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Abstract

This entry provides a type class for perfect fields. A perfect field K
can be characterized by one of the following equivalent conditions [2]:

1. Any irreducible polynomial p is separable, i.e. gcd(p, p′) = 1, or,
equivalently, p′ 6= 0.

2. Either char(K) = 0 or char(K) = p > 0 and the Frobenius
endomorphism x 7→ xp is surjective (i.e. every element of K has
a p-th root).

We define perfect fields using the second characterization and show the
equivalence to the first characterization. The implication “2 ⇒ 1” is
relatively straightforward using the injectivity of the Frobenius homo-
morphism.

Examples for perfect fields are [2]:
• any field of characteristic 0 (e.g. R and C)
• any finite field (i.e. Fq for q = pn, n > 0 and p prime)
• any algebraically closed field (for example the formal Puiseux

series over finite fields)
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theory Perfect_Field_Library
imports
"HOL-Computational_Algebra.Computational_Algebra"
"Berlekamp_Zassenhaus.Finite_Field"

begin

instance bool :: prime_card
by standard auto

theorem (in comm_semiring_1) binomial_ring:
"(a + b :: 'a)^n = (

∑
k≤n. (of_nat (n choose k)) * a^k * b^(n-k))"

proof (induct n)
case 0
then show ?case by simp

next
case (Suc n)
have decomp: "{0..n+1} = {0} ∪ {n + 1} ∪ {1..n}"

by auto
have decomp2: "{0..n} = {0} ∪ {1..n}"

by auto
have "(a + b)^(n+1) = (a + b) * (

∑
k≤n. of_nat (n choose k) * a^k *

b^(n - k))"
using Suc.hyps by simp

also have ". . . = a * (
∑

k≤n. of_nat (n choose k) * a^k * b^(n-k)) +
b * (

∑
k≤n. of_nat (n choose k) * a^k * b^(n-k))"

by (rule distrib_right)
also have ". . . = (

∑
k≤n. of_nat (n choose k) * a^(k+1) * b^(n-k)) +

(
∑

k≤n. of_nat (n choose k) * a^k * b^(n - k + 1))"
by (auto simp add: sum_distrib_left ac_simps)

also have ". . . = (
∑

k≤n. of_nat (n choose k) * a^k * b^(n + 1 - k))
+

(
∑

k=1..n+1. of_nat (n choose (k - 1)) * a^k * b^(n + 1 - k))"
by (simp add: atMost_atLeast0 sum.shift_bounds_cl_Suc_ivl Suc_diff_le

field_simps del: sum.cl_ivl_Suc)
also have ". . . = b^(n + 1) +

(
∑

k=1..n. of_nat (n choose k) * a^k * b^(n + 1 - k)) + (a^(n +
1) +

(
∑

k=1..n. of_nat (n choose (k - 1)) * a^k * b^(n + 1 - k)))"
using sum.nat_ivl_Suc' [of 1 n "λk. of_nat (n choose (k-1)) * a

^ k * b ^ (n + 1 - k)"]
by (simp add: sum.atLeast_Suc_atMost atMost_atLeast0)

also have ". . . = a^(n + 1) + b^(n + 1) +
(
∑

k=1..n. of_nat (n + 1 choose k) * a^k * b^(n + 1 - k))"
by (auto simp add: field_simps sum.distrib [symmetric] choose_reduce_nat)

also have ". . . = (
∑

k≤n+1. of_nat (n + 1 choose k) * a^k * b^(n + 1
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- k))"
using decomp by (simp add: atMost_atLeast0 field_simps)

finally show ?case
by simp

qed

lemma prime_not_dvd_fact:
assumes kn: "k < n" and prime_n: "prime n"
shows "¬ n dvd fact k"

using kn leD prime_dvd_fact_iff prime_n by auto

lemma dvd_choose_prime:
assumes kn: "k < n" and k: "k 6= 0" and n: "n 6= 0" and prime_n: "prime
n"
shows "n dvd (n choose k)"
proof -

have "n dvd (fact n)" by (simp add: fact_num_eq_if n)
moreover have "¬ n dvd (fact k * fact (n-k))"
proof (rule ccontr, safe)

assume "n dvd fact k * fact (n - k)"
hence "n dvd fact k ∨ n dvd fact (n - k)" using prime_dvd_mult_eq_nat[OF

prime_n] by simp
moreover have "¬ n dvd (fact k)" by (rule prime_not_dvd_fact[OF

kn prime_n])
moreover have "¬ n dvd fact (n - k)" using prime_not_dvd_fact[OF

_ prime_n] kn k by simp
ultimately show False by simp

qed
moreover have "(fact n::nat) = fact k * fact (n-k) * (n choose k)"

using binomial_fact_lemma kn by auto
ultimately show ?thesis using prime_n

by (auto simp add: prime_dvd_mult_iff)
qed

lemma CHAR_not_1 [simp]: "CHAR('a :: {semiring_1, zero_neq_one}) 6= Suc
0"

by (metis One_nat_def of_nat_1 of_nat_CHAR zero_neq_one)

lemma (in idom) CHAR_not_1' [simp]: "CHAR('a) 6= Suc 0"
using local.of_nat_CHAR by fastforce

lemma semiring_char_mod_ring [simp]:
"CHAR('n :: nontriv mod_ring) = CARD('n)"

proof (rule CHAR_eq_posI)
fix x assume "x > 0" "x < CARD('n)"
thus "of_nat x 6= (0 :: 'n mod_ring)"

by transfer auto
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qed auto

lemma of_nat_eq_iff_cong_CHAR:
"of_nat x = (of_nat y :: 'a :: semiring_1_cancel) ←→ [x = y] (mod CHAR('a))"

proof (induction x y rule: linorder_wlog)
case (le x y)
define z where "z = y - x"
have [simp]: "y = x + z"

using le by (auto simp: z_def)
have "(CHAR('a) dvd z) = [x = x + z] (mod CHAR('a))"

by (metis ‹y = x + z› cong_def le mod_eq_dvd_iff_nat z_def)
thus ?case

by (simp add: of_nat_eq_0_iff_char_dvd)
qed (simp add: eq_commute cong_sym_eq)

lemma (in ring_1) of_int_eq_0_iff_char_dvd:
"(of_int n = (0 :: 'a)) = (int CHAR('a) dvd n)"

proof (cases "n ≥ 0")
case True
hence "(of_int n = (0 :: 'a)) ←→ (of_nat (nat n)) = (0 :: 'a)"

by auto
also have ". . . ←→ CHAR('a) dvd nat n"

by (subst of_nat_eq_0_iff_char_dvd) auto
also have ". . . ←→ int CHAR('a) dvd n"

using True by presburger
finally show ?thesis .

next
case False
hence "(of_int n = (0 :: 'a)) ←→ -(of_nat (nat (-n))) = (0 :: 'a)"

by auto
also have ". . . ←→ CHAR('a) dvd nat (-n)"

by (auto simp: of_nat_eq_0_iff_char_dvd)
also have ". . . ←→ int CHAR('a) dvd n"

using False dvd_nat_abs_iff[of "CHAR('a)" n] by simp
finally show ?thesis .

qed

lemma (in ring_1) of_int_eq_iff_cong_CHAR:
"of_int x = (of_int y :: 'a) ←→ [x = y] (mod int CHAR('a))"

proof -
have "of_int x = (of_int y :: 'a) ←→ of_int (x - y) = (0 :: 'a)"

by auto
also have ". . . ←→ (int CHAR('a) dvd x - y)"

by (rule of_int_eq_0_iff_char_dvd)
also have ". . . ←→ [x = y] (mod int CHAR('a))"

by (simp add: cong_iff_dvd_diff)
finally show ?thesis .

qed
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lemma finite_imp_CHAR_pos:
assumes "finite (UNIV :: 'a set)"
shows "CHAR('a :: semiring_1_cancel) > 0"

proof -
have "∃ n∈UNIV. infinite {m ∈ UNIV. of_nat m = (of_nat n :: 'a)}"
proof (rule pigeonhole_infinite)

show "infinite (UNIV :: nat set)"
by simp

show "finite (range (of_nat :: nat ⇒ 'a))"
by (rule finite_subset[OF _ assms]) auto

qed
then obtain n :: nat where "infinite {m ∈ UNIV. of_nat m = (of_nat

n :: 'a)}"
by blast

hence "¬({m ∈ UNIV. of_nat m = (of_nat n :: 'a)} ⊆ {n})"
by (intro notI) (use finite_subset in blast)

then obtain m where "m 6= n" "of_nat m = (of_nat n :: 'a)"
by blast

hence "[m = n] (mod CHAR('a))"
by (simp add: of_nat_eq_iff_cong_CHAR)

hence "CHAR('a) 6= 0"
using ‹m 6= n› by (intro notI) auto

thus ?thesis
by simp

qed

lemma CHAR_dvd_CARD: "CHAR('a :: ring_1) dvd CARD('a)"
proof (cases "CARD('a) = 0")

case False
hence [intro]: "CHAR('a) > 0"

by (simp add: card_eq_0_iff finite_imp_CHAR_pos)
define G where "G = (| carrier = (UNIV :: 'a set), monoid.mult = (+),

one = (0 :: 'a) |)"
define H where "H = (of_nat ` {..<CHAR('a)} :: 'a set)"
interpret group G
proof (rule groupI)

fix x assume x: "x ∈ carrier G"
show "∃ y∈carrier G. y ⊗G x = 1G"

by (intro bexI[of _ "-x"]) (auto simp: G_def)
qed (auto simp: G_def add_ac)

interpret subgroup H G
proof

show "1G ∈ H"
using False unfolding G_def H_def
by (intro image_eqI[of _ _ 0]) auto

next
fix x y :: 'a
assume "x ∈ H" "y ∈ H"
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then obtain x' y' where [simp]: "x = of_nat x'" "y = of_nat y'"
by (auto simp: H_def)

have "x + y = of_nat ((x' + y') mod CHAR('a))"
by (auto simp flip: of_nat_add simp: of_nat_eq_iff_cong_CHAR)

moreover have "(x' + y') mod CHAR('a) < CHAR('a)"
using H_def ‹y ∈ H› by fastforce

ultimately show "x ⊗G y ∈ H"
by (auto simp: H_def G_def intro!: imageI)

next
fix x :: 'a
assume x: "x ∈ H"
then obtain x' where [simp]: "x = of_nat x'" and x': "x' < CHAR('a)"

by (auto simp: H_def)
have "CHAR('a) dvd x' + (CHAR('a) - x') mod CHAR('a)"

by (metis x' dvd_eq_mod_eq_0 le_add_diff_inverse mod_add_right_eq
mod_self order_less_imp_le)

hence "x + of_nat ((CHAR('a) - x') mod CHAR('a)) = 0"
by (auto simp flip: of_nat_add simp: of_nat_eq_0_iff_char_dvd)

moreover from this have "invG x = of_nat ((CHAR('a) - x') mod CHAR('a))"
by (intro inv_equality) (auto simp: G_def add_ac)

moreover have "of_nat ((CHAR('a) - x') mod CHAR('a)) ∈ H"
unfolding H_def using ‹CHAR('a) > 0› by (intro imageI) auto

ultimately show "invG x ∈ H" by force
qed (auto simp: G_def H_def)

have "card H dvd card (rcosetsG H) * card H"
by simp

also have "card (rcosetsG H) * card H = Coset.order G"
proof (rule lagrange_finite)

show "finite (carrier G)"
using False card_ge_0_finite by (auto simp: G_def)

qed (fact is_subgroup)
finally have "card H dvd CARD('a)"

by (simp add: Coset.order_def G_def)
also have "card H = card {..<CHAR('a)}"

unfolding H_def by (intro card_image inj_onI) (auto simp: of_nat_eq_iff_cong_CHAR
cong_def)

finally show "CHAR('a) dvd CARD('a)"
by simp

qed auto

lemma (in idom) prime_CHAR_semidom:
assumes "CHAR('a) > 0"
shows "prime CHAR('a)"

proof -
have False if ab: "a 6= 1" "b 6= 1" "CHAR('a) = a * b" for a b
proof -

from assms ab have "a > 0" "b > 0"
by (auto intro!: Nat.gr0I)
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have "of_nat (a * b) = (0 :: 'a)"
using ab by (metis of_nat_CHAR)

also have "of_nat (a * b) = (of_nat a :: 'a) * of_nat b"
by simp

finally have "of_nat a * of_nat b = (0 :: 'a)" .
moreover have "of_nat a * of_nat b 6= (0 :: 'a)"

using ab ‹a > 0› ‹b > 0›
by (intro no_zero_divisors) (auto simp: of_nat_eq_0_iff_char_dvd)

ultimately show False
by contradiction

qed
moreover have "CHAR('a) > 1"

using assms CHAR_not_1' by linarith
ultimately have "prime_elem CHAR('a)"

by (intro irreducible_imp_prime_elem) (auto simp: Factorial_Ring.irreducible_def)
thus ?thesis

by auto
qed

Characteristics are preserved by typical functors (polynomials, power series,
Laurent series):
lemma semiring_char_poly [simp]: "CHAR('a :: comm_semiring_1 poly) =
CHAR('a)"

by (rule CHAR_eqI) (auto simp: of_nat_poly of_nat_eq_0_iff_char_dvd)

lemma semiring_char_fps [simp]: "CHAR('a :: comm_semiring_1 fps) = CHAR('a)"
by (rule CHAR_eqI) (auto simp flip: fps_of_nat simp: of_nat_eq_0_iff_char_dvd)

lemma fls_const_eq_0_iff [simp]: "fls_const c = 0 ←→ c = 0"
using fls_const_0 fls_const_nonzero by blast

lemma semiring_char_fls [simp]: "CHAR('a :: comm_semiring_1 fls) = CHAR('a)"
by (rule CHAR_eqI) (auto simp: fls_of_nat of_nat_eq_0_iff_char_dvd fls_const_nonzero)

lemma irreducible_power_iff [simp]:
"irreducible (p ^ n) ←→ irreducible p ∧ n = 1"

proof
assume *: "irreducible (p ^ n)"
have [simp]: "¬p dvd 1"
proof

assume "p dvd 1"
hence "p ^ n dvd 1"

by (metis dvd_power_same power_one)
with * show False

by auto
qed

consider "n = 0" | "n = 1" | "n > 1"
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by linarith
thus "irreducible p ∧ n = 1"
proof cases

assume "n > 1"
hence "p ^ n = p * p ^ (n - 1)"

by (cases n) auto
with * ‹¬ p dvd 1› have "p ^ (n - 1) dvd 1"

using irreducible_multD by blast
with ‹¬p dvd 1› and ‹n > 1› have False

by (meson dvd_power dvd_trans zero_less_diff)
thus ?thesis ..

qed (use * in auto)
qed auto

lemma pderiv_monom:
"pderiv (Polynomial.monom c n) = of_nat n * Polynomial.monom c (n -

1)"
proof (cases n)

case (Suc n)
show ?thesis

unfolding monom_altdef Suc pderiv_smult pderiv_power_Suc pderiv_pCons
by (simp add: of_nat_poly)

qed (auto simp: monom_altdef)

lemma uminus_CHAR_2 [simp]:
assumes "CHAR('a :: ring_1) = 2"
shows "-(x :: 'a) = x"

proof -
have "x + x = 2 * x"

by (simp add: mult_2)
also have "2 = (0 :: 'a)"

using assms by (metis of_nat_CHAR of_nat_numeral)
finally show ?thesis

by (simp add: add_eq_0_iff2)
qed

lemma minus_CHAR_2 [simp]:
assumes "CHAR('a :: ring_1) = 2"
shows "(x - y :: 'a) = x + y"
using uminus_CHAR_2[of y] assms by simp

lemma minus_power_prime_CHAR:
assumes "p = CHAR('a :: {ring_1})" "prime p"
shows "(-x :: 'a) ^ p = -(x ^ p)"

proof (cases "p = 2")
case False
have "prime p"

using assms by blast
with False have "odd p"
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using primes_dvd_imp_eq two_is_prime_nat by blast
thus ?thesis

by simp
qed (use assms in auto)

end

1 Perfect Fields
theory Perfect_Fields
imports
"Berlekamp_Zassenhaus.Finite_Field"
Perfect_Field_Library

begin

1.1 Rings and fields with prime characteristic

We introduce some type classes for rings and fields with prime characteristic.
class semiring_prime_char = semiring_1 +

assumes prime_char_aux: "∃ n. prime n ∧ of_nat n = (0 :: 'a)"
begin

lemma CHAR_pos [intro, simp]: "CHAR('a) > 0"
using local.CHAR_pos_iff local.prime_char_aux prime_gt_0_nat by blast

lemma CHAR_nonzero [simp]: "CHAR('a) 6= 0"
using CHAR_pos by auto

lemma CHAR_prime [intro, simp]: "prime CHAR('a)"
by (metis (mono_tags, lifting) gcd_nat.order_iff_strict local.of_nat_1

local.of_nat_eq_0_iff_char_dvd
local.one_neq_zero local.prime_char_aux prime_nat_iff)

end

lemma semiring_prime_charI [intro?]:
"prime CHAR('a :: semiring_1) =⇒ OFCLASS('a, semiring_prime_char_class)"
by standard auto

lemma idom_prime_charI [intro?]:
assumes "CHAR('a :: idom) > 0"
shows "OFCLASS('a, semiring_prime_char_class)"

proof
show "prime CHAR('a)"

using assms prime_CHAR_semidom by blast
qed
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class comm_semiring_prime_char = comm_semiring_1 + semiring_prime_char
class comm_ring_prime_char = comm_ring_1 + semiring_prime_char
begin
subclass comm_semiring_prime_char ..
end
class idom_prime_char = idom + semiring_prime_char
begin
subclass comm_ring_prime_char ..
end

class field_prime_char = field +
assumes pos_char_exists: "∃ n>0. of_nat n = (0 :: 'a)"

begin
subclass idom_prime_char

apply standard
using pos_char_exists local.CHAR_pos_iff local.of_nat_CHAR local.prime_CHAR_semidom

by blast
end

lemma field_prime_charI [intro?]:
"n > 0 =⇒ of_nat n = (0 :: 'a :: field) =⇒ OFCLASS('a, field_prime_char_class)"
by standard auto

lemma field_prime_charI' [intro?]:
"CHAR('a :: field) > 0 =⇒ OFCLASS('a, field_prime_char_class)"
by standard auto

Typical functors like polynomials, formal power seires, and formal Laurent
series preserve the characteristic of the coefficient ring.
instance poly :: ("{semiring_prime_char,comm_semiring_1}") semiring_prime_char

by (rule semiring_prime_charI) auto
instance poly :: ("{comm_semiring_prime_char,comm_semiring_1}") comm_semiring_prime_char

by standard
instance poly :: ("{comm_ring_prime_char,comm_semiring_1}") comm_ring_prime_char

by standard
instance poly :: ("{idom_prime_char,comm_semiring_1}") idom_prime_char

by standard

instance fps :: ("{semiring_prime_char,comm_semiring_1}") semiring_prime_char
by (rule semiring_prime_charI) auto

instance fps :: ("{comm_semiring_prime_char,comm_semiring_1}") comm_semiring_prime_char
by standard

instance fps :: ("{comm_ring_prime_char,comm_semiring_1}") comm_ring_prime_char
by standard

instance fps :: ("{idom_prime_char,comm_semiring_1}") idom_prime_char
by standard

instance fls :: ("{semiring_prime_char,comm_semiring_1}") semiring_prime_char
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by (rule semiring_prime_charI) auto
instance fls :: ("{comm_semiring_prime_char,comm_semiring_1}") comm_semiring_prime_char

by standard
instance fls :: ("{comm_ring_prime_char,comm_semiring_1}") comm_ring_prime_char

by standard
instance fls :: ("{idom_prime_char,comm_semiring_1}") idom_prime_char

by standard
instance fls :: ("{field_prime_char,comm_semiring_1}") field_prime_char

by (rule field_prime_charI') auto

1.2 Finite fields
class finite_field = field_prime_char + finite

lemma finite_fieldI [intro?]:
assumes "finite (UNIV :: 'a :: field set)"
shows "OFCLASS('a, finite_field_class)"

proof standard
show "∃ n>0. of_nat n = (0 :: 'a)"

using assms prime_CHAR_semidom[where ?'a = 'a] finite_imp_CHAR_pos[OF
assms]

by (intro exI[of _ "CHAR('a)"]) auto
qed fact+

class enum_finite_field = finite_field +
fixes enum_finite_field :: "nat ⇒ 'a"
assumes enum_finite_field: "enum_finite_field ` {..<CARD('a)} = UNIV"

begin

lemma inj_on_enum_finite_field: "inj_on enum_finite_field {..<CARD('a)}"
using enum_finite_field by (simp add: eq_card_imp_inj_on)

end

instance mod_ring :: (prime_card) finite_field
by standard simp_all

instantiation mod_ring :: (prime_card) enum_finite_field
begin

definition enum_finite_field_mod_ring :: "nat ⇒ 'a mod_ring" where
"enum_finite_field_mod_ring n = of_int_mod_ring (int n)"

instance proof
interpret type_definition "Rep_mod_ring :: 'a mod_ring ⇒ int" Abs_mod_ring

"{0..<CARD('a)}"
by (rule type_definition_mod_ring)

have "enum_finite_field ` {..<CARD('a mod_ring)} = of_int_mod_ring `
int ` {..<CARD('a mod_ring)}"
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unfolding enum_finite_field_mod_ring_def by (simp add: image_image
o_def)

also have "int ` {..<CARD('a mod_ring)} = {0..<int CARD('a mod_ring)}"
by (simp add: image_atLeastZeroLessThan_int)

also have "of_int_mod_ring ` . . . = (Abs_mod_ring ` . . . :: 'a mod_ring
set)"

by (intro image_cong refl) (auto simp: of_int_mod_ring_def)
also have ". . . = (UNIV :: 'a mod_ring set)"

using Abs_image by simp
finally show "enum_finite_field ` {..<CARD('a mod_ring)} = (UNIV :: 'a

mod_ring set)" .
qed

end

On a finite field with n elements, taking the n-th power of an element is the
identity. This is an obvious consequence of the fact that the multiplicative
group of the field is a finite group of order n - 1, so x^n = 1 for any non-zero
x.
Note that this result is sharp in the sense that the multiplicative group of
a finite field is cyclic, i.e. it contains an element of order n - 1. (We don’t
prove this here.)
lemma finite_field_power_card_eq_same:

fixes x :: "'a :: finite_field"
shows "x ^ CARD('a) = x"

proof (cases "x = 0")
case False
let ?R = "(|carrier = (UNIV :: 'a set), monoid.mult = (*), one = 1, zero

= 0, add = (+)|)"
interpret field "?R" rewrites "([^]?R) = (^)"
proof -

show "field ?R"
by unfold_locales (auto simp: Units_def add_eq_0_iff ring_distribs

intro!: exI[of _ "inverse x" for x] left_inverse
right_inverse)

have "x [^]?R n = x ^ n" for x n
by (induction n) auto

thus "([^]?R) = (^)"
by blast

qed

note fin [intro] = finite_class.finite_UNIV[where ?'a = 'a]
have "x ^ (CARD('a) - 1) * x = x ^ CARD('a)"

using finite_UNIV_card_ge_0 power_minus_mult by blast
also have "x ^ (CARD('a) - 1) = 1"

using units_power_order_eq_one[of x] fin False
by (simp add: field_Units)

finally show ?thesis
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by simp
qed (use finite_class.finite_UNIV[where ?'a = 'a] in ‹auto simp: card_gt_0_iff›)

lemma finite_field_power_card_power_eq_same:
fixes x :: "'a :: finite_field"
assumes "m = CARD('a) ^ n"
shows "x ^ m = x"
unfolding assms
by (induction n) (simp_all add: finite_field_power_card_eq_same power_mult)

typedef (overloaded) 'a :: semiring_1 ring_char = "if CHAR('a) = 0 then
UNIV else {0..<CHAR('a)}"

by auto

lemma CARD_ring_char [simp]: "CARD ('a :: semiring_1 ring_char) = CHAR('a)"
proof -

let ?A = "if CHAR('a) = 0 then UNIV else {0..<CHAR('a)}"
interpret type_definition "Rep_ring_char :: 'a ring_char ⇒ nat" Abs_ring_char

?A
by (rule type_definition_ring_char)

from card show ?thesis
by auto

qed

instance ring_char :: (semiring_prime_char) nontriv
proof

show "CARD('a ring_char) > 1"
using prime_nat_iff by auto

qed

instance ring_char :: (semiring_prime_char) prime_card
proof

from CARD_ring_char show "prime CARD('a ring_char)"
by auto

qed

lemma to_int_mod_ring_add:
"to_int_mod_ring (x + y :: 'a :: finite mod_ring) = (to_int_mod_ring

x + to_int_mod_ring y) mod CARD('a)"
by transfer auto

lemma to_int_mod_ring_mult:
"to_int_mod_ring (x * y :: 'a :: finite mod_ring) = (to_int_mod_ring

x * to_int_mod_ring y) mod CARD('a)"
by transfer auto

lemma of_nat_mod_CHAR [simp]: "of_nat (x mod CHAR('a :: semiring_1))
= (of_nat x :: 'a)"
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by (metis (no_types, opaque_lifting) comm_monoid_add_class.add_0 div_mod_decomp
mult_zero_right of_nat_CHAR of_nat_add of_nat_mult)

lemma of_int_mod_CHAR [simp]: "of_int (x mod int CHAR('a :: ring_1))
= (of_int x :: 'a)"

by (simp add: of_int_eq_iff_cong_CHAR)

lemma (in vector_space) bij_betw_representation:
assumes [simp]: "independent B" "finite B"
shows "bij_betw (λv.

∑
b∈B. scale (v b) b) (B →E UNIV) (span B)"

proof (rule bij_betwI)
show "(λv.

∑
b∈B. v b *s b) ∈ (B →E UNIV) → local.span B"

(is "?f ∈ _")
by (auto intro: span_sum span_scale span_base)

show "(λx. restrict (representation B x) B) ∈ local.span B → B →E

UNIV"
(is "?g ∈ _") by auto

show "?g (?f v) = v" if "v ∈ B →E UNIV" for v
proof

fix b :: 'b
show "?g (?f v) b = v b"
proof (cases "b ∈ B")

case b: True
have "?g (?f v) b = (

∑
i∈B. local.representation B (v i *s i) b)"

using b by (subst representation_sum) (auto intro: span_scale
span_base)

also have ". . . = (
∑

i∈B. v i * local.representation B i b)"
by (intro sum.cong) (auto simp: representation_scale span_base)

also have ". . . = (
∑

i∈{b}. v i * local.representation B i b)"
by (intro sum.mono_neutral_right) (auto simp: representation_basis

b)
also have ". . . = v b"

by (simp add: representation_basis b)
finally show "?g (?f v) b = v b" .

qed (use that in auto)
qed
show "?f (?g v) = v" if "v ∈ span B" for v

using that by (simp add: sum_representation_eq)
qed

lemma (in vector_space) card_span:
assumes [simp]: "independent B" "finite B"
shows "card (span B) = CARD('a) ^ card B"

proof -
have "card (B →E (UNIV :: 'a set)) = card (span B)"

by (rule bij_betw_same_card, rule bij_betw_representation) fact+
thus ?thesis

by (simp add: card_PiE dim_span_eq_card_independent)
qed
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lemma (in zero_neq_one) CARD_neq_1: "CARD('a) 6= Suc 0"
proof

assume "CARD('a) = Suc 0"
have "{0, 1} ⊆ (UNIV :: 'a set)"

by simp
also have "is_singleton (UNIV :: 'a set)"

by (simp add: is_singleton_altdef ‹CARD('a) = _›)
then obtain x :: 'a where "UNIV = {x}"

by (elim is_singletonE)
finally have "0 = (1 :: 'a)"

by blast
thus False

using zero_neq_one by contradiction
qed

theorem CARD_finite_field_is_CHAR_power: "∃ n>0. CARD('a :: finite_field)
= CHAR('a) ^ n"
proof -

define s :: "'a ring_char mod_ring ⇒ 'a ⇒ 'a" where
"s = (λx y. of_int (to_int_mod_ring x) * y)"

interpret vector_space s
by unfold_locales (auto simp: s_def algebra_simps to_int_mod_ring_add

to_int_mod_ring_mult)
obtain B where B: "independent B" "span B = UNIV"

by (rule basis_exists[of UNIV]) auto
have [simp]: "finite B"

by simp
have "card (span B) = CHAR('a) ^ card B"

using B by (subst card_span) auto
hence *: "CARD('a) = CHAR('a) ^ card B"

using B by simp
from * have "card B 6= 0"

by (auto simp: B(2) CARD_neq_1)
with * show ?thesis

by blast
qed

1.3 The Freshman’s Dream in rings of non-zero characteristic
lemma (in comm_semiring_1) freshmans_dream:

fixes x y :: 'a and n :: nat
assumes "prime CHAR('a)"
assumes n_def: "n = CHAR('a)"
shows "(x + y) ^ n = x ^ n + y ^ n"

proof -
interpret comm_semiring_prime_char

by standard (auto intro!: exI[of _ "CHAR('a)"] assms)
have "n > 0"
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unfolding n_def by simp
have "(x + y) ^ n = (

∑
k≤n. of_nat (n choose k) * x ^ k * y ^ (n -

k))"
by (rule binomial_ring)

also have ". . . = (
∑

k∈{0,n}. of_nat (n choose k) * x ^ k * y ^ (n -
k))"

proof (intro sum.mono_neutral_right ballI)
fix k assume "k ∈ {..n} - {0, n}"
hence k: "k > 0" "k < n"

by auto
have "CHAR('a) dvd (n choose k)"

unfolding n_def
by (rule dvd_choose_prime) (use k in ‹auto simp: n_def›)

hence "of_nat (n choose k) = (0 :: 'a)"
using of_nat_eq_0_iff_char_dvd by blast

thus "of_nat (n choose k) * x ^ k * y ^ (n - k) = 0"
by simp

qed auto
finally show ?thesis

using ‹n > 0› by (simp add: add_ac)
qed

lemma (in comm_semiring_1) freshmans_dream':
assumes [simp]: "prime CHAR('a)" and "m = CHAR('a) ^ n"
shows "(x + y :: 'a) ^ m = x ^ m + y ^ m"
unfolding assms(2)

proof (induction n)
case (Suc n)
have "(x + y) ^ (CHAR('a) ^ n * CHAR('a)) = ((x + y) ^ (CHAR('a) ^ n))

^ CHAR('a)"
by (rule power_mult)

thus ?case
by (simp add: Suc.IH freshmans_dream Groups.mult_ac flip: power_mult)

qed auto

lemma (in comm_semiring_1) freshmans_dream_sum:
fixes f :: "'b ⇒ 'a"
assumes "prime CHAR('a)" and "n = CHAR('a)"
shows "sum f A ^ n = sum (λi. f i ^ n) A"
using assms
by (induct A rule: infinite_finite_induct)

(auto simp add: power_0_left freshmans_dream)

lemma (in comm_semiring_1) freshmans_dream_sum':
fixes f :: "'b ⇒ 'a"
assumes "prime CHAR('a)" "m = CHAR('a) ^ n"
shows "sum f A ^ m = sum (λi. f i ^ m) A"
using assms
by (induction A rule: infinite_finite_induct)
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(auto simp: freshmans_dream' power_0_left)

1.4 The Frobenius endomorphism
definition (in semiring_1) frob :: "'a ⇒ 'a" where
"frob x = x ^ CHAR('a)"

definition (in semiring_1) inv_frob :: "'a ⇒ 'a" where
"inv_frob x = (if x ∈ {0, 1} then x else if x ∈ range frob then inv_into

UNIV frob x else x)"

lemma (in semiring_1) inv_frob_0 [simp]: "inv_frob 0 = 0"
and inv_frob_1 [simp]: "inv_frob 1 = 1"
by (simp_all add: inv_frob_def)

lemma (in semiring_prime_char) frob_0 [simp]: "frob (0 :: 'a) = 0"
by (simp add: frob_def power_0_left)

lemma (in semiring_1) frob_1 [simp]: "frob 1 = 1"
by (simp add: frob_def)

lemma (in comm_semiring_1) frob_mult: "frob (x * y) = frob x * frob (y
:: 'a)"

by (simp add: frob_def power_mult_distrib)

lemma (in comm_semiring_1)
frob_add: "prime CHAR('a) =⇒ frob (x + y :: 'a) = frob x + frob (y

:: 'a)"
by (simp add: frob_def freshmans_dream)

lemma (in comm_ring_1) frob_uminus: "prime CHAR('a) =⇒ frob (-x :: 'a)
= -frob x"
proof -

assume "prime CHAR('a)"
hence "frob (-x) + frob x = 0"

by (subst frob_add [symmetric]) (auto simp: frob_def power_0_left)
thus ?thesis

by (simp add: add_eq_0_iff)
qed

lemma (in comm_ring_prime_char) frob_diff:
"prime CHAR('a) =⇒ frob (x - y :: 'a) = frob x - frob (y :: 'a)"
using frob_add[of x "-y"] by (simp add: frob_uminus)

interpretation frob_sr: semiring_hom "frob :: 'a :: {comm_semiring_prime_char}
⇒ 'a"

by standard (auto simp: frob_add frob_mult)

interpretation frob: ring_hom "frob :: 'a :: {comm_ring_prime_char} ⇒
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'a"
by standard auto

interpretation frob: field_hom "frob :: 'a :: {field_prime_char} ⇒ 'a"
by standard auto

lemma frob_mod_ring' [simp]: "(x :: 'a :: prime_card mod_ring) ^ CARD('a)
= x"

by (metis CARD_mod_ring finite_field_power_card_eq_same)

lemma frob_mod_ring [simp]: "frob (x :: 'a :: prime_card mod_ring) =
x"

by (simp add: frob_def)

context semiring_1_no_zero_divisors
begin

lemma frob_eq_0D:
"frob (x :: 'a) = 0 =⇒ x = 0"
by (auto simp: frob_def)

lemma frob_eq_0_iff [simp]:
"frob (x :: 'a) = 0 ←→ x = 0 ∧ CHAR('a) > 0"
by (auto simp: frob_def)

end

context idom_prime_char
begin

lemma inj_frob: "inj (frob :: 'a ⇒ 'a)"
proof

fix x y :: 'a
assume "frob x = frob y"
hence "frob (x - y) = 0"

by (simp add: frob_diff del: frob_eq_0_iff)
thus "x = y"

by simp
qed

lemma frob_eq_frob_iff [simp]:
"frob (x :: 'a) = frob y ←→ x = y"
using inj_frob by (auto simp: inj_def)

lemma frob_eq_1_iff [simp]: "frob (x :: 'a) = 1 ←→ x = 1"
using frob_eq_frob_iff by fastforce

lemma inv_frob_frob [simp]: "inv_frob (frob (x :: 'a)) = x"
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by (simp add: inj_frob inv_frob_def)

lemma frob_inv_frob [simp]:
assumes "x ∈ range frob"
shows "frob (inv_frob x) = (x :: 'a)"
using assms by (auto simp: inj_frob inv_frob_def)

lemma inv_frob_eqI: "frob y = x =⇒ inv_frob x = y"
using inv_frob_frob local.frob_def by force

lemma inv_frob_eq_0_iff [simp]: "inv_frob (x :: 'a) = 0 ←→ x = 0"
using inj_frob by (auto simp: inv_frob_def split: if_splits)

end

class surj_frob = field_prime_char +
assumes surj_frob [simp]: "surj (frob :: 'a ⇒ 'a)"

begin

lemma in_range_frob [simp, intro]: "(x :: 'a) ∈ range frob"
using surj_frob by blast

lemma inv_frob_eq_iff [simp]: "inv_frob (x :: 'a) = y ←→ frob y = x"
using frob_inv_frob inv_frob_frob by blast

end

The following type class describes a field with a surjective Frobenius endo-
morphism that is effectively computable. This includes all finite fields.
class inv_frob = surj_frob +

fixes inv_frob_code :: "'a ⇒ 'a"
assumes inv_frob_code: "inv_frob x = inv_frob_code x"

lemmas [code] = inv_frob_code

context finite_field
begin

subclass surj_frob
proof

show "surj (frob :: 'a ⇒ 'a)"
using inj_frob finite_UNIV by (simp add: finite_UNIV_inj_surj)

qed

end
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lemma inv_frob_mod_ring [simp]: "inv_frob (x :: 'a :: prime_card mod_ring)
= x"

by (auto simp: frob_def)

instantiation mod_ring :: (prime_card) inv_frob
begin

definition inv_frob_code_mod_ring :: "'a mod_ring ⇒ 'a mod_ring" where
"inv_frob_code_mod_ring x = x"

instance
by standard (auto simp: inv_frob_code_mod_ring_def)

end

1.5 Inverting the Frobenius endomorphism on polynomials

If K is a field of prime characteristic p with a surjective Frobenius endomor-
phism, every polynomial P with P' = 0 has a p-th root.
To see that, let φ(a) = ap denote the Frobenius endomorphism of K and its
extension to K[X].
If P' = 0 for some P ∈ K[X], then P must be of the form

P = a0 + apx
p + a2px

2p + . . . + akpx
kp .

If we now set

Q := φ−1(a0) + φ−1(ap)x + φ−1(a2p)x2 + . . . + φ−1(akp)xk

we get φ(Q) = P , i.e. Q is the p-th root of P (x).
lift_definition inv_frob_poly :: "'a :: field poly ⇒ 'a poly" is
"λp i. if CHAR('a) = 0 then p i else inv_frob (p (i * CHAR('a)) :: 'a)"

proof goal_cases
case (1 f)
show ?case
proof (cases "CHAR('a) > 0")

case True
from 1 obtain N where N: "f i = 0" if "i ≥ N" for i

using cofinite_eq_sequentially eventually_sequentially by auto
have "inv_frob (f (i * CHAR('a))) = 0" if "i ≥ N" for i
proof -

have "f (i * CHAR('a)) = 0"
proof (rule N)

show "N ≤ i * CHAR('a)"
using that True
by (metis One_nat_def Suc_leI le_trans mult.right_neutral mult_le_mono2)
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qed
thus "inv_frob (f (i * CHAR('a))) = 0"

by (auto simp: power_0_left)
qed
thus ?thesis using True

unfolding cofinite_eq_sequentially eventually_sequentially by auto
qed (use 1 in auto)

qed

lemma coeff_inv_frob_poly [simp]:
fixes p :: "'a :: field poly"
assumes "CHAR('a) > 0"
shows "poly.coeff (inv_frob_poly p) i = inv_frob (poly.coeff p (i *

CHAR('a)))"
using assms by transfer auto

lemma inv_frob_poly_0 [simp]: "inv_frob_poly 0 = 0"
by transfer (auto simp: fun_eq_iff power_0_left)

lemma inv_frob_poly_1 [simp]: "inv_frob_poly 1 = 1"
by transfer (auto simp: fun_eq_iff power_0_left)

lemma degree_inv_frob_poly_le:
fixes p :: "'a :: field poly"
assumes "CHAR('a) > 0"
shows "Polynomial.degree (inv_frob_poly p) ≤ Polynomial.degree p div

CHAR('a)"
proof (intro degree_le allI impI)

fix i assume "Polynomial.degree p div CHAR('a) < i"
hence "i * CHAR('a) > Polynomial.degree p"

using assms div_less_iff_less_mult by blast
thus "Polynomial.coeff (inv_frob_poly p) i = 0"

by (simp add: coeff_eq_0 power_0_left assms)
qed

context
assumes "SORT_CONSTRAINT('a :: comm_ring_1)"
assumes prime_char: "prime CHAR('a)"

begin

lemma poly_power_prime_char_as_sum_of_monoms:
fixes h :: "'a poly"
shows "h ^ CHAR('a) = (

∑
i≤Polynomial.degree h. Polynomial.monom (Polynomial.coeff

h i ^ CHAR('a)) (CHAR('a)*i))"
proof -

have "h ^ CHAR('a) = (
∑

i≤Polynomial.degree h. Polynomial.monom (Polynomial.coeff
h i) i) ^ CHAR('a)"

by (simp add: poly_as_sum_of_monoms)
also have "... = (

∑
i≤Polynomial.degree h. (Polynomial.monom (Polynomial.coeff
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h i) i) ^ CHAR('a))"
by (simp add: freshmans_dream_sum prime_char)

also have "... = (
∑

i≤Polynomial.degree h. Polynomial.monom (Polynomial.coeff
h i ^ CHAR('a)) (CHAR('a)*i))"

proof (rule sum.cong, rule)
fix x assume x: "x ∈ {..Polynomial.degree h}"
show "Polynomial.monom (Polynomial.coeff h x) x ^ CHAR('a) = Polynomial.monom

(Polynomial.coeff h x ^ CHAR('a)) (CHAR('a) * x)"
by (unfold poly_eq_iff, auto simp add: monom_power)

qed
finally show ?thesis .

qed

lemma coeff_of_prime_char_power [simp]:
fixes y :: "'a poly"
shows "poly.coeff (y ^ CHAR('a)) (i * CHAR('a)) = poly.coeff y i ^ CHAR('a)"
using prime_char
by (subst poly_power_prime_char_as_sum_of_monoms, subst Polynomial.coeff_sum)

(auto intro: le_degree simp: power_0_left)

lemma coeff_of_prime_char_power':
fixes y :: "'a poly"
shows "poly.coeff (y ^ CHAR('a)) i =

(if CHAR('a) dvd i then poly.coeff y (i div CHAR('a)) ^ CHAR('a)
else 0)"
proof -

have "poly.coeff (y ^ CHAR('a)) i =
(
∑

j≤Polynomial.degree y. Polynomial.coeff (Polynomial.monom
(Polynomial.coeff y j ^ CHAR('a)) (CHAR('a) * j)) i)"

by (subst poly_power_prime_char_as_sum_of_monoms, subst Polynomial.coeff_sum)
auto

also have ". . . = (
∑

j∈(if CHAR('a) dvd i ∧ i div CHAR('a) ≤ Polynomial.degree
y then {i div CHAR('a)} else {}).

Polynomial.coeff (Polynomial.monom (Polynomial.coeff
y j ^ CHAR('a)) (CHAR('a) * j)) i)"

by (intro sum.mono_neutral_right) (use prime_char in auto)
also have ". . . = (if CHAR('a) dvd i then poly.coeff y (i div CHAR('a))

^ CHAR('a) else 0)"
proof (cases "CHAR('a) dvd i ∧ i div CHAR('a) > Polynomial.degree y")

case True
hence "Polynomial.coeff y (i div CHAR('a)) ^ CHAR('a) = 0"

using prime_char by (simp add: coeff_eq_0 zero_power power_0_left)
thus ?thesis

by auto
qed auto
finally show ?thesis .

qed

end
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context
assumes "SORT_CONSTRAINT('a :: field)"
assumes pos_char: "CHAR('a) > 0"

begin

interpretation field_prime_char "(/)" inverse "(*)" "1 :: 'a" "(+)" 0 "(-)"
uminus

rewrites "semiring_1.frob 1 (*) (+) (0 :: 'a) = frob" and
"semiring_1.inv_frob 1 (*) (+) (0 :: 'a) = inv_frob" and
"semiring_1.semiring_char 1 (+) 0 TYPE('a) = CHAR('a)"

proof unfold_locales
have *: "class.semiring_1 (1 :: 'a) (*) (+) 0" ..
have [simp]: "semiring_1.of_nat (1 :: 'a) (+) 0 = of_nat"

by (auto simp: of_nat_def semiring_1.of_nat_def[OF *])
thus "∃ n>0. semiring_1.of_nat (1 :: 'a) (+) 0 n = 0"

by (intro exI[of _ "CHAR('a)"]) (use pos_char in auto)
show "semiring_1.semiring_char 1 (+) 0 TYPE('a) = CHAR('a)"

by (simp add: fun_eq_iff semiring_char_def semiring_1.semiring_char_def[OF
*])

show [simp]: "semiring_1.frob (1 :: 'a) (*) (+) 0 = frob"
by (simp add: frob_def semiring_1.frob_def[OF *] fun_eq_iff

power.power_def power_def semiring_char_def semiring_1.semiring_char_def[OF
*])

show "semiring_1.inv_frob (1 :: 'a) (*) (+) 0 = inv_frob"
by (simp add: inv_frob_def semiring_1.inv_frob_def[OF *] fun_eq_iff)

qed

lemma inv_frob_poly_power': "inv_frob_poly (p ^ CHAR('a) :: 'a poly)
= p"

using prime_CHAR_semidom[OF pos_char] pos_char
by (auto simp: poly_eq_iff simp flip: frob_def)

lemma inv_frob_poly_power:
fixes p :: "'a poly"
assumes "is_nth_power CHAR('a) p" and "n = CHAR('a)"
shows "inv_frob_poly p ^ CHAR('a) = p"

proof -
from assms(1) obtain q where q: "p = q ^ CHAR('a)"

by (elim is_nth_powerE)
thus ?thesis using assms

by (simp add: q inv_frob_poly_power')
qed

theorem pderiv_eq_0_imp_nth_power:
assumes "pderiv (p :: 'a poly) = 0"
assumes [simp]: "surj (frob :: 'a ⇒ 'a)"
shows "is_nth_power CHAR('a) p"
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proof -
have *: "poly.coeff p n = 0" if n: "¬CHAR('a) dvd n" for n
proof (cases "n = 0")

case False
have "poly.coeff (pderiv p) (n - 1) = of_nat n * poly.coeff p n"

using False by (auto simp: coeff_pderiv)
with assms and n show "poly.coeff p n = 0"

by (auto simp: of_nat_eq_0_iff_char_dvd)
qed (use that in auto)

have **: "inv_frob_poly p ^ CHAR('a) = p"
proof (rule poly_eqI)

fix n :: nat
show "poly.coeff (inv_frob_poly p ^ CHAR('a)) n = poly.coeff p n"

using * CHAR_dvd_CARD[where ?'a = 'a]
by (subst coeff_of_prime_char_power')

(auto simp: poly_eq_iff frob_def [symmetric]
coeff_of_prime_char_power'[where ?'a = 'a] simp

flip: power_mult)
qed

show ?thesis
by (subst **[symmetric]) auto

qed

end

1.6 Code generation

We now also make this notion of “taking the p-th root of a polynomial” exe-
cutable. For this, we need an auxiliary function that takes a list [x0, . . . , xm]
and returns the list of every n-th element, i.e. it throws away all elements
except those xi where i is a multiple of n.
fun take_every :: "nat ⇒ 'a list ⇒ 'a list" where
"take_every _ [] = []"

| "take_every n (x # xs) = x # take_every n (drop (n - 1) xs)"

lemma take_every_0 [simp]: "take_every 0 xs = xs"
by (induction xs) auto

lemma take_every_1 [simp]: "take_every (Suc 0) xs = xs"
by (induction xs) auto

lemma int_length_take_every: "n > 0 =⇒ int (length (take_every n xs))
= ceiling (length xs / n)"
proof (induction n xs rule: take_every.induct)

case (2 n x xs)
show ?case
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proof (cases "Suc (length xs) ≥ n")
case True
thus ?thesis using 2

by (auto simp: dvd_imp_le of_nat_diff diff_divide_distrib split:
if_splits)

next
case False
hence "d(1 + real (length xs)) / real ne = 1"

by (intro ceiling_unique) auto
thus ?thesis using False

by auto
qed

qed auto

lemma length_take_every:
"n > 0 =⇒ length (take_every n xs) = nat (ceiling (length xs / n))"
using int_length_take_every[of n xs] by simp

lemma take_every_nth [simp]:
"n > 0 =⇒ i < length (take_every n xs) =⇒ take_every n xs ! i = xs

! (n * i)"
proof (induction n xs arbitrary: i rule: take_every.induct)

case (2 n x xs i)
show ?case
proof (cases i)

case (Suc j)
have "n - Suc 0 ≤ length xs"

using Suc "2.prems" nat_le_linear by force
hence "drop (n - Suc 0) xs ! (n * j) = xs ! (n - 1 + n * j)"

using Suc by (subst nth_drop) auto
also have "n - 1 + n * j = n + n * j - 1"

using ‹n > 0› by linarith
finally show ?thesis

using "2.IH"[of j] "2.prems" Suc by simp
qed auto

qed auto

lemma coeffs_eq_strip_whileI:
assumes "

∧
i. i < length xs =⇒ Polynomial.coeff p i = xs ! i"

assumes "p 6= 0 =⇒ length xs > Polynomial.degree p"
shows "Polynomial.coeffs p = strip_while ((=) 0) xs"

proof (rule coeffs_eqI)
fix n :: nat
show "Polynomial.coeff p n = nth_default 0 (strip_while ((=) 0) xs)

n"
using assms
by (metis coeff_0 coeff_Poly_eq coeffs_Poly le_degree nth_default_coeffs_eq

nth_default_eq_dflt_iff nth_default_nth order_le_less_trans)
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qed auto

This implements the code equation for inv_frob_poly.
lemma inv_frob_poly_code [code]:
"Polynomial.coeffs (inv_frob_poly (p :: 'a :: field_prime_char poly))

=
(if CHAR('a) = 0 then Polynomial.coeffs p else

map inv_frob (strip_while ((=) 0) (take_every CHAR('a) (Polynomial.coeffs
p))))"

(is "_ = If _ _ ?rhs")
proof (cases "CHAR('a) = 0 ∨ p = 0")

case False
from False have "p 6= 0"

by auto
have "Polynomial.coeffs (inv_frob_poly p) =

strip_while ((=) 0) (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
p)))"

proof (rule coeffs_eq_strip_whileI)
fix i assume i: "i < length (map inv_frob (take_every CHAR('a) (Polynomial.coeffs

p)))"
show "Polynomial.coeff (inv_frob_poly p) i = map inv_frob (take_every

CHAR('a) (Polynomial.coeffs p)) ! i"
proof -

have "i < length (take_every CHAR('a) (Polynomial.coeffs p))"
using i by simp

also have "length (take_every CHAR('a) (Polynomial.coeffs p)) =
nat d(Polynomial.degree p + 1) / real CHAR('a)e"

using False CHAR_pos[where ?'a = 'a]
by (simp add: length_take_every length_coeffs)

finally have "i < real (Polynomial.degree p + 1) / real CHAR('a)"
by linarith

hence "real i * real CHAR('a) < real (Polynomial.degree p + 1)"
using False CHAR_pos[where ?'a = 'a] by (simp add: field_simps)

hence "i * CHAR('a) ≤ Polynomial.degree p"
unfolding of_nat_mult [symmetric] by linarith

hence "Polynomial.coeffs p ! (i * CHAR('a)) = Polynomial.coeff p
(i * CHAR('a))"

using False by (intro coeffs_nth) (auto simp: length_take_every)
thus ?thesis using False i CHAR_pos[where ?'a = 'a]

by (auto simp: nth_default_def mult.commute)
qed

next
assume nz: "inv_frob_poly p 6= 0"
have "Polynomial.degree (inv_frob_poly p) ≤ Polynomial.degree p div

CHAR('a)"
by (rule degree_inv_frob_poly_le) (fact CHAR_pos)

also have ". . . < nat d(real (Polynomial.degree p) + 1) / real CHAR('a)e"
using CHAR_pos[where ?'a = 'a]
by (metis div_less_iff_less_mult linorder_not_le nat_le_real_less
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of_nat_0_less_iff
of_nat_ceiling of_nat_mult pos_less_divide_eq)

also have ". . . = length (take_every CHAR('a) (Polynomial.coeffs p))"
using CHAR_pos[where ?'a = 'a] ‹p 6= 0› by (simp add: length_take_every

length_coeffs add_ac)
finally show "length (map inv_frob (take_every CHAR('a) (Polynomial.coeffs

p))) > Polynomial.degree (inv_frob_poly p)"
by simp_all

qed
also have "strip_while ((=) 0) (map inv_frob (take_every CHAR('a) (Polynomial.coeffs

p))) =
map inv_frob (strip_while ((=) 0 ◦ inv_frob) (take_every

CHAR('a) (Polynomial.coeffs p)))"
by (rule strip_while_map)

also have "(=) 0 ◦ inv_frob = (=) (0 :: 'a)"
by (auto simp: fun_eq_iff)

finally show ?thesis
using False by metis

qed auto

1.7 Perfect fields

We now introduce perfect fields. The textbook definition of a perfect field
is that every irreducible polynomial is separable, i.e. if a polynomial P has
no non-trivial divisors then gcd(P, P ′) = 0.
For technical reasons, this is somewhat difficult to express in Isabelle/HOL’s
typeclass system. We therefore use the following much simpler equivalent
definition (and prove equivalence later): a field is perfect if it either has
characteristic 0 or its Frobenius endomorphism is surjective.
class perfect_field = field +

assumes perfect_field: "CHAR('a) = 0 ∨ surj (frob :: 'a ⇒ 'a)"

context field_char_0
begin
subclass perfect_field

by standard auto
end

context surj_frob
begin
subclass perfect_field

by standard auto
end

theorem irreducible_imp_pderiv_nonzero:
assumes "irreducible (p :: 'a :: perfect_field poly)"
shows "pderiv p 6= 0"

proof (cases "CHAR('a) = 0")
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case True
interpret A: semiring_1 "1 :: 'a" "(*)" "(+)" "0 :: 'a" ..
have *: "class.semiring_1 (1 :: 'a) (*) (+) 0" ..
interpret A: field_char_0 "(/)" inverse "(*)" "1 :: 'a" "(+)" 0 "(-)"

uminus
proof

have "inj (of_nat :: nat ⇒ 'a)"
by (auto simp: inj_on_def of_nat_eq_iff_cong_CHAR True)

also have "of_nat = semiring_1.of_nat (1 :: 'a) (+) 0"
by (simp add: of_nat_def [abs_def] semiring_1.of_nat_def [OF *,

abs_def])
finally show "inj . . . " .

qed

show ?thesis
proof

assume "pderiv p = 0"
hence **: "poly.coeff p (Suc n) = 0" for n

by (auto simp: poly_eq_iff coeff_pderiv of_nat_eq_0_iff_char_dvd
True simp del: of_nat_Suc)

have "poly.coeff p n = 0" if "n > 0" for n
using **[of "n - 1"] that by (cases n) auto

hence "Polynomial.degree p = 0"
by force

thus False
using assms by force

qed

next
case False
hence [simp]: "surj (frob :: 'a ⇒ 'a)"

by (meson perfect_field)

interpret A: field_prime_char "(/)" inverse "(*)" "1 :: 'a" "(+)" 0 "(-)"
uminus

proof
have *: "class.semiring_1 1 (*) (+) (0 :: 'a)" ..
have "semiring_1.of_nat 1 (+) (0 :: 'a) = of_nat"

by (simp add: fun_eq_iff of_nat_def semiring_1.of_nat_def[OF *])
thus "∃ n>0. semiring_1.of_nat 1 (+) 0 n = (0 :: 'a)"

by (intro exI[of _ "CHAR('a)"]) (use False in auto)
qed

show ?thesis
proof

assume "pderiv p = 0"
hence "is_nth_power CHAR('a) p"

using pderiv_eq_0_imp_nth_power[of p] surj_frob False by simp
then obtain q where "p = q ^ CHAR('a)"
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by (elim is_nth_powerE)
with assms show False

by auto
qed

qed

corollary irreducible_imp_separable:
assumes "irreducible (p :: 'a :: perfect_field poly)"
shows "coprime p (pderiv p)"

proof (rule coprimeI)
fix q assume q: "q dvd p" "q dvd pderiv p"
have "¬p dvd q"
proof

assume "p dvd q"
hence "p dvd pderiv p"

using q dvd_trans by blast
hence "Polynomial.degree p ≤ Polynomial.degree (pderiv p)"

by (rule dvd_imp_degree_le) (use assms irreducible_imp_pderiv_nonzero
in auto)

also have ". . . ≤ Polynomial.degree p - 1"
using degree_pderiv_le by auto

finally have "Polynomial.degree p = 0"
by simp

with assms show False
using irreducible_imp_pderiv_nonzero is_unit_iff_degree by blast

qed
with ‹q dvd p› show "is_unit q"

using assms comm_semiring_1_class.irreducibleD' by blast
qed

end

1.8 Algebraically closed fields are perfect
theory Perfect_Field_Algebraically_Closed

imports Perfect_Fields "Formal_Puiseux_Series.Formal_Puiseux_Series"
begin

lemma (in alg_closed_field) nth_root_exists:
assumes "n > 0"
shows "∃ y. y ^ n = (x :: 'a)"

proof -
define f where "f = (λi. if i = 0 then -x else if i = n then 1 else

0)"
have "∃ x. (

∑
k≤n. f k * x ^ k) = 0"

by (rule alg_closed) (use assms in ‹auto simp: f_def›)
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also have "(λx.
∑

k≤n. f k * x ^ k) = (λx.
∑

k∈{0,n}. f k * x ^ k)"
by (intro ext sum.mono_neutral_right) (auto simp: f_def)

finally show "∃ y. y ^ n = x"
using assms by (simp add: f_def)

qed

context alg_closed_field
begin

lemma alg_closed_surj_frob:
assumes "CHAR('a) > 0"
shows "surj (frob :: 'a ⇒ 'a)"

proof -
show "surj (frob :: 'a ⇒ 'a)"
proof safe

fix x :: 'a
obtain y where "y ^ CHAR('a) = x"

using nth_root_exists CHAR_pos assms by blast
hence "frob y = x"

using CHAR_pos by (simp add: frob_def)
thus "x ∈ range frob"

by (metis rangeI)
qed auto

qed

sublocale perfect_field
by standard (use alg_closed_surj_frob in auto)

end

lemma fpxs_const_eq_0_iff [simp]: "fpxs_const x = 0 ←→ x = 0"
by (metis fpxs_const_0 fpxs_const_eq_iff)

lemma semiring_char_fpxs [simp]: "CHAR('a :: comm_semiring_1 fpxs) =
CHAR('a)"

by (rule CHAR_eqI; unfold of_nat_fpxs_eq) (auto simp: of_nat_eq_0_iff_char_dvd)

instance fpxs :: ("{semiring_prime_char,comm_semiring_1}") semiring_prime_char
by (rule semiring_prime_charI) auto

instance fpxs :: ("{comm_semiring_prime_char,comm_semiring_1}") comm_semiring_prime_char
by standard

instance fpxs :: ("{comm_ring_prime_char,comm_semiring_1}") comm_ring_prime_char
by standard

instance fpxs :: ("{idom_prime_char,comm_semiring_1}") idom_prime_char
by standard

instance fpxs :: ("field_prime_char") field_prime_char
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by standard auto

end

2 The algebraic closure type
theory Algebraic_Closure_Type
imports
"HOL-Algebra.Algebra"
"Formal_Puiseux_Series.Formal_Puiseux_Series"
"HOL-Computational_Algebra.Field_as_Ring"

begin

definition (in ring_1) ring_of_type_algebra :: "'a ring"
where "ring_of_type_algebra = (|
carrier = UNIV, monoid.mult = (λx y. x * y),
one = 1,
ring.zero = 0,
add = (λ x y. x + y) |)"

lemma (in comm_ring_1) ring_from_type_algebra [intro]:
"ring (ring_of_type_algebra :: 'a ring)"

proof -
have "∃ y. x + y = 0" for x :: 'a

using add.right_inverse by blast
thus ?thesis

unfolding ring_of_type_algebra_def using add.right_inverse
by unfold_locales (auto simp:algebra_simps Units_def)

qed

lemma (in comm_ring_1) cring_from_type_algebra [intro]:
"cring (ring_of_type_algebra :: 'a ring)"

proof -
have "∃ y. x + y = 0" for x :: 'a

using add.right_inverse by blast
thus ?thesis

unfolding ring_of_type_algebra_def using add.right_inverse
by unfold_locales (auto simp:algebra_simps Units_def)

qed

lemma (in Fields.field) field_from_type_algebra [intro]:
"field (ring_of_type_algebra :: 'a ring)"

proof -
have "∃ y. x + y = 0" for x :: 'a

using add.right_inverse by blast

moreover have "x 6= 0 =⇒ ∃ y. x * y = 1" for x :: 'a
by (rule exI[of _ "inverse x"]) auto
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ultimately show ?thesis
unfolding ring_of_type_algebra_def using add.right_inverse
by unfold_locales (auto simp:algebra_simps Units_def)

qed

2.1 Definition
typedef (overloaded) 'a :: field alg_closure =
"carrier (field.alg_closure (ring_of_type_algebra :: 'a :: field ring))"

proof -
define K where "K ≡ (ring_of_type_algebra :: 'a ring)"
define L where "L ≡ field.alg_closure K"

interpret K: field K
unfolding K_def by rule

interpret algebraic_closure L "range K.indexed_const"
proof -

have *: "carrier K = UNIV"
by (auto simp: K_def ring_of_type_algebra_def)

show "algebraic_closure L (range K.indexed_const)"
unfolding * [symmetric] L_def by (rule K.alg_closureE)

qed

show "∃ x. x ∈ carrier L"
using zero_closed by blast

qed

setup_lifting type_definition_alg_closure

instantiation alg_closure :: (field) field
begin

context
fixes L K
defines "K ≡ (ring_of_type_algebra :: 'a :: field ring)"
defines "L ≡ field.alg_closure K"

begin

interpretation K: field K
unfolding K_def by rule

interpretation algebraic_closure L "range K.indexed_const"
proof -

have *: "carrier K = UNIV"
by (auto simp: K_def ring_of_type_algebra_def)

show "algebraic_closure L (range K.indexed_const)"
unfolding * [symmetric] L_def by (rule K.alg_closureE)

qed
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lift_definition zero_alg_closure :: "'a alg_closure" is "ring.zero L"
by (fold K_def, fold L_def) (rule ring_simprules)

lift_definition one_alg_closure :: "'a alg_closure" is "monoid.one L"
by (fold K_def, fold L_def) (rule ring_simprules)

lift_definition plus_alg_closure :: "'a alg_closure ⇒ 'a alg_closure ⇒
'a alg_closure"

is "ring.add L"
by (fold K_def, fold L_def) (rule ring_simprules)

lift_definition minus_alg_closure :: "'a alg_closure ⇒ 'a alg_closure ⇒
'a alg_closure"

is "a_minus L"
by (fold K_def, fold L_def) (rule ring_simprules)

lift_definition times_alg_closure :: "'a alg_closure ⇒ 'a alg_closure ⇒
'a alg_closure"

is "monoid.mult L"
by (fold K_def, fold L_def) (rule ring_simprules)

lift_definition uminus_alg_closure :: "'a alg_closure ⇒ 'a alg_closure"
is "a_inv L"
by (fold K_def, fold L_def) (rule ring_simprules)

lift_definition inverse_alg_closure :: "'a alg_closure ⇒ 'a alg_closure"
is "λx. if x = ring.zero L then ring.zero L else m_inv L x"
by (fold K_def, fold L_def) (auto simp: field_Units)

lift_definition divide_alg_closure :: "'a alg_closure ⇒ 'a alg_closure
⇒ 'a alg_closure"

is "λx y. if y = ring.zero L then ring.zero L else monoid.mult L x (m_inv
L y)"

by (fold K_def, fold L_def) (auto simp: field_Units)

end

instance proof -
define K where "K ≡ (ring_of_type_algebra :: 'a ring)"
define L where "L ≡ field.alg_closure K"

interpret K: field K
unfolding K_def by rule

interpret algebraic_closure L "range K.indexed_const"
proof -

have *: "carrier K = UNIV"
by (auto simp: K_def ring_of_type_algebra_def)
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show "algebraic_closure L (range K.indexed_const)"
unfolding * [symmetric] L_def by (rule K.alg_closureE)

qed

show "OFCLASS('a alg_closure, field_class)"
proof (standard, goal_cases)

case 1
show ?case

by (transfer, fold K_def, fold L_def) (rule m_assoc)
next

case 2
show ?case

by (transfer, fold K_def, fold L_def) (rule m_comm)
next

case 3
show ?case

by (transfer, fold K_def, fold L_def) (rule l_one)
next

case 4
show ?case

by (transfer, fold K_def, fold L_def) (rule a_assoc)
next

case 5
show ?case

by (transfer, fold K_def, fold L_def) (rule a_comm)
next

case 6
show ?case

by (transfer, fold K_def, fold L_def) (rule l_zero)
next

case 7
show ?case

by (transfer, fold K_def, fold L_def) (rule ring_simprules)
next

case 8
show ?case

by (transfer, fold K_def, fold L_def) (rule ring_simprules)
next

case 9
show ?case

by (transfer, fold K_def, fold L_def) (rule ring_simprules)
next

case 10
show ?case

by (transfer, fold K_def, fold L_def) (rule zero_not_one)
next

case 11
thus ?case

by (transfer, fold K_def, fold L_def) (auto simp: field_Units)
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next
case 12
thus ?case

by (transfer, fold K_def, fold L_def) auto
next

case 13
thus ?case

by transfer auto
qed

qed

end

2.2 The algebraic closure is algebraically closed
instance alg_closure :: (field) alg_closed_field
proof

define K where "K ≡ (ring_of_type_algebra :: 'a ring)"
define L where "L ≡ field.alg_closure K"

interpret K: field K
unfolding K_def by rule

interpret algebraic_closure L "range K.indexed_const"
proof -

have *: "carrier K = UNIV"
by (auto simp: K_def ring_of_type_algebra_def)

show "algebraic_closure L (range K.indexed_const)"
unfolding * [symmetric] L_def by (rule K.alg_closureE)

qed

have [simp]: "Rep_alg_closure x ∈ carrier L" for x
using Rep_alg_closure[of x] by (simp only: L_def K_def)

have [simp]: "Rep_alg_closure x = Rep_alg_closure y ←→ x = y" for
x y

by (simp add: Rep_alg_closure_inject)
have [simp]: "Rep_alg_closure x = 0L ←→ x = 0" for x
proof -

have "Rep_alg_closure x = Rep_alg_closure 0 ←→ x = 0"
by simp

also have "Rep_alg_closure 0 = 0L"
by (simp add: zero_alg_closure.rep_eq L_def K_def)

finally show ?thesis .
qed

have [simp]: "Rep_alg_closure (x ^ n) = Rep_alg_closure x [^]L n"
for x :: "'a alg_closure" and n
by (induction n)
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(auto simp: one_alg_closure.rep_eq times_alg_closure.rep_eq m_comm
simp flip: L_def K_def)

have [simp]: "Rep_alg_closure (Abs_alg_closure x) = x" if "x ∈ carrier
L" for x

using that unfolding L_def K_def by (rule Abs_alg_closure_inverse)

show "∃ x. poly p x = 0" if p: "monic p" "Polynomial.degree p > 0" for
p :: "'a alg_closure poly"

proof -
define P where "P = rev (map Rep_alg_closure (Polynomial.coeffs p))"
have deg: "Polynomials.degree P = Polynomial.degree p"

by (auto simp: P_def degree_eq_length_coeffs)
have carrier_P: "P ∈ carrier (poly_ring L)"

by (auto simp: univ_poly_def polynomial_def P_def hd_map hd_rev
last_map

last_coeffs_eq_coeff_degree)
hence "splitted P"

using roots_over_carrier by blast
hence "roots P 6= {#}"

unfolding splitted_def using deg p by auto
then obtain x where "x ∈# roots P"

by blast
hence x: "is_root P x"

using roots_mem_iff_is_root[OF carrier_P] by auto
hence [simp]: "x ∈ carrier L"

by (auto simp: is_root_def)
define x' where "x' = Abs_alg_closure x"
define xs where "xs = rev (coeffs p)"

have "cr_alg_closure (eval (map Rep_alg_closure xs) x) (poly (Poly
(rev xs)) x')"

by (induction xs)
(auto simp flip: K_def L_def simp: cr_alg_closure_def

zero_alg_closure.rep_eq plus_alg_closure.rep_eq
times_alg_closure.rep_eq Poly_append poly_monom
a_comm m_comm x'_def)

also have "map Rep_alg_closure xs = P"
by (simp add: xs_def P_def rev_map)

also have "Poly (rev xs) = p"
by (simp add: xs_def)

finally have "poly p x' = 0"
using x by (auto simp: is_root_def cr_alg_closure_def)

thus "∃ x. poly p x = 0" ..
qed

qed

2.3 Converting between the base field and the closure
context
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fixes L K
defines "K ≡ (ring_of_type_algebra :: 'a :: field ring)"
defines "L ≡ field.alg_closure K"

begin

interpretation K: field K
unfolding K_def by rule

interpretation algebraic_closure L "range K.indexed_const"
proof -

have *: "carrier K = UNIV"
by (auto simp: K_def ring_of_type_algebra_def)

show "algebraic_closure L (range K.indexed_const)"
unfolding * [symmetric] L_def by (rule K.alg_closureE)

qed

lemma alg_closure_hom: "K.indexed_const ∈ Ring.ring_hom K L"
unfolding L_def using K.alg_closureE(2) .

lift_definition to_ac :: "'a :: field ⇒ 'a alg_closure"
is "ring.indexed_const K"
by (fold K_def, fold L_def) (use mem_carrier in blast)

lemma to_ac_0 [simp]: "to_ac (0 :: 'a) = 0"
proof -

have "to_ac (0K) = 0"
proof (transfer fixing: K, fold K_def, fold L_def)

show "K.indexed_const 0K = 0L"
using Ring.ring_hom_zero[OF alg_closure_hom] K.ring_axioms is_ring
by simp

qed
thus ?thesis

by (simp add: K_def ring_of_type_algebra_def)
qed

lemma to_ac_1 [simp]: "to_ac (1 :: 'a) = 1"
proof -

have "to_ac (1K) = 1"
proof (transfer fixing: K, fold K_def, fold L_def)

show "K.indexed_const 1K = 1L"
using Ring.ring_hom_one[OF alg_closure_hom] K.ring_axioms is_ring
by simp

qed
thus ?thesis

by (simp add: K_def ring_of_type_algebra_def)
qed

lemma to_ac_add [simp]: "to_ac (x + y :: 'a) = to_ac x + to_ac y"
proof -
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have "to_ac (x ⊕K y) = to_ac x + to_ac y"
proof (transfer fixing: K x y, fold K_def, fold L_def)

show "K.indexed_const (x ⊕K y) = K.indexed_const x ⊕L K.indexed_const
y"

using Ring.ring_hom_add[OF alg_closure_hom, of x y] K.ring_axioms
is_ring

by (simp add: K_def ring_of_type_algebra_def)
qed
thus ?thesis

by (simp add: K_def ring_of_type_algebra_def)
qed

lemma to_ac_minus [simp]: "to_ac (-x :: 'a) = -to_ac x"
using to_ac_add to_ac_0 add_eq_0_iff by metis

lemma to_ac_diff [simp]: "to_ac (x - y :: 'a) = to_ac x - to_ac y"
using to_ac_add[of x "-y"] by simp

lemma to_ac_mult [simp]: "to_ac (x * y :: 'a) = to_ac x * to_ac y"
proof -

have "to_ac (x ⊗K y) = to_ac x * to_ac y"
proof (transfer fixing: K x y, fold K_def, fold L_def)

show "K.indexed_const (x ⊗K y) = K.indexed_const x ⊗L K.indexed_const
y"

using Ring.ring_hom_mult[OF alg_closure_hom, of x y] K.ring_axioms
is_ring

by (simp add: K_def ring_of_type_algebra_def)
qed
thus ?thesis

by (simp add: K_def ring_of_type_algebra_def)
qed

lemma to_ac_inverse [simp]: "to_ac (inverse x :: 'a) = inverse (to_ac
x)"

using to_ac_mult[of x "inverse x"] to_ac_1 to_ac_0
by (metis divide_self_if field_class.field_divide_inverse field_class.field_inverse_zero

inverse_unique)

lemma to_ac_divide [simp]: "to_ac (x / y :: 'a) = to_ac x / to_ac y"
using to_ac_mult[of x "inverse y"] to_ac_inverse[of y]
by (simp add: field_class.field_divide_inverse)

lemma to_ac_power [simp]: "to_ac (x ^ n) = to_ac x ^ n"
by (induction n) auto

lemma to_ac_of_nat [simp]: "to_ac (of_nat n) = of_nat n"
by (induction n) auto

lemma to_ac_of_int [simp]: "to_ac (of_int n) = of_int n"
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by (induction n) auto

lemma to_ac_numeral [simp]: "to_ac (numeral n) = numeral n"
using to_ac_of_nat[of "numeral n"] by (simp del: to_ac_of_nat)

lemma to_ac_sum: "to_ac (
∑

x∈A. f x) = (
∑

x∈A. to_ac (f x))"
by (induction A rule: infinite_finite_induct) auto

lemma to_ac_prod: "to_ac (
∏

x∈A. f x) = (
∏

x∈A. to_ac (f x))"
by (induction A rule: infinite_finite_induct) auto

lemma to_ac_sum_list: "to_ac (sum_list xs) = (
∑

x←xs. to_ac x)"
by (induction xs) auto

lemma to_ac_prod_list: "to_ac (prod_list xs) = (
∏

x←xs. to_ac x)"
by (induction xs) auto

lemma to_ac_sum_mset: "to_ac (sum_mset xs) = (
∑

x∈#xs. to_ac x)"
by (induction xs) auto

lemma to_ac_prod_mset: "to_ac (prod_mset xs) = (
∏

x∈#xs. to_ac x)"
by (induction xs) auto

end

lemma (in ring) indexed_const_eq_iff [simp]:
"indexed_const x = (indexed_const y :: 'c multiset ⇒ 'a) ←→ x = y"

proof
assume "indexed_const x = (indexed_const y :: 'c multiset ⇒ 'a)"
hence "indexed_const x ({#} :: 'c multiset) = indexed_const y ({#} ::

'c multiset)"
by metis

thus "x = y"
by (simp add: indexed_const_def)

qed auto

lemma inj_to_ac: "inj to_ac"
by (transfer, intro injI, subst (asm) ring.indexed_const_eq_iff) auto

lemma to_ac_eq_iff [simp]: "to_ac x = to_ac y ←→ x = y"
using inj_to_ac by (auto simp: inj_on_def)

lemma to_ac_eq_0_iff [simp]: "to_ac x = 0 ←→ x = 0"
and to_ac_eq_0_iff' [simp]: "0 = to_ac x ←→ x = 0"
and to_ac_eq_1_iff [simp]: "to_ac x = 1 ←→ x = 1"
and to_ac_eq_1_iff' [simp]: "1 = to_ac x ←→ x = 1"
using to_ac_eq_iff to_ac_0 to_ac_1 by metis+
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definition of_ac :: "'a :: field alg_closure ⇒ 'a" where
"of_ac x = (if x ∈ range to_ac then inv_into UNIV to_ac x else 0)"

lemma of_ac_eqI: "to_ac x = y =⇒ of_ac y = x"
unfolding of_ac_def by (meson inj_to_ac inv_f_f range_eqI)

lemma of_ac_0 [simp]: "of_ac 0 = 0"
and of_ac_1 [simp]: "of_ac 1 = 1"
by (rule of_ac_eqI; simp; fail)+

lemma of_ac_to_ac [simp]: "of_ac (to_ac x) = x"
by (rule of_ac_eqI) auto

lemma to_ac_of_ac: "x ∈ range to_ac =⇒ to_ac (of_ac x) = x"
by auto

lemma CHAR_alg_closure [simp]:
"CHAR('a :: field alg_closure) = CHAR('a)"

proof (rule CHAR_eqI)
show "of_nat CHAR('a) = (0 :: 'a alg_closure)"

by (metis of_nat_CHAR to_ac_0 to_ac_of_nat)
next

show "CHAR('a) dvd n" if "of_nat n = (0 :: 'a alg_closure)" for n
using that by (metis of_nat_eq_0_iff_char_dvd to_ac_eq_0_iff' to_ac_of_nat)

qed

instance alg_closure :: (field_char_0) field_char_0
proof

show "inj (of_nat :: nat ⇒ 'a alg_closure)"
by (metis injD inj_of_nat inj_on_def inj_to_ac to_ac_of_nat)

qed

bundle alg_closure_syntax
begin
notation to_ac ("_↑" [1000] 999)
notation of_ac ("_↓" [1000] 999)
end

bundle alg_closure_syntax'
begin
notation (output) to_ac ("_")
notation (output) of_ac ("_")
end
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2.4 The algebraic closure is an algebraic extension

The algebraic closure is an algebraic extension, i.e. every element in it is a
root of some non-zero polynomial in the base field.
theorem alg_closure_algebraic:

fixes x :: "'a :: field alg_closure"
obtains p :: "'a poly" where "p 6= 0" "poly (map_poly to_ac p) x = 0"

proof -
define K where "K ≡ (ring_of_type_algebra :: 'a ring)"
define L where "L ≡ field.alg_closure K"

interpret K: field K
unfolding K_def by rule

interpret algebraic_closure L "range K.indexed_const"
proof -

have *: "carrier K = UNIV"
by (auto simp: K_def ring_of_type_algebra_def)

show "algebraic_closure L (range K.indexed_const)"
unfolding * [symmetric] L_def by (rule K.alg_closureE)

qed

let ?K = "range K.indexed_const"
have sr: "subring ?K L"

by (rule subring_axioms)
define x' where "x' = Rep_alg_closure x"
have "x' ∈ carrier L"

unfolding x'_def L_def K_def by (rule Rep_alg_closure)
hence alg: "(algebraic over range K.indexed_const) x'"

using algebraic_extension by blast
then obtain p where p: "p ∈ carrier (?K[X]L)" "p 6= []" "eval p x'

= 0L"
using algebraicE[OF sr ‹x' ∈ carrier L› alg] by blast

have [simp]: "Rep_alg_closure x ∈ carrier L" for x
using Rep_alg_closure[of x] by (simp only: L_def K_def)

have [simp]: "Abs_alg_closure x = 0 ←→ x = 0L" if "x ∈ carrier L"
for x

using that unfolding L_def K_def
by (metis Abs_alg_closure_inverse zero_alg_closure.rep_eq zero_alg_closure_def)

have [simp]: "Rep_alg_closure (x ^ n) = Rep_alg_closure x [^]L n"
for x :: "'a alg_closure" and n
by (induction n)

(auto simp: one_alg_closure.rep_eq times_alg_closure.rep_eq m_comm
simp flip: L_def K_def)

have [simp]: "Rep_alg_closure (Abs_alg_closure x) = x" if "x ∈ carrier
L" for x

using that unfolding L_def K_def by (rule Abs_alg_closure_inverse)
have [simp]: "Rep_alg_closure x = 0L ←→ x = 0" for x
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by (metis K_def L_def Rep_alg_closure_inverse zero_alg_closure.rep_eq)

define p' where "p' = Poly (map Abs_alg_closure (rev p))"
have "p' 6= 0"
proof

assume "p' = 0"
then obtain n where n: "map Abs_alg_closure (rev p) = replicate n

0"
by (auto simp: p'_def Poly_eq_0)

with ‹p 6= []› have "n > 0"
by (auto intro!: Nat.gr0I)

have "last (map Abs_alg_closure (rev p)) = 0"
using ‹n > 0› by (subst n) auto

moreover have "Polynomials.lead_coeff p 6= 0L" "Polynomials.lead_coeff
p ∈ carrier L"

using p ‹p 6= []› local.subset
by (fastforce simp: polynomial_def univ_poly_def)+

ultimately show False
using ‹p 6= []› by (auto simp: last_map last_rev)

qed

have "set p ⊆ carrier L"
using local.subset p by (auto simp: univ_poly_def polynomial_def)

hence "cr_alg_closure (eval p x') (poly p' x)"
unfolding p'_def
by (induction p)

(auto simp flip: K_def L_def simp: cr_alg_closure_def
zero_alg_closure.rep_eq plus_alg_closure.rep_eq
times_alg_closure.rep_eq Poly_append poly_monom
a_comm m_comm x'_def)

hence "poly p' x = 0"
using p by (auto simp: cr_alg_closure_def x'_def)

have coeff_p': "Polynomial.coeff p' i ∈ range to_ac" for i
proof (cases "i ≥ length p")

case False
have "Polynomial.coeff p' i = Abs_alg_closure (rev p ! i)"

unfolding p'_def using False
by (auto simp: nth_default_def)

moreover have "rev p ! i ∈ ?K"
using p(1) False by (auto simp: univ_poly_def polynomial_def rev_nth)

ultimately show ?thesis
unfolding to_ac.abs_eq K_def by fastforce

qed (auto simp: p'_def nth_default_def)

define p'' where "p'' = map_poly of_ac p'"
have p'_eq: "p' = map_poly to_ac p''"

by (rule poly_eqI) (auto simp: coeff_map_poly p''_def to_ac_of_ac[OF
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coeff_p'])

interpret to_ac: map_poly_inj_comm_ring_hom "to_ac :: 'a ⇒ 'a alg_closure"
by unfold_locales auto

show ?thesis
proof (rule that)

show "p'' 6= 0"
using ‹p' 6= 0› by (auto simp: p'_eq)

next
show "poly (map_poly to_ac p'') x = 0"

using ‹poly p' x = 0› by (simp add: p'_eq)
qed

qed

instantiation alg_closure :: (field)
"{unique_euclidean_ring, normalization_euclidean_semiring, normalization_semidom_multiplicative}"

begin

definition [simp]: "normalize_alg_closure = (normalize_field :: 'a alg_closure
⇒ _)"
definition [simp]: "unit_factor_alg_closure = (unit_factor_field :: 'a
alg_closure ⇒ _)"
definition [simp]: "modulo_alg_closure = (mod_field :: 'a alg_closure ⇒
_)"
definition [simp]: "euclidean_size_alg_closure = (euclidean_size_field
:: 'a alg_closure ⇒ _)"
definition [simp]: "division_segment (x :: 'a alg_closure) = 1"

instance
by standard
(simp_all add: dvd_field_iff field_split_simps split: if_splits)

end

instantiation alg_closure :: (field) euclidean_ring_gcd
begin

definition gcd_alg_closure :: "'a alg_closure ⇒ 'a alg_closure ⇒ 'a alg_closure"
where
"gcd_alg_closure = Euclidean_Algorithm.gcd"

definition lcm_alg_closure :: "'a alg_closure ⇒ 'a alg_closure ⇒ 'a alg_closure"
where
"lcm_alg_closure = Euclidean_Algorithm.lcm"

definition Gcd_alg_closure :: "'a alg_closure set ⇒ 'a alg_closure" where
"Gcd_alg_closure = Euclidean_Algorithm.Gcd"

definition Lcm_alg_closure :: "'a alg_closure set ⇒ 'a alg_closure" where
"Lcm_alg_closure = Euclidean_Algorithm.Lcm"
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instance by standard (simp_all add: gcd_alg_closure_def lcm_alg_closure_def
Gcd_alg_closure_def Lcm_alg_closure_def)

end

instance alg_closure :: (field) semiring_gcd_mult_normalize
..

end

2.5 Alternative definition of perfect fields
theory Perfect_Field_Altdef
imports
Algebraic_Closure_Type
Perfect_Fields
Perfect_Field_Algebraically_Closed
"HOL-Computational_Algebra.Field_as_Ring"

begin

instance poly :: ("{field, normalization_euclidean_semiring, factorial_ring_gcd,
semiring_gcd_mult_normalize}") factorial_semiring_multiplicative

..

In the following, we will show that our definition of perfect fields is equivalent
to the usual textbook one (for example [1]). That is: a field in which every
irreducible polynomial is separable (or, equivalently, has non-zero derivative)
either has characteristic 0 or a surjective Frobenius endomorphism.
The proof works like this:
Let’s call our field K with prime characteristic p. Suppose there were some
c ∈ K that is not a p-th root. The polynomial P := Xp − c in K[X] clearly
has a zero derivative and is therefore not separable. By our assumption, it
must then have a monic non-trivial factor Q ∈ K[X].
Let L be some field extension of K where c does have a p-th root α (in our
case, we choose L to be the algebraic closure of K).
Clearly, Q is also a non-trivial factor of P in L. However, we also have P = X^p
- c = X^p - α^p = (X - α)^p, so we must have Q = (X − α)m for some 0
≤ m < p since X - α is prime.
However, the coefficient of Xm−1 in (X − α)m is -mα, and since Q ∈ K[X]
we must have -mα ∈ K and therefore α ∈ K.
theorem perfect_field_alt:

assumes "
∧
p :: 'a :: field_gcd poly. Factorial_Ring.irreducible p =⇒

pderiv p 6= 0"
shows "CHAR('a) = 0 ∨ surj (frob :: 'a ⇒ 'a)"
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proof (cases "CHAR('a) = 0")
case False
let ?p = "CHAR('a)"
from False have "Factorial_Ring.prime ?p"

by (simp add: prime_CHAR_semidom)
hence "?p > 1"

using prime_gt_1_nat by blast
note p = ‹Factorial_Ring.prime ?p› ‹?p > 1›

interpret to_ac: map_poly_inj_comm_ring_hom "to_ac :: 'a ⇒ 'a alg_closure"
by unfold_locales auto

have "surj (frob :: 'a ⇒ 'a)"
proof safe

fix c :: 'a
obtain α :: "'a alg_closure" where α: "α ^ ?p = to_ac c"

using p nth_root_exists[of ?p "to_ac c"] by auto
define P where "P = Polynomial.monom 1 ?p + [:-c:]"
define P' where "P' = map_poly to_ac P"
have deg: "Polynomial.degree P = ?p"

unfolding P_def using p by (subst degree_add_eq_left) (auto simp:
degree_monom_eq)

have "[:-α, 1:] ^ ?p = ([:0, 1:] + [:-α:]) ^ ?p"
by (simp add: one_pCons)

also have ". . . = [:0, 1:] ^ ?p - [:α^?p:]"
using p by (subst freshmans_dream) (auto simp: poly_const_pow minus_power_prime_CHAR)

also have "α ^ ?p = to_ac c"
by (simp add: α)

also have "[:0, 1:] ^ CHAR('a) - [:to_ac c:] = P'"
by (simp add: P_def P'_def to_ac.hom_add to_ac.hom_power

to_ac.base.map_poly_pCons_hom monom_altdef)
finally have eq: "P' = [:-α, 1:] ^ ?p" ..

have "¬is_unit P" "P 6= 0"
using deg p by auto

then obtain Q where Q: "Factorial_Ring.prime Q" "Q dvd P"
by (metis prime_divisor_exists)

have "monic Q"
using unit_factor_prime[OF Q(1)] by (auto simp: unit_factor_poly_def

one_pCons)

from Q(2) have "map_poly to_ac Q dvd P'"
by (auto simp: P'_def)

hence "map_poly to_ac Q dvd [:-α, 1:] ^ ?p"
by (simp add: ‹P' = [:-α, 1:] ^ ?p›)

moreover have "Factorial_Ring.prime_elem [:-α, 1:]"
by (intro prime_elem_linear_field_poly) auto

hence "Factorial_Ring.prime [:-α, 1:]"
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unfolding Factorial_Ring.prime_def by (auto simp: normalize_monic)
ultimately obtain m where "m ≤ ?p" "normalize (map_poly to_ac Q)

= [:-α, 1:] ^ m"
using divides_primepow by blast

hence "map_poly to_ac Q = [:-α, 1:] ^ m"
using ‹monic Q› by (subst (asm) normalize_monic) auto

moreover from this have "m > 0"
using Q by (intro Nat.gr0I) auto

moreover have "m 6= ?p"
proof

assume "m = ?p"
hence "Q = P"

using ‹map_poly to_ac Q = [:-α, 1:] ^ m› eq
by (simp add: P'_def to_ac.injectivity)

with Q have "Factorial_Ring.irreducible P"
using idom_class.prime_elem_imp_irreducible by blast

with assms have "pderiv P 6= 0"
by blast

thus False
by (auto simp: P_def pderiv_add pderiv_monom of_nat_eq_0_iff_char_dvd)

qed
ultimately have m: "m ∈ {0<..<?p}" "map_poly to_ac Q = [:-α, 1:]

^ m"
using ‹m ≤ ?p› by auto

from m(1) have "¬?p dvd m"
using p by auto

have "poly.coeff ([:-α, 1:] ^ m) (m - 1) = - of_nat (m choose (m -
1)) * α"

using m(1) by (subst coeff_linear_poly_power) auto
also have "m choose (m - 1) = m"

using ‹0 < m› by (subst binomial_symmetric) auto
also have "[:-α, 1:] ^ m = map_poly to_ac Q"

using m(2) ..
also have "poly.coeff . . . (m - 1) = to_ac (poly.coeff Q (m - 1))"

by simp
finally have "α = to_ac (-poly.coeff Q (m - 1) / of_nat m)"

using m(1) p ‹¬?p dvd m› by (auto simp: field_simps of_nat_eq_0_iff_char_dvd)
hence "(- poly.coeff Q (m - 1) / of_nat m) ^ ?p = c"

using α by (metis to_ac.base.eq_iff to_ac.base.hom_power)
thus "c ∈ range frob"

unfolding frob_def by blast
qed auto
thus ?thesis ..

qed auto

corollary perfect_field_alt':
assumes "

∧
p :: 'a :: field_gcd poly. Factorial_Ring.irreducible p =⇒

Rings.coprime p (pderiv p)"
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shows "CHAR('a) = 0 ∨ surj (frob :: 'a ⇒ 'a)"
proof (rule perfect_field_alt)

fix p :: "'a poly"
assume p: "Factorial_Ring.irreducible p"
with assms[OF p] show "pderiv p 6= 0"

by auto
qed

end
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