less-one-lemma)
subgoal for j

apply (rule exI [where x=(j − i)/(1 − i)])
apply (auto simp: divide-simps algebra-simps)

by (metis add-diff-cancel less-numeral-extra(4) mult-2-right plus-times-less-one-lemma
that(1))

done

lemma open-segment-line-iff :
{a<−−<line a b i} = line a b ‘ {0<..<i}
if 0 < i a 6= b
using that
apply (auto simp: in-segment line-convex-combination2 plus-times-less-one-lemma)
subgoal for j

apply (rule exI [where x=j/i])
by auto

done

lemma line-closed-segment-iff :
{line a b i−−b} = line a b ‘ {i..1}
if i ≤ 1 a 6= b
using that
apply (auto simp: in-segment line-convex-combination1 mult-le-cancel-right2 plus-times-le-one-lemma)
subgoal for j

apply (rule exI [where x=(j − i)/(1 − i)])
apply (auto simp: divide-simps algebra-simps)

by (metis add-diff-cancel less-numeral-extra(4) mult-2-right plus-times-less-one-lemma
that(1))

done

lemma closed-segment-line-iff :
{a−−line a b i} = line a b ‘ {0 ..i}
if 0 < i a 6= b
using that
apply (auto simp: in-segment line-convex-combination2 plus-times-less-one-lemma)
subgoal for j

apply (rule exI [where x=j/i])
by auto

done

lemma closed-segment-line-line-iff : {line a b i1−−line a b i2} = line a b ‘ {i1 ..i2}
if i1 ≤ i2

using that
apply (auto simp: in-segment line-convex-combination12 intro!: imageI)
apply (smt mult-left-le-one-le)

22

subgoal for u
by (rule exI [where x=(u − i1)/(i2−i1)]) auto

done

lemma line-line1 : line (line a b c) b x = line a b (c + x − c ∗ x)
by (simp add: line-def algebra-simps)

lemma line-line2 : line a (line a b c) x = line a b (c∗x)
by (simp add: line-def algebra-simps)

lemma line-in-subsegment:
i1 < 1 =⇒ i2 < 1 =⇒ a 6= b =⇒ line a b i1 ∈ {line a b i2<−−<b} ←→ i2 <

i1
by (auto simp: line-open-segment-iff intro!: imageI)

lemma line-in-subsegment2 :
0 < i2 =⇒ 0 < i1 =⇒ a 6= b =⇒ line a b i1 ∈ {a<−−<line a b i2} ←→ i1 <

i2
by (auto simp: open-segment-line-iff intro!: imageI)

lemma line-in-open-segment-iff [simp]:
line a b i ∈ {a<−−<b} ←→ (a 6= b ∧ 0 < i ∧ i < 1)
by (auto simp: in-open-segment-iff-line)

1.5 Open Segments
lemma open-segment-subsegment:

assumes x1 ∈ {x0<−−<x3}
x2 ∈ {x1<−−<x3}

shows x1 ∈ {x0<−−<x2}
using assms

proof −— TODO: use line
from assms obtain u v::real where

ne: x0 6= x3 (1 − u) ∗R x0 + u ∗R x3 6= x3
and x1-def : x1 = (1 − u) ∗R x0 + u ∗R x3
and x2-def : x2 = (1 − v) ∗R ((1 − u) ∗R x0 + u ∗R x3) + v ∗R x3
and uv: ‹0 < u› ‹0 < v› ‹u < 1 › ‹v < 1 ›
by (auto simp: in-segment)

let ?d = (u + v − u ∗ v)
have ?d > 0 using uv

by (auto simp: add-nonneg-pos pos-add-strict)
with ‹x0 6= x3 › have 0 6= ?d ∗R (x3 − x0) by simp
moreover
define ua where ua = u / ?d
have ua ∗ (u ∗ v − u − v) − − u = 0

by (auto simp: ua-def algebra-simps divide-simps)
(metis uv add-less-same-cancel1 add-strict-mono mult.right-neutral
mult-less-cancel-left-pos not-real-square-gt-zero vector-space-over-itself .scale-zero-left)

then have (ua ∗ (u ∗ v − u − v) − − u) ∗R (x3 − x0) = 0

23

by simp
moreover
have 0 < ua ua < 1

using ‹0 < u› ‹0 < v› ‹u < 1 › ‹v < 1 ›
by (auto simp: ua-def pos-add-strict intro!: divide-pos-pos)

ultimately show ?thesis
unfolding x1-def x2-def
by (auto intro!: exI [where x=ua] simp: algebra-simps in-segment)

qed

1.6 Syntax
abbreviation sequentially-at-top::(nat⇒real)⇒bool
(‹- −−−−→ ∞›) — the is to disambiguate syntax...
where s −−−−→ ∞ ≡ filterlim s at-top sequentially

abbreviation sequentially-at-bot::(nat⇒real)⇒bool
(‹- −−−−→ −∞›)
where s −−−−→ −∞ ≡ filterlim s at-bot sequentially

1.7 Paths
lemma subpath0-linepath:

shows subpath 0 u (linepath t t ′) = linepath t (t + u ∗ (t ′ − t))
unfolding subpath-def linepath-def
apply (rule ext)
apply auto

proof −
fix x :: real
have f1 :

∧
r ra rb rc. (r ::real) + ra ∗ rb − ra ∗ rc = r − ra ∗ (rc − rb)

by (simp add: right-diff-distrib ′)
have f2 :

∧
r ra. (r ::real) − r ∗ ra = r ∗ (1 − ra)

by (simp add: right-diff-distrib ′)
have f3 :

∧
r ra rb. (r ::real) − ra + rb + ra − r = rb

by auto
have f4 :

∧
r . (r ::real) + (1 − 1) = r

by linarith
have f5 :

∧
r ra. (r ::real) + ra = ra + r

by force
have f6 :

∧
r ra. (r ::real) + (1 − (r + 1) + ra) = ra

by linarith
have t − x ∗ (t − (t + u ∗ (t ′ − t))) = t ′ ∗ (u ∗ x) + (t − t ∗ (u ∗ x))

by (simp add: right-diff-distrib ′)
then show (1 − u ∗ x) ∗ t + u ∗ x ∗ t ′ = (1 − x) ∗ t + x ∗ (t + u ∗ (t ′ − t))

using f6 f5 f4 f3 f2 f1 by (metis (no-types) mult.commute)
qed

lemma linepath-image0-right-open-real:
assumes t < (t ′::real)
shows linepath t t ′ ‘ {0 ..<1} = {t..<t ′}

24

unfolding linepath-def
apply auto

apply (metis add.commute add-diff-cancel-left ′ assms diff-diff-eq2 diff-le-eq
less-eq-real-def mult.commute mult.right-neutral mult-right-mono right-diff-distrib ′)

apply (smt assms comm-semiring-class.distrib mult-diff-mult semiring-normalization-rules(2)
zero-le-mult-iff)
proof −

fix x
assume t ≤ x x < t ′

let ?u = (x−t)/(t ′−t)
have ?u ≥ 0

using ‹t ≤ x› assms by auto
moreover have ?u < 1

by (simp add: ‹x < t ′› assms)
moreover have x = (1−?u) ∗ t + ?u∗t ′

proof −
have f1 : ∀ r ra. (ra::real) ∗ − r = r ∗ − ra

by simp
have t + (t ′ + − t) ∗ ((x + − t) / (t ′ + − t)) = x

using assms by force
then have t ′ ∗ ((x + − t) / (t ′ + − t)) + t ∗ (1 + − ((x + − t) / (t ′ + −

t))) = x
using f1 by (metis (no-types) add.left-commute distrib-left mult.commute

mult.right-neutral)
then show ?thesis

by (simp add: mult.commute)
qed
ultimately show x ∈ (λx. (1 − x) ∗ t + x ∗ t ′) ‘ {0 ..<1}

using atLeastLessThan-iff by blast
qed

lemma oriented-subsegment-scale:
assumes x1 ∈ {a<−−<b}
assumes x2 ∈ {x1<−−<b}
obtains e where e > 0 b−a = e ∗R (x2−x1)

proof −
from assms(1) obtain u where u : u > 0 u < 1 x1 = (1 − u) ∗R a + u ∗R b

unfolding in-segment by blast
from assms(2) obtain v where v: v > 0 v < 1 x2 = (1 − v) ∗R x1 + v ∗R b

unfolding in-segment by blast
have x2−x1 = −v ∗R x1 + v ∗R b using v

by (metis add.commute add-diff-cancel-right diff-minus-eq-add scaleR-collapse
scaleR-left.minus)

also have ... = (−v) ∗R ((1 − u) ∗R a + u ∗R b) + v ∗R b using u by auto
also have ... = v ∗R ((1−u)∗R b − (1−u)∗R a)
by (smt add-diff-cancel diff-diff-add diff-minus-eq-add minus-diff-eq scaleR-collapse

scale-minus-left scale-right-diff-distrib)
finally have x2x1 :x2−x1 = (v ∗(1−u)) ∗R (b − a)

by (metis scaleR-scaleR scale-right-diff-distrib)

25

have v ∗ (1−u) > 0 using u(2) v(1) by simp
then have (x2−x1)/R (v ∗ (1−u)) = (b−a) unfolding x2x1

by (smt field-class.field-inverse scaleR-one scaleR-scaleR)
thus ?thesis

using ‹0 < v ∗ (1 − u)› positive-imp-inverse-positive that by fastforce
qed

end

2 Additions to the ODE Library
theory ODE-Misc

imports
Ordinary-Differential-Equations.ODE-Analysis
Analysis-Misc

begin

lemma local-lipschitz-compact-bicomposeE :
assumes ll: local-lipschitz T X f
assumes cf :

∧
x. x ∈ X =⇒ continuous-on I (λt. f t x)

assumes cI : compact I
assumes I ⊆ T
assumes cv: continuous-on I v
assumes cw: continuous-on I w
assumes v: v ‘ I ⊆ X
assumes w: w ‘ I ⊆ X
obtains L where L > 0

∧
x. x ∈ I =⇒ dist (f x (v x)) (f x (w x)) ≤ L ∗ dist

(v x) (w x)
proof −

from v w have v ‘ I ∪ w ‘ I ⊆ X by auto
with ll ‹I ⊆ T › have llI :local-lipschitz I (v ‘ I ∪ w ‘ I) f

by (rule local-lipschitz-subset)
have cvwI : compact (v ‘ I ∪ w ‘ I)

by (auto intro!: compact-continuous-image cv cw cI)

from local-lipschitz-compact-implies-lipschitz[OF llI cvwI ‹compact I › cf]
obtain L where L:

∧
t. t ∈ I =⇒ L−lipschitz-on (v ‘ I ∪ w ‘ I) (f t)

using v w
by blast

define L ′ where L ′ = max L 1
with L have L ′ > 0

∧
x. x ∈ I =⇒ dist (f x (v x)) (f x (w x)) ≤ L ′ ∗ dist (v x)

(w x)
apply (auto simp: lipschitz-on-def L ′-def)

by (smt Un-iff image-eqI mult-right-mono zero-le-dist)
then show ?thesis ..

qed

26

2.1 Comparison Principle
lemma comparison-principle-le:

fixes f ::real ⇒ real ⇒ real
and ϕ ψ::real ⇒ real

assumes ll: local-lipschitz X Y f
assumes cf :

∧
x. x ∈ Y =⇒ continuous-on {a..b} (λt. f t x)

assumes abX : {a .. b} ⊆ X
assumes ϕ ′:

∧
x. x ∈ {a .. b} =⇒ (ϕ has-real-derivative ϕ ′ x) (at x)

assumes ψ ′:
∧

x. x ∈ {a .. b} =⇒ (ψ has-real-derivative ψ ′ x) (at x)
assumes ϕ-in: ϕ ‘ {a..b} ⊆ Y
assumes ψ-in: ψ ‘ {a..b} ⊆ Y
assumes init: ϕ a ≤ ψ a
assumes defect:

∧
x. x ∈ {a .. b} =⇒ ϕ ′ x − f x (ϕ x) ≤ ψ ′ x − f x (ψ x)

shows ∀ x ∈ {a .. b}. ϕ x ≤ ψ x (is ?th1)

unfolding atomize-conj
apply (cases a ≤ b)
defer subgoal by simp

proof −
assume a ≤ b
note ϕ-cont = has-real-derivative-imp-continuous-on[OF ϕ ′]
note ψ-cont = has-real-derivative-imp-continuous-on[OF ψ ′]
from local-lipschitz-compact-bicomposeE [OF ll cf compact-Icc abX ϕ-cont ψ-cont
ϕ-in ψ-in]

obtain L where L: L > 0
∧

x. x ∈ {a..b} =⇒ dist (f x (ϕ x)) (f x (ψ x)) ≤ L
∗ dist (ϕ x) (ψ x) by blast

define w where w x = ψ x − ϕ x for x

have w ′[derivative-intros]:
∧

x. x ∈ {a .. b} =⇒ (w has-real-derivative ψ ′ x − ϕ ′

x) (at x)
using ϕ ′ ψ ′

by (auto simp: has-vderiv-on-def w-def [abs-def] intro!: derivative-eq-intros)
note w-cont[continuous-intros] = has-real-derivative-imp-continuous-on[OF w ′,

THEN continuous-on-compose2]
have w d ≥ 0 if d ∈ {a .. b} for d
proof (rule ccontr , unfold not-le)

assume w d < 0
let ?N = (w −‘ {..0} ∩ {a .. d})
from ‹w d < 0 › that have d ∈ ?N by auto
then have ?N 6= {} by auto
have closed ?N

unfolding compact-eq-bounded-closed
using that
by (intro conjI closed-vimage-Int) (auto intro!: continuous-intros)

let ?N ′ = {a0 ∈ {a .. d}. w ‘ {a0 .. d} ⊆ {..0}}
from ‹w d < 0 › that have d ∈ ?N ′ by simp
then have ?N ′ 6= {} by auto
have compact ?N ′

27

unfolding compact-eq-bounded-closed
proof

have ?N ′ ⊆ {a .. d} using that by auto
then show bounded ?N ′

by (rule bounded-subset[rotated]) simp
have w u ≤ 0 if (∀n. x n ∈ ?N ′) x −−−−→ l l ≤ u u ≤ d for x l u
proof cases

assume l = u
have ∀n. x n ∈ ?N using that(1) by force
from closed-sequentially[OF ‹closed ?N ›] this ‹x −−−−→ l›
show ?thesis

using ‹l = u› by blast
next

assume l 6= u with that have l < u by auto
from order-tendstoD(2)[OF ‹x −−−−→ l› ‹l < u›] obtain n where x n < u

by (auto dest: eventually-happens)
with that show ?thesis using ‹l < u›

by (auto dest!: spec[where x=n] simp: image-subset-iff)
qed
then show closed ?N ′

unfolding closed-sequential-limits
by (auto simp: Lim-bounded Lim-bounded2)

qed

from compact-attains-inf [OF ‹compact ?N ′› ‹?N ′ 6= {}›]
obtain a0 where a0 : a ≤ a0 a0 ≤ d w ‘ {a0 ..d} ⊆ {..0}

and a0-least:
∧

x. a ≤ x =⇒ x ≤ d =⇒ w ‘ {x..d} ⊆ {..0} =⇒ a0 ≤ x
by auto

have a0d: {a0 .. d} ⊆ {a .. b} using that a0
by auto

have L-w-bound: L ∗ w x ≤ ψ ′ x − ϕ ′ x if x ∈ {a0 .. d} for x
proof −

from set-mp[OF a0d that] have x ∈ {a .. b} .
from defect[OF this]
have ϕ ′ x − ψ ′ x ≤ dist (f x (ϕ x)) (f x (ψ x))

by (simp add: dist-real-def)
also have . . . ≤ L ∗ dist (ϕ x) (ψ x)

using ‹x ∈ {a .. b}›
by (rule L)

also have . . . ≤ −L ∗ w x
using ‹0 < L› a0 that
by (force simp add: dist-real-def abs-real-def w-def algebra-split-simps)

finally show ?thesis
by simp

qed
have mono: mono-on {a0 ..d} (λx. w x ∗ exp(−L∗x))

apply (rule mono-onI)
apply (rule DERIV-nonneg-imp-nondecreasing, assumption)
using a0d

28

by (auto intro!: exI [where x=(ψ ′ x − ϕ ′ x) ∗ exp (− (L ∗ x)) − exp (− (L
∗ x)) ∗ L ∗ w x for x]

derivative-eq-intros L-w-bound simp:)
then have w a0 ∗ exp (−L ∗ a0) ≤ w d ∗ exp (−L ∗ d)

by (rule mono-onD) (use that a0 in auto)
also have . . . < 0 using ‹w d < 0 › by (simp add: algebra-split-simps)
finally have w a0 ∗ exp (− L ∗ a0) < 0 .
then have w a0 < 0 by (simp add: algebra-split-simps)
have a0 ≤ a
proof (rule ccontr , unfold not-le)

assume a < a0
have continuous-on {a.. a0} w

by (rule continuous-intros, assumption) (use a0 a0d in auto)
from continuous-on-Icc-at-leftD[OF this ‹a < a0 ›]
have (w −−−→ w a0) (at-left a0) .
from order-tendstoD(2)[OF this ‹w a0 < 0 ›] have ∀ F x in at-left a0 . w x <

0 .
moreover have ∀ F x in at-left a0 . a < x

by (rule order-tendstoD) (auto intro!: ‹a < a0 ›)
ultimately have ∀ F x in at-left a0 . a < x ∧ w x < 0 by eventually-elim

auto
then obtain a1 ′ where a1 ′<a0 and a1-neg:

∧
y. y > a1 ′ =⇒ y < a0 =⇒

a < y ∧ w y < 0
unfolding eventually-at-left-field by auto

define a1 where a1 = (a1 ′ + a0)/2
have a1 < a0 using ‹a1 ′ < a0 › by (auto simp: a1-def)
have a ≤ a1

using ‹a < a0 › a1-neg by (force simp: a1-def)
moreover have a1 ≤ d

using ‹a1 ′ < a0 › a0 (2) by (auto simp: a1-def)
moreover have w ‘ {a1 ..a0} ⊆ {..0}

using ‹w a0 < 0 › a1-neg a0 (3)
by (auto simp: a1-def) smt

moreover have w ‘ {a0 ..d} ⊆ {..0} using a0 by auto
ultimately
have a0 ≤ a1

apply (intro a0-least) apply assumption apply assumption
by (smt atLeastAtMost-iff image-subset-iff)

with ‹a1<a0 › show False by simp
qed
then have a0 = a using ‹a ≤ a0 › by simp
with ‹w a0 < 0 › have w a < 0 by simp
with init show False

by (auto simp: w-def)
qed
then show ?thesis

by (auto simp: w-def)
qed

29

lemma local-lipschitz-mult:
shows local-lipschitz (UNIV ::real set) (UNIV ::real set) (∗)
apply (auto intro!: c1-implies-local-lipschitz[where f ′=λp. blinfun-mult-left (fst

p)])
apply (simp add: has-derivative-mult-right mult-commute-abs)

by (auto intro!: continuous-intros)

lemma comparison-principle-le-linear :
fixes ϕ :: real ⇒ real
assumes continuous-on {a..b} g
assumes (

∧
t. t ∈ {a..b} =⇒ (ϕ has-real-derivative ϕ ′ t) (at t))

assumes ϕ a ≤ 0
assumes (

∧
t. t ∈ {a..b} =⇒ ϕ ′ t ≤ g t ∗R ϕ t)

shows ∀ t∈{a..b}. ϕ t ≤ 0
proof −

have ∗:
∧

x. continuous-on {a..b} (λt. g t ∗ x)
using assms(1) continuous-on-mult-right by blast

then have local-lipschitz (g‘{a..b}) UNIV (∗)
using local-lipschitz-subset[OF local-lipschitz-mult] by blast

from local-lipschitz-compose1 [OF this assms(1)]
have local-lipschitz {a..b} UNIV (λt. (∗) (g t)) .
from comparison-principle-le[OF this - - assms(2) - - - assms(3), of b λt.0] ∗

assms(4)
show ?thesis by auto

qed

2.2 Locally Lipschitz ODEs
context ll-on-open-it begin

lemma flow-lipschitzE :
assumes {a .. b} ⊆ existence-ivl t0 x
obtains L where L−lipschitz-on {a .. b} (flow t0 x)

proof −
have f ′: (flow t0 x has-derivative (λi. i ∗R f t (flow t0 x t))) (at t within {a ..

b}) if t ∈ {a .. b} for t
using flow-has-derivative[of t x] assms that
by (auto simp: has-derivative-at-withinI)

have compact ((λt. f t (flow t0 x t)) ‘ {a .. b})
using assms
apply (auto intro!: compact-continuous-image continuous-intros)
using local.existence-ivl-empty2 apply fastforce
apply (meson atLeastAtMost-iff general.existence-ivl-subset in-mono)

by (simp add: general.flow-in-domain subset-iff)
then obtain C where t ∈ {a .. b} =⇒ norm (f t (flow t0 x t)) ≤ C for t

by (fastforce dest!: compact-imp-bounded simp: bounded-iff intro: that)
then have t ∈ {a..b} =⇒ onorm (λi. i ∗R f t (flow t0 x t)) ≤ max 0 C for t

apply (subst onorm-scaleR-left)

30

apply (auto simp: onorm-id max-def)
by (metis diff-0-right diff-mono diff-self norm-ge-zero)

from bounded-derivative-imp-lipschitz[OF f ′ - this]
have (max 0 C)−lipschitz-on {a..b} (flow t0 x)

by auto
then show ?thesis ..

qed

lemma flow-undefined0 : t /∈ existence-ivl t0 x =⇒ flow t0 x t = 0
unfolding flow-def by auto

lemma csols-undefined: x /∈ X =⇒ csols t0 x = {}
apply (auto simp: csols-def)
using general.existence-ivl-empty2 general.existence-ivl-maximal-segment
apply blast
done

lemmas existence-ivl-undefined = existence-ivl-empty2

end

2.3 Reverse flow as Sublocale
lemma range-preflect-0 [simp]: range (preflect 0) = UNIV

by (auto simp: preflect-def)
lemma range-uminus[simp]: range uminus = (UNIV :: ′a::ab-group-add set)

by auto

context auto-ll-on-open begin

sublocale rev: auto-ll-on-open −f rewrites −(−f) = f
apply unfold-locales

using auto-local-lipschitz auto-open-domain
unfolding fun-Compl-def local-lipschitz-minus
by auto

lemma existence-ivl-eq-rev0 : existence-ivl0 y = uminus ‘ rev.existence-ivl0 y for y
by (auto simp: existence-ivl-eq-rev rev.existence-ivl0-def preflect-def)

lemma rev-existence-ivl-eq0 : rev.existence-ivl0 y = uminus ‘ existence-ivl0 y for y
using uminus-uminus-image[of rev.existence-ivl0 y]
by (simp add: existence-ivl-eq-rev0)

lemma flow-eq-rev0 : flow0 y t = rev.flow0 y (−t) for y t
apply (cases t ∈ existence-ivl0 y)
subgoal

apply (subst flow-eq-rev(2), assumption)
apply (subst rev.flow0-def)
by (simp add: preflect-def)

31

subgoal
apply (frule flow-undefined0)
by (auto simp: existence-ivl-eq-rev0 rev.flow-undefined0)

done

lemma rev-eq-flow: rev.flow0 y t = flow0 y (−t) for y t
apply (subst flow-eq-rev0)
using uminus-uminus-image[of rev.existence-ivl0 y]
apply −
apply (subst (asm) existence-ivl-eq-rev0 [symmetric])
by auto

lemma rev-flow-image-eq: rev.flow0 x ‘ S = flow0 x ‘ (uminus ‘ S)
unfolding rev-eq-flow[abs-def]
by force

lemma flow-image-eq-rev: flow0 x ‘ S = rev.flow0 x ‘ (uminus ‘ S)
unfolding rev-eq-flow[abs-def]
by force

end

context c1-on-open begin

sublocale rev: c1-on-open −f −f ′ rewrites −(−f) = f and −(−f ′) = f ′

by (rule c1-on-open-rev) auto

end

context c1-on-open-euclidean begin

sublocale rev: c1-on-open-euclidean −f −f ′ rewrites −(−f) = f and −(−f ′) =
f ′

by unfold-locales auto

end

2.4 Autonomous LL ODE : Existence Interval and trapping
on the interval

lemma bdd-above-is-intervalI : bdd-above I
if is-interval I a ≤ b a ∈ I b /∈ I for I ::real set
by (meson bdd-above-def is-interval-1 le-cases that)

lemma bdd-below-is-intervalI : bdd-below I
if is-interval I a ≤ b a /∈ I b ∈ I for I ::real set
by (meson bdd-below-def is-interval-1 le-cases that)

context auto-ll-on-open begin

32

lemma open-existence-ivl0 :
assumes x : x ∈ X
shows ∃ a b. a < 0 ∧ 0 < b ∧ {a..b} ⊆ existence-ivl0 x

proof −
have a1 :0 ∈ existence-ivl0 x

by (simp add: x)
have a2 : open (existence-ivl0 x)

by (simp add: x)
from a1 a2 obtain d where d > 0 ball 0 d ⊆ existence-ivl0 x

using openE by blast
have {−d/2 ..d/2} ⊆ ball 0 d

using ‹0 < d› dist-norm mem-ball by auto
thus ?thesis

by (smt ‹0 < d› ‹ball 0 d ⊆ existence-ivl0 x› divide-minus-left half-gt-zero
order-trans)
qed

lemma open-existence-ivl ′:
assumes x : x ∈ X
obtains a where a > 0 {−a..a} ⊆ existence-ivl0 x

proof −
from open-existence-ivl0 [OF assms(1)]
obtain a b where ab: a < 0 0 < b {a..b} ⊆ existence-ivl0 x by auto
then have min (−a) b > 0 by linarith
have {−min (−a) b .. min(−a) b} ⊆ {a..b} by auto
thus ?thesis using ab(3) that[OF ‹min (−a) b > 0 ›] by blast

qed

lemma open-existence-ivl-on-compact:
assumes C : C ⊆ X and compact C C 6= {}
obtains a where a > 0

∧
x. x ∈ C =⇒ {−a..a} ⊆ existence-ivl0 x

proof −
from existence-ivl-cballs
have ∀ x∈C . ∃ e>0 . ∃ t>0 . ∀ y∈cball x e. cball 0 t⊆existence-ivl0 y

by (metis (full-types) C Int-absorb1 Int-iff UNIV-I)
then
obtain d ′ t ′ where ∗:
∀ x∈C . 0 < d ′ x ∧ t ′ x > 0 ∧ (∀ y∈cball x (d ′ x). cball 0 (t ′ x) ⊆ existence-ivl0

y)
by metis

with compactE-image[OF ‹compact C ›, of C λx. ball x (d ′ x)]
obtain C ′ where C ′ ⊆ C and [simp]: finite C ′ and C-subset: C ⊆ (

⋃
c∈C ′.

ball c (d ′ c))
by force

from C-subset ‹C 6= {}› have [simp]: C ′ 6= {} by auto
define d where d = Min (d ′ ‘ C ′)
define t where t = Min (t ′ ‘ C ′)
have t > 0 using ∗ ‹C ′ ⊆ C ›

33

by (auto simp: t-def)
moreover have {−t .. t} ⊆ existence-ivl0 x if x ∈ C for x
proof −

from C-subset that ‹C ′ ⊆ C ›
obtain c where c: c ∈ C ′ x ∈ ball c (d ′ c) c ∈ C by force
then have {−t .. t} ⊆ cball 0 (t ′ c)

by (auto simp: abs-real-def t-def minus-le-iff)
also
from c have cball 0 (t ′ c) ⊆ existence-ivl0 x

using ∗[rule-format, OF ‹c ∈ C ›] by auto
finally show ?thesis .

qed
ultimately show ?thesis ..

qed

definition trapped-forward x K ←→ (flow0 x ‘ (existence-ivl0 x ∩ {0 ..}) ⊆ K)
— TODO: use this for backwards trapped, invariant, and all assumptions

definition trapped-backward x K ←→ (flow0 x ‘ (existence-ivl0 x ∩ {..0}) ⊆ K)

definition trapped x K ←→ trapped-forward x K ∧ trapped-backward x K

lemma trapped-iff-on-existence-ivl0 :
trapped x K ←→ (flow0 x ‘ (existence-ivl0 x) ⊆ K)
unfolding trapped-def trapped-forward-def trapped-backward-def
apply (auto)
by (metis IntI atLeast-iff atMost-iff image-subset-iff less-eq-real-def linorder-not-less)

end

context auto-ll-on-open begin

lemma infinite-rev-existence-ivl0-rewrites:
{0 ..} ⊆ rev.existence-ivl0 x ←→ {..0} ⊆ existence-ivl0 x
{..0} ⊆ rev.existence-ivl0 x ←→ {0 ..} ⊆ existence-ivl0 x
apply (auto simp add: rev.rev-existence-ivl-eq0 subset-iff)

using neg-le-0-iff-le apply fastforce
using neg-0-le-iff-le by fastforce

lemma trapped-backward-iff-rev-trapped-forward:
trapped-backward x K ←→ rev.trapped-forward x K
unfolding trapped-backward-def rev.trapped-forward-def
by (auto simp add: rev-flow-image-eq existence-ivl-eq-rev0 image-subset-iff)

If solution is trapped in a compact set at some time on its existence interval
then it is trapped forever
lemma trapped-sol-right:

— TODO: when building on afp-devel (??? outdated): https://bitbucket.org/
isa-afp/afp-devel/commits/0c3edf9248d5389197f248c723b625c419e4d3eb

assumes compact K K ⊆ X

34

https://bitbucket.org/isa-afp/afp-devel/commits/0c3edf9248d5389197f248c723b625c419e4d3eb
https://bitbucket.org/isa-afp/afp-devel/commits/0c3edf9248d5389197f248c723b625c419e4d3eb

assumes x ∈ X trapped-forward x K
shows {0 ..} ⊆ existence-ivl0 x

proof (rule ccontr)
assume ¬ {0 ..} ⊆ existence-ivl0 x
from this obtain t where 0 ≤ t t /∈ existence-ivl0 x by blast
then have bdd: bdd-above (existence-ivl0 x)

by (auto intro!: bdd-above-is-intervalI ‹x ∈ X›)
from flow-leaves-compact-ivl-right [OF UNIV-I ‹x ∈ X› bdd UNIV-I assms(1−2)]
show False by (metis assms(4) trapped-forward-def IntI atLeast-iff image-subset-iff)

qed

lemma trapped-sol-right-gen:
assumes compact K K ⊆ X
assumes t ∈ existence-ivl0 x trapped-forward (flow0 x t) K
shows {t..} ⊆ existence-ivl0 x

proof −
have x ∈ X

using assms(3) local.existence-ivl-empty-iff by fastforce
have xtk: flow0 x t ∈ X

by (simp add: assms(3) local.flow-in-domain)
from trapped-sol-right[OF assms(1−2) xtk assms(4)] have {0 ..} ⊆ existence-ivl0

(flow0 x t) .
thus {t..} ⊆ existence-ivl0 x

using existence-ivl-trans[OF assms(3)]
by (metis add.commute atLeast-iff diff-add-cancel le-add-same-cancel1 subset-iff)

qed

lemma trapped-sol-left:
— TODO: when building on afp-devel: https://bitbucket.org/isa-afp/afp-devel/

commits/0c3edf9248d5389197f248c723b625c419e4d3eb
assumes compact K K ⊆ X
assumes x ∈ X trapped-backward x K
shows {..0} ⊆ existence-ivl0 x

proof (rule ccontr)
assume ¬ {..0} ⊆ existence-ivl0 x
from this obtain t where t ≤ 0 t /∈ existence-ivl0 x by blast
then have bdd: bdd-below (existence-ivl0 x)

by (auto intro!: bdd-below-is-intervalI ‹x ∈ X›)
from flow-leaves-compact-ivl-left [OF UNIV-I ‹x ∈ X› bdd UNIV-I assms(1−2)]
show False
by (metis IntI assms(4) atMost-iff auto-ll-on-open.trapped-backward-def auto-ll-on-open-axioms

image-subset-iff)
qed

lemma trapped-sol-left-gen:
assumes compact K K ⊆ X
assumes t ∈ existence-ivl0 x trapped-backward (flow0 x t) K
shows {..t} ⊆ existence-ivl0 x

proof −

35

https://bitbucket.org/isa-afp/afp-devel/commits/0c3edf9248d5389197f248c723b625c419e4d3eb
https://bitbucket.org/isa-afp/afp-devel/commits/0c3edf9248d5389197f248c723b625c419e4d3eb

have x ∈ X
using assms(3) local.existence-ivl-empty-iff by fastforce

have xtk: flow0 x t ∈ X
by (simp add: assms(3) local.flow-in-domain)

from trapped-sol-left[OF assms(1−2) xtk assms(4)] have {..0} ⊆ existence-ivl0
(flow0 x t) .

thus {..t} ⊆ existence-ivl0 x
using existence-ivl-trans[OF assms(3)]

by (metis add.commute add-le-same-cancel1 atMost-iff diff-add-cancel subset-eq)
qed

lemma trapped-sol:
assumes compact K K ⊆ X
assumes x ∈ X trapped x K
shows existence-ivl0 x = UNIV
by (metis (mono-tags, lifting) assms existence-ivl-zero image-subset-iff interval lo-

cal.existence-ivl-initial-time-iff local.existence-ivl-subset local.subset-mem-compact-implies-subset-existence-interval
order-refl subset-antisym trapped-iff-on-existence-ivl0)

lemma regular-locally-noteq:— TODO: should be true in ll-on-open-it
assumes x ∈ X f x 6= 0
shows eventually (λt. flow0 x t 6= x) (at 0)

proof −
have nf :norm (f x) > 0 by (simp add: assms(2))

obtain a where
a: a>0
{−a−−a} ⊆ existence-ivl0 x
0 ∈ {−a−−a}∧

t. t ∈ {−a−−a} =⇒ norm(f (flow0 x t) − f (flow0 x 0)) ≤ norm(f x)/2
proof −

from open-existence-ivl ′[OF assms(1)]
obtain a1 where a1 : a1 > 0 {−a1 ..a1} ⊆ existence-ivl0 x .
have continuous (at 0) (λt. norm(f (flow0 x t) − f (flow0 x 0)))

apply (auto intro!: continuous-intros)
by (simp add: assms(1) local.f-flow-continuous)

then obtain a2 where a2>0
∀ t. norm t < a2 −→

norm (f (flow0 x t) − f (flow0 x 0)) < norm(f x)/2
unfolding continuous-at-real-range
by (metis abs-norm-cancel cancel-comm-monoid-add-class.diff-cancel diff-zero

half-gt-zero nf norm-zero)
then have
t:

∧
t. t ∈ {−a2<−−<a2} =⇒ norm(f (flow0 x t) − f (flow0 x 0)) ≤ norm(f

x)/2
by (smt open-segment-bound(2) open-segment-bound1 real-norm-def)

define a where a = min a1 (a2/2)
have t1 :a > 0 unfolding a-def using ‹a1 > 0 › ‹a2 > 0 › by auto

36

then have t3 :0 ∈{−a−−a}
using closed-segment-eq-real-ivl by auto

have {−a−−a} ⊆ {−a1 ..a1} unfolding a-def using ‹a1 > 0 › ‹a2 > 0 ›
using ODE-Auxiliarities.closed-segment-eq-real-ivl by auto

then have t2 :{−a−−a} ⊆ existence-ivl0 x using a1 by auto
have {−a−−a} ⊆ {−a2<−−<a2} unfolding a-def using ‹a1 > 0 › ‹a2 >

0 ›
by (smt Diff-iff closed-segment-eq-real-ivl atLeastAtMost-iff empty-iff half-gt-zero

insert-iff pos-half-less segment(1) subset-eq)
then have t4 :

∧
t. t ∈ {−a−−a} =⇒ norm(f (flow0 x t) − f (flow0 x 0)) ≤

norm(f x)/2 using t by auto
show ?thesis using t1 t2 t3 t4 that by auto

qed
have

∧
t. t ∈ {−a−−a} =⇒ (flow0 x has-vector-derivative f (flow0 x t)) (at t

within {−a−−a})
apply (rule has-vector-derivative-at-within)
using a(2) by (auto intro!:flow-has-vector-derivative)

from vector-differentiable-bound-linearization[OF this - a(4)]
have nb:

∧
c d. {c−−d} ⊆ {−a−−a} =⇒

norm (flow0 x d − flow0 x c − (d − c) ∗R f (flow0 x 0)) ≤ norm (d − c) ∗
(norm (f x) / 2)

using a(3) by blast
have

∧
t. dist t 0 < a =⇒ t 6= 0 =⇒ flow0 x t 6= x

proof (rule ccontr)
fix t
assume dist t 0 < a t 6= 0 ¬ flow0 x t 6= x
then have tx:flow0 x t = x by auto
have t ∈ {−a−−a}

using closed-segment-eq-real-ivl ‹dist t 0 < a› by auto
have t > 0 ∨ t < 0 using ‹t 6= 0 › by linarith
moreover {

assume t > 0
then have {0−−t} ⊆ {−a−−a}

by (simp add: ‹t ∈ {−a−−a}› a(3) subset-closed-segment)
from nb[OF this] have

norm (flow0 x t − x − t ∗R f x) ≤ norm t ∗ (norm (f x) / 2)
by (simp add: assms(1))

then have norm (t ∗R f x) ≤ norm t ∗ (norm (f x) / 2) using tx by auto
then have False using nf

using ‹0 < t› by auto
}
moreover {

assume t < 0
then have {t−−0} ⊆ {−a−−a}

by (simp add: ‹t ∈ {−a−−a}› a(3) subset-closed-segment)
from nb[OF this] have

norm (x − flow0 x t + t ∗R f x) ≤ norm t ∗ (norm (f x) / 2)
by (simp add: assms(1))

then have norm (t ∗R f x) ≤ norm t ∗ (norm (f x) / 2) using tx by auto

37

then have False using nf
using ‹t < 0 › by auto

}
ultimately show False by blast

qed
thus ?thesis unfolding eventually-at

using a(1) by blast
qed

lemma compact-max-time-flow-in-closed:
assumes closed M and t-ex: t ∈ existence-ivl0 x
shows compact {s ∈ {0 ..t}. flow0 x ‘ {0 ..s} ⊆ M} (is compact ?C)
unfolding compact-eq-bounded-closed

proof
have bounded {0 .. t} by auto
then show bounded ?C

by (rule bounded-subset) auto
show closed ?C

unfolding closed-def
proof (rule topological-space-class.openI , clarsimp)

— TODO: there must be a more abstract argument for this, e.g., with [[closed
?s; continuous-on ?s ?f ; closed ?B]] =⇒ closed (?f −‘ ?B ∩ ?s) and then reasoning
about the connected component around 0?

fix s
assume notM : s ≤ t −→ 0 ≤ s −→ ¬ flow0 x ‘ {0 ..s} ⊆ M
consider 0 ≤ s s ≤ t flow0 x s /∈ M | 0 ≤ s s ≤ t flow0 x s ∈ M | s < 0 | s

> t
by arith

then show ∃T . open T ∧ s ∈ T ∧ T ⊆ − {s. 0 ≤ s ∧ s ≤ t ∧ flow0 x ‘ {0 ..s}
⊆ M}

proof cases
assume s: 0 ≤ s s ≤ t and sM : flow0 x s /∈ M
have isCont (flow0 x) s

using s ivl-subset-existence-ivl[OF t-ex]
by (auto intro!: flow-continuous)

from this[unfolded continuous-at-open, rule-format, of −M] sM ‹closed M ›
obtain S where open S s ∈ S (∀ x ′∈S . flow0 x x ′ ∈ − M)

by auto
then show ?thesis

by (force intro!: exI [where x=S])
next

assume s: 0 ≤ s s ≤ t and sM : flow0 x s ∈ M
from this notM obtain s0 where s0 : 0 ≤ s0 s0 < s flow0 x s0 /∈ M

by force
from order-tendstoD(1)[OF tendsto-ident-at ‹s0 < s›, of UNIV , unfolded

eventually-at-topological]
obtain S where open S s ∈ S

∧
x. x ∈ S =⇒ x 6= s =⇒ s0 < x

by auto
then show ?thesis using s0

38

by (auto simp: intro!: exI [where x=S]) (smt atLeastAtMost-iff image-subset-iff)
qed (force intro: exI [where x={t<..}] exI [where x={..<0}])+

qed
qed

lemma flow-in-closed-max-timeE :
assumes closed M t ∈ existence-ivl0 x 0 ≤ t x ∈ M
obtains T where 0 ≤ T T ≤ t flow0 x ‘ {0 ..T} ⊆ M∧

s ′. 0 ≤ s ′ =⇒ s ′ ≤ t =⇒ flow0 x ‘ {0 ..s ′} ⊆ M =⇒ s ′ ≤ T
proof −

let ?C = {s ∈ {0 ..t}. flow0 x ‘ {0 ..s} ⊆ M}
have ?C 6= {}

using assms
using local.mem-existence-ivl-iv-defined
by (auto intro!: exI [where x=0])

from compact-max-time-flow-in-closed[OF assms(1 ,2)]
have compact ?C .
from compact-attains-sup[OF this ‹?C 6= {}›]
obtain s where s: 0 ≤ s s ≤ t flow0 x ‘ {0 ..s} ⊆ M

and s-max:
∧

s ′. 0 ≤ s ′ =⇒ s ′ ≤ t =⇒ flow0 x ‘ {0 ..s ′} ⊆ M =⇒ s ′ ≤ s
by auto

then show ?thesis ..
qed

lemma flow-leaves-closed-at-frontierE :
assumes closed M and t-ex: t ∈ existence-ivl0 x and 0 ≤ t x ∈ M flow0 x t /∈

M
obtains s where 0 ≤ s s < t flow0 x ‘ {0 ..s} ⊆ M

flow0 x s ∈ frontier M
∃ F s ′ in at-right s. flow0 x s ′ /∈ M

proof −
from flow-in-closed-max-timeE [OF assms(1−4)] assms(5)
obtain s where s: 0 ≤ s s < t flow0 x ‘ {0 ..s} ⊆ M

and s-max:
∧

s ′. 0 ≤ s ′ =⇒ s ′ ≤ t =⇒ flow0 x ‘ {0 ..s ′} ⊆ M =⇒ s ′ ≤ s
by (smt atLeastAtMost-iff image-subset-iff)

note s
moreover
have flow0 x s /∈ interior M
proof

assume interior : flow0 x s ∈ interior M
have s ∈ existence-ivl0 x using ivl-subset-existence-ivl[OF ‹t ∈ -›] s by auto
from flow-continuous[OF this, THEN isContD, THEN topological-tendstoD,

OF open-interior interior]
have ∀ F s ′ in at s. flow0 x s ′ ∈ interior M by auto
then have ∀ F s ′ in at-right s. flow0 x s ′ ∈ interior M

by (auto simp: eventually-at-split)
moreover have ∀ F s ′ in at-right s. s ′ < t

using tendsto-ident-at ‹s < t›
by (rule order-tendstoD)

39

ultimately have ∀ F s ′ in at-right s. flow0 x s ′ ∈ M ∧ s ′ < t
by eventually-elim (use interior-subset[of M] in auto)

then obtain s ′ where s ′: s < s ′ s ′ < t
∧

y. y > s =⇒ y ≤ s ′ =⇒ flow0 x y ∈
M

by (auto simp: eventually-at-right-field-le)
have s ′-ivl: flow0 x ‘ {0 ..s ′} ⊆ M
proof safe

fix s ′′ assume s ′′ ∈ {0 .. s ′}
then show flow0 x s ′′ ∈ M

using s interior-subset[of M] s ′

by (cases s ′′ ≤ s) auto
qed
with s-max[of s ′] ‹s ′ < t› ‹0 ≤ s› ‹s < s ′› show False by auto

qed
then have flow0 x s ∈ frontier M

using s closure-subset[of M]
by (force simp: frontier-def)

moreover
have compact (flow0 x −‘ M ∩ {s..t}) (is compact ?C)

unfolding compact-eq-bounded-closed
proof

have bounded {s .. t} by simp
then show bounded ?C

by (rule bounded-subset) auto
show closed ?C
using ‹closed M › assms mem-existence-ivl-iv-defined(2)[OF t-ex] ivl-subset-existence-ivl[OF

t-ex] ‹0 ≤ s›
by (intro closed-vimage-Int) (auto intro!: continuous-intros)

qed
have ∃ F s ′ in at-right s. flow0 x s ′ /∈ M

apply (rule ccontr)
unfolding not-frequently

proof −
assume ∀ F s ′ in at-right s. ¬ flow0 x s ′ /∈ M
moreover have ∀ F s ′ in at-right s. s ′ < t

using tendsto-ident-at ‹s < t›
by (rule order-tendstoD)

ultimately have ∀ F s ′ in at-right s. flow0 x s ′ ∈ M ∧ s ′< t by eventually-elim
auto

then obtain s ′ where s ′: s < s ′∧
y. y > s =⇒ y < s ′ =⇒ flow0 x y ∈ M∧
y. y > s =⇒ y < s ′ =⇒ y < t

by (auto simp: eventually-at-right-field)
define s ′′ where s ′′ = (s + s ′) / 2
have 0 ≤ s ′′ s ′′ ≤ t s < s ′′ s ′′ < s ′

using s s ′

by (auto simp del: divide-le-eq-numeral1 le-divide-eq-numeral1 simp: s ′′-def)
fastforce

then have flow0 x ‘ {0 ..s ′′} ⊆ M

40

using s s ′

apply auto
subgoal for u

by (cases u≤s) auto
done

from s-max[OF ‹0 ≤ s ′′› ‹s ′′≤ t› this] ‹s ′′ > s›
show False by simp

qed
ultimately show ?thesis ..

qed

2.5 Connectedness
lemma fcontX :

shows continuous-on X f
using auto-local-lipschitz local-lipschitz-continuous-on by blast

lemma fcontx:
assumes x ∈ X
shows continuous (at x) f

proof −
have open X by simp
from continuous-on-eq-continuous-at[OF this]
show ?thesis using fcontX assms(1) by blast

qed

lemma continuous-at-imp-cball:
assumes continuous (at x) g
assumes g x > (0 ::real)
obtains r where r > 0 ∀ y ∈ cball x r . g y > 0

proof −
from assms(1)
obtain d where d>0 g ‘ (ball x d) ⊆ ball (g x) ((g x)/2)

by (meson assms(2) continuous-at-ball half-gt-zero)
then have ∀ y ∈ cball x (d/2). g y > 0

by (smt assms(2) dist-norm image-subset-iff mem-ball mem-cball pos-half-less
real-norm-def)

thus ?thesis
using ‹0 < d› that half-gt-zero by blast

qed

flow0 is path-connected
lemma flow0-path-connected-time:

assumes ts ⊆ existence-ivl0 x path-connected ts
shows path-connected (flow0 x ‘ ts)

proof −
have continuous-on ts (flow0 x)

by (meson assms continuous-on-sequentially flow-continuous-on subsetD)
from path-connected-continuous-image[OF this assms(2)]

41

show ?thesis .
qed

lemma flow0-path-connected:
assumes path-connected D

path-connected ts∧
x. x ∈ D =⇒ ts ⊆ existence-ivl0 x

shows path-connected ((λ(x, y). flow0 x y) ‘ (D × ts))
proof −

have D × ts ⊆ Sigma X existence-ivl0
using assms(3) subset-iff by fastforce

then have a1 :continuous-on (D × ts) (λ(x, y). flow0 x y)
using flow-continuous-on-state-space continuous-on-subset by blast

have a2 : path-connected (D × ts) using path-connected-Times assms by auto
from path-connected-continuous-image[OF a1 a2]
show ?thesis .

qed

end

2.6 Return Time and Implicit Function Theorem
context c1-on-open-euclidean begin

lemma flow-implicit-function:
— TODO: generalization of [[returns-to {x ∈ ?S . ?s x = 0} ?x; closed ?S ;

∧
x.

(?s has-derivative blinfun-apply (?Ds x)) (at x); isCont ?Ds (poincare-map {x ∈
?S . ?s x = 0} ?x); blinfun-apply (?Ds (poincare-map {x ∈ ?S . ?s x = 0} ?x)) (f
(poincare-map {x ∈ ?S . ?s x = 0} ?x)) 6= 0 ;

∧
u e. [[?s (flow0 ?x (u ?x)) = 0 ; u ?x

= return-time {x ∈ ?S . ?s x = 0} ?x;
∧

y. y ∈ cball ?x e =⇒ ?s (flow0 y (u y)) =
0 ; continuous-on (cball ?x e) u; (λt. (t, u t)) ‘ cball ?x e ⊆ Sigma X existence-ivl0 ;
0 < e; (u has-derivative blinfun-apply (− blinfun-scaleR-left (inverse (blinfun-apply
(?Ds (poincare-map {x ∈ ?S . ?s x = 0} ?x)) (f (poincare-map {x ∈ ?S . ?s x = 0}
?x)))) oL (?Ds (poincare-map {x ∈ ?S . ?s x = 0} ?x) oL flowderiv ?x (return-time
{x ∈ ?S . ?s x = 0} ?x)) oL embed1-blinfun)) (at ?x)]] =⇒ ?thesis]] =⇒ ?thesis!

fixes s:: ′a::euclidean-space ⇒ real and S :: ′a set
assumes t: t ∈ existence-ivl0 x and x: x ∈ X and st: s (flow0 x t) = 0
assumes Ds:

∧
x. (s has-derivative blinfun-apply (Ds x)) (at x)

assumes DsC : isCont Ds (flow0 x t)
assumes nz: Ds (flow0 x t) (f (flow0 x t)) 6= 0
obtains u e
where s (flow0 x (u x)) = 0

u x = t
(
∧

y. y ∈ cball x e =⇒ s (flow0 y (u y)) = 0)
continuous-on (cball x e) u
(λt. (t, u t)) ‘ cball x e ⊆ Sigma X existence-ivl0
0 < e (u has-derivative (− blinfun-scaleR-left

(inverse (blinfun-apply (Ds (flow0 x t)) (f (flow0 x t)))) oL

(Ds (flow0 x t) oL flowderiv x t) oL embed1-blinfun)) (at x)

42

proof −
note [derivative-intros] = has-derivative-compose[OF - Ds]
have cont-s: continuous-on UNIV s by (rule has-derivative-continuous-on[OF

Ds])
note cls[simp, intro] = closed-levelset[OF cont-s]
then have xt1 : (x, t) ∈ Sigma X existence-ivl0

by (auto simp: t x)
have D: (

∧
x. x ∈ Sigma X existence-ivl0 =⇒

((λ(x, t). s (flow0 x t)) has-derivative
blinfun-apply (Ds (flow0 (fst x) (snd x)) oL (flowderiv (fst x) (snd x))))
(at x))

by (auto intro!: derivative-eq-intros)
have C : isCont (λx. Ds (flow0 (fst x) (snd x)) oL flowderiv (fst x) (snd x))
(x, t)
using flowderiv-continuous-on[unfolded continuous-on-eq-continuous-within,

rule-format, OF xt1]
using at-within-open[OF xt1 open-state-space]
by (auto intro!: continuous-intros tendsto-eq-intros x t

isCont-tendsto-compose[OF DsC , unfolded poincare-map-def]
simp: split-beta ′ isCont-def)

have Z : (case (x, t) of (x, t) ⇒ s (flow0 x t)) = 0
by (auto simp: st)

have I1 : blinfun-scaleR-left (inverse (Ds (flow0 x t)(f (flow0 x t)))) oL

((Ds (flow0 (fst (x, t))
(snd (x, t))) oL

flowderiv (fst (x, t))
(snd (x, t))) oL

embed2-blinfun)
= 1L

using nz
by (auto intro!: blinfun-eqI

simp: flowderiv-def blinfun.bilinear-simps inverse-eq-divide poincare-map-def)
have I2 : ((Ds (flow0 (fst (x, t))

(snd (x, t))) oL

flowderiv (fst (x, t))
(snd (x, t))) oL

embed2-blinfun) oL blinfun-scaleR-left (inverse (Ds (flow0 x t)(f (flow0 x t))))
= 1L

using nz
by (auto intro!: blinfun-eqI

simp: flowderiv-def blinfun.bilinear-simps inverse-eq-divide poincare-map-def)
show ?thesis

apply (rule implicit-function-theorem[where f=λ(x, t). s (flow0 x t)
and S=Sigma X existence-ivl0 , OF D xt1 open-state-space order-refl C Z

I1 I2])
apply blast

unfolding split-beta ′ fst-conv snd-conv poincare-map-def [symmetric]
..

qed

43

lemma flow-implicit-function-at:
fixes s:: ′a::euclidean-space ⇒ real and S :: ′a set
assumes x: x ∈ X and st: s x = 0
assumes Ds:

∧
x. (s has-derivative blinfun-apply (Ds x)) (at x)

assumes DsC : isCont Ds x
assumes nz: Ds x (f x) 6= 0
assumes pos: e > 0
obtains u d
where

0 < d
u x = 0∧

y. y ∈ cball x d =⇒ s (flow0 y (u y)) = 0∧
y. y ∈ cball x d =⇒ |u y| < e∧
y. y ∈ cball x d =⇒ u y ∈ existence-ivl0 y

continuous-on (cball x d) u
(u has-derivative −Ds x /R (Ds x) (f x)) (at x)

proof −
have x0 : flow0 x 0 = x by (simp add: x)
from flow-implicit-function[OF existence-ivl-zero[OF x] x, unfolded x0 , of s, OF

st Ds DsC nz]
obtain u d0 where

s0 : s (flow0 x (u x)) = 0
and u0 : u x = 0
and u:

∧
y. y ∈ cball x d0 =⇒ s (flow0 y (u y)) = 0

and uc: continuous-on (cball x d0) u
and uex: (λt. (t, u t)) ‘ cball x d0 ⊆ Sigma X existence-ivl0
and d0 : 0 < d0
and u ′: (u has-derivative
blinfun-apply

(− blinfun-scaleR-left (inverse (blinfun-apply (Ds x) (f x))) oL (Ds x oL

flowderiv x 0) oL embed1-blinfun))
(at x)

by blast
have at x within cball x d0 = at x by (rule at-within-interior) (auto simp: ‹0 <

d0 ›)
then have (u −−−→ 0) (at x)

using uc d0 by (auto simp: continuous-on-def u0 dest!: bspec[where x=x])
from tendstoD[OF this ‹0 < e›] pos u0
obtain d1 where d1 : 0 < d1

∧
xa. dist xa x ≤ d1 =⇒ |u xa| < e

unfolding eventually-at-le
by force

define d where d = min d0 d1
have 0 < d by (auto simp: d-def d0 d1)
moreover note u0
moreover have

∧
y. y ∈ cball x d =⇒ s (flow0 y (u y)) = 0 by (auto intro!: u

simp: d-def)
moreover have

∧
y. y ∈ cball x d =⇒ |u y| < e using d1 by (auto simp: d-def

dist-commute)

44

moreover have
∧

y. y ∈ cball x d =⇒ u y ∈ existence-ivl0 y
using uex by (force simp: d-def)

moreover have continuous-on (cball x d) u
using uc by (rule continuous-on-subset) (auto simp: d-def)

moreover
have (u has-derivative −Ds x /R (Ds x) (f x)) (at x)

using u ′

by (rule has-derivative-subst) (auto intro!: ext simp: x x0 flowderiv-def blin-
fun.bilinear-simps)

ultimately show ?thesis ..
qed

lemma returns-to-implicit-function-gen:
— TODO: generalizes proof of [[returns-to {x ∈ ?S . ?s x = 0} ?x; closed ?S ;

∧
x.

(?s has-derivative blinfun-apply (?Ds x)) (at x); isCont ?Ds (poincare-map {x ∈
?S . ?s x = 0} ?x); blinfun-apply (?Ds (poincare-map {x ∈ ?S . ?s x = 0} ?x)) (f
(poincare-map {x ∈ ?S . ?s x = 0} ?x)) 6= 0 ;

∧
u e. [[?s (flow0 ?x (u ?x)) = 0 ; u ?x

= return-time {x ∈ ?S . ?s x = 0} ?x;
∧

y. y ∈ cball ?x e =⇒ ?s (flow0 y (u y)) =
0 ; continuous-on (cball ?x e) u; (λt. (t, u t)) ‘ cball ?x e ⊆ Sigma X existence-ivl0 ;
0 < e; (u has-derivative blinfun-apply (− blinfun-scaleR-left (inverse (blinfun-apply
(?Ds (poincare-map {x ∈ ?S . ?s x = 0} ?x)) (f (poincare-map {x ∈ ?S . ?s x = 0}
?x)))) oL (?Ds (poincare-map {x ∈ ?S . ?s x = 0} ?x) oL flowderiv ?x (return-time
{x ∈ ?S . ?s x = 0} ?x)) oL embed1-blinfun)) (at ?x)]] =⇒ ?thesis]] =⇒ ?thesis!

fixes s:: ′a::euclidean-space ⇒ real
assumes rt: returns-to {x ∈ S . s x = 0} x (is returns-to ?P x)
assumes cS : closed S
assumes Ds:

∧
x. (s has-derivative blinfun-apply (Ds x)) (at x)

isCont Ds (poincare-map ?P x)
Ds (poincare-map ?P x) (f (poincare-map ?P x)) 6= 0

obtains u e
where s (flow0 x (u x)) = 0

u x = return-time ?P x
(
∧

y. y ∈ cball x e =⇒ s (flow0 y (u y)) = 0)
continuous-on (cball x e) u
(λt. (t, u t)) ‘ cball x e ⊆ Sigma X existence-ivl0
0 < e (u has-derivative (− blinfun-scaleR-left

(inverse (blinfun-apply (Ds (poincare-map ?P x)) (f (poincare-map
?P x)))) oL

(Ds (poincare-map ?P x) oL flowderiv x (return-time ?P x)) oL

embed1-blinfun)) (at x)
proof −

note [derivative-intros] = has-derivative-compose[OF - Ds(1)]
have cont-s: continuous-on UNIV s by (rule has-derivative-continuous-on[OF

Ds(1)])
note cls[simp, intro] = closed-levelset[OF cont-s]
let ?t1 = return-time ?P x
have cls[simp, intro]: closed {x ∈ S . s x = 0}
by (rule closed-levelset-within) (auto intro!: cS continuous-on-subset[OF cont-s])

45

have ∗: poincare-map ?P x = flow0 x (return-time {x ∈ S . s x = 0} x)
by (simp add: poincare-map-def)

have return-time {x ∈ S . s x = 0} x ∈ existence-ivl0 x
x ∈ X
s (poincare-map ?P x) = 0
using poincare-map-returns rt
by (auto intro!: return-time-exivl rt)

note E = flow-implicit-function[of return-time ?P x x s Ds, OF this[unfolded ∗]
Ds[unfolded ∗],

folded ∗]
show ?thesis

by (rule E) rule
qed

c.f. Perko Section 3.7 Lemma 2 part 1.
lemma flow-transversal-surface-finite-intersections:

fixes s:: ′a ⇒ ′b::real-normed-vector
and Ds:: ′a ⇒ ′a ⇒L

′b
assumes closed S
assumes

∧
x. (s has-derivative (Ds x)) (at x)

assumes
∧

x. x ∈ S =⇒ s x = 0 =⇒ Ds x (f x) 6= 0
assumes a ≤ b {a .. b} ⊆ existence-ivl0 x
shows finite {t∈{a..b}. flow0 x t ∈ {x ∈ S . s x = 0}}

— TODO: define notion of (compact/closed)-(continuous/differentiable/C1)-
surface?
proof cases

note Ds = ‹
∧

x. (s has-derivative (Ds x)) (at x)›
note transversal = ‹

∧
x. x ∈ S =⇒ s x = 0 =⇒ Ds x (f x) 6= 0 ›

assume a < b
show ?thesis
proof (rule ccontr)

let ?S = {x ∈ S . s x = 0}
let ?T = {t∈{a..b}. flow0 x t ∈ {x ∈ S . s x = 0}}
define ϕ where ϕ = flow0 x
have [THEN continuous-on-compose2 , continuous-intros]: continuous-on S s
by (auto simp: intro!: has-derivative-continuous-on Ds intro: has-derivative-at-withinI)
assume infinite ?T
from compact-sequentialE [OF compact-Icc[of a b] this]
obtain t tl where t: t n ∈ ?T flow0 x (t n) ∈ ?S t n ∈ {a .. b} t n 6= tl

and tl: t −−−−→ tl tl ∈ {a..b}
for n

by force
have tl-ex: tl ∈ existence-ivl0 x using ‹{a .. b} ⊆ existence-ivl0 x› ‹tl ∈ {a ..

b}› by auto
have closed ?S

by (auto intro!: closed-levelset-within ‹closed S› continuous-intros)
moreover
have ∀n. flow0 x (t n) ∈ ?S

using t by auto

46

moreover
have flow-t: (λn. flow0 x (t n)) −−−−→ flow0 x tl

by (auto intro!: tendsto-eq-intros tl-ex tl)
ultimately have flow0 x tl ∈ ?S

by (metis (no-types, lifting) closed-sequentially)

let ?qt = λt. (flow0 x t − flow0 x tl) /R (t − tl)
from flow-has-vector-derivative[OF tl-ex, THEN has-vector-derivative-withinD]
have qt-tendsto: ?qt −tl→ f (flow0 x tl) .
let ?q = λn. ?qt (t n)
have filterlim t (at tl) sequentially

using tl(1)
by (rule filterlim-atI) (simp add: t)

with qt-tendsto have ?q −−−−→ f (flow0 x tl)
by (rule filterlim-compose)

then have ((λn. Ds (flow0 x tl) (?q n))) −−−−→ Ds (flow0 x tl) (f (flow0 x tl))
by (auto intro!: tendsto-intros)

moreover

from flow-lipschitzE [OF ‹{a .. b} ⊆ existence-ivl0 x›] obtain L ′ where L ′:
L ′−lipschitz-on {a..b} (flow0 x) .

define L where L = L ′ + 1
from lipschitz-on-le[OF L ′, of L] lipschitz-on-nonneg[OF L ′]
have L: L−lipschitz-on {a .. b} (flow0 x) and L > 0

by (auto simp: L-def)
from flow-lipschitzE [OF ‹{a .. b} ⊆ existence-ivl0 x›] obtain L ′ where

L ′−lipschitz-on {a..b} (flow0 x) .
— TODO: is this reasoning (below) with this Lipschitz constant really

necessary?
have s[simp]: s (flow0 x (t n)) = 0s (flow0 x tl) = 0

for n
using t ‹flow0 x tl ∈ ?S›
by auto

from Ds(1)[of flow0 x tl, unfolded has-derivative-within]
have (λy. (1 / norm (y − flow0 x tl)) ∗R (s y − (s (flow0 x tl) + blinfun-apply

(Ds (flow0 x tl)) (y − flow0 x tl)))) −flow0 x tl→ 0
by auto

then have ((λy. (1 / norm (y − flow0 x tl)) ∗R (s y − (s (flow0 x tl) +
blinfun-apply (Ds (flow0 x tl)) (y − flow0 x tl)))) −−−→ 0)

(nhds (flow0 x tl))
by (rule tendsto-nhds-continuousI) simp

from filterlim-compose[OF this flow-t]
have (λxa. (blinfun-apply (Ds (flow0 x tl)) (flow0 x (t xa) − flow0 x tl)) /R

norm (flow0 x (t xa) − flow0 x tl))
−−−−→ 0
using t
by (auto simp: inverse-eq-divide tendsto-minus-cancel-right)

47

from tendsto-mult[OF tendsto-const[of L] tendsto-norm[OF this, simplified,
simplified divide-inverse-commute[symmetric]]]— TODO: uuugly

have Ds0 : (λxa. norm (blinfun-apply (Ds (flow0 x tl)) (flow0 x (t xa) − flow0
x tl)) / (norm (flow0 x (t xa) − flow0 x tl)/(L))) −−−−→ 0

by (auto simp: ac-simps)

from - Ds0 have ((λn. Ds (flow0 x tl) (?q n)) −−−−→ 0)
apply (rule Lim-null-comparison)
apply (rule eventuallyI)

unfolding norm-scaleR blinfun.scaleR-right abs-inverse divide-inverse-commute[symmetric]
subgoal for n

apply (cases flow0 x (t n) = flow0 x tl)
subgoal by (simp add: blinfun.bilinear-simps)
subgoal

apply (rule divide-left-mono)
using lipschitz-onD[OF L, of t n tl] ‹0 < L› t(3) tl(2)

by (auto simp: algebra-split-simps zero-less-divide-iff dist-norm pos-divide-le-eq
intro!: add-pos-nonneg)

done
done

ultimately have Ds (flow0 x tl) (f (flow0 x tl)) = 0
by (rule LIMSEQ-unique)

moreover have Ds (flow0 x tl) (f (flow0 x tl)) 6= 0
by (rule transversal) (use ‹flow0 x tl ∈ ?S› in auto)

ultimately show False by auto
qed

qed (use assms in auto)

lemma uniform-limit-flow0-state:— TODO: is that something more general?
assumes compact C
assumes C ⊆ X
shows uniform-limit C (λs x. flow0 x s) (λx. flow0 x 0) (at 0)

proof (cases C = {})
case True then show ?thesis by auto

next
case False show ?thesis
proof (rule uniform-limitI)

fix e::real assume 0 < e
{

fix x assume x ∈ C
with assms have x ∈ X by auto
from existence-ivl-cballs[OF UNIV-I ‹x ∈ X›]
obtain t L u where

∧
y. y ∈ cball x u =⇒ cball 0 t ⊆ existence-ivl0 y∧

s y. y ∈ cball x u =⇒ s ∈ cball 0 t =⇒ flow0 y s ∈ cball y u
L−lipschitz-on (cball 0 t×cball x u) (λ(t, x). flow0 x t)∧

y. y ∈ cball x u =⇒ cball y u ⊆ X
0 < t 0 < u
by metis

then have ∃L. ∃ u>0 . ∃ t>0 . L−lipschitz-on (cball 0 t×cball x u) (λ(t, x).

48

flow0 x t) by blast
} then have ∀ x∈C . ∃L. ∃ u>0 . ∃ t>0 . L−lipschitz-on (cball 0 t×cball x u)

(λ(t, x). flow0 x t) ..
then obtain L d ′ u ′ where

L:
∧

x. x ∈ C =⇒ (L x)−lipschitz-on (cball 0 (d ′ x)×cball x (u ′ x)) (λ(t, x).
flow0 x t)

and d ′:
∧

x. x ∈ C =⇒ d ′ x > 0
and u ′:

∧
x. x ∈ C =⇒ u ′ x > 0

by metis
have C ⊆ (

⋃
c∈C . ball c (u ′ c)) using u ′ by auto

from compactE-image[OF ‹compact C › - this]
obtain C ′ where C ′ ⊆ C and [simp]: finite C ′ and C ′-cover : C ⊆ (

⋃
c∈C ′.

ball c (u ′ c))
by auto

from C ′-cover obtain c ′ where c ′: x ∈ C =⇒ x ∈ ball (c ′ x) (u ′ (c ′ x)) x ∈
C =⇒ c ′ x ∈ C ′ for x

by (auto simp: subset-iff) metis
have ∀ F s in at 0 . ∀ x∈ball c (u ′ c). dist (flow0 x s) (flow0 x 0) < e if c ∈ C ′

for c
proof −

have cC : c ∈ C
using c ′ ‹c ∈ C ′› d ′ ‹C ′ ⊆ C ›
by auto

have ∗: dist (flow0 x s) (flow0 x 0) ≤ L c ∗ |s|
if x∈ball c (u ′ c)

s ∈ cball 0 (d ′ c)
for x s

proof −
from L[OF cC , THEN lipschitz-onD, of (0 , x) (s, x)] d ′[OF cC] that
show ?thesis

by (auto simp: dist-prod-def dist-commute)
qed
have ∀ F s in at 0 . abs s < d ′ c

by (rule order-tendstoD tendsto-intros)+ (use d ′ cC in auto)
moreover have ∀ F s in at 0 . L c ∗ |s| < e

by (rule order-tendstoD tendsto-intros)+ (use ‹0 < e› in auto)
ultimately show ?thesis

apply eventually-elim
apply (use ∗ in auto)
by smt

qed
then have ∀ F s in at 0 . ∀ c∈C ′. ∀ x∈ball c (u ′ c). dist (flow0 x s) (flow0 x 0)

< e
by (simp add: eventually-ball-finite-distrib)

then show ∀ F s in at 0 . ∀ x∈C . dist (flow0 x s) (flow0 x 0) < e
apply eventually-elim
apply auto
subgoal for s x

apply (drule bspec[where x=c ′ x])

49

apply (simp add: c ′(2))
apply (drule bspec) prefer 2 apply assumption
apply auto
using c ′(1) by auto

done
qed

qed

end

2.7 Fixpoints
context auto-ll-on-open begin

lemma fixpoint-sol:
assumes x ∈ X f x = 0
shows existence-ivl0 x = UNIV flow0 x t = x

proof −
have sol: ((λt::real. x) solves-ode (λ-. f)) UNIV X

apply (rule solves-odeI)
by(auto simp add: assms intro!: derivative-intros)

from maximal-existence-flow[OF sol] have
UNIV ⊆ existence-ivl0 x flow0 x t = x by auto

thus existence-ivl0 x = UNIV flow0 x t = x by auto
qed

end

end

3 Invariance
theory Invariance

imports ODE-Misc
begin

context auto-ll-on-open begin

definition invariant M ←→ (∀ x∈M . trapped x M)

definition positively-invariant M ←→ (∀ x∈M . trapped-forward x M)

definition negatively-invariant M ←→ (∀ x∈M . trapped-backward x M)

lemma positively-invariant-iff :
positively-invariant M ←→
(
⋃

x∈M . flow0 x ‘ (existence-ivl0 x ∩ {0 ..})) ⊆ M
unfolding positively-invariant-def trapped-forward-def
by auto

50

lemma negatively-invariant-iff :
negatively-invariant M ←→
(
⋃

x∈M . flow0 x ‘ (existence-ivl0 x ∩ {..0})) ⊆ M
unfolding negatively-invariant-def trapped-backward-def
by auto

lemma invariant-iff-pos-and-neg-invariant:
invariant M ←→ positively-invariant M ∧ negatively-invariant M
unfolding invariant-def trapped-def positively-invariant-def negatively-invariant-def
by blast

lemma invariant-iff :
invariant M ←→ (

⋃
x∈M . flow0 x ‘ (existence-ivl0 x)) ⊆ M

unfolding invariant-iff-pos-and-neg-invariant positively-invariant-iff negatively-invariant-iff
by (metis (mono-tags) SUP-le-iff invariant-def invariant-iff-pos-and-neg-invariant

negatively-invariant-iff positively-invariant-iff trapped-iff-on-existence-ivl0)

lemma positively-invariant-restrict-dom: positively-invariant M = positively-invariant
(M ∩ X)

unfolding positively-invariant-def trapped-forward-def
by (auto intro!: flow-in-domain dest: mem-existence-ivl-iv-defined)

lemma negatively-invariant-restrict-dom: negatively-invariant M = negatively-invariant
(M ∩ X)

unfolding negatively-invariant-def trapped-backward-def
by (auto intro!: flow-in-domain dest: mem-existence-ivl-iv-defined)

lemma invariant-restrict-dom: invariant M = invariant (M ∩ X)
using invariant-iff-pos-and-neg-invariant

negatively-invariant-restrict-dom
positively-invariant-restrict-dom by auto

end context auto-ll-on-open begin

lemma positively-invariant-eq-rev: positively-invariant M = rev.negatively-invariant
M

unfolding positively-invariant-def rev.negatively-invariant-def
by (simp add: rev.trapped-backward-iff-rev-trapped-forward)

lemma negatively-invariant-eq-rev: negatively-invariant M = rev.positively-invariant
M

unfolding negatively-invariant-def rev.positively-invariant-def
by (simp add: trapped-backward-iff-rev-trapped-forward)

lemma invariant-eq-rev: invariant M = rev.invariant M
unfolding invariant-iff-pos-and-neg-invariant rev.invariant-iff-pos-and-neg-invariant

positively-invariant-eq-rev negatively-invariant-eq-rev by auto

51

lemma negatively-invariant-complI : negatively-invariant (X−M) if positively-invariant
M

unfolding negatively-invariant-def trapped-backward-def
proof clarsimp

fix x t
assume x: x ∈ X x /∈ M t ∈ existence-ivl0 x t ≤ 0
have a1 :flow0 x t ∈ X using x

using flow-in-domain by blast
have a2 :flow0 x t /∈ M
proof (rule ccontr)

assume ¬ flow0 x t /∈ M
then have trapped-forward (flow0 x t) M

using positively-invariant-def that by auto
moreover have flow0 (flow0 x t) (−t) = x

using ‹t ∈ existence-ivl0 x› flows-reverse by auto
moreover have −t ∈ existence-ivl0 (flow0 x t) ∩ {0 ..}

using existence-ivl-reverse x(3) x(4) by auto
ultimately have x ∈ M unfolding trapped-forward-def

by (metis image-subset-iff)
thus False using x(2) by auto

qed
show flow0 x t ∈ X ∧ flow0 x t /∈ M using a1 a2 by auto

qed

end context auto-ll-on-open begin

lemma negatively-invariant-complD: positively-invariant M if negatively-invariant
(X−M)
proof −

have rev.positively-invariant (X−M) using that
by (simp add: negatively-invariant-eq-rev)

then have rev.negatively-invariant (X−(X−M))
by (simp add: rev.negatively-invariant-complI)

then have positively-invariant (X−(X−M))
using rev.negatively-invariant-eq-rev by auto

thus ?thesis using Diff-Diff-Int
by (metis inf-commute positively-invariant-restrict-dom)

qed

lemma pos-invariant-iff-compl-neg-invariant: positively-invariant M ←→ negatively-invariant
(X − M)

by (safe intro!: negatively-invariant-complI dest!: negatively-invariant-complD)

lemma neg-invariant-iff-compl-pos-invariant:
shows negatively-invariant M ←→ positively-invariant (X − M)
by (simp add: auto-ll-on-open.pos-invariant-iff-compl-neg-invariant negatively-invariant-eq-rev

positively-invariant-eq-rev rev.auto-ll-on-open-axioms)

52

lemma invariant-iff-compl-invariant:
shows invariant M ←→ invariant (X − M)
using invariant-iff-pos-and-neg-invariant neg-invariant-iff-compl-pos-invariant pos-invariant-iff-compl-neg-invariant

by blast

lemma invariant-iff-pos-invariant-and-compl-pos-invariant:
shows invariant M ←→ positively-invariant M ∧ positively-invariant (X−M)
by (simp add: invariant-iff-pos-and-neg-invariant neg-invariant-iff-compl-pos-invariant)

end

3.1 Tools for proving invariance
context auto-ll-on-open begin

lemma positively-invariant-left-inter :
assumes positively-invariant C
assumes ∀ x ∈ C ∩ D. trapped-forward x D
shows positively-invariant (C ∩ D)
using assms positively-invariant-def trapped-forward-def by auto

lemma trapped-forward-le:
fixes V :: ′a ⇒ real
assumes V x ≤ 0
assumes contg: continuous-on (flow0 x ‘ (existence-ivl0 x ∩ {0 ..})) g
assumes

∧
x. (V has-derivative V ′ x) (at x)

assumes
∧

s. s ∈ existence-ivl0 x ∩ {0 ..} =⇒ V ′ (flow0 x s) (f (flow0 x s)) ≤ g
(flow0 x s) ∗ V (flow0 x s)

shows trapped-forward x {x. V x ≤ 0}
unfolding trapped-forward-def

proof clarsimp
fix t
assume t: t ∈ existence-ivl0 x 0 ≤ t
then have ex:{0 ..t} ⊆ existence-ivl0 x

by (simp add: local.ivl-subset-existence-ivl)
have contV : continuous-on UNIV V

using assms(3) has-derivative-continuous-on by blast
have 1 : continuous-on {0 ..t} (g ◦ flow0 x)

apply (rule continuous-on-compose)
using continuous-on-subset ex local.flow-continuous-on apply blast

by (meson Int-subset-iff atLeastAtMost-iff atLeast-iff contg continuous-on-subset
ex image-mono subsetI)

have 2 : (
∧

s. s ∈ {0 ..t} =⇒
(V ◦ flow0 x has-real-derivative (V ′ (flow0 x s) ◦ f ◦ flow0 x) s) (at s))

apply (auto simp add:o-def has-field-derivative-def)
proof −

fix s
assume 0 ≤ s s ≤ t
then have s ∈ existence-ivl0 x using ex by auto

53

from flow-has-derivative[OF this] have
(flow0 x has-derivative (λi. i ∗R f (flow0 x s))) (at s) .

from has-derivative-compose[OF this assms(3)]
have ((λt. V (flow0 x t)) has-derivative (λt. V ′ (flow0 x s) (t ∗R f (flow0 x

s)))) (at s) .
moreover have linear (V ′ (flow0 x s)) using assms(3) has-derivative-linear

by blast
ultimately
have ((λt. V (flow0 x t)) has-derivative (λt. t ∗R V ′ (flow0 x s) (f (flow0 x

s)))) (at s)
unfolding linear-cmul[OF ‹linear (V ′ (flow0 x s))›] by blast

thus ((λt. V (flow0 x t)) has-derivative (∗) (V ′ (flow0 x s) (f (flow0 x s)))) (at
s)

by (auto intro!: derivative-eq-intros simp add: mult-commute-abs)
qed
have 3 : (

∧
s. s ∈ {0 ..t} =⇒

(V ′ (flow0 x s) ◦ f ◦ flow0 x) s ≤ (g ◦ flow0 x) s ∗R (V ◦ flow0 x) s)
using ex by (auto intro!:assms(4))

from comparison-principle-le-linear [OF 1 2 - 3] assms(1)
have ∀ s ∈ {0 ..t}. (V ◦ flow0 x) s ≤ 0

using local.mem-existence-ivl-iv-defined(2) t(1) by auto
thus V (flow0 x t) ≤ 0

by (simp add: t(2))
qed

lemma positively-invariant-le-domain:
fixes V :: ′a ⇒ real
assumes positively-invariant D
assumes contg: continuous-on D g
assumes

∧
x. (V has-derivative V ′ x) (at x)

assumes
∧

s. s ∈ D =⇒ V ′ s (f s) ≤ g s ∗ V s
shows positively-invariant (D ∩ {x. V x ≤ 0})
apply (auto intro!:positively-invariant-left-inter [OF assms(1)])

proof −
fix x
assume x ∈ D V x ≤ 0
have continuous-on (flow0 x ‘ (existence-ivl0 x ∩ {0 ..})) g
by (meson ‹x ∈ D› assms(1) contg continuous-on-subset positively-invariant-def

trapped-forward-def)
from trapped-forward-le[OF ‹V x ≤ 0 › this assms(3)]
show trapped-forward x {x. V x ≤ 0} using assms(4)

using ‹x ∈ D› assms(1) positively-invariant-def trapped-forward-def by auto
qed

lemma positively-invariant-barrier-domain:
fixes V :: ′a ⇒ real
assumes positively-invariant D
assumes

∧
x. (V has-derivative V ′ x) (at x)

assumes continuous-on D (λx. V ′ x (f x))

54

assumes
∧

s. s ∈ D =⇒ V s = 0 =⇒ V ′ s (f s) < 0
shows positively-invariant (D ∩ {x. V x ≤ 0})
apply (auto intro!:positively-invariant-left-inter [OF assms(1)])

proof −
fix x
assume x ∈ D V x ≤ 0
have contV : continuous-on UNIV V using assms(2) has-derivative-continuous-on

by blast
then have ∗: continuous-on (flow0 x ‘ (existence-ivl0 x ∩ {0 ..})) V

using continuous-on-subset by blast
have sub: flow0 x ‘ (existence-ivl0 x ∩ {0 ..}) ⊆ D

using ‹x ∈ D› assms(1) positively-invariant-def trapped-forward-def by auto
then have contV ′: continuous-on (flow0 x ‘ (existence-ivl0 x ∩ {0 ..})) (λx. V ′

x (f x))
by (metis assms(3) continuous-on-subset)

have nz:
∧

i t. t ∈ existence-ivl0 x =⇒
0 ≤ t =⇒ max (−V ′ (flow0 x t) (f (flow0 x t))) ((V (flow0 x t))2) > 0

proof −
fix i t
assume t ∈ existence-ivl0 x 0 ≤ t
then have flow0 x t ∈ D

using ‹x ∈ D› assms(1) positively-invariant-def trapped-forward-def by auto
then have V (flow0 x t) = 0 =⇒ − V ′ (flow0 x t) (f (flow0 x t)) > 0 using

assms(4) by simp
then have (V (flow0 x t))^2 > 0 ∨ − V ′ (flow0 x t) (f (flow0 x t)) > 0 by

simp
thus max (−V ′ (flow0 x t) (f (flow0 x t))) ((V (flow0 x t))2) > 0 unfolding

less-max-iff-disj
by auto

qed
have ∗: continuous-on (flow0 x ‘ (existence-ivl0 x ∩ {0 ..})) (λx. V ′ x (f x) ∗ V

x / max (− V ′ x (f x)) ((V x)^2))
apply (auto intro!:continuous-intros continuous-on-max simp add: ∗ contV ′)
using nz by fastforce

have (
∧

t. t ∈ existence-ivl0 x ∩ {0 ..} =⇒
V ′ (flow0 x t) (f (flow0 x t)) ≤
(V ′ (flow0 x t) (f (flow0 x t)) ∗ V (flow0 x t)
/ max (− V ′ (flow0 x t) (f (flow0 x t))) ((V (flow0 x t))2)) ∗ V (flow0 x t))

proof clarsimp
fix t
assume t ∈ existence-ivl0 x 0 ≤ t
then have p: max (−V ′ (flow0 x t) (f (flow0 x t))) ((V (flow0 x t))2) > 0

using nz by auto
have V ′ (flow0 x t) (f (flow0 x t)) ∗ max (− V ′ (flow0 x t) (f (flow0 x t)))

((V (flow0 x t))2)
≤ V ′ (flow0 x t) (f (flow0 x t)) ∗ (V (flow0 x t))2

by (smt mult-minus-left mult-minus-right power2-eq-square mult-le-cancel-left-pos)
then have V ′ (flow0 x t) (f (flow0 x t))
≤ V ′ (flow0 x t) (f (flow0 x t)) ∗ (V (flow0 x t))2

55

/ max (− V ′ (flow0 x t) (f (flow0 x t))) ((V (flow0 x t))2)
using p pos-le-divide-eq by blast

thus V ′ (flow0 x t) (f (flow0 x t))
≤ V ′ (flow0 x t) (f (flow0 x t)) ∗ (V (flow0 x t)) ∗ V (flow0 x t) /

max (− V ′ (flow0 x t) (f (flow0 x t))) ((V (flow0 x t))2)
by (simp add: power2-eq-square)

qed
from trapped-forward-le[OF ‹V x ≤ 0 › ∗ assms(2) this]
show trapped-forward x {x. V x ≤ 0} by auto

qed

lemma positively-invariant-UNIV :
shows positively-invariant UNIV
using positively-invariant-iff by blast

lemma positively-invariant-conj:
assumes positively-invariant C
assumes positively-invariant D
shows positively-invariant (C ∩ D)
using assms positively-invariant-def
using positively-invariant-left-inter by auto

lemma positively-invariant-le:
fixes V :: ′a ⇒ real
assumes contg: continuous-on UNIV g
assumes

∧
x. (V has-derivative V ′ x) (at x)

assumes
∧

s. V ′ s (f s) ≤ g s ∗ V s
shows positively-invariant {x. V x ≤ 0}

proof −
from positively-invariant-le-domain[OF positively-invariant-UNIV assms]
have positively-invariant (UNIV ∩ {x. V x ≤ 0}) .
thus ?thesis by auto

qed

lemma positively-invariant-barrier :
fixes V :: ′a ⇒ real
assumes

∧
x. (V has-derivative V ′ x) (at x)

assumes continuous-on UNIV (λx. V ′ x (f x))
assumes

∧
s. V s = 0 =⇒ V ′ s (f s) < 0

shows positively-invariant {x. V x ≤ 0}
proof −

from positively-invariant-barrier-domain[OF positively-invariant-UNIV assms]
have positively-invariant (UNIV ∩ {x. V x ≤ 0}) .
thus ?thesis by auto

qed

end

end

56

4 Limit Sets
theory Limit-Set

imports Invariance
begin

context auto-ll-on-open begin

Positive limit point, assuming {0 ..} ⊆ existence-ivl0 x
definition ω-limit-point x p ←→
{0 ..} ⊆ existence-ivl0 x ∧
(∃ s. s −−−−→ ∞ ∧ (flow0 x ◦ s) −−−−→ p)

Also called the ω-limit set of x
definition ω-limit-set x = {p. ω-limit-point x p}

definition α-limit-point x p ←→
{..0} ⊆ existence-ivl0 x ∧
(∃ s. s −−−−→ −∞ ∧ (flow0 x ◦ s) −−−−→ p)

Also called the α-limit set of x
definition α-limit-set x =
{p. α-limit-point x p}

end context auto-ll-on-open begin

lemma α-limit-point-eq-rev: α-limit-point x p = rev.ω-limit-point x p
unfolding α-limit-point-def rev.ω-limit-point-def
apply (auto simp: rev-eq-flow[abs-def] o-def filterlim-uminus-at-bot rev-existence-ivl-eq0

subset-iff
intro: exI [where x=uminus o s for s])

using neg-0-le-iff-le by fastforce

lemma α-limit-set-eq-rev: α-limit-set x = rev.ω-limit-set x
unfolding α-limit-set-def rev.ω-limit-set-def α-limit-point-eq-rev ..

lemma ω-limit-pointE :
assumes ω-limit-point x p
obtains s where

filterlim s at-top sequentially
(flow0 x ◦ s) −−−−→ p
∀n. b ≤ s n

using assms filterlim-at-top-choose-lower ω-limit-point-def by blast

lemma ω-limit-set-eq:
assumes {0 ..} ⊆ existence-ivl0 x
shows ω-limit-set x = (INF τ ∈ {0 ..}. closure (flow0 x ‘ {τ ..}))
unfolding ω-limit-set-def

proof safe

57

fix p t
assume pt: 0 ≤ (t::real) ω-limit-point x p
from ω-limit-pointE [OF pt(2)]
obtain s where

filterlim s at-top sequentially
(flow0 x ◦ s) −−−−→ p
∀n. t ≤ s n by blast

thus p ∈ closure (flow0 x ‘ {t..}) unfolding closure-sequential
by (metis atLeast-iff comp-apply imageI)

next
fix p
assume p ∈ (

⋂
τ∈{0 ..}. closure (flow0 x ‘ {τ ..}))

then have
∧

t. t ≥0 =⇒ p ∈ closure (flow0 x ‘ {t..}) by blast
then have

∧
t e. t ≥0 =⇒ e > 0 =⇒ (∃ tt ≥ t. dist (flow0 x tt) p < e)

unfolding closure-approachable
by fastforce

from approachable-sequenceE [OF this]
obtain s where filterlim s at-top sequentially (flow0 x ◦ s) −−−−→ p by auto
thus ω-limit-point x p unfolding ω-limit-point-def using assms by auto

qed

lemma ω-limit-set-empty:
assumes ¬ ({0 ..} ⊆ existence-ivl0 x)
shows ω-limit-set x = {}
unfolding ω-limit-set-def ω-limit-point-def
by (simp add: assms)

lemma ω-limit-set-closed: closed (ω-limit-set x)
using ω-limit-set-eq
by (metis ω-limit-set-empty closed-INT closed-closure closed-empty)

lemma ω-limit-set-positively-invariant:
shows positively-invariant (ω-limit-set x)
unfolding positively-invariant-def trapped-forward-def

proof safe
fix dummy p t
assume xa: p ∈ ω-limit-set x

t ∈ existence-ivl0 p
0 ≤ t

have p ∈ X using mem-existence-ivl-iv-defined(2) xa(2) by blast
have exist: {0 ..} ⊆ existence-ivl0 x using xa(1)

unfolding ω-limit-set-def ω-limit-point-def by auto
from xa(1)
obtain s where s:

filterlim s at-top sequentially
(flow0 x ◦ s) −−−−→ p
∀n. 0 ≤ s n
unfolding ω-limit-set-def by (auto elim!:ω-limit-pointE)

58

define r where r = (λn. t + s n)
have rlim: filterlim r at-top sequentially unfolding r-def

by (auto intro: filterlim-tendsto-add-at-top[OF - s(1)])
define dom where dom = image (flow0 x) {0 ..} ∪ {p}
have domin: ∀n. (flow0 x ◦ s) n ∈ dom p ∈ dom unfolding dom-def o-def

using exist by(auto simp add: s(3))
have xt:

∧
x. x ∈ dom =⇒ t ∈ existence-ivl0 x unfolding dom-def using xa(2)

apply auto
apply (rule existence-ivl-trans ′)
using exist xa(3) apply auto[1]
using exist by auto

have cont: continuous-on dom (λx. flow0 x t)
apply (rule flow-continuous-on-compose)

apply auto
using ‹p ∈ X› exist local.dom-def local.flow-in-domain apply auto[1]
using xt .

then have f1 : ((λx. flow0 x t) ◦ (flow0 x ◦ s)) −−−−→ flow0 p t using domin
s(2)

unfolding continuous-on-sequentially
by blast

have ff :
∧

n. (flow0 x ◦ r) n = ((λx. flow0 x t) ◦ (flow0 x ◦ s)) n
unfolding o-def r-def

proof −
fix n
have s:s n ∈ existence-ivl0 x

using s(3) exist by auto
then have t:t ∈ existence-ivl0 (flow0 x (s n))

using domin(1) xt by auto
from flow-trans[OF s t]
show flow0 x (t + s n) = flow0 (flow0 x (s n)) t

by (simp add: add.commute)
qed
have f2 : (flow0 x ◦ r) −−−−→ flow0 p t using f1 unfolding ff .
show flow0 p t ∈ ω-limit-set x using exist f2 rlim

unfolding ω-limit-set-def ω-limit-point-def
using flow-in-domain r-def s(3) xa(2) xa(3) by auto

qed

lemma ω-limit-set-invariant:
shows invariant (ω-limit-set x)
unfolding invariant-iff-pos-invariant-and-compl-pos-invariant

proof safe
show positively-invariant (ω-limit-set x)

using ω-limit-set-positively-invariant .
next

show positively-invariant (X − ω-limit-set x)
unfolding positively-invariant-def trapped-forward-def
apply safe
using local.flow-in-domain apply blast

59

proof −
fix dummy p t
assume xa: p ∈ X p /∈ ω-limit-set x

t ∈ existence-ivl0 p 0 ≤ t
and f : flow0 p t ∈ ω-limit-set x

have exist: {0 ..} ⊆ existence-ivl0 x using f
unfolding ω-limit-set-def ω-limit-point-def by auto

from f
obtain s where s:

filterlim s at-top sequentially
(flow0 x ◦ s) −−−−→ flow0 p t
∀n. t ≤ s n
unfolding ω-limit-set-def by (auto elim!:ω-limit-pointE)

define r where r = (λn. (−t) + s n)
have (λx. −t) −−−−→ −t by simp
from filterlim-tendsto-add-at-top[OF this s(1)]
have rlim: filterlim r at-top sequentially unfolding r-def by simp
define dom where dom = image (flow0 x) {t..} ∪ {flow0 p t}
have domin: ∀n. (flow0 x ◦ s) n ∈ dom flow0 p t ∈ dom unfolding dom-def

o-def
using exist by(auto simp add: s(3))

have xt:
∧

x. x ∈ dom =⇒ −t ∈ existence-ivl0 x unfolding dom-def using
xa(2)

apply auto
using local.existence-ivl-reverse xa(3) apply auto[1]

by (metis exist atLeast-iff diff-conv-add-uminus diff-ge-0-iff-ge linordered-ab-group-add-class.zero-le-double-add-iff-zero-le-single-add
local.existence-ivl-trans ′ order-trans subset-iff xa(4))

have cont: continuous-on dom (λx. flow0 x (−t))
apply (rule flow-continuous-on-compose)

apply auto
using local.mem-existence-ivl-iv-defined(2) xt apply blast
by (simp add: xt)

then have f1 : ((λx. flow0 x (−t)) ◦ (flow0 x ◦ s)) −−−−→ flow0 (flow0 p t)
(−t) using domin s(2)

unfolding continuous-on-sequentially
by blast

have ff :
∧

n. (flow0 x ◦ r) n = ((λx. flow0 x (−t)) ◦ (flow0 x ◦ s)) n
unfolding o-def r-def

proof −
fix n
have s:s n ∈ existence-ivl0 x

using s(3) exist ‹0≤ t› by (meson atLeast-iff order-trans subset-eq)
then have t:−t ∈ existence-ivl0 (flow0 x (s n))

using domin(1) xt by auto
from flow-trans[OF s t]
show flow0 x (−t + s n) = flow0 (flow0 x (s n)) (−t)

by (simp add: add.commute)
qed
have (flow0 x ◦ r) −−−−→ flow0 (flow0 p t) (−t) using f1 unfolding ff .

60

then have f2 : (flow0 x ◦ r) −−−−→ p using flows-reverse xa(3) by auto
then have p ∈ ω-limit-set x unfolding ω-limit-set-def ω-limit-point-def

using rlim exist by auto
thus False using xa(2) by auto

qed
qed

end context auto-ll-on-open begin

lemma α-limit-set-eq:
assumes {..0} ⊆ existence-ivl0 x
shows α-limit-set x = (INF τ ∈ {..0}. closure (flow0 x ‘ {..τ}))
using rev.ω-limit-set-eq[of x, OF assms[folded infinite-rev-existence-ivl0-rewrites]]
unfolding α-limit-set-eq-rev rev-flow-image-eq image-uminus-atLeast
by (smt INT-extend-simps(10) Sup.SUP-cong image-uminus-atMost)

lemma α-limit-set-closed:
shows closed (α-limit-set x)
unfolding α-limit-set-eq-rev by (rule rev.ω-limit-set-closed)

lemma α-limit-set-positively-invariant:
shows negatively-invariant (α-limit-set x)
unfolding negatively-invariant-eq-rev α-limit-set-eq-rev
by (simp add: rev.ω-limit-set-positively-invariant)

lemma α-limit-set-invariant:
shows invariant (α-limit-set x)
unfolding invariant-eq-rev α-limit-set-eq-rev
by (simp add: rev.ω-limit-set-invariant)

Fundamental properties of the positive limit set
context

fixes x K
assumes K : compact K K ⊆ X
assumes x: x ∈ X trapped-forward x K

begin

Bunch of facts for what’s to come
private lemma props:

shows {0 ..} ⊆ existence-ivl0 x seq-compact K
apply (rule trapped-sol-right)

using x K by (auto simp add: compact-imp-seq-compact)

private lemma flowimg:
shows flow0 x ‘ (existence-ivl0 x ∩ {0 ..}) = flow0 x ‘ {0 ..}
using props(1) by auto

lemma ω-limit-set-in-compact-subset:
shows ω-limit-set x ⊆ K

61

unfolding ω-limit-set-def
proof safe

fix p s
assume ω-limit-point x p
from ω-limit-pointE [OF this]
obtain s where s:

filterlim s at-top sequentially
(flow0 x ◦ s) −−−−→ p
∀n. 0 ≤ s n by blast

then have fin: ∀n. (flow0 x ◦ s) n ∈ K using s(3) x K props(1)
unfolding trapped-forward-def
by (simp add: subset-eq)

from seq-compactE [OF props(2) fin]
show p ∈ K using s(2)

by (metis LIMSEQ-subseq-LIMSEQ LIMSEQ-unique)
qed

lemma ω-limit-set-in-compact-compact:
shows compact (ω-limit-set x)

proof −
from ω-limit-set-in-compact-subset
have bounded (ω-limit-set x)

using bounded-subset compact-imp-bounded
using K (1) by auto

thus ?thesis using ω-limit-set-closed
by (simp add: compact-eq-bounded-closed)

qed

lemma ω-limit-set-in-compact-nonempty:
shows ω-limit-set x 6= {}

proof −
have fin: ∀n. (flow0 x ◦ real) n ∈ K using x K props(1)

by (simp add: flowimg image-subset-iff trapped-forward-def)
from seq-compactE [OF props(2) this]
obtain r l where l ∈ K strict-mono r (flow0 x ◦ real ◦ r) −−−−→ l by blast
then have ω-limit-point x l unfolding ω-limit-point-def using props(1)

by (smt comp-def filterlim-sequentially-iff-filterlim-real filterlim-subseq tend-
sto-at-top-eq-left)

thus ?thesis unfolding ω-limit-set-def by auto
qed

lemma ω-limit-set-in-compact-existence:
shows

∧
y. y ∈ ω-limit-set x =⇒ existence-ivl0 y = UNIV

proof −
fix y
assume y: y ∈ ω-limit-set x
then have y ∈ X using ω-limit-set-in-compact-subset K by blast
from ω-limit-set-invariant
have

∧
t. t ∈ existence-ivl0 y =⇒ flow0 y t ∈ ω-limit-set x

62

unfolding invariant-def trapped-iff-on-existence-ivl0 using y by blast
then have t:

∧
t. t ∈ existence-ivl0 y =⇒ flow0 y t ∈ K

using ω-limit-set-in-compact-subset by blast
thus existence-ivl0 y = UNIV
by (meson ‹y ∈ X› existence-ivl-zero existence-ivl-initial-time-iff existence-ivl-subset

mem-compact-implies-subset-existence-interval subset-antisym K)
qed

lemma ω-limit-set-in-compact-tendsto:
shows ((λt. infdist (flow0 x t) (ω-limit-set x)) −−−→ 0) at-top

proof (rule ccontr)
assume ¬ ((λt. infdist (flow0 x t) (ω-limit-set x)) −−−→ 0) at-top
from not-tendsto-frequentlyE [OF this]
obtain S where S : open S 0 ∈ S
∃ F t in at-top. infdist (flow0 x t) (ω-limit-set x) /∈ S .

then obtain e where e > 0 ball 0 e ⊆ S using openE by blast
then have

∧
x. x ≥0 =⇒ x /∈ S =⇒ x ≥ e by force

then have ∀ xa. infdist (flow0 x xa) (ω-limit-set x) /∈ S −→
infdist (flow0 x xa) (ω-limit-set x) ≥ e using infdist-nonneg by blast

from frequently-mono[OF this S(3)]
have ∃ F t in at-top. infdist (flow0 x t) (ω-limit-set x) ≥ e by blast
then have ∀n. ∃ F t in at-top. infdist (flow0 x t) (ω-limit-set x) ≥ e ∧ real n ≤

t
by (auto intro!: eventually-frequently-conj)

from frequently-at-topE [OF this]
obtain s where s:

∧
i. e ≤ infdist (flow0 x (s i)) (ω-limit-set x)∧

i. real i ≤ s i strict-mono s by force
then have sf : filterlim s at-top sequentially

using filterlim-at-top-mono filterlim-real-sequentially not-eventuallyD by blast
have fin: ∀n. (flow0 x ◦ s) n ∈ K using x K props(1) s unfolding flowimg

trapped-forward-def
by (metis atLeast-iff comp-apply image-subset-iff of-nat-0-le-iff order-trans)

from seq-compactE [OF props(2) this]
obtain r l where r :strict-mono r and l: l ∈ K (flow0 x ◦ s ◦ r) −−−−→ l by

blast
moreover from filterlim-at-top-strict-mono[OF s(3) r(1) sf]
have filterlim (s ◦ r) at-top sequentially .
moreover have ω-limit-point x l unfolding ω-limit-point-def using props(1)

calculation
by (metis comp-assoc)

ultimately have infdist l (ω-limit-set x) = 0 by (simp add: ω-limit-set-def)
then have c1 :((λy. infdist y (ω-limit-set x)) ◦ (flow0 x ◦ s ◦ r)) −−−−→ 0

by (auto intro!: tendsto-compose-at[OF l(2)] tendsto-eq-intros)
have c2 :

∧
i. e ≤ infdist (flow0 x ((s ◦ r) i)) (ω-limit-set x) using s(1) by simp

show False using c1 c2 ‹e > 0 › unfolding o-def
using Lim-bounded2
by (metis (no-types, lifting) ball-eq-empty centre-in-ball empty-iff)

qed

63

lemma ω-limit-set-in-compact-connected:
shows connected (ω-limit-set x)
unfolding connected-closed-set[OF ω-limit-set-closed]

proof clarsimp
fix Apre Bpre
assume pre: closed Apre Apre ∪ Bpre = ω-limit-set x closed Bpre

Apre 6= {} Bpre 6= {} Apre ∩ Bpre = {}

then obtain A B where Apre ⊆ A Bpre ⊆ B open A open B and disj:A ∩ B
= {}

by (meson t4-space)
then have ω-limit-set x ⊆ A ∪ B
ω-limit-set x ∩ A 6= {} ω-limit-set x ∩ B 6= {} using pre by auto

then obtain p q where
p: ω-limit-point x p p ∈ A
and q: ω-limit-point x q q ∈ B
using ω-limit-set-def by auto

from ω-limit-pointE [OF p(1)]
obtain ps where ps: filterlim ps at-top sequentially
(flow0 x ◦ ps) −−−−→ p ∀n. 0 ≤ ps n by blast

from ω-limit-pointE [OF q(1)]
obtain qs where qs: filterlim qs at-top sequentially
(flow0 x ◦ qs) −−−−→ q ∀n. 0 ≤ qs n by blast

have ∀n. ∃ F t in at-top. flow0 x t /∈ A ∧ flow0 x t /∈ B unfolding fre-
quently-at-top

proof safe
fix dummy mpre
obtain m where m ≥ (0 ::real) m > mpre

by (meson approximation-preproc-push-neg(1) gt-ex le-cases order-trans)
from ps obtain a where a:a > m (flow0 x a) ∈ A
using ‹open A› p unfolding tendsto-def filterlim-at-top eventually-sequentially

by (metis approximation-preproc-push-neg(1) comp-apply gt-ex le-cases or-
der-trans)

from qs obtain b where b:b > a (flow0 x b) ∈ B
using ‹open B› q unfolding tendsto-def filterlim-at-top eventually-sequentially

by (metis approximation-preproc-push-neg(1) comp-apply gt-ex le-cases or-
der-trans)

have continuous-on {a..b} (flow0 x)
by (metis Icc-subset-Ici-iff ‹0 ≤ m› ‹m < a› approximation-preproc-push-neg(2)

atMost-iff atMost-subset-iff continuous-on-subset le-cases local.flow-continuous-on
props(1) subset-eq)

from connected-continuous-image[OF this connected-Icc]
have c:connected (flow0 x ‘ {a..b}) .
have ∃ t∈ {a..b}. flow0 x t /∈ A ∧ flow0 x t /∈ B
proof (rule ccontr)

assume ¬ (∃ t∈{a..b}. flow0 x t /∈ A ∧ flow0 x t /∈ B)
then have flow0 x ‘ {a..b} ⊆ A ∪ B by blast
from topological-space-class.connectedD[OF c ‹open A› ‹open B› - this]
show False using a b disj by force

64

qed
thus ∃n>mpre. flow0 x n /∈ A ∧ flow0 x n /∈ B

by (smt ‹mpre < m› a(1) atLeastAtMost-iff)
qed
from frequently-at-topE ′[OF this filterlim-real-sequentially]
obtain s where s: ∀ i. flow0 x (s i) /∈ A ∧ flow0 x (s i) /∈ B

strict-mono s
∧

n. real n ≤ s n by blast
then have ∀n. (flow0 x ◦ s) n ∈ K
by (smt atLeast-iff comp-apply flowimg image-subset-iff of-nat-0-le-iff trapped-forward-def

x(2))
from seq-compactE [OF props(2) this]
obtain r l where r : l ∈ K strict-mono r (flow0 x ◦ s ◦ r) −−−−→ l by blast
have filterlim s at-top sequentially
using s filterlim-at-top-mono filterlim-real-sequentially not-eventuallyD by blast

from filterlim-at-top-strict-mono[OF s(2) r(2) this]
have filterlim (s ◦ r) at-top sequentially .
then have ω-limit-point x l unfolding ω-limit-point-def using props(1) r

by (metis comp-assoc)
moreover have l /∈ A using s(1) r(3) ‹open A› unfolding tendsto-def by auto
moreover have l /∈ B using s(1) r(3) ‹open B› unfolding tendsto-def by auto
ultimately show False using ‹ω-limit-set x ⊆ A ∪ B› unfolding ω-limit-set-def

by auto
qed

lemma ω-limit-set-in-compact-ω-limit-set-contained:
shows ∀ y ∈ ω-limit-set x. ω-limit-set y ⊆ ω-limit-set x

proof safe
fix y z
assume y ∈ ω-limit-set x z ∈ ω-limit-set y
then have ω-limit-point y z unfolding ω-limit-set-def by auto
from ω-limit-pointE [OF this]
obtain s where s: (flow0 y ◦ s) −−−−→ z .
have ∀n. (flow0 y ◦ s) n ∈ ω-limit-set x

using ‹y ∈ ω-limit-set x› invariant-def
ω-limit-set-in-compact-existence ω-limit-set-invariant trapped-iff-on-existence-ivl0
by force

thus z ∈ ω-limit-set x using closed-sequential-limits s ω-limit-set-closed
by blast

qed

lemma ω-limit-set-in-compact-α-limit-set-contained:
assumes zpx: z ∈ ω-limit-set x
shows α-limit-set z ⊆ ω-limit-set x

proof
fix w assume w ∈ α-limit-set z
then obtain s where s: (flow0 z ◦ s) −−−−→ w

unfolding α-limit-set-def α-limit-point-def
by auto

65

from ω-limit-set-invariant have invariant (ω-limit-set x) .
then have ∀n. (flow0 z ◦ s) n ∈ ω-limit-set x

using ω-limit-set-in-compact-existence[OF zpx] zpx
using invariant-def trapped-iff-on-existence-ivl0 by fastforce

from closed-sequentially[OF ω-limit-set-closed] this s
show w ∈ ω-limit-set x

by blast
qed

end

Fundamental properties of the negative limit set
end context auto-ll-on-open begin

context
fixes x K
assumes x: x ∈ X trapped-backward x K
assumes K : compact K K ⊆ X

begin

private lemma xrev: x ∈ X rev.trapped-forward x K
using trapped-backward-iff-rev-trapped-forward x(2)
by (auto simp: rev-existence-ivl-eq0 rev-eq-flow x(1))

lemma α-limit-set-in-compact-subset: α-limit-set x ⊆ K
and α-limit-set-in-compact-compact: compact (α-limit-set x)
and α-limit-set-in-compact-nonempty: α-limit-set x 6= {}
and α-limit-set-in-compact-connected: connected (α-limit-set x)
and α-limit-set-in-compact-α-limit-set-contained:
∀ y ∈ α-limit-set x. α-limit-set y ⊆ α-limit-set x
and α-limit-set-in-compact-tendsto: ((λt. infdist (flow0 x t) (α-limit-set x)) −−−→

0) at-bot
using rev.ω-limit-set-in-compact-subset[OF K xrev]
using rev.ω-limit-set-in-compact-compact[OF K xrev]
using rev.ω-limit-set-in-compact-nonempty[OF K xrev]
using rev.ω-limit-set-in-compact-connected[OF K xrev]
using rev.ω-limit-set-in-compact-ω-limit-set-contained[OF K xrev]
using rev.ω-limit-set-in-compact-tendsto[OF K xrev]
unfolding invariant-eq-rev α-limit-set-eq-rev existence-ivl-eq-rev flow-eq-rev0 fil-

terlim-at-bot-mirror
minus-minus

.

lemma α-limit-set-in-compact-existence:
shows

∧
y. y ∈ α-limit-set x =⇒ existence-ivl0 y = UNIV

using rev.ω-limit-set-in-compact-existence[OF K xrev]
unfolding α-limit-set-eq-rev existence-ivl-eq-rev0
by auto

66

end
end

end

5 Periodic Orbits
theory Periodic-Orbit

imports
Ordinary-Differential-Equations.ODE-Analysis
Analysis-Misc
ODE-Misc
Limit-Set

begin

Definition of closed and periodic orbits and their associated properties
context auto-ll-on-open
begin

TODO: not sure if the "closed orbit" terminology is standard Closed orbits
have some non-zero recurrence time T where the flow returns to the initial
state The period of a closed orbit is the infimum of all positive recurrence
times Periodic orbits are the subset of closed orbits where the period is
non-zero
definition closed-orbit x ←→
(∃T ∈ existence-ivl0 x. T 6= 0 ∧ flow0 x T = x)

definition period x =
Inf {T ∈ existence-ivl0 x. T > 0 ∧ flow0 x T = x}

definition periodic-orbit x ←→
closed-orbit x ∧ period x > 0

lemma recurrence-time-flip-sign:
assumes T ∈ existence-ivl0 x flow0 x T = x
shows −T ∈ existence-ivl0 x flow0 x (−T) = x
using assms existence-ivl-reverse apply fastforce
using assms flows-reverse by fastforce

lemma closed-orbit-recurrence-times-nonempty:
assumes closed-orbit x
shows {T ∈ existence-ivl0 x. T > 0 ∧ flow0 x T = x} 6= {}
apply auto
using assms(1) unfolding closed-orbit-def
by (smt recurrence-time-flip-sign)

lemma closed-orbit-recurrence-times-bdd-below:
shows bdd-below {T ∈ existence-ivl0 x. T > 0 ∧ flow0 x T = x}

67

unfolding bdd-below-def
by (auto) (meson le-cases not-le)

lemma closed-orbit-period-nonneg:
assumes closed-orbit x
shows period x ≥ 0
unfolding period-def
using assms(1) unfolding closed-orbit-def apply (auto intro!:cInf-greatest)
by (smt recurrence-time-flip-sign)

lemma closed-orbit-in-domain:
assumes closed-orbit x
shows x ∈ X
using assms unfolding closed-orbit-def
using local.mem-existence-ivl-iv-defined(2) by blast

lemma closed-orbit-global-existence:
assumes closed-orbit x
shows existence-ivl0 x = UNIV

proof −
obtain Tp where Tp 6= 0 Tp ∈ existence-ivl0 x flow0 x Tp = x using assms

unfolding closed-orbit-def by blast
then obtain T where T : T > 0 T ∈ existence-ivl0 x flow0 x T = x

by (smt recurrence-time-flip-sign)
have apos: real n ∗ T ∈ existence-ivl0 x ∧ flow0 x (real n ∗ T) = x for n
proof (induction n)

case 0
then show ?case using closed-orbit-in-domain assms by auto

next
case (Suc n)
fix n
assume ih:real n ∗ T ∈ existence-ivl0 x ∧ flow0 x (real n ∗ T) = x
then have T ∈ existence-ivl0 (flow0 x (real n ∗ T)) using T by metis
then have l:real n ∗ T + T ∈ existence-ivl0 x using ih

using existence-ivl-trans by blast
have flow0 (flow0 x (real n ∗ T)) T = x using ih T by metis
then have r : flow0 x (real n ∗ T + T) = x

by (simp add: T (2) ih local.flow-trans)
show real (Suc n) ∗ T ∈ existence-ivl0 x ∧ flow0 x (real (Suc n) ∗ T) = x

using l r
by (simp add: add.commute distrib-left mult.commute)

qed
then have aneg: −real n ∗ T ∈ existence-ivl0 x ∧ flow0 x (−real n ∗ T) = x

for n
by (simp add: recurrence-time-flip-sign)

have ∀ t. t ∈ existence-ivl0 x
proof safe

fix t
have t ≥ 0 ∨ t ≤ (0 ::real) by linarith

68

moreover {
assume t ≥ 0
obtain k where real k ∗ T > t

using T (1) ex-less-of-nat-mult by blast
then have t ∈ existence-ivl0 x using apos
by (meson ‹0 ≤ t› atLeastAtMost-iff less-eq-real-def local.ivl-subset-existence-ivl

subset-eq)
}
moreover {

assume t ≤ 0
obtain k where − real k ∗ T < t
by (metis T (1) add.inverse-inverse ex-less-of-nat-mult mult.commute mult-minus-right

neg-less-iff-less)
then have t ∈ existence-ivl0 x using aneg

by (smt apos atLeastAtMost-iff calculation(2) local.existence-ivl-trans ′ lo-
cal.ivl-subset-existence-ivl mult-minus-left subset-eq)

}
ultimately show t ∈ existence-ivl0 x by blast

qed
thus ?thesis by auto

qed

lemma recurrence-time-multiples:
fixes n::nat
assumes T ∈ existence-ivl0 x T 6= 0 flow0 x T = x
shows

∧
t. flow0 x (t+T∗n) = flow0 x t

proof (induction n)
case 0
then show ?case by auto

next
case (Suc n)
fix n t
assume ih : (

∧
t. flow0 x (t + T ∗ real n) = flow0 x t)

have closed-orbit x using assms unfolding closed-orbit-def by auto
from closed-orbit-global-existence[OF this] have ex:existence-ivl0 x = UNIV .
have flow0 x (t + T ∗ real (Suc n)) = flow0 x (t+T∗real n + T)

by (simp add: Groups.add-ac(3) add.commute distrib-left)
also have ... = flow0 (flow0 x (t+ T∗real n)) T using ex

by (simp add: local.existence-ivl-trans ′ local.flow-trans)
also have ... = flow0 (flow0 x t) T using ih by auto
also have ... = flow0 (flow0 x T) t using ex

by (metis UNIV-I add.commute local.existence-ivl-trans ′ local.flow-trans)
finally show flow0 x (t + T ∗ real (Suc n)) = flow0 x t using assms(3) by

simp
qed

lemma nasty-arithmetic1 :
fixes t T ::real
assumes T > 0 t ≥ 0

69

obtains q r where t = (q::nat) ∗ T + r 0 ≤ r r < T
proof −

define q where q = floor (t / T)
have q:q ≥ 0 using assms unfolding q-def by auto
from floor-divide-lower [OF assms(1), of t]
have ql: q ∗ T ≤ t unfolding q-def .
from floor-divide-upper [OF assms(1), of t]
have qu: t < (q + 1)∗ T unfolding q-def by auto
define r where r = t − q ∗ T
have rl:0 ≤ r using ql unfolding r-def by auto
have ru:r < T using qu unfolding r-def by (simp add: distrib-right)
show ?thesis using q r-def rl ru
by (metis le-add-diff-inverse of-int-of-nat-eq plus-int-code(2) ql that zle-iff-zadd)

qed

lemma nasty-arithmetic2 :
fixes t T ::real
assumes T > 0 t ≤ 0
obtains q r where t = (q::nat) ∗ (−T) + r 0 ≤ r r < T

proof −
have −t ≥ 0 using assms(2) by linarith
from nasty-arithmetic1 [OF assms(1) this]
obtain q r where qr : −t = (q::nat) ∗ T + r 0 ≤ r r < T by blast
then have t = q ∗ (−T) − r by auto
then have t = (q+(1 ::nat)) ∗ (−T) + (T−r) by (simp add: distrib-right)
thus ?thesis using qr(2−3)

by (smt ‹t = real q ∗ − T − r› that)
qed

lemma recurrence-time-restricts-compact-flow:
assumes T ∈ existence-ivl0 x T > 0 flow0 x T = x
shows flow0 x ‘ UNIV = flow0 x ‘ {0 ..T}
apply auto

proof −
fix t
have t ≥ 0 ∨ t ≤ (0 ::real) by linarith
moreover {

assume t ≥ 0
from nasty-arithmetic1 [OF assms(2) this]
obtain q r where qr :t = (q::nat) ∗ T + r 0 ≤ r r < T by blast
have T 6= 0 using assms(2) by auto
from recurrence-time-multiples[OF assms(1) this assms(3),of r q]
have flow0 x t = flow0 x r

by (simp add: qr(1) add.commute mult.commute)
then have flow0 x t ∈ flow0 x ‘ {0 ..<T} using qr by auto

}
moreover {

assume t ≤ 0
from nasty-arithmetic2 [OF assms(2) this]

70

obtain q r where qr :t = (q::nat) ∗ (−T) + r 0 ≤ r r < T by blast
have −T ∈ existence-ivl0 x −T 6= 0 flow0 x (−T) = x using recurrence-time-flip-sign

assms by auto
from recurrence-time-multiples[OF this, of r q]
have flow0 x t = flow0 x r

by (simp add: mult.commute qr(1))
then have flow0 x t ∈ flow0 x ‘ {0 ..<T} using qr by auto

}
ultimately show flow0 x t ∈ flow0 x ‘ {0 ..T}

by auto
qed

lemma closed-orbitI :
assumes t 6= t ′ t ∈ existence-ivl0 y t ′ ∈ existence-ivl0 y
assumes flow0 y t = flow0 y t ′

shows closed-orbit y
unfolding closed-orbit-def
by (smt assms local.existence-ivl-reverse local.existence-ivl-trans local.flow-trans

local.flows-reverse)

lemma flow0-image-UNIV :
assumes existence-ivl0 x = UNIV
shows flow0 (flow0 x t) ‘ S = flow0 x ‘ (λs. s + t) ‘ S
apply auto

apply (metis UNIV-I add.commute assms image-eqI local.existence-ivl-trans ′

local.flow-trans)
by (metis UNIV-I add.commute assms imageI local.existence-ivl-trans ′ local.flow-trans)

lemma recurrence-time-restricts-compact-flow ′:
assumes t < t ′ t ∈ existence-ivl0 y t ′ ∈ existence-ivl0 y
assumes flow0 y t = flow0 y t ′

shows flow0 y ‘ UNIV = flow0 y ‘ {t..t ′}
proof −

have closed-orbit y
using assms(1−4) closed-orbitI inf .strict-order-iff by blast

from closed-orbit-global-existence[OF this]
have yex: existence-ivl0 y = UNIV .
have a1 :t ′− t ∈ existence-ivl0 (flow0 y t)

by (simp add: assms(2−3) local.existence-ivl-trans ′)
have a2 :t ′ −t > 0 using assms(1) by auto
have a3 :flow0 (flow0 y t) (t ′ − t) = flow0 y t

using a1 assms(2) assms(4) local.flow-trans by fastforce
from recurrence-time-restricts-compact-flow[OF a1 a2 a3]
have eq:flow0 (flow0 y t) ‘ UNIV = flow0 (flow0 y t) ‘ {0 .. t ′−t} .
from flow0-image-UNIV [OF yex, of - UNIV]
have eql:flow0 (flow0 y t) ‘ UNIV = flow0 y ‘ UNIV

by (metis (no-types) add.commute surj-def surj-plus)
from flow0-image-UNIV [OF yex, of - {0 ..t ′−t}]

71

have eqr :flow0 (flow0 y t) ‘ {0 .. t ′−t} = flow0 y ‘ {t..t ′} by auto
show ?thesis using eq eql eqr by auto

qed

lemma closed-orbitE ′:
assumes closed-orbit x
obtains T where T > 0

∧
t (n::nat). flow0 x (t+T∗n) = flow0 x t

proof −
obtain Tp where Tp 6= 0 Tp ∈ existence-ivl0 x flow0 x Tp = x using assms

unfolding closed-orbit-def by blast
then obtain T where T : T > 0 T ∈ existence-ivl0 x flow0 x T = x

by (smt recurrence-time-flip-sign)
thus ?thesis using recurrence-time-multiples T that by blast

qed

lemma closed-orbitE :
assumes closed-orbit x
obtains T where T > 0

∧
t. flow0 x (t+T) = flow0 x t

using closed-orbitE ′

by (metis assms mult.commute reals-Archimedean3)

lemma closed-orbit-flow-compact:
assumes closed-orbit x
shows compact(flow0 x ‘ UNIV)

proof −
obtain Tp where Tp 6= 0 Tp ∈ existence-ivl0 x flow0 x Tp = x using assms

unfolding closed-orbit-def by blast
then obtain T where T : T ∈ existence-ivl0 x T > 0 flow0 x T = x

by (smt recurrence-time-flip-sign)
from recurrence-time-restricts-compact-flow[OF this]
have feq: flow0 x ‘ UNIV = flow0 x ‘ {0 ..T} .
have continuous-on {0 ..T} (flow0 x)

by (meson T (1) continuous-on-sequentially in-mono local.flow-continuous-on
local.ivl-subset-existence-ivl)

from compact-continuous-image[OF this]
have compact (flow0 x ‘ {0 ..T}) by auto
thus ?thesis using feq by auto

qed

lemma fixed-point-imp-closed-orbit-period-zero:
assumes x ∈ X
assumes f x = 0
shows closed-orbit x period x = 0

proof −
from fixpoint-sol[OF assms] have fp:existence-ivl0 x = UNIV

∧
t. flow0 x t = x

by auto
then have co:closed-orbit x unfolding closed-orbit-def by blast
have a: ∀ y>0 . ∃ a∈{T ∈ existence-ivl0 x. 0 < T ∧ flow0 x T = x}. a < y

apply auto

72

using fp
by (simp add: dense)

from cInf-le-iff [OF closed-orbit-recurrence-times-nonempty[OF co]
closed-orbit-recurrence-times-bdd-below , of 0]

have period x ≤ 0 unfolding period-def using a by auto
from closed-orbit-period-nonneg[OF co] have period x ≥ 0 .
then have period x = 0 using ‹period x ≤ 0 › by linarith
thus closed-orbit x period x = 0 using co by auto

qed

lemma closed-orbit-period-zero-fixed-point:
assumes closed-orbit x period x = 0
shows f x = 0

proof (rule ccontr)
assume f x 6= 0
from regular-locally-noteq[OF closed-orbit-in-domain[OF assms(1)] this]
have ∀ F t in at 0 . flow0 x t 6= x .
then obtain r where r>0 ∀ t. t 6= 0 ∧ dist t 0 < r −→ flow0 x t 6= x unfolding

eventually-at
by auto

then have period x ≥ r unfolding period-def
apply (auto intro!:cInf-greatest)
apply (meson assms(1) closed-orbit-def linorder-neqE-linordered-idom neg-0-less-iff-less

recurrence-time-flip-sign)
using not-le by force

thus False using assms(2) ‹r >0 › by linarith
qed

lemma closed-orbit-subset-ω-limit-set:
assumes closed-orbit x
shows flow0 x ‘ UNIV ⊆ ω-limit-set x
unfolding ω-limit-set-def ω-limit-point-def

proof clarsimp
fix t
from closed-orbitE ′[OF assms]
obtain T where T : 0 < T

∧
t n. flow0 x (t + T∗ real n) = flow0 x t by blast

define s where s = (λn::nat. t + T ∗ real n)
have exist: {0 ..} ⊆ existence-ivl0 x

by (simp add: assms closed-orbit-global-existence)
have l:filterlim s at-top sequentially unfolding s-def

using T (1)
by (auto intro!:filterlim-tendsto-add-at-top filterlim-tendsto-pos-mult-at-top

simp add: filterlim-real-sequentially)
have flow0 x ◦ s = (λn. flow0 x t) unfolding o-def s-def using T (2) by simp
then have r :(flow0 x ◦ s) −−−−→ flow0 x t by auto
show {0 ..} ⊆ existence-ivl0 x ∧ (∃ s. s −−−−→ ∞ ∧ (flow0 x ◦ s) −−−−→ flow0

x t)
using exist l r by blast

qed

73

lemma closed-orbit-ω-limit-set:
assumes closed-orbit x
shows flow0 x ‘ UNIV = ω-limit-set x

proof −
have ω-limit-set x ⊆ flow0 x ‘ UNIV

using closed-orbit-global-existence[OF assms]
by (intro ω-limit-set-in-compact-subset)
(auto intro!: flow-in-domain

simp add: assms closed-orbit-in-domain image-subset-iff trapped-forward-def
closed-orbit-flow-compact)

thus ?thesis using closed-orbit-subset-ω-limit-set[OF assms] by auto
qed

lemma flow0-inj-on:
assumes t ≤ t ′

assumes {t..t ′} ⊆ existence-ivl0 x
assumes

∧
s. t < s =⇒ s ≤ t ′ =⇒ flow0 x s 6= flow0 x t

shows inj-on (flow0 x) {t..t ′}
apply (rule inj-onI)

proof (rule ccontr)
fix u v
assume uv: u ∈ {t..t ′} v ∈ {t..t ′} flow0 x u = flow0 x v u 6= v
have u < v ∨ v < u using uv(4) by linarith
moreover {

assume u < v
from recurrence-time-restricts-compact-flow ′[OF this - - uv(3)]
have flow0 x ‘ UNIV = flow0 x ‘ {u..v} using uv(1−2) assms(2) by blast
then have flow0 x t ∈ flow0 x ‘ {u..v} by auto
moreover have u = t ∨ flow0 x t /∈ flow0 x ‘ {u..v} using assms(3)

by (smt atLeastAtMost-iff image-iff uv(1) uv(2))
ultimately have False using uv assms(3)

by force
}
moreover {

assume v < u
from recurrence-time-restricts-compact-flow ′[OF this - -]
have flow0 x ‘ UNIV = flow0 x ‘ {v..u}

by (metis assms(2) subset-iff uv(1) uv(2) uv(3))
then have flow0 x t ∈ flow0 x ‘ {v..u} by auto
moreover have v = t ∨ flow0 x t /∈ flow0 x ‘ {v..u} using assms(3)

by (smt atLeastAtMost-iff image-iff uv(1) uv(2))
ultimately have False using uv assms(3) by force

}
ultimately show False by blast

qed

lemma finite-ω-limit-set-in-compact-imp-unique-fixed-point:

74

assumes compact K K ⊆ X
assumes x ∈ X trapped-forward x K
assumes finite (ω-limit-set x)
obtains y where ω-limit-set x = {y} f y = 0

proof −
from connected-finite-iff-sing[OF ω-limit-set-in-compact-connected]
obtain y where y: ω-limit-set x = {y}

using ω-limit-set-in-compact-nonempty assms by auto
have f y = 0
proof (rule ccontr)

assume fy:f y 6= 0
from ω-limit-set-in-compact-existence[OF assms(1−4)]
have yex: existence-ivl0 y = UNIV

by (simp add: y)
then have y ∈ X

by (simp add: local.mem-existence-ivl-iv-defined(2))
from regular-locally-noteq[OF this fy]
have ∀ F t in at 0 . flow0 y t 6= y .
then obtain r where r : r>0 ∀ t. t 6= 0 ∧ dist t 0 < r −→ flow0 y t 6= flow0

y 0
unfolding eventually-at using ‹y ∈ X›
by auto

then have
∧

s. 0 < s =⇒ s ≤ r/2 =⇒ flow0 y s 6= flow0 y 0 by simp
from flow0-inj-on[OF - - this, of r/2]
obtain inj-on(flow0 y) {0 ..r/2} using r yex by simp
then have infinite (flow0 y‘{0 ..r/2}) by (simp add: finite-image-iff r(1))
moreover from ω-limit-set-invariant[of x]
have flow0 y ‘{0 ..r/2} ⊆ ω-limit-set x using y yex

unfolding invariant-def trapped-iff-on-existence-ivl0 by auto
ultimately show False using y

by (metis assms(5) finite.emptyI subset-singleton-iff)
qed
thus ?thesis using that y by auto

qed

lemma closed-orbit-periodic:
assumes closed-orbit x f x 6= 0
shows periodic-orbit x
unfolding periodic-orbit-def
using assms(1) apply auto

proof (rule ccontr)
assume closed-orbit x
from closed-orbit-period-nonneg[OF assms(1)] have nneg: period x ≥ 0 .
assume ¬ 0 < period x
then have period x = 0 using nneg by linarith
from closed-orbit-period-zero-fixed-point[OF assms(1) this]
have f x = 0 .
thus False using assms(2) by linarith

qed

75

lemma periodic-orbitI :
assumes t 6= t ′ t ∈ existence-ivl0 y t ′ ∈ existence-ivl0 y
assumes flow0 y t = flow0 y t ′

assumes f y 6= 0
shows periodic-orbit y

proof −
have y:y ∈ X

using assms(3) local.mem-existence-ivl-iv-defined(2) by blast
from closed-orbitI [OF assms(1−4)] have closed-orbit y .
from closed-orbit-periodic[OF this assms(5)]
show ?thesis .

qed

lemma periodic-orbit-recurrence-times-closed:
assumes periodic-orbit x
shows closed {T ∈ existence-ivl0 x. T > 0 ∧ flow0 x T = x}

proof −
have a1 :x ∈ X

using assms closed-orbit-in-domain periodic-orbit-def by auto
have a2 :f x 6= 0

using assms closed-orbit-in-domain fixed-point-imp-closed-orbit-period-zero(2)
periodic-orbit-def by auto

from regular-locally-noteq[OF a1 a2] have
∀ F t in at 0 . flow0 x t 6= x .

then obtain r where r :r>0 ∀ t. t 6= 0 ∧ dist t 0 < r −→ flow0 x t 6= x
unfolding eventually-at

by auto
show ?thesis
proof (auto intro!:discrete-imp-closed[OF r(1)])

fix t1 t2
assume t12 : t1 > 0 flow0 x t1 = x t2 > 0 flow0 x t2 = x dist t2 t1 < r
then have fx: flow0 x (t1−t2) = x
by (smt a1 assms closed-orbit-global-existence existence-ivl-zero general.existence-ivl-initial-time-iff

local.flow-trans periodic-orbit-def)
have dist (t1−t2) 0 < r using t12 (5)

by (simp add: dist-norm)
thus t2 = t1 using r fx

by smt
qed

qed

lemma periodic-orbit-period:
assumes periodic-orbit x
shows period x > 0 flow0 x (period x) = x

proof −
from periodic-orbit-recurrence-times-closed[OF assms(1)]
have cl: closed {T ∈ existence-ivl0 x. T > 0 ∧ flow0 x T = x} .
have closed-orbit x using assms(1) unfolding periodic-orbit-def by auto

76

from closed-contains-Inf [OF closed-orbit-recurrence-times-nonempty[OF this]
closed-orbit-recurrence-times-bdd-below cl]

have period x ∈ {T ∈ existence-ivl0 x. T > 0 ∧ flow0 x T = x} unfolding
period-def .

thus period x > 0 flow0 x (period x) = x by auto
qed

lemma closed-orbit-flow0 :
assumes closed-orbit x
shows closed-orbit (flow0 x t)

proof −
from closed-orbit-global-existence[OF assms]
have existence-ivl0 x = UNIV .
from closed-orbitE [OF assms]
obtain T where T > 0 flow0 x (t+T) = flow0 x t

by metis
thus ?thesis unfolding closed-orbit-def
by (metis UNIV-I ‹existence-ivl0 x = UNIV › less-irrefl local.existence-ivl-trans ′

local.flow-trans)
qed

lemma periodic-orbit-imp-flow0-regular :
assumes periodic-orbit x
shows f (flow0 x t) 6= 0
by (metis UNIV-I assms closed-orbit-flow0 closed-orbit-global-existence closed-orbit-in-domain

fixed-point-imp-closed-orbit-period-zero(2) fixpoint-sol(2) less-irrefl local.flows-reverse
periodic-orbit-def)

lemma fixed-point-imp-ω-limit-set:
assumes x ∈ X f x = 0
shows ω-limit-set x = {x}

proof −
have closed-orbit x

by (metis assms fixed-point-imp-closed-orbit-period-zero(1))
from closed-orbit-ω-limit-set[OF this]
have flow0 x ‘ UNIV = ω-limit-set x .
thus ?thesis

by (metis assms(1) assms(2) fixpoint-sol(2) image-empty image-insert im-
age-subset-iff insertI1 rangeI subset-antisym)
qed

end

context auto-ll-on-open begin

lemma closed-orbit-eq-rev: closed-orbit x = rev.closed-orbit x
unfolding closed-orbit-def rev.closed-orbit-def rev-eq-flow rev-existence-ivl-eq0
by auto

77

lemma closed-orbit-α-limit-set:
assumes closed-orbit x
shows flow0 x ‘ UNIV = α-limit-set x
using rev.closed-orbit-ω-limit-set assms
unfolding closed-orbit-eq-rev α-limit-set-eq-rev flow-image-eq-rev range-uminus

.

lemma fixed-point-imp-α-limit-set:
assumes x ∈ X f x = 0
shows α-limit-set x = {x}
using rev.fixed-point-imp-ω-limit-set assms
unfolding α-limit-set-eq-rev
by auto

lemma finite-α-limit-set-in-compact-imp-unique-fixed-point:
assumes compact K K ⊆ X
assumes x ∈ X trapped-backward x K
assumes finite (α-limit-set x)
obtains y where α-limit-set x = {y} f y = 0

proof −
from rev.finite-ω-limit-set-in-compact-imp-unique-fixed-point[OF

assms(1−5)[unfolded trapped-backward-iff-rev-trapped-forward α-limit-set-eq-rev]]
show ?thesis using that

unfolding α-limit-set-eq-rev
by auto

qed
end

end

6 Poincare Bendixson Theory
theory Poincare-Bendixson

imports
Ordinary-Differential-Equations.ODE-Analysis
Analysis-Misc ODE-Misc Periodic-Orbit

begin

6.1 Flow to Path
context auto-ll-on-open begin

definition flow-to-path x t t ′ = flow0 x ◦ linepath t t ′

lemma pathstart-flow-to-path[simp]:
shows pathstart (flow-to-path x t t ′) = flow0 x t
unfolding flow-to-path-def
by (auto simp add: pathstart-compose)

78

lemma pathfinish-flow-to-path[simp]:
shows pathfinish (flow-to-path x t t ′) = flow0 x t ′

unfolding flow-to-path-def
by (auto simp add: pathfinish-compose)

lemma flow-to-path-unfold:
shows flow-to-path x t t ′ s = flow0 x ((1 − s) ∗ t + s ∗ t ′)
unfolding flow-to-path-def o-def linepath-def by auto

lemma subpath0-flow-to-path:
shows (subpath 0 u (flow-to-path x t t ′)) = flow-to-path x t (t + u∗(t ′−t))
unfolding flow-to-path-def subpath-image subpath0-linepath
by auto

lemma path-image-flow-to-path[simp]:
assumes t ≤ t ′

shows path-image (flow-to-path x t t ′) = flow0 x ‘ {t..t ′}
unfolding flow-to-path-def path-image-compose path-image-linepath
using assms real-Icc-closed-segment by auto

lemma flow-to-path-image0-right-open[simp]:
assumes t < t ′

shows flow-to-path x t t ′ ‘ {0 ..<1} = flow0 x ‘{t..<t ′}
unfolding flow-to-path-def image-comp[symmetric] linepath-image0-right-open-real[OF

assms]
by auto

lemma flow-to-path-path:
assumes t ≤ t ′

assumes {t..t ′} ⊆ existence-ivl0 x
shows path (flow-to-path x t t ′)

proof −
have x ∈ X

using assms(1) assms(2) subset-empty by fastforce
have

∧
xa. 0 ≤ xa =⇒ xa ≤ 1 =⇒ (1 − xa) ∗ t + xa ∗ t ′ ≤ t ′

by (simp add: assms(1) convex-bound-le)
moreover have

∧
xa. 0 ≤ xa =⇒ xa ≤ 1 =⇒ t ≤ (1 − xa) ∗ t + xa ∗ t ′ using

assms(1)
by (metis add.commute add-diff-cancel-left ′ diff-diff-eq2 diff-le-eq mult.commute

mult.right-neutral mult-right-mono right-diff-distrib ′)
ultimately have

∧
xa. 0 ≤ xa =⇒ xa ≤ 1 =⇒ (1 − xa) ∗ t + xa ∗ t ′ ∈

existence-ivl0 x
using assms(2) by auto

thus ?thesis unfolding path-def flow-to-path-def linepath-def
by (auto intro!:continuous-intros simp add :‹x ∈ X›)

qed

lemma flow-to-path-arc:

79

assumes t ≤ t ′

assumes {t..t ′} ⊆ existence-ivl0 x
assumes ∀ s ∈ {t<..<t ′}. flow0 x s 6= flow0 x t
assumes flow0 x t 6= flow0 x t ′

shows arc (flow-to-path x t t ′)
unfolding arc-def

proof safe
from flow-to-path-path[OF assms(1−2)]
show path (flow-to-path x t t ′) .

next
show inj-on (flow-to-path x t t ′) {0 ..1}

unfolding flow-to-path-def
apply (rule comp-inj-on)
apply (metis assms(4) inj-on-linepath)

using assms path-image-linepath[of t t ′] apply (auto intro!:flow0-inj-on)
using flow0-inj-on greaterThanLessThan-iff linepath-image-01 real-Icc-closed-segment

by fastforce
qed

end

locale c1-on-open-R2 = c1-on-open-euclidean f f ′ X for f :: ′a::executable-euclidean-space
⇒ - and f ′ and X +

assumes dim2 : DIM (′a) = 2
begin

6.2 2D Line segments

Line segments are specified by two endpoints The closed line segment from
x to y is given by the set x–y and x<–<y for the open segment

Rotates a vector clockwise 90 degrees
definition rot (v:: ′a) = (eucl-of-list [nth-eucl v 1 , −nth-eucl v 0]:: ′a)

lemma exhaust2-nat: (∀ i<(2 ::nat). P i) ←→ P 0 ∧ P 1
using less-2-cases by auto

lemma sum2-nat: (
∑

i<(2 ::nat). P i) = P 0 + P 1
by (simp add: eval-nat-numeral)

lemmas vec-simps =
eucl-eq-iff [where ′a= ′a] dim2 eucl-of-list-eucl-nth exhaust2-nat
plus-nth-eucl
minus-nth-eucl
uminus-nth-eucl
scaleR-nth-eucl
inner-nth-eucl
sum2-nat
algebra-simps

80

lemma minus-expand:
shows (x:: ′a)−y = (eucl-of-list [x$e0 − y$e0 , x$e1 − y$e1])
by (simp add:vec-simps)

lemma dot-ortho[simp]: x · rot x = 0
unfolding rot-def minus-expand
by (simp add: vec-simps)

lemma nrm-dot:
shows ((x:: ′a)−y) · (rot (x−y)) = 0
unfolding rot-def minus-expand
by (simp add: vec-simps)

lemma nrm-reverse: a · (rot (x−y)) = − a · (rot (y−x)) for x y:: ′a
unfolding rot-def
by (simp add:vec-simps)

lemma norm-rot: norm (rot v) = norm v for v:: ′a
unfolding rot-def
by (simp add:vec-simps norm-nth-eucl L2-set-def)

lemma rot-rot[simp]:
shows rot (rot v) = −v
unfolding rot-def
by (simp add:vec-simps)

lemma rot-scaleR[simp]:
shows rot (u ∗R v) = u ∗R (rot v)
unfolding rot-def
by (simp add:vec-simps)

lemma rot-0 [simp]: rot 0 = 0
using rot-scaleR[of 0] by simp

lemma rot-eq-0-iff [simp]: rot x = 0 ←→ x = 0
apply (auto simp: rot-def)
apply (metis One-nat-def norm-eq-zero norm-rot norm-zero rot-def)

using rot-0 rot-def by auto

lemma in-segment-inner-rot:
(x − a) · rot (b − a) = 0
if x ∈ {a−−b}

proof −
from that obtain u where x: x = a + u ∗R (b − a) 0 ≤ u u ≤ 1

by (auto simp: in-segment algebra-simps)
show ?thesis

unfolding x
by (simp add: inner-add-left nrm-dot)

qed

81

lemma inner-rot-in-segment:
x ∈ range (λu. a + u ∗R (b − a))
if (x − a) · rot (b − a) = 0 a 6= b

proof −
from that have

x0 : b $e 0 = a $e 0 =⇒ x $e 0 =
(a $e 0 ∗ b $e Suc 0 − b $e 0 ∗ a $e Suc 0 + (b $e 0 − a $e 0) ∗ x $e Suc

0) /
(b $e Suc 0 − a $e Suc 0)

and x1 : b $e 0 6= a $e 0 =⇒ x $e Suc 0 =
((b $e Suc 0 − a $e Suc 0) ∗ x $e 0 − a $e 0 ∗ b $e Suc 0 + b $e 0 ∗ a $e

Suc 0) / (b $e 0 − a $e 0)
by (auto simp: rot-def vec-simps divide-simps)

define u where u = (if b $e 0 − a $e 0 6= 0
then ((x $e 0 − a $e 0) / (b $e 0 − a $e 0))
else ((x $e 1 − a $e 1) / (b $e 1 − a $e 1)))

show ?thesis
apply (cases b $e 0 − a $e 0 = 0)
subgoal

using that(2)
apply (auto intro!: image-eqI [where x=((x $e 1 − a $e 1) / (b $e 1 − a $e

1))]
simp: vec-simps x0 divide-simps algebra-simps)

apply (metis ab-semigroup-mult-class.mult-ac(1) mult.commute sum-sqs-eq)
by (metis mult.commute mult.left-commute sum-sqs-eq)

subgoal
apply (auto intro!: image-eqI [where x=((x $e 0 − a $e 0) / (b $e 0 − a $e

0))]
simp: vec-simps x1 divide-simps algebra-simps)

apply (metis ab-semigroup-mult-class.mult-ac(1) mult.commute sum-sqs-eq)
by (metis mult.commute mult.left-commute sum-sqs-eq)

done
qed

lemma in-open-segment-iff-rot:
x ∈ {a<−−<b} ←→ (x − a) · rot (b − a) = 0 ∧ x · (b − a) ∈ {a·(b − a) <..<

b · (b − a)}
if a 6= b
unfolding open-segment-line-hyperplanes[OF that]
by (auto simp: nrm-dot intro!: inner-rot-in-segment)

lemma in-open-segment-rotD:
x ∈ {a<−−<b} =⇒ (x − a) · rot (b − a) = 0 ∧ x · (b − a) ∈ {a·(b − a) <..<

b · (b − a)}
by (subst in-open-segment-iff-rot[symmetric]) auto

lemma in-closed-segment-iff-rot:

82

x ∈ {a−−b} ←→ (x − a) · rot (b − a) = 0 ∧ x · (b − a) ∈ {a·(b − a) .. b · (b
− a)}

if a 6= b
unfolding closed-segment-line-hyperplanes[OF that] using that
by (auto simp: nrm-dot intro!: inner-rot-in-segment)

lemma in-segment-inner-rot2 :
(x − y) · rot (a − b) = 0
if x ∈ {a−−b} y ∈ {a−−b}

proof −
from that obtain u where x: x = a + u ∗R (b − a) 0 ≤ u u ≤ 1

by (auto simp: in-segment algebra-simps)
from that obtain v where y: y = a + v ∗R (b − a) 0 ≤ v v ≤ 1

by (auto simp: in-segment algebra-simps)
show ?thesis

unfolding x y
apply (auto simp: inner-add-left)
by (smt add-diff-cancel-left ′ in-segment-inner-rot inner-diff-left minus-diff-eq

nrm-reverse that(1) that(2) x(1) y(1))
qed

lemma closed-segment-surface:
a 6= b =⇒ {a−−b} = { x ∈ {x. x · (b − a) ∈ {a·(b − a) .. b · (b − a)}}. (x −

a) · rot (b − a) = 0}
by (auto simp: in-closed-segment-iff-rot)

lemma rot-diff-commute: rot (b − a) = −rot(a − b)
apply (auto simp: rot-def algebra-simps)
by (metis One-nat-def minus-diff-eq rot-def rot-rot)

6.3 Bijection Real-Complex for Jordan Curve Theorem
definition complex-of (x:: ′a) = x$e0 + i ∗ x$e1

definition real-of (x::complex) = (eucl-of-list [Re x, Im x]:: ′a)

lemma complex-of-linear :
shows linear complex-of
unfolding complex-of-def
apply (auto intro!:linearI simp add: distrib-left plus-nth-eucl)
by (simp add: of-real-def scaleR-add-right scaleR-nth-eucl)

lemma complex-of-bounded-linear :
shows bounded-linear complex-of
unfolding complex-of-def
apply (auto intro!:bounded-linearI ′ simp add: distrib-left plus-nth-eucl)
by (simp add: of-real-def scaleR-add-right scaleR-nth-eucl)

lemma real-of-linear :

83

shows linear real-of
unfolding real-of-def
by (auto intro!:linearI simp add: vec-simps)

lemma real-of-bounded-linear :
shows bounded-linear real-of
unfolding real-of-def
by (auto intro!:bounded-linearI ′ simp add: vec-simps)

lemma complex-of-real-of :
(complex-of ◦ real-of) = id
unfolding complex-of-def real-of-def
using complex-eq by (auto simp add:vec-simps)

lemma real-of-complex-of :
(real-of ◦ complex-of) = id
unfolding complex-of-def real-of-def
using complex-eq by (auto simp add:vec-simps)

lemma complex-of-bij:
shows bij (complex-of)
using o-bij[OF real-of-complex-of complex-of-real-of] .

lemma real-of-bij:
shows bij (real-of)
using o-bij[OF complex-of-real-of real-of-complex-of] .

lemma real-of-inj:
shows inj (real-of)
using real-of-bij
using bij-betw-imp-inj-on by auto

lemma Jordan-curve-R2 :
fixes c :: real ⇒ ′a
assumes simple-path c pathfinish c = pathstart c
obtains inside outside where

inside 6= {} open inside connected inside
outside 6= {} open outside connected outside
bounded inside ¬ bounded outside
inside ∩ outside = {}
inside ∪ outside = − path-image c
frontier inside = path-image c
frontier outside = path-image c

proof −
from simple-path-linear-image-eq[OF complex-of-linear]
have a1 :simple-path (complex-of ◦ c) using assms(1) complex-of-bij

using bij-betw-imp-inj-on by blast
have a2 :pathfinish (complex-of ◦ c) = pathstart (complex-of ◦ c)

using assms(2) by (simp add:pathstart-compose pathfinish-compose)

84

from Jordan-curve[OF a1 a2]
obtain inside outside where io:

inside 6= {} open inside connected inside
outside 6= {} open outside connected outside
bounded inside ¬ bounded outside inside ∩ outside = {}
inside ∪ outside = − path-image (complex-of ◦ c)
frontier inside = path-image (complex-of ◦ c)
frontier outside = path-image (complex-of ◦ c) by blast

let ?rin = real-of ‘ inside
let ?rout = real-of ‘ outside
have i: inside = complex-of ‘ ?rin using complex-of-real-of unfolding im-

age-comp
by auto

have o: outside = complex-of ‘ ?rout using complex-of-real-of unfolding im-
age-comp

by auto
have c: path-image(complex-of ◦ c) = complex-of ‘ (path-image c)

by (simp add: path-image-compose)
have ?rin 6= {} using io by auto
moreover from open-bijective-linear-image-eq[OF real-of-linear real-of-bij]
have open ?rin using io by auto
moreover from connected-linear-image[OF real-of-linear]
have connected ?rin using io by auto
moreover have ?rout 6= {} using io by auto
moreover from open-bijective-linear-image-eq[OF real-of-linear real-of-bij]
have open ?rout using io by auto
moreover from connected-linear-image[OF real-of-linear]
have connected ?rout using io by auto
moreover from bounded-linear-image[OF io(7) real-of-bounded-linear]
have bounded ?rin .
moreover from bounded-linear-image[OF - complex-of-bounded-linear]
have ¬ bounded ?rout using io(8) o

by force
from image-Int[OF real-of-inj]
have ?rin ∩ ?rout = {} using io(9) by auto
moreover from bij-image-Compl-eq[OF complex-of-bij]
have ?rin ∪ ?rout = − path-image c using io(10) unfolding c
by (metis id-apply image-Un image-comp image-cong image-ident real-of-complex-of)

moreover from closure-injective-linear-image[OF real-of-linear real-of-inj]
have frontier ?rin = path-image c using io(11)

unfolding frontier-closures c
by (metis ‹

∧
B A. real-of ‘ (A ∩ B) = real-of ‘ A ∩ real-of ‘ B› bij-image-Compl-eq

c calculation(9) compl-sup double-compl io(10) real-of-bij)
moreover from closure-injective-linear-image[OF real-of-linear real-of-inj]
have frontier ?rout = path-image c using io(12)

unfolding frontier-closures c
by (metis ‹

∧
B A. real-of ‘ (A ∩ B) = real-of ‘ A ∩ real-of ‘ B› bij-image-Compl-eq

c calculation(10) frontier-closures io(11) real-of-bij)

85

ultimately show ?thesis
by (meson ‹¬ bounded (real-of ‘ outside)› that)

qed

corollary Jordan-inside-outside-R2 :
fixes c :: real ⇒ ′a
assumes simple-path c pathfinish c = pathstart c
shows inside(path-image c) 6= {} ∧

open(inside(path-image c)) ∧
connected(inside(path-image c)) ∧
outside(path-image c) 6= {} ∧
open(outside(path-image c)) ∧
connected(outside(path-image c)) ∧
bounded(inside(path-image c)) ∧
¬ bounded(outside(path-image c)) ∧
inside(path-image c) ∩ outside(path-image c) = {} ∧
inside(path-image c) ∪ outside(path-image c) =
− path-image c ∧
frontier(inside(path-image c)) = path-image c ∧
frontier(outside(path-image c)) = path-image c

proof −
obtain inner outer

where ∗: inner 6= {} open inner connected inner
outer 6= {} open outer connected outer
bounded inner ¬ bounded outer inner ∩ outer = {}
inner ∪ outer = − path-image c
frontier inner = path-image c
frontier outer = path-image c

using Jordan-curve-R2 [OF assms] by blast
then have inner : inside(path-image c) = inner

by (metis dual-order .antisym inside-subset interior-eq interior-inside-frontier)
have outer : outside(path-image c) = outer

using ‹inner ∪ outer = − path-image c› ‹inside (path-image c) = inner›
outside-inside ‹inner ∩ outer = {}› by auto

show ?thesis
using ∗ by (auto simp: inner outer)

qed

lemma jordan-points-inside-outside:
fixes p :: real ⇒ ′a
assumes 0 < e
assumes jordan: simple-path p pathfinish p = pathstart p
assumes x: x ∈ path-image p
obtains y z where y ∈ inside (path-image p) y ∈ ball x e

z ∈ outside (path-image p) z ∈ ball x e
proof −

from Jordan-inside-outside-R2 [OF jordan]
have xi: x ∈ frontier(inside (path-image p)) and

86

xo: x ∈ frontier(outside (path-image p))
using x by auto

obtain y where y:y ∈ inside (path-image p) y ∈ ball x e using ‹0 < e› xi
unfolding frontier-straddle
by auto

obtain z where z:z ∈ outside (path-image p) z ∈ ball x e using ‹0 < e› xo
unfolding frontier-straddle
by auto

show ?thesis using y z that by blast
qed

lemma eventually-at-open-segment:
assumes x ∈ {a<−−<b}
shows ∀ F y in at x. (y−a) · rot(a−b) = 0 −→ y ∈ {a <−−< b}

proof −
from assms have a 6= b by auto
from assms have x: (x − a) · rot (b − a) = 0 x · (b − a) ∈ {a · (b − a)<..<b

· (b − a)}
unfolding in-open-segment-iff-rot[OF ‹a 6= b›]
by auto

then have ∀ F y in at x. y · (b − a) ∈ {a · (b − a)<..<b · (b − a)}
by (intro topological-tendstoD) (auto intro!: tendsto-intros)

then show ?thesis
by eventually-elim (auto simp: in-open-segment-iff-rot[OF ‹a 6= b›] nrm-reverse[of

- a b] algebra-simps dist-commute)
qed

lemma linepath-ball:
assumes x ∈ {a<−−<b}
obtains e where e > 0 ball x e ∩ {y. (y−a) · rot(a−b) = 0} ⊆ {a <−−< b}

proof −
from eventually-at-open-segment[OF assms] assms
obtain e where 0 < e ball x e ∩ {y. (y − a) · rot (a − b) = 0} ⊆ {a<−−<b}

by (force simp: eventually-at in-open-segment-iff-rot dist-commute)
then show ?thesis ..

qed

lemma linepath-ball-inside-outside:
fixes p :: real ⇒ ′a
assumes jordan: simple-path (p +++ linepath a b) pathfinish p = a pathstart p

= b
assumes x: x ∈ {a<−−<b}
obtains e where e > 0 ball x e ∩ path-image p = {}

ball x e ∩ {y. (y−a) · rot (a−b) > 0} ⊆ inside (path-image (p +++ linepath
a b)) ∧

ball x e ∩ {y. (y−a) · rot (a−b) < 0} ⊆ outside (path-image (p +++ linepath
a b))
∨
ball x e ∩ {y. (y−a) · rot (a−b) < 0} ⊆ inside (path-image (p +++ linepath

87

a b)) ∧
ball x e ∩ {y. (y−a) · rot (a−b) > 0} ⊆ outside (path-image (p +++ linepath

a b))
proof −

let ?lp = p +++ linepath a b
have a 6= b using x by auto
have pp:path p using jordan path-join pathfinish-linepath simple-path-imp-path

by fastforce
have path-image p ∩ path-image (linepath a b) ⊆ {a,b}

using jordan simple-path-join-loop-eq
by (metis (no-types, lifting) inf-sup-aci(1) insert-commute path-join-path-ends

path-linepath simple-path-imp-path simple-path-joinE)
then have x /∈ path-image p using x unfolding path-image-linepath

by (metis DiffE Int-iff le-iff-inf open-segment-def)
then have ∀ F y in at x. y /∈ path-image p

by (intro eventually-not-in-closed) (auto simp: closed-path-image ‹path p›)
moreover
have ∀ F y in at x. (y − a) · rot (a − b) = 0 −→ y ∈ {a<−−<b}

by (rule eventually-at-open-segment[OF x])
ultimately have ∀ F y in at x. y /∈ path-image p ∧ ((y − a) · rot (a − b) = 0
−→ y ∈ {a<−−<b})

by eventually-elim auto
then obtain e where e: e > 0 ball x e ∩ path-image p = {}

ball x e ∩ {y. (y − a) · rot (a − b) = 0} ⊆ {a<−−<b}
using ‹x /∈ path-image p› x in-open-segment-rotD[OF x]
apply (auto simp: eventually-at subset-iff dist-commute dest!:)
by (metis Int-iff all-not-in-conv dist-commute mem-ball)

have a1 : pathfinish ?lp = pathstart ?lp
by (auto simp add: jordan)

have x ∈ path-image ?lp
using jordan(1) open-closed-segment path-image-join path-join-path-ends sim-

ple-path-imp-path x by fastforce
from jordan-points-inside-outside[OF e(1) jordan(1) a1 this]
obtain y z where y: y ∈ inside (path-image ?lp) y ∈ ball x e

and z: z ∈ outside (path-image ?lp) z ∈ ball x e by blast
have jordancurve:

inside (path-image ?lp) ∩ outside(path-image ?lp) = {}
frontier (inside (path-image ?lp)) = path-image ?lp
frontier (outside (path-image ?lp)) = path-image ?lp
using Jordan-inside-outside-R2 [OF jordan(1) a1] by auto

define b1 where b1 = ball x e ∩ {y. (y−a) · rot (a−b) > 0}
define b2 where b2 = ball x e ∩ {y. (y−a) · rot (a−b) < 0}
define b3 where b3 = ball x e ∩ {y. (y−a) · rot (a−b) = 0}
have path-connected b1 unfolding b1-def
apply (auto intro!: convex-imp-path-connected convex-Int simp add:inner-diff-left)
using convex-halfspace-gt[of a · rot (a − b) rot(a−b)] inner-commute
by (metis (no-types, lifting) Collect-cong)

have path-connected b2 unfolding b2-def
apply (auto intro!: convex-imp-path-connected convex-Int simp add:inner-diff-left)

88

using convex-halfspace-lt[of rot(a−b) a · rot (a − b)] inner-commute
by (metis (no-types, lifting) Collect-cong)

have b1 ∩ path-image(linepath a b) = {} unfolding path-image-linepath b1-def
using closed-segment-surface[OF ‹a 6= b›] in-segment-inner-rot2 by auto

then have b1i:b1 ∩ path-image ?lp = {}
by (metis IntD2 b1-def disjoint-iff-not-equal e(2) inf-sup-aci(1) not-in-path-image-join)

have b2 ∩ path-image(linepath a b) = {} unfolding path-image-linepath b2-def
using closed-segment-surface[OF ‹a 6= b›] in-segment-inner-rot2 by auto

then have b2i:b2 ∩ path-image ?lp = {}
by (metis IntD2 b2-def disjoint-iff-not-equal e(2) inf-sup-aci(1) not-in-path-image-join)

have bsplit: ball x e = b1 ∪ b2 ∪ b3
unfolding b1-def b2-def b3-def
by auto

have z /∈ b3
proof clarsimp

assume z ∈ b3
then have z ∈ {a<−−<b} unfolding b3-def using e by blast
then have z ∈ path-image(linepath a b) by (auto simp add: open-segment-def)
then have z ∈ path-image ?lp

by (simp add: jordan(2) path-image-join)
thus False using z

using inside-Un-outside by fastforce
qed
then have z12 : z ∈ b1 ∨ z ∈ b2 using z bsplit by blast
have y /∈ b3
proof clarsimp

assume y ∈ b3
then have y ∈ {a<−−<b} unfolding b3-def using e by auto
then have y ∈ path-image(linepath a b) by (auto simp add: open-segment-def)
then have y ∈ path-image ?lp

by (simp add: jordan(2) path-image-join)
thus False using y

using inside-Un-outside by fastforce
qed
then have y ∈ b1 ∨ y ∈ b2 using y bsplit by blast
moreover {

assume y ∈ b1
then have b1 ∩ inside (path-image ?lp) 6= {} using y by blast
from path-connected-not-frontier-subset[OF ‹path-connected b1 › this]
have 1 :b1 ⊆ inside (path-image ?lp) unfolding jordancurve using b1i

by blast
then have z ∈ b2 using jordancurve(1) z(1) z12 by blast
then have b2 ∩ outside (path-image ?lp) 6= {} using z by blast
from path-connected-not-frontier-subset[OF ‹path-connected b2 › this]
have 2 :b2 ⊆ outside (path-image ?lp) unfolding jordancurve using b2i

by blast
note conjI [OF 1 2]

}
moreover {

89

assume y ∈ b2
then have b2 ∩ inside (path-image ?lp) 6= {} using y by blast
from path-connected-not-frontier-subset[OF ‹path-connected b2 › this]
have 1 :b2 ⊆ inside (path-image ?lp) unfolding jordancurve using b2i

by blast
then have z ∈ b1 using jordancurve(1) z(1) z12 by blast
then have b1 ∩ outside (path-image ?lp) 6= {} using z by blast
from path-connected-not-frontier-subset[OF ‹path-connected b1 › this]
have 2 :b1 ⊆ outside (path-image ?lp) unfolding jordancurve using b1i

by blast
note conjI [OF 1 2]

}
ultimately show ?thesis unfolding b1-def b2-def using that[OF e(1−2)] by

auto
qed

6.4 Transversal Segments
definition transversal-segment a b ←→

a 6= b ∧ {a−−b} ⊆ X ∧
(∀ z ∈ {a−−b}. f z · rot (a−b) 6= 0)

lemma transversal-segment-reverse:
assumes transversal-segment x y
shows transversal-segment y x
unfolding transversal-segment-def
by (metis (no-types, opaque-lifting) add.left-neutral add-uminus-conv-diff assms

closed-segment-commute inner-diff-left inner-zero-left nrm-reverse transversal-segment-def)

lemma transversal-segment-commute: transversal-segment x y ←→ transversal-segment
y x

using transversal-segment-reverse by blast

lemma transversal-segment-neg:
assumes transversal-segment x y
assumes w: w ∈ {x −− y} and f w · rot (x−y) < 0
shows ∀ z ∈ {x−−y}. f (z) · rot (x−y) < 0

proof (rule ccontr)
assume ¬ (∀ z∈{x−−y}. f z · rot (x−y) < 0)
then obtain z where z: z ∈ {x−−y} f z · rot (x−y) ≥ 0 by auto
define ff where ff = (λs. f (w + s ∗R (z − w)) · rot (x−y))
have f0 :ff 0 ≤ 0 unfolding ff-def using assms(3)

by simp
have fu:ff 1 ≥ 0

by (auto simp: ff-def z)
from assms(2) obtain u where u: 0 ≤ u u ≤ 1 w = (1 − u) ∗R x + u ∗R y

unfolding in-segment by blast
have {x−−y} ⊆ X using assms(1) unfolding transversal-segment-def by blast

90

then have continuous-on {0 ..1} ff unfolding ff-def
using assms(2)
by (auto intro!:continuous-intros closed-subsegmentI z elim!: set-mp)

from IVT ′[of ff , OF f0 fu zero-le-one this]
obtain s where s: s ≥ 0 s ≤ 1 ff s = 0 by blast
have w + s ∗R (z − w) ∈ {x −− y}

by (auto intro!: closed-subsegmentI z s w)
with ‹ff s = 0 › show False

using s assms(1) unfolding transversal-segment-def ff-def by blast
qed

lemmas transversal-segment-sign-less = transversal-segment-neg[OF - ends-in-segment(1)]

lemma transversal-segment-pos:
assumes transversal-segment x y
assumes w: w ∈ {x −− y} f w · rot (x−y) > 0
shows ∀ z ∈ {x−−y}. f (z) · rot (x−y) > 0
using transversal-segment-neg[OF transversal-segment-reverse[OF assms(1)], of

w] w
by (auto simp: rot-diff-commute[of x y] closed-segment-commute)

lemma transversal-segment-posD:
assumes transversal-segment x y

and pos: z ∈ {x −− y} f z · rot (x − y) > 0
shows x 6= y {x−−y} ⊆ X

∧
z. z ∈ {x−−y} =⇒ f z · rot (x−y) > 0

using assms(1) transversal-segment-pos[OF assms]
by (auto simp: transversal-segment-def)

lemma transversal-segment-negD:
assumes transversal-segment x y

and pos: z ∈ {x −− y} f z · rot (x − y) < 0
shows x 6= y {x−−y} ⊆ X

∧
z. z ∈ {x−−y} =⇒ f z · rot (x−y) < 0

using assms(1) transversal-segment-neg[OF assms]
by (auto simp: transversal-segment-def)

lemma transversal-segmentE :
assumes transversal-segment x y
obtains x 6= y {x −− y} ⊆ X

∧
z. z ∈ {x−−y} =⇒ f z · rot (x − y) > 0

| x 6= y {x −− y} ⊆ X
∧

z. z ∈ {x−−y} =⇒ f z · rot (y − x) > 0
proof (cases f x · rot (x − y) < 0)

case True
from transversal-segment-negD[OF assms ends-in-segment(1) True]
have x 6= y {x −− y} ⊆ X

∧
z. z ∈ {x−−y} =⇒ f z · rot (y − x) > 0

by (auto simp: rot-diff-commute[of x y])
then show ?thesis ..

next
case False
then have f x · rot (x − y) > 0 using assms
by (auto simp: transversal-segment-def algebra-split-simps not-less order .order-iff-strict)

91

from transversal-segment-posD[OF assms ends-in-segment(1) this]
show ?thesis ..

qed

lemma dist-add-vec:
shows dist (x + s ∗R v) x = abs s ∗ norm v
by (simp add: dist-cancel-add1)

lemma transversal-segment-exists:
assumes x ∈ X f x 6= 0
obtains a b where x ∈ {a<−−<b}

transversal-segment a b
proof −

define l where l = (λs::real. x + (s/norm(f x)) ∗R rot (f x))
have norm (f x) > 0 using assms(2) using zero-less-norm-iff by blast
then have distl: ∀ s. dist (l s) x = abs s unfolding l-def dist-add-vec

by (auto simp add: norm-rot)
obtain d where d:d > 0 cball x d ⊆ X

by (meson UNIV-I assms(1) local.local-unique-solution)
then have lb: l‘{−d..d} ⊆ cball x d using distl by (simp add: abs-le-iff dist-commute

image-subset-iff)
from fcontx[OF assms(1)] have continuous (at x) f .
then have c:continuous (at 0) ((λy. (f y · f x)) ◦ l) unfolding l-def

by (auto intro!:continuous-intros simp add: assms(2))
have ((λy. f y · f x) ◦ l) 0 > 0 using assms(2) unfolding l-def o-def by auto
from continuous-at-imp-cball[OF c this]
obtain r where r :r > 0 ∀ z∈cball 0 r . 0 < ((λy. f y · f x) ◦ l) z by blast
then have rc:∀ z ∈ l‘{−r ..r}. 0 < f z · f x using real-norm-def by auto
define dr where dr = min r d
have t1 :l (−dr) 6= l dr unfolding l-def dr-def

by (smt ‹0 < d› ‹0 < norm (f x)› ‹0 < r› add-left-imp-eq divide-cancel-right
norm-rot norm-zero scale-cancel-right)

have x = midpoint (l (−dr)) (l dr) unfolding midpoint-def l-def by auto
then have xin:x ∈ {l (−dr)<−−<(l dr)} using t1 by auto

have lsub:{l (−dr)−−l dr} ⊆ l‘{−dr ..dr}
proof safe

fix z
assume z ∈ {l (− dr)−−l dr}
then obtain u where u: 0 ≤ u u ≤ 1 z = (1 − u) ∗R (l (−dr)) + u ∗R (l dr)

unfolding in-segment by blast
then have z = x − (1−u) ∗R (dr/norm(f x)) ∗R rot (f x) + u ∗R (dr/norm(f

x)) ∗R rot (f x)
unfolding l-def
by (simp add: l-def scaleR-add-right scale-right-diff-distrib u(3))

also have ... = x − (1 − 2 ∗ u) ∗R (dr/norm(f x)) ∗R rot (f x)
by (auto simp add: algebra-simps divide-simps simp flip: scaleR-add-left)

also have ... = x + (((2 ∗ u − 1) ∗ dr)/norm(f x)) ∗R rot (f x)

92

by (smt add-uminus-conv-diff scaleR-scaleR scale-minus-left times-divide-eq-right)
finally have zeq: z = l ((2∗u−1)∗dr) unfolding l-def .
have ub: 2∗ u − 1 ≤ 1 ∧ −1 ≤ 2∗ u − 1 using u by linarith
thus z ∈ l ‘ {− dr ..dr} using zeq

by (smt atLeastAtMost-iff d(1) dr-def image-eqI mult.commute mult-left-le
mult-minus-left r(1))

qed
have t2 : {l (− dr)−−l dr} ⊆ X using lsub
by (smt atLeastAtMost-iff d(2) dist-commute distl dr-def image-subset-iff mem-cball

order-trans)
have l (− dr) − l dr = −2 ∗R (dr/norm(f x)) ∗R rot (f x) unfolding l-def

by (simp add: algebra-simps flip: scaleR-add-left)
then have req: rot (l (− dr) − l dr) = (2 ∗ dr/norm(f x)) ∗R f x

by auto (metis add.inverse-inverse rot-rot rot-scaleR)
have l‘{−dr ..dr} ⊆ l ‘ {−r ..r}

by (simp add: dr-def image-mono)
then have {l (− dr)−−l dr} ⊆ l ‘ {−r .. r} using lsub by auto
then have ∀ z ∈ {l (− dr)−−l dr}. 0 < f z · f x using rc by blast
moreover have (dr / norm (f x)) > 0

using ‹0 < norm (f x)› d(1) dr-def r(1) by auto
ultimately have t3 : ∀ z ∈ {l (− dr)−−l dr}. f z · rot (l (− dr)− l dr) > 0

unfolding req
by (smt divide-divide-eq-right inner-scaleR-right mult-2 norm-not-less-zero scaleR-2

times-divide-eq-left times-divide-eq-right zero-less-divide-iff)
have transversal-segment (l (−dr)) (l dr) using t1 t2 t3 unfolding transver-

sal-segment-def by auto
thus ?thesis using xin

using that by auto
qed

Perko Section 3.7 Lemma 2 part 1.
lemma flow-transversal-segment-finite-intersections:

assumes transversal-segment a b
assumes t ≤ t ′ {t .. t ′} ⊆ existence-ivl0 x
shows finite {s∈{t..t ′}. flow0 x s ∈ {a−−b}}

proof −
from assms have a 6= b by (simp add: transversal-segment-def)
show ?thesis

unfolding closed-segment-surface[OF ‹a 6= b›]
apply (rule flow-transversal-surface-finite-intersections[where Ds=λ-. blin-

fun-inner-left (rot (b − a))])
by
(use assms in ‹auto intro!: closed-Collect-conj closed-halfspace-component-ge

closed-halfspace-component-le
derivative-eq-intros

simp: transversal-segment-def nrm-reverse[where x=a] in-closed-segment-iff-rot›)
qed

lemma transversal-bound-posE :

93

assumes transversal: transversal-segment a b
assumes direction: z ∈ {a −− b} f z · (rot (a − b)) > 0
obtains d B where d > 0 0 < B∧

x y. x ∈ {a −− b} =⇒ dist x y ≤ d =⇒ f y · (rot (a − b)) ≥ B
proof −

let ?a = (λy. (f y) · (rot (a − b)))
from transversal-segment-posD[OF transversal direction]
have seg: a 6= b {a−−b} ⊆ X z ∈ {a−−b} =⇒ 0 < f z · rot (a − b) for z

by auto
{

fix x
assume x ∈ {a−−b}
then have x ∈ X f x 6= 0 a 6= b using transversal by (auto simp: transver-

sal-segment-def)
then have ?a −x→ ?a x

by (auto intro!: tendsto-eq-intros)
moreover have ?a x > 0

using seg ‹x ∈ {a −− b}› ‹f x 6= 0 ›
by (auto simp: simp del: divide-const-simps

intro!: divide-pos-pos mult-pos-pos)
ultimately have ∀ F x in at x. ?a x > 0

by (rule order-tendstoD)
moreover have ∀ F x in at x. x ∈ X

by (rule topological-tendstoD[OF tendsto-ident-at open-dom ‹x ∈ X›])
moreover have ∀ F x in at x. f x 6= 0

by (rule tendsto-imp-eventually-ne tendsto-intros ‹x ∈ X› ‹f x 6= 0 ›)+
ultimately have ∀ F x in at x. ?a x>0 ∧ x ∈ X ∧ f x 6= 0 by eventually-elim

auto
then obtain d where d: 0 < d

∧
y. y ∈ cball x d =⇒ ?a y > 0 ∧ y ∈ X ∧ f

y 6= 0
using ‹?a x > 0 › ‹x ∈ X›
by (force simp: eventually-at-le dist-commute)

have continuous-on (cball x d) ?a
using d ‹a 6= b›
by (auto intro!: continuous-intros)

from compact-continuous-image[OF this compact-cball]
have compact (?a ‘ cball x d) .
from compact-attains-inf [OF this] obtain s where s ∈ cball x d ∀ x∈cball x

d. ?a x ≥ ?a s
using ‹d > 0 ›
by auto

then have ∃ d>0 . ∃ b>0 . ∀ x ∈ cball x d. ?a x ≥ b
using d
by (force simp: intro: exI [where x=?a s])

} then obtain dx Bx where dB:∧
x y. x ∈ {a −− b} =⇒ y∈cball x (dx x) =⇒ ?a y ≥ Bx x∧
x. x ∈ {a −− b} =⇒ Bx x > 0∧
x. x ∈ {a −− b} =⇒ dx x > 0

94

by metis
define d ′ where d ′ = (λx. dx x / 2)
have d ′:∧

x. x ∈ {a −− b} =⇒ ∀ y∈cball x (d ′ x). ?a y ≥ Bx x∧
x. x ∈ {a −− b} =⇒ d ′ x > 0

using dB(1 ,3) by (force simp: d ′-def)+
have d ′B:

∧
x. x ∈ {a −− b} =⇒ ∀ y∈cball x (d ′ x). ?a y ≥ Bx x

using d ′ by auto
have {a−−b} ⊆

⋃
((λx. ball x (d ′ x)) ‘ {a −− b})

using d ′(2) by auto
from compactE-image[OF compact-segment - this]
obtain X where X : X ⊆ {a−−b}

and [simp]: finite X
and cover : {a−−b} ⊆ (

⋃
x∈X . ball x (d ′ x))

by auto
have [simp]: X 6= {} using X cover by auto
define d where d = Min (d ′ ‘ X)
define B where B = Min (Bx ‘ X)
have d > 0

using X d ′

by (auto simp: d-def d ′-def)
moreover have B > 0

using X dB
by (auto simp: B-def simp del: divide-const-simps)

moreover have B ≤ ?a y if x ∈ {a −− b} dist x y ≤ d for x y
proof −

from ‹x ∈ {a −− b}› obtain xc where xc: xc ∈ X x ∈ ball xc (d ′ xc)
using cover by auto

have ?a y ≥ Bx xc
proof (rule dB)

show xc ∈ {a −− b} using xc ‹X ⊆ -› by auto
have dist xc y ≤ dist xc x + dist x y by norm
also have dist xc x ≤ d ′ xc using xc by auto
also note ‹dist x y ≤ d›
also have d ≤ d ′ xc

using xc
by (auto simp: d-def)

also have d ′ xc + d ′ xc = dx xc by (simp add: d ′-def)
finally show y ∈ cball xc (dx xc) by simp

qed
also have B ≤ Bx xc

using xc
unfolding B-def
by (auto simp: B-def)

finally (xtrans) show ?thesis .
qed
ultimately show ?thesis ..

qed

95

lemma transversal-bound-negE :
assumes transversal: transversal-segment a b
assumes direction: z ∈ {a −− b} f z · (rot (a − b)) < 0
obtains d B where d > 0 0 < B∧

x y. x ∈ {a −− b} =⇒ dist x y ≤ d =⇒ f y · (rot (b − a)) ≥ B
proof −

from direction have z ∈ {b −− a} f z · (rot (b − a)) > 0
by (auto simp: closed-segment-commute rot-diff-commute[of b a])

from transversal-bound-posE [OF transversal-segment-reverse[OF transversal] this]
obtain d B where d > 0 0 < B∧

x y. x ∈ {a −− b} =⇒ dist x y ≤ d =⇒ f y · (rot (b − a)) ≥ B
by (auto simp: closed-segment-commute)

then show ?thesis ..
qed

lemma leaves-transversal-segmentE :
assumes transversal: transversal-segment a b
obtains T n where T > 0 n = a − b ∨ n = b − a∧

x. x ∈ {a −− b} =⇒ {−T ..T} ⊆ existence-ivl0 x∧
x s. x ∈ {a −− b} =⇒ 0 < s =⇒ s ≤ T =⇒

(flow0 x s − x) · rot n > 0∧
x s. x ∈ {a −− b} =⇒ −T ≤ s =⇒ s < 0 =⇒

(flow0 x s − x) · rot n < 0
proof −

from transversal-segmentE [OF assms(1)] obtain n
where n: n = (a − b) ∨ n = (b − a)

and seg: a 6= b {a −− b} ⊆ X
∧

z. z ∈ {a−−b} =⇒ f z · rot n > 0
by metis

from open-existence-ivl-on-compact[OF ‹{a −− b} ⊆ X›]
obtain t where 0 < t and t: x ∈ {a−−b} =⇒ {− t..t} ⊆ existence-ivl0 x for x

by auto
from n obtain d B where B: 0 < d 0 < B (

∧
x y. x ∈ {a−−b} =⇒ dist x y ≤

d =⇒ B ≤ f y · rot n)
proof

assume n-def : n = a − b
with seg have pos: 0 < f a · rot (a − b)

by auto
from transversal-bound-posE [OF transversal ends-in-segment(1) pos, folded

n-def]
show ?thesis using that by blast

next
assume n-def : n = b − a
with seg have pos: 0 > f a · rot (a − b)

by (auto simp: rot-diff-commute[of a b])
from transversal-bound-negE [OF transversal ends-in-segment(1) this, folded

n-def]
show ?thesis using that by blast

qed
define S where S =

⋃
((λx. ball x d) ‘ {a −− b})

96

have S : x ∈ S =⇒ B ≤ f x · rot n for x
by (auto simp: S-def intro!: B)

have open S by (auto simp: S-def)
have {a −− b} ⊆ S

by (auto simp: S-def ‹0 < d›)
have ∀ F (t, x) in at (0 , x). flow0 x t ∈ S if x ∈ {a −− b} for x

unfolding split-beta ′

apply (rule topological-tendstoD tendsto-intros)+
using set-mp[OF ‹{a −− b} ⊆ X› that] ‹0 < d› that ‹open S› ‹{a −− b} ⊆

S›
by force+

then obtain d ′ where d ′:∧
x. x ∈ {a−−b} =⇒ d ′ x > 0∧
x y s. x ∈ {a−−b} =⇒ (s = 0 −→ y 6= x) =⇒ dist (s, y) (0 , x) < d ′ x =⇒

flow0 y s ∈ S
by (auto simp: eventually-at) metis

define d2 where d2 x = d ′ x / 2 for x
have d2 :

∧
x. x ∈ {a−−b} =⇒ d2 x > 0 using d ′ by (auto simp: d2-def)

have C : {a−−b} ⊆
⋃
((λx. ball x (d2 x)) ‘ {a −− b})

using d2 by auto
from compactE-image[OF compact-segment - C]
obtain C ′ where C ′ ⊆ {a−−b} and [simp]: finite C ′

and C ′-cover : {a−−b} ⊆ (
⋃

c∈C ′. ball c (d2 c)) by auto

define T where T = Min (insert t (d2 ‘ C ′))

have T > 0
using ‹0 < t› d2 ‹C ′ ⊆ -›
by (auto simp: T-def)

moreover
note n
moreover
have T-ex: {−T ..T} ⊆ existence-ivl0 x if x ∈ {a−−b} for x

by (rule order-trans[OF - t[OF that]]) (auto simp: T-def)
moreover
have B-le: B ≤ f (flow0 x ξ) · rot n

if x ∈ {a −− b}
and c ′: c ′ ∈ C ′ x ∈ ball c ′ (d2 c ′)
and ξ 6= 0 and ξ-le: |ξ| < d2 c ′

for x c ′ ξ
proof −

have c ′ ∈ {a −− b} using c ′ ‹C ′ ⊆ -› by auto
moreover have ξ = 0 −→ x 6= c ′ using ‹ξ 6= 0 › by simp
moreover have dist (ξ, x) (0 , c ′) < d ′ c ′

proof −
have dist (ξ, x) (0 , c ′) ≤ dist (ξ, x) (ξ, c ′) + dist (ξ, c ′) (0 , c ′)

by norm
also have dist (ξ, x) (ξ, c ′) < d2 c ′

using c ′

97

by (simp add: dist-prod-def dist-commute)
also
have T ≤ d2 c ′ using c ′

by (auto simp: T-def)
then have dist (ξ, c ′) (0 , c ′) < d2 c ′

using ξ-le
by (simp add: dist-prod-def)

also have d2 c ′ + d2 c ′ = d ′ c ′ by (simp add: d2-def)
finally show ?thesis by simp

qed
ultimately have flow0 x ξ ∈ S

by (rule d ′)
then show ?thesis

by (rule S)
qed
let ?g = (λx t. (flow0 x t − x) · rot n)
have cont: continuous-on {−T .. T} (?g x)

if x ∈ {a−−b} for x
using T-ex that
by (force intro!: continuous-intros)

have deriv: −T ≤ s ′ =⇒ s ′ ≤ T =⇒ ((?g x) has-derivative
(λt. t ∗ (f (flow0 x s ′) · rot n))) (at s ′)

if x ∈ {a−−b} for x s ′

using T-ex that
by (force intro!: derivative-eq-intros simp: flowderiv-def blinfun.bilinear-simps)

have (flow0 x s − x) · rot n > 0 if x ∈ {a −− b} 0 < s s ≤ T for x s
proof (rule ccontr , unfold not-less)

have [simp]: x ∈ X using that ‹{a −− b} ⊆ X› by auto
assume H : (flow0 x s − x) · rot n ≤ 0
have cont: continuous-on {0 .. s} (?g x)

using cont by (rule continuous-on-subset) (use that in auto)
from mvt[OF ‹0 < s› cont deriv] that
obtain ξ where ξ: 0 < ξ ξ < s (flow0 x s − x) · rot n = s ∗ (f (flow0 x ξ) ·

rot n)
by (auto intro: continuous-on-subset)

note ‹0 < B›
also
from C ′-cover that obtain c ′ where c ′: c ′ ∈ C ′ x ∈ ball c ′ (d2 c ′) by auto
have B ≤ f (flow0 x ξ) · rot n
proof (rule B-le[OF that(1) c ′])

show ξ 6= 0 using ‹0 < ξ› by simp
have T ≤ d2 c ′ using c ′

by (auto simp: T-def)
then show |ξ| < d2 c ′

using ‹0 < ξ› ‹ξ < s› ‹s ≤ T ›
by (simp add: dist-prod-def)

qed
also from ξ H have . . . ≤ 0

98

by (auto simp add: algebra-split-simps not-less split: if-splits)
finally show False by simp

qed
moreover
have (flow0 x s − x) · rot n < 0 if x ∈ {a −− b} −T ≤ s s < 0 for x s
proof (rule ccontr , unfold not-less)

have [simp]: x ∈ X using that ‹{a −− b} ⊆ X› by auto
assume H : (flow0 x s − x) · rot n ≥ 0
have cont: continuous-on {s .. 0} (?g x)

using cont by (rule continuous-on-subset) (use that in auto)
from mvt[OF ‹s < 0 › cont deriv] that
obtain ξ where ξ: s < ξ ξ < 0 (flow0 x s − x) · rot n = s ∗ (f (flow0 x ξ) ·

rot n)
by auto

note ‹0 < B›
also
from C ′-cover that obtain c ′ where c ′: c ′ ∈ C ′ x ∈ ball c ′ (d2 c ′) by auto
have B ≤ (f (flow0 x ξ) · rot n)
proof (rule B-le[OF that(1) c ′])

show ξ 6= 0 using ‹0 > ξ› by simp
have T ≤ d2 c ′ using c ′

by (auto simp: T-def)
then show |ξ| < d2 c ′

using ‹0 > ξ› ‹ξ > s› ‹s ≥ − T ›
by (simp add: dist-prod-def)

qed
also from ξ H have . . . ≤ 0

by (simp add: algebra-split-simps)
finally show False by simp

qed
ultimately show ?thesis ..

qed

lemma inner-rot-pos-move-base: (x − a) · rot (a − b) > 0
if (x − y) · rot (a − b) > 0 y ∈ {a −− b}
by (smt in-segment-inner-rot inner-diff-left inner-minus-right minus-diff-eq rot-rot

that)

lemma inner-rot-neg-move-base: (x − a) · rot (a − b) < 0
if (x − y) · rot (a − b) < 0 y ∈ {a −− b}
by (smt in-segment-inner-rot inner-diff-left inner-minus-right minus-diff-eq rot-rot

that)

lemma inner-pos-move-base: (x − a) · n > 0
if (a − b) · n = 0 (x − y) · n > 0 y ∈ {a −− b}

proof −
from that(3) obtain u where y-def : y = (1 − u) ∗R a + u ∗R b and u: 0 ≤

u u ≤ 1

99

by (auto simp: in-segment)
have (x − a) · n = (x − y) · n − u ∗ ((a − b) · n)

by (simp add: algebra-simps y-def)
also have . . . = (x − y) · n

by (simp add: that)
also note ‹. . . > 0 ›
finally show ?thesis .

qed

lemma inner-neg-move-base: (x − a) · n < 0
if (a − b) · n = 0 (x − y) · n < 0 y ∈ {a −− b}

proof −
from that(3) obtain u where y-def : y = (1 − u) ∗R a + u ∗R b and u: 0 ≤

u u ≤ 1
by (auto simp: in-segment)

have (x − a) · n = (x − y) · n − u ∗ ((a − b) · n)
by (simp add: algebra-simps y-def)

also have . . . = (x − y) · n
by (simp add: that)

also note ‹. . . < 0 ›
finally show ?thesis .

qed

lemma rot-same-dir :
assumes x1 ∈ {a<−−<b}
assumes x2 ∈ {x1<−−<b}
shows (y · rot (a−b) > 0) = (y · rot(x1−x2) > 0) (y · rot (a−b) < 0) = (y ·

rot(x1−x2) < 0)
using oriented-subsegment-scale[OF assms]
apply (smt inner-scaleR-right nrm-reverse rot-scaleR zero-less-mult-iff)

by (smt ‹
∧

thesis. (
∧

e. [[0 < e; b − a = e ∗R (x2 − x1)]] =⇒ thesis) =⇒ thesis›
inner-minus-right inner-scaleR-right rot-diff-commute rot-scaleR zero-less-mult-iff)

6.5 Monotone Step Lemma
lemma flow0-transversal-segment-monotone-step:

assumes transversal-segment a b
assumes t1 ≤ t2 {t1 ..t2} ⊆ existence-ivl0 x
assumes x1 : flow0 x t1 ∈ {a<−−<b}
assumes x2 : flow0 x t2 ∈ {flow0 x t1<−−<b}
assumes

∧
t. t ∈ {t1<..<t2} =⇒ flow0 x t /∈ {a<−−<b}

assumes t > t2 t ∈ existence-ivl0 x
shows flow0 x t /∈ {a<−−<flow0 x t2}

proof −
note exist = ‹{t1 ..t2} ⊆ existence-ivl0 x›
note t1t2 = ‹

∧
t. t ∈ {t1<..<t2} =⇒ flow0 x t /∈ {a<−−<b}›

have x1neqx2 : flow0 x t1 6= flow0 x t2
using open-segment-def x2 by force

100

then have t1neqt2 : t1 6= t2 by auto

have [simp]: a 6= b and ‹{a −− b} ⊆ X› using ‹transversal-segment a b›
by (auto simp: transversal-segment-def)

from x1 obtain i1 where i1 : flow0 x t1 = line a b i1 0 < i1 i1 < 1
by (auto simp: in-open-segment-iff-line)

from x2 obtain i2 where i2 : flow0 x t2 = line a b i2 0 < i1 i1 < i2
by (auto simp: i1 line-open-segment-iff)

have {a <−−< flow0 x t1} ⊆ {a<−−<b}
by (simp add: open-closed-segment subset-open-segment x1)

have t12sub: {flow0 x t1−−flow0 x t2} ⊆ {a<−−<b}
by (metis ends-in-segment(2) open-closed-segment subset-co-segment subset-eq

subset-open-segment x1 x2)
have subr : {flow0 x t1<−−<flow0 x t2} ⊆ {flow0 x t1 <−−<b}

by (simp add: open-closed-segment subset-open-segment x2)
have flow0 x t1 ∈ {a <−−<flow0 x t2} using x1 x2

by (rule open-segment-subsegment)
then have subl: {flow0 x t1<−−<flow0 x t2} ⊆ {a <−−< flow0 x t2} using

x1 x2
by (simp add: open-closed-segment subset-open-segment x2)

then have subl2 : {flow0 x t1−−<flow0 x t2} ⊆ {a <−−< flow0 x t2} using
x1 x2

by (smt DiffE DiffI ‹flow0 x t1 ∈ {a<−−<flow0 x t2}› half-open-segment-def
insert-iff open-segment-def subset-eq)

have sub1b: {flow0 x t1−−b} ⊆ {a−−b}
by (simp add: open-closed-segment subset-closed-segment x1)

have suba2 : {a−−flow0 x t2} ⊆ {a −− b}
using open-closed-segment subset-closed-segment t12sub by blast

then have suba2o: {a<−−<flow0 x t2} ⊆ {a −− b}
using open-closed-segment subset-closed-segment t12sub by blast

have x2-notmem: flow0 x t2 /∈ {a−−flow0 x t1}
using i1 i2
by (auto simp: closed-segment-line-iff)

have suba12 : {a−−flow0 x t1} ⊆ {a−−flow0 x t2}
by (simp add: ‹flow0 x t1 ∈ {a<−−<flow0 x t2}› open-closed-segment sub-

set-closed-segment)
then have suba12-open: {a<−−<flow0 x t1} ⊆ {a<−−<flow0 x t2}

using x2-notmem
by (auto simp: open-segment-def)

have flow0 x t2 ∈ {a−−b}
using suba2 by auto

have intereq:
∧

t. t1 ≤ t =⇒ t ≤ t2 =⇒ flow0 x t ∈ {a<−−<b} =⇒ t = t1 ∨
t = t2

proof (rule ccontr)

101

fix t
assume t: t1 ≤ t t ≤ t2 flow0 x t ∈ {a<−−<b} ¬(t= t1 ∨ t = t2)
then have t ∈ {t1<..<t2} by auto
then have flow0 x t /∈ {a<−−<b} using t1t2 by blast
thus False using t by auto

qed
then have intereqt12 :

∧
t. t1 ≤ t =⇒ t ≤ t2 =⇒ flow0 x t ∈ {flow0 x t1−−flow0

x t2} =⇒ t = t1 ∨ t = t2
using t12sub by blast

define J1 where J1 = flow-to-path x t1 t2
define J2 where J2 = linepath (flow0 x t2) (flow0 x t1)
define J where J = J1 +++ J2

have pathfinish J = pathstart J unfolding J-def J1-def J2-def
by (auto simp add: pathstart-compose pathfinish-compose)

have piJ : path-image J = path-image J1 ∪ path-image J2
unfolding J-def J1-def J2-def
apply (rule path-image-join)
by auto

have flow0 x t1 ∈ flow0 x ‘ {t1 ..t2} ∧ flow0 x t2 ∈ flow0 x ‘ {t1 ..t2}
using atLeastAtMost-iff ‹t1 ≤ t2 › by blast

then have piD: path-image J = path-image J1 ∪ {flow0 x t1 <−−<flow0 x t2}
unfolding piJ J1-def J2-def path-image-flow-to-path[OF ‹t1 ≤ t2 ›]

path-image-linepath open-segment-def
by (smt Diff-idemp Diff-insert2 Un-Diff-cancel closed-segment-commute mk-disjoint-insert)

have ∀ s∈{t1<..<t2}. flow0 x s 6= flow0 x t1
using x1 t1t2 by fastforce

from flow-to-path-arc[OF ‹t1 ≤ t2 › exist this x1neqx2]
have arc J1 using J1-def assms flow-to-path-arc by auto
then have simple-path J unfolding J-def
using ‹arc J1 › J1-def J2-def assms x1neqx2 t1neqt2 apply (auto intro!:simple-path-join-loop)
using intereqt12 closed-segment-commute by blast

from Jordan-inside-outside-R2 [OF this ‹pathfinish J = pathstart J ›]
obtain inner outer where inner-def : inner = inside (path-image J)

and outer-def : outer = outside (path-image J)
and io:
inner 6= {} open inner connected inner
outer 6= {} open outer connected outer
bounded inner ¬ bounded outer inner ∩ outer = {}
inner ∪ outer = − path-image J
frontier inner = path-image J
frontier outer = path-image J by metis

from io have io2 : outer ∩ inner = {} outer ∪ inner = − path-image J by auto

have swap-side:
∧

y t. y ∈ side2 =⇒
0 ≤ t =⇒ t ∈ existence-ivl0 y =⇒

102

flow0 y t ∈ closure side1 =⇒
∃T . 0 < T ∧ T ≤ t ∧ (∀ s ∈{0 ..<T}. flow0 y s ∈ side2) ∧

flow0 y T ∈ {flow0 x t1−−<flow0 x t2}
if side1 ∩ side2 = {}

open side2
frontier side1 = path-image J
frontier side2 = path-image J
side1 ∪ side2 = − path-image J

for side1 side2
proof −

fix y t
assume yt: y ∈ side2 0 ≤ t t ∈ existence-ivl0 y

flow0 y t ∈ closure side1
define fp where fp = flow-to-path y 0 t
have ex:{0 ..t} ⊆ existence-ivl0 y

using ivl-subset-existence-ivl yt(3) by blast
then have y0 :flow0 y 0 = y

using mem-existence-ivl-iv-defined(2) yt(3) by auto
then have tpos: t > 0 using yt(2) ‹side1 ∩ side2 = {}›

using yt(1) yt(4)
by (metis closure-iff-nhds-not-empty less-eq-real-def order-refl that(2))

from flow-to-path-path[OF yt(2) ex]
have a1 : path fp unfolding fp-def .
have y ∈ closure side2 using yt(1)

by (simp add: assms closure-def)
then have a2 : pathstart fp ∈ closure side2 unfolding fp-def using y0 by auto
have a3 :pathfinish fp /∈ side2 using yt(4) ‹side1 ∩ side2 = {}›

unfolding fp-def apply auto
using closure-iff-nhds-not-empty that(2) by blast

from subpath-to-frontier-strong[OF a1 a3]
obtain u where u:0 ≤ u u ≤ 1

fp u /∈ interior side2
u = 0 ∨
(∀ x. 0 ≤ x ∧ x < 1 −→

subpath 0 u fp x ∈ interior side2) ∧ fp u ∈ closure side2 by blast
have p1 :path-image (subpath 0 u fp) = flow0 y ‘ {0 .. u∗t}

unfolding fp-def subpath0-flow-to-path using path-image-flow-to-path
by (simp add: u(1) yt(2))

have p2 :fp u = flow0 y (u∗t) unfolding fp-def flow-to-path-unfold by simp
have inout:interior side2 = side2 using ‹open side2 ›

by (simp add: interior-eq)
then have iemp: side2 ∩ path-image J = {}

using ‹frontier side2 = path-image J ›
by (metis frontier-disjoint-eq inf-sup-aci(1) interior-eq)

have u 6= 0 using inout u(3) y0 p2 yt(1) by force
then have c1 :u ∗ t > 0 using tpos u y0 ‹side1 ∩ side2 = {}›

using frontier-disjoint-eq io(5) yt(1) zero-less-mult-iff by fastforce
have uim:fp u ∈ path-image J using u ‹u 6= 0 ›

using ‹frontier side2 = path-image J ›

103

by (metis ComplI IntI closure-subset frontier-closures inout subsetD)
have c2 :u ∗ t ≤ t using u(1−2) tpos by auto
have(flow-to-path y 0 (u ∗ t) ‘ {0 ..<1} ⊆ side2)

using ‹u 6= 0 › u inout unfolding fp-def subpath0-flow-to-path by auto
then have c3 :∀ s ∈{0 ..<u∗t}. flow0 y s ∈ side2 by auto
have c4 : flow0 y (u∗t) ∈ path-image J

using uim path-image-join-subset
by (simp add: p2)

have flow0 y (u∗t) /∈ path-image J1 ∨ flow0 y (u∗t) = flow0 x t1
proof clarsimp

assume flow0 y (u∗t) ∈ path-image J1
then obtain s where s: t1 ≤ s s ≤ t2 flow0 x s = flow0 y (u∗t)

using J1-def ‹t1 ≤ t2 › by auto
have s = t1
proof (rule ccontr)

assume s 6= t1
then have st1 :s > t1 using s(1) by linarith
define sc where sc = min (s−t1) (u∗t)
have scd: s−sc ∈ {t1 ..t2} unfolding sc-def

using c1 s(1) s(2) by auto
then have ∗:flow0 x (s−sc) ∈ path-image J1 unfolding J1-def path-image-flow-to-path[OF

‹t1 ≤ t2 ›]
by blast

have flow0 x (s−sc) = flow0 (flow0 x s) (−sc)
by (smt exist atLeastAtMost-iff existence-ivl-trans ′ flow-trans s(1) s(2) scd

subsetD)
then have ∗∗:flow0 (flow0 y (u∗t)) (−sc) ∈ path-image J1

using s(3) ∗ by auto
have b:u∗t − sc ∈ {0 ..<u∗t} unfolding sc-def by (simp add: st1 c1 s(1))
then have u∗t − sc ∈ existence-ivl0 y

using c2 ex by auto
then have flow0 y (u∗t − sc) ∈ path-image J1 using ∗∗

by (smt atLeastAtMost-iff diff-existence-ivl-trans ex flow-trans mult-left-le-one-le
mult-nonneg-nonneg subset-eq u(1) u(2) yt(2))

thus False using b c3 iemp piJ by blast
qed
thus flow0 y (u ∗ t) = flow0 x t1 using s by simp

qed
thus ∃T>0 . T ≤ t ∧ (∀ s∈{0 ..<T}. flow0 y s ∈ side2) ∧

flow0 y T ∈ {flow0 x t1−−<flow0 x t2}
using c1 c2 c3 c4 unfolding piD
by (metis DiffE UnE ends-in-segment(1) half-open-segment-closed-segmentI

insertCI open-segment-def x1neqx2)
qed
have outside-in:

∧
y t. y ∈ outer =⇒

0 ≤ t =⇒ t ∈ existence-ivl0 y =⇒
flow0 y t ∈ closure inner =⇒
∃T . 0 < T ∧ T ≤ t ∧ (∀ s ∈{0 ..<T}. flow0 y s ∈ outer) ∧

flow0 y T ∈ {flow0 x t1−−<flow0 x t2}

104

by (rule swap-side; (rule io | assumption))
have inside-out:

∧
y t. y ∈ inner =⇒

0 ≤ t =⇒ t ∈ existence-ivl0 y =⇒
flow0 y t ∈ closure outer =⇒
∃T . 0 < T ∧ T ≤ t ∧ (∀ s ∈{0 ..<T}. flow0 y s ∈ inner) ∧

flow0 y T ∈ {flow0 x t1−−<flow0 x t2}
by (rule swap-side; (rule io2 io | assumption))

from leaves-transversal-segmentE [OF assms(1)]
obtain d n where d: d > (0 ::real)

and n: n = a − b ∨ n = b − a
and d-ex:

∧
x. x ∈ {a −− b} =⇒ {−d..d} ⊆ existence-ivl0 x

and d-above:
∧

x s. x ∈ {a −− b} =⇒ 0 < s =⇒ s ≤ d =⇒ (flow0 x s − x) ·
rot n > 0

and d-below:
∧

x s. x ∈ {a −− b} =⇒ −d ≤ s =⇒ s < 0 =⇒ (flow0 x s − x)
· rot n < 0

by blast

have ortho: (a − b) · rot n = 0
using n by (auto simp: algebra-simps)

define r1 where r1 = (λ(x, y). flow0 x y)‘({flow0 x t1<−−<b} × {0<..<d})
have r1a1 : path-connected {flow0 x t1 <−−<b} by simp
have r1a2 : path-connected {0<..<d} by simp
have {flow0 x t1<−−<b} ⊆ {a−−b}

by (simp add: open-closed-segment subset-oc-segment x1)
then have r1a3 : y ∈ {flow0 x t1<−−<b} =⇒ {0<..<d} ⊆ existence-ivl0 y for

y
using d-ex[of y]
by force

from flow0-path-connected[OF r1a1 r1a2 r1a3]
have pcr1 :path-connected r1 unfolding r1-def by auto
have pir1J1 : r1 ∩ path-image J1 = {}

unfolding J1-def path-image-flow-to-path[OF ‹t1 ≤ t2 ›]
proof (rule ccontr)

assume r1 ∩ flow0 x ‘ {t1 ..t2} 6= {}
then obtain xx tt ss where

eq: flow0 xx tt = flow0 x ss
and xx: xx ∈ {flow0 x t1<−−<b}
and ss: t1 ≤ ss ss ≤ t2
and tt: 0 < tt tt < d
unfolding r1-def
by force

have xx ∈ {a −− b}
using sub1b
apply (rule set-mp)
using xx by (simp add: open-closed-segment)

then have [simp]: xx ∈ X using ‹transversal-segment a b› by (auto simp:

105

transversal-segment-def)
from ss have ss-ex: ss ∈ existence-ivl0 x using exist

by auto
from d-ex[OF ‹xx ∈ {a −− b}›] tt
have tt-ex: tt ∈ existence-ivl0 xx by auto
then have neg-tt-ex: − tt ∈ existence-ivl0 (flow0 xx tt)

by (rule existence-ivl-reverse[simplified])
from eq have flow0 (flow0 xx tt) (−tt) = flow0 (flow0 x ss) (−tt)

by simp
then have xx = flow0 x (ss − tt)

apply (subst (asm) flow-trans[symmetric])
apply (rule tt-ex)

apply (rule neg-tt-ex)
apply (subst (asm) flow-trans[symmetric])

apply (rule ss-ex)
apply (subst eq[symmetric])
apply (rule neg-tt-ex)

by simp
moreover
define e where e = ss − t1
consider e > tt | e ≤ tt by arith
then show False
proof cases

case 1
have flow0 (flow0 x ss) (−tt) /∈ {a<−−<b}

apply (subst flow-trans[symmetric])
apply fact

subgoal using neg-tt-ex eq by simp
apply (rule t1t2)
using 1 ss tt
unfolding e-def
by auto

moreover have flow0 (flow0 x ss) (−tt) ∈ {a<−−<b}
unfolding eq[symmetric] using tt-ex xx
apply (subst flow-trans[symmetric])

apply (auto simp add: neg-tt-ex)
by (metis (no-types, opaque-lifting) sub1b subset-eq subset-open-segment)

ultimately show ?thesis by simp
next

case 2
have les: 0 ≤ tt − e tt − e ≤ d

using tt ss 2 e-def
by auto

have xxtte: flow0 xx (tt − e) = flow0 x t1
apply (simp add: e-def)
by (smt ‹0 ≤ tt − e› ‹{− d..d} ⊆ existence-ivl0 xx› atLeastAtMost-iff e-def

eq
local.existence-ivl-reverse local.existence-ivl-trans local.flow-trans ss(1)

ss-ex subset-iff tt(2))

106

show False
proof (cases tt = e)

case True
with xxtte have xx = flow0 x t1

by simp
with xx show ?thesis

apply auto
by (auto simp: open-segment-def)

next
case False
with les have 0 < tt − e by (simp)
from d-above[OF ‹xx ∈ {a −− b}› this ‹tt − e ≤ d›]
have flow0 xx (tt − e) /∈ {a −− b}

apply (simp add: in-closed-segment-iff-rot[OF ‹a 6= b›]
not-le)

by (smt ‹xx ∈ {a−−b}› inner-minus-right inner-rot-neg-move-base in-
ner-rot-pos-move-base n rot-diff-commute)

with xxtte show ?thesis
using ‹flow0 x t1 ∈ {a<−−<flow0 x t2}› suba2o by auto

qed
qed

qed

moreover
have pir1J2 : r1 ∩ path-image J2 = {}
proof −

have r1 ⊆ {x. (x − a) · rot n > 0}
unfolding r1-def

proof safe
fix aa ba
assume aa ∈ {flow0 x t1<−−<b} ba ∈ {0<..<d}
with sub1b show 0 < (flow0 aa ba − a) · rot n

using segment-open-subset-closed[of flow0 x t1 b]
by (intro inner-pos-move-base[OF ortho d-above]) auto

qed
also have . . . ∩ {a −− b} = {}

using in-segment-inner-rot in-segment-inner-rot2 n by auto
finally show ?thesis

unfolding J2-def path-image-linepath
using t12sub open-closed-segment
by (force simp: closed-segment-commute)

qed
ultimately have pir1 :r1 ∩ (path-image J) = {} unfolding J-def

by (metis disjoint-iff-not-equal not-in-path-image-join)

define r2 where r2 =(λ(x, y). flow0 x y)‘({a <−−< flow0 x t2} × {−d<..<0})
have r2a1 :path-connected {a <−−< flow0 x t2} by simp
have r2a2 :path-connected {−d<..<0} by simp
have {a <−−< flow0 x t2} ⊆ {a −− b}

107

by (meson ends-in-segment(1) open-closed-segment subset-co-segment subset-oc-segment
t12sub)

then have r2a3 : y ∈ {a <−−< flow0 x t2} =⇒ {−d<..<0} ⊆ existence-ivl0 y
for y

using d-ex[of y]
by force

from flow0-path-connected[OF r2a1 r2a2 r2a3]
have pcr2 :path-connected r2 unfolding r2-def by auto
have pir2J2 : r2 ∩ path-image J1 = {}

unfolding J1-def path-image-flow-to-path[OF ‹t1 ≤ t2 ›]
proof (rule ccontr)

assume r2 ∩ flow0 x ‘ {t1 ..t2} 6= {}
then obtain xx tt ss where

eq: flow0 xx tt = flow0 x ss
and xx: xx ∈ {a<−−<flow0 x t2}
and ss: t1 ≤ ss ss ≤ t2
and tt: −d < tt tt < 0
unfolding r2-def
by force

have xx ∈ {a −− b}
using suba2
apply (rule set-mp)
using xx by (simp add: open-closed-segment)

then have [simp]: xx ∈ X using ‹transversal-segment a b› by (auto simp:
transversal-segment-def)

from ss have ss-ex: ss ∈ existence-ivl0 x using exist
by auto

from d-ex[OF ‹xx ∈ {a −− b}›] tt
have tt-ex: tt ∈ existence-ivl0 xx by auto
then have neg-tt-ex: − tt ∈ existence-ivl0 (flow0 xx tt)

by (rule existence-ivl-reverse[simplified])
from eq have flow0 (flow0 xx tt) (−tt) = flow0 (flow0 x ss) (−tt)

by simp
then have xx = flow0 x (ss − tt)

apply (subst (asm) flow-trans[symmetric])
apply (rule tt-ex)

apply (rule neg-tt-ex)
apply (subst (asm) flow-trans[symmetric])

apply (rule ss-ex)
apply (subst eq[symmetric])
apply (rule neg-tt-ex)

by simp
moreover
define e where e = t2 − ss
consider e > − tt | e ≤ −tt by arith
then show False
proof cases

case 1
have flow0 (flow0 x ss) (−tt) /∈ {a<−−<b}

108

apply (subst flow-trans[symmetric])
apply fact

subgoal using neg-tt-ex eq by simp
apply (rule t1t2)
using 1 ss tt
unfolding e-def
by auto

moreover have flow0 (flow0 x ss) (−tt) ∈ {a<−−<b}
unfolding eq[symmetric] using tt-ex xx
apply (subst flow-trans[symmetric])

apply (auto simp add: neg-tt-ex)
by (metis (no-types, opaque-lifting) suba2 subset-eq subset-open-segment)

ultimately show ?thesis by simp
next

case 2
have les: tt + e ≤ 0 −d ≤ tt + e

using tt ss 2 e-def
by auto

have xxtte: flow0 xx (tt + e) = flow0 x t2
apply (simp add: e-def)
by (smt atLeastAtMost-iff calculation eq exist local.existence-ivl-trans ′ lo-

cal.flow-trans neg-tt-ex ss-ex subset-iff ‹t1 ≤ t2 ›)
show False
proof (cases tt=−e)

case True
with xxtte have xx = flow0 x t2

by simp
with xx show ?thesis

apply auto
by (auto simp: open-segment-def)

next
case False
with les have tt+e < 0 by simp
from d-below[OF ‹xx ∈ {a −− b}› ‹−d ≤ tt + e› this]
have flow0 xx (tt + e) /∈ {a −− b}

apply (simp add: in-closed-segment-iff-rot[OF ‹a 6= b›]
not-le)

by (smt ‹xx ∈ {a−−b}› inner-minus-right inner-rot-neg-move-base in-
ner-rot-pos-move-base n rot-diff-commute)

with xxtte show ?thesis
using ‹flow0 x t2 ∈ {a−−b}› by simp

qed
qed

qed
moreover
have pir2J2 : r2 ∩ path-image J2 = {}
proof −

have r2 ⊆ {x. (x − a) · rot n < 0}
unfolding r2-def

109

proof safe
fix aa ba
assume aa ∈ {a<−−<flow0 x t2} ba ∈ {−d<..<0}
with suba2 show 0 > (flow0 aa ba − a) · rot n

using segment-open-subset-closed[of a flow0 x t2]
by (intro inner-neg-move-base[OF ortho d-below]) auto

qed
also have . . . ∩ {a −− b} = {}

using in-segment-inner-rot in-segment-inner-rot2 n by auto
finally show ?thesis

unfolding J2-def path-image-linepath
using t12sub open-closed-segment
by (force simp: closed-segment-commute)

qed
ultimately have pir2 :r2 ∩ (path-image J) = {}

unfolding J-def
by (metis disjoint-iff-not-equal not-in-path-image-join)

define rp where rp = midpoint (flow0 x t1) (flow0 x t2)
have rpi: rp ∈ {flow0 x t1<−−<flow0 x t2} unfolding rp-def

by (simp add: x1neqx2)
have rp ∈ {a −− b}

using rpi suba2o subl by blast
then have [simp]: rp ∈ X

using ‹{a−−b} ⊆ X› by blast

have ∗: pathfinish J1 = flow0 x t2
pathstart J1 = flow0 x t1
rp ∈ {flow0 x t2<−−<flow0 x t1}
using rpi
by (auto simp: open-segment-commute J1-def)

have {y. 0 < (y − flow0 x t2) · rot (flow0 x t2 − flow0 x t1)} = {y. 0 < (y −
rp) · rot (flow0 x t2 − flow0 x t1)}

by (smt Collect-cong in-open-segment-rotD inner-diff-left nrm-dot rpi)
also have ... = {y. 0 > (y − rp) · rot (flow0 x t1 − flow0 x t2)}

by (smt Collect-cong inner-minus-left nrm-reverse)
also have ... = {y. 0 > (y − rp) · rot (a − b) }

by (metis rot-same-dir(2) x1 x2)
finally have side1 : {y. 0 < (y − flow0 x t2) · rot (flow0 x t2 − flow0 x t1)} =
{y. 0 > (y − rp) · rot (a − b) }

(is - = ?lower1) .
have {y. (y − flow0 x t2) · rot (flow0 x t2 − flow0 x t1) < 0} = {y. (y − rp) ·

rot (flow0 x t2 − flow0 x t1) < 0}
by (smt Collect-cong in-open-segment-rotD inner-diff-left nrm-dot rpi)

also have ... = {y. (y − rp) · rot (flow0 x t1 − flow0 x t2) > 0}
by (smt Collect-cong inner-minus-left nrm-reverse)

also have ... = {y. 0 < (y − rp) · rot (a − b) }
by (metis rot-same-dir(1) x1 x2)

110

finally have side2 : {y. (y − flow0 x t2) · rot (flow0 x t2 − flow0 x t1) < 0} =
{y. 0 < (y − rp) · rot (a − b) }

(is - = ?upper1) .
from linepath-ball-inside-outside[OF ‹simple-path J ›[unfolded J-def J2-def] ∗,

folded J2-def J-def , unfolded side1 side2]
obtain e where e0 : 0 < e

ball rp e ∩ path-image J1 = {}
ball rp e ∩ ?lower1 ⊆ inner ∧

ball rp e ∩ ?upper1 ⊆ outer ∨
ball rp e ∩ ?upper1 ⊆ inner ∧
ball rp e ∩ ?lower1 ⊆ outer

by (auto simp: inner-def outer-def)

let ?lower = {y. 0 > (y − rp) · rot n }
let ?upper = {y. 0 < (y − rp) · rot n }
have ?lower1 = {y. 0 < (y − rp) · rot n } ∧ ?upper1 = {y. 0 > (y − rp) · rot

n } ∨
?lower1 = {y. 0 > (y − rp) · rot n } ∧ ?upper1 = {y. 0 < (y − rp) · rot n

}
using n rot-diff-commute[of a b]
by auto

from this e0 have e: 0 < e
ball rp e ∩ path-image J1 = {}
ball rp e ∩ ?lower ⊆ inner ∧

ball rp e ∩ ?upper ⊆ outer ∨
ball rp e ∩ ?upper ⊆ inner ∧
ball rp e ∩ ?lower ⊆ outer

by auto

have ∀ F t in at-right 0 . t < d
by (auto intro!: order-tendstoD ‹0 < d›)

then have evr : ∀ F t in at-right 0 . 0 < (flow0 rp t − rp) · rot n
unfolding eventually-at-filter
by eventually-elim (auto intro!: ‹rp ∈ {a−−b}› d-above)

have ∀ F t in at-left 0 . t > −d
by (auto intro!: order-tendstoD ‹0 < d›)

then have evl: ∀ F t in at-left 0 . 0 > (flow0 rp t − rp) · rot n
unfolding eventually-at-filter
by eventually-elim (auto intro!: ‹rp ∈ {a−−b}› d-below)

have ∀ F t in at 0 . flow0 rp t ∈ ball rp e
unfolding mem-ball
apply (subst dist-commute)
apply (rule tendstoD)
by (auto intro!: tendsto-eq-intros ‹0 < e›)

then have evl2 : (∀ F t in at-left 0 . flow0 rp t ∈ ball rp e)
and evr2 : (∀ F t in at-right 0 . flow0 rp t ∈ ball rp e)
unfolding eventually-at-split by auto

have evl3 : (∀ F t in at-left 0 . t > −d)
and evr3 : (∀ F t in at-right 0 . t < d)

111

by (auto intro!: order-tendstoD ‹0 < d›)
have evl4 : (∀ F t in at-left 0 . t < 0)

and evr4 : (∀ F t in at-right 0 . t > 0)
by (auto simp: eventually-at-filter)

from evl evl2 evl3 evl4
have ∀ F t in at-left 0 . (flow0 rp t − rp) · rot n < 0 ∧ flow0 rp t ∈ ball rp e ∧

t > −d ∧ t < 0
by eventually-elim auto

from eventually-happens[OF this]
obtain dl where dl: (flow0 rp dl − rp) · rot n < 0 flow0 rp dl ∈ ball rp e − d

< dl dl < 0
by auto

from evr evr2 evr3 evr4
have ∀ F t in at-right 0 . (flow0 rp t − rp) · rot n > 0 ∧ flow0 rp t ∈ ball rp e
∧ t < d ∧ t > 0

by eventually-elim auto
from eventually-happens[OF this]
obtain dr where dr : (flow0 rp dr − rp) · rot n > 0 flow0 rp dr ∈ ball rp e d >

dr dr > 0
by auto

have rp ∈ {flow0 x t1<−−<b} using rpi subr by auto
then have rpr1 :flow0 rp (dr) ∈ r1 unfolding r1-def using ‹d > dr› ‹dr > 0 ›

by auto
have rp ∈ {a<−−<flow0 x t2} using rpi subl by auto
then have rpr2 :flow0 rp (dl) ∈ r2 unfolding r2-def using ‹−d < dl› ‹dl < 0 ›

by auto

from e(3) dr dl
have flow0 rp (dr) ∈ outer ∧ flow0 rp (dl) ∈ inner ∨ flow0 rp (dr) ∈ inner ∧

flow0 rp (dl) ∈ outer
by auto

moreover {
assume flow0 rp dr ∈ outer flow0 rp dl ∈ inner
then have

r1o: r1 ∩ outer 6= {} and
r2i: r2 ∩ inner 6= {} using rpr1 rpr2 by auto

from path-connected-not-frontier-subset[OF pcr1 r1o]
have r1 ⊆ outer using pir1 by (simp add: io(12))
from path-connected-not-frontier-subset[OF pcr2 r2i]
have r2 ⊆ inner using pir2 by (simp add: io(11))
have (λ(x, y). flow0 x y)‘({flow0 x t2} × {0<..<d}) ⊆ r1 unfolding r1-def

by (auto intro!:image-mono simp add: x2)
then have ∗:

∧
t. 0 < t =⇒ t < d =⇒ flow0 (flow0 x t2) t ∈ outer

by (smt ‹r1 ⊆ outer› greaterThanLessThan-iff mem-Sigma-iff pair-imageI
r1-def subset-eq x2)

then have t2o:
∧

t. 0 < t =⇒ t < d =⇒ flow0 x (t2 + t) ∈ outer
using r1a3 [OF x2] exist flow-trans

112

by (metis (no-types, opaque-lifting) closed-segment-commute ends-in-segment(1)
local.existence-ivl-trans ′ local.flow-undefined0 real-Icc-closed-segment subset-eq ‹t1
≤ t2 ›)

have inner : {a <−−< flow0 x t2} ⊆ closure inner
proof (rule subsetI)

fix y
assume y: y ∈ {a <−−< flow0 x t2}
have [simp]: y ∈ X

using y suba12-open suba2o ‹{a −− b} ⊆ X›
by auto

have (∀n. flow0 y (− d / real (Suc (Suc n))) ∈ inner)
using y
using suba12-open ‹0 < d› suba2o ‹{a −− b} ⊆ X›
by (auto intro!: set-mp[OF ‹r2 ⊆ inner›] image-eqI [where x=(y, −d/Suc

(Suc n)) for n]
simp: r2-def divide-simps)

moreover
have d-over-0 : (λs. − d / real (Suc (Suc s))) −−−−→ 0

by (rule real-tendsto-divide-at-top)
(auto intro!: filterlim-tendsto-add-at-top filterlim-real-sequentially)

have (λn. flow0 y (− d / real (Suc (Suc n)))) −−−−→ y
apply (rule tendsto-eq-intros)

apply (rule tendsto-intros)
apply (rule d-over-0)

by auto
ultimately show y ∈ closure inner

unfolding closure-sequential
by (intro exI [where x=λn. flow0 y (−d/Suc (Suc n))]) (rule conjI)

qed
then have {a <−−< flow0 x t1} ⊆ closure inner

using suba12-open by blast
then have {flow0 x t1 −− flow0 x t2} ⊆ closure inner
by (metis (no-types, lifting) closure-closure closure-mono closure-open-segment

dual-order .trans inner subl x1neqx2)
have outer :

∧
t. t > t2 =⇒ t ∈ existence-ivl0 x =⇒ flow0 x t ∈ outer

proof (rule ccontr)
fix t
assume t: t > t2 t ∈ existence-ivl0 x flow0 x t /∈ outer
have 0 ≤ t− (t2+d) using t2o t by smt
then have a2 :0 ≤ t − (t2+dr) using d ‹0 < dr› ‹dr < d› by linarith
have t2d2-ex: t2 + dr ∈ existence-ivl0 x

using ‹t1 ≤ t2 › exist d-ex[of flow0 x t2] ‹flow0 x t2 ∈ {a−−b}› ‹0 < d› ‹0
< dr› ‹dr < d›

by (intro existence-ivl-trans) auto
then have a3 : t − (t2 + dr) ∈ existence-ivl0 (flow0 x (t2 + dr))

using t(2)
by (intro diff-existence-ivl-trans) auto

113

then have flow0 (flow0 x (t2 + dr)) (t − (t2 + dr)) = flow0 x t
by (subst flow-trans[symmetric]) (auto simp: t2d2-ex)

moreover have flow0 x t ∈ closure inner using t(3) io
by (metis ComplI Un-iff closure-Un-frontier)

ultimately have a4 : flow0 (flow0 x (t2 + dr)) (t − (t2 + dr)) ∈ closure
inner by auto

have a1 : flow0 x (t2+dr) ∈ outer
by (simp add: d t2o ‹0 < dr› ‹dr < d›)

from outside-in[OF a1 a2 a3 a4]
obtain T where T : T > 0 T ≤ t − (t2 + dr)
(∀ s∈{0 ..<T}. flow0 (flow0 x (t2 + dr)) s ∈ outer)
flow0 (flow0 x (t2 + dr)) T ∈ {flow0 x t1 −−< flow0 x t2} by blast

define y where y = flow0 (flow0 x (t2 + dr)) T
have y ∈ {a <−−< flow0 x t2} unfolding y-def using T (4)

using subl2 by blast
then have (λ(x, y). flow0 x y)‘({y} × {−d<..<0}) ⊆ r2 unfolding r2-def

by (auto intro!:image-mono)
then have ∗:

∧
t. −d < t =⇒ t < 0 =⇒ flow0 y t ∈ r2

by (simp add: pair-imageI subsetD)
have max (−T/2) dl < 0 using d T ‹0 > dl› ‹dl > −d› by auto
moreover have −d < max (−T/2) dl using d T ‹0 > dl› ‹dl > −d› by

auto
ultimately have inner : flow0 y (max (−T/2) dl) ∈ inner using ∗ ‹r2 ⊆

inner› by blast
have 0≤(T+(max (−T/2) dl)) using T (1) by linarith
moreover have (T+(max (−T/2) dl)) < T using T (1) d ‹0 > dl› ‹dl >

−d› by linarith
ultimately have outer : flow0 (flow0 x (t2 + dr)) (T+(max (−T/2) dl))

∈ outer
using T by auto

have T-ex: T ∈ existence-ivl0 (flow0 x (t2 + dr))
apply (subst flow-trans)
using exist ‹t1 ≤ t2 ›
using d-ex[of flow0 x t2] ‹flow0 x t2 ∈ {a −− b}› ‹d > 0 › T ‹0 < dr› ‹dr

< d›
apply auto

apply (rule set-rev-mp[where A={0 .. t − (t2 + dr)}], force)
apply (rule ivl-subset-existence-ivl)
apply (rule existence-ivl-trans ′)
apply (rule existence-ivl-trans ′)

by (auto simp: t)
have T-ex2 : dr + T ∈ existence-ivl0 (flow0 x t2)
by (smt T-ex ends-in-segment(2) exist local.existence-ivl-trans local.existence-ivl-trans ′

real-Icc-closed-segment subset-eq t2d2-ex ‹t1 ≤ t2 ›)
thus False using T ‹t1 ≤ t2 › exist

by (smt T-ex diff-existence-ivl-trans disjoint-iff-not-equal inner io(9) lo-
cal.flow-trans local.flow-undefined0 outer y-def)

qed
have closure inner ∩ outer = {}

114

by (simp add: inf-sup-aci(1) io(5) io(9) open-Int-closure-eq-empty)
then have flow0 x t /∈ {a<−−<flow0 x t2}

using ‹t > t2 › ‹t ∈ existence-ivl0 x› inner outer by blast
}
moreover {

assume flow0 rp dr ∈ inner flow0 rp dl ∈ outer
then have

r1i: r1 ∩ inner 6= {} and
r2o: r2 ∩ outer 6= {} using rpr1 rpr2 by auto

from path-connected-not-frontier-subset[OF pcr1 r1i]
have r1 ⊆ inner using pir1 by (simp add: io(11))
from path-connected-not-frontier-subset[OF pcr2 r2o]
have r2 ⊆ outer using pir2 by (simp add: io(12))

have (λ(x, y). flow0 x y)‘({flow0 x t2} × {0<..<d}) ⊆ r1 unfolding r1-def
by (auto intro!:image-mono simp add: x2)

then have
∗:
∧

t. 0 < t =⇒ t < d =⇒ flow0 (flow0 x t2) t ∈ inner
by (smt ‹r1 ⊆ inner› greaterThanLessThan-iff mem-Sigma-iff pair-imageI

r1-def subset-eq x2)

then have t2o:
∧

t. 0 < t =⇒ t < d =⇒ flow0 x (t2 + t) ∈ inner
using r1a3 [OF x2] exist flow-trans

by (metis (no-types, opaque-lifting) closed-segment-commute ends-in-segment(1)
local.existence-ivl-trans ′ local.flow-undefined0 real-Icc-closed-segment subset-eq ‹t1
≤ t2 ›)

have outer : {a <−−< flow0 x t2} ⊆ closure outer
proof (rule subsetI)

fix y
assume y: y ∈ {a <−−< flow0 x t2}
have [simp]: y ∈ X

using y suba12-open suba2o ‹{a −− b} ⊆ X›
by auto

have (∀n. flow0 y (− d / real (Suc (Suc n))) ∈ outer)
using y
using suba12-open ‹0 < d› suba2o ‹{a −− b} ⊆ X›
by (auto intro!: set-mp[OF ‹r2 ⊆ outer›] image-eqI [where x=(y, −d/Suc

(Suc n)) for n]
simp: r2-def divide-simps)

moreover
have d-over-0 : (λs. − d / real (Suc (Suc s))) −−−−→ 0

by (rule real-tendsto-divide-at-top)
(auto intro!: filterlim-tendsto-add-at-top filterlim-real-sequentially)

have (λn. flow0 y (− d / real (Suc (Suc n)))) −−−−→ y
apply (rule tendsto-eq-intros)

apply (rule tendsto-intros)
apply (rule d-over-0)

115

by auto
ultimately show y ∈ closure outer

unfolding closure-sequential
by (intro exI [where x=λn. flow0 y (−d/Suc (Suc n))]) (rule conjI)

qed
then have {a <−−< flow0 x t1} ⊆ closure outer

using suba12-open by blast
then have {flow0 x t1 −− flow0 x t2} ⊆ closure outer
by (metis (no-types, lifting) closure-closure closure-mono closure-open-segment

dual-order .trans outer subl x1neqx2)

have inner :
∧

t. t > t2 =⇒ t ∈ existence-ivl0 x =⇒ flow0 x t ∈ inner
proof (rule ccontr)

fix t
assume t: t > t2 t ∈ existence-ivl0 x flow0 x t /∈ inner
have 0 ≤ t− (t2+d) using t2o t by smt
then have a2 :0 ≤ t − (t2+dr) using d ‹0 < dr› ‹dr < d› by linarith
have t2d2-ex: t2 + dr ∈ existence-ivl0 x

using ‹t1 ≤ t2 › exist d-ex[of flow0 x t2] ‹flow0 x t2 ∈ {a−−b}› ‹0 < d› ‹0
< dr› ‹dr < d›

by (intro existence-ivl-trans) auto
then have a3 : t − (t2 + dr) ∈ existence-ivl0 (flow0 x (t2 + dr))

using t(2)
by (intro diff-existence-ivl-trans) auto

then have flow0 (flow0 x (t2 + dr)) (t − (t2 + dr)) = flow0 x t
by (subst flow-trans[symmetric]) (auto simp: t2d2-ex)

moreover have flow0 x t ∈ closure outer using t(3) io
by (metis ComplI Un-iff closure-Un-frontier)

ultimately have a4 : flow0 (flow0 x (t2 + dr)) (t − (t2 + dr)) ∈ closure
outer by auto

have a1 : flow0 x (t2+dr) ∈ inner
by (simp add: d t2o ‹0 < dr› ‹dr < d›)

from inside-out[OF a1 a2 a3 a4]
obtain T where T : T > 0 T ≤ t − (t2 + dr)
(∀ s∈{0 ..<T}. flow0 (flow0 x (t2 + dr)) s ∈ inner)
flow0 (flow0 x (t2 + dr)) T ∈ {flow0 x t1 −−< flow0 x t2} by blast

define y where y = flow0 (flow0 x (t2 + dr)) T
have y ∈ {a <−−< flow0 x t2} unfolding y-def using T (4)

using subl2 by blast
then have (λ(x, y). flow0 x y)‘({y} × {−d<..<0}) ⊆ r2 unfolding r2-def

by (auto intro!:image-mono)
then have ∗:

∧
t. −d < t =⇒ t < 0 =⇒ flow0 y t ∈ r2

by (simp add: pair-imageI subsetD)
have max (−T/2) dl < 0 using d T ‹0 > dl› ‹dl > −d› by auto
moreover have −d < max (−T/2) dl using d T ‹0 > dl› ‹dl > −d› by

auto
ultimately have outer : flow0 y (max (−T/2) dl) ∈ outer using ∗ ‹r2 ⊆

outer› by blast
have 0≤(T+(max (−T/2) dl)) using T (1) by linarith

116

moreover have (T+(max (−T/2) dl)) < T using T (1) d ‹0 > dl› ‹dl >
−d› by linarith

ultimately have inner : flow0 (flow0 x (t2 + dr)) (T+(max (−T/2) dl))
∈ inner

using T by auto
have T-ex: T ∈ existence-ivl0 (flow0 x (t2 + dr))

apply (subst flow-trans)
using exist ‹t1 ≤ t2 ›
using d-ex[of flow0 x t2] ‹flow0 x t2 ∈ {a −− b}› ‹d > 0 › T ‹0 < dr› ‹dr

< d›
apply auto

apply (rule set-rev-mp[where A={0 .. t − (t2 + dr)}], force)
apply (rule ivl-subset-existence-ivl)
apply (rule existence-ivl-trans ′)
apply (rule existence-ivl-trans ′)

by (auto simp: t)
have T-ex2 : dr + T ∈ existence-ivl0 (flow0 x t2)
by (smt T-ex ends-in-segment(2) exist local.existence-ivl-trans local.existence-ivl-trans ′

real-Icc-closed-segment subset-eq t2d2-ex ‹t1 ≤ t2 ›)
thus False using T ‹t1 ≤ t2 › exist

by (smt T-ex diff-existence-ivl-trans disjoint-iff-not-equal inner io(9) lo-
cal.flow-trans local.flow-undefined0 outer y-def)

qed
have closure outer ∩ inner = {}

by (metis inf-sup-aci(1) io(2) io2 (1) open-Int-closure-eq-empty)
then have flow0 x t /∈ {a<−−<flow0 x t2}

using ‹t > t2 › ‹t ∈ existence-ivl0 x› inner outer by blast
}
ultimately show

flow0 x t /∈ {a<−−<flow0 x t2} by auto
qed

lemma open-segment-trichotomy:
fixes x y a b:: ′a
assumes x:x ∈ {a<−−<b}
assumes y:y ∈ {a<−−<b}
shows x = y ∨ y ∈ {x<−−<b} ∨ y ∈ {a<−−<x}

proof −
from Un-open-segment[OF y]
have {a<−−<y} ∪ {y} ∪ {y<−−<b} = {a<−−<b} .
then have x ∈ {a<−−<y} ∨ x = y ∨ x ∈ {y <−−<b} using x by blast
moreover {

assume x ∈ {a<−−<y}
then have y ∈ {x<−−<b} using open-segment-subsegment

using open-segment-commute y by blast
}
moreover {

assume x ∈ {y<−−<b}
from open-segment-subsegment[OF y this]

117

have y ∈ {a<−−<x} .
}
ultimately show ?thesis by blast

qed

sublocale rev: c1-on-open-R2 −f −f ′ rewrites −(−f) = f and −(−f ′) = f ′

by unfold-locales (auto simp: dim2)

lemma rev-transversal-segment: rev.transversal-segment a b = transversal-segment
a b

by (auto simp: transversal-segment-def rev.transversal-segment-def)

lemma flow0-transversal-segment-monotone-step-reverse:
assumes transversal-segment a b
assumes t1 ≤ t2
assumes {t1 ..t2} ⊆ existence-ivl0 x
assumes x1 : flow0 x t1 ∈ {a<−−<b}
assumes x2 : flow0 x t2 ∈ {a<−−<flow0 x t1}
assumes

∧
t. t ∈ {t1<..<t2} =⇒ flow0 x t /∈ {a<−−<b}

assumes t < t1 t ∈ existence-ivl0 x
shows flow0 x t /∈ {a<−−<flow0 x t1}

proof −
note exist = ‹{t1 ..t2} ⊆ existence-ivl0 x›
note t1t2 = ‹

∧
t. t ∈ {t1<..<t2} =⇒ flow0 x t /∈ {a<−−<b}›

from ‹transversal-segment a b› have [simp]: a 6= b by (simp add: transver-
sal-segment-def)

from x1 obtain i1 where i1 : flow0 x t1 = line a b i1 0 < i1 i1 < 1
by (auto simp: in-open-segment-iff-line)

from x2 obtain i2 where i2 : flow0 x t2 = line a b i2 0 < i2 i2 < i1
by (auto simp: i1 open-segment-line-iff)

have t2-exist[simp]: t2 ∈ existence-ivl0 x
using ‹t1 ≤ t2 › exist by auto

have t2-mem: flow0 x t2 ∈ {a<−−<b}
and x1-mem: flow0 x t1 ∈ {flow0 x t2<−−<b}
using i1 i2
by (auto simp: line-in-subsegment line-line1)

have transversal ′: rev.transversal-segment a b
using ‹transversal-segment a b› unfolding rev-transversal-segment .

have time ′: 0 ≤ t2 − t1 using ‹t1 ≤ t2 › by simp
have [simp, intro]: flow0 x t2 ∈ X

using exist ‹t1 ≤ t2 ›
by auto

have exivl ′: {0 ..t2 − t1} ⊆ rev.existence-ivl0 (flow0 x t2)
using exist ‹t1 ≤ t2 ›
by (force simp add: rev-existence-ivl-eq0 intro!: existence-ivl-trans ′)

have step ′: rev.flow0 (flow0 x t2) (t2−t) /∈ {a<−−<rev.flow0 (flow0 x t2) (t2
− t1)}

118

apply (rule rev.flow0-transversal-segment-monotone-step[OF transversal ′ time ′

exivl ′])
using exist ‹t1 ≤ t2 › x1 x2 t2-mem x1-mem t1t2 ‹t < t1 › ‹t ∈ existence-ivl0

x›
apply (auto simp: rev-existence-ivl-eq0 rev-eq-flow existence-ivl-trans ′ flow-trans[symmetric])

by (subst (asm) flow-trans[symmetric]) (auto intro!: existence-ivl-trans ′)
then show ?thesis

unfolding rev-eq-flow
using ‹t1 ≤ t2 › exist ‹t < t1 › ‹t ∈ existence-ivl0 x›
by (auto simp: flow-trans[symmetric] existence-ivl-trans ′)

qed

lemma flow0-transversal-segment-monotone-step-reverse2 :
assumes transversal: transversal-segment a b
assumes time: t1 ≤ t2
assumes exist: {t1 ..t2} ⊆ existence-ivl0 x
assumes t1 : flow0 x t1 ∈ {a<−−<b}
assumes t2 : flow0 x t2 ∈ {flow0 x t1<−−<b}
assumes t1t2 :

∧
t. t ∈ {t1<..<t2} =⇒ flow0 x t /∈ {a<−−<b}

assumes t: t < t1 t ∈ existence-ivl0 x
shows flow0 x t /∈ {flow0 x t1<−−<b}
using flow0-transversal-segment-monotone-step-reverse[of b a, OF - time exist,

of t]
assms

by (auto simp: open-segment-commute transversal-segment-commute)

lemma flow0-transversal-segment-monotone-step2 :
assumes transversal: transversal-segment a b
assumes time: t1 ≤ t2
assumes exist: {t1 ..t2} ⊆ existence-ivl0 x
assumes t1 : flow0 x t1 ∈ {a<−−<b}
assumes t2 : flow0 x t2 ∈ {a<−−<flow0 x t1}
assumes t1t2 :

∧
t. t ∈ {t1<..<t2} =⇒ flow0 x t /∈ {a<−−<b}

shows
∧

t. t > t2 =⇒ t ∈ existence-ivl0 x =⇒ flow0 x t /∈ {flow0 x t2<−−<b}
using flow0-transversal-segment-monotone-step[of b a, OF - time exist]

assms
by (auto simp: transversal-segment-commute open-segment-commute)

lemma flow0-transversal-segment-monotone:
assumes transversal-segment a b
assumes t1 ≤ t2
assumes {t1 ..t2} ⊆ existence-ivl0 x
assumes x1 : flow0 x t1 ∈ {a<−−<b}
assumes x2 : flow0 x t2 ∈ {flow0 x t1<−−<b}
assumes t > t2 t ∈ existence-ivl0 x
shows flow0 x t /∈ {a<−−<flow0 x t2}

proof −
note exist = ‹{t1 ..t2} ⊆ existence-ivl0 x›
note t = ‹t > t2 › ‹t ∈ existence-ivl0 x›

119

have x1neqx2 : flow0 x t1 6= flow0 x t2
using open-segment-def x2 by force

then have t1neqt2 : t1 6= t2 by auto
with ‹t1 ≤ t2 › have t1 < t2 by simp

from ‹transversal-segment a b› have [simp]: a 6= b by (simp add: transver-
sal-segment-def)

from x1 obtain i1 where i1 : flow0 x t1 = line a b i1 0 < i1 i1 < 1
by (auto simp: in-open-segment-iff-line)

from x2 i1 obtain i2 where i2 : flow0 x t2 = line a b i2 i1 < i2 i2 < 1
by (auto simp: line-open-segment-iff)

have t2-in: flow0 x t2 ∈ {a<−−<b}
using i1 i2
by simp

let ?T = {s ∈ {t1 ..t2}. flow0 x s ∈ {a−−b}}
let ?T ′ = {s ∈ {t1 ..<t2}. flow0 x s ∈ {a<−−<b}}
from flow-transversal-segment-finite-intersections[OF ‹transversal-segment a b›

‹t1 ≤ t2 › exist]
have finite ?T .
then have finite ?T ′ by (rule finite-subset[rotated]) (auto simp: open-closed-segment)
have ?T ′ 6= {}

by (auto intro!: exI [where x=t1] ‹t1 < t2 › x1)
note tm-defined = ‹finite ?T ′› ‹?T ′ 6= {}›
define tm where tm = Max ?T ′

have tm ∈ ?T ′

unfolding tm-def
using tm-defined by (rule Max-in)

have tm-in: flow0 x tm ∈ {a<−−<b}
using ‹tm ∈ ?T ′›
by auto

have tm: t1 ≤ tm tm < t2 tm ≤ t2
using ‹tm ∈ ?T ′› by auto

have tm-Max: t ≤ tm if t ∈ ?T ′ for t
unfolding tm-def
using tm-defined(1) that
by (rule Max-ge)

have tm-exclude: flow0 x t /∈ {a<−−<b} if t ∈ {tm<..<t2} for t
using ‹tm ∈ ?T ′› tm-Max that

by auto (meson approximation-preproc-push-neg(2) dual-order .strict-trans2
le-cases)

have {tm..t2} ⊆ existence-ivl0 x
using exist tm by auto

from open-segment-trichotomy[OF tm-in t2-in]
consider

flow0 x t2 ∈ {flow0 x tm<−−<b} |
flow0 x t2 ∈ {a<−−<flow0 x tm} |

120

flow0 x tm = flow0 x t2
by blast

then show flow0 x t /∈ {a<−−<flow0 x t2}
proof cases

case 1
from flow0-transversal-segment-monotone-step[OF ‹transversal-segment a b›

‹tm ≤ t2 ›
‹{tm..t2} ⊆ existence-ivl0 x› tm-in 1 tm-exclude t]

show ?thesis .
next

case 2
have t1 6= tm

using 2 x2 i1 i2
by (auto simp: line-in-subsegment line-in-subsegment2)

then have t1 < tm using ‹t1 ≤ tm› by simp
from flow0-transversal-segment-monotone-step-reverse[OF ‹transversal-segment

a b› ‹tm ≤ t2 ›
‹{tm..t2} ⊆ existence-ivl0 x› tm-in 2 tm-exclude ‹t1 < tm›] exist ‹t1 ≤ t2 ›

have flow0 x t1 /∈ {a<−−<flow0 x tm} by auto
then have False

using x1 x2 2 i1 i2
apply (auto simp: line-in-subsegment line-in-subsegment2)
by (smt greaterThanLessThan-iff in-open-segment-iff-line line-in-subsegment2

tm-in)
then show ?thesis by simp

next
case 3
have t1 6= tm

using 3 x2
by (auto simp: open-segment-def)

then have t1 < tm using ‹t1 ≤ tm› by simp
have range (flow0 x) = flow0 x ‘ {tm..t2}

apply (rule recurrence-time-restricts-compact-flow ′[OF ‹tm < t2 › - - 3])
using exist ‹t1 ≤ t2 › ‹t1 < tm› ‹tm < t2 ›
by auto

also have . . . = flow0 x ‘ (insert t2 {tm<..<t2})
using ‹tm ≤ t2 › 3
apply auto
by (smt greaterThanLessThan-iff image-eqI)

finally have flow0 x t1 ∈ flow0 x ‘ (insert t2 {tm<..<t2})
by auto

then have flow0 x t1 ∈ flow0 x ‘ {tm<..<t2} using x1neqx2
by auto

moreover have . . . ∩ {a<−−<b} = {}
using tm-exclude
by auto

ultimately have False using x1 by auto
then show ?thesis by blast

qed

121

qed

6.6 Straightening

This lemma uses the implicit function theorem
lemma cross-time-continuous:

assumes transversal-segment a b
assumes x ∈ {a<−−<b}
assumes e > 0
obtains d t where d > 0 continuous-on (ball x d) t∧

y. y ∈ ball x d =⇒ flow0 y (t y) ∈ {a<−−<b}∧
y. y ∈ ball x d =⇒ |t y| < e

continuous-on (ball x d) t
t x = 0

proof −
have x ∈ X using assms segment-open-subset-closed[of a b]

by (auto simp: transversal-segment-def)
have a 6= b using assms by auto
define s where s x = (x − a) · rot (b − a) for x
have s x = 0

unfolding s-def
by (subst in-segment-inner-rot) (auto intro!: assms open-closed-segment)

have Ds: (s has-derivative blinfun-inner-left (rot (b − a))) (at x)
(is (- has-derivative blinfun-apply (?Ds x)) -)
for x
unfolding s-def
by (auto intro!: derivative-eq-intros)

have Dsc: isCont ?Ds x by (auto intro!: continuous-intros)
have nz: ?Ds x (f x) 6= 0

using assms apply auto
unfolding transversal-segment-def
by (smt inner-minus-left nrm-reverse open-closed-segment)

from flow-implicit-function-at[OF ‹x ∈ X›, of s, OF ‹s x = 0 › Ds Dsc nz ‹e >
0 ›]

obtain t d1 where 0 < d1
and t0 : t x = 0
and d1 : (

∧
y. y ∈ cball x d1 =⇒ s (flow0 y (t y)) = 0)

(
∧

y. y ∈ cball x d1 =⇒ |t y| < e)
(
∧

y. y ∈ cball x d1 =⇒ t y ∈ existence-ivl0 y)
and tc: continuous-on (cball x d1) t
and t ′: (t has-derivative

(− blinfun-inner-left (rot (b − a)) /R (blinfun-inner-left (rot (b − a))) (f
x)))

(at x)
by metis

from tc
have t −x→ 0

using ‹0 < d1 ›

122

by (auto simp: continuous-on-def at-within-interior t0 dest!: bspec[where x=x])
then have ftc: ((λy. flow0 y (t y)) −−−→ x) (at x)

by (auto intro!: tendsto-eq-intros simp: ‹x ∈ X›)

define e2 where e2 = min (dist a x) (dist b x)
have e2 > 0

using assms
by (auto simp: e2-def open-segment-def)

from tendstoD[OF ftc this] have ∀ F y in at x. dist (flow0 y (t y)) x < e2 .
moreover
let ?S = {x. a · (b − a) < x · (b − a) ∧ x · (b − a) < b · (b − a)}
have open ?S x ∈ ?S

using ‹x ∈ {a<−−<b}›
by (auto simp add: open-segment-line-hyperplanes ‹a 6= b›

intro!: open-Collect-conj open-halfspace-component-gt open-halfspace-component-lt)
from topological-tendstoD[OF ftc this] have ∀ F y in at x. flow0 y (t y) ∈ ?S .
ultimately
have ∀ F y in at x . flow0 y (t y) ∈ ball x e2 ∩ ?S by eventually-elim (auto simp:

dist-commute)
then obtain d2 where 0 < d2 and

∧
y. x 6= y =⇒ dist y x < d2 =⇒ flow0 y

(t y) ∈ ball x e2 ∩ ?S
by (force simp: eventually-at)

then have d2 : dist y x < d2 =⇒ flow0 y (t y) ∈ ball x e2 ∩ ?S for y
using ‹0 < e2 › ‹x ∈ X› t0 ‹x ∈ ?S›
by (cases y = x) auto

define d where d = min d1 d2
have d > 0 using ‹0 < d1 › ‹0 < d2 › by (simp add: d-def)
moreover have continuous-on (ball x d) t

by (auto intro!:continuous-on-subset[OF tc] simp add: d-def)
moreover
have ball x e2 ∩ ?S ∩ {x. s x = 0} ⊆ {a<−−<b}

by (auto simp add: in-open-segment-iff-rot ‹a 6= b›) (auto simp: s-def e2-def
in-segment)

then have
∧

y. y ∈ ball x d =⇒ flow0 y (t y) ∈ {a<−−<b}
apply (rule set-mp)
using d1 d2 ‹0 < d2 ›
by (auto simp: d-def e2-def dist-commute)

moreover have
∧

y. y ∈ ball x d =⇒ |t y| < e
using d1 by (auto simp: d-def)

moreover have continuous-on (ball x d) t
using tc by (rule continuous-on-subset) (auto simp: d-def)

moreover have t x = 0 by (simp add: t0)
ultimately show ?thesis ..

qed

123

lemma ω-limit-crossings:
assumes transversal-segment a b
assumes pos-ex: {0 ..} ⊆ existence-ivl0 x
assumes ω-limit-point x p
assumes p ∈ {a<−−<b}
obtains s where

s −−−−→ ∞
(flow0 x ◦ s) −−−−→ p
∀ F n in sequentially. flow0 x (s n) ∈ {a<−−<b} ∧ s n ∈ existence-ivl0 x

proof −
from assms have p ∈ X by (auto simp: transversal-segment-def open-closed-segment)
from assms(3)
obtain t where

t −−−−→ ∞ (flow0 x ◦ t) −−−−→ p
by (auto simp: ω-limit-point-def)

note t = ‹t −−−−→ ∞› ‹(flow0 x ◦ t) −−−−→ p›
note [tendsto-intros] = t(2)
from cross-time-continuous[OF assms(1 ,4) zero-less-one— TODO ??]
obtain τ δ

where 0 < δ continuous-on (ball p δ) τ
τ p = 0 (

∧
y. y ∈ ball p δ =⇒ |τ y| < 1)

(
∧

y. y ∈ ball p δ =⇒ flow0 y (τ y) ∈ {a<−−<b})
by metis

note τ =
‹(
∧

y. y ∈ ball p δ =⇒ flow0 y (τ y) ∈ {a<−−<b})›
‹(
∧

y. y ∈ ball p δ =⇒ |τ y| < 1)›
‹continuous-on (ball p δ) τ› ‹τ p = 0 ›

define s where s n = t n + τ (flow0 x (t n)) for n
have ev-in-ball: ∀ F n in at-top. flow0 x (t n) ∈ ball p δ

apply simp
apply (subst dist-commute)
apply (rule tendstoD)
apply (rule t[unfolded o-def])

apply (rule ‹0 < δ›)
done

have filterlim s at-top sequentially
proof (rule filterlim-at-top-mono)

show filterlim (λn. −1 + t n) at-top sequentially
by (rule filterlim-tendsto-add-at-top) (auto intro!: filterlim-tendsto-add-at-top

t)
from ev-in-ball show ∀ F x in sequentially. −1 + t x ≤ s x

apply eventually-elim
using τ
by (force simp : s-def)

qed
moreover
have τ -cont: τ −p→ τ p

using τ(3) ‹0 < δ›
by (auto simp: continuous-on-def at-within-ball dest!: bspec[where x=p])

124

note [tendsto-intros] = tendsto-compose-at[OF - this, simplified]
have ev1 : ∀ F n in sequentially. t n > 1

using filterlim-at-top-dense t(1) by auto
then have ev-eq: ∀ F n in sequentially. flow0 ((flow0 x o t) n) ((τ o (flow0 x o

t)) n) = (flow0 x o s) n
using ev-in-ball
apply (eventually-elim)
apply (drule τ(2))
unfolding o-def
apply (subst flow-trans[symmetric])
using pos-ex

apply (auto simp: s-def)
apply (rule existence-ivl-trans ′)
by auto

then
have ∀ F n in sequentially.
(flow0 x o s) n = flow0 ((flow0 x o t) n) ((τ o (flow0 x o t)) n)

by (simp add: eventually-mono)
from ‹(flow0 x ◦ t) −−−−→ p› and ‹τ −p→ τ p›
have
(λn. flow0 ((flow0 x ◦ t) n) ((τ ◦ (flow0 x ◦ t)) n))
−−−−→
flow0 p (τ p)

using ‹τ p = 0 › τ -cont ‹p ∈ X›
by (intro tendsto-eq-intros) auto

then have (flow0 x o s) −−−−→ flow0 p (τ p)
using ev-eq by (rule Lim-transform-eventually)

then have (flow0 x o s) −−−−→ p
using ‹p ∈ X› ‹τ p = 0 ›
by simp

moreover
{

have ∀ F n in sequentially. flow0 x (s n) ∈ {a<−−<b}
using ev-eq ev-in-ball
apply eventually-elim
apply (drule sym)
apply simp
apply (rule τ) by simp

moreover have ∀ F n in sequentially. s n ∈ existence-ivl0 x
using ev-in-ball ev1
apply (eventually-elim)
apply (drule τ(2))
using pos-ex
by (auto simp: s-def)

ultimately have ∀ F n in sequentially. flow0 x (s n) ∈ {a<−−<b} ∧ s n ∈
existence-ivl0 x

by eventually-elim auto
}
ultimately show ?thesis ..

125

qed

lemma filterlim-at-top-tendstoE :
assumes e > 0
assumes filterlim s at-top sequentially
assumes (flow0 x ◦ s) −−−−→ u
assumes ∀ F n in sequentially. P (s n)
obtains m where m > b P m dist (flow0 x m) u < e

proof −
from assms(2) have ∀ F n in sequentially. b < s n

by (simp add: filterlim-at-top-dense)
moreover have ∀ F n in sequentially. norm ((flow0 x ◦ s) n − u) < e

using assms(3)[THEN tendstoD, OF assms(1)] by (simp add: dist-norm)
moreover note assms(4)
ultimately have ∀ F n in sequentially. b < s n ∧ norm ((flow0 x ◦ s) n − u)

< e ∧ P (s n)
by eventually-elim auto

then obtain m where m > b P m dist (flow0 x m) u < e
by (auto simp add: eventually-sequentially dist-norm)

then show ?thesis ..
qed

lemma open-segment-separate-left:
fixes u v x a b:: ′a
assumes u:u ∈ {a <−−< b}
assumes v:v ∈ {u <−−< b}
assumes x: dist x u < dist u v x ∈ {a <−−< b}
shows x ∈ {a <−−< v}

proof −
have v 6= x

by (smt dist-commute x(1))
moreover have x /∈ {v<−−<b}

by (smt dist-commute dist-in-open-segment open-segment-subsegment v x(1))
moreover have v ∈ {a<−−<b} using v
by (metis ends-in-segment(1) segment-open-subset-closed subset-eq subset-segment(4)

u)
ultimately show ?thesis using open-segment-trichotomy[OF - x(2)]

by blast
qed

lemma open-segment-separate-right:
fixes u v x a b:: ′a
assumes u:u ∈ {a <−−< b}
assumes v:v ∈ {a <−−< u}
assumes x: dist x u < dist u v x ∈ {a <−−< b}
shows x ∈ {v <−−< b}

proof −
have v 6= x

126

by (smt dist-commute x(1))
moreover have x /∈ {a<−−<v}
by (smt dist-commute dist-in-open-segment open-segment-commute open-segment-subsegment

v x(1))
moreover have v ∈ {a<−−<b} using v
by (metis ends-in-segment(1) segment-open-subset-closed subset-eq subset-segment(4)

u)
ultimately show ?thesis using open-segment-trichotomy[OF - x(2)]

by blast
qed

lemma no-two-ω-limit-points:
assumes transversal: transversal-segment a b
assumes ex-pos: {0 ..} ⊆ existence-ivl0 x
assumes u: ω-limit-point x u u ∈ {a<−−<b}
assumes v: ω-limit-point x v v ∈ {a<−−<b}
assumes uv: v ∈ {u<−−<b}
shows False

proof −
have unotv: u 6= v using uv

using dist-in-open-segment by blast
define duv where duv = dist u v / 2
have duv: duv > 0 unfolding duv-def using unotv by simp
from ω-limit-crossings[OF transversal ex-pos u]
obtain su where su: filterlim su at-top sequentially
(flow0 x ◦ su) −−−−→ u
∀ F n in sequentially. flow0 x (su n) ∈ {a<−−<b} ∧ su n ∈ existence-ivl0 x

by blast
from ω-limit-crossings[OF transversal ex-pos v]
obtain sv where sv: filterlim sv at-top sequentially
(flow0 x ◦ sv) −−−−→ v
∀ F n in sequentially. flow0 x (sv n) ∈ {a<−−<b} ∧ sv n ∈ existence-ivl0 x by

blast
from filterlim-at-top-tendstoE [OF duv su]
obtain su1 where su1 :su1 > 0 flow0 x su1 ∈ {a<−−<b}

su1 ∈ existence-ivl0 x dist (flow0 x su1) u < duv by auto
from filterlim-at-top-tendstoE [OF duv sv, of su1]
obtain su2 where su2 :su2 > su1 flow0 x su2 ∈ {a<−−<b}

su2 ∈ existence-ivl0 x dist (flow0 x su2) v < duv by auto
from filterlim-at-top-tendstoE [OF duv su, of su2]
obtain su3 where su3 :su3 > su2 flow0 x su3 ∈ {a<−−<b}

su3 ∈ existence-ivl0 x dist (flow0 x su3) u < duv by auto
have ∗: su1 ≤ su2 {su1 ..su2} ⊆ existence-ivl0 x using su1 su2

apply linarith
by (metis atLeastatMost-empty-iff empty-iff mvar .closed-segment-subset-domain

real-Icc-closed-segment su1 (3) su2 (3) subset-eq)

have d1 : dist (flow0 x su1) v ≥ (dist u v)/2 using su1 (4) duv unfolding duv-def

127

by (smt dist-triangle-half-r)
have dist (flow0 x su1) u < dist u v using su1 (4) duv unfolding duv-def by

linarith
from open-segment-separate-left[OF u(2) uv this su1 (2)]
have su1l:flow0 x su1 ∈ {a<−−<v} .
have dist (flow0 x su2) v < dist v (flow0 x su1) using d1

by (smt dist-commute duv-def su2 (4))
from open-segment-separate-right[OF v(2) su1l this su2 (2)]
have su2l:flow0 x su2 ∈ {flow0 x su1<−−<b} .
then have su2ll:flow0 x su2 ∈ {u<−−<b}

by (smt dist-commute dist-pos-lt duv-def open-segment-subsegment pos-half-less
open-segment-separate-right su2 (2) su2 (4) u(2) uv v(2) unotv)

have dist (flow0 x su2) u ≥ (dist u v)/2 using su2 (4) duv unfolding duv-def
by (smt dist-triangle-half-r)

then have dist (flow0 x su3) u < dist u (flow0 x su2)
by (smt dist-commute duv-def su3 (4))

from open-segment-separate-left[OF u(2) su2ll this su3 (2)]
have su3l:flow0 x su3 ∈ {a<−−<flow0 x su2} .

from flow0-transversal-segment-monotone[OF transversal ∗ su1 (2) su2l su3 (1)
su3 (3)]

have flow0 x su3 /∈ {a <−−<flow0 x su2} .
thus False using su3l by auto

qed

6.7 Unique Intersection

Perko Section 3.7 Remark 2
lemma unique-transversal-segment-intersection:

assumes transversal-segment a b
assumes {0 ..} ⊆ existence-ivl0 x
assumes u ∈ ω-limit-set x ∩ {a<−−<b}
shows ω-limit-set x ∩ {a<−−<b} = {u}

proof (rule ccontr)
assume ω-limit-set x ∩ {a<−−<b} 6= {u}
then
obtain v where uv: u 6= v
and v: ω-limit-point x v v ∈ {a<−−<b} using assms unfolding ω-limit-set-def
by fastforce

have u:ω-limit-point x u u ∈ {a<−−<b} using assms unfolding ω-limit-set-def
by auto

show False using no-two-ω-limit-points[OF ‹transversal-segment a b›]
by (smt dist-commute dist-in-open-segment open-segment-trichotomy u uv v

assms)
qed

Adapted from Perko Section 3.7 Lemma 4 (+ Chicone)
lemma periodic-imp-ω-limit-set:

128

assumes compact K K ⊆ X
assumes x ∈ X trapped-forward x K
assumes periodic-orbit y

flow0 y ‘ UNIV ⊆ ω-limit-set x
shows flow0 y ‘UNIV = ω-limit-set x

proof (rule ccontr)
note y = ‹periodic-orbit y› ‹flow0 y ‘ UNIV ⊆ ω-limit-set x›
from trapped-sol-right[OF assms(1−4)]
have ex-pos: {0 ..} ⊆ existence-ivl0 x by blast
assume flow0 y ‘UNIV 6= ω-limit-set x
obtain p where p: p ∈ ω-limit-set x p /∈ flow0 y ‘ UNIV

using y(2) apply auto
using ‹range (flow0 y) 6= ω-limit-set x› by blast

from ω-limit-set-in-compact-connected[OF assms(1−4)] have
wcon: connected (ω-limit-set x) .

from ω-limit-set-invariant have
invariant (ω-limit-set x) .

from ω-limit-set-in-compact-compact[OF assms(1−4)] have
compact (ω-limit-set x) .

then have sc: seq-compact (ω-limit-set x)
using compact-imp-seq-compact by blast

have y1 :closed (flow0 y ‘ UNIV)
using closed-orbit-ω-limit-set periodic-orbit-def ω-limit-set-closed y(1) by auto

have y2 : flow0 y ‘ UNIV 6= {} by simp
let ?py = infdist p (range (flow0 y))
have 0 < ?py

using y1 y2 p(2)
by (rule infdist-pos-not-in-closed)

have ∀n::nat. ∃ z. z ∈ ω-limit-set x − flow0 y ‘ UNIV ∧
infdist z (flow0 y ‘ UNIV) < ?py/2^n

proof (rule ccontr)
assume ¬ (∀n. ∃ z. z ∈ ω-limit-set x − range (flow0 y) ∧

infdist z (range (flow0 y))
< infdist p (range (flow0 y)) / 2 ^ n)

then obtain n where n: (∀ z ∈ ω-limit-set x − range (flow0 y).
infdist z (range (flow0 y)) ≥ ?py / 2 ^ n)
using not-less by blast

define A where A = flow0 y ‘ UNIV
define B where B = {z. infdist z (range (flow0 y)) ≥ ?py / 2 ^ n}
have Ac:closed A unfolding A-def using y1 by auto
have Bc:closed B unfolding B-def using infdist-closed by auto
have A ∩ B = {}
proof (rule ccontr)

assume A ∩ B 6= {}
then obtain q where q: q ∈ A q ∈ B by blast
have qz:infdist q (range(flow0 y)) = 0 using q(1) unfolding A-def

by simp
note ‹0 < ?py›
moreover have 2 ^ n > (0 ::real) by auto

129

ultimately have infdist p (range (flow0 y)) / 2 ^ n > (0 ::real)
by simp

then have qnz: infdist q(range (flow0 y)) > 0 using q(2) unfolding B-def
by auto

show False using qz qnz by auto
qed
then have a1 :A ∩ B ∩ ω-limit-set x = {} by auto
have ω-limit-set x − range(flow0 y) ⊆ B using n B-def by blast
then have a2 :ω-limit-set x ⊆ A ∪ B using A-def by auto
from connected-closedD[OF wcon a1 a2 Ac Bc]
have A ∩ ω-limit-set x = {} ∨ B ∩ ω-limit-set x = {} .
moreover {

assume A ∩ ω-limit-set x = {}
then have False unfolding A-def using y(2) by blast

}
moreover {

assume B ∩ ω-limit-set x = {}
then have False unfolding B-def using p

using A-def B-def a2 by blast
}
ultimately show False by blast

qed
then obtain s where s: ∀n::nat. (s::nat ⇒ -) n ∈ ω-limit-set x − flow0 y ‘

UNIV ∧
infdist (s n) (flow0 y ‘ UNIV) < ?py/2^n

by metis
then have ∀n. s n ∈ ω-limit-set x by blast
from seq-compactE [OF sc this]
obtain l r where lr : l ∈ ω-limit-set x strict-mono r (s ◦ r) −−−−→ l by blast
have

∧
n. infdist (s n) (range (flow0 y)) ≤ ?py / 2 ^ n using s

using less-eq-real-def by blast
then have

∧
n. norm(infdist (s n) (range (flow0 y))) ≤ ?py / 2 ^ n

by (auto simp add: infdist-nonneg)
from LIMSEQ-norm-0-pow[OF ‹0 < ?py› - this]
have ((λz. infdist z (flow0 y ‘ UNIV)) ◦ s) −−−−→ 0

by (auto simp add:o-def)
from LIMSEQ-subseq-LIMSEQ[OF this lr(2)]
have ((λz. infdist z (flow0 y ‘ UNIV)) ◦ (s ◦ r)) −−−−→ 0 by (simp add: o-assoc)
moreover have ((λz. infdist z (flow0 y ‘ UNIV)) ◦ (s ◦ r)) −−−−→ infdist l

(flow0 y ‘ UNIV)
by (auto intro!: tendsto-eq-intros tendsto-compose-at[OF lr(3)])

ultimately have infdist l (flow0 y ‘UNIV) = 0 using LIMSEQ-unique by auto
then have lu: l ∈ flow0 y ‘ UNIV using in-closed-iff-infdist-zero[OF y1 y2] by

auto
then have l1 :l ∈ X

using closed-orbit-global-existence periodic-orbit-def y(1) by auto

have l2 :f l 6= 0
by (smt ‹l ∈ X› ‹l ∈ range (flow0 y)› closed-orbit-global-existence fixed-point-imp-closed-orbit-period-zero(2)

130

fixpoint-sol(2) image-iff local.flows-reverse periodic-orbit-def y(1))
from transversal-segment-exists[OF l1 l2]
obtain a b where ab: transversal-segment a b l ∈ {a<−−<b} by blast
then have l ∈ ω-limit-set x ∩ {a<−−<b} using lr by auto
from unique-transversal-segment-intersection[OF ab(1) ex-pos this]
have luniq: ω-limit-set x ∩ {a<−−<b} = {l} .
from cross-time-continuous[OF ab, of 1]
obtain d t where dt: 0 < d
(
∧

y. y ∈ ball l d =⇒ flow0 y (t y) ∈ {a<−−<b})
(
∧

y. y ∈ ball l d =⇒ |t y| < 1)
continuous-on (ball l d) t t l = 0
by auto

obtain n where (s ◦ r) n ∈ ball l d using lr(3) dt(1) unfolding LIMSEQ-iff-nz
by (metis dist-commute mem-ball order-refl)

then have flow0 ((s ◦ r) n) (t ((s ◦ r) n)) ∈ {a<−−<b} using dt by auto
moreover have sr : (s ◦ r) n ∈ ω-limit-set x (s ◦ r) n /∈ flow0 y ‘ UNIV

using s by auto
moreover have flow0 ((s ◦ r) n) (t ((s ◦ r) n)) ∈ ω-limit-set x
using ‹invariant (ω-limit-set x)› calculation unfolding invariant-def trapped-def
by (smt ω-limit-set-in-compact-subset ‹invariant (ω-limit-set x)› assms(1−4)

invariant-def order-trans range-eqI subsetD trapped-iff-on-existence-ivl0 trapped-sol)
ultimately have flow0 ((s ◦ r) n) (t ((s ◦ r) n)) ∈ ω-limit-set x ∩ {a<−−<b}

by auto
from unique-transversal-segment-intersection[OF ab(1) ex-pos this]
have flow0 ((s ◦ r) n) (t ((s ◦ r) n)) = l using luniq by auto
then have ((s ◦ r) n) = flow0 l (−(t ((s ◦ r) n)))
by (smt UNIV-I ‹(s ◦ r) n ∈ ω-limit-set x› flows-reverse ω-limit-set-in-compact-existence

assms(1−4))
thus False using sr(2) lu

‹flow0 ((s ◦ r) n) (t ((s ◦ r) n)) = l› ‹flow0 ((s ◦ r) n) (t ((s ◦ r) n)) ∈
ω-limit-set x›

closed-orbit-global-existence image-iff local.flow-trans periodic-orbit-def ω-limit-set-in-compact-existence
range-eqI assms y(1)

by smt
qed

end context c1-on-open-R2 begin

lemma α-limit-crossings:
assumes transversal-segment a b
assumes pos-ex: {..0} ⊆ existence-ivl0 x
assumes α-limit-point x p
assumes p ∈ {a<−−<b}
obtains s where

s −−−−→ −∞
(flow0 x ◦ s) −−−−→ p
∀ F n in sequentially.
flow0 x (s n) ∈ {a<−−<b} ∧
s n ∈ existence-ivl0 x

131

proof −
from pos-ex have {0 ..} ⊆ uminus ‘ existence-ivl0 x by force
from rev.ω-limit-crossings[unfolded rev-transversal-segment rev-existence-ivl-eq0

rev-eq-flow
α-limit-point-eq-rev[symmetric], OF assms(1) this assms(3 ,4)]

obtain s where filterlim s at-top sequentially ((λt. flow0 x (− t)) ◦ s) −−−−→ p
∀ F n in sequentially. flow0 x (− s n) ∈ {a<−−<b} ∧ s n ∈ uminus ‘ exis-

tence-ivl0 x .
then have filterlim (−s) at-bot sequentially
(flow0 x ◦ (−s)) −−−−→ p
∀ F n in sequentially. flow0 x ((−s) n) ∈ {a<−−<b} ∧ (−s) n ∈ existence-ivl0

x
by (auto simp: fun-Compl-def o-def filterlim-uminus-at-top)

then show ?thesis ..
qed

If a positive limit point has a regular point in its positive limit set then it is
periodic
lemma ω-limit-point-ω-limit-set-regular-imp-periodic:

assumes compact K K ⊆ X
assumes x ∈ X trapped-forward x K
assumes y: y ∈ ω-limit-set x f y 6= 0
assumes z: z ∈ ω-limit-set y ∪ α-limit-set y f z 6= 0
shows periodic-orbit y ∧ flow0 y ‘ UNIV = ω-limit-set x

proof −
from trapped-sol-right[OF assms(1−4)] have ex-pos: {0 ..} ⊆ existence-ivl0 x by

blast
from ω-limit-set-in-compact-existence[OF assms(1−4) y(1)]
have yex: existence-ivl0 y = UNIV .
from ω-limit-set-invariant
have invariant (ω-limit-set x) .
then have yinv: flow0 y ‘ UNIV ⊆ ω-limit-set x using yex unfolding invari-

ant-def
using trapped-iff-on-existence-ivl0 y(1) by blast

have zy: ω-limit-point y z ∨ α-limit-point y z
using z unfolding ω-limit-set-def α-limit-set-def by auto

from ω-limit-set-in-compact-ω-limit-set-contained[OF assms(1−4)]
ω-limit-set-in-compact-α-limit-set-contained[OF assms(1−4)]

have zx:z ∈ ω-limit-set x using zy y
using z(1) by blast

then have z ∈ X
by (metis UNIV-I local.existence-ivl-initial-time-iff ω-limit-set-in-compact-existence

assms(1−4))
from transversal-segment-exists[OF this z(2)]
obtain a b where ab: transversal-segment a b z ∈ {a<−−<b} by blast

from zy

132

obtain t1 t2 where t1 : flow0 y t1 ∈ {a<−−<b} and t2 : flow0 y t2 ∈ {a<−−<b}
and t1 6= t2

proof
assume zy: ω-limit-point y z
from ω-limit-crossings[OF ab(1) - zy ab(2), unfolded yex]
obtain s where s: filterlim s at-top sequentially
(flow0 y ◦ s) −−−−→ z
∀ F n in sequentially. flow0 y (s n) ∈ {a<−−<b}
by auto
from eventually-happens[OF this(3)] obtain t1 where t1 : flow0 y t1 ∈

{a<−−<b} by auto
have ∀ F n in sequentially. s n > t1

using filterlim-at-top-dense s(1) by auto
with s(3) have ∀ F n in sequentially. flow0 y (s n) ∈ {a<−−<b} ∧ s n > t1

by eventually-elim simp
from eventually-happens[OF this] obtain t2 where t2 : flow0 y t2 ∈ {a<−−<b}

and t1 6= t2
by auto

from t1 this show ?thesis ..
next

assume zy: α-limit-point y z
from α-limit-crossings[OF ab(1) - zy ab(2), unfolded yex]
obtain s where s: filterlim s at-bot sequentially
(flow0 y ◦ s) −−−−→ z
∀ F n in sequentially. flow0 y (s n) ∈ {a<−−<b}
by auto
from eventually-happens[OF this(3)] obtain t1 where t1 : flow0 y t1 ∈

{a<−−<b} by auto
have ∀ F n in sequentially. s n < t1

using filterlim-at-bot-dense s(1) by auto
with s(3) have ∀ F n in sequentially. flow0 y (s n) ∈ {a<−−<b} ∧ s n < t1

by eventually-elim simp
from eventually-happens[OF this] obtain t2 where t2 : flow0 y t2 ∈ {a<−−<b}

and t1 6= t2
by auto

from t1 this show ?thesis ..
qed
have flow0 y t1 ∈ ω-limit-set x ∩ {a<−−<b} using t1 UNIV-I yinv by auto
moreover have flow0 y t2 ∈ ω-limit-set x ∩ {a<−−<b} using t2 UNIV-I yinv

by auto
ultimately have feq:flow0 y t1 = flow0 y t2

using unique-transversal-segment-intersection[OF ‹transversal-segment a b›
ex-pos]

by blast
have t1 6= t2 t1 ∈ existence-ivl0 y t2 ∈ existence-ivl0 y using ‹t1 6= t2 ›

apply blast
apply (simp add: yex)

by (simp add: yex)
from periodic-orbitI [OF this feq y(2)]

133

have 1 : periodic-orbit y .
from periodic-imp-ω-limit-set[OF assms(1−4) this yinv]
have 2 : flow0 y‘ UNIV = ω-limit-set x .
show ?thesis using 1 2 by auto

qed

6.8 Poincare Bendixson Theorems

Perko Section 3.7 Theorem 1
theorem poincare-bendixson:

assumes compact K K ⊆ X
assumes x ∈ X trapped-forward x K
assumes 0 /∈ f ‘ (ω-limit-set x)
obtains y where periodic-orbit y

flow0 y ‘ UNIV = ω-limit-set x
proof −

note f = ‹0 /∈ f ‘ (ω-limit-set x)›
from ω-limit-set-in-compact-nonempty[OF assms(1−4)]
obtain y where y: y ∈ ω-limit-set x by fastforce
from ω-limit-set-in-compact-existence[OF assms(1−4) y]
have yex: existence-ivl0 y = UNIV .
from ω-limit-set-invariant
have invariant (ω-limit-set x) .
then have yinv: flow0 y ‘ UNIV ⊆ ω-limit-set x using yex unfolding invari-

ant-def
using trapped-iff-on-existence-ivl0 y by blast

from ω-limit-set-in-compact-subset[OF assms(1−4)]
have ω-limit-set x ⊆ K .
then have flow0 y ‘ UNIV ⊆ K using yinv by auto
then have yk:trapped-forward y K

by (simp add: image-subsetI range-subsetD trapped-forward-def)
have y ∈ X

by (simp add: local.mem-existence-ivl-iv-defined(2) yex)

from ω-limit-set-in-compact-nonempty[OF assms(1−2) this -]
obtain z where z: z ∈ ω-limit-set y using yk by blast
from ω-limit-set-in-compact-ω-limit-set-contained[OF assms(1−4)]
have zx:z ∈ ω-limit-set x using ‹z ∈ ω-limit-set y› y by auto

have yreg : f y 6= 0 using f y
by (metis rev-image-eqI)

have zreg : f z 6= 0 using f zx
by (metis rev-image-eqI)

from ω-limit-point-ω-limit-set-regular-imp-periodic[OF assms(1−4) y yreg - zreg]
z

show ?thesis using that by blast
qed

lemma fixed-point-in-ω-limit-set-imp-ω-limit-set-singleton-fixed-point:

134

assumes compact K K ⊆ X
assumes x ∈ X trapped-forward x K
assumes fp: yfp ∈ ω-limit-set x f yfp = 0
assumes zpx: z ∈ ω-limit-set x
assumes finite-fp: finite {y ∈ K . f y = 0} (is finite ?S)
shows (∃ p1 ∈ ω-limit-set x. f p1 = 0 ∧ ω-limit-set z = {p1}) ∧
(∃ p2 ∈ ω-limit-set x. f p2 = 0 ∧ α-limit-set z = {p2})

proof −
let ?weq = {y ∈ ω-limit-set x. f y = 0}
from ω-limit-set-in-compact-subset[OF assms(1−4)]
have wxK : ω-limit-set x ⊆ K .
from ω-limit-set-in-compact-ω-limit-set-contained[OF assms(1−4)]
have zx: ω-limit-set z ⊆ ω-limit-set x using zpx by auto
have zX : z ∈ X using subset-trans[OF wxK assms(2)]

by (metis subset-iff zpx)
from ω-limit-set-in-compact-subset[OF assms(1−4)]
have ?weq ⊆ ?S

by (smt Collect-mono-iff Int-iff inf .absorb-iff1)
then have finite ?weq using ‹finite ?S›

by (blast intro: rev-finite-subset)

consider f z = 0 | f z 6= 0 by auto
then show ?thesis
proof cases

assume f z = 0
from fixed-point-imp-ω-limit-set[OF zX this]

fixed-point-imp-α-limit-set[OF zX this]
show ?thesis

by (metis (mono-tags) ‹f z = 0 › zpx)
next

assume f z 6= 0
have zweq: ω-limit-set z ⊆ ?weq

apply clarsimp
proof (rule ccontr)

fix k assume k: k ∈ ω-limit-set z ¬ (k ∈ ω-limit-set x ∧ f k = 0)
then have f k 6= 0 using zx k by auto
from ω-limit-point-ω-limit-set-regular-imp-periodic[OF assms(1−4) zpx ‹f z

6= 0 › - this] k(1)
have periodic-orbit z range(flow0 z) = ω-limit-set x by auto
then have 0 /∈ f ‘ (ω-limit-set x)

by (metis image-iff periodic-orbit-imp-flow0-regular)
thus False using fp

by (metis (mono-tags, lifting) empty-Collect-eq image-eqI)
qed
have zweq0 : α-limit-set z ⊆ ?weq

apply clarsimp
proof (rule ccontr)

fix k assume k: k ∈ α-limit-set z ¬ (k ∈ ω-limit-set x ∧ f k = 0)
then have f k 6= 0 using zx k

135

ω-limit-set-in-compact-α-limit-set-contained[OF assms(1−4), of z] zpx
by auto

from ω-limit-point-ω-limit-set-regular-imp-periodic[OF assms(1−4) zpx ‹f z
6= 0 › - this] k(1)

have periodic-orbit z range(flow0 z) = ω-limit-set x by auto
then have 0 /∈ f ‘ (ω-limit-set x)

by (metis image-iff periodic-orbit-imp-flow0-regular)
thus False using fp

by (metis (mono-tags, lifting) empty-Collect-eq image-eqI)
qed
from ω-limit-set-in-compact-existence[OF assms(1−4) zpx]
have zex: existence-ivl0 z = UNIV .
from ω-limit-set-invariant
have invariant (ω-limit-set x) .
then have zinv: flow0 z ‘ UNIV ⊆ ω-limit-set x using zex unfolding invari-

ant-def
using trapped-iff-on-existence-ivl0 zpx by blast

then have flow0 z ‘ UNIV ⊆ K using wxK by auto
then have a2 : trapped-forward z K trapped-backward z K

using trapped-def trapped-iff-on-existence-ivl0 apply fastforce
using ‹range (flow0 z) ⊆ K › trapped-def trapped-iff-on-existence-ivl0 by blast

have a3 : finite (ω-limit-set z)
by (metis ‹finite ?weq› finite-subset zweq)

from finite-ω-limit-set-in-compact-imp-unique-fixed-point[OF assms(1−2) zX
a2 (1) a3]

obtain p1 where p1 : ω-limit-set z = {p1} f p1 = 0 by blast
then have p1 ∈ ?weq using zweq by blast
moreover
have finite (α-limit-set z)

by (metis ‹finite ?weq› finite-subset zweq0)
from finite-α-limit-set-in-compact-imp-unique-fixed-point[OF assms(1−2) zX

a2 (2) this]
obtain p2 where p2 : α-limit-set z = {p2} f p2 = 0 by blast
then have p2 ∈ ?weq using zweq0 by blast
ultimately show ?thesis

by (simp add: p1 p2)
qed

qed

end context c1-on-open-R2 begin

Perko Section 3.7 Theorem 2
theorem poincare-bendixson-general:

assumes compact K K ⊆ X
assumes x ∈ X trapped-forward x K
assumes S = {y ∈ K . f y = 0} finite S
shows
(∃ y ∈ S . ω-limit-set x = {y}) ∨

(∃ y. periodic-orbit y ∧

136

flow0 y ‘ UNIV = ω-limit-set x) ∨
(∃P R. ω-limit-set x = P ∪ R ∧

P ⊆ S ∧ 0 /∈ f ‘ R ∧ R 6= {} ∧
(∀ z ∈ R.
(∃ p1 ∈ P. ω-limit-set z = {p1}) ∧
(∃ p2 ∈ P. α-limit-set z = {p2})))

proof −
note S = ‹S = {y ∈ K . f y = 0}›
let ?wreg = {y ∈ ω-limit-set x. f y 6= 0}
let ?weq = {y ∈ ω-limit-set x. f y = 0}
have wreqweq: ?wreg ∪ ?weq = ω-limit-set x

by (smt Collect-cong Collect-disj-eq mem-Collect-eq ω-limit-set-def)

from trapped-sol-right[OF assms(1−4)] have ex-pos: {0 ..} ⊆ existence-ivl0 x by
blast

from ω-limit-set-in-compact-subset[OF assms(1−4)]
have wxK : ω-limit-set x ⊆ K .
then have ?weq ⊆ S using S

by (smt Collect-mono-iff Int-iff inf .absorb-iff1)
then have finite ?weq using ‹finite S›

by (metis rev-finite-subset)
from ω-limit-set-invariant
have xinv: invariant (ω-limit-set x) .

from ω-limit-set-in-compact-nonempty[OF assms(1−4)] wreqweq
consider ?wreg = {} |

?weq = {} |
?weq 6= {} ?wreg 6= {} by auto

then show ?thesis
proof cases

assume ?wreg = {}
then have finite (ω-limit-set x)

by (metis (mono-tags, lifting) ‹{y ∈ ω-limit-set x . f y = 0} ⊆ S› ‹finite S›
rev-finite-subset sup-bot.left-neutral wreqweq)

from finite-ω-limit-set-in-compact-imp-unique-fixed-point[OF assms(1−4) this]
obtain y where y: ω-limit-set x = {y} f y = 0 by blast
then have y ∈ S

by (metis Un-empty-left ‹?weq ⊆ S› ‹?wreg = {}› insert-subset wreqweq)
then show ?thesis using y by auto

next

assume ?weq = {}
then have 0 /∈ f ‘ ω-limit-set x

by (smt empty-Collect-eq imageE)
from poincare-bendixson[OF assms(1−4) this]
have (∃ y. periodic-orbit y ∧ flow0 y ‘ UNIV = ω-limit-set x)

by metis
then show ?thesis by blast

137

next

assume ?weq 6= {} ?wreg 6= {}
then obtain yfp where yfp: yfp ∈ ω-limit-set x f yfp = 0 by auto
have 0 /∈ f ‘ ?wreg by auto
have (∃ p1∈ω-limit-set x. f p1 = 0 ∧ ω-limit-set z = {p1}) ∧
(∃ p2∈ω-limit-set x. f p2 = 0 ∧ α-limit-set z = {p2})
if zpx: z ∈ ω-limit-set x for z
using fixed-point-in-ω-limit-set-imp-ω-limit-set-singleton-fixed-point[

OF assms(1−4) yfp zpx ‹finite S›[unfolded S]] by auto
then have ω-limit-set x = ?weq ∪ ?wreg ∧

?weq ⊆ S ∧ 0 /∈ f ‘ ?wreg ∧ ?wreg 6= {} ∧
(∀ z ∈ ?wreg.
(∃ p1 ∈ ?weq. ω-limit-set z = {p1}) ∧
(∃ p2 ∈ ?weq. α-limit-set z = {p2}))

using wreqweq ‹?weq ⊆ S› ‹?wreg 6= {}› ‹0 /∈ f ‘ ?wreg›
by blast

then show ?thesis by blast
qed

qed

corollary poincare-bendixson-applied:
assumes compact K K ⊆ X
assumes K 6= {} positively-invariant K
assumes 0 /∈ f ‘ K
obtains y where periodic-orbit y flow0 y ‘ UNIV ⊆ K

proof −
from assms(1−4) obtain x where x ∈ K x ∈ X by auto
have ∗: trapped-forward x K

using assms(4) ‹x ∈ K ›
by (auto simp: positively-invariant-def)

have subs: ω-limit-set x ⊆ K
by (rule ω-limit-set-in-compact-subset[OF assms(1−2) ‹x ∈ X› ∗])

with assms(5) have 0 /∈ f ‘ ω-limit-set x by auto
from poincare-bendixson[OF assms(1−2) ‹x ∈ X› ∗ this]
obtain y where periodic-orbit y range (flow0 y) = ω-limit-set x

by force
then have periodic-orbit y flow0 y ‘ UNIV ⊆ K using subs by auto
then show ?thesis ..

qed

definition limit-cycle y ←→
periodic-orbit y ∧
(∃ x. x /∈ flow0 y ‘ UNIV ∧
(flow0 y ‘ UNIV = ω-limit-set x ∨ flow0 y ‘ UNIV = α-limit-set x))

corollary poincare-bendixson-limit-cycle:
assumes compact K K ⊆ X

138

assumes x ∈ K positively-invariant K
assumes 0 /∈ f ‘ K
assumes rev.flow0 x t /∈ K
obtains y where limit-cycle y flow0 y ‘ UNIV ⊆ K

proof −
have x ∈ X using assms(2−3) by blast
have ∗: trapped-forward x K

using assms(3−4)
by (auto simp: positively-invariant-def)

have subs: ω-limit-set x ⊆ K
by (rule ω-limit-set-in-compact-subset[OF assms(1−2) ‹x ∈ X› ∗])

with assms(5) have 0 /∈ f ‘ ω-limit-set x by auto
from poincare-bendixson[OF assms(1−2) ‹x ∈ X› ∗ this]
obtain y where y: periodic-orbit y range (flow0 y) = ω-limit-set x

by force
then have c2 : flow0 y ‘ UNIV ⊆ K using subs by auto
have exy: existence-ivl0 y = UNIV

using closed-orbit-global-existence periodic-orbit-def y(1) by blast
have x /∈ flow0 y ‘ UNIV
proof clarsimp

fix tt
assume x = flow0 y tt
then have rev.flow0 (flow0 y tt) t /∈ K using assms(6) by auto

moreover have rev.flow0 (flow0 y tt) t ∈ flow0 y ‘ UNIV using exy unfolding
rev-eq-flow

using UNIV-I ‹x = flow0 y tt› closed-orbit-ω-limit-set closed-orbit-flow0
periodic-orbit-def y by auto

ultimately show False using c2 by blast
qed
then have limit-cycle y flow0 y ‘ UNIV ⊆ K using y c2 unfolding limit-cycle-def

by auto
then show ?thesis ..

qed

end

end
theory Affine-Arithmetic-Misc

imports HOL−ODE−Numerics.ODE-Numerics
begin

7 Branch-And-Bound Arithmetic
primrec prove-nonneg::(nat ∗ nat ∗ string) list ⇒ nat ⇒ nat ⇒ slp ⇒ real aform
list list ⇒ bool where

prove-nonneg prnt 0 p slp X = (let - = if prnt 6= [] then print (STR ′′# depth
limit exceeded ←↩ ′′) else () in False)
| prove-nonneg prnt (Suc i) p slp XXS =

(case XXS of [] ⇒ True | (X#XS) ⇒

139

let RS = approx-slp-outer p 1 slp X
in if RS 6=None ∧ Inf-aform ′ p (hd (the RS)) ≥ 0

then
let - = if prnt 6= [] then print (STR ′′# Success ←↩ ′′) else ();
- = if prnt 6= [] then print (String.implode ((shows ′′# ′′ o shows-box-of-aforms-hr

X) ′′←↩ ′′)) else ();
- = fold (λ(a, b, c) -. print (String.implode (shows-segments-of-aform a

b X c ′′←↩ ′′))) prnt ()
in prove-nonneg prnt i p slp XS
else let - = if prnt 6= [] then print (STR ′′# Split ←↩ ′′) else () in case

split-aforms-largest-uncond X of (a, b) ⇒
prove-nonneg prnt i p slp (a#b#XS))

lemma prove-nonneg-simps[simp]:
prove-nonneg prnt 0 p slp X = False
prove-nonneg prnt (Suc i) p slp XXS =
(case XXS of [] ⇒ True | (X#XS) ⇒

let RS = approx-slp-outer p 1 slp X
in if RS 6=None ∧ Inf-aform ′ p (hd (the RS)) ≥ 0

then prove-nonneg prnt i p slp XS
else case split-aforms-largest-uncond X of (a, b) ⇒ prove-nonneg prnt i p slp

(a#b#XS))
by (auto simp: Let-def split: if-splits option.splits list.splits)

lemmas [simp del] = prove-nonneg.simps

lemma split-aforms-lemma:
fixes xs::real list
assumes split-aforms XS i = (YS , ZS)
assumes xs ∈ Joints XS
shows xs ∈ Joints YS ∪ Joints ZS
using set-rev-mp[OF assms(2) Joints-map-split-aform[of XS i]] assms(1)
by (auto simp: split-aforms-def o-def)

lemma prove-nonneg-empty[simp]: prove-nonneg prnt (Suc i) p slp []
by simp

lemma prove-nonneg-fuel-mono:
prove-nonneg prnt (Suc i) p (slp-of-fas [fa]) YSS
if prove-nonneg prnt i p (slp-of-fas [fa]) YSS
using that

proof (induction i arbitrary: YSS)
case 0
then show ?case by simp

next
case (Suc i)
from Suc.prems show ?case

supply [simp del] = prove-nonneg-simps
apply (subst prove-nonneg-simps)

140

apply (auto simp: Let-def split: if-splits option.splits list.splits)
subgoal apply (rule Suc.IH)

apply (subst (asm) prove-nonneg-simps)
by (auto simp: Let-def split: if-splits option.splits list.splits)

subgoal apply (rule Suc.IH)
apply (subst (asm) prove-nonneg.simps)
by (auto simp: Let-def split: if-splits option.splits list.splits)

subgoal apply (rule Suc.IH)
apply (subst (asm) prove-nonneg.simps)
by (auto simp: Let-def split: if-splits option.splits list.splits)

done
qed

lemma prove-nonneg-mono:
prove-nonneg prnt i p (slp-of-fas [fa]) YSS if prove-nonneg prnt i p (slp-of-fas

[fa]) (YS # YSS)
using that

proof (induction i arbitrary: YS YSS)
case 0
then show ?case by auto

next
case (Suc i)
from Suc.prems show ?case

supply [simp del] = prove-nonneg-simps
apply (subst (asm) prove-nonneg-simps)
apply (auto simp: Let-def split: if-splits option.splits list.splits)
subgoal by (rule prove-nonneg-fuel-mono)
subgoal for x y apply (rule prove-nonneg-fuel-mono)

apply (rule Suc.IH [of y])
by (rule Suc.IH [of x])

subgoal for x y apply (rule prove-nonneg-fuel-mono)
apply (rule Suc.IH [of y])
by (rule Suc.IH [of x])

done
qed

lemma prove-nonneg:
assumes prove-nonneg prnt i p (slp-of-fas [fa]) XSS
shows ∀XS ∈ set XSS . ∀ xs ∈ Joints XS . interpret-floatarith fa xs ≥ 0
using assms

proof (induction i arbitrary: XSS)
case 0
then show ?case

by (auto)
next

case (Suc i)
show ?case
proof (cases XSS)

case Nil then show ?thesis by auto

141

next
case (Cons YS YSS)
show ?thesis

unfolding Cons
apply auto
subgoal for xs using Suc.prems

apply (auto simp: Cons Let-def split: if-splits option.splits)
subgoal for ys

apply (drule approx-slp-outer-plain)
apply (rule refl)

apply force
apply assumption

apply simp
apply (frule Joints-imp-length-eq[where XS=ys])
apply (auto simp: Suc-length-conv)
by (smt Inf-aform ′-Affine-le)

subgoal
apply (simp add: split-aforms-largest-uncond-def split: prod.splits)
apply (drule Suc.IH)
apply (drule split-aforms-lemma, assumption)
by auto

subgoal
apply (simp add: split-aforms-largest-uncond-def split: prod.splits)
apply (drule Suc.IH)
apply (drule split-aforms-lemma, assumption)
by auto

done
subgoal for XS xs using Suc.prems

apply (auto simp: Cons Let-def split: if-splits option.splits)
subgoal for ys by (rule Suc.IH [rule-format], assumption, assumption,

assumption)
subgoal for ys

apply (drule prove-nonneg-mono)
apply (drule prove-nonneg-mono)
by (rule Suc.IH [rule-format], assumption, assumption, assumption)

subgoal for ys
apply (drule prove-nonneg-mono)
apply (drule prove-nonneg-mono)
by (rule Suc.IH [rule-format], assumption, assumption, assumption)

done
done

qed
qed

end

8 Examples
theory Examples

142

imports Poincare-Bendixson
HOL−ODE−Numerics.ODE-Numerics
Affine-Arithmetic-Misc

begin

8.1 Simple
context
begin

coordinate functions
definition cx x y = −y + x ∗ (1 − x^2 − y^2)
definition cy x y = x + y ∗ (1 − x^2 − y^2)

lemmas c-defs = cx-def cy-def

partial derivatives
definition C11 ::real⇒real⇒real where C11 x y = 1 − 3 ∗ x^2 − y^2
definition C12 ::real⇒real⇒real where C12 x y = −1 − 2 ∗ x ∗ y
definition C21 ::real⇒real⇒real where C21 x y = 1 − 2 ∗ x ∗ y
definition C22 ::real⇒real⇒real where C22 x y = 1 − x^2 − 3 ∗ y^2

lemmas C-partials = C11-def C12-def C21-def C22-def

Jacobian as linear map
definition C :: real ⇒ real ⇒ (real × real) ⇒L (real × real) where

C x y = blinfun-of-matrix
((λ- -. 0)
((1 ,0) := (λ-. 0)((1 , 0):=C11 x y, (0 , 1):=C12 x y),
(0 , 1):= (λ-. 0)((1 , 0):=C21 x y, (0 , 1):=C22 x y)))

lemma C-simp[simp]: blinfun-apply (C x y) (dx, dy) =
(dx ∗ C11 x y + dy ∗ C12 x y,
dx ∗ C21 x y + dy ∗ C22 x y)

by (auto simp: C-def blinfun-of-matrix-apply Basis-prod-def)

lemma C-continuous[continuous-intros]:
continuous-on S (λx. local.C (f x) (g x))
if continuous-on S f continuous-on S g
unfolding C-def
by (auto intro!: continuous-on-blinfun-of-matrix continuous-intros that

simp: Basis-prod-def C-partials)

interpretation c: c1-on-open-R2 λ(x::real, y::real). (cx x y, cy x y)::real∗real
λ(x, y). C x y UNIV
by unfold-locales

(auto intro!: derivative-eq-intros ext continuous-intros simp: split-beta alge-
bra-simps

c-defs C-partials power2-eq-square)

143

definition trapC = cball (0 ::real,0 ::real) 2 − ball (0 ::real,0 ::real) (1/2)

lemma trapC-eq:
shows trapC = {p. (fst p)^2 + (snd p)^2 − 4 ≤ 0} ∩ {p. 1/4 − ((fst p)^2 +

(snd p)^2) ≤ 0}
unfolding trapC-def
apply (auto simp add: dist-Pair-Pair)
using real-sqrt-le-iff apply fastforce

apply (smt four-x-squared one-le-power real-sqrt-ge-0-iff real-sqrt-pow2)
using real-sqrt-le-mono apply fastforce

proof −
fix a :: real and b :: real
assume a1 : sqrt (a2 + b2) ∗ 2 < 1
assume a2 : 1 ≤ a2 ∗ 4 + b2 ∗ 4
have ∀ r . 1 ≤ sqrt r ∨ ¬ 1 ≤ r

by simp
then show False

using a2 a1 by (metis (no-types) Groups.mult-ac(2) distrib-left linorder-not-le
real-sqrt-four real-sqrt-mult)
qed

lemma x-in-trapC :
shows (2 ,0) ∈ trapC
unfolding trapC-def
by (auto simp add: dist-Pair-Pair)

lemma compact-trapC :
shows compact trapC
unfolding trapC-def
using compact-cball compact-diff by blast

lemma nonempty-trapC :
shows trapC 6= {}
using x-in-trapC by auto

lemma origin-fixpoint:
assumes (λ(x, y). (cx x y, cy x y)) (a,b) = 0
shows a = (0 ::real) b = (0 ::real)
using assms unfolding cx-def cy-def zero-prod-def apply auto
apply (sos ((((A<0 ∗ R<1) + (([28859/65536∗a + 5089/8192∗b + ∼1/2]
∗ A=0) + (([∼5089/8192∗a + 17219/65536∗b + ∼1/2] ∗ A=1) + (R<1 ∗
((R<11853/65536 ∗ [∼16384/11853∗a^2 + ∼11585/11853∗b^2 + 302/1317∗a∗b
+ a + 1940/3951∗b]^2) + ((R<73630271/776798208 ∗ [a^2 + 64177444/73630271∗b^2
+ 44531712/73630271∗a∗b + ∼131061126/73630271∗b]^2) + ((R<70211653911/4825433440256
∗ [∼77895776116/70211653911∗b^2 + 5825642465/10030236273∗a∗b + b]^2) +
((R<48375415273/657341564387328 ∗ [∼36776393918/48375415273∗b^2 + a∗b]^2)
+ (R<18852430195/11096159253659648 ∗ [b^2]^2)))))))))) & (((A<0 ∗ (A<0 ∗
R<1)) + (([b] ∗ A=0) + (([∼1∗a] ∗ A=1) + (R<1 ∗ (R<1 ∗ [b]^2))))))))

144

proof −
assume a1 : a ∗ (1 − a2 − b2) = b
assume a2 : a + b ∗ (1 − a2 − b2) = 0
have f3 : ∀ r ra. − (ra::real) ∗ r = ra ∗ − r

by simp
have − b ∗ (1 − a2 − b2) = a

using a2 by simp
then have ∃ r ra. b ∗ b − ra ∗ (r ∗ (ra ∗ − r)) = 0

using f3 a1 by (metis (no-types) c.vec-simps(15) right-minus-eq)
then have ∃ r . b ∗ b − r ∗ − r = 0

using f3 by (metis (no-types) c.vec-simps(14))
then show b = 0

by simp
qed

lemma origin-not-trapC :
shows 0 /∈ trapC
unfolding trapC-def zero-prod-def
by auto

lemma regular-trapC :
shows 0 /∈ (λ(x, y). (cx x y, cy x y)) ‘ trapC
using origin-fixpoint origin-not-trapC
by (smt UNIV-I UNIV-I UNIV-def case-prodE2 imageE c.flow-initial-time-if

c.rev.flow-initial-time-if mem-Collect-eq zero-prod-def)

lemma positively-invariant-outer :
shows c.positively-invariant {p. (λp. (fst p)2 + (snd p)2 − 4) p ≤ 0}
apply (rule c.positively-invariant-le[of λp.−2∗((fst p)^2+(snd p)^2) - λx p. 2
∗ fst x ∗ fst p + 2 ∗ snd x ∗ snd p])

apply (auto intro!: continuous-intros derivative-eq-intros)
unfolding cx-def cy-def
by (sos (((A<0 ∗ R<1) + (R<1 ∗ ((R<6 ∗ [a]^2) + (R<6 ∗ [b]^2))))))

lemma positively-invariant-inner :
shows c.positively-invariant {p. (λp. 1/4 − ((fst p)2 + (snd p)2)) p ≤ 0}
apply (rule c.positively-invariant-le[of λp.−2∗((fst p)^2+(snd p)^2) - λx p. −

2 ∗ fst x ∗ fst p − 2 ∗ snd x ∗ snd p])
apply (auto intro!: continuous-intros derivative-eq-intros)

unfolding cx-def cy-def
by (sos (((A<0 ∗ R<1) + (R<1 ∗ ((R<3/2 ∗ [a]^2) + (R<3/2 ∗ [b]^2))))))

lemma positively-invariant-trapC :
shows c.positively-invariant trapC
unfolding trapC-eq
apply (rule c.positively-invariant-conj)
using positively-invariant-outer
apply (metis (no-types, lifting) Collect-cong case-prodE case-prodI2 case-prod-conv)

145

using positively-invariant-inner
by (metis (no-types, lifting) Collect-cong case-prodE case-prodI2 case-prod-conv)

theorem c-has-periodic-orbit:
obtains y where c.periodic-orbit y c.flow0 y ‘ UNIV ⊆ trapC

proof −
from c.poincare-bendixson-applied[OF compact-trapC - nonempty-trapC posi-

tively-invariant-trapC regular-trapC]
show ?thesis using that by blast

qed

Real-Arithmetic
schematic-goal c-fas:
[−(−(X !1) + (X !0) ∗ (1 − (X !0)^2 − (X !1)^2)), −((X !0) + (X !1) ∗ (1 −

(X !0)^2 − (X !1)^2))] = interpret-floatariths ?fas X
by (reify-floatariths)

concrete-definition c-fas uses c-fas

interpretation crev: ode-interpretation true-form UNIV c-fas
−(λ(x, y). (cx x y, cy x y)::real∗real)
d::2 for d
by unfold-locales (auto simp: c-fas-def less-Suc-eq-0-disj nth-Basis-list-prod Ba-

sis-list-real-def
cx-def cy-def eval-nat-numeral
mk-ode-ops-def eucl-of-list-prod power2-eq-square intro!: isFDERIV-I)

lemma crev: t ∈ {1/8 .. 1/8} −→ (x, y) ∈ {(2 , 0) .. (2 , 0)} −→
t ∈ c.rev.existence-ivl0 (x, y) ∧ c.rev.flow0 (x, y) t ∈ {(5 .15 , −0 .651)..(5 .18 ,

−0 .647)}
by (tactic ‹ode-bnds-tac @{thms c-fas-def } 30 20 7 12 [(0 , 1 , 0x000000)] (∗

crev.out ∗) @{context} 1 ›)

theorem c-has-limit-cycle:
obtains y where c.limit-cycle y range (c.flow0 y) ⊆ trapC

proof −
define E where E = {(5 .15 , −0 .651)..(5 .18 , −0 .647)::real∗real}
from crev have c.rev.flow0 (2 , 0) (1/8) ∈ E

by (auto simp: E-def)
moreover
have E ∩ trapC = {}
proof −

have norm x > 2 if x ∈ E for x
using that
apply (auto simp: norm-prod-def less-eq-prod-def E-def)
by (smt power2-less-eq-zero-iff real-less-rsqrt zero-compare-simps(9))

moreover have norm x ≤ 2 if x ∈ trapC for x
using that
by (auto simp: trapC-def dist-prod-def norm-prod-def)

146

ultimately show ?thesis by force
qed
ultimately have c.rev.flow0 (2 , 0) (1 / 8) /∈ trapC by blast
from c.poincare-bendixson-limit-cycle[OF compact-trapC subset-UNIV x-in-trapC

positively-invariant-trapC regular-trapC this] that
show ?thesis by blast

qed

end

8.2 Glycolysis

Strogatz, Example 7.3.2
context
begin

coordinate functions
definition gx x y = −x + 0 .08 ∗ y + x2 ∗ y
definition gy x y = 0 .6 − 0 .08 ∗ y − x2 ∗ y

lemmas g-defs = gx-def gy-def

partial derivatives
definition A11 ::real⇒real⇒real where A11 x y = −1 + 2 ∗ x ∗ y
definition A12 ::real⇒real⇒real where A12 x y = (0 .08 + x2)
definition A21 ::real⇒real⇒real where A21 x y = −2∗x∗y
definition A22 ::real⇒real⇒real where A22 x y = −(0 .08 + x2)

lemmas A-partials = A11-def A12-def A21-def A22-def

Jacobian as linear map
definition A :: real ⇒ real ⇒ (real × real) ⇒L (real × real) where

A x y = blinfun-of-matrix
((λ- -. 0)
((1 ,0) := (λ-. 0)((1 , 0):=A11 x y, (0 , 1):=A12 x y),
(0 , 1):= (λ-. 0)((1 , 0):=A21 x y, (0 , 1):=A22 x y)))

lemma A-simp[simp]: blinfun-apply (A x y) (dx, dy) =
(dx ∗ A11 x y + dy ∗ A12 x y,
dx ∗ A21 x y + dy ∗ A22 x y)

by (auto simp: A-def blinfun-of-matrix-apply Basis-prod-def)

lemma A-continuous[continuous-intros]:
continuous-on S (λx. local.A (f x) (g x))
if continuous-on S f continuous-on S g
unfolding A-def
by (auto intro!: continuous-on-blinfun-of-matrix continuous-intros that

simp: Basis-prod-def A-partials)

147

interpretation g: c1-on-open-R2 λ(x::real, y::real). (gx x y, gy x y)::real∗real
λ(x, y). A x y UNIV
by unfold-locales

(auto intro!: derivative-eq-intros ext continuous-intros simp: split-beta alge-
bra-simps

g-defs A-partials)

definition (pos-quad::(real × real) set) = {p . − snd p ≤ 0} ∩ {p . − fst p ≤ 0}

definition (trapG1 ::(real × real) set) = pos-quad ∩ ({p. (snd p) − 751/100 ≤ 0}
∩ {p. (fst p) + (snd p) − 812/100 ≤ 0})

lemma positively-invariant-y:
shows g.positively-invariant {p . − snd p ≤ 0}
apply (rule g.positively-invariant-le[of λp. −(0 .08 + (fst p)^2) - λx p. − snd

p])
apply (auto intro!: continuous-intros derivative-eq-intros)

unfolding gy-def
by (sos ())

lemma positively-invariant-pos-quad:
shows g.positively-invariant pos-quad
unfolding pos-quad-def
apply (rule g.positively-invariant-le-domain[OF positively-invariant-y, of λp. fst

p ∗ snd p −1])
apply (auto intro!: continuous-intros derivative-eq-intros)

unfolding gx-def
by (sos (((A<0 ∗ R<1) + (((A<0 ∗ R<1) ∗ (R<11/14 ∗ [1]^2)) + ((A<=0
∗ R<1) ∗ (R<1/7 ∗ [1]^2))))))

lemma positively-invariant-y-upper :
shows g.positively-invariant {p. (snd p) − 751/100 ≤ 0}
apply (rule g.positively-invariant-barrier)

apply (auto intro!: continuous-intros derivative-eq-intros)
unfolding gy-def
by (sos ((R<1 + ((R<1 ∗ (R<18775/2 ∗ [a]^2)) + ((A<=0 ∗ R<1) ∗ (R<1250
∗ [1]^2))))))

lemma arith2 :
shows (y::real) ≤ 751/100 ∧ x + (y::real) = 812/100 =⇒ 3/5 − (x::real) < 0
by linarith

lemma positively-invariant-trapG1 :
shows g.positively-invariant trapG1
unfolding trapG1-def
apply (rule g.positively-invariant-conj[OF positively-invariant-pos-quad])
apply (rule g.positively-invariant-barrier-domain[OF positively-invariant-y-upper])

148

apply (auto intro!: continuous-intros derivative-eq-intros)
unfolding gx-def gy-def by auto

definition p1 (x::real) (y::real) = −(21/34) − (69∗x)/38 + (19∗x^2)/15 −
(9∗x^3)/28 − (6∗x^4)/43 + (14∗y)/29 + (31∗x∗y)/21 + (182∗x^2∗y)/47 −
(35∗x^3∗y)/16 − (3∗y^2)/17 − (2∗x∗y^2)/9 − (31∗x^2∗y^2)/20 +y^3/102
+ (x∗y^3)/59

definition p1d x xa = 38 ∗ (fst xa ∗ fst x) / 15 − 69 ∗ fst xa / 38 −
27 ∗ (fst xa ∗ (fst x)2) / 28 −
24 ∗ (fst xa ∗ fst x ^ 3) / 43 +
14 ∗ snd xa / 29 +
(651 ∗ (fst x ∗ snd xa) +
651 ∗ (fst xa ∗ snd x)) /

441 +
(8554 ∗ ((fst x)2 ∗ snd xa) +
17108 ∗ (fst xa ∗ (fst x ∗ snd x))) /

2209 −
(560 ∗ (fst x ^ 3 ∗ snd xa) +
1680 ∗ (fst xa ∗ ((fst x)2 ∗ snd x))) /

256 −
6 ∗ (snd xa ∗ snd x) / 17 −
(36 ∗ (fst x ∗ (snd xa ∗ snd x)) +
18 ∗ (fst xa ∗ (snd x)2)) /

81 −
(1240 ∗ ((fst x)2 ∗ (snd xa ∗ snd x)) +
1240 ∗ (fst xa ∗ (fst x ∗ (snd x)2))) /

400 +
snd xa ∗ (snd x)2 / 34 +
(177 ∗ (fst x ∗ (snd xa ∗ (snd x)2)) +
fst xa ∗ snd x ^ 3 ∗ 59) /

3481

lemma p1-has-derivative:
shows ((λx. p1 (fst x) (snd x)) has-derivative p1d x) (at x)
unfolding p1-def p1d-def
by (auto intro!: continuous-intros derivative-eq-intros)

lemma p1-not-equil:
shows p1 x y ≤ 0 =⇒ gx x y 6= 0 ∨ gy x y 6= 0
unfolding gx-def gy-def p1-def
by (sos ())

definition trapG = trapG1 ∩ {p. p1 (fst p) (snd p) ≤ 0}

Real-Arithmetic
definition g-arith a b = (− (27 / 25) − a2 + 2 ∗ a ∗ b) ∗ p1 a b − p1d (a, b)

149

(gx a b, gy a b)

schematic-goal g-arith-fas:
[g-arith (X !0) (X !1)] = interpret-floatariths ?fas X
unfolding g-arith-def p1-def p1d-def gx-def gy-def fst-conv snd-conv
by (reify-floatariths)

concrete-definition g-arith-fas uses g-arith-fas

lemma list-interval2 : list-interval [a, b] [c, d] = {[x, y] | x y. x ∈ {a .. c} ∧ y ∈
{b .. d}}

apply (auto simp: list-interval-def)
subgoal for x

apply (cases x)
apply auto
subgoal for y zs

apply (cases zs)
by auto

done
done

lemma g-arith-nonneg: g-arith a b ≥ 0
if a: 0 ≤ a a ≤ 8 .24 and b: 0 ≤ b b ≤ 7 .51

proof −
have prove-nonneg [(0 , 1 , ′′0x000000 ′′)] 1000000 30 (slp-of-fas [hd g-arith-fas])

[aforms-of-ivls [0 , 0]
[float-divr 30 824 100 , float-divr 30 751 100]]
by eval— slow: 60s

from prove-nonneg[OF this]
have 0 ≤ interpret-floatarith (hd g-arith-fas) [a, b]

apply (auto simp: g-arith-fas)
apply (subst (asm) Joints-aforms-of-ivls)
apply (auto)
apply (smt divide-nonneg-nonneg float-divr float-numeral rel-simps(27))

apply (smt divide-nonneg-nonneg float-divr float-numeral rel-simps(27))
apply (subst (asm) list-interval2)
apply auto
apply (drule spec[where x=[a, b]])
using a b
apply auto
subgoal by (rule order-trans[OF - float-divr]) simp
subgoal by (rule order-trans[OF - float-divr]) simp
done

also have . . . = g-arith a b
by (auto simp: g-arith-fas-def g-arith-def p1-def p1d-def gx-def gy-def)

finally show ?thesis .
qed

lemma trap-arithmetic:

150

p1d (a, b) (gx a b, gy a b) ≤ (− (27 / 25) − a2 + 2 ∗ a ∗ b) ∗ p1 a b if (a, b)
∈ trapG1
proof −

from that
have b: 0 ≤ b b ≤ 7 .51

and a: 0 ≤ a a ≤ 8 .24
by (auto simp: trapG1-def pos-quad-def)

from g-arith-nonneg[OF a b] show ?thesis
by (simp add: g-arith-def)

qed

lemma positively-invariant-trapG:
shows g.positively-invariant trapG
unfolding trapG-def
apply (rule g.positively-invariant-le-domain[OF positively-invariant-trapG1 - p1-has-derivative,

of λp. −1 .08 − (fst p)^2 + 2 ∗ fst p ∗ snd p])
subgoal by (auto intro!: continuous-intros derivative-eq-intros simp add: pos-quad-def)
apply auto
by (rule trap-arithmetic)

lemma regular-trapG:
shows 0 /∈ (λ(x, y). (gx x y, gy x y)) ‘ trapG
unfolding trapG-def apply auto using p1-not-equil
by force

lemma arith:∧
a b::real. 0 ≤ b =⇒

0 ≤ a =⇒
b ∗ 100 ≤ 751 =⇒
a ∗ 25 + b ∗ 25 ≤ 203 =⇒ norm a + norm b ≤ 20

by auto

lemma trapG1-subset:
shows trapG1 ⊆ cball (0 ::real × real) 20
unfolding trapG1-def pos-quad-def
apply auto
using arith norm-Pair-le
by smt

lemma compact-subset-closed:
assumes compact S closed T
assumes T ⊆ S
shows compact T
using compact-Int-closed[OF assms(1−2)] assms(3)
by (simp add: inf-absorb2)

lemma compact-trapG1 :
shows compact trapG1
apply (auto intro!: compact-subset-closed[OF - - trapG1-subset])

151

unfolding trapG1-def pos-quad-def
by (auto intro!: closed-Collect-le continuous-intros)

lemma compact-trapG:
shows compact trapG
unfolding trapG-def
by (auto intro!: compact-Int-closed compact-trapG1 closed-Collect-le continu-

ous-intros simp add: p1-def)

lemma x-in-trapG:
shows (1 ,0) ∈ trapG
unfolding trapG-def trapG1-def pos-quad-def p1-def
by (auto simp add: dist-Pair-Pair)

schematic-goal g-fas:
[− (− (X !0) + 8 / 100 ∗ (X !1) + (X !0)^2 ∗ (X !1)),−(6 / 10 − 8 / 100 ∗

(X !1) − (X !0)^2 ∗ (X !1))] = interpret-floatariths ?fas X
by (reify-floatariths)

concrete-definition g-fas uses g-fas

interpretation grev: ode-interpretation true-form UNIV g-fas
−(λ(x, y). (gx x y, gy x y)::real∗real)
d::2 for d
by unfold-locales (auto simp: g-fas-def less-Suc-eq-0-disj nth-Basis-list-prod Ba-

sis-list-real-def
gx-def gy-def eval-nat-numeral
mk-ode-ops-def eucl-of-list-prod power2-eq-square intro!: isFDERIV-I)

lemma grev: t ∈ {1/8 .. 1/8} −→ (x, y) ∈ {(1 , 0) .. (1 , 0)} −→
t ∈ g.rev.existence-ivl0 (x, y) ∧ g.rev.flow0 (x, y) t ∈
{(1 .1 , −0 .09) .. (1 .2 , −0 .08)}

by (tactic ‹ode-bnds-tac @{thms g-fas-def } 30 20 7 12 [(0 , 1 , 0x000000)] (∗
grev.out ∗) @{context} 1 ›)

theorem g-has-limit-cycle:
obtains y where g.limit-cycle y range (g.flow0 y) ⊆ trapG

proof −
define E ::(real∗real) set where E = {(1 .1 , −0 .09) .. (1 .2 , −0 .08)}
from grev have g.rev.flow0 (1 , 0) (1/8) ∈ E

by (auto simp: E-def)
moreover
have E ∩ trapG = {}

by (auto simp: trapG-def E-def trapG1-def pos-quad-def)
ultimately have g.rev.flow0 (1 , 0) (1 / 8) /∈ trapG by blast
from g.poincare-bendixson-limit-cycle[OF compact-trapG subset-UNIV x-in-trapG

positively-invariant-trapG regular-trapG this] that
show ?thesis by blast

qed

152

end

end

153

	Additions to HOL-Analysis
	Unsorted Lemmas (TODO: sort!)
	indexing euclidean space with natural numbers
	derivatives
	Segments
	Open Segments
	Syntax
	Paths

	Additions to the ODE Library
	Comparison Principle
	Locally Lipschitz ODEs
	Reverse flow as Sublocale
	Autonomous LL ODE : Existence Interval and trapping on the interval
	Connectedness
	Return Time and Implicit Function Theorem
	Fixpoints

	Invariance
	Tools for proving invariance

	Limit Sets
	Periodic Orbits
	Poincare Bendixson Theory
	Flow to Path
	2D Line segments
	Bijection Real-Complex for Jordan Curve Theorem
	Transversal Segments
	Monotone Step Lemma
	Straightening
	Unique Intersection
	Poincare Bendixson Theorems

	Branch-And-Bound Arithmetic
	Examples
	Simple
	Glycolysis

