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Abstract

This entry provides a formalization of the abstract theory of ample
set partial order reduction as presented in [2, 1]. The formalization
includes transition systems with actions, trace theory, as well as ba-
sics on finite, infinite, and lazy sequences. We also provide a basic
framework for static analysis on concurrent systems with respect to
the ample set condition.
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1 List Prefixes
theory List-Prefixes
imports HOL−Library.Prefix-Order
begin

lemmas [intro] = prefixI strict-prefixI [folded less-eq-list-def ]
lemmas [elim] = prefixE strict-prefixE [folded less-eq-list-def ]

lemmas [intro?] = take-is-prefix[folded less-eq-list-def ]

hide-const (open) Sublist.prefix Sublist.suffix

lemma prefix-finI-item[intro!]:
assumes a = b u ≤ v
shows a # u ≤ b # v
using assms by force

lemma prefix-finE-item[elim!]:
assumes a # u ≤ b # v
obtains a = b u ≤ v
using assms by force

lemma prefix-fin-append[intro]: u ≤ u @ v by auto
lemma pprefix-fin-length[dest]:

assumes u < v
shows length u < length v
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proof −
obtain a w where 1 : v = u @ a # w using assms by rule
show ?thesis unfolding 1 by simp

qed

end

2 Lists
theory List-Extensions
imports HOL−Library.Sublist
begin

declare remove1-idem[simp]

lemma nth-append-simps[simp]:
i < length xs =⇒ (xs @ ys) ! i = xs ! i
i ≥ length xs =⇒ (xs @ ys) ! i = ys ! (i − length xs)
unfolding nth-append by simp+

notation zip (infixr ‹||› 51 )

abbreviation project A ≡ filter (λ a. a ∈ A)
abbreviation select s w ≡ nths w s

lemma map-plus[simp]: map (plus n) [i ..< j] = [i + n ..< j + n]
proof (induct n)

case 0
show ?case by simp

next
case (Suc n)
have map (plus (Suc n)) [i ..< j] = map (Suc ◦ plus n) [i ..< j] by simp
also have . . . = (map Suc ◦ map (plus n)) [i ..< j] by simp
also have . . . = map Suc (map (plus n) [i ..< j]) by simp
also have . . . = map Suc [i + n ..< j + n] unfolding Suc by simp
also have . . . = [Suc (i + n) ..< Suc (j + n)] unfolding map-Suc-upt by simp
also have . . . = [i + Suc n ..< j + Suc n] by simp
finally show ?case by this

qed

lemma singleton-list-lengthE [elim]:
assumes length xs = 1
obtains x
where xs = [x]

proof −
have 0 : length xs = Suc 0 using assms by simp
obtain y ys where 1 : xs = y # ys length ys = 0 using 0 Suc-length-conv by

metis
show ?thesis using that 1 by blast
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qed

lemma singleton-hd-last: length xs = 1 =⇒ hd xs = last xs by fastforce

lemma set-subsetI [intro]:
assumes

∧
i. i < length xs =⇒ xs ! i ∈ S

shows set xs ⊆ S
proof

fix x
assume 0 : x ∈ set xs
obtain i where 1 : i < length xs x = xs ! i using 0 unfolding in-set-conv-nth

by blast
show x ∈ S using assms(1 ) 1 by auto

qed

lemma hd-take[simp]:
assumes n 6= 0 xs 6= []
shows hd (take n xs) = hd xs

proof −
have 1 : take n xs 6= [] using assms by simp
have 2 : 0 < n using assms by simp
have hd (take n xs) = take n xs ! 0 using hd-conv-nth[OF 1 ] by this
also have . . . = xs ! 0 using nth-take[OF 2 ] by this
also have . . . = hd xs using hd-conv-nth[OF assms(2 )] by simp
finally show ?thesis by this

qed
lemma hd-drop[simp]:

assumes n < length xs
shows hd (drop n xs) = xs ! n
using hd-drop-conv-nth assms by this

lemma last-take[simp]:
assumes n < length xs
shows last (take (Suc n) xs) = xs ! n

using assms
proof (induct xs arbitrary: n)

case (Nil)
show ?case using Nil by simp

next
case (Cons x xs)
show ?case using Cons by (auto) (metis Suc-less-eq Suc-pred)

qed

lemma split-list-first-unique:
assumes u1 @ [a] @ u2 = v1 @ [a] @ v2 a /∈ set u1 a /∈ set v1

shows u1 = v1

proof −
obtain w where u1 = v1 @ w ∧ w @ [a] @ u2 = [a] @ v2 ∨
u1 @ w = v1 ∧ [a] @ u2 = w @ [a] @ v2 using assms(1 ) append-eq-append-conv2

by blast
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thus ?thesis using assms(2 , 3 ) by (auto) (metis hd-append2 list.sel(1 ) list.set-sel(1 ))+
qed

end

3 Finite Prefixes of Infinite Sequences
theory Word-Prefixes
imports

List-Prefixes
../Extensions/List-Extensions
Transition-Systems-and-Automata.Sequence

begin

definition prefix-fininf :: ′a list ⇒ ′a stream ⇒ bool (infix ‹≤F I› 50 )
where u ≤F I v ≡ ∃ w. u @− w = v

lemma prefix-fininfI [intro]:
assumes u @− w = v
shows u ≤F I v
using assms unfolding prefix-fininf-def by auto

lemma prefix-fininfE [elim]:
assumes u ≤F I v
obtains w
where v = u @− w
using assms unfolding prefix-fininf-def by auto

lemma prefix-fininfI-empty[intro!]: [] ≤F I w by force
lemma prefix-fininfI-item[intro!]:

assumes a = b u ≤F I v
shows a # u ≤F I b ## v
using assms by force

lemma prefix-fininfE-item[elim!]:
assumes a # u ≤F I b ## v
obtains a = b u ≤F I v
using assms by force

lemma prefix-fininf-item[simp]: a # u ≤F I a ## v ←→ u ≤F I v by force
lemma prefix-fininf-list[simp]: w @ u ≤F I w @− v ←→ u ≤F I v by (induct w,

auto)
lemma prefix-fininf-conc[intro]: u ≤F I u @− v by auto
lemma prefix-fininf-prefix[intro]: stake k w ≤F I w using stake-sdrop by blast
lemma prefix-fininf-set-range[dest]: u ≤F I v =⇒ set u ⊆ sset v by auto

lemma prefix-fininf-absorb:
assumes u ≤F I v @− w length u ≤ length v
shows u ≤ v

proof −
obtain x where 1 : u @− x = v @− w using assms(1 ) by auto
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have u ≤ u @ stake (length v − length u) x by rule
also have . . . = stake (length v) (u @− x) using assms(2 ) by (simp add:

stake-shift)
also have . . . = stake (length v) (v @− w) unfolding 1 by rule
also have . . . = v using eq-shift by blast
finally show ?thesis by this

qed
lemma prefix-fininf-extend:

assumes u ≤F I v @− w length v ≤ length u
shows v ≤ u

proof −
obtain x where 1 : u @− x = v @− w using assms(1 ) by auto
have v ≤ v @ stake (length u − length v) w by rule
also have . . . = stake (length u) (v @− w) using assms(2 ) by (simp add:

stake-shift)
also have . . . = stake (length u) (u @− x) unfolding 1 by rule
also have . . . = u using eq-shift by blast
finally show ?thesis by this

qed
lemma prefix-fininf-length:

assumes u ≤F I w v ≤F I w length u ≤ length v
shows u ≤ v

proof −
obtain u ′ v ′ where 1 : w = u @− u ′ w = v @− v ′ using assms(1 , 2 ) by

blast+
have u = stake (length u) (u @− u ′) using shift-eq by blast
also have . . . = stake (length u) w unfolding 1 (1 ) by rule
also have . . . = stake (length u) (v @− v ′) unfolding 1 (2 ) by rule
also have . . . = take (length u) v using assms by (simp add: min.absorb2

stake-append)
also have . . . ≤ v by rule
finally show ?thesis by this

qed

lemma prefix-fininf-append:
assumes u ≤F I v @− w
obtains (absorb) u ≤ v | (extend) z where u = v @ z z ≤F I w

proof (cases length u length v rule: le-cases)
case le
obtain x where 1 : u @− x = v @− w using assms(1 ) by auto
show ?thesis
proof (rule absorb)

have u ≤ u @ stake (length v − length u) x by rule
also have . . . = stake (length v) (u @− x) using le by (simp add: stake-shift)
also have . . . = stake (length v) (v @− w) unfolding 1 by rule
also have . . . = v using eq-shift by blast
finally show u ≤ v by this

qed
next
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case ge
obtain x where 1 : u @− x = v @− w using assms(1 ) by auto
show ?thesis
proof (rule extend)

have u = stake (length u) (u @− x) using shift-eq by auto
also have . . . = stake (length u) (v @− w) unfolding 1 by rule
also have . . . = v @ stake (length u − length v) w using ge by (simp add:

stake-shift)
finally show u = v @ stake (length u − length v) w by this
show stake (length u − length v) w ≤F I w by rule

qed
qed

lemma prefix-fin-prefix-fininf-trans[trans, intro]: u ≤ v =⇒ v ≤F I w =⇒ u ≤F I

w
by (metis Prefix-Order .prefixE prefix-fininf-def shift-append)

lemma prefix-finE-nth:
assumes u ≤ v i < length u
shows u ! i = v ! i

proof −
obtain w where 1 : v = u @ w using assms(1 ) by auto
show ?thesis unfolding 1 using assms(2 ) by (simp add: nth-append)

qed
lemma prefix-fininfI-nth:

assumes
∧

i. i < length u =⇒ u ! i = w !! i
shows u ≤F I w

proof (rule prefix-fininfI )
show u @− sdrop (length u) w = w by (simp add: assms list-eq-iff-nth-eq

shift-eq)
qed

definition chain :: (nat ⇒ ′a list) ⇒ bool
where chain w ≡ mono w ∧ (∀ k. ∃ l. k < length (w l))

definition limit :: (nat ⇒ ′a list) ⇒ ′a stream
where limit w ≡ smap (λ k. w (SOME l. k < length (w l)) ! k) nats

lemma chainI [intro?]:
assumes mono w
assumes

∧
k. ∃ l. k < length (w l)

shows chain w
using assms unfolding chain-def by auto

lemma chainD-mono[dest?]:
assumes chain w
shows mono w
using assms unfolding chain-def by auto

lemma chainE-length[elim?]:
assumes chain w
obtains l
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where k < length (w l)
using assms unfolding chain-def by auto

lemma chain-prefix-limit:
assumes chain w
shows w k ≤F I limit w

proof (rule prefix-fininfI-nth)
fix i
assume 1 : i < length (w k)
have 2 : mono w

∧
k. ∃ l. k < length (w l) using chainD-mono chainE-length

assms by blast+
have 3 : i < length (w (SOME l. i < length (w l))) using someI-ex 2 (2 ) by

this
show w k ! i = limit w !! i
proof (cases k SOME l. i < length (w l) rule: le-cases)

case (le)
have 4 : w k ≤ w (SOME l. i < length (w l)) using monoD 2 (1 ) le by this
show ?thesis unfolding limit-def using prefix-finE-nth 4 1 by auto

next
case (ge)
have 4 : w (SOME l. i < length (w l)) ≤ w k using monoD 2 (1 ) ge by this
show ?thesis unfolding limit-def using prefix-finE-nth 4 3 by auto

qed
qed

lemma chain-construct-1 :
assumes P 0 x0

∧
k x. P k x =⇒ ∃ x ′. P (Suc k) x ′ ∧ f x ≤ f x ′

assumes
∧

k x. P k x =⇒ k ≤ length (f x)
obtains Q
where

∧
k. P k (Q k) chain (f ◦ Q)

proof −
obtain x ′ where 1 :

P 0 x0

∧
k x. P k x =⇒ P (Suc k) (x ′ k x) ∧ f x ≤ f (x ′ k x)

using assms(1 , 2 ) by metis
define Q where Q ≡ rec-nat x0 x ′

have [simp]: Q 0 = x0

∧
k. Q (Suc k) = x ′ k (Q k) unfolding Q-def by

simp+
have 2 :

∧
k. P k (Q k)

proof −
fix k
show P k (Q k) using 1 by (induct k, auto)

qed
show ?thesis
proof (intro that chainI monoI , unfold comp-apply)

fix k
show P k (Q k) using 2 by this

next
fix x y :: nat
assume x ≤ y
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thus f (Q x) ≤ f (Q y)
proof (induct y − x arbitrary: x y)

case 0
show ?case using 0 by simp

next
case (Suc k)
have f (Q x) ≤ f (Q (Suc x)) using 1 (2 ) 2 by auto
also have . . . ≤ f (Q y) using Suc(2 ) by (intro Suc(1 ), auto)
finally show ?case by this

qed
next

fix k
have 3 : P (Suc k) (Q (Suc k)) using 2 by this
have 4 : Suc k ≤ length (f (Q (Suc k))) using assms(3 ) 3 by this
have 5 : k < length (f (Q (Suc k))) using 4 by auto
show ∃ l. k < length (f (Q l)) using 5 by blast

qed
qed
lemma chain-construct-2 :

assumes P 0 x0

∧
k x. P k x =⇒ ∃ x ′. P (Suc k) x ′ ∧ f x ≤ f x ′ ∧ g x ≤ g x ′

assumes
∧

k x. P k x =⇒ k ≤ length (f x)
∧

k x. P k x =⇒ k ≤ length (g x)
obtains Q
where

∧
k. P k (Q k) chain (f ◦ Q) chain (g ◦ Q)

proof −
obtain x ′ where 1 :

P 0 x0

∧
k x . P k x =⇒ P (Suc k) (x ′ k x) ∧ f x ≤ f (x ′ k x) ∧ g x ≤ g (x ′

k x)
using assms(1 , 2 ) by metis

define Q where Q ≡ rec-nat x0 x ′

have [simp]: Q 0 = x0

∧
k. Q (Suc k) = x ′ k (Q k) unfolding Q-def by

simp+
have 2 :

∧
k. P k (Q k)

proof −
fix k
show P k (Q k) using 1 by (induct k, auto)

qed
show ?thesis
proof (intro that chainI monoI , unfold comp-apply)

fix k
show P k (Q k) using 2 by this

next
fix x y :: nat
assume x ≤ y
thus f (Q x) ≤ f (Q y)
proof (induct y − x arbitrary: x y)

case 0
show ?case using 0 by simp

next
case (Suc k)
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have f (Q x) ≤ f (Q (Suc x)) using 1 (2 ) 2 by auto
also have . . . ≤ f (Q y) using Suc(2 ) by (intro Suc(1 ), auto)
finally show ?case by this

qed
next

fix k
have 3 : P (Suc k) (Q (Suc k)) using 2 by this
have 4 : Suc k ≤ length (f (Q (Suc k))) using assms(3 ) 3 by this
have 5 : k < length (f (Q (Suc k))) using 4 by auto
show ∃ l. k < length (f (Q l)) using 5 by blast

next
fix x y :: nat
assume x ≤ y
thus g (Q x) ≤ g (Q y)
proof (induct y − x arbitrary: x y)

case 0
show ?case using 0 by simp

next
case (Suc k)
have g (Q x) ≤ g (Q (Suc x)) using 1 (2 ) 2 by auto
also have . . . ≤ g (Q y) using Suc(2 ) by (intro Suc(1 ), auto)
finally show ?case by this

qed
next

fix k
have 3 : P (Suc k) (Q (Suc k)) using 2 by this
have 4 : Suc k ≤ length (g (Q (Suc k))) using assms(4 ) 3 by this
have 5 : k < length (g (Q (Suc k))) using 4 by auto
show ∃ l. k < length (g (Q l)) using 5 by blast

qed
qed
lemma chain-construct-2 ′:

assumes P 0 u0 v0

∧
k u v. P k u v =⇒ ∃ u ′ v ′. P (Suc k) u ′ v ′ ∧ u ≤ u ′ ∧

v ≤ v ′

assumes
∧

k u v. P k u v =⇒ k ≤ length u
∧

k u v. P k u v =⇒ k ≤ length v
obtains u v
where

∧
k. P k (u k) (v k) chain u chain v

proof −
obtain Q where 1 :

∧
k. (case-prod ◦ P) k (Q k) chain (fst ◦ Q) chain (snd

◦ Q)
proof (rule chain-construct-2 )

show ∃ x ′. (case-prod ◦ P) (Suc k) x ′ ∧ fst x ≤ fst x ′ ∧ snd x ≤ snd x ′

if (case-prod ◦ P) k x for k x using assms that by auto
show (case-prod ◦ P) 0 (u0, v0) using assms by auto
show k ≤ length (fst x) if (case-prod ◦ P) k x for k x using assms that by

auto
show k ≤ length (snd x) if (case-prod ◦ P) k x for k x using assms that by

auto
qed rule
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show ?thesis
proof

show P k ((fst ◦ Q) k) ((snd ◦ Q) k) for k using 1 (1 ) by (auto simp:
prod.case-eq-if )

show chain (fst ◦ Q) chain (snd ◦ Q) using 1 (2 , 3 ) by this
qed

qed

end

4 Sets
theory Set-Extensions
imports

HOL−Library.Infinite-Set
begin

declare finite-subset[intro]

lemma set-not-emptyI [intro 0 ]: x ∈ S =⇒ S 6= {} by auto
lemma sets-empty-iffI [intro 0 ]:

assumes
∧

a. a ∈ A =⇒ ∃ b. b ∈ B
assumes

∧
b. b ∈ B =⇒ ∃ a. a ∈ A

shows A = {} ←→ B = {}
using assms by auto

lemma disjointI [intro 0 ]:
assumes

∧
x. x ∈ A =⇒ x ∈ B =⇒ False

shows A ∩ B = {}
using assms by auto

lemma range-subsetI [intro 0 ]:
assumes

∧
x. f x ∈ S

shows range f ⊆ S
using assms by blast

lemma finite-imageI-range:
assumes finite (range f )
shows finite (f ‘ A)
using finite-subset image-mono subset-UNIV assms by metis

lemma inf-img-fin-domE ′:
assumes infinite A
assumes finite (f ‘ A)
obtains y
where y ∈ f ‘ A infinite (A ∩ f −‘ {y})

proof (rule ccontr)
assume 1 : ¬ thesis
have 2 : finite (

⋃
y ∈ f ‘ A. A ∩ f −‘ {y})

proof (rule finite-UN-I )
show finite (f ‘ A) using assms(2 ) by this
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show
∧

y. y ∈ f ‘ A =⇒ finite (A ∩ f −‘ {y}) using that 1 by blast
qed
have 3 : A ⊆ (

⋃
y ∈ f ‘ A. A ∩ f −‘ {y}) by blast

show False using assms(1 ) 2 3 by blast
qed

lemma vimage-singleton[simp]: f −‘ {y} = {x. f x = y} unfolding vimage-def
by simp

lemma these-alt-def : Option.these S = Some −‘ S unfolding Option.these-def
by force

lemma the-vimage-subset: the −‘ {a} ⊆ {None, Some a} by auto

lemma finite-induct-reverse[consumes 1 , case-names remove]:
assumes finite S
assumes

∧
S . finite S =⇒ (

∧
x. x ∈ S =⇒ P (S − {x})) =⇒ P S

shows P S
using assms(1 )
proof (induct rule: finite-psubset-induct)

case (psubset S)
show ?case
proof (rule assms(2 ))

show finite S using psubset(1 ) by this
next

fix x
assume 0 : x ∈ S
show P (S − {x})
proof (rule psubset(2 ))

show S − {x} ⊂ S using 0 by auto
qed

qed
qed

lemma zero-not-in-Suc-image[simp]: 0 /∈ Suc ‘ A by auto

lemma Collect-split-Suc:
¬ P 0 =⇒ {i. P i} = Suc ‘ {i. P (Suc i)}
P 0 =⇒ {i. P i} = {0} ∪ Suc ‘ {i. P (Suc i)}

proof −
assume ¬ P 0
thus {i. P i} = Suc ‘ {i. P (Suc i)}

by (auto, metis image-eqI mem-Collect-eq nat.exhaust)
next

assume P 0
thus {i. P i} = {0} ∪ Suc ‘ {i. P (Suc i)}

by (auto, metis imageI mem-Collect-eq not0-implies-Suc)
qed

lemma Collect-subsume[simp]:
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assumes
∧

x. x ∈ A =⇒ P x
shows {x ∈ A. P x} = A
using assms unfolding simp-implies-def by auto

lemma Max-ge ′:
assumes finite A A 6= {}
assumes b ∈ A a ≤ b
shows a ≤ Max A
using assms Max-ge-iff by auto

abbreviation least A ≡ LEAST k. k ∈ A

lemma least-contains[intro?, simp]:
fixes A :: ′a :: wellorder set
assumes k ∈ A
shows least A ∈ A
using assms by (metis LeastI )

lemma least-contains ′[intro?, simp]:
fixes A :: ′a :: wellorder set
assumes A 6= {}
shows least A ∈ A
using assms by (metis LeastI equals0I )

lemma least-least[intro?, simp]:
fixes A :: ′a :: wellorder set
assumes k ∈ A
shows least A ≤ k
using assms by (metis Least-le)

lemma least-unique:
fixes A :: ′a :: wellorder set
assumes k ∈ A k ≤ least A
shows k = least A
using assms by (metis Least-le antisym)

lemma least-not-less:
fixes A :: ′a :: wellorder set
assumes k < least A
shows k /∈ A
using assms by (metis not-less-Least)

lemma leastI2-order [simp]:
fixes A :: ′a :: wellorder set
assumes A 6= {}

∧
k. k ∈ A =⇒ (

∧
l. l ∈ A =⇒ k ≤ l) =⇒ P k

shows P (least A)
proof (rule LeastI2-order)

show least A ∈ A using assms(1 ) by rule
next

fix k
assume 1 : k ∈ A
show least A ≤ k using 1 by rule

next
fix k
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assume 1 : k ∈ A ∀ l. l ∈ A −→ k ≤ l
show P k using assms(2 ) 1 by auto

qed

lemma least-singleton[simp]:
fixes a :: ′a :: wellorder
shows least {a} = a
by (metis insert-not-empty least-contains ′ singletonD)

lemma least-image[simp]:
fixes f :: ′a :: wellorder ⇒ ′b :: wellorder
assumes A 6= {}

∧
k l. k ∈ A =⇒ l ∈ A =⇒ k ≤ l =⇒ f k ≤ f l

shows least (f ‘ A) = f (least A)
proof (rule leastI2-order)

show A 6= {} using assms(1 ) by this
next

fix k
assume 1 : k ∈ A

∧
i. i ∈ A =⇒ k ≤ i

show least (f ‘ A) = f k
proof (rule leastI2-order)

show f ‘ A 6= {} using assms(1 ) by simp
next

fix l
assume 2 : l ∈ f ‘ A

∧
i. i ∈ f ‘ A =⇒ l ≤ i

show l = f k using assms(2 ) 1 2 by force
qed

qed

lemma least-le:
fixes A B :: ′a :: wellorder set
assumes B 6= {}
assumes

∧
i. i ≤ least A =⇒ i ≤ least B =⇒ i ∈ B =⇒ i ∈ A

shows least A ≤ least B
proof (rule ccontr)

assume 1 : ¬ least A ≤ least B
have 2 : least B ∈ A using assms(1 , 2 ) 1 by simp
have 3 : least A ≤ least B using 2 by rule
show False using 1 3 by rule

qed
lemma least-eq:

fixes A B :: ′a :: wellorder set
assumes A 6= {} B 6= {}
assumes

∧
i. i ≤ least A =⇒ i ≤ least B =⇒ i ∈ A ←→ i ∈ B

shows least A = least B
using assms by (auto intro: antisym least-le)

lemma least-Suc[simp]:
assumes A 6= {}
shows least (Suc ‘ A) = Suc (least A)
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proof (rule antisym)
obtain k where 10 : k ∈ A using assms by blast
have 11 : Suc k ∈ Suc ‘ A using 10 by auto
have 20 : least A ∈ A using 10 LeastI by metis
have 21 : least (Suc ‘ A) ∈ Suc ‘ A using 11 LeastI by metis
have 30 :

∧
l. l ∈ A =⇒ least A ≤ l using 10 Least-le by metis

have 31 :
∧

l. l ∈ Suc ‘ A =⇒ least (Suc ‘ A) ≤ l using 11 Least-le by metis
show least (Suc ‘ A) ≤ Suc (least A) using 20 31 by auto
show Suc (least A) ≤ least (Suc ‘ A) using 21 30 by auto

qed

lemma least-Suc-diff [simp]: Suc ‘ A − {least (Suc ‘ A)} = Suc ‘ (A − {least A})
proof (cases A = {})

case True
show ?thesis unfolding True by simp

next
case False
have Suc ‘ A − {least (Suc ‘ A)} = Suc ‘ A − {Suc (least A)} using False by

simp
also have . . . = Suc ‘ A − Suc ‘ {least A} by simp
also have . . . = Suc ‘ (A − {least A}) by blast
finally show ?thesis by this

qed

lemma Max-diff-least[simp]:
fixes A :: ′a :: wellorder set
assumes finite A A − {least A} 6= {}
shows Max (A − {least A}) = Max A

proof −
have 1 : least A ∈ A using assms(2 ) by auto
obtain a where 2 : a ∈ A − {least A} using assms(2 ) by blast
have Max A = Max (insert (least A) (A − {least A})) using insert-absorb 1

by force
also have . . . = max (least A) (Max (A − {least A}))
proof (rule Max-insert)

show finite (A − {least A}) using assms(1 ) by auto
show A − {least A} 6= {} using assms(2 ) by this

qed
also have . . . = Max (A − {least A})
proof (rule max-absorb2 , rule Max-ge ′)

show finite (A − {least A}) using assms(1 ) by auto
show A − {least A} 6= {} using assms(2 ) by this
show a ∈ A − {least A} using 2 by this
show least A ≤ a using 2 by simp

qed
finally show ?thesis by rule

qed

lemma nat-set-card-equality-less:

15



fixes A :: nat set
assumes x ∈ A y ∈ A card {z ∈ A. z < x} = card {z ∈ A. z < y}
shows x = y

proof (cases x y rule: linorder-cases)
case less
have 0 : finite {z ∈ A. z < y} by simp
have 1 : {z ∈ A. z < x} ⊂ {z ∈ A. z < y} using assms(1 , 2 ) less by force
have 2 : card {z ∈ A. z < x} < card {z ∈ A. z < y} using psubset-card-mono

0 1 by this
show ?thesis using assms(3 ) 2 by simp

next
case equal
show ?thesis using equal by this

next
case greater
have 0 : finite {z ∈ A. z < x} by simp
have 1 : {z ∈ A. z < y} ⊂ {z ∈ A. z < x} using assms(1 , 2 ) greater by force
have 2 : card {z ∈ A. z < y} < card {z ∈ A. z < x} using psubset-card-mono

0 1 by this
show ?thesis using assms(3 ) 2 by simp

qed

lemma nat-set-card-equality-le:
fixes A :: nat set
assumes x ∈ A y ∈ A card {z ∈ A. z ≤ x} = card {z ∈ A. z ≤ y}
shows x = y

proof (cases x y rule: linorder-cases)
case less
have 0 : finite {z ∈ A. z ≤ y} by simp
have 1 : {z ∈ A. z ≤ x} ⊂ {z ∈ A. z ≤ y} using assms(1 , 2 ) less by force
have 2 : card {z ∈ A. z ≤ x} < card {z ∈ A. z ≤ y} using psubset-card-mono

0 1 by this
show ?thesis using assms(3 ) 2 by simp

next
case equal
show ?thesis using equal by this

next
case greater
have 0 : finite {z ∈ A. z ≤ x} by simp
have 1 : {z ∈ A. z ≤ y} ⊂ {z ∈ A. z ≤ x} using assms(1 , 2 ) greater by force
have 2 : card {z ∈ A. z ≤ y} < card {z ∈ A. z ≤ x} using psubset-card-mono

0 1 by this
show ?thesis using assms(3 ) 2 by simp

qed

lemma nat-set-card-mono[simp]:
fixes A :: nat set
assumes x ∈ A
shows card {z ∈ A. z < x} < card {z ∈ A. z < y} ←→ x < y

16



proof
assume 1 : card {z ∈ A. z < x} < card {z ∈ A. z < y}
show x < y
proof (rule ccontr)

assume 2 : ¬ x < y
have 3 : card {z ∈ A. z < y} ≤ card {z ∈ A. z < x} using 2 by (auto intro:

card-mono)
show False using 1 3 by simp

qed
next

assume 1 : x < y
show card {z ∈ A. z < x} < card {z ∈ A. z < y}
proof (intro psubset-card-mono psubsetI )

show finite {z ∈ A. z < y} by simp
show {z ∈ A. z < x} ⊆ {z ∈ A. z < y} using 1 by auto
show {z ∈ A. z < x} 6= {z ∈ A. z < y} using assms 1 by blast

qed
qed

lemma card-one[elim]:
assumes card A = 1
obtains a
where A = {a}
using assms by (metis One-nat-def card-Suc-eq)

lemma image-alt-def : f ‘ A = {f x |x. x ∈ A} by auto

lemma supset-mono-inductive[mono]:
assumes

∧
x. x ∈ B −→ x ∈ C

shows A ⊆ B −→ A ⊆ C
using assms by auto

lemma Collect-mono-inductive[mono]:
assumes

∧
x. P x −→ Q x

shows x ∈ {x. P x} −→ x ∈ {x. Q x}
using assms by auto

lemma image-union-split:
assumes f ‘ (A ∪ B) = g ‘ C
obtains D E
where f ‘ A = g ‘ D f ‘ B = g ‘ E D ⊆ C E ⊆ C
using assms unfolding image-Un
by (metis (erased, lifting) inf-sup-ord(3 ) inf-sup-ord(4 ) subset-imageE)

lemma image-insert-split:
assumes inj g f ‘ insert a B = g ‘ C
obtains d E
where f a = g d f ‘ B = g ‘ E d ∈ C E ⊆ C

proof −
have 1 : f ‘ ({a} ∪ B) = g ‘ C using assms(2 ) by simp
obtain D E where 2 : f ‘ {a} = g ‘ D f ‘ B = g ‘ E D ⊆ C E ⊆ C
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using image-union-split 1 by this
obtain d where 3 : D = {d} using assms(1 ) 2 (1 ) by (auto, metis (erased,

opaque-lifting) imageE
image-empty image-insert inj-image-eq-iff singletonI )

show ?thesis using that 2 unfolding 3 by simp
qed

end

5 Basics
theory Basic-Extensions
imports HOL−Library.Infinite-Set
begin

5.1 Types
type-synonym ′a step = ′a ⇒ ′a

5.2 Rules
declare less-imp-le[dest, simp]

declare le-funI [intro]
declare le-funE [elim]
declare le-funD[dest]

lemma IdI ′[intro]:
assumes x = y
shows (x, y) ∈ Id
using assms by auto

lemma (in order) order-le-cases:
assumes x ≤ y
obtains (eq) x = y | (lt) x < y
using assms le-less by auto

lemma (in linorder) linorder-cases ′:
obtains (le) x ≤ y | (gt) x > y
by force

lemma monoI-comp[intro]:
assumes mono f mono g
shows mono (f ◦ g)
using assms by (intro monoI , auto dest: monoD)

lemma strict-monoI-comp[intro]:
assumes strict-mono f strict-mono g
shows strict-mono (f ◦ g)
using assms by (intro strict-monoI , auto dest: strict-monoD)
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lemma eq-le-absorb[simp]:
fixes x y :: ′a :: order
shows x = y ∧ x ≤ y ←→ x = y x ≤ y ∧ x = y ←→ x = y
by auto

lemma INFM-Suc[simp]: (∃∞ i. P (Suc i)) ←→ (∃∞ i. P i)
unfolding INFM-nat using Suc-lessE less-Suc-eq by metis

lemma INFM-plus[simp]: (∃∞ i. P (i + n :: nat)) ←→ (∃∞ i. P i)
proof (induct n)

case 0
show ?case by simp

next
case (Suc n)
have (∃∞ i. P (i + Suc n)) ←→ (∃∞ i. P (Suc i + n)) by simp
also have . . . ←→ (∃∞ i. P (i + n)) using INFM-Suc by this
also have . . . ←→ (∃∞ i. P i) using Suc by this
finally show ?case by this

qed
lemma INFM-minus[simp]: (∃∞ i. P (i − n :: nat)) ←→ (∃∞ i. P i)
proof (induct n)

case 0
show ?case by simp

next
case (Suc n)

have (∃∞ i. P (i − Suc n)) ←→ (∃∞ i. P (Suc i − Suc n)) using INFM-Suc
by meson

also have . . . ←→ (∃∞ i. P (i − n)) by simp
also have . . . ←→ (∃∞ i. P i) using Suc by this
finally show ?case by this

qed

5.3 Constants
definition const :: ′a ⇒ ′b ⇒ ′a

where const x ≡ λ -. x
definition const2 :: ′a ⇒ ′b ⇒ ′c ⇒ ′a

where const2 x ≡ λ - -. x
definition const3 :: ′a ⇒ ′b ⇒ ′c ⇒ ′d ⇒ ′a

where const3 x ≡ λ - - -. x
definition const4 :: ′a ⇒ ′b ⇒ ′c ⇒ ′d ⇒ ′e ⇒ ′a

where const4 x ≡ λ - - - -. x
definition const5 :: ′a ⇒ ′b ⇒ ′c ⇒ ′d ⇒ ′e ⇒ ′f ⇒ ′a

where const5 x ≡ λ - - - - -. x

lemma const-apply[simp]: const x y = x unfolding const-def by rule
lemma const2-apply[simp]: const2 x y z = x unfolding const2-def by rule
lemma const3-apply[simp]: const3 x y z u = x unfolding const3-def by rule
lemma const4-apply[simp]: const4 x y z u v = x unfolding const4-def by rule
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lemma const5-apply[simp]: const5 x y z u v w = x unfolding const5-def by
rule

definition zip-fun :: ( ′a ⇒ ′b) ⇒ ( ′a ⇒ ′c) ⇒ ′a ⇒ ′b × ′c (infixr ‹‖› 51 )
where f ‖ g ≡ λ x. (f x, g x)

lemma zip-fun-simps[simp]:
(f ‖ g) x = (f x, g x)
fst ◦ (f ‖ g) = f
snd ◦ (f ‖ g) = g
fst ◦ h ‖ snd ◦ h = h
fst ‘ range (f ‖ g) = range f
snd ‘ range (f ‖ g) = range g
unfolding zip-fun-def by force+

lemma zip-fun-eq[dest]:
assumes f ‖ g = h ‖ i
shows f = h g = i
using assms unfolding zip-fun-def by (auto dest: fun-cong)

lemma zip-fun-range-subset[intro, simp]: range (f ‖ g) ⊆ range f × range g
unfolding zip-fun-def by blast

lemma zip-fun-range-finite[elim]:
assumes finite (range (f ‖ g))
obtains finite (range f ) finite (range g)

proof
show finite (range f ) using finite-imageI [OF assms(1 ), of fst]

by (simp add: image-image)
show finite (range g) using finite-imageI [OF assms(1 ), of snd]

by (simp add: image-image)
qed

lemma zip-fun-split:
obtains f g
where h = f ‖ g

proof
show h = fst ◦ h ‖ snd ◦ h by simp

qed

abbreviation None-None ≡ (None, None)
abbreviation None-Some ≡ λ (y). (None, Some y)
abbreviation Some-None ≡ λ (x). (Some x, None)
abbreviation Some-Some ≡ λ (x, y). (Some x, Some y)

abbreviation None-None-None ≡ (None, None, None)
abbreviation None-None-Some ≡ λ (z). (None, None, Some z)
abbreviation None-Some-None ≡ λ (y). (None, Some y, None)
abbreviation None-Some-Some ≡ λ (y, z). (None, Some y, Some z)
abbreviation Some-None-None ≡ λ (x). (Some x, None, None)
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abbreviation Some-None-Some ≡ λ (x, z). (Some x , None, Some z)
abbreviation Some-Some-None ≡ λ (x, y). (Some x, Some y, None)
abbreviation Some-Some-Some ≡ λ (x, y, z). (Some x, Some y, Some z)

lemma inj-Some2 [simp, intro]:
inj None-Some
inj Some-None
inj Some-Some
by (rule injI , force)+

lemma inj-Some3 [simp, intro]:
inj None-None-Some
inj None-Some-None
inj None-Some-Some
inj Some-None-None
inj Some-None-Some
inj Some-Some-None
inj Some-Some-Some
by (rule injI , force)+

definition swap :: ′a × ′b ⇒ ′b × ′a
where swap x ≡ (snd x, fst x)

lemma swap-simps[simp]: swap (a, b) = (b, a) unfolding swap-def by simp
lemma swap-inj[intro, simp]: inj swap by (rule injI , auto)
lemma swap-surj[intro, simp]: surj swap by (rule surjI [where ?f = swap],

auto)
lemma swap-bij[intro, simp]: bij swap by (rule bijI , auto)

definition push :: ( ′a × ′b) × ′c ⇒ ′a × ′b × ′c
where push x ≡ (fst (fst x), snd (fst x), snd x)

definition pull :: ′a × ′b × ′c ⇒ ( ′a × ′b) × ′c
where pull x ≡ ((fst x, fst (snd x)), snd (snd x))

lemma push-simps[simp]: push ((x, y), z) = (x, y, z) unfolding push-def by
simp

lemma pull-simps[simp]: pull (x, y, z) = ((x, y), z) unfolding pull-def by
simp

definition label :: ′vertex × ′label × ′vertex ⇒ ′label
where label ≡ fst ◦ snd

lemma label-select[simp]: label (p, a, q) = a unfolding label-def by simp

5.4 Theorems for @termcurry and @termsplit
lemma curry-split[simp]: curry ◦ case-prod = id by auto
lemma split-curry[simp]: case-prod ◦ curry = id by auto
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lemma curry-le[simp]: curry f ≤ curry g ←→ f ≤ g unfolding le-fun-def by
force

lemma split-le[simp]: case-prod f ≤ case-prod g ←→ f ≤ g unfolding le-fun-def
by force

lemma mono-curry-left[simp]: mono (curry ◦ h) ←→ mono h
unfolding mono-def by fastforce

lemma mono-split-left[simp]: mono (case-prod ◦ h) ←→ mono h
unfolding mono-def by fastforce

lemma mono-curry-right[simp]: mono (h ◦ curry) ←→ mono h
unfolding mono-def split-le[symmetric] by bestsimp

lemma mono-split-right[simp]: mono (h ◦ case-prod) ←→ mono h
unfolding mono-def curry-le[symmetric] by bestsimp

lemma Collect-curry[simp]: {x. P (curry x)} = case-prod ‘ {x. P x} using
image-Collect by fastforce

lemma Collect-split[simp]: {x. P (case-prod x)} = curry ‘ {x. P x} using
image-Collect by force

lemma gfp-split-curry[simp]: gfp (case-prod ◦ f ◦ curry) = case-prod (gfp f )
proof −

have gfp (case-prod ◦ f ◦ curry) = Sup {u. u ≤ case-prod (f (curry u))}
unfolding gfp-def by simp

also have . . . = Sup {u. curry u ≤ curry (case-prod (f (curry u)))} unfolding
curry-le by simp

also have . . . = Sup {u. curry u ≤ f (curry u)} by simp
also have . . . = Sup (case-prod ‘ {u. u ≤ f u}) unfolding Collect-curry[of λ

u. u ≤ f u] by simp
also have . . . = case-prod (Sup {u. u ≤ f u}) by (force simp add: image-comp)
also have . . . = case-prod (gfp f ) unfolding gfp-def by simp
finally show ?thesis by this

qed
lemma gfp-curry-split[simp]: gfp (curry ◦ f ◦ case-prod) = curry (gfp f )
proof −

have gfp (curry ◦ f ◦ case-prod) = Sup {u. u ≤ curry (f (case-prod u))}
unfolding gfp-def by simp

also have . . . = Sup {u. case-prod u ≤ case-prod (curry (f (case-prod u)))}
unfolding split-le by simp

also have . . . = Sup {u. case-prod u ≤ f (case-prod u)} by simp
also have . . . = Sup (curry ‘ {u. u ≤ f u}) unfolding Collect-split[of λ u. u

≤ f u] by simp
also have . . . = curry (Sup {u. u ≤ f u}) by (force simp add: image-comp)
also have . . . = curry (gfp f ) unfolding gfp-def by simp
finally show ?thesis by this

qed

lemma not-someI :
assumes

∧
x. P x =⇒ False

shows ¬ P (SOME x. P x)
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using assms by blast
lemma some-ccontr :

assumes (
∧

x. ¬ P x) =⇒ False
shows P (SOME x. P x)
using assms someI-ex ccontr by metis

end

6 Relations
theory Relation-Extensions
imports

Basic-Extensions
begin

abbreviation rev-lex-prod (infixr ‹<∗rlex∗>› 80 )
where r1 <∗rlex∗> r2 ≡ inv-image (r2 <∗lex∗> r1) swap

lemmas sym-rtranclp[intro] = sym-rtrancl[to-pred]

definition liftablep :: ( ′a ⇒ ′a ⇒ bool) ⇒ ( ′a ⇒ ′a) ⇒ bool
where liftablep r f ≡ ∀ x y. r x y −→ r (f x) (f y)

lemma liftablepI [intro]:
assumes

∧
x y. r x y =⇒ r (f x) (f y)

shows liftablep r f
using assms
unfolding liftablep-def
by simp

lemma liftablepE [elim]:
assumes liftablep r f
assumes r x y
obtains r (f x) (f y)
using assms
unfolding liftablep-def
by simp

lemma liftablep-rtranclp:
assumes liftablep r f
shows liftablep r∗∗ f

proof
fix x y
assume r∗∗ x y
thus r∗∗ (f x) (f y)

using assms
by (induct rule: rtranclp-induct, force+)

qed

definition confluentp :: ( ′a ⇒ ′a ⇒ bool) ⇒ bool
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where confluentp r ≡ ∀ x y1 y2 . r∗∗ x y1 −→ r∗∗ x y2 −→ (∃ z. r∗∗ y1 z ∧
r∗∗ y2 z)

lemma confluentpI [intro]:
assumes

∧
x y1 y2 . r∗∗ x y1 =⇒ r∗∗ x y2 =⇒ ∃ z. r∗∗ y1 z ∧ r∗∗ y2 z

shows confluentp r
using assms
unfolding confluentp-def
by simp

lemma confluentpE [elim]:
assumes confluentp r
assumes r∗∗ x y1 r∗∗ x y2
obtains z
where r∗∗ y1 z r∗∗ y2 z
using assms
unfolding confluentp-def
by blast

lemma confluentpI ′[intro]:
assumes

∧
x y1 y2 . r∗∗ x y1 =⇒ r x y2 =⇒ ∃ z. r∗∗ y1 z ∧ r∗∗ y2 z

shows confluentp r
proof

fix x y1 y2
assume r∗∗ x y1 r∗∗ x y2
thus ∃ z. r∗∗ y1 z ∧ r∗∗ y2 z using assms by (induct rule: rtranclp-induct,

force+)
qed

lemma transclp-eq-implies-confluent-imp:
assumes r1 ∗∗ = r2 ∗∗

assumes confluentp r1
shows confluentp r2
using assms
by force

lemma transclp-eq-implies-confluent-eq:
assumes r1 ∗∗ = r2 ∗∗

shows confluentp r1 ←→ confluentp r2
using assms transclp-eq-implies-confluent-imp
by metis

definition diamondp :: ( ′a ⇒ ′a ⇒ bool) ⇒ bool
where diamondp r ≡ ∀ x y1 y2 . r x y1 −→ r x y2 −→ (∃ z. r y1 z ∧ r y2 z)

lemma diamondpI [intro]:
assumes

∧
x y1 y2 . r x y1 =⇒ r x y2 =⇒ ∃ z. r y1 z ∧ r y2 z

shows diamondp r
using assms
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unfolding diamondp-def
by simp

lemma diamondpE [elim]:
assumes diamondp r
assumes r x y1 r x y2
obtains z
where r y1 z r y2 z
using assms
unfolding diamondp-def
by blast

lemma diamondp-implies-confluentp:
assumes diamondp r
shows confluentp r

proof (rule confluentpI ′)
fix x y1 y2
assume r∗∗ x y1 r x y2
hence ∃ z. r y1 z ∧ r∗∗ y2 z using assms by (induct rule: rtranclp-induct,

force+)
thus ∃ z. r∗∗ y1 z ∧ r∗∗ y2 z by blast

qed

locale wellfounded-relation =
fixes R :: ′a ⇒ ′a ⇒ bool
assumes wellfounded: wfP R

end

7 Transition Systems
theory Transition-System-Extensions
imports

Basics/Word-Prefixes
Extensions/Set-Extensions
Extensions/Relation-Extensions
Transition-Systems-and-Automata.Transition-System
Transition-Systems-and-Automata.Transition-System-Extra
Transition-Systems-and-Automata.Transition-System-Construction

begin

context transition-system-initial
begin

definition cycles :: ′state ⇒ ′transition list set
where cycles p ≡ {w. path w p ∧ target w p = p}

lemma cyclesI [intro!]:
assumes path w p target w p = p
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shows w ∈ cycles p
using assms unfolding cycles-def by auto

lemma cyclesE [elim!]:
assumes w ∈ cycles p
obtains path w p target w p = p
using assms unfolding cycles-def by auto

inductive-set executable :: ′transition set
where executable: p ∈ nodes =⇒ enabled a p =⇒ a ∈ executable

lemma executableI-step[intro!]:
assumes p ∈ nodes enabled a p
shows a ∈ executable
using executable assms by this

lemma executableI-words-fin[intro!]:
assumes p ∈ nodes path w p
shows set w ⊆ executable
using assms by (induct w arbitrary: p, auto del: subsetI )

lemma executableE [elim?]:
assumes a ∈ executable
obtains p
where p ∈ nodes enabled a p
using assms by induct auto

end

locale transition-system-interpreted =
transition-system ex en
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and int :: ′state ⇒ ′interpretation

begin

definition visible :: ′action set
where visible ≡ {a. ∃ q. en a q ∧ int q 6= int (ex a q)}

lemma visibleI [intro]:
assumes en a q int q 6= int (ex a q)
shows a ∈ visible
using assms unfolding visible-def by auto

lemma visibleE [elim]:
assumes a ∈ visible
obtains q
where en a q int q 6= int (ex a q)
using assms unfolding visible-def by auto

abbreviation invisible ≡ − visible

lemma execute-fin-word-invisible:
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assumes path w p set w ⊆ invisible
shows int (target w p) = int p
using assms by (induct w arbitrary: p rule: list.induct, auto)

lemma execute-inf-word-invisible:
assumes run w p k ≤ l

∧
i. k ≤ i =⇒ i < l =⇒ w !! i /∈ visible

shows int ((p ## trace w p) !! k) = int ((p ## trace w p) !! l)
proof −

have (p ## trace w p) !! l = target (stake l w) p by simp
also have stake l w = stake k w @ stake (l − k) (sdrop k w) using assms(2 )

by simp
also have target . . . p = target (stake (l − k) (sdrop k w)) (target (stake k

w) p)
unfolding fold-append comp-apply by rule

also have int . . . = int (target (stake k w) p)
proof (rule execute-fin-word-invisible)

have w = stake l w @− sdrop l w by simp
also have stake l w = stake k w @ stake (l − k) (sdrop k w) using assms(2 )

by simp
finally have 1 : run (stake k w @− stake (l − k) (sdrop k w) @− sdrop l w)

p
unfolding shift-append using assms(1 ) by simp

show path (stake (l − k) (sdrop k w)) (target (stake k w) p) using 1 by
auto

show set (stake (l − k) (sdrop k w)) ⊆ invisible using assms(3 ) by (auto
simp: set-stake-snth)

qed
also have . . . = int ((p ## trace w p) !! k) by simp
finally show ?thesis by rule

qed

end

locale transition-system-complete =
transition-system-initial ex en init +
transition-system-interpreted ex en int
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
and int :: ′state ⇒ ′interpretation

begin

definition language :: ′interpretation stream set
where language ≡ {smap int (p ## trace w p) |p w. init p ∧ run w p}

lemma languageI [intro!]:
assumes w = smap int (p ## trace v p) init p run v p
shows w ∈ language
using assms unfolding language-def by auto

lemma languageE [elim!]:
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assumes w ∈ language
obtains p v
where w = smap int (p ## trace v p) init p run v p
using assms unfolding language-def by auto

end

locale transition-system-finite-nodes =
transition-system-initial ex en init
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
+
assumes reachable-finite: finite nodes

locale transition-system-cut =
transition-system-finite-nodes ex en init
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
+
fixes cuts :: ′action set
assumes cycles-cut: p ∈ nodes =⇒ w ∈ cycles p =⇒ w 6= [] =⇒ set w ∩ cuts

6= {}
begin

inductive scut :: ′state ⇒ ′state ⇒ bool
where scut: p ∈ nodes =⇒ en a p =⇒ a /∈ cuts =⇒ scut p (ex a p)

declare scut.intros[intro!]
declare scut.cases[elim!]

lemma scut-reachable:
assumes scut p q
shows p ∈ nodes q ∈ nodes
using assms by auto

lemma scut-trancl:
assumes scut++ p q
obtains w
where path w p target w p = q set w ∩ cuts = {} w 6= []

using assms
proof (induct arbitrary: thesis)

case (base q)
show ?case using base by force

next
case (step q r)
obtain w where 1 : path w p target w p = q set w ∩ cuts = {} w 6= []

using step(3 ) by this
obtain a where 2 : en a q a /∈ cuts ex a q = r using step(2 ) by auto
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show ?case
proof (rule step(4 ))

show path (w @ [a]) p using 1 2 by auto
show target (w @ [a]) p = r using 1 2 by auto
show set (w @ [a]) ∩ cuts = {} using 1 2 by auto
show w @ [a] 6= [] by auto

qed
qed

sublocale wellfounded-relation scut−1−1

proof (unfold-locales, intro finite-acyclic-wf-converse[to-pred] acyclicI [to-pred],
safe)

have 1 : {(p, q). scut p q} ⊆ nodes × nodes using scut-reachable by blast
have 2 : finite (nodes × nodes)

using finite-cartesian-product reachable-finite by blast
show finite {(p, q). scut p q} using 1 2 by blast

next
fix p
assume 1 : scut++ p p
have 2 : p ∈ nodes using 1 tranclE [to-pred] scut-reachable by metis
obtain w where 3 : path w p target w p = p set w ∩ cuts = {} w 6= []

using scut-trancl 1 by this
have 4 : w ∈ cycles p using 3 (1 , 2 ) by auto
have 5 : set w ∩ cuts 6= {} using cycles-cut 2 4 3 (4 ) by this
show False using 3 (3 ) 5 by simp

qed

lemma no-cut-scut:
assumes p ∈ nodes en a p a /∈ cuts
shows scut−1−1 (ex a p) p
using assms by auto

end

locale transition-system-sticky =
transition-system-complete ex en init int +
transition-system-cut ex en init sticky
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
and int :: ′state ⇒ ′interpretation
and sticky :: ′action set
+
assumes executable-visible-sticky: executable ∩ visible ⊆ sticky

end
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8 Trace Theory
theory Traces
imports Basics/Word-Prefixes
begin

locale traces =
fixes ind :: ′item ⇒ ′item ⇒ bool
assumes independence-symmetric[sym]: ind a b =⇒ ind b a

begin

abbreviation Ind :: ′item set ⇒ ′item set ⇒ bool
where Ind A B ≡ ∀ a ∈ A. ∀ b ∈ B. ind a b

inductive eq-swap :: ′item list ⇒ ′item list ⇒ bool (infix ‹=S› 50 )
where swap: ind a b =⇒ u @ [a] @ [b] @ v =S u @ [b] @ [a] @ v

declare eq-swap.intros[intro]
declare eq-swap.cases[elim]

lemma eq-swap-sym[sym]: v =S w =⇒ w =S v using independence-symmetric
by auto

lemma eq-swap-length[dest]: w1 =S w2 =⇒ length w1 = length w2 by force
lemma eq-swap-range[dest]: w1 =S w2 =⇒ set w1 = set w2 by force

lemma eq-swap-extend:
assumes w1 =S w2

shows u @ w1 @ v =S u @ w2 @ v
using assms
proof induct

case (swap a b u ′ v ′)
have u @ (u ′ @ [a] @ [b] @ v ′) @ v = (u @ u ′) @ [a] @ [b] @ (v ′ @ v) by

simp
also have . . . =S (u @ u ′) @ [b] @ [a] @ (v ′ @ v) using swap by blast
also have . . . = u @ (u ′ @ [b] @ [a] @ v ′) @ v by simp
finally show ?case by this

qed

lemma eq-swap-remove1 :
assumes w1 =S w2

obtains (equal) remove1 c w1 = remove1 c w2 | (swap) remove1 c w1 =S

remove1 c w2

using assms
proof induct

case (swap a b u v)
have c /∈ set (u @ [a] @ [b] @ v) ∨

c ∈ set u ∨
c /∈ set u ∧ c = a ∨
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c /∈ set u ∧ c 6= a ∧ c = b ∨
c /∈ set u ∧ c 6= a ∧ c 6= b ∧ c ∈ set v
by auto

thus ?case
proof (elim disjE)

assume 0 : c /∈ set (u @ [a] @ [b] @ v)
have 1 : c /∈ set (u @ [b] @ [a] @ v) using 0 by auto

have 2 : remove1 c (u @ [a] @ [b] @ v) = u @ [a] @ [b] @ v using
remove1-idem 0 by this

have 3 : remove1 c (u @ [b] @ [a] @ v) = u @ [b] @ [a] @ v using
remove1-idem 1 by this

have 4 : remove1 c (u @ [a] @ [b] @ v) =S remove1 c (u @ [b] @ [a] @ v)
unfolding 2 3 using eq-swap.intros swap(1 ) by this

show thesis using swap(3 ) 4 by this
next

assume 0 : c ∈ set u
have 2 : remove1 c (u @ [a] @ [b] @ v) = remove1 c u @ [a] @ [b] @ v

unfolding remove1-append using 0 by simp
have 3 : remove1 c (u @ [b] @ [a] @ v) = remove1 c u @ [b] @ [a] @ v

unfolding remove1-append using 0 by simp
have 4 : remove1 c (u @ [a] @ [b] @ v) =S remove1 c (u @ [b] @ [a] @ v)

unfolding 2 3 using eq-swap.intros swap(1 ) by this
show thesis using swap(3 ) 4 by this

next
assume 0 : c /∈ set u ∧ c = a
have 2 : remove1 c (u @ [a] @ [b] @ v) = u @ [b] @ v

unfolding remove1-append using remove1-idem 0 by auto
have 3 : remove1 c (u @ [b] @ [a] @ v) = u @ [b] @ v

unfolding remove1-append using remove1-idem 0 by auto
have 4 : remove1 c (u @ [a] @ [b] @ v) = remove1 c (u @ [b] @ [a] @ v)

unfolding 2 3 by rule
show thesis using swap(2 ) 4 by this

next
assume 0 : c /∈ set u ∧ c 6= a ∧ c = b
have 2 : remove1 c (u @ [a] @ [b] @ v) = u @ [a] @ v

unfolding remove1-append using remove1-idem 0 by auto
have 3 : remove1 c (u @ [b] @ [a] @ v) = u @ [a] @ v

unfolding remove1-append using remove1-idem 0 by auto
have 4 : remove1 c (u @ [a] @ [b] @ v) = remove1 c (u @ [b] @ [a] @ v)

unfolding 2 3 by rule
show thesis using swap(2 ) 4 by this

next
assume 0 : c /∈ set u ∧ c 6= a ∧ c 6= b ∧ c ∈ set v
have 2 : remove1 c (u @ [a] @ [b] @ v) = u @ [a] @ [b] @ remove1 c v

unfolding remove1-append using 0 by simp
have 3 : remove1 c (u @ [b] @ [a] @ v) = u @ [b] @ [a] @ remove1 c v

unfolding remove1-append using 0 by simp
have 4 : remove1 c (u @ [a] @ [b] @ v) =S remove1 c (u @ [b] @ [a] @ v)

unfolding 2 3 using eq-swap.intros swap(1 ) by this
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show ?thesis using swap(3 ) 4 by this
qed

qed

lemma eq-swap-rev:
assumes w1 =S w2

shows rev w1 =S rev w2

using assms
proof induct

case (swap a b u v)
have 1 : rev v @ [a] @ [b] @ rev u =S rev v @ [b] @ [a] @ rev u using swap

by blast
have 2 : rev v @ [b] @ [a] @ rev u =S rev v @ [a] @ [b] @ rev u using 1

eq-swap-sym by blast
show ?case using 2 by simp

qed

abbreviation eq-fin :: ′item list ⇒ ′item list ⇒ bool (infix ‹=F › 50 )
where eq-fin ≡ eq-swap∗∗

lemma eq-fin-symp[intro, sym]: u =F v =⇒ v =F u
using eq-swap-sym sym-rtrancl[to-pred] unfolding symp-def by metis

lemma eq-fin-length[dest]: w1 =F w2 =⇒ length w1 = length w2

by (induct rule: rtranclp.induct, auto)
lemma eq-fin-range[dest]: w1 =F w2 =⇒ set w1 = set w2

by (induct rule: rtranclp.induct, auto)

lemma eq-fin-remove1 :
assumes w1 =F w2

shows remove1 c w1 =F remove1 c w2

using assms
proof induct

case (base)
show ?case by simp

next
case (step w2 w3)
show ?case
using step(2 )
proof (cases rule: eq-swap-remove1 [where ?c = c])

case equal
show ?thesis using step equal by simp

next
case swap
show ?thesis using step swap by auto

qed
qed

lemma eq-fin-rev:
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assumes w1 =F w2

shows rev w1 =F rev w2

using assms by (induct, auto dest: eq-swap-rev)

lemma eq-fin-concat-eq-fin-start:
assumes u @ v1 =F u @ v2

shows v1 =F v2

using assms
proof (induct u arbitrary: v1 v2 rule: rev-induct)

case (Nil)
show ?case using Nil by simp

next
case (snoc a u)
have 1 : u @ [a] @ v1 =F u @ [a] @ v2 using snoc(2 ) by simp
have 2 : [a] @ v1 =F [a] @ v2 using snoc(1 ) 1 by this
show ?case using eq-fin-remove1 [OF 2 , of a] by simp

qed

lemma eq-fin-concat: u @ w1 @ v =F u @ w2 @ v ←→ w1 =F w2

proof
assume 0 : u @ w1 @ v =F u @ w2 @ v
have 1 : w1 @ v =F w2 @ v using eq-fin-concat-eq-fin-start 0 by this
have 2 : rev (w1 @ v) =F rev (w2 @ v) using 1 by (blast dest: eq-fin-rev)
have 3 : rev v @ rev w1 =F rev v @ rev w2 using 2 by simp
have 4 : rev w1 =F rev w2 using eq-fin-concat-eq-fin-start 3 by this
have 5 : rev (rev w1) =F rev (rev w2) using 4 by (blast dest: eq-fin-rev)
show w1 =F w2 using 5 by simp

next
show u @ w1 @ v =F u @ w2 @ v if w1 =F w2

using that by (induct, auto dest: eq-swap-extend[of - - u v])
qed
lemma eq-fin-concat-start[iff ]: w @ w1 =F w @ w2 ←→ w1 =F w2

using eq-fin-concat[of w - []] by simp
lemma eq-fin-concat-end[iff ]: w1 @ w =F w2 @ w ←→ w1 =F w2

using eq-fin-concat[of [] - w] by simp

lemma ind-eq-fin ′:
assumes Ind {a} (set v)
shows [a] @ v =F v @ [a]

using assms
proof (induct v)

case (Nil)
show ?case by simp

next
case (Cons b v)
have 1 : Ind {a} (set v) using Cons(2 ) by auto
have 2 : ind a b using Cons(2 ) by auto
have [a] @ b # v = [a] @ [b] @ v by simp
also have . . . =S [b] @ [a] @ v using eq-swap.intros[OF 2 , of []] by auto
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also have . . . =F [b] @ v @ [a] using Cons(1 ) 1 by blast
also have . . . = (b # v) @ [a] by simp
finally show ?case by this

qed

lemma ind-eq-fin[intro]:
assumes Ind (set u) (set v)
shows u @ v =F v @ u

using assms
proof (induct u)

case (Nil)
show ?case by simp

next
case (Cons a u)
have 1 : Ind (set u) (set v) using Cons(2 ) by auto
have 2 : Ind {a} (set v) using Cons(2 ) by auto
have (a # u) @ v = [a] @ u @ v by simp
also have . . . =F [a] @ v @ u using Cons(1 ) 1 by blast
also have . . . = ([a] @ v) @ u by simp
also have . . . =F (v @ [a]) @ u using ind-eq-fin ′ 2 by blast
also have . . . = v @ (a # u) by simp
finally show ?case by this

qed

definition le-fin :: ′item list ⇒ ′item list ⇒ bool (infix ‹�F › 50 )
where w1 �F w2 ≡ ∃ v1. w1 @ v1 =F w2

lemma le-finI [intro 0 ]:
assumes w1 @ v1 =F w2

shows w1 �F w2

using assms unfolding le-fin-def by auto
lemma le-finE [elim 0 ]:

assumes w1 �F w2

obtains v1

where w1 @ v1 =F w2

using assms unfolding le-fin-def by auto

lemma le-fin-empty[simp]: [] �F w by force
lemma le-fin-trivial[intro]: w1 =F w2 =⇒ w1 �F w2

proof
assume 1 : w1 =F w2

show w1 @ [] =F w2 using 1 by simp
qed

lemma le-fin-length[dest]: w1 �F w2 =⇒ length w1 ≤ length w2 by force
lemma le-fin-range[dest]: w1 �F w2 =⇒ set w1 ⊆ set w2 by force

lemma eq-fin-alt-def : w1 =F w2 ←→ w1 �F w2 ∧ w2 �F w1

proof
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show w1 �F w2 ∧ w2 �F w1 if w1 =F w2 using that by blast
next

assume 0 : w1 �F w2 ∧ w2 �F w1

have 1 : w1 �F w2 w2 �F w1 using 0 by auto
have 10 : length w1 = length w2 using 1 by force
obtain v1 v2 where 2 : w1 @ v1 =F w2 w2 @ v2 =F w1 using 1 by (elim

le-finE)
have 3 : length w1 = length (w1 @ v1) using 2 10 by force
have 4 : w1 = w1 @ v1 using 3 by auto
have 5 : length w2 = length (w2 @ v2) using 2 10 by force
have 6 : w2 = w2 @ v2 using 5 by auto
show w1 =F w2 using 4 6 2 by simp

qed

lemma le-fin-reflp[simp, intro]: w �F w by auto
lemma le-fin-transp[intro, trans]:

assumes w1 �F w2 w2 �F w3

shows w1 �F w3

proof −
obtain v1 where 1 : w1 @ v1 =F w2 using assms(1 ) by rule
obtain v2 where 2 : w2 @ v2 =F w3 using assms(2 ) by rule
show ?thesis
proof

have w1 @ v1 @ v2 = (w1 @ v1) @ v2 by simp
also have . . . =F w2 @ v2 using 1 by blast
also have . . . =F w3 using 2 by blast
finally show w1 @ v1 @ v2 =F w3 by this

qed
qed
lemma eq-fin-le-fin-transp[intro, trans]:

assumes w1 =F w2 w2 �F w3

shows w1 �F w3

using assms by auto
lemma le-fin-eq-fin-transp[intro, trans]:

assumes w1 �F w2 w2 =F w3

shows w1 �F w3

using assms by auto
lemma prefix-le-fin-transp[intro, trans]:

assumes w1 ≤ w2 w2 �F w3

shows w1 �F w3

proof −
obtain v1 where 1 : w2 = w1 @ v1 using assms(1 ) by rule
obtain v2 where 2 : w2 @ v2 =F w3 using assms(2 ) by rule
show ?thesis
proof

show w1 @ v1 @ v2 =F w3 using 1 2 by simp
qed

qed
lemma le-fin-prefix-transp[intro, trans]:
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assumes w1 �F w2 w2 ≤ w3

shows w1 �F w3

proof −
obtain v1 where 1 : w1 @ v1 =F w2 using assms(1 ) by rule
obtain v2 where 2 : w3 = w2 @ v2 using assms(2 ) by rule
show ?thesis
proof

have w1 @ v1 @ v2 = (w1 @ v1) @ v2 by simp
also have . . . =F w2 @ v2 using 1 by blast
also have . . . = w3 using 2 by simp
finally show w1 @ v1 @ v2 =F w3 by this

qed
qed
lemma prefix-eq-fin-transp[intro, trans]:

assumes w1 ≤ w2 w2 =F w3

shows w1 �F w3

using assms by auto

lemma le-fin-concat-start[iff ]: w @ w1 �F w @ w2 ←→ w1 �F w2

proof
assume 0 : w @ w1 �F w @ w2

obtain v1 where 1 : w @ w1 @ v1 =F w @ w2 using 0 by auto
show w1 �F w2 using 1 by auto

next
assume 0 : w1 �F w2

obtain v1 where 1 : w1 @ v1 =F w2 using 0 by auto
have 2 : (w @ w1) @ v1 =F w @ w2 using 1 by auto
show w @ w1 �F w @ w2 using 2 by blast

qed
lemma le-fin-concat-end[dest]:

assumes w1 �F w2

shows w1 �F w2 @ w
proof −

obtain v1 where 1 : w1 @ v1 =F w2 using assms by rule
show ?thesis
proof

have w1 @ v1 @ w = (w1 @ v1) @ w by simp
also have . . . =F w2 @ w using 1 by blast
finally show w1 @ v1 @ w =F w2 @ w by this

qed
qed

definition le-fininf :: ′item list ⇒ ′item stream ⇒ bool (infix ‹�F I› 50 )
where w1 �F I w2 ≡ ∃ v2. v2 ≤F I w2 ∧ w1 �F v2

lemma le-fininfI [intro 0 ]:
assumes v2 ≤F I w2 w1 �F v2

shows w1 �F I w2

using assms unfolding le-fininf-def by auto
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lemma le-fininfE [elim 0 ]:
assumes w1 �F I w2

obtains v2

where v2 ≤F I w2 w1 �F v2

using assms unfolding le-fininf-def by auto

lemma le-fininf-empty[simp]: [] �F I w by force

lemma le-fininf-range[dest]: w1 �F I w2 =⇒ set w1 ⊆ sset w2 by force

lemma eq-fin-le-fininf-transp[intro, trans]:
assumes w1 =F w2 w2 �F I w3

shows w1 �F I w3

using assms by blast
lemma le-fin-le-fininf-transp[intro, trans]:

assumes w1 �F w2 w2 �F I w3

shows w1 �F I w3

using assms by blast
lemma prefix-le-fininf-transp[intro, trans]:

assumes w1 ≤ w2 w2 �F I w3

shows w1 �F I w3

using assms by auto
lemma le-fin-prefix-fininf-transp[intro, trans]:

assumes w1 �F w2 w2 ≤F I w3

shows w1 �F I w3

using assms by auto
lemma eq-fin-prefix-fininf-transp[intro, trans]:

assumes w1 =F w2 w2 ≤F I w3

shows w1 �F I w3

using assms by auto

lemma le-fininf-concat-start[iff ]: w @ w1 �F I w @− w2 ←→ w1 �F I w2

proof
assume 0 : w @ w1 �F I w @− w2

obtain v2 where 1 : v2 ≤F I w @− w2 w @ w1 �F v2 using 0 by rule
have 2 : length w ≤ length v2 using 1 (2 ) by force
have 4 : w ≤ v2 using prefix-fininf-extend[OF 1 (1 ) 2 ] by this
obtain v1 where 5 : v2 = w @ v1 using 4 by rule
show w1 �F I w2

proof
show v1 ≤F I w2 using 1 (1 ) unfolding 5 by auto
show w1 �F v1 using 1 (2 ) unfolding 5 by simp

qed
next

assume 0 : w1 �F I w2

obtain v2 where 1 : v2 ≤F I w2 w1 �F v2 using 0 by rule
show w @ w1 �F I w @− w2

proof
show w @ v2 ≤F I (w @− w2) using 1 (1 ) by auto
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show w @ w1 �F w @ v2 using 1 (2 ) by auto
qed

qed

lemma le-fininf-singleton[intro, simp]: [shd v] �F I v
proof −

have [shd v] �F I shd v ## sdrop 1 v by blast
also have . . . = v by simp
finally show ?thesis by this

qed

definition le-inf :: ′item stream ⇒ ′item stream ⇒ bool (infix ‹�I› 50 )
where w1 �I w2 ≡ ∀ v1. v1 ≤F I w1 −→ v1 �F I w2

lemma le-infI [intro 0 ]:
assumes

∧
v1. v1 ≤F I w1 =⇒ v1 �F I w2

shows w1 �I w2

using assms unfolding le-inf-def by auto
lemma le-infE [elim 0 ]:

assumes w1 �I w2 v1 ≤F I w1

obtains v1 �F I w2

using assms unfolding le-inf-def by auto

lemma le-inf-range[dest]:
assumes w1 �I w2

shows sset w1 ⊆ sset w2

proof
fix a
assume 1 : a ∈ sset w1

obtain i where 2 : a = w1 !! i using 1 by (metis imageE sset-range)
have 3 : stake (Suc i) w1 ≤F I w1 by rule
have 4 : stake (Suc i) w1 �F I w2 using assms 3 by rule
have 5 : w1 !! i ∈ set (stake (Suc i) w1) by (meson lessI set-stake-snth)
show a ∈ sset w2 unfolding 2 using 5 4 by fastforce

qed

lemma le-inf-reflp[simp, intro]: w �I w by auto
lemma prefix-fininf-le-inf-transp[intro, trans]:

assumes w1 ≤F I w2 w2 �I w3

shows w1 �F I w3

using assms by blast
lemma le-fininf-le-inf-transp[intro, trans]:

assumes w1 �F I w2 w2 �I w3

shows w1 �F I w3

using assms by blast
lemma le-inf-transp[intro, trans]:

assumes w1 �I w2 w2 �I w3

shows w1 �I w3

using assms by blast
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lemma le-infI ′:
assumes

∧
k. ∃ v. v ≤F I w1 ∧ k < length v ∧ v �F I w2

shows w1 �I w2

proof
fix u
assume 1 : u ≤F I w1

obtain v where 2 : v ≤F I w1 length u < length v v �F I w2 using assms by
auto

have 3 : length u ≤ length v using 2 (2 ) by auto
have 4 : u ≤ v using prefix-fininf-length 1 2 (1 ) 3 by this
show u �F I w2 using 4 2 (3 ) by rule

qed

lemma le-infI-chain-left:
assumes chain w

∧
k. w k �F I v

shows limit w �I v
proof (rule le-infI ′)

fix k
obtain l where 1 : k < length (w l) using assms(1 ) by rule
show ∃ va. va ≤F I limit w ∧ k < length va ∧ va �F I v
proof (intro exI conjI )

show w l ≤F I limit w using chain-prefix-limit assms(1 ) by this
show k < length (w l) using 1 by this
show w l �F I v using assms(2 ) by this

qed
qed
lemma le-infI-chain-right:

assumes chain w
∧

u. u ≤F I v =⇒ u �F w (l u)
shows v �I limit w

proof
fix u
assume 1 : u ≤F I v
show u �F I limit w
proof

show w (l u) ≤F I limit w using chain-prefix-limit assms(1 ) by this
show u �F w (l u) using assms(2 ) 1 by this

qed
qed
lemma le-infI-chain-right ′:

assumes chain w
∧

k. stake k v �F w (l k)
shows v �I limit w

proof (rule le-infI-chain-right)
show chain w using assms(1 ) by this

next
fix u
assume 1 : u ≤F I v

have 2 : stake (length u) v = u using 1 by (simp add: prefix-fininf-def shift-eq)
have 3 : stake (length u) v �F w (l (length u)) using assms(2 ) by this
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show u �F w (l (length u)) using 3 unfolding 2 by this
qed

definition eq-inf :: ′item stream ⇒ ′item stream ⇒ bool (infix ‹=I› 50 )
where w1 =I w2 ≡ w1 �I w2 ∧ w2 �I w1

lemma eq-infI [intro 0 ]:
assumes w1 �I w2 w2 �I w1

shows w1 =I w2

using assms unfolding eq-inf-def by auto
lemma eq-infE [elim 0 ]:

assumes w1 =I w2

obtains w1 �I w2 w2 �I w1

using assms unfolding eq-inf-def by auto

lemma eq-inf-range[dest]: w1 =I w2 =⇒ sset w1 = sset w2 by force

lemma eq-inf-reflp[simp, intro]: w =I w by auto
lemma eq-inf-symp[intro]: w1 =I w2 =⇒ w2 =I w1 by auto
lemma eq-inf-transp[intro, trans]:

assumes w1 =I w2 w2 =I w3

shows w1 =I w3

using assms by blast
lemma le-fininf-eq-inf-transp[intro, trans]:

assumes w1 �F I w2 w2 =I w3

shows w1 �F I w3

using assms by blast
lemma le-inf-eq-inf-transp[intro, trans]:

assumes w1 �I w2 w2 =I w3

shows w1 �I w3

using assms by blast
lemma eq-inf-le-inf-transp[intro, trans]:

assumes w1 =I w2 w2 �I w3

shows w1 �I w3

using assms by blast
lemma prefix-fininf-eq-inf-transp[intro, trans]:

assumes w1 ≤F I w2 w2 =I w3

shows w1 �F I w3

using assms by blast

lemma le-inf-concat-start[iff ]: w @− w1 �I w @− w2 ←→ w1 �I w2

proof
assume 1 : w @− w1 �I w @− w2

show w1 �I w2

proof
fix v1

assume 2 : v1 ≤F I w1

have w @ v1 ≤F I w @− w1 using 2 by auto
also have . . . �I w @− w2 using 1 by this
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finally show v1 �F I w2 by rule
qed

next
assume 1 : w1 �I w2

show w @− w1 �I w @− w2

proof
fix v1

assume 2 : v1 ≤F I w @− w1

then show v1 �F I w @− w2

proof (cases rule: prefix-fininf-append)
case (absorb)
show ?thesis using absorb by auto

next
case (extend z)
show ?thesis using 1 extend by auto

qed
qed

qed
lemma eq-fin-le-inf-concat-end[dest]: w1 =F w2 =⇒ w1 @− w �I w2 @− w
proof

fix v1

assume 1 : w1 =F w2 v1 ≤F I w1 @− w
show v1 �F I w2 @− w
using 1 (2 )
proof (cases rule: prefix-fininf-append)

case (absorb)
show ?thesis
proof

show w2 ≤F I (w2 @− w) by auto
show v1 �F w2 using absorb 1 (1 ) by auto

qed
next

case (extend w ′)
show ?thesis
proof

show w2 @ w ′ ≤F I (w2 @− w) using extend(2 ) by auto
show v1 �F w2 @ w ′ unfolding extend(1 ) using 1 (1 ) by auto

qed
qed

qed

lemma eq-inf-concat-start[iff ]: w @− w1 =I w @− w2 ←→ w1 =I w2 by blast
lemma eq-inf-concat-end[dest]: w1 =F w2 =⇒ w1 @− w =I w2 @− w
proof −

assume 0 : w1 =F w2

have 1 : w2 =F w1 using 0 by auto
show w1 @− w =I w2 @− w

using eq-fin-le-inf-concat-end[OF 0 ] eq-fin-le-inf-concat-end[OF 1 ] by auto
qed
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lemma le-fininf-suffixI [intro]:
assumes w =I w1 @− w2

shows w1 �F I w
using assms by blast

lemma le-fininf-suffixE [elim]:
assumes w1 �F I w
obtains w2

where w =I w1 @− w2

proof −
obtain v2 where 1 : v2 ≤F I w w1 �F v2 using assms(1 ) by rule
obtain u1 where 2 : w1 @ u1 =F v2 using 1 (2 ) by rule
obtain v2

′ where 3 : w = v2 @− v2
′ using 1 (1 ) by rule

show ?thesis
proof

show w =I w1 @− u1 @− v2
′ unfolding 3 using 2 by fastforce

qed
qed

lemma subsume-fin:
assumes u1 �F I w v1 �F I w
obtains w1

where u1 �F w1 v1 �F w1

proof −
obtain u2 where 2 : u2 ≤F I w u1 �F u2 using assms(1 ) by rule
obtain v2 where 3 : v2 ≤F I w v1 �F v2 using assms(2 ) by rule
show ?thesis
proof (cases length u2 length v2 rule: le-cases)

case le
show ?thesis
proof

show u1 �F v2 using 2 (2 ) prefix-fininf-length[OF 2 (1 ) 3 (1 ) le] by auto
show v1 �F v2 using 3 (2 ) by this

qed
next

case ge
show ?thesis
proof

show u1 �F u2 using 2 (2 ) by this
show v1 �F u2 using 3 (2 ) prefix-fininf-length[OF 3 (1 ) 2 (1 ) ge] by auto

qed
qed

qed

lemma eq-fin-end:
assumes u1 =F u2 u1 @ v1 =F u2 @ v2

shows v1 =F v2

proof −
have u1 @ v2 =F u2 @ v2 using assms(1 ) by blast
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also have . . . =F u1 @ v1 using assms(2 ) by blast
finally show ?thesis by blast

qed

definition indoc :: ′item ⇒ ′item list ⇒ bool
where indoc a u ≡ ∃ u1 u2. u = u1 @ [a] @ u2 ∧ a /∈ set u1 ∧ Ind {a} (set

u1)

lemma indoc-set: indoc a u =⇒ a ∈ set u unfolding indoc-def by auto

lemma indoc-appendI1 [intro]:
assumes indoc a u
shows indoc a (u @ v)
using assms unfolding indoc-def by force

lemma indoc-appendI2 [intro]:
assumes a /∈ set u Ind {a} (set u) indoc a v
shows indoc a (u @ v)

proof −
obtain v1 v2 where 1 : v = v1 @ [a] @ v2 a /∈ set v1 Ind {a} (set v1)

using assms(3 ) unfolding indoc-def by blast
show ?thesis
proof (unfold indoc-def , intro exI conjI )

show u @ v = (u @ v1) @ [a] @ v2 unfolding 1 (1 ) by simp
show a /∈ set (u @ v1) using assms(1 ) 1 (2 ) by auto
show Ind {a} (set (u @ v1)) using assms(2 ) 1 (3 ) by auto

qed
qed
lemma indoc-appendE [elim!]:

assumes indoc a (u @ v)
obtains (first) a ∈ set u indoc a u | (second) a /∈ set u Ind {a} (set u) indoc

a v
proof −

obtain w1 w2 where 1 : u @ v = w1 @ [a] @ w2 a /∈ set w1 Ind {a} (set w1)
using assms unfolding indoc-def by blast

show ?thesis
proof (cases a ∈ set u)

case True
obtain u1 u2 where 2 : u = u1 @ [a] @ u2 a /∈ set u1

using split-list-first[OF True] by auto
have 3 : w1 = u1

proof (rule split-list-first-unique)
show w1 @ [a] @ w2 = u1 @ [a] @ u2 @ v using 1 (1 ) unfolding 2 (1 )

by simp
show a /∈ set w1 using 1 (2 ) by auto
show a /∈ set u1 using 2 (2 ) by this

qed
show ?thesis
proof (rule first)

show a ∈ set u using True by this
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show indoc a u
proof (unfold indoc-def , intro exI conjI )

show u = u1 @ [a] @ u2 using 2 (1 ) by this
show a /∈ set u1 using 1 (2 ) unfolding 3 by this
show Ind {a} (set u1) using 1 (3 ) unfolding 3 by this

qed
qed

next
case False
have 2 : a ∈ set v using indoc-set assms False by fastforce
obtain v1 v2 where 3 : v = v1 @ [a] @ v2 a /∈ set v1

using split-list-first[OF 2 ] by auto
have 4 : w1 = u @ v1

proof (rule split-list-first-unique)
show w1 @ [a] @ w2 = (u @ v1) @ [a] @ v2 using 1 (1 ) unfolding 3 (1 )

by simp
show a /∈ set w1 using 1 (2 ) by auto
show a /∈ set (u @ v1) using False 3 (2 ) by auto

qed
show ?thesis
proof (rule second)

show a /∈ set u using False by this
show Ind {a} (set u) using 1 (3 ) 4 by auto
show indoc a v
proof (unfold indoc-def , intro exI conjI )

show v = v1 @ [a] @ v2 using 3 (1 ) by this
show a /∈ set v1 using 1 (2 ) unfolding 4 by auto
show Ind {a} (set v1) using 1 (3 ) unfolding 4 by auto

qed
qed

qed
qed

lemma indoc-single: indoc a [b] ←→ a = b
proof

assume 1 : indoc a [b]
obtain u1 u2 where 2 : [b] = u1 @ [a] @ u2 Ind {a} (set u1)

using 1 unfolding indoc-def by auto
show a = b using 2 (1 )
by (metis append-eq-Cons-conv append-is-Nil-conv list.distinct(2 ) list.inject)

next
assume 1 : a = b
show indoc a [b]
unfolding indoc-def 1
proof (intro exI conjI )

show [b] = [] @ [b] @ [] by simp
show b /∈ set [] by simp
show Ind {b} (set []) by simp

qed
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qed

lemma indoc-append[simp]: indoc a (u @ v) ←→
indoc a u ∨ a /∈ set u ∧ Ind {a} (set u) ∧ indoc a v by blast

lemma indoc-Nil[simp]: indoc a [] ←→ False unfolding indoc-def by auto
lemma indoc-Cons[simp]: indoc a (b # v) ←→ a = b ∨ a 6= b ∧ ind a b ∧

indoc a v
proof −

have indoc a (b # v) ←→ indoc a ([b] @ v) by simp
also have . . . ←→ indoc a [b] ∨ a /∈ set [b] ∧ Ind {a} (set [b]) ∧ indoc a v

unfolding indoc-append by rule
also have . . .←→ a = b ∨ a 6= b ∧ ind a b ∧ indoc a v unfolding indoc-single

by simp
finally show ?thesis by this

qed

lemma eq-swap-indoc: u =S v =⇒ indoc c u =⇒ indoc c v by auto
lemma eq-fin-indoc: u =F v =⇒ indoc c u =⇒ indoc c v by (induct rule:

rtranclp.induct, auto)

lemma eq-fin-ind ′:
assumes [a] @ u =F u1 @ [a] @ u2 a /∈ set u1

shows Ind {a} (set u1)
proof −

have 1 : indoc a ([a] @ u) by simp
have 2 : indoc a (u1 @ [a] @ u2) using eq-fin-indoc assms(1 ) 1 by this
show ?thesis using assms(2 ) 2 by blast

qed
lemma eq-fin-ind:

assumes u @ v =F v @ u set u ∩ set v = {}
shows Ind (set u) (set v)

using assms
proof (induct u)

case Nil
show ?case by simp

next
case (Cons a u)
have 1 : Ind {a} (set v)
proof (rule eq-fin-ind ′)

show [a] @ u @ v =F v @ [a] @ u using Cons(2 ) by simp
show a /∈ set v using Cons(3 ) by simp

qed
have 2 : Ind (set [a]) (set v) using 1 by simp
have 4 : Ind (set u) (set v)
proof (rule Cons(1 ))

have [a] @ u @ v = (a # u) @ v by simp
also have . . . =F v @ a # u using Cons(2 ) by this
also have . . . = (v @ [a]) @ u by simp
also have . . . =F ([a] @ v) @ u using 2 by blast
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also have . . . = [a] @ v @ u by simp
finally show u @ v =F v @ u by blast
show set u ∩ set v = {} using Cons(3 ) by auto

qed
show ?case using 1 4 by auto

qed

lemma le-fin-member ′:
assumes [a] �F u @ v a ∈ set u
shows [a] �F u

proof −
obtain w where 1 : [a] @ w =F u @ v using assms(1 ) by rule
obtain u1 u2 where 2 : u = u1 @ [a] @ u2 a /∈ set u1

using split-list-first[OF assms(2 )] by auto
have 3 : Ind {a} (set u1)
proof (rule eq-fin-ind ′)

show [a] @ w =F u1 @ [a] @ u2 @ v using 1 unfolding 2 (1 ) by simp
show a /∈ set u1 using 2 (2 ) by this

qed
have 4 : Ind (set [a]) (set u1) using 3 by simp
have [a] ≤ [a] @ u1 @ u2 by auto
also have . . . = ([a] @ u1) @ u2 by simp
also have . . . =F (u1 @ [a]) @ u2 using 4 by blast
also have . . . = u unfolding 2 (1 ) by simp
finally show ?thesis by this

qed
lemma le-fin-not-member ′:

assumes [a] �F u @ v a /∈ set u
shows [a] �F v

proof −
obtain w where 1 : [a] @ w =F u @ v using assms(1 ) by rule
have 3 : a ∈ set v using assms by auto
obtain v1 v2 where 4 : v = v1 @ [a] @ v2 a /∈ set v1 using split-list-first[OF

3 ] by auto
have 5 : [a] @ w =F u @ v1 @ [a] @ v2 using 1 unfolding 4 (1 ) by this
have 6 : Ind {a} (set (u @ v1))
proof (rule eq-fin-ind ′)

show [a] @ w =F (u @ v1) @ [a] @ v2 using 5 by simp
show a /∈ set (u @ v1) using assms(2 ) 4 (2 ) by auto

qed
have 9 : Ind (set [a]) (set v1) using 6 by auto
have [a] ≤ [a] @ v1 @ v2 by auto
also have . . . = ([a] @ v1) @ v2 by simp
also have . . . =F (v1 @ [a]) @ v2 using 9 by blast
also have . . . = v1 @ [a] @ v2 by simp
also have . . . = v unfolding 4 (1 ) by rule
finally show ?thesis by this

qed
lemma le-fininf-not-member ′:

46



assumes [a] �F I u @− v a /∈ set u
shows [a] �F I v

proof −
obtain v2 where 1 : v2 ≤F I u @− v [a] �F v2 using le-fininfE assms(1 ) by

this
show ?thesis
using 1 (1 )
proof (cases rule: prefix-fininf-append)

case absorb
have [a] �F v2 using 1 (2 ) by this
also have . . . ≤ u using absorb by this
finally have 2 : a ∈ set u by force
show ?thesis using assms(2 ) 2 by simp

next
case (extend z)
have [a] �F v2 using 1 (2 ) by this
also have . . . = u @ z using extend(1 ) by this
finally have 2 : [a] �F u @ z by this
have [a] �F z using le-fin-not-member ′ 2 assms(2 ) by this
also have . . . ≤F I v using extend(2 ) by this
finally show ?thesis by this

qed
qed

lemma le-fin-ind ′′:
assumes [a] �F w [b] �F w a 6= b
shows ind a b

proof −
obtain u where 1 : [a] @ u =F w using assms(1 ) by rule
obtain v where 2 : [b] @ v =F w using assms(2 ) by rule
have 3 : [a] @ u =F [b] @ v using 1 2 [symmetric] by auto
have 4 : a ∈ set v using 3 assms(3 )
by (metis append-Cons append-Nil eq-fin-range list.set-intros(1 ) set-ConsD)

obtain v1 v2 where 5 : v = v1 @ [a] @ v2 a /∈ set v1 using split-list-first[OF
4 ] by auto

have 7 : Ind {a} (set ([b] @ v1))
proof (rule eq-fin-ind ′)

show [a] @ u =F ([b] @ v1) @ [a] @ v2 using 3 unfolding 5 (1 ) by simp
show a /∈ set ([b] @ v1) using assms(3 ) 5 (2 ) by auto

qed
show ?thesis using 7 by auto

qed
lemma le-fin-ind ′:

assumes [a] �F w v �F w a /∈ set v
shows Ind {a} (set v)

using assms
proof (induct v arbitrary: w)

case Nil
show ?case by simp
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next
case (Cons b v)
have 1 : ind a b
proof (rule le-fin-ind ′′)

show [a] �F w using Cons(2 ) by this
show [b] �F w using Cons(3 ) by auto
show a 6= b using Cons(4 ) by auto

qed
obtain w ′ where 2 : [b] @ w ′ =F w using Cons(3 ) by auto
have 3 : Ind {a} (set v)
proof (rule Cons(1 ))

show [a] �F w ′

proof (rule le-fin-not-member ′)
show [a] �F [b] @ w ′ using Cons(2 ) 2 by auto
show a /∈ set [b] using Cons(4 ) by auto

qed
have [b] @ v = b # v by simp
also have . . . �F w using Cons(3 ) by this
also have . . . =F [b] @ w ′ using 2 by auto
finally show v �F w ′ by blast
show a /∈ set v using Cons(4 ) by auto

qed
show ?case using 1 3 by auto

qed
lemma le-fininf-ind ′′:

assumes [a] �F I w [b] �F I w a 6= b
shows ind a b
using subsume-fin le-fin-ind ′′ assms by metis

lemma le-fininf-ind ′:
assumes [a] �F I w v �F I w a /∈ set v
shows Ind {a} (set v)
using subsume-fin le-fin-ind ′ assms by metis

lemma indoc-alt-def : indoc a v ←→ v =F [a] @ remove1 a v
proof

assume 0 : indoc a v
obtain v1 v2 where 1 : v = v1 @ [a] @ v2 a /∈ set v1 Ind {a} (set v1)

using 0 unfolding indoc-def by blast
have 2 : Ind (set [a]) (set v1) using 1 (3 ) by simp
have v = v1 @ [a] @ v2 using 1 (1 ) by this
also have . . . = (v1 @ [a]) @ v2 by simp
also have . . . =F ([a] @ v1) @ v2 using 2 by blast
also have . . . = [a] @ v1 @ v2 by simp
also have . . . = [a] @ remove1 a v unfolding 1 (1 ) remove1-append using

1 (2 ) by auto
finally show v =F [a] @ remove1 a v by this

next
assume 0 : v =F [a] @ remove1 a v
have 1 : indoc a ([a] @ remove1 a v) by simp
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show indoc a v using eq-fin-indoc 0 1 by blast
qed

lemma levi-lemma:
assumes t @ u =F v @ w
obtains p r s q
where t =F p @ r u =F s @ q v =F p @ s w =F r @ q Ind (set r) (set s)

using assms
proof (induct t arbitrary: thesis v w)

case Nil
show ?case
proof (rule Nil(1 ))

show [] =F [] @ [] by simp
show v =F [] @ v by simp
show u =F v @ w using Nil(2 ) by simp
show w =F [] @ w by simp
show Ind (set []) (set v) by simp

qed
next

case (Cons a t ′)
have 1 : [a] �F v @ w using Cons(3 ) by blast
show ?case
proof (cases a ∈ set v)

case False
have 2 : [a] �F w using le-fin-not-member ′ 1 False by this
obtain w ′ where 3 : w =F [a] @ w ′ using 2 by blast
have 4 : v �F v @ w by auto
have 5 : Ind (set [a]) (set v) using le-fin-ind ′[OF 1 4 ] False by simp
have [a] @ t ′ @ u = (a # t ′) @ u by simp
also have . . . =F v @ w using Cons(3 ) by this
also have . . . =F v @ [a] @ w ′ using 3 by blast
also have . . . = (v @ [a]) @ w ′ by simp
also have . . . =F ([a] @ v) @ w ′ using 5 by blast
also have . . . = [a] @ v @ w ′ by simp
finally have 6 : t ′ @ u =F v @ w ′ by blast
obtain p r ′ s q where 7 : t ′ =F p @ r ′ u =F s @ q v =F p @ s w ′ =F r ′

@ q
Ind (set r ′) (set s) using Cons(1 )[OF - 6 ] by this

have 8 : set v = set p ∪ set s using eq-fin-range 7 (3 ) by auto
have 9 : Ind (set [a]) (set p) using 5 8 by auto
have 10 : Ind (set [a]) (set s) using 5 8 by auto
show ?thesis
proof (rule Cons(2 ))

have a # t ′ = [a] @ t ′ by simp
also have . . . =F [a] @ p @ r ′ using 7 (1 ) by blast
also have . . . = ([a] @ p) @ r ′ by simp
also have . . . =F (p @ [a]) @ r ′ using 9 by blast
also have . . . = p @ [a] @ r ′ by simp
finally show a # t ′ =F p @ [a] @ r ′ by this
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show u =F s @ q using 7 (2 ) by this
show v =F p @ s using 7 (3 ) by this
have w =F [a] @ w ′ using 3 by this
also have . . . =F [a] @ r ′ @ q using 7 (4 ) by blast
also have . . . = ([a] @ r ′) @ q by simp
finally show w =F ([a] @ r ′) @ q by this
show Ind (set ([a] @ r ′)) (set s) using 7 (5 ) 10 by auto

qed
next

case True
have 2 : [a] �F v using le-fin-member ′ 1 True by this
obtain v ′ where 3 : v =F [a] @ v ′ using 2 by blast
have [a] @ t ′ @ u = (a # t ′) @ u by simp
also have . . . =F v @ w using Cons(3 ) by this
also have . . . =F ([a] @ v ′) @ w using 3 by blast
also have . . . = [a] @ v ′ @ w by simp
finally have 4 : t ′ @ u =F v ′ @ w by blast
obtain p ′ r s q where 7 : t ′ =F p ′ @ r u =F s @ q v ′ =F p ′ @ s w =F r

@ q
Ind (set r) (set s) using Cons(1 )[OF - 4 ] by this

show ?thesis
proof (rule Cons(2 ))

have a # t ′ = [a] @ t ′ by simp
also have . . . =F [a] @ p ′ @ r using 7 (1 ) by blast
also have . . . = ([a] @ p ′) @ r by simp
finally show a # t ′ =F ([a] @ p ′) @ r by this
show u =F s @ q using 7 (2 ) by this
have v =F [a] @ v ′ using 3 by this
also have . . . =F [a] @ p ′ @ s using 7 (3 ) by blast
also have . . . = ([a] @ p ′) @ s by simp
finally show v =F ([a] @ p ′) @ s by this
show w =F r @ q using 7 (4 ) by this
show Ind (set r) (set s) using 7 (5 ) by this

qed
qed

qed

end

end

9 Transition Systems and Trace Theory
theory Transition-System-Traces
imports

Transition-System-Extensions
Traces

begin
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lemma (in transition-system) words-infI-construct[rule-format, intro?]:
assumes ∀ v. v ≤F I w −→ path v p
shows run w p
using assms by coinduct auto

lemma (in transition-system) words-infI-construct ′:
assumes

∧
k. ∃ v. v ≤F I w ∧ k < length v ∧ path v p

shows run w p
proof

fix u
assume 1 : u ≤F I w
obtain v where 2 : v ≤F I w length u < length v path v p using assms(1 ) by

auto
have 3 : length u ≤ length v using 2 (2 ) by simp
have 4 : u ≤ v using prefix-fininf-length 1 2 (1 ) 3 by this
show path u p using 4 2 (3 ) by auto

qed

lemma (in transition-system) words-infI-construct-chain[intro]:
assumes chain w

∧
k. path (w k) p

shows run (limit w) p
proof (rule words-infI-construct ′)

fix k
obtain l where 1 : k < length (w l) using assms(1 ) by rule
show ∃ v. v ≤F I limit w ∧ k < length v ∧ path v p
proof (intro exI conjI )

show w l ≤F I limit w using chain-prefix-limit assms(1 ) by this
show k < length (w l) using 1 by this
show path (w l) p using assms(2 ) by this

qed
qed

lemma (in transition-system) words-fin-blocked:
assumes

∧
w. path w p =⇒ A ∩ set w = {} =⇒ A ∩ {a. enabled a (target w

p)} ⊆ A ∩ {a. enabled a p}
assumes path w p A ∩ {a. enabled a p} ∩ set w = {}
shows A ∩ set w = {}
using assms by (induct w rule: rev-induct, auto)

locale transition-system-traces =
transition-system ex en +
traces ind
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and ind :: ′action ⇒ ′action ⇒ bool
+
assumes en: ind a b =⇒ en a p =⇒ en b p ←→ en b (ex a p)
assumes ex: ind a b =⇒ en a p =⇒ en b p =⇒ ex b (ex a p) = ex a (ex b p)

begin
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lemma diamond-bottom:
assumes ind a b
assumes en a p en b p
shows en a (ex b p) en b (ex a p) ex b (ex a p) = ex a (ex b p)
using assms independence-symmetric en ex by metis+

lemma diamond-right:
assumes ind a b
assumes en a p en b (ex a p)
shows en a (ex b p) en b p ex b (ex a p) = ex a (ex b p)
using assms independence-symmetric en ex by metis+

lemma diamond-left:
assumes ind a b
assumes en a (ex b p) en b p
shows en a p en b (ex a p) ex b (ex a p) = ex a (ex b p)
using assms independence-symmetric en ex by metis+

lemma eq-swap-word:
assumes w1 =S w2 path w1 p
shows path w2 p
using assms diamond-right by (induct, auto)

lemma eq-fin-word:
assumes w1 =F w2 path w1 p
shows path w2 p
using assms eq-swap-word by (induct, auto)

lemma le-fin-word:
assumes w1 �F w2 path w2 p
shows path w1 p
using assms eq-fin-word by blast

lemma le-fininf-word:
assumes w1 �F I w2 run w2 p
shows path w1 p
using assms le-fin-word by blast

lemma le-inf-word:
assumes w2 �I w1 run w1 p
shows run w2 p
using assms le-fininf-word by (blast intro: words-infI-construct)

lemma eq-inf-word:
assumes w1 =I w2 run w1 p
shows run w2 p
using assms le-inf-word by auto

lemma eq-swap-execute:
assumes path w1 p w1 =S w2

shows fold ex w1 p = fold ex w2 p
using assms(2 , 1 ) diamond-right by (induct, auto)

lemma eq-fin-execute:
assumes path w1 p w1 =F w2

shows fold ex w1 p = fold ex w2 p
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using assms(2 , 1 ) eq-fin-word eq-swap-execute by (induct, auto)

lemma diamond-fin-word-step:
assumes Ind {a} (set v) en a p path v p
shows path v (ex a p)
using diamond-bottom assms by (induct v arbitrary: p, auto, metis)

lemma diamond-inf-word-step:
assumes Ind {a} (sset w) en a p run w p
shows run w (ex a p)
using diamond-fin-word-step assms by (fast intro: words-infI-construct)

lemma diamond-fin-word-inf-word:
assumes Ind (set v) (sset w) path v p run w p
shows run w (fold ex v p)
using diamond-inf-word-step assms by (induct v arbitrary: p, auto)

lemma diamond-fin-word-inf-word ′:
assumes Ind (set v) (sset w) path (u @ v) p run (u @− w) p
shows run (u @− v @− w) p
using assms diamond-fin-word-inf-word by auto

end

end

10 Functions
theory Functions
imports ../Extensions/Set-Extensions
begin

locale bounded-function =
fixes A :: ′a set
fixes B :: ′b set
fixes f :: ′a ⇒ ′b
assumes wellformed[intro?, simp]: x ∈ A =⇒ f x ∈ B

locale bounded-function-pair =
f : bounded-function A B f +
g: bounded-function B A g
for A :: ′a set
and B :: ′b set
and f :: ′a ⇒ ′b
and g :: ′b ⇒ ′a

locale injection = bounded-function-pair +
assumes left-inverse[simp]: x ∈ A =⇒ g (f x) = x

begin

lemma inj-on[intro]: inj-on f A using inj-onI left-inverse by metis
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lemma injective-on:
assumes x ∈ A y ∈ A f x = f y
shows x = y
using assms left-inverse by metis

end

locale injective = bounded-function +
assumes injection: ∃ g. injection A B f g

begin

definition g ≡ SOME g. injection A B f g

sublocale injection A B f g unfolding g-def using someI-ex[OF injection] by
this

end

locale surjection = bounded-function-pair +
assumes right-inverse[simp]: y ∈ B =⇒ f (g y) = y

begin

lemma image-superset[intro]: f ‘ A ⊇ B
using g.wellformed image-iff right-inverse subsetI by metis

lemma image-eq[simp]: f ‘ A = B using image-superset by auto

end

locale surjective = bounded-function +
assumes surjection: ∃ g. surjection A B f g

begin

definition g ≡ SOME g. surjection A B f g

sublocale surjection A B f g unfolding g-def using someI-ex[OF surjection]
by this

end

locale bijection = injection + surjection

lemma inj-on-bijection:
assumes inj-on f A
shows bijection A (f ‘ A) f (inv-into A f )

proof
show

∧
x. x ∈ A =⇒ f x ∈ f ‘ A using imageI by this

show
∧

y. y ∈ f ‘ A =⇒ inv-into A f y ∈ A using inv-into-into by this
show

∧
x. x ∈ A =⇒ inv-into A f (f x) = x using inv-into-f-f assms by this
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show
∧

y. y ∈ f ‘ A =⇒ f (inv-into A f y) = y using f-inv-into-f by this
qed

end

11 Extended Natural Numbers
theory ENat-Extensions
imports

Coinductive.Coinductive-Nat
begin

declare eSuc-enat[simp]
declare iadd-Suc[simp] iadd-Suc-right[simp]
declare enat-0 [simp] enat-1 [simp] one-eSuc[simp]
declare enat-0-iff [iff ] enat-1-iff [iff ]
declare Suc-ile-eq[iff ]

lemma enat-Suc0 [simp]: enat (Suc 0 ) = eSuc 0 by (metis One-nat-def one-eSuc
one-enat-def )

lemma le-epred[iff ]: l < epred k ←→ eSuc l < k
by (metis eSuc-le-iff epred-eSuc epred-le-epredI less-le-not-le not-le)

lemma eq-infI [intro]:
assumes

∧
n. enat n ≤ m

shows m = ∞
using assms by (metis enat-less-imp-le enat-ord-simps(5 ) less-le-not-le)

end

12 Chain-Complete Partial Orders
theory CCPO-Extensions
imports

HOL−Library.Complete-Partial-Order2
ENat-Extensions
Set-Extensions

begin

lemma chain-split[dest]:
assumes Complete-Partial-Order .chain ord C x ∈ C
shows C = {y ∈ C . ord x y} ∪ {y ∈ C . ord y x}

proof −
have 1 :

∧
y. y ∈ C =⇒ ord x y ∨ ord y x using chainD assms by this

show ?thesis using 1 by blast
qed
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lemma infinite-chain-below[dest]:
assumes Complete-Partial-Order .chain ord C infinite C x ∈ C
assumes finite {y ∈ C . ord x y}
shows infinite {y ∈ C . ord y x}

proof −
have 1 : C = {y ∈ C . ord x y} ∪ {y ∈ C . ord y x} using assms(1 , 3 ) by rule
show ?thesis using finite-Un assms(2 , 4 ) 1 by (metis (poly-guards-query))

qed
lemma infinite-chain-above[dest]:

assumes Complete-Partial-Order .chain ord C infinite C x ∈ C
assumes finite {y ∈ C . ord y x}
shows infinite {y ∈ C . ord x y}

proof −
have 1 : C = {y ∈ C . ord x y} ∪ {y ∈ C . ord y x} using assms(1 , 3 ) by rule
show ?thesis using finite-Un assms(2 , 4 ) 1 by (metis (poly-guards-query))

qed

lemma (in ccpo) ccpo-Sup-upper-inv:
assumes Complete-Partial-Order .chain less-eq C x >

⊔
C

shows x /∈ C
using assms ccpo-Sup-upper by fastforce

lemma (in ccpo) ccpo-Sup-least-inv:
assumes Complete-Partial-Order .chain less-eq C

⊔
C > x

obtains y
where y ∈ C ¬ y ≤ x
using assms ccpo-Sup-least that by fastforce

lemma ccpo-Sup-least-inv ′:
fixes C :: ′a :: {ccpo, linorder} set
assumes Complete-Partial-Order .chain less-eq C

⊔
C > x

obtains y
where y ∈ C y > x

proof −
obtain y where 1 : y ∈ C ¬ y ≤ x using ccpo-Sup-least-inv assms by this
show ?thesis using that 1 by simp

qed

lemma mcont2mcont-lessThan[THEN lfp.mcont2mcont, simp, cont-intro]:
shows mcont-lessThan: mcont Sup less-eq Sup less-eq
(lessThan :: ′a :: {ccpo, linorder} ⇒ ′a set)

proof
show monotone less-eq less-eq (lessThan :: ′a ⇒ ′a set) by (rule, auto)
show cont Sup less-eq Sup less-eq (lessThan :: ′a ⇒ ′a set)
proof

fix C :: ′a set
assume 1 : Complete-Partial-Order .chain less-eq C
show {..<

⊔
C} =

⋃
(lessThan ‘ C )

proof (intro equalityI subsetI )
fix A
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assume 2 : A ∈ {..<
⊔

C}
obtain B where 3 : B ∈ C B > A using ccpo-Sup-least-inv ′ 1 2 by blast
show A ∈

⋃
(lessThan ‘ C ) using 3 by auto

next
fix A
assume 2 : A ∈

⋃
(lessThan ‘ C )

show A ∈ {..<
⊔

C} using ccpo-Sup-upper 2 by force
qed

qed
qed

class esize =
fixes esize :: ′a ⇒ enat

class esize-order = esize + order +
assumes esize-finite[dest]: esize x 6= ∞ =⇒ finite {y. y ≤ x}
assumes esize-mono[intro]: x ≤ y =⇒ esize x ≤ esize y
assumes esize-strict-mono[intro]: esize x 6= ∞ =⇒ x < y =⇒ esize x < esize y

begin

lemma infinite-chain-eSuc-esize[dest]:
assumes Complete-Partial-Order .chain less-eq C infinite C x ∈ C
obtains y
where y ∈ C esize y ≥ eSuc (esize x)

proof (cases esize x)
case (enat k)
have 1 : finite {y ∈ C . y ≤ x} using esize-finite enat by simp
have 2 : infinite {y ∈ C . y ≥ x} using assms 1 by rule
have 3 : {y ∈ C . y > x} = {y ∈ C . y ≥ x} − {x} by auto
have 4 : infinite {y ∈ C . y > x} using 2 unfolding 3 by simp
obtain y where 5 : y ∈ C y > x using 4 by auto
have 6 : esize y > esize x using esize-strict-mono enat 5 (2 ) by blast
show ?thesis using that 5 (1 ) 6 ileI1 by simp

next
case (infinity)
show ?thesis using that infinity assms(3 ) by simp

qed

lemma infinite-chain-arbitrary-esize[dest]:
assumes Complete-Partial-Order .chain less-eq C infinite C
obtains x
where x ∈ C esize x ≥ enat n

proof (induct n arbitrary: thesis)
case 0
show ?case using assms(2 ) 0 by force

next
case (Suc n)
obtain x where 1 : x ∈ C esize x ≥ enat n using Suc(1 ) by blast
obtain y where 2 : y ∈ C esize y ≥ eSuc (esize x) using assms 1 (1 ) by rule
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show ?case using gfp.leq-trans Suc(2 ) 1 (2 ) 2 by fastforce
qed

end

class esize-ccpo = esize-order + ccpo
begin

lemma esize-cont[dest]:
assumes Complete-Partial-Order .chain less-eq C C 6= {}
shows esize (

⊔
C ) =

⊔
(esize ‘ C )

proof (cases finite C )
case False
have 1 : esize (

⊔
C ) = ∞

proof
fix n
obtain A where 1 : A ∈ C esize A ≥ enat n using assms(1 ) False by rule
have 2 : A ≤

⊔
C using ccpo-Sup-upper assms(1 ) 1 (1 ) by this

have enat n ≤ esize A using 1 (2 ) by this
also have . . . ≤ esize (

⊔
C ) using 2 by rule

finally show enat n ≤ esize (
⊔

C ) by this
qed
have 2 : (

⊔
A ∈ C . esize A) = ∞

proof
fix n
obtain A where 1 : A ∈ C esize A ≥ enat n using assms(1 ) False by rule
show enat n ≤ (

⊔
A ∈ C . esize A) using SUP-upper2 1 by this

qed
show ?thesis using 1 2 by simp

next
case True
have 1 : esize (

⊔
C ) = (

⊔
x ∈ C . esize x)

proof (intro order-class.order .antisym SUP-upper SUP-least esize-mono)
show

⊔
C ∈ C using in-chain-finite assms(1 ) True assms(2 ) by this

show
∧

x. x ∈ C =⇒ x ≤
⊔

C using ccpo-Sup-upper assms(1 ) by this
qed
show ?thesis using 1 by simp

qed

lemma esize-mcont: mcont Sup less-eq Sup less-eq esize
by (blast intro: mcontI monotoneI contI )

lemmas mcont2mcont-esize = esize-mcont[THEN lfp.mcont2mcont, simp, cont-intro]

end

end
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13 Sets and Extended Natural Numbers
theory ESet-Extensions
imports
../Basics/Functions
Basic-Extensions
CCPO-Extensions

begin

lemma card-lessThan-enat[simp]: card {..< enat k} = card {..< k}
proof −

have 1 : {..< enat k} = enat ‘ {..< k}
unfolding lessThan-def image-Collect using enat-iless by force

have card {..< enat k} = card (enat ‘ {..< k}) unfolding 1 by rule
also have . . . = card {..< k} using card-image inj-enat by metis
finally show ?thesis by this

qed
lemma card-atMost-enat[simp]: card {.. enat k} = card {.. k}
proof −

have 1 : {.. enat k} = enat ‘ {.. k}
unfolding atMost-def image-Collect using enat-ile by force

have card {.. enat k} = card (enat ‘ {.. k}) unfolding 1 by rule
also have . . . = card {.. k} using card-image inj-enat by metis
finally show ?thesis by this

qed

lemma enat-Collect:
assumes ∞ /∈ A
shows {i. enat i ∈ A} = the-enat ‘ A
using assms by (safe, force) (metis enat-the-enat)

lemma Collect-lessThan: {i. enat i < n} = the-enat ‘ {..< n}
proof −

have 1 : ∞ /∈ {..< n} by simp
have {i. enat i < n} = {i. enat i ∈ {..< n}} by simp
also have . . . = the-enat ‘ {..< n} using enat-Collect 1 by this
finally show ?thesis by this

qed

instantiation set :: (type) esize-ccpo
begin

function esize-set where finite A =⇒ esize A = enat (card A) | infinite A =⇒
esize A = ∞

by auto termination by lexicographic-order

lemma esize-iff-empty[iff ]: esize A = 0 ←→ A = {} by (cases finite A, auto)
lemma esize-iff-infinite[iff ]: esize A = ∞ ←→ infinite A by force
lemma esize-singleton[simp]: esize {a} = eSuc 0 by simp
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lemma esize-infinite-enat[dest, simp]: infinite A =⇒ enat k < esize A by force

instance
proof

fix A :: ′a set
assume 1 : esize A 6= ∞
show finite {B. B ⊆ A} using 1 by simp

next
fix A B :: ′a set
assume 1 : A ⊆ B
show esize A ≤ esize B
proof (cases finite B)

case False
show ?thesis using False by auto

next
case True
have 2 : finite A using True 1 by auto
show ?thesis using card-mono True 1 2 by auto

qed
next

fix A B :: ′a set
assume 1 : esize A 6= ∞ A ⊂ B
show esize A < esize B using psubset-card-mono 1 by (cases finite B, auto)

qed

end

lemma esize-image[simp, intro]:
assumes inj-on f A
shows esize (f ‘ A) = esize A
using card-image finite-imageD assms by (cases finite A, auto)

lemma esize-insert1 [simp]: a /∈ A =⇒ esize (insert a A) = eSuc (esize A)
by (cases finite A, force+)

lemma esize-insert2 [simp]: a ∈ A =⇒ esize (insert a A) = esize A
using insert-absorb by metis

lemma esize-remove1 [simp]: a /∈ A =⇒ esize (A − {a}) = esize A
by (cases finite A, force+)

lemma esize-remove2 [simp]: a ∈ A =⇒ esize (A − {a}) = epred (esize A)
by (cases finite A, force+)

lemma esize-union-disjoint[simp]:
assumes A ∩ B = {}
shows esize (A ∪ B) = esize A + esize B

proof (cases finite (A ∪ B))
case True
show ?thesis using card-Un-disjoint assms True by auto

next
case False
show ?thesis using False by (cases finite A, auto)

qed
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lemma esize-lessThan[simp]: esize {..< n} = n
proof (cases n)

case (enat k)
have 1 : finite {..< n} unfolding enat by (metis finite-lessThan-enat-iff

not-enat-eq)
show ?thesis using 1 unfolding enat by simp

next
case (infinity)
have 1 : infinite {..< n} unfolding infinity using infinite-lessThan-infty by

simp
show ?thesis using 1 unfolding infinity by simp

qed
lemma esize-atMost[simp]: esize {.. n} = eSuc n
proof (cases n)

case (enat k)
have 1 : finite {.. n} unfolding enat by (metis atMost-iff finite-enat-bounded)
show ?thesis using 1 unfolding enat by simp

next
case (infinity)
have 1 : infinite {.. n}

unfolding infinity
by (metis atMost-iff enat-ord-code(3 ) infinite-lessThan-infty infinite-super

subsetI )
show ?thesis using 1 unfolding infinity by simp

qed

lemma least-eSuc[simp]:
assumes A 6= {}
shows least (eSuc ‘ A) = eSuc (least A)

proof (rule antisym)
obtain k where 10 : k ∈ A using assms by blast
have 11 : eSuc k ∈ eSuc ‘ A using 10 by auto
have 20 : least A ∈ A using 10 LeastI by metis
have 21 : least (eSuc ‘ A) ∈ eSuc ‘ A using 11 LeastI by metis
have 30 :

∧
l. l ∈ A =⇒ least A ≤ l using 10 Least-le by metis

have 31 :
∧

l. l ∈ eSuc ‘ A =⇒ least (eSuc ‘ A) ≤ l using 11 Least-le by metis
show least (eSuc ‘ A) ≤ eSuc (least A) using 20 31 by auto
show eSuc (least A) ≤ least (eSuc ‘ A) using 21 30 by auto

qed

lemma Inf-enat-eSuc[simp]:
d

(eSuc ‘ A) = eSuc (
d

A) unfolding Inf-enat-def
by simp

definition lift :: nat set ⇒ nat set
where lift A ≡ insert 0 (Suc ‘ A)

lemma liftI-0 [intro, simp]: 0 ∈ lift A unfolding lift-def by auto
lemma liftI-Suc[intro]: a ∈ A =⇒ Suc a ∈ lift A unfolding lift-def by auto
lemma liftE [elim]:
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assumes b ∈ lift A
obtains (0 ) b = 0 | (Suc) a where b = Suc a a ∈ A
using assms unfolding lift-def by auto

lemma lift-esize[simp]: esize (lift A) = eSuc (esize A) unfolding lift-def by auto

lemma lift-least[simp]: least (lift A) = 0 unfolding lift-def by auto

primrec nth-least :: ′a set ⇒ nat ⇒ ′a :: wellorder
where nth-least A 0 = least A | nth-least A (Suc n) = nth-least (A − {least

A}) n

lemma nth-least-wellformed[intro?, simp]:
assumes enat n < esize A
shows nth-least A n ∈ A

using assms
proof (induct n arbitrary: A)

case 0
show ?case using 0 by simp

next
case (Suc n)
have 1 : A 6= {} using Suc(2 ) by auto
have 2 : enat n < esize (A − {least A}) using Suc(2 ) 1 by simp
have 3 : nth-least (A − {least A}) n ∈ A − {least A} using Suc(1 ) 2 by this
show ?case using 3 by simp

qed

lemma card-wellformed[intro?, simp]:
fixes k :: ′a :: wellorder
assumes k ∈ A
shows enat (card {i ∈ A. i < k}) < esize A

proof (cases finite A)
case False
show ?thesis using False by simp

next
case True
have 1 : esize {i ∈ A. i < k} < esize A using True assms by fastforce
show ?thesis using True 1 by simp

qed

lemma nth-least-strict-mono:
assumes enat l < esize A k < l
shows nth-least A k < nth-least A l

using assms
proof (induct k arbitrary: A l)

case 0
obtain l ′ where 1 : l = Suc l ′ using 0 (2 ) by (metis gr0-conv-Suc)
have 2 : A 6= {} using 0 (1 ) by auto
have 3 : enat l ′ < esize (A − {least A}) using 0 (1 ) 2 unfolding 1 by simp
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have 4 : nth-least (A − {least A}) l ′ ∈ A − {least A} using 3 by rule
show ?case using 1 4 by (auto intro: le-neq-trans)

next
case (Suc k)
obtain l ′ where 1 : l = Suc l ′ using Suc(3 ) by (metis Suc-lessE)
have 2 : A 6= {} using Suc(2 ) by auto
show ?case using Suc 2 unfolding 1 by simp

qed

lemma nth-least-mono[intro, simp]:
assumes enat l < esize A k ≤ l
shows nth-least A k ≤ nth-least A l
using nth-least-strict-mono le-less assms by metis

lemma card-nth-least[simp]:
assumes enat n < esize A
shows card {k ∈ A. k < nth-least A n} = n

using assms
proof (induct n arbitrary: A)

case 0
have 1 : {k ∈ A. k < least A} = {} using least-not-less by auto
show ?case using nth-least.simps(1 ) card.empty 1 by metis

next
case (Suc n)
have 1 : A 6= {} using Suc(2 ) by auto
have 2 : enat n < esize (A − {least A}) using Suc(2 ) 1 by simp
have 3 : nth-least A 0 < nth-least A (Suc n) using nth-least-strict-mono Suc(2 )

by blast
have 4 : {k ∈ A. k < nth-least A (Suc n)} =
{least A} ∪ {k ∈ A − {least A}. k < nth-least (A − {least A}) n} using 1 3

by auto
have 5 : card {k ∈ A − {least A}. k < nth-least (A − {least A}) n} = n using

Suc(1 ) 2 by this
have 6 : finite {k ∈ A − {least A}. k < nth-least (A − {least A}) n}

using 5 Collect-empty-eq card.infinite infinite-imp-nonempty least-not-less
nth-least.simps(1 )

by (metis (no-types, lifting))
have card {k ∈ A. k < nth-least A (Suc n)} =

card ({least A} ∪ {k ∈ A − {least A}. k < nth-least (A − {least A}) n})
using 4 by simp

also have . . . = card {least A} + card {k ∈ A − {least A}. k < nth-least (A
− {least A}) n}

using 6 by simp
also have . . . = Suc n using 5 by simp
finally show ?case by this

qed

lemma card-nth-least-le[simp]:
assumes enat n < esize A
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shows card {k ∈ A. k ≤ nth-least A n} = Suc n
proof −

have 1 : {k ∈ A. k ≤ nth-least A n} = {nth-least A n} ∪ {k ∈ A. k < nth-least
A n}

using assms by auto
have 2 : card {k ∈ A. k < nth-least A n} = n using assms by simp
have 3 : finite {k ∈ A. k < nth-least A n}

using 2 Collect-empty-eq card.infinite infinite-imp-nonempty least-not-less
nth-least.simps(1 )

by (metis (no-types, lifting))
have card {k ∈ A. k ≤ nth-least A n} = card ({nth-least A n} ∪ {k ∈ A. k <

nth-least A n})
unfolding 1 by rule

also have . . . = card {nth-least A n} + card {k ∈ A. k < nth-least A n} using
3 by simp

also have . . . = Suc n using assms by simp
finally show ?thesis by this

qed

lemma nth-least-card:
fixes k :: nat
assumes k ∈ A
shows nth-least A (card {i ∈ A. i < k}) = k

proof (rule nat-set-card-equality-less)
have 1 : enat (card {l ∈ A. l < k}) < esize A
proof (cases finite A)

case False
show ?thesis using False by simp

next
case True
have 1 : {l ∈ A. l < k} ⊂ A using assms by blast
have 2 : card {l ∈ A. l < k} < card A using psubset-card-mono True 1 by

this
show ?thesis using True 2 by simp

qed
show nth-least A (card {l ∈ A. l < k}) ∈ A using 1 by rule
show k ∈ A using assms by this
show card {z ∈ A. z < nth-least A (card {i ∈ A. i < k})} = card {z ∈ A. z <

k} using 1 by simp
qed

interpretation nth-least:
bounded-function-pair {i. enat i < esize A} A nth-least A λ k. card {i ∈ A. i

< k}
using nth-least-wellformed card-wellformed by (unfold-locales, blast+)

interpretation nth-least:
injection {i. enat i < esize A} A nth-least A λ k. card {i ∈ A. i < k}
using card-nth-least by (unfold-locales, blast)
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interpretation nth-least:
surjection {i. enat i < esize A} A nth-least A λ k. card {i ∈ A. i < k}
for A :: nat set
using nth-least-card by (unfold-locales, blast)

interpretation nth-least:
bijection {i. enat i < esize A} A nth-least A λ k. card {i ∈ A. i < k}
for A :: nat set
by unfold-locales

lemma nth-least-strict-mono-inverse:
fixes A :: nat set
assumes enat k < esize A enat l < esize A nth-least A k < nth-least A l
shows k < l
using assms by (metis not-less-iff-gr-or-eq nth-least-strict-mono)

lemma nth-least-less-card-less:
fixes k :: nat
shows enat n < esize A ∧ nth-least A n < k ←→ n < card {i ∈ A. i < k}

proof safe
assume 1 : enat n < esize A nth-least A n < k
have 2 : nth-least A n ∈ A using 1 (1 ) by rule
have n = card {i ∈ A. i < nth-least A n} using 1 by simp
also have . . . < card {i ∈ A. i < k} using 1 (2 ) 2 by simp
finally show n < card {i ∈ A. i < k} by this

next
assume 1 : n < card {i ∈ A. i < k}
have enat n < enat (card {i ∈ A. i < k}) using 1 by simp
also have . . . = esize {i ∈ A. i < k} by simp
also have . . . ≤ esize A by blast
finally show 2 : enat n < esize A by this
have 3 : n = card {i ∈ A. i < nth-least A n} using 2 by simp
have 4 : card {i ∈ A. i < nth-least A n} < card {i ∈ A. i < k} using 1 2 by

simp
have 5 : nth-least A n ∈ A using 2 by rule
show nth-least A n < k using 4 5 by simp

qed

lemma nth-least-less-esize-less:
enat n < esize A ∧ enat (nth-least A n) < k ←→ enat n < esize {i ∈ A. enat

i < k}
using nth-least-less-card-less by (cases k, simp+)

lemma nth-least-le:
assumes enat n < esize A
shows n ≤ nth-least A n

using assms
proof (induct n)
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case 0
show ?case using 0 by simp

next
case (Suc n)
have n ≤ nth-least A n using Suc by (metis Suc-ile-eq less-imp-le)
also have . . . < nth-least A (Suc n) using nth-least-strict-mono Suc(2 ) by

blast
finally show ?case by simp

qed

lemma nth-least-eq:
assumes enat n < esize A enat n < esize B
assumes

∧
i. i ≤ nth-least A n =⇒ i ≤ nth-least B n =⇒ i ∈ A ←→ i ∈ B

shows nth-least A n = nth-least B n
using assms
proof (induct n arbitrary: A B)

case 0
have 1 : least A = least B
proof (rule least-eq)

show A 6= {} using 0 (1 ) by simp
show B 6= {} using 0 (2 ) by simp

next
fix i
assume 2 : i ≤ least A i ≤ least B
show i ∈ A ←→ i ∈ B using 0 (3 ) 2 unfolding nth-least.simps by this

qed
show ?case using 1 by simp

next
case (Suc n)
have 1 : A 6= {} B 6= {} using Suc(2 , 3 ) by auto
have 2 : least A = least B
proof (rule least-eq)

show A 6= {} using 1 (1 ) by this
show B 6= {} using 1 (2 ) by this

next
fix i
assume 3 : i ≤ least A i ≤ least B
have 4 : nth-least A 0 ≤ nth-least A (Suc n) using Suc(2 ) by blast
have 5 : nth-least B 0 ≤ nth-least B (Suc n) using Suc(3 ) by blast
have 6 : i ≤ nth-least A (Suc n) i ≤ nth-least B (Suc n) using 3 4 5 by auto
show i ∈ A ←→ i ∈ B using Suc(4 ) 6 by this

qed
have 3 : nth-least (A − {least A}) n = nth-least (B − {least B}) n
proof (rule Suc(1 ))

show enat n < esize (A − {least A}) using Suc(2 ) 1 (1 ) by simp
show enat n < esize (B − {least B}) using Suc(3 ) 1 (2 ) by simp

next
fix i
assume 3 : i ≤ nth-least (A − {least A}) n i ≤ nth-least (B − {least B}) n
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have 4 : i ≤ nth-least A (Suc n) i ≤ nth-least B (Suc n) using 3 by simp+
have 5 : i ∈ A ←→ i ∈ B using Suc(4 ) 4 by this
show i ∈ A − {least A} ←→ i ∈ B − {least B} using 2 5 by auto

qed
show ?case using 3 by simp

qed

lemma nth-least-restrict[simp]:
assumes enat i < esize {i ∈ s. enat i < k}
shows nth-least {i ∈ s. enat i < k} i = nth-least s i

proof (rule nth-least-eq)
show enat i < esize {i ∈ s. enat i < k} using assms by this
show enat i < esize s using nth-least-less-esize-less assms by auto

next
fix l
assume 1 : l ≤ nth-least {i ∈ s. enat i < k} i
have 2 : nth-least {i ∈ s. enat i < k} i ∈ {i ∈ s. enat i < k} using assms by

rule
have enat l ≤ enat (nth-least {i ∈ s. enat i < k} i) using 1 by simp
also have . . . < k using 2 by simp
finally show l ∈ {i ∈ s. enat i < k} ←→ l ∈ s by auto

qed

lemma least-nth-least[simp]:
assumes A 6= {}

∧
i. i ∈ A =⇒ enat i < esize B

shows least (nth-least B ‘ A) = nth-least B (least A)
using assms by simp

lemma nth-least-nth-least[simp]:
assumes enat n < esize A

∧
i. i ∈ A =⇒ enat i < esize B

shows nth-least B (nth-least A n) = nth-least (nth-least B ‘ A) n
using assms
proof (induct n arbitrary: A)

case 0
show ?case using 0 by simp

next
case (Suc n)
have 1 : A 6= {} using Suc(2 ) by auto
have 2 : nth-least B ‘ (A − {least A}) = nth-least B ‘ A − nth-least B ‘ {least

A}
proof (rule inj-on-image-set-diff )
show inj-on (nth-least B) {i. enat i < esize B} using nth-least.inj-on by this
show A − {least A} ⊆ {i. enat i < esize B} using Suc(3 ) by blast
show {least A} ⊆ {i. enat i < esize B} using Suc(3 ) 1 by force

qed
have nth-least B (nth-least A (Suc n)) = nth-least B (nth-least (A − {least A})

n) by simp
also have . . . = nth-least (nth-least B ‘ (A − {least A})) n using Suc 1 by

force
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also have . . . = nth-least (nth-least B ‘ A − nth-least B ‘ {least A}) n unfolding
2 by rule

also have . . . = nth-least (nth-least B ‘ A − {nth-least B (least A)}) n by simp
also have . . . = nth-least (nth-least B ‘ A − {least (nth-least B ‘ A)}) n using

Suc(3 ) 1 by auto
also have . . . = nth-least (nth-least B ‘ A) (Suc n) by simp
finally show ?case by this

qed

lemma nth-least-Max[simp]:
assumes finite A A 6= {}
shows nth-least A (card A − 1 ) = Max A

using assms
proof (induct card A − 1 arbitrary: A)

case 0
have 1 : card A = 1 using 0 by (metis One-nat-def Suc-diff-1 card-gt-0-iff )
obtain a where 2 : A = {a} using 1 by rule
show ?case unfolding 2 by (simp del: insert-iff )

next
case (Suc n)
have 1 : least A ∈ A using Suc(4 ) by rule
have 2 : card (A − {least A}) = Suc n using Suc(2 , 3 ) 1 by simp
have 3 : A − {least A} 6= {} using 2 Suc(3 ) by fastforce
have nth-least A (card A − 1 ) = nth-least A (Suc n) unfolding Suc(2 ) by

rule
also have . . . = nth-least (A − {least A}) n by simp

also have . . . = nth-least (A − {least A}) (card (A − {least A}) − 1 ) unfolding
2 by simp

also have . . . = Max (A − {least A})
proof (rule Suc(1 ))

show n = card (A − {least A}) − 1 unfolding 2 by simp
show finite (A − {least A}) using Suc(3 ) by simp
show A − {least A} 6= {} using 3 by this

qed
also have . . . = Max A using Suc(3 ) 3 by simp
finally show ?case by this

qed

lemma nth-least-le-Max:
assumes finite A A 6= {} enat n < esize A
shows nth-least A n ≤ Max A

proof −
have nth-least A n ≤ nth-least A (card A − 1 )
proof (rule nth-least-mono)

show enat (card A − 1 ) < esize A by (metis Suc-diff-1 Suc-ile-eq assms(1 )
assms(2 )

card-eq-0-iff esize-set.simps(1 ) not-gr0 order-refl)
show n ≤ card A − 1 by (metis Suc-diff-1 Suc-leI antisym-conv assms(1 )

assms(3 )
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enat-ord-simps(2 ) esize-set.simps(1 ) le-less neq-iff not-gr0 )
qed
also have . . . = Max A using nth-least-Max assms(1 , 2 ) by this
finally show ?thesis by this

qed

lemma nth-least-not-contains:
fixes k :: nat
assumes enat (Suc n) < esize A nth-least A n < k k < nth-least A (Suc n)
shows k /∈ A

proof
assume 1 : k ∈ A
have 2 : nth-least A (card {i ∈ A. i < k}) = k using nth-least.right-inverse 1

by this
have 3 : n < card {i ∈ A. i < k}
proof (rule nth-least-strict-mono-inverse)

show enat n < esize A using assms(1 ) by auto
show enat (card {i ∈ A. i < k}) < esize A using nth-least.g.wellformed 1

by simp
show nth-least A n < nth-least A (card {i ∈ A. i < k}) using assms(2 ) 2

by simp
qed
have 4 : card {i ∈ A. i < k} < Suc n
proof (rule nth-least-strict-mono-inverse)

show enat (card {i ∈ A. i < k}) < esize A using nth-least.g.wellformed 1
by simp

show enat (Suc n) < esize A using assms(1 ) by this
show nth-least A (card {i ∈ A. i < k}) < nth-least A (Suc n) using assms(3 )

2 by simp
qed
show False using 3 4 by auto

qed

lemma nth-least-Suc[simp]:
assumes enat n < esize A
shows nth-least (Suc ‘ A) n = Suc (nth-least A n)

using assms
proof (induct n arbitrary: A)

case (0 )
have 1 : A 6= {} using 0 by auto
show ?case using 1 by simp

next
case (Suc n)
have 1 : enat n < esize (A − {least A})
proof −

have 2 : A 6= {} using Suc(2 ) by auto
have 3 : least A ∈ A using LeastI 2 by fast
have 4 : A = insert (least A) A using 3 by auto
have eSuc (enat n) = enat (Suc n) by simp
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also have . . . < esize A using Suc(2 ) by this
also have . . . = esize (insert (least A) A) using 4 by simp
also have . . . = eSuc (esize (A − {least A})) using 3 2 by simp
finally show ?thesis using Extended-Nat.eSuc-mono by metis

qed
have nth-least (Suc ‘ A) (Suc n) = nth-least (Suc ‘ A − {least (Suc ‘ A)}) n

by simp
also have . . . = nth-least (Suc ‘ (A − {least A})) n by simp
also have . . . = Suc (nth-least (A − {least A}) n) using Suc(1 ) 1 by this
also have . . . = Suc (nth-least A (Suc n)) by simp
finally show ?case by this

qed

lemma nth-least-lift[simp]:
nth-least (lift A) 0 = 0
enat n < esize A =⇒ nth-least (lift A) (Suc n) = Suc (nth-least A n)
unfolding lift-def by simp+

lemma nth-least-list-card[simp]:
assumes enat n ≤ esize A
shows card {k ∈ A. k < nth-least (lift A) n} = n
using less-Suc-eq-le assms by (cases n, auto simp del: nth-least.simps)

end

14 Coinductive Lists
theory Coinductive-List-Extensions
imports

Coinductive.Coinductive-List
Coinductive.Coinductive-List-Prefix
Coinductive.Coinductive-Stream
../Extensions/List-Extensions
../Extensions/ESet-Extensions

begin

hide-const (open) Sublist.prefix
hide-const (open) Sublist.suffix

declare list-of-lappend[simp]
declare lnth-lappend1 [simp]
declare lnth-lappend2 [simp]
declare lprefix-llength-le[dest]
declare Sup-llist-def [simp]
declare length-list-of [simp]
declare llast-linfinite[simp]
declare lnth-ltake[simp]
declare lappend-assoc[simp]
declare lprefix-lappend[simp]
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lemma lprefix-lSup-revert: lSup = Sup lprefix = less-eq by auto
lemma admissible-lprefixI [cont-intro]:

assumes mcont lub ord lSup lprefix f
assumes mcont lub ord lSup lprefix g
shows ccpo.admissible lub ord (λ x. lprefix (f x) (g x))
using ccpo-class.admissible-leI assms unfolding lprefix-lSup-revert by this

lemma llist-lift-admissible:
assumes ccpo.admissible lSup lprefix P
assumes

∧
u. u ≤ v =⇒ lfinite u =⇒ P u

shows P v
using assms by (metis LNil-lprefix le-llist-conv-lprefix lfinite.simps llist-gen-induct)

abbreviation linfinite w ≡ ¬ lfinite w

notation LNil (‹<>›)
notation LCons (infixr ‹%› 65 )
notation lzip (infixr ‹||› 51 )
notation lappend (infixr ‹$› 65 )
notation lnth (infixl ‹?!› 100 )

syntax -llist :: args ⇒ ′a llist (‹<->›)
syntax-consts -llist ⇀↽ LCons
translations
<a, x> ⇀↽ a % <x>
<a> ⇀↽ a % <>

lemma eq-LNil-conv-lnull[simp]: w = <> ←→ lnull w by auto
lemma Collect-lnull[simp]: {w. lnull w} = {<>} by auto

lemma inj-on-ltake: inj-on (λ k. ltake k w) {.. llength w}
by (rule inj-onI , auto, metis llength-ltake min-def )

lemma lnth-inf-llist ′[simp]: lnth (inf-llist f ) = f by auto

lemma not-lnull-lappend-startE [elim]:
assumes ¬ lnull w
obtains a v
where w = <a> $ v
using not-lnull-conv assms by (simp, metis)

lemma not-lnull-lappend-endE [elim]:
assumes ¬ lnull w
obtains a v
where w = v $ <a>

proof (cases lfinite w)
case False
show ?thesis
proof

show w = w $ <a> using lappend-inf False by force
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qed
next

case True
show ?thesis
using True assms that
proof (induct arbitrary: thesis)

case (lfinite-LNil)
show ?case using lfinite-LNil by auto

next
case (lfinite-LConsI w a)
show ?case
proof (cases lnull w)

case False
obtain b v where 1 : w = v $ <b> using lfinite-LConsI (2 ) False by this
show ?thesis
proof (rule lfinite-LConsI (4 ))

show a % w = (a % v) $ <b> unfolding 1 by simp
qed

next
case True
show ?thesis
proof (rule lfinite-LConsI (4 ))

show a % w = <> $ <a> using True by simp
qed

qed
qed

qed

lemma llength-lappend-startE [elim]:
assumes llength w ≥ eSuc n
obtains a v
where w = <a> $ v llength v ≥ n

proof −
have 1 : ¬ lnull w using assms by auto
show ?thesis using assms 1 that by auto

qed
lemma llength-lappend-endE [elim]:

assumes llength w ≥ eSuc n
obtains a v
where w = v $ <a> llength v ≥ n

proof −
have 1 : ¬ lnull w using assms by auto
show ?thesis using assms 1 that by auto

qed

lemma llength-lappend-start ′E [elim]:
assumes llength w = enat (Suc n)
obtains a v
where w = <a> $ v llength v = enat n
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proof −
have 1 : llength w ≥ eSuc (enat n) using assms by simp
obtain a v where 2 : w = <a> $ v using 1 by blast
show ?thesis
proof

show w = <a> $ v using 2 (1 ) by this
show llength v = enat n using assms unfolding 2 (1 ) by (simp, metis

eSuc-enat eSuc-inject)
qed

qed
lemma llength-lappend-end ′E [elim]:

assumes llength w = enat (Suc n)
obtains a v
where w = v $ <a> llength v = enat n

proof −
have 1 : llength w ≥ eSuc (enat n) using assms by simp
obtain a v where 2 : w = v $ <a> using 1 by blast
show ?thesis
proof

show w = v $ <a> using 2 (1 ) by this
show llength v = enat n using assms unfolding 2 (1 ) by (simp, metis

eSuc-enat eSuc-inject)
qed

qed

lemma ltake-llast[simp]:
assumes enat k < llength w
shows llast (ltake (enat (Suc k)) w) = w ?! k

proof −
have 1 : llength (ltake (enat (Suc k)) w) = eSuc (enat k)using min.absorb-iff1

assms by auto
have llast (ltake (enat (Suc k)) w) = ltake (enat (Suc k)) w ?! k

using llast-conv-lnth 1 by this
also have . . . = w ?! k by (rule lnth-ltake, simp)
finally show ?thesis by this

qed

lemma linfinite-llength[dest, simp]:
assumes linfinite w
shows enat k < llength w
using assms not-lfinite-llength by force

lemma llist-nth-eqI [intro]:
assumes llength u = llength v
assumes

∧
i. enat i < llength u =⇒ enat i < llength v =⇒ u ?! i = v ?! i

shows u = v
using assms
proof (coinduction arbitrary: u v)

case Eq-llist
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have 10 : llength u = llength v using Eq-llist by auto
have 11 :

∧
i. enat i < llength u =⇒ enat i < llength v =⇒ u ?! i = v ?! i

using Eq-llist by auto
show ?case
proof (intro conjI impI exI allI )

show lnull u ←→ lnull v using 10 by auto
next

assume 20 : ¬ lnull u ¬ lnull v
show lhd u = lhd v using lhd-conv-lnth enat-0 11 20 by force

next
show ltl u = ltl u by rule

next
show ltl v = ltl v by rule

next
assume 30 : ¬ lnull u ¬ lnull v
show llength (ltl u) = llength (ltl v) using 10 30 by force

next
fix i
assume 40 : ¬ lnull u ¬ lnull v enat i < llength (ltl u) enat i < llength (ltl v)
have 41 : u ?! Suc i = v ?! Suc i
proof (rule 11 )

show enat (Suc i) < llength u using Suc-ile-eq 40 (1 ) 40 (3 ) by auto
show enat (Suc i) < llength v using Suc-ile-eq 40 (2 ) 40 (4 ) by auto

qed
show ltl u ?! i = ltl v ?! i using lnth-ltl 40 (1−2 ) 41 by metis

qed
qed

primcorec lscan :: ( ′a ⇒ ′b ⇒ ′b) ⇒ ′a llist ⇒ ′b ⇒ ′b llist
where lscan f w a = (case w of <> ⇒ <a> | x % xs ⇒ a % lscan f xs (f x a))

lemma lscan-simps[simp]:
lscan f <> a = <a>
lscan f (x % xs) a = a % lscan f xs (f x a)
by (metis llist.simps(4 ) lscan.code, metis llist.simps(5 ) lscan.code)

lemma lscan-lfinite[iff ]: lfinite (lscan f w a) ←→ lfinite w
proof

assume lfinite (lscan f w a)
thus lfinite w
proof (induct lscan f w a arbitrary: w a rule: lfinite-induct)

case LNil
show ?case using LNil by simp

next
case LCons
show ?case by (cases w, simp, simp add: LCons(3 ))

qed
next

assume lfinite w
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thus lfinite (lscan f w a) by (induct arbitrary: a, auto)
qed
lemma lscan-llength[simp]: llength (lscan f w a) = eSuc (llength w)
proof (cases lfinite w)

case False
have 1 : llength (lscan f w a) = ∞ using not-lfinite-llength False by auto
have 2 : llength w = ∞ using not-lfinite-llength False by auto
show ?thesis using 1 2 by simp

next
case True
show ?thesis using True by (induct arbitrary: a, auto)

qed

function lfold :: ( ′a ⇒ ′b ⇒ ′b) ⇒ ′a llist ⇒ ′b ⇒ ′b
where lfinite w =⇒ lfold f w = fold f (list-of w) | linfinite w =⇒ lfold f w = id
by (auto, metis) termination by lexicographic-order

lemma lfold-llist-of [simp]: lfold f (llist-of xs) = fold f xs by simp

lemma finite-UNIV-llength-eq:
assumes finite (UNIV :: ′a set)
shows finite {w :: ′a llist. llength w = enat n}

proof (induct n)
case (0 )
show ?case by simp

next
case (Suc n)
have 1 : finite ({v. llength v = enat n} × UNIV :: ( ′a llist × ′a) set)

using Suc assms by simp
have 2 : finite ((λ (v, a). v $ <a> :: ′a llist ) ‘ ({v. llength v = enat n} ×

UNIV ))
using 1 by auto

have 3 : finite {v $ <a> :: ′a llist |v a. llength v = enat n}
proof −

have 0 : {v $ <a> :: ′a llist |v a. llength v = enat n} =
(λ (v, a). v $ <a> :: ′a llist ) ‘ ({v. llength v = enat n} × UNIV ) by auto

show ?thesis using 2 unfolding 0 by this
qed
have 4 : finite {w :: ′a llist . llength w = enat (Suc n)}
proof −

have 0 : {w :: ′a llist . llength w = enat (Suc n)} =
{v $ <a> :: ′a llist |v a. llength v = enat n} by force

show ?thesis using 3 unfolding 0 by this
qed
show ?case using 4 by this

qed
lemma finite-UNIV-llength-le:

assumes finite (UNIV :: ′a set)
shows finite {w :: ′a llist. llength w ≤ enat n}
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proof −
have 1 : {w. llength w ≤ enat n} = (

⋃
k ≤ n. {w. llength w = enat k})

by (auto, metis atMost-iff enat-ile enat-ord-simps(1 ))
show ?thesis unfolding 1 using finite-UNIV-llength-eq assms by auto

qed

lemma lprefix-ltake[dest]: u ≤ v =⇒ u = ltake (llength u) v
by (metis le-llist-conv-lprefix lprefix-conv-lappend ltake-all ltake-lappend1 or-

der-refl)
lemma prefixes-set: {v. v ≤ w} = {ltake k w |k. k ≤ llength w} by fastforce
lemma esize-prefixes[simp]: esize {v. v ≤ w} = eSuc (llength w)
proof −

have esize {v. v ≤ w} = esize {ltake k w |k. k ≤ llength w} unfolding
prefixes-set by rule

also have . . . = esize ((λ k. ltake k w) ‘ {.. llength w})
unfolding atMost-def image-Collect by rule

also have . . . = esize {.. llength w} using inj-on-ltake esize-image by blast
also have . . . = eSuc (llength w) by simp
finally show ?thesis by this

qed
lemma prefix-subsume: v ≤ w =⇒ u ≤ w =⇒ llength v ≤ llength u =⇒ v ≤ u

by (metis le-llist-conv-lprefix lprefix-conv-lappend
lprefix-ltake ltake-is-lprefix ltake-lappend1 )

lemma ltake-infinite[simp]: ltake ∞ w = w by (metis enat-ord-code(3 ) ltake-all)

lemma lprefix-infinite:
assumes u ≤ v linfinite u
shows u = v

proof −
have 1 : llength u = ∞ using not-lfinite-llength assms(2 ) by this
have u = ltake (llength u) v using lprefix-ltake assms(1 ) by this
also have . . . = v using 1 by simp
finally show ?thesis by this

qed

instantiation llist :: (type) esize-order
begin

definition [simp]: esize ≡ llength

instance
proof

fix w :: ′a llist
assume 1 : esize w 6= ∞
show finite {v. v ≤ w}

using esize-prefixes 1 by (metis eSuc-eq-infinity-iff esize-set.simps(2 ) es-
ize-llist-def )

next
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fix u v :: ′a llist
assume 1 : u ≤ v
show esize u ≤ esize v using lprefix-llength-le 1 by auto

next
fix u v :: ′a llist
assume 1 : u < v
show esize u < esize v using lstrict-prefix-llength-less 1 by auto

qed

end

14.1 Index Sets
definition liset :: ′a set ⇒ ′a llist ⇒ nat set

where liset A w ≡ {i. enat i < llength w ∧ w ?! i ∈ A}

lemma lisetI [intro]:
assumes enat i < llength w w ?! i ∈ A
shows i ∈ liset A w
using assms unfolding liset-def by auto

lemma lisetD[dest]:
assumes i ∈ liset A w
shows enat i < llength w w ?! i ∈ A
using assms unfolding liset-def by auto

lemma liset-finite:
assumes lfinite w
shows finite (liset A w)

proof
show liset A w ⊆ {i. enat i < llength w} by auto
show finite {i. enat i < llength w} using lfinite-finite-index assms by this

qed

lemma liset-nil[simp]: liset A <> = {} by auto
lemma liset-cons-not-member [simp]:

assumes a /∈ A
shows liset A (a % w) = Suc ‘ liset A w

proof −
have liset A (a % w) = {i. enat i < llength (a % w) ∧ (a % w) ?! i ∈ A} by

auto
also have . . . = Suc ‘ {i. enat (Suc i) < llength (a % w) ∧ (a % w) ?! Suc i

∈ A}
using Collect-split-Suc(1 ) assms by simp

also have . . . = Suc ‘ {i. enat i < llength w ∧ w ?! i ∈ A} using Suc-ile-eq
by simp

also have . . . = Suc ‘ liset A w by auto
finally show ?thesis by this

qed
lemma liset-cons-member [simp]:
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assumes a ∈ A
shows liset A (a % w) = {0} ∪ Suc ‘ liset A w

proof −
have liset A (a % w) = {i. enat i < llength (a % w) ∧ (a % w) ?! i ∈ A} by

auto
also have . . . = {0} ∪ Suc ‘ {i. enat (Suc i) < llength (a % w) ∧ (a % w)

?! Suc i ∈ A}
using Collect-split-Suc(2 ) assms by simp

also have . . . = {0} ∪ Suc ‘ {i. enat i < llength w ∧ w ?! i ∈ A} using
Suc-ile-eq by simp

also have . . . = {0} ∪ Suc ‘ liset A w by auto
finally show ?thesis by this

qed

lemma liset-prefix:
assumes i ∈ liset A v u ≤ v enat i < llength u
shows i ∈ liset A u

unfolding liset-def
proof (intro CollectI conjI )

have 1 : v ?! i ∈ A using assms(1 ) by auto
show enat i < llength u using assms(3 ) by this
show u ?! i ∈ A using lprefix-lnthD assms(2 , 3 ) 1 by force

qed
lemma liset-suffix:

assumes i ∈ liset A u u ≤ v
shows i ∈ liset A v

unfolding liset-def
proof (intro CollectI conjI )

have 1 : enat i < llength u u ?! i ∈ A using assms(1 ) by auto
show enat i < llength v using lprefix-llength-le 1 (1 ) assms(2 ) by fastforce
show v ?! i ∈ A using lprefix-lnthD assms(2 ) 1 by force

qed

lemma liset-ltake[simp]: liset A (ltake (enat k) w) = liset A w ∩ {..< k}
proof (intro equalityI subsetI )

fix i
assume 1 : i ∈ liset A (ltake (enat k) w)
have 2 : enat i < enat k using 1 by auto
have 3 : ltake (enat k) w ?! i = w ?! i using lnth-ltake 2 by this
show i ∈ liset A w ∩ {..< k} using 1 3 by fastforce

next
fix i
assume 1 : i ∈ liset A w ∩ {..< k}
have 2 : enat i < enat k using 1 by auto
have 3 : ltake (enat k) w ?! i = w ?! i using lnth-ltake 2 by this
show i ∈ liset A (ltake (enat k) w) using 1 3 by fastforce

qed

lemma liset-mono[dest]: u ≤ v =⇒ liset A u ⊆ liset A v
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unfolding liset-def using lprefix-lnthD by fastforce
lemma liset-cont[dest]:

assumes Complete-Partial-Order .chain less-eq C C 6= {}
shows liset A (

⊔
C ) = (

⋃
w ∈ C . liset A w)

proof safe
fix i
assume 1 : i ∈ liset A (

⊔
C )

show i ∈ (
⋃

w ∈ C . liset A w)
proof (cases finite C )

case False
obtain w where 2 : w ∈ C enat i < llength w
using esize-llist-def infinite-chain-arbitrary-esize assms(1 ) False Suc-ile-eq

by metis
have 3 : w ≤

⊔
C using chain-lprefix-lSup assms(1 ) 2 (1 ) by simp

have 4 : i ∈ liset A w using liset-prefix 1 3 2 (2 ) by this
show ?thesis using 2 (1 ) 4 by auto

next
case True
have 2 :

⊔
C ∈ C using in-chain-finite assms(1 ) True assms(2 ) by this

show ?thesis using 1 2 by auto
qed

next
fix w i
assume 1 : w ∈ C i ∈ liset A w
have 2 : w ≤

⊔
C using chain-lprefix-lSup assms(1 ) 1 (1 ) by simp

show i ∈ liset A (
⊔

C ) using liset-suffix 1 (2 ) 2 by this
qed

lemma liset-mcont: Complete-Partial-Order2 .mcont lSup lprefix Sup less-eq
(liset A)

unfolding lprefix-lSup-revert by (blast intro: mcontI monotoneI contI )

lemmas mcont2mcont-liset = liset-mcont[THEN lfp.mcont2mcont, simp, cont-intro]

14.2 Selections
abbreviation lproject A ≡ lfilter (λ a. a ∈ A)
abbreviation lselect s w ≡ lnths w s

lemma lselect-to-lproject: lselect s w = lmap fst (lproject (UNIV × s) (w ||
iterates Suc 0 ))

proof −
have 1 : {(x, y). y ∈ s} = UNIV × s by auto
have lselect s w = lmap fst (lproject {(x, y). y ∈ s} (w || iterates Suc 0 ))

unfolding lnths-def by simp
also have . . . = lmap fst (lproject (UNIV × s) (w || iterates Suc 0 )) unfolding

1 by rule
finally show ?thesis by this

qed
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lemma lproject-to-lselect: lproject A w = lselect (liset A w) w
unfolding lfilter-conv-lnths liset-def by rule

lemma lproject-llength[simp]: llength (lproject A w) = esize (liset A w)
by (induct rule: llist-induct) (auto)

lemma lproject-lfinite[simp]: lfinite (lproject A w) ←→ finite (liset A w)
using lproject-llength esize-iff-infinite llength-eq-infty-conv-lfinite by metis

lemma lselect-restrict-indices[simp]: lselect {i ∈ s. enat i < llength w} w =
lselect s w

proof (rule lnths-cong)
show w = w by rule

next
fix n
assume 1 : enat n < llength w
show n ∈ {i ∈ s. enat i < llength w} ←→ n ∈ s using 1 by blast

qed

lemma lselect-llength: llength (lselect s w) = esize {i ∈ s. enat i < llength w}
proof −

have 1 :
∧

i. enat i < llength w =⇒ (w || iterates Suc 0 ) ?! i = (w ?! i, i)
by (metis Suc-funpow enat.distinct(1 ) enat-ord-simps(4 ) llength-iterates

lnth-iterates
lnth-lzip monoid-add-class.add.right-neutral)

have 2 : {i. enat i < llength w ∧ (w || iterates Suc 0 ) ?! i ∈ UNIV × s} =
{i ∈ s. enat i < llength w} using 1 by auto

have llength (lselect s w) = esize (liset (UNIV × s) (w || iterates Suc 0 ))
unfolding lselect-to-lproject by simp

also have . . . = esize {i. enat i < llength w ∧ (w || iterates Suc 0 ) ?! i ∈
UNIV × s}

unfolding liset-def by simp
also have . . . = esize {i ∈ s. enat i < llength w} unfolding 2 by rule
finally show ?thesis by this

qed
lemma lselect-llength-le[simp]: llength (lselect s w) ≤ esize s
proof −

have llength (lselect s w) = esize {i ∈ s. enat i < llength w}
unfolding lselect-llength by rule

also have . . . = esize (s ∩ {i. enat i < llength w}) unfolding Collect-conj-eq
by simp

also have . . . ≤ esize s by blast
finally show ?thesis by this

qed
lemma least-lselect-llength:

assumes ¬ lnull (lselect s w)
shows enat (least s) < llength w

proof −
have 0 : llength (lselect s w) > 0 using assms by auto
have 1 :

∧
i. i ∈ s =⇒ least s ≤ i using Least-le 0 by fast
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obtain i where 2 : i ∈ s enat i < llength w using 0 unfolding lselect-llength
by auto

have enat (least s) ≤ enat i using 1 2 (1 ) by auto
also have . . . < llength w using 2 (2 ) by this
finally show enat (least s) < llength w by this

qed
lemma lselect-lnull: lnull (lselect s w) ←→ (∀ i ∈ s. enat i ≥ llength w)

unfolding llength-eq-0 [symmetric] lselect-llength by auto

lemma lselect-discard-start:
assumes

∧
i. i ∈ s =⇒ k ≤ i

shows lselect {i. k + i ∈ s} (ldropn k w) = lselect s w
proof −

have 1 : lselect s (ltake (enat k) w) = <>
using assms by (fastforce simp add: lselect-lnull min-le-iff-disj)

have lselect {m. k + m ∈ s} (ldropn k w) =
lselect s (ltake (enat k) w) $ lselect {m. k + m ∈ s} (ldropn k w) unfolding

1 by simp
also have . . . = lselect s w using lnths-split by rule
finally show ?thesis by this

qed
lemma lselect-discard-end:

assumes
∧

i. i ∈ s =⇒ i < k
shows lselect s (ltake (enat k) w) = lselect s w

proof −
have 1 : lselect {m. k + m ∈ s} (ldropn k w) = <>

using assms by (fastforce simp add: lselect-lnull min-le-iff-disj)
have lselect s (ltake (enat k) w) =
lselect s (ltake (enat k) w) $ lselect {m. k + m ∈ s} (ldropn k w) unfolding

1 by simp
also have . . . = lselect s w using lnths-split by rule
finally show ?thesis by this

qed

lemma lselect-least:
assumes ¬ lnull (lselect s w)
shows lselect s w = w ?! least s % lselect (s − {least s}) w

proof −
have 0 : s 6= {} using assms by auto
have 1 : least s ∈ s using LeastI 0 by fast
have 2 :

∧
i. i ∈ s =⇒ least s ≤ i using Least-le 0 by fast

have 3 :
∧

i. i ∈ s − {least s} =⇒ Suc (least s) ≤ i using least-unique 2 by
force

have 4 : insert (least s) (s − {least s}) = s using 1 by auto
have 5 : enat (least s) < llength w using least-lselect-llength assms by this
have 6 : lselect (s − {least s}) (ltake (enat (least s)) w) = <>

by (rule, auto simp: lselect-llength dest: least-not-less)
have 7 : lselect {i. Suc (least s) + i ∈ s − {least s}} (ldropn (Suc (least s))

w) =
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lselect (s − {least s}) w using lselect-discard-start 3 by this
have lselect s w = lselect (insert (least s) (s − {least s})) w unfolding 4 by

simp
also have . . . = lselect (s − {least s}) (ltake (enat (least s)) w) $ <w ?! least

s> $
lselect {m. Suc (least s) + m ∈ s − {least s}} (ldropn (Suc (least s)) w)
unfolding lnths-insert[OF 5 ] by simp

also have . . . = <w ?! least s> $
lselect {m. Suc (least s) + m ∈ s − {least s}} (ldropn (Suc (least s)) w)
unfolding 6 by simp

also have . . . = w ?! (least s) % lselect (s − {least s}) w unfolding 7 by
simp

finally show ?thesis by this
qed

lemma lselect-lnth[simp]:
assumes enat i < llength (lselect s w)
shows lselect s w ?! i = w ?! nth-least s i

using assms
proof (induct i arbitrary: s)

case 0
have 1 : ¬ lnull (lselect s w) using 0 by auto
show ?case using lselect-least 1 by force

next
case (Suc i)
have 1 : ¬ lnull (lselect s w) using Suc(2 ) by auto

have 2 : lselect s w = w ?! least s % lselect (s − {least s}) w using lselect-least
1 by this

have 3 : llength (lselect s w) = eSuc (llength (lselect (s − {least s}) w)) using
2 by simp

have 4 : enat i < llength (lselect (s − {least s}) w) using 3 Suc(2 ) by simp
have lselect s w ?! Suc i = (w ?! least s % lselect (s − {least s}) w) ?! Suc i

using 2 by simp
also have . . . = lselect (s − {least s}) w ?! i by simp
also have . . . = w ?! nth-least (s − {least s}) i using Suc(1 ) 4 by simp
also have . . . = w ?! nth-least s (Suc i) by simp
finally show ?case by this

qed
lemma lproject-lnth[simp]:

assumes enat i < llength (lproject A w)
shows lproject A w ?! i = w ?! nth-least (liset A w) i
using assms unfolding lproject-to-lselect by simp

lemma lproject-ltake[simp]:
assumes enat k ≤ llength (lproject A w)
shows lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) =

ltake (enat k) (lproject A w)
proof

have llength (lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w)) =
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enat (card (liset A w ∩ {..< nth-least (lift (liset A w)) k})) by simp
also have . . . = enat (card {i ∈ liset A w. i < nth-least (lift (liset A w)) k})

unfolding lessThan-def Collect-conj-eq by simp
also have . . . = enat k using assms by simp
also have . . . = llength (ltake (enat k) (lproject A w)) using min-absorb1

assms by force
finally show llength (lproject A (ltake (enat (nth-least (lift (liset A w)) k))

w)) =
llength (ltake (enat k) (lproject A w)) by this

next
fix i
assume 1 : enat i < llength (lproject A (ltake (enat (nth-least (lift (liset A

w)) k)) w))
assume 2 : enat i < llength (ltake (enat k) (lproject A w))
obtain k ′ where 3 : k = Suc k ′ using 2 nat.exhaust by auto
have 4 : enat k ′ < llength (lproject A w) using assms 3 by simp
have 5 : i ≤ k ′ using 2 3 by simp
have 6 : nth-least (lift (liset A w)) k = Suc (nth-least (liset A w) k ′)

using 3 4 by (simp del: nth-least.simps)
have 7 : nth-least (liset A w) i < Suc (nth-least (liset A w) k ′)
proof −

have nth-least (liset A w) i ≤ nth-least (liset A w) k ′ using 4 5 by simp
also have . . . < Suc (nth-least (liset A w) k ′) by simp
finally show ?thesis by this

qed
have 8 : nth-least (liset A w ∩ {..< Suc (nth-least (liset A w) k ′)}) i =

nth-least (liset A w) i
proof (rule nth-least-eq)
show enat i < esize (liset A w ∩ {..< Suc (nth-least (liset A w) k ′)}) using

1 6 by simp
have enat i ≤ enat k ′ using 5 by simp
also have enat k ′ < esize (liset A w) using 4 by simp
finally show enat i < esize (liset A w) by this

next
fix j
assume 1 : j ≤ nth-least (liset A w) i
show j ∈ liset A w ∩ {..< Suc (nth-least (liset A w) k ′)} ←→ j ∈ liset A w

using 1 7 by simp
qed
have lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) ?! i =

ltake (enat (Suc (nth-least (liset A w) k ′))) w ?!
nth-least (liset A w ∩ {..< Suc (nth-least (liset A w) k ′)}) i
using 1 6 by simp

also have . . . = ltake (enat (Suc (nth-least (liset A w) k ′))) w ?! nth-least
(liset A w) i

using 8 by simp
also have . . . = w ?! nth-least (liset A w) i using 7 by simp
also have . . . = lproject A w ?! i using 2 by simp
also have . . . = ltake (enat k) (lproject A w) ?! i using 2 by simp
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finally show lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) ?! i =
ltake (enat k) (lproject A w) ?! i by this

qed

lemma llength-less-llength-lselect-less:
enat i < esize s ∧ enat (nth-least s i) < llength w ←→ enat i < llength (lselect

s w)
using nth-least-less-esize-less unfolding lselect-llength by this

lemma lselect-lselect ′′:
assumes

∧
i. i ∈ s =⇒ enat i < llength w

assumes
∧

i. i ∈ t =⇒ enat i < llength (lselect s w)
shows lselect t (lselect s w) = lselect (nth-least s ‘ t) w

proof
note lselect-llength[simp]
have 1 :

∧
i. i ∈ nth-least s ‘ t =⇒ enat i < llength w using assms by auto

have 2 : t ⊆ {i. enat i < esize s}
using assms(2 ) lselect-llength-le less-le-trans by blast

have 3 : inj-on (nth-least s) t using subset-inj-on nth-least.inj-on 2 by this
have llength (lselect t (lselect s w)) = esize t using assms(2 ) by simp
also have . . . = esize (nth-least s ‘ t) using 3 by auto
also have . . . = llength (lselect (nth-least s ‘ t) w) using 1 by simp
finally show llength (lselect t (lselect s w)) = llength (lselect (nth-least s ‘ t)

w)
by this

next
fix i
assume 1 : enat i < llength (lselect t (lselect s w))
assume 2 : enat i < llength (lselect (nth-least s ‘ t) w)
have 3 : enat i < esize t using less-le-trans 1 lselect-llength-le by this
have 4 :

∧
i. i ∈ t =⇒ enat i < esize s

using assms(2 ) lselect-llength-le less-le-trans by blast
have lselect t (lselect s w) ?! i = lselect s w ?! nth-least t i using 1 by simp
also have . . . = w ?! nth-least s (nth-least t i) using assms(2 ) 3 by simp
also have . . . = w ?! nth-least (nth-least s ‘ t) i using 3 4 by simp
also have . . . = lselect (nth-least s ‘ t) w ?! i using 2 by simp
finally show lselect t (lselect s w) ?! i = lselect (nth-least s ‘ t) w ?! i by this

qed

lemma lselect-lselect ′[simp]:
assumes

∧
i. i ∈ t =⇒ enat i < esize s

shows lselect t (lselect s w) = lselect (nth-least s ‘ t) w
proof −
have 1 : nth-least {i ∈ s. enat i < llength w} ‘ {i ∈ t. enat i < llength (lselect

s w)} =
{i ∈ nth-least s ‘ t. enat i < llength w}

unfolding Compr-image-eq
proof (rule image-cong)

show {i ∈ t. enat i < llength (lselect s w)} = {i ∈ t. enat (nth-least s i) <
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llength w}
using llength-less-llength-lselect-less assms by blast

next
fix i
assume 1 : i ∈ {i ∈ t. enat (nth-least s i) < llength w}
have 2 : enat i < esize {i ∈ s. enat i < llength w}

using nth-least-less-esize-less assms 1 by blast
show nth-least {i ∈ s. enat i < llength w} i = nth-least s i using 2 by

simp
qed
have lselect t (lselect s w) =

lselect {i ∈ t. enat i < llength (lselect s w)} (lselect {i ∈ s. enat i < llength
w} w)

by simp
also have . . . = lselect (nth-least {i ∈ s. enat i < llength w} ‘
{i ∈ t. enat i < llength (lselect s w)}) w
by (rule lselect-lselect ′′, auto simp: lselect-llength)

also have . . . = lselect {i ∈ nth-least s ‘ t. enat i < llength w} w unfolding
1 by rule

also have . . . = lselect (nth-least s ‘ t) w by simp
finally show ?thesis by this

qed

lemma lselect-lselect:
lselect t (lselect s w) = lselect (nth-least s ‘ {i ∈ t. enat i < esize s}) w

proof −
have lselect t (lselect s w) = lselect {i ∈ t. enat i < llength (lselect s w)}

(lselect s w)
by simp

also have . . . = lselect (nth-least s ‘ {i ∈ t. enat i < llength (lselect s w)}) w
using lselect-llength-le less-le-trans by (blast intro: lselect-lselect ′)

also have . . . = lselect (nth-least s ‘ {i ∈ t. enat i < esize s}) w
using llength-less-llength-lselect-less by (auto intro!: lnths-cong)

finally show ?thesis by this
qed

lemma lselect-lproject ′:
assumes

∧
i. i ∈ s =⇒ enat i < llength w

shows lproject A (lselect s w) = lselect (s ∩ liset A w) w
proof −

have 1 :
∧

i. i ∈ liset A (lselect s w) =⇒ enat i < esize s using less-le-trans
by force

have 2 : {i ∈ liset A (lselect s w). enat i < esize s} = liset A (lselect s w)
using 1 by auto

have 3 : nth-least s ‘ liset A (lselect s w) = s ∩ liset A w
proof safe

fix k
assume 4 : k ∈ liset A (lselect s w)
show nth-least s k ∈ s using 1 4 by simp
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show nth-least s k ∈ liset A w
using llength-less-llength-lselect-less 4 unfolding liset-def by auto

next
fix k
assume 1 : k ∈ s k ∈ liset A w
have 2 : nth-least s (card {i ∈ s. i < k}) = k using nth-least-card 1 (1 ) by

this
have 3 : enat (card {i ∈ s. i < k}) < llength (lselect s w)

unfolding lselect-llength using assms 1 (1 ) by simp
show k ∈ nth-least s ‘ liset A (lselect s w)
proof

show k = nth-least s (card {i ∈ s. i < k}) using 2 by simp
show card {i ∈ s. i < k} ∈ liset A (lselect s w) using 1 (2 ) 2 3 by fastforce
qed

qed
have lproject A (lselect s w) = lselect (liset A (lselect s w)) (lselect s w)

unfolding lproject-to-lselect by rule
also have . . . = lselect (nth-least s ‘ {i ∈ liset A (lselect s w). enat i < esize

s}) w
unfolding lselect-lselect by rule

also have . . . = lselect (nth-least s ‘ liset A (lselect s w)) w unfolding 2 by
rule

also have . . . = lselect (s ∩ liset A w) w unfolding 3 by rule
finally show ?thesis by this

qed

lemma lselect-lproject[simp]: lproject A (lselect s w) = lselect (s ∩ liset A w) w
proof −

have 1 : {i ∈ s. enat i < llength w} ∩ liset A w = s ∩ liset A w by auto
have lproject A (lselect s w) = lproject A (lselect {i ∈ s. enat i < llength w}

w) by simp
also have . . . = lselect ({i ∈ s. enat i < llength w} ∩ liset A w) w

by (rule lselect-lproject ′, simp)
also have . . . = lselect (s ∩ liset A w) w unfolding 1 by rule
finally show ?thesis by this

qed

lemma lproject-lselect-subset[simp]:
assumes liset A w ⊆ s
shows lproject A (lselect s w) = lproject A w

proof −
have 1 : s ∩ liset A w = liset A w using assms by auto
have lproject A (lselect s w) = lselect (s ∩ liset A w) w by simp
also have . . . = lselect (liset A w) w unfolding 1 by rule
also have . . . = lproject A w unfolding lproject-to-lselect by rule
finally show ?thesis by this

qed

lemma lselect-prefix[intro]:
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assumes u ≤ v
shows lselect s u ≤ lselect s v

proof (cases lfinite u)
case False
show ?thesis using lprefix-infinite assms False by auto

next
case True
obtain k where 1 : llength u = enat k using True length-list-of by metis
obtain w where 2 : v = u $ w using lprefix-conv-lappend assms by auto
have lselect s u ≤ lselect s u $ lselect {n. n + k ∈ s} w by simp
also have . . . = lselect s (u $ w) using lnths-lappend-lfinite[symmetric] 1 by

this
also have . . . = lselect s v unfolding 2 by rule
finally show ?thesis by this

qed
lemma lproject-prefix[intro]:

assumes u ≤ v
shows lproject A u ≤ lproject A v
using lprefix-lfilterI assms by auto

lemma lproject-prefix-limit[intro?]:
assumes

∧
v. v ≤ w =⇒ lfinite v =⇒ lproject A v ≤ x

shows lproject A w ≤ x
proof −

have 1 : ccpo.admissible lSup lprefix (λ v. lproject A v ≤ x) by simp
show ?thesis using llist-lift-admissible 1 assms(1 ) by this

qed
lemma lproject-prefix-limit ′:

assumes
∧

k. ∃ v. v ≤ w ∧ enat k < llength v ∧ lproject A v ≤ x
shows lproject A w ≤ x

proof (rule lproject-prefix-limit)
fix u
assume 1 : u ≤ w lfinite u
obtain k where 2 : llength u = enat k using 1 (2 ) by (metis length-list-of )
obtain v where 3 : v ≤ w llength u < llength v lproject A v ≤ x

unfolding 2 using assms(1 ) by auto
have 4 : llength u ≤ llength v using 3 (2 ) by simp
have 5 : u ≤ v using prefix-subsume 1 (1 ) 3 (1 ) 4 by this
have lproject A u ≤ lproject A v using 5 by rule
also have . . . ≤ x using 3 (3 ) by this
finally show lproject A u ≤ x by this

qed

end

15 Prefixes on Coinductive Lists
theory LList-Prefixes
imports
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Word-Prefixes
../Extensions/Coinductive-List-Extensions

begin

lemma unfold-stream-siterate-smap: unfold-stream f g = smap f ◦ siterate g
by (rule, coinduction, auto) (metis unfold-stream-eq-SCons)+

lemma lappend-stream-of-llist:
assumes lfinite u
shows stream-of-llist (u $ v) = list-of u @− stream-of-llist v
using assms unfolding stream-of-llist-def by induct auto

lemma llist-of-inf-llist-prefix[intro]: u ≤F I v =⇒ llist-of u ≤ llist-of-stream v
by (metis lappend-llist-of-stream-conv-shift le-llist-conv-lprefix lprefix-lappend

prefix-fininfE)
lemma prefix-llist-of-inf-llist[intro]: lfinite u =⇒ u ≤ v =⇒ list-of u ≤F I stream-of-llist

v
by (metis lappend-stream-of-llist le-llist-conv-lprefix lprefix-conv-lappend pre-

fix-fininfI )

lemma lproject-prefix-limit-chain:
assumes chain w

∧
k. lproject A (llist-of (w k)) ≤ x

shows lproject A (llist-of-stream (limit w)) ≤ x
proof (rule lproject-prefix-limit ′)

fix k
obtain l where 1 : k < length (w l) using assms(1 ) by rule
show ∃ v ≤ llist-of-stream (limit w). enat k < llength v ∧ lproject A v ≤ x
proof (intro exI conjI )

show llist-of (w l) ≤ llist-of-stream (limit w)
using llist-of-inf-llist-prefix chain-prefix-limit assms(1 ) by this

show enat k < llength (llist-of (w l)) using 1 by simp
show lproject A (llist-of (w l)) ≤ x using assms(2 ) by this

qed
qed
lemma lproject-eq-limit-chain:

assumes chain u chain v
∧

k. project A (u k) = project A (v k)
shows lproject A (llist-of-stream (limit u)) = lproject A (llist-of-stream (limit

v))
proof (rule antisym)

show lproject A (llist-of-stream (limit u)) ≤ lproject A (llist-of-stream (limit
v))

proof (rule lproject-prefix-limit-chain)
show chain u using assms(1 ) by this

next
fix k
have lproject A (llist-of (u k)) = lproject A (llist-of (v k)) using assms(3 )

by simp
also have . . . ≤ lproject A (llist-of-stream (limit v)) using chain-prefix-limit

assms(2 ) by blast
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finally show lproject A (llist-of (u k)) ≤ lproject A (llist-of-stream (limit v))
by this

qed
show lproject A (llist-of-stream (limit v)) ≤ lproject A (llist-of-stream (limit

u))
proof (rule lproject-prefix-limit-chain)

show chain v using assms(2 ) by this
next

fix k
have lproject A (llist-of (v k)) = lproject A (llist-of (u k)) using assms(3 )

by simp
also have . . . ≤ lproject A (llist-of-stream (limit u)) using chain-prefix-limit

assms(1 ) by blast
finally show lproject A (llist-of (v k)) ≤ lproject A (llist-of-stream (limit u))

by this
qed

qed

end

16 Stuttering
theory Stuttering
imports

Stuttering-Equivalence.StutterEquivalence
LList-Prefixes

begin

function nth-least-ext :: nat set ⇒ nat ⇒ nat
where

enat k < esize A =⇒ nth-least-ext A k = nth-least A k |
enat k ≥ esize A =⇒ nth-least-ext A k = Suc (Max A + (k − card A))

by force+ termination by lexicographic-order

lemma nth-least-ext-strict-mono:
assumes k < l
shows nth-least-ext s k < nth-least-ext s l

proof (cases enat l < esize s)
case True

have 1 : enat k < esize s using assms True by (metis enat-ord-simps(2 )
less-trans)

show ?thesis using nth-least-strict-mono assms True 1 by simp
next

case False
have 1 : finite s using False esize-infinite-enat by auto
have 2 : enat l ≥ esize s using False by simp
have 3 : l ≥ card s using 1 2 by simp
show ?thesis
proof (cases enat k < esize s)
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case True
have 4 : s 6= {} using True by auto
have nth-least-ext s k = nth-least s k using True by simp
also have . . . ≤ Max s using nth-least-le-Max 1 4 True by this
also have . . . < Suc (Max s) by auto
also have . . . ≤ Suc (Max s + (l − card s)) by auto
also have Suc (Max s + (l − card s)) = nth-least-ext s l using 2 by simp
finally show ?thesis by this

next
case False
have 4 : enat k ≥ esize s using False by simp
have 5 : k ≥ card s using 1 4 by simp
have nth-least-ext s k = Suc (Max s + (k − card s)) using 4 by simp
also have . . . < Suc (Max s + (l − card s)) using assms 5 by simp
also have . . . = nth-least-ext s l using 2 by simp
finally show ?thesis by this

qed
qed

definition stutter-selection :: nat set ⇒ ′a llist ⇒ bool
where stutter-selection s w ≡ 0 ∈ s ∧
(∀ k i. enat i < llength w −→ enat (Suc k) < esize s −→
nth-least s k < i −→ i < nth-least s (Suc k) −→ w ?! i = w ?! nth-least s k) ∧
(∀ i. enat i < llength w −→ finite s −→ Max s < i −→ w ?! i = w ?! Max s)

lemma stutter-selectionI [intro]:
assumes 0 ∈ s
assumes

∧
k i. enat i < llength w =⇒ enat (Suc k) < esize s =⇒

nth-least s k < i =⇒ i < nth-least s (Suc k) =⇒ w ?! i = w ?! nth-least s k
assumes

∧
i. enat i < llength w =⇒ finite s =⇒ Max s < i =⇒ w ?! i = w

?! Max s
shows stutter-selection s w
using assms unfolding stutter-selection-def by auto

lemma stutter-selectionD-0 [dest]:
assumes stutter-selection s w
shows 0 ∈ s
using assms unfolding stutter-selection-def by auto

lemma stutter-selectionD-inside[dest]:
assumes stutter-selection s w
assumes enat i < llength w enat (Suc k) < esize s
assumes nth-least s k < i i < nth-least s (Suc k)
shows w ?! i = w ?! nth-least s k
using assms unfolding stutter-selection-def by auto

lemma stutter-selectionD-infinite[dest]:
assumes stutter-selection s w
assumes enat i < llength w finite s Max s < i
shows w ?! i = w ?! Max s
using assms unfolding stutter-selection-def by auto
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lemma stutter-selection-stutter-sampler [intro]:
assumes linfinite w stutter-selection s w
shows stutter-sampler (nth-least-ext s) (lnth w)

unfolding stutter-sampler-def
proof safe

show nth-least-ext s 0 = 0 using assms(2 ) by (cases enat 0 < esize s, auto)
show strict-mono (nth-least-ext s) using strict-monoI nth-least-ext-strict-mono

by blast
next

fix k i
assume 1 : nth-least-ext s k < i i < nth-least-ext s (Suc k)
show w ?! i = w ?! nth-least-ext s k
proof (cases enat (Suc k) esize s rule: linorder-cases)

case less
have w ?! i = w ?! nth-least s k
proof (rule stutter-selectionD-inside)

show stutter-selection s w using assms(2 ) by this
show enat i < llength w using assms(1 ) by auto
show enat (Suc k) < esize s using less by this
show nth-least s k < i using 1 (1 ) less by auto
show i < nth-least s (Suc k) using 1 (2 ) less by simp

qed
also have w ?! nth-least s k = w ?! nth-least-ext s k using less by auto
finally show ?thesis by this

next
case equal
have 2 : enat k < esize s using equal by (metis enat-ord-simps(2 ) lessI )
have 3 : finite s using equal by (metis esize-infinite-enat less-irrefl)
have 4 :

∧
i. i > Max s =⇒ w ?! i = w ?! Max s using assms 3 by auto

have 5 : k = card s − 1 using equal 3 by (metis diff-Suc-1 enat.inject
esize-set.simps(1 ))

have Max s = nth-least s (card s − 1 ) using nth-least-Max 3 assms(2 ) by
force

also have . . . = nth-least s k unfolding 5 by rule
also have . . . = nth-least-ext s k using 2 by simp
finally have 6 : Max s = nth-least-ext s k by this
have w ?! i = w ?! Max s using 1 (1 ) 4 6 by auto
also have . . . = w ?! nth-least-ext s k unfolding 6 by rule
finally show ?thesis by this

next
case greater
have 2 : enat k ≥ esize s using greater by (metis Suc-ile-eq not-le)
have 3 : finite s using greater by (metis esize-infinite-enat less-asym)
have 4 :

∧
i. i > Max s =⇒ w ?! i = w ?! Max s using assms 3 by auto

have w ?! i = w ?! Max s using 1 (1 ) 2 4 by auto
also have . . . = w ?! Suc (Max s + (k − card s)) using 4 by simp
also have . . . = w ?! nth-least-ext s k using 2 by simp
finally show ?thesis by this

qed
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qed

lemma stutter-equivI-selection[intro]:
assumes linfinite u linfinite v
assumes stutter-selection s u stutter-selection t v
assumes lselect s u = lselect t v
shows lnth u ≈ lnth v

proof (rule stutter-equivI )
have 1 : llength (lselect s u) = llength (lselect t v) unfolding assms(5 ) by rule
have 2 : esize s = esize t using 1 assms(1 , 2 ) unfolding lselect-llength by

simp
show stutter-sampler (nth-least-ext s) (lnth u) using assms(1 , 3 ) by rule
show stutter-sampler (nth-least-ext t) (lnth v) using assms(2 , 4 ) by rule
show lnth u ◦ nth-least-ext s = lnth v ◦ nth-least-ext t
proof (rule ext, unfold comp-apply)

fix i
show u ?! nth-least-ext s i = v ?! nth-least-ext t i
proof (cases enat i < esize s)

case True
have 3 : enat i < llength (lselect s u) enat i < llength (lselect t v)

using assms(1 , 2 ) 2 True unfolding lselect-llength by auto
have u ?! nth-least-ext s i = u ?! nth-least s i using True by simp
also have . . . = lselect s u ?! i using 3 (1 ) by simp
also have . . . = lselect t v ?! i unfolding assms(5 ) by rule
also have . . . = v ?! nth-least t i using 3 (2 ) by simp
also have . . . = v ?! nth-least-ext t i using True unfolding 2 by simp
finally show u ?! nth-least-ext s i = v ?! nth-least-ext t i by this

next
case False
have 3 : s 6= {} t 6= {} using assms(3 , 4 ) by auto
have 4 : finite s finite t using esize-infinite-enat 2 False by metis+
have 5 :

∧
i. i > Max s =⇒ u ?! i = u ?! Max s using assms(1 , 3 ) 4 (1 )

by auto
have 6 :

∧
i. i > Max t =⇒ v ?! i = v ?! Max t using assms(2 , 4 ) 4 (2 )

by auto
have 7 : esize s = enat (card s) esize t = enat (card t) using 4 by auto
have 8 : card s 6= 0 card t 6= 0 using 3 4 by auto
have 9 : enat (card s − 1 ) < llength (lselect s u)

using assms(1 ) 7 (1 ) 8 (1 ) unfolding lselect-llength by simp
have 10 : enat (card t − 1 ) < llength (lselect t v)

using assms(2 ) 7 (2 ) 8 (2 ) unfolding lselect-llength by simp
have u ?! nth-least-ext s i = u ?! Suc (Max s + (i − card s)) using False

by simp
also have . . . = u ?! Max s using 5 by simp

also have . . . = u ?! nth-least s (card s − 1 ) using nth-least-Max 4 (1 ) 3 (1 )
by force

also have . . . = lselect s u ?! (card s − 1 ) using lselect-lnth 9 by simp
also have . . . = lselect s u ?! (card t − 1 ) using 2 4 by simp
also have . . . = lselect t v ?! (card t − 1 ) unfolding assms(5 ) by rule
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also have . . . = v ?! nth-least t (card t − 1 ) using lselect-lnth 10 by simp
also have . . . = v ?! Max t using nth-least-Max 4 (2 ) 3 (2 ) by force
also have . . . = v ?! Suc (Max t + (i − card t)) using 6 by simp
also have . . . = v ?! nth-least-ext t i using 2 False by simp
finally show ?thesis by this

qed
qed

qed

definition stuttering-invariant :: ′a word set ⇒ bool
where stuttering-invariant A ≡ ∀ u v. u ≈ v −→ u ∈ A ←→ v ∈ A

lemma stuttering-invariant-complement[intro!]:
assumes stuttering-invariant A
shows stuttering-invariant (− A)
using assms unfolding stuttering-invariant-def by simp

lemma stutter-equiv-forw-subst[trans]: w1 = w2 =⇒ w2 ≈ w3 =⇒ w1 ≈ w3 by
auto

lemma stutter-sampler-build:
assumes stutter-sampler f w
shows stutter-sampler (0 ## (Suc ◦ f )) (a ## w)

unfolding stutter-sampler-def
proof safe

have 0 : f 0 = 0 using assms unfolding stutter-sampler-def by auto
have 1 : f x < f y if x < y for x y

using assms that unfolding stutter-sampler-def strict-mono-def by auto
have 2 : (0 ## (Suc ◦ f )) x < (0 ## (Suc ◦ f )) y if x < y for x y

using 1 that by (cases x; cases y) (auto)
have 3 : w n = w (f k) if f k < n n < f (Suc k) for k n

using assms that unfolding stutter-sampler-def by auto
show (0 ## (Suc ◦ f )) 0 = 0 by simp
show strict-mono (0 ## (Suc ◦ f )) using 2 by rule
show (a ## w) n = (a ## w) ((0 ## (Suc ◦ f )) k)

if (0 ## (Suc ◦ f )) k < n n < (0 ## (Suc ◦ f )) (Suc k) for k n
using 0 3 that by (cases k; cases n) (force)+

qed
lemma stutter-extend-build:

assumes u ≈ v
shows a ## u ≈ a ## v

proof −
obtain f g where 1 : stutter-sampler f u stutter-sampler g v u ◦ f = v ◦ g

using stutter-equivE assms by this
show ?thesis
proof (intro stutter-equivI ext)
show stutter-sampler (0 ## (Suc ◦ f )) (a ## u) using stutter-sampler-build

1 (1 ) by this
show stutter-sampler (0 ## (Suc ◦ g)) (a ## v) using stutter-sampler-build
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1 (2 ) by this
show (a ## u ◦ 0 ## (Suc ◦ f )) i = (a ## v ◦ 0 ## (Suc ◦ g)) i for i

using fun-cong[OF 1 (3 )] by (cases i) (auto)
qed

qed
lemma stutter-extend-concat:

assumes u ≈ v
shows w _ u ≈ w _ v
using stutter-extend-build assms by (induct w, force+)

lemma build-stutter : w 0 ## w ≈ w
proof (rule stutter-equivI )

show stutter-sampler (Suc (0 := 0 )) (w 0 ## w)
unfolding stutter-sampler-def
proof safe

show (Suc (0 := 0 )) 0 = 0 by simp
show strict-mono (Suc (0 := 0 )) by (rule strict-monoI , simp)

next
fix k n
assume 1 : (Suc (0 := 0 )) k < n n < (Suc (0 := 0 )) (Suc k)
show (w 0 ## w) n = (w 0 ## w) ((Suc (0 := 0 )) k) using 1 by (cases

n, auto)
qed
show stutter-sampler id w by rule
show w 0 ## w ◦ (Suc (0 := 0 )) = w ◦ id by auto

qed
lemma replicate-stutter : replicate n (v 0 ) _ v ≈ v
proof (induct n)

case 0
show ?case using stutter-equiv-refl by simp

next
case (Suc n)
have replicate (Suc n) (v 0 ) _ v = v 0 ## replicate n (v 0 ) _ v by simp
also have . . . = (replicate n (v 0 ) _ v) 0 ## replicate n (v 0 ) _ v by (cases

n, auto)
also have . . . ≈ replicate n (v 0 ) _ v using build-stutter by this
also have . . . ≈ v using Suc by this
finally show ?case by this

qed

lemma replicate-stutter ′: u _ replicate n (v 0 ) _ v ≈ u _ v
using stutter-extend-concat replicate-stutter by this

end

17 Interpreted Transition Systems and Traces
theory Transition-System-Interpreted-Traces
imports

Transition-System-Traces
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Basics/Stuttering
begin

locale transition-system-interpreted-traces =
transition-system-interpreted ex en int +
transition-system-traces ex en ind
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and int :: ′state ⇒ ′interpretation
and ind :: ′action ⇒ ′action ⇒ bool
+
assumes independence-invisible: a ∈ visible =⇒ b ∈ visible =⇒ ¬ ind a b

begin

lemma eq-swap-lproject-visible:
assumes u =S v
shows lproject visible (llist-of u) = lproject visible (llist-of v)
using assms independence-invisible by (induct, auto)

lemma eq-fin-lproject-visible:
assumes u =F v
shows lproject visible (llist-of u) = lproject visible (llist-of v)
using assms eq-swap-lproject-visible by (induct, auto)

lemma le-fin-lproject-visible:
assumes u �F v
shows lproject visible (llist-of u) ≤ lproject visible (llist-of v)

proof −
obtain w where 1 : u @ w =F v using assms by rule
have lproject visible (llist-of u) ≤

lproject visible (llist-of u) $ lproject visible (llist-of w) by auto
also have . . . = lproject visible (llist-of (u @ w)) using lappend-llist-of-llist-of

by auto
also have . . . = lproject visible (llist-of v) using eq-fin-lproject-visible 1 by

this
finally show ?thesis by this

qed
lemma le-fininf-lproject-visible:

assumes u �F I v
shows lproject visible (llist-of u) ≤ lproject visible (llist-of-stream v)

proof −
obtain w where 1 : w ≤F I v u �F w using assms by rule
have lproject visible (llist-of u) ≤ lproject visible (llist-of w)

using le-fin-lproject-visible 1 (2 ) by this
also have . . . ≤ lproject visible (llist-of-stream v) using 1 (1 ) by blast
finally show ?thesis by this

qed
lemma le-inf-lproject-visible:

assumes u �I v
shows lproject visible (llist-of-stream u) ≤ lproject visible (llist-of-stream v)

proof (rule lproject-prefix-limit)

95



fix w
assume 1 : w ≤ llist-of-stream u lfinite w
have 2 : list-of w ≤F I stream-of-llist (llist-of-stream u) using 1 by blast
have 3 : list-of w �F I v using assms 2 by auto
have lproject visible w = lproject visible (llist-of (list-of w)) using 1 (2 ) by

simp
also have . . . ≤ lproject visible (llist-of-stream v) using le-fininf-lproject-visible

3 by this
finally show lproject visible w ≤ lproject visible (llist-of-stream v) by this

qed
lemma eq-inf-lproject-visible:

assumes u =I v
shows lproject visible (llist-of-stream u) = lproject visible (llist-of-stream v)
using le-inf-lproject-visible assms by (metis antisym eq-infE)

lemma stutter-selection-lproject-visible:
assumes run u p
shows stutter-selection (lift (liset visible (llist-of-stream u)))
(llist-of-stream (smap int (p ## trace u p)))

proof
show 0 ∈ lift (liset visible (llist-of-stream u)) by auto

next
fix k i
assume 3 : enat (Suc k) < esize (lift (liset visible (llist-of-stream u)))
assume 4 : nth-least (lift (liset visible (llist-of-stream u))) k < i
assume 5 : i < nth-least (lift (liset visible (llist-of-stream u))) (Suc k)
have 6 : int ((p ## trace u p) !! nth-least (lift (liset visible (llist-of-stream

u))) k) =
int ((p ## trace u p) !! i)

proof (rule execute-inf-word-invisible)
show run u p using assms by this
show nth-least (lift (liset visible (llist-of-stream u))) k ≤ i using 4 by auto

next
fix j
assume 6 : nth-least (lift (liset visible (llist-of-stream u))) k ≤ j
assume 7 : j < i
have 8 : Suc j /∈ lift (liset visible (llist-of-stream u))
proof (rule nth-least-not-contains)

show enat (Suc k) < esize (lift (liset visible (llist-of-stream u))) using 3
by this

show nth-least (lift (liset visible (llist-of-stream u))) k < Suc j using 6
by auto

show Suc j < nth-least (lift (liset visible (llist-of-stream u))) (Suc k) using
5 7 by simp

qed
have 9 : j /∈ liset visible (llist-of-stream u) using 8 by auto
show u !! j /∈ visible using 9 by auto

qed
show llist-of-stream (smap int (p ## trace u p)) ?! i = llist-of-stream (smap
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int (p ## trace u p)) ?!
nth-least (lift (liset visible (llist-of-stream u))) k
using 6 by (metis lnth-list-of-stream snth-smap)

next
fix i
assume 1 : finite (lift (liset visible (llist-of-stream u)))
assume 3 : Max (lift (liset visible (llist-of-stream u))) < i
have 4 : int ((p ## trace u p) !! Max (lift (liset visible (llist-of-stream u))))

=
int ((p ## trace u p) !! i)

proof (rule execute-inf-word-invisible)
show run u p using assms by this
show Max (lift (liset visible (llist-of-stream u))) ≤ i using 3 by auto

next
fix j
assume 6 : Max (lift (liset visible (llist-of-stream u))) ≤ j
assume 7 : j < i
have 8 : Suc j /∈ lift (liset visible (llist-of-stream u))
proof (rule ccontr)

assume 9 : ¬ Suc j /∈ lift (liset visible (llist-of-stream u))
have 10 : Suc j ∈ lift (liset visible (llist-of-stream u)) using 9 by simp

have 11 : Suc j ≤ Max (lift (liset visible (llist-of-stream u))) using Max-ge
1 10 by this

show False using 6 11 by auto
qed
have 9 : j /∈ liset visible (llist-of-stream u) using 8 by auto
show u !! j /∈ visible using 9 by auto

qed
show llist-of-stream (smap int (p ## trace u p)) ?! i = llist-of-stream (smap

int (p ## trace u p)) ?!
Max (lift (liset visible (llist-of-stream u))) using 4 by (metis lnth-list-of-stream

snth-smap)
qed

lemma execute-fin-visible:
assumes path u q path v q u �F I w v �F I w
assumes project visible u = project visible v
shows int (target u q) = int (target v q)

proof −
obtain w ′ where 1 : u �F w ′ v �F w ′ using subsume-fin assms(3 , 4 ) by

this
obtain u ′ v ′ where 2 : u @ u ′ =F w ′ v @ v ′ =F w ′ using 1 by blast
have u @ u ′ =F w ′ using 2 (1 ) by this
also have . . . =F v @ v ′ using 2 (2 ) by blast
finally have 3 : u @ u ′ =F v @ v ′ by this
obtain s1 s2 s3 where 4 : u =F s1 @ s2 v =F s1 @ s3 Ind (set s2) (set s3)

using levi-lemma 3 by this
have 5 : project visible (s1 @ s2) = project visible (s1 @ s3)

using eq-fin-lproject-visible assms(5 ) 4 (1 , 2 ) by auto
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have 6 : project visible s2 = project visible s3 using 5 by simp
have 7 : set (project visible s2) = set (project visible s3) using 6 by simp
have 8 : set s2 ∩ visible = set s3 ∩ visible using 7 by auto
have 9 : set s2 ⊆ invisible ∨ set s3 ⊆ invisible using independence-invisible

4 (3 ) by auto
have 10 : set s2 ⊆ invisible set s3 ⊆ invisible using 8 9 by auto
have 11 : path s2 (target s1 q) using eq-fin-word 4 (1 ) assms(1 ) by auto
have 12 : path s3 (target s1 q) using eq-fin-word 4 (2 ) assms(2 ) by auto

have int (fold ex u q) = int (fold ex (s1 @ s2) q) using eq-fin-execute assms(1 )
4 (1 ) by simp

also have . . . = int (fold ex s1 q) using execute-fin-word-invisible 11 10 (1 )
by simp

also have . . . = int (fold ex (s1 @ s3) q) using execute-fin-word-invisible 12
10 (2 ) by simp

also have . . . = int (fold ex v q) using eq-fin-execute assms(2 ) 4 (2 ) by simp
finally show ?thesis by this

qed
lemma execute-inf-visible:

assumes run u q run v q u �I w v �I w
assumes lproject visible (llist-of-stream u) = lproject visible (llist-of-stream v)
shows snth (smap int (q ## trace u q)) ≈ snth (smap int (q ## trace v q))

proof −
have 1 : lnth (llist-of-stream (smap int (q ## trace u q))) ≈

lnth (llist-of-stream (smap int (q ## trace v q)))
proof

show linfinite (llist-of-stream (smap int (q ## trace u q))) by simp
show linfinite (llist-of-stream (smap int (q ## trace v q))) by simp
show stutter-selection (lift (liset visible (llist-of-stream u))) (llist-of-stream

(smap int (q ## trace u q)))
using stutter-selection-lproject-visible assms(1 ) by this

show stutter-selection (lift (liset visible (llist-of-stream v))) (llist-of-stream
(smap int (q ## trace v q)))

using stutter-selection-lproject-visible assms(2 ) by this
show lselect (lift (liset visible (llist-of-stream u))) (llist-of-stream (smap int

(q ## trace u q))) =
lselect (lift (liset visible (llist-of-stream v))) (llist-of-stream (smap int (q

## trace v q)))
proof

have llength (lselect (lift (liset visible (llist-of-stream u)))
(llist-of-stream (smap int (q ## trace u q)))) = eSuc (llength (lproject

visible (llist-of-stream u)))
by (simp add: lselect-llength)

also have . . . = eSuc (llength (lproject visible (llist-of-stream v)))
unfolding assms(5 ) by rule

also have . . . = llength (lselect (lift (liset visible (llist-of-stream v)))
(llist-of-stream (smap int (q ## trace v q)))) by (simp add: lselect-llength)
finally show llength (lselect (lift (liset visible (llist-of-stream u)))
(llist-of-stream (smap int (q ## trace u q)))) = llength (lselect (lift (liset

visible (llist-of-stream v)))
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(llist-of-stream (smap int (q ## trace v q)))) by this
next

fix i
assume 1 :

enat i < llength (lselect (lift (liset visible (llist-of-stream u)))
(llist-of-stream (smap int (q ## trace u q))))

enat i < llength (lselect (lift (liset visible (llist-of-stream v)))
(llist-of-stream (smap int (q ## trace v q))))

have 2 :
enat i ≤ llength (lproject visible (llist-of-stream u))
enat i ≤ llength (lproject visible (llist-of-stream v))
using 1 by (simp add: lselect-llength)+

define k where k ≡ nth-least (lift (liset visible (llist-of-stream u))) i
define l where l ≡ nth-least (lift (liset visible (llist-of-stream v))) i
have lselect (lift (liset visible (llist-of-stream u))) (llist-of-stream (smap

int (q ## trace u q))) ?! i =
int ((q ## trace u q) !! nth-least (lift (liset visible (llist-of-stream u))) i)
by (metis 1 (1 ) lnth-list-of-stream lselect-lnth snth-smap)

also have . . . = int ((q ## trace u q) !! k) unfolding k-def by rule
also have . . . = int ((q ## trace v q) !! l)
unfolding sscan-scons-snth
proof (rule execute-fin-visible)

show path (stake k u) q using assms(1 ) by (metis run-shift-elim
stake-sdrop)

show path (stake l v) q using assms(2 ) by (metis run-shift-elim
stake-sdrop)

show stake k u �F I w stake l v �F I w using assms(3 , 4 ) by auto
have project visible (stake k u) =

list-of (lproject visible (llist-of (stake k u))) by simp
also have . . . = list-of (lproject visible (ltake (enat k) (llist-of-stream

u)))
by (metis length-stake llength-llist-of llist-of-inf-llist-prefix lprefix-ltake

prefix-fininf-prefix)
also have . . . = list-of (ltake (enat i) (lproject visible (llist-of-stream u)))

unfolding k-def lproject-ltake[OF 2 (1 )] by rule
also have . . . = list-of (ltake (enat i) (lproject visible (llist-of-stream v)))

unfolding assms(5 ) by rule
also have . . . = list-of (lproject visible (ltake (enat l) (llist-of-stream v)))

unfolding l-def lproject-ltake[OF 2 (2 )] by rule
also have . . . = project visible (stake l v)

by (metis length-stake lfilter-llist-of list-of-llist-of llength-llist-of
llist-of-inf-llist-prefix lprefix-ltake prefix-fininf-prefix)

finally show project visible (stake k u) = project visible (stake l v) by
this

qed
also have . . . = int ((q ## trace v q) !! nth-least (lift (liset visible

(llist-of-stream v))) i)
unfolding l-def by simp

also have . . . = lselect (lift (liset visible (llist-of-stream v)))
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(llist-of-stream (smap int (q ## trace v q))) ?! i
using 1 by (metis lnth-list-of-stream lselect-lnth snth-smap)

finally show lselect (lift (liset visible (llist-of-stream u)))
(llist-of-stream (smap int (q ## trace u q))) ?! i = lselect (lift (liset

visible (llist-of-stream v)))
(llist-of-stream (smap int (q ## trace v q))) ?! i by this

qed
qed
show ?thesis using 1 by simp

qed

end

end

18 Abstract Theory of Ample Set Partial Order
Reduction

theory Ample-Abstract
imports

Transition-System-Interpreted-Traces
Extensions/Relation-Extensions

begin

locale ample-base =
transition-system-interpreted-traces ex en int ind +
wellfounded-relation src
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and int :: ′state ⇒ ′interpretation
and ind :: ′action ⇒ ′action ⇒ bool
and src :: ′state ⇒ ′state ⇒ bool

begin

definition ample-set :: ′state ⇒ ′action set ⇒ bool
where ample-set q A ≡

A ⊆ {a. en a q} ∧
(A ⊂ {a. en a q} −→ A 6= {}) ∧
(∀ a. A ⊂ {a. en a q} −→ a ∈ A −→ src (ex a q) q) ∧
(A ⊂ {a. en a q} −→ A ⊆ invisible) ∧
(∀ w. A ⊂ {a. en a q} −→ path w q −→ A ∩ set w = {} −→ Ind A (set w))

lemma ample-subset:
assumes ample-set q A
shows A ⊆ {a. en a q}
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using assms unfolding ample-set-def by auto

lemma ample-nonempty:
assumes ample-set q A A ⊂ {a. en a q}
shows A 6= {}
using assms unfolding ample-set-def by auto

lemma ample-wellfounded:
assumes ample-set q A A ⊂ {a. en a q} a ∈ A
shows src (ex a q) q
using assms unfolding ample-set-def by auto

lemma ample-invisible:
assumes ample-set q A A ⊂ {a. en a q}
shows A ⊆ invisible
using assms unfolding ample-set-def by auto

lemma ample-independent:
assumes ample-set q A A ⊂ {a. en a q} path w q A ∩ set w = {}
shows Ind A (set w)
using assms unfolding ample-set-def by auto

lemma ample-en[intro]: ample-set q {a. en a q} unfolding ample-set-def by
blast

end

locale ample-abstract =
S?: transition-system-complete ex en init int +
R: transition-system-complete ex ren init int +
ample-base ex en int ind src
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
and int :: ′state ⇒ ′interpretation
and ind :: ′action ⇒ ′action ⇒ bool
and src :: ′state ⇒ ′state ⇒ bool
and ren :: ′action ⇒ ′state ⇒ bool
+
assumes reduction-ample: q ∈ nodes =⇒ ample-set q {a. ren a q}

begin

lemma reduction-words-fin:
assumes q ∈ nodes R.path w q
shows S .path w q
using assms(2 , 1 ) ample-subset reduction-ample by induct auto

lemma reduction-words-inf :
assumes q ∈ nodes R.run w q
shows S .run w q
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using reduction-words-fin assms by (auto intro: words-infI-construct)

lemma reduction-step:
assumes q ∈ nodes run w q
obtains
(deferred) a where ren a q [a] �F I w |
(omitted) {a. ren a q} ⊆ invisible Ind {a. ren a q} (sset w)

proof (cases {a. en a q} = {a. ren a q})
case True
have 1 : run (shd w ## sdrop 1 w) q using assms(2 ) by simp
show ?thesis
proof (rule deferred)

show ren (shd w) q using True 1 by blast
show [shd w] �F I w by simp

qed
next

case False
have 1 : {a. ren a q} ⊂ {a. en a q} using ample-subset reduction-ample

assms(1 ) False by auto
show ?thesis
proof (cases {a. ren a q} ∩ sset w = {})

case True
show ?thesis
proof (rule omitted)

show {a. ren a q} ⊆ invisible using ample-invisible reduction-ample
assms(1 ) 1 by auto

show Ind {a. ren a q} (sset w)
proof safe

fix a b
assume 2 : b ∈ sset w ren a q
obtain u v where 3 : w = u @− b ## v using split-stream-first ′ 2 (1 )

by this
have 4 : Ind {a. ren a q} (set (u @ [b]))
proof (rule ample-independent)
show ample-set q {a. ren a q} using reduction-ample assms(1 ) by this
show {a. ren a q} ⊂ {a. en a q} using 1 by this
show path (u @ [b]) q using assms(2 ) 3 by blast
show {a. ren a q} ∩ set (u @ [b]) = {} using True 3 by auto

qed
show ind a b using 2 3 4 by auto

qed
qed

next
case False
obtain u a v where 2 : w = u @− a ## v {a. ren a q} ∩ set u = {} ren a

q
using split-stream-first[OF False] by auto

have 3 : path u q using assms(2 ) unfolding 2 (1 ) by auto
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have 4 : Ind {a. ren a q} (set u)
using ample-independent reduction-ample assms(1 ) 1 3 2 (2 ) by this

have 5 : Ind (set [a]) (set u) using 4 2 (3 ) by simp
have 6 : [a] @ u =F u @ [a] using 5 by blast
show ?thesis
proof (rule deferred)

show ren a q using 2 (3 ) by this
have [a] �F I [a] @− u @− v by blast
also have [a] @− u @− v = ([a] @ u) @− v by simp
also have ([a] @ u) @− v =I (u @ [a]) @− v using 6 by blast
also have (u @ [a]) @− v = u @− [a] @− v by simp
also have . . . = w unfolding 2 (1 ) by simp
finally show [a] �F I w by this

qed
qed

qed

lemma reduction-chunk:
assumes q ∈ nodes run ([a] @− v) q
obtains b b1 b2 u
where

R.path (b @ [a]) q
Ind {a} (set b) set b ⊆ invisible
b =F b1 @ b2 b1 @− u =I v Ind (set b2) (sset u)

using wellfounded assms
proof (induct q arbitrary: thesis v rule: wfp-induct-rule)

case (less q)
show ?case
proof (cases ren a q)

case (True)
show ?thesis
proof (rule less(2 ))

show R.path ([] @ [a]) q using True by auto
show Ind {a} (set []) by auto
show set [] ⊆ invisible by auto
show [] =F [] @ [] by auto
show [] @− v =I v by auto
show Ind (set []) (sset v) by auto

qed
next

case (False)
have 0 : {a. en a q} 6= {a. ren a q} using False less(4 ) by auto
show ?thesis
using less(3 , 4 )
proof (cases rule: reduction-step)

case (deferred c)
have 1 : ren c q using deferred(1 ) by simp
have 2 : ind a c
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proof (rule le-fininf-ind ′′)
show [a] �F I [a] @− v by blast
show [c] �F I [a] @− v using deferred(2 ) by this
show a 6= c using False 1 by auto

qed
obtain v ′ where 3 : [a] @− v =I [c] @− [a] @− v ′

proof −
have 10 : [c] �F I v
proof (rule le-fininf-not-member ′)

show [c] �F I [a] @− v using deferred(2 ) by this
show c /∈ set [a] using False 1 by auto

qed
obtain v ′ where 11 : v =I [c] @− v ′ using 10 by blast
have 12 : Ind (set [a]) (set [c]) using 2 by auto
have 13 : [a] @ [c] =F [c] @ [a] using 12 by blast
have [a] @− v =I [a] @− [c] @− v ′ using 11 by blast
also have . . . = ([a] @ [c]) @− v ′ by simp
also have . . . =I ([c] @ [a]) @− v ′ using 13 by blast
also have . . . = [c] @− [a] @− v ′ by simp
finally show ?thesis using that by auto

qed
have 4 : run ([c] @− [a] @− v ′) q using eq-inf-word 3 less(4 ) by this
show ?thesis
proof (rule less(1 ))

show src (ex c q) q
using ample-wellfounded ample-subset reduction-ample less(3 ) 0 1 by

blast
have 100 : en c q using less(4 ) deferred(2 ) le-fininf-word by auto
show ex c q ∈ nodes using less(3 ) 100 by auto
show run ([a] @− v ′) (ex c q) using 4 by auto

next
fix b b1 b2 u
assume 5 : R.path (b @ [a]) (ex c q)
assume 6 : Ind {a} (set b)
assume 7 : set b ⊆ invisible
assume 8 : b =F b1 @ b2
assume 9 : b1 @− u =I v ′

assume 10 : Ind (set b2) (sset u)
show thesis
proof (rule less(2 ))

show R.path (([c] @ b) @ [a]) q using 1 5 by auto
show Ind {a} (set ([c] @ b)) using 6 2 by auto
have 11 : c ∈ invisible

using ample-invisible ample-subset reduction-ample less(3 ) 0 1 by
blast

show set ([c] @ b) ⊆ invisible using 7 11 by auto
have [c] @ b =F [c] @ b1 @ b2 using 8 by blast
also have [c] @ b1 @ b2 = ([c] @ b1) @ b2 by simp
finally show [c] @ b =F ([c] @ b1) @ b2 by this
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show ([c] @ b1) @− u =I v
proof −

have 10 : Ind (set [a]) (set [c]) using 2 by auto
have 11 : [a] @ [c] =F [c] @ [a] using 10 by blast
have [a] @− v =I [c] @− [a] @− v ′ using 3 by this
also have . . . = ([c] @ [a]) @− v ′ by simp
also have . . . =I ([a] @ [c]) @− v ′ using 11 by blast
also have . . . = [a] @− [c] @− v ′ by simp
finally have 12 : [a] @− v =I [a] @− [c] @− v ′ by this
have 12 : v =I [c] @− v ′ using 12 by blast
have ([c] @ b1) @− u = [c] @− b1 @− u by simp
also have . . . =I [c] @− v ′ using 9 by blast
also have . . . =I v using 12 by blast
finally show ?thesis by this

qed
show Ind (set b2) (sset u) using 10 by this

qed
qed

next
case (omitted)
have 1 : {a. ren a q} ⊆ invisible using omitted(1 ) by simp
have 2 : Ind {a. ren a q} (sset ([a] @− v)) using omitted(2 ) by simp
obtain c where 3 : ren c q
proof −

have 1 : en a q using less(4 ) by auto
show ?thesis using reduction-ample ample-nonempty less(3 ) 1 that by

blast
qed
have 4 : Ind (set [c]) (sset ([a] @− v)) using 2 3 by auto
have 6 : path [c] q using reduction-ample ample-subset less(3 ) 3 by auto
have 7 : run ([a] @− v) (target [c] q) using diamond-fin-word-inf-word 4

6 less(4 ) by this
show ?thesis
proof (rule less(1 ))

show src (ex c q) q
using reduction-ample ample-wellfounded ample-subset less(3 ) 0 3 by

blast
show ex c q ∈ nodes using less(3 ) 6 by auto
show run ([a] @− v) (ex c q) using 7 by auto

next
fix b s b1 b2 u
assume 5 : R.path (b @ [a]) (ex c q)
assume 6 : Ind {a} (set b)
assume 7 : set b ⊆ invisible
assume 8 : b =F b1 @ b2
assume 9 : b1 @− u =I v
assume 10 : Ind (set b2) (sset u)
show thesis
proof (rule less(2 ))
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show R.path (([c] @ b) @ [a]) q using 3 5 by auto
show Ind {a} (set ([c] @ b))
proof −

have 1 : ind c a using 4 by simp
have 2 : ind a c using independence-symmetric 1 by this
show ?thesis using 6 2 by auto

qed
have 11 : c ∈ invisible using 1 3 by auto
show set ([c] @ b) ⊆ invisible using 7 11 by auto
have 12 : Ind (set [c]) (set b1)
proof −

have 1 : set b1 ⊆ sset v using 9 by force
have 2 : Ind (set [c]) (sset v) using 4 by simp
show ?thesis using 1 2 by auto

qed
have [c] @ b =F [c] @ b1 @ b2 using 8 by blast
also have . . . = ([c] @ b1) @ b2 by simp
also have . . . =F (b1 @ [c]) @ b2 using 12 by blast
also have . . . = b1 @ [c] @ b2 by simp
finally show [c] @ b =F b1 @ [c] @ b2 by this
show b1 @− u =I v using 9 by this
have 13 : Ind (set [c]) (sset u)
proof −

have 1 : sset u ⊆ sset v using 9 by force
have 2 : Ind (set [c]) (sset v) using 4 by simp
show ?thesis using 1 2 by blast

qed
show Ind (set ([c] @ b2)) (sset u) using 10 13 by auto

qed
qed

qed
qed

qed

inductive reduced-run :: ′state ⇒ ′action list ⇒ ′action stream ⇒ ′action list
⇒

′action list ⇒ ′action list ⇒ ′action list ⇒ ′action stream ⇒ bool
where

init: reduced-run q [] v [] [] [] [] v |
absorb: reduced-run q v1 ([a] @− v2) l w w1 w2 u =⇒ a ∈ set l =⇒

reduced-run q (v1 @ [a]) v2 (remove1 a l) w w1 w2 u |
extend: reduced-run q v1 ([a] @− v2) l w w1 w2 u =⇒ a /∈ set l =⇒

R.path (b @ [a]) (target w q) =⇒
Ind {a} (set b) =⇒ set b ⊆ invisible =⇒
b =F b1 @ b2 =⇒ [a] @− b1 @− u ′ =I u =⇒ Ind (set b2) (sset u ′) =⇒
reduced-run q (v1 @ [a]) v2 (l @ b1) (w @ b @ [a]) (w1 @ b1 @ [a]) (w2 @

b2) u ′

106



lemma reduced-run-words-fin:
assumes reduced-run q v1 v2 l w w1 w2 u
shows R.path w q
using assms by induct auto

lemma reduced-run-invar-2 :
assumes reduced-run q v1 v2 l w w1 w2 u
shows v2 =I l @− u

using assms
proof induct

case (init q v)
show ?case by simp

next
case (absorb q v1 a v2 l w w1 w2 u)
obtain l1 l2 where 10 : l = l1 @ [a] @ l2 a /∈ set l1

using split-list-first[OF absorb(3 )] by auto
have 11 : Ind {a} (set l1)
proof (rule le-fininf-ind ′)

show [a] �F I l @− u using absorb(2 ) by auto
show l1 �F I l @− u unfolding 10 (1 ) by auto
show a /∈ set l1 using 10 (2 ) by this

qed
have 12 : Ind (set [a]) (set l1) using 11 by auto
have [a] @ remove1 a l = [a] @ l1 @ l2 unfolding 10 (1 ) remove1-append

using 10 (2 ) by auto
also have . . . =F ([a] @ l1) @ l2 by simp
also have . . . =F (l1 @ [a]) @ l2 using 12 by blast
also have . . . = l unfolding 10 (1 ) by simp
finally have 13 : [a] @ remove1 a l =F l by this
have [a] @− remove1 a l @− u = ([a] @ remove1 a l) @− u unfolding

conc-conc by simp
also have . . . =I l @− u using 13 by blast
also have . . . =I [a] @− v2 using absorb(2 ) by auto
finally show ?case by blast

next
case (extend q v1 a v2 l w w1 w2 u b b1 b2 u ′)
have 11 : Ind {a} (set l)
proof (rule le-fininf-ind ′)

show [a] �F I l @− u using extend(2 ) by auto
show l �F I l @− u by auto
show a /∈ set l using extend(3 ) by this

qed
have 11 : Ind (set [a]) (set l) using 11 by auto
have 12 : eq-fin ([a] @ l) (l @ [a]) using 11 by blast
have 131 : set b1 ⊆ set b using extend(7 ) by auto
have 132 : Ind (set [a]) (set b) using extend(5 ) by auto
have 13 : Ind (set [a]) (set b1) using 131 132 by auto
have 14 : eq-fin ([a] @ b1) (b1 @ [a]) using 13 by blast
have [a] @− ((l @ b1) @− u ′) = ([a] @ l) @− b1 @− u ′ by simp
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also have eq-inf . . . ((l @ [a]) @− b1 @− u ′) using 12 by blast
also have . . . = l @− [a] @− b1 @− u ′ by simp
also have eq-inf . . . (l @− u) using extend(8 ) by blast
also have eq-inf . . . ([a] @− v2) using extend(2 ) by auto
finally show ?case by blast

qed

lemma reduced-run-invar-1 :
assumes reduced-run q v1 v2 l w w1 w2 u
shows v1 @ l =F w1

using assms
proof induct

case (init q v)
show ?case by simp

next
case (absorb q v1 a v2 l w w1 w2 u)
have 1 : [a] @− v2 =I l @− u using reduced-run-invar-2 absorb(1 ) by this
obtain l1 l2 where 10 : l = l1 @ [a] @ l2 a /∈ set l1

using split-list-first[OF absorb(3 )] by auto
have 11 : Ind {a} (set l1)
proof (rule le-fininf-ind ′)

show [a] �F I l @− u using 1 by auto
show l1 �F I l @− u unfolding 10 (1 ) by auto
show a /∈ set l1 using 10 (2 ) by this

qed
have 12 : Ind (set [a]) (set l1) using 11 by auto
have [a] @ remove1 a l = [a] @ l1 @ l2 unfolding 10 (1 ) remove1-append

using 10 (2 ) by auto
also have . . . =F ([a] @ l1) @ l2 by simp
also have . . . =F (l1 @ [a]) @ l2 using 12 by blast
also have . . . = l unfolding 10 (1 ) by simp
finally have 13 : [a] @ remove1 a l =F l by this
have w1 =F v1 @ l using absorb(2 ) by auto
also have . . . =F v1 @ ([a] @ remove1 a l) using 13 by blast
also have . . . = (v1 @ [a]) @ remove1 a l by simp
finally show ?case by auto

next
case (extend q v1 a v2 l w w1 w2 u b b1 b2 u ′)
have 1 : [a] @− v2 =I l @− u using reduced-run-invar-2 extend(1 ) by this
have 11 : Ind {a} (set l)
proof (rule le-fininf-ind ′)

show [a] �F I l @− u using 1 by auto
show l �F I l @− u by auto
show a /∈ set l using extend(3 ) by auto

qed
have 11 : Ind (set [a]) (set l) using 11 by auto
have 12 : eq-fin ([a] @ l) (l @ [a]) using 11 by blast
have 131 : set b1 ⊆ set b using extend(7 ) by auto
have 132 : Ind (set [a]) (set b) using extend(5 ) by auto
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have 13 : Ind (set [a]) (set b1) using 131 132 by auto
have 14 : eq-fin ([a] @ b1) (b1 @ [a]) using 13 by blast
have eq-fin (w1 @ b1 @ [a]) (w1 @ [a] @ b1) using 14 by blast
also have eq-fin . . . ((v1 @ l) @ [a] @ b1) using extend(2 ) by blast
also have eq-fin . . . (v1 @ (l @ [a]) @ b1) by simp
also have eq-fin . . . (v1 @ ([a] @ l) @ b1) using 12 by blast
also have . . . = (v1 @ [a]) @ l @ b1 by simp
finally show ?case by auto

qed

lemma reduced-run-invisible:
assumes reduced-run q v1 v2 l w w1 w2 u
shows set w2 ⊆ invisible

using assms
proof induct

case (init q v)
show ?case by simp

next
case (absorb q v1 a v2 l w w1 w2 u)
show ?case using absorb(2 ) by this

next
case (extend q v1 a v2 l w w1 w2 u b b1 b2 u ′)
have 1 : set b2 ⊆ set b using extend(7 ) by auto
show ?case unfolding set-append using extend(2 ) extend(6 ) 1 by blast

qed

lemma reduced-run-ind:
assumes reduced-run q v1 v2 l w w1 w2 u
shows Ind (set w2) (sset u)

using assms
proof induct

case (init q v)
show ?case by simp

next
case (absorb q v1 a v2 l w w1 w2 u)
show ?case using absorb(2 ) by this

next
case (extend q v1 a v2 l w w1 w2 u b b1 b2 u ′)
have 1 : sset u ′ ⊆ sset u using extend(8 ) by force
show ?case using extend(2 ) extend(9 ) 1 unfolding set-append by blast

qed

lemma reduced-run-decompose:
assumes reduced-run q v1 v2 l w w1 w2 u
shows w =F w1 @ w2

using assms
proof induct

case (init q v)
show ?case by simp
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next
case (absorb q v1 a v2 l w w1 w2 u)
show ?case using absorb(2 ) by this

next
case (extend q v1 a v2 l w w1 w2 u b b1 b2 u ′)
have 1 : Ind (set [a]) (set b2) using extend(5 ) extend(7 ) by auto
have 2 : Ind (set w2) (set (b1 @ [a]))
proof −

have 1 : Ind (set w2) (sset u) using reduced-run-ind extend(1 ) by this
have 2 : u =I [a] @− b1 @− u ′ using extend(8 ) by auto
have 3 : sset u = sset ([a] @− b1 @− u ′) using 2 by blast
show ?thesis unfolding set-append using 1 3 by simp

qed
have w @ b @ [a] =F (w1 @ w2) @ b @ [a] using extend(2 ) by blast
also have . . . =F (w1 @ w2) @ (b1 @ b2) @ [a] using extend(7 ) by blast
also have . . . = w1 @ w2 @ b1 @ (b2 @ [a]) by simp
also have . . . =F w1 @ w2 @ b1 @ ([a] @ b2) using 1 by blast
also have . . . =F w1 @ (w2 @ (b1 @ [a])) @ b2 by simp
also have . . . =F w1 @ ((b1 @ [a]) @ w2) @ b2 using 2 by blast
also have . . . =F (w1 @ b1 @ [a]) @ w2 @ b2 by simp
finally show ?case by this

qed

lemma reduced-run-project:
assumes reduced-run q v1 v2 l w w1 w2 u
shows project visible w1 = project visible w

proof −
have 1 : w1 @ w2 =F w using reduced-run-decompose assms by auto
have 2 : set w2 ⊆ invisible using reduced-run-invisible assms by this
have 3 : project visible w2 = [] unfolding filter-empty-conv using 2 by auto
have project visible w1 = project visible w1 @ project visible w2 using 3 by

simp
also have . . . = project visible (w1 @ w2) by simp
also have . . . = list-of (lproject visible (llist-of (w1 @ w2))) by simp
also have . . . = list-of (lproject visible (llist-of w))

using eq-fin-lproject-visible 1 by metis
also have . . . = project visible w by simp
finally show ?thesis by this

qed

lemma reduced-run-length-1 :
assumes reduced-run q v1 v2 l w w1 w2 u
shows length v1 ≤ length w1

using reduced-run-invar-1 assms by force
lemma reduced-run-length:

assumes reduced-run q v1 v2 l w w1 w2 u
shows length v1 ≤ length w

proof −
have length v1 ≤ length w1 using reduced-run-length-1 assms by this
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also have . . . ≤ length w using reduced-run-decompose assms by force
finally show ?thesis by this

qed

lemma reduced-run-step:
assumes q ∈ nodes run (v1 @− [a] @− v2) q
assumes reduced-run q v1 ([a] @− v2) l w w1 w2 u
obtains l ′ w ′ w1

′ w2
′ u ′

where reduced-run q (v1 @ [a]) v2 l ′ (w @ w ′) (w1 @ w1
′) (w2 @ w2

′) u ′

proof (cases a ∈ set l)
case True
show ?thesis
proof (rule that, rule absorb)

show reduced-run q v1 ([a] @− v2) l (w @ []) (w1 @ []) (w2 @ []) u using
assms(3 ) by simp

show a ∈ set l using True by this
qed

next
case False
have 1 : v1 @ l =F w1 using reduced-run-invar-1 assms(3 ) by this
have 2 : [a] @− v2 =I l @− u using reduced-run-invar-2 assms(3 ) by this
have 3 : w =F w1 @ w2 using reduced-run-decompose assms(3 ) by this
have v1 @ l @ w2 = (v1 @ l) @ w2 by simp
also have . . . =F w1 @ w2 using 1 by blast
also have . . . =F w using 3 by blast
finally have 4 : v1 @ l @ w2 =F w by this
have 5 : run ((v1 @ l) @− w2 @− u) q
proof (rule diamond-fin-word-inf-word ′)

show Ind (set w2) (sset u) using reduced-run-ind assms(3 ) by this
have 6 : R.path w q using reduced-run-words-fin assms(3 ) by this
have 7 : path w q using reduction-words-fin assms(1 ) 6 by auto
show path ((v1 @ l) @ w2) q using eq-fin-word 4 7 by auto
have 8 : v1 @− [a] @− v2 =I v1 @− l @− u using 2 by blast
show run ((v1 @ l) @− u) q using eq-inf-word assms(2 ) 8 by auto

qed
have 6 : run (w @− u) q using eq-inf-word 4 5 by (metis eq-inf-concat-end

shift-append)
have 7 : [a] �F I l @− u using 2 by blast
have 8 : [a] �F I u using le-fininf-not-member ′ 7 False by this
obtain u ′ where 9 : u =I [a] @− u ′ using 8 by rule
have 101 : target w q ∈ nodes using assms(1 ) 6 by auto
have 10 : run ([a] @− u ′) (target w q) using eq-inf-word 9 6 by blast
obtain b b1 b2 u ′′ where 11 :

R.path (b @ [a]) (target w q)
Ind {a} (set b) set b ⊆ invisible
b =F b1 @ b2 b1 @− u ′′ =I u ′ Ind (set b2) (sset u ′′)
using reduction-chunk 101 10 by this

show ?thesis
proof (rule that, rule extend)
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show reduced-run q v1 ([a] @− v2) l w w1 w2 u using assms(3 ) by this
show a /∈ set l using False by this
show R.path (b @ [a]) (target w q) using 11 (1 ) by this
show Ind {a} (set b) using 11 (2 ) by this
show set b ⊆ invisible using 11 (3 ) by this
show b =F b1 @ b2 using 11 (4 ) by this
show [a] @− b1 @− u ′′ =I u using 9 11 (5 ) by blast
show Ind (set b2) (sset u ′′) using 11 (6 ) by this

qed
qed

lemma reduction-word:
assumes q ∈ nodes run v q
obtains u w
where

R.run w q
v =I u u �I w
lproject visible (llist-of-stream u) = lproject visible (llist-of-stream w)

proof −
define P where P ≡ λ k w w1. ∃ l w2 u. reduced-run q (stake k v) (sdrop k

v) l w w1 w2 u
obtain w w1 where 1 :

∧
k. P k (w k) (w1 k) chain w chain w1

proof (rule chain-construct-2 ′[of P])
show P 0 [] [] unfolding P-def using init by force

next
fix k w w1

assume 1 : P k w w1

obtain l w2 u where 2 : reduced-run q (stake k v) (sdrop k v) l w w1 w2 u
using 1 unfolding P-def by auto

obtain l ′ w ′ w1
′ w2

′ u ′ where 3 :
reduced-run q (stake k v @ [v !! k]) (sdrop (Suc k) v) l ′ (w @ w ′) (w1 @

w1
′) (w2 @ w2

′) u ′

proof (rule reduced-run-step)
show q ∈ nodes using assms(1 ) by this
show run (stake k v @− [v !! k] @− sdrop (Suc k) v) q

using assms(2 ) by (metis shift-append stake-Suc stake-sdrop)
show reduced-run q (stake k v) ([v !! k] @− sdrop (Suc k) v) l w w1 w2 u

using 2 by (metis sdrop-simps shift.simps stream.collapse)
qed
show ∃ w ′ w1

′. P (Suc k) w ′ w1
′ ∧ w ≤ w ′ ∧ w1 ≤ w1

′

unfolding P-def using 3 by (metis prefix-fin-append stake-Suc)
show k ≤ length w using reduced-run-length 2 by force
show k ≤ length w1 using reduced-run-length-1 2 by force

qed rule
obtain l w2 u where 2 :∧

k. reduced-run q (stake k v) (sdrop k v) (l k) (w k) (w1 k) (w2 k) (u k)
using 1 (1 ) unfolding P-def by metis

show ?thesis
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proof
show R.run (Word-Prefixes.limit w) q using reduced-run-words-fin 1 (2 ) 2

by blast
show v =I Word-Prefixes.limit w1

proof
show v �I Word-Prefixes.limit w1

proof (rule le-infI-chain-right ′)
show chain w1 using 1 (3 ) by this
show

∧
k. stake k v �F w1 k using reduced-run-invar-1 [OF 2 ] by auto

qed
show Word-Prefixes.limit w1 �I v
proof (rule le-infI-chain-left)

show chain w1 using 1 (3 ) by this
next

fix k
have w1 k =F stake k v @ l k using reduced-run-invar-1 2 by blast
also have . . . ≤F I stake k v @− l k @− u k by auto
also have . . . =I stake k v @− sdrop k v using reduced-run-invar-2 [OF

2 ] by blast
also have . . . = v by simp
finally show w1 k �F I v by this

qed
qed
show Word-Prefixes.limit w1 �I Word-Prefixes.limit w
proof (rule le-infI-chain-left)

show chain w1 using 1 (3 ) by this
next

fix k
have w1 k �F w k using reduced-run-decompose[OF 2 ] by blast

also have . . . ≤F I Word-Prefixes.limit w using chain-prefix-limit 1 (2 ) by
this

finally show w1 k �F I Word-Prefixes.limit w by this
qed
show lproject visible (llist-of-stream (Word-Prefixes.limit w1)) =

lproject visible (llist-of-stream (Word-Prefixes.limit w))
using lproject-eq-limit-chain reduced-run-project 1 unfolding P-def by

metis
qed

qed

lemma reduction-equivalent:
assumes q ∈ nodes run u q
obtains v
where R.run v q snth (smap int (q ## trace u q)) ≈ snth (smap int (q ##

trace v q))
proof −

obtain v w where 1 : R.run w q u =I v v �I w
lproject visible (llist-of-stream v) = lproject visible (llist-of-stream w)
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using reduction-word assms by this
show ?thesis
proof

show R.run w q using 1 (1 ) by this
show snth (smap int (q ## trace u q)) ≈ snth (smap int (q ## trace w q))
proof (rule execute-inf-visible)

show run u q using assms(2 ) by this
show run w q using reduction-words-inf assms(1 ) 1 (1 ) by auto
have u =I v using 1 (2 ) by this
also have . . . �I w using 1 (3 ) by this
finally show u �I w by this
show w �I w by simp
have lproject visible (llist-of-stream u) = lproject visible (llist-of-stream v)

using eq-inf-lproject-visible 1 (2 ) by this
also have . . . = lproject visible (llist-of-stream w) using 1 (4 ) by this

finally show lproject visible (llist-of-stream u) = lproject visible (llist-of-stream
w) by this

qed
qed

qed

lemma reduction-language-subset: R.language ⊆ S .language
unfolding S .language-def R.language-def using reduction-words-inf by blast

lemma reduction-language-stuttering:
assumes u ∈ S .language
obtains v
where v ∈ R.language snth u ≈ snth v

proof −
obtain q v where 1 : u = smap int (q ## trace v q) init q S .run v q using

assms by rule
obtain v ′ where 2 : R.run v ′ q snth (smap int (q ## trace v q)) ≈ snth

(smap int (q ## trace v ′ q))
using reduction-equivalent 1 (2 , 3 ) by blast

show ?thesis
proof (intro that R.languageI )

show smap int (q ## trace v ′ q) = smap int (q ## trace v ′ q) by rule
show init q using 1 (2 ) by this
show R.run v ′ q using 2 (1 ) by this
show snth u ≈ snth (smap int (q ## trace v ′ q)) unfolding 1 (1 ) using

2 (2 ) by this
qed

qed

end

end
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19 LTL Formulae
theory Formula
imports

Basics/Stuttering
Stuttering-Equivalence.PLTL

begin

locale formula =
fixes ϕ :: ′a pltl

begin

definition language :: ′a stream set
where language ≡ {w. snth w |=p ϕ}

lemma language-entails[iff ]: w ∈ language ←→ snth w |=p ϕ unfolding lan-
guage-def by simp

end

locale formula-next-free =
formula ϕ
for ϕ :: ′a pltl
+
assumes next-free: next-free ϕ

begin

lemma stutter-equivalent-entails[dest]: u ≈ v =⇒ u |=p ϕ ←→ v |=p ϕ
using next-free-stutter-invariant next-free by blast

end

end

20 Correctness Theorem of Partial Order Reduc-
tion

theory Ample-Correctness
imports

Ample-Abstract
Formula

begin

locale ample-correctness =
S : transition-system-complete ex en init int +
R: transition-system-complete ex ren init int +
F : formula-next-free ϕ +
ample-abstract ex en init int ind src ren
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for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
and int :: ′state ⇒ ′interpretation
and ind :: ′action ⇒ ′action ⇒ bool
and src :: ′state ⇒ ′state ⇒ bool
and ren :: ′action ⇒ ′state ⇒ bool
and ϕ :: ′interpretation pltl

begin

lemma reduction-language-indistinguishable:
assumes R.language ⊆ F .language
shows S .language ⊆ F .language

proof
fix u
assume 1 : u ∈ S .language

obtain v where 2 : v ∈ R.language snth u ≈ snth v using reduction-language-stuttering
1 by this

have 3 : v ∈ F .language using assms 2 (1 ) by rule
show u ∈ F .language using 2 (2 ) 3 by auto

qed

theorem reduction-correct: S .language ⊆ F .language←→ R.language ⊆ F .language
using reduction-language-subset reduction-language-indistinguishable by blast

end

end

21 Static Analysis for Partial Order Reduction
theory Ample-Analysis
imports

Ample-Abstract
begin

locale transition-system-ample =
transition-system-sticky ex en init int sticky +
transition-system-interpreted-traces ex en int ind
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
and int :: ′state ⇒ ′interpretation
and sticky :: ′action set
and ind :: ′action ⇒ ′action ⇒ bool

begin

sublocale ample-base ex en int ind scut−1−1 by unfold-locales
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lemma restrict-ample-set:
assumes s ∈ nodes
assumes A ∩ {a. en a s} 6= {} A ∩ {a. en a s} ∩ sticky = {}
assumes Ind (A ∩ {a. en a s}) (executable − A)
assumes

∧
w. path w s =⇒ A ∩ {a. en a s} ∩ set w = {} =⇒ A ∩ set w =

{}
shows ample-set s (A ∩ {a. en a s})

unfolding ample-set-def
proof (intro conjI allI impI )

show A ∩ {a. en a s} ⊆ {a. en a s} by simp
next

show A ∩ {a. en a s} 6= {} using assms(2 ) by this
next

fix a
assume 1 : a ∈ A ∩ {a. en a s}
show scut−1−1 (ex a s) s
proof (rule no-cut-scut)

show s ∈ nodes using assms(1 ) by this
show en a s using 1 by simp
show a /∈ sticky using assms(3 ) 1 by auto

qed
next

have 1 : A ∩ {a. en a s} ⊆ executable using executable assms(1 ) by blast
show A ∩ {a. en a s} ⊆ invisible using executable-visible-sticky assms(3 ) 1

by blast
next

fix w
assume 1 : path w s A ∩ {a. en a s} ∩ set w = {}
have 2 : A ∩ set w = {} using assms(5 ) 1 by this
have 3 : set w ⊆ executable using assms(1 ) 1 (1 ) by rule
show Ind (A ∩ {a. en a s}) (set w) using assms(4 ) 2 3 by blast

qed

end

locale transition-system-concurrent =
transition-system-initial ex en init
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
+
fixes procs :: ′state ⇒ ′process set
fixes pac :: ′process ⇒ ′action set
fixes psen :: ′process ⇒ ′state ⇒ ′action set
assumes procs-finite: s ∈ nodes =⇒ finite (procs s)
assumes psen-en: s ∈ nodes =⇒ pac p ∩ {a. en a s} ⊆ psen p s
assumes psen-ex: s ∈ nodes =⇒ a ∈ {a. en a s} − pac p =⇒ psen p (ex a s)

= psen p s
begin
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lemma psen-fin-word:
assumes s ∈ nodes path w s pac p ∩ set w = {}
shows psen p (target w s) = psen p s

using assms(2 , 1 , 3 )
proof induct

case (nil s)
show ?case by simp

next
case (cons a s w)
have 1 : ex a s ∈ nodes using cons(4 , 1 ) by rule
have psen p (target (a # w) s) = psen p (target w (ex a s)) by simp
also have . . . = psen p (ex a s) using cons 1 by simp
also have . . . = psen p s using psen-ex cons by simp
finally show ?case by this

qed

lemma en-fin-word:
assumes

∧
r a b. r ∈ nodes =⇒ a ∈ psen p s − {a. en a s} =⇒ b ∈ {a. en

a r} − pac p =⇒
en a (ex b r) =⇒ en a r

assumes s ∈ nodes path w s pac p ∩ set w = {}
shows pac p ∩ {a. en a (target w s)} ⊆ pac p ∩ {a. en a s}

using assms
proof (induct w rule: rev-induct)

case Nil
show ?case by simp

next
case (snoc b w)
show ?case
proof (safe, rule ccontr)

fix a
assume 2 : a ∈ pac p en a (target (w @ [b]) s) ¬ en a s
have 3 : a ∈ psen p s
proof −
have 3 : psen p (target (w @ [b]) s) = psen p s using psen-fin-word snoc(3 ,

4 , 5 ) by this
have 4 : target (w @ [b]) s ∈ nodes using snoc(3 , 4 ) by rule
have 5 : a ∈ psen p (target (w @ [b]) s) using psen-en 4 2 (1 , 2 ) by auto
show ?thesis using 2 (1 ) 3 5 by auto

qed
have 4 : en a (target w s)
proof (rule snoc(2 ))

show target w s ∈ nodes using snoc(3 , 4 ) by auto
show a ∈ psen p s − {a. en a s} using 2 (3 ) 3 by simp
show b ∈ {a. en a (target w s)} − pac p using snoc(4 , 5 ) by auto
show en a (ex b (target w s)) using 2 (2 ) by simp

qed
have 5 : pac p ∩ {a. en a (target w s)} ⊆ pac p ∩ {a. en a s}
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proof (rule snoc(1 ))
show

∧
r a b. r ∈ nodes =⇒ a ∈ psen p s − {a. en a s} =⇒ b ∈ {a. en

a r} − pac p =⇒
en a (ex b r) =⇒ en a r using snoc(2 ) by this

show s ∈ nodes using snoc(3 ) by this
show path w s using snoc(4 ) by auto
show pac p ∩ set w = {} using snoc(5 ) by auto

qed
have 6 : en a s using 2 (1 ) 4 5 by auto
show False using 2 (3 ) 6 by simp

qed
qed

lemma pac-en-blocked:
assumes

∧
r a b. r ∈ nodes =⇒ a ∈ psen p s − {a. en a s} =⇒ b ∈ {a. en

a r} − pac p =⇒
en a (ex b r) =⇒ en a r

assumes s ∈ nodes path w s pac p ∩ {a. en a s} ∩ set w = {}
shows pac p ∩ set w = {}
using words-fin-blocked en-fin-word assms by metis

abbreviation proc a ≡ {p. a ∈ pac p}
abbreviation Proc A ≡

⋃
a ∈ A. proc a

lemma psen-simple:
assumes Proc (psen p s) = {p}
assumes

∧
r a b. r ∈ nodes =⇒ a ∈ psen p s − {a. en a s} =⇒ en b r =⇒

proc a ∩ proc b = {} =⇒ en a (ex b r) =⇒ en a r
shows

∧
r a b. r ∈ nodes =⇒ a ∈ psen p s − {a. en a s} =⇒ b ∈ {a. en a

r} − pac p =⇒
en a (ex b r) =⇒ en a r

using assms by force

end

end
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