
The Transcendence of π

Manuel Eberl

March 17, 2025

Abstract

This entry shows the transcendence of π based on the classic proof
using the fundamental theorem of symmetric polynomials first given by
von Lindemann in 1882, but the mostly formalisation follows the ver-
sion by Niven [3]. The proof reuses much of the machinery developed
in the AFP entry on the transcendence of e.

Contents
1 The Transcendence of π 2

1

1 The Transcendence of π

theory Pi-Transcendental
imports

E-Transcendental.E-Transcendental
Symmetric-Polynomials.Symmetric-Polynomials
HOL−Real-Asymp.Real-Asymp

begin

lemma ring-homomorphism-to-poly [intro]: ring-homomorphism (λi. [:i:])
by standard auto

lemma (in ring-closed) coeff-power-closed:
(
∧

m. coeff p m ∈ A) =⇒ coeff (p ^ n) m ∈ A
by (induction n arbitrary: m)

(auto simp: mpoly-coeff-1 coeff-mpoly-times intro!: prod-fun-closed)

lemma (in ring-closed) coeff-prod-closed:
(
∧

x m. x ∈ X =⇒ coeff (f x) m ∈ A) =⇒ coeff (prod f X) m ∈ A
by (induction X arbitrary: m rule: infinite-finite-induct)

(auto simp: mpoly-coeff-1 coeff-mpoly-times intro!: prod-fun-closed)

lemma map-of-rat-of-int-poly [simp]: map-poly of-rat (of-int-poly p) = of-int-poly
p

by (intro poly-eqI) (auto simp: coeff-map-poly)

Given a polynomial with rational coefficients, we can obtain an integer poly-
nomial that differs from it only by a nonzero constant by clearing the de-
nominators.
lemma ratpoly-to-intpoly:

assumes ∀ i. poly.coeff p i ∈ �
obtains q c where c 6= 0 p = Polynomial.smult (inverse (of-nat c)) (of-int-poly

q)
proof (cases p = 0)

case True
with that[of 1 0] show ?thesis by auto

next
case False
from assms obtain p ′ where p ′: p = map-poly of-rat p ′

using ratpolyE by auto
define c where c = Lcm ((nat ◦ snd ◦ quotient-of ◦ poly.coeff p ′) ‘ {..Polynomial.degree

p ′})
have ¬snd (quotient-of x) ≤ 0 for x

using quotient-of-denom-pos[of x, OF surjective-pairing] by auto
hence c 6= 0 by (auto simp: c-def)
define q where q = Polynomial.smult (of-nat c) p ′

have poly.coeff q i ∈ � for i
proof (cases i > Polynomial.degree p ′)

2

case False
define m n

where m = fst (quotient-of (poly.coeff p ′ i))
and n = nat (snd (quotient-of (poly.coeff p ′ i)))

have mn: n > 0 poly.coeff p ′ i = of-int m / of-nat n
using quotient-of-denom-pos[of poly.coeff p ′ i, OF surjective-pairing]

quotient-of-div[of poly.coeff p ′ i, OF surjective-pairing]
by (auto simp: m-def n-def)

from False have n dvd c unfolding c-def
by (intro dvd-Lcm) (auto simp: c-def n-def o-def not-less)

hence of-nat c ∗ (of-int m / of-nat n) = (of-nat (c div n) ∗ of-int m :: rat)
by (auto simp: of-nat-div)

also have . . . ∈ � by auto
finally show ?thesis using mn by (auto simp: q-def)

qed (auto simp: q-def coeff-eq-0)
with intpolyE obtain q ′ where q ′: q = of-int-poly q ′ by auto
moreover have p = Polynomial.smult (inverse (of-nat c)) (map-poly of-rat

(of-int-poly q ′))
unfolding smult-conv-map-poly q ′[symmetric] p ′ using ‹c 6= 0 ›
by (intro poly-eqI) (auto simp: coeff-map-poly q-def of-rat-mult)

ultimately show ?thesis
using q ′ p ′ ‹c 6= 0 › by (auto intro!: that[of c q ′])

qed

lemma symmetric-mpoly-symmetric-sum:
assumes

∧
π. π permutes A =⇒ g π permutes X

assumes
∧

x π. x ∈ X =⇒ π permutes A =⇒ mpoly-map-vars π (f x) = f (g π
x)

shows symmetric-mpoly A (
∑

x∈X . f x)
unfolding symmetric-mpoly-def

proof safe
fix π assume π: π permutes A
have mpoly-map-vars π (sum f X) = (

∑
x∈X . mpoly-map-vars π (f x))

by simp
also have . . . = (

∑
x∈X . f (g π x))

by (intro sum.cong assms π refl)
also have . . . = (

∑
x∈g π‘X . f x)

using assms(1)[OF π] by (subst sum.reindex) (auto simp: permutes-inj-on)
also have g π ‘ X = X

using assms(1)[OF π] by (simp add: permutes-image)
finally show mpoly-map-vars π (sum f X) = sum f X .

qed

lemma symmetric-mpoly-symmetric-prod:
assumes g permutes X
assumes

∧
x π. x ∈ X =⇒ π permutes A =⇒ mpoly-map-vars π (f x) = f (g x)

shows symmetric-mpoly A (
∏

x∈X . f x)
unfolding symmetric-mpoly-def

3

proof safe
fix π assume π: π permutes A
have mpoly-map-vars π (prod f X) = (

∏
x∈X . mpoly-map-vars π (f x))

by simp
also have . . . = (

∏
x∈X . f (g x))

by (intro prod.cong assms π refl)
also have . . . = (

∏
x∈g‘X . f x)

using assms by (subst prod.reindex) (auto simp: permutes-inj-on)
also have g ‘ X = X

using assms by (simp add: permutes-image)
finally show mpoly-map-vars π (prod f X) = prod f X .

qed

We now prove the transcendence of iπ, from which the transcendence of
π will follow as a trivial corollary. The first proof of this was given by
von Lindemann [4]. The central ingredient is the fundamental theorem of
symmetric functions.
The proof can, by now, be considered folklore and one can easily find many
similar variants of it, but we mostly follows the nice exposition given by
Niven [3].
An independent previous formalisation in Coq that uses the same basic
techniques was given by Bernard et al. [2]. They later also formalised the
much stronger Lindemann–Weierstraß theorem [1].
lemma transcendental-i-pi: ¬algebraic (i ∗ pi)
proof

— Suppose iπ were algebraic.
assume algebraic (i ∗ pi)
— We obtain some nonzero integer polynomial that has iπ as a root. We can

assume w. l. o. g. that the constant coefficient of this polynomial is nonzero.
then obtain p

where p: poly (of-int-poly p) (i ∗ pi) = 0 p 6= 0 poly.coeff p 0 6= 0
by (elim algebraicE ′-nonzero) auto

define n where n = Polynomial.degree p

— We define the sequence of the roots of this polynomial:
obtain root where Polynomial.smult (Polynomial.lead-coeff (of-int-poly p))

(
∏

i<n. [:−root i :: complex, 1 :]) = of-int-poly p
using complex-poly-decompose ′[of of-int-poly p] unfolding n-def by auto

note root = this [symmetric]

— We note that iπ is, of course, among these roots.
from p and root obtain idx where idx: idx < n root idx = i ∗ pi

by (auto simp: poly-prod)

— We now define a new polynomial P ′, whose roots are all numbers that arise as
a sum of any subset of roots of p. We also count all those subsets that sum up to
0 and call their number A.

define root ′ where root ′ = (λX . (
∑

j∈X . root j))

4

define P where P = (λi.
∏

X | X ⊆ {..<n} ∧ card X = i. [:−root ′ X , 1 :])
define P ′ where P ′ = (

∏
i∈{0<..n}. P i)

define A where A = card {X∈Pow {..<n}. root ′ X = 0}
have [simp]: P ′ 6= 0 by (auto simp: P ′-def P-def)

— We give the name Roots ′ to those subsets that do not sum to zero and note
that there is at least one, namely {iπ}.

define Roots ′ where Roots ′ = {X . X ⊆ {..<n} ∧ root ′ X 6= 0}
have [intro]: finite Roots ′ by (auto simp: Roots ′-def)
have {idx} ∈ Roots ′ using idx by (auto simp: Roots ′-def root ′-def)
hence Roots ′ 6= {} by auto
hence card-Roots ′: card Roots ′ > 0 by (auto simp: card-eq-0-iff)

have P ′-altdef : P ′ = (
∏

X∈Pow {..<n} − {{}}. [:−root ′ X , 1 :])
proof −

have P ′ = (
∏

(i, X)∈(SIGMA x:{0<..n}. {X . X ⊆ {..<n} ∧ card X = x}).
[:− root ′ X , 1 :])

unfolding P ′-def P-def by (subst prod.Sigma) auto
also have . . . = (

∏
X∈Pow{..<n} − {{}}. [:− root ′ X , 1 :])

using card-mono[of {..<n}]
by (intro prod.reindex-bij-witness[of - λX . (card X , X) λ(-, X). X])

(auto simp: case-prod-unfold card-gt-0-iff intro: finite-subset[of - {..<n}])
finally show ?thesis .

qed

— Clearly, A is nonzero, since the empty set sums to 0.
have A > 0
proof −

have {} ∈ {X∈Pow {..<n}. root ′ X = 0}
by (auto simp: root ′-def)

thus ?thesis by (auto simp: A-def card-gt-0-iff)
qed

— Since eiπ + 1 = 0, we know the following:
have 0 = (

∏
i<n. exp (root i) + 1)

using idx by force
— We rearrange this product of sums into a sum of products and collect all

summands that are 1 into a separate sum, which we call A:
also have . . . = (

∑
X∈Pow {..<n}.

∏
i∈X . exp (root i))

by (subst prod-add) auto
also have . . . = (

∑
X∈Pow {..<n}. exp (root ′ X))

by (intro sum.cong refl, subst exp-sum [symmetric])
(auto simp: root ′-def intro: finite-subset[of - {..<n}])

also have Pow {..<n} = {X∈Pow {..<n}. root ′ X 6= 0} ∪ {X∈Pow {..<n}.
root ′ X = 0}

by auto
also have (

∑
X∈. . . . exp (root ′ X)) = (

∑
X | X ⊆ {..<n} ∧ root ′ X 6= 0 . exp

(root ′ X)) +
(
∑

X | X ⊆ {..<n} ∧ root ′ X = 0 . exp (root ′ X))

5

by (subst sum.union-disjoint) auto
also have (

∑
X | X ⊆ {..<n} ∧ root ′ X = 0 . exp (root ′ X)) = of-nat A

by (simp add: A-def)
— Finally, we obtain the fact that the sum of exp(u) with u ranging over all the

non-zero roots of P ′ is a negative integer.
finally have eq: (

∑
X | X ⊆ {..<n} ∧ root ′ X 6= 0 . exp (root ′ X)) = −of-nat A

by (simp add: add-eq-0-iff2)

— Next, we show that P ′ is a rational polynomial since it can be written as a
symmetric polynomial expression (with rational coefficients) in the roots of p.

define ratpolys where ratpolys = {p::complex poly. ∀ i. poly.coeff p i ∈ �}
have ratpolysI : p ∈ ratpolys if

∧
i. poly.coeff p i ∈ � for p

using that by (auto simp: ratpolys-def)

have P ′ ∈ ratpolys
proof −

define Pmv :: nat ⇒ complex poly mpoly
where Pmv = (λi.

∏
X | X ⊆ {..<n} ∧ card X = i. Const ([:0 ,1 :]) −

(
∑

i∈X . monom (Poly-Mapping.single i 1) 1))
define P ′mv where P ′mv = (

∏
i∈{0<..n}. Pmv i)

have insertion (λi. [:root i:]) P ′mv ∈ ratpolys
proof (rule symmetric-poly-of-roots-in-subring[where l = λx. [:x:]])

show ring-closed ratpolys
by standard (auto simp: ratpolys-def coeff-mult)

then interpret ring-closed ratpolys .
show ∀m. coeff P ′mv m ∈ ratpolys

by (auto simp: P ′mv-def Pmv-def coeff-monom when-def mpoly-coeff-Const
coeff-pCons ′ ratpolysI

intro!: coeff-prod-closed minus-closed sum-closed uminus-closed)
show ∀ i. [:poly.coeff (of-int-poly p) i:] ∈ ratpolys

by (intro ratpolysI allI) (auto simp: coeff-pCons ′)
show [:inverse (of-int (Polynomial.lead-coeff p)):] ∗

[:of-int (Polynomial.lead-coeff p) :: complex:] = 1
using ‹p 6= 0 › by (auto intro!: poly-eqI simp: field-simps)

next
have symmetric-mpoly {..<n} (Pmv k) for k

unfolding symmetric-mpoly-def
proof safe

fix π :: nat ⇒ nat assume π: π permutes {..<n}
hence mpoly-map-vars π (Pmv k) =

(
∏

X | X ⊆ {..<n} ∧ card X = k. Const [:0 , 1 :] −
(
∑

x∈X . MPoly-Type.monom (Poly-Mapping.single (π x) (Suc 0))
1))

by (simp add: Pmv-def permutes-bij)
also have . . . = (

∏
X | X ⊆ {..<n} ∧ card X = k. Const [:0 , 1 :] −

(
∑

x∈π‘X . MPoly-Type.monom (Poly-Mapping.single x (Suc
0)) 1))

using π by (subst sum.reindex) (auto simp: permutes-inj-on)
also have . . . = (

∏
X ∈ (λX . π‘X)‘{X . X ⊆ {..<n} ∧ card X = k}. Const

6

[:0 , 1 :] −
(
∑

x∈X . MPoly-Type.monom (Poly-Mapping.single x (Suc
0)) 1))

by (subst prod.reindex) (auto intro!: inj-on-image permutes-inj-on[OF π])
also have (λX . π‘X)‘{X . X ⊆ {..<n} ∧ card X = k} = {X . X ⊆ π ‘ {..<n}

∧ card X = k}
using π by (subst image-image-fixed-card-subset) (auto simp: per-

mutes-inj-on)
also have π ‘ {..<n} = {..<n}

by (intro permutes-image π)
finally show mpoly-map-vars π (Pmv k) = Pmv k by (simp add: Pmv-def)

qed
thus symmetric-mpoly {..<n} P ′mv

unfolding P ′mv-def by (intro symmetric-mpoly-prod) auto
next

show vars-P ′mv: vars P ′mv ⊆ {..<n}
unfolding P ′mv-def Pmv-def
by (intro order .trans[OF vars-prod] UN-least order .trans[OF vars-diff]

Un-least order .trans[OF vars-sum] order .trans[OF vars-monom-subset])
auto

qed (insert root, auto intro!: ratpolysI simp: coeff-pCons ′)
also have insertion (λi. [:root i:]) (Pmv k) = P k for k

by (simp add: Pmv-def insertion-prod insertion-diff insertion-sum root ′-def
P-def

sum-to-poly del: insertion-monom)

hence insertion (λi. [:root i:]) P ′mv = P ′

by (simp add: P ′mv-def insertion-prod P ′-def)
finally show P ′ ∈ ratpolys .

qed

— We clear the denominators and remove all powers of X from P ′ to obtain a
new integer polynomial Q.

define Q ′ where Q ′ = (
∏

X∈Roots ′. [:− root ′ X , 1 :])
have P ′ = (

∏
X∈Pow {..<n}−{{}}. [:−root ′ X , 1 :])

by (simp add: P ′-altdef)
also have Pow {..<n}−{{}} = Roots ′ ∪

{X . X ∈ Pow {..<n} − {{}} ∧ root ′ X = 0} by (auto simp: root ′-def
Roots ′-def)

also have (
∏

X∈. . . . [:−root ′ X , 1 :]) =
Q ′ ∗ [:0 , 1 :] ^ card {X . X ⊆ {..<n} ∧ X 6= {} ∧ root ′ X = 0}

by (subst prod.union-disjoint) (auto simp: Q ′-def Roots ′-def)
also have {X . X ⊆ {..<n} ∧ X 6= {} ∧ root ′ X = 0} = {X . X ⊆ {..<n} ∧

root ′ X = 0} − {{}}
by auto

also have card . . . = A − 1 unfolding A-def
by (subst card-Diff-singleton) (auto simp: root ′-def)

finally have Q ′: P ′ = Polynomial.monom 1 (A − 1) ∗ Q ′

by (simp add: Polynomial.monom-altdef)

7

have degree-Q ′: Polynomial.degree P ′ = Polynomial.degree Q ′ + (A − 1)
by (subst Q ′)

(auto simp: Q ′-def Roots ′-def degree-mult-eq Polynomial.degree-monom-eq
degree-prod-sum-eq)

have ∀ i. poly.coeff Q ′ i ∈ �
proof

fix i :: nat
have poly.coeff Q ′ i = Polynomial.coeff P ′ (i + (A − 1))

by (simp add: Q ′ Polynomial.coeff-monom-mult)
also have . . . ∈ � using ‹P ′ ∈ ratpolys› by (auto simp: ratpolys-def)
finally show poly.coeff Q ′ i ∈ � .

qed
from ratpoly-to-intpoly[OF this] obtain c Q

where [simp]: c 6= 0 and Q: Q ′ = Polynomial.smult (inverse (of-nat c))
(of-int-poly Q)

by metis
have [simp]: Q 6= 0 using Q Q ′ by auto
have Q ′: of-int-poly Q = Polynomial.smult (of-nat c) Q ′

using Q by simp
have degree-Q: Polynomial.degree Q = Polynomial.degree Q ′

by (subst Q) auto
have Polynomial.lead-coeff (of-int-poly Q :: complex poly) = c

by (subst Q ′) (simp-all add: degree-Q Q ′-def Polynomial.lead-coeff-prod)
hence lead-coeff-Q: Polynomial.lead-coeff Q = int c

using of-int-eq-iff [of Polynomial.lead-coeff Q of-nat c] by (auto simp del:
of-int-eq-iff)

have Q-decompose: of-int-poly Q =
Polynomial.smult (of-nat c) (

∏
X∈Roots ′. [:− root ′ X , 1 :])

by (subst Q ′) (auto simp: Q ′-def lead-coeff-Q)
have poly (of-int-poly Q) (i ∗ pi) = 0

using ‹{idx} ∈ Roots ′› ‹finite Roots ′› idx
by (force simp: root ′-def Q-decompose poly-prod)

have degree-Q: Polynomial.degree (of-int-poly Q :: complex poly) = card Roots ′

by (subst Q ′) (auto simp: Q ′-def degree-prod-sum-eq)
have poly (of-int-poly Q) (0 :: complex) 6= 0

by (subst Q ′) (auto simp: Q ′-def Roots ′-def poly-prod)
hence [simp]: poly Q 0 6= 0 by simp
have [simp]: poly (of-int-poly Q) (root ′ Y) = 0 if Y ∈ Roots ′ for Y

using that ‹finite Roots ′› by (auto simp: Q ′ Q ′-def poly-prod)

— We find some closed ball that contains all the roots of Q.
define r where r = Polynomial.degree Q
have r > 0 using degree-Q card-Roots ′ by (auto simp: r-def)
define Radius where Radius = Max ((λY . norm (root ′ Y)) ‘ Roots ′)
have Radius: norm (root ′ Y) ≤ Radius if Y ∈ Roots ′ for Y

using ‹finite Roots ′› that by (auto simp: Radius-def)
from Radius[of {idx}] have Radius ≥ pi

using idx by (auto simp: Roots ′-def norm-mult root ′-def)

8

hence Radius-nonneg: Radius ≥ 0 and Radius > 0 using pi-gt3 by linarith+

— Since this ball is compact, Q is bounded on it. We obtain such a bound.
have compact (poly (of-int-poly Q :: complex poly) ‘ cball 0 Radius)

by (intro compact-continuous-image continuous-intros) auto
then obtain Q-ub

where Q-ub: Q-ub > 0∧
u :: complex. u ∈ cball 0 Radius =⇒ norm (poly (of-int-poly Q) u)

≤ Q-ub
by (auto dest!: compact-imp-bounded simp: bounded-pos cball-def)

— Using this, define another upper bound that we will need later.
define fp-ub

where fp-ub = (λp. |c| ^ (r ∗ p − 1) / fact (p − 1) ∗ (Radius ^ (p − 1) ∗
Q-ub ^ p))

have fp-ub-nonneg: fp-ub p ≥ 0 for p
unfolding fp-ub-def using ‹Radius ≥ 0 › Q-ub
by (intro mult-nonneg-nonneg divide-nonneg-pos zero-le-power) auto

define C where C = card Roots ′ ∗ Radius ∗ exp Radius

— We will now show that any sufficiently large prime number leads to C ∗ fp-ub
p ≥ 1, from which we will then derive a contradiction.

define primes-at-top where primes-at-top = inf-class.inf sequentially (principal
{p. prime p})

have eventually (λp. ∀ x∈{nat |poly Q 0 |, c, A}. p > x) sequentially
by (intro eventually-ball-finite ballI eventually-gt-at-top) auto

hence eventually (λp. ∀ x∈{nat |poly Q 0 |, c, A}. p > x) primes-at-top
unfolding primes-at-top-def eventually-inf-principal by eventually-elim auto

moreover have eventually (λp. prime p) primes-at-top
by (auto simp: primes-at-top-def eventually-inf-principal)

ultimately have eventually (λp. C ∗ fp-ub p ≥ 1) primes-at-top
proof eventually-elim

case (elim p)
hence p: prime p p > nat |poly Q 0 | p > c p > A by auto
hence p > 1 by (auto dest: prime-gt-1-nat)

— We define the polynomial f(X) = cs

(p−1)!X
p−1Q(X)p, where c is the leading

coefficient of Q. We also define F (X) to be the sum of all its derivatives.
define s where s = r ∗ p − 1
define fp :: complex poly

where fp = Polynomial.smult (of-nat c ^ s / fact (p − 1))
(Polynomial.monom 1 (p − 1) ∗ of-int-poly Q ^ p)

define Fp where Fp = (
∑

i≤s+p. (pderiv ^^ i) fp)
define f F where f = poly fp and F = poly Fp
have degree-fp: Polynomial.degree fp = s + p using degree-Q card-Roots ′ ‹p >

1 ›
by (simp add: fp-def s-def degree-mult-eq degree-monom-eq

degree-power-eq r-def algebra-simps)

9

— Using the same argument as in the case of the transcendence of e, we now
consider the function

I(u) := euF (0)− F (u) = u

1∫
0

e(1−t)xf(tx)dt

whose absolute value can be bounded with a standard “maximum times length”
estimate using our upper bound on f . All of this can be reused from the proof for
e, so there is not much to do here. In particular, we will look at

∑
I(xi) with the

xi ranging over the roots of Q and bound this sum in two different ways.
interpret lindemann-weierstrass-aux fp .
have I-altdef : I = (λu. exp u ∗ F 0 − F u)

by (intro ext) (simp add: I-def degree-fp F-def Fp-def poly-sum)

— We show that fp-ub is indeed an upper bound for f .
have fp-ub: norm (poly fp u) ≤ fp-ub p if u ∈ cball 0 Radius for u
proof −

have norm (poly fp u) = |c| ^ (r ∗ p − 1) / fact (p − 1) ∗ (norm u ^ (p −
1) ∗

norm (poly (of-int-poly Q) u) ^ p)
by (simp add: fp-def f-def s-def norm-mult poly-monom norm-divide norm-power)
also have . . . ≤ fp-ub p

unfolding fp-ub-def using that Q-ub ‹Radius ≥ 0 ›
by (intro mult-left-mono[OF mult-mono] power-mono zero-le-power) auto

finally show ?thesis .
qed

— We now show that the following sum is an integer multiple of p. This
argument again uses the fundamental theorem of symmetric functions, exploiting
that the inner sums are symmetric over the roots of Q.

have (
∑

i=p..s+p.
∑

Y∈Roots ′. poly ((pderiv ^^ i) fp) (root ′ Y)) / p ∈ �
proof (subst sum-divide-distrib, intro Ints-sum[of {a..b} for a b])

fix i assume i: i ∈ {p..s+p}
then obtain roots ′ where roots ′: distinct roots ′ set roots ′ = Roots ′

using finite-distinct-list ‹finite Roots ′› by metis
define l where l = length roots ′

define fp ′ where fp ′ = (pderiv ^^ i) fp
define d where d = Polynomial.degree fp ′

— We define a multivariate polynomial for the inner sum
∑

f(xi)/p in order
to show that it is indeed a symmetric function over the xi.

define R where R = (smult (1 / of-nat p) (
∑

k≤d.
∑

i<l. smult (poly.coeff
fp ′ k)

(monom (Poly-Mapping.single i k) (1 / of-int (c ^ k)))) ::
complex mpoly)

— The j-th coefficient of the i-th derivative of f are integer multiples of cjp
since i ≥ p.

have integer : poly.coeff fp ′ j / (of-nat c ^ j ∗ of-nat p) ∈ � if j ≤ d for j
proof −

10

define fp ′′ where fp ′′ = Polynomial.monom 1 (p − 1) ∗ Q ^ p
define x

where x = c ^ s ∗ poly.coeff ((pderiv ^^ i) (Polynomial.monom 1 (p −
1) ∗ Q ^ p)) j

have [:fact p:] dvd ([:fact i:] :: int poly) using i
by (auto intro: fact-dvd)

also have [:fact i:] dvd ((pderiv ^^ i) (Polynomial.monom 1 (p − 1) ∗ Q
^ p))

by (rule fact-dvd-higher-pderiv)
finally have c ^ j ∗ fact p dvd x unfolding x-def of-nat-mult using that i

by (intro mult-dvd-mono)
(auto intro!: le-imp-power-dvd simp: s-def d-def fp ′-def degree-higher-pderiv

degree-fp)
hence of-int x / (of-int (c ^ j ∗ fact p) :: complex) ∈ �

by (intro of-int-divide-in-Ints) auto
also have of-int x / (of-int (c ^ j ∗ fact p) :: complex) =

poly.coeff fp ′ j / (of-nat c ^ j ∗ of-nat p) using ‹p > 1 ›
unfolding x-def fp ′-def fp-def

by (simp add: fact-reduce[of p] field-simps hom-distribs higher-pderiv-smult
flip: of-int-hom.coeff-map-poly-hom)

finally show ?thesis .
qed

— Evaluating R yields is an integer since it is symmetric.
have insertion (λi. c ∗ root ′ (roots ′ ! i)) R ∈ �
proof (intro symmetric-poly-of-roots-in-subring-monic allI)

define Q ′ where Q ′ = of-int-poly Q ◦p [:0 , 1 / of-nat c :: complex:]
show symmetric-mpoly {..<l} R unfolding R-def

by (intro symmetric-mpoly-smult symmetric-mpoly-sum[of {..d}] symmet-
ric-mpoly-symmetric-sum)

(simp-all add: mpoly-map-vars-monom permutes-bij permutep-single
bij-imp-bij-inv permutes-inv-inv)

show MPoly-Type.coeff R m ∈ � for m unfolding R-def coeff-sum coeff-smult
sum-distrib-left

using integer by (auto simp: R-def coeff-monom when-def intro!: Ints-sum)
show vars R ⊆ {..<l} unfolding R-def

by (intro order .trans[OF vars-smult] order .trans[OF vars-sum] UN-least
order .trans[OF vars-monom-subset]) auto

show ring-closed � by standard auto

have (
∏

i<l. [:− (of-nat c ∗ root ′ (roots ′ ! i)), 1 :]) =
(
∏

Y←roots ′. [:− (of-nat c ∗ root ′ Y), 1 :])
by (subst prod.list-conv-set-nth) (auto simp: atLeast0LessThan l-def)

also have . . . = (
∏

Y∈Roots ′. [:− (of-nat c ∗ root ′ Y), 1 :])
using roots ′ by (subst prod.distinct-set-conv-list [symmetric]) auto
also have . . . = (

∏
Y∈Roots ′. Polynomial.smult (of-nat c) ([:−root ′ Y ,

1 :])) ◦p [:0 , 1 / c:]
by (simp add: pcompose-prod pcompose-pCons)

also have (
∏

Y∈Roots ′. Polynomial.smult (of-nat c) ([:−root ′ Y , 1 :])) =

11

Polynomial.smult (of-nat c ^ card Roots ′) (
∏

Y∈Roots ′. [:−root ′

Y , 1 :])
by (subst prod-smult) auto

also have . . . = Polynomial.smult (of-nat c ^ (card Roots ′ − 1))
(Polynomial.smult c (

∏
Y∈Roots ′. [:−root ′ Y , 1 :]))

using ‹finite Roots ′› and ‹Roots ′ 6= {}›
by (subst power-diff) (auto simp: Suc-le-eq card-gt-0-iff)

also have Polynomial.smult c (
∏

Y∈Roots ′. [:−root ′ Y , 1 :]) = of-int-poly
Q

using Q-decompose by simp
finally show Polynomial.smult (of-nat c ^ (card Roots ′ − 1)) Q ′ =

(
∏

i<l. [:− (of-nat c ∗ root ′ (roots ′ ! i)), 1 :])
by (simp add: pcompose-smult Q ′-def)

fix i :: nat
show poly.coeff (Polynomial.smult (of-nat c ^ (card Roots ′ − 1)) Q ′) i ∈ �
proof (cases i Polynomial.degree Q rule: linorder-cases)

case greater
thus ?thesis by (auto simp: Q ′-def coeff-pcompose-linear coeff-eq-0)

next
case equal
thus ?thesis using ‹Roots ′ 6= {}› degree-Q card-Roots ′ lead-coeff-Q

by (auto simp: Q ′-def coeff-pcompose-linear lead-coeff-Q power-divide
power-diff)

next
case less
have poly.coeff (Polynomial.smult (of-nat c ^ (card Roots ′ − 1)) Q ′) i =

of-int (poly.coeff Q i) ∗ (of-int (c ^ (card Roots ′ − 1)) / of-int (c ^
i))

by (auto simp: Q ′-def coeff-pcompose-linear power-divide)
also have . . . ∈ � using less degree-Q

by (intro Ints-mult of-int-divide-in-Ints) (auto intro!: le-imp-power-dvd)
finally show ?thesis .

qed
qed auto
— Moreover, by definition, evaluating R gives us

∑
f(xi)/p.

also have insertion (λi. c ∗ root ′ (roots ′ ! i)) R =
(
∑

Y←roots ′. poly fp ′ (root ′ Y)) / of-nat p
by (simp add: insertion-sum R-def poly-altdef d-def sum-list-sum-nth

atLeast0LessThan
l-def power-mult-distrib algebra-simps
sum.swap[of - {..Polynomial.degree fp ′}] del: insertion-monom)

also have . . . = (
∑

Y∈Roots ′. poly ((pderiv ^^ i) fp) (root ′ Y)) / of-nat p
using roots ′ by (subst sum-list-distinct-conv-sum-set) (auto simp: fp ′-def

poly-pcompose)
finally show . . . ∈ � .

qed
then obtain K where K : (

∑
i=p..s+p.

∑
Y∈Roots ′.

poly ((pderiv ^^ i) fp) (root ′ Y)) = of-int K ∗ p
using ‹p > 1 › by (auto elim!: Ints-cases simp: field-simps)

12

— Next, we show that F (0) is an integer and coprime to p.
obtain F0 :: int where F0 : F 0 = of-int F0 coprime (int p) F0
proof −

have (
∑

i=p..s + p. poly ((pderiv ^^ i) fp) 0) / of-nat p ∈ �
unfolding sum-divide-distrib

proof (intro Ints-sum)
fix i assume i: i ∈ {p..s+p}
hence fact p dvd poly ((pderiv ^^ i) ([:0 , 1 :] ^ (p − 1) ∗ Q ^ p)) 0

by (intro fact-dvd-poly-higher-pderiv-aux ′) auto
then obtain k where k: poly ((pderiv ^^ i) ([:0 , 1 :] ^ (p − 1) ∗ Q ^ p))

0 = k ∗ fact p
by auto

have (pderiv ^^ i) fp = Polynomial.smult (of-nat c ^ s / fact (p − 1))
(of-int-poly ((pderiv ^^ i) ([:0 , 1 :] ^ (p − 1) ∗ Q ^ p)))

by (simp add: fp-def higher-pderiv-smult Polynomial.monom-altdef hom-distribs)
also have poly . . . 0 / of-nat p = of-int (c ^ s ∗ k)

using k ‹p > 1 › by (simp add: fact-reduce[of p])
also have . . . ∈ � by simp
finally show poly ((pderiv ^^ i) fp) 0 / of-nat p ∈ � .

qed
then obtain S where S : (

∑
i=p..s + p. poly ((pderiv ^^ i) fp) 0) = of-int

S ∗ p
using ‹p > 1 › by (auto elim!: Ints-cases simp: field-simps)

have F 0 = (
∑

i≤s + p. poly ((pderiv ^^ i) fp) 0)
by (auto simp: F-def Fp-def poly-sum)

also have . . . = (
∑

i∈insert (p − 1) {p..s + p}. poly ((pderiv ^^ i) fp) 0)
proof (intro sum.mono-neutral-right ballI)

fix i assume i: i ∈ {..s + p} − insert (p − 1) {p..s + p}
hence i < p − 1 by auto
have Polynomial.monom 1 (p − 1) dvd fp

by (auto simp: fp-def intro: dvd-smult)
with i show poly ((pderiv ^^ i) fp) 0 = 0

by (intro poly-higher-pderiv-aux1 ′[of - p − 1]) (auto simp: Polyno-
mial.monom-altdef)

qed auto
also have . . . = poly ((pderiv ^^ (p − 1)) fp) 0 + of-int S ∗ of-nat p

using ‹p > 1 › S by (subst sum.insert) auto
also have poly ((pderiv ^^ (p − 1)) fp) 0 = of-int (c ^ s ∗ poly Q 0 ^ p)

using poly-higher-pderiv-aux2 [of p − 1 0 of-int-poly Q ^ p :: complex poly]
by (simp add: fp-def higher-pderiv-smult Polynomial.monom-altdef)

finally have F 0 = of-int (S ∗ int p + c ^ s ∗ poly Q 0 ^ p)
by simp

moreover have coprime p c coprime (int p) (poly Q 0)
using p by (auto intro!: prime-imp-coprime dest: dvd-imp-le-int[rotated])

hence coprime (int p) (c ^ s ∗ poly Q 0 ^ p)
by auto

13

hence coprime (int p) (S ∗ int p + c ^ s ∗ poly Q 0 ^ p)
unfolding coprime-iff-gcd-eq-1 gcd-add-mult by auto

ultimately show ?thesis using that[of S ∗ int p + c ^ s ∗ poly Q 0 ^ p] by
blast

qed

— Putting everything together, we have shown that
∑

I(xi) is an integer coprime
to p, and therefore a nonzero integer, and therefore has an absolute value of at least
1.

have (
∑

Y∈Roots ′. I (root ′ Y)) = F 0 ∗ (
∑

Y∈Roots ′. exp (root ′ Y)) −
(
∑

Y∈Roots ′. F (root ′ Y))
by (simp add: I-altdef sum-subtractf sum-distrib-left sum-distrib-right alge-

bra-simps)
also have . . . = −(of-int (F0 ∗ int A) +

(
∑

i≤s+p.
∑

Y∈Roots ′. poly ((pderiv ^^ i) fp) (root ′ Y)))
using F0 by (simp add: Roots ′-def eq F-def Fp-def poly-sum sum.swap[of -

{..s+p}])
also have (

∑
i≤s+p.

∑
Y∈Roots ′. poly ((pderiv ^^ i) fp) (root ′ Y)) =

(
∑

i=p..s+p.
∑

Y∈Roots ′. poly ((pderiv ^^ i) fp) (root ′ Y))
proof (intro sum.mono-neutral-right ballI sum.neutral)

fix i Y assume i: i ∈ {..s+p} − {p..s+p} and Y : Y ∈ Roots ′

have [:−root ′ Y , 1 :] ^ p dvd of-int-poly Q ^ p
by (intro dvd-power-same) (auto simp: dvd-iff-poly-eq-0 Y)

hence [:−root ′ Y , 1 :] ^ p dvd fp
by (auto simp: fp-def intro!: dvd-smult)

thus poly ((pderiv ^^ i) fp) (root ′ Y) = 0
using i by (intro poly-higher-pderiv-aux1 ′) auto

qed auto
also have . . . = of-int (K ∗ int p) using K by simp
finally have (

∑
Y∈Roots ′. I (root ′ Y)) = −of-int (K ∗ int p + F0 ∗ int A)

by simp
moreover have coprime p A

using p ‹A > 0 › by (intro prime-imp-coprime) (auto dest!: dvd-imp-le)
hence coprime (int p) (F0 ∗ int A)

using F0 by auto
hence coprime (int p) (K ∗ int p + F0 ∗ int A)

using F0 unfolding coprime-iff-gcd-eq-1 gcd-add-mult by auto
hence K ∗ int p + F0 ∗ int A 6= 0

using p by (intro notI) auto
hence norm (−of-int (K ∗ int p + F0 ∗ int A) :: complex) ≥ 1

unfolding norm-minus-cancel norm-of-int by linarith
ultimately have 1 ≤ norm (

∑
Y∈Roots ′. I (root ′ Y)) by metis

— The M–L bound on the integral gives us an upper bound:
also have norm (

∑
Y∈Roots ′. I (root ′ Y)) ≤

(
∑

Y∈Roots ′. norm (root ′ Y) ∗ exp (norm (root ′ Y)) ∗ fp-ub p)
proof (intro sum-norm-le lindemann-weierstrass-integral-bound fp-ub fp-ub-nonneg)

fix Y u assume ∗: Y ∈ Roots ′ u ∈ closed-segment 0 (root ′ Y)
hence closed-segment 0 (root ′ Y) ⊆ cball 0 Radius

14

using ‹Radius ≥ 0 › Radius[of Y] by (intro closed-segment-subset) auto
with ∗ show u ∈ cball 0 Radius by auto

qed
also have . . . ≤ (

∑
Y∈Roots ′. Radius ∗ exp (Radius) ∗ fp-ub p)

using Radius by (intro sum-mono mult-right-mono mult-mono fp-ub-nonneg
‹Radius ≥ 0 ›) auto

also have . . . = C ∗ fp-ub p by (simp add: C-def)
finally show 1 ≤ C ∗ fp-ub p .

qed

— It now only remains to show that this inequality is inconsistent for large p.
This is obvious, since the upper bound is an exponential divided by a factorial and
therefore clearly tends to zero.

have (λp. C ∗ fp-ub p) ∈ Θ(λp. (C / (Radius ∗ |c|)) ∗ (p / 2 ^ p) ∗
((2 ∗ |c| ^ r ∗ Radius ∗ Q-ub) ^ p / fact p))

(is - ∈ Θ(?f)) using degree-Q card-Roots ′ ‹Radius > 0 ›
by (intro bigthetaI-cong eventually-mono[OF eventually-gt-at-top[of 0]])

(auto simp: fact-reduce power-mult [symmetric] r-def
fp-ub-def power-diff power-mult-distrib)

also have ?f ∈ o(λp. 1 ∗ 1 ∗ 1)
proof (intro landau-o.big-small-mult landau-o.big-mult)

have (λx. (real-of-int (2 ∗ |c| ^ r) ∗ Radius ∗ Q-ub) ^ x / fact x) −−−−→ 0
by (intro power-over-fact-tendsto-0)

thus (λx. (real-of-int (2 ∗ |c| ^ r) ∗ Radius ∗ Q-ub) ^ x / fact x) ∈ o(λx. 1)
by (intro smalloI-tendsto) auto

qed real-asymp+
finally have (λp. C ∗ fp-ub p) ∈ o(λ-. 1) by simp
from smalloD-tendsto[OF this] have (λp. C ∗ fp-ub p) −−−−→ 0 by simp
hence eventually (λp. C ∗ fp-ub p < 1) at-top

by (intro order-tendstoD) auto
hence eventually (λp. C ∗ fp-ub p < 1) primes-at-top

unfolding primes-at-top-def eventually-inf-principal by eventually-elim auto
moreover note ‹eventually (λp. C ∗ fp-ub p ≥ 1) primes-at-top›
— We therefore have a contradiction for any sufficiently large prime.
ultimately have eventually (λp. False) primes-at-top

by eventually-elim auto

— Since sufficiently large primes always exist, this concludes the theorem.
moreover have frequently (λp. prime p) sequentially
using primes-infinite by (simp add: cofinite-eq-sequentially[symmetric] Inf-many-def)

ultimately show False
by (auto simp: frequently-def eventually-inf-principal primes-at-top-def)

qed

lemma pcompose-conjugates-integer :
assumes

∧
i. poly.coeff p i ∈ �

shows poly.coeff (pcompose p [:0 , i:] ∗ pcompose p [:0 , −i:]) i ∈ �
proof −

let ?c = λi. poly.coeff p i :: complex

15

have poly.coeff (pcompose p [:0 , i:] ∗ pcompose p [:0 , −i:]) i =
i ^ i ∗ (

∑
k≤i. (−1) ^ (i − k) ∗ ?c k ∗ ?c (i − k))

unfolding coeff-mult sum-distrib-left
by (intro sum.cong) (auto simp: coeff-mult coeff-pcompose-linear power-minus ′

power-diff field-simps intro!: Ints-sum)
also have (

∑
k≤i. (−1) ^ (i − k) ∗ ?c k ∗ ?c (i − k)) =

(
∑

k≤i. (−1) ^ k ∗ ?c k ∗ ?c (i − k)) (is ?S1 = ?S2)
by (intro sum.reindex-bij-witness[of - λk. i − k λk. i − k]) (auto simp: mult-ac)

hence ?S1 = (?S1 + ?S2) / 2 by simp
also have . . . = (

∑
k≤i. ((−1) ^ k + (−1) ^ (i − k)) / 2 ∗ ?c k ∗ ?c (i − k))

by (simp add: ring-distribs sum.distrib sum-divide-distrib [symmetric])
also have . . . = (

∑
k≤i. (1 + (−1) ^ i) / 2 ∗ (−1) ^ k ∗ ?c k ∗ ?c (i − k))

by (intro sum.cong) (auto simp: power-add power-diff field-simps)
also have i ^ i ∗ . . . ∈ �
proof (cases even i)

case True
thus ?thesis

by (intro Ints-mult Ints-sum assms) (auto elim!: evenE simp: power-mult)
next

case False
hence 1 + (−1) ^ i = (0 :: complex) by (auto elim!: oddE simp: power-mult)
thus ?thesis by simp

qed
finally show ?thesis .

qed

lemma algebraic-times-i:
assumes algebraic x
shows algebraic (i ∗ x) algebraic (−i ∗ x)

proof −
from assms obtain p where p: poly p x = 0 ∀ i. poly.coeff p i ∈ � p 6= 0

by (auto elim!: algebraicE)
define p ′ where p ′ = pcompose p [:0 , i:] ∗ pcompose p [:0 , −i:]
have p ′: poly p ′ (i ∗ x) = 0 poly p ′ (−i ∗ x) = 0 p ′ 6= 0

by (auto simp: p ′-def poly-pcompose algebra-simps p pcompose-eq-0-iff dest:
pcompose-eq-0)

moreover have ∀ i. poly.coeff p ′ i ∈ �
using p unfolding p ′-def by (intro allI pcompose-conjugates-integer) auto

ultimately show algebraic (i ∗ x) algebraic (−i ∗ x) by (intro algebraicI [of p ′];
simp)+
qed

lemma algebraic-times-i-iff : algebraic (i ∗ x) ←→ algebraic x
using algebraic-times-i[of x] algebraic-times-i[of i ∗ x] by auto

theorem transcendental-pi: ¬algebraic pi
using transcendental-i-pi by (simp add: algebraic-times-i-iff)

end

16

References

[1] S. Bernard. Formalization of the Lindemann-Weierstrass Theorem. In
Interactive Theorem Proving, Brasilia, Brazil, Sept. 2017.

[2] S. Bernard, Y. Bertot, L. Rideau, and P.-Y. Strub. Formal proofs of tran-
scendence for e and pi as an application of multivariate and symmetric
polynomials. In Proceedings of the 5th ACM SIGPLAN Conference on
Certified Programs and Proofs, CPP 2016, pages 76–87, New York, NY,
USA, 2016. ACM.

[3] I. Niven. The transcendence of π. The American Mathematical Monthly,
46(8):469–471, 1939.

[4] F. von Lindemann. Ueber die Zahl π. Mathematische Annalen,
20(2):213–225, Jun 1882.

17

	The Transcendence of

