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Abstract

This entry shows the transcendence of π based on the classic proof
using the fundamental theorem of symmetric polynomials first given by
von Lindemann in 1882, but the mostly formalisation follows the ver-
sion by Niven [3]. The proof reuses much of the machinery developed
in the AFP entry on the transcendence of e.
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1 The Transcendence of π

theory Pi-Transcendental
imports

E-Transcendental.E-Transcendental
Symmetric-Polynomials.Symmetric-Polynomials
HOL−Real-Asymp.Real-Asymp

begin

lemma ring-homomorphism-to-poly [intro]: ring-homomorphism (λi. [:i:])
〈proof 〉

lemma (in ring-closed) coeff-power-closed:
(
∧

m. coeff p m ∈ A) =⇒ coeff (p ^ n) m ∈ A
〈proof 〉

lemma (in ring-closed) coeff-prod-closed:
(
∧

x m. x ∈ X =⇒ coeff (f x) m ∈ A) =⇒ coeff (prod f X) m ∈ A
〈proof 〉

lemma map-of-rat-of-int-poly [simp]: map-poly of-rat (of-int-poly p) = of-int-poly
p
〈proof 〉

Given a polynomial with rational coefficients, we can obtain an integer poly-
nomial that differs from it only by a nonzero constant by clearing the de-
nominators.
lemma ratpoly-to-intpoly:

assumes ∀ i. poly.coeff p i ∈ �
obtains q c where c 6= 0 p = Polynomial.smult (inverse (of-nat c)) (of-int-poly

q)
〈proof 〉

lemma symmetric-mpoly-symmetric-sum:
assumes

∧
π. π permutes A =⇒ g π permutes X

assumes
∧

x π. x ∈ X =⇒ π permutes A =⇒ mpoly-map-vars π (f x) = f (g π
x)

shows symmetric-mpoly A (
∑

x∈X . f x)
〈proof 〉

lemma symmetric-mpoly-symmetric-prod:
assumes g permutes X
assumes

∧
x π. x ∈ X =⇒ π permutes A =⇒ mpoly-map-vars π (f x) = f (g x)

shows symmetric-mpoly A (
∏

x∈X . f x)
〈proof 〉

We now prove the transcendence of iπ, from which the transcendence of
π will follow as a trivial corollary. The first proof of this was given by
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von Lindemann [4]. The central ingredient is the fundamental theorem of
symmetric functions.
The proof can, by now, be considered folklore and one can easily find many
similar variants of it, but we mostly follows the nice exposition given by
Niven [3].
An independent previous formalisation in Coq that uses the same basic
techniques was given by Bernard et al. [2]. They later also formalised the
much stronger Lindemann–Weierstraß theorem [1].
lemma transcendental-i-pi: ¬algebraic (i ∗ pi)
〈proof 〉

lemma pcompose-conjugates-integer :
assumes

∧
i. poly.coeff p i ∈ �

shows poly.coeff (pcompose p [:0 , i:] ∗ pcompose p [:0 , −i:]) i ∈ �
〈proof 〉

lemma algebraic-times-i:
assumes algebraic x
shows algebraic (i ∗ x) algebraic (−i ∗ x)
〈proof 〉

lemma algebraic-times-i-iff : algebraic (i ∗ x) ←→ algebraic x
〈proof 〉

theorem transcendental-pi: ¬algebraic pi
〈proof 〉

end
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