Pell's Equation

Manuel Eberl

September 13, 2023

Abstract

This article gives the basic theory of Pell's equation $x^{2}=1+D y^{2}$, where $D \in \mathbb{N}$ is a parameter and x, y are integer variables.

The main result that is proven is the following: If D is not a perfect square, then there exists a fundamental solution $\left(x_{0}, y_{0}\right)$ that is not the trivial solution $(1,0)$ and which generates all other solutions (x, y) in the sense that there exists some $n \in \mathbb{N}$ such that $|x|+|y| \sqrt{D}=$ $\left(x_{0}+y_{0} \sqrt{D}\right)^{n}$. This also implies that the set of solutions is infinite, and it gives us an explicit and executable characterisation of all the solutions.

Based on this, simple executable algorithms for computing the fundamental solution and the infinite sequence of all non-negative solutions are also provided.

Contents

1 Efficient Algorithms for the Square Root on \mathbb{N} 3
1.1 A Discrete Variant of Heron's Algorithm 3
1.2 Square Testing 5
2 Pell's equation 9
2.1 Preliminary facts 9
2.2 The case of a perfect square 11
2.3 Existence of a non-trivial solution 12
2.4 Definition of solutions 18
2.5 The Pell valuation function 20
2.6 Linear ordering of solutions 21
2.7 The fundamental solution 23
2.8 Group structure on solutions 24
2.9 The different regions of the valuation function 29
2.10 Generating property of the fundamental solution 30
2.11 The case of an "almost square" parameter 34
2.12 Alternative presentation of the main results 34
2.13 Executable code 35
2.13.1 Efficient computation of powers by squaring 36
2.13.2 Multiplication and powers of solutions 36
2.13.3 Finding the fundamental solution 37
2.13.4 The infinite list of all solutions 40
2.13.5 Computing the n-th solution 40
2.13.6 Tests 40

```
theory Efficient-Discrete-Sqrt
imports
    Complex-Main
    HOL-Computational-Algebra.Computational-Algebra
    HOL-Library.Discrete
    HOL-Library.Tree
    HOL-Library.IArray
begin
```


1 Efficient Algorithms for the Square Root on \mathbb{N}

1.1 A Discrete Variant of Heron's Algorithm

An algorithm for calculating the discrete square root, taken from Cohen [2]. This algorithm is essentially a discretised variant of Heron's method or Newton's method specialised to the square root function.

```
lemma sqrt-eq-floor-sqrt: Discrete.sqrt \(n=\) nat \(\lfloor\) sqrt \(n\rfloor\)
proof -
    have real \(\left((\text { nat }\lfloor\text { sqrt } n\rfloor)^{2}\right)=(\text { real }(\text { nat }\lfloor\text { sqrt } n\rfloor))^{2}\)
        by \(\operatorname{simp}\)
    also have \(\ldots \leq \operatorname{sqrt}(\) real \(n)\) ^2
        by (intro power-mono) auto
    also have \(\ldots=\) real \(n\) by simp
    finally have (nat \(\lfloor\) sqrt \(n\rfloor)^{2} \leq n\)
        by (simp only: of-nat-le-iff)
    moreover have \(n<(\) Suc (nat \(\lfloor\) sqrt \(n\rfloor))^{2}\) proof -
        have \((1+\lfloor\text { sqrt } n\rfloor)^{2}>n\)
            using floor-correct[of sqrt n] real-le-rsqrt[of \(1+\lfloor\) sqrt \(n\rfloor n]\)
                        of-int-less-iff[of \(\left.n(1+\lfloor\text { sqrt } n\rfloor)^{2}\right]\) not-le
                by fastforce
        then show ?thesis
            using le-nat-floor[of Suc (nat \(\lfloor\) sqrt \(n\rfloor\) ) sqrt \(n]\)
                of-nat-le-iff[of (Suc (nat \(\left.\lfloor\text { sqrt n」)) })^{2} n\right]\) real-le-rsqrt[of - n] not-le
                by fastforce
    qed
    ultimately show ?thesis using sqrt-unique by fast
qed
fun newton-sqrt-aux :: nat \(\Rightarrow\) nat \(\Rightarrow\) nat where
    newton-sqrt-aux x \(n=\)
        (let \(y=(x+n\) div \(x)\) div 2
        in if \(y<x\) then newton-sqrt-aux \(y\) n else \(x\) )
declare newton-sqrt-aux.simps [simp del]
lemma newton-sqrt-aux-simps:
    \((x+n\) div \(x)\) div \(2<x \Longrightarrow\) newton-sqrt-aux \(x n=\) newton-sqrt-aux \(((x+n\) div
```

```
x) div 2) n
    (x+n div x) div 2 \geqx # newton-sqrt-aux x n = x
    by (subst newton-sqrt-aux.simps; simp add: Let-def)+
lemma heron-step-real: \llbrackett>0;n\geq0\rrbracket\Longrightarrow(t+n/t)/2 2 sqrt n
    using arith-geo-mean-sqrt[of t n/t] by simp
lemma heron-step-div-eq-floored:
    (t::nat) > 0\Longrightarrow(t+(n::nat) div t) div 2 = nat \lfloor(t+n/t) / 2\rfloor
proof -
    assume t>0
    then have \lfloor(t+n/t)/2\rfloor=\lfloor(t*t+n)/(2*t)\rfloor
        by (simp add: mult-divide-mult-cancel-right[of t t + n/t 2, symmetric]
            algebra-simps)
    also have ... = (t*t + n) div (2*t)
        using floor-divide-of-nat-eq by blast
    also have ... = (t*t+n) div t div 2
        by (simp add: Divides.div-mult2-eq mult.commute)
    also have ... = (t+n div t)div 2
        by (simp add: <0 < t> power2-eq-square)
    finally show ?thesis by simp
qed
lemma heron-step: }t>0\Longrightarrow(t+n\mathrm{ div }t)\mathrm{ div 2 }\geq\mathrm{ Discrete.sqrt n
proof -
    assume t>0
    have Discrete.sqrt n = nat \lfloorsqrt n\rfloor by (rule sqrt-eq-floor-sqrt)
    also have ... \leqnat \lfloor(t+n/t) / 2\rfloor
        using heron-step-real[of t n] <t> 0\rangle by linarith
    also have ... = (t+n div t) div 2
        using heron-step-div-eq-floored[OF <t > 0〉] by simp
    finally show ?thesis.
qed
lemma newton-sqrt-aux-correct:
    assumes x\geq Discrete.sqrt n
    shows newton-sqrt-aux x n = Discrete.sqrt n
    using assms
proof (induction x n rule: newton-sqrt-aux.induct)
    case (1 x n)
    show ?case
    proof (cases x = Discrete.sqrt n)
    case True
    then have (x^ 2) div }x\leqn\mathrm{ div }x\mathrm{ by (intro div-le-mono) simp-all
    also have ( }x^2\mathrm{ 2) div }x=x\mathrm{ by (simp add: power2-eq-square)
    finally have (x+n div }x\mathrm{ ) div 2 }\geqx\mathrm{ by linarith
    with True show ?thesis by (auto simp: newton-sqrt-aux-simps)
next
    case False
```

```
    with 1.prems have x-gt-sqrt: x > Discrete.sqrt n by auto
    with Discrete.le-sqrt-iff[of x n] have n<x^2 by simp
    have }x*(n\mathrm{ div }x)\leqn\mathrm{ using mult-div-mod-eq[of x n] by linarith
    also have ...<x^2 using Discrete.le-sqrt-iff[of x n] and x-gt-sqrt by simp
    also have ... =x*x by (simp add: power2-eq-square)
    finally have n div x < x by (subst (asm) mult-less-cancel1) auto
    then have step-decreasing: }(x+n\mathrm{ div x) div 2 < b by linarith
    with x-gt-sqrt have step-ge-sqrt: }(x+n\mathrm{ div }x)\mathrm{ div 2 }\geq\mathrm{ Discrete.sqrt n
    by (simp add: heron-step)
    from step-decreasing have newton-sqrt-aux x n = newton-sqrt-aux (( }x+n\mathrm{ div
x) div 2) n
    by (simp add: newton-sqrt-aux-simps)
    also have ... = Discrete.sqrt n
    by (intro 1.IH step-decreasing step-ge-sqrt) simp-all
    finally show ?thesis.
    qed
qed
definition newton-sqrt :: nat }=>\mathrm{ nat where
    newton-sqrt n = newton-sqrt-aux n n
declare Discrete.sqrt-code [code del]
theorem Discrete-sqrt-eq-newton-sqrt [code]: Discrete.sqrt n = newton-sqrt n
    unfolding newton-sqrt-def by (simp add: newton-sqrt-aux-correct Discrete.sqrt-le)
```


1.2 Square Testing

Next, we implement an algorithm to determine whether a given natural number is a perfect square, as described by Cohen [2]. Essentially, the number first determines whether the number is a square. Essentially
definition $q 11$:: nat set
where $q 11=\{0,1,3,4,5,9\}$
definition $q 63$:: nat set
where $q 63=\{0,1,4,7,9,16,28,18,22,25,36,58,46,49,37,43\}$
definition $q 64$:: nat set
where $q 64=\{0,1,4,9,16,17,25,36,33,49,41,57\}$
definition $q 65$:: nat set
where $q 65=\{0,1,4,10,14,9,16,26,30,25,29,40,56,36,49,61,35$, $51,39,55,64\}$
definition q11-array where
q11-array =IArray $[$ True,True,False,True,True,True,False,False,False,True,False]
definition q63-array where
q63-array = IArray $[$ True,True,False,False,True,False,False,True,False,True,False,False, False,False,False,False,True,False,True, False,False,False, True,False,False,True,False, False, True,False, False,False,False,False, False,False, True, True, False, False,False,False,

False,True,False,False,True,False,False,True,False,False,False,False,False,False,False, False,True,False,False,False,False,False]

definition q64-array where

q64-array $=$ IArray $[$ True,True,False,False,True,False,False,False,False,True,False,False, False,False,False,False,True,True,False,False,False,False,False,False,False,True,False, False,False,False,False,False, False, True, False,False, True, False, False,False, False, True, False,False, False,False,False, False,False,True,False,False,False,False,False,False, False,True,False,False,False,False,False,False, False]
definition q65-array where
q65-array $=$ IArray $[$ True,True,False,False,True,False,False,False,False,True,True,False, False,False, True,False, True,False,False, False,False,False, False, False,False, True, True, False,False,True, True, False, False,False,False, True, True, False,False, True, True, False, False,False,False,False,False,False,False,True,False,True,False,False,False,True,True ,False,False,False,False,True,False,False,True,False]
lemma sub-q11-array: $i \in\{. .<11\} \Longrightarrow$ IArray.sub q11-array $i \longleftrightarrow i \in q 11$
by (simp add: lessThan-nat-numeral lessThan-Suc q11-def q11-array-def, elim disjE; simp)
lemma sub-q63-array: $i \in\{. .<63\} \Longrightarrow$ IArray.sub q63-array $i \longleftrightarrow i \in q 63$
by (simp add: lessThan-nat-numeral lessThan-Suc q63-def q63-array-def, elim disjE; simp)
lemma sub-q64-array: $i \in\{. .<64\} \Longrightarrow$ IArray.sub q64-array $i \longleftrightarrow i \in q 64$
by (simp add: lessThan-nat-numeral lessThan-Suc q64-def q64-array-def, elim disjE; simp)
lemma sub-q65-array: $i \in\{. .<65\} \Longrightarrow$ IArray.sub $q 65$-array $i \longleftrightarrow i \in q 65$
by (simp add: lessThan-nat-numeral lessThan-Suc q65-def q65-array-def, elim disjE; simp)
lemma in-q11-code: $x \bmod 11 \in q 11 \longleftrightarrow$ IArray.sub q11-array $(x \bmod 11)$
by (subst sub-q11-array) auto
lemma in-q63-code: $x \bmod 63 \in q 63 \longleftrightarrow$ IArray.sub q63-array $(x \bmod 63)$
by (subst sub-q63-array) auto
lemma in-q64-code: $x \bmod 64 \in q 64 \longleftrightarrow$ IArray.sub q64-array $(x \bmod 64)$
by (subst sub-q64-array) auto
lemma in-q65-code: $x \bmod 65 \in q 65 \longleftrightarrow$ IArray.sub q65-array $(x \bmod 65)$
by (subst sub-q65-array) auto
definition square-test :: nat \Rightarrow bool where
square-test $n=$
($n \bmod 64 \in q 64 \wedge(l e t r=n \bmod 45045$ in
$r \bmod 63 \in q 63 \wedge r \bmod 65 \in q 65 \wedge r \bmod 11 \in q 11 \wedge n=($ Discrete.sqrt $\left.n)^{2}\right)$)
lemma square-test-code [code]:
square-test $n=$
(IArray.sub q64-array $(n \bmod 64) \wedge($ let $r=n \bmod 45045$ in IArray.sub q63-array $(r \bmod 63) \wedge$ IArray.sub q65-array $(r \bmod 65) \wedge$ IArray.sub q11-array $\left.\left.(r \bmod 11) \wedge n=(\text { Discrete.sqrt } n)^{2}\right)\right)$
using in-q11-code [symmetric] in-q63-code [symmetric] in-q64-code [symmetric] in-q65-code [symmetric]
by (simp add: Let-def square-test-def)
lemma square-mod-lower: $m>0 \Longrightarrow\left(q^{2}::\right.$ nat $) \bmod m=a \Longrightarrow \exists q^{\prime}<m \cdot q^{12}$ $\bmod m=a$
using mod-less-divisor mod-mod-trivial power-mod by blast
lemma q11-upto-def: $q 11=\left(\lambda k . k^{2} \bmod 11\right) \cdot\{. .<11\}$
by (simp add: q11-def lessThan-nat-numeral lessThan-Suc insert-commute)
lemma q11-infinite-def: q11 $=\left(\lambda k . k^{2} \bmod 11\right) '\{0 .$.
unfolding q11-upto-def image-def proof (auto, goal-cases)
case (1 xa)
show ?case
using square-mod-lower[of 11 xa xa ${ }^{2}$ mod 11]
ex-nat-less-eq[of $\left.11 \lambda x . x a^{2} \bmod 11=x^{2} \bmod 11\right]$
by auto

qed

lemma q63-upto-def: q63 $=\left(\lambda k . k^{2} \bmod 63\right) '\{. .<63\}$
by (simp add: q63-def lessThan-nat-numeral lessThan-Suc insert-commute)
lemma q63-infinite-def: q63 $=\left(\lambda k . k^{2} \bmod 63\right) '\{0 .$.
unfolding q63-upto-def image-def proof (auto, goal-cases)
case (1 xa)
show ?case
using square-mod-lower[of 63 xa xa ${ }^{2}$ mod 63]
ex-nat-less-eq[of $\left.63 \lambda x . x a^{2} \bmod 63=x^{2} \bmod 63\right]$
by auto
qed
lemma q64-upto-def: q64 $=\left(\lambda k . k^{2} \bmod 64\right)$ ' $\{. .<64\}$
by (simp add: q64-def lessThan-nat-numeral lessThan-Suc insert-commute)
lemma q64-infinite-def: q64 $=\left(\lambda k . k^{2} \bmod 64\right)$ ' $\{0 .$.
unfolding q64-upto-def image-def proof (auto, goal-cases)
case (1 xa)
show ?case
using square-mod-lower[of 64 xa $\left.x a^{2} \bmod 64\right]$
ex-nat-less-eq[of $\left.64 \lambda x . x a^{2} \bmod 64=x^{2} \bmod 64\right]$
by auto
qed
lemma q65-upto-def: $q 65=\left(\lambda k . k^{2} \bmod 65\right) '\{. .<65\}$
by (simp add: q65-def lessThan-nat-numeral lessThan-Suc insert-commute)
lemma q65-infinite-def: $q 65=\left(\lambda k . k^{2} \bmod 65\right) \cdot\{0 .$.
unfolding q65-upto-def image-def proof (auto, goal-cases)
case (1 $x a$)
show ?case
using square-mod-lower[of $\left.65 x a x a^{2} \bmod 65\right]$
ex-nat-less-eq[of $65 \lambda x$. xa $\left.a^{2} \bmod 65=x^{2} \bmod 65\right]$
by auto
qed
lemma square-mod-existence:
fixes $n k::$ nat
assumes $\exists q . q^{2}=n$
shows $\exists q$. $n \bmod k=q^{2} \bmod k$
using assms by auto

```
theorem square-test-correct: square-test }n\longleftrightarrow\mathrm{ is-square }
proof cases
    assume is-square n
    hence rhs: \existsq. q}\mp@subsup{q}{}{2}=n\mathrm{ by (auto elim: is-nth-powerE)
    note sq-mod = square-mod-existence[OF this]
    have q64-member: n mod 64 \in q64 using sq-mod[of 64]
        unfolding q64-infinite-def image-def by simp
    let ?r = n mod 45045
    have }11\mathrm{ dvd (45045::nat) 63 dvd (45045::nat) }65\mathrm{ dvd (45045::nat) by force+
    then have mod-45045: ?r mod 11 = n mod 11 ?r mod 63 = n mod 63 ?r mod
65 = n mod 65
    using mod-mod-cancel[of-45045n] by presburger+
    then have ?r mod 11\inq11 ?r mod 63\inq63 ?r mod 65 \inq65
    using sq-mod[of 11] sq-mod[of 63] sq-mod[of 65]
    unfolding q11-infinite-def q63-infinite-def q65-infinite-def image-def mod-45045
    by fast+
    then show ?thesis unfolding square-test-def Let-def using q64-member rhs by
auto
next
    assume not-rhs: \negis-square n
    hence }\not\existsq\cdot\mp@subsup{q}{}{2}=n\mathrm{ by auto
    then have (Discrete.sqrt n)}\mp@subsup{)}{}{2}\not=n\mathrm{ by simp
    then show ?thesis unfolding square-test-def by (auto simp:is-nth-power-def)
qed
```

```
definition get-nat-sqrt :: nat }=>\mathrm{ nat option
    where get-nat-sqrt n = (if is-square n then Some (Discrete.sqrt n) else None)
lemma get-nat-sqrt-code [code]:
    get-nat-sqrt n =
        (if IArray.sub q64-array ( }n\operatorname{mod}64)\wedge(let r = n mod 45045 in
                IArray.sub q63-array (r mod 63) ^
                IArray.sub q65-array (r mod 65) ^
                IArray.sub q11-array (r mod 11)) then
        (let x = Discrete.sqrt n in if }\mp@subsup{x}{}{2}=n\mathrm{ then Some x else None) else None)
    unfolding get-nat-sqrt-def square-test-correct [symmetric] square-test-def
    using in-q11-code [symmetric] in-q63-code [symmetric]
        in-q64-code [symmetric] in-q65-code [symmetric]
    by (auto split: if-splits simp: Let-def )
end
```


2 Pell's equation

```
theory Pell
imports
    Complex-Main
    HOL-Computational-Algebra.Computational-Algebra
begin
```

Pell's equation has the general form $x^{2}=1+D y^{2}$ where $D \in \mathbb{N}$ is a parameter and x, y are \mathbb{Z}-valued variables. As we will see, that case where D is a perfect square is trivial and therefore uninteresting; we will therefore assume that D is not a perfect square for the most part.
Furthermore, it is obvious that the solutions to Pell's equation are symmetric around the origin in the sense that (x, y) is a solution iff $(\pm x, \pm y)$ is a solution. We will therefore mostly look at solutions (x, y) where both x and y are non-negative, since the remaining solutions are a trivial consequence of these.

Information on the material treated in this formalisation can be found in many textbooks and lecture notes, e. g. [3, 1].

2.1 Preliminary facts

```
lemma gcd-int-nonpos-iff [simp]: gcd \(x(y::\) int \() \leq 0 \longleftrightarrow x=0 \wedge y=0\)
proof
    assume \(\operatorname{gcd} x y \leq 0\)
    with gcd-ge-0-int \([\) of \(x y]\) have gcd \(x y=0\) by linarith
    thus \(x=0 \wedge y=0\) by auto
qed auto
lemma minus-in-Ints-iff [simp]:
```

$$
\begin{aligned}
& -x \in \mathbb{Z} \longleftrightarrow x \in \mathbb{Z} \\
& \text { using Ints-minus[of } x] \text { Ints-minus }[\text { of }-x] \text { by auto }
\end{aligned}
$$

A（positive）square root of a natural number is either a natural number or irrational．

```
lemma nonneg-sqrt-nat-or-irrat:
    assumes \(x \wedge 2=\) real \(a\) and \(x \geq 0\)
    shows \(\quad x \in \mathbb{N} \vee x \notin \mathbb{Q}\)
proof safe
    assume \(x \notin \mathbb{N}\) and \(x \in \mathbb{Q}\)
    from Rats-abs-nat-div-natE[OF this(2)]
        obtain \(p q::\) nat where \(q-n z[\) simp \(]: q \neq 0\) and abs \(x=p / q\) and coprime:
coprime \(p q\).
    with \(\langle x \geq 0\rangle\) have \(x: x=p / q\)
        by \(\operatorname{simp}\)
    with assms have real ( \(q\) へ 2) \(*\) real \(a=\operatorname{real}\left(p^{\text {へ 2 }}\right)\)
        by (simp add: field-simps)
    also have \(\operatorname{real}\left(q^{\wedge} 2\right) * \operatorname{real} a=\operatorname{real}\left(q^{\wedge} 2 * a\right)\)
        by \(\operatorname{simp}\)
    finally have \(p^{\wedge} 2=q^{\wedge} 2 * a\)
        by (subst (asm) of-nat-eq-iff) auto
    hence \(q^{\text {へ } 2 d v d ~} p\) へ 2
        by \(\operatorname{simp}\)
    hence \(q d v d p\)
        by \(\operatorname{simp}\)
    with coprime have \(q=1\)
        by auto
    with \(x\) and \(\langle x \notin \mathbb{N}\rangle\) show False
        by \(\operatorname{simp}\)
qed
```

A square root of a natural number is either an integer or irrational．
corollary sqrt-nat-or-irrat:
assumes $x^{\wedge} 2=$ real a
shows $\quad x \in \mathbb{Z} \vee x \notin \mathbb{Q}$
proof (cases $x \geq 0$)
case True
with nonneg-sqrt-nat-or-irrat[OF assms this]
show ?thesis by (auto simp: Nats-altdef2)
next
case False
from assms have $(-x)^{\wedge} 2=$ real a
by simp
moreover from False have $-x \geq 0$
by simp
ultimately have $-x \in \mathbb{N} \vee-x \notin \mathbb{Q}$
by (rule nonneg-sqrt-nat-or-irrat)
thus ?thesis
by (auto simp: Nats-altdef2)
qed
corollary sqrt－nat－or－irrat＇：
sqrt $($ real $a) \in \mathbb{N} \vee$ sqrt（real a）$\notin \mathbb{Q}$
using nonneg－sqrt－nat－or－irrat $[$ of sqrt $a \operatorname{a}$ ］by auto
The square root of a natural number n is again a natural number iff n is a perfect square．

```
corollary sqrt-nat-iff-is-square:
    sqrt \((\) real \(n) \in \mathbb{N} \longleftrightarrow\) is-square \(n\)
proof
    assume sqrt (real \(n) \in \mathbb{N}\)
    then obtain \(k\) where sqrt (real \(n\) ) \(=\) real \(k\) by (auto elim!: Nats-cases)
    hence sqrt (real n) へ2 = real ( \(k\) へ 2) by ( simp only: of-nat-power)
    also have sqrt (real \(n\) ) \({ }^{2}=\) real \(n\) by simp
    finally have \(n=k \uparrow 2\) by (simp only: of-nat-eq-iff)
    thus is-square \(n\) by blast
qed (auto elim!: is-nth-powerE)
corollary irrat-sqrt-nonsquare: \(\neg\) is-square \(n \Longrightarrow\) sqrt (real \(n\) ) \(\notin \mathbb{Q}\)
    using sqrt-nat-or-irrat'[of \(n\) ] by (auto simp: sqrt-nat-iff-is-square)
```


2．2 The case of a perfect square

As we have noted，the case where D is a perfect square is trivial：In fact，we will show that the only solutions in this case are the trivial solutions (x, y) $=(\pm 1,0)$ if D is a non－zero perfect square，or $(\pm 1, y)$ for arbitrary $y \in \mathbb{Z}$ if $D=0$ ．
context
fixes D ：：nat
assumes square－D：is－square D
begin
lemma pell－square－solution－nat－aux：
fixes x y ：：nat
assumes $D>0$ and $x^{\wedge} 2=1+D * y へ 2$
shows $(x, y)=(1,0)$
proof－
from assms have $x-n z: x>0$ by（auto intro！：Nat．grOI）
from square－D obtain d where［simp］：$D=d^{2}$
by（auto elim：is－nth－powerE）
have int x へ $2=\operatorname{int}(x$ へ 2）by simp
also note assms（2）
also have $\operatorname{int}(1+D * y$＾2 $)=1+\operatorname{int} D * \operatorname{int} y$ へ 2 by simp
finally have $($ int $x+$ int $d *$ int $y) *($ int $x-$ int $d *$ int $y)=1$
by（simp add：algebra－simps power2－eq－square）
hence $*$ ：int $x+$ int $d *$ int $y=1 \wedge$ int $x-$ int $d *$ int $y=1$ using x－nz by（subst（asm）pos－zmult－eq－1－iff）（auto intro：add－pos－nonneg）

```
    from \(*\) have \([\operatorname{simp}]: x=1\) by simp
    moreover from \(* \operatorname{and} \operatorname{assms}(1)\) have \(y=0\) by auto
    ultimately show?thesis by simp
qed
lemma pell-square-solution-int-aux:
    fixes \(x\) y :: int
    assumes \(D>0\) and \(x^{\wedge} 2=1+D * y へ 2\)
    shows \(x \in\{-1,1\} \wedge y=0\)
proof -
    define \(x^{\prime} y^{\prime}\) where \(x^{\prime}=\) nat \(|x|\) and \(y^{\prime}=\) nat \(|y|\)
    have \(x: x=\operatorname{sgn} x * x^{\prime}\) and \(y: y=\operatorname{sgn} y * y^{\prime}\)
    by (auto simp: sgn-if \(x^{\prime}\)-def \(y^{\prime}\)-def)
    have zero-iff: \(x=0 \longleftrightarrow x^{\prime}=0 y=0 \longleftrightarrow y^{\prime}=0\)
    by (auto simp: \(x^{\prime}\)-def \(y^{\prime}\)-def)
    note assms(2)
    also have \(x^{\wedge} 2=\operatorname{int}\left(x^{\prime}\right.\) へ 2)
    by (subst \(x\) ) (auto simp: sgn-if zero-iff)
    also have \(1+D * y \wedge_{2}=\operatorname{int}\left(1+D * y^{\prime}\right.\) へ 2)
    by (subst y) (auto simp: sgn-if zero-iff)
    also note of-nat-eq-iff
    finally have \(x^{\prime 2}=1+D * y^{\prime 2}\).
    from \(\langle D>0\rangle\) and this have \(\left(x^{\prime}, y^{\prime}\right)=(1,0)\)
    by (rule pell-square-solution-nat-aux)
    thus ?thesis by (auto simp: \(x^{\prime}\)-def \(y^{\prime}\)-def)
qed
lemma pell-square-solution-nat-iff:
    fixes \(x y\) :: nat
    shows \(x{ }^{\wedge} 2=1+D * y \wedge 2 \longleftrightarrow x=1 \wedge(D=0 \vee y=0)\)
    using pell-square-solution-nat-aux \([\) of \(x y]\) by (cases \(D=0\) ) auto
lemma pell-square-solution-int-iff:
    fixes \(x y\) :: int
    shows \(x \wedge_{2}^{2}=1+D * y \wedge^{2} \longleftrightarrow x \in\{-1,1\} \wedge(D=0 \vee y=0)\)
    using pell-square-solution-int-aux \([\) of \(x y]\) by (cases \(D=0\) ) (auto simp: power2-eq-1-iff)
end
```


2．3 Existence of a non－trivial solution

Let us now turn to the case where D is not a perfect square．
We first show that Pell＇s equation always has at least one non－trivial solution （apart from the trivial solution $(1,0)$ ）．For this，we first need a lemma about the existence of rational approximations of real numbers．
The following lemma states that for any positive integer s and real number x ，we can find a rational approximation t / u to x with an error of most 1 $/(u * s)$ where the denominator u is at most s ．

```
lemma pell-approximation-lemma:
    fixes }s:: nat and x :: rea
    assumes }s:s>
    shows \existsu::nat. \existst::int. u>0^ coprime ut\wedge1/s\in{|t-u*x|<..1/u}
proof -
    define f}\mathrm{ where f}=(\lambdau.\lceilu*x\rceil
    define g :: nat => int where g=(\lambdau.\lfloorfrac (u*x)*s\rfloor)
    {
    fix u :: nat assume u:u
    hence frac (u*x)* real s<1* real s
        using s by (intro mult-strict-right-mono) (auto simp: frac-lt-1)
    hence g u < int s by (auto simp: floor-less-iff g-def)
}
hence g'{..s}\subseteq{0..<s}
    by (auto simp: g-def floor-less-iff)
    hence card (g'{..s}) \leq card {0..<int s}
    by (intro card-mono) auto
    also have ... < card {..s} by simp
    finally have }\neginj\mathrm{ -on g {..s} by (rule pigeonhole)
    then obtain }ab\mathrm{ where ab:a 土sb 土s a#=bga=gb
    by (auto simp: inj-on-def)
    define u1 and u2 where u1 = max a b and u2 = min a b
    have u12:u1\leqsu2\leqsu2 <u1 g u1=gu2
    using ab by (auto simp: u1-def u2-def)
    define ut where u=u1-u2 and t=\lflooru1*x\rfloor-\lflooru2*x\rfloor
    have u:u>0 |u| \leqs
    using u12 by (simp-all add: u-def)
    from }\langlegu1=gu2\rangle\mathrm{ have |frac (u2*x)*s-frac (u1*x)*s|<1
    unfolding g-def by linarith
    also have |frac (u2 * x)*s-frac (u1*x)*s|=
                        |real s|*|frac (u2 * x) - frac (u1*x)|
    by (subst abs-mult [symmetric]) (simp add: algebra-simps)
finally have }|t-u*x|*s<1 using <u1>u2
    by (simp add: g-def u-def t-def frac-def algebra-simps of-nat-diff)
with }\langles>0\rangle\mathrm{ have less: }|t-u*x|<1/s by (simp add: divide-simps
define d}\mathrm{ where d}=gcd(nat |t|)
define t':: int and }\mp@subsup{u}{}{\prime}:: nat where t'= t div d and u'=u div d
from u have d\not=0
    by (intro notI) (auto simp: d-def)
have int (gcd (nat |t|)u)=gcd |t| (int u)
    by simp
hence t'-}\mp@subsup{t}{}{\prime}:t=\mp@subsup{t}{}{\prime}*du=\mp@subsup{u}{}{\prime}*
    by (auto simp: t'-def }\mp@subsup{u}{}{\prime}-def d-def nat-dvd-iff
from}\langled\not=0\rangle\mathrm{ have }|\mp@subsup{t}{}{\prime}-\mp@subsup{u}{}{\prime}*x|*1\leq|\mp@subsup{t}{}{\prime}-\mp@subsup{u}{}{\prime}*x|*|real d
    by (intro mult-left-mono) auto
```

```
    also have \ldots= | | - u*x| by (subst abs-mult [symmetric]) (simp add:alge-
bra-simps t'-u')
    also note less
    finally have }|\mp@subsup{t}{}{\prime}-\mp@subsup{u}{}{\prime}*x|<1/s\mathrm{ by simp
    moreover {
        from \langles>0\rangle and u have 1/s\leq1/u
            by (simp add: divide-simps u-def)
    also have ... = 1/ u'/d by (simp add: t'-u' divide-simps)
    also have ...\leq1/ u' / 1 using }\langled\not=0\rangle\mathrm{ by (intro divide-left-mono) auto
    finally have 1/s\leq1/ u' by simp
    }
    ultimately have 1/s\in{|t' - u'* * |<..1 / u'} by auto
    moreover from }\langleu>0\rangle\mathrm{ have }\mp@subsup{u}{}{\prime}>0\mathrm{ by (auto simp: t'-u')
    moreover {
    have gcd ut=gcd t' }\mp@subsup{|}{}{\prime}*\mathrm{ int d
        by (simp add: t'-u' gcd-mult-right gcd.commute)
    also have int d=gcd ut
        by (simp add: d-def gcd.commute)
    finally have gcd u}\mp@subsup{u}{}{\prime}\mp@subsup{t}{}{\prime}=1\mathrm{ using u by (simp add: gcd.commute)
    }
    ultimately show ?thesis by blast
qed
```

As a simple corollary of this, we can show that for irrational x, there is an infinite number of rational approximations t / u to x whose error is less that $1 / u^{2}$.
corollary pell-approximation-corollary:
fixes x :: real
assumes $x \notin \mathbb{Q}$
shows infinite $\{(t::$ int, $u::$ nat $) . u>0 \wedge$ coprime $u t \wedge|t-u * x|<1 / u\}$
(is infinite? A)
proof
assume fin: finite ? A
let ?f $=\lambda(t::$ int, u :: nat). $|t-u * x|$
from fin have fin': finite (insert 1 (?f'?A)) by blast
have $\operatorname{Min}($ insert $1(? f$ '?A)) >0
proof (subst Min-gr-iff)
have $a \neq b * x$ if $b>0$ for $a::$ int and $b::$ nat
proof
assume $a=b * x$
with $\langle b>0\rangle$ have $x=a / b$ by (simp add: field-simps)
with $\langle x \notin \mathbb{Q}\rangle$ and $\langle b>0\rangle$ show False by (auto simp: Rats-eq-int-div-nat)
qed
thus $\forall x \in$ insert 1 (?f '?A). $x>0$ by auto
qed (insert fin', simp-all)
also note real-arch-inverse
finally obtain M :: nat where $M: M \neq 0$ inverse $M<\operatorname{Min}$ (insert 1 (?f '?A))
by blast
hence $M>0$ by simp

```
    from pell-approximation-lemma[OF this, of x] obtain u :: nat and t :: int
        where ut:u>0 coprime ut1/real M \in{?f (t,u)<..1/u} by auto
    from ut have ?f (t,u)<1/ real M by simp
    also from M have ... < Min (insert 1 (?f '?A))
    by (simp add: divide-simps)
    also from ut have Min (insert 1 (?f'?A)) \leq?f (t,u)
    by (intro Min.coboundedI fin') auto
    finally show False by simp
qed
locale pell =
    fixes D :: nat
    assumes nonsquare-D: \negis-square D
begin
lemma D-gt-1: D>1
proof -
    from nonsquare-D have D\not=0 D\not=1 by (auto intro!: Nat.grOI)
    thus ?thesis by simp
qed
lemma D-pos: D>0
    using nonsquare-D by (intro Nat.grOI) auto
```

With the above corollary, we can show the existence of a non-trivial solution. We restrict our attention to solutions (x, y) where both x and y are nonnegative.
theorem pell-solution-exists: $\exists(x::$ nat $)(y:: n a t) . y \neq 0 \wedge x^{2}=1+D * y^{2}$
proof -
define S where $S=\{(t::$ int, $u::$ nat $) . u>0 \wedge$ coprime $u t \wedge \mid t-u *$ sqrt
$D \mid<1 / u\}$
let ?f $=\lambda(t::$ int, $u::$ nat $) . t^{2}-u^{2} * D$
define M where $M=\lfloor 1+2 *$ sqrt $D\rfloor$
have infinite: \neg finite S unfolding S-def
by (intro pell-approximation-corollary irrat-sqrt-nonsquare nonsquare-D)
have subset: ?f ' $S \subseteq\{-M . . M\}$
proof safe
fix u :: nat and $t::$ int
assume tu: $(t, u) \in S$
from tu have $[$ simp]: $u>0$ by (auto simp: S-def)
have $|t+u * \operatorname{sqrt} D|=|t-u * \operatorname{sqrt} D+2 * u * \operatorname{sqrt} D|$ by simp
also have $\ldots \leq|t-u * \operatorname{sqrt} D|+|2 * u * \operatorname{sqrt} D|$
by (rule abs-triangle-ineq)
also have $|2 * u * \operatorname{sqrt} D|=2 * u * \operatorname{sqrt} D$ by simp
also have $\mid t-u *$ sqrt $D \mid \leq 1 / u$
using $t u$ by (simp add: S-def)
finally have $l e:|t+u * \operatorname{sqrt} D| \leq 1 / u+2 * u * \operatorname{sqrt} D$ by simp

```
    have }|\mp@subsup{t}{}{2}-\mp@subsup{u}{}{2}*D|=|t-u*\operatorname{sqrt}D|*|t+u*\operatorname{sqrt D
    by (subst abs-mult [symmetric]) (simp add: algebra-simps power2-eq-square)
    also have ... \leq1/u*(1/u+2*u* sqrt D)
    using tu by (intro mult-mono le) (auto simp: S-def)
    also have ... = 1 / real u^2 +2* sqrt D
        by (simp add: algebra-simps power2-eq-square)
    also from }\langleu>0\rangle\mathrm{ have real }u\geq1\mathrm{ by linarith
    hence 1/real u^2\leq1/1^2
        by (intro divide-left-mono power-mono) auto
    finally have }|\mp@subsup{t}{}{2}-\mp@subsup{u}{}{2}*D|\leq1+2* sqrt D by sim
    hence t}\mp@subsup{t}{}{2}-\mp@subsup{u}{}{2}*D\geq-M\mp@subsup{t}{}{2}-\mp@subsup{u}{}{2}*D\leqM\mathrm{ unfolding M-def by linarith+
    thus t}\mp@subsup{t}{}{2}-\mp@subsup{u}{}{2}*D\in{-M..M} by sim
qed
hence fin: finite (?f 'S) by (rule finite-subset) auto
from pigeonhole-infinite[OF infinite fin]
    obtain z where z:z\inS infinite {\mp@subsup{z}{}{\prime}\inS\mathrm{ . ?f }\mp@subsup{z}{}{\prime}=\mathrm{ ?f z} by blast}
define k}\mathrm{ where k=?f z
with subset and z have k:k\in{-M..M} infinite {z\inS. ?f z=k}
    by (auto simp: k-def)
have }k\mathrm{ -nz: }k\not=
proof
    assume [simp]:k=0
    note k(2)
    also have ?f z\not=0 if z\inS for z
    proof
        assume *: ?f z=0
        obtain tu where [simp]:z=(t,u) by (cases z)
        from * have t^2 = int u^2 * int D by simp
        hence int u^ 2 dvd t ^2 by simp
        hence int u dvd t by simp
        then obtain k}\mathrm{ where [simp]:t= int u*k by (auto elim!: dvdE)
        from * and }\langlez\inS\rangle\mathrm{ have }k\mp@subsup{^}{}{\wedge}2= int 
            by (auto simp: power-mult-distrib S-def)
        also have k^2 = int (nat |k| ^ 2) by simp
        finally have D= nat |k| へ 2 by (simp only:of-nat-eq-iff)
        hence is-square D by auto
        with nonsquare-D show False by contradiction
    qed
    hence {z\inS. ?f z=k}={} by auto
    finally show False by simp
qed
```

let $? h=\lambda(t::$ int, $u::$ nat $) .(t \bmod (a b s k), u \bmod (a b s k))$
have ?h' $\{z \in S$. ?f $z=k\} \subseteq\{0 . .<a b s k\} \times\{0 . .<a b s k\}$
using k-nz by (auto simp: case-prod-unfold)
hence finite (?h' $\{z \in S$. ?f $z=k\}$) by (rule finite-subset) auto
from pigeonhole-infinite $\left[O F k(2)\right.$ this] obtain z^{\prime}
where $z^{\prime}: z^{\prime} \in S$?f $z^{\prime}=k$ infinite $\left\{z^{\prime \prime} \in\{z \in S\right.$. ?f $z=k\}$. ?h $z^{\prime \prime}=$? $\left.h z^{\prime}\right\}$
by blast
define $l 1$ and $l 2$ where $l 1=f s t\left(? h z^{\prime}\right)$ and $l 2=\operatorname{snd}\left(? h z^{\prime}\right)$
define S^{\prime} where $S^{\prime}=\{(t, u) \in S$. ?f $(t, u)=k \wedge t \bmod a b s k=l 1 \wedge u \bmod a b s$ $k=12\}$
note $z^{\prime}(3)$
also have $\left\{z^{\prime \prime} \in\{z \in S\right.$. ?f $z=k\}$. ?h $z^{\prime \prime}=$? $\left.h z^{\prime}\right\}=S^{\prime}$
by (auto simp: l1-def l2-def case-prod-unfold S^{\prime}-def)
finally have infinite: infinite S^{\prime}.
from $z^{\prime}(1)$ and $k-n z$ have $l 12: l 1 \in\{0 . .<a b s k\} l 2 \in\{0 . .<a b s k\}$
by (auto simp: l1-def l2-def case-prod-unfold)
from infinite-arbitrarily-large[OF infinite]
obtain X where X : finite X card $X=2 X \subseteq S^{\prime}$ by blast
from finite-distinct-list[OF this(1)] obtain $x s$ where xs: set $x s=X$ distinct xs by blast
with X have length $x s=2$ using distinct-card[of xs] by simp
then obtain $z 1 z 2$ where $[s i m p]: x s=[z 1, z 2]$
by (auto simp: length-Suc-conv eval-nat-numeral)
from $X x s$ have $S^{\prime}: z 1 \in S^{\prime} z 2 \in S^{\prime}$ and neq: $z 1 \neq z 2$ by auto
define $t 1 u 1$ t2 $u 2$ where $t 1=f s t z 1$ and $u 1=s n d z 1$ and $t 2=f s t z 2$ and $u 2=s n d z 2$
have $[\operatorname{simp}]: z 1=(t 1, u 1) z 2=(t 2, u 2)$
by (simp-all add: t1-def u1-def t2-def u2-def)
from S^{\prime} have $*[s i m p]: ~ t 1 \bmod a b s k=l 1$ t2 mod abs $k=11 u 1 \bmod a b s k=12$ u2 mod abs $k=12$
by (simp-all add: S^{\prime}-def)
define x where $x=(t 1 * t 2-D * u 1 * u 2)$ div k
define y where $y=(t 1 * u 2-t 2 * u 1)$ div k
from S^{\prime} have $\left(t 1^{2}-u 1^{2} * D\right)=k\left(t \mathcal{Z}^{2}-u \mathcal{Z}^{2} * D\right)=k$
by (auto simp: S^{\prime}-def)
hence $\left(t 1^{2}-u 1^{2} * D\right) *\left(t 2^{2}-u 2^{2} * D\right)=k$-2
unfolding power2-eq-square by simp
also have $\left(t 1^{2}-u 1^{2} * D\right) *\left(t 2^{2}-u 2^{2} * D\right)=$
$(t 1 * t 2-D * u 1 * u 2){ }^{2} 2-D *(t 1 * u 2-t 2 * u 1){ }_{2}^{2}$
by (simp add: power2-eq-square algebra-simps)
finally have eq: $(t 1 * t 2-D * u 1 * u 2)^{2}-D *(t 1 * u 2-t 2 * u 1)^{2}=k^{2}$.
have $(t 1 * u 2-t 2 * u 1) \bmod a b s k=(l 1 * l 2-l 1 * l 2) \bmod a b s k$
using l12 by (intro mod-diff-cong mod-mult-cong) (auto simp: mod-pos-pos-trivial)
hence dvd1: k dvd t1 * u2 - t2 * u1 by (simp add: mod-eq-0-iff-dvd)
have $k^{2} d v d k^{2}+D *(t 1 * u 2-t 2 * u 1)^{2}$
using dvd1 by (intro dvd-add) auto

```
also from \(e q\) have \(\ldots=(t 1 * t 2-D * u 1 * u 2)^{2}\)
    by (simp add: algebra-simps)
finally have \(d v d 2: k d v d t 1 * t 2-D * u 1 * u 2\)
    by \(\operatorname{simp}\)
    note \(e q\)
    also from dvd2 have \(t 1 * t 2-D * u 1 * u 2=k * x\)
    by (simp add: x-def)
also from dvd1 have \(t 1 * u 2-t 2 * u 1=k * y\)
    by (simp add: y-def)
also have \((k * x)^{2}-D *(k * y)^{2}=k^{2} *\left(x^{2}-D * y^{2}\right)\)
    by (simp add: power-mult-distrib algebra-simps)
finally have \(e q^{\prime}: x^{2}-D * y^{2}=1\)
    using \(k-n z\) by \(\operatorname{simp}\)
hence \(x^{2}=1+D * y^{2}\) by simp
also have \(x^{2}=\operatorname{int}\) (nat \(|x|\) へ 2) by \(\operatorname{simp}\)
also have \(1+D * y^{2}=\operatorname{int}(1+D *\) nat \(|y|\) へ 2) by \(\operatorname{simp}\)
also note of-nat-eq-iff
finally have \(e q^{\prime \prime}:(\text { nat }|x|)^{2}=1+D *(\text { nat }|y|)^{2}\).
have \(t 1 * u 2 \neq t 2 * u 1\)
proof
    assume \(*: ~ t 1 * u 2=t 2 * u 1\)
    hence \(|t 1| *|u 2|=|t 2| *|u 1|\) by (simp only: abs-mult [symmetric])
    moreover from \(S^{\prime}\) have coprime u1 t1 coprime u2 t2
        by (auto simp: \(S^{\prime}\)-def \(S\)-def)
    ultimately have eq: \(|t 1|=|t 2| \wedge u 1=u 2\)
    by (subst (asm) coprime-crossproduct-int) (auto simp: \(S^{\prime}\)-def \(S\)-def gcd.commute
coprime-commute)
    moreover from \(S^{\prime}\) have \(u 1 \neq 0 u 2 \neq 0\) by (auto simp: \(S^{\prime}\)-def \(S\)-def)
    ultimately have \(t 1=\) t2 using \(*\) by auto
    with \(e q\) and \(n e q\) show False by auto
qed
with \(d v d 1\) have \(y \neq 0\)
    by (auto simp add: y-def dvd-div-eq-0-iff)
    hence nat \(|y| \neq 0\) by auto
    with \(e q^{\prime \prime}\) show \(\exists x y . y \neq 0 \wedge x^{2}=1+D * y^{2}\) by blast
qed
```


2.4 Definition of solutions

We define some abbreviations for the concepts of a solution and a non-trivial solution.

```
definition solution \(::\left({ }^{\prime} a \times{ }^{\prime} a::\right.\) comm-semiring-1) \(\Rightarrow\) bool where
```

 solution \(=\left(\lambda(a, b) \cdot a^{2}=1+\right.\) of-nat \(\left.D * b^{2}\right)\)
 definition nontriv-solution :: ('a \times ' $a::$ comm-semiring-1) \Rightarrow bool where nontriv-solution $=\left(\lambda(a, b) .(a, b) \neq(1,0) \wedge a^{2}=1+o f\right.$-nat $\left.D * b^{2}\right)$

```
lemma nontriv-solution-altdef: nontriv-solution z \longleftrightarrow solution z ^z\not=(1,0)
    by (auto simp: solution-def nontriv-solution-def)
lemma solution-trivial-nat [simp, intro]: solution (Suc 0, 0)
    by (simp add: solution-def)
lemma solution-trivial [simp, intro]: solution (1, 0)
    by (simp add: solution-def)
lemma solution-uminus-left [simp]: solution (-x, y :: 'a :: comm-ring-1) \longleftrightarrow so-
lution (x, y)
    by (simp add: solution-def)
lemma solution-uminus-right [simp]: solution (x, -y :: 'a :: comm-ring-1) \longleftrightarrow
solution (x,y)
    by (simp add: solution-def)
lemma solution-0-snd-nat-iff [simp]: solution ( a :: nat, 0) \longleftrightarrow <a=1
    by (auto simp: solution-def)
lemma solution-0-snd-iff [simp]: solution ( a :: 'a :: idom, 0) \longleftrightarrowa < {1, -1}
    by (auto simp: solution-def power2-eq-1-iff)
lemma no-solution-0-fst-nat [simp]: ᄀsolution (0, b :: nat)
    by (auto simp: solution-def)
lemma no-solution-0-fst-int [simp]: ᄀsolution (0, b :: int)
proof -
    have 1 + int D* b}\mp@subsup{}{2}{>}>0\mathrm{ by (intro add-pos-nonneg) auto
    thus ?thesis by (auto simp add: solution-def)
qed
lemma solution-of-nat-of-nat [simp]:
    solution(of-nat a, of-nat b :: ' a :: {comm-ring-1, ring-char-0}) \longleftrightarrow solution(a,
b)
    by (simp only: solution-def prod.case of-nat-power [symmetric]
                    of-nat-1 [symmetric, where ?'a = 'a] of-nat-add [symmetric]
                        of-nat-mult [symmetric] of-nat-eq-iff of-nat-id)
lemma solution-of-nat-of-nat' [simp]:
    solution (case z of (a,b) =>(of-nat a, of-nat b ::'a :: {comm-ring-1, ring-char-0}))
\longleftrightarrow
        solution z
    by (auto simp: case-prod-unfold)
lemma solution-nat-abs-nat-abs [simp]:
    solution (nat |x|, nat |y|)\longleftrightarrow solution (x,y)
proof -
    define \mp@subsup{x}{}{\prime}}\mathrm{ and }\mp@subsup{y}{}{\prime}\mathrm{ where }\mp@subsup{x}{}{\prime}=nat |x| and \mp@subsup{y}{}{\prime}=nat |y
```

```
    have \(x: x=\operatorname{sgn} x * x^{\prime}\) and \(y: y=\operatorname{sgn} y * y^{\prime}\)
    by (auto simp: \(x^{\prime}\)-def \(y^{\prime}\)-def sgn-if)
    have [simp]: \(x=0 \longleftrightarrow x^{\prime}=0 y=0 \longleftrightarrow y^{\prime}=0\)
    by (auto simp: \(x^{\prime}\)-def \(y^{\prime}\)-def)
    show solution \(\left(x^{\prime}, y^{\prime}\right) \longleftrightarrow\) solution \((x, y)\)
    by (subst \(x\), subst y) (auto simp: sgn-if)
qed
lemma nontriv-solution-of-nat-of-nat [simp]:
    nontriv-solution (of-nat \(a\), of-nat \(b::\) ' \(a::\{\) comm-ring-1, ring-char-0\}) \(\longleftrightarrow\)
nontriv-solution ( \(a, b\) )
    by (auto simp: nontriv-solution-altdef)
lemma nontriv-solution-of-nat-of-nat \({ }^{\prime}\) [simp]:
    nontriv-solution (case \(z\) of \((a, b) \Rightarrow\) (of-nat \(a\), of-nat \(b:: ' a\) :: \{comm-ring-1,
ring-char-0\})) \(\longleftrightarrow\)
        nontriv-solution \(z\)
    by (auto simp: case-prod-unfold)
lemma nontriv-solution-imp-solution [dest]: nontriv-solution \(z \Longrightarrow\) solution \(z\)
    by (auto simp: nontriv-solution-altdef)
```


2.5 The Pell valuation function

Solutions (x, y) have an interesting correspondence to the ring $\mathbb{Z}[\sqrt{D}]$ via the map $(x, y) \mapsto x+y \sqrt{D}$. We call this map the Pell valuation function. It is obvious that this map is injective, since \sqrt{D} is irrational.
definition pell-valuation :: int \times int \Rightarrow real where pell-valuation $=(\lambda(a, b) \cdot a+b *$ sqrt $D)$
lemma pell-valuation-nonneg [simp]: fst $z \geq 0 \Longrightarrow$ snd $z \geq 0 \Longrightarrow$ pell-valuation $z \geq 0$
by (auto simp: pell-valuation-def case-prod-unfold)
lemma pell-valuation-uminus-uminus $[$ simp $]$: pell-valuation $(-x,-y)=-$ pell-valuation (x, y)
by (simp add: pell-valuation-def)
lemma pell-valuation-eq-iff [simp]:
pell-valuation $z 1=$ pell-valuation $z 2 \longleftrightarrow z 1=z 2$
proof
assume $*:$ pell-valuation $z 1=$ pell-valuation $z 2$
obtain $a b$ where $[$ simp]: $z 1=(a, b)$ by (cases z1)
obtain $u v$ where $[$ simp $]: ~ z 2=(u, v)$ by (cases z2)
have $b=v$
proof (rule ccontr)
assume $b \neq v$
with $*$ have sqrt $D=(u-a) /(b-v)$
by (simp add: field-simps pell-valuation-def)
also have $\ldots \in \mathbb{Q}$ by auto
finally show False using irrat-sqrt-nonsquare nonsquare-D by blast
qed
moreover from this and $*$ have $a=u$
by (simp add: pell-valuation-def)
ultimately show $z 1=z 2$ by simp
qed auto

2.6 Linear ordering of solutions

Next, we show that solutions are linearly ordered w. r.t. the pointwise order on products. This means thatfor two different solutions (a, b) and (x, y), we always either have $a<x$ and $b<y$ or $a>x$ and $b>y$.

```
lemma solutions-linorder:
    fixes \(a b x y::\) nat
    assumes solution \((a, b)\) solution \((x, y)\)
    shows \(\quad a \leq x \wedge b \leq y \vee a \geq x \wedge b \geq y\)
proof -
    have \(b \leq y\) if \(a \leq x\) solution \((a, b)\) solution \((x, y)\) for \(a b x y::\) nat
    proof -
        from that have \(a^{\wedge} 2 \leq x^{\wedge} 2\) by (intro power-mono) auto
        with that and \(D\)-gt- 1 have \(b^{2} \leq y^{2}\)
            by (simp add: solution-def)
        thus \(b \leq y\)
            by (simp add: power2-nat-le-eq-le)
    qed
    from this \([o f a x b y]\) and this \([o f x a y b]\) and assms show ?thesis
        by (cases \(a \leq x\) ) auto
qed
lemma solutions-linorder-strict:
    fixes \(a b x y\) :: nat
    assumes solution \((a, b)\) solution \((x, y)\)
    shows \((a, b)=(x, y) \vee a<x \wedge b<y \vee a>x \wedge b>y\)
proof -
    have \(b=y\) if \(a=x\)
        using that assms and D-gt-1 by (simp add: solution-def)
    moreover have \(a=x\) if \(b=y\)
    proof -
        from that and assms have \(a^{2}=\operatorname{Suc}\left(D * y^{2}\right)\)
            by (simp add: solution-def)
            also from that and assms have \(\ldots=x^{2}\)
            by (simp add: solution-def)
        finally show \(a=x\) by simp
    qed
    ultimately have \([\) simp]: \(a=x \longleftrightarrow b=y\)..
    show ?thesis using solutions-linorder [OF assms]
        by (cases a \(x\) rule: linorder-cases; cases \(b\) y rule: linorder-cases) simp-all
qed
```

```
lemma solutions-le-iff-pell-valuation-le:
    fixes ab x y :: nat
    assumes solution ( }a,b\mathrm{ ) solution ( }x,y\mathrm{ )
    shows }a\leqx\wedgeb\leqy\longleftrightarrow\mathrm{ pell-valuation ( }a,b)\leq\mathrm{ pell-valuation ( }x,y\mathrm{ )
proof
    assume }a\leqx\wedgeb\leq
    thus pell-valuation ( }a,b)\leq\mathrm{ pell-valuation ( }x,y\mathrm{ )
        unfolding pell-valuation-def prod.case using D-gt-1
        by (intro add-mono mult-right-mono) auto
next
    assume *: pell-valuation ( }a,b)\leq\mathrm{ pell-valuation ( }x,y\mathrm{ )
    from assms have a\leqx^b\leqy\veex\leqa^y\leqb
        by (rule solutions-linorder)
    thus }a\leqx\wedgeb\leq
    proof
        assume }x\leqa\wedgey\leq
        hence pell-valuation ( }a,b)\geq\mathrm{ pell-valuation (}x,y
            unfolding pell-valuation-def prod.case using D-gt-1
            by (intro add-mono mult-right-mono) auto
        with * have pell-valuation ( }a,b)=\mathrm{ pell-valuation ( }x,y\mathrm{ ) by linarith
        hence (a,b) = (x,y) by simp
        thus a\leqx^b\leqy by simp
    qed auto
qed
lemma solutions-less-iff-pell-valuation-less:
    fixes a b x y :: nat
    assumes solution ( }a,b\mathrm{ ) solution ( }x,y\mathrm{ )
    shows }a<x\wedgeb<y\longleftrightarrow\mathrm{ pell-valuation ( }a,b)<\mathrm{ pell-valuation ( }x,y\mathrm{ )
proof
    assume }a<x\wedgeb<
    thus pell-valuation ( }a,b\mathrm{ ) < pell-valuation ( }x,y\mathrm{ )
        unfolding pell-valuation-def prod.case using D-gt-1
        by (intro add-strict-mono mult-strict-right-mono) auto
next
    assume *: pell-valuation ( }a,b\mathrm{ ) < pell-valuation (x, y)
    from assms have (a,b)=(x,y)\veea<x\wedgeb<y\veex<a^y<b
        by (rule solutions-linorder-strict)
    thus a<x^b<y
    proof (elim disjE)
        assume }x<a\wedgey<
        hence pell-valuation ( }a,b)>\mathrm{ pell-valuation ( }x,y\mathrm{ )
            unfolding pell-valuation-def prod.case using D-gt-1
            by (intro add-strict-mono mult-strict-right-mono) auto
        with * have False by linarith
        thus ?thesis ..
    qed (insert *, auto)
qed
```


2.7 The fundamental solution

The fundamental solution is the non-trivial solution (x, y) with non-negative x and y for which the Pell valuation $x+y \sqrt{D}$ is minimal, or, equivalently, for which x and y are minimal.

```
definition fund-sol :: nat }\times\mathrm{ nat where
    fund-sol = (THE z::nat }\times\mathrm{ nat. is-arg-min (pell-valuation :: nat }\times\mathrm{ nat }=>\mathrm{ real)
nontriv-solution z)
```

The well-definedness of this follows from the injectivity of the Pell valuation and the fact that smaller Pell valuation of a solution is smaller than that of another iff the components are both smaller.

```
theorem fund-sol-is-arg-min:
    is-arg-min (pell-valuation :: nat \(\times\) nat \(\Rightarrow\) real) nontriv-solution fund-sol
    unfolding fund-sol-def
proof (rule the \({ }^{\prime}\) )
    show \(\exists\) !z::nat \(\times\) nat. is-arg-min (pell-valuation \(::\) nat \(\times\) nat \(\Rightarrow\) real) nontriv-solution
z
    proof (rule ex-ex1I)
        fix \(z 1 z 2::\) nat \(\times\) nat
        assume is-arg-min (pell-valuation :: nat \(\times\) nat \(\Rightarrow\) real) nontriv-solution z1
            is-arg-min (pell-valuation :: nat \(\times\) nat \(\Rightarrow\) real) nontriv-solution z2
    hence pell-valuation \(z 1=\) pell-valuation \(z 2\)
        by (cases z1, cases z2, intro antisym) (auto simp: is-arg-min-def not-less)
        thus \(z 1=z 2\) by (auto split: prod.splits)
    next
    define \(y\) where \(y=\left(L E A S T y . y>0 \wedge i s\right.\)-square \(\left.\left(1+D * y^{2}\right)\right)\)
    have \(\exists y>0\). is-square \(\left(1+D * y^{2}\right)\)
        using pell-solution-exists by (auto simp: eq-commute[of - Suc -])
    hence \(y: y>0 \wedge\) is-square \(\left(1+D * y^{2}\right)\)
        unfolding \(y\)-def by (rule LeastI-ex)
    have \(y\)-le: \(y \leq y^{\prime}\) if \(y^{\prime}>0\) is-square \(\left(1+D * y^{\prime 2}\right)\) for \(y^{\prime}\)
        unfolding \(y\)-def using that by (intro Least-le) auto
    from \(y\) obtain \(x\) where \(x: x^{2}=1+D * y^{2}\)
        by (auto elim: is-nth-powerE)
    with \(y\) have nontriv-solution \((x, y)\)
            by (auto simp: nontriv-solution-def)
    have is-arg-min (pell-valuation :: nat \(\times\) nat \(\Rightarrow\) real) nontriv-solution \((x, y)\)
        unfolding is-arg-min-linorder
    proof safe
        fix \(a b::\) nat
        assume \(*\) : nontriv-solution \((a, b)\)
        hence \(b>0\) and Suc \(\left(D * b^{2}\right)=a^{2}\)
            by (auto simp: nontriv-solution-def intro!: Nat.gr0I)
        hence is-square \(\left(1+D * b^{2}\right)\)
            by (auto simp: nontriv-solution-def)
        from \(\langle b>0\rangle\) and this have \(y \leq b\) by (rule \(y\)-le)
```

```
    with «nontriv-solution ( }x,y\mathrm{ )> and * have }x\leq
    using solutions-linorder-strict[of x y a b] by (auto simp: nontriv-solution-altdef)
    with }\langley\leqb\rangle\mathrm{ show pell-valuation (int x, int y)}\leq\mathrm{ pell-valuation (int a, int b)
    unfolding pell-valuation-def prod.case by (intro add-mono mult-right-mono)
auto
    qed fact+
    thus \existsz. is-arg-min (pell-valuation :: nat }\times\mathrm{ nat }=>\mathrm{ real) nontriv-solution z ..
    qed
qed
corollary
    fund-sol-is-nontriv-solution: nontriv-solution fund-sol
    and fund-sol-minimal:
            nontriv-solution (a,b)\Longrightarrow pell-valuation fund-sol \leq pell-valuation (int a,
int b)
    and fund-sol-minimal':
        nontriv-solution (z :: nat }\times\mathrm{ nat ) }\Longrightarrow\mathrm{ pell-valuation fund-sol }\leq\mathrm{ pell-valuation
z
    using fund-sol-is-arg-min by (auto simp: is-arg-min-linorder case-prod-unfold)
lemma fund-sol-minimal':
    assumes nontriv-solution z
    shows fst fund-sol }\leqf\mathrm{ ft z snd fund-sol }\leq\mathrm{ snd z
proof -
    have pell-valuation (fst fund-sol, snd fund-sol) \leq pell-valuation (fst z, snd z)
    using fund-sol-minimal'[OF assms] by (simp add:case-prod-unfold)
    hence fst fund-sol \leqfst z ^ snd fund-sol \leq snd z
    using assms fund-sol-is-nontriv-solution
    by (subst solutions-le-iff-pell-valuation-le) (auto simp: case-prod-unfold)
    thus fst fund-sol }\leq\mathrm{ fst z snd fund-sol }\leq\mathrm{ snd z by blast+
qed
```


2.8 Group structure on solutions

As was mentioned already, the Pell valuation function provides an injective map from solutions of Pell's equation into the ring $\mathbb{Z}[\sqrt{D}]$. We shall see now that the solutions are actually a subgroup of the multiplicative group of $\mathbb{Z}[\sqrt{D}]$ via the valuation function as a homomorphism:

- The trivial solution $(1,0)$ has valuation 1 , which is the neutral element of $\mathbb{Z}[\sqrt{D}]^{*}$
- Multiplication of two solutions $a+b \sqrt{D}$ and $x+y \sqrt{D}$ leads to $\bar{x}+\bar{y} \sqrt{D}$ with $\bar{x}=x a+y b D$ and $\bar{y}=x b+y a$, which is again a solution.
- The conjugate $(x,-y)$ of a solution (x, y) is an inverse element to this multiplication operation, since $(x+y \sqrt{D})(x-y \sqrt{D})=1$.

```
definition pell-mul \(::\left({ }^{\prime} a::\right.\) comm-semiring- \(\left.1 \times{ }^{\prime} a\right) \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right) \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)\)
where
    pell-mul \(=(\lambda(a, b)(x, y) \cdot(x * a+y * b *\) of-nat \(D, x * b+y * a))\)
definition pell-cnj :: (' \(a::\) comm-ring- \(\left.1 \times{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a \times{ }^{\prime} a\) where
    pell-cnj \(=(\lambda(a, b) .(a,-b))\)
lemma pell-cnj-snd-0 [simp]: snd \(z=0 \Longrightarrow\) pell-cnj \(z=z\)
    by (cases \(z\) ) (simp-all add: pell-cnj-def)
lemma pell-mul-commutes: pell-mul z1 z2 = pell-mul z2 z1
    by (auto simp: pell-mul-def algebra-simps case-prod-unfold)
lemma pell-mul-assoc: pell-mul z1 \((\) pell-mul z2 z3 \()=\) pell-mul \((\) pell-mul z1 z2) z3
    by (auto simp: pell-mul-def algebra-simps case-prod-unfold)
lemma pell-mul-trivial-left [simp]: pell-mul \((1,0) z=z\)
    by (auto simp: pell-mul-def algebra-simps case-prod-unfold)
lemma pell-mul-trivial-right \([\) simp \(]\) : pell-mul \(z(1,0)=z\)
    by (auto simp: pell-mul-def algebra-simps case-prod-unfold)
lemma pell-mul-trivial-left-nat [simp]: pell-mul (Suc 0, 0) \(z=z\)
    by (auto simp: pell-mul-def algebra-simps case-prod-unfold)
lemma pell-mul-trivial-right-nat [simp]: pell-mul z (Suc 0, 0) \(=z\)
    by (auto simp: pell-mul-def algebra-simps case-prod-unfold)
definition pell-power :: ('a :: comm-semiring-1 \(\left.\times{ }^{\prime} a\right) \Rightarrow n a t \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)\) where
    pell-power \(z n=\left(\left(\lambda z^{\prime}\right.\right.\). pell-mul \(\left.\left.z^{\prime} z\right) \leadsto n\right)(1,0)\)
lemma pell-power-0 [simp]: pell-power z \(0=(1,0)\)
    by (simp add: pell-power-def)
lemma pell-power-one \([\) simp \(]\) : pell-power \((1,0) n=(1,0)\)
    by (induction \(n\) ) (auto simp: pell-power-def)
lemma pell-power-one-right [simp]: pell-power z \(1=z\)
    by (simp add: pell-power-def)
lemma pell-power-Suc: pell-power \(z(\) Suc \(n)=\) pell-mul \(z(\) pell-power \(z n)\)
    by (simp add: pell-power-def pell-mul-commutes)
lemma pell-power-add: pell-power \(z(m+n)=\) pell-mul (pell-power \(z m\) ) (pell-power
\(z n\) )
    by (induction \(m\) arbitrary: \(z\) )
        (simp-all add: funpow-add o-def pell-power-Suc pell-mul-assoc)
lemma pell-valuation-mult [simp]:
```

pell-valuation $($ pell-mul z1 z2) $=$ pell-valuation $z 1 *$ pell-valuation $z 2$ by (simp add: pell-valuation-def pell-mul-def case-prod-unfold algebra-simps)
lemma pell-valuation-mult-nat [simp]:
pell-valuation (case pell-mul z1 z2 of $(a, b) \Rightarrow($ int a, int $b))=$ pell-valuation z1 * pell-valuation $z 2$
by (simp add: pell-valuation-def pell-mul-def case-prod-unfold algebra-simps)
lemma pell-valuation-trivial $[$ simp $]$: pell-valuation $(1,0)=1$
by (simp add: pell-valuation-def)
lemma pell-valuation-trivial-nat $[$ simp $]$: pell-valuation $(S u c ~ 0,0)=1$ by (simp add: pell-valuation-def)
lemma pell-valuation-cnj: pell-valuation $($ pell-cnj $z)=f s t z-$ snd $z *$ sqrt D by (simp add: pell-valuation-def pell-cnj-def case-prod-unfold)
lemma pell-valuation-snd-0 [simp]: pell-valuation ($a, 0$) $=$ of-int a by (simp add: pell-valuation-def)
lemma pell-valuation-0-iff [simp]: pell-valuation $z=0 \longleftrightarrow z=(0,0)$
proof
assume $*$: pell-valuation $z=0$
have snd $z=0$
proof (rule ccontr)
assume snd $z \neq 0$
with $*$ have sqrt $D=-f s t z /$ snd z
by (simp add: pell-valuation-def case-prod-unfold field-simps)
also have $\ldots \in \mathbb{Q}$ by auto
finally show False using nonsquare-D irrat-sqrt-nonsquare by blast
qed
with $*$ have $f s t z=0$ by (simp add: pell-valuation-def case-prod-unfold)
with \langle snd $z=0$ show $z=(0,0)$ by (cases z) auto
qed (auto simp: pell-valuation-def)
lemma pell-valuation-solution-pos-nat:
fixes $z::$ nat \times nat
assumes solution z
shows pell-valuation $z>0$
proof -
from assms have $z \neq(0,0)$ by (intro notI) auto
hence pell-valuation $z \neq 0$ by (auto split: prod.splits)
moreover have pell-valuation $z \geq 0$ by (intro pell-valuation-nonneg) (auto split:
prod.splits)
ultimately show ?thesis by linarith
qed

lemma

assumes solution z

```
    shows pell-mul-cnj-right: pell-mul z (pell-cnj z) = (1,0)
    and pell-mul-cnj-left:pell-mul (pell-cnj z) z=(1,0)
    using assms by (auto simp: pell-mul-def pell-cnj-def solution-def powerD-eq-square)
lemma pell-valuation-cnj-solution:
    fixes z :: nat }\times\mathrm{ nat
    assumes solution z
    shows pell-valuation (pell-cnj z)=1/ pell-valuation z
proof -
    have pell-valuation (pell-cnj z) * pell-valuation z = pell-valuation (pell-mul
(pell-cnj z) z)
    by simp
    also from assms have pell-mul (pell-cnj z) z=(1,0)
    by (subst pell-mul-cnj-left) (auto simp: case-prod-unfold)
    finally show ?thesis using pell-valuation-solution-pos-nat[OF assms]
        by (auto simp: divide-simps)
qed
lemma pell-valuation-power [simp]: pell-valuation (pell-power z n)= pell-valuation
z^n
    by (induction n) (simp-all add: pell-power-Suc)
lemma pell-valuation-power-nat [simp]:
    pell-valuation (case pell-power z n of (a,b)=> (int a, int b)) = pell-valuation z
n
    by (induction n) (simp-all add: pell-power-Suc)
lemma pell-valuation-fund-sol-ge-2: pell-valuation fund-sol \geq2
proof -
    obtain x y where [simp]: fund-sol = (x,y) by (cases fund-sol)
    from fund-sol-is-nontriv-solution have eq: 㷏=1+D* y
        by (auto simp: nontriv-solution-def)
    consider y>0 | y=0 x\not=1
    using fund-sol-is-nontriv-solution by (force simp: nontriv-solution-def)
    thus ?thesis
    proof cases
    assume y>0
    hence 1 + 1*1\leq1+D*\mp@subsup{y}{}{2}
            using D-pos by (intro add-mono mult-mono) auto
    also from eq have ... = 秋..
    finally have }\mp@subsup{x}{}{2}>\mp@subsup{1}{}{2}\mathrm{ by simp
    hence }x>1\mathrm{ by (rule power2-less-imp-less) auto
    with }\langley>0\rangle\mathrm{ have }x+y*\mathrm{ sqrt D 2 2 + 1*1
            using D-pos by (intro add-mono mult-mono) auto
    thus ?thesis by (simp add: pell-valuation-def)
    next
    assume [simp]: y=0 and }x\not=
    with eq have x\not=0 by (intro notI) auto
```

```
    with }\langlex\not=1\rangle\mathrm{ have }x\geq2\mathrm{ by simp
    thus ?thesis by (auto simp: pell-valuation-def)
    qed
qed
```

lemma solution-pell-mul [intro]:
assumes solution z1 solution z2
shows solution (pell-mul z1 z2)
proof -
obtain $a b$ where $[$ simp]: $z 1=(a, b)$ by (cases z1)
obtain $c d$ where $[$ simp $]: z 2=(c, d)$ by (cases z2)
from assms show ?thesis
by (simp add: solution-def pell-mul-def case-prod-unfold powerD-eq-square alge-
bra-simps)
qed
lemma solution-pell-cnj [intro]:
assumes solution z
shows solution (pell-cnj z)
using assms by (auto simp: solution-def pell-cnj-def)
lemma solution-pell-power $[$ simp, intro $]$: solution $z \Longrightarrow$ solution (pell-power z n)
by (induction n) (auto simp: pell-power-Suc)
lemma pell-mul-eq-trivial-nat-iff:
pell-mul z1 z2 $=($ Suc 0, 0) $\longleftrightarrow z 1=($ Suc 0, 0) $\wedge z 2=($ Suc 0, 0)
using D-gt-1 by (cases z1; cases z2) (auto simp: pell-mul-def)
lemma nontriv-solution-pell-nat-mul1:
solution $(z 1$:: nat \times nat $) \Longrightarrow$ nontriv-solution $z 2 \Longrightarrow$ nontriv-solution (pell-mul
$z 1$ z2)
by (auto simp: nontriv-solution-altdef pell-mul-eq-trivial-nat-iff)
lemma nontriv-solution-pell-nat-mul2:
nontriv-solution $(z 1::$ nat \times nat $) \Longrightarrow$ solution $z 2 \Longrightarrow$ nontriv-solution (pell-mul
$z 1$ z2)
by (auto simp: nontriv-solution-altdef pell-mul-eq-trivial-nat-iff)
lemma nontriv-solution-power-nat [intro]:
assumes nontriv-solution $(z::$ nat \times nat $) n>0$
shows nontriv-solution (pell-power $z n$)
proof -
have nontriv-solution (pell-power z n) $\vee n=0$
by (induction n)
(insert assms(1), auto intro: nontriv-solution-pell-nat-mul1 simp: pell-power-Suc)
with assms(2) show ?thesis by auto
qed

2.9 The different regions of the valuation function

Next, we shall explore what happens to the valuation function for solutions (x, y) for different signs of x and y :

- If $x>0$ and $y>0$, we have $x+y \sqrt{D}>1$.
- If $x>0$ and $y<0$, we have $0<x+y \sqrt{D}<1$.
- If $x<0$ and $y>0$, we have $-1<x+y \sqrt{D}<0$.
- If $x<0$ and $y<0$, we have $x+y \sqrt{D}<-1$.

In particular, this means that we can deduce the sign of x and y if we know in which of these four regions the valuation lies.

```
lemma
    assumes \(x>0 y>0\) solution \((x, y)\)
    shows pell-valuation-pos-pos: pell-valuation \((x, y)>1\)
    and pell-valuation-pos-neg-aux: pell-valuation \((x,-y) \in\{0<. .<1\}\)
proof -
    from \(D\)-gt- 1 assms have \(x+y *\) sqrt \(D \geq 1+1 * 1\)
        by (intro add-mono mult-mono) auto
    hence \(g t-1: x+y * \operatorname{sqrt} D>1\) by \(\operatorname{simp}\)
    thus pell-valuation \((x, y)>1\) by (simp add: pell-valuation-def)
    from assms have \(1=x^{\wedge} 2-D * y^{\wedge} 2\) by (simp add: solution-def)
    also have of-int \(\ldots=(x-y *\) sqrt \(D) *(x+y *\) sqrt \(D)\)
        by (simp add: field-simps power2-eq-square)
    finally have eq: \((x-y *\) sqrt \(D)=1 /(x+y *\) sqrt \(D)\)
        using gt-1 by (simp add: field-simps)
    note \(e q\)
    also from gt-1 have \(1 /(x+y *\) sqrt \(D)<1 / 1\)
        by (intro divide-strict-left-mono) auto
    finally have \(x-y *\) sqrt \(D<1\) by \(\operatorname{simp}\)
    note \(e q\)
    also from gt-1 have \(1 /(x+y *\) sqrt \(D)>0\)
        by (intro divide-pos-pos) auto
    finally have \(x-y *\) sqrt \(D>0\).
    with \(\langle x-y *\) sqrt \(D<1\rangle\) show pell-valuation \((x,-y) \in\{0<. .<1\}\)
        by (simp add: pell-valuation-def)
qed
lemma pell-valuation-pos-neg:
    assumes \(x>0 y<0\) solution \((x, y)\)
    shows pell-valuation \((x, y) \in\{0<. .<1\}\)
    using pell-valuation-pos-neg-aux[of \(x-y]\) assms by simp
```

lemma pell-valuation-neg-neg:
assumes $x<0 y<0$ solution (x, y)
shows pell-valuation $(x, y)<-1$
using pell-valuation-pos-pos $[o f-x-y]$ assms by simp
lemma pell-valuation-neg-pos:
assumes $x<0 y>0$ solution (x, y)
shows pell-valuation $(x, y) \in\{-1<. .<0\}$
using pell-valuation-pos-neg[of $-x-y]$ assms by simp
lemma pell-valuation-solution-gt1D:
assumes solution z pell-valuation $z>1$
shows fst $z>0 \wedge$ snd $z>0$
using pell-valuation-pos-pos[of fst z snd $z]$ pell-valuation-pos-neg[of fst z snd $z]$ pell-valuation-neg-pos[of fst z snd $z]$ pell-valuation-neg-neg[of fst z snd $z]$ assms
by (cases fst z 0 :: int rule: linorder-cases; cases snd z 0 :: int rule: linorder-cases; cases z) auto

2.10 Generating property of the fundamental solution

We now show that the fundamental solution generates the set of the (nonnegative) solutions in the sense that each solution is a power of the fundamental solution. Combined with the symmetry property that (x, y) is a solution iff $(\pm x, \pm y)$ is a solution, this gives us a complete characterisation of all solutions of Pell's equation.

```
definition nth-solution :: nat \(\Rightarrow\) nat \(\times\) nat where
    nth-solution \(n=\) pell-power fund-sol \(n\)
lemma pell-valuation-nth-solution [simp]:
    pell-valuation ( \(n\) th-solution \(n\) ) \(=\) pell-valuation fund-sol \({ }^{\wedge} n\)
    by (simp add: nth-solution-def)
theorem nth-solution-inj: inj nth-solution
proof
    fix \(m n\) :: nat
    assume nth-solution \(m=n\) th-solution \(n\)
    hence pell-valuation ( \(n\) th-solution \(m\) ) \(=\) pell-valuation ( \(n\) th-solution \(n\) )
        by (simp only: )
    also have pell-valuation ( \(n\) th-solution \(m\) ) \(=\) pell-valuation fund-sol \({ }^{\wedge} m\)
        by \(\operatorname{simp}\)
    also have pell-valuation ( \(n\) th-solution \(n\) ) \(=\) pell-valuation fund-sol \({ }^{\wedge} n\)
        by \(\operatorname{simp}\)
    finally show \(m=n\)
        using pell-valuation-fund-sol-ge-2 by (subst (asm) power-inject-exp) auto
qed
```

```
theorem nth-solution-sound [intro]: solution (nth-solution n)
    using fund-sol-is-nontriv-solution by (auto simp: nth-solution-def)
theorem nth-solution-sound' [intro]: n > 0 \Longrightarrow nontriv-solution (nth-solution n)
    using fund-sol-is-nontriv-solution by (auto simp: nth-solution-def)
theorem nth-solution-complete:
    fixes z :: nat }\times\mathrm{ nat
    assumes solution z
    shows z\in range nth-solution
proof (cases z = (1,0))
    case True
    hence z= nth-solution 0 by (simp add: nth-solution-def)
    thus ?thesis by auto
next
    case False
    with assms have nontriv-solution z by (auto simp: nontriv-solution-altdef)
    show ?thesis
    proof (rule ccontr)
        assume \neg?thesis
    hence *: pell-power fund-sol n\not=z for n unfolding nth-solution-def by blast
    define }u\mathrm{ where }u=\mathrm{ pell-valuation fund-sol
    define }v\mathrm{ where }v=\mathrm{ pell-valuation z
    define }n\mathrm{ where }n=nat \lfloorlog uv
    have u-ge-2: u \geq2 using pell-valuation-fund-sol-ge-2 by (auto simp: u-def)
    have v-pos: v>0 unfolding v-def using assms
        by (intro pell-valuation-solution-pos-nat) auto
    have u-le-v: }u\leqv\mathrm{ unfolding u-def v-def by (rule fund-sol-minimal') fact
    have u-power-neq-v: }u\mp@subsup{}{}{`}k\not=v for 
    proof
        assume }u\mp@subsup{}{}{`}k=
        also have }u\mp@subsup{}{}{`}k= pell-valuation (pell-power fund-sol k
            by (simp add: u-def)
        also have ... =v \longleftrightarrow pell-power fund-sol k=z
            unfolding v-def by (subst pell-valuation-eq-iff) (auto split: prod.splits)
        finally show False using * by blast
    qed
    from u-le-v v-pos u-ge-2 have log-ge-1: log uv\geq1
        by (subst one-le-log-cancel-iff) auto
    define }\mp@subsup{z}{}{\prime}\mathrm{ where }\mp@subsup{z}{}{\prime}=\mathrm{ pell-mul z (pell-power (pell-cnj fund-sol) n)
    define }x\mathrm{ and }y\mathrm{ where }x=nat |fst z'| and y=nat |snd z'
    have solution z' using assms fund-sol-is-nontriv-solution unfolding z'-def
        by (intro solution-pell-mul solution-pell-power solution-pell-cnj) (auto simp:
case-prod-unfold)
```

```
    have \(u^{\wedge} n<v\)
    proof -
    from \(u-g e-2\) have \(u^{\wedge} n=u\) powr real \(n\) by (subst powr-realpow) auto
    also have \(\ldots \leq u\) powr log \(u\) v using \(u\)-ge-2 log-ge-1
        by (intro powr-mono) (auto simp: \(n\)-def)
    also have ... \(=v\)
        using \(u\)-ge-2 \(v\)-pos by (subst powr-log-cancel) auto
    finally have \(u^{\wedge} n \leq v\).
    with \(u\)-power-neq-v[of \(n\) ] show ?thesis by linarith
qed
moreover have \(v<u{ }^{\wedge}\) Suc \(n\)
proof -
    have \(v=u\) powr \(\log u v\)
        using u-ge-2 v-pos by (subst powr-log-cancel) auto
    also have \(\log u v \leq 1+\) real-of-int \(\lfloor\log u v\rfloor\) by linarith
    hence \(u\) powr log \(u v \leq u\) powr real (Suc n) using u-ge-2 log-ge-1
        by (intro powr-mono) (auto simp: n-def)
        also have \(\ldots=u^{\wedge}\) Suc \(n\) using \(u\)-ge-2 by (subst powr-realpow) auto
    finally have \(u^{\wedge}\) Suc \(n \geq v\).
    with \(u\)-power-neq-v[of Suc n] show ?thesis by linarith
qed
ultimately have \(v / u^{\wedge} n \in\{1<. .<u\}\)
    using \(u\)-ge-2 by (simp add: field-simps)
also have \(v / u^{\wedge} n=\) pell-valuation \(z^{\prime}\)
    using fund-sol-is-nontriv-solution
    by (auto simp add: \(z^{\prime}\)-def \(u\)-def \(v\)-def pell-valuation-cnj-solution field-simps)
finally have val: pell-valuation \(z^{\prime} \in\{1<. .<u\}\).
from val and 〈solution \(\left.z^{\prime}\right\rangle\) have nontriv-solution \(z^{\prime}\)
    by (auto simp: nontriv-solution-altdef)
from «solution \(z^{\prime} 〉\) and val have \(f s t z^{\prime}>0 \wedge\) snd \(z^{\prime}>0\)
    by (intro pell-valuation-solution-gt1D) auto
    hence \([\) simp \(]: z^{\prime}=(\) int \(x\), int \(y)\)
    by (auto simp: \(x\)-def \(y\)-def)
    from 〈nontriv-solution \(\left.z^{\prime}\right\rangle\) have pell-valuation (int \(x\), int \(\left.y\right) \geq u\)
        unfolding \(u\)-def by (intro fund-sol-minimal) auto
    with val show False by simp
qed
qed
corollary solution-iff-nth-solution:
    fixes \(z::\) nat \(\times\) nat
    shows solution \(z \longleftrightarrow z \in\) range nth-solution
    using nth-solution-sound nth-solution-complete by blast
corollary solution-iff-nth-solution':
    fixes \(z::\) int \(\times\) int
```

```
    shows solution }(a,b)\longleftrightarrow(nat |a|,nat |b|)\in range nth-solutio
proof -
    have solution (a,b)\longleftrightarrow solution (nat |a|, nat |b|)
        by simp
    also have }\ldots\longleftrightarrow(\mathrm{ nat |a|, nat |b|) }\in\mathrm{ range nth-solution
        by (rule solution-iff-nth-solution)
    finally show ?thesis.
qed
corollary infinite-solutions: infinite {z :: nat }\times\mathrm{ nat. solution z}
proof -
    have infinite (range nth-solution)
    by (intro range-inj-infinite nth-solution-inj)
    also have range nth-solution = {z :: nat }\times\mathrm{ nat. solution z}
    by (auto simp: solution-iff-nth-solution)
    finally show ?thesis.
qed
corollary infinite-solutions': infinite {z :: int }\times\mathrm{ int. solution z}
proof
    assume finite {z :: int }\times\mathrm{ int. solution z}
    hence finite (map-prod (nat \circabs) (nat \circabs)'{z :: int }\times\mathrm{ int. solution z})
        by (rule finite-imageI)
    also have (map-prod (nat \circabs) (nat \circabs)'{z :: int }\times\mathrm{ int. solution z})=
                                    {z :: nat }\times\mathrm{ nat. solution z}
    by (auto simp: map-prod-def image-iff intro!: exI[of - int x for x])
    finally show False using infinite-solutions by contradiction
qed
lemma strict-mono-pell-valuation-nth-solution: strict-mono (pell-valuation \circ nth-solution)
    using pell-valuation-fund-sol-ge-2
    by (auto simp: strict-mono-def intro!: power-strict-increasing)
lemma strict-mono-nth-solution:
    strict-mono (fst \circ nth-solution) strict-mono (snd \circ nth-solution)
proof -
    let ?g = nth-solution
    have fst (?g m)< fst (?g n) ^ snd (?gm)<snd (?g n) if m<n for mn
            using pell-valuation-fund-sol-ge-2 that
            by (subst solutions-less-iff-pell-valuation-less) auto
    thus strict-mono (fst \circ nth-solution) strict-mono (snd \circ nth-solution)
            by (auto simp: strict-mono-def)
qed
end
```


2.11 The case of an "almost square" parameter

If D is equal to $a^{2}-1$ for some $a>1$, we have a particularly simple case where the fundamental solution is simply $(1, a)$.

```
context
    fixes a :: nat
    assumes a: a> 1
begin
lemma pell-square-minus1: pell (a}\mp@subsup{a}{}{2}-\mathrm{ Suc 0)
proof
    show \negis-square (a}\mp@subsup{a}{}{2}-\mathrm{ Suc 0)
    proof
        assume is-square (a}\mp@subsup{a}{}{2}-\mathrm{ Suc 0)
        then obtain k}\mathrm{ where }\mp@subsup{k}{}{2}=\mp@subsup{a}{}{2}-1\mathrm{ by (auto elim: is-nth-powerE)
        with a have \mp@subsup{a}{}{2}=Suc (k2) by simp
        hence a = 1 using pell-square-solution-nat-iff[of 1 a k] by simp
        with a show False by simp
    qed
qed
interpretation pell a}\mp@subsup{a}{}{2}-\mathrm{ Suc 0
    by (rule pell-square-minus1)
lemma fund-sol-square-minus1: fund-sol = (a,1)
proof -
    from a have sol: nontriv-solution (a, 1)
        by (simp add: nontriv-solution-def)
    from sol have snd fund-sol }\leq
        using fund-sol-minimal'}[\mathrm{ [of (a, 1)] by auto
    with solutions-linorder-strict[of a 1 fst fund-sol snd fund-sol]
            fund-sol-is-nontriv-solution sol
    show fund-sol = (a,1)
        by (cases fund-sol) (auto simp: nontriv-solution-altdef)
qed
end
```


2.12 Alternative presentation of the main results

theorem pell-solutions:
fixes D :: nat
assumes $\nexists k . D=k^{2}$
obtains $x_{0} y_{0}$:: nat
where $\forall(x::$ int $)(y::$ int $)$ $x^{2}-D * y^{2}=1 \longleftrightarrow$ $\left(\exists n:: n a t\right.$. nat $|x|+$ sqrt $D *$ nat $\left.|y|=\left(x_{0}+\text { sqrt } D * y_{0}\right)^{\wedge} n\right)$
proof -
from assms interpret pell

```
    by unfold-locales (auto simp: is-nth-power-def)
    show ?thesis
    proof (rule that[of fst fund-sol snd fund-sol], intro allI, goal-cases)
    case (1 x y)
    have}(\mp@subsup{x}{}{2}-\operatorname{int}D*\mp@subsup{y}{}{2}=1)\longleftrightarrow\mathrm{ solution ( }x,y\mathrm{ )
        by (auto simp: solution-def)
    also have }\ldots\longleftrightarrow(\existsn.(\mathrm{ nat }|x|\mathrm{ , nat |y|)= nth-solution n)
    by (subst solution-iff-nth-solution') blast
    also have (\lambdan. (nat |x|, nat |y|)= nth-solution n) =
                            (\lambdan. pell-valuation (nat |x|, nat |y|)= pell-valuation (nth-solution n))
        by (subst pell-valuation-eq-iff) (auto simp add: case-prod-unfold prod-eq-iff
fun-eq-iff)
    also have ... = (\lambdan. nat |x| + sqrt D* nat |y| = (fst fund-sol + sqrt D * snd
fund-sol) ^ n)
            by (subst pell-valuation-nth-solution)
            (simp add: pell-valuation-def case-prod-unfold mult-ac)
    finally show ?case.
    qed
qed
corollary pell-solutions-infinite:
    fixes D :: nat
    assumes #k. D= k
    shows infinite {(x :: int, y :: int). (x - D* y}=1
proof -
    from assms interpret pell
    by unfold-locales (auto simp: is-nth-power-def)
    have}{(x:: int,y :: int). \mp@subsup{x}{}{2}-D*\mp@subsup{y}{}{2}=1}={z. solution z
    by (auto simp: solution-def)
    also have infinite ... by (rule infinite-solutions')
    finally show ?thesis.
qed
end
```


2.13 Executable code

```
theory Pell-Algorithm
imports
    Pell
    Efficient-Discrete-Sqrt
    HOL-Library.Discrete
    HOL-Library.While-Combinator
    HOL-Library.Stream
begin
```


2.13.1 Efficient computation of powers by squaring

The following is a tail-recursive implementation of exponentiation by squaring. It works for any binary operation f that fulfils $f x(f x z)=f(f x x) z$, i. e. some weak form of associativity.

```
context
    fixes f:: ' }a>>'' a=>''
begin
```

function efficient-power :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow n a t \Rightarrow$ ' a where
efficient-power y x $0=y$
| efficient-power y x (Suc 0) $=f x y$
$\mid n \neq 0 \Longrightarrow$ even $n \Longrightarrow$ efficient-power y $x=$ efficient-power y $(f x x)$ (n div 2)
$\mid n \neq 1 \Longrightarrow$ odd $n \Longrightarrow$ efficient-power y $x n=$ efficient-power $(f x y)(f x x)(n$ div
2)
by force+
termination by (relation measure (snd \circ snd)) (auto elim: oddE)
lemma efficient-power-code [code]:
efficient-power y x n $=$
(if $n=0$ then y
else if $n=1$ then $f x y$
else if even n then efficient-power $y(f x x)$ (n div 2)
else efficient-power ($f x y$) ($f x x$) (n div 2))
by (induction y x n rule: efficient-power.induct) auto
lemma efficient-power-correct:
assumes $\bigwedge x z . f x(f x z)=f(f x x) z$
shows efficient-power y $x n=\left(f x^{\text {^^ }} n\right) y$
proof -
have $[\operatorname{simp}]: f$ ~2 $=(\lambda x . f(f x))$ for $f::{ }^{\prime} a \Rightarrow^{\prime} a$
by (simp add: eval-nat-numeral o-def)
show ?thesis
by (induction y x n rule: efficient-power.induct)
(auto elim!: evenE oddE simp: funpow-mult [symmetric] funpow-Suc-right
assms
simp del: funpow.simps(2))
qed
end

2.13.2 Multiplication and powers of solutions

We define versions of Pell solution multiplication and exponentiation specialised to natural numbers, both for efficiency reasons and to circumvent the problem of generating code for definitions made inside locales.

```
fun pell-mul-nat :: nat }=>\mathrm{ nat }\times\mathrm{ nat }=>\mathrm{ - where
    pell-mul-nat D (a,b) (x,y)=(a*x+D*b*y,a*y+b*x)
```

```
lemma (in pell) pell-mul-nat-correct [simp]: pell-mul-nat \(D=\) pell.pell-mul \(D\)
    by (auto simp add: pell-mul-def fun-eq-iff)
definition efficient-pell-power :: nat \(\Rightarrow\) nat \(\times\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\times\) nat where
    efficient-pell-power \(D\) z \(n=\) efficient-power \((\) pell-mul-nat \(D)(1,0)\) z \(n\)
lemma efficient-pell-power-correct [simp]:
    efficient-pell-power \(D z n=(\) pell-mul-nat \(D z \sim n)(1,0)\)
    unfolding efficient-pell-power-def
    by (intro efficient-power-correct) (auto simp: algebra-simps)
```


2.13.3 Finding the fundamental solution

In the following, we set up a very simple algorithm for computing the fundamental solution (x, y). We try inreasing values for y until $1+D y^{2}$ is a perfect square, which we check using an efficient square-detection algorithm. This is efficient enough to work on some interesting small examples.
Much better algorithms (typically based on the continued fraction expansion of \sqrt{D}) are available, but they are also considerably more complicated.

```
lemma Discrete-sqrt-square-is-square:
    assumes is-square n
    shows Discrete.sqrt n^2 = n
    using assms unfolding is-nth-power-def by force
definition find-fund-sol-step :: nat }=>\mathrm{ nat }\times\mathrm{ nat + nat }\times\mathrm{ nat }=>\mathrm{ - where
    find-fund-sol-step D = ( }\lambda\operatorname{Inl}(y,\mp@subsup{y}{}{\prime})
        (case get-nat-sqrt y' of
            Some x = Inr (x,y)
            None }=>\operatorname{Inl}(y+1,\mp@subsup{y}{}{\prime}+D*(2*y+1)))
definition find-fund-sol where
    find-fund-sol D =
        (if square-test D then
            (0,0)
        else
            sum.projr (while sum.isl (find-fund-sol-step D) (Inl (1, 1 + D))))
lemma fund-sol-code:
    assumes \negis-square (D :: nat)
    shows pell.fund-sol D = sum.projr (while isl (find-fund-sol-step D) (Inl (Suc
0, Suc D)))
proof -
    from assms interpret pell D by unfold-locales
    note [simp] = find-fund-sol-step-def
    define f}\mathrm{ where f= find-fund-sol-step D
    define P :: nat => bool where P=(\lambday.y>0^ is-square (y^2*D+1))
    define }Q:: nat \times nat =>b bool wher
```

```
    \(Q=\left(\lambda(x, y) . P y \wedge\left(\forall y^{\prime} \in\{0<. .<y\} . \neg P y^{\prime}\right) \wedge x=\operatorname{Discrete.sqrt}\left(y^{\wedge} 2 * D+\right.\right.\)
1))
    define \(R\) :: nat \(\times\) nat + nat \(\times\) nat \(\Rightarrow\) bool
    where \(R=(\lambda s\). case s of
        \(\operatorname{Inl}\left(m, m^{\prime}\right) \Rightarrow m>0 \wedge\left(m^{\prime}=m^{\wedge} 2 * D+1\right) \wedge(\forall y \in\{0<. .<m\}\).
\(\neg i s\)-square \(\left(y^{\wedge} 2 * D+1\right)\) )
    | Inr \(x \Rightarrow Q x\) )
    define rel :: ((nat \(\times\) nat \(+n a t \times n a t) \times(n a t \times n a t+n a t \times n a t))\) set
    where rel \(=\{(A, B) .(\) case \((A, B)\) of
                                    \(\left(\operatorname{Inl}(m,-), \operatorname{Inl}\left(m^{\prime},-\right)\right) \Rightarrow m^{\prime}>0 \wedge m>m^{\prime} \wedge m \leq \operatorname{snd}\)
```

fund-sol

$$
\begin{aligned}
& \left(\text { Inr }-, \text { Inl }\left(m^{\prime},-\right)\right) \Rightarrow m^{\prime} \leq \text { snd fund-sol } \\
& -\Rightarrow \text { False }) \wedge A=f B\}
\end{aligned}
$$

obtain $x y$ where $x y$: sum.projr (while isl $f(\operatorname{Inl}($ Suc $0, S u c D)))=(x, y)$
by (cases sum.projr (while isl $f(\operatorname{Inl}($ Suc 0, Suc D) $)$))
have neq-fund-solI: $y \neq$ snd fund-sol if \neg is-square $\left(S u c\left(y^{2} * D\right)\right.$) for y proof
assume $y=$ snd fund-sol
with fund-sol-is-nontriv-solution have Suc $\left(y^{2} * D\right)=$ fst fund-sol ^2
by (simp add: nontriv-solution-def case-prod-unfold)
hence is-square $\left(S u c\left(y^{2} * D\right)\right.$) by simp
with that show False by contradiction
qed
have case-sum (λ-. False) Q (while sum.isl $\left.f\left(\operatorname{Inl}\left(m, m^{\wedge} 2 * D+1\right)\right)\right)$
if $\forall y \in\{0<. .<m\}$. ᄀis-square $(y \sim 2 * D+1) m>0$ for m
proof (rule while-rule $[$ where $b=$ sum.isl $]$)
show $R\left(\operatorname{Inl}\left(m, m^{2} * D+1\right)\right)$
using that by (auto simp: R-def)
next
fix s assume $R s$ isl s
thus $R(f s)$
by (auto simp: not-less-less-Suc-eq Q-def P-def R-def f-def get-nat-sqrt-def powerD-eq-square algebra-simps split: sum.splits prod.splits)
next
fix s assume $R s \neg i s l s$
thus case s of Inl $-\Rightarrow$ False \mid Inr $x \Rightarrow Q x$
by (auto simp: R-def split: sum.splits)
next
fix s assume $s: R$ isl s
show $(f s, s) \in$ rel
proof (cases s)
case $[$ simp $]$: ($\mathrm{Inl} s^{\prime}$)
obtain $a b$ where $[s i m p]: s^{\prime}=(a, b)$ by (cases $\left.s^{\prime}\right)$
from s have $*: a>0 b=\operatorname{Suc}\left(a^{2} * D\right) \bigwedge y . y \in\{0<. .<a\} \Longrightarrow \neg$ is-square
(Suc $\left.\left(y^{2} * D\right)\right)$
by (auto simp: R-def)

```
    have \(a<\) snd fund-sol if \(* *: \neg\) is-square \(\left(S u c\left(a^{2} * D\right)\right)\)
    proof -
        from neq-fund-solI have \(y^{\prime} \neq\) snd fund-sol if \(y^{\prime} \in\{0<. .<\) Suc \(a\}\) for \(y^{\prime}\)
            using \(* * *\) that by (cases \(y^{\prime}=a\) ) auto
        moreover have snd fund-sol \(\neq 0\) using fund-sol-is-nontriv-solution
            by (intro notI, cases fund-sol) (auto simp: nontriv-solution-altdef)
        ultimately have \(\forall y^{\prime} \leq a . y^{\prime} \neq\) snd fund-sol by (auto simp: less-Suc-eq-le)
        thus snd fund-sol \(>a\) by (cases \(a<\) snd fund-sol) (auto simp: not-less)
    qed
    moreover have \(a \leq\) snd fund-sol
    proof -
        have \(\forall y^{\prime} \in\{0<. .<a\} . y^{\prime} \neq\) snd fund-sol using neq-fund-solI *
        by (auto simp: less-Suc-eq-le)
        moreover have snd fund-sol \(\neq 0\) using fund-sol-is-nontriv-solution
        by (intro notI, cases fund-sol) (auto simp: nontriv-solution-altdef)
        ultimately have \(\forall y^{\prime}<a . y^{\prime} \neq\) snd fund-sol by (auto simp: less-Suc-eq-le)
        thus snd fund-sol \(\geq a\) by (cases \(a \leq\) snd fund-sol) (auto simp: not-less)
    qed
    ultimately show ?thesis using *
        by (auto simp: f-def get-nat-sqrt-def rel-def)
    qed (insert \(s\), auto)
next
    define \(r e l^{\prime}\)
        where rel \(^{\prime}=\{(y, x)\). (case \(x\) of Inl \((m,-) \Rightarrow m \leq\) snd fund-sol \(\mid\) Inr \(-\Rightarrow\)
False) \(\wedge y=f x\}\)
    have wf rel' unfolding \(r e l^{\prime}-d e f\)
        by (rule wf-if-measure[where \(f=\lambda z\). case \(z\) of \(\operatorname{Inl}(m,-) \Rightarrow S u c\) (snd fund-sol)
\(-m \mid-\Rightarrow 0])\)
            (auto split: prod.splits sum.splits simp: \(f\)-def get-nat-sqrt-def)
    moreover have rel \(\subseteq r l^{\prime}\)
    proof safe
        fix \(w z\) assume \((w, z) \in\) rel
        thus \((w, z) \in\) rel \(^{\prime}\) by (cases w; cases \(z\) ) (auto simp: rel-def rel'-def)
    qed
    ultimately show wf rel by (rule wf-subset)
qed
from this[of 1] and \(x y\) have \(*: ~ Q(x, y)\)
    by (auto split: sum.splits)
from \(*\) have is-square \(\left(S u c\left(y^{2} * D\right)\right.\) ) by (simp add: \(Q\)-def P-def)
with \(*\) have \(x^{2}=S u c\left(y^{2} * D\right) y>0\)
    by (auto simp: \(Q\)-def P-def Discrete-sqrt-square-is-square)
hence nontriv-solution ( \(x, y\) )
    by (auto simp: nontriv-solution-def)
from this have snd fund-sol \(\leq\) snd \((x, y)\)
    by (rule fund-sol-minimal')
moreover have snd fund-sol \(\geq y\)
proof -
    from \(*\) have \(\left(\forall y^{\prime} \in\{0<. .<y\}\right.\). \(\neg\) is-square \(\left.\left(S u c\left(y^{\prime 2} * D\right)\right)\right)\)
```

```
    by (simp add: \(Q\)-def \(P\)-def)
    with neq-fund-solI have \(\left(\forall y^{\prime} \in\{0<. .<y\} . y^{\prime} \neq\right.\) snd fund-sol \()\)
        by auto
    moreover have snd fund-sol \(\neq 0\)
        using fund-sol-is-nontriv-solution
        by (cases fund-sol) (auto intro!: Nat.gr0I simp: nontriv-solution-altdef)
    ultimately have ( \(\forall y^{\prime}<y . y^{\prime} \neq\) snd fund-sol) by auto
    thus snd fund-sol \(\geq y\) by (cases snd fund-sol \(\geq y\) ) (auto simp: not-less)
qed
ultimately have snd fund-sol \(=y\) by simp
with solutions-linorder-strict[of \(x\) y fst fund-sol snd fund-sol]
    fund-sol-is-nontriv-solution 〈nontriv-solution \((x, y)\) 〉
    have fst fund-sol \(=x\) by (cases fund-sol) (auto simp: nontriv-solution-altdef)
with \(\langle\) snd fund-sol \(=y\rangle\) have fund-sol \(=(x, y)\)
    by (cases fund-sol) simp
    with \(x y\) show ?thesis by (simp add: \(f\)-def)
qed
lemma find-fund-sol-correct: find-fund-sol \(D=\) (if is-square \(D\) then \((0,0)\) else
pell.fund-sol D)
    by (simp add: find-fund-sol-def fund-sol-code square-test-correct)
```


2.13.4 The infinite list of all solutions

definition pell-solutions :: nat \Rightarrow (nat \times nat) stream where

$$
\text { pell-solutions } D=(\text { let } z=\text { find-fund-sol } D \text { in siterate }(\text { pell-mul-nat } D z)(1,0))
$$

lemma (in pell) snth (pell-solutions $D) n=n$ th-solution n
by (simp add: pell-solutions-def Let-def find-fund-sol-correct nonsquare-D nth-solution-def pell-power-def pell-mul-commutes[of - fund-sol])

2.13.5 Computing the n-th solution

definition find-nth-solution $::$ nat \Rightarrow nat \Rightarrow nat \times nat where
find-nth-solution $D n=$
(if is-square D then $(0,0)$ else let $z=$ sum.projr $($ while isl $($ find-fund-sol-step $D)($ Inl (Suc 0, Suc D) $))$ in efficient-pell-power $D z n$)
lemma (in pell) find-nth-solution-correct: find-nth-solution $D n=n t h-s o l u t i o n ~ n$ by (simp add: find-nth-solution-def nonsquare-D nth-solution-def fund-sol-code pell-power-def pell-mul-commutes[of - projr -])
end

2.13.6 Tests

```
theory Pell-Algorithm-Test
imports
    Pell-Algorithm
```

```
    HOL-Library.Code-Target-Numeral
    HOL-Library.Code-Lazy
begin
code-lazy-type stream
value find-fund-sol 73
value find-fund-sol 106
value stake 100 (pell-solutions 73)
value snth (pell-solutions 73) 600
value find-nth-solution 73 600
value find-nth-solution 106 10
end
```


References

[1] Pell's equation, handout for MATHS 714. Lecture notes, University of Auckland, 2008.
[2] H. Cohen. A Course in Computational Algebraic Number Theory. Springer, 2010.
[3] M. Jacobson and H. Williams. Solving the Pell Equation. CMS Books in Mathematics. Springer New York, 2008.

