Verification of a Diffie-Hellman Password-based Authentication Protocol by Extending the Inductive Method

Pasquale Noce
Security Certification Specialist at Arjo Systems, Italy
pasquale dot noce dot lavoro at gmail dot com pasquale dot noce at arjosystems dot com

September 13, 2023

Abstract

This paper constructs a formal model of a Diffie-Hellman passwordbased authentication protocol between a user and a smart card, and proves its security. The protocol provides for the dispatch of the user's password to the smart card on a secure messaging channel established by means of Password Authenticated Connection Establishment (PACE), where the mapping method being used is Chip Authentication Mapping. By applying and suitably extending Paulson's Inductive Method, this paper proves that the protocol establishes trustworthy secure messaging channels, preserves the secrecy of users' passwords, and provides an effective mutual authentication service. What is more, these security properties turn out to hold independently of the secrecy of the PACE authentication key.

Contents

1 Propaedeutic definitions and lemmas 2
1.1 Introduction 2
1.2 Propaedeutic definitions 9
1.3 Propaedeutic lemmas 17
2 Protocol modeling and verification 40
2.1 Protocol modeling 40
2.2 Secrecy theorems 44
2.3 Authenticity theorems 134

1 Propaedeutic definitions and lemmas

theory Propaedeutics
imports Complex-Main HOL-Library.Countable begin
declare [[goals-limit $=20]$]

This paper is an achievement of the whole OS Development and Certification team of the Arjo Systems site at Arzano, Italy, because it would have never been born without the contributions of my colleagues, the discussions we had, the ideas they shared with me. Particularly, the intuition that the use of Chip Authentication Mapping makes the secrecy of the PACE authentication key unnecessary is not mine. I am very grateful to all the team members for these essential contributions, and even more for these unforgettable years of work together.

1.1 Introduction

Password-based authentication in an insecure environment - such as passwordbased authentication between a user and a smart card, which is the subject of this paper - requires that the password be exchanged on a secure channel, so as to prevent it from falling into the hands of an eavesdropper. A possible method to establish such a channel is Password Authenticated Connection Establishment (PACE), which itself is a password-based Diffie-Hellman key agreement protocol, specified in the form of a smart card protocol in [3]. Thus, in addition to the user's password, another password is needed if PACE is used, namely the one from which the PACE authentication key is derived.
A simple choice allowing to reduce the number of the passwords that the user has to manage would be to employ the same password both as key derivation password, verified implicitly by means of the PACE protocol, and as direct use password, verified explicitly by comparison. However, this approach has the following shortcomings:

- A usual countermeasure against trial-and-error attacks aimed at disclosing the user's password consists of blocking its use after a number of consecutive verification failures exceeding a given threshold. If the PACE authentication key is derived from the user's password, such key has to be blocked as well. Thus, an additional PACE authentication key would be needed for any user's operation not requiring to be preceded by the verification of the user's password, but only to be performed on a secure channel, such as the verification of a Personal Unblocking Code (PUC) by means of command RESET RETRY

COUNTER [4] to unblock the password. On the contrary, a single PACE authentication key is sufficient for all user's operations provided it is independent of the user's password, which leads to a simpler system.

- The user is typically allowed to change her password, e.g. by means of command CHANGE REFERENCE DATA [4]. If the PACE authentication key is derived from the user's password, such key has to be changed as well. This gives rise to additional functional requirements which can be nontrivial to meet, particularly in the case of a preexisting implementation having to be adapted. For instance, if the key itself is stored on the smart card rather than being derived at run time from the user's password, which improves performance and prevents side channel attacks, the update of the password and the key must be performed as an atomic operation to ensure their consistency. On the contrary, the PACE authentication key can remain unchanged provided it is independent of the user's password, which leads to a simpler system.

Therefore, a PACE password distinct from the user's password seems to be preferable. As the user's password is a secret known by the user only, the derivation of the PACE authentication key from the user's password would guarantee the secrecy of the key as well. If the PACE authentication key is rather derived from an independent password, then a new question arises: is this key required to be secret?
In order to find the answer, it is useful to schematize the protocol applying the informal notation used in [10]. If Generic Mapping is employed as mapping method (cf. [3]), the protocol takes the following form, where agents U and C stand for a given user and her own smart card, step Cn for the nth command APDU, and step $\mathrm{R} n$ for the nth response APDU (for further information, cf. [3] and [4]).

R1. $C \rightarrow U:\{s\}_{K}$
C2. $U \rightarrow C: P K_{M a p, P C D}$
R2. $C \rightarrow U: P K_{M a p, I C}$
C3. $U \rightarrow C: P K_{D H, P C D}$
R3. $C \rightarrow U: P K_{D H, I C}$
$\mathrm{C} 4 . U \rightarrow C:\left\{P K_{D H, I C}\right\}_{K S}$
R4. $C \rightarrow U:\left\{P K_{D H, P C D}\right\}_{K S}$
C5. $U \rightarrow C:\{\text { User's password }\}_{K S}$
R5. $C \rightarrow U:\{\text { Success code }\}_{K S}$

Being irrelevant for the security analysis of the protocol, the initial MANAGE SECURITY ENVIRONMENT: SET AT command/response pair, as well as the first GENERAL AUTHENTICATE command requesting nonce s, are not included in the scheme.
In the response to the first GENERAL AUTHENTICATE command (step R1), the card returns nonce s encrypted with the PACE authentication key K.

In the second GENERAL AUTHENTICATE command/response pair (steps C 2 and R2), the user and the card exchange the respective ephemeral public keys $P K_{M a p, P C D}=\left[S K_{M a p, P C D}\right] G$ and $P K_{M a p, I C}=\left[S K_{M a p, I C}\right] G$, where G is the static cryptographic group generator (the notation used in [1] is applied). Then, both parties compute the ephemeral generator $G^{\prime}=[s+$ $\left.S K_{M a p, P C D} \times S K_{M a p, I C}\right] G$.
In the third GENERAL AUTHENTICATE command/response pair (steps C 3 and R 3), the user and the card exchange another pair of ephemeral public keys $P K_{D H, P C D}=\left[S K_{D H, P C D}\right] G^{\prime}$ and $P K_{D H, I C}=\left[S K_{D H, I C}\right] G^{\prime}$, and then compute the shared secret $\left[S K_{D H, P C D} \times S K_{D H, I C}\right] G^{\prime}$, from which session keys $K S_{E n c}$ and $K S_{M A C}$ are derived. In order to abstract from unnecessary details, the above scheme considers a single session key $K S$.
In the last GENERAL AUTHENTICATE command/response pair (steps C4 and R4), the user and the card exchange the respective authentication tokens, obtained by computing a Message Authentication Code (MAC) of the ephemeral public keys $P K_{D H, I C}$ and $P K_{D H, P C D}$ with session key $K S_{M A C}$. In order to abstract from unnecessary details, the above scheme represents these MACs as cryptograms generated using the single session key $K S$.
Finally, in steps C5 and R5, the user sends her password to the card on the secure messaging channel established by session keys $K S_{E n c}$ and $K S_{M A C}$, e.g. via command VERIFY [4], and the card returns the success status word $0 x 9000$ [4] over the same channel. In order to abstract from unnecessary details, the above scheme represents both messages as cryptograms generated using the single session key $K S$.
So, what if the PACE authentication key K were stolen by an attacker henceforth called spy as done in [10]? In this case, even if the user's terminal were protected from attacks, the spy could get hold of the user's password by replacing the user's smart card with a fake one capable of performing a remote data transmission, so as to pull off a grandmaster chess attack [5]. In this way, the following scenario would occur, where agents F and S stand for the fake card and the spy.

$$
\begin{aligned}
& \mathrm{R} 1 . F \rightarrow U:\{s\}_{K} \\
& \mathrm{C} 2 . U \rightarrow F: P K_{M a p, P C D} \\
& \mathrm{R} 2 . F \rightarrow U: P K_{M a p, I C}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C} 3 . U \rightarrow F: P K_{D H, P C D} \\
& \mathrm{R} 3 . F \rightarrow U: P K_{D H, I C} \\
& \mathrm{C} 4 . U \rightarrow F:\left\{P K_{D H, I C}\right\}_{K S} \\
& \mathrm{R} 4 . F \rightarrow U:\left\{P K_{D H, P C D}\right\}_{K S} \\
& \mathrm{C} 5 . U \rightarrow F:\{\text { User's password }\}_{K S} \\
& \mathrm{C} 5 . F \rightarrow S: \text { User's password }
\end{aligned}
$$

Since the spy has stored key K in its memory, the fake card can encrypt nonce s with K, so that it computes the same session keys as the user in step R3. As a result, the user receives a correct authentication token in step R4, and then agrees to send her password to the fake card in step C5. At this point, in order to accomplish the attack, the fake card has to do nothing but decrypt the user's password and send it to the spy on a remote communication channel, which is what happens in the final step C5'.
This argument demonstrates that the answer to the pending question is affirmative, namely the PACE authentication key is indeed required to be secret, if Generic Mapping is used. Moreover, the same conclusion can be drawn on the basis of a similar argument in case the mapping method being used is Integrated Mapping (cf. [3]). Therefore, the PACE password from which the key is derived must be secret as well.
This requirement has a significant impact on both the security and the usability of the system. In fact, the only way to prevent the user from having to input the PACE password in addition to the direct use one is providing such password to the user's terminal by other means. In the case of a standalone application, this implies that either the PACE password itself or data allowing its computation must be stored somewhere in the user's terminal, which gives rise to a risk of leakage. The alternative is to have the PACE password typed in by the user, which renders longer the overall credentials that the user is in charge of managing securely. Furthermore, any operation having to be performed on a secure messaging channel before the user types in her password - such as identifying the user in case the smart card is endowed with an identity application compliant with [2] and [3] - would require an additional PACE password independent of the user's one. Hence, such preliminary operations and the subsequent user's password verification would have to be performed on distinct secure messaging channels, which would cause a deterioration in the system performance.
In case Chip Authentication Mapping is used as mapping method instead (cf. [3]), the resulting protocol can be schematized as follows.

R1. $C \rightarrow U:\{s\}_{K}$
C2. $U \rightarrow C: P K_{M a p, P C D}$

R2. $C \rightarrow U: P K_{M a p, I C}$
C3. $U \rightarrow C: P K_{D H, P C D}$
R3. $C \rightarrow U: P K_{D H, I C}$
C4. $U \rightarrow C:\left\{P K_{D H, I C}\right\}_{K S}$
R4. $C \rightarrow U:\left\{P K_{D H, P C D},\left(S K_{I C}\right)^{-1} \times S K_{M a p, I C} \bmod n\right.$, $P K_{I C}, P K_{I C}$ signature $\}_{K S}$
C5. $U \rightarrow C:\left\{U_{s e r} \text { 's password }\right\}_{K S}$
R5. $C \rightarrow U:\{\text { Success code }\}_{K S}$
In the response to the last GENERAL AUTHENTICATE command (step R4), in addition to the MAC of $P K_{D H, P C D}$ computed with session key $K S_{M A C}$, the smart card returns also the Encrypted Chip Authentication Data $\left(A_{I C}\right)$ if Chip Authentication Mapping is used. These data result from the encryption with session key $K S_{E n c}$ of the Chip Authentication Data $\left(C A_{I C}\right)$, which consist of the product modulo n, where n is the group order, of the inverse modulo n of the static private key $S K_{I C}$ with the ephemeral private key $S K_{M a p, I C}$.
The user can then verify the authenticity of the chip applying the following procedure.

1. Read the static public key $P K_{I C}=\left[S K_{I C}\right] G$ from a dedicated file of the smart card, named EF.CardSecurity.
Because of the read access conditions to be enforced by this file, it must be read over the secure messaging channel established by session keys $K S_{E n c}$ and $K S_{M A C}$ (cf. [2]).
2. Verify the signature contained in file EF.CardSecurity, generated over the contents of the file by a trusted Certification Authority (CA).
To perform this operation, the user's terminal is supposed to be provided by secure means with the public key corresponding to the private key used by the CA for signature generation.
3. Decrypt the received $A_{I C}$ to recover $C A_{I C}$ and verify that $\left[C A_{I C}\right] P K_{I C}=$ $P K_{\text {Map,IC }}$.
Since this happens just in case $C A_{I C}=\left(S K_{I C}\right)^{-1} \times S K_{M a p, I C} \bmod n$, the success of such verification proves that the chip knows the private key $S K_{I C}$ corresponding to the certified public key $P K_{I C}$, and thus is authentic.

The reading of file EF.CardSecurity is performed next to the last GENERAL AUTHENTICATE command as a separate operation, by sending one or more READ BINARY commands on the secure messaging channel established by session keys $K S_{E n c}$ and $K S_{M A C}$ (cf. [2], [3], and [4]). The
above scheme represents this operation by inserting the public key $P K_{I C}$ and its signature into the cryptogram returned by the last GENERAL AUTHENTICATE command, so as to abstract from unnecessary details once again.
A successful verification of Chip Authentication Data provides the user with a proof of the fact that the party knowing private key $S K_{M a p, I C}$, and then sharing the same session keys $K S_{E n c}$ and $K S_{M A C}$, is an authentic chip. Thus, the protocol ensures that the user accepts to send her password to an authentic chip only. As a result, the grandmaster chess attack described previously is not applicable, so that the user's password cannot be stolen by the spy any longer. What is more, this is true independently of the secrecy of the PACE authentication key. Therefore, this key is no longer required to be secret, which solves all the problems ensuing from such requirement.
The purpose of this paper is indeed to construct a formal model of the above protocol in the Chip Authentication Mapping case and prove its security, applying Paulson's Inductive Method as described in [10]. In more detail, the formal development is aimed at proving that such protocol enforces the following security properties.

- Secrecy theorem pr-key-secrecy: if a user other than the spy sends her password to some smart card (not necessarily her own one), then the spy cannot disclose the session key used to encrypt the password. This property ensures that the protocol is successful in establishing trustworthy secure messaging channels between users and smart cards.
- Secrecy theorem pr-passwd-secrecy: the spy cannot disclose the passwords of other users. This property ensures that the protocol is successful in preserving the secrecy of users' passwords.
- Authenticity theorem pr-user-authenticity: if a smart card receives the password of a user (not necessarily the cardholder), then the message must have been originally sent by that user. This property ensures that the protocol enables users to authenticate themselves to their smart cards, viz. provides an external authentication service (cf. [4]).
- Authenticity theorem pr-card-authenticity: if a user sends her password to a smart card and receives a success code as response, then the card is her own one and the response must have been originally sent by that card. This property ensures that the protocol enables smart cards to authenticate themselves to their cardholders, viz. provides an internal authentication service (cf. [4]).

Remarkably, none of these theorems turns out to require the secrecy of the PACE authentication key as an assumption, so that all of them are valid independently of whether this key is secret or not.

The main technical difficulties arising from this formal development are the following ones.

- Data such as private keys for Diffie-Hellman key agreement and session keys do not necessarily occur as components of exchanged messages, viz. they may be computed by some agent without being ever sent to any other agent. In this case, whichever protocol trace evs is given, any such key x will not be contained in either set analz (spies evs) or used evs, so that statements such as $x \in$ analz (spies evs) or $x \in$ used evs will be vacuously false. Thus, some way must be found to formalize a state of affairs where x is known by the spy or has already been used in some protocol run.
- As private keys for Diffie-Hellman key agreement do not necessarily occur as components of exchanged messages, some way must be found to record the private keys that each agent has either generated or accepted from some other agent (possibly implicitly, in the form of the corresponding public keys) in each protocol run.
- The public keys for Diffie-Hellman key agreement being used are comprised of the elements of a cryptographic cyclic group of prime order n, and the private keys are the elements of the finite field comprised of the integers from 0 to $n-1$ (cf. [3], [1]). Hence, the operations defined in these algebraic structures, as well as the generation of public keys from known private keys, correspond to additional ways in which the spy can generate fake messages starting from known ones. A possible option to reflect this in the formal model would be to extend the inductive definition of set synth H with rules enabling to obtain new Diffie-Hellman private and public keys from those contained in set H, but the result would be an overly complex definition. Thus, an alternative formalization ought to be found.

These difficulties are solved by extending the Inductive Method, with respect to the form specified in [10], as follows.

- The protocol is no longer defined as a set of event lists, but rather as a set of 4-tuples (evs, S, A, U) where evs is an event list, S is the current protocol state - viz. a function that maps each agent to the private keys for Diffie-Hellman key agreement generated or accepted in each protocol run,$- A$ is the set of the Diffie-Hellman private keys and session keys currently known by the spy, and U is the set of the Diffie-Hellman private keys and session keys which have already been used in some protocol run.
In this way, the first two difficulties are solved. Particularly, the full
set of the messages currently known by the spy can be formalized as the set analz $(A \cup$ spies evs $)$.
- The inductive definition of the protocol does not contain a single fake rule any longer, but rather one fake rule for each protocol step. Each fake rule is denoted by adding letter " F " to the identifier of the corresponding protocol step, e.g. the fake rules associated to steps C 2 and R5 are given the names $F C 2$ and $F R 5$, respectively.
In this way, the third difficulty is solved, too. In fact, for each protocol step, the related fake rule extends the spy's capabilities to generate fake messages with the operations on known Diffie-Hellman private and public keys relevant for that step, which makes an augmentation of set synth H with such operations unnecessary.

Throughout this paper, the salient points of definitions and proofs are commented; for additional information, cf. Isabelle documentation, particularly [9], [8], [7], and [6].
Paulson's Inductive Method is described in [10], and further information is provided in [9] as a case study. The formal developments described in [10] and [9] are included in the Isabelle distribution.
Additional information on the involved cryptography can be found in [3] and [1].

1.2 Propaedeutic definitions

First of all, the data types of encryption/signature keys, Diffie-Hellman private keys, and Diffie-Hellman public keys are defined. Following [9], encryption/signature keys are identified with natural numbers, whereas DiffieHellman private keys and public keys are represented as rational and integer numbers in order to model the algebraic structures that they form (a field and a group, respectively; cf. above).
type-synonym $k e y=n a t$
type-synonym pri-agrk $=$ rat
type-synonym pub-agrk $=$ int

Agents are comprised of an infinite quantity of users and smart cards, plus the Certification Authority (CA) signing public key $P K_{I C}$. For each n, User n is the cardholder of smart card Card n.
datatype agent $=C A \mid$ Card nat \mid User nat

In addition to the kinds of messages considered in [10], the data type of messages comprises also users' passwords, Diffie-Hellman private and public keys, and Chip Authentication Data. Particularly, for each n, Passwd n is the password of User n, accepted as being the correct one by Card n.

```
datatype msg=
    Agent agent |
    Number nat |
    Nonce nat |
    Key key |
    Hash msg|
    Passwd nat |
    Pri-AgrK pri-agrk |
    Pub-AgrK pub-agrk |
    Auth-Data pri-agrk pri-agrk |
    Crypt key msg |
    MPair msg msg
syntax
    -MTuple :: ['a, args] 缶'a*'b ((2{-,/ -}))
translations
    {x,y,z} \rightleftharpoons{{x,{y,z}}}
    {x,y} \rightleftharpoons CONST MPair x y
```

As regards data type event, constructor Says is extended with three additional parameters of type nat, respectively identifying the communication channel, the protocol run, and the protocol step (ranging from 1 to 5) in which the message is exchanged. Communication channels are associated to smart cards, so that if a user receives an encrypted nonce s on channel n, she will answer by sending her ephemeral public key $P K_{M a p, P C D}$ for generator mapping to smart card Card n.
datatype event $=$ Says nat nat nat agent agent msg

The record data type session is used to store the Diffie-Hellman private keys that each agent has generated or accepted in each protocol run. In more detail:

- Field NonceS is deputed to contain the nonce s, if any, having been generated internally (in the case of a smart card) or accepted from the external world (in the case of a user).
- Field IntMapK is deputed to contain the ephemeral private key for generator mapping, if any, having been generated internally.
- Field ExtMapK is deputed to contain the ephemeral private key for generator mapping, if any, having been implicitly accepted from the external world in the form of the corresponding public key.
- Field IntAgrK is deputed to contain the ephemeral private key for key agreement, if any, having been generated internally.
- Field ExtAgrK is deputed to contain the ephemeral private key for key agreement, if any, having been implicitly accepted from the external world in the form of the corresponding public key.

```
record session =
    NonceS :: pri-agrk option
    IntMapK :: pri-agrk option
    ExtMapK :: pri-agrk option
    IntAgrK :: pri-agrk option
    ExtAgrK :: pri-agrk option
```

Then, the data type of protocol states is defined as the type of the functions that map any 3 -tuple (X, n, run), where X is an agent, n identifies a communication channel, and run identifies a protocol run taking place on that communication channel, to a record of type session.
type-synonym state $=$ agent \times nat \times nat \Rightarrow session

Set bad collects the numerical identifiers of the PACE authentication keys known by the spy, viz. for each $n, n \in b a d$ just in case the spy knows the PACE authentication key shared by agents User n and Card n.
consts bad :: nat set

Function invK maps each encryption/signature key to the corresponding inverse key, matching the original key just in case it is symmetric.
consts invK :: key \Rightarrow key

Function agrK maps each Diffie-Hellman private key x to the corresponding public key $[x] G$, where G is the static cryptographic group generator being used.
consts agrK :: pri-agrk \Rightarrow pub-agrk

Function sesK maps each Diffie-Hellman private key x to the session key resulting from shared secret $[x] G$, where G is the static cryptographic group generator being used.
consts sesK :: pri-agrk \Rightarrow key

Function symK maps each natural number n to the PACE authentication key shared by agents User n and Card n.
consts symK :: nat \Rightarrow key

Function priAK maps each natural number n to the static Diffie-Hellman private key $S K_{I C}$ assigned to smart card Card n for Chip Authentication.
consts priAK :: nat \Rightarrow pri-agrk

Function priSK maps each agent to her own private key for digital signature generation, even if the only such key being actually significant for the model is the Certification Authority's one, i.e. priSK CA.
consts priSK :: agent \Rightarrow key

The spy is modeled as a user, specifically the one identified by number 0 , i.e. User 0 . In this way, in addition to the peculiar privilege of being able to generate fake messages, the spy is endowed with the capability of performing any operation that a generic user can do.
abbreviation Spy :: agent where
Spy \equiv User 0

Functions pubAK and pubSK are abbreviations useful to make the formal development more readable. The former function maps each Diffie-Hellman private key x to the message comprised of the corresponding public key agrK x, whereas the latter maps each agent to the corresponding public key for digital signature verification.
abbreviation pubAK :: pri-agrk $\Rightarrow m s g$ where
pubAK $a \equiv \operatorname{Pub}-A g r K(a g r K a)$
abbreviation pubSK :: agent \Rightarrow key where
pubSK $X \equiv \operatorname{invK}(p r i S K X)$

Function start- S represents the initial protocol state, i.e. the one in which no ephemeral Diffie-Hellman private key has been generated or accepted by any agent yet.
abbreviation start- S :: state where start-S $\equiv \lambda x$. (NonceS $=$ None, IntMapK $=$ None, ExtMapK $=$ None, IntAgrK $=$ None, ExtAgrK $=$ None)

Set start- A is comprised of the messages initially known by the spy, namely:

- her own password as a user,
- the compromised PACE authentication keys,
- the public keys for digital signature verification, and
- the static Diffie-Hellman public keys assigned to smart cards for Chip Authentication.
abbreviation start- A :: msg set where
start- $A \equiv$ insert (Passwd 0) (Key'symK 'bad \cup Key ' range pubSK \cup pubAK' range priAK)

Set start- U is comprised of the messages which have already been used before the execution of the protocol starts, namely:

- all users' passwords,
- all PACE authentication keys,
- the private and public keys for digital signature generation/verification, and
- the static Diffie-Hellman private and public keys assigned to smart cards for Chip Authentication.

```
abbreviation start- \(U\) :: msg set where
start- \(U \equiv\) range Passwd \(\cup\) Key' range symK \(\cup\) Key'range priSK \(\cup\) Key'range
pubSK \(\cup\)
    Pri-AgrK' range priAK \(\cup\) pubAK' range priAK
```

As in [10], function spies models the set of the messages that the spy can see in a protocol trace. However, it is no longer necessary to identify spies [] with the initial knowledge of the spy, since her current knowledge in correspondence with protocol state (evs, S, A, U) is represented as set analz (A \cup spies evs), where start- $A \subseteq A$. Therefore, this formal development defines spies [] as the empty set.

```
fun spies :: event list \(\Rightarrow\) msg set where
spies [] \(=\{ \} \mid\)
spies (Says ijkABX \# evs) \(=\) insert \(X\) (spies evs)
```

Here below is the specification of the axioms about the constants defined previously which are used in the formal proofs. A model of the constants satisfying the axioms is also provided in order to ensure the consistency of the formal development. In more detail:

1. Axiom agrK-inj states that function agrK is injective, and formalizes the fact that distinct Diffie-Hellman private keys generate distinct public keys.
Since the former keys are represented as rational numbers and the latter as integer numbers (cf. above), a model of function agrK satisfying the axiom is built by means of the injective function inv nat-to-rat-surj provided by the Isabelle distribution, which maps rational numbers to natural numbers.
2. Axiom sesK-inj states that function ses K is injective, and formalizes the fact that the key derivation function specified in [3] for deriving session keys from shared secrets makes use of robust hash functions, so that collisions are negligible.
Since Diffie-Hellman private keys are represented as rational numbers and encryption/signature keys as natural numbers (cf. above), a model of function ses K satisfying the axiom is built by means of the injective function inv nat-to-rat-surj, too.
3. Axiom priSK-pubSK formalizes the fact that every private key for signature generation is distinct from whichever public key for signature verification. For example, in the case of the RSA algorithm, small fixed
values are typically used as public exponents to make signature verification more efficient, whereas the corresponding private exponents are of the same order of magnitude as the modulus.
4. Axiom priSK-symK formalizes the fact that private keys for signature generation are distinct from PACE authentication keys, which is obviously true since the former keys are asymmetric whereas the latter are symmetric.
5. Axiom pubSK-symK formalizes the fact that public keys for signature verification are distinct from PACE authentication keys, which is obviously true since the former keys are asymmetric whereas the latter are symmetric.
6. Axiom invK-sesK formalizes the fact that session keys are symmetric.
7. Axiom invK-symK formalizes the fact that PACE authentication keys are symmetric.
8. Axiom symK-bad states that set bad is closed with respect to the identity of PACE authentication keys, viz. if a compromised user has the same PACE authentication key as another user, then the latter user is compromised as well.

It is worth remarking that there is no axiom stating that distinct PACE authentication keys are assigned to distinct users. As a result, the formal development does not depend on the enforcement of this condition.

```
specification (bad invK agrK sesK symK priSK)
agrK-inj: inj agrK
sesK-inj: inj sesK
priSK-pubSK: priSK X \not= pubSK X'
priSK-symK: priSK X = symK n
pubSK-symK: pubSK X = symK n
invK-sesK: invK (sesK a) = sesK a
invK-symK: invK (symK n) = symK n
symK-bad: }\quadm\inbad\Longrightarrow\mathrm{ symK }n=symK m\Longrightarrown\inba
apply (rule-tac x = {} in exI)
apply (rule-tac x = \lambdan. if even n then n else Suc n in exI)
apply (rule-tac x = \lambdax. int (inv nat-to-rat-surj x) in exI)
apply (rule-tac x = \lambdax. 2 * inv nat-to-rat-surj x in exI)
apply (rule-tac x = \lambdan. 0 in exI)
apply (rule-tac x = \lambdaX. Suc 0 in exI)
proof (simp add: inj-on-def,(rule allI)+, rule impI)
    fix x y
    have surj nat-to-rat-surj
        by (rule surj-nat-to-rat-surj)
```

```
    hence inj (inv nat-to-rat-surj)
    by (rule surj-imp-inj-inv)
    moreover assume inv nat-to-rat-surj \(x=\) inv nat-to-rat-surj \(y\)
    ultimately show \(x=y\)
    by (rule injD)
qed
```

Here below are the inductive definitions of sets parts, analz, and synth. With respect to the definitions given in the protocol library included in the Isabelle distribution, those of parts and analz are extended with rules extracting Diffie-Hellman private keys from Chip Authentication Data, whereas the definition of synth contains a further rule that models the inverse operation, i.e. the construction of Chip Authentication Data starting from private keys. Particularly, the additional analz rules formalize the fact that, for any two private keys x and y, if $x \times y \bmod n$ and x are known, where n is the group order, then y can be obtained by computing $x \times y \times x^{-1} \bmod n$, and similarly, x can be obtained if y is known.
An additional set, named items, is also defined inductively in what follows. This set is a hybrid of parts and analz, as it shares with parts the rule applying to cryptograms and with analz the rules applying to Chip Authentication Data. Since the former rule is less strict than the corresponding one in the definition of analz, it turns out that analz $H \subseteq$ items H for any message set H. As a result, for any message $X, X \notin$ items $(A \cup$ spies evs $)$ implies $X \notin$ analz $(A \cup$ spies evs $)$. Therefore, set items is useful to prove the secrecy of the Diffie-Hellman private keys utilized to compute Chip Authentication Data without bothering with case distinctions concerning the secrecy of encryption keys, as would happen if set analz were directly employed instead.

```
inductive-set parts :: msg set \(\Rightarrow\) msg set for \(H\) :: msg set where
Inj: \(\quad X \in H \Longrightarrow X \in\) parts \(H \mid\)
Fst: \(\quad\{X, Y\} \in\) parts \(H \Longrightarrow X \in\) parts \(H \mid\)
Snd: \(\quad\{X, Y\} \in\) parts \(H \Longrightarrow Y \in\) parts \(H \mid\)
Body: \(\quad\) Crypt \(K X \in\) parts \(H \Longrightarrow X \in\) parts \(H \mid\)
Auth-Fst: Auth-Data \(x y \in\) parts \(H \Longrightarrow\) Pri-AgrK \(x \in\) parts \(H \mid\)
Auth-Snd: Auth-Data \(x y \in\) parts \(H \Longrightarrow\) Pri-AgrK \(y \in\) parts \(H\)
inductive-set items \(:: m s g\) set \(\Rightarrow m s g\) set for \(H:: m s g\) set where
Inj: \(\quad X \in H \Longrightarrow X \in\) items \(H \mid\)
Fst: \(\quad\{X, Y\} \in\) items \(H \Longrightarrow X \in\) items \(H \mid\)
Snd: \(\quad\{X, Y\} \in\) items \(H \Longrightarrow Y \in\) items \(H \mid\)
Body: \(\quad\) Crypt \(K X \in\) items \(H \Longrightarrow X \in\) items \(H \mid\)
Auth-Fst: \(\llbracket\) Auth-Data \(x y \in\) items \(H ;\) Pri-AgrK \(y \in\) items \(H \rrbracket \Longrightarrow \operatorname{Pri-AgrK~} x \in\)
items \(H \mid\)
Auth-Snd: \(\llbracket\) Auth-Data \(x y \in\) items \(H ;\) Pri-AgrK \(x \in\) items \(H \rrbracket \Longrightarrow\) Pri-AgrK \(y \in\)
items \(H\)
```

inductive-set analz :: msg set \Rightarrow msg set for H :: msg set where
Inj: $\quad X \in H \Longrightarrow X \in$ analz $H \mid$
Fst: $\quad\{X, Y\} \in$ analz $H \Longrightarrow X \in$ analz $H \mid$
Snd: $\quad\{X, Y\} \in$ analz $H \Longrightarrow Y \in$ analz H
Decrypt: \llbracket Crypt $K X \in \operatorname{analz} H ;$ Key $($ invK $K) \in \operatorname{analz} H \rrbracket \Longrightarrow X \in \operatorname{analz} H \mid$
Auth-Fst: 【Auth-Data $x y \in$ analz H; Pri-AgrK $y \in$ analz $H \rrbracket \Longrightarrow \operatorname{Pri}$-AgrK $x \in$ analz $H \mid$
Auth-Snd: \llbracket Auth-Data $x y \in$ analz $H ; \operatorname{Pri}-A g r K x \in$ analz $H \rrbracket \Longrightarrow \operatorname{Pri-AgrK} y \in$ analz H
inductive-set synth :: msg set \Rightarrow msg set for H :: msg set where
Inj: $\quad X \in H \Longrightarrow X \in$ synth $H \mid$
Agent: Agent $X \in$ synth $H \mid$
Number: Number $n \in$ synth $H \mid$
Hash: $\quad X \in$ synth $H \Longrightarrow$ Hash $X \in$ synth $H \mid$
MPair: $\llbracket X \in$ synth $H ; Y \in$ synth $H \rrbracket \Longrightarrow\{X, Y\} \in$ synth $H \mid$
Crypt: $\quad \llbracket X \in$ synth $H ;$ Key $K \in H \rrbracket \Longrightarrow$ Crypt $K X \in$ synth $H \mid$
Auth: $\quad \llbracket$ Pri-AgrK $x \in H ;$ Pri-AgrK $y \in H \rrbracket \Longrightarrow$ Auth-Data $x y \in$ synth H

1.3 Propaedeutic lemmas

This section contains the lemmas about sets parts, items, analz, and synth required for protocol verification. Since their proofs mainly consist of initial rule inductions followed by sequences of rule applications and simplifications, apply-style is used.

```
lemma set-spies [rule-format]:
    Says ijkABX\in set evs \longrightarrowX spies evs
apply (induction evs rule: spies.induct)
    apply simp-all
done
lemma parts-subset:
    H\subseteq parts H
by (rule subsetI, rule parts.Inj)
lemma parts-idem:
    parts (parts H) = parts H
apply (rule equalityI)
apply (rule subsetI)
apply (erule parts.induct)
            apply assumption
            apply (erule parts.Fst)
            apply (erule parts.Snd)
    apply (erule parts.Body)
apply (erule parts.Auth-Fst)
apply (erule parts.Auth-Snd)
```

```
apply (rule parts-subset)
done
lemma parts-simp:
    H\subseteq range Agent U
        range Number U
        range Nonce U
    range Key U
    range Hash \cup
    range Passwd \cup
    range Pri-AgrK \cup
    range Pub-AgrK \Longrightarrow
    parts H=H
apply (rule equalityI [OF - parts-subset])
apply (rule subsetI)
apply (erule parts.induct)
    apply blast+
done
lemma parts-mono:
    G\subseteqH\Longrightarrow parts G\subseteq parts H
apply (rule subsetI)
apply (erule parts.induct)
    apply (drule subsetD)
        apply assumption
        apply (erule parts.Inj)
        apply (erule parts.Fst)
        apply (erule parts.Snd)
    apply (erule parts.Body)
    apply (erule parts.Auth-Fst)
apply (erule parts.Auth-Snd)
done
lemma parts-insert:
    insert X (parts H)\subseteq parts (insert X H)
apply (rule subsetI)
apply simp
apply (erule disjE)
    apply simp
    apply (rule parts.Inj)
    apply simp
apply (erule rev-subsetD)
apply (rule parts-mono)
apply blast
done
lemma parts-simp-insert:
    X range Agent U
        range Number U
```

```
    range Nonce U
    range Key U
    range Hash \cup
    range Passwd \cup
    range Pri-AgrK \cup
    range Pub-AgrK \Longrightarrow
    parts (insert X H)= insert X (parts H)
apply (rule equalityI [OF - parts-insert])
apply (rule subsetI)
apply (erule parts.induct)
    apply simp-all
    apply (rotate-tac [!])
    apply (erule disjE)
    apply simp
    apply (rule disjI2)
    apply (erule parts.Inj)
    apply (erule disjE)
    apply blast
    apply (rule disjI2)
    apply (erule parts.Fst)
    apply (erule disjE)
    apply blast
    apply (rule disjI2)
    apply (erule parts.Snd)
apply (erule disjE)
    apply blast
    apply (rule disjI2)
    apply (erule parts.Body)
apply (erule disjE)
    apply blast
apply (rule disjI2)
apply (erule parts.Auth-Fst)
apply (erule disjE)
apply blast
apply (rule disjI2)
apply (erule parts.Auth-Snd)
done
lemma parts-auth-data-1:
parts (insert (Auth-Data x y)H)\subseteq
    {Pri-AgrK x, Pri-AgrK y, Auth-Data x y} \cup parts H
apply (rule subsetI)
apply (erule parts.induct)
    apply simp-all
    apply (erule disjE)
    apply simp
    apply (rule-tac [1-4] disjI2)+
    apply (erule parts.Inj)
    apply (erule parts.Fst)
```

```
    apply (erule parts.Snd)
    apply (erule parts.Body)
    apply (erule disjE)
    apply simp
    apply (rule disjI2)+
    apply (erule parts.Auth-Fst)
apply (erule disjE)
    apply simp
apply (rule disjI2)+
apply (erule parts.Auth-Snd)
done
lemma parts-auth-data-2:
    {Pri-AgrK x, Pri-AgrK y, Auth-Data x y} \cup parts H\subseteq
        parts (insert (Auth-Data x y) H)
apply (rule subsetI)
apply simp
apply (erule disjE)
    apply simp
    apply (rule parts.Auth-Fst [of - y])
    apply (rule parts.Inj)
    apply simp
apply (erule disjE)
    apply simp
    apply (rule parts.Auth-Snd [of x])
    apply (rule parts.Inj)
    apply simp
apply (erule disjE)
    apply simp
    apply (rule parts.Inj)
    apply simp
apply (erule rev-subsetD)
apply (rule parts-mono)
apply blast
done
lemma parts-auth-data:
    parts (insert (Auth-Data x y) H)=
    {Pri-AgrK x, Pri-AgrK y, Auth-Data x y} \cup parts H
by (rule equalityI, rule parts-auth-data-1, rule parts-auth-data-2)
lemma parts-crypt-1:
    parts (insert (Crypt K X)H)\subseteq insert (Crypt K X) (parts (insert X H))
apply (rule subsetI)
apply (erule parts.induct)
    apply simp-all
    apply (erule disjE)
    apply simp
    apply (rule-tac [1-3] disjI2)
```

```
        apply (rule parts.Inj)
        apply simp
        apply (erule parts.Fst)
        apply (erule parts.Snd)
        apply (erule disjE)
        apply simp
        apply (rule parts.Inj)
        apply simp
        apply (rule disjI2)
        apply (erule parts.Body)
        apply (erule parts.Auth-Fst)
apply (erule parts.Auth-Snd)
done
lemma parts-crypt-2:
    insert (Crypt K X) (parts (insert X H))\subseteq parts (insert (Crypt K X)H)
apply (rule subsetI)
apply simp
apply (erule disjE)
    apply simp
    apply (rule parts.Inj)
    apply simp
apply (subst parts-idem [symmetric])
apply (erule rev-subsetD)
apply (rule parts-mono)
apply (rule subsetI)
apply simp
apply (erule disjE)
    apply simp
    apply (rule parts.Body [of K])
    apply (rule parts.Inj)
    apply simp
apply (rule parts.Inj)
apply simp
done
lemma parts-crypt:
    parts (insert (Crypt K X)H)= insert (Crypt K X) (parts (insert X H))
by (rule equalityI, rule parts-crypt-1, rule parts-crypt-2)
lemma parts-mpair-1:
    parts (insert {X,Y} H)\subseteq insert {XX,Y}(parts ({X,Y}\cupH))
apply (rule subsetI)
apply (erule parts.induct)
    apply simp-all
    apply (erule disjE)
    apply simp
    apply (rule-tac [1-4] disjI2)
    apply (rule parts.Inj)
```

```
        apply simp
        apply (erule disjE)
        apply simp
        apply (rule parts.Inj)
        apply simp
        apply (erule parts.Fst)
        apply (erule disjE)
        apply simp
        apply (rule parts.Inj)
        apply simp
        apply (erule parts.Snd)
    apply (erule parts.Body)
    apply (erule parts.Auth-Fst)
apply (erule parts.Auth-Snd)
done
lemma parts-mpair-2:
    insert {XX,Y}(parts ({X,Y}\cupH))\subseteq parts (insert {X,Y}H)
apply (rule subsetI)
apply simp
apply (erule disjE)
    apply (rule parts.Inj)
    apply simp
apply (subst parts-idem [symmetric])
apply (erule rev-subsetD)
apply (rule parts-mono)
apply (rule subsetI)
apply simp
apply (erule disjE)
    apply simp
    apply (rule parts.Fst [of - Y])
    apply (rule parts.Inj)
    apply simp
apply (erule disjE)
    apply simp
    apply (rule parts.Snd [of X])
    apply (rule parts.Inj)
    apply simp
apply (rule parts.Inj)
apply simp
done
lemma parts-mpair:
    parts (insert {X,Y} H)= insert {XX,Y}(parts ({X,Y}\cupH))
by (rule equalityI, rule parts-mpair-1, rule parts-mpair-2)
lemma items-subset:
    H\subseteq items H
by (rule subsetI, rule items.Inj)
```

```
lemma items-idem:
    items (items H) = items H
apply (rule equalityI)
apply (rule subsetI)
apply (erule items.induct)
        apply assumption
        apply (erule items.Fst)
        apply (erule items.Snd)
        apply (erule items.Body)
    apply (erule items.Auth-Fst)
    apply assumption
    apply (erule items.Auth-Snd)
    apply assumption
    apply (rule items-subset)
done
lemma items-parts-subset:
    items H}\subseteq\mathrm{ parts H
apply (rule subsetI)
apply (erule items.induct)
    apply (erule parts.Inj)
        apply (erule parts.Fst)
        apply (erule parts.Snd)
    apply (erule parts.Body)
    apply (erule parts.Auth-Fst)
apply (erule parts.Auth-Snd)
done
lemma items-simp:
    H\subseteq range Agent U
        range Number U
        range Nonce U
        range Key U
        range Hash \cup
        range Passwd \cup
        range Pri-AgrK \cup
        range Pub-AgrK \Longrightarrow
    items H=H
apply (rule equalityI)
    apply (subst (3) parts-simp [symmetric])
    apply assumption
    apply (rule items-parts-subset)
apply (rule items-subset)
done
lemma items-mono:
    G\subseteqH\Longrightarrow items G\subseteq items H
apply (rule subsetI)
```

```
apply (erule items.induct)
        apply (drule subsetD)
        apply assumption
        apply (erule items.Inj)
        apply (erule items.Fst)
    apply (erule items.Snd)
    apply (erule items.Body)
    apply (erule items.Auth-Fst)
    apply assumption
apply (erule items.Auth-Snd)
apply assumption
done
lemma items-insert:
    insert X (items H)\subseteq items (insert X H)
apply (rule subsetI)
apply simp
apply (erule disjE)
    apply simp
    apply (rule items.Inj)
    apply simp
apply (erule rev-subsetD)
apply (rule items-mono)
apply blast
done
lemma items-simp-insert-1:
    X\in items H\Longrightarrow items(insert X H)= items H
apply (rule equalityI)
    apply (rule subsetI)
    apply (erule items.induct [of - insert X H])
        apply simp
        apply (erule disjE)
        apply simp
        apply (erule items.Inj)
        apply (erule items.Fst)
        apply (erule items.Snd)
        apply (erule items.Body)
    apply (erule items.Auth-Fst)
    apply assumption
    apply (erule items.Auth-Snd)
    apply assumption
apply (rule items-mono)
apply blast
done
lemma items-simp-insert-2:
    X range Agent U
        range Number U
```

```
    range Nonce U
    range Key U
    range Hash \cup
    range Passwd \cup
    range Pub-AgrK \Longrightarrow
    items (insert X H) = insert X (items H)
apply (rule equalityI [OF - items-insert])
apply (rule subsetI)
apply (erule items.induct)
    apply simp-all
    apply (rotate-tac [!])
    apply (erule disjE)
    apply simp
    apply (rule disjI2)
    apply (erule items.Inj)
    apply (erule disjE)
    apply blast
    apply (rule disjI2)
    apply (erule items.Fst)
    apply (erule disjE)
    apply blast
    apply (rule disjI2)
    apply (erule items.Snd)
apply (erule disjE)
    apply blast
    apply (rule disjI2)
    apply (erule items.Body)
apply (erule disjE)
    apply blast
apply (erule disjE)
    apply blast
    apply (rule disjI2)
    apply (erule items.Auth-Fst)
    apply assumption
apply (erule disjE)
    apply blast
apply (erule disjE)
apply blast
apply (rule disjI2)
apply (erule items.Auth-Snd)
apply assumption
done
lemma items-pri-agrk-out:
Pri-AgrK x & parts H \Longrightarrow
    items (insert (Pri-AgrK x) H)= insert (Pri-AgrK x) (items H)
apply (rule equalityI [OF - items-insert])
apply (rule subsetI)
apply (erule items.induct)
```

```
        apply simp-all
        apply (erule disjE)
        apply simp
        apply (rule-tac [1-4] disjI2)
        apply (erule items.Inj)
        apply (erule items.Fst)
        apply (erule items.Snd)
        apply (erule items.Body)
        apply (erule disjE)
        apply simp
        apply (drule subsetD [OF items-parts-subset [of H]])
        apply (drule parts.Auth-Snd)
        apply simp
        apply (rule disjI2)
        apply (erule items.Auth-Fst)
        apply assumption
apply (erule disjE)
    apply simp
    apply (drule subsetD [OF items-parts-subset [of H]])
    apply (drule parts.Auth-Fst)
    apply simp
apply (rule disjI2)
apply (erule items.Auth-Snd)
apply assumption
done
lemma items-auth-data-in-1:
    items (insert (Auth-Data x y) H)\subseteq
    insert (Auth-Data x y) (items ({Pri-AgrK x, Pri-AgrK y}\cupH))
apply (rule subsetI)
apply (erule items.induct)
    apply simp-all
    apply (erule disjE)
    apply simp
    apply (rule-tac [1-4] disjI2)
    apply (rule items.Inj)
    apply simp
    apply (erule items.Fst)
    apply (erule items.Snd)
    apply (erule items.Body)
apply (erule disjE)
    apply simp
    apply (rule items.Inj)
    apply simp
    apply (erule items.Auth-Fst)
    apply assumption
apply (erule disjE)
apply simp
apply (rule items.Inj)
```

```
apply simp
apply (erule items.Auth-Snd)
apply assumption
done
lemma items-auth-data-in-2:
    Pri-AgrK x items H \vee Pri-AgrK y items H\Longrightarrow
    insert (Auth-Data x y) (items ({Pri-AgrK x, Pri-AgrK y}\cupH))\subseteq
        items (insert (Auth-Data x y) H)
apply (rule subsetI)
apply simp
apply rotate-tac
apply (erule disjE)
    apply (rule items.Inj)
    apply simp
apply (subst items-idem [symmetric])
apply (erule rev-subsetD)
apply (rule items-mono)
apply (rule subsetI)
apply simp
apply rotate-tac
apply (erule disjE)
apply simp
apply (erule disjE)
    apply (erule rev-subsetD)
    apply (rule items-mono)
    apply blast
apply (rule items.Auth-Fst [of - y])
    apply (rule items.Inj)
    apply simp
    apply (erule rev-subsetD)
    apply (rule items-mono)
    apply blast
apply rotate-tac
apply (erule disjE)
apply simp
apply (erule disjE)
    apply (rule items.Auth-Snd [of x])
    apply (rule items.Inj)
    apply simp
    apply (erule rev-subsetD)
    apply (rule items-mono)
    apply blast
    apply (erule rev-subsetD)
    apply (rule items-mono)
    apply blast
apply (rule items.Inj)
apply simp
done
```


lemma items-auth-data-in:

```
    Pri-AgrK \(x \in\) items \(H \vee\) Pri-AgrK \(y \in\) items \(H \Longrightarrow\)
    items (insert (Auth-Data x y) H) =
        insert (Auth-Data x y) (items (\{Pri-AgrK x, Pri-AgrK y\} \(\cup H)\) )
```

by (rule equalityI, rule items-auth-data-in-1, rule items-auth-data-in-2)
lemma items-auth-data-out:
\llbracket Pri-AgrK $x \notin$ items H; Pri-AgrK $y \notin$ items $H \rrbracket \Longrightarrow$
items (insert (Auth-Data x y) H) = insert (Auth-Data x y) (items H)
apply (rule equalityI [OF - items-insert])
apply (rule subsetI)
apply (erule items.induct)
apply simp-all
apply (erule disjE)
apply simp
apply (rule-tac [1-4] disjI2)
apply (erule items.Inj)
apply (erule items.Fst)
apply (erule items.Snd)
apply (erule items.Body)
apply (erule disjE)
apply simp
apply (erule items.Auth-Fst)
apply assumption
apply (erule disjE)
apply simp
apply (erule items.Auth-Snd)
apply assumption
done
lemma items-crypt-1:
items (insert $($ Crypt $K X) H) \subseteq$ insert $($ Crypt K X) $($ items $($ insert X H))
apply (rule subsetI)
apply (erule items.induct)
apply simp-all
apply (erule disjE)
apply simp
apply (rule-tac [1-4] disjI2)
apply (rule items.Inj)
apply simp
apply (erule items.Fst)
apply (erule items.Snd)
apply (erule disjE)
apply simp
apply (rule items.Inj)
apply simp
apply (erule items.Body)
apply (erule items.Auth-Fst)

```
apply assumption
apply (erule items.Auth-Snd)
apply assumption
done
lemma items-crypt-2:
    insert (Crypt K X) (items (insert X H))\subseteqitems (insert (Crypt K X)H)
apply (rule subsetI)
apply simp
apply (erule disjE)
    apply simp
    apply (rule items.Inj)
    apply simp
apply (erule items.induct)
        apply simp
        apply (erule disjE)
        apply simp
        apply (rule items.Body [of K])
        apply (rule items.Inj)
        apply simp
        apply (rule items.Inj)
        apply simp
        apply (erule items.Fst)
        apply (erule items.Snd)
    apply (erule items.Body)
    apply (erule items.Auth-Fst)
    apply assumption
apply (erule items.Auth-Snd)
apply assumption
done
lemma items-crypt:
    items (insert (Crypt K X)H)= insert (Crypt K X) (items (insert X H))
by (rule equalityI, rule items-crypt-1, rule items-crypt-2)
lemma items-mpair-1:
    items (insert {X,Y} H)\subseteq insert {XX,Y} (items ({X,Y}\cupH))
apply (rule subsetI)
apply (erule items.induct)
    apply simp-all
    apply (erule disjE)
    apply simp
    apply (rule-tac [1-4] disjI2)
    apply (rule items.Inj)
    apply simp
    apply (erule disjE)
    apply simp
    apply (rule items.Inj)
    apply simp
```

```
    apply (erule items.Fst)
    apply (erule disjE)
    apply simp
    apply (rule items.Inj)
    apply simp
    apply (erule items.Snd)
    apply (erule items.Body)
apply (erule items.Auth-Fst)
apply assumption
apply (erule items.Auth-Snd)
apply assumption
done
lemma items-mpair-2:
    insert {X,Y}(items ({X,Y}\cupH))\subseteq items(insert {XX,Y}H)
apply (rule subsetI)
apply simp
apply (erule disjE)
    apply (rule items.Inj)
    apply simp
apply (erule items.induct)
    apply simp
    apply (erule disjE)
    apply simp
    apply (rule items.Fst [of - Y])
    apply (rule items.Inj)
    apply simp
    apply (erule disjE)
    apply simp
    apply (rule items.Snd [of X])
    apply (rule items.Inj)
    apply simp
    apply (rule items.Inj)
    apply simp
    apply (erule items.Fst)
    apply (erule items.Snd)
    apply (erule items.Body)
    apply (erule items.Auth-Fst)
    apply assumption
apply (erule items.Auth-Snd)
apply assumption
done
lemma items-mpair:
    items (insert {X,Y}H)= insert {X,Y}(items ({X,Y}\cupH))
by (rule equalityI, rule items-mpair-1, rule items-mpair-2)
lemma analz-subset:
    H\subseteqanalz H
```

```
by (rule subsetI, rule analz.Inj)
lemma analz-idem:
    analz (analz H) = analz H
apply (rule equalityI)
apply (rule subsetI)
apply (erule analz.induct)
    apply assumption
    apply (erule analz.Fst)
    apply (erule analz.Snd)
    apply (erule analz.Decrypt)
    apply assumption
    apply (erule analz.Auth-Fst)
    apply assumption
apply (erule analz.Auth-Snd)
apply assumption
apply (rule analz-subset)
done
lemma analz-parts-subset:
    analz H\subseteq parts H
apply (rule subsetI)
apply (erule analz.induct)
    apply (erule parts.Inj)
    apply (erule parts.Fst)
    apply (erule parts.Snd)
    apply (erule parts.Body)
apply (erule parts.Auth-Fst)
apply (erule parts.Auth-Snd)
done
lemma analz-items-subset:
analz H\subseteq items H
apply (rule subsetI)
apply (erule analz.induct)
    apply (erule items.Inj)
        apply (erule items.Fst)
        apply (erule items.Snd)
    apply (erule items.Body)
apply (erule items.Auth-Fst)
apply assumption
apply (erule items.Auth-Snd)
apply assumption
done
lemma analz-simp:
H\subseteq range Agent }
    range Number U
    range Nonce U
```

```
    range Key U
    range Hash \cup
    range Passwd U
    range Pri-AgrK \cup
    range Pub-AgrK \Longrightarrow
    analz H=H
apply (rule equalityI)
    apply (subst (3) parts-simp [symmetric])
    apply assumption
    apply (rule analz-parts-subset)
apply (rule analz-subset)
done
lemma analz-mono:
    G\subseteqH\Longrightarrow analz G\subseteqanalz H
apply (rule subsetI)
apply (erule analz.induct)
            apply (drule subsetD)
            apply assumption
            apply (erule analz.Inj)
            apply (erule analz.Fst)
            apply (erule analz.Snd)
    apply (erule analz.Decrypt)
    apply assumption
    apply (erule analz.Auth-Fst)
    apply assumption
apply (erule analz.Auth-Snd)
apply assumption
done
lemma analz-insert:
    insert X (analz H)\subseteqanalz (insert X H)
apply (rule subsetI)
apply simp
apply (erule disjE)
    apply simp
    apply (rule analz.Inj)
    apply simp
apply (erule rev-subsetD)
apply (rule analz-mono)
apply blast
done
lemma analz-simp-insert-1:
    X\in analz H\Longrightarrowanalz (insert X H)=analz H
apply (rule equalityI)
    apply (rule subsetI)
    apply (erule analz.induct [of-insert X H])
        apply simp
```

```
        apply (erule disjE)
        apply simp
        apply (erule analz.Inj)
        apply (erule analz.Fst)
        apply (erule analz.Snd)
        apply (erule analz.Decrypt)
        apply assumption
        apply (erule analz.Auth-Fst)
        apply assumption
        apply (erule analz.Auth-Snd)
apply assumption
apply (rule analz-mono)
apply blast
done
lemma analz-simp-insert-2:
X range Agent }
    range Number U
    range Nonce U
    range Hash \cup
    range Passwd \cup
    range Pub-AgrK \Longrightarrow
    analz (insert X H)= insert X (analz H)
apply (rule equalityI [OF - analz-insert])
apply (rule subsetI)
apply (erule analz.induct)
    apply simp-all
    apply (rotate-tac [!])
    apply (erule disjE)
    apply simp
    apply (rule disjI2)
    apply (erule analz.Inj)
    apply (erule disjE)
    apply blast
    apply (rule disjI2)
    apply (erule analz.Fst)
    apply (erule disjE)
    apply blast
    apply (rule disjI2)
    apply (erule analz.Snd)
apply (erule disjE)
    apply blast
    apply (erule disjE)
    apply blast
    apply (rule disjI2)
    apply (erule analz.Decrypt)
    apply assumption
apply (erule disjE)
    apply blast
```

```
apply (erule disjE)
    apply blast
apply (rule disjI2)
apply (erule analz.Auth-Fst)
apply assumption
apply (erule disjE)
apply blast
apply (erule disjE)
apply blast
apply (rule disjI2)
apply (erule analz.Auth-Snd)
apply assumption
done
lemma analz-auth-data-in-1:
analz (insert (Auth-Data x y) H)\subseteq
    insert (Auth-Data x y) (analz ({Pri-AgrK x, Pri-AgrK y} \cupH))
apply (rule subsetI)
apply (erule analz.induct)
    apply simp-all
    apply (erule disjE)
    apply simp
    apply (rule-tac [1-4] disjI2)
    apply (rule analz.Inj)
    apply simp
    apply (erule analz.Fst)
    apply (erule analz.Snd)
    apply (erule analz.Decrypt)
    apply assumption
    apply (erule disjE)
    apply simp
    apply (rule analz.Inj)
    apply simp
    apply (erule analz.Auth-Fst)
    apply assumption
apply (erule disjE)
    apply simp
    apply (rule analz.Inj)
    apply simp
apply (erule analz.Auth-Snd)
apply assumption
done
lemma analz-auth-data-in-2:
    Pri-AgrK x analz H \vee Pri-AgrK y \in analz H\Longrightarrow
    insert (Auth-Data x y) (analz ({Pri-AgrK x,Pri-AgrK y} \cupH))\subseteq
    analz (insert (Auth-Data x y) H)
apply (rule subsetI)
apply simp
```

```
apply rotate-tac
apply (erule disjE)
apply (rule analz.Inj)
apply simp
apply (subst analz-idem [symmetric])
apply (erule rev-subsetD)
apply (rule analz-mono)
apply (rule subsetI)
apply simp
apply rotate-tac
apply (erule disjE)
apply simp
apply (erule disjE)
    apply (erule rev-subsetD)
    apply (rule analz-mono)
    apply blast
apply (rule analz.Auth-Fst [of - y])
    apply (rule analz.Inj)
    apply simp
    apply (erule rev-subsetD)
    apply (rule analz-mono)
    apply blast
apply rotate-tac
apply (erule disjE)
apply simp
apply (erule disjE)
    apply (rule analz.Auth-Snd [of x])
    apply (rule analz.Inj)
    apply simp
    apply (erule rev-subsetD)
    apply (rule analz-mono)
    apply blast
    apply (erule rev-subsetD)
    apply (rule analz-mono)
    apply blast
apply (rule analz.Inj)
apply simp
done
```

lemma analz-auth-data-in:
Pri-AgrK $x \in$ analz $H \vee \operatorname{Pri}-A g r K y \in a n a l z ~ H \Longrightarrow$ analz (insert (Auth-Data x y) H) = insert (Auth-Data x y) (analz (\{Pri-AgrK x, Pri-AgrK y\} $\cup H))$
by (rule equalityI, rule analz-auth-data-in-1, rule analz-auth-data-in-2)
lemma analz-auth-data-out:
$\llbracket P r i-A g r K x \notin$ analz $H ;$ Pri-AgrK $y \notin$ analz $H \rrbracket \Longrightarrow$ analz (insert (Auth-Data x y) H) $=$ insert (Auth-Data x y) (analz H)
apply (rule equalityI [OF - analz-insert $]$)

```
apply (rule subsetI)
apply (erule analz.induct)
    apply simp-all
    apply (erule disjE)
    apply simp
    apply (rule-tac [1-4] disjI2)
    apply (erule analz.Inj)
    apply (erule analz.Fst)
    apply (erule analz.Snd)
    apply (erule analz.Decrypt)
    apply assumption
    apply (erule disjE)
    apply simp
    apply (erule analz.Auth-Fst)
    apply assumption
apply (erule disjE)
    apply simp
apply (erule analz.Auth-Snd)
apply assumption
done
lemma analz-crypt-in-1:
    analz (insert (Crypt KX)H)\subseteqinsert (Crypt K X) (analz (insert X H))
apply (rule subsetI)
apply (erule analz.induct)
    apply simp-all
    apply (erule disjE)
    apply simp
    apply (rule-tac [1-4] disjI2)
    apply (rule analz.Inj)
    apply simp
    apply (erule analz.Fst)
    apply (erule analz.Snd)
    apply (erule disjE)
    apply simp
    apply (rule analz.Inj)
    apply simp
    apply (erule analz.Decrypt)
    apply assumption
apply (erule analz.Auth-Fst)
apply assumption
apply (erule analz.Auth-Snd)
apply assumption
done
lemma analz-crypt-in-2:
    Key (invK K) \in analz H\Longrightarrow
    insert (Crypt KX) (analz (insert X H))\subseteqanalz (insert (Crypt K X)H)
apply (rule subsetI)
```

```
apply simp
apply (erule disjE)
apply simp
apply (rule analz.Inj)
apply simp
apply rotate-tac
apply (erule analz.induct)
    apply simp
    apply (erule disjE)
    apply simp
    apply (rule analz.Decrypt [of K])
        apply (rule analz.Inj)
        apply simp
    apply (erule rev-subsetD)
    apply (rule analz-mono)
    apply blast
    apply (rule analz.Inj)
    apply simp
    apply (erule analz.Fst)
    apply (erule analz.Snd)
    apply (erule analz.Decrypt)
    apply assumption
apply (erule analz.Auth-Fst)
apply assumption
apply (erule analz.Auth-Snd)
apply assumption
done
lemma analz-crypt-in:
    Key (invK K) \in analz H\Longrightarrow
    analz (insert (Crypt K X)H)= insert (Crypt K X) (analz (insert X H))
by (rule equalityI, rule analz-crypt-in-1, rule analz-crypt-in-2)
lemma analz-crypt-out:
    Key (invK K) & analz H\Longrightarrow
    analz (insert (Crypt K X)H)= insert (Crypt K X) (analz H)
apply (rule equalityI [OF - analz-insert])
apply (rule subsetI)
apply (erule analz.induct)
    apply simp-all
    apply (erule disjE)
    apply simp
    apply (rule-tac [1-4] disjI2)
    apply (erule analz.Inj)
    apply (erule analz.Fst)
    apply (erule analz.Snd)
    apply (erule disjE)
    apply simp
    apply (erule analz.Decrypt)
```

```
    apply assumption
    apply (erule analz.Auth-Fst)
    apply assumption
    apply (erule analz.Auth-Snd)
    apply assumption
    done
    lemma analz-mpair-1:
    analz (insert {X,Y} H)\subseteq insert {X,Y} (analz ({X,Y}\cupH))
apply (rule subsetI)
apply (erule analz.induct)
    apply simp-all
    apply (erule disjE)
    apply simp
    apply (rule-tac [1-4] disjI2)
    apply (rule analz.Inj)
    apply simp
    apply (erule disjE)
    apply simp
    apply (rule analz.Inj)
    apply simp
    apply (erule analz.Fst)
    apply (erule disjE)
    apply simp
    apply (rule analz.Inj)
    apply simp
    apply (erule analz.Snd)
    apply (erule analz.Decrypt)
    apply assumption
    apply (erule analz.Auth-Fst)
    apply assumption
apply (erule analz.Auth-Snd)
apply assumption
done
lemma analz-mpair-2:
    insert {X,Y}(analz ({X,Y}\cupH))\subseteqanalz (insert {X,Y} H)
apply (rule subsetI)
apply simp
apply (erule disjE)
    apply (rule analz.Inj)
    apply simp
apply (erule analz.induct)
    apply simp
    apply (erule disjE)
    apply simp
    apply (rule analz.Fst [of - Y])
    apply (rule analz.Inj)
    apply simp
```

```
    apply (erule disjE)
    apply simp
    apply (rule analz.Snd [of X])
    apply (rule analz.Inj)
    apply simp
    apply (rule analz.Inj)
    apply simp
    apply (erule analz.Fst)
    apply (erule analz.Snd)
    apply (erule analz.Decrypt)
    apply assumption
apply (erule analz.Auth-Fst)
apply assumption
apply (erule analz.Auth-Snd)
apply assumption
done
lemma analz-mpair:
    analz (insert {X,Y} H)= insert {X, Y} (analz ({X,Y}\cupH))
by (rule equalityI, rule analz-mpair-1, rule analz-mpair-2)
lemma synth-simp-intro:
    X synth H\Longrightarrow
    X range Nonce U
    range Key U
    range Passwd U
    range Pri-AgrK \cup
    range Pub-AgrK \Longrightarrow
    X\inH
by (erule synth.cases, blast+)
lemma synth-auth-data:
    Auth-Data x y }\in\mathrm{ synth H }
    Auth-Data x y f H\vee Pri-AgrK x 
by (erule synth.cases, simp-all)
lemma synth-crypt:
    Crypt K X synth H\Longrightarrow Crypt K X G H\vee X synth H}\wedge Key K\in
by (erule synth.cases, simp-all)
lemma synth-mpair:
{X,Y}\in synth H\Longrightarrow{X,Y}\inH\veeX synth H}^\Y\in\mathrm{ synth H
by (erule synth.cases, simp-all)
lemma synth-analz-fst:
    {X,Y}\in synth (analz H)\LongrightarrowX\in\operatorname{synth}(\mathrm{ analz H)}
proof (drule-tac synth-mpair, erule-tac disjE)
qed (drule analz.Fst, erule synth.Inj, erule conjE)
```

```
lemma synth-analz-snd:
    {X,Y}\in synth (analz H)\LongrightarrowY\in\operatorname{synth}(analz H)
proof (drule-tac synth-mpair, erule-tac disjE)
qed (drule analz.Snd, erule synth.Inj, erule conjE)
end
```


2 Protocol modeling and verification

theory Protocol
imports Propaedeutics
begin

2.1 Protocol modeling

The protocol under consideration can be formalized by means of the following inductive definition.
inductive-set protocol :: (event list \times state $\times \mathrm{msg}$ set $\times \mathrm{msg}$ set) set where
Nil: ([], start-S, start-A, start- U) \in protocol \mid
R1: $\llbracket(e v s R 1, S, A, U) \in$ protocol; Pri-AgrK $s \notin U ; s \neq 0$;
NonceS $(S$ (Card n, n, run $))=$ None】
$\Longrightarrow($ Says n run 1 (Card $n)($ User $m)($ Crypt (symK $n)($ Pri-AgrK $s))$ \# evsR1, $S(($ Card n, n, run $):=S($ Card n, n, run) $\$ Nonce $S:=$ Some $s))$,
if $n \in$ bad then insert (Pri-AgrK s) A else A, insert (Pri-AgrK s) U) \in protocol \mid

FR1: $\llbracket(e v s F R 1, S, A, U) \in$ protocol $;$ User $m \neq S p y ; s \neq 0$;
Crypt $($ symK $m)($ Pri-AgrK $s) \in \operatorname{synth}(\operatorname{analz}(A \cup$ spies evsFR1) $) \rrbracket$
$\Longrightarrow(S a y s$ n run 1 Spy (User $m)($ Crypt $($ symK $m)($ Pri-AgrK s $)) \#$ evsFR1, $S, A, U) \in$ protocol \mid

C2: $\llbracket(e v s C 2, S, A, U) \in$ protocol; Pri-AgrK a $\notin U$;
NonceS $(S($ User m, n, run $))=$ None;
Says n run $1 X($ User $m)\left(\right.$ Crypt $\left(\right.$ symK $\left.n^{\prime}\right)($ Pri-AgrK $\left.s)\right) \in$ set evsC2;
$s^{\prime}=\left(\right.$ if symK $n^{\prime}=$ symK m then s else 0) \rrbracket
\Longrightarrow (Says n run 2 (User m) (Card n) (pubAK a) \# evsC2,
$S(($ User m, n, run $):=S$ (User m, n, run $)$
(NonceS $:=$ Some s^{\prime}, IntMapK $:=$ Some a $)$),
if User $m=$ Spy then insert (Pri-AgrK a) A else A,
insert (Pri-AgrK a) U) \in protocol \mid
FC2: $\llbracket($ evsFC2, $S, A, U) \in$ protocol;
Pri-AgrK $a \in \operatorname{analz}(A \cup$ spies evsFC2)』
\Longrightarrow (Says n run 2 Spy (Card n) (pubAK a) \# evsFC2, $S, A, U) \in$ protocol \mid

R2: $\llbracket($ evsR2, $S, A, U) \in$ protocol; Pri-AgrK $b \notin U$;
NonceS $(S$ (Card n, n, run $)) \neq$ None;
IntMapK $(S($ Card n, n, run $))=$ None;
Says n run $2 X($ Card $n)($ pubAK a) \in set evsR2】
\Longrightarrow (Says n run 2 (Card n) $X($ pubAK b) \# evsR2,
$S(($ Card n, n, run $):=S($ Card n, n, run $)$
(IntMapK $:=$ Some b, ExtMapK $:=$ Some a)),
A, insert (Pri-AgrK b) U) \in protocol \mid
FR2: $\llbracket(e v s F R 2, S, A, U) \in$ protocol; User $m \neq S p y$;
Pri-AgrK $b \in \operatorname{analz}(A \cup$ spies evsFR2)】
\Longrightarrow (Says n run 2 Spy (User m) (pubAK b) \# evsFR2, $S, A, U) \in$ protocol \mid

C3: $\llbracket(e v s C 3, S, A, U) \in$ protocol; Pri-AgrK c $\notin U$;
NonceS $(S($ User m, n, run $))=$ Some s;
$\operatorname{IntMapK}(S($ User m, n, run $))=$ Some a;
ExtMapK $(S($ User m, n, run $))=$ None;
Says n run $2 X($ User $m)($ pubAK b) \in set evsC3;
$c *(s+a * b) \neq 0 \rrbracket$
$\Longrightarrow($ Says n run 3 (User $m)($ Card $n)($ pubAK $(c *(s+a * b))) \#$ evsC3,
$S(($ User m, n, run $):=S$ (User m, n, run $)$
(ExtMapK $:=$ Some b, IntAgrK $:=$ Some c $)$),
if User $m=$ Spy then insert (Pri-AgrK c) A else A, insert $($ Pri-AgrK c) $U) \in$ protocol \mid

FC3: $\llbracket(e v s F C 3, S, A, U) \in$ protocol;
NonceS $(S($ Card n, n, run $))=$ Some s;
IntMapK $(S$ (Card n, n, run $))=$ Some $b ;$
ExtMapK $(S($ Card n, n, run $))=$ Some a;
$\{$ Pri-AgrK s, Pri-AgrK a, Pri-AgrK $c\} \subseteq \operatorname{analz}(A \cup$ spies evsFC3 $) \rrbracket$
$\Longrightarrow($ Says n run 3 Spy $($ Card $n)(p u b A K(c *(s+a * b))) \#$ evsFC3, $S, A, U) \in$ protocol \mid

R3: $\llbracket(e v s R 3, S, A, U) \in$ protocol; Pri-AgrK $d \notin U$;
NonceS $(S($ Card n, n, run $))=$ Some s;
IntMapK $(S($ Card n, n, run $))=$ Some b;
ExtMapK $(S($ Card n, n, run $))=$ Some a;
IntAgrK $(S($ Card n, n, run $))=$ None;
Says n run $3 X($ Card $n)\left(\right.$ pubAK $\left.\left(c *\left(s^{\prime}+a * b\right)\right)\right) \in$ set evsR3;
Key $\left(\operatorname{ses} K\left(c * d *\left(s^{\prime}+a * b\right)\right)\right) \notin U$;
Key $(\operatorname{sesK}(c * d *(s+a * b))) \notin U$;
$d *(s+a * b) \neq 0 \rrbracket$
$\Longrightarrow($ Says n run $3($ Card $n) X($ pubAK $(d *(s+a * b))) \#$ evsR3,
$S(($ Card n, n, run $):=S($ Card n, n, run $)$
(IntAgrK $:=$ Some d, ExtAgrK $:=$ Some $\left(c *\left(s^{\prime}+a * b\right)\right)$)), if $s^{\prime}=s \wedge$ Pri-AgrK $c \in \operatorname{analz}(A \cup$ spies evsR3 $)$
then insert $($ Key $(\operatorname{sesK}(c * d *(s+a * b)))) A$ else A,

```
    {Pri-AgrK d,
    Key (sesK (c*d*(s' +a*b))), Key (sesK (c*d*(s+a*b))),
    {Key (sesK (c*d*(s+a*b))), Agent X, Number n, Number run}}}
U) \in protocol |
FR3: \llbracket(evsFR3, S,A,U)\in protocol; User m = Spy;
    NonceS (S (User m, n, run)) = Some s;
    IntMapK (S (User m, n, run)) = Some a;
    ExtMapK (S (User m, n, run)) = Some b;
    IntAgrK (S (User m, n, run)) = Some c;
    {Pri-AgrK s, Pri-AgrK b, Pri-AgrK d} \subseteqanalz (A\cup spies evsFR3);
    Key (sesK (c*d*(s+a*b))) &U\rrbracket
    \Longrightarrow ( S a y s ~ n ~ r u n ~ 3 ~ S p y ~ ( U s e r ~ m ) ~ ( p u b A K ~ ( d * ~ ( s + a * b ) ) ) ~ \# ~ e v s F R 3 , S ,
    insert (Key (sesK (c*d*(s+a*b)))) A,
    {Key (sesK (c*d*(s+a*b))),
    {Key (sesK (c*d*(s+a*b))), Agent (User m), Number n, Number
run}}}\cupU)\in\operatorname{protocol }
C4: \llbracket(evsC4, S, A,U)\in protocol;
    IntAgrK (S (User m, n, run)) = Some c;
    ExtAgrK (S (User m, n, run)) = None;
    Says n run 3 X (User m) (pubAK f) \in set evsC4;
    {Key (sesK (c*f)), Agent (User m), Number n, Number run} \inU\rrbracket
\Longrightarrow(Says n run 4 (User m) (Card n) (Crypt (sesK (c*f)) (pubAKf)) # evsC4,
    S((User m, n, run) :=S (User m, n, run) \ExtAgrK := Some f ) ),
    A,U)\in protocol |
FC4: \llbracket(evsFC4,S,A,U)\in protocol;
    NonceS (S (Card n, n, run)) = Some s;
    IntMapK (S (Card n, n, run)) = Some b;
    ExtMapK (S (Card n, n, run)) = Some a;
    IntAgrK (S (Card n, n, run)) = Some d;
    ExtAgrK (S (Card n, n, run)) = Some e;
    Crypt (sesK (d*e)) (pubAK (d*(s+a*b)))
        synth (analz ( }A\cup\mathrm{ spies evsFC4))】
    (Says n run 4 Spy (Card n)
    (Crypt (sesK (d*e)) (pubAK (d*(s+a*b)))) # evsFC4,
    S,A,U) \in protocol |
R4: \llbracket(evsR4, S,A,U)\in protocol;
    NonceS (S (Card n, n, run)) = Some s;
    IntMapK (S (Card n, n, run)) = Some b;
    ExtMapK (S (Card n, n, run)) = Some a;
    IntAgrK (S (Card n, n, run)) = Some d;
    ExtAgrK (S (Card n, n, run)) = Some e;
    Says n run 4 X (Card n)(Crypt (sesK (d*e))
        (pubAK (d* (s+a*b)))) \in set evsR4]
    \Longrightarrow(Says n run 4 (Card n) X (Crypt (sesK (d*e))
    {pubAK e, Auth-Data (priAK n) b, pubAK (priAK n),
```

Crypt（priSK CA）（Hash（pubAK（priAK n）））\}) \# evsR4, $S, A, U) \in$ protocol \mid

```
FR4: \llbracket(evsFR4,S,A,U)\in protocol; User m = Spy;
    NonceS (S (User m, n, run)) = Some s;
    IntMapK (S (User m, n, run)) = Some a;
    ExtMapK (S (User m, n, run)) = Some b;
    IntAgrK (S (User m, n, run)) = Some c;
    ExtAgrK (S (User m, n, run)) = Some f;
    Crypt (sesK (c*f))
        {pubAK (c*(s+a*b)), Auth-Data g b, pubAK g,
    Crypt (priSK CA) (Hash (pubAK g))} { synth (analz (A \cup spies evsFR4))】
    \Longrightarrow(Says n run 4 Spy (User m) (Crypt (sesK (c*f))
    {pubAK (c*(s+a*b)), Auth-Data g b, pubAKg,
        Crypt (priSK CA) (Hash (pubAK g))}) # evsFR4,
    S,A,U) \in protocol |
```

C5: $\llbracket($ evsC5 $, S, A, U) \in$ protocol;
NonceS $(S($ User m, n, run)) $=$ Some s;
$\operatorname{IntMapK}(S($ User m, n, run $))=$ Some $a ;$
ExtMapK $(S($ User m, n, run $))=$ Some b;
$\operatorname{IntAgrK}(S($ User m, n, run $))=$ Some c;
ExtAgrK $(S($ User m, n, run $))=$ Some $f ;$
Says n run $4 X($ User $m)($ Crypt $(\operatorname{sesK}(c * f))$
$\{p u b A K(c *(s+a * b))$, Auth-Data g b, pubAK g,
Crypt $($ priSK CA) $($ Hash $($ pubAK g)) \}) $) \in$ set evsC5】
$\Longrightarrow(S a y s ~ n$ run 5 (User m) (Card $n)($ Crypt $(\operatorname{sesK}(c * f))($ Passwd $m))$ \#
evs C5,
$S, A, U) \in$ protocol \mid
FC5: $\llbracket(e v s F C 5, S, A, U) \in$ protocol;
$\operatorname{IntAgrK}(S($ Card n, n, run $))=$ Some d;
ExtAgrK $(S($ Card n, n, run $))=$ Some e
Crypt $(\operatorname{sesK}(d * e))($ Passwd $n) \in \operatorname{synth}(\operatorname{analz}(A \cup$ spies evsFC5 $)) \rrbracket$
$\Longrightarrow($ Says n run 5 Spy (Card $n)($ Crypt $(\operatorname{sesK}(d * e))($ Passwd $n)) \#$ evsFC5,
$S, A, U) \in$ protocol \mid
R5: $\llbracket(e v s R 5, S, A, U) \in$ protocol;
IntAgrK $(S($ Card n, n, run $))=$ Some d;
ExtAgrK $(S($ Card n, n, run $))=$ Some e;
Says n run $5 X($ Card $n)($ Crypt $($ sesK $(d * e))($ Passwd $n)) \in$ set evsR5】
$\Longrightarrow($ Says n run $5($ Card $n) X($ Crypt $(\operatorname{sesK}(d * e))($ Number 0$)) \#$ evsR5,
$S, A, U) \in$ protocol \mid
FR5: $\llbracket(e v s F R 5, S, A, U) \in$ protocol $;$ User $m \neq S p y ;$
IntAgrK $(S($ User m, n, run $))=$ Some c;
ExtAgrK $(S($ User m, n, run $))=$ Some $f ;$
Crypt $(\operatorname{sesK}(c * f))($ Number 0$) \in \operatorname{synth}(\operatorname{analz}(A \cup$ spies evsFR5 $)) 】$
$\Longrightarrow(S a y s n$ run 5 Spy (User $m)($ Crypt $(\operatorname{sesK}(c * f))($ Number 0)) \# evsFR5,

$$
S, A, U) \in \text { protocol }
$$

Here below are some comments about the most significant points of this definition.

- Rules R1 and FR1 constrain the values of nonce s to be different from 0 . In this way, the state of affairs where an incorrect PACE authentication key has been used to encrypt nonce s, so that a wrong value results from the decryption, can be modeled in rule $C 2$ by identifying such value with 0 .
- The spy can disclose session keys as soon as they are established, namely in correspondence with rules R3 and FR3.
In the former rule, condition $s^{\prime}=s$ identifies Diffie-Hellman private key c as the terminal's ephemeral private key for key agreement, and then $[c \times d \times(s+a \times b)] G$ as the terminal's value of the shared secret, which the spy can compute by multiplying the card's ephemeral public key $[d \times(s+a \times b)] G$ by c provided she knows c.
In the latter rule, the spy is required to know private keys s, b, and d to be able to compute and send public key $[d \times(s+a \times b)] G$. This is the only way to share with User m the same shared secret's value $[c \times d \times(s+a \times b)] G$, which the spy can compute by multiplying the user's ephemeral public key $[c \times(s+a \times b)] G$ by d.
- Rules R3 and FR3 record the user, the communication channel, and the protocol run associated to the session key having been established by adding this information to the set of the messages already used. In this way, rule $C 4$ can specify that the session key computed by User m is fresh by assuming that a corresponding record be included in set U. In fact, a simple check that the session key be not included in U would vacuously fail, as session keys are added to the set of the messages already used in rules $R 3$ and $F R 3$.

2.2 Secrecy theorems

This section contains a series of lemmas culminating in the secrecy theorems pr-key-secrecy and pr-passwd-secrecy. Structured Isar proofs are used, possibly preceded by apply-style scripts in case a substantial amount of backward reasoning steps is required at the beginning.

```
lemma pr-state:
(evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
    \((\) NonceS \((S(X, n\), run \())=\) None \(\longrightarrow \operatorname{IntMapK}(S(X, n\), run \())=\) None \() \wedge\)
```

```
    \((\operatorname{IntMapK}(S(X, n\), run \())=\) None \(\longrightarrow \operatorname{ExtMapK}(S(X, n\), run \())=\) None \() \wedge\)
    \((\) ExtMapK \((S(X, n\), run \())=\) None \(\longrightarrow \operatorname{IntAgrK}(S(X, n\), run \())=\) None \() \wedge\)
    \((\operatorname{IntAgrK}(S(X, n\), run \())=\) None \(\longrightarrow \operatorname{ExtAgrK}(S(X, n\), run \())=\) None \()\)
proof (erule protocol.induct, simp-all)
qed (rule-tac [!] impI, simp-all)
```

lemma p-state-1:
$\llbracket($ evs $, S, A, U) \in \operatorname{protocol} ; \operatorname{Nonce} S(S(X, n$, run $))=$ None \rrbracket
IntMapK $(S(X, n$, run $))=$ None
by (simp add: pr-state)
lemma pr-state-2:
$\llbracket($ evs, $S, A, U) \in$ protocol; IntMapK $(S(X, n$, run $))=$ None』 \Longrightarrow
ExtMapK $(S(X, n$, run $))=$ None
by (simp add: pr-state)
lemma pr-state-3:
$\llbracket($ evs $, S, A, U) \in$ protocol; ExtMapK $(S(X, n$, run $))=$ None \Longrightarrow
$\operatorname{IntAgrK}(S(X, n$, run $))=$ None
by (simp add: pr-state)
lemma pr-state-4:
$\llbracket(e v s, S, A, U) \in$ protocol; $\operatorname{IntAgrK}(S(X, n$, run $))=$ None \rrbracket
ExtAgrK $(S(X, n$, run $))=$ None
by (simp add: pr-state)
lemma pr-analz-used:
(evs, $S, A, U) \in$ protocol $\Longrightarrow A \subseteq U$
by (erule protocol.induct, auto)
lemma pr-key-parts-intro [rule-format]:
(evs, $S, A, U) \in$ protocol \Longrightarrow
Key $K \in$ parts $(A \cup$ spies evs $) \longrightarrow$
Key $K \in A$
proof (erule protocol.induct, subst parts-simp, simp, blast, simp)
qed (simp-all add: parts-simp-insert parts-auth-data parts-crypt parts-mpair)
lemma pr-key-analz:
$($ evs $, S, A, U) \in$ protocol $\Longrightarrow($ Key $K \in \operatorname{analz}(A \cup$ spies evs $))=($ Key $K \in A)$
proof (rule iffI, drule subsetD [OF analz-parts-subset], erule pr-key-parts-intro, assumption)
qed (rule subsetD [OF analz-subset], simp)
lemma pr-symk-used:
$($ evs $, S, A, U) \in$ protocol \Longrightarrow Key $($ symK $n) \in U$
by (erule protocol.induct, simp-all)
lemma pr-symk-analz:
$($ evs $, S, A, U) \in \operatorname{protocol} \Longrightarrow($ Key $(\operatorname{symK} n) \in \operatorname{analz}(A \cup$ spies evs $))=(n \in$
bad)
proof (simp add: pr-key-analz, erule protocol.induct, simp-all, rule-tac [2] impI, rule-tac [!] iffI, simp-all, erule disjE, erule-tac [2-4] disjE, simp-all)
assume Key $(\operatorname{symK} n) \in$ Key 'symK'bad
hence $\exists m \in$ bad. symK $n=$ symK m
by (simp add: image-iff)
then obtain m where $m \in b a d$ and $s y m K n=s y m K m$..
thus $n \in b a d$
by (rule symK-bad)
next
assume Key $(\operatorname{sym} K n) \in$ Key' range pubSK
thus $n \in b a d$
by (auto, drule-tac sym, erule-tac notE [OF pubSK-symK])
next
assume Key $($ symK $n) \in$ pubAK'range priAK
thus $n \in b a d$
by blast
next
fix evsR3 $S A U s a b c d$
assume (evsR3, $S, A, U) \in$ protocol
hence Key $(\operatorname{sym} K n) \in U$
by (rule pr-symk-used)
moreover assume symK $n=\operatorname{sesK}(c * d *(s+a * b))$
ultimately have Key $(\operatorname{ses} K(c * d *(s+a * b))) \in U$
by simp
moreover assume Key $(\operatorname{ses} K(c * d *(s+a * b))) \notin U$
ultimately show $n \in b a d$
by contradiction
next
fix evsFR3 $S A U s a b c d$
assume (evsFR3, $S, A, U) \in$ protocol
hence Key $(\operatorname{sym} K n) \in U$
by (rule pr-symk-used)
moreover assume symK $n=\operatorname{sesK}(c * d *(s+a * b))$
ultimately have Key $(\operatorname{sesK}(c * d *(s+a * b))) \in U$
by simp
moreover assume Key $(\operatorname{ses} K(c * d *(s+a * b))) \notin U$
ultimately show $n \in b a d$
by contradiction
qed
lemma pr-sesk-card [rule-format]:
(evs, $S, A, U) \in$ protocol \Longrightarrow
IntAgrK $(S($ Card n, n, run $))=$ Some $d \longrightarrow$
ExtAgrK $(S($ Card n, n, run $))=$ Some $e \longrightarrow$
$K e y(\operatorname{sesK}(d * e)) \in U$
proof (erule protocol.induct, simp-all, (rule impI)+, simp)
qed (subst (2) mult.commute, subst mult.assoc, simp)

```
lemma pr-sesk-user-1 [rule-format]:
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
        IntAgrK \((S(\) User \(m, n\), run \())=\) Some \(c \longrightarrow\)
    ExtAgrK \((S(\) User \(m, n\), run \())=\) Some \(f \longrightarrow\)
    \(\{\) Key \((\operatorname{sesK}(c * f))\), Agent (User m), Number n, Number run \(\} \in U\)
proof (erule protocol.induct, simp-all, (rule-tac [!] impI)+, simp-all)
    fix evsC3 \(S\) A \(U\) m n run
    assume \(A\) : \((\) evs \(C 3, S, A, U) \in\) protocol and
        ExtMapK \((S(\) User \(m, n\), run \())=\) None
    hence IntAgrK \((S\) (User \(m, n\), run \())=\) None
    by (rule pr-state-3)
    with \(A\) have ExtAgrK \((S\) (User m, n, run \())=\) None
    by (rule pr-state-4)
    moreover assume ExtAgrK (S (User m, n, run)) = Some f
    ultimately show \(\{\) Key \((\operatorname{sesK}(c * f))\), Agent (User m), Number n, Number run \}
\(\in U\)
    by \(\operatorname{simp}\)
qed
lemma pr-sesk-user-2 [rule-format]:
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
        \(\{\) Key (sesK K), Agent (User m), Number n, Number run\} \(\in U \longrightarrow\)
    Key \((\operatorname{ses} K K) \in U\)
by (erule protocol.induct, blast, simp-all)
lemma pr-auth-key-used:
    \((\) evs \(, S, A, U) \in\) protocol \(\Longrightarrow \operatorname{Pri-AgrK}(\) priAK \(n) \in U\)
by (erule protocol.induct, simp-all)
lemma pr-int-mapk-used [rule-format]:
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
        IntMapK \((S(\) Card \(n, n\), run \())=\) Some \(b \longrightarrow\)
    Pri-AgrK \(b \in U\)
by (erule protocol.induct, simp-all)
lemma pr-valid-key-analz:
    \((\) evs \(, S, A, U) \in\) protocol \(\Longrightarrow\) Key \((\) pubSK \(X) \in \operatorname{analz}(A \cup\) spies evs \()\)
by (simp add: pr-key-analz, erule protocol.induct, simp-all)
lemma pr-pri-agrk-parts [rule-format]:
(evs, \(S, A, U) \in\) protocol \(\Longrightarrow\) Pri-AgrK \(x \notin U \longrightarrow\)
Pri-AgrK \(x \notin\) parts \((A \cup\) spies evs \()\)
proof (induction arbitrary: x rule: protocol.induct,
simp-all add: parts-simp-insert parts-auth-data parts-crypt parts-mpair, subst parts-simp, blast, blast, rule-tac [!] impI)
fix evsFR1 \(A U m s x\)
assume
\[
\bigwedge x . \text { Pri-AgrK } x \notin U \longrightarrow \text { Pri-AgrK } x \notin \text { parts }(A \cup \text { spies evsFR1 }) \text { and }
\]
```

```
    Pri-AgrK x }\not=
    hence A: Pri-AgrK x & parts ( }A\cup\mathrm{ spies evsFR1) ..
    assume B:Crypt (symK m) (Pri-AgrK s) \in synth (analz (A\cup spies evsFR1))
    show }x\not=
    proof
    assume x = s
    hence Crypt (symK m) (Pri-AgrK x) \in synth (analz ( }A\cup\mathrm{ spies evsFR1))
    using B by simp
    hence Crypt (symK m) (Pri-AgrK x) \in analz ( }A\cup\mathrm{ spies evsFR1) V
        Pri-AgrK x synth (analz ( }A\cup\mathrm{ spies evsFR1)) ^
        Key (symK m) \in analz (A\cup spies evsFR1)
        (is ?P \vee ?Q)
    by (rule synth-crypt)
    moreover {
        assume ?P
        hence Crypt (symK m) (Pri-AgrK x) \in parts ( }A\cup\mathrm{ spies evsFR1)
        by (rule subsetD [OF analz-parts-subset])
        hence Pri-AgrK x parts ( }A\cup\mathrm{ spies evsFR1)
        by (rule parts.Body)
        hence False
        using A by contradiction
    }
    moreover {
        assume ?Q
        hence Pri-AgrK x 的nth (analz ( }A\cup\mathrm{ spies evsFR1)) ..
        hence Pri-AgrK x analz ( }A\cup\mathrm{ spies evsFR1)
        by (rule synth-simp-intro, simp)
        hence Pri-AgrK x f parts ( }A\cup\mathrm{ spies evsFR1)
        by (rule subsetD [OF analz-parts-subset])
        hence False
        using A by contradiction
    }
    ultimately show False ..
qed
next
    fix evsR4 S A U b n run x
    assume
    A:(evsR4,S,A,U)\in protocol and
    B:IntMapK (S (Card n, n, run)) = Some b and
    C: Pri-AgrK x &U
show x\not= priAK n ^x\not=b
proof (rule conjI, rule-tac [!] notI)
    assume x = priAK n
    moreover have Pri-AgrK (priAK n) \inU
    using A by (rule pr-auth-key-used)
    ultimately have Pri-AgrK x 
    by simp
    thus False
    using C by contradiction
```

```
    next
    assume }x=
    moreover have Pri-AgrK b\inU
        using A and B by (rule pr-int-mapk-used)
    ultimately have Pri-AgrK x \inU
        by simp
    thus False
        using C by contradiction
    qed
next
    fix evsFR4 S A Us a b cfgx
    assume
        A: \x. Pri-AgrK x &U\longrightarrowPri-AgrK x # parts ( }A\cup\mathrm{ spies evsFR4) and
        B:(evsFR4,S,A,U)\in protocol and
        C:Crypt (sesK (c*f))
            {pubAK (c*(s+a*b)), Auth-Data g b, pubAKg,
            Crypt (priSK CA) (Hash (pubAK g))} \in synth (analz (A \cup spies evsFR4))
            (is Crypt - ?M \in synth (analz ?A)) and
        D: Pri-AgrK x }\not\in
show }x\not=g\wedgex\not=
proof -
    have E: Pri-AgrK b\inU^ Pri-AgrK g}\in
    proof -
    have Crypt (sesK (c*f)) ?M \in analz ?A \vee
            ?M \in synth (analz ?A) ^ Key (sesK (c*f)) \in analz ?A
            using C by (rule synth-crypt)
            moreover {
            assume Crypt (sesK (c*f)) ?M \in analz ?A
            hence Crypt (sesK (c*f)) ?M \in parts ?A
            by (rule subsetD [OF analz-parts-subset])
            hence ?M \in parts ?A
            by (rule parts.Body)
            hence {Auth-Data g b, pubAK g, Crypt (priSK CA) (Hash (pubAK g))}
                    farts?A
            by (rule parts.Snd)
            hence F:Auth-Data g b f parts ?A
            by (rule parts.Fst)
            hence Pri-AgrK b \in parts ?A
            by (rule parts.Auth-Snd)
            moreover have Pri-AgrK g \in parts ?A
            using F by (rule parts.Auth-Fst)
            ultimately have Pri-AgrK b f parts ?A ^ Pri-AgrK g \in parts ?A ..
    }
    moreover {
            assume ?M }\in\mathrm{ synth (analz ?A) ^
                Key (sesK (c*f)) \in analz?A
            hence ?M \in synth (analz ?A) ..
            hence {Auth-Data g b, pubAK g, Crypt (priSK CA) (Hash (pubAK g))}
                synth (analz ?A)
```

```
    by (rule synth-analz-snd)
    hence Auth-Data g b synth (analz ?A)
    by (rule synth-analz-fst)
    hence Auth-Data g b G analz ?A \vee
        Pri-AgrK g \in analz ?A ^ Pri-AgrK b \in analz ?A
        by (rule synth-auth-data)
    moreover {
        assume Auth-Data g b analz ?A
        hence F: Auth-Data g b f parts ?A
        by (rule subsetD [OF analz-parts-subset])
        hence Pri-AgrK b \in parts ?A
        by (rule parts.Auth-Snd)
        moreover have Pri-AgrK g\in parts ?A
        using F by (rule parts.Auth-Fst)
        ultimately have Pri-AgrK b \in parts ?A ^ Pri-AgrK g f parts ?A ..
    }
    moreover {
        assume F: Pri-AgrK g \in analz ?A ^Pri-AgrK b \in analz ?A
        hence Pri-AgrK b G analz ?A ..
        hence Pri-AgrK b E parts ?A
        by (rule subsetD [OF analz-parts-subset])
        moreover have Pri-AgrK g\in analz ?A
        using F ..
        hence Pri-AgrK g parts ?A
        by (rule subsetD [OF analz-parts-subset])
        ultimately have Pri-AgrK b f parts ?A }\wedge\mathrm{ Pri-AgrK g f parts ?A ..
    }
    ultimately have Pri-AgrK b \in parts ?A ^ Pri-AgrK g \in parts ?A ..
}
ultimately have F: Pri-AgrK b \in parts ?A ^ Pri-AgrK g f parts ?A ..
hence Pri-AgrK b \in parts ?A ..
hence Pri-AgrK b\inU
    by (rule contrapos-pp, insert A, simp)
moreover have Pri-AgrK g \in parts ?A
    using F ..
    hence Pri-AgrK g}\in
    by (rule contrapos-pp, insert A, simp)
    ultimately show ?thesis ..
qed
show ?thesis
proof (rule conjI, rule-tac [!] notI)
    assume x=g
    hence Pri-AgrK x 
    using E by simp
thus False
    using D by contradiction
next
    assume }x=
    hence Pri-AgrK x }\in
```

```
        using E by simp
        thus False
        using D by contradiction
    qed
    qed
qed
```

lemma pr-pri-agrk-items:
(evs, $S, A, U) \in$ protocol \Longrightarrow
Pri-AgrK $x \notin U \Longrightarrow$
items $($ insert $($ Pri-AgrK $x)(A \cup$ spies evs $))=$
insert (Pri-AgrK $x)($ items $(A \cup$ spies evs $))$
by (rule items-pri-agrk-out, rule pr-pri-agrk-parts)
lemma pr-auth-data-items:
(evs, $S, A, U) \in$ protocol \Longrightarrow
Pri-AgrK $($ priAK $n) \notin$ items $(A \cup$ spies evs $) \wedge$
$($ IntMapK $(S($ Card n, n, run $))=$ Some $b \longrightarrow$
Pri-AgrK $b \notin$ items $(A \cup$ spies evs $))$
proof (induction arbitrary: n run b rule: protocol.induct,
simp-all add: items-simp-insert-2 items-crypt items-mpair pr-pri-agrk-items,
subst items-simp, blast+)
fix evsR1 $S A U n^{\prime} r u n^{\prime} s n$ run b
assume
A: $($ evsR1 $, S, A, U) \in$ protocol and
B: Pri-AgrK s $\notin U$
show
$\left(n=n^{\prime} \wedge\right.$ run $=r u n^{\prime} \longrightarrow$
priAK $n^{\prime} \neq s \wedge\left(\operatorname{IntMapK}\left(S\left(\right.\right.\right.$ Card n^{\prime}, n^{\prime}, run $\left.)\right)=$ Some $\left.\left.b \longrightarrow b \neq s\right)\right) \wedge$
$\left(\left(n=n^{\prime} \longrightarrow r u n \neq r u n^{\prime}\right) \longrightarrow\right.$
priAK $n \neq s \wedge($ IntMapK $(S($ Card n, n, run $))=$ Some $b \longrightarrow b \neq s))$
proof (rule conjI, rule-tac [!] impI, rule-tac [!] conjI, rule-tac [2] impI,
rule-tac [4] impI, rule-tac [!] notI)
have Pri-AgrK $($ priAK $n) \in U$
using A by (rule pr-auth-key-used)
moreover assume priAK $n=s$
ultimately have Pri-AgrK $s \in U$
by simp
thus False
using B by contradiction
next
assume $\operatorname{IntMapK}(S($ Card n, n, run $))=$ Some b
with A have Pri-AgrK $b \in U$
by (rule pr-int-mapk-used)
moreover assume $b=s$
ultimately have Pri-AgrK $s \in U$
by simp
thus False
using B by contradiction

```
    next
    have Pri-AgrK (priAK n')\inU
        using A by (rule pr-auth-key-used)
    moreover assume priAK n'=s
    ultimately have Pri-AgrK s\inU
        by simp
    thus False
        using B by contradiction
    next
    assume IntMapK (S (Card n', n',run')) = Some b
    with A have Pri-AgrK b\inU
        by (rule pr-int-mapk-used)
    moreover assume b=s
    ultimately have Pri-AgrK s \inU
        by simp
    thus False
        using B by contradiction
    qed
next
fix evsFR1 A m s n run b and S :: state
assume A: \bigwedgen run b. Pri-AgrK (priAK n) #items ( }A\cup\mathrm{ spies evsFR1) ^
    (IntMapK (S (Card n, n, run)) = Some b \longrightarrow
    Pri-AgrK b & items ( }A\cup\mathrm{ spies evsFR1))
assume Crypt (symK m) (Pri-AgrK s) \in synth (analz (A\cup spies evsFR1))
hence Crypt (symK m) (Pri-AgrK s) \in analz ( }A\cup\mathrm{ spies evsFR1) }
    Pri-AgrK s \in synth (analz ( }A\cup\mathrm{ spies evsFR1)) ^
    Key (symK m) \in analz (A\cup spies evsFR1)
    (is ?P \vee?Q)
    by (rule synth-crypt)
moreover {
    assume ?P
    hence Crypt (symK m) (Pri-AgrK s) \in items ( }A\cup\mathrm{ spies evsFR1)
        by (rule subsetD [OF analz-items-subset])
    hence Pri-AgrK s \in items ( }A\cup\mathrm{ spies evsFR1)
        by (rule items.Body)
}
moreover {
    assume ?Q
    hence Pri-AgrK s \in synth (analz ( }A\cup\mathrm{ spies evsFR1)) ..
    hence Pri-AgrK s\in analz ( }A\cup\mathrm{ spies evsFR1)
    by (rule synth-simp-intro, simp)
    hence Pri-AgrK s \in items ( }A\cup\mathrm{ spies evsFR1)
    by (rule subsetD [OF analz-items-subset])
}
ultimately have B: Pri-AgrK s \in items ( }A\cup\mathrm{ spies evsFR1) ..
show Pri-AgrK (priAK n)\not\initems (insert (Pri-AgrK s) (A\cup spies evsFR1)) ^
    (IntMapK (S (Card n, n, run)) = Some b }
    Pri-AgrK b & items (insert (Pri-AgrK s) (A \cup spies evsFR1)))
    by (simp add: items-simp-insert-1 [OF B] A)
```

```
next
    fix evsC2 S A U a n run b and m :: nat
    assume
        A:(evsC2, S, A,U) \in protocol and
        B: Pri-AgrK a &U
    show m=0\longrightarrowpriAK n\not=a\wedge(IntMapK (S (Card n, n, run))=Some b \longrightarrow
b\not=a)
    proof (rule impI, rule conjI, rule-tac [2] impI, rule-tac [!] notI)
        have Pri-AgrK (priAK n)\inU
            using A by (rule pr-auth-key-used)
            moreover assume priAK n=a
            ultimately have Pri-AgrK a 
            by simp
            thus False
            using B by contradiction
    next
            assume IntMapK (S (Card n, n, run)) = Some b
            with A have Pri-AgrK b\inU
            by (rule pr-int-mapk-used)
            moreover assume b=a
            ultimately have Pri-AgrK a 
            by simp
            thus False
            using B by contradiction
    qed
next
    fix evsR2 S A U b' n'run' b and n :: nat and run :: nat
    assume
        A:(evsR2, S,A,U)\in protocol and
        B: Pri-AgrK b
    show n= n'^run=run'\longrightarrow '\longrightarrow}=b\longrightarrowPri-AgrK b\not\initems( A \cup spies evsR2)
    proof ((rule impI)+, drule sym, simp)
    qed (rule contra-subsetD [OF items-parts-subset], rule pr-pri-agrk-parts [OF A
B])
next
    fix evsC3 SA U c n run b and m :: nat
    assume
            A: (evsC3,S,A,U)\in protocol and
            B: Pri-AgrK c \not\inU
    show m=0\longrightarrowpriAK n\not=c^(IntMapK (S (Card n, n, run)) = Some b \longrightarrow
b\not=c)
    proof (rule impI, rule conjI, rule-tac [2] impI, rule-tac [!] notI)
        have Pri-AgrK (priAK n) \inU
            using A by (rule pr-auth-key-used)
            moreover assume priAK n=c
            ultimately have Pri-AgrK c}\in
            by simp
            thus False
            using B by contradiction
```

```
    next
        assume IntMapK (S (Card n, n, run)) = Some b
        with A have Pri-AgrK b\inU
        by (rule pr-int-mapk-used)
    moreover assume b=c
    ultimately have Pri-AgrK cc\inU
    by simp
    thus False
        using }B\mathrm{ by contradiction
    qed
next
    fix evsR3 A n'run's b' c n run b and S :: state and s':: pri-agrk
    assume
    A: \n run b. Pri-AgrK (priAK n)\not\initems (A\cup spies evsR3) ^
                (IntMapK (S (Card n, n, run)) = Some b \longrightarrow
            Pri-AgrK b & items (A\cup spies evsR3)) and
        B:IntMapK (S (Card n', n',run')) = Some b
    show
    (s'=s^Pri-AgrK c\inanalz (A\cup spies evsR3) \longrightarrow
        n= n'^run =run' }\longrightarrow\mp@subsup{b}{}{\prime}=b
        Pri-AgrK b & items ( }A\cup\mathrm{ spies evsR3)) ^
        ((s'=s\longrightarrowPri-AgrK c \not\exists\operatorname{analz (A\cup spies evsR3)) }\longrightarrow
            n= n'^run =run' \longrightarrow}\mp@subsup{b}{}{\prime}=b
        Pri-AgrK b # items (A\cup spies evsR3))
proof (rule conjI, (rule-tac [!] impI)+)
    have Pri-AgrK (priAK n') # items (A\cup spies evsR3) ^
        (IntMapK (S (Card n', n',run')) = Some b' \longrightarrow
            Pri-AgrK b}\mp@subsup{b}{}{\prime}\not\in\mathrm{ items }(A\cup\mathrm{ spies evsR3))
        using A .
    hence Pri-AgrK b}\mp@subsup{b}{}{\prime}\not\in\mathrm{ items ( }A\cup\mathrm{ spies evsR3)
        using B by simp
        moreover assume b
        ultimately show Pri-AgrK b & items ( }A\cup\mathrm{ spies evsR3)
        by simp
    next
    have Pri-AgrK (priAK n') # items ( }A\cup\mathrm{ spies evsR3) ^
                (IntMapK (S (Card n', n',run')) = Some b' }
                Pri-AgrK b}\mp@subsup{b}{}{\prime}\not\in\mathrm{ items (A U spies evsR3))
        using A.
    hence Pri-AgrK b}\mp@subsup{b}{}{\prime}\not\in\mathrm{ items ( }A\cup\mathrm{ spies evsR3)
        using B by simp
    moreover assume b
    ultimately show Pri-AgrK b & items ( }A\cup\mathrm{ spies evsR3)
        by simp
    qed
next
    fix evsR4 A n' run' b' n run b and S :: state
    let ?M = {pubAK (priAK n'), Crypt (priSK CA) (Hash (pubAK (priAK n')))}
    assume
```

```
    A: \n run b. Pri-AgrK (priAK n)\not\in items }(A\cup\mathrm{ spies evsR4)^
        (IntMapK (S (Card n, n, run)) = Some b \longrightarrow
            Pri-AgrK b & items (A\cup spies evsR4)) and
    B:IntMapK (S (Card n', n',run')) = Some b'
show
    Pri-AgrK (priAK n)\not\initems (insert (Auth-Data (priAK n') b')
        (insert ?M (A\cup spies evsR4))) ^
    (IntMapK (S (Card n, n, run)) = Some b \longrightarrow
        Pri-AgrK b & items (insert (Auth-Data (priAK n') b')
            (insert ?M (A\cup spies evsR4))))
proof (subst (1 2) insert-commute, simp add: items-mpair,
    subst (1 3) insert-commute, simp add: items-simp-insert-2,
    subst (1 2) insert-commute, simp add: items-crypt items-simp-insert-2)
    have C: Pri-AgrK (priAK n') & items (A\cup spies evsR4)^
        (IntMapK (S (Card n', n',run')) = Some b' }
            Pri-AgrK b}\mp@subsup{b}{}{\prime}\not\in\mathrm{ items (A U spies evsR4))
    using A.
    hence Pri-AgrK (priAK n')\not\initems ( }A\cup\mathrm{ spies evsR4) ..
    moreover have Pri-AgrK b}\mp@subsup{b}{}{\prime}\not\initems(A\cup spies evsR4
    using B and C by simp
    ultimately show
    Pri-AgrK (priAK n) & items (insert (Auth-Data (priAK n') b')
        (A\cup spies evsR4)) ^
        (IntMapK (S (Card n, n, run)) = Some b \longrightarrow
            Pri-AgrK b & items (insert (Auth-Data (priAK n') b')
                (A\cup spies evsR4)))
    by (simp add: items-auth-data-out A)
    qed
next
    fix evsFR4 A s a b
    let ?M = {pubAK g, Crypt (priSK CA) (Hash (pubAK g))}
    assume
    A: \n run b. Pri-AgrK (priAK n) # items (A\cup spies evsFR4) ^
    (IntMapK (S (Card n, n, run)) = Some b \longrightarrow
            Pri-AgrK b & items ( }A\cup\mathrm{ spies evsFR4)) and
    B:Crypt (sesK (c*f)) {pubAK (c* (s+a* b}))\mathrm{ ), Auth-Data g b}\mp@subsup{}{}{\prime},?M
        synth (analz (A\cup spies evsFR4))
    (is Crypt - ?M' }\in\mathrm{ synth (analz ?A))
    have C: Pri-AgrK b}\mp@subsup{b}{}{\prime}\in\mathrm{ items ?A }\vee\mathrm{ Pri-AgrK g 泣ems ?A }
    Pri-AgrK b}\mp@subsup{}{\prime}{\prime}\in\mathrm{ items ?A ^ Pri-AgrK g }\in\mathrm{ items ?A
    (is ?P\longrightarrow?Q)
proof
    assume ?P
    have Crypt (sesK (c*f))?M'\in analz ?A \vee
        ?M'}\in\operatorname{synth}(\mathrm{ analz ?A) ^ Key (sesK (c*f)) € analz ?A
    using B by (rule synth-crypt)
    moreover {
    assume Crypt (sesK (c*f)) ?M' \in analz ?A
    hence Crypt (sesK (c*f)) ?M'\in items ?A
```

```
    by (rule subsetD [OF analz-items-subset])
    hence ?M' }\mp@subsup{M}{}{\prime
    by (rule items.Body)
    hence {Auth-Data g b', pubAK g, Crypt (priSK CA) (Hash (pubAKg))}
        E items ?A
    by (rule items.Snd)
    hence D:Auth-Data g b}\mp@subsup{b}{}{\prime}\in\mathrm{ items ?A
    by (rule items.Fst)
    have ?Q
    proof (rule disjE [OF〈?P>])
    assume Pri-AgrK b' \in items ?A
    moreover from this have Pri-AgrK g\in items ?A
        by (rule items.Auth-Fst [OF D])
        ultimately show ?Q ..
    next
    assume Pri-AgrK g\in items ?A
    moreover from this have Pri-AgrK b}\mp@subsup{b}{}{\prime}\in\mathrm{ items ?A
        by (rule items.Auth-Snd [OF D])
    ultimately show ?Q
        by simp
    qed
}
moreover {
    assume ?M' }\in\operatorname{synth}(\mathrm{ analz ?A) }\wedge Key (sesK (c*f)) \in analz ?A
    hence ?M' }\in\mathrm{ synth (analz ?A) ..
    hence {Auth-Data g b', pubAK g, Crypt (priSK CA) (Hash (pubAK g))}
        \epsilonsynth (analz ?A)
    by (rule synth-analz-snd)
    hence Auth-Data g b'}\in\mathrm{ synth (analz ?A)
    by (rule synth-analz-fst)
hence Auth-Data g b'\in analz ?A \vee
    Pri-AgrK g \in analz ?A ^ Pri-AgrK b' \in analz ?A
    by (rule synth-auth-data)
moreover {
    assume Auth-Data g b'\inanalz ?A
    hence D:Auth-Data g b}\mp@subsup{b}{}{\prime}\in\mathrm{ items ?A
    by (rule subsetD [OF analz-items-subset])
    have ?Q
    proof (rule disjE [OF<?P>])
    assume Pri-AgrK b}\mp@subsup{b}{}{\prime}\in\mathrm{ items ?A
    moreover from this have Pri-AgrK g\in items?A
        by (rule items.Auth-Fst [OF D])
        ultimately show ?Q ..
    next
        assume Pri-AgrK g\initems ?A
        moreover from this have Pri-AgrK b}\mp@subsup{b}{}{\prime}\in\mathrm{ items ?A
        by (rule items.Auth-Snd [OF D])
        ultimately show ?Q
            by simp
```

```
            qed
        }
        moreover {
            assume D: Pri-AgrK g}\in\mathrm{ analz ?A ^ Pri-AgrK b' }\in\mathrm{ analz ?A
            hence Pri-AgrK b' \in analz ?A ..
            hence Pri-AgrK b' \in items ?A
            by (rule subsetD [OF analz-items-subset])
            moreover have Pri-AgrK g\inanalz ?A
            using D ..
            hence Pri-AgrK g\in items ?A
            by (rule subsetD [OF analz-items-subset])
            ultimately have ?Q ..
    }
    ultimately have ?Q ..
    }
    ultimately show ?Q ..
qed
show
    Pri-AgrK (priAK n)\not\initems (insert (Auth-Data g b')
            (insert ?M (A \cup spies evsFR4))) ^
            (IntMapK (S (Card n, n, run)) = Some b \longrightarrow
            Pri-AgrK b & items (insert (Auth-Data g b')
            (insert ?M (A\cup spies evsFR4))))
proof (subst (1 2) insert-commute, simp add: items-mpair,
    subst (1 3) insert-commute, simp add: items-simp-insert-2,
    subst (1 2) insert-commute, simp add: items-crypt items-simp-insert-2, cases
?P)
    case True
    with C have ?Q ..
    thus
            Pri-AgrK (priAK n)\not\initems (insert (Auth-Data g b')
                (A\cup spies evsFR4)) ^
            (IntMapK (S (Card n, n, run)) = Some b \longrightarrow
                    Pri-AgrK b & items (insert (Auth-Data g b')
                    (A\cup spies evsFR4)))
            by (simp add: items-auth-data-in items-simp-insert-1 A)
next
    case False
    thus
    Pri-AgrK (priAK n)\not\initems (insert (Auth-Data g b}
        (A\cup spies evsFR4)) ^
        (IntMapK (S (Card n, n, run)) = Some b \longrightarrow
            Pri-AgrK b & items (insert (Auth-Data g b')
                (A\cup spies evsFR4)))
        by (simp add: items-auth-data-out A)
    qed
qed
lemma pr-auth-key-analz:
```

```
\((\) evs \(, S, A, U) \in\) protocol \(\Longrightarrow \operatorname{Pri}-A g r K(\) priAK \(n) \notin \operatorname{analz}(A \cup\) spies evs \()\)
```

proof (rule contra-subsetD [OF analz-items-subset], drule pr-auth-data-items)
qed (erule conjE)
lemma pr-int-mapk-analz:
(evs, $S, A, U) \in$ protocol \Longrightarrow
IntMapK $(S($ Card n, n, run $))=$ Some $b \Longrightarrow$
Pri-AgrK $b \notin$ analz $(A \cup$ spies evs $)$
proof (rule contra-subsetD [OF analz-items-subset], drule pr-auth-data-items)
qed (erule conjE, rule $m p$)
lemma pr-key-set-unused [rule-format]:
(evs, $S, A, U) \in$ protocol \Longrightarrow
$H \subseteq$ range Key \cup range Pri-AgrK $-U \longrightarrow$
analz $(H \cup A \cup$ spies evs $)=H \cup$ analz $(A \cup$ spies evs $)$
proof (induction arbitrary: H rule: protocol.induct, simp-all add: analz-simp-insert-2, rule impI, (subst analz-simp, blast)+, simp)
fix evsR1 $S A U n s H$
assume
A: $\wedge H . H \subseteq$ range Key \cup range Pri-AgrK $-U \longrightarrow$
analz $(H \cup A \cup$ spies evsR1 $)=H \cup$ analz $(A \cup$ spies evsR1 $)$ and
$B:($ evsR1 $, S, A, U) \in$ protocol and
C: Pri-AgrK $s \notin U$
let
$? B=H \cup A \cup$ spies evsR1 and
? $C=A \cup$ spies evsR1
show
$(n \in b a d \longrightarrow$
$H \subseteq$ range Key \cup range Pri-AgrK - insert $($ Pri-AgrK s) $U \longrightarrow$
analz $($ insert $(\operatorname{Crypt}(\operatorname{symK} n)($ Pri-AgrK s $))($ insert $(\operatorname{Pri}-A g r K$ s $)$? $B))=$ $H \cup$ analz (insert $($ Crypt $(s y m K ~ n)($ Pri-AgrK $s))($ insert $($ Pri-AgrK s) ?C) $))$
\wedge
$(n \notin b a d \longrightarrow$
$H \subseteq$ range Key \cup range Pri-AgrK - insert $($ Pri-AgrK s) $U \longrightarrow$ analz $($ insert $($ Crypt $(\operatorname{symK} n)($ Pri-AgrK s) $)$?B) $)=$ $H \cup$ analz (insert $($ Crypt $($ symK $n)($ Pri-AgrK $s))$?C) $)$
(is $\left.(-\longrightarrow-\longrightarrow ? T) \wedge\left(-\longrightarrow-\longrightarrow ? T^{\prime}\right)\right)$
proof (rule conjI, (rule-tac [!] impI)+)
assume $H \subseteq$ range Key \cup range Pri-AgrK - insert (Pri-AgrK s) U
hence insert (Pri-AgrK s) $H \subseteq$ range Key \cup range Pri-AgrK $-U$
using C by blast
with A have analz (insert (Pri-AgrK s) $H \cup A \cup$ spies evsR1) $=$ insert (Pri-AgrK s) $H \cup$ analz $(A \cup$ spies evsR1) ..
hence analz (insert (Pri-AgrK s) ?B) $=H \cup \operatorname{insert}($ Pri-AgrK s) (analz ?C)
by simp
moreover have $\{$ Pri-AgrK $s\} \subseteq$ range Key \cup range Pri-AgrK $-U$
using C by simp
with A have analz $(\{$ Pri-AgrK $s\} \cup A \cup$ spies evsR1 $)=$ $\{$ Pri-AgrK $s\} \cup \operatorname{analz}(A \cup$ spies evsR1) ..

```
    hence insert (Pri-AgrK s) (analz ?C) = analz (insert (Pri-AgrK s) ?C)
    by simp
    ultimately have D: analz (insert (Pri-AgrK s) ?B)=
        H\cup analz (insert (Pri-AgrK s) ?C)
        by simp
    assume n }\in\mathrm{ bad
    hence E: Key (invK (symK n)) \in analz ?C
        using B by (simp add: pr-symk-analz invK-symK)
    have Key (invK (symK n)) \in analz (insert (Pri-AgrK s) ?B)
        by (rule subsetD [OF - E], rule analz-mono, blast)
    hence analz (insert (Crypt (symK n) (Pri-AgrK s)) (insert (Pri-AgrK s) ?B))
=
        insert (Crypt (symK n) (Pri-AgrK s)) (analz (insert (Pri-AgrK s) ?B))
        by (simp add: analz-crypt-in)
    moreover have Key (invK (symK n)) \in analz (insert (Pri-AgrK s) ?C)
        by (rule subsetD [OF - E], rule analz-mono, blast)
    hence analz (insert (Crypt (symK n) (Pri-AgrK s)) (insert (Pri-AgrK s) ?C))
=
        insert (Crypt (symK n) (Pri-AgrK s)) (analz (insert (Pri-AgrK s) ?C))
        by (simp add: analz-crypt-in)
        ultimately show?T
        using D by simp
    next
    assume H\subseteq range Key U range Pri-AgrK - insert (Pri-AgrK s) U
    hence D:H\subseteq range Key \cup range Pri-AgrK - U
        by blast
```



```
    moreover assume n& bad
    hence F: Key (invK (symK n)) & analz ?C
        using B by (simp add: pr-symk-analz invK-symK)
    ultimately have Key (invK (symK n)) & analz ?B
    proof (simp add: invK-symK, insert pr-symk-used [OF B, of n])
    qed (rule notI, drule subsetD [OF D], simp)
    hence analz (insert (Crypt (symK n) (Pri-AgrK s)) ?B)=
        insert (Crypt (symK n)(Pri-AgrK s)) (analz ?B)
    by (simp add: analz-crypt-out)
    moreover have H\cup analz (insert (Crypt (symK n) (Pri-AgrK s)) ?C)=
        insert (Crypt (symK n)(Pri-AgrK s)) (H \cup analz ?C)
        using F by (simp add: analz-crypt-out)
    ultimately show ?T'
        using E by simp
    qed
next
    fix evsFR1SA UmsH
    assume
    A: \H.H\subseteq range Key \cup range Pri-AgrK - U }
        analz }(H\cupA\cup\mathrm{ spies evsFR1) = H 和alz ( }A\cup\mathrm{ spies evsFR1) and
    B:(evsFR1,S,A,U)\in protocol and
    C:Crypt (symK m) (Pri-AgrK s) \in synth (analz ( }A\cup\mathrm{ spies evsFR1))
```

```
let
    ?B=H\cupA\cup spies evsFR1 and
    ?C=A\cup spies evsFR1
show H\subseteq range Key \cup range Pri-AgrK - U }
    analz (insert (Crypt (symK m) (Pri-AgrK s)) ?B) =
    H\cup analz (insert (Crypt (symK m) (Pri-AgrK s)) ?C)
    (is - \longrightarrow?T)
proof (rule impI, cases Key (invK (symK m)) \in analz ?C)
    case True
    assume H\subseteq range Key \cup range Pri-AgrK - U
    with A have analz ?B = H \cup analz ?C ..
    moreover have Pri-AgrK s\in analz ?C
    proof (insert synth-crypt [OF C], erule disjE, erule-tac [2] conjE)
    assume Crypt (symK m)(Pri-AgrK s)\in analz ?C
    thus ?thesis
        using True by (rule analz.Decrypt)
    next
        assume Pri-AgrK s\in synth (analz ?C)
        thus ?thesis
        by (rule synth-simp-intro, simp)
    qed
    moreover from this have Pri-AgrK s \in analz ?B
    by (rule rev-subsetD, rule-tac analz-mono, blast)
    ultimately have D: analz (insert (Pri-AgrK s) ?B) =
        H\cup analz (insert (Pri-AgrK s) ?C)
    by (simp add: analz-simp-insert-1)
    have Key (invK (symK m)) \in analz ?B
    by (rule subsetD [OF - True], rule analz-mono, blast)
    hence analz (insert (Crypt (symK m) (Pri-AgrK s)) ?B) =
        insert (Crypt (symK m) (Pri-AgrK s)) (analz (insert (Pri-AgrK s) ?B))
    by (simp add: analz-crypt-in)
    moreover have analz (insert (Crypt (symK m) (Pri-AgrK s)) ?C)=
        insert (Crypt (symK m) (Pri-AgrK s)) (analz (insert (Pri-AgrK s) ?C))
    using True by (simp add: analz-crypt-in)
    ultimately show ?T
    using D by simp
next
    case False
    moreover assume D:H\subseteq range Key \cup range Pri-AgrK - U
    with }A\mathrm{ have E: analz ?B=H U analz ?C ..
    ultimately have Key (invK (symK m)) & analz ?B
    proof (simp add: invK-symK, insert pr-symk-used [OF B, of m])
    qed (rule notI, drule subsetD [OF D], simp)
    hence analz (insert (Crypt (symK m) (Pri-AgrK s)) ?B) =
        insert (Crypt (symK m) (Pri-AgrK s)) (analz ?B)
    by (simp add: analz-crypt-out)
moreover have H\cupanalz (insert (Crypt (symK m) (Pri-AgrK s)) ?C) =
    insert (Crypt (symK m) (Pri-AgrK s)) (H\cup analz ?C)
    using False by (simp add: analz-crypt-out)
```

```
    ultimately show ?T
    using E by simp
    qed
next
    fix evsC2 S A U a H and m :: nat
    assume
        A: \H. H\subseteq range Key \cup range Pri-AgrK - U }
        analz (H\cupA\cup spies evsC2) = H\cup\mathrm{ analz (A spies evsC2) and}
        B: Pri-AgrK a &U
    let
        ?B}=H\cupA\cup\mathrm{ spies evsC2 and
        ?C=A\cup spies evsC2
    show
    (m=0\longrightarrow
        H\subseteqrange Key \cup range Pri-AgrK - insert (Pri-AgrK a) U }
    insert (pubAK a) (analz (insert (Pri-AgrK a) ?B)) =
    insert (pubAK a) (H\cupanalz (insert (Pri-AgrK a)?C))) ^
    (0<m\longrightarrow
            H\subseteqrange Key \cup range Pri-AgrK - insert (Pri-AgrK a) U }
        insert (pubAK a) (analz ?B)=
        insert (pubAK a) (H\cupanalz ?C))
    (is (-\longrightarrow-\longrightarrow?T)\wedge(-\longrightarrow-\longrightarrow? ?T'))
proof (rule conjI, (rule-tac [!] impI)+)
    assume H\subseteqrange Key \cup range Pri-AgrK - insert (Pri-AgrK a) U
    hence insert (Pri-AgrK a) H\subseteq range Key \cup range Pri-AgrK - U
        using B by blast
    with A have analz (insert (Pri-AgrK a) H\cupA\cup spies evsC2) =
        insert (Pri-AgrK a) H \cup analz ( }A\cup\mathrm{ spies evsC2) ..
    hence analz (insert (Pri-AgrK a) ?B) = H\cupinsert (Pri-AgrK a) (analz ?C)
        by simp
    moreover have {Pri-AgrK a}\subseteq range Key \cup range Pri-AgrK - U
        using B by simp
    with A have analz ({Pri-AgrK a} \cupA\cup spies evsC2) =
        {Pri-AgrK a} \cup analz ( }A\cup\mathrm{ spies evsC2) ..
    hence insert (Pri-AgrK a) (analz ?C) = analz (insert (Pri-AgrK a) ?C)
    by simp
    ultimately have analz (insert (Pri-AgrK a) ?B) =
        H\cupanalz (insert (Pri-AgrK a)?C)
        by simp
    thus?T
        by simp
    next
    assume H\subseteqrange Key \cup range Pri-AgrK - insert (Pri-AgrK a) U
    hence H\subseteqrange Key \cup range Pri-AgrK - U
    by blast
    with }A\mathrm{ have analz ?B = H U analz ?C ..
    thus ?T'
        by simp
    qed
```

```
next
    fix evsR2 S A Ub H
    assume A: \bigwedgeH.H\subseteq range Key \cup range Pri-AgrK - U\longrightarrow
        analz (H\cupA\cup spies evsR2) = H\cup\operatorname{analz}(A\cup spies evsR2)
    let
        ? B = H\cupA\cup spies evsR2 and
        ?}C=A\cup spies evsR
    show H\subseteq range Key U range Pri-AgrK - insert (Pri-AgrK b) U \longrightarrow
        insert (pubAK b) (analz ?B) = insert (pubAK b) (H\cupanalz ?C)
        (is - \longrightarrow?T)
    proof
        assume H\subseteqrange Key \cup range Pri-AgrK - insert (Pri-AgrK b) U
    hence H\subseteq range Key \cup range Pri-AgrK - U
        by blast
    with A have analz ?B = H\cup analz ?C ..
    thus ?T
    by simp
    qed
next
    fix evsC3SAUsabcH}\mathrm{ and m :: nat
    assume
    A: \H.H\subseteq range Key \cup range Pri-AgrK - U \longrightarrow
        analz }(H\cupA\cup\mathrm{ spies evsC3) = H \ analz ( }A\cup\mathrm{ spies evsC3) and
    B: Pri-AgrK c\not\inU
    let
        ?B}=H\cupA\cup\mathrm{ spies evsC3 and
        ?}C=A\cup\mathrm{ spies evsC3
    show
    (m=0\longrightarrow
        H\subseteqrange Key U range Pri-AgrK - insert (Pri-AgrK c) U }
        insert (pubAK (c*(s+a*b))) (analz (insert (Pri-AgrK c) ?B))}
        insert (pubAK (c* (s+a*b))) (H\cup analz (insert (Pri-AgrK c) ?C))) ^
        (0<m\longrightarrow
            H\subseteqrange Key U range Pri-AgrK - insert (Pri-AgrK c) U \longrightarrow
        insert (pubAK (c*(s+a*b)))(analz ?B) =
        insert (pubAK (c*(s+a*b)))(H\cup\mathrm{ analz ?C))}
        (is (-\longrightarrow-\longrightarrow?T)^(-\longrightarrow - \longrightarrow? T'))
    proof (rule conjI, (rule-tac [!] impI)+)
    assume H\subseteq range Key \cup range Pri-AgrK - insert (Pri-AgrK c) U
    hence insert (Pri-AgrK c) H\subseteq range Key \cup range Pri-AgrK - U
    using }B\mathrm{ by blast
    with A have analz (insert (Pri-AgrK c) H\cupA\cup spies evsC3) =
        insert (Pri-AgrK c) H U analz ( }A\cup\mathrm{ spies evsC3) ..
    hence analz (insert (Pri-AgrK c) ?B) = H\cupinsert (Pri-AgrK c) (analz ?C)
    by simp
    moreover have {Pri-AgrK c}\subseteq range Key \cup range Pri-AgrK - U
        using B by simp
    with A have analz ({Pri-AgrK c} \cupA \cup spies evsC3) =
        {Pri-AgrK c} \cup analz ( }A\cup\mathrm{ spies evsC3) ..
```

```
    hence insert (Pri-AgrK c) (analz ?C) = analz (insert (Pri-AgrK c) ?C)
    by simp
    ultimately have analz (insert (Pri-AgrK c) ?B) =
        H \cup analz (insert (Pri-AgrK c) ?C)
        by simp
    thus?T
    by simp
    next
    assume H\subseteq range Key U range Pri-AgrK - insert (Pri-AgrK c) U
    hence H\subseteq range Key \cup range Pri-AgrK - U
    by blast
    with A have analz ?B = H \cup analz ?C ..
    thus?T'
        by simp
    qed
next
    fix evsR3 S A Un run s s' abcdX H
    assume
    A: \H.H\subseteqrange Key \cup range Pri-AgrK - U }
        analz (H\cupA\cup spies evsR3) = H\cup analz ( }A\cup\mathrm{ spies evsR3) and
    B: Key (sesK (c*d*(s+a*b))) \not\inU
        (is Key ?K & -)
let
    ?B=H\cupA\cup spies evsR3 and
    ?C = A \cup spies evsR3 and
    ?K}\mp@subsup{K}{}{\prime}=\operatorname{ses}K(c*d*(\mp@subsup{s}{}{\prime}+a*b)
show
    (s'}=s\wedge Pri-AgrK c \in analz ( A \cup spies evsR3) \longrightarrow
        H\subseteq range Key U range Pri-AgrK - insert (Pri-AgrK d)
            (insert (Key ?K) (insert {Key ?K, Agent X, Number n, Number run} U))
\longrightarrow
    insert (pubAK (d*(s+a*b))) (analz (insert (Key ?K) ?B)) =
    insert (pubAK (d* (s+a*b))) (H\cup analz (insert (Key ?K) ?C))) ^
    (( s'=s\longrightarrowPri-AgrK c\not\in analz ( }A\cup\mathrm{ spies evsR3)) }
        H\subseteqrange Key U range Pri-AgrK - insert (Pri-AgrK d) (insert (Key ?K')
            (insert (Key ?K) (insert {Key ?K, Agent X, Number n, Number run} U)))
\longrightarrow
    insert (pubAK (d* (s+a*b))) (analz ?B) =
    insert (pubAK (d* (s+a*b)))(H\cup analz ?C))
    (is (-\longrightarrow-\longrightarrow?T)\wedge(-\longrightarrow-\longrightarrow? ? ' ) )
proof (rule conjI, (rule-tac [!] impI)+)
    assume H\subseteq range Key U range Pri-AgrK - insert (Pri-AgrK d)
        (insert (Key ?K)(insert {Key ?K, Agent X, Number n, Number run} U))
    hence insert (Key ?K) H\subseteq range Key U range Pri-AgrK - U
    using B by blast
    with A have analz (insert (Key ?K) H\cupA\cup spies evsR3) =
        insert (Key ?K) H \cup analz ( }A\cup\mathrm{ spies evsR3) ..
    hence analz (insert (Key ?K) ?B) = H \cup insert (Key ?K) (analz ?C)
    by simp
```

```
    moreover have \(\{\) Key ? \(K\} \subseteq\) range Key \(\cup\) range Pri-AgrK \(-U\)
    using \(B\) by simp
    with \(A\) have analz \((\{\) Key ? \(K\} \cup A \cup\) spies evsR3 \()=\)
    \(\{\) Key ? \(K\} \cup\) analz \((A \cup\) spies evsR3) ..
    hence insert (Key ?K) (analz ?C) \(=\) analz (insert (Key ?K) ?C)
    by \(\operatorname{simp}\)
    ultimately have analz (insert (Key ? \(K\) ) ? B) \(=H \cup\) analz (insert (Key ? K)
?C)
    by \(\operatorname{simp}\)
    thus?T
    by \(\operatorname{simp}\)
next
    assume \(H \subseteq\) range Key \(\cup\) range Pri-AgrK - insert (Pri-AgrK d) (insert (Key
? \(K^{\prime}\) )
            (insert (Key ?K) (insert \{Key ?K, Agent X, Number n, Number run\} U)) )
    hence \(H \subseteq\) range Key \(\cup\) range Pri-AgrK \(-U\)
    by blast
    with \(A\) have analz ? \(B=H \cup\) analz ?C ..
    thus? \(T^{\prime}\)
        by \(\operatorname{simp}\)
    qed
next
    fix evsFR3 \(S A U m n\) run sabcd \(H\)
    assume
    A: \(\bigwedge H . H \subseteq\) range Key \(\cup\) range Pri-AgrK \(-U \longrightarrow\)
        analz \((H \cup A \cup\) spies evsFR3 \()=H \cup\) analz \((A \cup\) spies evsFR3 \()\) and
    B: Key \((\operatorname{sesK}(c * d *(s+a * b))) \notin U\)
        (is Key ? \(K \notin-\) )
let
    \(? B=H \cup A \cup\) spies evsFR3 and
    \(? C=A \cup\) spies evsFR3
show
    \(H \subseteq\) range Key \(\cup\) range Pri-AgrK - insert (Key ?K)
        (insert \{Key?K, Agent (User m), Number n, Number run\} \(U\) ) \(\longrightarrow\)
    insert \((\operatorname{pubAK}(d *(s+a * b)))(\) analz \((\) insert \((\) Key ?K) ? \(B))=\)
    insert \((\operatorname{pubAK}(d *(s+a * b)))(H \cup\) analz \((\) insert \((\) Key ? \(K)\) ? \(C))\)
    (is - \(\longrightarrow\) ? \(T\) )
proof
    assume \(H \subseteq\) range Key \(\cup\) range Pri-AgrK - insert (Key ?K)
        (insert \{Key ?K, Agent (User m), Number n, Number run\} U)
    hence insert \((\) Key ? \(K) H \subseteq\) range Key \(\cup\) range Pri-AgrK \(-U\)
    using \(B\) by blast
    with \(A\) have analz (insert (Key ? \(K\) ) \(H \cup A \cup\) spies evsFR3) \(=\)
        insert \((\) Key ? \(K) H \cup\) analz \((A \cup\) spies evsFR3) ..
    hence analz (insert \((\) Key ?K) ?B) \(=H \cup\) insert \((\) Key ?K) \((\) analz ?C \()\)
    by simp
    moreover have \(\{\) Key ? \(K\} \subseteq\) range Key \(\cup\) range Pri-AgrK \(-U\)
    using \(B\) by simp
    with \(A\) have analz \((\{K e y ? K\} \cup A \cup\) spies evsFR3 \()=\)
```

$\{$ Key ? $K\} \cup$ analz $(A \cup$ spies evsFR3) ..
hence insert (Key ?K) (analz ?C) $=$ analz (insert (Key ?K) ?C)
by simp
ultimately have analz (insert (Key ? K) ?B) $=H \cup$ analz (insert (Key ?K) ?C)
by simp
thus ?T
by simp
qed
next
fix evsC4 $S A U m$ n run cf H
assume
A: $\wedge H . H \subseteq$ range Key \cup range Pri-AgrK $-U \longrightarrow$
analz $(H \cup A \cup$ spies evs $C 4)=H \cup$ analz $(A \cup$ spies evs $C 4)$ and
$B:(e v s C 4, S, A, U) \in$ protocol and
$C:\{$ Key $(\operatorname{sesK}(c * f))$, Agent (User m), Number n, Number run $\} \in U$
let
$? B=H \cup A \cup$ spies evs $C 4$ and $? C=A \cup$ spies evs C_{4}
show $H \subseteq$ range Key \cup range Pri-AgrK $-U \longrightarrow$
analz $($ insert $(\operatorname{Crypt}(\operatorname{sesK}(c * f))($ pubAKf $)) ? B)=$
$H \cup \operatorname{analz}($ insert $(\operatorname{Crypt}(\operatorname{sesK}(c * f))($ pubAK f)) ? $C)$
(is $-\longrightarrow$?T)
proof (rule impI, cases Key $(\operatorname{invK}(\operatorname{ses} K(c * f))) \in$ analz ?C $)$
case True
assume $H \subseteq$ range Key \cup range Pri-AgrK $-U$
with A have D : analz ? $B=H \cup$ analz ? C..
have Key $(\operatorname{invK}(\operatorname{sesK}(c * f))) \in$ analz ? B
by (rule subsetD [OF - True], rule analz-mono, blast)
hence analz (insert $(\operatorname{Crypt}(\operatorname{sesK}(c * f))($ pubAK f)) ?B) $=$ insert (Crypt (sesK $(c * f))($ pubAK $f))($ insert $(p u b A K f)($ analz ?B) $)$ by (simp add: analz-crypt-in analz-simp-insert-2)
moreover have $H \cup$ analz $($ insert $(\operatorname{Crypt}(\operatorname{sesK}(c * f))($ pubAK f $)) ? C)=$ insert $($ Crypt $(\operatorname{sesK}(c * f))($ pubAKf)) $($ insert $(p u b A K f)(H \cup$ analz ?C $))$ using True by (simp add: analz-crypt-in analz-simp-insert-2)
ultimately show? T
using D by simp
next
case False
moreover assume $D: H \subseteq$ range Key \cup range Pri-AgrK $-U$
with A have E : analz ? $B=H \cup$ analz ? C..
ultimately have Key $(\operatorname{invK}(\operatorname{ses} K(c * f))) \notin$ analz ? B
proof (simp add: invK-sesK, insert pr-sesk-user-2 [OF B C])
qed (rule notI, drule subsetD [OF D], simp)
hence analz (insert $(\operatorname{Crypt}(\operatorname{sesK}(c * f))($ pubAKf $)) ? B)=$ insert (Crypt (sesK $(c * f))($ pubAK $f))($ analz ? $B)$
by (simp add: analz-crypt-out)
moreover have $H \cup$ analz (insert $(\operatorname{Crypt}(\operatorname{sesK}(c * f))($ pubAK f $))$? $C)=$ insert $($ Crypt $(\operatorname{sesK}(c * f))($ pubAK $f))(H \cup$ analz ?C)

```
    using False by (simp add: analz-crypt-out)
    ultimately show ?T
    using E by simp
    qed
next
    fix evsFC4 S A U n run s a b d e H
    assume
    A: \H.H\subseteq range Key \cup range Pri-AgrK - U\longrightarrow
        analz (H\cupA\cup spies evsFC4})=H\cup\mathrm{ analz ( }A\cup\mathrm{ spies evsFC4) and
    B:(evsFC4, S,A,U)\in protocol and
    C: IntAgrK (S (Card n, n, run)) = Some d and
    D: ExtAgrK (S (Card n, n, run)) = Some e
let
    ?B=H\cupA\cup spies evsFC4 and
    ?C=A\cup spies evsFC4 and
    ?f}=d*(s+a*b
    show H\subseteqrange Key \cup range Pri-AgrK - U \longrightarrow
    analz (insert (Crypt (sesK (d*e)) (pubAK ?f)) ?B) =
    H\cupanalz (insert (Crypt (sesK (d*e)) (pubAK ?f)) ?C)
    (is - \longrightarrow?T)
proof (rule impI, cases Key (invK (sesK (d*e))) \in analz ?C)
    case True
    assume H\subseteq range Key U range Pri-AgrK - U
    with }A\mathrm{ have E: analz ? B = H U analz ?C ..
    have Key (invK (sesK (d*e))) \in analz ?B
    by (rule subsetD [OF - True], rule analz-mono, blast)
    hence analz (insert (Crypt (sesK (d*e)) (pubAK ?f)) ?B) =
        insert (Crypt (sesK (d*e)) (pubAK ?f)) (insert (pubAK ?f) (analz ?B))
    by (simp add: analz-crypt-in analz-simp-insert-2)
    moreover have H\cupanalz (insert (Crypt (sesK (d*e)) (pubAK ?f)) ?C) =
        insert (Crypt (sesK (d*e)) (pubAK ?f)) (insert (pubAK ?f) (H \cup analz
?C))
    using True by (simp add: analz-crypt-in analz-simp-insert-2)
    ultimately show ?T
    using E by simp
next
    case False
    moreover assume E:H\subseteqrange Key \cup range Pri-AgrK - U
    with }A\mathrm{ have F: analz ? B = H U analz ?C ..
    ultimately have Key (invK (sesK (d*e))) & analz ?B
    proof (simp add: invK-sesK, insert pr-sesk-card [OF B C D])
    qed (rule notI, drule subsetD [OF E], simp)
    hence analz (insert (Crypt (sesK (d*e)) (pubAK ?f)) ?B) =
        insert (Crypt (sesK (d*e)) (pubAK ?f)) (analz ?B)
    by (simp add: analz-crypt-out)
    moreover have H\cup\operatorname{analz}(insert (Crypt (sesK (d*e)) (pubAK ?f)) ?C) =
        insert (Crypt (sesK (d*e)) (pubAK ?f)) (H\cup analz ?C)
        using False by (simp add: analz-crypt-out)
    ultimately show ?T
```

```
        using F by simp
    qed
next
    fix evsR4 S A U n run b d e H
    let
        ?B = H\cupA\cup spies evsR4 and
        ?C=A\cup spies evsR4 and
        ?H=Hash (pubAK (priAK n)) and
    ?M = {pubAK (priAK n), Crypt (priSKCA) (Hash (pubAK (priAK n)))} and
    ?M' ={pubAK e, Auth-Data (priAK n) b, pubAK (priAK n),
        Crypt (priSK CA) (Hash (pubAK (priAK n)))}
    assume
    A: \H.H\subseteq range Key \cup range Pri-AgrK - U \longrightarrow
        analz (H\cupA\cup spies evsR4) = H\cup\operatorname{analz}(A\cup\mathrm{ spies evsR4) and}
    B:(evsR4,S,A,U)\in protocol and
    C:IntMapK (S (Card n, n, run)) = Some b and
    D: IntAgrK (S (Card n, n, run)) = Some d and
    E: ExtAgrK (S (Card n, n, run)) = Some e
    show H\subseteq range Key \cup range Pri-AgrK - U\longrightarrow
    analz (insert (Crypt (sesK (d*e)) ?M') ?B) =
    H\cupanalz (insert (Crypt (sesK (d*e)) ?M') ?C)
    (is - \longrightarrow?T)
proof
    assume F:H\subseteq range Key U range Pri-AgrK - U
    with }A\mathrm{ have }G\mathrm{ : analz ? B = H U analz ?C ..
    have H: Key (pubSK CA) \in analz ?C
        using B by (rule pr-valid-key-analz)
    hence I: analz (insert (Crypt (priSK CA) ?H) ?C) =
        {Crypt (priSK CA) ?H, ?H} \cup analz ?C
    by (simp add: analz-crypt-in analz-simp-insert-2)
    have Key (pubSK CA) \in analz ?B
    by (rule subsetD [OF - H], rule analz-mono, blast)
    hence J: analz (insert (Crypt (priSK CA) ?H) ?B) =
        {Crypt (priSK CA) ?H,?H} \cup analz ?B
    by (simp add: analz-crypt-in analz-simp-insert-2)
    have K: Pri-AgrK (priAK n) & analz ?C
        using B by (rule pr-auth-key-analz)
    hence L: Pri-AgrK (priAK n)\not\in analz (insert (Crypt (priSK CA) ?H) ?C)
    using I by simp
    have M: Pri-AgrK b & analz ?C
    using B and C by (rule pr-int-mapk-analz)
    hence N: Pri-AgrK b &analz (insert (Crypt (priSK CA) ?H) ?C)
    using I by simp
    have Pri-AgrK (priAK n)\inU
    using B by (rule pr-auth-key-used)
    hence Pri-AgrK (priAK n)\not\inH
        using F by blast
    hence O: Pri-AgrK (priAK n) & analz (insert (Crypt (priSK CA) ?H) ?B)
        using G and J and K by simp
```

```
    have Pri-AgrK b \inU
    using B and C by (rule pr-int-mapk-used)
    hence Pri-AgrK b\not\inH
    using F by blast
    hence P: Pri-AgrK b & analz (insert (Crypt (priSK CA) ?H) ?B)
    using G and J and M by simp
    show ?T
    proof (cases Key (invK (sesK (d*e))) \in analz ?C)
        case True
        have Q: Key (invK (sesK (d*e))) \in analz ?B
        by (rule subsetD [OF - True], rule analz-mono, blast)
        show ?T
        proof (simp add: analz-crypt-in analz-mpair analz-simp-insert-2 True Q,
        rule equalityI, (rule-tac [!] insert-mono)+)
            show analz (insert (Auth-Data (priAK n) b) (insert ?M ?B)) \subseteq
                H\cup analz (insert (Auth-Data (priAK n) b) (insert ?M ?C))
    proof (subst (1 2) insert-commute, simp add: analz-mpair analz-simp-insert-2
            del: Un-insert-right, subst (1 3) insert-commute,
            subst analz-auth-data-out [OF O P], subst analz-auth-data-out [OF L N])
            qed (auto simp add: G I J)
        next
            show H\cupanalz (insert (Auth-Data (priAK n) b) (insert ?M ?C)) \subseteq
                analz (insert (Auth-Data (priAK n) b) (insert ?M ?B))
        proof (subst (1 2) insert-commute, simp add: analz-mpair analz-simp-insert-2
            del: Un-insert-right Un-subset-iff semilattice-sup-class.sup.bounded-iff,
            subst (1 3) insert-commute, subst analz-auth-data-out [OF L N],
            subst analz-auth-data-out [OF O P])
            qed (auto simp add:G I J)
        qed
    next
        case False
        hence Key (invK (sesK (d*e))) & analz ?B
        proof (simp add: invK-sesK G, insert pr-sesk-card [OF B D E])
        qed (rule notI, drule subsetD [OF F], simp)
        hence analz (insert (Crypt (sesK (d*e)) ?M') ?B) =
        insert (Crypt (sesK (d*e)) ?M') (analz ?B)
        by (simp add: analz-crypt-out)
        moreover have H\cup analz (insert (Crypt (sesK (d*e)) ?M') ?C) =
        insert (Crypt (sesK (d*e)) ?M')}(H\cup\mathrm{ analz ?C)
        using False by (simp add: analz-crypt-out)
        ultimately show ?T
        using G by simp
    qed
qed
next
    fix evsFR4 S A Um n run s abcfg H
    let
        ?B=H\cupA\cup spies evsFR4 and
        ?C=A\cup spies evsFR4 and
```

```
?H}=Hash (pubAKg) and
?M ={pubAK g, Crypt (priSK CA) (Hash (pubAK g))} and
?M}={|pubAK(c*(s+a*b)),Auth-Data g b, pubAK g
    Crypt (priSK CA) (Hash (pubAK g))}
assume
A: \H.H\subseteqrange Key \cup range Pri-AgrK -U 
    analz (H\cupA\cup spies evsFR4) = H\cup\mathrm{ analz ( }A\cup\mathrm{ spies evsFR4) and}
B:(evsFR4,S,A,U)\in protocol and
    C: IntAgrK (S (User m, n, run)) = Some c and
D: ExtAgrK (S (User m, n, run)) = Some f and
E:Crypt (sesK (c*f)) ?M' \in synth (analz ?C)
have F}F\mathrm{ :
Key (invK (sesK (c*f))) \in analz ?C \longrightarrow
    Pri-AgrK b \in analz ?C \vee Pri-AgrK g G analz ?C }
    Pri-AgrK b G analz ?C }\wedge Pri-AgrK g \in analz ?C
    (is ?P\longrightarrow??Q\longrightarrow?R)
proof (rule impI)+
    assume ?P and ?Q
    have Crypt (sesK (c*f)) ? M' \in analz ?C\vee
    ?M'}\in\operatorname{synth}(\mathrm{ analz ?C) ^ Key (sesK (c*f)) }\in\mathrm{ analz ?C
    using E by (rule synth-crypt)
moreover {
    assume Crypt (sesK (c*f)) ?M' }\mp@subsup{M}{}{\prime}\mathrm{ analz ?C
    hence ?M' \in analz ?C
    using <?P> by (rule analz.Decrypt)
    hence {Auth-Data g b, pubAK g, Crypt (priSK CA) (Hash (pubAK g))}
        G analz ?C
    by (rule analz.Snd)
    hence G:Auth-Data g b G analz ?C
    by (rule analz.Fst)
    have ?R
    proof (rule disjE [OF<?Q>])
        assume Pri-AgrK b G analz ?C
        moreover from this have Pri-AgrK g\in analz ?C
        by (rule analz.Auth-Fst [OF G])
        ultimately show ?R ..
    next
        assume Pri-AgrK g\in analz ?C
        moreover from this have Pri-AgrK b\in analz ?C
        by (rule analz.Auth-Snd [OF G])
        ultimately show ?R
        by simp
    qed
}
moreover {
    assume ?M' }\in\mathrm{ synth (analz ?C) }\wedge Key (sesK (c*f))\in analz ?C
    hence ?M' }\in\mathrm{ synth (analz ?C) ..
    hence {Auth-Data g b, pubAK g, Crypt (priSK CA) (Hash (pubAK g))}
        \epsilon synth (analz ?C)
```

```
    by (rule synth-analz-snd)
    hence Auth-Data g b synth (analz ?C)
    by (rule synth-analz-fst)
    hence Auth-Data g b analz ?C \vee
            Pri-AgrK g}\in\mathrm{ analz ?C ^ Pri-AgrK b G analz ?C
        by (rule synth-auth-data)
    moreover {
        assume G:Auth-Data g b\in analz ?C
        have ?R
        proof (rule disjE [OF〈?Q>])
            assume Pri-AgrK b G analz ?C
            moreover from this have Pri-AgrK g\in analz ?C
            by (rule analz.Auth-Fst [OF G])
            ultimately show ?R ..
        next
            assume Pri-AgrK g \in analz ?C
            moreover from this have Pri-AgrK b G analz ?C
            by (rule analz.Auth-Snd [OF G])
            ultimately show ?R
            by simp
        qed
    }
    moreover {
        assume Pri-AgrK g \in analz?C ^ Pri-AgrK b G analz ?C
        hence ?R
            by simp
    }
    ultimately have ?R ..
}
    ultimately show ?R ..
qed
show H\subseteqrange Key \cup range Pri-AgrK - U \longrightarrow
    analz (insert (Crypt (sesK (c*f)) ?M') ?B) =
    H\cup analz (insert (Crypt (sesK (c*f)) ?M') ?C)
    (is - \longrightarrow?T)
proof
    assume G:H\subseteqrange Key \cup range Pri-AgrK - U
    with }A\mathrm{ have H: analz ?B = H U analz ?C ..
    have I: Key (pubSK CA) \in analz ?C
    using B by (rule pr-valid-key-analz)
    hence J: analz (insert (Crypt (priSK CA) ?H) ?C) =
        {Crypt (priSK CA) ?H,?H}\cup analz ?C
    by (simp add: analz-crypt-in analz-simp-insert-2)
    have Key (pubSK CA) \in analz ?B
    by (rule subsetD [OF - I], rule analz-mono, blast)
    hence K: analz (insert (Crypt (priSK CA) ?H) ?B) =
        {Crypt (priSK CA) ?H,?H} \cup analz ?B
    by (simp add: analz-crypt-in analz-simp-insert-2)
    show ?T
```

```
proof (cases Key (invK (sesK (c*f))) \in analz ?C,
    cases Pri-AgrK g \in analz ?C \vee Pri-AgrK b \in analz ?C, simp-all)
    assume L: Key (invK (sesK (c*f))) \in analz ?C
    have M: Key (invK (sesK (c*f))) \in analz ?B
    by (rule subsetD [OF - L], rule analz-mono, blast)
    assume N: Pri-AgrK g \in analz ?C \vee Pri-AgrK b \in analz ?C
    hence O: Pri-AgrK g G analz (insert (Crypt (priSK CA) ?H) ?C) \vee
        Pri-AgrK b G analz (insert (Crypt (priSK CA) ?H) ?C)
    using J by simp
    have Pri-AgrK g}\in\mathrm{ analz ?B }\vee Pri-AgrK b \in analz ?B
    using H}\mathrm{ and N by blast
    hence P: Pri-AgrK g G analz (insert (Crypt (priSK CA) ?H) ?B) \vee
    Pri-AgrK b G analz (insert (Crypt (priSK CA) ?H) ?B)
    using K by simp
    have Q: Pri-AgrK b G analz ?C ^ Pri-AgrK g \in analz ?C
    using F and L and N by blast
    hence Pri-AgrK g\in analz (insert (Crypt (priSK CA) ?H) ?C)
    using }J\mathrm{ by simp
    hence R: Pri-AgrK g G analz (insert (Pri-AgrK b)
        (insert (Crypt (priSK CA) ?H) ?C))
    by (rule rev-subsetD, rule-tac analz-mono, blast)
    have S: Pri-AgrK b G analz (insert (Crypt (priSK CA) ?H) ?C)
    using J and Q by simp
    have T: Pri-AgrK b G analz ?B ^ Pri-AgrK g \in analz ?B
    using H and Q by simp
    hence Pri-AgrK g \in analz (insert (Crypt (priSK CA) ?H) ?B)
    using K by simp
hence U: Pri-AgrK g \in analz (insert (Pri-AgrK b)
    (insert (Crypt (priSK CA) ?H) ?B))
    by (rule rev-subsetD, rule-tac analz-mono, blast)
    have V: Pri-AgrK b \in analz (insert (Crypt (priSK CA) ?H) ?B)
    using K and T by simp
    show ?T
    proof (simp add: analz-crypt-in analz-mpair analz-simp-insert-2 L M,
    rule equalityI, (rule-tac [!] insert-mono)+)
    show analz (insert (Auth-Data g b) (insert ?M ?B)) \subseteq
        H\cupanalz (insert (Auth-Data g b) (insert ?M ?C))
    proof (subst (1 2) insert-commute, simp add: analz-mpair analz-simp-insert-2
        del: Un-insert-right, subst (1 3) insert-commute,
        subst analz-auth-data-in [OF P], subst analz-auth-data-in [OF O],
        simp del: Un-insert-right)
        show
            analz (insert (Pri-AgrK g) (insert (Pri-AgrK b)
                (insert (Crypt (priSK CA)?H) ?B)))\subseteq
                H\cup insert?M (insert (pubAK g) (insert (Auth-Data g b)
                (analz (insert (Pri-AgrK g) (insert (Pri-AgrK b)
                    (insert (Crypt (priSK CA) ?H) ?C))))))
        proof (subst analz-simp-insert-1 [OF U], subst analz-simp-insert-1 [OF
V],
```

```
            subst analz-simp-insert-1 [OF R], subst analz-simp-insert-1 [OF S])
            qed (auto simp add: H J K)
        qed
    next
        show H\cupanalz (insert (Auth-Data g b) (insert ?M ?C)) \subseteq
        analz (insert (Auth-Data g b) (insert ?M ?B))
    proof (subst (1 2) insert-commute, simp add: analz-mpair analz-simp-insert-2
        del: Un-insert-right Un-subset-iff semilattice-sup-class.sup.bounded-iff,
        subst (2 4) insert-commute, subst analz-auth-data-in [OF O],
        subst analz-auth-data-in [OF P], simp only:Un-insert-left Un-empty-left)
        show
            H\cup insert ?M (insert (pubAK g) (insert (Auth-Data g b)
                (analz (insert (Pri-AgrK g) (insert (Pri-AgrK b)
                    (insert (Crypt (priSK CA) ?H) ?C))))))\subseteq
            insert ?M (insert (pubAK g) (insert (Auth-Data g b)
                (analz (insert (Pri-AgrK g) (insert (Pri-AgrK b)
                    (insert (Crypt (priSK CA) ?H) ?B))))))
            proof (subst analz-simp-insert-1 [OF R], subst analz-simp-insert-1 [OF
            subst analz-simp-insert-1 [OF U], subst analz-simp-insert-1 [OF V])
            qed (auto simp add: HJ K)
        qed
    qed
next
    assume L: Key (invK (sesK (c*f))) \in analz ?C
    have M: Key (invK (sesK (c*f))) \in analz ?B
        by (rule subsetD [OF - L], rule analz-mono, blast)
    assume N: Pri-AgrK g & analz ?C ^ Pri-AgrK b # analz ?C
    hence O: Pri-AgrK g \not\inanalz (insert (Crypt (priSK CA) ?H) ?C)
    using J by simp
    have P: Pri-AgrK b & analz (insert (Crypt (priSK CA) ?H) ?C)
    using J and N by simp
    have Q: Pri-AgrK g}\inU\wedge Pri-AgrK b\in
    proof -
        have Crypt (sesK (c*f)) ?M'\in analz ?C \vee
            ?M'}\in\operatorname{synth}(\mathrm{ analz ?C) }\wedge Key (sesK (c*f)) \in analz ?C
        using E by (rule synth-crypt)
        moreover {
            assume Crypt (sesK (c*f)) ?M'\in analz ?C
            hence Crypt (sesK (c*f)) ?M' }\mp@subsup{M}{}{\prime}\mathrm{ parts ?C
            by (rule subsetD [OF analz-parts-subset])
            hence ?M' \in parts ?C
            by (rule parts.Body)
            hence {Auth-Data g b, pubAK g, Crypt (priSK CA) (Hash (pubAK g))}
            farts ?C
            by (rule parts.Snd)
            hence R: Auth-Data g b f parts ?C
            by (rule parts.Fst)
            hence Pri-AgrK g \in parts ?C
```

$S]$,

```
    by (rule parts.Auth-Fst)
    hence Pri-AgrK g\inU
    by (rule contrapos-pp, rule-tac pr-pri-agrk-parts [OF B])
    moreover have Pri-AgrK b\in parts ?C
    using R by (rule parts.Auth-Snd)
    hence Pri-AgrK b GU
    by (rule contrapos-pp, rule-tac pr-pri-agrk-parts [OF B])
    ultimately have ?thesis ..
}
moreover {
    assume ?M' }\in\mathrm{ synth (analz ?C) ^
    Key (sesK (c*f)) \in analz ?C
    hence ?M' }\in\mathrm{ synth (analz ?C) ..
    hence {Auth-Data g b, pubAK g,
        Crypt (priSK CA) (Hash (pubAK g))}\in synth (analz ?C)
    by (rule synth-analz-snd)
    hence Auth-Data g b \in synth (analz ?C)
    by (rule synth-analz-fst)
    hence Auth-Data g b G analz ?C \vee
        Pri-AgrK g \in analz ?C ^Pri-AgrK b \in analz ?C
    by (rule synth-auth-data)
moreover {
    assume Auth-Data g b f analz ?C
    hence R: Auth-Data g b E parts ?C
        by (rule subsetD [OF analz-parts-subset])
    hence Pri-AgrK g\in parts ?C
        by (rule parts.Auth-Fst)
    hence Pri-AgrK g}\in
        by (rule contrapos-pp, rule-tac pr-pri-agrk-parts [OF B])
    moreover have Pri-AgrK b f parts ?C
    using R by (rule parts.Auth-Snd)
    hence Pri-AgrK b \inU
        by (rule contrapos-pp, rule-tac pr-pri-agrk-parts [OF B])
    ultimately have ?thesis ..
}
moreover {
    assume R: Pri-AgrK g \in analz ?C ^ Pri-AgrK b \in analz ?C
    hence Pri-AgrK g \in analz ?C ..
    hence Pri-AgrK g}\in parts ?C
    by (rule subsetD [OF analz-parts-subset])
    hence Pri-AgrK g}\in
    by (rule contrapos-pp, rule-tac pr-pri-agrk-parts [OF B])
    moreover have Pri-AgrK b G analz ?C
    using R ..
    hence Pri-AgrK b E parts ?C
    by (rule subsetD [OF analz-parts-subset])
    hence Pri-AgrK b GU
    by (rule contrapos-pp, rule-tac pr-pri-agrk-parts [OF B])
    ultimately have ?thesis ..
```

```
        }
            ultimately have ?thesis ..
        }
        ultimately show ?thesis ..
    qed
    have R: Pri-AgrK g # analz ?B ^ Pri-AgrK b & analz ?B
    proof (simp add: H N, rule conjI, rule-tac [!] notI, drule-tac [!] subsetD [OF
G])
    qed (simp-all add:Q)
    hence S: Pri-AgrK g & analz (insert (Crypt (priSK CA) ?H) ?B)
    using K by simp
    have T: Pri-AgrK b\not\inanalz (insert (Crypt (priSK CA) ?H) ?B)
        using K}\mathrm{ and }R\mathrm{ by simp
    show ?T
    proof (simp add: analz-crypt-in analz-mpair analz-simp-insert-2 L M,
        rule equalityI, (rule-tac [!] insert-mono)+)
        show analz (insert (Auth-Data g b) (insert ?M ?B)) \subseteq
            H\cupanalz (insert (Auth-Data g b) (insert ?M ?C))
    proof (subst (1 2) insert-commute, simp add: analz-mpair analz-simp-insert-2
        del: Un-insert-right, subst (1 3) insert-commute,
        subst analz-auth-data-out [OF S T], subst analz-auth-data-out [OF O P])
        qed (auto simp add: H J K)
    next
        show H\cupanalz (insert (Auth-Data g b) (insert ?M ?C))\subseteq
            analz (insert (Auth-Data g b) (insert ?M ?B))
    proof (subst (1 2) insert-commute, simp add: analz-mpair analz-simp-insert-2
        del:Un-insert-right Un-subset-iff semilattice-sup-class.sup.bounded-iff,
            subst (2 4) insert-commute, subst analz-auth-data-out [OF O P],
            subst analz-auth-data-out [OF S T])
        qed (simp add: H J K)
        qed
    next
        assume L: Key (invK (sesK (c*f))) & analz ?C
        hence Key (invK (sesK (c*f))) & analz ?B
        proof (simp add: invK-sesK, insert pr-sesk-user-1 [OF B C D,
        THEN pr-sesk-user-2 [OF B]])
        qed (rule notI, simp add: H, drule subsetD [OF G], simp)
        hence analz (insert (Crypt (sesK (c*f)) ?M') ?B) =
        insert (Crypt (sesK (c*f)) ?M') (analz ?B)
        by (simp add: analz-crypt-out)
        moreover have H\cupanalz (insert (Crypt (sesK (c*f)) ?M') ?C) =
            insert (Crypt (sesK (c*f)) ?M') (H \cup analz ?C)
            using L by (simp add: analz-crypt-out)
            ultimately show ?T
            using H by simp
        qed
    qed
next
    fix evsC5SAUmn run c f H
```

```
assume
    A: \H.H\subseteq range Key \cup range Pri-AgrK - U }
        analz }(H\cupA\cup\mathrm{ spies evsC5) = H}\cup\mathrm{ analz ( }A\cup\mathrm{ spies evsC5) and
    B:(evsC5,S,A,U)\in protocol and
    C: IntAgrK (S (User m, n, run)) = Some c and
    D: ExtAgrK (S (User m,n,run)) = Some f
let
    ?B=H\cupA\cup spies evsC5 and
    ?}C=A\cup\mathrm{ spies evsC5
show H\subseteqrange Key \cup range Pri-AgrK - U \longrightarrow
    analz (insert (Crypt (sesK (c*f)) (Passwd m)) ?B) =
    H\cupanalz (insert (Crypt (sesK (c*f)) (Passwd m)) ?C)
    (is - \longrightarrow?T)
proof (rule impI, cases Key (invK (sesK (c*f))) \in analz ?C)
    case True
    assume H\subseteq range Key U range Pri-AgrK - U
    with }A\mathrm{ have E: analz ?B = H U analz ?C ..
    have Key (invK (sesK (c*f)))\in analz ?B
    by (rule subsetD [OF - True], rule analz-mono, blast)
    hence analz (insert (Crypt (sesK (c*f)) (Passwd m)) ?B) =
    insert (Crypt (sesK (c*f)) (Passwd m)) (insert (Passwd m) (analz ?B))
    by (simp add: analz-crypt-in analz-simp-insert-2)
    moreover have H\cupanalz (insert (Crypt (sesK (c*f)) (Passwd m)) ?C) =
        insert (Crypt (sesK (c*f)) (Passwd m)) (insert (Passwd m) (H\cupanalz
?C))
    using True by (simp add: analz-crypt-in analz-simp-insert-2)
    ultimately show ?T
    using E by simp
next
    case False
    moreover assume E:H\subseteq range Key \cup range Pri-AgrK - U
    with }A\mathrm{ have F: analz ? B = H U analz ?C ..
    ultimately have Key (invK (sesK (c*f))) & analz ?B
    proof (simp add: invK-sesK, insert pr-sesk-user-1 [OF B C D,
        THEN pr-sesk-user-2 [OF B]])
    qed (rule notI, drule subsetD [OF E], simp)
    hence analz (insert (Crypt (sesK (c*f)) (Passwd m)) ?B) =
        insert (Crypt (sesK (c*f)) (Passwd m)) (analz ?B)
    by (simp add: analz-crypt-out)
    moreover have H\cup analz (insert (Crypt (sesK (c*f)) (Passwd m)) ?C)=
        insert (Crypt (sesK (c*f)) (Passwd m)) (H\cupanalz ?C)
    using False by (simp add: analz-crypt-out)
    ultimately show ?T
    using F by simp
qed
next
fix evsFC5 S A U n run d e H
assume
    A: \H.H\subseteqrange Key \cup range Pri-AgrK - U \longrightarrow
```

```
        analz (H\cupA\cup spies evsFC5) = H\cup analz ( }A\cup\mathrm{ spies evsFC5) and
    B:(evsFC5,S,A,U)\in protocol and
    C: IntAgrK (S (Card n, n, run)) = Some d and
    D: ExtAgrK (S (Card n, n, run)) = Some e
    let
        ?B}=H\cupA\cup\mathrm{ spies evsFC5 and
    ?C=A\cup spies evsFC5
    show H\subseteq range Key \cup range Pri-AgrK - U \longrightarrow
    analz (insert (Crypt (sesK (d*e)) (Passwd n)) ?B) =
    H\cup analz (insert (Crypt (sesK (d*e)) (Passwd n)) ?C)
    (is - \longrightarrow?T)
proof (rule impI, cases Key (invK (sesK (d*e))) \in analz ?C)
    case True
    assume H\subseteq range Key \cup range Pri-AgrK - U
    with A have E: analz ?B = H\cup analz ?C ..
    have Key (invK (sesK (d*e))) \in analz ?B
        by (rule subsetD [OF - True], rule analz-mono, blast)
    hence analz (insert (Crypt (sesK (d*e)) (Passwd n)) ?B) =
        insert (Crypt (sesK (d*e)) (Passwd n)) (insert (Passwd n) (analz ?B))
        by (simp add: analz-crypt-in analz-simp-insert-2)
    moreover have H\cupanalz (insert (Crypt (sesK (d*e)) (Passwd n)) ?C) =
        insert (Crypt (sesK (d*e)) (Passwd n)) (insert (Passwd n) (H\cup analz ?C))
        using True by (simp add: analz-crypt-in analz-simp-insert-2)
        ultimately show ?T
        using E by simp
    next
    case False
    moreover assume E:H\subseteq range Key \cup range Pri-AgrK - U
    with }A\mathrm{ have F: analz ? B=H U analz ?C ..
    ultimately have Key (invK (sesK (d*e))) & analz ?B
    proof (simp add: invK-sesK, insert pr-sesk-card [OF B C D])
    qed (rule notI, drule subsetD [OF E], simp)
    hence analz (insert (Crypt (sesK (d*e)) (Passwd n)) ?B) =
        insert (Crypt (sesK (d*e)) (Passwd n)) (analz ?B)
        by (simp add: analz-crypt-out)
    moreover have H\cup analz (insert (Crypt (sesK (d*e)) (Passwd n)) ?C) =
        insert (Crypt (sesK (d*e)) (Passwd n)) (H\cup analz ?C)
        using False by (simp add: analz-crypt-out)
    ultimately show ?T
        using F by simp
    qed
next
    fix evsR5 S A U n run d e H
    assume
        A: \H.H\subseteqrange Key \cup range Pri-AgrK - U }
        analz (H\cupA\cup spies evsR5) = H\cup\mathrm{ analz (A Uspies evsR5) and}
        B:(evsR5,S,A,U)\in protocol and
        C: IntAgrK (S (Card n, n, run)) = Some d and
    D: ExtAgrK (S (Card n, n, run)) = Some e
```

```
let
    ? B=H\cupA\cup spies evsR5 and
    ?C=A\cup spies evsR5
    show H\subseteq range Key \cup range Pri-AgrK - U \longrightarrow
    analz (insert (Crypt (sesK (d*e)) (Number 0)) (H\cupA\cup spies evsR5)) =
    H\cupanalz (insert (Crypt (sesK (d*e)) (Number 0)) (A\cup spies evsR5))
    (is - \longrightarrow?T)
proof (rule impI, cases Key (invK (sesK (d*e))) \in analz ?C)
    case True
    assume H\subseteq range Key \cup range Pri-AgrK - U
    with }A\mathrm{ have E: analz ? B = H U analz ?C ..
    have Key (invK (sesK (d*e))) \in analz ?B
    by (rule subsetD [OF - True], rule analz-mono, blast)
    hence analz (insert (Crypt (sesK (d*e)) (Number 0)) ?B) =
        insert (Crypt (sesK (d*e)) (Number 0)) (insert (Number 0) (analz ?B))
    by (simp add: analz-crypt-in analz-simp-insert-2)
    moreover have H\cupanalz (insert (Crypt (sesK (d*e)) (Number 0)) ?C) =
        insert (Crypt (sesK (d*e)) (Number 0)) (insert (Number 0) (H\cupanalz
?C))
    using True by (simp add: analz-crypt-in analz-simp-insert-2)
    ultimately show ?T
    using E by simp
next
    case False
    moreover assume E:H\subseteqrange Key \cup range Pri-AgrK - U
    with A have F: analz ?B = H\cup analz ?C ..
    ultimately have Key (invK (sesK (d*e))) & analz ?B
    proof (simp add: invK-sesK, insert pr-sesk-card [OF B C D])
    qed (rule notI, drule subsetD [OF E], simp)
    hence analz (insert (Crypt (sesK (d*e)) (Number 0)) ?B) =
        insert (Crypt (sesK (d*e)) (Number 0)) (analz ?B)
        by (simp add: analz-crypt-out)
    moreover have H\cupanalz (insert (Crypt (sesK (d*e)) (Number 0)) ?C) =
        insert (Crypt (sesK (d*e)) (Number 0)) (H\cup analz ?C)
        using False by (simp add: analz-crypt-out)
    ultimately show ?T
        using F by simp
    qed
next
    fix evsFR5S A Umn run c f H
    assume
        A: \H.H\subseteqrange Key \cup range Pri-AgrK - U \longrightarrow
            analz (H\cupA\cup spies evsFR5) = H\cup\operatorname{analz}(A\cup spies evsFR5) and
        B:(evsFR5,S,A,U) \in protocol and
        C:IntAgrK (S (User m, n, run)) = Some c and
        D: ExtAgrK (S (User m, n, run))=Some f
let
    ?B=H\cupA\cup spies evsFR5 and
    ?}C=A\cup\mathrm{ spies evsFR5
```

```
show H\subseteq range Key \cup range Pri-AgrK - U \longrightarrow
    analz (insert (Crypt (sesK (c*f)) (Number 0)) (H\cupA\cup spies evsFR5))}
    H\cup\operatorname{analz (insert (Crypt (sesK (c*f)) (Number 0)) (A\cup spies evsFR5))}
    (is - \longrightarrow?T)
proof (rule impI, cases Key (invK (sesK (c*f))) \in analz ?C)
    case True
    assume H\subseteq range Key \cup range Pri-AgrK - U
    with }A\mathrm{ have E: analz ? B = H U analz ?C ..
    have Key (invK (sesK (c*f))) \in analz ?B
    by (rule subsetD [OF - True], rule analz-mono, blast)
    hence analz (insert (Crypt (sesK (c*f)) (Number 0)) ?B) =
        insert (Crypt (sesK (c*f)) (Number 0)) (insert (Number 0) (analz ?B))
    by (simp add: analz-crypt-in analz-simp-insert-2)
    moreover have H\cupanalz (insert (Crypt (sesK (c*f)) (Number 0)) ?C) =
        insert (Crypt (sesK (c *f)) (Number 0)) (insert (Number 0) (H \cup analz
?C))
    using True by (simp add: analz-crypt-in analz-simp-insert-2)
    ultimately show ?T
    using E by simp
next
    case False
    moreover assume E:H\subseteq range Key \cup range Pri-AgrK - U
    with }A\mathrm{ have }F\mathrm{ : analz ? B=H U analz ?C ..
    ultimately have Key (invK (sesK (c*f))) # analz ?B
    proof (simp add: invK-sesK, insert pr-sesk-user-1 [OF B C D,
        THEN pr-sesk-user-2 [OF B]])
    qed (rule notI, drule subsetD [OF E], simp)
    hence analz (insert (Crypt (sesK (c*f)) (Number 0)) ?B) =
        insert (Crypt (sesK (c*f)) (Number 0)) (analz ?B)
    by (simp add: analz-crypt-out)
    moreover have H\cup analz (insert (Crypt (sesK (c*f)) (Number 0)) ?C) =
        insert (Crypt (sesK (c*f)) (Number 0)) (H \cup analz ?C)
        using False by (simp add: analz-crypt-out)
    ultimately show ?T
    using F by simp
qed
qed
lemma pr-key-unused:
(evs,S,A,U) \in protocol \Longrightarrow
    Key K\not\inU\Longrightarrow
analz (insert (Key K) (A\cup spies evs ))}
    insert (Key K) (analz ( }A\cup\mathrm{ spies evs))
by (simp only: insert-def Un-assoc [symmetric], rule pr-key-set-unused, simp-all)
lemma pr-pri-agrk-unused:
```

```
(evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
```

(evs, $S, A, U) \in$ protocol \Longrightarrow
Pri-AgrK $x \notin U \Longrightarrow$
Pri-AgrK $x \notin U \Longrightarrow$
analz $($ insert $($ Pri-AgrK $x)(A \cup$ spies evs $))=$

```
analz \((\) insert \((\) Pri-AgrK \(x)(A \cup\) spies evs \())=\)
```

```
    insert (Pri-AgrK x) (analz (A U spies evs))
by (simp only: insert-def Un-assoc [symmetric], rule pr-key-set-unused, simp-all)
lemma pr-pri-agrk-analz-intro [rule-format]:
    (evs,S,A,U) \in protocol \Longrightarrow
        Pri-AgrK x analz ( }A\cup\mathrm{ spies evs )}
    Pri-AgrK x \inA
proof (erule protocol.induct, subst analz-simp, simp, blast,
    simp-all add: analz-simp-insert-2 pr-key-unused pr-pri-agrk-unused,
    rule conjI, rule-tac [1-2] impI, rule-tac [!] impI)
    fix evsR1 S A Un s
    assume
        A:Pri-AgrK x analz (A\cup spies evsR1) \longrightarrowPri-AgrK x A A
        (is - \in analz ?A \longrightarrow-) and
        B:(evsR1,S,A,U)\in protocol and
        C:n\in bad and
        D: Pri-AgrK x G analz (insert (Crypt (symK n) (Pri-AgrK s))
        (insert (Pri-AgrK s) (A \ spies evsR1))) and
    E: Pri-AgrK s\not\inU
    have Key (symK n)\in analz ?A
    using B and C by (simp add: pr-symk-analz)
    hence Key (invK (symK n)) \in analz ?A
    by (simp add: invK-symK)
    hence Key (invK (symK n)) \in analz (insert (Pri-AgrK s) ?A)
    using B and E by (simp add: pr-pri-agrk-unused)
    hence Pri-AgrK x G analz (insert (Pri-AgrK s) ?A)
    using D by (simp add: analz-crypt-in)
    hence }x=s\vee\mathrm{ Pri-AgrK x analz ?A
    using }B\mathrm{ and E by (simp add: pr-pri-agrk-unused)
    thus }x=s\vee\mathrm{ Pri-AgrK }x\in
    using A by blast
next
    fix evsR1 SAUn s
    assume
        A: Pri-AgrK x analz (A\cup spies evsR1) \longrightarrowPri-AgrK x 
        (is - \in analz ?A \longrightarrow-) and
        B:(evsR1,S,A,U)\in protocol and
        C:n\not\in bad and
        D: Pri-AgrK x G analz (insert (Crypt (symK n) (Pri-AgrK s))
        (A\cup spies evsR1))
    have Key (symK n) }\not=\mathrm{ analz ?A
        using B and C by (simp add: pr-symk-analz)
    hence Key (invK (symK n)) & analz ?A
    by (simp add: invK-symK)
    hence Pri-AgrK x f analz ?A
    using D by (simp add: analz-crypt-out)
    with A show Pri-AgrK x \in A ..
next
    fix evsFR1 A m s
```

```
assume
    A: Pri-AgrK x analz (A\cup spies evsFR1) }\longrightarrow\mathrm{ Pri-AgrK x }\in
        (is - \in analz ?A \longrightarrow -) and
    B:Crypt (symK m) (Pri-AgrK s) \in synth (analz (A\cup spies evsFR1)) and
    C: Pri-AgrK x G analz (insert (Crypt (symK m) (Pri-AgrK s))
        (A\cup spies evsFR1))
show Pri-AgrK x }\in
proof (cases Key (invK (symK m)) \in analz ?A)
    case True
    have Crypt (symK m) (Pri-AgrK s) \in analz ?A \vee
        Pri-AgrK s \in synth (analz ?A) ^ Key (symK m) \in analz ?A
    using B by (rule synth-crypt)
    moreover {
        assume Crypt (symK m)(Pri-AgrK s)\in analz ?A
        hence Pri-AgrK s \in analz ?A
        using True by (rule analz.Decrypt)
    }
    moreover {
        assume Pri-AgrK s \in synth (analz ?A) ^ Key (symK m) \in analz ?A
        hence Pri-AgrK s\in synth (analz ?A) ..
        hence Pri-AgrK s\in analz ?A
        by (rule synth-simp-intro, simp)
    }
    ultimately have Pri-AgrK s \in analz ?A ..
    moreover have Pri-AgrK x analz (insert (Pri-AgrK s) ?A)
    using C and True by (simp add: analz-crypt-in)
    ultimately have Pri-AgrK x G analz ?A
    by (simp add: analz-simp-insert-1)
    with A show ?thesis ..
next
    case False
    hence Pri-AgrK x G analz ?A
    using C by (simp add: analz-crypt-out)
    with }A\mathrm{ show ?thesis ..
    qed
next
    fix evsC4 A cf
    assume
    A: Pri-AgrK x analz (A\cup spies evsC4) \longrightarrowPri-AgrK x 
        (is - \in analz ?A \longrightarrow-) and
    B: Pri-AgrK x G analz (insert (Crypt (sesK (c*f)) (pubAKf))
        (A\cup spies evsC4))
    show Pri-AgrK x }\in
proof (cases Key (invK (sesK (c*f))) \in analz ?A)
    case True
    hence Pri-AgrK x analz ?A
        using B by (simp add: analz-crypt-in analz-simp-insert-2)
    with A show ?thesis ..
next
```

```
    case False
    hence Pri-AgrK x G analz ?A
    using B by (simp add: analz-crypt-out)
    with }A\mathrm{ show ?thesis ..
    qed
next
    fix evsFC4 A s a b de
    assume
        A: Pri-AgrK x G analz (A\cup spies evsFC4) }\longrightarrow\mathrm{ Pri-AgrK x }\in
            (is - \epsilon analz ?A \longrightarrow -) and
            B: Pri-AgrK x G analz (insert (Crypt (sesK (d*e)) (pubAK (d* (s+a*
b))))
    (A\cup spies evsFC4))
    show Pri-AgrK x }\in
    proof (cases Key (invK (sesK (d*e))) \in analz ?A)
        case True
        hence Pri-AgrK x f analz ?A
        using B by (simp add: analz-crypt-in analz-simp-insert-2)
        with A show ?thesis ..
    next
        case False
        hence Pri-AgrK x G analz ?A
        using B by (simp add: analz-crypt-out)
        with A show ?thesis ..
    qed
next
    fix evsR4 S A U n run b d e
    let
        ?H}=\operatorname{Hash}(\mathrm{ pubAK (priAK n)) and
        ?M = {pubAK (priAK n), Crypt (priSK CA) (Hash (pubAK (priAK n)))} and
        ?M'}={pubAK e, Auth-Data (priAK n) b, pubAK (priAK n)
            Crypt (priSK CA) (Hash (pubAK (priAK n)))}
    assume
```



```
            (is - \in analz ?A \longrightarrow -) and
        B:(evsR4,S,A,U)\in protocol and
        C:IntMapK (S (Card n, n, run)) = Some b and
        D: Pri-AgrK x analz (insert (Crypt (sesK (d*e)) ?M')
            (A\cup spies evsR4))
    show Pri-AgrK x \inA
    proof (cases Key (invK (sesK (d*e))) \in analz ?A)
    case True
    have Key (pubSK CA) \in analz ?A
        using B by (rule pr-valid-key-analz)
    hence E: analz (insert (Crypt (priSK CA) ?H) ?A) =
        {Crypt (priSK CA) ?H, ?H} \cup analz ?A
        by (simp add: analz-crypt-in analz-simp-insert-2)
    have Pri-AgrK (priAK n) & analz ?A
        using B by (rule pr-auth-key-analz)
```

```
    hence F: Pri-AgrK (priAK n) & analz (insert (Crypt (priSK CA) ?H) ?A)
    using E by simp
    have Pri-AgrK b # analz ?A
        using B and C by (rule pr-int-mapk-analz)
    hence G: Pri-AgrK b & analz (insert (Crypt (priSK CA) ?H) ?A)
    using E by simp
    have Pri-AgrK x analz (insert ?M' ?A)
    using D and True by (simp add: analz-crypt-in)
    hence Pri-AgrK x analz (insert (Auth-Data (priAK n) b) (insert ?M ?A))
    by (simp add: analz-mpair analz-simp-insert-2)
    hence Pri-AgrK x G analz ?A
    proof (subst (asm) insert-commute, simp add: analz-mpair analz-simp-insert-2
        del: Un-insert-right, subst (asm) insert-commute,
        subst (asm) analz-auth-data-out [OF F G])
    qed (simp add: E)
    with A show ?thesis ..
    next
    case False
    hence Pri-AgrK x G analz ?A
    using D by (simp add: analz-crypt-out)
    with A show ?thesis ..
    qed
next
    fix evsFR4}SAUmn run s a b cfg
    let
        ?H}=Hash (pubAKg) and
        ?M = {pubAK g, Crypt (priSK CA) (Hash (pubAK g))} and
    ?M' = {pubAK (c*(s+a*b)), Auth-Data g b, pubAK g,
        Crypt (priSK CA) (Hash (pubAKg))}
    assume
        A: Pri-AgrK x G analz (A\cup spies evsFR4) }\longrightarrow\mathrm{ Pri-AgrK x }\in
        (is - \in analz ?A \longrightarrow -) and
    B:(evsFR4, S,A,U)\in protocol and
    C:Crypt (sesK (c*f)) ?M' \in synth (analz (A\cup spies evsFR4)) and
    D: Pri-AgrK x analz (insert (Crypt (sesK (c*f)) ?M')
        (A\cup spies evsFR4))
    have E:
    Key (invK (sesK (c*f))) \in analz ?A \longrightarrow
        Pri-AgrK b \in analz ?A \vee Pri-AgrK g \in analz ?A }
    Pri-AgrK b \in analz ?A ^ Pri-AgrK g \in analz ?A
    (is ?P\longrightarrow??Q\longrightarrow? R)
proof (rule impI)+
    assume ?P and ?Q
    have Crypt (sesK (c*f))?M'\in analz ?A \vee
        ?M'}\in\operatorname{synth}(\mathrm{ analz ?A) }\wedge Key (sesK (c*f))\in analz ?A 
    using C by (rule synth-crypt)
    moreover {
        assume Crypt (sesK (c*f)) ?M' }\mp@subsup{M}{}{\prime}\mathrm{ analz ?A
        hence ?M' }\in\mathrm{ analz ?A
```

```
    using <?P> by (rule analz.Decrypt)
    hence {Auth-Data g b, pubAK g, Crypt (priSK CA) (Hash (pubAK g))}
    \in analz ?A
    by (rule analz.Snd)
    hence F: Auth-Data g b G analz?A
    by (rule analz.Fst)
have ?R
proof (rule disjE [OF〈?Q>])
    assume Pri-AgrK b G analz ?A
    moreover from this have Pri-AgrK g}\in\mathrm{ analz ?A
        by (rule analz.Auth-Fst [OF F])
    ultimately show ?R ..
next
    assume Pri-AgrK g}\in\mathrm{ analz ?A
    moreover from this have Pri-AgrK b\in analz ?A
        by (rule analz.Auth-Snd [OF F])
    ultimately show ?R
    by simp
    qed
}
moreover {
    assume ?M' }\in\mathrm{ synth (analz ?A) ^ Key (sesK (c*f)) G analz ?A
    hence ?M' \in synth (analz ?A) ..
    hence {Auth-Data g b, pubAK g, Crypt (priSK CA) (Hash (pubAK g))}
        < synth (analz ?A)
    by (rule synth-analz-snd)
    hence Auth-Data g b \in synth (analz ?A)
    by (rule synth-analz-fst)
hence Auth-Data g b analz?A \vee
    Pri-AgrK g \in analz ?A ^ Pri-AgrK b \in analz ?A
    by (rule synth-auth-data)
    moreover {
    assume F:Auth-Data g b \in analz ?A
    have ?R
    proof (rule disjE [OF〈?Q>])
        assume Pri-AgrK b \in analz ?A
        moreover from this have Pri-AgrK g\in analz ?A
            by (rule analz.Auth-Fst [OF F])
        ultimately show ?R ..
    next
        assume Pri-AgrK g}\in\mathrm{ analz ?A
        moreover from this have Pri-AgrK b G analz ?A
            by (rule analz.Auth-Snd [OF F])
        ultimately show ?R
            by simp
    qed
}
moreover {
    assume Pri-AgrK g \in analz ?A ^ Pri-AgrK b \in analz ?A
```

```
        hence ?R
            by simp
    }
    ultimately have ?R ..
    }
    ultimately show ?R ..
qed
show Pri-AgrK x }\in
proof (cases Key (invK (sesK (c*f))) \in analz ?A)
    case True
    have Key (pubSK CA) \in analz ?A
    using B by (rule pr-valid-key-analz)
    hence F: analz (insert (Crypt (priSK CA) ?H) ?A) =
        {Crypt (priSK CA) ?H, ?H} \cup analz ?A
    by (simp add: analz-crypt-in analz-simp-insert-2)
show ?thesis
proof (cases Pri-AgrK g \in analz ?A \vee Pri-AgrK b \in analz ?A, simp-all)
    assume G: Pri-AgrK g\in analz ?A \vee Pri-AgrK b \in analz ?A
    hence H: Pri-AgrK g Ganalz (insert (Crypt (priSK CA) ?H) ?A) V
        Pri-AgrK b G analz (insert (Crypt (priSK CA) ?H) ?A)
        using F by simp
    have I: Pri-AgrK b G analz ?A ^ Pri-AgrK g \in analz ?A
        using E and G and True by blast
    hence Pri-AgrK g G analz (insert (Crypt (priSK CA) ?H) ?A)
        using F by simp
    hence J: Pri-AgrK g G analz (insert (Pri-AgrK b)
        (insert (Crypt (priSK CA) ?H) ?A))
        by (rule rev-subsetD, rule-tac analz-mono, blast)
    have K: Pri-AgrK b G analz (insert (Crypt (priSK CA) ?H) ?A)
        using F and I by simp
    have Pri-AgrK x analz (insert ?M' ?A)
        using D and True by (simp add: analz-crypt-in)
    hence Pri-AgrK x G analz (insert (Auth-Data g b) (insert ?M ?A))
    by (simp add: analz-mpair analz-simp-insert-2)
    hence Pri-AgrK x analz ?A
proof (subst (asm) insert-commute, simp add: analz-mpair analz-simp-insert-2
    del: Un-insert-right, subst (asm) insert-commute,
    subst (asm) analz-auth-data-in [OF H], simp del: Un-insert-right)
        assume Pri-AgrK x G analz (insert (Pri-AgrK g) (insert (Pri-AgrK b)
            (insert (Crypt (priSK CA) ?H) ?A)))
        thus ?thesis
        proof (subst (asm) analz-simp-insert-1 [OF J],
            subst (asm) analz-simp-insert-1 [OF K])
        qed (simp add: F)
    qed
    with A show ?thesis ..
next
    assume G: Pri-AgrK g & analz ?A ^ Pri-AgrK b & analz ?A
    hence H: Pri-AgrK g & analz (insert (Crypt (priSK CA) ?H) ?A)
```

```
        using F by simp
        have I: Pri-AgrK b & analz (insert (Crypt (priSK CA) ?H) ?A)
        using F and G by simp
        have Pri-AgrK x G analz (insert ?M' ?A)
        using D and True by (simp add: analz-crypt-in)
        hence Pri-AgrK x G analz (insert (Auth-Data g b) (insert ?M ?A))
            by (simp add: analz-mpair analz-simp-insert-2)
            hence Pri-AgrK x G analz ?A
    proof (subst (asm) insert-commute, simp add: analz-mpair analz-simp-insert-2
            del: Un-insert-right, subst (asm) insert-commute,
            subst (asm) analz-auth-data-out [OF H I])
            qed (simp add: F)
            with A show ?thesis ..
        qed
    next
    case False
    hence Pri-AgrK x G analz ?A
        using D by (simp add: analz-crypt-out)
    with A show ?thesis ..
    qed
next
fix evsC5 A mcf
assume
    A: Pri-AgrK x f analz (A\cup spies evsC5) \longrightarrowPri-AgrK x }\in
        (is - \in analz ?A \longrightarrow-) and
    B: Pri-AgrK x analz (insert (Crypt (sesK (c*f)) (Passwd m))
        (A\cup spies evsC5))
    show Pri-AgrK x \in A
    proof (cases Key (invK (sesK (c*f))) \in analz ?A)
        case True
```



```
        using B by (simp add: analz-crypt-in analz-simp-insert-2)
    with }A\mathrm{ show ?thesis ..
next
    case False
    hence Pri-AgrK x analz ?A
        using B by (simp add: analz-crypt-out)
    with }A\mathrm{ show ?thesis ..
    qed
next
    fix evsFC5 A n d e
    assume
        A: Pri-AgrK x analz (A\cup spies evsFC5) \longrightarrowPri-AgrK x }\in
        (is - }\in\mathrm{ analz ?A }\longrightarrow -) and
    B: Pri-AgrK x analz (insert (Crypt (sesK (d*e)) (Passwd n))
        (A\cup spies evsFC5))
    show Pri-AgrK x }\in
    proof (cases Key (invK (sesK (d*e))) \in analz ?A)
    case True
```

```
    hence Pri-AgrK x G analz ?A
    using B by (simp add: analz-crypt-in analz-simp-insert-2)
    with A show ?thesis ..
    next
    case False
    hence Pri-AgrK x G analz ?A
    using B by (simp add: analz-crypt-out)
    with A show ?thesis ..
    qed
next
    fix evsR5 A d e
    assume
    A: Pri-AgrK x analz (A\cup spies evsR5) \longrightarrowPri-AgrK x }\in
        (is - \in analz ?A \longrightarrow-) and
    B: Pri-AgrK x G analz (insert (Crypt (sesK (d*e)) (Number 0))
        (A\cup spies evsR5))
    show Pri-AgrK x \in A
    proof (cases Key (invK (sesK (d*e))) \in analz ?A)
        case True
        hence Pri-AgrK x G analz ?A
        using B by (simp add: analz-crypt-in analz-simp-insert-2)
        with }A\mathrm{ show ?thesis ..
    next
        case False
        hence Pri-AgrK x G analz ?A
        using B by (simp add: analz-crypt-out)
        with }A\mathrm{ show ?thesis ..
    qed
next
    fix evsFR5 A cf
    assume
        A: Pri-AgrK x analz (A\cup spies evsFR5) \longrightarrowPri-AgrK x A A
            (is - \in analz ?A \longrightarrow -) and
        B: Pri-AgrK x analz (insert (Crypt (sesK (c*f)) (Number 0))
            (A\cup spies evsFR5))
    show Pri-AgrK x }\in
    proof (cases Key (invK (sesK (c*f))) \in analz ?A)
        case True
        hence Pri-AgrK x G analz ?A
            using B by (simp add: analz-crypt-in analz-simp-insert-2)
            with A show ?thesis ..
    next
        case False
        hence Pri-AgrK x G analz ?A
            using }B\mathrm{ by (simp add: analz-crypt-out)
        with A show ?thesis ..
    qed
qed
```

```
lemma pr-pri-agrk-analz:
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
    \((\) Pri-AgrK \(x \in \operatorname{analz}(A \cup\) spies evs \())=(\) Pri-AgrK \(x \in A)\)
proof (rule iffI, erule pr-pri-agrk-analz-intro, assumption)
qed (rule subsetD [OF analz-subset], simp)
lemma pr-ext-agrk-user-1 [rule-format]:
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
        User \(m \neq S p y \longrightarrow\)
        Says \(n\) run \(4(\) User \(m)(\) Card \(n)(\) Crypt \((\) sesK K) \()(\) pubAK e) \() \in\) set evs \(\longrightarrow\)
    ExtAgrK \((S(\) User \(m, n\), run \()) \neq\) None
by (erule protocol.induct, simp-all, (rule-tac [!] impI)+, simp-all)
lemma pr-ext-agrk-user-2 [rule-format]:
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
        User \(m \neq\) Spy \(\longrightarrow\)
        Says \(n\) run \(4 X(\) User m) (Crypt (sesK K)
        \(\{p u b A K e, A u t h-D a t a x y, p u b A K g, C r y p t(p r i S K C A)(H a s h(p u b A K g))\})\)
        \(\in\) set evs \(\longrightarrow\)
    ExtAgrK \((S(\) User \(m, n\), run \()) \neq\) None
using [[simproc del: defined-all]] proof (erule protocol.induct, simp-all, (rule-tac
[!] impI)+, simp-all,
    (erule conjE)+)
    fix evs \(S A U n\) run \(s a b d e X\)
    assume (evs, \(S, A, U) \in\) protocol
    moreover assume \(0<m\)
    hence User \(m \neq\) Spy
        by simp
    moreover assume \(A\) : User \(m=X\) and
        Says \(n\) run \(4 X(\) Card \(n)(\) Crypt \((\operatorname{sesK}(d * e))\)
        \((\operatorname{pubAK}(d *(s+a * b)))) \in\) set evs
    hence Says \(n\) run 4 (User m) (Card \(n)(\operatorname{Crypt}(\operatorname{sesK}(d * e))\)
        \((\operatorname{pubAK}(d *(s+a * b)))) \in\) set evs
        by \(\operatorname{simp}\)
        ultimately have ExtAgrK \((S(\) User \(m, n\), run \()) \neq\) None
        by (rule pr-ext-agrk-user-1)
        thus \(\exists e\). ExtAgrK \((S(X, n\), run \())=\) Some \(e\)
        using \(A\) by simp
qed
lemma pr-ext-agrk-user-3 [rule-format]:
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
    User \(m \neq\) Spy \(\longrightarrow\)
    ExtAgrK \((S(\) User \(m, n\), run \())=\) Some \(e \longrightarrow\)
    Says \(n\) run \(4(\) User \(m)(\) Card \(n)\left(\right.\) Crypt \((\) sesK K \()\left(\right.\) pubAK \(\left.\left.e^{\prime}\right)\right) \in\) set evs \(\longrightarrow\)
    \(e^{\prime}=e\)
proof (erule protocol.induct, simp-all, (rule conjI, (rule-tac [!] impI)+)+,
    (erule conjE)+, simp-all)
    assume agrK \(e^{\prime}=\operatorname{agrK} e\)
```

```
    with agrK-inj show es}=
    by (rule injD)
next
    fix evsC4 SA U n run and m :: nat
    assume (evsC4,S,A,U)\in protocol
    moreover assume 0<m
    hence User m}\not=\mathrm{ Spy
    by simp
    moreover assume
    Says n run 4 (User m) (Card n) (Crypt (sesK K) (pubAK e')) \in set evsC4
    ultimately have ExtAgrK (S (User m, n, run)) = None
    by (rule pr-ext-agrk-user-1)
    moreover assume ExtAgrK (S (User m, n, run)) = None
    ultimately show }\mp@subsup{e}{}{\prime}=
    by contradiction
qed
lemma pr-ext-agrk-user-4 [rule-format]:
    (evs,S,A,U) \in protocol \Longrightarrow
    ExtAgrK (S (User m,n,run)) = Some f }
    ( }\exists\mathrm{ X. Says n run 3 X (User m) (pubAKf) G set evs)
proof (erule protocol.induct, simp-all, rule-tac [!] impI, rule-tac [1-2] impI,
    rule-tac [5] impI, simp-all)
qed blast+
declare fun-upd-apply [simp del]
lemma pr-ext-agrk-user-5 [rule-format]
    (evs, S,A,U) \in protocol }
    Says n run 3 X (User m) (pubAKf) \in set evs }
    (\existssabd.f=d*(s+a*b)^
    NonceS (S (Card n, n, run)) = Some s ^
    IntMapK (S (Card n, n, run)) = Some b ^
    ExtMapK (S (Card n, n, run)) = Some a ^
    IntAgrK (S (Card n, n, run)) = Some d ^
    d\not=0\wedges+a*b\not=0)\vee
    (\existsb. Pri-AgrK b\inA^
    ExtMapK (S (User m, n, run)) = Some b)
    (is - \Longrightarrow?H evs \longrightarrow?P S n run \vee ?Q S A n run)
apply (erule protocol.induct, simp-all add: pr-pri-agrk-analz)
    apply (rule conjI)
    apply (rule-tac [1-2] impI)+
    apply (rule-tac [3] conjI, (rule-tac [3] impI)+)+
                apply (rule-tac [4] impI)+
                apply ((rule-tac [5] impI)+, (rule-tac [5] conjI)?)+
                    apply (rule-tac [6] impI)+
                apply ((rule-tac [7] impI)+,(rule-tac [7] conjI)?)+
                    apply (rule-tac [8] impI)+
                    apply ((rule-tac [9] impI)+,(rule-tac [9] conjI)?)+
```

```
apply (rule-tac [10] impI)+
apply (rule-tac [11] impI)+
apply (rule-tac [12] conjI, (rule-tac [12] impI)+)+
apply (rule-tac [13] impI)+
apply (rule-tac [14] conjI, (rule-tac [14] impI)+)+
    apply (erule-tac [14] conjE)+
    apply (rule-tac [15] impI)+
    apply ((rule-tac [16] impI)+, (rule-tac [16] conjI)?)+
    apply (erule-tac [16] conjE)+
    apply (rule-tac [17-18] impI)
proof -
    fix evsR1 S A U s n'run'
    assume
        ?H evsR1 \longrightarrow?P S n run \vee?Q S A n run and
        ?H evsR1
    hence A: ?P S n run \vee ?Q S A n run ..
    assume B: NonceS (S (Card n', n', run')) = None
    let ?S =S((Card n', n',run'):=S (Card n', n',run')
        (NonceS := Some s|))
    show ?P ?S n run V
        (\existsb. (b=s\vee Pri-AgrK b\inA)^ExtMapK (?S (User m, n, run)) = Some b)
    proof (rule disjE [OF A], rule disjI1, simp add: fun-upd-apply, rule impI, simp
add: B)
    qed (rule disjI2, simp add: fun-upd-apply, blast)
next
    fix evsR1 S A U s n'run'
    assume
        ?H evsR1 \longrightarrow?P S n run \vee?Q S A n run and
        ?H evsR1
    hence A:?P S n run \vee ?Q S A n run ..
    assume B: NonceS (S (Card n', n',run')) = None
    let ?S =S((Card n', n',run'):=S (Card n', n',run')
        (NonceS := Some s|))
    show ?P ?S n run \vee ?Q ?S A n run
    proof (rule disjE [OF A], rule disjI1, simp add: fun-upd-apply, rule impI, simp
add: B)
    qed (rule disjI2, simp add: fun-upd-apply)
next
    fix evsC2 S A U s a n'run'
    assume
        ?H evsC2 \longrightarrow?P S n run \vee?Q S A n run and
        ?H evsC2
    hence A: ?P S n run \vee ?Q S A n run ..
    let ?S =S((Spy, n',run') :=S (Spy, n',run')
        (NonceS := Some s, IntMapK := Some a |)
    show ?P ?S n run V
        (\existsb. (b=a\vee Pri-AgrK b\inA)^ExtMapK (?S (User m,n,run)) = Some b)
    by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
```

fix evsC2 $S A U$ s a $m^{\prime} n^{\prime} r u n^{\prime}$

assume

?H evs $C 2 \longrightarrow$? $P S n$ run \vee ? $Q S A n$ run and
? H evsC2
hence A : ?P S n run \vee ? $Q S A$ n run ..
let ? $S=S\left(\left(\right.\right.$ User m^{\prime}, n^{\prime}, run $):=S\left(\right.$ User m^{\prime}, n^{\prime}, run $\left.{ }^{\prime}\right)$
(NonceS $:=$ Some s, IntMapK $:=$ Some al))
show ?P ? $S n$ run \vee ? Q ? $S A$ n run
by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
fix evsC2 S A U s a $n^{\prime} r u n^{\prime}$

assume

? H evsC2 \longrightarrow ? P S n run $\vee ? Q S A n$ run and
? H evsC2
hence A : ? $P S$ n run \vee ? $Q S A$ n run ..
let $? S=S\left(\left(S p y, n^{\prime}\right.\right.$, run $):=S\left(S p y, n^{\prime}, r u n^{\prime}\right)$
(NonceS $:=$ Some s, IntMapK $:=$ Some a |))
show ?P ?S n run \vee
$(\exists b .(b=a \vee \operatorname{Pri}-A g r K b \in A) \wedge \operatorname{ExtMapK}(? S($ User m, n, run $))=$ Some $b)$
by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
fix evsC2 $S A U s$ a $m^{\prime} n^{\prime} r u n^{\prime}$
assume
? H evsC2 \longrightarrow ? P S n run \vee ? $Q S A n$ run and
? H evsC2
hence A : ? $P S$ n run \vee ? $Q S A$ n run ..
let ? $S=S\left(\left(\right.\right.$ User m^{\prime}, n^{\prime}, run $\left.{ }^{\prime}\right):=S\left(\right.$ User m^{\prime}, n^{\prime}, run $\left.{ }^{\prime}\right)$
(NonceS $:=$ Some s, IntMapK $:=$ Some al))
show ?P ?S n run \vee ? Q ?S A n run
by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
fix evsC2 S A U s a $n^{\prime} r u n^{\prime}$
assume
?H evsC2 \longrightarrow ? P $S n$ run \vee ? $Q S A n$ run and
? H evsC2
hence A : ? $P S$ n run \vee ? $Q S A$ n run ..
let ? $S=S\left(\left(S p y, n^{\prime}\right.\right.$, run $\left.^{\prime}\right):=S\left(S p y, n^{\prime}\right.$, run $\left.{ }^{\prime}\right)$
(NonceS $:=$ Some s, IntMapK $:=$ Some a \mid)
show ? P ? S n run \vee
$(\exists b .(b=a \vee \operatorname{Pri}-A g r K b \in A) \wedge E x t M a p K(? S($ User m, n, run $))=$ Some $b)$
by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
fix evsC2 $S A U s$ a $m^{\prime} n^{\prime} r u n^{\prime}$
assume
? H evsC2 \longrightarrow ? P S n run $\vee ? Q S A n$ run and
? H evsC2
hence A : ? $P S$ n run \vee ? $Q S A$ n run ..
let $? S=S\left(\left(\right.\right.$ User m^{\prime}, n^{\prime}, run $):=S\left(\right.$ User m^{\prime}, n^{\prime}, run $\left.{ }^{\prime}\right)$
(NonceS $:=$ Some s, IntMapK $:=$ Some a |))

```
    show ?P ?S n run \vee ?Q ?S A n run
    by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
    fix evsC2 S A U s a n'run'
    assume
        ?H evsC2 \longrightarrow?P S n run \vee?Q S A n run and
    ?H evsC2
    hence A: ?P S n run \vee ?Q S A n run ..
    let ?S = S((Spy, n',run') := S (Spy, n',run')
        (NonceS := Some s, IntMapK := Some a|))
    show ?P ?S n run V
        (\existsb. (b=a\vee Pri-AgrK b\inA)^ExtMapK (?S (User m,n,run)) = Some b)
    by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
    fix evsC2 S A Us a m' n'run'
    assume
        ?H evsC2 \longrightarrow?P S n run \vee?Q S A n run and
        ?H evsC2
    hence A:?P S n run \vee ?Q S A n run ..
    let ?S = S((User m', n', run') := S (User m', n',run')
        (NonceS := Some s, IntMapK := Some a|)
    show ?P ?S n run \vee ?Q ?S A n run
    by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
    fix evsR2 S A U a b n'run'
    assume
        ?H evsR2 \longrightarrow?P S n run \vee?Q S A n run and
    ?H evsR2
    hence A: ?P S n run \vee ?Q S A n run ..
    assume B: IntMapK (S (Card n',}\mp@subsup{n}{}{\prime},\mathrm{ run')) = None
    let ?S =S((Card n', n', run') :=S (Card n', n',run')
            (IntMapK := Some b, ExtMapK := Some a|))
    show ?P ?S n run \vee ?Q ?S A n run
    proof (rule disjE [OF A], rule disjI1, simp add: fun-upd-apply, rule impI, simp
add: B)
    qed (rule disjI2, simp add: fun-upd-apply)
next
    fix evsC3 S A U b c m}\mp@subsup{}{\prime}{\prime}\mp@subsup{n}{}{\prime}run'
    assume
        ?H evsC3\longrightarrow?P S n run \vee?Q S A n run and
        ?H evsC3
    hence A: ?P S n run \vee ?Q S A n run ..
    assume
    ExtMapK (S (User m', n',run')) = None and
    m' = 0
    hence B: ExtMapK (S (Spy, n',run')) = None
    by simp
    let ?S = S((Spy, n',run') := S (Spy, n',run')
    (ExtMapK := Some b, IntAgrK := Some c|))
```

```
    show ?P ?S n run V
    (\existsb. (b=c\vee Pri-AgrK b\inA)^ExtMapK (?S (User m, n, run)) = Some b)
    proof (rule disjE [OF A], simp add: fun-upd-apply)
    qed (rule disjI2, simp add: fun-upd-apply, rule conjI, rule impI, simp add: B,
blast)
next
    fix evsC3 S A Ubcm'n'run'
    assume
        ?H evsC3 \longrightarrow?P S n run \vee ?Q S A n run and
    ?H evsC3
    hence A: ?P S n run \vee ?Q S A n run ..
    assume B: ExtMapK (S (User m', n',run')) = None
    let ?S = S((User m', n',run'):=S (User m', n',run')
    (ExtMapK := Some b, IntAgrK := Some c|)
    show ?P ?S n run \vee ?Q ?S A n run
    proof (rule disjE [OF A], simp add: fun-upd-apply)
    qed (rule disjI2, simp add: fun-upd-apply, rule impI, simp add: B)
next
    fix evsR3 A U s a b c d n'run' X and S :: state
    let ?S =S((Card n', n',run') := S (Card n', n',run')
        (IntAgrK := Some d, ExtAgrK := Some (c* (s+a*b))D)
    assume agrK f = agrK (d*(s+a*b))
    with agrK-inj have f=d*(s+a*b)
    by (rule injD)
    moreover assume
    NonceS (S (Card n', n',run')) = Some s and
    IntMapK (S (Card n', n', run')) = Some b and
    ExtMapK (S (Card n', n',run')) = Some a and
    d\not=0 and
    s+a*b\not=0
    ultimately show ?P ?S n' run'\vee
        (\existsb. Pri-AgrK b G A ^ExtMapK (?S (X, n',run')) = Some b)
    by (simp add: fun-upd-apply)
next
    fix evsR3 S A U s a b cd n'run'
    assume
        ?H evsR3 \longrightarrow?P S n run \vee ?Q S A n run and
        ?H evsR3
    hence A: ?P S n run \vee ?Q S A n run ..
    assume B: IntAgrK (S (Card n',}\mp@subsup{n}{}{\prime},run'))=Non
    let ?S =S((Card n', n',run') :=S (Card n', n',run')
            (IntAgrK := Some d, ExtAgrK := Some (c* (s+a*b))D)
    show ?P ?S n run \vee ?Q ?S A n run
    proof (rule disjE [OF A], rule disjI1, simp add: fun-upd-apply, rule impI, simp
add: B)
    qed (rule disjI2, simp add: fun-upd-apply)
next
    fix evsR3 A U s s'a b c d n' run' X and S :: state
    let ?S = S((Card n', n',run') :=S (Card n', n',run')
```

```
    \IntAgrK := Some d, ExtAgrK := Some (c* (s' + a*b))D)
    assume agrK f}=\operatorname{agrK}(d*(s+a*b)
    with agrK-inj have f=d*(s+a*b)
    by (rule injD)
    moreover assume
    NonceS (S (Card n', n',run')) = Some s and
    IntMapK (S (Card n', n', run')) = Some b and
    ExtMapK (S (Card n', n',run'))=Some a and
    d\not=0 and
    s+a*b\not=0
    ultimately show ?P ?S n' run'\vee
        (\existsb. Pri-AgrK b G A ^ExtMapK (?S (X, n',run')) = Some b)
    by (simp add: fun-upd-apply)
next
    fix evsR3 S A U s a b c d n'run'
    assume
        ?H evsR3\longrightarrow?P S n run \vee ?Q S A n run and
        ?H evsR3
    hence A: ?P S n run \vee ?Q S A n run ..
    assume B: IntAgrK (S (Card n', n',run')) = None
    let ?S =S((Card n', n',run') := S (Card n', n',run')
        (IntAgrK := Some d, ExtAgrK := Some (c* (s+a*b))D)
    show ?P ?S n run \vee ?Q ?S A n run
    proof (rule disjE [OF A], rule disjI1, simp add: fun-upd-apply, rule impI, simp
add: B)
    qed (rule disjI2, simp add: fun-upd-apply)
next
    fix evsC4 S A Ufm' n'run'
    assume
        ?H evsC4}\longrightarrow?PS n run \vee ?Q S A n run and
        ?H evsC4
    hence A: ?P S n run \vee ?Q S A n run ..
    let ?S = S((User m', n',run') := S (User m', n',run')
        (ExtAgrK := Some fD)
    show ?P ?S n run \vee ?Q ?S A n run
    by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
qed
declare fun-upd-apply [simp]
lemma pr-int-agrk-user-1 [rule-format]:
    (evs,S,A,U) \in protocol \Longrightarrow
        IntAgrK (S (User m, n, run)) = Some c }
    Pri-AgrK c \inU
by (erule protocol.induct, simp-all)
lemma pr-int-agrk-user-2 [rule-format]:
    (evs,S,A,U) \in protocol \Longrightarrow
        User m = Spy \longrightarrow
```

```
    IntAgrK (S (User m, n, run)) = Some c }
    Pri-AgrK c &A
proof (erule protocol.induct, simp-all, rule-tac [3] conjI, (rule-tac [!] impI)+,
    rule-tac [2] impI, rule-tac [4] impI, rule-tac [!] notI, simp-all)
    fix evsR1 S A U s
    assume
        (evsR1,S,A,U)\in protocol and
        IntAgrK (S (User m, n, run)) = Some s
        hence Pri-AgrK s\inU
        by (rule pr-int-agrk-user-1)
    moreover assume Pri-AgrK s &U
    ultimately show False
    by contradiction
next
    fix evsC2 S A U a
    assume
    (evsC2, S, A,U) \in protocol and
    IntAgrK (S (User m,n,run)) = Some a
    hence Pri-AgrK a\inU
    by (rule pr-int-agrk-user-1)
    moreover assume Pri-AgrK a\not\inU
    ultimately show False
    by contradiction
next
    fix evsC3 S A U
    assume (evsC3,S,A,U)\in protocol
    hence }A\subseteq
    by (rule pr-analz-used)
    moreover assume Pri-AgrK c\inA
    ultimately have Pri-AgrK c\inU ..
    moreover assume Pri-AgrK c}\not\in
    ultimately show False
    by contradiction
next
    fix evsC3 SA U c'
    assume
    (evsC3,S,A,U)\in protocol and
    IntAgrK (S (User m, n, run)) = Some c'
    hence Pri-AgrK c}\mp@subsup{c}{}{\prime}\in
    by (rule pr-int-agrk-user-1)
    moreover assume Pri-AgrK c}\mp@subsup{c}{}{\prime}\not\in
    ultimately show False
    by contradiction
qed
lemma pr-int-agrk-user-3 [rule-format]:
(evs,S,A,U) \in protocol \Longrightarrow
    NonceS (S (User m, n, run)) = Some s }
    IntMapK (S (User m, n, run)) = Some a \longrightarrow
```

```
    ExtMapK (S (User m, n, run)) = Some b }
    IntAgrK (S (User m,n,run)) = Some c \longrightarrow
    c* (s+a*b) \not=0
proof (erule protocol.induct, simp-all, rule conjI, (rule-tac [1-2] impI)+,
    (rule-tac [3] impI)+, simp-all)
    fix evsC2 S A U n run m
    assume A: (evsC2, S,A,U)\in protocol
    moreover assume NonceS (S (User m, n, run)) = None
    ultimately have IntMapK (S (User m, n, run)) = None
    by (rule pr-state-1)
    with A have ExtMapK (S (User m, n, run)) = None
    by (rule pr-state-2)
    moreover assume ExtMapK (S (User m, n, run)) = Some b
    ultimately show c\not=0\wedges+a*b\not=0
        by simp
next
    fix evsC2 S A U n run m
    assume A: (evsC2, S,A,U)\in protocol
    moreover assume NonceS (S (User m, n, run)) = None
    ultimately have IntMapK (S (User m, n, run)) = None
        by (rule pr-state-1)
    with A have ExtMapK (S (User m,n,run)) = None
        by (rule pr-state-2)
    moreover assume ExtMapK (S (User m, n, run)) = Some b
    ultimately show c\not=0^a\not=0^b\not=0
        by simp
qed
lemma pr-int-agrk-card [rule-format]:
    (evs,S,A,U)\in protocol }
        NonceS (S (Card n, n, run)) = Some s \longrightarrow
        IntMapK (S (Card n, n, run)) = Some b \longrightarrow
        ExtMapK (S (Card n, n, run)) = Some a \longrightarrow
    IntAgrK (S (Card n, n, run)) = Some d }
    d* (s+a*b)}\not=
proof (erule protocol.induct, simp-all, (rule-tac [!] impI)+, simp-all)
    fix evsR1 S A U n run
    assume
    (evsR1,S,A,U) \in protocol and
    NonceS (S (Card n, n, run)) = None
    hence IntMapK (S (Card n, n, run)) = None
    by (rule pr-state-1)
    moreover assume IntMapK (S (Card n, n, run)) = Some b
    ultimately show d\not=0\wedges+a*b\not=0
    by simp
next
    fix evsR2 S A U n run
    assume A: (evsR2, S, A,U)\in protocol and
        IntMapK (S (Card n, n, run)) = None
```

```
    hence ExtMapK (S (Card n, n, run ) ) = None
    by (rule pr-state-2)
    with \(A\) have \(\operatorname{IntAgrK}(S(\) Card \(n, n\), run \())=\) None
    by (rule pr-state-3)
    moreover assume \(\operatorname{IntAgrK}(S(\) Card \(n, n\), run \())=\) Some \(d\)
    ultimately show \(d \neq 0 \wedge s+a * b \neq 0\)
    by \(\operatorname{simp}\)
qed
lemma pr-ext-agrk-card [rule-format]:
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
    NonceS \((S(\) Card \(n, n\), run \())=\) Some \(s \longrightarrow\)
    \(\operatorname{IntMapK}(S(\) Card \(n, n\), run \())=\) Some \(b \longrightarrow\)
    ExtMapK \((S(\) Card \(n, n\), run \())=\) Some \(a \longrightarrow\)
    \(\operatorname{IntAgrK}(S(\) Card \(n, n\), run \())=\) Some \(d \longrightarrow\)
    ExtAgrK \((S(\) Card \(n, n\), run \())=\) Some \((c *(s+a * b)) \longrightarrow\)
    Pri-AgrK \(c \notin A \longrightarrow\)
    Key \((\operatorname{sesK}(c * d *(s+a * b))) \notin A\)
apply (erule protocol.induct, simp-all add: pr-pri-agrk-analz)
    apply (rule conjI)
    apply (rule-tac [1-2] impI)+
    apply (rule-tac [3] impI)+
    apply (rule-tac [4] conjI, (rule-tac [4] impI)+)+
        apply (erule-tac [4] conjE)+
        apply (rule-tac [5] impI)
        apply (erule-tac [5] conjE)+
        apply (rule-tac [6] impI)+
        apply (erule-tac [6] conjE)+
        apply (rule-tac [6] notI)
        apply \(((\) rule-tac [7] impI) \()\), (rule-tac [7] conjI)? \()+\)
            apply (erule-tac [7] conjE)+
            apply (rule-tac [8] impI)
            apply (erule-tac [8] conjE)+
            apply (rule-tac [9] impI)+
            apply (rule-tac [9] notI)
            apply (rule-tac [10] impI)+
            apply (rule-tac [11] impI)+
            apply (rule-tac [11] notI)
proof simp-all
    fix evsR1 \(S\) A \(U\) n run
    assume
        (evsR1, \(S, A, U) \in\) protocol and
        NonceS \((S(\) Card \(n, n\), run \())=\) None
    hence \(\operatorname{IntMapK}(S\) (Card \(n\), n, run \())=\) None
        by (rule pr-state-1)
        moreover assume \(\operatorname{IntMapK}(S(\) Card \(n, n\), run \())=\) Some \(b\)
    ultimately show Key \((\operatorname{ses} K(c * d *(s+a * b))) \notin A\)
        by \(\operatorname{simp}\)
next
```

fix evsR1 $S A U n$ run

assume

(evsR1, $S, A, U) \in$ protocol and
NonceS $(S($ Card n, n, run $))=$ None
hence $\operatorname{IntMapK}(S($ Card n, n, run $))=$ None
by (rule pr-state-1)
moreover assume $\operatorname{IntMapK}(S($ Card n, n, run $))=$ Some b
ultimately show Key $(\operatorname{ses} K(c * d *(s+a * b))) \notin A$
by simp
next
fix evsR2 $S A U n$ run
assume A : (evsR2, $S, A, U) \in$ protocol and
$\operatorname{IntMapK}(S($ Card n, n, run $))=$ None
hence ExtMapK (S (Card n, n, run)) = None
by (rule pr-state-2)
with A have IntAgrK (S (Card n, n, run)) = None
by (rule pr-state-3)
moreover assume $\operatorname{IntAgrK}(S($ Card n, n, run $))=$ Some d
ultimately show Key $(\operatorname{ses} K(c * d *(s+a * b))) \notin A$
by simp
next
fix evsR3 $S A U s a^{\prime} b^{\prime} c^{\prime} d^{\prime}$

assume

(evsR3, $S, A, U) \in$ protocol and
IntAgrK $(S($ Card n, n, run $))=$ Some d and
ExtAgrK $(S($ Card n, n, run $))=$ Some $(c *(s+a * b))$
hence Key $(\operatorname{sesK}(d *(c *(s+a * b)))) \in U$
by (rule pr-sesk-card)
moreover have $d *(c *(s+a * b))=c * d *(s+a * b)$
by simp
ultimately have Key $(\operatorname{sesK}(c * d *(s+a * b))) \in U$
by simp
moreover assume $\operatorname{ses} K(c * d *(s+a * b))=\operatorname{sesK}\left(c^{\prime} * d^{\prime} *\left(s+a^{\prime} * b^{\prime}\right)\right)$
ultimately have Key $\left(\operatorname{ses} K\left(c^{\prime} * d^{\prime} *\left(s+a^{\prime} * b^{\prime}\right)\right)\right) \in U$
by simp
moreover assume Key $\left(\operatorname{ses} K\left(c^{\prime} * d^{\prime} *\left(s+a^{\prime} * b^{\prime}\right)\right)\right) \notin U$
ultimately show False
by contradiction
next
fix evsR3 $S A U s^{\prime} a^{\prime} b^{\prime} c^{\prime} d^{\prime}$

assume

(evsR3, $S, A, U) \in$ protocol and
$\operatorname{IntAgrK}(S($ Card n, n, run $))=$ Some d and
$\operatorname{ExtAgrK}(S($ Card n, n, run $))=$ Some $(c *(s+a * b))$
hence Key $(\operatorname{sesK}(d *(c *(s+a * b)))) \in U$
by (rule pr-sesk-card)
moreover have $d *(c *(s+a * b))=c * d *(s+a * b)$
by simp
ultimately have Key $(\operatorname{ses} K(c * d *(s+a * b))) \in U$

```
    by simp
    moreover assume sesK}(c*d*(s+a*b))=\operatorname{sesK}(\mp@subsup{c}{}{\prime}*\mp@subsup{d}{}{\prime}*(\mp@subsup{s}{}{\prime}+\mp@subsup{a}{}{\prime}*\mp@subsup{b}{}{\prime})
    ultimately have Key (sesK (c'* d'* (s't a'* * b
    by simp
    moreover assume Key (sesK (c'* 和* (s'* a'* b
    ultimately show False
    by contradiction
next
    fix evsR3 S A U s' c'
    assume (evsR3,S,A,U)\in protocol
    hence }A\subseteq
    by (rule pr-analz-used)
    moreover assume Key (sesK}(\mp@subsup{c}{}{\prime}*d*(\mp@subsup{s}{}{\prime}+a*b)))\not\in
    ultimately have Key (sesK (c'*d*(s'}+a*b)))\not\in
    by (rule contra-subsetD)
    moreover assume c}\mp@subsup{c}{}{\prime}*(\mp@subsup{s}{}{\prime}+a*b)=c*(s+a*b
    hence }\mp@subsup{c}{}{\prime}*d*(\mp@subsup{s}{}{\prime}+a*b)=c*d*(s+a*b
    by simp
    ultimately show Key (sesK}(c*d*(s+a*b)))\not\in
    by simp
next
    fix evsFR3 S A U s' a' b}\mp@subsup{b}{}{\prime}\mp@subsup{c}{}{\prime}\mp@subsup{d}{}{\prime
    assume
        (evsFR3, S,A,U)\in protocol and
        IntAgrK (S (Card n, n, run)) = Some d and
        ExtAgrK (S (Card n, n, run)) = Some (c*(s+a*b))
    hence Key (sesK (d*(c*(s+a*b)))) \inU
    by (rule pr-sesk-card)
    moreover have d*(c*(s+a*b))=c*d*(s+a*b)
    by simp
    ultimately have Key (sesK (c*d*(s+a*b))) \inU
    by simp
    moreover assume sesK}(c*d*(s+a*b))=\operatorname{sesK}(\mp@subsup{c}{}{\prime}*\mp@subsup{d}{}{\prime}*(\mp@subsup{s}{}{\prime}+\mp@subsup{a}{}{\prime}*\mp@subsup{b}{}{\prime})
    ultimately have Key (sesK (c'* d'* (s'+ a'* * b})))\in
    by simp
    moreover assume Key (sesK (c'* * d'* (s'+ a'* * b})))\not\in
    ultimately show False
    by contradiction
qed
declare fun-upd-apply [simp del]
lemma pr-sesk-user-3 [rule-format]:
(evs,S,A,U) \in protocol \Longrightarrow
    {Key (sesK K), Agent (User m),Number n, Number run} }}U
    Key (sesK K) \inA\longrightarrow
(\existsde.K=d*e^
    IntAgrK (S (Card n, n, run)) = Some d ^
    ExtAgrK (S (Card n, n, run)) = Some e) \vee
```


(\exists b. Pri-AgrK $b \in A \wedge$

ExtMapK $(S($ User m, n, run $))=$ Some $b)$
(is - \longrightarrow ?H1 $U \longrightarrow$?H2 $A \longrightarrow$?P $S n$ run \vee ? $Q S A n$ run $)$
apply (erule protocol.induct, simp-all add: pr-pri-agrk-analz, blast)
apply (rule conjI)
apply (rule-tac [1-2] impI)+
apply (rule-tac [3] conjI, (rule-tac [3] impI)+)+
apply (rule-tac [4] impI) +
apply $(($ rule-tac [5] impI $)+$, (rule-tac [5] conjI)? $)+$
apply (rule-tac [6] impI)+
apply $(($ rule-tac [7] impI) + , (rule-tac [7] conjI) ?) +
apply (rule-tac [8] impI)+
apply $(($ rule-tac $[9] \mathrm{impI})+$, (rule-tac [9] conjI) ? $)+$
apply (rule-tac [10] impI)+
apply (rule-tac [11] impI)+
apply (rule-tac [12] conjI, (rule-tac [12] impI)+)+
apply (rule-tac [13] impI)+
apply (rule-tac [14] conjI, (rule-tac [14] impI)+)+
apply (erule-tac [14] conjE)+
apply $(($ rule-tac [15] impI) $)$, (rule-tac [15] conjI) ?) +
apply (rule-tac [16] impI)+
apply $(($ rule-tac [17] impI) $)$, (rule-tac [17] conjI) ?) +
apply (rule-tac [18-20] impI)+
proof -
fix evsR1 $S A U$ s $n^{\prime} r u n^{\prime}$
assume
?H1 $U \longrightarrow$?H2 $A \longrightarrow$?P $S n$ run \vee ? $Q S A n$ run and
?H1 U and
?H2 A
hence A : ? P S n run \vee ? $Q S A$ n run
by simp
let $? S=S\left(\left(\right.\right.$ Card n^{\prime}, n^{\prime}, run $):=S\left(\right.$ Card n^{\prime}, n^{\prime}, run $)$
(NonceS $:=$ Some sl))
show ?P ?S n run \vee
$(\exists b .(b=s \vee$ Pri-AgrK $b \in A) \wedge \operatorname{ExtMapK}(? S($ User m, n, run $))=$ Some b)
proof (rule disjE [OF A], rule disjI1, simp add: fun-upd-apply, rule impI, simp)
qed (rule disjI2, simp add: fun-upd-apply, blast)
next
fix evsR1 S A U s $n^{\prime} r u n^{\prime}$
assume
?H1 $U \longrightarrow$?H2 $A \longrightarrow$? P n run \vee ? $Q S A n$ run and
?H1 U and
?H2 A
hence A : ?P S n run \vee ? $Q S A$ n run
by simp
let $? S=S\left(\left(\right.\right.$ Card n^{\prime}, n^{\prime}, run $):=S\left(\right.$ Card n^{\prime}, n^{\prime}, run $\left.{ }^{\prime}\right)$
(NonceS $:=$ Some s))
show ?P ?S n run \vee ? Q ?S A n run
proof (rule disjE [OF A], rule disjI1, simp add: fun-upd-apply, rule impI, simp)
qed (rule disjI2, simp add: fun-upd-apply)

next

fix evsC2 $S A U$ s a $n^{\prime} r u n^{\prime}$
assume
?H1 $U \longrightarrow$?H2 $A \longrightarrow$?P $S n$ run \vee ? $Q S A n$ run and
?H1 U and
? H2 A
hence A : ?P $S n$ run \vee ? $Q S A n$ run
by simp
let $? S=S\left(\left(S p y, n^{\prime}, r u n^{\prime}\right):=S\left(S p y, n^{\prime}\right.\right.$, run')
(NonceS $:=$ Some s, IntMapK $:=$ Some a |))
show ?P ?S n run \vee
$(\exists b .(b=a \vee \operatorname{Pri}-A g r K b \in A) \wedge \operatorname{ExtMapK}(? S($ User m, n, run $))=$ Some $b)$
by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
fix evsC2 S A Usamn'run'
assume
?H1 $U \longrightarrow$?H2 $A \longrightarrow$? P S n run \vee ? $Q S A n$ run and
?H1 U and
? H2 A
hence A : ?P S n run \vee ? $Q S A$ n run
by simp
let $? S=S\left(\left(\right.\right.$ User m, n^{\prime}, run $\left.{ }^{\prime}\right):=S$ (User m, n^{\prime}, run $\left.{ }^{\prime}\right)$
(NonceS $:=$ Some s, IntMapK $:=$ Some a |)
show ?P ?S n run \vee ? Q ?S A n run
by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
fix evsC2 S A U s a $n^{\prime} r u n^{\prime}$
assume
?H1 $U \longrightarrow$?H2 $A \longrightarrow$? P S n run \vee ? $Q S A n$ run and
?H1 U and
?H2 A
hence A : ?P S n run \vee ? $Q S A$ n run
by simp
let $? S=S\left(\left(S p y, n^{\prime}\right.\right.$, run $\left.{ }^{\prime}\right):=S\left(S p y, n^{\prime}\right.$, run $\left.{ }^{\prime}\right)$
(NonceS $:=$ Some s, IntMapK $:=$ Some a|))
show ?P ?S n run \vee
$(\exists b .(b=a \vee$ Pri-AgrK $b \in A) \wedge E x t M a p K(? S($ User m, n, run $))=$ Some $b)$
by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)

next

fix evsC2 $S A U$ s a m $n^{\prime} r u n^{\prime}$
assume
?H1 $U \longrightarrow$?H2 $A \longrightarrow$? P $S n$ run \vee ? $Q S A n$ run and
?H1 U and
? H2 A
hence A : ?P S n run \vee ? $Q S A$ n run
by simp
let $? S=S\left(\left(\right.\right.$ User m, n^{\prime}, run $):=S\left(\right.$ User m, n^{\prime}, run $)$
(NonceS $:=$ Some s, IntMapK $:=$ Some a |)

```
    show ?P ?S n run V ?Q ?S A n run
    by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
    fix evsC2 S A U s a n'run'
    assume
    ?H1 U \longrightarrow?H2 A \longrightarrow?P S n run \vee ?Q S A n run and
    ?H1 U and
    ?H2 A
    hence A: ?P S n run \vee ?Q S A n run
    by simp
    let ?S = S((Spy, n', run') := S (Spy, n',run')
        (NonceS := Some s, IntMapK := Some a|))
    show ?P ?S n run \vee
    (\existsb. (b=a\vee Pri-AgrK b\inA) ^ExtMapK (?S (User m,n,run)) = Some b)
    by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
    fix evsC2SA U s a m n'run'
    assume
    ?H1 U \longrightarrow?H2 A ? ?P S n run \vee ?Q S A n run and
    ?H1 U and
    ?H2 A
    hence A: ?P S n run \vee ?Q S A n run
    by simp
    let ?S = S((User m, n',run'):=S(User m, n',run')
    (NonceS := Some s, IntMapK := Some a|))
    show ?P ?S n run \vee ?Q ?S A n run
    by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
    fix evsC2 S A Us a n'run'
    assume
        ?H1 U ? ?H2 A \longrightarrow?P S n run \vee ?Q S A n run and
        ?H1 U and
        ?H2 A
    hence A: ?P S n run \vee ?Q S A n run
    by simp
    let ?S =S((Spy, n',run') := S (Spy, n',run')
    (NonceS := Some s, IntMapK := Some a|)
    show ?P ?S n run V
        (\existsb. (b=a\vee Pri-AgrK b G A)^ ExtMapK (?S (User m, n, run)) = Some b)
        by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
    fix evsC2 S A U s a m n'run'
    assume
        ?H1 U \longrightarrow?H2 A \longrightarrow?P S n run \vee ?Q S A n run and
        ?H1 U and
        ?H2 A
    hence A:?P S n run \vee ?Q S A n run
    by simp
    let ?S = S((User m, n',run') := S(User m, n',run')
```

```
    (NonceS \(:=\) Some \(s\), IntMapK \(:=\) Some a \(\mid\) )
    show ?P ?S n run \(\vee\) ?Q ?S A n run
    by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)
next
    fix evsR2 \(S\) A U a b n' run'
    assume
        ?H1 \(U \longrightarrow\) ?H2 \(A \longrightarrow\) ?P \(S\) n run \(\vee\) ? \(Q S A n\) run and
        ?H1 \(U\) and
        ?H2 A
    hence \(A\) : ? P \(S n\) run \(\vee\) ? \(Q S A n\) run
    by simp
    let ? \(S=S\left(\left(\right.\right.\) Card \(n^{\prime}, n^{\prime}\), run \():=S\left(\right.\) Card \(n^{\prime}, n^{\prime}\), run \()\)
        (IntMapK \(:=\) Some b, ExtMapK \(:=\) Some a|))
    show ?P ?S n run \(\vee\) ? \(Q\) ?S A \(n\) run
    proof (rule disjE [OF A], rule disjI1, simp add: fun-upd-apply, rule impI, simp)
    qed (rule disjI2, simp add: fun-upd-apply)
next
    fix evsC3 \(S A U b c m^{\prime} n^{\prime} r u n^{\prime}\)
    assume
        ?H1 \(U \longrightarrow\) ?H2 \(A \longrightarrow\) ?P \(S\) n run \(\vee\) ? \(Q S A n\) run and
        ?H1 U and
        ?H2 A
    hence \(A\) : ?P \(S\) n run \(\vee\) ? \(Q S A\) n run
    by \(\operatorname{simp}\)
    assume
        ExtMapK \(\left(S\left(\right.\right.\) User \(m^{\prime}, n^{\prime}\), run \(\left.\left.{ }^{\prime}\right)\right)=\) None and
        \(m^{\prime}=0\)
    hence B: ExtMapK \(\left(S\left(S p y, n^{\prime}, r u n^{\prime}\right)\right)=\) None
    by \(\operatorname{simp}\)
    let \(? S=S\left(\left(S p y, n^{\prime}\right.\right.\), run \():=S\left(S p y, n^{\prime}\right.\), run \()\)
        (ExtMapK \(:=\) Some b, IntAgrK \(:=\) Some \(c \mid\) )
    show ? \(P\) ?S n run \(\vee\)
        \((\exists b .(b=c \vee\) Pri-AgrK \(b \in A) \wedge\) ExtMapK \((? S(\) User m, n, run \())=\) Some b)
    proof (rule disjE [OF A], rule disjI1, simp add: fun-upd-apply)
    qed (rule disjI2, simp add: fun-upd-apply, rule conjI, rule impI, simp add: B,
blast)
next
    fix evsC3 \(S A U b c m^{\prime} n^{\prime} r u n^{\prime}\)
    assume
        ?H1 \(U \longrightarrow\) ?H2 \(A \longrightarrow\) ?P \(S\) n run \(\vee\) ? \(Q S A n\) run and
        ?H1 U and
        ?H2 A
    hence \(A\) : ? \(P S n\) run \(\vee\) ? \(Q S A n\) run
        by simp
    assume B: ExtMapK \(\left(S\right.\) (User \(m^{\prime}, n^{\prime}\), run \()\) ) \(=\) None
    let \(? S=S\left(\left(\right.\right.\) User \(m^{\prime}, n^{\prime}\), run \():=S\left(\right.\) User \(m^{\prime}, n^{\prime}\), run \(\left.{ }^{\prime}\right)\)
    (ExtMapK \(:=\) Some b, IntAgrK \(:=\) Some c|))
    show ?P ?S n run \(\vee\) ? \(Q\) ?S A n run
    proof (rule disjE [OF A], rule disjI1, simp add: fun-upd-apply)
```

qed (rule disjI2, simp add: fun-upd-apply, rule impI, simp add: B)

next

fix evsR3 A s a b c d $n^{\prime} r u n^{\prime} X$ and S :: state
let ? $S=S\left(\left(\right.\right.$ Card n^{\prime}, n^{\prime}, run $):=S\left(\right.$ Card n^{\prime}, n^{\prime}, run $)$
(IntAgrK $:=$ Some d, ExtAgrK $:=$ Some $(c *(s+a * b))$))
assume sesK $K=\operatorname{ses} K(c * d *(s+a * b))$
with sesK-inj have $K=c * d *(s+a * b)$
by (rule injD)
thus ? P ? S n^{\prime} run' \vee
$\left(\exists b\right.$ Pri-AgrK $b \in A \wedge E x t M a p K\left(? S\left(X, n^{\prime}\right.\right.$, run $\left.\left.{ }^{\prime}\right)\right)=$ Some $\left.b\right)$
by (simp add: fun-upd-apply)
next
fix evsR3 $A U s$ a bcedn'run' and S :: state
let $? S=S\left(\left(\right.\right.$ Card n^{\prime}, n^{\prime}, run $):=S\left(\right.$ Card n^{\prime}, n^{\prime}, run $\left.{ }^{\prime}\right)$
(IntAgrK $:=$ Some d, ExtAgrK $:=$ Some $(c *(s+a * b))$))
assume $\operatorname{ses} K K=\operatorname{ses} K(c * d *(s+a * b))$
with sesK-inj have $K=c * d *(s+a * b)$
by (rule injD)
moreover assume Key $(\operatorname{ses} K(c * d *(s+a * b))) \notin U$
ultimately have Key (sesK $K) \notin U$
by simp
moreover assume
(evsR3, $S, A, U) \in$ protocol and
$\{$ Key (sesK K), Agent (User m), Number n, Number run $\} \in U$
hence Key $(\operatorname{sesK} K) \in U$
by (rule pr-sesk-user-2)
ultimately show ?P ? S n run \vee ? Q ? S A n run
by contradiction
next
fix $\operatorname{evsR} R S A U s a b c d n^{\prime} r u n^{\prime}$
assume
?H1 $U \longrightarrow$?H2 $A \longrightarrow$? P n run \vee ? $Q S A n$ run and
?H1 U and
?H2 A
hence A : ? P S n run \vee ? $Q S A$ n run
by simp
assume B: IntAgrK $\left(S\left(\right.\right.$ Card n^{\prime}, n^{\prime}, run $\left.\left.{ }^{\prime}\right)\right)=$ None
let $? S=S\left(\left(\right.\right.$ Card n^{\prime}, n^{\prime}, run $):=S\left(\right.$ Card n^{\prime}, n^{\prime}, run $)$
(IntAgrK $:=$ Some d, ExtAgrK $:=$ Some $(c *(s+a * b)) D)$
show ?P ?S n run \vee ? Q ?S A n run
proof (rule disjE [OF A], rule disjI1, simp add: fun-upd-apply, rule impI, simp add: B)
qed (rule disjI2, simp add: fun-upd-apply)
next
fix evsR3 $A U s s^{\prime} a b c d n^{\prime} r u n^{\prime} X$ and S :: state
let ? $S=S\left(\left(\right.\right.$ Card n^{\prime}, n^{\prime}, run $):=S\left(\right.$ Card n^{\prime}, n^{\prime}, run $)$
$\left(\right.$ IntAgrK $:=$ Some d, ExtAgrK $:=$ Some $\left(c *\left(s^{\prime}+a * b\right)\right)$ D)
assume (evsR3, $S, A, U) \in$ protocol
hence $A \subseteq U$
by (rule pr-analz-used)
moreover assume Key $(\operatorname{ses} K(c * d *(s+a * b))) \in A$
ultimately have Key $(\operatorname{ses} K(c * d *(s+a * b))) \in U .$.
moreover assume Key $(\operatorname{ses} K(c * d *(s+a * b))) \notin U$
ultimately show ? P?S $n^{\prime} r u n^{\prime} \vee$
$\left(\exists b\right.$. Pri-AgrK $b \in A \wedge E x t M a p K\left(? S\left(X, n^{\prime}\right.\right.$, run $\left.\left.{ }^{\prime}\right)\right)=$ Some $\left.b\right)$
by contradiction
next
fix $e v s R 3 S A U s a b c d n^{\prime} r u n^{\prime}$
assume
?H1 $U \longrightarrow$?H2 $A \longrightarrow$? P $S n$ run \vee ? Q $S A n$ run and
?H1 U and
?H2 A
hence A : ? P S n run \vee ? $Q S A$ n run
by simp
assume B: IntAgrK $\left(S\left(\right.\right.$ Card n^{\prime}, n^{\prime}, run $)$) $=$ None
let $? S=S\left(\left(\operatorname{Card} n^{\prime}, n^{\prime}\right.\right.$, run $):=S\left(\right.$ Card n^{\prime}, n^{\prime}, run $)$
(IntAgrK $:=$ Some d, ExtAgrK $:=$ Some $(c *(s+a * b))$))
show ?P ?S n run \vee ? Q ?S A n run
proof (rule disjE [OF A], rule disjI1, simp add: fun-upd-apply, rule impI, simp add: B)
qed (rule disjI2, simp add: fun-upd-apply)
next
fix evsFR3 $A U$ s abcd $n^{\prime} r u n^{\prime}$ and S :: state
assume sesK $K=\operatorname{ses} K(c * d *(s+a * b))$
with sesK-inj have $K=c * d *(s+a * b)$
by (rule injD)
moreover assume Key $(\operatorname{ses} K(c * d *(s+a * b))) \notin U$
ultimately have Key (sesK K) $\notin U$
by simp
moreover assume
(evsFR3, $S, A, U) \in$ protocol and
$\{$ Key (sesK K), Agent (User m), Number n, Number run $\} \in U$
hence Key $(\operatorname{sesK} K) \in U$
by (rule pr-sesk-user-2)
ultimately show ?P $S n$ run \vee ? $Q S A n$ run
by contradiction
next
fix $e v s C 4 S A U f m^{\prime} n^{\prime} r u n^{\prime}$
assume
?H1 $U \longrightarrow$?H2 $A \longrightarrow$? P $S n$ run \vee ? $Q S A n$ run and
?H1 U and
?H2 A
hence A : ? P S n run \vee ? $Q S A$ n run
by simp
let $? S=S\left(\left(\right.\right.$ User m^{\prime}, n^{\prime}, run $):=S\left(\right.$ User m^{\prime}, n^{\prime}, run $)$
(ExtAgrK $:=$ Some fD)
show ?P ?S n run \vee ? Q ?S A n run
by (rule disjE [OF A], simp-all add: fun-upd-apply, blast)

qed

```
declare fun-upd-apply \([\) simp \(]\)
lemma pr-sesk-auth [rule-format]:
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
        Crypt (sesK K) \{pubAK e, Auth-Data x y, pubAK g, Crypt (priSK CA) (Hash
( \(p u b A K g)\) ) \}
        \(\in\) parts \((A \cup\) spies evs \() \longrightarrow\)
    Key \((\operatorname{ses} K K) \in U\)
proof (erule protocol.induct, subst parts-simp, (simp, blast)+,
    simp-all add: parts-simp-insert parts-auth-data parts-crypt parts-mpair,
    rule-tac [!] impI)
    fix evsR4 \(S A U n\) run \(d e\)
    assume
    (evsR4, \(S, A, U) \in\) protocol and
    IntAgrK \((S\) (Card \(n, n\), run \())=\) Some \(d\) and
    ExtAgrK \((S(\) Card \(n, n\), run \())=\) Some e
    thus Key \((\operatorname{ses} K(d * e)) \in U\)
    by (rule pr-sesk-card)
next
    fix evsFR4 \(S\) A \(U\) m n run \(c f\)
    assume \(A:(e v s F R 4, S, A, U) \in\) protocol and
    IntAgrK \((S(\) User \(m, n\), run \())=\) Some \(c\) and
    ExtAgrK \((S(\) User \(m, n\), run \())=\) Some \(f\)
    hence \(\{\) Key \((\) sesK \((c * f))\), Agent \((\) User m), Number \(n\), Number run \(\} \in U\)
    by (rule pr-sesk-user-1)
    with \(A\) show \(K e y(\operatorname{ses} K(c * f)) \in U\)
    by (rule pr-sesk-user-2)
qed
lemma pr-sesk-passwd [rule-format]:
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
    Says \(n\) run 5 X (Card \(n)(\) Crypt \((\) sesK \(K)(\) Passwd \(m)) \in\) set evs \(\longrightarrow\)
    Key \((\operatorname{ses} K K) \in U\)
proof (erule protocol.induct, simp-all, rule-tac [!] impI)
    fix evsC5SAUmn run s abcfgX
    assume (evsC5, \(S, A, U) \in\) protocol
    moreover assume Says \(n\) run \(4 X(\) User m) \((\operatorname{Crypt}(\operatorname{sesK}(c * f))\)
        \(\{p u b A K(c *(s+a * b))\), Auth-Data \(g\) b, pubAK \(g\),
            Crypt \((\) priSK CA) \((\) Hash \((\) pubAK \(g))\}) \in\) set evsC5
            (is Says - - - ? \({ }^{(1) \in-)}\)
    hence ?M \(\in\) spies evsC5
    by (rule set-spies)
    hence ? \(M \in A \cup\) spies evsC5 ..
    hence ? \(M \in\) parts \((A \cup\) spies evs \(C 5)\)
    by (rule parts.Inj)
    ultimately show \(\operatorname{Key}(\operatorname{sesK}(c * f)) \in U\)
    by (rule pr-sesk-auth)
```

```
next
    fix evsFC5 \(S\) A \(U n\) run \(d e\)
    assume
        (evsFC5, S, A, U) \(\in\) protocol and
        IntAgrK \((S\) (Card \(n, n\), run \())=\) Some \(d\) and
        ExtAgrK \((S(\) Card \(n, n\), run \())=\) Some \(e\)
    thus Key \((\operatorname{ses} K(d * e)) \in U\)
        by (rule pr-sesk-card)
qed
lemma pr-sesk-card-user [rule-format]:
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
        User \(m \neq S p y \longrightarrow\)
        NonceS \((S(\) User \(m, n\), run \())=\) Some \(s \longrightarrow\)
        IntMapK \((S(\) User \(m, n\), run \())=\) Some \(a \longrightarrow\)
    ExtMapK \((S(\) User \(m, n\), run \())=\) Some \(b \longrightarrow\)
    \(\operatorname{IntAgrK}(S(\) User \(m, n\), run \())=\) Some \(c \longrightarrow\)
    NonceS \((S(\) Card \(n, n\), run \())=\) Some \(s^{\prime} \longrightarrow\)
    IntMapK \((S(\) Card \(n, n\), run \())=\) Some \(b^{\prime} \longrightarrow\)
    ExtMapK \((S(\) Card \(n, n\), run \())=\) Some \(a^{\prime} \longrightarrow\)
    IntAgrK \((S(\) Card \(n, n\), run \())=\) Some \(d \longrightarrow\)
    ExtAgrK \((S(\) Card \(n, n\), run \())=\) Some \((c *(s+a * b)) \longrightarrow\)
    \(s^{\prime}+a^{\prime} * b^{\prime}=s+a * b \longrightarrow\)
    Key \((\operatorname{sesK}(c * d *(s+a * b))) \notin A\)
apply (erule protocol.induct, rule-tac [!] impI, simp-all add: pr-pri-agrk-analz)
    apply (rule impI)+
    apply (rule-tac [2] impI)
    apply (rule-tac [2] conjI)
    apply (rule-tac [2-3] impI)+
    apply (rule-tac [4] impI)+
    apply (rule-tac [5] impI)+
    apply (rule-tac [6] conjI, (rule-tac [6] impI)+)+
        apply (rule-tac [6] conjI)
        apply (erule-tac [6] conjE)+
        apply (rule-tac [8] impI) +
        apply (rule-tac [8] notI)
        apply (rule-tac [9] impI, rule-tac [9] conjI)+
            apply (rule-tac [9] impI) +
            apply (rule-tac [10] impI)+
            apply (rule-tac [10] notI)
            apply (rule-tac [11] impI)+
            apply (rule-tac [12] impI)+
            apply (rule-tac [12] notI)
proof simp-all
    fix evsR1 \(S\) A \(U n\) run
    assume (evsR1, \(S, A, U) \in\) protocol and
            NonceS \((S\) (Card \(n, n\), run \())=\) None
            hence \(\operatorname{IntMapK}(S\) (Card \(n\), n, run \())=\) None
            by (rule pr-state-1)
```

```
    moreover assume IntMapK (S (Card n, n, run)) = Some b
    ultimately show Key (sesK}(c*d*(s+a*b)))\not\in
    by simp
next
    fix evsC2 S A U m n run
    assume A: (evsC2, S, A,U)\in protocol
    moreover assume NonceS (S (User m, n, run)) = None
    ultimately have IntMapK (S (User m, n, run)) = None
    by (rule pr-state-1)
    with A have ExtMapK (S (User m,n,run)) = None
    by (rule pr-state-2)
    moreover assume ExtMapK (S (User m, n, run)) = Some b
    ultimately show Key (sesK}(c*d*(a*b)))\not\in
    by simp
next
    fix evsC2 S A U m n run
    assume A: (evsC2, S, A,U)\in protocol
    moreover assume NonceS (S (User m, n, run)) = None
    ultimately have IntMapK (S (User m, n, run)) = None
    by (rule pr-state-1)
    with A have ExtMapK (S (User m,n,run)) = None
    by (rule pr-state-2)
    moreover assume ExtMapK (S (User m, n, run)) = Some b
    ultimately show Key (sesK (c*d*(s+a*b))) \not\inA
    by simp
next
    fix evsR2 S A U n run
    assume A: (evsR2, S,A,U)\in protocol and
    IntMapK (S (Card n, n, run)) = None
    hence ExtMapK (S (Card n, n, run)) = None
    by (rule pr-state-2)
    with A have IntAgrK (S (Card n, n, run)) = None
    by (rule pr-state-3)
    moreover assume IntAgrK (S (Card n, n, run)) = Some d
    ultimately show Key (sesK}(c*d*(s+a*b)))\not\in
    by simp
next
    fix evsC3 S A U n run
    assume A: (evsC3,S,A,U)\in protocol and
    NonceS (S (Card n, n, run)) = Some s}\mp@subsup{s}{}{\prime}\mathrm{ and
    IntMapK (S (Card n, n, run)) = Some b' and
    ExtMapK (S (Card n, n, run)) = Some a' and
    IntAgrK (S (Card n, n, run)) = Some d
moreover assume B: s}+\mp@subsup{a}{}{\prime}\mp@subsup{a}{}{\prime}*\mp@subsup{b}{}{\prime}=s+a*b\mathrm{ and
    ExtAgrK (S (Card n, n, run)) = Some (c*(s+a*b))
hence ExtAgrK (S (Card n, n, run )) = Some (c* (s'+ a'** b})
    by simp
    moreover assume C: Pri-AgrK c}\not\in
    have }A\subseteq
```

```
    using A by (rule pr-analz-used)
    hence Pri-AgrK c\not\inA
    using C by (rule contra-subsetD)
    ultimately have Key (sesK (c*d*(s'}+\mp@subsup{a}{}{\prime}*\mp@subsup{b}{}{\prime})))\not\in
    by (rule pr-ext-agrk-card)
    thus Key (sesK (c*d*(s+a*b)))\not\inA
    using B by simp
next
    fix evsR3 S A U n run
    assume (evsR3,S,A,U)\in protocol
    moreover assume 0<m
    hence User m}\not=\mathrm{ Spy
    by simp
    moreover assume IntAgrK (S (User m, n, run)) = Some c
    ultimately have Pri-AgrK c\not\inA
    by (rule pr-int-agrk-user-2)
    moreover assume Pri-AgrK c\inA
    ultimately show False
    by contradiction
next
    fix evsR3 S A U
    assume (evsR3,S,A,U)\in protocol
    hence A\subseteqU
    by (rule pr-analz-used)
    moreover assume Key (sesK (c*d*(s+a*b)))\not\inU
    ultimately show Key (sesK (c*d*(s+a*b))) \not\inA
    by (rule contra-subsetD)
next
    fix evsR3 S A U s' a' b}\mp@subsup{}{}{\prime}\mp@subsup{c}{}{\prime}\mp@subsup{d}{}{\prime
    assume
        (evsR3,S,A,U) \in protocol and
        IntAgrK (S (Card n, n, run)) = Some d and
    ExtAgrK (S (Card n, n, run)) = Some (c*(s+a*b))
    hence Key (sesK (d*(c*(s+a*b)))) \inU
    by (rule pr-sesk-card)
    moreover have d*(c*(s+a*b))=c*d*(s+a*b)
    by simp
    ultimately have Key (sesK (c*d*(s+a*b))) \inU
    by simp
    moreover assume sesK}(c*d*(s+a*b))=\operatorname{sesK}(\mp@subsup{c}{}{\prime}*\mp@subsup{d}{}{\prime}*(\mp@subsup{s}{}{\prime}+\mp@subsup{a}{}{\prime}*\mp@subsup{b}{}{\prime})
    ultimately have Key (sesK (c'* d'* (s'+ a'* * b
    by simp
    moreover assume Key (sesK (c'* d'* (s'}+\mp@subsup{c}{}{\prime}*\mp@subsup{b}{}{\prime})))\not\in
    ultimately show False
    by simp
next
    fix evsR3 SAU s' a' b}\mp@subsup{}{\prime}{\prime}\mp@subsup{c}{}{\prime}\mp@subsup{d}{}{\prime
    assume
    (evsR3,S,A,U) \in protocol and
```

```
    IntAgrK (S (Card n, n, run)) = Some d and
    ExtAgrK}(S(\mathrm{ Card n, n,run)) = Some }(c*(s+a*b)
    hence Key (sesK (d*(c*(s+a*b)))) \inU
    by (rule pr-sesk-card)
    moreover have d*(c*(s+a*b))=c*d*(s+a*b)
    by simp
    ultimately have Key (sesK}(c*d*(s+a*b)))\in
    by simp
    moreover assume sesK}(c*d*(s+a*b))=\operatorname{sesK}(\mp@subsup{c}{}{\prime}*\mp@subsup{d}{}{\prime}*(\mp@subsup{s}{}{\prime}+\mp@subsup{a}{}{\prime}*\mp@subsup{b}{}{\prime})
    ultimately have Key (sesK (c'* d'* (s'}+\mp@subsup{c}{}{\prime}*\mp@subsup{b}{}{\prime})))\in
    by simp
    moreover assume Key (sesK (c'* * d'* (s'+ a'* * b
    ultimately show False
    by simp
next
    fix evsR3 S A U s' c'
    assume (evsR3,S,A,U)\in protocol
    hence A\subseteqU
    by (rule pr-analz-used)
    moreover assume Key (sesK ( (c'*d*(s'}+\mp@subsup{s}{}{\prime}\mp@subsup{a}{}{\prime}*\mp@subsup{b}{}{\prime})))\not\in
    ultimately have Key (sesK ( c'* *d* (s'}+\mp@subsup{a}{}{\prime}*\mp@subsup{b}{}{\prime})))\not\in
    by (rule contra-subsetD)
    moreover assume c'*(s}\mp@subsup{c}{}{\prime}+\mp@subsup{a}{}{\prime}*\mp@subsup{b}{}{\prime})=c*(s+a*b
    hence }\mp@subsup{c}{}{\prime}*d*(\mp@subsup{s}{}{\prime}+\mp@subsup{a}{}{\prime}*\mp@subsup{b}{}{\prime})=c*d*(s+a*b
    by simp
    ultimately show Key (sesK (c*d*(s+a*b))) \not\inA
    by simp
next
    fix evsFR3 SA U s' a' b}\mp@subsup{c}{}{\prime}\mp@subsup{d}{}{\prime
    assume
        (evsFR3, S,A,U)\in protocol and
        IntAgrK (S (Card n, n, run)) = Some d and
    ExtAgrK (S (Card n, n, run)) = Some (c*(s+a*b))
    hence Key (sesK (d*(c*(s+a*b)))) \inU
    by (rule pr-sesk-card)
    moreover have d*(c*(s+a*b))=c*d*(s+a*b)
    by simp
    ultimately have Key (sesK (c*d*(s+a*b))) \inU
    by simp
    moreover assume sesK}(c*d*(s+a*b))=\operatorname{sesK}(\mp@subsup{c}{}{\prime}*\mp@subsup{d}{}{\prime}*(\mp@subsup{s}{}{\prime}+\mp@subsup{a}{}{\prime}*\mp@subsup{b}{}{\prime})
    ultimately have Key (sesK (c'* d'* (s'+ a'* * b
    by simp
    moreover assume Key (sesK (c'* d'* (s'}+\mp@subsup{c}{}{\prime}*\mp@subsup{a}{}{\prime}*\mp@subsup{b}{}{\prime})))\not\in
    ultimately show False
    by simp
qed
lemma pr-sign-key-used:
(evs,S,A,U)\in protocol \Longrightarrow Key (priSK X) \inU
```

by (erule protocol.induct, simp-all)
lemma pr-sign-key-analz:
$(e v s, S, A, U) \in$ protocol \Longrightarrow Key $($ priSK $X) \notin \operatorname{analz}(A \cup$ spies evs $)$
proof (simp add: pr-key-analz, erule protocol.induct,
auto simp add: priSK-pubSK priSK-symK)
fix evsR3 $S A U s a b c d$
assume (evsR3, $S, A, U) \in$ protocol
hence Key $($ priSK $X) \in U$
by (rule pr-sign-key-used)
moreover assume priSK $X=\operatorname{sesK}(c * d *(s+a * b))$
ultimately have Key $(\operatorname{ses} K(c * d *(s+a * b))) \in U$
by simp
moreover assume Key $(\operatorname{ses} K(c * d *(s+a * b))) \notin U$
ultimately show False
by contradiction
next
fix evsFR3 $S A U s a b c d$
assume (evsFR3, $S, A, U) \in$ protocol
hence Key $($ priSK $X) \in U$
by (rule pr-sign-key-used)
moreover assume priSK $X=\operatorname{sesK}(c * d *(s+a * b))$
ultimately have Key $(\operatorname{ses} K(c * d *(s+a * b))) \in U$
by simp
moreover assume Key $(\operatorname{ses} K(c * d *(s+a * b))) \notin U$
ultimately show False
by contradiction
qed
lemma pr-auth-data-parts [rule-format]:
(evs, $S, A, U) \in$ protocol \Longrightarrow
Auth-Data (priAK $n) b \in$ parts $(A \cup$ spies evs $) \longrightarrow$
$(\exists$ m run. IntMapK $(S($ Card m, m, run $))=$ Some b)
(is $-\Longrightarrow ? M \in-\longrightarrow-$)
apply (erule protocol.induct, simp, subst parts-simp, simp, blast+, simp-all
add: parts-simp-insert parts-auth-data parts-crypt parts-mpair del: fun-upd-apply)
apply (rule impI)
apply ((rule-tac [2] conjI)?, rule-tac [2] impI) +
apply (rule-tac [3] impI)+
apply (rule-tac [4] impI, (rule-tac [4] conjI)?)+
apply (rule-tac [5] impI) +
apply (rule-tac [6] impI, (rule-tac [6] conjI)?)+
apply (rule-tac [7] impI) +
apply (rule-tac [8] impI, (rule-tac [8] conjI)?)+
apply (rule-tac [9] impI)+
apply (rule-tac [10] impI)
apply (rule-tac [11] conjI)
apply (rule-tac [11-12] impI)+
apply (rule-tac [13] conjI)

```
apply (rule-tac [13-14] impI)+
apply (rule-tac [15-17] impI)
apply (erule-tac [17] conjE)
proof -
    fix evsR1 A n' run's and S :: state
    let ?S =S((Card n', n',run') := S (Card n', n',run')
        (NonceS := Some s|))
    assume
        ?M \in parts }(A\cup\mathrm{ spies evsR1) }
            (\existsm run. IntMapK (S (Card m, m, run)) = Some b) and
        ?M }\in\mathrm{ parts }(A\cup\mathrm{ spies evsR1)
    hence }\exists\textrm{m}\mathrm{ run. IntMapK (S (Card m,m,run)) = Some b ..
    then obtain m and run where IntMapK (S (Card m,m,run)) = Some b
    by blast
    thus \existsm run. IntMapK (?S (Card m, m, run))=Some b
    by (rule-tac }x=m\mathrm{ in exI, rule-tac x = run in exI, simp, blast)
next
    fix evsC2 A n' run's a and S :: state
    let ?S = S((Spy, n',run'):=S (Spy, n',run')
            \NonceS := Some s, IntMapK := Some a|))
    assume
    ?M 曾arts ( }A\cup\mathrm{ spies evsC2) }
        (\existsm run. IntMapK (S (Card m, m, run)) = Some b) and
    ?M \in parts ( }A\cup\mathrm{ spies evsC2)
    hence }\exists\textrm{m}\mathrm{ run. IntMapK (S (Card m, m,run))=Some b ..
    then obtain m}\mathrm{ and run where IntMapK (S (Card m,m,run)) = Some b
    by blast
    thus \existsm run. IntMapK (?S (Card m, m, run))=Some b
    by (rule-tac x =m in exI, rule-tac x = run in exI, simp)
next
    fix evsC2 A n'run' m's a and S :: state
    let ?S = S((User m', n', run') := S(User m', n',run')
        |NonceS := Some s, IntMapK := Some a|))
    assume
        ?M f parts ( }A\cup\mathrm{ spies evsC2) }
            (\existsm run. IntMapK (S (Card m, m, run)) = Some b) and
        ?M }\in\mathrm{ parts ( }A\cup\mathrm{ spies evsC2)
    hence \existsm run. IntMapK (S (Card m,m,run)) = Some b ..
    then obtain m and run where IntMapK (S (Card m,m,run)) = Some b
    by blast
    thus \existsm run. IntMapK (?S (Card m, m, run)) = Some b
    by (rule-tac x = m in exI, rule-tac x = run in exI, simp)
next
    fix evsC2 A n' run's a and S :: state
    let ?S =S((Spy, n',run'):=S (Spy, n',run')
            |NonceS := Some s, IntMapK := Some a|)
    assume
    ?M f parts ( }A\cup\mathrm{ spies evsC2) }
        (\existsm run. IntMapK (S (Card m, m, run)) = Some b) and
```

```
    ?M \in parts ( }A\cup\mathrm{ spies evsC2)
    hence }\exists\textrm{m}\mathrm{ run. IntMapK (S (Card m,m,run)) = Some b ..
    then obtain m}\mathrm{ and run where IntMapK (S (Card m,m,run)) =Some b
    by blast
    thus \existsm run.IntMapK (?S (Card m, m, run)) = Some b
    by (rule-tac x = m in exI, rule-tac x = run in exI, simp)
next
    fix evsC2 A n'run' m' a and S :: state
    let ?S = S((User m', n', run') := S (User m', n',run')
        |NonceS := Some 0, IntMapK := Some a|))
    assume
    ?M \in parts ( }A\cup\mathrm{ spies evsC2) }
        (\existsm run. IntMapK (S (Card m, m, run)) = Some b) and
    ?M \in parts ( }A\cup\mathrm{ spies evsC2)
    hence }\exists\textrm{m}\mathrm{ run. IntMapK (S (Card m, m,run)) = Some b ..
    then obtain m}\mathrm{ and run where IntMapK (S (Card m,m,run)) = Some b
    by blast
    thus \existsm run. IntMapK (?S (Card m, m, run))=Some b
    by (rule-tac x = m in exI, rule-tac x = run in exI, simp)
next
    fix evsC2 A n' run's a and S :: state
    let ?S =S((Spy, n',run') := S (Spy, n',run')
        (NonceS }:=\mathrm{ Some s, IntMapK }:=\mathrm{ Some a|))
    assume
        ?M \in parts }(A\cup\mathrm{ spies evsC2) }
        (\existsm run. IntMapK (S (Card m,m,run)) = Some b) and
    ?M }\in\mathrm{ parts ( }A\cup\mathrm{ spies evsC2)
    hence \existsm run. IntMapK (S (Card m,m,run)) = Some b ..
    then obtain m}\mathrm{ and run where IntMapK (S (Card m,m,run))=Some b
    by blast
    thus \existsm run. IntMapK (?S (Card m, m, run)) = Some b
    by (rule-tac x = m in exI, rule-tac x = run in exI, simp)
next
    fix evsC2 A n' run' m's a and S :: state
    let ?S = S((User m', n',run'):=S(User m', n',run')
    (NonceS := Some s, IntMapK := Some a|))
    assume
    ?M \in parts ( }A\cup\mathrm{ spies evsC2) }
        (\existsm run. IntMapK (S (Card m, m, run)) = Some b) and
    ?M \in parts ( }A\cup\mathrm{ spies evsC2)
    hence }\exists\textrm{m}\mathrm{ run. IntMapK (S (Card m,m,run)) = Some b ..
    then obtain m and run where IntMapK (S (Card m,m,run)) = Some b
    by blast
    thus \existsm run. IntMapK (?S (Card m, m, run))=Some b
    by (rule-tac x = m in exI, rule-tac x = run in exI, simp)
next
    fix evsC2 A n' run' }a\mathrm{ and S :: state
    let ?S = S((Spy, n',run') := S (Spy, n',run')
    \NonceS := Some 0, IntMapK := Some a|))
```

```
    assume
    ?M \in parts ( }A\cup\mathrm{ spies evsCZ ) }
        (\existsm run. IntMapK (S (Card m, m, run)) = Some b) and
    ?M \in parts ( }A\cup\mathrm{ spies evsC2)
    hence \existsm run. IntMapK (S (Card m,m,run)) = Some b ..
    then obtain m}\mathrm{ and run where IntMapK (S (Card m,m,run)) = Some b
    by blast
    thus \existsm run. IntMapK (?S (Card m, m, run))= Some b
    by (rule-tac x = m in exI, rule-tac x = run in exI, simp)
next
    fix evsC2 A n' run' m' a and S :: state
    let ?S = S((User m', n',run'):=S(User m', n',run')
    |NonceS := Some 0, IntMapK := Some a|))
    assume
    ?M \in parts ( }A\cup\mathrm{ spies evsC2) }
        (\exists m run. IntMapK (S (Card m, m, run)) = Some b) and
    ?M \in parts ( }A\cup\mathrm{ spies evsC2)
    hence \existsm run. IntMapK (S (Card m, m,run))=Some b ..
    then obtain m and run where IntMapK (S (Card m,m,run)) = Some b
        by blast
    thus \existsm run. IntMapK (?S (Card m, m, run))=Some b
    by (rule-tac x = m in exI, rule-tac x = run in exI, simp)
next
    fix evsR2 A n' run' a b'}\mathrm{ and }S\mathrm{ :: state
    let ?S =S((Card n', n', run') :=S (Card n', n',run')
        (IntMapK := Some b', ExtMapK := Some a|)
    assume
        ?M \in parts ( }A\cup\mathrm{ spies evsR2) }
            (\existsm run. IntMapK (S (Card m, m, run)) = Some b) and
    ?M \in parts ( }A\cup\mathrm{ spies evsR2)
    hence \existsm run. IntMapK (S (Card m, m,run)) = Some b ..
    then obtain m}\mathrm{ and run where IntMapK (S (Card m,m,run)) = Some b
    by blast
    moreover assume IntMapK (S (Card n', n',run')) = None
    ultimately show \existsm run. IntMapK (?S (Card m, m, run)) = Some b
    proof (rule-tac x=m in exI, rule-tac x = run in exI, simp)
    qed (rule impI, simp)
next
    fix evsC3 A n' run' b}\mp@subsup{}{}{\prime}c\mathrm{ and }S\mathrm{ :: state
    let ?S = S((Spy, n',run'):=S (Spy, n',run')
            (ExtMapK := Some b', IntAgrK := Some c))
    assume
    ?M \in parts }(A\cup\mathrm{ spies evsC3) }
        (\existsm run. IntMapK (S (Card m, m, run)) = Some b) and
    ?M }\in\mathrm{ parts }(A\cup\mathrm{ spies evsC3)
hence }\exists\textrm{m}\mathrm{ run. IntMapK (S (Card m,m,run))=Some b ..
then obtain m and run where IntMapK (S (Card m,m,run)) = Some b
    by blast
thus \existsm run. IntMapK (?S (Card m, m,run))=Some b
```

```
    by (rule-tac x = m in exI, rule-tac x = run in exI, simp)
next
    fix evsC3 A n' run' b}\mp@subsup{b}{}{\prime}cm\mathrm{ and }S\mathrm{ :: state
    let ?S = S((User m, n', run') := S (User m, n', run')
        (ExtMapK := Some b', IntAgrK := Some c\))
    assume
    ?M \in parts }(A\cup\mathrm{ spies evsC3)}
        (\existsm run. IntMapK (S (Card m, m, run)) = Some b) and
    ?M \in parts ( }A\cup\mathrm{ spies evsC3)
    hence \existsm run. IntMapK (S (Card m, m,run)) = Some b ..
    then obtain m}\mathrm{ and run where IntMapK (S (Card m,m,run)) = Some b
    by blast
    thus \existsm run. IntMapK (?S (Card m, m, run))= Some b
    by (rule-tac x = m in exI, rule-tac x = run in exI, simp)
next
    fix evsR3 A n'run' s a b' c d and S :: state
    let ?S =S((Card n', n', run') :=S (Card n', n',run')
        |IntAgrK := Some d, ExtAgrK := Some (c*(s+a* b
    assume
    ?M \in parts ( }A\cup\mathrm{ spies evsR3) }
        (\exists m run. IntMapK (S (Card m, m, run)) = Some b) and
    ?M \in parts ( }A\cup\mathrm{ spies evsR3)
    hence \existsm run. IntMapK (S (Card m, m,run)) = Some b ..
    then obtain m}\mathrm{ and run where IntMapK (S (Card m,m,run))=Some b
    by blast
    thus \existsm run. IntMapK (?S (Card m, m, run))=Some b
    by (rule-tac x = m in exI, rule-tac x = run in exI, simp, blast)
next
    fix evsR3 A n'run's a b b
    let ?S =S((Card n', n',run'):=S (Card n', n',run')
        | IntAgrK := Some d, ExtAgrK := Some (c*(s+a*b'))D)
    assume
    ?M \in parts (A\cup spies evsR3)}
        (\exists m run. IntMapK (S (Card m, m, run)) = Some b) and
    ?M \in parts ( }A\cup\mathrm{ spies evsR3)
    hence }\exists\textrm{m}\mathrm{ run. IntMapK (S (Card m, m,run))=Some b ..
    then obtain m and run where IntMapK (S (Card m,m,run)) = Some b
    by blast
    thus \existsm run. IntMapK (?S (Card m, m, run)) = Some b
    by (rule-tac x =m in exI, rule-tac x = run in exI, simp, blast)
next
    fix evsC4 A n' run' c f m and S :: state
    let ?S = S((User m, n',run') :=S (User m, n', run')\ExtAgrK := Some fD)
    assume
        ?M \in parts }(A\cup\mathrm{ spies evsC4 )}
            (\existsm run. IntMapK (S (Card m, m, run)) = Some b) and
            ?M }\in\mathrm{ parts }(A\cup\mathrm{ spies evsC4)
hence \existsm run. IntMapK (S (Card m, m, run)) = Some b ..
then obtain m and run where IntMapK (S (Card m, m,run)) = Some b
```

```
    by blast
    thus \existsm run. IntMapK (?S (Card m, m,run))=Some b
    by (rule-tac x = m in exI, rule-tac x = run in exI, simp)
next
    fix evsR& n' run' b' and S :: state
    assume IntMapK (S (Card n', n',run')) = Some b'
    thus \existsm run. IntMapK (S (Card m,m,run))=Some b
    by blast
next
    fix evsFR4 A U s a b' cfg and S :: state
    assume
        A:?M \in parts }(A\cup\mathrm{ spies evsFR4 )}
        (\existsm run. IntMapK (S (Card m, m, run)) = Some b) and
        B:(evsFR4,S,A,U)\in protocol and
        C:Crypt (sesK (c*f))
            {pubAK (c*(s+a* b}))\mathrm{ , Auth-Data g b', pubAK g,
                Crypt (priSK CA) (Hash (pubAK g))} \in synth (analz (A U spies evsFR4))
        (is Crypt - ?M' }\in\operatorname{synth}(\mathrm{ analz ?A)) and
    D: priAK n=g and
    E:b=\mp@subsup{b}{}{\prime}
show \existsm run. IntMapK (S (Card m,m,run))=Some b'
proof -
    have Crypt (sesK (c*f)) ?M' 
        ?M'}\in\operatorname{synth}(\mathrm{ analz ?A) }\wedge Key (sesK (c*f)) \in analz ?A 
    using C by (rule synth-crypt)
    moreover {
    assume Crypt (sesK (c*f)) ?M' \in analz ?A
    hence Crypt (sesK (c*f)) ?M' \in parts ?A
        by (rule subsetD [OF analz-parts-subset])
        hence ?M'}\in\mathrm{ parts ?A
        by (rule parts.Body)
        hence {Auth-Data g b', pubAK g, Crypt (priSK CA) (Hash (pubAK g))}
            \in parts ?A
        by (rule parts.Snd)
        hence Auth-Data g b'\in parts ?A
        by (rule parts.Fst)
    }
    moreover {
    assume ?M' }\in\mathrm{ synth (analz ?A) ^ Key (sesK (c*f)) € analz ?A
    hence ?M' \in synth (analz ?A) ..
    hence {Auth-Data g b', pubAK g, Crypt (priSK CA) (Hash (pubAK g))}
        < synth (analz ?A)
        by (rule synth-analz-snd)
    hence Auth-Data g b' \in synth (analz ?A)
    by (rule synth-analz-fst)
    hence Auth-Data g b'}\in\mathrm{ analz ?A }
            Pri-AgrK g \in analz ?A ^ Pri-AgrK b'\in analz ?A
        by (rule synth-auth-data)
    moreover {
```

```
            assume Auth-Data g b' \in analz ?A
            hence Auth-Data g b}\mp@subsup{b}{}{\prime}\in\mathrm{ parts ?A
            by (rule subsetD [OF analz-parts-subset])
    }
    moreover {
            assume Pri-AgrK g\inanalz ?A ^ Pri-AgrK b'\in analz ?A
            hence Pri-AgrK g G analz ?A ..
            hence Pri-AgrK (priAK n)\in analz ?A
            using D by simp
            moreover have Pri-AgrK (priAK n) & analz ?A
            using B by (rule pr-auth-key-analz)
            ultimately have Auth-Data g b}\mp@subsup{b}{}{\prime}\in\mathrm{ parts ?A
            by contradiction
        }
        ultimately have Auth-Data g b}\mp@subsup{b}{}{\prime}\in\mathrm{ parts ?A ..
    }
    ultimately have Auth-Data g b' \in parts ?A ..
    thus ?thesis
    using }A\mathrm{ and }D\mathrm{ and E by simp
    qed
qed
lemma pr-sign-parts [rule-format]:
(evs,S,A,U) \in protocol }
    Crypt (priSK CA) (Hash (pubAK g)) \in parts (A \cup spies evs) }
    (\existsn.g=priAK n)
(is - \Longrightarrow?M g\in-\longrightarrow -)
proof (erule protocol.induct, subst parts-simp, (simp, blast)+, simp-all add:
parts-simp-insert parts-auth-data parts-crypt parts-mpair, rule-tac [!] impI)
fix evsR4 n
assume agrK g=agrK (priAK n)
with agrK-inj have g=priAK n
    by (rule injD)
    thus \existsn.g=priAK n..
next
    fix evsFR4SAUsabcfg'
    assume
        A:?M g f parts }(A\cup\mathrm{ spies evsFR4 )}\longrightarrow(\existsn.g=priAK n) an
        B:(evsFR4,S,A,U)\in protocol and
        C:Crypt (sesK (c*f)) {pubAK (c*(s+a*b)), Auth-Data g' b,
        pubAK g',?M g'} \in synth (analz (A\cup spies evsFR4))
        (is ?M' }\in\mathrm{ synth (analz ?A))
    assume agrK g=agrK g'
    with agrK-inj have D:g= g
    by (rule injD)
show }\existsn.g=priAK 
proof -
    have ?M'\in analz ?A }
        {pubAK (c*(s+a*b)), Auth-Data g' b, pubAK g',?M g'}
```

```
    < synth (analz ?A) ^
    Key (sesK (c*f)) \in analz ?A
using C by (rule synth-crypt)
moreover {
    assume ?M' \in analz ?A
    hence ?M' \in parts ?A
    by (rule subsetD [OF analz-parts-subset])
    hence {pubAK (c*(s+a*b)), Auth-Data g' b, pubAK g',?M g'}
    \in parts?A
    by (rule parts.Body)
    hence ?M g' \in parts ?A
    by (rule-tac parts.Snd, assumption?)+
    hence }\existsn.g\mp@subsup{g}{}{\prime}=priAK 
    using }A\mathrm{ and D by simp
}
moreover {
    assume
    {pubAK(c*(s+a*b)), Auth-Data g}\mp@subsup{g}{}{\prime}b,pubAK g',?M g'
        synth}(\mathrm{ analz ?A) ^
        Key (sesK (c*f)) \in analz ?A
hence
    {pubAK (c* (s+a*b)), Auth-Data g' b, pubAK g', ?M g'}
        \epsilonsynth (analz ?A) ..
hence {{Auth-Data g' b, pubAK g',?M g'} \in synth (analz ?A)
    by (rule synth-analz-snd)
hence {pubAK g',?M g'} \in synth (analz ?A)
    by (rule synth-analz-snd)
hence ?M g' \in synth (analz ?A)
    by (rule synth-analz-snd)
hence ?M g' \in analz ?A }
    Hash (pubAK g') \in synth (analz ?A) ^ Key (priSK CA) \in analz ?A
    by (rule synth-crypt)
moreover {
    assume ?M g}\mp@subsup{g}{}{\prime}\in\mathrm{ analz ?A
    hence ?M g g'\in parts ?A
    by (rule subsetD [OF analz-parts-subset])
    hence \existsn. g' = priAK n
    using }A\mathrm{ and D by simp
}
moreover {
    assume Hash (pubAK g')\in synth (analz ?A) ^
        Key (priSK CA) \in analz ?A
    hence Key (priSK CA) \in analz ?A ..
    moreover have Key (priSK CA) & analz ?A
    using B by (rule pr-sign-key-analz)
    ultimately have \existsn. g
    by contradiction
}
ultimately have }\existsn.g\mp@subsup{g}{}{\prime}=\mathrm{ priAK n ..
```

```
        }
    ultimately have \existsn. g}\mp@subsup{g}{}{\prime}=priAK n ..
    thus \existsn.g=priAK n
        using D by simp
    qed
qed
lemma pr-key-secrecy-aux [rule-format]:
    (evs,S,A,U) \in protocol \Longrightarrow
    User m\not= Spy \longrightarrow
    NonceS (S (User m, n, run)) = Some s }
    IntMapK (S (User m, n, run)) = Some a }
    ExtMapK (S (User m,n,run)) = Some b}
    IntAgrK (S (User m, n, run))= Some c \longrightarrow
    ExtAgrK (S (User m, n, run)) = Some f\longrightarrow
    Says n run }4X(\mathrm{ User m) (Crypt (sesK (c*f))
        {pubAK (c* (s+a*b)), Auth-Data g b, pubAK g,
            Crypt (priSK CA) (Hash (pubAK g))}) \in set evs \longrightarrow
    Key (sesK (c*f))\not\inA
supply [[simproc del: defined-all]]
apply (erule protocol.induct, (rule-tac [!] impI)+, simp-all split: if-split-asm)
            apply (erule-tac [7] disjE)
            apply simp-all
            apply (erule-tac [7] conjE)+
            apply (erule-tac [8] disjE)+
            apply (erule-tac [8] conjE)+
            apply simp-all
            apply (rule-tac [8] notI)
proof -
    fix evsC2 S A Umn run
    assume A: (evsC2, S, A,U) \in protocol
    moreover assume NonceS (S (User m,n, run)) = None
    ultimately have IntMapK (S (User m, n, run)) = None
    by (rule pr-state-1)
    with A have ExtMapK (S (User m,n,run)) = None
    by (rule pr-state-2)
    moreover assume ExtMapK (S (User m, n, run)) = Some b
    ultimately show Key (sesK (c*f))\not\inA
    by simp
next
    fix evsC2 S A Umn run
    assume A: (evsC2, S, A,U) \in protocol
    moreover assume NonceS (S (User m,n,run)) = None
    ultimately have IntMapK (S (User m, n, run)) = None
    by (rule pr-state-1)
    with A have ExtMapK (S (User m,n,run)) = None
    by (rule pr-state-2)
    moreover assume ExtMapK (S (User m, n, run)) = Some b
    ultimately show Key (sesK (c*f))\not\inA
```

```
    by \(\operatorname{simp}\)
next
    fix evsC3 \(S A U m\) n run
    assume \(A\) : \((e v s C 3, S, A, U) \in\) protocol and
    ExtMapK \((S(\) User \(m, n\), run \())=\) None
    hence IntAgrK \((S\) (User \(m, n\), run \()\) ) \(=\) None
    by (rule pr-state-3)
    with \(A\) have ExtAgrK \((S(\) User \(m, n\), run \())=\) None
    by (rule pr-state-4)
    moreover assume ExtAgrK \((S(\) User \(m, n\), run \())=\) Some \(f\)
    ultimately show Key \((\operatorname{sesK}(c * f)) \notin A\)
    by \(\operatorname{simp}\)
next
    fix evsR3 \(S A U d s^{\prime} s^{\prime \prime} a^{\prime} b^{\prime} c^{\prime}\)
    assume
    A: (evsR3, \(S, A, U) \in\) protocol and
    \(B: \operatorname{Key}\left(\operatorname{sesK}\left(c^{\prime} * d *\left(s^{\prime \prime}+a^{\prime} * b^{\prime}\right)\right)\right) \notin U\) and
    \(C\) : Says \(n\) run \(4 X(\) User \(m)(\) Crypt \((\operatorname{ses} K(c * f))\)
        \(\{p u b A K(c *(s+a * b))\), Auth-Data \(g\) b, pubAK \(g\),
        Crypt (priSK CA) (Hash (pubAK g))\}) \(\in\) set evsR3
        (is Says - - - ? \({ }^{(1)} \in\)-)
    show \(s^{\prime \prime}=s^{\prime} \wedge\) Pri-AgrK \(c^{\prime} \in \operatorname{analz}(A \cup\) spies evsR3 \() \longrightarrow\)
    \(\operatorname{sesK}(c * f) \neq \operatorname{sesK}\left(c^{\prime} * d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)\right)\)
    proof (rule impI, rule notI, erule conjE)
    have \(? M \in\) spies evsR3
        using \(C\) by (rule set-spies)
        hence ? \(M \in A \cup\) spies evs \(R 3\)
        by \(\operatorname{simp}\)
        hence \(? M \in\) parts \((A \cup\) spies evsR3 \()\)
        by (rule parts.Inj)
    with \(A\) have Key \((\operatorname{ses} K(c * f)) \in U\)
        by (rule pr-sesk-auth)
    moreover assume \(\operatorname{ses} K(c * f)=\operatorname{ses} K\left(c^{\prime} * d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)\right)\) and \(s^{\prime \prime}=s^{\prime}\)
    hence Key \((\operatorname{sesK}(c * f)) \notin U\)
        using \(B\) by simp
    ultimately show False
        by contradiction
    qed
next
    fix evsFR3 \(S A U s^{\prime} a^{\prime} b^{\prime} c^{\prime} d\)
    assume
        A: (evsFR3, \(S, A, U) \in\) protocol and
        B: Key \(\left(\operatorname{ses} K\left(c^{\prime} * d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)\right)\right) \notin U\) and
        \(C\) : Says n run \(4 X(\) User \(m)(\) Crypt \((\operatorname{sesK}(c * f))\)
                \(\{p u b A K(c *(s+a * b))\), Auth-Data \(g\) b, pubAK \(g\),
                Crypt \((\) priSK CA) \((\) Hash \((\) pubAK g)) \}) \(\in\) set evsFR3
        (is Says --- ? \({ }^{(1)} \in\)-)
    show \(\operatorname{sesK}(c * f) \neq \operatorname{sesK}\left(c^{\prime} * d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)\right)\)
    proof
```

```
    have ?M \in spies evsFR3
    using C by (rule set-spies)
    hence ?M }\inA\cup\mathrm{ spies evsFR3
    by simp
    hence ?M \in parts ( }A\cup\mathrm{ spies evsFR3)
    by (rule parts.Inj)
    with A have Key (sesK (c*f)) \inU
    by (rule pr-sesk-auth)
    moreover assume sesK (c*f) = sesK (c'*d *(s' + a'* *'})
    hence Key (sesK (c*f)) \not\inU
    using B by simp
    ultimately show False
    by contradiction
    qed
next
    fix evsC4 SAUn run and m :: nat
    assume (evsC4,S,A,U)\in protocol
    moreover assume 0<m
    hence User m}\not=\mathrm{ Spy
    by simp
    moreover assume Says n run 4 X (User m) (Crypt (sesK (c*f))
    {pubAK (c*(s+a*b)), Auth-Data g b, pubAKg,
    Crypt (priSK CA) (Hash (pubAK g))}) \in set evsC4
    ultimately have ExtAgrK (S (User m,n,run)) = None
    by (rule pr-ext-agrk-user-2)
    moreover assume ExtAgrK (S (User m, n, run)) = None
    ultimately show Key (sesK (c*f)) &A
    by contradiction
next
    fix evsR4 A U n run X s' a' b}\mp@subsup{b}{}{\prime}de\mathrm{ and S :: state
    assume A: User m=X
    assume agrK (c*(s+a* b}))=\operatorname{agrK}
    with agrK-inj have B:c*(s+a* b})=
    by (rule injD)
    assume sesK (c*f)=\operatorname{sesK}(d*e)
    with sesK-inj have c*f=d*e
    by (rule injD)
    hence C:c*f=c*d*(s+a* b}
    using B by simp
    assume ExtAgrK (S (X,n,run)) = Some f
    hence D: ExtAgrK (S (User m, n, run)) = Some f
    using A by simp
    assume E: (evsR4, S,A,U)\in protocol
    moreover assume 0<m
    hence F: User m}\not=\mathrm{ Spy
    by simp
    moreover assume NonceS (S (X, n, run)) = Some s
    hence G: NonceS (S (User m,n,run)) = Some s
    using A by simp
```

```
moreover assume \(\operatorname{IntMapK}(S(X, n\), run \())=\) Some a
hence \(H: \operatorname{IntMapK}(S(\) User \(m, n\), run \())=\) Some a
    using \(A\) by simp
moreover assume ExtMapK \((S(X, n\), run \())=\) Some \(b^{\prime}\)
hence \(I\) : ExtMapK \((S(\) User \(m, n\), run \())=\) Some \(b^{\prime}\)
    using \(A\) by simp
moreover assume \(\operatorname{IntAgrK}(S(X, n\), run \())=\) Some \(c\)
hence \(J\) : IntAgrK \((S(\) User \(m, n\), run \())=\) Some \(c\)
    using \(A\) by simp
moreover assume \(K\) : Nonce \(S(S(\) Card \(n, n\), run \())=\) Some \(s^{\prime}\)
moreover assume L: IntMapK \((S(\) Card \(n, n\), run \())=\) Some \(b^{\prime}\)
moreover assume \(M\) : ExtMapK ( \(S\) (Card n, n, run \()\) ) \(=\) Some \(a^{\prime}\)
moreover assume \(N\) : IntAgrK \((S(\) Card \(n, n\), run \())=\) Some d
moreover assume ExtAgrK (S (Card n, n, run)) = Some e
hence ExtAgrK \((S(\) Card \(n, n\), run \())=\) Some \(\left(c *\left(s+a * b^{\prime}\right)\right)\)
    using \(B\) by simp
moreover assume Says n run \(4 X(\) Card \(n)\)
    \(\left(\right.\) Crypt \((\operatorname{sesK}(d * e))\left(\right.\) pubAK \(\left.\left.\left(d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)\right)\right)\right) \in\) set evsR 4
hence Says \(n\) run 4 (User m) (Card \(n\) )
    \(\left(\right.\) Crypt \((\operatorname{sesK}(d * e))\left(\right.\) pubAK \(\left.\left.\left(d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)\right)\right)\right) \in\) set evsR4
    using \(A\) by simp
with \(E\) and \(F\) and \(D\) have \(d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)=f\)
    by (rule pr-ext-agrk-user-3)
hence \(c * d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)=c * d *\left(s+a * b^{\prime}\right)\)
    using \(C\) by auto
hence \(s^{\prime}+a^{\prime} * b^{\prime}=s+a * b^{\prime}\)
proof auto
    assume \(c=0\)
    moreover have \(c *\left(s+a * b^{\prime}\right) \neq 0\)
    using \(E\) and \(G\) and \(H\) and \(I\) and \(J\) by (rule pr-int-agrk-user-3)
    ultimately show ?thesis
    by simp
next
    assume \(d=0\)
    moreover have \(d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right) \neq 0\)
    using \(E\) and \(K\) and \(L\) and \(M\) and \(N\) by (rule pr-int-agrk-card)
    ultimately show ?thesis
    by \(\operatorname{simp}\)
qed
ultimately have Key \(\left(\operatorname{sesK}\left(c * d *\left(s+a * b^{\prime}\right)\right)\right) \notin A\)
by (rule pr-sesk-card-user)
moreover have \(c * d *\left(s+a * b^{\prime}\right)=d * e\)
    using \(B\) by simp
ultimately show Key \((\operatorname{ses} K(d * e)) \notin A\)
    by simp
next
fix evsFR4 \(S A U m\) run \(b g\)
assume
    A: \((\) evsFR4 \(, S, A, U) \in\) protocol and
```

```
    B:ExtMapK (S (User m, n, run)) = Some b and
    C: IntAgrK (S (User m,n,run)) = Some c and
    D: ExtAgrK (S (User m, n, run)) = Some f and
    E: O<m and
    F:Key (sesK (c*f)) \inA
assume G:Crypt (sesK (c*f))
    {pubAK (c*(s+a*b)), Auth-Data g b, pubAK g,
    Crypt (priSK CA) (Hash (pubAK g))} \in synth (analz (A\cup spies evsFR4))
    (is Crypt - ?M \in synth (analz ?A))
hence Crypt (sesK (c*f)) ?M \in analz ?A \vee
    ?M }\in\mathrm{ synth (analz ?A) ^ Key (sesK (c*f)) f analz ?A
    by (rule synth-crypt)
moreover {
    assume Crypt (sesK (c*f)) ?M \in analz ?A
    hence Crypt (sesK (c*f)) ?M \in parts ?A
    by (rule subsetD [OF analz-parts-subset])
    hence ?M \in parts ?A
    by (rule parts.Body)
    hence Crypt (priSK CA) (Hash (pubAK g)) \in parts ?A
    by (rule-tac parts.Snd, assumption?)+
    with A have \existsn.g=priAK n
    by (rule pr-sign-parts)
}
moreover {
    assume ?M }\in\mathrm{ synth (analz ?A) ^ Key (sesK (c*f)) }\in\mathrm{ analz ?A
    hence ?M \in synth (analz ?A) ..
    hence {Auth-Data g b, pubAK g, Crypt (priSK CA) (Hash (pubAK g))}
        \epsilon synth (analz ?A)
    by (rule synth-analz-snd)
    hence {pubAK g, Crypt (priSK CA) (Hash (pubAK g))} \in synth (analz ?A)
    by (rule synth-analz-snd)
    hence Crypt (priSK CA) (Hash (pubAK g)) \in synth (analz ?A)
    by (rule synth-analz-snd)
hence Crypt (priSK CA) (Hash (pubAK g)) \in analz ?A \vee
    Hash (pubAK g) \in synth (analz ?A) ^ Key (priSK CA) \in analz ?A
    by (rule synth-crypt)
moreover {
    assume Crypt (priSK CA) (Hash (pubAK g)) \in analz ?A
    hence Crypt (priSK CA) (Hash (pubAK g)) \in parts ?A
    by (rule subsetD [OF analz-parts-subset])
    with A have }\existsn.g=priAK 
    by (rule pr-sign-parts)
}
moreover {
    assume Hash (pubAK g) \in synth (analz ?A) ^ Key (priSK CA) \in analz ?A
    hence Key (priSK CA) \in analz ?A ..
    moreover have Key (priSK CA) & analz ?A
    using A by (rule pr-sign-key-analz)
    ultimately have }\existsn.g=priAK
```

```
        by contradiction
    }
    ultimately have }\existsn.g=priAK n..
}
ultimately have }\existsn.g=priAK n ..
then obtain }\mp@subsup{n}{}{\prime}\mathrm{ where g=priAK n'..
hence Crypt (sesK (c*f))
    {pubAK (c*(s+a*b)), Auth-Data (priAK n') b, pubAK (priAK n'),
    Crypt (priSK CA) (Hash (pubAK (priAK n')))}\in synth (analz ?A)
    (is Crypt - ?M \in-)
    using G by simp
hence Crypt (sesK (c*f)) ?M \in analz ?A \vee
    ?M \in synth (analz ?A) ^ Key (sesK (c*f))\in analz ?A
by (rule synth-crypt)
moreover {
    assume Crypt (sesK (c*f)) ?M \in analz ?A
    hence Crypt (sesK (c*f)) ?M \in parts ?A
    by (rule subsetD [OF analz-parts-subset])
    hence ?M \in parts ?A
    by (rule parts.Body)
    hence {Auth-Data (priAK n') b, pubAK (priAK n'),
        Crypt (priSK CA) (Hash (pubAK (priAK n')))}\in parts ?A
    by (rule parts.Snd)
    hence Auth-Data (priAK n') b\in parts ?A
    by (rule parts.Fst)
}
moreover {
    assume ?M \in synth (analz ?A) ^ Key (sesK (c*f)) \in analz ?A
    hence ?M \in synth (analz ?A) ..
    hence {|uth-Data (priAK n') b, pubAK (priAK n'),
        Crypt (priSK CA) (Hash (pubAK (priAK n')))} \in synth (analz ?A)
    by (rule synth-analz-snd)
    hence Auth-Data (priAK n') b \in synth (analz ?A)
    by (rule synth-analz-fst)
hence Auth-Data (priAK n') b \in analz ?A \vee
    Pri-AgrK (priAK n') \in analz ?A ^Pri-AgrK b G analz ?A
    by (rule synth-auth-data)
moreover {
    assume Auth-Data (priAK n') b\in analz ?A
    hence Auth-Data (priAK n') b\in parts ?A
    by (rule subsetD [OF analz-parts-subset])
}
moreover {
    assume Pri-AgrK (priAK n') \in analz ?A ^ Pri-AgrK b \in analz ?A
    hence Pri-AgrK (priAK n') \in analz ?A ..
    moreover have Pri-AgrK (priAK n') & analz ?A
    using A by (rule pr-auth-key-analz)
    ultimately have Auth-Data (priAK n') b f parts ?A
    by contradiction
```

```
    }
    ultimately have Auth-Data (priAK n') b f parts ?A ..
}
ultimately have Auth-Data (priAK n') b f parts ?A ..
with A have \existsn run. IntMapK (S (Card n, n, run)) = Some b
    by (rule pr-auth-data-parts)
then obtain n' and run' where IntMapK (S (Card n', n',run')) = Some b
by blast
with A have Pri-AgrK b & analz ?A
    by (rule pr-int-mapk-analz)
hence H: Pri-AgrK b&A
    using A by (simp add: pr-pri-agrk-analz)
have }\existsX\mathrm{ . Says n run 3 X (User m) (pubAKf) f set evsFR4
    using A and D by (rule pr-ext-agrk-user-4)
then obtain X where Says n run 3 X (User m) (pubAKf)\in set evsFR4 ..
with }A\mathrm{ have
    (\existss a b d.f=d*(s+a*b)^
    NonceS (S (Card n, n, run)) = Some s ^
    IntMapK (S (Card n, n, run)) = Some b ^
    ExtMapK (S (Card n, n, run)) = Some a ^
    IntAgrK (S (Card n, n, run)) = Some d ^
    d\not=0\wedges+a*b\not=0)\vee
    ( }\exists\mathrm{ b. Pri-AgrK b & A ^
        ExtMapK (S (User m,n,run)) = Some b)
    (is (\existss a b d.?P s a b d)\vee?Q)
    by (rule pr-ext-agrk-user-5)
moreover have I: \neg?Q
proof (rule notI, erule exE, erule conjE)
    fix b
    assume ExtMapK (S (User m,n,run)) = Some b}\mp@subsup{b}{}{\prime
    hence }\mp@subsup{b}{}{\prime}=
        using B by simp
    moreover assume Pri-AgrK b}\mp@subsup{b}{}{\prime}\in
    ultimately have Pri-AgrK b\inA
    by simp
    thus False
    using H by contradiction
qed
ultimately have }\existssabd\mathrm{ . ?P s a b d
    by simp
then obtain s}\mp@subsup{s}{}{\prime}\mathrm{ and }\mp@subsup{a}{}{\prime}\mathrm{ and }\mp@subsup{b}{}{\prime}\mathrm{ and d}\mathrm{ where J:?P s}\mp@subsup{s}{}{\prime}\mp@subsup{a}{}{\prime}\mp@subsup{b}{}{\prime}
    by blast
    hence ExtAgrK (S (User m, n, run)) = Some (d*(s' + a'* b
    using D by simp
with }A\mathrm{ and C have
    {Key (sesK (c*(d*(s'+\mp@subsup{a}{}{\prime}*\mp@subsup{b}{}{\prime})))), Agent (User m),Number n, Number run}
\inU
by (rule pr-sesk-user-1)
moreover have K: Key (sesK (c*(d*(s'}+\mp@subsup{a}{}{\prime}*\mp@subsup{b}{}{\prime}))))\in
```

```
    using \(F\) and \(J\) by \(\operatorname{simp}\)
    ultimately have
    \(\left(\exists d^{\prime} e^{\prime} . c *\left(d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)\right)=d^{\prime} * e^{\prime} \wedge\right.\)
        \(\operatorname{IntAgrK}(S(\) Card \(n, n\), run \())=\) Some \(d^{\prime} \wedge\)
        ExtAgrK \((S(\) Card \(n, n\), run \())=\) Some \(\left.e^{\prime}\right) \vee\)
    ( \(\exists\) b. Pri-AgrK \(b \in A \wedge\)
        ExtMapK \((S(\) User \(m, n\), run \())=\) Some \(b)\)
    (is \((\exists d e\).? \(P d e) \vee-)\)
    by (rule pr-sesk-user-3 [ \(\mathrm{OF} A]\) )
    hence \(\exists d e\). ? \(P d e\)
    using \(I\) by simp
then obtain \(d^{\prime}\) and \(e^{\prime}\) where \(L: ? P d^{\prime} e^{\prime}\)
    by blast
    hence \(d^{\prime}=d\)
    using \(J\) by \(\operatorname{simp}\)
    hence \(d * c *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)=d * e^{\prime}\)
    using \(L\) by \(\operatorname{simp}\)
    hence \(e^{\prime}=c *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)\)
    using \(J\) by simp
    hence \(M\) : ExtAgrK \((S(\) Card \(n, n\), run \())=\operatorname{Some}\left(c *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)\right)\)
    using \(L\) by simp
    have \(c *\left(d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)\right)=c * d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)\)
    by \(\operatorname{simp}\)
    hence Key \(\left(\operatorname{sesK}\left(c *\left(d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)\right)\right)\right)=\operatorname{Key}\left(\operatorname{sesK}\left(c * d *\left(s^{\prime}+a^{\prime} *\right.\right.\right.\)
\(\left.b^{\prime}\right)\) ))
    by (rule arg-cong)
    hence Key \(\left(\operatorname{sesK}\left(c * d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)\right)\right) \in A\)
    using \(K\) by \(\operatorname{simp}\)
    moreover have Key \(\left(\operatorname{ses} K\left(c * d *\left(s^{\prime}+a^{\prime} * b^{\prime}\right)\right)\right) \notin A\)
    proof (rule pr-ext-agrk-card [OF A, of \(n\) run], simp-all add: J M)
    qed (rule pr-int-agrk-user-2 [OF A, of \(m n\) run], simp-all add: \(C\) E)
    ultimately show False
    by contradiction
qed
theorem pr-key-secrecy [rule-format]:
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
    User \(m \neq\) Spy \(\longrightarrow\)
    Says \(n\) run \(5(\) User \(m)(\) Card \(n)(\) Crypt \((\) sesK K \()(\) Passwd \(m)) \in\) set evs \(\longrightarrow\)
    Key \((\) sesK \(K) \notin \operatorname{analz}(A \cup\) spies evs \()\)
proof (simp add: pr-key-analz, erule protocol.induct, simp-all,
    (rule-tac [1] impI)+, (rule-tac [2-3] impI)+, rule-tac [1-2] notI, simp-all)
    fix evsR3 \(S A U\) s abcd
    assume
    (evsR3, \(S, A, U) \in\) protocol and
    Says \(n\) run 5 (User m) (Card \(n\) )
        \((\) Crypt \((\operatorname{sesK}(c * d *(s+a * b)))(\) Passwd \(m)) \in\) set evsR3
    hence Key \((\operatorname{ses} K(c * d *(s+a * b))) \in U\)
    by (rule pr-sesk-passwd)
```

```
    moreover assume Key \((\operatorname{ses} K(c * d *(s+a * b))) \notin U\)
    ultimately show False
    by contradiction
next
    fix evsFR3 \(S A U s a b c d\)
    assume
    (evsFR3, \(S, A, U\) ) protocol and
    Says \(n\) run 5 (User m) (Card \(n\) )
        \((\) Crypt \((\operatorname{sesK}(c * d *(s+a * b)))(\) Passwd \(m)) \in\) set evsFR3
    hence Key \((\operatorname{sesK}(c * d *(s+a * b))) \in U\)
    by (rule pr-sesk-passwd)
    moreover assume Key \((\operatorname{ses} K(c * d *(s+a * b))) \notin U\)
    ultimately show False
    by contradiction
next
    fix evsC5SA U n run sabcfgX and \(m\) :: nat
    assume (evs \(C 5, S, A, U) \in\) protocol
    moreover assume \(0<m\)
    hence User \(m \neq\) Spy
    by simp
    moreover assume
    NonceS \((S\) (User m, n, run)) \(=\) Some s and
    IntMapK \((S(\) User \(m, n\), run \())=\) Some \(a\) and
    \(\operatorname{ExtMapK}(S(\) User m, n, run \())=\) Some \(b\) and
    \(\operatorname{IntAgrK}(S(\) User \(m, n\), run \())=\) Some \(c\) and
    ExtAgrK \((S(\) User \(m, n\), run \())=\) Some \(f\) and
    Says \(n\) run \(4 X(\) User m) (Crypt (sesK \((c * f))\)
        \(\{p u b A K(c *(s+a * b))\), Auth-Data \(g\) b, pubAK \(g\),
        Crypt (priSK CA) (Hash (pubAKg))\})
        \(\in\) set evsC5
    ultimately show \(\operatorname{Key}(\operatorname{ses} K(c * f)) \notin A\)
    by (rule pr-key-secrecy-aux)
qed
theorem pr-passwd-secrecy [rule-format]:
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
        User \(m \neq\) Spy \(\longrightarrow\)
    Passwd \(m \notin \operatorname{analz}(A \cup\) spies evs \()\)
proof (erule protocol.induct, rule-tac [!] impI, simp-all add: analz-simp-insert-2,
rule contra-subsetD [OF analz-parts-subset], subst parts-simp, simp, blast+,
rule-tac [3] impI)
    fix evsR1 \(S A U n s\)
    assume
    A: Passwd \(m \notin\) analz \((A \cup\) spies evsR1 \()\) and
    \(B:(\) evsR1 \(, S, A, U) \in\) protocol and
    C: Pri-AgrK \(s \notin U\)
show
\((n \in\) bad \(\longrightarrow\) Passwd \(m \notin \operatorname{analz}(\) insert \((\operatorname{Crypt}(\) symK \(n)(\) Pri-AgrK s \())\)
    \((\) insert \((\operatorname{Pri}-A g r K s)(A \cup\) spies evsR1 \()))) \wedge\)
```

```
    (n\not\inbad \longrightarrowPasswd m& analz (insert (Crypt (symK n) (Pri-AgrK s))
        (A\cup spies evsR1)))
    (is (-\longrightarrow?T)^(-\longrightarrow? T'))
    proof (rule conjI, rule-tac [!] impI)
    assume n\inbad
    hence Key (invK (symK n)) \in analz ( }A\cup\mathrm{ spies evsR1)
        using B by (simp add: pr-symk-analz invK-symK)
    hence Key (invK (symK n)) \in analz (insert (Pri-AgrK s) (A\cup spies evsR1))
        by (rule rev-subsetD, rule-tac analz-mono, blast)
    moreover have analz (insert (Pri-AgrK s) (A\cup spies evsR1))}
        insert (Pri-AgrK s) (analz ( }A\cup\mathrm{ spies evsR1))
        using B and C by (rule pr-pri-agrk-unused)
    ultimately show ?T
        using A by (simp add: analz-crypt-in)
    next
    assume n & bad
    hence Key (invK (symK n)) & analz ( }A\cup\mathrm{ spies evsR1)
    using B by (simp add: pr-symk-analz invK-symK)
    thus ?T'
        using A by (simp add: analz-crypt-out)
    qed
next
    fix evsFR1 A m's
    assume
        A: Passwd m \not\exists analz ( }A\cup\mathrm{ spies evsFR1) and
        B:Crypt (symK m') (Pri-AgrK s) \in synth (analz (A \cup spies evsFR1))
    thus Passwd m & analz (insert (Crypt (symK m') (Pri-AgrK s)) (A \cup spies
evsFR1))
    proof (cases Key (invK (symK m}))\in\mathrm{ analz ( }A\cup\mathrm{ spies evsFR1),
    simp-all add: analz-crypt-in analz-crypt-out)
    case True
    have Crypt (symK m') (Pri-AgrK s) \in analz ( }A\cup\mathrm{ spies evsFR1) V
    Pri-AgrK s \in synth (analz (A\cup spies evsFR1)) ^
    Key (symK m') \in analz ( }A\cup\mathrm{ spies evsFR1)
    (is ?P \vee ?Q)
    using B by (rule synth-crypt)
    moreover {
    assume ?P
    hence Pri-AgrK s \in analz ( }A\cup\mathrm{ spies evsFR1)
        using True by (rule analz.Decrypt)
    }
    moreover {
    assume ?Q
    hence Pri-AgrK s \in synth (analz ( }A\cup\mathrm{ spies evsFR1)) ..
    hence Pri-AgrK s \in analz ( }A\cup\mathrm{ spies evsFR1)
        by (rule synth-simp-intro, simp)
    }
    ultimately have Pri-AgrK s G analz ( }A\cup\mathrm{ spies evsFR1) ..
    thus Passwd m & analz (insert (Pri-AgrK s) (A\cup spies evsFR1))
```

```
        using A by (simp add: analz-simp-insert-1)
    qed
next
    fix evsC2 S A U a
    assume
    Passwd m & analz ( }A\cup\mathrm{ spies evsC2) and
    (evsC2, S, A,U) \in protocol and
    Pri-AgrK a #U
    thus Passwd m\not\inanalz (insert (Pri-AgrK a) (A\cup spies evsC2))
    by (subst pr-pri-agrk-unused, simp-all)
next
    fix evsC3 S A U c and m' :: nat
    assume
    Passwd m}\not\in\mathrm{ analz ( }A\cup\mathrm{ spies evsC3) and
    (evsC3,S,A,U)\in protocol and
    Pri-AgrK c &U
    thus m'=0\longrightarrowPasswd m& analz (insert (Pri-AgrK c) (A\cup spies evsC3))
    by (rule-tac impI, subst pr-pri-agrk-unused, simp-all)
next
    fix evsR3 S A Us s' a b cd
    assume Passwd m}\not\in\mathrm{ analz ( }A\cup\mathrm{ spies evsR3)
    moreover assume
    (evsR3,S,A,U) \in protocol and
    Key (sesK}(c*d*(s+a*b)))\not\in
    (is Key ?K # -)
    hence analz (insert (Key ?K) (A\cup spies evsR3)) =
        insert (Key ?K) (analz (A\cup spies evsR3))
        by (rule pr-key-unused)
    ultimately show s}\mp@subsup{s}{}{\prime}=s\wedge Pri-AgrK c \in analz (A\cupspies evsR3)
        Passwd m\not\in analz (insert (Key ?K) (A\cup spies evsR3))
        by simp
next
    fix evsFR3 S A U s a b c d
    assume Passwd m\not\in analz ( }A\cup\mathrm{ spies evsFR3)
    moreover assume
        (evsFR3, S, A,U) \in protocol and
        Key (sesK (c*d*(s+a*b)))}\not\in
        (is Key ? }K\not\in-
    hence analz (insert (Key ?K) (A\cup spies evsFR3)) =
        insert (Key ?K) (analz ( }A\cup\mathrm{ spies evsFR3))
    by (rule pr-key-unused)
    ultimately show Passwd m}\not\in\operatorname{analz (insert (Key ?K) (A\cup spies evsFR3))
    by simp
next
    fix evsC4 A cf
    assume Passwd m # analz (A\cup spies evsC4)
    thus Passwd m\not\in analz (insert (Crypt (sesK (c*f)) (pubAKf)) (A\cup spies
evsC4))
    by (cases Key (invK (sesK (c*f))) \in analz (A\cup spies evsC4),
```

simp-all add: analz-crypt-in analz-crypt-out analz-simp-insert-2)

next

fix evsFC4 A s abde
assume Passwd $m \notin$ analz $(A \cup$ spies evsFC4 $)$
thus Passwd $m \notin \operatorname{analz}($ insert $(\operatorname{Crypt}(\operatorname{sesK}(d * e))(p u b A K(d *(s+a *$ b))))
$(A \cup$ spies evsFC4 $)$)
by $($ cases Key $(\operatorname{invK}(\operatorname{sesK}(d * e))) \in \operatorname{analz}(A \cup$ spies evsFC4 $)$,
simp-all add: analz-crypt-in analz-crypt-out analz-simp-insert-2)
next
fix $\operatorname{evs} R_{4} S A U n$ run $b d e$
let
$? A=A \cup$ spies evs R_{4} and
$? H=\operatorname{Hash}($ pubAK $($ priAK $n))$ and
$? M=\{p u b A K($ priAK $n), \operatorname{Crypt}($ priSK CA) $)(\operatorname{Hash}($ pubAK $($ priAK $n)))\}$
assume
A: Passwd $m \notin$ analz ? A and
$B:(e v s R 4, S, A, U) \in$ protocol and
C : IntMapK $(S($ Card n, n, run $))=$ Some b
show Passwd $m \notin \operatorname{analz}($ insert $(\operatorname{Crypt}(\operatorname{sesK}(d * e))$
$\{p u b A K e$, Auth-Data (priAK n) b, ?M\}) ?A)
proof (cases Key $(\operatorname{invK}(\operatorname{sesK}(d * e))) \in$ analz ? A,
simp-all add: analz-crypt-in analz-crypt-out analz-mpair analz-simp-insert-2 A)
have Key $($ pubSK CA) \in analz ?A
using B by (rule pr-valid-key-analz)
hence D: analz (insert (Crypt (priSK CA) ?H) ? A) $=$
$\{$ Crypt (priSK CA) ?H, ?H\} \cup analz ?A
by (simp add: analz-crypt-in analz-simp-insert-2)
have Pri-AgrK (priAK n) \notin analz?A
using B by (rule pr-auth-key-analz)
hence E: Pri-AgrK (priAK n) $\notin \operatorname{analz}($ insert (Crypt (priSK CA) ?H) ?A)
using D by simp
have Pri-AgrK $b \notin$ analz ? A
using B and C by (rule pr-int-mapk-analz)
hence F : Pri-AgrK b $\notin \operatorname{analz}($ insert $(\operatorname{Crypt}($ priSK CA) ?H) ?A)
using D by simp
show Passwd $m \notin$ analz (insert (Auth-Data (priAK n) b) (insert ?M ?A))
proof ((subst insert-commute, simp add: analz-mpair analz-simp-insert-2)+, subst analz-auth-data-out [OF E F])
qed (simp add: $A D$)
qed
next
fix evsFR4 S A Usabcfg
let
$? A=A \cup$ spies evsFR4 and
$? H=H a s h(p u b A K g)$ and
$? M=\{p u b A K g, C r y p t($ priSK CA) $)($ Hash $(p u b A K g))\}$ and
$? M^{\prime}=\{p u b A K(c *(s+a * b))$, Auth-Data g b, pubAK g, Crypt (priSK CA) (Hash (pubAK g)) \}

```
assume
    A: Passwd m & analz ?A and
    B:(evsFR4,S,A,U)\in protocol and
    C:Crypt (sesK (c*f)) ?M' }\in\operatorname{synth}(\mathrm{ analz ?A)
have D:
    Key (invK (sesK (c*f))) \in analz ?A \longrightarrow
        Pri-AgrK b \in analz ?A \vee Pri-AgrK g \in analz ?A }
    Pri-AgrK b \in analz ?A ^ Pri-AgrK g \in analz ?A
    (is ?P\longrightarrow??Q\longrightarrow?R)
proof (rule impI)+
    assume ?P and ?Q
    have Crypt (sesK (c*f)) ?M'\in analz ?A \vee
        ?M'}\in\operatorname{synth}(\mathrm{ analz ?A) }\wedge Key (sesK (c*f)) \in analz ?A 
    using C by (rule synth-crypt)
    moreover {
    assume Crypt (sesK (c*f)) ?M' G analz ?A
    hence ?M'}\mp@subsup{M}{}{\prime}\in\mathrm{ analz ?A
        using <?P> by (rule analz.Decrypt)
    hence {Auth-Data g b, pubAK g,Crypt (priSK CA) (Hash (pubAK g))}
        \in analz ?A
        by (rule analz.Snd)
    hence E: Auth-Data g b G analz ?A
    by (rule analz.Fst)
    have ?R
    proof (rule disjE [OF〈?Q>])
        assume Pri-AgrK b G analz ?A
        moreover from this have Pri-AgrK g \in analz ?A
            by (rule analz.Auth-Fst [OF E])
        ultimately show ?R ..
    next
        assume Pri-AgrK g\in analz ?A
        moreover from this have Pri-AgrK b G analz ?A
            by (rule analz.Auth-Snd [OF E])
        ultimately show ?R
        by simp
    qed
}
moreover {
    assume ?M' }\in\mathrm{ synth (analz ?A) ^
        Key (sesK (c*f)) \in analz ?A
    hence ?M' }\in\mathrm{ synth (analz ?A) ..
    hence {Auth-Data g b, pubAK g,
        Crypt (priSK CA) (Hash (pubAK g))} \in synth (analz ?A)
        by (rule synth-analz-snd)
    hence Auth-Data g b E synth (analz ?A)
        by (rule synth-analz-fst)
    hence Auth-Data g b f analz ?A \vee
        Pri-AgrK g \in analz ?A ^Pri-AgrK b G analz ?A
        by (rule synth-auth-data)
```

```
    moreover {
        assume E:Auth-Data g b analz ?A
        have ?R
        proof (rule disjE [OF 〈?Q>])
            assume Pri-AgrK b G analz ?A
            moreover from this have Pri-AgrK g a analz ?A
            by (rule analz.Auth-Fst [OF E])
            ultimately show ?R ..
        next
            assume Pri-AgrK g \in analz ?A
            moreover from this have Pri-AgrK b G analz ?A
            by (rule analz.Auth-Snd [OF E])
            ultimately show?R
            by simp
        qed
    }
    moreover {
        assume Pri-AgrK g & analz ?A ^ Pri-AgrK b G analz ?A
        hence ?R
            by simp
    }
    ultimately have ?R ..
}
ultimately show ?R ..
qed
show Passwd m& analz (insert (Crypt (sesK (c*f))?M') ?A)
proof (cases Key (invK (sesK (c*f))) \in analz ?A,
    simp-all add: analz-crypt-in analz-crypt-out analz-mpair analz-simp-insert-2 A)
    assume E: Key (invK (sesK (c*f))) \in analz ?A
    have Key (pubSK CA) \in analz ?A
    using B by (rule pr-valid-key-analz)
hence F: analz (insert (Crypt (priSK CA) ?H) ?A) =
    {Crypt (priSK CA) ?H, ?H} \cup analz ?A
    by (simp add: analz-crypt-in analz-simp-insert-2)
show Passwd m& analz (insert (Auth-Data g b) (insert ?M ?A))
proof (cases Pri-AgrK g \in analz ?A \vee Pri-AgrK b a analz ?A, simp-all)
    assume G: Pri-AgrK g G analz ?A \vee Pri-AgrK b G analz ?A
    hence H:Pri-AgrK g \in analz (insert (Crypt (priSK CA)?H) ?A) V
        Pri-AgrK b G analz (insert (Crypt (priSK CA) ?H) ?A)
        using F by simp
    have I: Pri-AgrK b \in analz ?A ^ Pri-AgrK g \in analz ?A
        using D and E and G by blast
        hence Pri-AgrK g \in analz (insert (Crypt (priSK CA)?H) ?A)
        using F by simp
    hence J: Pri-AgrK g G analz (insert (Pri-AgrK b)
            (insert (Crypt (priSK CA) ?H) ?A))
        by (rule rev-subsetD, rule-tac analz-mono, blast)
    have K: Pri-AgrK b G analz (insert (Crypt (priSK CA) ?H) ?A)
        using}F\mathrm{ and }I\mathrm{ by simp
```

```
        show ?thesis
        proof ((subst insert-commute, simp add: analz-mpair analz-simp-insert-2)+,
            subst analz-auth-data-in [OF H], simp del: Un-insert-right,
            subst analz-simp-insert-1 [OF J], subst analz-simp-insert-1 [OF K])
            qed (simp add: A F)
    next
        assume G: Pri-AgrK g & analz ?A ^ Pri-AgrK b # analz ?A
        hence H: Pri-AgrK g & analz (insert (Crypt (priSK CA) ?H) ?A)
        using F by simp
        have I: Pri-AgrK b & analz (insert (Crypt (priSK CA) ?H) ?A)
        using F and G by simp
        show ?thesis
        proof ((subst insert-commute, simp add: analz-mpair analz-simp-insert-2)+,
        subst analz-auth-data-out [OF H I])
        qed (simp add: A F)
    qed
qed
next
    fix evsC5SAU m'n run s a b cfgX
    let ?M ={pubAK (c* (s+a*b)), Auth-Data g b, pubAK g,
        Crypt (priSK CA) (Hash (pubAK g))}
    assume
        A: Passwd m}\not\in\mathrm{ analz ( }A\cup\mathrm{ spies evsC5) and
        B:0<m and
        C:(evsC5,S,A,U)\in protocol and
        D: NonceS (S (User m', n, run)) = Some s and
        E:IntMapK (S (User m', n, run)) = Some a and
        F: ExtMapK (S (User m', n, run)) = Some b and
        G:IntAgrK (S (User m}\mp@subsup{m}{}{\prime},n,\mathrm{ run)) = Some c and
        H: ExtAgrK (S (User m', n, run)) = Some f and
    I: Says n run 4 X (User m') (Crypt (sesK (c*f)) ?M) \in set evsC5
    from A show Passwd m& analz (insert (Crypt (sesK (c*f)) (Passwd m'))
        (A\cup spies evsC5))
    proof (cases Key (invK (sesK (c*f))) \in analz (A\cup spies evsC5),
        simp-all add: analz-crypt-in analz-crypt-out analz-simp-insert-2, rule-tac notI)
        case True
        moreover assume m= m'
        hence User m' = Spy
        using B by simp
        hence Key (sesK (c*f))\not\inA
        by (rule pr-key-secrecy-aux [OF C-D E F G H I])
        hence Key (invK (sesK (c*f))) # analz (A\cup spies evsC5)
        using C by (simp add: pr-key-analz invK-sesK)
        ultimately show False
        by contradiction
    qed
next
    fix evsFC5 A nd e
    assume
```

```
    A: Passwd m & analz ( }A\cup\mathrm{ spies evsFC5) and
    B:Crypt (sesK (d*e)) (Passwd n) \in synth (analz (A\cup spies evsFC5))
    from A show Passwd m }\ddagger\mathrm{ analz (insert (Crypt (sesK (d*e)) (Passwd n))
    (A\cup spies evsFC5))
    proof (cases Key (invK (sesK (d*e))) \in analz ( }A\cup\mathrm{ spies evsFC5),
    simp-all add: analz-crypt-in analz-crypt-out analz-simp-insert-2, rule-tac notI)
    case True
    have Crypt (sesK (d*e)) (Passwd n) \in analz (A\cup spies evsFC5)\vee
        Passwd n }\in\mathrm{ synth (analz ( }A\cup\mathrm{ spies evsFC5)) ^
        Key (sesK (d*e)) \in analz (A\cup spies evsFC5)
        (is ?P \vee ?Q)
    using B by (rule synth-crypt)
    moreover {
        assume ?P
        hence Passwd n \in analz ( }A\cup\mathrm{ spies evsFC5)
        using True by (rule analz.Decrypt)
    }
    moreover {
        assume ?Q
        hence Passwd n \in synth (analz ( }A\cup\mathrm{ spies evsFC5)) ..
        hence Passwd n G analz ( }A\cup\mathrm{ spies evsFC5)
            by (rule synth-simp-intro, simp)
    }
    ultimately have Passwd n \in analz ( }A\cup\mathrm{ spies evsFC5) ..
    moreover assume m}=
    hence Passwd n & analz ( }A\cup\mathrm{ spies evsFC5)
        using A by simp
    ultimately show False
    by contradiction
    qed
next
    fix evsR5 A d e
    assume Passwd m # analz ( }A\cup\mathrm{ spies evsR5)
    thus Passwd m@ analz (insert (Crypt (sesK (d*e)) (Number 0)) (A\cup spies
evsR5))
    by (cases Key (invK (sesK (d*e))) \inanalz (A\cup spies evsR5),
        simp-all add: analz-crypt-in analz-crypt-out analz-simp-insert-2)
next
    fix evsFR5 A cf
    assume Passwd m}\not\in\mathrm{ analz ( }A\cup\mathrm{ spies evsFR5)
    thus Passwd m & analz (insert (Crypt (sesK (c*f)) (Number 0)) (A\cup spies
evsFR5))
    by (cases Key (invK (sesK (c*f))) \in analz ( }A\cup\mathrm{ spies evsFR5),
    simp-all add: analz-crypt-in analz-crypt-out analz-simp-insert-2)
qed
```


2.3 Authenticity theorems

This section contains a series of lemmas culminating in the authenticity theorems pr-user-authenticity and pr-card-authenticity. Structured Isar proofs are used.
lemma pr-passwd-parts [rule-format]:

```
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
        Crypt \((\) sesK K \()(\) Passwd \(m) \in\) parts \((A \cup\) spies evs \() \longrightarrow\)
    \((\exists n\) run. Says \(n\) run \(5(U s e r m)(\) Card \(n)(\) Crypt \((\) sesK K \()(\) Passwd \(m)) \in\) set
evs) \(\vee\)
    \((\exists\) run. Says \(m\) run 5 Spy \((\) Card \(m)(\) Crypt \((\) sesK K \()(\) Passwd \(m)) \in\) set evs)
    (is \(-\Longrightarrow ? M \in-\longrightarrow ? P\) evs \(\vee\) ? \(Q\) evs)
proof (erule protocol.induct, subst parts-simp, (simp, blast)+)
qed (simp-all add: parts-simp-insert parts-auth-data parts-crypt parts-mpair, blast+)
lemma pr-unique-run-1 [rule-format]:
    (evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
        \(\left\{\right.\) Key \((\) sesK \((d * e))\), Agent \((\) User \(m)\), Number \(n^{\prime}\), Number run'\} \(\in U \longrightarrow\)
        IntAgrK \((S\) (Card \(n, n\), run \())=\) Some \(d \longrightarrow\)
        ExtAgrK \((S(\) Card \(n, n\), run \())=\) Some \(e \longrightarrow\)
    \(n^{\prime}=n \wedge r u n^{\prime}=r u n\)
proof (erule protocol.induct, simp-all, rule-tac [3] conjI, (rule-tac [1-4] impI)+,
    (rule-tac [5] impI)+, simp-all, (erule-tac [2-3] conjE)+, (rule-tac [!] ccontr))
    fix evsR3 \(S A U s^{\prime} a b c\)
    assume \(c *\left(s^{\prime}+a * b\right)=e\)
    hence \(A: d * e=c * d *\left(s^{\prime}+a * b\right)\)
        by simp
    assume
        (evsR3, \(S, A, U) \in\) protocol and
        \(\left\{\right.\) Key \((\operatorname{sesK}(d * e))\), Agent \((\) User \(m)\), Number \(n^{\prime}\), Number run \(\} \in U\)
    hence Key \((\operatorname{sesK}(d * e)) \in U\)
        by (rule pr-sesk-user-2)
    hence Key \(\left(\operatorname{sesK}\left(c * d *\left(s^{\prime}+a * b\right)\right)\right) \in U\)
        by ( simp only: A)
    moreover assume Key \(\left(\operatorname{ses} K\left(c * d *\left(s^{\prime}+a * b\right)\right)\right) \notin U\)
    ultimately show False
        by contradiction
next
    fix evsR3 S A Us a b c d'
    assume Key \(\left(\operatorname{ses} K\left(c * d^{\prime} *(s+a * b)\right)\right) \notin U\)
    moreover assume \(\operatorname{ses} K(d * e)=\operatorname{ses} K\left(c * d^{\prime} *(s+a * b)\right)\)
    with sesK-inj have \(d * e=c * d^{\prime} *(s+a * b)\)
    by (rule injD)
    ultimately have Key \((\operatorname{sesK}(d * e)) \notin U\)
    by simp
    moreover assume
    (evsR3, \(S, A, U\) ) \(\in\) protocol and
    IntAgrK \((S\) (Card \(n, n\), run \())=\) Some \(d\) and
```

```
    ExtAgrK \((S(\) Card \(n, n\), run \())=\) Some e
    hence Key \((\operatorname{sesK}(d * e)) \in U\)
    by (rule pr-sesk-card)
    ultimately show False
    by contradiction
next
    fix evsFR3 \(S A U s a b c d^{\prime}\)
    assume Key \(\left(\operatorname{ses} K\left(c * d^{\prime} *(s+a * b)\right)\right) \notin U\)
    moreover assume \(\operatorname{ses} K(d * e)=\operatorname{ses} K\left(c * d^{\prime} *(s+a * b)\right)\)
    with sesK-inj have \(d * e=c * d^{\prime} *(s+a * b)\)
        by (rule injD)
    ultimately have Key \((\operatorname{ses} K(d * e)) \notin U\)
    by simp
    moreover assume
    (evsFR3, \(S, A, U) \in\) protocol and
    IntAgrK \((S\) (Card \(n\), n, run) \()=\) Some \(d\) and
    ExtAgrK \((S(\) Card \(n, n\), run \())=\) Some e
    hence Key \((\operatorname{sesK}(d * e)) \in U\)
    by (rule pr-sesk-card)
    ultimately show False
    by contradiction
qed
lemma pr-unique-run-2:
(evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
    IntAgrK \(\left(S\left(\right.\right.\) User \(m, n^{\prime}\), run \(\left.\left.{ }^{\prime}\right)\right)=\) Some \(c \Longrightarrow\)
    ExtAgrK \(\left(S\left(\right.\right.\) User \(m, n^{\prime}\), run \(\left.\left.{ }^{\prime}\right)\right)=\) Some \(f \Longrightarrow\)
    \(\operatorname{IntAgrK}(S(\) Card \(n, n\), run \())=\) Some \(d \Longrightarrow\)
    ExtAgrK \((S(\) Card \(n, n\), run \())=\) Some \(e \Longrightarrow\)
    \(d * e=c * f \Longrightarrow\)
    \(n^{\prime}=n \wedge r u n^{\prime}=r u n\)
proof (frule pr-sesk-user-1, assumption+, drule sym [of d*e], simp)
qed (rule pr-unique-run-1)
lemma pr-unique-run-3 [rule-format]:
(evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
    IntAgrK \(\left(S\left(\right.\right.\) Card \(n^{\prime}, n^{\prime}\), run \(\left.\left.{ }^{\prime}\right)\right)=\) Some \(d^{\prime} \longrightarrow\)
    ExtAgrK \(\left(S\left(\right.\right.\) Card \(n^{\prime}, n^{\prime}\), run \(\left.)\right)=\) Some \(e^{\prime} \longrightarrow\)
    \(\operatorname{IntAgrK}(S(\) Card \(n, n\), run \())=\) Some \(d \longrightarrow\)
    ExtAgrK \((S(\) Card \(n, n\), run \())=\) Some \(e \longrightarrow\)
    \(d * e=d^{\prime} * e^{\prime} \longrightarrow\)
    \(n^{\prime}=n \wedge r u n^{\prime}=r u n\)
proof (erule protocol.induct, simp-all, rule-tac [!] conjI, (rule-tac [!] impI)+,
simp-all, rule-tac [!] ccontr)
    fix evsR3 \(S A U n^{\prime} r u n^{\prime} s^{\prime} a b c\)
    assume \(c *\left(s^{\prime}+a * b\right)=e\)
    hence \(A: d * e=c * d *\left(s^{\prime}+a * b\right)\)
    by \(\operatorname{simp}\)
    assume
```

```
    (evsR3,S,A,U) \in protocol and
    IntAgrK (S (Card n', n', run')) = Some d' and
    ExtAgrK (S (Card n', n',run')) = Some e '
    hence Key (sesK (d'* * ')})\in
    by (rule pr-sesk-card)
    moreover assume d *e= d'* e
    ultimately have Key (sesK}(c*d*(\mp@subsup{s}{}{\prime}+a*b)))\in
    using A by simp
    moreover assume Key (sesK (c*d*(s'+a*b))) \not\inU
    ultimately show False
    by contradiction
next
    fix evsR3 S A U s' a b c
    assume c*(s's}+a*b)=\mp@subsup{e}{}{\prime
    hence A: d}\mp@subsup{d}{}{\prime}*\mp@subsup{e}{}{\prime}=c*\mp@subsup{d}{}{\prime}*(\mp@subsup{s}{}{\prime}+a*b
    by simp
    assume
    (evsR3,S,A,U)\in protocol and
    IntAgrK (S (Card n, n, run)) = Some d and
    ExtAgrK (S (Card n, n, run)) = Some e
    hence Key (\operatorname{sesK}(d*e))\inU
    by (rule pr-sesk-card)
    moreover assume d *e= d'* * '
    ultimately have Key (sesK}(c*\mp@subsup{d}{}{\prime}*(\mp@subsup{s}{}{\prime}+a*b)))\in
    using A by simp
    moreover assume Key (sesK (c*\mp@subsup{d}{}{\prime}*(\mp@subsup{s}{}{\prime}+a*b)))\not\inU
    ultimately show False
    by contradiction
qed
lemma pr-unique-run-4 [rule-format]:
(evs,S,A,U) f protocol \Longrightarrow
    Says n'run'5 X (Card n') (Crypt (sesK (d*e)) (Passwd m)) \in set evs \longrightarrow
    IntAgrK (S (Card n, n, run)) = Some d \longrightarrow
    ExtAgrK}(S(\mathrm{ Card n, n, run)) = Some e }
    n'}=n\wedgeru\mp@subsup{n}{}{\prime}=ru
using [[simproc del: defined-all]]
proof (erule protocol.induct, simp-all, (rule-tac [!] impI)+, rule-tac [1-3] impI,
simp-all, (erule-tac [2-3] conjE)+)
fix evsR3 SA U n run s' a b c
assume c* (s'}+a*b)=
hence A:d*e=c*d*(s'}+a*b
    by simp
assume
    (evsR3,S,A,U) \in protocol and
    Says n' run' }5\mathrm{ X (Card n') (Crypt (sesK (d*e)) (Passwd m)) G set evsR3
hence Key (sesK (d*e)) \inU
    by (rule pr-sesk-passwd)
hence Key (sesK (c*d*(s'}+a*b)))\in
```

```
    by (simp only: A)
    moreover assume Key (sesK}(c*d*(\mp@subsup{s}{}{\prime}+a*b)))\not\in
    ultimately show }\mp@subsup{n}{}{\prime}=n\wedgeru\mp@subsup{n}{}{\prime}=ru
    by contradiction
next
    fix evsC5 S A U m n'run' c f
    assume
    (evsC5,S,A,U)\in protocol and
    IntAgrK (S (User m, n',run')) = Some c and
    ExtAgrK (S (User m, n', run')) = Some f and
    IntAgrK (S (Card n, n, run)) = Some d and
    ExtAgrK (S (Card n, n, run)) = Some e
    moreover assume sesK}(d*e)=\operatorname{sesK}(c*f
    with sesK-inj have d*e=c*f
    by (rule injD)
    ultimately show }\mp@subsup{n}{}{\prime}=n\wedgeru\mp@subsup{n}{}{\prime}=ru
    by (rule pr-unique-run-2)
next
    fix evsFC5 S A U n'run' d' e'
    assume
    (evsFC5,S,A,U)\in protocol and
    IntAgrK (S (Card n', n', run')) = Some d' and
    ExtAgrK (S (Card n', n', run')) = Some e' and
    IntAgrK (S (Card n, n, run)) = Some d and
    ExtAgrK (S (Card n, n, run)) = Some e
    moreover assume sesK}(d*e)=\operatorname{sesK}(\mp@subsup{d}{}{\prime}*\mp@subsup{e}{}{\prime}
    with sesK-inj have d}*e=\mp@subsup{d}{}{\prime}*\mp@subsup{e}{}{\prime
    by (rule injD)
    ultimately show }\mp@subsup{n}{}{\prime}=n\wedgeru\mp@subsup{n}{}{\prime}=ru
    by (rule pr-unique-run-3)
qed
theorem pr-user-authenticity [rule-format]:
    (evs,S,A,U) \in protocol \Longrightarrow
    Says n run 5 X (Card n) (Crypt (sesK K) (Passwd m)) \in set evs \longrightarrow
    Says n run 5 (User m) (Card n) (Crypt (sesK K) (Passwd m)) \in set evs
proof (erule protocol.induct, simp-all, rule impI, simp)
    fix evsFC5S A U n run d e
    assume
    A: Says n run 5 Spy (Card n) (Crypt (sesK (d*e)) (Passwd n)) \in set evsFC5
\longrightarrow
            Says n run 5 (User n) (Card n) (Crypt (sesK (d*e)) (Passwd n)) \in set
evsFC5
            (is - \longrightarrow?T) and
    B:(evsFC5,S,A,U)\in protocol and
    C: IntAgrK (S (Card n, n, run)) = Some d and
    D: ExtAgrK (S (Card n, n, run)) = Some e and
    E:Crypt (sesK (d*e)) (Passwd n) \in synth (analz (A\cup spies evsFC5))
show n=0\vee?T
```

```
proof (cases n = 0, simp-all)
    assume 0<n
    hence User n}\not=\mathrm{ Spy
    by simp
    with B have F: Passwd n # analz ( }A\cup\mathrm{ spies evsFC5)
    by (rule pr-passwd-secrecy)
    have Crypt (sesK (d*e)) (Passwd n) \in analz ( }A\cup\mathrm{ spies evsFC5) V
        Passwd n }\in\mathrm{ synth (analz (A U spies evsFC5)) ^
        Key (sesK (d*e)) \in analz (A\cup spies evsFC5)
        (is ?P \vee ?Q)
    using E by (rule synth-crypt)
    moreover have \neg? Q
    proof
        assume ?Q
        hence Passwd n \in synth (analz ( }A\cup\mathrm{ spies evsFC5)) ..
        hence Passwd n G analz ( }A\cup\mathrm{ spies evsFC5)
        by (rule synth-simp-intro, simp)
        thus False
        using F by contradiction
    qed
    ultimately have ?P
    by simp
    hence Crypt (sesK (d*e)) (Passwd n) \in parts ( }A\cup\mathrm{ spies evsFC5)
    by (rule subsetD [OF analz-parts-subset])
    with B have
    (\exists\mp@subsup{n}{}{\prime}run'. Says n'run' 5 (User n) (Card n') (Crypt (sesK (d*e)) (Passwd
n))
        & set evsFC5) \vee
        (\existsrun'. Says n run' 5 Spy (Card n) (Crypt (sesK (d*e)) (Passwd n))
        set evsFC5)
        (is (\exists\mp@subsup{n}{}{\prime}ru\mp@subsup{n}{}{\prime}. ?P n'run')}\vee(\existsru\mp@subsup{n}{}{\prime}.\mathrm{ . ?Q run'})
    by (rule pr-passwd-parts)
    moreover {
    assume \existsn'run'. ?P n'run'
    then obtain n' and run' where ?P n' run'
        by blast
        moreover from this have n' = n ^run' = run
        by (rule pr-unique-run-4 [OF B - C D])
        ultimately have ?T
        by simp
}
moreover {
    assume \existsrun'. ?Q run'
    then obtain run' where ?Q run' ..
    moreover from this have n=n\wedgerun' = run
    by (rule pr-unique-run-4 [OF B - C D])
    ultimately have ?Q run
    by simp
    with A have ?T ..
```

```
    }
    ultimately show ?T ..
    qed
qed
lemma pr-confirm-parts [rule-format]:
    (evs, S,A,U) \inprotocol \Longrightarrow
    Crypt (sesK K) (Number 0) f parts ( }A\cup\mathrm{ spies evs )}
    Key (sesK K) &A\longrightarrow
    ( }\exists\mathrm{ n run X.
    Says n run 5 X (Card n) (Crypt (sesK K) (Passwd n)) \in set evs }
    Says n run 5 (Card n) X (Crypt (sesK K) (Number 0)) \in set evs)
    (is - - - - \longrightarrow?P K evs)
using [[simproc del: defined-all]]
proof (erule protocol.induct, simp, subst parts-simp, simp, blast+,
simp-all add: parts-simp-insert parts-auth-data parts-crypt parts-mpair,
rule-tac [3] conjI,(rule-tac [!] impI)+, simp-all, blast+)
    fix evsFR5 S A U cf
    assume
            A: Crypt (sesK (c*f)) (Number 0) \in parts ( }A\cup\mathrm{ spies evsFR5) }
            ?P (c*f) evsFR5 and
    B:(evsFR5,S,A,U)\in protocol and
    C:Key (sesK (c*f))\not\inA and
    D:Crypt (sesK (c*f)) (Number 0) \in synth (analz (A\cup spies evsFR5))
    show ?P (c*f) evsFR5
    proof -
    have Crypt (sesK (c*f)) (Number 0) \in analz ( }A\cup\mathrm{ spies evsFR5) V
```



```
            Key (sesK (c*f)) \in analz (A\cup spies evsFR5)
            using D by (rule synth-crypt)
            moreover have Key (sesK (c*f)) & analz ( }A\cup\mathrm{ spies evsFR5)
            using B and C by (simp add: pr-key-analz)
    ultimately have Crypt (sesK (c*f)) (Number 0) \in analz ( }A\cup\mathrm{ spies evsFR5)
    by simp
    hence Crypt (sesK (c*f)) (Number 0) f parts ( }A\cup\mathrm{ spies evsFR5)
            by (rule subsetD [OF analz-parts-subset])
    with A show ?thesis ..
    qed
qed
lemma pr-confirm-says [rule-format]:
    (evs,S,A,U) \in protocol \Longrightarrow
    Says n run 5 X Spy (Crypt (sesK K) (Number 0)) \in set evs \longrightarrow
    Says n run 5 Spy (Card n)(Crypt (sesK K) (Passwd n)) \in set evs
by (erule protocol.induct, simp-all)
lemma pr-passwd-says [rule-format]:
    (evs,S,A,U) \in protocol \Longrightarrow
    Says n run 5 X (Card n) (Crypt (sesK K) (Passwd m)) \in set evs \longrightarrow
```

```
    X = User m \vee X = Spy
by (erule protocol.induct, simp-all)
lemma pr-unique-run-5 [rule-format]:
    (evs,S,A,U) \in protocol \Longrightarrow
    {Key (sesK K), Agent (User m'), Number n',Number run'} }\inU
    {Key (sesK K), Agent (User m),Number n,Number run} \inU \longrightarrow
    m= m'^n= n'^run=run'
using [[simproc del: defined-all]]
proof (erule protocol.induct, simp-all, blast, (rule conjI, rule impI)+,
    rule-tac [2] impI, (rule-tac [3] impI)+, rule-tac [4] conjI, (rule-tac [4-5] impI)+,
    simp-all, blast, rule-tac [!] ccontr)
    fix evsR3 S A Us a b cd
    assume
        (evsR3,S,A,U) \in protocol and
    {Key (sesK (c*d*(s+a*b))), Agent (User m), Number n, Number run} }
U
    hence Key (sesK (c*d*(s+a*b))) \inU
    by (rule pr-sesk-user-2)
    moreover assume Key (sesK (c*d*(s+a*b)))\not\inU
    ultimately show False
    by contradiction
next
    fix evsR3 S A U s abcd
    assume
        (evsR3,S,A,U) \in protocol and
        {Key (sesK (c*d*(s+a*b))), Agent (User m'),Number n',Number run'}
\inU
    hence Key (sesK (c*d*(s+a*b))) \inU
    by (rule pr-sesk-user-2)
    moreover assume Key (sesK (c*d*(s+a*b)))\not\inU
    ultimately show False
    by contradiction
next
    fix evsFR3 S A Us abcd
    assume
        (evsFR3, S,A,U)\in protocol and
        {Key (sesK (c*d*(s+a*b))), Agent (User m),Number n, Number run}}
U
    hence Key (sesK (c*d*(s+a*b))) \inU
    by (rule pr-sesk-user-2)
    moreover assume Key (sesK (c*d*(s+a*b)))\not\inU
    ultimately show False
    by contradiction
next
    fix evsFR3 S A Us abcd
    assume
    (evsFR3, S,A,U)\in protocol and
    {Key (sesK (c*d*(s+a*b))), Agent (User m'),Number n', Number run'}
```

```
G
    hence Key (sesK (c*d*(s+a*b)))\inU
    by (rule pr-sesk-user-2)
    moreover assume Key (sesK (c*d*(s+a*b)))\not\inU
    ultimately show False
    by contradiction
qed
lemma pr-unique-run-6:
(evs,S,A,U) \in protocol }
    {Key (sesK (c*f)), Agent (User m'), Number n',Number run'}}\inU
    IntAgrK (S (User m,n,run)) = Some c \Longrightarrow
    ExtAgrK (S (User m,n,run)) = Some f \Longrightarrow
    m= m'^n= n'^run=run'
proof (frule pr-sesk-user-1, assumption+)
qed (rule pr-unique-run-5)
lemma pr-unique-run-7 [rule-format]:
    (evs,S,A,U) \in protocol }
        Says n' run' 5 (User m') (Card n') (Crypt (sesK K) (Passwd m')) \in set evs
\longrightarrow
    {Key (sesK K), Agent (User m), Number n,Number run} \inU \longrightarrow
    Key (sesK K) #A \longrightarrow
    m'}=m\wedge\mp@subsup{n}{}{\prime}=n\wedgeru\mp@subsup{n}{}{\prime}=ru
proof (erule protocol.induct, simp-all, (rule impI)+,(rule-tac [2-3] impI)+,
    (erule-tac [3] conjE)+, (drule-tac [3] sym [of m'\)+,drule-tac [3] sym [of 0],
    simp-all)
    fix evsR3 S A U n run s a b c d
    assume
        (evsR3,S,A,U) \in protocol and
        Says n' run' 5 (User m') (Card n')
            (Crypt (sesK (c*d*(s+a*b))) (Passwd m')) \in set evsR3
    hence Key (sesK (c*d*(s+a*b))) \inU
    by (rule pr-sesk-passwd)
    moreover assume Key (sesK}(c*d*(s+a*b)))\not\in
    ultimately show m}\mp@subsup{m}{}{\prime}=m\wedge\mp@subsup{n}{}{\prime}=n\wedgeru\mp@subsup{n}{}{\prime}=ru
    by contradiction
next
    fix evsC5SAU m' n'run' c f
    assume
        (evsC5,S,A,U) \in protocol and
    {Key (sesK (c*f)), Agent (User m),Number n,Number run}}\inU\mathrm{ and
    IntAgrK (S (User m', n', run')) = Some c and
    ExtAgrK (S (User m', n',run')) = Some f
    thus m
    by (rule pr-unique-run-6)
next
    fix evsFC5 S A U run'd e
    assume
```

A: Says 0 run' 5 Spy $($ Card 0) $)($ Crypt $(\operatorname{sesK}(d * e))($ Passwd 0) $) \in$ set evsFC5

```
    m=0\wedgen=0^run' = run and
    B:(evsFC5,S,A,U)\in protocol and
    C:IntAgrK (S (Card 0, 0, run')) = Some d and
    D: ExtAgrK (S (Card 0, 0, run')) = Some e and
    E:Crypt (sesK (d*e)) (Passwd 0) \in synth (analz (A\cup spies evsFC5)) and
    F:Key (sesK (d*e)) #A
    have Crypt (sesK (d*e)) (Passwd 0) \in analz ( }A\cup\mathrm{ spies evsFC5) V
    Passwd 0 G synth (analz ( }A\cup\mathrm{ spies evsFC5)) ^
    Key (sesK (d*e)) \inanalz ( }A\cup\mathrm{ spies evsFC5)
    using E by (rule synth-crypt)
    moreover have Key (sesK (d*e)) \not\in\operatorname{analz}(A\cup\mathrm{ spies evsFC5)}
    using B and F by (simp add: pr-key-analz)
    ultimately have Crypt (sesK (d*e)) (Passwd 0) \in analz ( }A\cup\mathrm{ spies evsFC5)
    by simp
    hence Crypt (sesK (d*e)) (Passwd 0) \in parts ( }A\cup\mathrm{ spies evsFC5)
    by (rule subsetD [OF analz-parts-subset])
    with B have
    (\existsn run. Says n run 5 Spy (Card n) (Crypt (sesK (d*e)) (Passwd 0))
        e set evsFC5) V
    (\exists run. Says 0 run 5 Spy (Card 0) (Crypt (sesK (d*e)) (Passwd 0))
        & set evsFC5)
    (is (\existsn run.?P n run ) \vee (\exists run. ?Q run )}
    by (rule pr-passwd-parts)
    moreover {
    assume \existsn run. ?P n run
    then obtain }\mp@subsup{n}{}{\prime\prime}\mathrm{ and run" where ?P n'trun"
        by blast
    moreover from this have n' }\mp@subsup{n}{}{\prime\prime}=0\wedgeru\mp@subsup{n}{}{\prime\prime}=ru\mp@subsup{n}{}{\prime
    by (rule pr-unique-run-4 [OF B - C D])
    ultimately have ?P 0 run'
    by simp
}
moreover {
    assume \existsrun.?Q run
    then obtain run" where ?Q run" ..
    hence \existsn. ?P n run" ..
    then obtain n" where ?P n" run" ..
    moreover from this have n' }=0\wedgeru\mp@subsup{n}{}{\prime\prime}=ru\mp@subsup{n}{}{\prime
    by (rule pr-unique-run-4 [OF B - C D])
    ultimately have ?P 0 run'
    by simp
}
ultimately have ?P 0 run' ..
    with A show m=0^n=0^run'}=run ..
qed
lemma pr-unique-run-8:
```

```
(evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
    Says \(n^{\prime}\) run' \(5\left(\right.\) User \(\left.m^{\prime}\right)\left(\right.\) Card \(\left.n^{\prime}\right)\left(\operatorname{Crypt}(\operatorname{sesK}(c * f))\left(\right.\right.\) Passwd \(\left.\left.m^{\prime}\right)\right) \in\) set
evs \(\Longrightarrow\)
    IntAgrK \((S(\) User \(m, n\), run \())=\) Some \(c \Longrightarrow\)
    ExtAgrK \((S(\) User \(m, n\), run \())=\) Some \(f \Longrightarrow\)
    Key \((\operatorname{sesK}(c * f)) \notin A \Longrightarrow\)
    \(m^{\prime}=m \wedge n^{\prime}=n \wedge r u n^{\prime}=r u n\)
proof (frule pr-sesk-user-1, assumption+)
qed (rule pr-unique-run-7)
lemma pr-unique-passwd-parts [rule-format]:
(evs, \(S, A, U) \in\) protocol \(\Longrightarrow\)
    Crypt \((\) sesK \(K)\left(\right.\) Passwd \(\left.m^{\prime}\right) \in\) parts \((A \cup\) spies evs \() \longrightarrow\)
    Crypt \((\) sesK \(K)(\) Passwd \(m) \in\) parts \((A \cup\) spies evs \() \longrightarrow\)
    \(m^{\prime}=m\)
using [[simproc del: defined-all]]
proof (erule protocol.induct, simp, subst parts-simp, simp, blast+,
simp-all add: parts-simp-insert parts-auth-data parts-crypt parts-mpair,
rule-tac [!] conjI, (rule-tac [!] impI)+, erule-tac [!] conjE, simp-all)
fix evsC5SAU m \(n\) run sabcfg \(X\)
assume
    A: \((\) evsC5 \(, S, A, U) \in\) protocol and
    B: NonceS \(\left(S\right.\) (User \(m^{\prime \prime}, n\), run \(\left.)\right)=\) Some \(s\) and
    \(C\) : IntMapK \(\left(S\left(\right.\right.\) User \(m^{\prime \prime}, n\), run \(\left.)\right)=\) Some \(a\) and
    D: ExtMapK \(\left(S\left(\right.\right.\) User \(m^{\prime \prime}, n\), run \(\left.)\right)=\) Some \(b\) and
    E: IntAgrK \(\left(S\left(\right.\right.\) User \(m^{\prime \prime}, n\), run \(\left.)\right)=\) Some \(c\) and
    \(F\) : ExtAgrK \(\left(S\right.\) (User \(m^{\prime \prime}, n\), run \(\left.)\right)=\) Some \(f\) and
    \(G\) : Crypt \((\) sesK \((c * f))(\) Passwd \(m) \in\) parts \((A \cup\) spies evsC5) and
    \(H: m^{\prime}=m^{\prime \prime}\) and
    \(I\) : Says \(n\) run \(4 X\left(\right.\) User \(\left.m^{\prime \prime}\right)(\) Crypt \((\) sesK \((c * f))\)
        \(\{p u b A K(c *(s+a * b))\), Auth-Data \(g\) b, pubAK \(g\),
        Crypt (priSK CA) (Hash \((\) pubAK g) ) \}) \() \in\) set evsC5
show \(m^{\prime \prime}=m\)
proof (cases \(m^{\prime \prime}=0\), rule classical)
    case True
moreover assume \(m^{\prime \prime} \neq m\)
ultimately have \(J:\) User \(m \neq S p y\)
    using \(H\) by simp
have
\((\exists n\) run. Says \(n\) run \(5(\) User \(m)(\) Card \(n)(C r y p t(\operatorname{sesK}(c * f))(\) Passwd \(m))\)
    \(\in\) set evsC5) \(\vee\)
        ( \(\exists\) run. Says \(m\) run 5 Spy \((\) Card \(m)(C r y p t(\operatorname{sesK}(c * f))(\) Passwd \(m))\)
        \(\in\) set evsC5)
        (is \((\exists n\) run. ?P \(n\) run \() \vee(\exists\) run. ?Q run \())\)
        using \(A\) and \(G\) by (rule pr-passwd-parts)
moreover \{
    assume \(\exists n\) run. ?P \(n\) run
    then obtain \(n^{\prime}\) and \(r u n^{\prime}\) where \(K\) : ?P \(n^{\prime} r u n^{\prime}\)
        by blast
```

```
    with A and }J\mathrm{ have Key (sesK (c*f)) & analz ( }A\cup\mathrm{ spies evsC5)
    by (rule pr-key-secrecy)
    hence Key (sesK (c*f))\not\inA
    using A by (simp add: pr-key-analz)
    hence m= m'\prime^ n'=n\wedgerun'}=ru
    by (rule pr-unique-run-8 [OF A K E F])
    hence ?thesis
    by simp
}
moreover {
    assume \existsrun. ?Q run
    then obtain run' where ?Q run' ..
    with A have K:?P m run'
    by (rule pr-user-authenticity)
    with A and J have Key (sesK (c*f)) & analz ( }A\cup\mathrm{ spies evsC5)
    by (rule pr-key-secrecy)
    hence Key (sesK (c*f)) &A
    using A by (simp add: pr-key-analz)
    hence m= m'\prime^m=n\wedgerun'=run
    by (rule pr-unique-run-8 [OF A K E F}]
    hence ?thesis
    by simp
}
    ultimately show ?thesis ..
next
    case False
    hence User m" 
    by simp
    hence J: Key (sesK (c*f)) \not\inA
    by (rule pr-key-secrecy-aux [OF A - B C D E F I])
    have
    (\existsn run. Says n run 5 (User m) (Card n) (Crypt (sesK (c*f)) (Passwd m))
        set evsC5) \vee
        (\exists run. Says m run 5 Spy (Card m) (Crypt (sesK (c*f)) (Passwd m))
            &et evsC5)
        (is (\existsn run. ?P n run) \vee (\exists run. ?Q run))
    using A and G by (rule pr-passwd-parts)
moreover {
    assume }\existsn\mathrm{ run. ?P n run
    then obtain n' and run' where ?P n' run'
        by blast
    hence m= m"^ n'=n\wedgerun'=run
        by (rule pr-unique-run-8 [OF A - E F J])
    hence ?thesis
        by simp
}
moreover {
    assume \existsrun. ?Q run
    then obtain run' where ?Q run' ..
```

```
        with A have ?P m run'
        by (rule pr-user-authenticity)
        hence m= m'\prime^m=n\wedgerun'}=ru
        by (rule pr-unique-run-8 [OF A - E F J])
        hence ?thesis
        by simp
    }
    ultimately show ?thesis ..
    qed
next
    fix evsC5SA U m" n run s a b c fgX
    assume
    A:(evsC5,S,A,U)\in protocol and
    B: NonceS (S (User m',}n\mathrm{ , run)) = Some s and
    C: IntMapK (S (User m', n, run)) = Some a and
    D: ExtMapK (S (User m', n, run)) = Some b and
    E:IntAgrK (S (User m'\prime, n, run)) = Some c and
    F: ExtAgrK (S (User m', n,run)) = Some f and
    G:Crypt (sesK (c*f)) (Passwd m') \in parts (A\cup spies evsC5) and
    H:m=m" and
    I: Says n run 4 X (User m'') (Crypt (sesK (c*f))
        {pubAK (c*(s+a*b)), Auth-Data g b, pubAK g,
        Crypt (priSK CA) (Hash (pubAK g))}) \in set evsC5
    show m' = m'\prime
    proof (cases m'\prime}=0\mathrm{ ,rule classical)
    case True
    moreover assume m' = m'
    ultimately have J:User m'}=\mathrm{ Spy
    using H by simp
have
    (\existsn run. Says n run 5 (User m') (Card n) (Crypt (sesK (c*f)) (Passwd m'))
        set evsC5) \vee
        (\exists run. Says m' run 5 Spy (Card m') (Crypt (sesK (c*f)) (Passwd m'))
            \in set evsC5)
        (is (\existsn run.?P n run) \vee ( }\exists\mathrm{ run. ?Q run )}
    using A and G by (rule pr-passwd-parts)
moreover {
    assume \existsn run. ?P n run
    then obtain n' and run' where K:?P n'run'
        by blast
        with }A\mathrm{ and }J\mathrm{ have Key (sesK (c*f)) & analz ( }A\cup\mathrm{ spies evsC5)
        by (rule pr-key-secrecy)
        hence Key (sesK (c*f)) &A
        using A by (simp add: pr-key-analz)
        hence m'= m'\prime}\wedge n'=n\wedgerun'=ru
        by (rule pr-unique-run-8 [OF A K E F])
        hence ?thesis
        by simp
}
```

```
moreover {
    assume \existsrun. ?Q run
    then obtain run' where ?Q run' ..
    with A have K: ?P m' run'
    by (rule pr-user-authenticity)
    with A and J have Key (sesK (c*f)) # analz ( }A\cup\mathrm{ spies evsC5)
    by (rule pr-key-secrecy)
    hence Key (sesK (c*f))\not\inA
    using A by (simp add: pr-key-analz)
    hence m'= m'^^ m'=n^run'=run
    by (rule pr-unique-run-8 [OF A K E F])
    hence ?thesis
    by simp
}
ultimately show ?thesis ..
next
    case False
    hence User m'\prime}\not=Sp
    by simp
hence J: Key (sesK (c*f))\not\inA
    by (rule pr-key-secrecy-aux [OF A - B C D E F I])
have
    (\existsn run. Says n run 5 (User m') (Card n) (Crypt (sesK (c*f)) (Passwd m'))
        set evsC5)\vee
        (\existsrun. Says m'run 5 Spy (Card m') (Crypt (sesK (c*f)) (Passwd m'))
            & set evsC5)
        (is (\exists n run. ?P n run) \vee ( }\exists\mathrm{ run. ?Q run )}
    using A and G by (rule pr-passwd-parts)
moreover {
    assume \existsn run. ?P n run
    then obtain n' and run' where ?P n'run'
        by blast
        hence m'= m'\prime}\wedge \mp@subsup{n}{}{\prime}=n\wedgeru\mp@subsup{n}{}{\prime}=ru
        by (rule pr-unique-run-8 [OF A - E F J])
        hence ?thesis
        by simp
    }
    moreover {
        assume \existsrun. ?Q run
        then obtain run' where ?Q run' ..
        with A have ?P m'run'
        by (rule pr-user-authenticity)
        hence m'= m'\prime^ m'=n^run'=run
        by (rule pr-unique-run-8 [OF A - E F J])
        hence ?thesis
        by simp
    }
    ultimately show ?thesis ..
qed
```

```
next
    fix evsFC5S A Unde
    assume
            A:Crypt (sesK (d*e)) (Passwd n) \in parts ( }A\cup\mathrm{ spies evsFC5) }
                n=m and
            B:(evsFC5,S,A,U)\in protocol and
            C:Crypt (sesK (d*e)) (Passwd n) \in synth (analz (A\cup spies evsFC5)) and
            D:Crypt (sesK (d*e)) (Passwd m) \in parts (A\cup spies evsFC5)
show }n=
proof (rule classical)
    assume E: n\not=m
    have F:Crypt (sesK (d*e)) (Passwd n) \in analz ( }A\cup\mathrm{ spies evsFC5) V
            Passwd n \in synth (analz (A\cup spies evsFC5)) ^
            Key (sesK (d*e)) \in analz (A\cup spies evsFC5)
    using C by (rule synth-crypt)
    have Crypt (sesK (d*e)) (Passwd n)\in\operatorname{analz ( }A\cup\mathrm{ spies evsFC5)}
    proof (rule disjE [OF F], assumption, erule conjE, cases n =0)
            case True
            hence G: User m}\not=Sp
            using E by simp
            have
                (\existsn run.Says n run 5 (User m) (Card n) (Crypt (sesK (d*e)) (Passwd
m))
                set evsFC5)\vee
                (\exists run. Says m run 5 Spy (Card m) (Crypt (sesK (d*e)) (Passwd m))
                & set evsFC5)
            (is (\exists n run.?P n run) \vee ( }\exists\mathrm{ run. ?Q run )}
            using B and D by (rule pr-passwd-parts)
    moreover {
            assume \existsn run. ?P n run
            then obtain }\mp@subsup{n}{}{\prime}\mathrm{ and run where ?P n' run
                by blast
            with B and G have Key (sesK (d*e)) & analz ( }A\cup\mathrm{ spies evsFC5)
            by (rule pr-key-secrecy)
    }
    moreover {
        assume \existsrun. ?Q run
        then obtain run where ?Q run ..
        with B have ?P m run
            by (rule pr-user-authenticity)
            with B and G have Key (sesK (d*e)) \not\in\operatorname{analz}(A\cup\mathrm{ spies evsFC5)}
            by (rule pr-key-secrecy)
    }
    ultimately have Key (sesK (d*e))\not\in\operatorname{analz}(A\cup spies evsFC5) ..
    moreover assume Key (sesK (d*e)) \inanalz (A\cup spies evsFC5)
    ultimately show ?thesis
        by contradiction
    next
    case False
```

```
        hence User \(n \neq S p y\)
        by simp
    with \(B\) have Passwd \(n \notin\) analz \((A \cup\) spies evsFC5)
    by (rule pr-passwd-secrecy)
    moreover assume Passwd \(n \in \operatorname{synth}(\operatorname{analz}(A \cup\) spies evsFC5))
    hence Passwd \(n \in\) analz \((A \cup\) spies evsFC5)
    by (rule synth-simp-intro, simp)
    ultimately show ?thesis
    by contradiction
    qed
    hence Crypt \((\operatorname{ses} K(d * e))(\) Passwd \(n) \in\) parts \((A \cup\) spies evsFC5)
    by (rule subsetD [OF analz-parts-subset])
    with \(A\) show ?thesis..
    qed
next
fix evsFC5 SAUnde
assume
A: Crypt \((\operatorname{ses} K(d * e))(\) Passwd \(n) \in\) parts \((A \cup\) spies evsFC5 \() \longrightarrow\)
\(m^{\prime}=n\) and
\(B:(\) evsFC5 \(, S, A, U) \in\) protocol and
\(C: C r y p t(\operatorname{sesK}(d * e))(\) Passwd \(n) \in \operatorname{synth}(\operatorname{analz}(A \cup\) spies evsFC5)) and
\(D: C r y p t(\operatorname{ses} K(d * e))\left(\right.\) Passwd \(\left.m^{\prime}\right) \in\) parts \((A \cup\) spies evsFC5)
show \(m^{\prime}=n\)
proof (rule classical)
    assume \(E: m^{\prime} \neq n\)
    have \(F\) : Crypt \((\) sesK \((d * e))(\) Passwd \(n) \in \operatorname{analz}(A \cup\) spies evsFC5 \() \vee\)
        Passwd \(n \in\) synth (analz \((A \cup\) spies evsFC5 \()\) ) \(\wedge\)
        Key \((\operatorname{ses} K(d * e)) \in \operatorname{analz}(A \cup\) spies evsFC5 \()\)
    using \(C\) by (rule synth-crypt)
    have Crypt \((\operatorname{ses} K(d * e))(\) Passwd \(n) \in \operatorname{analz}(A \cup\) spies evsFC5 \()\)
    proof (rule disjE [OF F], assumption, erule conjE, cases \(n=0\) )
        case True
        hence \(G\) : User \(m^{\prime} \neq\) Spy
            using \(E\) by \(\operatorname{simp}\)
        have
            ( \(\exists \mathrm{n}\) run. Says \(n\) run 5 (User \(\left.m^{\prime}\right)(\) Card \(n)(\operatorname{Crypt}(\operatorname{sesK}(d * e))(\) Passwd
\(\left.m^{\prime}\right)\) )
            \(\in\) set evsFC5) \(\vee\)
            \(\left(\exists\right.\) run. Says \(m^{\prime}\) run 5 Spy \(\left(\right.\) Card \(\left.m^{\prime}\right)\left(\operatorname{Crypt}(\operatorname{sesK}(d * e))\left(\right.\right.\) Passwd \(\left.\left.m^{\prime}\right)\right)\)
                \(\in\) set evsFC5)
            (is \((\exists n\) run.? \(P\) run \() \vee(\exists\) run. ?Q run \())\)
            using \(B\) and \(D\) by (rule pr-passwd-parts)
            moreover \{
            assume \(\exists n\) run. ?P \(n\) run
            then obtain \(n^{\prime}\) and run where ?P \(n^{\prime}\) run
            by blast
            with \(B\) and \(G\) have \(\operatorname{Key}(\operatorname{sesK}(d * e)) \notin \operatorname{analz}(A \cup\) spies evsFC5 \()\)
            by (rule pr-key-secrecy)
    \}
```

```
    moreover {
        assume \existsrun. ?Q run
        then obtain run where ?Q run ..
        with B have ?P m' run
        by (rule pr-user-authenticity)
        with B and G have Key (sesK (d*e)) & analz ( }A\cup\mathrm{ spies evsFC5)
    by (rule pr-key-secrecy)
    }
    ultimately have Key (sesK (d*e))\not\in\operatorname{analz ( }A\cup\mathrm{ spies evsFC5) ..}
    moreover assume Key (sesK (d*e)) \in analz ( }A\cup\mathrm{ spies evsFC5)
    ultimately show ?thesis
    by contradiction
    next
        case False
        hence User n}\not=\mathrm{ Spy
            by simp
        with B have Passwd n & analz ( }A\cup\mathrm{ spies evsFC5)
        by (rule pr-passwd-secrecy)
        moreover assume Passwd n \in synth (analz (A\cup spies evsFC5))
        hence Passwd n G analz ( }A\cup\mathrm{ spies evsFC5)
        by (rule synth-simp-intro, simp)
        ultimately show ?thesis
        by contradiction
    qed
    hence Crypt (sesK (d*e)) (Passwd n) \in parts ( }A\cup\mathrm{ spies evsFC5)
        by (rule subsetD [OF analz-parts-subset])
    with A show ?thesis ..
qed
qed
theorem pr-card-authenticity [rule-format]:
    (evs,S,A,U) \in protocol \Longrightarrow
        Says n run 5 (User m) (Card n) (Crypt (sesK K) (Passwd m)) \in set evs \longrightarrow
    Says n run 5 X (User m) (Crypt (sesK K) (Number 0)) \in set evs \longrightarrow
    n=m^
    (Says m run 5 (Card m) (User m) (Crypt (sesK K) (Number 0)) \in set evs \vee
    Says m run 5 (Card m) Spy (Crypt (sesK K) (Number 0)) \in set evs)
proof (erule protocol.induct, simp-all, (rule-tac [1 -2] impI)+,(erule-tac [2] conjE)+,
    (rule-tac [3] impI, rule-tac [3] conjI)+, rule-tac [4] disjI1, rule-tac [5] impI,
    (rule-tac [6] impI)+, simp-all)
    fix evsC5SAUmn run s abcfg X'
    assume
        A: Says n run 5 (User m) (Card n) (Crypt (sesK (c*f)) (Passwd m))
            set evsC5 \longrightarrow
            n=m^
            (Says m run 5 (Card m) (User m) (Crypt (sesK (c*f)) (Number 0))
                < set evsC5 V
            Says m run 5 (Card m) Spy (Crypt (sesK (c*f)) (Number 0))
                set evsC5) and
```

$B:(e v s C 5, S, A, U) \in$ protocol and
C : NonceS $(S$ (User m, n, run)) $=$ Some s and
D: IntMapK $(S$ (User m, n, run $))=$ Some a and
E: ExtMapK $(S($ User m, n, run $))=$ Some b and
F : IntAgrK $(S($ User m, n, run $))=$ Some c and
$G: \operatorname{ExtAgrK}(S($ User m, n, run $))=$ Some f and
H : Says n run $4 X^{\prime}($ User $m)(\operatorname{Crypt}(\operatorname{sesK}(c * f))$
$\{p u b A K(c *(s+a * b))$, Auth-Data g b, pubAK g, Crypt (priSK CA) (Hash (pubAKg)) \}) \in set evsC5 and
I : Says n run $5 X($ User $m)(C r y p t(s e s K ~(c * f))($ Number 0)) \in set evsC5
show $n=m \wedge$
$($ Says m run $5($ Card $m)($ User $m)($ Crypt $(\operatorname{sesK}(c * f))($ Number 0$)) \in$ set evs C5 \vee

Says m run $5($ Card $m)$ Spy $($ Crypt $(\operatorname{sesK}(c * f))($ Number 0$)) \in$ set evsC5) proof (cases $m=0$)
case True
hence Says n run 5 X Spy $(\operatorname{Crypt}(\operatorname{sesK}(c * f))($ Number 0$)) \in$ set evsC5
using I by simp
with B have Says n run 5 Spy $(\operatorname{Card} n)(\operatorname{Crypt}(\operatorname{sesK}(c * f))($ Passwd $n))$ \in set evsC5
by (rule pr-confirm-says)
with B have J: Says n run 5 (User n) (Card n) (Crypt (sesK $(c * f))($ Passwd n))
\in set evsC5
by (rule pr-user-authenticity)
show ?thesis
proof (cases n)
case 0
hence Says n run $5($ User $m)($ Card $n)(\operatorname{Crypt}(\operatorname{sesK}(c * f))($ Passwd $m))$ \in set evsC5 using J and True by simp
with A show ?thesis ..
next
case Suc
hence User $n \neq S p y$
by simp
with B have Key $(\operatorname{sesK}(c * f)) \notin \operatorname{analz}(A \cup$ spies evsC5)
using J by (rule pr-key-secrecy)
hence Key $(\operatorname{ses} K(c * f)) \notin A$
using B by (simp add: pr-key-analz)
hence $n=m \wedge n=n \wedge$ run $=$ run
by (rule pr-unique-run-8 [OF B JFG])
hence Says n run $5($ User $m)($ Card $n)(C r y p t(\operatorname{sesK}(c * f))($ Passwd $m))$
\in set evsC5
using J by simp
with A show ?thesis ..
qed
next
case False

```
    have Crypt (sesK (c*f)) (Number 0) \in spies evsC5
    using I by (rule set-spies)
    hence Crypt (sesK (c*f)) (Number 0) \inA\cup spies evsC5 ..
    hence Crypt (sesK (c*f)) (Number 0) \in parts ( }A\cup\mathrm{ spies evsC5)
    by (rule parts.Inj)
    moreover have User m}\not=\mathrm{ Spy
    using False by simp
    hence J: Key (sesK (c*f))\not\inA
    by (rule pr-key-secrecy-aux [OF B - C D E F G H])
    ultimately have }\existsn\mathrm{ run X.
        Says n run 5 X (Card n) (Crypt (sesK (c*f)) (Passwd n)) \in set evsC5 ^
        Says n run 5 (Card n) X (Crypt (sesK (c*f)) (Number 0)) \in set evsC5
    by (rule pr-confirm-parts [OF B])
    then obtain }\mp@subsup{n}{}{\prime}\mathrm{ and run'}\mathrm{ and }X\mathrm{ where
    Says n' run'}5\times(\mathrm{ Card n') (Crypt (sesK (c*f)) (Passwd n')) G set evsC5
    by blast
    with B have
        Says n'run' 5 (User n') (Card n') (Crypt (sesK (c*f)) (Passwd n')) \in set
evsC5
    by (rule pr-user-authenticity)
    moreover from this have n'=m^ n'=n\wedgerun'}=ru
    by (rule pr-unique-run-8 [OF B - FG J])
    ultimately have
        Says n run 5 (User m) (Card n) (Crypt (sesK (c*f)) (Passwd m)) \in set
evsC5
        by auto
        with A show ?thesis ..
    qed
next
    fix evsFC5 S A U run d e
    assume
    Says 0 run 5 Spy (Card 0) (Crypt (sesK (d*e)) (Passwd 0)) \in set evsFC5 \longrightarrow
        Says 0 run 5 (Card 0) Spy (Crypt (sesK (d*e)) (Number 0)) \in set evsFC5
    moreover assume
        (evsFC5,S,A,U) \in protocol and
        Says 0 run 5 X Spy (Crypt (sesK (d*e)) (Number 0)) \in set evsFC5
        hence Says 0 run 5 Spy (Card 0) (Crypt (sesK (d*e)) (Passwd 0)) \in set
evsFC5
    by (rule pr-confirm-says)
    ultimately show
    Says 0 run 5 (Card 0) Spy (Crypt (sesK (d*e)) (Number 0)) \in set evsFC5 ..
next
    fix evsR5 S A U n run d e X
    assume (evsR5,S,A,U)\in protocol
    moreover assume Says n run 5 X (Card n) (Crypt (sesK (d*e)) (Passwd n))
        set evsR5
    hence Crypt (sesK (d*e)) (Passwd n) \in spies evsR5
    by (rule set-spies)
    hence Crypt (sesK (d*e)) (Passwd n) \inA\cup spies evsR5 ..
```

```
    hence Crypt \((\operatorname{sesK}(d * e))(\) Passwd \(n) \in\) parts \((A \cup\) spies evsR5)
    by (rule parts.Inj)
    moreover assume Says \(n\) run \(5 X(\operatorname{Card} n)(\operatorname{Crypt}(\operatorname{sesK}(d * e))(\operatorname{Passwd} m))\)
    \(\in\) set evsR5
    hence Crypt \((\operatorname{sesK}(d * e))(\) Passwd \(m) \in\) spies evsR 5
    by (rule set-spies)
    hence Crypt \((\operatorname{ses} K(d * e))(\) Passwd \(m) \in A \cup\) spies evsR5..
    hence Crypt \((\operatorname{ses} K(d * e))\) (Passwd \(m) \in\) parts \((A \cup\) spies evsR5)
    by (rule parts.Inj)
    ultimately show \(n=m\)
    by (rule pr-unique-passwd-parts)
next
    fix evsR5 \(S\) A \(U n\) run de \(X\)
    assume (evsR5,S,A,U) \(\operatorname{l}\) protocol
    moreover assume Says n run \(5 X(\operatorname{Card} n)(\operatorname{Crypt}(\operatorname{sesK}(d * e))(\operatorname{Passwd} m))\)
        \(\in\) set evsR5
    hence Crypt \((\operatorname{ses} K(d * e))(\) Passwd \(m) \in\) spies evsR5
    by (rule set-spies)
    hence Crypt \((\operatorname{ses} K(d * e))(\) Passwd \(m) \in A \cup\) spies evsR5 ..
    hence Crypt \((\operatorname{sesK}(d * e))(\) Passwd \(m) \in\) parts \((A \cup\) spies evsR5)
    by (rule parts.Inj)
    moreover assume Says n run 5 X (Card \(n)(\operatorname{Crypt}(\operatorname{sesK}(d * e))(\) Passwd \(n))\)
        \(\in\) set evsR5
    hence Crypt \((\operatorname{sesK}(d * e))(\) Passwd \(n) \in\) spies evsR 5
    by (rule set-spies)
    hence Crypt \((\operatorname{ses} K(d * e))(\) Passwd \(n) \in A \cup\) spies evsR5 ..
    hence Crypt \((\operatorname{sesK}(d * e))(\) Passwd \(n) \in\) parts \((A \cup\) spies evsR5 \()\)
    by (rule parts.Inj)
    ultimately show \(m=n\)
    by (rule pr-unique-passwd-parts)
next
    fix evsR5 \(n^{\prime} r u n^{\prime} d\) e \(X\)
    assume \(n=m \wedge\)
        (Says \(m\) run \(5(\) Card \(m)(\) User \(m)(\) Crypt \((\) sesK K) \()(\) Number 0) \() \in\) set evsR 5
v
            Says \(m\) run 5 (Card m) Spy (Crypt (sesK K) (Number 0)) \(\in\) set evsR5)
    thus
    \(m=n^{\prime} \wedge r u n=r u n^{\prime} \wedge m=n^{\prime} \wedge\) User \(m=X \wedge \operatorname{sesK} K=\operatorname{sesK}(d * e) \vee\)
    Says \(m\) run \(5(\) Card \(m)(\) User \(m)(\) Crypt \((\) sesK \(K)(\) Number 0\()) \in\) set evsR \(5 \vee\)
    \(m=n^{\prime} \wedge r u n=r u n^{\prime} \wedge m=n^{\prime} \wedge \operatorname{Spy}=X \wedge \operatorname{ses} K K=\operatorname{ses} K(d * e) \vee\)
    Says \(m\) run \(5(\) Card \(m)\) Spy \((\) Crypt \((\) sesK K) \()(\) Number 0\()) \in\) set evsR5
    by blast
next
    fix evsFR5SAUmn run cf
    assume
    \(A:(\) evsFR \(5, S, A, U) \in\) protocol and
    \(B: 0<m\) and
    \(C\) : IntAgrK \((S(\) User \(m, n\), run \())=\) Some \(c\) and
    D: ExtAgrK \((S(\) User \(m, n\), run \())=\) Some \(f\) and
```

```
                            E:Crypt (sesK (c*f)) (Number 0) \in synth (analz (A \cup spies evsFR5)) and
                            F:Says n run 5 (User m) (Card n) (Crypt (sesK (c*f)) (Passwd m)) \in set
evsFR5
    have User m \not= Spy
    using B by simp
    with A have G: Key (sesK (c*f)) & analz ( }A\cup\mathrm{ spies evsFR5)
    using F by (rule pr-key-secrecy)
    moreover have Crypt (sesK (c*f)) (Number 0) \in analz ( }A\cup\mathrm{ spies evsFR5)
V
    Number 0 \in synth (analz ( A \ spies evsFR5)) ^
    Key (sesK (c*f)) \in analz ( }A\cup\mathrm{ spies evsFR5)
    using E by (rule synth-crypt)
    ultimately have Crypt (sesK (c*f)) (Number 0) \inanalz (A\cup spies evsFR5)
    by simp
    hence Crypt (sesK (c*f)) (Number 0) \in parts ( }A\cup\mathrm{ spies evsFR5)
    by (rule subsetD [OF analz-parts-subset])
    moreover have H: Key (sesK (c*f)) &A
    using A and G by (simp add: pr-key-analz)
    ultimately have \existsn run X.
        Says n run 5 X (Card n) (Crypt (sesK (c*f)) (Passwd n)) \in set evsFR5 ^
        Says n run 5 (Card n) X (Crypt (sesK (c*f)) (Number 0)) \in set evsFR5
    by (rule pr-confirm-parts [OF A])
then obtain n' and run' and X where I:
    Says n' run' 5 X (Card n') (Crypt (sesK (c*f)) (Passwd n')) \in set evsFR5 ^
    Says n'run' 5 (Card n') X (Crypt (sesK (c*f)) (Number 0)) \in set evsFR5
    by blast
    hence
    Says n'run' 5 X (Card n') (Crypt (sesK (c*f)) (Passwd n')) \in set evsFR5 ..
    with }A\mathrm{ have }J\mathrm{ :
    Says n'run'5 (User n') (Card n') (Crypt (sesK (c*f)) (Passwd n'))
        \in set evsFR5
    by (rule pr-user-authenticity)
    hence Crypt (sesK (c*f)) (Passwd n') \in spies evsFR5
    by (rule set-spies)
    hence Crypt (sesK (c*f)) (Passwd n') \inA \cup spies evsFR5 ..
    hence Crypt (sesK (c*f)) (Passwd n') \in parts ( }A\cup\mathrm{ spies evsFR5)
    by (rule parts.Inj)
    moreover have Crypt (sesK (c*f)) (Passwd m) \in spies evsFR5
    using F by (rule set-spies)
hence Crypt (sesK (c*f)) (Passwd m) \inA\cup spies evsFR5 ..
hence Crypt (sesK (c*f)) (Passwd m) \in parts ( }A\cup\mathrm{ spies evsFR5)
    by (rule parts.Inj)
ultimately have }\mp@subsup{n}{}{\prime}=
    by (rule pr-unique-passwd-parts [OF A])
moreover from this have
    Says m run' 5 (User m) (Card m) (Crypt (sesK (c*f)) (Passwd m))
        \epsilon set evsFR5
    using J by simp
hence m=m^m=n^run'=run
```

```
    by (rule pr-unique-run-8 [OF A - C D H])
    hence }K:n=m\wedgeru\mp@subsup{n}{}{\prime}=ru
    by simp
    ultimately have L:
    Says m run 5 X (Card m) (Crypt (sesK (c*f)) (Passwd m)) \in set evsFR5 ^
        Says m run 5 (Card m) X (Crypt (sesK (c*f)) (Number 0)) \in set evsFR5
    using I by simp
moreover from this have
    Says m run 5 X (Card m) (Crypt (sesK (c*f)) (Passwd m)) \in set evsFR5 ..
    with A have }X=\mathrm{ User m}\veeX=Sp
    by (rule pr-passwd-says)
thus n=m^
    (Says m run 5 (Card m) (User m) (Crypt (sesK (c*f)) (Number 0)) \in set
evsFR5 V
    Says m run 5 (Card m) Spy (Crypt (sesK (c*f)) (Number 0)) \in set evsFR5)
    by (rule disjE, insert L, simp-all add:K)
qed
end
```


References

[1] Bundesamt fur Sicherheit in der Informationstechnik. Technical Guideline TR-03111 - Elliptic Curve Cryptography, 2nd edition, 2012.
[2] International Civil Aviation Organization. Doc 9303 - Machine Readable Travel Documents - Part 10: Logical Data Structure (LDS) for Storage of Biometrics and Other Data in the Contactless Integrated Circuit (IC), 7th edition, 2015.
[3] International Civil Aviation Organization. Doc 9303 - Machine Readable Travel Documents - Part 11: Security Mechanisms for MRTDs, 7th edition, 2015.
[4] International Organization for Standardization. ISO/IEC 7816-4 Identification cards - Integrated circuit cards - Part 4: Organization, security and commands for interchange, 3rd edition, 2013.
[5] G. Kc and P. Karger. Preventing attacks on machine readable travel documents (mrtds). IACR Cryptology ePrint Archive, 2005.
[6] A. Krauss. Defining Recursive Functions in Isabelle/HOL. http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/ doc/functions.pdf.
[7] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs. http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/ isar-overview.pdf.
[8] T. Nipkow. Programming and Proving in Isabelle/HOL, Feb. 2016. http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/doc/ prog-prove.pdf.
[9] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order Logic, Feb. 2016. http://isabelle.in.tum.de/ website-Isabelle2016/dist/Isabelle2016/doc/tutorial.pdf.
[10] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer Security, Dec. 1998.

