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Abstract

This document presents the formal proof of the Perfect Number
Theorem. The result can also be found as number 70 on the list of
“top 100 mathematical theorems” [Wie]. This document was produced
as result of a B.Sc. Thesis under supervision of Jaap Top and Wim H.
Hesselink (University of Groningen) in 2009.
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1 Basics needed
theory PerfectBasics
imports Main HOL−Computational-Algebra.Primes HOL−Algebra.Exponent
begin

lemma exp-is-max-div:
assumes m0 : m 6= 0 and p: prime p
shows ∼ p dvd (m div (p^(multiplicity p m)))

proof (rule ccontr)
assume ∼ ∼ p dvd (m div (p^(multiplicity p m)))
hence a:p dvd (m div (p^(multiplicity p m))) by auto
from m0 have p^(multiplicity p m) dvd m by (auto simp add: multiplicity-dvd)
with a have p^Suc (multiplicity p m) dvd m

by (subst (asm) dvd-div-iff-mult) auto
with m0 p show False

by (subst (asm) power-dvd-iff-le-multiplicity) auto
qed

lemma coprime-multiplicity:
assumes prime (p::nat) and m > 0
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shows coprime p (m div (p ^ multiplicity p m))
proof (rule ccontr)

assume ¬ coprime p (m div p ^ multiplicity p m)
with ‹prime p› have ∃ q. prime q ∧ q dvd p ∧ q dvd m div p ^ multiplicity p m

by (metis dvd-refl prime-imp-coprime)
with ‹prime p› have ∃ q. q = p ∧ q dvd m div p ^ multiplicity p m

by (metis not-prime-1 prime-nat-iff )
then have p dvd m div p ^ multiplicity p m

by auto
with assms show False

by (auto simp add: exp-is-max-div)
qed

theorem simplify-sum-of-powers: (x − 1 ::nat) ∗ (
∑

i=0 .. n . x^i) = x^(n + 1 )
− 1 (is ?l = ?r)
proof (cases)

assume n = 0
thus ?l = x^(n+1 ) − 1 by auto

next
assume n 6=0
hence n0 : n>0 by auto
have ?l = (x::nat)∗(

∑
i=0 .. n . x^i) − (

∑
i=0 .. n . x^i)

by (metis diff-mult-distrib nat-mult-1 )
also have ... = (

∑
i=0 .. n . x^(Suc i)) − (

∑
i=0 .. n . x^i)

by (simp add: sum-distrib-left)
also have ... = (

∑
i=Suc 0 .. Suc n . x^i) − (

∑
i=0 .. n . x^i)

by (metis sum.shift-bounds-cl-Suc-ivl)
also have ... = ((

∑
i=Suc 0 .. n. x^i)+x^(Suc n)) − (x^0 + (

∑
i=Suc 0 .. n.

x^i))
by (simp add: sum.union-disjoint diff-add-inverse sum.atLeast-Suc-atMost)

finally show ?thesis by auto
qed

end

2 Sum of divisors function
theory Sigma
imports PerfectBasics HOL−Library.Infinite-Set
begin

definition divisors :: nat ⇒ nat set where
divisors m ≡ {n . n dvd m}

abbreviation sigma :: nat ⇒ nat where
sigma m ≡

∑
(divisors(m))

lemma divisors-eq-dvd[iff ]: (a ∈ divisors(n)) ←→ (a dvd n)
by(simp add: divisors-def )
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lemma finite-divisors [simp]:
assumes n>0 shows finite (divisors n)

by (simp add: assms divisors-def )

lemma divs-of-zero-UNIV [simp]: divisors(0 ) = UNIV
by(auto simp add: divisors-def )

lemma sigma0 [simp]: sigma(0 ) = 0
by simp

lemma sigma1 [simp]: sigma(Suc 0 ) = 1
by (simp add: sum-eq-Suc0-iff )

lemma prime-divisors: prime p ←→ divisors p = {1 ,p} ∧ p>1
by (auto simp add: divisors-def prime-nat-iff )

lemma prime-imp-sigma: prime (p::nat) =⇒ sigma(p) = p+1
proof −

assume prime (p::nat)
hence p>1 ∧ divisors(p) = {1 ,p} by (simp add: prime-divisors)
hence p>1 ∧ sigma(p) =

∑
{1 ,p} by (auto simp only: divisors-def )

thus sigma(p) = p+1 by simp
qed

lemma sigma-third-divisor :
assumes 1 < a a < n a dvd n
shows 1+a+n ≤ sigma(n)

proof −
from assms have {1 ,a,n} ≤ divisors n

by auto
hence

∑
{1 ,a,n} ≤ sigma n

by (meson ‹a < n› finite-divisors order .strict-trans1 sum-mono2 zero-le)
with assms show ?thesis by auto

qed

proposition prime-iff-sigma: prime n ←→ sigma(n) = Suc n
proof

assume L: sigma(n) = Suc n
then have n > 1

using less-linear sigma1 by fastforce
moreover
have m = Suc 0 if m dvd n m 6= n for m
proof −

have 0 < m
using that by auto

then have ¬ 1 + m + n ≤ 1 + n
by linarith

then show ?thesis
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using sigma-third-divisor [of m]
by (metis L One-nat-def Suc-lessD Suc-lessI ‹n > 1 › dvd-imp-le ‹0 < m›

less-le plus-1-eq-Suc that)
qed
then have divisors n = {n,1}

by (auto simp: divisors-def )
ultimately show prime n

by (simp add: insert-commute prime-divisors)
qed (use prime-divisors in auto)

lemma dvd-prime-power-iff :
fixes p::nat
assumes prime: prime p
shows {d. d dvd p^n} = (λk. p^k) ‘ {0 ..n}
using divides-primepow-nat prime by (auto simp add: le-imp-power-dvd)

lemma rewrite-sum-of-powers:
assumes p: (p::nat)>1
shows

∑
((^) p ‘ {0 ..n}) = (

∑
i = 0 .. n . p^i) (is ?l = ?r)

by (metis inj-on-def p power-inject-exp sum.reindex-cong)

lemma sum-of-powers-int: (x − 1 ::int) ∗ (
∑

i=0 ..n . x^i) = x ^ Suc n − 1
by (metis atLeast0AtMost lessThan-Suc-atMost power-diff-1-eq)

lemma sum-of-powers-nat: (x − 1 ::nat) ∗ (
∑

i=0 ..n . x^i) = x ^ Suc n − 1
(is ?l = ?r)

proof (cases x = 0 )
case False
then have int ((x − 1 ) ∗ sum ((^) x) {0 ..n}) = int (x ^ Suc n − 1 )

using sum-of-powers-int [of int x n] by (simp add: of-nat-diff )
then show ?thesis

using of-nat-eq-iff by blast
qed auto

theorem sigma-primepower :
assumes prime p
shows (p − 1 ) ∗ sigma(p^e) = p^(e+1 ) − 1

proof −
have sigma(p^e) = (

∑
i=0 ..e . p^i)

using assms divisors-def dvd-prime-power-iff prime-nat-iff rewrite-sum-of-powers
by auto

thus (p − 1 )∗sigma(p^e) = p^(e+1 ) − 1
using sum-of-powers-nat by auto

qed

proposition sigma-prime-power-two: sigma(2^n) = 2^(n+1 ) − 1
proof −

have (2 − 1 ) ∗ sigma(2^n) = 2^(n+1 ) − 1
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by (auto simp only: sigma-primepower two-is-prime-nat)
thus ?thesis by simp

qed

lemma prodsums-eq-sumprods:
fixes p :: nat and m :: nat
assumes coprime p m
shows

∑
((λk. p^k) ‘ {0 ..n}) ∗ sigma m =

∑
{p^k ∗ b |k b. k ≤ n ∧ b dvd m}

(is ?lhs = ?rhs)
proof −

have coprime p x if x dvd m for x
using assms by (rule coprime-imp-coprime) (auto intro: dvd-trans that)

then have coprime (p ^ f ) x if x dvd m for x f
using that by simp

then have ?lhs =
∑
{a ∗ b |a b. (∃ f . a = p ^ f ∧ f ≤ n) ∧ b dvd m}

apply (subst sum-mult-sum-if-inj [OF mult-inj-if-coprime-nat])
apply (force intro!: sum.cong)+

done
also have ... = ?rhs

by (blast intro: sum.cong)
finally show ?thesis .

qed

lemma div-decomp-comp:
fixes a::nat
shows coprime m n =⇒ a dvd m∗n ←→ (∃ b c. a = b ∗ c ∧ b dvd m ∧ c dvd n)

by (auto simp only: division-decomp mult-dvd-mono)

theorem sigma-semimultiplicative:
assumes p: prime p and cop: coprime p m
shows sigma (p^n) ∗ sigma m = sigma (p^n ∗ m) (is ?lhs = ?rhs)

proof −
from cop have cop2 : coprime (p^n) m

by simp
from p have ?lhs =

∑
((λf . p^f ) ‘ {0 ..n}) ∗ sigma m

using divisors-def dvd-prime-power-iff by auto
also from cop have ... = (

∑
{p^f ∗b| f b . f≤n ∧ b dvd m})

by (auto simp add: prodsums-eq-sumprods prime-nat-iff )
also have ... = (

∑
{a∗b| a b . a dvd (p^n) ∧ b dvd m})

by (metis (no-types, opaque-lifting) le-imp-power-dvd divides-primepow-nat p)
also have . . . =

∑
{c. c dvd (p^n∗m)}

using cop2 div-decomp-comp by auto
finally show ?thesis

by (simp add: divisors-def )
qed

end
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3 Perfect Number Theorem
theory Perfect
imports Sigma
begin

definition perfect :: nat => bool where
perfect m ≡ m>0 ∧ 2∗m = sigma m

theorem perfect-number-theorem:
assumes even: even m and perfect: perfect m
shows ∃ n . m = 2^n∗(2^(n+1 ) − 1 ) ∧ prime ((2 ::nat)^(n+1 ) − 1 )

proof
from perfect have m0 : m>0 by (auto simp add: perfect-def )

let ?n = multiplicity 2 m
let ?A = m div 2^?n
let ?np = (2 ::nat)^(?n+1 ) − 1

from even m0 have n1 : ?n >= 1 by (simp add: multiplicity-geI )

have 2^?n dvd m by (rule multiplicity-dvd)
hence m = 2^?n∗?A by (simp only: dvd-mult-div-cancel)
with m0 have mdef : m=2^?n∗?A ∧ coprime 2 ?A

using multiplicity-decompose [of m 2 ] by simp
moreover with m0 have a0 : ?A>0 by (metis nat-0-less-mult-iff )
moreover
{ from perfect have 2∗m=sigma(m) by (simp add: perfect-def )

with mdef have 2^(?n+1 )∗?A=sigma(2^?n∗?A) by auto
} ultimately have 2^(?n+1 )∗?A=sigma(2^?n)∗sigma(?A)

by (simp add: sigma-semimultiplicative)
hence formula: 2^(?n+1 )∗?A=(?np)∗sigma(?A)

by (simp only: sigma-prime-power-two)

from n1 have (2 ::nat)^(?n+1 ) >= 2^2 by (simp only: power-increasing)
hence nplarger : ?np>= 3 by auto

let ?B = ?A div ?np

from formula have ?np dvd ?A ∗ 2^(?n+1 )
by (auto simp add: ac-simps)

then have ?np dvd ?A
using coprime-diff-one-left-nat [of 2 ^ (multiplicity 2 m + 1 )]
by (auto simp add: coprime-dvd-mult-left-iff )

then have bdef : ?np∗?B = ?A
by simp

with a0 have b0 : ?B>0 by (metis gr0I mult-is-0 )

from nplarger a0 have bsmallera: ?B < ?A by auto
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have ?B = 1
proof (rule ccontr)

assume ?B 6= 1
with b0 bsmallera have 1<?B ?B<?A by auto
moreover from bdef have ?B : divisors ?A

by (metis divisors-eq-dvd dvd-triv-right)
ultimately have 1+?B+?A ≤ sigma ?A

using sigma-third-divisor by blast
with nplarger have ?np∗(1+?A+?B) ≤ ?np∗(sigma ?A)

by (auto simp only: nat-mult-le-cancel1 )
with bdef have ?np+?A∗?np + ?A∗1 ≤ ?np∗(sigma ?A)

by (simp add: mult.commute distrib-left)
hence ?np+?A∗(?np + 1 ) ≤ ?np∗(sigma ?A) by (simp only:add-mult-distrib2 )
with nplarger have 2^(?n+1 )∗?A < ?np∗(sigma ?A) by(simp add:mult.commute)
with formula show False by auto

qed

with bdef have adef : ?A=?np by auto
with formula have ?np∗2^(?n+1 ) = ?np ∗ sigma(?A) by auto
with nplarger adef have ?A + 1=sigma(?A) by auto
with a0 have prime ?A

by (simp add: prime-iff-sigma)
with mdef adef show m = 2^?n ∗ ?np ∧ prime ?np by simp

qed

theorem Euclid-book9-prop36 :
assumes p: prime (2^(n+1 ) − (1 ::nat))
shows perfect (2 ^ n ∗ (2 ^ (n + 1 ) − 1 ))
unfolding perfect-def

proof (intro conjI ; simp)
from assms show 2 ∗ 2^n > Suc 0 by (auto simp add: prime-nat-iff )

next
have 2 6= ((2 ::nat)^(n+1 ) − 1 ) by simp arith
then have coprime (2 ::nat) (2^(n+1 ) − 1 )

by (metis p primes-coprime-nat two-is-prime-nat)
moreover with p have 2^(n+1 ) − 1 > (0 ::nat)

by (auto simp add: prime-nat-iff )
ultimately have sigma (2^n∗(2^(n+1 ) − 1 )) = (sigma(2^n))∗(sigma(2^(n+1 )
− 1 ))

by (metis sigma-semimultiplicative two-is-prime-nat)
also from assms have ... = (sigma(2^(n)))∗(2^(n+1 ))

by (auto simp add: prime-imp-sigma)
also have ... = (2^(n+1 ) − 1 )∗(2^(n+1 )) by(simp add: sigma-prime-power-two)
finally show 2∗(2^n ∗ (2∗2^n − Suc 0 )) = sigma(2^n∗(2∗2^n − Suc 0 )) by

auto
qed

end
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