Partial Order Reduction

Julian Brunner

March 17, 2025

Abstract

This entry provides a formalization of the abstract theory of ample
set partial order reduction as presented in [2, 1]. The formalization
includes transition systems with actions, trace theory, as well as ba-
sics on finite, infinite, and lazy sequences. We also provide a basic
framework for static analysis on concurrent systems with respect to
the ample set condition.

Contents

1 List Prefixes

2 Lists

3 Finite Prefixes of Infinite Sequences

4 Sets

5 Basics
5.1 Types o
52 Rules.
5.3 Constants
5.4 Theorems for Qtermcurry and Qtermsplit

6 Relations

7 Transition Systems

8 Trace Theory

9 Transition Systems and Trace Theory

10 Functions

11 Extended Natural Numbers

11

18
18
18
19
21

23

25

30

50

53

55

12 Chain-Complete Partial Orders
13 Sets and Extended Natural Numbers

14 Coinductive Lists
14.1 Index Sets
14.2 Selections e

15 Prefixes on Coinductive Lists

16 Stuttering

17 Interpreted Transition Systems and Traces

18 Abstract Theory of Ample Set Partial Order Reduction
19 LTL Formulae

20 Correctness Theorem of Partial Order Reduction

21 Static Analysis for Partial Order Reduction

1 List Prefixes

theory List-Prefizes
imports HOL— Library. Prefiz-Order
begin

lemmas [intro] = prefizl strict-prefizl|[folded less-eq-list-def]
lemmas [elim] = prefixE strict-prefixE[folded less-eq-list-def]

lemmas [intro?] = take-is-prefix|folded less-eq-list-def]
hide-const (open) Sublist.prefix Sublist.suffiz

lemma prefiz-finl-item[introl]:
assumes a = bu < v
shows a # u < b # v
using assms by force

lemma prefiz-finE-item[elim!]:
assumes a # u < b # v
obtains a = bu < w
using assms by force

lemma prefiz-fin-append|intro]: u < u Q v by auto
lemma pprefiz-fin-length[dest]:

assumes u < v

shows length u < length v

55

59

70
7
79

87

89

94

100

115

115

116

proof —
obtain ¢ w where 1: v = u @Q a # w using assms by rule
show ?thesis unfolding 1 by simp

qed

end

2 Lists

theory List-FExtensions
imports HOL— Library.Sublist
begin

declare removel-idem[simp]

lemma nth-append-simps|simp]:
i < lengthzs = (zs Q ys) ! i = zs | ¢
i > length xs = (s Q ys) ¢ = ys | (¢ — length zs)
unfolding nth-append by simp+

notation zip (infixr «<||> 51)

abbreviation project A = filter (A a. a € A)
abbreviation select s w = nths w s

lemma map-plus[simp]: map (plus n) [i ..< jl=[i + n .<j+ n]
proof (induct n)
case (
show ?case by simp
next
case (Suc n)
have map (plus (Suc n)) [i ..< j] = map (Suc o plus n) [i ..< j] by simp

also have ... = (map Suc o map (plus n)) [i ..< j] by simp
also have ... = map Suc (map (plus n) [i ..< j]) by simp
also have ... = map Suc [i + n ..< j + n] unfolding Suc by simp
also have ... = [Suc (i + n) ..< Suc (j + n)] unfolding map-Suc-upt by simp
also have ... = [i + Suc n ..< j + Suc n] by simp
finally show ?case by this
qed

lemma singleton-list-lengthE]elim):
assumes length xs = 1
obtains z
where zs = [z]
proof —
have 0: length s = Suc 0 using assms by simp
obtain y ys where 1: zs = y # ys length ys = 0 using 0 Suc-length-conv by
metis
show ?thesis using that 1 by blast

qed
lemma singleton-hd-last: length xs = 1 = hd zs = last xs by fastforce

lemma set-subsetI[intro]:
assumes)\ i. 7 < length xs = zs i € S
shows set zs C S
proof
fix z
assume 0: x € set zs
obtain i where 1: i < length zs x = xs ! ¢ using 0 unfolding in-set-conv-nth
by blast
show z € S using assms(1) 1 by auto
qed

lemma hd-take[simp]:
assumes n # 0 zs # ||
shows hd (take n xs) = hd zs
proof —
have 1: take n zs # [] using assms by simp
have 2: 0 < n using assms by simp
have hd (take n zs) = take n xzs ! 0 using hd-conv-nth[OF 1] by this

also have ... = zs | 0 using nth-take[OF 2] by this
also have ... = hd zs using hd-conv-nth[OF assms(2)] by simp
finally show ?thesis by this

qged

lemma hd-drop|simp]:

assumes n < length xs

shows hd (drop n zs) = xs | n

using hd-drop-conv-nth assms by this
lemma last-take[simp):

assumes n < length xs

shows last (take (Suc n) zs) = zs ! n
using assms
proof (induct xs arbitrary: n)

case (Nil)
show ?case using Nil by simp
next

case (Cons z zs)
show ?case using Cons by (auto) (metis Suc-less-eq Suc-pred)
qed

lemma split-list-first-unique:
assumes u; @ [a] @ uy = v1 Q [a] Q@ vo a & set uy a ¢ set vy
shows u; = v;
proof —
obtain w where u; = v; @ w A w @ [a] @ uy = [a] @ vy V
u Qw=uv; A[a] Quy =w Q [a] Q vy using assms(1) append-eq-append-conv2
by blast

thus ?thesis using assms(2, 3) by (auto) (metis hd-append?2 list.sel(1) list.set-sel(1))+
qed

end

3 Finite Prefixes of Infinite Sequences

theory Word-Prefixes
imports
List-Prefizes
../ Extensions/ List-Extensions
Transition-Systems-and-Automata.Sequence
begin

definition prefiz-fininf :: 'a list = 'a stream = bool (infix «<pp> 50)
where v <prv=3 w. v Q- w=v

lemma prefiz-fininfI [intro]:

assumes v Q— w = v

shows u <pj v

using assms unfolding prefiz-fininf-def by auto
lemma prefiz-fininfE|[elim]:

assumes u <pgy v

obtains w

where v = v Q— w

using assms unfolding prefiz-fininf-def by auto

lemma prefiz-fininflI-empty[introl]: [| <p; w by force
lemma prefiz-fininfI-item[intro!]:

assumes a = b u <pr v

shows a # u <py b ## v

using assms by force
lemma prefiz-fininfE-item[elim!]:

assumes a # u <p; b #H#H v

obtains a = b u <pr v

using assms by force

lemma prefiz-fininf-item[simp]: a # v <p; a ## v +— u <p; v by force

lemma prefiz-fininf-list[simp]: w Q u <p; w Q— v +— u <p; v by (induct w,
auto)

lemma prefiz-fininf-conclintro]: v <pr u @— v by auto

lemma prefiz-fininf-prefix[intro|: stake k w <p; w using stake-sdrop by blast

lemma prefiz-fininf-set-rangeldest]: uw <pj v = set u C sset v by auto

lemma prefiz-fininf-absorb:
assumes u <p; v Q— w length u < length v
shows v < v
proof —
obtain x where /: © @Q— z = v @— w using assms(1) by auto

have u < u @ stake (length v — length u) x by rule

also have ... = stake (length v) (u Q— z) using assms(2) by (simp add:
stake-shift)
also have ... = stake (length v) (v @— w) unfolding 1 by rule
also have ... = v using eg-shift by blast
finally show ?%thesis by this
qed

lemma prefiz-fininf-extend:
assumes u <p; v Q— w length v < length u
shows v < u
proof —
obtain x where /: © @Q— £ = v @— w using assms(1) by auto
have v < v @ stake (length u — length v) w by rule

also have ... = stake (length u) (v @Q— w) using assms(2) by (simp add:
stake-shift)
also have ... = stake (length u) (v @— z) unfolding 1 by rule
also have ... = u using eq-shift by blast
finally show ?thesis by this
qed

lemma prefiz-fininf-length:
assumes u <p; w v <p; w length u < length v
shows u < v
proof —
obtain v’ v’ where 1: w = v @— u' w = v @— v’ using assms(I, 2) by
blast+
have u = stake (length u) (v @Q— u') using shift-eq by blast

also have ... = stake (length u) w unfolding 1(1) by rule
also have ... = stake (length u) (v @Q— v’) unfolding 1(2) by rule
also have ... = take (length u) v using assms by (simp add: min.absorb2
stake-append)
also have ... < v by rule
finally show ?thesis by this
qed

lemma prefiz-fininf-append:

assumes u <p; v Q— w

obtains (absorb) u < v | (extend) z where v = v Q z z <p; w
proof (cases length u length v rule: le-cases)

case le

obtain z where /: © @Q— z = v @— w using assms(1) by auto

show ?thesis

proof (rule absorb)

have u < u @ stake (length v — length u) x by rule

also have ... = stake (length v) (v Q— z) using le by (simp add: stake-shift)
also have ... = stake (length v) (v @— w) unfolding 1 by rule
also have ... = v using eg-shift by blast
finally show v < v by this
qed
next

case ge
obtain z where /: © @Q— £ = v @— w using assms(1) by auto
show ?thesis
proof (rule extend)
have u = stake (length u) (v @Q— z) using shift-eq by auto
also have ... = stake (length u) (v @— w) unfolding 1 by rule
also have ... = v @ stake (length u — length v) w using ge by (simp add:
stake-shift)
finally show u = v @ stake (length u — length v) w by this
show stake (length u — length v) w <pr w by rule
qed
qed

lemma prefiz-fin-prefiz-fininf-trans[trans, intro]: u < v = v <p; W = u <pg
w
by (metis Prefiz-Order.prefizE prefiz-fininf-def shift-append)

lemma prefiz-finE-nth:
assumes u < v 1 < length u
shows u!i=v!1¢
proof —
obtain w where 1: v = v @ w using assms(1) by auto
show ?thesis unfolding 1 using assms(2) by (simp add: nth-append)
qed
lemma prefiz-fininfl-nth:
assumes A\ 1. { < lengthu = u!i=w!li
shows u <p; w
proof (rule prefiz-fininfI)
show u Q— sdrop (length u) w = w by (simp add: assms list-eq-iff-nth-eq
shift-eq)
qed

definition chain :: (nat = 'a list) = bool

where chain w = mono w A (V k. 3 1. k < length (w 1))
definition limit :: (nat = 'a list) = 'a stream

where limit w = smap (A k. w (SOME 1. k < length (w 1)) ! k) nats

lemma chainl[intro?):

assumes mono w

assumes A k. 3 [k < length (w 1)

shows chain w

using assms unfolding chain-def by auto
lemma chainD-mono|dest?):

assumes chain w

shows mono w

using assms unfolding chain-def by auto
lemma chainE-length]elim?):

assumes chain w

obtains [

where k < length (w)
using assms unfolding chain-def by auto

lemma chain-prefix-limit:
assumes chain w
shows w k <py limit w
proof (rule prefiz-fininfI-nth)
fix ¢
assume [: i < length (w k)
have 2: mono w A\ k. 3 1. k < length (w) using chainD-mono chainE-length
assms by blast+
have 3: i < length (w (SOME I. i < length (w 1))) using somel-ex 2(2) by
this
show w k! i = limit w!! 4
proof (cases k SOME l. i < length (w l) rule: le-cases)
case (le)
have /: wk < w (SOME l. i < length (w 1)) using monoD 2(1) le by this
show ?thesis unfolding limit-def using prefix-finE-nth 4 1 by auto
next
case (ge)
have /: w (SOME . i < length (w 1)) < w k using monoD 2(1) ge by this
show ?thesis unfolding limit-def using prefix-finE-nth / 3 by auto
qed
qed

lemma chain-construct-1:
assumes P 0 zg AN kz. Pkz = 3 z'. P (Suck) 2/ AN fz < faf
assumes A\ kz. P kz = k < length (f)

obtains
where A k. Pk (Q k) chain (f o Q)
proof —

obtain z’ where 1:
POxg Nkz. Pko = P (Suck) (' k) Nfao<f(z'kx)
using assms(1, 2) by metis
define Q where @ = rec-nat zg =’
have [simp]: Q 0 = 29 A\ k. Q (Suc k) = 2’ k (Q k) unfolding Q-def by
stmp+
have 2: A k. Pk (Qk)
proof —
fix k
show P k (Q k) using I by (induct k, auto)
qed
show ?thesis
proof (intro that chainl monol, unfold comp-apply)
fix k
show P k (Q k) using 2 by this
next
fix ¢ y :: nat
assume z < y

thus f (Q z) < f (Qy)

proof (induct y — z arbitrary: = y)
case ()
show ?case using 0 by simp
next
case (Suc k)
have f (Q z) < f (Q (Suc z)) using 1(2) 2 by auto
also have ... < f (Q y) using Suc(2) by (intro Suc(1), auto)
finally show ?case by this
qed
next
fix k
have 3: P (Suc k) (Q (Suc k)) using 2 by this
have /: Suc k < length (f (Q (Suc k))) using assms(3) 3 by this
have 5: k < length (f (Q (Suc k))) using 4 by auto
show 3 I. k < length (f (Q 1)) using 5 by blast
qed
qed
lemma chain-construct-2:
assumes POxzg A kz. Pka = 3 2’. P (Suck) ' ANfz < fa'ANgax<gz'
assumes A\ kz. Pka = k < length (fz) N kz. Pkaz = k < length (g z)
obtains ()
where A k. Pk (Q k) chain (f o Q) chain (g o Q)
proof —
obtain z’ where 1:
POxo Nkaz. Pkx = P (Suck) (' k) ANfa<f(z'kax)Nga<g(z
k x)
using assms(1, 2) by metis
define Q where @ = rec-nat zg =’
have [simp]: Q 0 = 29 A\ k. Q (Suc k) = 2’ k (Q k) unfolding Q-def by
stmp+
have 2: A k. Pk (Q k)
proof —
fix k
show P k (Q k) using I by (induct k, auto)
qed
show ?thesis
proof (intro that chainl monol, unfold comp-apply)
fix k
show P k (Q k) using 2 by this
next
fix z y :: nat
assume z < y
thus f (Q) < f (Qy)
proof (induct y — z arbitrary: = y)
case ()
show ?case using 0 by simp
next
case (Suc k)

have f (Q z) < f (Q (Suc z)) using 1(2) 2 by auto
also have ... < f (Q y) using Suc(2) by (intro Suc(1), auto)
finally show ?case by this
qed
next
fix k
have 3: P (Suc k) (Q (Suc k)) using 2 by this
have 4: Suc k < length (f (@ (Suc k))) using assms(3) 3 by this
have 5: k < length (f (Q (Suc k))) using 4 by auto
show 3 [. k < length (f (Q 1)) using 5 by blast
next
fix z y :: nat
assume z < y
thus g (Qz) < g (Qy)
proof (induct y — x arbitrary: x y)
case (
show ?case using 0 by simp
next
case (Suc k)
have ¢ (Q z) < ¢ (Q (Suc z)) using 1(2) 2 by auto
also have ... < g (Q y) using Suc(2) by (intro Suc(1), auto)
finally show ?case by this
qed
next
fix k
have 3: P (Suc k) (Q (Suc k)) using 2 by this
have 4: Suc k < length (g (@ (Suc k))) using assms(4) 3 by this
have 5: k < length (g (Q (Suc k))) using 4 by auto
show 3 [. k < length (g (Q 1)) using 5 by blast
qed
qed
lemma chain-construct-2".
assumes P O ug vo A kuv. Pkuv= 3 u' v. P (Suck) v v'ANu<u A
v < v
assumes A kuwv. Pkuv =k <lengthu A kuv. Pkuv= k < length v
obtains v v
where A k. Pk (u k) (v k) chain u chain v
proof —
obtain @) where 1: A k. (case-prod o P) k (Q k) chain (fst o Q) chain (snd
° Q)
proof (rule chain-construct-2)
show 3 z'. (case-prod o P) (Suc k) ' A fst z < fstx’ A snd x < snd z’
if (case-prod o P) k x for k x using assms that by auto
show (case-prod o P) 0 (ug, vg) using assms by auto
show k < length (fst z) if (case-prod o P) k x for k z using assms that by
auto
show k < length (snd) if (case-prod o P) k x for k z using assms that by
auto
qed rule

10

show ?thesis
proof
show P k ((fst o Q) k) ((snd o Q) k) for k using 1(1) by (auto simp:
prod.case-eq-if)
show chain (fst o Q) chain (snd o Q) using 1(2, 3) by this
qed
qed

end

4 Sets

theory Set-Extensions
imports

HOL- Library.Infinite-Set
begin

declare finite-subset[intro]

lemma set-not-emptyl[intro 0]: z € S = S # {} by auto
lemma sets-empty-iffI[intro 0]:
assumes \ a. a € A= 3 b. be B
assumes \ b. b€ B= 3 a.a € A
shows A = {} +— B={}
using assms by auto
lemma disjointl[intro 0]:
assumes A\ z. z € A = z € B = Fulse
shows A N B = {}
using assms by auto
lemma range-subsetl[intro 0]:
assumes A\ z. fz € S
shows range f C S
using assms by blast

lemma finite-imagel-range:
assumes finite (range f)
shows finite (f © A)

using finite-subset image-mono subset-UNIV assms by metis

lemma inf-img-fin-domE":

assumes nfinite A

assumes finite (f < A)

obtains y

where y € f ¢ A infinite (AN f —{y})
proof (rule ccontr)

assume [: - thesis

have 2: finite (J ye f A . Anf —{y})

proof (rule finite-UN-I)

show finite (f ¢ A) using assms(2) by this

11

show A\ y. y € f A = finite (AN f —*{y}) using that 1 by blast
qed
have 3: AC (Jyef A Anf—{y}) by blast
show Fulse using assms(1) 2 8 by blast
qed

lemma vimage-singleton[simp: f —‘{y} = {z. fx = y} unfolding vimage-def
by simp

lemma these-alt-def: Option.these S = Some —‘ S unfolding Option.these-def
by force
lemma the-vimage-subset: the — {a} C {None, Some a} by auto

lemma finite-induct-reverse[consumes 1, case-names remove):
assumes finite S
assumes A S. finite S = (Nz.z2€ S= P (S — {z})) = P S
shows P §
using assms(1)
proof (induct rule: finite-psubset-induct)
case (psubset S)
show Zcase
proof (rule assms(2))
show finite S using psubset(1) by this
next
fix z
assume 0: z € S
show P (S — {z})
proof (rule psubset(2))
show S — {z} C S using 0 by auto
qed
qed
qed

lemma zero-not-in-Suc-image[simp]: 0 ¢ Suc * A by auto

lemma Collect-split-Suc:
- P00 = {i. Pi} = Suc ‘{i. P (Suci)}
PO = {i. Pi} ={0} U Suc ‘{i. P (Suci)}
proof —
assume - P (
thus {i. P i} = Suc ‘ {i. P (Suc 7)}
by (auto, metis image-eql mem-Collect-eq nat.exhaust)
next
assume P (
thus {7. P i} = {0} U Suc ‘ {i. P (Suc i)}
by (auto, metis imagel mem-Collect-eq not0-implies-Suc)
qed

lemma Collect-subsume[simp]:

12

assumes \ z.z € A= Pz
shows {z € A. Pz} = A
using assms unfolding simp-implies-def by auto

lemma Maz-ge”
assumes finite A A # {}
assumes b € A a <)
shows a < Maz A
using assms Maz-ge-iff by auto

abbreviation least A = LEAST k. k€ A

lemma least-contains|intro?, simp):

fixes A :: 'a :: wellorder set

assumes k € A

shows least A € A

using assms by (metis Leastl)
lemma least-contains’[intro?, simpl:

fixes A :: 'a :: wellorder set

assumes A # {}

shows least A € A

using assms by (metis Leastl equalsOI)
lemma least-least[intro?, simp]:

fixes A :: 'a :: wellorder set

assumes k € A

shows least A < k

using assms by (metis Least-le)
lemma least-unique:

fixes A :: ‘a :: wellorder set

assumes k € A k < least A

shows k = least A

using assms by (metis Least-le antisym)
lemma least-not-less:

fixes A :: ‘a :: wellorder set

assumes k < least A

shows k ¢ A

using assms by (metis not-less-Least)
lemma leastI2-order[simp]:

fixes A :: ‘a :: wellorder set

assumes A # {} Ak ke A= (ANl.le A= k<)== Pk

shows P (least A)
proof (rule LeastI2-order)

show least A € A using assms(1) by rule
next

fix k

assume [: k € A

show least A < k using 1 by rule
next

fix k

13

assume [: ke AV Ile A— k<]
show P k using assms(2) 1 by auto
qed

lemma least-singleton|[simp:
fixes a :: ‘a :: wellorder
shows least {a} = a

by (metis insert-not-empty least-contains’ singletonD)

lemma least-image[simp]:
fixes [:: 'a :: wellorder = 'b :: wellorder
assumes A # {} Nkl ke A=lc A= k<= fk<fl
shows least (f ¢ A) = f (least A)
proof (rule leastI2-order)
show A # {} using assms(1) by this
next
fix k
assume It k€ ANi. i€ A= k<1
show least (f ‘A) = fk
proof (rule leastI2-order)
show f ‘A # {} using assms(1) by simp
next
fix [
assume 2: e fANiief A= 1<1
show | = f k using assms(2) 1 2 by force
qged
qed

lemma least-le:
fixes A B :: 'a :: wellorder set
assumes B # {}
assumes A\ i. ¢ < least A = i < least B=—= i€ B= i€ A
shows least A < least B
proof (rule ccontr)
assume 1: — least A < least B
have 2: least B € A using assms(1, 2) 1 by simp
have 3: least A < least B using 2 by rule
show Fulse using 1 8 by rule
qed
lemma least-eq:
fixes A B :: 'a :: wellorder set
assumes A # {} B # {}
assumes A i. ¢ < least A = i < least B=—= i € A+— i€ B
shows least A = least B
using assms by (auto intro: antisym least-le)

lemma least-Suc[simpl:

assumes A # {}
shows least (Suc © A) = Suc (least A)

14

proof (rule antisym)
obtain k£ where 10: k € A using assms by blast
have 11: Suc k € Suc ‘ A using 10 by auto
have 20: least A € A using 10 Least] by metis
have 21: least (Suc ‘ A) € Suc * A using 11 Least] by metis
have 30: \ I. 1 € A = least A < [using 10 Least-le by metis
have 31: A\ I. | € Suc * A = least (Suc * A) < | using 11 Least-le by metis
show least (Suc ‘ A) < Suc (least A) using 20 31 by auto
show Suc (least A) < least (Suc ¢ A) using 21 30 by auto
qged

lemma least-Suc-diff[simp]: Suc ¢ A — {least (Suc * A)} = Suc ‘(A — {least A})
proof (cases A = {})

case True

show ?thesis unfolding True by simp
next

case False

have Suc ‘ A — {least (Suc ‘ A)} = Suc * A — {Suc (least A)} using Fualse by

simp

also have ... = Suc ‘ A — Suc ‘ {least A} by simp
also have ... = Suc ‘ (A — {least A}) by blast
finally show ?%thesis by this

qed

lemma Maz-diff-least|simp]:
fixes A :: 'a :: wellorder set
assumes finite A A — {least A} # {}
shows Mazx (A — {least A}) = Max A
proof —
have 1: least A € A using assms(2) by auto
obtain a where 2: ¢ € A — {least A} using assms(2) by blast
have Maz A = Mazx (insert (least A) (A — {least A})) using insert-absorb 1
by force
also have ... = maz (least A) (Maz (A — {least A}))
proof (rule Maz-insert)
show finite (A — {least A}) using assms(1) by auto
show A — {least A} # {} using assms(2) by this
qed
also have ... = Maz (A — {least A})
proof (rule maz-absorb2, rule Maz-ge’)
show finite (A — {least A}) using assms(1) by auto
show A — {least A} # {} using assms(2) by this
show a € A — {least A} using 2 by this
show least A < a using 2 by simp
qed
finally show ?thesis by rule
qed

lemma nat-set-card-equality-less:

15

fixes A :: nat set
assumes z € Ay € Acard {z € A. z < z} = card {z € A. z < y}
shows z = y
proof (cases z y rule: linorder-cases)
case less
have 0: finite {z € A. z < y} by simp
have 1: {z € A. z < 2z} C {z € A. z < y} using assms(1, 2) less by force
have 2: card {z € A. z < z} < card {z € A. z < y} using psubset-card-mono
0 1 by this
show ?thesis using assms(3) 2 by simp
next
case equal
show ?thesis using equal by this
next
case greater
have 0: finite {z € A. z < z} by simp
have 1: {z € A. z < y} C {z € A. z < z} using assms(1, 2) greater by force
have 2: card {z € A. z < y} < card {z € A. z < z} using psubset-card-mono
0 1 by this
show ?thesis using assms(3) 2 by simp
qged

lemma nat-set-card-equality-le:
fixes A :: nat set
assumes 2 € Ay € Acard {z € A. 2 <z} =card {z € A. 2 < y}
shows z = y
proof (cases x y rule: linorder-cases)
case less
have 0: finite {z € A. z < y} by simp
have 1: {z € A. z <z} C {2z € A. z < y} using assms(1, 2) less by force
have 2: card {z € A. z < 2} < card {z € A. z < y} using psubset-card-mono
0 1 by this
show ?thesis using assms(3) 2 by simp

next

case equal

show ?thesis using equal by this
next

case greater
have 0: finite {z € A. z < z} by simp
have 1: {z € A. z <y} C {z € A. z < z} using assms(1, 2) greater by force
have 2: card {z € A. 2 < y} < card {z € A. z < z} using psubset-card-mono
0 1 by this
show ?thesis using assms(3) 2 by simp
qed

lemma nat-set-card-mono|simpl:
fixes A :: nat set
assumes z € A
shows card {z € A. z <z} < card{z€ A z <y} +—z <y

16

proof
assume I: card {z € A. z < z} < card {z € A. z < y}
show z < y
proof (rule ccontr)
assume 2: 7z < ¥y
have 3: card {z € A. z < y} < card {z € A. z < z} using 2 by (auto intro:
card-mono)
show Fulse using 1 3 by simp
qed
next
assume [:z < y
show card {z € A. 2 < 2} < card {z € A. z < y}
proof (intro psubset-card-mono psubsetl)
show finite {z € A. z < y} by simp
show {z € A. z <z} C {2 € A. 2 < y} using 1 by auto
show {z € A. z < z} # {# € A. z < y} using assms 1 by blast
qed
qed

lemma card-onelelim]:
assumes card A = 1
obtains a
where A = {a}
using assms by (metis One-nat-def card-Suc-eq)

lemma image-alt-def: f A = {fx |z. z € A} by auto

lemma supset-mono-inductive[monol:
assumes \ z.z € B— 1z € C
shows ACB—ACC
using assms by auto

lemma Collect-mono-inductive[mono):
assumes \ z. Pz — Qz
shows z € {z. P2} — z € {z. Q z}
using assms by auto

lemma image-union-split:
assumes f ‘(AU B) =g ‘C
obtains D F
where f‘A=¢g‘Df‘B=g‘EDCCECC
using assms unfolding image-Un
by (metis (erased, lifting) inf-sup-ord(3) inf-sup-ord(4) subset-imageE)
lemma image-insert-split:
assumes nj g f ‘insert a B=g¢g ‘ C
obtains d E
where fa=gdf‘ B=g ' EFEde CECC
proof —
have 1: f * ({a} U B) = g ¢ C using assms(2) by simp
obtain D F where 2: f‘{a} =g ‘Df‘B=g‘EDC CECC

17

using image-union-split 1 by this
obtain d where 3: D = {d} using assms(1) 2(1) by (auto, metis (erased,
opagque-lifting) imageE
image-empty image-insert inj-image-eq-iff singletonl)
show ?thesis using that 2 unfolding & by simp
qed

end

5 Basics

theory Basic-FExtensions
imports HOL— Library.Infinite-Set
begin

5.1 Types

type-synonym ’a step = 'a = a

5.2 Rules

declare less-imp-le[dest, simp]

declare le-funl[intro]
declare le-funE|elim)]
declare le-funD[dest]

lemma IdI'[intro]:
assumes r = y
shows (z, y) € Id
using assms by auto

lemma (in order) order-le-cases:
assumes z < y
obtains (eq) z =y | (It) x < y
using assms le-less by auto

lemma (in linorder) linorder-cases”:
obtains (le) x < y | (gt) z > y
by force

lemma monol-complintro):
assumes mono f mono g
shows mono (f o g)
using assms by (intro monol, auto dest: monoD)
lemma strict-monol-complintrol:
assumes strict-mono [strict-mono g
shows strict-mono (f o g)
using assms by (intro strict-monol, auto dest: strict-monoD)

18

lemma eg-le-absorb|simp]:
fixes z y :: 'a :: order
showsr=yANz<y+—zr=yar<yANr=y+—zxr=y
by auto

lemma INFM-Suc[simp]: (3o i P (Suc i)) «— (oo @. P 1)
unfolding INFM-nat using Suc-lessE less-Suc-eq by metis
lemma INFM-plus[simp]: (oo i. P (i + n :: nat)) +— (3o @. P i)
proof (induct n)
case (
show ?case by simp
next
case (Suc n)
have (3 i. P (i + Suc n)) +— (3 @. P (Suc i + n)) by simp
also have ... «— (o i. P (i + n)) using INFM-Suc by this
also have ... «— (3 i. P i) using Suc by this
finally show ?case by this
qed
lemma INFM-minus[simp]: (3o 7. P (i — n :: nat)) +— (3o i. P 1)
proof (induct n)
case (
show ?case by simp
next
case (Suc n)
have (3 . P (i — Sucn)) +— (o i. P (Suc i — Suc n)) using INFM-Suc
by meson
also have ... +— (3 i. P (i — n)) by simp
also have ... «— (I i. P i) using Suc by this
finally show ?case by this
qed

5.3 Constants

definition const :: 'a = b = 'a
where const t = \ -. z
definition const2 :: 'a = 'b = ‘c = 'a

where const2 x = X\ - -. x

definition consts :: 'a = b= ‘c = 'd = 'a
where const3 x =\ - - -. x

definition const/ :: ‘a = b= 'c = 'd= 'e="a
where constfj t =\ ----. x

definition const5 : ‘a = b= 'c= 'd='e= 'f = a
where constb zt = X\ - - - - - .z

lemma const-apply[simp]: const x y = = unfolding const-def by rule
lemma const2-apply[simp]: const2 x y z = z unfolding const2-def by rule
lemma const3-apply[simp): const3 z y z w = x unfolding const3-def by rule
lemma constf-apply[simpl: consts z y z w v = z unfolding constj-def by rule

19

lemma const5-apply[simp]: consts © y z uw v w = z unfolding consts-def by
rule

definition zip-fun :: (Ya = b)) = (‘a = '¢) = ‘a = 'b x 'c (infixr «||> 51)
where f || g= Az (fz, g 2)

lemma zip-fun-simps|simp):
(fllg)z=(fz, gz
fsto(fllg)=f
snd o (f | g) =g
fstohl| sndoh=nh
fot < range (f | g) = range f
snd ‘ range (f || g) = range g
unfolding zip-fun-def by force+

lemma zip-fun-eq[dest]:
assumes f || g =h | ¢
shows f =hg=1
using assms unfolding zip-fun-def by (auto dest: fun-cong)

lemma zip-fun-range-subset[intro, simpl: range (f || g) C range f x range g
unfolding zip-fun-def by blast
lemma zip-fun-range-finite[elim):
assumes finite (range (f || 9))
obtains finite (range f) finite (range g)
proof
show finite (range f) using finite-imagel [OF assms(1), of fst]
by (simp add: image-image)
show finite (range g) using finite-imagel [OF assms(1), of snd|
by (simp add: image-image)
qed

lemma zip-fun-split:

obtains f g

where h = f || ¢
proof

show h = fst o h || snd o h by simp
qed

abbreviation None-None = (None, None)
abbreviation None-Some = X (y). (None, Some y)
abbreviation Some-None (). (Some z, None)
abbreviation Some-Some (z, y). (Some z, Some y)

e
>

abbreviation None-None-None = (None, None, None)
abbreviation None-None-Some = A (z). (None, None, Some z)
abbreviation None-Some-None = A (y). (None, Some y, None)
abbreviation None-Some-Some = A (y, z). (None, Some y, Some z)
abbreviation Some-None-None = X (z). (Some z, None, None)

20

abbreviation Some-None-Some = X (z, z). (Some z, None, Some z)
abbreviation Some-Some-None = X (z, y). (Some z, Some y, None)
abbreviation Some-Some-Some = X (z, y, z). (Some x, Some y, Some z)

lemma inj-Some2[simp, intro]:
inj None-Some
inj Some-None
inj Some-Some
by (rule injI, force)+

lemma inj-Some3[simp, intro]:
inj None-None-Some
inj None-Some-None
inj None-Some-Some
inj Some-None-None
inj Some-None-Some
inj Some-Some-None
inj Some-Some-Some
by (rule injI, force)+

definition swap :: ‘a x 'b = b x 'a
where swap z = (snd z, fst x)

lemma swap-simps[simp|: swap (a, b) = (b, a) unfolding swap-def by simp

lemma swap-inj[intro, simp|: inj swap by (rule injl, auto)

lemma swap-surjlintro, simp): surj swap by (rule surjI[where ?f = swap],
auto)

lemma swap-bij[intro, simp|: bij swap by (rule bijI, auto)

definition push :: (‘a x b)) X ‘¢ = 'a x b x 'c
where push © = (fst (fst z), snd (fst x), snd x)

definition pull :: 'a x b x ‘¢ = ('a x 'b) x ‘¢
where pull z = ((fst z, fst (snd z)), snd (snd z))

lemma push-simps[simp|: push ((z, y), z) = (z, y, z) unfolding push-def by
stmp

lemma pull-simps[simp]: pull (z, y, z) = ((z, y), z) unfolding pull-def by
stmp

definition label :: 'vertex x 'label x 'vertex = 'label
where label = fst o snd

lemma label-select[simp]: label (p, a, ¢) = o unfolding label-def by simp

5.4 Theorems for @Qtermcurry and @Qtermsplit

lemma curry-split[simp]: curry o case-prod = id by auto
lemma split-curry[simpl: case-prod o curry = id by auto

21

lemma curry-le[simp]: curry f < curry g +— f < g unfolding le-fun-def by
force

lemma split-le[simp]: case-prod f < case-prod g +— [< g unfolding le-fun-def
by force

lemma mono-curry-left[simp]: mono (curry o h) +— mono h
unfolding mono-def by fastforce

lemma mono-split-left[simp]: mono (case-prod o h) +— mono h
unfolding mono-def by fastforce

lemma mono-curry-right[simp]: mono (h o curry) «— mono h
unfolding mono-def split-le[symmetric] by bestsimp

lemma mono-split-right[simp]: mono (h o case-prod) <— mono h
unfolding mono-def curry-le[symmetric] by bestsimp

lemma Collect-curry[simp]: {x. P (curry)} = case-prod ‘ {z. P x} using
image-Collect by fastforce

lemma Collect-split[simp]: {z. P (case-prod z)} = curry ‘ {z. P z} using
image-Collect by force

lemma gfp-split-curry[simpl: gfp (case-prod o f o curry) = case-prod (gfp f)
proof —
have gfp (case-prod o f o curry) = Sup {u. u < case-prod (f (curry u))}
unfolding gfp-def by simp

also have ... = Sup {u. curry u < curry (case-prod (f (curry v)))} unfolding
curry-le by simp
also have ... = Sup {u. curry u < f (curry u)} by simp
also have ... = Sup (case-prod ‘ {u. v < fu}) unfolding Collect-curry[of A
u. u < fu] by simp
also have ... = case-prod (Sup {u. u < fu}) by (force simp add: image-comp)
also have ... = case-prod (gfp f) unfolding gfp-def by simp
finally show ?thesis by this
qed
lemma gfp-curry-split[simp]: gfp (curry o f o case-prod) = curry (gfp f)
proof —

have gfp (curry o f o case-prod) = Sup {u. u < curry (f (case-prod u))}
unfolding gfp-def by simp

also have ... = Sup {u. case-prod u < case-prod (curry (f (case-prod u)))}
unfolding split-le by simp

also have ... = Sup {u. case-prod u < f (case-prod u)} by simp

also have ... = Sup (curry ‘ {u. u < f u}) unfolding Collect-split[of X u. u
< fu] by simp

also have ... = curry (Sup {u. u < fu}) by (force simp add: image-comp)

also have ... = curry (gfp f) unfolding gfp-def by simp

finally show ?thesis by this

qed

lemma not-somel:
assumes /\ z. P x = False
shows = P (SOME z. P x)

22

using assms by blast
lemma some-ccontr:
assumes (A z. - P z) = Fualse

shows P (SOME z. P z)
using assms somel-ex ccontr by metis

end

6 Relations

theory Relation-FExtensions
imports

Basic-FExtensions
begin

abbreviation rev-lex-prod (infixr «<xrlexx>) 80)
where 11 <krlexx> ro = inv-image (ro <xlexx> r1) swap

lemmas sym-rtranclp|intro] = sym-rtrancl|to-pred)

definition liftablep :: (‘a = 'a = bool) = ('a = 'a) = bool
where liftablep r f =V zy. rzy — r (fz) (fy)

lemma liftablepl [intro):
assumes A\ zy. rzy = r (fz) (fy)
shows liftablep r f
using assms
unfolding liftablep-def
by simp

lemma liftablepE[elim]:
assumes liftablep r f
assumes 7 T ¥
obtains r (fz) (fy)
using assms
unfolding liftablep-def
by simp

lemma liftablep-rtranclp:
assumes liftablep r f
shows liftablep r** f
proof
fix z y
assume 7" 7 y
thus ** (fz) ()
using assms
by (induct rule: rtranclp-induct, force+)
qed

definition confluentp :: ('a = 'a = bool) = bool

23

where confluentp r =V zyl y2. r** xyl — r* zy2 — (3 2. r** yl 2z A
Y2 2)

lemma confluentpl [intro]:
assumes \ z yl y2. r** zyl = r** zy2 = 3 2. yl z A1 y2 2z
shows confluentp r
using assms
unfolding confluentp-def
by simp

lemma confluentpE[elim]:
assumes confluentp r
assumes " ¢yl r** z y2
obtains z
where r** yl z r** y2 z
using assms
unfolding confluentp-def
by blast

lemma confluentpl [intro]:
assumes A\ z yl y2. r** zyl = razy2 = 3 2. r** yl z A r** y2 2
shows confluentp r
proof
fix z y1 y2
assume 7" x yl r** x y2
thus 3 z. 7* yl 2z A r** y2 z using assms by (induct rule: rtranclp-induct,
force+)
qed

lemma transclp-eq-implies-confluent-imp:
assumes rl1** = r2**
assumes confluentp rl1
shows confluentp r2
using assms
by force

lemma transclp-eq-implies-confluent-eq:
assumes rl** = r2**
shows confluentp r1 <— confluentp 2
using assms transclp-eq-implies-confluent-imp
by metis

definition diamondp :: ('a = 'a = bool) = bool
where diamondp r =V zyl y2. rayl — razy2 — (3 2. ryl 2z A ry22)

lemma diamondpl[introl:
assumes Az yl y2. raxyl = rey2 = I z.ryl zAry2z
shows diamondp r
using assms

24

unfolding diamondp-def
by simp

lemma diamondpE[elim]:
assumes diamondp T
assumes 7 x yl r x y2
obtains z
where r y1 z r y2 z
using assms
unfolding diamondp-def
by blast

lemma diamondp-implies-confluentp:
assumes diamondp r
shows confluentp r
proof (rule confluentpl’)
fix x yl y2
assume 7" zyl rx y2
hence 3 z. 7 yI z A r** y2 z using assms by (induct rule: rtranclp-induct,
force+)
thus 3 z. 7" yI z A r** y2 z by blast
qed

locale wellfounded-relation =
fixes R :: 'a = 'a = bool
assumes wellfounded: wfP R

end

7 Transition Systems

theory Transition-System-FExtensions
imports
Basics/ Word-Prefizes
Extensions/ Set-Extensions
Eztensions/ Relation-Extensions
Transition-Systems-and-Automata. Transition-System
Transition-Systems-and-Automata. Transition-System-Eztra
Transition-Systems-and-Automata. Transition-System-Construction
begin

context transition-system-initial
begin

definition cycles :: 'state = 'transition list set
where cycles p = {w. path w p A target w p = p}

lemma cyclesl[intro!]:
assumes path w p target wp = p

25

shows w € cycles p

using assms unfolding cycles-def by auto
lemma cyclesE[elim!]:

assumes w € cycles p

obtains path w p target wp = p

using assms unfolding cycles-def by auto

inductive-set executable :: "transition set
where ezecutable: p € nodes = enabled a p = a € executable

lemma ezecutablel-step[introl]:
assumes p € nodes enabled a p
shows a € ezecutable
using ezecutable assms by this
lemma ezecutablel-words-fin[intro!]:
assumes p € nodes path w p
shows set w C ezxecutable
using assms by (induct w arbitrary: p, auto del: subsetl)
lemma ezecutableE[elim?):
assumes a € executable
obtains p
where p € nodes enabled a p
using assms by induct auto

end

locale transition-system-interpreted =
transition-system ex en
for ez :: 'action = 'state = 'state
and en :: 'action = ’'state = bool
and int :: 'state = 'interpretation
begin

definition wvisible :: 'action set
where visible = {a. 3 ¢q. en a ¢ A int ¢ # int (ex a q)}

lemma visiblel[intro:

assumes en a g int ¢ # int (ex a q)

shows a € wvisible

using assms unfolding visible-def by auto
lemma visibleE[elim]:

assumes a € visible

obtains ¢

where en a q int ¢ # int (ex a q)

using assms unfolding visible-def by auto

abbreviation invisible = — wvisible

lemma execute-fin-word-invisible:

26

assumes path w p set w C invisible
shows int (target w p) = int p
using assms by (induct w arbitrary: p rule: list.induct, auto)
lemma execute-inf-word-invisible:
assumes run w p k< I A\ i. k<i= i< l= w!l i ¢ visible
shows int ((p ## trace w p) ! k) = int ((p ## trace w p) ' 1)
proof —
have (p #+# trace w p) !! | = target (stake | w) p by simp
also have stake | w = stake k w @Q stake (I — k) (sdrop k w) using assms(2)
by simp
also have target ... p = target (stake (I — k) (sdrop k w)) (target (stake k
w) p)
unfolding fold-append comp-apply by rule
also have int ... = int (target (stake k w) p)
proof (rule execute-fin-word-invisible)
have w = stake | w Q— sdrop | w by simp
also have stake | w = stake k w Q stake (I — k) (sdrop k w) using assms(2)
by simp
finally have 1: run (stake k w @Q— stake (I — k) (sdrop k w) Q— sdrop [w)
D
unfolding shift-append using assms(1) by simp
show path (stake (I — k) (sdrop k w)) (target (stake k w) p) using 1 by
auto
show set (stake (I — k) (sdrop k w)) C invisible using assms(3) by (auto
simp: set-stake-snth)

qed
also have ... = int ((p #+# trace w p) !! k) by simp
finally show ?thesis by rule
qed
end

locale transition-system-complete =
transition-system-initial ex en init +
transition-system-interpreted ex en int
for ez :: 'action = 'state = 'state
and en :: 'action = 'state = bool
and init :: 'state = bool
and int :: 'state = 'interpretation

begin

definition language :: interpretation stream set
where language = {smap int (p ## trace w p) |p w. init p A Tun w p}

lemma languagel[intro!]:
assumes w = smap int (p ## trace v p) init p run v p
shows w € language
using assms unfolding language-def by auto

lemma languageE[elim!]:

27

assumes w € language

obtains p v

where w = smap int (p ## trace v p) init p run v p
using assms unfolding language-def by auto

end

locale transition-system-finite-nodes =
transition-system-initial ex en init
for ez :: 'action = 'state = 'state
and en :: 'action = ’'state = bool
and init :: 'state = bool
+
assumes reachable-finite: finite nodes

locale transition-system-cut =
transition-system-finite-nodes ex en init
for ex :: 'action = 'state = ’state
and en :: 'action = 'state = bool
and init :: 'state = bool
+
fixes cuts :: ‘action set
assumes cycles-cul: p € nodes = w € cycles p = w # [| = set w N cuts

#

begin

inductive scut :: state = ’state = bool
where scut: p € nodes = en a p = a ¢ cuts = scut p (ex a p)

declare scut.intros|intro!]
declare scut.cases|elim!]

lemma scut-reachable:
assumes scut p q
shows p € nodes q € nodes
using assms by auto
lemma scut-trancl:
assumes scut™ p g
obtains w
where path w p target wp = q set w N cuts = {} w # ||
using assms
proof (induct arbitrary: thesis)
case (base q)
show ?case using base by force
next
case (step q r)
obtain w where 1: path w p target wp = q set w N cuts = {} w # ||
using step(3) by this
obtain a where 2: en a q a ¢ cuts ex a ¢ = r using step(2) by auto

28

show “case

proof (rule step(4))
show path (w @ [a]) p using I 2 by auto
show target (w @ [a]) p = r using 1 2 by auto
show set (w @ [a]) N cuts = {} using I 2 by auto
show w @ [a] # [] by auto

qed

qed

sublocale wellfounded-relation scut—'~1
proof (unfold-locales, intro finite-acyclic-wf-converse[to-pred] acyclic[to-pred)],
safe)
have 1: {(p, q). scut p q} C nodes x nodes using scut-reachable by blast
have 2: finite (nodes X nodes)
using finite-cartesian-product reachable-finite by blast
show finite {(p, q). scut p ¢} using 1 2 by blast
next
fix p
assume 1: scut™ pp
have 2: p € nodes using 1 tranclE[to-pred] scut-reachable by metis
obtain w where 3: path w p target w p = p set w N cuts = {} w #]
using scut-trancl 1 by this
have 4: w € cycles p using 3(1, 2) by auto
have 5: set w N cuts # {} using cycles-cut 2 4 3(4) by this
show Fualse using 3(3) 5 by simp
qged

lemma no-cut-scut:
assumes p € nodes en a p a ¢ cuts
shows scut= 7! (ex a p) p
using assms by auto

end

locale transition-system-sticky =
transition-system-complete ex en init int +
transition-system-cut ex en init sticky
for ez :: 'action = 'state = 'state
and en :: ‘action = ’'state = bool
and init :: 'state = bool
and int :: 'state = 'interpretation
and sticky :: 'action set
+

assumes ezxecutable-visible-sticky: executable N wvisible C sticky

end

29

8 Trace Theory

theory Traces
imports Basics/ Word-Prefizes
begin

locale traces =
fixes ind :: 'item = 'item = bool
assumes independence-symmetric[sym]: ind a b = ind b a

begin

abbreviation Ind :: 'item set = 'item set = bool
where Ind A B=V ac A.VY be B.indab

inductive eg-swap :: ‘item list = 'item list = bool (infix (=g> 50)
where swap: ind a b = 4 Q [a] Q [b)] Q v =g v Q [b] Q [a] @ v

declare eg-swap.intros|intro]
declare eg-swap.cases|elim]

lemma eq-swap-sym[sym]: v =g w = w =g v using independence-symmetric

by auto

lemma eg-swap-length|[dest]: wy =g wy = length wi = length we by force
lemma eg-swap-range[dest]: w1 =g we => set w1 = set wy by force

lemma eg-swap-extend:
assumes w; =g Ws
shows ©« Q wy Qv =g uQ wy Q@ v
using assms
proof induct
case (swap a b u’ v’
have v @Q (v' Q [a] @ [b] @ v) Q v = (v Q ') Q [a] @ [b] @ (v Q v) by

stmp

also have ... =g (v @ u') @ [b] @ [a] @ (v’ @ v) using swap by blast
also have ... = v @Q (v’ @ [b] Q [a] @ v') @ v by simp
finally show ?case by this

qed

lemma eg-swap-removel:
assumes w; =g W2
obtains (equal) removel ¢ w; = removel ¢ wy | (swap) removel ¢ w; =g
removel ¢ wo
using assms
proof induct
case (swap a b u v)
have ¢ ¢ set (u Q [a] Q [b] @ v) V
c € setuV
cdsetuNc=aV

30

cgsetuNc#aNhc=0bV
cgsetuNcFaNc#bANcEsetv
by auto

thus ?case

proof (elim disjE)
assume 0: ¢ ¢ set (u @ [a] @ [b] Q v)

have 1: ¢ ¢ set (u @ [b] Q [a] @ v) using 0 by auto
have 2: removel ¢ (u @Q [a] @ [b] @ v) = u @ [a] @ [b] @ v using
removel-idem 0 by this
have 3: removel ¢ (v @ [b] @ [a] @ v) = v @Q [b] Q [a] @ v using

removel-idem 1 by this
have 4: removel ¢ (u @ [a] @ [b] @ v) =g removel ¢ (u @ [b] @ [a] @ v)
unfolding 2 3 using eg-swap.intros swap(1) by this
show thesis using swap(3) 4 by this
next
assume 0: c € set u
have 2: removel ¢ (u @ [a] @ [b] @ v) = removel ¢ u Q [a] Q [b] @ v
unfolding removel-append using 0 by simp
have 3: removel ¢ (v @ [b] @ [a] @ v) = removel ¢ u Q [b] @ [a] @ v
unfolding removel-append using 0 by simp
have /: removel ¢ (u @ [a] @ [b] @ v) =g removel ¢ (u @ [b] Q [a] Q v)
unfolding 2 3 using eg-swap.intros swap(1) by this
show thesis using swap(3) 4 by this
next
assume 0: c ¢ setu A ¢ = a
have 2: removel ¢ (v @ [a] Q [)] @ v) = u Q [b] @ v
unfolding removel-append using removel-idem 0 by auto
have 3: removel ¢ (v @ [b] Q [a] @ v) = u Q [b] @ v
unfolding removel-append using removel-idem 0 by auto
have /: removel ¢ (u @ [a] @ [b] @ v) = removel ¢ (u @ [b] Q [a] @ v)
unfolding 2 3 by rule
show thesis using swap(2) 4 by this
next
assume 0: c ¢ setu ANc# aNc=1b
have 2: removel ¢ (v Q [a] Q [b)] @ v) = v Q [a] @ v
unfolding removel-append using removel-idem 0 by auto
have 3: removel ¢ (v @ [b] Q [a] Q@ v) = v @ [a] Q@ v
unfolding removel-append using removel-idem 0 by auto
have 4: removel ¢ (u @ [a] @ [b] @ v) = removel ¢ (u Q [b] @Q [a] @ v)
unfolding 2 3 by rule
show thesis using swap(2) 4 by this
next
assume 0: c ¢ setu ANc#aNc#bAcé€Esetv
have 2: removel ¢ (v @ [a] @ [b] @ v) = v @ [a] Q [b] @ removel ¢ v
unfolding removel-append using 0 by simp
have 3: removel ¢ (v @ [b] @Q [a] @ v) = u @ [b] @ [a] @ removel c v
unfolding removel-append using 0 by simp
have 4: removel ¢ (u @ [a] @Q [b] @ v) =g removel ¢ (u @ [b] Q [a] Q v)
unfolding 2 3 using eg-swap.intros swap(1) by this

31

show ?thesis using swap(3) 4 by this
qed
qed

lemma eg-swap-rev:
assumes w; =g Ws
shows rev wy =g rev wo
using assms
proof induct
case (swap a b u v)
have 1: rev v Q [a] @ [b] Q rev u =g rev v Q [b] Q [a] @ rev u using swap
by blast
have 2: rev v @Q [b] Q [a] Q@ rev u =g rev v Q [a] Q [b] @ rev u using I
eq-swap-sym by blast
show ?case using 2 by simp
qed

abbreviation eq-fin :: "item list = 'item list = bool (infix <=p> 50)
where eq-fin = eg-swap™*

lemma eg-fin-symp[intro, sym]: u =p v = v =p u
using eqg-swap-sym sym-rtrancl[to-pred] unfolding symp-def by metis

lemma eg-fin-length|[dest]: wi = wy = length wy = length ws
by (induct rule: rtranclp.induct, auto)

lemma eg-fin-rangeldest]: w1 =p we => set wy; = set wy
by (induct rule: rtranclp.induct, auto)

lemma eg-fin-removel:
assumes w; =p wWs
shows removel ¢ wy =g removel ¢ ws
using assms
proof induct
case (base)
show ?case by simp
next
case (step ws ws)
show ?Zcase
using step(2)
proof (cases rule: eg-swap-removel [where ?¢ = c|)

case equal
show ?thesis using step equal by simp
next
case swap
show ?thesis using step swap by auto
qed
qed

lemma eg-fin-rev:

32

assumes w; =g Ws
shows rev w; =f rev ws
using assms by (induct, auto dest: eg-swap-rev)

lemma eg-fin-concat-eq-fin-start:
assumes © Q v; =p u Q vy
shows v, =f va
using assms
proof (induct u arbitrary: v1 ve rule: rev-induct)

case (Nil)
show ?case using Nil by simp
next

case (snoc a u)
have 1: v Q [a] @ v; =F u @ [a] @ vy using snoc(2) by simp
have 2: [a] @ v; =F [a] @ vy using snoc(1) 1 by this
show ?case using eg-fin-removel [OF 2, of a] by simp
qed

lemma eg-fin-concat: © Q@ w1 Q v =p u Q wy Q v +— w; =p wo

proof
assume 0: u @ w1 Qv =p u @ wy @ v
have 1: wy @ v =p wy @ v using eq-fin-concat-eq-fin-start 0 by this
have 2: rev (w; @ v) =p rev (wy @ v) using 1 by (blast dest: eq-fin-rev)
have &: rev v Q rev wy =p rev v Q rev wy using 2 by simp
have 4: rev w1 =F rev wy using eq-fin-concat-eq-fin-start 8 by this
have 5: rev (rev wy1) =p rev (rev we) using 4 by (blast dest: eq-fin-rev)
show w; =p ws using 5 by simp

next
show © Q@ w; Q v =p v Q wy @ v if w; =p wy

using that by (induct, auto dest: eg-swap-extend|of - - u v])
qed
lemma eg-fin-concat-start[iff]: w Q wy =p w Q@ wy +— w; =p wa

using eq-fin-concat[of w - [|] by simp
lemma eg-fin-concat-end[iff]: w1 Q@ w =p wo @ w +— w1 =F Wy
using eg-fin-concat[of [| - w] by simp

lemma ind-eq-fin":
assumes Ind {a} (set v)
shows [a] @ v =p v @ [d]
using assms
proof (induct v)
case (Nil)
show ?case by simp
next
case (Cons b v)
have 1: Ind {a} (set v) using Cons(2) by auto
have 2: ind a b using Cons(2) by auto
have [a] @ b # v = [a] @ [b] @ v by simp
also have ... =g [b] Q [a] @ v using eg-swap.intros|OF 2, of []] by auto

33

also have ... =p [b] @ v @ [a] using Cons(1) 1 by blast

also have ... = (b # v) @ [a] by simp
finally show ?case by this
qed

lemma ind-eq-fin[intro):
assumes Ind (set u) (set v)
shows ©« Q v = v @Q u

using assms

proof (induct u)

case (Nil)
show ?case by simp
next

case (Cons a u)

have 1: Ind (set u) (set v) using Cons(2) by auto
have 2: Ind {a} (set v) using Cons(2) by auto
have (a # u) @ v = [a] @ u @ v by simp

also have ... =p [a] @ v @ u using Cons(1) 1 by blast
also have ... = ([a] @ v) @ u by simp
also have ... =p (v @ [a]) Q u using ind-eq-fin’ 2 by blast
also have ... = v @ (a # u) by simp
finally show ?case by this

qed

definition le-fin :: ‘item list = 'item list = bool (infix «<p» 50)
where w1 jF Wy = 3 V1. W1 @ V1 =F W2

lemma le-finI[intro 0]:

assumes w; Q v; =p wo

shows w; <pg ws

using assms unfolding le-fin-def by auto
lemma le-finE[elim 0]:

assumes w; <Xp W

obtains v;

where w; Q v; =f wo

using assms unfolding le-fin-def by auto

lemma le-fin-empty[simp]: | <r w by force
lemma le-fin-triviallintro]: w1 =p we = w1 <p wa
proof
assume 1: wy =g ws
show w; @ [| =f wy using I by simp
qed

lemma le-fin-length[dest]: w1 =<p we = length wy < length wy by force
lemma le-fin-range[dest]: w1 <p wy = set w1 C set we by force

lemma eg-fin-alt-def: wi =p ws +— w1 <p wa A wo <p w1
proof

34

show wi <p ws A we <p wy if w; =F ws using that by blast
next
assume (: w; g wa N\ wy <p W
have 1: w1 <F w2 wy <XF wy using 0 by auto
have 10: length wi = length wo using 1 by force
obtain v; vs where 2: w; @ vy =p ws we @ vy =p w; using 1 by (elim
le-finE)
have 3: length wy = length (w1 @ v1) using 2 10 by force
have 4: wy; = w; @ v; using & by auto
have 5: length wy = length (w2 @Q vy) using 2 10 by force
have 6: wy = wy @Q vy using 5 by auto
show w; =p ws using 4 6 2 by simp
qed

lemma le-fin-reflp[simp, intro]: w <p w by auto

lemma le-fin-transp[intro, trans]:
assumes wi| g W2 W =<p W3
shows w; <p w3

proof —
obtain v; where I1: w; @ v; = wy using assms(1) by rule
obtain v, where 2: wy @ vy =p w3 using assms(2) by rule
show ?thesis

proof
have w1 @Q v; @ vy = (w1 @ v1) @ vy by simp
also have ... =p wy @Q vy using I by blast
also have ... =p w3 using 2 by blast
finally show w; @ vy @Q vy =g w3 by this
qed
qed

lemma eg-fin-le-fin-transp|intro, trans|:
assumes Wi =F W W <f W3
shows w; <p w3
using assms by auto
lemma le-fin-eq-fin-transplintro, trans]:
assumes Wi }p Wy Ws = W3
shows w; <g w3
using assms by auto
lemma prefiz-le-fin-transplintro, trans|:
assumes w; < Wy Wo g W3
shows w; <p w3
proof —
obtain v; where 1: wy = w; @ v; using assms(1) by rule
obtain v where 2: wy @ vy =p w3 using assms(2) by rule
show ?thesis
proof
show w; @ v; @ vy = w3 using 1 2 by simp
qed
qed
lemma le-fin-prefiz-transplintro, trans:

35

assumes Wi g wo Wy < W3
shows w; <p w3

proof —
obtain v; where I1: w; @ v; = wy using assms(1) by rule
obtain v, where 2: w3 = ws @Q vy using assms(2) by rule
show ?thesis

proof
have w1 @Q v; @ vy = (w1 Q v1) @ vy by simp
also have ... =p wy @Q vy using I by blast
also have ... = w3 using 2 by simp
finally show w; @ vy @Q vy =g w3 by this
qed
qed

lemma prefiz-eq-fin-transplintro, trans|:
assumes Wi < Wo Wo =g W3
shows w; <p w3
using assms by auto

lemma le-fin-concat-start[iff]|: w Q@ wy < w Q@ wy +— wy <Xp wy
proof
assume 0: w Q@ w; <p w Q wy
obtain v; where 1: w @ w; Q@ vy =p w @Q wy using 0 by auto
show w; <p wy using 1 by auto
next
assume 0: wy; =g Wy
obtain v; where 1: w; @Q v; =p ws using 0 by auto
have 2: (w Q@ wy) @ v; =p w @ wy using 1 by auto
show w Q@ w; <p w @Q wy using 2 by blast
qed
lemma le-fin-concat-end|dest]:
assumes Wi g Wy
shows w; <p wy @ w
proof —
obtain v; where 1: w; @Q v; =p wsy using assms by rule
show ?thesis

proof
have w; @Q v; @ w = (w1 Q vy) Q@ w by simp
also have ... =p wy @Q w using 1 by blast
finally show w; @ v; @ w =p wy Q w by this
qed
qed

definition le-fininf :: 'item list = "item stream = bool (infix «<p;» 50)
where w; <p; wo =3 V9. vy <py Wa A Wy <F Vo

lemma le-fininfI[intro 0]:
assumes vy <pr Wy W1 <F VU2
shows wy <p; ws
using assms unfolding le-fininf-def by auto

36

lemma le-fininfE[elim 0]:
assumes wi; gy Ws
obtains vs
where vy <pr w2 w1 =F V2
using assms unfolding le-fininf-def by auto

lemma le-fininf-empty[simp]: [| <pr w by force
lemma le-fininf-range[dest]: w1 <p; wy => set wy C sset wy by force

lemma eg-fin-le-fininf-transplintro, trans|:
assumes Wi =F W Wo =<py W3
shows w; <p; w3
using assms by blast

lemma le-fin-le-fininf-transp[intro, trans]:
assumes wi| g W Wo =fF1 W3
shows w; <p; w3
using assms by blast

lemma prefiz-le-fininf-transp|intro, trans|:
assumes Wy < Wo Wo Xpr W3
shows w1 jF] w3
using assms by auto

lemma le-fin-prefiz-fininf-transplintro, trans]:
assumes Wy <p wg W <py W3
shows w; <pr; w3
using assms by auto

lemma eg-fin-prefiz-fininf-transp[intro, trans]:
assumes Wi =F W Wo <py W3
shows w; <p; w3
using assms by auto

lemma le-fininf-concat-start[iff]: w Q wy <p; w Q— wy +— wy <p; ws
proof
assume 0: w Q wy <p; w Q— wy
obtain vy, where 1: vo <p; w Q— wy w Q@ w; <pg vy using 0 by rule
have 2: length w < length ve using 1(2) by force
have /: w < vy using prefiz-fininf-extend[OF 1(1) 2] by this
obtain v; where 5: v, = w @Q v, using 4/ by rule
show w; <pr wo
proof
show v; <p; we using (1) unfolding 5 by auto
show w; = v; using 1(2) unfolding 5 by simp
qed
next
assume (: wi <p; Wa
obtain vy, where 1: vy <p; ws wy <F v9 using 0 by rule
show w @ w; <p; w Q@— wy
proof
show w @ ve <p; (w Q— wq) using 1(1) by auto

37

show w @ w; <p w @ vy using 1(2) by auto

qed
qed
lemma le-fininf-singleton[intro, simp): [shd v] <py v
proof —
have [shd v] <p; shd v ## sdrop 1 v by blast
also have ... = v by simp
finally show ?thesis by this
qed

definition le-inf :: 'item stream = 'item stream = bool (infix «<p) 50)
where wi X;y wo =V v1. v1 <pr wy — v1 Xpr wo

lemma le-infI[intro 0]:

assumes A v1. v1 <p; w1 = v; <p; Wo

shows w; =<5 ws

using assms unfolding le-inf-def by auto
lemma le-infE|[elim 0]:

assumes wq X7 ws V1 <pr Wi

obtains V1 jF] w2

using assms unfolding le-inf-def by auto

lemma le-inf-range[dest]:
assumes wq =<7 Ws
shows sset w; C sset wo
proof
fix a
assume 1: a € sset wy
obtain ¢ where 2: ¢ = wy !! i using I by (metis imageE sset-range)
have 3: stake (Suc i) w1 <pr w; by rule
have 4: stake (Suc i) w1 <p; we using assms 3 by rule
have 5: wy !l i € set (stake (Suc i) wy) by (meson lessI set-stake-snth)
show a € sset wy unfolding 2 using 5 4 by fastforce
qed

lemma le-inf-reflp[simp, intro]: w <; w by auto
lemma prefiz-fininf-le-inf-transplintro, trans]:
assumes Wi <pr W Wy X7 W3
shows w; <p; w3
using assms by blast
lemma le-fininf-le-inf-transp|intro, trans|:
assumes Wi gy W Wy X7 W3
shows w; <p; w3
using assms by blast
lemma le-inf-transplintro, trans|:
assumes wi <; Ws Wy =7 W3
shows w; =<; w3
using assms by blast

38

lemma le-infl":
assumes A\ k. 3 v. v <pj w1 Ak < length v A v <p; we
shows wi <1 ws
proof
fix u
assume 1: u <pj w;
obtain v where 2: v <p; w;y length u < length v v <p; wo using assms by
auto
have 3: length u < length v using 2(2) by auto
have 4: u < v using prefiz-fininf-length 1 2(1) 3 by this
show u <p; we using / 2(3) by rule
qed

lemma le-infI-chain-left:
assumes chain w A k. wk <pr v
shows limit w <y v
proof (rule le-infI’)
fix k
obtain [where I: k < length (w) using assms(1) by rule
show 3 wva. va <p; limit w A k < length va A\ va <pr v
proof (intro exI conjl)
show w | <pj; limit w using chain-prefiz-limit assms(1) by this
show k < length (w l) using 1 by this
show w | <p; v using assms(2) by this
qed
qed
lemma le-infl-chain-right:
assumes chain w \ uv. u <p;y v = u <p w (l u)
shows v <1 limit w
proof
fix u
assume 1: u <pj v
show u =gy limit w
proof
show w (I u) <py limit w using chain-prefiz-limit assms(1) by this
show u <p w (I u) using assms(2) 1 by this
qed
qed
lemma le-infI-chain-right’:
assumes chain w A\ k. stake kv < w (L k)
shows v < limit w
proof (rule le-infl-chain-right)
show chain w using assms(1) by this
next
fix u
assume 1: u <py v
have 2: stake (length u) v = u using 1 by (simp add: prefiz-fininf-def shift-eq)
have 3: stake (length u) v <p w (I (length u)) using assms(2) by this

39

show u <p w (I (length u)) using 3 unfolding 2 by this
qed

definition eg-inf :: "item stream = 'item stream = bool (infix «=p» 50)
where wi; =; wo = wy X1 w2 A wy =1 W1

lemma eg-infI[intro 0]:

assumes wi =<7 Wy Wy =7 Wi

shows w; =5 ws

using assms unfolding eg-inf-def by auto
lemma eg-infE|[elim 0]:

assumes w; =; ws

obtains w; <; ws wy =<1 Wy

using assms unfolding eg-inf-def by auto

lemma eg-inf-range[dest]: w1 =; wy = sset wy = sset we by force

lemma eg-inf-refip|simp, intro|: w =; w by auto
lemma eg-inf-symplintro]: wi =5 wy = we =y wy by auto
lemma eg-inf-transp[intro, trans|:
assumes Wy =y wy W =5 W3
shows wy =7 w3
using assms by blast
lemma le-fininf-eq-inf-transplintro, trans|:
assumes wi| g7 W Wy =7 W3
shows w1 jF] w3
using assms by blast
lemma le-inf-eq-inf-transplintro, trans|:
assumes wy Xy Wo W9 =5 W3
shows w; <5 w3
using assms by blast
lemma eg-inf-le-inf-transp[intro, trans]:
assumes wi| =y Wg Wo =y W3
shows wy <; w3
using assms by blast
lemma prefiz-fininf-eq-inf-transp|intro, trans]:
assumes wi; SFI W2 W =1 W3
shows w; <p; w3
using assms by blast

lemma le-inf-concat-start[iff]: w Q— w; <5 w Q— wy +— w1 =<7 Wy
proof
assume [: w Q— w; <7 w Q— wy
show w; <; ws>
proof
fix v
assume 2: v; <py wq
have w @ v; <p; w @— w; using 2 by auto
also have ... <; w @Q— wy using 1 by this

40

finally show v; <p; ws by rule
qed
next
assume 1: wy X7 wo
show w @— w; <7 w Q— wq
proof
fix V1
assume 2: v1 <py w Q— w,
then show v; <p; w Q— wq
proof (cases rule: prefiz-fininf-append)
case (absord)
show ?thesis using absorb by auto
next
case (extend z)
show ?thesis using 1 extend by auto
qged
qed
qed
lemma eg-fin-le-inf-concat-end|dest]: w3 =p we = wy Q— w <5 wy Q— w
proof
fix (%4
assume 1: w; = wy v1 <py w3 Q— w
show v; <py wy Q— w
using 1(2)
proof (cases rule: prefiz-fininf-append)
case (absord)
show ?thesis
proof
show wy <p; (w2 @— w) by auto
show v; =< wy using absorb 1(1) by auto
qed
next
case (extend w)
show ?thesis
proof
show wy; @ w’ <p; (wy Q— w) using extend(2) by auto
show v <p we @ w’ unfolding extend(1) using 1(1) by auto
qed
qed
qed

lemma eg-inf-concat-start[iff]|: w Q— wy =5 w Q— wy +— w1 =; wy by blast
lemma eg-inf-concat-end|[dest]: wi = wy = w; Q@— w =5 we Q— w
proof —

assume (: wi =g Wo

have 1: wo = w; using 0 by auto

show w; @— w =5 w9 Q— w

using eg-fin-le-inf-concat-end[OF 0] eq-fin-le-inf-concat-end[OF 1] by auto

qed

41

lemma le-fininf-suffixl [intro]:
assumes w =; w; Q— wq
shows w; <pr w
using assms by blast
lemma le-fininf-suffixE]elim]:
assumes w; g7 W
obtains wo
where w =; w; Q— wq
proof —
obtain vy where 1: vy <p; w w; < vy using assms(1) by rule
obtain u; where 2: w; @ u; =g vy using 1(2) by rule
obtain vy’ where 3: w = vy @Q— vy’ using 1(1) by rule
show ?thesis
proof
show w =; w; @Q— u; Q— vy’ unfolding 3 using 2 by fastforce
qed
qed

lemma subsume-fin:
assumes Ui jF] w V1 jFI w
obtains wq
where U1 jF w1 V1 jp w1
proof —
obtain uy; where 2: uy <p; w u; < uz using assms(1) by rule
obtain v where 3: vy <p; w v; <p vy using assms(2) by rule
show ?thesis
proof (cases length ug length vy rule: le-cases)
case le
show ?thesis
proof
show u; <p vy using 2(2) prefiz-fininf-length|OF 2(1) 3(1) le] by auto
show v; <p vy using 3(2) by this
qed
next
case ge
show ?thesis
proof
show u; <p ug using 2(2) by this
show vy < ug using 3(2) prefiz-fininf-length[OF 8(1) 2(1) ge] by auto
qed
qed
qed

lemma eg-fin-end:
assumes u; =p U 4] Q v; =p ug Q vy
shows vy = vs
proof —
have u; @ vo =p uy @ vy using assms(1) by blast

42

also have ... =p u; @ v; using assms(2) by blast
finally show ?thesis by blast
qed

definition indoc :: 'item = 'item list = bool
where indoc a v =3 u; ug. v =u; Q [a] Q uz A a ¢ set uy A Ind {a} (set
ul)

lemma indoc-set: indoc a v = a € set u unfolding indoc-def by auto

lemma indoc-appendll [intro:
assumes indoc a u
shows indoc a (u @ v)
using assms unfolding indoc-def by force
lemma indoc-appendI2|intro):
assumes a ¢ set u Ind {a} (set u) indoc a v
shows indoc a (u @ v)
proof —
obtain v; vy where 1: v = v, @Q [a] @ vy a ¢ set vy Ind {a} (set v1)
using assms(3) unfolding indoc-def by blast
show ?thesis
proof (unfold indoc-def, intro exI conjI)
show v @ v = (v @ v1) @ [a] @ v, unfolding 1(1) by simp
show a ¢ set (u @ vy) using assms(1) 1(2) by auto
show Ind {a} (set (u @ vy)) using assms(2) 1(3) by auto
qed
qed
lemma indoc-appendE[elim!]:
assumes indoc a (v Q v)
obtains (first) a € set u indoc a u | (second) a ¢ set u Ind {a} (set u) indoc
av
proof —
obtain w; wy where 1: u Q@ v = w; Q [a] @ wy a ¢ set wy Ind {a} (set wy)
using assms unfolding indoc-def by blast
show ?thesis
proof (cases a € set u)
case True
obtain u; us where 2: u = u; Q [a] Q uy a ¢ set uy
using split-list-first{OF True] by auto
have 3: w; = u;
proof (rule split-list-first-unique)
show w; @Q [a] @ wy = u; @ [a] @ ug @ v using (1) unfolding 2(1)
by simp
show a ¢ set wy using 1(2) by auto
show a ¢ set u; using 2(2) by this
qed
show ?thesis
proof (rule first)
show a € set u using True by this

43

show indoc a u
proof (unfold indoc-def, intro exI conjI)
show u = u; @ [a] @ up using 2(1) by this
show a ¢ set u; using 1(2) unfolding 3 by this
show Ind {a} (set u1) using 1(3) unfolding 3 by this
qed
qged
next
case Fulse
have 2: a € set v using indoc-set assms False by fastforce
obtain v; v2 where 3: v = v; @ [a] @ vy a ¢ set vy
using split-list-first[OF 2] by auto
have /: wy = u @Q v
proof (rule split-list-first-unique)
show w; Q [a] @ we = (u @ v1) Q [a] Q vy using 1(1) unfolding 3(1)
by simp
show a ¢ set wy using 1(2) by auto
show a ¢ set (v @ vy) using False 3(2) by auto
qed
show ?thesis
proof (rule second)
show a ¢ set u using False by this
show Ind {a} (set u) using 1(3) 4 by auto
show indoc a v
proof (unfold indoc-def, intro exl conjl)
show v = v1 Q [a] @ vy using 3(1) by this
show a ¢ set v; using 1(2) unfolding 4 by auto
show Ind {a} (set v1) using 1(3) unfolding 4 by auto
qed
qed
qed
qed

lemma indoc-single: indoc a [b] +— a =b
proof
assume [: indoc a [b]
obtain u; uy where 2: [b] = u; Q [a] @ ug Ind {a} (set u;)
using 7 unfolding indoc-def by auto
show a = b using 2(1)
by (metis append-eq-Cons-conv append-is-Nil-conv list.distinct(2) list.inject)
next
assume I:a =10
show indoc a [b]
unfolding indoc-def 1
proof (intro exI conjI)
show [b] =[] @ [b] @ [] by simp
show b ¢ set [| by simp
show Ind {b} (set []) by simp
qed

44

qed

lemma indoc-append[simp|: indoc a (u @ v) +—
indoc a u vV a ¢ set u A Ind {a} (set u) A indoc a v by blast
lemma indoc-Nil[simp]: indoc a [| «— False unfolding indoc-def by auto
lemma indoc-Cons[simpl: indoc a (b # v) «— a=bV a# bAindabA
indoc a v
proof —
have indoc a (b # v) +— indoc a ([b] @ v) by simp
also have ... «— indoc a [b] V a ¢ set [b] A Ind {a} (set [b]) A indoc a v
unfolding indoc-append by rule
alsohave...«—a=bV a# bAindab A indoc a v unfolding indoc-single
by simp
finally show ?thesis by this
qed

lemma eg-swap-indoc: w =g v => indoc ¢ v => indoc ¢ v by auto
lemma eg-fin-indoc: w =p v = indoc ¢ v = indoc ¢ v by (induct rule:
rtranclp.induct, auto)

lemma eq-fin-ind’:
assumes [a] @ v =p uy Q [a] @ ug a ¢ set uy
shows Ind {a} (set uy)

proof —
have 1: indoc a ([a] @ u) by simp
have 2: indoc a (u1 @ [a] @ uy) using eg-fin-indoc assms(1) 1 by this
show ?thesis using assms(2) 2 by blast

qed

lemma eg-fin-ind:
assumes v Q v =p v @Q u set u N set v = {}
shows Ind (set u) (set v)

using assms

proof (induct u)

case Nil
show ?case by simp
next

case (Cons a u)

have 1: Ind {a} (set v)

proof (rule eq-fin-ind’)
show [a] @ 4 @ v =p v @ [a] @ v using Cons(2) by simp
show a ¢ set v using Cons(3) by simp

qed

have 2: Ind (set [a]) (set v) using I by simp

have 4: Ind (set u) (set v)

proof (rule Cons(1))
have [a] @ u Q v = (a # u) Q v by simp

also have ... =p v @ a # u using Cons(2) by this
also have ... = (v @ [a]) Q@ u by simp
also have ... =p ([a] @ v) Q u using 2 by blast

45

also have ... = [a] @ v @ u by simp
finally show v @ v = v Q u by blast
show set u N set v = {} using Cons(3) by auto
qed
show ?case using 1 / by auto
qed

lemma le-fin-member”:
assumes [a] <=p u Q@ v a € set u
shows [a] <F u
proof —
obtain w where [: [a] @ w =p u @ v using assms(1) by rule
obtain u; us; where 2: u = u; @ [a] @ uy a ¢ set ug
using split-list-first[OF assms(2)] by auto
have 3: Ind {a} (set up)
proof (rule eq-fin-ind’)
show [a] @ w =p u; Q [a] Q uy @ v using I unfolding 2(1) by simp
show a ¢ set u; using 2(2) by this
qed
have /: Ind (set [a]) (set u1) using 3 by simp
have [a] < [a] @ u; @ uy by auto

also have ... = ([a] @ u1) @ uy by simp
also have ... =p (u; @ [a]) @ uy using /4 by blast
also have ... = u unfolding 2(1) by simp
finally show ?thesis by this

qged

lemma le-fin-not-member’:
assumes [a]| <p u Qv a ¢ set u
shows [a] <p v
proof —
obtain w where 1: [a] @ w =p u Q v using assms(1) by rule
have 3: a € set v using assms by auto
obtain v; v, where /: v = vy Q [a] Q vy a ¢ set vy using split-list-first|OF
3] by auto
have 5: [a] @ w =p u @ v; @ [a] @ vy using I unfolding 4 (1) by this
have 6: Ind {a} (set (u @ vy))
proof (rule eq-fin-ind’)
show [a] @ w =p (u @ v;) Q [a] @ vy using 5 by simp
show a ¢ set (u @ vy1) using assms(2) 4(2) by auto
qed
have 9: Ind (set [a]) (set v1) using 6 by auto
have [a] < [a] @ v; @ vy by auto
Q

also have ... = ([a] @ v1) @ vy by simp
also have ... =p (v; @ [a]) @ vy using 9 by blast
also have ... = v; @ [a] @ vy by simp
also have ... = v unfolding /(1) by rule
finally show ?thesis by this
qed

lemma le-fininf-not-member”:

46

assumes [a] <p; v Q— v a ¢ set u
shows [a] <p; v
proof —
obtain vy where 1: vy <p; u Q— v [a] 2F v2 using le-fininfE assms(1) by

this

show ?thesis

using 1(1)

proof (cases rule: prefiz-fininf-append)
case absorb
have [a] =F v2 using 1(2) by this
also have ... < u using absorb by this
finally have 2: a € set u by force
show ?thesis using assms(2) 2 by simp

next
case (extend z)
have [a] <F v2 using 1(2) by this
also have ... = u @ 2z using extend(1) by this
finally have 2: [a] <F u @ z by this
have [a] <F z using le-fin-not-member’ 2 assms(2) by this
also have ... <p; v using extend(2) by this
finally show ?thesis by this

qed

qed

lemma le-fin-ind’":
assumes [a]| < w [b)] Xp wa # b
shows ind a b
proof —
obtain u where 1: [a] @ v = w using assms(1) by rule
obtain v where 2: [b] @ v = w using assms(2) by rule
have 3: [a] @ u =p [b] @ v using I 2[symmetric] by auto
have 4: a € set v using 3 assms(3)
by (metis append-Cons append-Nil eq-fin-range list.set-intros(1) set-ConsD)
obtain v; v, where 5: v = v1 Q [a] Q vy a ¢ set vy using split-list-first| OF
4] by auto
have 7: Ind {a} (set ([b] @ v1))
proof (rule eq-fin-ind’)
show [a] @ u =p ([b)] @ v1) Q [a] @ vy using & unfolding 5(1) by simp
show a ¢ set ([b] @ vy) using assms(3) 5(2) by auto
qed
show ?thesis using 7 by auto
qed
lemma le-fin-ind":
assumes [a] <p wv I wa ¢ set v
shows Ind {a} (set v)
using assms
proof (induct v arbitrary: w)
case Nil
show ?case by simp

47

next
case (Cons b v)
have 1: ind a b
proof (rule le-fin-ind’’)
show [a] <r w using Cons(2) by this
show [b] <r w using Cons(3) by auto
show a # b using Cons(4) by auto
qed
obtain w’ where 2: [b] @ w’ = w using Cons(3) by auto
have 3: Ind {a} (set v)
proof (rule Cons(1))
show [a] <p w’
proof (rule le-fin-not-member’)
show [a] <F [b] @ w' using Cons(2) 2 by auto
show a ¢ set [b] using Cons(4) by auto
qged
have [b] @ v = b # v by simp
also have ... <p w using Cons(3) by this
also have ... =p [b] @ w' using 2 by auto
finally show v <r w’ by blast
show a ¢ set v using Cons(4) by auto
qed
show ?case using 1 3 by auto
qed
lemma le-fininf-ind’":
assumes [a] Sp; w [b] pr wa # b
shows ind a b
using subsume-fin le-fin-ind’’ assms by metis
lemma le-fininf-ind’:
assumes [a] Jp; wv <pr wa ¢ set v
shows Ind {a} (set v)
using subsume-fin le-fin-ind’ assms by metis

lemma indoc-alt-def: indoc a v <— v =p [a] Q@ removel a v
proof
assume 0: indoc a v
obtain v; vy where 1: v = v, Q [a] Q vs a ¢ set vy Ind {a} (set v1)
using 0 unfolding indoc-def by blast
have 2: Ind (set [a]) (set v1) using 1(3) by simp
have v = v; Q [a] @Q vy using 1(1) by this

also have ... = (v; Q [a]) @Q vy by simp

also have ... =f ([a] @ v;) @ vy using 2 by blast

also have ... = [a] @ v; @ vy by simp

also have ... = [a] @ removel a v unfolding 1(1) removel-append using

1(2) by auto
finally show v = [a] @ removel a v by this
next
assume 0: v =p [a] @ removel a v
have 1: indoc a ([a] @ removel a v) by simp

48

show indoc a v using eq-fin-indoc 0 1 by blast
qed

lemma levi-lemma:
assumes t Q u =p v Q w
obtains p r s ¢
where t =p pQru=p sQqu=ppQ@sw=prQqlnd (setr) (sets)
using assms
proof (induct t arbitrary: thesis v w)
case Nil
show “case
proof (rule Nil(1))
show [| =r [| @ [] by simp
show v =p [] @ v by simp
show u =p v @ w using Nil(2) by simp
show w =p [] @ w by simp
show Ind (set []) (set v) by simp
qed
next
case (Cons a t')
have 1: [a] =F v @ w using Cons(3) by blast
show “case
proof (cases a € set v)
case Fulse
have 2: [a] <r w using le-fin-not-member’ 1 False by this
obtain w’ where 3: w = [a] @ w’ using 2 by blast
have /: v <p v Q@ w by auto
have 5: Ind (set [a]) (set v) using le-fin-ind'[OF 1 4] False by simp
have [a] @ ' Q u = (a # t') Q u by simp

also have ... =p v @ w using Cons(3) by this
also have ... =p v @ [a] @ w' using 3 by blast
also have ... = (v @ [a]) @ w' by simp

also have ... = ([a] @ v) @ w' using 5 by blast
also have ... = [a] @ v @ w’ by simp

finally have 6: t' Q@ u =r v @ w’ by blast
obtain pr’'sqgwhere 7: t' =p pQr'u=p sQqu=p pQsw =p r’

Ind (set r') (set s) using Cons(1)[OF - 6] by this
have 8: set v = set p U set s using eg-fin-range 7(3) by auto
have 9: Ind (set [a]) (set p) using 5 8 by auto
have 10: Ind (set [a]) (set s) using 5 8 by auto
show %thesis
proof (rule Cons(2))
have a # t' = [a] @ t’ by simp

also have ... =p [a] @ p @ 7’ using 7(1) by blast
also have ... = ([a] @ p) @ r' by simp
also have ... =p (p @ [a]) @Q r' using 9 by blast

also have ...

=p Q@ [a] @ 7’ by simp
finally show a # t'

=r p Q [a] Q 1" by this

49

show u =p s @ ¢ using 7(2) by this
show v =p p @ s using 7(3) by this
have w =p [a] @ w' using 3 by this
also have ... =p [a] @ r' @Q ¢ using 7(4) by blast
also have ... = ([a] @ r") @Q ¢ by simp
finally show w =p ([a] @ r') @ ¢ by this
show Ind (set ([a] @ r')) (set s) using 7(5) 10 by auto
qed
next
case True
have 2: [a] <p v using le-fin-member’ 1 True by this
obtain v’ where 3: v =p [a] Q v’ using 2 by blast
have [a] @ ' Q@ u = (a # t') Q u by simp

also have ... =p v @ w using Cons(3) by this
also have ... = ([¢] Q v’) @ w using & by blast
also have ... = [a] @ v’ @ w by simp

finally have 4: t' Q uw = v/ @ w by blast
obtain p’ r s g where 7: t' =p p' Qru=p sQqv' =p p'Qsw=pr

@ gq

Ind (set r) (set s) using Cons(1)[OF - 4] by this

show ?thesis

proof (rule Cons(2))
have a # t' = [a] @ t' by simp
also have ... =p [a] @ p’ @ r using 7(1) by blast
also have ... = ([a] @ p’) @ r by simp
finally show a # t' = ([a] @ p’) @ r by this
show u =p s @ ¢ using 7(2) by this
have v =p [a] @ v’ using 3 by this
also have ... =p [a] @ p’ @ s using 7(3) by blast
also have ... = ([a] @ p’) @ s by simp
finally show v =p ([a] @ p') @ s by this
show w =g r @ ¢ using 7(4) by this
show Ind (set r) (set s) using 7(5) by this

qed

qed
qed
end
end

9 Transition Systems and Trace Theory

theory Transition-System-Traces

imports
Transition-System-Extensions
Traces

begin

50

lemma (in transition-system) words-infI-construct[rule-format, intro?:
assumes V v. v <p;y w — path v p
shows run w p
using assms by coinduct auto

lemma (in transition-system) words-infI-construct”:
assumes A\ k. 3 v. v <p; w A k < length v A path v p
shows run w p

proof
fix u
assume I1: u <py w
obtain v where 2: v <p; w length u < length v path v p using assms(1) by

auto

have 3: length u < length v using 2(2) by simp
have /: u < v using prefiz-fininf-length 1 2(1) 3 by this
show path u p using 4 2(3) by auto

qed

lemma (in transition-system) words-infI-construct-chain[intro]:
assumes chain w A\ k. path (w k) p
shows run (limit w) p
proof (rule words-infl-construct’)
fix k
obtain [where 1: k < length (w) using assms(1) by rule
show 3 v. v <py limit w A\ k < length v A path v p
proof (intro exl congl)
show w | <p; limit w using chain-prefiz-limit assms(1) by this
show k < length (w 1) using 1 by this
show path (w l) p using assms(2) by this
qed
qed

lemma (in transition-system) words-fin-blocked:
assumes A\ w. path wp = A N set w = {} = A N {a. enabled a (target w
p)} € AN {a. enabled a p}
assumes path w p A N {a. enabled a p} N set w = {}
shows A N set w = {}
using assms by (induct w rule: rev-induct, auto)

locale transition-system-traces =

transition-system ex en +

traces ind

for ez :: 'action = 'state = 'state

and en :: 'action = ’'state = bool

and ind :: '‘action = 'action = bool

+

assumes en: ind a b= enap = enbp+— en b (ex ap)

assumes er: ind a b= enap = enbp = ex b (ex ap) = exa (exbp)
begin

o1

lemma diamond-bottom:

assumes ind a b

assumes en a p en b p

shows en a (ex b p) enb (ex ap) ex b (exap) = exa (ex b p)

using assms independence-symmetric en er by metis+
lemma diamond-right:

assumes ind a b

assumes en a p en b (ex a p)

shows en a (ex b p) enbpexd (exap) =exa (exbp)

using assms independence-symmetric en ex by metis+
lemma diamond-left:

assumes ind a b

assumes en a (ex b p) en b p

shows enapenbd (exap) exd (exap) = exa (exbdp)

using assms independence-symmetric en ex by metis+

lemma eg-swap-word:

assumes w; =g wy path wy p

shows path ws p

using assms diamond-right by (induct, auto)
lemma eq-fin-word:

assumes w, =p wg path wy p

shows path ws p

using assms eg-swap-word by (induct, auto)
lemma le-fin-word:

assumes w, =g wo path wy p

shows path wy p

using assms eq-fin-word by blast
lemma le-fininf-word:

assumes wi Spy Wa TUN Wa P

shows path wy p

using assms le-fin-word by blast
lemma le-inf-word:

assumes ws =<y Wi TUN Wi P

shows run ws p

using assms le-fininf-word by (blast intro: words-infI-construct)
lemma eg-inf-word:

assumes wi =j Ws TUN Wi P

shows run wy p

using assms le-inf-word by auto

lemma eg-swap-ezecute:

assumes path wy p wi =g ws

shows fold ex wy p = fold ex ws p

using assms(2, 1) diamond-right by (induct, auto)
lemma eq-fin-execute:

assumes path wy p wi =g wo

shows fold ex w1 p = fold ex ws p

52

using assms(2, 1) eg-fin-word eq-swap-execute by (induct, auto)

lemma diamond-fin-word-step:

assumes Ind {a} (set v) en a p path v p

shows path v (ex a p)

using diamond-bottom assms by (induct v arbitrary: p, auto, metis)
lemma diamond-inf-word-step:

assumes Ind {a} (sset w) en a p run w p

shows run w (ezx a p)

using diamond-fin-word-step assms by (fast intro: words-infl-construct)
lemma diamond-fin-word-inf-word:

assumes Ind (set v) (sset w) path v p run w p

shows run w (fold ex v p)

using diamond-inf-word-step assms by (induct v arbitrary: p, auto)
lemma diamond-fin-word-inf-word':

assumes Ind (set v) (sset w) path (v @Q v) p run (u Q— w) p

shows run (v @— v Q— w) p

using assms diamond-fin-word-inf-word by auto

end

end

10 Functions

theory Functions
imports ../ Extensions/Set- Extensions
begin

locale bounded-function =
fixes A :: 'a set
fixes B :: b set
fixes f :: ‘a = b
assumes wellformed|intro?, simp|: © € A — fx € B

locale bounded-function-pair =
f: bounded-function A B f +
g: bounded-function B A g
for A :: 'a set
and B :: 'b set
and f :: 'la="b
and g :: 'b = 'a

locale injection = bounded-function-pair +
assumes left-inverse[simpl: © € A = g (fz) =z

begin

lemma inj-on[intro]: inj-on f A using inj-onl left-inverse by metis

93

lemma injective-on:
assumes x € Ay Afx=fy
shows z = y
using assms left-inverse by metis

end
locale injective = bounded-function +
assumes injection: 3 g. injection A B f g
begin
definition ¢ = SOME g. injection A B f g

sublocale injection A B f g unfolding g-def using somel-ex[OF injection] by
this

end
locale surjection = bounded-function-pair +
assumes right-inverse[simpl: y € B= f (gy) = y

begin

lemma image-superset[introl: f ¢ A D B
using g.wellformed image-iff right-inverse subsetl by metis

lemma image-eq[simp]: f ¢ A = B using image-superset by auto
end
locale surjective = bounded-function +

assumes surjection: 3 g. surjection A B f g
begin

definition ¢ = SOME g. surjection A B f g

sublocale surjection A B f g unfolding g-def using somel-ex[OF surjection]
by this

end
locale bijection = injection + surjection

lemma inj-on-bijection:
assumes inj-on f A
shows bijection A (f ¢ A) f (inv-into A f)
proof
show \ 2. z € A = fuz € f‘ A using imagel by this
show A\ y. y € f ‘A = inv-into A fy € A using inv-into-into by this
show A z. z € A = inv-into A f (f) = x using inv-into-f-f assms by this

54

show A\ y. y € f ‘A = [(inv-into A fy) = y using f-inv-into-f by this
qed

end

11 Extended Natural Numbers

theory FENat-FExtensions
imports

Coinductive. Coinductive-Nat
begin

declare eSuc-enat[simp]

declare iadd-Suc[simp] iadd-Suc-right|simp]
declare enat-0[simp] enat-1[simp] one-eSuc[simp]
declare enat-0-iff [iff] enat-1-iff[iff]

declare Suc-ile-eq[iff]

lemma enat-SucO[simpl: enat (Suc 0) = eSuc 0 by (metis One-nat-def one-eSuc
one-enat-def)

lemma le-epred[iff]: | < epred k <— eSuc 1 < k
by (metis eSuc-le-iff epred-eSuc epred-le-epredlI less-le-not-le not-le)

lemma eg-infI[intro]:
assumes /\ n. enat n < m
shows m = oo
using assms by (metis enat-less-imp-le enat-ord-simps(5) less-le-not-le)

end

12 Chain-Complete Partial Orders

theory CCPO-Extensions

imports
HOL- Library. Complete-Partial-Order2
ENat-FExtensions
Set-Extensions

begin

lemma chain-split[dest]:
assumes Complete-Partial-Order.chain ord C x € C
shows C ={ye C. ordzy} U{y € C. ord y z}
proof —
have 1: N y. y € C = ord z y V ord y x using chainD assms by this
show ?thesis using 1 by blast
qged

95

lemma infinite-chain-below[dest]:
assumes Complete-Partial-Order.chain ord C infinite C x € C
assumes finite {y € C. ord z y}
shows infinite {y € C. ord y x}
proof —
have 1: C ={y e C. ordz y} U {y € C. ord y z} using assms(1, 3) by rule
show ?thesis using finite-Un assms(2, 4) 1 by (metis (poly-guards-query))
qed
lemma infinite-chain-above[dest):
assumes Complete-Partial-Order.chain ord C infinite C x € C
assumes finite {y € C. ord y z}
shows infinite {y € C. ord z y}
proof —
have 1: C ={y e C. ordz y} U{y € C. ord y z} using assms(1, &) by rule
show ?thesis using finite-Un assms(2, 4) 1 by (metis (poly-guards-query))
qged

lemma (in ccpo) cepo-Sup-upper-inv:
assumes Complete-Partial-Order.chain less-eq C z > | | C
shows z ¢ C
using assms ccpo-Sup-upper by fastforce
lemma (in ccpo) cepo-Sup-least-inv:
assumes Complete-Partial-Order.chain less-eq C || C > x
obtains y
where y € C -y <z
using assms ccpo-Sup-least that by fastforce

lemma ccpo-Sup-least-inv’:
fixes C :: 'a :: {cepo, linorder} set
assumes Complete-Partial-Order.chain less-eq C | | C > z
obtains y
where y € Cy >z
proof —
obtain y where 1: y € C = y < z using ccpo-Sup-least-inv assms by this
show ?thesis using that 1 by simp
qed

lemma mcont2mcont-lessThan| THEN Ifp.mcont2mcont, simp, cont-intro:
shows mcont-lessThan: mcont Sup less-eq Sup less-eq
(lessThan :: 'a :: {cepo, linorder} = 'a set)
proof
show monotone less-eq less-eq (lessThan :: 'a = 'a set) by (rule, auto)
show cont Sup less-eq Sup less-eq (lessThan :: 'a = 'a set)
proof
fix C :: 'a set
assume [: Complete-Partial-Order.chain less-eq C
show {.< || C} = (lessThan * C)
proof (intro equalityl subsetl)
fix A

o6

assume 2: A € {.< || C}
obtain B where 3: B € C B > A using ccpo-Sup-least-inv’ 1 2 by blast
show A € |J (lessThan ¢ C) using 3 by auto

next
fix A
assume 2: A € |J (lessThan ‘ C)
show A € {..< || C} using ccpo-Sup-upper 2 by force

qed

qed
qged

class esize =
fixes esize :: 'a = enat

class esize-order = esize + order +

assumes esize-finite[dest]: esize ¥ # co = finite {y. y < z}

assumes esize-monolintro|: x < y = esize x < esize y

assumes esize-strict-mono[intro]: esize ¥ # 0o = 1 < y = esize © < esize y
begin

lemma infinite-chain-eSuc-esize|dest):
assumes Complete-Partial-Order.chain less-eq C infinite C z € C
obtains y
where y € C esize y > eSuc (esize 1)

proof (cases esize x)
case (enat k)
have 1: finite {y € C. y < z} using esize-finite enat by simp
have 2: infinite {y € C. y > z} using assms 1 by rule
have 3: {y € C. y > 2} = {y € C. y > z} — {2} by auto
have /: infinite {y € C. y > z} using 2 unfolding 3 by simp
obtain y where 5: y € C'y > x using 4 by auto
have 6: esize y > esize z using esize-strict-mono enat 5(2) by blast
show %thesis using that 5(1) 6 ilel1 by simp

next
case (infinity)
show ?thesis using that infinity assms(3) by simp

qged

lemma infinite-chain-arbitrary-esize[dest]:
assumes Complete-Partial-Order.chain less-eq C infinite C
obtains z
where z € C esize x > enat n
proof (induct n arbitrary: thesis)
case (
show ?case using assms(2) 0 by force
next
case (Suc n)
obtain = where 1: z € C esize © > enat n using Suc(1) by blast
obtain y where 2: y € C esize y > eSuc (esize x) using assms 1(1) by rule

o7

show ?case using gfp.leg-trans Suc(2) 1(2) 2 by fastforce
qed

end

class esize-ccpo = esize-order + ccpo
begin

lemma esize-cont[dest]:
assumes Complete-Partial-Order.chain less-eq C C # {}
shows esize (|| C) = || (esize * C)
proof (cases finite C')
case Fulse
have 1: esize (|| C) = o0
proof
fix n
obtain A where 1: A € C esize A > enat n using assms(1) False by rule
have 2: A < || C using ccpo-Sup-upper assms(1) 1(1) by this
have enat n < esize A using 1(2) by this
also have ... < esize (| | C) using 2 by rule
finally show enat n < esize (| | C) by this
qed
have 2: (|| A € C. esize A) =
proof
fix n
obtain A where 1: A € C esize A > enat n using assms(1) False by rule
show enat n < (|| A € C. esize A) using SUP-upper2 1 by this

qed

show ?thesis using 1 2 by simp
next

case True

have 1: esize (|| C) = (|| = € C. esize)
proof (intro order-class.order.antisym SUP-upper SUP-least esize-mono)
show | | C € C using in-chain-finite assms(1) True assms(2) by this
show A\ z. z € C = z < || C using ccpo-Sup-upper assms(1) by this
qed
show ?thesis using 1 by simp
qed

lemma esize-mcont: mcont Sup less-eq Sup less-eq esize
by (blast intro: mcontl monotonel contl)

lemmas mcont2mcont-esize = esize-mcont[THEN Ifp.mcont2mcont, simp, cont-intro]

end

end

o8

13 Sets and Extended Natural Numbers

theory ESet-FExtensions
imports
../ Basics/ Functions
Basic-FExtensions
CCPO-Eztensions
begin

lemma card-lessThan-enat[simp]: card {..< enat k} = card {..< k}
proof —
have 1: {..< enat k} = enat ‘ {..< k}
unfolding lessThan-def image-Collect using enat-iless by force
have card {..< enat k} = card (enat ‘ {..< k}) unfolding 1 by rule

also have ... = card {..< k} using card-image inj-enat by metis
finally show ?thesis by this
qged

lemma card-atMost-enat[simp]: card {.. enat k} = card {.. k}
proof —
have 1: {.. enat k} = enat ‘ {.. k}
unfolding atMost-def image-Collect using enat-ile by force
have card {.. enat k} = card (enat ‘ {.. k}) unfolding I by rule

also have ... = card {.. k} using card-image inj-enat by metis
finally show ?thesis by this
qed

lemma enat-Collect:
assumes co ¢ A
shows {i. enat i € A} = the-enat ‘* A
using assms by (safe, force) (metis enat-the-enat)

lemma Collect-lessThan: {i. enat i < n} = the-enat ‘{..< n}
proof —

have 1: 0o ¢ {..< n} by simp

have {i. enat i < n} = {i. enat i € {..< n}} by simp

also have ... = the-enat ‘ {..< n} using enat-Collect 1 by this
finally show ?thesis by this
qed

instantiation set :: (type) esize-ccpo
begin

function esize-set where finite A = esize A = enat (card A) | infinite A =
esize A = 00
by auto termination by lexicographic-order

lemma esize-iff-empty[iff]: esize A = 0 <— A = {} by (cases finite A, auto)

lemma esize-iff-infinite[iff]: esize A = oo «— infinite A by force
lemma esize-singleton[simp): esize {a} = eSuc 0 by simp

99

lemma esize-infinite-enat[dest, simp]: infinite A => enat k < esize A by force

instance
proof
fix A :: 'a set
assume [: esize A # o0
show finite {B. B C A} using 1 by simp
next
fix A B :: 'a set
assume 1: A C B
show esize A < esize B
proof (cases finite B)
case Fulse
show ?thesis using Fualse by auto
next
case True
have 2: finite A using True 1 by auto
show ?thesis using card-mono True 1 2 by auto
qed
next
fix A B :: 'a set
assume [: esize A %200 A C B
show esize A < esize B using psubset-card-mono 1 by (cases finite B, auto)
qed

end

lemma esize-image[simp, intro):
assumes inj-on f A
shows esize (f ¢ A) = esize A
using card-image finite-imageD assms by (cases finite A, auto)
lemma esize-insert! [simp]: a ¢ A = esize (insert a A) = eSuc (esize A)
by (cases finite A, force+)
lemma esize-insert2[simp|: a« € A = esize (insert a A) = esize A
using insert-absorb by metis
lemma esize-removel [simp]: a ¢ A = esize (A — {a}) = esize A
by (cases finite A, force+)
lemma esize-remove2[simp]: a € A = esize (A — {a}) = epred (esize A)
by (cases finite A, force+)
lemma esize-union-disjoint[simp]:
assumes A N B = {}
shows esize (A U B) = esize A + esize B
proof (cases finite (A U B))

case True

show ?thesis using card-Un-disjoint assms True by auto
next

case Fulse

show ?thesis using False by (cases finite A, auto)
qed

60

lemma esize-lessThan[simp]: esize {..< n} = n
proof (cases n)
case (enat k)
have I: finite {..< n} unfolding enat by (metis finite-lessThan-enat-iff
not-enat-eq)
show ?thesis using 1 unfolding enat by simp
next
case (infinity)
have 1: infinite {..< n} unfolding infinity using infinite-lessThan-infty by
simp
show ?thesis using 1 unfolding infinity by simp
qed
lemma esize-atMost[simp|: esize {.. n} = eSuc n
proof (cases n)
case (enat k)
have I: finite {.. n} unfolding enat by (metis atMost-iff finite-enat-bounded)
show ?thesis using 1 unfolding enat by simp
next
case (infinity)
have I: infinite {.. n}
unfolding infinity
by (metis atMost-iff enat-ord-code(3) infinite-lessThan-infty infinite-super
subsetl)
show ?thesis using 1 unfolding infinity by simp
qed

lemma least-eSuc[simp]:
assumes A # {}
shows least (eSuc ‘ A) = eSuc (least A)
proof (rule antisym)
obtain k¥ where 10: k € A using assms by blast
have 11: eSuc k € eSuc ‘ A using 10 by auto
have 20: least A € A using 10 Least] by metis
have 21: least (eSuc ‘ A) € eSuc ‘ A using 11 Least] by metis
have 30: \ I. 1 € A = least A < [using 10 Least-le by metis
have 31: A\ l. | € eSuc * A = least (eSuc * A) < [using 11 Least-le by metis
show least (eSuc ¢ A) < eSuc (least A) using 20 31 by auto
show eSuc (least A) < least (eSuc A) using 21 30 by auto
qed

lemma Inf-enat-eSuc[simp]: [] (eSuc * A) = eSuc ([] A) unfolding Inf-enat-def
by simp

definition lift :: nat set = nat set
where lift A = insert 0 (Suc ¢ A)

lemma liftl-0[intro, simp]: 0 € lift A unfolding lift-def by auto

lemma liftI-Suclintro]: a € A = Suc a € lift A unfolding lift-def by auto
lemma liftE[elim]:

61

assumes b € lift A
obtains (0) b = 0 | (Suc) a where b = Sucaa € A
using assms unfolding lift-def by auto

lemma lift-esize[simp]: esize (lift A) = eSuc (esize A) unfolding lift-def by auto
lemma lift-least[simp]: least (lift A) = 0 unfolding lift-def by auto

primrec nth-least :: 'a set = nat = 'a :: wellorder
where nth-least A 0 = least A | nth-least A (Suc n) = nth-least (A — {least
A n

lemma nth-least-wellformed[intro?, simp]:
assumes enat n < esize A
shows nth-least A n € A
using assms
proof (induct n arbitrary: A)
case (
show ?case using 0 by simp
next
case (Suc n)
have 1: A # {} using Suc(2) by auto
have 2: enat n < esize (A — {least A}) using Suc(2) 1 by simp
have 3: nth-least (A — {least A}) n € A — {least A} using Suc(1) 2 by this
show ?case using 3 by simp
qged

lemma card-wellformed[intro?, simp):
fixes k :: ‘a :: wellorder
assumes k € A
shows enat (card {i € A. i < k}) < esize A
proof (cases finite A)
case Fulse
show ?thesis using Fulse by simp
next
case True
have 1: esize {i € A. i < k} < esize A using True assms by fastforce
show ?thesis using True 1 by simp
qed

lemma nth-least-strict-mono:
assumes enat | < esize A k < |
shows nth-least A k < nth-least A |
using assms
proof (induct k arbitrary: A I)
case (
obtain !’ where 1: | = Suc I’ using 0(2) by (metis gr0-conv-Suc)
have 2: A # {} using 0(1) by auto
have 3: enat I’ < esize (A — {least A}) using 0(1) 2 unfolding ! by simp

62

have /: nth-least (A — {least A}) I’ € A — {least A} using 3 by rule
show ?case using 1 / by (auto intro: le-neg-trans)

next
case (Suc k)
obtain !’ where 1: | = Suc I’ using Suc(3) by (metis Suc-lessE)
have 2: A # {} using Suc(2) by auto
show ?case using Suc 2 unfolding 1 by simp

qed

lemma nth-least-mono[intro, simpl:
assumes enat | < esize A k <]
shows nth-least A k < nth-least A [
using nth-least-strict-mono le-less assms by metis

lemma card-nth-least[simp]:
assumes enat n < esize A
shows card {k € A. k < nth-least A n} = n
using assms
proof (induct n arbitrary: A)
case (
have 1: {k € A. k < least A} = {} using least-not-less by auto
show ?case using nth-least.simps(1) card.empty 1 by metis
next
case (Suc n)
have 1: A # {} using Suc(2) by auto
have 2: enat n < esize (A — {least A}) using Suc(2) 1 by simp
have 3: nth-least A 0 < nth-least A (Suc n) using nth-least-strict-mono Suc(2)
by blast
have 4: {k € A. k < nth-least A (Suc n)} =
{least A} U {k € A — {least A}. k < nth-least (A — {least A}) n} using I 3
by auto
have 5: card {k € A — {least A}. k < nth-least (A — {least A}) n} = n using
Suc(1) 2 by this
have 6: finite {k € A — {least A}. k < nth-least (A — {least A}) n}
using 5 Collect-empty-eq card.infinite infinite-imp-nonempty least-not-less
nth-least.simps(1)
by (metis (no-types, lifting))
have card {k € A. k < nth-least A (Suc n)} =
card ({least A} U {k € A — {least A}. k < nth-least (A — {least A}) n})
using 4 by simp
also have ... = card {least A} + card {k € A — {least A}. k < nth-least (A
— {least A}) n}
using 6 by simp

also have ... = Suc n using 5 by simp
finally show ?case by this
qed

lemma card-nth-least-le[simp):
assumes enat n < esize A

63

shows card {k € A. k < nth-least A n} = Suc n
proof —
have 1: {k € A. k < nth-least A n} = {nth-least A n} U {k € A. k < nth-least
A n}
using assms by auto
have 2: card {k € A. k < nth-least A n} = n using assms by simp
have 3: finite {k € A. k < nth-least A n}
using 2 Collect-empty-eq card.infinite infinite-imp-nonempty least-not-less
nth-least.simps(1)
by (metis (no-types, lifting))
have card {k € A. k < nth-least A n} = card ({nth-least A n} U {k € A. k <
nth-least A n})
unfolding 1 by rule

also have ... = card {nth-least A n} + card {k € A. k < nth-least A n} using
3 by simp
also have ... = Suc n using assms by simp
finally show ?thesis by this
qed

lemma nth-least-card:
fixes k :: nat
assumes k € A
shows nth-least A (card {i € A. i < k}) =k
proof (rule nat-set-card-equality-less)
have 1: enat (card {l € A. | < k}) < esize A
proof (cases finite A)
case Fulse
show ?thesis using Fualse by simp
next
case True
have 1: {l € A. | < k} C A using assms by blast
have 2: card {l € A. | < k} < card A using psubset-card-mono True 1 by
this
show ?thesis using True 2 by simp
qed
show nth-least A (card {l € A. | < k}) € A using I by rule
show k € A using assms by this
show card {z € A. z < nth-least A (card {i € A. i < k})} = card {z € A. 2 <
k} using 1 by simp
qed

interpretation nth-least:
bounded-function-pair {i. enat i < esize A} A nth-least A X\ k. card {i € A. i

< k}
using nth-least-wellformed card-wellformed by (unfold-locales, blast+)

interpretation nth-least:

injection {i. enat i < esize A} A nth-least A X k. card {i € A. i < k}
using card-nth-least by (unfold-locales, blast)

64

interpretation nth-least:
surjection {i. enat i < esize A} A nth-least A X k. card {i € A. i < k}
for A :: nat set
using nth-least-card by (unfold-locales, blast)

interpretation nth-least:
bijection {i. enat i < esize A} A nth-least A X k. card {i € A. i < k}
for A :: nat set
by unfold-locales

lemma nth-least-strict-mono-inverse:
fixes A :: nat set
assumes enat k < esize A enat | < esize A nth-least A k < nth-least A |
shows k < [
using assms by (metis not-less-iff-gr-or-eq nth-least-strict-mono)

lemma nth-least-less-card-less:
fixes k :: nat
shows enat n < esize A A\ nth-least An < k+—n < card {i € A. i < k}
proof safe
assume 1: enat n < esize A nth-least A n < k
have 2: nth-least A n € A using 1(1) by rule
have n = card {i € A. i < nth-least A n} using 1 by simp
also have ... < card {i € A. i < k} using 1(2) 2 by simp
finally show n < card {i € A. i < k} by this
next
assume 1: n < card {i € A. i < k}
have enat n < enat (card {i € A. i < k}) using 1 by simp
also have ... = esize {i € A. i < k} by simp
also have ... < esize A by blast
finally show 2: enat n < esize A by this
have 3: n = card {i € A. i < nth-least A n} using 2 by simp
have 4: card {i € A. i < nth-least A n} < card {i € A. i < k} using 1 2 by
stmp
have 5: nth-least A n € A using 2 by rule
show nth-least A n < k using 4 5 by simp
qed

lemma nth-least-less-esize-less:
enat n < esize A A\ enat (nth-least A n) < k <— enat n < esize {i € A. enat
i < k}
using nth-least-less-card-less by (cases k, simp+)

lemma nth-least-le:
assumes enat n < esize A
shows n < nth-least A n

using assms

proof (induct n)

65

case (
show ?case using 0 by simp
next
case (Suc n)
have n < nth-least A n using Suc by (metis Suc-ile-eq less-imp-le)
also have ... < nth-least A (Suc n) using nth-least-strict-mono Suc(2) by
blast
finally show ?case by simp
qed

lemma nth-least-eq:
assumes enat n < esize A enat n < esize B
assumes A i. ¢ < nth-least A n = { < nth-least Bn — i € A+— i€ B
shows nth-least A n = nth-least B n
using assms
proof (induct n arbitrary: A B)
case (
have 1: least A = least B
proof (rule least-eq)
show A # {} using 0(1) by simp
show B # {} using 0(2) by simp
next
fix ¢
assume 2: ¢ < least A i < least B
show i € A +— i € B using 0(3) 2 unfolding nth-least.simps by this
qged
show ?case using 1 by simp
next
case (Suc n)
have 1: A # {} B # {} using Suc(2, 3) by auto
have 2: least A = least B
proof (rule least-eq)
show A # {} using 1(1) by this
show B # {} using 1(2) by this
next
fix ¢
assume 3: 7 < least A i < least B
have 4: nth-least A 0 < nth-least A (Suc n) using Suc(2) by blast
have 5: nth-least B 0 < nth-least B (Suc n) using Suc(3) by blast
have 6: i < nth-least A (Suc n) i < nth-least B (Suc n) using 3 4 5 by auto
show i € A +— i € B using Suc(4) 6 by this
qed
have 3: nth-least (A — {least A}) n = nth-least (B — {least B}) n
proof (rule Suc(1))
show enat n < esize (A — {least A}) using Suc(2) 1(1) by simp
show enat n < esize (B — {least B}) using Suc(3) 1(2) by simp
next
fix ¢
assume 3: ¢ < nth-least (A — {least A}) n i < nth-least (B — {least B}) n

66

have 4: i < nth-least A (Suc n) i < nth-least B (Suc n) using 3 by simp+
have 5: i € A +— i € B using Suc(4) 4 by this
show i € A — {least A} «— i € B — {least B} using 2 5 by auto
qed
show ?case using 3 by simp
qed

lemma nth-least-restrict|simp:
assumes enat i < esize {i € s. enat i < k}
shows nth-least {i € s. enat i < k} i = nth-least s i
proof (rule nth-least-eq)
show enat i < esize {i € s. enat i < k} using assms by this
show enat i < esize s using nth-least-less-esize-less assms by auto
next
fix [
assume 1: [< nth-least {i € s. enat i < k} ¢
have 2: nth-least {i € s. enat i < k} i € {i € s. enat { < k} using assms by
rule
have enat | < enat (nth-least {i € s. enat i < k} i) using 1 by simp
also have ... < k using 2 by simp
finally show [€ {i € s. enat i < k} +— | € s by auto
qed

lemma least-nth-least]simp):
assumes A # {} Ni.i € A = enat i < esize B
shows least (nth-least B ¢ A) = nth-least B (least A)
using assms by simp

lemma nth-least-nth-least][simp]:
assumes enat n < esize A \ i. i € A = enat i < esize B
shows nth-least B (nth-least A n) = nth-least (nth-least B < A) n
using assms
proof (induct n arbitrary: A)
case (
show ?case using 0 by simp
next
case (Suc n)
have 1: A # {} using Suc(2) by auto
have 2: nth-least B * (A — {least A}) = nth-least B * A — nth-least B ‘ {least
A}
proof (rule inj-on-image-set-diff)
show inj-on (nth-least B) {i. enat i < esize B} using nth-least.inj-on by this
show A — {least A} C {i. enat i < esize B} using Suc(8) by blast
show {least A} C {i. enat i < esize B} using Suc(3) 1 by force
qed
have nth-least B (nth-least A (Suc n)) = nth-least B (nth-least (A — {least A})
n) by simp
also have ... = nth-least (nth-least B * (A — {least A})) n using Suc I by
force

67

also have ... = nth-least (nth-least B ¢ A — nth-least B ‘{least A}) n unfolding

2 by rule
also have ... = nth-least (nth-least B ¢ A — {nth-least B (least A)}) n by simp
also have ... = nth-least (nth-least B * A — {least (nth-least B * A)}) n using
Suc(3) 1 by auto
also have ... = nth-least (nth-least B * A) (Suc n) by simp
finally show ?case by this
qed

lemma nth-least-Max[simp]:
assumes finite A A # {}
shows nth-least A (card A — 1) = Maz A
using assms
proof (induct card A — 1 arbitrary: A)
case (
have 1: card A = 1 using 0 by (metis One-nat-def Suc-diff-1 card-gt-0-iff)
obtain a where 2: A = {a} using 1 by rule
show ?case unfolding 2 by (simp del: insert-iff)
next
case (Suc n)
have 1: least A € A using Suc(4) by rule
have 2: card (A — {least A}) = Suc n using Suc(2, 3) 1 by simp
have 3: A — {least A} # {} using 2 Suc(3) by fastforce
have nth-least A (card A — 1) = nth-least A (Suc n) unfolding Suc(2) by
rule

also have ... = nth-least (A — {least A}) n by simp

also have ... = nth-least (A — {least A}) (card (A — {least A}) — 1) unfolding
2 by simp

also have ... = Maz (A — {least A})

proof (rule Suc(1))
show n = card (A — {least A}) — 1 unfolding 2 by simp
show finite (A — {least A}) using Suc(3) by simp
show A — {least A} # {} using 3 by this

qed
also have ... = Maz A using Suc(3) 3 by simp
finally show ?case by this

qged

lemma nth-least-le-Max:
assumes finite A A # {} enat n < esize A
shows nth-least A n < Maz A
proof —
have nth-least A n < nth-least A (card A — 1)
proof (rule nth-least-mono)
show enat (card A — 1) < esize A by (metis Suc-diff-1 Suc-ile-eq assms(1)
assms(2)
card-eq-0-iff esize-set.simps(1) not-gr0 order-refl)
show n < card A — 1 by (metis Suc-diff-1 Suc-lel antisym-conv assms(1)
assms(3)

68

enat-ord-simps(2) esize-set.simps(1) le-less neg-iff not-gro0)

qed
also have ... = Maz A using nth-least-Mazx assms(1, 2) by this
finally show ?thesis by this

qed

lemma nth-least-not-contains:
fixes k :: nat
assumes enat (Suc n) < esize A nth-least A n < k k < nth-least A (Suc n)
shows k ¢ A
proof
assume [: k € A
have 2: nth-least A (card {i € A. i < k}) = k using nth-least.right-inverse 1
by this
have 3: n < card {i € A. i < k}
proof (rule nth-least-strict-mono-inverse)
show enat n < esize A using assms(1) by auto
show enat (card {i € A. i < k}) < esize A using nth-least.g.wellformed 1
by simp
show nth-least A n < nth-least A (card {i € A. i < k}) using assms(2) 2
by simp
qed
have 4: card {i € A. i < k} < Sucn
proof (rule nth-least-strict-mono-inverse)
show enat (card {i € A. i < k}) < esize A using nth-least.g.wellformed 1
by simp
show enat (Suc n) < esize A using assms(1) by this
show nth-least A (card {i € A. i < k}) < nth-least A (Suc n) using assms(3)
2 by simp
qed
show Fulse using 3 4 by auto
qed

lemma nth-least-Suc|simp]:
assumes enat n < esize A
shows nth-least (Suc ¢ A) n = Suc (nth-least A n)
using assms
proof (induct n arbitrary: A)
case (0)
have 1: A # {} using 0 by auto
show ?case using 1 by simp
next
case (Suc n)
have 1: enat n < esize (A — {least A})
proof —
have 2: A # {} using Suc(2) by auto
have 3: least A € A using Leastl 2 by fast
have 4: A = insert (least A) A using & by auto
have eSuc (enat n) = enat (Suc n) by simp

69

also have ... < esize A using Suc(2) by this

also have ... = esize (insert (least A) A) using / by simp

also have ... = eSuc (esize (A — {least A})) using 3 2 by simp

finally show ?thesis using FExtended-Nat.eSuc-mono by metis
qed

have nth-least (Suc ¢ A) (Suc n) = nth-least (Suc * A — {least (Suc * A)}) n

by simp
also have ... = nth-least (Suc ‘(A — {least A})) n by simp
also have ... = Suc (nth-least (A — {least A}) n) using Suc(1) 1 by this
also have ... = Suc (nth-least A (Suc n)) by simp
finally show ?case by this
qed

lemma nth-least-lift[simp]:
nth-least (lift A) 0 = 0
enat n < esize A => nth-least (lift A) (Suc n) = Suc (nth-least A n)
unfolding lift-def by simp+

lemma nth-least-list-card|[simp]:
assumes enat n < esize A
shows card {k € A. k < nth-least (lift A) n} = n
using less-Suc-eq-le assms by (cases n, auto simp del: nth-least.simps)

end

14 Coinductive Lists

theory Coinductive-List- Extensions
imports
Coinductive. Coinductive-List
Coinductive. Coinductive-List- Prefix
Coinductive. Coinductive-Stream
../ Extensions/ List- Extensions
../ Extensions/ ESet- Extensions
begin

hide-const (open) Sublist.prefix
hide-const (open) Sublist.suffix

declare list-of-lappend[simp)
declare Inth-lappend1 [simp)
declare Inth-lappend2[simp)
declare Iprefiz-llength-le[dest)
declare Sup-llist-def[simp]
declare length-list-of [simp]
declare llast-linfinite[simp)
declare Inth-ltake[simp]
declare lappend-assoc[simp)
declare lprefiz-lappend|[simp)

70

lemma Iprefiz-1Sup-revert: [Sup = Sup lprefiv = less-eq by auto
lemma admissible-lprefizl[cont-intro]:
assumes mcont lub ord [Sup lprefix f
assumes mcont lub ord lSup lprefiz g
shows ccpo.admissible lub ord (A z. lprefiz (f z) (g x))
using ccpo-class.admissible-lel assms unfolding Iprefiz-ISup-revert by this
lemma [list-lift-admissible:
assumes ccpo.admissible ISup Iprefix P
assumes A\ u. u < v = Ifinite u = P u
shows P v
using assms by (metis LNil-lprefix le-llist-conv-lprefiz lfinite.simps llist-gen-induct)

abbreviation linfinite w = — Ifinite w

notation LNil («<>»)

notation LCons (infixr <% 65)
notation lzip (infixr «||» 51)
notation lappend (infixr <$» 65)
notation Inth (infixl <7 100)

syntax -llist :: args = 'a llist («<->»)
syntax-consts -llist = LCons
translations

<a, z> = a % <z>

<a>=a % <>

lemma eq-LNil-conv-lnull[simp]: w = <> «— Inull w by auto
lemma Collect-lnull[simp]: {w. Inull w} = {<>} by auto

lemma inj-on-ltake: inj-on (A k. ltake k w) {.. llength w}
by (rule inj-onl, auto, metis llength-ltake min-def)

lemma Inth-inf-llist'[simp): Inth (inf-llist f) = f by auto

lemma not-lnull-lappend-startE[elim]:
assumes — [null w
obtains a v
where w = <a> $ v
using not-lnull-conv assms by (simp, metis)
lemma not-lnull-lappend-endE|elim]:
assumes — [null w
obtains a v
where w = v § <a>
proof (cases lfinite w)
case Fulse
show ?thesis
proof
show w = w $ <a> using lappend-inf False by force

71

qed
next
case True
show ?thesis
using True assms that
proof (induct arbitrary: thesis)
case (lfinite-LNil)
show ?case using Ifinite-LNil by auto
next
case (lfinite-LConsl w a)
show ?case
proof (cases Inull w)
case Fulse
obtain b v where 1: w = v $§ using lfinite-LConsI(2) False by this
show ?thesis
proof (rule Ilfinite-LConsI(4))
show a % w = (a % v) $ unfolding 1 by simp
qed
next
case True
show ?thesis
proof (rule Ilfinite-LConsI(4))
show a % w = <> $ <a> using True by simp
qed
qed
qged
qed

lemma llength-lappend-startE]elim]:
assumes llength w > eSuc n
obtains a v
where w = <a> $ v llength v > n
proof —
have 1: = Inull w using assms by auto
show ?thesis using assms 1 that by auto
qed
lemma llength-lappend-endE|elim]:
assumes llength w > eSuc n
obtains a v
where w = v $ <a> llength v > n
proof —
have 1: — Inull w using assms by auto
show ?thesis using assms 1 that by auto
qed

lemma llength-lappend-start’E|elim]:
assumes llength w = enat (Suc n)
obtains a v
where w = <a> $ v llength v = enat n

72

proof —
have 1: llength w > eSuc (enat n) using assms by simp
obtain ¢ v where 2: w = <a> $ v using 1 by blast
show ?thesis
proof
show w = <a> $ v using 2(1) by this
show llength v = enat n using assms unfolding 2(1) by (simp, metis
eSuc-enat eSuc-inject)
qed
qged
lemma llength-lappend-end’E[elim]:
assumes llength w = enat (Suc n)
obtains a v
where w = v $ <a> llength v = enat n
proof —
have 1: llength w > eSuc (enat n) using assms by simp
obtain a v where 2: w = v $ <a> using 1 by blast
show ?thesis
proof
show w = v $ <a> using 2(1) by this
show llength v = enat n using assms unfolding 2(1) by (simp, metis
eSuc-enat eSuc-inject)
qed
qed

lemma ltake-llast[simp]:
assumes enat k < llength w
shows llast (ltake (enat (Suc k)) w) = w 9 k
proof —
have 1: llength (ltake (enat (Suc k)) w) = eSuc (enat k)using min.absorb-iff1
assms by auto
have llast (ltake (enat (Suc k)) w) = ltake (enat (Suc k)) w ! k
using llast-conv-Inth 1 by this

also have ... = w 2! k by (rule Inth-ltake, simp)
finally show ?thesis by this
qed

lemma linfinite-llength|[dest, simp]:
assumes linfinite w
shows enat k < llength w
using assms not-lfinite-llength by force

lemma [list-nth-eql[intro]:
assumes llength u = llength v
assumes \ i. enat i < llength u = enat { < llengthv —= u ?1 i =v 2 i
shows u = v
using assms
proof (coinduction arbitrary: u v)
case FEq-llist

73

have 10: llength v = llength v using FEq-llist by auto
have 11: A i. enat i < llength w = enat i < llength v = u i =v 9 ¢
using Fq-llist by auto
show ?Zcase
proof (intro conjl impI exI alll)
show Inull u <— Inull v using 10 by auto
next
assume 20: — null u = Inull v
show [hd v = lhd v using lhd-conv-Inth enat-0 11 20 by force
next
show [tl u = [tl u by rule
next
show [tl v = Itl v by rule
next
assume 30: — null u = Inull v
show llength (It u) = llength (Itl v) using 10 30 by force
next
fix ¢
assume 40: = Inull v = Inull v enat © < llength (Itl w) enat i < length (It v)
have 41: u 9! Suc i = v 2! Suc i
proof (rule 11)
show enat (Suc i) < llength u using Suc-ile-eq 40(1) 40(3) by auto
show enat (Suc i) < llength v using Suc-ile-eq 40(2) 40(4) by auto
qed
show ltl u 2! i = ltl v 2! i using Inth-ltl 40(1—2) 41 by metis
qged
qed

primcorec Iscan :: (‘a = 'b = 'b) = 'a llist = 'b = 'b llist
where lscan fw a = (case w of <> = <a> |z % zs = a % Iscan fxs (fz a))

lemma Iscan-simps|simp]:
lscan f <> a = <a>
Iscan f (z % zs) a = a % Iscan fxs (f z a)
by (metis list.simps(4) lscan.code, metis llist.simps(5) Iscan.code)

lemma Iscan-lfiniteliff]: lfinite (Iscan fw a) <— Ifinite w
proof
assume Ifinite (Iscan f w a)
thus [finite w
proof (induct lscan f w a arbitrary: w a rule: lfinite-induct)
case LNil
show ?Zcase using LNil by simp
next
case LCons
show ?case by (cases w, simp, simp add: LCons(3))
qed
next
assume Ifinite w

74

thus [finite (Iscan f w a) by (induct arbitrary: a, auto)
qed
lemma [scan-llength[simp]: llength (Iscan fw a) = eSuc (llength w)
proof (cases Ilfinite w)
case Fulse
have 1: llength (Iscan f w a) = oo using not-lfinite-llength False by auto
have 2: llength w = oo using not-lfinite-llength False by auto
show ?thesis using 1 2 by simp

next

case True

show ?thesis using True by (induct arbitrary: a, auto)
qed

function lfold :: (Y'a = b= 'b) = a llist = 'b="b
where Ifinite w = Ifold f w = fold f (list-of w) | linfinite w = Ifold f w = id
by (auto, metis) termination by lexicographic-order

lemma Ifold-llist-of [simp]: fold f (llist-of xs) = fold f xs by simp

lemma finite-UNIV-llength-eq:

assumes finite (UNIV :: 'a set)

shows finite {w :: 'a llist. llength w = enat n}
proof (induct n)

case (0)
show ?case by simp
next

case (Suc n)
have 1: finite ({v. llength v = enat n} x UNIV :: ('a llist x 'a) set)
using Suc assms by simp
have 2: finite (A (v, a). v § <a> = 'a llist) * ({v. llength v = enat n} x
UNIV))
using 1 by auto
have 3: finite {v $ <a> :: ‘a llist |v a. llength v = enat n}
proof —
have 0: {v $ <a> :: 'a llist |v a. llength v = enat n} =
(A (v, a). v8 <a>::'allist) “ ({v. llength v = enat n} x UNIV) by auto
show ?thesis using 2 unfolding 0 by this
qed
have {: finite {w :: 'a llist . llength w = enat (Suc n)}
proof —
have 0: {w :: ’a llist . llength w = enat (Suc n)} =
{v$ <a>: 'allist |va. llength v = enat n} by force
show ?thesis using & unfolding 0 by this
qed
show ?case using 4 by this
qed
lemma finite-UNIV-llength-le:
assumes finite (UNIV :: 'a set)
shows finite {w :: 'a llist. llength w < enat n}

75

proof —
have 1: {w. llength w < enat n} = (|J k < n. {w. llength w = enat k})
by (auto, metis atMost-iff enat-ile enat-ord-simps(1))
show ?thesis unfolding 1 using finite-UNIV-llength-eq assms by auto
qed

lemma Iprefiz-ltakel[dest]: u < v = u = ltake (llength u) v
by (metis le-llist-conv-lprefiz Iprefiz-conv-lappend ltake-all ltake-lappendl or-
der-refl)
lemma prefizes-set: {v. v < w} = {ltake k w |k. k < llength w} by fastforce
lemma esize-prefizes[simp]: esize {v. v < w} = eSuc (llength w)
proof —
have esize {v. v < w} = esize {ltake k w |k. k < llength w} unfolding
prefixes-set by rule

also have ... = esize (A k. ltake k w) ‘{.. llength w})
unfolding atMost-def image-Collect by rule
also have ... = esize {.. llength w} using inj-on-ltake esize-image by blast
also have ... = eSuc (llength w) by simp
finally show ?thesis by this
qed

lemma prefiz-subsume: v < w = u < w = llength v < llength u = v < u
by (metis le-llist-conv-Iprefix lprefix-conv-lappend
Iprefiz-ltake ltake-is-lprefix ltake-lappendl)

lemma ltake-infinite[simp]: ltake co w = w by (metis enat-ord-code(3) ltake-all)

lemma Iprefiz-infinite:
assumes u < v linfinite u
shows u = v
proof —
have 1: llength u = co using not-lfinite-llength assms(2) by this
have u = ltake (llength u) v using Iprefiz-ltake assms(1) by this

also have ... = v using I by simp
finally show ?thesis by this
qed

instantiation llist :: (type) esize-order
begin

definition [simp]: esize = llength

instance
proof
fix w:: ’a llist
assume [: esize w # 00
show finite {v. v < w}
using esize-prefives 1 by (metis eSuc-eg-infinity-iff esize-set.simps(2) es-
ize-llist-def)

next

76

fix u v :: 'a llist

assume 1: u < v

show esize u < esize v using Iprefiz-llength-le 1 by auto
next

fix u v : 'allist

assume 1: u < v

show esize u < esize v using Istrict-prefiz-llength-less 1 by auto
qed

end

14.1 Index Sets

definition liset :: 'a set = 'a llist = nat set
where liset A w = {i. enat i < llength w A w 91 i € A}

lemma liset][intro):
assumes enat ¢ < llength ww 9! i € A
shows 7 € liset A w
using assms unfolding liset-def by auto
lemma lisetD[dest]:
assumes i € liset A w
shows enat i < llength ww 917 € A
using assms unfolding liset-def by auto

lemma liset-finite:

assumes Ifinite w

shows finite (liset A w)
proof

show liset A w C {i. enat i < llength w} by auto

show finite {i. enat i < llength w} using Ifinite-finite-index assms by this
qed

lemma liset-nil[simp]: liset A <> = {} by auto
lemma liset-cons-not-member|simp]:
assumes a ¢ A
shows liset A (a % w) = Suc ‘ liset A w
proof —
have liset A (a % w) = {i. enat i < llength (a % w) A (a % w) 2 i € A} by
auto

also have ... = Suc ‘ {i. enat (Suc i) < llength (a % w) A (@ % w) 9! Suc i

€ A}
using Collect-split-Suc(1) assms by simp

also have ... = Suc ‘ {i. enat i < llength w A w 9! i € A} using Suc-ile-eq
by simp

also have ... = Suc ‘ liset A w by auto

finally show ?thesis by this

qed

lemma liset-cons-member[simp):

77

assumes a € A
shows liset A (a % w) = {0} U Suc * liset A w
proof —
have liset A (a % w) = {i. enat i < llength (a % w) A (a % w) 2 i € A} by
auto

also have ... = {0} U Suc ‘ {i. enat (Suc i) < llength (a % w) A (a % w)

21 Suc i € A}
using Collect-split-Suc(2) assms by simp

also have ... = {0} U Suc ‘ {i. enat i < llength w A w ?! i € A} using
Suc-ile-eq by simp

also have ... = {0} U Suc ‘ liset A w by auto

finally show ?thesis by this

qed

lemma liset-prefiz:
assumes i € liset A v u < v enat i < llength u
shows 7 € liset A u
unfolding liset-def
proof (intro Collect] conjl)
have 1: v 2! i € A using assms(1) by auto
show enat i < llength u using assms(3) by this
show u 9! i € A using lprefiz-InthD assms(2, 8) 1 by force
qed
lemma liset-suffix:
assumes ¢ € liset A uu<w
shows ¢ € liset A v
unfolding liset-def
proof (intro Collect] conjl)
have 1: enat i < llength u u 9! i € A using assms(1) by auto
show enat i < llength v using Iprefiz-llength-le 1(1) assms(2) by fastforce
show v 21 i € A using Iprefiz-InthD assms(2) 1 by force
qed

lemma liset-ltake[simp]: liset A (ltake (enat k) w) = liset A w N {..< k}
proof (intro equalityl subsetl)
fix ¢
assume [: i € liset A (ltake (enat k) w)
have 2: enat i < enat k using I by auto
have 3: ltake (enat k) w 9! ¢ = w 2 i using Inth-ltake 2 by this
show i € liset A w N {..< k} using 1 3 by fastforce
next
fix ¢
assume 1: 7 € liset A wn {.< k}
have 2: enat i < enat k using 1 by auto
have 3: ltake (enat k) w 2! ¢ = w 2 ¢ using Inth-ltake 2 by this
show i € liset A (ltake (enat k) w) using 1 3 by fastforce
qed

lemma liset-mono[dest]: v < v = liset A u C liset A v

78

unfolding liset-def using lprefiz-InthD by fastforce
lemma liset-cont|dest]:
assumes Complete-Partial-Order.chain less-eq C C # {}
shows liset A (|| C) = (J w € C. liset A w)
proof safe
fix ¢
assume 1: 7 € liset A (| O)
show i € (| w e C. liset A w)
proof (cases finite C)
case Fulse
obtain w where 2: w € C enat i < llength w
using esize-llist-def infinite-chain-arbitrary-esize assms(1) False Suc-ile-eq
by metis
have 3: w < || C using chain-lprefiz-ISup assms(1) 2(1) by simp
have /: i € liset A w using liset-prefix 1 8 2(2) by this
show ?thesis using 2(1) 4 by auto
next
case True
have 2: | | C € C using in-chain-finite assms(1) True assms(2) by this
show ?thesis using 1 2 by auto
qed
next
fix wi
assume [: w € Ci € liset A w
have 2: w < || C using chain-lprefiz-ISup assms(1) 1(1) by simp
show i € liset A (|| C) using liset-suffix 1(2) 2 by this
qed

lemma liset-mcont: Complete-Partial-Order2.mcont [Sup Iprefic Sup less-eq
(liset A)
unfolding Iprefiz-lSup-revert by (blast intro: mcontl monotonel contl)

lemmas mcont2mcont-liset = liset-mcont[THEN Ifp.mcont2mcont, simp, cont-intro]

14.2 Selections

abbreviation Iproject A = lIfilter (X a. a € A)
abbreviation Iselect s w = Inths w s

lemma Iselect-to-lproject: Iselect s w = Imap fst (Iproject (UNIV x s) (w ||
iterates Suc 0))
proof —
have 1: {(z, y). y € s} = UNIV x s by auto
have Iselect s w = Imap fst (Iproject {(z, y). y € s} (w || iterates Suc 0))
unfolding Inths-def by simp

also have ... = lmap fst (Iproject (UNIV x s) (w || iterates Suc 0)) unfolding
1 by rule
finally show ?thesis by this
qed

79

lemma Iproject-to-lselect: Iproject A w = lselect (liset A w) w
unfolding [filter-conv-Inths liset-def by rule

lemma lproject-llength[simp]: llength (Iproject A w) = esize (liset A w)
by (induct rule: llist-induct) (auto)

lemma Iproject-lfinite[simp]: lfinite (lproject A w) «— finite (liset A w)
using Iproject-llength esize-iff-infinite llength-eq-infty-conv-lfinite by metis

lemma Iselect-restrict-indices[simp]: Iselect {i € s. enat i < llength w} w =
Iselect s w
proof (rule Inths-cong)
show w = w by rule
next
fix n
assume I: enat n < llength w
show n € {i € s. enat i < llength w} <— n € s using I by blast
qed

lemma Iselect-llength: llength (Iselect s w) = esize {i € s. enat i < llength w}
proof —
have 1: A i. enat i < llength w = (w || iterates Suc 0) 9 i = (w 2 4, i)
by (metis Suc-funpow enat.distinct(1) enat-ord-simps(4) llength-iterates
Inth-iterates
Inth-lzip monoid-add-class.add.right-neutral)
have 2: {i. enat i < llength w A (w || iterates Suc 0) 9 i € UNIV x s} =
{i € s. enat i < llength w} using I by auto
have llength (Iselect s w) = esize (liset (UNIV x s) (w || iterates Suc 0))
unfolding Iselect-to-lproject by simp

also have ... = esize {i. enat i < llength w A (w || iterates Suc 0) 9! i €
UNIV x s}
unfolding liset-def by simp
also have ... = esize {i € s. enat i < llength w} unfolding 2 by rule
finally show ?thesis by this
qed

lemma [select-llength-le[simp]: llength (lselect s w) < esize s
proof —
have llength (Iselect s w) = esize {i € s. enat i < llength w}
unfolding Iselect-llength by rule

also have ... = esize (s N {i. enat i < llength w}) unfolding Collect-conj-eq
by simp
also have ... < esize s by blast
finally show ?thesis by this
qed

lemma least-lselect-llength:
assumes — lnull (Iselect s w)
shows enat (least s) < llength w
proof —
have 0: llength (Iselect s w) > 0 using assms by auto
have 1: A\ i. i € s = least s < i using Least-le 0 by fast

80

obtain ¢ where 2: i € s enat i < llength w using 0 unfolding Iselect-llength
by auto
have enat (least s) < enat ¢ using 1 2(1) by auto
also have ... < llength w using 2(2) by this
finally show enat (least s) < llength w by this
qed
lemma Iselect-Inull: Inull (Iselect s w) «— (V @ € s. enat i > llength w)
unfolding llength-eq-0[symmetric] lselect-llength by auto

lemma Iselect-discard-start:
assumes \ i. i € s =k < i
shows Iselect {i. k + i € s} (ldropn k w) = lselect s w
proof —
have 1: iselect s (ltake (enat k) w) = <>
using assms by (fastforce simp add: Iselect-Inull min-le-iff-disj)
have Iselect {m. k + m € s} (Ildropn k w) =
Iselect s (ltake (enat k) w) $ Iselect {m. k + m € s} (ldropn k w) unfolding
1 by simp

also have ... = Iselect s w using Inths-split by rule
finally show ?thesis by this
qed

lemma Iselect-discard-end:
assumes A\ i. 1 € s = i < k
shows Iselect s (ltake (enat k) w) = Iselect s w
proof —
have 1: Iselect {m. k + m € s} (ldropn k w) = <>
using assms by (fastforce simp add: lselect-Inull min-le-iff-disj)
have Iselect s (ltake (enat k) w) =
Iselect s (ltake (enat k) w) $ Iselect {m. k + m € s} (ldropn k w) unfolding
1 by simp

also have ... = Iselect s w using Inths-split by rule
finally show ?thesis by this
qed

lemma Iselect-least:
assumes — Inull (Iselect s w)
shows Iselect s w = w 9 least s % Iselect (s — {least s}) w
proof —
have 0: s # {} using assms by auto
have 1: least s € s using Least] 0 by fast
have 2: A\ i. i € s = least s < i using Least-le 0 by fast
have 3: A i. i € s — {least s} = Suc (least s) < i using least-unique 2 by
force
have 4: insert (least s) (s — {least s}) = s using I by auto
have 5: enat (least s) < llength w using least-lselect-llength assms by this
have 6: Iselect (s — {least s}) (Itake (enat (least s)) w) = <>
by (rule, auto simp: Ilselect-llength dest: least-not-less)
have 7: Iselect {i. Suc (least s) + i € s — {least s}} (ldropn (Suc (least s))
w) =

81

Iselect (s — {least s}) w using Iselect-discard-start 3 by this
have [select s w = Iselect (insert (least s) (s — {least s})) w unfolding / by
stmp
also have ... = Iselect (s — {least s}) (Itake (enat (least s)) w) $ <w ? least
s> 8
Iselect {m. Suc (least s) + m € s — {least s}} (ldropn (Suc (least s)) w)
unfolding Inths-insert[OF 5] by simp
also have ... = <w # least s> §
Iselect {m. Suc (least s) + m € s — {least s}} (Idropn (Suc (least s)) w)
unfolding 6 by simp

also have ... = w 9 (least s) % lselect (s — {least s}) w unfolding 7 by
stmp
finally show ?thesis by this
qed

lemma [select-Inth[simp]:
assumes enat ¢ < llength (Iselect s w)
shows Iselect s w 2! i = w 2! nth-least s i
using assms
proof (induct i arbitrary: s)
case (
have 1: — Inull (Ilselect s w) using 0 by auto
show ?case using Iselect-least 1 by force
next
case (Suc 1)
have 1: = lnull (Iselect s w) using Suc(2) by auto
have 2: Iselect s w = w 9 least s % lselect (s — {least s}) w using Ilselect-least
1 by this
have 3: llength (Iselect s w) = eSuc (llength (Iselect (s — {least s}) w)) using
2 by simp
have /: enat i < llength (Iselect (s — {least s}) w) using & Suc(2) by simp
have Iselect s w 2! Suc i = (w 9 least s % lselect (s — {least s}) w) ?! Suc i
using 2 by simp

also have ... = Iselect (s — {least s}) w 2! i by simp
also have ... = w 2 nth-least (s — {least s}) i using Suc(1) 4 by simp
also have ... = w 7! nth-least s (Suc 7) by simp
finally show ?case by this
qed

lemma Ilproject-Inth|simp]:
assumes enal ¢ < llength (Iproject A w)
shows Ilproject A w 9 i = w ?! nth-least (liset A w) i
using assms unfolding Ilproject-to-lselect by simp

lemma Ilproject-ltake[simp]:
assumes enat k < llength (Iproject A w)
shows Iproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) =
ltake (enat k) (lproject A w)
proof
have llength (lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w)) =

82

enat (card (liset A w N {..< nth-least (lift (liset A w)) k})) by simp

also have ... = enat (card {i € liset A w. i < nth-least (lift (liset A w)) k})
unfolding lessThan-def Collect-conj-eq by simp

also have ... = enat k using assms by simp

also have ... = llength (ltake (enat k) (Iproject A w)) using min-absorbl

assms by force
finally show llength (lproject A (ltake (enat (nth-least (lift (liset A w)) k))
w)) =
llength (ltake (enat k) (Iproject A w)) by this
next
fix ¢
assume I: enat { < llength (Iproject A (ltake (enat (nth-least (lift (liset A
w))))
assume 2: enat i < llength (ltake (enat k) (Iproject A w))
obtain k' where 3: k = Suc k’ using 2 nat.ezhaust by auto
have 4: enat k' < llength (Iproject A w) using assms 3 by simp
have 5: i < k' using 2 3 by simp
have 6: nth-least (lift (liset A w)) k = Suc (nth-least (liset A w) k')
using 3 4 by (simp del: nth-least.simps)
have 7: nth-least (liset A w) i < Suc (nth-least (liset A w) k')
proof —
have nth-least (liset A w) i < nth-least (liset A w) k' using 4 5 by simp
also have ... < Suc (nth-least (liset A w) k') by simp
finally show ?thesis by this
qed
have 8: nth-least (liset A w N {..< Suc (nth-least (liset A w) k")}) i =
nth-least (liset A w) @
proof (rule nth-least-eq)
show enat i < esize (liset A w N {..< Suc (nth-least (liset A w) k)}) using
1 6 by simp
have enat i < enat k' using 5 by simp
also have enat k' < esize (liset A w) using 4 by simp
finally show enat i < esize (liset A w) by this
next
fix j
assume 1: j < nth-least (liset A w) i
show j € liset A w N {..< Suc (nth-least (liset A w) k")} +— j € liset A w
using 1 7 by simp
qed
have lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) & i =
ltake (enat (Suc (nth-least (liset A w) k'))) w 2!
nth-least (liset A w N {..< Suc (nth-least (liset A w) k')}) ¢
using 1 6 by simp
also have ... = ltake (enat (Suc (nth-least (liset A w) k'))) w 2 nth-least
(liset A w) @
using § by simp

also have ... = w ? nth-least (liset A w) ¢ using 7 by simp
also have ... = Iproject A w ?! i using 2 by simp
also have ... = ltake (enat k) (Iproject A w) ?! i using 2 by simp

83

finally show Iproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) & i =
ltake (enat k) (lproject A w) 2! i by this
qed

lemma llength-less-llength-lselect-less:
enat i < esize s \ enat (nth-least s i) < llength w +— enat i < llength (lselect

s w)

w)

using nth-least-less-esize-less unfolding Iselect-llength by this

lemma [select-lselect’”:
assumes)\ i. i € s = enat i < llength w
assumes)\ i. i € t = enat i < llength (Iselect s w)
shows Iselect t (Iselect s w) = lselect (nth-least s ‘t) w
proof
note Iselect-llength[simp)
have 1: A i. i € nth-least s ‘'t => enat i < llength w using assms by auto
have 2: t C {i. enat i < esize s}
using assms(2) Ilselect-llength-le less-le-trans by blast
have 3: inj-on (nth-least s) t using subset-inj-on nth-least.inj-on 2 by this
have llength (Iselect t (Iselect s w)) = esize t using assms(2) by simp

also have ... = esize (nth-least s ‘ t) using 3 by auto
also have ... = llength (Iselect (nth-least s ‘ t) w) using I by simp
finally show llength (Iselect t (Iselect s w)) = llength (Iselect (nth-least s * t)
by this
next
fix ¢

assume 1: enat i < llength (Iselect t (Iselect s w))
assume 2: enat i < llength (Iselect (nth-least s ‘ t) w)
have 3: enat ¢ < esize t using less-le-trans 1 Iselect-llength-le by this
have 4: A\ i. i € t = enat i < esize s
using assms(2) Iselect-llength-le less-le-trans by blast
have Iselect t (Iselect s w) 9! i = lselect s w 9! nth-least t i using 1 by simp

also have ... = w 7 nth-least s (nth-least t ©) using assms(2) 3 by simp
also have ... = w 2 nth-least (nth-least s ‘ t) i using 3 4 by simp
also have ... = Iselect (nth-least s ‘t) w ¢! i using 2 by simp

finally show Iselect t (Iselect s w) ?! i = Iselect (nth-least s ‘t) w ?! i by this
qed

lemma [select-lselect’[simp]:
assumes \ i. { € t = enat i < esize s
shows Iselect t (Iselect s w) = lselect (nth-least s ‘ t) w
proof —
have 1: nth-least {i € s. enat i < llength w} ‘{i € t. enat i < llength (Iselect

sw)}t =

{i € nth-least s ‘ t. enat i < llength w}
unfolding Compr-image-eq
proof (rule image-cong)
show {i € t. enat i < llength (Iselect s w)} = {i € t. enat (nth-least s i) <

84

llength w}
using llength-less-llength-lselect-less assms by blast

next
fix ¢

assume 1: ¢ € {i € t. enat (nth-least s ©) < llength w}
have 2: enat i < esize {i € s. enat i < llength w}
using nth-least-less-esize-less assms 1 by blast

show nth-least {i € s. enat i < llength w} i = nth-least s i using 2 by
stmp

qed
have Iselect t (Iselect s w) =

Iselect {i € t. enat i < llength (Iselect s w)} (Iselect {i € s. enat i < llength
w} w)
by simp

also have ... = Iselect (nth-least {i € s. enat i < llength w}
{i € t. enat i < llength (Iselect s w)}) w

by (rule lselect-lselect”’; auto simp: lselect-llength)
also have ...

1 by rule

also have ... = Iselect (nth-least s ‘ t) w by simp
finally show ?thesis by this
qed

= lIselect {i € nth-least s ‘ t. enat i < llength w} w unfolding

lemma Iselect-Iselect:

Iselect t (Iselect s w) = lselect (nth-least s ‘ {i € t. enat i < esize s}) w
proof —

have Iselect t (Iselect s w) = lselect {i € t. enat i < llength (lselect s w)}
(Iselect s w)
by simp

also have ... = Iselect (nth-least s {i € t. enat i < llength (Iselect s w)}) w
using Iselect-llength-le less-le-trans by (blast intro: Iselect-lselect”)
also have ... = Iselect (nth-least s ‘ {i € t. enat i < esize s}) w

using llength-less-llength-lselect-less by (auto introl: Inths-cong)
finally show ?thesis by this
qed

lemma Iselect-Iproject:
assumes A i. i € s = enat { < llength w

shows Iproject A (Iselect s w) = Iselect (s N liset A w) w
proof —

have 1: A i. i € liset A (Iselect s w) = enat i < esize s using less-le-trans
by force

have 2: {i € liset A (Iselect s w). enat i < esize s} = liset A (Iselect s w)
using 1 by auto

have 3: nth-least s ¢ liset A (Iselect s w) = s N liset A w
proof safe

fix k

assume 4: k € liset A (Iselect s w)
show nth-least s k € s using 1 / by simp

85

show nith-least s k € liset A w
using llength-less-llength-lselect-less 4 unfolding liset-def by auto
next
fix k
assume 1: k€ sk € liset A w
have 2: nth-least s (card {i € s. i < k}) = k using nth-least-card 1(1) by
this
have 3: enat (card {i € s. i < k}) < llength (Iselect s w)
unfolding Iselect-llength using assms 1(1) by simp
show k € nth-least s ‘ liset A (Iselect s w)
proof
show k = nth-least s (card {i € s. i < k}) using 2 by simp
show card {i € s. i < k} € liset A (Iselect s w) using 1(2) 2 3 by fastforce
qed
qed
have Iproject A (Iselect s w) = Iselect (liset A (Iselect s w)) (Iselect s w)
unfolding lproject-to-lselect by rule
also have ... = Iselect (nth-least s ‘ {i € liset A (Iselect s w). enat i < esize

unfolding [select-lselect by rule

also have ... = Iselect (nth-least s ¢ liset A (Iselect s w)) w unfolding 2 by
rule
also have ... = Iselect (s N liset A w) w unfolding 3 by rule
finally show ?thesis by this
qed

lemma Iselect-lproject[simp]: Iproject A (Iselect s w) = Iselect (s N liset A w) w
proof —

have 1: {i{ € s. enat i < llength w} N liset A w = s N liset A w by auto

have Iproject A (Iselect s w) = Iproject A (Iselect {i € s. enat i < llength w}

w) by simp
also have ... = Iselect ({i € s. enat i < llength w} N liset A w) w
by (rule lselect-lproject’, simp)

also have ... = Iselect (s N liset A w) w unfolding 1 by rule

finally show ?thesis by this
qed

lemma lproject-lselect-subset[simp]:
assumes liset A w C s
shows Iproject A (lselect s w) = Iproject A w
proof —
have 1: s N liset A w = liset A w using assms by auto
have Iproject A (Iselect s w) = Iselect (s N liset A w) w by simp

also have ... = Iselect (liset A w) w unfolding 1 by rule
also have ... = Iproject A w unfolding Iproject-to-lselect by rule
finally show ?thesis by this

qed

lemma [select-prefiz]intro]:

86

assumes u < v
shows Iselect s u < Iselect s v
proof (cases lfinite u)
case Fulse
show ?thesis using Iprefix-infinite assms False by auto
next
case True
obtain k& where 1: llength u = enat k using True length-list-of by metis
obtain w where 2: v = u $ w using Iprefiz-conv-lappend assms by auto
have Iselect s u < Iselect s u $ Iselect {n. n + k € s} w by simp

also have ... = Iselect s (u $ w) using Inths-lappend-lfinite[symmetric] 1 by
this
also have ... = Iselect s v unfolding 2 by rule
finally show ?thesis by this
qed

lemma lproject-prefiz[intro]:
assumes u < v
shows [project A u < Iproject A v
using Iprefiz-lfilter] assms by auto

lemma lproject-prefiz-limit[intro?):
assumes A v. v < w = lfinite v => lproject A v < z
shows [project A w < x
proof —
have 1: ccpo.admissible ISup Iprefiz (A v. lproject A v <) by simp
show ?thesis using llist-lift-admissible 1 assms(1) by this
qed
lemma Iproject-prefiz-limit’:
assumes A k. 3 v. v < w A enat k < llength v A Iproject A v < z
shows lproject A w < x
proof (rule Iproject-prefiz-limit)
fix u
assume 1: u < w lfinite u
obtain & where 2: llength u = enat k using 1(2) by (metis length-list-of)
obtain v where 3: v < w llength u < llength v lproject A v < x
unfolding 2 using assms(1) by auto
have /: llength u < llength v using 3(2) by simp
have 5: u < v using prefiz-subsume 1(1) 8(1) 4 by this
have Iproject A u < lproject A v using 5 by rule
also have ... < z using 3(3) by this
finally show Iproject A v < x by this
qed

end

15 Prefixes on Coinductive Lists

theory LList-Prefizes
imports

87

Word-Prefizes
../ Extensions/ Coinductive- List- Extensions
begin

lemma unfold-stream-siterate-smap: unfold-stream f g = smap f o siterate g
by (rule, coinduction, auto) (metis unfold-stream-eq-SCons)+

lemma lappend-stream-of-llist:
assumes [finite u
shows stream-of-llist (u $ v) = list-of uw Q— stream-of-llist v
using assms unfolding stream-of-llist-def by induct auto

lemma llist-of-inf-llist-prefix[intro]: u <p; v => llist-of u < llist-of-stream v
by (metis lappend-llist-of-stream-conv-shift le-llist-conv-lprefix lprefiz-lappend
prefir-fininfE)
lemma prefiz-llist-of-inf-llist[intro]: lfinite u = u < v => list-of u <pj stream-of-llist
v
by (metis lappend-stream-of-llist le-llist-conv-lprefiz lprefix-conv-lappend pre-
fiz-fininfI)

lemma Iproject-prefiz-limit-chain:
assumes chain w A k. Iproject A (llist-of (wk)) < z
shows Ilproject A (llist-of-stream (limit w)) < x
proof (rule lproject-prefiz-limit”)
fix k
obtain [where 1: k < length (w) using assms(1) by rule
show 3 v < llist-of-stream (limit w). enat k < llength v A lproject A v < z
proof (intro exl conjI)
show llist-of (w 1) < llist-of-stream (limit w)
using llist-of-inf-llist-prefix chain-prefiz-limit assms(1) by this
show enat k < llength (llist-of (w 1)) using 1 by simp
show Ilproject A (llist-of (w 1)) < z using assms(2) by this
qed
qed
lemma Iproject-eq-limit-chain:
assumes chain u chain v \ k. project A (u k) = project A (v k)
shows Iproject A (llist-of-stream (limit u)) = Iproject A (llist-of-stream (limit
v))
proof (rule antisym)
show Iproject A (llist-of-stream (limit u)) < Iproject A (llist-of-stream (limit
v))
proof (rule lproject-prefiz-limit-chain)
show chain u using assms(1) by this
next
fix k
have Ilproject A (llist-of (u k)) = Iproject A (llist-of (v k)) using assms(3)
by simp
also have ... < Iproject A (llist-of-stream (limit v)) using chain-prefiz-limit
assms(2) by blast

88

finally show Iproject A (llist-of (u k)) < Iproject A (llist-of-stream (limit v))
by this
qed
show Iproject A (llist-of-stream (limit v)) < Iproject A (llist-of-stream (limit
u))
proof (rule lproject-prefiz-limit-chain)
show chain v using assms(2) by this
next
fix k
have Ilproject A (llist-of (v k)) = Iproject A (llist-of (u k)) using assms(3)
by simp
also have ... < lproject A (llist-of-stream (limit u)) using chain-prefiz-limit
assms(1) by blast
finally show Iproject A (llist-of (v k)) < lproject A (llist-of-stream (limit u))
by this
qed
qed

end

16 Stuttering

theory Stuttering

imports
Stuttering- Equivalence. Stutter Equivalence
LList-Prefizes

begin

function nth-least-ext :: nat set = nat = nat
where
enat k < esize A = nth-least-ext A k = nth-least A k |
enat k > esize A => nth-least-ext A k = Suc (Maz A + (k — card A))
by force+ termination by lexicographic-order

lemma nth-least-ext-strict-mono:

assumes k£ < |

shows nth-least-ext s k < nth-least-ext s [
proof (cases enat | < esize s)

case True

have 1: enat k < esize s using assms True by (metis enat-ord-simps(2)
less-trans)

show ?thesis using nth-least-strict-mono assms True 1 by simp
next

case Fulse

have 1: finite s using Fulse esize-infinite-enat by auto

have 2: enat | > esize s using Fulse by simp

have 3: [> card s using 1 2 by simp

show ?thesis

proof (cases enat k < esize s)

89

case True
have 4: s # {} using True by auto
have nth-least-ext s k = nth-least s k using True by simp
also have ... < Maz s using nth-least-le-Max 1 4 True by this
also have ... < Suc (Maz s) by auto
also have ... < Suc (Max s + (I — card s)) by auto
also have Suc (Max s + (I — card s)) = nth-least-ext s | using 2 by simp
finally show ?thesis by this
next
case Fulse
have j: enat k > esize s using Fualse by simp
have 5: k > card s using 1 / by simp
have nth-least-ext s k = Suc (Maz s + (k — card s)) using 4 by simp
also have ... < Suc (Maz s + (I — card s)) using assms 5 by simp

also have ... = nth-least-ext s | using 2 by simp
finally show ?thesis by this
qed
qed

definition stutter-selection :: nat set = 'a llist = bool
where stutter-selection s w = 0 € s A
(V ki. enat i < llength w — enat (Suc k) < esize s —>
nth-least s k < i — i < nth-least s (Suc k) — w 9 i = w 9! nth-least s k) A
(V i. enat i < llength w — finite s — Max s < i — w 91 i = w 2! Maz s)

lemma stutter-selectionl [intro):
assumes (€ s
assumes A k7. enat i < llength w = enat (Suc k) < esize s =
nth-least s k < i = i < nth-least s (Suc k) = w 2! i = w 2! nth-least s k
assumes \ i. enat i < llength w = finite s = Mazx s < i = w ! i = w
2 Mazx s
shows stutter-selection s w
using assms unfolding stutter-selection-def by auto
lemma stutter-selectionD-0[dest]:
assumes stutter-selection s w
shows 0 € s
using assms unfolding stutter-selection-def by auto
lemma stutter-selectionD-inside|dest]:
assumes stutter-selection s w
assumes enat ¢ < llength w enat (Suc k) < esize s
assumes nth-least s k < {1 < nth-least s (Suc k)
shows w 9! i = w 9 nth-least s k
using assms unfolding stutter-selection-def by auto
lemma stutter-selectionD-infinite|dest]:
assumes stutter-selection s w
assumes enat i < llength w finite s Maz s < i
shows w 9! i = w 9! Max s
using assms unfolding stutter-selection-def by auto

90

lemma stutter-selection-stutter-sampler|introl:
assumes linfinite w stutter-selection s w
shows stutter-sampler (nth-least-ext s) (Inth w)
unfolding stutter-sampler-def
proof safe
show nth-least-ext s 0 = 0 using assms(2) by (cases enat 0 < esize s, auto)
show strict-mono (nth-least-ext s) using strict-monol nth-least-ext-strict-mono
by blast
next
fix ki
assume [: nth-least-ext s k < i i < nth-least-ext s (Suc k)
show w 2! i = w 9! nth-least-ext s k
proof (cases enat (Suc k) esize s rule: linorder-cases)
case less
have w 9! i = w 9! nth-least s k
proof (rule stutter-selectionD-inside)
show stutter-selection s w using assms(2) by this
show enat i < llength w using assms(1) by auto
show enat (Suc k) < esize s using less by this
show nth-least s k < i using 1(1) less by auto
show i < nth-least s (Suc k) using 1(2) less by simp
qed
also have w 7! nth-least s k = w ?! nth-least-ext s k using less by auto
finally show ?thesis by this
next
case equal
have 2: enat k < esize s using equal by (metis enat-ord-simps(2) lessI)
have 3: finite s using equal by (metis esize-infinite-enat less-irrefl)
have 4: A\ i. i > Maz s = w 9 i = w 9! Maz s using assms 8 by auto
have 5: k = card s — 1 using equal 3 by (metis diff-Suc-1 enat.inject
esize-set.simps(1))
have Max s = nth-least s (card s — 1) using nth-least-Maz 3 assms(2) by
force
also have ... = nth-least s k unfolding 5 by rule
also have ... = nth-least-ext s k using 2 by simp
finally have 6: Max s = nth-least-ext s k by this
have w 7! i = w 9! Max s using 1(1) 4 6 by auto

also have ... = w ?! nth-least-ext s k unfolding ¢ by rule
finally show ?thesis by this
next

case greater

have 2: enat k > esize s using greater by (metis Suc-ile-eq not-le)

have 3: finite s using greater by (metis esize-infinite-enat less-asym)
have 4: A\ i. i > Maz s = w 9 i = w 9! Maz s using assms 3 by auto
have w 21 i = w 2! Max s using 1(1) 2 4 by auto

also have ... = w 7 Suc (Max s + (k — card s)) using 4 by simp
also have ... = w ?! nth-least-ext s k using 2 by simp
finally show ?thesis by this

qed

91

qed

lemma stutter-equivl-selection[intro:
assumes linfinite u linfinite v
assumes stutter-selection s u stutter-selection t v
assumes Ilselect s u = Iselect t v
shows Inth u = Inth v
proof (rule stutter-equivl)
have 1: llength (Iselect s u) = llength (lselect ¢t v) unfolding assms(5) by rule
have 2: esize s = esize t using 1 assms(1, 2) unfolding Iselect-llength by

stmp

show stutter-sampler (nth-least-ext s) (Inth u) using assms(1, 3) by rule
show stutter-sampler (nth-least-ext t) (Inth v) using assms(?, 4) by rule
show Inth u o nth-least-ext s = Inth v o nth-least-ext t
proof (rule ext, unfold comp-apply)

fix ¢

show u 7| nth-least-ext s i = v ?! nth-least-ext t {

proof (cases enat i < esize s)

case True

have 3: enat i < llength (Iselect s u) enat i < llength (Iselect t v)
using assms(1, 2) 2 True unfolding Iselect-llength by auto

have u ?! nth-least-ext s i = u ?! nth-least s ¢ using True by simp

also have ... = Iselect s u 9! i using 3(1) by simp
also have ... = Iselect t v 7! i unfolding assms(5) by rule
also have ... = v ¢ nth-least t i using 3(2) by simp
also have ... = v 2 nth-least-ext t i using True unfolding 2 by simp
finally show u ?! nth-least-ext s i = v ?! nth-least-ext t i by this
next
case Fulse

have 3: s # {} ¢t # {} using assms(3, 4) by auto
have 4: finite s finite t using esize-infinite-enat 2 False by metis+
have 5: \ i. i > Mazx s = u 9! i = u 9 Max s using assms(1, 3) 4(1)

by auto

have 6: A\ i. i > Max t = v 9 ¢ = v 9! Maz t using assms(2, 4) 4(2)

by auto

have 7: esize s = enat (card s) esize t = enat (card t) using 4 by auto
have 8: card s # 0 card t # 0 using 3 4 by auto
have 9: enat (card s — 1) < llength (Iselect s u)
using assms(1) 7(1) 8(1) unfolding Iselect-llength by simp
have 10: enat (card t — 1) < llength (lselect t v)
using assms(2) 7(2) 8(2) unfolding Iselect-llength by simp
have u ? nth-least-ext s i = u 2! Suc (Maz s + (i — card s)) using False

by simp
also have ... = u 9! Max s using 5 by simp
also have ... = u 2 nth-least s (card s — 1) using nth-least-Maz 4 (1) 3(1)
by force
also have ... = Iselect s u ?! (card s — 1) using Iselect-Inth 9 by simp
also have ... = Iselect s u 9! (card t — 1) using 2 4 by simp
also have ... = Iselect t v ?! (card t — 1) unfolding assms(5) by rule

92

also have ... = v 2 nth-least t (card t — 1) using Iselect-Inth 10 by simp

also have ... = v 7 Max t using nth-least-Maz 4(2) 3(2) by force
also have ... = v 9 Suc (Maz t + (i — card t)) using 6 by simp
also have ... = v 2! nth-least-ext t i using 2 Fulse by simp
finally show ?thesis by this
qed
qed
qed

definition stuttering-invariant :: 'a word set = bool
where stuttering-invariant A=V uv.uxv—u€Ad+—veA

lemma stuttering-invariant-complement|intro!]:
assumes stuttering-invariant A
shows stuttering-invariant (— A)
using assms unfolding stuttering-invariant-def by simp

lemma stutter-equiv-forw-subst[trans]: w1 = wy = wo ~ ws = wy ~ w3 by
auto

lemma stutter-sampler-build:
assumes stutter-sampler f w
shows stutter-sampler (0 ## (Suc o f)) (a ## w)
unfolding stutter-sampler-def
proof safe
have 0: f 0 = 0 using assms unfolding stutter-sampler-def by auto
have 1: fz < fyifz < y for z y
using assms that unfolding stutter-sampler-def strict-mono-def by auto
have 2: (0 ## (Suc o f)) o < (0 ## (Suco f)) yifz < y for z y
using 1 that by (cases z; cases y) (auto)
have 3: wn=w (fk)if fk <nn <f (Suck) for kn
using assms that unfolding stutter-sampler-def by auto
show (0 ## (Suc o f)) 0 = 0 by simp
show strict-mono (0 #4# (Suc o f)) using 2 by rule
show (o #4 w) n = (a 44 w) (0 44 (Suc o 1)) k)
if (0 ## (Suco f)) k< nn< (0 #%# (Suco f)) (Suck) for kn
using 0 3 that by (cases k; cases n) (force)+
qed
lemma stutter-extend-build:
assumes u &~ v
shows a ## u ~ a ## v
proof —
obtain f g where 1: stutter-sampler f u stutter-sampler gvuo f =vo g
using stutter-equivF assms by this
show ?thesis
proof (intro stutter-equivl ext)
show stutter-sampler (0 ## (Suc o f)) (a ## u) using stutter-sampler-build
1(1) by this
show stutter-sampler (0 ## (Suc o g)) (a ## v) using stutter-sampler-build

93

1(2) by this
show (a ## uwo 0 ## (Suco f)) i = (a ## v o 0 ## (Suc o g)) i for ¢
using fun-cong[OF 1(8)] by (cases) (auto)
qed
qed
lemma stutter-extend-concat:
assumes u &= v
shows w ~ u~ w ~ v
using stutter-extend-build assms by (induct w, force+)
lemma build-stutter: w 0 ## w ~ w
proof (rule stutter-equivl)
show stutter-sampler (Suc (0 := 0)) (w 0 ## w)
unfolding stutter-sampler-def

proof safe

show (Suc (0 := 0)) 0 = 0 by simp

show strict-mono (Suc (0 := 0)) by (rule strict-monol, simp)
next

fix kn

assume 1: (Suc (0 := 0)) k < nn < (Suc (0 := 0)) (Suc k)
show (w 0 ## w) n = (w 0 ## w) ((Suc (0 := 0)) k) using 1 by (cases
n, auto)
qed
show stutter-sampler id w by rule
show w 0 ## w o (Suc (0 := 0)) = w o id by auto
qed
lemma replicate-stutter: replicate n (v 0) ~ v &~ v
proof (induct n)
case (
show ?case using stutter-equiv-refl by simp
next
case (Suc n)

have replicate (Suc n) (v 0) ~ v = v 0 #F# replicate n (v 0) ~ v by simp

also have ... = (replicate n (v 0) —~ v) 0 #+4# replicate n (v 0) —~ v by (cases
n, auto)
also have ... = replicate n (v 0) —~ v using build-stutter by this
also have ... ~ v using Suc by this
finally show ?case by this
qed

lemma replicate-stutter”: w ~ replicate n (v 0) ~ v~ u ~ v
using stutter-extend-concat replicate-stutter by this

end

17 Interpreted Transition Systems and Traces
theory Transition-System-Interpreted-Traces

imports
Transition-System-Traces

94

Basics/ Stuttering
begin

locale transition-system-interpreted-traces =
transition-system-interpreted ex en int +
transition-system-traces ex en ind
for ex :: 'action = 'state = 'state
and en :: 'action = 'state = bool
and int :: 'state = 'interpretation
and ind :: 'action = 'action = bool
+
assumes independence-invisible: a € visible =—> b € visible = = ind a b

begin

lemma eg-swap-Iproject-visible:

assumes u =g v

shows Iproject visible (llist-of u) = Iproject visible (llist-of v)

using assms independence-invisible by (induct, auto)
lemma eq-fin-Iproject-visible:

assumes v =p v

shows Iproject visible (llist-of u) = Iproject visible (llist-of v)

using assms eq-swap-lproject-visible by (induct, auto)
lemma le-fin-Iproject-visible:

assumes u =g v

shows Iproject visible (llist-of u) < lproject visible (llist-of v)
proof —

obtain w where 1: ©u @ w =p v using assms by rule

have Iproject visible (llist-of u) <

Iproject visible (llist-of u) $ Iproject visible (llist-of w) by auto

also have ... = [project visible (llist-of (v @ w)) using lappend-llist-of-llist-of
by auto
also have ... = Iproject visible (llist-of v) using eq-fin-lproject-visible 1 by
this
finally show ?thesis by this
qed

lemma le-fininf-Iproject-visible:

assumes u <pr v

shows Iproject visible (llist-of u) < Iproject visible (llist-of-stream v)
proof —

obtain w where 1: w <p; v u <p w using assms by rule

have Iproject visible (llist-of u) < Iproject visible (llist-of w)

using le-fin-lproject-visible 1(2) by this

also have ... < Iproject visible (llist-of-stream v) using 1(1) by blast

finally show ?thesis by this
qed
lemma le-inf-Iproject-visible:

assumes u <7 v

shows Iproject visible (llist-of-stream u) < lproject visible (llist-of-stream v)
proof (rule lproject-prefiz-limit)

95

fix w
assume 1: w < llist-of-stream u lfinite w
have 2: list-of w <py stream-of-llist (llist-of-stream u) using I by blast
have 3: list-of w <p; v using assms 2 by auto
have Iproject visible w = Iproject visible (llist-of (list-of w)) using 1(2) by
stmp
also have ... < lproject visible (llist-of-stream v) using le-fininf-Iproject-visible
3 by this
finally show Iproject visible w < Iproject visible (llist-of-stream v) by this
qed
lemma eg-inf-lproject-visible:
assumes u =y v
shows Iproject visible (llist-of-stream u) = lproject visible (llist-of-stream v)
using le-inf-Iproject-visible assms by (metis antisym eq-infE)

lemma stutter-selection-lproject-visible:
assumes run u p
shows stutter-selection (lift (liset visible (llist-of-stream w)))
(llist-of-stream (smap int (p ## trace u p)))
proof
show 0 € lift (liset visible (llist-of-stream u)) by auto
next
fix ki
assume 3: enat (Suc k) < esize (lift (liset visible (llist-of-stream u)))
assume 4: nth-least (lift (liset visible (llist-of-stream u))) k < i
assume 5: ¢ < nth-least (lift (liset visible (llist-of-stream u))) (Suc k)
have 6: int ((p #+# trace u p) ! nth-least (lift (liset visible (llist-of-stream
W) k) =
int ((p ## trace u p) ! 7)
proof (rule execute-inf-word-invisible)
show run u p using assms by this
show nth-least (lift (liset visible (llist-of-stream w))) k < i using 4 by auto
next
fix j
assume 6: nth-least (lift (liset visible (llist-of-stream w))) k < j
assume 7: j < 1
have 8: Suc j ¢ lift (liset visible (llist-of-stream u))
proof (rule nth-least-not-contains)
show enat (Suc k) < esize (lift (liset visible (llist-of-stream w))) using 3
by this
show nth-least (lift (liset visible (llist-of-stream u))) k < Suc j using 6
by auto
show Suc j < nth-least (lift (liset visible (llist-of-stream w))) (Suc k) using
5 7 by simp
qed
have 9: j ¢ liset visible (llist-of-stream u) using 8 by auto
show u !! j ¢ visible using 9 by auto
qed
show llist-of-stream (smap int (p ## trace u p)) 9! i = llist-of-stream (smap

96

int (p ## trace u p)) 9
nth-least (lift (liset visible (llist-of-stream u))) k
using 6 by (metis Inth-list-of-stream snth-smap)
next

fix ¢

assume 1: finite (lift (liset visible (llist-of-stream u)))

assume 3: Maz (lift (liset visible (llist-of-stream u))) < i

have 4: int ((p ## trace u p) ! Maxz (lift (liset visible (llist-of-stream u))))

int ((p ## trace u p) !l 0)
proof (rule execute-inf-word-invisible)
show run u p using assms by this
show Mazx (lift (liset visible (llist-of-stream u))) < ¢ using 3 by auto
next
fix j
assume 6: Maz (lift (liset visible (llist-of-stream w))) < j
assume 7: j < 1
have 8: Suc j ¢ lift (liset visible (llist-of-stream u))
proof (rule ccontr)
assume 9: - Suc j ¢ lift (liset visible (llist-of-stream u))
have 10: Suc j € lift (liset visible (llist-of-stream u)) using 9 by simp
have 11: Suc j < Max (lift (liset visible (llist-of-stream w))) using Maz-ge
1 10 by this
show Fulse using 6 11 by auto
qed
have 9: j ¢ liset visible (llist-of-stream u) using 8 by auto
show u !! j ¢ visible using 9 by auto
qed
show llist-of-stream (smap int (p ## trace u p)) 9! i = llist-of-stream (smap
int (p #+# trace u p)) 7
Maz (lift (liset visible (llist-of-stream u))) using 4 by (metis Inth-list-of-stream
snth-smap)
qed

lemma ezecute-fin-visible:
assumes path u q path v q u <p;r wv Jp; W
assumes project visible u = project visible v
shows int (target u q) = int (target v q)
proof —
obtain w’ where 1: u <p w' v <p w’ using subsume-fin assms(3, 4) by
this
obtain u’ v/ where 2: © Q v/ =p w' v Q v/ = w' using 1 by blast
have v Q@ v’ =p w’ using 2(1) by this
also have ... =p v Q v using 2(2) by blast
finally have 3: u @ v’ = v Q v’ by this
obtain s; so s3 where 4: u =p 51 @Q 55 v = 51 Q s3 Ind (set s2) (set s3)
using levi-lemma 3 by this
have 5: project visible (s1 Q s9) = project visible (s1 @ s3)
using eq-fin-Iproject-visible assms(5) 4(1, 2) by auto

97

have 6: project visible s, = project visible s3 using 5 by simp
have 7: set (project visible so) = set (project visible s3) using 6 by simp
have §8: set sy N visible = set s3 N visible using 7 by auto
have 9: set so C invisible V set s3 C invisible using independence-invisible
4(3) by auto
have 10: set so C invisible set s3 C invisible using 8 9 by auto
have 11: path sy (target s1 ¢) using eq-fin-word 4 (1) assms(1) by auto
have 12: path s3 (target s1 ¢) using eq-fin-word 4(2) assms(2) by auto
have int (fold ex u q) = int (fold ex (s1 @Q s5) q) using eq-fin-execute assms(1)
4(1) by simp

also have ... = int (fold ex s1 q) using execute-fin-word-invisible 11 10(1)
by simp
also have ... = int (fold ex (s1 @ s3) q) using ezecute-fin-word-invisible 12
10(2) by simp
also have ... = int (fold ex v q) using eq-fin-execute assms(2) 4(2) by simp
finally show ?thesis by this
qed

lemma ezxecute-inf-visible:
assumes Tun 4 ¢ TUN v q U Xy w v Xy w
assumes lproject visible (llist-of-stream u) = Iproject visible (llist-of-stream v)
shows snth (smap int (q ## trace u q)) =~ snth (smap int (q¢ #4# trace v q))
proof —
have 1: Inth (llist-of-stream (smap int (q¢ #F# trace u q))) =~
Inth (llist-of-stream (smap int (q ## trace v q)))
proof
show linfinite (llist-of-stream (smap int (q ## trace u q))) by simp
show linfinite (Ilist-of-stream (smap int (q¢ ## trace v q))) by simp
show stutter-selection (lift (liset visible (llist-of-stream w))) (llist-of-stream
(smap int (q #+# trace u q)))
using stutter-selection-lproject-visible assms(1) by this
show stutter-selection (lift (liset visible (llist-of-stream v))) (llist-of-stream
(smap int (q ## trace v q)))
using stutter-selection-lproject-visible assms(2) by this
show Iselect (lift (liset visible (llist-of-stream w))) (llist-of-stream (smap int
(g 44 trace u q))) =
Iselect (lift (liset visible (llist-of-stream v))) (llist-of-stream (smap int (q
#4## trace v q)))
proof
have llength (Iselect (lift (liset visible (llist-of-stream w)))
(Ulist-of-stream (smap int (q ## trace u q)))) = eSuc (llength (Iproject
visible (llist-of-stream u)))
by (simp add: lselect-llength)

also have ... = eSuc (llength (lproject visible (llist-of-stream v)))
unfolding assms(5) by rule
also have ... = llength (Iselect (lift (liset visible (llist-of-stream v)))

(llist-of-stream (smap int (q #F trace v q)))) by (simp add: lselect-llength)

finally show llength (Iselect (lift (liset visible (llist-of-stream u)))

(llist-of-stream (smap int (q ## trace u q)))) = llength (Iselect (lift (liset
visible (llist-of-stream v)))

98

(llist-of-stream (smap int (q #4 trace v q)))) by this
next
fix ¢
assume I:
enat i < llength (Iselect (lift (liset visible (llist-of-stream w)))
(llist-of-stream (smap int (q ## trace u q))))
enat i < llength (Iselect (lift (liset visible (llist-of-stream v)))
(llist-of-stream (smap int (q ## trace v q))))
have 2:
enat i < llength (Iproject visible (llist-of-stream u))
enat i < llength (Ilproject visible (llist-of-stream v))
using 1 by (simp add: lselect-llength)+
define k where k = nth-least (lift (liset visible (llist-of-stream u))) i
define | where | = nth-least (lift (liset visible (llist-of-stream v))) i
have Iselect (lift (liset visible (llist-of-stream w))) (llist-of-stream (smap
int (q¢ #4 trace u q))) 2 i =
int ((q #+4 trace u q) ! nth-least (lift (liset visible (llist-of-stream u))) 7)
by (metis 1(1) Inth-list-of-stream lselect-Inth snth-smap)
also have ... = int ((¢ ## trace u q) !! k) unfolding k-def by rule
also have ... = int ((¢ ## trace v ¢) !])
unfolding sscan-scons-snth
proof (rule execute-fin-visible)
show path (stake k u) ¢ using assms(1) by (metis run-shift-elim
stake-sdrop)
show path (stake 1 v) q using assms(2) by (metis run-shift-elim
stake-sdrop)
show stake k u <p; w stake | v Jp; w using assms(3, 4) by auto
have project visible (stake k u) =
list-of (Ilproject visible (llist-of (stake k u))) by simp
also have ... = list-of (Iproject visible (ltake (enat k) (llist-of-stream

u)))

by (metis length-stake llength-llist-of llist-of-inf-llist-prefix lprefiz-ltake

prefiz-fininf-prefiz)

also have ... = list-of (ltake (enat i) (Iproject visible (llist-of-stream w)))
unfolding k-def lproject-ltake[OF 2(1)] by rule

also have ... = list-of (ltake (enat i) (Iproject visible (llist-of-stream v)))
unfolding assms(5) by rule

also have ... = list-of (Iproject visible (Itake (enat 1) (Ilist-of-stream v)))
unfolding I-def lproject-ltake[OF 2(2)] by rule

also have ... = project visible (stake [v)

by (metis length-stake lfilter-llist-of list-of-llist-of llength-llist-of
llist-of-inf-llist-prefix Iprefiz-ltake prefiz-fininf-prefix)
finally show project visible (stake k u) = project visible (stake I v) by
this
qed
also have ... = int ((q #+# trace v q) ! nth-least (lift (liset visible
(llist-of-stream v))) 1)
unfolding [-def by simp
also have ... = Iselect (lift (liset visible (llist-of-stream v)))

99

(llist-of-stream (smap int (q ## trace v q))) 2 i
using 1 by (metis Inth-list-of-stream lselect-Inth snth-smap)
finally show Iselect (lift (liset visible (llist-of-stream u)))
(llist-of-stream (smap int (q¢ ## trace u q))) 2 i = lselect (lift (liset
visible (llist-of-stream v)))
(llist-of-stream (smap int (q #4 trace v q))) 9! i by this
qged
qed
show ?thesis using 1 by simp
qed

end

end

18 Abstract Theory of Ample Set Partial Order
Reduction

theory Ample-Abstract

imports
Transition-System-Interpreted- Traces
Eztensions/ Relation-Extensions

begin

locale ample-base =
transition-system-interpreted-traces ex en int ind +
wellfounded-relation src
for ez :: 'action = 'state = 'state
and en :: 'action = ’state = bool
and int :: 'state = 'interpretation
and ind :: 'action = 'action = bool
and src :: 'state = 'state = bool
begin

definition ample-set :: 'state = ’action set = bool
where ample-set ¢ A =
A C{a. enaq} A
(Ac{a. enaqt — A#{}) A
Va AC{a. enagqt — a€ A— src(exaq) q) A
(A C {a. en a ¢} — A C invisible) N
(V w. AC{a. enaq} — pathwq— AN setw={} — Ind A (set w))

lemma ample-subset:
assumes ample-set q¢ A
shows A C {a. en a ¢}

100

using assms unfolding ample-set-def by auto

lemma ample-nonempty:
assumes ample-set ¢ A A C {a. en a q}
shows A # {}
using assms unfolding ample-set-def by auto

lemma ample-wellfounded:
assumes ample-set ¢ A A C {a. ena q} a € A
shows src (ex a q) ¢
using assms unfolding ample-set-def by auto

lemma ample-invisible:
assumes ample-set ¢ A A C {a. en a q}
shows A C invisible
using assms unfolding ample-set-def by auto

lemma ample-independent:
assumes ample-set ¢ A A C {a. en a q} path w ¢ A N set w = {}
shows Ind A (set w)
using assms unfolding ample-set-def by auto

lemma ample-en[intro]: ample-set ¢ {a. en a ¢} unfolding ample-set-def by
blast

end

locale ample-abstract =

S?: transition-system-complete ex en init int +

R: transition-system-complete ex ren init int +

ample-base ex en int ind src

for ez :: 'action = 'state = 'state

and en :: 'action = ’'state = bool

and init :: 'state = bool

and int :: 'state = 'interpretation

and ind :: 'action = 'action = bool

and src :: 'state = 'state = bool

and ren :: 'action = 'state = bool

+

assumes reduction-ample: ¢ € nodes = ample-set q {a. ren a ¢}
begin

lemma reduction-words-fin:

assumes ¢ € nodes R.path w g

shows S.path w q

using assms(2, 1) ample-subset reduction-ample by induct auto
lemma reduction-words-inf:

assumes ¢ € nodes R.run w q

shows S.run w ¢

101

using reduction-words-fin assms by (auto intro: words-infI-construct)

lemma reduction-step:
assumes q € nodes run w q
obtains
(deferred) a where ren a q [a] Sp1 w |
(omitted) {a. ren a q} C invisible Ind {a. ren a q} (sset w)
proof (cases {a. en a ¢} = {a. ren a ¢})
case True
have 1: run (shd w #+# sdrop 1 w) q using assms(2) by simp
show ?thesis
proof (rule deferred)
show ren (shd w) q using True 1 by blast
show [shd w] <p; w by simp
qed
next
case Fulse
have 1: {a. ren a q} C {a. en a ¢} using ample-subset reduction-ample
assms(1) False by auto
show ?thesis
proof (cases {a. ren a ¢} N sset w = {})
case True
show ?thesis
proof (rule omitted)
show {a. ren a ¢} C invisible using ample-invisible reduction-ample
assms(1) 1 by auto
show Ind {a. ren a q} (sset w)
proof safe
fix a b
assume 2: b € sset w ren a q
obtain u v where 3: w = u Q— b ## v using split-stream-first’ 2(1)

by this
have 4: Ind {a. ren a q} (set (u @ [b]))
proof (rule ample-independent)
show ample-set q {a. ren a ¢} using reduction-ample assms(1) by this
show {a. ren a q} C {a. en a ¢} using 1 by this
show path (u Q [b]) ¢ using assms(2) 3 by blast
show {a. ren a ¢} N set (u Q [b]) = {} using True 3 by auto
qed
show ind a b using 2 3 4 by auto
ged
qged
next
case Fulse

obtain v a v where 2: w = u Q— a ## v {a. ren a ¢} N set u = {} ren a

using split-stream-first|OF False] by auto
have 3: path u ¢ using assms(2) unfolding 2(1) by auto

102

have 4: Ind {a. ren a q} (set u)
using ample-independent reduction-ample assms(1) 1 8 2(2) by this
have 5: Ind (set [a]) (set u) using 4 2(8) by simp
have 6: [a] @ u = u Q [a] using 5 by blast
show ?thesis
proof (rule deferred)
show ren a ¢ using 2(3) by this
have [a] <Fs [a] @— u Q— v by blast
also have [a] @— v @Q— v = ([a] @ u) @— v by simp
also have ([¢] @) @Q— v =7 (v @ [a]) @Q— v using 6 by blast
also have (u @ [a]) @— v = u Q— [a] @— v by simp

also have ... = w unfolding 2(1) by simp
finally show [a] <p; w by this
qed
qed
qed

lemma reduction-chunk:
assumes ¢ € nodes run ([a] @— v) ¢
obtains b b1 by u
where
R.path (b Q [a]) ¢
Ind {a} (set b) set b C invisible
b=p by Qby by Q— u =; v Ind (set by) (sset u)
using wellfounded assms
proof (induct q arbitrary: thesis v rule: wfp-induct-rule)
case (less q)
show ?Zcase
proof (cases ren a q)
case (True)
show ?thesis
proof (rule less(2))
show R.path (]] Q [a]) ¢ using True by auto
show Ind {a} (set []) by auto
show set [| C invisible by auto
show [| =r [] @ [] by auto
show [| @— v =; v by auto
show Ind (set []) (sset v) by auto
qed
next
case (False)
have 0: {a. en a ¢} # {a. ren a ¢} using Fualse less(4) by auto
show ?thesis
using less(3, 4)
proof (cases rule: reduction-step)
case (deferred c)
have 1: ren ¢ q using deferred(1) by simp
have 2: ind a ¢

103

proof (rule le-fininf-ind'")
show [a] <p; [a] @— v by blast
show [¢] <ps [a] @— v using deferred(2) by this
show a # c using Fulse 1 by auto
qed
obtain v’ where 3: [a] @— v =] [¢] @Q— [a] @— v’
proof —
have 10: [c] <p1 v
proof (rule le-fininf-not-member’)
show [c] <p; [a] @Q— v using deferred(2) by this
show ¢ ¢ set [a] using False 1 by auto
qed
obtain v’ where 11: v = [¢] @— v’ using 10 by blast
have 12: Ind (set [a]) (set [c]) using 2 by auto
a

have 13: [a] Q [c] =F [c] @ |] using 12 by blast
have [a] @— v =; [a] Q— [c] @Q— v’ using 11 by blast
also have ... = ([a] @ [¢]) @— v by simp
also have ... =; ([¢] @ [a]) @— v’ using 13 by blast
also have ... = [¢] @— [a] @— v’ by simp
finally show ?thesis using that by auto

qed

have /: run ([c] @Q— [a] @Q— v') q using eg-inf-word 3 less(4) by this
show ?thesis
proof (rule less(1))
show src (ex ¢ q) ¢
using ample-wellfounded ample-subset reduction-ample less(3) 0 1 by

blast

have 100: en ¢ q using less(4) deferred(2) le-fininf-word by auto

show ez ¢ ¢ € nodes using less(3) 100 by auto

show run ([a] @— v’) (ex ¢ q) using 4 by auto

next

fix b bl ()2 U

assume 5: R.path (b Q [a]) (ex ¢ q)

assume 6: Ind {a} (set b)

assume 7: set b C invisible

assume 8: b = by @Q by

assume 9: by Q— y =7 v’

assume 10: Ind (set by) (sset u)

show thesis

proof (rule less(2))
show R.path (([¢] @ b) @ [a]) ¢ using ! 5 by auto
show Ind {a} (set ([c] @ b)) using 6 2 by auto
have 11: ¢ € invisible

using ample-invisible ample-subset reduction-ample less(3) 0 1 by
blast

show set ([¢] @ b) C m’sible using 7 11 by auto
have [c] @ b =F [c] @ by @ by using 8 by blast

([¢] @ by) @ by by simp

alsohave[]@bl@b =
b=p ([c] @ b1) @ by by this

finally show [¢] @

104

show ([c] @ b;) @— u =5 v
proof —
have 10: Ind (set [a]) (set [c]) using 2 by auto
have 11: [] @ [c] =F [c] @ [a] using 10 by blast
] @—la

have [a] @— v = [¢] @— [a] @— v using 3 by this
also have ... = ([¢] @ [a]) @— v’ by simp

also have ... =; (a] @ [¢]) @— v’ using 11 by blast
also have ... = [a] @ [c] — v’ by simp

finally have 12: [a] @— v =] [a] @Q— [¢] @— v’ by this

ﬁwll

have 12: v = [¢] @— v’ using 12 by blast
have ([c] @ b)) @— u = [c] Q— b, Q— u by simp

also have ... = [¢] @— v using 9 by blast
also have ... =; v using 12 by blast
finally show ?thesis by this
qed
show Ind (set by) (sset u) using 10 by this
qed
qed
next

case (omitted)
have 1: {a. ren a ¢} C invisible using omitted(1) by simp
have 2: Ind {a. ren a ¢} (sset ([a] @Q— v)) using omitted(2) by simp
obtain ¢ where 3: ren c ¢
proof —
have I: en a q using less(4) by auto
show ?thesis using reduction-ample ample-nonempty less(3) 1 that by
blast
qed
have 4: Ind (set [c]) (sset ([a] @— v)) using 2 3 by auto
have 6: path [c] q using reduction-ample ample-subset less(3) 3 by auto
have 7: run ([a] @— v) (target [c] ¢) using diamond-fin-word-inf-word /
6 less(4) by this
show ?thesis
proof (rule less(1))
show src (ex ¢ q) q
using reduction-ample ample-wellfounded ample-subset less(3) 0 8 by
blast
show ez ¢ ¢ € nodes using less(3) 6 by auto
show run ([a] @— v) (ex ¢ ¢q) using 7 by auto
next
fix bsb by u
assume 5: R.path (b Q [a]) (ex ¢ q)
assume 6: Ind {a} (set b)
assume 7: set b C inwvisible
assume 8: b =p by Q by
assume 9: by Q— u =7 v
assume 10: Ind (set by) (sset u)
show thesis
proof (rule less(2))

105

show R.path (([c] @ b) @ [a]) ¢ using 3 5 by auto
show Ind {a} (set ([c] @ b))
proof —
have 1: ind ¢ a using 4 by simp
have 2: ind a c using independence-symmetric 1 by this
show ?thesis using 6 2 by auto
qed
have 11: ¢ € invisible using 1 3 by auto
show set ([¢] @ b) C invisible using 7 11 by auto
have 12: Ind (set [c]) (set by)
proof —
have 1: set by C sset v using 9 by force
have 2: Ind (set [c]) (sset v) using 4 by simp
show ?thesis using 1 2 by auto

qed

have [c] @ b =F [c] @ b; Q by using 8 by blast
also have ... = ([c} @ bl) @ by by simp

also have ... =p (b; Q [¢]) @ by using 12 by blast
also have ... = b; @Q [¢] @ by by simp

finally show [c] @b=F b Q[c] @ by by this
show b @— u :1 v using 9 by this

have 13: Ind (set [c]) (sset u)

proof —

have 1: sset u C sset v using 9 by force
have 2: Ind (set [c]) (sset v) using 4 by simp
show ?thesis using 1 2 by blast

qged

show Ind (set ([c] @ bg)) (sset u) using 10 13 by auto

qed
qed
qed
qed
qed

inductive reduced-run :: 'state = 'action list = 'action stream = 'action list
=
‘action list = 'action list = 'action list = 'action stream = bool
where
init: reduced-run g [J v [J [[] [] v |
absorb: reduced-run q v1 ([a] @— v) l w w1 wo u = a € set | =
reduced-run q (v1 @ [a]) vy (removel al) w wy wa u |
extend: reduced-run q v1 ([a] Q— v3) lw wy we u => a ¢ set | =
R.path (b Q [a]) (target w q) =
Ind {a} (set b) = set b C invisible =
b=p by Q by = [a] @— by Q— v’ =; u = Ind (set by) (sset u') =
reduced-run q (v1 @ [a]) v2 (1 Q b)) (w Q@ b Q [a]) (w1 @ by @ [a]) (w2 @
bg) u’

106

lemma reduced-run-words-fin:
assumes reduced-run q v1 vo [w wy wa U
shows R.path w q
using assms by induct auto

lemma reduced-run-invar-2:
assumes reduced-run q v1 vo I w wy wo U
shows vy =7 [@Q— u
using assms
proof induct
case (init q v)
show ?case by simp
next
case (absorb q v1 a vy [w wy wa u)
obtain [; Iy where 10: [=1, @ [a] Q@ I3 a ¢ set 3
using split-list-firstOF absorb(3)] by auto
have 11: Ind {a} (set ly)
proof (rule le-fininf-ind’)
show [a] <p; | @Q— v using absorb(2) by auto
show [l; <p; | @— u unfolding 10(1) by auto
show a ¢ set Iy using 10(2) by this
qed
have 12: Ind (set [a]) (set 1) using 11 by auto
have [a] @ removel a | = [a] @ |3 @ Iy unfolding 10(1) removel-append
using 10(2) by auto

also have ... = ([a] @ 1) @ [by simp
also have ... =p (I @Q [a]) @ [5 using 12 by blast
also have ... = [unfolding 10(1) by simp

finally have 13: [a] @ removel a | =p [by this
have [a] @— removel a | @Q— u = ([a] @ removel a) @— u unfolding
conc-conc by simp

also have ... =; | @Q— v using 13 by blast
also have ... =; [a] @Q— vy using absorb(2) by auto
finally show ?case by blast

next

case (extend q v1 a va l w wy wy u b by by u’)
have 11: Ind {a} (setl)
proof (rule le-fininf-ind’)

show [a] <p; | @Q— u using extend(2) by auto

show | <p; | @Q— u by auto

show a ¢ set | using extend(3) by this
qed
have 11: Ind (set [a]) (set 1) using 11 by auto
have 12: eg-fin ([a] @ I) (I Q [a]) using 11 by blast
have 131: set by C set b using extend(7) by auto
have 132: Ind (set [a]) (set b) using extend(5) by auto
have 13: Ind (set [a]) (set by) using 131 132 by auto
have 14: eg-fin ([a] @ by) (b Q [a]) using 13 by blast
have [a] @— ((I Q b;) Q@— u') = ([¢] @]) @Q— by Q— u' by simp

107

also have eg-inf ... ((I @ [a]) Q— b; Q— u’) using 12 by blast
also have ... =1 @— [a] @— b; @— v’ by simp
also have eg-inf ... (I @— u) using extend(8) by blast
also have eg-inf ... ([a] @Q— vy) using extend(2) by auto
finally show ?case by blast

qed

lemma reduced-run-invar-1:
assumes reduced-run q v1 ve [w wy wa u
shows V1 Q] =F W1
using assms
proof induct
case (init q v)
show ?case by simp
next
case (absorb q v1 a vy l w wy wo u)
have 1: [a] @— vy =7 | @Q— v using reduced-run-invar-2 absorb(1) by this
obtain l; Iy where 10: [=1; Q [a] Q I3 a ¢ set |y
using split-list-first| OF absorb(8)] by auto
have 11: Ind {a} (set ;)
proof (rule le-fininf-ind’)
show [a] <p; | @— u using I by auto
show [, <=p; | @— u unfolding 10(1) by auto
show a ¢ set Iy using 10(2) by this
qed
have 12: Ind (set [a]) (set 1) using 11 by auto
have [a] @ removel a | = [a] @ |3 @ I, unfolding 10(1) removel-append
using 10(2) by auto

also have ... = ([¢] @ ;) @Q I by simp
also have ... =r (I} Q [a]) @ 5 using 12 by blast
also have ... = [unfolding 10(1) by simp

finally have 13: [a] @ removel a | =p [by this
have w; = v; @ [using absorb(2) by auto

also have ... =p v; @ ([a] @ removel a l) using 13 by blast
also have ... = (v, Q [a]) @ removel a l by simp
finally show ?case by auto

next

case (extend q v1 a vo l w wy wy u b by ba u’)
have 1: [a] @— vy =7 | @Q— v using reduced-run-invar-2 extend(1) by this
have 11: Ind {a} (set l)
proof (rule le-fininf-ind’)

show [a] <p; | @— u using ! by auto

show [<p; | @— u by auto

show a ¢ set | using extend(3) by auto
qed
have 11: Ind (set [a]) (set l) using 11 by auto
have 12: eg-fin ([a] @ I) (I @Q [a]) using 11 by blast
have 131: set by C set b using extend(7) by auto
have 132: Ind (set [a]) (set b) using extend(5) by auto

108

have 13: Ind (set [a]) (set by) using 131 132 by auto

have 14: eg-fin ([a] @ by) (b Q [a]) using 13 by blast

have eg-fin (w; @ b; @ [a]) (w; @ [a] @ by) using 14 by blast
a

also have eg-fin ... ((v1 @ 1) @Q [a] @ by) using extend(2) by blast
also have eg-fin ... (v1 Q@ (I Q [a]) @ by) by simp
also have eg-fin ... (v1 Q ([a] @ [) @ by) using 12 by blast
also have ... = (v; Q [a]) @ [@Q b; by simp
finally show ?case by auto
qed

lemma reduced-run-invisible:
assumes reduced-run q v1 vo | w wy wo u
shows set wa C invisible
using assms
proof induct
case (init q v)
show ?case by simp
next
case (absorb q v1 a vy [w wy wo u)
show ?case using absorb(2) by this
next
case (extend q v1 a vy lw wy wy u b by ba u')
have 1: set by C set b using extend(7) by auto
show ?case unfolding set-append using extend(2) extend(6) 1 by blast
qed

lemma reduced-run-ind:
assumes reduced-run q v1 vo | w wy wo u
shows Ind (set ws) (sset u)
using assms
proof induct
case (init q v)
show ?case by simp
next
case (absorb q v1 a vy [w wy wo u)
show ?case using absorb(2) by this
next
case (extend q v1 a vo l w wy wy u b by ba u’)
have 1: sset u’ C sset u using extend(8) by force
show ?case using extend(2) extend(9) 1 unfolding set-append by blast
qed

lemma reduced-run-decompose:
assumes reduced-run q v1 vo | w wy wo u
shows w = w; @ wy
using assms
proof induct
case (init q v)
show ?case by simp

109

next
case (absorb q v1 a vy | w wy wo u)
show ?case using absorb(2) by this
next
case (extend q v1 a vo l w wy wy u b by ba u')
have 1: Ind (set [a]) (set ba) using extend(5) extend(7) by auto
have 2: Ind (set wa) (set (b1 @ [a]))
proof —
have 1: Ind (set wy) (sset u) using reduced-run-ind extend(1) by this
have 2: u =; [a] @— b; Q— ' using extend(8) by auto
have 3: sset u = sset ([a] @— by @Q— u') using 2 by blast
show ?thesis unfolding set-append using 1 8 by simp

qed

have w @ b Q [a] =F (w1 @ wy) @ b Q [a] using extend(2) by blast
also have ... =p (w1 @ wq) Q (b @ b2) Q@ [a] using extend(7) by blast
also have ... = w; Q wy @ by Q (by Q [a]) by simp

also have ... =p w1 @ wy @ b; @ ([a] @ by) using I by blast

also have ... =p w; @ (wy @ (b; @ [a])) @ by by simp
w

also have ... =p w; @ ((b; Q [a]) @ wy) @ by using 2 by blast
also have ... =p (w1 @ b; Q [a]) @ we @ by by simp
finally show ?Zcase by this

qed

lemma reduced-run-project:
assumes reduced-run q v1 ve [w wy wa u
shows project visible wy = project visible w
proof —
have 1: wy Q@ wy =p w using reduced-run-decompose assms by auto
have 2: set wy C invisible using reduced-run-invisible assms by this
have 3: project visible wy = [| unfolding filter-empty-conv using 2 by auto
have project visible w1 = project visible wy Q project visible wo using 3 by
simp

also have ... = project visible (w; @ wq) by simp
also have ... = list-of (Iproject visible (llist-of (w1 @ ws))) by simp
also have ... = list-of (Iproject visible (llist-of w))
using eq-fin-Ilproject-visible 1 by metis
also have ... = project visible w by simp
finally show ?thesis by this
qed

lemma reduced-run-length-1:
assumes reduced-run q v1 ve [w wy wo u
shows length v1 < length w
using reduced-run-invar-1 assms by force
lemma reduced-run-length:
assumes reduced-run q v1 vo I w wy wa u
shows length v1 < length w
proof —
have length v1 < length wy using reduced-run-length-1 assms by this

110

also have ... < length w using reduced-run-decompose assms by force
finally show ?thesis by this
qed

lemma reduced-run-step:
assumes ¢ € nodes run (v; Q— [a] @— v3) ¢
assumes reduced-run q v1 ([a] Q— vy) [w wy we u
obtains I’ w’ wi’ wy' u’
where reduced-run q (v1 @ [a]) va I’ (w Q@ w’) (w1 Q@ wy’) (w2 Q@ wy') u
proof (cases a € set l)
case True
show ?thesis
proof (rule that, rule absorb)
show reduced-run q vy ([a] @— vy) I (w @ []) (w1 Q []) (we Q []) u using
assms(3) by simp
show a € set [using True by this
qed
next
case Fulse
have 1: v1 @Q [= w; using reduced-run-invar-1 assms(3) by this
have 2: [a] @Q— vy =; | @Q— v using reduced-run-invar-2 assms(3) by this
have 3: w = w1 @Q wy using reduced-run-decompose assms(3) by this
have v1 @ [Q@ wy = (v; @) @ wy by simp
also have ... =p w; @Q wy using 1 by blast
also have ... =p w using 3 by blast
finally have /: v; @ [@ wy =p w by this
have 5: run ((v; Q I) @— wy @— u) ¢
proof (rule diamond-fin-word-inf-word’)
show Ind (set ws) (sset u) using reduced-run-ind assms(3) by this
have 6: R.path w q using reduced-run-words-fin assms(3) by this
have 7: path w ¢ using reduction-words-fin assms(1) 6 by auto
show path ((v; @ [) @ wy) ¢ using eq-fin-word 4 7 by auto
have 8: v; @Q— [a] @— vy =7 v; @— | @Q— u using 2 by blast
show run ((v1 @Q [) Q— u) ¢ using eg-inf-word assms(2) 8 by auto
qed
have 6: run (w Q— u) ¢ using eg-inf-word 4 5 by (metis eg-inf-concat-end
shift-append)
have 7: [a] <p; | @Q— u using 2 by blast
have 8: [a] <p u using le-fininf-not-member’ 7 False by this
obtain u’ where 9: u =; [a] @— v’ using 8 by rule
have 101: target w q € nodes using assms(1) 6 by auto
have 10: run ([a] @— u’) (target w q) using eg-inf-word 9 6 by blast
obtain b b; by v’ where 11:
R.path (b Q [a]) (target w q)
Ind {a} (set b) set b C invisible
b=p by Qby by Q— u” =5 u' Ind (set by) (sset u"’)
using reduction-chunk 101 10 by this
show ?thesis
proof (rule that, rule extend)

!

111

show reduced-run q v1 ([a] Q— v3) | w w1 w2 u using assms(3) by this
show a ¢ set | using Fulse by this
show R.path (b Q [a]) (target w q) using 11(1) by this
show Ind {a} (set b) using 11(2) by this
show set b C invisible using 11(3) by this
show b = b; @ by using 11(4) by this
show [a] @Q— b; Q— u'" =] u using 9 11(5) by blast
show Ind (set by) (sset u’") using 11(6) by this
qed
qed

lemma reduction-word:
assumes ¢ € nodes Tun v q
obtains u w
where
R.run w q
V=15 uu =y w
Iproject visible (llist-of-stream u) = lproject visible (llist-of-stream w)
proof —
define P where P = A k w wy. 3 [wy u. reduced-run q (stake k v) (sdrop k
v) lww; wy u
obtain w w; where 1: A k. Pk (w k) (w1 k) chain w chain w,
proof (rule chain-construct-2'[of P])
show P 0 [| [| unfolding P-def using init by force
next
fix £k wwy
assume 1: Pk w w;
obtain [we u where 2: reduced-run q (stake k v) (sdrop k v) l w w1 wa u
using ! unfolding P-def by auto
obtain !’ w’ wi’ wy’ u’ where 3:
reduced-run q (stake kv @Q [v 1! k]) (sdrop (Suc k) v) I’ (w Q@ w’) (wy Q@
wy’) (we Q wy’) u’
proof (rule reduced-run-step)
show ¢ € nodes using assms(1) by this
show run (stake kv Q— [v !l k] @Q— sdrop (Suc k) v) ¢
using assms(2) by (metis shift-append stake-Suc stake-sdrop)
show reduced-run q (stake k v) ([v ! k] @Q— sdrop (Suc k) v) | w wy wa u
using 2 by (metis sdrop-simps shift.simps stream.collapse)
qed
show 3 w' wy”. P (Suck) w w1’ Aw<w A w < w'
unfolding P-def using 3 by (metis prefiz-fin-append stake-Suc)
show k < length w using reduced-run-length 2 by force
show k < length wy using reduced-run-length-1 2 by force
qed rule
obtain [wy u where 2:
N k. reduced-run q (stake k v) (sdrop kv) (1 k) (wk) (w1 k) (w2 k) (u k)
using 1(1) unfolding P-def by metis
show ?thesis

112

proof
show R.run (Word-Prefizes.limit w) q using reduced-run-words-fin 1(2) 2
by blast
show v =; Word-Prefixes.limit w
proof
show v <X; Word-Prefixes.limit w,
proof (rule le-infl-chain-right’)
show chain wy using 1(3) by this
show A k. stake k v <p w1 k using reduced-run-invar-1[OF 2] by auto
qged
show Word-Prefizes.limit wy < v
proof (rule le-infI-chain-left)
show chain wy using 1(3) by this
next
fix k
have wy, k =p stake k v @Q [k using reduced-run-invar-1 2 by blast
also have ... <pj stake k v Q— [kK Q— u k by auto

also have ... =; stake k v Q— sdrop k v using reduced-run-invar-2[OF
2] by blast
also have ... = v by simp
finally show wy; &k <p; v by this
qed
qged

show Word-Prefizes.limit wi <y Word-Prefizes.limit w
proof (rule le-infI-chain-left)
show chain wy using 1(3) by this
next
fix k
have w; k <p w k using reduced-run-decompose[OF 2] by blast
also have ... <p; Word-Prefizes.limit w using chain-prefiz-limit 1(2) by
this
finally show wy k <Xp; Word-Prefizes.limit w by this
qed
show Iproject visible (llist-of-stream (Word-Prefizes.limit wy)) =
Iproject visible (llist-of-stream (Word-Prefives.limit w))
using Iproject-eq-limit-chain reduced-run-project 1 unfolding P-def by
metis
qed
qed

lemma reduction-equivalent:
assumes ¢ € nodes Tun u ¢
obtains v
where R.run v q snth (smap int (g ## trace u q)) =~ snth (smap int (q #+#
trace v q))
proof —
obtain v w where 1: R.run w qu =7 v v <7 w
Iproject visible (llist-of-stream v) = Iproject visible (llist-of-stream w)

113

using reduction-word assms by this
show ?thesis
proof
show R.run w q using 1(1) by this
show snth (smap int (q ## trace u q)) ~ snth (smap int (q ## trace w q))
proof (rule execute-inf-visible)
show run u ¢ using assms(2) by this
show run w q using reduction-words-inf assms(1) 1(1) by auto
have u =y v using 1(2) by this
also have ... <; w using 1(3) by this
finally show u <; w by this
show w <; w by simp
have Iproject visible (llist-of-stream u) = Iproject visible (llist-of-stream v)
using eg-inf-lproject-visible 1(2) by this

also have ... = Iproject visible (llist-of-stream w) using 1(4) by this
finally show Iproject visible (llist-of-stream u) = Iproject visible (1list-of-stream
w) by this
qed
qed
qed

lemma reduction-language-subset: R.language C S.language
unfolding S.language-def R.language-def using reduction-words-inf by blast

lemma reduction-language-stuttering:
assumes u € S.language
obtains v
where v € R.language snth v = snth v
proof —
obtain ¢ v where 1: u = smap int (q ## trace v q) init ¢ S.run v q using
assms by rule
obtain v’ where 2: R.run v’ ¢ snth (smap int (q ## trace v q)) ~ snth
(smap int (q ## trace v’ q))
using reduction-equivalent 1(2, 3) by blast
show ?thesis
proof (intro that R.languagel)
show smap int (q ## trace v’ q) = smap int (q #4 trace v’ q) by rule
show init ¢ using 1(2) by this
show R.run v’ q using 2(1) by this
show snth u ~ snth (smap int (¢ ## trace v’ q)) unfolding 1(1) using
2(2) by this
qed
qed

end

end

114

19 LTL Formulae

theory Formula
imports

Basics/ Stuttering

Stuttering- Equivalence. PLTL
begin

locale formula =
fixes o :: 'a pltl
begin

definition language :: 'a stream set
where language = {w. snth w =, ¢}

lemma language-entails[iff]: w € language <— snth w =, ¢ unfolding lan-
guage-def by simp

end

locale formula-next-free =
formula ¢
for ¢ :: ‘a pltl
+
assumes next-free: next-free
begin

lemma stutter-equivalent-entails|dest]: v~ v = u |=p @ +— v |&=p ¢
using nezt-free-stutter-invariant next-free by blast

end

end

20 Correctness Theorem of Partial Order Reduc-
tion

theory Ample-Correctness
imports

Ample-Abstract

Formula
begin

locale ample-correctness =
S: transition-system-complete ex en init int +
R: transition-system-complete ex ren init int +
F: formula-next-free ¢ +
ample-abstract ex en init int ind src ren

115

for ex :: 'action = 'state = 'state
and en :: ‘action = ’'state = bool
and init :: 'state = bool
and int :: 'state = ’interpretation
and ind :: ‘action = 'action = bool
and src :: 'state = 'state = bool
and ren :: ‘action = 'state = bool
and ¢ :: "interpretation pltl

begin

lemma reduction-language-indistinguishable:
assumes R.language C F.language
shows S.language C F.language

proof
fix u
assume [: u € S.language

obtain v where 2: v € R.language snth u =~ snth v using reduction-language-stuttering

1 by this

have 3: v € F.language using assms 2(1) by rule
show u € F.language using 2(2) 3 by auto

qed

theorem reduction-correct: S.language C F.language <— R.language C F.language
using reduction-language-subset reduction-language-indistinguishable by blast

end

end

21 Static Analysis for Partial Order Reduction

theory Ample-Analysis
imports

Ample-Abstract
begin

locale transition-system-ample =
transition-system-sticky ex en init int sticky +
transition-system-interpreted-traces ex en int ind
for ex :: 'action = 'state = ’state
and en :: 'action = ’'state = bool
and init :: 'state = bool
and int :: 'state = 'interpretation
and sticky :: 'action set
and ind :: 'action = 'action = bool

begin

sublocale ample-base ex en int ind scut~'~1 by unfold-locales

116

lemma restrict-ample-set:
assumes s € nodes
assumes A N {a. en a s} # {} AN {a. en a s} N sticky = {}
assumes Ind (A N {a. en a s}) (executable — A)
assumes \ w. path w s = AN{a. enas} Nsetw={} = AN setw=

{
shows ample-set s (A N {a. en a s})
unfolding ample-set-def
proof (intro congl alll impl)
show A N {a. en a s} C {a. en a s} by simp
next
show A N {a. en a s} # {} using assms(2) by this
next
fix a
assume 1: a € AN {a. en a s}
show scut™ 17! (ez a s) s
proof (rule no-cut-scut)
show s € nodes using assms(1) by this
show en a s using 1 by simp
show a ¢ sticky using assms(3) 1 by auto
qed
next
have 1: A N {a. en a s} C executable using executable assms(1) by blast
show A N {a. en a s} C invisible using ezecutable-visible-sticky assms(3) 1
by blast
next
fix w
assume 1: path w s AN {a. en a s} N set w = {}
have 2: A N set w = {} using assms(5) 1 by this
have 3: set w C executable using assms(1) 1(1) by rule
show Ind (A N {a. en a s}) (set w) using assms(4) 2 8 by blast
qed

end

locale transition-system-concurrent =
transition-system-initial ex en init
for ez :: 'action = 'state = 'state
and en :: 'action = ’'state = bool
and init :: 'state = bool
+
fixes procs :: 'state = ’process set
fixes pac :: 'process = 'action set
fixes psen :: 'process = 'state = 'action set
assumes procs-finite: s € nodes = finite (procs s)
assumes psen-en: s € nodes = pac p N {a. en a s} C psen p s
assumes psen-ex: s € nodes = a € {a. en a s} — pac p = psen p (ex a s)
= psen p s
begin

117

lemma psen-fin-word:
assumes s € nodes path w s pac p N set w = {}
shows psen p (target w s) = psen p s
using assms(2, 1, 3)
proof induct
case (nil s)
show ?case by simp
next
case (cons a s w)
have 1: ex a s € nodes using cons(4, 1) by rule
have psen p (target (a # w) s) = psen p (target w (ex a s)) by simp

also have ... = psen p (ex a s) using cons 1 by simp
also have ... = psen p s using psen-ex cons by simp
finally show ?case by this

qed

lemma en-fin-word:

assumes A\ ra b. r € nodes = a € psenp s — {a. ena s} = b € {a. en

ar} — pacp =
ena(exbr) = enar

assumes s € nodes path w s pac p N set w = {}

shows pac p N {a. en a (target w s)} C pac p N {a. en a s}
using assms
proof (induct w rule: rev-induct)

case Nil
show ?case by simp
next

case (snoc b w)
show Zcase
proof (safe, rule ccontr)
fix a
assume 2: a € pac p en a (target (w @ [b]) s) " ena s
have 3: a € psen p s
proof —
have 3: psen p (target (w @ [b]) s) = psen p s using psen-fin-word snoc(3,
4, 5) by this
have /: target (w Q [b]) s € nodes using snoc(3, 4) by rule
have 5: a € psen p (target (w @ [b]) s) using psen-en 4 2(1, 2) by auto
show ?thesis using 2(1) 3 5 by auto
qed
have 4: en a (target w s)
proof (rule snoc(2))
show target w s € nodes using snoc(3, 4) by auto
show a € psen p s — {a. en a s} using 2(3) 3 by simp
show b € {a. en a (target w s)} — pac p using snoc(4, 5) by auto
show en a (ex b (target w s)) using 2(2) by simp
qged
have 5: pac p N {a. en a (target w $)} C pac p N {a. en a s}

118

proof (rule snoc(1))
show A\ rab. r € nodes = a € psenp s — {a. ena s} = b € {a. en
ar}— pacp =
en a (ex b r) = en a r using snoc(2) by this
show s € nodes using snoc(3) by this
show path w s using snoc(4) by auto
show pac p N set w = {} using snoc(5) by auto
qed
have 6: en a s using 2(1) / 5 by auto
show Fulse using 2(3) 6 by simp
qed
qed

lemma pac-en-blocked:
assumes A ra b. r € nodes => a € psenp s — {a. ena s} = b € {a. en
ar} — pacp =
ena(exbr)= enar
assumes s € nodes path w s pac p N {a. en a s} N set w = {}
shows pac p N set w = {}
using words-fin-blocked en-fin-word assms by metis

abbreviation proc a = {p. a € pac p}
abbreviation Proc A =) a € A. proc a

lemma psen-simple:

assumes Proc (psen p s) = {p}

assumes A\ ra b. r € nodes = a € psenps — {a. ena s} = enbr =
proc a N procb = {} = ena(exbr) = enar

shows A\ rab. r € nodes = a € psenps — {a. enas} = be {a. ena

r} — pac p =

ena(exbr) = enar

using assms by force

end

end

References

[1] C.-T. Chou and D. Peled. Formal verification of a partial-order reduction
technique for model checking. In T. Margaria and B. Steffen, editors,
Tools and Algorithms for the Construction and Analysis of Systems, vol-
ume 1055 of Lecture Notes in Computer Science, pages 241-257. Springer
Berlin Heidelberg, 1996.

[2] D. Peled. Combining partial order reductions with on-the-fly model-
checking. Formal Methods in System Design, 8(1):39-64, 1996.

119

	List Prefixes
	Lists
	Finite Prefixes of Infinite Sequences
	Sets
	Basics
	Types
	Rules
	Constants
	Theorems for @termcurry and @termsplit

	Relations
	Transition Systems
	Trace Theory
	Transition Systems and Trace Theory
	Functions
	Extended Natural Numbers
	Chain-Complete Partial Orders
	Sets and Extended Natural Numbers
	Coinductive Lists
	Index Sets
	Selections

	Prefixes on Coinductive Lists
	Stuttering
	Interpreted Transition Systems and Traces
	Abstract Theory of Ample Set Partial Order Reduction
	LTL Formulae
	Correctness Theorem of Partial Order Reduction
	Static Analysis for Partial Order Reduction

