
The Perfect Number Theorem

Mark IJbema

March 17, 2025

Abstract

This document presents the formal proof of the Perfect Number
Theorem. The result can also be found as number 70 on the list of
“top 100 mathematical theorems” [Wie]. This document was produced
as result of a B.Sc. Thesis under supervision of Jaap Top and Wim H.
Hesselink (University of Groningen) in 2009.

Contents
1 Basics needed 1

2 Sum of divisors function 2

3 Perfect Number Theorem 6

1 Basics needed
theory PerfectBasics
imports Main HOL−Computational-Algebra.Primes HOL−Algebra.Exponent
begin

lemma exp-is-max-div:
assumes m0 : m 6= 0 and p: prime p
shows ∼ p dvd (m div (p^(multiplicity p m)))

proof (rule ccontr)
assume ∼ ∼ p dvd (m div (p^(multiplicity p m)))
hence a:p dvd (m div (p^(multiplicity p m))) by auto
from m0 have p^(multiplicity p m) dvd m by (auto simp add: multiplicity-dvd)
with a have p^Suc (multiplicity p m) dvd m

by (subst (asm) dvd-div-iff-mult) auto
with m0 p show False

by (subst (asm) power-dvd-iff-le-multiplicity) auto
qed

lemma coprime-multiplicity:
assumes prime (p::nat) and m > 0

1



shows coprime p (m div (p ^ multiplicity p m))
proof (rule ccontr)

assume ¬ coprime p (m div p ^ multiplicity p m)
with ‹prime p› have ∃ q. prime q ∧ q dvd p ∧ q dvd m div p ^ multiplicity p m

by (metis dvd-refl prime-imp-coprime)
with ‹prime p› have ∃ q. q = p ∧ q dvd m div p ^ multiplicity p m

by (metis not-prime-1 prime-nat-iff )
then have p dvd m div p ^ multiplicity p m

by auto
with assms show False

by (auto simp add: exp-is-max-div)
qed

theorem simplify-sum-of-powers: (x − 1 ::nat) ∗ (
∑

i=0 .. n . x^i) = x^(n + 1 )
− 1 (is ?l = ?r)
proof (cases)

assume n = 0
thus ?l = x^(n+1 ) − 1 by auto

next
assume n 6=0
hence n0 : n>0 by auto
have ?l = (x::nat)∗(

∑
i=0 .. n . x^i) − (

∑
i=0 .. n . x^i)

by (metis diff-mult-distrib nat-mult-1 )
also have ... = (

∑
i=0 .. n . x^(Suc i)) − (

∑
i=0 .. n . x^i)

by (simp add: sum-distrib-left)
also have ... = (

∑
i=Suc 0 .. Suc n . x^i) − (

∑
i=0 .. n . x^i)

by (metis sum.shift-bounds-cl-Suc-ivl)
also have ... = ((

∑
i=Suc 0 .. n. x^i)+x^(Suc n)) − (x^0 + (

∑
i=Suc 0 .. n.

x^i))
by (simp add: sum.union-disjoint diff-add-inverse sum.atLeast-Suc-atMost)

finally show ?thesis by auto
qed

end

2 Sum of divisors function
theory Sigma
imports PerfectBasics HOL−Library.Infinite-Set
begin

definition divisors :: nat ⇒ nat set where
divisors m ≡ {n . n dvd m}

abbreviation sigma :: nat ⇒ nat where
sigma m ≡

∑
(divisors(m))

lemma divisors-eq-dvd[iff ]: (a ∈ divisors(n)) ←→ (a dvd n)
by(simp add: divisors-def )

2



lemma finite-divisors [simp]:
assumes n>0 shows finite (divisors n)

by (simp add: assms divisors-def )

lemma divs-of-zero-UNIV [simp]: divisors(0 ) = UNIV
by(auto simp add: divisors-def )

lemma sigma0 [simp]: sigma(0 ) = 0
by simp

lemma sigma1 [simp]: sigma(Suc 0 ) = 1
by (simp add: sum-eq-Suc0-iff )

lemma prime-divisors: prime p ←→ divisors p = {1 ,p} ∧ p>1
by (auto simp add: divisors-def prime-nat-iff )

lemma prime-imp-sigma: prime (p::nat) =⇒ sigma(p) = p+1
proof −

assume prime (p::nat)
hence p>1 ∧ divisors(p) = {1 ,p} by (simp add: prime-divisors)
hence p>1 ∧ sigma(p) =

∑
{1 ,p} by (auto simp only: divisors-def )

thus sigma(p) = p+1 by simp
qed

lemma sigma-third-divisor :
assumes 1 < a a < n a dvd n
shows 1+a+n ≤ sigma(n)

proof −
from assms have {1 ,a,n} ≤ divisors n

by auto
hence

∑
{1 ,a,n} ≤ sigma n

by (meson ‹a < n› finite-divisors order .strict-trans1 sum-mono2 zero-le)
with assms show ?thesis by auto

qed

proposition prime-iff-sigma: prime n ←→ sigma(n) = Suc n
proof

assume L: sigma(n) = Suc n
then have n > 1

using less-linear sigma1 by fastforce
moreover
have m = Suc 0 if m dvd n m 6= n for m
proof −

have 0 < m
using that by auto

then have ¬ 1 + m + n ≤ 1 + n
by linarith

then show ?thesis

3



using sigma-third-divisor [of m]
by (metis L One-nat-def Suc-lessD Suc-lessI ‹n > 1 › dvd-imp-le ‹0 < m›

less-le plus-1-eq-Suc that)
qed
then have divisors n = {n,1}

by (auto simp: divisors-def )
ultimately show prime n

by (simp add: insert-commute prime-divisors)
qed (use prime-divisors in auto)

lemma dvd-prime-power-iff :
fixes p::nat
assumes prime: prime p
shows {d. d dvd p^n} = (λk. p^k) ‘ {0 ..n}
using divides-primepow-nat prime by (auto simp add: le-imp-power-dvd)

lemma rewrite-sum-of-powers:
assumes p: (p::nat)>1
shows

∑
((^) p ‘ {0 ..n}) = (

∑
i = 0 .. n . p^i) (is ?l = ?r)

by (metis inj-on-def p power-inject-exp sum.reindex-cong)

lemma sum-of-powers-int: (x − 1 ::int) ∗ (
∑

i=0 ..n . x^i) = x ^ Suc n − 1
by (metis atLeast0AtMost lessThan-Suc-atMost power-diff-1-eq)

lemma sum-of-powers-nat: (x − 1 ::nat) ∗ (
∑

i=0 ..n . x^i) = x ^ Suc n − 1
(is ?l = ?r)

proof (cases x = 0 )
case False
then have int ((x − 1 ) ∗ sum ((^) x) {0 ..n}) = int (x ^ Suc n − 1 )

using sum-of-powers-int [of int x n] by (simp add: of-nat-diff )
then show ?thesis

using of-nat-eq-iff by blast
qed auto

theorem sigma-primepower :
assumes prime p
shows (p − 1 ) ∗ sigma(p^e) = p^(e+1 ) − 1

proof −
have sigma(p^e) = (

∑
i=0 ..e . p^i)

using assms divisors-def dvd-prime-power-iff prime-nat-iff rewrite-sum-of-powers
by auto

thus (p − 1 )∗sigma(p^e) = p^(e+1 ) − 1
using sum-of-powers-nat by auto

qed

proposition sigma-prime-power-two: sigma(2^n) = 2^(n+1 ) − 1
proof −

have (2 − 1 ) ∗ sigma(2^n) = 2^(n+1 ) − 1

4



by (auto simp only: sigma-primepower two-is-prime-nat)
thus ?thesis by simp

qed

lemma prodsums-eq-sumprods:
fixes p :: nat and m :: nat
assumes coprime p m
shows

∑
((λk. p^k) ‘ {0 ..n}) ∗ sigma m =

∑
{p^k ∗ b |k b. k ≤ n ∧ b dvd m}

(is ?lhs = ?rhs)
proof −

have coprime p x if x dvd m for x
using assms by (rule coprime-imp-coprime) (auto intro: dvd-trans that)

then have coprime (p ^ f ) x if x dvd m for x f
using that by simp

then have ?lhs =
∑
{a ∗ b |a b. (∃ f . a = p ^ f ∧ f ≤ n) ∧ b dvd m}

apply (subst sum-mult-sum-if-inj [OF mult-inj-if-coprime-nat])
apply (force intro!: sum.cong)+

done
also have ... = ?rhs

by (blast intro: sum.cong)
finally show ?thesis .

qed

lemma div-decomp-comp:
fixes a::nat
shows coprime m n =⇒ a dvd m∗n ←→ (∃ b c. a = b ∗ c ∧ b dvd m ∧ c dvd n)

by (auto simp only: division-decomp mult-dvd-mono)

theorem sigma-semimultiplicative:
assumes p: prime p and cop: coprime p m
shows sigma (p^n) ∗ sigma m = sigma (p^n ∗ m) (is ?lhs = ?rhs)

proof −
from cop have cop2 : coprime (p^n) m

by simp
from p have ?lhs =

∑
((λf . p^f ) ‘ {0 ..n}) ∗ sigma m

using divisors-def dvd-prime-power-iff by auto
also from cop have ... = (

∑
{p^f ∗b| f b . f≤n ∧ b dvd m})

by (auto simp add: prodsums-eq-sumprods prime-nat-iff )
also have ... = (

∑
{a∗b| a b . a dvd (p^n) ∧ b dvd m})

by (metis (no-types, opaque-lifting) le-imp-power-dvd divides-primepow-nat p)
also have . . . =

∑
{c. c dvd (p^n∗m)}

using cop2 div-decomp-comp by auto
finally show ?thesis

by (simp add: divisors-def )
qed

end

5



3 Perfect Number Theorem
theory Perfect
imports Sigma
begin

definition perfect :: nat => bool where
perfect m ≡ m>0 ∧ 2∗m = sigma m

theorem perfect-number-theorem:
assumes even: even m and perfect: perfect m
shows ∃ n . m = 2^n∗(2^(n+1 ) − 1 ) ∧ prime ((2 ::nat)^(n+1 ) − 1 )

proof
from perfect have m0 : m>0 by (auto simp add: perfect-def )

let ?n = multiplicity 2 m
let ?A = m div 2^?n
let ?np = (2 ::nat)^(?n+1 ) − 1

from even m0 have n1 : ?n >= 1 by (simp add: multiplicity-geI )

have 2^?n dvd m by (rule multiplicity-dvd)
hence m = 2^?n∗?A by (simp only: dvd-mult-div-cancel)
with m0 have mdef : m=2^?n∗?A ∧ coprime 2 ?A

using multiplicity-decompose [of m 2 ] by simp
moreover with m0 have a0 : ?A>0 by (metis nat-0-less-mult-iff )
moreover
{ from perfect have 2∗m=sigma(m) by (simp add: perfect-def )

with mdef have 2^(?n+1 )∗?A=sigma(2^?n∗?A) by auto
} ultimately have 2^(?n+1 )∗?A=sigma(2^?n)∗sigma(?A)

by (simp add: sigma-semimultiplicative)
hence formula: 2^(?n+1 )∗?A=(?np)∗sigma(?A)

by (simp only: sigma-prime-power-two)

from n1 have (2 ::nat)^(?n+1 ) >= 2^2 by (simp only: power-increasing)
hence nplarger : ?np>= 3 by auto

let ?B = ?A div ?np

from formula have ?np dvd ?A ∗ 2^(?n+1 )
by (auto simp add: ac-simps)

then have ?np dvd ?A
using coprime-diff-one-left-nat [of 2 ^ (multiplicity 2 m + 1 )]
by (auto simp add: coprime-dvd-mult-left-iff )

then have bdef : ?np∗?B = ?A
by simp

with a0 have b0 : ?B>0 by (metis gr0I mult-is-0 )

from nplarger a0 have bsmallera: ?B < ?A by auto

6



have ?B = 1
proof (rule ccontr)

assume ?B 6= 1
with b0 bsmallera have 1<?B ?B<?A by auto
moreover from bdef have ?B : divisors ?A

by (metis divisors-eq-dvd dvd-triv-right)
ultimately have 1+?B+?A ≤ sigma ?A

using sigma-third-divisor by blast
with nplarger have ?np∗(1+?A+?B) ≤ ?np∗(sigma ?A)

by (auto simp only: nat-mult-le-cancel1 )
with bdef have ?np+?A∗?np + ?A∗1 ≤ ?np∗(sigma ?A)

by (simp add: mult.commute distrib-left)
hence ?np+?A∗(?np + 1 ) ≤ ?np∗(sigma ?A) by (simp only:add-mult-distrib2 )
with nplarger have 2^(?n+1 )∗?A < ?np∗(sigma ?A) by(simp add:mult.commute)
with formula show False by auto

qed

with bdef have adef : ?A=?np by auto
with formula have ?np∗2^(?n+1 ) = ?np ∗ sigma(?A) by auto
with nplarger adef have ?A + 1=sigma(?A) by auto
with a0 have prime ?A

by (simp add: prime-iff-sigma)
with mdef adef show m = 2^?n ∗ ?np ∧ prime ?np by simp

qed

theorem Euclid-book9-prop36 :
assumes p: prime (2^(n+1 ) − (1 ::nat))
shows perfect (2 ^ n ∗ (2 ^ (n + 1 ) − 1 ))
unfolding perfect-def

proof (intro conjI ; simp)
from assms show 2 ∗ 2^n > Suc 0 by (auto simp add: prime-nat-iff )

next
have 2 6= ((2 ::nat)^(n+1 ) − 1 ) by simp arith
then have coprime (2 ::nat) (2^(n+1 ) − 1 )

by (metis p primes-coprime-nat two-is-prime-nat)
moreover with p have 2^(n+1 ) − 1 > (0 ::nat)

by (auto simp add: prime-nat-iff )
ultimately have sigma (2^n∗(2^(n+1 ) − 1 )) = (sigma(2^n))∗(sigma(2^(n+1 )
− 1 ))

by (metis sigma-semimultiplicative two-is-prime-nat)
also from assms have ... = (sigma(2^(n)))∗(2^(n+1 ))

by (auto simp add: prime-imp-sigma)
also have ... = (2^(n+1 ) − 1 )∗(2^(n+1 )) by(simp add: sigma-prime-power-two)
finally show 2∗(2^n ∗ (2∗2^n − Suc 0 )) = sigma(2^n∗(2∗2^n − Suc 0 )) by

auto
qed

end

7



References

[Wie] Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/
~freek/100/.

8

http://www.cs.ru.nl/~freek/100/
http://www.cs.ru.nl/~freek/100/

	Basics needed
	Sum of divisors function
	Perfect Number Theorem

