Perfect Fields

Manuel Eberl, Katharina Kreuzer

March 17, 2025

Abstract

This entry provides a type class for perfect fields. A perfect field K

can be characterized by one of the following equivalent conditions [2]:

1. Any irreducible polynomial p is separable, i.e. ged(p,p’) = 1, or,
equivalently, p’ # 0.

2. Either char(K) = 0 or char(K) = p > 0 and the Frobenius

endomorphism z — zP is surjective (i.e. every element of K has
a p-th root).

We define perfect fields using the second characterization and show the
equivalence to the first characterization. The implication “2 = 17 is
relatively straightforward using the injectivity of the Frobenius homo-
morphism.

Examples for perfect fields are [2]:
« any field of characteristic 0 (e.g. R and C)
o any finite field (i.e. F, for ¢ = p”, n > 0 and p prime)

o any algebraically closed field (for example the formal Puiseux
series over finite fields)

Contents

1 Perfect Fields 3
1.1 The Freshman’s Dream in rings of non-zero characteristic . . 4
1.2 The Frobenius endomorphism 6
1.3 Inverting the Frobenius endomorphism on polynomials 9
1.4 Code generation 14
1.5 Perfect fields oo 16
1.6 Alternative definition of perfect fields. 19

1 Perfect Fields

theory Perfect_Fields

imports
"HOL-Computational_Algebra.Computational_Algebra"
"Berlekamp_Zassenhaus.Finite_Field"

begin

lemma (in vector_space) bij_betw_representation:
assumes [simp]: "independent B" "finite B"
shows "bij_betw (A\v. > b€B. scale (v b) b) (B —pg UNIV) (span B)"
proof (rule bij_betwI)
show "(A\v. > b€B. v b *s b) € (B —pg UNIV) — local.span B"
(is "?7f € _")
by (auto intro: span_sum span_scale span_base)
show "(A\x. restrict (representation B x) B) € local.span B — B —p
UNIV"
(is "?g € _") by auto
show "7g (?f v) = v" if "v € B —p UNIV" for v
proof
fix b :: ’b
show "7g (?f v) b = v b"
proof (cases "b € B")
case b: True
have "?g (?f v) b = () i€B. local.representation B (v i *s i) b)"
using b by (subst representation_sum) (auto intro: span_scale
span_base)

also have "... = (3. i€B. v i * local.representation B i b)"
by (intro sum.cong) (auto simp: representation_scale span_base)
also have "... = (3_ie{b}. v i * local.representation B i b)"

by (intro sum.mono_neutral_right) (auto simp: representation_basis
b)
also have "... = v b"
by (simp add: representation_basis b)
finally show "?g (?f v) b = v b" .
qged (use that in auto)
qed
show "?f (?g v) = v" if "v € span B" for v
using that by (simp add: sum_representation_eq)
qed

lemma (in vector_space) card_span:
assumes [simp]: "independent B" "finite B"
shows "card (span B) = CARD(’a) ~ card B"
proof -
have "card (B —p (UNIV :: ’a set)) = card (span B)"
by (rule bij_betw_same_card, rule bij_betw_representation) fact+
thus ?thesis
by (simp add: card_PiE dim_span_eq_card_independent)

qed

lemma (in zero_neq one) CARD neq_1: "CARD(’a) # Suc 0"
proof

assume "CARD(’a) = Suc 0"

have "{0, 1} C (UNIV :: ’a set)"

by simp
also have "is_singleton (UNIV :: ’a set)"

by (simp add: is_singleton_altdef <CARD(’a) = _>)
then obtain x :: ’a where "UNIV = {x}"

by (elim is_singletonE)
finally have "0 = (1 :: ’a)"
by blast
thus False
using zero_neq_one by contradiction

qed

theorem CARD finite_field_is_CHAR_power: "dn>0. CARD(’a :: finite_field)

= CHAR(’a) ~ n"

proof -
define s :: "’a ring char mod_ring = ’a = ’a" where

"s = (Ax y. of_int (to_int_mod_ring x) * y)"
interpret vector_space s
by unfold_locales (auto simp: s_def algebra_simps to_int_mod_ring_ add
to_int_mod_ring_mult)
obtain B where B: "independent B" "span B = UNIV"
by (rule basis_exists[of UNIV]) auto
have [simp]: "finite B"
by simp
have "card (span B) = CHAR(’a) ~ card B"
using B by (subst card_span) auto
hence *: "CARD(’a) = CHAR(’a) ~ card B"
using B by simp
from * have "card B # 0"
by (auto simp: B(2) CARD_neq_1)
with * show ?thesis
by blast
qed

1.1 The Freshman’s Dream in rings of non-zero characteris-
tic
lemma (in comm_semiring 1) freshmans_dream:
fixes x y :: ’a and n :: nat
assumes '"prime CHAR(’a)"
assumes n_def: "m = CHAR(’a)"
shows "(x+y) "n=x "n+y ~ n"
proof -
interpret comm_semiring prime_char

by standard (auto intro!: exI[of _ "CHAR(’a)"] assms)
have "n > 0"
unfolding n_def by simp
have "(x + y) ~n = (0 k<n. of_nat (n choose k) * x ~k *y ~ (n -
k))”
by (rule binomial_ring)
also have "... = (5 ke€{0,n}. of_nat (n choose k) * x "k xy ~ (n -
k)"
proof (intro sum.mono_neutral_right balll)
fix k assume "k € {..n} - {0, n}"
hence k: "k > 0" "k < n"
by auto
have "CHAR(’a) dvd (n choose k)"
unfolding n_def
by (rule dvd_choose_prime) (use k in <auto simp: n_def>)
hence "of nat (n choose k) = (0 :: ’a)"
using of_nat_eq_O_iff_char_dvd by blast
thus "of_nat (n choose k) * x "k *y ~ (n - k) = 0"
by simp
qged auto
finally show ?thesis
using <n > 0> by (simp add: add_ac)
qed

lemma (in comm_semiring 1) freshmans_dream’:
assumes [simp]: "prime CHAR(’a)" and "m = CHAR(’a)
shows "(x +y :: ’a) "m=x "m+y "~ m"
unfolding assms(2)
proof (induction n)
case (Suc n)
have "(x + y) = (CHAR(’a) ~ n * CHAR(’a)) = ((x + y) ~ (CHAR(’a) ~ n))
= CHAR(’a)"
by (rule power_mult)
thus ?case
by (simp add: Suc.IH freshmans_dream Groups.mult_ac flip: power_mult)
qed auto

n”

lemma (in comm_semiring 1) freshmans_dream_sum:
fixes £ :: "’b = ’a"
assumes '"prime CHAR(’a)" and "n = CHAR(’a)"
shows "sum f A " n = sum (A\i. £ i ~ n) A"
using assms
by (induct A rule: infinite_finite_induct)
(auto simp add: power_O_left freshmans_dream)

lemma (in comm_semiring 1) freshmans_dream_sum’:

fixes £ :: "’b = ’a"
assumes "prime CHAR(’a)" "m = CHAR(’a) ~ n"
shows "sum £ A " m = sum (A\i. £ i "~ m) A"

using assms
by (induction A rule: infinite_finite_induct)
(auto simp: freshmans_dream’ power_0_left)

1.2 The Frobenius endomorphism

definition (in semiring 1) frob :: "’a = ’a" where
"frob x = x =~ CHAR(’a)"

definition (in semiring 1) inv_frob :: "’a = ’a" where
"inv_frob x = (if x € {0, 1} then x else if x € range frob then inv_into
UNIV frob x else x)"

lemma (in semiring 1) inv_frob_0 [simp]: "inv_frob 0 = 0"
and inv_frob_1 [simp]: "inv_frob 1 = 1"
by (simp_all add: inv_frob_def)

lemma (in semiring prime_char) frob_0 [simp]: "frob (0 :: ’a) = 0"
by (simp add: frob_def power_0_left)

lemma (in semiring 1) frob_1 [simp]: "frob 1 = 1"
by (simp add: frob_def)

lemma (in comm_semiring 1) frob_mult: "frob (x * y) = frob x * frob (y
Ia) n

by (simp add: frob_def power_mult_distrib)

lemma (in comm_semiring 1)

frob_add: "prime CHAR(’a) = frob (x + y :: ’a) = frob x + frob (y
)a) "
by (simp add: frob_def freshmans_dream)
lemma (in comm_ring 1) frob_uminus: "prime CHAR(’a) =—> frob (-x :: ’a)
= —-frob x"
proof -

assume "prime CHAR(’a)"
hence "frob (-x) + frob x = 0"
by (subst frob_add [symmetric]) (auto simp: frob_def power_0O_left)
thus 7thesis
by (simp add: add_eq_O_iff)
qed

lemma (in comm_ring prime_char) frob_diff:
"prime CHAR(’a) =—> frob (x - y :: ’a) = frob x - frob (y :: ’a)"
using frob_add[of x "-y"] by (simp add: frob_uminus)

interpretation frob_sr: semiring hom "frob :: ’a :: {comm_semiring prime_char}
:>)aH
by standard (auto simp: frob_add frob_mult)

interpretation frob: ring hom "frob :: ’a :: {comm_ring prime_char} =
lall
by standard auto

interpretation frob: field_hom "frob :: ’a :: {field_prime_char} = ’a"
by standard auto

lemma frob_mod_ring’ [simp]: "(x :: ’a :: prime_card mod_ring) ~ CARD(’a)
= x"
by (metis CARD_mod_ring finite_field_power_card_eq_same)

lemma frob_mod_ring [simp]: "frob (x :: ’a :: prime_card mod_ring) =
X”
by (simp add: frob_def)

context semiring 1_no_zero_divisors
begin

lemma frob_eq_OD:
"frob (x :: ’a) =0 = x = 0"
by (auto simp: frob_def)
lemma frob_eq O_iff [simp]:
"frob (x :: ’a) = 0 <— x = 0 A CHAR(’a) > 0"
by (auto simp: frob_def)

end

context idom_prime_char

begin
lemma inj_frob: "inj (frob :: ’a = ’a)"
proof

fix xy :: ’a

assume "frob x = frob y"
hence "frob (x - y) = 0"
by (simp add: frob_diff del: frob_eq O_iff)
thus "x = y"
by simp
qed

lemma frob_eq frob_iff [simp]:
"frob (x :: ’a) = froby «— x = y"
using inj_frob by (auto simp: inj_def)

lemma frob_eq 1_iff [simp]: "frob (x :: ’a) =1 +— x = 1"
using frob_eq_frob_iff by fastforce

lemma inv_frob_frob [simp]: "inv_frob (frob (x :: ’a)) = x"
by (simp add: inj_frob inv_frob_def)

lemma frob_inv_frob [simp]:
assumes "x € range frob"
shows "frob (inv_frob x) = (x :: ’a)"

using assms by (auto simp: inj_frob inv_frob_def)

lemma inv_frob_eql: "frob y = x = inv_frob x = y"
using inv_frob_frob local.frob_def by force

lemma inv_frob_eq_O_iff [simp]: "inv_frob (x :: ’a) = 0 +— x = 0"
using inj_frob by (auto simp: inv_frob_def split: if_splits)

end

class surj_frob = field_prime_char +

assumes surj_frob [simp]: "surj (frob :: ’a = ’a)"
begin
lemma in_range_frob [simp, introl: "(x :: ’a) € range frob"

using surj_frob by blast

lemma inv_frob_eq_iff [simp]: "inv_frob (x :: ’a) =y <— frob y = x"
using frob_inv_frob inv_frob_frob by blast

end
context alg closed_field
begin

lemma alg closed_surj_frob:
assumes "CHAR(’a) > 0"

shows "surj (frob :: ’a = ’a)"
proof -
show "surj (frob :: ’a = ’a)"
proof safe
fix x :: ’a

obtain y where "y ~ CHAR(’a) = x"

using nth_root_exists CHAR_pos assms by blast
hence "frob y = x"

using CHAR_pos by (simp add: frob_def)
thus "x € range frob"

by (metis rangeI)

qged auto
qed

end

The following type class describes a field with a surjective Frobenius endo-
morphism that is effectively computable. This includes all finite fields.

class inv_frob = surj_frob +
fixes inv_frob_code :: "’a = ’a"
assumes inv_frob_code: "inv_frob x = inv_frob_code x"

lemmas [code] = inv_frob_code

context finite_field

begin
subclass surj_frob
proof
show "surj (frob :: ’a = ’a)"

using inj_frob finite_UNIV by (simp add: finite_UNIV_inj_surj)
qed

end
lemma inv_frob_mod_ring [simp]: "inv_frob (x :: ’a :: prime_card mod_ring)

= x"
by (auto simp: frob_def)

instantiation mod_ring :: (prime_card) inv_frob
begin
definition inv_frob_code_mod_ring :: "’a mod_ring = ’a mod_ring" where

"inv_frob_code_mod_ring x = x"

instance
by standard (auto simp: inv_frob_code_mod_ring_def)

end

1.3 Inverting the Frobenius endomorphism on polynomials

If K is a field of prime characteristic p with a surjective Frobenius endomor-
phism, every polynomial P with P’ = 0 has a p-th root.

To see that, let ¢(a) = aP denote the Frobenius endomorphism of kK and its
extension to K[X].

If P> = 0 for some P € K[X], then P must be of the form

P = ag + apa? + agyt® + ... + agpa'? .

If we now set

Q= ¢_1(a0) + ¢_1(ap)$ =+ ¢_1(a2p)x2 +...+ ¢_1(akp)mk

we get ¢(Q) = P, i.e. Q is the p-th root of P(z).

lift_ definition inv_frob_poly :: "’a :: field poly = ’a poly" is
"Ap i. if CHAR(’a) = O then p i else inv_frob (p (i * CHAR(’a)) :: ’a)"
proof goal_cases
case (1 f)
show ?case
proof (cases "CHAR(’a) > 0")
case True
from 1 obtain N where N: "f i = 0" if "i > N" for i
using cofinite_eq_sequentially eventually_sequentially by auto
have "inv_frob (f (i * CHAR(’a))) = 0" if "i > N" for i
proof -
have "f (i * CHAR(’a)) = O"
proof (rule N)
show "N < i * CHAR(’a)"
using that True
by (metis One_nat_def Suc_lelI le_trans mult.right_neutral mult_le_mono2)
qged
thus "inv_frob (f (i * CHAR(’a))) = 0"
by (auto simp: power_0_left)
qed
thus 7thesis using True
unfolding cofinite_eq_sequentially eventually_sequentially by auto
qged (use 1 in auto)
qed

lemma coeff_inv_frob_poly [simp]:

fixes p :: "’a :: field poly"

assumes "CHAR(’a) > 0"

shows "poly.coeff (inv_frob_poly p) i = inv_frob (poly.coeff p (i *
CHAR(’a)))"

using assms by transfer auto

lemma inv_frob_poly_0 [simp]: "inv_frob_poly 0 = 0"
by transfer (auto simp: fun_eq iff power_0_left)

lemma inv_frob_poly_ 1 [simp]: "inv_frob_poly 1 = 1"
by transfer (auto simp: fun_eq_iff power_0_left)

lemma degree_inv_frob_poly_le:
fixes p :: "’a :: field poly"

10

assumes "CHAR(’a) > 0"
shows "Polynomial.degree (inv_frob_poly p) < Polynomial.degree p div
CHAR(’a)"
proof (intro degree_le alll impI)
fix i assume "Polynomial.degree p div CHAR(’a) < i"
hence "i * CHAR(’a) > Polynomial.degree p"
using assms div_less_iff_less_mult by blast
thus "Polynomial.coeff (inv_frob_poly p) i = 0"
by (simp add: coeff_eq_0 power_0_left assms)
qed

context
assumes "SORT_CONSTRAINT(’a :: comm_ring 1)"
assumes prime_char: "prime CHAR(’a)"

begin

lemma poly_power_ prime_char_as_sum_of_monoms:
fixes h :: "’a poly"
shows "h ~ CHAR(’a) = () i<Polynomial.degree h. Polynomial.monom (Polynomial.coeff
h i = CHAR(’a)) (CHAR(’a)*i))"
proof -
have "h ~ CHAR(’a) = () i<Polynomial.degree h. Polynomial.monom (Polynomial.coeff
h i) i) ~ CHAR(’a)"
by (simp add: poly_as_sum_of_monoms)
also have "... = (0 i<Polynomial.degree h. (Polynomial.monom (Polynomial.coeff
h i) i) ~ CHAR(’a))"
by (simp add: freshmans_dream_sum prime_char)
also have "... = (0 i<Polynomial.degree h. Polynomial.monom (Polynomial.coeff
h i ~ CHAR(’a)) (CHAR(’a)*i))"
proof (rule sum.cong, rule)
fix x assume x: "x € {..Polynomial.degree h}"
show "Polynomial.monom (Polynomial.coeff h x) x ~ CHAR(’a) = Polynomial.monom
(Polynomial.coeff h x ~ CHAR(’a)) (CHAR(’a) * x)"
by (unfold poly_eq_iff, auto simp add: monom_power)
qed
finally show ?thesis .
qed

lemma coeff_of_prime_char_power [simp]:
fixes y :: "’a poly"
shows "poly.coeff (y =~ CHAR(’a)) (i * CHAR(’a)) = poly.coeff y i ~ CHAR(’a)"
using prime_char
by (subst poly_power_prime_char_as_sum_of_monoms, subst Polynomial.coeff_sum)
(auto intro: le_degree simp: power_0_left)

lemma coeff_of_prime_char_power’:
fixes y :: "’a poly"
shows "poly.coeff (y ~ CHAR(’a)) i =
(if CHAR(’a) dvd i then poly.coeff y (i div CHAR(’a)) ~ CHAR(’a)

11

else 0)"
proof -
have "poly.coeff (y ~ CHAR(’a)) i =
(5>~ j<Polynomial.degree y. Polynomial.coeff (Polynomial.monom
(Polynomial.coeff y j ~ CHAR(’a)) (CHAR(’a) * j)) i)"
by (subst poly_power_prime_char_as_sum_of_monoms, subst Polynomial.coeff_sum)
auto
also have "... = (. je€(if CHAR(’a) dvd i A i div CHAR(’a) < Polynomial.degree
y then {i div CHAR(’a)} else {}).
Polynomial.coeff (Polynomial.monom (Polynomial.coeff
y j ~ CHAR(’a)) (CHAR(’a) * j)) i)"
by (intro sum.mono_neutral_right) (use prime_char in auto)
also have "... = (if CHAR(’a) dvd i then poly.coeff y (i div CHAR(’a))
~ CHAR(’a) else 0)"
proof (cases "CHAR(’a) dvd i A i div CHAR(’a) > Polynomial.degree y")
case True
hence "Polynomial.coeff y (i div CHAR(’a)) ~ CHAR(’a) = 0"
using prime_char by (simp add: coeff_eq_0O zero_power power_0_left)
thus ?thesis
by auto
ged auto
finally show ?thesis .
qed

end
context

assumes "SORT_CONSTRAINT(’a :: field)"
assumes pos_char: "CHAR(’a) > 0"

begin
interpretation field_prime_char "(/)" inverse "(*¥)" "1 :: Za" "(+)" 0 "(-)"
uminus

rewrites "semiring 1.frob 1 (*¥) (+) (0 :: ’a) = frob" and

"semiring 1.inv_frob 1 (*) (+) (0 :: ’a) = inv_frob" and
"semiring 1.semiring char 1 (+) 0 TYPE(’a) = CHAR(’a)"
proof unfold_locales
have *: "class.semiring 1 (1 :: ’a) (*¥) (+) 0" .
have [simp]: "semiring 1.of_nat (1 :: ’a) (+) O = of_nat"
by (auto simp: of_nat_def semiring_1.of_nat_def[OF *])
thus "dn>0. semiring 1.of_nat (1 :: ’a) (+) 0 n = 0"
by (intro exI[of _ "CHAR(’a)"]) (use pos_char in auto)
show "semiring 1.semiring char 1 (+) 0 TYPE(’a) = CHAR(’a)"
by (simp add: fun_eq iff semiring char_def semiring 1.semiring char_def [OF
*])
show [simp]: "semiring 1.frob (1 :: ’a) (*) (+) 0 = frob"
by (simp add: frob_def semiring 1.frob_def[OF *] fun_eq_ iff
power.power_def power_def semiring_char_def semiring_1.semiring_ char_def [|

12

*])
show "semiring 1.inv_frob (1 ’a) (*) (+) 0 = inv_frob"

by (simp add: inv_frob_def semiring 1.inv_frob_def[OF *] fun_eq_iff)
qed
lemma inv_frob_poly_power’: "inv_frob_poly (p ~ CHAR(’a) ’a poly)
= prl
using prime_CHAR_semidom[OF pos_char] pos_char
by (auto simp: poly_eq_iff simp flip: frob_def)

lemma inv_frob_poly_power:
fixes p :: "’a poly"
assumes "is_nth_power CHAR(’a) p" and "n = CHAR(’a)"
shows "inv_frob_poly p ~ CHAR(’a) = p"

proof -
from assms(1) obtain g where q: "p = q =~ CHAR(’a)"

by (elim is_nth_powerE)
thus 7thesis using assms
by (simp add: q inv_frob_poly_power’)

qed
theorem pderiv_eq_O_imp_nth_power:
assumes '"pderiv (p :: ’a poly) = 0"
assumes [simp]: "surj (frob :: ’a = ’a)"
shows "is_nth_power CHAR(’a) p"
proof -
have *: "poly.coeff p n = 0" if n: "-CHAR(’a) dvd n" for n

proof (cases "mn = 0")

case False
have "poly.coeff (pderiv p) (n - 1) = of_nat n * poly.coeff p n"

using False by (auto simp: coeff_pderiv)
with assms and n show "poly.coeff p n = 0"
by (auto simp: of_nat_eq O_iff_char_dvd)
qged (use that in auto)

have **: "inv_frob_poly p ~ CHAR(’a) = p"
proof (rule poly_eqI)

fix n :: nat
show "poly.coeff (inv_frob_poly p ~ CHAR(’a)) n = poly.coeff p n"

using * CHAR_dvd_CARD[where 7’a = ’a]
by (subst coeff_of_prime_char_power’)
(auto simp: poly_eq_iff frob_def [symmetric]
coeff_of_prime_char_power’[where 7’a = ’a] simp
flip: power_mult)
qed

show 7thesis
by (subst #**[symmetric]) auto

qed

13

end

1.4 Code generation

We now also make this notion of “taking the p-th root of a polynomial” exe-
cutable. For this, we need an auxiliary function that takes a list [zg, . .., Zy,]
and returns the list of every n-th element, i.e. it throws away all elements
except those x; where 7 is a multiple of n.

fun take_every :: "nat = ’a list = ’a list" where
"take_every _ [] = []"
| "take_every n (x # xs) = x # take_every n (drop (n - 1) xs)"

lemma take_every_ O [simp]: "take_every 0 xs = xs"
by (induction xs) auto

lemma take_every_ 1 [simp]: "take_every (Suc 0) xs = xs"
by (induction xs) auto

lemma int_length_take_every: "m > 0 = int (length (take_every n xs))
= ceiling (length xs / n)"
proof (induction n xs rule: take_every.induct)
case (2 n x xs)
show ?case
proof (cases "Suc (length xs) > n")
case True
thus ?7thesis using 2
by (auto simp: dvd_imp_le of_nat_diff diff_divide_distrib split:
if_splits)
next
case False
hence "[(1 + real (length xs)) / real n] = 1"
by (intro ceiling unique) auto
thus ?7thesis using False
by auto
qged
qed auto

lemma length_take_every:
"n > 0 = length (take_every n xs) = nat (ceiling (length xs / n))"
using int_length_take_every[of n xs] by simp

lemma take_every_nth [simp]:

"n > 0 = i < length (take_every n xs) — take_every n xs ! i = xs
I (n* i)"
proof (induction n xs arbitrary: i rule: take_every.induct)

case (2 n x xs i)

show ?case

14

proof (cases i)
case (Suc j)
have "n - Suc 0 < length xs"
using Suc "2.prems" nat_le_linear by force
hence "drop (n - Suc 0) xs ! (n * j) =xs ! (m -1 +n * j)"
using Suc by (subst nth_drop) auto
also have "n - 1 +n * j =n +n * j - 1"
using <n > 0> by linarith
finally show ?thesis
using "2.IH"[of j] "2.prems" Suc by simp
ged auto
qed auto

lemma coeffs_eq_strip_whilel:
assumes "Ai. i < length xs = Polynomial.coeff p i = xs ! i"
assumes "p # 0 = length xs > Polynomial.degree p"
shows "Polynomial.coeffs p = strip_while ((=) 0) xs"
proof (rule coeffs_eql)
fix n :: nat
show "Polynomial.coeff p n = nth_default O (strip_while ((=) 0) xs)
nl!
using assms
by (metis coeff_0 coeff_Poly_eq coeffs_Poly le_degree nth_default_coeffs_eq

nth_default_eq_dflt_iff nth_default_nth order_le_less_trans)
qged auto

This implements the code equation for inv_frob_poly.

lemma inv_frob_poly_code [code]:
"Polynomial.coeffs (inv_frob_poly (p :: ’a :: field_prime_char poly))

(if CHAR(’a) = O then Polynomial.coeffs p else
map inv_frob (strip_while ((=) 0) (take_every CHAR(’a) (Polynomial.coeffs
p)J)))"
(is "_ = If _ _ ?rhs")
proof (cases "CHAR(’a) = 0 V p = 0")
case False
from False have "p # 0"
by auto
have "Polynomial.coeffs (inv_frob_poly p) =
strip_while ((=) 0) (map inv_frob (take_every CHAR(’a) (Polynomial.coeffs
p)))"
proof (rule coeffs_eq_strip_whilelI)
fix i assume i: "i < length (map inv_frob (take_every CHAR(’a) (Polynomial.coeffs
p)))"
show "Polynomial.coeff (inv_frob_poly p) i = map inv_frob (take_every
CHAR(’a) (Polynomial.coeffs p)) ! i"
proof -
have "i < length (take_every CHAR(’a) (Polynomial.coeffs p))"

15

using i by simp
also have "length (take_every CHAR(’a) (Polynomial.coeffs p)) =
nat [(Polynomial.degree p + 1) / real CHAR(’a)|"
using False CHAR_pos[where 7’a = ’a]
by (simp add: length_take_every length_coeffs)
finally have "i < real (Polynomial.degree p + 1) / real CHAR(’a)"
by linarith
hence "real i * real CHAR(’a) < real (Polynomial.degree p + 1)"
using False CHAR_pos[where 7’a = ’a] by (simp add: field_simps)
hence "i * CHAR(’a) < Polynomial.degree p"
unfolding of_nat_mult [symmetric] by linarith
hence "Polynomial.coeffs p ! (i * CHAR(’a)) = Polynomial.coeff p
(i = CHAR(’a))"
using False by (intro coeffs_nth) (auto simp: length_take_every)

thus ?thesis using False i CHAR_pos[where ?’a = ’a]
by (auto simp: nth_default_def mult.commute)
qed
next

assume nz: "inv_frob_poly p # 0"
have "Polynomial.degree (inv_frob_poly p) < Polynomial.degree p div
CHAR(’a)"
by (rule degree_inv_frob_poly_le) (fact CHAR_pos)
also have "... < nat [(real (Polynomial.degree p) + 1) / real CHAR(’a)]|"
using CHAR_pos[where 7’a = ’a]
by (metis div_less_iff_less_mult linorder_not_le nat_le_real_less
of _nat_0O_less_iff
of_nat_ceiling of_nat_mult pos_less_divide_eq)
also have "... = length (take_every CHAR(’a) (Polynomial.coeffs p))"
using CHAR_pos[where ?’a = ’a] <p # 0> by (simp add: length_take_every
length_coeffs add_ac)
finally show "length (map inv_frob (take_every CHAR(’a) (Polynomial.coeffs
p))) > Polynomial.degree (inv_frob_poly p)"
by simp_all
qed
also have "strip_while ((=) 0) (map inv_frob (take_every CHAR(’a) (Polynomial.coeffs
p))) =
map inv_frob (strip_while ((=) 0 o inv_frob) (take_every
CHAR(’a) (Polynomial.coeffs p)))"
by (rule strip_while_map)
also have "(=) 0 o inv_frob = (=) (0 :: ’a)"
by (auto simp: fun_eq_iff)
finally show 7thesis
using False by metis
qed auto

1.5 Perfect fields

We now introduce perfect fields. The textbook definition of a perfect field
is that every irreducible polynomial is separable, i.e. if a polynomial P has

16

no non-trivial divisors then ged(P, P') = 0.

For technical reasons, this is somewhat difficult to express in Isabelle/HOL’s
typeclass system. We therefore use the following much simpler equivalent
definition (and prove equivalence later): a field is perfect if it either has
characteristic 0 or its Frobenius endomorphism is surjective.

class perfect_field = field +
assumes perfect_field: "CHAR(’a) = 0 V surj (frob :: ’a = ’a)"

context field_char_O

begin

subclass perfect_field
by standard auto

end

context surj_frob

begin

subclass perfect_field
by standard auto

end

context alg closed_field
begin
subclass perfect_field
by standard (use alg closed_surj_frob in auto)
end

theorem irreducible_imp_pderiv_nonzero:
assumes "irreducible (p :: ’a :: perfect_field poly)"
shows '"pderiv p # 0"

proof (cases "CHAR(’a) = 0")

case True
interpret A: semiring 1 "1 :: ’a" "(x¥)" "(+)" "0 :: ’a" ..
have *: "class.semiring_1 (1 :: ’a) (*) (+) 0" ..

interpret A: field_char_0 "(/)" inverse "(¥)" "1 :: ’a" "(+)" 0 "(-)"
uminus

proof
have "inj (of_nat :: nat = ’a)"
by (auto simp: inj_on_def of_nat_eq_iff_ cong_CHAR True)
also have "of_nat = semiring 1.of_nat (1 :: ’a) (+) 0"

by (simp add: of_nat_def [abs_def] semiring 1.of_nat_def [OF *,
abs_def])
finally show "inj ..." .
qed

show ?thesis
proof
assume "pderiv p = 0"
hence **: "poly.coeff p (Suc n) = 0" for n

17

by (auto simp: poly_eq_iff coeff_pderiv of_nat_eq O_iff_char_dvd
True simp del: of_nat_Suc)
have "poly.coeff p n = 0" if "n > 0" for n
using **[of "n - 1"] that by (cases n) auto
hence "Polynomial.degree p = 0"

by force
thus False
using assms by force
qed
next
case False
hence [simp]: "surj (frob :: ’a = ’a)"

by (meson perfect_field)

interpret A: field_prime_char "(/)" inverse "(*¥)" "1 :: ’a" "(+)" 0 "(-)"
uminus

proof
have *: "class.semiring 1 1 (*) (+) (0 :: ’a)" ..
have "semiring 1.of_nat 1 (+) (0 :: ’a) = of_nat"

by (simp add: fun_eq_iff of_nat_def semiring 1.of_nat_def[OF *])
thus "dn>0. semiring 1.of_nat 1 (+) O n = (0 :: ’a)"
by (intro exI[of _ "CHAR(’a)"]) (use False in auto)
qed

show ?thesis
proof
assume "pderiv p = 0"
hence "is_nth_power CHAR(’a) p"
using pderiv_eq_O_imp_nth_power[of p] surj_frob False by simp
then obtain g where "p = q =~ CHAR(Va)"
by (elim is_nth_powerE)
with assms show False
by auto
qed
qed

corollary irreducible_imp_separable:
assumes "irreducible (p :: ’a :: perfect_field poly)"
shows "coprime p (pderiv p)"
proof (rule coprimel)
fix q assume q: "q dvd p" "q dvd pderiv p"
have "-p dvd q"
proof
assume "p dvd q"
hence "p dvd pderiv p"
using q dvd_trans by blast
hence "Polynomial.degree p < Polynomial.degree (pderiv p)"
by (rule dvd_imp_degree_le) (use assms irreducible_imp_pderiv_nonzero

18

in auto)
also have "... < Polynomial.degree p - 1"
using degree_pderiv_le by auto
finally have "Polynomial.degree p = 0"
by simp
with assms show False
using irreducible_imp_pderiv_nonzero is_unit_iff_ degree by blast
qed
with <q dvd p> show "is_unit q"
using assms comm_semiring 1_class.irreducibleD’ by blast
qed

end

1.6 Alternative definition of perfect fields

theory Perfect_Field_Altdef

imports
"HOL-Algebra.Algebraic_Closure_Type"
Perfect_Fields

begin

In the following, we will show that our definition of perfect fields is equivalent
to the usual textbook one (for example [1]). That is: a field in which every
irreducible polynomial is separable (or, equivalently, has non-zero derivative)
either has characteristic 0 or a surjective Frobenius endomorphism.

The proof works like this:

Let’s call our field ¥ with prime characteristic p. Suppose there were some
c € K that is not a p-th root. The polynomial P := X? — ¢ in K[X] clearly
has a zero derivative and is therefore not separable. By our assumption, it
must then have a monic non-trivial factor Q) € K[X].

Let L be some field extension of K where ¢ does have a p-th root « (in our
case, we choose L to be the algebraic closure of k).

Clearly, @ is also a non-trivial factor of P in L. However, we also have P =
Xp-c=Xp-ap= (- a)p sowemust have Q = (X —a)™ for some
0 < m < p since X - « is prime.

However, the coefficient of X™~! in (X —)™ is -ma, and since @ € K[X]
we must have -ma € K and therefore o € K.

theorem perfect_field_alt:

assumes "Ap :: ’a :: field_gcd poly. Factorial_Ring.irreducible p —
pderiv p # 0"

shows "CHAR(’a) = 0 V surj (frob :: ’a = ’a)"
proof (cases "CHAR(’a) = 0")

case False

let ?p = "CHAR(’a)"

from False have "Factorial_Ring.prime 7p"

19

by (simp add: prime_CHAR_semidom)
hence "7p > 1"
using prime_gt_1_nat by blast
note p = <Factorial_Ring.prime ?p> <7p > 1>

interpret to_ac: map_poly_inj_comm_ring hom "to_ac :: ’a = ’a alg_closure"
by unfold_locales auto

have "surj (frob :: ’a = ’a)"
proof safe
fix ¢ :: ’a
obtain « :: "’a alg_closure" where a: "a = ?p = to_ac c"

using p nth_root_exists[of 7p "to_ac c"] by auto
define P where "P = Polynomial.monom 1 7p + [:-c:]"
define P’ where "P’ = map_poly to_ac P"
have deg: "Polynomial.degree P = 7p"
unfolding P_def using p by (subst degree_add_eq_left) (auto simp:
degree_monom_eq)

have "[:-a, 1:] =~ ?p = ([:0, 1:] + [:-~a:]) = 7p"
by (simp add: one_pCons)
also have "... = [:0, 1:] =~ ?p - [:a"7p:]"
using p by (subst freshmans_dream) (auto simp: poly_const_pow minus_power_prime_CHAR)
also have "a ~ ?p = to_ac c"
by (simp add: «)
also have "[:0, 1:] ~ CHAR(’a) - [:to_ac c:] = P’"
by (simp add: P_def P’_def to_ac.hom_add to_ac.hom_power
to_ac.base.map_poly_pCons_hom monom_altdef)
finally have eq: "P’ = [:-«, 1:] ~ 7p" ..

have "—is_unit P" "P # 0"
using deg p by auto
then obtain § where §: "Factorial_Ring.prime Q" "@ dvd P"
by (metis prime_divisor_exists)
have "monic Q"
using unit_factor_prime[OF Q(1)] by (auto simp: unit_factor_poly_def
one_pCons)

from Q(2) have "map_poly to_ac @ dvd P’"
by (auto simp: P’_def)
hence "map_poly to_ac Q dvd [:-«, 1:] =~ 7p"
by (simp add: <P’ = [:-o, 1:] = 7p>)
moreover have "Factorial_Ring.prime_elem [:-«, 1:]"
by (intro prime_elem_linear field_poly) auto
hence "Factorial Ring.prime [:-a, 1:]"
unfolding Factorial Ring.prime_def by (auto simp: normalize_monic)
ultimately obtain m where "m < ?p" "normalize (map_poly to_ac Q)
=[:-a, 1:] "~ m"
using divides_primepow by blast

20

hence "map_poly to_ac Q = [:-«, 1:] ~ m"
using <monic > by (subst (asm) normalize_monic) auto
moreover from this have "m > 0"
using @ by (intro Nat.gr0I) auto
moreover have "m # 7p"
proof
assume "m = ?p"
hence "@Q = P"
using <map_poly to_ac Q = [:-a, 1:] ~ m> eq
by (simp add: P’_def to_ac.injectivity)
with § have "Factorial Ring.irreducible P"
using idom_class.prime_elem_imp_irreducible by blast
with assms have "pderiv P # 0"
by blast
thus False
by (auto simp: P_def pderiv_add pderiv_monom of_nat_eq_O_iff_char_dvd)
qed
ultimately have m: "m € {0<..<?p}" "map_poly to_ac Q@ = [:-a, 1:]
m”
using <m < ?p> by auto

from m(1) have "-7p dvd m"
using p by auto
have "poly.coeff ([:-a, 1:] “m) (m - 1) = - of_nat (m choose (m -
1)) * "
using m(1) by (subst coeff_linear_poly_power) auto
also have "m choose (m - 1) = m"
using <0 < m> by (subst binomial_symmetric) auto
also have "[:-a, 1:] ~ m = map_poly to_ac Q"

using m(2) ..
also have "poly.coeff ... (m - 1) = to_ac (poly.coeff Q (m - 1))"
by simp

finally have "a = to_ac (-poly.coeff § (m - 1) / of_nat m)"
using m(1) p <=7p dvd m> by (auto simp: field_simps of_nat_eq O_iff_char_dvd)
hence "(- poly.coeff @ (m - 1) / of_nat m) ~ 7?p = c¢"
using a by (metis to_ac.base.eq_iff to_ac.base.hom_power)
thus "c € range frob"
unfolding frob_def by blast
qged auto
thus 7thesis ..
qed auto

corollary perfect_field_alt’:

assumes "Ap :: ’a :: field_gcd poly. Factorial_ Ring.irreducible p —>
Rings.coprime p (pderiv p)"

shows "CHAR(’a) = 0 V surj (frob :: ’a = ’a)"
proof (rule perfect_field_alt)

fix p :: "’a poly"

assume p: "Factorial_Ring.irreducible p"

21

with assms[0OF p] show "pderiv p # 0"
by auto
qed

end

References

[1] K. Conrad. Perfect fields. Online at
https://kconrad.math.uconn.edu/blurbs/galoistheory /perfect.pdf,
2021. Course notes, University of Connecticut.

[2] Wikipedia contributors. Perfect field — Wikipedia, the free
encyclopedia, 2023. [Online; accessed 3-November-2023].

22

https://kconrad.math.uconn.edu/blurbs/galoistheory/perfect.pdf

	Perfect Fields
	The Freshman's Dream in rings of non-zero characteristic
	The Frobenius endomorphism
	Inverting the Frobenius endomorphism on polynomials
	Code generation
	Perfect fields
	Alternative definition of perfect fields

