Veritying a Decision Procedure for Pattern
Completeness*

René Thiemann

University of Innsbruck, Austria

Akihisa Yamada

National Institute of Advanced Industrial Science and Technology,
Japan

March 17, 2025

Abstract

Pattern completeness is the property that the left-hand sides of a
functional program or term rewrite system cover all cases w.r.t. pattern
matching. We verify a recent (abstract) decision procedure for pattern
completeness that covers the general case, i.e., in particular without
the usual restriction of left-linearity. In two refinement steps, we fur-
ther develop an executable version of that abstract algorithm. On our
example suite, this verified implementation is faster than other im-
plementations that are based on alternative (unverified) approaches,
including the complement algorithm, tree automata encodings, and
even the pattern completeness check of the GHC Haskell compiler.

Contents
1 Introduction 2

2 Auxiliary Algorithm for Testing Whether "set xs" is a Sin-
gleton Set 3

3 An Interface for Solvers for a Subset of Finite Integer Dif-
ference Logic 3

*This research was supported by the Austrian Science Fund (FWF) project I 5943.

4 Computing Nonempty and Infinite sorts 4

4.1 Deciding the nonemptyness of all sorts under consideration . 5
4.2 Deciding infiniteness of a sort and computing cardinalities . . 8
5 Pattern Completeness 19

6 A Set-Based Inference System to Decide Pattern Complete-

ness 20
6.1 Defining Pattern Completeness 22
6.2 Definition of Algorithm — Inference Rules 25
6.3 Soundness of the inference rules 31

7 A Multiset-Based Inference System to Decide Pattern Com-

pleteness 61
7.1 Definition of the Inference Rules 61
7.2 The evaluation cannot get stuck 63
7.3 Termination 74
7.4 Partial Correctness via Refinement 85

8 A List-Based Implementation to Decide Pattern Complete-

ness 89

8.1 Definition of Algorithm 89

8.2 Partial Correctness of the Implementation 96

8.3 Getting the result outside the locale with assumptions 167

9 Pattern-Completeness and Related Properties 173
9.1 Connecting Pattern-Completeness, Strong Quasi-Reducibility

and Quasi-Reducibility 0oL 184

10 Setup for Experiments 185

1 Introduction

This AFP entry includes the formalization of a decision procedure [4] for
pattern completeness. It also contains the setup for running the experiments
of that paper, i.e., it contains

e a generator for example term rewrite systems and Haskell programs of
varying size,

 a connection to an implementation of the complement algorithm [2]
within the ground confluence prover AGCP [1], and

e a tree automata encoder of pattern completeness that is linked with
the tree automata library FORT-h [3].

Note that some further glue code is required to run the experiments, which
is not included in this submission. Here, we just include the glue code that
was defined within Isabelle theories.

2 Auxiliary Algorithm for Testing Whether "set
xs" is a Singleton Set

theory Singleton-List
imports Main
begin

definition singleton z = [1]

fun is-singleton-list :: 'a list = bool where

is-singleton-list [x] = True
| is-singleton-list (x # y # xs) = (x = y A is-singleton-list (x # xs))
| is-singleton-list - = False

lemma is-singleton-list: is-singleton-list zs «— set (singleton (hd xzs)) = set s
by (induct zs rule: is-singleton-list.induct, auto simp: singleton-def)

lemma is-singleton-list2: is-singleton-list xs «— (3 z. set xs = {z})
by (induct zs rule: is-singleton-list.induct, auto)

end

3 An Interface for Solvers for a Subset of Finite
Integer Difference Logic

theory Finite-IDL-Solver-Interface
imports Main
begin

We require a solver for (a subset of) integer-difference-logic (IDL). We basi-
cally just need comparisons of variables against constants, and difference of
two variables.

Note that all variables can be assumed to be finitely bounded, so we only
need a solver for finite IDL search problems. Moreover, it suffices to consider
inputs where only those variables are put in comparison that share the same
sort (the second parameter of a variable), and the bounds are completely
determined by the sorts.

type-synonym (v,’s)fidl-input = (("v x 's) x int) list x (("'v x 's) x v x 's)
list list

definition fidl-input :: ('v,’s)fidl-input = bool where

fidl-input = (X (bnds, diffs).

distinct (map fst bnds) A (VY v w u. (v,w) € set (concat diffs) — u € {v,w}
— u € fst ‘ set bnds)

A (Y v w. (v,w) € set (concat diffs) — snd v = snd w)

A Y vw. (vw) € set (concat diffs) — v # w)

AV vwbl b2. (v,bl) € set bnds — (w,b2) € set bnds — snd v = snd w
s b1 = b2)

A (Y vb. (v,b) € set bnds — b > 0))

definition fidl-solvable :: ('v,’s)fidl-input = bool where
fidl-solvable = (X (bnds, diffs). (Ja :: 'v x 's = int.
(V (v,b) € set bnds. 0 < av Aav<b)A
(V ¢ € set diffs. 3 (v,w) € set c. @ v # a w)))

definition finite-idl-solver where finite-idl-solver solver = (V input.
fidl-input input — solver input = fidl-solvable input)

definition dummy-fidi-solver where
dummy-fidl-solver input = fidl-solvable input

lemma dummy-fidl-solver: finite-idl-solver dummy-fidl-solver
unfolding dummy-fidl-solver-def finite-idl-solver-def by simp

lemma dummy-fidl-solver-code[code]: dummy-fidl-solver input = Code.abort (STR
"dummy fidl solver') (X -. dummy-fidl-solver input)
by simp

end

4 Computing Nonempty and Infinite sorts

This theory provides two algorithms, which both take a description of a
set of sorts with their constructors. The first algorithm computes the set
of sorts that are nonempty, i.e., those sorts that are inhabited by ground
terms; and the second algorithm computes the set of sorts that are infinite,
i.e., where one can build arbitrary large ground terms.

theory Compute-Nonempty-Infinite-Sorts
imports
Sorted-Terms.Sorted-Terms
L P-Duality. Minimum-Mazimum
Matriz. Utility
FinFun.FinFun
begin

lemma finite-set-Cons:
assumes A: finite A and B: finite B
shows finite (set-Cons A B)

proof —
have set-Cons A B = case-prod (#) ‘ (A x B) by (auto simp: set-Cons-def)
then show ?thesis
by (simp add: finite-imagel[OF finite-cartesian-product|OF A BJ,of case-prod
(#)])
qed

lemma finite-listset:
assumes V A € set As. finite A
shows finite (listset As)
using assms
by (induct As) (auto simp: finite-set-Cons)

lemma listset-conv-nth:
zs € listset As = (length xs = length As A (Vi < length As. zs! i € As ! 1))
proof (induct As arbitrary: xs)
case (Cons A As xs) then show ?case
by (cases xs) (auto simp: set-Cons-def nth-Cons nat.splits)
qed auto

lemma card-listset: assumes A\ A. A € set As = finite A
shows card (listset As) = prod-list (map card As)
using assms
proof (induct As)
case (Cons A As)
have sC: set-Cons A B = case-prod (#) ‘ (A x B) for B by (auto simp:
set-Cons-def)
have IH: prod-list (map card As) = card (listset As) using Cons by auto
have card A x card (listset As) = card (A x listset As)
by (simp add: card-cartesian-product)
also have ... = card ((\ (a,as). Cons a as) ‘(A x listset As))
by (subst card-image, auto simp: inj-on-def)
finally
show ?Zcase by (simp add: sC IH)
qed auto

4.1 Deciding the nonemptyness of all sorts under consider-
ation

function compute-nonempty-main :: 't set = (('f x 'T list) x '1) list = 'T set
where
compute-nonempty-main ne ls = (let rem-ls = filter (A f. snd f ¢ ne) s in
case partition (A ((-,args),-). set args C ne) rem-ls of
(new, rem) = if new = [| then ne else compute-nonempty-main (ne U set
(map snd new)) rem)
by pat-completeness auto

termination
proof (relation measure (length o snd), goal-cases)

case (2 ne ls rem-ls new rem)
have length new + length rem = length rem-Is
using 2(2) sum-length-filter-compl|of - rem-ls] by (auto simp: o-def)
with 2(3) have length rem < length rem-Is by (cases new, auto)
also have ... < length ls using 2(1) by auto
finally show ?case by simp
qed simp

declare compute-nonempty-main.simps[simp del]

definition compute-nonempty-sorts :: (('f x 'r list) x 'r) list = 'T set where
compute-nonempty-sorts Cs = compute-nonempty-main {} Cs

lemma compute-nonempty-sorts:
assumes distinct (map fst Cs)
shows compute-nonempty-sorts Cs = {r. = empty-sort (map-of Cs) 7} (is - =
?NE)
proof —
let ?TC = T (map-of Cs)
have ne C ?NE = set ls C set Cs = snd ‘ (set Cs — set ls) C ne =
compute-nonempty-main ne ls = ?NE for ne ls
proof (induct ne ls rule: compute-nonempty-main.induct)
case (1 ne ls)
note ne = 1(2)
define rem-ls where rem-ls = filter (A f. snd f ¢ ne) Is
have rem-ls: set rem-ls C set Cs
snd ‘ (set Cs — set rem-ls) C ne
using 1(2—) by (auto simp: rem-ls-def)
obtain new rem where part: partition (A((f, args), target). set args C ne)
rem-ls = (new,rem) by force
have [simp]: compute-nonempty-main ne ls = (if new = [] then ne else com-
pute-nonempty-main (ne U set (map snd new)) rem,)
unfolding compute-nonempty-main.simps|of ne ls| Let-def rem-ls-def [symmetric]
part by auto
have new: set (map snd new) C ¢NE
proof
fix 7
assume 7 € set (map snd new)
then obtain f args where ((f,args),7) € set rem-ls and args: set args C ne
using part by auto
with rem-Is have ((f,args),7) € set Cs by auto
with assms have map-of Cs (f,args) = Some T by auto
hence fC: f : args — 7 in map-of Cs by (simp add: fun-hastype-def)
from args ne empty-sortl have V tau. 3 t. tau € set args — t : tau in ?TC
by force
from choice[OF this] obtain ts where A tau. tau € set args = ts tau : tau
in ?TC by auto
hence Fun f (map ts args) : 7 in ?TC
apply (intro Fun-hastypel [OF fC)

by (simp add: list-all2-conv-all-nth)
thus 7 € ?NFE by auto
qed
show ?Zcase
proof (cases new = [])
case Fulse
note IH = 1(1)[OF rem-ls-def part[symmetric] False]
have compute-nonempty-main ne ls = compute-nonempty-main (ne U set
(map snd new)) rem using False by simp
also have ... = YNE
proof (rule IH)
show ne U set (map snd new) C ?NE using new ne by auto
show set rem C set Cs using rem-Is part by auto
show snd ‘ (set Cs — set rem) C ne U set (map snd new)
proof
fix 7
assume 7 € snd ‘ (set Cs — set rem)
then obtain f args where in-ls: ((f,args),7) € set Cs and nrem: ((f,args),T)
¢ set rem by force
thus 7 € ne U set (map snd new) using new part rem-ls by force
qged
qed
finally show ?thesis .
next
case True
have compute-nonempty-main ne ls = ne using True by simp
also have ... = ?NE
proof (rule ccontr)
assume — ?Zthesis
with ne empty-sort] obtain 7 ¢t where counter: ¢t : 7 in ?TC T ¢ ne by
force
thus Fulse
proof (induct t T)
case (Fun fts Ts T)
from Fun(1) have map-of Cs (f,7s) = Some 7 by (simp add: fun-hastype-def)
then have mem: ((f,7s),7) € set Cs by (meson map-of-SomeD)
from Fun(3) have 7s: set 7s C ne by (induct, auto)
from rem-ls mem Fun(4) have ((f,7s),7) € set rem-ls by auto
with 7s have ((f,7s5),7) € set new using part by auto
with True show ?case by auto
qed auto
qed
finally show ?thesis .
qed
qed
from this[of {} Cs| show ?thesis unfolding compute-nonempty-sorts-def by
auto
qed

definition decide-nonempty-sorts :: 't list = (('f x 't list) x 't)list = 't option
where

decide-nonempty-sorts s Cs = (let ne = compute-nonempty-sorts Cs in
find (AN 7.7 ¢ ne) s)

lemma decide-nonempty-sorts:

assumes distinct (map fst Cs)
shows decide-nonempty-sorts ts Cs = None = V T € set Ts. = empty-sort
(map-of Cs) T

decide-nonempty-sorts s Cs = Some 7 => 7 € set 7s A\ empty-sort (map-of Cs)
r

unfolding decide-nonempty-sorts-def Let-def compute-nonempty-sorts[OF assms|

find-None-iff find-Some-iff by auto

4.2 Deciding infiniteness of a sort and computing cardinali-
ties

We provide an algorithm, that given a list of sorts with constructors, com-
putes the set of those sorts that are infinite. Here a sort is defined as infinite
iff there is no upper bound on the size of the ground terms of that sort.
Moreover, we also compute for each sort the cardinality of the set of con-
structor ground terms of that sort.

context
includes finfun-syntax
begin

fun finfun-update-all :: 'a list = (‘a = 'b) = (‘a =f 'b) = (‘a =f 'b) where
finfun-update-all [| g f = f
| finfun-update-all (z # zs) g f = (finfun-update-all zs g f)(z $:= g z)

lemma finfun-update-all[simp): finfun-update-all zs g f $ = (if © € set xs then g
zelse f$§x)
proof (induct xs)
case (Cons y s)
thus ?case by (cases z = y, auto)
qed auto

definition compute-card-of-sort :: 't = ('f x 't list)list = (' =f nat) = nat
where
compute-card-of-sort T cs cards = (Y. fos<—remdups cs. prod-list (map (($) cards)

(snd fos)))

function compute-inf-card-main :: 'T set = ('t =fnat) = (7 x ('f x T list)list)
list = 'T set x ('t = nat) where
compute-inf-card-main m-inf cards ls = (

let (fin, ls") =

partition (A (1.fs). ¥ 7s € set (map snd fs). ¥V 7 € set Ts. T ¢ m-inf) Is
in if fin =[] then (m-inf, X 7. cards $) else
let new = map fst fin;
cards’ = finfun-update-all new (X 7. compute-card-of-sort T (the (map-of ls
7)) cards) cards in
compute-inf-card-main (m-inf — set new) cards’ ls’)
by pat-completeness auto

termination
proof (relation measure (length o snd o snd), goal-cases)
case (2 m-inf cards ls pair fin ls’)
have length fin + length s’ = length Is
using 2 sum-length-filter-compl[of - Is] by (auto simp: o-def)
with 2(3) have length Is’ < length Is by (cases fin, auto)
thus ?case by auto
qed simp

lemma compute-inf-card-main: fixes C :: ('f,’t)ssig

assumes C-Cs: C = map-of Cs’

and Cs”: set Cs’ = set (concat (map (A (1, fs). map (A f. (f,7)) fs)) Cs))

and arg-types-nonempty: ¥ frst 1. f:1s > 17in C — 7' € set Ts — —
empty-sort C' 7'

and dist: distinct (map fst Cs) distinct (map fst Cs’)

and inhabitet: ¥ 7 fs. (7.fs) € set Cs —> set fs # {}

and V 7. 7 ¢ m-inf — bdd-above (size ‘{t. t : T in T(C)})

and set Is C set Cs

and fst ‘ (set Cs — set ls) N m-inf = {}

and m-inf C fst ‘ set Is

andV 7.7 ¢ m-inf — cards $ T = card-of-sort C T A finite-sort C T

andV 7.7 € m-inf — cards $ 7 =0
shows compute-inf-card-main m-inf cards ls = ({T. — bdd-above (size ‘{t. t : 7 in
T(C)h},

A 7. card-of-sort C 1)

using assms(7—)
proof (induct m-inf cards ls rule: compute-inf-card-main.induct)

case (1 m-inf cards ls)

let 2terms = A 7. {t. t : 7 in T(C)}

let ?fin = A 7. bdd-above (size © ?terms T)

define crit where crit = (A (7 2 "t,fs =: (f x 't list) list). ¥V 7s € set (map snd
fs). ¥ 1 € set 7s. T ¢ m-inf)

define S where S 7/ = size ‘{t. t : 7" in T(C)} for 7’

define M where M 7' = Mazimum (S 7’) for 7/

define M’ where M’ os = sum-list (map M os) + (1 + length os) for os

define L where L = [0s . (1,¢c5) <— Cs, (f,05) <— cs]

define N where N = maz-list (map M’ L)

obtain fin Is’ where part: partition crit ls = (fin, ls’) by force

{

fix 7 cs
assume inCs: (1,cs) € set Cs

have nonempty:3 t. t : 7 in T(C)
proof —
from inhabitet|rule-format, OF inCs] obtain f os where (f,05) € set cs by
(cases cs,auto)
with inCs have ((f,0s),7) € set Cs’ unfolding Cs’ by auto
hence fC: f : 0s — 7 in C using dist(2) unfolding C-Cs
by (meson fun-hastype-def map-of-is-Somel)
hence Vo. 3 t. o0 € set 0s — t: 0 in T(C)
by (auto dest!: arg-types-nonempty[rule-format] elim!: not-empty-sortE)
from choice[OF this] obtain t where o € set 0s = t 0 : o in T(C) for o
by auto
hence Fun f (map t os) : 7 in T(C) using list-all2-conv-all-nth
apply (intro Fun-hastypel[OF fC]) by (simp add: list-all2-conv-all-nth)
then show ?thesis by auto
qed
} note inhabited = this

define cards’ where cards’ = finfun-update-all (map fst fin) (A 7. compute-card-of-sort
7 (the (map-of ls 7)) cards) cards

fix 7
assume asm: 7 € fst ‘ set fin
let ?TT = ?terms T
from asm obtain cs where tau-cs-fin: (7,cs) € set fin by auto
hence tau-ls: (1,cs) € set Is using part by auto
with dist(1) «set ls C set Cs»
have map: map-of Cs 7 = Some cs map-of Is T = Some cs
by (metis (no-types, opaque-lifting) eg-key-imp-eq-value map-of-SomeD subsetD
weak-map-of-Somel)+
from asm have cards”: cards’ $ 7 = compute-card-of-sort T cs cards unfolding
cards’-def by (auto simp: map)
from part asm have tau-fin: 7 € set (map fst fin) by auto
{
fix f os
have f : 0s — 7 in C +— ((f,05),7) € set Cs’
proof
assume f : 0s — 7 in C
hence map-of Cs’ (f,0s) = Some 7 unfolding C-Cs by (rule fun-hastypeD)
thus ((f,0s),7) € set Cs’ by (rule map-of-SomeD)
next
assume ((f, os), 7) € set Cs’
hence map-of Cs' (f, 0s) = Some 7 using dist(2) by simp
thus f : 0s — 7 in C unfolding C-Cs by (rule fun-hastypel)
qed
also have ... «<— (3 c¢s. (1, ¢s) € set Cs A (f,05) € set cs)
unfolding Cs’ by auto
also have ... «— (3 cs. map-of Cs T = Some cs A (f,08) € set cs)
using dist(1) by simp
also have ... +— (f,05) € set cs unfolding map by auto

10

finally have (f : 0s — 7 in C) = ((f, 0s) € set ¢s) by auto
} note C-to-cs = this

define T where T o = %terms o for o
have to-ls: {ts. tsy; os in T(C)} = listset (map T os) for os
by (intro set-eql, unfold listset-conv-nth, auto simp: T-def list-all2-conv-all-nth)
{

fix foso

assume in-cs: (f, os) € set cs 0 € set os

from tau-cs-fin part have crit (7,cs) by auto

from this[unfolded crit-def split] in-cs have o ¢ m-inf by auto

with 1(6) have cards $ 0 = card (T o) and finite (T o)

by (auto simp: T-def card-of-sort finite-sort)

} note os-infos = this

have ?TT = { Fun fts | ftsos. f:o0s = 17in C ANts:yosin T(C)} (is - =
¢FunApps)
proof (intro set-eql)
fix ¢
{
assume ¢ : 7 in T(CO)
hence ¢t € FunApps by (induct, auto)
}
moreover
{
assume t € ?FunApps
hence ¢ : 7 in T(C) by (auto intro: Fun-hastypel)

}

ultimately show ¢ € ?TT +— t € ?FunApps by auto

qed

also have ... = { Fun fts | fts os. (f, os) € set cs A ts y os in T(C)}
unfolding C-to-cs ..

also have ... = (A (f, ts). Fun fts) ‘(U (f, os) € set cs. Pair f ‘{ ts. ts ;) o8

in T(C)}) (is - = ?f * ?A) by auto
finally have TTfA: ?TT = 2f < ?A .
have finPair: finite (Pair f ¢ A) = finite A for f :: 'f and A :: ('f, 'v) Term.term
list set
by (intro finite-image-iff inj-onl, auto)
have inj: inj ?f by (intro injl, auto)
from inj have card: card ?TT = card ?A
unfolding TTfA by (meson UNIV-I card-image inj-on-def)
also have ... = () i€set cs. card (case i of (f, os) = Pair f * listset (map T
0s))) unfolding to-Is
proof (rule card-UN-disjoint]OF finite-set balll ballI[OF ballI[OF impl]]],
goal-cases)
case *: (I fos)
obtain f os where fos: fos = (f,08) by force
thus ?case using * os-infos(2) by (cases fos, auto intro: finite-imagel
finite-listset)

11

next
case x: (2 fos g7s)
obtain f os where fos: fos = (f,0s) by force
obtain g 7s where g7s: grs = (g,75) by force
show ?Zcase
proof (cases g = f)
case Fulse
thus ?thesis unfolding fos grs split by auto
next
case True
note frs = grs[unfolded True]
show ?thesis
proof (rule ccontr)
assume — ?thesis
from this[unfolded fos frs split]
obtain ts where ts: ts € listset (map T os) ts € listset (map T 7s) by
auto
hence len: length os = length ts length Ts = length ts unfolding list-
set-conv-nth by auto
from «(%)[unfolded fos frs] have os # s by auto
with len obtain i where i: i < length ts and diff: os! i # 7s !
by (metis nth-equalityl)
define ti where ti = ts! ¢
define oi where 0i = os ! i
define 7¢ where 77 = 15| {
note diff = diff[folded oi-def Ti-def]
from ts i have ti € T oiti € T 74
unfolding ti-def oi-def Ti-def listset-conv-nth by auto
hence ti: ti : oiin T(C) ti : 7i in T(C) unfolding T-def by auto
hence oi = 7i by fastforce
with diff show False ..
ged
qed
qed
also have ... = (> fos €set cs. card (listset (map T (snd fos))))
proof (rule sum.cong|OF refl], goal-cases)
case (1 fos)
obtain f os where id: fos = (f,08) by force
show ?case unfolding id split snd-conv
by (rule card-image, auto simp: inj-on-def)

qed

also have ... = (> fos €set cs. prod-list (map card (map T (snd fos))))
by (rule sum.cong[OF refl], rule card-listset, insert os-infos, auto)

also have ... = (3} fos €set cs. prod-list (map (($) cards) (snd fos)))

unfolding map-map o-def using os-infos
by (intro sum.cong|OF refl] arg-cong|of - - prod-list], auto)
also have ... = sum-list (map (\ fos. prod-list (map (($) cards) (snd fos)))
(remdups cs))
by (rule sum.set-conv-list)

12

also have ... = cards’ $ T unfolding cards’ compute-card-of-sort-def ..
finally have cards’: card ?TT = cards’ $ T by auto

from inj have finite ?TT = finite A
by (metis (no-types, lifting) TTfA finite-imageD finite-imagel subset-UNIV
subset-inj-on)

also have ... = (V f os. (f,o8) € set ¢s — finite (Pair f “ {ts. ts ;; os in
T(O)))
by auto
finally have finite ¢TT = (¥ f os. (f,05) € set cs — finite {ts. ts : os in
T(O)})
unfolding finPair by auto
also have ... = True unfolding to-ls using os-infos(2) by (auto introl:

finite-listset)
finally have fin: finite ?TT by simp

from fin cards’
have cards’ $ 7 = card (?terms 7) finite (?terms 7) ?fin T by auto
} note fin = this

show ?Zcase
proof (cases fin = [])
case Fulse
hence compute-inf-card-main m-inf cards ls = compute-inf-card-main (m-inf
— set (map fst fin)) cards’ ls’
unfolding compute-inf-card-main.simps[of m-inf] part[unfolded crit-def]
cards’-def Let-def by auto
also have ... = ({r. = ?fin 7}, X 7. card-of-sort C T)
proof (rule 1(1)[OF refl part[unfolded crit-def, symmetric] False])
show set ls’ C set Cs using 1(8) part by auto
show fst ‘ (set Cs — set Is’) N (m-inf — set (map fst fin)) = {} using 1(5—4)
part by force
show m-inf — set (map fst fin) C fst ‘ set ls’ using 1(5) part by force
show V7. 7 ¢ m-inf — set (map fst fin) — cards’ $ 7 = card-of-sort C 7 A
finite-sort C' T
proof (intro alll impl)
fix 7
assume nmem: 7 ¢ m-inf — set (map fst fin)
show cards’ $ 7 = card-of-sort C T A finite-sort C T
proof (cases T € set (map fst fin))
case Fulse
with nmem have tau: T ¢ m-inf by auto
with False 1(6)[rule-format, OF this] show ?thesis
unfolding cards’-def by auto
next
case True
with fin show ?thesis by (auto simp: card-of-sort finite-sort)
qged

13

qed
thus V7. 7 ¢ m-inf — set (map fst fin) — ?fin T
by (force simp: 1(2) intro: fin(3))
show V7. 7 € m-inf — set (map fst fin) — cards’ $ 7 = 0 using 1(7)
unfolding cards’-def
by auto
qed (auto simp: cards’-def)
finally show ?thesis .
next
case True
let ?cards = \t. cards $ 7
have m-inf: m-inf = {r. = ?fin 7}
proof
show {7. = ?fin 7} C m-inf using fin 1(2) by auto

fix 7

assume 7 € m-inf

with 1(5) obtain cs where mem: (7,cs) € set ls by auto

from part True have Is”: s’ = Is by (induct ls arbitrary: ls’, auto)
from partition-P[OF part, unfolded s’

have A e. e € set ls = — crit e by auto

from this[OF mem, unfolded crit-def split]

obtain ¢ 7s 7’ where x: (¢,75) € set ¢s 7' € set 7s T/ € m-inf by auto
from mem 1(2—) have (7,cs) € set Cs by auto

with * have ((¢,7s),7) € set Cs" unfolding Cs’ by force

with dist(2) have map-of Cs’ ((¢,75)) = Some T by simp

from this[folded C-Cs] have c: ¢ : 7s — 7 in C unfolding fun-hastype-def

haveV 0.3 t. o € set s — ¢t : 0 in T(C)
by (auto dest!: arg-types-nonempty|rule-format, OF c] elim!: not-empty-sortE)
from choice|OF this] obtain t where \ 0.0 € set Ts = t o :0 in T(C)
by auto
hence list: map t 7s ;; 7s in T(C) by (simp add: list-all2-conv-all-nth)
with ¢ have Fun ¢ (map ¢ 7s) : 7 in T(C) by (intro Fun-hastypel)
with x ¢ list have 3 ¢ 7s 7/ ts. Fun cts: 7 in T(C) A ts :y s in T(C) A
c:7s > T1in CANT' € set s AT’ € m-inf
by blast
} note m-invD = this
{
fix n :: nat
have 7 € m-inf = 3 ¢t. t : 7 in T(C) A sizet > n for 7
proof (induct n arbitrary: T)
case (0 1)
from m-invD[OF 0] show ?case by blast
next
case (Sucn T)
from m-invD[OF Suc(2)] obtain ¢ 7s 7/ ts
where x: ts ;; 7sin T(C) c: 78 = 7 in C 7' € set 7s 7' € m-inf
by auto

14

from x(1)[unfolded list-all2-conv-all-nth] x(3)[unfolded set-conv-nth)
obtain ¢ where i: i < length 7s and tsi:ts ! i : 7/ in T(C) and len: length
ts = length Ts by auto
from Suc(1)[OF x(4)] obtain ¢ where ¢:t : 7/ in T(C) and ns:n < size
t by auto
define ts’ where ts' = ts[i := {]
have ts’ :; 7s in T(C) using list-all2-conv-all-nth unfolding ts’-def
by (metis x(1) tsi has-same-type i list-all2-update-cong list-update-same-conv
t(1))
hence xx:Fun ¢ ts’: 7 in T(C) apply (intro Fun-hastypel[OF x(2)]) by
fastforce
have ¢ € set ts’ unfolding t¢s’-def using t
by (simp add: i len set-update-meml)
hence size (Fun ¢ ts’) > Suc n using
by (simp add: size-list-estimation’ ns)
thus ?case using *x by blast
qged
} note main = this
show m-inf C {r. = ?fin 7}
proof (standard, standard)
fix 7
assume asm: T € m-inf
have 3¢. t : 7 in T(C) A n < size t for n using main[OF asm, of Suc n]
by auto
thus - ?fin 7
by (metis bdd-above-Maximum-nat imagel mem-Collect-eq order.strict-iff)
qed
qed
from True have compute-inf-card-main m-inf cards ls = (m-inf, ?cards)
unfolding compute-inf-card-main.simps|[of m-inf] part[unfolded crit-def] by
auto
also have ?cards = (\ 7. card-of-sort C 1)
proof (intro ext)
fix 7
show cards $ 7 = card-of-sort C 7
proof (cases T € m-inf)
case Fulse
thus ?thesis using 1(6) by auto
next
case True
define TT where TT = %terms T
from True m-inf have — bdd-above (size * TT) unfolding TT-def by auto
hence infinite TT by auto
hence card TT = 0 by auto
thus ?thesis unfolding T'T-def using True 1(7) by (auto simp: card-of-sort)
qed
qed
finally show ?thesis using m-inf by auto
qed

15

qed

definition compute-inf-card-sorts :: (('f x 't list) x 't)list = 't set x ('t = nat)
where
compute-inf-card-sorts Cs = (let
Cs" = map (A 7. (7, map fst (filter(Af. snd f = 1) Cs))) (remdups (map snd
cs))
in compute-inf-card-main (set (map fst Cs')) (K$ 0) Cs’)

lemma finite-imp-size-bdd-above: assumes finite T
shows bdd-above (size ‘ T)

proof —
from assms have finite (size * T') by auto
thus %thesis by simp

qed

lemma finite-sig-imp-finite-terms-of-bounded-size: assumes finite (dom F) and
finite (dom V)

shows finite {t. 3 7. sizet < n At:7in T(F,V)} (is finite (?terms n))
proof (induct n)

case (0)

have ¢ ¢ ?terms 0 for ¢ by (cases t, auto)

hence id: ?terms 0 = {} by auto

show ?case unfolding id by simp
next

case (Suc n)

let ?funsinter = (X (f, 7s). (f, listset (map (X -. (?terms n)) 75))) ‘ dom F

define funsl where funsl = ?funsinter

let funs = |J (A (f, tss). Fun f ‘ tss) * funsI)

fix ¢
assume ¢ € Zterms (Suc n)
then obtain 7 where t7: t : 7 in T(F,V) and size: size t < Suc n by auto
have t € Var < dom V U ?funs
proof (cases t)
case (Var 1)
thus ?thesis using tT by auto
next
case t: (Fun f ts)
from tr]unfolded t Fun-hastype] obtain 7s where ts: ts ;; 7s in T(F,V)
and f: (f,7s) € dom F by auto
hence (f, listset (map (A -. (?terms n)) 7s)) € funsl unfolding funsl-def by
auto
moreover have ts € listset (map (A -. (?terms n)) 7s)
unfolding listset-conv-nth length-map
proof (intro conjl alll implI)
show len: length ts = length s using ts by (metis list-all2-lengthD)
fix ¢

16

assume i: 7 < length s
with ts have i": i < length ts and type: ts ! i : 7s! iin T(F,V)
using list-all2-nthD2[OF ts] len by auto
from i’ have ts | i € set ts by auto
from split-list[OF this] obtain bef aft where ts = bef Q ts ! i # aft by
auto
from size[unfolded t] this have size (Fun f (bef Q ts! i # aft)) < Suc n
by simp
hence size (ts! i) < n by simp
with type have ts | i € ?terms n by auto
with ¢ show ts ! i € map (\-. Zterms n) 75! i by auto
qed
ultimately show ?thesis unfolding ¢ by blast
qed
}
hence ?terms (Suc n) C Var “ dom V U ?funs by blast
moreover have finite (Var < dom V U ?funs)
proof (intro finite-Unl finite-imagel assms finite-Union)
show finite (funsl) unfolding funsl-def
by (intro finite-imagel assms)
fix M
assume M € {Fun f “ tss |. (f, tss) € funsl}
from this obtain f tss where tss: (f, tss) € funsl and M: M = Fun f * tss
by auto
from tss[unfolded funsl-def] obtain Ts where
tss: tss = listset (map (A-. {t. sizet < n A (I7.t:7in T(F,V))}) 7s) and
T7s € snd ‘ dom F
by force
have finite tss unfolding tss
by (intro finite-listset, insert Suc, auto)
thus finite M unfolding M
by (intro finite-imagel)
qed
ultimately show ?case by (rule finite-subset)
qed

lemma finite-sig-bdd-above-imp-finite: assumes finite (dom F) and finite (dom
V)
and bdd-above (size ‘{t. t : 7 in T(F,V)})
shows finite {t. t : 7 in T(F,V)}
proof —
from assms(3)[unfolded bdd-above-def] obtain n where
size: ¥V sesize ‘{t. t : 7 in T(F,V)}. s < n by auto
from finite-sig-imp-finite-terms-of-bounded-size| OF assms(1—2)]
have fin: finite {t. A7. sizet < n At:7 in T(F,V)} by auto
have finite {t. size t < n A t:7in T(F,V)}
by (rule finite-subset[OF - fin], auto)
also have {t. sizet < n At:7in T(F,V)} ={t. t:7in T(F,V)}
using size by blast

17

finally show ?thesis by auto
qed

lemma finite-sig-bdd-above-iff-finite: assumes finite (dom F') and finite (dom V')

shows bdd-above (size “{t. t : 7 in T(F,V)}) = finite {t. t : 7 in T(F,V)}
using finite-sig-bdd-above-imp-finite| OF assms| finite-imp-size-bdd-above
by metis

lemma compute-inf-card-sorts:

fixes C :: ('f,'t)ssig

assumes C-Cs: C = map-of Cs

and arg-types-nonempty: ¥ frst 1. f 718 > 7in C — 7' € set 7§ —
empty-sort C' 7'

and dist: distinct (map fst Cs)

and result: compute-inf-card-sorts Cs = (unb, cards)

shows unb = {7. = bdd-above (size ‘{t. t : 7 in T(C)})} (is - = Zunb)

cards = card-of-sort C (is - = %cards)
unb = {r. —finite-sort C 7} (is - = ?Zinf)
proof —

let ?terms = A 7. {t. t : 7 in T(C)}

define taus where taus = remdups (map snd Cs)

define Cs’ where Cs’ = map (A 7. (7, map fst (filter(Af. snd f = 1) Cs))) taus
have compute-inf-card-sorts Cs = compute-inf-card-main (set (map fst Cs’)) (K$

0) Cs’
unfolding compute-inf-card-sorts-def taus-def Cs’-def Let-def by auto
also have ... = (%unb, ?cards)
proof (rule compute-inf-card-main|OF C-Cs - arg-types-nonempty - dist - - sub-
set-refl])

have distinct taus unfolding taus-def by auto
thus distinct (map fst Cs’) unfolding Cs’-def map-map o-def fst-conv by auto
show set Cs = set (concat (map (A(7, fs). map (Af. (f, 7)) fs) Cs"))
unfolding Cs’-def taus-def by force
show V7 fs. (1, fs) € set Cs’ — set fs # {}
unfolding Cs’-def taus-def by (force simp: filter-empty-conv)
show fst ‘ (set Cs’ — set Cs’) N set (map fst Cs’) = {} by auto
show set (map fst Cs’) C fst ‘ set Cs’ by auto
{fix 7
assume 7 ¢ set (map fst Cs’)
hence 7 ¢ snd ‘ set Cs unfolding Cs’-def taus-def by auto
hence diff: C' f # Some 7 for f unfolding C-Cs
by (metis Some-eq-map-of-iff dist imagel snd-conv)
have emp: empty-sort C' T
proof (intro empty-sortl notl)
fix ¢
assume ¢ : 7 in T(C)
thus Fulse using diff
proof induct

18

case (Fun f ss o5 T)
from Fun(1,4) show Fualse unfolding fun-hastype-def by auto
qged auto
qed
}
note *x = this
show V1. 7 & set (map fst Cs') — bdd-above (size ?terms T)
V1.7 ¢ set (map fst Cs") — (K$ 0) $ 7 = card-of-sort C' 7 A finite-sort C

by (auto simp del: set-map dest!: *)
qed auto
finally show unb: unb = ?unb and cards: cards = ?cards unfolding result by
auto
show unb = ?inf unfolding unb
proof (subst finite-sig-bdd-above-iff-finite)
show finite (dom C) unfolding C-Cs by (rule finite-dom-map-of)
show finite (dom 0) by auto
qed (auto simp: finite-sort)
qed
end

abbreviation compute-inf-sorts :: (('f x 't list) x 't)list = 't set where
compute-inf-sorts Cs = fst (compute-inf-card-sorts Cs)

lemma compute-inf-sorts:

assumes arg-types-nonempty: ¥V f st 1. f : 7s = 7 in map-of Cs — 7’ € set
78 — — empty-sort (map-of Cs) 7'

and dist: distinct (map fst Cs)
shows

compute-inf-sorts Cs = {7. = bdd-above (size ‘ {t. t : 7 in T (map-of Cs)})}

compute-inf-sorts Cs = {r. = finite-sort (map-of Cs) 7}

using compute-inf-card-sorts|OF refl assms]

by (cases compute-inf-card-sorts Cs, auto)+

end

5 Pattern Completeness

Pattern-completeness is the question whether in a given program all terms
of the form f(cl,..,cn) are matched by some lhs of the program, where here
each ci is a constructor ground term and f is a defined symbol. This will
be represented as a pattern problem of the shape (f(x1,...xn), lhsl, ..., lhsn)
where the xi will represent arbitrary constructor terms.

19

6 A Set-Based Inference System to Decide Pat-
tern Completeness

This theory contains an algorithm to decide whether pattern problems are
complete. It represents the inference rules of the paper on the set-based
level.

On this level we prove partial correctness and preservation of well-formed
inputs, but not termination.

theory Pattern-Completeness-Set
imports
First-Order-Terms. Term-More
Complete-Non-Orders. Complete-Relations
Sorted-Terms.Sorted-Contexts
Compute-Nonempty-Infinite-Sorts
begin

lemmas type-conversion = hastype-in- Term-empty-imp-subst

lemma ball-insert-un-cong: fy = Ball zs f = Ball (insert y A) f = Ball (2s U

A) f
by auto

lemma bex-insert-cong: fy = fz => Bex (insert y A) f = Bex (insert z A) f
by auto

lemma not-bdd-above-natD:
assumes — bdd-above (A :: nat set)
shows 3 z € A. 2> n
using assms by (meson bdd-above.unfold linorder-le-cases order.strict-iff)

lemma list-eq-nth-eq: xs = ys «— length xs = length ys A (¥ i < length ys. zs !
i =ys! 1)
using nth-equalityl by metis

lemma subt-size: p € poss t = size (t |- p) < size t
proof (induct p arbitrary: t)
case (Cons i pt)
thus ?case
proof (cases t)
case (Fun f ss)
from Cons Fun have i: i < length ss and sub: ¢ |- (i # p) = (ss ! 4) |- p
and p € poss (ss ! i) by auto
with Cons(1)[OF this(3)]
have size (t |- (i # p)) < size (ss ! i) by auto
also have ... < size t using ¢ unfolding Fun by (simp add: termination-simp)
finally show ?thesis .
qged auto
qed auto

20

lemma removeAll-remdups: removeAll x (remdups ys) = remdups (removeAll x

ys)
by (simp add: remdups-filter removeAll-filter-not-eq)

lemma removeAll-eq-Nil-iff: removeAll x ys = [| +— (Vy € set ys. y = z)
by (induction ys, auto)

lemma concat-removeAll-Nil: concat (removeAll [| xss) = concat zss
by (induction xss, auto)

lemma removeAll-eq-imp-concat-eq:
assumes removeAll [| xss = removeAll [| xss’
shows concat zss = concat xss’
apply (subst (1 2) concat-removeAll-Nil[symmetric])
by (simp add: assms)

lemma map-remdups-commute:
assumes inj-on f (set xs)
shows map f (remdups zs) = remdups (map f xs)
using assms by (induction xs, auto)

lemma Unig-False: <1 a. False by (auto intro!: Unig-I)
abbreviation UNIQ A =3<;a. a € A

lemma Unigq-eq-the-elem:
assumes UNIQ A and a € A shows a = the-elem A
using thel-equality'|OF assms]
by (metis assms empty-iff is-singletonl’ is-singleton-some-elem
some-elem-nonempty thel-equality’ the-elem-eq)

lemma bij-betw-imp- Unig-iff:
assumes bij-betw f A B shows UNIQ) A «+— UNIQ B
using assms[THEN bij-betw-imp-surj-on]
apply (auto simp: Unig-def)
by (metis assms bij-betw-def imagel inv-into-f-eq)

lemma image-Uniq: UNIQ A = UNIQ (f ‘ A)
by (smt (verit) Unig-I image-iff thel-equality’)

lemma successively-eq-iff-Uniq: successively (=) zs +— UNIQ (set zs) (is 7l +—
7r)
proof
show % = ?r
apply (induction zs rule: induct-list012)
by (auto intro: Unig-I)
show ?r — %I
proof (induction xs)

21

case Nil
then show Zcase by simp
next
case zzs: (Cons x xs)
show ?Zcase
proof (cases zs)
case Nil
then show ?thesis by simp
next
case zs: (Cons y ys)
have successively (=) xs
apply (rule zzs(1)) using zxs(2) by (simp add: Unig-def)
with zzs(2)
show %thesis by (auto simp: xs Unig-def)
qed
qged
qed

6.1 Defining Pattern Completeness

We first consider matching problems, which are set of matching atoms. Each
matching atom is a pair of terms: matchee and pattern. Matchee and pattern
may have different type of variables: Matchees use natural numbers (anno-
tated with sorts) as variables, so that it is easy to generate new variables,
whereas patterns allow arbitrary variables of type ‘v without any further
information. Then pattern problems are sets of matching problems, and we
also have sets of pattern problems.

The suffix -set is used to indicate that here these problems are modeled via
sets.

abbreviation tvars :: nat x ‘s = ’s (V) where V = sort-annotated
type-synonym ('f,'v,’s)match-atom = ('f,nat x 's)term x ('f,’v)term
type-synonym ('f,'v,’s)match-problem-set = ('f,’v,’s) match-atom set
type-synonym ('f,’v,’s)pat-problem-set = ('f,’v,’s)match-problem-set set
type-synonym ('f,'v,’s)pats-problem-set = ('f,"v,’s)pat-problem-set set

abbreviation (input) bottom :: ('f,'v,’s)pats-problem-set where bottom = {{}}

definition tvars-match :: ('f,"v,’s)match-problem-set = (nat x ’s) set where
tvars-match mp = (|J (¢,1) € mp. vars t)

definition tvars-pat :: ('f,’v,’s)pat-problem-set = (nat x 's) set where
tvars-pat pp = (|Jmp € pp. tvars-match mp)

definition tvars-pats :: ('f,’v,’s)pats-problem-set = (nat x ’s) set where
tvars-pats P = (|Jpp € P. tvars-pat pp)

22

definition subst-left :: (f,nat x 's)subst = (('f,nat x 's)term x ('f,'v)term) =
(("f,nat x 's)term x ('f,’v)term) where
subst-left 7 = (A(t,r). (t - 7, 7))

A definition of pattern completeness for pattern problems.

definition match-complete-wrt :: ('f,nat x 's,'w)gsubst = ('f,"v,’s)match-problem-set
= bool where
match-complete-wrt o mp = (3 p. V (1) € mp. t -0 =1- p)

lemma match-complete-wrt-cong:
assumes s: Az. ¢ € tvars-match mp = o x =o' x
and mp: mp = mp’
shows match-complete-wrt o mp = match-complete-wrt o’ mp’
apply (unfold match-complete-wrt-def Ball-Pair-conv mp[symmetric])
apply (intro ex-congl all-congl imp-cong[OF refi])
proof—
fix u t I assume (t,0) € mp
with s have Vi € vars t. o © = o’ x by (auto simp: tvars-match-def)
from subst-same-vars[OF this] show t-oc = -y +— t-0’ = l-u by simp
qed

lemma match-complete-wrt-imp-o:
assumes match-complete-wrt o mp shows match-complete-wrt (o o5 T) mp
proof (unfold match-complete-wrt-def)
from assms[unfolded match-complete-wrt-def] obtain p where eq: V (t,1) € mp.
to=1up
by auto
{fix tl
assume l: (t,l) € mp
with eq have t-(c o 7) = I-(u o5 7) by auto
}
then show 3 p’. V(1) € mp. t-(0 o5 7) = I-u’ by blast
qed

lemma match-complete-wrt-o-imp:
assumes s: o i3 V | tvars-match mp — T (C,0) and m: match-complete-wrt (o
05 T) mp
shows match-complete-wrt o mp
proof (unfold match-complete-wrt-def)
from m[unfolded match-complete-wrt-def] obtain y where eq: ¥V (t,0) € mp. t-o-T
=lu
by auto
have YV € tvars-match mp. o x : snd x in T(C,0)
by (auto intro!: sorted-mapD[OF s| simp: hastype-restrict)
then have ¢: x € tvars-match mp = ground (¢ xz) for x
by (auto simp: hatype-imp-ground)
{fixtl
assume t: (t,l) € mp
then have ground (t-0) by (force intro!: g simp: tvars-match-def)

23

then have t-0-7-undefined = t-o by (metis eval-subst ground-subst-apply)
with tl eq have t-0c = [-(u o5 undefined) by auto

then show 3 u’. V(t,0) € mp. t-0 = l-u’ by blast
qed

Pattern completeness is match completeness w.r.t. any constructor-ground
substitution. Note that variables to instantiate are represented as pairs of
(number, sort).

definition pat-complete :: ('f,’s) ssig = ('f,’v,’s)pat-problem-set = bool where
pat-complete C pp «— (Vo :5 V| tvars-pat pp — T (C). 3 mp € pp. match-complete-wrt
o mp)

lemma pat-completeD:
assumes pp: pat-complete C pp
and s: o :; V | twars-pat pp — T(C,0)
shows 3 mp € pp. match-complete-wrt o mp
proof —
from s have o o, undefined :s V | tvars-pat pp — T(C)
by (simp add: subst-compose-sorted-map)
from pplunfolded pat-complete-def, rule-format, OF this]
obtain mp where mp: mp € pp
and m: match-complete-wrt (o os undefined :: - = (-,unit) term) mp
by auto
have o :; V |* tvars-match mp — T (C,0)
apply (rule sorted-map-cmono[OF s))
using mp
by (auto simp: tvars-pat-def introl: restrict-map-mono-right)
from match-complete-wrt-o-imp|OF this m] mp
show ?thesis by auto
qged

lemma pat-completel:
assumes 7: Vo 5 V | tvars-pat pp — T (C,0::'v—="s). 3 mp € pp. match-complete-wrt
o mp
shows pat-complete C pp
proof (unfold pat-complete-def, safe)
fix o assume s: 0 13 V | tvars-pat pp — T(C)
then have o o, undefined 5 V | tvars-pat pp — T (C,0)
by (simp add: subst-compose-sorted-map)
from r[rule-format, OF this]
obtain mp where mp: mp € pp and m: match-complete-wrt (o o5 undefined::-=(-,"v)
term) mp
by auto
have o :; V | tvars-match mp — T(C)
apply (rule sorted-map-cmono|OF s restrict-map-mono-right))
using mp by (auto simp: tvars-pat-def)
from match-complete-wrt-o-imp[OF this m| mp
show Bex pp (match-complete-wrt o) by auto

24

qed

lemma tvars-pat-empty[simp): tvars-pat {} = {}
by (simp add: tvars-pat-def)

lemma pat-complete-empty|[simp|: pat-complete C {} = False
unfolding pat-complete-def by simp

abbreviation pats-complete :: ('f,’s) ssig = ('f,’v,’s) pats-problem-set = bool where
pats-complete C P = Y pp € P. pat-complete C pp

6.2 Definition of Algorithm — Inference Rules

A function to compute for a variable x all substitution that instantiate x by
c(Tpy .., Tntq) Where ¢ is a constructor of arity a and n is a parameter that
determines from where to start the numbering of variables.

definition 7c¢ :: nat = nat x 's = 'f x s list = ('f,nat x 's)subst where
Ten = (A(f,ss). subst x (Fun f (map Var (zip [n ..< n + length ss] ss))))

Compute the list of conflicting variables (Some list), or detect a clash (None)

fun conflicts == ('f,’vx's)term = ('f,’'vx's)term = ('vx's) list option where
conflicts (Var x) (Var y) = (if = y then Some || else
if snd © = snd y then Some [z,y] else None)
| conflicts (Var z) (Fun - -) = (Some [z])
| conflicts (Fun - -) (Var) = (Some [z])
| conflicts (Fun f ss) (Fun g ts) = (if (f,length ss) = (g,length ts)
then map-option concat (those (map2 conflicts ss ts))
else None)

abbreviation Conflict-Var s t x = conflicts s t # None A\ z € set (the (conflicts

st))

abbreviation Conflict-Clash s t = conflicts s t = None

lemma conflicts-sym: rel-option (X zs ys. set s = set ys) (conflicts s t) (conflicts
t s) (is rel-option - (?c s t) -)
proof (induct s t rule: conflicts.induct)
case (4 [ss g ts)
define ¢ where ¢ = ?c
show Zcase
proof (cases (f,length ss) = (g,length ts))
case True
hence len: length ss = length ts
((f, length ss) = (g, length ts)) = True
((g, length ts) = (f, length ss)) = True by auto
show ?thesis using len(1) 4[OF True - refi]
unfolding conflicts.simps len(2,3) if-True
unfolding option.rel-map c-def[symmetric] set-concat
proof (induct ss ts rule: list-induct2, goal-cases)

25

case (2 s ss tts)
hence IH: rel-option (Az y. |J (set ‘ set) = |J (set ‘ set y)) (those (map2
c ss ts)) (those (map?2 c ts ss)) by auto
from 2 have st: rel-option (Axs ys. set s = set ys) (¢ s t) (¢ t s) by auto
from IH st show ?case by (cases ¢ s t; cases ¢ t s; auto simp: option.rel-map)
(simp add: option.rel-sel)
qed simp
qged auto
qed auto

lemma conflicts:
shows Conflict-Clash s t =
3 p.p € posssApe€ posst AN
(is-Fun (s |-p) A is-Fun (t |-p) A root (s |-p) # root (t |- p) V
Fzy. s|l-p=Varz ANt|-p= Vary A snd x # snd y))
(is ?B1 = ?B2)
and Conflict-Var s t 1 =
I p.pEposssANp€Eposst\Ns|-pF£t|pA
(s|-p=Varz Vv t|p= Varz)
(is 2C1 + = ?C2 x)
and s # t = 3 z. Conflict-Clash s t V Conflict-Var s t x
and Conflict-Var s t © = x € vars s U vars t
and conflicts s t = Some [| +— s =t (is ?4)
proof —
let B = ?B1 — ?B2
let 2C =Xz 9Clz — ?2C2x
{
fix z
have (conflicts s t = Some || s=t)N?BA?Cx
proof (induction s arbitrary: t)
case (Var y t)
thus ?case by (cases t, cases y, auto)
next
case (Fun fss t)
show ?case
proof (cases t)
case t: (Fun g ts)
show ?thesis
proof (cases (f,length ss) = (g,length ts))
case Fulse
hence res: conflicts (Fun f ss) t = None unfolding t by auto
show ?thesis unfolding res unfolding t using Fualse
by (auto intro!: exI[of - Nil])
next
case f: True
let ?s = Fun f ss
show ?thesis
proof (cases those (map2 conflicts ss ts))

26

case None
hence res: conflicts ?s t = None unfolding ¢ by auto
from None[unfolded those-eq-None] obtain i where i: i < length ss i <
length ts and
confl: conflicts (ss! i) (ts! i) = None
using f unfolding set-conv-nth set-zip by auto
from i have ss ! i € set ss by auto
from Fun.TH[OF this, of ts ! i] confl obtain p
where p: p € poss (ss ! i) A p € poss (ts ! i) A
(is-Fun (ss! i |- p) A is-Fun (ts !4 |- p) A root (ss! i |- p) # root (ts!i |- p) V
Bzy. ssli|-p= Varxz Atsli|-p= Vary A snd x # snd y))
by force
from p have p: 3 p. p € poss ?s A p € poss t A
(is-Fun (%s |- p) A is-Fun (t |- p) A root (%s |- p) # root (¢ |- p) V
Fzy. ?s|-p=Varxz At]|-p= Vary A snd x # snd y))
by (intro exl|of - i # pl, unfold t, insert i f, auto)
from p res show ¢thesis by auto
next
case (Some 15s)
hence res: conflicts ?s t = Some (concat xss) unfolding t using f by
auto
from Some have map2: map2 conflicts ss ts = map Some xss by auto
from arg-cong[OF this, of length] have len: length xss = length ss using
f by auto
have rec: | < length ss = conflicts (ss !) (ts ! i) = Some (wss ! 7) for

using arg-cong[OF map2, of \ zs. zs ! i] len f by auto
{
assume z € set (the (conflicts ?s t))
hence z € set (concat zss) unfolding res by auto
then obtain zs where zs: xs € set zss and z: © € set xs by auto
from zs len obtain { where i: i < length ss and xs: s = xss | i by
(auto simp: set-conv-nth)
from ¢ have ss ! i € set ss by auto
from Fun.TH[OF this, of ts ! i, unfolded rec[OF i, folded zs|| =
obtain p where p € poss (ss! i) A p € poss (ts! i) N ss!i|-p # ts
Vil-pA(sslil|l-p=VarzVits!il|-p= Varz)
by auto
hence 3 p. p € poss s AN p € posst N %s|-p#t|-p A (%s|-p=
Varz vV t |- p = Varz)
by (intro exl[of - i # pl, insert i f, auto simp: t)
}

moreover

{

assume conflicts ?s t = Some |]
with res have empty: concat zss = [| by auto

{
fix ¢

assume i: { < length ss

27

from rec[OF i] have conflicts (ss ! i) (ts ! i) = Some (xss ! 7) .
moreover from empty i len have zss | i = [| by auto

ultimately have res: conflicts (ss! i) (ts! i) = Some [| by simp
from 7 have ss ! i € set ss by auto

from Fun.TH[OF this, of ts ! i, unfolded res| have ss ! i = ts ! i by

auto
}
with f have ?s = t unfolding t by (auto intro: nth-equalityl)
}
ultimately show ¢thesis unfolding res by auto
qed
qed
qed auto
qed

} note main = this
from main show B: Bl — ?B2 and C: ?C1 ©x — ?C2 x by blast+
show ?4
proof
assume s = ¢
with B have conflicts s t # None by force
then obtain zs where res: conflicts s t = Some zs by auto
show conflicts s t = Some ||
proof (cases zs)
case Nil
thus ?thesis using res by auto
next
case (Cons z xs)
with main|of z] res <s = t» show ?thesis by auto
qed
qed (insert main, blast)
{
assume diff: s # t
show 3 z. Conflict-Clash s t V Conflict-Var s t x
proof (cases conflicts s t)
case (Some ws)
with (?A» diff obtain z where x € set zs by (cases zs, auto)
thus “thesis unfolding Some
apply auto
by (metis surj-pair)
qed auto
}
assume Conflict-Var s t x
with C obtain p where p € poss s p € posst (s|-p= Varz V t|-p= Var
x)
by blast
thus z € vars s U vars t
by (metis UnCI subt-at-imp-supteq’ subteq- Var-imp-in-vars-term)
qed

28

declare conflicts.simps[simp del]

lemma conflicts-refl[simp]: conflicts t t = Some]
using conflicts(5)[of t t] by auto

locale pattern-completeness-context =
fixes S :: 's set — set of sort-names
and C :: ('f,’s)ssig — sorted signature
and m :: nat — upper bound on arities of constructors
and Cl :: 's = ('f x 's list)list — a function to compute all constructors of
given sort as list
and inf-sort :: 's = bool — a function to indicate whether a sort is infinite
and cd-sort :: 's = nat — a function to compute finite cardinality of a sort
and improved :: bool — if improved = False, then FSCD-version of algorithm is
used; if improved = True, the better journal version (under development) is used.
begin

definition tvars-disj-pp :: nat set = ('f,’v,’s)pat-problem-set = bool where
tvars-disj-pp Vp = (V mp € p. V (ti,pi) € mp. fst ‘vars ti NV = {})

definition lvars-disj-mp :: 'v list = ('f,’v,’s)match-problem-set = bool where
lars-disj-mp ys mp = (I (vars ‘ snd “ mp) N set ys = {} A distinct ys)

definition inf-var-conflict :: ('f,’v,’s)match-problem-set = bool where
inf-var-conflict mp = (3 stz y.
(s,Var x) € mp A (t,Var) € mp A Conflict-Var s t y A inf-sort (snd y))

definition subst-match-problem-set :: ('f ,nat x 's)subst = ('f,'v,’s)match-problem-set
= ('f,’v,’s)match-problem-set where
subst-match-problem-set T mp = subst-left T < mp

definition subst-pat-problem-set :: (f,nat x 's)subst = ('f,'v,’s)pat-problem-set
= ('f,'v,’s) pat-problem-set where
subst-pat-problem-set T pp = subst-match-problem-set T ¢ pp

definition 75 :: nat = nat x ‘s = ('f,nat x 's)subst set where
Tsne={rcnz (fss)]| fss. f:ss— sndzxin C}

The transformation rules of the paper.

The formal definition contains two deviations from the rules in the paper:
first, the instantiate-rule can always be applied; and second there is an iden-
tity rule, which will simplify later refinement proofs. Both of the deviations
cause non-termination.

The formal inference rules further separate those rules that deliver a bottom-
or top-element from the ones that deliver a transformed problem.

inductive mp-step :: ('f,'v,’s)match-problem-set = ('f,’v,’s)match-problem-set =
bool
(infix «(—> 50) where

29

mp-decompose: length ts = length ls = insert (Fun f ts, Fun fls) mp —, set
(zip ts ls) U mp
| mp-match: v ¢ |J (vars ‘ snd mp) = insert (t, Var) mp —5 mp
| mp-identity: mp —5 mp
| mp-decompose”: mp U mp’ —, (U (¢, [) € mp. set (zip (args t) (map Var ys)))
U mp’
if Atl (t,]) € mp=1= Vary A root t = Some (f,n)

A tl (1) € mp' = y & vars |

lvars-disj-mp ys (mp U mp’) length ys = n

improved

inductive mp-fail :: ('f,'v,’s)match-problem-set = bool where
mp-clash: (f,length ts) # (g,length ls) = mp-fail (insert (Fun f ts, Fun g ls)
mp)
| mp-clash’: Conflict-Clash s t = mp-fail ({(s, Var z),(t, Var x)} U mp)
| mp-clash-sort: T(C,V) s # T(CV) t = mp-fail ({(s,Var z),(t, Var z)} U mp)

inductive pp-step :: ('f,'v,’s)pat-problem-set = ('f,'v,’s)pat-problem-set = bool
(infix <= 50) where
pp-simp-mp: mp —s mp’ => insert mp pp = insert mp’' pp
| pp-remove-mp: mp-fail mp = insert mp pp =5 pp
| pp-inf-var-conflict: pp U pp’ =4 pp’
if Ball pp inf-var-conflict
finite pp
Ball (tvars-pat pp”) (A z. = inf-sort (snd z))
- improved = pp' = {}

Note that in pp-inf-var-conflict the conflicts have to be simultaneously oc-
curring. If just some matching problem has such a conflict, then this cannot
be deleted immediately!

Example-program: f(x,x) = ..., f(s(x),y) = ..., f(x,s(y)) = ... cover all cases
of natural numbers, i.e., f(x1,x2), but if one would immediately delete the
matching problem of the first lhs because of the resulting inf-var-conflict in
(x1,x),(x2,x) then it is no longer complete.

inductive pp-success :: ('f,"v,’s)pat-problem-set = bool where
pp-success (insert {} pp)

inductive P-step-set :: ('f,'v,’s)pats-problem-set = ('f,’v,’s)pats-problem-set =
bool
(infix <=4 50) where

P-fail: insert {} P = bottom
| P-simp: pp = pp’ = insert pp P = insert pp’ P
| P-remove-pp: pp-success pp = insert pp P =, P
| P-instantiate: tvars-disj-pp {n ..< n+m} pp = z € tvars-pat pp =

insert pp P =4 {subst-pat-problem-set 7 pp |. 7T € Ts nz} U P

30

6.3 Soundness of the inference rules

Well-formed matching and pattern problems: all occurring variables (in left-
hand sides of matching problems) have a known sort.

definition wf-match :: ('f,’v,’s)match-problem-set = bool where
wf-match mp = (snd ‘ tvars-match mp C S)

lemma wf-match-iff: wf-match mp «— (¥ (z,) € tvars-match mp. v € S)
by (auto simp: wf-match-def)

lemma tvars-match-subst: tvars-match (subst-match-problem-set o mp) = (U (¢,1)
€ mp. vars (t-0))
by (auto simp: tvars-match-def subst-match-problem-set-def subst-left-def)

lemma wf-match-subst:

assumes s: 0 i3 V |‘ tvars-match mp — T(C'{z :vin V. € S})

shows wf-match (subst-match-problem-set o mp)

apply (unfold wf-match-iff tvars-match-subst)
proof (safe)

fix t [z « assume t: (¢,1) € mp and zt: (z,) € vars (t-0)

from 2t obtain y k where y: (y,x) € vars t and zy: (z,t) € vars (o (y,x)) by
(auto simp: vars-term-subst)

from tl y have (y,x) : k in V | tvars-match mp by (auto simp: hastype-restrict
tvars-match-def)

from sorted-mapD[OF s this]

have o (y,x) : kin T(C'{z : v in V.1 € S}).

from hastype-in-Term-imp-vars|OF this xy)

have (z,0) : v in {z : ¢ in V. 1 € S} by (auto elim!: in-dom-hastypeE)

then show ¢ € S by auto
qed

definition wf-pat :: ('f,"v,’s)pat-problem-set = bool where
wf-pat pp = (Vmp € pp. wf-match mp)

lemma wf-pat-subst:
assumes s: 0 15 V | tvars-pat pp — T(C'{z:vin V.1 € S})
shows wf-pat (subst-pat-problem-set o pp)
apply (unfold wf-pat-def subst-pat-problem-set-def)
proof safe
fix mp assume mp: mp € pp
show wf-match (subst-match-problem-set o mp)
apply (rule wf~match-subst)
apply (rule sorted-map-cmono|OF s))
apply (rule restrict-map-mono-right) using mp by (auto simp: tvars-pat-def)
qed

definition wf-pats :: ('f,’v,’s)pats-problem-set = bool where
wf-pats P = (Vpp € P. wf-pat pp)

31

lemma wf-pat-iff: wf-pat pp +— (V(z,t) € tvars-pat pp. L € S)
by (auto simp: wf-pat-def tvars-pat-def wf-match-iff)

The reduction of match problems preserves completeness.

lemma mp-step-pcorrect: mp —s mp’ = match-complete-wrt o mp = match-complete-wrt
o mp’
proof (induct mp mp’ rule: mp-step.induct)
case *: (mp-decompose f ts ls mp)
show ?case unfolding match-complete-wrt-def
apply (rule ex-congl)
apply (rule ball-insert-un-cong)
apply (unfold split) using * by (auto simp add: set-zip list-eq-nth-eq)
next
case *: (mp-match © mp t)
show ?case unfolding match-complete-wrt-def
proof
assume Jp. V (¢, i)emp. ti -0 =1l - p
then obtain p where eq: A\ ti li. (¢, li)émp = i - 0 = li - p by auto
let 94 = p(z:=1t- o)
have (ti, li) € mp = ti - 0 = li - ?u for ti li using * eqlof ti li]
by (auto intro!: term-subst-eq)
thus I p. V(ti, li)€insert (t, Var £) mp. ti - o = li - p by (intro exI[of - ?u],
auto)
qed auto
next
case x: (mp-decompose’ mp y fn mp’ ys)
note x = x[unfolded lvars-disj-mp-def]
let ?mpi = (J (¢, {)emp. set (zip (args t) (map Var ys)))
let 2y = Vary
show ?Zcase
proof
assume match-complete-wrt o (?mpi U mp’)
from this[unfolded match-complete-wrt-def] obtain
where match: A\ t1. (t,]) € mpi =t -0=1-p
and match” A\ t1. (t,]) € mp’ =t - o =1- u by force
let 2u = p(y = Fun f (map p ys))
show match-complete-wrt o (mp U mp’) unfolding match-complete-wrt-def
proof (intro exI[of - ?u] balll, elim UnkE; clarify)
fix t1

assume (t,l) € mp’
from match'[OF this] *(2)[OF this]
show t - 0 = [- ?u by (auto intro: term-subst-eq)

}

assume tl: (t,0) € mp
from «(1)[OF this] obtain ts where I: [= Var y and ¢: ¢t = Fun f ts
and lts: length ts = n by (cases t, auto)

{

fix ti yi

32

assume (ti,yi) € set (zip ts ys)
hence (ti, Var yi) € set (zip (args t) (map Var ys))
using ¢ lts <length ys = ny by (force simp: set-conv-nth)
hence (ti, Var yi) € ?mpi using ¢l by blast
from match[OF this| have p yi = ti - o by simp
} note yi = this
show t - 0 = [- 2y unfolding [¢t using yi lts <length ys = n»
by (force intro!: nth-equalityl simp: set-zip)
qed
next
assume match-complete-wrt o (mp U mp”)
from this[unfolded match-complete-wrt-def)
obtain p where match: A t1. (t,)) emp =t -0o=1-u
and match” A\ t1. (t,1) € mp’ =t -0 =1- u by force
define 1’ where p' = (\ z. case map-of (zip ys (args (p y))) x of
None = p z | Some Ti = Ti)
show match-complete-wrt o (¢mpi U mp”)
unfolding match-complete-wrt-def
proof (intro exI[of - '] balll, elim UnkE; clarify)
fix t1
assume #: (t,l) € mp’
from x(3) tl have vars: vars [N set ys = {} by force
hence map-of (zip ys (args (1 y))) © = None if z € vars [for z
using that by (meson disjoint-iff map-of-SomeD option.exhaust set-zip-leftD)
with match’[OF tl]
show t - o =1 - u' by (auto introl: term-subst-eq simp: p'-def)
next
fix ¢t I ti and vyi :: ('f,-)term
assume #: (t,l) € mp
and i: (ti,vyi) € set (zip (args t) (map Var ys))
from *(1)[OF tl] obtain ts where I: | = Var y and ¢: t = Fun f ts
and lts: length ts = n by (cases t, auto)
from i lts obtain i where i: i < n and ¢i: ti = ts! ¢ and yi: vyi = Var (ys

unfolding set-zip using <length ys = n» t by auto
from match[OF tl] have mu-y: p y = Fun f ts - o unfolding [¢t by auto
have yi: vyi - u' = args (u y) ! i unfolding p'-def yi

using i lts «length ys = n> *(3) mu-y

by (force split: option.splits simp: set-zip distinct-conv-nth)

also have ... = ti - ¢ unfolding mu-y ti using i lts by auto
finally show ti - 0 = vyi - p' .
qed
qed
qed auto

lemma mp-fail-pcorrect!:
assumes mp-fail mp o :5 sort-annotated | tvars-match mp — T (C,X)
shows — match-complete-wrt o mp
using assms

33

proof (induct mp rule: mp-fail.induct)
case *: (mp-clash f ts g ls mp)
{
assume length ts # length Is
hence (map (\t. t - p) Is = map (A\t. ¢t - o) ts) = False for o :: ('f,nat x
's,’a)gsubst and
by (metis length-map)
} note len = this
from * show ?case unfolding match-complete-wrt-def
apply (auto simp: len split: prod.splits)
using map-eq-imp-length-eq by force
next
case x: (mp-clash’ s t mp)
from conflicts(1)[OF x(1)]
obtain po where po: po € poss s po € poss t
and disj: is-Fun (s |- po) A is-Fun (t |- po) A root (s |- po) # root (t |- po) V
(Fzy. s|]-po=Varz At]-po= Vary A snd x # snd y)
by auto
show ?Zcase
proof
assume match-complete-wrt o ({(s, Var z), (t, Var)} U mp)
from this[unfolded match-complete-wrt-def)
have eq: s - 0 |-po =t - ¢ |-po by auto
from disj
show Fulse
proof (elim disjE conjE exE)
assume *: is-Fun (s |- po) is-Fun (t |- po) root (s |- po) # root (t |- po)
from eg have root (s - o |-po) = root (¢t - o |-po) by auto
also have root (s - o |-po) = root (s |-po - o) using po by auto
also have ... = root (s |-po) using * by (cases s |- po, auto)
also have root (t - o |-po) = root (t |-po - o) using po by (cases t |- po,
auto)

also have ... = root (¢ |-po) using * by (cases t |- po, auto)
finally show Fulse using * by auto
next

fix y z assume y: s |- po = Var y and z: t |- po = Var z and ty: snd y #
snd z
from y z eq po have yz: 0 y = 0 z by auto
have y € vars-term s z € vars-term t
using po[THEN vars-term-subt-at] y z by auto
then
have o y: snd y in T(C,X) o z: snd z in T(C,X)
by (auto intro!: x(2)[THEN sorted-mapD] simp: hastype-restrict tvars-match-def)
with ty yz show False by (auto simp: has-same-type)
qed
qed
next
case *: (mp-clash-sort s t x mp)
show ?Zcase

34

proof
assume match-complete-wrt o ({(s, Var z), (t, Var)} U mp)
from this[unfolded match-complete-wrt-def)
have eq: s - 0 =t - ¢ by auto
define V where V = tvars-match ({(s, Var x), (t, Var)} U mp)
from *(2) have 0: 0 ;5 V | V — T(C,X) unfolding V-def .
have vars: vars s U vars t C V unfolding V-def tvars-match-def by auto
show Fulse
proof (cases None € {T(C,V) s, T(C,V) t})
case False
from Fulse obtain cs ot where st: s : gs in T(C,V) t: ot in T(CV)
by (cases T(C,V) s; cases T(C,V) t; auto simp: hastype-def)
from st(1) vars o have (s - o) : osin T(C,X)
by (meson le-supFE restrict-map-mono-right sorted-algebra.eval-has-same-type-vars
sorted-map-cmono
term.sorted-algebra-axioms)
moreover from st(2) vars o have (¢t - o) : ot in T(C,X)
by (meson le-supFE restrict-map-mono-right sorted-algebra.eval-has-same-type-vars
sorted-map-cmono
term.sorted-algebra-axioms)
ultimately have os = ot unfolding eq hastype-def by auto
with st x(1) show Fulse by (auto simp: hastype-def)
next
case True
have 3 sos. vars s C VAs-o:0sinT(C,X)ANT(CV)s= None
proof (cases T(C,V) s)
case None
with (1) obtain ot where t : ot in T(C,V) by (cases T(C,V) t; force
sitmp: hastype-def)
from this vars o have (t - o) : ot in T(C,X)
by (meson le-supE restrict-map-mono-right sorted-algebra. eval-has-same-type-vars
sorted-map-cmono
term.sorted-algebra-axioms)
from this[folded eq] None vars show ?thesis by auto
next
case (Some o)
with True have None: T(C,V) t = None and Some: s : osin T(C,V) by
(auto simp: hastype-def)
from Some vars o have (s - o) : osin T(C,X)
by (meson le-supE restrict-map-mono-right sorted-algebra.eval-has-same-type-vars
sorted-map-cmono
term.sorted-algebra-axioms)
from this[unfolded eq] None vars show ?thesis by auto
qed
then obtain s s where vars s C Vs - o0: 0sin T(C,X) T(C,V) s = None
by auto
thus Fulse
proof (induct s arbitrary: os)
case (Fun f ss 7)

35

hence mem: Fun f (map (As. s - o) ss) : 7 in T(C,X) by auto
from this[unfolded Fun-hastype]
obtain 7s where f: f : 7s — 7 in C' and args: map (As. s - 0) ss y Ts in
T(C,X) by auto
{
fix s
assume s € set ss
hence s - 0 € set (map (As. s -) ss) by auto
hence 3 7. s -0 : 7 in T(C,X)
by (metis Fun-in-dom-imp-arg-in-dom mem hastype-imp-dom in-dom-hastypeE)
} note arg = this
show ?Zcase
proof (cases 3 s € set ss. T(C,V) s = None)
case True
then obtain s where s: s € set ss and None: T(C,V) s = None by auto
from arg[OF s] obtain 7 where Some: s - o : 7 in T(C,X) by auto
from Fun(1)[OF s - Some None] s Fun(2) show Fulse by auto
next
case Fulse
have Fun fss: 7 in T(C,V)
proof (intro Fun-hastypel|OF f], unfold list-all2-conv-all-nth, intro conjl
alll impl)
show length ss = length 7s using args[unfolded list-all2-conv-all-nth] by
auto
fix ¢
assume i: i < length ss
hence ssi: ss ! i € set ss by auto
with Fulse obtain 7¢ where type: ss! i : 7iin T(C,V) by (auto simp:
hastype-def)
from ssi Fun(2) have vars: vars (ss ! i) C V by auto
from vars type o have ss! i - o : 7iin T(C,X)
by (meson restrict-map-mono-right sorted-map-cmono term.eval-has-same-type-vars)
moreover from args i have ss!i-o:7s!iin T(C,X)
unfolding list-all2-conv-all-nth by auto
ultimately have 7i = 7s | ¢ by (auto simp: hastype-def)
with type show ss ! i: 7s!iin T(C,V) by auto
qged
with Fun(4) show False unfolding hastype-def using not-None-eq by
blast
qed
qed auto
qed
qed
qed

lemma mp-fail-pcorrect:
assumes f: mp-fail mp and s: 0 ;s {x: v in V. € S} = T(C) and wf: wf-match

mp
shows — match-complete-wrt o mp

36

apply (rule mp-fail-pcorrect1 [OF f])
apply (rule sorted-map-cmono|OF s))
using wf by (auto intro!: subssetl simp: hastype-restrict wf-match-iff)

end

For proving partial correctness we need further properties of the fixed pa-
rameters: We assume that m is sufficiently large and that there exists some
constructor ground terms. Moreover inf-sort really computes whether a sort
has terms of arbitrary size. Further all symbols in C' must have sorts of S.
Finally, CI should precisely compute the constructors of a sort.

locale pattern-completeness-context-with-assms = pattern-completeness-context S
C' m Cl inf-sort cd-sort
for S and C :: ('f,’s)ssig
and m Cl inf-sort cd-sort +
assumes not-empty-sort: \ s. s € S = = empty-sort C's
and C-sub-S: \ fsss. f:ss— sin C = insert s (set ss) C S
and m: A\ fsss. f:ss— sin C = length ss < m
and finite-C: finite (dom C)
and inf-sort: N\s. s € S = inf-sort s «— — finite-sort C s
and CI: A s. set (Cls) = {(f,ss). f:ss = sin C}
and Cl-len: A\ o. Ball (length ¢ snd ‘ set (Cl 0)) (A a. a < m)
and cd: A\s. s € S = cd-sort s = card-of-sort C's
begin

lemma sorts-non-empty: s € S = 3 t. t: sin T(C,0)
apply (drule not-empty-sort)
by (auto elim: not-empty-sortE)

lemma inf-sort-not-bdd: s € S = — bdd-above (size ‘{t . t:sin T(C0)}) +—
inf-sort s

apply (subst finite-sig-bdd-above-iff-finite[OF finite-C1])

by (auto simp: inf-sort finite-sort)

lemma C-nth-S: f: ss — sin C = i < length ss = ssli € S
using C-sub-S by force

lemmas subst-defs-set =
subst-pat-problem-set-def
subst-match-problem-set-def

Preservation of well-formedness

lemma mp-step-wf: mp —s mp’ = wf-match mp = wf-match mp’
unfolding wf-match-def tvars-match-def
proof (induct mp mp’ rule: mp-step.induct)
case (mp-decompose [ts ls mp)
then show ?case by (auto dest!: set-zip-leftD)
next
case x: (mp-decompose’ mp y fn mp’ ys)

37

from *(1) x(6)
show ?Zcase
apply (auto dest!: set-zip-leftD)
subgoal for - - t by (cases t; force)
subgoal for - - t by (cases t; force)
done
qed auto

lemma pp-step-wf: pp =5 pp’ = wf-pat pp = wf-pat pp’
unfolding wf-pat-def
proof (induct pp pp’ rule: pp-step.induct)
case (pp-simp-mp mp mp' pp)
then show ?case using mp-step-wf|of mp mp’] by auto
qed auto

theorem P-step-set-wf: P =4 P’ = wf-pats P = wf-pats P’
unfolding wf-pats-def
proof (induct P P’ rule: P-step-set.induct)
case (P-simp pp pp’ P)
then show ?case using pp-step-wf[of pp pp’] by auto
next
case *: (P-instantiate n p z P)
let s = snd x
from x have sS: ?s € S and p: wf-pat p unfolding wf-pat-def wf-match-def
tvars-pat-def by auto
{
fix 7
assume tau: T € TSN T
from tau[unfolded Ts-def Tc-def, simplified]
obtain f sorts where f: f : sorts — snd z in C and 7: 7 = subst x (Fun f
(map Var (zip [n..<n + length sorts] sorts))) by auto
let 2 = length sorts
let ?zs = zip [n..<n + length sorts] sorts
from C-sub-S[OF f] have sS: %s € S and wzs: snd ‘ set us C S
unfolding set-conv-nth set-zip by auto
{
fix mp y
assume mp: mp € p and y € tvars-match (subst-left T ¢ mp)
then obtain s ¢t where y: y € vars (s - 7) and st: (s,t) € mp
unfolding tvars-match-def subst-left-def by auto
from y have y € vars s U set ?zs unfolding vars-term-subst T
by (auto simp: subst-def split: if-splits)
hence snd y € snd ‘vars s U snd ‘ set ?zs by auto
also have ... C snd ‘vars s U S using zs by auto
also have ... C S using p mp st
unfolding wf-pat-def wf-match-def tvars-match-def by force
finally have sndy € S .

}

hence wf-pat (subst-pat-problem-set T p)

38

unfolding wf-pat-def wf-match-def subst-defs-set by auto
}
with * show ?case by auto
qed (auto simp: wf-pat-def)

Soundness requires some preparations

definition og :: natx’s = ('f,’v) term where
ogx = (SOME t. t: snd z in T(C,D))

lemma og: 0g :s {x : ¢ in sort-annotated. . € S} — T(C,0)
using sorts-non-empty| THEN somel-ex]
by (auto intro!: sorted-mapl simp: o g-def)

lemma wf-pat-complete-iff:
assumes wf-pat pp
shows pat-complete C pp +— (Vo s {z:vin V.1 € S} = T(C). 3 mp € pp.
match-complete-wrt o mp)
(is 2l +— 2r)
proof
assume [: ?]
show ?2r
proof (intro alll impI)
fix o :: nat x 's = -
assume s: 0 ;s {z:vin V.o € S} = T(O)
have o :5 V | tvars-pat pp — T(C)
apply (rule sorted-map-cmono|OF s))
using assms by (auto introl: subssetl simp: hastype-restrict wf-pat-iff)
from pat-completeD[OF [this] show I mpEpp. match-complete-wrt o mp.
qed
next
assume r: r
show 2]
proof (unfold pat-complete-def, safe)
fix o assume s: 0 53 V | tvars-pat pp — T(C)
define o’ where ¢’ © = if x € tvars-pat pp then o x else og z for z
have o’ ;s {z: v in V.1 € S} = T(C)
by (auto intro!: sorted-mapl sorted-mapD|[OF s| sorted-mapD[OF og| simp:
o'-def hastype-restrict)
from r[rule-format, OF this]
obtain mp where mp: mp € pp and m: match-complete-wrt o’ mp by auto
have [simp]: x € tvars-match mp = o x = ¢’ z for z using mp by (auto
simp: o’-def tvars-pat-def)
from m have match-complete-wrt o mp by (simp cong: match-complete-wrt-cong)
with mp show Bex pp (match-complete-wrt o) by auto
qed
qed

lemma wf-pats-complete-iff:
assumes wf: wf-pats P

39

shows pats-complete C' P <—
Vo:s{z:vinV. o€ S}t = T(C).Vpp € P. Imp € pp. match-complete-wrt o
mp)
(is 21 «— ?r)
proof safe
fix o pp assume s: 0 ;s {z:1in V.1 € S} = T(C) and pp: pp € P
have s2: ¢ :5 V | tvars-pats P — T (C)
apply (rule sorted-map-cmono[OF s])
using wf
by (auto intro!: subssetl simp: hastype-restrict wf-pats-def wf-pat-iff tvars-pats-def
split: prod.splits)
assume ?]
with pp have comp: pat-complete C pp by auto
from wf pp have wf-pat pp by (auto simp: wf-pats-def)
from complunfolded wf-pat-complete-iff[OF this|, rule-format, OF s
show dmp € pp. match-complete-wrt o mp.
next
fix pp assume pp: pp € P
assume r[rule-format]: r
from wf pp have wf-pat pp by (auto simp: wf-pats-def)
note x = wf-pat-complete-iff [OF this)]
show pat-complete C pp
apply (unfold) using r[OF - pp] by auto
qed

lemma inf-var-conflictD: assumes inf-var-conflict mp

shows 3 pstay.

(s,Varz) € mp A (t,Varz) E mp A s|-p=VaryANs|-p#t]|pA

p € poss s A p € poss t A inf-sort (snd y)
proof —

from assms|unfolded inf-var-conflict-def]

obtain s ¢t z y where (s, Var z) € mp A (t, Var) € mp and conf: Conflict-Var
sty and y: inf-sort (snd y) by blast

with conflicts(2)[OF conf] show ?thesis by metis
qed

lemmas cg-term-vars = hastype-in- Term-empty-imp-vars

Main partial correctness theorems on well-formed problems: the transforma-
tion rules do not change the semantics of a problem

lemma pp-step-pcorrect:

pp =, pp’ = wf-pat pp = pat-complete C pp = pat-complete C pp’
proof (induct pp pp’ rule: pp-step.induct)

case *: (pp-simp-mp mp mp’ pp)

with mp-step-wf[OF *(1)]

have wf-pat (insert mp’ pp) by (auto simp: wf-pat-def)

with x(2) mp-step-pcorrect|OF (1)]

show ?case by (auto simp: wf-pat-complete-iff)
next

40

case *: (pp-remove-mp mp pp)
from mp-fail-pcorrect| OF x(1)] %(2)
show ?case by (auto simp: wf-pat-complete-iff wf-pat-def)
next
case *: (pp-inf-var-conflict pp pp’)
note wf = «wf-pat (pp U pp’)» and fin = «finite pp>
hence wf-pat pp and wfpp”: wf-pat pp’ by (auto simp: wf-pat-def)
with wf have easy: pat-complete C pp’ = pat-complete C (pp U pp’)
by (auto simp: wf-pat-complete-iff)
{
assume pp: pat-complete C' (pp U pp’)
have pat-complete C pp’ unfolding wf-pat-complete-iff [OF wfpp’]
proof (intro alll impl)
fix 6
assume §: § ;s {z:in V.1 € S} = T(O)
define conv :: ('f,unit) term = (’f, nat x ’s) term where conv t = ¢ -
undefined for t
define conv’ :: ('f, nat x 's) term = ('f, unit) term where conv’ t =t -
undefined for ¢
define confl’ :: ('f, nat x 's) term = ('f, nat x ’s)term = nat x ‘s = bool
where confl’ = (X sp tp y.
sp = Var y A inf-sort (snd y) A sp # tp)
define P! where P1 = (Amp stz yp. mp € pp — (s, Varz) € mp A (t,
Var x) € mp A p € poss s A p € poss t A confl’ (s |- p) (¢t |- p) v)
{
fix mp
assume mp € pp
hence inf-var-conflict mp using * by auto
from inf-var-conflictD]OF this]
have 3 stz y p. PI mp st x y p unfolding PI-def confl’-def by force
}
hence V mp. 3 stz yp. P1 mpstxypunfolding PI-def by blast
from choice[OF this] obtain s where V mp. 3 t zy p. P1 mp (s mp) tzy
p by blast
from choice|OF this| obtain ¢t where V mp. 3 z y p. P1 mp (s mp) (¢t mp)
z y p by blast
from choice[OF this] obtain where V mp. 3 y p. P1 mp (s mp) (¢t mp) (z
mp) y p by blast
from choice[OF this] obtain y where ¥ mp. 3 p. P1 mp (s mp) (t mp) (z
mp) (y mp) p by blast
from choice|OF this] obtain p where V mp. P1 mp (s mp) (t mp) (z mp)
(y mp) (p mp) by blast
note PI1 = this[unfolded P1-def, rule-format]
from *(2) have finite (y ‘ pp) by blast
from ez-bij-betw-finite-nat| OF this] obtain index and n :: nat where
bij: bij-betw index (y “ pp) {..<n}
by (auto simp add: atLeastOLessThan)
define var-ind :: nat = nat X 's = bool where
var-ind i x = (x € y ‘pp A index z € {..<n} — {.<i}) for { z

41

have [simp]: var-ind n © = False for z
unfolding var-ind-def by auto
define cg-subst-ind :: nat = ('f,nat x 's)subst = bool where
cg-subst-ind i 0 = (V z. (var-ind i © — o x = Var x)
A (= var-ind i © — (vars-term (o) = {} A (sndxz € S — o z : snd
z in T(C,0))))
A (snd x € S — = inf-sort (snd z) — o x = conv (6 z))) for i o
define confl :: nat = ('f, nat x 's) term = ('f, nat x 's)term = bool where
confl = (X i sp tp.
(case (sp,tp) of (Var x, Var y) = x # y A var-ind i © A var-ind i y
| (Var z, Fun - -) = var-ind i x
| (Fun - -, Var z) = var-ind i x
| (Fun fss, Fun g ts) = (f,length ss) # (g,length ts)))
have confi-n: confln st = 3 fgssts. s = Fun fss ANt = Fun gts A
(f,length ss) # (g,length ts) for st
by (cases s; cases t; auto simp: confl-def)
{
fix iz
assume var-ind i
from this[unfolded var-ind-def] obtain ¢
where z: x € y ‘ pp index x = i by blast
from z obtain mp where mp € pp and index (y mp) = i and =z = y mp
by auto
with P1[OF this(1), unfolded confl’-def] have inf: inf-sort (snd z) by auto
} note var-ind-inf = this
{
fix ¢
assume i < n
hence 3 0. cg-subst-ind i o AN (VY mp € pp. 3 p. p € poss (smp - o) A\ p €
poss (t mp - o) A confli (s mp - o |-p) (t mp - o |- p))
proof (induction 1)
case (
define o where o = = (if var-ind 0 x then Var z else if snd © € S then
conv (0 x) else Fun undefined []) for
have o: cg-subst-ind 0 o unfolding cg-subst-ind-def
proof (intro alll impI congl)
fix z
show var-ind 0 x = ¢ = = Var x unfolding o-def by auto
show — var-ind 0 © = vars (o z) = {}
unfolding o-def conv-def using §|THEN sorted-mapD, of x)
by (auto simp: vars-term-subst hastype-in- Term-empty-imp-vars)
show — var-ind 0t = sndz € S = o z: snd z in T(C,D)
using §[THEN sorted-mapD, of z]
unfolding o-def conv-def by (auto simp: o-def intro: type-conversion)
show snd ¢ € S = = inf-sort (snd x) = o x = conv (J)
unfolding o-def by (auto dest: var-ind-inf)
qed
show ?Zcase
proof (rule exI, rule conjl[OF o], intro balll exI conjl)

42

fix mp
assume mp: mp € pp
note P! = P1[OF this]
from mp have mem: y mp € y ¢ pp by auto
with bij have y: index (y mp) € {..<n} by (metis bij-betw-apply)
hence y0: var-ind 0 (y mp) using mem unfolding var-ind-def by auto
show p mp € poss (s mp - o) using PI1 by auto
show p mp € poss (t mp - o) using P1 by auto
let 2t =t mp |- p mp
define ¢ where ¢ = confl 0 (s mp - o |- p mp) (t mp - o |- p mp)
have ¢ = confl 0 (s mp |- p mp - o) (%t - o)
using PI unfolding c-def by auto
also have s: s mp |- p mp = Var (y mp) using P! unfolding confl’-def
by auto
also have ... - ¢ = Var (y mp) using y0 unfolding o-def by auto
also have confl 0 (Var (y mp)) (%t - o)
proof (cases 7t - o)
case Fun
thus ?thesis using y0 unfolding confi-def by auto
next
case (Var z)
then obtain v where ¢: 2t = Var v and ssig: o u = Var z
by (cases ?t, auto)
from P1[unfolded s| have confl’ (Var (y mp)) 2t (y mp) by auto
from this[unfolded confl’-def t]| have uy: y mp # u by auto
show ?thesis
proof (cases var-ind 0 u)
case True
with y0 uy show ?thesis unfolding ¢ o-def confl-def by auto
next
case Fulse
with ssiglunfolded o-def] have uS: snd u € S and contra: conv (§
u) = Var z
by (auto split: if-splits)
from 6[THEN sorted-mapD, of u] uS contra
have False by (cases § u, auto simp: conv-def)
thus ?thesis ..
qed
qed
finally show confl 0 (s mp - o |- p mp) (t mp - o |- p mp) unfolding
c-def .
ged
next
case (Suc 17)
then obtain o where o: cg-subst-ind i o and confl: (Vmpepp. Ip. p €
poss (smp - d) Ap € poss (tmp - o) A confli (smp-o|-p) (tmp-ol-p))
by auto
from Suc have i € {.< n} and i: i < n by auto
with bij obtain z where z: z € y ‘ pp index z = ¢ unfolding bij-betw-def

43

by (metis imageF)
{
from 2 obtain mp where mp € pp and index (y mp) = i and z = y
mp by auto
with P1[OF this(1), unfolded confl’-def] have inf: inf-sort (snd z)
and x: p mp € poss (s mp) s mp |- p mp = Var z (s mp, Var (z mp))

€ mp
by auto
from x(1,2) have z € vars (s mp) using vars-term-subt-at by fastforce
with %(3) have z € tvars-match mp unfolding tvars-match-def by force
with <mp € pp> wf have snd z € S unfolding wf-pat-def wf-match-def
by auto
from not-bdd-above-natD[OF inf-sort-not-bdd[OF this, THEN iffD2, OF
inf]]
sorts-non-empty| OF this]
have A n. 3 t. t: snd z in T(C,0:natx’'s—-) A n < size t by auto
note this inf
} note z-inf = this
define all-st where all-st = (A mp. s mp - o) ‘pp U (A mp. t mp - o)
pp
have fin-all-st: finite all-st unfolding all-st-def using *(2) by simp
define d :: nat where d = Suc (Maz (size all-st))
from z-inf(1)[of d]
obtain u :: ('f,natx’s) term
where u: u : snd z in T(C,0) and du: d < size u by auto
have vars-u: vars v = {} by (rule cg-term-vars[OF u)])
define ¢’ where o' © = (if x = z then u else o z) for z
have o’-def”. o' z = (if z € y “ pp A index © = i then u else o) for x
unfolding o’-def by (rule if-cong, insert bij z, auto simp: bij-betw-def
inj-on-def)
have var-ind-conv: var-ind i v = (x = z V var-ind (Suc i) z) for x
proof
assume z = z V var-ind (Suc i)
thus var-ind i ¢ using z i unfolding var-ind-def by auto
next
assume var-ind ¢ ¢
hence z: x € y ‘ pp index z € {..<n} — {..<i} unfolding var-ind-def
by auto

with ¢ have index x = i V index € {..<n} — {..<Suc i} by auto
thus z = z V var-ind (Suc i) =
proof
assume inder T = i
with z(1) z bij have x = 2z by (auto simp: bij-betw-def inj-on-def)
thus ?thesis by auto
qed (insert z, auto simp: var-ind-def)
qed
have [simp]: var-ind i z unfolding var-ind-conv by auto
have [simp]: var-ind (Suc ©) z = False unfolding var-ind-def using z by

44

auto
have oz[simp]: o z = Var z using o[unfolded cg-subst-ind-def, rule-format,
of z] by auto
have o’-upd: 0’ = o(z := u) unfolding o’-def by (intro ext, auto)
have o’-comp: ¢’ = o o; Var(z := u) unfolding subst-compose-def o’-upd
proof (intro ext)
fix z
show (o(z :=wu)) s =0 z - Var(z :== u)
proof (cases T = z)
case Fulse
hence o z - (Var(z := u)) = o x - Var
proof (intro term-subst-eq)
fix y
assume y: y € vars (o)
show (Var(z := u)) y = Vary
proof (cases var-ind i x)
case True
with o[unfolded cg-subst-ind-def, rule-format, of x|
have o x = Var z by auto
with Fulse y show ?thesis by auto
next
case Fulse
with ofunfolded cg-subst-ind-def, rule-format, of x|
have vars (o z) = {} by auto
with y show ?thesis by auto
qged
qged
thus ?thesis by auto
qed simp
qed
have o': cg-subst-ind (Suc i) o’ unfolding cg-subst-ind-def
proof (intro alll conjI impl)
fix z
assume var-ind (Suc i)
hence var-ind ¢ x and diff: index x # ¢ unfolding var-ind-def by auto
hence o z = Var z using o[unfolded cg-subst-ind-def] by blast
thus ¢’ z = Var r unfolding o’-def’ using diff by auto
next
fix z
assume — var-ind (Suc i) ¢ and snd z € S
thus ¢’ z : snd z in T(C,D)
using o[unfolded cg-subst-ind-def, rule-format, of] u
unfolding o’-def var-ind-conv by auto
next
fix z
assume — var-ind (Suc i) ©
hence = = z V = var-ind i z unfolding var-ind-conv by auto
thus vars (o0’ x) = {} unfolding o'-upd using o[unfolded cg-subst-ind-def,
rule-format, of x] vars-u by auto

45

next
fix x :: nat x s
assume *: snd ¥ € S - inf-sort (snd x)
with z-inf(2) have x # z by auto
hence ¢’ z = o z unfolding o’-def by auto
thus o’ z = conv (§ =) using olunfolded cg-subst-ind-def, rule-format,
of z] * by auto
qed
show ?Zcase
proof (intro exI[of - o] conjl o’ balll)
fix mp
assume mp: mp € pp
define s’ where s’ = s mp - o
define t’ where t' =t mp - o
from confl[rule-format, OF mp]
obtain p where p: p € poss s’ p € poss t’ and confi: confl i (s’ |- p) (¢’
|- p) by (auto simp: s'-def t'-def)

fix s't':: ('f, nat x 's) term and p fss z
assume *: (s’ |- p, t’' |-p) = (Fun f ss, Var z) var-ind i x and p: p €
poss s’ p € poss t’
and range-all-st: s’ € all-st
hence s" s'- Var(z := u) |- p = Fun fss - Var(z := u) (is - = %s)
and t: t'- Var(z :== u) |- p = (if £ = z then u else Var z) using p
by auto
from range-all-stjunfolded all-st-def]
have ranges: 3 S. s’ = S - ¢ by auto
define s where s = ?s
have 3p. p € poss (s’ - Var(z := uw)) A p € poss (t' - Var(z := u)) A
confl (Suc i) (s - Var(z := u) |- p) (¢’ - Var(z := u) |- p)
proof (cases © = z)
case Fulse
thus ?thesis using * p unfolding s’ ¢’ by (intro exI|of - p], auto
stmp: confl-def var-ind-conv)
next
case True
hence t": t' - Var(z := u) |- p = v unfolding ¢’ by auto
have 3 p’. p’ € poss u A p’ € poss s A confl (Suc 7) (s |- p’) (u |- p’)
proof (cases 3 z. x € vars s A var-ind (Suc i) x)
case True
then obtain z where zs: © € vars s and z: var-ind (Suc i) z by
auto
from zs obtain p’ where p”: p’ € poss s and sp: s |- p' = Var z
by (metis vars-term-poss-subt-at)
from p’ sp vars-u show ?thesis
proof (induct u arbitrary: p’ s)
case (Fun fusp’s)
show ?case
proof (cases s)

46

case (Var y)
with Fun have s: s = Var = by auto
with = show ?thesis by (intro exI[of - Nil], auto simp: confl-def)
next
case s: (Fun g ss)
with Fun obtain j p where p: p’ = j # p j < length ss p € poss
(ss 1) (ss!4) |- p = Var z by auto
show ?thesis
proof (cases (f,length us) = (g,length ss))
case False
thus ?thesis by (intro exI[of - Nil], auto simp: s confl-def)
next
case True
with p have j: j < length us by auto
hence usj: us ! j € set us by auto
with Fun have vars (us ! j) = {} by auto
from Fun(1)[OF usj p(3,4) this| obtain p’ where
p’ € poss (us ! j) A p’ € poss (ss!j) A confl (Suci) (ss!j|-
p’) (us !j |- p’) by auto
thus ?thesis using j p by (intro exI[of - j # p'], auto simp: s)
qged
qed
qed auto
next
case Fualse
from x have fss: Fun f ss = s’ |- p by auto
from rangec obtain S where sS: s' = S - ¢ by auto
from p have vars (s’ |- p) C vars s’ by (metis vars-term-subt-at)
also have ... = (|Jy€wvars S. vars (o y)) unfolding sS by (simp
add: vars-term-subst)
also have ... C (|Jyecvars S. Collect (var-ind 7))
proof —
{
fix z y
assume z € vars (o y)
hence var-ind i x
using o[unfolded cg-subst-ind-def, rule-format, of y] by auto

thus ?thesis by auto
qed
finally have sub: vars (s’ |- p) C Collect (var-ind i) by blast
have vars s = vars (s’ |- p - Var(z := u)) unfolding s-def s’ fss by
auto
also have ... = {J (vars ¢ Var(z := u) ‘vars (s’ |- p)) by (simp
add: vars-term-subst)
also have ... C |J (vars ‘ Var(z := u) ¢ Collect (var-ind i)) using
sub by auto
also have ... C Collect (var-ind (Suc 7))
by (auto simp: vars-u var-ind-conv)

47

confl-def)

finally have vars-s: vars s = {} using Fualse by auto

{

assume s = u
from this[unfolded s-def fss]
have eq: s' |- p - Var(z := u) = u by auto
have Fulse
proof (cases z € vars (s' |- p))
case True
have diff: s’ |- p # Var z using * by auto
from True obtain C where id: s’ |- p= C (Var z)
by (metis ctxt-supt-id vars-term-poss-subt-at)
with diff have diff: C # Hole by (cases C, auto)
from eqlunfolded id, simplified] diff
obtain C' where C(u) = v and C # Hole by (cases C; force)
from arg-cong|OF this(1), of size] this(2) show False
by (simp add: less-not-refl2 size-ne-ctxt)
next
case Fulse
have size: size s’ € size all-st using range-all-st by auto
from False have s’ |- p - Var(z := u) = s’ |- p - Var
by (intro term-subst-eq, auto)
with eq have eq: s’ |- p = u by auto
hence size u = size (s’ |- p) by auto

also have ... < size s’ using p(1)
by (rule subt-size)
also have ... < Max (size ‘ all-st)

using size fin-all-st by simp
also have ... < d unfolding d-def by simp

also have ... < size u using du .
finally show Fulse by simp
qed

}

hence s # u by auto
with vars-s vars-u
show ?thesis
proof (induct s arbitrary: u)
case s: (Fun f ss u)
then obtain ¢ us where u: v = Fun g us by (cases u, auto)
show ?case
proof (cases (f,length ss) = (g,length us))
case Fulse
thus ?thesis unfolding u by (intro exI[of - Nil], auto simp:

next
case True
with s(4)[unfolded u] have 3 j < length us. ss ! j # us ! j
by (auto simp: list-eq-nth-eq)
then obtain j where j: j < length us and diff: ss!j # us!j

48

by auto
from j True have mem: ss ! j € set ss us ! j € set us by auto
with s(2—) u have vars (ss ! j) = {} vars (us ! j) = {} by auto
from s(1)[OF mem(1) this diff] obtain p’ where
p’ € poss (us ! j) A p’ € poss (ss!j) A confl (Suc i) (ss!j |-
p) (us!j|-p)
by blast
thus ?thesis unfolding u using True j by (intro exl[of - j #
p’], auto)
qed
qed auto
qed
then obtain p’ where p”: p’ € poss u p’ € poss s and confl: confl
(Suc i) (s |- p) (u |- p’) by auto
have s s’ - Var(z := u) |- (p Q@ p') = s |- p’ unfolding s-def
s'[symmetric] using p p’ by auto
have t": t'- Var(z := u) |- (p @ p’) = u |- p’ using t' p p’ by auto
show ?thesis
proof (intro exl[of - p @ p], unfold s’ t”, intro conjI confl)
have p € poss (s’ - Var(z := u)) using p by auto
moreover have p’ € poss ((s’ - Var(z := u)) |- p) using s’ p’ p
unfolding s-def by auto
ultimately show p @ p’ € poss (s’ - Var(z := u)) by simp
have p € poss (t' - Var(z := u)) using p by auto
moreover have p’ € poss ((t'- Var(z := u)) |- p) using t’ p’ p by
auto
ultimately show p @ p’ € poss (t' - Var(z := u)) by simp
qed
qed
} note main = this
consider (FF) f g ss ts where (s’ |- p, t' |- p) = (Fun f ss, Fun g ts)
(f,length ss) # (g,length ts)
| (FV) fss z where (s’ |- p, t' |- p) = (Fun f ss, Var z) var-ind i x
| (VF) fss x where (s’ |- p, ¢t' |- p) = (Var z, Fun f ss) var-ind i =
| (VV) z 2’ where (s |- p, t' |- p) = (Var z, Var z') x # 2’ var-ind i
x var-ind i z’
using confl by (auto simp: confl-def split: term.splits)
hence Ip. p € poss (s’ - Var(z :== u)) A p € poss (t' - Var(z := u)) A
confl (Suc i) (s"- Var(z == u) |- p) (t'- Var(z := u) |- p)
proof cases
case (FF f g ss ts)
thus ?thesis using p by (intro exI[of - p|, auto simp: confl-def)
next
case (FV f ss)
have s’ € all-st unfolding s’-def using mp all-st-def by auto
from main[OF FV p this] show ?thesis by auto
next
case (VF f ss x)
have t": t' € all-st unfolding t’-def using mp all-st-def by auto

49

from VF have (t' |- p, s’ |- p) = (Fun f ss, Var x) var-ind i z by auto
from main|OF this p(2,1) t/]
obtain p where p € poss (¢’ - Var(z := u)) p € poss (s’ - Var(z :=
u)) confl (Suc i) (t'- Var(z :=u) |- p) (8" - Var(z :== u) |- p)
by auto
thus ?thesis by (intro exI[of - p], auto simp: confl-def split: term.splits)
next
case (VV z z')
thus ?thesis using p vars-u by (intro exI[of - p|, cases u, auto simp:
confl-def var-ind-conv)
qed
thus 3p. p € poss (s mp - ') A p € poss (t mp - o’) A confl (Suc i) (s
mp - o' |-p) (t mp-o’|-p)
unfolding o’-comp subst-subst-compose s'-def t'-def by auto
qed
qged
}
from this[of n]
obtain o where o: cg-subst-ind n o and confl: \ mp. mp € pp = Ip. p €
poss (smp - o) A p € poss (t mp - o) A confin (smp-o|-p) (tmp-o|-p)
by blast
define o’ :: ('f,nat x ’'s,unit)gsubst where ¢’ x = conv’ (Var z) for z
let %0 = 0 o, 0’
{
fix z :: nat X ’s
assume *: snd x € S - inf-sort (snd x)
from §[THEN sorted-mapD, of] * have § z : snd z in T(C,0) by auto
hence vars: vars (6) = {} by (simp add: hastype-in- Term-empty-imp-vars)
from * ofunfolded cg-subst-ind-def] have o x = conv (§ z) by blast
hence %0 © = ¢ = - (undefined o5 o) by (simp add: subst-compose-def
conv-def subst-subst)
also have ... = ¢ = by (rule ground-term-subst|OF vars])
finally have %0 v = = .
} note o6 = this
have %0 s {z : v in V.1 € S} — T(C)
proof (intro sorted-mapl, unfold subst-compose-def hastype-in-restrict-sset
conj-imp-eq-imp-imp)
fix z :: nat x s and ¢
assume z : ¢ in V and 1 € §
then have snd z = ¢t ¢ € S by auto
with o[unfolded cg-subst-ind-def, rule-format, of z]
have o z : v in T(C,0) by auto
thus o z - 0’ : v in T(C,0) by (rule type-conversion)
qed
from pp|unfolded wf-pat-complete-iff [OF wf] match-complete-wrt-def , rule-format,
OF this]
obtain mp p where mp: mp € pp U pp’ and match: \ ti li. (ti, li)€ mp =
ti - %0 = li - u by force

{

50

assume mp: mp € pp
from PI1[OF this(1)]
have (s mp, Var (z mp)) € mp (t mp, Var (z mp)) € mp by auto
from match[OF this(1)] match[OF this(2)] have ident: s mp - %0 = t mp -
%0 by auto
from confl[OF mp) obtain p
where p: p € poss (s mp - o) p € poss (t mp - o) and confl: confl n (s
mp - o |-p) (tmp- o |- p)
by auto
let “s=smp-oclet 2t =tmp-o
from confl-n|OF confl] obtain f g ss ts where
confl: s |-p = Fun fss 9t |-p = Fun g ts and diff: (f,length ss) # (g,length
ts) by auto
define s’ where s’ = s mp - o
define t' where t' = t mp - o
from confi p ident
have Fulse
unfolding subst-subst-compose s’-def[symmetric] t'-def [symmetric]
proof (induction p arbitrary: s’ t’)
case Nil
then show ?case using diff by (auto simp: list-eq-nth-eq)
next
case (Cons i p s t)
from Cons obtain h! us! where s: s = Fun hl us! by (cases s, auto)
from Cons obtain h2 us2 where t: t = Fun h2 us2 by (cases t, auto)
from Cons(2,4)[unfolded s] have si: (usl ! i) |- p = Fun f ss p € poss
(us1 ! i) and il: i < length us! by auto
from Cons(3,5)[unfolded t] have ti: (us2 ! i) |- p = Fun g ts p € poss
(us2 ! 4) and 2: i < length us2 by auto
from Cons(6)[unfolded s t] il i2 have wusl ! i-0'=us2!i- o' by (auto
simp: list-eq-nth-eq)
from Cons.IH[OF si(1) ti(1) si(2) ti(2) this)
show Fulse .
qed
}
with mp have mp: mp € pp’ by auto
show Bez pp’ (match-complete-wrt 0)
unfolding match-complete-wrt-def
proof (intro bexI[OF - mp| exI[of - u] balll, clarify)
fix ti li
assume tl: (¢, li) € mp
have ti - § = ti - %o
proof (intro term-subst-eq, rule sym, rule o)
fix z
assume z: T € vars ti
from «(3) z tl mp show — inf-sort (snd =) by (auto simp: tvars-pat-def
tvars-match-def)
from *(5) z tl mp show snd x € S
unfolding wf-pat-def wf-match-def tvars-match-def by auto

o1

qged

also have ... = li - y using match[OF tl] .
finally show ti - d = li - p .
qed
qed

}

with easy show ?Zcase by auto
qed

lemma pp-success-pcorrect: pp-success pp —> pat-complete C pp
by (induct pp rule: pp-success.induct, auto simp: pat-complete-def match-complete-wrt-def)

theorem P-step-set-pcorrect:
P =, P! = wf-pats P = pats-complete C P <— pats-complete C' P’
proof (induct P P’ rule: P-step-set.induct)
case (P-fail P)
with og show Zcase by (auto simp: wf-pats-complete-iff)
next
case *: (P-simp pp pp’ P)
with pp-step-wf have wf-pat pp wf-pats P wf-pats (insert pp P) wf-pats (insert
pp' P)
by (auto simp: wf-pats-def)
with pp-step-pcorrect] OF x(1)] show ?case
by (auto simp: wf-pat-complete-iff wf-pats-complete-iff wf-pats-def)
next
case x: (P-remove-pp pp P)
with pp-step-wf have wf-pat pp wf-pats P wf-pats (insert pp P) by (auto simp:
wf-pats-def)
then show ?case using pp-success-pcorrect|OF *(1)]
by (auto simp: wf-pats-complete-iff wf-pat-complete-iff)
next
case *: (P-instantiate n pp x P)
note wfppP = <wf-pats (insert pp P)»
then have wfpp: wf-pat pp and wfP: wf-pats P by (auto simp: wf-pats-def)

from wfpp x(2) have z: sndz € S
unfolding tvars-pat-def tvars-match-def wf-pat-def wf-match-def by force
note def = wf-pat-complete-iff [unfolded match-complete-wrt-def]
define P’ where P’ = {subst-pat-problem-set T pp |. 7 € 7s n z}
show ?Zcase
apply (fold P'-def)
proof (rule ball-insert-un-cong, standard)
assume complete: Ball P’ (pat-complete C')
show pat-complete C pp unfolding def[OF wfpp)
proof (intro alll impl)
fix o
assume cg: 0 ;s {z: v in V.1 € S} = T(C)
from sorted-mapD[OF this|
have ¢ z : snd z in T(C) by auto

52

then obtain f ts os where f: f : 05 — snd z in C
and args: ts i os in T(C)
and ox: 0 x = Fun f ts
by (induct, auto)
from f have f: f : 05 — snd x in C
by (meson fun-hastype-def)
let 21 = length ts
from args have len: length os = ?1 by (simp add: list-all2-lengthD)
have I: 2l < m using m[OF f] len by auto
have 0s5: Vi € set 0s. + € § using C-sub-S f by auto
define ¢’ where o' = (A ys. let y = fstysinifn <y Ay <n-+ ?2lAos!
(y — n) = snd ys then ts | (y — n) else o ys)
have cg: o’ ;s {z:vin V.1 € S} — T(C)
proof (intro sorted-mapl, unfold hastype-in-restrict-sset conj-imp-eq-imp-imp)
fix ys :: nat X ‘s and ¢
assume ys: ¢t in VYV and t € S
then have [simp]: « = snd ys and ysS: snd ys € S by auto
show o’ ys : ¢ in T(C)
proof (cases o’ ys = o ys)
case True
thus ?thesis using cg ysS by (auto simp: sorted-mapD)
next
case Fulse
obtain y s where ys: ys = (y,s) by force
with False have y: y — n < %in <yy < n+ 2l and arg: os ! (y — n)

and o o' ys=ts! (y — n)
unfolding o’-def Let-def by (auto split: if-splits)
show ?thesis
using o’ len list-all2-nthD[OF args y(1)]
by (auto simp: ys arg[symmetric])
ged
qed
define 7 where 7 = subst © (Fun f (map Var (zip [n..<n + ?I] 05)))
have 7 :; V |* tvars-pat pp — T(C{z : v in V. 1 € S})
using Fun-hastypel [OF f, of {z : ¢ in V. € S} map Var (zip [n..<n + ?I|
o8)] oS wfpp
by (auto intro!: sorted-mapl
simp: T-def subst-def len[symmetric| list-all2-conv-all-nth hastype-restrict
wf-pat-iff
from wf-pat-subst|OF this)
have wf2: wf-pat (subst-pat-problem-set T pp).
from f have 7 € 7s n z unfolding 7s-def 7-def Tc-def using len[symmetric|
by auto
hence pat-complete C' (subst-pat-problem-set T pp) using complete by (auto
simp: P'-def)
from this[unfolded def|OF wf2], rule-format, OF cg]
obtain ¢l y© where ti: tl € subst-pat-problem-set T pp
and match: N\ tili. (t, li) € tl = ti - o’ = li - p by force

93

from tl[unfolded subst-defs-set subst-left-def set-map]
obtain ¢’ where tl": tl’ € pp and ¢: tl = {(¢' - 7, 1) |. (¢',]) € '} by auto
show Jtle pp. Ip. V(ti, l)e tl. ti - o =1l - p
proof (intro bexI[OF - tl'] exI[of - p], clarify)
fix ti li
assume tli: (ti, li) € tl’
hence tlit: (ti - 7, li) € tl unfolding tl by force
from match|OF this| have match: ti - 7 - ¢’ = li - p by auto
from «(1)[unfolded tvars-disj-pp-def, rule-format, OF tl’ tli]
have vti: fst ‘ vars-term ti N {n..<n + m} = {} by auto
have ti - o = ti - (17 o4 o)
proof (rule term-subst-eq, unfold subst-compose-def)
fix y
assume y € vars-term ti
with vti have y: fst y ¢ {n..<n + m} by auto
showo y=71y- -0’
proof (cases y = x)

case Fulse
hence 7 y - 0/ = o’ y unfolding 7-def subst-def by auto
also have ... =0 y

unfolding o’-def using y | by auto
finally show ?thesis by simp
next
case True
show ?thesis unfolding True 7-def subst-simps ox eval-term.simps
map-map o-def term.simps
by (intro conjl refl nth-equalityl, auto simp: len o'-def)

qed
qed
also have ... = li - p using match by simp
finally show i - ¢ = li - u by blast
qed
qed
next

assume complete: pat-complete C pp
show V pp € P'. pat-complete C pp
apply (unfold P’-def)
proof safe
fix 7
assume 7T € TSN T
from this[unfolded s-def Tc-def, simplified]
obtain f s where f: f : 1s = snd z in C and 7: 7 = subst x (Fun f (map
Var (zip [n..<n + length s] 1s))) by auto
let 2¢ = length vs
let zs = zip [n..<n + length vs] ts
have i: % < m by (rule m[OF f])
have V. € set 1s. « € S using C-sub-S f by blast
with Fun-hastypel[OF f, of {x : ¢ in V. v € S} map Var 2zs| wfpp
have 7 :; V | tvars-pat pp — T(C{z : v in V.1 € S})

54

by (auto intro!: sorted-mapl
simp: T subst-def hastype-restrict list-all2-conv-all-nth wf-pat-iff)
note def2 = def[OF wf-pat-subst|OF this]]
show pat-complete C' (subst-pat-problem-set T pp) unfolding def2
proof (intro alll impl)
fix o assume cg: 0 ;s {z:vin V.0 € S} = T(C)
define ¢’ where 0’ = o(z := Fun [(map o %zs))
from C-sub-S[OF f] have sortsS: set vs C S by auto
from f have f: f : ts = snd z in C by (simp add: fun-hastype-def)
with sorted-mapD[OF cg| set-mp[OF sortsS]
have Fun f (map o ?zs) : snd z in T(C)
by (auto intro!: Fun-hastypel simp: list-all2-conv-all-nth)
with sorted-mapD][OF cg)
have cg: o' s {z : ¢t in V. 1 € S} — T(C) by (auto intro!: sorted-mapl
simp: o’-def)
from complete[unfolded def[OF wfpp], rule-format, OF this]
obtain ¢ p where #l: tl € pp and tli: \ ti li. (¢, li)e ti = ti - o' =1i -
u by force
from ¢ have ¢lm: {(¢t - 7, 1) |. (t,]) € tI} € subst-pat-problem-set T pp
unfolding subst-defs-set subst-left-def by auto
{
fix tili
assume mem: (ti, li) € tl
from x[unfolded tvars-disj-pp-def] tl mem have vti: fst ‘ vars-term ti N
{n..<n + m} = {} by force
from tli[OF mem] have li - p = ti - ¢’ by auto

also have ... = ti - (7 o5 0)
proof (intro term-subst-eq, unfold subst-compose-def)
fix y

assume y € vars-term ti

with vti have y: fst y ¢ {n..<n + m} by auto
showo'y=7y- 0o

proof (cases y =)

case Fulse
hence 7 y - 0 = o y unfolding 7 subst-def by auto
alsohave ... =o'y

unfolding o’-def using Fualse by auto
finally show ?thesis by simp
next
case True
show ?thesis unfolding True T
by (simp add: o-def o’-def)
qed
qed
finally have ti - 7 - 0 = li - p by auto

thus 3¢l € subst-pat-problem-set T pp. Ip. V (ti,)€t ti -0 =1i - p

by (intro bexI[OF - tlm], auto)
qed

95

qed
qed
qed
end

Represent a variable-form as a set of maps.

definition match-of-var-form f = {(Var y, Varz) | z y. y € fz}
definition pat-of-var-form ff = match-of-var-form * ff
definition var-form-of-match mp x = {y. (Var y, Var z) € mp}
definition var-form-of-pat pp = var-form-of-match ‘ pp
definition tvars-var-form-pat ff = (Uf € ff. U (range f))

definition var-form-match where
var-form-match mp <— mp C range (map-prod Var Var)

definition var-form-pat pp =V mp € pp. var-form-match mp

lemma match-of-var-form-of-match:
assumes var-form-match mp
shows match-of-var-form (var-form-of-match mp) = mp
using assms
by (auto simp: var-form-match-def match-of-var-form-def var-form-of-match-def)

lemma tvars-match-var-form:
assumes var-form-match mp
shows tvars-match mp = {v. 3z. (Var v, Var z) € mp}
using assms by (force simp: var-form-match-def tvars-match-def)

lemma pat-of-var-form-pat:
assumes var-form-pat pp
shows pat-of-var-form (var-form-of-pat pp) = pp
using assms match-of-var-form-of-match
by (auto simp: var-form-pat-def var-form-of-pat-def pat-of-var-form-def)

lemma tvars-pat-var-form: tvars-pat (pat-of-var-form ff) = tvars-var-form-pat ff
by (fastforce simp: tvars-var-form-pat-def tvars-pat-def tvars-match-def pat-of-var-form-def
match-of-var-form-def
split: prod.splits)

lemma tvars-var-form-pat:
assumes var-form-pat pp
shows tvars-var-form-pat (var-form-of-pat pp) = tvars-pat pp
apply (subst(2) pat-of-var-form-pat|OF assms,symmetric])
by (simp add: tvars-pat-var-form)

o6

lemma pat-complete-var-form:
pat-complete C (pat-of-var-form [f) +—
(Vo :s V| tvars-var-form-pat ff — T(C). 3f € ff. Ip.Va.Vy e fz.ocy=p
z)
proof—
define V where V =V |* tvars-var-form-pat ff
have boo: V | tvars-pat {{(Var (a, b), Var za) | za a b. (a, b) € z za} |. z € ff}
=V
apply (unfold V-def)
apply (subst tvars-pat-var-form|of ff, symmetric])
by (auto simp: V-def pat-of-var-form-def match-of-var-form-def)
show ?thesis
apply (fold V-def)
apply (auto simp: pat-complete-def match-complete-wrt-def pat-of-var-form-def
match-of-var-form-def imp-conjL imp-ex boo)
apply (metis old.prod.exhaust)
by metis
qed

lemma pat-complete-var-form-set:
pat-complete C (pat-of-var-form ff) +—
(Vo s V| tvars-var-form-pat f[f — T(C). 3f € ff. Ip. V. o ‘ fo C {u z})
by (auto simp: pat-complete-var-form image-subset-iff)

lemma pat-complete-var-form-Uniq:

pat-complete C (pat-of-var-form ff) +—

(Vo s V | tvars-var-form-pat ff — T(C). 3f € ff. Y. UNIQ (o ‘ fz))

proof—

{ fix o f assume o: 0 :5; V |* tvars-var-form-pat ff — T(C) and f: f € ff
have (Jpu. V.0 ‘fz C{pz}) «— (Vz.3<1y.y €0 ‘fz)
proof (safe)

fix pz

assume Vz. o ‘fz C {pz}

from this[rule-format, of x|

have y € fo = o y = p z for y by auto

then show 3«1 y. y € 0 ‘ fz by (auto introl: Unig-I)
next

define y where p z = the-clem (o ‘ f z) for x

fix r assume Vz. <1 y.y €0 ‘fx

from Unig-eq-the-elem[OF this[rule-format], folded p-def]

show Jpu. Vz. o ‘ fz C {u z} by auto
qed

}

then show %thesis by (simp add: pat-complete-var-form-set)

qed

lemma ex-var-form-pat: (3 f€var-form-of-pat pp. P f) «— (Imp € pp. P (var-form-of-match

mp))
by (auto simp: var-form-of-pat-def)

o7

lemma pat-complete-var-form-nat:
assumes fin: V (z,1) € tvars-var-form-pat ff. finite-sort C ¢
and uniq: Vf € ff. Va::'v. UNIQ (snd * f x)
shows pat-complete C' (pat-of-var-form ff) <—
(Va. (Vv € tvars-var-form-pat ff. a v < card-of-sort C (snd v)) —
(3f € ff. Y. UNIQ (a fa)))

(is 2l «+— (Va. s a« — ?r a))

proof safe
note fin = fin[unfolded Ball-Pair-conv, rule-format)
{ fix
assume [: ¢l and a: ?s «
define ¢ :: - = (-,unit) term where

o = Maz,t). term-of-index C v (a (z,t))
have o (z,t) : ¢ in T(C) if z: (z,t) € tvars-var-form-pat ff for z ¢
using term-of-indez-bij|OF fin, OF 1]
a[unfolded Ball-Pair-conv, rule-format, OF z]
by (auto simp: bij-betw-def o-def)
then have o :; V | tvars-var-form-pat ff — T(C)
by (auto intro!: sorted-mapl simp: hastype-restrict)
from [[unfolded pat-complete-var-form-Uniq, rule-format, OF this]
obtain f where f: f € ff and u: Az. UNIQ (o ‘ fz) by auto
have id: y € fz = indez-of-term C (o y) = a y for y z
using assms a f
by (force simp: o-def index-of-term-of-index tvars-var-form-pat-def Ball-def
split: prod.splits)
then have o ‘ f z = indez-of-term C ‘o ‘ fz for z
by (auto simp: image-def)
then have UNIQ (a ¢ f z) for z by (simp add: image-Uniq[OF u])
with f show ?r a by auto
next
assume 7 Va. s a — r «
show 2]
unfolding pat-complete-var-form-Uniq
proof safe
fix o
assume o: 0 :; V | tvars-var-form-pat ff — T(C)
from sorted-mapD[OF this]
have ty: (z,.) € tvars-var-form-pat ff = o (z,) : ¢ in T(C)
for z « by (auto simp: hastype-restrict)
define o where o = indez-of-term C o o
have a (z,0) < card-of-sort C v if x: (z,) € tvars-var-form-pat ff
for z « using indez-of-term-bij[OF fin[OF z]] ty|OF 1]
by (auto simp: a-def bij-betw-def)
then have 3 feff. V. UNIQ (o ‘ f z) by (auto introl: r[rule-format])
then obtain f where f: f € ff and u: Az. UNIQ (« ‘ f z) by auto
have UNIQ (o fz) for z
proof—
from uniq[rule-format, OF f]

o8

have ex: Ju. snd “ fz C {1}
by (auto simp: subset-singleton-iff-Uniq)
then obtain ¢ where sub: snd ‘ f z C {1} by auto
{ fix y k assume yk: (y,x) € fx
with sub have [simp]: k = ¢ by auto
from yk f have y: (y,.) € tvars-var-form-pat ff
by (auto simp: tvars-var-form-pat-def)
from y fin[OF y]
have term-of-index C ¢ (a (y,k)) = o (y,k)
by (auto simp: a-def hastype-restrict
introl: term-of-indez-of-term sorted-mapD|OF o))
}

then have y € fz = term-of-index C v (o y) = o y for y
by (cases y, auto)
then have o ‘ fx = term-of-index C v ‘a ‘ fz
by (auto simp: image-def)
then show UNIQ (o ‘ fz) by (simp add: image-Uniq[OF u])
qed
with f show 3f € ff. Va. UNIQ (o ‘ fz) by auto
qed

}

qged

A problem is in finite variable form, if only variables occur in the problem
and these variable all have a finite sort. Moreover, comparison of variables
is only done if they have the same sort.

definition finite-var-form-match :: ('f,’s) ssig = ('f,’v,’s)match-problem-set =
bool where

finite-var-form-match C mp <— var-form-match mp A

Vizy (Varz, 1) € mp — (Var y, 1) € mp — snd z = snd y) A

(Vilz. (Var z, 1) € mp — finite-sort C (snd z))

lemma finite-var-form-matchD:
assumes finite-var-form-match C mp and (t,l) € mp
shows 3z ¢ y. t = Var (z,e) ANl = Vary A finite-sort C v A
(Vz. (Var z, Var y) € mp — snd z = 1)
using assms by (auto simp: finite-var-form-match-def var-form-match-def)

definition finite-var-form-pat :: ('f,’s) ssig = ('f,"v,’s) pat-problem-set = bool where
finite-var-form-pat C' p = (V mp € p. finite-var-form-match C mp)

lemma finite-var-form-patD:
assumes finite-var-form-pat C pp mp € pp (t,1) € mp
shows 3z v y. t = Var (z,) Al = Var y A finite-sort C v A
(Vz. (Var z, Var y) € mp — snd z = 1)
using assms[unfolded finite-var-form-pat-def| finite-var-form-matchD by metis

lemma finite-var-form-imp-of-var-form-pat:
finite-var-form-pat C pp = var-form-pat pp

99

by (auto simp: finite-var-form-pat-def var-form-pat-def finite-var-form-match-def)
context pattern-completeness-context begin

definition weak-finite-var-form-match :: ('f,'v,’s)match-problem-set = bool where
weak-finite-var-form-match mp = (V (¢,1) € mp. 3 y. I = Var y)
AN ftsy. (Fun fts, Vary) € mp —
(3 z. (Var z, Var y) € mp A inf-sort (snd x))
A (Y ¢ (t, Vary) € mp — root t € {None, Some (f,length ts)})))

definition weak-finite-var-form-pat :: ('f,'v,’s) pat-problem-set = bool where
weak-finite-var-form-pat p = (V mp € p. weak-finite-var-form-match mp)

end

lemma finite-var-form-pat-UNIQ-sort:
assumes fuf: finite-var-form-pat C pp
and f: f € var-form-of-pat pp
shows UNIQ (snd ‘ f z)
proof (intro Unig-I, clarsimp)
from f obtain mp where mp: mp € pp and f: f = var-form-of-match mp
by (auto simp: var-form-of-pat-def)
fix y . 2 k assume (y,1) € fz (2,ck) € fz
with f have y: (Var (y,t), Var z) € mp and z: (Var (z,x), Var z) € mp
by (auto simp: var-form-of-match-def)
from finite-var-form-patD[OF fuf mp y] z
show « = k by auto
qed

lemma finite-var-form-pat-pat-complete:
assumes fuf: finite-var-form-pat C pp
shows pat-complete C pp +—
(Va. (Vv € tvars-pat pp. a v < card-of-sort C (snd v)) —
(3mp € pp. Va. UNIQ {«a y |y. (Vary, Var x) € mp}))
proof—
note vf = finite-var-form-imp-of-var-form-pat|OF fuf]
note pat-complete-var-form-nat|of var-form-of-pat pp C|
note this[unfolded tvars-var-form-pat[OF uf]]
note x = this[unfolded pat-of-var-form-pat[OF vf]]
show ?thesis
apply (subst x)
subgoal
proof
fix y¢
assume y: (y,t) € tvars-pat pp
from y obtain mp t | where mp: mp € pp and tl:(¢,l) € mp and yt: (y, ¢)
€ vars t
by (auto simp: tvars-pat-def tvars-match-def)
from finite-var-form-patD][OF fuf mp tl] yt

60

show finite-sort C' v by auto

qed

subgoal using finite-var-form-pat-UNIQ-sort[OF fuf] by force

subgoal
apply
apply

rule all-cong)
unfold ex-var-form-pat)
apply (rule bex-cong[OF refi])
apply (rule all-congl)
apply (rule arg-cong[of - - UNIQ])
by (auto simp: var-form-of-match-def)
done
qed

A~ S

end

7 A Multiset-Based Inference System to Decide
Pattern Completeness

theory Pattern-Completeness-Multiset
imports
Pattern-Completeness-Set
LP-Duality. Minimum-Maximum
Polynomial-Factorization. Missing-List
First-Order-Terms. Term-Pair-Multiset
begin

7.1 Definition of the Inference Rules

We next switch to a multiset based implementation of the inference rules.
At this level, termination is proven and further, that the evaluation cannot
get stuck. The inference rules closely mimic the ones in the paper, though
there is one additional inference rule for getting rid of duplicates (which are
automatically removed when working on sets).

type-synonym ('f,’v,’s)match-problem-mset = (('f,nat x 's)term x ('f,'v)term)
multiset

type-synonym ('f,’v,’s)pat-problem-mset = ('f,'v,’s)match-problem-mset multiset
type-synonym ('f,’v,’s)pats-problem-mset = ('f,'v,’s) pat-problem-mset multiset
abbreviation mp-mset :: ('f,v,’s)match-problem-mset = ('f,’v,’s)match-problem-set

where mp-mset = set-mset

abbreviation pat-mset :: ('f,’v,’s)pat-problem-mset = ('f,’v,’s)pat-problem-set
where pat-mset = image mp-mset o set-mset

61

abbreviation pats-mset :: ('f,"v,’s)pats-problem-mset = ('f,’v,’s) pats-problem-set
where pats-mset = image pat-mset o set-mset

abbreviation (input) bottom-mset :: ('f,'v,’s)pats-problem-mset where bottom-mset

= {# {#} #}

context pattern-completeness-context
begin

A terminating version of (=) working on multisets that also treats the
transformation on a more modular basis.

definition subst-match-problem-mset :: ('f,nat x 's)subst = ('f,’v,’s)match-problem-mset
= ('f,’v,’s)match-problem-mset where
subst-match-problem-mset T = image-mset (subst-left T)

definition subst-pat-problem-mset :: ('f,nat x 's)subst = ('f,'v,’s) pat-problem-mset
= ('f,'v,’s)pat-problem-mset where
subst-pat-problem-mset T = image-mset (subst-match-problem-mset)

definition 7s-list :: nat = nat x 's = ('f,nat x 's)subst list where
7s-list n x = map (t¢ n z) (Cl (snd z))

inductive mp-step-mset :: ('f,’v,’s)match-problem-mset = ('f,’v,’s)match-problem-mset
= bool (infix <—,,» 50)where
match-decompose: (f,length ts) = (g,length ls)
= add-mset (Fun fts, Fun g ls) mp —,, mp + mset (zip ts ls)
| match-match: © ¢ |J (vars ‘ snd © set-mset mp)
= add-mset (t, Var) mp —,, mp
| match-duplicate: add-mset pair (add-mset pair mp) —,,, add-mset pair mp
| match-decompose”: mp + mp" —,, (30 (¢, 1) €# mp. mset (zip (args t) (map Var
5))) + mp’
if Atl (t,]) € mp = 1= Vary A root t = Some (f,n)
Nt (tl) e# mp' = y ¢ vars |
lvars-disj-mp ys (mp-mset (mp + mp’)) length ys = n
size mp > 2
improved

inductive match-fail :: ('f,'v,’s)match-problem-mset = bool where
match-clash: (f,length ts) # (g,length ls)
= match-fail (add-mset (Fun fts, Fun g ls) mp)
| match-clash’. Conflict-Clash s t = match-fail (add-mset (s, Var z) (add-mset
(t, Var) mp))
| match-clash-sort: T(C,V) s # T(CV) t = match-fail (add-mset (s, Var z)
(add-mset (t, Var z) mp))

inductive pp-step-mset :: ('f,'v,’s) pat-problem-mset = ('f,’v,’s)pats-problem-mset

= bool
(infix <=,,> 50) where

62

pat-remove-pp: add-mset {#} pp =m {#}
| pat-simp-mp: mp-step-mset mp mp’ = add-mset mp pp =, {# (add-mset mp’
pp) #}
| pat-remove-mp: match-fail mp = add-mset mp pp =, {# pp #}
| pat-instantiate: tvars-disj-pp {n ..< n+m} (pat-mset (add-mset mp pp)) =
(Var z, l) € mp-mset mp A is-Fun | V
(s,Var y) € mp-mset mp A (t,Var y) € mp-mset mp N\ Conflict-Var s t x A —
inf-sort (snd z)
A (improved — s = Var « A is-Fun t) =
add-mset mp pp =, mset (map (A 7. subst-pat-problem-mset T (add-mset mp
pp)) (7s-list n x))
| pat-inf-var-conflict: Ball (pat-mset pp) inf-var-conflict = pp # {#}
= Ball (tvars-pat (pat-mset pp’)) (A x. = inf-sort (snd z)) =
(- improved = pp’ = {#})
= pp + pp’ =m {# pp' #}

inductive pat-fail :: ('f,’v,’s)pat-problem-mset = bool where
pat-empty: pat-fail {#}

inductive P-step-mset :: ('f,'v,’s)pats-problem-mset = ('f,’v,’s)pats-problem-mset
= bool

(infix =, 50)where

P-failure: pat-fail pp = add-mset pp P # bottom-mset = add-mset pp P =,
bottom-mset
| P-simp-pp: pp =, pp’ = add-mset pp P =, pp’ + P

The relation (encoded as predicate) is finally wrapped in a set

definition P-step :: (('f,’v,’s)pats-problem-mset x ('f,'v,’s)pats-problem-mset)set
(«<=») where
= = {(P,P). P = P}

7.2 The evaluation cannot get stuck

lemmas subst-defs =
subst-pat-problem-mset-def
subst-pat-problem-set-def
subst-match-problem-mset-def
subst-match-problem-set-def

lemma pat-mset-fresh-vars:
3 n. tvars-disj-pp {n..<n + m} (pat-mset p)
proof —
define p’ where p’ = pat-mset p
define V where V = fst ‘|J (vars ‘ (fst ‘J p’)
have finite V unfolding V-def p’-def by auto
define n where n = Suc (Maz V)

{

fix mp tl

63

assume mp € p’ (¢,1) € mp
hence sub: fst ‘ vars t C V unfolding V-def by force
{

fix z

assume z € fst ‘vars t

with sub have z € V by auto

with <finite V> have x < Maz V by simp

also have ... < n unfolding n-def by simp

finally have z < n .

}

hence fst ‘vars t N {n..<n + m} = {} by force
}
thus ?thesis unfolding tvars-disj-pp-def p’-def[symmetric]
by (intro exI[of - n] balll, force)
qed

lemma mp-mset-in-pat-mset: mp €# pp = mp-mset mp € pat-mset pp
by auto
lemma mp-step-mset-cong:
assumes (—,,)** mp mp’
shows (add-mset (add-mset mp p) P, add-mset (add-mset mp’ p) P) € =*
using assms
proof induct
case (step mp’ mp'’)
from P-simp-pp[OF pat-simp-mp|OF step(2), of p], of P)
have (add-mset (add-mset mp' p) P, add-mset (add-mset mp'’ p) P) € P-step
unfolding P-step-def by auto
with step(3)
show ?case by simp
qed auto

lemma mp-step-mset-vars: assumes mp —,, mp’
shows tvars-match (mp-mset mp) O tvars-match (mp-mset mp’)
using assms
proof induct
case x: (match-decompose’ mp y fn mp’ ys)
{
let ?mset = mset :: - = ('f,’v,’s)match-problem-mset
fix z
assume z € tvars-match (mp-mset (3 (¢,)e#mp. ?mset (zip (args t) (map
Var ys)))))
from this[unfolded tvars-match-def, simplified)
obtain ¢ [ti yi where tl: (¢,l) €# mp and tiyi: (ti,yi) €# ?mset (zip (args t)
(map Var ys))
and z: x € vars ti
by auto
from *(1)[OF ti] obtain ts where [: | = Var y and ¢: t = Fun f ts and lis:
length ts = n
by (cases t, auto)

64

from tiyi[unfolded t] have ti € set ts
using set-zip-leftD by fastforce
with z ¢ have z € vars t by auto
hence z € tvars-match (mp-mset mp) using t! unfolding tvars-match-def by
auto
}
thus ?case unfolding tvars-match-def by force
qed (auto simp: tvars-match-def set-zip)

lemma mp-step-mset-steps-vars: assumes (—,,)** mp mp’
shows tvars-match (mp-mset mp) O tvars-match (mp-mset mp’)
using assms by (induct, insert mp-step-mset-vars, auto)

end
context pattern-completeness-contert-with-assms begin

lemma pat-fail-or-trans-or-finite-var-form:
fixes p :: ('f,’v,’s) pat-problem-mset
assumes improved = infinite (UNIV :: 'v set) and wf: wf-pat (pat-mset p)
shows pat-fail p V (3 ps. p =, ps) V (improved A finite-var-form-pat C (pat-mset
p))

proof (cases p = {#})
case True

with pat-empty show ?thesis by auto
next
case pne: Fualse
from pat-mset-fresh-vars obtain n where fresh: tvars-disj-pp {n..<n + m}
(pat-mset p) by blast
show ?thesis
proof (cases {#} €# p)
case True
then obtain p’ where p = add-mset {#} p’ by (rule mset-add)
with pat-remove-pp show ?thesis by auto
next
case empty-p: False
show ?thesis
proof (cases 3 mp s t. mp €# p A (s,t) €4# mp A is-Fun t)
case True
then obtain mp s t where mp: mp €# p and (s,t) €# mp and is-Fun ¢ by
auto
then obtain g ts where mem: (s,Fun g ts) €# mp by (cases t, auto)
from mp obtain p’ where p: p = add-mset mp p’ by (rule mset-add)
from mem obtain mp’ where mp: mp = add-mset (s, Fun g ts) mp’' by (rule
mset-add)
show ?thesis
proof (cases s)
case s: (Fun f ss)
from pat-simp-mp[OF match-decompose, of f ss] pat-remove-mp| OF match-clash,

65

of f ss]
show ?thesis unfolding p mp s by blast
next
case (Var z)
from Var mem obtain | where (Var x, l) €# mp A is-Fun | by auto
from pat-instantiate[OF freshlunfolded p| disjl1[OF this]]
show ?thesis unfolding p by auto
qed
next
case False
hence rhs-vars: \ mp s l. mp €# p = (s,l) €# mp = is-Var | by auto
let ?single-var = (3 mp t x. add-mset (t,Var z) mp €# p Az ¢ |J (vars
snd set-mset mp))
let ?duplicate = (3 mp pair. add-mset pair (add-mset pair mp) €# p)
show ?thesis
proof (cases ?single-var V ?duplicate)
case True
thus ?thesis
proof
assume ?single-var
then obtain mp t © where mp: add-mset (t,Var x) mp €# p and z: z ¢
U (vars ¢ snd ‘ set-mset mp)
by auto
from mp obtain p’ where p = add-mset (add-mset (t,Var z) mp) p’ by
(rule mset-add)
with pat-simp-mp[OF match-match[OF z]] show ?thesis by auto
next
assume ?duplicate
then obtain mp pair where add-mset pair (add-mset pair mp) €4 p (is
?dup €# p) by auto
from mset-add[OF this] obtain p’ where
p: p = add-mset ?dup p’ .
from pat-simp-mp[OF match-duplicate[of pair]] show ?thesis unfolding
p by auto
qed
next
case Fulse
hence ndup: - ?duplicate and nsvar: - ?single-var by auto
{
fix mp
assume mpp: mp €# p
with empty-p have mp-e: mp # {#} by auto
obtain s [where si: (s,l) €4# mp using mp-e by auto
from rhs-vars[OF mpp sl] sl obtain z where sz: (s, Var ©) €# mp by
(cases I, auto)
from mpp obtain p’ where p: p = add-mset mp p’ by (rule mset-add)
from sz obtain mp’ where mp: mp = add-mset (s, Var x) mp’ by (rule
mset-add)
from nsvar(simplified, rule-format, OF mpp[unfolded mpl]

66

obtain ¢ [where (¢,l) €# mp’ and x € vars (snd (t,1)) by force
with rhs-vars|OF mpp, of t l] have tx: (t,Var x) €# mp’ unfolding mp
by auto
then obtain mp’’ where mp”. mp’ = add-mset (t, Var) mp'’ by (rule
mset-add)
from ndup[simplified, rule-format] mpp have s # ¢ unfolding mp mp’ by
auto
hence 3 st mp’. mp = add-mset (s, Var x) (add-mset (t, Var z) mp’)
A s # t unfolding mp mp’ by auto
} note two = this
show ?thesis
proof (cases 3 mp s t x. add-mset (s, Var z) (add-mset (t, Var z) mp) €#
p A Conflict-Clash s t)
case True
then obtain mp s t x where
mp: add-mset (s, Var x) (add-mset (t, Var) mp) €# p (is ?mp €# -)
and conf: Conflict-Clash s t
by blast
from pat-remove-mp|OF match-clash’|OF conf, of mp)]
show ?thesis using mset-add[OF mp] by metis
next
case no-clash: False
show ?thesis
proof (cases 3 mp s t x y. add-mset (s, Var z) (add-mset (t, Var x) mp)
€# p A Conflict-Var s t y A — inf-sort (snd y))
case True
show ?thesis
proof (cases improved)
case not-impr: False
from True obtain mp s t z y where
mp: add-mset (s, Var z) (add-mset (t, Var) mp) €# p (is mp €#
-) and conf: Conflict-Var s t y and y: — inf-sort (snd y)
by blast
from mp obtain p’ where p: p = add-mset ?mp p’ by (rule mset-add)
let ?mp = add-mset (s, Var z) (add-mset (t, Var) mp)
from pat-instantiate] OF - disjI2, of n ?mp p’ s x t y, folded p, OF fresh]
show ?thesis using y conf not-impr by auto
next
case impr: True

have (pat-fail p V (3 ps. p =m ps)) V weak-finite-var-form-pat (pat-mset

proof (cases weak-finite-var-form-pat (pat-mset p))
case Fulse
from this[unfolded weak-finite-var-form-pat-def] obtain mp
where mp: mp €# p and nmp: - weak-finite-var-form-match
(mp-mset mp) by auto
from mset-add[OF mp|] obtain p’ where p”": p = add-mset mp p’ by

67

auto
from rhs-vars|OF mp| have ((V (¢, l)e#mp. Jy. | = Vary) A b) =
b for b
by force
note nmp = nmplunfolded weak-finite-var-form-match-def this]
from this[simplified] obtain f ss y where
s: (Fun f ss, Var y) €# mp and
violation: (V. (Var z, Var y) €# mp — - inf-sort (snd z)) V
(3t gn. (t, Vary) €## mp A root t = Some (g, n) A root t # Some
(f, length ss)))
(is A Vv ?B)
by force
let ?s = Fun f ss
let ?n = length ss
show ?thesis
proof (cases ?B)
case True
then obtain ¢ g n where t: (¢, Var y) €# mp root t = Some (g,
n) root t # Some (f, ?n)
by auto
from t have st: (?s, Var y) # (t, Var y) by (cases t, auto)
define mp’ where mp’ = mp — {#(%s, Var y),(t, Var y)#}
from s t(1) st have mp = add-mset (?s, Var y) (add-mset (t, Var
y) mp’)
unfolding mp’-def
by (metis Multiset.diff-add add-mset-add-single diff-union-swap
insert-Diff M)
with no-clash mp have — Conflict-Clash ?s t by metis
moreover have Conflict-Clash ?s t
using t by (cases t, auto simp: conflicts.simps)
ultimately show ?thesis ..
next
case no-clash’ False
with violation have finsort: \ z. (Var z, Var y) €# mp — -
inf-sort (snd z) by blast
show ?thesis
proof (cases 3 z. (Var x, Var y) €# mp)
case True
then obtain z where ¢: (Var x, Var y) €# mp (is (2,-) €# -)

by auto
from finsort|OF t] have fin: — inf-sort (snd z) .
from s ¢ fin pat-instantiate| OF - disjI2, of - mp p’ %t y ?s x, folded
p’, OF fresh]
show ?thesis by (auto simp: conflicts.simps)
next
case Fulse

define test-y where test-y tl = (snd tl = Var y) for tl :: ('f, nat
x 's) term x ('f,'v)term
define mpy where mpy = filter-mset test-y mp

68

have size: size mpy > 2
proof —
from mset-add[OF s| obtain mp’ where mp”. mp = add-mset
(%s, Var y) mp’ by blast
have y € |J (vars ‘ snd ‘ mp-mset mp”)
using nsvar|rule-format] mp’ mp by blast
then obtain ¢’ I’ where ¢l (¢',l') €# mp’ and y € vars I’ by
auto
with rhs-vars|OF mp, of t' l'] mp’ have is-Var I’ by auto
with <y € vars I’y have l": I’ = Var y by auto
hence (t/,Var y) €# mp’ using tl’ by auto
from mset-add[OF this| obtain mp’’ where mp’: mp’ = add-mset
(¢, Var y) mp"
by auto
have mpy: mpy = add-mset (?s, Var y) (add-mset (t', Var y)
(filter-mset test-y mp'"’))
unfolding mpy-def mp’ mp'’ by (simp add: test-y-def)
thus ?thesis by simp
qed
define mpny where mpny = filter-mset (Not o test-y) mp
have id: mp = mpy + mpny by (simp add: mpy-def mpny-def)
{
fix t1
assume (¢, [) €# mpny
hence | # Var y (t,l) €# mp unfolding mpny-def test-y-def
o-def by auto
with rhs-vars|OF mp, of t] have y ¢ vars | by (cases I, auto)
} note mpny = this
{
fix t1
assume (¢, [) €# mpy
hence I: | = Var y and pair: (t,Var y) €# mp unfolding
mpy-def test-y-def o-def by auto
with False obtain g ts where t: t = Fun g ts by (cases t, auto)
from no-clash’ pair t have root t = Some (f,?n) by auto
with [have | = Var y A root t = Some (f,?n) by auto
} note mpy = this
define VV where VV =] (vars ¢ snd ‘ mp-mset mp)
have finite VV by (auto simp: VV-def)
with assms(1)[OF impr] have infinite (UNIV — VV) by auto
then obtain Ys where Ys: Ys C UNIV — VV card Ys = 7n
finite Ys
by (meson infinite-arbitrarily-large)
from Ys(2—3) obtain ys where ys: distinct ys length ys = %n
set ys = Ys
by (metis distinct-card finite-distinct-list)
with Ys have dist: VV N set ys = {} by auto
have lvars-disj-mp ys (mp-mset mp) length ys = ?n
unfolding lvars-disj-mp-def using ys dist unfolding VV-def

69

by auto

from match-decompose’[of mpy y [?n mpny, folded id, OF mpy
mpny this size impr]

obtain mp’ where mp —,, mp’ by force

from pat-simp-mp|OF this, of p’] p’ show ?thesis by auto

qed
qed
qed auto

thus ?thesis

proof (elim context-disjE)
assume no-step: — (pat-fail p V (I ps. p = ps))
assume weak-finite-var-form-pat (pat-mset p)

note wfyf = this[unfolded weak-finite-var-form-pat-def weak-finite-var-form-match-def,
rule-format)

note get-var = wfuf[THEN conjunctl, rule-format]
note fun-case = wfvf[THEN conjunct2, rule-format)

define fin where fin mp = Ball (tvars-match (mp-mset mp)) (A z.
= inf-sort (snd z)) for mp = ('f,’v,’s) match-problem-mset
define p-fin where p-fin = filter-mset fin p
define p-inf where p-inf = filter-mset (Not o fin) p
have p-split: p = p-inf + p-fin unfolding p-fin-def p-inf-def by auto
show ?thesis
proof (cases p-inf = {#})
case True
have fin: A\ mp. mp €# p = fin mp unfolding p-split True
unfolding p-fin-def by auto
have finite-var-form-pat C' (pat-mset p)
unfolding finite-var-form-pat-def finite-var-form-match-def
var-form-match-def
proof (intro balll conjI subsetl olll impl, clarify)
fix mp [
assume mp: mp € pat-mset p
{ fix ¢t assume ¢l: (¢,]) € mp
from get-var[OF mp tl] ¢l obtain y where
ty: (t, Var y) € mp and ly: I = Var y by (cases I, auto)
have is-Var ¢
proof (cases t)
case (Fun fts)
with ty have (Fun f ts, Var y) € mp by auto
from fun-case[OF - this] mp obtain = where (Var z, Var y)
€ mp inf-sort (snd x) by auto
with fin[unfolded fin-def tvars-match-def] mp tl have Fualse by
auto
thus ?thesis by auto
qed auto
with ly show (t,0) € range (map-prod Var Var) by auto
} note var-var = this

70

fix z assume zi: (Var z, [) € mp
then have amp: x € tvars-match mp by (force simp: tvars-match-def)
with wf[unfolded wf-pat-def wf-match-def, rule-format, OF mp]
have szS: snd z € S by auto
from mp zmp fin fin-def have —inf-sort (snd x) by auto
with inf-sort[OF szS)|
show fint: finite-sort C (snd z) by auto
fix y assume yl: (Vary, [) € mp
from yl var-var obtain z where I: [= Var z by force
show snd x = snd y
proof (cases z = y)
case Fulse
from mp obtain mp’ where mp” mp’ €# p and mp: mp =
mp-mset mp’ by auto
from Fulse zl yl obtain mp"’
where mp’ = add-mset (Var xz, Var z) (add-mset (Var y, Var
z) mp")
unfolding [mp by (metis insert-Diff M insert-noteg-member
prod.inject term.inject(1))
with no-clash mp’ have = Conflict-Clash (Var z) (Var y)
by (metis conflicts.simps(1))
thus snd z = snd y by (simp add: conflicts.simps split: if-splits)
qed auto
qed
with impr show ?thesis by auto
next
case Fulse
have V z€tvars-pat (pat-mset p-fin). = inf-sort (snd z) unfolding
p-fin-def fin-def
by (auto simp: tvars-pat-def)
from pat-inf-var-conflict| OF - False this, folded p-split] no-step
obtain mp where mp: mp €# p and inf: — fin mp and no-confi:
= inf-var-conflict (mp-mset mp)
unfolding p-inf-def using impr by fastforce
from influnfolded fin-def tvars-match-def]
obtain ¢ | z where t: (t,]) €# mp and z: € vars t and inf:
inf-sort (snd x) by auto
from get-var[OF - tl] mp tl obtain y where ty: (t, Var y) €# mp
by auto
have 3 z. (Var z, Var y) €# mp A inf-sort (snd x)
proof (cases t)
case (Var z)
with ty inf x show ?thesis by (intro exI[of - z], auto)
next
case (Fun fts)
from fun-case[OF - ty[unfolded Fun]] mp show ?thesis by auto
qed
then obtain z where zy: (Var z, Var y) €# mp and inf: inf-sort
(snd) by auto

71

from mset-add[OF zy| obtain mp’ where mp” mp = add-mset
(Var z, Var y) mp' by auto
from nsvar[simplified, rule-format, OF mp|unfolded mp']] obtain s
y’ where
sy’ (s,y") €# mp’ and y” y € vars y’ by force
from mset-add[OF sy’] mp’ obtain mp’ where
mp’: mp = add-mset (s,y’) (add-mset (Var z, Var y) mp’’)
by auto
from get-var|OF mp-mset-in-pat-mset| OF mplunfolded mp"]] v’
have mp'": mp = add-mset (s, Var y) (add-mset (Var x, Var y)
mp")
unfolding mp’"’ by (cases y’, auto)
from ndup mp’’ mp have sz: s # Var x by auto
from no-clash mp’ mp have no-clash: = Conflict-Clash s (Var x)
by metis
from no-confi[unfolded inf-var-conflict-def not-ex, rule-format, of s
y Var x z] mp'" inf
have — Conflict-Var s (Var z) = by auto
with sz no-clash have False by (cases s, auto simp: conflicts.simps
split: if-splits)
thus ?thesis by auto
qed
qged auto
qed
next
case no-non-inf: False
have 3 ps. p + {#} =m ps
proof (intro exl, rule pat-inf-var-conflict|OF - pnel, intro balll)
fix mp
assume mp: mp € pat-mset p
then obtain mp’ where mp’: mp’ €# p and mp: mp = mp-mset mp
by auto

/

from two[OF mp’]
obtain s t z mp”’
where mp'": mp’ = add-mset (s, Var z) (add-mset (¢, Var) mp")
and diff: s # t by auto
from conflicts(3)[OF diff] obtain y where Conflict-Clash s t V
Conflict-Var s t y by auto
with no-clash mp'’ mp’ have conf: Conflict-Var s t y by force
with no-non-inf mp’[unfolded mp'’] have inf: inf-sort (snd y) by blast
show inf-var-conflict mp unfolding inf-var-conflict-def mp mp’’
apply (rule exI[of -], rule exI[of - t])
apply (intro exI[of - z] exI[of - y])
using insert inf conf by auto
qged (auto simp: tvars-pat-def)
thus ?thesis by auto
qed
qged
qed

72

qed
qed
qed

context
assumes non-improved: — improved
begin

lemma pat-fail-or-trans: wf-pat (pat-mset p) = pat-fail p V (3 ps. p =m ps)
using pat-fail-or-trans-or-finite-var-form[of p] non-improved by auto

Pattern problems just have two normal forms: empty set (solvable) or bot-
tom (not solvable)

theorem P-step-NF':
assumes wf: wf-pats (pats-mset P) and NF: P € NF =
shows P € {{#}, bottom-mset}
proof (rule ccontr)
assume nNF: P ¢ {{#}, bottom-mset}
from NF have NF: - (3 Q. P =,, Q) unfolding P-step-def by blast
from nNF obtain p P’ where P: P = add-mset p P’
using multiset-cases by auto
with wf have wf-pat (pat-mset p) by (auto simp: wf-pats-def)
with pat-fail-or-trans
obtain ps where pat-fail p V p =, ps by auto
with P-simp-pplof p ps] NF
have pat-fail p unfolding P by auto
from P-failure[OF this, of P', folded P]| nNF NF show False by auto
qed
end

context
assumes improved: improved
and inf: infinite (UNIV :: v set)
begin

lemma pat-fail-or-trans-or-fuf:
fixes p :: ('f,’v,’s) pat-problem-mset
assumes wf-pat (pat-mset p)
shows pat-fail p V (3 ps. p =m ps) V finite-var-form-pat C' (pat-mset p)
using assms pat-fail-or-trans-or-finite-var-form[of p, OF inf] by auto

Normal forms only consist of finite-var-form pattern problems

theorem P-step-NF-fuf:
assumes wf: wf-pats (pats-mset P)
and NF: (P::('f,'v,’s) pats-problem-mset) € NF =
and p: p €# P
shows finite-var-form-pat C (pat-mset p)
proof (rule ccontr)

73

assume nfuf: - ?thesis
from wf p have wfp: wf-pat (pat-mset p) by (auto simp: wf-pats-def)
from mset-add[OF p] obtain P’ where P: P = add-mset p P’ by auto
from NF have NF: - (3 Q. P =, Q) unfolding P-step-def by blast
from pat-fail-or-trans-or-fuf [OF wfp] nfuf
obtain ps where pat-fail p V p =, ps by auto
with P-simp-pp[of p ps] NF
have pat-fail p unfolding P by auto
from P-failure[OF this, of P', folded P] NF have P = {# {#} #} by auto
with P have p = {#} by auto
with nfyf show Fulse unfolding finite-var-form-pat-def by auto

qed

end

end

7.3 Termination

A measure to count the number of function symbols of the first argument
that don’t occur in the second argument

fun fun-diff == ('f,’v)term = ('f,/'w)term = nat where
fun-diff | (Var z) = num-funs |
| fun-diff (Fun gls) (Fun fts) = (if f = g A length ts = length ls then
sum-list (map?2 fun-diff ls ts) else 0)
| fun-diff Lt =0

lemma fun-diff-Var[simp|: fun-diff (Var z) t = 0
by (cases t, auto)

lemma add-many-mult: (\ y. y €# N = (y,x) € R) = (N + M, add-mset x

M) € mult R

by (metis add.commaute add-mset-add-single multi-member-last multi-self-add-other-not-self
one-step-implies-mult)

lemma fun-diff-num-funs: fun-diff [t < num-funs [
proof (induct l t rule: fun-diff .induct)
case (2 fls g ts)
show ?Zcase
proof (cases f = g A length ts = length ls)
case True
have sum-list (map2 fun-diff ls ts) < sum-list (map num-funs ls)
by (intro sum-list-mono2, insert True 2, (force simp: set-zip)+)
with 2 show ?thesis by auto
ged auto
qed auto

lemma fun-diff-subst: fun-diff I (t - o) < fun-diff I ¢
proof (induct I arbitrary: t)

74

case [: (Fun fls)
show ?Zcase
proof (cases t)
case t: (Fun g ts)
show ?thesis unfolding t using | by (auto intro: sum-list-mono2)
next
case t: (Var z)
show ?thesis unfolding t using fun-diff-num-funs|of Fun [ls] by auto
qed
qed auto

lemma fun-diff-num-funs-lt: assumes t”: t' = Fun ¢ cs
and is-Fun [
shows fun-diff 1 t' < num-funs |
proof —
from assms obtain g Is where I: | = Fun ¢ Is by (cases 1, auto)
show ?thesis
proof (cases ¢ = g A length cs = length ls)
case Fulse
thus ?thesis unfolding ¢’ | by auto
next
case True
have sum-list (map?2 fun-diff ls cs) < sum-list (map num-funs ls)
apply (rule sum-list-mono2; (intro impI)?)
subgoal using True by auto
subgoal for i using True by (auto intro: fun-diff-num-funs)
done
thus ?thesis unfolding t’ | using True by auto
qed
qed

lemma sum-union-le-nat: sum (f :: ‘a = nat) (AU B) < sum f A + sum f B
by (metis finite-Un le-iff-add sum.infinite sum.union-inter zero-le)

lemma sum-le-sum-list-nat: sum f (set xs) < (sum-list (map f xs) :: nat)
proof (induct zs)
case (Cons z xs)
thus ?case
by (cases x € set xs, auto simp: insert-absord)
qed auto

lemma bdd-above-has-Mazimum-nat: bdd-above (A :: nat set) —= A # {} =
has-Mazimum A

unfolding has-Mazimum-def

by (meson Maz-ge Maz-in bdd-above-nat)

context pattern-completeness-contert-with-assms
begin

75

lemma 7s-list: set (7s-listnz) = s nx
unfolding 7s-list-def Ts-def using Cl by auto

abbreviation (input) sum-ms :: ('a = nat) = 'a multiset = nat where
sum-ms [ms = sum-mset (image-mset f ms)

definition meas-diff :: ('f,’v,’s)pat-problem-mset = nat where
meas-diff = sum-ms (sum-ms (A (t,1). fun-diff 1 t))

definition maz-size :: 's = nat where
maz-size s = (if s € S A = inf-sort s then Mazimum (size ‘* {t. t : s in T(C)})
else 0)

definition meas-finvars :: (’f,'v,’s) pat-problem-mset = nat where
meas-finvars = sum-ms (A mp. sum (maz-size o snd) (tvars-match (mp-mset

mp)))

definition meas-symbols :: ('f,'v,’s)pat-problem-mset = nat where
meas-symbols = sum-ms (sum-ms (X (£,1). num-funs t))

definition meas-setsize :: (’f,'v,’s) pat-problem-mset = nat where
meas-setsize p = sum-ms (sum-ms (A -. 1)) p + size p

definition rel-pat :: (('f,’v,’s) pat-problem-mset x ('f,'v,’s)pat-problem-mset)set (<=<»)
where

(<) = inv-image ({(z, y). z < y} <xlexx> {(z, y). z < y} <xlexx> {(z, y). =
< y} <xlexx> {(z, y). < y})

(A mp. (meas-diff mp, meas-finvars mp, meas-symbols mp, meas-setsize mp))

abbreviation gt-rel-pat (infix <> 50) where
pp = pp’ = (pp'pp) € <

definition rel-pats :: (('f,’v,’s)pats-problem-mset x ('f,'v,’s)pats-problem-mset)set
(«<<mul>) where
<mul = mult (<)

abbreviation gt-rel-pats (infix <-mul> 50) where
P =mul P' = (P',P) € <mul

lemma wf-rel-pat: wf <
unfolding rel-pat-def
by (intro wf-inv-image wf-lex-prod wf-less)

lemma wf-rel-pats: wf <mul

unfolding rel-pats-def
by (intro wf-inv-image wf-mult wf-rel-pat)

76

lemma tvars-match-fin:
finite (tvars-match (mp-mset mp))
unfolding tvars-match-def by auto

lemmas meas-def = meas-finvars-def meas-diff-def meas-symbols-def meas-setsize-def

lemma tvars-match-mono: mp C# mp’ = tvars-match (mp-mset mp) C tvars-match
(mp-mset mp’)

unfolding tvars-match-def

by (intro image-mono subset-refl set-mset-mono UN-mono)

lemma meas-finvars-mono: assumes tvars-match (mp-mset mp) C tvars-match
(mp-mset mp’)

shows meas-finvars {#mp#} < meas-finvars {#mp'#}

using tvars-match-fin[of mp'] assms

unfolding meas-def by (auto intro: sum-mono2)

lemma rel-mp-sub: {# add-mset p mp#} = {# mp #}
proof —

let ?mp’ = add-mset p mp

have mp C# ?mp’ by auto

from meas-finvars-mono[OF tvars-match-mono[OF this]]

show ?thesis unfolding meas-def rel-pat-def by auto
qed

lemma rel-mp-mp-step-mset:
fixes mp :: ('f,’v,’s) match-problem-mset
assumes mp —,, mp’
shows {#mp#} = {#mp'#}
using assms
proof cases
case *: (match-decompose f ts g ls mp'’)
have meas-finvars {#mp'#} < meas-finvars {#mp#}
proof (rule meas-finvars-mono)
show tvars-match (mp-mset mp") C tvars-match (mp-mset mp)
unfolding tvars-match-def * using *(3) by (auto simp: set-zip set-conv-nth)

qged
moreover
have id: (case case © of (z, y) = (y, x) of (¢, 1) = ft 1) = (case z of (a,b) = f
b a) for
z = ('f, 'v) Term.term x ('f, nat x 's) Term.term and f :: - = - = nat

by (cases x, auto)
have meas-diff {#mp'#} < meas-diff {#mp#}
unfolding meas-def * using *(3)
by (auto simp: sum-mset-sum-list[symmetric] zip-commute[of ts ls] image-mset.compositionality
o-def id)
moreover have length ts = length Is = (>_ (¢, [)e#mset (zip ts ls). num-funs
t) < sum-list (map num-funs ts)
by (induct ts ls rule: list-induct2, auto)

77

hence meas-symbols {#mp'#} < meas-symbols {#mp#}
unfolding meas-def * using *(3)
by (auto simp: sum-mset-sum-list)
ultimately show ¢thesis unfolding rel-pat-def by auto
next
case *: (match-decompose’ mp1 y f n mp2 ys)
let ?Var = Var :: 'v = ('f, 'v) term
have meas-diff {#mp'#} < meas-diff {#mp#}
— (O (¢, y))e# (O (¢, He#mpl. mset (zip (args t) (map ?Var ys))). fun-diff
yi t7)
< O (¢, De#mpl. fun-diff 1 t) (is - +— Zsum < -)
unfolding *x meas-diff-def by simp
also have Zsum = 0
by (intro sum-mset.neutral balll, auto simp: set-zip)
finally have meas-diff {#mp'#} < meas-diff {#mp#} by simp
moreover
have meas-finvars {#mp'#} < meas-finvars {#mp#}
proof (rule meas-finvars-mono)
show tvars-match (mp-mset mp") C tvars-match (mp-mset mp)
unfolding tvars-match-def x using *(3,6)
by (auto simp: set-zip set-conv-nth)
(metis case-prod-conv nth-mem option.simps(8) root.elims term.sel(4)
term.set-intros(4))
qed
moreover
have meas-symbols {#mp'#} < meas-symbols {#mp#}
proof —
from (2 < size mpl) obtain T L MP where mpl: mpl = add-mset (T,L)
MP
by (cases mpl; force)
from *(3)[of T L] mp1 obtain TS where id: T = Fun f TS L = Var y and
ITS: length TS = n
by (cases T, auto)
have aux: length ts = length ls =
(O (¢, De#mset (zip ts ls). num-funs t) < sum-list (map num-funs ts)
for ts :: ('f, nat x 's)term list and Is :: ('f,'v)term list
by (induct ts ls rule: list-induct2, auto)
have meas-symbols {#mp'#} < meas-symbols {#mp#} «—
(O (¢,)e#tmset (zip TS (map ?Var ys)). num-funs t) +
O (84, yi)e#(> (t, HEH#MP. mset (zip (args t) (map ?Var ys))). num-funs
ti)
< (sum-list (map num-funs TS) + (3 (¢,)€E#MP. num-funs t)))
(is - «— (%a + 2 < %c + 2d))
unfolding meas-symbols-def * mpl id by (simp add: sum-mset-sum-list
less-Suc-eq-le)
also have ...
proof (rule add-le-mono)
show ?2a < ?c¢ using auz ITS <length ys = n> by auto
from *(3) mpl have (¢, l) €# MP = | = Var y A root t = Some (f, n)

78

for [t by auto
thus 20 < 2d
proof (induct MP)
case (add pair MP)
obtain ¢ | where pair: pair = (t,1) by force
from add(2)[of t [] obtain ¢s where id: | = Var y t = Fun f ts and lts:
length ts = n
by (cases t, auto simp: pair)
from add(1)[OF add(2)]
have IH: (3 (ti, yi)e#(>_ (¢,)e#MP. mset (zip (args t) (map ?Var ys))).
num-funs ti)
< (O2 (¢, he#MP. num-funs t) by auto
from IH auz|of ts, unfolded lts, of map ?Var ys| <length ys = n»
show ?case unfolding pair id by auto
qed auto
qed
finally show meas-symbols {#mp'#} < meas-symbols {#mp#} .
qed
ultimately show #?thesis unfolding rel-pat-def by auto
next
case *: (match-match x t)
show ?thesis unfolding *
by (rule rel-mp-sub)
next
case *: (match-duplicate pair mp)
show ?thesis unfolding *
by (rule rel-mp-sub)
qed

lemma sum-ms-image: sum-ms f (image-mset g ms) = sum-ms (f o g) ms
by (simp add: multiset.map-comp)

lemma meas-diff-subst-le: meas-diff (subst-pat-problem-mset 7 p) < meas-diff p
unfolding meas-def subst-match-problem-set-def subst-defs subst-left-def
unfolding sum-ms-image o-def
apply (rule sum-mset-mono, rule sum-mset-mono)
apply clarify
unfolding map-prod-def split id-apply
by (rule fun-diff-subst)

lemma meas-sub: assumes sub: p’ C# p
shows meas-diff p’ < meas-diff p
meas-finvars p’ < meas-finvars p
meas-symbols p’ < meas-symbols p
proof —
from sub obtain p”’ where p: p = p’ + p’’ by (metis subset-mset.less-eqE)
show meas-diff p’ < meas-diff p meas-finvars p’ < meas-finvars p meas-symbols
p’ < meas-symbols p
unfolding meas-def p by auto

79

qed

lemma meas-sub-rel-pat: assumes sub: p’ CH# p
shows p = p’
proof —
from sub obtain z p’’ where p: p = add-mset x p’ + p'’
by (metis multi-nonempty-split subset-mset.lessE union-mset-add-mset-left union-mset-add-mset-right)
hence [t: meas-setsize p’ < meas-setsize p unfolding meas-def by auto
from sub have p’ C# p by auto
from It meas-sub[OF this]
show ?thesis unfolding rel-pat-def by auto
qed

lemma maz-size-term-of-sort: assumes sS: s € S and inf: - inf-sort s
shows 3 t. t: sin T(C) A maz-size s = sizet A (VY t'. t': s in T(C) — size
t' < size t)
proof —
let ?set = X s. size “{t. t:sin T(C)}
have m: maz-size s = Mazimum (?set s) unfolding o-def maz-size-def using
inf sS by auto
from inf inf-sort-not-bdd|OF sS] have bdd-above (?set s) by auto
moreover have ?set s # {} by (auto introl: sorts-non-empty sS)
ultimately have has-Mazimum (%set s) by (rule bdd-above-has-Mazimum-nat)
from has-MazimumD|OF this, folded m] show ?thesis by auto
qed

lemma maz-size-mazx: assumes sS: s € S
and inf: — inf-sort s
and sort: t: s in T(C)
shows size t < max-size s
using max-size-term-of-sort| OF sS inf] sort by auto

lemma finite-sort-size: assumes c: ¢ : map snd vs — s in C
and inf: — inf-sort s
shows sum (maz-size o snd) (set vs) < max-size s
proof —
from c have vsS: insert s (set (map snd vs)) C S using C-sub-S
by (metis (mono-tags))
hence sS: s € S by auto
let ?m = max-size s
show ?thesis
proof (cases 3 v € set vs. inf-sort (snd v))
case True
{
fix v
assume v € set vs
with vsS have v: snd v € S by auto
note sorts-non-empty[OF this]

}

80

hence V v. 3 t. v € set vs — t : snd v in T(C) by auto
from choice[OF this| obtain t where
t: N v.ve€ setvs = tv:sndvin T(C) by blast
from True vsS obtain vl where vi: vl € set vs and vlS: snd vl € S and inf-vl:
inf-sort (snd vl) by auto
note nbdd = inf-sort-not-bdd[OF vlS, THEN iffD2, OF inf-vl]
from not-bdd-above-natD[OF nbdd, of ?m] t[OF vl]
obtain ¢/ where
tl: tl = snd vl in T(C) and large: ?m < size tl by fastforce
let 2t = Fun ¢ (map (A v. if v = vl then tl else t v) vs)
have 7t : s in T(C)
by (intro Fun-hastypel[OF c] list-all2-map-map, insert tl t, auto)
from maz-size-max[OF sS inf this]
have False using large split-list|OF vl] by auto
thus ?thesis ..
next
case Fulse
{
fix v
assume v: v € set vs
with False have inf: = inf-sort (snd v) by auto
from vsS v have snd v € S by auto
from max-size-term-of-sort[OF this inf]
have 3 t. ¢t : snd vin T(C) A size t = maz-size (snd v) by auto
}
hence V v. 3 t. v € set vs — t : snd v in T(C) A size t = maz-size (snd v)
by auto
from choice[OF this] obtain t where
t:v € setvs =>tv:sndvin T(C) A size (t v) = maz-size (snd v) for v
by blast
let 9t = Fun ¢ (map t vs)
have 7t : s in T(C)
by (intro Fun-hastypel[OF c| list-all2-map-map, insert t, auto)
from maz-size-max[OF sS inf this]
have size 7t < maz-size s .

have sum (max-size o snd) (set vs) = sum (size o t) (set vs)
by (rule sum.cong|OF refl], unfold o-def, insert t, auto)

also have ... < sum-list (map (size o t) vs)
by (rule sum-le-sum-list-nat)
also have ... < size-list (size o t) vs by (induct vs, auto)
also have ... < size %t by simp
also have ... < maz-size s by fact
finally show ?thesis .
qed
qed

lemma rel-pp-step-mset:
fixes p :: ('f,'v,’s) pat-problem-mset

81

assumes p =, ps
and p’ €# ps
shows p = p’
using assms
proof induct
case *: (pat-simp-mp mp mp’ p)
hence p”: p’ = add-mset mp’ p by auto
from rel-mp-mp-step-mset|OF *(1)]
show ?case unfolding p’ rel-pat-def meas-def by auto
next
case (pat-remove-mp mp p)
hence p”: p’ = p by auto
show ?case unfolding p’
by (rule meas-sub-rel-pat, auto)
next
case *: (pat-instantiate n mp p x 1l s y t)
from %(2) have 3 s t. (s,t) €# mp A (s = Varz A is-Fun t
V (z € vars s A = inf-sort (snd z)))
proof
assume x: (s, Var y) €# mp A (t, Var y) €# mp A Conflict-Var s t & A —
inf-sort (snd x)
A (improved — s = Var x A is-Fun t)
hence Conflict-Var s t x and — inf-sort (snd z) by auto
from conflicts(4)[OF this(1)] this(2) *
show ?thesis by auto
ged auto
then obtain s ¢t where st: (s,t) €# mp and choice: s = Var z A is-Fun t V z
€ vars s A = inf-sort (snd x)
by auto
let ?p = add-mset mp p
let s = snd x
from *(3) 7s-list
obtain 7 where 7: 7 € 7s n x and p” p’ = subst-pat-problem-mset T ?p by auto

let ?tau-mset = subst-pat-problem-mset T :: ('f,'v,’s) pat-problem-mset = -
let ?tau = subst-match-problem-mset 7 :: ('f,'v,’s) match-problem-mset = -
from 7[unfolded Ts-def Tc-def List.maps-def)
obtain c¢ sorts where c: ¢ : sorts — ?s in C and tau: 7 = subst x (Fun ¢ (map
Var (zip [n..<n + length sorts] sorts)))
by auto
with C-sub-S have sS: ?s € S and sorts: set sorts C S by auto
define vs where vs = zip [n..<n + length sorts] sorts
have 7: 7 = subst (Fun ¢ (map Var vs)) unfolding tau vs-def by auto
have snd ‘ vars (7 y) C insert (snd y) S for y
using sorts unfolding tau by (auto simp: subst-def set-zip set-conv-nth)
hence vars-sort: (a,b) € vars (1 y) => b € insert (snd y) S for a b y by fastforce

from st obtain mp’ where mp: mp = add-mset (s,t) mp’ by (rule mset-add)
from choice have ?p > ?tau-mset ?p

82

proof
assume s = Var z A is-Fun t
then obtain f ts where s: s = Var z and t: t = Fun f ts by (cases t, auto)
have meas-diff (?tau-mset ?p) =
meas-diff (?tau-mset (add-mset mp’' p)) + fun-diff t (s - 7)
unfolding meas-def subst-defs subst-left-def mp by simp
also have ... < meas-diff (add-mset mp' p) + fun-diff t (7 z) using meas-diff-subst-le|of
7] s by auto
also have ... < meas-diff (add-mset mp’ p) + fun-diff t s
proof (rule add-strict-left-mono)
have fun-diff t (7) < num-funs t
unfolding tau subst-simps fun-diff.simps
by (rule fun-diff-num-funs-It[OF refl], auto simp: t)
thus fun-diff t (7) < fun-diff t s by (auto simp: s t)

qed
also have ... = meas-diff ?p unfolding mp meas-def by auto
finally show ?thesis unfolding rel-pat-def by auto

next

assume z € vars s A - inf-sort (snd x)
hence z: x € vars s and inf: - inf-sort (snd z) by auto
from meas-diff-subst-le[of T]
have fd: meas-diff p’ < meas-diff ?p unfolding p’.
have meas-finvars (?tau-mset ?p) = meas-finvars (Ztau-mset {#mp#}) +
meas-finvars (?tau-mset p)
unfolding subst-defs meas-def by auto
also have ... < meas-finvars {#mp#} + meas-finvars p
proof (rule add-less-le-mono)
have vars-T-var: vars (7 y) = (if x = y then set vs else {y}) for y unfolding
T subst-def by auto
have vars-t: vars (t - 7) = vars t — {z} U (if x € vars t then set vs else {})
for ¢
unfolding vars-term-subst image-comp o-def vars-t-var by auto
have tvars-match-subst: tvars-match (mp-mset (¢tau mp)) =
tvars-match (mp-mset mp) — {z} U (if x € tvars-match (mp-mset mp)
then set vs else {}) for mp
unfolding subst-defs subst-left-def tvars-match-def
by (auto simp:vars-t split: if-splits prod.split)
have id1: meas-finvars (?tau-mset {#mp#}) = (3 z€ tvars-match (mp-mset
(2tau mp)). max-size (snd x)) for mp
unfolding meas-def subst-defs by auto
have id2: meas-finvars {#mp#} = (3 z€tvars-match (mp-mset mp). maz-size
(snd 1))
for mp :: ('f,'v,’s) match-problem-mset
unfolding meas-def subst-defs by simp
have eq: © ¢ tvars-match (mp-mset mp) = meas-finvars (?tau-mset {# mp

#}) = meas-finvars {#mp#} for mp
unfolding id1 id2 by (rule sum.cong[OF - refl], auto simp: tvars-match-subst)

{

fix mp = ('f,v,’s) match-problem-mset

83

assume zmp: z € tvars-match (mp-mset mp)
let ?mp = (mp-mset mp)
have fin: finite (tvars-match ?mp) by (rule tvars-match-fin)
define Mp where Mp = tvars-match ?mp — {z}
from zmp have 1: tvars-match (mp-mset (?tau mp)) = set vs U Mp
unfolding tvars-match-subst Mp-def by auto
from zmp have 2: tvars-match ?mp = insert x Mp and zMp: = ¢ Mp
unfolding Mp-def by auto
from fin have fin: finite Mp unfolding Mp-def by auto
have meas-finvars (?tau-mset {# mp #}) = sum (maz-size o snd) (set vs
U Mp) (is - = sum ?size -)
unfolding id! id2 using 1 by auto
also have ... < sum ?size (set vs) + sum ?size Mp by (rule sum-union-le-nat)
also have ... < %size © + sum ?size Mp
proof —
have sS: ?s € S by fact
have sorts: sorts = map snd vs unfolding vs-def by (intro nth-equalityl,

auto)
have sum ?size (set vs) < ?size x
using finite-sort-size[OF c[unfolded sorts] inf] by auto
thus ?thesis by auto
qged
also have ... = meas-finvars {#mp#} unfolding id2 2 using fin xMp by
auto

finally have meas-finvars (7tau-mset {# mp #}) < meas-finvars {#mp#}

} note less = this
have le: meas-finvars (2tau-mset {# mp #}) < meas-finvars {#mp#} for
mp
using eg[of mp] less[of mp] by linarith

show meas-finvars (?tau-mset {#mp#}) < meas-finvars {#mp#} using z
by (intro less, unfold mp, force simp: tvars-match-def)

show meas-finvars (?tau-mset p) < meas-finvars p
unfolding subst-pat-problem-mset-def meas-finvars-def sum-ms-image o-def
apply (rule sum-mset-mono)
subgoal for mp using le[of mp] unfolding meas-finvars-def o-def subst-defs
by auto
done
qed
also have ... = meas-finvars ?p unfolding p’ meas-def by simp
finally show ?thesis using fd unfolding rel-pat-def p’ by auto
qed
thus ?case unfolding p’ .
next
case *: (pat-remove-pp p)
thus ?case by (intro meas-sub-rel-pat, auto)

84

next

case *: (pat-inf-var-conflict p)

thus ?case by (intro meas-sub-rel-pat, cases p, auto)
qed

finally: the transformation is terminating w.r.t. (>mul)

lemma rel-P-trans:
assumes P =,, P’
shows P =mul P’
using assms
proof induct
case x: (P-failure p P)
from * have p # {#} V p = {#} N P # {#} by auto
thus ?case
proof
assume p # {#}
then obtain mp p’ where p: p = add-mset mp p’ by (cases p, auto)
have p > {#} unfolding p by (intro meas-sub-rel-pat, auto)
thus ?thesis unfolding rel-pats-def using
one-step-implies-mult[of add-mset p P {#{#}#} - {#}]
by auto
next
assume x: p = {#} A P # {#} then obtain p’ P’ where p: p = {#} and
P: P = add-mset p’ P' by (cases P, auto)
show ?thesis unfolding P p unfolding rel-pats-def
by (simp add: subset-implies-mult)
qed
next
case *: (P-simp-pp p ps P)
from rel-pp-step-mset[|OF x|
show ?case unfolding rel-pats-def by (metis add-many-mult)
qed

termination of the multiset based implementation

theorem SN-P-step: SN =
proof —
have sub: = C <mul—1
using rel-P-trans unfolding P-step-def by auto
show ?thesis
apply (rule SN-subset|OF - sub])
apply (rule wf-imp-SN)
using wf-rel-pats by simp
qed

7.4 Partial Correctness via Refinement

Obtain partial correctness via a simulation property, that the multiset-based
implementation is a refinement of the set-based implementation.

85

lemma mp-step-cong: mpl —s mp2 —> mpl = mpl’' = mp2 = mp2’' —> mpl’
—s mp2’ by auto

lemma mp-step-mset-mp-trans: mp —,, mp’ = mp-mset mp —, mp-mset mp’
proof (induct mp mp’ rule: mp-step-mset.induct)
case *: (match-decompose f ts g ls mp)
show ?case by (rule mp-step-cong| OF mp-decompose], insert *, auto)
next
case x: (match-match x mp t)
show ?Zcase by (rule mp-step-cong|OF mp-match], insert *, auto)
next
case (match-duplicate pair mp)
show ?case by (rule mp-step-cong| OF mp-identity|, auto)
next
case *: (match-decompose’ mp y f n mp’ ys)
show ?Zcase by (rule mp-step-cong| OF mp-decompose’|OF *(1,2) =(3)[unfolded
set-mset-union] x(4,6)]], auto)
qed

lemma mp-fail-cong: mp-fail mp = mp = mp’ = mp-fail mp’ by auto

lemma match-fail-mp-fail: match-fail mp = mp-fail (mp-mset mp)
proof (induct mp rule: match-fail.induct)

case x: (match-clash f ts g ls mp)

show ?case by (rule mp-fail-cong|OF mp-clash], insert *, auto)
next

case *: (match-clash’ s t x mp)

show ?case by (rule mp-fail-cong|OF mp-clash'], insert x, auto)
next

case *: (match-clash-sort s t © mp)

show ?case by (rule mp-fail-cong|OF mp-clash-sort], insert *, auto)
qed

lemma P-step-set-cong: P =, Q = P =P ' =— Q = Q' = P’ =, Q' by auto

lemma P-step-mset-imp-set: assumes P =,, @
shows pats-mset P =, pats-mset @
using assms
proof (induct)
case x: (P-failure p P)
let 7P = insert (pat-mset p) (pats-mset P)
from (1)
have 7P =, bottom
proof induct
case pat-empty
show ?case using P-fail by auto
qed
thus ?case by auto
next

86

case *: (P-simp-pp p ps P)
note conv = o-def image-mset-union image-empty image-mset-add-mset Un-empty-left
set-mset-add-mset-insert set-mset-union image-Un image-insert set-mset-empty
set-mset-mset set-image-mset
set-map image-comp insert-is- Un[symmetric]
define P’ where P’ = {mp-mset ‘ set-mset x |. © € set-mset P}
from (1)
have insert (pat-mset p) (pats-mset P) =, pats-mset ps U pats-mset P
unfolding conv P’-def[symmetric]
proof induction
case (pat-remove-pp p)
show ?case unfolding conv
by (intro P-remove-pp pp-success.intros)
next
case x: (pat-simp-mp mp mp’ p)
from P-simp[OF pp-simp-mp|OF mp-step-mset-mp-trans[OF |||
show ?case by auto
next
case *: (pat-remove-mp mp p)
from P-simp[OF pp-remove-mp|OF match-fail-mp-fail|[OF «]]]
show ?case by simp
next
case *: (pat-instantiate n mp p xl s y t)
from x(2) have z € tvars-match (mp-mset mp)
using conflicts(4)[of s t z] unfolding tvars-match-def
by (auto introl:term.set-intros(3))
hence z: = € tvars-pat (pat-mset (add-mset mp p)) unfolding tvars-pat-def
using *(2) by auto
show ?case unfolding conv 7s-list
apply (rule P-step-set-cong| OF P-instantiate[OF (1) z]])
by (unfold conv subst-defs set-map image-comp, auto)
next
case *: (pat-inf-var-conflict pp pp’)
from pp-inf-var-conflict|OF *(1), of pat-mset pp']
have pat-mset (pp + pp’) =5 pat-mset pp’
using * by (auto simp: tvars-pat-def image-Un)
from P-simp|OF this]
show ?case by auto
qed
thus ?case unfolding conv .
qed

lemma P-step-pp-trans: assumes (P,Q) € =
shows pats-mset P =, pats-mset @
by (rule P-step-mset-imp-set, insert assms, unfold P-step-def, auto)

theorem P-step-pcorrect: assumes wf: wf-pats (pats-mset P) and step: (P,Q) €

P-step
shows wf-pats (pats-mset Q) N (pats-complete C' (pats-mset P) = pats-complete C

87

(pats-mset Q))
proof —

note step = P-step-pp-trans|OF step)
from P-step-set-pcorrect| OF step] P-step-set-wf[OF step] wf
show ?thesis by auto

qed

corollary P-steps-pcorrect: assumes wf: wf-pats (pats-mset P)

and step: (P,Q) € =*
shows wf-pats (pats-mset Q) A (pats-complete C (pats-mset P) «— pats-complete
C (pats-mset Q))

using step by induct (insert wf P-step-pcorrect, auto)

Gather all results for the multiset-based implementation: decision procedure
on well-formed inputs (termination was proven before)

theorem P-step:
assumes non-improved: — improved
and wf: wf-pats (pats-mset P) and NF: (P,Q) € ='
shows Q = {#} A pats-complete C (pats-mset P) — either the result is and
input P is complete
V @ = bottom-mset A — pats-complete C' (pats-mset P) — or the result = bot
and P is not complete
proof —
from NF have steps: (P,Q) € = * and NF: @) € NF P-step by auto
from P-steps-pcorrect| OF wf steps]
have wf: wf-pats (pats-mset @) and
sound: pats-complete C (pats-mset P) = pats-complete C (pats-mset Q)
by blast+
from P-step-NF[OF non-improved wf NF| have Q € {{#},bottom-mset} .
thus ?thesis unfolding sound by auto
qed

theorem P-step-improved:
fixes P :: ('f,’v,’s) pats-problem-mset
assumes improved
and inf: infinite (UNIV :: v set)
and wf: wf-pats (pats-mset P) and NF: (P,Q) € ='
shows pats-complete C (pats-mset P) <— pats-complete C (pats-mset Q) —
equivalence
p E# Q = finite-var-form-pat C (pat-mset p) — all remaining problems are
in finite-var-form
proof —
from NF have steps: (P,Q) € = x and NF: @ € NF P-step by auto
note x = P-steps-pcorrect| OF wf steps]
from x
show pats-complete C (pats-mset P) = pats-complete C (pats-mset Q) ..
from * have wfQ: wf-pats (pats-mset Q) by auto
from P-step-NF-fuf[OF <improved inf this NF]
show p €# Q = finite-var-form-pat C' (pat-mset p) .

88

qed

end
end

8 A List-Based Implementation to Decide Pattern
Completeness

theory Pattern-Completeness-List
imports

Pattern-Completeness-Multiset
Compute-Nonempty-Infinite-Sorts
Finite-IDL-Solver-Interface
HOL—Library.AList
HOL- Library. Mapping
Singleton-List

begin

8.1 Definition of Algorithm

We refine the non-deterministic multiset based implementation to a deter-
ministic one which uses lists as underlying data-structure. For matching
problems we distinguish several different shapes.

type-synonym (‘a,’b)alist = ('a x 'b)list
type-synonym ('f,’v,’s)match-problem-list = (('f,nat x 's)term x ('f,'v)term)
list — mp with arbitrary pairs
type-synonym ('f,’v,’s)match-problem-lx = ((nat x 's) x ('f,’v)term) list — mp
where left components are variable
type-synonym ('f,'v,’s)match-problem-rz = ('v,(’f,nat x 's)term list) alist x bool
— mp where right components are variables
type-synonym ('f,’v,’s)match-problem-fof = ('v,(nat x 's) list) alist
type-synonym ('f,’v,’s)match-problem-lr = ('f,"v,’s)match-problem-lz x ('f,"v,’s)match-problem-rx
— a partitioned mp
type-synonym ('f,'v,’s
type-synonym ('f,'v,’s
type-synonym ('f,'v,’s
type-synonym ('f,'v,’s
(
(

pat-problem-list = ('f,"v,’s)match-problem-list list
pat-problem-lr = ('f,"v,’s)match-problem-Ir list
pat-problem-lz = ('f,'v,’s)match-problem-lz list
pat-problem-fuf = ('f,’v,’s)match-problem-fuf list
pats-problem-list = ('f,'v,’s) pat-problem-list list
pat-problem-set-impl = (('f,nat x 's)term x ('f,'v)term)

type-synonym ('f,'v,’s
type-synonym ('f,'v,’s
list list

e — - —

definition lwars-mp :: ('f,"v,’s)match-problem-mset = 'v set where
lars-mp mp = (U (vars © snd < mp-mset mp))

definition vars-mp-mset :: ('f,'v,’s)match-problem-mset = v multiset where
vars-mp-mset mp = sum-mset (image-mset (vars-term-ms o snd) mp)

89

definition [I-mp :: ('f,’v,’s)match-problem-mset = bool where
l-mp mp = (V z. count (vars-mp-mset mp) z < 1)

definition l-pp :: ('f,"v,’s)pat-problem-list = bool where
lU-pp p = (Y mp € set p. ll-mp (mset mp))

definition lvars-pp :: ('f,’v,’s)pat-problem-mset = v set where
ars-pp pp = (U (lvars-mp * set-mset pp))

abbreviation mp-list :: ('f,'v,’s)match-problem-list = ('f,'v,’s)match-problem-mset
where mp-list = mset

abbreviation mp-lz :: ('f,’v,’s)match-problem-lz = ('f,'v,’s)match-problem-list
where mp-lx = map (map-prod Var id)

definition mp-rz :: ('f,'v,’s)match-problem-rz = ('f,'v,’s)match-problem-mset
where mp-rz mp = mset (List.maps (A (z,ts). map (X t. (¢, Var z)) ts) (fst mp))

definition mp-rz-list :: ('f,’v,’s)match-problem-rz = ('f,"v,’s)match-problem-list
where mp-rz-list mp = List.maps (A (z,ts). map (X t. (t,Var x)) ts) (fst mp)

definition mp-ir :: ('f,’v,’s)match-problem-lr = ('f,'v,’s)match-problem-mset
where mp-lr pair = (case pair of (lz,rz) = mp-list (mp-le lr) + mp-rz rz)

definition mp-lr-list :: ('f,'v,’s)match-problem-lr = ('f,"v,’s)match-problem-list
where mp-lr-list pair = (case pair of (lx,rz) = mp-lz lv Q mp-rz-list rx)

definition pat-lr :: ('f,’v,’s)pat-problem-lr = ('f,"v,’s) pat-problem-mset
where pat-lr ps = mset (map mp-Ir ps)

definition pat-lz :: ('f,'v,’s)pat-problem-lz = ('f,'v,’s)pat-problem-mset
where pat-lz ps = mset (map (mp-list o mp-lz) ps)

definition pat-mset-list :: ('f,’v,’s)pat-problem-list = ('f,'v,’s) pat-problem-mset
where pat-mset-list ps = mset (map mp-list ps)

definition pat-list :: ('f,’v,’s)pat-problem-list = ('f,’v,’s)pat-problem-set
where pat-list ps = set ¢ set ps

abbreviation pats-mset-list :: ('f,'v,’s) pats-problem-list = ('f,’v,’s) pats-problem-mset
where pats-mset-list = mset o map pat-mset-list
definition subst-match-problem-list :: ('f,nat x 's)subst = ('f,’v,’s)match-problem-list

= ('f,'v,’s)match-problem-list where
subst-match-problem-list 7 = map (subst-left T)

90

definition subst-pat-problem-list :: ('f,nat x 's)subst = ('f,’v,’s)pat-problem-list
= ('f,’v,’s)pat-problem-list where
subst-pat-problem-list T = map (subst-match-problem-list T)

definition match-var-impl :: ('f,"v,’s)match-problem-lr = "v list x ('f,'v,’s)match-problem-Ir
where
match-var-impl mp = (case mp of (al,(rz,b)) =
let zs = remdups (List.maps (vars-term-list o snd) xl)
in (xs,(zl,(filter (A (z,ts). tlts £ [] V x € set xs) rz),b)))

definition find-var :: bool = ('f,"v,’s)match-problem-lr list = - where

find-var improved p = (case List.maps (A (lz,-). lx) p of

(z,t) # - = Some z
| [] = if improved then (let flat-mps = List.maps (fst o snd) p in
(map-option (X (z,ts). case find is-Var ts of Some (Var z) = x)
(find (X rz. 3 t € set (snd rz). is-Fun t) flat-mps)))
else Some (let (-,rz,b) = hd p
in case hd rx of (z, s # t # -) = hd (the (conflicts s t))))

definition empty-lr :: ('f,’v,’s)match-problem-lr = bool where
empty-lr mp = (case mp of (lx,rz,-) = le =[] Arz =1])

fun zipAll :: 'a list = 'b list list = (‘a x 'b list) list where
zipAll] - =[]
| zipAll (z # xs) yss = (x, map hd yss) # zipAll xs (map tl yss)

datatype ('f,’v,’s)pat-impl-result = Incomplete
| New-Problems nat x nat x ('f,’v,’s)pat-problem-list list

| Fin-Var-Form ('f,'v,’s) pat-problem-fuf

Transforming finite variable forms:

definition tvars-match-list = remdups o concat o map (var-list-term o fst)
definition tvars-pat-list = remdups o concat o map tvars-match-list

definition var-form-of-match-rz :: ('f,’v,’s)match-problem-rz = (v x (nat x 's)
list) list where

var-form-of-match-rr = map (map-prod id (map the-Var)) o fst

definition match-of-var-form-list where
match-of-var-form-list mpv = concat [[(Var v, Var z). v < vs]. (z,vs) < mpv]

definition var-form-of-pat-rx where
var-form-of-pat-rr = map var-form-of-match-rx

definition pat-of-var-form-list where
pat-of-var-form-list = map match-of-var-form-list

91

lemma size-zip[termination-simp): length ts = length ls = size-list (A\p. size (snd
p)) (sip s 1)

< Suc (size-list size ls)

by (induct ts ls rule: list-induct2, auto)

fun match-decomp-lin-impl :: ('f,"v,’s)match-problem-list = ('f,’v,’s) match-problem-lz
option where

match-decomp-lin-impl [| = Some ||
| match-decomp-lin-impl ((Fun f ts, Fun g ls) # mp) = (if (f,length ts) = (g,length
Is) then

match-decomp-lin-impl (zip ts ls @ mp) else None)

| match-decomp-lin-impl ((Var z, Fun g ls) # mp) = (map-option (Cons (x, Fun
g 1s)) (match-decomp-lin-impl mp))
| match-decomp-lin-impl ((t, Var y) # mp) = match-decomp-lin-impl mp

fun pat-inner-lin-impl :: (’f,"v,’s) pat-problem-list = ('f,"v,’s) pat-problem-lz = ('f,'v,’s) pat-problem-lz
option where
pat-inner-lin-impl [| pd = Some pd
| pat-inner-lin-impl (mp # p) pd = (case match-decomp-lin-impl mp of
None = pat-inner-lin-impl p pd
| Some mp’ = if mp’ =[] then None
else pat-inner-lin-impl p (mp’ # pd))

definition bounds-list bnd cnf = (let vars = remdups (concat (concat cnf))
in map (A v. (v, int (bnd v) — 1)) vars)

fun pairs-of-list where

pairs-of-list (x # y # xs) = (z,y) # pairs-of-list (y # xs)
| pairs-of-list - = ||

lemma set-pairs-of-list: set (pairs-of-list xs) = { (zs ! i, xs ! (Suc 7)) | 4. Suc i <
length s}
proof (induct xs rule: pairs-of-list.induct)
case (1 z y zs)
define n where n = length xs
have id: {f i |i. Suc i < length (x # y # z3)}
= qnsert (f 0) {f (Suc @) |i. Suc i < length (y # zs)} for f :: nat = 'a x 'a
unfolding list.size n-def[symmetric]
apply auto
subgoal for a b i by (cases i, auto)
done
show ?case unfolding pairs-of-list.simps set-simps 1 id by auto
qged auto

lemma diff-pairs-of-list: (3 = € set xs. 3 y € set xs. fx # fy) +—
(3 (z,y) € set (pairs-of-list xs). fx # fy) (is 2l = 7r)
proof
assume ?r
from this[unfolded set-pairs-of-list] obtain ¢ where i: Suc i < length xs

92

and diff: f (zs ! i) # f (zs! (Suc i) by auto
from ¢ have zs | i € set zs xs | (Suc i) € set xs by auto
with diff show 2l by auto
next
assume 7]
show 2r
proof (rule ccontr)
let ?n = length zs
assume - 71
hence eq: A\ i. Suci < n = f (zs ! i) = f (xs ! (Suc ©)) by (auto simp:
set-pairs-of-list)
have eq: { < ?n = f (zs!4) = f (s ! 0) for ¢
by (induct i, insert eq, auto)
hence A\ ij. i< fn = j < n = f (xs! i) = f (zs ! j) by auto
with %]y show Fulse unfolding set-conv-nth by auto
qged
qed

definition dist-pairs-list cnf = map (List.maps pairs-of-list) cnf

context pattern-completeness-context
begin

insert an element into the part of the mp that stores pairs of form (t,x) for
variables x. Internally this is represented as maps (assoc lists) from x to
terms t1,t2,... so that linear terms are easily identifiable. Duplicates will be
removed and clashes will be immediately be detected and result in None.

definition insert-rz :: ('f,nat x 's)term = v = ('f,’v,’s)match-problem-rr =
('f,"v,’s)match-problem-rz option where
insert-rx t reh = (case rzb of (rz,b) = (case map-of rz x of
None = Some (((z,[t]) # rz, b))
| Some ts = (case those (map (conflicts t) ts)
of None = None — clash
| Some cs = if [] € set cs then Some rzb — empty conflict means (t,x) was
already part of rxb
else Some ((AList.update x (t # ts) rz, bV (3 y € set (concat cs). inf-sort
(snd y))))
)

Decomposition applies decomposition, duplicate and clash rule to classify
all remaining problems as being of kind (x,f(11,..,In)) or (t,x).

fun decomp-impl :: ('f,"v,’s)match-problem-list = ('f,’v,’s)match-problem-lr option
where
decomp-impl [| = Some ([],([],False))
| decomp-impl ((Fun fts, Fun g ls) # mp) = (if (f,length ts) = (g,length ls) then
decomp-impl (zip ts Is Q@ mp) else None)
| decomp-impl ((Var x, Fun g ls) # mp) = (case decomp-impl mp of Some (lx,rz)
= Some ((z,Fun g ls) # lz,rz)
| None = None)

93

| decomp-impl ((t, Var y) # mp) = (case decomp-impl mp of Some (lz,rz) =
(case insert-rx t y rz of Some rz’ = Some (lz,rz’) | None = None)
| None = None)

definition pat-lin-impl :: nat = ('f,'v,’s) pat-problem-list = ('f,’v,’s) pat-problem-list
list option where
pat-lin-impl n p = (case pat-inner-lin-impl p [| of None = Some]
| Some p’ = if p’ =[] then None
else (let x = fst (hd (hd p’)); p'l = map mp-lz p’ in
Some (map (X 7. subst-pat-problem-list T p'l) (7s-list n x))))

partial-function (tailrec) pats-lin-impl :: nat = (’f,'v,’s)pats-problem-list = bool
where
pats-lin-impl n ps = (case ps of [| = True
| p # ps1 = (case pat-lin-impl n p of
None = Fulse
| Some ps2 = pats-lin-impl (n + m) (ps2 Q ps1)))

definition match-steps-impl :: ('f,"v,’s)match-problem-list = ('v list x ('f,’v,’s)match-problem-Ir)
option where
match-steps-impl mp = (map-option match-var-impl (decomp-impl mp))

definition pat-complete-lin-impl :: ('f,'v,’s) pats-problem-list = bool where
pat-complete-lin-impl ps = (let
n = Suc (maz-list (List.maps (map fst o vars-term-list o fst) (concat (concat

ps))))

in pats-lin-impl n ps)

context

fixes

CC ::'f x 's list = 's option and

renNat :: nat = v and

renVar :: 'v = v and

fidl-solver :: ((nat x 's) x int) list x ((nat x ’s) x (nat x 's)) list list = bool
begin

partial-function (tailrec) decomp’-main-loop where
decomp’-main-loop n xs list out = (case list of
[= (n, out) — one might change to (rev out) in order to preserve the order
| ((myts) # rxs) = (if tlts =[] V (3 t € set ts. is-Var t) V z € set as
then decomp’-main-loop n xs rxs ((x,ts) # out)
else let | = length (args (hd ts));
fresh = map renNat [n ..< n + I];
new = zipAll fresh (map args ts);
cleaned = filter (X (y,ts). tlts’ # []) (map (A (y,ts"). (y, remdups ts’))
new)
in decomp’-main-loop (n + 1) xs (cleaned @Q rxs) out))

definition decomp’-impl where

94

decomp’-impl n s mp = (case mp of
(zl,(rz,b)) = case decomp’-main-loop n xs rz || of
(n', re’) = (n', (2l,(rz"0))))

definition apply-decompose’ :: ('f,'v,’s)match-problem-lr = bool
where apply-decompose’ mp = (improved A (case mp of (al,(rz,b)) = (— b A xl

=)

definition match-decomp’-impl :: nat = ('f,’v,’s)match-problem-list = (nat x
('f,"v,’s)match-problem-Ir) option where
match-decomp’-impl n mp = map-option (\ (xzs,mp).
if apply-decompose’ mp
then decomp’-impl n xs mp else (n, mp)) (match-steps-impl mp)

fun pat-inner-impl :: nat = ('f,'v,’s)pat-problem-list = ('f,'v,’s)pat-problem-lr =
(nat x ('f,’v,’s)pat-problem-Ir) option where
pat-inner-impl n || pd = Some (n, pd)
| pat-inner-impl n (mp # p) pd = (case match-decomp’-impl n mp of
None = pat-inner-impl n p pd
| Some (n',mp”) = if empty-lr mp’ then None
else pat-inner-impl n' p (mp’ # pd))

definition pat-impl :: nat = nat = ('f,’v,’s) pat-problem-list = ('f,"v,’s) pat-impl-result
where
pat-impl n nl p = (case pat-inner-impl nl p [| of None = New-Problems (n,nl,][])
| Some (nl’,p’) = (case partition (A mp. snd (snd mp)) p’ of
(ve,no-ivc) = if no-ive = || then Incomplete — detected inf-var-conflict (or
empty mp)
else (if improved A ivc # [| A (Y mp € set no-ive. fst mp = []) then
New-Problems (n, nl’, [map mp-lr-list (filter — inf-var-conflict’ + match-
clash-sort
(A mp. ¥V xts € set (fst (snd mp)). is-singleton-list (map (T (CC,V)) (snd
ats))) no-ivc)))
else (case find-var improved no-ivc of Some x = let p’'l = map mp-lr-list p’

m
New-Problems (n + m, nl’, map (A 7. subst-pat-problem-list T p'l) (7s-list

| None = Fin-Var-Form (map (map (map-prod id (map the-Var)) o fst o
snd) no-ivc)))))

partial-function (tailrec) pats-impl :: nat = nat = ('f,"v,’s)pats-problem-list =
bool where
pats-impl n nl ps = (case ps of [| = True
| p # psl = (case pat-impl n nl p of
Incomplete = False
| Fin-Var-Form p’ =
let bnd = (cd-sort o snd); enf = (map (map snd) p’)

95

in if fidl-solver (bounds-list bnd cnf, dist-pairs-list cnf) then False else
pats-impl n nl psl
| New-Problems (n',nl’,ps2) = pats-impl n' nl’ (ps2 Q ps1)))

definition pat-complete-impl :: ('f,'v,’s)pats-problem-list = bool where
pat-complete-impl ps = (let

n = Suc (maz-list (List.maps (map fst o vars-term-list o fst) (concat (concat
ps))));

nl = 0;

ps’ = if improved then map (map (map (apsnd (map-vars renVar)))) ps else
ps

in pats-impl n nl ps’)
end
end

definition renaming-funs :: (nat = ’a) = (‘a = 'a) = bool where
renaming-funs rn rz = (inj rn A inj rz A range rn N range rx = {})

lemmas pat-complete-impl-code =
pattern-completeness-context.pat-complete-impl-def
pattern-completeness-context.pats-impl.simps
pattern-completeness-context.pat-impl-def
pattern-completeness-context.s-list-def
pattern-completeness-context.apply-decompose’-def
pattern-completeness-context.decomp’-main-loop.simps
pattern-completeness-context.decomp’-impl-def
pattern-completeness-context.insert-rr-def
pattern-completeness-context.decomp-impl.simps
pattern-completeness-context. match-decomp’-impl-def
pattern-completeness-context.match-steps-impl-def
pattern-completeness-context.pat-inner-impl. simps
pattern-completeness-context.pat-lin-impl-def
pattern-completeness-context.pats-lin-impl.simps
pattern-completeness-context.pat-complete-lin-impl-def

declare pat-complete-impl-code[code]

8.2 Partial Correctness of the Implementation

TODO: move

lemma mset-sum-reindex: (3 z€#A. image-mset (f z) B) = (O i€#B. {#f z i.
r €# A#})
proof (induct A)
case (add z A)
show ?Zcase
by (simp add: add)
(smt (verit, del-insts) add.commute add-mset-add-single image-mset-cong sum-mset. distrib
sum-mset-singleton-mset)
qed auto

96

lemma vars-mp-mset-add: vars-mp-mset (mp + mp') = vars-mp-mset mp + vars-mp-mset
/!
mp

unfolding vars-mp-mset-def by auto

zipAll

lemma zipAll: assumes length as = n

and A bs. bs € set bss = length bs = n
shows zipAll as bss = map (X i. (as! i, map (X bs. bs ! i) bss)) [0..<n]

using assms
proof (induct as arbitrary: n bss)

case (Cons a as sn bss)

then obtain n where sn: sn = Suc n by auto

let ?tbss = map tl bss

from Cons(2—) sn have prems: length as = n J\ bs. bs € set ?thss = length
bs =n

by auto

from Cons(2—) sn have hd: bs € set bss = hd bs = bs | 0 for bs by (cases
bs) force+

from Cons(2—) sn have ti: bs € set bss = tl bs ! i = bs | Suc i for bs i by
(cases bs) force+

note IH = Cons(1)[OF prems, of ?tbss]

have id: [0..<sn| = 0 # map Suc [0..<n] unfolding sn upt-0-Suc-Cons ..

show ?case unfolding id zipAll.simps list.simps map-map o-def

by (subst IH, insert hd tl, auto)

qed simp

We prove that the list-based implementation is a refinement of the multiset-
based one.

lemma mset-concat-union:
mset (concat xs) = Y 4 (mset (map mset xs))
by (induct zs, auto simp: union-commute)

lemma in-map-mset[intro:
a €# A = fa €F# image-mset f A
unfolding in-image-mset by simp

lemma mset-update: map-of xs t = Some y =

mset (AList.update © z xs) = (mset xs — {# (z,y) #}) + {# (z,2) #}
by (induction zs, auto)

lemma set-update: map-of xs v = Some y = distinct (map fst zs) =
set (AList.update x z xs) = insert (z,z) (set zs — {(x,y)})

by (induction xs, auto)

lemma mp-rz-append: mp-rz (zs Q ys, b) = mp-rz (zs,b) + mp-rz (ys,b)
unfolding mp-rz-def List.maps-def by auto

97

lemma mp-rz-Cons: mp-rz (p # xs, b) = mp-list (case p of (x, ts) = map (At
(t, Var x)) ts)

+ mp-rz (xs,b)

unfolding mp-rz-def List.maps-def by auto

lemma set-tvars-match-list: set (tvars-match-list mp) = tvars-match (set mp)
by (auto simp: tvars-match-list-def tvars-match-def)

lemma set-tvars-pat-list: set (tvars-pat-list pp) = tvars-pat (pat-list pp)
by (simp add: tvars-pat-list-def tvars-pat-def set-tvars-match-list pat-list-def)

lemma finite-var-form-pat-pat-complete-list:
fixes pp::('f,’v,’s) pat-problem-list and C
assumes fuf: finite-var-form-pat C' (pat-list pp)
and pp: pp = pat-of-var-form-list fuf
and dist: Ball (set fuf) (distinct o map fst)
shows pat-complete C (pat-list pp) <—
(Va. (Vv € set (tvars-pat-list pp). o v < card-of-sort C' (snd v)) —»
(Fc € set (map (map snd) fof).
Vs € set ¢c. UNIQ (a ¢ set vs)))
proof—
from finite-var-form-imp-of-var-form-pat[OF fuf]
have of: var-form-pat (pat-list pp).
have (Imp € pat-list pp. Vz. UNIQ {a v |v. (Var v, Var z) € mp}) <—
(Impv € set fuf. ¥V (z,vs) € set mpv. UNIQ (a0 © set vs))
(is 21 «— ?r)
for a :: - = nat
proof safe
fix mpv
assume mpv € set fof
and r: V (z,vs) € set mpv. UNIQ (« * set vs)
with pplunfolded pat-of-var-form-list-def] dist
have mem: set (match-of-var-form-list mpv) € pat-list pp
and dist: distinct (map fst mpv)
unfolding pat-list-def by auto
show 7]
proof (intro bexI[OF - mem)] alll)
fix z
show UNIQ {« v |v. (Var v, Var z) € set (match-of-var-form-list mpv)} (is
UNIQ ?vs)
proof (cases x € fst * set mpv)
case Fulse
hence vs: ?vs = {} unfolding match-of-var-form-list-def by force
show ?thesis unfolding vs using Uniq-False by force
next
case True
then obtain vs where z-vs: (z,vs) € set mpuv by force
with r have uniq: UNIQ (« © set vs) by auto
from split-list[OF z-vs| obtain bef aft where mpuv: mpv = bef Q (z,vs) #

98

aft by auto
from dist[unfolded arg-cong[OF this, of map fst]]
have x: z ¢ fst ‘ set bef U fst ‘ set aft by auto
hence a ‘ set vs = %vs unfolding match-of-var-form-list-def mpv by force
with uniqg show ?thesis by auto
qed
qed
next
f