Perfect Fields

Manuel Eberl, Katharina Kreuzer

March 17, 2025

Abstract

This entry provides a type class for perfect fields. A perfect field K

can be characterized by one of the following equivalent conditions [2]:

1. Any irreducible polynomial p is separable, i.e. ged(p,p’) = 1, or,
equivalently, p’ # 0.

2. Either char(K) = 0 or char(K) = p > 0 and the Frobenius

endomorphism z — zP is surjective (i.e. every element of K has
a p-th root).

We define perfect fields using the second characterization and show the
equivalence to the first characterization. The implication “2 = 17 is
relatively straightforward using the injectivity of the Frobenius homo-
morphism.

Examples for perfect fields are [2]:
« any field of characteristic 0 (e.g. R and C)
o any finite field (i.e. F, for ¢ = p”, n > 0 and p prime)

o any algebraically closed field (for example the formal Puiseux
series over finite fields)

Contents

1 Perfect Fields

1.1 The Freshman’s Dream in rings of non-zero characteristic

1.2 The Frobenius endomorphism

1.3 Inverting the Frobenius endomorphism on polynomials

1.4 Code generation
1.5 Perfect fields
1.6 Alternative definition of perfect fields

1 Perfect Fields

theory Perfect_Fields

imports
"HOL-Computational_Algebra.Computational_Algebra"
"Berlekamp_Zassenhaus.Finite_Field"

begin

lemma (in vector_space) bij_betw_representation:
assumes [simp]: "independent B" "finite B"
shows "bij_betw (A\v. > b€B. scale (v b) b) (B —pg UNIV) (span B)"

(proof)

lemma (in vector_space) card_span:
assumes [simp]: "independent B" "finite B"
shows "card (span B) = CARD(’a) ~ card B"

(proof)

lemma (in zero_neq one) CARD neq_1: "CARD(’a) # Suc 0"
(proof)

theorem CARD_finite_field_is_CHAR_power: "3dn>0. CARD(’a :: finite_field)
= CHAR(’a) ~ n"
(proof)

1.1 The Freshman’s Dream in rings of non-zero characteris-
tic
lemma (in comm_semiring 1) freshmans_dream:
fixes x y :: ’a and n :: nat

assumes '"prime CHAR(’a)"
assumes n_def: "n = CHAR(’a)"

shows "(x+y) "n=x "n+y " n"
(proof)
lemma (in comm_semiring 1) freshmans_dream’:
assumes [simp]: "prime CHAR(’a)" and "m = CHAR(’a) ~ n"
shows "(x +y :: ’a) "m=x "m+y "~ m"
{proof)

lemma (in comm_semiring 1) freshmans_dream_sum:
fixes £ :: "’b = ’a"
assumes "prime CHAR(’a)" and "n = CHAR(’a)"
shows "sum f A " n = sum (A\i. £ i "~ n) A"

(proof)

lemma (in comm_semiring 1) freshmans_dream_sum’:
fixes £ :: "’b = ’a"
assumes "prime CHAR(’a)" "m = CHAR(’a) ~ n"

shows
(proof)

"sum f A " m =

sum (A\i. £ i ~m) A"

1.2 The Frobenius endomorphism

definition (in semiring 1) frob ::
"frob x =

definition (in semiring 1) inv_frob ::
"inv_frob x =

"'a = ’a" where

x = CHAR(’a)"

"’a = ’a" where
(if x € {0, 1} then x else if x € range frob then inv_into

UNIV frob x else x)"

lemma (in

semiring 1) inv_frob_0 [simp]: "inv_frob 0 = 0"

and inv_frob_1 [simp]: "inv_frob 1 = 1"

(proof)
lemma (in semiring prime_char) frob_0O [simp]: "frob (0 :: ’a) = 0"
(proof)
lemma (in semiring 1) frob_1 [simp]: "frob 1 = 1"
(proof)
lemma (in comm_semiring 1) frob_mult: "frob (x * y) = frob x * frob (y
: la) n
(proof)
lemma (in comm_semiring 1)
frob_add: "prime CHAR(’a) = frob (x + y :: ’a) = frob x + frob (y
. :a) "
(proof)
lemma (in comm_ring 1) frob_uminus: "prime CHAR(’a) —> frob (-x :: ’a)
= -frob x"
{proof)
lemma (in comm_ring prime_char) frob_diff:
"prime CHAR(’a) = frob (x - y :: ’a) = frob x - frob (y :: ’a)"
(proof)
interpretation frob_sr: semiring hom "frob :: ’a :: {comm_semiring prime_char}
j)al’
(proof)
interpretation frob: ring hom "frob :: ’a :: {comm_ring_prime_char} =

n
‘a

(proof)

interpretation frob: field_hom "frob ::

{proof)

’a :: {field_prime_char} = ’a"

lemma frob_mod_ring’ [simp]: "(x :: ’a :: prime_card mod_ring) ~ CARD(’a)
= x"

{proof)

lemma frob_mod_ring [simp]: "frob (x :: ’a :: prime_card mod_ring) =
n

(proof)

X

context semiring 1_no_zero_divisors
begin

lemma frob_eq OD:
"frob (x :: ’a) =0 = x = 0"

(proof)

lemma frob_eq O_iff [simp]:
"frob (x :: ’a) = 0 «<— x = 0 A CHAR(’a) > 0"
(proof)

end

context idom_prime_char

begin

lemma inj_frob: "inj (frob :: ’a = ’a)"

(proof)

lemma frob_eq_frob_iff [simp]:
"frob (x :: ’a) = froby +— x = y"
(proof)

lemma frob_eq 1_iff [simp]: "frob (x :: ’a) =1 — x = 1"
(proof)

lemma inv_frob_frob [simp]: "inv_frob (frob (x :: ’a)) = x"
(proof)

lemma frob_inv_frob [simp]:
assumes "x € range frob"

shows "frob (inv_frob x) = (x :: ’a)"
(proof)
lemma inv_frob_eql: "frob y = x = inv_frob x = y"
(proof)
lemma inv_frob_eq_O_iff [simp]: "inv_frob (x :: ’a) = 0 +— x = 0"
(proof)

end

class surj_frob = field_prime_char +

assumes surj_frob [simp]: "surj (frob :: ’a = ’a)"

begin

lemma in_range_frob [simp, intro]: "(x :: ’a) € range frob"

(proof)

lemma inv_frob_eq_iff [simp]: "inv_frob (x :: ’a) =

(proof)

end

context alg closed_field
begin

lemma alg closed_surj_frob:
assumes "CHAR(’a) > 0"
shows "surj (frob :: ’a = ’a)"

(proof)

end

y <— frob y = x"

The following type class describes a field with a surjective Frobenius endo-
morphism that is effectively computable. This includes all finite fields.

class inv_frob = surj_frob +

fixes inv_frob_code :: "’a = ’a"

assumes inv_frob_code: "inv_frob x = inv_frob_code x"

lemmas [code] = inv_frob_code
context finite field
begin

subclass surj_frob

(proof)

end

lemma inv_frob_mod_ring [simp]: "inv_frob (x :: ’a
= x"

:: prime_card mod_ring)

(proof)

instantiation mod_ring :: (prime_card) inv_frob
begin
definition inv_frob_code_mod_ring :: "’a mod_ring = ’a mod_ring" where

"inv_frob_code_mod_ring x = x"

instance

(proof)

end

1.3 Inverting the Frobenius endomorphism on polynomials

If K is a field of prime characteristic p with a surjective Frobenius endomor-
phism, every polynomial P with P’ = 0 has a p-th root.

To see that, let ¢(a) = aP denote the Frobenius endomorphism of kK and its
extension to K[X].

If P = 0 for some P € K[X], then P must be of the form
P =ap+ apa’ + a2px2p +...+ akpa;kp .
If we now set

Q= gffl(ag) + qﬁ*l(ap)x + qﬁfl(agp)xQ +...+ qﬁfl(akp)xk

we get ¢(Q) = P, i.e. Q is the p-th root of P(z).

lift_ definition inv_frob_poly :: "’a :: field poly = ’a poly" is
"Ap i. if CHAR(’a) = O then p i else inv_frob (p (i * CHAR(’a)) :: ’a)"
(proof)

lemma coeff_inv_frob_poly [simp]:

fixes p :: "’a :: field poly"

assumes "CHAR(’a) > 0"

shows "poly.coeff (inv_frob_poly p) i = inv_frob (poly.coeff p (i *
CHAR(’a)))"

(proof)

lemma inv_frob_poly_O0 [simp]: "inv_frob_poly 0 = 0"
(proof)

lemma inv_frob_poly_ 1 [simp]: "inv_frob_poly 1 = 1"

(proof)

lemma degree_inv_frob_poly_le:
fixes p :: "’a :: field poly"
assumes "CHAR(’a) > 0"

shows "Polynomial.degree (inv_frob_poly p) < Polynomial.degree p div
CHAR(’a)"

(proof)

context
assumes "SORT_CONSTRAINT(’a :: comm_ring 1)"
assumes prime_char: "prime CHAR(’a)"

begin

lemma poly_power_prime_char_as_sum_of_monoms:

fixes h :: "’a poly"

shows "h ~ CHAR(’a) = () i<Polynomial.degree h. Polynomial.monom (Polynomial.coeff
h i ~ CHAR(’a)) (CHAR(’a)*i))"
(proof)

lemma coeff_of_prime_char_power [simp]:
fixes y :: "’a poly"
shows "poly.coeff (y ~ CHAR(’a)) (i * CHAR(’a)) = poly.coeff y i ~ CHAR(’a)"
(proof)

lemma coeff_of_prime_char_power’:
fixes y :: "’a poly"
shows "poly.coeff (y ~ CHAR(’a)) i =
(if CHAR(’a) dvd i then poly.coeff y (i div CHAR(’a)) ~ CHAR(’a)
else 0)"
(proof)

end

context
assumes "SORT_CONSTRAINT(’a :: field)"
assumes pos_char: "CHAR(’a) > 0"

begin
interpretation field_prime_char "(/)" inverse "(*¥)" "1 :: ’a" "(+)" 0 "(-)"
uminus
rewrites "semiring 1.frob 1 (*¥) (+) (0 :: ’a) = frob" and
"semiring 1.inv_frob 1 (*) (+) (0 :: ’a) = inv_frob" and
"semiring 1.semiring_char 1 (+) O TYPE(’a) = CHAR(’a)"
(proof)

lemma inv_frob_poly_power’: "inv_frob_poly (p ~ CHAR(’a) :: ’a poly)
= prl
{proof)

lemma inv_frob_poly_power:
fixes p :: "’a poly"
assumes "is_nth_power CHAR(’a) p" and "n = CHAR(’a)"

shows "inv_frob_poly p ~ CHAR(’a) = p"

(proof)

theorem pderiv_eq_O_imp_nth_power:
assumes "pderiv (p :: ’a poly) = 0"
assumes [simp]: "surj (frob :: ’a = ’a)"
shows "is_nth_power CHAR(’a) p"

(proof)

end

1.4 Code generation

We now also make this notion of “taking the p-th root of a polynomial” exe-
cutable. For this, we need an auxiliary function that takes a list [xq, ..., Zm]
and returns the list of every n-th element, i.e. it throws away all elements
except those z; where ¢ is a multiple of n.

fun take_every :: "nat = ’a list = ’a list" where
"take_every _ [] = []I"

| "take_every n (x # xs) = x # take_every n (drop (n - 1) xs)"

n

lemma take_every O [simp]: "take_every 0 xs = xs
(proof)

lemma take_every_1 [simp]: "take_every (Suc 0) xs = xs"

(proof)

lemma int_length_take_every: "n > 0 = int (length (take_every n xs))
= ceiling (length xs / n)"
(proof)

lemma length_take_every:
"n > 0 = length (take_every n xs) = nat (ceiling (length xs / n))"

(proof)

lemma take_every_nth [simp]:

"n > 0 = 1 < length (take_every n xs) —> take_every n xs ! i = xs
I (n* 1)"
(proof)

lemma coeffs_eq_strip_whileI:
assumes "Ai. i < length xs — Polynomial.coeff p i = xs ! i"
assumes "p # 0 = length xs > Polynomial.degree p"
shows "Polynomial.coeffs p = strip_while ((=) 0) xs"

(proof)

This implements the code equation for inv_frob_poly.

lemma inv_frob_poly_code [code]:

"Polynomial.coeffs (inv_frob_poly (p :: ’a :: field_prime_char poly))

(if CHAR(’a) = O then Polynomial.coeffs p else
map inv_frob (strip_while ((=) 0) (take_every CHAR(’a) (Polynomial.coeffs

p)))"
(s " =If __ 7rhs")

(proof)

1.5 Perfect fields

We now introduce perfect fields. The textbook definition of a perfect field
is that every irreducible polynomial is separable, i.e. if a polynomial P has
no non-trivial divisors then ged(P, P') = 0.

For technical reasons, this is somewhat difficult to express in Isabelle/HOL’s
typeclass system. We therefore use the following much simpler equivalent
definition (and prove equivalence later): a field is perfect if it either has
characteristic 0 or its Frobenius endomorphism is surjective.

class perfect_field = field +
assumes perfect_field: "CHAR(’a) = 0 V surj (frob :: ’a = ’a)"

context field_char_O0
begin
subclass perfect_field

(proof)

end

context surj_frob
begin
subclass perfect_field

(proof)

end

context alg closed_field
begin
subclass perfect_field

(proof)

end

theorem irreducible_imp_pderiv_nonzero:

assumes "irreducible (p :: ’a :: perfect_field poly)"
shows '"pderiv p # 0"

(proof)

corollary irreducible_imp_separable:
assumes "irreducible (p :: ’a :: perfect_field poly)"
shows "coprime p (pderiv p)"

(proof)

10

end

1.6 Alternative definition of perfect fields

theory Perfect_Field_Altdef

imports
"HOL-Algebra.Algebraic_Closure_Type"
Perfect_Fields

begin

In the following, we will show that our definition of perfect fields is equivalent
to the usual textbook one (for example [1]). That is: a field in which every
irreducible polynomial is separable (or, equivalently, has non-zero derivative)
either has characteristic 0 or a surjective Frobenius endomorphism.

The proof works like this:

Let’s call our field ¥k with prime characteristic p. Suppose there were some
c € K that is not a p-th root. The polynomial P := X? — ¢ in K[X] clearly
has a zero derivative and is therefore not separable. By our assumption, it
must then have a monic non-trivial factor @ € K[X].

Let L be some field extension of K where ¢ does have a p-th root a (in our
case, we choose L to be the algebraic closure of k).

Clearly, @ is also a non-trivial factor of P in L. However, we also have P =
Xp-c=Xp-ap= (& - a)p sowemust have Q = (X —a)™ for some
0 < m < p since X - « is prime.

However, the coefficient of X™~! in (X —)™ is -ma, and since @ € K[X]
we must have -ma € K and therefore a € K.

theorem perfect_field_alt:

assumes "Ap :: ’a :: field_gcd poly. Factorial_Ring.irreducible p —>
pderiv p # 0"

shows "CHAR(’a) = 0 V surj (frob :: ’a = ’a)"
(proof)

corollary perfect_field_alt’:

assumes "Ap :: ’a :: field_gcd poly. Factorial_Ring.irreducible p —

Rings.coprime p (pderiv p)"
shows "CHAR(’a) = 0 V surj (frob :: ’a = ’a)"
(proof)

end

References
[1] K. Conrad. Perfect fields. Online at

https://kconrad.math.uconn.edu/blurbs/galoistheory /perfect.pdf,
2021. Course notes, University of Connecticut.

11

https://kconrad.math.uconn.edu/blurbs/galoistheory/perfect.pdf

[2] Wikipedia contributors. Perfect field — Wikipedia, the free
encyclopedia, 2023. [Online; accessed 3-November-2023].

12

	Perfect Fields
	The Freshman's Dream in rings of non-zero characteristic
	The Frobenius endomorphism
	Inverting the Frobenius endomorphism on polynomials
	Code generation
	Perfect fields
	Alternative definition of perfect fields

