
Verifying a Decision Procedure for Pattern
Completeness∗

René Thiemann

University of Innsbruck, Austria

Akihisa Yamada

National Institute of Advanced Industrial Science and Technology,
Japan

March 17, 2025

Abstract

Pattern completeness is the property that the left-hand sides of a
functional program or term rewrite system cover all cases w.r.t. pattern
matching. We verify a recent (abstract) decision procedure for pattern
completeness that covers the general case, i.e., in particular without
the usual restriction of left-linearity. In two refinement steps, we fur-
ther develop an executable version of that abstract algorithm. On our
example suite, this verified implementation is faster than other im-
plementations that are based on alternative (unverified) approaches,
including the complement algorithm, tree automata encodings, and
even the pattern completeness check of the GHC Haskell compiler.

Contents
1 Introduction 2

2 Auxiliary Algorithm for Testing Whether "set xs" is a Sin-
gleton Set 3

3 An Interface for Solvers for a Subset of Finite Integer Dif-
ference Logic 3

∗This research was supported by the Austrian Science Fund (FWF) project I 5943.

1

4 Computing Nonempty and Infinite sorts 4
4.1 Deciding the nonemptyness of all sorts under consideration . 5
4.2 Deciding infiniteness of a sort and computing cardinalities . . 8

5 Pattern Completeness 19

6 A Set-Based Inference System to Decide Pattern Complete-
ness 20
6.1 Defining Pattern Completeness 22
6.2 Definition of Algorithm – Inference Rules 25
6.3 Soundness of the inference rules 31

7 A Multiset-Based Inference System to Decide Pattern Com-
pleteness 61
7.1 Definition of the Inference Rules 61
7.2 The evaluation cannot get stuck 63
7.3 Termination . 74
7.4 Partial Correctness via Refinement 85

8 A List-Based Implementation to Decide Pattern Complete-
ness 89
8.1 Definition of Algorithm . 89
8.2 Partial Correctness of the Implementation 96
8.3 Getting the result outside the locale with assumptions 167

9 Pattern-Completeness and Related Properties 173
9.1 Connecting Pattern-Completeness, Strong Quasi-Reducibility

and Quasi-Reducibility . 184

10 Setup for Experiments 185

1 Introduction

This AFP entry includes the formalization of a decision procedure [4] for
pattern completeness. It also contains the setup for running the experiments
of that paper, i.e., it contains

• a generator for example term rewrite systems and Haskell programs of
varying size,

• a connection to an implementation of the complement algorithm [2]
within the ground confluence prover AGCP [1], and

• a tree automata encoder of pattern completeness that is linked with
the tree automata library FORT-h [3].

2

Note that some further glue code is required to run the experiments, which
is not included in this submission. Here, we just include the glue code that
was defined within Isabelle theories.

2 Auxiliary Algorithm for Testing Whether "set
xs" is a Singleton Set

theory Singleton-List
imports Main

begin

definition singleton x = [x]

fun is-singleton-list :: ′a list ⇒ bool where
is-singleton-list [x] = True
| is-singleton-list (x # y # xs) = (x = y ∧ is-singleton-list (x # xs))
| is-singleton-list - = False

lemma is-singleton-list: is-singleton-list xs ←→ set (singleton (hd xs)) = set xs
by (induct xs rule: is-singleton-list.induct, auto simp: singleton-def)

lemma is-singleton-list2 : is-singleton-list xs ←→ (∃ x. set xs = {x})
by (induct xs rule: is-singleton-list.induct, auto)

end

3 An Interface for Solvers for a Subset of Finite
Integer Difference Logic

theory Finite-IDL-Solver-Interface
imports Main

begin

We require a solver for (a subset of) integer-difference-logic (IDL). We basi-
cally just need comparisons of variables against constants, and difference of
two variables.
Note that all variables can be assumed to be finitely bounded, so we only
need a solver for finite IDL search problems. Moreover, it suffices to consider
inputs where only those variables are put in comparison that share the same
sort (the second parameter of a variable), and the bounds are completely
determined by the sorts.
type-synonym (′v, ′s)fidl-input = ((′v × ′s) × int) list × ((′v × ′s) × ′v × ′s)
list list

definition fidl-input :: (′v, ′s)fidl-input ⇒ bool where

3

fidl-input = (λ (bnds, diffs).
distinct (map fst bnds) ∧ (∀ v w u. (v,w) ∈ set (concat diffs) −→ u ∈ {v,w}

−→ u ∈ fst ‘ set bnds)
∧ (∀ v w. (v,w) ∈ set (concat diffs) −→ snd v = snd w)
∧ (∀ v w. (v,w) ∈ set (concat diffs) −→ v 6= w)
∧ (∀ v w b1 b2 . (v,b1) ∈ set bnds −→ (w,b2) ∈ set bnds −→ snd v = snd w

−→ b1 = b2)
∧ (∀ v b. (v,b) ∈ set bnds −→ b ≥ 0))

definition fidl-solvable :: (′v, ′s)fidl-input ⇒ bool where
fidl-solvable = (λ (bnds, diffs). (∃α :: ′v × ′s ⇒ int.
(∀ (v,b) ∈ set bnds. 0 ≤ α v ∧ α v ≤ b) ∧
(∀ c ∈ set diffs. ∃ (v,w) ∈ set c. α v 6= α w)))

definition finite-idl-solver where finite-idl-solver solver = (∀ input.
fidl-input input −→ solver input = fidl-solvable input)

definition dummy-fidl-solver where
dummy-fidl-solver input = fidl-solvable input

lemma dummy-fidl-solver : finite-idl-solver dummy-fidl-solver
unfolding dummy-fidl-solver-def finite-idl-solver-def by simp

lemma dummy-fidl-solver-code[code]: dummy-fidl-solver input = Code.abort (STR
′′dummy fidl solver ′′) (λ -. dummy-fidl-solver input)

by simp

end

4 Computing Nonempty and Infinite sorts

This theory provides two algorithms, which both take a description of a
set of sorts with their constructors. The first algorithm computes the set
of sorts that are nonempty, i.e., those sorts that are inhabited by ground
terms; and the second algorithm computes the set of sorts that are infinite,
i.e., where one can build arbitrary large ground terms.
theory Compute-Nonempty-Infinite-Sorts

imports
Sorted-Terms.Sorted-Terms
LP-Duality.Minimum-Maximum
Matrix.Utility
FinFun.FinFun

begin

lemma finite-set-Cons:
assumes A: finite A and B: finite B
shows finite (set-Cons A B)

4

proof −
have set-Cons A B = case-prod (#) ‘ (A × B) by (auto simp: set-Cons-def)
then show ?thesis

by (simp add: finite-imageI [OF finite-cartesian-product[OF A B],of case-prod
(#)])
qed

lemma finite-listset:
assumes ∀A ∈ set As. finite A
shows finite (listset As)
using assms
by (induct As) (auto simp: finite-set-Cons)

lemma listset-conv-nth:
xs ∈ listset As = (length xs = length As ∧ (∀ i < length As. xs ! i ∈ As ! i))

proof (induct As arbitrary: xs)
case (Cons A As xs) then show ?case

by (cases xs) (auto simp: set-Cons-def nth-Cons nat.splits)
qed auto

lemma card-listset: assumes
∧

A. A ∈ set As =⇒ finite A
shows card (listset As) = prod-list (map card As)
using assms

proof (induct As)
case (Cons A As)
have sC : set-Cons A B = case-prod (#) ‘ (A × B) for B by (auto simp:

set-Cons-def)
have IH : prod-list (map card As) = card (listset As) using Cons by auto
have card A ∗ card (listset As) = card (A × listset As)

by (simp add: card-cartesian-product)
also have . . . = card ((λ (a,as). Cons a as) ‘ (A × listset As))

by (subst card-image, auto simp: inj-on-def)
finally
show ?case by (simp add: sC IH)

qed auto

4.1 Deciding the nonemptyness of all sorts under consider-
ation

function compute-nonempty-main :: ′τ set ⇒ ((′f × ′τ list) × ′τ) list ⇒ ′τ set
where

compute-nonempty-main ne ls = (let rem-ls = filter (λ f . snd f /∈ ne) ls in
case partition (λ ((-,args),-). set args ⊆ ne) rem-ls of
(new, rem) ⇒ if new = [] then ne else compute-nonempty-main (ne ∪ set

(map snd new)) rem)
by pat-completeness auto

termination
proof (relation measure (length o snd), goal-cases)

5

case (2 ne ls rem-ls new rem)
have length new + length rem = length rem-ls

using 2 (2) sum-length-filter-compl[of - rem-ls] by (auto simp: o-def)
with 2 (3) have length rem < length rem-ls by (cases new, auto)
also have . . . ≤ length ls using 2 (1) by auto
finally show ?case by simp

qed simp

declare compute-nonempty-main.simps[simp del]

definition compute-nonempty-sorts :: ((′f × ′τ list) × ′τ) list ⇒ ′τ set where
compute-nonempty-sorts Cs = compute-nonempty-main {} Cs

lemma compute-nonempty-sorts:
assumes distinct (map fst Cs)

shows compute-nonempty-sorts Cs = {τ . ¬ empty-sort (map-of Cs) τ} (is - =
?NE)
proof −

let ?TC = T (map-of Cs)
have ne ⊆ ?NE =⇒ set ls ⊆ set Cs =⇒ snd ‘ (set Cs − set ls) ⊆ ne =⇒

compute-nonempty-main ne ls = ?NE for ne ls
proof (induct ne ls rule: compute-nonempty-main.induct)

case (1 ne ls)
note ne = 1 (2)
define rem-ls where rem-ls = filter (λ f . snd f /∈ ne) ls
have rem-ls: set rem-ls ⊆ set Cs

snd ‘ (set Cs − set rem-ls) ⊆ ne
using 1 (2−) by (auto simp: rem-ls-def)

obtain new rem where part: partition (λ((f , args), target). set args ⊆ ne)
rem-ls = (new,rem) by force

have [simp]: compute-nonempty-main ne ls = (if new = [] then ne else com-
pute-nonempty-main (ne ∪ set (map snd new)) rem)

unfolding compute-nonempty-main.simps[of ne ls] Let-def rem-ls-def [symmetric]
part by auto

have new: set (map snd new) ⊆ ?NE
proof

fix τ
assume τ ∈ set (map snd new)
then obtain f args where ((f ,args),τ) ∈ set rem-ls and args: set args ⊆ ne

using part by auto
with rem-ls have ((f ,args),τ) ∈ set Cs by auto
with assms have map-of Cs (f ,args) = Some τ by auto
hence fC : f : args → τ in map-of Cs by (simp add: fun-hastype-def)
from args ne empty-sortI have ∀ tau. ∃ t. tau ∈ set args −→ t : tau in ?TC

by force
from choice[OF this] obtain ts where

∧
tau. tau ∈ set args =⇒ ts tau : tau

in ?TC by auto
hence Fun f (map ts args) : τ in ?TC

apply (intro Fun-hastypeI [OF fC])

6

by (simp add: list-all2-conv-all-nth)
thus τ ∈ ?NE by auto

qed
show ?case
proof (cases new = [])

case False
note IH = 1 (1)[OF rem-ls-def part[symmetric] False]

have compute-nonempty-main ne ls = compute-nonempty-main (ne ∪ set
(map snd new)) rem using False by simp

also have . . . = ?NE
proof (rule IH)

show ne ∪ set (map snd new) ⊆ ?NE using new ne by auto
show set rem ⊆ set Cs using rem-ls part by auto
show snd ‘ (set Cs − set rem) ⊆ ne ∪ set (map snd new)
proof

fix τ
assume τ ∈ snd ‘ (set Cs − set rem)

then obtain f args where in-ls: ((f ,args),τ) ∈ set Cs and nrem: ((f ,args),τ)
/∈ set rem by force

thus τ ∈ ne ∪ set (map snd new) using new part rem-ls by force
qed

qed
finally show ?thesis .

next
case True
have compute-nonempty-main ne ls = ne using True by simp
also have . . . = ?NE
proof (rule ccontr)

assume ¬ ?thesis
with ne empty-sortI obtain τ t where counter : t : τ in ?TC τ /∈ ne by

force
thus False
proof (induct t τ)

case (Fun f ts τs τ)
from Fun(1) have map-of Cs (f ,τs) = Some τ by (simp add: fun-hastype-def)

then have mem: ((f ,τs),τ) ∈ set Cs by (meson map-of-SomeD)
from Fun(3) have τs: set τs ⊆ ne by (induct, auto)
from rem-ls mem Fun(4) have ((f ,τs),τ) ∈ set rem-ls by auto
with τs have ((f ,τs),τ) ∈ set new using part by auto
with True show ?case by auto

qed auto
qed
finally show ?thesis .

qed
qed
from this[of {} Cs] show ?thesis unfolding compute-nonempty-sorts-def by

auto
qed

7

definition decide-nonempty-sorts :: ′t list ⇒ ((′f × ′t list) × ′t)list ⇒ ′t option
where

decide-nonempty-sorts τs Cs = (let ne = compute-nonempty-sorts Cs in
find (λ τ. τ /∈ ne) τs)

lemma decide-nonempty-sorts:
assumes distinct (map fst Cs)

shows decide-nonempty-sorts τs Cs = None =⇒ ∀ τ ∈ set τs. ¬ empty-sort
(map-of Cs) τ

decide-nonempty-sorts τs Cs = Some τ =⇒ τ ∈ set τs ∧ empty-sort (map-of Cs)
τ

unfolding decide-nonempty-sorts-def Let-def compute-nonempty-sorts[OF assms]
find-None-iff find-Some-iff by auto

4.2 Deciding infiniteness of a sort and computing cardinali-
ties

We provide an algorithm, that given a list of sorts with constructors, com-
putes the set of those sorts that are infinite. Here a sort is defined as infinite
iff there is no upper bound on the size of the ground terms of that sort.
Moreover, we also compute for each sort the cardinality of the set of con-
structor ground terms of that sort.
context

includes finfun-syntax
begin

fun finfun-update-all :: ′a list ⇒ (′a ⇒ ′b) ⇒ (′a ⇒f ′b) ⇒ (′a ⇒f ′b) where
finfun-update-all [] g f = f
| finfun-update-all (x # xs) g f = (finfun-update-all xs g f)(x $:= g x)

lemma finfun-update-all[simp]: finfun-update-all xs g f $ x = (if x ∈ set xs then g
x else f $ x)
proof (induct xs)

case (Cons y xs)
thus ?case by (cases x = y, auto)

qed auto

definition compute-card-of-sort :: ′τ ⇒ (′f × ′τ list)list ⇒ (′τ ⇒f nat) ⇒ nat
where

compute-card-of-sort τ cs cards = (
∑

f σs←remdups cs. prod-list (map (($) cards)
(snd f σs)))

function compute-inf-card-main :: ′τ set ⇒ (′τ ⇒f nat) ⇒ (′τ × (′f × ′τ list)list)
list ⇒ ′τ set × (′τ ⇒ nat) where

compute-inf-card-main m-inf cards ls = (
let (fin, ls ′) =

8

partition (λ (τ ,fs). ∀ τs ∈ set (map snd fs). ∀ τ ∈ set τs. τ /∈ m-inf) ls
in if fin = [] then (m-inf , λ τ . cards $ τ) else

let new = map fst fin;
cards ′ = finfun-update-all new (λ τ. compute-card-of-sort τ (the (map-of ls

τ)) cards) cards in
compute-inf-card-main (m-inf − set new) cards ′ ls ′)

by pat-completeness auto

termination
proof (relation measure (length o snd o snd), goal-cases)

case (2 m-inf cards ls pair fin ls ′)
have length fin + length ls ′ = length ls

using 2 sum-length-filter-compl[of - ls] by (auto simp: o-def)
with 2 (3) have length ls ′ < length ls by (cases fin, auto)
thus ?case by auto

qed simp

lemma compute-inf-card-main: fixes C :: (′f , ′t)ssig
assumes C-Cs: C = map-of Cs ′

and Cs ′: set Cs ′ = set (concat (map ((λ (τ , fs). map (λ f . (f ,τ)) fs)) Cs))
and arg-types-nonempty: ∀ f τs τ τ ′. f : τs → τ in C −→ τ ′ ∈ set τs −→ ¬

empty-sort C τ ′

and dist: distinct (map fst Cs) distinct (map fst Cs ′)
and inhabitet: ∀ τ fs. (τ ,fs) ∈ set Cs −→ set fs 6= {}
and ∀ τ . τ /∈ m-inf −→ bdd-above (size ‘ {t. t : τ in T (C)})
and set ls ⊆ set Cs
and fst ‘ (set Cs − set ls) ∩ m-inf = {}
and m-inf ⊆ fst ‘ set ls
and ∀ τ . τ /∈ m-inf −→ cards $ τ = card-of-sort C τ ∧ finite-sort C τ
and ∀ τ . τ ∈ m-inf −→ cards $ τ = 0

shows compute-inf-card-main m-inf cards ls = ({τ . ¬ bdd-above (size ‘ {t. t : τ in
T (C)})},

λ τ . card-of-sort C τ)
using assms(7−)

proof (induct m-inf cards ls rule: compute-inf-card-main.induct)
case (1 m-inf cards ls)
let ?terms = λ τ. {t. t : τ in T (C)}
let ?fin = λ τ. bdd-above (size ‘ ?terms τ)
define crit where crit = (λ (τ :: ′t,fs :: (′f × ′t list) list). ∀ τs ∈ set (map snd

fs). ∀ τ ∈ set τs. τ /∈ m-inf)
define S where S τ ′ = size ‘ {t. t : τ ′ in T (C)} for τ ′

define M where M τ ′ = Maximum (S τ ′) for τ ′

define M ′ where M ′ σs = sum-list (map M σs) + (1 + length σs) for σs
define L where L = [σs . (τ ,cs) <− Cs, (f ,σs) <− cs]
define N where N = max-list (map M ′ L)
obtain fin ls ′ where part: partition crit ls = (fin, ls ′) by force
{

fix τ cs
assume inCs: (τ ,cs) ∈ set Cs

9

have nonempty:∃ t. t : τ in T (C)
proof −

from inhabitet[rule-format, OF inCs] obtain f σs where (f ,σs) ∈ set cs by
(cases cs,auto)

with inCs have ((f ,σs),τ) ∈ set Cs ′ unfolding Cs ′ by auto
hence fC : f : σs → τ in C using dist(2) unfolding C-Cs

by (meson fun-hastype-def map-of-is-SomeI)
hence ∀σ. ∃ t. σ ∈ set σs −→ t : σ in T (C)

by (auto dest!: arg-types-nonempty[rule-format] elim!: not-empty-sortE)
from choice[OF this] obtain t where σ ∈ set σs =⇒ t σ : σ in T (C) for σ

by auto
hence Fun f (map t σs) : τ in T (C) using list-all2-conv-all-nth

apply (intro Fun-hastypeI [OF fC]) by (simp add: list-all2-conv-all-nth)
then show ?thesis by auto

qed
} note inhabited = this

define cards ′ where cards ′= finfun-update-all (map fst fin) (λ τ. compute-card-of-sort
τ (the (map-of ls τ)) cards) cards

{
fix τ
assume asm: τ ∈ fst ‘ set fin
let ?TT = ?terms τ
from asm obtain cs where tau-cs-fin: (τ ,cs) ∈ set fin by auto
hence tau-ls: (τ ,cs) ∈ set ls using part by auto
with dist(1) ‹set ls ⊆ set Cs›
have map: map-of Cs τ = Some cs map-of ls τ = Some cs
by (metis (no-types, opaque-lifting) eq-key-imp-eq-value map-of-SomeD subsetD

weak-map-of-SomeI)+
from asm have cards ′: cards ′ $ τ = compute-card-of-sort τ cs cards unfolding

cards ′-def by (auto simp: map)
from part asm have tau-fin: τ ∈ set (map fst fin) by auto
{

fix f σs
have f : σs → τ in C ←→ ((f ,σs),τ) ∈ set Cs ′

proof
assume f : σs → τ in C

hence map-of Cs ′ (f ,σs) = Some τ unfolding C-Cs by (rule fun-hastypeD)
thus ((f ,σs),τ) ∈ set Cs ′ by (rule map-of-SomeD)

next
assume ((f , σs), τ) ∈ set Cs ′

hence map-of Cs ′ (f , σs) = Some τ using dist(2) by simp
thus f : σs → τ in C unfolding C-Cs by (rule fun-hastypeI)

qed
also have . . . ←→ (∃ cs. (τ , cs) ∈ set Cs ∧ (f ,σs) ∈ set cs)

unfolding Cs ′ by auto
also have . . . ←→ (∃ cs. map-of Cs τ = Some cs ∧ (f ,σs) ∈ set cs)

using dist(1) by simp
also have . . . ←→ (f ,σs) ∈ set cs unfolding map by auto

10

finally have (f : σs → τ in C) = ((f , σs) ∈ set cs) by auto
} note C-to-cs = this

define T where T σ = ?terms σ for σ
have to-ls: {ts. ts :l σs in T (C)} = listset (map T σs) for σs
by (intro set-eqI , unfold listset-conv-nth, auto simp: T-def list-all2-conv-all-nth)
{

fix f σs σ
assume in-cs: (f , σs) ∈ set cs σ ∈ set σs
from tau-cs-fin part have crit (τ ,cs) by auto
from this[unfolded crit-def split] in-cs have σ /∈ m-inf by auto
with 1 (6) have cards $ σ = card (T σ) and finite (T σ)

by (auto simp: T-def card-of-sort finite-sort)
} note σs-infos = this

have ?TT = { Fun f ts | f ts σs. f : σs → τ in C ∧ ts :l σs in T (C)} (is - =
?FunApps)

proof (intro set-eqI)
fix t
{

assume t : τ in T (C)
hence t ∈ ?FunApps by (induct, auto)

}
moreover
{

assume t ∈ ?FunApps
hence t : τ in T (C) by (auto intro: Fun-hastypeI)

}
ultimately show t ∈ ?TT ←→ t ∈ ?FunApps by auto

qed
also have . . . = { Fun f ts | f ts σs. (f , σs) ∈ set cs ∧ ts :l σs in T (C)}

unfolding C-to-cs ..
also have . . . = (λ (f , ts). Fun f ts) ‘ (

⋃
(f , σs) ∈ set cs. Pair f ‘ { ts. ts :l σs

in T (C)}) (is - = ?f ‘ ?A) by auto
finally have TTfA: ?TT = ?f ‘ ?A .

have finPair : finite (Pair f ‘ A) = finite A for f :: ′f and A :: (′f , ′v) Term.term
list set

by (intro finite-image-iff inj-onI , auto)
have inj: inj ?f by (intro injI , auto)
from inj have card: card ?TT = card ?A

unfolding TTfA by (meson UNIV-I card-image inj-on-def)
also have . . . = (

∑
i∈set cs. card (case i of (f , σs) ⇒ Pair f ‘ listset (map T

σs))) unfolding to-ls
proof (rule card-UN-disjoint[OF finite-set ballI ballI [OF ballI [OF impI]]],

goal-cases)
case ∗: (1 f σs)
obtain f σs where f σs: f σs = (f ,σs) by force

thus ?case using ∗ σs-infos(2) by (cases f σs, auto intro!: finite-imageI
finite-listset)

11

next
case ∗: (2 f σs gτs)
obtain f σs where f σs: f σs = (f ,σs) by force
obtain g τs where gτs: gτs = (g,τs) by force
show ?case
proof (cases g = f)

case False
thus ?thesis unfolding f σs gτs split by auto

next
case True
note f τs = gτs[unfolded True]
show ?thesis
proof (rule ccontr)

assume ¬ ?thesis
from this[unfolded f σs f τs split]
obtain ts where ts: ts ∈ listset (map T σs) ts ∈ listset (map T τs) by

auto
hence len: length σs = length ts length τs = length ts unfolding list-

set-conv-nth by auto
from ∗(3)[unfolded f σs f τs] have σs 6= τs by auto
with len obtain i where i: i < length ts and diff : σs ! i 6= τs ! i

by (metis nth-equalityI)
define ti where ti = ts ! i
define σi where σi = σs ! i
define τ i where τ i = τs ! i
note diff = diff [folded σi-def τ i-def]
from ts i have ti ∈ T σi ti ∈ T τ i

unfolding ti-def σi-def τ i-def listset-conv-nth by auto
hence ti: ti : σi in T (C) ti : τ i in T (C) unfolding T-def by auto
hence σi = τ i by fastforce
with diff show False ..

qed
qed

qed
also have . . . = (

∑
f σs ∈set cs. card (listset (map T (snd f σs))))

proof (rule sum.cong[OF refl], goal-cases)
case (1 f σs)
obtain f σs where id: f σs = (f ,σs) by force
show ?case unfolding id split snd-conv

by (rule card-image, auto simp: inj-on-def)
qed
also have . . . = (

∑
f σs ∈set cs. prod-list (map card (map T (snd f σs))))

by (rule sum.cong[OF refl], rule card-listset, insert σs-infos, auto)
also have . . . = (

∑
f σs ∈set cs. prod-list (map (($) cards) (snd f σs)))

unfolding map-map o-def using σs-infos
by (intro sum.cong[OF refl] arg-cong[of - - prod-list], auto)

also have . . . = sum-list (map (λ f σs. prod-list (map (($) cards) (snd f σs)))
(remdups cs))

by (rule sum.set-conv-list)

12

also have . . . = cards ′ $ τ unfolding cards ′ compute-card-of-sort-def ..
finally have cards ′: card ?TT = cards ′ $ τ by auto

from inj have finite ?TT = finite ?A
by (metis (no-types, lifting) TTfA finite-imageD finite-imageI subset-UNIV

subset-inj-on)
also have . . . = (∀ f σs. (f ,σs) ∈ set cs −→ finite (Pair f ‘ {ts. ts :l σs in

T (C)}))
by auto

finally have finite ?TT = (∀ f σs. (f ,σs) ∈ set cs −→ finite {ts. ts :l σs in
T (C)})

unfolding finPair by auto
also have . . . = True unfolding to-ls using σs-infos(2) by (auto intro!:

finite-listset)
finally have fin: finite ?TT by simp

from fin cards ′

have cards ′ $ τ = card (?terms τ) finite (?terms τ) ?fin τ by auto
} note fin = this

show ?case
proof (cases fin = [])

case False
hence compute-inf-card-main m-inf cards ls = compute-inf-card-main (m-inf

− set (map fst fin)) cards ′ ls ′

unfolding compute-inf-card-main.simps[of m-inf] part[unfolded crit-def]
cards ′-def Let-def by auto

also have . . . = ({τ . ¬ ?fin τ}, λ τ . card-of-sort C τ)
proof (rule 1 (1)[OF refl part[unfolded crit-def , symmetric] False])

show set ls ′ ⊆ set Cs using 1 (3) part by auto
show fst ‘ (set Cs − set ls ′) ∩ (m-inf − set (map fst fin)) = {} using 1 (3−4)

part by force
show m-inf − set (map fst fin) ⊆ fst ‘ set ls ′ using 1 (5) part by force
show ∀ τ . τ /∈ m-inf − set (map fst fin) −→ cards ′ $ τ = card-of-sort C τ ∧

finite-sort C τ
proof (intro allI impI)

fix τ
assume nmem: τ /∈ m-inf − set (map fst fin)
show cards ′ $ τ = card-of-sort C τ ∧ finite-sort C τ
proof (cases τ ∈ set (map fst fin))

case False
with nmem have tau: τ /∈ m-inf by auto
with False 1 (6)[rule-format, OF this] show ?thesis

unfolding cards ′-def by auto
next

case True
with fin show ?thesis by (auto simp: card-of-sort finite-sort)

qed

13

qed
thus ∀ τ . τ /∈ m-inf − set (map fst fin) −→ ?fin τ

by (force simp: 1 (2) intro: fin(3))
show ∀ τ . τ ∈ m-inf − set (map fst fin) −→ cards ′ $ τ = 0 using 1 (7)

unfolding cards ′-def
by auto

qed (auto simp: cards ′-def)
finally show ?thesis .

next
case True
let ?cards = λτ. cards $ τ
have m-inf : m-inf = {τ . ¬ ?fin τ}
proof

show {τ . ¬ ?fin τ} ⊆ m-inf using fin 1 (2) by auto
{

fix τ
assume τ ∈ m-inf
with 1 (5) obtain cs where mem: (τ ,cs) ∈ set ls by auto
from part True have ls ′: ls ′ = ls by (induct ls arbitrary: ls ′, auto)
from partition-P[OF part, unfolded ls ′]
have

∧
e. e ∈ set ls =⇒ ¬ crit e by auto

from this[OF mem, unfolded crit-def split]
obtain c τs τ ′ where ∗: (c,τs) ∈ set cs τ ′ ∈ set τs τ ′ ∈ m-inf by auto
from mem 1 (2−) have (τ ,cs) ∈ set Cs by auto
with ∗ have ((c,τs),τ) ∈ set Cs ′ unfolding Cs ′ by force
with dist(2) have map-of Cs ′ ((c,τs)) = Some τ by simp
from this[folded C-Cs] have c: c : τs → τ in C unfolding fun-hastype-def

.
have ∀ σ. ∃ t. σ ∈ set τs −→ t : σ in T (C)

by (auto dest!: arg-types-nonempty[rule-format, OF c] elim!: not-empty-sortE)
from choice[OF this] obtain t where

∧
σ. σ ∈ set τs =⇒ t σ : σ in T (C)

by auto
hence list: map t τs :l τs in T (C) by (simp add: list-all2-conv-all-nth)
with c have Fun c (map t τs) : τ in T (C) by (intro Fun-hastypeI)
with ∗ c list have ∃ c τs τ ′ ts. Fun c ts : τ in T (C) ∧ ts :l τs in T (C) ∧

c : τs → τ in C ∧ τ ′ ∈ set τs ∧ τ ′ ∈ m-inf
by blast

} note m-invD = this
{

fix n :: nat
have τ ∈ m-inf =⇒ ∃ t. t : τ in T (C) ∧ size t ≥ n for τ
proof (induct n arbitrary: τ)

case (0 τ)
from m-invD[OF 0] show ?case by blast

next
case (Suc n τ)
from m-invD[OF Suc(2)] obtain c τs τ ′ ts

where ∗: ts :l τs in T (C) c : τs → τ in C τ ′ ∈ set τs τ ′ ∈ m-inf
by auto

14

from ∗(1)[unfolded list-all2-conv-all-nth] ∗(3)[unfolded set-conv-nth]
obtain i where i: i < length τs and tsi:ts ! i : τ ′ in T (C) and len: length

ts = length τs by auto
from Suc(1)[OF ∗(4)] obtain t where t:t : τ ′ in T (C) and ns:n ≤ size

t by auto
define ts ′ where ts ′ = ts[i := t]
have ts ′ :l τs in T (C) using list-all2-conv-all-nth unfolding ts ′-def

by (metis ∗(1) tsi has-same-type i list-all2-update-cong list-update-same-conv
t(1))

hence ∗∗:Fun c ts ′ : τ in T (C) apply (intro Fun-hastypeI [OF ∗(2)]) by
fastforce

have t ∈ set ts ′ unfolding ts ′-def using t
by (simp add: i len set-update-memI)

hence size (Fun c ts ′) ≥ Suc n using ∗
by (simp add: size-list-estimation ′ ns)

thus ?case using ∗∗ by blast
qed

} note main = this
show m-inf ⊆ {τ . ¬ ?fin τ}
proof (standard, standard)

fix τ
assume asm: τ ∈ m-inf
have ∃ t. t : τ in T (C) ∧ n < size t for n using main[OF asm, of Suc n]

by auto
thus ¬ ?fin τ
by (metis bdd-above-Maximum-nat imageI mem-Collect-eq order .strict-iff)

qed
qed
from True have compute-inf-card-main m-inf cards ls = (m-inf , ?cards)

unfolding compute-inf-card-main.simps[of m-inf] part[unfolded crit-def] by
auto

also have ?cards = (λ τ. card-of-sort C τ)
proof (intro ext)

fix τ
show cards $ τ = card-of-sort C τ
proof (cases τ ∈ m-inf)

case False
thus ?thesis using 1 (6) by auto

next
case True
define TT where TT = ?terms τ
from True m-inf have ¬ bdd-above (size ‘ TT) unfolding TT-def by auto
hence infinite TT by auto
hence card TT = 0 by auto

thus ?thesis unfolding TT-def using True 1 (7) by (auto simp: card-of-sort)
qed

qed
finally show ?thesis using m-inf by auto

qed

15

qed

definition compute-inf-card-sorts :: ((′f × ′t list) × ′t)list ⇒ ′t set × (′t ⇒ nat)
where

compute-inf-card-sorts Cs = (let
Cs ′ = map (λ τ. (τ , map fst (filter(λf . snd f = τ) Cs))) (remdups (map snd

Cs))
in compute-inf-card-main (set (map fst Cs ′)) (K$ 0) Cs ′)

lemma finite-imp-size-bdd-above: assumes finite T
shows bdd-above (size ‘ T)

proof −
from assms have finite (size ‘ T) by auto
thus ?thesis by simp

qed

lemma finite-sig-imp-finite-terms-of-bounded-size: assumes finite (dom F) and
finite (dom V)

shows finite {t. ∃ τ . size t ≤ n ∧ t : τ in T (F ,V)} (is finite (?terms n))
proof (induct n)

case (0)
have t /∈ ?terms 0 for t by (cases t, auto)
hence id: ?terms 0 = {} by auto
show ?case unfolding id by simp

next
case (Suc n)
let ?funsInter = (λ (f , τs). (f , listset (map (λ -. (?terms n)) τs))) ‘ dom F
define funsI where funsI = ?funsInter
let ?funs =

⋃
((λ (f , tss). Fun f ‘ tss) ‘ funsI)

{
fix t
assume t ∈ ?terms (Suc n)
then obtain τ where tτ : t : τ in T (F ,V) and size: size t ≤ Suc n by auto
have t ∈ Var ‘ dom V ∪ ?funs
proof (cases t)

case (Var x)
thus ?thesis using tτ by auto

next
case t: (Fun f ts)
from tτ [unfolded t Fun-hastype] obtain τs where ts: ts :l τs in T (F ,V)

and f : (f ,τs) ∈ dom F by auto
hence (f , listset (map (λ -. (?terms n)) τs)) ∈ funsI unfolding funsI-def by

auto
moreover have ts ∈ listset (map (λ -. (?terms n)) τs)

unfolding listset-conv-nth length-map
proof (intro conjI allI impI)

show len: length ts = length τs using ts by (metis list-all2-lengthD)
fix i

16

assume i: i < length τs
with ts have i ′: i < length ts and type: ts ! i : τs ! i in T (F ,V)

using list-all2-nthD2 [OF ts] len by auto
from i ′ have ts ! i ∈ set ts by auto
from split-list[OF this] obtain bef aft where ts = bef @ ts ! i # aft by

auto
from size[unfolded t] this have size (Fun f (bef @ ts ! i # aft)) ≤ Suc n

by simp
hence size (ts ! i) ≤ n by simp
with type have ts ! i ∈ ?terms n by auto
with i show ts ! i ∈ map (λ-. ?terms n) τs ! i by auto

qed
ultimately show ?thesis unfolding t by blast

qed
}
hence ?terms (Suc n) ⊆ Var ‘ dom V ∪ ?funs by blast
moreover have finite (Var ‘ dom V ∪ ?funs)
proof (intro finite-UnI finite-imageI assms finite-Union)

show finite (funsI) unfolding funsI-def
by (intro finite-imageI assms)

fix M
assume M ∈ {Fun f ‘ tss |. (f , tss) ∈ funsI}
from this obtain f tss where tss: (f , tss) ∈ funsI and M : M = Fun f ‘ tss

by auto
from tss[unfolded funsI-def] obtain τs where

tss: tss = listset (map (λ-. {t. size t ≤ n ∧ (∃ τ . t : τ in T (F ,V))}) τs) and
τs ∈ snd ‘ dom F

by force
have finite tss unfolding tss

by (intro finite-listset, insert Suc, auto)
thus finite M unfolding M

by (intro finite-imageI)
qed
ultimately show ?case by (rule finite-subset)

qed

lemma finite-sig-bdd-above-imp-finite: assumes finite (dom F) and finite (dom
V)

and bdd-above (size ‘ {t. t : τ in T (F ,V)})
shows finite {t. t : τ in T (F ,V)}
proof −

from assms(3)[unfolded bdd-above-def] obtain n where
size: ∀ s∈size ‘ {t. t : τ in T (F ,V)}. s ≤ n by auto

from finite-sig-imp-finite-terms-of-bounded-size[OF assms(1−2)]
have fin: finite {t. ∃ τ . size t ≤ n ∧ t : τ in T (F ,V)} by auto
have finite {t. size t ≤ n ∧ t : τ in T (F ,V)}

by (rule finite-subset[OF - fin], auto)
also have {t. size t ≤ n ∧ t : τ in T (F ,V)} = {t. t : τ in T (F ,V)}

using size by blast

17

finally show ?thesis by auto
qed

lemma finite-sig-bdd-above-iff-finite: assumes finite (dom F) and finite (dom V)

shows bdd-above (size ‘ {t. t : τ in T (F ,V)}) = finite {t. t : τ in T (F ,V)}
using finite-sig-bdd-above-imp-finite[OF assms] finite-imp-size-bdd-above
by metis

lemma compute-inf-card-sorts:
fixes C :: (′f , ′t)ssig
assumes C-Cs: C = map-of Cs
and arg-types-nonempty: ∀ f τs τ τ ′. f : τs → τ in C −→ τ ′ ∈ set τs −→ ¬

empty-sort C τ ′

and dist: distinct (map fst Cs)
and result: compute-inf-card-sorts Cs = (unb, cards)

shows unb = {τ . ¬ bdd-above (size ‘ {t. t : τ in T (C)})} (is - = ?unb)
cards = card-of-sort C (is - = ?cards)
unb = {τ . ¬finite-sort C τ} (is - = ?inf)

proof −
let ?terms = λ τ. {t. t : τ in T (C)}
define taus where taus = remdups (map snd Cs)
define Cs ′ where Cs ′ = map (λ τ. (τ , map fst (filter(λf . snd f = τ) Cs))) taus
have compute-inf-card-sorts Cs = compute-inf-card-main (set (map fst Cs ′)) (K$

0) Cs ′

unfolding compute-inf-card-sorts-def taus-def Cs ′-def Let-def by auto
also have . . . = (?unb, ?cards)
proof (rule compute-inf-card-main[OF C-Cs - arg-types-nonempty - dist - - sub-

set-refl])
have distinct taus unfolding taus-def by auto
thus distinct (map fst Cs ′) unfolding Cs ′-def map-map o-def fst-conv by auto
show set Cs = set (concat (map (λ(τ , fs). map (λf . (f , τ)) fs) Cs ′))

unfolding Cs ′-def taus-def by force
show ∀ τ fs. (τ , fs) ∈ set Cs ′ −→ set fs 6= {}

unfolding Cs ′-def taus-def by (force simp: filter-empty-conv)
show fst ‘ (set Cs ′ − set Cs ′) ∩ set (map fst Cs ′) = {} by auto
show set (map fst Cs ′) ⊆ fst ‘ set Cs ′ by auto
{ fix τ

assume τ /∈ set (map fst Cs ′)
hence τ /∈ snd ‘ set Cs unfolding Cs ′-def taus-def by auto
hence diff : C f 6= Some τ for f unfolding C-Cs

by (metis Some-eq-map-of-iff dist imageI snd-conv)
have emp: empty-sort C τ
proof (intro empty-sortI notI)

fix t
assume t : τ in T (C)
thus False using diff
proof induct

18

case (Fun f ss σs τ)
from Fun(1 ,4) show False unfolding fun-hastype-def by auto

qed auto
qed

}
note ∗ = this
show ∀ τ . τ /∈ set (map fst Cs ′) −→ bdd-above (size ‘ ?terms τ)
∀ τ . τ /∈ set (map fst Cs ′) −→ (K$ 0) $ τ = card-of-sort C τ ∧ finite-sort C

τ
by (auto simp del: set-map dest!: ∗)

qed auto
finally show unb: unb = ?unb and cards: cards = ?cards unfolding result by

auto
show unb = ?inf unfolding unb
proof (subst finite-sig-bdd-above-iff-finite)

show finite (dom C) unfolding C-Cs by (rule finite-dom-map-of)
show finite (dom ∅) by auto

qed (auto simp: finite-sort)
qed
end

abbreviation compute-inf-sorts :: ((′f × ′t list) × ′t)list ⇒ ′t set where
compute-inf-sorts Cs ≡ fst (compute-inf-card-sorts Cs)

lemma compute-inf-sorts:
assumes arg-types-nonempty: ∀ f τs τ τ ′. f : τs → τ in map-of Cs −→ τ ′ ∈ set

τs −→ ¬ empty-sort (map-of Cs) τ ′

and dist: distinct (map fst Cs)
shows

compute-inf-sorts Cs = {τ . ¬ bdd-above (size ‘ {t. t : τ in T (map-of Cs)})}
compute-inf-sorts Cs = {τ . ¬ finite-sort (map-of Cs) τ}
using compute-inf-card-sorts[OF refl assms]

by (cases compute-inf-card-sorts Cs, auto)+

end

5 Pattern Completeness

Pattern-completeness is the question whether in a given program all terms
of the form f(c1,..,cn) are matched by some lhs of the program, where here
each ci is a constructor ground term and f is a defined symbol. This will
be represented as a pattern problem of the shape (f(x1,...xn), lhs1, ..., lhsn)
where the xi will represent arbitrary constructor terms.

19

6 A Set-Based Inference System to Decide Pat-
tern Completeness

This theory contains an algorithm to decide whether pattern problems are
complete. It represents the inference rules of the paper on the set-based
level.
On this level we prove partial correctness and preservation of well-formed
inputs, but not termination.
theory Pattern-Completeness-Set

imports
First-Order-Terms.Term-More
Complete-Non-Orders.Complete-Relations
Sorted-Terms.Sorted-Contexts
Compute-Nonempty-Infinite-Sorts

begin

lemmas type-conversion = hastype-in-Term-empty-imp-subst

lemma ball-insert-un-cong: f y = Ball zs f =⇒ Ball (insert y A) f = Ball (zs ∪
A) f

by auto

lemma bex-insert-cong: f y = f z =⇒ Bex (insert y A) f = Bex (insert z A) f
by auto

lemma not-bdd-above-natD:
assumes ¬ bdd-above (A :: nat set)
shows ∃ x ∈ A. x > n
using assms by (meson bdd-above.unfold linorder-le-cases order .strict-iff)

lemma list-eq-nth-eq: xs = ys ←→ length xs = length ys ∧ (∀ i < length ys. xs !
i = ys ! i)

using nth-equalityI by metis

lemma subt-size: p ∈ poss t =⇒ size (t |- p) ≤ size t
proof (induct p arbitrary: t)

case (Cons i p t)
thus ?case
proof (cases t)

case (Fun f ss)
from Cons Fun have i: i < length ss and sub: t |- (i # p) = (ss ! i) |- p

and p ∈ poss (ss ! i) by auto
with Cons(1)[OF this(3)]
have size (t |- (i # p)) ≤ size (ss ! i) by auto
also have . . . ≤ size t using i unfolding Fun by (simp add: termination-simp)
finally show ?thesis .

qed auto
qed auto

20

lemma removeAll-remdups: removeAll x (remdups ys) = remdups (removeAll x
ys)

by (simp add: remdups-filter removeAll-filter-not-eq)

lemma removeAll-eq-Nil-iff : removeAll x ys = [] ←→ (∀ y ∈ set ys. y = x)
by (induction ys, auto)

lemma concat-removeAll-Nil: concat (removeAll [] xss) = concat xss
by (induction xss, auto)

lemma removeAll-eq-imp-concat-eq:
assumes removeAll [] xss = removeAll [] xss ′

shows concat xss = concat xss ′

apply (subst (1 2) concat-removeAll-Nil[symmetric])
by (simp add: assms)

lemma map-remdups-commute:
assumes inj-on f (set xs)
shows map f (remdups xs) = remdups (map f xs)
using assms by (induction xs, auto)

lemma Uniq-False: ∃≤1 a. False by (auto intro!: Uniq-I)

abbreviation UNIQ A ≡ ∃≤1 a. a ∈ A

lemma Uniq-eq-the-elem:
assumes UNIQ A and a ∈ A shows a = the-elem A
using the1-equality ′[OF assms]
by (metis assms empty-iff is-singletonI ′ is-singleton-some-elem

some-elem-nonempty the1-equality ′ the-elem-eq)

lemma bij-betw-imp-Uniq-iff :
assumes bij-betw f A B shows UNIQ A ←→ UNIQ B
using assms[THEN bij-betw-imp-surj-on]
apply (auto simp: Uniq-def)
by (metis assms bij-betw-def imageI inv-into-f-eq)

lemma image-Uniq: UNIQ A =⇒ UNIQ (f ‘ A)
by (smt (verit) Uniq-I image-iff the1-equality ′)

lemma successively-eq-iff-Uniq: successively (=) xs ←→ UNIQ (set xs) (is ?l ←→
?r)
proof

show ?l =⇒ ?r
apply (induction xs rule: induct-list012)
by (auto intro: Uniq-I)

show ?r =⇒ ?l
proof (induction xs)

21

case Nil
then show ?case by simp

next
case xxs: (Cons x xs)
show ?case
proof (cases xs)

case Nil
then show ?thesis by simp

next
case xs: (Cons y ys)
have successively (=) xs

apply (rule xxs(1)) using xxs(2) by (simp add: Uniq-def)
with xxs(2)
show ?thesis by (auto simp: xs Uniq-def)

qed
qed

qed

6.1 Defining Pattern Completeness

We first consider matching problems, which are set of matching atoms. Each
matching atom is a pair of terms: matchee and pattern. Matchee and pattern
may have different type of variables: Matchees use natural numbers (anno-
tated with sorts) as variables, so that it is easy to generate new variables,
whereas patterns allow arbitrary variables of type ′v without any further
information. Then pattern problems are sets of matching problems, and we
also have sets of pattern problems.
The suffix -set is used to indicate that here these problems are modeled via
sets.
abbreviation tvars :: nat × ′s ⇀ ′s (V) where V ≡ sort-annotated

type-synonym (′f , ′v, ′s)match-atom = (′f ,nat × ′s)term × (′f , ′v)term
type-synonym (′f , ′v, ′s)match-problem-set = (′f , ′v, ′s) match-atom set
type-synonym (′f , ′v, ′s)pat-problem-set = (′f , ′v, ′s)match-problem-set set
type-synonym (′f , ′v, ′s)pats-problem-set = (′f , ′v, ′s)pat-problem-set set

abbreviation (input) bottom :: (′f , ′v, ′s)pats-problem-set where bottom ≡ {{}}

definition tvars-match :: (′f , ′v, ′s)match-problem-set ⇒ (nat × ′s) set where
tvars-match mp = (

⋃
(t,l) ∈ mp. vars t)

definition tvars-pat :: (′f , ′v, ′s)pat-problem-set ⇒ (nat × ′s) set where
tvars-pat pp = (

⋃
mp ∈ pp. tvars-match mp)

definition tvars-pats :: (′f , ′v, ′s)pats-problem-set ⇒ (nat × ′s) set where
tvars-pats P = (

⋃
pp ∈ P. tvars-pat pp)

22

definition subst-left :: (′f ,nat × ′s)subst ⇒ ((′f ,nat × ′s)term × (′f , ′v)term) ⇒
((′f ,nat × ′s)term × (′f , ′v)term) where

subst-left τ = (λ(t,r). (t · τ , r))

A definition of pattern completeness for pattern problems.
definition match-complete-wrt :: (′f ,nat × ′s, ′w)gsubst ⇒ (′f , ′v, ′s)match-problem-set
⇒ bool where

match-complete-wrt σ mp = (∃ µ. ∀ (t,l) ∈ mp. t · σ = l · µ)

lemma match-complete-wrt-cong:
assumes s:

∧
x. x ∈ tvars-match mp =⇒ σ x = σ ′ x

and mp: mp = mp ′

shows match-complete-wrt σ mp = match-complete-wrt σ ′ mp ′

apply (unfold match-complete-wrt-def Ball-Pair-conv mp[symmetric])
apply (intro ex-cong1 all-cong1 imp-cong[OF refl])

proof−
fix µ t l assume (t,l) ∈ mp
with s have ∀ x ∈ vars t. σ x = σ ′ x by (auto simp: tvars-match-def)
from subst-same-vars[OF this] show t·σ = l·µ ←→ t·σ ′ = l·µ by simp

qed

lemma match-complete-wrt-imp-o:
assumes match-complete-wrt σ mp shows match-complete-wrt (σ ◦s τ) mp

proof (unfold match-complete-wrt-def)
from assms[unfolded match-complete-wrt-def] obtain µ where eq: ∀ (t,l) ∈ mp.

t·σ = l·µ
by auto

{ fix t l
assume tl: (t,l) ∈ mp
with eq have t·(σ ◦s τ) = l·(µ ◦s τ) by auto

}
then show ∃µ ′. ∀ (t,l) ∈ mp. t·(σ ◦s τ) = l·µ ′ by blast

qed

lemma match-complete-wrt-o-imp:
assumes s: σ :s V |‘ tvars-match mp → T (C ,∅) and m: match-complete-wrt (σ
◦s τ) mp

shows match-complete-wrt σ mp
proof (unfold match-complete-wrt-def)

from m[unfolded match-complete-wrt-def] obtain µ where eq: ∀ (t,l) ∈ mp. t·σ·τ
= l·µ

by auto
have ∀ x ∈ tvars-match mp. σ x : snd x in T (C ,∅)

by (auto intro!: sorted-mapD[OF s] simp: hastype-restrict)
then have g: x ∈ tvars-match mp =⇒ ground (σ x) for x

by (auto simp: hatype-imp-ground)
{ fix t l

assume tl: (t,l) ∈ mp
then have ground (t·σ) by (force intro!: g simp: tvars-match-def)

23

then have t·σ·τ ·undefined = t·σ by (metis eval-subst ground-subst-apply)
with tl eq have t·σ = l·(µ ◦s undefined) by auto

}
then show ∃µ ′. ∀ (t,l) ∈ mp. t·σ = l·µ ′ by blast

qed

Pattern completeness is match completeness w.r.t. any constructor-ground
substitution. Note that variables to instantiate are represented as pairs of
(number, sort).
definition pat-complete :: (′f , ′s) ssig ⇒ (′f , ′v, ′s)pat-problem-set ⇒ bool where
pat-complete C pp←→ (∀σ :s V |‘ tvars-pat pp→ T (C). ∃ mp ∈ pp. match-complete-wrt

σ mp)

lemma pat-completeD:
assumes pp: pat-complete C pp

and s: σ :s V |‘ tvars-pat pp → T (C ,∅)
shows ∃ mp ∈ pp. match-complete-wrt σ mp

proof −
from s have σ ◦s undefined :s V |‘ tvars-pat pp → T (C)

by (simp add: subst-compose-sorted-map)
from pp[unfolded pat-complete-def , rule-format, OF this]
obtain mp where mp: mp ∈ pp

and m: match-complete-wrt (σ ◦s undefined :: - ⇒ (-,unit) term) mp
by auto

have σ :s V |‘ tvars-match mp → T (C ,∅)
apply (rule sorted-map-cmono[OF s])
using mp
by (auto simp: tvars-pat-def intro!: restrict-map-mono-right)

from match-complete-wrt-o-imp[OF this m] mp
show ?thesis by auto

qed

lemma pat-completeI :
assumes r : ∀σ :s V |‘ tvars-pat pp→ T (C ,∅:: ′v⇀ ′s). ∃ mp ∈ pp. match-complete-wrt

σ mp
shows pat-complete C pp

proof (unfold pat-complete-def , safe)
fix σ assume s: σ :s V |‘ tvars-pat pp → T (C)
then have σ ◦s undefined :s V |‘ tvars-pat pp → T (C ,∅)

by (simp add: subst-compose-sorted-map)
from r [rule-format, OF this]
obtain mp where mp: mp ∈ pp and m: match-complete-wrt (σ ◦s undefined::-⇒(-, ′v)

term) mp
by auto

have σ :s V |‘ tvars-match mp → T (C)
apply (rule sorted-map-cmono[OF s restrict-map-mono-right])
using mp by (auto simp: tvars-pat-def)

from match-complete-wrt-o-imp[OF this m] mp
show Bex pp (match-complete-wrt σ) by auto

24

qed

lemma tvars-pat-empty[simp]: tvars-pat {} = {}
by (simp add: tvars-pat-def)

lemma pat-complete-empty[simp]: pat-complete C {} = False
unfolding pat-complete-def by simp

abbreviation pats-complete :: (′f , ′s) ssig ⇒ (′f , ′v, ′s)pats-problem-set ⇒ bool where
pats-complete C P ≡ ∀ pp ∈ P. pat-complete C pp

6.2 Definition of Algorithm – Inference Rules

A function to compute for a variable x all substitution that instantiate x by
c(xn, ..., xn+a) where c is a constructor of arity a and n is a parameter that
determines from where to start the numbering of variables.
definition τc :: nat ⇒ nat × ′s ⇒ ′f × ′s list ⇒ (′f ,nat × ′s)subst where
τc n x = (λ(f ,ss). subst x (Fun f (map Var (zip [n ..< n + length ss] ss))))

Compute the list of conflicting variables (Some list), or detect a clash (None)
fun conflicts :: (′f , ′v× ′s)term ⇒ (′f , ′v× ′s)term ⇒ (′v× ′s) list option where

conflicts (Var x) (Var y) = (if x = y then Some [] else
if snd x = snd y then Some [x,y] else None)

| conflicts (Var x) (Fun - -) = (Some [x])
| conflicts (Fun - -) (Var x) = (Some [x])
| conflicts (Fun f ss) (Fun g ts) = (if (f ,length ss) = (g,length ts)

then map-option concat (those (map2 conflicts ss ts))
else None)

abbreviation Conflict-Var s t x ≡ conflicts s t 6= None ∧ x ∈ set (the (conflicts
s t))
abbreviation Conflict-Clash s t ≡ conflicts s t = None

lemma conflicts-sym: rel-option (λ xs ys. set xs = set ys) (conflicts s t) (conflicts
t s) (is rel-option - (?c s t) -)
proof (induct s t rule: conflicts.induct)

case (4 f ss g ts)
define c where c = ?c
show ?case
proof (cases (f ,length ss) = (g,length ts))

case True
hence len: length ss = length ts
((f , length ss) = (g, length ts)) = True
((g, length ts) = (f , length ss)) = True by auto

show ?thesis using len(1) 4 [OF True - refl]
unfolding conflicts.simps len(2 ,3) if-True
unfolding option.rel-map c-def [symmetric] set-concat

proof (induct ss ts rule: list-induct2 , goal-cases)

25

case (2 s ss t ts)
hence IH : rel-option (λx y.

⋃
(set ‘ set x) =

⋃
(set ‘ set y)) (those (map2

c ss ts)) (those (map2 c ts ss)) by auto
from 2 have st: rel-option (λxs ys. set xs = set ys) (c s t) (c t s) by auto

from IH st show ?case by (cases c s t; cases c t s; auto simp: option.rel-map)
(simp add: option.rel-sel)

qed simp
qed auto

qed auto

lemma conflicts:
shows Conflict-Clash s t =⇒
∃ p. p ∈ poss s ∧ p ∈ poss t ∧
(is-Fun (s |-p) ∧ is-Fun (t |-p) ∧ root (s |-p) 6= root (t |- p) ∨
(∃ x y. s |-p = Var x ∧ t |-p = Var y ∧ snd x 6= snd y))
(is ?B1 =⇒ ?B2)
and Conflict-Var s t x =⇒
∃ p . p ∈ poss s ∧ p ∈ poss t ∧ s |-p 6= t |-p ∧
(s |-p = Var x ∨ t |-p = Var x)
(is ?C1 x =⇒ ?C2 x)
and s 6= t =⇒ ∃ x. Conflict-Clash s t ∨ Conflict-Var s t x
and Conflict-Var s t x =⇒ x ∈ vars s ∪ vars t
and conflicts s t = Some [] ←→ s = t (is ?A)

proof −
let ?B = ?B1 −→ ?B2
let ?C = λ x. ?C1 x −→ ?C2 x
{

fix x
have (conflicts s t = Some [] −→ s = t) ∧ ?B ∧ ?C x
proof (induction s arbitrary: t)

case (Var y t)
thus ?case by (cases t, cases y, auto)

next
case (Fun f ss t)
show ?case
proof (cases t)

case t: (Fun g ts)
show ?thesis
proof (cases (f ,length ss) = (g,length ts))

case False
hence res: conflicts (Fun f ss) t = None unfolding t by auto
show ?thesis unfolding res unfolding t using False

by (auto intro!: exI [of - Nil])
next

case f : True
let ?s = Fun f ss
show ?thesis
proof (cases those (map2 conflicts ss ts))

26

case None
hence res: conflicts ?s t = None unfolding t by auto
from None[unfolded those-eq-None] obtain i where i: i < length ss i <

length ts and
confl: conflicts (ss ! i) (ts ! i) = None
using f unfolding set-conv-nth set-zip by auto

from i have ss ! i ∈ set ss by auto
from Fun.IH [OF this, of ts ! i] confl obtain p

where p: p ∈ poss (ss ! i) ∧ p ∈ poss (ts ! i) ∧
(is-Fun (ss ! i |- p) ∧ is-Fun (ts ! i |- p) ∧ root (ss ! i |- p) 6= root (ts ! i |- p) ∨
(∃ x y. ss!i |- p = Var x ∧ ts!i |- p = Var y ∧ snd x 6= snd y))

by force
from p have p: ∃ p. p ∈ poss ?s ∧ p ∈ poss t ∧

(is-Fun (?s |- p) ∧ is-Fun (t |- p) ∧ root (?s |- p) 6= root (t |- p) ∨
(∃ x y. ?s |- p = Var x ∧ t |- p = Var y ∧ snd x 6= snd y))

by (intro exI [of - i # p], unfold t, insert i f , auto)
from p res show ?thesis by auto

next
case (Some xss)
hence res: conflicts ?s t = Some (concat xss) unfolding t using f by

auto
from Some have map2 : map2 conflicts ss ts = map Some xss by auto
from arg-cong[OF this, of length] have len: length xss = length ss using

f by auto
have rec: i < length ss =⇒ conflicts (ss ! i) (ts ! i) = Some (xss ! i) for

i
using arg-cong[OF map2 , of λ xs. xs ! i] len f by auto

{
assume x ∈ set (the (conflicts ?s t))
hence x ∈ set (concat xss) unfolding res by auto
then obtain xs where xs: xs ∈ set xss and x: x ∈ set xs by auto
from xs len obtain i where i: i < length ss and xs: xs = xss ! i by

(auto simp: set-conv-nth)
from i have ss ! i ∈ set ss by auto
from Fun.IH [OF this, of ts ! i, unfolded rec[OF i, folded xs]] x
obtain p where p ∈ poss (ss ! i) ∧ p ∈ poss (ts ! i) ∧ ss ! i |- p 6= ts

! i |- p ∧ (ss ! i |- p = Var x ∨ ts ! i |- p = Var x)
by auto

hence ∃ p. p ∈ poss ?s ∧ p ∈ poss t ∧ ?s |- p 6= t |- p ∧ (?s |- p =
Var x ∨ t |- p = Var x)

by (intro exI [of - i # p], insert i f , auto simp: t)
}
moreover
{

assume conflicts ?s t = Some []
with res have empty: concat xss = [] by auto
{

fix i
assume i: i < length ss

27

from rec[OF i] have conflicts (ss ! i) (ts ! i) = Some (xss ! i) .
moreover from empty i len have xss ! i = [] by auto
ultimately have res: conflicts (ss ! i) (ts ! i) = Some [] by simp
from i have ss ! i ∈ set ss by auto
from Fun.IH [OF this, of ts ! i, unfolded res] have ss ! i = ts ! i by

auto
}
with f have ?s = t unfolding t by (auto intro: nth-equalityI)

}
ultimately show ?thesis unfolding res by auto

qed
qed

qed auto
qed

} note main = this
from main show B: ?B1 =⇒ ?B2 and C : ?C1 x =⇒ ?C2 x by blast+
show ?A
proof

assume s = t
with B have conflicts s t 6= None by force
then obtain xs where res: conflicts s t = Some xs by auto
show conflicts s t = Some []
proof (cases xs)

case Nil
thus ?thesis using res by auto

next
case (Cons x xs)
with main[of x] res ‹s = t› show ?thesis by auto

qed
qed (insert main, blast)
{

assume diff : s 6= t
show ∃ x. Conflict-Clash s t ∨ Conflict-Var s t x
proof (cases conflicts s t)

case (Some xs)
with ‹?A› diff obtain x where x ∈ set xs by (cases xs, auto)
thus ?thesis unfolding Some

apply auto
by (metis surj-pair)

qed auto
}
assume Conflict-Var s t x
with C obtain p where p ∈ poss s p ∈ poss t (s |- p = Var x ∨ t |- p = Var

x)
by blast

thus x ∈ vars s ∪ vars t
by (metis UnCI subt-at-imp-supteq ′ subteq-Var-imp-in-vars-term)

qed

28

declare conflicts.simps[simp del]

lemma conflicts-refl[simp]: conflicts t t = Some []
using conflicts(5)[of t t] by auto

locale pattern-completeness-context =
fixes S :: ′s set — set of sort-names

and C :: (′f , ′s)ssig — sorted signature
and m :: nat — upper bound on arities of constructors
and Cl :: ′s ⇒ (′f × ′s list)list — a function to compute all constructors of

given sort as list
and inf-sort :: ′s ⇒ bool — a function to indicate whether a sort is infinite
and cd-sort :: ′s ⇒ nat — a function to compute finite cardinality of a sort
and improved :: bool — if improved = False, then FSCD-version of algorithm is

used; if improved = True, the better journal version (under development) is used.
begin

definition tvars-disj-pp :: nat set ⇒ (′f , ′v, ′s)pat-problem-set ⇒ bool where
tvars-disj-pp V p = (∀ mp ∈ p. ∀ (ti,pi) ∈ mp. fst ‘ vars ti ∩ V = {})

definition lvars-disj-mp :: ′v list ⇒ (′f , ′v, ′s)match-problem-set ⇒ bool where
lvars-disj-mp ys mp = (

⋃
(vars ‘ snd ‘ mp) ∩ set ys = {} ∧ distinct ys)

definition inf-var-conflict :: (′f , ′v, ′s)match-problem-set ⇒ bool where
inf-var-conflict mp = (∃ s t x y.
(s,Var x) ∈ mp ∧ (t,Var x) ∈ mp ∧ Conflict-Var s t y ∧ inf-sort (snd y))

definition subst-match-problem-set :: (′f ,nat × ′s)subst ⇒ (′f , ′v, ′s)match-problem-set
⇒ (′f , ′v, ′s)match-problem-set where

subst-match-problem-set τ mp = subst-left τ ‘ mp

definition subst-pat-problem-set :: (′f ,nat × ′s)subst ⇒ (′f , ′v, ′s)pat-problem-set
⇒ (′f , ′v, ′s)pat-problem-set where

subst-pat-problem-set τ pp = subst-match-problem-set τ ‘ pp

definition τs :: nat ⇒ nat × ′s ⇒ (′f ,nat × ′s)subst set where
τs n x = {τc n x (f ,ss) | f ss. f : ss → snd x in C}

The transformation rules of the paper.
The formal definition contains two deviations from the rules in the paper:
first, the instantiate-rule can always be applied; and second there is an iden-
tity rule, which will simplify later refinement proofs. Both of the deviations
cause non-termination.
The formal inference rules further separate those rules that deliver a bottom-
or top-element from the ones that deliver a transformed problem.
inductive mp-step :: (′f , ′v, ′s)match-problem-set ⇒ (′f , ′v, ′s)match-problem-set ⇒
bool
(infix ‹→s› 50) where

29

mp-decompose: length ts = length ls =⇒ insert (Fun f ts, Fun f ls) mp →s set
(zip ts ls) ∪ mp
| mp-match: x /∈

⋃
(vars ‘ snd ‘ mp) =⇒ insert (t, Var x) mp →s mp

| mp-identity: mp →s mp
| mp-decompose ′: mp ∪ mp ′ →s (

⋃
(t, l) ∈ mp. set (zip (args t) (map Var ys)))

∪ mp ′

if
∧

t l. (t,l) ∈ mp =⇒ l = Var y ∧ root t = Some (f ,n)∧
t l. (t,l) ∈ mp ′ =⇒ y /∈ vars l

lvars-disj-mp ys (mp ∪ mp ′) length ys = n
improved

inductive mp-fail :: (′f , ′v, ′s)match-problem-set ⇒ bool where
mp-clash: (f ,length ts) 6= (g,length ls) =⇒ mp-fail (insert (Fun f ts, Fun g ls)

mp)
| mp-clash ′: Conflict-Clash s t =⇒ mp-fail ({(s,Var x),(t, Var x)} ∪ mp)
| mp-clash-sort: T (C ,V) s 6= T (C ,V) t =⇒ mp-fail ({(s,Var x),(t, Var x)} ∪ mp)

inductive pp-step :: (′f , ′v, ′s)pat-problem-set ⇒ (′f , ′v, ′s)pat-problem-set ⇒ bool
(infix ‹⇒s› 50) where

pp-simp-mp: mp →s mp ′ =⇒ insert mp pp ⇒s insert mp ′ pp
| pp-remove-mp: mp-fail mp =⇒ insert mp pp ⇒s pp
| pp-inf-var-conflict: pp ∪ pp ′⇒s pp ′

if Ball pp inf-var-conflict
finite pp
Ball (tvars-pat pp ′) (λ x. ¬ inf-sort (snd x))
¬ improved =⇒ pp ′ = {}

Note that in pp-inf-var-conflict the conflicts have to be simultaneously oc-
curring. If just some matching problem has such a conflict, then this cannot
be deleted immediately!
Example-program: f(x,x) = ..., f(s(x),y) = ..., f(x,s(y)) = ... cover all cases
of natural numbers, i.e., f(x1,x2), but if one would immediately delete the
matching problem of the first lhs because of the resulting inf-var-conflict in
(x1,x),(x2,x) then it is no longer complete.
inductive pp-success :: (′f , ′v, ′s)pat-problem-set ⇒ bool where

pp-success (insert {} pp)

inductive P-step-set :: (′f , ′v, ′s)pats-problem-set ⇒ (′f , ′v, ′s)pats-problem-set ⇒
bool
(infix ‹Vs› 50) where

P-fail: insert {} P Vs bottom
| P-simp: pp ⇒s pp ′ =⇒ insert pp P Vs insert pp ′ P
| P-remove-pp: pp-success pp =⇒ insert pp P Vs P
| P-instantiate: tvars-disj-pp {n ..< n+m} pp =⇒ x ∈ tvars-pat pp =⇒

insert pp P Vs {subst-pat-problem-set τ pp |. τ ∈ τs n x} ∪ P

30

6.3 Soundness of the inference rules

Well-formed matching and pattern problems: all occurring variables (in left-
hand sides of matching problems) have a known sort.
definition wf-match :: (′f , ′v, ′s)match-problem-set ⇒ bool where

wf-match mp = (snd ‘ tvars-match mp ⊆ S)

lemma wf-match-iff : wf-match mp ←→ (∀ (x,ι) ∈ tvars-match mp. ι ∈ S)
by (auto simp: wf-match-def)

lemma tvars-match-subst: tvars-match (subst-match-problem-set σ mp) = (
⋃
(t,l)

∈ mp. vars (t·σ))
by (auto simp: tvars-match-def subst-match-problem-set-def subst-left-def)

lemma wf-match-subst:
assumes s: σ :s V |‘ tvars-match mp → T (C ′,{x : ι in V. ι ∈ S})
shows wf-match (subst-match-problem-set σ mp)
apply (unfold wf-match-iff tvars-match-subst)

proof (safe)
fix t l x ι assume tl: (t,l) ∈ mp and xt: (x,ι) ∈ vars (t·σ)
from xt obtain y κ where y: (y,κ) ∈ vars t and xy: (x,ι) ∈ vars (σ (y,κ)) by

(auto simp: vars-term-subst)
from tl y have (y,κ) : κ in V |‘ tvars-match mp by (auto simp: hastype-restrict

tvars-match-def)
from sorted-mapD[OF s this]
have σ (y,κ) : κ in T (C ′,{x : ι in V. ι ∈ S}).
from hastype-in-Term-imp-vars[OF this xy]
have (x,ι) : ι in {x : ι in V. ι ∈ S} by (auto elim!: in-dom-hastypeE)
then show ι ∈ S by auto

qed

definition wf-pat :: (′f , ′v, ′s)pat-problem-set ⇒ bool where
wf-pat pp = (∀mp ∈ pp. wf-match mp)

lemma wf-pat-subst:
assumes s: σ :s V |‘ tvars-pat pp → T (C ′,{x : ι in V. ι ∈ S})
shows wf-pat (subst-pat-problem-set σ pp)
apply (unfold wf-pat-def subst-pat-problem-set-def)

proof safe
fix mp assume mp: mp ∈ pp
show wf-match (subst-match-problem-set σ mp)

apply (rule wf-match-subst)
apply (rule sorted-map-cmono[OF s])
apply (rule restrict-map-mono-right) using mp by (auto simp: tvars-pat-def)

qed

definition wf-pats :: (′f , ′v, ′s)pats-problem-set ⇒ bool where
wf-pats P = (∀ pp ∈ P. wf-pat pp)

31

lemma wf-pat-iff : wf-pat pp ←→ (∀ (x,ι) ∈ tvars-pat pp. ι ∈ S)
by (auto simp: wf-pat-def tvars-pat-def wf-match-iff)

The reduction of match problems preserves completeness.
lemma mp-step-pcorrect: mp→s mp ′=⇒ match-complete-wrt σ mp = match-complete-wrt
σ mp ′

proof (induct mp mp ′ rule: mp-step.induct)
case ∗: (mp-decompose f ts ls mp)
show ?case unfolding match-complete-wrt-def

apply (rule ex-cong1)
apply (rule ball-insert-un-cong)
apply (unfold split) using ∗ by (auto simp add: set-zip list-eq-nth-eq)

next
case ∗: (mp-match x mp t)
show ?case unfolding match-complete-wrt-def
proof

assume ∃µ. ∀ (ti, li)∈mp. ti · σ = li · µ
then obtain µ where eq:

∧
ti li. (ti, li)∈mp =⇒ ti · σ = li · µ by auto

let ?µ = µ(x := t · σ)
have (ti, li) ∈ mp =⇒ ti · σ = li · ?µ for ti li using ∗ eq[of ti li]

by (auto intro!: term-subst-eq)
thus ∃µ. ∀ (ti, li)∈insert (t, Var x) mp. ti · σ = li · µ by (intro exI [of - ?µ],

auto)
qed auto

next
case ∗: (mp-decompose ′ mp y f n mp ′ ys)
note ∗ = ∗[unfolded lvars-disj-mp-def]
let ?mpi = (

⋃
(t, l)∈mp. set (zip (args t) (map Var ys)))

let ?y = Var y
show ?case
proof

assume match-complete-wrt σ (?mpi ∪ mp ′)
from this[unfolded match-complete-wrt-def] obtain µ

where match:
∧

t l. (t,l) ∈ ?mpi =⇒ t · σ = l · µ
and match ′:

∧
t l. (t,l) ∈ mp ′ =⇒ t · σ = l · µ by force

let ?µ = µ(y := Fun f (map µ ys))
show match-complete-wrt σ (mp ∪ mp ′) unfolding match-complete-wrt-def
proof (intro exI [of - ?µ] ballI , elim UnE ; clarify)

fix t l
{

assume (t,l) ∈ mp ′

from match ′[OF this] ∗(2)[OF this]
show t · σ = l · ?µ by (auto intro: term-subst-eq)

}
assume tl: (t,l) ∈ mp
from ∗(1)[OF this] obtain ts where l: l = Var y and t: t = Fun f ts

and lts: length ts = n by (cases t, auto)
{

fix ti yi

32

assume (ti,yi) ∈ set (zip ts ys)
hence (ti, Var yi) ∈ set (zip (args t) (map Var ys))

using t lts ‹length ys = n› by (force simp: set-conv-nth)
hence (ti, Var yi) ∈ ?mpi using tl by blast
from match[OF this] have µ yi = ti · σ by simp

} note yi = this
show t · σ = l · ?µ unfolding l t using yi lts ‹length ys = n›

by (force intro!: nth-equalityI simp: set-zip)
qed

next
assume match-complete-wrt σ (mp ∪ mp ′)
from this[unfolded match-complete-wrt-def]
obtain µ where match:

∧
t l. (t,l) ∈ mp =⇒ t · σ = l · µ

and match ′:
∧

t l. (t,l) ∈ mp ′ =⇒ t · σ = l · µ by force
define µ ′ where µ ′ = (λ x. case map-of (zip ys (args (µ y))) x of

None ⇒ µ x | Some Ti ⇒ Ti)
show match-complete-wrt σ (?mpi ∪ mp ′)

unfolding match-complete-wrt-def
proof (intro exI [of - µ ′] ballI , elim UnE ; clarify)

fix t l
assume tl: (t,l) ∈ mp ′

from ∗(3) tl have vars: vars l ∩ set ys = {} by force
hence map-of (zip ys (args (µ y))) x = None if x ∈ vars l for x
using that by (meson disjoint-iff map-of-SomeD option.exhaust set-zip-leftD)
with match ′[OF tl]
show t · σ = l · µ ′ by (auto intro!: term-subst-eq simp: µ ′-def)

next
fix t l ti and vyi :: (′f ,-)term
assume tl: (t,l) ∈ mp

and i: (ti,vyi) ∈ set (zip (args t) (map Var ys))
from ∗(1)[OF tl] obtain ts where l: l = Var y and t: t = Fun f ts

and lts: length ts = n by (cases t, auto)
from i lts obtain i where i: i < n and ti: ti = ts ! i and yi: vyi = Var (ys

! i)
unfolding set-zip using ‹length ys = n› t by auto

from match[OF tl] have mu-y: µ y = Fun f ts · σ unfolding l t by auto
have yi: vyi · µ ′ = args (µ y) ! i unfolding µ ′-def yi

using i lts ‹length ys = n› ∗(3) mu-y
by (force split: option.splits simp: set-zip distinct-conv-nth)

also have . . . = ti · σ unfolding mu-y ti using i lts by auto
finally show ti · σ = vyi · µ ′ ..

qed
qed

qed auto

lemma mp-fail-pcorrect1 :
assumes mp-fail mp σ :s sort-annotated |‘ tvars-match mp → T (C ,X)
shows ¬ match-complete-wrt σ mp
using assms

33

proof (induct mp rule: mp-fail.induct)
case ∗: (mp-clash f ts g ls mp)
{

assume length ts 6= length ls
hence (map (λt. t · µ) ls = map (λt. t · σ) ts) = False for σ :: (′f ,nat ×

′s, ′a)gsubst and µ
by (metis length-map)

} note len = this
from ∗ show ?case unfolding match-complete-wrt-def

apply (auto simp: len split: prod.splits)
using map-eq-imp-length-eq by force

next
case ∗: (mp-clash ′ s t x mp)
from conflicts(1)[OF ∗(1)]
obtain po where po: po ∈ poss s po ∈ poss t

and disj: is-Fun (s |- po) ∧ is-Fun (t |- po) ∧ root (s |- po) 6= root (t |- po) ∨
(∃ x y. s |- po = Var x ∧ t |- po = Var y ∧ snd x 6= snd y)
by auto

show ?case
proof

assume match-complete-wrt σ ({(s, Var x), (t, Var x)} ∪ mp)
from this[unfolded match-complete-wrt-def]
have eq: s · σ |-po = t · σ |-po by auto
from disj
show False
proof (elim disjE conjE exE)

assume ∗: is-Fun (s |- po) is-Fun (t |- po) root (s |- po) 6= root (t |- po)
from eq have root (s · σ |-po) = root (t · σ |-po) by auto
also have root (s · σ |-po) = root (s |-po · σ) using po by auto
also have . . . = root (s |-po) using ∗ by (cases s |- po, auto)
also have root (t · σ |-po) = root (t |-po · σ) using po by (cases t |- po,

auto)
also have . . . = root (t |-po) using ∗ by (cases t |- po, auto)
finally show False using ∗ by auto

next
fix y z assume y: s |- po = Var y and z: t |- po = Var z and ty: snd y 6=

snd z
from y z eq po have yz: σ y = σ z by auto
have y ∈ vars-term s z ∈ vars-term t

using po[THEN vars-term-subt-at] y z by auto
then
have σ y : snd y in T (C ,X) σ z : snd z in T (C ,X)
by (auto intro!: ∗(2)[THEN sorted-mapD] simp: hastype-restrict tvars-match-def)
with ty yz show False by (auto simp: has-same-type)

qed
qed

next
case ∗: (mp-clash-sort s t x mp)
show ?case

34

proof
assume match-complete-wrt σ ({(s, Var x), (t, Var x)} ∪ mp)
from this[unfolded match-complete-wrt-def]
have eq: s · σ = t · σ by auto
define V where V = tvars-match ({(s, Var x), (t, Var x)} ∪ mp)
from ∗(2) have σ: σ :s V |‘ V → T (C ,X) unfolding V-def .
have vars: vars s ∪ vars t ⊆ V unfolding V-def tvars-match-def by auto
show False
proof (cases None ∈ {T (C ,V) s, T (C ,V) t})

case False
from False obtain σs σt where st: s : σs in T (C ,V) t : σt in T (C ,V)

by (cases T (C ,V) s; cases T (C ,V) t; auto simp: hastype-def)
from st(1) vars σ have (s · σ) : σs in T (C ,X)
by (meson le-supE restrict-map-mono-right sorted-algebra.eval-has-same-type-vars

sorted-map-cmono
term.sorted-algebra-axioms)

moreover from st(2) vars σ have (t · σ) : σt in T (C ,X)
by (meson le-supE restrict-map-mono-right sorted-algebra.eval-has-same-type-vars

sorted-map-cmono
term.sorted-algebra-axioms)

ultimately have σs = σt unfolding eq hastype-def by auto
with st ∗(1) show False by (auto simp: hastype-def)

next
case True
have ∃ s σs. vars s ⊆ V ∧ s · σ : σs in T (C ,X) ∧ T (C ,V) s = None
proof (cases T (C ,V) s)

case None
with ∗(1) obtain σt where t : σt in T (C ,V) by (cases T (C ,V) t; force

simp: hastype-def)
from this vars σ have (t · σ) : σt in T (C ,X)

by (meson le-supE restrict-map-mono-right sorted-algebra.eval-has-same-type-vars
sorted-map-cmono

term.sorted-algebra-axioms)
from this[folded eq] None vars show ?thesis by auto

next
case (Some σs)
with True have None: T (C ,V) t = None and Some: s : σs in T (C ,V) by

(auto simp: hastype-def)
from Some vars σ have (s · σ) : σs in T (C ,X)

by (meson le-supE restrict-map-mono-right sorted-algebra.eval-has-same-type-vars
sorted-map-cmono

term.sorted-algebra-axioms)
from this[unfolded eq] None vars show ?thesis by auto

qed
then obtain s σs where vars s ⊆ V s · σ: σs in T (C ,X) T (C ,V) s = None

by auto
thus False
proof (induct s arbitrary: σs)

case (Fun f ss τ)

35

hence mem: Fun f (map (λs. s · σ) ss) : τ in T (C ,X) by auto
from this[unfolded Fun-hastype]
obtain τs where f : f : τs → τ in C and args: map (λs. s · σ) ss :l τs in

T (C ,X) by auto
{

fix s
assume s ∈ set ss
hence s · σ ∈ set (map (λs. s · σ) ss) by auto
hence ∃ τ . s · σ : τ in T (C ,X)

by (metis Fun-in-dom-imp-arg-in-dom mem hastype-imp-dom in-dom-hastypeE)
} note arg = this
show ?case
proof (cases ∃ s ∈ set ss. T (C ,V) s = None)

case True
then obtain s where s: s ∈ set ss and None: T (C ,V) s = None by auto
from arg[OF s] obtain τ where Some: s · σ : τ in T (C ,X) by auto
from Fun(1)[OF s - Some None] s Fun(2) show False by auto

next
case False
have Fun f ss : τ in T (C ,V)
proof (intro Fun-hastypeI [OF f], unfold list-all2-conv-all-nth, intro conjI

allI impI)
show length ss = length τs using args[unfolded list-all2-conv-all-nth] by

auto
fix i
assume i: i < length ss
hence ssi: ss ! i ∈ set ss by auto
with False obtain τ i where type: ss ! i : τ i in T (C ,V) by (auto simp:

hastype-def)
from ssi Fun(2) have vars: vars (ss ! i) ⊆ V by auto
from vars type σ have ss ! i · σ : τ i in T (C ,X)

by (meson restrict-map-mono-right sorted-map-cmono term.eval-has-same-type-vars)
moreover from args i have ss ! i · σ : τs ! i in T (C ,X)

unfolding list-all2-conv-all-nth by auto
ultimately have τ i = τs ! i by (auto simp: hastype-def)
with type show ss ! i : τs ! i in T (C ,V) by auto

qed
with Fun(4) show False unfolding hastype-def using not-None-eq by

blast
qed

qed auto
qed

qed
qed

lemma mp-fail-pcorrect:
assumes f : mp-fail mp and s: σ :s {x : ι in V. ι ∈ S} → T (C) and wf : wf-match

mp
shows ¬ match-complete-wrt σ mp

36

apply (rule mp-fail-pcorrect1 [OF f])
apply (rule sorted-map-cmono[OF s])
using wf by (auto intro!: subssetI simp: hastype-restrict wf-match-iff)

end

For proving partial correctness we need further properties of the fixed pa-
rameters: We assume that m is sufficiently large and that there exists some
constructor ground terms. Moreover inf-sort really computes whether a sort
has terms of arbitrary size. Further all symbols in C must have sorts of S.
Finally, Cl should precisely compute the constructors of a sort.
locale pattern-completeness-context-with-assms = pattern-completeness-context S
C m Cl inf-sort cd-sort

for S and C :: (′f , ′s)ssig
and m Cl inf-sort cd-sort +

assumes not-empty-sort:
∧

s. s ∈ S =⇒ ¬ empty-sort C s
and C-sub-S :

∧
f ss s. f : ss → s in C =⇒ insert s (set ss) ⊆ S

and m:
∧

f ss s. f : ss → s in C =⇒ length ss ≤ m
and finite-C : finite (dom C)
and inf-sort:

∧
s. s ∈ S =⇒ inf-sort s ←→ ¬ finite-sort C s

and Cl:
∧

s. set (Cl s) = {(f ,ss). f : ss → s in C}
and Cl-len:

∧
σ. Ball (length ‘ snd ‘ set (Cl σ)) (λ a. a ≤ m)

and cd:
∧

s. s ∈ S =⇒ cd-sort s = card-of-sort C s
begin

lemma sorts-non-empty: s ∈ S =⇒ ∃ t. t : s in T (C ,∅)
apply (drule not-empty-sort)
by (auto elim: not-empty-sortE)

lemma inf-sort-not-bdd: s ∈ S =⇒ ¬ bdd-above (size ‘ {t . t : s in T (C ,∅)}) ←→
inf-sort s

apply (subst finite-sig-bdd-above-iff-finite[OF finite-C])
by (auto simp: inf-sort finite-sort)

lemma C-nth-S : f : ss → s in C =⇒ i < length ss =⇒ ss!i ∈ S
using C-sub-S by force

lemmas subst-defs-set =
subst-pat-problem-set-def
subst-match-problem-set-def

Preservation of well-formedness
lemma mp-step-wf : mp →s mp ′ =⇒ wf-match mp =⇒ wf-match mp ′

unfolding wf-match-def tvars-match-def
proof (induct mp mp ′ rule: mp-step.induct)

case (mp-decompose f ts ls mp)
then show ?case by (auto dest!: set-zip-leftD)

next
case ∗: (mp-decompose ′ mp y f n mp ′ ys)

37

from ∗(1) ∗(6)
show ?case

apply (auto dest!: set-zip-leftD)
subgoal for - - t by (cases t; force)
subgoal for - - t by (cases t; force)
done

qed auto

lemma pp-step-wf : pp ⇒s pp ′ =⇒ wf-pat pp =⇒ wf-pat pp ′

unfolding wf-pat-def
proof (induct pp pp ′ rule: pp-step.induct)

case (pp-simp-mp mp mp ′ pp)
then show ?case using mp-step-wf [of mp mp ′] by auto

qed auto

theorem P-step-set-wf : P Vs P ′ =⇒ wf-pats P =⇒ wf-pats P ′

unfolding wf-pats-def
proof (induct P P ′ rule: P-step-set.induct)

case (P-simp pp pp ′ P)
then show ?case using pp-step-wf [of pp pp ′] by auto

next
case ∗: (P-instantiate n p x P)
let ?s = snd x
from ∗ have sS : ?s ∈ S and p: wf-pat p unfolding wf-pat-def wf-match-def

tvars-pat-def by auto
{

fix τ
assume tau: τ ∈ τs n x
from tau[unfolded τs-def τc-def , simplified]
obtain f sorts where f : f : sorts → snd x in C and τ : τ = subst x (Fun f

(map Var (zip [n..<n + length sorts] sorts))) by auto
let ?i = length sorts
let ?xs = zip [n..<n + length sorts] sorts
from C-sub-S [OF f] have sS : ?s ∈ S and xs: snd ‘ set ?xs ⊆ S

unfolding set-conv-nth set-zip by auto
{

fix mp y
assume mp: mp ∈ p and y ∈ tvars-match (subst-left τ ‘ mp)
then obtain s t where y: y ∈ vars (s · τ) and st: (s,t) ∈ mp

unfolding tvars-match-def subst-left-def by auto
from y have y ∈ vars s ∪ set ?xs unfolding vars-term-subst τ

by (auto simp: subst-def split: if-splits)
hence snd y ∈ snd ‘ vars s ∪ snd ‘ set ?xs by auto
also have . . . ⊆ snd ‘ vars s ∪ S using xs by auto
also have . . . ⊆ S using p mp st

unfolding wf-pat-def wf-match-def tvars-match-def by force
finally have snd y ∈ S .

}
hence wf-pat (subst-pat-problem-set τ p)

38

unfolding wf-pat-def wf-match-def subst-defs-set by auto
}
with ∗ show ?case by auto

qed (auto simp: wf-pat-def)

Soundness requires some preparations
definition σg :: nat× ′s ⇒ (′f , ′v) term where
σg x = (SOME t. t : snd x in T (C ,∅))

lemma σg: σg :s {x : ι in sort-annotated. ι ∈ S} → T (C ,∅)
using sorts-non-empty[THEN someI-ex]
by (auto intro!: sorted-mapI simp: σg-def)

lemma wf-pat-complete-iff :
assumes wf-pat pp
shows pat-complete C pp ←→ (∀σ :s {x : ι in V. ι ∈ S} → T (C). ∃ mp ∈ pp.

match-complete-wrt σ mp)
(is ?l ←→ ?r)

proof
assume l: ?l
show ?r
proof (intro allI impI)

fix σ :: nat × ′s ⇒ -
assume s: σ :s {x : ι in V. ι ∈ S} → T (C)
have σ :s V |‘ tvars-pat pp → T (C)

apply (rule sorted-map-cmono[OF s])
using assms by (auto intro!: subssetI simp: hastype-restrict wf-pat-iff)

from pat-completeD[OF l this] show ∃mp∈pp. match-complete-wrt σ mp.
qed

next
assume r : ?r
show ?l
proof (unfold pat-complete-def , safe)

fix σ assume s: σ :s V |‘ tvars-pat pp → T (C)
define σ ′ where σ ′ x ≡ if x ∈ tvars-pat pp then σ x else σg x for x
have σ ′ :s {x : ι in V. ι ∈ S} → T (C)

by (auto intro!: sorted-mapI sorted-mapD[OF s] sorted-mapD[OF σg] simp:
σ ′-def hastype-restrict)

from r [rule-format, OF this]
obtain mp where mp: mp ∈ pp and m: match-complete-wrt σ ′ mp by auto
have [simp]: x ∈ tvars-match mp =⇒ σ x = σ ′ x for x using mp by (auto

simp: σ ′-def tvars-pat-def)
from m have match-complete-wrt σ mp by (simp cong: match-complete-wrt-cong)
with mp show Bex pp (match-complete-wrt σ) by auto

qed
qed

lemma wf-pats-complete-iff :
assumes wf : wf-pats P

39

shows pats-complete C P ←→
(∀σ :s {x : ι in V. ι ∈ S} → T (C). ∀ pp ∈ P. ∃mp ∈ pp. match-complete-wrt σ

mp)
(is ?l ←→ ?r)

proof safe
fix σ pp assume s: σ :s {x : ι in V. ι ∈ S} → T (C) and pp: pp ∈ P
have s2 : σ :s V |‘ tvars-pats P → T (C)

apply (rule sorted-map-cmono[OF s])
using wf

by (auto intro!: subssetI simp: hastype-restrict wf-pats-def wf-pat-iff tvars-pats-def
split: prod.splits)

assume ?l
with pp have comp: pat-complete C pp by auto
from wf pp have wf-pat pp by (auto simp: wf-pats-def)
from comp[unfolded wf-pat-complete-iff [OF this], rule-format, OF s]
show ∃mp ∈ pp. match-complete-wrt σ mp.

next
fix pp assume pp: pp ∈ P
assume r [rule-format]: ?r
from wf pp have wf-pat pp by (auto simp: wf-pats-def)
note ∗ = wf-pat-complete-iff [OF this]
show pat-complete C pp

apply (unfold ∗) using r [OF - pp] by auto
qed

lemma inf-var-conflictD: assumes inf-var-conflict mp
shows ∃ p s t x y.
(s,Var x) ∈ mp ∧ (t,Var x) ∈ mp ∧ s |-p = Var y ∧ s |- p 6= t |-p ∧

p ∈ poss s ∧ p ∈ poss t ∧ inf-sort (snd y)
proof −

from assms[unfolded inf-var-conflict-def]
obtain s t x y where (s, Var x) ∈ mp ∧ (t, Var x) ∈ mp and conf : Conflict-Var

s t y and y: inf-sort (snd y) by blast
with conflicts(2)[OF conf] show ?thesis by metis

qed

lemmas cg-term-vars = hastype-in-Term-empty-imp-vars

Main partial correctness theorems on well-formed problems: the transforma-
tion rules do not change the semantics of a problem
lemma pp-step-pcorrect:

pp ⇒s pp ′ =⇒ wf-pat pp =⇒ pat-complete C pp = pat-complete C pp ′

proof (induct pp pp ′ rule: pp-step.induct)
case ∗: (pp-simp-mp mp mp ′ pp)
with mp-step-wf [OF ∗(1)]
have wf-pat (insert mp ′ pp) by (auto simp: wf-pat-def)
with ∗(2) mp-step-pcorrect[OF ∗(1)]
show ?case by (auto simp: wf-pat-complete-iff)

next

40

case ∗: (pp-remove-mp mp pp)
from mp-fail-pcorrect[OF ∗(1)] ∗(2)
show ?case by (auto simp: wf-pat-complete-iff wf-pat-def)

next
case ∗: (pp-inf-var-conflict pp pp ′)
note wf = ‹wf-pat (pp ∪ pp ′)› and fin = ‹finite pp›
hence wf-pat pp and wfpp ′: wf-pat pp ′ by (auto simp: wf-pat-def)
with wf have easy: pat-complete C pp ′ =⇒ pat-complete C (pp ∪ pp ′)

by (auto simp: wf-pat-complete-iff)
{

assume pp: pat-complete C (pp ∪ pp ′)
have pat-complete C pp ′ unfolding wf-pat-complete-iff [OF wfpp ′]
proof (intro allI impI)

fix δ
assume δ: δ :s {x : ι in V. ι ∈ S} → T (C)

define conv :: (′f ,unit) term ⇒ (′f , nat × ′s) term where conv t = t ·
undefined for t

define conv ′ :: (′f , nat × ′s) term ⇒ (′f , unit) term where conv ′ t = t ·
undefined for t

define confl ′ :: (′f , nat × ′s) term ⇒ (′f , nat × ′s)term ⇒ nat × ′s ⇒ bool
where confl ′ = (λ sp tp y.

sp = Var y ∧ inf-sort (snd y) ∧ sp 6= tp)
define P1 where P1 = (λ mp s t x y p. mp ∈ pp −→ (s, Var x) ∈ mp ∧ (t,

Var x) ∈ mp ∧ p ∈ poss s ∧ p ∈ poss t ∧ confl ′ (s |- p) (t |- p) y)
{

fix mp
assume mp ∈ pp
hence inf-var-conflict mp using ∗ by auto
from inf-var-conflictD[OF this]
have ∃ s t x y p. P1 mp s t x y p unfolding P1-def confl ′-def by force

}
hence ∀ mp. ∃ s t x y p. P1 mp s t x y p unfolding P1-def by blast
from choice[OF this] obtain s where ∀ mp. ∃ t x y p. P1 mp (s mp) t x y

p by blast
from choice[OF this] obtain t where ∀ mp. ∃ x y p. P1 mp (s mp) (t mp)

x y p by blast
from choice[OF this] obtain x where ∀ mp. ∃ y p. P1 mp (s mp) (t mp) (x

mp) y p by blast
from choice[OF this] obtain y where ∀ mp. ∃ p. P1 mp (s mp) (t mp) (x

mp) (y mp) p by blast
from choice[OF this] obtain p where ∀ mp. P1 mp (s mp) (t mp) (x mp)

(y mp) (p mp) by blast
note P1 = this[unfolded P1-def , rule-format]
from ∗(2) have finite (y ‘ pp) by blast
from ex-bij-betw-finite-nat[OF this] obtain index and n :: nat where

bij: bij-betw index (y ‘ pp) {..<n}
by (auto simp add: atLeast0LessThan)

define var-ind :: nat ⇒ nat × ′s ⇒ bool where
var-ind i x = (x ∈ y ‘ pp ∧ index x ∈ {..<n} − {..<i}) for i x

41

have [simp]: var-ind n x = False for x
unfolding var-ind-def by auto

define cg-subst-ind :: nat ⇒ (′f ,nat × ′s)subst ⇒ bool where
cg-subst-ind i σ = (∀ x. (var-ind i x −→ σ x = Var x)
∧ (¬ var-ind i x −→ (vars-term (σ x) = {} ∧ (snd x ∈ S −→ σ x : snd

x in T (C ,∅))))
∧ (snd x ∈ S −→ ¬ inf-sort (snd x) −→ σ x = conv (δ x))) for i σ

define confl :: nat ⇒ (′f , nat × ′s) term ⇒ (′f , nat × ′s)term ⇒ bool where
confl = (λ i sp tp.

(case (sp,tp) of (Var x, Var y) ⇒ x 6= y ∧ var-ind i x ∧ var-ind i y
| (Var x, Fun - -) ⇒ var-ind i x
| (Fun - -, Var x) ⇒ var-ind i x
| (Fun f ss, Fun g ts) ⇒ (f ,length ss) 6= (g,length ts)))

have confl-n: confl n s t =⇒ ∃ f g ss ts. s = Fun f ss ∧ t = Fun g ts ∧
(f ,length ss) 6= (g,length ts) for s t

by (cases s; cases t; auto simp: confl-def)
{

fix i x
assume var-ind i x
from this[unfolded var-ind-def] obtain i

where z: x ∈ y ‘ pp index x = i by blast
from z obtain mp where mp ∈ pp and index (y mp) = i and x = y mp

by auto
with P1 [OF this(1), unfolded confl ′-def] have inf : inf-sort (snd x) by auto

} note var-ind-inf = this
{

fix i
assume i ≤ n
hence ∃ σ. cg-subst-ind i σ ∧ (∀ mp ∈ pp. ∃ p. p ∈ poss (s mp · σ) ∧ p ∈

poss (t mp · σ) ∧ confl i (s mp · σ |- p) (t mp · σ |- p))
proof (induction i)

case 0
define σ where σ x = (if var-ind 0 x then Var x else if snd x ∈ S then

conv (δ x) else Fun undefined []) for x
have σ: cg-subst-ind 0 σ unfolding cg-subst-ind-def
proof (intro allI impI conjI)

fix x
show var-ind 0 x =⇒ σ x = Var x unfolding σ-def by auto
show ¬ var-ind 0 x =⇒ vars (σ x) = {}

unfolding σ-def conv-def using δ[THEN sorted-mapD, of x]
by (auto simp: vars-term-subst hastype-in-Term-empty-imp-vars)

show ¬ var-ind 0 x =⇒ snd x ∈ S =⇒ σ x : snd x in T (C ,∅)
using δ[THEN sorted-mapD, of x]
unfolding σ-def conv-def by (auto simp: σ-def intro: type-conversion)

show snd x ∈ S =⇒ ¬ inf-sort (snd x) =⇒ σ x = conv (δ x)
unfolding σ-def by (auto dest: var-ind-inf)

qed
show ?case
proof (rule exI , rule conjI [OF σ], intro ballI exI conjI)

42

fix mp
assume mp: mp ∈ pp
note P1 = P1 [OF this]
from mp have mem: y mp ∈ y ‘ pp by auto
with bij have y: index (y mp) ∈ {..<n} by (metis bij-betw-apply)
hence y0 : var-ind 0 (y mp) using mem unfolding var-ind-def by auto
show p mp ∈ poss (s mp · σ) using P1 by auto
show p mp ∈ poss (t mp · σ) using P1 by auto
let ?t = t mp |- p mp
define c where c = confl 0 (s mp · σ |- p mp) (t mp · σ |- p mp)
have c = confl 0 (s mp |- p mp · σ) (?t · σ)

using P1 unfolding c-def by auto
also have s: s mp |- p mp = Var (y mp) using P1 unfolding confl ′-def

by auto
also have . . . · σ = Var (y mp) using y0 unfolding σ-def by auto
also have confl 0 (Var (y mp)) (?t · σ)
proof (cases ?t · σ)

case Fun
thus ?thesis using y0 unfolding confl-def by auto

next
case (Var z)
then obtain u where t: ?t = Var u and ssig: σ u = Var z

by (cases ?t, auto)
from P1 [unfolded s] have confl ′ (Var (y mp)) ?t (y mp) by auto
from this[unfolded confl ′-def t] have uy: y mp 6= u by auto
show ?thesis
proof (cases var-ind 0 u)

case True
with y0 uy show ?thesis unfolding t σ-def confl-def by auto

next
case False
with ssig[unfolded σ-def] have uS : snd u ∈ S and contra: conv (δ

u) = Var z
by (auto split: if-splits)

from δ[THEN sorted-mapD, of u] uS contra
have False by (cases δ u, auto simp: conv-def)
thus ?thesis ..

qed
qed
finally show confl 0 (s mp · σ |- p mp) (t mp · σ |- p mp) unfolding

c-def .
qed

next
case (Suc i)
then obtain σ where σ: cg-subst-ind i σ and confl: (∀mp∈pp. ∃ p. p ∈

poss (s mp · σ) ∧ p ∈ poss (t mp · σ) ∧ confl i (s mp · σ |- p) (t mp · σ |- p))
by auto

from Suc have i ∈ {..< n} and i: i < n by auto
with bij obtain z where z: z ∈ y ‘ pp index z = i unfolding bij-betw-def

43

by (metis imageE)
{

from z obtain mp where mp ∈ pp and index (y mp) = i and z = y
mp by auto

with P1 [OF this(1), unfolded confl ′-def] have inf : inf-sort (snd z)
and ∗: p mp ∈ poss (s mp) s mp |- p mp = Var z (s mp, Var (x mp))

∈ mp
by auto

from ∗(1 ,2) have z ∈ vars (s mp) using vars-term-subt-at by fastforce
with ∗(3) have z ∈ tvars-match mp unfolding tvars-match-def by force
with ‹mp ∈ pp› wf have snd z ∈ S unfolding wf-pat-def wf-match-def

by auto
from not-bdd-above-natD[OF inf-sort-not-bdd[OF this, THEN iffD2 , OF

inf]]
sorts-non-empty[OF this]

have
∧

n. ∃ t. t : snd z in T (C ,∅::nat× ′s⇀-) ∧ n < size t by auto
note this inf

} note z-inf = this

define all-st where all-st = (λ mp. s mp · σ) ‘ pp ∪ (λ mp. t mp · σ) ‘
pp

have fin-all-st: finite all-st unfolding all-st-def using ∗(2) by simp
define d :: nat where d = Suc (Max (size ‘ all-st))
from z-inf (1)[of d]
obtain u :: (′f ,nat× ′s) term

where u: u : snd z in T (C ,∅) and du: d ≤ size u by auto
have vars-u: vars u = {} by (rule cg-term-vars[OF u])
define σ ′ where σ ′ x = (if x = z then u else σ x) for x
have σ ′-def ′: σ ′ x = (if x ∈ y ‘ pp ∧ index x = i then u else σ x) for x

unfolding σ ′-def by (rule if-cong, insert bij z, auto simp: bij-betw-def
inj-on-def)

have var-ind-conv: var-ind i x = (x = z ∨ var-ind (Suc i) x) for x
proof

assume x = z ∨ var-ind (Suc i) x
thus var-ind i x using z i unfolding var-ind-def by auto

next
assume var-ind i x
hence x: x ∈ y ‘ pp index x ∈ {..<n} − {..<i} unfolding var-ind-def

by auto
with i have index x = i ∨ index x ∈ {..<n} − {..<Suc i} by auto
thus x = z ∨ var-ind (Suc i) x
proof

assume index x = i
with x(1) z bij have x = z by (auto simp: bij-betw-def inj-on-def)
thus ?thesis by auto

qed (insert x, auto simp: var-ind-def)
qed
have [simp]: var-ind i z unfolding var-ind-conv by auto
have [simp]: var-ind (Suc i) z = False unfolding var-ind-def using z by

44

auto
have σz[simp]: σ z = Var z using σ[unfolded cg-subst-ind-def , rule-format,

of z] by auto
have σ ′-upd: σ ′ = σ(z := u) unfolding σ ′-def by (intro ext, auto)

have σ ′-comp: σ ′ = σ ◦s Var(z := u) unfolding subst-compose-def σ ′-upd
proof (intro ext)

fix x
show (σ(z := u)) x = σ x · Var(z := u)
proof (cases x = z)

case False
hence σ x · (Var(z := u)) = σ x · Var
proof (intro term-subst-eq)

fix y
assume y: y ∈ vars (σ x)
show (Var(z := u)) y = Var y
proof (cases var-ind i x)

case True
with σ[unfolded cg-subst-ind-def , rule-format, of x]
have σ x = Var x by auto
with False y show ?thesis by auto

next
case False
with σ[unfolded cg-subst-ind-def , rule-format, of x]
have vars (σ x) = {} by auto
with y show ?thesis by auto

qed
qed
thus ?thesis by auto

qed simp
qed
have σ ′: cg-subst-ind (Suc i) σ ′ unfolding cg-subst-ind-def
proof (intro allI conjI impI)

fix x
assume var-ind (Suc i) x
hence var-ind i x and diff : index x 6= i unfolding var-ind-def by auto
hence σ x = Var x using σ[unfolded cg-subst-ind-def] by blast
thus σ ′ x = Var x unfolding σ ′-def ′ using diff by auto

next
fix x
assume ¬ var-ind (Suc i) x and snd x ∈ S
thus σ ′ x : snd x in T (C ,∅)

using σ[unfolded cg-subst-ind-def , rule-format, of x] u
unfolding σ ′-def var-ind-conv by auto

next
fix x
assume ¬ var-ind (Suc i) x
hence x = z ∨ ¬ var-ind i x unfolding var-ind-conv by auto

thus vars (σ ′ x) = {} unfolding σ ′-upd using σ[unfolded cg-subst-ind-def ,
rule-format, of x] vars-u by auto

45

next
fix x :: nat × ′s
assume ∗: snd x ∈ S ¬ inf-sort (snd x)
with z-inf (2) have x 6= z by auto
hence σ ′ x = σ x unfolding σ ′-def by auto
thus σ ′ x = conv (δ x) using σ[unfolded cg-subst-ind-def , rule-format,

of x] ∗ by auto
qed
show ?case
proof (intro exI [of - σ ′] conjI σ ′ ballI)

fix mp
assume mp: mp ∈ pp
define s ′ where s ′ = s mp · σ
define t ′ where t ′ = t mp · σ
from confl[rule-format, OF mp]
obtain p where p: p ∈ poss s ′ p ∈ poss t ′ and confl: confl i (s ′ |- p) (t ′

|- p) by (auto simp: s ′-def t ′-def)
{

fix s ′ t ′ :: (′f , nat × ′s) term and p f ss x
assume ∗: (s ′ |- p, t ′ |-p) = (Fun f ss, Var x) var-ind i x and p: p ∈

poss s ′ p ∈ poss t ′

and range-all-st: s ′ ∈ all-st
hence s ′: s ′ · Var(z := u) |- p = Fun f ss · Var(z := u) (is - = ?s)

and t ′: t ′ · Var(z := u) |- p = (if x = z then u else Var x) using p
by auto

from range-all-st[unfolded all-st-def]
have rangeσ: ∃ S . s ′ = S · σ by auto
define s where s = ?s
have ∃ p. p ∈ poss (s ′ · Var(z := u)) ∧ p ∈ poss (t ′ · Var(z := u)) ∧

confl (Suc i) (s ′ · Var(z := u) |- p) (t ′ · Var(z := u) |- p)
proof (cases x = z)

case False
thus ?thesis using ∗ p unfolding s ′ t ′ by (intro exI [of - p], auto

simp: confl-def var-ind-conv)
next

case True
hence t ′: t ′ · Var(z := u) |- p = u unfolding t ′ by auto

have ∃ p ′. p ′ ∈ poss u ∧ p ′ ∈ poss s ∧ confl (Suc i) (s |- p ′) (u |- p ′)
proof (cases ∃ x. x ∈ vars s ∧ var-ind (Suc i) x)

case True
then obtain x where xs: x ∈ vars s and x: var-ind (Suc i) x by

auto
from xs obtain p ′ where p ′: p ′ ∈ poss s and sp: s |- p ′ = Var x

by (metis vars-term-poss-subt-at)
from p ′ sp vars-u show ?thesis
proof (induct u arbitrary: p ′ s)

case (Fun f us p ′ s)
show ?case
proof (cases s)

46

case (Var y)
with Fun have s: s = Var x by auto

with x show ?thesis by (intro exI [of - Nil], auto simp: confl-def)
next

case s: (Fun g ss)
with Fun obtain j p where p: p ′ = j # p j < length ss p ∈ poss

(ss ! j) (ss ! j) |- p = Var x by auto
show ?thesis
proof (cases (f ,length us) = (g,length ss))

case False
thus ?thesis by (intro exI [of - Nil], auto simp: s confl-def)

next
case True
with p have j: j < length us by auto
hence usj: us ! j ∈ set us by auto
with Fun have vars (us ! j) = {} by auto
from Fun(1)[OF usj p(3 ,4) this] obtain p ′ where
p ′ ∈ poss (us ! j) ∧ p ′ ∈ poss (ss ! j) ∧ confl (Suc i) (ss ! j |-

p ′) (us ! j |- p ′) by auto
thus ?thesis using j p by (intro exI [of - j # p ′], auto simp: s)

qed
qed

qed auto
next

case False
from ∗ have fss: Fun f ss = s ′ |- p by auto
from rangeσ obtain S where sS : s ′ = S · σ by auto
from p have vars (s ′ |- p) ⊆ vars s ′ by (metis vars-term-subt-at)
also have . . . = (

⋃
y∈vars S . vars (σ y)) unfolding sS by (simp

add: vars-term-subst)
also have . . . ⊆ (

⋃
y∈vars S . Collect (var-ind i))

proof −
{

fix x y
assume x ∈ vars (σ y)
hence var-ind i x

using σ[unfolded cg-subst-ind-def , rule-format, of y] by auto
}
thus ?thesis by auto

qed
finally have sub: vars (s ′ |- p) ⊆ Collect (var-ind i) by blast

have vars s = vars (s ′ |- p · Var(z := u)) unfolding s-def s ′ fss by
auto

also have . . . =
⋃

(vars ‘ Var(z := u) ‘ vars (s ′ |- p)) by (simp
add: vars-term-subst)

also have . . . ⊆
⋃

(vars ‘ Var(z := u) ‘ Collect (var-ind i)) using
sub by auto

also have . . . ⊆ Collect (var-ind (Suc i))
by (auto simp: vars-u var-ind-conv)

47

finally have vars-s: vars s = {} using False by auto

{
assume s = u
from this[unfolded s-def fss]
have eq: s ′ |- p · Var(z := u) = u by auto
have False
proof (cases z ∈ vars (s ′ |- p))

case True
have diff : s ′ |- p 6= Var z using ∗ by auto
from True obtain C where id: s ′ |- p = C 〈 Var z 〉

by (metis ctxt-supt-id vars-term-poss-subt-at)
with diff have diff : C 6= Hole by (cases C , auto)
from eq[unfolded id, simplified] diff
obtain C where C 〈u〉 = u and C 6= Hole by (cases C ; force)
from arg-cong[OF this(1), of size] this(2) show False

by (simp add: less-not-refl2 size-ne-ctxt)
next

case False
have size: size s ′ ∈ size ‘ all-st using range-all-st by auto
from False have s ′ |- p · Var(z := u) = s ′ |- p · Var

by (intro term-subst-eq, auto)
with eq have eq: s ′ |- p = u by auto
hence size u = size (s ′ |- p) by auto
also have . . . ≤ size s ′ using p(1)

by (rule subt-size)
also have . . . ≤ Max (size ‘ all-st)

using size fin-all-st by simp
also have . . . < d unfolding d-def by simp
also have . . . ≤ size u using du .
finally show False by simp

qed
}
hence s 6= u by auto
with vars-s vars-u
show ?thesis
proof (induct s arbitrary: u)

case s: (Fun f ss u)
then obtain g us where u: u = Fun g us by (cases u, auto)
show ?case
proof (cases (f ,length ss) = (g,length us))

case False
thus ?thesis unfolding u by (intro exI [of - Nil], auto simp:

confl-def)
next

case True
with s(4)[unfolded u] have ∃ j < length us. ss ! j 6= us ! j

by (auto simp: list-eq-nth-eq)
then obtain j where j: j < length us and diff : ss ! j 6= us ! j

48

by auto
from j True have mem: ss ! j ∈ set ss us ! j ∈ set us by auto

with s(2−) u have vars (ss ! j) = {} vars (us ! j) = {} by auto
from s(1)[OF mem(1) this diff] obtain p ′ where

p ′ ∈ poss (us ! j) ∧ p ′ ∈ poss (ss ! j) ∧ confl (Suc i) (ss ! j |-
p ′) (us ! j |- p ′)

by blast
thus ?thesis unfolding u using True j by (intro exI [of - j #

p ′], auto)
qed

qed auto
qed
then obtain p ′ where p ′: p ′ ∈ poss u p ′ ∈ poss s and confl: confl

(Suc i) (s |- p ′) (u |- p ′) by auto
have s ′′: s ′ · Var(z := u) |- (p @ p ′) = s |- p ′ unfolding s-def

s ′[symmetric] using p p ′ by auto
have t ′′: t ′ · Var(z := u) |- (p @ p ′) = u |- p ′ using t ′ p p ′ by auto
show ?thesis
proof (intro exI [of - p @ p ′], unfold s ′′ t ′′, intro conjI confl)

have p ∈ poss (s ′ · Var(z := u)) using p by auto
moreover have p ′ ∈ poss ((s ′ · Var(z := u)) |- p) using s ′ p ′ p

unfolding s-def by auto
ultimately show p @ p ′ ∈ poss (s ′ · Var(z := u)) by simp
have p ∈ poss (t ′ · Var(z := u)) using p by auto

moreover have p ′ ∈ poss ((t ′ · Var(z := u)) |- p) using t ′ p ′ p by
auto

ultimately show p @ p ′ ∈ poss (t ′ · Var(z := u)) by simp
qed

qed
} note main = this
consider (FF) f g ss ts where (s ′ |- p, t ′ |- p) = (Fun f ss, Fun g ts)

(f ,length ss) 6= (g,length ts)
| (FV) f ss x where (s ′ |- p, t ′ |- p) = (Fun f ss, Var x) var-ind i x
| (VF) f ss x where (s ′ |- p, t ′ |- p) = (Var x, Fun f ss) var-ind i x
| (VV) x x ′ where (s ′ |- p, t ′ |- p) = (Var x, Var x ′) x 6= x ′ var-ind i

x var-ind i x ′

using confl by (auto simp: confl-def split: term.splits)
hence ∃ p. p ∈ poss (s ′ · Var(z := u)) ∧ p ∈ poss (t ′ · Var(z := u)) ∧

confl (Suc i) (s ′ · Var(z := u) |- p) (t ′ · Var(z := u) |- p)
proof cases

case (FF f g ss ts)
thus ?thesis using p by (intro exI [of - p], auto simp: confl-def)

next
case (FV f ss x)
have s ′ ∈ all-st unfolding s ′-def using mp all-st-def by auto
from main[OF FV p this] show ?thesis by auto

next
case (VF f ss x)
have t ′: t ′ ∈ all-st unfolding t ′-def using mp all-st-def by auto

49

from VF have (t ′ |- p, s ′ |- p) = (Fun f ss, Var x) var-ind i x by auto
from main[OF this p(2 ,1) t ′]
obtain p where p ∈ poss (t ′ · Var(z := u)) p ∈ poss (s ′ · Var(z :=

u)) confl (Suc i) (t ′ · Var(z := u) |- p) (s ′ · Var(z := u) |- p)
by auto

thus ?thesis by (intro exI [of - p], auto simp: confl-def split: term.splits)
next

case (VV x x ′)
thus ?thesis using p vars-u by (intro exI [of - p], cases u, auto simp:

confl-def var-ind-conv)
qed
thus ∃ p. p ∈ poss (s mp · σ ′) ∧ p ∈ poss (t mp · σ ′) ∧ confl (Suc i) (s

mp · σ ′ |- p) (t mp · σ ′ |- p)
unfolding σ ′-comp subst-subst-compose s ′-def t ′-def by auto

qed
qed

}
from this[of n]
obtain σ where σ: cg-subst-ind n σ and confl:

∧
mp. mp ∈ pp =⇒ ∃ p. p ∈

poss (s mp · σ) ∧ p ∈ poss (t mp · σ) ∧ confl n (s mp · σ |- p) (t mp · σ |- p)
by blast

define σ ′ :: (′f ,nat × ′s,unit)gsubst where σ ′ x = conv ′ (Var x) for x
let ?σ = σ ◦s σ ′

{
fix x :: nat × ′s
assume ∗: snd x ∈ S ¬ inf-sort (snd x)
from δ[THEN sorted-mapD, of x] ∗ have δ x : snd x in T (C ,∅) by auto

hence vars: vars (δ x) = {} by (simp add: hastype-in-Term-empty-imp-vars)
from ∗ σ[unfolded cg-subst-ind-def] have σ x = conv (δ x) by blast

hence ?σ x = δ x · (undefined ◦s σ ′) by (simp add: subst-compose-def
conv-def subst-subst)

also have . . . = δ x by (rule ground-term-subst[OF vars])
finally have ?σ x = δ x .

} note σδ = this
have ?σ :s {x : ι in V. ι ∈ S} → T (C)
proof (intro sorted-mapI , unfold subst-compose-def hastype-in-restrict-sset

conj-imp-eq-imp-imp)
fix x :: nat × ′s and ι
assume x : ι in V and ι ∈ S
then have snd x = ι ι ∈ S by auto
with σ[unfolded cg-subst-ind-def , rule-format, of x]
have σ x : ι in T (C ,∅) by auto
thus σ x · σ ′ : ι in T (C ,∅) by (rule type-conversion)

qed
from pp[unfolded wf-pat-complete-iff [OF wf] match-complete-wrt-def , rule-format,

OF this]
obtain mp µ where mp: mp ∈ pp ∪ pp ′ and match:

∧
ti li. (ti, li)∈ mp =⇒

ti · ?σ = li · µ by force
{

50

assume mp: mp ∈ pp
from P1 [OF this(1)]
have (s mp, Var (x mp)) ∈ mp (t mp, Var (x mp)) ∈ mp by auto
from match[OF this(1)] match[OF this(2)] have ident: s mp · ?σ = t mp ·

?σ by auto
from confl[OF mp] obtain p

where p: p ∈ poss (s mp · σ) p ∈ poss (t mp · σ) and confl: confl n (s
mp · σ |- p) (t mp · σ |- p)

by auto
let ?s = s mp · σ let ?t = t mp · σ
from confl-n[OF confl] obtain f g ss ts where
confl: ?s |-p = Fun f ss ?t |-p = Fun g ts and diff : (f ,length ss) 6= (g,length

ts) by auto
define s ′ where s ′ = s mp · σ
define t ′ where t ′ = t mp · σ
from confl p ident
have False

unfolding subst-subst-compose s ′-def [symmetric] t ′-def [symmetric]
proof (induction p arbitrary: s ′ t ′)

case Nil
then show ?case using diff by (auto simp: list-eq-nth-eq)

next
case (Cons i p s t)
from Cons obtain h1 us1 where s: s = Fun h1 us1 by (cases s, auto)
from Cons obtain h2 us2 where t: t = Fun h2 us2 by (cases t, auto)
from Cons(2 ,4)[unfolded s] have si: (us1 ! i) |- p = Fun f ss p ∈ poss

(us1 ! i) and i1 : i < length us1 by auto
from Cons(3 ,5)[unfolded t] have ti: (us2 ! i) |- p = Fun g ts p ∈ poss

(us2 ! i) and i2 : i < length us2 by auto
from Cons(6)[unfolded s t] i1 i2 have us1 ! i · σ ′ = us2 ! i · σ ′ by (auto

simp: list-eq-nth-eq)
from Cons.IH [OF si(1) ti(1) si(2) ti(2) this]
show False .

qed
}
with mp have mp: mp ∈ pp ′ by auto
show Bex pp ′ (match-complete-wrt δ)

unfolding match-complete-wrt-def
proof (intro bexI [OF - mp] exI [of - µ] ballI , clarify)

fix ti li
assume tl: (ti, li) ∈ mp
have ti · δ = ti · ?σ
proof (intro term-subst-eq, rule sym, rule σδ)

fix x
assume x: x ∈ vars ti
from ∗(3) x tl mp show ¬ inf-sort (snd x) by (auto simp: tvars-pat-def

tvars-match-def)
from ∗(5) x tl mp show snd x ∈ S

unfolding wf-pat-def wf-match-def tvars-match-def by auto

51

qed
also have . . . = li · µ using match[OF tl] .
finally show ti · δ = li · µ .

qed
qed

}
with easy show ?case by auto

qed

lemma pp-success-pcorrect: pp-success pp =⇒ pat-complete C pp
by (induct pp rule: pp-success.induct, auto simp: pat-complete-def match-complete-wrt-def)

theorem P-step-set-pcorrect:
P Vs P ′ =⇒ wf-pats P =⇒ pats-complete C P ←→ pats-complete C P ′

proof (induct P P ′ rule: P-step-set.induct)
case (P-fail P)
with σg show ?case by (auto simp: wf-pats-complete-iff)

next
case ∗: (P-simp pp pp ′ P)
with pp-step-wf have wf-pat pp wf-pats P wf-pats (insert pp P) wf-pats (insert

pp ′ P)
by (auto simp: wf-pats-def)

with pp-step-pcorrect[OF ∗(1)] show ?case
by (auto simp: wf-pat-complete-iff wf-pats-complete-iff wf-pats-def)

next
case ∗: (P-remove-pp pp P)
with pp-step-wf have wf-pat pp wf-pats P wf-pats (insert pp P) by (auto simp:

wf-pats-def)
then show ?case using pp-success-pcorrect[OF ∗(1)]

by (auto simp: wf-pats-complete-iff wf-pat-complete-iff)
next

case ∗: (P-instantiate n pp x P)
note wfppP = ‹wf-pats (insert pp P)›
then have wfpp: wf-pat pp and wfP: wf-pats P by (auto simp: wf-pats-def)

from wfpp ∗(2) have x: snd x ∈ S
unfolding tvars-pat-def tvars-match-def wf-pat-def wf-match-def by force

note def = wf-pat-complete-iff [unfolded match-complete-wrt-def]
define P ′ where P ′ = {subst-pat-problem-set τ pp |. τ ∈ τs n x}
show ?case

apply (fold P ′-def)
proof (rule ball-insert-un-cong, standard)

assume complete: Ball P ′ (pat-complete C)
show pat-complete C pp unfolding def [OF wfpp]
proof (intro allI impI)

fix σ
assume cg: σ :s {x : ι in V. ι ∈ S} → T (C)
from sorted-mapD[OF this] x
have σ x : snd x in T (C) by auto

52

then obtain f ts σs where f : f : σs → snd x in C
and args: ts :l σs in T (C)
and σx: σ x = Fun f ts
by (induct, auto)

from f have f : f : σs → snd x in C
by (meson fun-hastype-def)

let ?l = length ts
from args have len: length σs = ?l by (simp add: list-all2-lengthD)
have l: ?l ≤ m using m[OF f] len by auto
have σsS : ∀ ι ∈ set σs. ι ∈ S using C-sub-S f by auto
define σ ′ where σ ′ = (λ ys. let y = fst ys in if n ≤ y ∧ y < n + ?l ∧ σs !

(y − n) = snd ys then ts ! (y − n) else σ ys)
have cg: σ ′ :s {x : ι in V. ι ∈ S} → T (C)

proof (intro sorted-mapI , unfold hastype-in-restrict-sset conj-imp-eq-imp-imp)
fix ys :: nat × ′s and ι
assume ys : ι in V and ι ∈ S
then have [simp]: ι = snd ys and ysS : snd ys ∈ S by auto
show σ ′ ys : ι in T (C)
proof (cases σ ′ ys = σ ys)

case True
thus ?thesis using cg ysS by (auto simp: sorted-mapD)

next
case False
obtain y s where ys: ys = (y,s) by force
with False have y: y − n < ?l n ≤ y y < n + ?l and arg: σs ! (y − n)

= s
and σ ′: σ ′ ys = ts ! (y − n)
unfolding σ ′-def Let-def by (auto split: if-splits)

show ?thesis
using σ ′ len list-all2-nthD[OF args y(1)]
by (auto simp: ys arg[symmetric])

qed
qed
define τ where τ = subst x (Fun f (map Var (zip [n..<n + ?l] σs)))
have τ :s V |‘ tvars-pat pp → T (C ,{x : ι in V. ι ∈ S})

using Fun-hastypeI [OF f , of {x : ι in V. ι ∈ S} map Var (zip [n..<n + ?l]
σs)] σsS wfpp

by (auto intro!: sorted-mapI
simp: τ -def subst-def len[symmetric] list-all2-conv-all-nth hastype-restrict

wf-pat-iff)
from wf-pat-subst[OF this]
have wf2 : wf-pat (subst-pat-problem-set τ pp).

from f have τ ∈ τs n x unfolding τs-def τ -def τc-def using len[symmetric]
by auto

hence pat-complete C (subst-pat-problem-set τ pp) using complete by (auto
simp: P ′-def)

from this[unfolded def [OF wf2], rule-format, OF cg]
obtain tl µ where tl: tl ∈ subst-pat-problem-set τ pp

and match:
∧

ti li. (ti, li) ∈ tl =⇒ ti · σ ′ = li · µ by force

53

from tl[unfolded subst-defs-set subst-left-def set-map]
obtain tl ′ where tl ′: tl ′ ∈ pp and tl: tl = {(t ′ · τ , l) |. (t ′,l) ∈ tl ′} by auto
show ∃ tl∈ pp. ∃µ. ∀ (ti, li)∈ tl. ti · σ = li · µ
proof (intro bexI [OF - tl ′] exI [of - µ], clarify)

fix ti li
assume tli: (ti, li) ∈ tl ′
hence tlit: (ti · τ , li) ∈ tl unfolding tl by force
from match[OF this] have match: ti · τ · σ ′ = li · µ by auto
from ∗(1)[unfolded tvars-disj-pp-def , rule-format, OF tl ′ tli]
have vti: fst ‘ vars-term ti ∩ {n..<n + m} = {} by auto
have ti · σ = ti · (τ ◦s σ ′)
proof (rule term-subst-eq, unfold subst-compose-def)

fix y
assume y ∈ vars-term ti
with vti have y: fst y /∈ {n..<n + m} by auto
show σ y = τ y · σ ′

proof (cases y = x)
case False
hence τ y · σ ′ = σ ′ y unfolding τ -def subst-def by auto
also have . . . = σ y

unfolding σ ′-def using y l by auto
finally show ?thesis by simp

next
case True

show ?thesis unfolding True τ -def subst-simps σx eval-term.simps
map-map o-def term.simps

by (intro conjI refl nth-equalityI , auto simp: len σ ′-def)
qed

qed
also have . . . = li · µ using match by simp
finally show ti · σ = li · µ by blast

qed
qed

next
assume complete: pat-complete C pp
show ∀ pp ∈ P ′. pat-complete C pp

apply (unfold P ′-def)
proof safe

fix τ
assume τ ∈ τs n x
from this[unfolded τs-def τc-def , simplified]
obtain f ιs where f : f : ιs → snd x in C and τ : τ = subst x (Fun f (map

Var (zip [n..<n + length ιs] ιs))) by auto
let ?i = length ιs
let ?xs = zip [n..<n + length ιs] ιs
have i: ?i ≤ m by (rule m[OF f])
have ∀ ι ∈ set ιs. ι ∈ S using C-sub-S f by blast
with Fun-hastypeI [OF f , of {x : ι in V. ι ∈ S} map Var ?xs] wfpp
have τ :s V |‘ tvars-pat pp → T (C ,{x : ι in V. ι ∈ S})

54

by (auto intro!: sorted-mapI
simp: τ subst-def hastype-restrict list-all2-conv-all-nth wf-pat-iff)

note def2 = def [OF wf-pat-subst[OF this]]
show pat-complete C (subst-pat-problem-set τ pp) unfolding def2
proof (intro allI impI)

fix σ assume cg: σ :s {x : ι in V. ι ∈ S} → T (C)
define σ ′ where σ ′ = σ(x := Fun f (map σ ?xs))
from C-sub-S [OF f] have sortsS : set ιs ⊆ S by auto
from f have f : f : ιs → snd x in C by (simp add: fun-hastype-def)
with sorted-mapD[OF cg] set-mp[OF sortsS]
have Fun f (map σ ?xs) : snd x in T (C)

by (auto intro!: Fun-hastypeI simp: list-all2-conv-all-nth)
with sorted-mapD[OF cg]
have cg: σ ′ :s {x : ι in V. ι ∈ S} → T (C) by (auto intro!: sorted-mapI

simp: σ ′-def)
from complete[unfolded def [OF wfpp], rule-format, OF this]
obtain tl µ where tl: tl ∈ pp and tli:

∧
ti li. (ti, li)∈ tl =⇒ ti · σ ′ = li ·

µ by force
from tl have tlm: {(t · τ , l) |. (t,l) ∈ tl} ∈ subst-pat-problem-set τ pp

unfolding subst-defs-set subst-left-def by auto
{

fix ti li
assume mem: (ti, li) ∈ tl
from ∗[unfolded tvars-disj-pp-def] tl mem have vti: fst ‘ vars-term ti ∩

{n..<n + m} = {} by force
from tli[OF mem] have li · µ = ti · σ ′ by auto
also have . . . = ti · (τ ◦s σ)
proof (intro term-subst-eq, unfold subst-compose-def)

fix y
assume y ∈ vars-term ti
with vti have y: fst y /∈ {n..<n + m} by auto
show σ ′ y = τ y · σ
proof (cases y = x)

case False
hence τ y · σ = σ y unfolding τ subst-def by auto
also have . . . = σ ′ y

unfolding σ ′-def using False by auto
finally show ?thesis by simp

next
case True
show ?thesis unfolding True τ

by (simp add: o-def σ ′-def)
qed

qed
finally have ti · τ · σ = li · µ by auto

}
thus ∃ tl ∈ subst-pat-problem-set τ pp. ∃µ. ∀ (ti, li)∈tl. ti · σ = li · µ

by (intro bexI [OF - tlm], auto)
qed

55

qed
qed

qed
end

Represent a variable-form as a set of maps.
definition match-of-var-form f = {(Var y, Var x) | x y. y ∈ f x}

definition pat-of-var-form ff = match-of-var-form ‘ ff

definition var-form-of-match mp x = {y. (Var y, Var x) ∈ mp}

definition var-form-of-pat pp = var-form-of-match ‘ pp

definition tvars-var-form-pat ff = (
⋃

f ∈ ff .
⋃
(range f))

definition var-form-match where
var-form-match mp ←→ mp ⊆ range (map-prod Var Var)

definition var-form-pat pp ≡ ∀mp ∈ pp. var-form-match mp

lemma match-of-var-form-of-match:
assumes var-form-match mp
shows match-of-var-form (var-form-of-match mp) = mp
using assms
by (auto simp: var-form-match-def match-of-var-form-def var-form-of-match-def)

lemma tvars-match-var-form:
assumes var-form-match mp
shows tvars-match mp = {v. ∃ x. (Var v, Var x) ∈ mp}
using assms by (force simp: var-form-match-def tvars-match-def)

lemma pat-of-var-form-pat:
assumes var-form-pat pp
shows pat-of-var-form (var-form-of-pat pp) = pp
using assms match-of-var-form-of-match
by (auto simp: var-form-pat-def var-form-of-pat-def pat-of-var-form-def)

lemma tvars-pat-var-form: tvars-pat (pat-of-var-form ff) = tvars-var-form-pat ff
by (fastforce simp: tvars-var-form-pat-def tvars-pat-def tvars-match-def pat-of-var-form-def

match-of-var-form-def
split: prod.splits)

lemma tvars-var-form-pat:
assumes var-form-pat pp
shows tvars-var-form-pat (var-form-of-pat pp) = tvars-pat pp
apply (subst(2) pat-of-var-form-pat[OF assms,symmetric])
by (simp add: tvars-pat-var-form)

56

lemma pat-complete-var-form:
pat-complete C (pat-of-var-form ff) ←→
(∀σ :s V |‘ tvars-var-form-pat ff → T (C). ∃ f ∈ ff . ∃µ. ∀ x. ∀ y ∈ f x. σ y = µ

x)
proof−

define V where V = V |‘ tvars-var-form-pat ff
have boo: V |‘ tvars-pat {{(Var (a, b), Var xa) | xa a b. (a, b) ∈ x xa} |. x ∈ ff }

= V
apply (unfold V-def)
apply (subst tvars-pat-var-form[of ff , symmetric])
by (auto simp: V-def pat-of-var-form-def match-of-var-form-def)

show ?thesis
apply (fold V-def)
apply (auto simp: pat-complete-def match-complete-wrt-def pat-of-var-form-def

match-of-var-form-def imp-conjL imp-ex boo)
apply (metis old.prod.exhaust)
by metis

qed

lemma pat-complete-var-form-set:
pat-complete C (pat-of-var-form ff) ←→
(∀σ :s V |‘ tvars-var-form-pat ff → T (C). ∃ f ∈ ff . ∃µ. ∀ x. σ ‘ f x ⊆ {µ x})
by (auto simp: pat-complete-var-form image-subset-iff)

lemma pat-complete-var-form-Uniq:
pat-complete C (pat-of-var-form ff) ←→
(∀σ :s V |‘ tvars-var-form-pat ff → T (C). ∃ f ∈ ff . ∀ x. UNIQ (σ ‘ f x))

proof−
{ fix σ f assume σ: σ :s V |‘ tvars-var-form-pat ff → T (C) and f : f ∈ ff

have (∃µ. ∀ x. σ ‘ f x ⊆ {µ x}) ←→ (∀ x. ∃≤1 y. y ∈ σ ‘ f x)
proof (safe)

fix µ x
assume ∀ x. σ ‘ f x ⊆ {µ x}
from this[rule-format, of x]
have y ∈ f x =⇒ σ y = µ x for y by auto
then show ∃≤1 y. y ∈ σ ‘ f x by (auto intro!: Uniq-I)

next
define µ where µ x = the-elem (σ ‘ f x) for x
fix x assume ∀ x. ∃≤1 y. y ∈ σ ‘ f x
from Uniq-eq-the-elem[OF this[rule-format], folded µ-def]
show ∃µ. ∀ x. σ ‘ f x ⊆ {µ x} by auto

qed
}
then show ?thesis by (simp add: pat-complete-var-form-set)

qed

lemma ex-var-form-pat: (∃ f∈var-form-of-pat pp. P f)←→ (∃mp ∈ pp. P (var-form-of-match
mp))

by (auto simp: var-form-of-pat-def)

57

lemma pat-complete-var-form-nat:
assumes fin: ∀ (x,ι) ∈ tvars-var-form-pat ff . finite-sort C ι

and uniq: ∀ f ∈ ff . ∀ x:: ′v. UNIQ (snd ‘ f x)
shows pat-complete C (pat-of-var-form ff) ←→
(∀α. (∀ v ∈ tvars-var-form-pat ff . α v < card-of-sort C (snd v)) −→
(∃ f ∈ ff . ∀ x. UNIQ (α ‘ f x)))
(is ?l ←→ (∀α. ?s α −→ ?r α))

proof safe
note fin = fin[unfolded Ball-Pair-conv, rule-format]
{ fix α

assume l: ?l and a: ?s α
define σ :: - ⇒ (-,unit) term where
σ ≡ λ(x,ι). term-of-index C ι (α (x,ι))

have σ (x,ι) : ι in T (C) if x: (x,ι) ∈ tvars-var-form-pat ff for x ι
using term-of-index-bij[OF fin, OF x]

a[unfolded Ball-Pair-conv, rule-format, OF x]
by (auto simp: bij-betw-def σ-def)

then have σ :s V |‘ tvars-var-form-pat ff → T (C)
by (auto intro!: sorted-mapI simp: hastype-restrict)

from l[unfolded pat-complete-var-form-Uniq, rule-format, OF this]
obtain f where f : f ∈ ff and u:

∧
x. UNIQ (σ ‘ f x) by auto

have id: y ∈ f x =⇒ index-of-term C (σ y) = α y for y x
using assms a f
by (force simp: σ-def index-of-term-of-index tvars-var-form-pat-def Ball-def

split: prod.splits)
then have α ‘ f x = index-of-term C ‘ σ ‘ f x for x

by (auto simp: image-def)
then have UNIQ (α ‘ f x) for x by (simp add: image-Uniq[OF u])
with f show ?r α by auto

next
assume r : ∀α. ?s α −→ ?r α
show ?l

unfolding pat-complete-var-form-Uniq
proof safe

fix σ
assume σ: σ :s V |‘ tvars-var-form-pat ff → T (C)
from sorted-mapD[OF this]
have ty: (x,ι) ∈ tvars-var-form-pat ff =⇒ σ (x,ι) : ι in T (C)

for x ι by (auto simp: hastype-restrict)
define α where α ≡ index-of-term C ◦ σ
have α (x,ι) < card-of-sort C ι if x: (x,ι) ∈ tvars-var-form-pat ff

for x ι using index-of-term-bij[OF fin[OF x]] ty[OF x]
by (auto simp: α-def bij-betw-def)

then have ∃ f∈ff . ∀ x. UNIQ (α ‘ f x) by (auto intro!: r [rule-format])
then obtain f where f : f ∈ ff and u:

∧
x. UNIQ (α ‘ f x) by auto

have UNIQ (σ ‘ f x) for x
proof−

from uniq[rule-format, OF f]

58

have ex: ∃ ι. snd ‘ f x ⊆ {ι}
by (auto simp: subset-singleton-iff-Uniq)

then obtain ι where sub: snd ‘ f x ⊆ {ι} by auto
{ fix y κ assume yk: (y,κ) ∈ f x

with sub have [simp]: κ = ι by auto
from yk f have y: (y,ι) ∈ tvars-var-form-pat ff

by (auto simp: tvars-var-form-pat-def)
from y fin[OF y]
have term-of-index C ι (α (y,κ)) = σ (y,κ)

by (auto simp: α-def hastype-restrict
intro!: term-of-index-of-term sorted-mapD[OF σ])

}
then have y ∈ f x =⇒ term-of-index C ι (α y) = σ y for y

by (cases y, auto)
then have σ ‘ f x = term-of-index C ι ‘ α ‘ f x

by (auto simp: image-def)
then show UNIQ (σ ‘ f x) by (simp add: image-Uniq[OF u])

qed
with f show ∃ f ∈ ff . ∀ x. UNIQ (σ ‘ f x) by auto

qed
}

qed

A problem is in finite variable form, if only variables occur in the problem
and these variable all have a finite sort. Moreover, comparison of variables
is only done if they have the same sort.
definition finite-var-form-match :: (′f , ′s) ssig ⇒ (′f , ′v, ′s)match-problem-set ⇒
bool where

finite-var-form-match C mp ←→ var-form-match mp ∧
(∀ l x y. (Var x, l) ∈ mp −→ (Var y, l) ∈ mp −→ snd x = snd y) ∧
(∀ l x. (Var x, l) ∈ mp −→ finite-sort C (snd x))

lemma finite-var-form-matchD:
assumes finite-var-form-match C mp and (t,l) ∈ mp
shows ∃ x ι y. t = Var (x,ι) ∧ l = Var y ∧ finite-sort C ι ∧
(∀ z. (Var z, Var y) ∈ mp −→ snd z = ι)

using assms by (auto simp: finite-var-form-match-def var-form-match-def)

definition finite-var-form-pat :: (′f , ′s) ssig ⇒ (′f , ′v, ′s)pat-problem-set ⇒ bool where
finite-var-form-pat C p = (∀ mp ∈ p. finite-var-form-match C mp)

lemma finite-var-form-patD:
assumes finite-var-form-pat C pp mp ∈ pp (t,l) ∈ mp
shows ∃ x ι y. t = Var (x,ι) ∧ l = Var y ∧ finite-sort C ι ∧
(∀ z. (Var z, Var y) ∈ mp −→ snd z = ι)

using assms[unfolded finite-var-form-pat-def] finite-var-form-matchD by metis

lemma finite-var-form-imp-of-var-form-pat:
finite-var-form-pat C pp =⇒ var-form-pat pp

59

by (auto simp: finite-var-form-pat-def var-form-pat-def finite-var-form-match-def)

context pattern-completeness-context begin

definition weak-finite-var-form-match :: (′f , ′v, ′s)match-problem-set ⇒ bool where
weak-finite-var-form-match mp = ((∀ (t,l) ∈ mp. ∃ y. l = Var y)
∧ (∀ f ts y. (Fun f ts, Var y) ∈ mp −→

(∃ x. (Var x, Var y) ∈ mp ∧ inf-sort (snd x))
∧ (∀ t. (t, Var y) ∈ mp −→ root t ∈ {None, Some (f ,length ts)})))

definition weak-finite-var-form-pat :: (′f , ′v, ′s)pat-problem-set ⇒ bool where
weak-finite-var-form-pat p = (∀ mp ∈ p. weak-finite-var-form-match mp)

end

lemma finite-var-form-pat-UNIQ-sort:
assumes fvf : finite-var-form-pat C pp

and f : f ∈ var-form-of-pat pp
shows UNIQ (snd ‘ f x)

proof (intro Uniq-I , clarsimp)
from f obtain mp where mp: mp ∈ pp and f : f = var-form-of-match mp

by (auto simp: var-form-of-pat-def)
fix y ι z κ assume (y,ι) ∈ f x (z,κ) ∈ f x
with f have y: (Var (y,ι), Var x) ∈ mp and z: (Var (z,κ), Var x) ∈ mp

by (auto simp: var-form-of-match-def)
from finite-var-form-patD[OF fvf mp y] z
show ι = κ by auto

qed

lemma finite-var-form-pat-pat-complete:
assumes fvf : finite-var-form-pat C pp
shows pat-complete C pp ←→
(∀α. (∀ v ∈ tvars-pat pp. α v < card-of-sort C (snd v)) −→
(∃mp ∈ pp. ∀ x. UNIQ {α y |y. (Var y, Var x) ∈ mp}))

proof−
note vf = finite-var-form-imp-of-var-form-pat[OF fvf]
note pat-complete-var-form-nat[of var-form-of-pat pp C]
note this[unfolded tvars-var-form-pat[OF vf]]
note ∗ = this[unfolded pat-of-var-form-pat[OF vf]]
show ?thesis

apply (subst ∗)
subgoal
proof

fix y ι
assume y: (y,ι) ∈ tvars-pat pp
from y obtain mp t l where mp: mp ∈ pp and tl:(t,l) ∈ mp and yt: (y, ι)

∈ vars t
by (auto simp: tvars-pat-def tvars-match-def)

from finite-var-form-patD[OF fvf mp tl] yt

60

show finite-sort C ι by auto
qed
subgoal using finite-var-form-pat-UNIQ-sort[OF fvf] by force
subgoal

apply (rule all-cong)
apply (unfold ex-var-form-pat)
apply (rule bex-cong[OF refl])
apply (rule all-cong1)
apply (rule arg-cong[of - - UNIQ])
by (auto simp: var-form-of-match-def)

done
qed

end

7 A Multiset-Based Inference System to Decide
Pattern Completeness

theory Pattern-Completeness-Multiset
imports

Pattern-Completeness-Set
LP-Duality.Minimum-Maximum
Polynomial-Factorization.Missing-List
First-Order-Terms.Term-Pair-Multiset

begin

7.1 Definition of the Inference Rules

We next switch to a multiset based implementation of the inference rules.
At this level, termination is proven and further, that the evaluation cannot
get stuck. The inference rules closely mimic the ones in the paper, though
there is one additional inference rule for getting rid of duplicates (which are
automatically removed when working on sets).
type-synonym (′f , ′v, ′s)match-problem-mset = ((′f ,nat × ′s)term × (′f , ′v)term)
multiset
type-synonym (′f , ′v, ′s)pat-problem-mset = (′f , ′v, ′s)match-problem-mset multiset

type-synonym (′f , ′v, ′s)pats-problem-mset = (′f , ′v, ′s)pat-problem-mset multiset

abbreviation mp-mset :: (′f , ′v, ′s)match-problem-mset ⇒ (′f , ′v, ′s)match-problem-set

where mp-mset ≡ set-mset

abbreviation pat-mset :: (′f , ′v, ′s)pat-problem-mset ⇒ (′f , ′v, ′s)pat-problem-set
where pat-mset ≡ image mp-mset o set-mset

61

abbreviation pats-mset :: (′f , ′v, ′s)pats-problem-mset ⇒ (′f , ′v, ′s)pats-problem-set

where pats-mset ≡ image pat-mset o set-mset

abbreviation (input) bottom-mset :: (′f , ′v, ′s)pats-problem-mset where bottom-mset
≡ {# {#} #}

context pattern-completeness-context
begin

A terminating version of (Vs) working on multisets that also treats the
transformation on a more modular basis.
definition subst-match-problem-mset :: (′f ,nat × ′s)subst ⇒ (′f , ′v, ′s)match-problem-mset
⇒ (′f , ′v, ′s)match-problem-mset where

subst-match-problem-mset τ = image-mset (subst-left τ)

definition subst-pat-problem-mset :: (′f ,nat × ′s)subst ⇒ (′f , ′v, ′s)pat-problem-mset
⇒ (′f , ′v, ′s)pat-problem-mset where

subst-pat-problem-mset τ = image-mset (subst-match-problem-mset τ)

definition τs-list :: nat ⇒ nat × ′s ⇒ (′f ,nat × ′s)subst list where
τs-list n x = map (τc n x) (Cl (snd x))

inductive mp-step-mset :: (′f , ′v, ′s)match-problem-mset ⇒ (′f , ′v, ′s)match-problem-mset
⇒ bool (infix ‹→m› 50)where

match-decompose: (f ,length ts) = (g,length ls)
=⇒ add-mset (Fun f ts, Fun g ls) mp →m mp + mset (zip ts ls)

| match-match: x /∈
⋃

(vars ‘ snd ‘ set-mset mp)
=⇒ add-mset (t, Var x) mp →m mp

| match-duplicate: add-mset pair (add-mset pair mp) →m add-mset pair mp
| match-decompose ′: mp + mp ′→m (

∑
(t, l) ∈# mp. mset (zip (args t) (map Var

ys))) + mp ′

if
∧

t l. (t,l) ∈# mp =⇒ l = Var y ∧ root t = Some (f ,n)∧
t l. (t,l) ∈# mp ′ =⇒ y /∈ vars l

lvars-disj-mp ys (mp-mset (mp + mp ′)) length ys = n
size mp ≥ 2
improved

inductive match-fail :: (′f , ′v, ′s)match-problem-mset ⇒ bool where
match-clash: (f ,length ts) 6= (g,length ls)
=⇒ match-fail (add-mset (Fun f ts, Fun g ls) mp)

| match-clash ′: Conflict-Clash s t =⇒ match-fail (add-mset (s, Var x) (add-mset
(t, Var x) mp))
| match-clash-sort: T (C ,V) s 6= T (C ,V) t =⇒ match-fail (add-mset (s, Var x)
(add-mset (t, Var x) mp))

inductive pp-step-mset :: (′f , ′v, ′s)pat-problem-mset ⇒ (′f , ′v, ′s)pats-problem-mset
⇒ bool
(infix ‹⇒m› 50) where

62

pat-remove-pp: add-mset {#} pp ⇒m {#}
| pat-simp-mp: mp-step-mset mp mp ′ =⇒ add-mset mp pp ⇒m {# (add-mset mp ′

pp) #}
| pat-remove-mp: match-fail mp =⇒ add-mset mp pp ⇒m {# pp #}
| pat-instantiate: tvars-disj-pp {n ..< n+m} (pat-mset (add-mset mp pp)) =⇒

(Var x, l) ∈ mp-mset mp ∧ is-Fun l ∨
(s,Var y) ∈ mp-mset mp ∧ (t,Var y) ∈ mp-mset mp ∧ Conflict-Var s t x ∧ ¬

inf-sort (snd x)
∧ (improved −→ s = Var x ∧ is-Fun t) =⇒
add-mset mp pp ⇒m mset (map (λ τ. subst-pat-problem-mset τ (add-mset mp

pp)) (τs-list n x))
| pat-inf-var-conflict: Ball (pat-mset pp) inf-var-conflict =⇒ pp 6= {#}

=⇒ Ball (tvars-pat (pat-mset pp ′)) (λ x. ¬ inf-sort (snd x)) =⇒
(¬ improved =⇒ pp ′ = {#})
=⇒ pp + pp ′⇒m {# pp ′ #}

inductive pat-fail :: (′f , ′v, ′s)pat-problem-mset ⇒ bool where
pat-empty: pat-fail {#}

inductive P-step-mset :: (′f , ′v, ′s)pats-problem-mset ⇒ (′f , ′v, ′s)pats-problem-mset
⇒ bool
(infix ‹Vm› 50)where
P-failure: pat-fail pp =⇒ add-mset pp P 6= bottom-mset =⇒ add-mset pp P Vm

bottom-mset
| P-simp-pp: pp ⇒m pp ′ =⇒ add-mset pp P Vm pp ′ + P

The relation (encoded as predicate) is finally wrapped in a set
definition P-step :: ((′f , ′v, ′s)pats-problem-mset × (′f , ′v, ′s)pats-problem-mset)set
(‹V›) where
V = {(P,P ′). P Vm P ′}

7.2 The evaluation cannot get stuck
lemmas subst-defs =

subst-pat-problem-mset-def
subst-pat-problem-set-def
subst-match-problem-mset-def
subst-match-problem-set-def

lemma pat-mset-fresh-vars:
∃ n. tvars-disj-pp {n..<n + m} (pat-mset p)

proof −
define p ′ where p ′ = pat-mset p
define V where V = fst ‘

⋃
(vars ‘ (fst ‘

⋃
p ′))

have finite V unfolding V-def p ′-def by auto
define n where n = Suc (Max V)
{

fix mp t l

63

assume mp ∈ p ′ (t,l) ∈ mp
hence sub: fst ‘ vars t ⊆ V unfolding V-def by force
{

fix x
assume x ∈ fst ‘ vars t
with sub have x ∈ V by auto
with ‹finite V › have x ≤ Max V by simp
also have . . . < n unfolding n-def by simp
finally have x < n .

}
hence fst ‘ vars t ∩ {n..<n + m} = {} by force

}
thus ?thesis unfolding tvars-disj-pp-def p ′-def [symmetric]

by (intro exI [of - n] ballI , force)
qed

lemma mp-mset-in-pat-mset: mp ∈# pp =⇒ mp-mset mp ∈ pat-mset pp
by auto

lemma mp-step-mset-cong:
assumes (→m)∗∗ mp mp ′

shows (add-mset (add-mset mp p) P, add-mset (add-mset mp ′ p) P) ∈ V∗

using assms
proof induct

case (step mp ′ mp ′′)
from P-simp-pp[OF pat-simp-mp[OF step(2), of p], of P]
have (add-mset (add-mset mp ′ p) P, add-mset (add-mset mp ′′ p) P) ∈ P-step

unfolding P-step-def by auto
with step(3)
show ?case by simp

qed auto

lemma mp-step-mset-vars: assumes mp →m mp ′

shows tvars-match (mp-mset mp) ⊇ tvars-match (mp-mset mp ′)
using assms

proof induct
case ∗: (match-decompose ′ mp y f n mp ′ ys)
{

let ?mset = mset :: - ⇒ (′f , ′v, ′s)match-problem-mset
fix x
assume x ∈ tvars-match (mp-mset ((

∑
(t, l)∈#mp. ?mset (zip (args t) (map

Var ys)))))
from this[unfolded tvars-match-def , simplified]
obtain t l ti yi where tl: (t,l) ∈# mp and tiyi: (ti,yi) ∈# ?mset (zip (args t)

(map Var ys))
and x: x ∈ vars ti
by auto

from ∗(1)[OF tl] obtain ts where l: l = Var y and t: t = Fun f ts and lts:
length ts = n

by (cases t, auto)

64

from tiyi[unfolded t] have ti ∈ set ts
using set-zip-leftD by fastforce

with x t have x ∈ vars t by auto
hence x ∈ tvars-match (mp-mset mp) using tl unfolding tvars-match-def by

auto
}
thus ?case unfolding tvars-match-def by force

qed (auto simp: tvars-match-def set-zip)

lemma mp-step-mset-steps-vars: assumes (→m)∗∗ mp mp ′

shows tvars-match (mp-mset mp) ⊇ tvars-match (mp-mset mp ′)
using assms by (induct, insert mp-step-mset-vars, auto)

end

context pattern-completeness-context-with-assms begin

lemma pat-fail-or-trans-or-finite-var-form:
fixes p :: (′f , ′v, ′s) pat-problem-mset
assumes improved =⇒ infinite (UNIV :: ′v set) and wf : wf-pat (pat-mset p)
shows pat-fail p ∨ (∃ ps. p⇒m ps) ∨ (improved ∧ finite-var-form-pat C (pat-mset

p))
proof (cases p = {#})

case True
with pat-empty show ?thesis by auto

next
case pne: False
from pat-mset-fresh-vars obtain n where fresh: tvars-disj-pp {n..<n + m}

(pat-mset p) by blast
show ?thesis
proof (cases {#} ∈# p)

case True
then obtain p ′ where p = add-mset {#} p ′ by (rule mset-add)
with pat-remove-pp show ?thesis by auto

next
case empty-p: False
show ?thesis
proof (cases ∃ mp s t. mp ∈# p ∧ (s,t) ∈# mp ∧ is-Fun t)

case True
then obtain mp s t where mp: mp ∈# p and (s,t) ∈# mp and is-Fun t by

auto
then obtain g ts where mem: (s,Fun g ts) ∈# mp by (cases t, auto)
from mp obtain p ′ where p: p = add-mset mp p ′ by (rule mset-add)
from mem obtain mp ′ where mp: mp = add-mset (s, Fun g ts) mp ′ by (rule

mset-add)
show ?thesis
proof (cases s)

case s: (Fun f ss)
from pat-simp-mp[OF match-decompose, of f ss] pat-remove-mp[OF match-clash,

65

of f ss]
show ?thesis unfolding p mp s by blast

next
case (Var x)
from Var mem obtain l where (Var x, l) ∈# mp ∧ is-Fun l by auto
from pat-instantiate[OF fresh[unfolded p] disjI1 [OF this]]
show ?thesis unfolding p by auto

qed
next

case False
hence rhs-vars:

∧
mp s l. mp ∈# p =⇒ (s,l) ∈# mp =⇒ is-Var l by auto

let ?single-var = (∃ mp t x. add-mset (t,Var x) mp ∈# p ∧ x /∈
⋃

(vars ‘
snd ‘ set-mset mp))

let ?duplicate = (∃ mp pair . add-mset pair (add-mset pair mp) ∈# p)
show ?thesis
proof (cases ?single-var ∨ ?duplicate)

case True
thus ?thesis
proof

assume ?single-var
then obtain mp t x where mp: add-mset (t,Var x) mp ∈# p and x: x /∈⋃

(vars ‘ snd ‘ set-mset mp)
by auto

from mp obtain p ′ where p = add-mset (add-mset (t,Var x) mp) p ′ by
(rule mset-add)

with pat-simp-mp[OF match-match[OF x]] show ?thesis by auto
next

assume ?duplicate
then obtain mp pair where add-mset pair (add-mset pair mp) ∈# p (is

?dup ∈# p) by auto
from mset-add[OF this] obtain p ′ where

p: p = add-mset ?dup p ′ .
from pat-simp-mp[OF match-duplicate[of pair]] show ?thesis unfolding

p by auto
qed

next
case False
hence ndup: ¬ ?duplicate and nsvar : ¬ ?single-var by auto
{

fix mp
assume mpp: mp ∈# p
with empty-p have mp-e: mp 6= {#} by auto
obtain s l where sl: (s,l) ∈# mp using mp-e by auto
from rhs-vars[OF mpp sl] sl obtain x where sx: (s, Var x) ∈# mp by

(cases l, auto)
from mpp obtain p ′ where p: p = add-mset mp p ′ by (rule mset-add)
from sx obtain mp ′ where mp: mp = add-mset (s, Var x) mp ′ by (rule

mset-add)
from nsvar [simplified, rule-format, OF mpp[unfolded mp]]

66

obtain t l where (t,l) ∈# mp ′ and x ∈ vars (snd (t,l)) by force
with rhs-vars[OF mpp, of t l] have tx: (t,Var x) ∈# mp ′ unfolding mp

by auto
then obtain mp ′′ where mp ′: mp ′ = add-mset (t, Var x) mp ′′ by (rule

mset-add)
from ndup[simplified, rule-format] mpp have s 6= t unfolding mp mp ′ by

auto
hence ∃ s t x mp ′. mp = add-mset (s, Var x) (add-mset (t, Var x) mp ′)

∧ s 6= t unfolding mp mp ′ by auto
} note two = this
show ?thesis
proof (cases ∃ mp s t x . add-mset (s, Var x) (add-mset (t, Var x) mp) ∈#

p ∧ Conflict-Clash s t)
case True
then obtain mp s t x where

mp: add-mset (s, Var x) (add-mset (t, Var x) mp) ∈# p (is ?mp ∈# -)
and conf : Conflict-Clash s t

by blast
from pat-remove-mp[OF match-clash ′[OF conf , of x mp]]
show ?thesis using mset-add[OF mp] by metis

next
case no-clash: False
show ?thesis
proof (cases ∃ mp s t x y. add-mset (s, Var x) (add-mset (t, Var x) mp)

∈# p ∧ Conflict-Var s t y ∧ ¬ inf-sort (snd y))
case True
show ?thesis
proof (cases improved)

case not-impr : False
from True obtain mp s t x y where

mp: add-mset (s, Var x) (add-mset (t, Var x) mp) ∈# p (is ?mp ∈#
-) and conf : Conflict-Var s t y and y: ¬ inf-sort (snd y)

by blast
from mp obtain p ′ where p: p = add-mset ?mp p ′ by (rule mset-add)
let ?mp = add-mset (s, Var x) (add-mset (t, Var x) mp)

from pat-instantiate[OF - disjI2 , of n ?mp p ′ s x t y, folded p, OF fresh]
show ?thesis using y conf not-impr by auto

next
case impr : True

have (pat-fail p ∨ (∃ ps. p ⇒m ps)) ∨ weak-finite-var-form-pat (pat-mset
p)

proof (cases weak-finite-var-form-pat (pat-mset p))
case False
from this[unfolded weak-finite-var-form-pat-def] obtain mp

where mp: mp ∈# p and nmp: ¬ weak-finite-var-form-match
(mp-mset mp) by auto

from mset-add[OF mp] obtain p ′ where p ′: p = add-mset mp p ′ by

67

auto
from rhs-vars[OF mp] have ((∀ (t, l)∈#mp. ∃ y. l = Var y) ∧ b) =

b for b
by force

note nmp = nmp[unfolded weak-finite-var-form-match-def this]
from this[simplified] obtain f ss y where

s: (Fun f ss, Var y) ∈# mp and
violation: ((∀ x. (Var x, Var y) ∈# mp −→ ¬ inf-sort (snd x)) ∨
(∃ t g n. (t, Var y) ∈# mp ∧ root t = Some (g, n) ∧ root t 6= Some

(f , length ss)))
(is ?A ∨ ?B)

by force
let ?s = Fun f ss
let ?n = length ss
show ?thesis
proof (cases ?B)

case True
then obtain t g n where t: (t, Var y) ∈# mp root t = Some (g,

n) root t 6= Some (f , ?n)
by auto

from t have st: (?s, Var y) 6= (t, Var y) by (cases t, auto)
define mp ′ where mp ′ = mp − {#(?s, Var y),(t, Var y)#}
from s t(1) st have mp = add-mset (?s, Var y) (add-mset (t, Var

y) mp ′)
unfolding mp ′-def

by (metis Multiset.diff-add add-mset-add-single diff-union-swap
insert-DiffM)

with no-clash mp have ¬ Conflict-Clash ?s t by metis
moreover have Conflict-Clash ?s t

using t by (cases t, auto simp: conflicts.simps)
ultimately show ?thesis ..

next
case no-clash ′: False

with violation have finsort:
∧

x. (Var x, Var y) ∈# mp =⇒ ¬
inf-sort (snd x) by blast

show ?thesis
proof (cases ∃ x. (Var x, Var y) ∈# mp)

case True
then obtain x where t: (Var x, Var y) ∈# mp (is (?t,-) ∈# -)

by auto
from finsort[OF t] have fin: ¬ inf-sort (snd x) .

from s t fin pat-instantiate[OF - disjI2 , of - mp p ′ ?t y ?s x, folded
p ′, OF fresh]

show ?thesis by (auto simp: conflicts.simps)
next

case False
define test-y where test-y tl = (snd tl = Var y) for tl :: (′f , nat

× ′s) term × (′f , ′v)term
define mpy where mpy = filter-mset test-y mp

68

have size: size mpy ≥ 2
proof −

from mset-add[OF s] obtain mp ′ where mp ′: mp = add-mset
(?s, Var y) mp ′ by blast

have y ∈
⋃

(vars ‘ snd ‘ mp-mset mp ′)
using nsvar [rule-format] mp ′ mp by blast

then obtain t ′ l ′ where tl ′: (t ′,l ′) ∈# mp ′ and y ∈ vars l ′ by
auto

with rhs-vars[OF mp, of t ′ l ′] mp ′ have is-Var l ′ by auto
with ‹y ∈ vars l ′› have l ′: l ′ = Var y by auto
hence (t ′,Var y) ∈# mp ′ using tl ′ by auto

from mset-add[OF this] obtain mp ′′ where mp ′′: mp ′ = add-mset
(t ′, Var y) mp ′′

by auto
have mpy: mpy = add-mset (?s, Var y) (add-mset (t ′, Var y)

(filter-mset test-y mp ′′))
unfolding mpy-def mp ′ mp ′′ by (simp add: test-y-def)

thus ?thesis by simp
qed
define mpny where mpny = filter-mset (Not o test-y) mp
have id: mp = mpy + mpny by (simp add: mpy-def mpny-def)
{

fix t l
assume (t, l) ∈# mpny

hence l 6= Var y (t,l) ∈# mp unfolding mpny-def test-y-def
o-def by auto

with rhs-vars[OF mp, of t l] have y /∈ vars l by (cases l, auto)
} note mpny = this
{

fix t l
assume (t, l) ∈# mpy

hence l: l = Var y and pair : (t,Var y) ∈# mp unfolding
mpy-def test-y-def o-def by auto

with False obtain g ts where t: t = Fun g ts by (cases t, auto)
from no-clash ′ pair t have root t = Some (f ,?n) by auto
with l have l = Var y ∧ root t = Some (f ,?n) by auto

} note mpy = this
define VV where VV =

⋃
(vars ‘ snd ‘ mp-mset mp)

have finite VV by (auto simp: VV-def)
with assms(1)[OF impr] have infinite (UNIV − VV) by auto

then obtain Ys where Ys: Ys ⊆ UNIV − VV card Ys = ?n
finite Ys

by (meson infinite-arbitrarily-large)
from Ys(2−3) obtain ys where ys: distinct ys length ys = ?n

set ys = Ys
by (metis distinct-card finite-distinct-list)

with Ys have dist: VV ∩ set ys = {} by auto
have lvars-disj-mp ys (mp-mset mp) length ys = ?n

unfolding lvars-disj-mp-def using ys dist unfolding VV-def

69

by auto
from match-decompose ′[of mpy y f ?n mpny, folded id, OF mpy

mpny this size impr]
obtain mp ′ where mp →m mp ′ by force
from pat-simp-mp[OF this, of p ′] p ′ show ?thesis by auto

qed
qed

qed auto

thus ?thesis
proof (elim context-disjE)

assume no-step: ¬ (pat-fail p ∨ (∃ ps. p ⇒m ps))
assume weak-finite-var-form-pat (pat-mset p)

note wfvf = this[unfolded weak-finite-var-form-pat-def weak-finite-var-form-match-def ,
rule-format]

note get-var = wfvf [THEN conjunct1 , rule-format]
note fun-case = wfvf [THEN conjunct2 , rule-format]

define fin where fin mp = Ball (tvars-match (mp-mset mp)) (λ x.
¬ inf-sort (snd x)) for mp :: (′f , ′v, ′s) match-problem-mset

define p-fin where p-fin = filter-mset fin p
define p-inf where p-inf = filter-mset (Not o fin) p

have p-split: p = p-inf + p-fin unfolding p-fin-def p-inf-def by auto
show ?thesis
proof (cases p-inf = {#})

case True
have fin:

∧
mp. mp ∈# p =⇒ fin mp unfolding p-split True

unfolding p-fin-def by auto
have finite-var-form-pat C (pat-mset p)

unfolding finite-var-form-pat-def finite-var-form-match-def
var-form-match-def

proof (intro ballI conjI subsetI allI impI , clarify)
fix mp l
assume mp: mp ∈ pat-mset p
{ fix t assume tl: (t,l) ∈ mp

from get-var [OF mp tl] tl obtain y where
ty: (t, Var y) ∈ mp and ly: l = Var y by (cases l, auto)

have is-Var t
proof (cases t)

case (Fun f ts)
with ty have (Fun f ts, Var y) ∈ mp by auto
from fun-case[OF - this] mp obtain x where (Var x, Var y)

∈ mp inf-sort (snd x) by auto
with fin[unfolded fin-def tvars-match-def] mp tl have False by

auto
thus ?thesis by auto

qed auto
with ly show (t,l) ∈ range (map-prod Var Var) by auto

} note var-var = this

70

fix x assume xl: (Var x, l) ∈ mp
then have xmp: x ∈ tvars-match mp by (force simp: tvars-match-def)

with wf [unfolded wf-pat-def wf-match-def , rule-format, OF mp]
have sxS : snd x ∈ S by auto
from mp xmp fin fin-def have ¬inf-sort (snd x) by auto
with inf-sort[OF sxS]
show fint: finite-sort C (snd x) by auto
fix y assume yl: (Var y, l) ∈ mp
from yl var-var obtain z where l: l = Var z by force
show snd x = snd y
proof (cases x = y)

case False
from mp obtain mp ′ where mp ′: mp ′ ∈# p and mp: mp =

mp-mset mp ′ by auto
from False xl yl obtain mp ′′

where mp ′ = add-mset (Var x, Var z) (add-mset (Var y, Var
z) mp ′′)

unfolding l mp by (metis insert-DiffM insert-noteq-member
prod.inject term.inject(1))

with no-clash mp ′ have ¬ Conflict-Clash (Var x) (Var y)
by (metis conflicts.simps(1))

thus snd x = snd y by (simp add: conflicts.simps split: if-splits)
qed auto

qed
with impr show ?thesis by auto

next
case False
have ∀ x∈tvars-pat (pat-mset p-fin). ¬ inf-sort (snd x) unfolding

p-fin-def fin-def
by (auto simp: tvars-pat-def)

from pat-inf-var-conflict[OF - False this, folded p-split] no-step
obtain mp where mp: mp ∈# p and inf : ¬ fin mp and no-confl:

¬ inf-var-conflict (mp-mset mp)
unfolding p-inf-def using impr by fastforce

from inf [unfolded fin-def tvars-match-def]
obtain t l x where tl: (t,l) ∈# mp and x: x ∈ vars t and inf :

inf-sort (snd x) by auto
from get-var [OF - tl] mp tl obtain y where ty: (t, Var y) ∈# mp

by auto
have ∃ x. (Var x, Var y) ∈# mp ∧ inf-sort (snd x)
proof (cases t)

case (Var z)
with ty inf x show ?thesis by (intro exI [of - z], auto)

next
case (Fun f ts)
from fun-case[OF - ty[unfolded Fun]] mp show ?thesis by auto

qed
then obtain x where xy: (Var x , Var y) ∈# mp and inf : inf-sort

(snd x) by auto

71

from mset-add[OF xy] obtain mp ′ where mp ′: mp = add-mset
(Var x, Var y) mp ′ by auto

from nsvar [simplified, rule-format, OF mp[unfolded mp ′]] obtain s
y ′ where

sy ′: (s,y ′) ∈# mp ′ and y ′: y ∈ vars y ′ by force
from mset-add[OF sy ′] mp ′ obtain mp ′′ where

mp ′′: mp = add-mset (s,y ′) (add-mset (Var x, Var y) mp ′′)
by auto

from get-var [OF mp-mset-in-pat-mset[OF mp[unfolded mp ′′]]] y ′

have mp ′′: mp = add-mset (s, Var y) (add-mset (Var x, Var y)
mp ′′)

unfolding mp ′′ by (cases y ′, auto)
from ndup mp ′′ mp have sx: s 6= Var x by auto
from no-clash mp ′′ mp have no-clash: ¬ Conflict-Clash s (Var x)

by metis
from no-confl[unfolded inf-var-conflict-def not-ex, rule-format, of s

y Var x x] mp ′′ inf
have ¬ Conflict-Var s (Var x) x by auto
with sx no-clash have False by (cases s, auto simp: conflicts.simps

split: if-splits)
thus ?thesis by auto

qed
qed auto

qed
next

case no-non-inf : False
have ∃ ps. p + {#} ⇒m ps
proof (intro exI , rule pat-inf-var-conflict[OF - pne], intro ballI)

fix mp
assume mp: mp ∈ pat-mset p
then obtain mp ′ where mp ′: mp ′ ∈# p and mp: mp = mp-mset mp ′

by auto
from two[OF mp ′]
obtain s t x mp ′′

where mp ′′: mp ′ = add-mset (s, Var x) (add-mset (t, Var x) mp ′′)
and diff : s 6= t by auto

from conflicts(3)[OF diff] obtain y where Conflict-Clash s t ∨
Conflict-Var s t y by auto

with no-clash mp ′′ mp ′ have conf : Conflict-Var s t y by force
with no-non-inf mp ′[unfolded mp ′′] have inf : inf-sort (snd y) by blast
show inf-var-conflict mp unfolding inf-var-conflict-def mp mp ′′

apply (rule exI [of - s], rule exI [of - t])
apply (intro exI [of - x] exI [of - y])
using insert inf conf by auto

qed (auto simp: tvars-pat-def)
thus ?thesis by auto

qed
qed

qed

72

qed
qed

qed

context
assumes non-improved: ¬ improved

begin

lemma pat-fail-or-trans: wf-pat (pat-mset p) =⇒ pat-fail p ∨ (∃ ps. p ⇒m ps)
using pat-fail-or-trans-or-finite-var-form[of p] non-improved by auto

Pattern problems just have two normal forms: empty set (solvable) or bot-
tom (not solvable)
theorem P-step-NF :

assumes wf : wf-pats (pats-mset P) and NF : P ∈ NF V
shows P ∈ {{#}, bottom-mset}

proof (rule ccontr)
assume nNF : P /∈ {{#}, bottom-mset}
from NF have NF : ¬ (∃ Q. P Vm Q) unfolding P-step-def by blast
from nNF obtain p P ′ where P: P = add-mset p P ′

using multiset-cases by auto
with wf have wf-pat (pat-mset p) by (auto simp: wf-pats-def)
with pat-fail-or-trans
obtain ps where pat-fail p ∨ p ⇒m ps by auto
with P-simp-pp[of p ps] NF
have pat-fail p unfolding P by auto
from P-failure[OF this, of P ′, folded P] nNF NF show False by auto

qed
end

context
assumes improved: improved

and inf : infinite (UNIV :: ′v set)
begin

lemma pat-fail-or-trans-or-fvf :
fixes p :: (′f , ′v, ′s) pat-problem-mset
assumes wf-pat (pat-mset p)
shows pat-fail p ∨ (∃ ps. p ⇒m ps) ∨ finite-var-form-pat C (pat-mset p)
using assms pat-fail-or-trans-or-finite-var-form[of p, OF inf] by auto

Normal forms only consist of finite-var-form pattern problems
theorem P-step-NF-fvf :

assumes wf : wf-pats (pats-mset P)
and NF : (P::(′f , ′v, ′s) pats-problem-mset) ∈ NF V
and p: p ∈# P

shows finite-var-form-pat C (pat-mset p)
proof (rule ccontr)

73

assume nfvf : ¬ ?thesis
from wf p have wfp: wf-pat (pat-mset p) by (auto simp: wf-pats-def)
from mset-add[OF p] obtain P ′ where P: P = add-mset p P ′ by auto
from NF have NF : ¬ (∃ Q. P Vm Q) unfolding P-step-def by blast
from pat-fail-or-trans-or-fvf [OF wfp] nfvf
obtain ps where pat-fail p ∨ p ⇒m ps by auto
with P-simp-pp[of p ps] NF
have pat-fail p unfolding P by auto
from P-failure[OF this, of P ′, folded P] NF have P = {# {#} #} by auto
with P have p = {#} by auto
with nfvf show False unfolding finite-var-form-pat-def by auto

qed

end

end

7.3 Termination

A measure to count the number of function symbols of the first argument
that don’t occur in the second argument
fun fun-diff :: (′f , ′v)term ⇒ (′f , ′w)term ⇒ nat where

fun-diff l (Var x) = num-funs l
| fun-diff (Fun g ls) (Fun f ts) = (if f = g ∧ length ts = length ls then

sum-list (map2 fun-diff ls ts) else 0)
| fun-diff l t = 0

lemma fun-diff-Var [simp]: fun-diff (Var x) t = 0
by (cases t, auto)

lemma add-many-mult: (
∧

y. y ∈# N =⇒ (y,x) ∈ R) =⇒ (N + M , add-mset x
M) ∈ mult R
by (metis add.commute add-mset-add-single multi-member-last multi-self-add-other-not-self

one-step-implies-mult)

lemma fun-diff-num-funs: fun-diff l t ≤ num-funs l
proof (induct l t rule: fun-diff .induct)

case (2 f ls g ts)
show ?case
proof (cases f = g ∧ length ts = length ls)

case True
have sum-list (map2 fun-diff ls ts) ≤ sum-list (map num-funs ls)

by (intro sum-list-mono2 , insert True 2 , (force simp: set-zip)+)
with 2 show ?thesis by auto

qed auto
qed auto

lemma fun-diff-subst: fun-diff l (t · σ) ≤ fun-diff l t
proof (induct l arbitrary: t)

74

case l: (Fun f ls)
show ?case
proof (cases t)

case t: (Fun g ts)
show ?thesis unfolding t using l by (auto intro: sum-list-mono2)

next
case t: (Var x)
show ?thesis unfolding t using fun-diff-num-funs[of Fun f ls] by auto

qed
qed auto

lemma fun-diff-num-funs-lt: assumes t ′: t ′ = Fun c cs
and is-Fun l

shows fun-diff l t ′ < num-funs l
proof −

from assms obtain g ls where l: l = Fun g ls by (cases l, auto)
show ?thesis
proof (cases c = g ∧ length cs = length ls)

case False
thus ?thesis unfolding t ′ l by auto

next
case True
have sum-list (map2 fun-diff ls cs) ≤ sum-list (map num-funs ls)

apply (rule sum-list-mono2 ; (intro impI)?)
subgoal using True by auto
subgoal for i using True by (auto intro: fun-diff-num-funs)
done

thus ?thesis unfolding t ′ l using True by auto
qed

qed

lemma sum-union-le-nat: sum (f :: ′a ⇒ nat) (A ∪ B) ≤ sum f A + sum f B
by (metis finite-Un le-iff-add sum.infinite sum.union-inter zero-le)

lemma sum-le-sum-list-nat: sum f (set xs) ≤ (sum-list (map f xs) :: nat)
proof (induct xs)

case (Cons x xs)
thus ?case

by (cases x ∈ set xs, auto simp: insert-absorb)
qed auto

lemma bdd-above-has-Maximum-nat: bdd-above (A :: nat set) =⇒ A 6= {} =⇒
has-Maximum A

unfolding has-Maximum-def
by (meson Max-ge Max-in bdd-above-nat)

context pattern-completeness-context-with-assms
begin

75

lemma τs-list: set (τs-list n x) = τs n x
unfolding τs-list-def τs-def using Cl by auto

abbreviation (input) sum-ms :: (′a ⇒ nat) ⇒ ′a multiset ⇒ nat where
sum-ms f ms ≡ sum-mset (image-mset f ms)

definition meas-diff :: (′f , ′v, ′s)pat-problem-mset ⇒ nat where
meas-diff = sum-ms (sum-ms (λ (t,l). fun-diff l t))

definition max-size :: ′s ⇒ nat where
max-size s = (if s ∈ S ∧ ¬ inf-sort s then Maximum (size ‘ {t. t : s in T (C)})

else 0)

definition meas-finvars :: (′f , ′v, ′s)pat-problem-mset ⇒ nat where
meas-finvars = sum-ms (λ mp. sum (max-size o snd) (tvars-match (mp-mset

mp)))

definition meas-symbols :: (′f , ′v, ′s)pat-problem-mset ⇒ nat where
meas-symbols = sum-ms (sum-ms (λ (t,l). num-funs t))

definition meas-setsize :: (′f , ′v, ′s)pat-problem-mset ⇒ nat where
meas-setsize p = sum-ms (sum-ms (λ -. 1)) p + size p

definition rel-pat :: ((′f , ′v, ′s)pat-problem-mset × (′f , ′v, ′s)pat-problem-mset)set (‹≺›)
where
(≺) = inv-image ({(x, y). x < y} <∗lex∗> {(x, y). x < y} <∗lex∗> {(x, y). x

< y} <∗lex∗> {(x, y). x < y})
(λ mp. (meas-diff mp, meas-finvars mp, meas-symbols mp, meas-setsize mp))

abbreviation gt-rel-pat (infix ‹�› 50) where
pp � pp ′ ≡ (pp ′,pp) ∈ ≺

definition rel-pats :: ((′f , ′v, ′s)pats-problem-mset × (′f , ′v, ′s)pats-problem-mset)set
(‹≺mul›) where
≺mul = mult (≺)

abbreviation gt-rel-pats (infix ‹�mul› 50) where
P �mul P ′ ≡ (P ′,P) ∈ ≺mul

lemma wf-rel-pat: wf ≺
unfolding rel-pat-def
by (intro wf-inv-image wf-lex-prod wf-less)

lemma wf-rel-pats: wf ≺mul
unfolding rel-pats-def
by (intro wf-inv-image wf-mult wf-rel-pat)

76

lemma tvars-match-fin:
finite (tvars-match (mp-mset mp))
unfolding tvars-match-def by auto

lemmas meas-def = meas-finvars-def meas-diff-def meas-symbols-def meas-setsize-def

lemma tvars-match-mono: mp ⊆# mp ′=⇒ tvars-match (mp-mset mp) ⊆ tvars-match
(mp-mset mp ′)

unfolding tvars-match-def
by (intro image-mono subset-refl set-mset-mono UN-mono)

lemma meas-finvars-mono: assumes tvars-match (mp-mset mp) ⊆ tvars-match
(mp-mset mp ′)

shows meas-finvars {#mp#} ≤ meas-finvars {#mp ′#}
using tvars-match-fin[of mp ′] assms
unfolding meas-def by (auto intro: sum-mono2)

lemma rel-mp-sub: {# add-mset p mp#} � {# mp #}
proof −

let ?mp ′ = add-mset p mp
have mp ⊆# ?mp ′ by auto
from meas-finvars-mono[OF tvars-match-mono[OF this]]
show ?thesis unfolding meas-def rel-pat-def by auto

qed

lemma rel-mp-mp-step-mset:
fixes mp :: (′f , ′v, ′s) match-problem-mset
assumes mp →m mp ′

shows {#mp#} � {#mp ′#}
using assms

proof cases
case ∗: (match-decompose f ts g ls mp ′′)
have meas-finvars {#mp ′#} ≤ meas-finvars {#mp#}
proof (rule meas-finvars-mono)

show tvars-match (mp-mset mp ′) ⊆ tvars-match (mp-mset mp)
unfolding tvars-match-def ∗ using ∗(3) by (auto simp: set-zip set-conv-nth)

qed
moreover
have id: (case case x of (x, y) ⇒ (y, x) of (t, l) ⇒ f t l) = (case x of (a,b) ⇒ f

b a) for
x :: (′f , ′v) Term.term × (′f , nat × ′s) Term.term and f :: - ⇒ - ⇒ nat
by (cases x, auto)

have meas-diff {#mp ′#} ≤ meas-diff {#mp#}
unfolding meas-def ∗ using ∗(3)

by (auto simp: sum-mset-sum-list[symmetric] zip-commute[of ts ls] image-mset.compositionality
o-def id)

moreover have length ts = length ls =⇒ (
∑

(t, l)∈#mset (zip ts ls). num-funs
t) ≤ sum-list (map num-funs ts)

by (induct ts ls rule: list-induct2 , auto)

77

hence meas-symbols {#mp ′#} < meas-symbols {#mp#}
unfolding meas-def ∗ using ∗(3)
by (auto simp: sum-mset-sum-list)

ultimately show ?thesis unfolding rel-pat-def by auto
next

case ∗: (match-decompose ′ mp1 y f n mp2 ys)
let ?Var = Var :: ′v ⇒ (′f , ′v) term
have meas-diff {#mp ′#} ≤ meas-diff {#mp#}
←→ (

∑
(ti, yi)∈#(

∑
(t, l)∈#mp1 . mset (zip (args t) (map ?Var ys))). fun-diff

yi ti)
≤ (

∑
(t, l)∈#mp1 . fun-diff l t) (is - ←→ ?sum ≤ -)

unfolding ∗ meas-diff-def by simp
also have ?sum = 0

by (intro sum-mset.neutral ballI , auto simp: set-zip)
finally have meas-diff {#mp ′#} ≤ meas-diff {#mp#} by simp
moreover
have meas-finvars {#mp ′#} ≤ meas-finvars {#mp#}
proof (rule meas-finvars-mono)

show tvars-match (mp-mset mp ′) ⊆ tvars-match (mp-mset mp)
unfolding tvars-match-def ∗ using ∗(3 ,6)
by (auto simp: set-zip set-conv-nth)

(metis case-prod-conv nth-mem option.simps(3) root.elims term.sel(4)
term.set-intros(4))

qed
moreover
have meas-symbols {#mp ′#} < meas-symbols {#mp#}
proof −

from ‹2 ≤ size mp1 › obtain T L MP where mp1 : mp1 = add-mset (T ,L)
MP

by (cases mp1 ; force)
from ∗(3)[of T L] mp1 obtain TS where id: T = Fun f TS L = Var y and

lTS : length TS = n
by (cases T , auto)

have aux: length ts = length ls =⇒
(
∑

(t, l)∈#mset (zip ts ls). num-funs t) ≤ sum-list (map num-funs ts)
for ts :: (′f , nat × ′s)term list and ls :: (′f , ′v)term list
by (induct ts ls rule: list-induct2 , auto)

have meas-symbols {#mp ′#} < meas-symbols {#mp#} ←→
((
∑

(t, l)∈#mset (zip TS (map ?Var ys)). num-funs t) +
(
∑

(ti, yi)∈#(
∑

(t, l)∈#MP. mset (zip (args t) (map ?Var ys))). num-funs
ti)
≤ (sum-list (map num-funs TS) + (

∑
(t, l)∈#MP. num-funs t)))

(is - ←→ (?a + ?b ≤ ?c + ?d))
unfolding meas-symbols-def ∗ mp1 id by (simp add: sum-mset-sum-list

less-Suc-eq-le)
also have . . .
proof (rule add-le-mono)

show ?a ≤ ?c using aux lTS ‹length ys = n› by auto
from ∗(3) mp1 have (t, l) ∈# MP =⇒ l = Var y ∧ root t = Some (f , n)

78

for l t by auto
thus ?b ≤ ?d
proof (induct MP)

case (add pair MP)
obtain t l where pair : pair = (t,l) by force
from add(2)[of t l] obtain ts where id: l = Var y t = Fun f ts and lts:

length ts = n
by (cases t, auto simp: pair)

from add(1)[OF add(2)]
have IH : (

∑
(ti, yi)∈#(

∑
(t, l)∈#MP. mset (zip (args t) (map ?Var ys))).

num-funs ti)
≤ (

∑
(t, l)∈#MP. num-funs t) by auto

from IH aux[of ts, unfolded lts, of map ?Var ys] ‹length ys = n›
show ?case unfolding pair id by auto

qed auto
qed
finally show meas-symbols {#mp ′#} < meas-symbols {#mp#} .

qed
ultimately show ?thesis unfolding rel-pat-def by auto

next
case ∗: (match-match x t)
show ?thesis unfolding ∗

by (rule rel-mp-sub)
next

case ∗: (match-duplicate pair mp)
show ?thesis unfolding ∗

by (rule rel-mp-sub)
qed

lemma sum-ms-image: sum-ms f (image-mset g ms) = sum-ms (f o g) ms
by (simp add: multiset.map-comp)

lemma meas-diff-subst-le: meas-diff (subst-pat-problem-mset τ p) ≤ meas-diff p
unfolding meas-def subst-match-problem-set-def subst-defs subst-left-def
unfolding sum-ms-image o-def
apply (rule sum-mset-mono, rule sum-mset-mono)
apply clarify
unfolding map-prod-def split id-apply
by (rule fun-diff-subst)

lemma meas-sub: assumes sub: p ′ ⊆# p
shows meas-diff p ′ ≤ meas-diff p

meas-finvars p ′ ≤ meas-finvars p
meas-symbols p ′ ≤ meas-symbols p

proof −
from sub obtain p ′′ where p: p = p ′ + p ′′ by (metis subset-mset.less-eqE)
show meas-diff p ′ ≤ meas-diff p meas-finvars p ′ ≤ meas-finvars p meas-symbols

p ′ ≤ meas-symbols p
unfolding meas-def p by auto

79

qed

lemma meas-sub-rel-pat: assumes sub: p ′ ⊂# p
shows p � p ′

proof −
from sub obtain x p ′′ where p: p = add-mset x p ′ + p ′′

by (metis multi-nonempty-split subset-mset.lessE union-mset-add-mset-left union-mset-add-mset-right)
hence lt: meas-setsize p ′ < meas-setsize p unfolding meas-def by auto
from sub have p ′ ⊆# p by auto
from lt meas-sub[OF this]
show ?thesis unfolding rel-pat-def by auto

qed

lemma max-size-term-of-sort: assumes sS : s ∈ S and inf : ¬ inf-sort s
shows ∃ t. t : s in T (C) ∧ max-size s = size t ∧ (∀ t ′. t ′ : s in T (C) −→ size

t ′ ≤ size t)
proof −

let ?set = λ s. size ‘ {t. t : s in T (C)}
have m: max-size s = Maximum (?set s) unfolding o-def max-size-def using

inf sS by auto
from inf inf-sort-not-bdd[OF sS] have bdd-above (?set s) by auto
moreover have ?set s 6= {} by (auto intro!: sorts-non-empty sS)
ultimately have has-Maximum (?set s) by (rule bdd-above-has-Maximum-nat)
from has-MaximumD[OF this, folded m] show ?thesis by auto

qed

lemma max-size-max: assumes sS : s ∈ S
and inf : ¬ inf-sort s
and sort: t : s in T (C)

shows size t ≤ max-size s
using max-size-term-of-sort[OF sS inf] sort by auto

lemma finite-sort-size: assumes c: c : map snd vs → s in C
and inf : ¬ inf-sort s

shows sum (max-size o snd) (set vs) < max-size s
proof −

from c have vsS : insert s (set (map snd vs)) ⊆ S using C-sub-S
by (metis (mono-tags))

hence sS : s ∈ S by auto
let ?m = max-size s
show ?thesis
proof (cases ∃ v ∈ set vs. inf-sort (snd v))

case True
{

fix v
assume v ∈ set vs
with vsS have v: snd v ∈ S by auto
note sorts-non-empty[OF this]

}

80

hence ∀ v. ∃ t. v ∈ set vs −→ t : snd v in T (C) by auto
from choice[OF this] obtain t where

t:
∧

v. v ∈ set vs =⇒ t v : snd v in T (C) by blast
from True vsS obtain vl where vl: vl ∈ set vs and vlS : snd vl ∈ S and inf-vl:

inf-sort (snd vl) by auto
note nbdd = inf-sort-not-bdd[OF vlS , THEN iffD2 , OF inf-vl]
from not-bdd-above-natD[OF nbdd, of ?m] t[OF vl]
obtain tl where
tl: tl : snd vl in T (C) and large: ?m ≤ size tl by fastforce

let ?t = Fun c (map (λ v. if v = vl then tl else t v) vs)
have ?t : s in T (C)

by (intro Fun-hastypeI [OF c] list-all2-map-map, insert tl t, auto)
from max-size-max[OF sS inf this]
have False using large split-list[OF vl] by auto
thus ?thesis ..

next
case False
{

fix v
assume v: v ∈ set vs
with False have inf : ¬ inf-sort (snd v) by auto
from vsS v have snd v ∈ S by auto
from max-size-term-of-sort[OF this inf]
have ∃ t. t : snd v in T (C) ∧ size t = max-size (snd v) by auto

}
hence ∀ v. ∃ t. v ∈ set vs −→ t : snd v in T (C) ∧ size t = max-size (snd v)

by auto
from choice[OF this] obtain t where

t: v ∈ set vs =⇒ t v : snd v in T (C) ∧ size (t v) = max-size (snd v) for v
by blast

let ?t = Fun c (map t vs)
have ?t : s in T (C)

by (intro Fun-hastypeI [OF c] list-all2-map-map, insert t, auto)
from max-size-max[OF sS inf this]
have size ?t ≤ max-size s .

have sum (max-size ◦ snd) (set vs) = sum (size o t) (set vs)
by (rule sum.cong[OF refl], unfold o-def , insert t, auto)

also have . . . ≤ sum-list (map (size o t) vs)
by (rule sum-le-sum-list-nat)

also have . . . ≤ size-list (size o t) vs by (induct vs, auto)
also have . . . < size ?t by simp
also have . . . ≤ max-size s by fact
finally show ?thesis .

qed
qed

lemma rel-pp-step-mset:
fixes p :: (′f , ′v, ′s) pat-problem-mset

81

assumes p ⇒m ps
and p ′ ∈# ps

shows p � p ′

using assms
proof induct

case ∗: (pat-simp-mp mp mp ′ p)
hence p ′: p ′ = add-mset mp ′ p by auto
from rel-mp-mp-step-mset[OF ∗(1)]
show ?case unfolding p ′ rel-pat-def meas-def by auto

next
case (pat-remove-mp mp p)
hence p ′: p ′ = p by auto
show ?case unfolding p ′

by (rule meas-sub-rel-pat, auto)
next

case ∗: (pat-instantiate n mp p x l s y t)
from ∗(2) have ∃ s t. (s,t) ∈# mp ∧ (s = Var x ∧ is-Fun t

∨ (x ∈ vars s ∧ ¬ inf-sort (snd x)))
proof

assume ∗: (s, Var y) ∈# mp ∧ (t, Var y) ∈# mp ∧ Conflict-Var s t x ∧ ¬
inf-sort (snd x)
∧ (improved −→ s = Var x ∧ is-Fun t)

hence Conflict-Var s t x and ¬ inf-sort (snd x) by auto
from conflicts(4)[OF this(1)] this(2) ∗
show ?thesis by auto

qed auto
then obtain s t where st: (s,t) ∈# mp and choice: s = Var x ∧ is-Fun t ∨ x
∈ vars s ∧ ¬ inf-sort (snd x)

by auto
let ?p = add-mset mp p
let ?s = snd x
from ∗(3) τs-list
obtain τ where τ : τ ∈ τs n x and p ′: p ′ = subst-pat-problem-mset τ ?p by auto

let ?tau-mset = subst-pat-problem-mset τ :: (′f , ′v, ′s) pat-problem-mset ⇒ -
let ?tau = subst-match-problem-mset τ :: (′f , ′v, ′s) match-problem-mset ⇒ -
from τ [unfolded τs-def τc-def List.maps-def]
obtain c sorts where c: c : sorts → ?s in C and tau: τ = subst x (Fun c (map

Var (zip [n..<n + length sorts] sorts)))
by auto

with C-sub-S have sS : ?s ∈ S and sorts: set sorts ⊆ S by auto
define vs where vs = zip [n..<n + length sorts] sorts
have τ : τ = subst x (Fun c (map Var vs)) unfolding tau vs-def by auto
have snd ‘ vars (τ y) ⊆ insert (snd y) S for y

using sorts unfolding tau by (auto simp: subst-def set-zip set-conv-nth)
hence vars-sort: (a,b) ∈ vars (τ y) =⇒ b ∈ insert (snd y) S for a b y by fastforce

from st obtain mp ′ where mp: mp = add-mset (s,t) mp ′ by (rule mset-add)
from choice have ?p � ?tau-mset ?p

82

proof
assume s = Var x ∧ is-Fun t
then obtain f ts where s: s = Var x and t: t = Fun f ts by (cases t, auto)
have meas-diff (?tau-mset ?p) =

meas-diff (?tau-mset (add-mset mp ′ p)) + fun-diff t (s · τ)
unfolding meas-def subst-defs subst-left-def mp by simp

also have . . . ≤ meas-diff (add-mset mp ′ p) + fun-diff t (τ x) using meas-diff-subst-le[of
τ] s by auto

also have . . . < meas-diff (add-mset mp ′ p) + fun-diff t s
proof (rule add-strict-left-mono)

have fun-diff t (τ x) < num-funs t
unfolding tau subst-simps fun-diff .simps
by (rule fun-diff-num-funs-lt[OF refl], auto simp: t)

thus fun-diff t (τ x) < fun-diff t s by (auto simp: s t)
qed
also have . . . = meas-diff ?p unfolding mp meas-def by auto
finally show ?thesis unfolding rel-pat-def by auto

next
assume x ∈ vars s ∧ ¬ inf-sort (snd x)
hence x: x ∈ vars s and inf : ¬ inf-sort (snd x) by auto
from meas-diff-subst-le[of τ]
have fd: meas-diff p ′ ≤ meas-diff ?p unfolding p ′ .

have meas-finvars (?tau-mset ?p) = meas-finvars (?tau-mset {#mp#}) +
meas-finvars (?tau-mset p)

unfolding subst-defs meas-def by auto
also have . . . < meas-finvars {#mp#} + meas-finvars p
proof (rule add-less-le-mono)
have vars-τ -var : vars (τ y) = (if x = y then set vs else {y}) for y unfolding

τ subst-def by auto
have vars-τ : vars (t · τ) = vars t − {x} ∪ (if x ∈ vars t then set vs else {})

for t
unfolding vars-term-subst image-comp o-def vars-τ -var by auto

have tvars-match-subst: tvars-match (mp-mset (?tau mp)) =
tvars-match (mp-mset mp) − {x} ∪ (if x ∈ tvars-match (mp-mset mp)

then set vs else {}) for mp
unfolding subst-defs subst-left-def tvars-match-def
by (auto simp:vars-τ split: if-splits prod.split)

have id1 : meas-finvars (?tau-mset {#mp#}) = (
∑

x∈ tvars-match (mp-mset
(?tau mp)). max-size (snd x)) for mp

unfolding meas-def subst-defs by auto
have id2 : meas-finvars {#mp#} = (

∑
x∈tvars-match (mp-mset mp). max-size

(snd x))
for mp :: (′f , ′v, ′s) match-problem-mset
unfolding meas-def subst-defs by simp

have eq: x /∈ tvars-match (mp-mset mp) =⇒ meas-finvars (?tau-mset {# mp
#}) = meas-finvars {#mp#} for mp

unfolding id1 id2 by (rule sum.cong[OF - refl], auto simp: tvars-match-subst)
{

fix mp :: (′f , ′v, ′s) match-problem-mset

83

assume xmp: x ∈ tvars-match (mp-mset mp)
let ?mp = (mp-mset mp)
have fin: finite (tvars-match ?mp) by (rule tvars-match-fin)
define Mp where Mp = tvars-match ?mp − {x}
from xmp have 1 : tvars-match (mp-mset (?tau mp)) = set vs ∪ Mp

unfolding tvars-match-subst Mp-def by auto
from xmp have 2 : tvars-match ?mp = insert x Mp and xMp: x /∈ Mp

unfolding Mp-def by auto
from fin have fin: finite Mp unfolding Mp-def by auto
have meas-finvars (?tau-mset {# mp #}) = sum (max-size ◦ snd) (set vs

∪ Mp) (is - = sum ?size -)
unfolding id1 id2 using 1 by auto

also have . . . ≤ sum ?size (set vs) + sum ?size Mp by (rule sum-union-le-nat)
also have . . . < ?size x + sum ?size Mp
proof −

have sS : ?s ∈ S by fact
have sorts: sorts = map snd vs unfolding vs-def by (intro nth-equalityI ,

auto)
have sum ?size (set vs) < ?size x

using finite-sort-size[OF c[unfolded sorts] inf] by auto
thus ?thesis by auto

qed
also have . . . = meas-finvars {#mp#} unfolding id2 2 using fin xMp by

auto
finally have meas-finvars (?tau-mset {# mp #}) < meas-finvars {#mp#}

.
} note less = this
have le: meas-finvars (?tau-mset {# mp #}) ≤ meas-finvars {#mp#} for

mp
using eq[of mp] less[of mp] by linarith

show meas-finvars (?tau-mset {#mp#}) < meas-finvars {#mp#} using x
by (intro less, unfold mp, force simp: tvars-match-def)

show meas-finvars (?tau-mset p) ≤ meas-finvars p
unfolding subst-pat-problem-mset-def meas-finvars-def sum-ms-image o-def
apply (rule sum-mset-mono)

subgoal for mp using le[of mp] unfolding meas-finvars-def o-def subst-defs
by auto

done
qed
also have . . . = meas-finvars ?p unfolding p ′ meas-def by simp
finally show ?thesis using fd unfolding rel-pat-def p ′ by auto

qed
thus ?case unfolding p ′ .

next
case ∗: (pat-remove-pp p)
thus ?case by (intro meas-sub-rel-pat, auto)

84

next
case ∗: (pat-inf-var-conflict p)
thus ?case by (intro meas-sub-rel-pat, cases p, auto)

qed

finally: the transformation is terminating w.r.t. (�mul)
lemma rel-P-trans:

assumes P Vm P ′

shows P �mul P ′

using assms
proof induct

case ∗: (P-failure p P)
from ∗ have p 6= {#} ∨ p = {#} ∧ P 6= {#} by auto
thus ?case
proof

assume p 6= {#}
then obtain mp p ′ where p: p = add-mset mp p ′ by (cases p, auto)
have p � {#} unfolding p by (intro meas-sub-rel-pat, auto)
thus ?thesis unfolding rel-pats-def using

one-step-implies-mult[of add-mset p P {#{#}#} - {#}]
by auto

next
assume ∗: p = {#} ∧ P 6= {#} then obtain p ′ P ′ where p: p = {#} and

P: P = add-mset p ′ P ′ by (cases P, auto)
show ?thesis unfolding P p unfolding rel-pats-def

by (simp add: subset-implies-mult)
qed

next
case ∗: (P-simp-pp p ps P)
from rel-pp-step-mset[OF ∗]
show ?case unfolding rel-pats-def by (metis add-many-mult)

qed

termination of the multiset based implementation
theorem SN-P-step: SN V
proof −

have sub: V ⊆ ≺mul^−1
using rel-P-trans unfolding P-step-def by auto

show ?thesis
apply (rule SN-subset[OF - sub])
apply (rule wf-imp-SN)
using wf-rel-pats by simp

qed

7.4 Partial Correctness via Refinement

Obtain partial correctness via a simulation property, that the multiset-based
implementation is a refinement of the set-based implementation.

85

lemma mp-step-cong: mp1 →s mp2 =⇒ mp1 = mp1 ′ =⇒ mp2 = mp2 ′ =⇒ mp1 ′

→s mp2 ′ by auto

lemma mp-step-mset-mp-trans: mp →m mp ′ =⇒ mp-mset mp →s mp-mset mp ′

proof (induct mp mp ′ rule: mp-step-mset.induct)
case ∗: (match-decompose f ts g ls mp)
show ?case by (rule mp-step-cong[OF mp-decompose], insert ∗, auto)

next
case ∗: (match-match x mp t)
show ?case by (rule mp-step-cong[OF mp-match], insert ∗, auto)

next
case (match-duplicate pair mp)
show ?case by (rule mp-step-cong[OF mp-identity], auto)

next
case ∗: (match-decompose ′ mp y f n mp ′ ys)
show ?case by (rule mp-step-cong[OF mp-decompose ′[OF ∗(1 ,2) ∗(3)[unfolded

set-mset-union] ∗(4 ,6)]], auto)
qed

lemma mp-fail-cong: mp-fail mp =⇒ mp = mp ′ =⇒ mp-fail mp ′ by auto

lemma match-fail-mp-fail: match-fail mp =⇒ mp-fail (mp-mset mp)
proof (induct mp rule: match-fail.induct)

case ∗: (match-clash f ts g ls mp)
show ?case by (rule mp-fail-cong[OF mp-clash], insert ∗, auto)

next
case ∗: (match-clash ′ s t x mp)
show ?case by (rule mp-fail-cong[OF mp-clash ′], insert ∗, auto)

next
case ∗: (match-clash-sort s t x mp)
show ?case by (rule mp-fail-cong[OF mp-clash-sort], insert ∗, auto)

qed

lemma P-step-set-cong: P Vs Q =⇒ P = P ′ =⇒ Q = Q ′ =⇒ P ′ Vs Q ′ by auto

lemma P-step-mset-imp-set: assumes P Vm Q
shows pats-mset P Vs pats-mset Q
using assms

proof (induct)
case ∗: (P-failure p P)
let ?P = insert (pat-mset p) (pats-mset P)
from ∗(1)
have ?P Vs bottom
proof induct

case pat-empty
show ?case using P-fail by auto

qed
thus ?case by auto

next

86

case ∗: (P-simp-pp p ps P)
note conv = o-def image-mset-union image-empty image-mset-add-mset Un-empty-left

set-mset-add-mset-insert set-mset-union image-Un image-insert set-mset-empty
set-mset-mset set-image-mset
set-map image-comp insert-is-Un[symmetric]

define P ′ where P ′ = {mp-mset ‘ set-mset x |. x ∈ set-mset P}
from ∗(1)
have insert (pat-mset p) (pats-mset P) Vs pats-mset ps ∪ pats-mset P

unfolding conv P ′-def [symmetric]
proof induction

case (pat-remove-pp p)
show ?case unfolding conv

by (intro P-remove-pp pp-success.intros)
next

case ∗: (pat-simp-mp mp mp ′ p)
from P-simp[OF pp-simp-mp[OF mp-step-mset-mp-trans[OF ∗]]]
show ?case by auto

next
case ∗: (pat-remove-mp mp p)
from P-simp[OF pp-remove-mp[OF match-fail-mp-fail[OF ∗]]]
show ?case by simp

next
case ∗: (pat-instantiate n mp p x l s y t)
from ∗(2) have x ∈ tvars-match (mp-mset mp)

using conflicts(4)[of s t x] unfolding tvars-match-def
by (auto intro!:term.set-intros(3))

hence x: x ∈ tvars-pat (pat-mset (add-mset mp p)) unfolding tvars-pat-def
using ∗(2) by auto

show ?case unfolding conv τs-list
apply (rule P-step-set-cong[OF P-instantiate[OF ∗(1) x]])
by (unfold conv subst-defs set-map image-comp, auto)

next
case ∗: (pat-inf-var-conflict pp pp ′)
from pp-inf-var-conflict[OF ∗(1), of pat-mset pp ′]
have pat-mset (pp + pp ′) ⇒s pat-mset pp ′

using ∗ by (auto simp: tvars-pat-def image-Un)
from P-simp[OF this]
show ?case by auto

qed
thus ?case unfolding conv .

qed

lemma P-step-pp-trans: assumes (P,Q) ∈ V
shows pats-mset P Vs pats-mset Q
by (rule P-step-mset-imp-set, insert assms, unfold P-step-def , auto)

theorem P-step-pcorrect: assumes wf : wf-pats (pats-mset P) and step: (P,Q) ∈
P-step
shows wf-pats (pats-mset Q) ∧ (pats-complete C (pats-mset P) = pats-complete C

87

(pats-mset Q))
proof −

note step = P-step-pp-trans[OF step]
from P-step-set-pcorrect[OF step] P-step-set-wf [OF step] wf
show ?thesis by auto

qed

corollary P-steps-pcorrect: assumes wf : wf-pats (pats-mset P)
and step: (P,Q) ∈ V∗

shows wf-pats (pats-mset Q) ∧ (pats-complete C (pats-mset P) ←→ pats-complete
C (pats-mset Q))

using step by induct (insert wf P-step-pcorrect, auto)

Gather all results for the multiset-based implementation: decision procedure
on well-formed inputs (termination was proven before)
theorem P-step:

assumes non-improved: ¬ improved
and wf : wf-pats (pats-mset P) and NF : (P,Q) ∈ V!

shows Q = {#} ∧ pats-complete C (pats-mset P) — either the result is and
input P is complete
∨ Q = bottom-mset ∧ ¬ pats-complete C (pats-mset P) — or the result = bot

and P is not complete
proof −

from NF have steps: (P,Q) ∈ V^∗ and NF : Q ∈ NF P-step by auto
from P-steps-pcorrect[OF wf steps]
have wf : wf-pats (pats-mset Q) and

sound: pats-complete C (pats-mset P) = pats-complete C (pats-mset Q)
by blast+

from P-step-NF [OF non-improved wf NF] have Q ∈ {{#},bottom-mset} .
thus ?thesis unfolding sound by auto

qed

theorem P-step-improved:
fixes P :: (′f , ′v, ′s) pats-problem-mset
assumes improved

and inf : infinite (UNIV :: ′v set)
and wf : wf-pats (pats-mset P) and NF : (P,Q) ∈ V!

shows pats-complete C (pats-mset P) ←→ pats-complete C (pats-mset Q) —
equivalence

p ∈# Q =⇒ finite-var-form-pat C (pat-mset p) — all remaining problems are
in finite-var-form
proof −

from NF have steps: (P,Q) ∈ V^∗ and NF : Q ∈ NF P-step by auto
note ∗ = P-steps-pcorrect[OF wf steps]
from ∗
show pats-complete C (pats-mset P) = pats-complete C (pats-mset Q) ..
from ∗ have wfQ: wf-pats (pats-mset Q) by auto
from P-step-NF-fvf [OF ‹improved› inf this NF]
show p ∈# Q =⇒ finite-var-form-pat C (pat-mset p) .

88

qed

end
end

8 A List-Based Implementation to Decide Pattern
Completeness

theory Pattern-Completeness-List
imports

Pattern-Completeness-Multiset
Compute-Nonempty-Infinite-Sorts
Finite-IDL-Solver-Interface
HOL−Library.AList
HOL−Library.Mapping
Singleton-List

begin

8.1 Definition of Algorithm

We refine the non-deterministic multiset based implementation to a deter-
ministic one which uses lists as underlying data-structure. For matching
problems we distinguish several different shapes.
type-synonym (′a, ′b)alist = (′a × ′b)list
type-synonym (′f , ′v, ′s)match-problem-list = ((′f ,nat × ′s)term × (′f , ′v)term)
list — mp with arbitrary pairs
type-synonym (′f , ′v, ′s)match-problem-lx = ((nat × ′s) × (′f , ′v)term) list — mp
where left components are variable
type-synonym (′f , ′v, ′s)match-problem-rx = (′v,(′f ,nat × ′s)term list) alist × bool
— mp where right components are variables
type-synonym (′f , ′v, ′s)match-problem-fvf = (′v,(nat × ′s) list) alist
type-synonym (′f , ′v, ′s)match-problem-lr = (′f , ′v, ′s)match-problem-lx × (′f , ′v, ′s)match-problem-rx
— a partitioned mp
type-synonym (′f , ′v, ′s)pat-problem-list = (′f , ′v, ′s)match-problem-list list
type-synonym (′f , ′v, ′s)pat-problem-lr = (′f , ′v, ′s)match-problem-lr list
type-synonym (′f , ′v, ′s)pat-problem-lx = (′f , ′v, ′s)match-problem-lx list
type-synonym (′f , ′v, ′s)pat-problem-fvf = (′f , ′v, ′s)match-problem-fvf list
type-synonym (′f , ′v, ′s)pats-problem-list = (′f , ′v, ′s)pat-problem-list list
type-synonym (′f , ′v, ′s)pat-problem-set-impl = ((′f ,nat × ′s)term × (′f , ′v)term)
list list

definition lvars-mp :: (′f , ′v, ′s)match-problem-mset ⇒ ′v set where
lvars-mp mp = (

⋃
(vars ‘ snd ‘ mp-mset mp))

definition vars-mp-mset :: (′f , ′v, ′s)match-problem-mset ⇒ ′v multiset where
vars-mp-mset mp = sum-mset (image-mset (vars-term-ms o snd) mp)

89

definition ll-mp :: (′f , ′v, ′s)match-problem-mset ⇒ bool where
ll-mp mp = (∀ x. count (vars-mp-mset mp) x ≤ 1)

definition ll-pp :: (′f , ′v, ′s)pat-problem-list ⇒ bool where
ll-pp p = (∀ mp ∈ set p. ll-mp (mset mp))

definition lvars-pp :: (′f , ′v, ′s)pat-problem-mset ⇒ ′v set where
lvars-pp pp = (

⋃
(lvars-mp ‘ set-mset pp))

abbreviation mp-list :: (′f , ′v, ′s)match-problem-list ⇒ (′f , ′v, ′s)match-problem-mset

where mp-list ≡ mset

abbreviation mp-lx :: (′f , ′v, ′s)match-problem-lx ⇒ (′f , ′v, ′s)match-problem-list
where mp-lx ≡ map (map-prod Var id)

definition mp-rx :: (′f , ′v, ′s)match-problem-rx ⇒ (′f , ′v, ′s)match-problem-mset
where mp-rx mp = mset (List.maps (λ (x,ts). map (λ t. (t,Var x)) ts) (fst mp))

definition mp-rx-list :: (′f , ′v, ′s)match-problem-rx ⇒ (′f , ′v, ′s)match-problem-list
where mp-rx-list mp = List.maps (λ (x,ts). map (λ t. (t,Var x)) ts) (fst mp)

definition mp-lr :: (′f , ′v, ′s)match-problem-lr ⇒ (′f , ′v, ′s)match-problem-mset
where mp-lr pair = (case pair of (lx,rx) ⇒ mp-list (mp-lx lx) + mp-rx rx)

definition mp-lr-list :: (′f , ′v, ′s)match-problem-lr ⇒ (′f , ′v, ′s)match-problem-list
where mp-lr-list pair = (case pair of (lx,rx) ⇒ mp-lx lx @ mp-rx-list rx)

definition pat-lr :: (′f , ′v, ′s)pat-problem-lr ⇒ (′f , ′v, ′s)pat-problem-mset
where pat-lr ps = mset (map mp-lr ps)

definition pat-lx :: (′f , ′v, ′s)pat-problem-lx ⇒ (′f , ′v, ′s)pat-problem-mset
where pat-lx ps = mset (map (mp-list o mp-lx) ps)

definition pat-mset-list :: (′f , ′v, ′s)pat-problem-list ⇒ (′f , ′v, ′s)pat-problem-mset
where pat-mset-list ps = mset (map mp-list ps)

definition pat-list :: (′f , ′v, ′s)pat-problem-list ⇒ (′f , ′v, ′s)pat-problem-set
where pat-list ps = set ‘ set ps

abbreviation pats-mset-list :: (′f , ′v, ′s)pats-problem-list ⇒ (′f , ′v, ′s)pats-problem-mset

where pats-mset-list ≡ mset o map pat-mset-list

definition subst-match-problem-list :: (′f ,nat × ′s)subst ⇒ (′f , ′v, ′s)match-problem-list
⇒ (′f , ′v, ′s)match-problem-list where

subst-match-problem-list τ = map (subst-left τ)

90

definition subst-pat-problem-list :: (′f ,nat × ′s)subst ⇒ (′f , ′v, ′s)pat-problem-list
⇒ (′f , ′v, ′s)pat-problem-list where

subst-pat-problem-list τ = map (subst-match-problem-list τ)

definition match-var-impl :: (′f , ′v, ′s)match-problem-lr ⇒ ′v list × (′f , ′v, ′s)match-problem-lr
where

match-var-impl mp = (case mp of (xl,(rx,b)) ⇒
let xs = remdups (List.maps (vars-term-list o snd) xl)
in (xs,(xl,(filter (λ (x,ts). tl ts 6= [] ∨ x ∈ set xs) rx),b)))

definition find-var :: bool ⇒ (′f , ′v, ′s)match-problem-lr list ⇒ - where
find-var improved p = (case List.maps (λ (lx,-). lx) p of

(x,t) # - ⇒ Some x
| [] ⇒ if improved then (let flat-mps = List.maps (fst o snd) p in

(map-option (λ (x,ts). case find is-Var ts of Some (Var x) ⇒ x)
(find (λ rx. ∃ t ∈ set (snd rx). is-Fun t) flat-mps)))
else Some (let (-,rx,b) = hd p

in case hd rx of (x, s # t # -) ⇒ hd (the (conflicts s t))))

definition empty-lr :: (′f , ′v, ′s)match-problem-lr ⇒ bool where
empty-lr mp = (case mp of (lx,rx,-) ⇒ lx = [] ∧ rx = [])

fun zipAll :: ′a list ⇒ ′b list list ⇒ (′a × ′b list) list where
zipAll [] - = []
| zipAll (x # xs) yss = (x, map hd yss) # zipAll xs (map tl yss)

datatype (′f , ′v, ′s)pat-impl-result = Incomplete
| New-Problems nat × nat × (′f , ′v, ′s)pat-problem-list list
| Fin-Var-Form (′f , ′v, ′s)pat-problem-fvf

Transforming finite variable forms:
definition tvars-match-list = remdups ◦ concat ◦ map (var-list-term ◦ fst)

definition tvars-pat-list = remdups ◦ concat ◦ map tvars-match-list

definition var-form-of-match-rx :: (′f , ′v, ′s)match-problem-rx ⇒ (′v × (nat × ′s)
list) list where

var-form-of-match-rx = map (map-prod id (map the-Var)) o fst

definition match-of-var-form-list where
match-of-var-form-list mpv = concat [[(Var v, Var x). v ← vs]. (x,vs) ← mpv]

definition var-form-of-pat-rx where
var-form-of-pat-rx = map var-form-of-match-rx

definition pat-of-var-form-list where
pat-of-var-form-list = map match-of-var-form-list

91

lemma size-zip[termination-simp]: length ts = length ls =⇒ size-list (λp. size (snd
p)) (zip ts ls)
< Suc (size-list size ls)
by (induct ts ls rule: list-induct2 , auto)

fun match-decomp-lin-impl :: (′f , ′v, ′s)match-problem-list ⇒ (′f , ′v, ′s)match-problem-lx
option where

match-decomp-lin-impl [] = Some []
| match-decomp-lin-impl ((Fun f ts, Fun g ls) # mp) = (if (f ,length ts) = (g,length
ls) then

match-decomp-lin-impl (zip ts ls @ mp) else None)
| match-decomp-lin-impl ((Var x, Fun g ls) # mp) = (map-option (Cons (x, Fun
g ls)) (match-decomp-lin-impl mp))
| match-decomp-lin-impl ((t, Var y) # mp) = match-decomp-lin-impl mp

fun pat-inner-lin-impl :: (′f , ′v, ′s)pat-problem-list ⇒ (′f , ′v, ′s)pat-problem-lx ⇒ (′f , ′v, ′s)pat-problem-lx
option where

pat-inner-lin-impl [] pd = Some pd
| pat-inner-lin-impl (mp # p) pd = (case match-decomp-lin-impl mp of

None ⇒ pat-inner-lin-impl p pd
| Some mp ′⇒ if mp ′ = [] then None

else pat-inner-lin-impl p (mp ′ # pd))

definition bounds-list bnd cnf = (let vars = remdups (concat (concat cnf))
in map (λ v. (v, int (bnd v) − 1)) vars)

fun pairs-of-list where
pairs-of-list (x # y # xs) = (x,y) # pairs-of-list (y # xs)
| pairs-of-list - = []

lemma set-pairs-of-list: set (pairs-of-list xs) = { (xs ! i, xs ! (Suc i)) | i. Suc i <
length xs}
proof (induct xs rule: pairs-of-list.induct)

case (1 x y xs)
define n where n = length xs
have id: {f i |i. Suc i < length (x # y # xs)}
= insert (f 0) {f (Suc i) |i. Suc i < length (y # xs)} for f :: nat ⇒ ′a × ′a
unfolding list.size n-def [symmetric]
apply auto
subgoal for a b i by (cases i, auto)
done

show ?case unfolding pairs-of-list.simps set-simps 1 id by auto
qed auto

lemma diff-pairs-of-list: (∃ x ∈ set xs. ∃ y ∈ set xs. f x 6= f y) ←→
(∃ (x,y) ∈ set (pairs-of-list xs). f x 6= f y) (is ?l = ?r)

proof
assume ?r
from this[unfolded set-pairs-of-list] obtain i where i: Suc i < length xs

92

and diff : f (xs ! i) 6= f (xs ! (Suc i)) by auto
from i have xs ! i ∈ set xs xs ! (Suc i) ∈ set xs by auto
with diff show ?l by auto

next
assume ?l
show ?r
proof (rule ccontr)

let ?n = length xs
assume ¬ ?r
hence eq:

∧
i. Suc i < ?n =⇒ f (xs ! i) = f (xs ! (Suc i)) by (auto simp:

set-pairs-of-list)
have eq: i < ?n =⇒ f (xs ! i) = f (xs ! 0) for i

by (induct i, insert eq, auto)
hence

∧
i j. i < ?n =⇒ j < ?n =⇒ f (xs ! i) = f (xs ! j) by auto

with ‹?l› show False unfolding set-conv-nth by auto
qed

qed

definition dist-pairs-list cnf = map (List.maps pairs-of-list) cnf

context pattern-completeness-context
begin

insert an element into the part of the mp that stores pairs of form (t,x) for
variables x. Internally this is represented as maps (assoc lists) from x to
terms t1,t2,... so that linear terms are easily identifiable. Duplicates will be
removed and clashes will be immediately be detected and result in None.
definition insert-rx :: (′f ,nat × ′s)term ⇒ ′v ⇒ (′f , ′v, ′s)match-problem-rx ⇒
(′f , ′v, ′s)match-problem-rx option where

insert-rx t x rxb = (case rxb of (rx,b) ⇒ (case map-of rx x of
None ⇒ Some (((x,[t]) # rx, b))
| Some ts ⇒ (case those (map (conflicts t) ts)

of None ⇒ None — clash
| Some cs ⇒ if [] ∈ set cs then Some rxb — empty conflict means (t,x) was

already part of rxb
else Some ((AList.update x (t # ts) rx, b ∨ (∃ y ∈ set (concat cs). inf-sort

(snd y))))
)))

Decomposition applies decomposition, duplicate and clash rule to classify
all remaining problems as being of kind (x,f(l1,..,ln)) or (t,x).
fun decomp-impl :: (′f , ′v, ′s)match-problem-list ⇒ (′f , ′v, ′s)match-problem-lr option
where

decomp-impl [] = Some ([],([],False))
| decomp-impl ((Fun f ts, Fun g ls) # mp) = (if (f ,length ts) = (g,length ls) then

decomp-impl (zip ts ls @ mp) else None)
| decomp-impl ((Var x, Fun g ls) # mp) = (case decomp-impl mp of Some (lx,rx)
⇒ Some ((x,Fun g ls) # lx,rx)

| None ⇒ None)

93

| decomp-impl ((t, Var y) # mp) = (case decomp-impl mp of Some (lx,rx) ⇒
(case insert-rx t y rx of Some rx ′⇒ Some (lx,rx ′) | None ⇒ None)
| None ⇒ None)

definition pat-lin-impl :: nat ⇒ (′f , ′v, ′s)pat-problem-list ⇒ (′f , ′v, ′s)pat-problem-list
list option where

pat-lin-impl n p = (case pat-inner-lin-impl p [] of None ⇒ Some []
| Some p ′⇒ if p ′ = [] then None

else (let x = fst (hd (hd p ′)); p ′l = map mp-lx p ′ in
Some (map (λ τ. subst-pat-problem-list τ p ′l) (τs-list n x))))

partial-function (tailrec) pats-lin-impl :: nat ⇒ (′f , ′v, ′s)pats-problem-list ⇒ bool
where

pats-lin-impl n ps = (case ps of [] ⇒ True
| p # ps1 ⇒ (case pat-lin-impl n p of

None ⇒ False
| Some ps2 ⇒ pats-lin-impl (n + m) (ps2 @ ps1)))

definition match-steps-impl :: (′f , ′v, ′s)match-problem-list ⇒ (′v list × (′f , ′v, ′s)match-problem-lr)
option where

match-steps-impl mp = (map-option match-var-impl (decomp-impl mp))

definition pat-complete-lin-impl :: (′f , ′v, ′s)pats-problem-list ⇒ bool where
pat-complete-lin-impl ps = (let

n = Suc (max-list (List.maps (map fst o vars-term-list o fst) (concat (concat
ps))))

in pats-lin-impl n ps)

context
fixes
CC :: ′f × ′s list ⇒ ′s option and
renNat :: nat ⇒ ′v and
renVar :: ′v ⇒ ′v and
fidl-solver :: ((nat × ′s) × int) list × ((nat × ′s) × (nat × ′s)) list list ⇒ bool

begin

partial-function (tailrec) decomp ′-main-loop where
decomp ′-main-loop n xs list out = (case list of

[] ⇒ (n, out) — one might change to (rev out) in order to preserve the order
| ((x,ts) # rxs) ⇒ (if tl ts = [] ∨ (∃ t ∈ set ts. is-Var t) ∨ x ∈ set xs
then decomp ′-main-loop n xs rxs ((x,ts) # out)
else let l = length (args (hd ts));

fresh = map renNat [n ..< n + l];
new = zipAll fresh (map args ts);
cleaned = filter (λ (y,ts ′). tl ts ′ 6= []) (map (λ (y,ts ′). (y, remdups ts ′))

new)
in decomp ′-main-loop (n + l) xs (cleaned @ rxs) out))

definition decomp ′-impl where

94

decomp ′-impl n xs mp = (case mp of
(xl,(rx,b)) ⇒ case decomp ′-main-loop n xs rx [] of
(n ′, rx ′) ⇒ (n ′, (xl,(rx ′,b))))

definition apply-decompose ′ :: (′f , ′v, ′s)match-problem-lr ⇒ bool
where apply-decompose ′ mp = (improved ∧ (case mp of (xl,(rx,b)) ⇒ (¬ b ∧ xl

= [])))

definition match-decomp ′-impl :: nat ⇒ (′f , ′v, ′s)match-problem-list ⇒ (nat ×
(′f , ′v, ′s)match-problem-lr) option where

match-decomp ′-impl n mp = map-option (λ (xs,mp).
if apply-decompose ′ mp
then decomp ′-impl n xs mp else (n, mp)) (match-steps-impl mp)

fun pat-inner-impl :: nat ⇒ (′f , ′v, ′s)pat-problem-list ⇒ (′f , ′v, ′s)pat-problem-lr ⇒
(nat × (′f , ′v, ′s)pat-problem-lr) option where

pat-inner-impl n [] pd = Some (n, pd)
| pat-inner-impl n (mp # p) pd = (case match-decomp ′-impl n mp of

None ⇒ pat-inner-impl n p pd
| Some (n ′,mp ′) ⇒ if empty-lr mp ′ then None

else pat-inner-impl n ′ p (mp ′ # pd))

definition pat-impl :: nat ⇒ nat ⇒ (′f , ′v, ′s)pat-problem-list ⇒ (′f , ′v, ′s)pat-impl-result
where

pat-impl n nl p = (case pat-inner-impl nl p [] of None ⇒ New-Problems (n,nl,[])
| Some (nl ′,p ′) ⇒ (case partition (λ mp. snd (snd mp)) p ′ of
(ivc,no-ivc) ⇒ if no-ivc = [] then Incomplete — detected inf-var-conflict (or

empty mp)
else (if improved ∧ ivc 6= [] ∧ (∀ mp ∈ set no-ivc. fst mp = []) then

New-Problems (n, nl ′, [map mp-lr-list (filter — inf-var-conflict’ + match-
clash-sort

(λ mp. ∀ xts ∈ set (fst (snd mp)). is-singleton-list (map (T (CC ,V)) (snd
xts))) no-ivc)])

else (case find-var improved no-ivc of Some x ⇒ let p ′l = map mp-lr-list p ′

in
New-Problems (n + m, nl ′, map (λ τ. subst-pat-problem-list τ p ′l) (τs-list

n x))
| None ⇒ Fin-Var-Form (map (map (map-prod id (map the-Var)) o fst o

snd) no-ivc)))))

partial-function (tailrec) pats-impl :: nat ⇒ nat ⇒ (′f , ′v, ′s)pats-problem-list ⇒
bool where

pats-impl n nl ps = (case ps of [] ⇒ True
| p # ps1 ⇒ (case pat-impl n nl p of

Incomplete ⇒ False
| Fin-Var-Form p ′⇒

let bnd = (cd-sort ◦ snd); cnf = (map (map snd) p ′)

95

in if fidl-solver (bounds-list bnd cnf , dist-pairs-list cnf) then False else
pats-impl n nl ps1

| New-Problems (n ′,nl ′,ps2) ⇒ pats-impl n ′ nl ′ (ps2 @ ps1)))

definition pat-complete-impl :: (′f , ′v, ′s)pats-problem-list ⇒ bool where
pat-complete-impl ps = (let

n = Suc (max-list (List.maps (map fst o vars-term-list o fst) (concat (concat
ps))));

nl = 0 ;
ps ′ = if improved then map (map (map (apsnd (map-vars renVar)))) ps else

ps
in pats-impl n nl ps ′)

end
end

definition renaming-funs :: (nat ⇒ ′a) ⇒ (′a ⇒ ′a) ⇒ bool where
renaming-funs rn rx = (inj rn ∧ inj rx ∧ range rn ∩ range rx = {})

lemmas pat-complete-impl-code =
pattern-completeness-context.pat-complete-impl-def
pattern-completeness-context.pats-impl.simps
pattern-completeness-context.pat-impl-def
pattern-completeness-context.τs-list-def
pattern-completeness-context.apply-decompose ′-def
pattern-completeness-context.decomp ′-main-loop.simps
pattern-completeness-context.decomp ′-impl-def
pattern-completeness-context.insert-rx-def
pattern-completeness-context.decomp-impl.simps
pattern-completeness-context.match-decomp ′-impl-def
pattern-completeness-context.match-steps-impl-def
pattern-completeness-context.pat-inner-impl.simps
pattern-completeness-context.pat-lin-impl-def
pattern-completeness-context.pats-lin-impl.simps
pattern-completeness-context.pat-complete-lin-impl-def

declare pat-complete-impl-code[code]

8.2 Partial Correctness of the Implementation

TODO: move
lemma mset-sum-reindex: (

∑
x∈#A. image-mset (f x) B) = (

∑
i∈#B. {#f x i.

x ∈# A#})
proof (induct A)

case (add x A)
show ?case

by (simp add: add)
(smt (verit, del-insts) add.commute add-mset-add-single image-mset-cong sum-mset.distrib

sum-mset-singleton-mset)
qed auto

96

lemma vars-mp-mset-add: vars-mp-mset (mp + mp ′) = vars-mp-mset mp + vars-mp-mset
mp ′

unfolding vars-mp-mset-def by auto

zipAll
lemma zipAll: assumes length as = n

and
∧

bs. bs ∈ set bss =⇒ length bs = n
shows zipAll as bss = map (λ i. (as ! i, map (λ bs. bs ! i) bss)) [0 ..<n]

using assms
proof (induct as arbitrary: n bss)

case (Cons a as sn bss)
then obtain n where sn: sn = Suc n by auto
let ?tbss = map tl bss
from Cons(2−) sn have prems: length as = n

∧
bs. bs ∈ set ?tbss =⇒ length

bs = n
by auto

from Cons(2−) sn have hd: bs ∈ set bss =⇒ hd bs = bs ! 0 for bs by (cases
bs) force+

from Cons(2−) sn have tl: bs ∈ set bss =⇒ tl bs ! i = bs ! Suc i for bs i by
(cases bs) force+

note IH = Cons(1)[OF prems, of ?tbss]
have id: [0 ..<sn] = 0 # map Suc [0 ..<n] unfolding sn upt-0-Suc-Cons ..
show ?case unfolding id zipAll.simps list.simps map-map o-def

by (subst IH , insert hd tl, auto)
qed simp

We prove that the list-based implementation is a refinement of the multiset-
based one.
lemma mset-concat-union:

mset (concat xs) =
∑

(mset (map mset xs))
by (induct xs, auto simp: union-commute)

lemma in-map-mset[intro]:
a ∈# A =⇒ f a ∈# image-mset f A
unfolding in-image-mset by simp

lemma mset-update: map-of xs x = Some y =⇒
mset (AList.update x z xs) = (mset xs − {# (x,y) #}) + {# (x,z) #}
by (induction xs, auto)

lemma set-update: map-of xs x = Some y =⇒ distinct (map fst xs) =⇒
set (AList.update x z xs) = insert (x,z) (set xs − {(x,y)})
by (induction xs, auto)

lemma mp-rx-append: mp-rx (xs @ ys, b) = mp-rx (xs,b) + mp-rx (ys,b)
unfolding mp-rx-def List.maps-def by auto

97

lemma mp-rx-Cons: mp-rx (p # xs, b) = mp-list (case p of (x, ts) ⇒ map (λt.
(t, Var x)) ts)
+ mp-rx (xs,b)
unfolding mp-rx-def List.maps-def by auto

lemma set-tvars-match-list: set (tvars-match-list mp) = tvars-match (set mp)
by (auto simp: tvars-match-list-def tvars-match-def)

lemma set-tvars-pat-list: set (tvars-pat-list pp) = tvars-pat (pat-list pp)
by (simp add: tvars-pat-list-def tvars-pat-def set-tvars-match-list pat-list-def)

lemma finite-var-form-pat-pat-complete-list:
fixes pp::(′f , ′v, ′s) pat-problem-list and C
assumes fvf : finite-var-form-pat C (pat-list pp)

and pp: pp = pat-of-var-form-list fvf
and dist: Ball (set fvf) (distinct o map fst)

shows pat-complete C (pat-list pp) ←→
(∀α. (∀ v ∈ set (tvars-pat-list pp). α v < card-of-sort C (snd v)) −→

(∃ c ∈ set (map (map snd) fvf).
∀ vs ∈ set c. UNIQ (α ‘ set vs)))

proof−
from finite-var-form-imp-of-var-form-pat[OF fvf]
have vf : var-form-pat (pat-list pp).
have (∃mp ∈ pat-list pp. ∀ x. UNIQ {α v |v. (Var v, Var x) ∈ mp}) ←→
(∃mpv ∈ set fvf . ∀ (x,vs) ∈ set mpv. UNIQ (α ‘ set vs))
(is ?l ←→ ?r)
for α :: - ⇒ nat

proof safe
fix mpv
assume mpv ∈ set fvf

and r : ∀ (x,vs) ∈ set mpv. UNIQ (α ‘ set vs)
with pp[unfolded pat-of-var-form-list-def] dist
have mem: set (match-of-var-form-list mpv) ∈ pat-list pp

and dist: distinct (map fst mpv)
unfolding pat-list-def by auto

show ?l
proof (intro bexI [OF - mem] allI)

fix x
show UNIQ {α v |v. (Var v, Var x) ∈ set (match-of-var-form-list mpv)} (is

UNIQ ?vs)
proof (cases x ∈ fst ‘ set mpv)

case False
hence vs: ?vs = {} unfolding match-of-var-form-list-def by force
show ?thesis unfolding vs using Uniq-False by force

next
case True
then obtain vs where x-vs: (x,vs) ∈ set mpv by force
with r have uniq: UNIQ (α ‘ set vs) by auto
from split-list[OF x-vs] obtain bef aft where mpv: mpv = bef @ (x,vs) #

98

aft by auto
from dist[unfolded arg-cong[OF this, of map fst]]
have x: x /∈ fst ‘ set bef ∪ fst ‘ set aft by auto
hence α ‘ set vs = ?vs unfolding match-of-var-form-list-def mpv by force
with uniq show ?thesis by auto

qed
qed

next
fix mp
assume mp ∈ pat-list pp and uniq: ∀ x. UNIQ {α v |v. (Var v, Var x) ∈ mp}
from this[unfolded pp pat-list-def pat-of-var-form-list-def]

obtain mpv where mem: mpv ∈ set fvf and mp: mp = set (match-of-var-form-list
mpv) by auto

from dist mem have dist: distinct (map fst mpv) by auto
show ∃mpv∈set fvf . ∀ (x, vs)∈set mpv. UNIQ (α ‘ set vs)
proof (intro bexI [OF - mem], safe)

fix x vs
assume (x,vs) ∈ set mpv
from split-list[OF this] obtain bef aft where mpv: mpv = bef @ (x,vs) # aft

by auto
from dist[unfolded arg-cong[OF this, of map fst]]
have x: x /∈ fst ‘ set bef ∪ fst ‘ set aft by auto
from uniq[rule-format, of x]
have UNIQ {α v |v. (Var v, Var x) ∈ mp} .
also have {α v |v. (Var v, Var x) ∈ mp} = α ‘ set vs

unfolding mp match-of-var-form-list-def mpv using x by force
finally show UNIQ (α ‘ set vs) .

qed
qed
note finite-var-form-pat-pat-complete[OF fvf , unfolded this]
note main = this[folded set-tvars-pat-list]
show ?thesis unfolding main

by (intro all-cong, force split: prod.splits)
qed

lemma pat-complete-via-cnf :
assumes fvf : finite-var-form-pat C (pat-list pp)

and pp: pp = pat-of-var-form-list fvf
and dist: Ball (set fvf) (distinct o map fst)
and cnf : cnf = map (map snd) fvf

shows pat-complete C (pat-list pp) ←→
(∀α. (∀ v ∈ set (concat (concat cnf)). α v < card-of-sort C (snd v)) −→

(∃ c ∈ set cnf . ∀ vs ∈ set c. UNIQ (α ‘ set vs)))
unfolding finite-var-form-pat-pat-complete-list[OF fvf pp dist] cnf [symmetric]

proof (intro all-cong1 arg-cong[of - - λ x. x −→ -] ball-cong refl)
show set (tvars-pat-list pp) = set (concat (concat cnf)) unfolding tvars-pat-list-def

cnf pp
by (force simp: tvars-match-list-def pat-of-var-form-list-def match-of-var-form-list-def)

99

qed

context pattern-completeness-context-with-assms
begin

Various well-formed predicates for intermediate results
definition wf-ts :: (′f , nat × ′s) term list ⇒ bool where

wf-ts ts = (ts 6= [] ∧ distinct ts ∧ (∀ j < length ts. ∀ i < j. conflicts (ts ! i) (ts
! j) 6= None))

definition wf-ts2 :: (′f , nat × ′s) term list ⇒ bool where
wf-ts2 ts = (length ts ≥ 2 ∧ distinct ts ∧ (∀ j < length ts. ∀ i < j. conflicts (ts

! i) (ts ! j) 6= None))

definition wf-ts3 :: (′f , nat × ′s) term list ⇒ bool where
wf-ts3 ts = (∃ t ∈ set ts. is-Var t)

definition wf-lx :: (′f , ′v, ′s)match-problem-lx ⇒ bool where
wf-lx lx = (Ball (snd ‘ set lx) is-Fun)

definition wf-rx :: (′f , ′v, ′s)match-problem-rx ⇒ bool where
wf-rx rx = (distinct (map fst (fst rx)) ∧ (Ball (snd ‘ set (fst rx)) wf-ts) ∧ snd rx

= inf-var-conflict (set-mset (mp-rx rx)))

definition wf-rx2 :: (′f , ′v, ′s)match-problem-rx ⇒ bool where
wf-rx2 rx = (distinct (map fst (fst rx)) ∧ (Ball (snd ‘ set (fst rx)) wf-ts2) ∧ snd

rx = inf-var-conflict (set-mset (mp-rx rx)))

definition wf-rx3 :: (′f , ′v, ′s)match-problem-rx ⇒ bool where
wf-rx3 rx = (wf-rx2 rx ∧ (improved −→ snd rx ∨ (Ball (snd ‘ set (fst rx))

wf-ts3)))

definition wf-lr :: (′f , ′v, ′s)match-problem-lr ⇒ bool
where wf-lr pair = (case pair of (lx,rx) ⇒ wf-lx lx ∧ wf-rx rx)

definition wf-lr2 :: (′f , ′v, ′s)match-problem-lr ⇒ bool
where wf-lr2 pair = (case pair of (lx,rx) ⇒ wf-lx lx ∧ (if lx = [] then wf-rx2 rx

else wf-rx rx))

definition wf-lr3 :: (′f , ′v, ′s)match-problem-lr ⇒ bool
where wf-lr3 pair = (case pair of (lx,rx) ⇒ wf-lx lx ∧ (if lx = [] then wf-rx3 rx

else wf-rx rx))

definition wf-pat-lr :: (′f , ′v, ′s)pat-problem-lr ⇒ bool where
wf-pat-lr mps = (Ball (set mps) (λ mp. wf-lr3 mp ∧ ¬ empty-lr mp))

definition wf-pat-lx :: (′f , ′v, ′s)pat-problem-lx ⇒ bool where
wf-pat-lx mps = (Ball (set mps) (λ mp. ll-mp (mp-list (mp-lx mp)) ∧ wf-lx mp ∧

mp 6= []))

100

lemma wf-rx-mset: assumes mset rx = mset rx ′

shows wf-rx (rx,b) = wf-rx (rx ′,b)
proof −

from assms have set: set rx = set rx ′ by (metis mset-eq-setD)
show ?thesis

unfolding wf-rx-def fst-conv snd-conv mp-rx-def set
apply (intro conj-cong refl mset-eq-imp-distinct-iff

arg-cong2 [of - - - - (=)]
arg-cong[of - - inf-var-conflict])

subgoal using assms by simp
subgoal by (auto simp: List.maps-def set)
done

qed

lemma wf-rx2-mset: assumes mset rx = mset rx ′

shows wf-rx2 (rx,b) = wf-rx2 (rx ′,b)
proof −

from assms have set: set rx = set rx ′ by (metis mset-eq-setD)
show ?thesis

unfolding wf-rx2-def fst-conv snd-conv mp-rx-def set
apply (intro conj-cong refl mset-eq-imp-distinct-iff

arg-cong2 [of - - - - (=)]
arg-cong[of - - inf-var-conflict])

subgoal using assms by simp
subgoal by (auto simp: List.maps-def set)
done

qed

lemma wf-lr2-mset: assumes mset rx = mset rx ′

shows wf-lr2 (lx,(rx,b)) = wf-lr2 (lx,(rx ′,b))
using assms
unfolding wf-lr2-def split wf-rx2-mset[OF assms] wf-rx-mset[OF assms]
by simp

lemma mp-lr-mset: assumes mset rx = mset rx ′

shows mp-lr (lx,(rx,b)) = mp-lr (lx,(rx ′,b))
unfolding mp-lr-def split mp-rx-def List.maps-def mset-concat-union using assms

by auto

lemma mp-list-lr : mp-list (mp-lr-list mp) = mp-lr mp
unfolding mp-lr-list-def mp-lr-def
by (cases mp, auto simp: mp-rx-def mp-rx-list-def)

lemma pat-mset-list-lr : pat-mset-list (map mp-lr-list pp) = pat-lr pp
unfolding pat-lr-def pat-mset-list-def map-map o-def mp-list-lr by simp

101

lemma size-term-0 [simp]: size (t :: (′f , ′v)term) > 0
by (cases t, auto)

lemma wf-ts-no-conflict-alt-def : (∀ j < length ts. ∀ i < j. conflicts (ts ! i) (ts ! j)
6= None)
←→ (∀ s t. s ∈ set ts −→ t ∈ set ts −→ conflicts s t 6= None) (is ?l = ?r)

proof
assume ?l
note l = this[rule-format]
show ?r
proof (intro allI impI)

fix s t
assume s ∈ set ts t ∈ set ts
then obtain i j where ij: i < length ts j < length ts

and st: s = ts ! i t = ts ! j unfolding set-conv-nth by auto
then consider (lt) i < j | (eq) i = j | (gt) j < i by linarith
thus conflicts s t 6= None
proof cases

case lt
show ?thesis using l[OF ij(2) lt] unfolding st by auto

next
case eq
show ?thesis unfolding st eq by simp

next
case gt
show ?thesis using l[OF ij(1) gt] conflicts-sym[of s t] unfolding st

by (simp add: option.rel-sel)
qed

qed
next

assume ?r
note r = this[rule-format]
show ?l
proof (intro allI impI)

fix j i
assume j < length ts i < j
hence ts ! i ∈ set ts ts ! j ∈ set ts by (auto simp: set-conv-nth)
from r [OF this] show conflicts (ts ! i) (ts ! j) 6= None

by auto
qed

qed

Continue with properties of the sub-algorithms
lemma insert-rx: assumes res: insert-rx t x rxb = res

and wf : wf-rx rxb
and mp: mp = (ls,rxb)

shows res = Some rx ′ =⇒ (→m)∗∗ (add-mset (t,Var x) (mp-lr mp + M)) (mp-lr

102

(ls,rx ′) + M) ∧ wf-rx rx ′

∧ lvars-mp (add-mset (t,Var x) (mp-lr mp + M)) ⊇ lvars-mp (mp-lr (ls,rx ′) +
M)

res = None =⇒ match-fail (add-mset (t,Var x) (mp-lr mp + M))
proof −

obtain rx b where rxb: rxb = (rx,b) by force
note [simp] = List.maps-def
note res = res[unfolded insert-rx-def]
{

assume ∗: res = None
with res rxb obtain ts where look: map-of rx x = Some ts by (auto split:

option.splits)
with res[unfolded look Let-def rxb split] ∗ obtain t ′ where t ′: t ′ ∈ set ts and

clash: Conflict-Clash t t ′

by (auto split: if-splits option.splits)
from map-of-SomeD[OF look] t ′ have (t ′,Var x) ∈# mp-rx rxb

unfolding mp-rx-def rxb by auto
hence (t ′,Var x) ∈# mp-lr mp + M unfolding mp mp-lr-def by auto
then obtain mp ′ where mp: mp-lr mp + M = add-mset (t ′,Var x) mp ′ by

(rule mset-add)
show match-fail (add-mset (t,Var x) (mp-lr mp + M)) unfolding mp

by (rule match-clash ′[OF clash])
}
{

assume res = Some rx ′

note res = res[unfolded this rxb split]
show mp-step-mset^∗∗ (add-mset (t,Var x) (mp-lr mp + M)) (mp-lr (ls,rx ′) +

M) ∧ wf-rx rx ′

∧ lvars-mp (mp-lr (ls, rx ′) + M) ⊆ lvars-mp (add-mset (t, Var x) (mp-lr mp
+ M))

proof (cases map-of rx x)
case look: None
from res[unfolded this]
have rx ′: rx ′ = ((x,[t]) # rx, b) by auto
have id: mp-rx rx ′ = add-mset (t, Var x) (mp-rx rxb)

using look unfolding mp-rx-def mset-concat-union mset-map rx ′ o-def rxb
by auto

have [simp]: (x, t) /∈ set rx for t using look
using weak-map-of-SomeI by force

have inf-var-conflict (mp-mset (mp-rx ((x, [t]) # rx, b))) = inf-var-conflict
(mp-mset (mp-rx (rx, b)))

unfolding mp-rx-def fst-conv inf-var-conflict-def
by (intro ex-cong1 , auto)

hence wf : wf-rx rx ′ using wf look unfolding wf-rx-def rx ′ rxb by (auto simp:
wf-ts-def)

show ?thesis unfolding mp mp-lr-def split id
using wf unfolding rx ′ by auto

next
case look: (Some ts)

103

from map-of-SomeD[OF look] have mem: (x,ts) ∈ set rx by auto
note res = res[unfolded look option.simps Let-def]
from res obtain cs where those: those (map (conflicts t) ts) = Some cs by

(auto split: option.splits)
note res = res[unfolded those option.simps]
from arg-cong[OF those[unfolded those-eq-Some], of set] have confl: conflicts

t ‘ set ts = Some ‘ set cs by auto
show ?thesis
proof (cases [] ∈ set cs)

case True
with res have rx ′: rx ′ = rxb by (auto split: if-splits simp: mp rxb those)
from True confl obtain t ′ where t ′ ∈ set ts and conflicts t t ′ = Some []

by force
hence t: t ∈ set ts using conflicts(5)[of t t ′] by auto
hence (t, Var x) ∈# mp-rx rxb unfolding mp-rx-def rxb using mem by

auto
hence (t, Var x) ∈# mp-lr mp + M unfolding mp mp-lr-def by auto
then obtain sub where id: mp-lr mp + M = add-mset (t, Var x) sub by

(rule mset-add)
show ?thesis unfolding id rx ′ mp[symmetric] using match-duplicate[of (t,

Var x) sub] wf
by (auto simp: lvars-mp-def)

next
case False
with res have rx ′: rx ′ = (AList.update x (t # ts) rx, b ∨ (∃ y∈set (concat

cs). inf-sort (snd y))) by (auto split: if-splits)
from split-list[OF mem] obtain rx1 rx2 where rx: rx = rx1 @ (x,ts) #

rx2 by auto
have id: mp-rx rx ′ = add-mset (t, Var x) (mp-rx rxb)

unfolding rx ′ mp-rx-def rxb by (simp add: mset-update[OF look] mset-concat-union,
auto simp: rx)

from wf [unfolded wf-rx-def] rx rxb have ts: wf-ts ts and b: b = inf-var-conflict
(mp-mset (mp-rx rxb)) by auto

from False confl conflicts(5)[of t t] have t: t /∈ set ts by force
from confl have None /∈ set (map (conflicts t) ts) by auto
with ts t have ts ′: wf-ts (t # ts) unfolding wf-ts-def

apply clarsimp
subgoal for j i by (cases j, force, cases i; force simp: set-conv-nth)
done
have b: (b ∨ (∃ y∈set (concat cs). inf-sort (snd y))) = inf-var-conflict

(mp-mset (add-mset (t, Var x) (mp-rx rxb))) (is - = ?ivc)
proof (standard, elim disjE bexE)

show b =⇒ ?ivc unfolding b inf-var-conflict-def by force
{

fix y
assume y: y ∈ set (concat cs) and inf : inf-sort (snd y)
from y confl obtain t ′ ys where t ′: t ′ ∈ set ts and c: conflicts t t ′ =

Some ys and y: y ∈ set ys unfolding set-concat
by (smt (verit, del-insts) UnionE image-iff)

104

have y: Conflict-Var t t ′ y using c y by auto
from mem t ′ have (t ′,Var x) ∈# mp-rx rxb unfolding rxb mp-rx-def

by auto
thus ?ivc unfolding inf-var-conflict-def using inf y by fastforce

}
assume ?ivc
from this[unfolded inf-var-conflict-def]
obtain s1 s2 x ′ y

where ic: (s1 , Var x ′) ∈# add-mset (t, Var x) (mp-rx rxb) ∧ (s2 , Var
x ′) ∈# add-mset (t, Var x) (mp-rx rxb) ∧ Conflict-Var s1 s2 y ∧ inf-sort (snd y)

by blast
show b ∨ (∃ y∈set (concat cs). inf-sort (snd y))
proof (cases (s1 , Var x ′) ∈# mp-rx rxb ∧ (s2 , Var x ′) ∈# mp-rx rxb)

case True
with ic have b unfolding b inf-var-conflict-def by blast
thus ?thesis ..

next
case False
with ic have (s1 ,Var x ′) = (t,Var x) ∨ (s2 ,Var x ′) = (t,Var x) by auto

hence ∃ s y. (s, Var x) ∈# add-mset (t, Var x) (mp-rx rxb) ∧ Conflict-Var
t s y ∧ inf-sort (snd y)

proof
assume (s1 , Var x ′) = (t, Var x)
thus ?thesis using ic by blast

next
assume ∗: (s2 , Var x ′) = (t, Var x)
with ic have Conflict-Var s1 t y by auto

hence Conflict-Var t s1 y using conflicts-sym[of s1 t] by (cases conflicts
s1 t; cases conflicts t s1 , auto)

with ic ∗ show ?thesis by blast
qed
then obtain s y where sx: (s, Var x) ∈# add-mset (t, Var x) (mp-rx

rxb) and y: Conflict-Var t s y and inf : inf-sort (snd y)
by blast
from wf have dist: distinct (map fst rx) unfolding wf-rx-def rxb by

auto
from y have s 6= t by auto
with sx have (s, Var x) ∈# mp-rx rxb by auto

hence s ∈ set ts unfolding mp-rx-def rxb using mem eq-key-imp-eq-value[OF
dist] by auto

with y confl have y ∈ set (concat cs) by (cases conflicts t s; force)
with inf show ?thesis by auto

qed
qed
have wf : wf-rx rx ′ using wf ts ′ unfolding wf-rx-def id unfolding rx ′ rxb

snd-conv b by (auto simp: distinct-update set-update[OF look])
show ?thesis using wf id unfolding mp by (auto simp: mp-lr-def)

qed
qed

105

}
qed

lemma decomp-impl: decomp-impl mp = res =⇒
(res = Some mp ′ −→ (→m)∗∗ (mp-list mp + M) (mp-lr mp ′ + M) ∧ wf-lr mp ′

∧ lvars-mp (mp-list mp + M) ⊇ lvars-mp (mp-lr mp ′ + M))
∧ (res = None −→ (∃ mp ′. (→m)∗∗ (mp-list mp + M) mp ′ ∧ match-fail mp ′))

proof (induct mp arbitrary: res M mp ′ rule: decomp-impl.induct)
case 1
thus ?case by (auto simp: mp-lr-def mp-rx-def List.maps-def wf-lr-def wf-lx-def

wf-rx-def inf-var-conflict-def)
next

case (2 f ts g ls mp res M mp ′)
have id: mp-list ((Fun f ts, Fun g ls) # mp) + M = add-mset (Fun f ts, Fun g

ls) (mp-list mp + M)
by auto

show ?case
proof (cases (f ,length ts) = (g,length ls))

case False
with 2 (2−) have res: res = None by auto
from match-clash[OF False, of (mp-list mp + M), folded id]
show ?thesis unfolding res by blast

next
case True
have id2 : mp-list (zip ts ls @ mp) + M = mp-list mp + M + mp-list (zip ts

ls)
by auto

from True 2 (2−) have res: decomp-impl (zip ts ls @ mp) = res by auto
note IH = 2 (1)[OF True this, of mp ′ M]
note step = match-decompose[OF True, of mp-list mp + M , folded id id2]
have lvars: lvars-mp (mp-list ((Fun f ts, Fun g ls) # mp) + M) ⊇ lvars-mp

(mp-list (zip ts ls @ mp) + M)
by (auto simp: lvars-mp-def dest: set-zip-rightD)

from IH step subset-trans[OF - lvars]
show ?thesis by (meson converse-rtranclp-into-rtranclp)

qed
next

case (3 x g ls mp res M mp ′)
note res = 3 (2)[unfolded decomp-impl.simps]
show ?case
proof (cases decomp-impl mp)

case None
from 3 (1)[OF None, of mp ′ add-mset (Var x, Fun g ls) M] None res show

?thesis by auto
next

case (Some mpx)
then obtain lx rx where decomp: decomp-impl mp = Some (lx,rx) by (cases

mpx, auto)

106

from res[unfolded decomp option.simps split] have res: res = Some ((x, Fun
g ls) # lx, rx) by auto

from 3 (1)[OF decomp, of (lx, rx) add-mset (Var x, Fun g ls) M] res
show ?thesis by (auto simp: mp-lr-def wf-lr-def wf-lx-def)

qed
next

case (4 t y mp res M mp ′)
note res = 4 (2)[unfolded decomp-impl.simps]
show ?case
proof (cases decomp-impl mp)

case None
from 4 (1)[OF None, of mp ′ add-mset (t, Var y) M] None res show ?thesis

by auto
next

case (Some mpx)
then obtain lx rx where decomp: decomp-impl mp = Some (lx,rx) by (cases

mpx, auto)
note res = res[unfolded decomp option.simps split]
from 4 (1)[OF decomp, of (lx, rx) add-mset (t, Var y) M]
have IH : (→m)∗∗ (mp-list ((t, Var y) # mp) + M) (mp-lr (lx, rx) + add-mset

(t, Var y) M)
wf-lr (lx, rx)
lvars-mp (mp-lr (lx, rx) + add-mset (t, Var y) M)
⊆ lvars-mp (mp-list mp + add-mset (t, Var y) M) by auto

from IH have wf-rx: wf-rx rx unfolding wf-lr-def by auto
show ?thesis
proof (cases insert-rx t y rx)

case None
with res have res: res = None by auto
from insert-rx(2)[OF None wf-rx refl refl, of lx M]

IH res show ?thesis by auto
next

case (Some rx ′)
with res have res: res = Some (lx, rx ′) by auto
from insert-rx(1)[OF Some wf-rx refl refl, of lx M]
have wf-rx: wf-rx rx ′

and steps: (→m)∗∗ (mp-lr (lx, rx) + add-mset (t, Var y) M) (mp-lr (lx,
rx ′) + M)

and lvars: lvars-mp (mp-lr (lx, rx ′) + M) ⊆ lvars-mp (add-mset (t, Var y)
(mp-lr (lx, rx) + M))

by auto
from IH (1) steps
have steps: (→m)∗∗ (mp-list ((t, Var y) # mp) + M) (mp-lr (lx, rx ′) + M)

by auto
from wf-rx IH (2−) have wf : wf-lr (lx, rx ′)

unfolding wf-lr-def by auto
from res wf steps lvars IH (3) show ?thesis by auto

qed
qed

107

qed

lemma match-decomp-lin-impl: match-decomp-lin-impl mp = res =⇒ ll-mp (mp-list
mp + M) =⇒

(res = Some mp ′ −→ (→m)∗∗ (mp-list mp + M) (mp-list (mp-lx mp ′) + M) ∧
wf-lx mp ′ ∧ ll-mp (mp-list (mp-lx mp ′) + M))
∧ (res = None −→ (∃ mp ′. (→m)∗∗ (mp-list mp + M) mp ′ ∧ match-fail mp ′))

proof (induct mp arbitrary: res M mp ′ rule: match-decomp-lin-impl.induct)
case 1
thus ?case by (auto simp: mp-lr-def wf-lx-def)

next
case (2 f ts g ls mp res M mp ′)
have id: mp-list ((Fun f ts, Fun g ls) # mp) + M = add-mset (Fun f ts, Fun g

ls) (mp-list mp + M)
by auto

show ?case
proof (cases (f ,length ts) = (g,length ls))

case False
with 2 (2−) have res: res = None by auto
from match-clash[OF False, of (mp-list mp + M), folded id]
show ?thesis unfolding res by blast

next
case True
have id2 : mp-list (zip ts ls @ mp) + M = mp-list mp + M + mp-list (zip ts

ls)
by auto

from True 2 (2−) have res: match-decomp-lin-impl (zip ts ls @ mp) = res by
auto

have imag-snd: image-mset snd (mp-list (zip ts ls)) = mset ls using True
by simp (metis map-snd-zip mset-map)

have vars-mp-mset (mp-list ((Fun f ts, Fun g ls) # mp) + M)
= vars-term-ms (Fun g ls) + vars-mp-mset (mp-list mp + M)
unfolding vars-mp-mset-def by auto

also have vars-term-ms (Fun g ls) = vars-mp-mset (mp-list (zip ts ls))
unfolding vars-mp-mset-def image-mset.comp[symmetric]
unfolding o-def imag-snd by simp

finally have vars-mp-mset (mp-list ((Fun f ts, Fun g ls) # mp) + M)
= vars-mp-mset (mp-list (zip ts ls @ mp) + M)

unfolding vars-mp-mset-def by auto
with 2 (3) have ll: ll-mp (mp-list (zip ts ls @ mp) + M) unfolding ll-mp-def

by auto
note IH = 2 (1)[OF True res ll, of mp ′]
note step = match-decompose[OF True, of mp-list mp + M , folded id id2]
from IH step subset-trans
show ?thesis by (meson converse-rtranclp-into-rtranclp)

qed
next

case (3 x g ls mp res M mp ′)
note res = 3 (2)[unfolded match-decomp-lin-impl.simps]

108

from 3 (3) have ll: ll-mp (mp-list mp + add-mset (Var x, Fun g ls) M) by simp
note IH = 3 (1)[OF - ll]
show ?case
proof (cases match-decomp-lin-impl mp)

case None
from IH [OF None] None res show ?thesis by auto

next
case (Some mpx)

then obtain lx where decomp: match-decomp-lin-impl mp = Some lx by (cases
mpx, auto)

from res[unfolded decomp option.simps split] have res: res = Some ((x, Fun
g ls) # lx) by auto

from IH [OF decomp, of lx] res
show ?thesis by (auto simp: wf-lx-def)

qed
next

case (4 t y mp res M mp ′)
note res = 4 (2)[unfolded match-decomp-lin-impl.simps]
have vars-mp-mset (mp-list mp + M) ⊆# vars-mp-mset (mp-list ((t, Var y) #

mp) + M)
unfolding vars-mp-mset-def by auto

with 4 (3) have ll-new: ll-mp (mp-list mp + M) unfolding ll-mp-def
by (meson dual-order .trans subseteq-mset-def)

have mp-list ((t, Var y) # mp) + M = add-mset (t, Var y) (mp-list mp + M)
by auto

also have . . . →m mp-list mp + M
proof (rule match-match)

from 4 (3)[unfolded ll-mp-def]
have count (vars-mp-mset (mp-list ((t, Var y) # mp) + M)) y ≤ 1 by auto
hence count (vars-mp-mset (mp-list mp + M)) y = 0

unfolding vars-mp-mset-def by auto
hence y /∈# vars-mp-mset (mp-list mp + M)

by (simp add: not-in-iff)
hence y /∈ set-mset (vars-mp-mset (mp-list mp + M)) by blast

also have set-mset (vars-mp-mset (mp-list mp + M)) =
⋃

(vars ‘ snd ‘ mp-mset
(mp-list mp + M))

unfolding vars-mp-mset-def o-def by auto
finally show y /∈

⋃
(vars ‘ snd ‘ mp-mset (mp-list mp + M)) by auto

qed
finally have mp-list ((t, Var y) # mp) + M →m mp-list mp + M .
note step = converse-rtranclp-into-rtranclp[of mp-step-mset, OF this]
note IH = 4 (1)[OF - ll-new]
show ?case
proof (cases match-decomp-lin-impl mp)

case None
with IH [OF None] res step show ?thesis by fastforce

next
case (Some mpx)
with IH [OF Some, of mpx] res step show ?thesis by fastforce

109

qed
qed

lemma pat-inner-lin-impl: assumes pat-inner-lin-impl p pd = res
and wf-pat-lx pd ∀ mp ∈ set p. ll-mp (mp-list mp)
and tvars-pat (pat-mset (pat-mset-list p + pat-lx pd)) ⊆ V
shows res = None =⇒ (add-mset (pat-mset-list p + pat-lx pd) P, P) ∈ V+

and res = Some p ′ =⇒ (add-mset (pat-mset-list p + pat-lx pd) P, add-mset
(pat-lx p ′) P) ∈ V∗

∧ wf-pat-lx p ′ ∧ tvars-pat (pat-mset (pat-lx p ′)) ⊆ V
proof (atomize(full), insert assms, induct p arbitrary: pd res p ′)

case Nil
then show ?case by (auto simp: wf-pat-lr-def pat-mset-list-def pat-lr-def)

next
case (Cons mp p pd res p ′)
let ?p = pat-mset-list p + pat-lx pd
have id: pat-mset-list (mp # p) + pat-lx pd = add-mset (mp-list mp) ?p unfold-

ing pat-mset-list-def by auto
from Cons(4) have ll-mp (mp-list mp + {#}) by auto
note match = match-decomp-lin-impl[OF - this]
note res = Cons(2)[unfolded pat-inner-lin-impl.simps]
from Cons(4) have llp: ∀mp∈set p. ll-mp (mp-list mp)

and ll-mp: ll-mp (mp-list mp) by auto
show ?case
proof (cases match-decomp-lin-impl mp)

case (Some mp ′)
from match[OF this, of mp ′]
have steps: (→m)∗∗ (mp-list mp) (mp-list (mp-lx mp ′)) and wf : wf-lx mp ′

and ll-mp ′: ll-mp (mp-list (mp-lx mp ′)) by auto
from mp-step-mset-steps-vars[OF steps]

have tvars: tvars-match (mp-mset (mp-list (mp-lx mp ′))) ⊆ tvars-match (mp-mset
(mp-list mp)) by auto

note Psteps = mp-step-mset-cong[OF steps, of ?p P, folded id]
note res = res[unfolded Some option.simps]
show ?thesis
proof (cases mp ′ = [])

case True
with res have res: res = None by auto
from True have empty: mp-list (mp-lx mp ′) = {#} by auto
have (add-mset (add-mset (mp-list (mp-lx mp ′)) ?p) P, {#} + P) ∈ V

unfolding empty unfolding P-step-def
by (standard, unfold split, rule P-simp-pp, rule pat-remove-pp)

with Psteps
show ?thesis using res by auto

next
case False
with res have res: pat-inner-lin-impl p (mp ′ # pd) = res by auto
have wf-pat-lx (mp ′ # pd) using wf ll-mp ′ Cons(3) False

110

unfolding wf-pat-lx-def by auto
note IH = Cons(1)[OF res this llp, of p ′]
have tvars: tvars-pat (pat-mset (pat-mset-list p + pat-lx (mp ′ # pd))) ⊆ V

using tvars Cons(5) unfolding tvars-pat-def
by (auto simp: pat-lx-def pat-mset-list-def)

note IH = IH [OF this]
define I1 where I1 = add-mset (pat-mset-list p + pat-lx (mp ′ # pd)) P

define I2 where I2 = add-mset (add-mset (mp-list (mp-lx mp ′)) (pat-mset-list
p + pat-lx pd)) P

have I2 = I1 unfolding I1-def I2-def by (auto simp: pat-lx-def)
define S where S = add-mset (pat-mset-list (mp # p) + pat-lx pd) P
define E where E = add-mset (pat-lx p ′) P
from IH Psteps show ?thesis
unfolding I1-def [symmetric] I2-def [symmetric] S-def [symmetric] E-def [symmetric]

unfolding ‹I2 = I1 › by auto
qed

next
case None
from match[OF None] obtain mp ′ where

msteps: (→m)∗∗ (mp-list mp) mp ′ and fail: match-fail mp ′ by auto
note steps = mp-step-mset-cong[OF this(1), of ?p P, folded id]
note tvars = mp-step-mset-steps-vars[OF msteps]
from P-simp-pp[OF pat-remove-mp[OF fail, of ?p], of P]
have (add-mset (add-mset mp ′ ?p) P, add-mset ?p P) ∈ P-step

unfolding P-step-def by auto
with steps have steps: (add-mset (pat-mset-list (mp # p) + pat-lx pd) P,

add-mset ?p P) ∈ P-step^∗ by auto
from res[unfolded None option.simps]
have res: pat-inner-lin-impl p pd = res by auto
note IH = Cons(1)[OF res Cons(3) llp, of p ′]
have tvars-pat (pat-mset (pat-mset-list p + pat-lx pd)) ⊆ V

using Cons(5) unfolding tvars-pat-def
by (auto simp: pat-lx-def pat-mset-list-def)

from IH [OF this] steps tvars
show ?thesis by auto

qed
qed

lemma pat-mset-list: pat-mset (pat-mset-list p) = pat-list p
unfolding pat-list-def pat-mset-list-def by (auto simp: image-comp)

lemma vars-mp-mset-subst: vars-mp-mset (mp-list (subst-match-problem-list τ mp))

= vars-mp-mset (mp-list mp)
unfolding vars-mp-mset-def subst-match-problem-list-def subst-left-def
by (simp add: image-mset.comp[symmetric], intro

arg-cong[of - - λ xs.
∑

(image-mset vars-term-ms xs)])
(induct mp, auto)

111

lemma subst-conversion: map (λτ. subst-pat-problem-mset τ (pat-mset-list p)) xs
=

map pat-mset-list (map (λτ. subst-pat-problem-list τ p) xs)
unfolding subst-pat-problem-list-def subst-pat-problem-mset-def subst-match-problem-mset-def

subst-match-problem-list-def map-map o-def
by (intro list.map-cong0 , auto simp: pat-mset-list-def o-def image-mset.compositionality)

lemma ll-mp-subst: ll-mp (mp-list (subst-match-problem-list τ mp)) = ll-mp (mp-list
mp)

unfolding ll-mp-def vars-mp-mset-subst by simp

lemma ll-pp-subst: ll-pp (subst-pat-problem-list τ p) = ll-pp p
unfolding ll-pp-def subst-pat-problem-list-def using ll-mp-subst[of τ]
by auto

Main simulation lemma for a single pat-lin-impl step.
lemma pat-lin-impl:

assumes pat-lin-impl n p = res
and vars: tvars-pat (pat-list p) ⊆ {..<n} × S
and linear : ll-pp p

shows res = None =⇒ ∃ p ′. (add-mset (pat-mset-list p) P, add-mset p ′ P) ∈
V∗ ∧ pat-fail p ′

and res = Some ps =⇒ (add-mset (pat-mset-list p) P, mset (map pat-mset-list
ps) + P) ∈ V+

∧ tvars-pat (
⋃

(pat-list ‘ set ps)) ⊆ {..< n + m} × S
∧ Ball (set ps) ll-pp

proof (atomize(full), goal-cases)
case 1
have wf : wf-pat-lx [] unfolding wf-pat-lx-def by auto
have vars: tvars-pat (pat-mset (pat-mset-list p)) ⊆ {..<n} × S

using vars unfolding pat-mset-list by auto
have pat-mset-list p + pat-lx [] = pat-mset-list p unfolding pat-lx-def by auto
note pat-inner = pat-inner-lin-impl[OF refl wf , of p, unfolded this, OF lin-

ear [unfolded ll-pp-def] vars]
note res = assms(1)[unfolded pat-lin-impl-def]
show ?case
proof (cases pat-inner-lin-impl p [])

case None
from pat-inner(1)[OF this] res[unfolded None option.simps] vars
show ?thesis by (auto simp: tvars-pat-def)

next
case (Some p ′)
from pat-inner(2)[OF Some]
have steps: (add-mset (pat-mset-list p) P, add-mset (pat-lx p ′) P) ∈ V∗

and wf : wf-pat-lx p ′

and varsp ′: tvars-pat (pat-mset (pat-lx p ′)) ⊆ {..<n} × S
by auto

112

note res = res[unfolded Some option.simps]
show ?thesis
proof (cases p ′)

case Nil
with res have res: res = None by auto
from Nil have pat-lx p ′ = {#} by (auto simp: pat-lx-def)
hence fail: pat-fail (pat-lx p ′)

using pat-empty by auto
from fail res steps show ?thesis by auto

next
case (Cons mp mps)
from wf [unfolded Cons wf-pat-lx-def] have mp: wf-lx mp mp 6= [] by auto
then obtain f ts x mp ′ where mp = (x,Fun f ts) # mp ′

by (cases mp; cases snd (hd mp), auto simp: wf-lx-def)
note Cons = Cons[unfolded this]
from Cons have id: (p ′ = []) = False by auto
define p ′l where p ′l = map mp-lx p ′

note res = res[unfolded Cons list.sel fst-conv, folded Cons, unfolded id if-False
Let-def]

from res have res: res = Some (map (λτ. subst-pat-problem-list τ p ′l) (τs-list
n x))

by (auto simp: p ′l-def)
show ?thesis
proof (intro conjI impI)

assume res = Some ps
with res have ps-def : ps = map (λτ. subst-pat-problem-list τ p ′l) (τs-list n

x) by auto
have id: pat-lx p ′= pat-mset-list p ′l unfolding p ′l-def pat-lx-def pat-mset-list-def

by auto
have ll: ll-pp p ′l unfolding p ′l-def using wf unfolding wf-pat-lx-def

ll-pp-def by auto
thus Ball (set ps) ll-pp unfolding ps-def using ll-pp-subst by auto
have subst: map (λτ. subst-pat-problem-mset τ (pat-lx p ′)) (τs-list n x) =

map pat-mset-list ps
unfolding id

unfolding ps-def subst-pat-problem-list-def subst-pat-problem-mset-def
subst-match-problem-mset-def

subst-match-problem-list-def map-map o-def
by (intro list.map-cong0 , auto simp: pat-mset-list-def o-def image-mset.compositionality)
have step: (add-mset (pat-lx p ′) P, mset (map pat-mset-list ps) + P) ∈ V

unfolding P-step-def
proof (standard, unfold split, intro P-simp-pp)

note x = Some[unfolded find-var-def]
have disj: tvars-disj-pp {n..<n + m} (pat-mset (pat-lx p ′))

using varsp ′ unfolding tvars-pat-def tvars-disj-pp-def tvars-match-def
by force

obtain mp ′′ p ′′ where expand: pat-lx p ′ = add-mset (add-mset (Var x,
Fun f ts) mp ′′) p ′′

unfolding Cons pat-lx-def by auto

113

have pat-lx p ′ ⇒m mset (map (λτ. subst-pat-problem-mset τ (pat-lx p ′))
(τs-list n x)) (is - ⇒m ?ps)

using pat-instantiate[OF disj[unfolded expand], folded expand, of x Fun f
ts]

by auto
also have ?ps = mset (map pat-mset-list ps)

unfolding ps-def id unfolding subst-conversion ..
finally show pat-lx p ′⇒m mset (map pat-mset-list ps) by auto

qed
with steps
show (add-mset (pat-mset-list p) P, mset (map pat-mset-list ps) + P) ∈

V+

by auto
show tvars-pat (

⋃
(pat-list ‘ set ps)) ⊆ {..<n + m} × S

proof (safe del: conjI)
fix yn ι
assume (yn,ι) ∈ tvars-pat (

⋃
(pat-list ‘ set ps))

then obtain pi mp
where pi: pi ∈ set ps

and mp: mp ∈ set pi and y: (yn,ι) ∈ tvars-match (set mp)
unfolding tvars-pat-def pat-list-def by force

from pi[unfolded ps-def set-map subst-pat-problem-list-def subst-match-problem-list-def ,
simplified]

obtain τ where tau: τ ∈ set (τs-list n x) and pi: pi = map (map (subst-left
τ)) p ′l by auto

from tau[unfolded τs-list-def]
obtain info where infoCl: info ∈ set (Cl (snd x)) and tau: τ = τc n x

info by auto
from Cl-len[of snd x] this(1) have len: length (snd info) ≤ m by force
from mp[unfolded pi set-map] obtain mp ′ where mp ′: mp ′ ∈ set p ′l and

mp: mp = map (subst-left τ) mp ′ by auto
from y[unfolded mp tvars-match-def image-comp o-def set-map]
obtain pair where ∗: pair ∈ set mp ′ (yn,ι) ∈ vars (fst (subst-left τ pair))

by auto
obtain s t where pair : pair = (s,t) by force
from ∗[unfolded pair] have st: (s,t) ∈ set mp ′ and y: (yn,ι) ∈ vars (s · τ)

unfolding subst-left-def by auto
from y[unfolded vars-term-subst, simplified]
obtain z where z: z ∈ vars s and y: (yn,ι) ∈ vars (τ z) by auto
obtain f ss where info: info = (f ,ss) by (cases info, auto)
with len have len: length ss ≤ m by auto
define ts :: (′f ,-)term list where ts = map Var (zip [n..<n + length ss]

ss)
from tau[unfolded τc-def info split]
have tau: τ = subst x (Fun f ts) unfolding ts-def by auto
from infoCl[unfolded Cl info]
have f : f : ss → snd x in C by auto
from C-sub-S [OF this] have ssS : set ss ⊆ S by simp
from ssS

114

have vars (Fun f ts) ⊆ {..< n + length ss} × S unfolding ts-def by (auto
simp: set-zip)

also have . . . ⊆ {..< n + m} × S using len by auto
finally have subst: vars (Fun f ts) ⊆ {..< n + m} × S by auto
show yn ∈ {..<n + m} ∧ ι ∈ S
proof (cases z = x)

case True
with y subst tau show ?thesis by force

next
case False
hence τ z = Var z unfolding tau by (auto simp: subst-def)
with y have z = (yn,ι) by auto
with z have y: (yn,ι) ∈ vars s by auto
with st have (yn,ι) ∈ tvars-match (set mp ′) unfolding tvars-match-def

by force
with mp ′ have (yn,ι) ∈ tvars-pat (set ‘ set p ′l) unfolding tvars-pat-def

by auto
also have . . . = tvars-pat (pat-mset (pat-mset-list p ′l))

by (rule arg-cong[of - - tvars-pat], auto simp: pat-mset-list-def image-comp)
also have . . . = tvars-pat (pat-mset (pat-lx p ′)) unfolding id[symmetric]

by simp
also have . . . ⊆ {..<n} × S using varsp ′ .
finally show ?thesis by auto

qed
qed

qed (insert res, auto)
qed

qed
qed

lemma pats-mset-list: pats-mset (pats-mset-list ps) = pat-list ‘ set ps
unfolding pat-list-def pat-mset-list-def o-def set-mset-mset set-map

mset-map image-comp set-image-mset by simp

lemma pats-lin-impl: assumes ∀ p ∈ set ps. tvars-pat (pat-list p) ⊆ {..<n} × S
and Ball (set ps) ll-pp
and ∀ pp ∈ pat-list ‘ set ps. wf-pat pp
shows pats-lin-impl n ps = pats-complete C (pat-list ‘ set ps)

proof (insert assms, induct ps arbitrary: n rule:
SN-induct[OF SN-inv-image[OF SN-imp-SN-trancl[OF SN-P-step]], of pats-mset-list])

case (1 ps n)
note IH = 1 (1)
note ll = 1 (3)
note wf = 1 (4)
note simps = pats-lin-impl.simps[of n ps]
show ?case
proof (cases ps)

case Nil

115

show ?thesis unfolding simps unfolding Nil by auto
next

case (Cons p ps1)
hence id: pats-mset-list ps = add-mset (pat-mset-list p) (pats-mset-list ps1) by

auto
note res = simps[unfolded Cons list.simps, folded Cons]
from 1 (2)[rule-format, of p] Cons have tvars-pat (pat-list p) ⊆ {..<n} × S

by auto
note pat-impl = pat-lin-impl[OF refl this]
from ll Cons have ll-pp p by auto
note pat-impl = pat-impl[OF this, where P = (pats-mset-list ps1), folded id]
let ?step = (V) :: ((′f , ′v, ′s)pats-problem-mset × (′f , ′v, ′s)pats-problem-mset)set

from wf have wf-pats (pat-list ‘ set ps) unfolding wf-pats-def by auto
note steps-to-equiv = P-steps-pcorrect[OF this[folded pats-mset-list]]
show ?thesis
proof (cases pat-lin-impl n p)

case None
with res have res: pats-lin-impl n ps = False by auto
from pat-impl(1)[OF None]
obtain p ′ where steps: (pats-mset-list ps, add-mset p ′ (pats-mset-list ps1)) ∈

V∗ and fail: pat-fail p ′

by auto
show ?thesis
proof (cases add-mset p ′ (pats-mset-list ps1) = bottom-mset)

case True
with res P-steps-pcorrect[OF - steps, unfolded pats-mset-list] wf
show ?thesis by (auto simp: wf-pats-def)

next
case False
from P-failure[OF fail False]

have (add-mset p ′ (pats-mset-list ps1), bottom-mset) ∈ V unfolding
P-step-def by auto

with steps have (pats-mset-list ps, bottom-mset) ∈ V∗ by auto
from steps-to-equiv[OF this] res show ?thesis unfolding pats-mset-list by

simp
qed

next
case (Some ps2)
with res have res: pats-lin-impl n ps = pats-lin-impl (n + m) (ps2 @ ps1)

by auto
from pat-impl(2)[OF Some]
have steps: (pats-mset-list ps, mset (map pat-mset-list (ps2 @ ps1))) ∈ V+

and vars: tvars-pat (
⋃

(pat-list ‘ set ps2)) ⊆ {..<n + m} × S
and ll: Ball (set ps2) ll-pp
by auto

have vars: ∀ p∈set (ps2 @ ps1). tvars-pat (pat-list p) ⊆ {..<n + m} × S
proof

fix p

116

assume p ∈ set (ps2 @ ps1)
hence p ∈ set ps2 ∨ p ∈ set ps1 by auto
thus tvars-pat (pat-list p) ⊆ {..<n+ m} × S
proof

assume p ∈ set ps2
hence tvars-pat (pat-list p) ⊆ tvars-pat (

⋃
(pat-list ‘ set ps2))

unfolding tvars-pat-def by auto
with vars show ?thesis by auto

next
assume p ∈ set ps1
hence p ∈ set ps unfolding Cons by auto
from 1 (2)[rule-format, OF this] show ?thesis by auto

qed
qed
note steps-equiv = steps-to-equiv[OF trancl-into-rtrancl[OF steps]]
from steps-equiv have wf-pats (pats-mset (mset (map pat-mset-list (ps2 @

ps1)))) by auto
hence wf2 : Ball (pat-list ‘ set (ps2 @ ps1)) wf-pat unfolding wf-pats-def

pats-mset-list[symmetric]
by auto

have pats-lin-impl n ps = pats-lin-impl (n + m) (ps2 @ ps1) unfolding res
by simp

also have . . . = pats-complete C (pat-list ‘ set (ps2 @ ps1))
proof (rule IH [OF - vars - wf2])

show (ps, ps2 @ ps1) ∈ inv-image (V+) pats-mset-list
using steps by auto

show ∀ p∈set (ps2 @ ps1). ll-pp p using ll 1 (3) Cons by auto
qed
also have . . . = pats-complete C (pat-list ‘ set ps) using steps-equiv

unfolding pats-mset-list[symmetric] by auto
finally show ?thesis .

qed
qed

qed

corollary pat-complete-lin-impl:
assumes wf : snd ‘

⋃
(vars ‘ fst ‘ set (concat (concat P))) ⊆ S

and left-linear : Ball (set P) ll-pp
shows pat-complete-lin-impl (P :: (′f , ′v, ′s)pats-problem-list) ←→ pats-complete

C (pat-list ‘ set P)
proof −

have wf : Ball (pat-list ‘ set P) wf-pat
unfolding pat-list-def wf-pat-def wf-match-def tvars-match-def using wf [unfolded

set-concat image-comp] by force
let ?l = (List.maps (map fst o vars-term-list o fst) (concat (concat P)))
define n where n = Suc (max-list ?l)
have n: ∀ p∈set P. tvars-pat (pat-list p) ⊆ {..<n} × S
proof (safe)

fix p x ι

117

assume p: p ∈ set P and xp: (x,ι) ∈ tvars-pat (pat-list p)
hence x ∈ set ?l unfolding List.maps-def tvars-pat-def tvars-match-def pat-list-def

by force
from max-list[OF this] have x < n unfolding n-def by auto
thus x < n by auto
from xp p wf
show ι ∈ S by (auto simp: wf-pat-iff)

qed
have pat-complete-lin-impl P = pats-lin-impl n P

unfolding pat-complete-lin-impl-def Let-def n-def by auto
from pats-lin-impl[OF n left-linear wf , folded this]
show ?thesis by auto

qed

lemma match-var-impl: assumes wf : wf-lr mp
and match-var-impl mp = (xs,mpFin)

shows (→m)∗∗ (mp-lr mp) (mp-lr mpFin)
and wf-lr2 mpFin
and lvars-mp (mp-lr mp) ⊇ lvars-mp (mp-lr mpFin)
and set xs = lvars-mp (mp-list (mp-lx (fst mpFin)))

proof −
note [simp] = List.maps-def
let ?mp ′ = snd (match-var-impl mp)
have mpFin: mpFin = ?mp ′ using assms(2) by auto
from assms obtain xl rx b where mp3 : mp = (xl,(rx,b)) by (cases mp, auto)
from assms(2) have xs-def : xs = remdups (List.maps (vars-term-list o snd) xl)

unfolding match-var-impl-def mp3 split Let-def by auto
have xs: xl = [] =⇒ xs = [] unfolding xs-def by auto
define f where f = (λ (x,ts :: (′f , nat × ′s)term list). tl ts 6= [] ∨ x ∈ set xs)
define mp ′ where mp ′ = mp-rx (filter f rx, b) + mp-list (mp-lx xl)
define deleted where deleted = mp-rx (filter (Not o f) rx, b)
have mp ′: mp-lr ?mp ′ = mp ′ ?mp ′ = (xl, (filter f rx,b))

unfolding mp3 mp ′-def match-var-impl-def split xs-def f-def mp-lr-def by auto
have mp-rx (rx,b) = mp-rx (filter f rx, b) + mp-rx (filter (Not o f) rx, b)

unfolding mp-rx-def List.maps-def by (induct rx, auto)
hence mp: mp-lr mp = deleted + mp ′ unfolding mp3 mp-lr-def mp ′-def deleted-def

by auto
have inf-var-conflict (mp-mset (mp-rx (filter f rx, b))) = inf-var-conflict (mp-mset

(mp-rx (rx, b))) (is ?ivcf = ?ivc)
proof
show ?ivcf =⇒ ?ivc unfolding inf-var-conflict-def mp-rx-def fst-conv List.maps-def

by force
assume ?ivc
from this[unfolded inf-var-conflict-def]
obtain s t x y where s: (s, Var x) ∈# mp-rx (rx, b) and t: (t, Var x) ∈#

mp-rx (rx, b) and c: Conflict-Var s t y and inf : inf-sort (snd y)

118

by blast
from c conflicts(5)[of s t] have st: s 6= t by auto
from s[unfolded mp-rx-def List.maps-def]
obtain ss where xss: (x,ss) ∈ set rx and s: s ∈ set ss by auto
from t[unfolded mp-rx-def List.maps-def]
obtain ts where xts: (x,ts) ∈ set rx and t: t ∈ set ts by auto
from wf [unfolded mp3 wf-lr-def wf-rx-def] have distinct (map fst rx) by auto
from eq-key-imp-eq-value[OF this xss xts] t have t: t ∈ set ss by auto
with s st have f (x,ss) unfolding f-def by (cases ss; cases tl ss; auto)
hence (x, ss) ∈ set (filter f rx) using xss by auto
with s t have (s, Var x) ∈# mp-rx (filter f rx, b) (t, Var x) ∈# mp-rx (filter

f rx, b)
unfolding mp-rx-def List.maps-def by auto

with c inf
show ?ivcf unfolding inf-var-conflict-def by blast

qed
also have . . . = b using wf unfolding mp3 wf-lr-def wf-rx-def by auto
finally have ivcf : ?ivcf = b .
have wf-lr2 ?mp ′

proof (cases xl = [])
case False
from ivcf False wf [unfolded mp3] show ?thesis
unfolding mp ′ wf-lr2-def wf-lr-def split wf-rx-def by (auto simp: distinct-map-filter)

next
case True
with xs have xs = [] by auto
with True wf [unfolded mp3]
show ?thesis

unfolding wf-lr2-def mp ′ split wf-rx2-def wf-rx-def ivcf
unfolding mp ′ wf-lr2-def wf-lr-def split wf-rx-def wf-rx2-def wf-ts-def wf-ts2-def

f-def
apply (clarsimp simp: distinct-map-filter)
subgoal for x ts by (cases ts; cases tl ts; force)
done

qed
thus wf-lr2 mpFin unfolding mpFin .
{

fix xt t
assume del: (t, xt) ∈# deleted
from this[unfolded deleted-def mp-rx-def , simplified]
obtain x ts where mem: (x,ts) ∈ set rx and nf : ¬ f (x, ts) and t: t ∈ set ts

and xt: xt = Var x by force
note del = del[unfolded xt]
from nf [unfolded f-def split] t have xxs: x /∈ set xs and ts: ts = [t] by (cases

ts; cases tl ts, auto)+
from split-list[OF mem[unfolded ts]] obtain rx1 rx2 where rx: rx = rx1 @

(x,[t]) # rx2 by auto
from wf [unfolded wf-lr-def mp3] have wf : wf-rx (rx,b) by auto
hence distinct (map fst rx) unfolding wf-rx-def by auto

119

with rx have xrx: x /∈ fst ‘ set rx1 ∪ fst ‘ set rx2 by auto
define mp ′′ where mp ′′ = mp-rx (filter (Not ◦ f) (rx1 @ rx2), b)
have eq: deleted = add-mset (t, Var x) mp ′′

unfolding deleted-def mp ′′-def rx mp-rx-def List.maps-def mset-concat-union
using nf ts by auto

have ∃ x mp ′′. xt = Var x ∧ deleted = add-mset (t, Var x) mp ′′ ∧ x /∈
⋃

(vars
‘ snd ‘ (mp-mset mp ′′ ∪ mp-mset mp ′))

proof (intro exI conjI , rule xt, rule eq, intro notI)
assume x ∈

⋃
(vars ‘ snd ‘ (mp-mset mp ′′ ∪ mp-mset mp ′))

then obtain s t ′ where st: (s,t ′) ∈ mp-mset (mp ′ + mp ′′) and xt: x ∈ vars
t ′ by force

from xrx have (s,t ′) /∈ mp-mset mp ′′ using xt unfolding mp ′′-def mp-rx-def
by force

with st have (s,t ′) ∈ mp-mset mp ′ by auto
with xxs have (s, t ′) ∈# mp-rx (filter f rx, b) using xt unfolding xs-def

mp ′-def mp-rx-def
by auto

with xt nf show False unfolding mp-rx-def f-def split ts list.sel
by auto (metis Un-iff ‹¬ (tl ts 6= [] ∨ x ∈ set xs)› fst-conv image-eqI

prod.inject rx set-ConsD set-append ts xrx)
qed

} note lin-vars = this
show (→m)∗∗ (mp-lr mp) (mp-lr mpFin) unfolding mpFin mp mp ′(1) using

lin-vars
proof (induct deleted)

case (add pair deleted)
obtain t xt where pair : pair = (t,xt) by force
hence (t,xt) ∈# add-mset pair deleted by auto
from add(2)[OF this] pair
obtain x where add-mset pair deleted + mp ′ = add-mset (t, Var x) (deleted

+ mp ′)
and x: x /∈

⋃
(vars ‘ snd ‘ (mp-mset (deleted + mp ′)))

and pair : pair = (t, Var x)
by auto

from match-match[OF this(2), of t, folded this(1)]
have one: add-mset pair deleted + mp ′→m (deleted + mp ′) .
have two: (→m)∗∗ (deleted + mp ′) mp ′

proof (rule add(1), goal-cases)
case (1 s yt)
hence (s,yt) ∈# add-mset pair deleted by auto
from add(2)[OF this]
obtain y mp ′′ where yt: yt = Var y add-mset pair deleted = add-mset (s,

Var y) mp ′′

y /∈
⋃

(vars ‘ snd ‘ (mp-mset mp ′′ ∪ mp-mset mp ′))
by auto

from 1 [unfolded yt] have y ∈
⋃

(vars ‘ snd ‘ (mp-mset (deleted + mp ′)))
by force

with x have x 6= y by auto
with pair yt have pair 6= (s,Var y) by auto

120

with yt(2) have del: deleted = add-mset (s, Var y) (mp ′′ − {#pair#})
by (meson add-eq-conv-diff)

show ?case
by (intro exI conjI , rule yt, rule del, rule contra-subsetD[OF - yt(3)])
(intro UN-mono, auto dest: in-diffD)

qed
from one two show ?case by auto

qed auto
show lvars-mp (mp-lr mpFin) ⊆ lvars-mp (mp-lr mp)

unfolding mp mp ′ deleted-def mp ′-def mpFin
by (auto simp: lvars-mp-def mp-lr-def)

show set xs = lvars-mp (mp-list (mp-lx (fst mpFin)))
unfolding mpFin
unfolding xs-def lvars-mp-def mp3
unfolding match-var-impl-def split snd-conv fst-conv Let-def
by auto

qed

lemma match-steps-impl: assumes match-steps-impl mp = res
shows res = Some (xs,mp ′) =⇒ (→m)∗∗ (mp-list mp) (mp-lr mp ′) ∧ wf-lr2 mp ′

∧ lvars-mp (mp-list mp) ⊇ lvars-mp (mp-lr mp ′)
∧ set xs = lvars-mp (mp-list (mp-lx (fst mp ′)))

and res = None =⇒ ∃ mp ′. (→m)∗∗ (mp-list mp) mp ′ ∧ match-fail mp ′

proof (atomize (full), goal-cases)
case 1
obtain res ′ where decomp: decomp-impl mp = res ′ by auto
note res = assms[unfolded match-steps-impl-def decomp]
note decomp = decomp-impl[OF decomp, of - {#}, unfolded empty-neutral]
show ?case
proof (cases res ′)

case None
with decomp res show ?thesis by auto

next
case (Some mp ′′)
with decomp[of mp ′′]
have steps: (→m)∗∗ (mp-list mp) (mp-lr mp ′′) and wf : wf-lr mp ′′

and lsub: lvars-mp (mp-lr mp ′′) ⊆ lvars-mp (mp-list mp) by auto
from res[unfolded Some] have res = Some (match-var-impl mp ′′) by auto
with match-var-impl[OF wf] steps res lsub show ?thesis

by (cases match-var-impl mp ′′, auto)
qed

qed

lemma finite-sort-imp-finite-sort-vars:
assumes t : σ in T (C ,V)
and x ∈ vars t
and ¬ inf-sort σ

shows ¬ inf-sort (snd x)
using assms

121

proof (induct)
case (Fun f ts σs σ)
from Fun obtain t where t ∈ set ts and x ∈ vars t by auto
then obtain i where i: i < length ts and x: x ∈ vars (ts ! i) by (auto simp:

set-conv-nth)
from Fun(2)[unfolded list-all2-conv-all-nth]
have len: length σs = length ts by auto
from C-sub-S [OF Fun(1)] have inS : σ ∈ S set σs ⊆ S by auto
hence σs:

∧
j. j < length ts =⇒ σs ! j ∈ S using len unfolding set-conv-nth

by auto
show ?case
proof (rule list-all2-nthD[OF Fun(3) i, rule-format, OF x])

show ¬ inf-sort (σs ! i) unfolding inf-sort[OF σs[OF i]] finite-sort-def
proof

assume inf : infinite {t. t : σs ! i in T (C)}
{

fix j
assume j < length ts
from σs[OF this] have σs ! j ∈ S by auto
from sorts-non-empty[OF this] have ∃ tj. tj : σs ! j in T (C) by blast

}
hence ∀ j. ∃ tj. j < length ts −→ tj : σs ! j in T (C) by auto
from choice[OF this] obtain tj where

tj: j < length ts =⇒ tj j : σs ! j in T (C) for j by auto
define ft where ft t = Fun f (map (tj (i := t)) [0 ..< length ts]) for t
{

fix t
assume t : σs ! i in T (C)
hence ft t : σ in T (C) unfolding ft-def using tj

by (intro Fun-hastypeI [OF Fun(1)] list-all2-all-nthI , auto simp: len)
} note ft = this
have inj: inj ft unfolding ft-def using i by (auto simp: inj-def)
from inf inj have infinite (ft ‘ {t. t : σs ! i in T (C)})

by (metis finite-imageD inj-def inj-on-def)
with ft have infinite {t. t : σ in T (C)}

by (metis (no-types, lifting) finite-subset image-subset-iff mem-Collect-eq)
with Fun(5) inf-sort[OF inS(1)]
show False unfolding finite-sort-def by auto

qed
qed

qed auto

context
fixes CC :: ′f × ′s list ⇒ ′s option

and renVar :: ′v ⇒ ′v
and renNat :: nat ⇒ ′v
and fidl-solver :: ((nat× ′s) × int)list × - ⇒ bool

assumes CC : improved =⇒ CC = C

122

and renaming-ass: improved =⇒ renaming-funs renNat renVar
and fidl-solver : improved =⇒ finite-idl-solver fidl-solver

begin

abbreviation Match-decomp ′-impl where Match-decomp ′-impl ≡ match-decomp ′-impl
renNat
abbreviation Decomp ′-main-loop where Decomp ′-main-loop ≡ decomp ′-main-loop
renNat
abbreviation Decomp ′-impl where Decomp ′-impl ≡ decomp ′-impl renNat
abbreviation Pat-inner-impl where Pat-inner-impl ≡ pat-inner-impl renNat
abbreviation Pat-impl where Pat-impl ≡ pat-impl CC renNat
abbreviation Pats-impl where Pats-impl ≡ pats-impl CC renNat fidl-solver
abbreviation Pat-complete-impl where Pat-complete-impl ≡ pat-complete-impl
CC renNat renVar fidl-solver

definition allowed-vars where allowed-vars n = (if improved then range renVar
∪ renNat ‘ {..<n} else UNIV)

definition lvar-cond where lvar-cond n V = (V ⊆ allowed-vars n)
definition lvar-cond-mp where lvar-cond-mp n mp = lvar-cond n (lvars-mp mp)
definition lvar-cond-pp where lvar-cond-pp n pp = lvar-cond n (lvars-pp pp)

lemma lvar-cond-simps[simp]:
lvar-cond n (insert x A) = (x ∈ allowed-vars n ∧ lvar-cond n A)
lvar-cond n {}
lvar-cond n (A ∪ B) = (lvar-cond n A ∧ lvar-cond n B)
lvar-cond n (

⋃
As) = (∀ A ∈ As. lvar-cond n A)

unfolding lvar-cond-def by auto

lemma lvar-cond-mono: n ≤ n ′ =⇒ lvar-cond n V =⇒ lvar-cond n ′ V
unfolding lvar-cond-def allowed-vars-def by (auto split: if-splits)

lemma pair-fst-imageI : (a,b) ∈ c =⇒ a ∈ fst ‘ c by force

lemma not-in-fstD: x /∈ fst ‘ a =⇒ ∀ z. (x,z) /∈ a by force

lemma many-remdups-steps: assumes mp-mset mp2 = mp-mset mp1 mp2 ⊆#
mp1

shows (→m)∗∗ mp1 mp2
proof −

from assms obtain mp3 where mp1 : mp1 = mp3 + mp2
by (metis subset-mset.less-eqE union-commute)

from assms(1)[unfolded mp1] have mp-mset mp3 ⊆ mp-mset mp2 by auto
thus ?thesis unfolding mp1
proof (induct mp3)

case (add pair mp3)
from add have IH : (→m)∗∗ (mp3 + mp2) mp2 by auto
from add have pair ∈# mp3 + mp2 by auto

123

then obtain mp4 where mp3 + mp2 = add-mset pair mp4 by (rule mset-add)
from match-duplicate[of pair mp4 , folded this] IH
show ?case by simp

qed auto
qed

lemma many-match-steps:
assumes

∧
t l. (t,l) ∈# mp1 =⇒ ∃ x. l = Var x ∧ x /∈ lvars-mp (mp1 − {#

(t,l) #} + mp2)
shows (→m)∗∗ (mp1 + mp2) mp2
using assms

proof (induct mp1)
case (add pair mp1)
obtain t l where pair : pair = (t, l) by force
from add(2)[of t l, unfolded pair] obtain x where

l: l = Var x and x: x /∈ lvars-mp (mp1 + mp2)
by auto

from match-match[of x mp1 + mp2 t, folded l, folded pair]
have add-mset pair (mp1 + mp2)→m mp1 + mp2 using x unfolding lvars-mp-def

by auto
also have (→m)∗∗ (mp1 + mp2) mp2

by (rule add, insert add(2), force simp: lvars-mp-def)
finally show ?case by simp

qed auto

lemma decomp ′-impl: assumes
wf-lr2 mp
set xs = lvars-mp (mp-list (mp-lx (fst mp)))
lvar-cond-mp n (mp-lr mp)
Decomp ′-impl n xs mp = (n ′,mp ′)
improved

shows wf-lr3 mp ′

lvar-cond-mp n ′ (mp-lr mp ′)
(→m)∗∗ (mp-lr mp) (mp-lr mp ′)
n ≤ n ′

proof (atomize (full), goal-cases)
case 1
obtain xl rx b where mp: mp = (xl,rx,b) by (cases mp, auto)
define out where out = ([] :: (′v,(′f ,nat × ′s)term list) alist)
let ?lr = λ rx. (xl,rx,b)
define Measure where Measure (rx :: (′v,(′f ,nat × ′s)term list) alist) =

sum-list (map ((λ ts. sum-list (map size ts)) o snd) rx) for rx
define cond3 where cond3 ts = (xl = [] −→ wf-ts3 ts) for ts
{

fix out rx ′

assume Decomp ′-main-loop n xs rx out = (n ′, rx ′)
wf-lr2 (?lr (rx @ out))

124

lvar-cond-mp n (mp-lr (?lr (rx @ out)))
Ball (snd ‘ set out) cond3

hence wf-lr3 (?lr rx ′) ∧ lvar-cond-mp n ′ (mp-lr (?lr rx ′))
∧ (→m)∗∗ (mp-lr (?lr (rx @ out))) (mp-lr (?lr rx ′))
∧ n ≤ n ′

proof (induct rx arbitrary: n n ′ out rx ′ rule: wf-induct[OF wf-measure[of Mea-
sure]])

case (1 rx n n ′ out rx ′)
note IH = 1 (1)[rule-format]
have Decomp ′-main-loop n xs rx out = (n ′, rx ′) by fact
note res = this[unfolded decomp ′-main-loop.simps[of - - - rx]]
note wf = 1 (3)
note lvc = 1 (4)
note cond3 = 1 (5)
show ?case
proof (cases rx)

case Nil
from Nil have mset: mset (rx @ out) = mset out by auto
note wf = wf [unfolded wf-lr2-mset[OF mset]]
note mp-lr = mp-lr-mset[OF mset]
show ?thesis using Nil wf lvc res cond3 unfolding mp-lr

by (auto simp: wf-lr3-def wf-lr2-def wf-rx3-def cond3-def)
next

case (Cons pair rx2)
then obtain x ts where rx: rx = (x,ts) # rx2 by (cases pair , auto)
let ?cond = tl ts = [] ∨ (∃ t ∈ set ts. is-Var t) ∨ x ∈ set xs
note res = res[unfolded rx split list.simps]
from wf [unfolded rx wf-lr2-def split] have wfts: wf-ts ts ∨ wf-ts2 ts

and dist-vars: distinct (x # map fst (rx2 @ out))
by (auto simp: wf-rx-def wf-rx2-def split: if-splits)

hence ts: ts 6= [] unfolding wf-ts-def wf-ts2-def by auto
show ?thesis
proof (cases ?cond)

case True
hence ?cond = True by simp
note res = res[unfolded this if-True]
have mset: mset (rx @ out) = mset (rx2 @ (x, ts) # out) unfolding rx

by auto
note wf = wf [unfolded wf-lr2-mset[OF mset]]
note mp-lr = mp-lr-mset[OF mset]
have c3 : cond3 ts

unfolding cond3-def
proof (intro impI)

assume xl: xl = []
with assms[unfolded mp] have xs: xs = [] unfolding lvars-mp-def by

auto
from wf [unfolded wf-lr2-def split] xl have wf-ts2 ts unfolding wf-rx2-def

by auto
hence tl ts 6= [] unfolding wf-ts2-def by (cases ts, auto)

125

with True xs have ∃ t∈set ts. is-Var t by auto
thus wf-ts3 ts unfolding wf-ts3-def by auto

qed
have (rx2 , rx) ∈ measure Measure unfolding Measure-def rx using ts

by (cases ts, auto)
note IH = IH [OF this res wf lvc[unfolded mp-lr], folded mp-lr]
show ?thesis

by (rule IH , insert c3 cond3 , auto)
next

case False
define l where l = num-args (hd ts)
define k where k = length ts
define fresh where fresh = map renNat [n..<n + l]
define rx1 where rx1 = zipAll fresh (map args ts)
from ts have 0 : 0 < length ts and k0 : k 6= 0 by (auto simp: k-def)
from ts have hd ts ∈ set ts by auto
with False obtain f bs0 where hd: hd ts = Fun f bs0 by blast
from False ts have k: k ≥ 2 unfolding k-def by (cases ts; cases tl ts;

auto)
hence l0 : l = length bs0 unfolding l-def using ts hd by auto
from ts hd have ts0 : ts ! 0 = Fun f bs0 by (cases ts, auto)
from wfts[unfolded wf-ts-def wf-ts2-def]
have dist-noconf : distinct ts ∧ (∀ j. 0 < j −→ j < length ts −→ conflicts

(ts ! 0) (ts ! j) 6= None) by auto
have lfresh: length fresh = l unfolding fresh-def by simp

from renaming-ass[unfolded renaming-funs-def , rule-format, OF ‹improved›]

have ren: inj renNat inj renVar range renNat ∩ range renVar = {} by
auto

{
fix t
assume tts: t ∈ set ts
from False tts obtain g bs where t: t = Fun g bs by (cases t, auto)
with tts obtain i where i: i < length ts and tsi: ts ! i = Fun g bs

unfolding set-conv-nth by auto
have length bs = l ∧ g = f
proof (cases i = 0)

case True
with ts0 l0 tsi show ?thesis by auto

next
case False
with i dist-noconf have conflicts (ts ! 0) (ts ! i) 6= None by auto
from this[unfolded tsi ts0] l0 show ?thesis

by (auto simp: conflicts.simps split: if-splits)
qed
with t tts have ∃ bs. t = Fun f bs ∧ length bs = l by auto

} note no-conflict = this
define t where t = (λ i j. args (ts ! i) ! j)
have ts = map (λ i. ts ! i) [0 ..<k] unfolding k-def

126

by (intro nth-equalityI , auto)
also have . . . = map (λ i. Fun f (map (t i) [0 ..< l])) [0 ..<k]
proof (intro map-cong[OF refl])

fix i
assume i ∈ set [0 ..<k]
hence ts ! i ∈ set ts unfolding k-def by auto
from no-conflict[OF this] obtain bs where tsi: ts ! i = Fun f bs and

len: length bs = l by auto
show ts ! i = Fun f (map (t i) [0 ..<l]) unfolding tsi term.simps term.sel

t-def
using len by (intro conjI nth-equalityI , auto)

qed
finally have ts-t: ts = map (λi. Fun f (map (t i) [0 ..<l])) [0 ..<k] .
{

fix bs
assume bs ∈ set (map args ts)
hence length bs = l using no-conflict by force

}
from zipAll[OF lfresh, of map args ts, OF this, unfolded map-map o-def ,

folded rx1-def]
have rx1 = map (λj. (fresh ! j, map (λbs. bs ! j) (map args ts))) [0 ..<l]

by auto
also have . . . = map (λi. (fresh ! i, map (λ j. t j i) [0 ..<k])) [0 ..<l]

by (intro nth-equalityI , auto simp: ts-t)
finally have rx1 : rx1 = map (λi. (fresh ! i, map (λ j. t j i) [0 ..<k]))

[0 ..<l] .
define rrx where rrx = map (λ(y, ts ′). (y, remdups ts ′)) rx1
define frrx where frrx = filter (λ(y, ts ′). tl ts ′ 6= []) rrx
from False have ?cond = False by simp
note res = res[unfolded this if-False, folded l-def ,

unfolded Let-def , folded fresh-def , folded rx1-def , folded rrx-def , folded
frrx-def]

let ?meas = λ rx. sum-list (map ((λts. sum-list (map size ts)) ◦ snd) rx)
have snd-case: snd (case x of (y :: ′v, ts ′) ⇒ (y, remdups ts ′)) = remdups

(snd x) for x by (cases x, auto)
have fst-case: fst (case x of (y :: ′v, ts ′) ⇒ (y, remdups ts ′)) = fst x for x

by (cases x, auto)
have sum-remdups: sum-list (map size (remdups b)) ≤ sum-list (map size

b) for b by (induct b, auto)
have ?meas frrx ≤ ?meas rrx unfolding frrx-def by (induct rrx, auto)
also have . . . ≤ ?meas rx1 unfolding rrx-def

by (induct rx1 , auto simp: o-def split: prod.splits intro!: add-mono
sum-remdups)

also have . . . = (
∑

x←[0 ..<l].
∑

xa←[0 ..<k]. size (t xa x))
unfolding rx1 map-map o-def snd-conv by simp

also have . . . = (
∑

xa←[0 ..<k].
∑

x←[0 ..<l]. size (t xa x))
unfolding sum.list-conv-set-nth by (auto intro: sum.swap)

also have . . . < sum-list (map size ts)

127

unfolding ts-t map-map o-def
by (intro sum-list-strict-mono, insert k0 , auto simp: o-def size-list-conv-sum-list)

finally have measure: (frrx @ rx2 , rx) ∈ measure Measure unfolding
Measure-def rx

by simp

have left: mp-lr (xl, rx @ out, b) = mp-rx ([(x,ts)],b) + mp-lr (xl, rx2 @
out, b)

unfolding mp-lr-def split mp-rx-def rx by (auto simp: List.maps-def)
have right: mp-lr (xl, (rx1 @ rx2) @ out, b) = mp-rx (rx1 ,b) + mp-lr

(xl, rx2 @ out, b)
unfolding mp-lr-def split mp-rx-def rx by (auto simp: List.maps-def)

have cong: mp0 + mp2 →m mp1 + mp2 =⇒ mp1 = mp1 ′ =⇒ mp0 +
mp2 →m mp1 ′ + mp2

for mp0 mp2 mp1 mp1 ′ :: (′f , ′v, ′s)match-problem-mset by auto
note List.maps-def [simp]
from assms(2)[unfolded mp]
have xs: set xs = lvars-mp (mp-list (mp-lx xl)) by auto
have dist-fresh: distinct fresh unfolding fresh-def distinct-map

using ren by (auto simp: inj-def inj-on-def)
have lvars-fresh-disj: lvars-mp (mp-lr (xl, rx @ out, b)) ∩ set fresh = {}
proof −

have lvars-mp (mp-lr (xl, rx @ out, b)) ⊆ allowed-vars n
using 1 (4) unfolding lvar-cond-mp-def lvar-cond-def .

moreover have set fresh ∩ allowed-vars n = {} unfolding allowed-vars-def
fresh-def

using ren(3) ‹improved›
by (auto dest: injD[OF ren(1)])

ultimately show ?thesis by auto
qed
have step: mp-lr (xl, rx @ out, b) →m mp-lr (xl, (rx1 @ rx2) @ out, b)

unfolding left right
proof (rule cong[OF match-decompose ′[OF - - - lfresh - ‹improved›, of - x

f]])
show (ti, y) ∈# mp-rx ([(x, ts)], b) =⇒ y = Var x ∧ root ti = Some (f ,

l) for ti y
unfolding ts-t mp-rx-def by auto

from False have xxs: x /∈ set xs by auto
show (ti, y) ∈# mp-lr (xl, rx2 @ out, b) =⇒ x /∈ vars y for ti y

using dist-vars xxs[unfolded xs]
by (auto simp: mp-lr-def lvars-mp-def mp-rx-def dest: pair-fst-imageI)

have var-id:
⋃

(vars ‘ snd ‘ mp-mset (mp-rx ([(x, ts)], b) + mp-lr (xl,
rx2 @ out, b)))

= lvars-mp (mp-lr (xl, rx @ out, b))
unfolding rx lvars-mp-def mp-rx-def mp-lr-def split by auto

show lvars-disj-mp fresh (mp-mset (mp-rx ([(x, ts)], b) + mp-lr (xl, rx2
@ out, b)))

128

unfolding lvars-disj-mp-def var-id
proof

show distinct fresh by fact
have lvars-mp (mp-lr (xl, rx @ out, b)) ⊆ allowed-vars n

using 1 (4) unfolding lvar-cond-mp-def lvar-cond-def .
moreover have set fresh ∩ allowed-vars n = {} unfolding al-

lowed-vars-def fresh-def
using ren(3) ‹improved›
by (auto dest: injD[OF ren(1)])

ultimately show lvars-mp (mp-lr (xl, rx @ out, b)) ∩ set fresh = {}
by auto

qed
show 2 ≤ size (mp-rx ([(x, ts)], b))

using k[unfolded k-def] unfolding mp-rx-def by auto
define aux where aux i j = (t j i, Var (fresh ! i) :: (′f , ′v)term) for i j
have fresh-index: map Var fresh = map (λ i. Var (fresh ! i)) [0 ..<l]

unfolding lfresh[symmetric]
by (intro nth-equalityI , auto)
have (

∑
(t, l)∈#mp-rx ([(x, ts)], b). mp-list (zip (args t) (map Var

fresh)))
= mset (concat (map (λ t. zip (args t) (map Var fresh)) ts))
unfolding mp-rx-def by (induct ts, auto)
also have . . . = mset (concat (map (λ j. map (λ i. (t j i,Var (fresh !

i))) [0 ..<l]) [0 ..<k]))
unfolding ts-t map-map o-def
apply (intro arg-cong[of - - mp-list])
apply (intro arg-cong[of - - concat])
apply (intro map-cong[OF refl])
apply (subst zip-nth-conv)
by (auto simp: fresh-def)

also have . . . = mp-rx (rx1 , b)
unfolding mp-rx-def
by (auto simp add: rx1 o-def fresh-index ts-t mset-concat-union intro:

mset-sum-reindex)
finally show (

∑
(t, l)∈#mp-rx ([(x, ts)], b). mp-list (zip (args t) (map

Var fresh))) =
mp-rx (rx1 , b) .

qed

have rrx-seteq: mp-mset (mp-rx (rrx, b)) = mp-mset (mp-rx (rx1 , b))
unfolding mp-rx-def rrx-def by (induct rx1 , auto simp: o-def mset-concat)

have glob-rrx-set-eq: mp-mset (mp-lr (xl, (rx1 @ rx2) @ out, b)) = mp-mset
(mp-lr (xl, (rrx @ rx2) @ out, b))

unfolding mp-lr-def split mp-rx-append using rrx-seteq by auto
have frrx-sub: mp-mset (mp-rx (frrx, b)) ⊆ mp-mset (mp-rx (rx1 , b))

unfolding rrx-seteq[symmetric]
unfolding mp-rx-def frrx-def by (induct rrx, auto simp: o-def mset-concat)
have glob-rrx-sub: mp-mset (mp-lr (xl, (frrx @ rx2) @ out, b)) ⊆ mp-mset

(mp-lr (xl, (rx1 @ rx2) @ out, b))

129

unfolding mp-lr-def split mp-rx-append using frrx-sub by auto

have lvc ′: lvar-cond-mp (n + l) (mp-lr (xl, (rx1 @ rx2) @ out, b))
unfolding lvar-cond-mp-def lvar-cond-def

proof
fix y
have rx ′: rx = [(x,ts)] @ rx2 unfolding rx by auto
assume y ∈ lvars-mp (mp-lr (xl, (rx1 @ rx2) @ out, b))

hence y ∈ lvars-mp (mp-lr (xl, rx @ out, b)) ∨ y ∈ lvars-mp (mp-rx
(rx1 ,b))

unfolding rx ′

unfolding mp-lr-def split lvars-mp-def mp-rx-append by auto
thus y ∈ allowed-vars (n + l)
proof

assume y ∈ lvars-mp (mp-lr (xl, rx @ out, b))
with lvc have y ∈ allowed-vars n unfolding lvar-cond-mp-def

lvar-cond-def by auto
thus ?thesis unfolding allowed-vars-def by auto

next
assume y ∈ lvars-mp (mp-rx (rx1 , b))

hence y ∈ set fresh unfolding rx1 lvars-mp-def mp-rx-def List.maps-def
using lfresh by auto

thus ?thesis unfolding fresh-def by (auto simp: allowed-vars-def)
qed

qed
have lvars-mp (mp-lr (xl, (frrx @ rx2) @ out, b)) ⊆ lvars-mp (mp-lr (xl,

(rx1 @ rx2) @ out, b))
using glob-rrx-sub
unfolding lvars-mp-def by auto
hence lvar-cond-new: lvar-cond-mp (n + l) (mp-lr (xl, (frrx @ rx2) @

out, b))
using lvc ′ unfolding lvar-cond-mp-def lvar-cond-def by auto

have wflx: wf-lx xl using wf unfolding wf-lr2-def by auto
define ro where ro = rx @ out

from wf [unfolded wf-lr2-def wf-rx2-def wf-rx-def]
have dist-old: distinct (map fst (rx @ out)) by (auto split: if-splits)
have dist-mid: distinct (map fst ((rx1 @ rx2) @ out))
proof −

from dist-old have distinct (map fst (rx2 @ out)) by (simp add: rx)
moreover have set (map fst (rx2 @ out)) ∩ set fresh = {}
proof (rule ccontr)

assume ¬ ?thesis
then obtain y where y: y ∈ set (map fst (rx2 @ out)) y ∈ set fresh

by auto
from y obtain ts where yts: (y,ts) ∈ set (rx @ out) by (force simp:

rx)
hence ts ∈ snd ‘ set (rx @ out) by force

130

with wf [unfolded wf-lr-def wf-lr2-def wf-rx2-def wf-rx-def split fst-conv]
have wf-ts ts ∨ wf-ts2 ts by metis
with this[unfolded wf-ts-def wf-ts2-def] obtain t ts ′ where ts: ts = t

ts ′ by (cases ts, auto)
from yts[unfolded this] have y ∈ lvars-mp (mp-rx (rx @ out, b))

unfolding lvars-mp-def mp-rx-def split fst-conv ro-def [symmetric]
unfolding lvars-mp-def mp-lr-def mp-rx-def rx by force

hence y ∈ lvars-mp (mp-lr (xl, rx @ out, b)) unfolding lvars-mp-def
mp-lr-def by auto

with lvars-fresh-disj have y /∈ set fresh by auto
with y show False by auto

qed
moreover have map fst rx1 = fresh unfolding rx1 using lfresh

by (intro nth-equalityI , auto)
ultimately show ?thesis using dist-fresh by auto

qed
also have map fst ((rx1 @ rx2) @ out) = map fst ((rrx @ rx2) @ out)

unfolding rrx-def by auto
finally have dist-new: distinct (map fst ((frrx @ rx2) @ out)) = True

unfolding frrx-def by (auto simp: distinct-map-filter)

from wf [unfolded rx wf-lr2-def split wf-rx2-def wf-rx-def fst-conv]
have wf-ts: wf-ts ts ∨ wf-ts2 ts by (auto split: if-splits)
{

fix i j
assume ij: i < k j < k
from wf-ts[unfolded wf-ts-def wf-ts2-def] ij
have conflicts (ts ! i) (ts ! j) 6= None ∨ conflicts (ts ! j) (ts ! i) 6= None

unfolding k-def by (cases i < j; cases i = j; auto)
with conflicts-sym have conflicts (ts ! i) (ts ! j) 6= None

by (metis rel-option-None2)
} note ts-no-conflict = this
let ?old = mp-rx (rx @ out, b)
let ?mid = mp-rx ((rx1 @ rx2) @ out, b)
let ?new = mp-rx ((frrx @ rx2) @ out, b)
have mp-mset (mp-rx (frrx, b)) ≤ mp-mset (mp-rx (rrx, b))

unfolding mp-rx-def frrx-def by auto
also have rrx-rx1 : . . . ⊆ mp-mset (mp-rx (rx1 , b))

unfolding mp-rx-def rrx-def by auto
finally have frrx-sub-rx1 : mp-mset (mp-rx (frrx, b)) ⊆ mp-mset (mp-rx

(rx1 , b)) .
hence new-sub-mid: mp-mset ?new ⊆ mp-mset ?mid unfolding mp-rx-append

by auto

have b-correct: (b = inf-var-conflict (mp-mset ?new)) = True
proof −

let ?old = mp-rx (rx @ out, b)
let ?mid = mp-rx ((rx1 @ rx2) @ out, b)

131

let ?new = mp-rx ((frrx @ rx2) @ out, b)
from wf [unfolded wf-lr2-def wf-rx2-def wf-rx-def]
have b = inf-var-conflict (mp-mset ?old) by (auto split: if-splits)

also have . . . = inf-var-conflict (mp-mset ?new) (is ?inf-old = ?inf-new)
proof

assume ?inf-old
from this[unfolded inf-var-conflict-def]
obtain u w y z where

u: (u, Var y) ∈# ?old and
w: (w, Var y) ∈# ?old and
conf : Conflict-Var u w z and
inf : inf-sort (snd z) by auto

show ?inf-new
proof (cases y = x)

case False
hence (u, Var y) ∈# ?new (w, Var y) ∈# ?new using u w

unfolding rx mp-rx-append mp-rx-Cons split by auto
with conf inf show ?thesis unfolding inf-var-conflict-def by blast

next
case True
with dist-old u w have uw-ts: u ∈ set ts w ∈ set ts

unfolding rx mp-rx-Cons mp-rx-append split
by (auto simp: mp-rx-def dest!: not-in-fstD)

with conf have uw: u 6= w by auto
from uw-ts(1) obtain i where i: i < k and u: u = ts ! i

unfolding k-def by (auto simp: set-conv-nth)
from uw-ts(2) obtain j where j: j < k and w: w = ts ! j

unfolding k-def by (auto simp: set-conv-nth)
from u w uw have ij: i 6= j by auto
have id: ((f , length [0 ..<l]) = (f , length [0 ..<l])) = True by simp

have Conflict-Var (Fun f (map (t i) [0 ..<l])) (Fun f (map (t j)
[0 ..<l])) z

using conf [unfolded u w ts-t] i j by auto
note ∗ = this[unfolded conflicts.simps length-map id if-True]

from ∗ obtain cs where those: those (map2 conflicts (map (t i)
[0 ..<l]) (map (t j) [0 ..<l])) = Some cs (is ?th = -)

by (cases ?th, auto)
from ∗[unfolded those] obtain c where c: c ∈ set cs and z: z ∈ set

c by auto
from arg-cong[OF those[unfolded those-eq-Some], of length]
have lcs: length cs = l by auto
with c obtain a where a: a < l and c: c = cs ! a by (auto simp:

set-conv-nth)
from arg-cong[OF those[unfolded those-eq-Some], of λ cs. cs ! a]
have conflicts (t i a) (t j a) = Some c using lcs a c by auto
with z have conf : Conflict-Var (t i a) (t j a) z by auto
hence diff : t i a 6= t j a by auto
let ?rd = remdups (map (λj. t j a) [0 ..<k])
from i j have t i a ∈ set ?rd t j a ∈ set ?rd by auto

132

with diff have tl: tl (remdups (map (λj. t j a) [0 ..<k])) 6= []
by (cases remdups (map (λj. t j a) [0 ..<k]); cases tl (remdups (map

(λj. t j a) [0 ..<k])), auto)
have mem: (t i a, Var (fresh ! a)) ∈# mp-rx (frrx,b) ∧ (t j a, Var

(fresh ! a)) ∈# mp-rx (frrx,b)
unfolding frrx-def rrx-def rx1 using a i j tl

unfolding mp-rx-def map-map o-def split fst-conv List.maps-def
in-multiset-in-set

by (intro conjI , auto intro!: bexI [of - a])
hence tia: (t i a, Var (fresh ! a)) ∈# ?new

and tja: (t j a, Var (fresh ! a)) ∈# ?new unfolding mp-rx-append
by auto

from tia tja conf inf show ?thesis unfolding inf-var-conflict-def by
blast

qed
next

assume ?inf-new
from this[unfolded inf-var-conflict-def]
obtain u w y z where

u: (u, Var y) ∈# ?new and
w: (w, Var y) ∈# ?new and
conf : Conflict-Var u w z and
inf : inf-sort (snd z) by auto

from u w new-sub-mid have u: (u, Var y) ∈# ?mid and w: (w, Var
y) ∈# ?mid by auto

show ?inf-old
proof (cases (u, Var y) ∈# mp-rx (rx2 @ out, b) ∧ (w, Var y) ∈#

mp-rx (rx2 @ out, b))
case True
hence (u, Var y) ∈# ?old (w, Var y) ∈# ?old using u w

unfolding rx mp-rx-append mp-rx-Cons split by auto
with conf inf show ?thesis unfolding inf-var-conflict-def by blast

next
case False
then obtain v where (v, Var y) ∈# mp-rx (rx1 , b) using u w

unfolding mp-rx-append rx by auto
hence y: y ∈ set (map fst rx1) y ∈ set fresh unfolding rx1 mp-rx-def

using lfresh by auto
with dist-mid have yro: y /∈ fst ‘ set (rx2 @ out) by auto
from not-in-fstD[OF yro] u
have u: (u,Var y) ∈# mp-rx (rx1 , b) unfolding mp-rx-def by auto
from not-in-fstD[OF yro] w
have w: (w,Var y) ∈# mp-rx (rx1 , b) unfolding mp-rx-def by auto
from y obtain a where a: a < l and y: y = fresh ! a using lfresh

by (auto simp: set-conv-nth)
from u[unfolded mp-rx-def rx1] obtain a ′ i

where u: u = t i a ′ i < k y = fresh ! a ′ a ′ < l
by auto

from y[unfolded u] have a ′ = a unfolding fresh-def using ‹a ′ < l› a

133

by (auto dest: injD[OF ren(1)])
note u = u(1−2)[unfolded this]
from w[unfolded mp-rx-def rx1] obtain a ′ j

where w: w = t j a ′ j < k y = fresh ! a ′ a ′ < l
by auto

from y[unfolded w] have a ′ = a unfolding fresh-def using ‹a ′ < l› a
by (auto dest: injD[OF ren(1)])

note w = w(1−2)[unfolded this]
from ts-no-conflict[OF u(2) w(2)] obtain cs where

conf-ij: conflicts (ts ! i) (ts ! j) = Some cs by auto
hence conflicts (Fun f (map (t i) [0 ..<l])) (Fun f (map (t j) [0 ..<l]))

= Some cs
unfolding ts-t using u(2) w(2) by auto

from this[unfolded conflicts.simps]
have map-option concat (those (map2 conflicts (map (t i) [0 ..<l])

(map (t j) [0 ..<l]))) = Some cs
by auto
then obtain css where those: those (map2 conflicts (map (t i)

[0 ..<l]) (map (t j) [0 ..<l])) = Some css
and cs: cs = concat css by force

from conf [unfolded u w] obtain csi where
conf : conflicts (t i a) (t j a) = Some csi and z: z ∈ set csi
by auto

from arg-cong[OF those[unfolded those-eq-Some], of length]
have lcss: length css = l by auto
from arg-cong[OF those[unfolded those-eq-Some], of λ xs. xs ! a] lcss

conf z
have z ∈ set (css ! a) using a by simp
with lcss a cs have z ∈ set cs by auto
with conf-ij have Conflict-Var (ts ! i) (ts ! j) z by auto
moreover have (ts ! i, Var x) ∈# ?old using u(2)

unfolding rx mp-rx-Cons mp-rx-append split k-def by auto
moreover have (ts ! j, Var x) ∈# ?old using w(2)

unfolding rx mp-rx-Cons mp-rx-append split k-def by auto
ultimately show ?thesis using inf unfolding inf-var-conflict-def

by blast
qed

qed
finally show ?thesis

by (simp add: mp-rx-append rrx-seteq)
qed

{
fix y ts ′ t1 t2
assume ∗: (y,ts ′) ∈ set ((rx1 @ rx2) @ out) t1 ∈ set ts ′ t2 ∈ set ts ′

have conflicts t1 t2 6= None
proof

assume conf : conflicts t1 t2 = None

134

hence diff : t1 6= t2 by auto
from conf have conf ′: conflicts t2 t1 = None using conflicts-sym[of

t1 t2] by auto
from ∗(2−3) obtain i where t1 : t1 = ts ′ ! i and i: i < length ts ′ by

(auto simp: set-conv-nth)
from ∗(2−3) obtain j where t2 : t2 = ts ′ ! j and j: j < length ts ′ by

(auto simp: set-conv-nth)
from diff i j t1 conf conf ′ obtain i j where

ij: j < length ts ′ i < j and
conf : conflicts (ts ′ ! i) (ts ′ ! j) = None
unfolding t1 t2
by (cases i < j; cases j < i; auto)

show False
proof (cases (y,ts ′) ∈ set rx1)

case False
hence (y,ts ′) ∈ set (rx @ out) using ∗ unfolding rx by auto
with wf [unfolded wf-lr2-def wf-rx2-def wf-rx-def]

have wf-ts: wf-ts ts ′ ∨ wf-ts2 ts ′ unfolding ro-def [symmetric] by
(auto split: if-splits)

with ij conf show False unfolding wf-ts-def wf-ts2-def by blast
next

case True
from this[unfolded rx1] obtain a where a: a < l

and ts ′: ts ′ = map (λj. t j a) [0 ..<k]
and lts ′: length ts ′ = k by auto

from conf have conf : conflicts (t i a) (t j a) = None
unfolding ts ′ using lts ′ a ij by auto

from ij have ij: i < k j < k using lts ′ by auto
have conf : conflicts (ts ! i) (ts ! j) = None
unfolding ts-t using ij conf a by (force simp: conflicts.simps set-zip)
with ts-no-conflict[OF ij] show False ..

qed
qed

} note no-clashes = this

have True-id: (True ∧ b ∧ True) = b for b by simp
have if-id: (if xl = [] then Ball P wf-ts2 else Ball P wf-ts)
= Ball P (λ ts. if xl = [] then wf-ts2 ts else wf-ts ts) for P by auto

have wf ′: wf-lr2 (xl, (frrx @ rx2) @ out, b)
unfolding wf-lr2-def split wf-rx2-def wf-rx-def snd-conv fst-conv
unfolding dist-new b-correct True-id if-id

proof (intro conjI wflx ballI)
fix ts ′

assume ts ′ ∈ snd ‘ set ((frrx @ rx2) @ out)
then obtain y where (y,ts ′) ∈ set frrx ∨ ts ′ ∈ snd ‘ set (rx2 @ out)

by force
thus if xl = [] then wf-ts2 ts ′ else wf-ts ts ′

135

proof
assume ts ′ ∈ snd ‘ set (rx2 @ out)

with wf show ?thesis unfolding wf-lr2-def split rx wf-rx2-def wf-rx-def
by auto

next
assume (y,ts ′) ∈ set frrx
from this[unfolded frrx-def]
have tl: tl ts ′ 6= [] and in-rrx: (y,ts ′) ∈ set rrx by auto
from in-rrx[unfolded rrx-def] obtain ts ′′ where

in-rx1 : (y,ts ′′) ∈ set rx1 and
rd: ts ′ = remdups ts ′′ by auto

from in-rx1 [unfolded rx1] have length ts ′′ = length ts unfolding k-def
by auto

with ts have ts ′′: ts ′′ 6= [] by auto
with rd have ts ′: ts ′ 6= [] by auto
with tl have len2 : length ts ′ ≥ 2 by (cases ts ′; cases tl ts ′, auto)
from rd have dist: distinct ts ′ by auto
{

fix j i
assume j<length ts ′ i<j
hence ts ′ ! i ∈ set ts ′ ts ′ ! j ∈ set ts ′ by auto
hence ∗: ts ′ ! i ∈ set ts ′′ ts ′ ! j ∈ set ts ′′ unfolding rd by auto
have conflicts (ts ′ ! i) (ts ′ ! j) 6= None

by (rule no-clashes[OF - ∗, of y], insert in-rx1 , auto)
}

thus ?thesis unfolding wf-ts2-def wf-ts-def using ts ′ len2 dist by auto
qed

qed

note IH = IH [OF measure res wf ′ lvar-cond-new cond3 [rule-format]]

show ?thesis
proof (intro conjI)

show wf-lr3 (xl, rx ′, b) using IH by auto
show lvar-cond-mp n ′ (mp-lr (xl, rx ′, b)) using IH by auto
show n ≤ n ′ using IH by auto

have mp-lr (xl, rx @ out, b) →m mp-lr (xl, (rx1 @ rx2) @ out, b) by
fact

also have (→m)∗∗ (mp-lr (xl, (rx1 @ rx2) @ out, b)) (mp-lr (xl, (rrx @
rx2) @ out, b))

proof (rule many-remdups-steps[OF glob-rrx-set-eq[symmetric]])
have mp-rx (rrx, b) ⊆# mp-rx (rx1 , b)

unfolding rrx-def mp-rx-def fst-conv
proof (induct rx1)

case (Cons pair rx2)
obtain x ts where pair : pair = (x,ts) by force

136

show ?case unfolding List.maps-simps list.simps pair split mset-append

proof (rule subset-mset.add-mono[OF - Cons])
show mp-list (map (λt. (t, Var x)) (remdups ts)) ⊆# mp-list (map

(λt. (t, Var x)) ts)
unfolding mset-map
by (intro image-mset-subseteq-mono mset-remdups-subset-eq)

qed
qed auto
thus mp-lr (xl, (rrx @ rx2) @ out, b) ⊆# mp-lr (xl, (rx1 @ rx2) @

out, b)
unfolding mp-lr-def split mp-rx-append by auto

qed

also have (→m)∗∗ (mp-lr (xl, (rrx @ rx2) @ out, b)) (mp-lr (xl, (frrx
@ rx2) @ out, b))

proof −
define long :: (′v × (′f , nat × ′s) Term.term list) ⇒ bool where

long = (λ(y, ts ′). tl ts ′ 6= [])
define short where short = Not o long

have short-long: mp-rx (rrx,b) = mp-rx (filter short rrx,b) + mp-rx
(filter long rrx,b)

unfolding mp-rx-def fst-conv short-def by (induct rrx, auto)
hence expand: mp-lr (xl, (rrx @ rx2) @ out, b) =

mp-rx (filter short rrx, b) + mp-lr (xl, (frrx @ rx2) @ out, b)
unfolding mp-lr-def split mp-rx-append short-long long-def frrx-def

by simp
show ?thesis unfolding expand
proof (rule many-match-steps)

fix s lhs
assume (s, lhs) ∈# mp-rx (filter short rrx, b)

from this[unfolded mp-rx-def fst-conv short-def long-def List.maps-def ,
simplified]

obtain y ts ′ where in-rrx: (y, ts ′) ∈ set rrx and lhs: lhs = Var y
and tl ts ′ = [] s ∈ set ts ′

by auto
then have ts ′: ts ′ = [s] by (cases ts ′; cases tl ts ′; auto)
show ∃ x. lhs = Var x ∧ x /∈ lvars-mp

(mp-rx (filter short rrx, b) − {#(s, lhs)#} + mp-lr (xl, (frrx @
rx2) @ out, b))

proof (intro exI [of - y] conjI lhs notI)
assume mem: y ∈ lvars-mp (mp-rx (filter short rrx, b) − {#(s,

lhs)#} + mp-lr (xl, (frrx @ rx2) @ out, b))
from in-rrx obtain a

where a: a < l and y: y = fresh ! a and yts ′: (y,ts ′) = rrx ! a
unfolding rrx-def rx1 by auto

with lfresh have yfresh: y ∈ set fresh by auto
with lvars-fresh-disj mem
have y ∈ lvars-mp (mp-rx (filter short rrx, b) − {#(s, lhs)#}) ∨ y

137

∈ lvars-mp (mp-rx (frrx, b))
unfolding rx mp-lr-def split mp-rx-append mp-rx-Cons lvars-mp-def

by auto
hence ∃ b. b < l ∧ y = fresh ! b ∧ a 6= b
proof

assume y ∈ lvars-mp (mp-rx (frrx, b))
from this[unfolded frrx-def , folded long-def , unfolded mp-rx-def

lvars-mp-def , simplified]
obtain ts ′′ where ts ′′: (y, ts ′′) ∈ set rrx and long: long (y, ts ′′)

by auto
from long ts ′ have diff : ts ′ 6= ts ′′ unfolding long-def by auto
from ts ′′ obtain b where b: b < l and yts ′′: (y, ts ′′) = rrx ! b

and y: y = fresh ! b
unfolding rrx-def rx1 by auto

from yts ′ yts ′′ diff have diff : a 6= b
by (metis snd-conv)

with a b y show ?thesis by auto
next

assume mem: y ∈ lvars-mp (mp-rx (filter short rrx, b) − {#(s,
lhs)#})

define other where other = take a rrx @ drop (Suc a) rrx
have lenrrx: length rrx = l unfolding rrx-def rx1 by auto
hence rrx = take a rrx @ rrx ! a # drop (Suc a) rrx using a

by (meson id-take-nth-drop)
hence filter short rrx = filter short (take a rrx @ rrx ! a # drop

(Suc a) rrx) by simp
also have . . . = filter short (take a rrx) @ rrx ! a # filter short

(drop (Suc a) rrx)
(is - = ?f1 @ - # ?f2)
by (simp add: yts ′[symmetric] short-def long-def ts ′)

also have rrx ! a = (y, [s]) unfolding yts ′[symmetric] ts ′ by simp
also have mp-rx (?f1 @ . . . # ?f2 , b) − {#(s,lhs)#} = mp-rx

(?f1 @ ?f2 ,b)
unfolding mp-rx-append mp-rx-Cons lhs split by auto

finally have y ∈ lvars-mp (mp-rx (?f1 @ ?f2 ,b)) using mem by
auto

from this[unfolded lvars-mp-def mp-rx-def , folded filter-append,
folded other-def]

obtain ts ′′ where (y,ts ′′) ∈ set other by auto
also have . . . ⊆ {rrx ! b | b. b ∈ {..<length rrx} − {a}} unfolding

other-def
using a unfolding lenrrx[symmetric] unfolding set-conv-nth
by (auto simp: nth-append)
(metis (no-types, lifting) Suc-diff-diff diff-self-eq-0 diff-zero lessI

less-nat-zero-code neq0-conv
zero-less-diff)

finally obtain b where b < l a 6= b and (y, ts ′′) = rrx ! b using
lenrrx by auto

then show ?thesis using lenrrx unfolding rrx-def rx1 by auto

138

qed
then obtain b where b < l y = fresh ! b a 6= b by auto

with y a show False using injD[OF ren(1), of n + a n + b]
unfolding fresh-def

by auto
qed

qed
qed
also have (→m)∗∗ (mp-lr (xl, (frrx @ rx2) @ out, b)) (mp-lr (xl, rx ′,

b)) using IH by auto
finally show (→m)∗∗ (mp-lr (xl, rx @ out, b)) (mp-lr (xl, rx ′, b)) .

qed
qed

qed
qed

} note main = this
from assms(4)[unfolded decomp ′-impl-def mp split]
obtain rx ′ where decomp: Decomp ′-main-loop n xs rx [] = (n ′, rx ′) (is ?e = -)

and mp ′: mp ′ = (xl, rx ′, b) by (cases ?e, auto)
from main[OF decomp, unfolded append-Nil2 , folded mp mp ′] 1
show ?case using assms by auto

qed

lemma match-decomp ′-impl: assumes Match-decomp ′-impl n mp = res
and lvc: lvar-cond-mp n (mp-list mp)
shows res = Some (n ′,mp ′) =⇒ (→m)∗∗ (mp-list mp) (mp-lr mp ′) ∧ wf-lr3 mp ′

∧ lvar-cond-mp n ′ (mp-lr mp ′) ∧ n ≤ n ′

and res = None =⇒ ∃ mp ′. (→m)∗∗ (mp-list mp) mp ′ ∧ match-fail mp ′

proof (atomize (full), goal-cases)
case 1
note res = assms(1)[unfolded match-decomp ′-impl-def]
show ?case
proof (cases match-steps-impl mp = None)

case None: True
with match-steps-impl(2)[OF refl None]
show ?thesis using res by auto

next
case False
then obtain xs mp2 where Some: match-steps-impl mp = Some (xs, mp2)

by auto
note match = match-steps-impl(1)[OF refl Some]
from lvc match have lvc: lvar-cond-mp n (mp-lr mp2)

unfolding lvar-cond-def lvar-cond-mp-def by auto
note res = res[unfolded Some option.simps split]
show ?thesis
proof (cases apply-decompose ′ mp2)

case False
obtain xl xr b where mp2 : mp2 = (xl,xr ,b) by (cases mp2 , auto)
from False[unfolded apply-decompose ′-def mp2 split]

139

have cond: improved =⇒ b ∨ xl 6= [] by auto
from match have wf-lr2 mp2 by simp
with cond have wf-lr3 mp2

unfolding wf-lr3-def wf-lr2-def mp2 split
unfolding wf-rx3-def by auto

with False res lvc match show ?thesis by auto
next

case True
with res have res: res = Some (decomp ′-impl renNat n xs mp2) by auto
obtain n3 mp3 where dec: decomp ′-impl renNat n xs mp2 = (n3 , mp3) (is

?e = -) by (cases ?e) auto
from True have improved unfolding apply-decompose ′-def by (cases mp2 ,

auto)
from match
have steps12 : (→m)∗∗ (mp-list mp) (mp-lr mp2)

and wf2 : wf-lr2 mp2
and xs: set xs = lvars-mp (mp-list (mp-lx (fst mp2))) by auto

from decomp ′-impl[OF wf2 xs lvc dec ‹improved›] steps12
show ?thesis unfolding res dec by auto

qed
qed

qed

lemma pat-inner-impl: assumes Pat-inner-impl n p pd = res
and wf-pat-lr pd
and tvars-pat (pat-mset (pat-mset-list p + pat-lr pd)) ⊆ V
and lvar-cond-pp n (pat-mset-list p + pat-lr pd)
shows res = None =⇒ (add-mset (pat-mset-list p + pat-lr pd) P, P) ∈ V+

and res = Some (n ′,p ′) =⇒ (add-mset (pat-mset-list p + pat-lr pd) P, add-mset
(pat-lr p ′) P) ∈ V∗

∧ wf-pat-lr p ′ ∧ tvars-pat (pat-mset (pat-lr p ′)) ⊆ V ∧ lvar-cond-pp n ′

(pat-lr p ′) ∧ n ≤ n ′

proof (atomize(full), insert assms, induct p arbitrary: n pd res n ′ p ′)
case Nil
then show ?case by (auto simp: wf-pat-lr-def pat-mset-list-def pat-lr-def)

next
case (Cons mp p n pd res n ′′ p ′)
let ?p = pat-mset-list p + pat-lr pd
have id: pat-mset-list (mp # p) + pat-lr pd = add-mset (mp-list mp) ?p unfold-

ing pat-mset-list-def by auto
from Cons(5) have lmp: lvar-cond-mp n (mp-list mp) unfolding lvar-cond-pp-def

lvar-cond-mp-def lvars-pp-def
by (simp add: id)

show ?case
proof (cases Match-decomp ′-impl n mp)

case (Some pair)
then obtain n ′ mp ′ where Some: Match-decomp ′-impl n mp = Some (n ′, mp ′)

by (cases pair , auto)
from match-decomp ′-impl(1)[OF Some lmp refl]

140

have steps: (→m)∗∗ (mp-list mp) (mp-lr mp ′) and wf : wf-lr3 mp ′

and lmp ′: lvar-cond-mp n ′ (mp-lr mp ′) and nn ′: n ≤ n ′ by auto
from Cons(5) lvar-cond-mono[OF nn ′]
have lvars-n ′: lvar-cond-pp n ′ (pat-mset-list (mp # p) + pat-lr pd)

by (auto simp: lvar-cond-pp-def)
have id2 : pat-mset-list p + pat-lr (mp ′ # pd) = add-mset (mp-lr mp ′) ?p

unfolding pat-lr-def by auto
from mp-step-mset-steps-vars[OF steps] Cons(4)
have vars: tvars-pat (pat-mset (pat-mset-list p + pat-lr (mp ′ # pd))) ⊆ V

unfolding id2 by (auto simp: tvars-pat-def pat-mset-list-def)
note steps = mp-step-mset-cong[OF steps, of ?p P, folded id]
note res = Cons(2)[unfolded pat-inner-impl.simps Some option.simps split]
show ?thesis
proof (cases empty-lr mp ′)

case False
with Cons(3) wf have wf : wf-pat-lr (mp ′ # pd) unfolding wf-pat-lr-def by

auto
from lmp ′ lvars-n ′

have lvars-pre: lvar-cond-pp n ′ (pat-mset-list p + pat-lr (mp ′ # pd))
unfolding lvar-cond-pp-def lvar-cond-mp-def
by (auto simp: pat-mset-list-def lvars-pp-def lvars-mp-def pat-lr-def)

from res False have Pat-inner-impl n ′ p (mp ′ # pd) = res by auto
from Cons(1)[OF this wf vars lvars-pre, of n ′′ p ′, unfolded id2] steps nn ′

show ?thesis by auto
next

case True
with wf have id3 : mp-lr mp ′ = {#} unfolding wf-lr2-def empty-lr-def by

(cases mp ′, auto simp: mp-lr-def mp-rx-def List.maps-def)
from True res have res: res = None by auto
have (add-mset (add-mset (mp-lr mp ′) ?p) P, P) ∈ P-step

unfolding id3 P-step-def using P-simp-pp[OF pat-remove-pp[of ?p], of P]
by auto

with res steps show ?thesis by auto
qed

next
case None
from match-decomp ′-impl(2)[OF None lmp refl] obtain mp ′ where
(→m)∗∗ (mp-list mp) mp ′ and fail: match-fail mp ′ by auto

note steps = mp-step-mset-cong[OF this(1), of ?p P, folded id]
from P-simp-pp[OF pat-remove-mp[OF fail, of ?p], of P]
have (add-mset (add-mset mp ′ ?p) P, add-mset ?p P) ∈ P-step

unfolding P-step-def by auto
with steps have steps: (add-mset (pat-mset-list (mp # p) + pat-lr pd) P,

add-mset ?p P) ∈ P-step^∗ by auto
note res = Cons(2)[unfolded pat-inner-impl.simps None option.simps]
have vars: tvars-pat (pat-mset (pat-mset-list p + pat-lr pd)) ⊆ V

using Cons(4) unfolding tvars-pat-def pat-mset-list-def by auto
have lvars: lvar-cond-pp n (pat-mset-list p + pat-lr pd)

using Cons(5) unfolding lvar-cond-pp-def lvars-pp-def by (auto simp:

141

pat-mset-list-def)
from Cons(1)[OF res Cons(3) vars lvars, of n ′′ p ′] steps
show ?thesis by auto

qed
qed

Main simulation lemma for a single pat-impl step.
lemma pat-impl:

assumes Pat-impl n nl p = res
and vars: tvars-pat (pat-list p) ⊆ {..<n} × S
and lvarsAll: ∀ pp ∈# add-mset (pat-mset-list p) P. lvar-cond-pp nl pp

shows res = Incomplete =⇒ ∃ p ′. (add-mset (pat-mset-list p) P, add-mset p ′ P)
∈ V∗ ∧ pat-fail p ′

and res = New-Problems (n ′,nl ′,ps) =⇒ (add-mset (pat-mset-list p) P, mset
(map pat-mset-list ps) + P) ∈ V+

∧ tvars-pat (
⋃

(pat-list ‘ set ps)) ⊆ {..< n ′} × S
∧ (∀ pp ∈# mset (map pat-mset-list ps) + P. lvar-cond-pp nl ′ pp) ∧ n

≤ n ′

and res = Fin-Var-Form fvf =⇒ improved
∧ (add-mset (pat-mset-list p) P, add-mset (pat-mset-list (pat-of-var-form-list

fvf)) P) ∈ V∗

∧ finite-var-form-pat C (pat-list (pat-of-var-form-list fvf))
∧ Ball (set fvf) (distinct o map fst)
∧ Ball (set (concat fvf)) (distinct ◦ snd)

proof (atomize(full), goal-cases)
case 1
have wf : wf-pat-lr [] unfolding wf-pat-lr-def by auto
have vars: tvars-pat (pat-mset (pat-mset-list p)) ⊆ {..<n} × S

using vars unfolding pat-mset-list by auto
have pat-mset-list p + pat-lr [] = pat-mset-list p unfolding pat-lr-def by auto
note pat-inner = pat-inner-impl[OF refl wf , of p, unfolded this, OF vars]
from lvarsAll have lvars: lvar-cond-pp nl (pat-mset-list p) by auto
note res = assms(1)[unfolded pat-impl-def]
show ?case
proof (cases Pat-inner-impl nl p [])

case None
from pat-inner(1)[OF lvars this] res[unfolded None option.simps] vars
show ?thesis using lvarsAll by (auto simp: tvars-pat-def)

next
case (Some pair)
then obtain nl ′′ p ′ where Some: Pat-inner-impl nl p [] = Some (nl ′′, p ′) by

force
from pat-inner(2)[OF lvars Some]
have steps: (add-mset (pat-mset-list p) P, add-mset (pat-lr p ′) P) ∈ V∗

and wf : wf-pat-lr p ′

and varsp ′: tvars-pat (pat-mset (pat-lr p ′)) ⊆ {..<n} × S
and lvar-p ′: lvar-cond-pp nl ′′ (pat-lr p ′) and nl: nl ≤ nl ′′ by auto

obtain ivc no-ivc where part: partition (λmp. snd (snd mp)) p ′ = (ivc, no-ivc)
by force

142

from part have no-ivc-filter : no-ivc = filter (λ mp. ¬ (snd (snd mp))) p ′

unfolding partition-filter-conv
by (auto simp: o-def)

from part have ivc-filter : ivc = filter (λ mp. snd (snd mp)) p ′ unfolding
partition-filter-conv

by (auto simp: o-def)
define f where f = (λ mp :: (′f , ′v, ′s)match-problem-lr . snd (snd mp))

from part have Notf : no-ivc = filter (Not o f) p ′ unfolding partition-filter-conv
f-def

by (auto simp: o-def)
from part have f : ivc = filter f p ′ unfolding partition-filter-conv f-def

by (auto simp: o-def)
note res = res[unfolded Some option.simps split part]
show ?thesis
proof (cases ∀mp∈set p ′. snd (snd mp))

case True
with res part have res: res = Incomplete by auto
have (add-mset (pat-lr p ′) P, add-mset {#} P) ∈ V∗

proof (cases pat-lr p ′ = {#})
case False
have add-mset (pat-lr p ′ + {#}) P Vm {# {#} #} + P
proof (intro P-simp-pp[OF pat-inf-var-conflict[OF - False]] ballI)

fix mps
assume mps ∈ pat-mset (pat-lr p ′)

then obtain mp where mem: mp ∈ set p ′ and mps: mps = mp-mset
(mp-lr mp) by (auto simp: pat-lr-def)

obtain lx rx b where mp: mp = (lx,rx,b) by (cases mp, auto)
from mp mem True have b by auto
with wf [unfolded wf-pat-lr-def , rule-format, OF mem, unfolded wf-lr3-def

mp split]
have inf-var-conflict (set-mset (mp-rx (rx,b))) unfolding wf-rx-def

wf-rx2-def wf-rx3-def by (auto split: if-splits)
thus inf-var-conflict mps unfolding mps mp-lr-def mp split

unfolding inf-var-conflict-def by fastforce
qed (auto simp: tvars-pat-def)
thus ?thesis unfolding P-step-def by auto

qed auto
with steps have (add-mset (pat-mset-list p) P, add-mset {#} P) ∈ V∗ by

auto
moreover have pat-fail {#} by (intro pat-empty)
ultimately show ?thesis using res by auto

next
case False
with part have no-ivc: no-ivc 6= [] unfolding partition-filter-conv o-def

by (metis (no-types, lifting) empty-filter-conv snd-conv)
hence (no-ivc = []) = False by auto
note res = res[unfolded this if-False]
from part have sub: set no-ivc ⊆ set p ′ set ivc ⊆ set p ′ unfolding parti-

tion-filter-conv by auto

143

{
fix mp
assume mp: mp ∈ set no-ivc
with no-ivc-filter have b: ¬ snd (snd mp) by simp
from mp sub have mp ∈ set p ′ by auto
with wf [unfolded wf-pat-lr-def] have wf-lr3 mp by auto
from this[unfolded wf-lr3-def wf-rx3-def wf-rx-def wf-rx2-def] b
have ¬ inf-var-conflict (mp-mset (mp-rx (snd mp)))

by (cases mp, auto split: if-splits)
note b this

} note no-ivc-b = this

{
fix mp
assume mp: mp ∈ set ivc
with ivc-filter have b: snd (snd mp) by simp
from mp sub have mp ∈ set p ′ by auto
with wf [unfolded wf-pat-lr-def] have wf-lr3 mp by auto
from this[unfolded wf-lr3-def wf-rx3-def wf-rx-def wf-rx2-def] b
have inf-var-conflict (mp-mset (mp-rx (snd mp)))

by (cases mp, auto split: if-splits)
note b this

} note ivc-b = this

define p ′l where p ′l = map mp-lr-list p ′

let ?ivc ′-cond = improved ∧ ivc 6= [] ∧ (∀mp∈set no-ivc. fst mp = [])
show ?thesis
proof (cases ?ivc ′-cond)

case True
hence ?ivc ′-cond = True by auto
note res = res[unfolded this if-True, symmetric]
from True CC have CC = C by auto
note res = res[unfolded this]
define M where M = pat-lr ivc
let ?f = (λmp. ∀ xts∈set (fst (snd mp)). is-singleton-list (map T (C ,V) (snd

xts)))
define P ′ where P ′ = filter ?f no-ivc
have P ′: set P ′ ⊆ set p ′ unfolding P ′-def no-ivc-filter by auto
have p ′-split: pat-lr p ′ = M + pat-lr no-ivc

unfolding pat-lr-def ivc-filter no-ivc-filter mset-map M-def
by (induct p ′, auto)

from no-ivc-filter have set no-ivc ⊆ set p ′ by auto
hence steps2 : (add-mset (M + pat-lr no-ivc) P, add-mset (M + pat-lr P ′)

P) ∈ V∗ unfolding P ′-def
proof (induct no-ivc arbitrary: M)

case (Cons mp mps M)
show ?case
proof (cases ?f mp)

case True

144

have add-mset (M + pat-lr (mp # mps)) P = add-mset ((M + pat-lr
[mp]) + pat-lr mps) P

unfolding pat-lr-def by auto
also have (. . ., add-mset ((M + pat-lr [mp]) + pat-lr (filter ?f mps)) P)

∈ V∗

by (rule Cons(1), insert Cons, auto)
also have (M + pat-lr [mp]) + pat-lr (filter ?f mps) = M + pat-lr (filter

?f (mp # mps))
unfolding pat-lr-def using True by auto

finally show ?thesis .
next

case False
have add-mset (M + pat-lr (mp # mps)) P = add-mset (add-mset

(mp-lr mp) (M + pat-lr mps)) P
unfolding pat-lr-def by simp

also have (. . ., {# M + pat-lr mps #} + P) ∈ V unfolding P-step-def
proof (standard, unfold split, rule P-simp-pp, rule pat-remove-mp)

obtain xl xr b where mp: mp = (xl,xr ,b) by (cases mp, auto)
with Cons(2) have mem: (xl,xr ,b) ∈ set p ′ by auto
from mp False obtain x ts where xts: (x,ts) ∈ set xr

and nsingle: ¬ is-singleton-list (map T (C ,V) ts) by auto
from wf [unfolded wf-pat-lr-def , rule-format, OF mem]
have wf-lr3 (xl,xr ,b) by auto
from this[unfolded wf-lr3-def split] have wf-rx3 (xr ,b) ∨ wf-rx (xr ,b)

by (auto split: if-splits)
with xts have wf-ts2 ts ∨ wf-ts ts unfolding wf-rx3-def wf-rx2-def

wf-rx-def
by auto

hence ts 6= [] unfolding wf-ts2-def wf-ts-def by auto
then obtain t ts ′ where ts: ts = t # ts ′ by (cases ts, auto)
from nsingle[unfolded is-singleton-list ts singleton-def]
obtain t ′ where t ′: t ′ ∈ set ts ′ and diff : T (C ,V) t 6= T (C ,V) t ′ by

force
from split-list[OF t ′] obtain bef aft where ts ′: ts ′ = bef @ t ′ # aft

by auto
from split-list[OF xts] obtain bef ′ aft ′ where xr : xr = bef ′ @ (x, ts)

aft ′ by auto
obtain M ′ where mp: mp-lr mp = add-mset (t,Var x) (add-mset (t ′,

Var x) M ′)
unfolding mp ts ts ′ xr
unfolding mp-lr-def by (auto simp: mp-rx-def List.maps-def)

show match-fail (mp-lr mp) unfolding mp
by (rule match-clash-sort[OF diff])

qed
also have {# M + pat-lr mps #} + P = add-mset (M + pat-lr mps)

P by auto
also have (. . ., add-mset (M + pat-lr (filter ?f mps)) P) ∈ V∗

by (rule Cons(1), insert Cons, auto)
also have M + pat-lr (filter ?f mps) = M + pat-lr (filter ?f (mp #

145

mps))
using False by auto

finally show ?thesis .
qed

qed auto
from steps[unfolded p ′-split] steps2
have steps: (add-mset (pat-mset-list p) P, add-mset (M + pat-lr P ′) P) ∈

V∗ by auto
have step: (add-mset (M + pat-lr P ′) P, {# pat-lr P ′ #} + P) ∈ V

unfolding P-step-def
proof (standard, unfold split, rule P-simp-pp, rule pat-inf-var-conflict)

from True have ivc 6= [] by auto
then obtain lx rx b ivc ′ where ivc: ivc = (lx,rx,b) # ivc ′ by (cases ivc,

auto)
hence (lx,rx,b) ∈ set ivc by auto

from ivc-b[OF this] have mp-rx (rx,b) 6= {#} unfolding inf-var-conflict-def
by auto

thus M 6= {#} unfolding M-def ivc pat-lr-def by auto
next

{
fix xl xr b
assume (xl, xr , b) ∈ set ivc
from ivc-b[OF this] have inf-var-conflict (mp-mset (mp-rx ((xr , b))))

by simp
hence inf-var-conflict (mp-mset (mp-lr (xl, xr , b)))

unfolding mp-lr-def inf-var-conflict-def by force
}
thus Ball (pat-mset M) inf-var-conflict unfolding M-def pat-lr-def by

auto
next

show ∀ x∈tvars-pat (pat-mset (pat-lr P ′)). ¬ inf-sort (snd x)
proof

fix y
assume y ∈ tvars-pat (pat-mset (pat-lr P ′))
from this[unfolded tvars-pat-def pat-lr-def , simplified] obtain mp
where mp: mp ∈ set P ′ and y: y ∈ tvars-match (mp-mset (mp-lr mp))
by auto

from wf [unfolded wf-pat-lr-def] P ′ mp have wf : wf-lr3 mp by auto
from mp[unfolded P ′-def] have mp: mp ∈ set no-ivc and fmp: ?f mp by

auto
from no-ivc-b[OF mp] True mp
obtain rx where mp-id: mp = ([],rx,False)

and ninf : ¬ inf-var-conflict (mp-mset (mp-rx (rx, False)))
by (cases mp, auto)

note fmp = fmp[unfolded mp-id snd-conv fst-conv]
have id: mp-lr mp = mp-rx (rx,False) unfolding mp-id mp-lr-def by

auto
from y[unfolded id mp-rx-def List.maps-def tvars-match-def]
obtain x ts t where xts: (x,ts) ∈ set rx and t: t ∈ set ts and y: y ∈

146

vars t by force
from wf [unfolded mp-id wf-lr3-def split]
have wf-rx3 (rx, False) by auto
from this[unfolded wf-rx3-def] xts True
have wf-ts3 ts and wf2 : wf-rx2 (rx, False) by auto

from this[unfolded wf-ts3-def] obtain z where z: Var z ∈ set ts by auto
have sort: T (C ,V) (Var z) = Some (snd z) by simp
from fmp[rule-format, OF xts]
have is-singleton-list (map T (C ,V) ts) by auto
from this[unfolded is-singleton-list singleton-def] obtain so

where set (map T (C ,V) ts) = {so} by auto
with z sort
have single: set (map T (C ,V) ts) = {Some (snd z)} by force
from wf2 [unfolded wf-rx2-def fst-conv] xts
have wf2 : wf-ts2 ts by auto
from this[unfolded wf-ts2-def] z obtain s where s: s ∈ set ts and sz: s

6= Var z
by (cases ts; cases tl ts, auto)

from wf2 [unfolded wf-ts2-def wf-ts-no-conflict-alt-def]
have no-conf : s ∈ set ts =⇒ t ∈ set ts =⇒ conflicts s t 6= None for s t

by auto
from s z xts have

mem: (Var z, Var x) ∈ mp-mset (mp-rx (rx, False))
(s, Var x) ∈ mp-mset (mp-rx (rx, False))
unfolding mp-rx-def List.maps-def by auto

from no-conf [OF z s]
have Conflict-Var (Var z) s z using sz by (cases s, auto simp:

conflicts.simps)
with ninf mem have ninf :¬ inf-sort (snd z)

unfolding inf-var-conflict-def by blast
define σ where σ = snd z
from single t
have t: t : σ in T (C ,V) unfolding hastype-def σ-def by auto
from t y ninf [folded σ-def]
show ¬ inf-sort (snd y)

by (rule finite-sort-imp-finite-sort-vars)
qed

qed (insert True, auto)
have {# pat-lr P ′ #} + P = add-mset (pat-lr P ′) P by simp
also have to-list: pat-lr P ′ = pat-mset-list (map mp-lr-list P ′) by (simp

add: pat-mset-list-lr)
finally have steps: (add-mset (pat-mset-list p) P, add-mset (pat-mset-list

(map mp-lr-list P ′)) P) ∈ V+

using steps step by (simp add: pat-mset-list-lr)
show ?thesis
proof (intro conjI impI)

assume res = New-Problems (n ′, nl ′, ps)
from res[unfolded this]
have id: n ′ = n nl ′ = nl ′′ ps = [map mp-lr-list P ′]

147

by (auto simp: P ′-def)
show (add-mset (pat-mset-list p) P, mset (map pat-mset-list ps) + P) ∈

V+

unfolding id using steps by auto
show n ≤ n ′ unfolding id by auto
have tvars-pat (

⋃
(pat-list ‘ set ps)) ⊆ tvars-pat (pat-list (map mp-lr-list

P ′))
unfolding id by auto

also have id2 : pat-list (map mp-lr-list P ′) = pat-mset (pat-lr P ′) unfolding
to-list

by (metis pat-mset-list)
also have tvars-pat . . . ⊆ tvars-pat (pat-mset (pat-lr p ′)) using P ′

unfolding tvars-pat-def pat-lr-def by force
also have . . . ⊆ {..<n} × S by fact
finally show tvars-pat (

⋃
(pat-list ‘ set ps)) ⊆ {..<n ′} × S

unfolding id .
show Multiset.Ball (mset (map pat-mset-list ps) + P) (lvar-cond-pp nl ′)
proof

fix mps
assume mps ∈# mset (map pat-mset-list ps) + P
from this[unfolded id]
have disj: mps = pat-mset-list (map mp-lr-list P ′) ∨ mps ∈# P by auto
thus lvar-cond-pp nl ′ mps
proof

assume mps ∈# P
with lvarsAll have lvar-cond-pp nl mps by auto
with lvar-cond-mono[OF nl] show lvar-cond-pp nl ′ mps

unfolding lvar-cond-pp-def id by auto
next

assume mps = pat-mset-list (map mp-lr-list P ′)
also have . . . = pat-lr P ′ by (rule pat-mset-list-lr)
also have . . . ⊆# pat-lr no-ivc unfolding P ′-def pat-lr-def mset-map

mset-filter
by (rule image-mset-subseteq-mono, rule multiset-filter-subset)

also have . . . ⊆# pat-lr p ′ unfolding p ′-split by auto
finally have lvars-pp mps ⊆ lvars-pp (pat-lr p ′)

unfolding lvars-pp-def using mset-subset-eqD by fastforce
with lvar-p ′ show ?thesis unfolding id lvar-cond-pp-def lvar-cond-def

by auto
qed

qed
qed (insert res, auto)

next
case False
hence ?ivc ′-cond = False by auto
note res = res[unfolded this if-False]
show ?thesis
proof (cases find-var improved no-ivc)

case (Some x)

148

define ps where ps = map (λτ. subst-pat-problem-list τ p ′l) (τs-list n x)
have id: pat-lr p ′ = pat-mset-list p ′l unfolding p ′l-def by (simp add:

pat-mset-list-lr)
have subst: map (λτ. subst-pat-problem-mset τ (pat-lr p ′)) (τs-list n x) =

map pat-mset-list ps
unfolding id

unfolding ps-def subst-pat-problem-list-def subst-pat-problem-mset-def
subst-match-problem-mset-def

subst-match-problem-list-def map-map o-def
by (intro list.map-cong0 , auto simp: pat-mset-list-def o-def image-mset.compositionality)
note res = res[unfolded Let-def Some option.simps, folded p ′l-def]
from res have res: res = New-Problems (n + m, nl ′′, ps) using ps-def

by auto
have step: (add-mset (pat-lr p ′) P, mset (map pat-mset-list ps) + P) ∈ V

unfolding P-step-def
proof (standard, unfold split, intro P-simp-pp)

note x = Some[unfolded find-var-def]
let ?concat = List.maps (λ (lx,-). lx) no-ivc
have disj: tvars-disj-pp {n..<n + m} (pat-mset (pat-lr p ′))

using varsp ′ unfolding tvars-pat-def tvars-disj-pp-def tvars-match-def
by force

show pat-lr p ′⇒m mset (map pat-mset-list ps)
proof (cases ?concat)

case (Cons pair list)
with x obtain t where concat: ?concat = (x,t) # list by (cases pair ,

auto)
hence (x,t) ∈ set ?concat by auto

then obtain mp where mp ∈ set p ′ and (x,t) ∈ set ((λ (lx,-). lx) mp)
using sub

by (auto simp: List.maps-def)
then obtain lx rx where mem: (lx,rx) ∈ set p ′ and xt: (x,t) ∈ set lx

by auto
from wf mem have wf : wf-lx lx unfolding wf-pat-lr-def wf-lr3-def by

auto
with xt have t: is-Fun t unfolding wf-lx-def by auto
from mem obtain p ′′ where pat: pat-lr p ′ = add-mset (mp-lr (lx,rx))

p ′′

unfolding pat-lr-def by simp (metis in-map-mset mset-add
set-mset-mset)

from xt have xt: (Var x, t) ∈# mp-lr (lx,rx) unfolding mp-lr-def by
force

from pat-instantiate[OF - disjI1 [OF conjI [OF xt t]], of n p ′′, folded
pat, OF disj]

show ?thesis unfolding subst .
next

case Nil
define flat-mps where flat-mps = List.maps (fst ◦ snd) no-ivc
note x = x[unfolded Nil list.simps Let-def , folded flat-mps-def]
from wf [unfolded wf-pat-lr-def]

149

show ?thesis
proof (cases improved)

case False
from no-ivc obtain mp p ′′ where fp: no-ivc = mp # p ′′ by (cases

no-ivc) auto
obtain lx rx b where mp: mp = (lx,rx,b) by (cases mp) auto
from fp have hd: hd no-ivc = mp by auto
from no-ivc-b[of mp, unfolded fp] mp
have mp: mp = (lx,rx,False) by auto
have mpp: mp ∈ set p ′ using arg-cong[OF fp, of set] sub by auto
from mp Nil fp have lx = [] by (auto simp: List.maps-def)
with mp have mp: mp = ([],rx,False) by auto
note x = x[unfolded hd mp Let-def split]

from wf mpp have wf : wf-lr3 mp and ne: ¬ empty-lr mp unfolding
wf-pat-lr-def by auto

from wf [unfolded wf-lr3-def mp split] mp
have wf : wf-rx2 (rx, False) by (auto simp: wf-rx3-def)
from ne[unfolded empty-lr-def mp split] obtain y ts rx ′

where rx: rx = (y,ts) # rx ′ by (cases rx, auto)
from wf [unfolded wf-rx2-def] have ninf : ¬ inf-var-conflict (mp-mset

(mp-rx (rx, False)))
and wf : wf-ts2 ts unfolding rx by auto

from wf [unfolded wf-ts2-def] obtain s t ts ′ where ts: ts = s # t #
ts ′ and

diff : s 6= t and conf : conflicts s t 6= None
by (cases ts; cases tl ts, auto)

from conf obtain xs where conf : conflicts s t = Some xs by (cases
conflicts s t, auto)

with conflicts(5)[of s t] diff have xs 6= [] by auto
with x[unfolded rx list.simps list.sel split ts conf option.sel] False
obtain xs ′ where xs: xs = x # xs ′ by (cases xs) auto
from conf xs have confl: Conflict-Var s t x by auto
from ts rx have sty: (s, Var y) ∈# mp-rx (rx, False) (t, Var y) ∈#

mp-rx (rx,False)
by (auto simp: mp-rx-def List.maps-def)

with confl ninf have ¬ inf-sort (snd x) unfolding inf-var-conflict-def
by blast

with sty confl rx have main: (s, Var y) ∈# mp-lr mp ∧ (t, Var y)
∈# mp-lr mp ∧ Conflict-Var s t x ∧ ¬ inf-sort (snd x)

∧ (improved −→ b) for b using False
unfolding mp by (auto simp: mp-lr-def)

from mpp obtain p ′′ where pat: pat-lr p ′ = add-mset (mp-lr mp) p ′′

unfolding pat-lr-def by simp (metis in-map-mset mset-add
set-mset-mset)

from pat-instantiate[OF - disjI2 [OF main], of n p ′′, folded pat, OF
disj]

show ?thesis unfolding subst .
next

case impr : True

150

hence improved = True by auto
note x = x[unfolded this if-True]
let ?find = find (λrx. ∃ t∈set (snd rx). is-Fun t) flat-mps

from x obtain rx where find: ?find = Some rx by (cases ?find;
force)

from this[unfolded find-Some-iff]
obtain t where rx: rx ∈ set flat-mps and t: t ∈ set (snd rx) is-Fun t

by auto
obtain y ts where rx-id: rx = (y,ts) by force
note x = x[unfolded find option.simps rx-id split]
from rx[unfolded flat-mps-def List.maps-def]
obtain mp where mp-mem: mp ∈ set no-ivc

and rx-mp: rx ∈ set (fst (snd mp)) by auto
from mp-mem sub have mp-mem-p ′: mp ∈ set p ′ by auto
then obtain p ′′ where pat: pat-lr p ′ = add-mset (mp-lr mp) p ′′

unfolding pat-lr-def by simp (metis in-map-mset mset-add
set-mset-mset)

obtain lx rxs b where mp: mp = (lx,rxs,b) by (cases mp, auto)
with rx-mp have rx-rxs: rx ∈ set rxs by auto
from split-list[OF mp-mem] Nil mp
have lx: lx = [] unfolding List.maps-def by auto
from no-ivc-b[OF mp-mem] mp lx
have mp: mp = ([],rxs,False) and

No-ivc: ¬ inf-var-conflict (mp-mset (mp-rx (rxs,b))) by auto
from wf [unfolded wf-pat-lr-def] mp-mem sub
have wf-lr3 mp by auto
from this[unfolded wf-lr3-def mp split]
have wf-rx3 (rxs, False) by auto
from this[unfolded wf-rx3-def fst-conv snd-conv]

have wf-rx2 : wf-rx2 (rxs, False) and Ball (snd ‘ set rxs) wf-ts3 using
impr by auto

with rx-mp[unfolded mp] rx-id
have wf-ts: wf-ts3 ts by auto

from this[unfolded wf-ts3-def] have ∃ u. u ∈ set ts ∧ is-Var u ∧ find
is-Var ts = Some u

by (induct ts, auto)
with x have x: Var x ∈ set ts by auto
from t[unfolded rx-id]
have t: t ∈ set ts is-Fun t by auto
show ?thesis
proof (rule pat-instantiate[of n mp-lr mp p ′′,

OF - disjI2 , of Var x y t x, folded pat, OF disj, unfolded subst],
intro conjI impI refl t)

show cvar1 : x ∈ set (the (conflicts (Var x) t)) using t by (cases t,
auto simp: conflicts.simps)

from x rx-rxs rx-id have xy: (Var x, Var y) ∈# mp-rx (rxs, b)
unfolding mp-rx-def List.maps-def by auto

thus (Var x, Var y) ∈# mp-lr mp
unfolding mp-lr-def mp split mp-rx-def by auto

151

from t rx-rxs rx-id have ty: (t, Var y) ∈# mp-rx (rxs, b) unfolding
mp-rx-def List.maps-def by auto

thus (t, Var y) ∈# mp-lr mp
unfolding mp-lr-def mp split mp-rx-def by auto

from rx-rxs rx-id wf-rx2 [unfolded wf-rx2-def] have wf-ts2 ts by auto
from this[unfolded wf-ts2-def wf-ts-no-conflict-alt-def] x t
show cvar2 : conflicts (Var x) t 6= None by auto
from No-ivc[unfolded inf-var-conflict-def] xy ty cvar1 cvar2 show

¬ inf-sort (snd x) by blast
qed

qed
qed

qed
have tvars: tvars-pat (

⋃
(pat-list ‘ set ps)) ⊆ {..<n + m} × S

proof (safe del: conjI)
fix yn ι
assume (yn,ι) ∈ tvars-pat (

⋃
(pat-list ‘ set ps))

then obtain pi mp
where pi: pi ∈ set ps

and mp: mp ∈ set pi and y: (yn,ι) ∈ tvars-match (set mp)
unfolding tvars-pat-def pat-list-def by force

from pi[unfolded ps-def set-map subst-pat-problem-list-def subst-match-problem-list-def ,
simplified]

obtain τ where tau: τ ∈ set (τs-list n x) and pi: pi = map (map
(subst-left τ)) p ′l by auto

from tau[unfolded τs-list-def]
obtain info where infoCl: info ∈ set (Cl (snd x)) and tau: τ = τc n x

info by auto
from Cl-len[of snd x] this(1) have len: length (snd info) ≤ m by force

from mp[unfolded pi set-map] obtain mp ′ where mp ′: mp ′ ∈ set p ′l and
mp: mp = map (subst-left τ) mp ′ by auto

from y[unfolded mp tvars-match-def image-comp o-def set-map]
obtain pair where ∗: pair ∈ set mp ′ (yn,ι) ∈ vars (fst (subst-left τ

pair)) by auto
obtain s t where pair : pair = (s,t) by force
from ∗[unfolded pair] have st: (s,t) ∈ set mp ′ and y: (yn,ι) ∈ vars (s ·

τ) unfolding subst-left-def by auto
from y[unfolded vars-term-subst, simplified]
obtain z where z: z ∈ vars s and y: (yn,ι) ∈ vars (τ z) by auto
obtain f ss where info: info = (f ,ss) by (cases info, auto)
with len have len: length ss ≤ m by auto
define ts :: (′f ,-)term list where ts = map Var (zip [n..<n + length ss]

ss)
from tau[unfolded τc-def info split]
have tau: τ = subst x (Fun f ts) unfolding ts-def by auto
from infoCl[unfolded Cl info]
have f : f : ss → snd x in C by auto
from C-sub-S [OF this] have ssS : set ss ⊆ S by simp
from ssS

152

have vars (Fun f ts) ⊆ {..< n + length ss} × S unfolding ts-def by
(auto simp: set-zip)

also have . . . ⊆ {..< n + m} × S using len by auto
finally have subst: vars (Fun f ts) ⊆ {..< n + m} × S by auto
show yn ∈ {..<n + m} ∧ ι ∈ S
proof (cases z = x)

case True
with y subst tau show ?thesis by force

next
case False
hence τ z = Var z unfolding tau by (auto simp: subst-def)
with y have z = (yn,ι) by auto
with z have y: (yn,ι) ∈ vars s by auto

with st have (yn,ι) ∈ tvars-match (set mp ′) unfolding tvars-match-def
by force

with mp ′ have (yn,ι) ∈ tvars-pat (set ‘ set p ′l) unfolding tvars-pat-def
by auto

also have . . . = tvars-pat (pat-mset (pat-mset-list p ′l))
by (rule arg-cong[of - - tvars-pat], auto simp: pat-mset-list-def

image-comp)
also have . . . = tvars-pat (pat-mset (pat-lr p ′)) unfolding id[symmetric]

by simp
also have . . . ⊆ {..<n} × S using varsp ′ .
finally show ?thesis by auto

qed
qed
{

fix pp
assume pp: pp ∈# mset (map pat-mset-list ps) + P
have lvar-cond-pp nl ′′ pp
proof (cases pp ∈# P)

case True
with lvarsAll have lvar-cond-pp nl pp by auto
with lvar-cond-mono[OF nl] show ?thesis unfolding lvar-cond-pp-def

by auto
next

case False
then obtain pp ′ where pp ′: pp ′ ∈ set ps and pp: pp = pat-mset-list

pp ′

using pp by auto
from pp ′[unfolded ps-def] obtain τ where pp ′: pp ′= subst-pat-problem-list

τ p ′l by auto
have lvars-pp pp = lvars-pp (pat-lr p ′)

unfolding pp pp ′ id
unfolding lvars-pp-def lvars-mp-def
by (force simp: subst-pat-problem-list-def subst-match-problem-list-def

subst-left-def pat-mset-list-def)
thus ?thesis using lvar-p ′ unfolding lvar-cond-pp-def by auto

qed

153

}
with tvars step steps res nl show ?thesis by auto

next
case None

hence impr : improved and Nil: List.maps (λ(lx, uu). lx) no-ivc = []
unfolding find-var-def Let-def

by (auto split: option.splits if-splits list.splits)
from impr False have ivc = [] ∨ (∃ mp ∈ set no-ivc. fst mp 6= []) by auto
with Nil have ivc: ivc = [] unfolding List.maps-def by force
{

fix mp
assume mp-mem: mp ∈ set no-ivc

from no-ivc-b[OF mp-mem] obtain lx rx where mp: mp = (lx,rx,False)
by (cases mp, auto)

from None[unfolded find-var-def] have no-ivc-lx: List.maps (λ(lx, uu).
lx) no-ivc = [] by (auto split: list.splits)

from split-list[OF mp-mem] mp no-ivc-lx have lx: lx = [] by (cases lx,
auto simp: List.maps-def)

with mp have mp: mp = ([],rx, False) by auto
from impr have improved = True by simp
note None = None[unfolded find-var-def no-ivc-lx list.simps this if-True

Let-def]
from None mp-mem
have ∀ a b. ((a, b) /∈ set (fst (snd mp))) ∨ (∀ t∈set b. is-Var t)

by (auto simp: find-None-iff List.maps-def)
from this[unfolded mp] have only-vars: (x, ts) ∈ set rx =⇒ t ∈ set ts

=⇒ is-Var t for x ts t by auto
from wf [unfolded wf-pat-lr-def] mp-mem have wf-lr3 mp using sub by

auto
from this[unfolded wf-lr3-def mp split] have wf-rx3 (rx, False) by auto
from this[unfolded wf-rx3-def] have wf-rx2 (rx, False) by auto
from this[unfolded wf-rx2-def snd-conv fst-conv]
have wf-ts: Ball (snd ‘ set rx) wf-ts2

and no-inf : ¬ inf-var-conflict (mp-mset (mp-rx (rx, False)))
and dist: distinct (map fst rx) by auto

{
fix x ts t
assume xts: (x,ts) ∈ set rx and t: t ∈ set ts
from only-vars[OF this] obtain y where ty: t = Var y by auto
from xts wf-ts have wf-ts2 ts by auto
from this[unfolded wf-ts2-def wf-ts-no-conflict-alt-def] t
have len: 2 ≤ length ts and dist: distinct ts and no-conf :

∧
s. s ∈

set ts =⇒ conflicts s t 6= None by auto
from t len dist obtain s where s-ts: s ∈ set ts and s 6= t by (cases

ts; cases tl ts; auto)
from only-vars[OF xts this(1)] this(2) ty obtain z where s: s = Var

z and yz: y 6= z by (cases s, auto)
from t have trx: (t, Var x) ∈# mp-rx (rx, False) using xts unfolding

mp-rx-def List.maps-def by auto

154

from s-ts have srx: (s, Var x) ∈# mp-rx (rx, False) using xts
unfolding mp-rx-def List.maps-def by auto

have conflicts s t = (if snd z = snd y then Some [z, y] else None)
unfolding s ty conflicts.simps using yz by auto

with no-conf [OF s-ts] have conflicts s t = Some [z,y] by (auto split:
if-splits)

with no-inf [unfolded inf-var-conflict-def , simplified, rule-format, OF
trx srx] yz

have ¬ inf-sort (snd y) by (cases y, auto)
with ty have ∃ y. t = Var y ∧ ¬ inf-sort (snd y) by auto

} note only-fin-sort-vars = this
with mp dist wf-ts ‹wf-rx3 (rx, False)› have ∃ rx. mp = ([], rx, False)

∧ Ball (snd ‘ set rx) wf-ts2 ∧ distinct (map fst rx) ∧
wf-rx3 (rx, False) ∧

(∀ x ts t. (x,ts) ∈ set rx −→ t ∈ set ts −→ (∃ y. t = Var y ∧ ¬ inf-sort
(snd y)))

by blast
} note no-ivc-probs = this

have split-p ′: pat-lr p ′ = pat-lr ivc + pat-lr no-ivc unfolding Notf f
unfolding pat-lr-def by (induct p ′, auto)

hence p ′-no-ivc: pat-lr p ′ = pat-lr no-ivc unfolding ivc pat-lr-def by auto

let ?fvf = map (map (map-prod id (map the-Var)) ◦ fst ◦ snd) no-ivc
let ?pat = λ p. pat-mset-list (pat-of-var-form-list p)
note res = res[unfolded None option.simps Let-def]
from steps p ′-no-ivc
have (add-mset (pat-mset-list p) P, add-mset (pat-lr no-ivc) P) ∈ V∗ by

auto
also have equiv: pat-lr no-ivc = ?pat ?fvf

unfolding pat-lr-def pat-of-var-form-list-def match-of-var-form-list-def
pat-mset-list-def map-map o-def mp-lr-def

proof (intro arg-cong[of - - mset] map-cong refl)
fix mp
assume mp ∈ set no-ivc
from no-ivc-probs[OF this] obtain rx where mp: mp = ([], rx, False)
and rx:

∧
x tx t. (x,tx) ∈ set rx =⇒ t ∈ set tx =⇒ ∃ y. t = Var y by

metis
have triv: mp-list (mp-lx ([] :: ((nat × ′s) × (′f , ′v) Term.term) list)) +

M = M for M by auto
show (case mp of (lx, rx) ⇒ mp-list (mp-lx lx) + mp-rx rx) =
mp-list

(concat
(map (λx. case map-prod id (map the-Var) x of (x, xa) ⇒ map (λv. (Var

v, Var x)) xa)
(fst (snd mp))))
unfolding mp split fst-conv snd-conv mp-rx-def List.maps-def triv

by (rule arg-cong[of - - λ xs. mset (concat xs)], intro map-cong refl,
insert rx, force)

155

qed
finally have steps ′: (add-mset (pat-mset-list p) P, add-mset (?pat ?fvf)

P) ∈ V∗ .
have fvf-res: finite-var-form-pat C (pat-mset (?pat ?fvf))

unfolding finite-var-form-pat-def equiv[symmetric]
proof

fix Mp
assume Mp ∈ pat-mset (pat-lr no-ivc)
from this[unfolded pat-lr-def]
obtain mp where mp-mem: mp ∈ set no-ivc and Mp: Mp = mp-mset

(mp-lr mp) by auto
from no-ivc-probs[OF mp-mem] obtain rx where

mp: mp = ([], rx, False) and
dist: distinct (map fst rx) and
wf-ts: Ball (snd ‘ set rx) wf-ts2 and
no-inf :

∧
x ts t. (x, ts) ∈ set rx =⇒ t ∈ set ts =⇒ (∃ y. t = Var y ∧

¬ inf-sort (snd y)) by auto
show finite-var-form-match C Mp

unfolding finite-var-form-match-def var-form-match-def
proof (intro conjI allI impI subsetI)

fix l x
assume xl: (Var x, l) ∈ Mp
with Mp mp mp-mem sub have x ∈ tvars-pat (pat-mset (pat-lr p ′))

apply (auto simp: tvars-pat-def pat-lr-def mp-lr-def mp-rx-def
tvars-match-def intro!: bexI [of - mp])

by (metis case-prod-conv term.set-intros(3))
with varsp ′ have sxS : snd x ∈ S by auto
from xl[unfolded Mp mp split mp-lr-def mp-rx-def List.maps-def]
obtain ts y where yts: (y,ts) ∈ set rx and xts: Var x ∈ set ts and l:

l = Var y by auto
from no-inf [OF yts xts] have ¬ inf-sort (snd x) by auto
then show finite-sort C (snd x) by (simp add: inf-sort[OF sxS])
fix z
assume (Var z, l) ∈ Mp
from this[unfolded Mp mp split mp-lr-def mp-rx-def List.maps-def] l

obtain ts ′ where yts ′: (y,ts ′) ∈ set rx and zts: Var z ∈ set ts ′ by auto
from dist yts yts ′ have ts ′ = ts by (metis eq-key-imp-eq-value)
with zts have zts: Var z ∈ set ts (is ?z ∈ -) by auto
from wf-ts yts have wf-ts2 ts by auto
from this[unfolded wf-ts2-def wf-ts-no-conflict-alt-def] xts zts
have conflicts (Var x) ?z 6= None by blast
thus snd x = snd z unfolding conflicts.simps by (auto split: if-splits)

next
fix pair
assume pair ∈ Mp
from this[unfolded Mp mp-lr-def mp split]
have pair ∈# mp-rx (rx, False) by auto
from this[unfolded mp-rx-def List.maps-def]
obtain x ts t where (x,ts) ∈ set rx t ∈ set ts and pair : pair = (t, Var

156

x) by auto
with no-inf [OF this(1−2)]
show pair ∈ range (map-prod Var Var) by auto

qed
qed
show ?thesis using res
proof (intro conjI , force, force, intro impI conjI)

assume res = Fin-Var-Form fvf
with res have id: fvf = ?fvf by simp
show improved by fact
show (add-mset (pat-mset-list p) P, add-mset (?pat fvf) P) ∈ V∗ using

steps ′ id by auto
show finite-var-form-pat C (pat-list (pat-of-var-form-list fvf)) using

fvf-res
unfolding id pat-mset-list by auto

show Ball (set fvf) (distinct ◦ map fst) unfolding id using no-ivc-probs
by force

show Ball (set (concat fvf)) (distinct ◦ snd)
proof

fix xvs
assume xvs ∈ set (concat fvf)
from this[unfolded id] obtain c where
c: c ∈ set no-ivc and xvs: xvs ∈ map-prod id (map the-Var) ‘ set (fst

(snd c)) by auto
from no-ivc-probs[OF c] obtain rx where ∗:

c = ([], rx, False)
Ball (snd ‘ set rx) wf-ts2
(∀ x ts t. (x, ts) ∈ set rx −→ t ∈ set ts −→ (∃ y. t = Var y ∧ ¬

inf-sort (snd y))) by blast
from xvs[unfolded ∗(1)]
have xvs: xvs ∈ map-prod id (map the-Var) ‘ set rx by auto
then obtain x ts where mem: (x,ts) ∈ set rx and xvs: xvs = (x,map

the-Var ts) by auto
from ∗(2) mem have wf-ts2 ts by auto
hence dist: distinct ts unfolding wf-ts2-def by auto
show (distinct ◦ snd) xvs unfolding xvs o-def snd-conv

distinct-map
proof (rule conjI [OF dist])

show inj-on the-Var (set ts)
by (auto simp: inj-on-def dest!: ∗(3)[rule-format, OF mem])

qed
qed

qed
qed

qed
qed

qed
qed

157

lemma non-uniq-image-diff : ¬ UNIQ (α ‘ set vs) ←→ (∃ v ∈ set vs. ∃ w ∈ set
vs. α v 6= α w)

by (smt (verit, ccfv-SIG) Uniq-def image-iff)

lemma pat-complete-via-idl-solver :
assumes impr : improved

and fvf : finite-var-form-pat C (pat-list pp)
and wf : wf-pat (pat-list pp)
and pp: pp = pat-of-var-form-list fvf
and dist: Ball (set fvf) (distinct o map fst)
and dist2 : Ball (set (concat fvf)) (distinct o snd)
and cnf : cnf = map (map snd) fvf

shows pat-complete C (pat-list pp) ←→ ¬ fidl-solver (bounds-list (cd-sort ◦ snd)
cnf , dist-pairs-list cnf)
proof−

let ?S = S
note vf = finite-var-form-imp-of-var-form-pat[OF fvf]
have var-conv: set (concat (concat cnf)) = tvars-pat (pat-list pp)

unfolding cnf pp
by (force simp: tvars-pat-def pat-list-def tvars-match-def pat-of-var-form-list-def

match-of-var-form-list-def)
from wf [unfolded wf-pat-iff] cd
have cd-conv: v ∈ tvars-pat (pat-list pp) =⇒ cd-sort (snd v) = card-of-sort C

(snd v)
for v by auto

define cd :: nat × ′s ⇒ nat where cd = (cd-sort ◦ snd)
define S where S = set (concat (concat cnf))
{

fix v vs c
assume c ∈ set cnf vs ∈ set c v ∈ set vs
hence v ∈ S unfolding S-def by auto

} note in-S = this
have pat-complete C (pat-list pp) ←→
(∀α. (∀ v∈ S . α v < cd v) −→ (∃ c∈set cnf . ∀ vs∈set c. UNIQ (α ‘ set vs)))
by (unfold S-def pat-complete-via-cnf [OF fvf pp dist cnf] var-conv, simp add:

cd-conv cd-def)
also have . . . ←→ ¬ (∃ α. (∀ v∈ S . α v < cd v) ∧ (∀ c ∈ set cnf . ∃ vs∈set c. ¬

UNIQ (α ‘ set vs))) (is - ←→ ¬ ?f) by blast
also have ?f ←→ (∃ α. (∀ v∈ S . α v < cd v) ∧ (∀ c∈set cnf . ∃ vs∈set c. ∃ v∈set

vs. ∃w∈set vs. α v 6= α w)) (is - ←→ (∃ α. ?fN α))
unfolding non-uniq-image-diff ..

also have . . . ←→ (∃ α. (∀ v∈ S . 0 ≤ α v ∧ α v < int (cd v)) ∧ (∀ c∈set cnf .
∃ vs∈set c. ∃ v∈set vs. ∃w∈set vs. α v 6= α w)) (is - ←→ (∃ α. ?fZ α))

proof
assume ∃ α. ?fN α
then obtain α where ?fN α by blast
hence ?fZ (int o α) unfolding o-def by auto
thus ∃ α. ?fZ α by blast

next

158

assume ∃ α. ?fZ α
then obtain α where alpha: ?fZ α by blast
have ?fN (nat o α) unfolding o-def
proof (intro conjI ballI)

show v ∈ S =⇒ nat (α v) < cd v for v using alpha by auto
fix c
assume c: c ∈ set cnf
with alpha obtain vs v w where vs: vs∈set c and v: v∈set vs and w: w∈set

vs and diff : α v 6= α w
by auto

from in-S [OF c vs] v w have v ∈ S w ∈ S by auto
with alpha have α v ≥ 0 α w ≥ 0 by auto
with diff have nat (α v) 6= nat (α w) by simp
with vs v w show ∃ vs∈set c. ∃ v∈set vs. ∃w∈set vs. nat (α v) 6= nat (α w)

by auto
qed
thus ∃ α. ?fN α by blast

qed
also have . . . ←→ (∃ α. (∀ v∈ S . 0 ≤ α v ∧ α v ≤ int (cd v) − 1) ∧ (∀ c∈set

cnf . ∃ vs∈set c. ∃ v∈set vs. ∃w∈set vs. α v 6= α w))
by auto

also have . . . = (∃α. (∀ (v, b)∈set (bounds-list cd cnf). 0 ≤ α v ∧ α v ≤ b) ∧
(∀ c∈set (dist-pairs-list cnf). ∃ (v, w)∈set c. α v 6= α w))

unfolding bounds-list-def Let-def S-def [symmetric] set-map set-remdups
proof (intro arg-cong[of - - Ex] ext arg-cong2 [of - - - - (∧)], force)

fix α :: - ⇒ int
show (∀ c∈set cnf . ∃ vs∈set c. ∃ v∈set vs. ∃w∈set vs. α v 6= α w) = (∀ c∈set

(dist-pairs-list cnf). ∃ (v, w)∈set c. α v 6= α w)
unfolding diff-pairs-of-list dist-pairs-list-def List.maps-def set-map image-comp

set-concat o-def
by force

qed
also have . . . = fidl-solvable (bounds-list cd cnf , dist-pairs-list cnf)

unfolding fidl-solvable-def split ..
also have . . . = fidl-solver (bounds-list cd cnf ,dist-pairs-list cnf)
proof (rule sym, rule fidl-solver [OF ‹improved›, unfolded finite-idl-solver-def ,

rule-format])
show fidl-input (bounds-list cd cnf , dist-pairs-list cnf) unfolding fidl-input-def

split
proof (intro conjI allI impI)

show (x, y) ∈ set (concat (dist-pairs-list cnf)) =⇒ z ∈ {x, y} =⇒ z ∈ fst ‘
set (bounds-list cd cnf) for x y z

unfolding dist-pairs-list-def bounds-list-def List.maps-def set-concat set-map
image-comp o-def

set-pairs-of-list by force
show distinct (map fst (bounds-list cd cnf)) unfolding bounds-list-def Let-def

map-map o-def
by auto

show
∧

v w b1 b2 .

159

(v, b1) ∈ set (bounds-list cd cnf) =⇒
(w, b2) ∈ set (bounds-list cd cnf) =⇒ snd v = snd w =⇒ b1 = b2
unfolding bounds-list-def Let-def by (auto simp: cd-def)

{
fix v b
assume (v, b) ∈ set (bounds-list cd cnf)
from this[unfolded bounds-list-def]
have v: v ∈ tvars-pat (pat-list pp) and b: b = int (cd v) − 1 by (auto simp

flip: var-conv)
from cd-conv[OF v] b have b: b = int (card-of-sort C (snd v)) − 1 by

(auto simp: cd-def)
from wf [unfolded wf-pat-iff , rule-format, OF v]
have vS : snd v ∈ ?S by auto
from not-empty-sort[OF this]
have nE : ¬ empty-sort C (snd v) .
from v[unfolded tvars-pat-def tvars-match-def]
obtain mp t l where mp: mp ∈ pat-list pp and tl: (t,l) ∈ mp and vt: v ∈

vars t by auto
from fvf [unfolded finite-var-form-pat-def] mp have mp: finite-var-form-match

C mp by auto
note mp = mp[unfolded finite-var-form-match-def]
from mp[unfolded var-form-match-def] tl obtain x where t: t = Var x by

auto
with vt tl have vl: (Var v, l) ∈ mp by auto
with mp have finite-sort C (snd v) by blast

with nE have card-of-sort C (snd v) > 0 unfolding empty-sort-def
finite-sort-def card-of-sort-def

by fastforce
thus 0 ≤ b unfolding b by simp

}
fix v w
assume (v, w) ∈ set (concat (dist-pairs-list cnf))
from this[unfolded dist-pairs-list-def cnf List.maps-def , simplified]
obtain c x vs where c: c ∈ set fvf and xvs: (x,vs) ∈ set c and vw: (v, w) ∈

set (pairs-of-list vs)
by auto

from dist2 c xvs have dist2 : distinct vs by force
from vw[unfolded set-pairs-of-list]
obtain i where v: v = vs ! i and w: w = vs ! Suc i and i: Suc i < length

vs by auto
from dist2 v w i show v 6= w unfolding distinct-conv-nth by simp

from v w i have vw: v ∈ set vs w ∈ set vs by auto
from fvf [unfolded pp finite-var-form-pat-def pat-list-def pat-of-var-form-list-def]

c
have finite-var-form-match C (set (match-of-var-form-list c)) by auto
from this[unfolded finite-var-form-match-def , THEN conjunct2 , THEN con-

junct1 , rule-format, of v Var x w]
show snd v = snd w using vw xvs unfolding match-of-var-form-list-def by

160

auto
qed

qed
finally show ?thesis unfolding cd-def .

qed

The soundness property of the implementation, proven by induction on the
relation that was also used to prove termination of V. Note that we cannot
perform induction on V here, since applying a decision procedure for finite-
var-form problems does not correspond to a V-step.
lemma pats-impl: assumes ∀ p ∈ set ps. tvars-pat (pat-list p) ⊆ {..<n} × S

and Ball (set ps) (λ pp. lvar-cond-pp nl (pat-mset-list pp))
and ∀ pp ∈ pat-list ‘ set ps. wf-pat pp
shows Pats-impl n nl ps = pats-complete C (pat-list ‘ set ps)

proof (insert assms, induct ps arbitrary: n nl rule: wf-induct[OF wf-inv-image[OF
wf-trancl[OF wf-rel-pats]], of pats-mset-list])

case (1 ps n nl)
note IH = mp[OF spec[OF mp[OF spec[OF mp[OF spec[OF 1 (1)]]]]]]
note wf = 1 (4)
show ?case
proof (cases ps)

case Nil
show ?thesis unfolding pats-impl.simps[of - - - n nl ps] unfolding Nil by

auto
next

case (Cons p ps1)
hence id: pats-mset-list ps = add-mset (pat-mset-list p) (pats-mset-list ps1) by

auto
note res = pats-impl.simps[of - - - n nl ps, unfolded Cons list.simps, folded

Cons]
from 1 (2)[rule-format, of p] Cons have tvars-pat (pat-list p) ⊆ {..<n} × S

by auto
note pat-impl = pat-impl[OF refl this]

from 1 (3) have ∀ pp ∈# add-mset (pat-mset-list p) (pats-mset-list ps1).
lvar-cond-pp nl pp

unfolding Cons by auto
note pat-impl = pat-impl[OF this, folded id]
let ?step = (V) :: ((′f , ′v, ′s)pats-problem-mset × (′f , ′v, ′s)pats-problem-mset)set

{
from rel-P-trans have single: ?step ⊆ (≺mul)^−1

unfolding P-step-def by auto
have (s,t) ∈ ?step^+ =⇒ (t,s) ∈ (≺mul)^+ (s,t) ∈ ?step^∗ =⇒ (t,s) ∈

(≺mul)^∗ for s t
using trancl-mono[OF - single]
apply (metis converse-iff trancl-converse)

using rtrancl-converse rtrancl-mono[OF single]
by auto

} note steps-to-rel = this

161

from wf have wf-pats (pat-list ‘ set ps) unfolding wf-pats-def by auto
note steps-to-equiv = P-steps-pcorrect[OF this[folded pats-mset-list]]
show ?thesis
proof (cases Pat-impl n nl p)

case Incomplete
with res have res: Pats-impl n nl ps = False by auto
from pat-impl(1)[OF Incomplete]
obtain p ′ where steps: (pats-mset-list ps, add-mset p ′ (pats-mset-list ps1)) ∈

V∗ and fail: pat-fail p ′

by auto
show ?thesis
proof (cases add-mset p ′ (pats-mset-list ps1) = bottom-mset)

case True
with res P-steps-pcorrect[OF - steps, unfolded pats-mset-list] wf
show ?thesis by (auto simp: wf-pats-def)

next
case False
from P-failure[OF fail False]

have (add-mset p ′ (pats-mset-list ps1), bottom-mset) ∈ V unfolding
P-step-def by auto

with steps have (pats-mset-list ps, bottom-mset) ∈ V∗ by auto
from steps-to-equiv[OF this] res show ?thesis unfolding pats-mset-list by

simp
qed

next
case (New-Problems triple)

then obtain n2 nl2 ps2 where Some: Pat-impl n nl p = New-Problems
(n2 ,nl2 ,ps2) by (cases triple) auto

with res have res: Pats-impl n nl ps = Pats-impl n2 nl2 (ps2 @ ps1) by
auto

from pat-impl(2)[OF Some]
have steps: (pats-mset-list ps, mset (map pat-mset-list (ps2 @ ps1))) ∈ V+

and vars: tvars-pat (
⋃

(pat-list ‘ set ps2)) ⊆ {..<n2} × S
and lvars: (∀ pp∈#mset (map pat-mset-list ps2) + pats-mset-list ps1 .

lvar-cond-pp nl2 pp)
and n2 : n ≤ n2 by auto

from steps-to-rel(1)[OF steps] have rel: (ps2 @ ps1 , ps) ∈ inv-image (≺mul+)
pats-mset-list

by auto
have vars: ∀ p∈set (ps2 @ ps1). tvars-pat (pat-list p) ⊆ {..<n2} × S
proof

fix p
assume p ∈ set (ps2 @ ps1)
hence p ∈ set ps2 ∨ p ∈ set ps1 by auto
thus tvars-pat (pat-list p) ⊆ {..<n2} × S
proof

assume p ∈ set ps2
hence tvars-pat (pat-list p) ⊆ tvars-pat (

⋃
(pat-list ‘ set ps2))

unfolding tvars-pat-def by auto

162

with vars show ?thesis by auto
next

assume p ∈ set ps1
hence p ∈ set ps unfolding Cons by auto
from 1 (2)[rule-format, OF this] n2 show ?thesis by auto

qed
qed
have lvars: ∀ pp∈set (ps2 @ ps1). lvar-cond-pp nl2 (pat-mset-list pp)

using lvars unfolding lvar-cond-pp-def by auto
note steps-equiv = steps-to-equiv[OF trancl-into-rtrancl[OF steps]]
from steps-equiv have wf-pats (pats-mset (mset (map pat-mset-list (ps2 @

ps1)))) by auto
hence wf2 : Ball (pat-list ‘ set (ps2 @ ps1)) wf-pat unfolding wf-pats-def

pats-mset-list[symmetric]
by auto

have Pats-impl n nl ps = Pats-impl n2 nl2 (ps2 @ ps1) unfolding res by
simp

also have . . . = pats-complete C (pat-list ‘ set (ps2 @ ps1))
using mp[OF IH [OF rel vars lvars] wf2] .

also have . . . = pats-complete C (pat-list ‘ set ps) using steps-equiv
unfolding pats-mset-list[symmetric] by auto

finally show ?thesis .
next

case FVF : (Fin-Var-Form fvf)
let ?pat = λ p. pat-mset-list (pat-of-var-form-list p)
let ?pat ′ = λ p. pat-list (pat-of-var-form-list p)
from pat-impl(3)[OF FVF]
have steps: (pats-mset-list ps, add-mset (?pat fvf) (pats-mset-list ps1)) ∈ V∗

and ifvf : improved finite-var-form-pat C (?pat ′ fvf)
and dist: Ball (set fvf) (distinct ◦ map fst)
and dist2 : Ball (set (concat fvf)) (distinct ◦ snd) by auto

have wf-pats (pats-mset (pats-mset-list ps))
using wf unfolding wf-pats-def pats-mset-list .

from P-steps-pcorrect[OF this steps]
have wf ′: wf-pats (pats-mset (add-mset (?pat fvf) (pats-mset-list ps1)))

and red: pats-complete C (pats-mset (pats-mset-list ps)) =
pats-complete C (pats-mset (add-mset (?pat fvf) (pats-mset-list ps1)))
and wf-pat (pat-mset (?pat fvf)) unfolding wf-pats-def by auto

from this(3)[unfolded pat-mset-list]
have wf-fvf : wf-pat (pat-list (pat-of-var-form-list fvf)) .
have (pats-mset-list ps1 , add-mset (?pat fvf) (pats-mset-list ps1)) ∈ ≺mul

unfolding rel-pats-def by (simp add: subset-implies-mult)
with steps-to-rel(2)[OF steps]
have (pats-mset-list ps1 , pats-mset-list ps) ∈ ≺mul+ by auto
hence (ps1 , ps) ∈ inv-image (≺mul+) pats-mset-list by auto
note IH = IH [OF this]
from 1 (2) Cons have ∀ p∈set ps1 . tvars-pat (pat-list p) ⊆ {..<n} × S by

auto
note IH = IH [OF this]

163

from 1 (3) Cons have ∀ pp∈set ps1 . lvar-cond-pp nl (pat-mset-list pp) by
auto

note IH = IH [OF this]
with 1 (4) Cons have IH : Pats-impl n nl ps1 = pats-complete C (pat-list ‘

set ps1) by auto
note via-idl = pat-complete-via-idl-solver [OF ifvf wf-fvf refl dist dist2 refl]
let ?cnf = (map (map snd) fvf)
from FVF res have Pats-impl n nl ps =

(¬ fidl-solver (bounds-list (cd-sort ◦ snd) ?cnf , dist-pairs-list ?cnf) ∧
Pats-impl n nl ps1)

by (auto simp: Let-def)
also have . . . = (pat-complete C (pat-list (pat-of-var-form-list fvf)) ∧ pats-complete

C (pat-list ‘ set ps1))
unfolding via-idl IH by simp

also have . . . = pats-complete C (pats-mset (pats-mset-list ps))
unfolding steps-to-equiv[OF steps, THEN conjunct2]

by (smt (z3) add-mset-commute comp-def image-iff insert-noteq-member
mset-add pat-mset-list

pats-mset-list union-single-eq-member)
also have . . . = pats-complete C (pat-list ‘ set ps)

unfolding pats-mset-list ..
finally show ?thesis .

qed
qed

qed

Consequence: partial correctness of the list-based implementation on well-
formed inputs
corollary pat-complete-impl:

assumes wf : snd ‘
⋃

(vars ‘ fst ‘ set (concat (concat P))) ⊆ S
shows Pat-complete-impl (P :: (′f , ′v, ′s)pats-problem-list) ←→ pats-complete C

(pat-list ‘ set P)
proof −

have wf : Ball (pat-list ‘ set P) wf-pat
unfolding pat-list-def wf-pat-def wf-match-def tvars-match-def using wf [unfolded

set-concat image-comp] by force
let ?l = (List.maps (map fst o vars-term-list o fst) (concat (concat P)))
define n where n = Suc (max-list ?l)
have n: ∀ p∈set P. tvars-pat (pat-list p) ⊆ {..<n} × S
proof (safe)

fix p x ι
assume p: p ∈ set P and xp: (x,ι) ∈ tvars-pat (pat-list p)

hence x ∈ set ?l unfolding List.maps-def tvars-pat-def tvars-match-def pat-list-def

by force
from max-list[OF this] have x < n unfolding n-def by auto
thus x < n by auto
from xp p wf
show ι ∈ S by (auto simp: wf-pat-iff)

164

qed
show ?thesis
proof (cases improved)

case False
have 0 : ∀ p∈set P. lvar-cond-pp 0 (pat-mset-list p)

unfolding lvar-cond-pp-def lvar-cond-def allowed-vars-def using False by
auto

have Pat-complete-impl P = Pats-impl n 0 P
unfolding pat-complete-impl-def n-def Let-def using False by auto

from pats-impl[OF n 0 wf , folded this]
show ?thesis .

next
case True
let ?r-mp = map (apsnd (map-vars renVar))
let ?r = map ?r-mp
let ?Q = map ?r P
have Pat-complete-impl P = Pats-impl n 0 ?Q

unfolding pat-complete-impl-def n-def Let-def using True by auto
also have . . . = pats-complete C (pat-list ‘ set ?Q)
proof (rule pats-impl)

show ∀ p ∈ set ?Q. tvars-pat (pat-list p) ⊆ {..<n} × S
proof

fix rp
assume rp ∈ set ?Q
then obtain p where p: p ∈ set P and rp: rp = ?r p by auto
have id: tvars-pat (pat-list rp) = tvars-pat (pat-list p)

unfolding pat-list-def rp tvars-pat-def tvars-match-def by force
with n p show tvars-pat (pat-list rp) ⊆ {..<n} × S by auto

qed
show Ball (pat-list ‘ set ?Q) wf-pat
proof −

{
fix rp
assume rp: rp ∈ set ?Q
then obtain p where p ∈ set P and rp: rp = ?r p by auto
from this(1) wf have wf-pat (pat-list p) by auto
hence wf-pat (pat-list rp) unfolding wf-pat-def wf-match-def

unfolding pat-list-def rp tvars-match-def by force
}
thus ?thesis by blast

qed
show ∀ p ∈ set ?Q. lvar-cond-pp 0 (pat-mset-list p)
proof

fix rp
assume rp ∈ set ?Q
then obtain p where rp: rp = ?r p by auto
show lvar-cond-pp 0 (pat-mset-list rp)

unfolding lvar-cond-pp-def lvar-cond-def
proof

165

fix x
assume x ∈ lvars-pp (pat-mset-list rp)
from this[unfolded lvars-pp-def lvars-mp-def pat-mset-list-def rp]
obtain t :: (′f , ′v) term where x ∈ vars (map-vars renVar t) by auto
hence x ∈ range renVar by (induct t, auto)
thus x ∈ allowed-vars 0 unfolding allowed-vars-def by auto

qed
qed

qed
also have . . . = pats-complete C (pat-list ‘ set P)

unfolding set-map image-comp
unfolding Ball-image-comp o-def

proof (intro ball-cong[OF refl])
fix p
assume p: p ∈ set P
have id: pat-list (map (map (apsnd (map-vars renVar))) p) = (λ mp. apsnd

(map-vars renVar) ‘ mp) ‘ pat-list p
unfolding pat-list-def set-map image-comp o-def ..

note bex = bex-simps(7)
from wf p
have wfp: wf-pat (pat-list p)

by (fastforce simp: subset-iff wf-pat-def wf-match-def tvars-match-def)
from wf p
have wf2 : wf-pat (pat-list (?r p))

by (fastforce simp: id subset-iff wf-pat-def wf-match-def tvars-match-def)
show pat-complete C (pat-list (?r p)) = pat-complete C (pat-list p)

apply (unfold wf-pat-complete-iff [OF wfp] wf-pat-complete-iff [OF wf2])
apply (unfold id bex)

proof (rule all-cong, rule bex-cong[OF refl])
fix σ mp

have id: map-vars renVar = (λ t. t · (Var o renVar)) using map-vars-term-eq[of
renVar] by auto

show match-complete-wrt σ (apsnd (map-vars renVar) ‘ mp) = match-complete-wrt
σ mp (is ?m1 = ?m2)

proof
assume ?m1
from this[unfolded match-complete-wrt-def] obtain µ

where match:
∧

t l. (t, l) ∈ mp =⇒ t · σ = map-vars renVar l · µ by
force

show ?m2 unfolding match-complete-wrt-def
by (intro exI [of - (Var o renVar) ◦s µ], insert match[unfolded id], auto)

next
assume ?m2
from this[unfolded match-complete-wrt-def] obtain µ

where match:
∧

t l. (t, l) ∈ mp =⇒ t · σ = l · µ by force
{

fix t
have t · (Var ◦ renVar) · (Var ◦ the-inv renVar) · µ = t · µ

unfolding subst-subst

166

proof (intro term-subst-eq)
fix x

from renaming-ass[rule-format, OF ‹improved›, unfolded renam-
ing-funs-def]

have inj: inj renVar by auto
from the-inv-f-f [OF this]

show ((Var ◦ renVar) ◦s (Var ◦ the-inv renVar) ◦s µ) x = µ x

by (simp add: o-def subst-compose-def)
qed

}
thus ?m1 unfolding match-complete-wrt-def

by (intro exI [of - (Var o the-inv renVar) ◦s µ], insert match, auto simp:
id)

qed
qed

qed
finally show ?thesis .

qed
qed
end
end

8.3 Getting the result outside the locale with assumptions

We next lift the results for the list-based implementation out of the lo-
cale. Here, we use the existing algorithms to decide non-empty sorts de-
cide-nonempty-sorts and to compute the infinite sorts compute-inf-sorts.
lemma hastype-in-map-of : distinct (map fst l) =⇒ x : σ in map-of l ←→ (x,σ) ∈
set l

by (auto simp: hastype-def)

lemma fun-hastype-in-map-of : distinct (map fst l) =⇒
x : σs → τ in map-of l ←→ ((x,σs),τ) ∈ set l
by (auto simp: fun-hastype-def)

definition constr-list where constr-list Cs s = map fst (filter ((=) s o snd) Cs)

extract all sorts from a ssignature (input and target sorts)
definition sorts-of-ssig-list :: ((′f × ′s list) × ′s)list ⇒ ′s list where

sorts-of-ssig-list Cs = remdups (List.maps (λ ((f ,ss),s). s # ss) Cs)

lemma sorts-of-ssig-list:
assumes ((f ,σs),τ) ∈ set Cs
shows set σs ⊆ set (sorts-of-ssig-list Cs) τ ∈ set (sorts-of-ssig-list Cs)
using assms
by (auto simp: sorts-of-ssig-list-def List.maps-def)

167

definition max-arity-list where
max-arity-list Cs = max-list (map (length o snd o fst) Cs)

lemma max-arity-list:
((f ,σs),τ) ∈ set Cs =⇒ length σs ≤ max-arity-list Cs
by (force simp: max-arity-list-def o-def intro! :max-list)

locale pattern-completeness-list =
fixes Cs
assumes dist: distinct (map fst Cs)
and inhabited: decide-nonempty-sorts (sorts-of-ssig-list Cs) Cs = None

begin

lemma nonempty-sort:
∧

σ. σ ∈ set (sorts-of-ssig-list Cs) =⇒ ¬ empty-sort (map-of
Cs) σ

using decide-nonempty-sorts(1)[OF dist inhabited]
by (auto elim: not-empty-sortE)

lemma compute-inf-sorts: σ ∈ compute-inf-sorts Cs ←→ ¬ finite-sort (map-of Cs)
σ

apply (subst compute-inf-sorts(2)[OF - dist])
using nonempty-sort

by (auto intro!:nonempty-sort simp: fun-hastype-in-map-of [OF dist] dest!: sorts-of-ssig-list(1))

lemma compute-card-sorts: snd (compute-inf-card-sorts Cs) = card-of-sort (map-of
Cs)

apply (rule compute-inf-card-sorts(2)[OF refl - dist surjective-pairing])
by (auto intro!: nonempty-sort simp: fun-hastype-in-map-of [OF dist] dest!: sorts-of-ssig-list(1))

sublocale pattern-completeness-context-with-assms
improved set (sorts-of-ssig-list Cs) map-of Cs max-arity-list Cs constr-list Cs
λ s. s ∈ compute-inf-sorts Cs
snd (compute-inf-card-sorts Cs)
for improved

proof
{

fix f ss s
assume f : ss → s in map-of Cs
hence ((f ,ss),s) ∈ set Cs by (auto dest!: fun-hastypeD map-of-SomeD)
from sorts-of-ssig-list[OF this] max-arity-list[OF this]
show insert s (set ss) ⊆ set (sorts-of-ssig-list Cs) length ss ≤ max-arity-list Cs

by auto
}
show finite (dom (map-of Cs)) by (auto simp: finite-dom-map-of)
show set (constr-list Cs s) = {(f ,ss). f : ss → s in map-of Cs} for s

unfolding constr-list-def set-map o-def using dist
by (force simp: fun-hastype-def)

{
fix f ss s

168

assume (f ,ss) ∈ set (constr-list Cs s)
hence ((f ,ss),s) ∈ set Cs unfolding constr-list-def by auto
from max-arity-list[OF this] have length ss ≤ max-arity-list Cs by auto

}
then show m: ∀ a∈length ‘ snd ‘ set (constr-list Cs s). a ≤ max-arity-list Cs for

s by auto
qed (auto simp: compute-inf-sorts nonempty-sort compute-card-sorts)

thm pat-complete-impl
thm pat-complete-lin-impl

end

Next we are also leaving the locale that fixed the common parameters, and
chooses suitable values.

Finally: a pattern completeness decision procedure for arbitrary inputs, as-
suming sensible inputs; this is the old decision procedure
context

fixes m :: nat — upper bound on arities of constructors
and Cl :: ′s ⇒ (′f × ′s list)list — a function to compute all constructors of

given sort as list
and Is :: ′s ⇒ bool — a function to indicate whether a sort is infinite
and Cd :: ′s ⇒ nat — a function to compute finite cardinality of sort

begin

definition pat-complete-impl-old = pattern-completeness-context.pat-complete-impl
m Cl Is Cd False undefined undefined undefined undefined
definition pats-impl-old = pattern-completeness-context.pats-impl m Cl Is Cd False
undefined undefined undefined
definition pat-impl-old = pattern-completeness-context.pat-impl m Cl Is False un-
defined undefined
definition pat-inner-impl-old = pattern-completeness-context.pat-inner-impl Is False
undefined
definition match-decomp ′-impl-old = pattern-completeness-context.match-decomp ′-impl
Is False undefined

definition find-var-old :: (′f , ′v, ′s)match-problem-lr list ⇒ - where
find-var-old p = (case List.maps (λ (lx,-). lx) p of

(x,t) # - ⇒ x
| [] ⇒ (let (-,rx,b) = hd p

in case hd rx of (x, s # t # -) ⇒ hd (the (conflicts s t))))

lemma find-var-old: find-var False p = Some (find-var-old p)
unfolding find-var-old-def find-var-def if-False by (auto split: list.splits)

lemmas pat-complete-impl-old-code[code] = pattern-completeness-context.pat-complete-impl-def [of
m Cl Is Cd False undefined undefined undefined undefined,

folded pat-complete-impl-old-def pats-impl-old-def ,

169

unfolded if-False Let-def]

private lemma triv-ident: False ∧ x ←→ False True ∧ x ←→ x by auto

lemmas pat-impl-old-code[code] = pattern-completeness-context.pat-impl-def [of m
Cl Is False undefined undefined,

folded pat-impl-old-def pat-inner-impl-old-def ,
unfolded find-var-old option.simps triv-ident if-False]

lemma pats-impl-old-code[code]:
pats-impl-old n nl ps =
(case ps of [] ⇒ True
| p # ps1 ⇒

(case pat-impl-old n nl p of Incomplete ⇒ False
| New-Problems (n ′, nl ′, ps2) ⇒ pats-impl-old n ′ nl ′ (ps2 @ ps1)))

unfolding pats-impl-old-def pattern-completeness-context.pats-impl.simps[of - - -
- - - - - - - ps]

unfolding pat-impl-old-def [symmetric]
unfolding pat-impl-old-code
by (auto split: list.splits option.splits)

lemmas match-decomp ′-impl-old-code[code] =
pattern-completeness-context.match-decomp ′-impl-def [of Is False undefined, folded

match-decomp ′-impl-old-def ,
unfolded pattern-completeness-context.apply-decompose ′-def triv-ident if-False]

lemmas pat-inner-impl-old-code[code] =
pattern-completeness-context.pat-inner-impl.simps[of Is False undefined, folded

pat-inner-impl-old-def match-decomp ′-impl-old-def]

context
fixes

C :: (′f × ′s list) ⇒ ′s option
and rn :: nat ⇒ ′v
and rv :: ′v ⇒ ′v
and fidl-solver :: ((nat× ′s) × int)list × ((nat× ′s) × (nat× ′s))list list ⇒ bool

begin
definition pat-complete-impl-new = pattern-completeness-context.pat-complete-impl
m Cl Is Cd True C rn rv fidl-solver
definition pats-impl-new = pattern-completeness-context.pats-impl m Cl Is Cd
True C rn fidl-solver
definition pat-impl-new = pattern-completeness-context.pat-impl m Cl Is True C
rn
definition pat-inner-impl-new = pattern-completeness-context.pat-inner-impl Is True
rn
definition match-decomp ′-impl-new = pattern-completeness-context.match-decomp ′-impl
Is True rn
definition find-var-new = find-var True

170

lemmas pat-complete-impl-new-code[code] = pattern-completeness-context.pat-complete-impl-def [of
m Cl Is Cd True C rn rv fidl-solver ,

folded pat-complete-impl-new-def pats-impl-new-def ,
unfolded if-True Let-def]

lemmas pat-impl-new-code[code] = pattern-completeness-context.pat-impl-def [of m
Cl Is True C rn,

folded pat-impl-new-def pat-inner-impl-new-def find-var-new-def ,
unfolded triv-ident]

lemmas pats-impl-new-code[code] = pattern-completeness-context.pats-impl.simps[of
m Cl Is Cd True C rn fidl-solver ,

folded pats-impl-new-def pat-impl-new-def]

lemmas match-decomp ′-impl-new-code[code] =
pattern-completeness-context.match-decomp ′-impl-def [of Is True rn,

folded match-decomp ′-impl-new-def ,
unfolded pattern-completeness-context.apply-decompose ′-def triv-ident]

lemmas pat-inner-impl-new-code[code] =
pattern-completeness-context.pat-inner-impl.simps[of Is True rn,

folded pat-inner-impl-new-def match-decomp ′-impl-new-def]

lemmas find-var-new-code[code] =
find-var-def [of True,

folded find-var-new-def ,
unfolded if-True]

end
end

definition decide-pat-complete :: ((′f × ′s list) × ′s)list ⇒ (′f , ′v, ′s)pats-problem-list
⇒ bool where

decide-pat-complete Cs P = (let
m = max-arity-list Cs;
Cl = constr-list Cs;
(IS ,CD) = compute-inf-card-sorts Cs

in pat-complete-impl-old m Cl (λ s. s ∈ IS) CD) P

definition decide-pat-complete-lin :: ((′f × ′s list) × ′s)list ⇒ (′f , ′v, ′s)pats-problem-list
⇒ bool where

decide-pat-complete-lin Cs P = (let
m = max-arity-list Cs;
Cl = constr-list Cs

in pattern-completeness-context.pat-complete-lin-impl m Cl P)

theorem decide-pat-complete-lin:

171

assumes dist: distinct (map fst Cs)
and non-empty-sorts: decide-nonempty-sorts (sorts-of-ssig-list Cs) Cs = None
and P: snd ‘

⋃
(vars ‘ fst ‘ set (concat (concat P))) ⊆ set (sorts-of-ssig-list

Cs)
and left-linear : Ball (set P) ll-pp

shows decide-pat-complete-lin Cs P = pats-complete (map-of Cs) (pat-list ‘ set
P)
proof−

interpret pattern-completeness-list Cs
apply unfold-locales
using dist non-empty-sorts.

show ?thesis
unfolding decide-pat-complete-lin-def Let-def
by (rule pat-complete-lin-impl[OF P left-linear])

qed

theorem decide-pat-complete:
assumes dist: distinct (map fst Cs)

and non-empty-sorts: decide-nonempty-sorts (sorts-of-ssig-list Cs) Cs = None
and P: snd ‘

⋃
(vars ‘ fst ‘ set (concat (concat P))) ⊆ set (sorts-of-ssig-list

Cs)
shows decide-pat-complete Cs P = pats-complete (map-of Cs) (pat-list ‘ set P)

proof−
interpret pattern-completeness-list Cs

apply unfold-locales
using dist non-empty-sorts.

show ?thesis
unfolding decide-pat-complete-def Let-def pat-complete-impl-old-def
apply (unfold case-prod-beta)
apply (rule pat-complete-impl[OF - - - P]) by auto

qed

definition decide-pat-complete-fidl :: - ⇒ - ⇒ - ⇒ ((′f × ′s list) × ′s)list ⇒
(′f , ′v, ′s)pats-problem-list ⇒ bool where

decide-pat-complete-fidl rn rv idl Cs P = (let
m = max-arity-list Cs;
Cl = constr-list Cs;
Cm = Mapping.of-alist Cs;
(IS ,CD) = compute-inf-card-sorts Cs

in pat-complete-impl-new m Cl (λ s. s ∈ IS) CD (Mapping.lookup Cm)) rn rv
idl P

definition fvf-pp-list pp =
[[y. (t ′, Var y) ← pp, t ′ = t]. t ← remdups (map fst pp)]

theorem decide-pat-complete-fidl:

172

assumes dist: distinct (map fst Cs)
and non-empty-sorts: decide-nonempty-sorts (sorts-of-ssig-list Cs) Cs = None
and P: snd ‘

⋃
(vars ‘ fst ‘ set (concat (concat P))) ⊆ set (sorts-of-ssig-list

Cs)
and ren: renaming-funs rn rv
and fidl-solver : finite-idl-solver fidl-solver

shows decide-pat-complete-fidl rn rv fidl-solver Cs P ←→ pats-complete (map-of
Cs) (pat-list ‘ set P)

(is ?l ←→ ?r)
proof −

interpret pattern-completeness-list Cs
apply unfold-locales
using dist non-empty-sorts.

have nemp:
∀ f τs τ τ ′. f : τs → τ in map-of Cs −→ τ ′ ∈ set τs −→ ¬ empty-sort (map-of

Cs) τ ′

using C-sub-S by (auto intro!: nonempty-sort)
obtain inf cd where compute-inf-card-sorts Cs = (inf ,cd) by force
with compute-inf-card-sorts(2 ,3)[OF refl nemp dist this]
have cics: compute-inf-card-sorts Cs = (compute-inf-sorts Cs,card-of-sort (map-of

Cs))
by auto

have Cm: Mapping.lookup (Mapping.of-alist Cs) = map-of Cs using dist
using lookup-of-alist by fastforce

show ?thesis
apply (unfold decide-pat-complete-fidl-def Let-def case-prod-beta)
unfolding pat-complete-impl-new-def
using pat-complete-impl[OF Cm ren fidl-solver P]
by auto

qed

export-code decide-pat-complete-lin checking
export-code decide-pat-complete checking
export-code decide-pat-complete-fidl checking

end

9 Pattern-Completeness and Related Properties

We use the core decision procedure for pattern completeness and connect it
to other properties like pattern completeness of programs (where the lhss
are given), or (strong) quasi-reducibility.
theory Pattern-Completeness

imports
Pattern-Completeness-List
Show.Shows-Literal
Certification-Monads.Check-Monad

begin

173

A pattern completeness decision procedure for a set of lhss
definition basic-terms :: (′f , ′s)ssig ⇒ (′f , ′s)ssig ⇒ (′v ⇀ ′s) ⇒ (′f , ′v)term set
(‹B ′(-,-,- ′)›) where
B(C ,D,V) = { Fun f ts | f ss s ts . f : ss → s in D ∧ ts :l ss in T (C ,V)}

abbreviation basic-ground-terms :: (′f , ′s)ssig ⇒ (′f , ′s)ssig ⇒ (′f ,unit)term set
(‹B ′(-,- ′)›) where
B(C ,D) ≡ B(C ,D,λx. None)

definition matches :: (′f , ′v)term ⇒ (′f , ′w)term ⇒ bool (infix ‹matches› 50)
where

l matches t = (∃ σ. t = l · σ)

lemma matches-subst: l matches t =⇒ l matches t·σ
by (auto simp: matches-def simp flip: subst-subst-compose)

definition pat-complete-lhss :: (′f , ′s)ssig ⇒ (′f , ′s)ssig ⇒ (′f , ′v)term set ⇒ bool
where

pat-complete-lhss C D L = (∀ t ∈ B(C ,D). ∃ l ∈ L. l matches t)

lemma pat-complete-lhssD:
assumes comp: pat-complete-lhss C D L and t: t ∈ B(C ,D,∅)
shows ∃ l ∈ L. l matches t

proof −
note ∗ = map-subst-hastype[OF sorted-map-empty, of C - - ∅::unit⇀- undefined]
from t have t·undefined ∈ B(C ,D) (is ?t ∈ -)

by (force simp: basic-terms-def ∗ cong: ex-cong)
from comp[unfolded pat-complete-lhss-def , rule-format, OF this]
obtain l where l: l ∈ L l matches ?t by auto
from t
have t2 : ?t · undefined = t

by (auto simp: basic-terms-def o-def
simp: hastype-in-Term-empty-imp-map-subst-subst hastype-in-Term-empty-imp-map-subst-id)

from l show ∃ l ∈ L. l matches t
apply (subst t2 [symmetric])
by (force simp: matches-subst)

qed

definition pats-of-lhss :: ((′f × ′s list) × ′s)list ⇒ (′f , ′v)term list ⇒ (′f , ′v, ′s)pat-problem-list
list where

pats-of-lhss D lhss = (let pats = [Fun f (map Var (zip [0 ..<length ss] ss)).
((f ,ss),s) ← D]

in [[[(pat,lhs)]. lhs ← lhss]. pat ← pats])

definition check-signatures :: ((′f × ′s list) × ′s)list ⇒ ((′f × ′s list) × ′s)list ⇒
showsl check where

check-signatures C D = do {
check (distinct (map fst C)) (showsl-lit (STR ′′constructor information contains

duplicate ′′));

174

check (distinct (map fst D)) (showsl-lit (STR ′′defined symbol information
contains duplicate ′′));

let S = sorts-of-ssig-list C ;
check-allm (λ ((f ,ss),-). check-allm (λ s. check (s ∈ set S)

(showsl-lit (STR ′′a defined symbol has argument sort that is not known in
constructors ′′))) ss) D;

(case (decide-nonempty-sorts S C) of None ⇒ return () | Some s ⇒ error
(showsl-lit (STR ′′some sort is empty ′′)))
}

definition decide-pat-complete-linear-lhss ::
((′f × ′s list) × ′s)list ⇒ ((′f × ′s list) × ′s)list ⇒ (′f , ′v)term list ⇒ showsl +

bool where
decide-pat-complete-linear-lhss C D lhss = do {

check-signatures C D;
return (decide-pat-complete-lin C (pats-of-lhss D lhss))
}

definition decide-pat-complete-lhss ::
((′f × ′s list) × ′s)list ⇒ ((′f × ′s list) × ′s)list ⇒ (′f , ′v)term list ⇒ showsl +

bool where
decide-pat-complete-lhss C D lhss = do {

check-signatures C D;
return (decide-pat-complete C (pats-of-lhss D lhss))
}

definition decide-pat-complete-lhss-fidl ::
- ⇒ - ⇒ - ⇒ ((′f × ′s list) × ′s)list ⇒ ((′f × ′s list) × ′s)list ⇒ (′f , ′v)term list
⇒ showsl + bool where

decide-pat-complete-lhss-fidl rn rv fidl-solver C D lhss = do {
check-signatures C D;
return (decide-pat-complete-fidl rn rv fidl-solver C (pats-of-lhss D lhss))
}

lemma pats-of-lhss-vars: assumes condD: ∀ x∈set D. ∀ a b. (∀ x2 . x 6= ((a, b),
x2)) ∨ (∀ x∈set b. x ∈ S)

shows snd ‘
⋃

(vars ‘ fst ‘ set (concat (concat (pats-of-lhss D lhss)))) ⊆ S
proof −

{
fix i si f ss s
assume mem: ((f , ss), s) ∈ set D and isi: (i, si) ∈ set (zip [0 ..<length ss] ss)
from isi have si: si ∈ set ss by (metis in-set-zipE)
from mem si condD
have si ∈ S by auto

}
thus ?thesis unfolding pats-of-lhss-def by force

qed

lemma check-signatures: assumes isOK (check-signatures C D)

175

shows distinct (map fst C) (is ?G1)
and distinct (map fst D) (is ?G2)

and ∀ x∈set D. ∀ a b. (∀ x2 . x 6= ((a, b), x2)) ∨ (∀ x∈set b. x ∈ set (sorts-of-ssig-list
C)) (is ?G3)

and decide-nonempty-sorts (sorts-of-ssig-list C) C = None (is ?G4)
proof −

let ?C = map-of C
let ?D = map-of D
define S where S = sorts-of-ssig-list C
have dist: distinct (map fst C) and distD: distinct (map fst D)

and dec: decide-nonempty-sorts S C = None
and condD: ∀ x∈set D. ∀ a b. (∀ x2 . x 6= ((a, b), x2)) ∨ (∀ x∈set b. x ∈ set S)
using assms

apply (unfold check-signatures-def)
apply (unfold Let-def S-def [symmetric])
apply (auto split: prod.splits option.splits)

done
show ?G1 ?G2 ?G3 ?G4 unfolding S-def [symmetric] by fact+

qed

lemma pats-of-lhss:
assumes isOK (check-signatures C D)
shows pats-complete (map-of C) (pat-list ‘ set (pats-of-lhss D lhss)) =
(∀ t∈B(map-of C ,map-of D). ∃ l∈set lhss. l matches t)

proof −
define S where S = sorts-of-ssig-list C
note ∗ = check-signatures[OF assms, folded S-def]
note distC = ∗(1) note distD = ∗(2) note condD = ∗(3) note dec = ∗(4)
define pats where pats = map (λ ((f ,ss),s). Fun f (map Var (zip [0 ..<length

ss] ss))) D
define P where P = map (λ pat. map (λ lhs. [(pat,lhs)]) lhss) pats
note condD = condD[folded S-def]
note dec = dec[folded S-def]
let ?C = map-of C
let ?D = map-of D
let ?L = { pat · σ | pat σ. pat ∈ set pats ∧ σ :s {x : ι in V. ι ∈ set S} → T (?C)}

interpret pattern-completeness-list C
rewrites sorts-of-ssig-list C = S
apply unfold-locales

using distC dec by (auto simp: S-def)
from condD
have wf : wf-pats (pat-list ‘ set P)

by (force simp: P-def pats-def wf-pats-def wf-pat-def pat-list-def wf-match-def
tvars-match-def

elim!: in-set-zipE)
let ?match-lhs = λt. ∃ l ∈ set lhss. l matches t
have pats-complete ?C (pat-list ‘ set (pats-of-lhss D lhss))

= pats-complete ?C (pat-list ‘ set P) unfolding P-def pats-of-lhss-def pats-def

176

by auto
also note wf-pats-complete-iff [OF wf]
also have pat-list ‘ set P = { { {(pat,lhs)} | lhs. lhs ∈ set lhss} | pat. pat ∈ set

pats}
unfolding pat-list-def P-def by (auto simp: image-comp)

also have (∀ f :s {x : ι in V. ι ∈ set S} → T (map-of C).
∀ pp∈{{{(pat, lhs)} |lhs. lhs ∈ set lhss} |pat. pat ∈ set pats}.
∃mp∈pp. match-complete-wrt f mp) = Ball { pat · σ | pat σ. pat ∈ set pats ∧

σ :s {x : ι in V. ι ∈ set S} → T (?C)} ?match-lhs (is - = Ball ?L -)
apply (simp add: imp-ex match-complete-wrt-def matches-def Bex-def conj-commute

imp-conjL flip:ex-simps(1) all-simps(6) split: prod.splits
cong: all-cong1 ex-cong1 conj-cong imp-cong)

apply (subst all-comm)
by (simp add: ac-simps verit-bool-simplify(4) o-def)

also have ?L = B(?C ,?D,∅) (is - = ?R)
proof

{
fix pat and σ
assume pat: pat ∈ set pats and subst: σ :s {x : ι in V. ι ∈ set S} → T (?C)
from pat[unfolded pats-def] obtain f ss s where pat: pat = Fun f (map Var

(zip [0 ..<length ss] ss))
and inDs: ((f ,ss),s) ∈ set D by auto

from distD inDs have f : f : ss → s in ?D unfolding fun-hastype-def by
simp

{
fix i
assume i: i < length ss
hence ss ! i ∈ set ss by auto
with inDs condD have ss ! i ∈ set S by (auto simp: S-def)
then
have σ (i, ss ! i) : ss ! i in T (?C)

by (auto intro!: sorted-mapD[OF subst] simp: hastype-restrict)
} note ssigma = this
define ts where ts = (map (λ i. σ (i, ss ! i)) [0 ..<length ss])

have ts: ts :l ss in T (?C) unfolding list-all2-conv-all-nth ts-def using ssigma
by auto

have pat: pat · σ = Fun f ts
unfolding pat ts-def by (auto intro: nth-equalityI)

from pat f ts have pat · σ ∈ ?R unfolding basic-terms-def by auto
}
thus ?L ⊆ ?R by auto
{

fix f ss s and ts
assume f : f : ss → s in ?D and ts: ts :l ss in T (?C)
from ts have len: length ts = length ss by (metis list-all2-lengthD)
define pat where pat = Fun f (map Var (zip [0 ..<length ss] ss))

from f have ((f ,ss),s) ∈ set D unfolding fun-hastype-def by (metis map-of-SomeD)
hence pat: pat ∈ set pats unfolding pat-def pats-def by force
define σ where σ x = (case x of (i,s) ⇒ if i < length ss ∧ s = ss ! i then

177

ts ! i else
(SOME t. t : s in T (?C))) for x

have id: Fun f ts = pat · σ unfolding pat-def using len
by (auto intro!: nth-equalityI simp: σ-def)

have ssigma: σ :s {x : ι in V. ι ∈ set S} → T (?C)
proof (intro sorted-mapI)

fix x ι
assume x : ι in {x : ι in V. ι ∈ set S}
then have ι = snd x and s: ι ∈ set S by auto
then obtain i where x: x = (i,ι) by (cases x, auto)
show σ x : ι in T (?C)
proof (cases i < length ss ∧ ι = ss ! i)

case True
hence id: σ x = ts ! i unfolding x σ-def by auto
from ts True show ?thesis unfolding id unfolding x snd-conv

by (auto simp add: list-all2-conv-all-nth)
next

case False
hence id: σ x = (SOME t. t : ι in T (?C)) unfolding x σ-def by auto
from decide-nonempty-sorts(1)[OF distC dec] s
have ∃ t. t : ι in T (?C) by (auto elim!: not-empty-sortE simp: S-def)
from someI-ex[OF this] have σ x : ι in T (?C) unfolding id .
thus ?thesis unfolding x by auto

qed
qed
from pat id ssigma
have Fun f ts ∈ ?L by auto

}
thus ?R ⊆ ?L unfolding basic-terms-def by auto

qed
finally show ?thesis .

qed

theorem decide-pat-complete-lhss:
fixes C D :: ((′f × ′s list) × ′s) list and lhss :: (′f , ′v)term list
assumes decide-pat-complete-lhss C D lhss = return b
shows b = pat-complete-lhss (map-of C) (map-of D) (set lhss)

proof −
let ?C = map-of C
let ?D = map-of D
define S where S = sorts-of-ssig-list C
define P where P = pats-of-lhss D lhss
have sig: isOK (check-signatures C D)

and b: b = decide-pat-complete C P
using assms
apply (unfold decide-pat-complete-lhss-def)
apply (unfold Let-def P-def [symmetric] S-def [symmetric])

by auto
note ∗ = check-signatures[OF sig]

178

note distC = ∗(1) note distD = ∗(2) note condD = ∗(3) note dec = ∗(4)
interpret pattern-completeness-list C

rewrites sorts-of-ssig-list C = S
apply unfold-locales

using ∗ by (auto simp: S-def)
have b = pats-complete ?C (pat-list ‘ set P)

apply (unfold b)
apply (rule decide-pat-complete[OF distC dec[unfolded S-def]])
apply (unfold P-def)
apply (rule pats-of-lhss-vars[OF condD[unfolded P-def S-def]])
done

also have . . . = (∀ t∈B(?C ,?D). ∃ l∈set lhss. l matches t) unfolding P-def
by (rule pats-of-lhss[OF sig])

finally show ?thesis unfolding pat-complete-lhss-def .
qed

theorem decide-pat-complete-linear-lhss:
fixes C D :: ((′f × ′s list) × ′s) list and lhss :: (′f , ′v)term list
assumes decide-pat-complete-linear-lhss C D lhss = return b

and linear : Ball (set lhss) linear-term
shows b = pat-complete-lhss (map-of C) (map-of D) (set lhss)

proof −
let ?C = map-of C
let ?D = map-of D
define S where S = sorts-of-ssig-list C
define P where P = pats-of-lhss D lhss
have sig: isOK (check-signatures C D)

and b: b = decide-pat-complete-lin C P
using assms
apply (unfold decide-pat-complete-linear-lhss-def)
apply (unfold Let-def P-def [symmetric] S-def [symmetric])

by auto
note ∗ = check-signatures[OF sig]
note distC = ∗(1) note distD = ∗(2) note condD = ∗(3) note dec = ∗(4)
interpret pattern-completeness-list C

rewrites sorts-of-ssig-list C = S
apply unfold-locales

using ∗ by (auto simp: S-def)
have b = pats-complete ?C (pat-list ‘ set P)

apply (unfold b)
apply (rule decide-pat-complete-lin[OF distC dec[unfolded S-def]])
apply (unfold P-def)
apply (rule pats-of-lhss-vars[OF condD[unfolded P-def S-def]])

apply (fold P-def)
proof −

show Ball (set P) ll-pp unfolding ll-pp-def
proof (intro ballI)

fix p mp
assume p ∈ set P and mp: mp ∈ set p

179

from this[unfolded P-def pats-of-lhss-def , simplified]
obtain pat where p: p = map (λlhs. [(pat, lhs)]) lhss by auto
from mp[unfolded p, simplified] obtain l where mp: mp = [(pat, l)]

and l: l ∈ set lhss by auto
have vars: vars-mp-mset (mp-list mp) = vars-term-ms l

unfolding mp vars-mp-mset-def by auto
from l linear have l: linear-term l by auto
hence dist: distinct (vars-term-list l) by (rule linear-term-distinct-vars)
have id: vars-term-ms l = mset (vars-term-list l)
proof (induct l)

case (Fun f ts)
thus ?case by (simp add: vars-term-list.simps, induct ts, auto)

qed (auto simp: vars-term-list.simps)
show ll-mp (mp-list mp) unfolding ll-mp-def vars id using dist

by (simp add: distinct-count-atmost-1)
qed

qed
also have . . . = (∀ t∈B(?C ,?D). ∃ l∈set lhss. l matches t) unfolding P-def

by (rule pats-of-lhss[OF sig])
finally show ?thesis unfolding pat-complete-lhss-def .

qed

theorem decide-pat-complete-lhss-fidl:
fixes C D :: ((′f × ′s list) × ′s) list and lhss :: (′f , ′v)term list
assumes decide-pat-complete-lhss-fidl rn rv fidl-solver C D lhss = return b

and ren: renaming-funs rn rv
and idl: finite-idl-solver fidl-solver

shows b = pat-complete-lhss (map-of C) (map-of D) (set lhss)
proof −

let ?C = map-of C
let ?D = map-of D
define S where S = sorts-of-ssig-list C
define P where P = pats-of-lhss D lhss
have sig: isOK (check-signatures C D)

and b: b = decide-pat-complete-fidl rn rv fidl-solver C P
using assms
apply (unfold decide-pat-complete-lhss-fidl-def)
apply (unfold Let-def P-def [symmetric] S-def [symmetric])

by auto
note ∗ = check-signatures[OF sig]
note distC = ∗(1) note distD = ∗(2) note condD = ∗(3) note dec = ∗(4)
interpret pattern-completeness-list C

rewrites sorts-of-ssig-list C = S
apply unfold-locales

using ∗ by (auto simp: S-def)
have b = pats-complete ?C (pat-list ‘ set P)

apply (unfold b)
apply (rule decide-pat-complete-fidl[OF distC dec[unfolded S-def] - ren idl])
apply (unfold P-def)

180

apply (rule pats-of-lhss-vars[OF condD[unfolded P-def S-def]])
done

also have . . . = (∀ t∈B(?C ,?D). ∃ l∈set lhss. l matches t) unfolding P-def
by (rule pats-of-lhss[OF sig])

finally show ?thesis unfolding pat-complete-lhss-def .
qed

Definition of strong quasi-reducibility and a corresponding decision proce-
dure
definition strong-quasi-reducible :: (′f , ′s)ssig ⇒ (′f , ′s)ssig ⇒ (′f , ′v)term set ⇒
bool where

strong-quasi-reducible C D L =
(∀ t ∈ B(C ,D,∅::unit⇀ ′s). ∃ ti ∈ set (t # args t). ∃ l ∈ L. l matches ti)

definition term-and-args :: ′f ⇒ (′f , ′v)term list ⇒ (′f , ′v)term list where
term-and-args f ts = Fun f ts # ts

definition decide-strong-quasi-reducible ::
((′f × ′s list) × ′s)list ⇒ ((′f × ′s list) × ′s)list ⇒ (′f , ′v)term list ⇒ showsl +

bool where
decide-strong-quasi-reducible C D lhss = do {

check-signatures C D;
let pats = map (λ ((f ,ss),s). term-and-args f (map Var (zip [0 ..<length ss] ss)))

D;
let P = map (List.maps (λ pat. map (λ lhs. [(pat,lhs)]) lhss)) pats;
return (decide-pat-complete C P)
}

lemma decide-strong-quasi-reducible:
fixes C D :: ((′f × ′s list) × ′s) list and lhss :: (′f , ′v)term list
assumes decide-strong-quasi-reducible C D lhss = return b
shows b = strong-quasi-reducible (map-of C) (map-of D) (set lhss)

proof −
let ?C = map-of C
let ?D = map-of D
let ?S = sorts-of-ssig-list C
define pats where pats = map (λ ((f ,ss),s). term-and-args f (map Var (zip

[0 ..<length ss] ss))) D
have pats: patL ∈ set pats ←→ (∃ ((f ,ss),s) ∈ set D. patL = term-and-args f

(map Var (zip [0 ..<length ss] ss)))
for patL
by (force simp: pats-def split: prod.splits)

define P where P = map (List.maps (λ pat. map (λ lhs. [(pat,lhs)]) lhss)) pats
define V where V = {x : ι in V. ι ∈ set (sorts-of-ssig-list C)}
let ?match-lhs = λt. ∃ l ∈ set lhss. l matches t
from assms(1)
have b: b = decide-pat-complete C P

and sig: isOK (check-signatures C D)

181

by (auto simp: decide-strong-quasi-reducible-def pats-def [symmetric] Let-def
P-def [symmetric]

split: prod.splits option.splits)
note ∗ = check-signatures[OF sig]
note distC = ∗(1) note distD = ∗(2) note condD = ∗(3) note dec = ∗(4)
interpret pattern-completeness-list C

apply unfold-locales using distC dec.
have wf : wf-pats (pat-list ‘ set P) using condD

by (force simp: P-def pats-def wf-pats-def wf-pat-def pat-list-def wf-match-def
tvars-match-def

term-and-args-def List.maps-def
elim!: in-set-zipE split: prod.splits)

have ∗: pat-list ‘ set P = { { {(pat,lhs)} | lhs pat. pat ∈ set patL ∧ lhs ∈ set
lhss} | patL. patL ∈ set pats}

unfolding pat-list-def P-def List.maps-def by (auto simp: image-comp) force+
have b = pats-complete ?C (pat-list ‘ set P)

apply (unfold b)
proof (rule decide-pat-complete[OF dist(1) dec])

{
fix f ss s i si
assume mem: ((f , ss), s) ∈ set D and isi: (i, si) ∈ set (zip [0 ..<length ss]

ss)
from isi have si: si ∈ set ss by (metis in-set-zipE)
from mem si condD
have si ∈ set ?S by auto

}
thus snd ‘

⋃
(vars ‘ fst ‘ set (concat (concat P))) ⊆ set ?S unfolding P-def

pats-def term-and-args-def List.maps-def
by fastforce

qed
also have . . . ←→

(∀ σ :s V → T (?C). ∀ patL ∈ set pats. (∃ pat ∈ set patL. ?match-lhs (pat ·
σ))) (is - ←→ ?L)

apply (unfold wf-pats-complete-iff [OF wf])
apply (fold V-def)
apply (unfold ∗)
apply (simp add: imp-ex match-complete-wrt-def matches-def flip: Ball-def)
apply (rule all-cong)
apply (rule ball-cong)
apply simp
apply (auto simp: pats)
by blast

also have . . . ←→
(∀ f ss s ts. f : ss → s in ?D −→ ts :l ss in T (?C) −→

(∃ ti ∈ set (term-and-args f ts). ?match-lhs ti)) (is - = ?R)
proof (intro iffI allI ballI impI)

fix patL and σ
assume patL: patL ∈ set pats and subst: σ :s V → T (?C) and R: ?R
from patL[unfolded pats-def] obtain f ss s where patL: patL = term-and-args

182

f (map Var (zip [0 ..<length ss] ss))
and inDs: ((f ,ss),s) ∈ set D by auto

from distD inDs have f : f : ss → s in ?D unfolding fun-hastype-def by simp
{

fix i
assume i: i < length ss
hence ss ! i ∈ set ss by auto
with inDs condD have ss ! i ∈ set ?S by auto
then have σ (i, ss ! i) : ss ! i in T (?C)

by (auto intro!: sorted-mapD[OF subst] simp: V-def)
} note ssigma = this
define ts where ts = (map (λ i. σ (i, ss ! i)) [0 ..<length ss])
have ts: ts :l ss in T (?C) unfolding list-all2-conv-all-nth ts-def using ssigma

by auto
from R[rule-format, OF f ts] obtain ti where ti: ti ∈ set (term-and-args f ts)

and match: ?match-lhs ti by auto
have map (λ pat. pat · σ) patL = term-and-args f ts unfolding patL term-and-args-def

ts-def
by (auto intro: nth-equalityI)

from ti[folded this] match
show ∃ pat∈set patL. ?match-lhs (pat · σ) by auto

next
fix f ss s ts
assume f : f : ss → s in ?D and ts: ts :l ss in T (?C) and L: ?L
from ts have len: length ts = length ss by (metis list-all2-lengthD)
define patL where patL = term-and-args f (map Var (zip [0 ..<length ss] ss))

from f have ((f ,ss),s) ∈ set D unfolding fun-hastype-def by (metis map-of-SomeD)
hence patL: patL ∈ set pats unfolding patL-def pats-def by force
define σ where σ x = (case x of (i,s) ⇒ if i < length ss ∧ s = ss ! i then ts

! i else
(SOME t. t : s in T (?C))) for x

have ssigma: σ :s V → T (?C)
proof (intro sorted-mapI)

fix x s
assume x : s in V
then obtain i where x: x = (i,s) and s: s ∈ set ?S by (cases x, auto simp:

V-def)
show σ x : s in T (?C)
proof (cases i < length ss ∧ s = ss ! i)

case True
hence id: σ x = ts ! i unfolding x σ-def by auto
from ts True show ?thesis unfolding id unfolding x snd-conv

by (simp add: list-all2-conv-all-nth)
next

case False
hence id: σ x = (SOME t. t : s in T (?C)) unfolding x σ-def by auto
from decide-nonempty-sorts(1)[OF dist dec, rule-format, OF s]
have ∃ t. t : s in T (?C) by (auto elim!: not-empty-sortE)
from someI-ex[OF this] have σ x : s in T (?C ,∅) unfolding id .

183

thus ?thesis unfolding x by auto
qed

qed
from L[rule-format, OF ssigma patL]
obtain pat where pat: pat ∈ set patL and match: ?match-lhs (pat · σ) by auto
have id: map (λ pat. pat · σ) patL = term-and-args f ts unfolding patL-def

term-and-args-def using len
by (auto intro!: nth-equalityI simp: σ-def)

show ∃ ti ∈ set (term-and-args f ts). ?match-lhs ti unfolding id[symmetric]
using pat match by auto

qed
also have . . . = (∀ t. t ∈ B(?C ,?D,∅::unit⇀-) −→ (∃ ti ∈ set (t # args t).

?match-lhs ti))
unfolding basic-terms-def term-and-args-def by fastforce

finally show ?thesis unfolding strong-quasi-reducible-def by blast
qed

9.1 Connecting Pattern-Completeness, Strong Quasi-Reducibility
and Quasi-Reducibility

definition quasi-reducible :: (′f , ′s)ssig ⇒ (′f , ′s)ssig ⇒ (′f , ′v)term set ⇒ bool
where

quasi-reducible C D L = (∀ t ∈ B(C ,D,∅::unit⇀ ′s). ∃ tp E t. ∃ l ∈ L. l matches
tp)

lemma pat-complete-imp-strong-quasi-reducible:
pat-complete-lhss C D L =⇒ strong-quasi-reducible C D L
unfolding pat-complete-lhss-def strong-quasi-reducible-def by force

lemma arg-imp-subt: s ∈ set (args t) =⇒ t D s
by (cases t, auto)

lemma strong-quasi-reducible-imp-quasi-reducible:
strong-quasi-reducible C D L =⇒ quasi-reducible C D L
unfolding strong-quasi-reducible-def quasi-reducible-def
by (force dest: arg-imp-subt)

If no root symbol of a left-hand sides is a constructor, then pattern com-
pleteness and quasi-reducibility coincide.
lemma quasi-reducible-iff-pat-complete: fixes L :: (′f , ′v)term set

assumes
∧

l f ls τs τ . l ∈ L =⇒ l = Fun f ls =⇒ ¬ f : τs → τ in C
shows pat-complete-lhss C D L ←→ quasi-reducible C D L

proof (standard, rule strong-quasi-reducible-imp-quasi-reducible[OF pat-complete-imp-strong-quasi-reducible])
assume q: quasi-reducible C D L
show pat-complete-lhss C D L

unfolding pat-complete-lhss-def
proof

fix t :: (′f ,unit)term
assume t: t ∈ B(C ,D,∅)

184

from q[unfolded quasi-reducible-def , rule-format, OF this]
obtain tp where tp: t D tp and match: ∃ l ∈ L. l matches tp by auto
show ∃ l ∈ L. l matches t
proof (cases t = tp)

case True
thus ?thesis using match by auto

next
case False
from t[unfolded basic-terms-def] obtain f ts ss where t: t = Fun f ts and

ts: ts :l ss in T (C ,∅) by auto
from t False tp obtain ti where ti: ti ∈ set ts and subt: ti D tp

by (meson Fun-supteq)
from subt obtain CC where ctxt: ti = CC 〈 tp 〉 by auto
from ti ts obtain s where ti : s in T (C) unfolding list-all2-conv-all-nth

set-conv-nth by auto
from hastype-context-decompose[OF this[unfolded ctxt]] obtain s where tp:

tp : s in T (C ,∅) by blast
from match[unfolded matches-def] obtain l σ where l: l ∈ L and match: tp

= l · σ by auto
show ?thesis
proof (cases l)

case (Var x)
with l show ?thesis unfolding matches-def by (auto intro!: bexI [of - l])

next
case (Fun f ls)
from tp[unfolded match this, simplified] obtain ss where f : ss → s in C

by (meson Fun-hastype hastype-def fun-hastype-def)
with assms[OF l Fun, of ss s] show ?thesis by auto

qed
qed

qed
qed

end

10 Setup for Experiments
theory Test-Pat-Complete

imports
Pattern-Completeness
HOL−Library.Code-Abstract-Char
HOL−Library.Code-Target-Numeral
HOL−Library.RBT-Mapping
HOL−Library.Product-Lexorder
HOL−Library.List-Lexorder
Show.Number-Parser

begin

turn error message into runtime error

185

definition pat-complete-alg :: ((′f × ′s list) × ′s)list ⇒ ((′f × ′s list) × ′s)list ⇒
(′f , ′v)term list ⇒ bool where

pat-complete-alg C D lhss = (
case decide-pat-complete-lhss C D lhss of Inl err ⇒ Code.abort (err (STR ′′′′))

(λ -. True)
| Inr res ⇒ res)

turn error message into runtime error
definition strong-quasi-reducible-alg :: ((′f × ′s list) × ′s)list ⇒ ((′f × ′s list) ×
′s)list ⇒ (′f , ′v)term list ⇒ bool where

strong-quasi-reducible-alg C D lhss = (
case decide-strong-quasi-reducible C D lhss of Inl err ⇒ Code.abort (err (STR

′′′′)) (λ -. True)
| Inr res ⇒ res)

Examples
definition nat-bool = [

((′′zero ′′, []), ′′nat ′′),
((′′succ ′′, [′′nat ′′]), ′′nat ′′),
((′′true ′′, []), ′′bool ′′),
((′′false ′′, []), ′′bool ′′)
]

definition rn-string where rn-string x = ′′x ′′ @ show (x :: nat)
definition rv-string where rv-string x = ′′y ′′ @ x

lemma renaming-string: renaming-funs rn-string rv-string
using inj-show-nat
unfolding renaming-funs-def
by (auto simp: inj-def rn-string-def rv-string-def)

definition decide-pat-complete-lhss-fidl-string = decide-pat-complete-lhss-fidl rn-string
rv-string

lemmas decide-pat-complete-lhss-fidl-string = decide-pat-complete-lhss-fidl[OF -
renaming-string,

folded decide-pat-complete-lhss-fidl-string-def]

definition int-bool = [
((′′zero ′′, []), ′′int ′′),
((′′succ ′′, [′′int ′′]), ′′int ′′),
((′′pred ′′, [′′int ′′]), ′′int ′′),
((′′true ′′, []), ′′bool ′′),
((′′false ′′, []), ′′bool ′′)
]

definition even-nat = [
((′′even ′′, [′′nat ′′]), ′′bool ′′)

]

186

definition even-int = [
((′′even ′′, [′′int ′′]), ′′bool ′′)

]

definition even-lhss = [
Fun ′′even ′′ [Fun ′′zero ′′ []],
Fun ′′even ′′ [Fun ′′succ ′′ [Fun ′′zero ′′ []]],
Fun ′′even ′′ [Fun ′′succ ′′ [Fun ′′succ ′′ [Var ′′x ′′]]]
]

definition even-lhss-int = [
Fun ′′even ′′ [Fun ′′zero ′′ []],
Fun ′′even ′′ [Fun ′′succ ′′ [Fun ′′zero ′′ []]],
Fun ′′even ′′ [Fun ′′succ ′′ [Fun ′′succ ′′ [Var ′′x ′′]]],
Fun ′′even ′′ [Fun ′′pred ′′ [Fun ′′zero ′′ []]],
Fun ′′even ′′ [Fun ′′pred ′′ [Fun ′′pred ′′ [Var ′′x ′′]]],
Fun ′′succ ′′ [Fun ′′pred ′′ [Var ′′x ′′]],
Fun ′′pred ′′ [Fun ′′succ ′′ [Var ′′x ′′]]
]

lemma decide-pat-complete-wrapper :
assumes (case decide-pat-complete-lhss C D lhss of Inr b ⇒ Some b | Inl - ⇒

None) = Some res
shows pat-complete-lhss (map-of C) (map-of D) (set lhss) = res
using decide-pat-complete-lhss[of C D lhss] assms by (auto split: sum.splits)

lemma decide-pat-complete-wrapper-fidl:
assumes (case decide-pat-complete-lhss-fidl-string solver C D lhss of Inr b ⇒

Some b | Inl - ⇒ None) = Some res
and finite-idl-solver solver

shows pat-complete-lhss (map-of C) (map-of D) (set lhss) = res
using decide-pat-complete-lhss-fidl-string[of solver C D lhss] assms by (auto split:

sum.splits)

lemma decide-strong-quasi-reducible-wrapper :
assumes (case decide-strong-quasi-reducible C D lhss of Inr b ⇒ Some b | Inl -
⇒ None) = Some res

shows strong-quasi-reducible (map-of C) (map-of D) (set lhss) = res
using decide-strong-quasi-reducible[of C D lhss] assms by (auto split: sum.splits)

lemma pat-complete-lhss (map-of nat-bool) (map-of even-nat) (set even-lhss)
apply (subst decide-pat-complete-wrapper [of - - - True])
by eval+

lemma ¬ pat-complete-lhss (map-of int-bool) (map-of even-int) (set even-lhss-int)

apply (subst decide-pat-complete-wrapper [of - - - False])
by eval+

187

value decide-pat-complete-linear-lhss int-bool even-int even-lhss-int

lemma strong-quasi-reducible (map-of int-bool) (map-of even-int) (set even-lhss-int)

apply (subst decide-strong-quasi-reducible-wrapper [of - - - True])
by eval+

definition non-lin-lhss = [
Fun ′′f ′′ [Var ′′x ′′, Var ′′x ′′, Var ′′y ′′],
Fun ′′f ′′ [Var ′′x ′′, Var ′′y ′′, Var ′′x ′′],
Fun ′′f ′′ [Var ′′y ′′, Var ′′x ′′, Var ′′x ′′]
]

lemma pat-complete-lhss (map-of nat-bool) (map-of [((′′f ′′,[′′bool ′′, ′′bool ′′, ′′bool ′′]), ′′bool ′′)])
(set non-lin-lhss)

apply (subst decide-pat-complete-wrapper [of - - - True])
by eval+

lemma ¬ pat-complete-lhss (map-of nat-bool) (map-of [((′′f ′′,[′′nat ′′, ′′nat ′′, ′′nat ′′]), ′′bool ′′)])
(set non-lin-lhss)

apply (subst decide-pat-complete-wrapper [of - - - False])
by eval+

value decide-pat-complete-linear-lhss nat-bool [((′′f ′′,[′′nat ′′, ′′nat ′′, ′′nat ′′]), ′′bool ′′)]
non-lin-lhss

value decide-pat-complete-lhss nat-bool [((′′f ′′,[′′nat ′′, ′′nat ′′, ′′nat ′′]), ′′bool ′′)] non-lin-lhss

value decide-pat-complete-lhss nat-bool [((′′f ′′,[′′bool ′′, ′′bool ′′, ′′bool ′′]), ′′bool ′′)] non-lin-lhss

lemma ¬ pat-complete-lhss (map-of nat-bool) (map-of [((′′f ′′,[′′nat ′′, ′′nat ′′, ′′nat ′′]), ′′bool ′′)])
(set non-lin-lhss)

apply (subst decide-pat-complete-wrapper-fidl[of dummy-fidl-solver - - - False])
apply eval

apply (rule dummy-fidl-solver)
apply eval
done

value decide-pat-complete-lhss-fidl-string (λ -. True) nat-bool [((′′f ′′,[′′bool ′′, ′′bool ′′, ′′bool ′′]), ′′bool ′′)]
non-lin-lhss
value decide-pat-complete-lhss-fidl-string (λ -. False) nat-bool [((′′f ′′,[′′bool ′′, ′′bool ′′, ′′bool ′′]), ′′bool ′′)]
non-lin-lhss

188

definition testproblem (c :: nat) n = (let s = String.implode; s = id;
c1 = even c;
c2 = even (c div 2);
c3 = even (c div 4);
c4 = even (c div 8);
revo = (if c4 then id else rev);
nn = [0 ..< n];
rnn = (if c4 then id nn else rev nn);
b = s ′′b ′′; t = s ′′tt ′′; f = s ′′ff ′′; g = s ′′g ′′;
gg = (λ ts. Fun g (revo ts));
ff = Fun f [];
tt = Fun t [];
C = [((t, [] :: string list), b), ((f , []), b)];
D = [((g, replicate (2 ∗ n) b), b)];
x = (λ i :: nat. Var (s (′′x ′′ @ show i)));
y = (λ i :: nat. Var (s (′′y ′′ @ show i)));
lhsF = gg (if c1 then List.maps (λ i. [ff , y i]) rnn else (replicate n ff @ map

y rnn));
lhsT = (λ b j. gg (if c1 then List.maps (λ i. if i = j then [tt, b] else [x i, y i])

rnn else
(map (λ i. if i = j then tt else x i) rnn @ map (λ i. if i = j then b else

y i) rnn)));
lhssT = (if c2 then List.maps (λ i. [lhsT tt i, lhsT ff i]) nn else List.maps (λ

b. map (lhsT b) nn) [tt,ff]);
lhss = (if c3 then [lhsF] @ lhssT else lhssT @ [lhsF])

in (C , D, lhss))

definition test-problem c n perms = (if c < 16 then testproblem c n
else let (C , D, lhss) = testproblem 0 n;

(permRow,permCol) = perms ! (c − 16);
permRows = map (λ i. lhss ! i) permRow;
pCol = (λ t. case t of Fun g ts ⇒ Fun g (map (λ i. ts ! i) permCol))

in (C , D, map pCol permRows))

definition test-problem-integer where
test-problem-integer c n perms = test-problem (nat-of-integer c) (nat-of-integer

n) (map (map-prod (map nat-of-integer) (map nat-of-integer)) perms)

fun term-to-haskell where
term-to-haskell (Var x) = String.implode x
| term-to-haskell (Fun f ts) = (if f = ′′tt ′′ then STR ′′TT ′′ else if f = ′′ff ′′ then
STR ′′FF ′′ else String.implode f)

+ foldr (λ t r . STR ′′ ′′ + term-to-haskell t + r) ts (STR ′′′′)

definition createHaskellInput :: integer ⇒ integer ⇒ (integer list × integer list)
list ⇒ String.literal where

createHaskellInput c n perms = (case test-problem-integer c n perms
of

189

(-,-,lhss) ⇒ STR ′′module Test(g) where ←↩ ←↩ data B = TT | FF ←↩ ←↩ ′′

+
foldr (λ l s. (term-to-haskell l + STR ′′ = TT ←↩ ′′ + s)) lhss (STR ′′′′))

definition pat-complete-alg-test :: integer ⇒ integer ⇒ (integer list ∗ integer
list)list ⇒ bool where

pat-complete-alg-test c n perms = (case test-problem-integer c n perms of
(C ,D,lhss) ⇒ pat-complete-alg C D lhss)

definition show-pat-complete-test :: integer ⇒ integer ⇒ (integer list ∗ integer
list)list ⇒ String.literal where
show-pat-complete-test c n perms = (case test-problem-integer c n perms of (-,-,lhss)

⇒ showsl-lines (STR ′′empty ′′) lhss (STR ′′′′))

definition create-agcp-input :: (String.literal ⇒ ′t)⇒ integer ⇒ integer ⇒ (integer
list ∗ integer list)list ⇒

′t list list ∗ ′t list list where
create-agcp-input term C N perms = (let

n = nat-of-integer N ;
c = nat-of-integer C ;
lhss = (snd o snd) (test-problem-integer C N perms);
tt = (λ t. case t of (Var x) ⇒ term (String.implode (′′? ′′ @ x @ ′′:B ′′))
| Fun f [] ⇒ term (String.implode f));

pslist = map (λ i. tt (Var (′′x ′′ @ show i))) [0 ..< 2 ∗ n];

patlist = map (λ t. case t of Fun - ps ⇒ map tt ps) lhss
in ([pslist], patlist))

connection to AGCP, which is written in SML, and SML-export of verified
pattern completeness algorithm
export-code

pat-complete-alg-test
show-pat-complete-test
create-agcp-input
pat-complete-alg
strong-quasi-reducible-alg
Var
in SML module-name Pat-Complete

tree automata encoding

We assume that there are certain interface-functions from the tree-automata
library.
context

fixes cState :: String.literal ⇒ ′state — create a state from name
and cSym :: String.literal ⇒ integer ⇒ ′sym — create a symbol from name and

arity
and cRule :: ′sym ⇒ ′state list ⇒ ′state ⇒ ′rule — create a transition-rule

190

and cAut :: ′sym list ⇒ ′state list ⇒ ′state list ⇒ ′rule list ⇒ ′aut
— create an automaton given the signature, the list of all states, the list of final

states, and the transitions
and checkSubset :: ′aut ⇒ ′aut ⇒ bool — check language inclusion

begin

we further fix the parameters to generate the example TRSs
context

fixes c n :: integer
and perms :: (integer list × integer list) list

begin

definition tt = cSym (STR ′′tt ′′) 0
definition ff = cSym (STR ′′ff ′′) 0
definition g = cSym (STR ′′g ′′) (2 ∗ n)
definition qt = cState (STR ′′qt ′′)
definition qf = cState (STR ′′qf ′′)
definition qb = cState (STR ′′qb ′′)
definition qfin = cState (STR ′′qFin ′′)
definition tRule = (λ q. cRule tt [] q)
definition fRule = (λ q. cRule ff [] q)

definition qbRules = [tRule qb, fRule qb]
definition stdRules = qbRules @ [tRule qt, fRule qf]
definition leftStates = [qb, qfin]
definition rightStates = [qt, qf] @ leftStates
definition finStates = [qfin]
definition signature = [tt, ff , g]

fun argToState where
argToState (Var -) = qb
| argToState (Fun s []) = (if s = ′′tt ′′ then qt else if s = ′′ff ′′ then qf

else Code.abort (STR ′′unknown ′′) (λ -. qf))

fun termToRule where
termToRule (Fun - ts) = cRule g (map argToState ts) qfin

definition automataLeft = cAut signature leftStates finStates (cRule g (replicate
(2 ∗ nat-of-integer n) qb) qfin # qbRules)
definition automataRight = (case test-problem-integer c n perms of
(-,-,lhss)⇒ cAut signature rightStates finStates (map termToRule lhss @ stdRules))

definition encodeAutomata = (automataLeft, automataRight)

definition patCompleteAutomataTest = (checkSubset automataLeft automataRight)

end
end

191

definition string-append :: String.literal ⇒ String.literal ⇒ String.literal (infixr
‹+++› 65) where

string-append s t = String.implode (String.explode s @ String.explode t)

code-printing constant string-append ⇀
(Haskell) infixr 5 ++

fun paren where
paren e l r s [] = e
| paren e l r s (x # xs) = l +++ x +++ foldr (λ y r . s +++ y +++ r) xs r

definition showAutomata where showAutomata n c perms = (case encodeAu-
tomata id (λ n a. n)
(λ f qs q. paren f (f +++ STR ′′(′′) (STR ′′) ′′) (STR ′′, ′′) qs +++ STR ′′ −>

′′ +++ q)
(λ sig Q Qfin rls.

STR ′′tree−automata has final states: ′′ +++ paren (STR ′′{} ′′) (STR ′′{ ′′)
(STR ′′} ′′) (STR ′′, ′′) Qfin +++ STR ′′←↩ ′′

+++ STR ′′and transitions: ←↩ ′′ +++ paren (STR ′′′′) (STR ′′′′) (STR ′′′′)
(STR ′′←↩ ′′) rls +++ STR ′′←↩ ←↩ ′′) n c perms

of (all,pats) ⇒ STR ′′decide whether language of first automaton is subset of the
second automaton ←↩ ←↩ ′′

+++ STR ′′first ′′ +++ all +++ STR ′′←↩ and second ′′ +++ pats)

value showAutomata 4 4 []

value show-pat-complete-test 4 4 []

value createHaskellInput 4 4 []

connection to FORT-h, generation of Haskell-examples, and Haskell tests of
verified pattern completeness algorithm
export-code encodeAutomata

showAutomata
patCompleteAutomataTest
show-pat-complete-test
pat-complete-alg-test
createHaskellInput
in Haskell module-name Pat-Test-Generated

end

References

[1] T. Aoto and Y. Toyama. Ground confluence prover based on rewriting
induction. In D. Kesner and B. Pientka, editors, 1st International Con-
ference on Formal Structures for Computation and Deduction, FSCD

192

2016, June 22-26, 2016, Porto, Portugal, volume 52 of LIPIcs, pages
33:1–33:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[2] A. Lazrek, P. Lescanne, and J. Thiel. Tools for proving inductive equal-
ities, relative completeness, and omega-completeness. Inf. Comput.,
84(1):47–70, 1990.

[3] A. Middeldorp, A. Lochmann, and F. Mitterwallner. First-order theory
of rewriting for linear variable-separated rewrite systems: Automation,
formalization, certification. J. Autom. Reason., 67(2):14, 2023.

[4] R. Thiemann and A. Yamada. A verified algorithm for deciding pattern
completeness. In J. Rehof, editor, 9th International Conference on For-
mal Structures for Computation and Deduction, FSCD 2024, July 10-13,
2024, Tallinn, Estonia, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2024. To appear.

193

	Introduction
	Auxiliary Algorithm for Testing Whether "set xs" is a Singleton Set
	An Interface for Solvers for a Subset of Finite Integer Difference Logic
	Computing Nonempty and Infinite sorts
	Deciding the nonemptyness of all sorts under consideration
	Deciding infiniteness of a sort and computing cardinalities

	Pattern Completeness
	A Set-Based Inference System to Decide Pattern Completeness
	Defining Pattern Completeness
	Definition of Algorithm – Inference Rules
	Soundness of the inference rules

	A Multiset-Based Inference System to Decide Pattern Completeness
	Definition of the Inference Rules
	The evaluation cannot get stuck
	Termination
	Partial Correctness via Refinement

	A List-Based Implementation to Decide Pattern Completeness
	Definition of Algorithm
	Partial Correctness of the Implementation
	Getting the result outside the locale with assumptions

	Pattern-Completeness and Related Properties
	Connecting Pattern-Completeness, Strong Quasi-Reducibility and Quasi-Reducibility

	Setup for Experiments

