Perfect Fields

Manuel Eberl, Katharina Kreuzer

March 17, 2025

Abstract

This entry provides a type class for *perfect fields*. A perfect field K can be characterized by one of the following equivalent conditions [2]:

- 1. Any irreducible polynomial p is separable, i.e. gcd(p, p') = 1, or, equivalently, $p' \neq 0$.
- 2. Either $\operatorname{char}(K) = 0$ or $\operatorname{char}(K) = p > 0$ and the Frobenius endomorphism $x \mapsto x^p$ is surjective (i.e. every element of K has a p-th root).

We define perfect fields using the second characterization and show the equivalence to the first characterization. The implication " $2 \Rightarrow 1$ " is relatively straightforward using the injectivity of the Frobenius homomorphism.

Examples for perfect fields are [2]:

- any field of characteristic 0 (e.g. $\mathbb R$ and $\mathbb C$)
- any finite field (i.e. \mathbb{F}_q for $q=p^n, n>0$ and p prime)
- any algebraically closed field (for example the formal Puiseux series over finite fields)

Contents

1	\mathbf{Per}	fect Fields	3
	1.1	The Freshman's Dream in rings of non-zero characteristic	3
	1.2	The Frobenius endomorphism	4
	1.3	Inverting the Frobenius endomorphism on polynomials	7
	1.4	Code generation	9
	1.5	Perfect fields	10
	1.6	Alternative definition of perfect fields	11

Perfect Fields 1

```
theory Perfect_Fields
imports
  "HOL-Computational_Algebra.Computational_Algebra"
  "Berlekamp_Zassenhaus.Finite_Field"
begin
lemma (in vector_space) bij_betw_representation:
  assumes [simp]: "independent B" "finite B"
            "bij_betw (\lambdav. \sum b \in B. scale (v b) b) (B 
ightarrow_E UNIV) (span B)"
  \mathbf{shows}
\langle proof \rangle
lemma (in vector_space) card_span:
  assumes [simp]: "independent B" "finite B"
           "card (span B) = CARD('a) ^ card B"
  shows
\langle proof \rangle
lemma (in zero_neq_one) CARD_neq_1: "CARD('a) \neq Suc 0"
\langle proof \rangle
theorem CARD_finite_field_is_CHAR_power: "∃n>0. CARD('a :: finite_field)
= CHAR('a) ^n''
\langle proof \rangle
      The Freshman's Dream in rings of non-zero characteris-
lemma (in comm_semiring_1) freshmans_dream:
  fixes x y :: 'a \text{ and } n :: nat
  assumes "prime CHAR('a)"
```

```
assumes n_{def}: "n = CHAR('a)"
          "(x + y) ^n = x ^n + y ^n"
  \mathbf{shows}
\langle proof \rangle
lemma (in comm_semiring_1) freshmans_dream':
  assumes [simp]: "prime CHAR('a)" and "m = CHAR('a) ^ n"
  shows "(x + y :: 'a) ^m = x ^m + y ^m"
  \langle proof \rangle
lemma (in comm_semiring_1) freshmans_dream_sum:
  fixes f :: "'b \Rightarrow 'a"
  assumes "prime CHAR('a)" and "n = CHAR('a)"
  shows "sum f A \hat{} n = sum (\lambdai. f i \hat{} n) A"
  \langle proof \rangle
lemma (in comm_semiring_1) freshmans_dream_sum':
  fixes f :: "'b \Rightarrow 'a"
  assumes "prime CHAR('a)" "m = CHAR('a) ^ n"
```

```
shows "sum f A \hat{ } m = sum (\lambdai. f i \hat{ } m) A" \langle proof \rangle
```

1.2 The Frobenius endomorphism

```
definition (in semiring_1) frob :: "'a \Rightarrow 'a" where
  "frob x = x ^ CHAR('a)"
definition (in semiring_1) inv_frob :: "'a \Rightarrow 'a" where
  "inv_frob x = (if x \in \{0, 1\} then x else if x \in range frob then inv_into
UNIV frob x else x)"
lemma (in semiring_1) inv_frob_0 [simp]: "inv_frob 0 = 0"
  and inv_frob_1 [simp]: "inv_frob 1 = 1"
  \langle proof \rangle
lemma (in semiring_prime_char) frob_0 [simp]: "frob (0 :: 'a) = 0"
  \langle proof \rangle
lemma (in semiring_1) frob_1 [simp]: "frob 1 = 1"
lemma (in comm_semiring_1) frob_mult: "frob (x * y) = frob x * frob (y
:: 'a)"
  \langle proof \rangle
lemma (in comm_semiring_1)
  frob\_add: "prime CHAR('a) \Longrightarrow frob (x + y :: 'a) = frob x + frob (y
:: 'a)"
  \langle proof \rangle
lemma (in comm_ring_1) frob_uminus: "prime CHAR('a) \Longrightarrow frob (-x :: 'a)
= -frob x"
\langle proof \rangle
lemma (in comm_ring_prime_char) frob_diff:
  "prime CHAR('a) \Longrightarrow frob (x - y :: 'a) = frob x - frob (y :: 'a)"
  \langle proof \rangle
interpretation frob_sr: semiring_hom "frob :: 'a :: {comm_semiring_prime_char}
⇒ 'a"
  \langle proof \rangle
interpretation frob: ring_hom "frob :: 'a :: {comm_ring_prime_char} ⇒
  \langle proof \rangle
interpretation frob: field_hom "frob :: 'a :: {field_prime_char} ⇒ 'a"
  \langle proof \rangle
```

```
lemma frob_mod_ring' [simp]: "(x :: 'a :: prime_card mod_ring) ^ CARD('a)
= x"
  \langle proof \rangle
lemma frob_mod_ring [simp]: "frob (x :: 'a :: prime_card mod_ring) =
x''
  \langle proof \rangle
context semiring_1_no_zero_divisors
begin
lemma frob_eq_0D:
  "frob (x :: 'a) = 0 \Longrightarrow x = 0"
  \langle proof \rangle
lemma frob_eq_0_iff [simp]:
  "frob (x :: 'a) = 0 \longleftrightarrow x = 0 \land CHAR('a) > 0"
  \langle proof \rangle
end
context idom_prime_char
begin
lemma inj_frob: "inj (frob :: 'a ⇒ 'a)"
\langle proof \rangle
lemma frob_eq_frob_iff [simp]:
  "frob (x :: 'a) = frob y \longleftrightarrow x = y"
  \langle proof \rangle
lemma \ \textit{frob\_eq\_1\_iff [simp]: "frob (x :: 'a) = 1} \longleftrightarrow x = 1"
  \langle proof \rangle
lemma inv_frob_frob [simp]: "inv_frob (frob (x :: 'a)) = x"
  \langle proof \rangle
lemma frob_inv_frob [simp]:
  assumes "x \in range\ frob"
             "frob (inv_frob x) = (x :: 'a)"
  shows
  \langle proof \rangle
lemma inv_frob_eqI: "frob y = x \implies inv_frob x = y"
  \langle proof \rangle
lemma inv_frob_eq_0_iff [simp]: "inv_frob (x :: 'a) = 0 \longleftrightarrow x = 0"
  \langle proof \rangle
```

end

```
class surj_frob = field_prime_char +
  assumes surj_frob [simp]: "surj (frob :: 'a ⇒ 'a)"
begin
lemma in\_range\_frob \ [simp, intro]: \ "(x :: \ 'a) \in range \ frob"
  \langle proof \rangle
lemma inv_frob_eq_iff [simp]: "inv_frob (x :: 'a) = y \longleftrightarrow frob y = x"
end
context alg_closed_field
begin
lemma alg_closed_surj_frob:
  assumes "CHAR('a) > 0"
  shows
           "surj (frob :: 'a \Rightarrow 'a)"
\langle proof \rangle
end
The following type class describes a field with a surjective Frobenius endo-
morphism that is effectively computable. This includes all finite fields.
class inv_frob = surj_frob +
  fixes \ inv\_frob\_code :: "'a \Rightarrow 'a"
  assumes inv_frob_code: "inv_frob x = inv_frob_code x"
lemmas [code] = inv_frob_code
context finite_field
begin
subclass surj_frob
\langle proof \rangle
end
lemma inv_frob_mod_ring [simp]: "inv_frob (x :: 'a :: prime_card mod_ring)
= x''
```

```
\langle proof \rangle
```

```
instantiation mod_ring :: (prime_card) inv_frob
begin
```

definition inv_frob_code_mod_ring :: "'a mod_ring \Rightarrow 'a mod_ring" where "inv_frob_code_mod_ring x = x"

 $\begin{array}{c} \textbf{instance} \\ \langle \textit{proof} \rangle \end{array}$

end

1.3 Inverting the Frobenius endomorphism on polynomials

If K is a field of prime characteristic p with a surjective Frobenius endomorphism, every polynomial P with P' = 0 has a p-th root.

To see that, let $\phi(a) = a^p$ denote the Frobenius endomorphism of K and its extension to K[X].

If P' = 0 for some $P \in K[X]$, then P must be of the form

$$P = a_0 + a_p x^p + a_{2p} x^{2p} + \ldots + a_{kp} x^{kp} .$$

If we now set

$$Q := \phi^{-1}(a_0) + \phi^{-1}(a_p)x + \phi^{-1}(a_{2p})x^2 + \ldots + \phi^{-1}(a_{kp})x^k$$

we get $\phi(Q) = P$, i.e. Q is the p-th root of P(x).

lift_definition inv_frob_poly :: "'a :: field poly \Rightarrow 'a poly" is " λ p i. if CHAR('a) = 0 then p i else inv_frob (p (i * CHAR('a)) :: 'a)" $\langle proof \rangle$

 $\begin{array}{lll} \mathbf{lemma} & \mathit{inv_frob_poly_0} & [\mathit{simp}]: "\mathit{inv_frob_poly} & 0 = 0" \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

lemma inv_frob_poly_1 [simp]: "inv_frob_poly 1 = 1" $\langle proof \rangle$

lemma degree_inv_frob_poly_le:
 fixes p :: "'a :: field poly"
 assumes "CHAR('a) > 0"

```
shows "Polynomial.degree (inv_frob_poly p) \leq Polynomial.degree p div
CHAR('a)"
\langle proof \rangle
context
  assumes "SORT_CONSTRAINT('a :: comm_ring_1)"
  assumes prime_char: "prime CHAR('a)"
begin
lemma poly_power_prime_char_as_sum_of_monoms:
  fixes h :: "'a poly"
  shows "h \hat{} CHAR('a) = (\sum i \leq Polynomial.degree h. Polynomial.monom (Polynomial.coeff
h i ^ CHAR('a)) (CHAR('a)*i))"
\langle proof \rangle
lemma coeff_of_prime_char_power [simp]:
  fixes y :: "'a poly"
  shows "poly.coeff (y \hat{} CHAR('a)) (i * CHAR('a)) = poly.coeff y i \hat{} CHAR('a)"
  \langle proof \rangle
lemma coeff_of_prime_char_power':
  fixes y :: "'a poly"
  shows "poly.coeff (y ^ CHAR('a)) i =
            (if CHAR('a) dvd i then poly.coeff y (i div CHAR('a)) ^ CHAR('a)
else 0)"
\langle proof \rangle
end
context
  assumes "SORT_CONSTRAINT('a :: field)"
  assumes pos_char: "CHAR('a) > 0"
begin
interpretation field_prime_char "(/)" inverse "(*)" "1 :: 'a" "(+)" 0 "(-)"
uminus
  rewrites "semiring_1.frob 1 (*) (+) (0 :: 'a) = frob" and
            "semiring_1.inv_frob 1 (*) (+) (0 :: 'a) = inv_frob" and
            "semiring_1.semiring_char 1 (+) 0 TYPE('a) = CHAR('a)"
\langle proof \rangle
lemma inv_frob_poly_power': "inv_frob_poly (p ^ CHAR('a) :: 'a poly)
= p"
  \langle proof \rangle
lemma inv_frob_poly_power:
  fixes p :: "'a poly"
  assumes "is_nth_power CHAR('a) p" and "n = CHAR('a)"
```

```
shows "inv_frob_poly p ^ CHAR('a) = p"
\langle proof \rangle

theorem pderiv_eq_0_imp_nth_power:
   assumes "pderiv (p :: 'a poly) = 0"
   assumes [simp]: "surj (frob :: 'a \Rightarrow 'a)"
   shows "is_nth_power CHAR('a) p"
\langle proof \rangle
end
```

Code generation

lemma inv_frob_poly_code [code]:

1.4

We now also make this notion of "taking the p-th root of a polynomial" executable. For this, we need an auxiliary function that takes a list $[x_0, \ldots, x_m]$ and returns the list of every n-th element, i.e. it throws away all elements except those x_i where i is a multiple of n.

```
fun take_every :: "nat \Rightarrow 'a list \Rightarrow 'a list" where
  "take_every _ [] = []"
| "take_every n (x \# xs) = x \# take_every n (drop (n - 1) xs)"
lemma take_every_0 [simp]: "take_every 0 xs = xs"
  \langle proof \rangle
lemma take every 1 [simp]: "take every (Suc 0) xs = xs"
  \langle proof \rangle
lemma int_length_take_every: "n > 0 ⇒ int (length (take_every n xs))
= ceiling (length xs / n)"
\langle proof \rangle
lemma length_take_every:
  "n > 0 \Longrightarrow length (take_every n xs) = nat (ceiling (length xs / n))"
  \langle proof \rangle
lemma take_every_nth [simp]:
  "n > 0 \Longrightarrow i < length (take_every n xs) \Longrightarrow take_every n xs ! i = xs
! (n * i)"
\langle proof \rangle
lemma coeffs_eq_strip_whileI:
  assumes "\landi. i < length xs \Longrightarrow Polynomial.coeff p i = xs ! i"
  assumes "p \neq 0 \Longrightarrow length xs > Polynomial.degree p"
            "Polynomial.coeffs p = strip_while ((=) 0) xs"
\langle proof \rangle
This implements the code equation for inv frob poly.
```

1.5 Perfect fields

We now introduce perfect fields. The textbook definition of a perfect field is that every irreducible polynomial is separable, i.e. if a polynomial P has no non-trivial divisors then gcd(P, P') = 0.

For technical reasons, this is somewhat difficult to express in Isabelle/HOL's typeclass system. We therefore use the following much simpler equivalent definition (and prove equivalence later): a field is perfect if it either has characteristic 0 or its Frobenius endomorphism is surjective.

```
class perfect_field = field +
  assumes perfect_field: "CHAR('a) = 0 ∨ surj (frob :: 'a ⇒ 'a)"
context field_char_0
begin
subclass perfect_field
  \langle proof \rangle
end
context surj_frob
begin
subclass perfect_field
  \langle proof \rangle
end
context alg_closed_field
begin
subclass perfect_field
  \langle proof \rangle
end
theorem irreducible_imp_pderiv_nonzero:
  assumes "irreducible (p :: 'a :: perfect_field poly)"
            "pderiv p \neq 0"
  shows
\langle proof \rangle
corollary irreducible_imp_separable:
  assumes "irreducible (p :: 'a :: perfect_field poly)"
            "coprime p (pderiv p)"
\langle proof \rangle
```

1.6 Alternative definition of perfect fields

```
theory Perfect_Field_Altdef
imports
   "HOL-Algebra.Algebraic_Closure_Type"
   Perfect_Fields
begin
```

In the following, we will show that our definition of perfect fields is equivalent to the usual textbook one (for example [1]). That is: a field in which every irreducible polynomial is separable (or, equivalently, has non-zero derivative) either has characteristic 0 or a surjective Frobenius endomorphism.

The proof works like this:

Let's call our field K with prime characteristic p. Suppose there were some $c \in K$ that is not a p-th root. The polynomial $P := X^p - c$ in K[X] clearly has a zero derivative and is therefore not separable. By our assumption, it must then have a monic non-trivial factor $Q \in K[X]$.

Let L be some field extension of K where c does have a p-th root α (in our case, we choose L to be the algebraic closure of K).

Clearly, Q is also a non-trivial factor of P in L. However, we also have $P = X^p - c = X^p - \alpha^p = (X - \alpha)^p$, so we must have $Q = (X - \alpha)^m$ for some $0 \le m < p$ since $X - \alpha$ is prime.

However, the coefficient of X^{m-1} in $(X - \alpha)^m$ is $-m\alpha$, and since $Q \in K[X]$ we must have $-m\alpha \in K$ and therefore $\alpha \in K$.

```
theorem perfect_field_alt:
    assumes "\proof p :: 'a :: field_gcd poly. Factorial_Ring.irreducible p \implies pderiv p \neq 0"
    shows "CHAR('a) = 0 \proof surj (frob :: 'a \Rightarrow 'a)"

\proof corollary perfect_field_alt':
    assumes "\proof p :: 'a :: field_gcd poly. Factorial_Ring.irreducible p \implies Rings.coprime p (pderiv p)"
    shows "CHAR('a) = 0 \proof surj (frob :: 'a \Rightarrow 'a)"

\proof
```

References

end

[1] K. Conrad. Perfect fields. Online at https://kconrad.math.uconn.edu/blurbs/galoistheory/perfect.pdf, 2021. Course notes, University of Connecticut.

[2] Wikipedia contributors. Perfect field — Wikipedia, the free encyclopedia, 2023. [Online; accessed 3-November-2023].