
Partial Order Reduction

Julian Brunner

March 17, 2025

Abstract

This entry provides a formalization of the abstract theory of ample
set partial order reduction as presented in [2, 1]. The formalization
includes transition systems with actions, trace theory, as well as ba-
sics on finite, infinite, and lazy sequences. We also provide a basic
framework for static analysis on concurrent systems with respect to
the ample set condition.

Contents
1 List Prefixes 2

2 Lists 3

3 Finite Prefixes of Infinite Sequences 5

4 Sets 11

5 Basics 18
5.1 Types . 18
5.2 Rules . 18
5.3 Constants . 19
5.4 Theorems for @termcurry and @termsplit 21

6 Relations 23

7 Transition Systems 25

8 Trace Theory 30

9 Transition Systems and Trace Theory 50

10 Functions 53

11 Extended Natural Numbers 55

1

12 Chain-Complete Partial Orders 55

13 Sets and Extended Natural Numbers 59

14 Coinductive Lists 70
14.1 Index Sets . 77
14.2 Selections . 79

15 Prefixes on Coinductive Lists 87

16 Stuttering 89

17 Interpreted Transition Systems and Traces 94

18 Abstract Theory of Ample Set Partial Order Reduction 100

19 LTL Formulae 115

20 Correctness Theorem of Partial Order Reduction 115

21 Static Analysis for Partial Order Reduction 116

1 List Prefixes
theory List-Prefixes
imports HOL−Library.Prefix-Order
begin

lemmas [intro] = prefixI strict-prefixI [folded less-eq-list-def]
lemmas [elim] = prefixE strict-prefixE [folded less-eq-list-def]

lemmas [intro?] = take-is-prefix[folded less-eq-list-def]

hide-const (open) Sublist.prefix Sublist.suffix

lemma prefix-finI-item[intro!]:
assumes a = b u ≤ v
shows a # u ≤ b # v
using assms by force

lemma prefix-finE-item[elim!]:
assumes a # u ≤ b # v
obtains a = b u ≤ v
using assms by force

lemma prefix-fin-append[intro]: u ≤ u @ v by auto
lemma pprefix-fin-length[dest]:

assumes u < v
shows length u < length v

2

proof −
obtain a w where 1 : v = u @ a # w using assms by rule
show ?thesis unfolding 1 by simp

qed

end

2 Lists
theory List-Extensions
imports HOL−Library.Sublist
begin

declare remove1-idem[simp]

lemma nth-append-simps[simp]:
i < length xs =⇒ (xs @ ys) ! i = xs ! i
i ≥ length xs =⇒ (xs @ ys) ! i = ys ! (i − length xs)
unfolding nth-append by simp+

notation zip (infixr ‹||› 51)

abbreviation project A ≡ filter (λ a. a ∈ A)
abbreviation select s w ≡ nths w s

lemma map-plus[simp]: map (plus n) [i ..< j] = [i + n ..< j + n]
proof (induct n)

case 0
show ?case by simp

next
case (Suc n)
have map (plus (Suc n)) [i ..< j] = map (Suc ◦ plus n) [i ..< j] by simp
also have . . . = (map Suc ◦ map (plus n)) [i ..< j] by simp
also have . . . = map Suc (map (plus n) [i ..< j]) by simp
also have . . . = map Suc [i + n ..< j + n] unfolding Suc by simp
also have . . . = [Suc (i + n) ..< Suc (j + n)] unfolding map-Suc-upt by simp
also have . . . = [i + Suc n ..< j + Suc n] by simp
finally show ?case by this

qed

lemma singleton-list-lengthE [elim]:
assumes length xs = 1
obtains x
where xs = [x]

proof −
have 0 : length xs = Suc 0 using assms by simp
obtain y ys where 1 : xs = y # ys length ys = 0 using 0 Suc-length-conv by

metis
show ?thesis using that 1 by blast

3

qed

lemma singleton-hd-last: length xs = 1 =⇒ hd xs = last xs by fastforce

lemma set-subsetI [intro]:
assumes

∧
i. i < length xs =⇒ xs ! i ∈ S

shows set xs ⊆ S
proof

fix x
assume 0 : x ∈ set xs
obtain i where 1 : i < length xs x = xs ! i using 0 unfolding in-set-conv-nth

by blast
show x ∈ S using assms(1) 1 by auto

qed

lemma hd-take[simp]:
assumes n 6= 0 xs 6= []
shows hd (take n xs) = hd xs

proof −
have 1 : take n xs 6= [] using assms by simp
have 2 : 0 < n using assms by simp
have hd (take n xs) = take n xs ! 0 using hd-conv-nth[OF 1] by this
also have . . . = xs ! 0 using nth-take[OF 2] by this
also have . . . = hd xs using hd-conv-nth[OF assms(2)] by simp
finally show ?thesis by this

qed
lemma hd-drop[simp]:

assumes n < length xs
shows hd (drop n xs) = xs ! n
using hd-drop-conv-nth assms by this

lemma last-take[simp]:
assumes n < length xs
shows last (take (Suc n) xs) = xs ! n

using assms
proof (induct xs arbitrary: n)

case (Nil)
show ?case using Nil by simp

next
case (Cons x xs)
show ?case using Cons by (auto) (metis Suc-less-eq Suc-pred)

qed

lemma split-list-first-unique:
assumes u1 @ [a] @ u2 = v1 @ [a] @ v2 a /∈ set u1 a /∈ set v1

shows u1 = v1

proof −
obtain w where u1 = v1 @ w ∧ w @ [a] @ u2 = [a] @ v2 ∨
u1 @ w = v1 ∧ [a] @ u2 = w @ [a] @ v2 using assms(1) append-eq-append-conv2

by blast

4

thus ?thesis using assms(2 , 3) by (auto) (metis hd-append2 list.sel(1) list.set-sel(1))+
qed

end

3 Finite Prefixes of Infinite Sequences
theory Word-Prefixes
imports

List-Prefixes
../Extensions/List-Extensions
Transition-Systems-and-Automata.Sequence

begin

definition prefix-fininf :: ′a list ⇒ ′a stream ⇒ bool (infix ‹≤F I› 50)
where u ≤F I v ≡ ∃ w. u @− w = v

lemma prefix-fininfI [intro]:
assumes u @− w = v
shows u ≤F I v
using assms unfolding prefix-fininf-def by auto

lemma prefix-fininfE [elim]:
assumes u ≤F I v
obtains w
where v = u @− w
using assms unfolding prefix-fininf-def by auto

lemma prefix-fininfI-empty[intro!]: [] ≤F I w by force
lemma prefix-fininfI-item[intro!]:

assumes a = b u ≤F I v
shows a # u ≤F I b ## v
using assms by force

lemma prefix-fininfE-item[elim!]:
assumes a # u ≤F I b ## v
obtains a = b u ≤F I v
using assms by force

lemma prefix-fininf-item[simp]: a # u ≤F I a ## v ←→ u ≤F I v by force
lemma prefix-fininf-list[simp]: w @ u ≤F I w @− v ←→ u ≤F I v by (induct w,

auto)
lemma prefix-fininf-conc[intro]: u ≤F I u @− v by auto
lemma prefix-fininf-prefix[intro]: stake k w ≤F I w using stake-sdrop by blast
lemma prefix-fininf-set-range[dest]: u ≤F I v =⇒ set u ⊆ sset v by auto

lemma prefix-fininf-absorb:
assumes u ≤F I v @− w length u ≤ length v
shows u ≤ v

proof −
obtain x where 1 : u @− x = v @− w using assms(1) by auto

5

have u ≤ u @ stake (length v − length u) x by rule
also have . . . = stake (length v) (u @− x) using assms(2) by (simp add:

stake-shift)
also have . . . = stake (length v) (v @− w) unfolding 1 by rule
also have . . . = v using eq-shift by blast
finally show ?thesis by this

qed
lemma prefix-fininf-extend:

assumes u ≤F I v @− w length v ≤ length u
shows v ≤ u

proof −
obtain x where 1 : u @− x = v @− w using assms(1) by auto
have v ≤ v @ stake (length u − length v) w by rule
also have . . . = stake (length u) (v @− w) using assms(2) by (simp add:

stake-shift)
also have . . . = stake (length u) (u @− x) unfolding 1 by rule
also have . . . = u using eq-shift by blast
finally show ?thesis by this

qed
lemma prefix-fininf-length:

assumes u ≤F I w v ≤F I w length u ≤ length v
shows u ≤ v

proof −
obtain u ′ v ′ where 1 : w = u @− u ′ w = v @− v ′ using assms(1 , 2) by

blast+
have u = stake (length u) (u @− u ′) using shift-eq by blast
also have . . . = stake (length u) w unfolding 1 (1) by rule
also have . . . = stake (length u) (v @− v ′) unfolding 1 (2) by rule
also have . . . = take (length u) v using assms by (simp add: min.absorb2

stake-append)
also have . . . ≤ v by rule
finally show ?thesis by this

qed

lemma prefix-fininf-append:
assumes u ≤F I v @− w
obtains (absorb) u ≤ v | (extend) z where u = v @ z z ≤F I w

proof (cases length u length v rule: le-cases)
case le
obtain x where 1 : u @− x = v @− w using assms(1) by auto
show ?thesis
proof (rule absorb)

have u ≤ u @ stake (length v − length u) x by rule
also have . . . = stake (length v) (u @− x) using le by (simp add: stake-shift)
also have . . . = stake (length v) (v @− w) unfolding 1 by rule
also have . . . = v using eq-shift by blast
finally show u ≤ v by this

qed
next

6

case ge
obtain x where 1 : u @− x = v @− w using assms(1) by auto
show ?thesis
proof (rule extend)

have u = stake (length u) (u @− x) using shift-eq by auto
also have . . . = stake (length u) (v @− w) unfolding 1 by rule
also have . . . = v @ stake (length u − length v) w using ge by (simp add:

stake-shift)
finally show u = v @ stake (length u − length v) w by this
show stake (length u − length v) w ≤F I w by rule

qed
qed

lemma prefix-fin-prefix-fininf-trans[trans, intro]: u ≤ v =⇒ v ≤F I w =⇒ u ≤F I

w
by (metis Prefix-Order .prefixE prefix-fininf-def shift-append)

lemma prefix-finE-nth:
assumes u ≤ v i < length u
shows u ! i = v ! i

proof −
obtain w where 1 : v = u @ w using assms(1) by auto
show ?thesis unfolding 1 using assms(2) by (simp add: nth-append)

qed
lemma prefix-fininfI-nth:

assumes
∧

i. i < length u =⇒ u ! i = w !! i
shows u ≤F I w

proof (rule prefix-fininfI)
show u @− sdrop (length u) w = w by (simp add: assms list-eq-iff-nth-eq

shift-eq)
qed

definition chain :: (nat ⇒ ′a list) ⇒ bool
where chain w ≡ mono w ∧ (∀ k. ∃ l. k < length (w l))

definition limit :: (nat ⇒ ′a list) ⇒ ′a stream
where limit w ≡ smap (λ k. w (SOME l. k < length (w l)) ! k) nats

lemma chainI [intro?]:
assumes mono w
assumes

∧
k. ∃ l. k < length (w l)

shows chain w
using assms unfolding chain-def by auto

lemma chainD-mono[dest?]:
assumes chain w
shows mono w
using assms unfolding chain-def by auto

lemma chainE-length[elim?]:
assumes chain w
obtains l

7

where k < length (w l)
using assms unfolding chain-def by auto

lemma chain-prefix-limit:
assumes chain w
shows w k ≤F I limit w

proof (rule prefix-fininfI-nth)
fix i
assume 1 : i < length (w k)
have 2 : mono w

∧
k. ∃ l. k < length (w l) using chainD-mono chainE-length

assms by blast+
have 3 : i < length (w (SOME l. i < length (w l))) using someI-ex 2 (2) by

this
show w k ! i = limit w !! i
proof (cases k SOME l. i < length (w l) rule: le-cases)

case (le)
have 4 : w k ≤ w (SOME l. i < length (w l)) using monoD 2 (1) le by this
show ?thesis unfolding limit-def using prefix-finE-nth 4 1 by auto

next
case (ge)
have 4 : w (SOME l. i < length (w l)) ≤ w k using monoD 2 (1) ge by this
show ?thesis unfolding limit-def using prefix-finE-nth 4 3 by auto

qed
qed

lemma chain-construct-1 :
assumes P 0 x0

∧
k x. P k x =⇒ ∃ x ′. P (Suc k) x ′ ∧ f x ≤ f x ′

assumes
∧

k x. P k x =⇒ k ≤ length (f x)
obtains Q
where

∧
k. P k (Q k) chain (f ◦ Q)

proof −
obtain x ′ where 1 :

P 0 x0

∧
k x. P k x =⇒ P (Suc k) (x ′ k x) ∧ f x ≤ f (x ′ k x)

using assms(1 , 2) by metis
define Q where Q ≡ rec-nat x0 x ′

have [simp]: Q 0 = x0

∧
k. Q (Suc k) = x ′ k (Q k) unfolding Q-def by

simp+
have 2 :

∧
k. P k (Q k)

proof −
fix k
show P k (Q k) using 1 by (induct k, auto)

qed
show ?thesis
proof (intro that chainI monoI , unfold comp-apply)

fix k
show P k (Q k) using 2 by this

next
fix x y :: nat
assume x ≤ y

8

thus f (Q x) ≤ f (Q y)
proof (induct y − x arbitrary: x y)

case 0
show ?case using 0 by simp

next
case (Suc k)
have f (Q x) ≤ f (Q (Suc x)) using 1 (2) 2 by auto
also have . . . ≤ f (Q y) using Suc(2) by (intro Suc(1), auto)
finally show ?case by this

qed
next

fix k
have 3 : P (Suc k) (Q (Suc k)) using 2 by this
have 4 : Suc k ≤ length (f (Q (Suc k))) using assms(3) 3 by this
have 5 : k < length (f (Q (Suc k))) using 4 by auto
show ∃ l. k < length (f (Q l)) using 5 by blast

qed
qed
lemma chain-construct-2 :

assumes P 0 x0

∧
k x. P k x =⇒ ∃ x ′. P (Suc k) x ′ ∧ f x ≤ f x ′ ∧ g x ≤ g x ′

assumes
∧

k x. P k x =⇒ k ≤ length (f x)
∧

k x. P k x =⇒ k ≤ length (g x)
obtains Q
where

∧
k. P k (Q k) chain (f ◦ Q) chain (g ◦ Q)

proof −
obtain x ′ where 1 :

P 0 x0

∧
k x . P k x =⇒ P (Suc k) (x ′ k x) ∧ f x ≤ f (x ′ k x) ∧ g x ≤ g (x ′

k x)
using assms(1 , 2) by metis

define Q where Q ≡ rec-nat x0 x ′

have [simp]: Q 0 = x0

∧
k. Q (Suc k) = x ′ k (Q k) unfolding Q-def by

simp+
have 2 :

∧
k. P k (Q k)

proof −
fix k
show P k (Q k) using 1 by (induct k, auto)

qed
show ?thesis
proof (intro that chainI monoI , unfold comp-apply)

fix k
show P k (Q k) using 2 by this

next
fix x y :: nat
assume x ≤ y
thus f (Q x) ≤ f (Q y)
proof (induct y − x arbitrary: x y)

case 0
show ?case using 0 by simp

next
case (Suc k)

9

have f (Q x) ≤ f (Q (Suc x)) using 1 (2) 2 by auto
also have . . . ≤ f (Q y) using Suc(2) by (intro Suc(1), auto)
finally show ?case by this

qed
next

fix k
have 3 : P (Suc k) (Q (Suc k)) using 2 by this
have 4 : Suc k ≤ length (f (Q (Suc k))) using assms(3) 3 by this
have 5 : k < length (f (Q (Suc k))) using 4 by auto
show ∃ l. k < length (f (Q l)) using 5 by blast

next
fix x y :: nat
assume x ≤ y
thus g (Q x) ≤ g (Q y)
proof (induct y − x arbitrary: x y)

case 0
show ?case using 0 by simp

next
case (Suc k)
have g (Q x) ≤ g (Q (Suc x)) using 1 (2) 2 by auto
also have . . . ≤ g (Q y) using Suc(2) by (intro Suc(1), auto)
finally show ?case by this

qed
next

fix k
have 3 : P (Suc k) (Q (Suc k)) using 2 by this
have 4 : Suc k ≤ length (g (Q (Suc k))) using assms(4) 3 by this
have 5 : k < length (g (Q (Suc k))) using 4 by auto
show ∃ l. k < length (g (Q l)) using 5 by blast

qed
qed
lemma chain-construct-2 ′:

assumes P 0 u0 v0

∧
k u v. P k u v =⇒ ∃ u ′ v ′. P (Suc k) u ′ v ′ ∧ u ≤ u ′ ∧

v ≤ v ′

assumes
∧

k u v. P k u v =⇒ k ≤ length u
∧

k u v. P k u v =⇒ k ≤ length v
obtains u v
where

∧
k. P k (u k) (v k) chain u chain v

proof −
obtain Q where 1 :

∧
k. (case-prod ◦ P) k (Q k) chain (fst ◦ Q) chain (snd

◦ Q)
proof (rule chain-construct-2)

show ∃ x ′. (case-prod ◦ P) (Suc k) x ′ ∧ fst x ≤ fst x ′ ∧ snd x ≤ snd x ′

if (case-prod ◦ P) k x for k x using assms that by auto
show (case-prod ◦ P) 0 (u0, v0) using assms by auto
show k ≤ length (fst x) if (case-prod ◦ P) k x for k x using assms that by

auto
show k ≤ length (snd x) if (case-prod ◦ P) k x for k x using assms that by

auto
qed rule

10

show ?thesis
proof

show P k ((fst ◦ Q) k) ((snd ◦ Q) k) for k using 1 (1) by (auto simp:
prod.case-eq-if)

show chain (fst ◦ Q) chain (snd ◦ Q) using 1 (2 , 3) by this
qed

qed

end

4 Sets
theory Set-Extensions
imports

HOL−Library.Infinite-Set
begin

declare finite-subset[intro]

lemma set-not-emptyI [intro 0]: x ∈ S =⇒ S 6= {} by auto
lemma sets-empty-iffI [intro 0]:

assumes
∧

a. a ∈ A =⇒ ∃ b. b ∈ B
assumes

∧
b. b ∈ B =⇒ ∃ a. a ∈ A

shows A = {} ←→ B = {}
using assms by auto

lemma disjointI [intro 0]:
assumes

∧
x. x ∈ A =⇒ x ∈ B =⇒ False

shows A ∩ B = {}
using assms by auto

lemma range-subsetI [intro 0]:
assumes

∧
x. f x ∈ S

shows range f ⊆ S
using assms by blast

lemma finite-imageI-range:
assumes finite (range f)
shows finite (f ‘ A)
using finite-subset image-mono subset-UNIV assms by metis

lemma inf-img-fin-domE ′:
assumes infinite A
assumes finite (f ‘ A)
obtains y
where y ∈ f ‘ A infinite (A ∩ f −‘ {y})

proof (rule ccontr)
assume 1 : ¬ thesis
have 2 : finite (

⋃
y ∈ f ‘ A. A ∩ f −‘ {y})

proof (rule finite-UN-I)
show finite (f ‘ A) using assms(2) by this

11

show
∧

y. y ∈ f ‘ A =⇒ finite (A ∩ f −‘ {y}) using that 1 by blast
qed
have 3 : A ⊆ (

⋃
y ∈ f ‘ A. A ∩ f −‘ {y}) by blast

show False using assms(1) 2 3 by blast
qed

lemma vimage-singleton[simp]: f −‘ {y} = {x. f x = y} unfolding vimage-def
by simp

lemma these-alt-def : Option.these S = Some −‘ S unfolding Option.these-def
by force

lemma the-vimage-subset: the −‘ {a} ⊆ {None, Some a} by auto

lemma finite-induct-reverse[consumes 1 , case-names remove]:
assumes finite S
assumes

∧
S . finite S =⇒ (

∧
x. x ∈ S =⇒ P (S − {x})) =⇒ P S

shows P S
using assms(1)
proof (induct rule: finite-psubset-induct)

case (psubset S)
show ?case
proof (rule assms(2))

show finite S using psubset(1) by this
next

fix x
assume 0 : x ∈ S
show P (S − {x})
proof (rule psubset(2))

show S − {x} ⊂ S using 0 by auto
qed

qed
qed

lemma zero-not-in-Suc-image[simp]: 0 /∈ Suc ‘ A by auto

lemma Collect-split-Suc:
¬ P 0 =⇒ {i. P i} = Suc ‘ {i. P (Suc i)}
P 0 =⇒ {i. P i} = {0} ∪ Suc ‘ {i. P (Suc i)}

proof −
assume ¬ P 0
thus {i. P i} = Suc ‘ {i. P (Suc i)}

by (auto, metis image-eqI mem-Collect-eq nat.exhaust)
next

assume P 0
thus {i. P i} = {0} ∪ Suc ‘ {i. P (Suc i)}

by (auto, metis imageI mem-Collect-eq not0-implies-Suc)
qed

lemma Collect-subsume[simp]:

12

assumes
∧

x. x ∈ A =⇒ P x
shows {x ∈ A. P x} = A
using assms unfolding simp-implies-def by auto

lemma Max-ge ′:
assumes finite A A 6= {}
assumes b ∈ A a ≤ b
shows a ≤ Max A
using assms Max-ge-iff by auto

abbreviation least A ≡ LEAST k. k ∈ A

lemma least-contains[intro?, simp]:
fixes A :: ′a :: wellorder set
assumes k ∈ A
shows least A ∈ A
using assms by (metis LeastI)

lemma least-contains ′[intro?, simp]:
fixes A :: ′a :: wellorder set
assumes A 6= {}
shows least A ∈ A
using assms by (metis LeastI equals0I)

lemma least-least[intro?, simp]:
fixes A :: ′a :: wellorder set
assumes k ∈ A
shows least A ≤ k
using assms by (metis Least-le)

lemma least-unique:
fixes A :: ′a :: wellorder set
assumes k ∈ A k ≤ least A
shows k = least A
using assms by (metis Least-le antisym)

lemma least-not-less:
fixes A :: ′a :: wellorder set
assumes k < least A
shows k /∈ A
using assms by (metis not-less-Least)

lemma leastI2-order [simp]:
fixes A :: ′a :: wellorder set
assumes A 6= {}

∧
k. k ∈ A =⇒ (

∧
l. l ∈ A =⇒ k ≤ l) =⇒ P k

shows P (least A)
proof (rule LeastI2-order)

show least A ∈ A using assms(1) by rule
next

fix k
assume 1 : k ∈ A
show least A ≤ k using 1 by rule

next
fix k

13

assume 1 : k ∈ A ∀ l. l ∈ A −→ k ≤ l
show P k using assms(2) 1 by auto

qed

lemma least-singleton[simp]:
fixes a :: ′a :: wellorder
shows least {a} = a
by (metis insert-not-empty least-contains ′ singletonD)

lemma least-image[simp]:
fixes f :: ′a :: wellorder ⇒ ′b :: wellorder
assumes A 6= {}

∧
k l. k ∈ A =⇒ l ∈ A =⇒ k ≤ l =⇒ f k ≤ f l

shows least (f ‘ A) = f (least A)
proof (rule leastI2-order)

show A 6= {} using assms(1) by this
next

fix k
assume 1 : k ∈ A

∧
i. i ∈ A =⇒ k ≤ i

show least (f ‘ A) = f k
proof (rule leastI2-order)

show f ‘ A 6= {} using assms(1) by simp
next

fix l
assume 2 : l ∈ f ‘ A

∧
i. i ∈ f ‘ A =⇒ l ≤ i

show l = f k using assms(2) 1 2 by force
qed

qed

lemma least-le:
fixes A B :: ′a :: wellorder set
assumes B 6= {}
assumes

∧
i. i ≤ least A =⇒ i ≤ least B =⇒ i ∈ B =⇒ i ∈ A

shows least A ≤ least B
proof (rule ccontr)

assume 1 : ¬ least A ≤ least B
have 2 : least B ∈ A using assms(1 , 2) 1 by simp
have 3 : least A ≤ least B using 2 by rule
show False using 1 3 by rule

qed
lemma least-eq:

fixes A B :: ′a :: wellorder set
assumes A 6= {} B 6= {}
assumes

∧
i. i ≤ least A =⇒ i ≤ least B =⇒ i ∈ A ←→ i ∈ B

shows least A = least B
using assms by (auto intro: antisym least-le)

lemma least-Suc[simp]:
assumes A 6= {}
shows least (Suc ‘ A) = Suc (least A)

14

proof (rule antisym)
obtain k where 10 : k ∈ A using assms by blast
have 11 : Suc k ∈ Suc ‘ A using 10 by auto
have 20 : least A ∈ A using 10 LeastI by metis
have 21 : least (Suc ‘ A) ∈ Suc ‘ A using 11 LeastI by metis
have 30 :

∧
l. l ∈ A =⇒ least A ≤ l using 10 Least-le by metis

have 31 :
∧

l. l ∈ Suc ‘ A =⇒ least (Suc ‘ A) ≤ l using 11 Least-le by metis
show least (Suc ‘ A) ≤ Suc (least A) using 20 31 by auto
show Suc (least A) ≤ least (Suc ‘ A) using 21 30 by auto

qed

lemma least-Suc-diff [simp]: Suc ‘ A − {least (Suc ‘ A)} = Suc ‘ (A − {least A})
proof (cases A = {})

case True
show ?thesis unfolding True by simp

next
case False
have Suc ‘ A − {least (Suc ‘ A)} = Suc ‘ A − {Suc (least A)} using False by

simp
also have . . . = Suc ‘ A − Suc ‘ {least A} by simp
also have . . . = Suc ‘ (A − {least A}) by blast
finally show ?thesis by this

qed

lemma Max-diff-least[simp]:
fixes A :: ′a :: wellorder set
assumes finite A A − {least A} 6= {}
shows Max (A − {least A}) = Max A

proof −
have 1 : least A ∈ A using assms(2) by auto
obtain a where 2 : a ∈ A − {least A} using assms(2) by blast
have Max A = Max (insert (least A) (A − {least A})) using insert-absorb 1

by force
also have . . . = max (least A) (Max (A − {least A}))
proof (rule Max-insert)

show finite (A − {least A}) using assms(1) by auto
show A − {least A} 6= {} using assms(2) by this

qed
also have . . . = Max (A − {least A})
proof (rule max-absorb2 , rule Max-ge ′)

show finite (A − {least A}) using assms(1) by auto
show A − {least A} 6= {} using assms(2) by this
show a ∈ A − {least A} using 2 by this
show least A ≤ a using 2 by simp

qed
finally show ?thesis by rule

qed

lemma nat-set-card-equality-less:

15

fixes A :: nat set
assumes x ∈ A y ∈ A card {z ∈ A. z < x} = card {z ∈ A. z < y}
shows x = y

proof (cases x y rule: linorder-cases)
case less
have 0 : finite {z ∈ A. z < y} by simp
have 1 : {z ∈ A. z < x} ⊂ {z ∈ A. z < y} using assms(1 , 2) less by force
have 2 : card {z ∈ A. z < x} < card {z ∈ A. z < y} using psubset-card-mono

0 1 by this
show ?thesis using assms(3) 2 by simp

next
case equal
show ?thesis using equal by this

next
case greater
have 0 : finite {z ∈ A. z < x} by simp
have 1 : {z ∈ A. z < y} ⊂ {z ∈ A. z < x} using assms(1 , 2) greater by force
have 2 : card {z ∈ A. z < y} < card {z ∈ A. z < x} using psubset-card-mono

0 1 by this
show ?thesis using assms(3) 2 by simp

qed

lemma nat-set-card-equality-le:
fixes A :: nat set
assumes x ∈ A y ∈ A card {z ∈ A. z ≤ x} = card {z ∈ A. z ≤ y}
shows x = y

proof (cases x y rule: linorder-cases)
case less
have 0 : finite {z ∈ A. z ≤ y} by simp
have 1 : {z ∈ A. z ≤ x} ⊂ {z ∈ A. z ≤ y} using assms(1 , 2) less by force
have 2 : card {z ∈ A. z ≤ x} < card {z ∈ A. z ≤ y} using psubset-card-mono

0 1 by this
show ?thesis using assms(3) 2 by simp

next
case equal
show ?thesis using equal by this

next
case greater
have 0 : finite {z ∈ A. z ≤ x} by simp
have 1 : {z ∈ A. z ≤ y} ⊂ {z ∈ A. z ≤ x} using assms(1 , 2) greater by force
have 2 : card {z ∈ A. z ≤ y} < card {z ∈ A. z ≤ x} using psubset-card-mono

0 1 by this
show ?thesis using assms(3) 2 by simp

qed

lemma nat-set-card-mono[simp]:
fixes A :: nat set
assumes x ∈ A
shows card {z ∈ A. z < x} < card {z ∈ A. z < y} ←→ x < y

16

proof
assume 1 : card {z ∈ A. z < x} < card {z ∈ A. z < y}
show x < y
proof (rule ccontr)

assume 2 : ¬ x < y
have 3 : card {z ∈ A. z < y} ≤ card {z ∈ A. z < x} using 2 by (auto intro:

card-mono)
show False using 1 3 by simp

qed
next

assume 1 : x < y
show card {z ∈ A. z < x} < card {z ∈ A. z < y}
proof (intro psubset-card-mono psubsetI)

show finite {z ∈ A. z < y} by simp
show {z ∈ A. z < x} ⊆ {z ∈ A. z < y} using 1 by auto
show {z ∈ A. z < x} 6= {z ∈ A. z < y} using assms 1 by blast

qed
qed

lemma card-one[elim]:
assumes card A = 1
obtains a
where A = {a}
using assms by (metis One-nat-def card-Suc-eq)

lemma image-alt-def : f ‘ A = {f x |x. x ∈ A} by auto

lemma supset-mono-inductive[mono]:
assumes

∧
x. x ∈ B −→ x ∈ C

shows A ⊆ B −→ A ⊆ C
using assms by auto

lemma Collect-mono-inductive[mono]:
assumes

∧
x. P x −→ Q x

shows x ∈ {x. P x} −→ x ∈ {x. Q x}
using assms by auto

lemma image-union-split:
assumes f ‘ (A ∪ B) = g ‘ C
obtains D E
where f ‘ A = g ‘ D f ‘ B = g ‘ E D ⊆ C E ⊆ C
using assms unfolding image-Un
by (metis (erased, lifting) inf-sup-ord(3) inf-sup-ord(4) subset-imageE)

lemma image-insert-split:
assumes inj g f ‘ insert a B = g ‘ C
obtains d E
where f a = g d f ‘ B = g ‘ E d ∈ C E ⊆ C

proof −
have 1 : f ‘ ({a} ∪ B) = g ‘ C using assms(2) by simp
obtain D E where 2 : f ‘ {a} = g ‘ D f ‘ B = g ‘ E D ⊆ C E ⊆ C

17

using image-union-split 1 by this
obtain d where 3 : D = {d} using assms(1) 2 (1) by (auto, metis (erased,

opaque-lifting) imageE
image-empty image-insert inj-image-eq-iff singletonI)

show ?thesis using that 2 unfolding 3 by simp
qed

end

5 Basics
theory Basic-Extensions
imports HOL−Library.Infinite-Set
begin

5.1 Types
type-synonym ′a step = ′a ⇒ ′a

5.2 Rules
declare less-imp-le[dest, simp]

declare le-funI [intro]
declare le-funE [elim]
declare le-funD[dest]

lemma IdI ′[intro]:
assumes x = y
shows (x, y) ∈ Id
using assms by auto

lemma (in order) order-le-cases:
assumes x ≤ y
obtains (eq) x = y | (lt) x < y
using assms le-less by auto

lemma (in linorder) linorder-cases ′:
obtains (le) x ≤ y | (gt) x > y
by force

lemma monoI-comp[intro]:
assumes mono f mono g
shows mono (f ◦ g)
using assms by (intro monoI , auto dest: monoD)

lemma strict-monoI-comp[intro]:
assumes strict-mono f strict-mono g
shows strict-mono (f ◦ g)
using assms by (intro strict-monoI , auto dest: strict-monoD)

18

lemma eq-le-absorb[simp]:
fixes x y :: ′a :: order
shows x = y ∧ x ≤ y ←→ x = y x ≤ y ∧ x = y ←→ x = y
by auto

lemma INFM-Suc[simp]: (∃∞ i. P (Suc i)) ←→ (∃∞ i. P i)
unfolding INFM-nat using Suc-lessE less-Suc-eq by metis

lemma INFM-plus[simp]: (∃∞ i. P (i + n :: nat)) ←→ (∃∞ i. P i)
proof (induct n)

case 0
show ?case by simp

next
case (Suc n)
have (∃∞ i. P (i + Suc n)) ←→ (∃∞ i. P (Suc i + n)) by simp
also have . . . ←→ (∃∞ i. P (i + n)) using INFM-Suc by this
also have . . . ←→ (∃∞ i. P i) using Suc by this
finally show ?case by this

qed
lemma INFM-minus[simp]: (∃∞ i. P (i − n :: nat)) ←→ (∃∞ i. P i)
proof (induct n)

case 0
show ?case by simp

next
case (Suc n)

have (∃∞ i. P (i − Suc n)) ←→ (∃∞ i. P (Suc i − Suc n)) using INFM-Suc
by meson

also have . . . ←→ (∃∞ i. P (i − n)) by simp
also have . . . ←→ (∃∞ i. P i) using Suc by this
finally show ?case by this

qed

5.3 Constants
definition const :: ′a ⇒ ′b ⇒ ′a

where const x ≡ λ -. x
definition const2 :: ′a ⇒ ′b ⇒ ′c ⇒ ′a

where const2 x ≡ λ - -. x
definition const3 :: ′a ⇒ ′b ⇒ ′c ⇒ ′d ⇒ ′a

where const3 x ≡ λ - - -. x
definition const4 :: ′a ⇒ ′b ⇒ ′c ⇒ ′d ⇒ ′e ⇒ ′a

where const4 x ≡ λ - - - -. x
definition const5 :: ′a ⇒ ′b ⇒ ′c ⇒ ′d ⇒ ′e ⇒ ′f ⇒ ′a

where const5 x ≡ λ - - - - -. x

lemma const-apply[simp]: const x y = x unfolding const-def by rule
lemma const2-apply[simp]: const2 x y z = x unfolding const2-def by rule
lemma const3-apply[simp]: const3 x y z u = x unfolding const3-def by rule
lemma const4-apply[simp]: const4 x y z u v = x unfolding const4-def by rule

19

lemma const5-apply[simp]: const5 x y z u v w = x unfolding const5-def by
rule

definition zip-fun :: (′a ⇒ ′b) ⇒ (′a ⇒ ′c) ⇒ ′a ⇒ ′b × ′c (infixr ‹‖› 51)
where f ‖ g ≡ λ x. (f x, g x)

lemma zip-fun-simps[simp]:
(f ‖ g) x = (f x, g x)
fst ◦ (f ‖ g) = f
snd ◦ (f ‖ g) = g
fst ◦ h ‖ snd ◦ h = h
fst ‘ range (f ‖ g) = range f
snd ‘ range (f ‖ g) = range g
unfolding zip-fun-def by force+

lemma zip-fun-eq[dest]:
assumes f ‖ g = h ‖ i
shows f = h g = i
using assms unfolding zip-fun-def by (auto dest: fun-cong)

lemma zip-fun-range-subset[intro, simp]: range (f ‖ g) ⊆ range f × range g
unfolding zip-fun-def by blast

lemma zip-fun-range-finite[elim]:
assumes finite (range (f ‖ g))
obtains finite (range f) finite (range g)

proof
show finite (range f) using finite-imageI [OF assms(1), of fst]

by (simp add: image-image)
show finite (range g) using finite-imageI [OF assms(1), of snd]

by (simp add: image-image)
qed

lemma zip-fun-split:
obtains f g
where h = f ‖ g

proof
show h = fst ◦ h ‖ snd ◦ h by simp

qed

abbreviation None-None ≡ (None, None)
abbreviation None-Some ≡ λ (y). (None, Some y)
abbreviation Some-None ≡ λ (x). (Some x, None)
abbreviation Some-Some ≡ λ (x, y). (Some x, Some y)

abbreviation None-None-None ≡ (None, None, None)
abbreviation None-None-Some ≡ λ (z). (None, None, Some z)
abbreviation None-Some-None ≡ λ (y). (None, Some y, None)
abbreviation None-Some-Some ≡ λ (y, z). (None, Some y, Some z)
abbreviation Some-None-None ≡ λ (x). (Some x, None, None)

20

abbreviation Some-None-Some ≡ λ (x, z). (Some x , None, Some z)
abbreviation Some-Some-None ≡ λ (x, y). (Some x, Some y, None)
abbreviation Some-Some-Some ≡ λ (x, y, z). (Some x, Some y, Some z)

lemma inj-Some2 [simp, intro]:
inj None-Some
inj Some-None
inj Some-Some
by (rule injI , force)+

lemma inj-Some3 [simp, intro]:
inj None-None-Some
inj None-Some-None
inj None-Some-Some
inj Some-None-None
inj Some-None-Some
inj Some-Some-None
inj Some-Some-Some
by (rule injI , force)+

definition swap :: ′a × ′b ⇒ ′b × ′a
where swap x ≡ (snd x, fst x)

lemma swap-simps[simp]: swap (a, b) = (b, a) unfolding swap-def by simp
lemma swap-inj[intro, simp]: inj swap by (rule injI , auto)
lemma swap-surj[intro, simp]: surj swap by (rule surjI [where ?f = swap],

auto)
lemma swap-bij[intro, simp]: bij swap by (rule bijI , auto)

definition push :: (′a × ′b) × ′c ⇒ ′a × ′b × ′c
where push x ≡ (fst (fst x), snd (fst x), snd x)

definition pull :: ′a × ′b × ′c ⇒ (′a × ′b) × ′c
where pull x ≡ ((fst x, fst (snd x)), snd (snd x))

lemma push-simps[simp]: push ((x, y), z) = (x, y, z) unfolding push-def by
simp

lemma pull-simps[simp]: pull (x, y, z) = ((x, y), z) unfolding pull-def by
simp

definition label :: ′vertex × ′label × ′vertex ⇒ ′label
where label ≡ fst ◦ snd

lemma label-select[simp]: label (p, a, q) = a unfolding label-def by simp

5.4 Theorems for @termcurry and @termsplit
lemma curry-split[simp]: curry ◦ case-prod = id by auto
lemma split-curry[simp]: case-prod ◦ curry = id by auto

21

lemma curry-le[simp]: curry f ≤ curry g ←→ f ≤ g unfolding le-fun-def by
force

lemma split-le[simp]: case-prod f ≤ case-prod g ←→ f ≤ g unfolding le-fun-def
by force

lemma mono-curry-left[simp]: mono (curry ◦ h) ←→ mono h
unfolding mono-def by fastforce

lemma mono-split-left[simp]: mono (case-prod ◦ h) ←→ mono h
unfolding mono-def by fastforce

lemma mono-curry-right[simp]: mono (h ◦ curry) ←→ mono h
unfolding mono-def split-le[symmetric] by bestsimp

lemma mono-split-right[simp]: mono (h ◦ case-prod) ←→ mono h
unfolding mono-def curry-le[symmetric] by bestsimp

lemma Collect-curry[simp]: {x. P (curry x)} = case-prod ‘ {x. P x} using
image-Collect by fastforce

lemma Collect-split[simp]: {x. P (case-prod x)} = curry ‘ {x. P x} using
image-Collect by force

lemma gfp-split-curry[simp]: gfp (case-prod ◦ f ◦ curry) = case-prod (gfp f)
proof −

have gfp (case-prod ◦ f ◦ curry) = Sup {u. u ≤ case-prod (f (curry u))}
unfolding gfp-def by simp

also have . . . = Sup {u. curry u ≤ curry (case-prod (f (curry u)))} unfolding
curry-le by simp

also have . . . = Sup {u. curry u ≤ f (curry u)} by simp
also have . . . = Sup (case-prod ‘ {u. u ≤ f u}) unfolding Collect-curry[of λ

u. u ≤ f u] by simp
also have . . . = case-prod (Sup {u. u ≤ f u}) by (force simp add: image-comp)
also have . . . = case-prod (gfp f) unfolding gfp-def by simp
finally show ?thesis by this

qed
lemma gfp-curry-split[simp]: gfp (curry ◦ f ◦ case-prod) = curry (gfp f)
proof −

have gfp (curry ◦ f ◦ case-prod) = Sup {u. u ≤ curry (f (case-prod u))}
unfolding gfp-def by simp

also have . . . = Sup {u. case-prod u ≤ case-prod (curry (f (case-prod u)))}
unfolding split-le by simp

also have . . . = Sup {u. case-prod u ≤ f (case-prod u)} by simp
also have . . . = Sup (curry ‘ {u. u ≤ f u}) unfolding Collect-split[of λ u. u

≤ f u] by simp
also have . . . = curry (Sup {u. u ≤ f u}) by (force simp add: image-comp)
also have . . . = curry (gfp f) unfolding gfp-def by simp
finally show ?thesis by this

qed

lemma not-someI :
assumes

∧
x. P x =⇒ False

shows ¬ P (SOME x. P x)

22

using assms by blast
lemma some-ccontr :

assumes (
∧

x. ¬ P x) =⇒ False
shows P (SOME x. P x)
using assms someI-ex ccontr by metis

end

6 Relations
theory Relation-Extensions
imports

Basic-Extensions
begin

abbreviation rev-lex-prod (infixr ‹<∗rlex∗>› 80)
where r1 <∗rlex∗> r2 ≡ inv-image (r2 <∗lex∗> r1) swap

lemmas sym-rtranclp[intro] = sym-rtrancl[to-pred]

definition liftablep :: (′a ⇒ ′a ⇒ bool) ⇒ (′a ⇒ ′a) ⇒ bool
where liftablep r f ≡ ∀ x y. r x y −→ r (f x) (f y)

lemma liftablepI [intro]:
assumes

∧
x y. r x y =⇒ r (f x) (f y)

shows liftablep r f
using assms
unfolding liftablep-def
by simp

lemma liftablepE [elim]:
assumes liftablep r f
assumes r x y
obtains r (f x) (f y)
using assms
unfolding liftablep-def
by simp

lemma liftablep-rtranclp:
assumes liftablep r f
shows liftablep r∗∗ f

proof
fix x y
assume r∗∗ x y
thus r∗∗ (f x) (f y)

using assms
by (induct rule: rtranclp-induct, force+)

qed

definition confluentp :: (′a ⇒ ′a ⇒ bool) ⇒ bool

23

where confluentp r ≡ ∀ x y1 y2 . r∗∗ x y1 −→ r∗∗ x y2 −→ (∃ z. r∗∗ y1 z ∧
r∗∗ y2 z)

lemma confluentpI [intro]:
assumes

∧
x y1 y2 . r∗∗ x y1 =⇒ r∗∗ x y2 =⇒ ∃ z. r∗∗ y1 z ∧ r∗∗ y2 z

shows confluentp r
using assms
unfolding confluentp-def
by simp

lemma confluentpE [elim]:
assumes confluentp r
assumes r∗∗ x y1 r∗∗ x y2
obtains z
where r∗∗ y1 z r∗∗ y2 z
using assms
unfolding confluentp-def
by blast

lemma confluentpI ′[intro]:
assumes

∧
x y1 y2 . r∗∗ x y1 =⇒ r x y2 =⇒ ∃ z. r∗∗ y1 z ∧ r∗∗ y2 z

shows confluentp r
proof

fix x y1 y2
assume r∗∗ x y1 r∗∗ x y2
thus ∃ z. r∗∗ y1 z ∧ r∗∗ y2 z using assms by (induct rule: rtranclp-induct,

force+)
qed

lemma transclp-eq-implies-confluent-imp:
assumes r1 ∗∗ = r2 ∗∗

assumes confluentp r1
shows confluentp r2
using assms
by force

lemma transclp-eq-implies-confluent-eq:
assumes r1 ∗∗ = r2 ∗∗

shows confluentp r1 ←→ confluentp r2
using assms transclp-eq-implies-confluent-imp
by metis

definition diamondp :: (′a ⇒ ′a ⇒ bool) ⇒ bool
where diamondp r ≡ ∀ x y1 y2 . r x y1 −→ r x y2 −→ (∃ z. r y1 z ∧ r y2 z)

lemma diamondpI [intro]:
assumes

∧
x y1 y2 . r x y1 =⇒ r x y2 =⇒ ∃ z. r y1 z ∧ r y2 z

shows diamondp r
using assms

24

unfolding diamondp-def
by simp

lemma diamondpE [elim]:
assumes diamondp r
assumes r x y1 r x y2
obtains z
where r y1 z r y2 z
using assms
unfolding diamondp-def
by blast

lemma diamondp-implies-confluentp:
assumes diamondp r
shows confluentp r

proof (rule confluentpI ′)
fix x y1 y2
assume r∗∗ x y1 r x y2
hence ∃ z. r y1 z ∧ r∗∗ y2 z using assms by (induct rule: rtranclp-induct,

force+)
thus ∃ z. r∗∗ y1 z ∧ r∗∗ y2 z by blast

qed

locale wellfounded-relation =
fixes R :: ′a ⇒ ′a ⇒ bool
assumes wellfounded: wfP R

end

7 Transition Systems
theory Transition-System-Extensions
imports

Basics/Word-Prefixes
Extensions/Set-Extensions
Extensions/Relation-Extensions
Transition-Systems-and-Automata.Transition-System
Transition-Systems-and-Automata.Transition-System-Extra
Transition-Systems-and-Automata.Transition-System-Construction

begin

context transition-system-initial
begin

definition cycles :: ′state ⇒ ′transition list set
where cycles p ≡ {w. path w p ∧ target w p = p}

lemma cyclesI [intro!]:
assumes path w p target w p = p

25

shows w ∈ cycles p
using assms unfolding cycles-def by auto

lemma cyclesE [elim!]:
assumes w ∈ cycles p
obtains path w p target w p = p
using assms unfolding cycles-def by auto

inductive-set executable :: ′transition set
where executable: p ∈ nodes =⇒ enabled a p =⇒ a ∈ executable

lemma executableI-step[intro!]:
assumes p ∈ nodes enabled a p
shows a ∈ executable
using executable assms by this

lemma executableI-words-fin[intro!]:
assumes p ∈ nodes path w p
shows set w ⊆ executable
using assms by (induct w arbitrary: p, auto del: subsetI)

lemma executableE [elim?]:
assumes a ∈ executable
obtains p
where p ∈ nodes enabled a p
using assms by induct auto

end

locale transition-system-interpreted =
transition-system ex en
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and int :: ′state ⇒ ′interpretation

begin

definition visible :: ′action set
where visible ≡ {a. ∃ q. en a q ∧ int q 6= int (ex a q)}

lemma visibleI [intro]:
assumes en a q int q 6= int (ex a q)
shows a ∈ visible
using assms unfolding visible-def by auto

lemma visibleE [elim]:
assumes a ∈ visible
obtains q
where en a q int q 6= int (ex a q)
using assms unfolding visible-def by auto

abbreviation invisible ≡ − visible

lemma execute-fin-word-invisible:

26

assumes path w p set w ⊆ invisible
shows int (target w p) = int p
using assms by (induct w arbitrary: p rule: list.induct, auto)

lemma execute-inf-word-invisible:
assumes run w p k ≤ l

∧
i. k ≤ i =⇒ i < l =⇒ w !! i /∈ visible

shows int ((p ## trace w p) !! k) = int ((p ## trace w p) !! l)
proof −

have (p ## trace w p) !! l = target (stake l w) p by simp
also have stake l w = stake k w @ stake (l − k) (sdrop k w) using assms(2)

by simp
also have target . . . p = target (stake (l − k) (sdrop k w)) (target (stake k

w) p)
unfolding fold-append comp-apply by rule

also have int . . . = int (target (stake k w) p)
proof (rule execute-fin-word-invisible)

have w = stake l w @− sdrop l w by simp
also have stake l w = stake k w @ stake (l − k) (sdrop k w) using assms(2)

by simp
finally have 1 : run (stake k w @− stake (l − k) (sdrop k w) @− sdrop l w)

p
unfolding shift-append using assms(1) by simp

show path (stake (l − k) (sdrop k w)) (target (stake k w) p) using 1 by
auto

show set (stake (l − k) (sdrop k w)) ⊆ invisible using assms(3) by (auto
simp: set-stake-snth)

qed
also have . . . = int ((p ## trace w p) !! k) by simp
finally show ?thesis by rule

qed

end

locale transition-system-complete =
transition-system-initial ex en init +
transition-system-interpreted ex en int
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
and int :: ′state ⇒ ′interpretation

begin

definition language :: ′interpretation stream set
where language ≡ {smap int (p ## trace w p) |p w. init p ∧ run w p}

lemma languageI [intro!]:
assumes w = smap int (p ## trace v p) init p run v p
shows w ∈ language
using assms unfolding language-def by auto

lemma languageE [elim!]:

27

assumes w ∈ language
obtains p v
where w = smap int (p ## trace v p) init p run v p
using assms unfolding language-def by auto

end

locale transition-system-finite-nodes =
transition-system-initial ex en init
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
+
assumes reachable-finite: finite nodes

locale transition-system-cut =
transition-system-finite-nodes ex en init
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
+
fixes cuts :: ′action set
assumes cycles-cut: p ∈ nodes =⇒ w ∈ cycles p =⇒ w 6= [] =⇒ set w ∩ cuts

6= {}
begin

inductive scut :: ′state ⇒ ′state ⇒ bool
where scut: p ∈ nodes =⇒ en a p =⇒ a /∈ cuts =⇒ scut p (ex a p)

declare scut.intros[intro!]
declare scut.cases[elim!]

lemma scut-reachable:
assumes scut p q
shows p ∈ nodes q ∈ nodes
using assms by auto

lemma scut-trancl:
assumes scut++ p q
obtains w
where path w p target w p = q set w ∩ cuts = {} w 6= []

using assms
proof (induct arbitrary: thesis)

case (base q)
show ?case using base by force

next
case (step q r)
obtain w where 1 : path w p target w p = q set w ∩ cuts = {} w 6= []

using step(3) by this
obtain a where 2 : en a q a /∈ cuts ex a q = r using step(2) by auto

28

show ?case
proof (rule step(4))

show path (w @ [a]) p using 1 2 by auto
show target (w @ [a]) p = r using 1 2 by auto
show set (w @ [a]) ∩ cuts = {} using 1 2 by auto
show w @ [a] 6= [] by auto

qed
qed

sublocale wellfounded-relation scut−1−1

proof (unfold-locales, intro finite-acyclic-wf-converse[to-pred] acyclicI [to-pred],
safe)

have 1 : {(p, q). scut p q} ⊆ nodes × nodes using scut-reachable by blast
have 2 : finite (nodes × nodes)

using finite-cartesian-product reachable-finite by blast
show finite {(p, q). scut p q} using 1 2 by blast

next
fix p
assume 1 : scut++ p p
have 2 : p ∈ nodes using 1 tranclE [to-pred] scut-reachable by metis
obtain w where 3 : path w p target w p = p set w ∩ cuts = {} w 6= []

using scut-trancl 1 by this
have 4 : w ∈ cycles p using 3 (1 , 2) by auto
have 5 : set w ∩ cuts 6= {} using cycles-cut 2 4 3 (4) by this
show False using 3 (3) 5 by simp

qed

lemma no-cut-scut:
assumes p ∈ nodes en a p a /∈ cuts
shows scut−1−1 (ex a p) p
using assms by auto

end

locale transition-system-sticky =
transition-system-complete ex en init int +
transition-system-cut ex en init sticky
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
and int :: ′state ⇒ ′interpretation
and sticky :: ′action set
+
assumes executable-visible-sticky: executable ∩ visible ⊆ sticky

end

29

8 Trace Theory
theory Traces
imports Basics/Word-Prefixes
begin

locale traces =
fixes ind :: ′item ⇒ ′item ⇒ bool
assumes independence-symmetric[sym]: ind a b =⇒ ind b a

begin

abbreviation Ind :: ′item set ⇒ ′item set ⇒ bool
where Ind A B ≡ ∀ a ∈ A. ∀ b ∈ B. ind a b

inductive eq-swap :: ′item list ⇒ ′item list ⇒ bool (infix ‹=S› 50)
where swap: ind a b =⇒ u @ [a] @ [b] @ v =S u @ [b] @ [a] @ v

declare eq-swap.intros[intro]
declare eq-swap.cases[elim]

lemma eq-swap-sym[sym]: v =S w =⇒ w =S v using independence-symmetric
by auto

lemma eq-swap-length[dest]: w1 =S w2 =⇒ length w1 = length w2 by force
lemma eq-swap-range[dest]: w1 =S w2 =⇒ set w1 = set w2 by force

lemma eq-swap-extend:
assumes w1 =S w2

shows u @ w1 @ v =S u @ w2 @ v
using assms
proof induct

case (swap a b u ′ v ′)
have u @ (u ′ @ [a] @ [b] @ v ′) @ v = (u @ u ′) @ [a] @ [b] @ (v ′ @ v) by

simp
also have . . . =S (u @ u ′) @ [b] @ [a] @ (v ′ @ v) using swap by blast
also have . . . = u @ (u ′ @ [b] @ [a] @ v ′) @ v by simp
finally show ?case by this

qed

lemma eq-swap-remove1 :
assumes w1 =S w2

obtains (equal) remove1 c w1 = remove1 c w2 | (swap) remove1 c w1 =S

remove1 c w2

using assms
proof induct

case (swap a b u v)
have c /∈ set (u @ [a] @ [b] @ v) ∨

c ∈ set u ∨
c /∈ set u ∧ c = a ∨

30

c /∈ set u ∧ c 6= a ∧ c = b ∨
c /∈ set u ∧ c 6= a ∧ c 6= b ∧ c ∈ set v
by auto

thus ?case
proof (elim disjE)

assume 0 : c /∈ set (u @ [a] @ [b] @ v)
have 1 : c /∈ set (u @ [b] @ [a] @ v) using 0 by auto

have 2 : remove1 c (u @ [a] @ [b] @ v) = u @ [a] @ [b] @ v using
remove1-idem 0 by this

have 3 : remove1 c (u @ [b] @ [a] @ v) = u @ [b] @ [a] @ v using
remove1-idem 1 by this

have 4 : remove1 c (u @ [a] @ [b] @ v) =S remove1 c (u @ [b] @ [a] @ v)
unfolding 2 3 using eq-swap.intros swap(1) by this

show thesis using swap(3) 4 by this
next

assume 0 : c ∈ set u
have 2 : remove1 c (u @ [a] @ [b] @ v) = remove1 c u @ [a] @ [b] @ v

unfolding remove1-append using 0 by simp
have 3 : remove1 c (u @ [b] @ [a] @ v) = remove1 c u @ [b] @ [a] @ v

unfolding remove1-append using 0 by simp
have 4 : remove1 c (u @ [a] @ [b] @ v) =S remove1 c (u @ [b] @ [a] @ v)

unfolding 2 3 using eq-swap.intros swap(1) by this
show thesis using swap(3) 4 by this

next
assume 0 : c /∈ set u ∧ c = a
have 2 : remove1 c (u @ [a] @ [b] @ v) = u @ [b] @ v

unfolding remove1-append using remove1-idem 0 by auto
have 3 : remove1 c (u @ [b] @ [a] @ v) = u @ [b] @ v

unfolding remove1-append using remove1-idem 0 by auto
have 4 : remove1 c (u @ [a] @ [b] @ v) = remove1 c (u @ [b] @ [a] @ v)

unfolding 2 3 by rule
show thesis using swap(2) 4 by this

next
assume 0 : c /∈ set u ∧ c 6= a ∧ c = b
have 2 : remove1 c (u @ [a] @ [b] @ v) = u @ [a] @ v

unfolding remove1-append using remove1-idem 0 by auto
have 3 : remove1 c (u @ [b] @ [a] @ v) = u @ [a] @ v

unfolding remove1-append using remove1-idem 0 by auto
have 4 : remove1 c (u @ [a] @ [b] @ v) = remove1 c (u @ [b] @ [a] @ v)

unfolding 2 3 by rule
show thesis using swap(2) 4 by this

next
assume 0 : c /∈ set u ∧ c 6= a ∧ c 6= b ∧ c ∈ set v
have 2 : remove1 c (u @ [a] @ [b] @ v) = u @ [a] @ [b] @ remove1 c v

unfolding remove1-append using 0 by simp
have 3 : remove1 c (u @ [b] @ [a] @ v) = u @ [b] @ [a] @ remove1 c v

unfolding remove1-append using 0 by simp
have 4 : remove1 c (u @ [a] @ [b] @ v) =S remove1 c (u @ [b] @ [a] @ v)

unfolding 2 3 using eq-swap.intros swap(1) by this

31

show ?thesis using swap(3) 4 by this
qed

qed

lemma eq-swap-rev:
assumes w1 =S w2

shows rev w1 =S rev w2

using assms
proof induct

case (swap a b u v)
have 1 : rev v @ [a] @ [b] @ rev u =S rev v @ [b] @ [a] @ rev u using swap

by blast
have 2 : rev v @ [b] @ [a] @ rev u =S rev v @ [a] @ [b] @ rev u using 1

eq-swap-sym by blast
show ?case using 2 by simp

qed

abbreviation eq-fin :: ′item list ⇒ ′item list ⇒ bool (infix ‹=F › 50)
where eq-fin ≡ eq-swap∗∗

lemma eq-fin-symp[intro, sym]: u =F v =⇒ v =F u
using eq-swap-sym sym-rtrancl[to-pred] unfolding symp-def by metis

lemma eq-fin-length[dest]: w1 =F w2 =⇒ length w1 = length w2

by (induct rule: rtranclp.induct, auto)
lemma eq-fin-range[dest]: w1 =F w2 =⇒ set w1 = set w2

by (induct rule: rtranclp.induct, auto)

lemma eq-fin-remove1 :
assumes w1 =F w2

shows remove1 c w1 =F remove1 c w2

using assms
proof induct

case (base)
show ?case by simp

next
case (step w2 w3)
show ?case
using step(2)
proof (cases rule: eq-swap-remove1 [where ?c = c])

case equal
show ?thesis using step equal by simp

next
case swap
show ?thesis using step swap by auto

qed
qed

lemma eq-fin-rev:

32

assumes w1 =F w2

shows rev w1 =F rev w2

using assms by (induct, auto dest: eq-swap-rev)

lemma eq-fin-concat-eq-fin-start:
assumes u @ v1 =F u @ v2

shows v1 =F v2

using assms
proof (induct u arbitrary: v1 v2 rule: rev-induct)

case (Nil)
show ?case using Nil by simp

next
case (snoc a u)
have 1 : u @ [a] @ v1 =F u @ [a] @ v2 using snoc(2) by simp
have 2 : [a] @ v1 =F [a] @ v2 using snoc(1) 1 by this
show ?case using eq-fin-remove1 [OF 2 , of a] by simp

qed

lemma eq-fin-concat: u @ w1 @ v =F u @ w2 @ v ←→ w1 =F w2

proof
assume 0 : u @ w1 @ v =F u @ w2 @ v
have 1 : w1 @ v =F w2 @ v using eq-fin-concat-eq-fin-start 0 by this
have 2 : rev (w1 @ v) =F rev (w2 @ v) using 1 by (blast dest: eq-fin-rev)
have 3 : rev v @ rev w1 =F rev v @ rev w2 using 2 by simp
have 4 : rev w1 =F rev w2 using eq-fin-concat-eq-fin-start 3 by this
have 5 : rev (rev w1) =F rev (rev w2) using 4 by (blast dest: eq-fin-rev)
show w1 =F w2 using 5 by simp

next
show u @ w1 @ v =F u @ w2 @ v if w1 =F w2

using that by (induct, auto dest: eq-swap-extend[of - - u v])
qed
lemma eq-fin-concat-start[iff]: w @ w1 =F w @ w2 ←→ w1 =F w2

using eq-fin-concat[of w - []] by simp
lemma eq-fin-concat-end[iff]: w1 @ w =F w2 @ w ←→ w1 =F w2

using eq-fin-concat[of [] - w] by simp

lemma ind-eq-fin ′:
assumes Ind {a} (set v)
shows [a] @ v =F v @ [a]

using assms
proof (induct v)

case (Nil)
show ?case by simp

next
case (Cons b v)
have 1 : Ind {a} (set v) using Cons(2) by auto
have 2 : ind a b using Cons(2) by auto
have [a] @ b # v = [a] @ [b] @ v by simp
also have . . . =S [b] @ [a] @ v using eq-swap.intros[OF 2 , of []] by auto

33

also have . . . =F [b] @ v @ [a] using Cons(1) 1 by blast
also have . . . = (b # v) @ [a] by simp
finally show ?case by this

qed

lemma ind-eq-fin[intro]:
assumes Ind (set u) (set v)
shows u @ v =F v @ u

using assms
proof (induct u)

case (Nil)
show ?case by simp

next
case (Cons a u)
have 1 : Ind (set u) (set v) using Cons(2) by auto
have 2 : Ind {a} (set v) using Cons(2) by auto
have (a # u) @ v = [a] @ u @ v by simp
also have . . . =F [a] @ v @ u using Cons(1) 1 by blast
also have . . . = ([a] @ v) @ u by simp
also have . . . =F (v @ [a]) @ u using ind-eq-fin ′ 2 by blast
also have . . . = v @ (a # u) by simp
finally show ?case by this

qed

definition le-fin :: ′item list ⇒ ′item list ⇒ bool (infix ‹�F › 50)
where w1 �F w2 ≡ ∃ v1. w1 @ v1 =F w2

lemma le-finI [intro 0]:
assumes w1 @ v1 =F w2

shows w1 �F w2

using assms unfolding le-fin-def by auto
lemma le-finE [elim 0]:

assumes w1 �F w2

obtains v1

where w1 @ v1 =F w2

using assms unfolding le-fin-def by auto

lemma le-fin-empty[simp]: [] �F w by force
lemma le-fin-trivial[intro]: w1 =F w2 =⇒ w1 �F w2

proof
assume 1 : w1 =F w2

show w1 @ [] =F w2 using 1 by simp
qed

lemma le-fin-length[dest]: w1 �F w2 =⇒ length w1 ≤ length w2 by force
lemma le-fin-range[dest]: w1 �F w2 =⇒ set w1 ⊆ set w2 by force

lemma eq-fin-alt-def : w1 =F w2 ←→ w1 �F w2 ∧ w2 �F w1

proof

34

show w1 �F w2 ∧ w2 �F w1 if w1 =F w2 using that by blast
next

assume 0 : w1 �F w2 ∧ w2 �F w1

have 1 : w1 �F w2 w2 �F w1 using 0 by auto
have 10 : length w1 = length w2 using 1 by force
obtain v1 v2 where 2 : w1 @ v1 =F w2 w2 @ v2 =F w1 using 1 by (elim

le-finE)
have 3 : length w1 = length (w1 @ v1) using 2 10 by force
have 4 : w1 = w1 @ v1 using 3 by auto
have 5 : length w2 = length (w2 @ v2) using 2 10 by force
have 6 : w2 = w2 @ v2 using 5 by auto
show w1 =F w2 using 4 6 2 by simp

qed

lemma le-fin-reflp[simp, intro]: w �F w by auto
lemma le-fin-transp[intro, trans]:

assumes w1 �F w2 w2 �F w3

shows w1 �F w3

proof −
obtain v1 where 1 : w1 @ v1 =F w2 using assms(1) by rule
obtain v2 where 2 : w2 @ v2 =F w3 using assms(2) by rule
show ?thesis
proof

have w1 @ v1 @ v2 = (w1 @ v1) @ v2 by simp
also have . . . =F w2 @ v2 using 1 by blast
also have . . . =F w3 using 2 by blast
finally show w1 @ v1 @ v2 =F w3 by this

qed
qed
lemma eq-fin-le-fin-transp[intro, trans]:

assumes w1 =F w2 w2 �F w3

shows w1 �F w3

using assms by auto
lemma le-fin-eq-fin-transp[intro, trans]:

assumes w1 �F w2 w2 =F w3

shows w1 �F w3

using assms by auto
lemma prefix-le-fin-transp[intro, trans]:

assumes w1 ≤ w2 w2 �F w3

shows w1 �F w3

proof −
obtain v1 where 1 : w2 = w1 @ v1 using assms(1) by rule
obtain v2 where 2 : w2 @ v2 =F w3 using assms(2) by rule
show ?thesis
proof

show w1 @ v1 @ v2 =F w3 using 1 2 by simp
qed

qed
lemma le-fin-prefix-transp[intro, trans]:

35

assumes w1 �F w2 w2 ≤ w3

shows w1 �F w3

proof −
obtain v1 where 1 : w1 @ v1 =F w2 using assms(1) by rule
obtain v2 where 2 : w3 = w2 @ v2 using assms(2) by rule
show ?thesis
proof

have w1 @ v1 @ v2 = (w1 @ v1) @ v2 by simp
also have . . . =F w2 @ v2 using 1 by blast
also have . . . = w3 using 2 by simp
finally show w1 @ v1 @ v2 =F w3 by this

qed
qed
lemma prefix-eq-fin-transp[intro, trans]:

assumes w1 ≤ w2 w2 =F w3

shows w1 �F w3

using assms by auto

lemma le-fin-concat-start[iff]: w @ w1 �F w @ w2 ←→ w1 �F w2

proof
assume 0 : w @ w1 �F w @ w2

obtain v1 where 1 : w @ w1 @ v1 =F w @ w2 using 0 by auto
show w1 �F w2 using 1 by auto

next
assume 0 : w1 �F w2

obtain v1 where 1 : w1 @ v1 =F w2 using 0 by auto
have 2 : (w @ w1) @ v1 =F w @ w2 using 1 by auto
show w @ w1 �F w @ w2 using 2 by blast

qed
lemma le-fin-concat-end[dest]:

assumes w1 �F w2

shows w1 �F w2 @ w
proof −

obtain v1 where 1 : w1 @ v1 =F w2 using assms by rule
show ?thesis
proof

have w1 @ v1 @ w = (w1 @ v1) @ w by simp
also have . . . =F w2 @ w using 1 by blast
finally show w1 @ v1 @ w =F w2 @ w by this

qed
qed

definition le-fininf :: ′item list ⇒ ′item stream ⇒ bool (infix ‹�F I› 50)
where w1 �F I w2 ≡ ∃ v2. v2 ≤F I w2 ∧ w1 �F v2

lemma le-fininfI [intro 0]:
assumes v2 ≤F I w2 w1 �F v2

shows w1 �F I w2

using assms unfolding le-fininf-def by auto

36

lemma le-fininfE [elim 0]:
assumes w1 �F I w2

obtains v2

where v2 ≤F I w2 w1 �F v2

using assms unfolding le-fininf-def by auto

lemma le-fininf-empty[simp]: [] �F I w by force

lemma le-fininf-range[dest]: w1 �F I w2 =⇒ set w1 ⊆ sset w2 by force

lemma eq-fin-le-fininf-transp[intro, trans]:
assumes w1 =F w2 w2 �F I w3

shows w1 �F I w3

using assms by blast
lemma le-fin-le-fininf-transp[intro, trans]:

assumes w1 �F w2 w2 �F I w3

shows w1 �F I w3

using assms by blast
lemma prefix-le-fininf-transp[intro, trans]:

assumes w1 ≤ w2 w2 �F I w3

shows w1 �F I w3

using assms by auto
lemma le-fin-prefix-fininf-transp[intro, trans]:

assumes w1 �F w2 w2 ≤F I w3

shows w1 �F I w3

using assms by auto
lemma eq-fin-prefix-fininf-transp[intro, trans]:

assumes w1 =F w2 w2 ≤F I w3

shows w1 �F I w3

using assms by auto

lemma le-fininf-concat-start[iff]: w @ w1 �F I w @− w2 ←→ w1 �F I w2

proof
assume 0 : w @ w1 �F I w @− w2

obtain v2 where 1 : v2 ≤F I w @− w2 w @ w1 �F v2 using 0 by rule
have 2 : length w ≤ length v2 using 1 (2) by force
have 4 : w ≤ v2 using prefix-fininf-extend[OF 1 (1) 2] by this
obtain v1 where 5 : v2 = w @ v1 using 4 by rule
show w1 �F I w2

proof
show v1 ≤F I w2 using 1 (1) unfolding 5 by auto
show w1 �F v1 using 1 (2) unfolding 5 by simp

qed
next

assume 0 : w1 �F I w2

obtain v2 where 1 : v2 ≤F I w2 w1 �F v2 using 0 by rule
show w @ w1 �F I w @− w2

proof
show w @ v2 ≤F I (w @− w2) using 1 (1) by auto

37

show w @ w1 �F w @ v2 using 1 (2) by auto
qed

qed

lemma le-fininf-singleton[intro, simp]: [shd v] �F I v
proof −

have [shd v] �F I shd v ## sdrop 1 v by blast
also have . . . = v by simp
finally show ?thesis by this

qed

definition le-inf :: ′item stream ⇒ ′item stream ⇒ bool (infix ‹�I› 50)
where w1 �I w2 ≡ ∀ v1. v1 ≤F I w1 −→ v1 �F I w2

lemma le-infI [intro 0]:
assumes

∧
v1. v1 ≤F I w1 =⇒ v1 �F I w2

shows w1 �I w2

using assms unfolding le-inf-def by auto
lemma le-infE [elim 0]:

assumes w1 �I w2 v1 ≤F I w1

obtains v1 �F I w2

using assms unfolding le-inf-def by auto

lemma le-inf-range[dest]:
assumes w1 �I w2

shows sset w1 ⊆ sset w2

proof
fix a
assume 1 : a ∈ sset w1

obtain i where 2 : a = w1 !! i using 1 by (metis imageE sset-range)
have 3 : stake (Suc i) w1 ≤F I w1 by rule
have 4 : stake (Suc i) w1 �F I w2 using assms 3 by rule
have 5 : w1 !! i ∈ set (stake (Suc i) w1) by (meson lessI set-stake-snth)
show a ∈ sset w2 unfolding 2 using 5 4 by fastforce

qed

lemma le-inf-reflp[simp, intro]: w �I w by auto
lemma prefix-fininf-le-inf-transp[intro, trans]:

assumes w1 ≤F I w2 w2 �I w3

shows w1 �F I w3

using assms by blast
lemma le-fininf-le-inf-transp[intro, trans]:

assumes w1 �F I w2 w2 �I w3

shows w1 �F I w3

using assms by blast
lemma le-inf-transp[intro, trans]:

assumes w1 �I w2 w2 �I w3

shows w1 �I w3

using assms by blast

38

lemma le-infI ′:
assumes

∧
k. ∃ v. v ≤F I w1 ∧ k < length v ∧ v �F I w2

shows w1 �I w2

proof
fix u
assume 1 : u ≤F I w1

obtain v where 2 : v ≤F I w1 length u < length v v �F I w2 using assms by
auto

have 3 : length u ≤ length v using 2 (2) by auto
have 4 : u ≤ v using prefix-fininf-length 1 2 (1) 3 by this
show u �F I w2 using 4 2 (3) by rule

qed

lemma le-infI-chain-left:
assumes chain w

∧
k. w k �F I v

shows limit w �I v
proof (rule le-infI ′)

fix k
obtain l where 1 : k < length (w l) using assms(1) by rule
show ∃ va. va ≤F I limit w ∧ k < length va ∧ va �F I v
proof (intro exI conjI)

show w l ≤F I limit w using chain-prefix-limit assms(1) by this
show k < length (w l) using 1 by this
show w l �F I v using assms(2) by this

qed
qed
lemma le-infI-chain-right:

assumes chain w
∧

u. u ≤F I v =⇒ u �F w (l u)
shows v �I limit w

proof
fix u
assume 1 : u ≤F I v
show u �F I limit w
proof

show w (l u) ≤F I limit w using chain-prefix-limit assms(1) by this
show u �F w (l u) using assms(2) 1 by this

qed
qed
lemma le-infI-chain-right ′:

assumes chain w
∧

k. stake k v �F w (l k)
shows v �I limit w

proof (rule le-infI-chain-right)
show chain w using assms(1) by this

next
fix u
assume 1 : u ≤F I v

have 2 : stake (length u) v = u using 1 by (simp add: prefix-fininf-def shift-eq)
have 3 : stake (length u) v �F w (l (length u)) using assms(2) by this

39

show u �F w (l (length u)) using 3 unfolding 2 by this
qed

definition eq-inf :: ′item stream ⇒ ′item stream ⇒ bool (infix ‹=I› 50)
where w1 =I w2 ≡ w1 �I w2 ∧ w2 �I w1

lemma eq-infI [intro 0]:
assumes w1 �I w2 w2 �I w1

shows w1 =I w2

using assms unfolding eq-inf-def by auto
lemma eq-infE [elim 0]:

assumes w1 =I w2

obtains w1 �I w2 w2 �I w1

using assms unfolding eq-inf-def by auto

lemma eq-inf-range[dest]: w1 =I w2 =⇒ sset w1 = sset w2 by force

lemma eq-inf-reflp[simp, intro]: w =I w by auto
lemma eq-inf-symp[intro]: w1 =I w2 =⇒ w2 =I w1 by auto
lemma eq-inf-transp[intro, trans]:

assumes w1 =I w2 w2 =I w3

shows w1 =I w3

using assms by blast
lemma le-fininf-eq-inf-transp[intro, trans]:

assumes w1 �F I w2 w2 =I w3

shows w1 �F I w3

using assms by blast
lemma le-inf-eq-inf-transp[intro, trans]:

assumes w1 �I w2 w2 =I w3

shows w1 �I w3

using assms by blast
lemma eq-inf-le-inf-transp[intro, trans]:

assumes w1 =I w2 w2 �I w3

shows w1 �I w3

using assms by blast
lemma prefix-fininf-eq-inf-transp[intro, trans]:

assumes w1 ≤F I w2 w2 =I w3

shows w1 �F I w3

using assms by blast

lemma le-inf-concat-start[iff]: w @− w1 �I w @− w2 ←→ w1 �I w2

proof
assume 1 : w @− w1 �I w @− w2

show w1 �I w2

proof
fix v1

assume 2 : v1 ≤F I w1

have w @ v1 ≤F I w @− w1 using 2 by auto
also have . . . �I w @− w2 using 1 by this

40

finally show v1 �F I w2 by rule
qed

next
assume 1 : w1 �I w2

show w @− w1 �I w @− w2

proof
fix v1

assume 2 : v1 ≤F I w @− w1

then show v1 �F I w @− w2

proof (cases rule: prefix-fininf-append)
case (absorb)
show ?thesis using absorb by auto

next
case (extend z)
show ?thesis using 1 extend by auto

qed
qed

qed
lemma eq-fin-le-inf-concat-end[dest]: w1 =F w2 =⇒ w1 @− w �I w2 @− w
proof

fix v1

assume 1 : w1 =F w2 v1 ≤F I w1 @− w
show v1 �F I w2 @− w
using 1 (2)
proof (cases rule: prefix-fininf-append)

case (absorb)
show ?thesis
proof

show w2 ≤F I (w2 @− w) by auto
show v1 �F w2 using absorb 1 (1) by auto

qed
next

case (extend w ′)
show ?thesis
proof

show w2 @ w ′ ≤F I (w2 @− w) using extend(2) by auto
show v1 �F w2 @ w ′ unfolding extend(1) using 1 (1) by auto

qed
qed

qed

lemma eq-inf-concat-start[iff]: w @− w1 =I w @− w2 ←→ w1 =I w2 by blast
lemma eq-inf-concat-end[dest]: w1 =F w2 =⇒ w1 @− w =I w2 @− w
proof −

assume 0 : w1 =F w2

have 1 : w2 =F w1 using 0 by auto
show w1 @− w =I w2 @− w

using eq-fin-le-inf-concat-end[OF 0] eq-fin-le-inf-concat-end[OF 1] by auto
qed

41

lemma le-fininf-suffixI [intro]:
assumes w =I w1 @− w2

shows w1 �F I w
using assms by blast

lemma le-fininf-suffixE [elim]:
assumes w1 �F I w
obtains w2

where w =I w1 @− w2

proof −
obtain v2 where 1 : v2 ≤F I w w1 �F v2 using assms(1) by rule
obtain u1 where 2 : w1 @ u1 =F v2 using 1 (2) by rule
obtain v2

′ where 3 : w = v2 @− v2
′ using 1 (1) by rule

show ?thesis
proof

show w =I w1 @− u1 @− v2
′ unfolding 3 using 2 by fastforce

qed
qed

lemma subsume-fin:
assumes u1 �F I w v1 �F I w
obtains w1

where u1 �F w1 v1 �F w1

proof −
obtain u2 where 2 : u2 ≤F I w u1 �F u2 using assms(1) by rule
obtain v2 where 3 : v2 ≤F I w v1 �F v2 using assms(2) by rule
show ?thesis
proof (cases length u2 length v2 rule: le-cases)

case le
show ?thesis
proof

show u1 �F v2 using 2 (2) prefix-fininf-length[OF 2 (1) 3 (1) le] by auto
show v1 �F v2 using 3 (2) by this

qed
next

case ge
show ?thesis
proof

show u1 �F u2 using 2 (2) by this
show v1 �F u2 using 3 (2) prefix-fininf-length[OF 3 (1) 2 (1) ge] by auto

qed
qed

qed

lemma eq-fin-end:
assumes u1 =F u2 u1 @ v1 =F u2 @ v2

shows v1 =F v2

proof −
have u1 @ v2 =F u2 @ v2 using assms(1) by blast

42

also have . . . =F u1 @ v1 using assms(2) by blast
finally show ?thesis by blast

qed

definition indoc :: ′item ⇒ ′item list ⇒ bool
where indoc a u ≡ ∃ u1 u2. u = u1 @ [a] @ u2 ∧ a /∈ set u1 ∧ Ind {a} (set

u1)

lemma indoc-set: indoc a u =⇒ a ∈ set u unfolding indoc-def by auto

lemma indoc-appendI1 [intro]:
assumes indoc a u
shows indoc a (u @ v)
using assms unfolding indoc-def by force

lemma indoc-appendI2 [intro]:
assumes a /∈ set u Ind {a} (set u) indoc a v
shows indoc a (u @ v)

proof −
obtain v1 v2 where 1 : v = v1 @ [a] @ v2 a /∈ set v1 Ind {a} (set v1)

using assms(3) unfolding indoc-def by blast
show ?thesis
proof (unfold indoc-def , intro exI conjI)

show u @ v = (u @ v1) @ [a] @ v2 unfolding 1 (1) by simp
show a /∈ set (u @ v1) using assms(1) 1 (2) by auto
show Ind {a} (set (u @ v1)) using assms(2) 1 (3) by auto

qed
qed
lemma indoc-appendE [elim!]:

assumes indoc a (u @ v)
obtains (first) a ∈ set u indoc a u | (second) a /∈ set u Ind {a} (set u) indoc

a v
proof −

obtain w1 w2 where 1 : u @ v = w1 @ [a] @ w2 a /∈ set w1 Ind {a} (set w1)
using assms unfolding indoc-def by blast

show ?thesis
proof (cases a ∈ set u)

case True
obtain u1 u2 where 2 : u = u1 @ [a] @ u2 a /∈ set u1

using split-list-first[OF True] by auto
have 3 : w1 = u1

proof (rule split-list-first-unique)
show w1 @ [a] @ w2 = u1 @ [a] @ u2 @ v using 1 (1) unfolding 2 (1)

by simp
show a /∈ set w1 using 1 (2) by auto
show a /∈ set u1 using 2 (2) by this

qed
show ?thesis
proof (rule first)

show a ∈ set u using True by this

43

show indoc a u
proof (unfold indoc-def , intro exI conjI)

show u = u1 @ [a] @ u2 using 2 (1) by this
show a /∈ set u1 using 1 (2) unfolding 3 by this
show Ind {a} (set u1) using 1 (3) unfolding 3 by this

qed
qed

next
case False
have 2 : a ∈ set v using indoc-set assms False by fastforce
obtain v1 v2 where 3 : v = v1 @ [a] @ v2 a /∈ set v1

using split-list-first[OF 2] by auto
have 4 : w1 = u @ v1

proof (rule split-list-first-unique)
show w1 @ [a] @ w2 = (u @ v1) @ [a] @ v2 using 1 (1) unfolding 3 (1)

by simp
show a /∈ set w1 using 1 (2) by auto
show a /∈ set (u @ v1) using False 3 (2) by auto

qed
show ?thesis
proof (rule second)

show a /∈ set u using False by this
show Ind {a} (set u) using 1 (3) 4 by auto
show indoc a v
proof (unfold indoc-def , intro exI conjI)

show v = v1 @ [a] @ v2 using 3 (1) by this
show a /∈ set v1 using 1 (2) unfolding 4 by auto
show Ind {a} (set v1) using 1 (3) unfolding 4 by auto

qed
qed

qed
qed

lemma indoc-single: indoc a [b] ←→ a = b
proof

assume 1 : indoc a [b]
obtain u1 u2 where 2 : [b] = u1 @ [a] @ u2 Ind {a} (set u1)

using 1 unfolding indoc-def by auto
show a = b using 2 (1)
by (metis append-eq-Cons-conv append-is-Nil-conv list.distinct(2) list.inject)

next
assume 1 : a = b
show indoc a [b]
unfolding indoc-def 1
proof (intro exI conjI)

show [b] = [] @ [b] @ [] by simp
show b /∈ set [] by simp
show Ind {b} (set []) by simp

qed

44

qed

lemma indoc-append[simp]: indoc a (u @ v) ←→
indoc a u ∨ a /∈ set u ∧ Ind {a} (set u) ∧ indoc a v by blast

lemma indoc-Nil[simp]: indoc a [] ←→ False unfolding indoc-def by auto
lemma indoc-Cons[simp]: indoc a (b # v) ←→ a = b ∨ a 6= b ∧ ind a b ∧

indoc a v
proof −

have indoc a (b # v) ←→ indoc a ([b] @ v) by simp
also have . . . ←→ indoc a [b] ∨ a /∈ set [b] ∧ Ind {a} (set [b]) ∧ indoc a v

unfolding indoc-append by rule
also have . . .←→ a = b ∨ a 6= b ∧ ind a b ∧ indoc a v unfolding indoc-single

by simp
finally show ?thesis by this

qed

lemma eq-swap-indoc: u =S v =⇒ indoc c u =⇒ indoc c v by auto
lemma eq-fin-indoc: u =F v =⇒ indoc c u =⇒ indoc c v by (induct rule:

rtranclp.induct, auto)

lemma eq-fin-ind ′:
assumes [a] @ u =F u1 @ [a] @ u2 a /∈ set u1

shows Ind {a} (set u1)
proof −

have 1 : indoc a ([a] @ u) by simp
have 2 : indoc a (u1 @ [a] @ u2) using eq-fin-indoc assms(1) 1 by this
show ?thesis using assms(2) 2 by blast

qed
lemma eq-fin-ind:

assumes u @ v =F v @ u set u ∩ set v = {}
shows Ind (set u) (set v)

using assms
proof (induct u)

case Nil
show ?case by simp

next
case (Cons a u)
have 1 : Ind {a} (set v)
proof (rule eq-fin-ind ′)

show [a] @ u @ v =F v @ [a] @ u using Cons(2) by simp
show a /∈ set v using Cons(3) by simp

qed
have 2 : Ind (set [a]) (set v) using 1 by simp
have 4 : Ind (set u) (set v)
proof (rule Cons(1))

have [a] @ u @ v = (a # u) @ v by simp
also have . . . =F v @ a # u using Cons(2) by this
also have . . . = (v @ [a]) @ u by simp
also have . . . =F ([a] @ v) @ u using 2 by blast

45

also have . . . = [a] @ v @ u by simp
finally show u @ v =F v @ u by blast
show set u ∩ set v = {} using Cons(3) by auto

qed
show ?case using 1 4 by auto

qed

lemma le-fin-member ′:
assumes [a] �F u @ v a ∈ set u
shows [a] �F u

proof −
obtain w where 1 : [a] @ w =F u @ v using assms(1) by rule
obtain u1 u2 where 2 : u = u1 @ [a] @ u2 a /∈ set u1

using split-list-first[OF assms(2)] by auto
have 3 : Ind {a} (set u1)
proof (rule eq-fin-ind ′)

show [a] @ w =F u1 @ [a] @ u2 @ v using 1 unfolding 2 (1) by simp
show a /∈ set u1 using 2 (2) by this

qed
have 4 : Ind (set [a]) (set u1) using 3 by simp
have [a] ≤ [a] @ u1 @ u2 by auto
also have . . . = ([a] @ u1) @ u2 by simp
also have . . . =F (u1 @ [a]) @ u2 using 4 by blast
also have . . . = u unfolding 2 (1) by simp
finally show ?thesis by this

qed
lemma le-fin-not-member ′:

assumes [a] �F u @ v a /∈ set u
shows [a] �F v

proof −
obtain w where 1 : [a] @ w =F u @ v using assms(1) by rule
have 3 : a ∈ set v using assms by auto
obtain v1 v2 where 4 : v = v1 @ [a] @ v2 a /∈ set v1 using split-list-first[OF

3] by auto
have 5 : [a] @ w =F u @ v1 @ [a] @ v2 using 1 unfolding 4 (1) by this
have 6 : Ind {a} (set (u @ v1))
proof (rule eq-fin-ind ′)

show [a] @ w =F (u @ v1) @ [a] @ v2 using 5 by simp
show a /∈ set (u @ v1) using assms(2) 4 (2) by auto

qed
have 9 : Ind (set [a]) (set v1) using 6 by auto
have [a] ≤ [a] @ v1 @ v2 by auto
also have . . . = ([a] @ v1) @ v2 by simp
also have . . . =F (v1 @ [a]) @ v2 using 9 by blast
also have . . . = v1 @ [a] @ v2 by simp
also have . . . = v unfolding 4 (1) by rule
finally show ?thesis by this

qed
lemma le-fininf-not-member ′:

46

assumes [a] �F I u @− v a /∈ set u
shows [a] �F I v

proof −
obtain v2 where 1 : v2 ≤F I u @− v [a] �F v2 using le-fininfE assms(1) by

this
show ?thesis
using 1 (1)
proof (cases rule: prefix-fininf-append)

case absorb
have [a] �F v2 using 1 (2) by this
also have . . . ≤ u using absorb by this
finally have 2 : a ∈ set u by force
show ?thesis using assms(2) 2 by simp

next
case (extend z)
have [a] �F v2 using 1 (2) by this
also have . . . = u @ z using extend(1) by this
finally have 2 : [a] �F u @ z by this
have [a] �F z using le-fin-not-member ′ 2 assms(2) by this
also have . . . ≤F I v using extend(2) by this
finally show ?thesis by this

qed
qed

lemma le-fin-ind ′′:
assumes [a] �F w [b] �F w a 6= b
shows ind a b

proof −
obtain u where 1 : [a] @ u =F w using assms(1) by rule
obtain v where 2 : [b] @ v =F w using assms(2) by rule
have 3 : [a] @ u =F [b] @ v using 1 2 [symmetric] by auto
have 4 : a ∈ set v using 3 assms(3)
by (metis append-Cons append-Nil eq-fin-range list.set-intros(1) set-ConsD)

obtain v1 v2 where 5 : v = v1 @ [a] @ v2 a /∈ set v1 using split-list-first[OF
4] by auto

have 7 : Ind {a} (set ([b] @ v1))
proof (rule eq-fin-ind ′)

show [a] @ u =F ([b] @ v1) @ [a] @ v2 using 3 unfolding 5 (1) by simp
show a /∈ set ([b] @ v1) using assms(3) 5 (2) by auto

qed
show ?thesis using 7 by auto

qed
lemma le-fin-ind ′:

assumes [a] �F w v �F w a /∈ set v
shows Ind {a} (set v)

using assms
proof (induct v arbitrary: w)

case Nil
show ?case by simp

47

next
case (Cons b v)
have 1 : ind a b
proof (rule le-fin-ind ′′)

show [a] �F w using Cons(2) by this
show [b] �F w using Cons(3) by auto
show a 6= b using Cons(4) by auto

qed
obtain w ′ where 2 : [b] @ w ′ =F w using Cons(3) by auto
have 3 : Ind {a} (set v)
proof (rule Cons(1))

show [a] �F w ′

proof (rule le-fin-not-member ′)
show [a] �F [b] @ w ′ using Cons(2) 2 by auto
show a /∈ set [b] using Cons(4) by auto

qed
have [b] @ v = b # v by simp
also have . . . �F w using Cons(3) by this
also have . . . =F [b] @ w ′ using 2 by auto
finally show v �F w ′ by blast
show a /∈ set v using Cons(4) by auto

qed
show ?case using 1 3 by auto

qed
lemma le-fininf-ind ′′:

assumes [a] �F I w [b] �F I w a 6= b
shows ind a b
using subsume-fin le-fin-ind ′′ assms by metis

lemma le-fininf-ind ′:
assumes [a] �F I w v �F I w a /∈ set v
shows Ind {a} (set v)
using subsume-fin le-fin-ind ′ assms by metis

lemma indoc-alt-def : indoc a v ←→ v =F [a] @ remove1 a v
proof

assume 0 : indoc a v
obtain v1 v2 where 1 : v = v1 @ [a] @ v2 a /∈ set v1 Ind {a} (set v1)

using 0 unfolding indoc-def by blast
have 2 : Ind (set [a]) (set v1) using 1 (3) by simp
have v = v1 @ [a] @ v2 using 1 (1) by this
also have . . . = (v1 @ [a]) @ v2 by simp
also have . . . =F ([a] @ v1) @ v2 using 2 by blast
also have . . . = [a] @ v1 @ v2 by simp
also have . . . = [a] @ remove1 a v unfolding 1 (1) remove1-append using

1 (2) by auto
finally show v =F [a] @ remove1 a v by this

next
assume 0 : v =F [a] @ remove1 a v
have 1 : indoc a ([a] @ remove1 a v) by simp

48

show indoc a v using eq-fin-indoc 0 1 by blast
qed

lemma levi-lemma:
assumes t @ u =F v @ w
obtains p r s q
where t =F p @ r u =F s @ q v =F p @ s w =F r @ q Ind (set r) (set s)

using assms
proof (induct t arbitrary: thesis v w)

case Nil
show ?case
proof (rule Nil(1))

show [] =F [] @ [] by simp
show v =F [] @ v by simp
show u =F v @ w using Nil(2) by simp
show w =F [] @ w by simp
show Ind (set []) (set v) by simp

qed
next

case (Cons a t ′)
have 1 : [a] �F v @ w using Cons(3) by blast
show ?case
proof (cases a ∈ set v)

case False
have 2 : [a] �F w using le-fin-not-member ′ 1 False by this
obtain w ′ where 3 : w =F [a] @ w ′ using 2 by blast
have 4 : v �F v @ w by auto
have 5 : Ind (set [a]) (set v) using le-fin-ind ′[OF 1 4] False by simp
have [a] @ t ′ @ u = (a # t ′) @ u by simp
also have . . . =F v @ w using Cons(3) by this
also have . . . =F v @ [a] @ w ′ using 3 by blast
also have . . . = (v @ [a]) @ w ′ by simp
also have . . . =F ([a] @ v) @ w ′ using 5 by blast
also have . . . = [a] @ v @ w ′ by simp
finally have 6 : t ′ @ u =F v @ w ′ by blast
obtain p r ′ s q where 7 : t ′ =F p @ r ′ u =F s @ q v =F p @ s w ′ =F r ′

@ q
Ind (set r ′) (set s) using Cons(1)[OF - 6] by this

have 8 : set v = set p ∪ set s using eq-fin-range 7 (3) by auto
have 9 : Ind (set [a]) (set p) using 5 8 by auto
have 10 : Ind (set [a]) (set s) using 5 8 by auto
show ?thesis
proof (rule Cons(2))

have a # t ′ = [a] @ t ′ by simp
also have . . . =F [a] @ p @ r ′ using 7 (1) by blast
also have . . . = ([a] @ p) @ r ′ by simp
also have . . . =F (p @ [a]) @ r ′ using 9 by blast
also have . . . = p @ [a] @ r ′ by simp
finally show a # t ′ =F p @ [a] @ r ′ by this

49

show u =F s @ q using 7 (2) by this
show v =F p @ s using 7 (3) by this
have w =F [a] @ w ′ using 3 by this
also have . . . =F [a] @ r ′ @ q using 7 (4) by blast
also have . . . = ([a] @ r ′) @ q by simp
finally show w =F ([a] @ r ′) @ q by this
show Ind (set ([a] @ r ′)) (set s) using 7 (5) 10 by auto

qed
next

case True
have 2 : [a] �F v using le-fin-member ′ 1 True by this
obtain v ′ where 3 : v =F [a] @ v ′ using 2 by blast
have [a] @ t ′ @ u = (a # t ′) @ u by simp
also have . . . =F v @ w using Cons(3) by this
also have . . . =F ([a] @ v ′) @ w using 3 by blast
also have . . . = [a] @ v ′ @ w by simp
finally have 4 : t ′ @ u =F v ′ @ w by blast
obtain p ′ r s q where 7 : t ′ =F p ′ @ r u =F s @ q v ′ =F p ′ @ s w =F r

@ q
Ind (set r) (set s) using Cons(1)[OF - 4] by this

show ?thesis
proof (rule Cons(2))

have a # t ′ = [a] @ t ′ by simp
also have . . . =F [a] @ p ′ @ r using 7 (1) by blast
also have . . . = ([a] @ p ′) @ r by simp
finally show a # t ′ =F ([a] @ p ′) @ r by this
show u =F s @ q using 7 (2) by this
have v =F [a] @ v ′ using 3 by this
also have . . . =F [a] @ p ′ @ s using 7 (3) by blast
also have . . . = ([a] @ p ′) @ s by simp
finally show v =F ([a] @ p ′) @ s by this
show w =F r @ q using 7 (4) by this
show Ind (set r) (set s) using 7 (5) by this

qed
qed

qed

end

end

9 Transition Systems and Trace Theory
theory Transition-System-Traces
imports

Transition-System-Extensions
Traces

begin

50

lemma (in transition-system) words-infI-construct[rule-format, intro?]:
assumes ∀ v. v ≤F I w −→ path v p
shows run w p
using assms by coinduct auto

lemma (in transition-system) words-infI-construct ′:
assumes

∧
k. ∃ v. v ≤F I w ∧ k < length v ∧ path v p

shows run w p
proof

fix u
assume 1 : u ≤F I w
obtain v where 2 : v ≤F I w length u < length v path v p using assms(1) by

auto
have 3 : length u ≤ length v using 2 (2) by simp
have 4 : u ≤ v using prefix-fininf-length 1 2 (1) 3 by this
show path u p using 4 2 (3) by auto

qed

lemma (in transition-system) words-infI-construct-chain[intro]:
assumes chain w

∧
k. path (w k) p

shows run (limit w) p
proof (rule words-infI-construct ′)

fix k
obtain l where 1 : k < length (w l) using assms(1) by rule
show ∃ v. v ≤F I limit w ∧ k < length v ∧ path v p
proof (intro exI conjI)

show w l ≤F I limit w using chain-prefix-limit assms(1) by this
show k < length (w l) using 1 by this
show path (w l) p using assms(2) by this

qed
qed

lemma (in transition-system) words-fin-blocked:
assumes

∧
w. path w p =⇒ A ∩ set w = {} =⇒ A ∩ {a. enabled a (target w

p)} ⊆ A ∩ {a. enabled a p}
assumes path w p A ∩ {a. enabled a p} ∩ set w = {}
shows A ∩ set w = {}
using assms by (induct w rule: rev-induct, auto)

locale transition-system-traces =
transition-system ex en +
traces ind
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and ind :: ′action ⇒ ′action ⇒ bool
+
assumes en: ind a b =⇒ en a p =⇒ en b p ←→ en b (ex a p)
assumes ex: ind a b =⇒ en a p =⇒ en b p =⇒ ex b (ex a p) = ex a (ex b p)

begin

51

lemma diamond-bottom:
assumes ind a b
assumes en a p en b p
shows en a (ex b p) en b (ex a p) ex b (ex a p) = ex a (ex b p)
using assms independence-symmetric en ex by metis+

lemma diamond-right:
assumes ind a b
assumes en a p en b (ex a p)
shows en a (ex b p) en b p ex b (ex a p) = ex a (ex b p)
using assms independence-symmetric en ex by metis+

lemma diamond-left:
assumes ind a b
assumes en a (ex b p) en b p
shows en a p en b (ex a p) ex b (ex a p) = ex a (ex b p)
using assms independence-symmetric en ex by metis+

lemma eq-swap-word:
assumes w1 =S w2 path w1 p
shows path w2 p
using assms diamond-right by (induct, auto)

lemma eq-fin-word:
assumes w1 =F w2 path w1 p
shows path w2 p
using assms eq-swap-word by (induct, auto)

lemma le-fin-word:
assumes w1 �F w2 path w2 p
shows path w1 p
using assms eq-fin-word by blast

lemma le-fininf-word:
assumes w1 �F I w2 run w2 p
shows path w1 p
using assms le-fin-word by blast

lemma le-inf-word:
assumes w2 �I w1 run w1 p
shows run w2 p
using assms le-fininf-word by (blast intro: words-infI-construct)

lemma eq-inf-word:
assumes w1 =I w2 run w1 p
shows run w2 p
using assms le-inf-word by auto

lemma eq-swap-execute:
assumes path w1 p w1 =S w2

shows fold ex w1 p = fold ex w2 p
using assms(2 , 1) diamond-right by (induct, auto)

lemma eq-fin-execute:
assumes path w1 p w1 =F w2

shows fold ex w1 p = fold ex w2 p

52

using assms(2 , 1) eq-fin-word eq-swap-execute by (induct, auto)

lemma diamond-fin-word-step:
assumes Ind {a} (set v) en a p path v p
shows path v (ex a p)
using diamond-bottom assms by (induct v arbitrary: p, auto, metis)

lemma diamond-inf-word-step:
assumes Ind {a} (sset w) en a p run w p
shows run w (ex a p)
using diamond-fin-word-step assms by (fast intro: words-infI-construct)

lemma diamond-fin-word-inf-word:
assumes Ind (set v) (sset w) path v p run w p
shows run w (fold ex v p)
using diamond-inf-word-step assms by (induct v arbitrary: p, auto)

lemma diamond-fin-word-inf-word ′:
assumes Ind (set v) (sset w) path (u @ v) p run (u @− w) p
shows run (u @− v @− w) p
using assms diamond-fin-word-inf-word by auto

end

end

10 Functions
theory Functions
imports ../Extensions/Set-Extensions
begin

locale bounded-function =
fixes A :: ′a set
fixes B :: ′b set
fixes f :: ′a ⇒ ′b
assumes wellformed[intro?, simp]: x ∈ A =⇒ f x ∈ B

locale bounded-function-pair =
f : bounded-function A B f +
g: bounded-function B A g
for A :: ′a set
and B :: ′b set
and f :: ′a ⇒ ′b
and g :: ′b ⇒ ′a

locale injection = bounded-function-pair +
assumes left-inverse[simp]: x ∈ A =⇒ g (f x) = x

begin

lemma inj-on[intro]: inj-on f A using inj-onI left-inverse by metis

53

lemma injective-on:
assumes x ∈ A y ∈ A f x = f y
shows x = y
using assms left-inverse by metis

end

locale injective = bounded-function +
assumes injection: ∃ g. injection A B f g

begin

definition g ≡ SOME g. injection A B f g

sublocale injection A B f g unfolding g-def using someI-ex[OF injection] by
this

end

locale surjection = bounded-function-pair +
assumes right-inverse[simp]: y ∈ B =⇒ f (g y) = y

begin

lemma image-superset[intro]: f ‘ A ⊇ B
using g.wellformed image-iff right-inverse subsetI by metis

lemma image-eq[simp]: f ‘ A = B using image-superset by auto

end

locale surjective = bounded-function +
assumes surjection: ∃ g. surjection A B f g

begin

definition g ≡ SOME g. surjection A B f g

sublocale surjection A B f g unfolding g-def using someI-ex[OF surjection]
by this

end

locale bijection = injection + surjection

lemma inj-on-bijection:
assumes inj-on f A
shows bijection A (f ‘ A) f (inv-into A f)

proof
show

∧
x. x ∈ A =⇒ f x ∈ f ‘ A using imageI by this

show
∧

y. y ∈ f ‘ A =⇒ inv-into A f y ∈ A using inv-into-into by this
show

∧
x. x ∈ A =⇒ inv-into A f (f x) = x using inv-into-f-f assms by this

54

show
∧

y. y ∈ f ‘ A =⇒ f (inv-into A f y) = y using f-inv-into-f by this
qed

end

11 Extended Natural Numbers
theory ENat-Extensions
imports

Coinductive.Coinductive-Nat
begin

declare eSuc-enat[simp]
declare iadd-Suc[simp] iadd-Suc-right[simp]
declare enat-0 [simp] enat-1 [simp] one-eSuc[simp]
declare enat-0-iff [iff] enat-1-iff [iff]
declare Suc-ile-eq[iff]

lemma enat-Suc0 [simp]: enat (Suc 0) = eSuc 0 by (metis One-nat-def one-eSuc
one-enat-def)

lemma le-epred[iff]: l < epred k ←→ eSuc l < k
by (metis eSuc-le-iff epred-eSuc epred-le-epredI less-le-not-le not-le)

lemma eq-infI [intro]:
assumes

∧
n. enat n ≤ m

shows m = ∞
using assms by (metis enat-less-imp-le enat-ord-simps(5) less-le-not-le)

end

12 Chain-Complete Partial Orders
theory CCPO-Extensions
imports

HOL−Library.Complete-Partial-Order2
ENat-Extensions
Set-Extensions

begin

lemma chain-split[dest]:
assumes Complete-Partial-Order .chain ord C x ∈ C
shows C = {y ∈ C . ord x y} ∪ {y ∈ C . ord y x}

proof −
have 1 :

∧
y. y ∈ C =⇒ ord x y ∨ ord y x using chainD assms by this

show ?thesis using 1 by blast
qed

55

lemma infinite-chain-below[dest]:
assumes Complete-Partial-Order .chain ord C infinite C x ∈ C
assumes finite {y ∈ C . ord x y}
shows infinite {y ∈ C . ord y x}

proof −
have 1 : C = {y ∈ C . ord x y} ∪ {y ∈ C . ord y x} using assms(1 , 3) by rule
show ?thesis using finite-Un assms(2 , 4) 1 by (metis (poly-guards-query))

qed
lemma infinite-chain-above[dest]:

assumes Complete-Partial-Order .chain ord C infinite C x ∈ C
assumes finite {y ∈ C . ord y x}
shows infinite {y ∈ C . ord x y}

proof −
have 1 : C = {y ∈ C . ord x y} ∪ {y ∈ C . ord y x} using assms(1 , 3) by rule
show ?thesis using finite-Un assms(2 , 4) 1 by (metis (poly-guards-query))

qed

lemma (in ccpo) ccpo-Sup-upper-inv:
assumes Complete-Partial-Order .chain less-eq C x >

⊔
C

shows x /∈ C
using assms ccpo-Sup-upper by fastforce

lemma (in ccpo) ccpo-Sup-least-inv:
assumes Complete-Partial-Order .chain less-eq C

⊔
C > x

obtains y
where y ∈ C ¬ y ≤ x
using assms ccpo-Sup-least that by fastforce

lemma ccpo-Sup-least-inv ′:
fixes C :: ′a :: {ccpo, linorder} set
assumes Complete-Partial-Order .chain less-eq C

⊔
C > x

obtains y
where y ∈ C y > x

proof −
obtain y where 1 : y ∈ C ¬ y ≤ x using ccpo-Sup-least-inv assms by this
show ?thesis using that 1 by simp

qed

lemma mcont2mcont-lessThan[THEN lfp.mcont2mcont, simp, cont-intro]:
shows mcont-lessThan: mcont Sup less-eq Sup less-eq
(lessThan :: ′a :: {ccpo, linorder} ⇒ ′a set)

proof
show monotone less-eq less-eq (lessThan :: ′a ⇒ ′a set) by (rule, auto)
show cont Sup less-eq Sup less-eq (lessThan :: ′a ⇒ ′a set)
proof

fix C :: ′a set
assume 1 : Complete-Partial-Order .chain less-eq C
show {..<

⊔
C} =

⋃
(lessThan ‘ C)

proof (intro equalityI subsetI)
fix A

56

assume 2 : A ∈ {..<
⊔

C}
obtain B where 3 : B ∈ C B > A using ccpo-Sup-least-inv ′ 1 2 by blast
show A ∈

⋃
(lessThan ‘ C) using 3 by auto

next
fix A
assume 2 : A ∈

⋃
(lessThan ‘ C)

show A ∈ {..<
⊔

C} using ccpo-Sup-upper 2 by force
qed

qed
qed

class esize =
fixes esize :: ′a ⇒ enat

class esize-order = esize + order +
assumes esize-finite[dest]: esize x 6= ∞ =⇒ finite {y. y ≤ x}
assumes esize-mono[intro]: x ≤ y =⇒ esize x ≤ esize y
assumes esize-strict-mono[intro]: esize x 6= ∞ =⇒ x < y =⇒ esize x < esize y

begin

lemma infinite-chain-eSuc-esize[dest]:
assumes Complete-Partial-Order .chain less-eq C infinite C x ∈ C
obtains y
where y ∈ C esize y ≥ eSuc (esize x)

proof (cases esize x)
case (enat k)
have 1 : finite {y ∈ C . y ≤ x} using esize-finite enat by simp
have 2 : infinite {y ∈ C . y ≥ x} using assms 1 by rule
have 3 : {y ∈ C . y > x} = {y ∈ C . y ≥ x} − {x} by auto
have 4 : infinite {y ∈ C . y > x} using 2 unfolding 3 by simp
obtain y where 5 : y ∈ C y > x using 4 by auto
have 6 : esize y > esize x using esize-strict-mono enat 5 (2) by blast
show ?thesis using that 5 (1) 6 ileI1 by simp

next
case (infinity)
show ?thesis using that infinity assms(3) by simp

qed

lemma infinite-chain-arbitrary-esize[dest]:
assumes Complete-Partial-Order .chain less-eq C infinite C
obtains x
where x ∈ C esize x ≥ enat n

proof (induct n arbitrary: thesis)
case 0
show ?case using assms(2) 0 by force

next
case (Suc n)
obtain x where 1 : x ∈ C esize x ≥ enat n using Suc(1) by blast
obtain y where 2 : y ∈ C esize y ≥ eSuc (esize x) using assms 1 (1) by rule

57

show ?case using gfp.leq-trans Suc(2) 1 (2) 2 by fastforce
qed

end

class esize-ccpo = esize-order + ccpo
begin

lemma esize-cont[dest]:
assumes Complete-Partial-Order .chain less-eq C C 6= {}
shows esize (

⊔
C) =

⊔
(esize ‘ C)

proof (cases finite C)
case False
have 1 : esize (

⊔
C) = ∞

proof
fix n
obtain A where 1 : A ∈ C esize A ≥ enat n using assms(1) False by rule
have 2 : A ≤

⊔
C using ccpo-Sup-upper assms(1) 1 (1) by this

have enat n ≤ esize A using 1 (2) by this
also have . . . ≤ esize (

⊔
C) using 2 by rule

finally show enat n ≤ esize (
⊔

C) by this
qed
have 2 : (

⊔
A ∈ C . esize A) = ∞

proof
fix n
obtain A where 1 : A ∈ C esize A ≥ enat n using assms(1) False by rule
show enat n ≤ (

⊔
A ∈ C . esize A) using SUP-upper2 1 by this

qed
show ?thesis using 1 2 by simp

next
case True
have 1 : esize (

⊔
C) = (

⊔
x ∈ C . esize x)

proof (intro order-class.order .antisym SUP-upper SUP-least esize-mono)
show

⊔
C ∈ C using in-chain-finite assms(1) True assms(2) by this

show
∧

x. x ∈ C =⇒ x ≤
⊔

C using ccpo-Sup-upper assms(1) by this
qed
show ?thesis using 1 by simp

qed

lemma esize-mcont: mcont Sup less-eq Sup less-eq esize
by (blast intro: mcontI monotoneI contI)

lemmas mcont2mcont-esize = esize-mcont[THEN lfp.mcont2mcont, simp, cont-intro]

end

end

58

13 Sets and Extended Natural Numbers
theory ESet-Extensions
imports
../Basics/Functions
Basic-Extensions
CCPO-Extensions

begin

lemma card-lessThan-enat[simp]: card {..< enat k} = card {..< k}
proof −

have 1 : {..< enat k} = enat ‘ {..< k}
unfolding lessThan-def image-Collect using enat-iless by force

have card {..< enat k} = card (enat ‘ {..< k}) unfolding 1 by rule
also have . . . = card {..< k} using card-image inj-enat by metis
finally show ?thesis by this

qed
lemma card-atMost-enat[simp]: card {.. enat k} = card {.. k}
proof −

have 1 : {.. enat k} = enat ‘ {.. k}
unfolding atMost-def image-Collect using enat-ile by force

have card {.. enat k} = card (enat ‘ {.. k}) unfolding 1 by rule
also have . . . = card {.. k} using card-image inj-enat by metis
finally show ?thesis by this

qed

lemma enat-Collect:
assumes ∞ /∈ A
shows {i. enat i ∈ A} = the-enat ‘ A
using assms by (safe, force) (metis enat-the-enat)

lemma Collect-lessThan: {i. enat i < n} = the-enat ‘ {..< n}
proof −

have 1 : ∞ /∈ {..< n} by simp
have {i. enat i < n} = {i. enat i ∈ {..< n}} by simp
also have . . . = the-enat ‘ {..< n} using enat-Collect 1 by this
finally show ?thesis by this

qed

instantiation set :: (type) esize-ccpo
begin

function esize-set where finite A =⇒ esize A = enat (card A) | infinite A =⇒
esize A = ∞

by auto termination by lexicographic-order

lemma esize-iff-empty[iff]: esize A = 0 ←→ A = {} by (cases finite A, auto)
lemma esize-iff-infinite[iff]: esize A = ∞ ←→ infinite A by force
lemma esize-singleton[simp]: esize {a} = eSuc 0 by simp

59

lemma esize-infinite-enat[dest, simp]: infinite A =⇒ enat k < esize A by force

instance
proof

fix A :: ′a set
assume 1 : esize A 6= ∞
show finite {B. B ⊆ A} using 1 by simp

next
fix A B :: ′a set
assume 1 : A ⊆ B
show esize A ≤ esize B
proof (cases finite B)

case False
show ?thesis using False by auto

next
case True
have 2 : finite A using True 1 by auto
show ?thesis using card-mono True 1 2 by auto

qed
next

fix A B :: ′a set
assume 1 : esize A 6= ∞ A ⊂ B
show esize A < esize B using psubset-card-mono 1 by (cases finite B, auto)

qed

end

lemma esize-image[simp, intro]:
assumes inj-on f A
shows esize (f ‘ A) = esize A
using card-image finite-imageD assms by (cases finite A, auto)

lemma esize-insert1 [simp]: a /∈ A =⇒ esize (insert a A) = eSuc (esize A)
by (cases finite A, force+)

lemma esize-insert2 [simp]: a ∈ A =⇒ esize (insert a A) = esize A
using insert-absorb by metis

lemma esize-remove1 [simp]: a /∈ A =⇒ esize (A − {a}) = esize A
by (cases finite A, force+)

lemma esize-remove2 [simp]: a ∈ A =⇒ esize (A − {a}) = epred (esize A)
by (cases finite A, force+)

lemma esize-union-disjoint[simp]:
assumes A ∩ B = {}
shows esize (A ∪ B) = esize A + esize B

proof (cases finite (A ∪ B))
case True
show ?thesis using card-Un-disjoint assms True by auto

next
case False
show ?thesis using False by (cases finite A, auto)

qed

60

lemma esize-lessThan[simp]: esize {..< n} = n
proof (cases n)

case (enat k)
have 1 : finite {..< n} unfolding enat by (metis finite-lessThan-enat-iff

not-enat-eq)
show ?thesis using 1 unfolding enat by simp

next
case (infinity)
have 1 : infinite {..< n} unfolding infinity using infinite-lessThan-infty by

simp
show ?thesis using 1 unfolding infinity by simp

qed
lemma esize-atMost[simp]: esize {.. n} = eSuc n
proof (cases n)

case (enat k)
have 1 : finite {.. n} unfolding enat by (metis atMost-iff finite-enat-bounded)
show ?thesis using 1 unfolding enat by simp

next
case (infinity)
have 1 : infinite {.. n}

unfolding infinity
by (metis atMost-iff enat-ord-code(3) infinite-lessThan-infty infinite-super

subsetI)
show ?thesis using 1 unfolding infinity by simp

qed

lemma least-eSuc[simp]:
assumes A 6= {}
shows least (eSuc ‘ A) = eSuc (least A)

proof (rule antisym)
obtain k where 10 : k ∈ A using assms by blast
have 11 : eSuc k ∈ eSuc ‘ A using 10 by auto
have 20 : least A ∈ A using 10 LeastI by metis
have 21 : least (eSuc ‘ A) ∈ eSuc ‘ A using 11 LeastI by metis
have 30 :

∧
l. l ∈ A =⇒ least A ≤ l using 10 Least-le by metis

have 31 :
∧

l. l ∈ eSuc ‘ A =⇒ least (eSuc ‘ A) ≤ l using 11 Least-le by metis
show least (eSuc ‘ A) ≤ eSuc (least A) using 20 31 by auto
show eSuc (least A) ≤ least (eSuc ‘ A) using 21 30 by auto

qed

lemma Inf-enat-eSuc[simp]:
d

(eSuc ‘ A) = eSuc (
d

A) unfolding Inf-enat-def
by simp

definition lift :: nat set ⇒ nat set
where lift A ≡ insert 0 (Suc ‘ A)

lemma liftI-0 [intro, simp]: 0 ∈ lift A unfolding lift-def by auto
lemma liftI-Suc[intro]: a ∈ A =⇒ Suc a ∈ lift A unfolding lift-def by auto
lemma liftE [elim]:

61

assumes b ∈ lift A
obtains (0) b = 0 | (Suc) a where b = Suc a a ∈ A
using assms unfolding lift-def by auto

lemma lift-esize[simp]: esize (lift A) = eSuc (esize A) unfolding lift-def by auto

lemma lift-least[simp]: least (lift A) = 0 unfolding lift-def by auto

primrec nth-least :: ′a set ⇒ nat ⇒ ′a :: wellorder
where nth-least A 0 = least A | nth-least A (Suc n) = nth-least (A − {least

A}) n

lemma nth-least-wellformed[intro?, simp]:
assumes enat n < esize A
shows nth-least A n ∈ A

using assms
proof (induct n arbitrary: A)

case 0
show ?case using 0 by simp

next
case (Suc n)
have 1 : A 6= {} using Suc(2) by auto
have 2 : enat n < esize (A − {least A}) using Suc(2) 1 by simp
have 3 : nth-least (A − {least A}) n ∈ A − {least A} using Suc(1) 2 by this
show ?case using 3 by simp

qed

lemma card-wellformed[intro?, simp]:
fixes k :: ′a :: wellorder
assumes k ∈ A
shows enat (card {i ∈ A. i < k}) < esize A

proof (cases finite A)
case False
show ?thesis using False by simp

next
case True
have 1 : esize {i ∈ A. i < k} < esize A using True assms by fastforce
show ?thesis using True 1 by simp

qed

lemma nth-least-strict-mono:
assumes enat l < esize A k < l
shows nth-least A k < nth-least A l

using assms
proof (induct k arbitrary: A l)

case 0
obtain l ′ where 1 : l = Suc l ′ using 0 (2) by (metis gr0-conv-Suc)
have 2 : A 6= {} using 0 (1) by auto
have 3 : enat l ′ < esize (A − {least A}) using 0 (1) 2 unfolding 1 by simp

62

have 4 : nth-least (A − {least A}) l ′ ∈ A − {least A} using 3 by rule
show ?case using 1 4 by (auto intro: le-neq-trans)

next
case (Suc k)
obtain l ′ where 1 : l = Suc l ′ using Suc(3) by (metis Suc-lessE)
have 2 : A 6= {} using Suc(2) by auto
show ?case using Suc 2 unfolding 1 by simp

qed

lemma nth-least-mono[intro, simp]:
assumes enat l < esize A k ≤ l
shows nth-least A k ≤ nth-least A l
using nth-least-strict-mono le-less assms by metis

lemma card-nth-least[simp]:
assumes enat n < esize A
shows card {k ∈ A. k < nth-least A n} = n

using assms
proof (induct n arbitrary: A)

case 0
have 1 : {k ∈ A. k < least A} = {} using least-not-less by auto
show ?case using nth-least.simps(1) card.empty 1 by metis

next
case (Suc n)
have 1 : A 6= {} using Suc(2) by auto
have 2 : enat n < esize (A − {least A}) using Suc(2) 1 by simp
have 3 : nth-least A 0 < nth-least A (Suc n) using nth-least-strict-mono Suc(2)

by blast
have 4 : {k ∈ A. k < nth-least A (Suc n)} =
{least A} ∪ {k ∈ A − {least A}. k < nth-least (A − {least A}) n} using 1 3

by auto
have 5 : card {k ∈ A − {least A}. k < nth-least (A − {least A}) n} = n using

Suc(1) 2 by this
have 6 : finite {k ∈ A − {least A}. k < nth-least (A − {least A}) n}

using 5 Collect-empty-eq card.infinite infinite-imp-nonempty least-not-less
nth-least.simps(1)

by (metis (no-types, lifting))
have card {k ∈ A. k < nth-least A (Suc n)} =

card ({least A} ∪ {k ∈ A − {least A}. k < nth-least (A − {least A}) n})
using 4 by simp

also have . . . = card {least A} + card {k ∈ A − {least A}. k < nth-least (A
− {least A}) n}

using 6 by simp
also have . . . = Suc n using 5 by simp
finally show ?case by this

qed

lemma card-nth-least-le[simp]:
assumes enat n < esize A

63

shows card {k ∈ A. k ≤ nth-least A n} = Suc n
proof −

have 1 : {k ∈ A. k ≤ nth-least A n} = {nth-least A n} ∪ {k ∈ A. k < nth-least
A n}

using assms by auto
have 2 : card {k ∈ A. k < nth-least A n} = n using assms by simp
have 3 : finite {k ∈ A. k < nth-least A n}

using 2 Collect-empty-eq card.infinite infinite-imp-nonempty least-not-less
nth-least.simps(1)

by (metis (no-types, lifting))
have card {k ∈ A. k ≤ nth-least A n} = card ({nth-least A n} ∪ {k ∈ A. k <

nth-least A n})
unfolding 1 by rule

also have . . . = card {nth-least A n} + card {k ∈ A. k < nth-least A n} using
3 by simp

also have . . . = Suc n using assms by simp
finally show ?thesis by this

qed

lemma nth-least-card:
fixes k :: nat
assumes k ∈ A
shows nth-least A (card {i ∈ A. i < k}) = k

proof (rule nat-set-card-equality-less)
have 1 : enat (card {l ∈ A. l < k}) < esize A
proof (cases finite A)

case False
show ?thesis using False by simp

next
case True
have 1 : {l ∈ A. l < k} ⊂ A using assms by blast
have 2 : card {l ∈ A. l < k} < card A using psubset-card-mono True 1 by

this
show ?thesis using True 2 by simp

qed
show nth-least A (card {l ∈ A. l < k}) ∈ A using 1 by rule
show k ∈ A using assms by this
show card {z ∈ A. z < nth-least A (card {i ∈ A. i < k})} = card {z ∈ A. z <

k} using 1 by simp
qed

interpretation nth-least:
bounded-function-pair {i. enat i < esize A} A nth-least A λ k. card {i ∈ A. i

< k}
using nth-least-wellformed card-wellformed by (unfold-locales, blast+)

interpretation nth-least:
injection {i. enat i < esize A} A nth-least A λ k. card {i ∈ A. i < k}
using card-nth-least by (unfold-locales, blast)

64

interpretation nth-least:
surjection {i. enat i < esize A} A nth-least A λ k. card {i ∈ A. i < k}
for A :: nat set
using nth-least-card by (unfold-locales, blast)

interpretation nth-least:
bijection {i. enat i < esize A} A nth-least A λ k. card {i ∈ A. i < k}
for A :: nat set
by unfold-locales

lemma nth-least-strict-mono-inverse:
fixes A :: nat set
assumes enat k < esize A enat l < esize A nth-least A k < nth-least A l
shows k < l
using assms by (metis not-less-iff-gr-or-eq nth-least-strict-mono)

lemma nth-least-less-card-less:
fixes k :: nat
shows enat n < esize A ∧ nth-least A n < k ←→ n < card {i ∈ A. i < k}

proof safe
assume 1 : enat n < esize A nth-least A n < k
have 2 : nth-least A n ∈ A using 1 (1) by rule
have n = card {i ∈ A. i < nth-least A n} using 1 by simp
also have . . . < card {i ∈ A. i < k} using 1 (2) 2 by simp
finally show n < card {i ∈ A. i < k} by this

next
assume 1 : n < card {i ∈ A. i < k}
have enat n < enat (card {i ∈ A. i < k}) using 1 by simp
also have . . . = esize {i ∈ A. i < k} by simp
also have . . . ≤ esize A by blast
finally show 2 : enat n < esize A by this
have 3 : n = card {i ∈ A. i < nth-least A n} using 2 by simp
have 4 : card {i ∈ A. i < nth-least A n} < card {i ∈ A. i < k} using 1 2 by

simp
have 5 : nth-least A n ∈ A using 2 by rule
show nth-least A n < k using 4 5 by simp

qed

lemma nth-least-less-esize-less:
enat n < esize A ∧ enat (nth-least A n) < k ←→ enat n < esize {i ∈ A. enat

i < k}
using nth-least-less-card-less by (cases k, simp+)

lemma nth-least-le:
assumes enat n < esize A
shows n ≤ nth-least A n

using assms
proof (induct n)

65

case 0
show ?case using 0 by simp

next
case (Suc n)
have n ≤ nth-least A n using Suc by (metis Suc-ile-eq less-imp-le)
also have . . . < nth-least A (Suc n) using nth-least-strict-mono Suc(2) by

blast
finally show ?case by simp

qed

lemma nth-least-eq:
assumes enat n < esize A enat n < esize B
assumes

∧
i. i ≤ nth-least A n =⇒ i ≤ nth-least B n =⇒ i ∈ A ←→ i ∈ B

shows nth-least A n = nth-least B n
using assms
proof (induct n arbitrary: A B)

case 0
have 1 : least A = least B
proof (rule least-eq)

show A 6= {} using 0 (1) by simp
show B 6= {} using 0 (2) by simp

next
fix i
assume 2 : i ≤ least A i ≤ least B
show i ∈ A ←→ i ∈ B using 0 (3) 2 unfolding nth-least.simps by this

qed
show ?case using 1 by simp

next
case (Suc n)
have 1 : A 6= {} B 6= {} using Suc(2 , 3) by auto
have 2 : least A = least B
proof (rule least-eq)

show A 6= {} using 1 (1) by this
show B 6= {} using 1 (2) by this

next
fix i
assume 3 : i ≤ least A i ≤ least B
have 4 : nth-least A 0 ≤ nth-least A (Suc n) using Suc(2) by blast
have 5 : nth-least B 0 ≤ nth-least B (Suc n) using Suc(3) by blast
have 6 : i ≤ nth-least A (Suc n) i ≤ nth-least B (Suc n) using 3 4 5 by auto
show i ∈ A ←→ i ∈ B using Suc(4) 6 by this

qed
have 3 : nth-least (A − {least A}) n = nth-least (B − {least B}) n
proof (rule Suc(1))

show enat n < esize (A − {least A}) using Suc(2) 1 (1) by simp
show enat n < esize (B − {least B}) using Suc(3) 1 (2) by simp

next
fix i
assume 3 : i ≤ nth-least (A − {least A}) n i ≤ nth-least (B − {least B}) n

66

have 4 : i ≤ nth-least A (Suc n) i ≤ nth-least B (Suc n) using 3 by simp+
have 5 : i ∈ A ←→ i ∈ B using Suc(4) 4 by this
show i ∈ A − {least A} ←→ i ∈ B − {least B} using 2 5 by auto

qed
show ?case using 3 by simp

qed

lemma nth-least-restrict[simp]:
assumes enat i < esize {i ∈ s. enat i < k}
shows nth-least {i ∈ s. enat i < k} i = nth-least s i

proof (rule nth-least-eq)
show enat i < esize {i ∈ s. enat i < k} using assms by this
show enat i < esize s using nth-least-less-esize-less assms by auto

next
fix l
assume 1 : l ≤ nth-least {i ∈ s. enat i < k} i
have 2 : nth-least {i ∈ s. enat i < k} i ∈ {i ∈ s. enat i < k} using assms by

rule
have enat l ≤ enat (nth-least {i ∈ s. enat i < k} i) using 1 by simp
also have . . . < k using 2 by simp
finally show l ∈ {i ∈ s. enat i < k} ←→ l ∈ s by auto

qed

lemma least-nth-least[simp]:
assumes A 6= {}

∧
i. i ∈ A =⇒ enat i < esize B

shows least (nth-least B ‘ A) = nth-least B (least A)
using assms by simp

lemma nth-least-nth-least[simp]:
assumes enat n < esize A

∧
i. i ∈ A =⇒ enat i < esize B

shows nth-least B (nth-least A n) = nth-least (nth-least B ‘ A) n
using assms
proof (induct n arbitrary: A)

case 0
show ?case using 0 by simp

next
case (Suc n)
have 1 : A 6= {} using Suc(2) by auto
have 2 : nth-least B ‘ (A − {least A}) = nth-least B ‘ A − nth-least B ‘ {least

A}
proof (rule inj-on-image-set-diff)
show inj-on (nth-least B) {i. enat i < esize B} using nth-least.inj-on by this
show A − {least A} ⊆ {i. enat i < esize B} using Suc(3) by blast
show {least A} ⊆ {i. enat i < esize B} using Suc(3) 1 by force

qed
have nth-least B (nth-least A (Suc n)) = nth-least B (nth-least (A − {least A})

n) by simp
also have . . . = nth-least (nth-least B ‘ (A − {least A})) n using Suc 1 by

force

67

also have . . . = nth-least (nth-least B ‘ A − nth-least B ‘ {least A}) n unfolding
2 by rule

also have . . . = nth-least (nth-least B ‘ A − {nth-least B (least A)}) n by simp
also have . . . = nth-least (nth-least B ‘ A − {least (nth-least B ‘ A)}) n using

Suc(3) 1 by auto
also have . . . = nth-least (nth-least B ‘ A) (Suc n) by simp
finally show ?case by this

qed

lemma nth-least-Max[simp]:
assumes finite A A 6= {}
shows nth-least A (card A − 1) = Max A

using assms
proof (induct card A − 1 arbitrary: A)

case 0
have 1 : card A = 1 using 0 by (metis One-nat-def Suc-diff-1 card-gt-0-iff)
obtain a where 2 : A = {a} using 1 by rule
show ?case unfolding 2 by (simp del: insert-iff)

next
case (Suc n)
have 1 : least A ∈ A using Suc(4) by rule
have 2 : card (A − {least A}) = Suc n using Suc(2 , 3) 1 by simp
have 3 : A − {least A} 6= {} using 2 Suc(3) by fastforce
have nth-least A (card A − 1) = nth-least A (Suc n) unfolding Suc(2) by

rule
also have . . . = nth-least (A − {least A}) n by simp

also have . . . = nth-least (A − {least A}) (card (A − {least A}) − 1) unfolding
2 by simp

also have . . . = Max (A − {least A})
proof (rule Suc(1))

show n = card (A − {least A}) − 1 unfolding 2 by simp
show finite (A − {least A}) using Suc(3) by simp
show A − {least A} 6= {} using 3 by this

qed
also have . . . = Max A using Suc(3) 3 by simp
finally show ?case by this

qed

lemma nth-least-le-Max:
assumes finite A A 6= {} enat n < esize A
shows nth-least A n ≤ Max A

proof −
have nth-least A n ≤ nth-least A (card A − 1)
proof (rule nth-least-mono)

show enat (card A − 1) < esize A by (metis Suc-diff-1 Suc-ile-eq assms(1)
assms(2)

card-eq-0-iff esize-set.simps(1) not-gr0 order-refl)
show n ≤ card A − 1 by (metis Suc-diff-1 Suc-leI antisym-conv assms(1)

assms(3)

68

enat-ord-simps(2) esize-set.simps(1) le-less neq-iff not-gr0)
qed
also have . . . = Max A using nth-least-Max assms(1 , 2) by this
finally show ?thesis by this

qed

lemma nth-least-not-contains:
fixes k :: nat
assumes enat (Suc n) < esize A nth-least A n < k k < nth-least A (Suc n)
shows k /∈ A

proof
assume 1 : k ∈ A
have 2 : nth-least A (card {i ∈ A. i < k}) = k using nth-least.right-inverse 1

by this
have 3 : n < card {i ∈ A. i < k}
proof (rule nth-least-strict-mono-inverse)

show enat n < esize A using assms(1) by auto
show enat (card {i ∈ A. i < k}) < esize A using nth-least.g.wellformed 1

by simp
show nth-least A n < nth-least A (card {i ∈ A. i < k}) using assms(2) 2

by simp
qed
have 4 : card {i ∈ A. i < k} < Suc n
proof (rule nth-least-strict-mono-inverse)

show enat (card {i ∈ A. i < k}) < esize A using nth-least.g.wellformed 1
by simp

show enat (Suc n) < esize A using assms(1) by this
show nth-least A (card {i ∈ A. i < k}) < nth-least A (Suc n) using assms(3)

2 by simp
qed
show False using 3 4 by auto

qed

lemma nth-least-Suc[simp]:
assumes enat n < esize A
shows nth-least (Suc ‘ A) n = Suc (nth-least A n)

using assms
proof (induct n arbitrary: A)

case (0)
have 1 : A 6= {} using 0 by auto
show ?case using 1 by simp

next
case (Suc n)
have 1 : enat n < esize (A − {least A})
proof −

have 2 : A 6= {} using Suc(2) by auto
have 3 : least A ∈ A using LeastI 2 by fast
have 4 : A = insert (least A) A using 3 by auto
have eSuc (enat n) = enat (Suc n) by simp

69

also have . . . < esize A using Suc(2) by this
also have . . . = esize (insert (least A) A) using 4 by simp
also have . . . = eSuc (esize (A − {least A})) using 3 2 by simp
finally show ?thesis using Extended-Nat.eSuc-mono by metis

qed
have nth-least (Suc ‘ A) (Suc n) = nth-least (Suc ‘ A − {least (Suc ‘ A)}) n

by simp
also have . . . = nth-least (Suc ‘ (A − {least A})) n by simp
also have . . . = Suc (nth-least (A − {least A}) n) using Suc(1) 1 by this
also have . . . = Suc (nth-least A (Suc n)) by simp
finally show ?case by this

qed

lemma nth-least-lift[simp]:
nth-least (lift A) 0 = 0
enat n < esize A =⇒ nth-least (lift A) (Suc n) = Suc (nth-least A n)
unfolding lift-def by simp+

lemma nth-least-list-card[simp]:
assumes enat n ≤ esize A
shows card {k ∈ A. k < nth-least (lift A) n} = n
using less-Suc-eq-le assms by (cases n, auto simp del: nth-least.simps)

end

14 Coinductive Lists
theory Coinductive-List-Extensions
imports

Coinductive.Coinductive-List
Coinductive.Coinductive-List-Prefix
Coinductive.Coinductive-Stream
../Extensions/List-Extensions
../Extensions/ESet-Extensions

begin

hide-const (open) Sublist.prefix
hide-const (open) Sublist.suffix

declare list-of-lappend[simp]
declare lnth-lappend1 [simp]
declare lnth-lappend2 [simp]
declare lprefix-llength-le[dest]
declare Sup-llist-def [simp]
declare length-list-of [simp]
declare llast-linfinite[simp]
declare lnth-ltake[simp]
declare lappend-assoc[simp]
declare lprefix-lappend[simp]

70

lemma lprefix-lSup-revert: lSup = Sup lprefix = less-eq by auto
lemma admissible-lprefixI [cont-intro]:

assumes mcont lub ord lSup lprefix f
assumes mcont lub ord lSup lprefix g
shows ccpo.admissible lub ord (λ x. lprefix (f x) (g x))
using ccpo-class.admissible-leI assms unfolding lprefix-lSup-revert by this

lemma llist-lift-admissible:
assumes ccpo.admissible lSup lprefix P
assumes

∧
u. u ≤ v =⇒ lfinite u =⇒ P u

shows P v
using assms by (metis LNil-lprefix le-llist-conv-lprefix lfinite.simps llist-gen-induct)

abbreviation linfinite w ≡ ¬ lfinite w

notation LNil (‹<>›)
notation LCons (infixr ‹%› 65)
notation lzip (infixr ‹||› 51)
notation lappend (infixr ‹$› 65)
notation lnth (infixl ‹?!› 100)

syntax -llist :: args ⇒ ′a llist (‹<->›)
syntax-consts -llist ⇀↽ LCons
translations
<a, x> ⇀↽ a % <x>
<a> ⇀↽ a % <>

lemma eq-LNil-conv-lnull[simp]: w = <> ←→ lnull w by auto
lemma Collect-lnull[simp]: {w. lnull w} = {<>} by auto

lemma inj-on-ltake: inj-on (λ k. ltake k w) {.. llength w}
by (rule inj-onI , auto, metis llength-ltake min-def)

lemma lnth-inf-llist ′[simp]: lnth (inf-llist f) = f by auto

lemma not-lnull-lappend-startE [elim]:
assumes ¬ lnull w
obtains a v
where w = <a> $ v
using not-lnull-conv assms by (simp, metis)

lemma not-lnull-lappend-endE [elim]:
assumes ¬ lnull w
obtains a v
where w = v $ <a>

proof (cases lfinite w)
case False
show ?thesis
proof

show w = w $ <a> using lappend-inf False by force

71

qed
next

case True
show ?thesis
using True assms that
proof (induct arbitrary: thesis)

case (lfinite-LNil)
show ?case using lfinite-LNil by auto

next
case (lfinite-LConsI w a)
show ?case
proof (cases lnull w)

case False
obtain b v where 1 : w = v $ using lfinite-LConsI (2) False by this
show ?thesis
proof (rule lfinite-LConsI (4))

show a % w = (a % v) $ unfolding 1 by simp
qed

next
case True
show ?thesis
proof (rule lfinite-LConsI (4))

show a % w = <> $ <a> using True by simp
qed

qed
qed

qed

lemma llength-lappend-startE [elim]:
assumes llength w ≥ eSuc n
obtains a v
where w = <a> $ v llength v ≥ n

proof −
have 1 : ¬ lnull w using assms by auto
show ?thesis using assms 1 that by auto

qed
lemma llength-lappend-endE [elim]:

assumes llength w ≥ eSuc n
obtains a v
where w = v $ <a> llength v ≥ n

proof −
have 1 : ¬ lnull w using assms by auto
show ?thesis using assms 1 that by auto

qed

lemma llength-lappend-start ′E [elim]:
assumes llength w = enat (Suc n)
obtains a v
where w = <a> $ v llength v = enat n

72

proof −
have 1 : llength w ≥ eSuc (enat n) using assms by simp
obtain a v where 2 : w = <a> $ v using 1 by blast
show ?thesis
proof

show w = <a> $ v using 2 (1) by this
show llength v = enat n using assms unfolding 2 (1) by (simp, metis

eSuc-enat eSuc-inject)
qed

qed
lemma llength-lappend-end ′E [elim]:

assumes llength w = enat (Suc n)
obtains a v
where w = v $ <a> llength v = enat n

proof −
have 1 : llength w ≥ eSuc (enat n) using assms by simp
obtain a v where 2 : w = v $ <a> using 1 by blast
show ?thesis
proof

show w = v $ <a> using 2 (1) by this
show llength v = enat n using assms unfolding 2 (1) by (simp, metis

eSuc-enat eSuc-inject)
qed

qed

lemma ltake-llast[simp]:
assumes enat k < llength w
shows llast (ltake (enat (Suc k)) w) = w ?! k

proof −
have 1 : llength (ltake (enat (Suc k)) w) = eSuc (enat k)using min.absorb-iff1

assms by auto
have llast (ltake (enat (Suc k)) w) = ltake (enat (Suc k)) w ?! k

using llast-conv-lnth 1 by this
also have . . . = w ?! k by (rule lnth-ltake, simp)
finally show ?thesis by this

qed

lemma linfinite-llength[dest, simp]:
assumes linfinite w
shows enat k < llength w
using assms not-lfinite-llength by force

lemma llist-nth-eqI [intro]:
assumes llength u = llength v
assumes

∧
i. enat i < llength u =⇒ enat i < llength v =⇒ u ?! i = v ?! i

shows u = v
using assms
proof (coinduction arbitrary: u v)

case Eq-llist

73

have 10 : llength u = llength v using Eq-llist by auto
have 11 :

∧
i. enat i < llength u =⇒ enat i < llength v =⇒ u ?! i = v ?! i

using Eq-llist by auto
show ?case
proof (intro conjI impI exI allI)

show lnull u ←→ lnull v using 10 by auto
next

assume 20 : ¬ lnull u ¬ lnull v
show lhd u = lhd v using lhd-conv-lnth enat-0 11 20 by force

next
show ltl u = ltl u by rule

next
show ltl v = ltl v by rule

next
assume 30 : ¬ lnull u ¬ lnull v
show llength (ltl u) = llength (ltl v) using 10 30 by force

next
fix i
assume 40 : ¬ lnull u ¬ lnull v enat i < llength (ltl u) enat i < llength (ltl v)
have 41 : u ?! Suc i = v ?! Suc i
proof (rule 11)

show enat (Suc i) < llength u using Suc-ile-eq 40 (1) 40 (3) by auto
show enat (Suc i) < llength v using Suc-ile-eq 40 (2) 40 (4) by auto

qed
show ltl u ?! i = ltl v ?! i using lnth-ltl 40 (1−2) 41 by metis

qed
qed

primcorec lscan :: (′a ⇒ ′b ⇒ ′b) ⇒ ′a llist ⇒ ′b ⇒ ′b llist
where lscan f w a = (case w of <> ⇒ <a> | x % xs ⇒ a % lscan f xs (f x a))

lemma lscan-simps[simp]:
lscan f <> a = <a>
lscan f (x % xs) a = a % lscan f xs (f x a)
by (metis llist.simps(4) lscan.code, metis llist.simps(5) lscan.code)

lemma lscan-lfinite[iff]: lfinite (lscan f w a) ←→ lfinite w
proof

assume lfinite (lscan f w a)
thus lfinite w
proof (induct lscan f w a arbitrary: w a rule: lfinite-induct)

case LNil
show ?case using LNil by simp

next
case LCons
show ?case by (cases w, simp, simp add: LCons(3))

qed
next

assume lfinite w

74

thus lfinite (lscan f w a) by (induct arbitrary: a, auto)
qed
lemma lscan-llength[simp]: llength (lscan f w a) = eSuc (llength w)
proof (cases lfinite w)

case False
have 1 : llength (lscan f w a) = ∞ using not-lfinite-llength False by auto
have 2 : llength w = ∞ using not-lfinite-llength False by auto
show ?thesis using 1 2 by simp

next
case True
show ?thesis using True by (induct arbitrary: a, auto)

qed

function lfold :: (′a ⇒ ′b ⇒ ′b) ⇒ ′a llist ⇒ ′b ⇒ ′b
where lfinite w =⇒ lfold f w = fold f (list-of w) | linfinite w =⇒ lfold f w = id
by (auto, metis) termination by lexicographic-order

lemma lfold-llist-of [simp]: lfold f (llist-of xs) = fold f xs by simp

lemma finite-UNIV-llength-eq:
assumes finite (UNIV :: ′a set)
shows finite {w :: ′a llist. llength w = enat n}

proof (induct n)
case (0)
show ?case by simp

next
case (Suc n)
have 1 : finite ({v. llength v = enat n} × UNIV :: (′a llist × ′a) set)

using Suc assms by simp
have 2 : finite ((λ (v, a). v $ <a> :: ′a llist) ‘ ({v. llength v = enat n} ×

UNIV))
using 1 by auto

have 3 : finite {v $ <a> :: ′a llist |v a. llength v = enat n}
proof −

have 0 : {v $ <a> :: ′a llist |v a. llength v = enat n} =
(λ (v, a). v $ <a> :: ′a llist) ‘ ({v. llength v = enat n} × UNIV) by auto

show ?thesis using 2 unfolding 0 by this
qed
have 4 : finite {w :: ′a llist . llength w = enat (Suc n)}
proof −

have 0 : {w :: ′a llist . llength w = enat (Suc n)} =
{v $ <a> :: ′a llist |v a. llength v = enat n} by force

show ?thesis using 3 unfolding 0 by this
qed
show ?case using 4 by this

qed
lemma finite-UNIV-llength-le:

assumes finite (UNIV :: ′a set)
shows finite {w :: ′a llist. llength w ≤ enat n}

75

proof −
have 1 : {w. llength w ≤ enat n} = (

⋃
k ≤ n. {w. llength w = enat k})

by (auto, metis atMost-iff enat-ile enat-ord-simps(1))
show ?thesis unfolding 1 using finite-UNIV-llength-eq assms by auto

qed

lemma lprefix-ltake[dest]: u ≤ v =⇒ u = ltake (llength u) v
by (metis le-llist-conv-lprefix lprefix-conv-lappend ltake-all ltake-lappend1 or-

der-refl)
lemma prefixes-set: {v. v ≤ w} = {ltake k w |k. k ≤ llength w} by fastforce
lemma esize-prefixes[simp]: esize {v. v ≤ w} = eSuc (llength w)
proof −

have esize {v. v ≤ w} = esize {ltake k w |k. k ≤ llength w} unfolding
prefixes-set by rule

also have . . . = esize ((λ k. ltake k w) ‘ {.. llength w})
unfolding atMost-def image-Collect by rule

also have . . . = esize {.. llength w} using inj-on-ltake esize-image by blast
also have . . . = eSuc (llength w) by simp
finally show ?thesis by this

qed
lemma prefix-subsume: v ≤ w =⇒ u ≤ w =⇒ llength v ≤ llength u =⇒ v ≤ u

by (metis le-llist-conv-lprefix lprefix-conv-lappend
lprefix-ltake ltake-is-lprefix ltake-lappend1)

lemma ltake-infinite[simp]: ltake ∞ w = w by (metis enat-ord-code(3) ltake-all)

lemma lprefix-infinite:
assumes u ≤ v linfinite u
shows u = v

proof −
have 1 : llength u = ∞ using not-lfinite-llength assms(2) by this
have u = ltake (llength u) v using lprefix-ltake assms(1) by this
also have . . . = v using 1 by simp
finally show ?thesis by this

qed

instantiation llist :: (type) esize-order
begin

definition [simp]: esize ≡ llength

instance
proof

fix w :: ′a llist
assume 1 : esize w 6= ∞
show finite {v. v ≤ w}

using esize-prefixes 1 by (metis eSuc-eq-infinity-iff esize-set.simps(2) es-
ize-llist-def)

next

76

fix u v :: ′a llist
assume 1 : u ≤ v
show esize u ≤ esize v using lprefix-llength-le 1 by auto

next
fix u v :: ′a llist
assume 1 : u < v
show esize u < esize v using lstrict-prefix-llength-less 1 by auto

qed

end

14.1 Index Sets
definition liset :: ′a set ⇒ ′a llist ⇒ nat set

where liset A w ≡ {i. enat i < llength w ∧ w ?! i ∈ A}

lemma lisetI [intro]:
assumes enat i < llength w w ?! i ∈ A
shows i ∈ liset A w
using assms unfolding liset-def by auto

lemma lisetD[dest]:
assumes i ∈ liset A w
shows enat i < llength w w ?! i ∈ A
using assms unfolding liset-def by auto

lemma liset-finite:
assumes lfinite w
shows finite (liset A w)

proof
show liset A w ⊆ {i. enat i < llength w} by auto
show finite {i. enat i < llength w} using lfinite-finite-index assms by this

qed

lemma liset-nil[simp]: liset A <> = {} by auto
lemma liset-cons-not-member [simp]:

assumes a /∈ A
shows liset A (a % w) = Suc ‘ liset A w

proof −
have liset A (a % w) = {i. enat i < llength (a % w) ∧ (a % w) ?! i ∈ A} by

auto
also have . . . = Suc ‘ {i. enat (Suc i) < llength (a % w) ∧ (a % w) ?! Suc i

∈ A}
using Collect-split-Suc(1) assms by simp

also have . . . = Suc ‘ {i. enat i < llength w ∧ w ?! i ∈ A} using Suc-ile-eq
by simp

also have . . . = Suc ‘ liset A w by auto
finally show ?thesis by this

qed
lemma liset-cons-member [simp]:

77

assumes a ∈ A
shows liset A (a % w) = {0} ∪ Suc ‘ liset A w

proof −
have liset A (a % w) = {i. enat i < llength (a % w) ∧ (a % w) ?! i ∈ A} by

auto
also have . . . = {0} ∪ Suc ‘ {i. enat (Suc i) < llength (a % w) ∧ (a % w)

?! Suc i ∈ A}
using Collect-split-Suc(2) assms by simp

also have . . . = {0} ∪ Suc ‘ {i. enat i < llength w ∧ w ?! i ∈ A} using
Suc-ile-eq by simp

also have . . . = {0} ∪ Suc ‘ liset A w by auto
finally show ?thesis by this

qed

lemma liset-prefix:
assumes i ∈ liset A v u ≤ v enat i < llength u
shows i ∈ liset A u

unfolding liset-def
proof (intro CollectI conjI)

have 1 : v ?! i ∈ A using assms(1) by auto
show enat i < llength u using assms(3) by this
show u ?! i ∈ A using lprefix-lnthD assms(2 , 3) 1 by force

qed
lemma liset-suffix:

assumes i ∈ liset A u u ≤ v
shows i ∈ liset A v

unfolding liset-def
proof (intro CollectI conjI)

have 1 : enat i < llength u u ?! i ∈ A using assms(1) by auto
show enat i < llength v using lprefix-llength-le 1 (1) assms(2) by fastforce
show v ?! i ∈ A using lprefix-lnthD assms(2) 1 by force

qed

lemma liset-ltake[simp]: liset A (ltake (enat k) w) = liset A w ∩ {..< k}
proof (intro equalityI subsetI)

fix i
assume 1 : i ∈ liset A (ltake (enat k) w)
have 2 : enat i < enat k using 1 by auto
have 3 : ltake (enat k) w ?! i = w ?! i using lnth-ltake 2 by this
show i ∈ liset A w ∩ {..< k} using 1 3 by fastforce

next
fix i
assume 1 : i ∈ liset A w ∩ {..< k}
have 2 : enat i < enat k using 1 by auto
have 3 : ltake (enat k) w ?! i = w ?! i using lnth-ltake 2 by this
show i ∈ liset A (ltake (enat k) w) using 1 3 by fastforce

qed

lemma liset-mono[dest]: u ≤ v =⇒ liset A u ⊆ liset A v

78

unfolding liset-def using lprefix-lnthD by fastforce
lemma liset-cont[dest]:

assumes Complete-Partial-Order .chain less-eq C C 6= {}
shows liset A (

⊔
C) = (

⋃
w ∈ C . liset A w)

proof safe
fix i
assume 1 : i ∈ liset A (

⊔
C)

show i ∈ (
⋃

w ∈ C . liset A w)
proof (cases finite C)

case False
obtain w where 2 : w ∈ C enat i < llength w
using esize-llist-def infinite-chain-arbitrary-esize assms(1) False Suc-ile-eq

by metis
have 3 : w ≤

⊔
C using chain-lprefix-lSup assms(1) 2 (1) by simp

have 4 : i ∈ liset A w using liset-prefix 1 3 2 (2) by this
show ?thesis using 2 (1) 4 by auto

next
case True
have 2 :

⊔
C ∈ C using in-chain-finite assms(1) True assms(2) by this

show ?thesis using 1 2 by auto
qed

next
fix w i
assume 1 : w ∈ C i ∈ liset A w
have 2 : w ≤

⊔
C using chain-lprefix-lSup assms(1) 1 (1) by simp

show i ∈ liset A (
⊔

C) using liset-suffix 1 (2) 2 by this
qed

lemma liset-mcont: Complete-Partial-Order2 .mcont lSup lprefix Sup less-eq
(liset A)

unfolding lprefix-lSup-revert by (blast intro: mcontI monotoneI contI)

lemmas mcont2mcont-liset = liset-mcont[THEN lfp.mcont2mcont, simp, cont-intro]

14.2 Selections
abbreviation lproject A ≡ lfilter (λ a. a ∈ A)
abbreviation lselect s w ≡ lnths w s

lemma lselect-to-lproject: lselect s w = lmap fst (lproject (UNIV × s) (w ||
iterates Suc 0))

proof −
have 1 : {(x, y). y ∈ s} = UNIV × s by auto
have lselect s w = lmap fst (lproject {(x, y). y ∈ s} (w || iterates Suc 0))

unfolding lnths-def by simp
also have . . . = lmap fst (lproject (UNIV × s) (w || iterates Suc 0)) unfolding

1 by rule
finally show ?thesis by this

qed

79

lemma lproject-to-lselect: lproject A w = lselect (liset A w) w
unfolding lfilter-conv-lnths liset-def by rule

lemma lproject-llength[simp]: llength (lproject A w) = esize (liset A w)
by (induct rule: llist-induct) (auto)

lemma lproject-lfinite[simp]: lfinite (lproject A w) ←→ finite (liset A w)
using lproject-llength esize-iff-infinite llength-eq-infty-conv-lfinite by metis

lemma lselect-restrict-indices[simp]: lselect {i ∈ s. enat i < llength w} w =
lselect s w

proof (rule lnths-cong)
show w = w by rule

next
fix n
assume 1 : enat n < llength w
show n ∈ {i ∈ s. enat i < llength w} ←→ n ∈ s using 1 by blast

qed

lemma lselect-llength: llength (lselect s w) = esize {i ∈ s. enat i < llength w}
proof −

have 1 :
∧

i. enat i < llength w =⇒ (w || iterates Suc 0) ?! i = (w ?! i, i)
by (metis Suc-funpow enat.distinct(1) enat-ord-simps(4) llength-iterates

lnth-iterates
lnth-lzip monoid-add-class.add.right-neutral)

have 2 : {i. enat i < llength w ∧ (w || iterates Suc 0) ?! i ∈ UNIV × s} =
{i ∈ s. enat i < llength w} using 1 by auto

have llength (lselect s w) = esize (liset (UNIV × s) (w || iterates Suc 0))
unfolding lselect-to-lproject by simp

also have . . . = esize {i. enat i < llength w ∧ (w || iterates Suc 0) ?! i ∈
UNIV × s}

unfolding liset-def by simp
also have . . . = esize {i ∈ s. enat i < llength w} unfolding 2 by rule
finally show ?thesis by this

qed
lemma lselect-llength-le[simp]: llength (lselect s w) ≤ esize s
proof −

have llength (lselect s w) = esize {i ∈ s. enat i < llength w}
unfolding lselect-llength by rule

also have . . . = esize (s ∩ {i. enat i < llength w}) unfolding Collect-conj-eq
by simp

also have . . . ≤ esize s by blast
finally show ?thesis by this

qed
lemma least-lselect-llength:

assumes ¬ lnull (lselect s w)
shows enat (least s) < llength w

proof −
have 0 : llength (lselect s w) > 0 using assms by auto
have 1 :

∧
i. i ∈ s =⇒ least s ≤ i using Least-le 0 by fast

80

obtain i where 2 : i ∈ s enat i < llength w using 0 unfolding lselect-llength
by auto

have enat (least s) ≤ enat i using 1 2 (1) by auto
also have . . . < llength w using 2 (2) by this
finally show enat (least s) < llength w by this

qed
lemma lselect-lnull: lnull (lselect s w) ←→ (∀ i ∈ s. enat i ≥ llength w)

unfolding llength-eq-0 [symmetric] lselect-llength by auto

lemma lselect-discard-start:
assumes

∧
i. i ∈ s =⇒ k ≤ i

shows lselect {i. k + i ∈ s} (ldropn k w) = lselect s w
proof −

have 1 : lselect s (ltake (enat k) w) = <>
using assms by (fastforce simp add: lselect-lnull min-le-iff-disj)

have lselect {m. k + m ∈ s} (ldropn k w) =
lselect s (ltake (enat k) w) $ lselect {m. k + m ∈ s} (ldropn k w) unfolding

1 by simp
also have . . . = lselect s w using lnths-split by rule
finally show ?thesis by this

qed
lemma lselect-discard-end:

assumes
∧

i. i ∈ s =⇒ i < k
shows lselect s (ltake (enat k) w) = lselect s w

proof −
have 1 : lselect {m. k + m ∈ s} (ldropn k w) = <>

using assms by (fastforce simp add: lselect-lnull min-le-iff-disj)
have lselect s (ltake (enat k) w) =
lselect s (ltake (enat k) w) $ lselect {m. k + m ∈ s} (ldropn k w) unfolding

1 by simp
also have . . . = lselect s w using lnths-split by rule
finally show ?thesis by this

qed

lemma lselect-least:
assumes ¬ lnull (lselect s w)
shows lselect s w = w ?! least s % lselect (s − {least s}) w

proof −
have 0 : s 6= {} using assms by auto
have 1 : least s ∈ s using LeastI 0 by fast
have 2 :

∧
i. i ∈ s =⇒ least s ≤ i using Least-le 0 by fast

have 3 :
∧

i. i ∈ s − {least s} =⇒ Suc (least s) ≤ i using least-unique 2 by
force

have 4 : insert (least s) (s − {least s}) = s using 1 by auto
have 5 : enat (least s) < llength w using least-lselect-llength assms by this
have 6 : lselect (s − {least s}) (ltake (enat (least s)) w) = <>

by (rule, auto simp: lselect-llength dest: least-not-less)
have 7 : lselect {i. Suc (least s) + i ∈ s − {least s}} (ldropn (Suc (least s))

w) =

81

lselect (s − {least s}) w using lselect-discard-start 3 by this
have lselect s w = lselect (insert (least s) (s − {least s})) w unfolding 4 by

simp
also have . . . = lselect (s − {least s}) (ltake (enat (least s)) w) $ <w ?! least

s> $
lselect {m. Suc (least s) + m ∈ s − {least s}} (ldropn (Suc (least s)) w)
unfolding lnths-insert[OF 5] by simp

also have . . . = <w ?! least s> $
lselect {m. Suc (least s) + m ∈ s − {least s}} (ldropn (Suc (least s)) w)
unfolding 6 by simp

also have . . . = w ?! (least s) % lselect (s − {least s}) w unfolding 7 by
simp

finally show ?thesis by this
qed

lemma lselect-lnth[simp]:
assumes enat i < llength (lselect s w)
shows lselect s w ?! i = w ?! nth-least s i

using assms
proof (induct i arbitrary: s)

case 0
have 1 : ¬ lnull (lselect s w) using 0 by auto
show ?case using lselect-least 1 by force

next
case (Suc i)
have 1 : ¬ lnull (lselect s w) using Suc(2) by auto

have 2 : lselect s w = w ?! least s % lselect (s − {least s}) w using lselect-least
1 by this

have 3 : llength (lselect s w) = eSuc (llength (lselect (s − {least s}) w)) using
2 by simp

have 4 : enat i < llength (lselect (s − {least s}) w) using 3 Suc(2) by simp
have lselect s w ?! Suc i = (w ?! least s % lselect (s − {least s}) w) ?! Suc i

using 2 by simp
also have . . . = lselect (s − {least s}) w ?! i by simp
also have . . . = w ?! nth-least (s − {least s}) i using Suc(1) 4 by simp
also have . . . = w ?! nth-least s (Suc i) by simp
finally show ?case by this

qed
lemma lproject-lnth[simp]:

assumes enat i < llength (lproject A w)
shows lproject A w ?! i = w ?! nth-least (liset A w) i
using assms unfolding lproject-to-lselect by simp

lemma lproject-ltake[simp]:
assumes enat k ≤ llength (lproject A w)
shows lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) =

ltake (enat k) (lproject A w)
proof

have llength (lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w)) =

82

enat (card (liset A w ∩ {..< nth-least (lift (liset A w)) k})) by simp
also have . . . = enat (card {i ∈ liset A w. i < nth-least (lift (liset A w)) k})

unfolding lessThan-def Collect-conj-eq by simp
also have . . . = enat k using assms by simp
also have . . . = llength (ltake (enat k) (lproject A w)) using min-absorb1

assms by force
finally show llength (lproject A (ltake (enat (nth-least (lift (liset A w)) k))

w)) =
llength (ltake (enat k) (lproject A w)) by this

next
fix i
assume 1 : enat i < llength (lproject A (ltake (enat (nth-least (lift (liset A

w)) k)) w))
assume 2 : enat i < llength (ltake (enat k) (lproject A w))
obtain k ′ where 3 : k = Suc k ′ using 2 nat.exhaust by auto
have 4 : enat k ′ < llength (lproject A w) using assms 3 by simp
have 5 : i ≤ k ′ using 2 3 by simp
have 6 : nth-least (lift (liset A w)) k = Suc (nth-least (liset A w) k ′)

using 3 4 by (simp del: nth-least.simps)
have 7 : nth-least (liset A w) i < Suc (nth-least (liset A w) k ′)
proof −

have nth-least (liset A w) i ≤ nth-least (liset A w) k ′ using 4 5 by simp
also have . . . < Suc (nth-least (liset A w) k ′) by simp
finally show ?thesis by this

qed
have 8 : nth-least (liset A w ∩ {..< Suc (nth-least (liset A w) k ′)}) i =

nth-least (liset A w) i
proof (rule nth-least-eq)
show enat i < esize (liset A w ∩ {..< Suc (nth-least (liset A w) k ′)}) using

1 6 by simp
have enat i ≤ enat k ′ using 5 by simp
also have enat k ′ < esize (liset A w) using 4 by simp
finally show enat i < esize (liset A w) by this

next
fix j
assume 1 : j ≤ nth-least (liset A w) i
show j ∈ liset A w ∩ {..< Suc (nth-least (liset A w) k ′)} ←→ j ∈ liset A w

using 1 7 by simp
qed
have lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) ?! i =

ltake (enat (Suc (nth-least (liset A w) k ′))) w ?!
nth-least (liset A w ∩ {..< Suc (nth-least (liset A w) k ′)}) i
using 1 6 by simp

also have . . . = ltake (enat (Suc (nth-least (liset A w) k ′))) w ?! nth-least
(liset A w) i

using 8 by simp
also have . . . = w ?! nth-least (liset A w) i using 7 by simp
also have . . . = lproject A w ?! i using 2 by simp
also have . . . = ltake (enat k) (lproject A w) ?! i using 2 by simp

83

finally show lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) ?! i =
ltake (enat k) (lproject A w) ?! i by this

qed

lemma llength-less-llength-lselect-less:
enat i < esize s ∧ enat (nth-least s i) < llength w ←→ enat i < llength (lselect

s w)
using nth-least-less-esize-less unfolding lselect-llength by this

lemma lselect-lselect ′′:
assumes

∧
i. i ∈ s =⇒ enat i < llength w

assumes
∧

i. i ∈ t =⇒ enat i < llength (lselect s w)
shows lselect t (lselect s w) = lselect (nth-least s ‘ t) w

proof
note lselect-llength[simp]
have 1 :

∧
i. i ∈ nth-least s ‘ t =⇒ enat i < llength w using assms by auto

have 2 : t ⊆ {i. enat i < esize s}
using assms(2) lselect-llength-le less-le-trans by blast

have 3 : inj-on (nth-least s) t using subset-inj-on nth-least.inj-on 2 by this
have llength (lselect t (lselect s w)) = esize t using assms(2) by simp
also have . . . = esize (nth-least s ‘ t) using 3 by auto
also have . . . = llength (lselect (nth-least s ‘ t) w) using 1 by simp
finally show llength (lselect t (lselect s w)) = llength (lselect (nth-least s ‘ t)

w)
by this

next
fix i
assume 1 : enat i < llength (lselect t (lselect s w))
assume 2 : enat i < llength (lselect (nth-least s ‘ t) w)
have 3 : enat i < esize t using less-le-trans 1 lselect-llength-le by this
have 4 :

∧
i. i ∈ t =⇒ enat i < esize s

using assms(2) lselect-llength-le less-le-trans by blast
have lselect t (lselect s w) ?! i = lselect s w ?! nth-least t i using 1 by simp
also have . . . = w ?! nth-least s (nth-least t i) using assms(2) 3 by simp
also have . . . = w ?! nth-least (nth-least s ‘ t) i using 3 4 by simp
also have . . . = lselect (nth-least s ‘ t) w ?! i using 2 by simp
finally show lselect t (lselect s w) ?! i = lselect (nth-least s ‘ t) w ?! i by this

qed

lemma lselect-lselect ′[simp]:
assumes

∧
i. i ∈ t =⇒ enat i < esize s

shows lselect t (lselect s w) = lselect (nth-least s ‘ t) w
proof −
have 1 : nth-least {i ∈ s. enat i < llength w} ‘ {i ∈ t. enat i < llength (lselect

s w)} =
{i ∈ nth-least s ‘ t. enat i < llength w}

unfolding Compr-image-eq
proof (rule image-cong)

show {i ∈ t. enat i < llength (lselect s w)} = {i ∈ t. enat (nth-least s i) <

84

llength w}
using llength-less-llength-lselect-less assms by blast

next
fix i
assume 1 : i ∈ {i ∈ t. enat (nth-least s i) < llength w}
have 2 : enat i < esize {i ∈ s. enat i < llength w}

using nth-least-less-esize-less assms 1 by blast
show nth-least {i ∈ s. enat i < llength w} i = nth-least s i using 2 by

simp
qed
have lselect t (lselect s w) =

lselect {i ∈ t. enat i < llength (lselect s w)} (lselect {i ∈ s. enat i < llength
w} w)

by simp
also have . . . = lselect (nth-least {i ∈ s. enat i < llength w} ‘
{i ∈ t. enat i < llength (lselect s w)}) w
by (rule lselect-lselect ′′, auto simp: lselect-llength)

also have . . . = lselect {i ∈ nth-least s ‘ t. enat i < llength w} w unfolding
1 by rule

also have . . . = lselect (nth-least s ‘ t) w by simp
finally show ?thesis by this

qed

lemma lselect-lselect:
lselect t (lselect s w) = lselect (nth-least s ‘ {i ∈ t. enat i < esize s}) w

proof −
have lselect t (lselect s w) = lselect {i ∈ t. enat i < llength (lselect s w)}

(lselect s w)
by simp

also have . . . = lselect (nth-least s ‘ {i ∈ t. enat i < llength (lselect s w)}) w
using lselect-llength-le less-le-trans by (blast intro: lselect-lselect ′)

also have . . . = lselect (nth-least s ‘ {i ∈ t. enat i < esize s}) w
using llength-less-llength-lselect-less by (auto intro!: lnths-cong)

finally show ?thesis by this
qed

lemma lselect-lproject ′:
assumes

∧
i. i ∈ s =⇒ enat i < llength w

shows lproject A (lselect s w) = lselect (s ∩ liset A w) w
proof −

have 1 :
∧

i. i ∈ liset A (lselect s w) =⇒ enat i < esize s using less-le-trans
by force

have 2 : {i ∈ liset A (lselect s w). enat i < esize s} = liset A (lselect s w)
using 1 by auto

have 3 : nth-least s ‘ liset A (lselect s w) = s ∩ liset A w
proof safe

fix k
assume 4 : k ∈ liset A (lselect s w)
show nth-least s k ∈ s using 1 4 by simp

85

show nth-least s k ∈ liset A w
using llength-less-llength-lselect-less 4 unfolding liset-def by auto

next
fix k
assume 1 : k ∈ s k ∈ liset A w
have 2 : nth-least s (card {i ∈ s. i < k}) = k using nth-least-card 1 (1) by

this
have 3 : enat (card {i ∈ s. i < k}) < llength (lselect s w)

unfolding lselect-llength using assms 1 (1) by simp
show k ∈ nth-least s ‘ liset A (lselect s w)
proof

show k = nth-least s (card {i ∈ s. i < k}) using 2 by simp
show card {i ∈ s. i < k} ∈ liset A (lselect s w) using 1 (2) 2 3 by fastforce
qed

qed
have lproject A (lselect s w) = lselect (liset A (lselect s w)) (lselect s w)

unfolding lproject-to-lselect by rule
also have . . . = lselect (nth-least s ‘ {i ∈ liset A (lselect s w). enat i < esize

s}) w
unfolding lselect-lselect by rule

also have . . . = lselect (nth-least s ‘ liset A (lselect s w)) w unfolding 2 by
rule

also have . . . = lselect (s ∩ liset A w) w unfolding 3 by rule
finally show ?thesis by this

qed

lemma lselect-lproject[simp]: lproject A (lselect s w) = lselect (s ∩ liset A w) w
proof −

have 1 : {i ∈ s. enat i < llength w} ∩ liset A w = s ∩ liset A w by auto
have lproject A (lselect s w) = lproject A (lselect {i ∈ s. enat i < llength w}

w) by simp
also have . . . = lselect ({i ∈ s. enat i < llength w} ∩ liset A w) w

by (rule lselect-lproject ′, simp)
also have . . . = lselect (s ∩ liset A w) w unfolding 1 by rule
finally show ?thesis by this

qed

lemma lproject-lselect-subset[simp]:
assumes liset A w ⊆ s
shows lproject A (lselect s w) = lproject A w

proof −
have 1 : s ∩ liset A w = liset A w using assms by auto
have lproject A (lselect s w) = lselect (s ∩ liset A w) w by simp
also have . . . = lselect (liset A w) w unfolding 1 by rule
also have . . . = lproject A w unfolding lproject-to-lselect by rule
finally show ?thesis by this

qed

lemma lselect-prefix[intro]:

86

assumes u ≤ v
shows lselect s u ≤ lselect s v

proof (cases lfinite u)
case False
show ?thesis using lprefix-infinite assms False by auto

next
case True
obtain k where 1 : llength u = enat k using True length-list-of by metis
obtain w where 2 : v = u $ w using lprefix-conv-lappend assms by auto
have lselect s u ≤ lselect s u $ lselect {n. n + k ∈ s} w by simp
also have . . . = lselect s (u $ w) using lnths-lappend-lfinite[symmetric] 1 by

this
also have . . . = lselect s v unfolding 2 by rule
finally show ?thesis by this

qed
lemma lproject-prefix[intro]:

assumes u ≤ v
shows lproject A u ≤ lproject A v
using lprefix-lfilterI assms by auto

lemma lproject-prefix-limit[intro?]:
assumes

∧
v. v ≤ w =⇒ lfinite v =⇒ lproject A v ≤ x

shows lproject A w ≤ x
proof −

have 1 : ccpo.admissible lSup lprefix (λ v. lproject A v ≤ x) by simp
show ?thesis using llist-lift-admissible 1 assms(1) by this

qed
lemma lproject-prefix-limit ′:

assumes
∧

k. ∃ v. v ≤ w ∧ enat k < llength v ∧ lproject A v ≤ x
shows lproject A w ≤ x

proof (rule lproject-prefix-limit)
fix u
assume 1 : u ≤ w lfinite u
obtain k where 2 : llength u = enat k using 1 (2) by (metis length-list-of)
obtain v where 3 : v ≤ w llength u < llength v lproject A v ≤ x

unfolding 2 using assms(1) by auto
have 4 : llength u ≤ llength v using 3 (2) by simp
have 5 : u ≤ v using prefix-subsume 1 (1) 3 (1) 4 by this
have lproject A u ≤ lproject A v using 5 by rule
also have . . . ≤ x using 3 (3) by this
finally show lproject A u ≤ x by this

qed

end

15 Prefixes on Coinductive Lists
theory LList-Prefixes
imports

87

Word-Prefixes
../Extensions/Coinductive-List-Extensions

begin

lemma unfold-stream-siterate-smap: unfold-stream f g = smap f ◦ siterate g
by (rule, coinduction, auto) (metis unfold-stream-eq-SCons)+

lemma lappend-stream-of-llist:
assumes lfinite u
shows stream-of-llist (u $ v) = list-of u @− stream-of-llist v
using assms unfolding stream-of-llist-def by induct auto

lemma llist-of-inf-llist-prefix[intro]: u ≤F I v =⇒ llist-of u ≤ llist-of-stream v
by (metis lappend-llist-of-stream-conv-shift le-llist-conv-lprefix lprefix-lappend

prefix-fininfE)
lemma prefix-llist-of-inf-llist[intro]: lfinite u =⇒ u ≤ v =⇒ list-of u ≤F I stream-of-llist

v
by (metis lappend-stream-of-llist le-llist-conv-lprefix lprefix-conv-lappend pre-

fix-fininfI)

lemma lproject-prefix-limit-chain:
assumes chain w

∧
k. lproject A (llist-of (w k)) ≤ x

shows lproject A (llist-of-stream (limit w)) ≤ x
proof (rule lproject-prefix-limit ′)

fix k
obtain l where 1 : k < length (w l) using assms(1) by rule
show ∃ v ≤ llist-of-stream (limit w). enat k < llength v ∧ lproject A v ≤ x
proof (intro exI conjI)

show llist-of (w l) ≤ llist-of-stream (limit w)
using llist-of-inf-llist-prefix chain-prefix-limit assms(1) by this

show enat k < llength (llist-of (w l)) using 1 by simp
show lproject A (llist-of (w l)) ≤ x using assms(2) by this

qed
qed
lemma lproject-eq-limit-chain:

assumes chain u chain v
∧

k. project A (u k) = project A (v k)
shows lproject A (llist-of-stream (limit u)) = lproject A (llist-of-stream (limit

v))
proof (rule antisym)

show lproject A (llist-of-stream (limit u)) ≤ lproject A (llist-of-stream (limit
v))

proof (rule lproject-prefix-limit-chain)
show chain u using assms(1) by this

next
fix k
have lproject A (llist-of (u k)) = lproject A (llist-of (v k)) using assms(3)

by simp
also have . . . ≤ lproject A (llist-of-stream (limit v)) using chain-prefix-limit

assms(2) by blast

88

finally show lproject A (llist-of (u k)) ≤ lproject A (llist-of-stream (limit v))
by this

qed
show lproject A (llist-of-stream (limit v)) ≤ lproject A (llist-of-stream (limit

u))
proof (rule lproject-prefix-limit-chain)

show chain v using assms(2) by this
next

fix k
have lproject A (llist-of (v k)) = lproject A (llist-of (u k)) using assms(3)

by simp
also have . . . ≤ lproject A (llist-of-stream (limit u)) using chain-prefix-limit

assms(1) by blast
finally show lproject A (llist-of (v k)) ≤ lproject A (llist-of-stream (limit u))

by this
qed

qed

end

16 Stuttering
theory Stuttering
imports

Stuttering-Equivalence.StutterEquivalence
LList-Prefixes

begin

function nth-least-ext :: nat set ⇒ nat ⇒ nat
where

enat k < esize A =⇒ nth-least-ext A k = nth-least A k |
enat k ≥ esize A =⇒ nth-least-ext A k = Suc (Max A + (k − card A))

by force+ termination by lexicographic-order

lemma nth-least-ext-strict-mono:
assumes k < l
shows nth-least-ext s k < nth-least-ext s l

proof (cases enat l < esize s)
case True

have 1 : enat k < esize s using assms True by (metis enat-ord-simps(2)
less-trans)

show ?thesis using nth-least-strict-mono assms True 1 by simp
next

case False
have 1 : finite s using False esize-infinite-enat by auto
have 2 : enat l ≥ esize s using False by simp
have 3 : l ≥ card s using 1 2 by simp
show ?thesis
proof (cases enat k < esize s)

89

case True
have 4 : s 6= {} using True by auto
have nth-least-ext s k = nth-least s k using True by simp
also have . . . ≤ Max s using nth-least-le-Max 1 4 True by this
also have . . . < Suc (Max s) by auto
also have . . . ≤ Suc (Max s + (l − card s)) by auto
also have Suc (Max s + (l − card s)) = nth-least-ext s l using 2 by simp
finally show ?thesis by this

next
case False
have 4 : enat k ≥ esize s using False by simp
have 5 : k ≥ card s using 1 4 by simp
have nth-least-ext s k = Suc (Max s + (k − card s)) using 4 by simp
also have . . . < Suc (Max s + (l − card s)) using assms 5 by simp
also have . . . = nth-least-ext s l using 2 by simp
finally show ?thesis by this

qed
qed

definition stutter-selection :: nat set ⇒ ′a llist ⇒ bool
where stutter-selection s w ≡ 0 ∈ s ∧
(∀ k i. enat i < llength w −→ enat (Suc k) < esize s −→
nth-least s k < i −→ i < nth-least s (Suc k) −→ w ?! i = w ?! nth-least s k) ∧
(∀ i. enat i < llength w −→ finite s −→ Max s < i −→ w ?! i = w ?! Max s)

lemma stutter-selectionI [intro]:
assumes 0 ∈ s
assumes

∧
k i. enat i < llength w =⇒ enat (Suc k) < esize s =⇒

nth-least s k < i =⇒ i < nth-least s (Suc k) =⇒ w ?! i = w ?! nth-least s k
assumes

∧
i. enat i < llength w =⇒ finite s =⇒ Max s < i =⇒ w ?! i = w

?! Max s
shows stutter-selection s w
using assms unfolding stutter-selection-def by auto

lemma stutter-selectionD-0 [dest]:
assumes stutter-selection s w
shows 0 ∈ s
using assms unfolding stutter-selection-def by auto

lemma stutter-selectionD-inside[dest]:
assumes stutter-selection s w
assumes enat i < llength w enat (Suc k) < esize s
assumes nth-least s k < i i < nth-least s (Suc k)
shows w ?! i = w ?! nth-least s k
using assms unfolding stutter-selection-def by auto

lemma stutter-selectionD-infinite[dest]:
assumes stutter-selection s w
assumes enat i < llength w finite s Max s < i
shows w ?! i = w ?! Max s
using assms unfolding stutter-selection-def by auto

90

lemma stutter-selection-stutter-sampler [intro]:
assumes linfinite w stutter-selection s w
shows stutter-sampler (nth-least-ext s) (lnth w)

unfolding stutter-sampler-def
proof safe

show nth-least-ext s 0 = 0 using assms(2) by (cases enat 0 < esize s, auto)
show strict-mono (nth-least-ext s) using strict-monoI nth-least-ext-strict-mono

by blast
next

fix k i
assume 1 : nth-least-ext s k < i i < nth-least-ext s (Suc k)
show w ?! i = w ?! nth-least-ext s k
proof (cases enat (Suc k) esize s rule: linorder-cases)

case less
have w ?! i = w ?! nth-least s k
proof (rule stutter-selectionD-inside)

show stutter-selection s w using assms(2) by this
show enat i < llength w using assms(1) by auto
show enat (Suc k) < esize s using less by this
show nth-least s k < i using 1 (1) less by auto
show i < nth-least s (Suc k) using 1 (2) less by simp

qed
also have w ?! nth-least s k = w ?! nth-least-ext s k using less by auto
finally show ?thesis by this

next
case equal
have 2 : enat k < esize s using equal by (metis enat-ord-simps(2) lessI)
have 3 : finite s using equal by (metis esize-infinite-enat less-irrefl)
have 4 :

∧
i. i > Max s =⇒ w ?! i = w ?! Max s using assms 3 by auto

have 5 : k = card s − 1 using equal 3 by (metis diff-Suc-1 enat.inject
esize-set.simps(1))

have Max s = nth-least s (card s − 1) using nth-least-Max 3 assms(2) by
force

also have . . . = nth-least s k unfolding 5 by rule
also have . . . = nth-least-ext s k using 2 by simp
finally have 6 : Max s = nth-least-ext s k by this
have w ?! i = w ?! Max s using 1 (1) 4 6 by auto
also have . . . = w ?! nth-least-ext s k unfolding 6 by rule
finally show ?thesis by this

next
case greater
have 2 : enat k ≥ esize s using greater by (metis Suc-ile-eq not-le)
have 3 : finite s using greater by (metis esize-infinite-enat less-asym)
have 4 :

∧
i. i > Max s =⇒ w ?! i = w ?! Max s using assms 3 by auto

have w ?! i = w ?! Max s using 1 (1) 2 4 by auto
also have . . . = w ?! Suc (Max s + (k − card s)) using 4 by simp
also have . . . = w ?! nth-least-ext s k using 2 by simp
finally show ?thesis by this

qed

91

qed

lemma stutter-equivI-selection[intro]:
assumes linfinite u linfinite v
assumes stutter-selection s u stutter-selection t v
assumes lselect s u = lselect t v
shows lnth u ≈ lnth v

proof (rule stutter-equivI)
have 1 : llength (lselect s u) = llength (lselect t v) unfolding assms(5) by rule
have 2 : esize s = esize t using 1 assms(1 , 2) unfolding lselect-llength by

simp
show stutter-sampler (nth-least-ext s) (lnth u) using assms(1 , 3) by rule
show stutter-sampler (nth-least-ext t) (lnth v) using assms(2 , 4) by rule
show lnth u ◦ nth-least-ext s = lnth v ◦ nth-least-ext t
proof (rule ext, unfold comp-apply)

fix i
show u ?! nth-least-ext s i = v ?! nth-least-ext t i
proof (cases enat i < esize s)

case True
have 3 : enat i < llength (lselect s u) enat i < llength (lselect t v)

using assms(1 , 2) 2 True unfolding lselect-llength by auto
have u ?! nth-least-ext s i = u ?! nth-least s i using True by simp
also have . . . = lselect s u ?! i using 3 (1) by simp
also have . . . = lselect t v ?! i unfolding assms(5) by rule
also have . . . = v ?! nth-least t i using 3 (2) by simp
also have . . . = v ?! nth-least-ext t i using True unfolding 2 by simp
finally show u ?! nth-least-ext s i = v ?! nth-least-ext t i by this

next
case False
have 3 : s 6= {} t 6= {} using assms(3 , 4) by auto
have 4 : finite s finite t using esize-infinite-enat 2 False by metis+
have 5 :

∧
i. i > Max s =⇒ u ?! i = u ?! Max s using assms(1 , 3) 4 (1)

by auto
have 6 :

∧
i. i > Max t =⇒ v ?! i = v ?! Max t using assms(2 , 4) 4 (2)

by auto
have 7 : esize s = enat (card s) esize t = enat (card t) using 4 by auto
have 8 : card s 6= 0 card t 6= 0 using 3 4 by auto
have 9 : enat (card s − 1) < llength (lselect s u)

using assms(1) 7 (1) 8 (1) unfolding lselect-llength by simp
have 10 : enat (card t − 1) < llength (lselect t v)

using assms(2) 7 (2) 8 (2) unfolding lselect-llength by simp
have u ?! nth-least-ext s i = u ?! Suc (Max s + (i − card s)) using False

by simp
also have . . . = u ?! Max s using 5 by simp

also have . . . = u ?! nth-least s (card s − 1) using nth-least-Max 4 (1) 3 (1)
by force

also have . . . = lselect s u ?! (card s − 1) using lselect-lnth 9 by simp
also have . . . = lselect s u ?! (card t − 1) using 2 4 by simp
also have . . . = lselect t v ?! (card t − 1) unfolding assms(5) by rule

92

also have . . . = v ?! nth-least t (card t − 1) using lselect-lnth 10 by simp
also have . . . = v ?! Max t using nth-least-Max 4 (2) 3 (2) by force
also have . . . = v ?! Suc (Max t + (i − card t)) using 6 by simp
also have . . . = v ?! nth-least-ext t i using 2 False by simp
finally show ?thesis by this

qed
qed

qed

definition stuttering-invariant :: ′a word set ⇒ bool
where stuttering-invariant A ≡ ∀ u v. u ≈ v −→ u ∈ A ←→ v ∈ A

lemma stuttering-invariant-complement[intro!]:
assumes stuttering-invariant A
shows stuttering-invariant (− A)
using assms unfolding stuttering-invariant-def by simp

lemma stutter-equiv-forw-subst[trans]: w1 = w2 =⇒ w2 ≈ w3 =⇒ w1 ≈ w3 by
auto

lemma stutter-sampler-build:
assumes stutter-sampler f w
shows stutter-sampler (0 ## (Suc ◦ f)) (a ## w)

unfolding stutter-sampler-def
proof safe

have 0 : f 0 = 0 using assms unfolding stutter-sampler-def by auto
have 1 : f x < f y if x < y for x y

using assms that unfolding stutter-sampler-def strict-mono-def by auto
have 2 : (0 ## (Suc ◦ f)) x < (0 ## (Suc ◦ f)) y if x < y for x y

using 1 that by (cases x; cases y) (auto)
have 3 : w n = w (f k) if f k < n n < f (Suc k) for k n

using assms that unfolding stutter-sampler-def by auto
show (0 ## (Suc ◦ f)) 0 = 0 by simp
show strict-mono (0 ## (Suc ◦ f)) using 2 by rule
show (a ## w) n = (a ## w) ((0 ## (Suc ◦ f)) k)

if (0 ## (Suc ◦ f)) k < n n < (0 ## (Suc ◦ f)) (Suc k) for k n
using 0 3 that by (cases k; cases n) (force)+

qed
lemma stutter-extend-build:

assumes u ≈ v
shows a ## u ≈ a ## v

proof −
obtain f g where 1 : stutter-sampler f u stutter-sampler g v u ◦ f = v ◦ g

using stutter-equivE assms by this
show ?thesis
proof (intro stutter-equivI ext)
show stutter-sampler (0 ## (Suc ◦ f)) (a ## u) using stutter-sampler-build

1 (1) by this
show stutter-sampler (0 ## (Suc ◦ g)) (a ## v) using stutter-sampler-build

93

1 (2) by this
show (a ## u ◦ 0 ## (Suc ◦ f)) i = (a ## v ◦ 0 ## (Suc ◦ g)) i for i

using fun-cong[OF 1 (3)] by (cases i) (auto)
qed

qed
lemma stutter-extend-concat:

assumes u ≈ v
shows w _ u ≈ w _ v
using stutter-extend-build assms by (induct w, force+)

lemma build-stutter : w 0 ## w ≈ w
proof (rule stutter-equivI)

show stutter-sampler (Suc (0 := 0)) (w 0 ## w)
unfolding stutter-sampler-def
proof safe

show (Suc (0 := 0)) 0 = 0 by simp
show strict-mono (Suc (0 := 0)) by (rule strict-monoI , simp)

next
fix k n
assume 1 : (Suc (0 := 0)) k < n n < (Suc (0 := 0)) (Suc k)
show (w 0 ## w) n = (w 0 ## w) ((Suc (0 := 0)) k) using 1 by (cases

n, auto)
qed
show stutter-sampler id w by rule
show w 0 ## w ◦ (Suc (0 := 0)) = w ◦ id by auto

qed
lemma replicate-stutter : replicate n (v 0) _ v ≈ v
proof (induct n)

case 0
show ?case using stutter-equiv-refl by simp

next
case (Suc n)
have replicate (Suc n) (v 0) _ v = v 0 ## replicate n (v 0) _ v by simp
also have . . . = (replicate n (v 0) _ v) 0 ## replicate n (v 0) _ v by (cases

n, auto)
also have . . . ≈ replicate n (v 0) _ v using build-stutter by this
also have . . . ≈ v using Suc by this
finally show ?case by this

qed

lemma replicate-stutter ′: u _ replicate n (v 0) _ v ≈ u _ v
using stutter-extend-concat replicate-stutter by this

end

17 Interpreted Transition Systems and Traces
theory Transition-System-Interpreted-Traces
imports

Transition-System-Traces

94

Basics/Stuttering
begin

locale transition-system-interpreted-traces =
transition-system-interpreted ex en int +
transition-system-traces ex en ind
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and int :: ′state ⇒ ′interpretation
and ind :: ′action ⇒ ′action ⇒ bool
+
assumes independence-invisible: a ∈ visible =⇒ b ∈ visible =⇒ ¬ ind a b

begin

lemma eq-swap-lproject-visible:
assumes u =S v
shows lproject visible (llist-of u) = lproject visible (llist-of v)
using assms independence-invisible by (induct, auto)

lemma eq-fin-lproject-visible:
assumes u =F v
shows lproject visible (llist-of u) = lproject visible (llist-of v)
using assms eq-swap-lproject-visible by (induct, auto)

lemma le-fin-lproject-visible:
assumes u �F v
shows lproject visible (llist-of u) ≤ lproject visible (llist-of v)

proof −
obtain w where 1 : u @ w =F v using assms by rule
have lproject visible (llist-of u) ≤

lproject visible (llist-of u) $ lproject visible (llist-of w) by auto
also have . . . = lproject visible (llist-of (u @ w)) using lappend-llist-of-llist-of

by auto
also have . . . = lproject visible (llist-of v) using eq-fin-lproject-visible 1 by

this
finally show ?thesis by this

qed
lemma le-fininf-lproject-visible:

assumes u �F I v
shows lproject visible (llist-of u) ≤ lproject visible (llist-of-stream v)

proof −
obtain w where 1 : w ≤F I v u �F w using assms by rule
have lproject visible (llist-of u) ≤ lproject visible (llist-of w)

using le-fin-lproject-visible 1 (2) by this
also have . . . ≤ lproject visible (llist-of-stream v) using 1 (1) by blast
finally show ?thesis by this

qed
lemma le-inf-lproject-visible:

assumes u �I v
shows lproject visible (llist-of-stream u) ≤ lproject visible (llist-of-stream v)

proof (rule lproject-prefix-limit)

95

fix w
assume 1 : w ≤ llist-of-stream u lfinite w
have 2 : list-of w ≤F I stream-of-llist (llist-of-stream u) using 1 by blast
have 3 : list-of w �F I v using assms 2 by auto
have lproject visible w = lproject visible (llist-of (list-of w)) using 1 (2) by

simp
also have . . . ≤ lproject visible (llist-of-stream v) using le-fininf-lproject-visible

3 by this
finally show lproject visible w ≤ lproject visible (llist-of-stream v) by this

qed
lemma eq-inf-lproject-visible:

assumes u =I v
shows lproject visible (llist-of-stream u) = lproject visible (llist-of-stream v)
using le-inf-lproject-visible assms by (metis antisym eq-infE)

lemma stutter-selection-lproject-visible:
assumes run u p
shows stutter-selection (lift (liset visible (llist-of-stream u)))
(llist-of-stream (smap int (p ## trace u p)))

proof
show 0 ∈ lift (liset visible (llist-of-stream u)) by auto

next
fix k i
assume 3 : enat (Suc k) < esize (lift (liset visible (llist-of-stream u)))
assume 4 : nth-least (lift (liset visible (llist-of-stream u))) k < i
assume 5 : i < nth-least (lift (liset visible (llist-of-stream u))) (Suc k)
have 6 : int ((p ## trace u p) !! nth-least (lift (liset visible (llist-of-stream

u))) k) =
int ((p ## trace u p) !! i)

proof (rule execute-inf-word-invisible)
show run u p using assms by this
show nth-least (lift (liset visible (llist-of-stream u))) k ≤ i using 4 by auto

next
fix j
assume 6 : nth-least (lift (liset visible (llist-of-stream u))) k ≤ j
assume 7 : j < i
have 8 : Suc j /∈ lift (liset visible (llist-of-stream u))
proof (rule nth-least-not-contains)

show enat (Suc k) < esize (lift (liset visible (llist-of-stream u))) using 3
by this

show nth-least (lift (liset visible (llist-of-stream u))) k < Suc j using 6
by auto

show Suc j < nth-least (lift (liset visible (llist-of-stream u))) (Suc k) using
5 7 by simp

qed
have 9 : j /∈ liset visible (llist-of-stream u) using 8 by auto
show u !! j /∈ visible using 9 by auto

qed
show llist-of-stream (smap int (p ## trace u p)) ?! i = llist-of-stream (smap

96

int (p ## trace u p)) ?!
nth-least (lift (liset visible (llist-of-stream u))) k
using 6 by (metis lnth-list-of-stream snth-smap)

next
fix i
assume 1 : finite (lift (liset visible (llist-of-stream u)))
assume 3 : Max (lift (liset visible (llist-of-stream u))) < i
have 4 : int ((p ## trace u p) !! Max (lift (liset visible (llist-of-stream u))))

=
int ((p ## trace u p) !! i)

proof (rule execute-inf-word-invisible)
show run u p using assms by this
show Max (lift (liset visible (llist-of-stream u))) ≤ i using 3 by auto

next
fix j
assume 6 : Max (lift (liset visible (llist-of-stream u))) ≤ j
assume 7 : j < i
have 8 : Suc j /∈ lift (liset visible (llist-of-stream u))
proof (rule ccontr)

assume 9 : ¬ Suc j /∈ lift (liset visible (llist-of-stream u))
have 10 : Suc j ∈ lift (liset visible (llist-of-stream u)) using 9 by simp

have 11 : Suc j ≤ Max (lift (liset visible (llist-of-stream u))) using Max-ge
1 10 by this

show False using 6 11 by auto
qed
have 9 : j /∈ liset visible (llist-of-stream u) using 8 by auto
show u !! j /∈ visible using 9 by auto

qed
show llist-of-stream (smap int (p ## trace u p)) ?! i = llist-of-stream (smap

int (p ## trace u p)) ?!
Max (lift (liset visible (llist-of-stream u))) using 4 by (metis lnth-list-of-stream

snth-smap)
qed

lemma execute-fin-visible:
assumes path u q path v q u �F I w v �F I w
assumes project visible u = project visible v
shows int (target u q) = int (target v q)

proof −
obtain w ′ where 1 : u �F w ′ v �F w ′ using subsume-fin assms(3 , 4) by

this
obtain u ′ v ′ where 2 : u @ u ′ =F w ′ v @ v ′ =F w ′ using 1 by blast
have u @ u ′ =F w ′ using 2 (1) by this
also have . . . =F v @ v ′ using 2 (2) by blast
finally have 3 : u @ u ′ =F v @ v ′ by this
obtain s1 s2 s3 where 4 : u =F s1 @ s2 v =F s1 @ s3 Ind (set s2) (set s3)

using levi-lemma 3 by this
have 5 : project visible (s1 @ s2) = project visible (s1 @ s3)

using eq-fin-lproject-visible assms(5) 4 (1 , 2) by auto

97

have 6 : project visible s2 = project visible s3 using 5 by simp
have 7 : set (project visible s2) = set (project visible s3) using 6 by simp
have 8 : set s2 ∩ visible = set s3 ∩ visible using 7 by auto
have 9 : set s2 ⊆ invisible ∨ set s3 ⊆ invisible using independence-invisible

4 (3) by auto
have 10 : set s2 ⊆ invisible set s3 ⊆ invisible using 8 9 by auto
have 11 : path s2 (target s1 q) using eq-fin-word 4 (1) assms(1) by auto
have 12 : path s3 (target s1 q) using eq-fin-word 4 (2) assms(2) by auto

have int (fold ex u q) = int (fold ex (s1 @ s2) q) using eq-fin-execute assms(1)
4 (1) by simp

also have . . . = int (fold ex s1 q) using execute-fin-word-invisible 11 10 (1)
by simp

also have . . . = int (fold ex (s1 @ s3) q) using execute-fin-word-invisible 12
10 (2) by simp

also have . . . = int (fold ex v q) using eq-fin-execute assms(2) 4 (2) by simp
finally show ?thesis by this

qed
lemma execute-inf-visible:

assumes run u q run v q u �I w v �I w
assumes lproject visible (llist-of-stream u) = lproject visible (llist-of-stream v)
shows snth (smap int (q ## trace u q)) ≈ snth (smap int (q ## trace v q))

proof −
have 1 : lnth (llist-of-stream (smap int (q ## trace u q))) ≈

lnth (llist-of-stream (smap int (q ## trace v q)))
proof

show linfinite (llist-of-stream (smap int (q ## trace u q))) by simp
show linfinite (llist-of-stream (smap int (q ## trace v q))) by simp
show stutter-selection (lift (liset visible (llist-of-stream u))) (llist-of-stream

(smap int (q ## trace u q)))
using stutter-selection-lproject-visible assms(1) by this

show stutter-selection (lift (liset visible (llist-of-stream v))) (llist-of-stream
(smap int (q ## trace v q)))

using stutter-selection-lproject-visible assms(2) by this
show lselect (lift (liset visible (llist-of-stream u))) (llist-of-stream (smap int

(q ## trace u q))) =
lselect (lift (liset visible (llist-of-stream v))) (llist-of-stream (smap int (q

trace v q)))
proof

have llength (lselect (lift (liset visible (llist-of-stream u)))
(llist-of-stream (smap int (q ## trace u q)))) = eSuc (llength (lproject

visible (llist-of-stream u)))
by (simp add: lselect-llength)

also have . . . = eSuc (llength (lproject visible (llist-of-stream v)))
unfolding assms(5) by rule

also have . . . = llength (lselect (lift (liset visible (llist-of-stream v)))
(llist-of-stream (smap int (q ## trace v q)))) by (simp add: lselect-llength)
finally show llength (lselect (lift (liset visible (llist-of-stream u)))
(llist-of-stream (smap int (q ## trace u q)))) = llength (lselect (lift (liset

visible (llist-of-stream v)))

98

(llist-of-stream (smap int (q ## trace v q)))) by this
next

fix i
assume 1 :

enat i < llength (lselect (lift (liset visible (llist-of-stream u)))
(llist-of-stream (smap int (q ## trace u q))))

enat i < llength (lselect (lift (liset visible (llist-of-stream v)))
(llist-of-stream (smap int (q ## trace v q))))

have 2 :
enat i ≤ llength (lproject visible (llist-of-stream u))
enat i ≤ llength (lproject visible (llist-of-stream v))
using 1 by (simp add: lselect-llength)+

define k where k ≡ nth-least (lift (liset visible (llist-of-stream u))) i
define l where l ≡ nth-least (lift (liset visible (llist-of-stream v))) i
have lselect (lift (liset visible (llist-of-stream u))) (llist-of-stream (smap

int (q ## trace u q))) ?! i =
int ((q ## trace u q) !! nth-least (lift (liset visible (llist-of-stream u))) i)
by (metis 1 (1) lnth-list-of-stream lselect-lnth snth-smap)

also have . . . = int ((q ## trace u q) !! k) unfolding k-def by rule
also have . . . = int ((q ## trace v q) !! l)
unfolding sscan-scons-snth
proof (rule execute-fin-visible)

show path (stake k u) q using assms(1) by (metis run-shift-elim
stake-sdrop)

show path (stake l v) q using assms(2) by (metis run-shift-elim
stake-sdrop)

show stake k u �F I w stake l v �F I w using assms(3 , 4) by auto
have project visible (stake k u) =

list-of (lproject visible (llist-of (stake k u))) by simp
also have . . . = list-of (lproject visible (ltake (enat k) (llist-of-stream

u)))
by (metis length-stake llength-llist-of llist-of-inf-llist-prefix lprefix-ltake

prefix-fininf-prefix)
also have . . . = list-of (ltake (enat i) (lproject visible (llist-of-stream u)))

unfolding k-def lproject-ltake[OF 2 (1)] by rule
also have . . . = list-of (ltake (enat i) (lproject visible (llist-of-stream v)))

unfolding assms(5) by rule
also have . . . = list-of (lproject visible (ltake (enat l) (llist-of-stream v)))

unfolding l-def lproject-ltake[OF 2 (2)] by rule
also have . . . = project visible (stake l v)

by (metis length-stake lfilter-llist-of list-of-llist-of llength-llist-of
llist-of-inf-llist-prefix lprefix-ltake prefix-fininf-prefix)

finally show project visible (stake k u) = project visible (stake l v) by
this

qed
also have . . . = int ((q ## trace v q) !! nth-least (lift (liset visible

(llist-of-stream v))) i)
unfolding l-def by simp

also have . . . = lselect (lift (liset visible (llist-of-stream v)))

99

(llist-of-stream (smap int (q ## trace v q))) ?! i
using 1 by (metis lnth-list-of-stream lselect-lnth snth-smap)

finally show lselect (lift (liset visible (llist-of-stream u)))
(llist-of-stream (smap int (q ## trace u q))) ?! i = lselect (lift (liset

visible (llist-of-stream v)))
(llist-of-stream (smap int (q ## trace v q))) ?! i by this

qed
qed
show ?thesis using 1 by simp

qed

end

end

18 Abstract Theory of Ample Set Partial Order
Reduction

theory Ample-Abstract
imports

Transition-System-Interpreted-Traces
Extensions/Relation-Extensions

begin

locale ample-base =
transition-system-interpreted-traces ex en int ind +
wellfounded-relation src
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and int :: ′state ⇒ ′interpretation
and ind :: ′action ⇒ ′action ⇒ bool
and src :: ′state ⇒ ′state ⇒ bool

begin

definition ample-set :: ′state ⇒ ′action set ⇒ bool
where ample-set q A ≡

A ⊆ {a. en a q} ∧
(A ⊂ {a. en a q} −→ A 6= {}) ∧
(∀ a. A ⊂ {a. en a q} −→ a ∈ A −→ src (ex a q) q) ∧
(A ⊂ {a. en a q} −→ A ⊆ invisible) ∧
(∀ w. A ⊂ {a. en a q} −→ path w q −→ A ∩ set w = {} −→ Ind A (set w))

lemma ample-subset:
assumes ample-set q A
shows A ⊆ {a. en a q}

100

using assms unfolding ample-set-def by auto

lemma ample-nonempty:
assumes ample-set q A A ⊂ {a. en a q}
shows A 6= {}
using assms unfolding ample-set-def by auto

lemma ample-wellfounded:
assumes ample-set q A A ⊂ {a. en a q} a ∈ A
shows src (ex a q) q
using assms unfolding ample-set-def by auto

lemma ample-invisible:
assumes ample-set q A A ⊂ {a. en a q}
shows A ⊆ invisible
using assms unfolding ample-set-def by auto

lemma ample-independent:
assumes ample-set q A A ⊂ {a. en a q} path w q A ∩ set w = {}
shows Ind A (set w)
using assms unfolding ample-set-def by auto

lemma ample-en[intro]: ample-set q {a. en a q} unfolding ample-set-def by
blast

end

locale ample-abstract =
S?: transition-system-complete ex en init int +
R: transition-system-complete ex ren init int +
ample-base ex en int ind src
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
and int :: ′state ⇒ ′interpretation
and ind :: ′action ⇒ ′action ⇒ bool
and src :: ′state ⇒ ′state ⇒ bool
and ren :: ′action ⇒ ′state ⇒ bool
+
assumes reduction-ample: q ∈ nodes =⇒ ample-set q {a. ren a q}

begin

lemma reduction-words-fin:
assumes q ∈ nodes R.path w q
shows S .path w q
using assms(2 , 1) ample-subset reduction-ample by induct auto

lemma reduction-words-inf :
assumes q ∈ nodes R.run w q
shows S .run w q

101

using reduction-words-fin assms by (auto intro: words-infI-construct)

lemma reduction-step:
assumes q ∈ nodes run w q
obtains
(deferred) a where ren a q [a] �F I w |
(omitted) {a. ren a q} ⊆ invisible Ind {a. ren a q} (sset w)

proof (cases {a. en a q} = {a. ren a q})
case True
have 1 : run (shd w ## sdrop 1 w) q using assms(2) by simp
show ?thesis
proof (rule deferred)

show ren (shd w) q using True 1 by blast
show [shd w] �F I w by simp

qed
next

case False
have 1 : {a. ren a q} ⊂ {a. en a q} using ample-subset reduction-ample

assms(1) False by auto
show ?thesis
proof (cases {a. ren a q} ∩ sset w = {})

case True
show ?thesis
proof (rule omitted)

show {a. ren a q} ⊆ invisible using ample-invisible reduction-ample
assms(1) 1 by auto

show Ind {a. ren a q} (sset w)
proof safe

fix a b
assume 2 : b ∈ sset w ren a q
obtain u v where 3 : w = u @− b ## v using split-stream-first ′ 2 (1)

by this
have 4 : Ind {a. ren a q} (set (u @ [b]))
proof (rule ample-independent)
show ample-set q {a. ren a q} using reduction-ample assms(1) by this
show {a. ren a q} ⊂ {a. en a q} using 1 by this
show path (u @ [b]) q using assms(2) 3 by blast
show {a. ren a q} ∩ set (u @ [b]) = {} using True 3 by auto

qed
show ind a b using 2 3 4 by auto

qed
qed

next
case False
obtain u a v where 2 : w = u @− a ## v {a. ren a q} ∩ set u = {} ren a

q
using split-stream-first[OF False] by auto

have 3 : path u q using assms(2) unfolding 2 (1) by auto

102

have 4 : Ind {a. ren a q} (set u)
using ample-independent reduction-ample assms(1) 1 3 2 (2) by this

have 5 : Ind (set [a]) (set u) using 4 2 (3) by simp
have 6 : [a] @ u =F u @ [a] using 5 by blast
show ?thesis
proof (rule deferred)

show ren a q using 2 (3) by this
have [a] �F I [a] @− u @− v by blast
also have [a] @− u @− v = ([a] @ u) @− v by simp
also have ([a] @ u) @− v =I (u @ [a]) @− v using 6 by blast
also have (u @ [a]) @− v = u @− [a] @− v by simp
also have . . . = w unfolding 2 (1) by simp
finally show [a] �F I w by this

qed
qed

qed

lemma reduction-chunk:
assumes q ∈ nodes run ([a] @− v) q
obtains b b1 b2 u
where

R.path (b @ [a]) q
Ind {a} (set b) set b ⊆ invisible
b =F b1 @ b2 b1 @− u =I v Ind (set b2) (sset u)

using wellfounded assms
proof (induct q arbitrary: thesis v rule: wfp-induct-rule)

case (less q)
show ?case
proof (cases ren a q)

case (True)
show ?thesis
proof (rule less(2))

show R.path ([] @ [a]) q using True by auto
show Ind {a} (set []) by auto
show set [] ⊆ invisible by auto
show [] =F [] @ [] by auto
show [] @− v =I v by auto
show Ind (set []) (sset v) by auto

qed
next

case (False)
have 0 : {a. en a q} 6= {a. ren a q} using False less(4) by auto
show ?thesis
using less(3 , 4)
proof (cases rule: reduction-step)

case (deferred c)
have 1 : ren c q using deferred(1) by simp
have 2 : ind a c

103

proof (rule le-fininf-ind ′′)
show [a] �F I [a] @− v by blast
show [c] �F I [a] @− v using deferred(2) by this
show a 6= c using False 1 by auto

qed
obtain v ′ where 3 : [a] @− v =I [c] @− [a] @− v ′

proof −
have 10 : [c] �F I v
proof (rule le-fininf-not-member ′)

show [c] �F I [a] @− v using deferred(2) by this
show c /∈ set [a] using False 1 by auto

qed
obtain v ′ where 11 : v =I [c] @− v ′ using 10 by blast
have 12 : Ind (set [a]) (set [c]) using 2 by auto
have 13 : [a] @ [c] =F [c] @ [a] using 12 by blast
have [a] @− v =I [a] @− [c] @− v ′ using 11 by blast
also have . . . = ([a] @ [c]) @− v ′ by simp
also have . . . =I ([c] @ [a]) @− v ′ using 13 by blast
also have . . . = [c] @− [a] @− v ′ by simp
finally show ?thesis using that by auto

qed
have 4 : run ([c] @− [a] @− v ′) q using eq-inf-word 3 less(4) by this
show ?thesis
proof (rule less(1))

show src (ex c q) q
using ample-wellfounded ample-subset reduction-ample less(3) 0 1 by

blast
have 100 : en c q using less(4) deferred(2) le-fininf-word by auto
show ex c q ∈ nodes using less(3) 100 by auto
show run ([a] @− v ′) (ex c q) using 4 by auto

next
fix b b1 b2 u
assume 5 : R.path (b @ [a]) (ex c q)
assume 6 : Ind {a} (set b)
assume 7 : set b ⊆ invisible
assume 8 : b =F b1 @ b2
assume 9 : b1 @− u =I v ′

assume 10 : Ind (set b2) (sset u)
show thesis
proof (rule less(2))

show R.path (([c] @ b) @ [a]) q using 1 5 by auto
show Ind {a} (set ([c] @ b)) using 6 2 by auto
have 11 : c ∈ invisible

using ample-invisible ample-subset reduction-ample less(3) 0 1 by
blast

show set ([c] @ b) ⊆ invisible using 7 11 by auto
have [c] @ b =F [c] @ b1 @ b2 using 8 by blast
also have [c] @ b1 @ b2 = ([c] @ b1) @ b2 by simp
finally show [c] @ b =F ([c] @ b1) @ b2 by this

104

show ([c] @ b1) @− u =I v
proof −

have 10 : Ind (set [a]) (set [c]) using 2 by auto
have 11 : [a] @ [c] =F [c] @ [a] using 10 by blast
have [a] @− v =I [c] @− [a] @− v ′ using 3 by this
also have . . . = ([c] @ [a]) @− v ′ by simp
also have . . . =I ([a] @ [c]) @− v ′ using 11 by blast
also have . . . = [a] @− [c] @− v ′ by simp
finally have 12 : [a] @− v =I [a] @− [c] @− v ′ by this
have 12 : v =I [c] @− v ′ using 12 by blast
have ([c] @ b1) @− u = [c] @− b1 @− u by simp
also have . . . =I [c] @− v ′ using 9 by blast
also have . . . =I v using 12 by blast
finally show ?thesis by this

qed
show Ind (set b2) (sset u) using 10 by this

qed
qed

next
case (omitted)
have 1 : {a. ren a q} ⊆ invisible using omitted(1) by simp
have 2 : Ind {a. ren a q} (sset ([a] @− v)) using omitted(2) by simp
obtain c where 3 : ren c q
proof −

have 1 : en a q using less(4) by auto
show ?thesis using reduction-ample ample-nonempty less(3) 1 that by

blast
qed
have 4 : Ind (set [c]) (sset ([a] @− v)) using 2 3 by auto
have 6 : path [c] q using reduction-ample ample-subset less(3) 3 by auto
have 7 : run ([a] @− v) (target [c] q) using diamond-fin-word-inf-word 4

6 less(4) by this
show ?thesis
proof (rule less(1))

show src (ex c q) q
using reduction-ample ample-wellfounded ample-subset less(3) 0 3 by

blast
show ex c q ∈ nodes using less(3) 6 by auto
show run ([a] @− v) (ex c q) using 7 by auto

next
fix b s b1 b2 u
assume 5 : R.path (b @ [a]) (ex c q)
assume 6 : Ind {a} (set b)
assume 7 : set b ⊆ invisible
assume 8 : b =F b1 @ b2
assume 9 : b1 @− u =I v
assume 10 : Ind (set b2) (sset u)
show thesis
proof (rule less(2))

105

show R.path (([c] @ b) @ [a]) q using 3 5 by auto
show Ind {a} (set ([c] @ b))
proof −

have 1 : ind c a using 4 by simp
have 2 : ind a c using independence-symmetric 1 by this
show ?thesis using 6 2 by auto

qed
have 11 : c ∈ invisible using 1 3 by auto
show set ([c] @ b) ⊆ invisible using 7 11 by auto
have 12 : Ind (set [c]) (set b1)
proof −

have 1 : set b1 ⊆ sset v using 9 by force
have 2 : Ind (set [c]) (sset v) using 4 by simp
show ?thesis using 1 2 by auto

qed
have [c] @ b =F [c] @ b1 @ b2 using 8 by blast
also have . . . = ([c] @ b1) @ b2 by simp
also have . . . =F (b1 @ [c]) @ b2 using 12 by blast
also have . . . = b1 @ [c] @ b2 by simp
finally show [c] @ b =F b1 @ [c] @ b2 by this
show b1 @− u =I v using 9 by this
have 13 : Ind (set [c]) (sset u)
proof −

have 1 : sset u ⊆ sset v using 9 by force
have 2 : Ind (set [c]) (sset v) using 4 by simp
show ?thesis using 1 2 by blast

qed
show Ind (set ([c] @ b2)) (sset u) using 10 13 by auto

qed
qed

qed
qed

qed

inductive reduced-run :: ′state ⇒ ′action list ⇒ ′action stream ⇒ ′action list
⇒

′action list ⇒ ′action list ⇒ ′action list ⇒ ′action stream ⇒ bool
where

init: reduced-run q [] v [] [] [] [] v |
absorb: reduced-run q v1 ([a] @− v2) l w w1 w2 u =⇒ a ∈ set l =⇒

reduced-run q (v1 @ [a]) v2 (remove1 a l) w w1 w2 u |
extend: reduced-run q v1 ([a] @− v2) l w w1 w2 u =⇒ a /∈ set l =⇒

R.path (b @ [a]) (target w q) =⇒
Ind {a} (set b) =⇒ set b ⊆ invisible =⇒
b =F b1 @ b2 =⇒ [a] @− b1 @− u ′ =I u =⇒ Ind (set b2) (sset u ′) =⇒
reduced-run q (v1 @ [a]) v2 (l @ b1) (w @ b @ [a]) (w1 @ b1 @ [a]) (w2 @

b2) u ′

106

lemma reduced-run-words-fin:
assumes reduced-run q v1 v2 l w w1 w2 u
shows R.path w q
using assms by induct auto

lemma reduced-run-invar-2 :
assumes reduced-run q v1 v2 l w w1 w2 u
shows v2 =I l @− u

using assms
proof induct

case (init q v)
show ?case by simp

next
case (absorb q v1 a v2 l w w1 w2 u)
obtain l1 l2 where 10 : l = l1 @ [a] @ l2 a /∈ set l1

using split-list-first[OF absorb(3)] by auto
have 11 : Ind {a} (set l1)
proof (rule le-fininf-ind ′)

show [a] �F I l @− u using absorb(2) by auto
show l1 �F I l @− u unfolding 10 (1) by auto
show a /∈ set l1 using 10 (2) by this

qed
have 12 : Ind (set [a]) (set l1) using 11 by auto
have [a] @ remove1 a l = [a] @ l1 @ l2 unfolding 10 (1) remove1-append

using 10 (2) by auto
also have . . . =F ([a] @ l1) @ l2 by simp
also have . . . =F (l1 @ [a]) @ l2 using 12 by blast
also have . . . = l unfolding 10 (1) by simp
finally have 13 : [a] @ remove1 a l =F l by this
have [a] @− remove1 a l @− u = ([a] @ remove1 a l) @− u unfolding

conc-conc by simp
also have . . . =I l @− u using 13 by blast
also have . . . =I [a] @− v2 using absorb(2) by auto
finally show ?case by blast

next
case (extend q v1 a v2 l w w1 w2 u b b1 b2 u ′)
have 11 : Ind {a} (set l)
proof (rule le-fininf-ind ′)

show [a] �F I l @− u using extend(2) by auto
show l �F I l @− u by auto
show a /∈ set l using extend(3) by this

qed
have 11 : Ind (set [a]) (set l) using 11 by auto
have 12 : eq-fin ([a] @ l) (l @ [a]) using 11 by blast
have 131 : set b1 ⊆ set b using extend(7) by auto
have 132 : Ind (set [a]) (set b) using extend(5) by auto
have 13 : Ind (set [a]) (set b1) using 131 132 by auto
have 14 : eq-fin ([a] @ b1) (b1 @ [a]) using 13 by blast
have [a] @− ((l @ b1) @− u ′) = ([a] @ l) @− b1 @− u ′ by simp

107

also have eq-inf . . . ((l @ [a]) @− b1 @− u ′) using 12 by blast
also have . . . = l @− [a] @− b1 @− u ′ by simp
also have eq-inf . . . (l @− u) using extend(8) by blast
also have eq-inf . . . ([a] @− v2) using extend(2) by auto
finally show ?case by blast

qed

lemma reduced-run-invar-1 :
assumes reduced-run q v1 v2 l w w1 w2 u
shows v1 @ l =F w1

using assms
proof induct

case (init q v)
show ?case by simp

next
case (absorb q v1 a v2 l w w1 w2 u)
have 1 : [a] @− v2 =I l @− u using reduced-run-invar-2 absorb(1) by this
obtain l1 l2 where 10 : l = l1 @ [a] @ l2 a /∈ set l1

using split-list-first[OF absorb(3)] by auto
have 11 : Ind {a} (set l1)
proof (rule le-fininf-ind ′)

show [a] �F I l @− u using 1 by auto
show l1 �F I l @− u unfolding 10 (1) by auto
show a /∈ set l1 using 10 (2) by this

qed
have 12 : Ind (set [a]) (set l1) using 11 by auto
have [a] @ remove1 a l = [a] @ l1 @ l2 unfolding 10 (1) remove1-append

using 10 (2) by auto
also have . . . =F ([a] @ l1) @ l2 by simp
also have . . . =F (l1 @ [a]) @ l2 using 12 by blast
also have . . . = l unfolding 10 (1) by simp
finally have 13 : [a] @ remove1 a l =F l by this
have w1 =F v1 @ l using absorb(2) by auto
also have . . . =F v1 @ ([a] @ remove1 a l) using 13 by blast
also have . . . = (v1 @ [a]) @ remove1 a l by simp
finally show ?case by auto

next
case (extend q v1 a v2 l w w1 w2 u b b1 b2 u ′)
have 1 : [a] @− v2 =I l @− u using reduced-run-invar-2 extend(1) by this
have 11 : Ind {a} (set l)
proof (rule le-fininf-ind ′)

show [a] �F I l @− u using 1 by auto
show l �F I l @− u by auto
show a /∈ set l using extend(3) by auto

qed
have 11 : Ind (set [a]) (set l) using 11 by auto
have 12 : eq-fin ([a] @ l) (l @ [a]) using 11 by blast
have 131 : set b1 ⊆ set b using extend(7) by auto
have 132 : Ind (set [a]) (set b) using extend(5) by auto

108

have 13 : Ind (set [a]) (set b1) using 131 132 by auto
have 14 : eq-fin ([a] @ b1) (b1 @ [a]) using 13 by blast
have eq-fin (w1 @ b1 @ [a]) (w1 @ [a] @ b1) using 14 by blast
also have eq-fin . . . ((v1 @ l) @ [a] @ b1) using extend(2) by blast
also have eq-fin . . . (v1 @ (l @ [a]) @ b1) by simp
also have eq-fin . . . (v1 @ ([a] @ l) @ b1) using 12 by blast
also have . . . = (v1 @ [a]) @ l @ b1 by simp
finally show ?case by auto

qed

lemma reduced-run-invisible:
assumes reduced-run q v1 v2 l w w1 w2 u
shows set w2 ⊆ invisible

using assms
proof induct

case (init q v)
show ?case by simp

next
case (absorb q v1 a v2 l w w1 w2 u)
show ?case using absorb(2) by this

next
case (extend q v1 a v2 l w w1 w2 u b b1 b2 u ′)
have 1 : set b2 ⊆ set b using extend(7) by auto
show ?case unfolding set-append using extend(2) extend(6) 1 by blast

qed

lemma reduced-run-ind:
assumes reduced-run q v1 v2 l w w1 w2 u
shows Ind (set w2) (sset u)

using assms
proof induct

case (init q v)
show ?case by simp

next
case (absorb q v1 a v2 l w w1 w2 u)
show ?case using absorb(2) by this

next
case (extend q v1 a v2 l w w1 w2 u b b1 b2 u ′)
have 1 : sset u ′ ⊆ sset u using extend(8) by force
show ?case using extend(2) extend(9) 1 unfolding set-append by blast

qed

lemma reduced-run-decompose:
assumes reduced-run q v1 v2 l w w1 w2 u
shows w =F w1 @ w2

using assms
proof induct

case (init q v)
show ?case by simp

109

next
case (absorb q v1 a v2 l w w1 w2 u)
show ?case using absorb(2) by this

next
case (extend q v1 a v2 l w w1 w2 u b b1 b2 u ′)
have 1 : Ind (set [a]) (set b2) using extend(5) extend(7) by auto
have 2 : Ind (set w2) (set (b1 @ [a]))
proof −

have 1 : Ind (set w2) (sset u) using reduced-run-ind extend(1) by this
have 2 : u =I [a] @− b1 @− u ′ using extend(8) by auto
have 3 : sset u = sset ([a] @− b1 @− u ′) using 2 by blast
show ?thesis unfolding set-append using 1 3 by simp

qed
have w @ b @ [a] =F (w1 @ w2) @ b @ [a] using extend(2) by blast
also have . . . =F (w1 @ w2) @ (b1 @ b2) @ [a] using extend(7) by blast
also have . . . = w1 @ w2 @ b1 @ (b2 @ [a]) by simp
also have . . . =F w1 @ w2 @ b1 @ ([a] @ b2) using 1 by blast
also have . . . =F w1 @ (w2 @ (b1 @ [a])) @ b2 by simp
also have . . . =F w1 @ ((b1 @ [a]) @ w2) @ b2 using 2 by blast
also have . . . =F (w1 @ b1 @ [a]) @ w2 @ b2 by simp
finally show ?case by this

qed

lemma reduced-run-project:
assumes reduced-run q v1 v2 l w w1 w2 u
shows project visible w1 = project visible w

proof −
have 1 : w1 @ w2 =F w using reduced-run-decompose assms by auto
have 2 : set w2 ⊆ invisible using reduced-run-invisible assms by this
have 3 : project visible w2 = [] unfolding filter-empty-conv using 2 by auto
have project visible w1 = project visible w1 @ project visible w2 using 3 by

simp
also have . . . = project visible (w1 @ w2) by simp
also have . . . = list-of (lproject visible (llist-of (w1 @ w2))) by simp
also have . . . = list-of (lproject visible (llist-of w))

using eq-fin-lproject-visible 1 by metis
also have . . . = project visible w by simp
finally show ?thesis by this

qed

lemma reduced-run-length-1 :
assumes reduced-run q v1 v2 l w w1 w2 u
shows length v1 ≤ length w1

using reduced-run-invar-1 assms by force
lemma reduced-run-length:

assumes reduced-run q v1 v2 l w w1 w2 u
shows length v1 ≤ length w

proof −
have length v1 ≤ length w1 using reduced-run-length-1 assms by this

110

also have . . . ≤ length w using reduced-run-decompose assms by force
finally show ?thesis by this

qed

lemma reduced-run-step:
assumes q ∈ nodes run (v1 @− [a] @− v2) q
assumes reduced-run q v1 ([a] @− v2) l w w1 w2 u
obtains l ′ w ′ w1

′ w2
′ u ′

where reduced-run q (v1 @ [a]) v2 l ′ (w @ w ′) (w1 @ w1
′) (w2 @ w2

′) u ′

proof (cases a ∈ set l)
case True
show ?thesis
proof (rule that, rule absorb)

show reduced-run q v1 ([a] @− v2) l (w @ []) (w1 @ []) (w2 @ []) u using
assms(3) by simp

show a ∈ set l using True by this
qed

next
case False
have 1 : v1 @ l =F w1 using reduced-run-invar-1 assms(3) by this
have 2 : [a] @− v2 =I l @− u using reduced-run-invar-2 assms(3) by this
have 3 : w =F w1 @ w2 using reduced-run-decompose assms(3) by this
have v1 @ l @ w2 = (v1 @ l) @ w2 by simp
also have . . . =F w1 @ w2 using 1 by blast
also have . . . =F w using 3 by blast
finally have 4 : v1 @ l @ w2 =F w by this
have 5 : run ((v1 @ l) @− w2 @− u) q
proof (rule diamond-fin-word-inf-word ′)

show Ind (set w2) (sset u) using reduced-run-ind assms(3) by this
have 6 : R.path w q using reduced-run-words-fin assms(3) by this
have 7 : path w q using reduction-words-fin assms(1) 6 by auto
show path ((v1 @ l) @ w2) q using eq-fin-word 4 7 by auto
have 8 : v1 @− [a] @− v2 =I v1 @− l @− u using 2 by blast
show run ((v1 @ l) @− u) q using eq-inf-word assms(2) 8 by auto

qed
have 6 : run (w @− u) q using eq-inf-word 4 5 by (metis eq-inf-concat-end

shift-append)
have 7 : [a] �F I l @− u using 2 by blast
have 8 : [a] �F I u using le-fininf-not-member ′ 7 False by this
obtain u ′ where 9 : u =I [a] @− u ′ using 8 by rule
have 101 : target w q ∈ nodes using assms(1) 6 by auto
have 10 : run ([a] @− u ′) (target w q) using eq-inf-word 9 6 by blast
obtain b b1 b2 u ′′ where 11 :

R.path (b @ [a]) (target w q)
Ind {a} (set b) set b ⊆ invisible
b =F b1 @ b2 b1 @− u ′′ =I u ′ Ind (set b2) (sset u ′′)
using reduction-chunk 101 10 by this

show ?thesis
proof (rule that, rule extend)

111

show reduced-run q v1 ([a] @− v2) l w w1 w2 u using assms(3) by this
show a /∈ set l using False by this
show R.path (b @ [a]) (target w q) using 11 (1) by this
show Ind {a} (set b) using 11 (2) by this
show set b ⊆ invisible using 11 (3) by this
show b =F b1 @ b2 using 11 (4) by this
show [a] @− b1 @− u ′′ =I u using 9 11 (5) by blast
show Ind (set b2) (sset u ′′) using 11 (6) by this

qed
qed

lemma reduction-word:
assumes q ∈ nodes run v q
obtains u w
where

R.run w q
v =I u u �I w
lproject visible (llist-of-stream u) = lproject visible (llist-of-stream w)

proof −
define P where P ≡ λ k w w1. ∃ l w2 u. reduced-run q (stake k v) (sdrop k

v) l w w1 w2 u
obtain w w1 where 1 :

∧
k. P k (w k) (w1 k) chain w chain w1

proof (rule chain-construct-2 ′[of P])
show P 0 [] [] unfolding P-def using init by force

next
fix k w w1

assume 1 : P k w w1

obtain l w2 u where 2 : reduced-run q (stake k v) (sdrop k v) l w w1 w2 u
using 1 unfolding P-def by auto

obtain l ′ w ′ w1
′ w2

′ u ′ where 3 :
reduced-run q (stake k v @ [v !! k]) (sdrop (Suc k) v) l ′ (w @ w ′) (w1 @

w1
′) (w2 @ w2

′) u ′

proof (rule reduced-run-step)
show q ∈ nodes using assms(1) by this
show run (stake k v @− [v !! k] @− sdrop (Suc k) v) q

using assms(2) by (metis shift-append stake-Suc stake-sdrop)
show reduced-run q (stake k v) ([v !! k] @− sdrop (Suc k) v) l w w1 w2 u

using 2 by (metis sdrop-simps shift.simps stream.collapse)
qed
show ∃ w ′ w1

′. P (Suc k) w ′ w1
′ ∧ w ≤ w ′ ∧ w1 ≤ w1

′

unfolding P-def using 3 by (metis prefix-fin-append stake-Suc)
show k ≤ length w using reduced-run-length 2 by force
show k ≤ length w1 using reduced-run-length-1 2 by force

qed rule
obtain l w2 u where 2 :∧

k. reduced-run q (stake k v) (sdrop k v) (l k) (w k) (w1 k) (w2 k) (u k)
using 1 (1) unfolding P-def by metis

show ?thesis

112

proof
show R.run (Word-Prefixes.limit w) q using reduced-run-words-fin 1 (2) 2

by blast
show v =I Word-Prefixes.limit w1

proof
show v �I Word-Prefixes.limit w1

proof (rule le-infI-chain-right ′)
show chain w1 using 1 (3) by this
show

∧
k. stake k v �F w1 k using reduced-run-invar-1 [OF 2] by auto

qed
show Word-Prefixes.limit w1 �I v
proof (rule le-infI-chain-left)

show chain w1 using 1 (3) by this
next

fix k
have w1 k =F stake k v @ l k using reduced-run-invar-1 2 by blast
also have . . . ≤F I stake k v @− l k @− u k by auto
also have . . . =I stake k v @− sdrop k v using reduced-run-invar-2 [OF

2] by blast
also have . . . = v by simp
finally show w1 k �F I v by this

qed
qed
show Word-Prefixes.limit w1 �I Word-Prefixes.limit w
proof (rule le-infI-chain-left)

show chain w1 using 1 (3) by this
next

fix k
have w1 k �F w k using reduced-run-decompose[OF 2] by blast

also have . . . ≤F I Word-Prefixes.limit w using chain-prefix-limit 1 (2) by
this

finally show w1 k �F I Word-Prefixes.limit w by this
qed
show lproject visible (llist-of-stream (Word-Prefixes.limit w1)) =

lproject visible (llist-of-stream (Word-Prefixes.limit w))
using lproject-eq-limit-chain reduced-run-project 1 unfolding P-def by

metis
qed

qed

lemma reduction-equivalent:
assumes q ∈ nodes run u q
obtains v
where R.run v q snth (smap int (q ## trace u q)) ≈ snth (smap int (q ##

trace v q))
proof −

obtain v w where 1 : R.run w q u =I v v �I w
lproject visible (llist-of-stream v) = lproject visible (llist-of-stream w)

113

using reduction-word assms by this
show ?thesis
proof

show R.run w q using 1 (1) by this
show snth (smap int (q ## trace u q)) ≈ snth (smap int (q ## trace w q))
proof (rule execute-inf-visible)

show run u q using assms(2) by this
show run w q using reduction-words-inf assms(1) 1 (1) by auto
have u =I v using 1 (2) by this
also have . . . �I w using 1 (3) by this
finally show u �I w by this
show w �I w by simp
have lproject visible (llist-of-stream u) = lproject visible (llist-of-stream v)

using eq-inf-lproject-visible 1 (2) by this
also have . . . = lproject visible (llist-of-stream w) using 1 (4) by this

finally show lproject visible (llist-of-stream u) = lproject visible (llist-of-stream
w) by this

qed
qed

qed

lemma reduction-language-subset: R.language ⊆ S .language
unfolding S .language-def R.language-def using reduction-words-inf by blast

lemma reduction-language-stuttering:
assumes u ∈ S .language
obtains v
where v ∈ R.language snth u ≈ snth v

proof −
obtain q v where 1 : u = smap int (q ## trace v q) init q S .run v q using

assms by rule
obtain v ′ where 2 : R.run v ′ q snth (smap int (q ## trace v q)) ≈ snth

(smap int (q ## trace v ′ q))
using reduction-equivalent 1 (2 , 3) by blast

show ?thesis
proof (intro that R.languageI)

show smap int (q ## trace v ′ q) = smap int (q ## trace v ′ q) by rule
show init q using 1 (2) by this
show R.run v ′ q using 2 (1) by this
show snth u ≈ snth (smap int (q ## trace v ′ q)) unfolding 1 (1) using

2 (2) by this
qed

qed

end

end

114

19 LTL Formulae
theory Formula
imports

Basics/Stuttering
Stuttering-Equivalence.PLTL

begin

locale formula =
fixes ϕ :: ′a pltl

begin

definition language :: ′a stream set
where language ≡ {w. snth w |=p ϕ}

lemma language-entails[iff]: w ∈ language ←→ snth w |=p ϕ unfolding lan-
guage-def by simp

end

locale formula-next-free =
formula ϕ
for ϕ :: ′a pltl
+
assumes next-free: next-free ϕ

begin

lemma stutter-equivalent-entails[dest]: u ≈ v =⇒ u |=p ϕ ←→ v |=p ϕ
using next-free-stutter-invariant next-free by blast

end

end

20 Correctness Theorem of Partial Order Reduc-
tion

theory Ample-Correctness
imports

Ample-Abstract
Formula

begin

locale ample-correctness =
S : transition-system-complete ex en init int +
R: transition-system-complete ex ren init int +
F : formula-next-free ϕ +
ample-abstract ex en init int ind src ren

115

for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
and int :: ′state ⇒ ′interpretation
and ind :: ′action ⇒ ′action ⇒ bool
and src :: ′state ⇒ ′state ⇒ bool
and ren :: ′action ⇒ ′state ⇒ bool
and ϕ :: ′interpretation pltl

begin

lemma reduction-language-indistinguishable:
assumes R.language ⊆ F .language
shows S .language ⊆ F .language

proof
fix u
assume 1 : u ∈ S .language

obtain v where 2 : v ∈ R.language snth u ≈ snth v using reduction-language-stuttering
1 by this

have 3 : v ∈ F .language using assms 2 (1) by rule
show u ∈ F .language using 2 (2) 3 by auto

qed

theorem reduction-correct: S .language ⊆ F .language←→ R.language ⊆ F .language
using reduction-language-subset reduction-language-indistinguishable by blast

end

end

21 Static Analysis for Partial Order Reduction
theory Ample-Analysis
imports

Ample-Abstract
begin

locale transition-system-ample =
transition-system-sticky ex en init int sticky +
transition-system-interpreted-traces ex en int ind
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
and int :: ′state ⇒ ′interpretation
and sticky :: ′action set
and ind :: ′action ⇒ ′action ⇒ bool

begin

sublocale ample-base ex en int ind scut−1−1 by unfold-locales

116

lemma restrict-ample-set:
assumes s ∈ nodes
assumes A ∩ {a. en a s} 6= {} A ∩ {a. en a s} ∩ sticky = {}
assumes Ind (A ∩ {a. en a s}) (executable − A)
assumes

∧
w. path w s =⇒ A ∩ {a. en a s} ∩ set w = {} =⇒ A ∩ set w =

{}
shows ample-set s (A ∩ {a. en a s})

unfolding ample-set-def
proof (intro conjI allI impI)

show A ∩ {a. en a s} ⊆ {a. en a s} by simp
next

show A ∩ {a. en a s} 6= {} using assms(2) by this
next

fix a
assume 1 : a ∈ A ∩ {a. en a s}
show scut−1−1 (ex a s) s
proof (rule no-cut-scut)

show s ∈ nodes using assms(1) by this
show en a s using 1 by simp
show a /∈ sticky using assms(3) 1 by auto

qed
next

have 1 : A ∩ {a. en a s} ⊆ executable using executable assms(1) by blast
show A ∩ {a. en a s} ⊆ invisible using executable-visible-sticky assms(3) 1

by blast
next

fix w
assume 1 : path w s A ∩ {a. en a s} ∩ set w = {}
have 2 : A ∩ set w = {} using assms(5) 1 by this
have 3 : set w ⊆ executable using assms(1) 1 (1) by rule
show Ind (A ∩ {a. en a s}) (set w) using assms(4) 2 3 by blast

qed

end

locale transition-system-concurrent =
transition-system-initial ex en init
for ex :: ′action ⇒ ′state ⇒ ′state
and en :: ′action ⇒ ′state ⇒ bool
and init :: ′state ⇒ bool
+
fixes procs :: ′state ⇒ ′process set
fixes pac :: ′process ⇒ ′action set
fixes psen :: ′process ⇒ ′state ⇒ ′action set
assumes procs-finite: s ∈ nodes =⇒ finite (procs s)
assumes psen-en: s ∈ nodes =⇒ pac p ∩ {a. en a s} ⊆ psen p s
assumes psen-ex: s ∈ nodes =⇒ a ∈ {a. en a s} − pac p =⇒ psen p (ex a s)

= psen p s
begin

117

lemma psen-fin-word:
assumes s ∈ nodes path w s pac p ∩ set w = {}
shows psen p (target w s) = psen p s

using assms(2 , 1 , 3)
proof induct

case (nil s)
show ?case by simp

next
case (cons a s w)
have 1 : ex a s ∈ nodes using cons(4 , 1) by rule
have psen p (target (a # w) s) = psen p (target w (ex a s)) by simp
also have . . . = psen p (ex a s) using cons 1 by simp
also have . . . = psen p s using psen-ex cons by simp
finally show ?case by this

qed

lemma en-fin-word:
assumes

∧
r a b. r ∈ nodes =⇒ a ∈ psen p s − {a. en a s} =⇒ b ∈ {a. en

a r} − pac p =⇒
en a (ex b r) =⇒ en a r

assumes s ∈ nodes path w s pac p ∩ set w = {}
shows pac p ∩ {a. en a (target w s)} ⊆ pac p ∩ {a. en a s}

using assms
proof (induct w rule: rev-induct)

case Nil
show ?case by simp

next
case (snoc b w)
show ?case
proof (safe, rule ccontr)

fix a
assume 2 : a ∈ pac p en a (target (w @ [b]) s) ¬ en a s
have 3 : a ∈ psen p s
proof −
have 3 : psen p (target (w @ [b]) s) = psen p s using psen-fin-word snoc(3 ,

4 , 5) by this
have 4 : target (w @ [b]) s ∈ nodes using snoc(3 , 4) by rule
have 5 : a ∈ psen p (target (w @ [b]) s) using psen-en 4 2 (1 , 2) by auto
show ?thesis using 2 (1) 3 5 by auto

qed
have 4 : en a (target w s)
proof (rule snoc(2))

show target w s ∈ nodes using snoc(3 , 4) by auto
show a ∈ psen p s − {a. en a s} using 2 (3) 3 by simp
show b ∈ {a. en a (target w s)} − pac p using snoc(4 , 5) by auto
show en a (ex b (target w s)) using 2 (2) by simp

qed
have 5 : pac p ∩ {a. en a (target w s)} ⊆ pac p ∩ {a. en a s}

118

proof (rule snoc(1))
show

∧
r a b. r ∈ nodes =⇒ a ∈ psen p s − {a. en a s} =⇒ b ∈ {a. en

a r} − pac p =⇒
en a (ex b r) =⇒ en a r using snoc(2) by this

show s ∈ nodes using snoc(3) by this
show path w s using snoc(4) by auto
show pac p ∩ set w = {} using snoc(5) by auto

qed
have 6 : en a s using 2 (1) 4 5 by auto
show False using 2 (3) 6 by simp

qed
qed

lemma pac-en-blocked:
assumes

∧
r a b. r ∈ nodes =⇒ a ∈ psen p s − {a. en a s} =⇒ b ∈ {a. en

a r} − pac p =⇒
en a (ex b r) =⇒ en a r

assumes s ∈ nodes path w s pac p ∩ {a. en a s} ∩ set w = {}
shows pac p ∩ set w = {}
using words-fin-blocked en-fin-word assms by metis

abbreviation proc a ≡ {p. a ∈ pac p}
abbreviation Proc A ≡

⋃
a ∈ A. proc a

lemma psen-simple:
assumes Proc (psen p s) = {p}
assumes

∧
r a b. r ∈ nodes =⇒ a ∈ psen p s − {a. en a s} =⇒ en b r =⇒

proc a ∩ proc b = {} =⇒ en a (ex b r) =⇒ en a r
shows

∧
r a b. r ∈ nodes =⇒ a ∈ psen p s − {a. en a s} =⇒ b ∈ {a. en a

r} − pac p =⇒
en a (ex b r) =⇒ en a r

using assms by force

end

end

References
[1] C.-T. Chou and D. Peled. Formal verification of a partial-order reduction

technique for model checking. In T. Margaria and B. Steffen, editors,
Tools and Algorithms for the Construction and Analysis of Systems, vol-
ume 1055 of Lecture Notes in Computer Science, pages 241–257. Springer
Berlin Heidelberg, 1996.

[2] D. Peled. Combining partial order reductions with on-the-fly model-
checking. Formal Methods in System Design, 8(1):39–64, 1996.

119

	List Prefixes
	Lists
	Finite Prefixes of Infinite Sequences
	Sets
	Basics
	Types
	Rules
	Constants
	Theorems for @termcurry and @termsplit

	Relations
	Transition Systems
	Trace Theory
	Transition Systems and Trace Theory
	Functions
	Extended Natural Numbers
	Chain-Complete Partial Orders
	Sets and Extended Natural Numbers
	Coinductive Lists
	Index Sets
	Selections

	Prefixes on Coinductive Lists
	Stuttering
	Interpreted Transition Systems and Traces
	Abstract Theory of Ample Set Partial Order Reduction
	LTL Formulae
	Correctness Theorem of Partial Order Reduction
	Static Analysis for Partial Order Reduction

