Verification of a Diffie-Hellman Password-based
Authentication Protocol by Extending the
Inductive Method

Pasquale Noce
Security Certification Specialist at Arjo Systems, Italy
pasquale dot noce dot lavoro at gmail dot com
pasquale dot noce at arjosystems dot com

March 17, 2025

Abstract

This paper constructs a formal model of a Diffie-Hellman password-
based authentication protocol between a user and a smart card, and
proves its security. The protocol provides for the dispatch of the
user’s password to the smart card on a secure messaging channel estab-
lished by means of Password Authenticated Connection Establishment
(PACE), where the mapping method being used is Chip Authentica-
tion Mapping. By applying and suitably extending Paulson’s Inductive
Method, this paper proves that the protocol establishes trustworthy
secure messaging channels, preserves the secrecy of users’ passwords,
and provides an effective mutual authentication service. What is more,
these security properties turn out to hold independently of the secrecy
of the PACE authentication key.

Contents

1 Propaedeutic definitions and lemmas
1.1 Introduction.
1.2 Propaedeutic definitions
1.3 Propaedeutic lemmas

2 Protocol modeling and verification
2.1 Protocol modeling Lo L.
2.2 Secrecy theorems oo
2.3 Authenticity theorems

O NN

17

23

1 Propaedeutic definitions and lemmas

theory Propaedeutics
imports Complex-Main HOL— Library. Countable
begin

declare [[goals-limit = 20]]

This paper is an achievement of the whole OS Development and Certification
team of the Arjo Systems site at Arzano, Italy, because it would have never
been born without the contributions of my colleagues, the discussions we had,
the ideas they shared with me. Particularly, the intuition that the use of Chip
Authentication Mapping makes the secrecy of the PACE authentication key
unnecessary is not mine. I am very grateful to all the team members for
these essential contributions, and even more for these unforgettable years of
work together.

1.1 Introduction

Password-based authentication in an insecure environment — such as password-
based authentication between a user and a smart card, which is the subject
of this paper — requires that the password be exchanged on a secure channel,
S0 as to prevent it from falling into the hands of an eavesdropper. A possible
method to establish such a channel is Password Authenticated Connection
Establishment (PACE), which itself is a password-based Diffie-Hellman key
agreement protocol, specified in the form of a smart card protocol in [3].
Thus, in addition to the user’s password, another password is needed if
PACE is used, namely the one from which the PACE authentication key is
derived.

A simple choice allowing to reduce the number of the passwords that the user
has to manage would be to employ the same password both as key derivation
password, verified implicitly by means of the PACE protocol, and as direct
use password, verified explicitly by comparison. However, this approach has
the following shortcomings:

o A usual countermeasure against trial-and-error attacks aimed at dis-
closing the user’s password consists of blocking its use after a number
of consecutive verification failures exceeding a given threshold. If the
PACE authentication key is derived from the user’s password, such
key has to be blocked as well. Thus, an additional PACE authenti-
cation key would be needed for any user’s operation not requiring to
be preceded by the verification of the user’s password, but only to
be performed on a secure channel, such as the verification of a Per-
sonal Unblocking Code (PUC) by means of command RESET RETRY

COUNTER [4] to unblock the password. On the contrary, a single
PACE authentication key is sufficient for all user’s operations provided
it is independent of the user’s password, which leads to a simpler sys-
tem.

e The user is typically allowed to change her password, e.g. by means
of command CHANGE REFERENCE DATA [4]. If the PACE au-
thentication key is derived from the user’s password, such key has to
be changed as well. This gives rise to additional functional require-
ments which can be nontrivial to meet, particularly in the case of a
preexisting implementation having to be adapted. For instance, if the
key itself is stored on the smart card rather than being derived at
run time from the user’s password, which improves performance and
prevents side channel attacks, the update of the password and the key
must be performed as an atomic operation to ensure their consistency.
On the contrary, the PACE authentication key can remain unchanged
provided it is independent of the user’s password, which leads to a
simpler system.

Therefore, a PACE password distinct from the user’s password seems to be
preferable. As the user’s password is a secret known by the user only, the
derivation of the PACE authentication key from the user’s password would
guarantee the secrecy of the key as well. If the PACE authentication key is
rather derived from an independent password, then a new question arises:
is this key required to be secret?

In order to find the answer, it is useful to schematize the protocol applying
the informal notation used in [10]. If Generic Mapping is employed as map-
ping method (cf. [3]), the protocol takes the following form, where agents
U and C stand for a given user and her own smart card, step Cn for the
nth command APDU, and step Rn for the nth response APDU (for further
information, cf. [3] and [4]).

R1.C—>U: {S}K

C2. U — C: PKyap.pe

R2. C = U : PKap,ic

C3. U — C: PKpu.pcp

R3. C = U: PKppic

C4. U — C: {PKprictxs

R4. C—>U: {PKDH,PC'D}KS

C5. U — C : {User’s password} kg
R5. C — U : {Success code} ks

Being irrelevant for the security analysis of the protocol, the initial MAN-
AGE SECURITY ENVIRONMENT: SET AT command/response pair, as
well as the first GENERAL AUTHENTICATE command requesting nonce
s, are not included in the scheme.

In the response to the first GENERAL AUTHENTICATE command (step
R1), the card returns nonce s encrypted with the PACE authentication key
K.

In the second GENERAL AUTHENTICATE command /response pair (steps
C2 and R2), the user and the card exchange the respective ephemeral public
keys PKMap,PCD = [SKMapprD]G and PKMap,IC = [SKMap,]c]G, where
G is the static cryptographic group generator (the notation used in [1] is
applied). Then, both parties compute the ephemeral generator G' = [s +
SKniap,pcp X SKyfap,10]G.

In the third GENERAL AUTHENTICATE command /response pair (steps
C3 and R3), the user and the card exchange another pair of ephemeral public
keys PKpu pcp = [SKDH,pCD]G/ and PKppy jc = [SKDHjc]G/, and then
compute the shared secret [SKpm pcp X SKpm 1c]G’, from which session
keys K Sgn. and KSyrac are derived. In order to abstract from unnecessary
details, the above scheme considers a single session key K S.

In the last GENERAL AUTHENTICATE command /response pair (steps C4
and R4), the user and the card exchange the respective authentication to-
kens, obtained by computing a Message Authentication Code (MAC) of the
ephemeral public keys PKpg,;c and PKpp pcp with session key KSyrac.
In order to abstract from unnecessary details, the above scheme represents
these MACs as cryptograms generated using the single session key KS.

Finally, in steps C5 and R5, the user sends her password to the card on the
secure messaging channel established by session keys KSg,. and KSyrac,
e.g. via command VERIFY [4], and the card returns the success status word
0x9000 [4] over the same channel. In order to abstract from unnecessary de-
tails, the above scheme represents both messages as cryptograms generated
using the single session key KS.

So, what if the PACE authentication key K were stolen by an attacker —
henceforth called spy as done in [10]? In this case, even if the user’s terminal
were protected from attacks, the spy could get hold of the user’s password
by replacing the user’s smart card with a fake one capable of performing a
remote data transmission, so as to pull off a grandmaster chess attack [5].
In this way, the following scenario would occur, where agents F' and S stand
for the fake card and the spy.

R1. F—>U: {S}K
C2.U— F: PKMap,PCD
R2. F = U : PKyfap.1c

C3. U = F: PKpu,pcp

R3. F - U :PKpm,ic

C4. U — F: {PKDH,IC}KS

R4. F - U :{PKpH PcD}KS
C5. U — F : {User’s password} ks
C5. F — S : User’s password

Since the spy has stored key K in its memory, the fake card can encrypt
nonce s with K, so that it computes the same session keys as the user in
step R3. As a result, the user receives a correct authentication token in
step R4, and then agrees to send her password to the fake card in step C5.
At this point, in order to accomplish the attack, the fake card has to do
nothing but decrypt the user’s password and send it to the spy on a remote
communication channel, which is what happens in the final step C5’.

This argument demonstrates that the answer to the pending question is
affirmative, namely the PACE authentication key is indeed required to be
secret, if Generic Mapping is used. Moreover, the same conclusion can be
drawn on the basis of a similar argument in case the mapping method being
used is Integrated Mapping (cf. [3]). Therefore, the PACE password from
which the key is derived must be secret as well.

This requirement has a significant impact on both the security and the
usability of the system. In fact, the only way to prevent the user from having
to input the PACE password in addition to the direct use one is providing
such password to the user’s terminal by other means. In the case of a stand-
alone application, this implies that either the PACE password itself or data
allowing its computation must be stored somewhere in the user’s terminal,
which gives rise to a risk of leakage. The alternative is to have the PACE
password typed in by the user, which renders longer the overall credentials
that the user is in charge of managing securely. Furthermore, any operation
having to be performed on a secure messaging channel before the user types
in her password — such as identifying the user in case the smart card is
endowed with an identity application compliant with [2] and [3] — would
require an additional PACE password independent of the user’s one. Hence,
such preliminary operations and the subsequent user’s password verification
would have to be performed on distinct secure messaging channels, which
would cause a deterioration in the system performance.

In case Chip Authentication Mapping is used as mapping method instead
(cf. [3]), the resulting protocol can be schematized as follows.

R1. C—-U: {S}K
C2.U—C: PKMap,PCD

R2.C—>U: PKMap,IC

C3. U — C': PKpu.pen

R3. C = U : PKpu,ic

C4. U—C: {PKDH,IC}KS

R4. C - U: {PKDH,PCDa (Sch)_l X SKMap,IC’ mod n,
PKic, PKic signature} s

C5. U — C : {User’s password} kg

R5. C — U : {Success code} ks

In the response to the last GENERAL AUTHENTICATE command (step
R4), in addition to the MAC of PKpg pcp computed with session key
KSyrac, the smart card returns also the Encrypted Chip Authentication
Data (Ajc) if Chip Authentication Mapping is used. These data result
from the encryption with session key KSg,. of the Chip Authentication
Data (C Aj¢), which consist of the product modulo n, where n is the group
order, of the inverse modulo n of the static private key SKjc with the
ephemeral private key SKprqp, 1c-

The user can then verify the authenticity of the chip applying the following
procedure.

1. Read the static public key PKjc = [SK¢|G from a dedicated file of
the smart card, named EF.CardSecurity.
Because of the read access conditions to be enforced by this file, it
must be read over the secure messaging channel established by session

keys KSgne and KSyrac (cf. [2]).

2. Verify the signature contained in file EF.CardSecurity, generated over
the contents of the file by a trusted Certification Authority (CA).
To perform this operation, the user’s terminal is supposed to be pro-
vided by secure means with the public key corresponding to the private
key used by the CA for signature generation.

3. Decrypt the received Aj¢ to recover C Aje and verify that [C A PK o =
PKMap,IC~
Since this happens just in case CArc = (SKr¢) ™' x SKppap,1c mod n,
the success of such verification proves that the chip knows the private
key SKjc corresponding to the certified public key PKjc, and thus
is authentic.

The reading of file EF.CardSecurity is performed next to the last GEN-
ERAL AUTHENTICATE command as a separate operation, by sending
one or more READ BINARY commands on the secure messaging channel
established by session keys K Sgn. and KSyac (cf. [2], [3], and [4]). The

above scheme represents this operation by inserting the public key PKj¢
and its signature into the cryptogram returned by the last GENERAL AU-
THENTICATE command, so as to abstract from unnecessary details once
again.

A successful verification of Chip Authentication Data provides the user with
a proof of the fact that the party knowing private key SKpsqp 1, and then
sharing the same session keys KSpn. and KSy a0, is an authentic chip.
Thus, the protocol ensures that the user accepts to send her password to
an authentic chip only. As a result, the grandmaster chess attack described
previously is not applicable, so that the user’s password cannot be stolen by
the spy any longer. What is more, this is true independently of the secrecy
of the PACE authentication key. Therefore, this key is no longer required
to be secret, which solves all the problems ensuing from such requirement.

The purpose of this paper is indeed to construct a formal model of the above
protocol in the Chip Authentication Mapping case and prove its security,
applying Paulson’s Inductive Method as described in [10]. In more detail,
the formal development is aimed at proving that such protocol enforces the
following security properties.

e Secrecy theorem pr-key-secrecy: if a user other than the spy sends
her password to some smart card (not necessarily her own one), then
the spy cannot disclose the session key used to encrypt the password.
This property ensures that the protocol is successful in establishing
trustworthy secure messaging channels between users and smart cards.

e Secrecy theorem pr-passwd-secrecy: the spy cannot disclose the pass-
words of other users. This property ensures that the protocol is suc-
cessful in preserving the secrecy of users’ passwords.

o Authenticity theorem pr-user-authenticity: if a smart card receives the
password of a user (not necessarily the cardholder), then the message
must have been originally sent by that user. This property ensures
that the protocol enables users to authenticate themselves to their
smart cards, viz. provides an ezternal authentication service (cf. [4]).

o Authenticity theorem pr-card-authenticity: if a user sends her password
to a smart card and receives a success code as response, then the card
is her own one and the response must have been originally sent by that
card. This property ensures that the protocol enables smart cards to
authenticate themselves to their cardholders, viz. provides an internal
authentication service (cf. [4]).

Remarkably, none of these theorems turns out to require the secrecy of the
PACE authentication key as an assumption, so that all of them are valid
independently of whether this key is secret or not.

The main technical difficulties arising from this formal development are the
following ones.

e Data such as private keys for Diffie-Hellman key agreement and session
keys do not necessarily occur as components of exchanged messages,
viz. they may be computed by some agent without being ever sent to
any other agent. In this case, whichever protocol trace evs is given,
any such key x will not be contained in either set analz (spies evs)
or used evs, so that statements such as x € analz (spies evs) or = €
used evs will be vacuously false. Thus, some way must be found to
formalize a state of affairs where x is known by the spy or has already
been used in some protocol run.

o As private keys for Diffie-Hellman key agreement do not necessarily
occur as components of exchanged messages, some way must be found
to record the private keys that each agent has either generated or
accepted from some other agent (possibly implicitly, in the form of the
corresponding public keys) in each protocol run.

e The public keys for Diffie-Hellman key agreement being used are com-
prised of the elements of a cryptographic cyclic group of prime order
n, and the private keys are the elements of the finite field comprised
of the integers from 0 to n - 1 (cf. [3], [1]). Hence, the operations de-
fined in these algebraic structures, as well as the generation of public
keys from known private keys, correspond to additional ways in which
the spy can generate fake messages starting from known ones. A pos-
sible option to reflect this in the formal model would be to extend
the inductive definition of set synth H with rules enabling to obtain
new Diffie-Hellman private and public keys from those contained in
set H, but the result would be an overly complex definition. Thus, an
alternative formalization ought to be found.

These difficulties are solved by extending the Inductive Method, with respect
to the form specified in [10], as follows.

o The protocol is no longer defined as a set of event lists, but rather as
a set of 4-tuples (evs, S, A, U) where evs is an event list, S is the
current protocol state — viz. a function that maps each agent to the
private keys for Diffie-Hellman key agreement generated or accepted
in each protocol run —, A is the set of the Diffie-Hellman private keys
and session keys currently known by the spy, and U is the set of the
Diffie-Hellman private keys and session keys which have already been
used in some protocol run.

In this way, the first two difficulties are solved. Particularly, the full

set of the messages currently known by the spy can be formalized as
the set analz (A U spies evs).

e The inductive definition of the protocol does not contain a single fake

rule any longer, but rather one fake rule for each protocol step. Each
fake rule is denoted by adding letter "F" to the identifier of the corre-
sponding protocol step, e.g. the fake rules associated to steps C2 and
R5 are given the names FC2 and FR5, respectively.
In this way, the third difficulty is solved, too. In fact, for each protocol
step, the related fake rule extends the spy’s capabilities to generate
fake messages with the operations on known Diffie-Hellman private
and public keys relevant for that step, which makes an augmentation
of set synth H with such operations unnecessary.

Throughout this paper, the salient points of definitions and proofs are com-
mented; for additional information, cf. Isabelle documentation, particularly
[9], (8], [7], and [6].

Paulson’s Inductive Method is described in [10], and further information is
provided in [9] as a case study. The formal developments described in [10]
and [9] are included in the Isabelle distribution.

Additional information on the involved cryptography can be found in [3]
and [1].

1.2 Propaedeutic definitions

First of all, the data types of encryption/signature keys, Diffie-Hellman pri-
vate keys, and Diffie-Hellman public keys are defined. Following [9], en-
cryption/signature keys are identified with natural numbers, whereas Diffie-
Hellman private keys and public keys are represented as rational and integer
numbers in order to model the algebraic structures that they form (a field
and a group, respectively; cf. above).

type-synonym key = nat

type-synonym pri-agrk = rat

type-synonym pub-agrk = int

Agents are comprised of an infinite quantity of users and smart cards, plus

the Certification Authority (CA) signing public key PKj¢. For each n, User
n is the cardholder of smart card Card n.

datatype agent = CA | Card nat | User nat

In addition to the kinds of messages considered in [10], the data type of
messages comprises also users’ passwords, Diffie-Hellman private and public
keys, and Chip Authentication Data. Particularly, for each n, Passwd n is
the password of User n, accepted as being the correct one by Card n.

datatype msg =
Agent agent |
Number nat |
Nonce nat |
Key key |
Hash msg |
Passwd nat |
Pri-AgrK pri-agrk |
Pub-AgrK pub-agrk |
Auth-Data pri-agrk pri-agrk |
Crypt key msg |
MPair msg msg

syntax
-MTuple :: ['a, args] = 'a x 'b (<(<indent=2 notation=<mizfiz message tuple»»{-,/
)
syntax-consts
-MTuple = MPair
translations

{z, v, 2 = {=, {v, 2}}
{z, y} = CONST MPair z y

As regards data type event, constructor Says is extended with three addi-
tional parameters of type nat, respectively identifying the communication
channel, the protocol run, and the protocol step (ranging from 1 to 5) in
which the message is exchanged. Communication channels are associated to
smart cards, so that if a user receives an encrypted nonce s on channel n, she
will answer by sending her ephemeral public key PKysqp pcp for generator
mapping to smart card Card n.

datatype event = Says nat nat nat agent agent msg

The record data type session is used to store the Diffie-Hellman private keys
that each agent has generated or accepted in each protocol run. In more
detail:

e Field NonceS is deputed to contain the nonce s, if any, having been
generated internally (in the case of a smart card) or accepted from the
external world (in the case of a user).

10

e Field IntMapK is deputed to contain the ephemeral private key for
generator mapping, if any, having been generated internally.

o Field FxtMapK is deputed to contain the ephemeral private key for
generator mapping, if any, having been implicitly accepted from the
external world in the form of the corresponding public key.

o Field IntAgrK is deputed to contain the ephemeral private key for key
agreement, if any, having been generated internally.

o Field ExtAgrK is deputed to contain the ephemeral private key for key
agreement, if any, having been implicitly accepted from the external
world in the form of the corresponding public key.

record session =
NonceS :: pri-agrk option
IntMapK :: pri-agrk option
ExtMapK :: pri-agrk option
IntAgrK :: pri-agrk option
ExtAgrK :: pri-agrk option

Then, the data type of protocol states is defined as the type of the functions
that map any 3-tuple (X, n, run), where X is an agent, n identifies a com-
munication channel, and run identifies a protocol run taking place on that
communication channel, to a record of type session.

type-synonym state = agent X nat X nat = session

Set bad collects the numerical identifiers of the PACE authentication keys
known by the spy, viz. for each n, n € bad just in case the spy knows the
PACE authentication key shared by agents User n and Card n.

consts bad :: nat set

Function invK maps each encryption/signature key to the corresponding
inverse key, matching the original key just in case it is symmetric.

consts invK :: key = key

Function agrK maps each Diffie-Hellman private key x to the corresponding
public key [z]G, where G is the static cryptographic group generator being
used.

11

consts agrK :: pri-agrk = pub-agrk

Function sesK maps each Diffie-Hellman private key = to the session key
resulting from shared secret [z]G, where G is the static cryptographic group
generator being used.

consts sesK :: pri-agrk = key

Function symK maps each natural number n to the PACE authentication
key shared by agents User n and Card n.

consts symK :: nat = key

Function priAK maps each natural number n to the static Diffie-Hellman
private key SKjc assigned to smart card Card n for Chip Authentication.

consts priAK :: nat = pri-agrk

Function priSK maps each agent to her own private key for digital signature
generation, even if the only such key being actually significant for the model
is the Certification Authority’s one, i.e. priSK CA.

consts priSK :: agent = key

The spy is modeled as a user, specifically the one identified by number 0,
i.e. User 0. In this way, in addition to the peculiar privilege of being able to
generate fake messages, the spy is endowed with the capability of performing
any operation that a generic user can do.

abbreviation Spy :: agent where
Spy = User 0

Functions pubAK and pubSK are abbreviations useful to make the formal
development more readable. The former function maps each Diffie-Hellman
private key x to the message comprised of the corresponding public key agrK
z, whereas the latter maps each agent to the corresponding public key for
digital signature verification.

12

abbreviation pubAK :: pri-agrk = msg where
pubAK a = Pub-AgrK (agrK a)

abbreviation pubSK :: agent = key where
pubSK X = invK (priSK X)

Function start-S represents the initial protocol state, i.e. the one in which
no ephemeral Diffie-Hellman private key has been generated or accepted by
any agent yet.

abbreviation start-S :: state where
start-S = Az. (NonceS = None, IntMapK = None, ExtMapK = None,
IntAgrK = None, ExtAgrK = Nonel)

Set start-A is comprised of the messages initially known by the spy, namely:

e her own password as a user,
o the compromised PACE authentication keys,
e the public keys for digital signature verification, and

 the static Diffie-Hellman public keys assigned to smart cards for Chip
Authentication.

abbreviation start-A :: msg set where
start-A = insert (Passwd 0) (Key ¢ symK ‘ bad U Key ‘ range pubSK U pubAK *
range priAK)

Set start-U is comprised of the messages which have already been used
before the execution of the protocol starts, namely:

o all users’ passwords,
o all PACE authentication keys,

o the private and public keys for digital signature generation/verifica-
tion, and

e the static Diffie-Hellman private and public keys assigned to smart
cards for Chip Authentication.

13

abbreviation start-U :: msg set where
start-U = range Passwd U Key range symK U Key ‘ range priSK U Key ‘ range
pubSK U

Pri-AgrK ‘ range priAK U pubAK ‘ range priAK

As in [10], function spies models the set of the messages that the spy can
see in a protocol trace. However, it is no longer necessary to identify spies ||
with the initial knowledge of the spy, since her current knowledge in corre-
spondence with protocol state (evs, S, A, U) is represented as set analz (A
U spies evs), where start-A C A. Therefore, this formal development defines
spies [| as the empty set.

fun spies :: event list = msg set where

spies [| = {} |
spies (Says i j k A B X # evs) = insert X (spies evs)

Here below is the specification of the axioms about the constants defined
previously which are used in the formal proofs. A model of the constants
satisfying the axioms is also provided in order to ensure the consistency of
the formal development. In more detail:

1. Axiom agrK-inj states that function agrK is injective, and formal-

izes the fact that distinct Diffie-Hellman private keys generate distinct
public keys.
Since the former keys are represented as rational numbers and the lat-
ter as integer numbers (cf. above), a model of function agrK satisfying
the axiom is built by means of the injective function inv nat-to-rat-surj
provided by the Isabelle distribution, which maps rational numbers to
natural numbers.

2. Axiom sesK-inj states that function sesK is injective, and formalizes

the fact that the key derivation function specified in [3] for deriving
session keys from shared secrets makes use of robust hash functions,
so that collisions are negligible.
Since Diffie-Hellman private keys are represented as rational numbers
and encryption/signature keys as natural numbers (cf. above), a model
of function sesK satisfying the axiom is built by means of the injective
function inv nat-to-rat-surj, too.

3. Axiom priSK-pubSK formalizes the fact that every private key for sig-
nature generation is distinct from whichever public key for signature
verification. For example, in the case of the RSA algorithm, small fixed

14

values are typically used as public exponents to make signature ver-
ification more efficient, whereas the corresponding private exponents
are of the same order of magnitude as the modulus.

4. Axiom priSK-symK formalizes the fact that private keys for signature
generation are distinct from PACE authentication keys, which is ob-
viously true since the former keys are asymmetric whereas the latter
are symmetric.

5. Axiom pubSK-symK formalizes the fact that public keys for signature
verification are distinct from PACE authentication keys, which is ob-
viously true since the former keys are asymmetric whereas the latter
are symmetric.

6. Axiom invK-sesK formalizes the fact that session keys are symmetric.

7. Axiom invK-symK formalizes the fact that PACE authentication keys
are symmetric.

8. Axiom symK-bad states that set bad is closed with respect to the
identity of PACE authentication keys, viz. if a compromised user has
the same PACE authentication key as another user, then the latter
user is compromised as well.

It is worth remarking that there is no axiom stating that distinct PACE
authentication keys are assigned to distinct users. As a result, the formal
development does not depend on the enforcement of this condition.

specification (bad invK agrK sesK symK priSK)

agrK-inj: inj agrK

sesK-inj: inj sesK

priSK-pubSK: priSK X # pubSK X'

priSK-symK: priSK X # symK n

pubSK-symK: pubSK X # symK n

invK-sesK: invK (sesK a) = sesK a

invK-symK: invK (symK n) = symK n

symK-bad: m € bad = symK n = symK m =—> n € bad
(proof)

Here below are the inductive definitions of sets parts, analz, and synth. With
respect to the definitions given in the protocol library included in the Isabelle
distribution, those of parts and analz are extended with rules extracting
Diffie-Hellman private keys from Chip Authentication Data, whereas the
definition of synth contains a further rule that models the inverse operation,
i.e. the construction of Chip Authentication Data starting from private keys.
Particularly, the additional analz rules formalize the fact that, for any two

15

private keys x and y, if X y mod n and x are known, where n is the group
order, then y can be obtained by computing = x y x 2~ mod n, and similarly,
x can be obtained if y is known.

An additional set, named items, is also defined inductively in what follows.
This set is a hybrid of parts and analz, as it shares with parts the rule apply-
ing to cryptograms and with analz the rules applying to Chip Authentication
Data. Since the former rule is less strict than the corresponding one in the
definition of analz, it turns out that analz H C items H for any message set
H. As a result, for any message X, X ¢ items (A U spies evs) implies X ¢
analz (A U spies evs). Therefore, set items is useful to prove the secrecy
of the Diffie-Hellman private keys utilized to compute Chip Authentication
Data without bothering with case distinctions concerning the secrecy of en-
cryption keys, as would happen if set analz were directly employed instead.

inductive-set parts :: msg set = msg set for H :: msg set where
Ing: X e H= X € parts H |

Fst: {X, Y|} € parts H= X € parts H |

Snd: {X, Y} € parts H= Y € parts H |

Body: Crypt K X € parts H=— X € parts H |

Auth-Fst: Auth-Data z y € parts H = Pri-AgrK « € parts H |
Auth-Snd: Auth-Data x y € parts H = Pri-AgrK y € parts H

inductive-set items :: msg set = msg set for H :: msg set where

Inj: X e H= X € items H |

Fst: {X, Y|} € items H = X € items H |

Snd: {X, Y|} € items H = Y € items H |

Body: Crypt K X € items H = X € items H |

Auth-Fst: [Auth-Data ¢ y € items H; Pri-AgrK y € items H]| = Pri-AgrK = €
items H |

Auth-Snd: [Auth-Data z y € items H; Pri-AgrK x € items H] = Pri-AgrK y €
items H

inductive-set analz :: msg set = msg set for H :: msg set where

Inj: XeH= X € analz H |

Fst: {X, Y|} € analz H = X € analz H |

Snd: {X, Y} € analz H= Y € analz H |

Decrypt: [Crypt K X € analz H; Key (invK K) € analz H] = X € analz H |
Auth-Fst: [Auth-Data © y € analz H; Pri-AgrK y € analz H] = Pri-AgrK z €
analz H |

Auth-Snd: [Auth-Data z y € analz H; Pri-AgrK z € analz H| = Pri-AgrK y €
analz H

inductive-set synth :: msg set = msg set for H :: msg set where
Inj: X e H= X € synth H |

Agent: Agent X € synth H |

Number: Number n € synth H |

Hash: X € synth H = Hash X € synth H |

16

MPair: [X € synth H; Y € synth H] = {X, Y|} € synth H |
Crypt: [X € synth H; Key K € H] = Crypt K X € synth H |
Auth: [Pri-AgrK = € H; Pri-AgrK y € H] = Auth-Data x y € synth H

1.3 Propaedeutic lemmas

This section contains the lemmas about sets parts, items, analz, and synth
required for protocol verification. Since their proofs mainly consist of initial
rule inductions followed by sequences of rule applications and simplifications,
apply-style is used.

lemma set-spies [rule-format]:
Saysijk A BX € set evs — X € spies evs

(proof)

lemma parts-subset:
H C parts H

(proof)

lemma parts-idem:
parts (parts H) = parts H

(proof)

lemma parts-simp:

H C range Agent U
range Number U
range Nonce U
range Key U
range Hash U
range Passwd U
range Pri-AgrK U
range Pub-AgrK —

parts H = H
{proof)

lemma parts-mono:
G C H = parts G C parts H

(proof)

lemma parts-insert:
insert X (parts H) C parts (insert X H)

(proof)

lemma parts-simp-insert:
X € range Agent U
range Number U
range Nonce U
range Key U

17

range Hash U
range Passwd U
range Pri-AgrK U
range Pub-AgrK —
parts (insert X H) = insert X (parts H)

(proof)

lemma parts-auth-data-1:
parts (insert (Auth-Data x y) H) C

{Pri-AgrK =z, Pri-AgrK y, Auth-Data x y} U parts H
(proof)

lemma parts-auth-data-2:

{Pri-AgrK z, Pri-AgrK y, Auth-Data x y} U parts H C
parts (insert (Auth-Data x y) H)

(proof)

lemma parts-auth-data:
parts (insert (Auth-Data x y) H) =

{Pri-AgrK =z, Pri-AgrK y, Auth-Data x y} U parts H
(proof)

lemma parts-crypt-1:
parts (insert (Crypt K X) H) C insert (Crypt K X) (parts (insert X H))

(proof)

lemma parts-crypt-2:
insert (Crypt K X) (parts (insert X H)) C parts (insert (Crypt K X) H)

(proof)

lemma parts-crypt:
parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))

(proof)

lemma parts-mpair-1:
parts (insert {X, Y} H) C insert {X, Y| (parts ({X, Y} U H))
(proof)

lemma parts-mpair-2:
insert {X, Y[} (parts ({X, Y} U H)) C parts (insert {X, Y|} H)
(proof)

lemma parts-mpair:
parts (insert {X, Y} H) = insert {X, Y} (parts ({X, Y} U H))
(proof)

lemma items-subset:
H C items H

(proof)

18

lemma items-idem:
items (items H) = items H

(proof)

lemma items-parts-subset:
items H C parts H

(proof)

lemma items-simp:

H C range Agent U
range Number U
range Nonce U
range Key U
range Hash U
range Passwd U
range Pri-AgrK U
range Pub-AgrK —

items H = H
(proof)

lemma items-mono:
G C H — items G C items H

(proof)

lemma items-insert:
insert X (items H) C items (insert X H)

(proof)

lemma items-simp-insert-1:
X € items H = items (insert X H) = items H

(proof)

lemma items-simp-insert-2:

X € range Agent U
range Number U
range Nonce U
range Key U
range Hash U
range Passwd U
range Pub-AgrK —

items (insert X H) = insert X (items H)

(proof)

lemma items-pri-agrk-out:
Pri-AgrK x ¢ parts H =

items (insert (Pri-AgrK z) H) = insert (Pri-AgrK) (items H)
{proof)

19

lemma items-auth-data-in-1:
items (insert (Auth-Data z y) H) C

insert (Auth-Data x y) (items ({Pri-AgrK z, Pri-AgrK y} U H))
(proof)

lemma items-auth-data-in-2:
Pri-AgrK © € items H V Pri-AgrK y € items H =
insert (Auth-Data z y) (items ({ Pri-AgrK =z, Pri-AgrK y} U H)) C
items (insert (Auth-Data x y) H)
(proof)

lemma items-auth-data-in:
Pri-AgrK x € items H V Pri-AgrK y € items H —
items (insert (Auth-Data x y) H) =
insert (Auth-Data x y) (items ({ Pri-AgrK z, Pri-AgrK y} U H))
(proof)

lemma items-auth-data-out:
[Pri-AgrK x ¢ items H; Pri-AgrK y ¢ items H] =

items (insert (Auth-Data x y) H) = insert (Auth-Data z y) (items H)
(proof)

lemma items-crypt-1:
items (insert (Crypt K X) H) C insert (Crypt K X) (items (insert X H))
(proof)

lemma items-crypt-2:
insert (Crypt K X) (items (insert X H)) C items (insert (Crypt K X) H)
(proof)

lemma items-crypt:
items (insert (Crypt K X) H) = insert (Crypt K X) (items (insert X H))
(proof)

lemma items-mpair-1:
items (insert {X, Y[} H) C insert {X, Y} (items ({X, Y} U H))
(proof)

lemma items-mpair-2:
insert {X, Y[} (items ({X, Y} U H)) C items (insert {X, Y} H)
(proof)

lemma items-mpair:
items (insert {X, Y} H) = insert {X, Y} (items ({X, Y} U H))
(proof)

lemma analz-subset:
H C analz H

(proof)

20

lemma analz-idem:
analz (analz H) = analz H

(proof)

lemma analz-parts-subset:
analz H C parts H

(proof)

lemma analz-items-subset:
analz H C items H

(proof)

lemma analz-simp:

H C range Agent U
range Number U
range Nonce U
range Key U
range Hash U
range Passwd U
range Pri-AgrK U
range Pub-AgrK —

analz H = H

(proof)

lemma analz-mono:
G C H = analz G C analz H

(proof)

lemma analz-insert:
insert X (analz H) C analz (insert X H)

(proof)

lemma analz-simp-insert-1:
X € analz H = analz (insert X H) = analz H

(proof)

lemma analz-simp-insert-2:

X € range Agent U
range Number U
range Nonce U
range Hash U
range Passwd U
range Pub-AgrK —

analz (insert X H) = insert X (analz H)

(proof)

lemma analz-auth-data-in-1:
analz (insert (Auth-Data x y) H) C

21

insert (Auth-Data x y) (analz ({ Pri-AgrK =z, Pri-AgrK y} U H))
(proof)

lemma analz-auth-data-in-2:
Pri-AgrK © € analz H V Pri-AgrK y € analz H =
insert (Auth-Data x y) (analz ({Pri-AgrK x, Pri-AgrK y} U H))
analz (insert (Auth-Data x y) H)

(proof)

N

lemma analz-auth-data-in:
Pri-AgrK © € analz H V Pri-AgrK y € analz H =
analz (insert (Auth-Data x y) H) =
insert (Auth-Data z y) (analz ({Pri-AgrK z, Pri-AgrK y} U H))

(proof)

lemma analz-auth-data-out:
[Pri-AgrK = ¢ analz H; Pri-AgrK y ¢ analz H] =

analz (insert (Auth-Data x y) H) = insert (Auth-Data x y) (analz H)
(proof)

lemma analz-crypt-in-1:
analz (insert (Crypt K X) H) C insert (Crypt K X) (analz (insert X H))

(proof)

lemma analz-crypt-in-2:
Key (invK K) € analz H =
insert (Crypt K X) (analz (insert X H)) C analz (insert (Crypt K X) H)

(proof)

lemma analz-crypt-in:
Key (invK K) € analz H =
analz (insert (Crypt K X) H) = insert (Crypt K X) (analz (insert X H))

(proof)

lemma analz-crypt-out:
Key (invK K) ¢ analz H =
analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)

(proof)

lemma analz-mpair-1:
analz (insert {X, Y|} H) C insert {X, Y|} (analz ({X, Y} U H))
(proof)

lemma analz-mpair-2:
insert {X, Y[} (analz ({X, Y} U H)) C analz (insert {X, Y|} H)
(proof)

lemma analz-mpair:
analz (insert {X, Y| H) = insert {X, Y|} (analz ({X, Y} U H))

22

(proof)

lemma synth-simp-intro:
X € synth H =
X € range Nonce U
range Key U
range Passwd U
range Pri-AgrK U
range Pub-AgrK —>
XeH

(proof)

lemma synth-auth-data:
Auth-Data x y € synth H =
Auth-Data xy € H V Pri-AgrK x € H N\ Pri-AgrK y € H

(proof)

lemma synth-crypt:
Crypt K X € synth H= Crypt K X € HV X € synth H N Key K €¢ H

(proof)

lemma synth-mpair:
{X, Y} e synth H=—= {X, Y} € HV X € synth H AN Y € synth H
(proof)

lemma synth-analz-fst:
{X, Y[} € synth (analz H) = X € synth (analz H)
(proof)

lemma synth-analz-snd:
{X, Y} € synth (analz H) = Y € synth (analz H)

(proof)

end

2 Protocol modeling and verification
theory Protocol

imports Propaedeutics
begin

2.1 Protocol modeling

The protocol under consideration can be formalized by means of the follow-
ing inductive definition.

inductive-set protocol :: (event list X state X msg set x msg set) set where

23

Nil: (], start-S, start-A, start-U) € protocol |

R1: [(evsR1, S, A, U) € protocol; Pri-AgrK s ¢ U; s # 0,
NonceS (S (Card n, n, run)) = None]
= (Says n run 1 (Card n) (User m) (Crypt (symK n) (Pri-AgrK s)) # evsR1,
S ((Card n, n, run) := S (Card n, n, run) (NonceS := Some s)),
if n € bad then insert (Pri-AgrK s) A else A,
insert (Pri-AgrK s) U) € protocol |

FR1: [(evsFR1, S, A, U) € protocol; User m # Spy; s # 0,
Crypt (symK m) (Pri-AgrK s) € synth (analz (A U spies evsFR1))]
= (Says n run 1 Spy (User m) (Crypt (symK m) (Pri-AgrK s)) # evsFR1,
S, A, U) € protocol |

C2: [(evsC2, S, A, U) € protocol; Pri-AgrK a ¢ U,
NonceS (S (User m, n, run)) = None;
Says n run 1 X (User m) (Crypt (symK n') (Pri-AgrK s)) € set evsC2;
s" = (if symK n' = symK m then s else 0)]
= (Says n run 2 (User m) (Card n) (pubAK a) # evsC2,

S ((User m, n, run) := S (User m, n, run)
(NonceS := Some s’, IntMapK = Some a))),

if User m = Spy then insert (Pri-AgrK a) A else A,

insert (Pri-AgrK a) U) € protocol |

FC2: [(evsFC2, S, A, U) € protocol;
Pri-AgrK o € analz (A U spies evsFC2)]
= (Says n run 2 Spy (Card n) (pubAK a) # evsFC2,
S, A, U) € protocol |

R2: [(evsR2, S, A, U) € protocol; Pri-AgrK b ¢ Uj;
NonceS (S (Card n, n, run)) # None;
IntMapK (S (Card n, n, run)) = None;
Says n run 2 X (Card n) (pubAK a) € set evsR2]
= (Says n run 2 (Card n) X (pubAK b) # evsR2,
S ((Card n, n, run) :== § (Card n, n, run)
(IntMapK := Some b, ExtMapK := Some a)),
A, insert (Pri-AgrK b) U) € protocol |

FR2: [(evsFR2, S, A, U) € protocol; User m # Spy;
Pri-AgrK b € analz (A U spies evsFR2)]
= (Says n run 2 Spy (User m) (pubAK b) # evsFR2,
S, A, U) € protocol |

C3: [(evsC3, S, A, U) € protocol; Pri-AgrK ¢ ¢ U;
NonceS (S (User m, n, run)) = Some s;
IntMapK (S (User m, n, run)) = Some a;
EztMapK (S (User m, n, run)) = None;

Says n run 2 X (User m) (pubAK b) € set evsC3;
cx(s+ axb)# 0]

24

= (Says n run 3 (User m) (Card n) (pubAK (c * (s + a * b)) # evsC3,
S ((User m, n, run) := S (User m, n, run)
(ExtMapK := Some b, IntAgrK := Some cl)),
if User m = Spy then insert (Pri-AgrK c¢) A else A,
insert (Pri-AgrK c) U) € protocol |

FC3: [(ewsFC3, S, A, U) € protocol;
NonceS (S (Card n, n, run)) = Some s;
IntMapK (S (Card n, n, run)) = Some b;
EztMapK (S (Card n, n, run)) = Some a;
{Pri-AgrK s, Pri-AgrK a, Pri-AgrK c} C analz (A U spies evsF'C3)]
= (Says n run & Spy (Card n) (pubAK (c x (s + a * b))) # evsFC3,
S, A, U) € protocol |

R3: [(evsR3, S, A,
NonceS (S (Card n, n, run)) = Some s;
IntMapK (S (Card n, n, run)) = Some b;
EztMapK (S (Card n, n, run)) = Some a;
IntAgrK (S (Card n, n, run)) = None;
Says nrun 3 X (Card n) (pubAK (¢ * (s’ + a x b))) € set evsR3;
Key (sesK (¢ x d * (s'"+ a x b)) ¢ U;
Key (sesK (c x d x (s + a x b)) ¢ U;
dx*(s+ axb)#0]
= (Says n run 3 (Card n) X (pubAK (d * (s + a % b))) # evsR3,
S ((Card n, n, run) := S (Card n, n, run)
(IntAgrK := Some d, ExtAgrK := Some (¢ x (s’ + a * b))])),
if ' = s N Pri-AgrK c € analz (A U spies evsR3)
then insert (Key (sesK (¢ x d x (s + a x b)))) A else A,
{Pri-AgrK d,
Key (sesK (¢ x d = (s' 4+ a % b)), Key (sesK (¢ x d x (s + a * b))),
{Key (sesK (¢ * d * (s + a * b))), Agent X, Number n, Number runf}} U
U) € protocol |

A, U) € protocol; Pri-AgrK d ¢ U;
S

FR3: [(evsFR3, S, A, U) € protocol; User m # Spy;
NonceS (S (User m, n, run)) = Some s;
IntMapK (S (User m, n, run)) = Some q;
EztMapK (S (User m, n, run)) = Some b;
IntAgrK (S (User m, n, run)) = Some c;
{Pri-AgrK s, Pri-AgrK b, Pri-AgrK d} C analz (A U spies evsFR3);
Key (sesK (¢ * d * (s + a x b)) ¢ U]
= (Says n run 3 Spy (User m) (pubAK (d x (s + a = b))) # evsFR3, S,
insert (Key (sesK (¢ x d * (s + a * b)))) A
{Key (sesK (c x d x (s + a * b)),
{Key (sesK (¢ = d % (s + a * b))), Agent (User m), Number n, Number
runft} U U) € protocol |

)

Ch: [(evsC4, S, A, U) € protocol;
IntAgrK (S (User m, n, run)) = Some c¢;
ExtAgrK (S (User m, n, run)) = None;

25

Says n run 3 X (User m) (pubAK f) € set evsCy;
{Key (sesK (c = f)), Agent (User m), Number n, Number runl} € U]
= (Says n run 4 (User m) (Card n) (Crypt (sesK (c * f)) (pubAK f)) # evsC4,

S ((User m, n, run) := S (User m, n, run) (ExtAgrK := Some f)),
A, U) € protocol |

FCy: [(ewsFC4, S, A, U) € protocol;

NonceS (S (Card n, n, run)) = Some s;
IntMapK (S (Card n, n, run)) = Some b;
EztMapK (S (Card n, n, run)) = Some a;
IntAgrK (S (Card n, n, run)) = Some d;
ExtAgrK (S (Card n, n, run)) = Some e;

Crypt (sesK (d * e)) (pubAK (d * (s + a * b)))

€ synth (analz (A U spies evsFC4))]
= (Says n run 4 Spy (Card n)

(Crypt (sesK (d = €)) (pubAK (d = (s + a x b)))) # evsFC/,
S, A, U) € protocol |

A, U) € protocol;

NonceS (S (Card n, n, run)) = Some s;
IntMapK (

S

S
ExtMapK (S (Card n, n, run)) = Some a;
S

R4: [(evsR4, S,
(
(Card n, n, run)) = Some b;

(
IntAgrK (S (Card n, n, run)) = Some d;
ExtAgrK (S (Card n, n, run)) = Some e;
Says n run 4 X (Card n) (Crypt (sesK (d * e))
(pubAK (d * (s + a * b)))) € set evsR4]
= (Says n run 4 (Card n) X (Crypt (sesK (d * ¢€))
{pubAK e, Auth-Data (priAK n) b, pubAK (priAK n),

Crypt (priSK CA) (Hash (pubAK (priAK n)))}) # evsR4,
S, A, U) € protocol |

FRY: [(evsFR4, S, A, U) € protocol; User m # Spy;
NonceS (S (User m, n, run)) = Some s;
IntMapK (S (User m, n, run)) = Some a;
ExtMapK (S (User m, n, run)) = Some b;
IntAgrK (S (User m, n, run)) = Some c;
ExztAgrK (S (User m, n, run)) = Some f;
Crypt (sesK (¢ * f))
{pubAK (¢ * (s + a x b)), Auth-Data g b, pubAK g,
Crypt (priSK CA) (Hash (pubAK g))} € synth (analz (A U spies evsFR4))]
= (Says n run 4 Spy (User m) (Crypt (sesK (c * f))
{pubAK (c % (s + a x b)), Auth-Data g b, pubAK g,
Crypt (priSK CA) (Hash (pubAK g))}) # evsFR/,
S, A, U) € protocol |

C5: [(evsC5, S, A, U) € protocol;
NonceS (S (User m, n, run)) = Some s;
IntMapK (S (User m, n, run)) = Some a;
EztMapK (S (User m, n, run)) = Some b;

26

IntAgrK (S (User m, n, run)) = Some c;

ExtAgrK (S (User m, n, run)) = Some f;

Says n run 4 X (User m) (Crypt (sesK (c x f))
{pubAK (c % (s + a = b)), Auth-Data g b, pubAK g,
Crypt (priSK CA) (Hash (pubAK g))}) € set evsC5]

= (Says n run 5 (User m) (Card n) (Crypt (sesK (c * f)) (Passwd m)) #
evsC5,
S, A, U) € protocol |

FC5: [(evsFC5, S, A, U) € protocol;
IntAgrK (S (Card n, n, run)) = Some d;
ExtAgrK (S (Card n, n, run)) = Some e;
Crypt (sesK (d * e)) (Passwd n) € synth (analz (A U spies evsFC5H))]
= (Says n run 5 Spy (Card n) (Crypt (sesK (d * e)) (Passwd n)) # evsFC5,
S, A, U) € protocol |

R5: [(evsR5, S, A, U) € protocol;
IntAgrK (S (Card n, n, run)) = Some d;
ExtAgrK (S (Card n, n, run)) = Some e;
Says n run § X (Card n) (Crypt (sesK (d * e)) (Passwd n)) € set evsR5]
= (Says n run 5 (Card n) X (Crypt (sesK (d * e)) (Number 0)) # evsR5,
S, A, U) € protocol |

FR5: [(evsFR5, S, A, U) € protocol; User m # Spy;
IntAgrK (S (User m, n, run)) = Some c;
ExztAgrK (S (User m, n, run)) = Some f;
Crypt (sesK (¢ * f)) (Number 0) € synth (analz (A U spies evsFR5))]
= (Says n run 5 Spy (User m) (Crypt (sesK (¢ * f)) (Number 0)) # evsFRS,
S, A, U) € protocol

Here below are some comments about the most significant points of this
definition.

e Rules RI and FR1 constrain the values of nonce s to be different from
0. In this way, the state of affairs where an incorrect PACE authen-
tication key has been used to encrypt nonce s, so that a wrong value
results from the decryption, can be modeled in rule C2 by identifying
such value with 0.

e The spy can disclose session keys as soon as they are established,
namely in correspondence with rules R3 and FRS3.
In the former rule, condition s’ = s identifies Diffie-Hellman private
key ¢ as the terminal’s ephemeral private key for key agreement, and
then [¢ X d X (s+a x b)]G as the terminal’s value of the shared secret,
which the spy can compute by multiplying the card’s ephemeral public
key [d X (s + a x b)]G by ¢ provided she knows c.
In the latter rule, the spy is required to know private keys s, b, and d

27

to be able to compute and send public key [d x (s + a x b)]G. This
is the only way to share with User m the same shared secret’s value
[c X d x (s 4 a x b)]G, which the spy can compute by multiplying the
user’s ephemeral public key [¢ X (s + a x b)]G by d.

e Rules R? and FRS3 record the user, the communication channel, and
the protocol run associated to the session key having been established
by adding this information to the set of the messages already used.
In this way, rule C4 can specify that the session key computed by
User m is fresh by assuming that a corresponding record be included
in set U. In fact, a simple check that the session key be not included
in U would vacuously fail, as session keys are added to the set of the
messages already used in rules R% and FRS.

2.2 Secrecy theorems

This section contains a series of lemmas culminating in the secrecy theorems
pr-key-secrecy and pr-passwd-secrecy. Structured Isar proofs are used, possi-
bly preceded by apply-style scripts in case a substantial amount of backward
reasoning steps is required at the beginning.

lemma pr-state:

(evs, S, A, U) € protocol —>
(NonceS (S (X, n, run)) = None — IntMapK (S (X, n, run)) = None) A
(IntMapK (S (X, n, run)) = None — ExtMapK (S (X, n, run)) = None)
(ExtMapK (S (X, n, run)) = None — IntAgrK (S (X, n, run)) = None)
(IntAgrK (S (X, n, run)) = None — ExztAgrK (S (X, n, run)) = None)

(proof)

A
A

lemma pr-state-1:

[(evs, S, A, U) € protocol; NonceS (S (X, n, run)) = None] =
IntMapK (S (X, n, run)) = None

(proof)

lemma pr-state-2:

[(evs, S, A, U) € protocol; IntMapK (S (X, n, run)) = None] =
EztMapK (S (X, n, run)) = None

(proof)

lemma pr-state-3:

[(evs, S, A, U) € protocol; ExtMapK (S (X, n, run)) = None] =
IntAgrK (S (X, n, run)) = None

(proof)

lemma pr-state-4:
[(evs, S, A, U) € protocol; IntAgrK (S (X, n, run)) = None] =

28

EztAgrK (S (X, n, run)) = None
(proof)

lemma pr-analz-used:
(evs, S, A, U) € protocol = A C U
(proof)

lemma pr-key-parts-intro [rule-format):
(evs, S, A, U) € protocol =
Key K € parts (A U spies evs) —
Key K € A
(proof)

lemma pr-key-analz:
(evs, S, A, U) € protocol = (Key K € analz (A U spies evs)) = (Key K € A)
(proof)

lemma pr-symk-used:
(evs, S, A, U) € protocol = Key (symK n) € U
(proof)

lemma pr-symk-analz:

(evs, S, A, U) € protocol = (Key (symK n) € analz (A U spies evs)) = (n €
bad)

(proof)

lemma pr-sesk-card [rule-format):
(evs, S, A, U) € protocol =
IntAgrK (S (Card n, n, run)) = Some d —
ExtAgrK (S (Card n, n, run)) = Some e —
Key (sesK (d x e)) € U
(proof)

lemma pr-sesk-user-1 [rule-format]:
(evs, S, A, U) € protocol —>
IntAgrK (S (User m, n, run)) = Some ¢ —»
ExtAgrK (S (User m, n, run)) = Some f —»
{Key (sesK (¢ * f)), Agent (User m), Number n, Number runl} € U
(proof)

lemma pr-sesk-user-2 [rule-format]:
(evs, S, A, U) € protocol =
{Key (sesK K), Agent (User m), Number n, Number run} € U —
Key (sesK K) € U

(proof)
lemma pr-auth-key-used:

(evs, S, A, U) € protocol => Pri-AgrK (priAK n) € U
(proof)

29

lemma pr-int-mapk-used [rule-format]:
(evs, S, A, U) € protocol =
IntMapK (S (Card n, n, run)) = Some b —
Pri-AgrK b € U

(proof)

lemma pr-valid-key-analz:
(evs, S, A, U) € protocol = Key (pubSK X) € analz (A U spies evs)

{(proof)

lemma pr-pri-agrk-parts [rule-format]:
(evs, S, A, U) € protocol =
Pri-AgrK z ¢ U —
Pri-AgrK © ¢ parts (A U spies evs)
(proof)

lemma pr-pri-agrk-items:
(evs, S, A, U) € protocol =
Pri-AgrK «z ¢ U =
items (insert (Pri-AgrK z) (A U spies evs)) =
insert (Pri-AgrK z) (items (A U spies evs))
(proof)

lemma pr-auth-data-items:
(evs, S, A, U) € protocol =
Pri-AgrK (priAK n) ¢ items (A U spies evs) A
(IntMapK (S (Card n, n, run)) = Some b —
Pri-AgrK b ¢ items (A U spies evs))
(proof)

lemma pr-auth-key-analz:
(evs, S, A, U) € protocol => Pri-AgrK (priAK n) ¢ analz (A U spies evs)
(proof)

lemma pr-int-mapk-analz:
(evs, S, A, U) € protocol =
IntMapK (S (Card n, n, run)) = Some b =
Pri-AgrK b ¢ analz (A U spies evs)
(proof)

lemma pr-key-set-unused [rule-format]:
(evs, S, A, U) € protocol =
H C range Key U range Pri-AgrK — U —
analz (H U A U spies evs) = H U analz (A U spies evs)
(proof)

lemma pr-key-unused:
(evs, S, A, U) € protocol =

30

KeyK ¢ U =
analz (insert (Key K) (A U spies evs)) =
insert (Key K) (analz (A U spies evs))
(proof)

lemma pr-pri-agrk-unused:
(evs, S, A, U) € protocol —>
Pri-AgrK « ¢ U =
analz (insert (Pri-AgrK z) (A U spies evs)) =
insert (Pri-AgrK x) (analz (A U spies evs))
(proof)

lemma pr-pri-agrk-analz-intro [rule-format]:
(evs, S, A, U) € protocol =
Pri-AgrK = € analz (A U spies evs) —
Pri-AgrK ¢ € A

(proof)

lemma pr-pri-agrk-analz:
(evs, S, A, U) € protocol =

(Pri-AgrK z € analz (A U spies evs)) = (Pri-AgrK © € A)
(proof)

lemma pr-ext-agrk-user-1 [rule-format]:
(evs, S, A, U) € protocol =
User m # Spy —
Says n run 4 (User m) (Card n) (Crypt (sesK K) (pubAK e)) € set evs —>
ExztAgrK (S (User m, n, run)) # None

(proof)

lemma pr-ext-agrk-user-2 [rule-format]:
(evs, S, A, U) € protocol =
User m # Spy —
Says n run 4 X (User m) (Crypt (sesK K)
{pubAK e, Auth-Data z y, pubAK g, Crypt (priSK CA) (Hash (pubAK g))})
€ set evs —
ExztAgrK (S (User m, n, run)) # None

(proof)

lemma pr-ext-agrk-user-3 [rule-format]:
(evs, S, A, U) € protocol =
User m # Spy —
ExtAgrK (S (User m, n, run)) = Some e —>
Says n run 4 (User m) (Card n) (Crypt (sesK K) (pubAK e')) € set evs —»
e'=ce
(proo)

lemma pr-ext-agrk-user-4 [rule-format]:
(evs, S, A, U) € protocol =

31

ExtAgrK (S (User m, n, run)) = Some f —»
(3X. Says n run 3 X (User m) (pubAK f) € set evs)
(proof)

declare fun-upd-apply [simp del]

lemma pr-ext-agrk-user-5 [rule-format]:
(evs, S, A, U) € protocol =
Says n run 8 X (User m) (pubAK f) € set evs —
(Fsabd f=dx*x(s+ax*xb)A
NonceS (S (Card n, n, run)) = Some s A
IntMapK (S (Card n, n, run)) = Some b A
EztMapK (S (Card n, n, run)) = Some a A
IntAgrK (S (Card n, n, run)) = Some d A
d#£0Ns+axb#0)V
(3b. Pri-AgrK b € A A
ExztMapK (S (User m, n, run)) = Some b)
(is -= ?Hevs — 2P SnrunV ?Q S A n run)
(proof)

declare fun-upd-apply [simp)]

lemma pr-int-agrk-user-1 [rule-format]:
(evs, S, A, U) € protocol —>
IntAgrK (S (User m, n, run)) = Some ¢ —»
Pri-AgrK ¢ € U

(proof)

lemma pr-int-agrk-user-2 [rule-format]:
(evs, S, A, U) € protocol =
User m # Spy —
IntAgrK (S (User m, n, run)) = Some ¢ —>
Pri-AgrK ¢ ¢ A
(proof)

lemma pr-int-agrk-user-3 [rule-format]:

(evs, S, A, U) € protocol =
NonceS (S (User m, n, run)) = Some s —
IntMapK (S (User m, n, run)) = Some a —»
ExtMapK (S (User m, n, run)) = Some b —
IntAgrK (S (User m, n, run)) = Some ¢ —»

cx(s+axb)#£0
(proof)

lemma pr-int-agrk-card [rule-format):

(evs, S, A, U) € protocol =
NonceS (S (Card n, n, run)) = Some s —
IntMapK (S (Card n, n, run)) = Some b —»
EztMapK (S (Card n, n, run)) = Some a —

32

IntAgrK (S (Card n, n, run)) = Some d —
d*(s+ax*xb)#0
(proof)

lemma pr-ext-agrk-card [rule-format]:

(evs, S, A, U) € protocol =
NonceS (S (Card n, n, run)) = Some s —>
IntMapK (S (Card n, n, run)) = Some b —
EztMapK (S (Card n, n, run)) = Some a —
IntAgrK (S (Card n, n, run)) = Some d —
ExztAgrK (S (Card n, n, run)) = Some (¢ * (s + a * b)) —
Pri-AgrK ¢ ¢ A —

Key (sesK (cx d x (s+ a* b)) ¢ A
(proof)

declare fun-upd-apply [simp del]

lemma pr-sesk-user-3 [rule-format]:
(evs, S, A, U) € protocol =
{Key (sesK K), Agent (User m), Number n, Number runl} € U —
Key (sesK K) € A —
(3de K=dx*xeA
IntAgrK (S (Card n, n, run)) = Some d A
EztAgrK (S (Card n, n, run)) = Some e) V
(3b. Pri-AgrK b € AN
ExztMapK (S (User m, n, run)) = Some b)
(is-= ?HI U — ?H2A — ?PSnrunV ?2Q S A n run)
(proof)

declare fun-upd-apply [simp)

lemma pr-sesk-auth [rule-format):
(evs, S, A, U) € protocol =
Crypt (sesK K) {pubAK e, Auth-Data z y, pubAK g, Crypt (priSK CA) (Hash
(pubAK g))}
€ parts (A U spies evs) —
Key (sesK K) € U
(proof)

lemma pr-sesk-passwd [rule-format]:
(evs, S, A, U) € protocol =
Says n run 5 X (Card n) (Crypt (sesK K) (Passwd m)) € set evs —
Key (sesK K) € U

(proof)

lemma pr-sesk-card-user [rule-format):
(evs, S, A, U) € protocol =
User m # Spy —
NonceS (S (User m, n, run)) = Some s —

33

IntMapK (S (User m, n, run)) = Some a —»
EztMapK (S (User m, n, run)) = Some b —
IntAgrK (S (User m, n, run)) = Some ¢ —>
NonceS (S (Card n, n, run)) = Some s’ —
IntMapK (S (Card n, n, run)) = Some b’ —
ExtMapK (S (Card n, n, run)) = Some a’ —
IntAgrK (S (Card n, n, run)) = Some d —
EztAgrK (S (Card n, n, run)) = Some (¢ * (s + a * b)) —
s'+a'xb=s+axb—
Key (sesK (cxd* (s+ ax1b))) ¢ A
(proof)

lemma pr-sign-key-used:
(evs, S, A, U) € protocol = Key (priSK X) € U
(proof)

lemma pr-sign-key-analz:
(evs, S, A, U) € protocol => Key (priSK X) ¢ analz (A U spies evs)
(proof)

lemma pr-auth-data-parts [rule-format]:
(evs, S, A, U) € protocol =
Auth-Data (priAK n) b € parts (A U spies evs) —
(3m run. IntMapK (S (Card m, m, run)) = Some b)
(is-— ?Me-—-)

(proof)

lemma pr-sign-parts [rule-format]:
(evs, S, A, U) € protocol =
Crypt (priSK CA) (Hash (pubAK g)) € parts (A U spies evs) —
(3n. g = priAK n)
(is-— ?Mge-—)

(proof)

lemma pr-key-secrecy-auzx [rule-format]:
(evs, S, A, U) € protocol =
User m # Spy —
NonceS (S (User m, n, run)) = Some s —
IntMapK (S (User m, n, run)) = Some a —»
ExtMapK (S (User m, n, run)) = Some b —
IntAgrK (S (User m, n, run)) = Some ¢ —»
ExztAgrK (S (User m, n, run)) = Some f —
Says n run 4 X (User m) (Crypt (sesK (¢ * f))
{pubAK (¢ * (s + a * b)), Auth-Data g b, pubAK g,
Crypt (priSK CA) (Hash (pubAK g))}) € set evs —
Key (sesK (¢ x f)) ¢ A
(proof)

theorem pr-key-secrecy [rule-format]:

34

(evs, S, A, U) € protocol =

User m # Spy —

Says n run & (User m) (Card n) (Crypt (sesK K) (Passwd m)) € set evs —
Key (sesK K) ¢ analz (A U spies evs)

(proof)

theorem pr-passwd-secrecy [rule-format]:
(evs, S, A, U) € protocol =
User m # Spy —
Passwd m ¢ analz (A U spies evs)

(proof)

2.3 Authenticity theorems

This section contains a series of lemmas culminating in the authenticity the-
orems pr-user-authenticity and pr-card-authenticity. Structured Isar proofs
are used.

lemma pr-passwd-parts [rule-format]:
(evs, S, A, U) € protocol =
Crypt (sesK K) (Passwd m) € parts (A U spies evs) —»
(3n run. Says n run 5 (User m) (Card n) (Crypt (sesK K) (Passwd m)) € set
evs) V
(Frun. Says m run 5 Spy (Card m) (Crypt (sesK K) (Passwd m)) € set evs)
(is - = M € - — ?P evs V ?2Q) evs)

(proof)

lemma pr-unique-run-1 [rule-format]:
(evs, S, A, U) € protocol =
{Key (sesK (d = ¢€)), Agent (User m), Number n', Number run’} € U —
IntAgrK (S (Card n, n, run)) = Some d —
ExztAgrK (S (Card n, n, run)) = Some e —
n’'=n A run’ = run
(proof)

lemma pr-unique-run-2:

(evs, S, A, U) € protocol =
IntAgrK (S (User m, n’, run’)) = Some ¢ =
ExtAgrK (S (User m, n', run’)) = Some [=
IntAgrK (S (Card n, n, run)) = Some d =
ExztAgrK (S (Card n, n, run)) = Some e =
dxe=cx*x f=

n'=n A run’ = run
(proof)

lemma pr-unique-run-3 [rule-format]:

(evs, S, A, U) € protocol =
IntAgrK (S (Card n', n’, run’)) = Some d’ —

35

ExtAgrK (S (Card n', n', run’)) = Some ¢/ —
IntAgrK (S (Card n, n, run)) = Some d —
EztAgrK (S (Card n, n, run)) = Some e —
dxe=d xe —

n'=n A run’ = run

(proof)

lemma pr-unique-run-4 [rule-format]:
(evs, S, A, U) € protocol =
Says n' run’ 5 X (Card n’) (Crypt (sesK (d = €)) (Passwd m)) € set evs —
IntAgrK (S (Card n, n, run)) = Some d —
EztAgrK (S (Card n, n, run)) = Some e —
n’=n A run’ = run
(proof)

theorem pr-user-authenticity [rule-format]:
(evs, S, A, U) € protocol =
Says n run 5 X (Card n) (Crypt (sesK K) (Passwd m)) € set evs —»
Says n run 5 (User m) (Card n) (Crypt (sesK K) (Passwd m)) € set evs

(proof)

lemma pr-confirm-parts [rule-format]:
(evs, S, A, U) € protocol —>
Crypt (sesK K) (Number 0) € parts (A U spies evs) —
Key (sesK K) ¢ A —
(In run X.
Says n run 5 X (Card n) (Crypt (sesK K) (Passwd n)) € set evs A
Says n run 5 (Card n) X (Crypt (sesK K) (Number 0)) € set evs)
(is-= - — - — 7P K evs)
(proof)

lemma pr-confirm-says [rule-format]:
(evs, S, A, U) € protocol =
Says n run 5 X Spy (Crypt (sesK K) (Number 0)) € set evs —
Says n run 5 Spy (Card n) (Crypt (sesK K) (Passwd n)) € set evs

(proof)

lemma pr-passwd-says [rule-format]:
(evs, S, A, U) € protocol =
Says n run 5§ X (Card n) (Crypt (sesK K) (Passwd m)) € set evs —»
X =UsermV X = Spy
(proof)

lemma pr-unique-run-5 [rule-format):
(evs, S, A, U) € protocol —>
{Key (sesK K), Agent (User m'), Number n', Number run'} € U —
{Key (sesK K), Agent (User m), Number n, Number runl} € U —
m=m'An=n’"Arun=run’

(proof)

36

lemma pr-unique-run-6:
(evs, S, A, U) € protocol =
{Key (sesK (c = f)), Agent (User m’), Number n', Number run'} € U =
IntAgrK (S (User m, n, run)) = Some ¢ =
ExtAgrK (S (User m, n, run)) = Some [=
m=m'An=n"Arun=run’
(proo)

lemma pr-unique-run-7 [rule-format]:
(evs, S, A, U) € protocol =
Says n' run’ 5 (User m') (Card n') (Crypt (sesK K) (Passwd m')) € set evs
BN
{Key (sesK K), Agent (User m), Number n, Number run} € U —
Key (sesK K) ¢ A —
m'=mAn" =nArun = run

(proof)

lemma pr-unique-run-8§:
(evs, S, A, U) € protocol =
Says n' run’ 5 (User m’) (Card n') (Crypt (sesK (c x f)) (Passwd m')) € set
evs =
IntAgrK (S (User m, n, run)) = Some ¢ =
EztAgrK (S (User m, n, run)) = Some f =
Key (sesK (¢ x f)) ¢ A =
m'=mAn" =nArun’ = run

(proof)

lemma pr-unique-passwd-parts [rule-format]:
(evs, S, A, U) € protocol =
Crypt (sesK K) (Passwd m') € parts (A U spies evs) —
Crypt (sesK K) (Passwd m) € parts (A U spies evs) —
m’'=m

(proof)

theorem pr-card-authenticity [rule-format):
(evs, S, A, U) € protocol =
Says n run & (User m) (Card n) (Crypt (sesK K) (Passwd m)) € set evs —»
Says n run 5 X (User m) (Crypt (sesK K) (Number 0)) € set evs —
n=mA
(Says m run 5 (Card m) (User m) (Crypt (sesK K) (Number 0)) € set evs V
Says m run 5 (Card m) Spy (Crypt (sesK K) (Number 0)) € set evs)

(proof)

end

37

References

1]

[2]

[10]

Bundesamt fur Sicherheit in der Informationstechnik. Technical Guide-
line TR-03111 — Elliptic Curve Cryptography, 2nd edition, 2012.

International Civil Aviation Organization. Doc 9303 — Machine Read-
able Travel Documents — Part 10: Logical Data Structure (LDS) for
Storage of Biometrics and Other Data in the Contactless Integrated
Circuit (IC), Tth edition, 2015.

International Civil Aviation Organization. Doc 9303 — Machine Read-
able Travel Documents — Part 11: Security Mechanisms for MRTDs,
7th edition, 2015.

International Organization for Standardization. ISO/IEC 7816-4 —
Identification cards — Integrated circuit cards — Part 4: Organization,
security and commands for interchange, 3rd edition, 2013.

G. Kc and P. Karger. Preventing attacks on machine readable travel
documents (mrtds). JACR Cryptology ePrint Archive, 2005.

A. Krauss. Defining Recursive Functions in Isabelle/HOL.
http://isabelle.in.tum.de/website-Isabelle2016/dist /Isabelle2016 /
doc/functions.pdf.

T. Nipkow. A Tutorial Introduction to Structured Isar Proofs.
http://isabelle.in.tum.de/website-Isabelle2011/dist /Isabelle2011/doc/

isar-overview.pdf.

T. Nipkow. Programming and Proving in Isabelle/HOL, Feb. 2016.
http://isabelle.in.tum.de/website-Isabelle2016 /dist /Isabelle2016/doc/
prog-prove.pdf.

T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, Feb. 2016. http://isabelle.in.tum.de/
website-Isabelle2016 /dist /Isabelle2016/doc/tutorial.pdf.

L. Paulson. The inductive approach to verifying cryptographic proto-
cols. Journal of Computer Security, Dec. 1998.

38

http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/doc/prog-prove.pdf
http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/doc/prog-prove.pdf
http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/doc/tutorial.pdf
http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/doc/tutorial.pdf

	Propaedeutic definitions and lemmas
	Introduction
	Propaedeutic definitions
	Propaedeutic lemmas

	Protocol modeling and verification
	Protocol modeling
	Secrecy theorems
	Authenticity theorems

