The Perfect Number Theorem

Mark IJbema

September 13, 2023

Abstract

This document presents the formal proof of the Perfect Number Theorem. The result can also be found as number 70 on the list of "top 100 mathematical theorems" [Wie]. This document was produced as result of a B.Sc. Thesis under supervision of Jaap Top and Wim H. Hesselink (University of Groningen) in 2009.

Contents

1 Basics needed 1
2 Sum of divisors function 2
3 Perfect Number Theorem 6

1 Basics needed

```
theory PerfectBasics
imports Main HOL-Computational-Algebra.Primes HOL-Algebra.Exponent
begin
lemma exp-is-max-div:
    assumes \(m 0: m \neq 0\) and \(p\) : prime \(p\)
    shows \(\sim p \operatorname{dvd}\left(m \operatorname{div}\left(p^{\wedge}(\right.\right.\) multiplicity \(\left.\left.p m)\right)\right)\)
proof (rule ccontr)
    assume \(\sim \sim p d v d\left(m \operatorname{div}\left(p^{\wedge}(\right.\right.\) multiplicity \(\left.\left.p m)\right)\right)\)
    hence a:p dvd ( \(m\) div ( \(\left.p^{\wedge}(m u l t i p l i c i t y ~ p m)\right)\) ) by auto
    from \(m 0\) have \(p^{\wedge}\) (multiplicity \(\left.p m\right) d v d m\) by (auto simp add: multiplicity-dvd)
    with \(a\) have \(p^{\wedge}\) Suc (multiplicity \(p m\) ) dvd \(m\)
        by (subst (asm) dvd-div-iff-mult) auto
    with \(m 0 p\) show False
        by (subst (asm) power-dvd-iff-le-multiplicity) auto
qed
lemma coprime-multiplicity:
    assumes prime ( \(p:: n a t\) ) and \(m>0\)
```

```
    shows coprime p (m div ( }\mp@subsup{p}{}{`}\mathrm{ multiplicity p m))
proof (rule ccontr)
    assume }\neg\mathrm{ coprime p (m div p` multiplicity p m)
    with〈prime p> have \existsq. prime q}\wedgeq\mathrm{ dvd p}\wedgeq\mathrm{ dvd m div p^ multiplicity p m
    by (metis dvd-refl prime-imp-coprime)
    with <prime p> have \existsq. q=p\wedge q dvd m div p^ multiplicity p m
        by (metis not-prime-1 prime-nat-iff)
    then have p dvd m div p^ multiplicity pm
        by auto
    with assms show False
        by (auto simp add: exp-is-max-div)
qed
theorem simplify-sum-of-powers: (x-1::nat)*(\sumi=0 .. n. x`i)}=x`(n+1
- 1 (is ?l = ?r)
proof (cases)
    assume n=0
    thus ?l = x`(n+1) - 1 by auto
next
    assume n\not=0
    hence n0: n>0 by auto
    have ?l = (x::nat )*(\sumi=0 .. n. x`i) - (\sumi=0 .. n. x`i)
        by (metis diff-mult-distrib nat-mult-1)
    also have ... = (\sumi=0 .. n. x` (Suc i)) - (\sumi=0 .. n . x`i)
    by (simp add: sum-distrib-left)
    also have ... = (\sumi=Suc 0 .. Suc n . x`i) - (\sumi=0 .. n . x`i)
    by (metis sum.shift-bounds-cl-Suc-ivl)
    also have ... = ((\sumi=Suc 0 .. n. x`i) +x`(Suc n)) - (x`0 + (\sumi=Suc 0 .. n.
x`i))
    by (simp add: sum.union-disjoint diff-add-inverse sum.atLeast-Suc-atMost)
    finally show ?thesis by auto
qed
end
```


2 Sum of divisors function

theory Sigma
imports PerfectBasics HOL-Library.Infinite-Set
begin
definition divisors :: nat \Rightarrow nat set where
divisors $m \equiv\{n . n d v d m\}$
abbreviation sigma $::$ nat \Rightarrow nat where
sigma $m \equiv \sum(\operatorname{divisors}(m))$
lemma divisors-eq-dvd[iff]: $(a \in \operatorname{divisors}(n)) \longleftrightarrow(a$ dvd $n)$
by (simp add: divisors-def)

```
lemma finite-divisors [simp]:
    assumes n>0 shows finite (divisors n)
    by (simp add: assms divisors-def)
lemma divs-of-zero-UNIV[simp]: divisors(0) = UNIV
    by(auto simp add: divisors-def)
lemma sigma0[simp]: sigma(0) = 0
    by simp
lemma sigma1[simp]: sigma(Suc 0) = 1
    by (simp add: sum-eq-Suc0-iff)
lemma prime-divisors: prime p\longleftrightarrow divisors }p={1,p}\wedgep>
    by (auto simp add: divisors-def prime-nat-iff)
lemma prime-imp-sigma: prime (p::nat) \Longrightarrow sigma( }p)=p+
proof -
    assume prime (p::nat)
    hence p>1 ^ divisors(p)={1,p} by (simp add: prime-divisors)
    hence p>1^\operatorname{sigma}(p)=\sum{1,p} by (auto simp only: divisors-def)
    thus }\operatorname{sigma}(p)=p+1 by sim
qed
lemma sigma-third-divisor:
    assumes 1<a a<n a dvd n
    shows }1+a+n\leq\operatorname{sigma}(n
proof -
    from assms have {1,a,n}\leqdivisors n
        by auto
    hence \sum{1,a,n}\leqsigma n
        by (meson {a<n〉 finite-divisors order.strict-trans1 sum-mono2 zero-le)
    with assms show ?thesis by auto
qed
proposition prime-iff-sigma: prime n}\longleftrightarrow\operatorname{sigma}(n)=\mathrm{ Suc n
proof
    assume L: sigma(n)=Suc n
    then have n>1
        using less-linear sigma1 by fastforce
    moreover
    have m=Suc 0 if m dvd n m\not=n for m
    proof -
        have 0<m
            using that by auto
        then have }\neg1+m+n\leq1+
            by linarith
        then show ?thesis
```

using sigma-third-divisor [of m]
by (metis L One-nat-def Suc-lessD Suc-lessI $\langle n>1\rangle d v d-i m p-l e\langle 0<m\rangle$ less-le plus-1-eq-Suc that)
qed
then have divisors $n=\{n, 1\}$
by (auto simp: divisors-def)
ultimately show prime n
by (simp add: insert-commute prime-divisors)
qed (use prime-divisors in auto)
lemma dvd-prime-power-iff:
fixes $p:: n a t$
assumes prime: prime p
shows $\left\{d . d\right.$ dvd $\left.p^{\wedge} n\right\}=\left(\lambda k . p^{\wedge} k\right) ‘\{0 . . n\}$
using divides-primepow-nat prime by (auto simp add: le-imp-power-dvd)
lemma rewrite-sum-of-powers:
assumes $p:(p::$ nat $)>1$
shows $\sum\left((\mathcal{\wedge}) p^{\prime}\{0 . . n\}\right)=\left(\sum i=0 . . n \cdot p \uparrow i\right)($ is $? l=? r)$
by (metis inj-on-def p power-inject-exp sum.reindex-cong)
lemma sum-of-powers-int: $(x-1::$ int $) *\left(\sum i=0 . . n . x^{\wedge} i\right)=x^{\wedge}$ Suc $n-1$
by (metis atLeast0AtMost lessThan-Suc-atMost power-diff-1-eq)
lemma sum-of-powers-nat: $(x-1::$ nat $) *\left(\sum i=0 . . n \cdot x \widehat{\imath}\right)=x^{\wedge}$ Suc $n-1$
(is ? $l=? r$)
proof (cases $x=0$)
case False
then have $\operatorname{int}\left((x-1) * \operatorname{sum}\left(\left({ }^{\wedge}\right) x\right)\{0 . . n\}\right)=\operatorname{int}\left(x^{\wedge}\right.$ Suc $\left.n-1\right)$
using sum-of-powers-int [of int $x \quad n$] by (simp add: of-nat-diff)
then show ?thesis
using of-nat-eq-iff by blast
qed auto
theorem sigma-primepower:
assumes prime p
shows $(p-1) * \operatorname{sigma}\left(p^{\wedge} e\right)=p^{\wedge}(e+1)-1$
proof -
have $\operatorname{sigma}\left(p^{\wedge} e\right)=\left(\sum i=0 . . e \cdot p \widehat{i}\right)$
using assms divisors-def dvd-prime-power-iff prime-nat-iff rewrite-sum-of-powers
by auto
thus $(p-1) * \operatorname{sigma}\left(p^{\wedge} e\right)=p^{\wedge}(e+1)-1$
using sum-of-powers-nat by auto
qed

proof -
have $(2-1) * \operatorname{sigma}(2 \widehat{2})=$ 2^ $^{\wedge}(n+1)-1$

```
    by (auto simp only: sigma-primepower two-is-prime-nat)
    thus ?thesis by simp
qed
lemma prodsums-eq-sumprods:
    fixes p :: nat and m :: nat
    assumes coprime p m
    shows \sum((\lambdak. p^k)`{0..n})* sigma m=\sum{p^k*b|kb.k\leqn^b dvdm}
    (is ?lhs = ?rhs)
proof -
    have coprime px if x dvd m for x
    using assms by (rule coprime-imp-coprime) (auto intro:dvd-trans that)
    then have coprime ( }\mp@subsup{p}{}{`}f)x\mathrm{ if }xdvdm\mathrm{ for }x
        using that by simp
    then have ?lhs = \sum{a*b|ab. (\existsf.a= p^f^f\leqn)^bdvdm}
        apply (subst sum-mult-sum-if-inj [OF mult-inj-if-coprime-nat])
            apply (force intro!: sum.cong)+
        done
    also have ... = ?rhs
    by (blast intro: sum.cong)
    finally show ?thesis.
qed
lemma div-decomp-comp:
    fixes a::nat
    shows coprime m n\Longrightarrowa dvd m*n \longleftrightarrow(\existsbc. a=b*c\wedgeb dvd m}\wedgec\mathrm{ dvd n)
by (auto simp only: division-decomp mult-dvd-mono)
theorem sigma-semimultiplicative:
    assumes p: prime p and cop: coprime p m
    shows sigma ( }\mp@subsup{p}{`}{\prime}n)*\operatorname{sigma}m=\operatorname{sigma}(p`n*m)(is ?lhs = ?rhs
proof -
    from cop have cop2: coprime ( }p\widehat{`}\mathrm{ ) m
        by simp
```



```
        using divisors-def dvd-prime-power-iff by auto
    also from cop have ... =( \sum{p`f*b|fb.f\leqn^b dvd m})
        by (auto simp add: prodsums-eq-sumprods prime-nat-iff)
    also have ... = (\sum{a*b| ab.advd ( p^n)^bdvd m})
        by (metis (no-types, opaque-lifting) le-imp-power-dvd divides-primepow-nat p)
    also have ... = \sum{c.c dvd (p^n*m)}
        using cop2 div-decomp-comp by auto
    finally show ?thesis
        by (simp add: divisors-def)
qed
end
```


3 Perfect Number Theorem

```
theory Perfect
imports Sigma
begin
definition perfect :: nat \(=>\) bool where
perfect \(m \equiv m>0 \wedge 2 * m=\) sigma \(m\)
```

theorem perfect-number-theorem:
assumes even: even m and perfect: perfect m
shows $\exists n \cdot m=2 ` n *\left(\mathcal{R}^{\wedge}(n+1)-1\right) \wedge$ prime $((2:: n a t) \uparrow(n+1)-1)$
proof
from perfect have $m 0: m>0$ by (auto simp add: perfect-def)
let $? n=$ multiplicity 2 m
let ? $A=m$ div 2^?n
let $? n p=(2:: n a t) \wedge(? n+1)-1$
from even $m 0$ have $n 1:$? $n>=1$ by (simp add: multiplicity-geI)
have $2 \uparrow ? n$ dvd m by (rule multiplicity-dvd)
hence $m=2 \wedge ? n *$? A by (simp only: dvd-mult-div-cancel)
with $m 0$ have mdef: $m=\mathcal{Z}^{\wedge}$? $n *$? $A \wedge$ coprime 2 ? A
using multiplicity-decompose [of m 2] by simp
moreover with $m 0$ have $a 0$: ? A>0 by (metis nat-0-less-mult-iff)
moreover
\{ from perfect have $2 * m=\operatorname{sigma}(m)$ by (simp add: perfect-def)
with mdef have $\mathcal{Z}^{\wedge}(? n+1) * ? A=\operatorname{sigma}\left(\mathscr{L}^{\wedge} ? n * ? A\right)$ by auto
\} ultimately have $2 \wedge(? n+1) * ? A=\operatorname{sigma}(2 \wedge ? n) * \operatorname{sigma}(? A)$
by (simp add: sigma-semimultiplicative)
hence formula: $\mathfrak{2}^{\wedge}(? n+1) * ? A=(? n p) * \operatorname{sigma}(? A)$
by (simp only: sigma-prime-power-two)
from $n 1$ have (2::nat) $)^{(? n+1)}>=$ 2 $^{2} 2$ by (simp only: power-increasing)
hence nplarger: ?np>=3 by auto
let $? B=? A$ div ? $n p$
from formula have ? $n p$ dvd ? $A * \mathcal{Z}^{\wedge}(? n+1)$
by (auto simp add: ac-simps)
then have ?np dvd?A
using coprime-diff-one-left-nat [of 2 ^ (multiplicity $2 m+1$)]
by (auto simp add: coprime-dvd-mult-left-iff)
then have bdef: ? $n p * ? B=? A$
by simp
with $a 0$ have $b 0: ? B>0$ by (metis grOI mult-is-0)
from nplarger a 0 have bsmallera: ? $B<$?A by auto
have $? B=1$
proof (rule ccontr)
assume ? $B \neq 1$
with b0 bsmallera have $1<? B$? $B<? A$ by auto
moreover from bdef have ? B : divisors ? A by (metis divisors-eq-dvd dvd-triv-right)
ultimately have $1+? B+? A \leq$ sigma $? A$ using sigma-third-divisor by blast
with nplarger have ? $n p *(1+? A+$? $B) \leq ? n p *($ sigma ? $A)$ by (auto simp only: nat-mult-le-cancel1)
with bdef have ? $n p+? A * ? n p+? A * 1 \leq ? n p *($ sigma ? $A)$ by (simp add: mult.commute distrib-left)
hence ? $n p+? A *(? n p+1) \leq ? n p *($ sigma ? A) by (simp only:add-mult-distrib2)
with nplarger have 2 ^(? $n+1) * ? A<? n p *($ sigma ?A) by (simp add:mult.commute)
with formula show False by auto
qed
with bdef have adef: ? $A=? n p$ by auto
with formula have ? $n p * \mathcal{Z}^{\wedge}(? n+1)=? n p * \operatorname{sigma}(? A)$ by auto
with nplarger adef have ? A $+1=\operatorname{sigma}(? A)$ by auto
with a0 have prime ? A
by (simp add: prime-iff-sigma)
with mdef adef show $m=2^{\wedge} ? n * ? n p \wedge$ prime ? $n p$ by simp qed

```
theorem Euclid-book9-prop36:
    assumes p: prime (2`(n+1) - (1::nat))
    shows perfect (2 ^ n * (2^ (n+1) - 1))
    unfolding perfect-def
proof (intro conjI; simp)
    from assms show 2 * 2^n > Suc 0 by (auto simp add: prime-nat-iff)
next
    have 2 # ((2::nat)^(n+1) - 1) by simp arith
    then have coprime (2::nat) (2`(n+1) - 1)
        by (metis p primes-coprime-nat two-is-prime-nat)
    moreover with p have 2^(n+1) - 1> (0::nat)
        by (auto simp add: prime-nat-iff)
```



```
- 1))
    by (metis sigma-semimultiplicative two-is-prime-nat)
    also from assms have ... = (sigma(2`(n)))*(2^(n+1))
    by (auto simp add: prime-imp-sigma)
    also have ... = (2`(n+1) - 1)*(\mp@subsup{\mathbb{R}}{}{`}(n+1)) by(simp add: sigma-prime-power-two)
    finally show 2*(2`n*(2*2`n}-\mathrm{ Suc 0)) = sigma(2`n*(2*2`n}-Suc 0)) b
auto
qed
end
```


References

[Wie] Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/ \sim freek/100/.

