Perfect Fields

Manuel Eberl, Katharina Kreuzer

November 13, 2023

Abstract

This entry provides a type class for perfect fields. A perfect field K can be characterized by one of the following equivalent conditions [2]: 1. Any irreducible polynomial p is separable, i.e. $\operatorname{gcd}\left(p, p^{\prime}\right)=1$, or, equivalently, $p^{\prime} \neq 0$. 2. Either $\operatorname{char}(K)=0$ or $\operatorname{char}(K)=p>0$ and the Frobenius endomorphism $x \mapsto x^{p}$ is surjective (i.e. every element of K has a p-th root). We define perfect fields using the second characterization and show the equivalence to the first characterization. The implication " $2 \Rightarrow 1$ " is relatively straightforward using the injectivity of the Frobenius homomorphism.

Examples for perfect fields are [2]: - any field of characteristic 0 (e.g. \mathbb{R} and \mathbb{C}) - any finite field (i.e. \mathbb{F}_{q} for $q=p^{n}, n>0$ and p prime) - any algebraically closed field (for example the formal Puiseux series over finite fields)

Contents

1 Perfect Fields 10
1.1 Rings and fields with prime characteristic 10
1.2 Finite fields 12
1.3 The Freshman's Dream in rings of non-zero characteristic 16
1.4 The Frobenius endomorphism 18
1.5 Inverting the Frobenius endomorphism on polynomials 21
1.6 Code generation 25
1.7 Perfect fields 28
1.8 Algebraically closed fields are perfect 30
2 The algebraic closure type 32
2.1 Definition 33
2.2 The algebraic closure is algebraically closed 36
2.3 Converting between the base field and the closure 37
2.4 The algebraic closure is an algebraic extension 42
2.5 Alternative definition of perfect fields 45

```
theory Perfect_Field_Library
imports
    "HOL-Computational_Algebra.Computational_Algebra"
    "Berlekamp_Zassenhaus.Finite_Field"
begin
```

instance bool :: prime_card
by standard auto
theorem (in comm_semiring_1) binomial_ring:
$"(a+b:: \quad a)^{\wedge} n=\left(\sum k \leq n\right.$. (of_nat (n choose $\left.\left.\left.k\right)\right) * a^{\wedge} k * b^{\wedge}(n-k)\right) "$
proof (induct n)
case 0
then show ?case by simp
next
case (Suc n)
have decomp: "\{0..n+1\} = \{0\} $\cup\{n+1\} \cup\{1 . . n\} "$
by auto
have decomp2: "\{0..n\} = \{0\} $\cup\{1 . . n\} "$
by auto
have " $(a+b)^{\wedge}(n+1)=(a+b) *\left(\sum k \leq n\right.$. of_nat (n choose $\left.k\right) * a{ }^{\prime} k$ *
$\left.b^{\wedge}(n-k)\right) "$
using Suc.hyps by simp
also have $" \ldots=a *\left(\sum k \leq n\right.$. of_nat (n choose k) * $\left.a^{\wedge} k * b^{\wedge}(n-k)\right)+$
$b *\left(\sum k \leq n\right.$. of_nat (n choose $\left.\left.k\right) * a^{\wedge} k * b^{\wedge}(n-k)\right) "$
by (rule distrib_right)
also have "... = ($\sum k \leq n$. of_nat (n choose k) * $\left.a^{\wedge}(k+1) * b^{\wedge}(n-k)\right)+$
($\sum k \leq n$. of_nat (n choose k) * $a^{\wedge} k * b^{\wedge}(n-k+1)$)"
by (auto simp add: sum_distrib_left ac_simps)
also have "... = ($\sum k \leq n$. of_nat (n choose $\left.k\right) * a^{\wedge} k * b^{\wedge}(n+1-k)$)
+
($\sum k=1 . . n+1$. of_nat (n choose ($k-1$)) * $\left.a^{\wedge} k * b^{\wedge}(n+1-k)\right) "$
by (simp add: atMost_atLeastO sum.shift_bounds_cl_Suc_ivl Suc_diff_le
field_simps del: sum.cl_ivl_Suc)
also have "... = $b^{\wedge}(n+1)+$
$\left(\sum k=1 . . n\right.$. of_nat (n choose $\left.\left.k\right) * a^{\wedge} k * b^{\wedge}(n+1-k)\right)+\left(a^{\wedge}(n+\right.$

1) + (\(\sum \mathrm{k}=1 . . n\). of_nat (\(n\) choose \(\left.\left.(k-1)\right) * a^{\wedge} k * b^{\wedge}(n+1-k)\right)\))"
 using sum.nat_ivl_Suc' [of 1 n " \(\lambda \mathrm{k}\). of_nat (n choose (\(k-1\))) * a

~ k * b ~ (n + 1 - k)"]
by (simp add: sum.atLeast_Suc_atMost atMost_atLeastO)
also have "... = $a^{\wedge}(n+1)+b^{\wedge}(n+1)+$
($\sum k=1 . . n$. of_nat ($n+1$ choose k) * $\left.a^{\wedge} k * b^{\wedge}(n+1-k)\right) "$
by (auto simp add: field_simps sum.distrib [symmetric] choose_reduce_nat)
also have "... = ($\sum k \leq n+1$. of_nat ($n+1$ choose $\left.k\right)$ * $a^{\wedge} k * b^{\wedge}(n+1$

```
- k))"
    using decomp by (simp add: atMost_atLeastO field_simps)
    finally show ?case
    by simp
qed
lemma prime_not_dvd_fact:
assumes kn: "k < n" and prime_n: "prime n"
shows "\neg n dvd fact k"
    using kn leD prime_dvd_fact_iff prime_n by auto
lemma dvd_choose_prime:
assumes kn: "k < n" and k: "k f= 0" and n: "n f= 0" and prime_n: "prime
n"
shows "n dvd (n choose k)"
proof -
    have "n dvd (fact n)" by (simp add: fact_num_eq_if n)
    moreover have "\neg n dvd (fact k * fact (n-k))"
    proof (rule ccontr, safe)
        assume "n dvd fact k * fact (n - k)"
        hence "n dvd fact k V n dvd fact (n - k)" using prime_dvd_mult_eq_nat[OF
prime_n] by simp
            moreover have "\neg n dvd (fact k)" by (rule prime_not_dvd_fact[OF
kn prime_n])
    moreover have "\neg n dvd fact (n - k)" using prime_not_dvd_fact[OF
_ prime_n] kn k by simp
            ultimately show False by simp
    qed
    moreover have "(fact n::nat) = fact k * fact (n-k) * (n choose k)"
        using binomial_fact_lemma kn by auto
    ultimately show ?thesis using prime_n
        by (auto simp add: prime_dvd_mult_iff)
qed
lemma CHAR_not_1 [simp]: "CHAR('a :: {semiring_1, zero_neq_one}) f= Suc
0"
    by (metis One_nat_def of_nat_1 of_nat_CHAR zero_neq_one)
lemma (in idom) CHAR_not_1' [simp]: "CHAR('a) f= Suc 0"
    using local.of_nat_CHAR by fastforce
lemma semiring_char_mod_ring [simp]:
    "CHAR('n :: nontriv mod_ring) = CARD('n)"
proof (rule CHAR_eq_posI)
    fix x assume "x > 0" "x < CARD('n)"
    thus "of_nat x }=\mathrm{ (0 :: 'n mod_ring)"
        by transfer auto
```

qed auto
lemma of_nat_eq_iff_cong_CHAR:
"of_nat $x=$ (of_nat y : : 'a : : semiring_1_cancel) $\longleftrightarrow[x=y]$ (mod CHAR('a))"
proof (induction x y rule: linorder_wlog)
case (le x y)
define z where $" z=y-x "$
have [simp]: "y = x + z"
using le by (auto simp: z_{-}def)
have "(CHAR ('a) dvd z) = [x = x $+z](\bmod \operatorname{CHAR}(' a)) "$
by (metis $\langle y=x+z\rangle$ cong_def le mod_eq_dvd_iff_nat $z_{-} d e f$)
thus ?case
by (simp add: of_nat_eq_0_iff_char_dvd)
qed (simp add: eq_commute cong_sym_eq)
lemma (in ring_1) of_int_eq_O_iff_char_dvd:
"(of_int $n=(0:: \quad$ a)) = (int CHAR('a) dvd n)"
proof (cases " $n \geq 0$ ")
case True
hence "(of_int $n=\left(0:: \quad\right.$ a)) $\longleftrightarrow\left(o f _n a t(n a t ~ n)\right)=(0:: ~ ' a) "$
by auto
also have "... $\longleftrightarrow \operatorname{CHAR}(' a)$ dvd nat n "
by (subst of_nat_eq_O_iff_char_dvd) auto
also have "... \longleftrightarrow int $\operatorname{CHAR}(' a) d v d n "$
using True by presburger
finally show ?thesis.
next
case False
hence "(of_int $n=\left(0:: \quad\right.$ 'a)) $\longleftrightarrow-\left(o f_{-} n a t(n a t(-n))\right)=(0:: \quad$ 'a)" by auto
also have "... $\longleftrightarrow C H A R(' a)$ dvd nat (-n)" by (auto simp: of_nat_eq_0_iff_char_dvd)
also have "... \longleftrightarrow int CHAR ('a) dvd n"
using False dvd_nat_abs_iff[of "CHAR('a)" n] by simp
finally show ?thesis .
qed
lemma (in ring_1) of_int_eq_iff_cong_CHAR:
"of_int $\mathrm{x}=($ of_int $\mathrm{y}:: \mathrm{a}) \longleftrightarrow[\mathrm{x}=\mathrm{y}](\bmod$ int CHAR('a))"
proof -
have "of_int $x=\left(o f _i n t ~ y ~:: ~ ' a\right) ~ \longleftrightarrow o f _i n t ~(x-y)=(0:: ~ ' a) " ~$
by auto
also have "... \longleftrightarrow (int $\operatorname{CHAR}(' a) d v d x-y$)"
by (rule of_int_eq_O_iff_char_dvd)
also have "... $\longleftrightarrow[x=y](\bmod$ int CHAR ('a))"
by (simp add: cong_iff_dvd_diff)
finally show ?thesis .
qed

```
lemma finite_imp_CHAR_pos:
    assumes "finite (UNIV :: 'a set)"
    shows "CHAR('a :: semiring_1_cancel) > 0"
proof -
    have "\existsn\inUNIV. infinite {m \in UNIV. of_nat m = (of_nat n :: 'a)}"
    proof (rule pigeonhole_infinite)
        show "infinite (UNIV :: nat set)"
            by simp
        show "finite (range (of_nat :: nat => 'a))"
            by (rule finite_subset[OF _ assms]) auto
    qed
    then obtain n :: nat where "infinite {m \in UNIV. of_nat m = (of_nat
n :: 'a)}"
        by blast
    hence "\neg({m \in UNIV. of_nat m = (of_nat n :: 'a)}\subseteq{n})"
        by (intro notI) (use finite_subset in blast)
    then obtain m where "m f n" "of_nat m = (of_nat n :: 'a)"
        by blast
    hence "[m = n] (mod CHAR('a))"
        by (simp add: of_nat_eq_iff_cong_CHAR)
    hence "CHAR('a) = 0"
        using <m f n> by (intro notI) auto
    thus ?thesis
        by simp
qed
lemma CHAR_dvd_CARD: "CHAR('a :: ring_1) dvd CARD('a)"
proof (cases "CARD('a) = O")
    case False
    hence [intro]: "CHAR('a) > 0"
        by (simp add: card_eq_O_iff finite_imp_CHAR_pos)
    define G where "G = ( carrier = (UNIV :: 'a set), monoid.mult = (+),
one = (0 :: 'a) D"
    define H where "H = (of_nat ` {..<CHAR('a)} :: 'a set)"
    interpret group G
    proof (rule groupI)
        fix x assume x: "x f carrier G"
        show "\existsy\incarrier G. y \otimes |G x = 1 1G"
            by (intro bexI[of _ "-x"]) (auto simp: G_def)
    qed (auto simp: G_def add_ac)
    interpret subgroup H G
    proof
        show "1 (1G G H"
            using False unfolding G_def H_def
            by (intro image_eqI[of _ _ O]) auto
    next
        fix x y :: 'a
        assume "x \inH" "y \inH"
```

```
        then obtain x' y' where [simp]: "x = of_nat x'" "y = of_nat y'"
        by (auto simp: H_def)
    have "x + y = of_nat (( }\mp@subsup{x}{}{\prime}+\mp@subsup{y}{}{\prime}) mod CHAR('a))"
        by (auto simp flip: of_nat_add simp: of_nat_eq_iff_cong_CHAR)
    moreover have "(x' + y') mod CHAR('a) < CHAR('a)"
        using H_def <y \in H> by fastforce
    ultimately show "x * |
        by (auto simp: H_def G_def intro!: imageI)
    next
    fix x :: 'a
    assume x: "x \in H"
    then obtain x' where [simp]: "x = of_nat x'" and x': "x' < CHAR('a)"
        by (auto simp: H_def)
    have "CHAR('a) dvd x' + (CHAR('a) - x') mod CHAR('a)"
        by (metis x' dvd_eq_mod_eq_O le_add_diff_inverse mod_add_right_eq
mod_self order_less_imp_le)
    hence "x + of_nat ((CHAR('a) - x') mod CHAR('a)) = 0"
        by (auto simp flip: of_nat_add simp: of_nat_eq_O_iff_char_dvd)
    moreover from this have "inv }\mp@subsup{|}{G}{}=0\mathrm{ of_nat ((CHAR('a) - x') mod CHAR('a))"
        by (intro inv_equality) (auto simp: G_def add_ac)
    moreover have "of_nat ((CHAR('a) - x') mod CHAR('a)) \in H"
        unfolding H_def using <CHAR('a) > 0> by (intro imageI) auto
    ultimately show "inv }\mp@subsup{G}{G}{}x\inH\mathrm{ " by force
    qed (auto simp: G_def H_def)
    have "card H dvd card (rcosets}\mp@subsup{G}{G}{}H) * card H"
        by simp
    also have "card (rcosets}\mp@subsup{G}{G}{H) * card H = Coset.order G"
    proof (rule lagrange_finite)
        show "finite (carrier G)"
        using False card_ge_O_finite by (auto simp: G_def)
    qed (fact is_subgroup)
    finally have "card H dvd CARD('a)"
        by (simp add: Coset.order_def G_def)
    also have "card H = card {..<CHAR('a)}"
    unfolding H_def by (intro card_image inj_onI) (auto simp: of_nat_eq_iff_cong_CHAR
cong_def)
    finally show "CHAR('a) dvd CARD('a)"
        by simp
qed auto
lemma (in idom) prime_CHAR_semidom:
    assumes "CHAR('a) > O"
    shows "prime CHAR('a)"
proof -
    have False if ab: "a f 1" "b f= 1" "CHAR('a) = a * b" for a b
    proof -
        from assms ab have "a > 0" "b > 0"
            by (auto intro!: Nat.grOI)
```

```
    have "of_nat (a * b) = (0 :: 'a)"
        using ab by (metis of_nat_CHAR)
    also have "of_nat (a * b) = (of_nat a :: 'a) * of_nat b"
        by simp
    finally have "of_nat a * of_nat b = (0 :: 'a)".
    moreover have "of_nat a * of_nat b #= (0 :: 'a)"
        using ab <a > 0> <b > 0>
        by (intro no_zero_divisors) (auto simp: of_nat_eq_0_iff_char_dvd)
    ultimately show False
        by contradiction
    qed
    moreover have "CHAR('a) > 1"
        using assms CHAR_not_1' by linarith
    ultimately have "prime_elem CHAR('a)"
        by (intro irreducible_imp_prime_elem) (auto simp: Factorial_Ring.irreducible_def)
    thus ?thesis
        by auto
qed
Characteristics are preserved by typical functors (polynomials, power series, Laurent series):
```

```
lemma semiring_char_poly [simp]: "CHAR('a :: comm_semiring_1 poly) =
```

lemma semiring_char_poly [simp]: "CHAR('a :: comm_semiring_1 poly) =
CHAR('a)"
CHAR('a)"
by (rule CHAR_eqI) (auto simp: of_nat_poly of_nat_eq_O_iff_char_dvd)
by (rule CHAR_eqI) (auto simp: of_nat_poly of_nat_eq_O_iff_char_dvd)
lemma semiring_char_fps [simp]: "CHAR('a :: comm_semiring_1 fps) = CHAR('a)"
lemma semiring_char_fps [simp]: "CHAR('a :: comm_semiring_1 fps) = CHAR('a)"
by (rule CHAR_eqI) (auto simp flip: fps_of_nat simp: of_nat_eq_O_iff_char_dvd)
by (rule CHAR_eqI) (auto simp flip: fps_of_nat simp: of_nat_eq_O_iff_char_dvd)
lemma fls_const_eq_O_iff [simp]: "fls_const c = 0 \longleftrightarrow c = 0"
lemma fls_const_eq_O_iff [simp]: "fls_const c = 0 \longleftrightarrow c = 0"
using fls_const_0 fls_const_nonzero by blast
using fls_const_0 fls_const_nonzero by blast
lemma semiring_char_fls [simp]: "CHAR('a :: comm_semiring_1 fls) = CHAR('a)"
lemma semiring_char_fls [simp]: "CHAR('a :: comm_semiring_1 fls) = CHAR('a)"
by (rule CHAR_eqI) (auto simp: fls_of_nat of_nat_eq_O_iff_char_dvd fls_const_nonzero)
by (rule CHAR_eqI) (auto simp: fls_of_nat of_nat_eq_O_iff_char_dvd fls_const_nonzero)
lemma irreducible_power_iff [simp]:
lemma irreducible_power_iff [simp]:
"irreducible (p `n) \longleftrightarrow irreducible p ^ n = 1" "irreducible (p` n) \longleftrightarrow irreducible p ^ n = 1"
proof
proof
assume *: "irreducible (p ^ n)"
assume *: "irreducible (p ^ n)"
have [simp]: "\negp dvd 1"
have [simp]: "\negp dvd 1"
proof
proof
assume "p dvd 1"
assume "p dvd 1"
hence "p ^ n dvd 1"
hence "p ^ n dvd 1"
by (metis dvd_power_same power_one)
by (metis dvd_power_same power_one)
with * show False
with * show False
by auto
by auto
qed
qed
consider "n = 0" | "n = 1" | "n > 1"

```
    consider "n = 0" | "n = 1" | "n > 1"
```

```
        by linarith
    thus "irreducible p}^n=1
    proof cases
        assume "n > 1"
        hence "p^n = p* p^ (n - 1)"
        by (cases n) auto
    with * <\neg p dvd 1> have "p - (n - 1) dvd 1"
        using irreducible_multD by blast
    with <\negp dvd 1> and <n > 1> have False
        by (meson dvd_power dvd_trans zero_less_diff)
    thus ?thesis ..
    qed (use * in auto)
qed auto
lemma pderiv_monom:
    "pderiv (Polynomial.monom c n) = of_nat n * Polynomial.monom c (n -
1)"
proof (cases n)
    case (Suc n)
    show ?thesis
        unfolding monom_altdef Suc pderiv_smult pderiv_power_Suc pderiv_pCons
        by (simp add: of_nat_poly)
qed (auto simp: monom_altdef)
lemma uminus_CHAR_2 [simp]:
    assumes "CHAR('a :: ring_1) = 2"
    shows "-(x :: 'a) = x"
proof -
    have "x + x = 2 * x"
        by (simp add: mult_2)
    also have "2 = (0 :: 'a)"
        using assms by (metis of_nat_CHAR of_nat_numeral)
    finally show ?thesis
        by (simp add: add_eq_O_iff2)
qed
lemma minus_CHAR_2 [simp]:
    assumes "CHAR('a :: ring_1) = 2"
    shows "(x - y :: 'a) = x + y"
    using uminus_CHAR_2[of y] assms by simp
lemma minus_power_prime_CHAR:
    assumes "p = CHAR('a :: {ring_1})" "prime p"
    shows "(-x :: 'a) ^ p = - (x ^ p)"
proof (cases "p = 2")
    case False
    have "prime p"
        using assms by blast
    with False have "odd p"
```

using primes_dvd_imp_eq two_is_prime_nat by blast
thus ?thesis
by simp
qed (use assms in auto)
end

1 Perfect Fields

```
theory Perfect_Fields
imports
    "Berlekamp_Zassenhaus.Finite_Field"
    Perfect_Field_Library
begin
```


1.1 Rings and fields with prime characteristic

We introduce some type classes for rings and fields with prime characteristic.

```
class semiring_prime_char = semiring_1 +
    assumes prime_char_aux: "\existsn. prime n ^ of_nat n = (0 :: 'a)"
begin
lemma CHAR_pos [intro, simp]: "CHAR('a) > 0"
    using local.CHAR_pos_iff local.prime_char_aux prime_gt_O_nat by blast
lemma CHAR_nonzero [simp]: "CHAR('a) \not= 0"
    using CHAR_pos by auto
lemma CHAR_prime [intro, simp]: "prime CHAR('a)"
    by (metis (mono_tags, lifting) gcd_nat.order_iff_strict local.of_nat_1
local.of_nat_eq_O_iff_char_dvd
    local.one_neq_zero local.prime_char_aux prime_nat_iff)
end
lemma semiring_prime_charI [intro?]:
    "prime CHAR('a :: semiring_1) \Longrightarrow OFCLASS('a, semiring_prime_char_class)"
    by standard auto
lemma idom_prime_charI [intro?]:
    assumes "CHAR('a :: idom) > 0"
    shows "OFCLASS('a, semiring_prime_char_class)"
proof
    show "prime CHAR('a)"
        using assms prime_CHAR_semidom by blast
qed
```

```
class comm_semiring_prime_char = comm_semiring_1 + semiring_prime_char
class comm_ring_prime_char = comm_ring_1 + semiring_prime_char
begin
subclass comm_semiring_prime_char ..
end
class idom_prime_char = idom + semiring_prime_char
begin
subclass comm_ring_prime_char ..
end
class field_prime_char = field +
    assumes pos_char_exists: "\existsn>0. of_nat n = (0 :: 'a)"
begin
subclass idom_prime_char
    apply standard
    using pos_char_exists local.CHAR_pos_iff local.of_nat_CHAR local.prime_CHAR_semidom
by blast
end
lemma field_prime_charI [intro?]:
    "n > 0 \Longrightarrow of_nat n = (0 :: 'a :: field) \Longrightarrow OFCLASS('a, field_prime_char_class)"
    by standard auto
lemma field_prime_charI' [intro?]:
    "CHAR('a :: field) > 0 O OFCLASS('a, field_prime_char_class)"
    by standard auto
```

Typical functors like polynomials, formal power seires, and formal Laurent series preserve the characteristic of the coefficient ring.
instance poly :: ("\{semiring_prime_char,comm_semiring_1\}") semiring_prime_char by (rule semiring_prime_charI) auto
instance poly :: ("\{comm_semiring_prime_char,comm_semiring_1\}") comm_semiring_prime_char by standard
instance poly :: ("\{comm_ring_prime_char,comm_semiring_1\}") comm_ring_prime_char by standard
instance poly :: ("\{idom_prime_char,comm_semiring_1\}") idom_prime_char by standard
instance fps :: ("\{semiring_prime_char,comm_semiring_1\}") semiring_prime_char by (rule semiring_prime_charI) auto
instance fps :: ("\{comm_semiring_prime_char,comm_semiring_1\}") comm_semiring_prime_char by standard
instance fps :: ("\{comm_ring_prime_char,comm_semiring_1\}") comm_ring_prime_char by standard
instance fps :: ("\{idom_prime_char,comm_semiring_1\}") idom_prime_char by standard
instance fls :: ("\{semiring_prime_char,comm_semiring_1\}") semiring_prime_char
by (rule semiring_prime_charI) auto
instance fls :: ("\{comm_semiring_prime_char,comm_semiring_1\}") comm_semiring_prime_char by standard
instance fls :: ("\{comm_ring_prime_char,comm_semiring_1\}") comm_ring_prime_char by standard
instance fls :: ("\{idom_prime_char,comm_semiring_1\}") idom_prime_char by standard
instance fls :: ("\{field_prime_char,comm_semiring_1\}") field_prime_char by (rule field_prime_charI') auto

1.2 Finite fields

```
class finite_field = field_prime_char + finite
lemma finite_fieldI [intro?]:
    assumes "finite (UNIV :: 'a :: field set)"
    shows "OFCLASS('a, finite_field_class)"
proof standard
    show "\existsn>0. of_nat n = (0 :: 'a)"
            using assms prime_CHAR_semidom[where ?'a = 'a] finite_imp_CHAR_pos[OF
assms]
            by (intro exI[of _ "CHAR('a)"]) auto
qed fact+
class enum_finite_field = finite_field +
    fixes enum_finite_field :: "nat = 'a"
    assumes enum_finite_field: "enum_finite_field ` {..<CARD('a)} = UNIV"
begin
lemma inj_on_enum_finite_field: "inj_on enum_finite_field {..<CARD('a)}"
    using enum_finite_field by (simp add: eq_card_imp_inj_on)
end
instance mod_ring :: (prime_card) finite_field
    by standard simp_all
instantiation mod_ring :: (prime_card) enum_finite_field
begin
definition enum_finite_field_mod_ring :: "nat => 'a mod_ring" where
    "enum_finite_field_mod_ring n = of_int_mod_ring (int n)"
instance proof
    interpret type_definition "Rep_mod_ring :: 'a mod_ring => int" Abs_mod_ring
"{0..<CARD('a)}"
        by (rule type_definition_mod_ring)
    have "enum_finite_field ` {..<CARD('a mod_ring)} = of_int_mod_ring
int ` {..<CARD('a mod_ring)}"
```

```
    unfolding enum_finite_field_mod_ring_def by (simp add: image_image
o_def)
    also have "int ` {..<CARD('a mod_ring)} = {0..<int CARD('a mod_ring)}"
        by (simp add: image_atLeastZeroLessThan_int)
    also have "of_int_mod_ring ` ... = (Abs_mod_ring ` ... :: 'a mod_ring
set)"
        by (intro image_cong refl) (auto simp: of_int_mod_ring_def)
    also have "... = (UNIV :: 'a mod_ring set)"
        using Abs_image by simp
    finally show "enum_finite_field ` {..<CARD('a mod_ring)} = (UNIV :: 'a
mod_ring set)" .
qed
end
```

On a finite field with n elements, taking the n-th power of an element is the identity. This is an obvious consequence of the fact that the multiplicative group of the field is a finite group of order $n-1$, so $x^{\wedge} n=1$ for any non-zero x.

Note that this result is sharp in the sense that the multiplicative group of a finite field is cyclic, i.e. it contains an element of order $n-1$. (We don't prove this here.)

```
lemma finite_field_power_card_eq_same:
    fixes x :: "'a :: finite_field"
    shows "x - CARD('a) = x"
proof (cases "x = O")
    case False
    let ?R = "(carrier = (UNIV :: 'a set), monoid.mult = (*), one = 1, zero
= 0, add = (+)|"
    interpret field "?R" rewrites "([^]?R) = (`)"
    proof -
        show "field ?R"
            by unfold_locales (auto simp: Units_def add_eq_O_iff ring_distribs
                                    intro!: exI[of _ "inverse x" for x] left_inverse
right_inverse)
        have "x [`]?R n = x ` n" for x n
            by (induction n) auto
        thus "([^] ?R) = (~)"
            by blast
    qed
    note fin [intro] = finite_class.finite_UNIV[where ?'a = 'a]
    have "x - (CARD('a) - 1) * x = x - CARD('a)"
        using finite_UNIV_card_ge_O power_minus_mult by blast
    also have "x - (CARD('a) - 1) = 1"
        using units_power_order_eq_one[of x] fin False
        by (simp add: field_Units)
    finally show ?thesis
```

```
    by simp
qed (use finite_class.finite_UNIV[where ?'a = 'a] in <auto simp: card_gt_O_iff>)
lemma finite_field_power_card_power_eq_same:
    fixes x :: "'a :: finite_field"
    assumes "m = CARD('a) ^ n"
    shows "x ^ m = x"
    unfolding assms
    by (induction n) (simp_all add: finite_field_power_card_eq_same power_mult)
typedef (overloaded) 'a :: semiring_1 ring_char = "if CHAR('a) = 0 then
UNIV else {0..<CHAR('a)}"
    by auto
lemma CARD_ring_char [simp]: "CARD ('a :: semiring_1 ring_char) = CHAR('a)"
proof -
    let ?A = "if CHAR('a) = 0 then UNIV else {0..<CHAR('a)}"
    interpret type_definition "Rep_ring_char :: 'a ring_char m nat" Abs_ring_char
?A
    by (rule type_definition_ring_char)
    from card show ?thesis
        by auto
qed
instance ring_char :: (semiring_prime_char) nontriv
proof
    show "CARD('a ring_char) > 1"
        using prime_nat_iff by auto
qed
instance ring_char :: (semiring_prime_char) prime_card
proof
    from CARD_ring_char show "prime CARD('a ring_char)"
        by auto
qed
lemma to_int_mod_ring_add:
    "to_int_mod_ring (x + y :: 'a :: finite mod_ring) = (to_int_mod_ring
x + to_int_mod_ring y) mod CARD('a)"
    by transfer auto
lemma to_int_mod_ring_mult:
    "to_int_mod_ring (x * y :: 'a :: finite mod_ring) = (to_int_mod_ring
x * to_int_mod_ring y) mod CARD('a)"
    by transfer auto
lemma of_nat_mod_CHAR [simp]: "of_nat (x mod CHAR('a :: semiring_1))
= (of_nat x :: 'a)"
```

by (metis (no_types, opaque_lifting) comm_monoid_add_class.add_O div_mod_decomp mult_zero_right of_nat_CHAR of_nat_add of_nat_mult)
lemma of_int_mod_CHAR [simp]: "of_int (x mod int CHAR('a :: ring_1))
= (of_int x : : 'a)"
by (simp add: of_int_eq_iff_cong_CHAR)
lemma (in vector_space) bij_betw_representation:
assumes [simp]: "independent B " "finite B^{\prime}
shows "bij_betw ($\lambda v . \sum b \in B$. scale (v b) b) ($B \rightarrow_{E}$ UNIV) (span B)"
proof (rule bij_betwI)
show " $\left(\lambda \mathrm{v} . \sum \mathrm{b} \in \mathrm{B} . \mathrm{v} \mathrm{b} * \mathrm{~s} \mathrm{~b}\right) \in\left(B \rightarrow_{E}\right.$ UNIV) \rightarrow local.span $B^{\prime \prime}$
(is "?f \in _")
by (auto intro: span_sum span_scale span_base)
show " ($\lambda \mathrm{x}$. restrict (representation $B \mathrm{x}$) B) \in local.span $B \rightarrow B \rightarrow_{E}$ UNIV"
(is "?g \in _") by auto
show "?g (?f v) = v " if $" v \in B \rightarrow_{E}$ UNIV" for v
proof
fix $b:$: b
show "?g (?f v) b = v b"
proof (cases "b $\in B^{\prime \prime}$)
case b : True
have "?g (?f v) b = ($\sum \mathrm{i} \in \mathrm{B}$. local.representation B ($v i \neq s i$) b)"
using b by (subst representation_sum) (auto intro: span_scale
span_base)
also have "... = ($\sum \mathrm{i} \in$ B. v i * local.representation B i b)"
by (intro sum.cong) (auto simp: representation_scale span_base)
also have "... = ($\sum i \in\{b\} . v i *$ local.representation B i b)"
by (intro sum.mono_neutral_right) (auto simp: representation_basis
b)
also have "... = v b"
by (simp add: representation_basis b)
finally show "?g (?f v) b = v b".
qed (use that in auto)
qed
show "?f (?g v) $=v$ " if $" v \in \operatorname{span} B$ " for v
using that by (simp add: sum_representation_eq)
qed
lemma (in vector_space) card_span:
assumes [simp]: "independent B " "finite $B "$
shows "card (span B) = CARD('a) ^ card B"
proof -
have "card $\left(B \rightarrow_{E}\right.$ (UNIV :: 'a set)) = card (span B)"
by (rule bij_betw_same_card, rule bij_betw_representation) fact+
thus ?thesis
by (simp add: card_PiE dim_span_eq_card_independent)
qed

```
lemma (in zero_neq_one) CARD_neq_1: "CARD('a) # Suc 0"
proof
    assume "CARD('a) = Suc 0"
    have "{0, 1}\subseteq (UNIV :: 'a set)"
        by simp
    also have "is_singleton (UNIV :: 'a set)"
        by (simp add: is_singleton_altdef <CARD('a) = _>)
    then obtain x :: 'a where "UNIV = {x}"
        by (elim is_singletonE)
    finally have "O = (1 :: 'a)"
        by blast
    thus False
        using zero_neq_one by contradiction
qed
theorem CARD_finite_field_is_CHAR_power: "\existsn>0. CARD('a :: finite_field)
= CHAR('a) ~ n"
proof -
    define s :: "'a ring_char mod_ring => 'a # 'a" where
        "s = (\lambdax y. of_int (to_int_mod_ring x) * y)"
    interpret vector_space s
        by unfold_locales (auto simp: s_def algebra_simps to_int_mod_ring_add
to_int_mod_ring_mult)
    obtain B where B: "independent B" "span B = UNIV"
        by (rule basis_exists[of UNIV]) auto
    have [simp]: "finite B"
        by simp
    have "card (span B) = CHAR('a) ^ card B"
        using B by (subst card_span) auto
    hence *: "CARD('a) = CHAR('a) ^ card B"
        using B by simp
    from * have "card B f= 0"
        by (auto simp: B(2) CARD_neq_1)
    with * show ?thesis
        by blast
qed
```


1.3 The Freshman's Dream in rings of non-zero characteristic

```
lemma (in comm_semiring_1) freshmans_dream:
    fixes x y :: 'a and n :: nat
    assumes "prime CHAR('a)"
    assumes n_def: "n = CHAR('a)"
    shows "-(x+y)^ n = x ^ n + y ^ n"
proof -
    interpret comm_semiring_prime_char
        by standard (auto intro!: exI[of _ "CHAR('a)"] assms)
    have "n > 0"
```

unfolding n_{-}def by simp
have " $(x+y)^{-} n=\left(\sum k \leq n\right.$. of_nat (n choose k) * x ~ $k * y$ - ($n-$ k))"
by (rule binomial_ring)
also have "... = ($\sum k \in\{0, n\}$. of_nat (n choose k) * $x^{-} k * y^{-}(n-$ k))"
proof (intro sum.mono_neutral_right ballI)
fix k assume $" k \in\{. . n\}-\{0, n\} "$
hence k : "k > $0 " \mathrm{k}$ < n " by auto
have "CHAR('a) dvd (n choose k)" unfolding $n_{-} d e f$ by (rule dvd_choose_prime) (use k in 〈auto simp: n_def〉)
hence "of_nat (n choose k) $=(0:: \quad$ 'a)"
using of_nat_eq_O_iff_char_dvd by blast
thus "of_nat (n choose k) * x - k * y - (n - k) = 0" by simp
qed auto
finally show ?thesis
using <n > 0> by (simp add: add_ac)
qed
lemma (in comm_semiring_1) freshmans_dream':
assumes [simp]: "prime CHAR('a)" and "m = CHAR('a) ~n"

unfolding assms(2)
proof (induction n)
case (Suc n)
have " $(\mathrm{x}+\mathrm{y})$ ~ (CHAR ('a) ~n * $\operatorname{CHAR}(\mathrm{a}))=((\mathrm{x}+\mathrm{y})$ - (CHAR ('a) ~n))

- CHAR ('a)"
by (rule power_mult)
thus ?case
by (simp add: Suc.IH freshmans_dream Groups.mult_ac flip: power_mult)
qed auto
lemma (in comm_semiring_1) freshmans_dream_sum:
fixes $f:: " ' b \Rightarrow$ 'a"
assumes "prime CHAR('a)" and "n = CHAR('a)"
shows "sum f A $n=\operatorname{sum}\left(\lambda i . f i{ }^{\wedge} n\right.$) $A "$
using assms
by (induct A rule: infinite_finite_induct)
(auto simp add: power_O_left freshmans_dream)
lemma (in comm_semiring_1) freshmans_dream_sum':
fixes $f:: " ' b \Rightarrow$ 'a"
assumes "prime CHAR('a)" "m = CHAR('a) ~n"
shows "sum $f A^{\wedge} m=\operatorname{sum}(\lambda i . f i \wedge m) A^{\prime}$
using assms
by (induction A rule: infinite_finite_induct)

```
(auto simp: freshmans_dream' power_O_left)
```


1.4 The Frobenius endomorphism

definition (in semiring_1) frob :: "'a \Rightarrow 'a" where
"frob $\mathrm{x}=\mathrm{x}$ - $\operatorname{CHAR}(\mathrm{a}$)"
definition (in semiring_1) inv_frob :: "'a \Rightarrow 'a" where
"inv_frob $\mathrm{x}=$ (if $\mathrm{x} \in\{0,1\}$ then x else if $\mathrm{x} \in$ range frob then inv_into
UNIV frob x else x)"
lemma (in semiring_1) inv_frob_0 [simp]: "inv_frob $0=0 "$
and inv_frob_1 [simp]: "inv_frob 1 = 1"
by (simp_all add: inv_frob_def)
lemma (in semiring_prime_char) frob_0 [simp]: "frob (0 :: 'a) = 0"
by (simp add: frob_def power_O_left)
lemma (in semiring_1) frob_1 [simp]: "frob 1 = 1"
by (simp add: frob_def)
lemma (in comm_semiring_1) frob_mult: "frob (x * y) = frob x * frob (y :: 'a)"
by (simp add: frob_def power_mult_distrib)
lemma (in comm_semiring_1)
frob_add: "prime CHAR('a) \Longrightarrow frob ($\mathrm{x}+\mathrm{y}:: \mathrm{a}$) = frob $\mathrm{x}+\mathrm{frob}$ (y :: 'a)"
by (simp add: frob_def freshmans_dream)
lemma (in comm_ring_1) frob_uminus: "prime CHAR('a) \Longrightarrow frob (-x :: 'a)
= -frob $x^{\prime \prime}$
proof -
assume "prime CHAR('a)"
hence "frob (-x) + frob $x=0 "$
by (subst frob_add [symmetric]) (auto simp: frob_def power_O_left)
thus ?thesis
by (simp add: add_eq_0_iff)
qed
lemma (in comm_ring_prime_char) frob_diff:
"prime CHAR ('a) \Longrightarrow frob ($\mathrm{x}-\mathrm{y}:: \mathrm{a}$) = frob $\mathrm{x}-\mathrm{frob}(\mathrm{y}:: \mathrm{a}$)" using frob_add[of x "-y"] by (simp add: frob_uminus)
interpretation frob_sr: semiring_hom "frob :: 'a :: \{comm_semiring_prime_char\} \Rightarrow 'a'
by standard (auto simp: frob_add frob_mult)
interpretation frob: ring_hom "frob :: 'a :: \{comm_ring_prime_char\} \Rightarrow

```
    'a"
    by standard auto
interpretation frob: field_hom "frob :: 'a :: {field_prime_char} => 'a"
    by standard auto
lemma frob_mod_ring' [simp]: "(x :: 'a :: prime_card mod_ring) ~ CARD('a)
= x"
    by (metis CARD_mod_ring finite_field_power_card_eq_same)
lemma frob_mod_ring [simp]: "frob (x :: 'a :: prime_card mod_ring) =
x"
    by (simp add: frob_def)
context semiring_1_no_zero_divisors
begin
lemma frob_eq_OD:
    "frob (x :: 'a) = 0 \Longrightarrow x = 0"
    by (auto simp: frob_def)
lemma frob_eq_0_iff [simp]:
    "frob (x :: 'a) = 0 \longleftrightarrow x = 0 ^ CHAR('a) > 0"
    by (auto simp: frob_def)
end
context idom_prime_char
begin
lemma inj_frob: "inj (frob :: 'a = 'a)"
proof
    fix x y :: 'a
    assume "frob x = frob y"
    hence "frob (x - y) = 0"
        by (simp add: frob_diff del: frob_eq_O_iff)
    thus "x = y"
        by simp
qed
lemma frob_eq_frob_iff [simp]:
    "frob (x :: 'a) = frob y \longleftrightarrow x = y"
    using inj_frob by (auto simp: inj_def)
lemma frob_eq_1_iff [simp]: "frob (x :: 'a) = 1 \longleftrightarrow x = 1"
    using frob_eq_frob_iff by fastforce
lemma inv_frob_frob [simp]: "inv_frob (frob (x :: 'a)) = x"
```

```
    by (simp add: inj_frob inv_frob_def)
lemma frob_inv_frob [simp]:
    assumes "x f range frob"
    shows "frob (inv_frob x) = (x :: 'a)"
    using assms by (auto simp: inj_frob inv_frob_def)
lemma inv_frob_eqI: "frob y = x \Longrightarrow inv_frob x = y"
    using inv_frob_frob local.frob_def by force
lemma inv_frob_eq_O_iff [simp]: "inv_frob (x :: 'a) = 0 \longleftrightarrow x = 0"
    using inj_frob by (auto simp: inv_frob_def split: if_splits)
end
```

```
class surj_frob = field_prime_char +
    assumes surj_frob [simp]: "surj (frob :: 'a = 'a)"
begin
lemma in_range_frob [simp, intro]: "(x :: 'a) \in range frob"
    using surj_frob by blast
lemma inv_frob_eq_iff [simp]: "inv_frob (x :: 'a) = y \longleftrightarrow frob y = x"
    using frob_inv_frob inv_frob_frob by blast
```

end

The following type class describes a field with a surjective Frobenius endomorphism that is effectively computable. This includes all finite fields.

```
class inv_frob = surj_frob +
    fixes inv_frob_code :: "'a # 'a"
    assumes inv_frob_code: "inv_frob x = inv_frob_code x"
lemmas [code] = inv_frob_code
context finite_field
begin
subclass surj_frob
proof
    show "surj (frob :: 'a # 'a)"
    using inj_frob finite_UNIV by (simp add: finite_UNIV_inj_surj)
qed
end
```

```
lemma inv_frob_mod_ring [simp]: "inv_frob (x :: 'a :: prime_card mod_ring)
= \(x^{\prime \prime}\)
    by (auto simp: frob_def)
instantiation mod_ring :: (prime_card) inv_frob
begin
definition inv_frob_code_mod_ring :: "'a mod_ring \(\Rightarrow\) 'a mod_ring" where
    "inv_frob_code_mod_ring x = x"
instance
    by standard (auto simp: inv_frob_code_mod_ring_def)
end
```


1.5 Inverting the Frobenius endomorphism on polynomials

If K is a field of prime characteristic p with a surjective Frobenius endomorphism, every polynomial P with $P^{\prime}=0$ has a p-th root.
To see that, let $\phi(a)=a^{p}$ denote the Frobenius endomorphism of K and its extension to $K[X]$.
If $P^{\prime}=0$ for some $P \in K[X]$, then P must be of the form

$$
P=a_{0}+a_{p} x^{p}+a_{2 p} x^{2 p}+\ldots+a_{k p} x^{k p}
$$

If we now set

$$
Q:=\phi^{-1}\left(a_{0}\right)+\phi^{-1}\left(a_{p}\right) x+\phi^{-1}\left(a_{2 p}\right) x^{2}+\ldots+\phi^{-1}\left(a_{k p}\right) x^{k}
$$

we get $\phi(Q)=P$, i.e. Q is the p-th root of $P(x)$.

```
lift__definition inv_frob_poly :: "'a :: field poly # 'a poly" is
    "\lambdap i. if CHAR('a) = O then p i else inv_frob (p (i * CHAR('a)) :: 'a)"
proof goal_cases
    case (1 f)
    show ?case
    proof (cases "CHAR('a) > O")
        case True
        from 1 obtain N where N: "f i = 0" if "i \geqN" for i
            using cofinite_eq_sequentially eventually_sequentially by auto
        have "inv_frob (f (i * CHAR('a))) = 0" if "i \geqN" for i
        proof -
            have "f (i * CHAR('a)) = 0"
            proof (rule N)
                show "N \leq i * CHAR('a)"
                    using that True
                        by (metis One_nat_def Suc_leI le_trans mult.right_neutral mult_le_mono2)
```

```
        qed
        thus "inv_frob (f (i * CHAR('a))) = 0"
            by (auto simp: power_O_left)
        qed
        thus ?thesis using True
        unfolding cofinite_eq_sequentially eventually_sequentially by auto
    qed (use 1 in auto)
qed
lemma coeff_inv_frob_poly [simp]:
    fixes p :: "'a :: field poly"
    assumes "CHAR('a) > 0"
    shows "poly.coeff (inv_frob_poly p) i = inv_frob (poly.coeff p (i *
CHAR('a)))"
    using assms by transfer auto
lemma inv_frob_poly_0 [simp]: "inv_frob_poly 0 = 0"
    by transfer (auto simp: fun_eq_iff power_O_left)
lemma inv_frob_poly_1 [simp]: "inv_frob_poly 1 = 1"
    by transfer (auto simp: fun_eq_iff power_O_left)
lemma degree_inv_frob_poly_le:
    fixes p :: "'a :: field poly"
    assumes "CHAR('a) > 0"
    shows "Polynomial.degree (inv_frob_poly p) \leq Polynomial.degree p div
CHAR('a)"
proof (intro degree_le allI impI)
    fix i assume "Polynomial.degree p div CHAR('a) < i"
    hence "i * CHAR('a) > Polynomial.degree p"
        using assms div_less_iff_less_mult by blast
    thus "Polynomial.coeff (inv_frob_poly p) i = 0"
        by (simp add: coeff_eq_O power_O_left assms)
qed
context
    assumes "SORT_CONSTRAINT('a :: comm_ring_1)"
    assumes prime_char: "prime CHAR('a)"
begin
lemma poly_power_prime_char_as_sum_of_monoms:
    fixes h :: "'a poly"
    shows "h ~ CHAR('a) = (\sumi\leqPolynomial.degree h. Polynomial.monom (Polynomial.coeff
h i ` CHAR('a)) (CHAR('a)*i))"
proof -
    have "h ~ CHAR('a) = (\sum i\leqPolynomial.degree h. Polynomial.monom (Polynomial.coeff
h i) i) ^ CHAR('a)"
            by (simp add: poly_as_sum_of_monoms)
    also have "... = (\sumi\leqPolynomial.degree h. (Polynomial.monom (Polynomial.coeff
```

```
h i) i) " CHAR('a))"
    by (simp add: freshmans_dream_sum prime_char)
    also have "... = (\sum i\leqPolynomial.degree h. Polynomial.monom (Polynomial.coeff
    h i ` CHAR('a)) (CHAR('a)*i))"
    proof (rule sum.cong, rule)
            fix x assume x: "x \in {..Polynomial.degree h}"
            show "Polynomial.monom (Polynomial.coeff h x) x ^ CHAR('a) = Polynomial.monom
(Polynomial.coeff h x - CHAR('a)) (CHAR('a) * x)"
                        by (unfold poly_eq_iff, auto simp add: monom_power)
    qed
    finally show ?thesis .
qed
lemma coeff_of_prime_char_power [simp]:
    fixes y :: "'a poly"
    shows "poly.coeff (y ~ CHAR('a)) (i * CHAR('a)) = poly.coeff y i ^ CHAR('a)"
    using prime_char
    by (subst poly_power_prime_char_as_sum_of_monoms, subst Polynomial.coeff_sum)
        (auto intro: le_degree simp: power_O_left)
lemma coeff_of_prime_char_power':
    fixes y :: "'a poly"
    shows "poly.coeff (y ~ CHAR('a)) i =
                (if CHAR('a) dvd i then poly.coeff y (i div CHAR('a)) ^ CHAR('a)
else 0)"
proof -
    have "poly.coeff (y ~ CHAR('a)) i =
                            (\sumj\leqPolynomial.degree y. Polynomial.coeff (Polynomial.monom
(Polynomial.coeff y j - CHAR('a)) (CHAR('a) * j)) i)"
        by (subst poly_power_prime_char_as_sum_of_monoms, subst Polynomial.coeff_sum)
auto
    also have "... = (\sumj\in(if CHAR('a) dvd i ^ i div CHAR('a) \leq Polynomial.degree
y then {i div CHAR('a)} else {}).
                            Polynomial.coeff (Polynomial.monom (Polynomial.coeff
y j ~ CHAR('a)) (CHAR('a) * j)) i)"
            by (intro sum.mono_neutral_right) (use prime_char in auto)
    also have "... = (if CHAR('a) dvd i then poly.coeff y (i div CHAR('a))
- CHAR('a) else 0)"
    proof (cases "CHAR('a) dvd i ^ i div CHAR('a) > Polynomial.degree y")
            case True
            hence "Polynomial.coeff y (i div CHAR('a)) - CHAR('a) = 0"
                using prime_char by (simp add: coeff_eq_0 zero_power power_0_left)
            thus ?thesis
                by auto
    qed auto
    finally show ?thesis .
qed
end
```

```
context
    assumes "SORT_CONSTRAINT('a :: field)"
    assumes pos_char: "CHAR('a) > O"
begin
interpretation field_prime_char "(/)" inverse "(*)" "1 :: 'a" "(+)" 0 "(-)"
uminus
    rewrites "semiring_1.frob 1 (*) (+) (0 :: 'a) = frob" and
                        "semiring_1.inv_frob 1 (*) (+) (0 :: 'a) = inv_frob" and
                            "semiring_1.semiring_char 1 (+) 0 TYPE('a) = CHAR('a)"
proof unfold_locales
    have *: "class.semiring_1 (1 :: 'a) (*) (+) 0" ..
    have [simp]: "semiring_1.of_nat (1 :: 'a) (+) 0 = of_nat"
            by (auto simp: of_nat_def semiring_1.of_nat_def[OF *])
    thus "\existsn>0. semiring_1.of_nat (1 :: 'a) (+) 0 n = 0"
            by (intro exI[of _ "CHAR('a)"]) (use pos_char in auto)
    show "semiring_1.semiring_char 1 (+) O TYPE('a) = CHAR('a)"
            by (simp add: fun_eq_iff semiring_char_def semiring_1.semiring_char_def[OF
*])
    show [simp]: "semiring_1.frob (1 :: 'a) (*) (+) 0 = frob"
            by (simp add: frob_def semiring_1.frob_def[OF *] fun_eq_iff
                            power.power_def power_def semiring_char_def semiring_1.semiring_char_def[
*])
    show "semiring_1.inv_frob (1 :: 'a) (*) (+) 0 = inv_frob"
        by (simp add: inv_frob_def semiring_1.inv_frob_def[OF *] fun_eq_iff)
qed
lemma inv_frob_poly_power': "inv_frob_poly (p - CHAR('a) :: 'a poly)
= p'
    using prime_CHAR_semidom[OF pos_char] pos_char
    by (auto simp: poly_eq_iff simp flip: frob_def)
lemma inv_frob_poly_power:
    fixes p :: "'a poly"
    assumes "is_nth_power CHAR('a) p" and "n = CHAR('a)"
    shows "inv_frob_poly p ` CHAR('a) = p"
proof -
    from assms(1) obtain q where q: "p = q - CHAR('a)"
            by (elim is_nth_powerE)
    thus ?thesis using assms
        by (simp add: q inv_frob_poly_power')
qed
theorem pderiv_eq_0_imp_nth_power:
    assumes "pderiv (p :: 'a poly) = 0"
    assumes [simp]: "surj (frob :: 'a = 'a)"
    shows "is_nth_power CHAR('a) p"
```

```
proof -
    have *: "poly.coeff p n = 0" if n: "\negCHAR('a) dvd n" for n
    proof (cases "n = 0")
        case False
        have "poly.coeff (pderiv p) (n - 1) = of_nat n * poly.coeff p n"
            using False by (auto simp: coeff_pderiv)
        with assms and n show "poly.coeff p n = 0"
            by (auto simp: of_nat_eq_0_iff_char_dvd)
    qed (use that in auto)
    have **: "inv_frob_poly p - CHAR('a) = p"
    proof (rule poly_eqI)
        fix n :: nat
        show "poly.coeff (inv_frob_poly p ~ CHAR('a)) n = poly.coeff p n"
                using * CHAR_dvd_CARD[where ?'a = 'a]
                by (subst coeff_of_prime_char_power')
                    (auto simp: poly_eq_iff frob_def [symmetric]
                            coeff_of_prime_char_power'[where ?'a = 'a] simp
flip: power_mult)
    qed
    show ?thesis
        by (subst **[symmetric]) auto
qed
end
```


1.6 Code generation

We now also make this notion of "taking the p-th root of a polynomial" executable. For this, we need an auxiliary function that takes a list $\left[x_{0}, \ldots, x_{m}\right]$ and returns the list of every n-th element, i.e. it throws away all elements except those x_{i} where i is a multiple of n.

```
fun take_every :: "nat }=>\mathrm{ ' 'a list }=>\mathrm{ ' 'a list" where
    "take_every _ [] = []"
| "take_every n (x # xs) = x # take_every n (drop (n - 1) xs)"
lemma take_every_0 [simp]: "take_every 0 xs = xs"
    by (induction xs) auto
lemma take_every_1 [simp]: "take_every (Suc 0) xs = xs"
    by (induction xs) auto
lemma int_length_take_every: "n > 0 \Longrightarrow int (length (take_every n xs))
= ceiling (length xs / n)"
proof (induction n xs rule: take_every.induct)
    case (2 n x xs)
    show ?case
```

```
    proof (cases "Suc (length xs) \geq n")
        case True
        thus ?thesis using 2
            by (auto simp: dvd_imp_le of_nat_diff diff_divide_distrib split:
if_splits)
    next
        case False
        hence "\lceil(1 + real (length xs)) / real n\rceil = 1"
                by (intro ceiling_unique) auto
            thus ?thesis using False
                by auto
    qed
qed auto
lemma length_take_every:
    "n > 0 \Longrightarrow length (take_every n xs) = nat (ceiling (length xs / n))"
    using int_length_take_every[of n xs] by simp
lemma take_every_nth [simp]:
    "n > 0 \Longrightarrow i < length (take_every n xs) \Longrightarrow take_every n xs ! i = xs
! (n * i)"
proof (induction n xs arbitrary: i rule: take_every.induct)
    case (2 n x xs i)
    show ?case
    proof (cases i)
        case (Suc j)
        have "n - Suc 0 \leq length xs"
            using Suc "2.prems" nat_le_linear by force
            hence "drop (n - Suc 0) xs ! (n * j) = xs ! (n - 1 + n * j)"
                using Suc by (subst nth_drop) auto
            also have "n - 1 + n * j = n + n * j - 1"
                using <n > 0> by linarith
            finally show ?thesis
                using "2.IH"[of j] "2.prems" Suc by simp
    qed auto
qed auto
lemma coeffs_eq_strip_whileI:
    assumes "\\i. i < length xs \Longrightarrow Polynomial.coeff p i = xs ! i"
    assumes " p = 0 \Longrightarrow length xs > Polynomial.degree p"
    shows "Polynomial.coeffs p = strip_while ((=) 0) xs"
proof (rule coeffs_eqI)
    fix n :: nat
    show "Polynomial.coeff p n = nth_default O (strip_while ((=) 0) xs)
n"
            using assms
            by (metis coeff_0 coeff_Poly_eq coeff\mp@subsup{s}{_}{\prime}Poly le_degree nth_default_coeffs_eq
                nth_default_eq_dflt_iff nth_default_nth order_le_less_trans)
```

qed auto
This implements the code equation for inv_frob_poly.

```
lemma inv_frob_poly_code [code]:
    "Polynomial.coeffs (inv_frob_poly (p :: 'a :: field_prime_char poly))
=
            (if CHAR('a) = O then Polynomial.coeffs p else
                        map inv_frob (strip_while ((=) 0) (take_every CHAR('a) (Polynomial.coeffs
p))))"
    (is "_ = If _ _ ?rhs")
proof (cases " 
    case False
    from False have "p f= 0"
            by auto
    have "Polynomial.coeffs (inv_frob_poly p) =
                strip_while ((=) 0) (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
p)))"
    proof (rule coeffs_eq_strip_whileI)
        fix i assume i: "i < length (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
p)))"
            show "Polynomial.coeff (inv_frob_poly p) i = map inv_frob (take_every
CHAR('a) (Polynomial.coeffs p)) ! i"
            proof -
                have "i < length (take_every CHAR('a) (Polynomial.coeffs p))"
                using i by simp
            also have "length (take_every CHAR('a) (Polynomial.coeffs p)) =
                                    nat \(Polynomial.degree p + 1) / real CHAR('a)\"
                                    using False CHAR_pos[where ?'a = 'a]
                by (simp add: length_take_every length_coeffs)
            finally have "i < real (Polynomial.degree p + 1) / real CHAR('a)"
                by linarith
            hence "real i * real CHAR('a) < real (Polynomial.degree p + 1)"
                        using False CHAR_pos[where ?'a = 'a] by (simp add: field_simps)
            hence "i * CHAR('a) \leq Polynomial.degree p"
                unfolding of_nat_mult [symmetric] by linarith
            hence "Polynomial.coeffs p ! (i * CHAR('a)) = Polynomial.coeff p
(i * CHAR('a))"
            using False by (intro coeffs_nth) (auto simp: length_take_every)
            thus ?thesis using False i CHAR_pos[where ?'a = 'a]
                by (auto simp: nth_default_def mult.commute)
            qed
    next
            assume nz: "inv_frob_poly p f= 0"
            have "Polynomial.degree (inv_frob_poly p) \leq Polynomial.degree p div
CHAR('a)"
                by (rule degree_inv_frob_poly_le) (fact CHAR_pos)
            also have "... < nat 「(real (Polynomial.degree p) + 1) / real CHAR('a)\rceil"
                    using CHAR_pos[where ?'a = 'a]
                    by (metis div_less_iff_less_mult linorder_not_le nat_le_real_less
```

```
of_nat_0_less_iff
    of_nat_ceiling of_nat_mult pos_less_divide_eq)
    also have "... = length (take_every CHAR('a) (Polynomial.coeffs p))"
        using CHAR_pos[where ?'a = 'a] <p # 0> by (simp add: length_take_every
length_coeffs add_ac)
    finally show "length (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
p))) > Polynomial.degree (inv_frob_poly p)"
        by simp_all
    qed
    also have "strip_while ((=) 0) (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
p))) =
                map inv_frob (strip_while ((=) O ○ inv_frob) (take_every
CHAR('a) (Polynomial.coeffs p)))"
        by (rule strip_while_map)
    also have "(=) 0 ○ inv_frob = (=) (0 :: 'a)"
        by (auto simp: fun_eq_iff)
    finally show ?thesis
        using False by metis
qed auto
```


1.7 Perfect fields

We now introduce perfect fields. The textbook definition of a perfect field is that every irreducible polynomial is separable, i.e. if a polynomial P has no non-trivial divisors then $\operatorname{gcd}\left(P, P^{\prime}\right)=0$.
For technical reasons, this is somewhat difficult to express in Isabelle/HOL's typeclass system. We therefore use the following much simpler equivalent definition (and prove equivalence later): a field is perfect if it either has characteristic 0 or its Frobenius endomorphism is surjective.

```
class perfect_field = field +
    assumes perfect_field: "CHAR('a) = 0 V surj (frob :: 'a = 'a)"
context field_char_0
begin
subclass perfect_field
    by standard auto
end
context surj_frob
begin
subclass perfect_field
    by standard auto
end
theorem irreducible_imp_pderiv_nonzero:
    assumes "irreducible (p :: 'a :: perfect_field poly)"
    shows "pderiv p\not=0"
proof (cases "CHAR('a) = O")
```

```
    case True
    interpret A: semiring_1 "1 :: 'a" "(*)" "(+)" "0 :: 'a" ..
    have *: "class.semiring_1 (1 :: 'a) (*) (+) 0" ..
    interpret A: field_char_0 "(/)" inverse "(*)" "1 :: 'a" "(+)" 0 "(-)"
uminus
    proof
        have "inj (of_nat :: nat # 'a)"
            by (auto simp: inj_on_def of_nat_eq_iff_cong_CHAR True)
            also have "of_nat = semiring_1.of_nat (1 :: 'a) (+) 0"
            by (simp add: of_nat_def [abs_def] semiring_1.of_nat_def [OF *,
abs_def])
            finally show "inj ...".
    qed
    show ?thesis
    proof
        assume "pderiv p = 0"
        hence **: "poly.coeff p (Suc n) = 0" for n
        by (auto simp: poly_eq_iff coeff_pderiv of_nat_eq_O_iff_char_dvd
True simp del: of_nat_Suc)
    have "poly.coeff p n = 0" if "n > 0" for n
        using **[of "n - 1"] that by (cases n) auto
    hence "Polynomial.degree p = 0"
        by force
    thus False
        using assms by force
    qed
next
    case False
    hence [simp]: "surj (frob :: 'a = 'a)"
        by (meson perfect_field)
    interpret A: field_prime_char "(/)" inverse "(*)" "1 :: 'a" "(+)" 0 "(-)"
uminus
    proof
        have *: "class.semiring_1 1 (*) (+) (0 :: 'a)" ..
        have "semiring_1.of_nat 1 (+) (0 :: 'a) = of_nat"
            by (simp add: fun_eq_iff of_nat_def semiring_1.of_nat_def[OF *])
        thus "\existsn>0. semiring_1.of_nat 1 (+) 0 n = (0 :: 'a)"
            by (intro exI[of _ "CHAR('a)"]) (use False in auto)
    qed
    show ?thesis
    proof
        assume "pderiv p = 0"
        hence "is_nth_power CHAR('a) p"
            using pderiv_eq_O_imp_nth_power[of p] surj_frob False by simp
            then obtain q where "p = q - CHAR('a)"
```

```
                by (elim is_nth_powerE)
        with assms show False
            by auto
    qed
qed
corollary irreducible_imp_separable:
    assumes "irreducible (p :: 'a :: perfect_field poly)"
    shows "coprime p (pderiv p)"
proof (rule coprimeI)
    fix q assume q: "q dvd p" "q dvd pderiv p"
    have "\negp dvd q"
    proof
        assume "p dvd q"
        hence "p dvd pderiv p"
                using q dvd_trans by blast
            hence "Polynomial.degree p \leq Polynomial.degree (pderiv p)"
                by (rule dvd_imp_degree_le) (use assms irreducible_imp_pderiv_nonzero
in auto)
            also have "... \leq Polynomial.degree p - 1"
                using degree_pderiv_le by auto
            finally have "Polynomial.degree p = 0"
                by simp
            with assms show False
                using irreducible_imp_pderiv_nonzero is_unit_iff_degree by blast
    qed
    with <q dvd p> show "is_unit q"
        using assms comm_semiring_1_class.irreducibleD' by blast
qed
end
```


1.8 Algebraically closed fields are perfect

```
theory Perfect_Field_Algebraically_Closed
```

 imports Perfect_Fields "Formal_Puiseux_Series.Formal_Puiseux_Series"
 begin

```
lemma (in alg_closed_field) nth_root_exists:
    assumes "n > 0"
    shows "\existsy. y ^ n = (x :: 'a)"
proof -
    define f where "f = (\lambdai. if i=0 then -x else if i = n then 1 else
0)"
    have "\existsx. (\sumk\leqn.fk* x ^k) = 0"
        by (rule alg_closed) (use assms in <auto simp: f_def>)
```

```
    also have "(\lambdax. \sumk\leqn. fk* x ^k) = (\lambdax. \sumk\in{0,n}.f k* x ^k)"
        by (intro ext sum.mono_neutral_right) (auto simp: f_def)
    finally show "\existsy. y ^ n = x"
    using assms by (simp add: f_def)
qed
context alg_closed_field
begin
lemma alg_closed_surj_frob:
    assumes "CHAR('a) > 0"
    shows "surj (frob :: 'a = 'a)"
proof -
    show "surj (frob :: 'a = 'a)"
    proof safe
        fix x :: 'a
        obtain y where "y - CHAR('a) = x"
        using nth_root_exists CHAR_pos assms by blast
        hence "frob y = x"
        using CHAR_pos by (simp add: frob_def)
        thus "x \in range frob"
        by (metis rangeI)
    qed auto
qed
sublocale perfect_field
    by standard (use alg_closed_surj_frob in auto)
end
lemma fpxs_const_eq_0_iff [simp]: "fpxs_const x = 0 u x = 0"
    by (metis fpxs_const_0 fpxs_const_eq_iff)
lemma semiring_char_fpxs [simp]: "CHAR('a :: comm_semiring_1 fpxs) =
CHAR('a)"
    by (rule CHAR_eqI; unfold of_nat_fpxs_eq) (auto simp: of_nat_eq_0_iff_char_dvd)
instance fpxs :: ("{semiring_prime_char,comm_semiring_1}") semiring_prime_char
    by (rule semiring_prime_charI) auto
instance fpxs :: ("{comm_semiring_prime_char,comm_semiring_1}") comm_semiring_prime_char
    by standard
instance fpxs :: ("{comm_ring_prime_char,comm_semiring_1}") comm_ring_prime_char
    by standard
instance fpxs :: ("{idom_prime_char,comm_semiring_1}") idom_prime_char
    by standard
instance fpxs :: ("field_prime_char") field_prime_char
```


by standard auto

end

2 The algebraic closure type

```
theory Algebraic_Closure_Type
imports
    "HOL-Algebra.Algebra"
    "Formal_Puiseux_Series.Formal_Puiseux_Series"
    "HOL-Computational_Algebra.Field_as_Ring"
begin
definition (in ring_1) ring_of_type_algebra :: "'a ring"
    where "ring_of_type_algebra = (
        carrier = UNIV, monoid.mult = (\lambdax y. x * y),
        one = 1,
        ring.zero = 0,
        add = (\lambda x y. x + y) |"
lemma (in comm_ring_1) ring_from_type_algebra [intro]:
    "ring (ring_of_type_algebra :: 'a ring)"
proof -
    have "\existsy. x + y = 0" for x :: 'a
        using add.right_inverse by blast
    thus ?thesis
        unfolding ring_of_type_algebra_def using add.right_inverse
        by unfold_locales (auto simp:algebra_simps Units_def)
qed
lemma (in comm_ring_1) cring_from_type_algebra [intro]:
    "cring (ring_of_type_algebra :: 'a ring)"
proof -
    have "\existsy. x + y = 0" for x :: 'a
        using add.right_inverse by blast
    thus ?thesis
        unfolding ring_of_type_algebra_def using add.right_inverse
        by unfold_locales (auto simp:algebra_simps Units_def)
qed
lemma (in Fields.field) field_from_type_algebra [intro]:
    "field (ring_of_type_algebra :: 'a ring)"
proof -
    have "\existsy. x + y = 0" for x :: 'a
        using add.right_inverse by blast
    moreover have "x = 0\Longrightarrow\existsy. x * y = 1" for x :: 'a
        by (rule exI[of _ "inverse x"]) auto
```

```
    ultimately show ?thesis
    unfolding ring_of_type_algebra_def using add.right_inverse
    by unfold_locales (auto simp:algebra_simps Units_def)
qed
```


2.1 Definition

```
typedef (overloaded) 'a :: field alg_closure =
```

 "carrier (field.alg_closure (ring_of_type_algebra :: 'a :: field ring))"
 proof -
define K where " $K \equiv$ (ring_of_type_algebra :: 'a ring)"
define L where " $L \equiv$ field.alg_closure K "
interpret K : field K
unfolding K_{-}def by rule
interpret algebraic_closure L "range K.indexed_const"
proof -
have *: "carrier $K=$ UNIV"
by (auto simp: K_def ring_of_type_algebra_def)
show "algebraic_closure L (range K.indexed_const)"
unfolding * [symmetric] L_def by (rule K.alg_closureE)
qed
show $" \exists x . x \in$ carrier $L "$
using zero_closed by blast
qed
setup_lifting type_definition_alg_closure
instantiation alg_closure :: (field) field
begin
context
fixes $L K$
defines "K \equiv (ring_of_type_algebra :: 'a :: field ring)"
defines "L \equiv field.alg_closure $K "$
begin
interpretation K : field K
unfolding K_{-}def by rule
interpretation algebraic_closure L "range K.indexed_const"
proof -
have *: "carrier $K=$ UNIV"
by (auto simp: K_def ring_of_type_algebra_def)
show "algebraic_closure L (range K.indexed_const)"
unfolding * [symmetric] L_def by (rule K.alg_closureE)
qed

```
lift__definition zero_alg_closure :: "'a alg_closure" is "ring.zero L"
    by (fold K_def, fold L_def) (rule ring_simprules)
lift__definition one_alg_closure :: "'a alg_closure" is "monoid.one L"
    by (fold K_def, fold L_def) (rule ring_simprules)
lift__definition plus_alg_closure :: "'a alg_closure # 'a alg_closure #
'a alg_closure"
    is "ring.add L"
    by (fold K_def, fold L_def) (rule ring_simprules)
lift__definition minus_alg_closure :: "'a alg_closure = 'a alg_closure #
'a alg_closure"
    is "a_minus L"
    by (fold K_def, fold L_def) (rule ring_simprules)
lift__definition times_alg_closure :: "'a alg_closure = 'a alg_closure = 
'a alg_closure"
    is "monoid.mult L"
    by (fold K_def, fold L_def) (rule ring_simprules)
lift__definition uminus_alg_closure :: "'a alg_closure = 'a alg_closure"
    is "a_inv L"
    by (fold K_def, fold L_def) (rule ring_simprules)
lift__definition inverse_alg_closure :: "'a alg_closure => 'a alg_closure"
    is "\lambdax. if x = ring.zero L then ring.zero L else m_inv L x"
    by (fold K_def, fold L_def) (auto simp: field_Units)
lift__definition divide_alg_closure :: "'a alg_closure => 'a alg_closure
=> 'a alg_closure"
    is "\lambdax y. if y = ring.zero L then ring.zero L else monoid.mult L x (m_inv
L y)"
    by (fold K_def, fold L_def) (auto simp: field_Units)
end
instance proof -
    define K where "K \equiv (ring_of_type_algebra :: 'a ring)"
    define L where "L \equiv field.alg_closure K"
    interpret K: field K
        unfolding K_def by rule
    interpret algebraic_closure L "range K.indexed_const"
    proof -
        have *: "carrier K = UNIV"
            by (auto simp: K_def ring_of_type_algebra_def)
```

```
    show "algebraic_closure L (range K.indexed_const)"
    unfolding * [symmetric] L_def by (rule K.alg_closureE)
qed
show "OFCLASS('a alg_closure, field_class)"
proof (standard, goal_cases)
    case 1
    show ?case
        by (transfer, fold K_def, fold L_def) (rule m_assoc)
next
    case 2
    show ?case
        by (transfer, fold K_def, fold L_def) (rule m_comm)
next
    case 3
    show ?case
        by (transfer, fold K_def, fold L_def) (rule l_one)
next
    case 4
    show ?case
        by (transfer, fold K_def, fold L_def) (rule a_assoc)
next
    case 5
    show ?case
        by (transfer, fold K_def, fold L_def) (rule a_comm)
next
    case 6
    show ?case
        by (transfer, fold K_def, fold L_def) (rule l_zero)
next
    case 7
    show ?case
        by (transfer, fold K_def, fold L_def) (rule ring_simprules)
next
    case 8
    show ?case
        by (transfer, fold K_def, fold L_def) (rule ring_simprules)
next
    case 9
    show ?case
        by (transfer, fold K_def, fold L_def) (rule ring_simprules)
next
    case 10
    show ?case
        by (transfer, fold K_def, fold L_def) (rule zero_not_one)
next
    case 11
    thus ?case
        by (transfer, fold K_def, fold L_def) (auto simp: field_Units)
```

```
    next
    case 12
    thus ?case
        by (transfer, fold K_def, fold L_def) auto
    next
    case 13
    thus ?case
        by transfer auto
    qed
qed
end
```


2.2 The algebraic closure is algebraically closed

```
instance alg_closure :: (field) alg_closed_field
proof
    define K where "K \equiv (ring_of_type_algebra :: 'a ring)"
    define L where "L \equiv field.alg_closure K"
    interpret K: field K
        unfolding K_def by rule
    interpret algebraic_closure L "range K.indexed_const"
    proof -
        have *: "carrier K = UNIV"
            by (auto simp: K_def ring_of_type_algebra_def)
        show "algebraic_closure L (range K.indexed_const)"
            unfolding * [symmetric] L_def by (rule K.alg_closureE)
    qed
    have [simp]: "Rep_alg_closure x \in carrier L" for x
        using Rep_alg_closure[of x] by (simp only: L_def K_def)
    have [simp]: "Rep_alg_closure x = Rep_alg_closure y \longleftrightarrow x = y" for
x y
            by (simp add: Rep_alg_closure_inject)
    have [simp]: "Rep_alg_closure x = 0 L \longleftrightarrow x = 0" for x
    proof -
        have "Rep_alg_closure x = Rep_alg_closure 0 \longleftrightarrow x = 0"
        by simp
    also have "Rep_alg_closure 0 = 0 0
        by (simp add: zero_alg_closure.rep_eq L_def K_def)
    finally show ?thesis.
    qed
    have [simp]: "Rep_alg_closure (x ^ n) = Rep_alg_closure x [^] L n"
    for x :: "'a alg_closure" and n
    by (induction n)
```

(auto simp: one_alg_closure.rep_eq times_alg_closure.rep_eq m_comm simp flip: L_def K_def)
have [simp]: "Rep_alg_closure (Abs_alg_closure x) = x " if " $x \in$ carrier $L^{\prime \prime}$ for x using that unfolding L_{-}def K_{-}def by (rule Abs_alg_closure_inverse)
show " $\exists \mathrm{x}$. poly $\mathrm{p} x=0$ " if p : "monic p " "Polynomial. degree $p>0$ " for p :: "'a alg_closure poly"
proof -
define P where " $P=r e v$ (map Rep_alg_closure (Polynomial.coeffs p))"
have deg: "Polynomials.degree P = Polynomial.degree p "
by (auto simp: P_def degree_eq_length_coeffs)
have carrier_P: "P carrier (poly_ring L)"
by (auto simp: univ_poly_def polynomial_def $P_{-} d e f$ hd_map hd_rev
last_map
last_coeffs_eq_coeff_degree)
hence "splitted P"
using roots_over_carrier by blast
hence "roots $P \neq\{\#\}$ "
unfolding splitted_def using deg p by auto
then obtain x where " $x \in \#$ roots P " by blast
hence x : "is_root $P \mathrm{x}$ "
using roots_mem_iff_is_root[OF carrier_P] by auto
hence [simp]: "x \in carrier L " by (auto simp: is_root_def)
define x ' where " x ' = Abs_alg_closure x "
define $x s$ where "xs $=$ rev (coeffs p)"
have "cr_alg_closure (eval (map Rep_alg_closure xs) x) (poly (Poly (rev xs)) $\left.x^{\prime}\right)^{\prime \prime}$ by (induction xs)
(auto simp flip: K_def L_def simp: cr_alg_closure_def
zero_alg_closure.rep_eq plus_alg_closure.rep_eq
times_alg_closure.rep_eq Poly_append poly_monom a_comm m_comm x'_def)
also have "map Rep_alg_closure xs = P" by (simp add: xs_def P_{-}def rev_map)
also have "Poly (rev xs) = p" by (simp add: xs_def)
finally have "poly $\bar{p} x^{\prime}=0 "$ using x by (auto simp: is_root_def cr_alg_closure_def)
thus " $\exists x$. poly $p x=0$ "..
qed
qed

2.3 Converting between the base field and the closure context

```
    fixes L K
    defines "K \equiv (ring_of_type_algebra :: 'a :: field ring)"
    defines "L \equiv field.alg_closure K"
begin
interpretation K: field K
    unfolding K_def by rule
interpretation algebraic_closure L "range K.indexed_const"
proof -
    have *: "carrier K = UNIV"
        by (auto simp: K_def ring_of_type_algebra_def)
    show "algebraic_closure L (range K.indexed_const)"
        unfolding * [symmetric] L_def by (rule K.alg_closureE)
qed
lemma alg_closure_hom: "K.indexed_const \in Ring.ring_hom K L"
    unfolding L_def using K.alg_closureE(2) .
lift_definition to_ac :: "'a :: field # 'a alg_closure"
    is "ring.indexed_const K"
    by (fold K_def, fold L_def) (use mem_carrier in blast)
lemma to_ac_0 [simp]: "to_ac (0 :: 'a) = 0"
proof -
    have "to_ac (0}\mp@subsup{0}{K}{})=0
    proof (transfer fixing: K, fold K_def, fold L_def)
        show "K.indexed_const 0}\mp@subsup{0}{K}{}=\mp@subsup{0}{L}{
                using Ring.ring_hom_zero[OF alg_closure_hom] K.ring_axioms is_ring
                by simp
    qed
    thus ?thesis
        by (simp add: K_def ring_of_type_algebra_def)
qed
lemma to_ac_1 [simp]: "to_ac (1 :: 'a) = 1"
proof -
    have "to_ac (1_ ) = 1"
    proof (transfer fixing: K, fold K_def, fold L_def)
        show "K.indexed_const 1}\mp@subsup{1}{K}{}=\mp@subsup{1}{L}{\prime
            using Ring.ring_hom_one[OF alg_closure_hom] K.ring_axioms is_ring
            by simp
    qed
    thus ?thesis
        by (simp add: K_def ring_of_type_algebra_def)
qed
lemma to_ac_add [simp]: "to_ac (x + y :: 'a) = to_ac x + to_ac y"
proof -
```

```
    have "to_ac (x \oplus ¢ y) = to_ac x + to_ac y"
    proof (transfer fixing: K x y, fold K_def, fold L_def)
        show "K.indexed_const ( }\textrm{x}\mp@subsup{\oplus}{K}{}\mathrm{ y ) = K.indexed_const x }\mp@subsup{\oplus}{L}{}\mathrm{ K.indexed_const
y"
        using Ring.ring_hom_add[OF alg_closure_hom, of x y] K.ring_axioms
is_ring
        by (simp add: K_def ring_of_type_algebra_def)
    qed
    thus ?thesis
        by (simp add: K_def ring_of_type_algebra_def)
qed
lemma to_ac_minus [simp]: "to_ac (-x :: 'a) = -to_ac x"
    using to_ac_add to_ac_0 add_eq_O_iff by metis
lemma to_ac_diff [simp]: "to_ac (x - y :: 'a) = to_ac x - to_ac y"
    using to_ac_add[of x "-y"] by simp
lemma to_ac_mult [simp]: "to_ac (x * y :: 'a) = to_ac x * to_ac y"
proof -
    have "to_ac (x * K y) = to_ac x * to_ac y"
    proof (transfer fixing: K x y, fold K_def, fold L_def)
        show "K.indexed_const ( }\textrm{x}\mp@subsup{\otimes}{K}{
y"
        using Ring.ring_hom_mult[OF alg_closure_hom, of x y] K.ring_axioms
is_ring
        by (simp add: K_def ring_of_type_algebra_def)
    qed
    thus ?thesis
        by (simp add: K_def ring_of_type_algebra_def)
qed
lemma to_ac_inverse [simp]: "to_ac (inverse x :: 'a) = inverse (to_ac
x)"
    using to_ac_mult[of x "inverse x"] to_ac_1 to_ac_0
    by (metis divide_self_if field_class.field_divide_inverse field_class.field_inverse_zero
inverse_unique)
lemma to_ac_divide [simp]: "to_ac (x / y :: 'a) = to_ac x / to_ac y"
    using to_ac_mult[of x "inverse y"] to_ac_inverse[of y]
    by (simp add: field_class.field_divide_inverse)
lemma to_ac_power [simp]: "to_ac (x ^ n) = to_ac x ^ n"
    by (induction n) auto
lemma to_ac_of_nat [simp]: "to_ac (of_nat n) = of_nat n"
    by (induction n) auto
lemma to_ac_of_int [simp]: "to_ac (of_int n) = of_int n"
```

```
    by (induction n) auto
lemma to_ac_numeral [simp]: "to_ac (numeral n) = numeral n"
    using to_ac_of_nat[of "numeral n"] by (simp del: to_ac_of_nat)
lemma to_ac_sum: "to_ac ( \sumx\inA. f x) = (\sumx\inA. to_ac (f x))"
    by (induction A rule: infinite_finite_induct) auto
lemma to_ac_prod: "to_ac (\prodx\inA. f x) = (\prodx\inA. to_ac (f x))"
    by (induction A rule: infinite_finite_induct) auto
lemma to_ac_sum_list: "to_ac (sum_list xs) = (\sum x\leftarrowxs. to_ac x)"
    by (induction xs) auto
lemma to_ac_prod_list: "to_ac (prod_list xs) = (\prodx\leftarrowxs. to_ac x)"
    by (induction xs) auto
lemma to_ac_sum_mset: "to_ac (sum_mset xs) = (\sum x\in#xs. to_ac x)"
    by (induction xs) auto
lemma to_ac_prod_mset: "to_ac (prod_mset xs) = (\prodx\in#xs. to_ac x)"
    by (induction xs) auto
end
lemma (in ring) indexed_const_eq_iff [simp]:
    "indexed_const x = (indexed_const y :: 'c multiset }=>\mathrm{ ' 'a) }\longleftrightarrow x = y"
proof
    assume "indexed_const x = (indexed_const y :: 'c multiset = 'a)"
    hence "indexed_const x ({#} :: 'c multiset) = indexed_const y ({#} ::
    'c multiset)"
        by metis
    thus "x = y"
        by (simp add: indexed_const_def)
qed auto
lemma inj_to_ac: "inj to_ac"
    by (transfer, intro injI, subst (asm) ring.indexed_const_eq_iff) auto
lemma to_ac_eq_iff [simp]: "to_ac x = to_ac y \longleftrightarrow x = y"
    using inj_to_ac by (auto simp: inj_on_def)
lemma to_ac_eq_0_iff [simp]: "to_ac x = 0 \longleftrightarrow x = 0"
    and to_ac_eq_O_iff' [simp]: "0 = to_ac x \longleftrightarrow x = 0"
    and to_ac_eq_1_iff [simp]: "to_ac x = 1 \longleftrightarrow x = 1"
    and to_ac_eq_1_iff' [simp]: "1 = to_ac x }\longleftrightarrow\textrm{x}=1
    using to_ac_eq_iff to_ac_0 to_ac_1 by metis+
```

```
definition of_ac :: "'a :: field alg_closure => 'a" where
    "of_ac x = (if x G range to_ac then inv_into UNIV to_ac x else 0)"
lemma of_ac_eqI: "to_ac x = y \Longrightarrow of_ac y = x"
    unfolding of_ac_def by (meson inj_to_ac inv_f_f range_eqI)
lemma of_ac_0 [simp]: "of_ac 0 = 0"
    and of_ac_1 [simp]: "of_ac 1 = 1"
    by (rule of_ac_eqI; simp; fail)+
lemma of_ac_to_ac [simp]: "of_ac (to_ac x) = x"
    by (rule of_ac_eqI) auto
lemma to_ac_of_ac: "x \in range to_ac \Longrightarrow to_ac (of_ac x) = x"
    by auto
lemma CHAR_alg_closure [simp]:
    "CHAR('a :: field alg_closure) = CHAR('a)"
proof (rule CHAR_eqI)
    show "of_nat CHAR('a) = (0 :: 'a alg_closure)"
        by (metis of_nat_CHAR to_ac_O to_ac_of_nat)
next
    show "CHAR('a) dvd n" if "of_nat n = (0 :: 'a alg_closure)" for n
        using that by (metis of_nat_eq_O_iff_char_dvd to_ac_eq_O_iff' to_ac_of_nat)
qed
instance alg_closure :: (field_char_0) field_char_0
proof
    show "inj (of_nat :: nat }=>\mathrm{ 'a alg_closure)"
    by (metis injD inj_of_nat inj_on_def inj_to_ac to_ac_of_nat)
qed
bundle alg_closure_syntax
begin
notation to_ac ("_\uparrow" [1000] 999)
notation of_ac ("_\downarrow" [1000] 999)
end
bundle alg_closure_syntax'
begin
notation (output) to_ac ("_")
notation (output) of_ac ("_")
end
```


2.4 The algebraic closure is an algebraic extension

The algebraic closure is an algebraic extension, i.e. every element in it is a root of some non-zero polynomial in the base field.

```
theorem alg_closure_algebraic:
    fixes x :: "'a :: field alg_closure"
    obtains p :: "'a poly" where "p = 0" "poly (map_poly to_ac p) x = 0"
proof -
    define K where "K \equiv (ring_of_type_algebra :: 'a ring)"
    define L where "L \equiv field.alg_closure K"
    interpret K: field K
        unfolding K_def by rule
    interpret algebraic_closure L "range K.indexed_const"
    proof -
        have *: "carrier K = UNIV"
            by (auto simp: K_def ring_of_type_algebra_def)
        show "algebraic_closure L (range K.indexed_const)"
            unfolding * [symmetric] L_def by (rule K.alg_closureE)
    qed
    let ?K = "range K.indexed_const"
    have sr: "subring ?K L"
        by (rule subring_axioms)
    define x' where "x' = Rep_alg_closure x"
    have "x' \in carrier L"
        unfolding x'_def L_def K_def by (rule Rep_alg_closure)
    hence alg: "(algebraic over range K.indexed_const) x'"
        using algebraic_extension by blast
    then obtain p where p: "p \in carrier (?K[X]
= 0}\mp@subsup{L}{}{\prime\prime
            using algebraicE[OF sr <x' \in carrier L> alg] by blast
    have [simp]: "Rep_alg_closure x \in carrier L" for x
        using Rep_alg_closure[of x] by (simp only: L_def K_def)
    have [simp]: "Abs_alg_closure x = 0 \longleftrightarrow x = 0 0 " if "x \in carrier L"
for x
        using that unfolding L_def K_def
        by (metis Abs_alg_closure_inverse zero_alg_closure.rep_eq zero_alg_closure_def)
    have [simp]: "Rep_alg_closure (x ~ n) = Rep_alg_closure x [^] L n"
        for x :: "'a alg_closure" and n
        by (induction n)
            (auto simp: one_alg_closure.rep_eq times_alg_closure.rep_eq m_comm
                simp flip: L_def K_def)
    have [simp]: "Rep_alg_closure (Abs_alg_closure x) = x" if "x \in carrier
L" for x
            using that unfolding L_def K_def by (rule Abs_alg_closure_inverse)
    have [simp]: "Rep_alg_closure x = 0 L < \longleftrightarrow x = 0" for x
```

```
    by (metis K_def L_def Rep_alg_closure_inverse zero_alg_closure.rep_eq)
    define p' where "p' = Poly (map Abs_alg_closure (rev p))"
    have "p' = 0"
    proof
    assume "p' = 0"
    then obtain n where n: "map Abs_alg_closure (rev p) = replicate n
0"
        by (auto simp: p'_def Poly_eq_0)
    with <p \not= []> have "n > 0"
        by (auto intro!: Nat.grOI)
    have "last (map Abs_alg_closure (rev p)) = 0"
        using <n > 0> by (subst n) auto
    moreover have "Polynomials.lead_coeff p f= 0
p G carrier L"
        using p<p f []> local.subset
        by (fastforce simp: polynomial_def univ_poly_def)+
    ultimately show False
        using <p \not= []> by (auto simp: last_map last_rev)
    qed
have "set p\subseteq carrier L"
    using local.subset p by (auto simp: univ_poly_def polynomial_def)
hence "cr_alg_closure (eval p x') (poly p' x)"
    unfolding p'_def
    by (induction p)
        (auto simp flip: K_def L_def simp: cr_alg_closure_def
                        zero_alg_closure.rep_eq plus_alg_closure.rep_eq
                    times_alg_closure.rep_eq Poly_append poly_monom
                    a_comm m_comm x'_def)
hence "poly p'x = 0"
    using p by (auto simp: cr_alg_closure_def x'_def)
have coeff_p': "Polynomial.coeff p' i \in range to_ac" for i
proof (cases "i \geq length p")
    case False
    have "Polynomial.coeff p' i = Abs_alg_closure (rev p ! i)"
        unfolding p'_def using False
        by (auto simp: nth_default_def)
    moreover have "rev p ! i \in ?K"
        using p(1) False by (auto simp: univ_poly_def polynomial_def rev_nth)
    ultimately show ?thesis
        unfolding to_ac.abs_eq K_def by fastforce
qed (auto simp: p'_def nth_default_def)
define p'' where "p'' = map_poly of_ac p'"
have p'_eq: "p' = map_poly to_ac p''"
    by (rule poly_eqI) (auto simp: coeff_map_poly p''_def to_ac_of_ac[OF
```

```
coeff_p'])
```

 interpret to_ac: map_poly_inj_comm_ring_hom "to_ac :: 'a \(\Rightarrow\) 'a alg_closure"
 by unfold_locales auto
 show ?thesis
 proof (rule that)
 show " \(p\) " \(\neq 0\) "
 using \(\left\langle p^{\prime} \neq 0\right.\) > by (auto simp: \(p^{\prime} _\)eq)
 next
 show "poly (map_poly to_ac p'') x = 0"
 using <poly \(p^{\prime} x=0\) 〉 by (simp add: \(p^{\prime} _\)eq)
 qed
 qed
instantiation alg_closure :: (field)
"\{unique_euclidean_ring, normalization_euclidean_semiring, normalization_semidom_multipli
begin
definition [simp]: "normalize_alg_closure = (normalize_field :: 'a alg_closure
\Rightarrow _)"
definition [simp]: "unit_factor_alg_closure = (unit_factor_field :: 'a
alg_closure \Rightarrow _)"
definition [simp]: "modulo_alg_closure = (mod_field :: 'a alg_closure \Rightarrow
_)"
definition [simp]: "euclidean_size_alg_closure = (euclidean_size_field
:: 'a alg_closure \Rightarrow _)"
definition [simp]: "division_segment (x :: 'a alg_closure) = 1"
instance
by standard
(simp_all add: dvd_field_iff field_split_simps split: if_splits)
end
instantiation alg_closure :: (field) euclidean_ring_gcd
begin
definition gcd_alg_closure :: "'a alg_closure \Rightarrow 'a alg_closure \Rightarrow 'a alg_closure"
where
"gcd_alg_closure = Euclidean_Algorithm.gcd"

where
"lcm_alg_closure = Euclidean_Algorithm.lcm"
definition Gcd_alg_closure :: "'a alg_closure set \Rightarrow 'a alg_closure" where
"Gcd_alg_closure = Euclidean_Algorithm.Gcd"
definition Lcm_alg_closure :: "'a alg_closure set \Rightarrow 'a alg_closure" where
"Lcm_alg_closure = Euclidean_Algorithm.Lcm"

```
instance by standard (simp_all add: gcd_alg_closure_def lcm_alg_closure_def
Gcd_alg_closure_def Lcm_alg_closure_def)
end
instance alg_closure :: (field) semiring_gcd_mult_normalize
    ..
end
```


2.5 Alternative definition of perfect fields

```
theory Perfect_Field_Altdef
imports
    Algebraic_Closure_Type
    Perfect_Fields
    Perfect_Field_Algebraically_Closed
    "HOL-Computational_Algebra.Field_as_Ring"
begin
```

instance poly :: ("\{field, normalization_euclidean_semiring, factorial_ring_gcd,
semiring_gcd_mult_normalize\}") factorial_semiring_multiplicative
..

In the following, we will show that our definition of perfect fields is equivalent to the usual textbook one (for example [1]). That is: a field in which every irreducible polynomial is separable (or, equivalently, has non-zero derivative) either has characteristic 0 or a surjective Frobenius endomorphism.
The proof works like this:
Let's call our field K with prime characteristic p. Suppose there were some $c \in K$ that is not a p-th root. The polynomial $P:=X^{p}-c$ in $K[X]$ clearly has a zero derivative and is therefore not separable. By our assumption, it must then have a monic non-trivial factor $Q \in K[X]$.
Let L be some field extension of K where c does have a p-th root α (in our case, we choose L to be the algebraic closure of K).
Clearly, Q is also a non-trivial factor of P in L. However, we also have $P=X^{\wedge} p$ $-c=X^{\wedge} p-\alpha^{\wedge} p=(X-\alpha)^{\wedge} p$, so we must have $Q=(X-\alpha)^{m}$ for some 0 $\leq m<p$ since $X-\alpha$ is prime.
However, the coefficient of X^{m-1} in $(X-\alpha)^{m}$ is $-m \alpha$, and since $Q \in K[X]$ we must have $-m \alpha \in K$ and therefore $\alpha \in K$.
theorem perfect_field_alt:
assumes " $\bigwedge p$:: 'a :: field_gcd poly. Factorial_Ring.irreducible $p \Longrightarrow$
pderiv $p \neq 0^{\prime \prime}$

```
    shows "CHAR('a) = 0 V surj (frob :: 'a = 'a)"
```

```
proof (cases "CHAR('a) = 0")
    case False
    let \(? p=" C H A R(' a) "\)
    from False have "Factorial_Ring.prime ?p"
        by (simp add: prime_CHAR_semidom)
    hence "?p > 1"
        using prime_gt_1_nat by blast
    note \(p=\langle\) Factorial_Ring.prime ?p> <?p > 1〉
    interpret to_ac: map_poly_inj_comm_ring_hom "to_ac :: 'a \(\Rightarrow\) 'a alg_closure"
        by unfold_locales auto
    have "surj (frob :: 'a \(\Rightarrow\) 'a)"
    proof safe
        fix \(c\) :: 'a
        obtain \(\alpha\) :: "'a alg_closure" where \(\alpha\) : " \(\alpha\) ~ ?p = to_ac c"
            using p nth_root_exists[of ?p "to_ac c"] by auto
        define \(P\) where " \(P\) = Polynomial.monom 1 ?p + [:-c:]"
        define \(P\) ' where " \(P\) ' = map_poly to_ac \(P\) "
        have deg: "Polynomial.degree \(P=? p "\)
            unfolding \(P_{-}\)def using \(p\) by (subst degree_add_eq_left) (auto simp:
degree_monom_eq)
    have "[:- \(\alpha, 1:]\) ~ ?p = ([:0, 1:] + [:- \(\alpha:]\) ) ~ ?p"
        by (simp add: one_pCons)
    also have "... = [:0, 1:] ~ ?p - [: \(\left.\alpha^{\wedge} ? p:\right] "\)
        using p by (subst freshmans_dream) (auto simp: poly_const_pow minus_power_prime_CHAR)
    also have " \(\alpha\) - ?p = to_ac c"
        by (simp add: \(\alpha\) )
    also have "[:0, 1:] ~ CHAR('a) - [:to_ac c:] = P'"
        by (simp add: P_def \(P^{\prime}\) _def to_ac.hom_add to_ac.hom_power
                        to_ac.base.map_poly_pCons_hom monom_altdef)
    finally have eq: "P' = \([:-\alpha, 1:]\) ~ ?p" ..
    have "ᄀis_unit P" "P \(\neq 0\) "
        using deg \(p\) by auto
    then obtain \(Q\) where \(Q:\) "Factorial_Ring.prime Q" "Q dvd P"
        by (metis prime_divisor_exists)
    have "monic Q"
        using unit_factor_prime[0F Q(1)] by (auto simp: unit_factor_poly_def
one_pCons)
from \(Q(2)\) have "map_poly to_ac \(Q d v d P^{\prime \prime}\) by (auto simp: \(\left.P^{\prime} \_d e f\right)\)
hence "map_poly to_ac \(Q d v d[:-\alpha, 1:] ~ \sim ~ ? p " ~\) by (simp add: \(\left\langle P^{\prime}=[:-\alpha, 1:]\right.\) ~ ?p>)
moreover have "Factorial_Ring.prime_elem [:- \(\alpha\), 1:]" by (intro prime_elem_linear_field_poly) auto
hence "Factorial_Ring.prime [:- \(\alpha\), 1:]"
```

unfolding Factorial_Ring.prime_def by (auto simp: normalize_monic)
ultimately obtain m where " $m \leq ? p$ " "normalize (map_poly to_ac Q)
= [:- $\alpha, 1:] ~ m^{\prime \prime}$
using divides_primepow by blast
hence "map_poly to_ac $Q=[:-\alpha, 1:]$ ~ m"
using <monic Q > by (subst (asm) normalize_monic) auto
moreover from this have " $m>0$ "
using Q by (intro Nat.grOI) auto
moreover have " $m \neq ? p$ "
proof
assume "m = ?p"
hence " $Q=P$ "
using <map_poly to_ac $Q=[:-\alpha, 1:]$ ~ m > eq
by (simp add: P^{\prime} _def to_ac.injectivity)
with Q have "Factorial_Ring.irreducible P"
using idom_class.prime_elem_imp_irreducible by blast
with assms have "pderiv $P \neq 0$ "
by blast
thus False
by (auto simp: P_def pderiv_add pderiv_monom of_nat_eq_O_iff_char_dvd)
qed
ultimately have $m: ~ " m \in\{0<. .<? p\} "$ "map_poly to_ac $Q=[:-\alpha, 1:]$

- m"
using $\langle m \leq ? p>$ by auto
from $m(1)$ have " \neg ?p dvd m"
using p by auto
have "poly.coeff ([:- $\alpha, 1:]$ ~ m) (m - 1) = - of_nat (m choose (m 1)) * $\alpha^{\prime \prime}$
using m (1) by (subst coeff_linear_poly_power) auto
also have " m choose $(m-1)=m$ "
using <0 < m> by (subst binomial_symmetric) auto
also have " $[:-\alpha, 1:]$ ~ $m=$ map_poly to_ac Q"
using $m(2)$..
also have "poly.coeff ... (m - 1) = to_ac (poly.coeff $Q(m-1)) "$
by simp
finally have " α = to_ac (-poly.coeff Q (m - 1) / of_nat m)"
using $m(1) p<\neg ? p$ dvd $m\rangle$ by (auto simp: field_simps of_nat_eq_O_iff_char_dvd)
hence " (- poly.coeff Q (m - 1) / of_nat m) ~ ?p = c"
using α by (metis to_ac.base.eq_iff to_ac.base.hom_power)
thus "c \in range frob"
unfolding frob_def by blast
qed auto
thus ?thesis ..
qed auto
corollary perfect_field_alt':
assumes " $\bigwedge p$:: 'a :: field_gcd poly. Factorial_Ring.irreducible $p \Longrightarrow$
Rings.coprime p (pderiv p)"

```
    shows "CHAR('a) = 0 V surj (frob :: 'a = 'a)"
proof (rule perfect_field_alt)
    fix p :: "'a poly"
    assume p: "Factorial_Ring.irreducible p"
    with assms[OF p] show "pderiv p f=0"
        by auto
qed
end
```


References

[1] K. Conrad. Perfect fields. Online at https://kconrad.math.uconn.edu/blurbs/galoistheory/perfect.pdf, 2021. Course notes, University of Connecticut.
[2] Wikipedia contributors. Perfect field - Wikipedia, the free encyclopedia, 2023. [Online; accessed 3-November-2023].

