The Perfect Number Theorem

Mark IJbema

March 17, 2025

Abstract

This document presents the formal proof of the Perfect Number Theorem. The result can also be found as number 70 on the list of "top 100 mathematical theorems" [Wie]. This document was produced as result of a B.Sc. Thesis under supervision of Jaap Top and Wim H. Hesselink (University of Groningen) in 2009.

Contents

1	Basics needed	1
2	Sum of divisors function	2
3	Perfect Number Theorem	6

1 Basics needed

theory PerfectBasics imports Main HOL-Computational-Algebra.Primes HOL-Algebra.Exponent begin

```
lemma exp-is-max-div:
    assumes m0: m \neq 0 and p: prime p
    shows ~ p \ dvd \ (m \ div \ (p^(multiplicity p \ m))))
    proof (rule ccontr)
    assume ~ ~ <math>p \ dvd \ (m \ div \ (p^(multiplicity p \ m)))) by auto
    from m0 have p^(multiplicity p \ m) \ dvd \ m by (auto simp add: multiplicity-dvd)
    with a have p^{Suc} \ (multiplicity p \ m) \ dvd \ m
    by (subst (asm) dvd-div-iff-mult) auto
    with m0 \ p show False
    by (subst (asm) power-dvd-iff-le-multiplicity) auto
    qed
```

assumes prime (p::nat) and m > 0

shows coprime p (m div (p $\widehat{}$ multiplicity p m)) **proof** (*rule ccontr*) **assume** \neg coprime p (m div p $\widehat{}$ multiplicity p m) with $\langle prime \ p \rangle$ have $\exists \ q$. prime $q \land q \ dvd \ p \land q \ dvd \ m \ div \ p \land multiplicity \ p \ m$ **by** (*metis dvd-refl prime-imp-coprime*) with (prime p) have $\exists q. q = p \land q \ dvd \ m \ div \ p \ \widehat{} \ multiplicity \ p \ m$ **by** (*metis not-prime-1 prime-nat-iff*) then have $p \, dvd \, m \, div \, p \, \widehat{} \, multiplicity \, p \, m$ by auto with assms show False by (auto simp add: exp-is-max-div) qed **theorem** simplify-sum-of-powers: $(x - 1::nat) * (\sum i=0 ... n ... x^{i}) = x^{(n+1)}$ -1 (is ?l = ?r) **proof** (*cases*) assume n = 0thus ?l = x(n+1) - 1 by auto \mathbf{next} assume $n \neq 0$ hence $n\theta$: $n > \theta$ by auto have $?l = (x::nat)*(\sum i=0 ... n . x^i) - (\sum i=0 ... n . x^i)$ **by** (*metis diff-mult-distrib nat-mult-1*) also have ... = $(\sum i=0 \ .. \ n \ . \ x \ \widehat{(Suc \ i)}) - (\sum i=0 \ .. \ n \ . \ x \ \widehat{(i)})$ **by** (*simp add: sum-distrib-left*) also have ... = $(\sum_{i=1}^{i=1} Suc \ \theta \ .. \ Suc \ n \ .. \ x^{i}) - (\sum_{i=0}^{i=1} \theta \ .. \ n \ .. \ x^{i})$ $\mathbf{by}~(\textit{metis sum.shift-bounds-cl-Suc-ivl})$ also have ... = $((\sum_{i=Suc \ \theta \dots n. x^{i}}) + x^{(Suc \ n)}) - (x^{\theta} + (\sum_{i=Suc \ \theta \dots n. x^{i}})$ x^{i} by (simp add: sum.union-disjoint diff-add-inverse sum.atLeast-Suc-atMost) finally show ?thesis by auto

 \mathbf{qed}

end

2 Sum of divisors function

theory Sigma imports PerfectBasics HOL-Library.Infinite-Set begin

definition divisors :: $nat \Rightarrow nat set$ where divisors $m \equiv \{n \ . \ n \ dvd \ m\}$

abbreviation sigma :: nat \Rightarrow nat where sigma $m \equiv \sum (divisors(m))$

lemma divisors-eq-dvd[iff]: $(a \in divisors(n)) \leftrightarrow (a \ dvd \ n)$ by(simp add: divisors-def) **lemma** finite-divisors [simp]: assumes n > 0 shows finite (divisors n) **by** (*simp add: assms divisors-def*) **lemma** divs-of-zero-UNIV[simp]: divisors(0) = UNIV**by**(*auto simp add: divisors-def*) **lemma** sigma0[simp]: sigma(0) = 0by simp **lemma** sigma1 [simp]: sigma(Suc 0) = 1 by (simp add: sum-eq-Suc0-iff) **lemma** prime-divisors: prime $p \leftrightarrow divisors \ p = \{1, p\} \land p > 1$ **by** (*auto simp add: divisors-def prime-nat-iff*) **lemma** prime-imp-sigma: prime $(p::nat) \implies sigma(p) = p+1$ proof assume prime (p::nat) hence $p>1 \land divisors(p) = \{1, p\}$ by (simp add: prime-divisors) hence $p > 1 \land sigma(p) = \sum \{1, p\}$ by (auto simp only: divisors-def) thus sigma(p) = p+1 by simpqed **lemma** sigma-third-divisor: assumes $1 < a \ a < n \ a \ dvd \ n$ shows $1+a+n \leq sigma(n)$ proof from assms have $\{1,a,n\} \leq divisors n$ by *auto* hence $\sum \{1, a, n\} \leq sigma \ n$ by $(meson \langle a < n \rangle$ finite-divisors order.strict-trans1 sum-mono2 zero-le) with assms show ?thesis by auto qed **proposition** prime-iff-sigma: prime $n \leftrightarrow sigma(n) = Suc \ n$ proof assume L: sigma(n) = Suc nthen have n > 1using less-linear sigma1 by fastforce moreover have $m = Suc \ 0$ if $m \ dvd \ n \ m \neq n$ for mproof – have $\theta < m$ using that by auto then have $\neg 1 + m + n \leq 1 + n$ **by** *linarith* then show ?thesis

using sigma-third-divisor [of m] by (metis L One-nat-def Suc-lessD Suc-lessI $\langle n > 1 \rangle$ dvd-imp-le $\langle 0 < m \rangle$ less-le plus-1-eq-Suc that) qed then have divisors $n = \{n, 1\}$ **by** (*auto simp: divisors-def*) ultimately show prime n **by** (*simp add: insert-commute prime-divisors*) qed (use prime-divisors in auto) **lemma** dvd-prime-power-iff: fixes p::nat assumes prime: prime p shows $\{d. d dvd p \hat{n}\} = (\lambda k. p \hat{k}) \cdot \{0..n\}$ using divides-primepow-nat prime by (auto simp add: le-imp-power-dvd) **lemma** rewrite-sum-of-powers: assumes p: (p::nat) > 1shows $\sum ((\hat{\ }p \ (\{0..n\}) = (\sum i = 0 \ .. \ n \ . \ p \ i)$ (is ?l = ?r) by (metis inj-on-def p power-inject-exp sum.reindex-cong) lemma sum-of-powers-int: $(x - 1::int) * (\sum i=0..n \cdot x^i) = x^i Suc n - 1$ **by** (*metis* atLeast0AtMost lessThan-Suc-atMost power-diff-1-eq) lemma sum-of-powers-nat: $(x - 1::nat) * (\sum i=0..n \cdot x^{i}) = x^{i}$ Suc n - 1(is ?l = ?r)

proof (cases x = 0) case False then have int $((x - 1) * sum ((\widehat{)} x) \{0...n\}) = int (x \widehat{} Suc n - 1)$ using sum-of-powers-int [of int x n] by (simp add: of-nat-diff) then show ?thesis using of-nat-eq-iff by blast qed auto

theorem sigma-primepower: assumes prime p shows $(p - 1) * sigma(p^e) = p^(e+1) - 1$ proof – have $sigma(p^e) = (\sum i=0..e \cdot p^i)$ using assms divisors-def dvd-prime-power-iff prime-nat-iff rewrite-sum-of-powers by auto thus $(p - 1) * sigma(p^e) = p^(e+1) - 1$ using sum-of-powers-nat by auto qed

proposition sigma-prime-power-two: $sigma(2\hat{n}) = 2\hat{n}(n+1) - 1$ proof – have $(2 - 1) * sigma(2\hat{n}) = 2\hat{n}(n+1) - 1$

by (auto simp only: sigma-primepower two-is-prime-nat) thus ?thesis by simp qed **lemma** *prodsums-eq-sumprods*: fixes p ::: nat and m ::: natassumes coprime p mshows $\sum ((\lambda k. p \hat{k}) \cdot \{0..n\}) * sigma \ m = \sum \{p \hat{k} * b \ | k \ b. \ k \le n \land b \ dvd \ m\}$ (is ?lhs = ?rhs)proof have coprime p x if x dvd m for xusing assms by (rule coprime-imp-coprime) (auto intro: dvd-trans that) then have coprime $(p \ \hat{f}) x$ if $x \, dvd \, m$ for x fusing that by simp then have $?lhs = \sum \{a * b \mid a b. (\exists f. a = p \land f \land f \leq n) \land b dvd m\}$ **apply** (*subst sum-mult-sum-if-inj* [OF mult-inj-if-coprime-nat]) **apply** (force intro!: sum.cong)+ done also have $\dots = ?rhs$ **by** (*blast intro: sum.cong*) finally show ?thesis . qed lemma div-decomp-comp: fixes a::nat **shows** coprime $m n \Longrightarrow a \ dvd \ m * n \longleftrightarrow (\exists b \ c. \ a = b * c \land b \ dvd \ m \land c \ dvd \ n)$ **by** (*auto simp only: division-decomp mult-dvd-mono*) ${\bf theorem} \ sigma-semimultiplicative:$ assumes p: prime p and cop: coprime p m shows sigma $(p\hat{n}) * sigma m = sigma (p\hat{n} * m)$ (is ?lhs = ?rhs) proof from cop have cop2: coprime (p n) m by simp from p have ?lhs = $\sum ((\lambda f. p\hat{f}) \cdot \{0..n\}) * sigma m$ using divisors-def dvd-prime-power-iff by auto also from cop have ... = $(\sum \{p f * b \mid f b : f \le n \land b \ dvd \ m\})$ by (auto simp add: prodsums-eq-sumprods prime-nat-iff) also have ... = $(\sum \{a*b \mid a \ b \ . \ a \ dvd \ (p \ n) \land b \ dvd \ m\})$ $\mathbf{by} \ (metis \ (no-types, \ opaque-lifting) \ le-imp-power-dvd \ divides-primepow-nat \ p)$ also have $\ldots = \sum \{c. \ c \ dvd \ (p \ n*m)\}$ using cop2 div-decomp-comp by auto finally show ?thesis **by** (*simp add: divisors-def*) qed

 \mathbf{end}

3 Perfect Number Theorem

```
theory Perfect
imports Sigma
begin
definition perfect :: nat => bool where
 perfect m \equiv m > 0 \land 2 * m = sigma m
theorem perfect-number-theorem:
 assumes even: even m and perfect: perfect m
 shows \exists n : m = 2 n * (2(n+1) - 1) \land prime ((2::nat)(n+1) - 1)
proof
 from perfect have m0: m>0 by (auto simp add: perfect-def)
 let ?n = multiplicity 2 m
 let ?A = m \operatorname{div} 2^?n
 let ?np = (2::nat) (?n+1) - 1
 from even m0 have n1: ?n \ge 1 by (simp add: multiplicity-geI)
 have 2^{?n} dvd m by (rule multiplicity-dvd)
 hence m = 2^{?n*?A} by (simp only: dvd-mult-div-cancel)
 with m\theta have mdef: m=2^?n*?A \land coprime 2 ?A
   using multiplicity-decompose [of m 2] by simp
 moreover with m\theta have a\theta: A > \theta by (metis nat-\theta-less-mult-iff)
 moreover
 { from perfect have 2*m=sigma(m) by (simp add: perfect-def)
   with mdef have 2^{(?n+1)*?A=sigma(2^?n*?A)} by auto
 } ultimately have 2^{(?n+1)*?A=sigma(2^?n)*sigma(?A)}
   by (simp add: sigma-semimultiplicative)
 hence formula: 2^{(?n+1)*?A=(?np)*sigma(?A)}
   by (simp only: sigma-prime-power-two)
 from n1 have (2::nat) (?n+1) >= 2^2 by (simp only: power-increasing)
 hence nplarger: ?np >= 3 by auto
 let ?B = ?A div ?np
 from formula have ?np \ dvd \ ?A * 2^{(?n+1)}
   by (auto simp add: ac-simps)
 then have ?np dvd ?A
   using coprime-diff-one-left-nat [of 2 (multiplicity 2 m + 1)]
   by (auto simp add: coprime-dvd-mult-left-iff)
 then have bdef: ?np*?B = ?A
   by simp
 with a\theta have b\theta: ?B>\theta by (metis gr\thetaI mult-is-\theta)
```

from *nplarger a0* have *bsmallera*: ?B < ?A by *auto*

have ?B = 1**proof** (rule ccontr) assume $?B \neq 1$ with b0 bsmallera have 1 < B < A by auto moreover from bdef have ?B: divisors ?A**by** (*metis divisors-eq-dvd dvd-triv-right*) ultimately have $1 + ?B + ?A \leq sigma ?A$ using sigma-third-divisor by blast with *nplarger* have $?np*(1+?A+?B) \leq ?np*(sigma ?A)$ **by** (*auto simp only: nat-mult-le-cancel1*) with bdef have $?np+?A*?np + ?A*1 \leq ?np*(sigma ?A)$ **by** (*simp add: mult.commute distrib-left*) hence $?np+?A*(?np+1) \leq ?np*(sigma ?A)$ by (simp only:add-mult-distrib?)with nplarger have $2^{(n+1)*A} < np*(sigma A)$ by (simp add:mult.commute) with formula show False by auto qed with bdef have adef: ?A=?np by auto with formula have $?np*2^{(?n+1)} = ?np*sigma(?A)$ by auto with *nplarger adef* have ?A + 1 = sigma(?A) by *auto* with a0 have prime ?A **by** (*simp add: prime-iff-sigma*) with mdef adef show $m = 2^{?}n * ?np \wedge prime ?np$ by simp qed **theorem** *Euclid-book9-prop36*: assumes p: prime $(2^{(n+1)} - (1::nat))$ shows perfect $(2 \ n * (2 \ (n + 1) - 1))$ unfolding perfect-def **proof** (*intro conjI*; *simp*) from assms show $2 * 2^n > Suc \ 0$ by (auto simp add: prime-nat-iff) next have $2 \neq ((2::nat) (n+1) - 1)$ by simp arith then have coprime (2::nat) $(2^{(n+1)} - 1)$ **by** (*metis* p primes-coprime-nat two-is-prime-nat) moreover with p have $2\hat{(n+1)} - 1 > (0::nat)$ by (auto simp add: prime-nat-iff) ultimately have $sigma(2^n*(2^n+1)-1)) = (sigma(2^n))*(sigma(2^n+1))$ -1))**by** (*metis sigma-semimultiplicative two-is-prime-nat*) also from assms have ... = $(sigma(2\hat{(}n)))*(2\hat{(}n+1))$ **by** (*auto simp add: prime-imp-sigma*) also have $\dots = (2^{(n+1)} - 1) * (2^{(n+1)})$ by (simp add: sigma-prime-power-two) finally show $2*(2^n * (2*2^n - Suc \ 0)) = sigma(2^n*(2*2^n - Suc \ 0))$ by autoqed

end

References

[Wie] Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/ ${\sim} freek/100/.$