
Pell’s Equation

Manuel Eberl

March 17, 2025

Abstract

This article gives the basic theory of Pell’s equation x2 = 1+Dy2,
where D ∈ N is a parameter and x, y are integer variables.

The main result that is proven is the following: If D is not a perfect
square, then there exists a fundamental solution (x0, y0) that is not
the trivial solution (1, 0) and which generates all other solutions (x, y)
in the sense that there exists some n ∈ N such that |x| + |y|

√
D =

(x0 + y0
√
D)n. This also implies that the set of solutions is infinite,

and it gives us an explicit and executable characterisation of all the
solutions.

Based on this, simple executable algorithms for computing the fun-
damental solution and the infinite sequence of all non-negative solu-
tions are also provided.

1

Contents
1 Efficient Algorithms for the Square Root on � 3

1.1 A Discrete Variant of Heron’s Algorithm 3
1.2 Square Testing . 5

2 Pell’s equation 9
2.1 Preliminary facts . 9
2.2 The case of a perfect square 11
2.3 Existence of a non-trivial solution 12
2.4 Definition of solutions . 18
2.5 The Pell valuation function 20
2.6 Linear ordering of solutions 21
2.7 The fundamental solution . 23
2.8 Group structure on solutions 24
2.9 The different regions of the valuation function 29
2.10 Generating property of the fundamental solution 30
2.11 The case of an “almost square” parameter 34
2.12 Alternative presentation of the main results 34
2.13 Executable code . 35

2.13.1 Efficient computation of powers by squaring 36
2.13.2 Multiplication and powers of solutions 36
2.13.3 Finding the fundamental solution 37
2.13.4 The infinite list of all solutions 40
2.13.5 Computing the n-th solution 40
2.13.6 Tests . 40

2

theory Efficient-Discrete-Sqrt
imports

Complex-Main
HOL−Computational-Algebra.Computational-Algebra
HOL−Library.Discrete-Functions
HOL−Library.Tree
HOL−Library.IArray

begin

1 Efficient Algorithms for the Square Root on �
1.1 A Discrete Variant of Heron’s Algorithm

An algorithm for calculating the discrete square root, taken from Cohen [2].
This algorithm is essentially a discretised variant of Heron’s method or New-
ton’s method specialised to the square root function.
lemma sqrt-eq-floor-sqrt: floor-sqrt n = nat bsqrt nc
proof −

have real ((nat bsqrt nc)2) = (real (nat bsqrt nc))2
by simp

also have . . . ≤ sqrt (real n) ^ 2
by (intro power-mono) auto

also have . . . = real n by simp
finally have (nat bsqrt nc)2 ≤ n

by (simp only: of-nat-le-iff)
moreover have n < (Suc (nat bsqrt nc))2 proof −

have (1 + bsqrt nc)2 > n
using floor-correct[of sqrt n] real-le-rsqrt[of 1 + bsqrt nc n]

of-int-less-iff [of n (1 + bsqrt nc)2] not-le
by fastforce

then show ?thesis
using le-nat-floor [of Suc (nat bsqrt nc) sqrt n]

of-nat-le-iff [of (Suc (nat bsqrt nc))2 n] real-le-rsqrt[of - n] not-le
by fastforce

qed
ultimately show ?thesis using floor-sqrt-unique by fast

qed

fun newton-sqrt-aux :: nat ⇒ nat ⇒ nat where
newton-sqrt-aux x n =

(let y = (x + n div x) div 2
in if y < x then newton-sqrt-aux y n else x)

declare newton-sqrt-aux.simps [simp del]

lemma newton-sqrt-aux-simps:
(x + n div x) div 2 < x =⇒ newton-sqrt-aux x n = newton-sqrt-aux ((x + n div

3

x) div 2) n
(x + n div x) div 2 ≥ x =⇒ newton-sqrt-aux x n = x
by (subst newton-sqrt-aux.simps; simp add: Let-def)+

lemma heron-step-real: [[t > 0 ; n ≥ 0]] =⇒ (t + n/t) / 2 ≥ sqrt n
using arith-geo-mean-sqrt[of t n/t] by simp

lemma heron-step-div-eq-floored:
(t::nat) > 0 =⇒ (t + (n::nat) div t) div 2 = nat b(t + n/t) / 2 c

proof −
assume t > 0
then have b(t + n/t) / 2 c = b(t∗t + n) / (2∗t)c

by (simp add: mult-divide-mult-cancel-right[of t t + n/t 2 , symmetric]
algebra-simps)

also have . . . = (t∗t + n) div (2∗t)
using floor-divide-of-nat-eq by blast

also have . . . = (t∗t + n) div t div 2
by (simp add: div-mult2-eq ac-simps)

also have . . . = (t + n div t) div 2
by (simp add: ‹0 < t› power2-eq-square)

finally show ?thesis by simp
qed

lemma heron-step: t > 0 =⇒ (t + n div t) div 2 ≥ floor-sqrt n
proof −

assume t > 0
have floor-sqrt n = nat bsqrt nc by (rule sqrt-eq-floor-sqrt)
also have . . . ≤ nat b(t + n/t) / 2 c

using heron-step-real[of t n] ‹t > 0 › by linarith
also have . . . = (t + n div t) div 2

using heron-step-div-eq-floored[OF ‹t > 0 ›] by simp
finally show ?thesis .

qed

lemma newton-sqrt-aux-correct:
assumes x ≥ floor-sqrt n
shows newton-sqrt-aux x n = floor-sqrt n
using assms

proof (induction x n rule: newton-sqrt-aux.induct)
case (1 x n)
show ?case
proof (cases x = floor-sqrt n)

case True
then have (x ^ 2) div x ≤ n div x by (intro div-le-mono) simp-all
also have (x ^ 2) div x = x by (simp add: power2-eq-square)
finally have (x + n div x) div 2 ≥ x by linarith
with True show ?thesis by (auto simp: newton-sqrt-aux-simps)

next
case False

4

with 1 .prems have x-gt-sqrt: x > floor-sqrt n by auto
with le-floor-sqrt-iff [of x n] have n < x ^ 2 by simp
have x ∗ (n div x) ≤ n using mult-div-mod-eq[of x n] by linarith
also have . . . < x ^ 2 using le-floor-sqrt-iff [of x n] and x-gt-sqrt by simp
also have . . . = x ∗ x by (simp add: power2-eq-square)
finally have n div x < x by (subst (asm) mult-less-cancel1) auto
then have step-decreasing: (x + n div x) div 2 < x by linarith
with x-gt-sqrt have step-ge-sqrt: (x + n div x) div 2 ≥ floor-sqrt n

by (simp add: heron-step)
from step-decreasing have newton-sqrt-aux x n = newton-sqrt-aux ((x + n div

x) div 2) n
by (simp add: newton-sqrt-aux-simps)

also have . . . = floor-sqrt n
by (intro 1 .IH step-decreasing step-ge-sqrt) simp-all

finally show ?thesis .
qed

qed

definition newton-sqrt :: nat ⇒ nat where
newton-sqrt n = newton-sqrt-aux n n

declare floor-sqrt-code [code del]

theorem Discrete-sqrt-eq-newton-sqrt [code]: floor-sqrt n = newton-sqrt n
unfolding newton-sqrt-def by (simp add: newton-sqrt-aux-correct floor-sqrt-le)

1.2 Square Testing

Next, we implement an algorithm to determine whether a given natural
number is a perfect square, as described by Cohen [2]. Essentially, the
number first determines whether the number is a square. Essentially
definition q11 :: nat set

where q11 = {0 , 1 , 3 , 4 , 5 , 9}
definition q63 :: nat set

where q63 = {0 , 1 , 4 , 7 , 9 , 16 , 28 , 18 , 22 , 25 , 36 , 58 , 46 , 49 , 37 , 43}
definition q64 :: nat set

where q64 = {0 , 1 , 4 , 9 , 16 , 17 , 25 , 36 , 33 , 49 , 41 , 57}
definition q65 :: nat set

where q65 = {0 , 1 , 4 , 10 , 14 , 9 , 16 , 26 , 30 , 25 , 29 , 40 , 56 , 36 , 49 , 61 , 35 ,
51 , 39 , 55 , 64}

definition q11-array where
q11-array = IArray [True,True,False,True,True,True,False,False,False,True,False]

definition q63-array where
q63-array = IArray [True,True,False,False,True,False,False,True,False,True,False,False,

False,False,False,False,True,False,True,False,False,False,True,False,False,True,False,
False,True,False,False,False,False,False,False,False,True,True,False,False,False,False,

5

False,True,False,False,True,False,False,True,False,False,False,False,False,False,False,
False,True,False,False,False,False,False]

definition q64-array where
q64-array = IArray [True,True,False,False,True,False,False,False,False,True,False,False,

False,False,False,False,True,True,False,False,False,False,False,False,False,True,False,
False,False,False,False,False,False,True,False,False,True,False,False,False,False,True,
False,False,False,False,False,False,False,True,False,False,False,False,False,False,
False,True,False,False,False,False,False,False, False]

definition q65-array where
q65-array = IArray [True,True,False,False,True,False,False,False,False,True,True,False,

False,False,True,False,True,False,False,False,False,False,False,False,False,True,True,
False,False,True,True,False,False,False,False,True,True,False,False,True,True,False,
False,False,False,False,False,False,False,True,False,True,False,False,False,True,True
,False,False,False,False,True,False,False,True,False]

lemma sub-q11-array: i ∈ {..<11} =⇒ IArray.sub q11-array i ←→ i ∈ q11
by (simp add: lessThan-nat-numeral lessThan-Suc q11-def q11-array-def , elim

disjE ; simp)

lemma sub-q63-array: i ∈ {..<63} =⇒ IArray.sub q63-array i ←→ i ∈ q63
by (simp add: lessThan-nat-numeral lessThan-Suc q63-def q63-array-def , elim

disjE ; simp)

lemma sub-q64-array: i ∈ {..<64} =⇒ IArray.sub q64-array i ←→ i ∈ q64
by (simp add: lessThan-nat-numeral lessThan-Suc q64-def q64-array-def , elim

disjE ; simp)

lemma sub-q65-array: i ∈ {..<65} =⇒ IArray.sub q65-array i ←→ i ∈ q65
by (simp add: lessThan-nat-numeral lessThan-Suc q65-def q65-array-def , elim

disjE ; simp)

lemma in-q11-code: x mod 11 ∈ q11 ←→ IArray.sub q11-array (x mod 11)
by (subst sub-q11-array) auto

lemma in-q63-code: x mod 63 ∈ q63 ←→ IArray.sub q63-array (x mod 63)
by (subst sub-q63-array) auto

lemma in-q64-code: x mod 64 ∈ q64 ←→ IArray.sub q64-array (x mod 64)
by (subst sub-q64-array) auto

lemma in-q65-code: x mod 65 ∈ q65 ←→ IArray.sub q65-array (x mod 65)
by (subst sub-q65-array) auto

definition square-test :: nat ⇒ bool where
square-test n =

6

(n mod 64 ∈ q64 ∧ (let r = n mod 45045 in
r mod 63 ∈ q63 ∧ r mod 65 ∈ q65 ∧ r mod 11 ∈ q11 ∧ n = (floor-sqrt n)2))

lemma square-test-code [code]:
square-test n =
(IArray.sub q64-array (n mod 64) ∧ (let r = n mod 45045 in

IArray.sub q63-array (r mod 63) ∧
IArray.sub q65-array (r mod 65) ∧
IArray.sub q11-array (r mod 11) ∧ n = (floor-sqrt n)2))

using in-q11-code [symmetric] in-q63-code [symmetric]
in-q64-code [symmetric] in-q65-code [symmetric]

by (simp add: Let-def square-test-def)

lemma square-mod-lower : m > 0 =⇒ (q2 :: nat) mod m = a =⇒ ∃ q ′ < m. q ′2

mod m = a
using mod-less-divisor mod-mod-trivial power-mod by blast

lemma q11-upto-def : q11 = (λk. k2 mod 11) ‘ {..<11}
by (simp add: q11-def lessThan-nat-numeral lessThan-Suc insert-commute)

lemma q11-infinite-def : q11 = (λk. k2 mod 11) ‘ {0 ..}
unfolding q11-upto-def image-def proof (auto, goal-cases)
case (1 xa)
show ?case

using square-mod-lower [of 11 xa xa2 mod 11]
ex-nat-less-eq[of 11 λx. xa2 mod 11 = x2 mod 11]

by auto
qed

lemma q63-upto-def : q63 = (λk. k2 mod 63) ‘ {..<63}
by (simp add: q63-def lessThan-nat-numeral lessThan-Suc insert-commute)

lemma q63-infinite-def : q63 = (λk. k2 mod 63) ‘ {0 ..}
unfolding q63-upto-def image-def proof (auto, goal-cases)
case (1 xa)
show ?case

using square-mod-lower [of 63 xa xa2 mod 63]
ex-nat-less-eq[of 63 λx. xa2 mod 63 = x2 mod 63]

by auto
qed

lemma q64-upto-def : q64 = (λk. k2 mod 64) ‘ {..<64}
by (simp add: q64-def lessThan-nat-numeral lessThan-Suc insert-commute)

lemma q64-infinite-def : q64 = (λk. k2 mod 64) ‘ {0 ..}
unfolding q64-upto-def image-def proof (auto, goal-cases)
case (1 xa)
show ?case

using square-mod-lower [of 64 xa xa2 mod 64]

7

ex-nat-less-eq[of 64 λx. xa2 mod 64 = x2 mod 64]
by auto

qed

lemma q65-upto-def : q65 = (λk. k2 mod 65) ‘ {..<65}
by (simp add: q65-def lessThan-nat-numeral lessThan-Suc insert-commute)

lemma q65-infinite-def : q65 = (λk. k2 mod 65) ‘ {0 ..}
unfolding q65-upto-def image-def proof (auto, goal-cases)
case (1 xa)
show ?case

using square-mod-lower [of 65 xa xa2 mod 65]
ex-nat-less-eq[of 65 λx. xa2 mod 65 = x2 mod 65]

by auto
qed

lemma square-mod-existence:
fixes n k :: nat
assumes ∃ q. q2 = n
shows ∃ q. n mod k = q2 mod k
using assms by auto

theorem square-test-correct: square-test n ←→ is-square n
proof cases

assume is-square n
hence rhs: ∃ q. q2 = n by (auto elim: is-nth-powerE)
note sq-mod = square-mod-existence[OF this]
have q64-member : n mod 64 ∈ q64 using sq-mod[of 64]

unfolding q64-infinite-def image-def by simp
let ?r = n mod 45045
have 11 dvd (45045 ::nat) 63 dvd (45045 ::nat) 65 dvd (45045 ::nat) by force+
then have mod-45045 : ?r mod 11 = n mod 11 ?r mod 63 = n mod 63 ?r mod

65 = n mod 65
using mod-mod-cancel[of - 45045 n] by presburger+

then have ?r mod 11 ∈ q11 ?r mod 63 ∈ q63 ?r mod 65 ∈ q65
using sq-mod[of 11] sq-mod[of 63] sq-mod[of 65]
unfolding q11-infinite-def q63-infinite-def q65-infinite-def image-def mod-45045
by fast+

then show ?thesis unfolding square-test-def Let-def using q64-member rhs by
auto
next

assume not-rhs: ¬is-square n
hence @ q. q2 = n by auto
then have (floor-sqrt n)2 6= n by simp
then show ?thesis unfolding square-test-def by (auto simp: is-nth-power-def)

qed

definition get-nat-sqrt :: nat ⇒ nat option

8

where get-nat-sqrt n = (if is-square n then Some (floor-sqrt n) else None)

lemma get-nat-sqrt-code [code]:
get-nat-sqrt n =
(if IArray.sub q64-array (n mod 64) ∧ (let r = n mod 45045 in

IArray.sub q63-array (r mod 63) ∧
IArray.sub q65-array (r mod 65) ∧
IArray.sub q11-array (r mod 11)) then

(let x = floor-sqrt n in if x2 = n then Some x else None) else None)
unfolding get-nat-sqrt-def square-test-correct [symmetric] square-test-def
using in-q11-code [symmetric] in-q63-code [symmetric]

in-q64-code [symmetric] in-q65-code [symmetric]
by (auto split: if-splits simp: Let-def)

end

2 Pell’s equation
theory Pell
imports

Complex-Main
HOL−Computational-Algebra.Computational-Algebra

begin

Pell’s equation has the general form x2 = 1 + Dy2 where D ∈ � is a pa-
rameter and x, y are �-valued variables. As we will see, that case where D
is a perfect square is trivial and therefore uninteresting; we will therefore
assume that D is not a perfect square for the most part.
Furthermore, it is obvious that the solutions to Pell’s equation are symmetric
around the origin in the sense that (x, y) is a solution iff (±x, ±y) is a
solution. We will therefore mostly look at solutions (x, y) where both x and
y are non-negative, since the remaining solutions are a trivial consequence
of these.
Information on the material treated in this formalisation can be found in
many textbooks and lecture notes, e. g. [3, 1].

2.1 Preliminary facts
lemma gcd-int-nonpos-iff [simp]: gcd x (y :: int) ≤ 0 ←→ x = 0 ∧ y = 0
proof

assume gcd x y ≤ 0
with gcd-ge-0-int[of x y] have gcd x y = 0 by linarith
thus x = 0 ∧ y = 0 by auto

qed auto

lemma minus-in-Ints-iff [simp]:
−x ∈ � ←→ x ∈ �

9

using Ints-minus[of x] Ints-minus[of −x] by auto

A (positive) square root of a natural number is either a natural number or
irrational.
lemma nonneg-sqrt-nat-or-irrat:

assumes x ^ 2 = real a and x ≥ 0
shows x ∈ � ∨ x /∈ �

proof safe
assume x /∈ � and x ∈ �
from Rats-abs-nat-div-natE [OF this(2)]

obtain p q :: nat where q-nz [simp]: q 6= 0 and abs x = p / q and coprime:
coprime p q .

with ‹x ≥ 0 › have x: x = p / q
by simp

with assms have real (q ^ 2) ∗ real a = real (p ^ 2)
by (simp add: field-simps)

also have real (q ^ 2) ∗ real a = real (q ^ 2 ∗ a)
by simp

finally have p ^ 2 = q ^ 2 ∗ a
by (subst (asm) of-nat-eq-iff) auto

hence q ^ 2 dvd p ^ 2
by simp

hence q dvd p
by simp

with coprime have q = 1
by auto

with x and ‹x /∈ �› show False
by simp

qed

A square root of a natural number is either an integer or irrational.
corollary sqrt-nat-or-irrat:

assumes x ^ 2 = real a
shows x ∈ � ∨ x /∈ �

proof (cases x ≥ 0)
case True
with nonneg-sqrt-nat-or-irrat[OF assms this]

show ?thesis by (auto simp: Nats-altdef2)
next

case False
from assms have (−x) ^ 2 = real a

by simp
moreover from False have −x ≥ 0

by simp
ultimately have −x ∈ � ∨ −x /∈ �

by (rule nonneg-sqrt-nat-or-irrat)
thus ?thesis

by (auto simp: Nats-altdef2)
qed

10

corollary sqrt-nat-or-irrat ′:
sqrt (real a) ∈ � ∨ sqrt (real a) /∈ �
using nonneg-sqrt-nat-or-irrat[of sqrt a a] by auto

The square root of a natural number n is again a natural number iff n is a
perfect square.
corollary sqrt-nat-iff-is-square:

sqrt (real n) ∈ � ←→ is-square n
proof

assume sqrt (real n) ∈ �
then obtain k where sqrt (real n) = real k by (auto elim!: Nats-cases)
hence sqrt (real n) ^ 2 = real (k ^ 2) by (simp only: of-nat-power)
also have sqrt (real n) ^ 2 = real n by simp
finally have n = k ^ 2 by (simp only: of-nat-eq-iff)
thus is-square n by blast

qed (auto elim!: is-nth-powerE)

corollary irrat-sqrt-nonsquare: ¬is-square n =⇒ sqrt (real n) /∈ �
using sqrt-nat-or-irrat ′[of n] by (auto simp: sqrt-nat-iff-is-square)

2.2 The case of a perfect square

As we have noted, the case where D is a perfect square is trivial: In fact, we
will show that the only solutions in this case are the trivial solutions (x, y)
= (±1 , 0) if D is a non-zero perfect square, or (±1 , y) for arbitrary y ∈ �
if D = 0.
context

fixes D :: nat
assumes square-D: is-square D

begin

lemma pell-square-solution-nat-aux:
fixes x y :: nat
assumes D > 0 and x ^ 2 = 1 + D ∗ y ^ 2
shows (x, y) = (1 , 0)

proof −
from assms have x-nz: x > 0 by (auto intro!: Nat.gr0I)
from square-D obtain d where [simp]: D = d2

by (auto elim: is-nth-powerE)
have int x ^ 2 = int (x ^ 2) by simp
also note assms(2)
also have int (1 + D ∗ y ^ 2) = 1 + int D ∗ int y ^ 2 by simp
finally have (int x + int d ∗ int y) ∗ (int x − int d ∗ int y) = 1

by (simp add: algebra-simps power2-eq-square)
hence ∗: int x + int d ∗ int y = 1 ∧ int x − int d ∗ int y = 1

using x-nz by (subst (asm) pos-zmult-eq-1-iff) (auto intro: add-pos-nonneg)
from ∗ have [simp]: x = 1 by simp

11

moreover from ∗ and assms(1) have y = 0 by auto
ultimately show ?thesis by simp

qed

lemma pell-square-solution-int-aux:
fixes x y :: int
assumes D > 0 and x ^ 2 = 1 + D ∗ y ^ 2
shows x ∈ {−1 , 1} ∧ y = 0

proof −
define x ′ y ′ where x ′ = nat |x| and y ′ = nat |y|
have x: x = sgn x ∗ x ′ and y: y = sgn y ∗ y ′

by (auto simp: sgn-if x ′-def y ′-def)
have zero-iff : x = 0 ←→ x ′ = 0 y = 0 ←→ y ′ = 0

by (auto simp: x ′-def y ′-def)
note assms(2)
also have x ^ 2 = int (x ′ ^ 2)

by (subst x) (auto simp: sgn-if zero-iff)
also have 1 + D ∗ y ^ 2 = int (1 + D ∗ y ′ ^ 2)

by (subst y) (auto simp: sgn-if zero-iff)
also note of-nat-eq-iff
finally have x ′2 = 1 + D ∗ y ′2 .
from ‹D > 0 › and this have (x ′, y ′) = (1 , 0)

by (rule pell-square-solution-nat-aux)
thus ?thesis by (auto simp: x ′-def y ′-def)

qed

lemma pell-square-solution-nat-iff :
fixes x y :: nat
shows x ^ 2 = 1 + D ∗ y ^ 2 ←→ x = 1 ∧ (D = 0 ∨ y = 0)
using pell-square-solution-nat-aux[of x y] by (cases D = 0) auto

lemma pell-square-solution-int-iff :
fixes x y :: int
shows x ^ 2 = 1 + D ∗ y ^ 2 ←→ x ∈ {−1 , 1} ∧ (D = 0 ∨ y = 0)
using pell-square-solution-int-aux[of x y] by (cases D = 0) (auto simp: power2-eq-1-iff)

end

2.3 Existence of a non-trivial solution

Let us now turn to the case where D is not a perfect square.
We first show that Pell’s equation always has at least one non-trivial solution
(apart from the trivial solution (1 , 0)). For this, we first need a lemma about
the existence of rational approximations of real numbers.
The following lemma states that for any positive integer s and real number
x, we can find a rational approximation t / u to x with an error of most 1
/ (u ∗ s) where the denominator u is at most s.
lemma pell-approximation-lemma:

12

fixes s :: nat and x :: real
assumes s: s > 0
shows ∃ u::nat. ∃ t::int. u > 0 ∧ coprime u t ∧ 1 / s ∈ {|t − u ∗ x|<..1 / u}

proof −
define f where f = (λu. du ∗ xe)
define g :: nat ⇒ int where g = (λu. bfrac (u ∗ x) ∗ sc)
{

fix u :: nat assume u: u ≤ s
hence frac (u ∗ x) ∗ real s < 1 ∗ real s

using s by (intro mult-strict-right-mono) (auto simp: frac-lt-1)
hence g u < int s by (auto simp: floor-less-iff g-def)

}
hence g ‘ {..s} ⊆ {0 ..<s}

by (auto simp: g-def floor-less-iff)
hence card (g ‘ {..s}) ≤ card {0 ..<int s}

by (intro card-mono) auto
also have . . . < card {..s} by simp
finally have ¬inj-on g {..s} by (rule pigeonhole)
then obtain a b where ab: a ≤ s b ≤ s a 6= b g a = g b

by (auto simp: inj-on-def)
define u1 and u2 where u1 = max a b and u2 = min a b
have u12 : u1 ≤ s u2 ≤ s u2 < u1 g u1 = g u2

using ab by (auto simp: u1-def u2-def)

define u t where u = u1 − u2 and t = bu1 ∗ xc − bu2 ∗ xc
have u: u > 0 |u| ≤ s

using u12 by (simp-all add: u-def)

from ‹g u1 = g u2 › have |frac (u2 ∗ x) ∗ s − frac (u1 ∗ x) ∗ s| < 1
unfolding g-def by linarith

also have |frac (u2 ∗ x) ∗ s − frac (u1 ∗ x) ∗ s| =
|real s| ∗ |frac (u2 ∗ x) − frac (u1 ∗ x)|

by (subst abs-mult [symmetric]) (simp add: algebra-simps)
finally have |t − u ∗ x| ∗ s < 1 using ‹u1 > u2 ›

by (simp add: g-def u-def t-def frac-def algebra-simps of-nat-diff)
with ‹s > 0 › have less: |t − u ∗ x| < 1 / s by (simp add: divide-simps)

define d where d = gcd (nat |t|) u
define t ′ :: int and u ′ :: nat where t ′= t div d and u ′ = u div d
from u have d 6= 0

by (intro notI) (auto simp: d-def)
have int (gcd (nat |t|) u) = gcd |t| (int u)

by simp
hence t ′-u ′: t = t ′ ∗ d u = u ′ ∗ d

by (auto simp: t ′-def u ′-def d-def nat-dvd-iff)

from ‹d 6= 0 › have |t ′ − u ′ ∗ x| ∗ 1 ≤ |t ′ − u ′ ∗ x| ∗ |real d|
by (intro mult-left-mono) auto

also have . . . = |t − u ∗ x| by (subst abs-mult [symmetric]) (simp add: alge-

13

bra-simps t ′-u ′)
also note less
finally have |t ′ − u ′ ∗ x| < 1 / s by simp
moreover {

from ‹s > 0 › and u have 1 / s ≤ 1 / u
by (simp add: divide-simps u-def)

also have . . . = 1 / u ′ / d by (simp add: t ′-u ′ divide-simps)
also have . . . ≤ 1 / u ′ / 1 using ‹d 6= 0 › by (intro divide-left-mono) auto
finally have 1 / s ≤ 1 / u ′ by simp

}
ultimately have 1 / s ∈ {|t ′ − u ′ ∗ x|<..1 / u ′} by auto
moreover from ‹u > 0 › have u ′ > 0 by (auto simp: t ′-u ′)
moreover {

have gcd u t = gcd t ′ u ′ ∗ int d
by (simp add: t ′-u ′ gcd-mult-right gcd.commute)

also have int d = gcd u t
by (simp add: d-def gcd.commute)

finally have gcd u ′ t ′ = 1 using u by (simp add: gcd.commute)
}
ultimately show ?thesis by blast

qed

As a simple corollary of this, we can show that for irrational x, there is an
infinite number of rational approximations t / u to x whose error is less that
1 / u2.
corollary pell-approximation-corollary:

fixes x :: real
assumes x /∈ �
shows infinite {(t :: int, u :: nat). u > 0 ∧ coprime u t ∧ |t − u ∗ x| < 1 / u}
(is infinite ?A)

proof
assume fin: finite ?A
let ?f = λ(t :: int, u :: nat). |t − u ∗ x|
from fin have fin ′: finite (insert 1 (?f ‘ ?A)) by blast
have Min (insert 1 (?f ‘ ?A)) > 0
proof (subst Min-gr-iff)

have a 6= b ∗ x if b > 0 for a :: int and b :: nat
proof

assume a = b ∗ x
with ‹b > 0 › have x = a / b by (simp add: field-simps)
with ‹x /∈ �› and ‹b > 0 › show False by (auto simp: Rats-eq-int-div-nat)

qed
thus ∀ x∈insert 1 (?f ‘ ?A). x > 0 by auto

qed (insert fin ′, simp-all)
also note real-arch-inverse
finally obtain M :: nat where M : M 6= 0 inverse M < Min (insert 1 (?f ‘ ?A))

by blast
hence M > 0 by simp

14

from pell-approximation-lemma[OF this, of x] obtain u :: nat and t :: int
where ut: u > 0 coprime u t 1 / real M ∈ {?f (t, u)<..1 / u} by auto

from ut have ?f (t, u) < 1 / real M by simp
also from M have . . . < Min (insert 1 (?f ‘ ?A))

by (simp add: divide-simps)
also from ut have Min (insert 1 (?f ‘ ?A)) ≤ ?f (t, u)

by (intro Min.coboundedI fin ′) auto
finally show False by simp

qed

locale pell =
fixes D :: nat
assumes nonsquare-D: ¬is-square D

begin

lemma D-gt-1 : D > 1
proof −

from nonsquare-D have D 6= 0 D 6= 1 by (auto intro!: Nat.gr0I)
thus ?thesis by simp

qed

lemma D-pos: D > 0
using nonsquare-D by (intro Nat.gr0I) auto

With the above corollary, we can show the existence of a non-trivial solution.
We restrict our attention to solutions (x, y) where both x and y are non-
negative.
theorem pell-solution-exists: ∃ (x::nat) (y::nat). y 6= 0 ∧ x2 = 1 + D ∗ y2

proof −
define S where S = {(t :: int, u :: nat). u > 0 ∧ coprime u t ∧ |t − u ∗ sqrt

D| < 1 / u}
let ?f = λ(t :: int, u :: nat). t2 − u2 ∗ D
define M where M = b1 + 2 ∗ sqrt Dc
have infinite: ¬finite S unfolding S-def

by (intro pell-approximation-corollary irrat-sqrt-nonsquare nonsquare-D)

have subset: ?f ‘ S ⊆ {−M ..M}
proof safe

fix u :: nat and t :: int
assume tu: (t, u) ∈ S
from tu have [simp]: u > 0 by (auto simp: S-def)
have |t + u ∗ sqrt D| = |t − u ∗ sqrt D + 2 ∗ u ∗ sqrt D| by simp
also have . . . ≤ |t − u ∗ sqrt D| + |2 ∗ u ∗ sqrt D|

by (rule abs-triangle-ineq)
also have |2 ∗ u ∗ sqrt D| = 2 ∗ u ∗ sqrt D by simp
also have |t − u ∗ sqrt D| ≤ 1 / u

using tu by (simp add: S-def)
finally have le: |t + u ∗ sqrt D| ≤ 1 / u + 2 ∗ u ∗ sqrt D by simp

15

have |t2 − u2 ∗ D| = |t − u ∗ sqrt D| ∗ |t + u ∗ sqrt D|
by (subst abs-mult [symmetric]) (simp add: algebra-simps power2-eq-square)

also have . . . ≤ 1 / u ∗ (1 / u + 2 ∗ u ∗ sqrt D)
using tu by (intro mult-mono le) (auto simp: S-def)

also have . . . = 1 / real u ^ 2 + 2 ∗ sqrt D
by (simp add: algebra-simps power2-eq-square)

also from ‹u > 0 › have real u ≥ 1 by linarith
hence 1 / real u ^ 2 ≤ 1 / 1 ^ 2

by (intro divide-left-mono power-mono) auto
finally have |t2 − u2 ∗ D| ≤ 1 + 2 ∗ sqrt D by simp
hence t2 − u2 ∗ D ≥ −M t2 − u2 ∗ D ≤ M unfolding M-def by linarith+
thus t2 − u2 ∗ D ∈ {−M ..M} by simp

qed
hence fin: finite (?f ‘ S) by (rule finite-subset) auto

from pigeonhole-infinite[OF infinite fin]
obtain z where z: z ∈ S infinite {z ′ ∈ S . ?f z ′ = ?f z} by blast

define k where k = ?f z
with subset and z have k: k ∈ {−M ..M} infinite {z∈S . ?f z = k}

by (auto simp: k-def)

have k-nz: k 6= 0
proof

assume [simp]: k = 0
note k(2)
also have ?f z 6= 0 if z ∈ S for z
proof

assume ∗: ?f z = 0
obtain t u where [simp]: z = (t, u) by (cases z)
from ∗ have t ^ 2 = int u ^ 2 ∗ int D by simp
hence int u ^ 2 dvd t ^ 2 by simp
hence int u dvd t by simp
then obtain k where [simp]: t = int u ∗ k by (auto elim!: dvdE)
from ∗ and ‹z ∈ S› have k ^ 2 = int D

by (auto simp: power-mult-distrib S-def)
also have k ^ 2 = int (nat |k| ^ 2) by simp
finally have D = nat |k| ^ 2 by (simp only: of-nat-eq-iff)
hence is-square D by auto
with nonsquare-D show False by contradiction

qed
hence {z∈S . ?f z = k} = {} by auto
finally show False by simp

qed

let ?h = λ(t :: int, u :: nat). (t mod (abs k), u mod (abs k))
have ?h ‘ {z∈S . ?f z = k} ⊆ {0 ..<abs k} × {0 ..< abs k}

using k-nz by (auto simp: case-prod-unfold)
hence finite (?h ‘ {z∈S . ?f z = k}) by (rule finite-subset) auto

16

from pigeonhole-infinite[OF k(2) this] obtain z ′

where z ′: z ′ ∈ S ?f z ′ = k infinite {z ′′∈{z∈S . ?f z = k}. ?h z ′′ = ?h z ′}
by blast

define l1 and l2 where l1 = fst (?h z ′) and l2 = snd (?h z ′)
define S ′ where S ′ = {(t,u) ∈ S . ?f (t,u) = k ∧ t mod abs k = l1 ∧ u mod abs

k = l2}
note z ′(3)
also have {z ′′∈{z∈S . ?f z = k}. ?h z ′′ = ?h z ′} = S ′

by (auto simp: l1-def l2-def case-prod-unfold S ′-def)
finally have infinite: infinite S ′ .

from z ′(1) and k-nz have l12 : l1 ∈ {0 ..<abs k} l2 ∈ {0 ..<abs k}
by (auto simp: l1-def l2-def case-prod-unfold)

from infinite-arbitrarily-large[OF infinite]
obtain X where X : finite X card X = 2 X ⊆ S ′ by blast
from finite-distinct-list[OF this(1)] obtain xs where xs: set xs = X distinct xs

by blast
with X have length xs = 2 using distinct-card[of xs] by simp
then obtain z1 z2 where [simp]: xs = [z1 , z2]

by (auto simp: length-Suc-conv eval-nat-numeral)
from X xs have S ′: z1 ∈ S ′ z2 ∈ S ′ and neq: z1 6= z2 by auto
define t1 u1 t2 u2 where t1 = fst z1 and u1 = snd z1 and t2 = fst z2 and

u2 = snd z2
have [simp]: z1 = (t1 , u1) z2 = (t2 , u2)

by (simp-all add: t1-def u1-def t2-def u2-def)

from S ′ have ∗ [simp]: t1 mod abs k = l1 t2 mod abs k = l1 u1 mod abs k = l2
u2 mod abs k = l2

by (simp-all add: S ′-def)
define x where x = (t1 ∗ t2 − D ∗ u1 ∗ u2) div k
define y where y = (t1 ∗ u2 − t2 ∗ u1) div k

from S ′ have (t1 2 − u1 2 ∗ D) = k (t2 2 − u2 2 ∗ D) = k
by (auto simp: S ′-def)

hence (t1 2 − u1 2 ∗ D) ∗ (t2 2 − u2 2 ∗ D) = k ^ 2
unfolding power2-eq-square by simp

also have (t1 2 − u1 2 ∗ D) ∗ (t2 2 − u2 2 ∗ D) =
(t1 ∗ t2 − D ∗ u1 ∗ u2) ^ 2 − D ∗ (t1 ∗ u2 − t2 ∗ u1) ^ 2

by (simp add: power2-eq-square algebra-simps)
finally have eq: (t1 ∗ t2 − D ∗ u1 ∗ u2)2 − D ∗ (t1 ∗ u2 − t2 ∗ u1)2 = k2 .

have (t1 ∗ u2 − t2 ∗ u1) mod abs k = (l1 ∗ l2 − l1 ∗ l2) mod abs k
using l12 by (intro mod-diff-cong mod-mult-cong) (auto simp: mod-pos-pos-trivial)

hence dvd1 : k dvd t1 ∗ u2 − t2 ∗ u1 by (simp add: mod-eq-0-iff-dvd)

have k2 dvd k2 + D ∗ (t1 ∗ u2 − t2 ∗ u1)2
using dvd1 by (intro dvd-add) auto

also from eq have . . . = (t1 ∗ t2 − D ∗ u1 ∗ u2)2

17

by (simp add: algebra-simps)
finally have dvd2 : k dvd t1 ∗ t2 − D ∗ u1 ∗ u2

by simp

note eq
also from dvd2 have t1 ∗ t2 − D ∗ u1 ∗ u2 = k ∗ x

by (simp add: x-def)
also from dvd1 have t1 ∗ u2 − t2 ∗ u1 = k ∗ y

by (simp add: y-def)
also have (k ∗ x)2 − D ∗ (k ∗ y)2 = k2 ∗ (x2 − D ∗ y2)

by (simp add: power-mult-distrib algebra-simps)
finally have eq ′: x2 − D ∗ y2 = 1

using k-nz by simp
hence x2 = 1 + D ∗ y2 by simp
also have x2 = int (nat |x| ^ 2) by simp
also have 1 + D ∗ y2 = int (1 + D ∗ nat |y| ^ 2) by simp
also note of-nat-eq-iff
finally have eq ′′: (nat |x|)2 = 1 + D ∗ (nat |y|)2 .

have t1 ∗ u2 6= t2 ∗ u1
proof

assume ∗: t1 ∗ u2 = t2 ∗ u1
hence |t1 | ∗ |u2 | = |t2 | ∗ |u1 | by (simp only: abs-mult [symmetric])
moreover from S ′ have coprime u1 t1 coprime u2 t2

by (auto simp: S ′-def S-def)
ultimately have eq: |t1 | = |t2 | ∧ u1 = u2
by (subst (asm) coprime-crossproduct-int) (auto simp: S ′-def S-def gcd.commute

coprime-commute)
moreover from S ′ have u1 6= 0 u2 6= 0 by (auto simp: S ′-def S-def)
ultimately have t1 = t2 using ∗ by auto
with eq and neq show False by auto

qed
with dvd1 have y 6= 0

by (auto simp add: y-def dvd-div-eq-0-iff)
hence nat |y| 6= 0 by auto
with eq ′′ show ∃ x y. y 6= 0 ∧ x2 = 1 + D ∗ y2 by blast

qed

2.4 Definition of solutions

We define some abbreviations for the concepts of a solution and a non-trivial
solution.
definition solution :: (′a × ′a :: comm-semiring-1) ⇒ bool where

solution = (λ(a, b). a2 = 1 + of-nat D ∗ b2)

definition nontriv-solution :: (′a × ′a :: comm-semiring-1) ⇒ bool where
nontriv-solution = (λ(a, b). (a, b) 6= (1 , 0) ∧ a2 = 1 + of-nat D ∗ b2)

lemma nontriv-solution-altdef : nontriv-solution z ←→ solution z ∧ z 6= (1 , 0)

18

by (auto simp: solution-def nontriv-solution-def)

lemma solution-trivial-nat [simp, intro]: solution (Suc 0 , 0)
by (simp add: solution-def)

lemma solution-trivial [simp, intro]: solution (1 , 0)
by (simp add: solution-def)

lemma solution-uminus-left [simp]: solution (−x, y :: ′a :: comm-ring-1) ←→ so-
lution (x, y)

by (simp add: solution-def)

lemma solution-uminus-right [simp]: solution (x, −y :: ′a :: comm-ring-1) ←→
solution (x, y)

by (simp add: solution-def)

lemma solution-0-snd-nat-iff [simp]: solution (a :: nat, 0) ←→ a = 1
by (auto simp: solution-def)

lemma solution-0-snd-iff [simp]: solution (a :: ′a :: idom, 0) ←→ a ∈ {1 , −1}
by (auto simp: solution-def power2-eq-1-iff)

lemma no-solution-0-fst-nat [simp]: ¬solution (0 , b :: nat)
by (auto simp: solution-def)

lemma no-solution-0-fst-int [simp]: ¬solution (0 , b :: int)
proof −

have 1 + int D ∗ b2 > 0 by (intro add-pos-nonneg) auto
thus ?thesis by (auto simp add: solution-def)

qed

lemma solution-of-nat-of-nat [simp]:
solution (of-nat a, of-nat b :: ′a :: {comm-ring-1 , ring-char-0}) ←→ solution (a,

b)
by (simp only: solution-def prod.case of-nat-power [symmetric]

of-nat-1 [symmetric, where ? ′a = ′a] of-nat-add [symmetric]
of-nat-mult [symmetric] of-nat-eq-iff of-nat-id)

lemma solution-of-nat-of-nat ′ [simp]:
solution (case z of (a, b)⇒ (of-nat a, of-nat b :: ′a :: {comm-ring-1 , ring-char-0}))
←→

solution z
by (auto simp: case-prod-unfold)

lemma solution-nat-abs-nat-abs [simp]:
solution (nat |x|, nat |y|) ←→ solution (x, y)

proof −
define x ′ and y ′ where x ′ = nat |x| and y ′ = nat |y|
have x: x = sgn x ∗ x ′ and y: y = sgn y ∗ y ′

19

by (auto simp: x ′-def y ′-def sgn-if)
have [simp]: x = 0 ←→ x ′ = 0 y = 0 ←→ y ′ = 0

by (auto simp: x ′-def y ′-def)
show solution (x ′, y ′) ←→ solution (x, y)

by (subst x, subst y) (auto simp: sgn-if)
qed

lemma nontriv-solution-of-nat-of-nat [simp]:
nontriv-solution (of-nat a, of-nat b :: ′a :: {comm-ring-1 , ring-char-0}) ←→

nontriv-solution (a, b)
by (auto simp: nontriv-solution-altdef)

lemma nontriv-solution-of-nat-of-nat ′ [simp]:
nontriv-solution (case z of (a, b) ⇒ (of-nat a, of-nat b :: ′a :: {comm-ring-1 ,

ring-char-0})) ←→
nontriv-solution z

by (auto simp: case-prod-unfold)

lemma nontriv-solution-imp-solution [dest]: nontriv-solution z =⇒ solution z
by (auto simp: nontriv-solution-altdef)

2.5 The Pell valuation function

Solutions (x,y) have an interesting correspondence to the ring Z[
√
D] via

the map (x, y) 7→ x + y
√
D. We call this map the Pell valuation function.

It is obvious that this map is injective, since
√
D is irrational.

definition pell-valuation :: int × int ⇒ real where
pell-valuation = (λ(a,b). a + b ∗ sqrt D)

lemma pell-valuation-nonneg [simp]: fst z ≥ 0 =⇒ snd z ≥ 0 =⇒ pell-valuation
z ≥ 0

by (auto simp: pell-valuation-def case-prod-unfold)

lemma pell-valuation-uminus-uminus [simp]: pell-valuation (−x, −y) = −pell-valuation
(x, y)

by (simp add: pell-valuation-def)

lemma pell-valuation-eq-iff [simp]:
pell-valuation z1 = pell-valuation z2 ←→ z1 = z2

proof
assume ∗: pell-valuation z1 = pell-valuation z2
obtain a b where [simp]: z1 = (a, b) by (cases z1)
obtain u v where [simp]: z2 = (u, v) by (cases z2)
have b = v
proof (rule ccontr)

assume b 6= v
with ∗ have sqrt D = (u − a) / (b − v)

by (simp add: field-simps pell-valuation-def)
also have . . . ∈ � by auto

20

finally show False using irrat-sqrt-nonsquare nonsquare-D by blast
qed
moreover from this and ∗ have a = u

by (simp add: pell-valuation-def)
ultimately show z1 = z2 by simp

qed auto

2.6 Linear ordering of solutions

Next, we show that solutions are linearly ordered w. r. t. the pointwise order
on products. This means thatfor two different solutions (a, b) and (x, y),
we always either have a < x and b < y or a > x and b > y.
lemma solutions-linorder :

fixes a b x y :: nat
assumes solution (a, b) solution (x, y)
shows a ≤ x ∧ b ≤ y ∨ a ≥ x ∧ b ≥ y

proof −
have b ≤ y if a ≤ x solution (a, b) solution (x, y) for a b x y :: nat
proof −

from that have a ^ 2 ≤ x ^ 2 by (intro power-mono) auto
with that and D-gt-1 have b2 ≤ y2

by (simp add: solution-def)
thus b ≤ y

by (simp add: power2-nat-le-eq-le)
qed
from this[of a x b y] and this[of x a y b] and assms show ?thesis

by (cases a ≤ x) auto
qed

lemma solutions-linorder-strict:
fixes a b x y :: nat
assumes solution (a, b) solution (x, y)
shows (a, b) = (x, y) ∨ a < x ∧ b < y ∨ a > x ∧ b > y

proof −
have b = y if a = x

using that assms and D-gt-1 by (simp add: solution-def)
moreover have a = x if b = y
proof −

from that and assms have a2 = Suc (D ∗ y2)
by (simp add: solution-def)

also from that and assms have . . . = x2

by (simp add: solution-def)
finally show a = x by simp

qed
ultimately have [simp]: a = x ←→ b = y ..
show ?thesis using solutions-linorder [OF assms]

by (cases a x rule: linorder-cases; cases b y rule: linorder-cases) simp-all
qed

21

lemma solutions-le-iff-pell-valuation-le:
fixes a b x y :: nat
assumes solution (a, b) solution (x, y)
shows a ≤ x ∧ b ≤ y ←→ pell-valuation (a, b) ≤ pell-valuation (x, y)

proof
assume a ≤ x ∧ b ≤ y
thus pell-valuation (a, b) ≤ pell-valuation (x, y)

unfolding pell-valuation-def prod.case using D-gt-1
by (intro add-mono mult-right-mono) auto

next
assume ∗: pell-valuation (a, b) ≤ pell-valuation (x, y)
from assms have a ≤ x ∧ b ≤ y ∨ x ≤ a ∧ y ≤ b

by (rule solutions-linorder)
thus a ≤ x ∧ b ≤ y
proof

assume x ≤ a ∧ y ≤ b
hence pell-valuation (a, b) ≥ pell-valuation (x, y)

unfolding pell-valuation-def prod.case using D-gt-1
by (intro add-mono mult-right-mono) auto

with ∗ have pell-valuation (a, b) = pell-valuation (x, y) by linarith
hence (a, b) = (x, y) by simp
thus a ≤ x ∧ b ≤ y by simp

qed auto
qed

lemma solutions-less-iff-pell-valuation-less:
fixes a b x y :: nat
assumes solution (a, b) solution (x, y)
shows a < x ∧ b < y ←→ pell-valuation (a, b) < pell-valuation (x, y)

proof
assume a < x ∧ b < y
thus pell-valuation (a, b) < pell-valuation (x, y)

unfolding pell-valuation-def prod.case using D-gt-1
by (intro add-strict-mono mult-strict-right-mono) auto

next
assume ∗: pell-valuation (a, b) < pell-valuation (x, y)
from assms have (a, b) = (x, y) ∨ a < x ∧ b < y ∨ x < a ∧ y < b

by (rule solutions-linorder-strict)
thus a < x ∧ b < y
proof (elim disjE)

assume x < a ∧ y < b
hence pell-valuation (a, b) > pell-valuation (x, y)

unfolding pell-valuation-def prod.case using D-gt-1
by (intro add-strict-mono mult-strict-right-mono) auto

with ∗ have False by linarith
thus ?thesis ..

qed (insert ∗, auto)
qed

22

2.7 The fundamental solution

The fundamental solution is the non-trivial solution (x, y) with non-negative
x and y for which the Pell valuation x + y

√
D is minimal, or, equivalently,

for which x and y are minimal.
definition fund-sol :: nat × nat where

fund-sol = (THE z ::nat×nat. is-arg-min (pell-valuation :: nat × nat ⇒ real)
nontriv-solution z)

The well-definedness of this follows from the injectivity of the Pell valuation
and the fact that smaller Pell valuation of a solution is smaller than that of
another iff the components are both smaller.
theorem fund-sol-is-arg-min:

is-arg-min (pell-valuation :: nat × nat ⇒ real) nontriv-solution fund-sol
unfolding fund-sol-def

proof (rule theI ′)
show ∃ !z::nat×nat. is-arg-min (pell-valuation :: nat × nat ⇒ real) nontriv-solution

z
proof (rule ex-ex1I)

fix z1 z2 :: nat × nat
assume is-arg-min (pell-valuation :: nat × nat ⇒ real) nontriv-solution z1

is-arg-min (pell-valuation :: nat × nat ⇒ real) nontriv-solution z2
hence pell-valuation z1 = pell-valuation z2

by (cases z1 , cases z2 , intro antisym) (auto simp: is-arg-min-def not-less)
thus z1 = z2 by (auto split: prod.splits)

next
define y where y = (LEAST y. y > 0 ∧ is-square (1 + D ∗ y2))
have ∃ y>0 . is-square (1 + D ∗ y2)

using pell-solution-exists by (auto simp: eq-commute[of - Suc -])
hence y: y > 0 ∧ is-square (1 + D ∗ y2)

unfolding y-def by (rule LeastI-ex)
have y-le: y ≤ y ′ if y ′ > 0 is-square (1 + D ∗ y ′2) for y ′

unfolding y-def using that by (intro Least-le) auto
from y obtain x where x: x2 = 1 + D ∗ y2

by (auto elim: is-nth-powerE)
with y have nontriv-solution (x, y)

by (auto simp: nontriv-solution-def)

have is-arg-min (pell-valuation :: nat × nat ⇒ real) nontriv-solution (x, y)
unfolding is-arg-min-linorder

proof safe
fix a b :: nat
assume ∗: nontriv-solution (a, b)
hence b > 0 and Suc (D ∗ b2) = a2

by (auto simp: nontriv-solution-def intro!: Nat.gr0I)
hence is-square (1 + D ∗ b2)

by (auto simp: nontriv-solution-def)
from ‹b > 0 › and this have y ≤ b by (rule y-le)

23

with ‹nontriv-solution (x, y)› and ∗ have x ≤ a
using solutions-linorder-strict[of x y a b] by (auto simp: nontriv-solution-altdef)
with ‹y ≤ b› show pell-valuation (int x, int y) ≤ pell-valuation (int a, int b)
unfolding pell-valuation-def prod.case by (intro add-mono mult-right-mono)

auto
qed fact+
thus ∃ z. is-arg-min (pell-valuation :: nat × nat ⇒ real) nontriv-solution z ..

qed
qed

corollary
fund-sol-is-nontriv-solution: nontriv-solution fund-sol

and fund-sol-minimal:
nontriv-solution (a, b) =⇒ pell-valuation fund-sol ≤ pell-valuation (int a,

int b)
and fund-sol-minimal ′:

nontriv-solution (z :: nat × nat) =⇒ pell-valuation fund-sol ≤ pell-valuation
z

using fund-sol-is-arg-min by (auto simp: is-arg-min-linorder case-prod-unfold)

lemma fund-sol-minimal ′′:
assumes nontriv-solution z
shows fst fund-sol ≤ fst z snd fund-sol ≤ snd z

proof −
have pell-valuation (fst fund-sol, snd fund-sol) ≤ pell-valuation (fst z, snd z)

using fund-sol-minimal ′[OF assms] by (simp add: case-prod-unfold)
hence fst fund-sol ≤ fst z ∧ snd fund-sol ≤ snd z

using assms fund-sol-is-nontriv-solution
by (subst solutions-le-iff-pell-valuation-le) (auto simp: case-prod-unfold)

thus fst fund-sol ≤ fst z snd fund-sol ≤ snd z by blast+
qed

2.8 Group structure on solutions

As was mentioned already, the Pell valuation function provides an injective
map from solutions of Pell’s equation into the ring Z[

√
D]. We shall see

now that the solutions are actually a subgroup of the multiplicative group
of Z[

√
D] via the valuation function as a homomorphism:

• The trivial solution (1 , 0) has valuation 1, which is the neutral element
of Z[

√
D]∗

• Multiplication of two solutions a+b
√
D and x+y

√
D leads to x̄+ȳ

√
D

with x̄ = xa+ ybD and ȳ = xb+ ya, which is again a solution.

• The conjugate (x, −y) of a solution (x, y) is an inverse element to this
multiplication operation, since (x+ y

√
D)(x− y

√
D) = 1.

24

definition pell-mul :: (′a :: comm-semiring-1 × ′a) ⇒ (′a × ′a) ⇒ (′a × ′a)
where

pell-mul = (λ(a,b) (x,y). (x ∗ a + y ∗ b ∗ of-nat D, x ∗ b + y ∗ a))

definition pell-cnj :: (′a :: comm-ring-1 × ′a) ⇒ ′a × ′a where
pell-cnj = (λ(a,b). (a, −b))

lemma pell-cnj-snd-0 [simp]: snd z = 0 =⇒ pell-cnj z = z
by (cases z) (simp-all add: pell-cnj-def)

lemma pell-mul-commutes: pell-mul z1 z2 = pell-mul z2 z1
by (auto simp: pell-mul-def algebra-simps case-prod-unfold)

lemma pell-mul-assoc: pell-mul z1 (pell-mul z2 z3) = pell-mul (pell-mul z1 z2) z3
by (auto simp: pell-mul-def algebra-simps case-prod-unfold)

lemma pell-mul-trivial-left [simp]: pell-mul (1 , 0) z = z
by (auto simp: pell-mul-def algebra-simps case-prod-unfold)

lemma pell-mul-trivial-right [simp]: pell-mul z (1 , 0) = z
by (auto simp: pell-mul-def algebra-simps case-prod-unfold)

lemma pell-mul-trivial-left-nat [simp]: pell-mul (Suc 0 , 0) z = z
by (auto simp: pell-mul-def algebra-simps case-prod-unfold)

lemma pell-mul-trivial-right-nat [simp]: pell-mul z (Suc 0 , 0) = z
by (auto simp: pell-mul-def algebra-simps case-prod-unfold)

definition pell-power :: (′a :: comm-semiring-1 × ′a) ⇒ nat ⇒ (′a × ′a) where
pell-power z n = ((λz ′. pell-mul z ′ z) ^^ n) (1 , 0)

lemma pell-power-0 [simp]: pell-power z 0 = (1 , 0)
by (simp add: pell-power-def)

lemma pell-power-one [simp]: pell-power (1 , 0) n = (1 , 0)
by (induction n) (auto simp: pell-power-def)

lemma pell-power-one-right [simp]: pell-power z 1 = z
by (simp add: pell-power-def)

lemma pell-power-Suc: pell-power z (Suc n) = pell-mul z (pell-power z n)
by (simp add: pell-power-def pell-mul-commutes)

lemma pell-power-add: pell-power z (m + n) = pell-mul (pell-power z m) (pell-power
z n)

by (induction m arbitrary: z)
(simp-all add: funpow-add o-def pell-power-Suc pell-mul-assoc)

lemma pell-valuation-mult [simp]:

25

pell-valuation (pell-mul z1 z2) = pell-valuation z1 ∗ pell-valuation z2
by (simp add: pell-valuation-def pell-mul-def case-prod-unfold algebra-simps)

lemma pell-valuation-mult-nat [simp]:
pell-valuation (case pell-mul z1 z2 of (a, b) ⇒ (int a, int b)) =

pell-valuation z1 ∗ pell-valuation z2
by (simp add: pell-valuation-def pell-mul-def case-prod-unfold algebra-simps)

lemma pell-valuation-trivial [simp]: pell-valuation (1 , 0) = 1
by (simp add: pell-valuation-def)

lemma pell-valuation-trivial-nat [simp]: pell-valuation (Suc 0 , 0) = 1
by (simp add: pell-valuation-def)

lemma pell-valuation-cnj: pell-valuation (pell-cnj z) = fst z − snd z ∗ sqrt D
by (simp add: pell-valuation-def pell-cnj-def case-prod-unfold)

lemma pell-valuation-snd-0 [simp]: pell-valuation (a, 0) = of-int a
by (simp add: pell-valuation-def)

lemma pell-valuation-0-iff [simp]: pell-valuation z = 0 ←→ z = (0 , 0)
proof

assume ∗: pell-valuation z = 0
have snd z = 0
proof (rule ccontr)

assume snd z 6= 0
with ∗ have sqrt D = −fst z / snd z

by (simp add: pell-valuation-def case-prod-unfold field-simps)
also have . . . ∈ � by auto
finally show False using nonsquare-D irrat-sqrt-nonsquare by blast

qed
with ∗ have fst z = 0 by (simp add: pell-valuation-def case-prod-unfold)
with ‹snd z = 0 › show z = (0 , 0) by (cases z) auto

qed (auto simp: pell-valuation-def)

lemma pell-valuation-solution-pos-nat:
fixes z :: nat × nat
assumes solution z
shows pell-valuation z > 0

proof −
from assms have z 6= (0 , 0) by (intro notI) auto
hence pell-valuation z 6= 0 by (auto split: prod.splits)
moreover have pell-valuation z ≥ 0 by (intro pell-valuation-nonneg) (auto split:

prod.splits)
ultimately show ?thesis by linarith

qed

lemma
assumes solution z

26

shows pell-mul-cnj-right: pell-mul z (pell-cnj z) = (1 , 0)
and pell-mul-cnj-left: pell-mul (pell-cnj z) z = (1 , 0)

using assms by (auto simp: pell-mul-def pell-cnj-def solution-def power2-eq-square)

lemma pell-valuation-cnj-solution:
fixes z :: nat × nat
assumes solution z
shows pell-valuation (pell-cnj z) = 1 / pell-valuation z

proof −
have pell-valuation (pell-cnj z) ∗ pell-valuation z = pell-valuation (pell-mul

(pell-cnj z) z)
by simp

also from assms have pell-mul (pell-cnj z) z = (1 , 0)
by (subst pell-mul-cnj-left) (auto simp: case-prod-unfold)

finally show ?thesis using pell-valuation-solution-pos-nat[OF assms]
by (auto simp: divide-simps)

qed

lemma pell-valuation-power [simp]: pell-valuation (pell-power z n) = pell-valuation
z ^ n

by (induction n) (simp-all add: pell-power-Suc)

lemma pell-valuation-power-nat [simp]:
pell-valuation (case pell-power z n of (a, b) ⇒ (int a, int b)) = pell-valuation z ^

n
by (induction n) (simp-all add: pell-power-Suc)

lemma pell-valuation-fund-sol-ge-2 : pell-valuation fund-sol ≥ 2
proof −

obtain x y where [simp]: fund-sol = (x, y) by (cases fund-sol)
from fund-sol-is-nontriv-solution have eq: x2 = 1 + D ∗ y2

by (auto simp: nontriv-solution-def)

consider y > 0 | y = 0 x 6= 1
using fund-sol-is-nontriv-solution by (force simp: nontriv-solution-def)

thus ?thesis
proof cases

assume y > 0
hence 1 + 1 ∗ 1 ≤ 1 + D ∗ y2

using D-pos by (intro add-mono mult-mono) auto
also from eq have . . . = x2 ..
finally have x2 > 1 2 by simp
hence x > 1 by (rule power2-less-imp-less) auto
with ‹y > 0 › have x + y ∗ sqrt D ≥ 2 + 1 ∗ 1

using D-pos by (intro add-mono mult-mono) auto
thus ?thesis by (simp add: pell-valuation-def)

next
assume [simp]: y = 0 and x 6= 1
with eq have x 6= 0 by (intro notI) auto

27

with ‹x 6= 1 › have x ≥ 2 by simp
thus ?thesis by (auto simp: pell-valuation-def)

qed
qed

lemma solution-pell-mul [intro]:
assumes solution z1 solution z2
shows solution (pell-mul z1 z2)

proof −
obtain a b where [simp]: z1 = (a, b) by (cases z1)
obtain c d where [simp]: z2 = (c, d) by (cases z2)
from assms show ?thesis

by (simp add: solution-def pell-mul-def case-prod-unfold power2-eq-square alge-
bra-simps)
qed

lemma solution-pell-cnj [intro]:
assumes solution z
shows solution (pell-cnj z)
using assms by (auto simp: solution-def pell-cnj-def)

lemma solution-pell-power [simp, intro]: solution z =⇒ solution (pell-power z n)
by (induction n) (auto simp: pell-power-Suc)

lemma pell-mul-eq-trivial-nat-iff :
pell-mul z1 z2 = (Suc 0 , 0) ←→ z1 = (Suc 0 , 0) ∧ z2 = (Suc 0 , 0)
using D-gt-1 by (cases z1 ; cases z2) (auto simp: pell-mul-def)

lemma nontriv-solution-pell-nat-mul1 :
solution (z1 :: nat × nat) =⇒ nontriv-solution z2 =⇒ nontriv-solution (pell-mul

z1 z2)
by (auto simp: nontriv-solution-altdef pell-mul-eq-trivial-nat-iff)

lemma nontriv-solution-pell-nat-mul2 :
nontriv-solution (z1 :: nat × nat) =⇒ solution z2 =⇒ nontriv-solution (pell-mul

z1 z2)
by (auto simp: nontriv-solution-altdef pell-mul-eq-trivial-nat-iff)

lemma nontriv-solution-power-nat [intro]:
assumes nontriv-solution (z :: nat × nat) n > 0
shows nontriv-solution (pell-power z n)

proof −
have nontriv-solution (pell-power z n) ∨ n = 0

by (induction n)
(insert assms(1), auto intro: nontriv-solution-pell-nat-mul1 simp: pell-power-Suc)

with assms(2) show ?thesis by auto
qed

28

2.9 The different regions of the valuation function

Next, we shall explore what happens to the valuation function for solutions
(x, y) for different signs of x and y:

• If x > 0 and y > 0, we have x+ y
√
D > 1.

• If x > 0 and y < 0, we have 0 < x+ y
√
D < 1.

• If x < 0 and y > 0, we have −1 < x+ y
√
D < 0.

• If x < 0 and y < 0, we have x+ y
√
D < −1.

In particular, this means that we can deduce the sign of x and y if we know
in which of these four regions the valuation lies.
lemma

assumes x > 0 y > 0 solution (x, y)
shows pell-valuation-pos-pos: pell-valuation (x, y) > 1

and pell-valuation-pos-neg-aux: pell-valuation (x, −y) ∈ {0<..<1}
proof −

from D-gt-1 assms have x + y ∗ sqrt D ≥ 1 + 1 ∗ 1
by (intro add-mono mult-mono) auto

hence gt-1 : x + y ∗ sqrt D > 1 by simp
thus pell-valuation (x, y) > 1 by (simp add: pell-valuation-def)

from assms have 1 = x^2 − D ∗ y^2 by (simp add: solution-def)
also have of-int . . . = (x − y ∗ sqrt D) ∗ (x + y ∗ sqrt D)

by (simp add: field-simps power2-eq-square)
finally have eq: (x − y ∗ sqrt D) = 1 / (x + y ∗ sqrt D)

using gt-1 by (simp add: field-simps)

note eq
also from gt-1 have 1 / (x + y ∗ sqrt D) < 1 / 1

by (intro divide-strict-left-mono) auto
finally have x − y ∗ sqrt D < 1 by simp

note eq
also from gt-1 have 1 / (x + y ∗ sqrt D) > 0

by (intro divide-pos-pos) auto
finally have x − y ∗ sqrt D > 0 .
with ‹x − y ∗ sqrt D < 1 › show pell-valuation (x, −y) ∈ {0<..<1}

by (simp add: pell-valuation-def)
qed

lemma pell-valuation-pos-neg:
assumes x > 0 y < 0 solution (x, y)
shows pell-valuation (x, y) ∈ {0<..<1}
using pell-valuation-pos-neg-aux[of x −y] assms by simp

29

lemma pell-valuation-neg-neg:
assumes x < 0 y < 0 solution (x, y)
shows pell-valuation (x, y) < −1
using pell-valuation-pos-pos[of −x −y] assms by simp

lemma pell-valuation-neg-pos:
assumes x < 0 y > 0 solution (x, y)
shows pell-valuation (x, y) ∈ {−1<..<0}
using pell-valuation-pos-neg[of −x −y] assms by simp

lemma pell-valuation-solution-gt1D:
assumes solution z pell-valuation z > 1
shows fst z > 0 ∧ snd z > 0
using pell-valuation-pos-pos[of fst z snd z] pell-valuation-pos-neg[of fst z snd z]

pell-valuation-neg-pos[of fst z snd z] pell-valuation-neg-neg[of fst z snd z]
assms

by (cases fst z 0 :: int rule: linorder-cases;
cases snd z 0 :: int rule: linorder-cases;
cases z) auto

2.10 Generating property of the fundamental solution

We now show that the fundamental solution generates the set of the (non-
negative) solutions in the sense that each solution is a power of the fun-
damental solution. Combined with the symmetry property that (x,y) is a
solution iff (±x, ±y) is a solution, this gives us a complete characterisation
of all solutions of Pell’s equation.
definition nth-solution :: nat ⇒ nat × nat where

nth-solution n = pell-power fund-sol n

lemma pell-valuation-nth-solution [simp]:
pell-valuation (nth-solution n) = pell-valuation fund-sol ^ n
by (simp add: nth-solution-def)

theorem nth-solution-inj: inj nth-solution
proof

fix m n :: nat
assume nth-solution m = nth-solution n
hence pell-valuation (nth-solution m) = pell-valuation (nth-solution n)

by (simp only:)
also have pell-valuation (nth-solution m) = pell-valuation fund-sol ^ m

by simp
also have pell-valuation (nth-solution n) = pell-valuation fund-sol ^ n

by simp
finally show m = n

using pell-valuation-fund-sol-ge-2 by (subst (asm) power-inject-exp) auto
qed

30

theorem nth-solution-sound [intro]: solution (nth-solution n)
using fund-sol-is-nontriv-solution by (auto simp: nth-solution-def)

theorem nth-solution-sound ′ [intro]: n > 0 =⇒ nontriv-solution (nth-solution n)
using fund-sol-is-nontriv-solution by (auto simp: nth-solution-def)

theorem nth-solution-complete:
fixes z :: nat × nat
assumes solution z
shows z ∈ range nth-solution

proof (cases z = (1 , 0))
case True
hence z = nth-solution 0 by (simp add: nth-solution-def)
thus ?thesis by auto

next
case False
with assms have nontriv-solution z by (auto simp: nontriv-solution-altdef)
show ?thesis
proof (rule ccontr)

assume ¬?thesis
hence ∗: pell-power fund-sol n 6= z for n unfolding nth-solution-def by blast

define u where u = pell-valuation fund-sol
define v where v = pell-valuation z
define n where n = nat blog u vc
have u-ge-2 : u ≥ 2 using pell-valuation-fund-sol-ge-2 by (auto simp: u-def)
have v-pos: v > 0 unfolding v-def using assms

by (intro pell-valuation-solution-pos-nat) auto
have u-le-v: u ≤ v unfolding u-def v-def by (rule fund-sol-minimal ′) fact

have u-power-neq-v: u ^ k 6= v for k
proof

assume u ^ k = v
also have u ^ k = pell-valuation (pell-power fund-sol k)

by (simp add: u-def)
also have . . . = v ←→ pell-power fund-sol k = z

unfolding v-def by (subst pell-valuation-eq-iff) (auto split: prod.splits)
finally show False using ∗ by blast

qed

from u-le-v v-pos u-ge-2 have log-ge-1 : log u v ≥ 1
by (subst one-le-log-cancel-iff) auto

define z ′ where z ′ = pell-mul z (pell-power (pell-cnj fund-sol) n)
define x and y where x = nat |fst z ′| and y = nat |snd z ′|
have solution z ′ using assms fund-sol-is-nontriv-solution unfolding z ′-def

by (intro solution-pell-mul solution-pell-power solution-pell-cnj) (auto simp:
case-prod-unfold)

31

have u ^ n < v
proof −

from u-ge-2 have u ^ n = u powr real n by (subst powr-realpow) auto
also have . . . ≤ u powr log u v using u-ge-2 log-ge-1

by (intro powr-mono) (auto simp: n-def)
also have . . . = v

using u-ge-2 v-pos by (subst powr-log-cancel) auto
finally have u ^ n ≤ v .
with u-power-neq-v[of n] show ?thesis by linarith

qed
moreover have v < u ^ Suc n
proof −

have v = u powr log u v
using u-ge-2 v-pos by (subst powr-log-cancel) auto

also have log u v ≤ 1 + real-of-int blog u vc by linarith
hence u powr log u v ≤ u powr real (Suc n) using u-ge-2 log-ge-1

by (intro powr-mono) (auto simp: n-def)
also have . . . = u ^ Suc n using u-ge-2 by (subst powr-realpow) auto
finally have u ^ Suc n ≥ v .
with u-power-neq-v[of Suc n] show ?thesis by linarith

qed
ultimately have v / u ^ n ∈ {1<..<u}

using u-ge-2 by (simp add: field-simps)
also have v / u ^ n = pell-valuation z ′

using fund-sol-is-nontriv-solution
by (auto simp add: z ′-def u-def v-def pell-valuation-cnj-solution field-simps)

finally have val: pell-valuation z ′ ∈ {1<..<u} .

from val and ‹solution z ′› have nontriv-solution z ′

by (auto simp: nontriv-solution-altdef)
from ‹solution z ′› and val have fst z ′ > 0 ∧ snd z ′ > 0

by (intro pell-valuation-solution-gt1D) auto

hence [simp]: z ′ = (int x, int y)
by (auto simp: x-def y-def)

from ‹nontriv-solution z ′› have pell-valuation (int x, int y) ≥ u
unfolding u-def by (intro fund-sol-minimal) auto

with val show False by simp
qed

qed

corollary solution-iff-nth-solution:
fixes z :: nat × nat
shows solution z ←→ z ∈ range nth-solution
using nth-solution-sound nth-solution-complete by blast

corollary solution-iff-nth-solution ′:
fixes z :: int × int

32

shows solution (a, b) ←→ (nat |a|, nat |b|) ∈ range nth-solution
proof −

have solution (a, b) ←→ solution (nat |a|, nat |b|)
by simp

also have . . . ←→ (nat |a|, nat |b|) ∈ range nth-solution
by (rule solution-iff-nth-solution)

finally show ?thesis .
qed

corollary infinite-solutions: infinite {z :: nat × nat. solution z}
proof −

have infinite (range nth-solution)
by (intro range-inj-infinite nth-solution-inj)

also have range nth-solution = {z :: nat × nat. solution z}
by (auto simp: solution-iff-nth-solution)

finally show ?thesis .
qed

corollary infinite-solutions ′: infinite {z :: int × int. solution z}
proof

assume finite {z :: int × int. solution z}
hence finite (map-prod (nat ◦ abs) (nat ◦ abs) ‘ {z :: int × int. solution z})

by (rule finite-imageI)
also have (map-prod (nat ◦ abs) (nat ◦ abs) ‘ {z :: int × int. solution z}) =

{z :: nat × nat. solution z}
by (auto simp: map-prod-def image-iff intro!: exI [of - int x for x])

finally show False using infinite-solutions by contradiction
qed

lemma strict-mono-pell-valuation-nth-solution: strict-mono (pell-valuation ◦ nth-solution)
using pell-valuation-fund-sol-ge-2
by (auto simp: strict-mono-def intro!: power-strict-increasing)

lemma strict-mono-nth-solution:
strict-mono (fst ◦ nth-solution) strict-mono (snd ◦ nth-solution)

proof −
let ?g = nth-solution
have fst (?g m) < fst (?g n) ∧ snd (?g m) < snd (?g n) if m < n for m n

using pell-valuation-fund-sol-ge-2 that
by (subst solutions-less-iff-pell-valuation-less) auto

thus strict-mono (fst ◦ nth-solution) strict-mono (snd ◦ nth-solution)
by (auto simp: strict-mono-def)

qed

end

33

2.11 The case of an “almost square” parameter

If D is equal to a2 − 1 for some a > 1, we have a particularly simple case
where the fundamental solution is simply (1 , a).
context

fixes a :: nat
assumes a: a > 1

begin

lemma pell-square-minus1 : pell (a2 − Suc 0)
proof

show ¬is-square (a2 − Suc 0)
proof

assume is-square (a2 − Suc 0)
then obtain k where k2 = a2 − 1 by (auto elim: is-nth-powerE)
with a have a2 = Suc (k2) by simp
hence a = 1 using pell-square-solution-nat-iff [of 1 a k] by simp
with a show False by simp

qed
qed

interpretation pell a2 − Suc 0
by (rule pell-square-minus1)

lemma fund-sol-square-minus1 : fund-sol = (a, 1)
proof −

from a have sol: nontriv-solution (a, 1)
by (simp add: nontriv-solution-def)

from sol have snd fund-sol ≤ 1
using fund-sol-minimal ′′[of (a, 1)] by auto

with solutions-linorder-strict[of a 1 fst fund-sol snd fund-sol]
fund-sol-is-nontriv-solution sol

show fund-sol = (a, 1)
by (cases fund-sol) (auto simp: nontriv-solution-altdef)

qed

end

2.12 Alternative presentation of the main results
theorem pell-solutions:
fixes D :: nat
assumes @ k. D = k2

obtains x0 y0 :: nat
where ∀ (x::int) (y::int).

x2 − D ∗ y2 = 1 ←→
(∃n::nat. nat |x| + sqrt D ∗ nat |y| = (x0 + sqrt D ∗ y0) ^ n)

proof −
from assms interpret pell

34

by unfold-locales (auto simp: is-nth-power-def)
show ?thesis
proof (rule that[of fst fund-sol snd fund-sol], intro allI , goal-cases)

case (1 x y)
have (x2 − int D ∗ y2 = 1) ←→ solution (x, y)

by (auto simp: solution-def)
also have . . . ←→ (∃n. (nat |x|, nat |y|) = nth-solution n)

by (subst solution-iff-nth-solution ′) blast
also have (λn. (nat |x|, nat |y|) = nth-solution n) =

(λn. pell-valuation (nat |x|, nat |y|) = pell-valuation (nth-solution n))
by (subst pell-valuation-eq-iff) (auto simp add: case-prod-unfold prod-eq-iff

fun-eq-iff)
also have . . . = (λn. nat |x| + sqrt D ∗ nat |y| = (fst fund-sol + sqrt D ∗ snd

fund-sol) ^ n)
by (subst pell-valuation-nth-solution)

(simp add: pell-valuation-def case-prod-unfold mult-ac)
finally show ?case .

qed
qed

corollary pell-solutions-infinite:
fixes D :: nat
assumes @ k. D = k2

shows infinite {(x :: int, y :: int). x2 − D ∗ y2 = 1}
proof −

from assms interpret pell
by unfold-locales (auto simp: is-nth-power-def)

have {(x :: int, y :: int). x2 − D ∗ y2 = 1} = {z. solution z}
by (auto simp: solution-def)

also have infinite . . . by (rule infinite-solutions ′)
finally show ?thesis .

qed

end

2.13 Executable code
theory Pell-Algorithm
imports

Pell
Efficient-Discrete-Sqrt
HOL−Library.Discrete-Functions
HOL−Library.While-Combinator
HOL−Library.Stream

begin

35

2.13.1 Efficient computation of powers by squaring

The following is a tail-recursive implementation of exponentiation by squar-
ing. It works for any binary operation f that fulfils f x (f x z) = f (f x x) z,
i. e. some weak form of associativity.
context

fixes f :: ′a ⇒ ′a ⇒ ′a
begin

function efficient-power :: ′a ⇒ ′a ⇒ nat ⇒ ′a where
efficient-power y x 0 = y
| efficient-power y x (Suc 0) = f x y
| n 6= 0 =⇒ even n =⇒ efficient-power y x n = efficient-power y (f x x) (n div 2)
| n 6= 1 =⇒ odd n =⇒ efficient-power y x n = efficient-power (f x y) (f x x) (n div
2)

by force+
termination by (relation measure (snd ◦ snd)) (auto elim: oddE)

lemma efficient-power-code [code]:
efficient-power y x n =

(if n = 0 then y
else if n = 1 then f x y
else if even n then efficient-power y (f x x) (n div 2)
else efficient-power (f x y) (f x x) (n div 2))

by (induction y x n rule: efficient-power .induct) auto

lemma efficient-power-correct:
assumes

∧
x z. f x (f x z) = f (f x x) z

shows efficient-power y x n = (f x ^^ n) y
proof −

have [simp]: f ^^ 2 = (λx. f (f x)) for f :: ′a ⇒ ′a
by (simp add: eval-nat-numeral o-def)

show ?thesis
by (induction y x n rule: efficient-power .induct)

(auto elim!: evenE oddE simp: funpow-mult [symmetric] funpow-Suc-right
assms

simp del: funpow.simps(2))
qed

end

2.13.2 Multiplication and powers of solutions

We define versions of Pell solution multiplication and exponentiation spe-
cialised to natural numbers, both for efficiency reasons and to circumvent
the problem of generating code for definitions made inside locales.
fun pell-mul-nat :: nat ⇒ nat × nat ⇒ - where

pell-mul-nat D (a, b) (x, y) = (a ∗ x + D ∗ b ∗ y, a ∗ y + b ∗ x)

36

lemma (in pell) pell-mul-nat-correct [simp]: pell-mul-nat D = pell.pell-mul D
by (auto simp add: pell-mul-def fun-eq-iff)

definition efficient-pell-power :: nat ⇒ nat × nat ⇒ nat ⇒ nat × nat where
efficient-pell-power D z n = efficient-power (pell-mul-nat D) (1 , 0) z n

lemma efficient-pell-power-correct [simp]:
efficient-pell-power D z n = (pell-mul-nat D z ^^ n) (1 , 0)
unfolding efficient-pell-power-def
by (intro efficient-power-correct) (auto simp: algebra-simps)

2.13.3 Finding the fundamental solution

In the following, we set up a very simple algorithm for computing the fun-
damental solution (x, y). We try inreasing values for y until 1 + Dy2 is a
perfect square, which we check using an efficient square-detection algorithm.
This is efficient enough to work on some interesting small examples.
Much better algorithms (typically based on the continued fraction expansion
of
√
D) are available, but they are also considerably more complicated.

lemma Discrete-sqrt-square-is-square:
assumes is-square n
shows floor-sqrt n ^ 2 = n
using assms unfolding is-nth-power-def by force

definition find-fund-sol-step :: nat ⇒ nat × nat + nat × nat ⇒ - where
find-fund-sol-step D = (λInl (y, y ′) ⇒

(case get-nat-sqrt y ′ of
Some x ⇒ Inr (x, y)
| None ⇒ Inl (y + 1 , y ′ + D ∗ (2 ∗ y + 1))))

definition find-fund-sol where
find-fund-sol D =

(if square-test D then
(0 , 0)

else
sum.projr (while sum.isl (find-fund-sol-step D) (Inl (1 , 1 + D))))

lemma fund-sol-code:
assumes ¬is-square (D :: nat)
shows pell.fund-sol D = sum.projr (while isl (find-fund-sol-step D) (Inl (Suc

0 , Suc D)))
proof −

from assms interpret pell D by unfold-locales
note [simp] = find-fund-sol-step-def
define f where f = find-fund-sol-step D
define P :: nat ⇒ bool where P = (λy. y > 0 ∧ is-square (y^2 ∗ D + 1))
define Q :: nat × nat ⇒ bool where

37

Q = (λ(x,y). P y ∧ (∀ y ′∈{0<..<y}. ¬P y ′) ∧ x = floor-sqrt (y^2 ∗ D + 1))
define R :: nat × nat + nat × nat ⇒ bool

where R = (λs. case s of
Inl (m, m ′) ⇒ m > 0 ∧ (m ′ = m^2 ∗ D + 1) ∧ (∀ y∈{0<..<m}.

¬is-square (y^2 ∗ D + 1))
| Inr x ⇒ Q x)

define rel :: ((nat × nat + nat × nat) × (nat × nat + nat × nat)) set
where rel = {(A,B). (case (A, B) of

(Inl (m, -), Inl (m ′, -)) ⇒ m ′ > 0 ∧ m > m ′ ∧ m ≤ snd
fund-sol

| (Inr -, Inl (m ′, -)) ⇒ m ′ ≤ snd fund-sol
| - ⇒ False) ∧ A = f B}

obtain x y where xy: sum.projr (while isl f (Inl (Suc 0 , Suc D))) = (x, y)
by (cases sum.projr (while isl f (Inl (Suc 0 , Suc D))))

have neq-fund-solI : y 6= snd fund-sol if ¬ is-square (Suc (y2 ∗ D)) for y
proof

assume y = snd fund-sol
with fund-sol-is-nontriv-solution have Suc (y2 ∗ D) = fst fund-sol ^ 2

by (simp add: nontriv-solution-def case-prod-unfold)
hence is-square (Suc (y2 ∗ D)) by simp
with that show False by contradiction

qed

have case-sum (λ-. False) Q (while sum.isl f (Inl (m, m^2 ∗ D + 1)))
if ∀ y∈{0<..<m}. ¬is-square (y^2 ∗ D + 1) m > 0 for m

proof (rule while-rule[where b = sum.isl])
show R (Inl (m, m2 ∗ D + 1))

using that by (auto simp: R-def)
next

fix s assume R s isl s
thus R (f s)

by (auto simp: not-less-less-Suc-eq Q-def P-def R-def f-def get-nat-sqrt-def
power2-eq-square algebra-simps split: sum.splits prod.splits)

next
fix s assume R s ¬isl s
thus case s of Inl - ⇒ False | Inr x ⇒ Q x

by (auto simp: R-def split: sum.splits)
next

fix s assume s: R s isl s
show (f s, s) ∈ rel
proof (cases s)

case [simp]: (Inl s ′)
obtain a b where [simp]: s ′ = (a, b) by (cases s ′)
from s have ∗: a > 0 b = Suc (a2 ∗ D)

∧
y. y ∈ {0<..<a} =⇒ ¬ is-square

(Suc (y2 ∗ D))
by (auto simp: R-def)

have a < snd fund-sol if ∗∗: ¬ is-square (Suc (a2 ∗ D))

38

proof −
from neq-fund-solI have y ′ 6= snd fund-sol if y ′ ∈ {0<..<Suc a} for y ′

using ∗ ∗∗ that by (cases y ′ = a) auto
moreover have snd fund-sol 6= 0 using fund-sol-is-nontriv-solution

by (intro notI , cases fund-sol) (auto simp: nontriv-solution-altdef)
ultimately have ∀ y ′≤a. y ′ 6= snd fund-sol by (auto simp: less-Suc-eq-le)
thus snd fund-sol > a by (cases a < snd fund-sol) (auto simp: not-less)

qed
moreover have a ≤ snd fund-sol
proof −

have ∀ y ′∈{0<..<a}. y ′ 6= snd fund-sol using neq-fund-solI ∗
by (auto simp: less-Suc-eq-le)

moreover have snd fund-sol 6= 0 using fund-sol-is-nontriv-solution
by (intro notI , cases fund-sol) (auto simp: nontriv-solution-altdef)

ultimately have ∀ y ′<a. y ′ 6= snd fund-sol by (auto simp: less-Suc-eq-le)
thus snd fund-sol ≥ a by (cases a ≤ snd fund-sol) (auto simp: not-less)

qed
ultimately show ?thesis using ∗

by (auto simp: f-def get-nat-sqrt-def rel-def)
qed (insert s, auto)

next
define rel ′

where rel ′ = {(y, x). (case x of Inl (m, -) ⇒ m ≤ snd fund-sol | Inr - ⇒
False) ∧ y = f x}

have wf rel ′ unfolding rel ′-def
by (rule wf-if-measure[where f = λz. case z of Inl (m, -)⇒ Suc (snd fund-sol)

− m | - ⇒ 0])
(auto split: prod.splits sum.splits simp: f-def get-nat-sqrt-def)

moreover have rel ⊆ rel ′
proof safe

fix w z assume (w, z) ∈ rel
thus (w, z) ∈ rel ′ by (cases w; cases z) (auto simp: rel-def rel ′-def)

qed
ultimately show wf rel by (rule wf-subset)

qed
from this[of 1] and xy have ∗: Q (x, y)

by (auto split: sum.splits)

from ∗ have is-square (Suc (y2 ∗ D)) by (simp add: Q-def P-def)
with ∗ have x2 = Suc (y2 ∗ D) y > 0

by (auto simp: Q-def P-def Discrete-sqrt-square-is-square)
hence nontriv-solution (x, y)

by (auto simp: nontriv-solution-def)
from this have snd fund-sol ≤ snd (x, y)

by (rule fund-sol-minimal ′′)
moreover have snd fund-sol ≥ y
proof −

from ∗ have (∀ y ′∈{0<..<y}. ¬ is-square (Suc (y ′2 ∗ D)))
by (simp add: Q-def P-def)

39

with neq-fund-solI have (∀ y ′∈{0<..<y}. y ′ 6= snd fund-sol)
by auto

moreover have snd fund-sol 6= 0
using fund-sol-is-nontriv-solution
by (cases fund-sol) (auto intro!: Nat.gr0I simp: nontriv-solution-altdef)

ultimately have (∀ y ′<y. y ′ 6= snd fund-sol) by auto
thus snd fund-sol ≥ y by (cases snd fund-sol ≥ y) (auto simp: not-less)

qed
ultimately have snd fund-sol = y by simp
with solutions-linorder-strict[of x y fst fund-sol snd fund-sol]

fund-sol-is-nontriv-solution ‹nontriv-solution (x, y)›
have fst fund-sol = x by (cases fund-sol) (auto simp: nontriv-solution-altdef)

with ‹snd fund-sol = y› have fund-sol = (x, y)
by (cases fund-sol) simp

with xy show ?thesis by (simp add: f-def)
qed

lemma find-fund-sol-correct: find-fund-sol D = (if is-square D then (0 , 0) else
pell.fund-sol D)

by (simp add: find-fund-sol-def fund-sol-code square-test-correct)

2.13.4 The infinite list of all solutions
definition pell-solutions :: nat ⇒ (nat × nat) stream where

pell-solutions D = (let z = find-fund-sol D in siterate (pell-mul-nat D z) (1 , 0))

lemma (in pell) snth (pell-solutions D) n = nth-solution n
by (simp add: pell-solutions-def Let-def find-fund-sol-correct nonsquare-D nth-solution-def

pell-power-def pell-mul-commutes[of - fund-sol])

2.13.5 Computing the n-th solution
definition find-nth-solution :: nat ⇒ nat ⇒ nat × nat where

find-nth-solution D n =
(if is-square D then (0 , 0) else

let z = sum.projr (while isl (find-fund-sol-step D) (Inl (Suc 0 , Suc D)))
in efficient-pell-power D z n)

lemma (in pell) find-nth-solution-correct: find-nth-solution D n = nth-solution n
by (simp add: find-nth-solution-def nonsquare-D nth-solution-def fund-sol-code

pell-power-def pell-mul-commutes[of - projr -])

end

2.13.6 Tests
theory Pell-Algorithm-Test
imports

Pell-Algorithm
HOL−Library.Code-Target-Numeral

40

HOL−Library.Code-Lazy
begin

code-lazy-type stream

value find-fund-sol 73
value find-fund-sol 106

value stake 100 (pell-solutions 73)
value snth (pell-solutions 73) 600

value find-nth-solution 73 600
value find-nth-solution 106 10

end

References

[1] Pell’s equation, handout for MATHS 714. Lecture notes, University of
Auckland, 2008.

[2] H. Cohen. A Course in Computational Algebraic Number Theory.
Springer, 2010.

[3] M. Jacobson and H. Williams. Solving the Pell Equation. CMS Books
in Mathematics. Springer New York, 2008.

41

	Efficient Algorithms for the Square Root on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	A Discrete Variant of Heron's Algorithm
	Square Testing

	Pell's equation
	Preliminary facts
	The case of a perfect square
	Existence of a non-trivial solution
	Definition of solutions
	The Pell valuation function
	Linear ordering of solutions
	The fundamental solution
	Group structure on solutions
	The different regions of the valuation function
	Generating property of the fundamental solution
	The case of an ``almost square'' parameter
	Alternative presentation of the main results
	Executable code
	Efficient computation of powers by squaring
	Multiplication and powers of solutions
	Finding the fundamental solution
	The infinite list of all solutions
	Computing the n-th solution
	Tests

