
Perron-Frobenius Theorem for Spectral Radius
Analysis∗

Jose Divasón, Ondej Kunar, René Thiemann and Akihisa Yamada

March 17, 2025

Abstract

The spectral radius of a matrix A is the maximum norm of all
eigenvalues of A. In previous work we already formalized that for a
complex matrix A, the values in An grow polynomially in n if and only
if the spectral radius is at most one. One problem with the above char-
acterization is the determination of all complex eigenvalues. In case A
contains only non-negative real values, a simplification is possible with
the help of the Perron-Frobenius theorem, which tells us that it suf-
fices to consider only the real eigenvalues of A, i.e., applying Sturm’s
method can decide the polynomial growth of An.

We formalize the Perron-Frobenius theorem based on a proof via
Brouwer’s fixpoint theorem, which is available in the HOL multivari-
ate analysis (HMA) library. Since the results on the spectral radius is
based on matrices in the Jordan normal form (JNF) library, we fur-
ther develop a connection which allows us to easily transfer theorems
between HMA and JNF. With this connection we derive the combined
result: if A is a non-negative real matrix, and no real eigenvalue of A
is strictly larger than one, then An is polynomially bounded in n.

Contents
1 Introduction 2

2 Elimination of CARD(’n) 3

3 Connecting HMA-matrices with JNF-matrices 4
3.1 Bijections between index types of HMA and natural numbers 4
3.2 Transfer rules to convert theorems from JNF to HMA and

vice-versa. 8
∗Supported by FWF (Austrian Science Fund) project Y757.

1

4 Perron-Frobenius Theorem 24
4.1 Auxiliary Notions . 24
4.2 Perron-Frobenius theorem via Brouwer’s fixpoint theorem. . . 34

5 Roots of Unity 40
5.1 The Perron Frobenius Theorem for Irreducible Matrices . . . 52
5.2 Handling Non-Irreducible Matrices as Well 82

6 Combining Spectral Radius Theory with Perron Frobenius
theorem 97

7 The Jordan Blocks of the Spectral Radius are Largest 103

8 Homomorphisms of Gauss-Jordan Elimination, Kernel and
More 124

9 Combining Spectral Radius Theory with Perron Frobenius
theorem 127

10 An efficient algorithm to compute the growth rate of An. 132

1 Introduction
The spectral radius of a matrix A over R or C is defined as

ρ(A) = max {|x|. χA(x) = 0, x ∈ C}

where χA is the characteristic polynomial of A. It is a central notion related
to the growth rate of matrix powers. A matrix A has polynomial growth, i.e.,
all values of An can be bounded polynomially in n, if and only if ρ(A) ≤ 1.
It is quite easy to see that ρ(A) ≤ 1 is a necessary criterion,1 but it is more
complicated to argue about sufficiency. In previous work we formalized this
statement via Jordan normal forms [4].

Theorem 1 (in JNF). The values in An are polynomially bounded in n if
ρ(A) ≤ 1.

In order to perform the proof via Jordan normal forms, we did not use
the HMA library from the distribution to represent matrices. The reason is
that already the definition of a Jordan normal form is naturally expressed via
block-matrices, and arbitrary block-matrices are hard to express in HMA,
if at all.

1Let λ and v be some eigenvalue and eigenvector pair such that |λ| > 1. Then |Anv| =
|λnv| = |λ|n|v| grows exponentially in n, where |w| denotes the component-wise application
of | · | to vector elements of w.

2

The problem in applying Theorem 1 in concrete examples is the deter-
mination of all complex roots of the polynomial χA. For instance, one can
utilize complex algebraic numbers for this purpose, which however are com-
putationally expensive. To avoid this problem, in this work we formalize
the Perron Frobenius theorem. It states that for non-negative real-valued
matrices, ρ(A) is an eigenvalue of A.

Theorem 2 (in HMA). If A ∈ Rk×k
≥0 , then χA(ρ(A)) = 0.

We decided to perform the formalization based on the HMA library,
since there is a short proof of Theorem 2 via Brouwer’s fixpoint theorem
[2, Section 5.2]. The latter is a well-known but complex theorem that is
available in HMA, but not in the JNF library.

Eventually we want to combine both theorems to obtain:

Corollary 1. If A ∈ Rk×k
≥0 , then the values in An are polynomially bounded

in n if χA has no real roots in the interval (1,∞).

This criterion is computationally far less expensive – one invocation of
Sturm’s method on χA suffices. Unfortunately, we cannot immediately com-
bine both theorems. We first have to bridge the gap between the HMA-world
and the JNF-world. To this end, we develop a setup for the transfer-tool
which admits to translate theorems from JNF into HMA. Moreover, using a
recent extension for local type definitions within proofs [1], we also provide
a translation from HMA into JNF.

With the help of these translations, we prove Corollary 1 and make it
available in both HMA and JNF. (In the formalization the corollary looks a
bit more complicated as it also contains an estimation of the the degree of
the polynomial growth.)

2 Elimination of CARD(’n)
In the following theory we provide a method which modifies theorems of the
form P [CARD(′n)] into n! = 0 =⇒ P [n], so that they can more easily be
applied.

Known issues: there might be problems with nested meta-implications
and meta-quantification.
theory Cancel-Card-Constraint
imports

HOL−Types-To-Sets.Types-To-Sets
HOL−Library.Cardinality

begin

lemma n-zero-nonempty: n 6= 0 =⇒ {0 ..< n :: nat} 6= {} by auto

3

lemma type-impl-card-n: assumes ∃ (Rep :: ′a ⇒ nat) Abs. type-definition Rep
Abs {0 ..< n :: nat}

shows class.finite (TYPE(′a)) ∧ CARD(′a) = n
proof −

from assms obtain rep :: ′a ⇒ nat and abs :: nat ⇒ ′a where t: type-definition
rep abs {0 ..< n} by auto
have card (UNIV :: ′a set) = card {0 ..< n} using t by (rule type-definition.card)
also have . . . = n by auto
finally have bn: CARD (′a) = n .
have finite (abs ‘ {0 ..< n}) by auto
also have abs ‘ {0 ..< n} = UNIV using t by (rule type-definition.Abs-image)
finally have class.finite (TYPE(′a)) unfolding class.finite-def .
with bn show ?thesis by blast

qed

ML-file ‹cancel-card-constraint.ML›

end

3 Connecting HMA-matrices with JNF-matrices
The following theories provide a connection between the type-based repre-
sentation of vectors and matrices in HOL multivariate-analysis (HMA) with
the set-based representation of vectors and matrices with integer indices in
the Jordan-normal-form (JNF) development.

3.1 Bijections between index types of HMA and natural
numbers

At the core of HMA-connect, there has to be a translation between indices
of vectors and matrices, which are via index-types on the one hand, and
natural numbers on the other hand.

We some unspecified bijection in our application, and not the conversions
to-nat and from-nat in theory Rank-Nullity-Theorem/Mod-Type, since our
definitions below do not enforce any further type constraints.
theory Bij-Nat
imports

HOL−Library.Cardinality
HOL−Library.Numeral-Type

begin

lemma finite-set-to-list: ∃ xs :: ′a :: finite list. distinct xs ∧ set xs = Y

4

proof −
have finite Y by simp
thus ?thesis
proof (induct Y rule: finite-induct)

case (insert y Y)
then obtain xs where xs: distinct xs set xs = Y by auto
show ?case

by (rule exI [of - y # xs], insert xs insert(2), auto)
qed simp

qed

definition univ-list :: ′a :: finite list where
univ-list = (SOME xs. distinct xs ∧ set xs = UNIV)

lemma univ-list: distinct (univ-list :: ′a list) set univ-list = (UNIV :: ′a :: finite
set)
proof −

let ?xs = univ-list :: ′a list
have distinct ?xs ∧ set ?xs = UNIV

unfolding univ-list-def
by (rule someI-ex, rule finite-set-to-list)

thus distinct ?xs set ?xs = UNIV by auto
qed

definition to-nat :: ′a :: finite ⇒ nat where
to-nat a = (SOME i. univ-list ! i = a ∧ i < length (univ-list :: ′a list))

definition from-nat :: nat ⇒ ′a :: finite where
from-nat i = univ-list ! i

lemma length-univ-list-card: length (univ-list :: ′a :: finite list) = CARD(′a)
using distinct-card[of univ-list :: ′a list, symmetric]
by (auto simp: univ-list)

lemma to-nat-ex: ∃ ! i. univ-list ! i = (a :: ′a :: finite) ∧ i < length (univ-list :: ′a
list)
proof −

let ?ul = univ-list :: ′a list
have a-in-set: a ∈ set ?ul unfolding univ-list by auto
from this [unfolded set-conv-nth]
obtain i where i1 : ?ul ! i = a ∧ i < length ?ul by auto
show ?thesis
proof (rule ex1I , rule i1)

fix j
assume ?ul ! j = a ∧ j < length ?ul
moreover have distinct ?ul by (simp add: univ-list)
ultimately show j = i using i1 nth-eq-iff-index-eq by blast

qed
qed

5

lemma to-nat-less-card: to-nat (a :: ′a :: finite) < CARD(′a)
proof −

let ?ul = univ-list :: ′a list
from to-nat-ex[of a] obtain i where
i1 : univ-list ! i = a ∧ i<length (univ-list:: ′a list) by auto
show ?thesis unfolding to-nat-def
proof (rule someI2 , rule i1)
fix x
assume x: ?ul ! x = a ∧ x < length ?ul
thus x < CARD (′a) using x by (simp add: univ-list length-univ-list-card)

qed
qed

lemma to-nat-from-nat-id:
assumes i: i < CARD(′a :: finite)
shows to-nat (from-nat i :: ′a) = i
unfolding to-nat-def from-nat-def

proof (rule some-equality, simp)
have l: length (univ-list:: ′a list) = card (set (univ-list:: ′a list))

by (rule distinct-card[symmetric], simp add: univ-list)
thus i2 : i < length (univ-list:: ′a list)

using i unfolding univ-list by simp
fix n
assume n: (univ-list:: ′a list) ! n = (univ-list:: ′a list) ! i ∧ n < length (univ-list:: ′a

list)
have d: distinct (univ-list:: ′a list) using univ-list by simp
show n = i using nth-eq-iff-index-eq[OF d - i2] n by auto

qed

lemma from-nat-inj: assumes i: i < CARD(′a :: finite)
and j: j < CARD(′a :: finite)
and id: (from-nat i :: ′a) = from-nat j
shows i = j

proof −
from arg-cong[OF id, of to-nat]
show ?thesis using i j by (simp add: to-nat-from-nat-id)

qed

lemma from-nat-to-nat-id[simp]:
(from-nat (to-nat a)) = (a:: ′a :: finite)

proof −
have a-in-set: a ∈ set (univ-list) unfolding univ-list by auto
from this [unfolded set-conv-nth]
obtain i where i1 : univ-list ! i = a ∧ i<length (univ-list:: ′a list) by auto
show ?thesis
unfolding to-nat-def from-nat-def
by (rule someI2 , rule i1 , simp)

qed

6

lemma to-nat-inj[simp]: assumes to-nat a = to-nat b
shows a = b

proof −
from to-nat-ex[of a] to-nat-ex[of b]
show a = b unfolding to-nat-def by (metis assms from-nat-to-nat-id)

qed

lemma range-to-nat: range (to-nat :: ′a :: finite ⇒ nat) = {0 ..< CARD(′a)} (is
?l = ?r)
proof −

{
fix i
assume i ∈ ?l
hence i ∈ ?r using to-nat-less-card[where ′a = ′a] by auto

}
moreover
{

fix i
assume i ∈ ?r
hence i < CARD(′a) by auto
from to-nat-from-nat-id[OF this]
have i ∈ ?l by (metis range-eqI)

}
ultimately show ?thesis by auto

qed

lemma inj-to-nat: inj to-nat by (simp add: inj-on-def)

lemma bij-to-nat: bij-betw to-nat (UNIV :: ′a :: finite set) {0 ..< CARD(′a)}
unfolding bij-betw-def by (auto simp: range-to-nat inj-to-nat)

lemma numeral-nat: (numeral m1 :: nat) ∗ numeral n1 ≡ numeral (m1 ∗ n1)
(numeral m1 :: nat) + numeral n1 ≡ numeral (m1 + n1) by simp-all

lemmas card-num-simps =
card-num1 card-bit0 card-bit1
mult-num-simps
add-num-simps
eq-num-simps
mult-Suc-right mult-0-right One-nat-def add.right-neutral
numeral-nat Suc-numeral

end

7

3.2 Transfer rules to convert theorems from JNF to HMA
and vice-versa.

theory HMA-Connect
imports

Jordan-Normal-Form.Spectral-Radius
HOL−Analysis.Determinants
HOL−Analysis.Cartesian-Euclidean-Space
Bij-Nat
Cancel-Card-Constraint
HOL−Eisbach.Eisbach

begin

Prefer certain constants and lemmas without prefix.
hide-const (open) Matrix.mat
hide-const (open) Matrix.row
hide-const (open) Determinant.det

lemmas mat-def = Finite-Cartesian-Product.mat-def
lemmas det-def = Determinants.det-def
lemmas row-def = Finite-Cartesian-Product.row-def

notation vec-index (infixl ‹$v› 90)
notation vec-nth (infixl ‹$h› 90)

Forget that ′a mat, ′a Matrix.vec, and ′a poly have been defined via
lifting
lifting-forget vec.lifting
lifting-forget mat.lifting

lifting-forget poly.lifting

Some notions which we did not find in the HMA-world.
definition eigen-vector :: ′a::comm-ring-1 ^ ′n ^ ′n ⇒ ′a ^ ′n ⇒ ′a ⇒ bool where

eigen-vector A v ev = (v 6= 0 ∧ A ∗v v = ev ∗s v)

definition eigen-value :: ′a :: comm-ring-1 ^ ′n ^ ′n ⇒ ′a ⇒ bool where
eigen-value A k = (∃ v. eigen-vector A v k)

definition similar-matrix-wit
:: ′a :: semiring-1 ^ ′n ^ ′n ⇒ ′a ^ ′n ^ ′n ⇒ ′a ^ ′n ^ ′n ⇒ ′a ^ ′n ^ ′n ⇒ bool

where
similar-matrix-wit A B P Q = (P ∗∗ Q = mat 1 ∧ Q ∗∗ P = mat 1 ∧ A = P
∗∗ B ∗∗ Q)

definition similar-matrix
:: ′a :: semiring-1 ^ ′n ^ ′n ⇒ ′a ^ ′n ^ ′n ⇒ bool where
similar-matrix A B = (∃ P Q. similar-matrix-wit A B P Q)

8

definition spectral-radius :: complex ^ ′n ^ ′n ⇒ real where
spectral-radius A = Max { norm ev | v ev. eigen-vector A v ev}

definition Spectrum :: ′a :: field ^ ′n ^ ′n ⇒ ′a set where
Spectrum A = Collect (eigen-value A)

definition vec-elements-h :: ′a ^ ′n ⇒ ′a set where
vec-elements-h v = range (vec-nth v)

lemma vec-elements-h-def ′: vec-elements-h v = {v $h i | i. True}
unfolding vec-elements-h-def by auto

definition elements-mat-h :: ′a ^ ′nc ^ ′nr ⇒ ′a set where
elements-mat-h A = range (λ (i,j). A $h i $h j)

lemma elements-mat-h-def ′: elements-mat-h A = {A $h i $h j | i j. True}
unfolding elements-mat-h-def by auto

definition map-vector :: (′a ⇒ ′b) ⇒ ′a ^ ′n ⇒ ′b ^ ′n where
map-vector f v ≡ χ i. f (v $h i)

definition map-matrix :: (′a ⇒ ′b) ⇒ ′a ^ ′n ^ ′m ⇒ ′b ^ ′n ^ ′m where
map-matrix f A ≡ χ i. map-vector f (A $h i)

definition normbound :: ′a :: real-normed-field ^ ′nc ^ ′nr ⇒ real ⇒ bool where
normbound A b ≡ ∀ x ∈ elements-mat-h A. norm x ≤ b

lemma spectral-radius-ev-def : spectral-radius A = Max (norm ‘ (Collect (eigen-value
A)))

unfolding spectral-radius-def eigen-value-def [abs-def]
by (rule arg-cong[where f = Max], auto)

lemma elements-mat: elements-mat A = {A $$ (i,j) | i j. i < dim-row A ∧ j <
dim-col A}

unfolding elements-mat-def by force

definition vec-elements :: ′a Matrix.vec ⇒ ′a set
where vec-elements v = set [v $ i. i <− [0 ..< dim-vec v]]

lemma vec-elements: vec-elements v = { v $ i | i. i < dim-vec v}
unfolding vec-elements-def by auto

context includes vec.lifting
begin
end

definition from-hmav :: ′a ^ ′n ⇒ ′a Matrix.vec where

9

from-hmav v = Matrix.vec CARD(′n) (λ i. v $h from-nat i)

definition from-hmam :: ′a ^ ′nc ^ ′nr ⇒ ′a Matrix.mat where
from-hmam a = Matrix.mat CARD(′nr) CARD(′nc) (λ (i,j). a $h from-nat i $h

from-nat j)

definition to-hmav :: ′a Matrix.vec ⇒ ′a ^ ′n where
to-hmav v = (χ i. v $v to-nat i)

definition to-hmam :: ′a Matrix.mat ⇒ ′a ^ ′nc ^ ′nr where
to-hmam a = (χ i j. a $$ (to-nat i, to-nat j))

declare vec-lambda-eta[simp]

lemma to-hma-from-hmav[simp]: to-hmav (from-hmav v) = v
by (auto simp: to-hmav-def from-hmav-def to-nat-less-card)

lemma to-hma-from-hmam[simp]: to-hmam (from-hmam v) = v
by (auto simp: to-hmam-def from-hmam-def to-nat-less-card)

lemma from-hma-to-hmav[simp]:
v ∈ carrier-vec (CARD(′n)) =⇒ from-hmav (to-hmav v :: ′a ^ ′n) = v
by (auto simp: to-hmav-def from-hmav-def to-nat-from-nat-id)

lemma from-hma-to-hmam[simp]:
A ∈ carrier-mat (CARD(′nr)) (CARD(′nc)) =⇒ from-hmam (to-hmam A :: ′a ^

′nc ^ ′nr) = A
by (auto simp: to-hmam-def from-hmam-def to-nat-from-nat-id)

lemma from-hmav-inj[simp]: from-hmav x = from-hmav y ←→ x = y
by (intro iffI , insert to-hma-from-hmav[of x], auto)

lemma from-hmam-inj[simp]: from-hmam x = from-hmam y ←→ x = y
by(intro iffI , insert to-hma-from-hmam[of x], auto)

definition HMA-V :: ′a Matrix.vec ⇒ ′a ^ ′n ⇒ bool where
HMA-V = (λ v w. v = from-hmav w)

definition HMA-M :: ′a Matrix.mat ⇒ ′a ^ ′nc ^ ′nr ⇒ bool where
HMA-M = (λ a b. a = from-hmam b)

definition HMA-I :: nat ⇒ ′n :: finite ⇒ bool where
HMA-I = (λ i a. i = to-nat a)

context includes lifting-syntax
begin

lemma Domainp-HMA-V [transfer-domain-rule]:
Domainp (HMA-V :: ′a Matrix.vec ⇒ ′a ^ ′n ⇒ bool) = (λ v. v ∈ carrier-vec

10

(CARD(′n)))
by(intro ext iffI , insert from-hma-to-hmav[symmetric], auto simp: from-hmav-def

HMA-V-def)

lemma Domainp-HMA-M [transfer-domain-rule]:
Domainp (HMA-M :: ′a Matrix.mat ⇒ ′a ^ ′nc ^ ′nr ⇒ bool)
= (λ A. A ∈ carrier-mat CARD(′nr) CARD(′nc))
by (intro ext iffI , insert from-hma-to-hmam[symmetric], auto simp: from-hmam-def

HMA-M-def)

lemma Domainp-HMA-I [transfer-domain-rule]:
Domainp (HMA-I :: nat ⇒ ′n :: finite ⇒ bool) = (λ i. i < CARD(′n)) (is ?l =

?r)
proof (intro ext)

fix i :: nat
show ?l i = ?r i

unfolding HMA-I-def Domainp-iff
by (auto intro: exI [of - from-nat i] simp: to-nat-from-nat-id to-nat-less-card)

qed

lemma bi-unique-HMA-V [transfer-rule]: bi-unique HMA-V left-unique HMA-V
right-unique HMA-V

unfolding HMA-V-def bi-unique-def left-unique-def right-unique-def by auto

lemma bi-unique-HMA-M [transfer-rule]: bi-unique HMA-M left-unique HMA-M
right-unique HMA-M

unfolding HMA-M-def bi-unique-def left-unique-def right-unique-def by auto

lemma bi-unique-HMA-I [transfer-rule]: bi-unique HMA-I left-unique HMA-I right-unique
HMA-I

unfolding HMA-I-def bi-unique-def left-unique-def right-unique-def by auto

lemma right-total-HMA-V [transfer-rule]: right-total HMA-V
unfolding HMA-V-def right-total-def by simp

lemma right-total-HMA-M [transfer-rule]: right-total HMA-M
unfolding HMA-M-def right-total-def by simp

lemma right-total-HMA-I [transfer-rule]: right-total HMA-I
unfolding HMA-I-def right-total-def by simp

lemma HMA-V-index [transfer-rule]: (HMA-V ===> HMA-I ===> (=)) ($v)
($h)

unfolding rel-fun-def HMA-V-def HMA-I-def from-hmav-def
by (auto simp: to-nat-less-card)

We introduce the index function to have pointwise access to HMA-
matrices by a constant. Otherwise, the transfer rule with λA i. ($h) (A
$h i) instead of index is not applicable.

11

definition index-hma A i j ≡ A $h i $h j

lemma HMA-M-index [transfer-rule]:
(HMA-M ===> HMA-I ===> HMA-I ===> (=)) (λ A i j. A $$ (i,j))

index-hma
by (intro rel-funI , simp add: index-hma-def to-nat-less-card HMA-M-def HMA-I-def

from-hmam-def)

lemma HMA-V-0 [transfer-rule]: HMA-V (0 v CARD(′n)) (0 :: ′a :: zero ^ ′n)
unfolding HMA-V-def from-hmav-def by auto

lemma HMA-M-0 [transfer-rule]:
HMA-M (0m CARD(′nr) CARD(′nc)) (0 :: ′a :: zero ^ ′nc ^ ′nr)
unfolding HMA-M-def from-hmam-def by auto

lemma HMA-M-1 [transfer-rule]:
HMA-M (1m (CARD(′n))) (mat 1 :: ′a::{zero,one}^ ′n^ ′n)
unfolding HMA-M-def
by (auto simp add: mat-def from-hmam-def from-nat-inj)

lemma from-hmav-add: from-hmav v + from-hmav w = from-hmav (v + w)
unfolding from-hmav-def by auto

lemma HMA-V-add [transfer-rule]: (HMA-V ===> HMA-V ===> HMA-V)
(+) (+)

unfolding rel-fun-def HMA-V-def
by (auto simp: from-hmav-add)

lemma from-hmav-diff : from-hmav v − from-hmav w = from-hmav (v − w)
unfolding from-hmav-def by auto

lemma HMA-V-diff [transfer-rule]: (HMA-V ===> HMA-V ===> HMA-V)
(−) (−)

unfolding rel-fun-def HMA-V-def
by (auto simp: from-hmav-diff)

lemma from-hmam-add: from-hmam a + from-hmam b = from-hmam (a + b)
unfolding from-hmam-def by auto

lemma HMA-M-add [transfer-rule]: (HMA-M ===> HMA-M ===> HMA-M)
(+) (+)

unfolding rel-fun-def HMA-M-def
by (auto simp: from-hmam-add)

lemma from-hmam-diff : from-hmam a − from-hmam b = from-hmam (a − b)
unfolding from-hmam-def by auto

lemma HMA-M-diff [transfer-rule]: (HMA-M ===> HMA-M ===> HMA-M)
(−) (−)

12

unfolding rel-fun-def HMA-M-def
by (auto simp: from-hmam-diff)

lemma scalar-product: fixes v :: ′a :: semiring-1 ^ ′n
shows scalar-prod (from-hmav v) (from-hmav w) = scalar-product v w
unfolding scalar-product-def scalar-prod-def from-hmav-def dim-vec
by (simp add: sum.reindex[OF inj-to-nat, unfolded range-to-nat])

lemma [simp]:
from-hmam (y :: ′a ^ ′nc ^ ′nr) ∈ carrier-mat (CARD(′nr)) (CARD(′nc))
dim-row (from-hmam (y :: ′a ^ ′nc ^ ′nr)) = CARD(′nr)
dim-col (from-hmam (y :: ′a ^ ′nc ^ ′nr)) = CARD(′nc)
unfolding from-hmam-def by simp-all

lemma [simp]:
from-hmav (y :: ′a ^ ′n) ∈ carrier-vec (CARD(′n))
dim-vec (from-hmav (y :: ′a ^ ′n)) = CARD(′n)
unfolding from-hmav-def by simp-all

declare rel-funI [intro!]

lemma HMA-scalar-prod [transfer-rule]:
(HMA-V ===> HMA-V ===> (=)) scalar-prod scalar-product
by (auto simp: HMA-V-def scalar-product)

lemma HMA-row [transfer-rule]: (HMA-I ===> HMA-M ===> HMA-V) (λ i
a. Matrix.row a i) row

unfolding HMA-M-def HMA-I-def HMA-V-def
by (auto simp: from-hmam-def from-hmav-def to-nat-less-card row-def)

lemma HMA-col [transfer-rule]: (HMA-I ===> HMA-M ===> HMA-V) (λ i
a. col a i) column

unfolding HMA-M-def HMA-I-def HMA-V-def
by (auto simp: from-hmam-def from-hmav-def to-nat-less-card column-def)

definition mk-mat :: (′i ⇒ ′j ⇒ ′c) ⇒ ′c^ ′j^ ′i where
mk-mat f = (χ i j. f i j)

definition mk-vec :: (′i ⇒ ′c) ⇒ ′c^ ′i where
mk-vec f = (χ i. f i)

lemma HMA-M-mk-mat[transfer-rule]: ((HMA-I ===> HMA-I ===> (=)) ===>
HMA-M)
(λ f . Matrix.mat (CARD(′nr)) (CARD(′nc)) (λ (i,j). f i j))
(mk-mat :: ((′nr ⇒ ′nc ⇒ ′a) ⇒ ′a^ ′nc^ ′nr))

proof−
{

fix x y i j
assume id: ∀ (ya :: ′nr) (yb :: ′nc). (x (to-nat ya) (to-nat yb) :: ′a) = y ya yb

13

and i: i < CARD(′nr) and j: j < CARD(′nc)
from to-nat-from-nat-id[OF i] to-nat-from-nat-id[OF j] id[rule-format, of from-nat

i from-nat j]
have x i j = y (from-nat i) (from-nat j) by auto

}
thus ?thesis

unfolding rel-fun-def mk-mat-def HMA-M-def HMA-I-def from-hmam-def by
auto
qed

lemma HMA-M-mk-vec[transfer-rule]: ((HMA-I ===> (=)) ===> HMA-V)
(λ f . Matrix.vec (CARD(′n)) (λ i. f i))
(mk-vec :: ((′n ⇒ ′a) ⇒ ′a^ ′n))

proof−
{

fix x y i
assume id: ∀ (ya :: ′n). (x (to-nat ya) :: ′a) = y ya

and i: i < CARD(′n)
from to-nat-from-nat-id[OF i] id[rule-format, of from-nat i]
have x i = y (from-nat i) by auto

}
thus ?thesis

unfolding rel-fun-def mk-vec-def HMA-V-def HMA-I-def from-hmav-def by
auto
qed

lemma mat-mult-scalar : A ∗∗ B = mk-mat (λ i j. scalar-product (row i A) (column
j B))

unfolding vec-eq-iff matrix-matrix-mult-def scalar-product-def mk-mat-def
by (auto simp: row-def column-def)

lemma mult-mat-vec-scalar : A ∗v v = mk-vec (λ i. scalar-product (row i A) v)
unfolding vec-eq-iff matrix-vector-mult-def scalar-product-def mk-mat-def mk-vec-def
by (auto simp: row-def column-def)

lemma dim-row-transfer-rule:
HMA-M A (A ′ :: ′a ^ ′nc ^ ′nr) =⇒ (=) (dim-row A) (CARD(′nr))
unfolding HMA-M-def by auto

lemma dim-col-transfer-rule:
HMA-M A (A ′ :: ′a ^ ′nc ^ ′nr) =⇒ (=) (dim-col A) (CARD(′nc))
unfolding HMA-M-def by auto

lemma HMA-M-mult [transfer-rule]: (HMA-M ===> HMA-M ===> HMA-M)
((∗)) ((∗∗))
proof −

{
fix A B :: ′a :: semiring-1 mat and A ′ :: ′a ^ ′n ^ ′nr and B ′ :: ′a ^ ′nc ^ ′n

14

assume 1 [transfer-rule]: HMA-M A A ′ HMA-M B B ′

note [transfer-rule] = dim-row-transfer-rule[OF 1 (1)] dim-col-transfer-rule[OF
1 (2)]

have HMA-M (A ∗ B) (A ′ ∗∗ B ′)
unfolding times-mat-def mat-mult-scalar
by (transfer-prover-start, transfer-step+, transfer , auto)

}
thus ?thesis by blast

qed

lemma HMA-V-smult [transfer-rule]: ((=) ===> HMA-V ===> HMA-V) (·v)
((∗s))

unfolding smult-vec-def
unfolding rel-fun-def HMA-V-def from-hmav-def
by auto

lemma HMA-M-mult-vec [transfer-rule]: (HMA-M ===> HMA-V ===> HMA-V)
((∗v)) ((∗v))
proof −

{
fix A :: ′a :: semiring-1 mat and v :: ′a Matrix.vec

and A ′ :: ′a ^ ′nc ^ ′nr and v ′ :: ′a ^ ′nc
assume 1 [transfer-rule]: HMA-M A A ′ HMA-V v v ′

note [transfer-rule] = dim-row-transfer-rule
have HMA-V (A ∗v v) (A ′ ∗v v ′)

unfolding mult-mat-vec-def mult-mat-vec-scalar
by (transfer-prover-start, transfer-step+, transfer , auto)

}
thus ?thesis by blast

qed

lemma HMA-det [transfer-rule]: (HMA-M ===> (=)) Determinant.det
(det :: ′a :: comm-ring-1 ^ ′n ^ ′n ⇒ ′a)

proof −
{

fix a :: ′a ^ ′n ^ ′n
let ?tn = to-nat :: ′n :: finite ⇒ nat
let ?fn = from-nat :: nat ⇒ ′n
let ?zn = {0 ..< CARD(′n)}
let ?U = UNIV :: ′n set
let ?p1 = {p. p permutes ?zn}
let ?p2 = {p. p permutes ?U}
let ?f= λ p i. if i ∈ ?U then ?fn (p (?tn i)) else i
let ?g = λ p i. ?fn (p (?tn i))
have fg:

∧
a b c. (if a ∈ ?U then b else c) = b by auto

have ?p2 = ?f ‘ ?p1
by (rule permutes-bij ′, auto simp: to-nat-less-card to-nat-from-nat-id)

hence id: ?p2 = ?g ‘ ?p1 by simp

15

have inj-g: inj-on ?g ?p1
unfolding inj-on-def

proof (intro ballI impI ext, auto)
fix p q i
assume p: p permutes ?zn and q: q permutes ?zn

and id: (λ i. ?fn (p (?tn i))) = (λ i. ?fn (q (?tn i)))
{

fix i
from permutes-in-image[OF p] have pi: p (?tn i) < CARD(′n) by (simp

add: to-nat-less-card)
from permutes-in-image[OF q] have qi: q (?tn i) < CARD(′n) by (simp

add: to-nat-less-card)
from fun-cong[OF id] have ?fn (p (?tn i)) = from-nat (q (?tn i)) .
from arg-cong[OF this, of ?tn] have p (?tn i) = q (?tn i)

by (simp add: to-nat-from-nat-id pi qi)
} note id = this
show p i = q i
proof (cases i < CARD(′n))

case True
hence ?tn (?fn i) = i by (simp add: to-nat-from-nat-id)
from id[of ?fn i, unfolded this] show ?thesis .

next
case False
thus ?thesis using p q unfolding permutes-def by simp

qed
qed
have mult-cong:

∧
a b c d. a = b =⇒ c = d =⇒ a ∗ c = b ∗ d by simp

have sum (λ p.
signof p ∗ (

∏
i∈?zn. a $h ?fn i $h ?fn (p i))) ?p1

= sum (λ p. of-int (sign p) ∗ (
∏

i∈UNIV . a $h i $h p i)) ?p2
unfolding id sum.reindex[OF inj-g]

proof (rule sum.cong[OF refl], unfold mem-Collect-eq o-def , rule mult-cong)
fix p
assume p: p permutes ?zn
let ?q = λ i. ?fn (p (?tn i))
from id p have q: ?q permutes ?U by auto
from p have pp: permutation p unfolding permutation-permutes by auto
let ?ft = λ p i. ?fn (p (?tn i))
have fin: finite ?zn by simp
have sign p = sign ?q ∧ p permutes ?zn
using p fin proof (induction rule: permutes-induct)

case id
show ?case by (auto simp: sign-id[unfolded id-def] permutes-id[unfolded

id-def])
next

case (swap a b p)
then have ‹permutation p›

by (auto intro: permutes-imp-permutation)
let ?sab = Transposition.transpose a b

16

let ?sfab = Transposition.transpose (?fn a) (?fn b)
have p-sab: permutation ?sab by (rule permutation-swap-id)
have p-sfab: permutation ?sfab by (rule permutation-swap-id)
from swap(4) have IH1 : p permutes ?zn and IH2 : sign p = sign (?ft p)

by auto
have sab-perm: ?sab permutes ?zn using swap(1−2) by (rule permutes-swap-id)

from permutes-compose[OF IH1 this] have perm1 : ?sab o p permutes ?zn .
from IH1 have p-p1 : p ∈ ?p1 by simp
hence ?ft p ∈ ?ft ‘ ?p1 by (rule imageI)
from this[folded id] have ?ft p permutes ?U by simp
hence p-ftp: permutation (?ft p) unfolding permutation-permutes by auto
{

fix a b
assume a: a ∈ ?zn and b: b ∈ ?zn
hence (?fn a = ?fn b) = (a = b) using swap(1−2)

by (auto simp: from-nat-inj)
} note inj = this

from inj[OF swap(1−2)] have id2 : sign ?sfab = sign ?sab unfolding
sign-swap-id by simp

have id: ?ft (Transposition.transpose a b ◦ p) = Transposition.transpose
(?fn a) (?fn b) ◦ ?ft p

proof
fix c
show ?ft (Transposition.transpose a b ◦ p) c = (Transposition.transpose

(?fn a) (?fn b) ◦ ?ft p) c
proof (cases p (?tn c) = a ∨ p (?tn c) = b)

case True
thus ?thesis by (cases, auto simp add: swap-id-eq)

next
case False
hence neq: p (?tn c) 6= a p (?tn c) 6= b by auto
have pc: p (?tn c) ∈ ?zn unfolding permutes-in-image[OF IH1]

by (simp add: to-nat-less-card)
from neq[folded inj[OF pc swap(1)] inj[OF pc swap(2)]]
have ?fn (p (?tn c)) 6= ?fn a ?fn (p (?tn c)) 6= ?fn b .
with neq show ?thesis by (auto simp: swap-id-eq)

qed
qed

show ?case unfolding IH2 id sign-compose[OF p-sab ‹permutation p›]
sign-compose[OF p-sfab p-ftp] id2

by (rule conjI [OF refl perm1])
qed
thus signof p = of-int (sign ?q) unfolding sign-def by auto
show (

∏
i = 0 ..<CARD(′n). a $h ?fn i $h ?fn (p i)) =

(
∏

i∈UNIV . a $h i $h ?q i) unfolding
range-to-nat[symmetric] prod.reindex[OF inj-to-nat]

by (rule prod.cong[OF refl], unfold o-def , simp)
qed

}

17

thus ?thesis unfolding HMA-M-def
by (auto simp: from-hmam-def Determinant.det-def det-def)

qed

lemma HMA-mat[transfer-rule]: ((=) ===> HMA-M) (λ k. k ·m 1m CARD(′n))

(Finite-Cartesian-Product.mat :: ′a::semiring-1 ⇒ ′a^ ′n^ ′n)
unfolding Finite-Cartesian-Product.mat-def [abs-def] rel-fun-def HMA-M-def
by (auto simp: from-hmam-def from-nat-inj)

lemma HMA-mat-minus[transfer-rule]: (HMA-M ===> HMA-M ===> HMA-M)

(λ A B. A + map-mat uminus B) ((−) :: ′a :: group-add ^ ′nc^ ′nr ⇒ ′a^ ′nc^ ′nr
⇒ ′a^ ′nc^ ′nr)

unfolding rel-fun-def HMA-M-def from-hmam-def by auto

definition mat2matofpoly where mat2matofpoly A = (χ i j. [: A $ i $ j :])

definition charpoly where charpoly-def : charpoly A = det (mat (monom 1 (Suc
0)) − mat2matofpoly A)

definition erase-mat :: ′a :: zero ^ ′nc ^ ′nr ⇒ ′nr ⇒ ′nc ⇒ ′a ^ ′nc ^ ′nr
where erase-mat A i j = (χ i ′. χ j ′. if i ′ = i ∨ j ′ = j then 0 else A $ i ′ $ j ′)

definition sum-UNIV-type :: (′n :: finite ⇒ ′a :: comm-monoid-add) ⇒ ′n itself
⇒ ′a where

sum-UNIV-type f - = sum f UNIV

definition sum-UNIV-set :: (nat ⇒ ′a :: comm-monoid-add) ⇒ nat ⇒ ′a where
sum-UNIV-set f n = sum f {..<n}

definition HMA-T :: nat ⇒ ′n :: finite itself ⇒ bool where
HMA-T n - = (n = CARD(′n))

lemma HMA-mat2matofpoly[transfer-rule]: (HMA-M ===> HMA-M) (λx. map-mat
(λa. [:a:]) x) mat2matofpoly

unfolding rel-fun-def HMA-M-def from-hmam-def mat2matofpoly-def by auto

lemma HMA-char-poly [transfer-rule]:
((HMA-M :: (′a:: comm-ring-1 mat ⇒ ′a^ ′n^ ′n ⇒ bool)) ===> (=)) char-poly

charpoly
proof −

{
fix A :: ′a mat and A ′ :: ′a^ ′n^ ′n
assume [transfer-rule]: HMA-M A A ′

hence [simp]: dim-row A = CARD(′n) by (simp add: HMA-M-def)
have [simp]: monom 1 (Suc 0) = [:0 , 1 :: ′a :]

by (simp add: monom-Suc)

18

have [simp]: map-mat uminus (map-mat (λa. [:a:]) A) = map-mat (λa. [:−a:])
A

by (rule eq-matI , auto)
have char-poly A = charpoly A ′

unfolding char-poly-def [abs-def] char-poly-matrix-def charpoly-def [abs-def]
by (transfer , simp)

}
thus ?thesis by blast

qed

lemma HMA-eigen-vector [transfer-rule]: (HMA-M ===> HMA-V ===> (=))
eigenvector eigen-vector
proof −

{
fix A :: ′a mat and v :: ′a Matrix.vec
and A ′ :: ′a ^ ′n ^ ′n and v ′ :: ′a ^ ′n and k :: ′a
assume 1 [transfer-rule]: HMA-M A A ′ and 2 [transfer-rule]: HMA-V v v ′

hence [simp]: dim-row A = CARD(′n) dim-vec v = CARD(′n) by (auto simp
add: HMA-V-def HMA-M-def)

have [simp]: v ∈ carrier-vec CARD(′n) using 2 unfolding HMA-V-def by
simp

have eigenvector A v = eigen-vector A ′ v ′

unfolding eigenvector-def [abs-def] eigen-vector-def [abs-def]
by (transfer , simp)

}
thus ?thesis by blast

qed

lemma HMA-eigen-value [transfer-rule]: (HMA-M ===> (=) ===> (=)) eigen-
value eigen-value
proof −

{
fix A :: ′a mat and A ′ :: ′a ^ ′n ^ ′n and k
assume 1 [transfer-rule]: HMA-M A A ′

hence [simp]: dim-row A = CARD(′n) by (simp add: HMA-M-def)
note [transfer-rule] = dim-row-transfer-rule[OF 1 (1)]
have (eigenvalue A k) = (eigen-value A ′ k)

unfolding eigenvalue-def [abs-def] eigen-value-def [abs-def]
by (transfer , auto simp add: eigenvector-def)

}
thus ?thesis by blast

qed

lemma HMA-spectral-radius [transfer-rule]:
(HMA-M ===> (=)) Spectral-Radius.spectral-radius spectral-radius
unfolding Spectral-Radius.spectral-radius-def [abs-def] spectrum-def

19

spectral-radius-ev-def [abs-def]
by transfer-prover

lemma HMA-elements-mat[transfer-rule]: ((HMA-M :: (′a mat ⇒ ′a ^ ′nc ^ ′nr
⇒ bool)) ===> (=))

elements-mat elements-mat-h
proof −

{
fix y :: ′a ^ ′nc ^ ′nr and i j :: nat
assume i: i < CARD(′nr) and j: j < CARD(′nc)
hence from-hmam y $$ (i, j) ∈ range (λ(i, ya). y $h i $h ya)

using to-nat-from-nat-id[OF i] to-nat-from-nat-id[OF j] by (auto simp:
from-hmam-def)

}
moreover
{

fix y :: ′a ^ ′nc ^ ′nr and a b
have ∃ i j. y $h a $h b = from-hmam y $$ (i, j) ∧ i < CARD(′nr) ∧ j <

CARD(′nc)
unfolding from-hmam-def
by (rule exI [of - Bij-Nat.to-nat a], rule exI [of - Bij-Nat.to-nat b], auto

simp: to-nat-less-card)
}
ultimately show ?thesis

unfolding elements-mat[abs-def] elements-mat-h-def [abs-def] HMA-M-def
by auto

qed

lemma HMA-vec-elements[transfer-rule]: ((HMA-V :: (′a Matrix.vec ⇒ ′a ^ ′n ⇒
bool)) ===> (=))

vec-elements vec-elements-h
proof −

{
fix y :: ′a ^ ′n and i :: nat
assume i: i < CARD(′n)
hence from-hmav y $ i ∈ range (vec-nth y)

using to-nat-from-nat-id[OF i] by (auto simp: from-hmav-def)
}
moreover
{

fix y :: ′a ^ ′n and a
have ∃ i. y $h a = from-hmav y $ i ∧ i < CARD(′n)

unfolding from-hmav-def
by (rule exI [of - Bij-Nat.to-nat a], auto simp: to-nat-less-card)

}
ultimately show ?thesis
unfolding vec-elements[abs-def] vec-elements-h-def [abs-def] rel-fun-def HMA-V-def
by auto

qed

20

lemma norm-bound-elements-mat: norm-bound A b = (∀ x ∈ elements-mat A.
norm x ≤ b)

unfolding norm-bound-def elements-mat by auto

lemma HMA-normbound [transfer-rule]:
((HMA-M :: ′a :: real-normed-field mat ⇒ ′a ^ ′nc ^ ′nr ⇒ bool) ===> (=)

===> (=))
norm-bound normbound
unfolding normbound-def [abs-def] norm-bound-elements-mat[abs-def]
by (transfer-prover)

lemma HMA-map-matrix [transfer-rule]:
((=) ===> HMA-M ===> HMA-M) map-mat map-matrix
unfolding map-vector-def map-matrix-def [abs-def] map-mat-def [abs-def] HMA-M-def

from-hmam-def
by auto

lemma HMA-transpose-matrix [transfer-rule]:
(HMA-M ===> HMA-M) transpose-mat transpose
unfolding transpose-mat-def transpose-def HMA-M-def from-hmam-def by auto

lemma HMA-map-vector [transfer-rule]:
((=) ===> HMA-V ===> HMA-V) map-vec map-vector
unfolding map-vector-def [abs-def] map-vec-def [abs-def] HMA-V-def from-hmav-def
by auto

lemma HMA-similar-mat-wit [transfer-rule]:
((HMA-M :: - ⇒ ′a :: comm-ring-1 ^ ′n ^ ′n ⇒ -) ===> HMA-M ===>

HMA-M ===> HMA-M ===> (=))
similar-mat-wit similar-matrix-wit

proof (intro rel-funI , goal-cases)
case (1 a A b B c C d D)
note [transfer-rule] = this
hence id: dim-row a = CARD(′n) by (auto simp: HMA-M-def)
have ∗: (c ∗ d = 1m (dim-row a) ∧ d ∗ c = 1m (dim-row a) ∧ a = c ∗ b ∗ d) =
(C ∗∗ D = mat 1 ∧ D ∗∗ C = mat 1 ∧ A = C ∗∗ B ∗∗ D) unfolding id
by (transfer , simp)

show ?case unfolding similar-mat-wit-def Let-def similar-matrix-wit-def ∗
using 1 by (auto simp: HMA-M-def)

qed

lemma HMA-similar-mat [transfer-rule]:
((HMA-M :: - ⇒ ′a :: comm-ring-1 ^ ′n ^ ′n ⇒ -) ===> HMA-M ===> (=))

similar-mat similar-matrix
proof (intro rel-funI , goal-cases)

case (1 a A b B)
note [transfer-rule] = this

21

hence id: dim-row a = CARD(′n) by (auto simp: HMA-M-def)
{

fix c d
assume similar-mat-wit a b c d

hence {c,d} ⊆ carrier-mat CARD(′n) CARD(′n) unfolding similar-mat-wit-def
id Let-def by auto

} note ∗ = this
show ?case unfolding similar-mat-def similar-matrix-def

by (transfer , insert ∗, blast)
qed

lemma HMA-spectrum[transfer-rule]: (HMA-M ===> (=)) spectrum Spectrum
unfolding spectrum-def [abs-def] Spectrum-def [abs-def]
by transfer-prover

lemma HMA-M-erase-mat[transfer-rule]: (HMA-M ===> HMA-I ===> HMA-I
===> HMA-M) mat-erase erase-mat

unfolding mat-erase-def [abs-def] erase-mat-def [abs-def]
by (auto simp: HMA-M-def HMA-I-def from-hmam-def to-nat-from-nat-id intro!:

eq-matI)

lemma HMA-M-sum-UNIV [transfer-rule]:
((HMA-I ===> (=)) ===> HMA-T ===> (=)) sum-UNIV-set sum-UNIV-type
unfolding rel-fun-def

proof (clarify, rename-tac f fT n nT)
fix f and fT :: ′b ⇒ ′a and n and nT :: ′b itself
assume f : ∀ x y. HMA-I x y −→ f x = fT y

and n: HMA-T n nT
let ?f = from-nat :: nat ⇒ ′b
let ?t = to-nat :: ′b ⇒ nat
from n[unfolded HMA-T-def] have n: n = CARD(′b) .
from to-nat-from-nat-id[where ′a = ′b, folded n]
have tf : i < n =⇒ ?t (?f i) = i for i by auto
have sum-UNIV-set f n = sum f (?t ‘ ?f ‘ {..<n})

unfolding sum-UNIV-set-def
by (rule arg-cong[of - - sum f], insert tf , force)

also have . . . = sum (f ◦ ?t) (?f ‘ {..<n})
by (rule sum.reindex, insert tf n, auto simp: inj-on-def)

also have ?f ‘ {..<n} = UNIV
using range-to-nat[where ′a = ′b, folded n] by force

also have sum (f ◦ ?t) UNIV = sum fT UNIV
proof (rule sum.cong[OF refl])

fix i :: ′b
show (f ◦ ?t) i = fT i unfolding o-def

by (rule f [rule-format], auto simp: HMA-I-def)
qed
also have . . . = sum-UNIV-type fT nT

unfolding sum-UNIV-type-def ..
finally show sum-UNIV-set f n = sum-UNIV-type fT nT .

22

qed
end

Setup a method to easily convert theorems from JNF into HMA.
method transfer-hma uses rule = (
(fold index-hma-def)?,
transfer ,
rule rule,
(unfold carrier-vec-def carrier-mat-def)?,
auto)

Now it becomes easy to transfer results which are not yet proven in
HMA, such as:
lemma matrix-add-vect-distrib: (A + B) ∗v v = A ∗v v + B ∗v v

by (transfer-hma rule: add-mult-distrib-mat-vec)

lemma matrix-vector-right-distrib: M ∗v (v + w) = M ∗v v + M ∗v w
by (transfer-hma rule: mult-add-distrib-mat-vec)

lemma matrix-vector-right-distrib-diff : (M :: ′a :: ring-1 ^ ′nr ^ ′nc) ∗v (v − w)
= M ∗v v − M ∗v w

by (transfer-hma rule: mult-minus-distrib-mat-vec)

lemma eigen-value-root-charpoly:
eigen-value A k ←→ poly (charpoly (A :: ′a :: field ^ ′n ^ ′n)) k = 0
by (transfer-hma rule: eigenvalue-root-char-poly)

lemma finite-spectrum: fixes A :: ′a :: field ^ ′n ^ ′n
shows finite (Collect (eigen-value A))
by (transfer-hma rule: card-finite-spectrum(1)[unfolded spectrum-def])

lemma non-empty-spectrum: fixes A :: complex ^ ′n ^ ′n
shows Collect (eigen-value A) 6= {}
by (transfer-hma rule: spectrum-non-empty[unfolded spectrum-def])

lemma charpoly-transpose: charpoly (transpose A :: ′a :: field ^ ′n ^ ′n) = charpoly
A

by (transfer-hma rule: char-poly-transpose-mat)

lemma eigen-value-transpose: eigen-value (transpose A :: ′a :: field ^ ′n ^ ′n) v =
eigen-value A v

unfolding eigen-value-root-charpoly charpoly-transpose by simp

lemma matrix-diff-vect-distrib: (A − B) ∗v v = A ∗v v − B ∗v (v :: ′a :: ring-1 ^
′n)

by (transfer-hma rule: minus-mult-distrib-mat-vec)

lemma similar-matrix-charpoly: similar-matrix A B =⇒ charpoly A = charpoly B

23

by (transfer-hma rule: char-poly-similar)

lemma pderiv-char-poly-erase-mat: fixes A :: ′a :: idom ^ ′n ^ ′n
shows monom 1 1 ∗ pderiv (charpoly A) = sum (λ i. charpoly (erase-mat A i

i)) UNIV
proof −

let ?A = from-hmam A
let ?n = CARD(′n)
have tA[transfer-rule]: HMA-M ?A A unfolding HMA-M-def by simp
have tN [transfer-rule]: HMA-T ?n TYPE(′n) unfolding HMA-T-def by simp
have A: ?A ∈ carrier-mat ?n ?n unfolding from-hmam-def by auto
have id: sum (λ i. charpoly (erase-mat A i i)) UNIV =

sum-UNIV-type (λ i. charpoly (erase-mat A i i)) TYPE(′n)
unfolding sum-UNIV-type-def ..

show ?thesis unfolding id
by (transfer , insert pderiv-char-poly-mat-erase[OF A], simp add: sum-UNIV-set-def)

qed

lemma degree-monic-charpoly: fixes A :: ′a :: comm-ring-1 ^ ′n ^ ′n
shows degree (charpoly A) = CARD(′n) ∧ monic (charpoly A)

proof (transfer , goal-cases)
case 1
from degree-monic-char-poly[OF 1] show ?case by auto

qed

end

4 Perron-Frobenius Theorem
4.1 Auxiliary Notions
We define notions like non-negative real-valued matrix, both in JNF and in
HMA. These notions will be linked via HMA-connect.
theory Perron-Frobenius-Aux
imports HMA-Connect
begin

definition real-nonneg-mat :: complex mat ⇒ bool where
real-nonneg-mat A ≡ ∀ a ∈ elements-mat A. a ∈ � ∧ Re a ≥ 0

definition real-nonneg-vec :: complex Matrix.vec ⇒ bool where
real-nonneg-vec v ≡ ∀ a ∈ vec-elements v. a ∈ � ∧ Re a ≥ 0

definition real-non-neg-vec :: complex ^ ′n ⇒ bool where
real-non-neg-vec v ≡ (∀ a ∈ vec-elements-h v. a ∈ � ∧ Re a ≥ 0)

definition real-non-neg-mat :: complex ^ ′nr ^ ′nc ⇒ bool where
real-non-neg-mat A ≡ (∀ a ∈ elements-mat-h A. a ∈ � ∧ Re a ≥ 0)

24

lemma real-non-neg-matD: assumes real-non-neg-mat A
shows A $h i $h j ∈ � Re (A $h i $h j) ≥ 0
using assms unfolding real-non-neg-mat-def elements-mat-h-def by auto

definition nonneg-mat :: ′a :: linordered-idom mat ⇒ bool where
nonneg-mat A ≡ ∀ a ∈ elements-mat A. a ≥ 0

definition non-neg-mat :: ′a :: linordered-idom ^ ′nr ^ ′nc ⇒ bool where
non-neg-mat A ≡ (∀ a ∈ elements-mat-h A. a ≥ 0)

context includes lifting-syntax
begin

lemma HMA-real-non-neg-mat [transfer-rule]:
((HMA-M :: complex mat ⇒ complex ^ ′nc ^ ′nr ⇒ bool) ===> (=))
real-nonneg-mat real-non-neg-mat
unfolding real-nonneg-mat-def [abs-def] real-non-neg-mat-def [abs-def]
by transfer-prover

lemma HMA-real-non-neg-vec [transfer-rule]:
((HMA-V :: complex Matrix.vec ⇒ complex ^ ′n ⇒ bool) ===> (=))
real-nonneg-vec real-non-neg-vec
unfolding real-nonneg-vec-def [abs-def] real-non-neg-vec-def [abs-def]
by transfer-prover

lemma HMA-non-neg-mat [transfer-rule]:
((HMA-M :: ′a :: linordered-idom mat ⇒ ′a ^ ′nc ^ ′nr ⇒ bool) ===> (=))
nonneg-mat non-neg-mat
unfolding nonneg-mat-def [abs-def] non-neg-mat-def [abs-def]
by transfer-prover

end

primrec matpow :: ′a::semiring-1^ ′n^ ′n ⇒ nat ⇒ ′a^ ′n^ ′n where
matpow-0 : matpow A 0 = mat 1 |
matpow-Suc: matpow A (Suc n) = (matpow A n) ∗∗ A

context includes lifting-syntax
begin
lemma HMA-pow-mat[transfer-rule]:
((HMA-M :: ′a::{semiring-1} mat ⇒ ′a^ ′n^ ′n ⇒ bool) ===> (=) ===> HMA-M)

pow-mat matpow
proof −

{
fix A :: ′a mat and A ′ :: ′a^ ′n^ ′n and n :: nat
assume [transfer-rule]: HMA-M A A ′

hence [simp]: dim-row A = CARD(′n) unfolding HMA-M-def by simp

25

have HMA-M (pow-mat A n) (matpow A ′ n)
proof (induct n)

case (Suc n)
note [transfer-rule] = this
show ?case by (simp, transfer-prover)

qed (simp, transfer-prover)
}
thus ?thesis by blast

qed
end

lemma trancl-image:
(i,j) ∈ R+ =⇒ (f i, f j) ∈ (map-prod f f ‘ R)+

proof (induct rule: trancl-induct)
case (step j k)
from step(2) have (f j, f k) ∈ map-prod f f ‘ R by auto
from step(3) this show ?case by auto

qed auto

lemma inj-trancl-image: assumes inj: inj f
shows (f i, f j) ∈ (map-prod f f ‘ R)+ = ((i,j) ∈ R+) (is ?l = ?r)

proof
assume ?r from trancl-image[OF this] show ?l .

next
assume ?l from trancl-image[OF this, of the-inv f]
show ?r unfolding image-image prod.map-comp o-def the-inv-f-f [OF inj] by

auto
qed

lemma matrix-add-rdistrib: ((B + C) ∗∗ A) = (B ∗∗ A) + (C ∗∗ A)
by (vector matrix-matrix-mult-def sum.distrib[symmetric] field-simps)

lemma norm-smult: norm ((a :: real) ∗s x) = abs a ∗ norm x
unfolding norm-vec-def
by (metis norm-scaleR norm-vec-def scalar-mult-eq-scaleR)

lemma nonneg-mat-mult:
nonneg-mat A =⇒ nonneg-mat B =⇒ A ∈ carrier-mat nr n
=⇒ B ∈ carrier-mat n nc =⇒ nonneg-mat (A ∗ B)
unfolding nonneg-mat-def
by (auto simp: elements-mat-def scalar-prod-def intro!: sum-nonneg)

lemma nonneg-mat-power : assumes A ∈ carrier-mat n n nonneg-mat A
shows nonneg-mat (A ^m k)

proof (induct k)
case 0
thus ?case by (auto simp: nonneg-mat-def)

next
case (Suc k)

26

from nonneg-mat-mult[OF this assms(2) - assms(1), of n] assms(1)
show ?case by auto

qed

lemma nonneg-matD: assumes nonneg-mat A
and i < dim-row A and j < dim-col A

shows A $$ (i,j) ≥ 0
using assms unfolding nonneg-mat-def elements-mat by auto

lemma (in comm-ring-hom) similar-mat-wit-hom: assumes
similar-mat-wit A B C D

shows similar-mat-wit (math A) (math B) (math C) (math D)
proof −

obtain n where n: n = dim-row A by auto
note ∗ = similar-mat-witD[OF n assms]
from ∗ have [simp]: dim-row C = n by auto
note C = ∗(6) note D = ∗(7)
note id = mat-hom-mult[OF C D] mat-hom-mult[OF D C]
note ∗∗ = ∗(1−3)[THEN arg-cong[of - - math], unfolded id]
note mult = mult-carrier-mat[of - n n]
note hom-mult = mat-hom-mult[of - n n - n]
show ?thesis unfolding similar-mat-wit-def Let-def unfolding ∗∗(3) using

∗∗(1 ,2)
by (auto simp: n[symmetric] hom-mult simp: ∗(4−) mult)

qed

lemma (in comm-ring-hom) similar-mat-hom:
similar-mat A B =⇒ similar-mat (math A) (math B)
using similar-mat-wit-hom[of A B C D for C D]
by (smt similar-mat-def)

lemma det-dim-1 : assumes A: A ∈ carrier-mat n n
and n: n = 1

shows Determinant.det A = A $$ (0 ,0)
by (subst laplace-expansion-column[OF A[unfolded n], of 0], insert A n,

auto simp: cofactor-def mat-delete-def)

lemma det-dim-2 : assumes A: A ∈ carrier-mat n n
and n: n = 2

shows Determinant.det A = A $$ (0 ,0) ∗ A $$ (1 ,1) − A $$ (0 ,1) ∗ A $$ (1 ,0)
proof −

have set: (
∑

i<(2 :: nat). f i) = f 0 + f 1 for f
by (subst sum.cong[of - {0 ,1} f f], auto)

show ?thesis
apply (subst laplace-expansion-column[OF A[unfolded n], of 0], insert A n,

auto simp: cofactor-def mat-delete-def set)
apply (subst (1 2) det-dim-1 , auto)
done

qed

27

lemma jordan-nf-root-char-poly: fixes A :: ′a :: {semiring-no-zero-divisors, idom}
mat

assumes jordan-nf A n-as
and (m, lam) ∈ set n-as

shows poly (char-poly A) lam = 0
proof −

from assms have m0 : m 6= 0 unfolding jordan-nf-def by force
from split-list[OF assms(2)] obtain as bs where nas: n-as = as @ (m, lam) #

bs by auto
show ?thesis using m0

unfolding jordan-nf-char-poly[OF assms(1)] nas poly-prod-list prod-list-zero-iff
by (auto simp: o-def)
qed

lemma inverse-power-tendsto-zero:
(λx. inverse ((of-nat x :: ′a :: real-normed-div-algebra) ^ Suc d)) −−−−→ 0

proof (rule filterlim-compose[OF tendsto-inverse-0],
intro filterlim-at-infinity[THEN iffD2 , of 0] allI impI , goal-cases)
case (2 r)
let ?r = nat (ceiling r) + 1
show ?case
proof (intro eventually-sequentiallyI [of ?r], unfold norm-power norm-of-nat)

fix x
assume r : ?r ≤ x
hence x1 : real x ≥ 1 by auto
have r ≤ real ?r by linarith
also have . . . ≤ x using r by auto
also have . . . ≤ real x ^ Suc d using x1 by simp
finally show r ≤ real x ^ Suc d .

qed
qed simp

lemma inverse-of-nat-tendsto-zero:
(λx. inverse (of-nat x :: ′a :: real-normed-div-algebra)) −−−−→ 0
using inverse-power-tendsto-zero[of 0] by auto

lemma poly-times-exp-tendsto-zero: assumes b: norm (b :: ′a :: real-normed-field)
< 1

shows (λ x. of-nat x ^ k ∗ b ^ x) −−−−→ 0
proof (cases b = 0)

case False
define nla where nla = norm b
define s where s = sqrt nla
from b False have nla: 0 < nla nla < 1 unfolding nla-def by auto
hence s: 0 < s s < 1 unfolding s-def by auto
{

fix x

28

have s^x ∗ s^x = sqrt (nla ^ (2 ∗ x))
unfolding s-def power-add[symmetric]
unfolding real-sqrt-power [symmetric]
by (rule arg-cong[of - - λ x. sqrt (nla ^ x)], simp)

also have . . . = nla^x unfolding power-mult real-sqrt-power
using nla by simp

finally have nla^x = s^x ∗ s^x by simp
} note nla-s = this
show (λx. of-nat x ^ k ∗ b ^ x) −−−−→ 0
proof (rule tendsto-norm-zero-cancel, unfold norm-mult norm-power norm-of-nat

nla-def [symmetric] nla-s
mult.assoc[symmetric])

from poly-exp-constant-bound[OF s, of 1 k] obtain p where
p: real x ^ k ∗ s^x ≤ p for x by (auto simp: ac-simps)

have norm (real x ^ k ∗ s ^ x) = real x ^ k ∗ s^x for x using s by auto
with p have p: norm (real x ^ k ∗ s ^ x) ≤ p for x by auto
from s have s: norm s < 1 by auto
show (λx. real x ^ k ∗ s ^ x ∗ s ^ x) −−−−→ 0

by (rule lim-null-mult-left-bounded[OF - LIMSEQ-power-zero[OF s], of - p],
insert p, auto)

qed
next

case True
show ?thesis unfolding True

by (subst tendsto-cong[of - λ x. 0], rule eventually-sequentiallyI [of 1], auto)
qed

lemma (in linorder-topology) tendsto-Min: assumes I : I 6= {} and fin: finite I
shows (

∧
i. i ∈ I =⇒ (f i −−−→ a i) F) =⇒ ((λx. Min ((λ i. f i x) ‘ I)) −−−→

(Min (a ‘ I) :: ′a)) F
using fin I

proof (induct rule: finite-induct)
case (insert i I)
hence i: (f i −−−→ a i) F by auto
show ?case
proof (cases I = {})

case True
show ?thesis unfolding True using i by auto

next
case False
have ∗: Min (a ‘ insert i I) = min (a i) (Min (a ‘ I)) using False insert(1)

by auto
have ∗∗: (λx. Min ((λi. f i x) ‘ insert i I)) = (λx. min (f i x) (Min ((λi. f i x)

‘ I)))
using False insert(1) by auto

have IH : ((λx. Min ((λi. f i x) ‘ I)) −−−→ Min (a ‘ I)) F
using insert(3)[OF insert(4) False] by auto

show ?thesis unfolding ∗ ∗∗

29

by (auto intro!: tendsto-min i IH)
qed

qed simp

lemma tendsto-mat-mult [tendsto-intros]:
(f −−−→ a) F =⇒ (g −−−→ b) F =⇒ ((λx. f x ∗∗ g x) −−−→ a ∗∗ b) F
for f :: ′a ⇒ ′b :: {semiring-1 , real-normed-algebra} ^ ′n1 ^ ′n2
unfolding matrix-matrix-mult-def [abs-def] by (auto intro!: tendsto-intros)

lemma tendsto-matpower [tendsto-intros]: (f −−−→ a) F =⇒ ((λx. matpow (f x)
n) −−−→ matpow a n) F

for f :: ′a ⇒ ′b :: {semiring-1 , real-normed-algebra} ^ ′n ^ ′n
by (induct n, simp-all add: tendsto-mat-mult)

lemma continuous-matpow: continuous-on R (λ A :: ′a :: {semiring-1 , real-normed-algebra-1}
^ ′n ^ ′n. matpow A n)

unfolding continuous-on-def by (auto intro!: tendsto-intros)

lemma vector-smult-distrib: (A ∗v ((a :: ′a :: comm-ring-1) ∗s x)) = a ∗s ((A ∗v
x))

unfolding matrix-vector-mult-def vector-scalar-mult-def
by (simp add: ac-simps sum-distrib-left)

instance real :: ordered-semiring-strict
by (intro-classes, auto)

lemma poly-tendsto-pinfty: fixes p :: real poly
assumes lead-coeff p > 0 degree p 6= 0
shows poly p −−−−→ ∞
unfolding Lim-PInfty

proof
fix b
show ∃N . ∀n≥N . ereal b ≤ ereal (poly p (real n))

unfolding ereal-less-eq using poly-pinfty-ge[OF assms, of b]
by (meson of-nat-le-iff order-trans real-arch-simple)

qed

lemma div-lt-nat: (j :: nat) < x ∗ y =⇒ j div x < y
by (simp add: less-mult-imp-div-less mult.commute)

definition diagvector :: (′n ⇒ ′a :: semiring-0) ⇒ ′a ^ ′n ^ ′n where
diagvector x = (χ i. χ j. if i = j then x i else 0)

lemma diagvector-mult-vector [simp]: diagvector x ∗v y = (χ i. x i ∗ y $ i)
unfolding diagvector-def matrix-vector-mult-def vec-eq-iff vec-lambda-beta

proof (rule, goal-cases)
case (1 i)
show ?case by (subst sum.remove[of - i], auto)

30

qed

lemma diagvector-mult-left: diagvector x ∗∗ A = (χ i j. x i ∗ A $ i $ j) (is ?A =
?B)

unfolding vec-eq-iff
proof (intro allI)

fix i j
show ?A $h i $h j = ?B $h i $h j
unfolding map-vector-def diagvector-def matrix-matrix-mult-def vec-lambda-beta
by (subst sum.remove[of - i], auto)

qed

lemma diagvector-mult-right: A ∗∗ diagvector x = (χ i j. A $ i $ j ∗ x j) (is ?A
= ?B)

unfolding vec-eq-iff
proof (intro allI)

fix i j
show ?A $h i $h j = ?B $h i $h j
unfolding map-vector-def diagvector-def matrix-matrix-mult-def vec-lambda-beta
by (subst sum.remove[of - j], auto)

qed

lemma diagvector-mult[simp]: diagvector x ∗∗ diagvector y = diagvector (λ i. x i
∗ y i)
unfolding diagvector-mult-left unfolding diagvector-def by (auto simp: vec-eq-iff)

lemma diagvector-const[simp]: diagvector (λ x. k) = mat k
unfolding diagvector-def mat-def by auto

lemma diagvector-eq-mat: diagvector x = mat a ←→ x = (λ x. a)
unfolding diagvector-def mat-def by (auto simp: vec-eq-iff)

lemma cmod-eq-Re: assumes cmod x = Re x
shows of-real (Re x) = x

proof (cases Im x = 0)
case False
hence (cmod x)^2 6= (Re x)^2 unfolding norm-complex-def by simp
from this[unfolded assms] show ?thesis by auto

qed (cases x, auto simp: norm-complex-def complex-of-real-def)

hide-fact (open) Matrix.vec-eq-iff

no-notation
vec-index (infixl ‹$› 100)

lemma spectral-radius-ev:
∃ ev v. eigen-vector A v ev ∧ norm ev = spectral-radius A

proof −
from non-empty-spectrum[of A] finite-spectrum[of A] have

31

spectral-radius A ∈ norm ‘ (Collect (eigen-value A))
unfolding spectral-radius-ev-def by auto

thus ?thesis unfolding eigen-value-def [abs-def] by auto
qed

lemma spectral-radius-max: assumes eigen-value A v
shows norm v ≤ spectral-radius A

proof −
from assms have norm v ∈ norm ‘ (Collect (eigen-value A)) by auto
from Max-ge[OF - this, folded spectral-radius-ev-def]

finite-spectrum[of A] show ?thesis by auto
qed

For Perron-Frobenius it is useful to use the linear norm, and not the
Euclidean norm.
definition norm1 :: ′a :: real-normed-field ^ ′n ⇒ real where

norm1 v = (
∑

i∈UNIV . norm (v $ i))

lemma norm1-ge-0 : norm1 v ≥ 0 unfolding norm1-def
by (rule sum-nonneg, auto)

lemma norm1-0 [simp]: norm1 0 = 0 unfolding norm1-def by auto

lemma norm1-nonzero: assumes v 6= 0
shows norm1 v > 0

proof −
from ‹v 6= 0 › obtain i where vi: v $ i 6= 0 unfolding vec-eq-iff

using Finite-Cartesian-Product.vec-eq-iff zero-index by force
have sum (λ i. norm (v $ i)) (UNIV − {i}) ≥ 0

by (rule sum-nonneg, auto)
moreover have norm (v $ i) > 0 using vi by auto
ultimately
have 0 < norm (v $ i) + sum (λ i. norm (v $ i)) (UNIV − {i}) by arith
also have . . . = norm1 v unfolding norm1-def

by (simp add: sum.remove)
finally show norm1 v > 0 .

qed

lemma norm1-0-iff [simp]: (norm1 v = 0) = (v = 0)
using norm1-0 norm1-nonzero by (cases v = 0 , force+)

lemma norm1-scaleR[simp]: norm1 (r ∗R v) = abs r ∗ norm1 v unfolding norm1-def
sum-distrib-left

by (rule sum.cong, auto)

lemma abs-norm1 [simp]: abs (norm1 v) = norm1 v using norm1-ge-0 [of v] by
arith

lemma normalize-eigen-vector : assumes eigen-vector (A :: ′a :: real-normed-field

32

^ ′n ^ ′n) v ev
shows eigen-vector A ((1 / norm1 v) ∗R v) ev norm1 ((1 / norm1 v) ∗R v) = 1

proof −
let ?v = (1 / norm1 v) ∗R v
from assms[unfolded eigen-vector-def]
have nz: v 6= 0 and id: A ∗v v = ev ∗s v by auto
from nz have norm1 : norm1 v 6= 0 by auto
thus norm1 ?v = 1 by simp
from norm1 nz have nz: ?v 6= 0 by auto
have A ∗v ?v = (1 / norm1 v) ∗R (A ∗v v)

by (auto simp: vec-eq-iff matrix-vector-mult-def real-vector .scale-sum-right)
also have A ∗v v = ev ∗s v unfolding id ..
also have (1 / norm1 v) ∗R (ev ∗s v) = ev ∗s ?v

by (auto simp: vec-eq-iff)
finally show eigen-vector A ?v ev using nz unfolding eigen-vector-def by auto

qed

lemma norm1-cont[simp]: isCont norm1 v unfolding norm1-def [abs-def] by auto

lemma norm1-ge-norm: norm1 v ≥ norm v unfolding norm1-def norm-vec-def
by (rule L2-set-le-sum, auto)

The following continuity lemmas have been proven with hints from Fabian
Immler.
lemma tendsto-matrix-vector-mult[tendsto-intros]:
((∗v) (A :: ′a :: real-normed-algebra-1 ^ ′n ^ ′k) −−−→ A ∗v v) (at v within S)
unfolding matrix-vector-mult-def [abs-def]
by (auto intro!: tendsto-intros)

lemma tendsto-matrix-matrix-mult[tendsto-intros]:
((∗∗) (A :: ′a :: real-normed-algebra-1 ^ ′n ^ ′k) −−−→ A ∗∗ B) (at B within S)
unfolding matrix-matrix-mult-def [abs-def]
by (auto intro!: tendsto-intros)

lemma matrix-vect-scaleR: (A :: ′a :: real-normed-algebra-1 ^ ′n ^ ′k) ∗v (a ∗R v)
= a ∗R (A ∗v v)

unfolding vec-eq-iff
by (auto simp: matrix-vector-mult-def scaleR-vec-def scaleR-sum-right
intro!: sum.cong)

lemma (in inj-semiring-hom) map-vector-0 : (map-vector hom v = 0) = (v = 0)
unfolding vec-eq-iff map-vector-def by auto

lemma (in inj-semiring-hom) map-vector-inj: (map-vector hom v = map-vector
hom w) = (v = w)

unfolding vec-eq-iff map-vector-def by auto

lemma (in semiring-hom) matrix-vector-mult-hom:

33

(map-matrix hom A) ∗v (map-vector hom v) = map-vector hom (A ∗v v)
by (transfer fixing: hom, auto simp: mult-mat-vec-hom)

lemma (in semiring-hom) vector-smult-hom:
hom x ∗s (map-vector hom v) = map-vector hom (x ∗s v)
by (transfer fixing: hom, auto simp: vec-hom-smult)

lemma (in inj-comm-ring-hom) eigen-vector-hom:
eigen-vector (map-matrix hom A) (map-vector hom v) (hom x) = eigen-vector A

v x
unfolding eigen-vector-def matrix-vector-mult-hom vector-smult-hom map-vector-0

map-vector-inj
by auto

end

4.2 Perron-Frobenius theorem via Brouwer’s fixpoint theo-
rem.

theory Perron-Frobenius
imports

HOL−Analysis.Brouwer-Fixpoint
Perron-Frobenius-Aux

begin

We follow the textbook proof of Serre [2, Theorem 5.2.1].
context

fixes A :: complex ^ ′n ^ ′n :: finite
assumes rnnA: real-non-neg-mat A

begin

private abbreviation(input) sr where sr ≡ spectral-radius A

private definition max-v-ev :: (complex^ ′n) × complex where
max-v-ev = (SOME v-ev. eigen-vector A (fst v-ev) (snd v-ev)
∧ norm (snd v-ev) = sr)

private definition max-v = (1 / norm1 (fst max-v-ev)) ∗R fst max-v-ev
private definition max-ev = snd max-v-ev

private lemma max-v-ev:
eigen-vector A max-v max-ev
norm max-ev = sr
norm1 max-v = 1

proof −
obtain v ev where id: max-v-ev = (v,ev) by force
from spectral-radius-ev[of A] someI-ex[of λ v-ev. eigen-vector A (fst v-ev) (snd

v-ev)
∧ norm (snd v-ev) = sr , folded max-v-ev-def , unfolded id]

34

have v: eigen-vector A v ev and ev: norm ev = sr by auto
from normalize-eigen-vector [OF v] ev
show eigen-vector A max-v max-ev norm max-ev = sr norm1 max-v = 1

unfolding max-v-def max-ev-def id by auto
qed

In the definition of S, we use the linear norm instead of the default
euclidean norm which is defined via the type-class. The reason is that S is
not convex if one uses the euclidean norm.
private definition B :: real ^ ′n ^ ′n where B ≡ χ i j. Re (A $ i $ j)
private definition S where S = {v :: real ^ ′n . norm1 v = 1 ∧ (∀ i. v $ i ≥
0) ∧
(∀ i. (B ∗v v) $ i ≥ sr ∗ (v $ i))}

private definition f :: real ^ ′n ⇒ real ^ ′n where
f v = (1 / norm1 (B ∗v v)) ∗R (B ∗v v)

private lemma closedS : closed S
unfolding S-def matrix-vector-mult-def [abs-def]

proof (intro closed-Collect-conj closed-Collect-all closed-Collect-le closed-Collect-eq)
show continuous-on UNIV norm1

by (simp add: continuous-at-imp-continuous-on)
qed (auto intro!: continuous-intros continuous-on-component)

private lemma boundedS : bounded S
proof −

{
fix v :: real ^ ′n
from norm1-ge-norm[of v] have norm1 v = 1 =⇒ norm v ≤ 1 by auto

}
thus ?thesis
unfolding S-def bounded-iff
by (auto intro!: exI [of - 1])

qed

private lemma compactS : compact S
using boundedS closedS
by (simp add: compact-eq-bounded-closed)

private lemmas rnn = real-non-neg-matD[OF rnnA]

lemma B-norm: B $ i $ j = norm (A $ i $ j)
using rnn[of i j]
by (cases A $ i $ j, auto simp: B-def)

lemma mult-B-mono: assumes
∧

i. v $ i ≥ w $ i
shows (B ∗v v) $ i ≥ (B ∗v w) $ i unfolding matrix-vector-mult-def vec-lambda-beta
by (rule sum-mono, rule mult-left-mono[OF assms], unfold B-norm, auto)

35

private lemma non-emptyS : S 6= {}
proof −

let ?v = (χ i. norm (max-v $ i)) :: real ^ ′n
have norm1 max-v = 1 by (rule max-v-ev(3))
hence nv: norm1 ?v = 1 unfolding norm1-def by auto
{

fix i
have sr ∗ (?v $ i) = sr ∗ norm (max-v $ i) by auto
also have . . . = (norm max-ev) ∗ norm (max-v $ i) using max-v-ev by auto
also have . . . = norm ((max-ev ∗s max-v) $ i) by (auto simp: norm-mult)

also have max-ev ∗s max-v = A ∗v max-v using max-v-ev(1)[unfolded eigen-vector-def]
by auto

also have norm ((A ∗v max-v) $ i) ≤ (B ∗v ?v) $ i
unfolding matrix-vector-mult-def vec-lambda-beta
by (rule sum-norm-le, auto simp: norm-mult B-norm)

finally have sr ∗ (?v $ i) ≤ (B ∗v ?v) $ i .
} note le = this
have ?v ∈ S unfolding S-def using nv le by auto
thus ?thesis by blast

qed

private lemma convexS : convex S
proof (rule convexI)

fix v w a b
assume ∗: v ∈ S w ∈ S 0 ≤ a 0 ≤ b a + b = (1 :: real)
let ?lin = a ∗R v + b ∗R w
from ∗ have 1 : norm1 v = 1 norm1 w = 1 unfolding S-def by auto
have norm1 ?lin = a ∗ norm1 v + b ∗ norm1 w

unfolding norm1-def sum-distrib-left sum.distrib[symmetric]
proof (rule sum.cong)

fix i :: ′n
from ∗ have v $ i ≥ 0 w $ i ≥ 0 unfolding S-def by auto
thus norm (?lin $ i) = a ∗ norm (v $ i) + b ∗ norm (w $ i)

using ∗(3−4) by auto
qed simp
also have . . . = 1 using ∗(5) 1 by auto
finally have norm1 : norm1 ?lin = 1 .
{

fix i
from ∗ have 0 ≤ v $ i sr ∗ v $ i ≤ (B ∗v v) $ i unfolding S-def by auto

with ‹a ≥ 0 › have a: a ∗ (sr ∗ v $ i) ≤ a ∗ (B ∗v v) $ i by (intro mult-left-mono)
from ∗ have 0 ≤ w $ i sr ∗ w $ i ≤ (B ∗v w) $ i unfolding S-def by auto

with ‹b ≥ 0 › have b: b ∗ (sr ∗ w $ i) ≤ b ∗ (B ∗v w) $ i by (intro
mult-left-mono)

from a b have a ∗ (sr ∗ v $ i) + b ∗ (sr ∗ w $ i) ≤ a ∗ (B ∗v v) $ i + b ∗
(B ∗v w) $ i by auto

} note le = this
have switch[simp]:

∧
x y. x ∗ a ∗ y = a ∗ x ∗ y

∧
x y. x ∗ b ∗ y = b ∗ x ∗ y

by auto

36

have [simp]: x ∈ {v,w} =⇒ a ∗ (r ∗ x $h i) = r ∗ (a ∗ x $h i) for a r i x by
auto

show a ∗R v + b ∗R w ∈ S using ∗ norm1 le unfolding S-def
by (auto simp: matrix-vect-scaleR matrix-vector-right-distrib ring-distribs)

qed

private abbreviation (input) r :: real ⇒ complex where
r ≡ of-real

private abbreviation rv :: real ^ ′n ⇒ complex ^ ′n where
rv v ≡ χ i. r (v $ i)

private lemma rv-0 : (rv v = 0) = (v = 0)
by (simp add: of-real-hom.map-vector-0 map-vector-def vec-eq-iff)

private lemma rv-mult: A ∗v rv v = rv (B ∗v v)
proof −

have map-matrix r B = A
using rnnA unfolding map-matrix-def B-def real-non-neg-mat-def map-vector-def

elements-mat-h-def
by vector

thus ?thesis
using of-real-hom.matrix-vector-mult-hom[of B, where ′a = complex]
unfolding map-vector-def by auto

qed

context
assumes zero-no-ev:

∧
v. v ∈ S =⇒ A ∗v rv v 6= 0

begin
private lemma normB-S : assumes v: v ∈ S

shows norm1 (B ∗v v) 6= 0
proof −

from zero-no-ev[OF v, unfolded rv-mult rv-0]
show ?thesis by auto

qed

private lemma image-f : f ∈ S → S
proof −

{
fix v
assume v: v ∈ S
hence norm: norm1 v = 1 and ge:

∧
i. v $ i ≥ 0

∧
i. sr ∗ v $ i ≤ (B ∗v v)

$ i unfolding S-def by auto
from normB-S [OF v] have normB: norm1 (B ∗v v) > 0 using norm1-nonzero

by auto
have fv: f v = (1 / norm1 (B ∗v v)) ∗R (B ∗v v) unfolding f-def by auto
from normB have Bv0 : B ∗v v 6= 0 unfolding norm1-0-iff [symmetric] by

linarith
have norm: norm1 (f v) = 1 unfolding fv using normB Bv0 by simp

37

define c where c = (1 / norm1 (B ∗v v))
have c: c > 0 unfolding c-def using normB by auto
{

fix i
have 1 : f v $ i ≥ 0 unfolding fv c-def [symmetric] using c ge
by (auto simp: matrix-vector-mult-def sum-distrib-left B-norm intro!: sum-nonneg)
have id1 :

∧
i. (B ∗v f v) $ i = c ∗ ((B ∗v (B ∗v v)) $ i)

unfolding f-def c-def matrix-vect-scaleR by simp
have id3 :

∧
i. sr ∗ f v $ i = c ∗ ((B ∗v (sr ∗R v)) $ i)

unfolding f-def c-def [symmetric] matrix-vect-scaleR by auto
have 2 : sr ∗ f v $ i ≤ (B ∗v f v) $ i unfolding id1 id3

unfolding mult-le-cancel-left-pos[OF ‹c > 0 ›]
by (rule mult-B-mono, insert ge(2), auto)

note 1 2
}
with norm have f v ∈ S unfolding S-def by auto

}
thus ?thesis by blast

qed

private lemma cont-f : continuous-on S f
unfolding f-def [abs-def] continuous-on using normB-S
unfolding norm1-def
by (auto intro!: tendsto-eq-intros)

qualified lemma perron-frobenius-positive-ev:
∃ v. eigen-vector A v (r sr) ∧ real-non-neg-vec v

proof −
from brouwer [OF compactS convexS non-emptyS cont-f image-f]
obtain v where v: v ∈ S and fv: f v = v by auto
define ev where ev = norm1 (B ∗v v)
from normB-S [OF v] have ev 6= 0 unfolding ev-def by auto
with norm1-ge-0 [of B ∗v v, folded ev-def] have norm: ev > 0 by auto
from arg-cong[OF fv[unfolded f-def], of λ (w :: real ^ ′n). ev ∗R w] norm
have ev: B ∗v v = ev ∗s v unfolding ev-def [symmetric] scalar-mult-eq-scaleR

by simp
with v[unfolded S-def] have ge:

∧
i. sr ∗ v $ i ≤ ev ∗ v $ i by auto

have A ∗v rv v = rv (B ∗v v) unfolding rv-mult ..
also have . . . = ev ∗s rv v unfolding ev vec-eq-iff

by (simp add: scaleR-conv-of-real scaleR-vec-def)
finally have ev: A ∗v rv v = ev ∗s rv v .
from v have v0 : v 6= 0 unfolding S-def by auto
hence rv v 6= 0 unfolding rv-0 .
with ev have ev: eigen-vector A (rv v) ev unfolding eigen-vector-def by auto
hence eigen-value A ev unfolding eigen-value-def by auto
from spectral-radius-max[OF this] have le: norm (r ev) ≤ sr .
from v0 obtain i where v $ i 6= 0 unfolding vec-eq-iff by auto
from v have v $ i ≥ 0 unfolding S-def by auto
with ‹v $ i 6= 0 › have v $ i > 0 by auto

38

with ge[of i] have ge: sr ≤ ev by auto
with le have sr : r sr = ev by auto
from v have ∗: real-non-neg-vec (rv v) unfolding S-def real-non-neg-vec-def

vec-elements-h-def by auto
show ?thesis unfolding sr

by (rule exI [of - rv v], insert ∗ ev norm, auto)
qed
end

qualified lemma perron-frobenius-both:
∃ v. eigen-vector A v (r sr) ∧ real-non-neg-vec v

proof (cases ∀ v ∈ S . A ∗v rv v 6= 0)
case True
show ?thesis

by (rule Perron-Frobenius.perron-frobenius-positive-ev[OF rnnA], insert True,
auto)
next

case False
then obtain v where v: v ∈ S and A0 : A ∗v rv v = 0 by auto
hence id: A ∗v rv v = 0 ∗s rv v and v0 : v 6= 0 unfolding S-def by auto
from v0 have rv v 6= 0 unfolding rv-0 .
with id have ev: eigen-vector A (rv v) 0 unfolding eigen-vector-def by auto
hence eigen-value A 0 unfolding eigen-value-def ..
from spectral-radius-max[OF this] have 0 : 0 ≤ sr by auto
from v[unfolded S-def] have ge:

∧
i. sr ∗ v $ i ≤ (B ∗v v) $ i by auto

from v[unfolded S-def] have rnn: real-non-neg-vec (rv v)
unfolding real-non-neg-vec-def vec-elements-h-def by auto

from v0 obtain i where v $ i 6= 0 unfolding vec-eq-iff by auto
from v have v $ i ≥ 0 unfolding S-def by auto
with ‹v $ i 6= 0 › have vi: v $ i > 0 by auto
from rv-mult[of v, unfolded A0] have rv (B ∗v v) = 0 by simp
hence B ∗v v = 0 unfolding rv-0 .
from ge[of i, unfolded this] vi have ge: sr ≤ 0 by (simp add: mult-le-0-iff)
with ‹0 ≤ sr› have sr = 0 by auto
show ?thesis unfolding ‹sr = 0 › using rnn ev by auto

qed
end

Perron Frobenius: The largest complex eigenvalue of a real-valued non-
negative matrix is a real one, and it has a real-valued non-negative eigen-
vector.
lemma perron-frobenius:

assumes real-non-neg-mat A
shows ∃ v. eigen-vector A v (of-real (spectral-radius A)) ∧ real-non-neg-vec v
by (rule Perron-Frobenius.perron-frobenius-both[OF assms])

And a version which ignores the eigenvector.
lemma perron-frobenius-eigen-value:

assumes real-non-neg-mat A

39

shows eigen-value A (of-real (spectral-radius A))
using perron-frobenius[OF assms] unfolding eigen-value-def by blast

end

5 Roots of Unity
theory Roots-Unity
imports

Polynomial-Factorization.Order-Polynomial
HOL−Computational-Algebra.Fundamental-Theorem-Algebra
Polynomial-Interpolation.Ring-Hom-Poly

begin

lemma cis-mult-cmod-id: cis (Arg x) ∗ of-real (cmod x) = x
using rcis-cmod-Arg[unfolded rcis-def] by (simp add: ac-simps)

lemma rcis-mult-cis[simp]: rcis n a ∗ cis b = rcis n (a + b) unfolding cis-rcis-eq
rcis-mult by simp
lemma rcis-div-cis[simp]: rcis n a / cis b = rcis n (a − b) unfolding cis-rcis-eq
rcis-divide by simp

lemma cis-plus-2pi[simp]: cis (x + 2 ∗ pi) = cis x by (auto simp: complex-eq-iff)
lemma cis-plus-2pi-neq-1 : assumes x: 0 < x x < 2 ∗ pi

shows cis x 6= 1
proof −

from x have cos x 6= 1 by (smt cos-2pi-minus cos-monotone-0-pi cos-zero)
thus ?thesis by (auto simp: complex-eq-iff)

qed

lemma cis-times-2pi[simp]: cis (of-nat n ∗ 2 ∗ pi) = 1
proof (induct n)

case (Suc n)
have of-nat (Suc n) ∗ 2 ∗ pi = of-nat n ∗ 2 ∗ pi + 2 ∗ pi by (simp add:

distrib-right)
also have cis . . . = 1 unfolding cis-plus-2pi Suc ..
finally show ?case .

qed simp

lemma cis-add-pi[simp]: cis (pi + x) = − cis x
by (auto simp: complex-eq-iff)

lemma cis-3-pi-2 [simp]: cis (pi ∗ 3 / 2) = − i
proof −

have cis (pi ∗ 3 / 2) = cis (pi + pi / 2)
by (rule arg-cong[of - - cis], simp)

also have . . . = − i unfolding cis-add-pi by simp
finally show ?thesis .

qed

40

lemma rcis-plus-2pi[simp]: rcis y (x + 2 ∗ pi) = rcis y x unfolding rcis-def by
simp
lemma rcis-times-2pi[simp]: rcis r (of-nat n ∗ 2 ∗ pi) = of-real r

unfolding rcis-def cis-times-2pi by simp

lemma arg-rcis-cis: assumes n: n > 0 shows Arg (rcis n x) = Arg (cis x)
using Arg-bounded cis-Arg-unique cis-Arg complex-mod-rcis n rcis-def sgn-eq by

auto

lemma arg-eqD: assumes Arg (cis x) = Arg (cis y) −pi < x x ≤ pi −pi < y y ≤
pi

shows x = y
using assms(1) unfolding cis-Arg-unique[OF sgn-cis assms(2−3)] cis-Arg-unique[OF

sgn-cis assms(4−5)] .

lemma rcis-inj-on: assumes r : r 6= 0 shows inj-on (rcis r) {0 ..< 2 ∗ pi}
proof (rule inj-onI , goal-cases)

case (1 x y)
from arg-cong[OF 1 (3), of λ x. x / r] have cis x = cis y using r by (simp

add: rcis-def)
from arg-cong[OF this, of λ x. inverse x] have cis (−x) = cis (−y) by simp
from arg-cong[OF this, of uminus] have ∗: cis (−x + pi) = cis (−y + pi)

by (auto simp: complex-eq-iff)
have − x + pi = − y + pi

by (rule arg-eqD[OF arg-cong[OF ∗, of Arg]], insert 1 (1−2), auto)
thus ?case by simp

qed

lemma cis-inj-on: inj-on cis {0 ..< 2 ∗ pi}
using rcis-inj-on[of 1] unfolding rcis-def by auto

definition root-unity :: nat ⇒ ′a :: comm-ring-1 poly where
root-unity n = monom 1 n − 1

lemma poly-root-unity: poly (root-unity n) x = 0 ←→ x^n = 1
unfolding root-unity-def by (simp add: poly-monom)

lemma degree-root-unity[simp]: degree (root-unity n) = n (is degree ?p = -)
proof −

have p: ?p = monom 1 n + (−1) unfolding root-unity-def by auto
show ?thesis
proof (cases n)

case 0
thus ?thesis unfolding p by simp

next
case (Suc m)
show ?thesis unfolding p unfolding Suc

by (subst degree-add-eq-left, auto simp: degree-monom-eq)

41

qed
qed

lemma zero-root-unit[simp]: root-unity n = 0 ←→ n = 0 (is ?p = 0 ←→ -)
proof (cases n = 0)

case True
thus ?thesis unfolding root-unity-def by simp

next
case False
from degree-root-unity[of n] False
have degree ?p 6= 0 by auto
hence ?p 6= 0 by fastforce
thus ?thesis using False by auto

qed

definition prod-root-unity :: nat list ⇒ ′a :: idom poly where
prod-root-unity ns = prod-list (map root-unity ns)

lemma poly-prod-root-unity: poly (prod-root-unity ns) x = 0 ←→ (∃ k∈set ns. x ^
k = 1)

unfolding prod-root-unity-def
by (simp add: poly-prod-list prod-list-zero-iff o-def image-def poly-root-unity)

lemma degree-prod-root-unity[simp]: 0 /∈ set ns =⇒ degree (prod-root-unity ns) =
sum-list ns

unfolding prod-root-unity-def
by (subst degree-prod-list-eq, auto simp: o-def)

lemma zero-prod-root-unit[simp]: prod-root-unity ns = 0 ←→ 0 ∈ set ns
unfolding prod-root-unity-def prod-list-zero-iff by auto

lemma roots-of-unity: assumes n: n 6= 0
shows (λ i. (cis (of-nat i ∗ 2 ∗ pi / n))) ‘ {0 ..< n} = { x :: complex. x ^ n =

1} (is ?prod = ?Roots)
{x. poly (root-unity n) x = 0} = { x :: complex. x ^ n = 1}
card { x :: complex. x ^ n = 1} = n

proof (atomize(full), goal-cases)
case 1
let ?one = 1 :: complex
let ?p = monom ?one n − 1
have degM : degree (monom ?one n) = n by (rule degree-monom-eq, simp)
have degree ?p = degree (monom ?one n + (−1)) by simp
also have . . . = degree (monom ?one n)

by (rule degree-add-eq-left, insert n, simp add: degM)
finally have degp: degree ?p = n unfolding degM .
with n have p: ?p 6= 0 by auto
have roots: ?Roots = {x. poly ?p x = 0}

unfolding poly-diff poly-monom by simp
also have finite . . . by (rule poly-roots-finite[OF p])

42

finally have fin: finite ?Roots .
have sub: ?prod ⊆ ?Roots
proof

fix x
assume x ∈ ?prod
then obtain i where x: x = cis (real i ∗ 2 ∗ pi / n) by auto
have x ^ n = cis (real i ∗ 2 ∗ pi) unfolding x DeMoivre using n by simp
also have . . . = 1 by simp
finally show x ∈ ?Roots by auto

qed
have Rn: card ?Roots ≤ n unfolding roots

by (rule poly-roots-degree[of ?p, unfolded degp, OF p])
have . . . = card {0 ..< n} by simp
also have . . . = card ?prod
proof (rule card-image[symmetric], rule inj-onI , goal-cases)

case (1 x y)
{

fix m
assume m < n
hence real m < real n by simp
from mult-strict-right-mono[OF this, of 2 ∗ pi / real n] n
have real m ∗ 2 ∗ pi / real n < real n ∗ 2 ∗ pi / real n by simp
hence real m ∗ 2 ∗ pi / real n < 2 ∗ pi using n by simp

} note [simp] = this
have 0 : (1 :: real) 6= 0 using n by auto
have real x ∗ 2 ∗ pi / real n = real y ∗ 2 ∗ pi / real n

by (rule inj-onD[OF rcis-inj-on 1 (3)[unfolded cis-rcis-eq]], insert 1 (1−2),
auto)

with n show x = y by auto
qed
finally have cn: card ?prod = n ..
with Rn have card ?prod ≥ card ?Roots by auto
with card-mono[OF fin sub] have card: card ?prod = card ?Roots by auto
have ?prod = ?Roots

by (rule card-subset-eq[OF fin sub card])
from this roots[symmetric] cn[unfolded this]
show ?case unfolding root-unity-def by blast

qed

lemma poly-roots-dvd: fixes p :: ′a :: field poly
assumes p 6= 0 and degree p = n
and card {x. poly p x = 0} ≥ n and {x. poly p x = 0} ⊆ {x. poly q x = 0}

shows p dvd q
proof −

from poly-roots-degree[OF assms(1)] assms(2−3) have card {x. poly p x = 0}
= n by auto

from assms(1−2) this assms(4)
show ?thesis
proof (induct n arbitrary: p q)

43

case (0 p q)
from is-unit-iff-degree[OF 0 (1)] 0 (2) show ?case by blast

next
case (Suc n p q)
let ?P = {x. poly p x = 0}
let ?Q = {x. poly q x = 0}
from Suc(4−5) card-gt-0-iff [of ?P] obtain x where

x: poly p x = 0 poly q x = 0 and fin: finite ?P by auto
define r where r = [:−x, 1 :]
from x[unfolded poly-eq-0-iff-dvd r-def [symmetric]] obtain p ′ q ′ where

p: p = r ∗ p ′ and q: q = r ∗ q ′ unfolding dvd-def by auto
from Suc(2) have degree p = degree r + degree p ′ unfolding p

by (subst degree-mult-eq, auto)
with Suc(3) have deg: degree p ′ = n unfolding r-def by auto
from Suc(2) p have p ′0 : p ′ 6= 0 by auto
let ?P ′ = {x. poly p ′ x = 0}
let ?Q ′ = {x. poly q ′ x = 0}
have P: ?P = insert x ?P ′ unfolding p poly-mult unfolding r-def by auto
have Q: ?Q = insert x ?Q ′ unfolding q poly-mult unfolding r-def by auto
{

assume x ∈ ?P ′

hence ?P = ?P ′ unfolding P by auto
from arg-cong[OF this, of card, unfolded Suc(4)] deg have False

using poly-roots-degree[OF p ′0] by auto
} note xp ′ = this
hence xP ′: x /∈ ?P ′ by auto
have card ?P = Suc (card ?P ′) unfolding P

by (rule card-insert-disjoint[OF - xP ′], insert fin[unfolded P], auto)
with Suc(4) have card: card ?P ′ = n by auto
from Suc(5)[unfolded P Q] xP ′ have ?P ′ ⊆ ?Q ′ by auto
from Suc(1)[OF p ′0 deg card this]
have IH : p ′ dvd q ′ .
show ?case unfolding p q using IH by simp

qed
qed

lemma root-unity-decomp: assumes n: n 6= 0
shows root-unity n =

prod-list (map (λ i. [:−cis (of-nat i ∗ 2 ∗ pi / n), 1 :]) [0 ..< n]) (is ?u = ?p)
proof −

have deg: degree ?u = n by simp
note main = roots-of-unity[OF n]
have dvd: ?u dvd ?p
proof (rule poly-roots-dvd[OF - deg])

show n ≤ card {x. poly ?u x = 0} using main by auto
show ?u 6= 0 using n by auto
show {x. poly ?u x = 0} ⊆ {x. poly ?p x = 0}

unfolding main(2) main(1)[symmetric] poly-prod-list prod-list-zero-iff by
auto

44

qed
have deg ′: degree ?p = n

by (subst degree-prod-list-eq, auto simp: o-def sum-list-triv)
have mon: monic ?u using deg unfolding root-unity-def using n by auto
have mon ′: monic ?p by (rule monic-prod-list, auto)
from dvd[unfolded dvd-def] obtain f where puf : ?p = ?u ∗ f by auto
have degree ?p = degree ?u + degree f using mon ′ n unfolding puf

by (subst degree-mult-eq, auto)
with deg deg ′ have degree f = 0 by auto
from degree0-coeffs[OF this] obtain a where f : f = [:a:] by blast
from arg-cong[OF puf , of lead-coeff] mon mon ′

have a = 1 unfolding puf f by (cases a = 0 , auto)
with f have f : f = 1 by auto
with puf show ?thesis by auto

qed

lemma order-monic-linear : order x [:y,1 :] = (if y + x = 0 then 1 else 0)
proof (cases y + x = 0)

case True
hence poly [:y,1 :] x = 0 by simp
from this[unfolded order-root] have order x [:y,1 :] 6= 0 by auto
moreover from order-degree[of [:y,1 :] x] have order x [:y,1 :] ≤ 1 by auto
ultimately show ?thesis unfolding True by auto

next
case False
hence poly [:y,1 :] x 6= 0 by auto
from order-0I [OF this] False show ?thesis by auto

qed

lemma order-root-unity: fixes x :: complex assumes n: n 6= 0
shows order x (root-unity n) = (if x^n = 1 then 1 else 0)
(is order - ?u = -)

proof (cases x^n = 1)
case False
with roots-of-unity(2)[OF n] have poly ?u x 6= 0 by auto
from False order-0I [OF this] show ?thesis by auto

next
case True
let ?phi = λ i :: nat. i ∗ 2 ∗ pi / n
from True roots-of-unity(1)[OF n] obtain i where i: i < n

and x: x = cis (?phi i) by force
from i have n-split: [0 ..< n] = [0 ..< i] @ i # [Suc i ..< n]

by (metis le-Suc-ex less-imp-le-nat not-le-imp-less not-less0 upt-add-eq-append
upt-conv-Cons)

{
fix j
assume j: j < n ∨ j < i and eq: cis (?phi i) = cis (?phi j)
from inj-onD[OF cis-inj-on eq] i j n have i = j by (auto simp: field-simps)

} note inj = this

45

have order x ?u = 1 unfolding root-unity-decomp[OF n]
unfolding x n-split using inj
by (subst order-prod-list, force, fastforce simp: order-monic-linear)

with True show ?thesis by auto
qed

lemma order-prod-root-unity: assumes 0 : 0 /∈ set ks
shows order (x :: complex) (prod-root-unity ks) = length (filter (λ k. x^k = 1)

ks)
proof −

have order x (prod-root-unity ks) = (
∑

k←ks. order x (root-unity k))
unfolding prod-root-unity-def
by (subst order-prod-list, insert 0 , auto simp: o-def)

also have . . . = (
∑

k←ks. (if x^k = 1 then 1 else 0))
by (rule arg-cong, rule map-cong, insert 0 , force, intro order-root-unity, metis)

also have . . . = length (filter (λ k. x^k = 1) ks)
by (subst sum-list-map-filter ′[symmetric], simp add: sum-list-triv)

finally show ?thesis .
qed

lemma root-unity-witness: fixes xs :: complex list
assumes prod-list (map (λ x. [:−x,1 :]) xs) = monom 1 n − 1
shows x^n = 1 ←→ x ∈ set xs

proof −
from assms have n0 : n 6= 0 by (cases n = 0 , auto simp: prod-list-zero-iff)
have x ∈ set xs ←→ poly (prod-list (map (λ x. [:−x,1 :]) xs)) x = 0

unfolding poly-prod-list prod-list-zero-iff by auto
also have . . . ←→ x^n = 1 using roots-of-unity(2)[OF n0] unfolding assms

root-unity-def by auto
finally show ?thesis by auto

qed

lemma root-unity-explicit: fixes x :: complex
shows
(x ^ 1 = 1) ←→ x = 1
(x ^ 2 = 1) ←→ (x ∈ {1 , −1})
(x ^ 3 = 1) ←→ (x ∈ {1 , Complex (−1/2) (sqrt 3 / 2), Complex (−1/2) (−

sqrt 3 / 2)})
(x ^ 4 = 1) ←→ (x ∈ {1 , −1 , i, − i})

proof −
show (x ^ 1 = 1) ←→ x = 1

by (subst root-unity-witness[of [1]], code-simp, auto)
show (x ^ 2 = 1) ←→ (x ∈ {1 , −1})

by (subst root-unity-witness[of [1 ,−1]], code-simp, auto)
show (x ^ 4 = 1) ←→ (x ∈ {1 , −1 , i, − i})

by (subst root-unity-witness[of [1 ,−1 , i, − i]], code-simp, auto)
have 3 : 3 = Suc (Suc (Suc 0)) 1 = [:1 :] by auto
show (x ^ 3 = 1) ←→ (x ∈ {1 , Complex (−1/2) (sqrt 3 / 2), Complex (−1/2)

(− sqrt 3 / 2)})

46

by (subst root-unity-witness[of
[1 , Complex (−1/2) (sqrt 3 / 2), Complex (−1/2) (− sqrt 3 / 2)]],
auto simp: 3 monom-altdef complex-mult complex-eq-iff)

qed

definition primitive-root-unity :: nat ⇒ ′a :: power ⇒ bool where
primitive-root-unity k x = (k 6= 0 ∧ x^k = 1 ∧ (∀ k ′ < k. k ′ 6= 0 −→ x^k ′ 6=

1))

lemma primitive-root-unityD: assumes primitive-root-unity k x
shows k 6= 0 x^k = 1 k ′ 6= 0 =⇒ x^k ′ = 1 =⇒ k ≤ k ′

proof −
note ∗ = assms[unfolded primitive-root-unity-def]
from ∗ have ∗∗: k ′ < k =⇒ k ′ 6= 0 =⇒ x ^ k ′ 6= 1 by auto
show k 6= 0 x^k = 1 using ∗ by auto
show k ′ 6= 0 =⇒ x^k ′ = 1 =⇒ k ≤ k ′ using ∗∗ by force

qed

lemma primitive-root-unity-exists: assumes k 6= 0 x ^ k = 1
shows ∃ k ′. k ′ ≤ k ∧ primitive-root-unity k ′ x

proof −
let ?P = λ k. x ^ k = 1 ∧ k 6= 0
define k ′ where k ′ = (LEAST k. ?P k)
from assms have Pk: ∃ k. ?P k by auto
from LeastI-ex[OF Pk, folded k ′-def]
have k ′ 6= 0 x ^ k ′ = 1 by auto
with not-less-Least[of - ?P, folded k ′-def]
have primitive-root-unity k ′ x unfolding primitive-root-unity-def by auto
with primitive-root-unityD(3)[OF this assms]
show ?thesis by auto

qed

lemma primitive-root-unity-dvd: fixes x :: complex
assumes k: primitive-root-unity k x
shows x ^ n = 1 ←→ k dvd n

proof
assume k dvd n then obtain j where n: n = k ∗ j unfolding dvd-def by auto
have x ^ n = (x ^ k) ^ j unfolding n power-mult by simp
also have . . . = 1 unfolding primitive-root-unityD[OF k] by simp
finally show x ^ n = 1 .

next
assume n: x ^ n = 1
note k = primitive-root-unityD[OF k]
show k dvd n
proof (cases n = 0)

case n0 : False
from k(3)[OF n0] n have nk: n ≥ k by force
from roots-of-unity[OF k(1)] k(2) obtain i :: nat where xk: x = cis (i ∗ 2 ∗

pi / k)

47

and ik: i < k by force
from roots-of-unity[OF n0] n obtain j :: nat where xn: x = cis (j ∗ 2 ∗ pi /

n)
and jn: j < n by force

have cop: coprime i k
proof (rule gcd-eq-1-imp-coprime)

from k(1) have gcd i k 6= 0 by auto
from gcd-coprime-exists[OF this] this obtain i ′ k ′ g where
∗: i = i ′ ∗ g k = k ′ ∗ g g 6= 0 and g: g = gcd i k by blast

from ∗(2) k(1) have k ′: k ′ 6= 0 by auto
have x = cis (i ∗ 2 ∗ pi / k) by fact
also have i ∗ 2 ∗ pi / k = i ′ ∗ 2 ∗ pi / k ′ unfolding ∗ using ∗(3) by auto
finally have x ^ k ′ = 1 by (simp add: DeMoivre k ′)
with k(3)[OF k ′] have k ′ ≥ k by linarith
moreover with ∗ k(1) have g = 1 by auto
then show gcd i k = 1 by (simp add: g)

qed
from inj-onD[OF cis-inj-on xk[unfolded xn]] n0 k(1) ik jn
have j ∗ real k = i ∗ real n by (auto simp: field-simps)
hence real (j ∗ k) = real (i ∗ n) by simp
hence eq: j ∗ k = i ∗ n by linarith
with cop show k dvd n

by (metis coprime-commute coprime-dvd-mult-right-iff dvd-triv-right)
qed auto

qed

lemma primitive-root-unity-simple-computation:
primitive-root-unity k x = (if k = 0 then False else

x ^ k = 1 ∧ (∀ i ∈ {1 ..< k}. x ^ i 6= 1))
unfolding primitive-root-unity-def by auto

lemma primitive-root-unity-explicit: fixes x :: complex
shows primitive-root-unity 1 x ←→ x = 1

primitive-root-unity 2 x ←→ x = −1
primitive-root-unity 3 x ←→ (x ∈ {Complex (−1/2) (sqrt 3 / 2), Complex

(−1/2) (− sqrt 3 / 2)})
primitive-root-unity 4 x ←→ (x ∈ {i, − i})

proof (atomize(full), goal-cases)
case 1
{

fix P :: nat ⇒ bool
have ∗: {1 ..< 2 :: nat} = {1} {1 ..< 3 :: nat} = {1 ,2} {1 ..< 4 :: nat} =

{1 ,2 ,3}
by code-simp+

have (∀ i∈ {1 ..< 2}. P i) = P 1 (∀ i∈ {1 ..< 3}. P i) ←→ P 1 ∧ P 2
(∀ i∈ {1 ..< 4}. P i) ←→ P 1 ∧ P 2 ∧ P 3
unfolding ∗ by auto

} note ∗ = this
show ?case unfolding primitive-root-unity-simple-computation root-unity-explicit

48

∗
by (auto simp: complex-eq-iff)

qed

function decompose-prod-root-unity-main ::
′a :: field poly ⇒ nat ⇒ nat list × ′a poly where
decompose-prod-root-unity-main p k = (

if k = 0 then ([], p) else
let q = root-unity k in if q dvd p then if p = 0 then ([],0) else

map-prod (Cons k) id (decompose-prod-root-unity-main (p div q) k) else
decompose-prod-root-unity-main p (k − 1))

by pat-completeness auto

termination by (relation measure (λ (p,k). degree p + k), auto simp: degree-div-less)

declare decompose-prod-root-unity-main.simps[simp del]

lemma decompose-prod-root-unity-main: fixes p :: complex poly
assumes p: p = prod-root-unity ks ∗ f
and d: decompose-prod-root-unity-main p k = (ks ′,g)
and f :

∧
x. cmod x = 1 =⇒ poly f x 6= 0

and k:
∧

k ′. k ′ > k =⇒ ¬ root-unity k ′ dvd p
shows p = prod-root-unity ks ′ ∗ f ∧ f = g ∧ set ks = set ks ′

using d p k
proof (induct p k arbitrary: ks ks ′ rule: decompose-prod-root-unity-main.induct)

case (1 p k ks ks ′)
note p = 1 (4)
note k = 1 (5)
from k[of Suc k] have p0 : p 6= 0 by auto
hence p = 0 ←→ False by auto
note d = 1 (3)[unfolded decompose-prod-root-unity-main.simps[of p k] this if-False

Let-def]
from p0 [unfolded p] have ks0 : 0 /∈ set ks by simp
from f [of 1] have f0 : f 6= 0 by auto
note IH = 1 (1)[OF - refl - p0] 1 (2)[OF - refl]
show ?case
proof (cases k = 0)

case True
with p k[unfolded this, of hd ks] p0 have ks = []

by (cases ks, auto simp: prod-root-unity-def)
with d p True show ?thesis by (auto simp: prod-root-unity-def)

next
case k0 : False
note IH = IH [OF k0]
from k0 have k = 0 ←→ False by auto
note d = d[unfolded this if-False]
let ?u = root-unity k :: complex poly
show ?thesis
proof (cases ?u dvd p)

49

case True
note IH = IH (1)[OF True]
let ?call = decompose-prod-root-unity-main (p div ?u) k
from True d obtain Ks where rec: ?call = (Ks,g) and ks ′: ks ′ = (k # Ks)

by (cases ?call, auto)
from True have ?u dvd p ←→ True by simp
note d = d[unfolded this if-True rec]
let ?x = cis (2 ∗ pi / k)
have rt: poly ?u ?x = 0 unfolding poly-root-unity using cis-times-2pi[of 1]

by (simp add: DeMoivre)
with True have poly p ?x = 0 unfolding dvd-def by auto
from this[unfolded p] f [of ?x] rt have poly (prod-root-unity ks) ?x = 0

unfolding poly-root-unity by auto
from this[unfolded poly-prod-root-unity] ks0 obtain k ′ where k ′: k ′ ∈ set ks

and rt: ?x ^ k ′ = 1 and k ′0 : k ′ 6= 0 by auto
let ?u ′ = root-unity k ′ :: complex poly
from k ′ rt k ′0 have rtk ′: poly ?u ′ ?x = 0 unfolding poly-root-unity by auto
{

let ?phi = k ′ ∗ (2 ∗ pi / k)
assume k ′ < k
hence 0 < ?phi ?phi < 2 ∗ pi using k0 k ′0 by (auto simp: field-simps)
from cis-plus-2pi-neq-1 [OF this] rtk ′

have False unfolding poly-root-unity DeMoivre ..
}
hence kk ′: k ≤ k ′ by presburger
{

assume k ′ > k
from k[OF this, unfolded p]
have ¬ ?u ′ dvd prod-root-unity ks using dvd-mult2 by auto
with k ′ have False unfolding prod-root-unity-def

using prod-list-dvd[of ?u ′ map root-unity ks] by auto
}
with kk ′ have kk ′: k ′ = k by presburger
with k ′ have k ∈ set ks by auto
from split-list[OF this] obtain ks1 ks2 where ks: ks = ks1 @ k # ks2 by

auto
hence p div ?u = (?u ∗ (prod-root-unity (ks1 @ ks2) ∗ f)) div ?u

by (simp add: ac-simps p prod-root-unity-def)
also have . . . = prod-root-unity (ks1 @ ks2) ∗ f

by (rule nonzero-mult-div-cancel-left, insert k0 , auto)
finally have id: p div ?u = prod-root-unity (ks1 @ ks2) ∗ f .
from d have ks ′: ks ′ = k # Ks by auto
have k < k ′ =⇒ ¬ root-unity k ′ dvd p div ?u for k ′

using k[of k ′] True by (metis dvd-div-mult-self dvd-mult2)
from IH [OF rec id this]
have id: p div root-unity k = prod-root-unity Ks ∗ f and
∗: f = g ∧ set (ks1 @ ks2) = set Ks by auto

from arg-cong[OF id, of λ x. x ∗ ?u] True
have p = prod-root-unity Ks ∗ f ∗ root-unity k by auto

50

thus ?thesis using ∗ unfolding ks ks ′ by (auto simp: prod-root-unity-def)
next

case False
from d False have decompose-prod-root-unity-main p (k − 1) = (ks ′,g) by

auto
note IH = IH (2)[OF False this p]
have k: k − 1 < k ′ =⇒ ¬ root-unity k ′ dvd p for k ′ using False k[of k ′] k0

by (cases k ′ = k, auto)
show ?thesis by (rule IH , insert False k, auto)

qed
qed

qed

definition decompose-prod-root-unity p = decompose-prod-root-unity-main p (degree
p)

lemma decompose-prod-root-unity: fixes p :: complex poly
assumes p: p = prod-root-unity ks ∗ f
and d: decompose-prod-root-unity p = (ks ′,g)
and f :

∧
x. cmod x = 1 =⇒ poly f x 6= 0

and p0 : p 6= 0
shows p = prod-root-unity ks ′ ∗ f ∧ f = g ∧ set ks = set ks ′

proof (rule decompose-prod-root-unity-main[OF p d[unfolded decompose-prod-root-unity-def]
f])

fix k
assume deg: degree p < k
hence degree p < degree (root-unity k) by simp
with p0 show ¬ root-unity k dvd p

by (simp add: poly-divides-conv0)
qed

lemma (in comm-ring-hom) hom-root-unity: map-poly hom (root-unity n) = root-unity
n
proof −

interpret p: map-poly-comm-ring-hom hom ..
show ?thesis unfolding root-unity-def

by (simp add: hom-distribs)
qed

lemma (in idom-hom) hom-prod-root-unity: map-poly hom (prod-root-unity n) =
prod-root-unity n
proof −

interpret p: map-poly-comm-ring-hom hom ..
show ?thesis unfolding prod-root-unity-def p.hom-prod-list map-map o-def hom-root-unity

..
qed

lemma (in field-hom) hom-decompose-prod-root-unity-main:
decompose-prod-root-unity-main (map-poly hom p) k = map-prod id (map-poly

51

hom)
(decompose-prod-root-unity-main p k)

proof (induct p k rule: decompose-prod-root-unity-main.induct)
case (1 p k)
let ?h = map-poly hom
let ?p = ?h p
let ?u = root-unity k :: ′a poly
let ?u ′ = root-unity k :: ′b poly
interpret p: map-poly-inj-idom-divide-hom hom ..
have u ′: ?u ′ = ?h ?u unfolding hom-root-unity ..
note simp = decompose-prod-root-unity-main.simps
let ?rec1 = decompose-prod-root-unity-main (p div ?u) k
have 0 : ?p = 0 ←→ p = 0 by simp
show ?case

unfolding simp[of ?p k] simp[of p k] if-distrib[of map-prod id ?h] Let-def u ′

unfolding 0 p.hom-div[symmetric] p.hom-dvd-iff
by (rule if-cong[OF refl], force, rule if-cong[OF refl if-cong[OF refl]], force,
(subst 1 (1), auto, cases ?rec1 , auto)[1],
(subst 1 (2), auto))

qed

lemma (in field-hom) hom-decompose-prod-root-unity:
decompose-prod-root-unity (map-poly hom p) = map-prod id (map-poly hom)
(decompose-prod-root-unity p)

unfolding decompose-prod-root-unity-def
by (subst hom-decompose-prod-root-unity-main, simp)

end

5.1 The Perron Frobenius Theorem for Irreducible Matrices
theory Perron-Frobenius-Irreducible
imports

Perron-Frobenius
Roots-Unity
Rank-Nullity-Theorem.Miscellaneous

begin

lifting-forget vec.lifting
lifting-forget mat.lifting
lifting-forget poly.lifting

lemma charpoly-of-real: charpoly (map-matrix complex-of-real A) = map-poly of-real
(charpoly A)

by (transfer-hma rule: of-real-hom.char-poly-hom)

context includes lifting-syntax
begin

52

lemma HMA-M-smult[transfer-rule]: ((=) ===> HMA-M ===> HMA-M) (·m)
((∗k))

unfolding smult-mat-def
unfolding rel-fun-def HMA-M-def from-hmam-def
by (auto simp: matrix-scalar-mult-def)

end

lemma order-charpoly-smult: fixes A :: complex ^ ′n ^ ′n
assumes k: k 6= 0
shows order x (charpoly (k ∗k A)) = order (x / k) (charpoly A)
by (transfer fixing: k, rule order-char-poly-smult[OF - k])

lemma smult-eigen-vector : fixes a :: ′a :: field
assumes eigen-vector A v x
shows eigen-vector (a ∗k A) v (a ∗ x)

proof −
from assms[unfolded eigen-vector-def] have v: v 6= 0 and id: A ∗v v = x ∗s v

by auto
from arg-cong[OF id, of (∗s) a] have id: (a ∗k A) ∗v v = (a ∗ x) ∗s v

unfolding scalar-matrix-vector-assoc by simp
thus eigen-vector (a ∗k A) v (a ∗ x) using v unfolding eigen-vector-def by

auto
qed

lemma smult-eigen-value: fixes a :: ′a :: field
assumes eigen-value A x
shows eigen-value (a ∗k A) (a ∗ x)
using assms smult-eigen-vector [of A - x a] unfolding eigen-value-def by blast

locale fixed-mat = fixes A :: ′a :: zero ^ ′n ^ ′n
begin
definition G :: ′n rel where

G = { (i,j). A $ i $ j 6= 0}

definition irreducible :: bool where
irreducible = (UNIV ⊆ G^+)

end

lemma G-transpose:
fixed-mat.G (transpose A) = ((fixed-mat.G A))^−1
unfolding fixed-mat.G-def by (force simp: transpose-def)

lemma G-transpose-trancl:
(fixed-mat.G (transpose A))^+ = ((fixed-mat.G A)^+)^−1
unfolding G-transpose trancl-converse by auto

locale pf-nonneg-mat = fixed-mat A for
A :: ′a :: linordered-idom ^ ′n ^ ′n +

53

assumes non-neg-mat: non-neg-mat A
begin
lemma nonneg: A $ i $ j ≥ 0

using non-neg-mat unfolding non-neg-mat-def elements-mat-h-def by auto

lemma nonneg-matpow: matpow A n $ i $ j ≥ 0
by (induct n arbitrary: i j, insert nonneg,

auto intro!: sum-nonneg simp: matrix-matrix-mult-def mat-def)

lemma G-relpow-matpow-pos: (i,j) ∈ G ^^ n =⇒ matpow A n $ i $ j > 0
proof (induct n arbitrary: i j)

case (0 i)
thus ?case by (auto simp: mat-def)

next
case (Suc n i j)
from Suc(2) have (i,j) ∈ G ^^ n O G

by (simp add: relpow-commute)
then obtain k where

ik: A $ k $ j 6= 0 and kj: (i, k) ∈ G ^^ n by (auto simp: G-def)
from ik nonneg[of k j] have ik: A $ k $ j > 0 by auto
from Suc(1)[OF kj] have IH : matpow A n $h i $h k > 0 .
thus ?case using ik by (auto simp: nonneg-matpow nonneg matrix-matrix-mult-def

intro!: sum-pos2 [of - k] mult-nonneg-nonneg)
qed

lemma matpow-mono: assumes B:
∧

i j. B $ i $ j ≥ A $ i $ j
shows matpow B n $ i $ j ≥ matpow A n $ i $ j

proof (induct n arbitrary: i j)
case (Suc n i j)
thus ?case using B nonneg-matpow[of n] nonneg

by (auto simp: matrix-matrix-mult-def intro!: sum-mono mult-mono ′)
qed simp

lemma matpow-sum-one-mono: matpow (A + mat 1) (n + k) $ i $ j ≥ matpow
(A + mat 1) n $ i $ j
proof (induct k)

case (Suc k)
have (matpow (A + mat 1) (n + k) ∗∗ A) $h i $h j ≥ 0 unfolding ma-

trix-matrix-mult-def
using order .trans[OF nonneg-matpow matpow-mono[of A + mat 1 n + k]]
by (auto intro!: sum-nonneg mult-nonneg-nonneg nonneg simp: mat-def)

thus ?case using Suc by (simp add: matrix-add-ldistrib matrix-mul-rid)
qed simp

lemma G-relpow-matpow-pos-ge:
assumes (i,j) ∈ G ^^ m n ≥ m
shows matpow (A + mat 1) n $ i $ j > 0

proof −

54

from assms(2) obtain k where n: n = m + k using le-Suc-ex by blast
have 0 < matpow A m $ i $ j by (rule G-relpow-matpow-pos[OF assms(1)])
also have . . . ≤ matpow (A + mat 1) m $ i $ j

by (rule matpow-mono, auto simp: mat-def)
also have . . . ≤ matpow (A + mat 1) n $ i $ j unfolding n using mat-

pow-sum-one-mono .
finally show ?thesis .

qed
end

locale perron-frobenius = pf-nonneg-mat A
for A :: real ^ ′n ^ ′n +
assumes irr : irreducible

begin

definition N where N = (SOME N . ∀ ij. ∃ n ≤ N . ij ∈ G ^^ n)

lemma N : ∃ n ≤ N . ij ∈ G ^^ n
proof −

{
fix ij
have ij ∈ G^+ using irr [unfolded irreducible-def] by auto
from this[unfolded trancl-power] have ∃ n. ij ∈ G ^^ n by blast

}
hence ∀ ij. ∃ n. ij ∈ G ^^ n by auto
from choice[OF this] obtain f where f :

∧
ij. ij ∈ G ^^ (f ij) by auto

define N where N : N = Max (range f)
{

fix ij
from f [of ij] have ij ∈ G ^^ f ij .
moreover have f ij ≤ N unfolding N

by (rule Max-ge, auto)
ultimately have ∃ n ≤ N . ij ∈ G ^^ n by blast

} note main = this
let ?P = λ N . ∀ ij. ∃ n ≤ N . ij ∈ G ^^ n
from main have ?P N by blast
from someI [of ?P, OF this, folded N-def]
show ?thesis by blast

qed

lemma irreducible-matpow-pos: assumes irreducible
shows matpow (A + mat 1) N $ i $ j > 0

proof −
from N obtain n where n: n ≤ N and reach: (i,j) ∈ G ^^ n by auto
show ?thesis by (rule G-relpow-matpow-pos-ge[OF reach n])

qed

lemma pf-transpose: perron-frobenius (transpose A)
proof

55

show fixed-mat.irreducible (transpose A)
unfolding fixed-mat.irreducible-def G-transpose-trancl using irr [unfolded irre-

ducible-def]
by auto

qed (insert nonneg, auto simp: transpose-def non-neg-mat-def elements-mat-h-def)

abbreviation le-vec :: real ^ ′n ⇒ real ^ ′n ⇒ bool where
le-vec x y ≡ (∀ i. x $ i ≤ y $ i)

abbreviation lt-vec :: real ^ ′n ⇒ real ^ ′n ⇒ bool where
lt-vec x y ≡ (∀ i. x $ i < y $ i)

definition A1n = matpow (A + mat 1) N

lemmas A1n-pos = irreducible-matpow-pos[OF irr , folded A1n-def]

definition r :: real ^ ′n ⇒ real where
r x = Min { (A ∗v x) $ j / x $ j | j. x $ j 6= 0 }

definition X :: (real ^ ′n)set where
X = { x . le-vec 0 x ∧ x 6= 0 }

lemma nonneg-Ax: x ∈ X =⇒ le-vec 0 (A ∗v x)
unfolding X-def using nonneg
by (auto simp: matrix-vector-mult-def intro!: sum-nonneg)

lemma A-nonzero-fixed-i: ∃ j. A $ i $ j 6= 0
proof −

from irr [unfolded irreducible-def] have (i,i) ∈ G^+ by auto
then obtain j where (i,j) ∈ G by (metis converse-tranclE)
hence Aij: A $ i $ j 6= 0 unfolding G-def by auto
thus ?thesis ..

qed

lemma A-nonzero-fixed-j: ∃ i. A $ i $ j 6= 0
proof −

from irr [unfolded irreducible-def] have (j,j) ∈ G^+ by auto
then obtain i where (i,j) ∈ G by (cases, auto)
hence Aij: A $ i $ j 6= 0 unfolding G-def by auto
thus ?thesis ..

qed

lemma Ax-pos: assumes x: lt-vec 0 x
shows lt-vec 0 (A ∗v x)

proof
fix i
from A-nonzero-fixed-i[of i] obtain j where A $ i $ j 6= 0 by auto
with nonneg[of i j] have A: A $ i $ j > 0 by simp
from x have x $ j ≥ 0 for j by (auto simp: order .strict-iff-order)

56

note nonneg = mult-nonneg-nonneg[OF nonneg[of i] this]
have (A ∗v x) $ i = (

∑
j∈UNIV . A $ i $ j ∗ x $ j)

unfolding matrix-vector-mult-def by simp
also have . . . = A $ i $ j ∗ x $ j + (

∑
j∈UNIV − {j}. A $ i $ j ∗ x $ j)

by (subst sum.remove, auto)
also have . . . > 0 + 0

by (rule add-less-le-mono, insert A x[rule-format] nonneg,
auto intro!: sum-nonneg mult-pos-pos)

finally show 0 $ i < (A ∗v x) $ i by simp
qed

lemma nonzero-Ax: assumes x: x ∈ X
shows A ∗v x 6= 0

proof
assume 0 : A ∗v x = 0
from x[unfolded X-def] have x: le-vec 0 x x 6= 0 by auto
from x(2) obtain j where xj: x $ j 6= 0

by (metis vec-eq-iff zero-index)
from A-nonzero-fixed-j[of j] obtain i where Aij: A $ i $ j 6= 0 by auto
from arg-cong[OF 0 , of λ v. v $ i, unfolded matrix-vector-mult-def]
have 0 = (

∑
k ∈ UNIV . A $h i $h k ∗ x $h k) by auto

also have . . . = A $h i $h j ∗ x $h j + (
∑

k ∈ UNIV − {j}. A $h i $h k ∗ x
$h k)

by (subst sum.remove[of - j], auto)
also have . . . > 0 + 0

by (rule add-less-le-mono, insert nonneg[of i] Aij x(1) xj,
auto intro!: sum-nonneg mult-pos-pos simp: dual-order .not-eq-order-implies-strict)

finally show False by simp
qed

lemma r-witness: assumes x: x ∈ X
shows ∃ j. x $ j > 0 ∧ r x = (A ∗v x) $ j / x $ j

proof −
from x[unfolded X-def] have x: le-vec 0 x x 6= 0 by auto
let ?A = { (A ∗v x) $ j / x $ j | j. x $ j 6= 0 }
from x(2) obtain j where x $ j 6= 0

by (metis vec-eq-iff zero-index)
hence empty: ?A 6= {} by auto
from Min-in[OF - this, folded r-def]
obtain j where x $ j 6= 0 and rx: r x = (A ∗v x) $ j / x $ j by auto
with x have x $ j > 0 by (auto simp: dual-order .not-eq-order-implies-strict)
with rx show ?thesis by auto

qed

lemma rx-nonneg: assumes x: x ∈ X
shows r x ≥ 0

proof −

57

from x[unfolded X-def] have x: le-vec 0 x x 6= 0 by auto
let ?A = { (A ∗v x) $ j / x $ j | j. x $ j 6= 0 }
from r-witness[OF ‹x ∈ X›]
have empty: ?A 6= {} by force
show ?thesis unfolding r-def X-def
proof (subst Min-ge-iff , force, use empty in force, intro ballI)

fix y
assume y ∈ ?A
then obtain j where y = (A ∗v x) $ j / x $ j and x $ j 6= 0 by auto
from nonneg-Ax[OF ‹x ∈ X›] this x
show 0 ≤ y by simp

qed
qed

lemma rx-pos: assumes x: lt-vec 0 x
shows r x > 0

proof −
from Ax-pos[OF x] have lt: lt-vec 0 (A ∗v x) .
from x have x ′: x ∈ X unfolding X-def order .strict-iff-order by auto
let ?A = { (A ∗v x) $ j / x $ j | j. x $ j 6= 0 }
from r-witness[OF ‹x ∈ X›]
have empty: ?A 6= {} by force
show ?thesis unfolding r-def X-def
proof (subst Min-gr-iff , force, use empty in force, intro ballI)

fix y
assume y ∈ ?A
then obtain j where y = (A ∗v x) $ j / x $ j and x $ j 6= 0 by auto
from lt this x show 0 < y by simp

qed
qed

lemma rx-le-Ax: assumes x: x ∈ X
shows le-vec (r x ∗s x) (A ∗v x)

proof (intro allI)
fix i
show (r x ∗s x) $h i ≤ (A ∗v x) $h i
proof (cases x $ i = 0)

case True
with nonneg-Ax[OF x] show ?thesis by auto

next
case False
with x[unfolded X-def] have pos: x $ i > 0

by (auto simp: dual-order .not-eq-order-implies-strict)
from False have (A ∗v x) $h i / x $ i ∈ { (A ∗v x) $ j / x $ j | j. x $ j 6= 0

} by auto
hence (A ∗v x) $h i / x $ i ≥ r x unfolding r-def by simp

hence x $ i ∗ r x ≤ x $ i ∗ ((A ∗v x) $h i / x $ i) unfolding mult-le-cancel-left-pos[OF
pos] .

also have . . . = (A ∗v x) $h i using pos by simp

58

finally show ?thesis by (simp add: ac-simps)
qed

qed

lemma rho-le-x-Ax-imp-rho-le-rx: assumes x: x ∈ X
and %: le-vec (% ∗s x) (A ∗v x)

shows % ≤ r x
proof −

from r-witness[OF x] obtain j where
rx: r x = (A ∗v x) $ j / x $ j and xj: x $ j > 0 x $ j ≥ 0 by auto

from divide-right-mono[OF %[rule-format, of j] xj(2)]
show ?thesis unfolding rx using xj by simp

qed

lemma rx-Max: assumes x: x ∈ X
shows r x = Sup { % . le-vec (% ∗s x) (A ∗v x) } (is - = Sup ?S)

proof −
have r x ∈ ?S using rx-le-Ax[OF x] by auto
moreover {

fix y
assume y ∈ ?S
hence y: le-vec (y ∗s x) (A ∗v x) by auto
from rho-le-x-Ax-imp-rho-le-rx[OF x this]
have y ≤ r x .

}
ultimately show ?thesis by (metis (mono-tags, lifting) cSup-eq-maximum)

qed

lemma r-smult: assumes x: x ∈ X
and a: a > 0

shows r (a ∗s x) = r x
unfolding r-def
by (rule arg-cong[of - - Min], unfold vector-smult-distrib, insert a, simp)

definition X1 = (X ∩ {x. norm x = 1})

lemma bounded-X1 : bounded X1 unfolding bounded-iff X1-def by auto

lemma closed-X1 : closed X1
proof −

have X1 : X1 = {x. le-vec 0 x ∧ norm x = 1}
unfolding X1-def X-def by auto

show ?thesis unfolding X1
by (intro closed-Collect-conj closed-Collect-all closed-Collect-le closed-Collect-eq,

auto intro: continuous-intros)
qed

lemma compact-X1 : compact X1 using bounded-X1 closed-X1
by (simp add: compact-eq-bounded-closed)

59

definition pow-A-1 x = A1n ∗v x

lemma continuous-pow-A-1 : continuous-on R pow-A-1
unfolding pow-A-1-def continuous-on
by (auto intro: tendsto-intros)

definition Y = pow-A-1 ‘ X1

lemma compact-Y : compact Y
unfolding Y-def using compact-X1 continuous-pow-A-1 [of X1]
by (metis compact-continuous-image)

lemma Y-pos-main: assumes y: y ∈ pow-A-1 ‘ X
shows y $ i > 0

proof −
from y obtain x where x: x ∈ X and y: y = pow-A-1 x unfolding Y-def

X1-def by auto
from r-witness[OF x] obtain j where xj: x $ j > 0 by auto
from x[unfolded X-def] have xi: x $ i ≥ 0 for i by auto
have nonneg: 0 ≤ A1n $ i $ k ∗ x $ k for k using A1n-pos[of i k] xi[of k] by

auto
have y $ i = (

∑
j∈UNIV . A1n $ i $ j ∗ x $ j)

unfolding y pow-A-1-def matrix-vector-mult-def by simp
also have . . . = A1n $ i $ j ∗ x $ j + (

∑
j∈UNIV − {j}. A1n $ i $ j ∗ x $ j)

by (subst sum.remove, auto)
also have . . . > 0 + 0

by (rule add-less-le-mono, insert xj A1n-pos nonneg,
auto intro!: sum-nonneg mult-pos-pos simp: dual-order .not-eq-order-implies-strict)

finally show ?thesis by simp
qed

lemma Y-pos: assumes y: y ∈ Y
shows y $ i > 0
using Y-pos-main[of y i] y unfolding Y-def X1-def by auto

lemma Y-nonzero: assumes y: y ∈ Y
shows y $ i 6= 0
using Y-pos[OF y, of i] by auto

definition r ′ :: real ^ ′n ⇒ real where
r ′ x = Min (range (λ j. (A ∗v x) $ j / x $ j))

lemma r ′-r : assumes x: x ∈ Y shows r ′ x = r x
unfolding r ′-def r-def

proof (rule arg-cong[of - - Min])
have range (λj. (A ∗v x) $ j / x $ j) ⊆ {(A ∗v x) $ j / x $ j |j. x $ j 6= 0} (is

60

?L ⊆ ?R)
proof

fix y
assume y ∈ ?L
then obtain j where y = (A ∗v x) $ j / x $ j by auto
with Y-pos[OF x, of j] show y ∈ ?R by auto

qed
moreover have ?L ⊇ ?R by auto
ultimately show ?L = ?R by blast

qed

lemma continuous-Y-r : continuous-on Y r
proof −

have ∗: (∀ y ∈ Y . P y (r y)) = (∀ y ∈ Y . P y (r ′ y)) for P using r ′-r by auto
have continuous-on Y r = continuous-on Y r ′

by (rule continuous-on-cong[OF refl r ′-r [symmetric]])
also have . . .

unfolding continuous-on r ′-def using Y-nonzero
by (auto intro!: tendsto-Min tendsto-intros)

finally show ?thesis .
qed

lemma X1-nonempty: X1 6= {}
proof −

define x where x = ((χ i. if i = undefined then 1 else 0) :: real ^ ′n)
{

assume x = 0
from arg-cong[OF this, of λ x. x $ undefined] have False unfolding x-def by

auto
}
hence x: x 6= 0 by auto
moreover have le-vec 0 x unfolding x-def by auto
moreover have norm x = 1 unfolding norm-vec-def L2-set-def

by (auto, subst sum.remove[of - undefined], auto simp: x-def)
ultimately show ?thesis unfolding X1-def X-def by auto

qed

lemma Y-nonempty: Y 6= {}
unfolding Y-def using X1-nonempty by auto

definition z where z = (SOME z. z ∈ Y ∧ (∀ y ∈ Y . r y ≤ r z))

abbreviation sr ≡ r z

lemma z: z ∈ Y and sr-max-Y :
∧

y. y ∈ Y =⇒ r y ≤ sr
proof −

let ?P = λ z. z ∈ Y ∧ (∀ y ∈ Y . r y ≤ r z)
from continuous-attains-sup[OF compact-Y Y-nonempty continuous-Y-r]
obtain y where ?P y by blast

61

from someI [of ?P, OF this, folded z-def]
show z ∈ Y

∧
y. y ∈ Y =⇒ r y ≤ r z by blast+

qed

lemma Y-subset-X : Y ⊆ X
proof

fix y
assume y ∈ Y
from Y-pos[OF this] show y ∈ X unfolding X-def

by (auto simp: order .strict-iff-order)
qed

lemma zX : z ∈ X
using z(1) Y-subset-X by auto

lemma le-vec-mono-left: assumes B:
∧

i j. B $ i $ j ≥ 0
and le-vec x y

shows le-vec (B ∗v x) (B ∗v y)
proof (intro allI)

fix i
show (B ∗v x) $ i ≤ (B ∗v y) $ i unfolding matrix-vector-mult-def using B[of

i] assms(2)
by (auto intro!: sum-mono mult-left-mono)

qed

lemma matpow-1-commute: matpow (A + mat 1) n ∗∗ A = A ∗∗ matpow (A +
mat 1) n

by (induct n, auto simp: matrix-add-rdistrib matrix-add-ldistrib matrix-mul-rid
matrix-mul-lid

matrix-mul-assoc[symmetric])

lemma A1n-commute: A1n ∗∗ A = A ∗∗ A1n
unfolding A1n-def by (rule matpow-1-commute)

lemma le-vec-pow-A-1 : assumes le: le-vec (rho ∗s x) (A ∗v x)
shows le-vec (rho ∗s pow-A-1 x) (A ∗v pow-A-1 x)

proof −
have A1n $ i $ j ≥ 0 for i j using A1n-pos[of i j] by auto
from le-vec-mono-left[OF this le]
have le-vec (A1n ∗v (rho ∗s x)) (A1n ∗v (A ∗v x)) .
also have A1n ∗v (A ∗v x) = (A1n ∗∗ A) ∗v x by (simp add: matrix-vector-mul-assoc)
also have . . . = A ∗v (A1n ∗v x) unfolding A1n-commute by (simp add:

matrix-vector-mul-assoc)
also have . . . = A ∗v (pow-A-1 x) unfolding pow-A-1-def ..
also have A1n ∗v (rho ∗s x) = rho ∗s (A1n ∗v x) unfolding vector-smult-distrib

..
also have . . . = rho ∗s pow-A-1 x unfolding pow-A-1-def ..
finally show le-vec (rho ∗s pow-A-1 x) (A ∗v pow-A-1 x) .

62

qed

lemma r-pow-A-1 : assumes x: x ∈ X
shows r x ≤ r (pow-A-1 x)

proof −
let ?y = pow-A-1 x
have ?y ∈ pow-A-1 ‘ X using x by auto
from Y-pos-main[OF this]
have y: ?y ∈ X unfolding X-def by (auto simp: order .strict-iff-order)
let ?A = {%. le-vec (% ∗s x) (A ∗v x)}
let ?B = {%. le-vec (% ∗s pow-A-1 x) (A ∗v pow-A-1 x)}
show ?thesis unfolding rx-Max[OF x] rx-Max[OF y]
proof (rule cSup-mono)

show bdd-above ?B using rho-le-x-Ax-imp-rho-le-rx[OF y] by fast
show ?A 6= {} using rx-le-Ax[OF x] by auto
fix rho
assume rho ∈ ?A
hence le-vec (rho ∗s x) (A ∗v x) by auto
from le-vec-pow-A-1 [OF this] have rho ∈ ?B by auto
thus ∃ rho ′ ∈ ?B. rho ≤ rho ′ by auto

qed
qed

lemma sr-max: assumes x: x ∈ X
shows r x ≤ sr

proof −
let ?n = norm x
define x ′ where x ′ = inverse ?n ∗s x
from x[unfolded X-def] have x0 : x 6= 0 by auto
hence n: ?n > 0 by auto
have x ′: x ′ ∈ X1 x ′ ∈ X using x n unfolding X1-def X-def x ′-def by (auto

simp: norm-smult)
have id: r x = r x ′ unfolding x ′-def

by (rule sym, rule r-smult[OF x], insert n, auto)
define y where y = pow-A-1 x ′

from x ′ have y: y ∈ Y unfolding Y-def y-def by auto
note id
also have r x ′ ≤ r y using r-pow-A-1 [OF x ′(2)] unfolding y-def .
also have . . . ≤ r z using sr-max-Y [OF y] .
finally show r x ≤ r z .

qed

lemma z-pos: z $ i > 0
using Y-pos[OF z(1)] by auto

lemma sr-pos: sr > 0
by (rule rx-pos, insert z-pos, auto)

context fixes u

63

assumes u: u ∈ X and ru: r u = sr
begin

lemma sr-imp-eigen-vector-main: sr ∗s u = A ∗v u
proof (rule ccontr)

assume ∗: sr ∗s u 6= A ∗v u
let ?x = A ∗v u − sr ∗s u
from ∗ have 0 : ?x 6= 0 by auto
let ?y = pow-A-1 u
have le-vec (sr ∗s u) (A ∗v u) using rx-le-Ax[OF u] unfolding ru .
hence le: le-vec 0 ?x by auto
from 0 le have x: ?x ∈ X unfolding X-def by auto
have y-pos: lt-vec 0 ?y using Y-pos-main[of ?y] u by auto
hence y: ?y ∈ X unfolding X-def by (auto simp: order .strict-iff-order)
from Y-pos-main[of pow-A-1 ?x] x
have lt-vec 0 (pow-A-1 ?x) by auto
hence lt: lt-vec (sr ∗s ?y) (A ∗v ?y) unfolding pow-A-1-def matrix-vector-right-distrib-diff

matrix-vector-mul-assoc A1n-commute vector-smult-distrib by simp
let ?f = (λ i. (A ∗v ?y − sr ∗s ?y) $ i / ?y $ i)
let ?U = UNIV :: ′n set
define eps where eps = Min (?f ‘ ?U)
have U : finite (?f ‘ ?U) ?f ‘ ?U 6= {} by auto
have eps: eps > 0 unfolding eps-def Min-gr-iff [OF U]

using lt sr-pos y-pos by auto
have le: le-vec ((sr + eps) ∗s ?y) (A ∗v ?y)
proof

fix i
have ((sr + eps) ∗s ?y) $ i = sr ∗ ?y $ i + eps ∗ ?y $ i

by (simp add: comm-semiring-class.distrib)
also have . . . ≤ sr ∗ ?y $ i + ?f i ∗ ?y $ i
proof (rule add-left-mono[OF mult-right-mono])

show 0 ≤ ?y $ i using y-pos[rule-format, of i] by auto
show eps ≤ ?f i unfolding eps-def by (rule Min-le, auto)

qed
also have . . . = (A ∗v ?y) $ i using sr-pos y-pos[rule-format, of i]

by simp
finally
show ((sr + eps) ∗s ?y) $ i ≤ (A ∗v ?y) $ i .

qed
from rho-le-x-Ax-imp-rho-le-rx[OF y le]
have r ?y ≥ sr + eps .
with sr-max[OF y] eps show False by auto

qed

lemma sr-imp-eigen-vector : eigen-vector A u sr
unfolding eigen-vector-def sr-imp-eigen-vector-main using u unfolding X-def

by auto

lemma sr-u-pos: lt-vec 0 u

64

proof −
let ?y = pow-A-1 u
define n where n = N
define c where c = (sr + 1)^N
have c: c > 0 using sr-pos unfolding c-def by auto
have lt-vec 0 ?y using Y-pos-main[of ?y] u by auto
also have ?y = A1n ∗v u unfolding pow-A-1-def ..
also have . . . = c ∗s u unfolding c-def A1n-def n-def [symmetric]
proof (induct n)

case (Suc n)
then show ?case

by (simp add: matrix-vector-mul-assoc[symmetric] algebra-simps vec.scale
sr-imp-eigen-vector-main[symmetric])

qed auto
finally have lt: lt-vec 0 (c ∗s u) .
have 0 < u $ i for i using lt[rule-format, of i] c by simp (metis zero-less-mult-pos)
thus lt-vec 0 u by simp

qed
end

lemma eigen-vector-z-sr : eigen-vector A z sr
using sr-imp-eigen-vector [OF zX refl] by auto

lemma eigen-value-sr : eigen-value A sr
using eigen-vector-z-sr unfolding eigen-value-def by auto

abbreviation c ≡ complex-of-real
abbreviation cA ≡ map-matrix c A
abbreviation norm-v ≡ map-vector (norm :: complex ⇒ real)

lemma norm-v-ge-0 : le-vec 0 (norm-v v) by (auto simp: map-vector-def)
lemma norm-v-eq-0 : norm-v v = 0 ←→ v = 0 by (auto simp: map-vector-def
vec-eq-iff)

lemma cA-index: cA $ i $ j = c (A $ i $ j)
unfolding map-matrix-def map-vector-def by simp

lemma norm-cA[simp]: norm (cA $ i $ j) = A $ i $ j
using nonneg[of i j] by (simp add: cA-index)

context fixes α v
assumes ev: eigen-vector cA v α

begin

lemma evD: α ∗s v = cA ∗v v v 6= 0
using ev[unfolded eigen-vector-def] by auto

lemma ev-alpha-norm-v: norm-v (α ∗s v) = (norm α ∗s norm-v v)
by (auto simp: map-vector-def norm-mult vec-eq-iff)

65

lemma ev-A-norm-v: norm-v (cA ∗v v) $ j ≤ (A ∗v norm-v v) $ j
proof −

have norm-v (cA ∗v v) $ j = norm (
∑

i∈UNIV . cA $ j $ i ∗ v $ i)
unfolding map-vector-def by (simp add: matrix-vector-mult-def)

also have . . . ≤ (
∑

i∈UNIV . norm (cA $ j $ i ∗ v $ i)) by (rule norm-sum)
also have . . . = (

∑
i∈UNIV . A $ j $ i ∗ norm-v v $ i)

by (rule sum.cong[OF refl], auto simp: norm-mult map-vector-def)
also have . . . = (A ∗v norm-v v) $ j by (simp add: matrix-vector-mult-def)
finally show ?thesis .

qed

lemma ev-le-vec: le-vec (norm α ∗s norm-v v) (A ∗v norm-v v)
using arg-cong[OF evD(1), of norm-v, unfolded ev-alpha-norm-v] ev-A-norm-v

by auto

lemma norm-v-X : norm-v v ∈ X
using norm-v-ge-0 [of v] evD(2) norm-v-eq-0 [of v] unfolding X-def by auto

lemma ev-inequalities: norm α ≤ r (norm-v v) r (norm-v v) ≤ sr
proof −

have v: norm-v v ∈ X by (rule norm-v-X)
from rho-le-x-Ax-imp-rho-le-rx[OF v ev-le-vec]
show norm α ≤ r (norm-v v) .
from sr-max[OF v]
show r (norm-v v) ≤ sr .

qed

lemma eigen-vector-norm-sr : norm α ≤ sr using ev-inequalities by auto
end

lemma eigen-value-norm-sr : assumes eigen-value cA α
shows norm α ≤ sr
using eigen-vector-norm-sr [of - α] assms unfolding eigen-value-def by auto

lemma le-vec-trans: le-vec x y =⇒ le-vec y u =⇒ le-vec x u
using order .trans[of x $ i y $ i u $ i for i] by auto

lemma eigen-vector-z-sr-c: eigen-vector cA (map-vector c z) (c sr)
unfolding of-real-hom.eigen-vector-hom by (rule eigen-vector-z-sr)

lemma eigen-value-sr-c: eigen-value cA (c sr)
using eigen-vector-z-sr-c unfolding eigen-value-def by auto

definition w = perron-frobenius.z (transpose A)

lemma w: transpose A ∗v w = sr ∗s w lt-vec 0 w perron-frobenius.sr (transpose
A) = sr

66

proof −
interpret t: perron-frobenius transpose A

by (rule pf-transpose)
from eigen-vector-z-sr-c t.eigen-vector-z-sr-c
have ev: eigen-value cA (c sr) eigen-value t.cA (c t.sr)

unfolding eigen-value-def by auto
{

fix x
have eigen-value (t.cA) x = eigen-value (transpose cA) x

unfolding map-matrix-def map-vector-def transpose-def
by (auto simp: vec-eq-iff)

also have . . . = eigen-value cA x by (rule eigen-value-transpose)
finally have eigen-value (t.cA) x = eigen-value cA x .

} note ev-id = this
with ev have ev: eigen-value t.cA (c sr) eigen-value cA (c t.sr) by auto
from eigen-value-norm-sr [OF ev(2)] t.eigen-value-norm-sr [OF ev(1)]
show id: t.sr = sr by auto
from t.eigen-vector-z-sr [unfolded id, folded w-def] show transpose A ∗v w = sr
∗s w

unfolding eigen-vector-def by auto
from t.z-pos[folded w-def] show lt-vec 0 w by auto

qed

lemma c-cmod-id: a ∈ � =⇒ Re a ≥ 0 =⇒ c (cmod a) = a by (auto simp:
Reals-def)

lemma pos-rowvector-mult-0 : assumes lt: lt-vec 0 x
and 0 : (rowvector x :: real ^ ′n ^ ′n) ∗v y = 0 (is ?x ∗v - = 0) and le: le-vec 0

y
shows y = 0
proof −

{
fix i
assume y $ i 6= 0
with le have yi: y $ i > 0 by (auto simp: order .strict-iff-order)
have 0 = (?x ∗v y) $ i unfolding 0 by simp
also have . . . = (

∑
j∈UNIV . x $ j ∗ y $ j)

unfolding rowvector-def matrix-vector-mult-def by simp
also have . . . > 0

by (rule sum-pos2 [of - i], insert yi lt le, auto intro!: mult-nonneg-nonneg
simp: order .strict-iff-order)

finally have False by simp
}
thus ?thesis by (auto simp: vec-eq-iff)

qed

lemma pos-matrix-mult-0 : assumes le:
∧

i j. B $ i $ j ≥ 0
and lt: lt-vec 0 x
and 0 : B ∗v x = 0

67

shows B = 0
proof −

{
fix i j
assume B $ i $ j 6= 0
with le have gt: B $ i $ j > 0 by (auto simp: order .strict-iff-order)
have 0 = (B ∗v x) $ i unfolding 0 by simp
also have . . . = (

∑
j∈UNIV . B $ i $ j ∗ x $ j)

unfolding matrix-vector-mult-def by simp
also have . . . > 0

by (rule sum-pos2 [of - j], insert gt lt le, auto intro!: mult-nonneg-nonneg
simp: order .strict-iff-order)

finally have False by simp
}
thus B = 0 unfolding vec-eq-iff by auto

qed

lemma eigen-value-smaller-matrix: assumes B:
∧

i j. 0 ≤ B $ i $ j ∧ B $ i $ j
≤ A $ i $ j

and AB: A 6= B
and ev: eigen-value (map-matrix c B) sigma

shows cmod sigma < sr
proof −

let ?B = map-matrix c B
let ?sr = spectral-radius ?B
define σ where σ = ?sr
have real-non-neg-mat ?B unfolding real-non-neg-mat-def elements-mat-h-def

by (auto simp: map-matrix-def map-vector-def B)
from perron-frobenius[OF this, folded σ-def] obtain x where ev-sr : eigen-vector

?B x (c σ)
and rnn: real-non-neg-vec x by auto

define y where y = norm-v x
from rnn have xy: x = map-vector c y

unfolding real-non-neg-vec-def vec-elements-h-def y-def
by (auto simp: map-vector-def vec-eq-iff c-cmod-id)

from spectral-radius-max[OF ev, folded σ-def] have sigma-sigma: cmod sigma ≤
σ .

from ev-sr [unfolded xy of-real-hom.eigen-vector-hom]
have ev-B: eigen-vector B y σ .
from ev-B[unfolded eigen-vector-def] have ev-B ′: B ∗v y = σ ∗s y by auto
have ypos: y $ i ≥ 0 for i unfolding y-def by (auto simp: map-vector-def)
from ev-B this have y: y ∈ X unfolding eigen-vector-def X-def by auto

have BA: (B ∗v y) $ i ≤ (A ∗v y) $ i for i
unfolding matrix-vector-mult-def vec-lambda-beta
by (rule sum-mono, rule mult-right-mono, insert B ypos, auto)

hence le-vec: le-vec (σ ∗s y) (A ∗v y) unfolding ev-B ′ by auto
from rho-le-x-Ax-imp-rho-le-rx[OF y le-vec]
have σ ≤ r y by auto

68

also have . . . ≤ sr using y by (rule sr-max)
finally have sig-le-sr : σ ≤ sr .
{

assume σ = sr
hence r-sr : r y = sr and sr-sig: sr = σ using ‹σ ≤ r y› ‹r y ≤ sr› by auto
from sr-u-pos[OF y r-sr] have pos: lt-vec 0 y .
from sr-imp-eigen-vector [OF y r-sr] have ev ′: eigen-vector A y sr .
have (A − B) ∗v y = A ∗v y − B ∗v y unfolding matrix-vector-mult-def

by (auto simp: vec-eq-iff field-simps sum-subtractf)
also have A ∗v y = sr ∗s y using ev ′[unfolded eigen-vector-def] by auto
also have B ∗v y = sr ∗s y unfolding ev-B ′ sr-sig ..
finally have id: (A − B) ∗v y = 0 by simp
from pos-matrix-mult-0 [OF - pos id] assms(1−2) have False by auto

}
with sig-le-sr sigma-sigma show ?thesis by argo

qed

lemma charpoly-erase-mat-sr : 0 < poly (charpoly (erase-mat A i i)) sr
proof −

let ?A = erase-mat A i i
let ?pos = poly (charpoly ?A) sr
{

from A-nonzero-fixed-j[of i] obtain k where A $ k $ i 6= 0 by auto
assume A = ?A
hence A $ k $ i = ?A $ k $ i by simp
also have ?A $ k $ i = 0 by (auto simp: erase-mat-def)
also have A $ k $ i 6= 0 by fact
finally have False by simp

}
hence AA: A 6= ?A by auto
have le: 0 ≤ ?A $ i $ j ∧ ?A $ i $ j ≤ A $ i $ j for i j

by (auto simp: erase-mat-def nonneg)
note ev-small = eigen-value-smaller-matrix[OF le AA]
{

fix rho :: real
assume eigen-value ?A rho
hence ev: eigen-value (map-matrix c ?A) (c rho)

unfolding eigen-value-def using of-real-hom.eigen-vector-hom[of ?A - rho]
by auto

from ev-small[OF this] have abs rho < sr by auto
} note ev-small-real = this
have pos0 : ?pos 6= 0

using ev-small-real[of sr] by (auto simp: eigen-value-root-charpoly)
{

define p where p = charpoly ?A
assume pos: ?pos < 0
hence neg: poly p sr < 0 unfolding p-def by auto
from degree-monic-charpoly[of ?A] have mon: monic p and deg: degree p 6= 0

unfolding p-def by auto

69

let ?f = poly p
have cont: continuous-on {a..b} ?f for a b by (auto intro: continuous-intros)
from pos have le: ?f sr ≤ 0 by (auto simp: p-def)
from mon have lc: lead-coeff p > 0 by auto
from poly-pinfty-ge[OF this deg, of 0] obtain z where lez:

∧
x. z ≤ x =⇒ 0

≤ ?f x by auto
define y where y = max z sr
have yr : y ≥ sr and y ≥ z unfolding y-def by auto
from lez[OF this(2)] have y0 : ?f y ≥ 0 .
from IVT ′[of ?f , OF le y0 yr cont] obtain x where ge: x ≥ sr and rt: ?f x

= 0
unfolding p-def by auto

hence eigen-value ?A x unfolding p-def by (simp add: eigen-value-root-charpoly)
from ev-small-real[OF this] ge have False by auto

}
with pos0 show ?thesis by argo

qed

lemma multiplicity-sr-1 : order sr (charpoly A) = 1
proof −

{
assume poly (pderiv (charpoly A)) sr = 0
hence 0 = poly (monom 1 1 ∗ pderiv (charpoly A)) sr by simp
also have . . . = sum (λ i. poly (charpoly (erase-mat A i i)) sr) UNIV

unfolding pderiv-char-poly-erase-mat poly-sum ..
also have . . . > 0

by (rule sum-pos, (force simp: charpoly-erase-mat-sr)+)
finally have False by simp

}
hence nZ : poly (pderiv (charpoly A)) sr 6= 0 and nZ ′: pderiv (charpoly A) 6= 0

by auto
from eigen-vector-z-sr have eigen-value A sr unfolding eigen-value-def ..
from this[unfolded eigen-value-root-charpoly]
have poly (charpoly A) sr = 0 .
hence order sr (charpoly A) 6= 0 unfolding order-root using nZ ′ by auto
from order-pderiv[OF nZ ′ this] order-0I [OF nZ]
show ?thesis by simp

qed

lemma sr-spectral-radius: sr = spectral-radius cA
proof −

from eigen-vector-z-sr-c have eigen-value cA (c sr)
unfolding eigen-value-def by auto

from spectral-radius-max[OF this]
have sr : sr ≤ spectral-radius cA by auto
with spectral-radius-ev[of cA] eigen-vector-norm-sr
show ?thesis by force

qed

70

lemma le-vec-A-mu: assumes y: y ∈ X and le: le-vec (A ∗v y) (mu ∗s y)
shows sr ≤ mu lt-vec 0 y
mu = sr ∨ A ∗v y = mu ∗s y =⇒ mu = sr ∧ A ∗v y = mu ∗s y

proof −
let ?w = rowvector w
let ?w ′ = columnvector w
have ?w ∗∗ A = transpose (transpose (?w ∗∗ A))

unfolding transpose-transpose by simp
also have transpose (?w ∗∗ A) = transpose A ∗∗ transpose ?w

by (rule matrix-transpose-mul)
also have transpose ?w = columnvector w by (rule transpose-rowvector)
also have transpose A ∗∗ . . . = columnvector (transpose A ∗v w)

unfolding dot-rowvector-columnvector [symmetric] ..
also have transpose A ∗v w = sr ∗s w unfolding w by simp
also have transpose (columnvector . . .) = rowvector (sr ∗s w)

unfolding transpose-def columnvector-def rowvector-def vector-scalar-mult-def
by auto

finally have 1 : ?w ∗∗ A = rowvector (sr ∗s w) .
have sr ∗s (?w ∗v y) = ?w ∗∗ A ∗v y unfolding 1
by (auto simp: rowvector-def vector-scalar-mult-def matrix-vector-mult-def vec-eq-iff

sum-distrib-left mult.assoc)
also have . . . = ?w ∗v (A ∗v y) by (simp add: matrix-vector-mul-assoc)
finally have eq1 : sr ∗s (rowvector w ∗v y) = rowvector w ∗v (A ∗v y) .
have le-vec (rowvector w ∗v (A ∗v y)) (?w ∗v (mu ∗s y))

by (rule le-vec-mono-left[OF - le], insert w(2), auto simp: rowvector-def or-
der .strict-iff-order)

also have ?w ∗v (mu ∗s y) = mu ∗s (?w ∗v y) by (simp add: algebra-simps
vec.scale)

finally have le1 : le-vec (rowvector w ∗v (A ∗v y)) (mu ∗s (?w ∗v y)) .
from le1 [unfolded eq1 [symmetric]]
have 2 : le-vec (sr ∗s (?w ∗v y)) (mu ∗s (?w ∗v y)) .
{

from y obtain i where yi: y $ i > 0 and y:
∧

j. y $ j ≥ 0 unfolding X-def
by (auto simp: order .strict-iff-order vec-eq-iff)

from w(2) have wi: w $ i > 0 and w:
∧

j. w $ j ≥ 0
by (auto simp: order .strict-iff-order)

have (?w ∗v y) $ i > 0 using yi y wi w
by (auto simp: matrix-vector-mult-def rowvector-def

intro!: sum-pos2 [of - i] mult-nonneg-nonneg)
moreover from 2 [rule-format, of i] have sr ∗ (?w ∗v y) $ i ≤ mu ∗ (?w ∗v

y) $ i by simp
ultimately have sr ≤ mu by simp

}
thus ∗: sr ≤ mu .
define cc where cc = (mu + 1)^ N
define n where n = N
from ∗ sr-pos have mu: mu ≥ 0 mu > 0 by auto
hence cc: cc > 0 unfolding cc-def by simp
from y have pow-A-1 y ∈ pow-A-1 ‘ X by auto

71

from Y-pos-main[OF this] have lt: 0 < (A1n ∗v y) $ i for i by (simp add:
pow-A-1-def)

have le: le-vec (A1n ∗v y) (cc ∗s y) unfolding cc-def A1n-def n-def [symmetric]
proof (induct n)

case (Suc n)
let ?An = matpow (A + mat 1) n
let ?mu = (mu + 1)
have id ′: matpow (A + mat 1) (Suc n) ∗v y = A ∗v (?An ∗v y) + ?An ∗v y

(is ?a = ?b + ?c)
by (simp add: matrix-add-ldistrib matrix-mul-rid matrix-add-vect-distrib mat-

pow-1-commute
matrix-vector-mul-assoc[symmetric])

have le-vec ?b (?mu^n ∗s (A ∗v y))
using le-vec-mono-left[OF nonneg Suc] by (simp add: algebra-simps vec.scale)

moreover have le-vec (?mu^n ∗s (A ∗v y)) (?mu^n ∗s (mu ∗s y))
using le mu by auto

moreover have id: ?mu^n ∗s (mu ∗s y) = (?mu^n ∗ mu) ∗s y by simp
from le-vec-trans[OF calculation[unfolded id]]
have le1 : le-vec ?b ((?mu^n ∗ mu) ∗s y) .
from Suc have le2 : le-vec ?c ((mu + 1) ^ n ∗s y) .
have le: le-vec ?a ((?mu^n ∗ mu) ∗s y + ?mu^n ∗s y)
unfolding id ′ using add-mono[OF le1 [rule-format] le2 [rule-format]] by auto

have id ′′: (?mu^n ∗ mu) ∗s y + ?mu^n ∗s y = ?mu^Suc n ∗s y by (simp add:
algebra-simps)

show ?case using le unfolding id ′′ .
qed (simp add: matrix-vector-mul-lid)
have lt: 0 < cc ∗ y $ i for i using lt[of i] le[rule-format, of i] by auto
have y $ i > 0 for i using lt[of i] cc by (rule zero-less-mult-pos)
thus lt-vec 0 y by auto
assume ∗∗: mu = sr ∨ A ∗v y = mu ∗s y
{

assume A ∗v y = mu ∗s y
with y have eigen-vector A y mu unfolding X-def eigen-vector-def by auto

hence eigen-vector cA (map-vector c y) (c mu) unfolding of-real-hom.eigen-vector-hom
.

from eigen-vector-norm-sr [OF this] ∗ have mu = sr by auto
}
with ∗∗ have mu-sr : mu = sr by auto
from eq1 [folded vector-smult-distrib]
have 0 : ?w ∗v (sr ∗s y − A ∗v y) = 0

unfolding matrix-vector-right-distrib-diff by simp
have le0 : le-vec 0 (sr ∗s y − A ∗v y) using assms(2)[unfolded mu-sr] by auto
have sr ∗s y − A ∗v y = 0 using pos-rowvector-mult-0 [OF w(2) 0 le0] .
hence ev-y: A ∗v y = sr ∗s y by auto
show mu = sr ∧ A ∗v y = mu ∗s y using ev-y mu-sr by auto

qed

lemma nonnegative-eigenvector-has-ev-sr : assumes eigen-vector A v mu and le:
le-vec 0 v

72

shows mu = sr
proof −

from assms(1)[unfolded eigen-vector-def] have v: v 6= 0 and ev: A ∗v v = mu
∗s v by auto

from le v have v: v ∈ X unfolding X-def by auto
from ev have le-vec (A ∗v v) (mu ∗s v) by auto
from le-vec-A-mu[OF v this] ev show ?thesis by auto

qed

lemma similar-matrix-rotation: assumes ev: eigen-value cA α and α: cmod α =
sr

shows similar-matrix (cis (Arg α) ∗k cA) cA
proof −

from ev obtain y where ev: eigen-vector cA y α unfolding eigen-value-def by
auto

let ?y = norm-v y
note maps = map-vector-def map-matrix-def
define yp where yp = norm-v y
let ?yp = map-vector c yp
have yp: yp ∈ X unfolding yp-def by (rule norm-v-X [OF ev])
from ev[unfolded eigen-vector-def] have ev-y: cA ∗v y = α ∗s y by auto
from ev-le-vec[OF ev, unfolded α, folded yp-def]
have 1 : le-vec (sr ∗s yp) (A ∗v yp) by simp
from rho-le-x-Ax-imp-rho-le-rx[OF yp 1] have sr ≤ r yp by auto
with ev-inequalities[OF ev, folded yp-def]
have 2 : r yp = sr by auto
have ev-yp: A ∗v yp = sr ∗s yp

and pos-yp: lt-vec 0 yp
using sr-imp-eigen-vector-main[OF yp 2] sr-u-pos[OF yp 2] by auto

define D where D = diagvector (λ j. cis (Arg (y $ j)))
define inv-D where inv-D = diagvector (λ j. cis (− Arg (y $ j)))
have DD: inv-D ∗∗ D = mat 1 D ∗∗ inv-D = mat 1 unfolding D-def inv-D-def

by (auto simp add: diagvector-eq-mat cis-mult)
{

fix i
have (D ∗v ?yp) $ i = cis (Arg (y $ i)) ∗ c (cmod (y $ i))

unfolding D-def yp-def by (simp add: maps)
also have . . . = y $ i by (simp add: cis-mult-cmod-id)
also note calculation

}
hence y-D-yp: y = D ∗v ?yp by (auto simp: vec-eq-iff)
define ϕ where ϕ = Arg α
let ?ϕ = cis (− ϕ)
have [simp]: cis (− ϕ) ∗ rcis sr ϕ = sr unfolding cis-rcis-eq rcis-mult by simp
have α: α = rcis sr ϕ unfolding ϕ-def α[symmetric] rcis-cmod-Arg ..
define F where F = ?ϕ ∗k (inv-D ∗∗ cA ∗∗ D)
have cA ∗v (D ∗v ?yp) = α ∗s y unfolding y-D-yp[symmetric] ev-y by simp
also have inv-D ∗v . . . = α ∗s ?yp
unfolding vector-smult-distrib y-D-yp matrix-vector-mul-assoc DD matrix-vector-mul-lid

73

..
also have ?ϕ ∗s . . . = sr ∗s ?yp unfolding α by simp
also have . . . = map-vector c (sr ∗s yp) unfolding vec-eq-iff by (auto simp:

maps)
also have . . . = cA ∗v ?yp unfolding ev-yp[symmetric] by (auto simp: maps

matrix-vector-mult-def)
finally have F : F ∗v ?yp = cA ∗v ?yp unfolding F-def matrix-scalar-vector-ac[symmetric]

unfolding matrix-vector-mul-assoc[symmetric] vector-smult-distrib .
have prod: inv-D ∗∗ cA ∗∗ D = (χ i j. cis (− Arg (y $ i)) ∗ cA $ i $ j ∗ cis

(Arg (y $ j)))
unfolding inv-D-def D-def diagvector-mult-right diagvector-mult-left by simp

{
fix i j
have cmod (F $ i $ j) = cmod (?ϕ ∗ cA $h i $h j ∗ (cis (− Arg (y $h i)) ∗ cis

(Arg (y $h j))))
unfolding F-def prod vec-lambda-beta matrix-scalar-mult-def
by (simp only: ac-simps)

also have . . . = A $ i $ j unfolding cis-mult unfolding norm-mult by simp
also note calculation

}
hence FA: map-matrix norm F = A unfolding maps by auto
let ?F = map-matrix c (map-matrix norm F)
let ?G = ?F − F
let ?Re = map-matrix Re
from F [folded FA] have 0 : ?G ∗v ?yp = 0 unfolding matrix-diff-vect-distrib by

simp
have ?Re ?G ∗v yp = map-vector Re (?G ∗v ?yp)

unfolding maps matrix-vector-mult-def vec-lambda-beta Re-sum by auto
also have . . . = 0 unfolding 0 by (simp add: vec-eq-iff maps)
finally have 0 : ?Re ?G ∗v yp = 0 .
have ?Re ?G = 0
by (rule pos-matrix-mult-0 [OF - pos-yp 0], auto simp: maps complex-Re-le-cmod)

hence ?F = F by (auto simp: maps vec-eq-iff cmod-eq-Re)
with FA have AF : cA = F by simp
from arg-cong[OF this, of λ A. cis ϕ ∗k A]
have sim: cis ϕ ∗k cA = inv-D ∗∗ cA ∗∗ D unfolding F-def matrix.scale-scale

cis-mult
by simp

have similar-matrix (cis ϕ ∗k cA) cA unfolding similar-matrix-def similar-matrix-wit-def
sim

by (rule exI [of - inv-D], rule exI [of - D], auto simp: DD)
thus ?thesis unfolding ϕ-def .

qed

lemma assumes ev: eigen-value cA α and α: cmod α = sr
shows maximal-eigen-value-order-1 : order α (charpoly cA) = 1
and maximal-eigen-value-rotation: eigen-value cA (x ∗ cis (Arg α)) = eigen-value

cA x
eigen-value cA (x / cis (Arg α)) = eigen-value cA x

74

proof −
let ?a = cis (Arg α)
let ?p = charpoly cA
from similar-matrix-rotation[OF ev α]
have similar-matrix (?a ∗k cA) cA .
from similar-matrix-charpoly[OF this]
have id: charpoly (?a ∗k cA) = ?p .
have a: ?a 6= 0 by simp
from order-charpoly-smult[OF this, of - cA, unfolded id]
have order-neg: order x ?p = order (x / ?a) ?p for x .
have order-pos: order x ?p = order (x ∗ ?a) ?p for x

using order-neg[symmetric, of x ∗ ?a] by simp
note order-neg[of α]
also have id: α / ?a = sr unfolding α[symmetric]

by (metis a cis-mult-cmod-id nonzero-mult-div-cancel-left)
also have sr : order . . . ?p = 1 unfolding multiplicity-sr-1 [symmetric] char-

poly-of-real
by (rule map-poly-inj-idom-divide-hom.order-hom, unfold-locales)

finally show ∗: order α ?p = 1 .
show eigen-value cA (x ∗ ?a) = eigen-value cA x using order-pos

unfolding eigen-value-root-charpoly order-root by auto
show eigen-value cA (x / ?a) = eigen-value cA x using order-neg

unfolding eigen-value-root-charpoly order-root by auto
qed

lemma maximal-eigen-values-group: assumes M : M = {ev :: complex. eigen-value
cA ev ∧ cmod ev = sr}

and a: rcis sr α ∈ M
and b: rcis sr β ∈ M

shows rcis sr (α + β) ∈ M rcis sr (α − β) ∈ M rcis sr 0 ∈ M
proof −

{
fix a
assume ∗: rcis sr a ∈ M
have id: cis (Arg (rcis sr a)) = cis a

by (smt ∗ M mem-Collect-eq nonzero-mult-div-cancel-left of-real-eq-0-iff
rcis-cmod-Arg rcis-def sr-pos)

from ∗[unfolded assms] have eigen-value cA (rcis sr a) cmod (rcis sr a) = sr
by auto

from maximal-eigen-value-rotation[OF this, unfolded id]
have eigen-value cA (x ∗ cis a) = eigen-value cA x

eigen-value cA (x / cis a) = eigen-value cA x for x by auto
} note ∗ = this
from ∗(1)[OF b, of rcis sr α] a show rcis sr (α + β) ∈ M unfolding M by

auto
from ∗(2)[OF a, of rcis sr α] a show rcis sr 0 ∈ M unfolding M by auto
from ∗(2)[OF b, of rcis sr α] a show rcis sr (α − β) ∈ M unfolding M by

auto
qed

75

lemma maximal-eigen-value-roots-of-unity-rotation:
assumes M : M = {ev :: complex. eigen-value cA ev ∧ cmod ev = sr}
and kM : k = card M

shows k 6= 0
k ≤ CARD(′n)
∃ f . charpoly A = (monom 1 k − [:sr^k:]) ∗ f
∧ (∀ x. poly (map-poly c f) x = 0 −→ cmod x < sr)

M = (∗) (c sr) ‘ (λ i. (cis (of-nat i ∗ 2 ∗ pi / k))) ‘ {0 ..< k}
M = (∗) (c sr) ‘ { x :: complex. x ^ k = 1}
(∗) (cis (2 ∗ pi / k)) ‘ Spectrum cA = Spectrum cA

unfolding kM
proof −

let ?M = card M
note fin = finite-spectrum[of cA]
note char = degree-monic-charpoly[of cA]
have ?M ≤ card (Collect (eigen-value cA))

by (rule card-mono[OF fin], unfold M , auto)
also have Collect (eigen-value cA) = {x. poly (charpoly cA) x = 0}

unfolding eigen-value-root-charpoly by auto
also have card . . . ≤ degree (charpoly cA)

by (rule poly-roots-degree, insert char , auto)
also have . . . = CARD(′n) using char by simp
finally show ?M ≤ CARD (′n) .
from finite-subset[OF - fin, of M]
have finM : finite M unfolding M by blast
from finite-distinct-list[OF this]
obtain m where Mm: M = set m and dist: distinct m by auto
from Mm dist have card: ?M = length m by (auto simp: distinct-card)
have sr : sr ∈ set m using eigen-value-sr-c sr-pos unfolding Mm[symmetric] M

by auto
define s where s = sort-key Arg m
define a where a = map Arg s
let ?k = length a
from dist Mm card sr have s: M = set s distinct s sr ∈ set s

and card: ?M = ?k
and sorted: sorted a
unfolding s-def a-def by auto

have map-s: map ((∗) (c sr)) (map cis a) = s unfolding map-map o-def a-def
proof (rule map-idI)

fix x
assume x ∈ set s
from this[folded s(1), unfolded M]
have id: cmod x = sr by auto
show sr ∗ cis (Arg x) = x

by (subst (5) rcis-cmod-Arg[symmetric], unfold id[symmetric] rcis-def , simp)
qed
from s(2)[folded map-s, unfolded distinct-map] have a: distinct a inj-on cis (set

a) by auto

76

from s(3) obtain aa a ′ where a-split: a = aa # a ′ unfolding a-def by (cases
s, auto)

from Arg-bounded have bounded: x ∈ set a =⇒ − pi < x ∧ x ≤ pi for x
unfolding a-def by auto

from bounded[of aa, unfolded a-split] have aa: − pi < aa ∧ aa ≤ pi by auto
let ?aa = aa + 2 ∗ pi
define args where args = a @ [?aa]
let ?diff = λ i. args ! Suc i − args ! i
have bnd: x ∈ set a =⇒ x < ?aa for x using aa bounded[of x] by auto
hence aa-a: ?aa /∈ set a by fast
have sorted: sorted args unfolding args-def using sorted unfolding sorted-append

by (insert bnd, auto simp: order .strict-iff-order)
have dist: distinct args using a aa-a unfolding args-def distinct-append by auto
have sum: (

∑
i < ?k. ?diff i) = 2 ∗ pi

unfolding sum-lessThan-telescope args-def a-split by simp
have k: ?k 6= 0 unfolding a-split by auto
let ?A = ?diff ‘ {..< ?k}
let ?Min = Min ?A
define Min where Min = ?Min
have ?Min = (?k ∗ ?Min) / ?k using k by auto
also have ?k ∗ ?Min = (

∑
i < ?k. ?Min) by auto

also have . . . / ?k ≤ (
∑

i < ?k. ?diff i) / ?k
by (rule divide-right-mono[OF sum-mono[OF Min-le]], auto)

also have . . . = 2 ∗ pi / ?k unfolding sum ..
finally have Min: Min ≤ 2 ∗ pi / ?k unfolding Min-def by auto
have lt: i < ?k =⇒ args ! i < args ! (Suc i) for i

using sorted[unfolded sorted-iff-nth-mono, rule-format, of i Suc i]
dist[unfolded distinct-conv-nth, rule-format, of Suc i i] by (auto simp: args-def)

let ?c = λ i. rcis sr (args ! i)
have hda[simp]: hd a = aa unfolding a-split by simp
have Min0 : Min > 0 using lt unfolding Min-def by (subst Min-gr-iff , insert

k, auto)
have Min-A: Min ∈ ?A unfolding Min-def by (rule Min-in, insert k, auto)
{

fix i :: nat
assume i: i < length args
hence ?c i = rcis sr ((a @ [hd a]) ! i)

by (cases i = ?k, auto simp: args-def nth-append rcis-def)
also have . . . ∈ set (map (rcis sr) (a @ [hd a])) using i

unfolding args-def set-map unfolding set-conv-nth by auto
also have . . . = rcis sr ‘ set a unfolding a-split by auto
also have . . . = M unfolding s(1) map-s[symmetric] set-map image-image

by (rule image-cong[OF refl], auto simp: rcis-def)
finally have ?c i ∈ M by auto

} note ciM = this
{

fix i :: nat
assume i: i < ?k
hence i < length args Suc i < length args unfolding args-def by auto

77

from maximal-eigen-values-group[OF M ciM [OF this(2)] ciM [OF this(1)]]
have rcis sr (?diff i) ∈ M by simp

}
hence Min-M : rcis sr Min ∈ M using Min-A by force
have rcisM : rcis sr (of-nat n ∗ Min) ∈ M for n
proof (induct n)

case 0
show ?case using sr Mm by auto

next
case (Suc n)
have ∗: rcis sr (of-nat (Suc n) ∗ Min) = rcis sr (of-nat n ∗ Min) ∗ cis Min

by (simp add: rcis-mult ring-distribs add.commute)
from maximal-eigen-values-group(1)[OF M Suc Min-M]
show ?case unfolding ∗ by simp

qed
let ?list = map (rcis sr) (map (λ i. of-nat i ∗ Min) [0 ..< ?k])
define list where list = ?list
have len: length ?list = ?M unfolding card by simp
from sr-pos have sr0 : sr 6= 0 by auto
{

fix i
assume i: i < ?k
hence ∗: 0 ≤ real i ∗ Min using Min0 by auto
from i have real i < real ?k by auto
from mult-strict-right-mono[OF this Min0]
have real i ∗ Min < real ?k ∗ Min by simp
also have . . . ≤ real ?k ∗ (2 ∗ pi / real ?k)

by (rule mult-left-mono[OF Min], auto)
also have . . . = 2 ∗ pi using k by simp
finally have real i ∗ Min < 2 ∗ pi .
note ∗ this

} note prod-pi = this
have dist: distinct ?list

unfolding distinct-map[of rcis sr]
proof (rule conjI [OF - inj-on-subset[OF rcis-inj-on[OF sr0]]])

show distinct (map (λ i. of-nat i ∗ Min) [0 ..< ?k]) using Min0
by (auto simp: distinct-map inj-on-def)

show set (map (λi. real i ∗ Min) [0 ..<?k]) ⊆ {0 ..<2 ∗ pi} using prod-pi
by auto

qed
with len have card ′: card (set ?list) = ?M using distinct-card by fastforce
have listM : set ?list ⊆ M using rcisM by auto
from card-subset-eq[OF finM listM card ′]
have M-list: M = set ?list ..
let ?piM = 2 ∗ pi / ?M
{

assume Min 6= ?piM
with Min have lt: Min < 2 ∗ pi / ?k unfolding card by simp
from k have 0 < real ?k by auto

78

from mult-strict-left-mono[OF lt this] k Min0
have k: 0 ≤ ?k ∗ Min ?k ∗ Min < 2 ∗ pi by auto
from rcisM [of ?k, unfolded M-list] have rcis sr (?k ∗ Min) ∈ set ?list by auto
then obtain i where i: i < ?k and id: rcis sr (?k ∗ Min) = rcis sr (i ∗ Min)

by auto
from inj-onD[OF inj-on-subset[OF rcis-inj-on[OF sr0], of {?k ∗ Min, i ∗ Min}]

id]
prod-pi[OF i] k

have ?k ∗ Min = i ∗ Min by auto
with Min0 i have False by auto

}
hence Min: Min = ?piM by auto
show cM : ?M 6= 0 unfolding card using k by auto
let ?f = (λ i. cis (of-nat i ∗ 2 ∗ pi / ?M))
note M-list
also have set ?list = (∗) (c sr) ‘ (λ i. cis (of-nat i ∗ Min)) ‘ {0 ..< ?k}

unfolding set-map image-image
by (rule image-cong, insert sr-pos, auto simp: rcis-mult rcis-def)

finally show M-cis: M = (∗) (c sr) ‘ ?f ‘ {0 ..< ?M}
unfolding card Min by (simp add: mult.assoc)

thus M-pow: M = (∗) (c sr) ‘ { x :: complex. x ^ ?M = 1} using roots-of-unity[OF
cM] by simp

let ?rphi = rcis sr (2 ∗ pi / ?M)
let ?phi = cis (2 ∗ pi / ?M)
from Min-M [unfolded Min]
have ev: eigen-value cA ?rphi unfolding M by auto
have cm: cmod ?rphi = sr using sr-pos by simp
have id: cis (Arg ?rphi) = cis (Arg ?phi) ∗ cmod ?phi

unfolding arg-rcis-cis[OF sr-pos] by simp
also have . . . = ?phi unfolding cis-mult-cmod-id ..
finally have id: cis (Arg ?rphi) = ?phi .
define phi where phi = ?phi
have phi: phi 6= 0 unfolding phi-def by auto
note max = maximal-eigen-value-rotation[OF ev cm, unfolded id phi-def [symmetric]]
have ((∗) phi) ‘ Spectrum cA = Spectrum cA (is ?L = ?R)
proof −

{
fix x

have ∗: x ∈ ?L =⇒ x ∈ ?R for x using max(2)[of x] phi unfolding
Spectrum-def by auto

moreover
{

assume x ∈ ?R
hence eigen-value cA x unfolding Spectrum-def by auto
from this[folded max(2)[of x]] have x / phi ∈ ?R unfolding Spectrum-def

by auto
from imageI [OF this, of (∗) phi]
have x ∈ ?L using phi by auto

}

79

note this ∗
}
thus ?thesis by blast

qed
from this[unfolded phi-def]
show (∗) (cis (2 ∗ pi / real (card M))) ‘ Spectrum cA = Spectrum cA .
let ?p = monom 1 k − [:sr^k:]
let ?cp = monom 1 k − [:(c sr)^k:]
let ?one = 1 :: complex
let ?list = map (rcis sr) (map (λ i. of-nat i ∗ ?piM) [0 ..< card M])
interpret c: field-hom c ..
interpret p: map-poly-inj-idom-divide-hom c ..
have cp: ?cp = map-poly c ?p by (simp add: hom-distribs)
have M-list: M = set ?list using M-list[unfolded Min card[symmetric]] .
have dist: distinct ?list using dist[unfolded Min card[symmetric]] .
have k0 : k 6= 0 using k[folded card] assms by auto
have ?cp = (monom 1 k + (− [:(c sr)^k:])) by simp
also have degree . . . = k

by (subst degree-add-eq-left, insert k0 , auto simp: degree-monom-eq)
finally have deg: degree ?cp = k .
from deg k0 have cp0 : ?cp 6= 0 by auto
have {x. poly ?cp x = 0} = {x. x^k = (c sr)^k} unfolding poly-diff poly-monom

by simp
also have . . . ⊆ M
proof −

{
fix x
assume id: x^k = (c sr)^k
from sr-pos k0 have (c sr)^k 6= 0 by auto
with arg-cong[OF id, of λ x. x / (c sr)^k]
have (x / c sr)^k = 1

unfolding power-divide by auto
hence c sr ∗ (x / c sr) ∈ M

by (subst M-pow, unfold kM [symmetric], blast)
also have c sr ∗ (x / c sr) = x using sr-pos by auto
finally have x ∈ M .

}
thus ?thesis by auto

qed
finally have cp-M : {x. poly ?cp x = 0} ⊆ M .
have k = card (set ?list) unfolding distinct-card[OF dist] by (simp add: kM)
also have . . . ≤ card {x. poly ?cp x = 0}
proof (rule card-mono[OF poly-roots-finite[OF cp0]])

{
fix x
assume x ∈ set ?list
then obtain i where x: x = rcis sr (real i ∗ ?piM) by auto
have x^k = (c sr)^k unfolding x DeMoivre2 kM

80

by simp (metis mult.assoc of-real-power rcis-times-2pi)
hence poly ?cp x = 0 unfolding poly-diff poly-monom by simp

}
thus set ?list ⊆ {x. poly ?cp x = 0} by auto

qed
finally have k-card: k ≤ card {x. poly ?cp x = 0} .
from k-card cp-M finM have M-id: M = {x. poly ?cp x = 0}

unfolding kM by (metis card-seteq)
have dvdc: ?cp dvd charpoly cA
proof (rule poly-roots-dvd[OF cp0 deg k-card])

from cp-M
show {x. poly ?cp x = 0} ⊆ {x. poly (charpoly cA) x = 0}

unfolding M eigen-value-root-charpoly by auto
qed
from this[unfolded charpoly-of-real cp p.hom-dvd-iff]
have dvd: ?p dvd charpoly A .
from this[unfolded dvd-def] obtain f where

decomp: charpoly A = ?p ∗ f by blast
let ?f = map-poly c f
have decompc: charpoly cA = ?cp ∗ ?f unfolding charpoly-of-real decomp p.hom-mult

cp ..
show ∃ f . charpoly A = (monom 1 ?M − [:sr^?M :]) ∗ f ∧ (∀ x. poly (map-poly

c f) x = 0 −→ cmod x < sr)
unfolding kM [symmetric]

proof (intro exI conjI allI impI , rule decomp)
fix x
assume f : poly ?f x = 0
hence ev: eigen-value cA x

unfolding decompc p.hom-mult eigen-value-root-charpoly by auto
hence le: cmod x ≤ sr using eigen-value-norm-sr by auto
{

assume max: cmod x = sr
hence x ∈ M unfolding M using ev by auto
hence poly ?cp x = 0 unfolding M-id by auto
hence dvd1 : [: −x, 1 :] dvd ?cp unfolding poly-eq-0-iff-dvd by auto
from f [unfolded poly-eq-0-iff-dvd]
have dvd2 : [: −x, 1 :] dvd ?f by auto
from char have 0 : charpoly cA 6= 0 by auto
from mult-dvd-mono[OF dvd1 dvd2] have [: −x, 1 :]^2 dvd (charpoly cA)

unfolding decompc power2-eq-square .
from order-max[OF this 0] maximal-eigen-value-order-1 [OF ev max]
have False by auto

}
with le show cmod x < sr by argo

qed
qed

lemmas pf-main =
eigen-value-sr eigen-vector-z-sr

81

eigen-value-norm-sr
z-pos
multiplicity-sr-1
nonnegative-eigenvector-has-ev-sr
maximal-eigen-value-order-1
maximal-eigen-value-roots-of-unity-rotation

lemmas pf-main-connect = pf-main(1 ,3 ,5 ,7 ,8−10)[unfolded sr-spectral-radius]
sr-pos[unfolded sr-spectral-radius]

end

end

5.2 Handling Non-Irreducible Matrices as Well
theory Perron-Frobenius-General

imports Perron-Frobenius-Irreducible
begin

We will need to take sub-matrices and permutations of matrices where
the former can best be done via JNF-matrices. So, we first need the Perron-
Frobenius theorem in the JNF-world. So, we first define irreducibility of a
JNF-matrix.
definition graph-of-mat where

graph-of-mat A = (let n = dim-row A; U = {..<n} in
{ ij. A $$ ij 6= 0} ∩ U × U)

definition irreducible-mat where
irreducible-mat A = (let n = dim-row A in
(∀ i j. i < n −→ j < n −→ (i,j) ∈ (graph-of-mat A)^+))

definition nonneg-irreducible-mat A = (nonneg-mat A ∧ irreducible-mat A)

Next, we have to install transfer rules
context

includes lifting-syntax
begin
lemma HMA-irreducible[transfer-rule]: ((HMA-M :: - ⇒ - ^ ′n ^ ′n ⇒ -) ===>
(=))

irreducible-mat fixed-mat.irreducible
proof (intro rel-funI , goal-cases)

case (1 a A)
interpret fixed-mat A .
let ?t = Bij-Nat.to-nat :: ′n ⇒ nat
let ?f = Bij-Nat.from-nat :: nat ⇒ ′n
from 1 [unfolded HMA-M-def]
have a: a = from-hmam A (is - = ?A) by auto
let ?n = CARD(′n)

82

have dim: dim-row a = ?n unfolding a by simp
have id: {..<?n} = {0 ..<?n} by auto
have Aij: A $ i $ j = ?A $$ (?t i, ?t j) for i j

by (metis (no-types, lifting) to-hmam-def to-hma-from-hmam vec-lambda-beta)
have graph: graph-of-mat a =
{(?t i,?t j) | i j. A $ i $ j 6= 0} (is ?G = -) unfolding graph-of-mat-def dim

Let-def id range-to-nat[symmetric]
unfolding a Aij by auto

have irreducible-mat a = (∀ i j. i ∈ range ?t −→ j ∈ range ?t −→ (i,j) ∈ ?G^+)

unfolding irreducible-mat-def dim Let-def range-to-nat by auto
also have . . . = (∀ i j. (?t i, ?t j) ∈ ?G^+) by auto
also note part1 = calculation
have G: ?G = map-prod ?t ?t ‘ G unfolding graph G-def by auto
have part2 : (?t i, ?t j) ∈ ?G^+ ←→ (i,j) ∈ G^+ for i j

unfolding G by (rule inj-trancl-image, simp add: inj-on-def)
show ?case unfolding part1 part2 irreducible-def by auto

qed

lemma HMA-nonneg-irreducible-mat[transfer-rule]: (HMA-M ===> (=)) non-
neg-irreducible-mat perron-frobenius

unfolding perron-frobenius-def pf-nonneg-mat-def perron-frobenius-axioms-def
nonneg-irreducible-mat-def

by transfer-prover
end

The main statements of Perron-Frobenius can now be transferred to
JNF-matrices
lemma perron-frobenius-irreducible: fixes A :: real Matrix.mat and cA :: complex
Matrix.mat

assumes A: A ∈ carrier-mat n n and n: n 6= 0 and nonneg: nonneg-mat A
and irr : irreducible-mat A
and cA: cA = map-mat of-real A
and sr : sr = Spectral-Radius.spectral-radius cA

shows
eigenvalue A sr
order sr (char-poly A) = 1
0 < sr
eigenvalue cA α =⇒ cmod α ≤ sr
eigenvalue cA α =⇒ cmod α = sr =⇒ order α (char-poly cA) = 1
∃ k f . k 6= 0 ∧ k ≤ n ∧ char-poly A = (monom 1 k − [:sr ^ k:]) ∗ f ∧

(∀ x. poly (map-poly complex-of-real f) x = 0 −→ cmod x < sr)
proof (atomize (full), goal-cases)

case 1
from nonneg irr have irr : nonneg-irreducible-mat A unfolding nonneg-irreducible-mat-def

by auto
note main = perron-frobenius.pf-main-connect[untransferred, cancel-card-constraint,

OF A irr ,
folded sr cA]

83

from main(5 ,6 ,7)[OF refl refl n]
have ∃ k f . k 6= 0 ∧ k ≤ n ∧ char-poly A = (monom 1 k − [:sr ^ k:]) ∗ f ∧

(∀ x. poly (map-poly complex-of-real f) x = 0 −→ cmod x < sr) by blast
with main(1 ,3 ,8)[OF n] main(2)[OF - n] main(4)[OF - - n] show ?case by

auto
qed

We now need permutations on matrices to show that a matrix if a ma-
trix is not irreducible, then it can be turned into a four-block-matrix by a
permutation, where the lower left block is 0.
definition permutation-mat :: nat ⇒ (nat ⇒ nat) ⇒ ′a :: semiring-1 mat where

permutation-mat n p = Matrix.mat n n (λ (i,j). (if i = p j then 1 else 0))

unbundle no m-inv-syntax

lemma permutation-mat-dim[simp]: permutation-mat n p ∈ carrier-mat n n
dim-row (permutation-mat n p) = n
dim-col (permutation-mat n p) = n
unfolding permutation-mat-def by auto

lemma permutation-mat-row[simp]: p permutes {..<n} =⇒ i < n =⇒
Matrix.row (permutation-mat n p) i = unit-vec n (inv p i)
unfolding permutation-mat-def unit-vec-def by (intro eq-vecI , auto simp: per-

mutes-inverses)

lemma permutation-mat-col[simp]: p permutes {..<n} =⇒ i < n =⇒
Matrix.col (permutation-mat n p) i = unit-vec n (p i)
unfolding permutation-mat-def unit-vec-def by (intro eq-vecI , auto simp: per-

mutes-inverses)

lemma permutation-mat-left: assumes A: A ∈ carrier-mat n nc and p: p permutes
{..<n}

shows permutation-mat n p ∗ A = Matrix.mat n nc (λ (i,j). A $$ (inv p i, j))
proof −

{
fix i j
assume ij: i < n j < nc
from p ij(1) have i: inv p i < n by (simp add: permutes-def)
have (permutation-mat n p ∗ A) $$ (i,j) = scalar-prod (unit-vec n (inv p i))

(col A j)
by (subst index-mult-mat, insert ij A p, auto)

also have . . . = A $$ (inv p i, j)
by (subst scalar-prod-left-unit, insert A ij i, auto)

also note calculation
}
thus ?thesis using A

by (intro eq-matI , auto)
qed

84

lemma permutation-mat-right: assumes A: A ∈ carrier-mat nr n and p: p per-
mutes {..<n}

shows A ∗ permutation-mat n p = Matrix.mat nr n (λ (i,j). A $$ (i, p j))
proof −

{
fix i j
assume ij: i < nr j < n
from p ij(2) have j: p j < n by (simp add: permutes-def)

have (A ∗ permutation-mat n p) $$ (i,j) = scalar-prod (Matrix.row A i) (unit-vec
n (p j))

by (subst index-mult-mat, insert ij A p, auto)
also have . . . = A $$ (i, p j)

by (subst scalar-prod-right-unit, insert A ij j, auto)
also note calculation

}
thus ?thesis using A

by (intro eq-matI , auto)
qed

lemma permutes-lt: p permutes {..<n} =⇒ i < n =⇒ p i < n
by (meson lessThan-iff permutes-in-image)

lemma permutes-iff : p permutes {..<n} =⇒ i < n =⇒ j < n =⇒ p i = p j ←→
i = j

by (metis permutes-inverses(2))

lemma permutation-mat-id-1 : assumes p: p permutes {..<n}
shows permutation-mat n p ∗ permutation-mat n (inv p) = 1m n
by (subst permutation-mat-left[OF - p, of - n], force, unfold permutation-mat-def ,

rule eq-matI ,
auto simp: permutes-lt[OF permutes-inv[OF p]] permutes-iff [OF permutes-inv[OF

p]])

lemma permutation-mat-id-2 : assumes p: p permutes {..<n}
shows permutation-mat n (inv p) ∗ permutation-mat n p = 1m n
by (subst permutation-mat-right[OF - p, of - n], force, unfold permutation-mat-def ,

rule eq-matI ,
insert p, auto simp: permutes-lt[OF p] permutes-inverses)

lemma permutation-mat-both: assumes A: A ∈ carrier-mat n n and p: p permutes
{..<n}

shows permutation-mat n p ∗ Matrix.mat n n (λ (i,j). A $$ (p i, p j)) ∗ permu-
tation-mat n (inv p) = A

unfolding permutation-mat-left[OF mat-carrier p]
by (subst permutation-mat-right[OF - permutes-inv[OF p], of - n], force, insert

A p,
auto intro!: eq-matI simp: permutes-inverses permutes-lt[OF permutes-inv[OF

p]])

85

lemma permutation-similar-mat: assumes A: A ∈ carrier-mat n n and p: p per-
mutes {..<n}

shows similar-mat A (Matrix.mat n n (λ (i,j). A $$ (p i, p j)))
by (rule similar-matI [OF - permutation-mat-id-1 [OF p] permutation-mat-id-2 [OF

p]
permutation-mat-both[symmetric, OF A p]], insert A, auto)

lemma det-four-block-mat-lower-left-zero: fixes A1 :: ′a :: idom mat
assumes A1 : A1 ∈ carrier-mat n n
and A2 : A2 ∈ carrier-mat n m and A30 : A3 = 0m m n
and A4 : A4 ∈ carrier-mat m m

shows Determinant.det (four-block-mat A1 A2 A3 A4) = Determinant.det A1 ∗
Determinant.det A4
proof −

let ?det = Determinant.det
let ?t = transpose-mat
let ?A = four-block-mat A1 A2 A3 A4
let ?k = n + m
have A3 : A3 ∈ carrier-mat m n unfolding A30 by auto
have A: ?A ∈ carrier-mat ?k ?k

by (rule four-block-carrier-mat[OF A1 A4])
have ?det ?A = ?det (?t ?A)

by (rule sym, rule Determinant.det-transpose[OF A])
also have ?t ?A = four-block-mat (?t A1) (?t A3) (?t A2) (?t A4)

by (rule transpose-four-block-mat[OF A1 A2 A3 A4])
also have ?det . . . = ?det (?t A1) ∗ ?det (?t A4)

by (rule det-four-block-mat-upper-right-zero[of - n - m], insert A1 A2 A30 A4 ,
auto)

also have ?det (?t A1) = ?det A1
by (rule Determinant.det-transpose[OF A1])

also have ?det (?t A4) = ?det A4
by (rule Determinant.det-transpose[OF A4])

finally show ?thesis .
qed

lemma char-poly-matrix-four-block-mat: assumes
A1 : A1 ∈ carrier-mat n n

and A2 : A2 ∈ carrier-mat n m
and A3 : A3 ∈ carrier-mat m n
and A4 : A4 ∈ carrier-mat m m

shows char-poly-matrix (four-block-mat A1 A2 A3 A4) =
four-block-mat (char-poly-matrix A1) (map-mat (λ x. [:−x:]) A2)
(map-mat (λ x. [:−x:]) A3) (char-poly-matrix A4)

proof −
from A1 A4
have dim[simp]: dim-row A1 = n dim-col A1 = n

dim-row A4 = m dim-col A4 = m by auto
show ?thesis

unfolding char-poly-matrix-def four-block-mat-def Let-def dim

86

by (rule eq-matI , insert A2 A3 , auto)
qed

lemma char-poly-four-block-mat-lower-left-zero: fixes A :: ′a :: idom mat
assumes A: A = four-block-mat B C (0m m n) D
and B: B ∈ carrier-mat n n
and C : C ∈ carrier-mat n m
and D: D ∈ carrier-mat m m

shows char-poly A = char-poly B ∗ char-poly D
unfolding A char-poly-def
by (subst char-poly-matrix-four-block-mat[OF B C - D], force,

rule det-four-block-mat-lower-left-zero[of - n - m], insert B C D, auto)

lemma elements-mat-permutes: assumes p: p permutes {..< n}
and A: A ∈ carrier-mat n n
and B: B = Matrix.mat n n (λ (i,j). A $$ (p i, p j))

shows elements-mat A = elements-mat B
proof −

from A B have [simp]: dim-row A = n dim-col A = n dim-row B = n dim-col
B = n by auto

{
fix i j
assume ij: i < n j < n
let ?p = inv p
from permutes-lt[OF p] ij have ∗: p i < n p j < n by auto
from permutes-lt[OF permutes-inv[OF p]] ij have ∗∗: ?p i < n ?p j < n by

auto
have ∃ i ′ j ′. B $$ (i,j) = A $$ (i ′,j ′) ∧ i ′ < n ∧ j ′ < n
∃ i ′ j ′. A $$ (i,j) = B $$ (i ′,j ′) ∧ i ′ < n ∧ j ′ < n

by (rule exI [of - p i], rule exI [of - p j], insert ij ∗, simp add: B,
rule exI [of - ?p i], rule exI [of - ?p j], insert ∗∗ p, simp add: B permutes-inverses)

}
thus ?thesis unfolding elements-mat by auto

qed

lemma elements-mat-four-block-mat-supseteq:
assumes A1 : A1 ∈ carrier-mat n n
and A2 : A2 ∈ carrier-mat n m
and A3 : A3 ∈ carrier-mat m n
and A4 : A4 ∈ carrier-mat m m

shows elements-mat (four-block-mat A1 A2 A3 A4) ⊇
(elements-mat A1 ∪ elements-mat A2 ∪ elements-mat A3 ∪ elements-mat A4)

proof
let ?A = four-block-mat A1 A2 A3 A4
have A: ?A ∈ carrier-mat (n + m) (n + m) using A1 A2 A3 A4 by simp
from A1 A4
have dim[simp]: dim-row A1 = n dim-col A1 = n

dim-row A4 = m dim-col A4 = m by auto
fix x

87

assume x: x ∈ elements-mat A1 ∪ elements-mat A2 ∪ elements-mat A3 ∪
elements-mat A4

{
assume x ∈ elements-mat A1
from this[unfolded elements-mat] A1 obtain i j where x: x = A1 $$ (i,j) and

ij: i < n j < n by auto
have x = ?A $$ (i,j) using ij unfolding x four-block-mat-def Let-def by simp
from elements-matI [OF A - - this] ij have x ∈ elements-mat ?A by auto

}
moreover
{

assume x ∈ elements-mat A2
from this[unfolded elements-mat] A2 obtain i j where x: x = A2 $$ (i,j) and

ij: i < n j < m by auto
have x = ?A $$ (i,j + n) using ij unfolding x four-block-mat-def Let-def by

simp
from elements-matI [OF A - - this] ij have x ∈ elements-mat ?A by auto

}
moreover
{

assume x ∈ elements-mat A3
from this[unfolded elements-mat] A3 obtain i j where x: x = A3 $$ (i,j) and

ij: i < m j < n by auto
have x = ?A $$ (i+n,j) using ij unfolding x four-block-mat-def Let-def by

simp
from elements-matI [OF A - - this] ij have x ∈ elements-mat ?A by auto

}
moreover
{

assume x ∈ elements-mat A4
from this[unfolded elements-mat] A4 obtain i j where x: x = A4 $$ (i,j) and

ij: i < m j < m by auto
have x = ?A $$ (i+n,j + n) using ij unfolding x four-block-mat-def Let-def

by simp
from elements-matI [OF A - - this] ij have x ∈ elements-mat ?A by auto

}
ultimately show x ∈ elements-mat ?A using x by blast

qed

lemma non-irreducible-mat-split:
fixes A :: ′a :: idom mat
assumes A: A ∈ carrier-mat n n
and not: ¬ irreducible-mat A
and n: n > 1

88

shows ∃ n1 n2 B B1 B2 B4 . similar-mat A B ∧ elements-mat A = elements-mat
B ∧

B = four-block-mat B1 B2 (0m n2 n1) B4 ∧
B1 ∈ carrier-mat n1 n1 ∧ B2 ∈ carrier-mat n1 n2 ∧ B4 ∈ carrier-mat n2

n2 ∧
0 < n1 ∧ n1 < n ∧ 0 < n2 ∧ n2 < n ∧ n1 + n2 = n

proof −
from A have [simp]: dim-row A = n by auto
let ?G = graph-of-mat A
let ?reachp = λ i j. (i,j) ∈ ?G^+
let ?reach = λ i j. (i,j) ∈ ?G^∗
have ∃ i j. i < n ∧ j < n ∧ ¬ ?reach i j
proof (rule ccontr)

assume ¬ ?thesis
hence reach:

∧
i j. i < n =⇒ j < n =⇒ ?reach i j by auto

from not[unfolded irreducible-mat-def Let-def]
obtain i j where i: i < n and j: j < n and nreach: ¬ ?reachp i j by auto
from reach[OF i j] nreach have ij: i = j by (simp add: rtrancl-eq-or-trancl)
from n j obtain k where k: k < n and diff : j 6= k by auto
from reach[OF j k] diff reach[OF k j]
have ?reachp j j by (simp add: rtrancl-eq-or-trancl)
with nreach ij show False by auto

qed
then obtain i j where i: i < n and j: j < n and nreach: ¬ ?reach i j by auto
define I where I = {k. k < n ∧ ?reach i k}
have iI : i ∈ I unfolding I-def using nreach i by auto
have jI : j /∈ I unfolding I-def using nreach j by auto
define f where f = (λ i. if i ∈ I then 1 else 0 :: nat)
let ?xs = [0 ..< n]
from mset-eq-permutation[OF mset-sort, of ?xs f] obtain p where p: p permutes
{..< n}

and perm: permute-list p ?xs = sort-key f ?xs by auto
from p have lt[simp]: i < n =⇒ p i < n for i by (rule permutes-lt)
let ?p = inv p
have ip: ?p permutes {..< n} using permutes-inv[OF p] .
from ip have ilt[simp]: i < n =⇒ ?p i < n for i by (rule permutes-lt)
let ?B = Matrix.mat n n (λ (i,j). A $$ (p i, p j))
define B where B = ?B
from permutation-similar-mat[OF A p] have sim: similar-mat A B unfolding

B-def .
let ?ys = permute-list p ?xs
define ys where ys = ?ys
have len-ys: length ys = n unfolding ys-def by simp
let ?k = length (filter (λ i. f i = 0) ys)
define k where k = ?k
have kn: k ≤ n unfolding k-def using len-ys

using length-filter-le[of - ys] by auto
have ys-p: i < n =⇒ ys ! i = p i for i unfolding ys-def permute-list-def by

simp

89

have ys: ys = map (λ i. ys ! i) [0 ..< n] unfolding len-ys[symmetric]
by (simp add: map-nth)

also have . . . = map p [0 ..< n]
by (rule map-cong, insert ys-p, auto)

also have [0 ..< n] = [0 ..< k] @ [k ..< n] using kn
using le-Suc-ex upt-add-eq-append by blast

finally have ys: ys = map p [0 ..< k] @ map p [k ..< n] by simp
{

fix i
assume i: i < n
let ?g = (λ i. f i = 0)
let ?f = filter ?g
from i have pi: p i < n using p by simp
have k = length (?f ys) by fact
also have ?f ys = ?f (map p [0 ..< k]) @ ?f (map p [k ..< n]) unfolding ys

by simp
also note k = calculation
finally have True by blast
from perm[symmetric, folded ys-def]
have sorted (map f ys) using sorted-sort-key by metis
from this[unfolded ys map-append sorted-append set-map]
have sorted:

∧
x y. x < k =⇒ y ∈ {k..<n} =⇒ f (p x) ≤ f (p y) by auto

have 0 : ∀ i < k. f (p i) = 0
proof (rule ccontr)

assume ¬ ?thesis
then obtain i where i: i < k and zero: f (p i) 6= 0 by auto
hence f (p i) = 1 unfolding f-def by (auto split: if-splits)
from sorted[OF i, unfolded this] have 1 : j ∈ {k..<n} =⇒ f (p j) ≥ 1 for j

by auto
have le: j ∈ {k ..< n} =⇒ f (p j) = 1 for j using 1 [of j] unfolding f-def

by (auto split: if-splits)
also have ?f (map p [k ..< n]) = [] using le by auto
from k[unfolded this] have length (?f (map p [0 ..<k])) = k by simp
from length-filter-less[of p i map p [0 ..< k] ?g, unfolded this] i zero
show False by auto

qed
hence ?f (map p [0 ..<k]) = map p [0 ..<k] by auto
from arg-cong[OF k[unfolded this, simplified], of set]
have 1 :

∧
i. i ∈ {k ..< n} =⇒ f (p i) 6= 0 by auto

have 1 : i < n =⇒ ¬ i < k =⇒ f (p i) 6= 0 for i using 1 [of i] by auto
have 0 : i < n =⇒ (f (p i) = 0) = (i < k) for i using 1 [of i] 0 [rule-format,

of i] by blast
have main: (f i = 0) = (?p i < k) using 0 [of ?p i] i p

by (auto simp: permutes-inverses)
have i ∈ I ←→ f i 6= 0 unfolding f-def by simp
also have (f i = 0) ←→ ?p i < k using main by auto
finally have i ∈ I ←→ ?p i ≥ k by auto

} note main = this
from main[OF j] jI

90

have k0 : k 6= 0 by auto
from iI main[OF i] have ?p i ≥ k by auto
with ilt[OF i] have kn: k < n by auto
{

fix i j
assume i: i < n and ik: k ≤ i and jk: j < k
with kn have j: j < n by auto
have jI : p j /∈ I

by (subst main, insert jk j p, auto simp: permutes-inverses)
have iI : p i ∈ I

by (subst main, insert i ik p, auto simp: permutes-inverses)
from i j have B $$ (i,j) = A $$ (p i, p j) unfolding B-def by auto
also have . . . = 0
proof (rule ccontr)

assume A $$ (p i, p j) 6= 0
hence (p i, p j) ∈ ?G unfolding graph-of-mat-def Let-def using i j p by

auto
with iI j have p j ∈ I unfolding I-def by auto
with jI show False by simp

qed
finally have B $$ (i,j) = 0 .

} note zero = this
have dimB[simp]: dim-row B = n dim-col B = n unfolding B-def by auto
have dim: dim-row B = k + (n − k) dim-col B = k + (n − k) using kn by

auto
obtain B1 B2 B3 B4 where spl: split-block B k k = (B1 ,B2 ,B3 ,B4) (is ?tmp

= -) by (cases ?tmp, auto)
from split-block[OF this dim] have

Bs: B1 ∈ carrier-mat k k B2 ∈ carrier-mat k (n − k)
B3 ∈ carrier-mat (n − k) k B4 ∈ carrier-mat (n − k) (n − k)

and B: B = four-block-mat B1 B2 B3 B4 by auto
have B3 : B3 = 0m (n − k) k unfolding arg-cong[OF spl[symmetric], of λ

(-,-,B,-). B, unfolded split]
unfolding split-block-def Let-def split
by (rule eq-matI , auto simp: kn zero)

from elements-mat-permutes[OF p A B-def]
have elem: elements-mat A = elements-mat B .
show ?thesis

by (intro exI conjI , rule sim, rule elem, rule B[unfolded B3], insert Bs k0 kn,
auto)
qed

lemma non-irreducible-nonneg-mat-split:
fixes A :: ′a :: linordered-idom mat
assumes A: A ∈ carrier-mat n n
and nonneg: nonneg-mat A
and not: ¬ irreducible-mat A
and n: n > 1

shows ∃ n1 n2 A1 A2 . char-poly A = char-poly A1 ∗ char-poly A2

91

∧ nonneg-mat A1 ∧ nonneg-mat A2
∧ A1 ∈ carrier-mat n1 n1 ∧ A2 ∈ carrier-mat n2 n2
∧ 0 < n1 ∧ n1 < n ∧ 0 < n2 ∧ n2 < n ∧ n1 + n2 = n

proof −
from non-irreducible-mat-split[OF A not n]
obtain n1 n2 B B1 B2 B4

where sim: similar-mat A B and elem: elements-mat A = elements-mat B
and B: B = four-block-mat B1 B2 (0m n2 n1) B4
and Bs: B1 ∈ carrier-mat n1 n1 B2 ∈ carrier-mat n1 n2 B4 ∈ carrier-mat

n2 n2
and n: 0 < n1 n1 < n 0 < n2 n2 < n n1 + n2 = n by auto

from char-poly-similar [OF sim]
have AB: char-poly A = char-poly B .
from nonneg have nonneg: nonneg-mat B unfolding nonneg-mat-def elem by

auto
have cB: char-poly B = char-poly B1 ∗ char-poly B4

by (rule char-poly-four-block-mat-lower-left-zero[OF B Bs])
from nonneg have B1-B4 : nonneg-mat B1 nonneg-mat B4 unfolding B non-

neg-mat-def
using elements-mat-four-block-mat-supseteq[OF Bs(1−2) - Bs(3), of 0m n2

n1] by auto
show ?thesis

by (intro exI conjI , rule AB[unfolded cB], rule B1-B4 , rule B1-B4 ,
rule Bs, rule Bs, insert n, auto)

qed

The main generalized theorem. The characteristic polynomial of a non-
negative real matrix can be represented as a product of roots of unitys
(scaled by the the spectral radius sr) and a polynomial where all roots are
smaller than the spectral radius.
theorem perron-frobenius-nonneg: fixes A :: real Matrix.mat

assumes A: A ∈ carrier-mat n n and pos: nonneg-mat A and n: n 6= 0
shows ∃ sr ks f .

sr ≥ 0 ∧
0 /∈ set ks ∧ ks 6= [] ∧
char-poly A = prod-list (map (λ k. monom 1 k − [:sr ^ k:]) ks) ∗ f ∧
(∀ x. poly (map-poly complex-of-real f) x = 0 −→ cmod x < sr)

proof −
define p where p = (λ sr k. monom 1 k − [: (sr :: real) ^ k:])
let ?small = λ f sr . (∀ x. poly (map-poly complex-of-real f) x = 0 −→ cmod x

< sr)
let ?wit = λ A sr ks f . sr ≥ 0 ∧ 0 /∈ set ks ∧ ks 6= [] ∧

char-poly A = prod-list (map (p sr) ks) ∗ f ∧ ?small f sr
let ?c = complex-of-real
interpret c: field-hom ?c ..
interpret p: map-poly-inj-idom-divide-hom ?c ..
have map-p: map-poly ?c (p sr k) = (monom 1 k − [:?c sr^k:]) for sr k

unfolding p-def by (simp add: hom-distribs)
{

92

fix k x sr
assume 0 : poly (map-poly ?c (p sr k)) x = 0 and k: k 6= 0 and sr : sr ≥ 0
note 0 also note map-p
finally have x^k = (?c sr)^k by (simp add: poly-monom)
from arg-cong[OF this, of λ c. root k (cmod c), unfolded norm-power] k
have cmod x = cmod (?c sr) using real-root-pos2 by auto
also have . . . = sr using sr by auto
finally have cmod x = sr .

} note p-conv = this
have ∃ sr ks f . ?wit A sr ks f using A pos n
proof (induct n arbitrary: A rule: less-induct)

case (less n A)
note pos = less(3)
note A = less(2)
note IH = less(1)
note n = less(4)
from n
consider (1) n = 1
| (irr) irreducible-mat A
| (red) ¬ irreducible-mat A n > 1
by force

thus ∃ sr ks f . ?wit A sr ks f
proof cases

case irr
from perron-frobenius-irreducible(3 ,6)[OF A n pos irr refl refl]
obtain sr k f where
∗: sr > 0 k 6= 0 char-poly A = p sr k ∗ f ?small f sr unfolding p-def
by auto

hence ?wit A sr [k] f by auto
thus ?thesis by blast

next
case red
from non-irreducible-nonneg-mat-split[OF A pos red] obtain n1 n2 A1 A2

where char : char-poly A = char-poly A1 ∗ char-poly A2
and pos: nonneg-mat A1 nonneg-mat A2
and A: A1 ∈ carrier-mat n1 n1 A2 ∈ carrier-mat n2 n2
and n: n1 < n n2 < n
and n0 : n1 6= 0 n2 6= 0 by auto

from IH [OF n(1) A(1) pos(1) n0 (1)] obtain sr1 ks1 f1 where 1 : ?wit A1
sr1 ks1 f1 by blast

from IH [OF n(2) A(2) pos(2) n0 (2)] obtain sr2 ks2 f2 where 2 : ?wit A2
sr2 ks2 f2 by blast

have ∃ A1 A2 sr1 ks1 f1 sr2 ks2 f2 . ?wit A1 sr1 ks1 f1 ∧ ?wit A2 sr2 ks2 f2
∧

sr1 ≥ sr2 ∧ char-poly A = char-poly A1 ∗ char-poly A2
proof (cases sr1 ≥ sr2)

case True
show ?thesis unfolding char

by (intro exI , rule conjI [OF 1 conjI [OF 2]], insert True, auto)

93

next
case False
show ?thesis unfolding char

by (intro exI , rule conjI [OF 2 conjI [OF 1]], insert False, auto)
qed
then obtain A1 A2 sr1 ks1 f1 sr2 ks2 f2 where

1 : ?wit A1 sr1 ks1 f1 and 2 : ?wit A2 sr2 ks2 f2 and
sr : sr1 ≥ sr2 and char : char-poly A = char-poly A1 ∗ char-poly A2 by

blast
show ?thesis
proof (cases sr1 = sr2)

case True
have ?wit A sr2 (ks1 @ ks2) (f1 ∗ f2) unfolding char

by (insert 1 2 True, auto simp: True p.hom-mult)
thus ?thesis by blast

next
case False
with sr have sr1 : sr1 > sr2 by auto
have lt: poly (map-poly ?c (p sr2 k)) x = 0 =⇒ k ∈ set ks2 =⇒ cmod x <

sr1 for k x
using sr1 p-conv[of sr2 k x] 2 by auto

have ?wit A sr1 ks1 (f1 ∗ f2 ∗ prod-list (map (p sr2) ks2)) unfolding char
by (insert 1 2 sr1 lt, auto simp: p.hom-mult p.hom-prod-list
poly-prod-list prod-list-zero-iff)

thus ?thesis by blast
qed

next
case 1
define a where a = A $$ (0 ,0)
have A: A = Matrix.mat 1 1 (λ x. a)

by (rule eq-matI , unfold a-def , insert A 1 (1), auto)
have char : char-poly A = [: − a, 1 :] unfolding A

by (auto simp: Determinant.det-def char-poly-def char-poly-matrix-def)
from pos A have a: a ≥ 0 unfolding nonneg-mat-def elements-mat by auto

have ?wit A a [1] 1 unfolding char using a by (auto simp: p-def monom-Suc)
thus ?thesis by blast

qed
qed
then obtain sr ks f where wit: ?wit A sr ks f by blast
thus ?thesis using wit unfolding p-def by auto

qed

And back to HMA world via transfer.
theorem perron-frobenius-non-neg: fixes A :: real ^ ′n ^ ′n

assumes pos: non-neg-mat A
shows ∃ sr ks f .

sr ≥ 0 ∧
0 /∈ set ks ∧ ks 6= [] ∧
charpoly A = prod-list (map (λ k. monom 1 k − [:sr ^ k:]) ks) ∗ f ∧

94

(∀ x. poly (map-poly complex-of-real f) x = 0 −→ cmod x < sr)
using pos

proof (transfer , goal-cases)
case (1 A)
from perron-frobenius-nonneg[OF 1]
show ?case by auto

qed

We now specialize the theorem for complexity analysis where we are
mainly interested in the case where the spectral radius is as most 1. Note
that this can be checked by tested that there are no real roots of the char-
acteristic polynomial which exceed 1.

Moreover, here the existential quantifier over the factorization is replaced
by decompose-prod-root-unity, an algorithm which computes this factoriza-
tion in an efficient way.
lemma perron-frobenius-for-complexity: fixes A :: real ^ ′n ^ ′n and f :: real poly

defines cA ≡ map-matrix complex-of-real A
defines cf ≡ map-poly complex-of-real f
assumes pos: non-neg-mat A
and sr :

∧
x. poly (charpoly A) x = 0 =⇒ x ≤ 1

and decomp: decompose-prod-root-unity (charpoly A) = (ks, f)
shows 0 /∈ set ks
charpoly A = prod-root-unity ks ∗ f
charpoly cA = prod-root-unity ks ∗ cf∧

x. poly (charpoly cA) x = 0 =⇒ cmod x ≤ 1∧
x. poly cf x = 0 =⇒ cmod x < 1∧
x. cmod x = 1 =⇒ order x (charpoly cA) = length [k←ks . x ^ k = 1]∧
x. cmod x = 1 =⇒ poly (charpoly cA) x = 0 =⇒ ∃ k ∈ set ks. x^k = 1

unfolding cf-def cA-def
proof (atomize(full), goal-cases)

case 1
let ?c = complex-of-real
let ?cp = map-poly ?c
let ?A = map-matrix ?c A
let ?wit = λ ks f . 0 /∈ set ks ∧

charpoly A = prod-root-unity ks ∗ f ∧
charpoly ?A = prod-root-unity ks ∗ map-poly of-real f ∧
(∀ x. poly (charpoly ?A) x = 0 −→ cmod x ≤ 1) ∧
(∀ x. poly (?cp f) x = 0 −→ cmod x < 1)

interpret field-hom ?c ..
interpret p: map-poly-inj-idom-divide-hom ?c ..
{

from perron-frobenius-non-neg[OF pos] obtain sr ks f
where ∗: sr ≥ 0 0 /∈ set ks ks 6= []
and cp: charpoly A = prod-list (map (λ k. monom 1 k − [:sr ^ k:]) ks) ∗ f
and small:

∧
x. poly (?cp f) x = 0 =⇒ cmod x < sr by blast

from arg-cong[OF cp, of map-poly ?c]

95

have cpc: charpoly ?A = prod-list (map (λ k. monom 1 k − [:?c sr ^ k:]) ks) ∗
map-poly ?c f

by (simp add: charpoly-of-real hom-distribs p.prod-list-map-hom[symmetric]
o-def)

have sr-le-1 : sr ≤ 1
by (rule sr , unfold cp, insert ∗, cases ks, auto simp: poly-monom)

{
fix x
note [simp] = prod-list-zero-iff o-def poly-monom
assume poly (charpoly ?A) x = 0
from this[unfolded cpc poly-mult poly-prod-list] small[of x]
consider (lt) cmod x < sr | (mem) k where k ∈ set ks x ^ k = (?c sr) ^ k

by force
hence cmod x ≤ sr
proof (cases)

case (mem k)
with ∗ have k: k 6= 0 by metis
with arg-cong[OF mem(2), of λ x. root k (cmod x), unfolded norm-power]

real-root-pos2 [of k] ∗(1)
have cmod x = sr by auto
thus ?thesis by auto

qed simp
} note root = this
have ∃ ks f . ?wit ks f
proof (cases sr = 1)

case False
with sr-le-1 have ∗: cmod x ≤ sr =⇒ cmod x < 1 cmod x ≤ sr =⇒ cmod x

≤ 1 for x by auto
show ?thesis

by (rule exI [of - Nil], rule exI [of - charpoly A], insert ∗ root,
auto simp: prod-root-unity-def charpoly-of-real)

next
case sr : True
from ∗ cp cpc small root
show ?thesis unfolding sr root-unity-def prod-root-unity-def by (auto simp:

pCons-one)
qed

}
then obtain Ks F where wit: ?wit Ks F by auto
have cA0 : charpoly ?A 6= 0 using degree-monic-charpoly[of ?A] by auto
from wit have id: charpoly ?A = prod-root-unity Ks ∗ ?cp F by auto
from of-real-hom.hom-decompose-prod-root-unity[of charpoly A, unfolded decomp]
have decompc: decompose-prod-root-unity (charpoly ?A) = (ks, ?cp f)

by (auto simp: charpoly-of-real)
from wit have small: cmod x = 1 =⇒ poly (?cp F) x 6= 0 for x by auto
from decompose-prod-root-unity[OF id decompc this cA0]
have id: charpoly ?A = prod-root-unity ks ∗ ?cp F F = f set Ks = set ks by auto
have ?cp (charpoly A) = ?cp (prod-root-unity ks ∗ f) unfolding id
unfolding charpoly-of-real[symmetric] id p.hom-mult of-real-hom.hom-prod-root-unity

96

..
hence idr : charpoly A = prod-root-unity ks ∗ f by auto
have wit: ?wit ks f and idc: charpoly ?A = prod-root-unity ks ∗ ?cp f

using wit unfolding id idr by auto
{

fix x
assume cmod x = 1
from small[OF this, unfolded id] have poly (?cp f) x 6= 0 by auto
from order-0I [OF this] this have ord: order x (?cp f) = 0 and cf0 : ?cp f 6=

0 by auto
have order x (charpoly ?A) = order x (prod-root-unity ks) unfolding idc

by (subst order-mult, insert cf0 wit ord, auto)
also have . . . = length [k←ks . x ^ k = 1]

by (subst order-prod-root-unity, insert wit, auto)
finally have ord: order x (charpoly ?A) = length [k←ks . x ^ k = 1] .
{

assume poly (charpoly ?A) x = 0
with cA0 have order x (charpoly ?A) 6= 0 unfolding order-root by auto
from this[unfolded ord] have ∃ k ∈ set ks. x ^ k = 1

by (cases [k←ks . x ^ k = 1], force+)
}
note this ord

}
with wit show ?case by blast

qed

and convert to JNF-world
lemmas perron-frobenius-for-complexity-jnf =

perron-frobenius-for-complexity[unfolded atomize-imp atomize-all,
untransferred, cancel-card-constraint, rule-format]

end

6 Combining Spectral Radius Theory with Perron
Frobenius theorem

theory Spectral-Radius-Theory
imports

Polynomial-Factorization.Square-Free-Factorization
Jordan-Normal-Form.Spectral-Radius
Jordan-Normal-Form.Char-Poly
Perron-Frobenius
HOL−Computational-Algebra.Field-as-Ring

begin
abbreviation spectral-radius where spectral-radius ≡ Spectral-Radius.spectral-radius
hide-const (open) Module.smult

Via JNFs it has been proven that the growth of Ak is polynomially
bounded, if all complex eigenvalues have a norm at most 1, i.e., the spectral

97

radius must be at most 1. Moreover, the degree of the polynomial growth
can be bounded by the order of those roots which have norm 1, cf. [[?A ∈
carrier-mat ?n ?n; Spectral-Radius-Theory.spectral-radius ?A ≤ 1 ;

∧
ev k.

[[poly (char-poly ?A) ev = 0 ; cmod ev = 1]] =⇒ order ev (char-poly ?A) ≤
?d]] =⇒ ∃ c1 c2 . ∀ k. norm-bound (?A ^m k) (c1 + c2 ∗ (real k)?d − 1).

Perron Frobenius theorem tells us that for a real valued non negative
matrix, the largest eigenvalue is a real non-negative one. Hence, we only
have to check, that all real eigenvalues are at most one.

We combine both theorems in the following. To be more precise, the set-
based complexity results from JNFs with the type-based Perron Frobenius
theorem in HMA are connected to obtain a set based complexity criterion
for real-valued non-negative matrices, where one only investigated the real
valued eigenvalues for checking the eigenvalue-at-most-1 condition. Here,
in the precondition of the roots of the polynomial, the type-system ensures
that we only have to look at real-valued eigenvalues, and can ignore the
complex-valued ones.

The linkage between set-and type-based is performed via HMA-connect.
lemma perron-frobenius-spectral-radius-complex: fixes A :: complex mat

assumes A: A ∈ carrier-mat n n
and real-nonneg: real-nonneg-mat A
and ev-le-1 :

∧
x. poly (char-poly (map-mat Re A)) x = 0 =⇒ x ≤ 1

and ev-order :
∧

x. norm x = 1 =⇒ order x (char-poly A) ≤ d
shows ∃ c1 c2 . ∀ k. norm-bound (A ^m k) (c1 + c2 ∗ real k ^ (d − 1))

proof (cases n = 0)
case False
hence n: n > 0 n 6= 0 by auto
define sr where sr = spectral-radius A
note sr = spectral-radius-mem-max[OF A n(1), folded sr-def]
show ?thesis
proof (rule spectral-radius-poly-bound[OF A], unfold sr-def [symmetric])

let ?cr = complex-of-real

here is the transition from type-based perron-frobenius to set-based
from perron-frobenius[untransferred, cancel-card-constraint, OF A real-nonneg

n(2)]
obtain v where v: v ∈ carrier-vec n and ev: eigenvector A v (?cr sr) and
rnn: real-nonneg-vec v unfolding sr-def by auto

define B where B = map-mat Re A
let ?A = map-mat ?cr B
have AB: A = ?A unfolding B-def
by (rule eq-matI , insert real-nonneg[unfolded real-nonneg-mat-def elements-mat-def],

auto)
define w where w = map-vec Re v
let ?v = map-vec ?cr w
have vw: v = ?v unfolding w-def

98

by (rule eq-vecI , insert rnn[unfolded real-nonneg-vec-def vec-elements-def],
auto)

have B: B ∈ carrier-mat n n unfolding B-def using A by auto
from AB vw ev have ev: eigenvector ?A ?v (?cr sr) by simp
have eigenvector B w sr

by (rule of-real-hom.eigenvector-hom-rev[OF B ev])
hence eigenvalue B sr unfolding eigenvalue-def by blast
from ev-le-1 [folded B-def , OF this[unfolded eigenvalue-root-char-poly[OF B]]]
show sr ≤ 1 .

next
fix ev
assume cmod ev = 1
thus order ev (char-poly A) ≤ d by (rule ev-order)

qed
next

case True
with A show ?thesis

by (intro exI [of - 0], auto simp: norm-bound-def)
qed

The following lemma is the same as [[?A ∈ carrier-mat ?n ?n; real-nonneg-mat
?A;

∧
x. poly (char-poly (map-mat Re ?A)) x = 0 =⇒ x ≤ 1 ;

∧
x. cmod x =

1 =⇒ order x (char-poly ?A) ≤ ?d]] =⇒ ∃ c1 c2 . ∀ k. norm-bound (?A ^m

k) (c1 + c2 ∗ (real k)?d − 1), except that now the type real is used instead
of complex.
lemma perron-frobenius-spectral-radius: fixes A :: real mat

assumes A: A ∈ carrier-mat n n
and nonneg: nonneg-mat A
and ev-le-1 : ∀ x. poly (char-poly A) x = 0 −→ x ≤ 1
and ev-order : ∀ x :: complex. norm x = 1 −→ order x (map-poly of-real (char-poly

A)) ≤ d
shows ∃ c1 c2 . ∀ k a. a ∈ elements-mat (A ^m k) −→ abs a ≤ (c1 + c2 ∗ real

k ^ (d − 1))
proof −

let ?cr = complex-of-real
let ?B = map-mat ?cr A
have B: ?B ∈ carrier-mat n n using A by auto
have rnn: real-nonneg-mat ?B using nonneg unfolding real-nonneg-mat-def

nonneg-mat-def
by (auto simp: elements-mat-def)

have id: map-mat Re ?B = A
by (rule eq-matI , auto)

have ∃ c1 c2 . ∀ k. norm-bound (?B ^m k) (c1 + c2 ∗ real k ^ (d − 1))
by (rule perron-frobenius-spectral-radius-complex[OF B rnn], unfold id,
insert ev-le-1 ev-order , auto simp: of-real-hom.char-poly-hom[OF A])

then obtain c1 c2 where nb:
∧

k. norm-bound (?B ^m k) (c1 + c2 ∗ real k ^
(d − 1)) by auto

show ?thesis
proof (rule exI [of - c1], rule exI [of - c2], intro allI impI)

99

fix k a
assume a ∈ elements-mat (A ^m k)
with pow-carrier-mat[OF A] obtain i j where a: a = (A ^m k) $$ (i,j) and

ij: i < n j < n
unfolding elements-mat by force

from ij nb[of k] A have norm ((?B ^m k) $$ (i,j)) ≤ c1 + c2 ∗ real k ^ (d −
1)

unfolding norm-bound-def by auto
also have (?B ^m k) $$ (i,j) = ?cr a
unfolding of-real-hom.mat-hom-pow[OF A, symmetric] a using ij A by auto

also have norm (?cr a) = abs a by auto
finally show abs a ≤ (c1 + c2 ∗ real k ^ (d − 1)) .

qed
qed

We can also convert the set-based lemma [[?A ∈ carrier-mat ?n ?n;
nonneg-mat ?A; ∀ x. poly (char-poly ?A) x = 0 −→ x ≤ 1 ; ∀ x. cmod x = 1
−→ order x (map-poly complex-of-real (char-poly ?A)) ≤ ?d]] =⇒ ∃ c1 c2 .
∀ k a. a ∈ elements-mat (?A ^m k) −→ |a| ≤ c1 + c2 ∗ (real k)?d − 1 to a
type-based version.
lemma perron-frobenius-spectral-type-based:

assumes non-neg-mat (A :: real ^ ′n ^ ′n)
and ∀ x. poly (charpoly A) x = 0 −→ x ≤ 1
and ∀ x :: complex. norm x = 1 −→ order x (map-poly of-real (charpoly A)) ≤

d
shows ∃ c1 c2 . ∀ k a. a ∈ elements-mat-h (matpow A k) −→ abs a ≤ (c1 + c2
∗ real k ^ (d − 1))

using assms perron-frobenius-spectral-radius
by (transfer , blast)

And of course, we can also transfer the type-based lemma back to a
set-based setting, only that – without further case-analysis – we get the
additional assumption n 6= 0.
lemma assumes A ∈ carrier-mat n n

and nonneg-mat A
and ∀ x. poly (char-poly A) x = 0 −→ x ≤ 1
and ∀ x :: complex. norm x = 1 −→ order x (map-poly of-real (char-poly A)) ≤

d
and n 6= 0
shows ∃ c1 c2 . ∀ k a. a ∈ elements-mat (A ^m k) −→ abs a ≤ (c1 + c2 ∗ real

k ^ (d − 1))
using perron-frobenius-spectral-type-based[untransferred, cancel-card-constraint,

OF assms] .

Note that the precondition eigenvalue-at-most-1 can easily be formu-
lated as a cardinality constraints which can be decided by Sturm’s theorem.
And in order to obtain a bound on the order, one can perform a square-
free-factorization (via Yun’s factorization algorithm) of the characteristic
polynomial into f1

1 · . . . fd
d where each fi has precisely the roots of order i.

100

context
fixes A :: real mat and c :: real and fis and n :: nat
assumes A: A ∈ carrier-mat n n
and nonneg: nonneg-mat A
and yun: yun-factorization gcd (char-poly A) = (c,fis)
and ev-le-1 : card {x. poly (char-poly A) x = 0 ∧ x > 1} = 0

begin

lemma perron-frobenius-spectral-radius-yun:
assumes bnd:

∧
f i i. (f i,i) ∈ set fis

=⇒ (∃ x :: complex. poly (map-poly of-real f i) x = 0 ∧ norm x = 1)
=⇒ i ≤ d

shows ∃ c1 c2 . ∀ k a. a ∈ elements-mat (A ^m k) −→ abs a ≤ (c1 + c2 ∗ real
k ^ (d − 1))
proof (rule perron-frobenius-spectral-radius[OF A nonneg]; intro allI impI)

let ?cr = complex-of-real
let ?cp = map-poly ?cr (char-poly A)
fix x :: complex
assume x: norm x = 1
have A0 : char-poly A 6= 0 using degree-monic-char-poly[OF A] by auto
interpret field-hom-0 ′ ?cr by (standard, auto)
from A0 have cp0 : ?cp 6= 0 by auto
obtain ox where ox: order x ?cp = ox by blast
note sff = square-free-factorization-order-root[OF yun-factorization(1)[OF

yun-factorization-hom[of char-poly A, unfolded yun map-prod-def split]] cp0 , of
x ox, unfolded ox]

show order x ?cp ≤ d unfolding ox
proof (cases ox)

case (Suc oo)
with sff obtain fi where mem: (fi,Suc oo) ∈ set fis and rt: poly (map-poly

?cr fi) x = 0 by auto
from bnd[OF mem exI [of - x], OF conjI [OF rt x]]
show ox ≤ d unfolding Suc .

qed auto
next

let ?L = {x. poly (char-poly A) x = 0 ∧ x > 1}
fix x :: real
assume rt: poly (char-poly A) x = 0
have finite ?L

by (rule finite-subset[OF - poly-roots-finite[of char-poly A]],
insert degree-monic-char-poly[OF A], auto)

with ev-le-1 have ?L = {} by simp
with rt show x ≤ 1 by auto

qed

Note that the only remaining problem in applying (
∧

f i i. [[(f i, i) ∈ set
fis; ∃ x. poly (map-poly complex-of-real f i) x = 0 ∧ cmod x = 1]] =⇒ i ≤
?d) =⇒ ∃ c1 c2 . ∀ k a. a ∈ elements-mat (A ^m k) −→ |a| ≤ c1 + c2 ∗
(real k)?d − 1 is to check the condition ∃ x. poly (map-poly complex-of-real

101

f i) x = 0 ∧ cmod x = 1. Here, there are at least three possibilities. First,
one can just ignore this precondition and weaken the statement. Second,
one can apply Sturm’s theorem to determine whether all roots are real. This
can be done by comparing the number of distinct real roots with the degree
of f i, since f i is square-free. If all roots are real, then one can decide the
criterion by checking the only two possible real roots with norm equal to
1, namely 1 and -1. If on the other hand there are complex roots, then we
loose precision at this point. Third, one uses a factorization algorithm (e.g.,
via complex algebraic numbers) to precisely determine the complex roots
and decide the condition.

The second approach is illustrated in the following theorem. Note that all
preconditions – including the ones from the context – can easily be checked
with the help of Sturm’s method. This method is used as a fast approxima-
tive technique in CeTA [3]. Only if the desired degree cannot be ensured by
this method, the more costly complex algebraic number based factorization
is applied.
lemma perron-frobenius-spectral-radius-yun-real-roots:

assumes bnd:
∧

f i i. (f i,i) ∈ set fis
=⇒ card { x. poly f i x = 0} 6= degree f i ∨ poly f i 1 = 0 ∨ poly f i (−1) = 0
=⇒ i ≤ d

shows ∃ c1 c2 . ∀ k a. a ∈ elements-mat (A ^m k) −→ abs a ≤ (c1 + c2 ∗ real
k ^ (d − 1))
proof (rule perron-frobenius-spectral-radius-yun)

fix fi i
let ?cr = complex-of-real
let ?cp = map-poly ?cr
assume fi: (fi, i) ∈ set fis

and ∃ x. poly (map-poly ?cr fi) x = 0 ∧ norm x = 1
then obtain x where rt: poly (?cp fi) x = 0 and x: norm x = 1 by auto
show i ≤ d
proof (rule bnd[OF fi])

consider (c) x /∈ � | (1) x = 1 | (m1) x = −1 | (r) x ∈ � x /∈ {1 , −1}
by (cases x ∈ �; auto)

thus card {x. poly fi x = 0} 6= degree fi ∨ poly fi 1 = 0 ∨ poly fi (− 1) = 0
proof (cases)

case 1
from rt have poly fi 1 = 0

unfolding 1 by simp
thus ?thesis by simp

next
case m1
have id: −1 = ?cr (−1) by simp
from rt have poly fi (−1) = 0

unfolding m1 id of-real-hom.hom-zero[where ′a=complex,symmetric]
of-real-hom.poly-map-poly by simp

thus ?thesis by simp
next

102

case r
then obtain y where xy: x = of-real y unfolding Reals-def by auto
from r(2)[unfolded xy] have y: y /∈ {1 ,−1} by auto
from x[unfolded xy] have abs y = 1 by auto
with y have False by auto
thus ?thesis ..

next
case c
from yun-factorization(2)[OF yun] fi have monic fi by auto
hence fi: ?cp fi 6= 0 by auto
hence fin: finite {x. poly (?cp fi) x = 0} by (rule poly-roots-finite)
have ?cr ‘ {x. poly (?cp fi) (?cr x) = 0} ⊂ {x. poly (?cp fi) x = 0} (is ?l ⊂

?r)
proof (rule, force)

have x ∈ ?r using rt by auto
moreover have x /∈ ?l using c unfolding Reals-def by auto
ultimately show ?l 6= ?r by blast

qed
from psubset-card-mono[OF fin this] have card ?l < card ?r .
also have . . . ≤ degree (?cp fi) by (rule poly-roots-degree[OF fi])
also have . . . = degree fi by simp
also have ?l = ?cr ‘ {x. poly fi x = 0} by auto
also have card . . . = card {x. poly fi x = 0}

by (rule card-image, auto simp: inj-on-def)
finally have card {x. poly fi x = 0} 6= degree fi by simp
thus ?thesis by auto

qed
qed

qed

end

end

7 The Jordan Blocks of the Spectral Radius are
Largest

Consider a non-negative real matrix, and consider any Jordan-block of any
eigenvalues whose norm is the spectral radius. We prove that there is a
Jordan block of the spectral radius which has the same size or is larger.
theory Spectral-Radius-Largest-Jordan-Block
imports

Jordan-Normal-Form.Jordan-Normal-Form-Uniqueness
Perron-Frobenius-General
HOL−Real-Asymp.Real-Asymp

begin

103

lemma poly-asymp-equiv: (λx. poly p (real x)) ∼[at-top] (λx. lead-coeff p ∗ real x
^ (degree p))
proof (cases degree p = 0)

case False
hence lc: lead-coeff p 6= 0 by auto
have 1 : 1 = (

∑
n≤degree p. if n = degree p then (1 :: real) else 0) by simp

from False show ?thesis
proof (intro asymp-equivI ′, unfold poly-altdef sum-divide-distrib,

subst 1 , intro tendsto-sum, goal-cases)
case (1 n)
hence n = degree p ∨ n < degree p by auto
thus ?case
proof

assume n = degree p
thus ?thesis using False lc

by (simp, intro LIMSEQ-I exI [of - Suc 0], auto)
qed (insert False lc, real-asymp)

qed
next

case True
then obtain c where p: p = [:c:] by (metis degree-eq-zeroE)
show ?thesis unfolding p by simp

qed

lemma sum-root-unity: fixes x :: ′a :: {comm-ring,division-ring}
assumes x^n = 1
shows sum (λ i. x^i) {..< n} = (if x = 1 then of-nat n else 0)

proof (cases x = 1 ∨ n = 0)
case x: False
from x obtain m where n: n = Suc m by (cases n, auto)
have id: {..< n} = {0 ..m} unfolding n by auto
show ?thesis using assms x n unfolding id sum-gp by (auto simp: divide-inverse)

qed auto

lemma sum-root-unity-power-pos-implies-1 :
assumes sumpos:

∧
k. Re (sum (λ i. b i ∗ x i ^ k) I) > 0

and root-unity:
∧

i. i ∈ I =⇒ ∃ d. d 6= 0 ∧ x i ^ d = 1
shows 1 ∈ x ‘ I
proof (rule ccontr)

assume ¬ ?thesis
hence x: i ∈ I =⇒ x i 6= 1 for i by auto
from sumpos[of 0] have I : finite I I 6= {}

using sum.infinite by fastforce+
have ∀ i. ∃ d. i ∈ I −→ d 6= 0 ∧ x i ^ d = 1 using root-unity by auto
from choice[OF this] obtain d where d:

∧
i. i ∈ I =⇒ d i 6= 0 ∧ x i ^ (d i)

= 1 by auto
define D where D = prod d I
have D0 : 0 < D unfolding D-def

by (rule prod-pos, insert d, auto)

104

have 0 < sum (λ k. Re (sum (λ i. b i ∗ x i ^ k) I)) {..< D}
by (rule sum-pos[OF - - sumpos], insert D0 , auto)

also have . . . = Re (sum (λ k. sum (λ i. b i ∗ x i ^ k) I) {..< D}) by auto
also have sum (λ k. sum (λ i. b i ∗ x i ^ k) I) {..< D}
= sum (λ i. sum (λ k. b i ∗ x i ^ k) {..< D}) I by (rule sum.swap)

also have . . . = sum (λ i. b i ∗ sum (λ k. x i ^ k) {..< D}) I
by (rule sum.cong, auto simp: sum-distrib-left)

also have . . . = 0
proof (rule sum.neutral, intro ballI)

fix i
assume i: i ∈ I
from d[OF this] x[OF this] have d: d i 6= 0 and rt-unity: x i ^ d i = 1

and x: x i 6= 1 by auto
have ∃ C . D = d i ∗ C unfolding D-def

by (subst prod.remove[of - i], insert i I , auto)
then obtain C where D: D = d i ∗ C by auto
have image: (

∧
x. f x = x) =⇒ {..< D} = f ‘ {..< D} for f by auto

let ?g = (λ (a,c). a + d i ∗ c)
have {..< D} = ?g ‘ (λ j. (j mod d i, j div d i)) ‘ {..< d i ∗ C}
unfolding image-image split D[symmetric] by (rule image, insert d mod-mult-div-eq,

blast)
also have (λ j. (j mod d i, j div d i)) ‘ {..< d i ∗ C} = {..< d i} × {..< C}

(is ?f ‘ ?A = ?B)
proof −

{
fix x
assume x ∈ ?B then obtain a c where x: x = (a,c) and a: a < d i and

c: c < C by auto
hence a + c ∗ d i < d i ∗ (1 + c) by simp
also have . . . ≤ d i ∗ C by (rule mult-le-mono2 , insert c, auto)
finally have a + c ∗ d i ∈ ?A by auto
hence ?f (a + c ∗ d i) ∈ ?f ‘ ?A by blast
also have ?f (a + c ∗ d i) = x unfolding x using a by auto
finally have x ∈ ?f ‘ ?A .

}
thus ?thesis using d by (auto simp: div-lt-nat)

qed
finally have D: {..< D} = (λ (a,c). a + d i ∗ c) ‘ ?B by auto
have inj: inj-on ?g ?B
proof −

{
fix a1 a2 c1 c2
assume id: ?g (a1 ,c1) = ?g (a2 ,c2) and ∗: (a1 ,c1) ∈ ?B (a2 ,c2) ∈ ?B
from arg-cong[OF id, of λ x. x div d i] ∗ have c: c1 = c2 by auto
from arg-cong[OF id, of λ x. x mod d i] ∗ have a: a1 = a2 by auto
note a c

}
thus ?thesis by (smt SigmaE inj-onI)

qed

105

have sum (λ k. x i ^ k) {..< D} = sum (λ (a,c). x i ^ (a + d i ∗ c)) ?B
unfolding D by (subst sum.reindex, rule inj, auto intro!: sum.cong)

also have . . . = sum (λ (a,c). x i ^ a) ?B
by (rule sum.cong, auto simp: power-add power-mult rt-unity)

also have . . . = 0 unfolding sum.cartesian-product[symmetric] sum.swap[of
- {..<C}]

by (rule sum.neutral, intro ballI , subst sum-root-unity[OF rt-unity], insert x,
auto)

finally
show b i ∗ sum (λ k. x i ^ k) {..< D} = 0 by simp

qed
finally show False by simp

qed

fun j-to-jb-index :: (nat × ′a)list ⇒ nat ⇒ nat × nat where
j-to-jb-index ((n,a) # n-as) i = (if i < n then (0 ,i) else

let rec = j-to-jb-index n-as (i − n) in (Suc (fst rec), snd rec))

fun jb-to-j-index :: (nat × ′a)list ⇒ nat × nat ⇒ nat where
jb-to-j-index n-as (0 ,j) = j
| jb-to-j-index ((n,-) # n-as) (Suc i, j) = n + jb-to-j-index n-as (i,j)

lemma j-to-jb-index: assumes i < sum-list (map fst n-as)
and j < sum-list (map fst n-as)
and j-to-jb-index n-as i = (bi, li)
and j-to-jb-index n-as j = (bj, lj)
and n-as ! bj = (n, a)

shows ((jordan-matrix n-as) ^m r) $$ (i,j) = (if bi = bj then ((jordan-block n a)
^m r) $$ (li, lj) else 0)
∧ (bi = bj −→ li < n ∧ lj < n ∧ bj < length n-as ∧ (n,a) ∈ set n-as)
unfolding jordan-matrix-pow using assms

proof (induct n-as arbitrary: i j bi bj)
case (Cons mb n-as i j bi bj)
obtain m b where mb: mb = (m,b) by force
note Cons = Cons[unfolded mb]
have [simp]: dim-col (case x of (n, a) ⇒ 1m n) = fst x for x by (cases x, auto)
have [simp]: dim-row (case x of (n, a) ⇒ 1m n) = fst x for x by (cases x, auto)
have [simp]: dim-col (case x of (n, a) ⇒ jordan-block n a ^m r) = fst x for x

by (cases x, auto)
have [simp]: dim-row (case x of (n, a) ⇒ jordan-block n a ^m r) = fst x for x

by (cases x, auto)
consider (UL) i < m j < m | (UR) i < m j ≥ m | (LL) i ≥ m j < m
| (LR) i ≥ m j ≥ m by linarith

thus ?case
proof cases

case UL
with Cons(2−) show ?thesis unfolding mb by (auto simp: Let-def)

next
case UR

106

with Cons(2−) show ?thesis unfolding mb by (auto simp: Let-def dim-diag-block-mat
o-def)

next
case LL

with Cons(2−) show ?thesis unfolding mb by (auto simp: Let-def dim-diag-block-mat
o-def)

next
case LR
let ?i = i − m
let ?j = j − m
from LR Cons(2−) have bi: j-to-jb-index n-as ?i = (bi − 1 , li) bi 6= 0 by

(auto simp: Let-def)
from LR Cons(2−) have bj: j-to-jb-index n-as ?j = (bj − 1 , lj) bj 6= 0 by

(auto simp: Let-def)
from LR Cons(2−) have i: ?i < sum-list (map fst n-as) by auto
from LR Cons(2−) have j: ?j < sum-list (map fst n-as) by auto
from LR Cons(2−) bj(2) have nas: n-as ! (bj − 1) = (n, a) by (cases bj,

auto)
from bi(2) bj(2) have id: (bi − 1 = bj − 1) = (bi = bj) by auto
note IH = Cons(1)[OF i j bi(1) bj(1) nas, unfolded id]
have id: diag-block-mat (map (λa. case a of (n, a) ⇒ jordan-block n a ^m r)

(mb # n-as)) $$ (i, j)
= diag-block-mat (map (λa. case a of (n, a) ⇒ jordan-block n a ^m r) n-as)

$$ (?i, ?j)
using i j LR unfolding mb by (auto simp: Let-def dim-diag-block-mat o-def)

show ?thesis using IH unfolding id by auto
qed

qed auto

lemma j-to-jb-index-rev: assumes j: j-to-jb-index n-as i = (bi, li)
and i: i < sum-list (map fst n-as)
and k: k ≤ li

shows li ≤ i ∧ j-to-jb-index n-as (i − k) = (bi, li − k) ∧ (
j-to-jb-index n-as j = (bi,li − k) −→ j < sum-list (map fst n-as) −→ j = i − k)
using j i

proof (induct n-as arbitrary: i bi j)
case (Cons mb n-as i bi j)
obtain m b where mb: mb = (m,b) by force
note Cons = Cons[unfolded mb]
show ?case
proof (cases i < m)

case True
thus ?thesis unfolding mb using Cons(2−) by (auto simp: Let-def)

next
case i-large: False
let ?i = i − m
have i: ?i < sum-list (map fst n-as) using Cons(2−) i-large by auto
from Cons(2−) i-large have j: j-to-jb-index n-as ?i = (bi − 1 , li)

and bi: bi 6= 0 by (auto simp: Let-def)

107

note IH = Cons(1)[OF j i]
from IH have IH1 : j-to-jb-index n-as (i − m − k) = (bi − 1 , li − k) and

li: li ≤ i − m by auto
from li have aim1 : li ≤ i by auto
from li k i-large have i − k ≥ m by auto
hence aim2 : j-to-jb-index (mb # n-as) (i − k) = (bi, li − k)

using IH1 bi by (auto simp: mb Let-def add.commute)
{

assume ∗: j-to-jb-index (mb # n-as) j = (bi, li − k)
j < sum-list (map fst (mb # n-as))

from ∗ bi have j: j ≥ m unfolding mb by (auto simp: Let-def split: if-splits)
let ?j = j − m
from j ∗ have jj: ?j < sum-list (map fst n-as) unfolding mb by auto
from j ∗ have ∗∗: j-to-jb-index n-as (j − m) = (bi − 1 , li − k) using bi mb

by (cases j-to-jb-index n-as (j − m), auto simp: Let-def)
from IH [of ?j] jj ∗∗ have j − m = i − m − k by auto
with j i-large k have j = i − k using ‹m ≤ i − k› by linarith

} note aim3 = this
show ?thesis using aim1 aim2 aim3 by blast

qed
qed auto

locale spectral-radius-1-jnf-max =
fixes A :: real mat and n m :: nat and lam :: complex and n-as
assumes A: A ∈ carrier-mat n n
and nonneg: nonneg-mat A
and jnf : jordan-nf (map-mat complex-of-real A) n-as
and mem: (m, lam) ∈ set n-as
and lam1 : cmod lam = 1
and sr1 :

∧
x. poly (char-poly A) x = 0 =⇒ x ≤ 1

and max-block:
∧

k la. (k,la) ∈ set n-as =⇒ cmod la ≤ 1 ∧ (cmod la = 1 −→
k ≤ m)
begin

lemma n-as0 : 0 /∈ fst ‘ set n-as
using jnf [unfolded jordan-nf-def] ..

lemma m0 : m 6= 0 using mem n-as0 by force

abbreviation cA where cA ≡ map-mat complex-of-real A
abbreviation J where J ≡ jordan-matrix n-as

lemma sim-A-J : similar-mat cA J
using jnf [unfolded jordan-nf-def] ..

lemma sumlist-nf : sum-list (map fst n-as) = n
proof −

have sum-list (map fst n-as) = dim-row (jordan-matrix n-as) by simp

108

also have . . . = dim-row cA using similar-matD[OF sim-A-J] by auto
finally show ?thesis using A by auto

qed

definition p :: nat ⇒ real poly where
p s = (

∏
i = 0 ..<s. [: − of-nat i / of-nat (s − i), 1 / of-nat (s − i) :])

lemma p-binom:
assumes s ≤ k
shows of-nat (k choose s) = poly (p s) (of-nat k)
using assms
by (auto simp: divide-simps binomial-altdef-of-nat p-def poly-prod intro: prod.cong)

lemma p-binom-complex: assumes sk: s ≤ k
shows of-nat (k choose s) = complex-of-real (poly (p s) (of-nat k))
unfolding p-binom[OF sk, symmetric] by simp

lemma deg-p: degree (p s) = s unfolding p-def
by (subst degree-prod-eq-sum-degree, auto)

lemma lead-coeff-p: lead-coeff (p s) = (
∏

i = 0 ..<s. 1 / (of-nat s − of-nat i))
unfolding p-def lead-coeff-prod
by (rule prod.cong[OF refl], auto)

lemma lead-coeff-p-gt-0 : lead-coeff (p s) > 0 unfolding lead-coeff-p
by (rule prod-pos, auto)

definition c = lead-coeff (p (m − 1))

lemma c-gt-0 : c > 0 unfolding c-def by (rule lead-coeff-p-gt-0)
lemma c0 : c 6= 0 using c-gt-0 by auto

definition PP where PP = (SOME PP. similar-mat-wit cA J (fst PP) (snd PP))

definition P where P = fst PP
definition iP where iP = snd PP

lemma JNF : P ∈ carrier-mat n n iP ∈ carrier-mat n n J ∈ carrier-mat n n
P ∗ iP = 1m n iP ∗ P = 1m n cA = P ∗ J ∗ iP

proof (atomize (full), goal-cases)
case 1
have n: n = dim-row cA using A by auto
from sim-A-J [unfolded similar-mat-def] obtain Q iQ

where similar-mat-wit cA J Q iQ by auto
hence similar-mat-wit cA J (fst (Q,iQ)) (snd (Q,iQ)) by auto
hence similar-mat-wit cA J P iP unfolding PP-def iP-def P-def

by (rule someI)
from similar-mat-witD[OF n this]
show ?case by auto

109

qed

definition C :: nat set where
C = {j | j bj lj nn la. j < n ∧ j-to-jb-index n-as j = (bj, lj)
∧ n-as ! bj = (nn,la) ∧ cmod la = 1 ∧ nn = m ∧ lj = nn − 1}

lemma C-nonempty: C 6= {}
proof −

from split-list[OF mem] obtain as bs where n-as: n-as = as @ (m,lam) # bs
by auto

let ?i = sum-list (map fst as) + (m − 1)
have j-to-jb-index n-as ?i = (length as, m − 1)

unfolding n-as by (induct as, insert m0 , auto simp: Let-def)
with lam1 have ?i ∈ C unfolding C-def unfolding sumlist-nf [symmetric] n-as

using m0 by auto
thus ?thesis by blast

qed

lemma C-n: C ⊆ {..<n} unfolding C-def by auto

lemma root-unity-cmod-1 : assumes la: la ∈ snd ‘ set n-as and 1 : cmod la = 1
shows ∃ d. d 6= 0 ∧ la ^ d = 1

proof −
from la obtain k where kla: (k,la) ∈ set n-as by force
from n-as0 kla have k0 : k 6= 0 by force
from split-list[OF kla] obtain as bs where nas: n-as = as @ (k,la) # bs by

auto
have rt: poly (char-poly cA) la = 0 using k0

unfolding jordan-nf-char-poly[OF jnf] nas poly-prod-list prod-list-zero-iff by
auto

obtain ks f where decomp: decompose-prod-root-unity (char-poly A) = (ks, f)
by force

from sumlist-nf [unfolded nas] k0 have n0 : n 6= 0 by auto
note pf = perron-frobenius-for-complexity-jnf (1 ,7)[OF A n0 nonneg sr1 decomp,

simplified]
from pf (1) pf (2)[OF 1 rt] show ∃ d. d 6= 0 ∧ la ^ d = 1 by metis

qed

definition d where d = (SOME d. ∀ la. la ∈ snd ‘ set n-as −→ cmod la = 1 −→

d la 6= 0 ∧ la ^ (d la) = 1)

lemma d: assumes (k,la) ∈ set n-as cmod la = 1
shows la ^ (d la) = 1 ∧ d la 6= 0

proof −
let ?P = λ d. ∀ la. la ∈ snd ‘ set n-as −→ cmod la = 1 −→

d la 6= 0 ∧ la ^ (d la) = 1
from root-unity-cmod-1 have ∀ la. ∃ d. la ∈ snd ‘ set n-as −→ cmod la = 1
−→

110

d 6= 0 ∧ la ^ d = 1 by blast
from choice[OF this] have ∃ d. ?P d .
from someI-ex[OF this] have ?P d unfolding d-def .
from this[rule-format, of la, OF - assms(2)] assms(1) show ?thesis by force

qed

definition D where D = prod-list (map (λ na. if cmod (snd na) = 1 then d (snd
na) else 1) n-as)

lemma D0 : D 6= 0 unfolding D-def
by (unfold prod-list-zero-iff , insert d, force)

definition f where f off k = D ∗ k + (m−1) + off

lemma mono-f : strict-mono (f off) unfolding strict-mono-def f-def
using D0 by auto

definition inv-op where inv-op off k = inverse (c ∗ real (f off k) ^ (m − 1))

lemma limit-jordan-block: assumes kla: (k, la) ∈ set n-as
and ij: i < k j < k

shows (λN . (jordan-block k la ^m (f off N)) $$ (i, j) ∗ inv-op off N)
−−−−→ (if i = 0 ∧ j = k − 1 ∧ cmod la = 1 ∧ k = m then la^off else 0)

proof −
let ?c = of-nat :: nat ⇒ complex
let ?r = of-nat :: nat ⇒ real
let ?cr = complex-of-real
from ij have k0 : k 6= 0 by auto
from jordan-nf-char-poly[OF jnf] have cA: char-poly cA = (

∏
(n, a)←n-as. [:−

a, 1 :] ^ n) .
from degree-monic-char-poly[OF A] have degree (char-poly A) = n by auto
have deg: degree (char-poly cA) = n using A by (simp add: degree-monic-char-poly)
from this[unfolded cA] have n = degree (

∏
(n, a)←n-as. [:− a, 1 :] ^ n) by auto

also have . . . = sum-list (map degree (map (λ(n, a). [:− a, 1 :] ^ n) n-as))
by (subst degree-prod-list-eq, auto)

also have . . . = sum-list (map fst n-as)
by (rule arg-cong[of - - sum-list], auto simp: degree-linear-power)

finally have sum: sum-list (map fst n-as) = n by auto
with split-list[OF kla] k0 have n0 : n 6= 0 by auto
obtain ks small where decomp: decompose-prod-root-unity (char-poly A) = (ks,

small) by force
note pf = perron-frobenius-for-complexity-jnf [OF A n0 nonneg sr1 decomp]
define ji where ji = j − i
have ji: j − i = ji unfolding ji-def by auto
let ?f = λ N . c ∗ (?r N)^(m−1)
let ?jb = λ N . (jordan-block k la ^m N) $$ (i,j)
let ?jbc = λ N . (jordan-block k la ^m N) $$ (i,j) / ?f N
define e where e = (if i = 0 ∧ j = k − 1 ∧ cmod la = 1 ∧ k = m then la^off

else 0)

111

let ?e1 = λ N :: nat. ?cr (poly (p (j − i)) (?r N)) ∗ la ^ (N + i − j)
let ?e2 = λ N . ?cr (poly (p ji) (?r N) / ?f N) ∗ la ^ (N + i − j)
define e2 where e2 = ?e2
let ?e3 = λ N . poly (p ji) (?r N) / (c ∗ ?r N ^ (m − 1)) ∗ cmod la ^ (N + i
− j)

define e3 where e3 = ?e3
define e3 ′ where e3 ′ = (λ N . (lead-coeff (p ji) ∗ (?r N) ^ ji) / (c ∗ ?r N ^ (m
− 1)) ∗ cmod la ^ (N + i − j))

{
assume ij ′: i ≤ j and la0 : la 6= 0
{

fix N
assume N ≥ k
with ij ij ′ have ji: j − i ≤ N and id: N + i − j = N − ji unfolding ji-def

by auto
have ?jb N = (?c (N choose (j − i)) ∗ la ^ (N + i − j))

unfolding jordan-block-pow using ij ij ′ by auto
also have . . . = ?e1 N by (subst p-binom-complex[OF ji], auto)
finally have id: ?jb N = ?e1 N .
have ?jbc N = e2 N
unfolding id e2-def ji-def using c-gt-0 by (simp add: norm-mult norm-divide

norm-power)
} note jbc = this
have cmod-e2-e3 : (λ n. cmod (e2 n)) ∼[at-top] e3
proof (intro asymp-equivI LIMSEQ-I exI [of - ji] allI impI)

fix n r
assume n: n ≥ ji
have cmod (e2 n) = |poly (p ji) (?r n) / (c ∗ ?r n ^ (m − 1))| ∗ cmod la ^

(n + i − j)
unfolding e2-def norm-mult norm-power norm-of-real by simp

also have |poly (p ji) (?r n) / (c ∗ ?r n ^ (m − 1))| = poly (p ji) (?r n) /
(c ∗ real n ^ (m − 1))

by (intro abs-of-nonneg divide-nonneg-nonneg mult-nonneg-nonneg, insert
c-gt-0 , auto simp: p-binom[OF n, symmetric])

finally have cmod (e2 n) = e3 n unfolding e3-def by auto
thus r > 0 =⇒ norm ((if cmod (e2 n) = 0 ∧ e3 n = 0 then 1 else cmod (e2

n) / e3 n) − 1) < r by simp
qed
have e3 ′: e3 ∼[at-top] e3 ′ unfolding e3-def e3 ′-def
by (intro asymp-equiv-intros, insert poly-asymp-equiv[of p ji], unfold deg-p)

{
assume e3 ′ −−−−→ 0
hence e3 : e3 −−−−→ 0 using e3 ′ by (meson tendsto-asymp-equiv-cong)
have e2 −−−−→ 0
by (subst tendsto-norm-zero-iff [symmetric], subst tendsto-asymp-equiv-cong[OF

cmod-e2-e3], rule e3)
} note e2-via-e3 = this

have (e2 o f off) −−−−→ e

112

proof (cases cmod la = 1 ∧ k = m ∧ i = 0 ∧ j = k − 1)
case False
then consider (0) la = 0 | (small) la 6= 0 cmod la < 1 |
(medium) cmod la = 1 k < m ∨ i 6= 0 ∨ j 6= k − 1
using max-block[OF kla] by linarith

hence main: e2 −−−−→ e
proof cases

case 0
hence e0 : e = 0 unfolding e-def by auto
show ?thesis unfolding e0 0 LIMSEQ-iff e2-def ji
proof (intro exI [of - Suc j] impI allI , goal-cases)

case (1 r n) thus ?case by (cases n + i − j, auto)
qed

next
case small
define d where d = cmod la
from small have d: 0 < d d < 1 unfolding d-def by auto
have e0 : e = 0 using small unfolding e-def by auto
show ?thesis unfolding e0
by (intro e2-via-e3 , unfold e3 ′-def d-def [symmetric], insert d c0 , real-asymp)

next
case medium
with max-block[OF kla] have k ≤ m by auto
with ij medium have ji: ji < m − 1 unfolding ji-def by linarith
have e0 : e = 0 using medium unfolding e-def by auto
show ?thesis unfolding e0

by (intro e2-via-e3 , unfold e3 ′-def medium power-one mult-1-right, insert
ji c0 , real-asymp)

qed
show (e2 o f off) −−−−→ e

by (rule LIMSEQ-subseq-LIMSEQ[OF main mono-f])
next

case True
hence large: cmod la = 1 k = m i = 0 j = k − 1 by auto
hence e: e = la^off and ji: ji = m − 1 unfolding e-def ji-def by auto
from large k0 have m0 : m ≥ 1 by auto
define m1 where m1 = m − 1
have id: (real (m − 1) − real ia) = ?r m − 1 − ?r ia for ia using m0

unfolding m1-def by auto
define q where q = p m1 − monom c m1
hence pji: p ji = q + monom c m1 unfolding q-def ji m1-def by simp
let ?e4a = λ x. (complex-of-real (poly q (real x) / (c ∗ real x ^ m1))) ∗ la ^

(x + i − j)
let ?e4b = λ x. la ^ (x + i − j)
{

fix x :: nat
assume x: x 6= 0
have e2 x = ?e4a x + ?e4b x

unfolding e2-def pji poly-add poly-monom m1-def [symmetric] using c0 x

113

by (simp add: field-simps)
} note e2-e4 = this
have e2-e4 : ∀ F x in sequentially. (e2 o f off) x = (?e4a o f off) x + (?e4b o

f off) x unfolding o-def
by (intro eventually-sequentiallyI [of Suc 0], rule e2-e4 , insert D0 , auto

simp: f-def)
have (e2 o f off) −−−−→ 0 + e

unfolding tendsto-cong[OF e2-e4]
proof (rule tendsto-add, rule LIMSEQ-subseq-LIMSEQ[OF - mono-f])

show ?e4a −−−−→ 0
proof (subst tendsto-norm-zero-iff [symmetric],

unfold norm-mult norm-power large power-one mult-1-right norm-divide
norm-of-real

tendsto-rabs-zero-iff)
have deg-q: degree q ≤ m1 unfolding q-def using deg-p[of m1]

by (intro degree-diff-le degree-monom-le, auto)
have coeff-q-m1 : coeff q m1 = 0 unfolding q-def c-def m1-def [symmetric]

using deg-p[of m1] by simp
from deg-q coeff-q-m1 have deg: degree q < m1 ∨ q = 0 by fastforce
have eq: (λn. poly q (real n) / (c ∗ real n ^ m1)) ∼[at-top]

(λn. lead-coeff q ∗ real n ^ degree q / (c ∗ real n ^ m1))
by (intro asymp-equiv-intros poly-asymp-equiv)

show (λn. poly q (?r n) / (c ∗ ?r n ^ m1)) −−−−→ 0
unfolding tendsto-asymp-equiv-cong[OF eq] using deg
by (standard, insert c0 , real-asymp, simp)

qed
next

have id: D ∗ x + (m − 1) + off + i − j = D ∗ x + off for x
unfolding ji[symmetric] ji-def using ij ′ by auto

from d[OF kla large(1)] have 1 : la ^ d la = 1 by auto
from split-list[OF kla] obtain as bs where n-as: n-as = as @ (k,la) # bs

by auto
obtain C where D: D = d la ∗ C unfolding D-def unfolding n-as using

large by auto
show (?e4b o f off) −−−−→ e

unfolding e f-def o-def id
unfolding power-add power-mult D 1 by auto

qed
thus ?thesis by simp

qed
also have ((e2 o f off) −−−−→ e) = ((?jbc o f off) −−−−→ e)
proof (rule tendsto-cong, unfold eventually-at-top-linorder , rule exI [of - k],

intro allI impI , goal-cases)
case (1 n)
from mono-f [of off] 1 have f off n ≥ k using le-trans seq-suble by blast
from jbc[OF this] show ?case by (simp add: o-def)

qed
finally have (?jbc o f off) −−−−→ e .

} note part1 = this

114

{
assume i > j ∨ la = 0
hence e: e = 0 and jbn: N ≥ k =⇒ ?jbc N = 0 for N

unfolding jordan-block-pow e-def using ij by auto
have ?jbc −−−−→ e unfolding e LIMSEQ-iff by (intro exI [of - k] allI impI ,

subst jbn, auto)
from LIMSEQ-subseq-LIMSEQ[OF this mono-f]
have (?jbc o f off) −−−−→ e .

} note part2 = this
from part1 part2 have (?jbc o f off) −−−−→ e by linarith
thus ?thesis unfolding e-def o-def inv-op-def by (simp add: field-simps)

qed

definition lambda where lambda i = snd (n-as ! fst (j-to-jb-index n-as i))

lemma cmod-lambda: i ∈ C =⇒ cmod (lambda i) = 1
unfolding C-def lambda-def by auto

lemma R-lambda: assumes i: i ∈ C
shows (m, lambda i) ∈ set n-as

proof −
from i[unfolded C-def]
obtain bi li la where i: i < n and jb: j-to-jb-index n-as i = (bi, li)

and nth: n-as ! bi = (m, la) and cmod la = 1 ∧ li = m − 1 by auto
hence lam: lambda i = la unfolding lambda-def by auto
from j-to-jb-index[of - n-as, unfolded sumlist-nf , OF i i jb jb nth] lam
show ?thesis by auto

qed

lemma limit-jordan-matrix: assumes ij: i < n j < n
shows (λN . (J ^m (f off N)) $$ (i, j) ∗ inv-op off N)
−−−−→ (if j ∈ C ∧ i = j − (m − 1) then (lambda j)^off else 0)

proof −
obtain bi li where bi: j-to-jb-index n-as i = (bi, li) by force
obtain bj lj where bj: j-to-jb-index n-as j = (bj, lj) by force
define la where la = snd (n-as ! fst (j-to-jb-index n-as j))
obtain nn where nbj: n-as ! bj = (nn,la) unfolding la-def bj fst-conv by (metis

prod.collapse)
from j-to-jb-index[OF ij[folded sumlist-nf] bi bj nbj]
have eq: bi = bj =⇒ li < nn ∧ lj < nn ∧ bj < length n-as ∧ (nn, la) ∈ set n-as

and
index: (J ^m r) $$ (i, j) =
(if bi = bj then (jordan-block nn la ^m r) $$ (li, lj) else 0) for r
by auto

note index-rev = j-to-jb-index-rev[OF bj, unfolded sumlist-nf , OF ij(2) le-refl]
show ?thesis
proof (cases bi = bj)

case False
hence id: (bi = bj) = False by auto

115

{
assume j ∈ C i = j − (m − 1)
from this[unfolded C-def] bj nbj have i = j − lj by auto
from index-rev[folded this] bi False have False by auto

}
thus ?thesis unfolding index id if-False by auto

next
case True
hence id: (bi = bj) = True by auto
from eq[OF True] have eq: li < nn lj < nn (nn,la) ∈ set n-as bj < length n-as

by auto
have (λN . (J ^m (f off N)) $$ (i, j) ∗ inv-op off N)
−−−−→ (if li = 0 ∧ lj = nn − 1 ∧ cmod la = 1 ∧ nn = m then la^off else 0)
unfolding index id if-True using limit-jordan-block[OF eq(3 ,1 ,2)] .

also have (li = 0 ∧ lj = nn − 1 ∧ cmod la = 1 ∧ nn = m) = (j ∈ C ∧ i =
j − (m − 1)) (is ?l = ?r)

proof
assume ?r
hence j ∈ C ..
from this[unfolded C-def] bj nbj
have ∗: nn = m cmod la = 1 lj = nn − 1 by auto
from ‹?r› ∗ have i = j − lj by auto
with ∗ have li = 0 using index-rev bi by auto
with ∗ show ?l by auto

next
assume ?l
hence jI : j ∈ C using bj nbj ij by (auto simp: C-def)
from ‹?l› have li = 0 by auto
with index-rev[of i] bi ij(1) ‹?l› True
have i = j − (m − 1) by auto
with jI show ?r by auto

qed
finally show ?thesis unfolding la-def lambda-def .

qed
qed

declare sumlist-nf [simp]

lemma A-power-P: cA ^m k ∗ P = P ∗ J ^m k
proof (induct k)

case 0
show ?case using A JNF by simp

next
case (Suc k)
have cA ^m Suc k ∗ P = cA ^m k ∗ cA ∗ P by simp
also have . . . = cA ^m k ∗ (P ∗ J ∗ iP) ∗ P using JNF by simp
also have . . . = (cA ^m k ∗ P) ∗ (J ∗ (iP ∗ P))

using A JNF(1−3) by (simp add: assoc-mult-mat[of - n n - n - n])
also have J ∗ (iP ∗ P) = J unfolding JNF using JNF by auto

116

finally show ?case unfolding Suc
using A JNF(1−3) by (simp add: assoc-mult-mat[of - n n - n - n])

qed

lemma inv-op-nonneg: inv-op off k ≥ 0 unfolding inv-op-def using c-gt-0 by
auto

lemma P-nonzero-entry: assumes j: j < n
shows ∃ i < n. P $$ (i,j) 6= 0

proof (rule ccontr)
assume ¬ ?thesis
hence 0 :

∧
i. i < n =⇒ P $$ (i,j) = 0 by auto

have 1 = (iP ∗ P) $$ (j,j) using j unfolding JNF by auto
also have . . . = (

∑
i = 0 ..<n. iP $$ (j, i) ∗ P $$ (i, j))

using j JNF(1−2) by (auto simp: scalar-prod-def)
also have . . . = 0 by (rule sum.neutral, insert 0 , auto)
finally show False by auto

qed

definition j where j = (SOME j. j ∈ C)

lemma j: j ∈ C unfolding j-def using C-nonempty some-in-eq by blast

lemma j-n: j < n using j unfolding C-def by auto

definition i = (SOME i. i < n ∧ P $$ (i, j − (m − 1)) 6= 0)

lemma i: i < n and P-ij0 : P $$ (i, j − (m − 1)) 6= 0
proof −

from j-n have lt: j − (m − 1) < n by auto
show i < n P $$ (i, j − (m − 1)) 6= 0

unfolding i-def using someI-ex[OF P-nonzero-entry[OF lt]] by auto
qed

definition w = P ∗v unit-vec n j

lemma w: w ∈ carrier-vec n using JNF unfolding w-def by auto

definition v = map-vec cmod w

lemma v: v ∈ carrier-vec n unfolding v-def using w by auto

definition u where u = iP ∗v map-vec of-real v

lemma u: u ∈ carrier-vec n unfolding u-def using JNF(2) v by auto

definition a where a j = P $$ (i, j − (m − 1)) ∗ u $v j for j

lemma main-step: 0 < Re (
∑

j∈C . a j ∗ lambda j ^ l)

117

proof −
let ?c = complex-of-real
let ?cv = map-vec ?c
let ?cm = map-mat ?c
let ?v = ?cv v
define cc where

cc = (λ jj. ((
∑

k = 0 ..<n. (if k = jj − (m − 1) then P $$ (i, k) else 0)) ∗ u
$v jj))

{
fix off
define G where G = (λ k. (A ^m f off k ∗v v) $v i ∗ inv-op off k)
define F where F = (

∑
j∈C . a j ∗ lambda j ^ off)

{
fix kk
define k where k = f off kk
have ((A ^m k) ∗v v) $ i ∗ inv-op off kk = Re (?c (((A ^m k) ∗v v) $ i ∗

inv-op off kk)) by simp
also have ?c (((A ^m k) ∗v v) $ i ∗ inv-op off kk) = ?cv ((A ^m k) ∗v v) $

i ∗ ?c (inv-op off kk)
using i A by simp

also have ?cv ((A ^m k) ∗v v) = (?cm (A ^m k) ∗v ?v) using A
by (subst of-real-hom.mult-mat-vec-hom[OF - v], auto)

also have . . . = (cA ^m k ∗v ?v)
by (simp add: of-real-hom.mat-hom-pow[OF A])

also have . . . = (cA ^m k ∗v ((P ∗ iP) ∗v ?v)) unfolding JNF using v by
auto

also have . . . = (cA ^m k ∗v (P ∗v u)) unfolding u-def
by (subst assoc-mult-mat-vec, insert JNF v, auto)

also have . . . = (P ∗ J ^m k ∗v u) unfolding A-power-P[symmetric]
by (subst assoc-mult-mat-vec, insert u JNF(1) A, auto)

also have . . . = (P ∗v (J ^m k ∗v u))
by (rule assoc-mult-mat-vec, insert u JNF(1) A, auto)

finally have (A ^m k ∗v v) $v i ∗ inv-op off kk = Re ((P ∗v (J ^m k ∗v u))
$ i ∗ inv-op off kk) by simp

also have . . . = Re (
∑

jj = 0 ..<n.
P $$ (i, jj) ∗ (

∑
ia = 0 ..< n. (J ^m k) $$ (jj, ia) ∗ u $v ia ∗ inv-op off

kk))
by (subst index-mult-mat-vec, insert JNF(1) i u, auto simp: scalar-prod-def

sum-distrib-right[symmetric]
mult.assoc[symmetric])

finally have (A ^m k ∗v v) $v i ∗ inv-op off kk =
Re (

∑
jj = 0 ..<n. P $$ (i, jj) ∗ (

∑
ia = 0 ..<n. (J ^m k) $$ (jj, ia) ∗ inv-op

off kk ∗ u $v ia))
unfolding k-def
by (simp only: ac-simps)

} note A-to-u = this
have G −−−−→

Re (
∑

jj = 0 ..<n. P $$ (i, jj) ∗
(
∑

ia = 0 ..<n. (if ia ∈ C ∧ jj = ia − (m − 1) then (lambda ia)^off else

118

0) ∗ u $v ia))
unfolding A-to-u G-def
by (intro tendsto-intros limit-jordan-matrix, auto)

also have (
∑

jj = 0 ..<n. P $$ (i, jj) ∗
(
∑

ia = 0 ..<n. (if ia ∈ C ∧ jj = ia − (m − 1) then (lambda ia)^off else
0) ∗ u $v ia))

= (
∑

jj = 0 ..<n. (
∑

ia ∈ C . (if ia ∈ C ∧ jj = ia − (m − 1) then P $$ (i,
jj) else 0) ∗ ((lambda ia)^off ∗ u $v ia)))

by (rule sum.cong[OF refl], unfold sum-distrib-left, subst (2) sum.mono-neutral-left[of
{0 ..<n}],

insert C-n, auto intro!: sum.cong)
also have . . . = (

∑
ia ∈ C . (

∑
jj = 0 ..<n. (if jj = ia − (m − 1) then P $$

(i, jj) else 0)) ∗ ((lambda ia)^off ∗ u $v ia))
unfolding sum.swap[of - C] sum-distrib-right
by (rule sum.cong[OF refl], auto)

also have . . . = (
∑

ia ∈ C . cc ia ∗ (lambda ia)^off) unfolding cc-def
by (rule sum.cong[OF refl], simp)

also have . . . = F unfolding cc-def a-def F-def
by (rule sum.cong[OF refl], insert C-n, auto)

finally have tend3 : G −−−−→ Re F .

from j j-n have jR: j ∈ C and j: j < n by auto
let ?exp = λ k. sum (λ ii. P $$ (i, ii) ∗ (J ^m k) $$ (ii,j)) {..<n}
define M where M = (λ k. cmod (?exp (f off k) ∗ inv-op off k))
{

fix kk
define k where k = f off kk
define cAk where cAk = cA ^m k
have cAk: cAk ∈ carrier-mat n n unfolding cAk-def using A by auto
have ((A ^m k) ∗v v) $ i = ((map-mat cmod cAk) ∗v map-vec cmod w) $ i

unfolding v-def [symmetric] cAk-def
by (rule arg-cong[of - - λ x. (x ∗v v) $ i],

unfold of-real-hom.mat-hom-pow[OF A, symmetric],
insert nonneg-mat-power [OF A nonneg, of k], insert i j,
auto simp: nonneg-mat-def elements-mat-def)

also have . . . ≥ cmod ((cAk ∗v w) $ i)
by (subst (1 2) index-mult-mat-vec, insert i cAk w, auto simp: scalar-prod-def
intro!: sum-norm-le norm-mult-ineq)

also have cAk ∗v w = (cAk ∗ P) ∗v unit-vec n j
unfolding w-def using JNF cAk by simp

also have . . . = P ∗v (J ^m k ∗v unit-vec n j) unfolding cAk-def A-power-P
using JNF by (subst assoc-mult-mat-vec[of - n n - n], auto)

also have J ^m k ∗v unit-vec n j = col (J ^m k) j
by (rule eq-vecI , insert j, auto)

also have (P ∗v (col (J ^m k) j)) $ i = Matrix.row P i · col (J ^m k) j
by (subst index-mult-mat-vec, insert i JNF , auto)

also have . . . = sum (λ ii. P $$ (i, ii) ∗ (J ^m k) $$ (ii,j)) {..<n}
unfolding scalar-prod-def by (rule sum.cong, insert i j JNF(1), auto)

119

finally have (A ^m k ∗v v) $v i ≥ cmod (?exp k) .
from mult-right-mono[OF this inv-op-nonneg]
have (A ^m k ∗v v) $v i ∗ inv-op off kk ≥ cmod (?exp k ∗ inv-op off kk)

unfolding norm-mult
using inv-op-nonneg by auto

}
hence ge: (A ^m f off k ∗v v) $v i ∗ inv-op off k ≥ M k for k unfolding M-def

by auto
from j have mem: j − (m − 1) ∈ {..<n} by auto
have (λ k. ?exp (f off k) ∗ inv-op off k) −−−−→
(
∑

ii<n. P $$ (i, ii) ∗ (if j ∈ C ∧ ii = j − (m − 1) then lambda j ^ off else
0))

(is - −−−−→ ?sum)
unfolding sum-distrib-right mult.assoc
by (rule tendsto-sum, rule tendsto-mult, force, rule limit-jordan-matrix[OF -

j], auto)
also have ?sum = P $$ (i, j − (m − 1)) ∗ lambda j ^ off

by (subst sum.remove[OF - mem], force, subst sum.neutral, insert jR, auto)
finally have tend1 : (λ k. ?exp (f off k) ∗ inv-op off k) −−−−→ P $$ (i, j − (m

− 1)) ∗ lambda j ^ off .
have tend2 : M −−−−→ cmod (P $$ (i, j − (m − 1)) ∗ lambda j ^ off) unfolding

M-def
by (rule tendsto-norm, rule tend1)

define B where B = cmod (P $$ (i, j − (m − 1))) / 2
have B: 0 < B unfolding B-def using P-ij0 by auto
{

from P-ij0 have 0 : P $$ (i, j − (m − 1)) 6= 0 by auto
define E where E = cmod (P $$ (i, j − (m − 1)) ∗ lambda j ^ off)
from cmod-lambda[OF jR] 0 have E : E / 2 > 0 unfolding E-def by auto
from tend2 [folded E-def] have tend2 : M −−−−→ E .
from ge have ge: G k ≥ M k for k unfolding G-def .
from tend2 [unfolded LIMSEQ-iff , rule-format, OF E]
obtain k ′ where diff :

∧
k. k ≥ k ′ =⇒ norm (M k − E) < E / 2 by auto

{
fix k
assume k ≥ k ′

from diff [OF this] have norm: norm (M k − E) < E / 2 .
have M k ≥ 0 unfolding M-def by auto
with E norm have M k ≥ E / 2

by (smt real-norm-def field-sum-of-halves)
with ge[of k] E have G k ≥ E / 2 by auto
also have E / 2 = B unfolding E-def B-def j norm-mult norm-power

cmod-lambda[OF jR] by auto
finally have G k ≥ B .

}
hence ∃ k ′. ∀ k. k ≥ k ′ −→ G k ≥ B by auto

}
hence Bound: ∃ k ′. ∀ k≥k ′. B ≤ G k by auto
from tend3 [unfolded LIMSEQ-iff , rule-format, of B / 2] B

120

obtain kk where kk:
∧

k. k ≥ kk =⇒ norm (G k − Re F) < B / 2 by auto
from Bound obtain kk ′ where kk ′:

∧
k. k ≥ kk ′ =⇒ B ≤ G k by auto

define k where k = max kk kk ′

with kk kk ′ have 1 : norm (G k − Re F) < B / 2 B ≤ G k by auto
with B have Re F > 0 by (smt real-norm-def field-sum-of-halves)

}
thus ?thesis by blast

qed

lemma main-theorem: (m, 1) ∈ set n-as
proof −

from main-step have pos: 0 < Re (
∑

i∈C . a i ∗ lambda i ^ l) for l by auto
have 1 ∈ lambda ‘ C
proof (rule sum-root-unity-power-pos-implies-1 [of a lambda C , OF pos])

fix i
assume i ∈ C
from d[OF R-lambda[OF this] cmod-lambda[OF this]]
show ∃ d. d 6= 0 ∧ lambda i ^ d = 1 by auto

qed
then obtain i where i: i ∈ C and lambda i = 1 by auto
with R-lambda[OF i] show ?thesis by auto

qed
end

lemma nonneg-sr-1-largest-jb:
assumes nonneg: nonneg-mat A
and jnf : jordan-nf (map-mat complex-of-real A) n-as
and mem: (m, lam) ∈ set n-as
and lam1 : cmod lam = 1
and sr1 :

∧
x. poly (char-poly A) x = 0 =⇒ x ≤ 1

shows ∃ M . M ≥ m ∧ (M ,1) ∈ set n-as
proof −

note jnf ′ = jnf [unfolded jordan-nf-def]
from jnf ′ similar-matD[OF jnf ′[THEN conjunct2]] obtain n

where A: A ∈ carrier-mat n n and n-as0 : 0 /∈ fst ‘ set n-as by auto
let ?M = { m. ∃ lam. (m,lam) ∈ set n-as ∧ cmod lam = 1}
have m: m ∈ ?M using mem lam1 by auto
have fin: finite ?M

by (rule finite-subset[OF - finite-set[of map fst n-as]], force)
define M where M = Max ?M
have M ∈ ?M using fin m unfolding M-def using Max-in by blast
then obtain lambda where M : (M ,lambda) ∈ set n-as cmod lambda = 1 by

auto
from m fin have mM : m ≤ M unfolding M-def by simp
interpret spectral-radius-1-jnf-max A n M lambda
proof (unfold-locales, rule A, rule nonneg, rule jnf , rule M , rule M , rule sr1)

fix k la
assume kla: (k, la) ∈ set n-as

121

with fin have 1 : cmod la = 1 −→ k ≤ M unfolding M-def using Max-ge by
blast

obtain ks f where decomp: decompose-prod-root-unity (char-poly A) = (ks, f)
by force

from n-as0 kla have k0 : k 6= 0 by force
let ?cA = map-mat complex-of-real A
from split-list[OF kla] obtain as bs where nas: n-as = as @ (k,la) # bs by

auto
have rt: poly (char-poly ?cA) la = 0 using k0

unfolding jordan-nf-char-poly[OF jnf] nas poly-prod-list prod-list-zero-iff by
auto

have sumlist-nf : sum-list (map fst n-as) = n
proof −

have sum-list (map fst n-as) = dim-row (jordan-matrix n-as) by simp
also have . . . = dim-row ?cA using similar-matD[OF jnf ′[THEN conjunct2]]

by auto
finally show ?thesis using A by auto

qed
from this[unfolded nas] k0 have n0 : n 6= 0 by auto
from perron-frobenius-for-complexity-jnf (4)[OF A n0 nonneg sr1 decomp rt]
have cmod la ≤ 1 .
with 1 show cmod la ≤ 1 ∧ (cmod la = 1 −→ k ≤ M) by auto

qed
from main-theorem
show ?thesis using mM by auto

qed
hide-const(open) spectral-radius

lemma (in ring-hom) hom-smult-mat: math (a ·m A) = hom a ·m math A
by (rule eq-matI , auto simp: hom-mult)

lemma root-char-poly-smult: fixes A :: complex mat
assumes A: A ∈ carrier-mat n n
and k: k 6= 0

shows (poly (char-poly (k ·m A)) x = 0) = (poly (char-poly A) (x / k) = 0)
using order-char-poly-smult[OF A k, of x]
by (metis A degree-0 degree-monic-char-poly monic-degree-0 order-root smult-carrier-mat)

theorem real-nonneg-mat-spectral-radius-largest-jordan-block:
assumes real-nonneg-mat A
and jordan-nf A n-as
and (m, lam) ∈ set n-as
and cmod lam = spectral-radius A

shows ∃ M ≥ m. (M , of-real (spectral-radius A)) ∈ set n-as
proof −

from similar-matD[OF assms(2)[unfolded jordan-nf-def , THEN conjunct2]] ob-
tain n where

A: A ∈ carrier-mat n n by auto
let ?c = complex-of-real

122

define B where B = map-mat Re A
have B: B ∈ carrier-mat n n unfolding B-def using A by auto
have AB: A = map-mat ?c B unfolding B-def using assms(1)

by (auto simp: real-nonneg-mat-def elements-mat-def)
have nonneg: nonneg-mat B using assms(1) unfolding AB

by (auto simp: real-nonneg-mat-def elements-mat-def nonneg-mat-def)
let ?sr = spectral-radius A
show ?thesis
proof (cases ?sr = 0)

case False
define isr where isr = inverse ?sr
let ?nas = map (λ(n, a). (n, ?c isr ∗ a)) n-as
from False have isr0 : isr 6= 0 unfolding isr-def by auto
hence cisr0 : ?c isr 6= 0 by auto
from False assms(4) have isr-pos: isr > 0 unfolding isr-def

by (smt norm-ge-zero positive-imp-inverse-positive)
define C where C = isr ·m B
have C : C ∈ carrier-mat n n using B unfolding C-def by auto
have BC : B = ?sr ·m C using isr0 unfolding C-def isr-def by auto
have nonneg: nonneg-mat C unfolding C-def using isr-pos nonneg

unfolding nonneg-mat-def elements-mat-def by auto
from jordan-nf-smult[OF assms(2)[unfolded AB] cisr0]
have jnf : jordan-nf (map-mat ?c C) ?nas unfolding C-def by (auto simp:

of-real-hom.hom-smult-mat)
from assms(3) have mem: (m, ?c isr ∗ lam) ∈ set ?nas by auto

have 1 : cmod (?c isr ∗ lam) = 1 using False isr-pos unfolding isr-def
norm-mult assms(4)

by (smt mult.commute norm-of-real right-inverse)
{

fix x
have B ′: map-mat ?c B ∈ carrier-mat n n using B by auto
assume poly (char-poly C) x = 0

hence poly (char-poly (map-mat ?c C)) (?c x) = 0 unfolding of-real-hom.char-poly-hom[OF
C] by auto

hence poly (char-poly A) (?c x / ?c isr) = 0 unfolding C-def of-real-hom.hom-smult-mat
AB

unfolding root-char-poly-smult[OF B ′ cisr0] .
hence eigenvalue A (?c x / ?c isr) unfolding eigenvalue-root-char-poly[OF

A] .
hence mem: cmod (?c x / ?c isr) ∈ cmod ‘ spectrum A unfolding spectrum-def

by auto
from Max-ge[OF finite-imageI this]

have cmod (?c x / ?c isr) ≤ ?sr unfolding Spectral-Radius.spectral-radius-def
using A card-finite-spectrum(1) by blast

hence cmod (?c x) ≤ 1 using isr0 isr-pos unfolding isr-def
by (auto simp: field-simps norm-divide norm-mult)

hence x ≤ 1 by auto
} note sr = this
from nonneg-sr-1-largest-jb[OF nonneg jnf mem 1 sr] obtain M where

123

M : M ≥ m (M ,1) ∈ set ?nas by blast
from M (2) obtain a where mem: (M ,a) ∈ set n-as and 1 = ?c isr ∗ a by

auto
from this(2) have a: a = ?c ?sr using isr0 unfolding isr-def by (auto simp:

field-simps)
show ?thesis

by (intro exI [of - M], insert mem a M (1), auto)
next

case True
from jordan-nf-root-char-poly[OF assms(2 ,3)]
have eigenvalue A lam unfolding eigenvalue-root-char-poly[OF A] .
hence cmod lam ∈ cmod ‘ spectrum A unfolding spectrum-def by auto
from Max-ge[OF finite-imageI this]
have cmod lam ≤ ?sr unfolding Spectral-Radius.spectral-radius-def

using A card-finite-spectrum(1) by blast
from this[unfolded True] have lam0 : lam = 0 by auto
show ?thesis unfolding True using assms(3)[unfolded lam0] by auto

qed
qed

end

8 Homomorphisms of Gauss-Jordan Elimination,
Kernel and More

theory Hom-Gauss-Jordan
imports Jordan-Normal-Form.Matrix-Kernel
Jordan-Normal-Form.Jordan-Normal-Form-Uniqueness

begin

lemma (in comm-ring-hom) similar-mat-wit-hom: assumes
similar-mat-wit A B C D

shows similar-mat-wit (math A) (math B) (math C) (math D)
proof −

obtain n where n: n = dim-row A by auto
note ∗ = similar-mat-witD[OF n assms]
from ∗ have [simp]: dim-row C = n by auto
note C = ∗(6) note D = ∗(7)
note id = mat-hom-mult[OF C D] mat-hom-mult[OF D C]
note ∗∗ = ∗(1−3)[THEN arg-cong[of - - math], unfolded id]
note mult = mult-carrier-mat[of - n n]
note hom-mult = mat-hom-mult[of - n n - n]
show ?thesis unfolding similar-mat-wit-def Let-def unfolding ∗∗(3) using

∗∗(1 ,2)
by (auto simp: n[symmetric] hom-mult simp: ∗(4−) mult)

qed

lemma (in comm-ring-hom) similar-mat-hom:

124

similar-mat A B =⇒ similar-mat (math A) (math B)
using similar-mat-wit-hom[of A B C D for C D]
by (smt similar-mat-def)

context field-hom
begin
lemma hom-swaprows: i < dim-row A =⇒ j < dim-row A =⇒

swaprows i j (math A) = math (swaprows i j A)
unfolding mat-swaprows-def by (rule eq-matI , auto)

lemma hom-gauss-jordan-main: A ∈ carrier-mat nr nc =⇒ B ∈ carrier-mat nr
nc2 =⇒

gauss-jordan-main (math A) (math B) i j =
map-prod math math (gauss-jordan-main A B i j)

proof (induct A B i j rule: gauss-jordan-main.induct)
case (1 A B i j)
note IH = 1 (1−4)
note AB = 1 (5−6)
from AB have dim: dim-row A = nr dim-col A = nc by auto
let ?h = math
let ?hp = map-prod math math
show ?case unfolding gauss-jordan-main.simps[of A B i j] gauss-jordan-main.simps[of

?h A - i j]
index-map-mat Let-def if-distrib[of ?hp] dim

proof (rule if-cong[OF refl], goal-cases)
case 1
note IH = IH [OF dim[symmetric] 1 refl]
from 1 have ij: i < nr j < nc by auto
hence hij: (?h A) $$ (i,j) = hom (A $$ (i,j)) using AB by auto
define ixs where ixs = concat (map (λi ′. if A $$ (i ′, j) 6= 0 then [i ′] else [])

[Suc i..<nr])
have id: map (λi ′. if math A $$ (i ′, j) 6= 0 then [i ′] else []) [Suc i..<nr] =

map (λi ′. if A $$ (i ′, j) 6= 0 then [i ′] else []) [Suc i..<nr]
by (rule map-cong[OF refl], insert ij AB, auto)

show ?case unfolding hij hom-0-iff hom-1-iff id ixs-def [symmetric]
proof (rule if-cong[OF refl - if-cong[OF refl]], goal-cases)

case 1
note IH = IH (1 ,2)[OF 1 , folded ixs-def]
show ?case
proof (cases ixs)

case Nil
show ?thesis unfolding Nil using IH (1)[OF Nil AB] by auto

next
case (Cons I ix)
hence I ∈ set ixs by auto
hence I : I < nr unfolding ixs-def by auto
from AB have swap: swaprows i I A ∈ carrier-mat nr nc swaprows i I B ∈

carrier-mat nr nc2
by auto

125

show ?thesis unfolding Cons list.simps IH (2)[OF Cons swap,symmetric]
using AB ij I

by (auto simp: hom-swaprows)
qed

next
case 2
from AB have elim: eliminate-entries (λi. A $$ (i, j)) A i j ∈ carrier-mat

nr nc
eliminate-entries (λi. A $$ (i, j)) B i j ∈ carrier-mat nr nc2

unfolding eliminate-entries-gen-def by auto
show ?case unfolding IH (3)[OF 2 refl elim, symmetric]

by (rule arg-cong2 [of - - - - λ x y. gauss-jordan-main x y (Suc i) (Suc j)];
intro eq-matI , insert AB ij, auto simp: eliminate-entries-gen-def hom-minus

hom-mult)
next

case 3
from AB have mult: multrow i (inverse (A $$ (i, j))) A ∈ carrier-mat nr nc

multrow i (inverse (A $$ (i, j))) B ∈ carrier-mat nr nc2 by auto
show ?case unfolding IH (4)[OF 3 refl mult, symmetric]

by (rule arg-cong2 [of - - - - λ x y. gauss-jordan-main x y i j];
intro eq-matI , insert AB ij, auto simp: hom-inverse hom-mult)

qed
qed auto

qed

lemma hom-gauss-jordan: A ∈ carrier-mat nr nc =⇒ B ∈ carrier-mat nr nc2 =⇒
gauss-jordan (math A) (math B) = map-prod math math (gauss-jordan A B)
unfolding gauss-jordan-def using hom-gauss-jordan-main by blast

lemma hom-gauss-jordan-single[simp]: gauss-jordan-single (math A) = math (gauss-jordan-single
A)
proof −

let ?nr = dim-row A let ?nc = dim-col A
have 0 : 0m ?nr 0 ∈ carrier-mat ?nr 0 by auto
have dim: dim-row (math A) = ?nr by auto
have hom0 : math (0m ?nr 0) = 0m ?nr 0 by auto
have A: A ∈ carrier-mat ?nr ?nc by auto
from hom-gauss-jordan[OF A 0] A
show ?thesis unfolding gauss-jordan-single-def dim hom0 by (metis fst-map-prod)

qed

lemma hom-pivot-positions-main-gen: assumes A: A ∈ carrier-mat nr nc
shows pivot-positions-main-gen 0 (math A) nr nc i j = pivot-positions-main-gen

0 A nr nc i j
proof (induct rule: pivot-positions-main-gen.induct[of nr nc A 0])

case (1 i j)
note IH = this
show ?case unfolding pivot-positions-main-gen.simps[of - - nr nc i j]
proof (rule if-cong[OF refl if-cong[OF refl - refl] refl], goal-cases)

126

case 1
with A have id: (math A) $$ (i,j) = hom (A $$ (i,j)) by simp
note IH = IH [OF 1]
show ?case unfolding id hom-0-iff

by (rule if-cong[OF refl IH (1)], force, subst IH (2), auto)
qed

qed

lemma hom-pivot-positions[simp]: pivot-positions (math A) = pivot-positions A
unfolding pivot-positions-def by (subst hom-pivot-positions-main-gen, auto)

lemma hom-kernel-dim[simp]: kernel-dim (math A) = kernel-dim A
unfolding kernel-dim-code by simp

lemma hom-char-matrix: assumes A: A ∈ carrier-mat n n
shows char-matrix (math A) (hom x) = math (char-matrix A x)
unfolding char-matrix-def
by (rule eq-matI , insert A, auto simp: hom-minus)

lemma hom-dim-gen-eigenspace: assumes A: A ∈ carrier-mat n n
shows dim-gen-eigenspace (math A) (hom x) = dim-gen-eigenspace A x

proof (intro ext)
fix k
show dim-gen-eigenspace (math A) (hom x) k = dim-gen-eigenspace A x k

unfolding dim-gen-eigenspace-def hom-char-matrix[OF A]
mat-hom-pow[OF char-matrix-closed[OF A], symmetric] by simp

qed
end
end

9 Combining Spectral Radius Theory with Perron
Frobenius theorem

theory Spectral-Radius-Theory-2
imports

Spectral-Radius-Largest-Jordan-Block
Hom-Gauss-Jordan

begin

hide-const(open) Coset.order

lemma jnf-complexity-generic: fixes A :: complex mat
assumes A: A ∈ carrier-mat n n
and sr :

∧
x. poly (char-poly A) x = 0 =⇒ cmod x ≤ 1

and 1 :
∧

x. poly (char-poly A) x = 0 =⇒ cmod x = 1 =⇒
order x (char-poly A) > d + 1 =⇒
(∀ bsize ∈ fst ‘ set (compute-set-of-jordan-blocks A x). bsize ≤ d + 1)

shows ∃ c1 c2 . ∀ k. norm-bound (A ^m k) (c1 + c2 ∗ of-nat k ^ d)

127

proof −
from char-poly-factorized[OF A] obtain as where cA: char-poly A = (

∏
a←as.

[:− a, 1 :])
and lenn: length as = n by auto

from jordan-nf-exists[OF A cA] obtain n-xs where jnf : jordan-nf A n-xs ..
have dd: x ^ d = x ^((d + 1) − 1) for x by simp
show ?thesis unfolding dd
proof (rule jordan-nf-matrix-poly-bound[OF A - - jnf])

fix n x
assume nx: (n,x) ∈ set n-xs
from jordan-nf-block-size-order-bound[OF jnf nx]
have no: n ≤ order x (char-poly A) by auto
{

assume 0 < n
with no have order x (char-poly A) 6= 0 by auto
hence rt: poly (char-poly A) x = 0 unfolding order-root by auto
from sr [OF this] show cmod x ≤ 1 .
note rt

} note sr = this
assume c1 : cmod x = 1
show n ≤ d + 1
proof (rule ccontr)

assume ¬ n ≤ d + 1
hence lt: n > d + 1 by auto
with sr have rt: poly (char-poly A) x = 0 by auto
from lt no have ord: d + 1 < order x (char-poly A) by auto
from 1 [OF rt c1 ord, unfolded compute-set-of-jordan-blocks[OF jnf]] nx lt
show False by force

qed
qed

qed

lemma norm-bound-complex-to-real: fixes A :: real mat
assumes A: A ∈ carrier-mat n n

and bnd: ∃ c1 c2 . ∀ k. norm-bound ((map-mat complex-of-real A) ^m k) (c1 +
c2 ∗ of-nat k ^ d)

shows ∃ c1 c2 . ∀ k a. a ∈ elements-mat (A ^m k) −→ abs a ≤ (c1 + c2 ∗ of-nat
k ^ d)
proof −

let ?B = map-mat complex-of-real A
from bnd obtain c1 c2 where nb:

∧
k. norm-bound (?B ^m k) (c1 + c2 ∗ real

k ^ d) by auto
show ?thesis
proof (rule exI [of - c1], rule exI [of - c2], intro allI impI)

fix k a
assume a ∈ elements-mat (A ^m k)
with pow-carrier-mat[OF A] obtain i j where a: a = (A ^m k) $$ (i,j) and

ij: i < n j < n
unfolding elements-mat by force

128

from ij nb[of k] A have norm ((?B ^m k) $$ (i,j)) ≤ c1 + c2 ∗ real k ^ d
unfolding norm-bound-def by auto

also have (?B ^m k) $$ (i,j) = of-real a
unfolding of-real-hom.mat-hom-pow[OF A, symmetric] a using ij A by auto

also have norm (complex-of-real a) = abs a by auto
finally show abs a ≤ (c1 + c2 ∗ real k ^ d) .

qed
qed

lemma dim-gen-eigenspace-max-jordan-block: assumes jnf : jordan-nf A n-as
shows dim-gen-eigenspace A l d = order l (char-poly A) ←→
(∀ n. (n,l) ∈ set n-as −→ n ≤ d)

proof −
let ?list = [(n, e)←n-as . e = l]
define list where list = [na←n-as . snd na = l]
have list: ?list = list unfolding list-def by (induct n-as, force+)
have id: (∀n. (n, l) ∈ set n-as −→ n ≤ d) = (∀ n ∈ set (map fst list). n ≤ d)

unfolding list-def by auto
define ns where ns = map fst list
show ?thesis
unfolding dim-gen-eigenspace[OF jnf] jordan-nf-order [OF jnf] list list-def [symmetric]

id
unfolding ns-def [symmetric]

proof (induct ns)
case (Cons n ns)
show ?case
proof (cases n ≤ d)

case True
thus ?thesis using Cons by auto

next
case False
hence n > d by auto

moreover have sum-list (map (min d) ns) ≤ sum-list ns by (induct ns, auto)
ultimately show ?thesis by auto

qed
qed auto

qed

lemma jnf-complexity-1-complex: fixes A :: complex mat
assumes A: A ∈ carrier-mat n n
and nonneg: real-nonneg-mat A
and sr :

∧
x. poly (char-poly A) x = 0 =⇒ cmod x ≤ 1

and 1 : poly (char-poly A) 1 = 0 =⇒
order 1 (char-poly A) > d + 1 =⇒
dim-gen-eigenspace A 1 (d+1) = order 1 (char-poly A)

shows ∃ c1 c2 . ∀ k. norm-bound (A ^m k) (c1 + c2 ∗ of-nat k ^ d)
proof −

from char-poly-factorized[OF A] obtain as where cA: char-poly A = (
∏

a←as.
[:− a, 1 :])

129

and lenn: length as = n by auto
from jordan-nf-exists[OF A cA] obtain n-as where jnf : jordan-nf A n-as ..
have dd: x ^ d = x ^((d + 1) − 1) for x by simp
let ?n = n
show ?thesis unfolding dd
proof (rule jordan-nf-matrix-poly-bound[OF A - - jnf])

fix n a
assume na: (n,a) ∈ set n-as
from jordan-nf-root-char-poly[OF jnf na]
have rt: poly (char-poly A) a = 0 by auto
with degree-monic-char-poly[OF A] have n0 : ?n > 0

by (cases ?n, auto dest: degree0-coeffs)
from sr [OF rt] show cmod a ≤ 1 .
assume a: cmod a = 1
from rt have a ∈ spectrum A using A spectrum-root-char-poly by auto
hence 11 : 1 ∈ cmod ‘ spectrum A using a by auto
note spec = spectral-radius-mem-max[OF A n0]
from spec(2)[OF 11] have le: 1 ≤ spectral-radius A .
from spec(1)[unfolded spectrum-root-char-poly[OF A]] sr have spectral-radius

A ≤ 1 by auto
with le have sr : spectral-radius A = 1 by auto
show n ≤ d + 1
proof (rule ccontr)

assume ¬ ?thesis
hence nd: n > d + 1 by auto
from real-nonneg-mat-spectral-radius-largest-jordan-block[OF nonneg jnf na,

unfolded sr a]
obtain N where N : N ≥ n and mem: (N , 1) ∈ set n-as by auto
from jordan-nf-root-char-poly[OF jnf mem] have rt: poly (char-poly A) 1 =

0 .
from jordan-nf-block-size-order-bound[OF jnf mem] have N ≤ order 1

(char-poly A) .
with N nd have d + 1 < order 1 (char-poly A) by simp
from 1 [OF rt this, unfolded dim-gen-eigenspace-max-jordan-block[OF jnf]]

mem N nd
show False by force

qed
qed

qed

lemma jnf-complexity-1-real: fixes A :: real mat
assumes A: A ∈ carrier-mat n n
and nonneg: nonneg-mat A
and sr :

∧
x. poly (char-poly A) x = 0 =⇒ x ≤ 1

and jb: poly (char-poly A) 1 = 0 =⇒
order 1 (char-poly A) > d + 1 =⇒
dim-gen-eigenspace A 1 (d+1) = order 1 (char-poly A)

shows ∃ c1 c2 . ∀ k a. a ∈ elements-mat (A ^m k) −→ |a| ≤ c1 + c2 ∗ real k ^ d
proof −

130

let ?c = complex-of-real
let ?A = map-mat ?c A
have A ′: ?A ∈ carrier-mat n n using A by auto
have nn: real-nonneg-mat ?A using nonneg A unfolding nonneg-mat-def real-nonneg-mat-def

by (force simp: elements-mat)
have 1 : 1 = ?c 1 by auto
note cp = of-real-hom.char-poly-hom[OF A]
have hom: map-poly-inj-idom-divide-hom complex-of-real ..
show ?thesis
proof (rule norm-bound-complex-to-real[OF A jnf-complexity-1-complex[OF A ′

nn]],
unfold cp of-real-hom.poly-map-poly-1 , unfold 1
of-real-hom.hom-dim-gen-eigenspace[OF A]
map-poly-inj-idom-divide-hom.order-hom[OF hom], goal-cases)

case 2
thus ?case using jb by auto

next
case (1 x)
let ?cp = char-poly A
assume rt: poly (map-poly ?c ?cp) x = 0
with degree-monic-char-poly[OF A ′, unfolded cp] have n0 : n 6= 0

using degree0-coeffs[of ?cp] by (cases n, auto)
from perron-frobenius-nonneg[OF A nonneg n0]
obtain sr ks f where sr0 : 0 ≤ sr and ks: 0 /∈ set ks ks 6= []

and cp: ?cp = (
∏

k←ks. monom 1 k − [:sr ^ k:]) ∗ f
and rtf : poly (map-poly ?c f) x = 0 =⇒ cmod x < sr by auto

have sr-rt: poly ?cp sr = 0 unfolding cp poly-prod-list-zero-iff poly-mult-zero-iff
using ks

by (cases ks, auto simp: poly-monom)
from sr [OF sr-rt] have sr1 : sr ≤ 1 .
interpret c: map-poly-comm-ring-hom ?c ..

from rt[unfolded cp c.hom-mult c.hom-prod-list poly-mult-zero-iff poly-prod-list-zero-iff]

show cmod x ≤ 1
proof (standard, goal-cases)

case 2
with rtf sr1 show ?thesis by auto

next
case 1
from this ks obtain p where p: p ∈ set ks

and rt: poly (map-poly ?c (monom 1 p − [:sr ^ p:])) x = 0 by auto
from p ks(1) have p: p 6= 0 by metis
from rt have x^p = (?c sr)^p unfolding c.hom-minus

by (simp add: poly-monom of-real-hom.map-poly-pCons-hom)
hence cmod x = cmod (?c sr) using p power-eq-imp-eq-norm by blast
with sr0 sr1 show cmod x ≤ 1 by auto

qed
qed

131

qed
end

10 An efficient algorithm to compute the growth
rate of An.

theory Check-Matrix-Growth
imports

Spectral-Radius-Theory-2
Sturm-Sequences.Sturm-Method

begin

hide-const (open) Coset.order

definition check-matrix-complexity :: real mat ⇒ real poly ⇒ nat ⇒ bool where
check-matrix-complexity A cp d = (count-roots-above cp 1 = 0
∧ (poly cp 1 = 0 −→ (let ord = order 1 cp in

d + 1 < ord −→ kernel-dim ((A − 1m (dim-row A)) ^m (d + 1)) = ord)))

lemma check-matrix-complexity: assumes A: A ∈ carrier-mat n n and nn: non-
neg-mat A

and check: check-matrix-complexity A (char-poly A) d
shows ∃ c1 c2 . ∀ k a. a ∈ elements-mat (A ^m k) −→ abs a ≤ (c1 + c2 ∗ of-nat
k ^ d)
proof (rule jnf-complexity-1-real[OF A nn])

have id: dim-gen-eigenspace A 1 (d + 1) = kernel-dim ((A − 1m (dim-row A))
^m (d + 1))

unfolding dim-gen-eigenspace-def
by (rule arg-cong[of - - λ x. kernel-dim (x ^m (d + 1))], unfold char-matrix-def ,

insert A, auto)
note check = check[unfolded check-matrix-complexity-def

Let-def count-roots-above-correct, folded id]
have fin: finite {x. poly (char-poly A) x = 0}

by (rule poly-roots-finite, insert degree-monic-char-poly[OF A], auto)
from check have card {x. 1 < x ∧ poly (char-poly A) x = 0} = 0 by auto
from this[unfolded card-eq-0-iff] fin
have {x. 1 < x ∧ poly (char-poly A) x = 0} = {} by auto
thus poly (char-poly A) x = 0 =⇒ x ≤ 1 for x by force
assume poly (char-poly A) 1 = 0 d + 1 < order 1 (char-poly A)
with check show dim-gen-eigenspace A 1 (d + 1) = order 1 (char-poly A) by

auto
qed
end

Acknowledgements We thank Fabian Immler for an introduction to con-
tinuity proving using HMA.

132

References
[1] O. Kunar and A. Popescu. From types to sets by local type definitions

in higher-order logic. In Proc. ITP 2016. Springer, 2016. To appear.

[2] D. Serre. Matrices: Theory and Applications. Graduate texts in mathe-
matics. Springer, 2002.

[3] R. Thiemann and C. Sternagel. Certification of termination proofs using
CeTA. In Proc. TPHOLs’09, LNCS 5674, pages 452–468. Springer, 2009.

[4] R. Thiemann and A. Yamada. Formalizing Jordan normal forms in
Isabelle/HOL. In Proc. CPP 2016, pages 88–99. ACM, 2016.

133

	Introduction
	Elimination of CARD('n)
	Connecting HMA-matrices with JNF-matrices
	Bijections between index types of HMA and natural numbers
	Transfer rules to convert theorems from JNF to HMA and vice-versa.

	Perron-Frobenius Theorem
	Auxiliary Notions
	Perron-Frobenius theorem via Brouwer's fixpoint theorem.

	Roots of Unity
	The Perron Frobenius Theorem for Irreducible Matrices
	Handling Non-Irreducible Matrices as Well

	Combining Spectral Radius Theory with Perron Frobenius theorem
	The Jordan Blocks of the Spectral Radius are Largest
	Homomorphisms of Gauss-Jordan Elimination, Kernel and More
	Combining Spectral Radius Theory with Perron Frobenius theorem
	An efficient algorithm to compute the growth rate of An.

