Perfect Fields

Manuel Eberl, Katharina Kreuzer

November 13, 2023

Abstract

This entry provides a type class for *perfect fields*. A perfect field K can be characterized by one of the following equivalent conditions [2]:

- 1. Any irreducible polynomial p is separable, i.e. $\gcd(p,p')=1,$ or, equivalently, $p'\neq 0.$
- 2. Either $\operatorname{char}(K) = 0$ or $\operatorname{char}(K) = p > 0$ and the Frobenius endomorphism $x \mapsto x^p$ is surjective (i.e. every element of K has a p-th root).

We define perfect fields using the second characterization and show the equivalence to the first characterization. The implication " $2 \Rightarrow 1$ " is relatively straightforward using the injectivity of the Frobenius homomorphism.

Examples for perfect fields are [2]:

- any field of characteristic 0 (e.g. \mathbb{R} and \mathbb{C})
- any finite field (i.e. \mathbb{F}_q for $q=p^n, n>0$ and p prime)
- any algebraically closed field (for example the formal Puiseux series over finite fields)

Contents

1	Per	fect Fields	10
	1.1	Rings and fields with prime characteristic	10
	1.2	Finite fields	12
	1.3	The Freshman's Dream in rings of non-zero characteristic	16
	1.4	The Frobenius endomorphism	18
	1.5	Inverting the Frobenius endomorphism on polynomials	21
	1.6	Code generation	25
	1.7	Perfect fields	28
	1.8	Algebraically closed fields are perfect	30
2	The	algebraic closure type	32
	2.1	Definition	33
	2.2	The algebraic closure is algebraically closed	36
	2.3	Converting between the base field and the closure	37
	2.4	The algebraic closure is an algebraic extension	42
	2.5	Alternative definition of perfect fields	45

```
theory Perfect_Field_Library
imports
  "HOL-Computational_Algebra.Computational_Algebra"
  "Berlekamp_Zassenhaus.Finite_Field"
begin
instance bool :: prime_card
  by standard auto
theorem (in comm_semiring_1) binomial_ring:
  "(a + b :: 'a)^n = (\sum k \le n. (of_nat (n choose k)) * a^k * b^(n-k))"
proof (induct n)
  case 0
  then show ?case by simp
  case (Suc n)
  have decomp: "\{0..n+1\} = \{0\} \cup \{n+1\} \cup \{1..n\}"
    by auto
  have decomp2: "\{0..n\} = \{0\} \cup \{1..n\}"
    by auto
  have (a + b)^(n+1) = (a + b) * (\sum k \le n. \text{ of_nat (n choose k)} * a^k *
b^{(n - k)}"
    using Suc.hyps by simp
  also have "... = a * (\sum k \le n. of_nat (n choose k) * a^k * b^(n-k)) +
      b * (\sum k \le n. \text{ of_nat (n choose k)} * a^k * b^(n-k))"
    by (rule distrib_right)
  also have "... = (\sum k \le n. of_nat (n choose k) * a^(k+1) * b^(n-k)) +
       (\sum k \le n. \text{ of_nat (n choose k)} * a^k * b^n (n - k + 1))"
    by (auto simp add: sum_distrib_left ac_simps)
  also have "... = (\sum k \le n. of_nat (n \text{ choose } k) * a^k * b^n + 1 - k))
       (\sum k=1..n+1. \text{ of_nat (n choose (k - 1)) * a^k * b^(n + 1 - k))"}
    by (simp add: atMost_atLeast0 sum.shift_bounds_cl_Suc_ivl Suc_diff_le
field_simps del: sum.cl_ivl_Suc)
  also have "... = b^(n + 1) +
       (\sum k=1..n. \text{ of_nat (n choose k)} * a^k * b^(n + 1 - k)) + (a^(n + k))
1) +
       (\sum k=1..n. \text{ of_nat (n choose (k - 1)) * a^k * b^(n + 1 - k))}"
      using sum.nat_ivl_Suc' [of 1 n "\lambdak. of_nat (n choose (k-1)) * a
^{n} k * b ^{n} (n + 1 - k)"]
    by (simp add: sum.atLeast_Suc_atMost atMost_atLeast0)
  also have "... = a^(n + 1) + b^(n + 1) +
       (\sum k=1..n. \text{ of_nat } (n + 1 \text{ choose } k) * a^k * b^(n + 1 - k))"
    by (auto simp add: field_simps sum.distrib [symmetric] choose_reduce_nat)
  also have "... = (\sum k \le n+1). of_nat (n + 1) choose k \ge n+1. of_nat (n + 1) choose k \ge n+1.
```

```
- k))"
    using decomp by (simp add: atMost_atLeast0 field_simps)
 finally show ?case
    by simp
ged
lemma prime_not_dvd_fact:
assumes kn: "k < n" and prime_n: "prime n"
shows "\neg n dvd fact k"
 using kn leD prime_dvd_fact_iff prime_n by auto
lemma dvd_choose_prime:
assumes kn: "k < n" and k: "k \neq 0" and n: "n \neq 0" and prime_n: "prime
shows "n dvd (n choose k)"
proof -
 have "n dvd (fact n)" by (simp add: fact_num_eq_if n)
 moreover have "\neg n dvd (fact k * fact (n-k))"
 proof (rule ccontr, safe)
    assume "n dvd fact k * fact (n - k)"
    hence "n dvd fact k ∨ n dvd fact (n - k)" using prime_dvd_mult_eq_nat[OF
prime_n] by simp
    moreover have "¬ n dvd (fact k)" by (rule prime_not_dvd_fact[OF
kn prime_n])
    moreover have "¬ n dvd fact (n - k)" using prime_not_dvd_fact[OF
_ prime_n] kn k by simp
    ultimately show False by simp
  \mathbf{qed}
 moreover have "(fact n::nat) = fact k * fact (n-k) * (n choose k)"
    using binomial_fact_lemma kn by auto
  ultimately show ?thesis using prime_n
    by (auto simp add: prime_dvd_mult_iff)
qed
lemma CHAR_not_1 [simp]: "CHAR('a :: {semiring_1, zero_neq_one}) ≠ Suc
 by (metis One_nat_def of_nat_1 of_nat_CHAR zero_neq_one)
lemma (in idom) CHAR_not_1' [simp]: "CHAR('a) \neq Suc 0"
  using local.of_nat_CHAR by fastforce
lemma semiring_char_mod_ring [simp]:
  "CHAR('n :: nontriv mod_ring) = CARD('n)"
proof (rule CHAR_eq_posI)
  fix x assume "x > 0" "x < CARD('n)"
 thus "of_nat x \neq (0 :: 'n mod_ring)"
   by transfer auto
```

```
qed auto
lemma of_nat_eq_iff_cong_CHAR:
  "of_nat x = (of_nat \ y :: 'a :: semiring_1_cancel) \longleftrightarrow [x = y] (mod CHAR('a))"
proof (induction x y rule: linorder_wlog)
  case (le x y)
  define z where "z = y - x"
  have [simp]: "y = x + z"
    using le by (auto simp: z_def)
  have "(CHAR('a) dvd z) = [x = x + z] (mod CHAR('a))"
    by (metis <y = x + z> cong_def le mod_eq_dvd_iff_nat z_def)
  thus ?case
    by (simp add: of_nat_eq_0_iff_char_dvd)
qed (simp add: eq_commute cong_sym_eq)
lemma (in ring_1) of_int_eq_0_iff_char_dvd:
  "(of_int n = (0 :: 'a)) = (int CHAR('a) dvd n)"
proof (cases "n \ge 0")
  case True
  hence "(of_int n = (0 :: 'a)) \longleftrightarrow (of_nat (nat n)) = (0 :: 'a)"
    by auto
  also have "... \longleftrightarrow CHAR('a) dvd nat n"
    by (subst of_nat_eq_0_iff_char_dvd) auto
  also have "... \longleftrightarrow int CHAR('a) dvd n"
    using True by presburger
  finally show ?thesis .
next
  case False
  hence "(of_int n = (0 :: 'a)) \longleftrightarrow -(of_nat (nat (-n))) = (0 :: 'a)"
    by auto
  also have "... \longleftrightarrow CHAR('a) dvd nat (-n)"
    by (auto simp: of_nat_eq_0_iff_char_dvd)
  also have "... \longleftrightarrow int CHAR('a) dvd n"
    using False dvd_nat_abs_iff[of "CHAR('a)" n] by simp
  finally show ?thesis .
qed
lemma (in ring_1) of_int_eq_iff_cong_CHAR:
  "of_int x = (of_int y :: 'a) \longleftrightarrow [x = y] (mod int CHAR('a))"
proof -
  have "of_int x = (of_int y :: 'a) \longleftrightarrow of_int (x - y) = (0 :: 'a)"
    by auto
  also have "... \longleftrightarrow (int CHAR('a) dvd x - y)"
    by (rule of_int_eq_0_iff_char_dvd)
  also have "... \longleftrightarrow [x = y] (mod int CHAR('a))"
    by (simp add: cong_iff_dvd_diff)
  finally show ?thesis .
```

qed

```
lemma finite_imp_CHAR_pos:
  assumes "finite (UNIV :: 'a set)"
  shows
          "CHAR('a :: semiring_1_cancel) > 0"
proof -
  have "\exists n \in UNIV. infinite \{m \in UNIV. of_nat m = (of_nat n :: 'a)\}"
  proof (rule pigeonhole_infinite)
    show "infinite (UNIV :: nat set)"
    show "finite (range (of_nat :: nat ⇒ 'a))"
      by (rule finite_subset[OF _ assms]) auto
  qed
  then obtain n :: nat where "infinite {m ∈ UNIV. of_nat m = (of_nat
n :: 'a)}"
    by blast
  hence "\neg({m \in UNIV. of_nat m = (of_nat n :: 'a)} \subseteq {n})"
    by (intro notI) (use finite subset in blast)
  then obtain m where "m \neq n" "of_nat m = (of_nat n :: 'a)"
    by blast
  hence [m = n] \pmod{CHAR(a)}
    by (simp add: of_nat_eq_iff_cong_CHAR)
  hence "CHAR('a) \neq 0"
    \mathbf{using} \ \texttt{`m} \neq \texttt{n} \texttt{`by} \ \texttt{(intro notI)} \ \texttt{auto}
  thus ?thesis
    by simp
qed
lemma CHAR_dvd_CARD: "CHAR('a :: ring_1) dvd CARD('a)"
proof (cases "CARD('a) = 0")
  case False
  hence [intro]: "CHAR('a) > 0"
    by (simp add: card_eq_0_iff finite_imp_CHAR_pos)
  define G where "G = (UNIV :: 'a set), monoid.mult = (+),
one = (0 :: 'a) "
  define H where "H = (of_nat ` {..<CHAR('a)} :: 'a set)"</pre>
  interpret group G
  proof (rule groupI)
    fix x assume x: "x \in carrier G"
    show "\exists y \in carrier G. y \otimes_G x = 1_G"
      by (intro bexI[of _ "-x"]) (auto simp: G_def)
  qed (auto simp: G_def add_ac)
  interpret subgroup H G
  proof
    show "1_G \in H"
      using False unfolding G_def H_def
      by (intro image_eqI[of _ _ 0]) auto
  next
    \mathbf{fix} \ x \ y :: 'a
    assume "x \in H" "y \in H"
```

```
then obtain x' y' where [simp]: "x = of_nat x'" "y = of_nat y'"
      by (auto simp: H_def)
    have "x + y = of_nat((x' + y') mod CHAR('a))"
      by (auto simp flip: of_nat_add simp: of_nat_eq_iff_cong_CHAR)
    moreover have "(x' + y') \mod CHAR('a) < CHAR('a)"
      using H_{def} \langle y \in H \rangle by fastforce
    ultimately show "x \otimes_G y \in H"
      by (auto simp: H_def G_def intro!: imageI)
  next
    fix x :: 'a
    assume x: "x \in H"
    then obtain x' where [simp]: "x = of_nat x'" and x': "x' < CHAR('a)"
      by (auto simp: H_def)
    have "CHAR('a) dvd x' + (CHAR('a) - x') \mod CHAR('a)"
      by (metis x' dvd_eq_mod_eq_0 le_add_diff_inverse mod_add_right_eq
mod self order less imp le)
    hence "x + of_nat ((CHAR('a) - x') mod CHAR('a)) = 0"
      by (auto simp flip: of_nat_add simp: of_nat_eq_0_iff_char_dvd)
    moreover from this have "inv<sub>G</sub> x = of_nat ((CHAR('a) - x') mod CHAR('a))"
      by (intro inv_equality) (auto simp: G_def add_ac)
    moreover have "of_nat ((CHAR('a) - x') mod CHAR('a)) \in H"
      unfolding H_def using <CHAR('a) > 0> by (intro imageI) auto
    ultimately show "inv<sub>G</sub> x \in H" by force
  qed (auto simp: G_def H_def)
 have "card H dvd card (rcosets<sub>G</sub> H) * card H"
  also have "card (rcosets<sub>G</sub> H) * card H = Coset.order G"
  proof (rule lagrange_finite)
    show "finite (carrier G)"
      using False card_ge_0_finite by (auto simp: G_def)
  qed (fact is subgroup)
  finally have "card H dvd CARD('a)"
    by (simp add: Coset.order_def G_def)
  also have "card H = card {..<CHAR('a)}"
    unfolding H_def by (intro card_image inj_onI) (auto simp: of_nat_eq_iff_cong_CHAR
cong_def)
  finally show "CHAR('a) dvd CARD('a)"
    by simp
qed auto
lemma (in idom) prime_CHAR_semidom:
  assumes "CHAR('a) > 0"
 shows
           "prime CHAR('a)"
proof -
 have False if ab: "a \neq 1" "b \neq 1" "CHAR('a) = a * b" for a b
    from assms ab have "a > 0" "b > 0"
      by (auto intro!: Nat.gr0I)
```

```
have "of_nat (a * b) = (0 :: 'a)"
      using ab by (metis of_nat_CHAR)
    also have "of_nat (a * b) = (of_nat a :: 'a) * of_nat b"
      by simp
    finally have "of_nat a * of_nat b = (0 :: 'a)".
    moreover have "of_nat a * of_nat b \neq (0 :: 'a)"
      using ab \langle a > 0 \rangle \langle b > 0 \rangle
      by (intro no_zero_divisors) (auto simp: of_nat_eq_0_iff_char_dvd)
    ultimately show False
      by contradiction
  qed
  moreover have "CHAR('a) > 1"
    using assms CHAR_not_1' by linarith
  ultimately have "prime_elem CHAR('a)"
    by (intro irreducible_imp_prime_elem) (auto simp: Factorial_Ring.irreducible_def)
  thus ?thesis
    by auto
qed
Characteristics are preserved by typical functors (polynomials, power series,
Laurent series):
lemma semiring_char_poly [simp]: "CHAR('a :: comm_semiring_1 poly) =
CHAR('a)"
  by (rule CHAR_eqI) (auto simp: of_nat_poly of_nat_eq_0_iff_char_dvd)
lemma semiring_char_fps [simp]: "CHAR('a :: comm_semiring_1 fps) = CHAR('a)"
  by (rule CHAR_eqI) (auto simp flip: fps_of_nat simp: of_nat_eq_0_iff_char_dvd)
\mathbf{lemma} \  \, \mathit{fls\_const\_eq\_0\_iff} \  \, [\mathit{simp}] \colon \, \mathit{"fls\_const} \  \, \mathit{c} \, = \, \mathit{0} \, \longleftrightarrow \, \mathit{c} \, = \, \mathit{0"}
  using fls_const_0 fls_const_nonzero by blast
lemma semiring_char_fls [simp]: "CHAR('a :: comm_semiring_1 fls) = CHAR('a)"
  by (rule CHAR_eqI) (auto simp: fls_of_nat of_nat_eq_0_iff_char_dvd fls_const_nonzero)
lemma irreducible_power_iff [simp]:
  "irreducible (p ^ n) \longleftrightarrow irreducible p \land n = 1"
proof
  assume *: "irreducible (p ^ n)"
  have [simp]: "¬p dvd 1"
  proof
    assume "p dvd 1"
    hence "p ^ n dvd 1"
      by (metis dvd_power_same power_one)
    with * show False
      by auto
  qed
  consider "n = 0" \mid "n = 1" \mid "n > 1"
```

```
by linarith
  thus "irreducible p \land n = 1"
  proof cases
    assume "n > 1"
    hence "p \hat{n} = p * p (n - 1)"
      by (cases n) auto
    with * \langle \neg p \text{ dvd } 1 \rangle have "p ^ (n - 1) dvd 1"
      using irreducible_multD by blast
    with \langle \neg p \text{ dvd } 1 \rangle and \langle n \rangle 1 \rangle have False
      by (meson dvd_power dvd_trans zero_less_diff)
    thus ?thesis ..
  qed (use * in auto)
qed auto
lemma pderiv_monom:
  "pderiv (Polynomial.monom c n) = of_nat n * Polynomial.monom c (n -
proof (cases n)
  case (Suc n)
  show ?thesis
    unfolding monom_altdef Suc pderiv_smult pderiv_power_Suc pderiv_pCons
    by (simp add: of_nat_poly)
qed (auto simp: monom_altdef)
lemma uminus_CHAR_2 [simp]:
  assumes "CHAR('a :: ring_1) = 2"
         ''-(x :: 'a) = x''
  \mathbf{shows}
proof -
  have "x + x = 2 * x"
    by (simp add: mult_2)
  also have "2 = (0 :: 'a)"
    using assms by (metis of_nat_CHAR of_nat_numeral)
  finally show ?thesis
    by (simp add: add_eq_0_iff2)
qed
lemma minus_CHAR_2 [simp]:
  assumes "CHAR('a :: ring_1) = 2"
  shows "(x - y :: 'a) = x + y"
  using uminus_CHAR_2[of y] assms by simp
lemma minus_power_prime_CHAR:
  assumes "p = CHAR('a :: {ring_1})" "prime p"
  shows "(-x :: 'a) \hat{p} = -(x \hat{p})"
proof (cases "p = 2")
  case False
  have "prime p"
    using assms by blast
  with False have "odd p"
```

```
using primes_dvd_imp_eq two_is_prime_nat by blast
thus ?thesis
   by simp
qed (use assms in auto)
```

1 Perfect Fields

```
theory Perfect_Fields
imports
   "Berlekamp_Zassenhaus.Finite_Field"
   Perfect_Field_Library
begin
```

1.1 Rings and fields with prime characteristic

We introduce some type classes for rings and fields with prime characteristic.

```
class semiring_prime_char = semiring_1 +
 assumes prime_char_aux: "\exists n. prime n \land of_nat n = (0 :: 'a)"
begin
lemma CHAR_pos [intro, simp]: "CHAR('a) > 0"
  using local.CHAR_pos_iff local.prime_char_aux prime_gt_0_nat by blast
lemma CHAR_nonzero [simp]: "CHAR('a) ≠ 0"
  using CHAR_pos by auto
lemma CHAR_prime [intro, simp]: "prime CHAR('a)"
 by (metis (mono_tags, lifting) gcd_nat.order_iff_strict local.of_nat_1
local.of_nat_eq_0_iff_char_dvd
        local.one_neq_zero local.prime_char_aux prime_nat_iff)
end
lemma semiring_prime_charI [intro?]:
  "prime CHAR('a :: semiring_1) \Longrightarrow OFCLASS('a, semiring_prime_char_class)"
 by standard auto
lemma idom_prime_charI [intro?]:
 assumes "CHAR('a :: idom) > 0"
 \mathbf{shows}
         "OFCLASS('a, semiring_prime_char_class)"
proof
 show "prime CHAR('a)"
    using assms prime_CHAR_semidom by blast
qed
```

```
class comm_ring_prime_char = comm_ring_1 + semiring_prime_char
begin
subclass comm_semiring_prime_char ..
class idom_prime_char = idom + semiring_prime_char
begin
subclass comm_ring_prime_char ..
end
class field_prime_char = field +
 assumes pos\_char\_exists: "\exists n>0. of_nat n = (0 :: 'a)"
begin
subclass idom_prime_char
 apply standard
 using pos char exists local.CHAR pos iff local.of nat CHAR local.prime CHAR semidom
by blast
end
lemma field_prime_charI [intro?]:
  "n > 0 \Longrightarrow of_nat n = (0 :: 'a :: field) \Longrightarrow OFCLASS('a, field_prime_char_class)"
  by standard auto
lemma field_prime_charI' [intro?]:
  "CHAR('a :: field) > 0 \Longrightarrow OFCLASS('a, field_prime_char_class)"
  by standard auto
Typical functors like polynomials, formal power seires, and formal Laurent
series preserve the characteristic of the coefficient ring.
instance poly :: ("{semiring_prime_char,comm_semiring_1}") semiring_prime_char
  by (rule semiring_prime_charI) auto
instance poly :: ("{comm_semiring_prime_char,comm_semiring_1}") comm_semiring_prime_char
 by standard
instance poly :: ("{comm_ring_prime_char,comm_semiring_1}") comm_ring_prime_char
 by standard
instance poly :: ("{idom_prime_char,comm_semiring_1}") idom_prime_char
 by standard
instance fps :: ("{semiring_prime_char,comm_semiring_1}") semiring_prime_char
 by (rule semiring_prime_charI) auto
instance fps :: ("{comm_semiring_prime_char,comm_semiring_1}") comm_semiring_prime_char
 by standard
instance fps :: ("{comm_ring_prime_char,comm_semiring_1}") comm_ring_prime_char
  by standard
instance fps :: ("{idom_prime_char,comm_semiring_1}") idom_prime_char
 by standard
instance fls :: ("{semiring_prime_char,comm_semiring_1}") semiring_prime_char
```

class comm_semiring_prime_char = comm_semiring_1 + semiring_prime_char

```
by (rule semiring_prime_charI) auto
instance fls :: ("{comm_semiring_prime_char,comm_semiring_1}") comm_semiring_prime_char
 by standard
instance fls :: ("{comm_ring prime_char,comm_semiring_1}") comm_ring_prime_char
  by standard
instance fls :: ("{idom_prime_char,comm_semiring_1}") idom_prime_char
  by standard
instance fls :: ("{field_prime_char,comm_semiring_1}") field_prime_char
 by (rule field_prime_charI') auto
1.2 Finite fields
class finite_field = field_prime_char + finite
lemma finite_fieldI [intro?]:
 assumes "finite (UNIV :: 'a :: field set)"
         "OFCLASS('a, finite_field_class)"
proof standard
 show "\exists n > 0. of nat n = (0 :: 'a)"
    using assms prime_CHAR_semidom[where ?'a = 'a] finite_imp_CHAR_pos[OF
    by (intro exI[of _ "CHAR('a)"]) auto
qed fact+
class enum_finite_field = finite_field +
  fixes \ enum\_finite\_field :: "nat \Rightarrow 'a"
  assumes enum_finite_field: "enum_finite_field ` {..<CARD('a)} = UNIV"
begin
lemma inj on enum finite field: "inj on enum finite field { ..<CARD('a)}"
  using enum_finite_field by (simp add: eq_card_imp_inj_on)
end
instance mod_ring :: (prime_card) finite_field
 by standard simp_all
instantiation mod_ring :: (prime_card) enum_finite_field
begin
definition enum_finite_field_mod_ring :: "nat \Rightarrow 'a mod_ring" where
  "enum_finite_field_mod_ring n = of_int_mod_ring (int n)"
instance proof
 interpret type_definition "Rep_mod_ring :: 'a mod_ring ⇒ int" Abs_mod_ring
"{0..<CARD('a)}"
    by (rule type_definition_mod_ring)
 have "enum_finite_field ` {..<CARD('a mod_ring)} = of_int_mod_ring `</pre>
```

int ` {..<CARD('a mod ring)}"</pre>

```
unfolding enum_finite_field_mod_ring_def by (simp add: image_image
o_def)
also have "int ` {..<CARD('a mod_ring)} = {0...<int CARD('a mod_ring)}"
   by (simp add: image_atLeastZeroLessThan_int)
also have "of_int_mod_ring ` ... = (Abs_mod_ring ` ... :: 'a mod_ring
set)"
   by (intro image_cong refl) (auto simp: of_int_mod_ring_def)
also have "... = (UNIV :: 'a mod_ring set)"
   using Abs_image by simp
finally show "enum_finite_field ` {..<CARD('a mod_ring)} = (UNIV :: 'a
mod_ring set)" .
qed</pre>
```

end

On a finite field with n elements, taking the n-th power of an element is the identity. This is an obvious consequence of the fact that the multiplicative group of the field is a finite group of order n-1, so $x^n = 1$ for any non-zero x.

Note that this result is sharp in the sense that the multiplicative group of a finite field is cyclic, i.e. it contains an element of order n-1. (We don't prove this here.)

```
lemma finite_field_power_card_eq_same:
 fixes x :: "'a :: finite_field"
 shows "x \cap CARD('a) = x"
proof (cases "x = 0")
 case False
 let ?R = "(carrier = (UNIV :: 'a set), monoid.mult = (*), one = 1, zero
= 0, add = (+)
 interpret field "?R" rewrites "([^]?R) = (^)"
 proof -
   show "field ?R"
     by unfold locales (auto simp: Units def add eq 0 iff ring distribs
                             intro!: exI[of _ "inverse x" for x] left_inverse
right_inverse)
   by (induction n) auto
   thus "([^]_{?R}) = (^)"
     by blast
 qed
 note fin [intro] = finite_class.finite_UNIV[where ?'a = 'a]
 have "x \hat{} (CARD('a) - 1) * x = x \hat{} CARD('a)"
   using finite_UNIV_card_ge_0 power_minus_mult by blast
 also have "x \hat{} (CARD('a) - 1) = 1"
   using units_power_order_eq_one[of x] fin False
   by (simp add: field_Units)
 finally show ?thesis
```

```
by simp
qed (use finite_class.finite_UNIV[where ?'a = 'a] in <auto simp: card_gt_0_iff>)
lemma finite_field_power_card_power_eq_same:
  fixes x :: "'a :: finite field"
 assumes "m = CARD('a) ^n"
         "x ^m = x"
 \mathbf{shows}
 unfolding assms
 by (induction n) (simp_all add: finite_field_power_card_eq_same power_mult)
typedef (overloaded) 'a :: semiring_1 ring_char = "if CHAR('a) = 0 then
UNIV else {0..<CHAR('a)}"
 by auto
lemma CARD_ring_char [simp]: "CARD ('a :: semiring_1 ring_char) = CHAR('a)"
proof -
 let ?A = "if CHAR('a) = 0 then UNIV else {0..<CHAR('a)}"</pre>
 interpret type_definition "Rep_ring_char :: 'a ring_char ⇒ nat" Abs_ring_char
    by (rule type_definition_ring_char)
 from card show ?thesis
    by auto
qed
instance ring_char :: (semiring_prime_char) nontriv
 show "CARD('a ring_char) > 1"
    using prime_nat_iff by auto
qed
instance ring_char :: (semiring_prime_char) prime_card
proof
 from CARD_ring_char show "prime CARD('a ring_char)"
    by auto
qed
lemma to_int_mod_ring_add:
  "to_int_mod_ring (x + y :: 'a :: finite mod_ring) = (to_int_mod_ring
x + to_int_mod_ring y) mod CARD('a)"
 by transfer auto
lemma to_int_mod_ring_mult:
  "to_int_mod_ring (x * y :: 'a :: finite mod_ring) = (to_int_mod_ring
x * to_int_mod_ring y) mod CARD('a)"
 by transfer auto
lemma of_nat_mod_CHAR [simp]: "of_nat (x mod CHAR('a :: semiring_1))
= (of_nat x :: 'a)"
```

```
by (metis (no_types, opaque_lifting) comm_monoid_add_class.add_0 div_mod_decomp
         mult_zero_right of_nat_CHAR of_nat_add of_nat_mult)
lemma of_int_mod_CHAR [simp]: "of_int (x mod int CHAR('a :: ring_1))
= (of int x :: 'a)"
  by (simp add: of_int_eq_iff_cong_CHAR)
lemma (in vector_space) bij_betw_representation:
  assumes [simp]: "independent B" "finite B"
          "bij_betw (\lambdav. \sum b\inB. scale (v b) b) (B 
ightarrow_E UNIV) (span B)"
proof (rule bij_betwI)
  show "(\lambda v. \sum b \in B. \ v \ b *s \ b) \in (B \rightarrow_E \mathit{UNIV}) \rightarrow \mathit{local.span} \ B"
    (is "?f \in \_")
    by (auto intro: span_sum span_scale span_base)
  show "(\lambda x. restrict (representation B x) B) \in local.span B 	o B 	o_E
UNIV"
    (is "?g \in \_") by auto
  show "?g (?f v) = v" if "v \in B \rightarrow_E UNIV" for v
    fix b :: 'b
    show "?g (?f v) b = v b"
    \operatorname{proof} (cases "b \in B")
      case b: True
      have "?g (?f v) b = (\sum i \in B. local.representation B (v i *s i) b)"
        using b by (subst representation_sum) (auto intro: span_scale
span_base)
      also have "... = (\sum i \in B. \ v \ i * local.representation B \ i \ b)"
        by (intro sum.cong) (auto simp: representation_scale span_base)
      also have "... = (\sum i \in \{b\}. v i * local.representation B i b)"
        by (intro sum.mono_neutral_right) (auto simp: representation_basis
b)
      also have "... = v b"
        by (simp add: representation_basis b)
      finally show "?g (?f v) b = v b".
    qed (use that in auto)
  show "?f (?g v) = v" if "v \in span B" for v
    using that by (simp add: sum_representation_eq)
qed
lemma (in vector_space) card_span:
  assumes [simp]: "independent B" "finite B"
          "card (span B) = CARD('a) ^ card B"
proof -
  have "card (B \rightarrow_E (UNIV :: 'a set)) = card (span B)"
    by (rule bij_betw_same_card, rule bij_betw_representation) fact+
  thus ?thesis
    by (simp add: card_PiE dim_span_eq_card_independent)
qed
```

```
lemma (in zero_neq_one) CARD_neq_1: "CARD('a) \neq Suc 0"
proof
  assume "CARD('a) = Suc 0"
  have "\{0, 1\} \subseteq (UNIV :: 'a set)"
    by simp
  also have "is_singleton (UNIV :: 'a set)"
    by (simp add: is_singleton_altdef <CARD('a) = _>)
  then obtain x :: 'a \text{ where "UNIV = } \{x\}"
    by (elim is_singletonE)
  finally have "0 = (1 :: 'a)"
    by blast
  thus False
    using zero_neq_one by contradiction
qed
theorem CARD_finite_field_is_CHAR_power: "\( \frac{1}{2} \) n>0. CARD('a :: finite_field)
= CHAR('a) ^ n"
proof -
  define s :: "'a ring\_char mod\_ring \Rightarrow 'a \Rightarrow 'a" where
    "s = (\lambda x \ y. \ of_int \ (to_int_mod_ring \ x) * y)"
  interpret vector_space s
    by unfold_locales (auto simp: s_def algebra_simps to_int_mod_ring_add
to_int_mod_ring_mult)
  obtain B where B: "independent B" "span B = UNIV"
    \mathbf{by} \ (\texttt{rule basis\_exists[of UNIV]}) \ \mathtt{auto}
  have [simp]: "finite B"
    by simp
  have "card (span B) = CHAR('a) ^ card B"
    using B by (subst card_span) auto
  hence *: "CARD('a) = CHAR('a) ^ card B"
    using B by simp
  from * have "card B \neq 0"
    by (auto simp: B(2) CARD_neq_1)
  with * show ?thesis
    by blast
qed
```

1.3 The Freshman's Dream in rings of non-zero characteristic

```
lemma (in comm_semiring_1) freshmans_dream:
    fixes x y :: 'a and n :: nat
    assumes "prime CHAR('a)"
    assumes n_def: "n = CHAR('a)"
    shows "(x + y) ^ n = x ^ n + y ^ n"
proof -
    interpret comm_semiring_prime_char
    by standard (auto intro!: exI[of _ "CHAR('a)"] assms)
    have "n > 0"
```

```
unfolding n_def by simp
     have "(x + y) \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{k} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{k} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{k} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{k} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{k} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{k} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \le n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \ge n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \ge n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \ge n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \ge n. \text{ of_nat (n choose k)} * x \hat{n} * y \hat{n} = (\sum k \ge n. \text{ of_nat (n ch
k))"
           by (rule binomial_ring)
     also have "... = (\sum k \in \{0,n\}. of_nat (n choose k) * x ^ k * y ^ (n -
     proof (intro sum.mono_neutral_right ballI)
           fix k assume "k \in \{..n\} - \{0, n\}"
          hence k: "k > 0" "k < n"
                by auto
          have "CHAR('a) dvd (n choose k)"
                unfolding n_def
                by (rule dvd_choose_prime) (use k in <auto simp: n_def>)
           hence "of_nat (n choose k) = (0 :: 'a)"
                using of_nat_eq_0_iff_char_dvd by blast
           thus "of_nat (n choose k) * x ^k * y ^k (n - k) = 0"
                by simp
     qed auto
     finally show ?thesis
           using \langle n \rangle 0 \rangle by (simp add: add_ac)
qed
lemma (in comm_semiring_1) freshmans_dream':
     assumes [simp]: "prime CHAR('a)" and "m = CHAR('a) ^n"
     shows "(x + y :: 'a) ^ m = x ^ m + y ^ m"
     unfolding assms(2)
proof (induction n)
     case (Suc n)
     have "(x + y) ^ (CHAR('a) ^ n * CHAR('a)) = ((x + y) ^ (CHAR('a) ^ n))
 ^ CHAR('a)"
          by (rule power_mult)
     thus ?case
          by (simp add: Suc.IH freshmans_dream Groups.mult_ac flip: power_mult)
qed auto
lemma (in comm_semiring_1) freshmans_dream_sum:
     fixes f :: "'b \Rightarrow 'a"
     assumes "prime CHAR('a)" and "n = CHAR('a)"
     shows "sum f A \hat{} n = sum (\lambdai. f i \hat{} n) A"
     using assms
     by (induct A rule: infinite_finite_induct)
              (auto simp add: power_0_left freshmans_dream)
lemma (in comm_semiring_1) freshmans_dream_sum':
     fixes f :: "'b \Rightarrow 'a"
     assumes "prime CHAR('a)" "m = CHAR('a) ^ n"
                          "sum f A \hat{} m = sum (\lambdai. f i \hat{} m) A"
     \mathbf{shows}
     using assms
     by (induction A rule: infinite_finite_induct)
```

1.4 The Frobenius endomorphism

```
definition (in semiring_1) frob :: "'a ⇒ 'a" where
  "frob x = x ^ CHAR('a)"
definition (in semiring_1) inv_frob :: "'a \Rightarrow 'a" where
  "inv_frob x = (if x \in \{0, 1\} then x else if x \in range frob then inv_into
UNIV frob x else x)"
lemma (in semiring_1) inv_frob_0 [simp]: "inv_frob 0 = 0"
 and inv\_frob\_1 [simp]: "inv\_frob 1 = 1"
 by (simp_all add: inv_frob_def)
lemma (in semiring_prime_char) frob_0 [simp]: "frob (0 :: 'a) = 0"
  by (simp add: frob_def power_0_left)
lemma (in semiring_1) frob_1 [simp]: "frob 1 = 1"
 by (simp add: frob_def)
lemma (in comm_semiring_1) frob_mult: "frob (x * y) = frob x * frob (y
:: 'a)"
 by (simp add: frob_def power_mult_distrib)
lemma (in comm_semiring_1)
  frob_add: "prime CHAR('a) \implies frob (x + y :: 'a) = frob x + frob (y)
:: 'a)"
 by (simp add: frob_def freshmans_dream)
lemma (in comm_ring_1) frob_uminus: "prime CHAR('a) \Longrightarrow frob (-x :: 'a)
= -frob x"
proof -
 assume "prime CHAR('a)"
 hence "frob (-x) + frob x = 0"
    by (subst frob_add [symmetric]) (auto simp: frob_def power_0_left)
 thus ?thesis
    by (simp add: add_eq_0_iff)
qed
lemma (in comm_ring_prime_char) frob_diff:
  "prime CHAR('a) \Longrightarrow frob (x - y :: 'a) = frob x - frob (y :: 'a)"
  using frob_add[of x "-y"] by (simp add: frob_uminus)
interpretation frob_sr: semiring_hom "frob :: 'a :: {comm_semiring_prime_char}
⇒ 'a"
 by standard (auto simp: frob_add frob_mult)
interpretation frob: ring_hom "frob :: 'a :: {comm_ring_prime_char} ⇒
```

```
by standard auto
interpretation frob: field_hom "frob :: 'a :: {field_prime_char} ⇒ 'a"
  by standard auto
lemma frob_mod_ring' [simp]: "(x :: 'a :: prime_card mod_ring) ^ CARD('a)
= x''
  by (metis CARD_mod_ring finite_field_power_card_eq_same)
lemma frob_mod_ring [simp]: "frob (x :: 'a :: prime_card mod_ring) =
  by (simp add: frob_def)
context semiring_1_no_zero_divisors
begin
lemma frob_eq_OD:
  "frob (x :: 'a) = 0 \implies x = 0"
  by (auto simp: frob_def)
lemma frob_eq_0_iff [simp]:
  "frob (x :: 'a) = 0 \longleftrightarrow x = 0 \land CHAR('a) > 0"
  by (auto simp: frob_def)
end
context idom_prime_char
begin
lemma inj_frob: "inj (frob :: 'a ⇒ 'a)"
proof
  \mathbf{fix} \ \mathbf{x} \ \mathbf{y} :: '\mathbf{a}
  assume "frob x = frob y"
  hence "frob (x - y) = 0"
    by (simp add: frob_diff del: frob_eq_0_iff)
  thus "x = y"
    by simp
qed
lemma frob_eq_frob_iff [simp]:
  "frob (x :: 'a) = frob y \longleftrightarrow x = y"
  using inj\_frob by (auto simp: inj\_def)
\mathbf{lemma} \  \, \mathbf{frob\_eq\_1\_iff} \  \, [\mathbf{simp}] \colon \, \text{"frob } \  \, (\mathtt{x} \ :: \ '\mathtt{a}) \ = \  \, 1 \longleftrightarrow \  \, \mathtt{x} \ = \  \, 1 \text{"}
  using frob_eq_frob_iff by fastforce
lemma inv_frob_frob [simp]: "inv_frob (frob (x :: 'a)) = x"
```

```
by (simp add: inj_frob inv_frob_def)
lemma frob_inv_frob [simp]:
  assumes "x \in range frob"
          "frob (inv_frob x) = (x :: 'a)"
  using assms by (auto simp: inj_frob inv_frob_def)
lemma inv_frob_eqI: "frob y = x \implies inv_frob x = y"
  using inv_frob_frob local.frob_def by force
lemma inv\_frob\_eq\_0\_iff [simp]: "inv\_frob (x :: 'a) = 0 \longleftrightarrow x = 0"
  using inj_frob by (auto simp: inv_frob_def split: if_splits)
end
class surj_frob = field_prime_char +
  assumes surj_frob [simp]: "surj (frob :: 'a ⇒ 'a)"
begin
lemma in_range_frob [simp, intro]: "(x :: 'a) ∈ range frob"
  using surj_frob by blast
lemma inv\_frob\_eq\_iff [simp]: "inv\_frob (x :: 'a) = y \longleftrightarrow frob y = x"
  using frob_inv_frob inv_frob_frob by blast
end
The following type class describes a field with a surjective Frobenius endo-
morphism that is effectively computable. This includes all finite fields.
class inv_frob = surj_frob +
  fixes \ \textit{inv\_frob\_code} \ :: \ \textit{"'a} \ \Rightarrow \ \textit{'a"}
  assumes inv_frob_code: "inv_frob x = inv_frob_code x"
lemmas [code] = inv_frob_code
context finite_field
begin
subclass surj_frob
proof
  show "surj (frob :: 'a \Rightarrow 'a)"
    using inj_frob finite_UNIV by (simp add: finite_UNIV_inj_surj)
qed
end
```

```
lemma inv_frob_mod_ring [simp]: "inv_frob (x :: 'a :: prime_card mod_ring)
= x"
    by (auto simp: frob_def)

instantiation mod_ring :: (prime_card) inv_frob
begin

definition inv_frob_code_mod_ring :: "'a mod_ring ⇒ 'a mod_ring" where
    "inv_frob_code_mod_ring x = x"

instance
    by standard (auto simp: inv_frob_code_mod_ring_def)
```

1.5 Inverting the Frobenius endomorphism on polynomials

If K is a field of prime characteristic p with a surjective Frobenius endomorphism, every polynomial P with P' = 0 has a p-th root.

To see that, let $\phi(a) = a^p$ denote the Frobenius endomorphism of K and its extension to K[X].

If P' = 0 for some $P \in K[X]$, then P must be of the form

$$P = a_0 + a_p x^p + a_{2p} x^{2p} + \ldots + a_{kp} x^{kp} .$$

If we now set

end

$$Q := \phi^{-1}(a_0) + \phi^{-1}(a_p)x + \phi^{-1}(a_{2p})x^2 + \ldots + \phi^{-1}(a_{kp})x^k$$

we get $\phi(Q) = P$, i.e. Q is the p-th root of P(x).

```
lift_definition inv_frob_poly :: "'a :: field poly \Rightarrow 'a poly" is
  "\lambda p i. if CHAR('a) = 0 then p i else inv_frob (p (i * CHAR('a)) :: 'a)"
proof goal_cases
  case (1 f)
  show ?case
  proof (cases "CHAR('a) > 0")
    case True
    from 1 obtain N where N: "f i = 0" if "i \geq N" for i
      using cofinite_eq_sequentially eventually_sequentially by auto
    have "inv_frob (f (i * CHAR('a))) = 0" if "i \geq N" for i
    proof -
      have "f (i * CHAR('a)) = 0"
      proof (rule N)
        show "N \le i * CHAR('a)"
          using that True
          by (metis One_nat_def Suc_leI le_trans mult.right_neutral mult_le_mono2)
```

```
qed
      thus "inv_frob (f (i * CHAR('a))) = 0"
        by (auto simp: power_0_left)
    thus ?thesis using True
      unfolding \ \textit{cofinite\_eq\_sequentially} \ \textit{eventually\_sequentially} \ \textit{by} \ \textit{auto}
  qed (use 1 in auto)
qed
lemma coeff_inv_frob_poly [simp]:
 fixes p :: "'a :: field poly"
  assumes "CHAR('a) > 0"
 shows "poly.coeff (inv_frob_poly p) i = inv_frob (poly.coeff p (i *
CHAR('a)))"
  using assms by transfer auto
lemma inv_frob_poly_0 [simp]: "inv_frob_poly 0 = 0"
 by transfer (auto simp: fun_eq_iff power_0_left)
lemma inv_frob_poly_1 [simp]: "inv_frob_poly 1 = 1"
  by transfer (auto simp: fun_eq_iff power_0_left)
lemma degree_inv_frob_poly_le:
  fixes p :: "'a :: field poly"
 assumes "CHAR('a) > 0"
 shows "Polynomial.degree (inv_frob_poly p) \le Polynomial.degree p div
CHAR('a)"
proof (intro degree_le allI impI)
  fix i assume "Polynomial.degree p div CHAR('a) < i"
 hence "i * CHAR('a) > Polynomial.degree p"
    using assms div_less_iff_less_mult by blast
 thus "Polynomial.coeff (inv_frob_poly p) i = 0"
    by (simp add: coeff_eq_0 power_0_left assms)
qed
context
 assumes "SORT_CONSTRAINT('a :: comm_ring_1)"
  assumes prime_char: "prime CHAR('a)"
begin
lemma poly_power_prime_char_as_sum_of_monoms:
  fixes h :: "'a poly"
  shows "h \hat{} CHAR('a) = (\sum i \leq Polynomial.degree\ h.\ Polynomial.monom\ (Polynomial.coeff
h i ^ CHAR('a)) (CHAR('a)*i))"
proof -
 have "h ^ CHAR('a) = (\sum i \le Polynomial.degree\ h. Polynomial.monom (Polynomial.coeff
h i) i) ^ CHAR('a)"
    by (simp add: poly_as_sum_of_monoms)
  also have "... = (\sum i \le Polynomial.degree h. (Polynomial.monom (Polynomial.coeff
```

```
h i) i) ^ CHAR('a))"
    by (simp add: freshmans_dream_sum prime_char)
  also have "... = (\sum i \le Polynomial.degree h. Polynomial.monom (Polynomial.coeff)
h i ^ CHAR('a)) (CHAR('a)*i))"
 proof (rule sum.cong, rule)
    fix x assume x: "x \in \{...Polynomial.degree h\}"
    show "Polynomial.monom (Polynomial.coeff h x) x ^ CHAR('a) = Polynomial.monom
(Polynomial.coeff h x ^{\circ} CHAR('a)) (CHAR('a) * x)"
      by (unfold poly_eq_iff, auto simp add: monom_power)
 finally show ?thesis.
qed
lemma coeff_of_prime_char_power [simp]:
 fixes y :: "'a poly"
 shows "poly.coeff (y \hat{} CHAR('a)) (i * CHAR('a)) = poly.coeff y i \hat{} CHAR('a)"
  using prime char
  by (subst poly_power_prime_char_as_sum_of_monoms, subst Polynomial.coeff_sum)
     (auto intro: le_degree simp: power_0_left)
lemma coeff_of_prime_char_power':
  fixes y :: "'a poly"
 shows "poly.coeff (y ^ CHAR('a)) i =
            (if CHAR('a) dvd i then poly.coeff y (i div CHAR('a)) ^ CHAR('a)
else 0)"
proof -
 have "poly.coeff (y \cap CHAR('a)) i =
          (\sum j \le Polynomial.degree y. Polynomial.coeff (Polynomial.monom)
(Polynomial.coeff y j ^ CHAR('a)) (CHAR('a) * j)) i)"
    by \ (\verb|subst| poly_power_prime_char_as_sum_of_monoms|, \ \verb|subst| Polynomial.coeff_sum|)
 also have "... = (\sum j \in (\text{if CHAR}('a) \ dvd \ i \ \land \ i \ div \ CHAR('a) \le Polynomial.degree)
y then {i div CHAR('a)} else {}).
                     Polynomial.coeff (Polynomial.monom (Polynomial.coeff
y j ^ CHAR('a)) (CHAR('a) * j)) i)"
    by (intro sum.mono_neutral_right) (use prime_char in auto)
 also have "... = (if CHAR('a) dvd i then poly.coeff y (i div CHAR('a))
^ CHAR('a) else 0)"
  proof (cases "CHAR('a) dvd i \land i div CHAR('a) > Polynomial.degree y")
    case True
    hence "Polynomial.coeff y (i div CHAR('a)) ^ CHAR('a) = 0"
      using prime_char by (simp add: coeff_eq_0 zero_power power_0_left)
    thus ?thesis
      by auto
  qed auto
  finally show ?thesis .
ged
end
```

```
context
  assumes "SORT_CONSTRAINT('a :: field)"
  assumes pos_char: "CHAR('a) > 0"
interpretation field_prime_char "(/)" inverse "(*)" "1 :: 'a" "(+)" 0 "(-)"
uminus
  rewrites "semiring_1.frob 1 (*) (+) (0 :: 'a) = frob" and
           "semiring_1.inv_frob 1 (*) (+) (0 :: 'a) = inv_frob" and
           "semiring_1.semiring_char 1 (+) 0 TYPE('a) = CHAR('a)"
{\bf proof} \ {\it unfold\_locales}
  have *: "class.semiring_1 (1 :: 'a) (*) (+) 0" ..
 have [simp]: "semiring_1.of_nat (1 :: 'a) (+) 0 = of_nat"
    by (auto simp: of_nat_def semiring_1.of_nat_def[OF *])
  thus "\exists n>0. semiring_1.of_nat (1 :: 'a) (+) 0 n = 0"
   by (intro exI[of \_ "CHAR('a)"]) (use pos_char in auto)
  show "semiring_1.semiring_char 1 (+) 0 TYPE('a) = CHAR('a)"
    by (simp add: fun_eq_iff semiring_char_def semiring_1.semiring_char_def[OF
  show [simp]: "semiring_1.frob (1 :: 'a) (*) (+) 0 = frob"
    by (simp add: frob_def semiring_1.frob_def[OF *] fun_eq_iff
                  power.power_def power_def semiring_char_def semiring_1.semiring_char_def[
  show "semiring_1.inv_frob (1 :: 'a) (*) (+) 0 = inv_frob"
    by (simp add: inv_frob_def semiring_1.inv_frob_def[OF *] fun_eq_iff)
qed
lemma inv_frob_poly_power': "inv_frob_poly (p ^ CHAR('a) :: 'a poly)
= p"
 using prime_CHAR_semidom[OF pos_char] pos_char
 by (auto simp: poly_eq_iff simp flip: frob_def)
lemma inv_frob_poly_power:
 fixes p :: "'a poly"
 assumes "is_nth_power CHAR('a) p" and "n = CHAR('a)"
           "inv_frob_poly p ^ CHAR('a) = p"
 shows
proof -
  from assms(1) obtain q where q: "p = q ^{\circ} CHAR('a)"
    by (elim is_nth_powerE)
  thus ?thesis using assms
    by (simp add: q inv_frob_poly_power')
qed
theorem pderiv_eq_0_imp_nth_power:
  assumes "pderiv (p :: 'a poly) = 0"
  assumes [simp]: "surj (frob :: 'a \Rightarrow 'a)"
  shows "is_nth_power CHAR('a) p"
```

```
proof -
 have *: "poly.coeff p n = 0" if n: "\negCHAR('a) dvd n" for n
 proof (cases "n = 0")
    case False
    have "poly.coeff (pderiv p) (n - 1) = of_nat n * poly.coeff p n"
      using False by (auto simp: coeff_pderiv)
    with assms and n show "poly.coeff p n = 0"
      by (auto simp: of_nat_eq_0_iff_char_dvd)
 qed (use that in auto)
 have **: "inv_frob_poly p ^ CHAR('a) = p"
  proof (rule poly_eqI)
   fix n :: nat
   show "poly.coeff (inv_frob_poly p ^ CHAR('a)) n = poly.coeff p n"
      using * CHAR_dvd_CARD[where ?'a = 'a]
      by (subst coeff of prime char power')
         (auto simp: poly_eq_iff frob_def [symmetric]
                     coeff_of_prime_char_power'[where ?'a = 'a] simp
flip: power_mult)
  qed
 show ?thesis
    by (subst **[symmetric]) auto
qed
end
```

1.6 Code generation

We now also make this notion of "taking the p-th root of a polynomial" executable. For this, we need an auxiliary function that takes a list $[x_0, \ldots, x_m]$ and returns the list of every n-th element, i.e. it throws away all elements except those x_i where i is a multiple of n.

```
fun take_every :: "nat ⇒ 'a list ⇒ 'a list" where
   "take_every _ [] = []"
| "take_every n (x # xs) = x # take_every n (drop (n - 1) xs)"

lemma take_every_0 [simp]: "take_every 0 xs = xs"
   by (induction xs) auto

lemma take_every_1 [simp]: "take_every (Suc 0) xs = xs"
   by (induction xs) auto

lemma int_length_take_every: "n > 0 ⇒ int (length (take_every n xs))
= ceiling (length xs / n)"
proof (induction n xs rule: take_every.induct)
   case (2 n x xs)
   show ?case
```

```
proof (cases "Suc (length xs) ≥ n")
    case True
    thus ?thesis using 2
      by (auto simp: dvd_imp_le of_nat_diff diff_divide_distrib split:
if_splits)
  next
    case False
    hence "[(1 + real (length xs)) / real n] = 1"
      by (intro ceiling_unique) auto
    thus ?thesis using False
      by auto
  qed
qed auto
lemma length_take_every:
  "n > 0 \Longrightarrow length (take_every n xs) = nat (ceiling (length xs / n))"
  using int_length_take_every[of n xs] by simp
lemma take_every_nth [simp]:
  "n > 0 \Longrightarrow i < length (take_every n xs) \Longrightarrow take_every n xs ! i = xs
! (n * i)"
proof (induction n xs arbitrary: i rule: take_every.induct)
  case (2 n x xs i)
  show ?case
 proof (cases i)
    case (Suc j)
    have "n - Suc 0 ≤ length xs"
      using Suc "2.prems" nat_le_linear by force
    hence "drop (n - Suc \ 0) \times s! (n * j) = xs! (n - 1 + n * j)"
      using Suc by (subst nth_drop) auto
    also have "n - 1 + n * j = n + n * j - 1"
      using \langle n \rangle 0 \rangle by linarith
    finally show ?thesis
      using "2.IH"[of j] "2.prems" Suc by simp
  qed auto
ged auto
lemma coeffs_eq_strip_whileI:
  assumes "\landi. i < length xs \Longrightarrow Polynomial.coeff p i = xs ! i"
 assumes "p \neq 0 \implies length xs > Polynomial.degree p"
          "Polynomial.coeffs p = strip_while ((=) 0) xs"
 shows
proof (rule coeffs_eqI)
  fix n :: nat
 show "Polynomial.coeff p n = nth_default 0 (strip_while ((=) 0) xs)
n"
    using assms
    by (metis coeff_0 coeff_Poly_eq coeffs_Poly le_degree nth_default_coeffs_eq
      nth_default_eq_dflt_iff nth_default_nth order_le_less_trans)
```

```
qed auto
This implements the code equation for inv_frob_poly.
lemma inv_frob_poly_code [code]:
  "Polynomial.coeffs (inv_frob_poly (p :: 'a :: field_prime_char poly))
     (if CHAR('a) = 0 then Polynomial.coeffs p else
        map inv_frob (strip_while ((=) 0) (take_every CHAR('a) (Polynomial.coeffs
p))))"
    (is "_ = If _ _ ?rhs")
proof (cases "CHAR('a) = 0 \lor p = 0")
  case False
  from False have "p \neq 0"
    by auto
  have "Polynomial.coeffs (inv_frob_poly p) =
          strip_while ((=) 0) (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
p)))"
  proof (rule coeffs_eq_strip_whileI)
    fix i assume i: "i < length (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
p)))"
    show "Polynomial.coeff (inv_frob_poly p) i = map inv_frob (take_every
CHAR('a) (Polynomial.coeffs p)) ! i"
    proof -
      have "i < length (take_every CHAR('a) (Polynomial.coeffs p))"
        using i by simp
      also have "length (take_every CHAR('a) (Polynomial.coeffs p)) =
                   nat [(Polynomial.degree p + 1) / real CHAR('a)]"
        using False CHAR_pos[where ?'a = 'a]
        by (simp add: length_take_every length_coeffs)
      finally have "i < real (Polynomial.degree p + 1) / real CHAR('a)"
        by linarith
      hence "real i * real CHAR('a) < real (Polynomial.degree p + 1)"
        using False CHAR_pos[where ?'a = 'a] by (simp add: field_simps)
      hence "i * CHAR('a) ≤ Polynomial.degree p"
        unfolding of_nat_mult [symmetric] by linarith
      hence "Polynomial.coeffs p ! (i * CHAR('a)) = Polynomial.coeff p
(i * CHAR('a))"
        using False by (intro coeffs_nth) (auto simp: length_take_every)
      thus ?thesis using False i CHAR_pos[where ?'a = 'a]
        by (auto simp: nth_default_def mult.commute)
    qed
 next
    assume nz: "inv_frob_poly p \neq 0"
    have "Polynomial.degree (inv_frob_poly p) \le Polynomial.degree p div
      by (rule degree_inv_frob_poly_le) (fact CHAR_pos)
    also have "... < nat [(real (Polynomial.degree p) + 1) / real CHAR('a)]"
      using CHAR_pos[where ?'a = 'a]
      by (metis div_less_iff_less_mult linorder_not_le nat_le_real_less
```

```
of_nat_0_less_iff
                of_nat_ceiling of_nat_mult pos_less_divide_eq)
    also have "... = length (take_every CHAR('a) (Polynomial.coeffs p))"
      using CHAR_pos[where ?'a = 'a] \langle p \neq 0 \rangle by (simp add: length_take_every
length coeffs add ac)
    finally show "length (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
p))) > Polynomial.degree (inv_frob_poly p)"
      by simp_all
 ged
 also have "strip_while ((=) 0) (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
p))) =
             map inv_frob (strip_while ((=) 0 o inv_frob) (take_every
CHAR('a) (Polynomial.coeffs p)))"
    by (rule strip_while_map)
 also have "(=) 0 o inv_frob = (=) (0 :: 'a)"
    by (auto simp: fun eq iff)
 finally show ?thesis
    using False by metis
qed auto
```

1.7 Perfect fields

We now introduce perfect fields. The textbook definition of a perfect field is that every irreducible polynomial is separable, i.e. if a polynomial P has no non-trivial divisors then gcd(P, P') = 0.

For technical reasons, this is somewhat difficult to express in Isabelle/HOL's typeclass system. We therefore use the following much simpler equivalent definition (and prove equivalence later): a field is perfect if it either has characteristic 0 or its Frobenius endomorphism is surjective.

```
class perfect_field = field +
  assumes perfect_field: "CHAR('a) = 0 ∨ surj (frob :: 'a ⇒ 'a)"
context field_char_0
begin
subclass perfect_field
 by standard auto
end
context surj_frob
begin
subclass perfect_field
  by standard auto
end
theorem irreducible_imp_pderiv_nonzero:
  assumes "irreducible (p :: 'a :: perfect_field poly)"
 \mathbf{shows}
         "pderiv p \neq 0"
proof (cases "CHAR('a) = 0")
```

```
case True
 interpret A: semiring_1 "1 :: 'a" "(*)" "(+)" "0 :: 'a" ..
 have *: "class.semiring_1 (1 :: 'a) (*) (+) 0" ..
 interpret A: field_char_0 "(/)" inverse "(*)" "1 :: 'a" "(+)" 0 "(-)"
uminus
 proof
    have "inj (of_nat :: nat \Rightarrow 'a)"
      by (auto simp: inj_on_def of_nat_eq_iff_cong_CHAR True)
    also have "of_nat = semiring_1.of_nat (1 :: 'a) (+) 0"
      by (simp add: of_nat_def [abs_def] semiring_1.of_nat_def [OF *,
abs_def])
    finally show "inj ...".
  qed
 show ?thesis
 proof
    assume "pderiv p = 0"
    hence **: "poly.coeff p (Suc n) = 0" for n
      by (auto simp: poly_eq_iff coeff_pderiv of_nat_eq_0_iff_char_dvd
True simp del: of_nat_Suc)
    have "poly.coeff p n = 0" if "n > 0" for n
      using **[of "n - 1"] that by (cases n) auto
    hence "Polynomial.degree p = 0"
      by force
    thus False
      using assms by force
  qed
next
  case False
 hence [simp]: "surj (frob :: 'a \Rightarrow 'a)"
   by (meson perfect_field)
 interpret A: field_prime_char "(/)" inverse "(*)" "1 :: 'a" "(+)" 0 "(-)"
uminus
 proof
    have *: "class.semiring_1 1 (*) (+) (0 :: 'a)" ..
    have "semiring_1.of_nat 1 (+) (0 :: 'a) = of_nat"
      by (simp add: fun_eq_iff of_nat_def semiring_1.of_nat_def[OF *])
    thus "\exists n>0. semiring_1.of_nat 1 (+) 0 n = (0 :: 'a)"
      by (intro exI[of _ "CHAR('a)"]) (use False in auto)
  qed
 {
m show} ?thesis
 proof
    assume "pderiv p = 0"
    hence "is_nth_power CHAR('a) p"
      using pderiv_eq_0_imp_nth_power[of p] surj_frob False by simp
    then obtain q where "p = q ^ CHAR('a)"
```

```
by (elim is_nth_powerE)
    with assms show False
      by auto
  qed
qed
corollary irreducible_imp_separable:
  assumes "irreducible (p :: 'a :: perfect_field poly)"
           "coprime p (pderiv p)"
 \mathbf{shows}
proof (rule coprimeI)
 fix q assume q: "q dvd p" "q dvd pderiv p"
 have "\neg p dvd q"
 proof
    assume "p dvd q"
    hence "p dvd pderiv p"
      using q dvd trans by blast
    hence "Polynomial.degree p \leq Polynomial.degree (pderiv p)"
      by (rule dvd_imp_degree_le) (use assms irreducible_imp_pderiv_nonzero
    also have "... ≤ Polynomial.degree p - 1"
      using degree_pderiv_le by auto
    finally have "Polynomial.degree p = 0"
      by simp
    with assms show False
      using irreducible_imp_pderiv_nonzero is_unit_iff_degree by blast
 qed
  with <q dvd p> show "is_unit q"
    using assms comm_semiring_1_class.irreducibleD' by blast
qed
end
      Algebraically closed fields are perfect
1.8
theory\ \textit{Perfect\_Field\_Algebraically\_Closed}
 imports Perfect_Fields "Formal_Puiseux_Series.Formal_Puiseux_Series"
begin
lemma (in alg_closed_field) nth_root_exists:
 assumes "n > 0"
         "\exists y. y \ \hat{} n = (x :: 'a)"
 shows
proof -
  define f where "f = (\lambda i. if i = 0 then -x else if i = n then 1 else
 have "\exists x. (\sum k \le n. f k * x ^ k) = 0"
    by (rule alg_closed) (use assms in <auto simp: f_def>)
```

```
also have "(\lambda x. \sum k \le n. f k * x ^ k) = (\lambda x. \sum k \in \{0,n\}. f k * x ^ k)"
    by (intro ext sum.mono_neutral_right) (auto simp: f_def)
  finally show "\exists y. y \hat{n} = x"
    using assms by (simp add: f_def)
ged
context alg_closed_field
begin
lemma alg_closed_surj_frob:
  assumes "CHAR('a) > 0"
  shows "surj (frob :: 'a \Rightarrow 'a)"
proof -
  show "surj (frob :: 'a \Rightarrow 'a)"
  proof safe
    fix x :: 'a
    obtain y where "y \hat{CHAR}('a) = x"
      using nth_root_exists CHAR_pos assms by blast
    hence "frob y = x"
      using CHAR_pos by (simp add: frob_def)
    thus "x \in range frob"
      by (metis rangeI)
  qed auto
qed
sublocale perfect_field
  by standard (use alg_closed_surj_frob in auto)
end
\mathbf{lemma} \ \textit{fpxs\_const\_eq\_0\_iff} \ [\textit{simp}] \colon \textit{"fpxs\_const} \ x \ = \ 0 \ \longleftrightarrow \ x \ = \ 0"
  by (metis fpxs_const_0 fpxs_const_eq_iff)
lemma semiring_char_fpxs [simp]: "CHAR('a :: comm_semiring_1 fpxs) =
CHAR('a)"
  by (rule CHAR_eqI; unfold of_nat_fpxs_eq) (auto simp: of_nat_eq_0_iff_char_dvd)
instance fpxs :: ("{semiring_prime_char,comm_semiring_1}") semiring_prime_char
  by (rule semiring_prime_charI) auto
instance fpxs :: ("{comm_semiring_prime_char,comm_semiring_1}") comm_semiring_prime_char
  by standard
instance fpxs :: ("{comm_ring_prime_char,comm_semiring_1}") comm_ring_prime_char
  by standard
instance fpxs :: ("{idom_prime_char,comm_semiring_1}") idom_prime_char
  by standard
instance fpxs :: ("field_prime_char") field_prime_char
```

end

2 The algebraic closure type

```
theory Algebraic_Closure_Type
imports
  "HOL-Algebra.Algebra"
  "Formal_Puiseux_Series.Formal_Puiseux_Series"
  "HOL-Computational_Algebra.Field_as_Ring"
begin
definition (in ring_1) ring_of_type_algebra :: "'a ring"
  where "ring_of_type_algebra = ()
    carrier = UNIV, monoid.mult = (\lambda x \ y. \ x * y),
    one = 1,
    ring.zero = 0,
    add = (\lambda \times y. \times + y) "
lemma (in comm_ring_1) ring_from_type_algebra [intro]:
  "ring (ring_of_type_algebra :: 'a ring)"
proof -
 have "\exists y. x + y = 0" for x :: 'a
    using add.right_inverse by blast
 thus ?thesis
    unfolding ring_of_type_algebra_def using add.right_inverse
    by unfold_locales (auto simp:algebra_simps Units_def)
qed
lemma (in comm_ring_1) cring_from_type_algebra [intro]:
  "cring (ring_of_type_algebra :: 'a ring)"
proof -
  have "\exists y. x + y = 0" for x :: 'a
    using add.right_inverse by blast
 thus ?thesis
    unfolding ring_of_type_algebra_def using add.right_inverse
    by unfold_locales (auto simp:algebra_simps\ Units_def)
qed
lemma (in Fields.field) field_from_type_algebra [intro]:
  "field (ring_of_type_algebra :: 'a ring)"
proof -
 have "\exists y. x + y = 0" for x :: 'a
    using add.right_inverse by blast
 moreover have "x \neq 0 \implies \exists y. x * y = 1" for x :: 'a
    by (rule exI[of _ "inverse x"]) auto
```

```
ultimately show ?thesis
    unfolding \ \textit{ring\_of\_type\_algebra\_def} \ using \ \textit{add.right\_inverse}
    by unfold_locales (auto simp:algebra_simps Units_def)
qed
2.1 Definition
typedef (overloaded) 'a :: field alg_closure =
  "carrier (field.alg_closure (ring_of_type_algebra :: 'a :: field ring))"
  define K where "K ≡ (ring_of_type_algebra :: 'a ring)"
  define L where "L \equiv field.alg_closure K"
  interpret K: field K
    unfolding K_def by rule
  interpret algebraic_closure L "range K.indexed_const"
  proof -
    have *: "carrier K = UNIV"
       by \ (auto \ simp: \ \textit{K\_def ring\_of\_type\_algebra\_def}) \\
    show "algebraic_closure L (range K.indexed_const)"
      unfolding * [symmetric] L_def by (rule K.alg_closureE)
  qed
  show "\exists x. x \in carrier L"
    using zero_closed by blast
qed
setup_lifting type_definition_alg_closure
instantiation alg_closure :: (field) field
begin
context
  fixes L K
  defines "K = (ring_of_type_algebra :: 'a :: field ring)"
  defines "L ≡ field.alg_closure K"
begin
interpretation K: field K
  unfolding K_def by rule
interpretation algebraic_closure L "range K.indexed_const"
proof -
```

by (auto simp: K_def ring_of_type_algebra_def)
show "algebraic_closure L (range K.indexed_const)"

unfolding * [symmetric] L_def by (rule K.alg_closureE)

have *: "carrier K = UNIV"

qed

```
lift_definition zero_alg_closure :: "'a alg_closure" is "ring.zero L"
  by (fold K_def, fold L_def) (rule ring_simprules)
lift_definition one_alg_closure :: "'a alg_closure" is "monoid.one L"
  by (fold K_def, fold L_def) (rule ring_simprules)
lift\_definition\ plus\_alg\_closure :: "'a alg_closure \Rightarrow 'a alg_closure \Rightarrow
'a alg_closure"
  is "ring.add L"
  by (fold K_def, fold L_def) (rule ring_simprules)
lift\_definition \ minus\_alg\_closure :: "'a \ alg\_closure <math>\Rightarrow 'a alg\_closure \Rightarrow
'a alg_closure"
  is "a minus L"
  by (fold K_def, fold L_def) (rule ring_simprules)
lift\_definition\ times\_alg\_closure :: "'a alg_closure \Rightarrow 'a alg_closure \Rightarrow
'a alg_closure"
  is "monoid.mult L"
  by (fold K_def, fold L_def) (rule ring_simprules)
lift_definition uminus_alg_closure :: "'a alg_closure \( \rightarrow \) 'a alg_closure"
  is "a_inv L"
  by (fold K_def, fold L_def) (rule ring_simprules)
lift_definition inverse_alg_closure :: "'a alg_closure ⇒ 'a alg_closure"
  is "\lambda x. if x = ring.zero\ L then ring.zero\ L else m_inv L x"
  by (fold K_def, fold L_def) (auto simp: field_Units)
lift\_definition\ divide\_alg\_closure :: "'a alg_closure \Rightarrow 'a alg_closure
⇒ 'a alg_closure"
 is "\lambda x y. if y = ring.zero L then ring.zero L else monoid.mult L x (m_inv
L y)"
  by (fold K_def, fold L_def) (auto simp: field_Units)
end
instance proof -
  define K where "K \equiv (ring_of_type_algebra :: 'a ring)"
  define L where "L \equiv field.alg_closure K"
  interpret K: field K
    unfolding K_def by rule
  interpret algebraic_closure L "range K.indexed_const"
  proof -
    have *: "carrier K = UNIV"
      by (auto simp: K_def ring_of_type_algebra_def)
```

```
show "algebraic_closure L (range K.indexed_const)"
    unfolding * [symmetric] L_def by (rule K.alg_closureE)
qed
show "OFCLASS('a alg_closure, field_class)"
proof (standard, goal_cases)
  case 1
  show ?case
    by (transfer, fold K_def, fold L_def) (rule m_assoc)
next
  case 2
  show ?case
    by (transfer, fold K_def, fold L_def) (rule m_comm)
\mathbf{next}
  case 3
  show ?case
    by (transfer, fold K_def, fold L_def) (rule l_one)
next
  case 4
  show ?case
    by (transfer, fold K_def, fold L_def) (rule a_assoc)
next
  case 5
  show ?case
    by (transfer, fold K_def, fold L_def) (rule a_comm)
next
  case 6
  show ?case
    by (transfer, fold K_def, fold L_def) (rule l_zero)
\mathbf{next}
  case 7
  show ?case
    by (transfer, fold K_def, fold L_def) (rule ring_simprules)
  case 8
  show ?case
    by (transfer, fold K_def, fold L_def) (rule ring_simprules)
next
  case 9
  show ?case
    by (transfer, fold K_def, fold L_def) (rule ring_simprules)
next
  case 10
    by (transfer, fold K_def, fold L_def) (rule zero_not_one)
next
  case 11
  thus ?case
    by (transfer, fold K_def, fold L_def) (auto simp: field_Units)
```

```
case 12
    thus ?case
      by (transfer, fold K_def, fold L_def) auto
 next
    case 13
    thus ?case
      by transfer auto
 ged
qed
end
2.2
     The algebraic closure is algebraically closed
instance alg_closure :: (field) alg_closed_field
proof
  define K where "K ≡ (ring_of_type_algebra :: 'a ring)"
  define L where "L \equiv field.alg_closure K"
 interpret K: field K
    unfolding K_def by rule
 interpret algebraic_closure L "range K.indexed_const"
 proof -
    have *: "carrier K = UNIV"
      by (auto simp: K_def ring_of_type_algebra_def)
    show "algebraic_closure L (range K.indexed_const)"
      unfolding * [symmetric] L_def by (rule K.alg_closureE)
  qed
 have [simp]: "Rep_alg_closure x \in carrier L" for x
    using Rep_alg_closure[of x] by (simp only: L_def K_def)
 have [simp]: "Rep_alg_closure x = Rep_alg_closure y \longleftrightarrow x = y" for
    by (simp add: Rep_alg_closure_inject)
 have [simp]: "Rep_alg_closure x = 0_L \longleftrightarrow x = 0" for x
 proof -
    have "Rep_alg_closure x = Rep_alg_closure 0 \longleftrightarrow x = 0"
      by simp
    also have "Rep_alg_closure 0 = 0_L"
      by (simp add: zero_alg_closure.rep_eq L_def K_def)
    finally show ?thesis.
  qed
 have [simp]: "Rep_alg_closure (x ^ n) = Rep_alg_closure x [^{\hat{}}]_L n"
    for x :: "'a alg_closure" and n
```

next

by (induction n)

```
(auto simp: one_alg_closure.rep_eq times_alg_closure.rep_eq m_comm
             simp flip: L_def K_def)
 have [simp]: "Rep_alg_closure (Abs_alg_closure x) = x" if "x \in carrier
L'' for x
    using that unfolding L_def K_def by (rule Abs_alg_closure_inverse)
 show "\exists x. poly p x = 0" if p: "monic p" "Polynomial.degree p > 0" for
p :: "'a alg_closure poly"
 proof -
    define P where "P = rev (map Rep_alg_closure (Polynomial.coeffs p))"
    have deg: "Polynomials.degree P = Polynomial.degree p"
      by (auto simp: P_def degree_eq_length_coeffs)
    have carrier_P: "P ∈ carrier (poly_ring L)"
      by (auto simp: univ_poly_def polynomial_def P_def hd_map hd_rev
last_map
                     last coeffs eq coeff degree)
    hence "splitted P"
      using roots_over_carrier by blast
    hence "roots P \neq \{\#\}"
      unfolding splitted_def using deg p by auto
    then obtain x where "x \in \# roots P"
      by blast
    hence x: "is_root P x"
      using roots_mem_iff_is_root[OF carrier_P] by auto
    hence [simp]: "x \in carrier L"
      by (auto simp: is_root_def)
    define x' where "x' = Abs_alg_closure x"
    define xs where "xs = rev (coeffs p)"
   have "cr_alg_closure (eval (map Rep_alg_closure xs) x) (poly (Poly
(rev xs)) x')"
      by (induction xs)
         (auto simp flip: K_def L_def simp: cr_alg_closure_def
                 zero_alg_closure.rep_eq plus_alg_closure.rep_eq
                 times_alg_closure.rep_eq Poly_append poly_monom
                 a comm m comm x' def)
    also have "map Rep_alg_closure xs = P"
      by (simp add: xs_def P_def rev_map)
    also have "Poly (rev xs) = p"
      by (simp add: xs_def)
    finally have "poly p x' = 0"
      using x by (auto simp: is_root_def cr_alg_closure_def)
    thus "\exists x. poly p x = 0" ...
 qed
qed
```

2.3 Converting between the base field and the closure

context

```
fixes L K
 defines "K \equiv (ring\_of\_type\_algebra :: 'a :: field ring)"
  defines "L \equiv field.alg\_closure K"
begin
interpretation K: field K
  unfolding K_def by rule
interpretation algebraic_closure L "range K.indexed_const"
proof -
 have *: "carrier K = UNIV"
    by (auto simp: K_def ring_of_type_algebra_def)
 show "algebraic_closure L (range K.indexed_const)"
    unfolding * [symmetric] L_def by (rule K.alg_closureE)
qed
lemma \ alg\_closure\_hom: \ "K.indexed\_const \in Ring.ring\_hom \ K \ L"
 unfolding L_def using K.alg_closureE(2).
lift_definition to_ac :: "'a :: field >> 'a alg_closure"
 is "ring.indexed_const K"
 by (fold K_def, fold L_def) (use mem_carrier in blast)
lemma to_ac_0 [simp]: "to_ac (0 :: 'a) = 0"
proof -
 have "to_ac (0_K) = 0"
 proof (transfer fixing: K, fold K_def, fold L_def)
    show "K.indexed_const 0_K = 0_L"
      using Ring.ring_hom_zero[OF alg_closure_hom] K.ring_axioms is_ring
      by simp
  qed
 thus ?thesis
    by (simp add: K_def ring_of_type_algebra_def)
lemma to_ac_1 [simp]: "to_ac (1 :: 'a) = 1"
proof -
 have "to_ac (1_K) = 1"
 proof (transfer fixing: K, fold K_def, fold L_def)
    show "K.indexed_const 1_K = 1_L"
      using Ring.ring_hom_one[OF alg_closure_hom] K.ring_axioms is_ring
      by simp
 qed
 thus ?thesis
    by (simp add: K_def ring_of_type_algebra_def)
qed
lemma to_ac_add [simp]: "to_ac (x + y :: 'a) = to_ac x + to_ac y"
proof -
```

```
have "to_ac (x \oplus_K y) = to_ac x + to_ac y"
 \mathbf{proof}\ (\textit{transfer fixing: K x y, fold K\_def, fold L\_def})
    show "K.indexed_const (x \oplus_K y) = K.indexed_const x \oplus_L K.indexed_const
      using Ring.ring_hom_add[OF alg_closure_hom, of x y] K.ring_axioms
is_ring
      by (simp add: K_def ring_of_type_algebra_def)
  thus ?thesis
    by (simp add: K_def ring_of_type_algebra_def)
qed
lemma to_ac_minus [simp]: "to_ac (-x :: 'a) = -to_ac x"
 using to_ac_add to_ac_0 add_eq_0_iff by metis
lemma to_ac_diff [simp]: "to_ac (x - y :: 'a) = to_ac x - to_ac y"
  using to_ac_add[of x "-y"] by simp
lemma to_ac_mult [simp]: "to_ac (x * y :: 'a) = to_ac x * to_ac y"
proof -
  have "to_ac (x \otimes_K y) = to_ac x * to_ac y"
  proof \ (\textit{transfer fixing: K x y, fold K\_def, fold L\_def)} 
    show "K.indexed_const (x \otimes_K y) = K.indexed_const x \otimes_L K.indexed_const
v"
      using Ring.ring_hom_mult[OF alg_closure_hom, of x y] K.ring_axioms
is_ring
      by (simp add: K_def ring_of_type_algebra_def)
 ged
 thus ?thesis
    by (simp add: K_def ring_of_type_algebra_def)
lemma to_ac_inverse [simp]: "to_ac (inverse x :: 'a) = inverse (to_ac
 using to_ac_mult[of x "inverse x"] to_ac_1 to_ac_0
 by (metis divide_self_if field_class.field_divide_inverse field_class.field_inverse_zero
inverse_unique)
lemma to_ac_divide [simp]: "to_ac (x / y :: 'a) = to_ac x / to_ac y"
  using to_ac_mult[of x "inverse y"] to_ac_inverse[of y]
 by (simp add: field_class.field_divide_inverse)
lemma to_ac_power [simp]: "to_ac (x ^ n) = to_ac x ^ n"
 by (induction n) auto
lemma to_ac_of_nat [simp]: "to_ac (of_nat n) = of_nat n"
  by (induction n) auto
lemma to_ac_of_int [simp]: "to_ac (of_int n) = of_int n"
```

```
by (induction n) auto
lemma to_ac_numeral [simp]: "to_ac (numeral n) = numeral n"
  using to_ac_of_nat[of "numeral n"] by (simp del: to_ac_of_nat)
lemma to_ac_sum: "to_ac (\sum x \in A. f x) = (\sum x \in A. to_ac (f x))"
  by (induction A rule: infinite_finite_induct) auto
lemma to_ac_prod: "to_ac (\prod x \in A. f x) = (\prod x \in A. to_ac (f x))"
  by (induction A rule: infinite_finite_induct) auto
lemma to_ac_sum_list: "to_ac (sum_list xs) = (\sum x \leftarrow xs. to_ac x)"
  by (induction xs) auto
lemma to_ac_prod_list: "to_ac (prod_list xs) = (∏x←xs. to_ac x)"
  by (induction xs) auto
lemma to_ac_sum_mset: "to_ac (sum_mset xs) = (\sum x \in \#xs. to_ac x)"
  by (induction xs) auto
\mathbf{lemma} \  \, \mathsf{to\_ac\_prod\_mset:} \  \, \mathsf{"to\_ac} \  \, (\mathsf{prod\_mset} \  \, \mathsf{xs}) \, = \, (\prod \mathsf{x} \in \mathsf{\#xs.} \  \, \mathsf{to\_ac} \  \, \mathsf{x}) \, \mathsf{"}
  by (induction xs) auto
end
lemma (in ring) indexed_const_eq_iff [simp]:
  "indexed_const x = (indexed_const y :: 'c multiset \Rightarrow 'a) \longleftrightarrow x = y"
proof
  assume "indexed_const x = (indexed_const y :: 'c multiset \Rightarrow 'a)"
  hence "indexed_const x ({\#} :: 'c multiset) = indexed_const y ({\#} ::
'c multiset)"
    by metis
  thus "x = y"
     by (simp add: indexed_const_def)
qed auto
lemma inj_to_ac: "inj to_ac"
  by (transfer, intro injI, subst (asm) ring.indexed_const_eq_iff) auto
\mathbf{lemma} \ \ \mathsf{to\_ac\_eq\_iff} \ \ [\mathsf{simp}] \colon \ "\mathsf{to\_ac} \ \ \mathsf{x} \ = \ \mathsf{to\_ac} \ \ \mathsf{y} \ \longleftrightarrow \ \ \mathsf{x} \ = \ \mathsf{y}"
  using inj_to_ac by (auto simp: inj_on_def)
lemma to_ac_eq_0_iff [simp]: "to_ac x = 0 \longleftrightarrow x = 0"
  and to_ac_eq_0_iff' [simp]: "0 = to_ac x \longleftrightarrow x = 0"
  and to_ac_eq_1_iff [simp]: "to_ac x = 1 \longleftrightarrow x = 1"
  and to_ac_eq_1_iff' [simp]: "1 = to_ac x \longleftrightarrow x = 1"
  using to_ac_eq_iff to_ac_0 to_ac_1 by metis+
```

```
definition of_ac :: "'a :: field alg_closure ⇒ 'a" where
  "of_ac x = (if x \in range to_ac then inv_into UNIV to_ac x else 0)"
lemma of_ac_eqI: "to_ac x = y \implies of_ac y = x"
  unfolding of_ac_def by (meson inj_to_ac inv_f_f range_eqI)
lemma of_ac_0 [simp]: "of_ac 0 = 0"
  and of_ac_1 [simp]: "of_ac 1 = 1"
 by (rule of_ac_eqI; simp; fail)+
lemma of_ac_to_ac [simp]: "of_ac (to_ac x) = x"
 by (rule of_ac_eqI) auto
lemma to_ac_of_ac: "x ∈ range to_ac ⇒ to_ac (of_ac x) = x"
 by auto
lemma CHAR_alg_closure [simp]:
  "CHAR('a :: field alg_closure) = CHAR('a)"
proof (rule CHAR_eqI)
 show "of_nat CHAR('a) = (0 :: 'a alg_closure)"
   by (metis of_nat_CHAR to_ac_0 to_ac_of_nat)
 show "CHAR('a) dvd n" if "of_nat n = (0 :: 'a alg_closure)" for n
    using that by (metis of_nat_eq_0_iff_char_dvd to_ac_eq_0_iff' to_ac_of_nat)
qed
instance alg_closure :: (field_char_0) field_char_0
 show "inj (of_nat :: nat ⇒ 'a alg_closure)"
   by (metis injD inj_of_nat inj_on_def inj_to_ac to_ac_of_nat)
qed
bundle alg_closure_syntax
notation to_ac ("_↑" [1000] 999)
notation of_ac ("_↓" [1000] 999)
end
bundle alg_closure_syntax'
notation (output) to_ac ("_")
notation (output) of_ac ("_")
end
```

2.4 The algebraic closure is an algebraic extension

The algebraic closure is an algebraic extension, i.e. every element in it is a root of some non-zero polynomial in the base field.

```
theorem alg_closure_algebraic:
  fixes x :: "'a :: field alg_closure"
  obtains p :: "'a poly" where "p \neq 0" "poly (map_poly to_ac p) x = 0"
proof -
  define K where "K ≡ (ring_of_type_algebra :: 'a ring)"
  define L where "L \equiv field.alg_closure K"
 interpret K: field K
    unfolding K_def by rule
  interpret algebraic_closure L "range K.indexed_const"
  proof -
    have *: "carrier K = UNIV"
      by (auto simp: K_def ring_of_type_algebra_def)
    show "algebraic_closure L (range K.indexed_const)"
      unfolding * [symmetric] L_def by (rule K.alg_closureE)
  qed
 let ?K = "range K.indexed_const"
  have sr: "subring ?K L"
    by (rule subring_axioms)
  define x' where "x' = Rep_alg_closure x"
  have "x' \in carrier L"
    unfolding x'_def L_def K_def by (rule Rep_alg_closure)
  hence alg: "(algebraic over range K.indexed_const) x'"
    using algebraic_extension by blast
  then obtain p where p: "p \in carrier (?K[X]_I)" "p \neq []" "eval p x'
    using algebraic E[OF \ sr \ \langle x' \in carrier \ L \rangle \ alg] by blast
 have [simp]: "Rep_alg_closure x \in carrier L" for x
    using Rep_alg_closure[of x] by (simp only: L_def K_def)
 have [simp]: "Abs_alg_closure x = 0 \longleftrightarrow x = 0_L" if "x \in carrier L"
for x
    using that unfolding L_def K_def
    by (metis Abs_alg_closure_inverse zero_alg_closure.rep_eq zero_alg_closure_def)
 have [simp]: "Rep_alg_closure (x ^ n) = Rep_alg_closure x [^]_L n"
    for x :: "'a alg_closure" and n
    by (induction n)
       (auto simp: one_alg_closure.rep_eq times_alg_closure.rep_eq m_comm
             simp flip: L_def K_def)
  have [simp]: "Rep_alg_closure (Abs_alg_closure x) = x" if "x \in carrier
L'' for x
    using that unfolding L_def K_def by (rule Abs_alg_closure_inverse)
 have [simp]: "Rep_alg_closure x = 0_L \longleftrightarrow x = 0" for x
```

```
by (metis K_def L_def Rep_alg_closure_inverse zero_alg_closure.rep_eq)
  define p' where "p' = Poly (map Abs_alg_closure (rev p))"
 have "p' \neq 0"
 proof
    assume "p' = 0"
    then obtain n where n: "map Abs_alg_closure (rev p) = replicate n
0"
      by (auto simp: p'_def Poly_eq_0)
    with \langle p \neq [] \rangle have "n > 0"
      by (auto intro!: Nat.gr0I)
    have "last (map Abs_alg_closure (rev p)) = 0"
      using \langle n \rangle 0 \rangle by (subst n) auto
    moreover have "Polynomials.lead_coeff p \neq 0_L" "Polynomials.lead_coeff
p \in carrier L"
      using p \langle p \neq [] \rangle local.subset
      by (fastforce simp: polynomial_def univ_poly_def)+
    ultimately show False
      using \langle p \neq [] \rangle by (auto simp: last_map last_rev)
  qed
 have "set p \subseteq carrier L"
    using local.subset p by (auto simp: univ_poly_def polynomial_def)
  hence "cr_alg_closure (eval p x') (poly p' x)"
    unfolding p'_def
    by (induction p)
       (auto simp flip: K_def L_def simp: cr_alg_closure_def
               zero_alg_closure.rep_eq plus_alg_closure.rep_eq
               times_alg_closure.rep_eq Poly_append poly_monom
               a_comm m_comm x'_def)
  hence "poly p' x = 0"
    using p by (auto simp: cr_alg_closure_def x'_def)
 have coeff_p': "Polynomial.coeff p' i \in range to_ac" for i
  proof (cases "i \geq length p")
    case False
    have "Polynomial.coeff p' i = Abs_alg_closure (rev p ! i)"
      unfolding p'_def using False
      by (auto simp: nth_default_def)
    moreover have "rev p ! i \in ?K"
      using p(1) False by (auto simp: univ_poly_def polynomial_def rev_nth)
    ultimately show ?thesis
      unfolding to_ac.abs_eq K_def by fastforce
  qed (auto simp: p'_def nth_default_def)
  define p'' where "p'' = map_poly of_ac p'"
  have p'_eq: "p' = map_poly to_ac p''"
    by (rule poly_eqI) (auto simp: coeff_map_poly p''_def to_ac_of_ac[OF
```

```
coeff_p'])
  interpret \ \textit{to\_ac:} \ \textit{map\_poly\_inj\_comm\_ring\_hom} \ \textit{"to\_ac::} \ \textit{'a} \ \Rightarrow \ \textit{'a} \ \textit{alg\_closure"}
    by unfold_locales auto
  show ?thesis
  proof (rule that)
    show "p'' \neq 0"
      using \langle p' \neq 0 \rangle by (auto simp: p'_eq)
    show "poly (map_poly to_ac p'') x = 0"
      using \langle poly p' x = 0 \rangle by (simp add: p'_eq)
  qed
\mathbf{qed}
instantiation alg_closure :: (field)
  "{unique_euclidean_ring, normalization_euclidean_semiring, normalization_semidom_multipli
begin
definition [simp]: "normalize_alg_closure = (normalize_field :: 'a alg_closure
→ _)"
definition [simp]: "unit_factor_alg_closure = (unit_factor_field :: 'a
alg\_closure \Rightarrow \_)"
definition [simp]: "modulo_alg_closure = (mod_field :: 'a alg_closure ⇒
_)"
definition [simp]: "euclidean_size_alg_closure = (euclidean_size_field
:: 'a alg_closure ⇒ _)"
definition [simp]: "division_segment (x :: 'a alg_closure) = 1"
instance
  by standard
    (simp_all add: dvd_field_iff field_split_simps split: if_splits)
end
instantiation alg_closure :: (field) euclidean_ring_gcd
begin
definition gcd_alg_closure :: "'a alg_closure \Rightarrow 'a alg_closure \Rightarrow 'a alg_closure"
where
  "gcd_alg_closure = Euclidean_Algorithm.gcd"
definition lcm_alg_closure :: "'a alg_closure \Rightarrow 'a alg_closure \Rightarrow 'a alg_closure"
where
  "lcm_alg_closure = Euclidean_Algorithm.lcm"
definition Gcd_alg_closure :: "'a alg_closure set \Rightarrow 'a alg_closure" where
 "Gcd_alg_closure = Euclidean_Algorithm.Gcd"
definition Lcm_alg_closure :: "'a alg_closure set ⇒ 'a alg_closure" where
 "Lcm_alg_closure = Euclidean_Algorithm.Lcm"
```

```
instance by standard (simp_all add: gcd_alg_closure_def lcm_alg_closure_def
Gcd_alg_closure_def Lcm_alg_closure_def)
```

end

```
instance alg_closure :: (field) semiring_gcd_mult_normalize
..
```

end

2.5 Alternative definition of perfect fields

```
theory Perfect_Field_Altdef
imports
   Algebraic_Closure_Type
   Perfect_Fields
   Perfect_Field_Algebraically_Closed
   "HOL-Computational_Algebra.Field_as_Ring"
begin
```

In the following, we will show that our definition of perfect fields is equivalent to the usual textbook one (for example [1]). That is: a field in which every irreducible polynomial is separable (or, equivalently, has non-zero derivative) either has characteristic 0 or a surjective Frobenius endomorphism.

The proof works like this:

Let's call our field K with prime characteristic p. Suppose there were some $c \in K$ that is not a p-th root. The polynomial $P := X^p - c$ in K[X] clearly has a zero derivative and is therefore not separable. By our assumption, it must then have a monic non-trivial factor $Q \in K[X]$.

Let L be some field extension of K where c does have a p-th root α (in our case, we choose L to be the algebraic closure of K).

Clearly, Q is also a non-trivial factor of P in L. However, we also have $P = X^p - c = X^p - \alpha^p = (X - \alpha)^p$, so we must have $Q = (X - \alpha)^m$ for some $0 \le m < p$ since $X - \alpha$ is prime.

However, the coefficient of X^{m-1} in $(X - \alpha)^m$ is $-m\alpha$, and since $Q \in K[X]$ we must have $-m\alpha \in K$ and therefore $\alpha \in K$.

```
theorem perfect_field_alt: assumes "\prescript{p} :: 'a :: field_gcd poly. Factorial_Ring.irreducible p \implies pderiv p \neq 0" shows "CHAR('a) = 0 \lor surj (frob :: 'a \Rightarrow 'a)"
```

```
proof (cases "CHAR('a) = 0")
  case False
  let ?p = "CHAR('a)"
  from False have "Factorial_Ring.prime ?p"
    by (simp add: prime_CHAR_semidom)
  hence "?p > 1"
    using prime_gt_1_nat by blast
  note p = <Factorial_Ring.prime ?p> <?p > 1>
  interpret \ \textit{to\_ac:} \ \textit{map\_poly\_inj\_comm\_ring\_hom} \ \textit{"to\_ac::} \ \textit{'a} \ \Rightarrow \ \textit{'a} \ \textit{alg\_closure"}
    by unfold_locales auto
  have "surj (frob :: 'a \Rightarrow 'a)"
  proof safe
    fix c :: 'a
    obtain \alpha :: "'a alg_closure" where \alpha: "\alpha ^ ?p = to_ac c"
      using p nth_root_exists[of ?p "to_ac c"] by auto
    define P where "P = Polynomial.monom 1 ?p + [:-c:]"
    define P' where "P' = map_poly to_ac P"
    have deg: "Polynomial.degree P = ?p"
      unfolding P_def using p by (subst degree_add_eq_left) (auto simp:
degree_monom_eq)
    have "[:-\alpha, 1:] ^ ?p = ([:0, 1:] + [:-\alpha:]) ^ ?p"
      by (simp add: one_pCons)
    also have "... = [:0, 1:] ^ ?p - [:\alpha^?p:]"
      using p by (subst freshmans_dream) (auto simp: poly_const_pow minus_power_prime_CHAR)
    also have "\alpha ^ ?p = to_ac c"
      by (simp add: \alpha)
    also have "[:0, 1:] ^ CHAR('a) - [:to_ac c:] = P'"
      by (simp add: P_def P'_def to_ac.hom_add to_ac.hom_power
                to_ac.base.map_poly_pCons_hom monom_altdef)
    finally have eq: "P' = [:-\alpha, 1:] ^ ?p" ...
    have "\negis_unit P" "P \neq 0"
      using deg p by auto
    then obtain Q where Q: "Factorial_Ring.prime Q" "Q dvd P"
      by (metis prime_divisor_exists)
    have "monic Q"
      using unit_factor_prime[OF Q(1)] by (auto simp: unit_factor_poly_def
one_pCons)
    from Q(2) have "map_poly to_ac Q dvd P'"
      by (auto simp: P'_def)
    hence "map_poly to_ac Q dvd [:-\alpha, 1:] ^ ?p"
      by (simp add: \langle P' = [:-\alpha, 1:] ^?p \rangle)
    moreover have "Factorial_Ring.prime_elem [:-\alpha, 1:]"
      by (intro prime_elem_linear_field_poly) auto
    hence "Factorial_Ring.prime [:-\alpha, 1:]"
```

```
unfolding Factorial_Ring.prime_def by (auto simp: normalize_monic)
    ultimately obtain m where "m \le ?p" "normalize (map_poly to_ac Q)
= [:-\alpha, 1:] ^ m"
      using divides_primepow by blast
    hence "map_poly to_ac Q = [:-\alpha, 1:] ^m"
      using <monic Q> by (subst (asm) normalize_monic) auto
    moreover from this have "m > 0"
      using Q by (intro Nat.gr0I) auto
    moreover have "m \neq ?p"
    proof
      assume "m = ?p"
      hence "Q = P"
        using <map_poly to_ac Q = [:-\alpha, 1:] \hat{m} > eq
        by (simp add: P'_def to_ac.injectivity)
      with Q have "Factorial_Ring.irreducible P"
        using idom class.prime elem imp irreducible by blast
      with assms have "pderiv P \neq 0"
        by blast
      thus False
        by (auto simp: P_def pderiv_add pderiv_monom of_nat_eq_0_iff_char_dvd)
    ultimately have m: "m \in \{0 < ... < ?p\}" "map_poly to_ac Q = [:-\alpha, 1:]
^ m"
      using \langle m \leq ?p \rangle by auto
    from m(1) have "\neg?p dvd m"
      using p by auto
    have "poly.coeff ([:-\alpha, 1:] ^ m) (m - 1) = - of_nat (m choose (m -
1)) * \alpha"
      using m(1) by (subst coeff_linear_poly_power) auto
    also have "m choose (m - 1) = m"
      using <0 < m> by (subst binomial_symmetric) auto
    also have "[:-\alpha, 1:] ^ m = map_poly to_ac Q"
      using m(2) ..
    also have "poly.coeff ... (m - 1) = to_ac (poly.coeff Q (m - 1))"
      by simp
    finally have "\alpha = to_ac (-poly.coeff Q (m - 1) / of_nat m)"
      using m(1) p <¬?p dvd m> by (auto simp: field_simps of_nat_eq_0_iff_char_dvd)
    hence "(-poly.coeff Q (m - 1) / of_nat m) ^ ?p = c"
      using \alpha by (metis to_ac.base.eq_iff to_ac.base.hom_power)
    thus "c \in range frob"
      unfolding frob_def by blast
  qed auto
  thus ?thesis ..
qed auto
corollary perfect_field_alt':
  assumes "\prescript{p} :: 'a :: field_gcd poly. Factorial_Ring.irreducible p \implies
Rings.coprime p (pderiv p)"
```

```
shows "CHAR('a) = 0 \lor surj (frob :: 'a \Rightarrow 'a)" proof (rule perfect_field_alt) fix p :: "'a poly" assume p: "Factorial_Ring.irreducible p" with assms[OF p] show "pderiv p \neq 0" by auto qed end
```

References

- [1] K. Conrad. Perfect fields. Online at https://kconrad.math.uconn.edu/blurbs/galoistheory/perfect.pdf, 2021. Course notes, University of Connecticut.
- [2] Wikipedia contributors. Perfect field Wikipedia, the free encyclopedia, 2023. [Online; accessed 3-November-2023].