# Partial Order Reduction

### Julian Brunner

# $March\ 17,\ 2025$

#### Abstract

This entry provides a formalization of the abstract theory of ample set partial order reduction as presented in [2, 1]. The formalization includes transition systems with actions, trace theory, as well as basics on finite, infinite, and lazy sequences. We also provide a basic framework for static analysis on concurrent systems with respect to the ample set condition.

# Contents

| 1  | List Prefixes                         | 2                          |
|----|---------------------------------------|----------------------------|
| 2  | Lists                                 | 3                          |
| 3  | Finite Prefixes of Infinite Sequences | 5                          |
| 4  | Sets                                  | 11                         |
| 5  | Basics 5.1 Types                      | 18<br>18<br>18<br>19<br>21 |
| 6  | Relations                             | 23                         |
| 7  | Transition Systems                    | <b>25</b>                  |
| 8  | Trace Theory                          | 30                         |
| 9  | Transition Systems and Trace Theory   | <b>50</b>                  |
| 10 | Functions                             | 53                         |
| 11 | Extended Natural Numbers              | <b>55</b>                  |

| 12 Chain-Complete Partial Orders                                                                                                                                                                                                                           | <b>55</b> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 13 Sets and Extended Natural Numbers                                                                                                                                                                                                                       | <b>59</b> |
| 14 Coinductive Lists         14.1 Index Sets                                                                                                                                                                                                               |           |
| 15 Prefixes on Coinductive Lists                                                                                                                                                                                                                           | 87        |
| 16 Stuttering                                                                                                                                                                                                                                              | 89        |
| 17 Interpreted Transition Systems and Traces                                                                                                                                                                                                               | 94        |
| 18 Abstract Theory of Ample Set Partial Order Reduction                                                                                                                                                                                                    | 100       |
| 19 LTL Formulae                                                                                                                                                                                                                                            | 115       |
| 20 Correctness Theorem of Partial Order Reduction                                                                                                                                                                                                          | 115       |
| 21 Static Analysis for Partial Order Reduction                                                                                                                                                                                                             | 116       |
| 1 List Prefixes                                                                                                                                                                                                                                            |           |
| theory List-Prefixes imports HOL—Library.Prefix-Order begin                                                                                                                                                                                                |           |
| $\begin{array}{l} \textbf{lemmas} \ [intro] = prefixI \ strict\text{-}prefixI[folded \ less\text{-}eq\text{-}list\text{-}def]} \\ \textbf{lemmas} \ [elim] = prefixE \ strict\text{-}prefixE[folded \ less\text{-}eq\text{-}list\text{-}def]} \end{array}$ |           |
| $\mathbf{lemmas} \ [\mathit{intro?}] = \mathit{take-is-prefix}[\mathit{folded} \ \mathit{less-eq-list-def}]$                                                                                                                                               |           |
| $\mathbf{hide\text{-}const}\ (\mathbf{open})\ \mathit{Sublist.prefix}\ \mathit{Sublist.suffix}$                                                                                                                                                            |           |
| lemma $prefix$ - $finI$ - $item[intro!]$ :  assumes $a = b \ u \le v$ shows $a \# u \le b \# v$ using $assms$ by $force$ lemma $prefix$ - $finE$ - $item[elim!]$ :  assumes $a \# u \le b \# v$ obtains $a = b \ u \le v$ using $assms$ by $force$         |           |
| lemma $prefix$ - $fin$ - $append[intro]$ : $u \le u @ v$ by $auto$ lemma $pprefix$ - $fin$ - $length[dest]$ : assumes $u < v$ shows $length \ u < length \ v$                                                                                              |           |

```
proof – obtain a w where 1: v = u @ a # w using assms by rule show ?thesis unfolding 1 by simp qed end
```

#### 2 Lists

```
theory List-Extensions
imports HOL-Library.Sublist
begin
 declare remove1-idem[simp]
 lemma nth-append-simps[simp]:
   i < length \ xs \Longrightarrow (xs @ ys) ! \ i = xs ! \ i
   i \geq length \ xs \Longrightarrow (xs @ ys) ! \ i = ys ! \ (i - length \ xs)
   unfolding nth-append by simp+
 notation zip (infixr \langle || \rangle 51)
 abbreviation project A \equiv filter \ (\lambda \ a. \ a \in A)
 abbreviation select s \ w \equiv nths \ w \ s
 lemma map-plus[simp]: map (plus n) [i ..< j] = [i + n ..< j + n]
 proof (induct n)
   case \theta
   show ?case by simp
  next
   case (Suc \ n)
   have map (plus (Suc n)) [i ... < j] = map (Suc \circ plus n) [i ... < j] by simp
   also have ... = (map \ Suc \circ map \ (plus \ n)) \ [i \ .. < j] by simp
   also have \dots = map \ Suc \ (map \ (plus \ n) \ [i \ .. < j]) by simp
   also have ... = map \ Suc \ [i + n \ .. < j + n] unfolding Suc \ by \ simp
   also have ... = [Suc\ (i+n)\ ..< Suc\ (j+n)] unfolding map-Suc-upt by simp
   also have \dots = [i + Suc \ n \ ... < j + Suc \ n] by simp
   finally show ?case by this
 \mathbf{qed}
 lemma singleton-list-lengthE[elim]:
   assumes length xs = 1
   obtains x
   where xs = [x]
   have \theta: length xs = Suc \ \theta using assms by simp
   obtain y ys where 1: xs = y \# ys length ys = 0 using 0 Suc-length-conv by
   show ?thesis using that 1 by blast
```

```
qed
```

```
lemma singleton-hd-last: length xs = 1 \implies hd \ xs = last \ xs \ by \ fastforce
 lemma set-subsetI[intro]:
   assumes \bigwedge i. i < length xs \Longrightarrow xs ! i \in S
   shows set xs \subseteq S
 proof
   \mathbf{fix} \ x
   assume \theta: x \in set xs
   obtain i where 1: i < length xs x = xs ! i using 0 unfolding in-set-conv-nth
   show x \in S using assms(1) 1 by auto
 qed
 lemma hd-take[simp]:
   assumes n \neq 0 \ xs \neq []
   shows hd (take n xs) = hd xs
 proof -
   have 1: take n \ xs \neq [] using assms by simp
   have 2: 0 < n using assms by simp
   have hd (take n xs) = take n xs! 0 using hd-conv-nth[OF\ 1] by this
   also have \dots = xs ! \theta using nth-take [OF 2] by this
   also have ... = hd xs using hd-conv-nth[OF assms(2)] by simp
   finally show ?thesis by this
 qed
 lemma hd-drop[simp]:
   assumes n < length xs
   shows hd (drop \ n \ xs) = xs ! n
   using hd-drop-conv-nth assms by this
 lemma last-take[simp]:
   assumes n < length xs
   shows last (take\ (Suc\ n)\ xs) = xs!\ n
 using assms
 proof (induct xs arbitrary: n)
   case (Nil)
   show ?case using Nil by simp
   case (Cons \ x \ xs)
   show ?case using Cons by (auto) (metis Suc-less-eq Suc-pred)
 \mathbf{qed}
 lemma split-list-first-unique:
   assumes u_1 @ [a] @ u_2 = v_1 @ [a] @ v_2 a \notin set u_1 a \notin set v_1
   shows u_1 = v_1
 proof -
   obtain w where u_1 = v_1 @ w \wedge w @ [a] @ u_2 = [a] @ v_2 \vee
   u_1 @ w = v_1 \land [a] @ u_2 = w @ [a] @ v_2  using assms(1) append-eq-append-conv2
\mathbf{by} blast
```

```
thus ?thesis using assms(2, 3) by (auto) (metis\ hd-append2\ list.sel(1)\ list.set-sel(1))+ qed
```

end

## 3 Finite Prefixes of Infinite Sequences

```
theory Word-Prefixes
imports
 List-Prefixes
 ../Extensions/List-Extensions
  Transition\hbox{-}Systems\hbox{-}and\hbox{-}Automata. Sequence
begin
 definition prefix-fininf :: 'a list \Rightarrow 'a stream \Rightarrow bool (infix \langle \leq_{FI} \rangle 50)
   where u \leq_{FI} v \equiv \exists w. u @-w = v
 lemma prefix-fininfI[intro]:
   assumes u @- w = v
   shows u \leq_{FI} v
   using assms unfolding prefix-fininf-def by auto
  lemma prefix-fininfE[elim]:
   assumes u \leq_{FI} v
   obtains w
   where v = u @- w
   using assms unfolding prefix-fininf-def by auto
  lemma prefix-fininfI-empty[intro!]: [] \leq_{FI} w by force
  lemma prefix-fininfI-item[intro!]:
   assumes a = b \ u \leq_{FI} v
   shows a \# u \leq_{FI} b \# \# v
   using assms by force
  lemma prefix-fininfE-item[elim!]:
   assumes a \# u \leq_{FI} b \# \# v
   obtains a = b \ u \leq_{FI} v
   using assms by force
 lemma prefix-fininf-item[simp]: a \# u \leq_{FI} a \# \# v \longleftrightarrow u \leq_{FI} v by force
 lemma prefix-fininf-list[simp]: w @ u \leq_{FI} w @ - v \longleftrightarrow u \leq_{FI} v by (induct w,
auto)
 lemma prefix-fininf-conc[intro]: u \leq_{FI} u @-v by auto
 lemma prefix-fininf-prefix[intro]: stake k \ w \leq_{FI} w using stake-sdrop by blast
 lemma prefix-fininf-set-range[dest]: u \leq_{FI} v \Longrightarrow set \ u \subseteq sset \ v \ by \ auto
  lemma prefix-fininf-absorb:
   assumes u \leq_{FI} v @- w \ length \ u \leq \ length \ v
   shows u \leq v
  proof -
   obtain x where 1: u @- x = v @- w using assms(1) by auto
```

```
have u \le u @ stake (length v - length u) x by rule
   also have ... = stake (length v) (u @- x) using assms(2) by (simp add:
stake-shift)
   also have ... = stake (length v) (v @- w) unfolding 1 by rule
   also have \dots = v using eq-shift by blast
   finally show ?thesis by this
 qed
 lemma prefix-fininf-extend:
   assumes u \leq_{FI} v @- w \ length \ v \leq \ length \ u
   shows v \leq u
 proof -
   obtain x where 1: u @- x = v @- w using assms(1) by auto
   have v \leq v \otimes stake (length u - length v) w by rule
   also have ... = stake (length \ u) (v @- w) using assms(2) by (simp \ add:
stake-shift)
   also have ... = stake (length u) (u @- x) unfolding 1 by rule
   also have \dots = u using eq-shift by blast
   finally show ?thesis by this
 lemma prefix-fininf-length:
   assumes u \leq_{FI} w v \leq_{FI} w length u \leq length v
   shows u \leq v
 proof -
   obtain u' v' where 1: w = u @- u' w = v @- v' using assms(1, 2) by
blast+
   have u = stake (length u) (u @- u') using shift-eq by blast
   also have \dots = stake (length \ u) \ w \ unfolding \ 1(1) \ by \ rule
   also have ... = stake (length u) (v @- v') unfolding 1(2) by rule
   also have ... = take (length \ u) \ v  using assms by (simp \ add: min.absorb2)
stake-append)
   also have \dots \leq v by rule
   finally show ?thesis by this
 qed
 lemma prefix-fininf-append:
   assumes u \leq_{FI} v @- w
   obtains (absorb) u \leq v \mid (extend) z where u = v @ z z \leq_{FI} w
 proof (cases length u length v rule: le-cases)
   case le
   obtain x where 1: u @- x = v @- w using assms(1) by auto
   show ?thesis
   proof (rule absorb)
    have u \leq u @ stake (length v - length u) x by rule
    also have ... = stake (length \ v) (u @- x)  using le  by (simp \ add: stake-shift)
    also have ... = stake (length \ v) (v @- w) unfolding 1 by rule
    also have \dots = v using eq-shift by blast
    finally show u \leq v by this
   qed
 next
```

```
case qe
   obtain x where 1: u @- x = v @- w using assms(1) by auto
   \mathbf{show} \ ?thesis
   proof (rule extend)
     have u = stake (length u) (u @- x) using shift-eq by auto
     also have \dots = stake \ (length \ u) \ (v @- w) \ unfolding \ 1 \ by \ rule
     also have \dots = v \otimes stake (length \ u - length \ v) \ w  using ge by (simp \ add:
stake-shift)
     finally show u = v \otimes stake (length u - length v) w by this
     show stake (length u - length v) w \leq_{FI} w by rule
   qed
 qed
 lemma prefix-fin-prefix-fininf-trans[trans, intro]: u \leq v \implies v \leq_{FI} w \implies u \leq_{FI}
   by (metis Prefix-Order.prefixE prefix-fininf-def shift-append)
 lemma prefix-finE-nth:
   assumes u \leq v \ i < length \ u
   shows u ! i = v ! i
 proof -
   obtain w where 1: v = u @ w using assms(1) by auto
   show ?thesis unfolding 1 using assms(2) by (simp add: nth-append)
  qed
  lemma prefix-fininfI-nth:
   assumes \bigwedge i. i < length u \Longrightarrow u ! i = w !! i
   shows u \leq_{FI} w
  proof (rule prefix-fininfI)
    show u @- sdrop (length u) w = w by (simp add: assms list-eq-iff-nth-eq
shift-eq)
 qed
 definition chain :: (nat \Rightarrow 'a \ list) \Rightarrow bool
   where chain w \equiv mono \ w \land (\forall \ k. \ \exists \ l. \ k < length \ (w \ l))
 definition limit :: (nat \Rightarrow 'a \ list) \Rightarrow 'a \ stream
   where limit w \equiv smap \ (\lambda \ k. \ w \ (SOME \ l. \ k < length \ (w \ l)) \ ! \ k) nats
  lemma chainI[intro?]:
   assumes mono w
   assumes \bigwedge k. \exists l. k < length(w l)
   shows chain w
   using assms unfolding chain-def by auto
  lemma chainD-mono[dest?]:
   assumes chain w
   \mathbf{shows} \ mono \ w
   using assms unfolding chain-def by auto
  lemma chainE-length[elim?]:
   assumes chain w
   obtains l
```

```
where k < length (w l)
   using assms unfolding chain-def by auto
  lemma chain-prefix-limit:
   assumes chain w
   shows w k \leq_{FI} limit w
  proof (rule prefix-fininfI-nth)
   assume 1: i < length(w k)
   have 2: mono w \land k. \exists l. k < length (w l) using chainD-mono chainE-length
assms by blast+
    have 3: i < length (w (SOME l. i < length (w l))) using some I-ex 2(2) by
this
   \mathbf{show}\ w\ k\ !\ i = \mathit{limit}\ w\ !!\ i
   proof (cases k SOME l. i < length (w l) rule: le-cases)
     have 4: w \ k \le w \ (SOME \ l. \ i < length \ (w \ l)) using monoD 2(1) le by this
     show ?thesis unfolding limit-def using prefix-finE-nth 4 1 by auto
     case (ge)
     have 4: w (SOME l. i < length(w l)) \leq w k using monoD 2(1) ge by this
     show ?thesis unfolding limit-def using prefix-finE-nth 4 3 by auto
   qed
 qed
 lemma chain-construct-1:
   assumes P \ 0 \ x_0 \ \bigwedge \ k \ x. P \ k \ x \Longrightarrow \exists \ x'. P \ (Suc \ k) \ x' \land f \ x \le f \ x'
   assumes \bigwedge k x. P k x \Longrightarrow k \leq length (f x)
   obtains Q
   where \bigwedge k. P k (Q k) chain (f \circ Q)
  proof -
   obtain x' where 1:
     P \ 0 \ x_0 \ \bigwedge \ k \ x. \ P \ k \ x \Longrightarrow P \ (Suc \ k) \ (x' \ k \ x) \ \land f \ x \le f \ (x' \ k \ x)
     using assms(1, 2) by metis
   define Q where Q \equiv rec\text{-}nat \ x_0 \ x'
    have [simp]: Q \ \theta = x_0 \ \bigwedge \ k. \ Q \ (Suc \ k) = x' \ k \ (Q \ k) unfolding Q-def by
simp+
   have 2: \bigwedge k. P k (Q k)
   proof -
     show P \ k \ (Q \ k) using 1 by (induct k, auto)
   qed
   show ?thesis
   proof (intro that chainI monoI, unfold comp-apply)
     show P k (Q k) using 2 by this
     \mathbf{fix} \ x \ y :: nat
     assume x \leq y
```

```
thus f(Q x) \leq f(Q y)
      proof (induct\ y - x\ arbitrary:\ x\ y)
       case \theta
       show ?case using \theta by simp
      next
       case (Suc\ k)
       have f(Q x) \leq f(Q(Suc x)) using I(2) 2 by auto
       also have ... \leq f(Qy) using Suc(2) by (intro Suc(1), auto)
       finally show ?case by this
      qed
   \mathbf{next}
     \mathbf{fix} \ k
     have 3: P(Suc k) (Q(Suc k)) using 2 by this
     have 4: Suc k \leq length (f (Q (Suc k))) using assms(3) 3 by this
     have 5: k < length (f (Q (Suc k))) using 4 by auto
      show \exists l. k < length (f(Q l)) using 5 by blast
   qed
  qed
  lemma chain-construct-2:
   assumes P \ 0 \ x_0 \ \land \ k \ x. P \ k \ x \Longrightarrow \exists \ x'. P \ (Suc \ k) \ x' \land f \ x \le f \ x' \land g \ x \le g \ x'
   assumes \bigwedge k \ x. P \ k \ x \Longrightarrow k \le length \ (f \ x) \ \bigwedge k \ x. P \ k \ x \Longrightarrow k \le length \ (g \ x)
   where \bigwedge k. P k (Q k) chain (f \circ Q) chain (g \circ Q)
  proof -
   obtain x' where 1:
      P \ 0 \ x_0 \ \land \ k \ x. \ P \ k \ x \Longrightarrow P \ (Suc \ k) \ (x' \ k \ x) \land f \ x \le f \ (x' \ k \ x) \land g \ x \le g \ (x' \ k \ x)
k x
     using assms(1, 2) by metis
   define Q where Q \equiv rec\text{-}nat \ x_0 \ x'
    have [simp]: Q \ \theta = x_0 \ \bigwedge \ k. Q \ (Suc \ k) = x' \ k \ (Q \ k) unfolding Q-def by
simp+
   have 2: \bigwedge k. P k (Q k)
   proof -
     \mathbf{fix} \ k
     show P \ k \ (Q \ k) using 1 by (induct k, auto)
   qed
   show ?thesis
   proof (intro that chainI monoI, unfold comp-apply)
     show P k (Q k) using 2 by this
   \mathbf{next}
     \mathbf{fix} \ x \ y :: nat
     assume x \leq y
      thus f(Q|x) \leq f(Q|y)
      proof (induct\ y - x\ arbitrary:\ x\ y)
       case \theta
       show ?case using \theta by simp
      next
       case (Suc \ k)
```

```
have f(Q x) \leq f(Q(Suc x)) using I(2) 2 by auto
       also have \ldots \leq f(Qy) using Suc(2) by (intro\ Suc(1),\ auto)
       finally show ?case by this
     qed
   next
     \mathbf{fix} \ k
     have 3: P(Suc k) (Q(Suc k)) using 2 by this
     have 4: Suc k \leq length (f (Q (Suc k))) using assms(3) 3 by this
     have 5: k < length (f (Q (Suc k))) using 4 by auto
     show \exists l. k < length (f(Q l)) using 5 by blast
   \mathbf{next}
     \mathbf{fix} \ x \ y :: nat
     assume x \leq y
     thus g(Qx) \leq g(Qy)
     proof (induct\ y - x\ arbitrary:\ x\ y)
       case \theta
       show ?case using \theta by simp
     next
       case (Suc\ k)
       have g(Qx) \leq g(Q(Suc x)) using I(2) 2 by auto
       also have \ldots \leq g \ (Q \ y) \ \text{using} \ Suc(2) \ \text{by} \ (intro \ Suc(1), \ auto)
       finally show ?case by this
     qed
   \mathbf{next}
     \mathbf{fix} \ k
     have 3: P(Suc k) (Q(Suc k)) using 2 by this
     have 4: Suc k \leq length (q (Q (Suc k))) using assms(4) 3 by this
     have 5: k < length (g (Q (Suc k))) using 4 by auto
     show \exists l. k < length (g(Q l)) using 5 by blast
   qed
  qed
  lemma chain-construct-2':
   assumes P \ 0 \ u_0 \ v_0 \ \bigwedge \ k \ u \ v. P \ k \ u \ v \Longrightarrow \exists \ u' \ v'. P \ (Suc \ k) \ u' \ v' \land \ u \le u' \land a
   assumes \bigwedge k u v. P k u v \Longrightarrow k \leq length u \bigwedge k u v. P k u v \Longrightarrow k \leq length v
   obtains u v
   where \bigwedge k. P k (u k) (v k) chain u chain v
  proof -
    obtain Q where 1: \bigwedge k. (case-prod \circ P) k (Q k) chain (fst \circ Q) chain (snd
\circ Q
   proof (rule chain-construct-2)
     show \exists x'. (case-prod \circ P) (Suc k) x' \land fst x \leq fst x' \land snd x \leq snd x'
       if (case-prod \circ P) \ k \ x for k \ x using assms that by auto
     show (case-prod \circ P) \theta (u<sub>0</sub>, v<sub>0</sub>) using assms by auto
     show k \leq length (fst \ x) if (case-prod \circ P) \ k \ x for k \ x using assms that by
auto
     show k \leq length \ (snd \ x) if (case-prod \circ P) \ k \ x for k \ x using assms that by
auto
   \mathbf{qed} rule
```

```
show ?thesis
   proof
      show P \ k \ ((fst \circ Q) \ k) \ ((snd \circ Q) \ k) for k using I(1) by (auto simp:
     show chain (fst \circ Q) chain (snd \circ Q) using 1(2, 3) by this
   qed
 qed
end
      Sets
4
theory Set-Extensions
imports
  HOL-Library.Infinite-Set
begin
 declare finite-subset[intro]
 lemma set-not-emptyI[intro 0]: x \in S \Longrightarrow S \neq \{\} by auto
 lemma sets-empty-iffI[intro 0]:
   assumes \bigwedge a. \ a \in A \Longrightarrow \exists b. \ b \in B
   assumes \bigwedge b. b \in B \Longrightarrow \exists a. a \in A
   shows A = \{\} \longleftrightarrow B = \{\}
   using assms by auto
  lemma disjointI[intro 0]:
   assumes \bigwedge x. x \in A \Longrightarrow x \in B \Longrightarrow False
   \mathbf{shows}\ A\cap B=\{\}
   using assms by auto
  lemma range-subsetI[intro 0]:
   assumes \bigwedge x. f x \in S
   shows range f \subseteq S
   using assms by blast
 lemma finite-imageI-range:
   assumes finite\ (range\ f)
   shows finite (f 'A)
   using finite-subset image-mono subset-UNIV assms by metis
 lemma inf-img-fin-domE':
   assumes infinite A
   assumes finite (f 'A)
   obtains y
   where y \in f ' A infinite (A \cap f - '\{y\})
  proof (rule ccontr)
   assume 1: \neg thesis
   have 2: finite (\bigcup y \in f ' A. A \cap f - ' \{y\})
   proof (rule finite-UN-I)
     show finite (f 'A) using assms(2) by this
```

```
\mathbf{show} \ \bigwedge \ y. \ y \in f \ `A \Longrightarrow \mathit{finite} \ (A \cap f \ - \ `\{y\}) \ \mathbf{using} \ \mathit{that} \ 1 \ \mathbf{by} \ \mathit{blast}
   have 3: A \subseteq (\bigcup y \in f 'A. A \cap f - '\{y\}) by blast
   show False using assms(1) 2 3 by blast
  qed
  lemma vimage-singleton[simp]: f - '\{y\} = \{x. f x = y\} unfolding vimage-def
by simp
  lemma these-alt-def: Option.these S = Some - S unfolding Option.these-def
by force
 lemma the-vimage-subset: the -' \{a\} \subseteq \{None, Some a\} by auto
  lemma finite-induct-reverse [consumes 1, case-names remove]:
   assumes finite S
   assumes \bigwedge S. finite S \Longrightarrow (\bigwedge x. \ x \in S \Longrightarrow P \ (S - \{x\})) \Longrightarrow P \ S
   shows P S
  using assms(1)
  proof (induct rule: finite-psubset-induct)
   case (psubset S)
   show ?case
   proof (rule \ assms(2))
     show finite S using psubset(1) by this
   \mathbf{next}
     \mathbf{fix} \ x
     assume \theta: x \in S
     show P(S - \{x\})
     proof (rule\ psubset(2))
       show S - \{x\} \subset S using \theta by auto
     qed
   qed
  qed
  lemma zero-not-in-Suc-image[simp]: 0 \notin Suc 'A by auto
  lemma Collect-split-Suc:
   \neg P 0 \Longrightarrow \{i. P i\} = Suc '\{i. P (Suc i)\}
   P \theta \Longrightarrow \{i. P i\} = \{\theta\} \cup Suc '\{i. P (Suc i)\}
  proof -
   assume \neg P \theta
   thus \{i. P i\} = Suc `\{i. P (Suc i)\}
     by (auto, metis image-eqI mem-Collect-eq nat.exhaust)
   assume P \theta
   thus \{i. \ P \ i\} = \{0\} \cup Suc \ `\{i. \ P \ (Suc \ i)\}
     by (auto, metis imageI mem-Collect-eq not0-implies-Suc)
  lemma Collect-subsume[simp]:
```

```
assumes \bigwedge x. \ x \in A \Longrightarrow P x
 shows \{x \in A. P x\} = A
 using assms unfolding simp-implies-def by auto
lemma Max-qe':
 assumes finite A A \neq \{\}
 assumes b \in A a \leq b
 shows a \leq Max A
 using assms Max-ge-iff by auto
abbreviation least A \equiv LEAST \ k. \ k \in A
lemma least-contains[intro?, simp]:
 fixes A :: 'a :: wellorder set
 assumes k \in A
 shows least A \in A
 using assms by (metis LeastI)
lemma least-contains'[intro?, simp]:
 fixes A :: 'a :: wellorder set
 assumes A \neq \{\}
 shows least A \in A
 using assms by (metis LeastI equals0I)
lemma least-least[intro?, simp]:
 fixes A :: 'a :: wellorder set
 assumes k \in A
 shows least A \leq k
 using assms by (metis Least-le)
lemma least-unique:
 \mathbf{fixes}\ A::\ 'a::\ wellorder\ set
 assumes k \in A k \leq least A
 shows k = least A
 using assms by (metis Least-le antisym)
lemma least-not-less:
 fixes A :: 'a :: wellorder set
 assumes k < least A
 shows k \notin A
 using assms by (metis not-less-Least)
lemma leastI2-order[simp]:
 fixes A :: 'a :: wellorder set
 assumes A \neq \{\} \land k. \ k \in A \Longrightarrow (\land l. \ l \in A \Longrightarrow k \leq l) \Longrightarrow P \ k
 shows P (least A)
proof (rule LeastI2-order)
 show least A \in A using assms(1) by rule
next
 \mathbf{fix}\ k
 assume 1: k \in A
 show least A \leq k using 1 by rule
next
 \mathbf{fix} \ k
```

```
assume 1: k \in A \ \forall \ l. \ l \in A \longrightarrow k \leq l
 show P k using assms(2) 1 by auto
qed
lemma least-singleton[simp]:
 fixes a :: 'a :: wellorder
 shows least \{a\} = a
 by (metis insert-not-empty least-contains' singletonD)
lemma least-image[simp]:
 \mathbf{fixes}\ f :: \ 'a :: \ wellorder \Rightarrow \ 'b :: \ wellorder
 assumes A \neq \{\} \land k \ l. \ k \in A \Longrightarrow l \in A \Longrightarrow k \leq l \Longrightarrow f \ k \leq f \ l
 shows least (f ' A) = f (least A)
proof (rule leastI2-order)
 show A \neq \{\} using assms(1) by this
next
 \mathbf{fix} \ k
 assume 1: k \in A \land i. i \in A \Longrightarrow k \leq i
 show least (f ' A) = f k
 proof (rule leastI2-order)
   show f ' A \neq \{\} using assms(1) by simp
 \mathbf{next}
   \mathbf{fix} \ l
   assume 2: l \in f ' A \land i. i \in f ' A \Longrightarrow l \le i
   show l = f k using assms(2) 1 2 by force
 qed
qed
lemma least-le:
 fixes A B :: 'a :: wellorder set
 assumes B \neq \{\}
 assumes \bigwedge i. i \leq least A \Longrightarrow i \leq least B \Longrightarrow i \in A
 shows least A \leq least B
proof (rule ccontr)
 assume 1: \neg least A \leq least B
 have 2: least B \in A using assms(1, 2) 1 by simp
 have 3: least A \leq least B using 2 by rule
 show False using 1 3 by rule
qed
lemma least-eq:
 fixes A B :: 'a :: wellorder set
 assumes A \neq \{\} B \neq \{\}
 assumes \bigwedge i. i \leq least A \Longrightarrow i \leq least B \Longrightarrow i \in A \longleftrightarrow i \in B
 shows least A = least B
 using assms by (auto intro: antisym least-le)
lemma least-Suc[simp]:
 assumes A \neq \{\}
 shows least (Suc 'A) = Suc (least A)
```

```
proof (rule antisym)
   obtain k where 10: k \in A using assms by blast
   have 11: Suc \ k \in Suc 'A using 10 by auto
   have 20: least A \in A using 10 Least by metis
   have 21: least (Suc 'A) \in Suc 'A using 11 Least by metis
   have 30: \land l. \ l \in A \Longrightarrow least \ A \leq l \ using \ 10 \ Least-le \ by \ metis
   have 31: \bigwedge l.\ l \in Suc 'A \Longrightarrow least\ (Suc 'A) \le l using 11 Least-le by metis
   show least (Suc 'A) \leq Suc (least A) using 20 31 by auto
   show Suc\ (least\ A) \le least\ (Suc\ `A) using 21 30 by auto
 qed
 lemma least-Suc-diff[simp]: Suc 'A - \{least (Suc 'A)\} = Suc '(A - \{least A\})
 proof (cases\ A = \{\})
   {\bf case}\ {\it True}
   show ?thesis unfolding True by simp
 next
   case False
   have Suc `A - \{least (Suc `A)\} = Suc `A - \{Suc (least A)\}  using False by
   also have \dots = Suc 'A - Suc '\{least A\} by simp
   also have \dots = Suc '(A - \{least A\}) by blast
   finally show ?thesis by this
 qed
 lemma Max-diff-least[simp]:
   fixes A :: 'a :: wellorder set
   assumes finite A A - \{least A\} \neq \{\}
   shows Max (A - \{least A\}) = Max A
 proof -
   have 1: least A \in A using assms(2) by auto
   obtain a where 2: a \in A - \{least A\} \text{ using } assms(2) \text{ by } blast
   have Max\ A = Max\ (insert\ (least\ A)\ (A - \{least\ A\})) using insert-absorb 1
by force
   also have \dots = max (least A) (Max (A - \{least A\}))
   proof (rule Max-insert)
     show finite (A - \{least A\}) using assms(1) by auto
     show A - \{least \ A\} \neq \{\} using assms(2) by this
   also have \dots = Max (A - \{least A\})
   proof (rule max-absorb2, rule Max-ge')
     show finite (A - \{least \ A\}) using assms(1) by auto
     show A - \{least \ A\} \neq \{\} using assms(2) by this
     show a \in A - \{least A\} using 2 by this
     show least A \leq a using 2 by simp
   qed
   finally show ?thesis by rule
 ged
```

**lemma** nat-set-card-equality-less:

```
fixes A :: nat set
   assumes x \in A y \in A card \{z \in A. z < x\} = card \{z \in A. z < y\}
   shows x = y
  proof (cases x y rule: linorder-cases)
   case less
   have \theta: finite \{z \in A. \ z < y\} by simp
   have 1: \{z \in A. \ z < x\} \subset \{z \in A. \ z < y\} using assms(1, 2) less by force
   have 2: card \{z \in A. \ z < x\} < card \ \{z \in A. \ z < y\} using psubset-card-mono
0 1 by this
   show ?thesis using assms(3) 2 by simp
 next
   case equal
   show ?thesis using equal by this
 next
   case greater
   have \theta: finite \{z \in A. \ z < x\} by simp
   have 1: \{z \in A. \ z < y\} \subset \{z \in A. \ z < x\} using assms(1, 2) greater by force
   have 2: card \{z \in A. \ z < y\} < card \{z \in A. \ z < x\} using psubset-card-mono
0 1 by this
   show ?thesis using assms(3) 2 by simp
 qed
 lemma nat-set-card-equality-le:
   fixes A :: nat set
   assumes x \in A y \in A card \{z \in A. z \le x\} = card \{z \in A. z \le y\}
   shows x = y
  proof (cases x y rule: linorder-cases)
   case less
   have \theta: finite \{z \in A. z \leq y\} by simp
   have 1: \{z \in A. z \le x\} \subset \{z \in A. z \le y\} using assms(1, 2) less by force
   have 2: card \{z \in A. z \le x\} < card \{z \in A. z \le y\} using psubset-card-mono
0 1 by this
   show ?thesis using assms(3) 2 by simp
 next
   case equal
   show ?thesis using equal by this
 next
   case greater
   have \theta: finite \{z \in A. z \leq x\} by simp
   have 1: \{z \in A. z \leq y\} \subset \{z \in A. z \leq x\} using assms(1, 2) greater by force
   have 2: card \{z \in A. z \leq y\} < card \{z \in A. z \leq x\} using psubset-card-mono
0 1 by this
   show ?thesis using assms(3) 2 by simp
 qed
 lemma nat\text{-}set\text{-}card\text{-}mono[simp]:
   fixes A :: nat set
   assumes x \in A
   shows card \{z \in A. \ z < x\} < card \ \{z \in A. \ z < y\} \longleftrightarrow x < y
```

```
proof
   assume 1: card \{z \in A. \ z < x\} < card \ \{z \in A. \ z < y\}
   show x < y
   proof (rule ccontr)
     assume 2: \neg x < y
    have 3: card \{z \in A. \ z < y\} \le card \ \{z \in A. \ z < x\} using 2 by (auto intro:
card-mono)
     show False using 1 3 by simp
   qed
 next
   assume 1: x < y
   show card \{z \in A. \ z < x\} < card \{z \in A. \ z < y\}
   \mathbf{proof}\ (intro\ psubset\text{-}card\text{-}mono\ psubsetI)
     show finite \{z \in A. \ z < y\} by simp
     show \{z \in A. \ z < x\} \subseteq \{z \in A. \ z < y\} using 1 by auto
     show \{z \in A. \ z < x\} \neq \{z \in A. \ z < y\} using assms 1 by blast
   qed
 qed
 lemma card-one[elim]:
   assumes card A = 1
   obtains a
   where A = \{a\}
   using assms by (metis One-nat-def card-Suc-eq)
 lemma image-alt-def: f \cdot A = \{f \mid x \mid x. \mid x \in A\} by auto
 lemma supset-mono-inductive[mono]:
   assumes \bigwedge x. \ x \in B \longrightarrow x \in C
   shows A \subseteq B \longrightarrow A \subseteq C
   using assms by auto
 lemma Collect-mono-inductive[mono]:
   assumes \bigwedge x. Px \longrightarrow Qx
   shows x \in \{x. \ P \ x\} \longrightarrow x \in \{x. \ Q \ x\}
   using assms by auto
 {f lemma}\ image-union-split:
   assumes f ' (A \cup B) = g ' C
   obtains D E
   where f ' A=g ' D\,f ' B=g ' E\,D\subseteq\,C\,E\subseteq\,C
   using assms unfolding image-Un
   by (metis (erased, lifting) inf-sup-ord(3) inf-sup-ord(4) subset-imageE)
 lemma image-insert-split:
   assumes inj g f 'insert a B = g ' C
   obtains d E
   where f a = g d f ' B = g ' E d \in C E \subseteq C
   have 1: f'(\{a\} \cup B) = g' C using assms(2) by simp
   obtain D E where 2: f' \{a\} = g' D f' B = g' E D \subseteq C E \subseteq C
```

```
using image-union-split 1 by this
   obtain d where 3: D = \{d\} using assms(1) \ 2(1) by (auto, metis (erased,
opaque-lifting) imageE
    image-empty image-insert inj-image-eq-iff singletonI)
   show ?thesis using that 2 unfolding 3 by simp
 qed
end
     Basics
5
theory Basic-Extensions
imports HOL-Library.Infinite-Set
begin
5.1
      Types
   type-synonym 'a step = 'a \Rightarrow 'a
5.2
      Rules
   declare less-imp-le[dest, simp]
   declare le-funI[intro]
   declare le-funE[elim]
   declare le-funD[dest]
   lemma IdI'[intro]:
    assumes x = y
    shows (x, y) \in Id
    using assms by auto
   lemma (in order) order-le-cases:
    assumes x \leq y
    obtains (eq) \ x = y \mid (lt) \ x < y
    using assms le-less by auto
   lemma (in linorder) linorder-cases':
    obtains (le) x \leq y \mid (gt) \mid x > y
    by force
   lemma monoI-comp[intro]:
    assumes mono f mono g
    shows mono (f \circ g)
    using assms by (intro monoI, auto dest: monoD)
   lemma strict-monoI-comp[intro]:
    assumes strict-mono f strict-mono g
    shows strict-mono (f \circ g)
```

using assms by (intro strict-monoI, auto dest: strict-monoD)

```
lemma eq-le-absorb[simp]:
      fixes x y :: 'a :: order
      shows x = y \land x \le y \longleftrightarrow x = y \ x \le y \land x = y \longleftrightarrow x = y
      by auto
    lemma INFM-Suc[simp]: (\exists_{\infty} i. P (Suc i)) \longleftrightarrow (\exists_{\infty} i. P i)
      unfolding INFM-nat using Suc-lessE less-Suc-eq by metis
    lemma INFM-plus[simp]: (\exists_{\infty} i. P (i + n :: nat)) \longleftrightarrow (\exists_{\infty} i. P i)
    proof (induct n)
      case \theta
      show ?case by simp
    next
      case (Suc \ n)
      have (\exists_{\infty} i. P(i + Suc n)) \longleftrightarrow (\exists_{\infty} i. P(Suc i + n)) by simp
      also have ... \longleftrightarrow (\exists_{\infty} i. P(i+n)) using INFM-Suc by this
      also have ... \longleftrightarrow (\exists_{\infty} i. P i) using Suc by this
      finally show ?case by this
    lemma INFM-minus[simp]: (\exists_{\infty} i. P (i - n :: nat)) \longleftrightarrow (\exists_{\infty} i. P i)
    proof (induct n)
      case \theta
      show ?case by simp
    \mathbf{next}
      case (Suc \ n)
     have (\exists_{\infty} i. P (i - Suc n)) \longleftrightarrow (\exists_{\infty} i. P (Suc i - Suc n)) using INFM-Suc
      also have ... \longleftrightarrow (\exists_{\infty} i. P(i-n)) by simp
      also have ... \longleftrightarrow (\exists_{\infty} i. P i) using Suc by this
      finally show ?case by this
    qed
5.3
         Constants
    definition const :: 'a \Rightarrow 'b \Rightarrow 'a
      where const \ x \equiv \lambda -. x
    definition const2:: 'a \Rightarrow 'b \Rightarrow 'c \Rightarrow 'a
      where const2 \ x \equiv \lambda - -. x
    definition const3:: 'a \Rightarrow 'b \Rightarrow 'c \Rightarrow 'd \Rightarrow 'a
      where const3 \ x \equiv \lambda - - - x
    definition const4 :: 'a \Rightarrow 'b \Rightarrow 'c \Rightarrow 'd \Rightarrow 'e \Rightarrow 'a
      where const4 x \equiv \lambda - - - . x
    definition const5 :: 'a \Rightarrow 'b \Rightarrow 'c \Rightarrow 'd \Rightarrow 'e \Rightarrow 'f \Rightarrow 'a
      where const5 \ x \equiv \lambda - - - - x
    lemma const-apply[simp]: const\ x\ y = x unfolding const-def by rule
    lemma const2-apply[simp]: const2 \ x \ y \ z = x \ unfolding \ const2-def by rule
    lemma const3-apply[simp]: const3 x y z u = x unfolding const3-def by rule
    lemma const4-apply[simp]: const4 x y z u v = x unfolding const4-def by rule
```

```
lemma const5-apply[simp]: const5 x y z u v w = x unfolding const5-def by
rule
   definition zip-fun :: ('a \Rightarrow 'b) \Rightarrow ('a \Rightarrow 'c) \Rightarrow 'a \Rightarrow 'b \times 'c \text{ (infixr } \langle \parallel \rangle 51)
     where f \parallel g \equiv \lambda x. (f x, g x)
   lemma zip-fun-simps[simp]:
     (f \parallel g) \ x = (f \ x, \ g \ x)
     fst \circ (f \parallel g) = f
     snd \circ (f \parallel g) = g
     fst \circ h \parallel snd \circ h = h
     fst \cdot range (f \parallel g) = range f
     snd ' range (f \parallel g) = range g
     unfolding zip-fun-def by force+
   lemma zip-fun-eq[dest]:
     assumes f \parallel g = h \parallel i
     shows f = h g = i
     using assms unfolding zip-fun-def by (auto dest: fun-cong)
   lemma zip-fun-range-subset[intro, simp]: range (f \parallel g) \subseteq range \ f \times range \ g
     unfolding zip-fun-def by blast
   lemma zip-fun-range-finite[elim]:
     assumes finite (range (f \parallel g))
     obtains finite (range f) finite (range g)
   proof
     show finite (range f) using finite-imageI [OF assms(1), of fst]
       by (simp add: image-image)
     show finite (range g) using finite-imageI [OF assms(1), of snd]
       by (simp add: image-image)
   qed
   lemma zip-fun-split:
     obtains f g
     where h = f \parallel g
   proof
     show h = fst \circ h \parallel snd \circ h by simp
   qed
   abbreviation None-None \equiv (None, None)
   abbreviation None-Some \equiv \lambda (y). (None, Some y)
   abbreviation Some\text{-}None \equiv \lambda \ (x). \ (Some \ x, \ None)
   abbreviation Some-Some \equiv \lambda (x, y). (Some x, Some y)
   abbreviation None-None=(None, None, None)
   abbreviation None-None-Some \equiv \lambda (z). (None, None, Some z)
   abbreviation None-Some-None \equiv \lambda (y). (None, Some y, None)
   abbreviation None-Some-Some \equiv \lambda (y, z). (None, Some y, Some z)
   abbreviation Some-None-None \equiv \lambda (x). (Some x, None, None)
```

```
abbreviation Some-None-Some \equiv \lambda (x, z). (Some x, None, Some z)
   abbreviation Some-Some-None \equiv \lambda \ (x, y). (Some x, Some y, None)
   abbreviation Some-Some-Some \equiv \lambda (x, y, z). (Some x, Some y, Some z)
   lemma inj-Some2[simp, intro]:
     inj None-Some
     inj Some-None
     inj Some-Some
     by (rule\ injI,\ force)+
   lemma inj-Some3[simp, intro]:
     inj None-None-Some
     inj None-Some-None
     inj\ None\mbox{-}Some\mbox{-}Some
     inj Some-None-None
     inj Some-None-Some
     inj Some-Some-None
     inj Some-Some-Some
     by (rule\ injI,\ force)+
   definition swap :: 'a \times 'b \Rightarrow 'b \times 'a
     where swap x \equiv (snd x, fst x)
   lemma swap-simps[simp]: swap(a, b) = (b, a) unfolding swap-def by simp
   lemma swap-inj[intro, simp]: inj swap by (rule injI, auto)
    lemma swap-surj[intro, simp]: surj swap by (rule <math>surjI[where ?f = swap],
   lemma swap-bij[intro, simp]: bij swap by (rule bijI, auto)
   definition push :: ('a \times 'b) \times 'c \Rightarrow 'a \times 'b \times 'c
     where push x \equiv (fst \ (fst \ x), \ snd \ (fst \ x), \ snd \ x)
   definition pull :: 'a \times 'b \times 'c \Rightarrow ('a \times 'b) \times 'c
     where pull x \equiv ((fst \ x, fst \ (snd \ x)), snd \ (snd \ x))
   lemma push-simps[simp]: push ((x, y), z) = (x, y, z) unfolding push-def by
simp
    lemma pull-simps[simp]: pull (x, y, z) = ((x, y), z) unfolding pull-def by
simp
   definition label :: 'vertex \times 'label \times 'vertex \Rightarrow 'label
     where label \equiv fst \circ snd
   lemma label-select[simp]: label (p, a, q) = a unfolding label-def by simp
5.4
       Theorems for @termcurry and @termsplit
   lemma curry-split[simp]: curry \circ case-prod = id by auto
```

**lemma** split-curry[simp]: case- $prod \circ curry = id$  by auto

```
lemma split-le[simp]: case-prod f \leq case-prod g \longleftrightarrow f \leq g unfolding le-fun-def
by force
   lemma mono-curry-left[simp]: mono (curry \circ h) \longleftrightarrow mono h
     unfolding mono-def by fastforce
   lemma mono-split-left[simp]: mono (case-prod <math>\circ h) \longleftrightarrow mono h
     unfolding mono-def by fastforce
   lemma mono-curry-right[simp]: mono (h \circ curry) \longleftrightarrow mono h
     unfolding mono-def split-le[symmetric] by bestsimp
   lemma mono-split-right[simp]: mono (h \circ case-prod) \longleftrightarrow mono h
     unfolding mono-def curry-le[symmetric] by bestsimp
    lemma Collect-curry[simp]: \{x. \ P \ (curry \ x)\} = case-prod \ `\{x. \ P \ x\} \ using
image-Collect by fastforce
    lemma Collect-split[simp]: \{x. \ P \ (case-prod \ x)\} = curry ` \{x. \ P \ x\}  using
image-Collect by force
   lemma gfp-split-curry[simp]: gfp (case-prod \circ f \circ curry) = case-prod (gfp f)
      have gfp\ (case-prod \circ f \circ curry) = Sup\ \{u.\ u \leq case-prod\ (f\ (curry\ u))\}
unfolding gfp-def by simp
    also have ... = Sup \{u. \ curry \ u \leq curry \ (case-prod \ (f \ (curry \ u)))\} \ unfolding
curry-le by simp
     also have ... = Sup \{u. \ curry \ u \leq f \ (curry \ u)\} by simp
     also have ... = Sup (case-prod '{u. u \le f u}) unfolding Collect-curry[of \lambda
u. \ u \leq f \ u by simp
    also have ... = case-prod (Sup \{u.\ u \le fu\}) by (force simp add: image-comp)
     also have \dots = case\text{-}prod\ (gfp\ f) unfolding gfp\text{-}def\ by simp
     finally show ?thesis by this
   qed
   lemma gfp\text{-}curry\text{-}split[simp]: gfp\ (curry \circ f \circ case\text{-}prod) = curry\ (gfp\ f)
   proof -
      have gfp\ (curry\ \circ\ f\ \circ\ case\text{-}prod) = Sup\ \{u.\ u \le curry\ (f\ (case\text{-}prod\ u))\}
unfolding qfp-def by simp
     also have ... = Sup \{u. case-prod \ u \leq case-prod \ (curry \ (f \ (case-prod \ u)))\}
unfolding split-le by simp
     also have ... = Sup \{u. \ case-prod \ u \leq f \ (case-prod \ u)\}  by simp
     also have ... = Sup\ (curry\ `\{u.\ u \le f\ u\}) unfolding Collect-split[of\ \lambda\ u.\ u]
\leq f[u] by simp
     also have ... = curry (Sup \{u. u \le f u\}) by (force simp \ add: image-comp)
     also have \dots = curry (gfp \ f) unfolding gfp\text{-}def by simp
     finally show ?thesis by this
   qed
   lemma not-someI:
     assumes \bigwedge x. P x \Longrightarrow False
     shows \neg P (SOME x. P x)
```

lemma curry-le[simp]: curry  $f \leq curry \ g \longleftrightarrow f \leq g$  unfolding le-fun-def by

force

```
using assms by blast
lemma some-ccontr:
assumes (\bigwedge x. \neg P x) \Longrightarrow False
shows P(SOME x. P x)
using assms some-ex ccontr by metis
```

 $\quad \text{end} \quad$ 

### 6 Relations

```
theory Relation-Extensions
imports
  Basic-Extensions
begin
 abbreviation rev-lex-prod (infixr \langle <*rlex*>> 80)
    where r_1 \ll rlex \gg r_2 \equiv inv\text{-}image (r_2 \ll rlex \gg r_1) swap
 lemmas sym-rtranclp[intro] = sym-rtrancl[to-pred]
  definition liftablep :: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow ('a \Rightarrow 'a) \Rightarrow bool
    where liftable r f \equiv \forall x y. r x y \longrightarrow r (f x) (f y)
  lemma liftablepI[intro]:
    assumes \bigwedge x y. r x y \Longrightarrow r (f x) (f y)
    shows liftablep r f
    using assms
    \mathbf{unfolding}\ \mathit{liftablep-def}
    by simp
  lemma \ liftablepE[elim]:
    assumes liftablep \ r \ f
   assumes r x y
    obtains r(f x)(f y)
    using assms
    {\bf unfolding} \ \textit{liftable p-def}
    \mathbf{by} \ simp
  \mathbf{lemma}\ \mathit{liftablep-rtranclp}:
    assumes liftablep \ r \ f
    shows liftablep \ r^{**} f
  proof
   \mathbf{fix} \ x \ y
    assume r^{**} x y
    thus r^{**} (f x) (f y)
      using assms
      by (induct rule: rtranclp-induct, force+)
  qed
 definition confluentp :: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow bool
```

```
where confluentp r \equiv \forall x y1 y2. r^{**} x y1 \longrightarrow r^{**} x y2 \longrightarrow (\exists z. r^{**} y1 z \land x y2 )
r^{**} y2 z)
  lemma confluentpI[intro]:
    assumes \bigwedge x y 1 y 2 \cdot r^{**} x y 1 \implies r^{**} x y 2 \implies \exists z \cdot r^{**} y 1 z \land r^{**} y 2 z
    shows confluentp r
    using assms
    unfolding confluentp-def
    by simp
  lemma confluentpE[elim]:
    assumes confluentp r
    assumes r^{**} x y1 r^{**} x y2
   obtains z
    where r^{**} y1 z r^{**} y2 z
    using assms
    unfolding \ confluentp-def
    \mathbf{by} blast
  lemma confluentpI'[intro]:
    assumes \bigwedge x\ y1\ y2.\ r^{**}\ x\ y1 \implies r\ x\ y2 \implies \exists\ z.\ r^{**}\ y1\ z\ \land\ r^{**}\ y2\ z
    shows confluentp r
  proof
    fix x y1 y2
    assume r^{**} x y1 r^{**} x y2
    thus \exists z. r^{**} y1 z \land r^{**} y2 z using assms by (induct rule: rtranclp-induct,
force+)
  qed
  lemma transclp-eq-implies-confluent-imp:
   assumes r1^{**} = r2^{**}
    assumes confluentp r1
    shows confluentp r2
    using assms
    by force
  \mathbf{lemma}\ transclp\text{-}eq\text{-}implies\text{-}confluent\text{-}eq\text{:}
    assumes r1^{**} = r2^{**}
    shows confluentp r1 \longleftrightarrow confluentp \ r2
    using assms transclp-eq-implies-confluent-imp
    by metis
  definition diamondp :: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow bool
    where diamond r \equiv \forall x y1 y2. rxy1 \longrightarrow rxy2 \longrightarrow (\exists z. ry1 z \land ry2 z)
  lemma diamondpI[intro]:
    assumes \bigwedge x \ y1 \ y2. r \ x \ y1 \implies r \ x \ y2 \implies \exists \ z. r \ y1 \ z \land r \ y2 \ z
    shows diamondp r
    using assms
```

```
unfolding diamondp-def
   \mathbf{by} \ simp
  lemma diamondpE[elim]:
   assumes diamondp r
   assumes r x y1 r x y2
   obtains z
   where r y1 z r y2 z
   using assms
   unfolding diamondp-def
   by blast
 {f lemma}\ diamond p-implies-confluent p:
   assumes diamondp r
   shows confluentp r
  proof (rule confluentpI')
   fix x y1 y2
   assume r^{**} x y1 r x y2
    hence \exists z. \ r \ y1 \ z \land r^{**} \ y2 \ z \ using \ assms \ by \ (induct \ rule: \ rtranclp-induct,
   thus \exists z. r^{**} y1 z \wedge r^{**} y2 z by blast
 qed
 {f locale}\ well founded\mbox{-}relation =
   fixes R :: 'a \Rightarrow 'a \Rightarrow bool
   {\bf assumes}\ \textit{wellfounded: wfP}\ \textit{R}
end
7
      Transition Systems
theory Transition-System-Extensions
imports
  Basics/Word-Prefixes
  Extensions/Set-Extensions
  Extensions/Relation-Extensions
  Transition	ext{-}Systems	ext{-}and	ext{-}Automata. Transition	ext{-}System
  Transition-Systems-and-Automata.\ Transition-System-Extra
  Transition-Systems-and-Automata.\ Transition-System-Construction
begin
 {\bf context}\ transition\text{-}system\text{-}initial
 begin
   definition cycles :: 'state \Rightarrow 'transition list set
     where cycles p \equiv \{w. path \ w \ p \land target \ w \ p = p\}
   lemma cyclesI[intro!]:
     assumes path w p target w p = p
```

```
shows w \in cycles p
   using assms unfolding cycles-def by auto
 lemma cyclesE[elim!]:
   assumes w \in cycles p
   obtains path w p target w p = p
   using assms unfolding cycles-def by auto
 inductive-set executable :: 'transition set
   where executable: p \in nodes \Longrightarrow enabled \ a \ p \Longrightarrow a \in executable
 lemma executable I-step[intro!]:
   assumes p \in nodes \ enabled \ a \ p
   shows a \in executable
   using executable assms by this
 lemma executable I-words-fin[intro!]:
   assumes p \in nodes path w p
   \mathbf{shows}\ set\ w\subseteq executable
   using assms by (induct w arbitrary: p, auto del: subsetI)
 lemma executableE[elim?]:
   assumes a \in executable
   obtains p
   where p \in nodes \ enabled \ a \ p
   using assms by induct auto
end
locale transition-system-interpreted =
 transition-system ex en
 for ex :: 'action \Rightarrow 'state \Rightarrow 'state
 \mathbf{and}\ en:: \ 'action \Rightarrow \ 'state \Rightarrow \ bool
 and int :: 'state \Rightarrow 'interpretation
begin
 definition visible :: 'action set
   where visible \equiv \{a. \exists q. en a q \land int q \neq int (ex a q)\}
 lemma \ visible I[intro]:
   assumes en a q int q \neq int (ex \ a \ q)
   shows a \in visible
   using assms unfolding visible-def by auto
 lemma visibleE[elim]:
   assumes a \in visible
   obtains q
   where en a q int q \neq int (ex \ a \ q)
   using assms unfolding visible-def by auto
 abbreviation invisible \equiv -visible
 \mathbf{lemma}\ \textit{execute-fin-word-invisible}:
```

```
assumes path w p set w \subseteq invisible
     shows int (target w p) = int p
     using assms by (induct w arbitrary: p rule: list.induct, auto)
   lemma execute-inf-word-invisible:
     assumes run w p k \le l \land i. k \le i \Longrightarrow i < l \Longrightarrow w !! i \notin visible
     shows int ((p \#\# trace w p) !! k) = int ((p \#\# trace w p) !! l)
   proof -
     have (p \#\# trace \ w \ p) !! \ l = target \ (stake \ l \ w) \ p \ by \ simp
     also have stake l \ w = stake \ k \ w \ @ stake \ (l - k) \ (sdrop \ k \ w) using assms(2)
by simp
      also have target \dots p = target (stake (l - k) (sdrop k w)) (target (stake k
w) p
       unfolding fold-append comp-apply by rule
     also have int ... = int (target (stake k w) p)
     proof (rule execute-fin-word-invisible)
       have w = stake \ l \ w @- sdrop \ l \ w by simp
      also have stake l w = stake \ k \ w \ @ stake \ (l - k) \ (sdrop \ k \ w) using assms(2)
by simp
      finally have 1: run (stake k \ w \ @-stake \ (l-k) \ (sdrop \ k \ w) \ @-sdrop \ l \ w)
p
         unfolding shift-append using assms(1) by simp
        show path (stake (l - k) (sdrop k w)) (target (stake k w) p) using 1 by
auto
       show set (stake\ (l-k)\ (sdrop\ k\ w))\subseteq invisible\ \mathbf{using}\ assms(3)\ \mathbf{by}\ (auto
simp: set-stake-snth)
     qed
     also have ... = int ((p \#\# trace w p) !! k) by simp
     finally show ?thesis by rule
   qed
  end
 {f locale}\ transition	ext{-}system	ext{-}complete =
   transition-system-initial ex en init +
   transition-system-interpreted ex en int
   for ex :: 'action \Rightarrow 'state \Rightarrow 'state
   and en :: 'action \Rightarrow 'state \Rightarrow bool
   and init :: 'state \Rightarrow bool
   and int :: 'state \Rightarrow 'interpretation
  begin
   definition language :: 'interpretation stream set
     where language \equiv \{smap \ int \ (p \ \#\# \ trace \ w \ p) \ | p \ w. \ init \ p \land run \ w \ p\}
   lemma languageI[intro!]:
     assumes w = smap int (p \#\# trace v p) init p run v p
     shows w \in language
     using assms unfolding language-def by auto
   lemma languageE[elim!]:
```

```
assumes w \in language
      obtains p v
      where w = smap int (p \#\# trace v p) init p run v p
      using assms unfolding language-def by auto
  end
  locale transition-system-finite-nodes =
    transition-system-initial ex en init
    \mathbf{for}\ ex:: 'action \Rightarrow 'state \Rightarrow 'state
    and en :: 'action \Rightarrow 'state \Rightarrow bool
    and init :: 'state \Rightarrow bool
    assumes reachable-finite: finite nodes
  locale transition-system-cut =
    transition-system-finite-nodes ex en init
    for ex :: 'action \Rightarrow 'state \Rightarrow 'state
    and en :: 'action \Rightarrow 'state \Rightarrow bool
    and init :: 'state \Rightarrow bool
    \mathbf{fixes}\ \mathit{cuts} :: \ 'action\ \mathit{set}
    \textbf{assumes} \ \textit{cycles-cut:} \ p \in \textit{nodes} \Longrightarrow \textit{w} \in \textit{cycles} \ p \Longrightarrow \textit{w} \neq [] \Longrightarrow \textit{set} \ \textit{w} \cap \textit{cuts}
\neq \{\}
  begin
    inductive scut :: 'state \Rightarrow 'state \Rightarrow bool
      where scut: p \in nodes \Longrightarrow en \ a \ p \Longrightarrow a \notin cuts \Longrightarrow scut \ p \ (ex \ a \ p)
    declare scut.intros[intro!]
    declare scut.cases[elim!]
    lemma scut-reachable:
      assumes scut p q
      shows p \in nodes \ q \in nodes
      using assms by auto
    \mathbf{lemma} scut\text{-}trancl:
      assumes scut^{++} p q
      obtains w
      where path w p target w p = q set w \cap cuts = \{\} w \neq []
    using assms
    proof (induct arbitrary: thesis)
      case (base \ q)
      show ?case using base by force
    \mathbf{next}
      case (step \ q \ r)
      obtain w where 1: path w p target w p = q set w \cap cuts = \{\} w \neq []
        using step(3) by this
      obtain a where 2: en a q a \notin cuts ex a q = r using step(2) by auto
```

```
show ?case
     proof (rule\ step(4))
       show path (w @ [a]) p using 1 2 by auto
       show target (w @ [a]) p = r using 1 2 by auto
       show set (w @ [a]) \cap cuts = \{\} using 1 2 by auto
       show w @ [a] \neq [] by auto
     qed
   qed
   sublocale wellfounded-relation scut^{-1-1}
   proof (unfold-locales, intro finite-acyclic-wf-converse[to-pred] acyclicI[to-pred],
safe)
     have 1: \{(p, q). \ scut \ p \ q\} \subseteq nodes \times nodes \ using \ scut-reachable \ by \ blast
     have 2: finite (nodes \times nodes)
       using finite-cartesian-product reachable-finite by blast
     show finite \{(p, q). \ scut \ p \ q\} using 1 2 by blast
   next
     \mathbf{fix} p
     assume 1: scut^{++} p p
     have 2: p \in nodes \text{ using } 1 \text{ trancl} E[to\text{-pred}] \text{ scut-reachable by } met is
     obtain w where 3: path w p target w p = p set w \cap cuts = \{\} w \neq []
       using scut-trancl 1 by this
     have 4: w \in cycles p using 3(1, 2) by auto
     have 5: set w \cap cuts \neq \{\} using cycles-cut 2 4 3(4) by this
     show False using 3(3) 5 by simp
   qed
   lemma no-cut-scut:
     assumes p \in nodes \ en \ a \ p \ a \notin cuts
     shows scut^{-1-1} (ex a p) p
     using assms by auto
 end
 locale transition-system-sticky =
   transition-system-complete ex en init int +
   transition-system-cut ex en init sticky
   for ex :: 'action \Rightarrow 'state \Rightarrow 'state
   and en :: 'action \Rightarrow 'state \Rightarrow bool
   and init :: 'state \Rightarrow bool
   and int :: 'state \Rightarrow 'interpretation
   and sticky :: 'action set
   assumes executable-visible-sticky: executable \cap visible \subseteq sticky
```

end

## 8 Trace Theory

```
theory Traces
imports Basics/Word-Prefixes
begin
 locale traces =
   fixes ind :: 'item \Rightarrow 'item \Rightarrow bool
   assumes independence-symmetric[sym]: ind \ a \ b \Longrightarrow ind \ b \ a
 begin
   abbreviation Ind :: 'item set \Rightarrow 'item set \Rightarrow bool
     where Ind\ A\ B \equiv \forall\ a \in A.\ \forall\ b \in B.\ ind\ a\ b
   inductive eq-swap :: 'item list \Rightarrow 'item list \Rightarrow bool (infix \langle =_S \rangle 50)
     where swap: ind a \ b \Longrightarrow u @ [a] @ [b] @ v =_S u @ [b] @ [a] @ v
   declare eq-swap.intros[intro]
   declare eq-swap.cases[elim]
   lemma eq-swap-sym[sym]: v =_S w \Longrightarrow w =_S v using independence-symmetric
by auto
   lemma eq-swap-length[dest]: w_1 =_S w_2 \Longrightarrow length \ w_1 = length \ w_2 by force
   lemma eq-swap-range[dest]: w_1 =_S w_2 \Longrightarrow set \ w_1 = set \ w_2 by force
   lemma eq-swap-extend:
     assumes w_1 =_S w_2
     \mathbf{shows}\ u\ @\ w_1\ @\ v =_S\ u\ @\ w_2\ @\ v
   using assms
   proof induct
     case (swap \ a \ b \ u' \ v')
      have u @ (u' @ [a] @ [b] @ v') @ v = (u @ u') @ [a] @ [b] @ (v' @ v) by
simp
     also have ... =_S (u @ u') @ [b] @ [a] @ (v' @ v) using swap by blast
     also have ... = u @ (u' @ [b] @ [a] @ v') @ v by simp
     finally show ?case by this
   qed
   lemma eq-swap-remove1:
     assumes w_1 =_S w_2
      obtains (equal) remove1 c w_1 = remove1 c w_2 \mid (swap) remove1 c w_1 =_S
remove1 c w<sub>2</sub>
   using assms
   proof induct
     case (swap \ a \ b \ u \ v)
     have c \notin set (u @ [a] @ [b] @ v) \lor
       c \in set \; u \; \vee
       c \notin set \ u \land c = a \lor
```

```
c \not\in set \ u \ \land \ c \neq a \ \land \ c = b \ \lor
      c \notin set \ u \land c \neq a \land c \neq b \land c \in set \ v
      by auto
     thus ?case
     proof (elim disjE)
      assume \theta: c \notin set (u @ [a] @ [b] @ v)
      have 1: c \notin set (u @ [b] @ [a] @ v) using \theta by auto
         have 2: remove1 c (u @ [a] @ [b] @ v) = u @ [a] @ [b] @ v using
remove1-idem 0 by this
         have 3: remove1 c (u @ [b] @ [a] @ v) = u @ [b] @ [a] @ v using
remove1-idem 1 by this
      have 4: remove1 c (u @ [a] @ [b] @ v) = s remove1 c (u @ [b] @ [a] @ v)
        unfolding 2 3 using eq-swap.intros swap(1) by this
      show thesis using swap(3) 4 by this
     next
      assume \theta: c \in set u
      have 2: remove1 c (u @ [a] @ [b] @ v) = remove1 c u @ [a] @ [b] @ v
        unfolding remove1-append using \theta by simp
      have 3: remove1 c (u @ [b] @ [a] @ v) = remove1 c u @ [b] @ [a] @ v
        unfolding remove1-append using 0 by simp
      have 4: remove1 c (u @ [a] @ [b] @ v) =_S remove1 c (u @ [b] @ [a] @ v)
        unfolding 2 3 using eq-swap.intros swap(1) by this
      show thesis using swap(3) \not 4 by this
     next
      assume \theta: c \notin set \ u \land c = a
      have 2: remove1 c (u @ [a] @ [b] @ v) = u @ [b] @ v
        unfolding remove1-append using remove1-idem 0 by auto
      have 3: remove1 c (u @ [b] @ [a] @ v) = u @ [b] @ v
        unfolding remove1-append using remove1-idem 0 by auto
      have 4: remove1 c (u @ [a] @ [b] @ v) = remove1 c (u @ [b] @ [a] @ v)
        unfolding 2 3 by rule
      show thesis using swap(2) \not 4 by this
     next
      assume \theta: c \notin set \ u \land c \neq a \land c = b
      have 2: remove1 c (u @ [a] @ [b] @ v) = u @ [a] @ v
        unfolding remove1-append using remove1-idem 0 by auto
      have 3: remove1 c (u @ [b] @ [a] @ v) = u @ [a] @ v
        unfolding remove1-append using remove1-idem 0 by auto
      have 4: remove1 c (u @ [a] @ [b] @ v) = remove1 c (u @ [b] @ [a] @ v)
        unfolding 2 3 by rule
      show thesis using swap(2) 4 by this
      assume \theta: c \notin set \ u \land c \neq a \land c \neq b \land c \in set \ v
      \mathbf{have}\ 2\colon remove1\ c\ (u\ @\ [a]\ @\ [b]\ @\ v) = u\ @\ [a]\ @\ [b]\ @\ remove1\ c\ v
        unfolding remove1-append using \theta by simp
      have 3: remove1 c (u @ [b] @ [a] @ v) = u @ [b] @ [a] @ remove1 c v
        unfolding remove1-append using \theta by simp
      have 4: remove1 c (u @ [a] @ [b] @ v) =_S remove1 c (u @ [b] @ [a] @ v)
        unfolding 2 3 using eq-swap.intros swap(1) by this
```

```
show ?thesis using swap(3) 4 by this
    qed
   qed
   lemma eq-swap-rev:
    assumes w_1 =_S w_2
    shows rev w_1 =_S rev w_2
   using assms
   proof induct
     case (swap \ a \ b \ u \ v)
     have 1: rev v @ [a] @ [b] @ rev u =_S rev v @ [b] @ [a] @ rev u using swap
      have 2: rev v @ [b] @ [a] @ rev u =_S rev v @ [a] @ [b] @ rev u using 1
eq-swap-sym by blast
    show ?case using 2 by simp
   qed
   abbreviation eq-fin :: 'item list \Rightarrow 'item list \Rightarrow bool (infix \langle =_F \rangle 50)
     where eq-fin \equiv eq-swap**
   lemma eq-fin-symp[intro, sym]: u =_F v \Longrightarrow v =_F u
     using eq-swap-sym sym-rtrancl[to-pred] unfolding symp-def by metis
   lemma eq-fin-length[dest]: w_1 =_F w_2 \Longrightarrow length \ w_1 = length \ w_2
     by (induct rule: rtranclp.induct, auto)
   lemma eq-fin-range[dest]: w_1 =_F w_2 \Longrightarrow set w_1 = set w_2
     by (induct rule: rtranclp.induct, auto)
   lemma eq-fin-remove1:
    assumes w_1 =_F w_2
    shows remove1 c w_1 =_F remove1 c w_2
   using assms
   proof induct
    case (base)
     show ?case by simp
    case (step \ w_2 \ w_3)
    show ?case
     using step(2)
     proof (cases rule: eq-swap-remove1[where ?c = c])
      case equal
      show ?thesis using step equal by simp
     next
      case swap
      show ?thesis using step swap by auto
     qed
   qed
   lemma eq-fin-rev:
```

```
assumes w_1 =_F w_2
 shows rev w_1 =_F rev w_2
 using assms by (induct, auto dest: eq-swap-rev)
lemma eq-fin-concat-eq-fin-start:
 assumes u @ v_1 =_F u @ v_2
 shows v_1 =_F v_2
using assms
proof (induct u arbitrary: v_1 v_2 rule: rev-induct)
 case (Nil)
 show ?case using Nil by simp
next
 case (snoc \ a \ u)
 have 1: u @ [a] @ v_1 =_F u @ [a] @ v_2  using snoc(2) by simp
 have 2: [a] @ v_1 =_F [a] @ v_2  using snoc(1) 1 by this
 show ?case using eq-fin-remove1[OF 2, of a] by simp
qed
lemma eq-fin-concat: u @ w_1 @ v =_F u @ w_2 @ v \longleftrightarrow w_1 =_F w_2
 assume \theta: u @ w_1 @ v =_F u @ w_2 @ v
 have 1: w_1 @ v =_F w_2 @ v using eq-fin-concat-eq-fin-start 0 by this
 have 2: rev(w_1 @ v) =_F rev(w_2 @ v) using 1 by (blast dest: eq-fin-rev)
 have 3: rev v @ rev w_1 =_F rev v @ rev w_2 using 2 by simp
 have 4: rev w_1 =_F rev w_2 using eq-fin-concat-eq-fin-start 3 by this
 have 5: rev(rev w_1) =_F rev(rev w_2) using 4 by (blast dest: eq-fin-rev)
 show w_1 =_F w_2 using 5 by simp
next
 show u @ w_1 @ v =_F u @ w_2 @ v if <math>w_1 =_F w_2
   using that by (induct, auto dest: eq-swap-extend[of - - u v])
lemma eq-fin-concat-start[iff]: w @ w_1 =_F w @ w_2 \longleftrightarrow w_1 =_F w_2
 using eq-fin-concat[of w - []] by simp
lemma eq-fin-concat-end[iff]: w_1 @ w =_F w_2 @ w \longleftrightarrow w_1 =_F w_2
 using eq-fin-concat[of [] - w] by simp
lemma ind-eq-fin':
 assumes Ind \{a\} (set v)
 shows [a] @ v =_F v @ [a]
using assms
proof (induct v)
 case (Nil)
 show ?case by simp
next
 case (Cons \ b \ v)
 have 1: Ind \{a\} (set v) using Cons(2) by auto
 have 2: ind a b using Cons(2) by auto
 have [a] @ b \# v = [a] @ [b] @ v by <math>simp
 also have ... =<sub>S</sub> [b] @ [a] @ v using eq-swap.intros[OF 2, of []] by auto
```

```
also have ... =<sub>F</sub> [b] @ v @ [a] using Cons(1) 1 by blast
 also have \dots = (b \# v) @ [a] by simp
 finally show ?case by this
qed
lemma ind-eq-fin[intro]:
 assumes Ind (set u) (set v)
 shows u @ v =_F v @ u
using assms
proof (induct u)
 case (Nil)
 show ?case by simp
next
 case (Cons\ a\ u)
 have 1: Ind (set u) (set v) using Cons(2) by auto
 have 2: Ind \{a\} (set v) using Cons(2) by auto
 have (a \# u) @ v = [a] @ u @ v by simp
 also have \ldots =_F [a] @ v @ u \text{ using } Cons(1) 1 \text{ by } blast
 also have \dots = ([a] @ v) @ u by simp
 also have ... =<sub>F</sub> (v @ [a]) @ u  using ind\text{-}eq\text{-}fin' 2 by blast
 also have \dots = v \otimes (a \# u) by simp
 finally show ?case by this
qed
definition le-fin :: 'item list \Rightarrow 'item list \Rightarrow bool (infix \langle \leq_F \rangle 50)
 where w_1 \leq_F w_2 \equiv \exists v_1. w_1 @ v_1 =_F w_2
lemma le-finI[intro 0]:
 assumes w_1 @ v_1 =_F w_2
 shows w_1 \leq_F w_2
 using assms unfolding le-fin-def by auto
lemma le-finE[elim 0]:
 assumes w_1 \leq_F w_2
 obtains v_1
 where w_1 @ v_1 =_F w_2
 using assms unfolding le-fin-def by auto
lemma le-fin-empty[simp]: [] \leq_F w by force
lemma le-fin-trivial[intro]: w_1 =_F w_2 \Longrightarrow w_1 \leq_F w_2
proof
 assume 1: w_1 =_F w_2
 show w_1 @ [] =_F w_2 using 1 by simp
lemma le-fin-length[dest]: w_1 \leq_F w_2 \Longrightarrow length \ w_1 \leq length \ w_2 by force
lemma le-fin-range[dest]: w_1 \leq_F w_2 \Longrightarrow set \ w_1 \subseteq set \ w_2 by force
lemma eq-fin-alt-def: w_1 =_F w_2 \longleftrightarrow w_1 \preceq_F w_2 \land w_2 \preceq_F w_1
proof
```

```
show w_1 \leq_F w_2 \wedge w_2 \leq_F w_1 if w_1 =_F w_2 using that by blast
   next
     assume \theta: w_1 \leq_F w_2 \wedge w_2 \leq_F w_1
     have 1: w_1 \leq_F w_2 w_2 \leq_F w_1 using \theta by auto
     have 10: length w_1 = length \ w_2 using 1 by force
     obtain v_1 v_2 where 2: w_1 @ v_1 =_F w_2 w_2 @ v_2 =_F w_1 using 1 by (elim
le-finE)
     have 3: length w_1 = length (w_1 @ v_1) using 2 10 by force
     have 4: w_1 = w_1 @ v_1 using 3 by auto
     have 5: length w_2 = length (w_2 @ v_2) using 2 10 by force
     have \theta: w_2 = w_2 @ v_2 using 5 by auto
     show w_1 =_F w_2 using 4 6 2 by simp
   qed
   lemma le-fin-reflp[simp, intro]: w \leq_F w by auto
   lemma le-fin-transp[intro, trans]:
     assumes w_1 \leq_F w_2 \ w_2 \leq_F w_3
     shows w_1 \leq_F w_3
   proof -
     obtain v_1 where 1: w_1 @ v_1 =_F w_2 using assms(1) by rule
     obtain v_2 where 2: w_2 @ v_2 =_F w_3 using assms(2) by rule
     show ?thesis
     proof
      have w_1 @ v_1 @ v_2 = (w_1 @ v_1) @ v_2 by simp
      also have \dots =_F w_2 @ v_2 using 1 by blast
      also have \ldots =_F w_3 using 2 by blast
      finally show w_1 @ v_1 @ v_2 =_F w_3 by this
     qed
   qed
   lemma eq-fin-le-fin-transp[intro, trans]:
     assumes w_1 =_F w_2 \ w_2 \leq_F w_3
     shows w_1 \leq_F w_3
     using assms by auto
   lemma le-fin-eq-fin-transp[intro, trans]:
     assumes w_1 \leq_F w_2 \ w_2 =_F w_3
     shows w_1 \prec_F w_3
     using assms by auto
   lemma prefix-le-fin-transp[intro, trans]:
     assumes w_1 \leq w_2 \ w_2 \leq_F w_3
     shows w_1 \leq_F w_3
   proof -
     obtain v_1 where 1: w_2 = w_1 @ v_1 using assms(1) by rule
     obtain v_2 where 2: w_2 @ v_2 =_F w_3 using assms(2) by rule
     show ?thesis
     proof
      show w_1 @ v_1 @ v_2 =_F w_3 using 1 2 by simp
     ged
   qed
   lemma le-fin-prefix-transp[intro, trans]:
```

```
assumes w_1 \leq_F w_2 \ w_2 \leq w_3
 shows w_1 \leq_F w_3
proof -
 obtain v_1 where 1: w_1 @ v_1 =_F w_2 using assms(1) by rule
 obtain v_2 where 2: w_3 = w_2 @ v_2 using assms(2) by rule
 show ?thesis
 proof
   have w_1 @ v_1 @ v_2 = (w_1 @ v_1) @ v_2 by simp
   also have \ldots =_F w_2 @ v_2 using 1 by blast
   also have \dots = w_3 using 2 by simp
   finally show w_1 @ v_1 @ v_2 =_F w_3 by this
 qed
qed
lemma prefix-eq-fin-transp[intro, trans]:
 assumes w_1 \leq w_2 \ w_2 =_F w_3
 shows w_1 \leq_F w_3
 using assms by auto
lemma le-fin-concat-start[iff]: w @ w_1 \leq_F w @ w_2 \longleftrightarrow w_1 \leq_F w_2
proof
 assume \theta: w @ w_1 \leq_F w @ w_2
 obtain v_1 where 1: w @ w_1 @ v_1 =_F w @ w_2 using 0 by auto
 show w_1 \leq_F w_2 using 1 by auto
\mathbf{next}
 assume \theta: w_1 \leq_F w_2
 obtain v_1 where 1: w_1 @ v_1 =_F w_2 using 0 by auto
 have 2: (w @ w_1) @ v_1 =_F w @ w_2 using 1 by auto
 show w @ w_1 \leq_F w @ w_2 using 2 by blast
qed
lemma le-fin-concat-end[dest]:
 assumes w_1 \leq_F w_2
 shows w_1 \leq_F w_2 @ w
proof -
 obtain v_1 where 1: w_1 @ v_1 =_F w_2 using assms by rule
 show ?thesis
 proof
   have w_1 @ v_1 @ w = (w_1 @ v_1) @ w by simp
   also have \ldots =_F w_2 @ w using 1 by blast
   finally show w_1 @ v_1 @ w =_F w_2 @ w by this
 qed
qed
definition le-fininf :: 'item list \Rightarrow 'item stream \Rightarrow bool (infix \langle \leq_{FI} \rangle 50)
 where w_1 \leq_{FI} w_2 \equiv \exists v_2. v_2 \leq_{FI} w_2 \land w_1 \leq_F v_2
lemma le-fininfI[intro 0]:
 assumes v_2 \leq_{FI} w_2 \ w_1 \leq_F v_2
 shows w_1 \leq_{FI} w_2
 using assms unfolding le-fininf-def by auto
```

```
lemma le-fininfE[elim 0]:
 assumes w_1 \leq_{FI} w_2
 obtains v_2
 where v_2 \leq_{FI} w_2 \ w_1 \leq_F v_2
 using assms unfolding le-fininf-def by auto
lemma le-fininf-empty[simp]: [] \leq_{FI} w by force
lemma le-fininf-range[dest]: w_1 \leq_{FI} w_2 \Longrightarrow set \ w_1 \subseteq sset \ w_2 by force
lemma eq-fin-le-fininf-transp[intro, trans]:
 assumes w_1 =_F w_2 \ w_2 \preceq_{FI} w_3
 shows w_1 \leq_{FI} w_3
 using assms by blast
lemma le-fin-le-fininf-transp[intro, trans]:
 assumes w_1 \leq_F w_2 \ w_2 \leq_{FI} w_3
 shows w_1 \leq_{FI} w_3
 using assms by blast
lemma prefix-le-fininf-transp[intro, trans]:
 assumes w_1 \leq w_2 \ w_2 \leq_{FI} w_3
 shows w_1 \leq_{FI} w_3
 using assms by auto
lemma le-fin-prefix-fininf-transp[intro, trans]:
 assumes w_1 \leq_F w_2 \ w_2 \leq_{FI} w_3
 shows w_1 \leq_{FI} w_3
 using assms by auto
lemma eq-fin-prefix-fininf-transp[intro, trans]:
 assumes w_1 =_F w_2 \ w_2 \leq_{FI} w_3
 shows w_1 \leq_{FI} w_3
 using assms by auto
lemma le-fininf-concat-start[iff]: w @ w_1 \leq_{FI} w @ - w_2 \longleftrightarrow w_1 \leq_{FI} w_2
proof
 assume \theta: w @ w_1 \leq_{FI} w @ - w_2
 obtain v_2 where 1: v_2 \leq_{FI} w @- w_2 w @ w_1 \leq_F v_2 using 0 by rule
 have 2: length w \leq length \ v_2 using I(2) by force
 have 4: w \leq v_2 using prefix-fininf-extend[OF 1(1) 2] by this
 obtain v_1 where 5: v_2 = w @ v_1 using 4 by rule
 show w_1 \leq_{FI} w_2
 proof
   show v_1 \leq_{FI} w_2 using I(1) unfolding 5 by auto
   show w_1 \leq_F v_1 using I(2) unfolding 5 by simp
 qed
\mathbf{next}
 assume \theta: w_1 \leq_{FI} w_2
 obtain v_2 where 1: v_2 \leq_{FI} w_2 w_1 \leq_F v_2 using 0 by rule
 show w @ w_1 \preceq_{FI} w @- w_2
 proof
   show w @ v_2 \leq_{FI} (w @ - w_2) using I(1) by auto
```

```
show w @ w_1 \leq_F w @ v_2 using I(2) by auto
 qed
qed
lemma le-fininf-singleton[intro, simp]: [shd v] \leq_{FI} v
proof -
 have [shd\ v] \leq_{FI} shd\ v \ \#\#\ sdrop\ 1\ v by blast
 also have \dots = v by simp
  finally show ?thesis by this
qed
definition le-inf :: 'item stream \Rightarrow 'item stream \Rightarrow bool (infix \langle \leq_I \rangle 50)
  where w_1 \leq_I w_2 \equiv \forall v_1. v_1 \leq_{FI} w_1 \longrightarrow v_1 \leq_{FI} w_2
lemma le-infI[intro 0]:
 assumes \bigwedge v_1. v_1 \leq_{FI} w_1 \Longrightarrow v_1 \leq_{FI} w_2
 shows w_1 \leq_I w_2
  using assms unfolding le-inf-def by auto
lemma le-infE[elim \theta]:
 assumes w_1 \leq_I w_2 \ v_1 \leq_{FI} w_1
 obtains v_1 \leq_{FI} w_2
  using assms unfolding le-inf-def by auto
lemma le-inf-range [dest]:
  assumes w_1 \leq_I w_2
  shows sset w_1 \subseteq sset w_2
proof
 \mathbf{fix} \ a
 assume 1: a \in sset w_1
 obtain i where 2: a = w_1 !! i using 1 by (metis imageE sset-range)
  have 3: stake (Suc i) w_1 \leq_{FI} w_1 by rule
  have 4: stake (Suc i) w_1 \leq_{FI} w_2 using assms 3 by rule
  have 5: w_1 !! i \in set (stake (Suc i) w_1) by (meson lessI set-stake-snth)
 show a \in sset \ w_2 \ \mathbf{unfolding} \ \mathcal{Z} \ \mathbf{using} \ 5 \ \mathcal{J} \ \mathbf{by} \ \mathit{fastforce}
qed
lemma le-inf-reflp[simp, intro]: w \leq_I w by auto
lemma prefix-fininf-le-inf-transp[intro, trans]:
 assumes w_1 \leq_{FI} w_2 \ w_2 \leq_I w_3
 shows w_1 \leq_{FI} w_3
  using assms by blast
lemma le-fininf-le-inf-transp[intro, trans]:
 assumes w_1 \leq_{FI} w_2 \ w_2 \leq_I w_3
 shows w_1 \leq_{FI} w_3
 using assms by blast
lemma le-inf-transp[intro, trans]:
  assumes w_1 \leq_I w_2 \ w_2 \leq_I w_3
  shows w_1 \leq_I w_3
  using assms by blast
```

```
lemma le-infI':
     assumes \bigwedge k. \exists v. v \leq_{FI} w_1 \land k < length v \land v \leq_{FI} w_2
     shows w_1 \leq_I w_2
   proof
     \mathbf{fix} \ u
     assume 1: u \leq_{FI} w_1
     obtain v where 2: v \leq_{FI} w_1 length u < length \ v \ v \leq_{FI} w_2 using assms by
auto
     have 3: length u \leq length \ v \ using \ 2(2) by auto
     have 4: u \le v using prefix-fininf-length 1 2(1) 3 by this
     show u \leq_{FI} w_2 using 4 2(3) by rule
   qed
   lemma le-infI-chain-left:
     assumes chain w \wedge k. w k \leq_{FI} v
     shows limit w \leq_I v
   proof (rule le-infI')
     \mathbf{fix} \ k
     obtain l where 1: k < length (w l) using assms(1) by rule
     show \exists va. va \leq_{FI} limit w \land k < length va \land va \leq_{FI} v
     proof (intro exI conjI)
       show w \mid l \leq_{FI} limit \ w \ using \ chain-prefix-limit \ assms(1) \ by \ this
       show k < length (w l) using 1 by this
       show w \mid d \leq_{FI} v \text{ using } assms(2) \text{ by } this
     qed
   qed
   lemma le-infI-chain-right:
     assumes chain w \land u. u \leq_{FI} v \Longrightarrow u \leq_F w (l \ u)
     shows v \leq_I limit w
   proof
     \mathbf{fix} \ u
     assume 1: u \leq_{FI} v
     show u \leq_{FI} limit w
     proof
       show w(l u) \leq_{FI} limit w using chain-prefix-limit assms(1) by this
       show u \leq_F w (l u) using assms(2) 1 by this
     qed
   qed
   lemma le-infI-chain-right':
     assumes chain w \wedge k. stake k \ v \leq_F w \ (l \ k)
     shows v \leq_I limit w
   proof (rule le-infI-chain-right)
     show chain w using assms(1) by this
   \mathbf{next}
     \mathbf{fix} \ u
     assume 1: u \leq_{FI} v
    have 2: stake (length u) v = u using 1 by (simp add: prefix-fininf-def shift-eq)
     have 3: stake (length u) v \leq_F w (l (length u)) using assms(2) by this
```

```
show u \leq_F w (l (length u)) using 3 unfolding 2 by this
qed
definition eq-inf :: 'item stream \Rightarrow 'item stream \Rightarrow bool (infix \langle =_I \rangle 50)
 where w_1 =_I w_2 \equiv w_1 \preceq_I w_2 \land w_2 \preceq_I w_1
lemma eq-infI[intro 0]:
 assumes w_1 \leq_I w_2 \ w_2 \leq_I w_1
 shows w_1 =_I w_2
 using assms unfolding eq-inf-def by auto
lemma eq-infE[elim \ \theta]:
 assumes w_1 =_I w_2
 obtains w_1 \leq_I w_2 \ w_2 \leq_I w_1
 using assms unfolding eq-inf-def by auto
lemma eq-inf-range [dest]: w_1 = w_2 \implies sset \ w_1 = sset \ w_2 by force
lemma eq-inf-reftp[simp, intro]: w =_I w by auto
lemma eq-inf-symp[intro]: w_1 =_I w_2 \implies w_2 =_I w_1 by auto
lemma eq-inf-transp[intro, trans]:
 assumes w_1 =_I w_2 \ w_2 =_I w_3
 shows w_1 =_I w_3
 \mathbf{using}\ \mathit{assms}\ \mathbf{by}\ \mathit{blast}
lemma le-fininf-eq-inf-transp[intro, trans]:
 assumes w_1 \leq_{FI} w_2 \ w_2 =_I w_3
 shows w_1 \leq_{FI} w_3
 using assms by blast
lemma le-inf-eq-inf-transp[intro, trans]:
 assumes w_1 \leq_I w_2 w_2 =_I w_3
 shows w_1 \leq_I w_3
 using assms by blast
lemma eq-inf-le-inf-transp[intro, trans]:
 assumes w_1 =_I w_2 \ w_2 \preceq_I w_3
 shows w_1 \leq_I w_3
 using assms by blast
lemma prefix-fininf-eq-inf-transp[intro, trans]:
 assumes w_1 \leq_{FI} w_2 \ w_2 =_I w_3
 shows w_1 \leq_{FI} w_3
 using assms by blast
lemma le-inf-concat-start[iff]: w @- w_1 \preceq_I w @- w_2 \longleftrightarrow w_1 \preceq_I w_2
 assume 1: w @- w_1 \leq_I w @- w_2
 show w_1 \leq_I w_2
 proof
   fix v_1
   assume 2: v_1 \leq_{FI} w_1
   have w @ v_1 \leq_{FI} w @- w_1 using 2 by auto
   also have ... \leq_I w @- w_2 using 1 by this
```

```
finally show v_1 \leq_{FI} w_2 by rule
 qed
\mathbf{next}
 assume 1: w_1 \leq_I w_2
 show w @ - w_1 \preceq_I w @ - w_2
 proof
   fix v_1
   assume 2: v_1 \leq_{FI} w @- w_1
   then show v_1 \leq_{FI} w @- w_2
   proof (cases rule: prefix-fininf-append)
     case (absorb)
     show ?thesis using absorb by auto
   next
     case (extend z)
     show ?thesis using 1 extend by auto
   qed
 qed
\mathbf{qed}
lemma eq-fin-le-inf-concat-end[dest]: w_1 =_F w_2 \implies w_1 @- w \preceq_I w_2 @- w
proof
 fix v_1
 assume 1: w_1 =_F w_2 \ v_1 \leq_{FI} w_1 @- w
 show v_1 \leq_{FI} w_2 @- w
 using 1(2)
 \mathbf{proof}\ (\mathit{cases}\ \mathit{rule}\colon\mathit{prefix}\text{-}\mathit{fininf}\text{-}\mathit{append})
   case (absorb)
   show ?thesis
   proof
     show w_2 \leq_{FI} (w_2 @- w) by auto
     show v_1 \leq_F w_2 using absorb 1(1) by auto
   qed
 next
   case (extend w')
   show ?thesis
   proof
     show w_2 @ w' \leq_{FI} (w_2 @ - w) using extend(2) by auto
     show v_1 \leq_F w_2 \otimes w' unfolding extend(1) using I(1) by auto
   qed
 qed
qed
lemma eq-inf-concat-start[iff]: w @- w_1 =_I w @- w_2 \longleftrightarrow w_1 =_I w_2 by blast
lemma eq-inf-concat-end[dest]: w_1 =_F w_2 \implies w_1 @- w =_I w_2 @- w
proof -
 assume \theta: w_1 =_F w_2
 have 1: w_2 =_F w_1 using \theta by auto
 show w_1 @- w =_I w_2 @- w
   using eq-fin-le-inf-concat-end[OF 0] eq-fin-le-inf-concat-end[OF 1] by auto
qed
```

```
lemma le-fininf-suffixI[intro]:
 assumes w =_I w_1 @- w_2
 shows w_1 \leq_{FI} w
  using assms by blast
lemma le-fininf-suffixE[elim]:
  assumes w_1 \leq_{FI} w
 obtains w_2
  where w =_{I} w_{1} @- w_{2}
proof -
  obtain v_2 where 1: v_2 \leq_{FI} w \ w_1 \leq_F v_2 using assms(1) by rule
  obtain u_1 where 2: w_1 @ u_1 =_F v_2 using 1(2) by rule
 obtain v_2' where \beta: w = v_2 @- v_2' using I(1) by rule
 show ?thesis
 proof
   show w =_I w_1 @- u_1 @- v_2' unfolding 3 using 2 by fastforce
 qed
qed
lemma subsume-fin:
 assumes u_1 \leq_{FI} w \ v_1 \leq_{FI} w
 obtains w_1
  where u_1 \leq_F w_1 \ v_1 \leq_F w_1
proof -
  obtain u_2 where 2: u_2 \leq_{FI} w u_1 \leq_F u_2 using assms(1) by rule
 obtain v_2 where \beta: v_2 \leq_{FI} w \ v_1 \leq_F v_2 using assms(2) by rule
  proof (cases length u_2 length v_2 rule: le-cases)
   case le
   show ?thesis
   proof
     show u_1 \leq_F v_2 using \mathcal{Z}(\mathcal{Z}) prefix-fininf-length[OF \mathcal{Z}(\mathcal{I}) \mathcal{J}(\mathcal{I}) le] by auto
     show v_1 \leq_F v_2 using \beta(2) by this
   qed
  next
   case qe
   show ?thesis
   proof
     show u_1 \leq_F u_2 using \mathcal{Z}(\mathcal{Z}) by this
     show v_1 \leq_F u_2 using \Im(2) prefix-fininf-length[OF \Im(1) \Im(1) ge] by auto
   qed
 qed
qed
lemma eq-fin-end:
  assumes u_1 =_F u_2 u_1 @ v_1 =_F u_2 @ v_2
 shows v_1 =_F v_2
proof -
 have u_1 @ v_2 =_F u_2 @ v_2 using assms(1) by blast
```

```
also have ... =_F u_1 @ v_1  using assms(2) by blast
     finally show ?thesis by blast
   qed
   definition indoc :: 'item \Rightarrow 'item \ list \Rightarrow bool
     where indoc a \ u \equiv \exists \ u_1 \ u_2. \ u = u_1 @ [a] @ u_2 \land a \notin set \ u_1 \land Ind \{a\} \ (set
u_1)
   lemma indoc-set: indoc a u \Longrightarrow a \in set \ u \text{ unfolding } indoc-def \ \text{by } auto
   lemma indoc-appendI1 [intro]:
     assumes indoc a u
     shows indoc \ a \ (u @ v)
     using assms unfolding indoc-def by force
   lemma indoc-appendI2[intro]:
     assumes a \notin set \ u \ Ind \ \{a\} \ (set \ u) \ indoc \ a \ v
     shows indoc \ a \ (u @ v)
   proof -
     obtain v_1 v_2 where 1: v = v_1 \otimes [a] \otimes v_2 a \notin set v_1 Ind \{a\} (set v_1)
       using assms(3) unfolding indoc\text{-}def by blast
     show ?thesis
     proof (unfold indoc-def, intro exI conjI)
       show u @ v = (u @ v_1) @ [a] @ v_2 unfolding I(1) by simp
       show a \notin set (u @ v_1) using assms(1) 1(2) by auto
       show Ind \{a\} (set (u @ v_1)) using assms(2) 1(3) by auto
     qed
   qed
   lemma indoc-appendE[elim!]:
     assumes indoc \ a \ (u \ @ \ v)
     obtains (first) a \in set \ u \ indoc \ a \ u \mid (second) \ a \notin set \ u \ Ind \{a\} \ (set \ u) \ indoc
a v
   proof -
     obtain w_1 w_2 where 1: u @ v = w_1 @ [a] @ w_2 a \notin set w_1 Ind \{a\} (set w_1)
       using assms unfolding indoc-def by blast
     show ?thesis
     proof (cases a \in set u)
       {f case}\ True
       obtain u_1 u_2 where 2: u = u_1 @ [a] @ u_2 a \notin set u_1
         using split-list-first[OF True] by auto
       have 3: w_1 = u_1
       proof (rule split-list-first-unique)
         show w_1 @ [a] @ w_2 = u_1 @ [a] @ u_2 @ v using I(1) unfolding \mathcal{Z}(1)
by simp
         show a \notin set w_1 using I(2) by auto
         show a \notin set \ u_1  using 2(2) by this
       qed
       show ?thesis
       proof (rule first)
         show a \in set \ u \text{ using } True \text{ by } this
```

```
show indoc a u
        proof (unfold indoc-def, intro exI conjI)
          show u = u_1 @ [a] @ u_2 using \mathcal{Z}(1) by this
          show a \notin set \ u_1  using I(2) unfolding 3 by this
          show Ind \{a\} (set u_1) using I(3) unfolding 3 by this
        qed
      qed
     next
      case False
      have 2: a \in set \ v \ using \ indoc-set \ assms \ False \ by \ fastforce
      obtain v_1 v_2 where 3: v = v_1 @ [a] @ v_2 a \notin set v_1
        using split-list-first[OF 2] by auto
      have 4: w_1 = u @ v_1
      proof (rule split-list-first-unique)
        show w_1 @ [a] @ w_2 = (u @ v_1) @ [a] @ v_2 using I(1) unfolding 3(1)
by simp
        show a \notin set w_1 using 1(2) by auto
        show a \notin set (u @ v_1) using False 3(2) by auto
       show ?thesis
      proof (rule second)
        show a \notin set \ u \text{ using } False \text{ by } this
        show Ind \{a\} (set u) using I(3) \not\downarrow by auto
        show indoc a v
        proof (unfold indoc-def, intro exI conjI)
          show v = v_1 @ [a] @ v_2 using \mathcal{I}(1) by this
          show a \notin set \ v_1 \ using \ 1(2) \ unfolding \ 4 \ by \ auto
          show Ind \{a\} (set v_1) using I(3) unfolding 4 by auto
        qed
      qed
     qed
   qed
   lemma indoc-single: indoc a [b] \longleftrightarrow a = b
   proof
     assume 1: indoc a [b]
     obtain u_1 u_2 where 2: [b] = u_1 @ [a] @ u_2 Ind \{a\} (set u_1)
       using 1 unfolding indoc-def by auto
     show a = b using 2(1)
     by (metis append-eq-Cons-conv append-is-Nil-conv list.distinct(2) list.inject)
   \mathbf{next}
     assume 1: a = b
     show indoc a [b]
     unfolding indoc-def 1
     proof (intro exI conjI)
      show [b] = [] @ [b] @ [] by simp
      show b \notin set [] by simp
      show Ind \{b\} (set []) by simp
     qed
```

```
qed
```

```
lemma indoc-append[simp]: indoc a (u @ v) \longleftrightarrow
     indoc \ a \ u \lor a \notin set \ u \land Ind \{a\} \ (set \ u) \land indoc \ a \ v \ by \ blast
   lemma indoc-Nil[simp]: indoc a [] \longleftrightarrow False unfolding indoc-def by auto
    lemma indoc\text{-}Cons[simp]: indoc a (b \# v) \longleftrightarrow a = b \lor a \neq b \land ind a b \land b
indoc \ a \ v
   proof -
     have indoc a (b \# v) \longleftrightarrow indoc a ([b] @ v) by simp
     also have ... \longleftrightarrow indoc a [b] \lor a \notin set [b] \land Ind \{a\} (set [b]) \land indoc a v
       unfolding indoc-append by rule
    also have ... \longleftrightarrow a = b \lor a \neq b \land ind \ a \ b \land indoc \ a \ v \ unfolding \ indoc-single
\mathbf{by} \ simp
     finally show ?thesis by this
   qed
   lemma eq-swap-indoc: u =_S v \Longrightarrow indoc \ c \ u \Longrightarrow indoc \ c \ v \ {\bf by} \ auto
    lemma eq-fin-indoc: u =_F v \implies indoc \ c \ u \implies indoc \ c \ v by (induct rule:
rtranclp.induct, auto)
   lemma eq-fin-ind':
     assumes [a] @ u =_F u_1 @ [a] @ u_2 a \notin set u_1
     shows Ind \{a\} (set u_1)
   proof -
     have 1: indoc \ a \ ([a] @ u) by simp
     have 2: indoc a (u_1 @ [a] @ u_2) using eq-fin-indoc assms(1) 1 by this
     show ?thesis using assms(2) 2 by blast
   qed
   lemma eq-fin-ind:
     assumes u @ v =_F v @ u \ set \ u \cap set \ v = \{\}
     shows Ind (set u) (set v)
   using assms
   proof (induct u)
     case Nil
     show ?case by simp
     case (Cons\ a\ u)
     have 1: Ind \{a\} (set v)
     proof (rule eq-fin-ind')
       show [a] @ u @ v =_F v @ [a] @ u using <math>Cons(2) by simp
       show a \notin set \ v \ using \ Cons(3) \ by \ simp
     have 2: Ind (set [a]) (set v) using 1 by simp
     have 4: Ind (set u) (set v)
     proof (rule Cons(1))
       have [a] @ u @ v = (a \# u) @ v by simp
       also have ... = v @ a \# u \text{ using } Cons(2) \text{ by } this
       also have \dots = (v @ [a]) @ u by simp
       also have \ldots =_F ([a] @ v) @ u \text{ using } 2 \text{ by } blast
```

```
also have \dots = [a] @ v @ u by simp
   finally show u @ v =_F v @ u by blast
   show set u \cap set \ v = \{\} using Cons(3) by auto
 show ?case using 1 4 by auto
qed
lemma le-fin-member':
 assumes [a] \leq_F u @ v a \in set u
 shows [a] \leq_F u
proof -
 obtain w where 1: [a] @ w =_F u @ v using assms(1) by rule
 obtain u_1 u_2 where 2: u = u_1 @ [a] @ u_2 a \notin set u_1
   using split-list-first[OF\ assms(2)] by auto
 have 3: Ind \{a\} (set u_1)
 proof (rule eq-fin-ind')
   show [a] @ w =_F u_1 @ [a] @ u_2 @ v  using 1 unfolding 2(1) by simp
   show a \notin set u_1 using \mathcal{Z}(\mathcal{Z}) by this
 have 4: Ind (set [a]) (set u_1) using 3 by simp
 have [a] \leq [a] @ u_1 @ u_2 by auto
 also have \dots = ([a] @ u_1) @ u_2 by simp
 also have \ldots =_F (u_1 \otimes [a]) \otimes u_2 using 4 by blast
 also have \dots = u unfolding 2(1) by simp
 finally show ?thesis by this
qed
lemma le-fin-not-member':
 assumes [a] \leq_F u @ v a \notin set u
 shows [a] \leq_F v
proof -
 obtain w where 1: [a] @ w =_F u @ v using assms(1) by rule
 have \beta: a \in set \ v \ using \ assms \ by \ auto
 obtain v_1 v_2 where 4: v = v_1 @ [a] @ v_2 a \notin set v_1 using split-list-first[OF]
 have 5: [a] @ w =_F u @ v_1 @ [a] @ v_2 using 1 unfolding 4(1) by this
 have \theta: Ind \{a\} (set (u @ v_1))
 proof (rule eq-fin-ind')
   show [a] @ w =_F (u @ v_1) @ [a] @ v_2 using 5 by simp
   show a \notin set (u @ v_1) using assms(2) 4(2) by auto
 qed
 have \theta: Ind (set [a]) (set v_1) using \theta by auto
 have [a] \leq [a] @ v_1 @ v_2 by auto
 also have \dots = ([a] @ v_1) @ v_2 by simp
 also have \dots =_F (v_1 @ [a]) @ v_2  using g by blast
 also have \dots = v_1 @ [a] @ v_2 by simp
 also have \dots = v unfolding 4(1) by rule
 finally show ?thesis by this
qed
lemma le-fininf-not-member':
```

```
assumes [a] \leq_{FI} u @-v a \notin set u
     shows [a] \leq_{FI} v
   proof -
    obtain v_2 where 1: v_2 \leq_{FI} u @-v [a] \leq_F v_2 using le-fininfE assms(1) by
this
     show ?thesis
     using 1(1)
     proof (cases rule: prefix-fininf-append)
      case absorb
      have [a] \leq_F v_2 using I(2) by this
      also have \dots \leq u using absorb by this
      finally have 2: a \in set \ u  by force
      show ?thesis using assms(2) 2 by simp
     next
       case (extend z)
      have [a] \leq_F v_2 using I(2) by this
      also have \dots = u \otimes z \text{ using } extend(1) \text{ by } this
      finally have 2: [a] \leq_F u @ z by this
      have [a] \leq_F z using le-fin-not-member' 2 assms(2) by this
      also have \ldots \leq_{FI} v using extend(2) by this
      finally show ?thesis by this
     qed
   \mathbf{qed}
   lemma le-fin-ind'':
     assumes [a] \leq_F w [b] \leq_F w a \neq b
     shows ind a b
   proof -
     obtain u where 1: [a] @ u =_F w using assms(1) by rule
     obtain v where 2: [b] @ v =_F w \text{ using } assms(2) \text{ by } rule
     have 3: [a] @ u =_F [b] @ v  using 1 \ 2[symmetric] by auto
     have 4: a \in set \ v \ using \ 3 \ assms(3)
      by (metis append-Cons append-Nil eq-fin-range list.set-intros(1) set-ConsD)
    obtain v_1 v_2 where 5: v = v_1 @ [a] @ v_2 a \notin set v_1 using split-list-first[OF]
4] by auto
     have 7: Ind \{a\} (set ([b] @ v_1))
     proof (rule eq-fin-ind')
      show [a] @ u =_F ([b] @ v_1) @ [a] @ v_2 using 3 unfolding 5(1) by simp
      show a \notin set ([b] @ v_1) using assms(3) \ 5(2) by auto
     qed
     show ?thesis using 7 by auto
   qed
   lemma le-fin-ind':
     assumes [a] \leq_F w \ v \leq_F w \ a \notin set \ v
     shows Ind \{a\} (set v)
   using assms
   proof (induct v arbitrary: w)
     case Nil
     show ?case by simp
```

```
next
     case (Cons \ b \ v)
     have 1: ind \ a \ b
     proof (rule le-fin-ind'')
      show [a] \leq_F w using Cons(2) by this
      show [b] \leq_F w using Cons(3) by auto
      show a \neq b using Cons(4) by auto
     obtain w' where 2: [b] @ w' =_F w \text{ using } Cons(3) \text{ by } auto
     have \mathcal{G}: Ind \{a\} (set v)
     proof (rule\ Cons(1))
      show [a] \leq_F w'
      proof (rule le-fin-not-member')
        show [a] \leq_F [b] @ w'  using Cons(2) 2 by auto
        show a \notin set [b] using Cons(4) by auto
      qed
      have [b] @ v = b \# v by simp
      also have ... \leq_F w using Cons(3) by this
      also have \ldots =_F [b] @ w'  using 2 by auto
      finally show v \leq_F w' by blast
      show a \notin set \ v \ using \ Cons(4) by auto
     qed
     show ?case using 1 3 by auto
   qed
   lemma le-fininf-ind'':
     assumes [a] \leq_{FI} w [b] \leq_{FI} w a \neq b
     shows ind a b
     using subsume-fin le-fin-ind" assms by metis
   lemma le-fininf-ind':
     assumes [a] \leq_{FI} w \ v \leq_{FI} w \ a \notin set \ v
     shows Ind \{a\} (set v)
     using subsume-fin le-fin-ind' assms by metis
   lemma indoc-alt-def: indoc a v \longleftrightarrow v =_F [a] @ remove1 a v
   proof
    assume \theta: indoc a v
    obtain v_1 v_2 where 1: v = v_1 @ [a] @ v_2 a \notin set v_1 Ind \{a\} (set v_1)
      using \theta unfolding indoc\text{-}def by blast
     have 2: Ind (set [a]) (set v_1) using 1(3) by simp
     have v = v_1 @ [a] @ v_2 using I(1) by this
    also have \dots = (v_1 @ [a]) @ v_2 by simp
     also have \ldots =_F ([a] @ v_1) @ v_2  using 2 by blast
     also have \dots = [a] @ v_1 @ v_2 by simp
     also have ... = [a] @ remove1 a v unfolding 1(1) remove1-append using
1(2) by auto
     finally show v =_F [a] @ remove1 \ a \ v  by this
     assume \theta: v =_F [a] @ remove1 a v
     have 1: indoc \ a \ ([a] @ remove1 \ a \ v) by simp
```

```
show indoc a v using eq-fin-indoc 0 1 by blast
   qed
   lemma levi-lemma:
    assumes t @ u =_F v @ w
    obtains p r s q
     where t =_F p @ r u =_F s @ q v =_F p @ s w =_F r @ q Ind (set r) (set s)
   using assms
   proof (induct t arbitrary: thesis v w)
     case Nil
    show ?case
     proof (rule Nil(1))
      show [] =_F [] @ [] by simp
      show v =_F [] @ v  by simp
      show u =_F v @ w  using Nil(2) by simp
      show w =_F [] @ w  by simp
      show Ind (set []) (set v) by simp
     qed
   next
     case (Cons a t')
     have 1: [a] \leq_F v @ w \text{ using } Cons(3) \text{ by } blast
     show ?case
     proof (cases \ a \in set \ v)
      {f case} False
      have 2: [a] \leq_F w using le-fin-not-member' 1 False by this
      obtain w' where 3: w =_F [a] @ w' using 2 by blast
      have 4: v \leq_F v @ w by auto
      have 5: Ind (set [a]) (set v) using le-fin-ind'[OF 1 4] False by simp
      have [a] @ t' @ u = (a \# t') @ u by simp
      also have \ldots =_F v @ w \text{ using } Cons(3) \text{ by } this
      also have \ldots =_F v @ [a] @ w'  using 3 by blast
      also have \dots = (v @ [a]) @ w' by simp
      also have \ldots =_F ([a] @ v) @ w'  using 5 by blast
      also have \dots = [a] @ v @ w' by simp
      finally have 6: t' @ u =_F v @ w' by blast
      obtain p r' s q where 7: t' =_F p @ r' u =_F s @ q v =_F p @ s w' =_F r'
@ q
        Ind (set r') (set s) using Cons(1)[OF - 6] by this
      have 8: set v = set \ p \cup set \ s \ using \ eq-fin-range \ 7(3) by auto
      have 9: Ind (set [a]) (set p) using 5 8 by auto
      have 10: Ind (set [a]) (set s) using 5 8 by auto
      show ?thesis
      proof (rule\ Cons(2))
        have a \# t' = [a] @ t' by simp
        also have \ldots =_F [a] @ p @ r'  using 7(1) by blast
        also have \dots = ([a] @ p) @ r' by simp
        also have \dots =_F (p @ [a]) @ r' using 9 by blast
        also have \dots = p @ [a] @ r' by simp
        finally show a \# t' =_F p @ [a] @ r' by this
```

```
show u =_F s @ q  using 7(2) by this
        show v =_F p @ s using 7(3) by this
        have w =_F [a] @ w'  using 3 by this
        also have \ldots =_F [a] @ r' @ q \text{ using } 7(4) \text{ by } blast
        also have \dots = ([a] @ r') @ q by simp
        finally show w =_F ([a] @ r') @ q by this
        show Ind (set ([a] @ r')) (set s) using 7(5) 10 by auto
      qed
     next
      case True
      have 2: [a] \leq_F v using le-fin-member' 1 True by this
      obtain v' where 3: v =_F [a] @ v' using 2 by blast
      have [a] @ t' @ u = (a \# t') @ u by simp
      also have \ldots =_F v @ w \text{ using } Cons(3) \text{ by } this
      also have ... =<sub>F</sub> ([a] @ v') @ w using 3 by blast
      also have \dots = [a] @ v' @ w by simp
      finally have 4: t' @ u =_F v' @ w by blast
       obtain p' r s q where 7: t' =_F p' @ r u =_F s @ q v' =_F p' @ s w =_F r
@ q
        Ind (set \ r) \ (set \ s) \ \mathbf{using} \ Cons(1)[OF - 4] \ \mathbf{by} \ this
      show ?thesis
      proof (rule\ Cons(2))
        have a \# t' = [a] @ t' by simp
        also have ... =<sub>F</sub> [a] @ p' @ r using 7(1) by blast
        also have \dots = ([a] @ p') @ r by simp
        finally show a \# t' =_F ([a] @ p') @ r by this
        show u =_F s @ q  using 7(2) by this
        have v =_F [a] @ v'  using 3 by this
        also have \ldots =_F [a] @ p' @ s  using 7(3) by blast
        also have \dots = ([a] @ p') @ s by simp
        finally show v =_F ([a] @ p') @ s by this
        show w =_F r @ q  using 7(4) by this
        show Ind (set r) (set s) using 7(5) by this
      qed
    qed
   qed
 end
```

# 9 Transition Systems and Trace Theory

```
theory Transition-System-Traces
imports
Transition-System-Extensions
Traces
begin
```

end

```
lemma (in transition-system) words-infI-construct[rule-format, intro?]:
   assumes \forall v. v \leq_{FI} w \longrightarrow path v p
   \mathbf{shows} \ run \ w \ p
   using assms by coinduct auto
  lemma (in transition-system) words-infl-construct':
   assumes \bigwedge k. \exists v. v \leq_{FI} w \land k < length v \land path v p
   shows run w p
  proof
   \mathbf{fix} \ u
   assume 1: u \leq_{FI} w
   obtain v where 2: v \leq_{FI} w length u < length v path v p using assms(1) by
auto
   have 3: length u \leq length \ v \text{ using } 2(2) \text{ by } simp
   have 4: u \leq v using prefix-fininf-length 1 2(1) 3 by this
   show path u p using 42(3) by auto
  qed
  lemma (in transition-system) words-infI-construct-chain[intro]:
   assumes chain w \wedge k. path (w k) p
   shows run (limit w) p
  proof (rule words-infI-construct')
   \mathbf{fix} \ k
   obtain l where 1: k < length (w l) using assms(1) by rule
   show \exists v. v \leq_{FI} limit w \land k < length v \land path v p
   proof (intro exI conjI)
     show w \mid l \leq_{FI} limit \ w  using chain-prefix-limit \ assms(1) by this
     show k < length (w l) using 1 by this
     show path (w \ l) p using assms(2) by this
   qed
  qed
  lemma (in transition-system) words-fin-blocked:
   assumes \bigwedge w. path w p \Longrightarrow A \cap set w = \{\} \Longrightarrow A \cap \{a. enabled a (target w)\}
p)\} \subseteq A \cap \{a. \ enabled \ a \ p\}
   assumes path w p A \cap \{a. enabled a p\} \cap set w = \{\}
   shows A \cap set w = \{\}
   using assms by (induct w rule: rev-induct, auto)
  locale transition-system-traces =
    transition\text{-}system\ ex\ en\ +
    traces ind
   for ex :: 'action \Rightarrow 'state \Rightarrow 'state
   and en :: 'action \Rightarrow 'state \Rightarrow bool
   and ind :: 'action \Rightarrow 'action \Rightarrow bool
   assumes en: ind a b \Longrightarrow en \ a \ p \Longrightarrow en \ b \ p \longleftrightarrow en \ b \ (ex \ a \ p)
   assumes ex: ind a b \Longrightarrow en \ a \ p \Longrightarrow en \ b \ p \Longrightarrow ex \ b \ (ex \ a \ p) = ex \ a \ (ex \ b \ p)
  begin
```

```
lemma diamond-bottom:
 \mathbf{assumes}\ ind\ a\ b
 assumes en a p en b p
 shows en\ a\ (ex\ b\ p)\ en\ b\ (ex\ a\ p)\ ex\ b\ (ex\ a\ p) = ex\ a\ (ex\ b\ p)
 using assms independence-symmetric en ex by metis+
lemma diamond-right:
 assumes ind \ a \ b
 assumes en a p en b (ex a p)
 shows en\ a\ (ex\ b\ p)\ en\ b\ p\ ex\ b\ (ex\ a\ p) = ex\ a\ (ex\ b\ p)
 \mathbf{using} \ \mathit{assms} \ \mathit{independence-symmetric} \ \mathit{en} \ \mathit{ex} \ \mathbf{by} \ \mathit{metis} +
lemma diamond-left:
 assumes ind \ a \ b
 assumes en \ a \ (ex \ b \ p) \ en \ b \ p
 shows en a p en b (ex \ a \ p) ex b (ex \ a \ p) = ex \ a \ (ex \ b \ p)
 using assms independence-symmetric en ex by metis+
lemma eq-swap-word:
 assumes w_1 =_S w_2 path w_1 p
 shows path w_2 p
 using assms diamond-right by (induct, auto)
lemma eq-fin-word:
 assumes w_1 =_F w_2 path w_1 p
 shows path w_2 p
 using assms eq-swap-word by (induct, auto)
lemma le-fin-word:
 assumes w_1 \leq_F w_2 path w_2 p
 shows path w_1 p
 using assms eq-fin-word by blast
lemma le-fininf-word:
 assumes w_1 \leq_{FI} w_2 run w_2 p
 shows path w_1 p
 using assms le-fin-word by blast
lemma le-inf-word:
 assumes w_2 \leq_I w_1 run w_1 p
 shows run w_2 p
 using assms le-fininf-word by (blast intro: words-infI-construct)
lemma eq-inf-word:
 assumes w_1 =_I w_2 run w_1 p
 shows run \ w_2 \ p
 using assms le-inf-word by auto
lemma eq-swap-execute:
 assumes path w_1 p w_1 =_S w_2
 shows fold ex w_1 p = fold ex w_2 p
 using assms(2, 1) diamond-right by (induct, auto)
lemma eq-fin-execute:
 assumes path w_1 p w_1 =_F w_2
 shows fold ex w_1 p = fold ex w_2 p
```

```
using assms(2, 1) eq-fin-word eq-swap-execute by (induct, auto)
   \mathbf{lemma}\ diamond\text{-}fin\text{-}word\text{-}step\text{:}
     assumes Ind \{a\} (set v) en a p path v p
     shows path \ v \ (ex \ a \ p)
     using diamond-bottom assms by (induct\ v\ arbitrary:\ p,\ auto,\ metis)
   \mathbf{lemma}\ \mathit{diamond-inf-word-step} :
     assumes Ind \{a\} (sset w) en a p run w p
     shows run \ w \ (ex \ a \ p)
     using diamond-fin-word-step assms by (fast intro: words-infI-construct)
   lemma diamond-fin-word-inf-word:
     assumes Ind (set v) (set w) path v p run w p
     shows run \ w \ (fold \ ex \ v \ p)
     using diamond-inf-word-step assms by (induct v arbitrary: p, auto)
   lemma diamond-fin-word-inf-word':
     assumes Ind (set v) (set w) path (u @ v) p run (u @ - w) p
     shows run (u @- v @- w) p
     using assms diamond-fin-word-inf-word by auto
 end
end
10
        Functions
theory Functions
\mathbf{imports}\ ../\mathit{Extensions}/\mathit{Set\text{-}Extensions}
begin
  locale bounded-function =
   fixes A :: 'a \ set
   fixes B :: 'b \ set
   fixes f :: 'a \Rightarrow 'b
   assumes wellformed[intro?, simp]: x \in A \Longrightarrow f x \in B
 locale bounded-function-pair =
   f: bounded-function A B f +
   g: bounded-function B A g
   \mathbf{for}\ A::\ 'a\ set
   and B :: 'b \ set
   and f :: 'a \Rightarrow 'b
   and q::'b \Rightarrow 'a
  locale injection = bounded-function-pair +
   assumes left-inverse[simp]: x \in A \Longrightarrow g(f x) = x
  begin
```

lemma inj-on[intro]: inj-on f A using inj-onI left-inverse by metis

```
lemma injective-on:
     assumes x \in A y \in A f x = f y
     shows x = y
     using assms left-inverse by metis
 end
 locale injective = bounded-function +
   assumes injection: \exists g. injection \ A \ B \ f \ g
 begin
   definition g \equiv SOME \ g. \ injection \ A \ B \ f \ g
   sublocale injection A B f g unfolding g-def using some I-ex[OF injection] by
this
 end
 locale surjection = bounded-function-pair +
   assumes right-inverse[simp]: y \in B \Longrightarrow f (g y) = y
 begin
   lemma image-superset[intro]: f ' A \supseteq B
     using g.wellformed image-iff right-inverse subset by metis
   lemma image-eq[simp]: f \cdot A = B using image-superset by auto
 end
 locale \ surjective = bounded-function +
   assumes surjection: \exists g. surjection \ A \ B \ f \ g
  begin
   definition g \equiv SOME \ g. surjection A \ B \ f \ g
   sublocale surjection \ A \ B \ f \ g \ unfolding \ g-def \ using \ some I-ex[OF \ surjection]
by this
 end
 locale \ bijection = injection + surjection
 lemma inj-on-bijection:
   assumes inj-on f A
   shows bijection A(f'A) f(inv-into A f)
   show \bigwedge x. x \in A \Longrightarrow f x \in f 'A using image  by this
   show \bigwedge y. y \in f 'A \Longrightarrow inv\text{-}into \ A \ f \ y \in A \ using \ inv\text{-}into\text{-}into \ by \ this
   show \bigwedge x. x \in A \Longrightarrow inv\text{-}into\ A\ f\ (f\ x) = x using inv\text{-}into\text{-}f\text{-}f assms by this
```

```
show \bigwedge y. y \in f ' A \Longrightarrow f (inv-into A f y) = y using f-inv-into-f by this \mathbf{qed}
```

end

end

### 11 Extended Natural Numbers

```
theory ENat-Extensions
imports
  Coinductive.\ Coinductive-Nat
begin
  declare eSuc\text{-}enat[simp]
 \mathbf{declare}\ iadd\text{-}Suc[simp]\ iadd\text{-}Suc\text{-}right[simp]
 declare enat-0[simp] enat-1[simp] one-eSuc[simp]
 declare enat-\theta-iff[iff] enat-1-iff[iff]
 declare Suc-ile-eq[iff]
 lemma enat-Suc\theta[simp]: enat (Suc \theta) = eSuc \theta by (metis One-nat-def one-eSuc
one-enat-def)
 lemma le\text{-}epred[iff]: l < epred k \longleftrightarrow eSuc l < k
   by (metis eSuc-le-iff epred-eSuc epred-le-epredI less-le-not-le not-le)
 lemma eq-infI[intro]:
   assumes \bigwedge n. enat n \leq m
   shows m = \infty
   using assms by (metis enat-less-imp-le enat-ord-simps(5) less-le-not-le)
```

## 12 Chain-Complete Partial Orders

```
theory CCPO\text{-}Extensions imports HOL\text{-}Library.Complete\text{-}Partial\text{-}Order2 ENat\text{-}Extensions Set\text{-}Extensions begin lemma chain\text{-}split[dest]: assumes Complete\text{-}Partial\text{-}Order.chain ord }Cx \in C shows C = \{y \in C. \text{ ord } x \text{ } y\} \cup \{y \in C. \text{ ord } y \text{ } x\} proof - have 1: \land y. \text{ } y \in C \Longrightarrow ord \text{ } x \text{ } y \lor ord \text{ } y \text{ } x \text{ } using \text{ } chainD \text{ } assms \text{ } by \text{ } this \text{ } show \text{ } ?thesis \text{ } using \text{ } 1 \text{ } by \text{ } blast \text{ } qed
```

```
lemma infinite-chain-below[dest]:
 assumes Complete-Partial-Order.chain ord C infinite C x \in C
 assumes finite \{y \in C. \text{ ord } x y\}
 shows infinite \{y \in C. \text{ ord } y \}
proof -
 have 1: C = \{y \in C. \ ord \ x \ y\} \cup \{y \in C. \ ord \ y \ x\} \ using \ assms(1, 3) \ by \ rule
 show ?thesis using finite-Un assms(2, 4) 1 by (metis (poly-guards-query))
lemma infinite-chain-above[dest]:
 assumes Complete-Partial-Order.chain ord C infinite C x \in C
 assumes finite \{y \in C. \text{ ord } y x\}
 shows infinite \{y \in C. \text{ ord } x y\}
proof -
 have 1: C = \{y \in C. \text{ ord } x y\} \cup \{y \in C. \text{ ord } y x\} \text{ using } assms(1, 3) \text{ by } rule
 show ?thesis using finite-Un assms(2, 4) 1 by (metis (poly-guards-query))
qed
lemma (in ccpo) ccpo-Sup-upper-inv:
 assumes Complete-Partial-Order.chain less-eq C x > | | C
 shows x \notin C
 using assms ccpo-Sup-upper by fastforce
lemma (in ccpo) ccpo-Sup-least-inv:
 assumes Complete-Partial-Order.chain less-eq C \bigsqcup C > x
 obtains y
 where y \in C \neg y \leq x
 using assms ccpo-Sup-least that by fastforce
lemma ccpo-Sup-least-inv':
 fixes C :: 'a :: \{ccpo, linorder\}  set
 assumes Complete-Partial-Order.chain less-eq C \mid \mid C > x
 obtains y
 where y \in C y > x
proof -
 obtain y where 1: y \in C \neg y \le x using ccpo-Sup-least-inv assms by this
 show ?thesis using that 1 by simp
qed
lemma mcont2mcont-lessThan[THEN lfp.mcont2mcont, simp, cont-intro]:
 shows mcont-lessThan: mcont Sup less-eq Sup less-eq
   (lessThan :: 'a :: \{ccpo, linorder\} \Rightarrow 'a set)
proof
 show monotone less-eq (lessThan :: 'a \Rightarrow 'a set) by (rule, auto)
 show cont Sup less-eq Sup less-eq (lessThan :: 'a \Rightarrow 'a set)
 proof
   \mathbf{fix}\ C::\ 'a\ set
   assume 1: Complete-Partial-Order.chain less-eq C
   show \{..<\bigcup C\} = \bigcup (lessThan 'C)
   proof (intro equalityI subsetI)
     \mathbf{fix} A
```

```
assume 2: A \in \{..< \bigcup C\}
     obtain B where 3: B \in C B > A using ccpo-Sup-least-inv' 1 2 by blast
     show A \in \bigcup (lessThan 'C) using 3 by auto
     \mathbf{fix} A
     assume 2: A \in \bigcup (lessThan 'C)
     show A \in \{..< \bigcup C\} using ccpo-Sup-upper 2 by force
   qed
 qed
qed
class \ esize =
 fixes esize :: 'a \Rightarrow enat
class \ esize-order = esize + order +
 assumes esize-finite [dest]: esize x \neq \infty \Longrightarrow finite \{y, y \leq x\}
 assumes esize-mono[intro]: x \le y \Longrightarrow esize \ x \le esize \ y
 assumes esize-strict-mono[intro]: esize x \neq \infty \Longrightarrow x < y \Longrightarrow esize x < esize y
begin
 lemma infinite-chain-eSuc-esize[dest]:
   assumes Complete-Partial-Order.chain less-eq C infinite C x \in C
   obtains y
   where y \in C esize y \ge eSuc (esize x)
 proof (cases esize x)
   case (enat k)
   have 1: finite \{y \in C. \ y \leq x\} using esize-finite enat by simp
   have 2: infinite \{y \in C. \ y \ge x\} using assms 1 by rule
   have 3: \{y \in C. \ y > x\} = \{y \in C. \ y \ge x\} - \{x\} by auto
   have 4: infinite \{y \in C. \ y > x\} using 2 unfolding 3 by simp
   obtain y where 5: y \in C y > x using 4 by auto
   have 6: esize y > esize x using esize-strict-mono enat 5(2) by blast
   show ?thesis using that 5(1) 6 ileI1 by simp
   case (infinity)
   show ?thesis using that infinity assms(3) by simp
 \mathbf{qed}
 lemma infinite-chain-arbitrary-esize[dest]:
   assumes Complete-Partial-Order.chain less-eq C infinite C
   obtains x
   where x \in C esize x \ge enat n
 proof (induct n arbitrary: thesis)
   case \theta
   show ?case using assms(2) 0 by force
 \mathbf{next}
   case (Suc \ n)
   obtain x where 1: x \in C esize x \ge enat \ n using Suc(1) by blast
  obtain y where 2: y \in C esize y \ge eSuc (esize x) using assms 1(1) by rule
```

```
show ?case using gfp.leq-trans\ Suc(2)\ 1(2)\ 2 by fastforce
   qed
 end
 class\ esize-ccpo = esize-order + ccpo
 begin
   lemma \ esize-cont[dest]:
     assumes Complete-Partial-Order.chain less-eq C C \neq \{\}
     proof (cases finite C)
     case False
    have 1: esize (| \ | \ C) = \infty
     proof
      \mathbf{fix} \ n
      obtain A where 1: A \in C esize A \ge enat \ n using assms(1) False by rule
      have 2: A \leq | | C using ccpo-Sup-upper assms(1) 1(1) by this
      have enat n \leq esize A using 1(2) by this
      also have \dots \leq esize (| \ | \ C) using 2 by rule
      finally show enat n \leq esize (\bigcup C) by this
     qed
     proof
      \mathbf{fix} \ n
      obtain A where 1: A \in C esize A \ge enat \ n using assms(1) False by rule
      show enat n \leq (\bigsqcup A \in C. esize A) using SUP-upper2 1 by this
     ged
    show ?thesis using 1 2 by simp
   \mathbf{next}
     case True
     have 1: esize (\bigsqcup C) = (\bigsqcup x \in C. esize x)
     proof (intro order-class.order.antisym SUP-upper SUP-least esize-mono)
      show \bigsqcup C \in C using in-chain-finite assms(1) True assms(2) by this
      show \bigwedge x. \ x \in C \Longrightarrow x \leq \bigsqcup C using ccpo-Sup-upper assms(1) by this
     qed
     show ?thesis using 1 by simp
   qed
   lemma esize-mcont: mcont Sup less-eq Sup less-eq esize
     by (blast intro: mcontI monotoneI contI)
  \mathbf{lemmas}\ mcont2mcont\text{-}esize = esize\text{-}mcont[THEN\ lfp.mcont2mcont,\ simp,\ cont\text{-}intro]
 end
end
```

### 13 Sets and Extended Natural Numbers

```
theory ESet-Extensions
imports
  ../Basics/Functions
  Basic-Extensions
  CCPO-Extensions
begin
 lemma card-lessThan-enat[simp]: card {..< enat k} = card {..< k}
 proof -
   have 1: \{..< enat \ k\} = enat \ `\{..< k\}
     unfolding lessThan-def image-Collect using enat-iless by force
   have card \{... < enat \ k\} = card \ (enat \ `\{... < k\}) \ unfolding 1 by rule
   also have \dots = card \{ \dots < k \} using card-image inj-enat by metis
   finally show ?thesis by this
  qed
 lemma card-atMost-enat[simp]: card {.. enat k} = card {.. k}
 proof -
   have 1: \{...\ enat\ k\} = enat\ `\{...\ k\}
     unfolding at Most-def image-Collect using enat-ile by force
   have card \{... enat k\} = card (enat `\{... k\})  unfolding 1 by rule
   also have \dots = card \{ \dots k \} using card-image inj-enat by metis
   finally show ?thesis by this
 \mathbf{qed}
  lemma enat-Collect:
   assumes \infty \notin A
   shows \{i.\ enat\ i\in A\}=the\text{-}enat\ `A
   using assms by (safe, force) (metis enat-the-enat)
  lemma Collect-lessThan: \{i.\ enat\ i < n\} = the\text{-}enat\ `\{..< n\}
  proof -
   have 1: \infty \notin \{..< n\} by simp
   have \{i. \ enat \ i < n\} = \{i. \ enat \ i \in \{..< n\}\} by simp
   also have \dots = the\text{-}enat ` \{ \dots < n \} \text{ using } enat\text{-}Collect 1 \text{ by } this
   finally show ?thesis by this
  qed
 instantiation set :: (type) esize-ccpo
 begin
   function esize-set where finite A \Longrightarrow esize A = enat (card A) \mid infinite A \Longrightarrow
esize A = \infty
     by auto termination by lexicographic-order
   lemma esize-iff-empty[iff]: esize A = 0 \longleftrightarrow A = \{\} by (cases finite A, auto)
   lemma esize-iff-infinite[iff]: esize A = \infty \longleftrightarrow infinite A by force
   lemma esize-singleton[simp]: esize \{a\} = eSuc \ 0 by simp
```

```
lemma esize-infinite-enat[dest, simp]: infinite A \Longrightarrow enat \ k < esize \ A by force
 instance
 proof
   \mathbf{fix} \ A :: 'a \ set
   assume 1: esize A \neq \infty
   show finite \{B. B \subseteq A\} using 1 by simp
 \mathbf{next}
   fix A B :: 'a set
   assume 1: A \subseteq B
   show esize A \leq esize B
   proof (cases finite B)
     case False
    show ?thesis using False by auto
   next
     case True
    have 2: finite A using True 1 by auto
    show ?thesis using card-mono True 1 2 by auto
   qed
 \mathbf{next}
   fix A B :: 'a set
   assume 1: esize A \neq \infty A \subset B
   show esize A < esize B using psubset-card-mono 1 by (cases finite B, auto)
 qed
end
lemma esize-image[simp, intro]:
 assumes inj-on f A
 shows esize (f 'A) = esize A
 using card-image finite-imageD assms by (cases finite A, auto)
lemma esize-insert1[simp]: a \notin A \Longrightarrow esize (insert a A) = eSuc (esize A)
 by (cases finite A, force+)
lemma esize-insert2[simp]: a \in A \Longrightarrow esize (insert a A) = esize A
 using insert-absorb by metis
lemma esize-remove1[simp]: a \notin A \Longrightarrow esize (A - \{a\}) = esize A
 by (cases finite A, force+)
lemma esize-remove2[simp]: a \in A \Longrightarrow esize (A - \{a\}) = epred (esize A)
 by (cases finite A, force+)
lemma \ esize-union-disjoint[simp]:
 assumes A \cap B = \{\}
 shows esize (A \cup B) = esize A + esize B
proof (cases finite (A \cup B))
 case True
 show ?thesis using card-Un-disjoint assms True by auto
next
 case False
 show ?thesis using False by (cases finite A, auto)
qed
```

```
lemma esize-lessThan[simp]: esize {..< n} = n
 proof (cases n)
   case (enat k)
     have 1: finite \{... < n\} unfolding enat by (metis finite-lessThan-enat-iff
not-enat-eq)
   show ?thesis using 1 unfolding enat by simp
  \mathbf{next}
   case (infinity)
   have 1: infinite \{... < n\} unfolding infinity using infinite-lessThan-infty by
simp
   show ?thesis using 1 unfolding infinity by simp
 lemma esize-atMost[simp]: esize {... n} = eSuc n
 proof (cases n)
   case (enat k)
   have 1: finite {.. n} unfolding enat by (metis atMost-iff finite-enat-bounded)
   show ?thesis using 1 unfolding enat by simp
 next
   case (infinity)
   have 1: infinite \{...n\}
     unfolding infinity
      by (metis\ atMost-iff\ enat-ord-code(3)\ infinite-lessThan-infty\ infinite-super
subsetI)
   show ?thesis using 1 unfolding infinity by simp
 qed
 lemma least-eSuc[simp]:
   assumes A \neq \{\}
   shows least (eSuc 'A) = eSuc (least A)
  proof (rule antisym)
   obtain k where 10: k \in A using assms by blast
   have 11: eSuc \ k \in eSuc ' A using 10 by auto
   have 20: least A \in A using 10 Least by metis
   have 21: least (eSuc 'A) \in eSuc 'A using 11 Least by metis
   have 30: \bigwedge l. \ l \in A \Longrightarrow least \ A \leq l \ using \ 10 \ Least-le \ by \ metis
   have 31: \bigwedge l. l \in eSuc 'A \Longrightarrow least (eSuc 'A) \leq l using 11 Least-le by metis
   show least (eSuc 'A) \leq eSuc (least A) using 20 31 by auto
   show eSuc\ (least\ A) \le least\ (eSuc\ `A) using 21 30 by auto
 qed
 lemma Inf\text{-}enat\text{-}eSuc[simp]: \bigcap (eSuc 'A) = eSuc (\bigcap A) unfolding Inf\text{-}enat\text{-}def
by simp
 definition lift :: nat set \Rightarrow nat set
   where lift A \equiv insert \ \theta \ (Suc \ `A)
  lemma liftI-0[intro, simp]: 0 \in lift A unfolding lift-def by auto
  lemma liftI-Suc[intro]: a \in A \Longrightarrow Suc \ a \in lift \ A \ unfolding \ lift-def \ by \ auto
 lemma liftE[elim]:
```

```
assumes b \in lift A
       obtains (0) b = 0 \mid (Suc) \ a \text{ where } b = Suc \ a \ a \in A
       using assms unfolding lift-def by auto
  lemma lift-esize[simp]: esize (lift A) = eSuc (esize A) unfolding lift-def by auto
   lemma lift-least[simp]: least (lift A) = 0 unfolding lift-def by auto
   primrec nth-least :: 'a set \Rightarrow nat \Rightarrow 'a :: wellorder
        where nth-least A = 0 = least A = nth-least A = (Suc n) = nth-least (A - \{least A = least A = 
A}) n
   lemma nth-least-wellformed[intro?, simp]:
       assumes enat \ n < esize \ A
       shows nth-least A n \in A
    using assms
   proof (induct n arbitrary: A)
       case \theta
       show ?case using \theta by simp
    next
       case (Suc \ n)
       have 1: A \neq \{\} using Suc(2) by auto
       have 2: enat n < esize (A - \{least A\})  using Suc(2) 1 by simp
       have 3: nth-least (A - \{least \ A\}) n \in A - \{least \ A\} using Suc(1) \ 2 by this
       show ?case using 3 by simp
    qed
    lemma card-wellformed[intro?, simp]:
       \mathbf{fixes}\ k :: \ 'a :: \ wellorder
      assumes k \in A
       shows enat (card \{i \in A. \ i < k\}) < esize A
    proof (cases finite A)
       case False
       show ?thesis using False by simp
   next
       have 1: esize \{i \in A. \ i < k\} < esize A using True assms by fastforce
       show ?thesis using True 1 by simp
    qed
   {f lemma} nth-least-strict-mono:
       assumes enat l < esize A k < l
       shows nth-least A k < nth-least A l
    using assms
   proof (induct k arbitrary: A l)
       case \theta
       obtain l' where 1: l = Suc \ l' using \theta(2) by (metis gr\theta-conv-Suc)
       have 2: A \neq \{\} using \theta(1) by auto
       have 3: enat l' < esize (A - \{least A\}) using \theta(1) 2 unfolding 1 by simp
```

```
have 4: nth-least (A - \{least A\}) l' \in A - \{least A\} using 3 by rule
   show ?case using 1 4 by (auto intro: le-neq-trans)
  next
   \mathbf{case}\ (\mathit{Suc}\ k)
   obtain l' where 1: l = Suc \ l' using Suc(3) by (metis \ Suc\text{-}lessE)
   have 2: A \neq \{\} using Suc(2) by auto
   show ?case using Suc 2 unfolding 1 by simp
  qed
  lemma nth-least-mono[intro, simp]:
   assumes enat\ l < esize\ A\ k \le l
   shows nth-least A k \leq nth-least A l
   using nth-least-strict-mono le-less assms by metis
 lemma card-nth-least[simp]:
   assumes enat \ n < esize \ A
   shows card \{k \in A. \ k < nth\text{-}least \ A \ n\} = n
  using assms
  proof (induct n arbitrary: A)
   case \theta
   have 1: \{k \in A. \ k < least \ A\} = \{\} using least-not-less by auto
   show ?case using nth-least.simps(1) card.empty 1 by metis
  next
   case (Suc \ n)
   have 1: A \neq \{\} using Suc(2) by auto
   have 2: enat n < esize (A - \{least A\})  using Suc(2) 1 by simp
   have 3: nth-least A \ 0 < nth-least A \ (Suc \ n) using nth-least-strict-mono Suc(2)
\mathbf{by} blast
   have 4: \{k \in A. \ k < nth\text{-}least \ A \ (Suc \ n)\} =
     \{least\ A\} \ \cup \ \{k \in A\ -\ \{least\ A\}.\ k < nth\text{-}least\ (A\ -\ \{least\ A\})\ n\} \ \textbf{using}\ 1\ 3
by auto
   have 5: card \{k \in A - \{least A\}.\ k < nth-least\ (A - \{least A\})\ n\} = n using
Suc(1) 2 by this
   have 6: finite \{k \in A - \{least A\}, k < nth-least (A - \{least A\}) n\}
       using 5 Collect-empty-eq card.infinite infinite-imp-nonempty least-not-less
nth-least.simps(1)
     by (metis (no-types, lifting))
   have card \{k \in A. \ k < nth\text{-least } A \ (Suc \ n)\} =
      card (\{least\ A\} \cup \{k \in A - \{least\ A\}, k < nth-least\ (A - \{least\ A\})\ n\})
using 4 by simp
   also have ... = card \{ least A \} + card \{ k \in A - \{ least A \} \}. k < nth-least (A + least A) + least (A + least A)
-\{least\ A\})\ n\}
     using \theta by simp
   also have \dots = Suc \ n \ using \ 5 \ by \ simp
   finally show ?case by this
  qed
 lemma card-nth-least-le[simp]:
   assumes enat \ n < esize \ A
```

```
shows card \{k \in A. \ k \leq nth\text{-}least \ A \ n\} = Suc \ n
   proof -
      have 1: \{k \in A. \ k \le nth\text{-least } A \ n\} = \{nth\text{-least } A \ n\} \cup \{k \in A. \ k < nth\text{-least } A \}
         using assms by auto
      have 2: card \{k \in A. \ k < nth\text{-least } A \ n\} = n \text{ using } assms \text{ by } simp
      have 3: finite \{k \in A. \ k < nth\text{-least } A \ n\}
             using 2 Collect-empty-eq card.infinite infinite-imp-nonempty least-not-less
nth-least.simps(1)
         by (metis (no-types, lifting))
      have card \{k \in A. \ k \leq nth\text{-least } A \ n\} = card (\{nth\text{-least } A \ n\} \cup \{k \in A. \ k < n\})
nth-least A n
         unfolding 1 by rule
      also have ... = card \{nth\text{-}least\ A\ n\} + card \{k \in A.\ k < nth\text{-}least\ A\ n\} using
3 by simp
      also have \dots = Suc \ n \ using \ assms \ by \ simp
      finally show ?thesis by this
   qed
   lemma nth-least-card:
      fixes k :: nat
      assumes k \in A
      shows nth-least A (card \{i \in A. i < k\}) = k
   proof (rule nat-set-card-equality-less)
      have 1: enat (card \{l \in A. \ l < k\}) < esize A
      proof (cases finite A)
         case False
         show ?thesis using False by simp
      next
         case True
         have 1: \{l \in A. \ l < k\} \subset A \text{ using } assms \text{ by } blast
          have 2: card \{l \in A. \ l < k\} < card \ A  using psubset-card-mono True 1 by
this
         show ?thesis using True 2 by simp
      qed
      show nth-least A (card \{l \in A. \ l < k\}) \in A using 1 by rule
      show k \in A using assms by this
      show card \{z \in A.\ z < nth\text{-least } A \ (card \ \{i \in A.\ i < k\})\} = card \ \{z \in A.\ z < ard \ \}\}\}\}\}
k} using 1 by simp
   qed
   interpretation nth-least:
       bounded-function-pair \{i. \ enat \ i < esize \ A\} A nth-least A \lambda k. card \{i \in A. \ i
< k
      using nth-least-wellformed card-wellformed by (unfold-locales, blast+)
   interpretation nth-least:
      injection \{i. \ enat \ i < esize \ A\} A nth-least A \lambda k. card \{i \in A. \ i < k\}
      using card-nth-least by (unfold-locales, blast)
```

```
interpretation nth-least:
   surjection \{i. \ enat \ i < esize \ A\} A nth-least A \lambda k. card \{i \in A. \ i < k\}
   for A :: nat set
   using nth-least-card by (unfold-locales, blast)
  interpretation nth-least:
   bijection \{i. \ enat \ i < esize \ A\} A nth-least A \lambda k. card \{i \in A. \ i < k\}
   for A :: nat set
   by unfold-locales
  lemma nth-least-strict-mono-inverse:
   fixes A :: nat set
   assumes enat k < esize A enat l < esize A nth-least A k < nth-least A l
   shows k < l
   using assms by (metis not-less-iff-gr-or-eq nth-least-strict-mono)
  lemma nth-least-less-card-less:
   fixes k :: nat
   shows enat n < esize A \land nth\text{-}least A n < k \longleftrightarrow n < card \{i \in A. i < k\}
  proof safe
   assume 1: enat n < esize A nth-least A n < k
   have 2: nth-least A n \in A using I(1) by rule
   have n = card \{i \in A. \ i < nth{-}least \ A \ n\} using 1 by simp
   also have ... < card \{i \in A. \ i < k\} using I(2) 2 by simp
   finally show n < card \{i \in A. i < k\} by this
   assume 1: n < card \{ i \in A. \ i < k \}
   have enat n < enat \ (card \ \{i \in A. \ i < k\}) \ using 1 by simp
   also have ... = esize \{i \in A. \ i < k\} by simp
   also have \dots \leq esize \ A by blast
   finally show 2: enat n < esize A by this
   have 3: n = card \{i \in A. i < nth-least A n\} using 2 by simp
   have 4: card \{i \in A. \ i < nth\text{-least } A \ n\} < card \{i \in A. \ i < k\} \text{ using } 1 \ 2 \text{ by }
simp
   have 5: nth-least A n \in A using 2 by rule
   show nth-least A n < k using 4 5 by simp
 qed
 lemma nth-least-less-esize-less:
   enat n < esize A \land enat (nth-least A n) < k \longleftrightarrow enat n < esize \{i \in A. enat
i < k
   using nth-least-less-card-less by (cases k, simp+)
 lemma nth-least-le:
   assumes enat n < esize A
   shows n \leq nth\text{-}least\ A\ n
  using assms
 proof (induct n)
```

```
case \theta
   show ?case using \theta by simp
  next
   case (Suc \ n)
   have n \leq nth-least A n using Suc by (metis Suc-ile-eq less-imp-le)
    also have ... < nth-least A (Suc n) using nth-least-strict-mono Suc(2) by
blast
   finally show ?case by simp
 qed
 lemma nth-least-eq:
   assumes enat n < esize A enat n < esize B
   assumes \bigwedge i. i \leq nth-least A n \Longrightarrow i \leq nth-least B n \Longrightarrow i \in A \longleftrightarrow i \in B
   shows nth-least A n = nth-least B n
  using assms
  proof (induct n arbitrary: A B)
   case \theta
   have 1: least A = least B
   proof (rule least-eq)
     show A \neq \{\} using \theta(1) by simp
     show B \neq \{\} using \theta(2) by simp
   \mathbf{next}
     \mathbf{fix} i
     assume 2: i \leq least A i \leq least B
     show i \in A \longleftrightarrow i \in B using \theta(3) 2 unfolding nth-least.simps by this
   qed
   show ?case using 1 by simp
  next
   case (Suc \ n)
   have 1: A \neq \{\} B \neq \{\} using Suc(2, 3) by auto
   have 2: least A = least B
   proof (rule least-eq)
     show A \neq \{\} using I(1) by this
     show B \neq \{\} using I(2) by this
   \mathbf{next}
     assume 3: i \leq least A i \leq least B
     have 4: nth-least A \ 0 \le nth-least A \ (Suc \ n) using Suc(2) by blast
     have 5: nth-least B 0 \le nth-least B (Suc n) using Suc(3) by blast
    have 6: i \leq nth-least A (Suc n) i \leq nth-least B (Suc n) using 3 4 5 by auto
     show i \in A \longleftrightarrow i \in B using Suc(4) 6 by this
   qed
   have 3: nth-least (A - \{least A\}) n = nth-least (B - \{least B\}) n
   proof (rule\ Suc(1))
     show enat n < esize (A - \{least A\})  using Suc(2) 1(1) by simp
     show enat n < esize (B - \{least B\})  using Suc(3) 1(2) by simp
   next
     \mathbf{fix} i
     assume 3: i \leq nth-least (A - \{least\ A\}) n\ i \leq nth-least (B - \{least\ B\}) n
```

```
have 4: i \leq nth-least A (Suc n) i \leq nth-least B (Suc n) using 3 by simp+
     have 5: i \in A \longleftrightarrow i \in B \text{ using } Suc(4) \text{ 4 by } this
     show i \in A - \{least \ A\} \longleftrightarrow i \in B - \{least \ B\} using 2.5 by auto
   show ?case using 3 by simp
  qed
  lemma nth-least-restrict[simp]:
   assumes enat i < esize \{i \in s. \ enat \ i < k\}
   shows nth-least \{i \in s. \ enat \ i < k\} i = nth-least s i
  proof (rule nth-least-eq)
   show enat i < esize \{i \in s. \ enat \ i < k\} using assms by this
   show enat i < esize s using nth-least-less-esize-less assms by auto
 next
   \mathbf{fix} l
   assume 1: l \le nth\text{-}least \{i \in s. \ enat \ i < k\} \ i
   have 2: nth-least \{i \in s. \ enat \ i < k\} i \in \{i \in s. \ enat \ i < k\} using assms by
rule
   have enat l \leq enat (nth-least \{i \in s. enat \ i < k\} i) using 1 by simp
   also have \dots < k using 2 by simp
   finally show l \in \{i \in s. \ enat \ i < k\} \longleftrightarrow l \in s \ \text{by} \ auto
  qed
  lemma least-nth-least[simp]:
   assumes A \neq \{\} \land i. i \in A \Longrightarrow enat i < esize B
   shows least (nth\text{-least } B \text{ '} A) = nth\text{-least } B \text{ (least } A)
   using assms by simp
 lemma nth-least-nth-least[simp]:
   assumes enat n < esize A \land i. i \in A \Longrightarrow enat i < esize B
   shows nth-least B (nth-least A n) = nth-least (nth-least B A n
  using assms
 proof (induct \ n \ arbitrary: A)
   case \theta
   show ?case using \theta by simp
 next
   case (Suc \ n)
   have 1: A \neq \{\} using Suc(2) by auto
   have 2: nth-least B '(A - \{least A\}) = nth-least B 'A - nth-least B '\{least A\}"
A
   proof (rule inj-on-image-set-diff)
    show inj-on (nth-least B) \{i.\ enat\ i < esize\ B\} using nth-least.inj-on by this
     show A - \{least \ A\} \subseteq \{i. \ enat \ i < esize \ B\} using Suc(3) by blast
     show \{least A\} \subseteq \{i. \ enat \ i < esize \ B\} using Suc(3) 1 by force
   have nth-least B (nth-least A (Suc n)) = nth-least B (nth-least (A - \{least A\})
n) by simp
    also have ... = nth-least (nth-least B '(A - \{least A\})) n using Suc \ 1 by
force
```

```
also have ... = nth-least (nth-least B 'A - nth-least B '\{least A\}) n unfolding
2 by rule
  also have ... = nth-least (nth-least B 'A - \{nth-least B (least A)\}) n by simp
   also have ... = nth-least (nth-least B 'A - {least (nth-least B 'A)}) n using
Suc(3) 1 by auto
   also have \dots = nth\text{-}least \ (nth\text{-}least \ B \ `A) \ (Suc \ n) by simp
   finally show ?case by this
 qed
 lemma nth-least-Max[simp]:
   assumes finite A A \neq \{\}
   shows nth-least A (card A - 1) = Max A
 using assms
 proof (induct card A - 1 arbitrary: A)
   case \theta
   have 1: card\ A = 1 using 0 by (metis One-nat-def Suc-diff-1 card-qt-0-iff)
   obtain a where 2: A = \{a\} using 1 by rule
   show ?case unfolding 2 by (simp del: insert-iff)
 next
   case (Suc \ n)
   have 1: least A \in A using Suc(4) by rule
   have 2: card (A - \{least A\}) = Suc \ n \ using \ Suc(2, 3) \ 1 \ by \ simp
   have 3: A - \{least A\} \neq \{\} using 2 Suc(3) by fastforce
   have nth-least A (card A - 1) = nth-least A (Suc n) unfolding Suc(2) by
rule
   also have ... = nth-least (A - \{least A\}) n by simp
  also have ... = nth-least (A - \{least A\}) (card (A - \{least A\}) - 1) unfolding
2 by simp
   also have \dots = Max (A - \{least A\})
   proof (rule\ Suc(1))
     show n = card (A - \{least A\}) - 1 unfolding 2 by simp
    show finite (A - \{least \ A\}) using Suc(3) by simp
    show A - \{least A\} \neq \{\} using 3 by this
   also have ... = Max A using Suc(3) 3 by simp
   finally show ?case by this
 qed
 lemma nth-least-le-Max:
   assumes finite A A \neq \{\} enat n < esize A
   shows nth-least A n \leq Max A
 proof -
   have nth-least A n \leq nth-least A (card\ A - 1)
   proof (rule nth-least-mono)
     show enat (card\ A-1) < esize\ A by (metis\ Suc\ diff-1\ Suc\ ile-eq\ assms(1)
assms(2)
      card-eq-0-iff esize-set.simps(1) not-qr0 order-refl)
     show n \leq card A - 1 by (metis Suc-diff-1 Suc-leI antisym-conv assms(1)
assms(3)
```

```
enat-ord-simps(2) esize-set.simps(1) le-less neq-iff not-gr(0)
   qed
   also have ... = Max A using nth-least-Max assms(1, 2) by this
   finally show ?thesis by this
 ged
 lemma nth-least-not-contains:
   fixes k :: nat
   assumes enat (Suc n) < esize A nth-least A n < k k < nth-least A (Suc n)
   shows k \notin A
 proof
   assume 1: k \in A
   have 2: nth-least A (card \{i \in A. \ i < k\}) = k using nth-least.right-inverse 1
by this
   have 3: n < card \{ i \in A. \ i < k \}
   proof (rule nth-least-strict-mono-inverse)
     show enat n < esize A using assms(1) by auto
     show enat (card \{i \in A. \ i < k\}) < esize A using nth-least.g.wellformed 1
     show nth-least A n < nth-least A (card \{i \in A. \ i < k\}) using assms(2) 2
by simp
   qed
   have 4: card \{i \in A. \ i < k\} < Suc \ n
   proof (rule nth-least-strict-mono-inverse)
     show enat (card \{i \in A. \ i < k\}) < esize A using nth-least.g.wellformed 1
by simp
    show enat (Suc\ n) < esize\ A\ using\ assms(1) by this
    show nth-least A (card \{i \in A. \ i < k\}) < nth-least A (Suc n) using assms(3)
2 by simp
   qed
   show False using 3 4 by auto
 qed
 lemma nth-least-Suc[simp]:
   assumes enat \ n < esize \ A
   shows nth-least (Suc 'A) n = Suc (nth-least A n)
 using assms
 proof (induct \ n \ arbitrary: A)
   case (\theta)
   have 1: A \neq \{\} using \theta by auto
   show ?case using 1 by simp
 \mathbf{next}
   case (Suc \ n)
   have 1: enat n < esize (A - \{least A\})
   proof -
     have 2: A \neq \{\} using Suc(2) by auto
     have 3: least A \in A using Least 2 by fast
     have 4: A = insert (least A) A using 3 by auto
     have eSuc (enat n) = enat (Suc n) by simp
```

```
also have \dots < esize A using Suc(2) by this
     also have \dots = esize (insert (least A) A) using 4 by simp
     also have ... = eSuc (esize (A - \{least A\})) using 3 2 by simp
     finally show ?thesis using Extended-Nat.eSuc-mono by metis
   have nth-least (Suc `A) (Suc n) = nth-least (Suc `A - \{least (Suc `A)\}) n
by simp
   also have ... = nth-least (Suc '(A - \{least A\})) n by simp
   also have ... = Suc\ (nth\text{-}least\ (A - \{least\ A\})\ n) using Suc(1)\ 1 by this
   also have \dots = Suc (nth\text{-}least \ A (Suc \ n)) by simp
   finally show ?case by this
  qed
 \mathbf{lemma} \ nth\text{-}least\text{-}lift[simp]:
   nth-least (lift A) \theta = \theta
   enat n < esize A \implies nth-least (lift A) (Suc n) = Suc (nth-least A n)
   unfolding lift-def by simp+
  lemma nth-least-list-card[simp]:
   assumes enat n \leq esize A
   shows card \{k \in A. \ k < nth\text{-least (lift } A) \ n\} = n
   using less-Suc-eq-le assms by (cases n, auto simp del: nth-least.simps)
```

 $\mathbf{end}$ 

#### 14 Coinductive Lists

```
theory Coinductive-List-Extensions
imports
 Coinductive.\ Coinductive-List
 Coinductive. Coinductive-List-Prefix
 Coinductive. \ Coinductive-Stream
 ../Extensions/List-Extensions
 ../Extensions/ESet-Extensions
begin
 hide-const (open) Sublist.prefix
 hide-const (open) Sublist.suffix
 declare list-of-lappend[simp]
 declare lnth-lappend1[simp]
 declare lnth-lappend2[simp]
 declare lprefix-llength-le[dest]
 declare Sup-llist-def[simp]
 declare length-list-of[simp]
 declare llast-linfinite[simp]
 declare lnth-ltake[simp]
 declare lappend-assoc[simp]
 declare lprefix-lappend[simp]
```

```
\mathbf{lemma} \ \mathit{lprefix-lSup-revert:} \ \mathit{lSup} = \mathit{Sup} \ \mathit{lprefix} = \mathit{less-eq} \ \mathbf{by} \ \mathit{auto}
lemma admissible-lprefixI[cont-intro]:
 assumes moont lub ord lSup lprefix f
 assumes mcont lub ord lSup lprefix q
 shows ccpo.admissible\ lub\ ord\ (\lambda\ x.\ lprefix\ (f\ x)\ (g\ x))
 using ccpo-class.admissible-leI assms unfolding lprefix-lSup-revert by this
lemma llist-lift-admissible:
 assumes ccpo.admissible lSup lprefix P
 assumes \bigwedge u. u \leq v \Longrightarrow lfinite u \Longrightarrow P u
 shows P v
using assms by (metis LNil-lprefix le-llist-conv-lprefix lfinite.simps llist-gen-induct)
abbreviation linfinite w \equiv \neg lfinite w
notation LNil (\langle \langle \rangle \rangle)
notation LCons (infixr \langle \% \rangle 65)
notation lzip (infixr \langle || \rangle 51)
notation lappend (infixr \langle \$ \rangle 65)
notation lnth (infixl ⟨?!⟩ 100)
syntax - llist :: args \Rightarrow 'a \ llist ( <<->>)
syntax-consts -llist \rightleftharpoons LCons
translations
  \langle a, x \rangle \rightleftharpoons a \% \langle x \rangle
 \langle a \rangle \rightleftharpoons a \% <>
lemma eq-LNil-conv-lnull[simp]: w = <> \longleftrightarrow lnull w by auto
lemma Collect-lnull[simp]: \{w. \ lnull \ w\} = \{<>\} by auto
lemma inj-on-ltake: inj-on (\lambda \ k. \ ltake \ k \ w) \ \{.. \ llength \ w\}
 by (rule inj-onI, auto, metis llength-ltake min-def)
lemma lnth-inf-llist'[simp]: lnth (inf-llist f) = f by auto
lemma not-lnull-lappend-startE[elim]:
 assumes \neg lnull w
 obtains a v
 where w = \langle a \rangle \ v
 using not-lnull-conv assms by (simp, metis)
lemma not-lnull-lappend-endE[elim]:
 assumes \neg lnull w
 obtains a v
 where w = v \$ \langle a \rangle
proof (cases lfinite w)
 {f case} False
 show ?thesis
 proof
    show w = w $ <a> using lappend-inf False by force
```

```
qed
next
 {f case}\ {\it True}
 show ?thesis
 using True assms that
 proof (induct arbitrary: thesis)
   case (lfinite-LNil)
   show ?case using lfinite-LNil by auto
 next
   case (lfinite-LConsI\ w\ a)
   show ?case
   proof (cases lnull w)
     case False
    obtain b v where 1: w = v $ < b > using lfinite-LConsI(2) False by this
    show ?thesis
     proof (rule lfinite-LConsI(4))
      show a \% w = (a \% v) \$ < b >  unfolding 1 by simp
     qed
   next
     {f case} True
    show ?thesis
     proof (rule\ lfinite-LConsI(4))
      show a \% w = <> \$ < a >  using True by simp
     qed
   qed
 qed
qed
lemma llength-lappend-startE[elim]:
 \textbf{assumes} \ llength \ w \geq \mathit{eSuc} \ \mathit{n}
 obtains a v
 where w = \langle a \rangle $ v llength v \geq n
proof -
 have 1: \neg lnull w using assms by auto
 show ?thesis using assms 1 that by auto
lemma llength-lappend-endE[elim]:
 \textbf{assumes} \ llength \ w \geq \mathit{eSuc} \ \mathit{n}
 obtains a v
 where w = v $ < a > llength v <math>\ge n
proof -
 have 1: \neg lnull w using assms by auto
 show ?thesis using assms 1 that by auto
qed
lemma llength-lappend-start'E[elim]:
 assumes llength w = enat (Suc n)
 obtains a v
 where w = \langle a \rangle $ v llength v = enat n
```

```
proof -
   have 1: llength w \ge eSuc \ (enat \ n) using assms by simp
   obtain a v where 2: w = \langle a \rangle $ v using 1 by blast
   show ?thesis
   proof
    show w = \langle a \rangle $ v using 2(1) by this
      show llength v = enat \ n  using assms unfolding 2(1) by (simp, metis
eSuc\text{-}enat\ eSuc\text{-}inject)
   qed
 \mathbf{qed}
 lemma llength-lappend-end'E[elim]:
   assumes llength \ w = enat \ (Suc \ n)
   obtains a v
   where w = v $ <a> llength v = enat n
 proof -
   have 1: llength w > eSuc (enat n) using assms by simp
   obtain a v where 2: w = v $ <a> using 1 by blast
   show ?thesis
   proof
    show w = v $ <a> using 2(1) by this
      show llength v = enat \ n  using assms unfolding 2(1) by (simp, metis
eSuc\text{-}enat\ eSuc\text{-}inject)
   qed
 qed
 lemma ltake-llast[simp]:
   assumes enat \ k < llength \ w
   shows llast (ltake (enat (Suc k)) w) = w ?! k
 proof -
   have 1: llength (ltake (enat (Suc k)) w) = eSuc (enat k)using min.absorb-iff1
assms by auto
   have llast (ltake (enat (Suc k)) w) = ltake (enat (Suc k)) w ?! k
     using llast-conv-lnth 1 by this
   also have \dots = w ?! k by (rule lnth-ltake, simp)
   finally show ?thesis by this
 qed
 lemma linfinite-llength[dest, simp]:
   assumes linfinite w
   shows enat k < llength w
   using assms not-lfinite-llength by force
 lemma llist-nth-eqI[intro]:
   assumes llength \ u = llength \ v
   assumes \bigwedge i. enat i < llength u \Longrightarrow enat i < llength v \Longrightarrow u ?! i = v ?! i
   shows u = v
 using assms
 proof (coinduction arbitrary: u v)
   case Eq-llist
```

```
have 10: llength u = llength v using Eq-llist by auto
 \mathbf{have} \ 11: \bigwedge \ i. \ enat \ i < llength \ u \Longrightarrow \ enat \ i < llength \ v \Longrightarrow u \ ?! \ i = v \ ?! \ i
   using Eq-llist by auto
 show ?case
 proof (intro conjI impI exI allI)
   show lnull\ u \longleftrightarrow lnull\ v using 10 by auto
 next
   assume 2\theta: \neg lnull u \neg lnull v
   show lhd\ u = lhd\ v using lhd-conv-lnth enat-0 11 20 by force
 \mathbf{next}
   show ltl u = ltl u by rule
 next
   show ltl v = ltl v by rule
 next
   assume 3\theta: \neg lnull u \neg lnull v
   show llength (ltl u) = llength (ltl v) using 10 30 by force
 next
   \mathbf{fix} i
   assume 40: \neg lnull u \neg lnull v enat i < llength (ltl u) enat i < llength (ltl v)
   have 41: u ?! Suc i = v ?! Suc i
   proof (rule 11)
     show enat (Suc i) < llength u using Suc-ile-eq 40(1) 40(3) by auto
     show enat (Suc i) < llength v using Suc-ile-eq 40(2) 40(4) by auto
   qed
   show ltl u ?! i = ltl v ?! i using lnth-ltl 40(1-2) 41 by metis
 qed
qed
primcorec lscan :: ('a \Rightarrow 'b \Rightarrow 'b) \Rightarrow 'a \ llist \Rightarrow 'b \Rightarrow 'b \ llist
 where lscan f w a = (case w of <> \Rightarrow <a> | x \% xs \Rightarrow a \% lscan f xs (f x a))
lemma lscan-simps[simp]:
 lscan f <> a = < a>
 lscan f (x \% xs) a = a \% lscan f xs (f x a)
 by (metis llist.simps(4) lscan.code, metis llist.simps(5) lscan.code)
lemma lscan-lfinite[iff]: lfinite (lscan f w a) \longleftrightarrow lfinite w
proof
 assume lfinite (lscan f w a)
 thus lfinite w
 proof (induct lscan f w a arbitrary: w a rule: lfinite-induct)
   case LNil
   show ?case using LNil by simp
 next
   case LCons
   show ?case by (cases w, simp, simp add: LCons(3))
 ged
next
 assume lfinite w
```

```
thus lfinite (lscan f w a) by (induct arbitrary: a, auto)
 qed
 lemma lscan-llength[simp]: llength (lscan f w a) = eSuc (llength w)
 proof (cases lfinite w)
   case False
   have 1: llength (lscan f w a) = \infty using not-lfinite-llength False by auto
   have 2: llength w = \infty using not-lfinite-llength False by auto
   show ?thesis using 1 2 by simp
 next
   {\bf case}\ {\it True}
   show ?thesis using True by (induct arbitrary: a, auto)
 qed
 function lfold :: ('a \Rightarrow 'b \Rightarrow 'b) \Rightarrow 'a \ llist \Rightarrow 'b \Rightarrow 'b
   where lfinite w \Longrightarrow lfold\ f\ w = fold\ f\ (list-of\ w) \mid linfinite\ w \Longrightarrow lfold\ f\ w = id
   by (auto, metis) termination by lexicographic-order
 lemma lfold-llist-of [simp]: lfold f(llist-of xs) = fold f xs by simp
 lemma finite-UNIV-llength-eq:
   assumes finite (UNIV :: 'a set)
   shows finite \{w :: 'a \ llist. \ llength \ w = enat \ n\}
 proof (induct n)
   case (\theta)
   show ?case by simp
 next
   case (Suc \ n)
   have 1: finite (\{v. llength \ v = enat \ n\} \times UNIV :: ('a llist \times 'a) \ set)
    using Suc assms by simp
   have 2: finite ((\lambda (v, a). v $ <a> :: 'a llist ) '({v. llength v = enat n} ×
UNIV))
    using 1 by auto
   have 3: finite \{v \ \$ < a > :: 'a \ llist \ | v \ a. \ llength \ v = enat \ n\}
  proof -
    have \theta: {v \le \langle a \rangle :: 'a llist | v a. llength v = enat n} =
      (\lambda (v, a), v $ < a > :: 'a llist ) '({v, llength } v = enat n} \times UNIV) by auto
    show ?thesis using 2 unfolding 0 by this
   qed
   have 4: finite \{w :: 'a \ llist . \ llength \ w = enat \ (Suc \ n)\}
   proof -
    have \theta: \{w :: 'a \ llist . \ llength \ w = enat \ (Suc \ n)\} =
       show ?thesis using 3 unfolding \theta by this
   qed
   show ?case using 4 by this
 qed
 lemma finite-UNIV-llength-le:
   assumes finite (UNIV :: 'a set)
   shows finite \{w :: 'a \text{ llist. llength } w \leq enat n\}
```

```
proof -
   have 1: \{w. llength \ w \le enat \ n\} = (\bigcup k \le n. \{w. llength \ w = enat \ k\})
     by (auto, metis atMost-iff enat-ile enat-ord-simps(1))
   show ?thesis unfolding 1 using finite-UNIV-llength-eq assms by auto
 ged
 lemma lprefix-ltake[dest]: u \leq v \Longrightarrow u = ltake (llength u) v
    by (metis le-llist-conv-lprefix lprefix-conv-lappend ltake-all ltake-lappend1 or-
der-refl)
 lemma prefixes-set: \{v.\ v \leq w\} = \{ltake\ k\ w\ | k.\ k \leq llength\ w\} by fastforce
 lemma esize-prefixes[simp]: esize \{v.\ v \leq w\} = eSuc\ (llength\ w)
    have esize \{v. \ v \leq w\} = esize \{ltake \ k \ w \ | k. \ k \leq llength \ w\} unfolding
prefixes-set by rule
   also have ... = esize ((\lambda k. ltake k w) '{... llength w})
     unfolding atMost-def image-Collect by rule
   also have \dots = esize \{ \dots llength w \} using inj-on-ltake esize-image by blast
   also have \dots = eSuc (llength \ w) by simp
   finally show ?thesis by this
  qed
  lemma prefix-subsume: v \leq w \Longrightarrow u \leq w \Longrightarrow llength \ v \leq llength \ u \Longrightarrow v \leq u
   \mathbf{by}\ (\textit{metis le-llist-conv-lprefix lprefix-conv-lappend}
     lprefix-ltake ltake-is-lprefix ltake-lappend1)
 lemma ltake-infinite[simp]: ltake \infty w = w by (metis enat-ord-code(3) ltake-all)
 lemma lprefix-infinite:
   assumes u \leq v linfinite u
   shows u = v
 proof -
   have 1: llength u = \infty using not-lfinite-llength assms(2) by this
   have u = ltake (llength u) v using lprefix-ltake assms(1) by this
   also have \dots = v using 1 by simp
   finally show ?thesis by this
  qed
 instantiation llist :: (type) \ esize-order
 begin
   definition [simp]: esize \equiv llength
   instance
   proof
     \mathbf{fix} \ w :: 'a \ llist
     assume 1: esize w \neq \infty
     show finite \{v.\ v \leq w\}
        using esize-prefixes 1 by (metis eSuc-eq-infinity-iff esize-set.simps(2) es-
ize-llist-def)
   next
```

```
\mathbf{fix} \ u \ v :: 'a \ llist
     assume 1: u \leq v
     show esize u \leq esize \ v  using lprefix-llength-le 1 by auto
     \mathbf{fix} \ u \ v :: 'a \ llist
     assume 1: u < v
     show esize u < esize v using lstrict-prefix-llength-less 1 by auto
   qed
 end
         Index Sets
14.1
   definition liset :: 'a \ set \Rightarrow 'a \ llist \Rightarrow nat \ set
     where liset A \ w \equiv \{i. \ enat \ i < llength \ w \land w \ ?! \ i \in A\}
   lemma lisetI[intro]:
     assumes enat i < llength w w ?! i \in A
     shows i \in liset \ A \ w
     using assms unfolding liset-def by auto
   lemma lisetD[dest]:
     assumes i \in liset \ A \ w
     shows enat i < llength w w ?! i \in A
     using assms unfolding liset-def by auto
   lemma liset-finite:
     assumes lfinite w
     shows finite (liset A w)
     show liset A \ w \subseteq \{i. \ enat \ i < llength \ w\} by auto
     show finite \{i.\ enat\ i < llength\ w\} using lfinite-finite-index assms by this
   lemma liset-nil[simp]: liset A <>= \{\} by auto
   lemma liset-cons-not-member[simp]:
     assumes a \notin A
     shows liset A (a \% w) = Suc ' liset A w
     have liset A (a \% w) = \{i. enat i < llength <math>(a \% w) \land (a \% w) ?! i \in A\} by
auto
     also have ... = Suc '\{i.\ enat\ (Suc\ i) < llength\ (a\ \%\ w) \land (a\ \%\ w)\ ?!\ Suc\ i
\in A
       using Collect-split-Suc(1) assms by simp
     also have ... = Suc '\{i.\ enat\ i < llength\ w \land w ?!\ i \in A\} using Suc\text{-}ile\text{-}eq
     also have \dots = Suc ' liset A w by auto
     finally show ?thesis by this
   qed
```

**lemma** *liset-cons-member*[*simp*]:

```
assumes a \in A
     shows liset A (a % w) = {\theta} \cup Suc 'liset A w
   proof -
    have liset A (a\% w) = {i. enat i < llength (a\% w) \land (a\% w) ?! <math>i \in A} by
auto
     also have ... = \{0\} \cup Suc '\{i. enat (Suc i) < llength (a \% w) \land (a \% w)
?! Suc i \in A
       using Collect-split-Suc(2) assms by simp
      also have ... = \{0\} \cup Suc \ `\{i. \ enat \ i < llength \ w \land w \ ?! \ i \in A\} using
Suc-ile-eq by simp
     also have \dots = \{0\} \cup Suc \text{ '} liset A w \text{ by } auto
     finally show ?thesis by this
   qed
   lemma liset-prefix:
     assumes i \in liset \ A \ v \ u \leq v \ enat \ i \leq llength \ u
     shows i \in liset A u
   unfolding liset-def
   proof (intro CollectI conjI)
     have 1: v ?! i \in A \text{ using } assms(1) \text{ by } auto
     show enat i < llength u using assms(3) by this
     show u ?! i \in A using lprefix-lnthD assms(2, 3) 1 by force
   qed
   lemma liset-suffix:
     assumes i \in liset \ A \ u \ u \leq v
     shows i \in liset A v
   unfolding liset-def
   proof (intro CollectI conjI)
     have 1: enat i < llength \ u \ u ?! \ i \in A \ using \ assms(1) by auto
     show enat i < llength v using lprefix-llength-le 1(1) assms(2) by fastforce
     show v ?! i \in A using lprefix-lnthD assms(2) 1 by force
   lemma liset-ltake[simp]: liset A (ltake (enat k) w) = liset A w \cap {..< k}
   proof (intro equalityI subsetI)
     assume 1: i \in liset \ A \ (ltake \ (enat \ k) \ w)
     have 2: enat i < enat k using 1 by auto
     have 3: ltake (enat k) w ?! i = w ?! i using lnth-ltake 2 by this
     show i \in liset \ A \ w \cap \{..< k\} using 1 3 by fastforce
   \mathbf{next}
     \mathbf{fix} i
     assume 1: i \in liset \ A \ w \cap \{... < k\}
     have 2: enat i < enat k using 1 by auto
     have 3: ltake\ (enat\ k)\ w\ ?!\ i=w\ ?!\ i\ using\ lnth-ltake\ 2\ by\ this
     show i \in liset A (ltake (enat k) w) using 1 3 by fastforce
   lemma liset-mono[dest]: u \le v \Longrightarrow liset A u \subseteq liset A v
```

```
unfolding liset-def using lprefix-lnthD by fastforce
   lemma liset-cont[dest]:
     assumes Complete-Partial-Order.chain less-eq C C \neq \{\}
     shows liset A(| | C) = (| | w \in C. liset A(w)
   proof safe
     \mathbf{fix} i
     assume 1: i \in liset A (  C )
     show i \in (\bigcup w \in C. liset A w)
     proof (cases finite C)
      {\bf case}\ \mathit{False}
      obtain w where 2: w \in C enat i < llength w
       using esize-llist-def infinite-chain-arbitrary-esize assms(1) False Suc-ile-eq
by metis
      have 3: w \leq | | C using chain-lprefix-lSup assms(1) 2(1) by simp
      have 4: i \in liset \ A \ w \ using \ liset-prefix \ 1 \ 3 \ 2(2) \ by \ this
      show ?thesis using 2(1) 4 by auto
     next
      \mathbf{case} \ \mathit{True}
      have 2: | | C \in C using in-chain-finite assms(1) True assms(2) by this
      show ?thesis using 1 2 by auto
     ged
   \mathbf{next}
     \mathbf{fix} \ w \ i
     assume 1: w \in C i \in liset A w
     have 2: w \leq \bigsqcup C using chain-lprefix-lSup assms(1) 1(1) by simp
     qed
    lemma liset-mcont: Complete-Partial-Order2.mcont lSup lprefix Sup less-eq
(liset A)
     unfolding lprefix-lSup-revert by (blast intro: mcontI monotoneI contI)
  lemmas mcont2mcont-liset = liset-mcont[THEN lfp.mcont2mcont, simp, cont-intro]
14.2
         Selections
   abbreviation lproject A \equiv lfilter \ (\lambda \ a. \ a \in A)
   abbreviation lselect \ s \ w \equiv lnths \ w \ s
    lemma lselect-to-lproject: lselect s w = lmap \ fst \ (lproject \ (UNIV \times s) \ (w \mid |
iterates Suc 0))
   proof -
     have 1: \{(x, y), y \in s\} = UNIV \times s by auto
     have lselect s \ w = lmap \ fst \ (lproject \ \{(x, y). \ y \in s\} \ (w \mid | iterates \ Suc \ \theta))
       unfolding lnths-def by simp
    also have ... = lmap\ fst\ (lproject\ (UNIV\times s)\ (w\ ||\ iterates\ Suc\ \theta)) unfolding
1 by rule
     finally show ?thesis by this
   qed
```

```
lemma lproject-to-lselect: lproject A w = lselect (liset A w) w
     unfolding lfilter-conv-lnths liset-def by rule
   lemma lproject-llength[simp]: llength(lproject A w) = esize(liset A w)
     by (induct rule: llist-induct) (auto)
   lemma lproject-lfinite[simp]: lfinite (lproject A w \mapsto finite (liset A w \mapsto finite)
     using lproject-llength esize-iff-infinite llength-eq-infty-conv-lfinite by metis
    lemma lselect-restrict-indices[simp]: lselect \{i \in s. enat i < llength w\} w =
lselect \ s \ w
   proof (rule lnths-cong)
     show w = w by rule
   \mathbf{next}
     \mathbf{fix}\ n
     assume 1: enat n < llength w
     show n \in \{i \in s. \ enat \ i < llength \ w\} \longleftrightarrow n \in s \ using \ 1 \ by \ blast
   lemma lselect-llength: llength (lselect s w) = esize \{i \in s. \text{ enat } i < \text{llength } w\}
   proof -
     have 1: \bigwedge i. enat i < llength \ w \Longrightarrow (w \mid | iterates Suc \ 0) ?! i = (w ?! i, i)
         by (metis\ Suc\text{-}funpow\ enat.distinct(1)\ enat\text{-}ord\text{-}simps(4)\ llength\text{-}iterates
lnth-iterates
         lnth-lzip monoid-add-class.add.right-neutral)
     have 2: \{i. \ enat \ i < llength \ w \land (w \mid | \ iterates \ Suc \ \theta) \ ?! \ i \in UNIV \times s\} =
        \{i \in s. \ enat \ i < llength \ w\} using 1 by auto
     have llength (lselect s w) = esize (liset (UNIV \times s) (w \parallel iterates Suc \theta))
       unfolding lselect-to-lproject by simp
      also have ... = esize \{i. enat \ i < llength \ w \land (w \mid | iterates Suc \ 0) \ ?! \ i \in
UNIV \times s
       unfolding liset-def by simp
     also have ... = esize \{i \in s. \text{ enat } i < \text{llength } w\} unfolding 2 by rule
     finally show ?thesis by this
   qed
   lemma lselect-llength-le[simp]: llength (lselect s w) \leq esize s
   proof -
     have llength (lselect \ s \ w) = esize \ \{i \in s. \ enat \ i < llength \ w\}
       unfolding lselect-llength by rule
     also have ... = esize (s \cap \{i. enat \ i < llength \ w\}) unfolding Collect-conj-eq
     also have \dots \leq esize \ s \ by \ blast
     finally show ?thesis by this
   lemma least-lselect-llength:
     assumes \neg lnull (lselect s w)
     shows enat (least s) < llength w
   proof -
     have \theta: llength (lselect s w) > \theta using assms by auto
     have 1: \land i. i \in s \Longrightarrow least \ s \leq i \text{ using } Least-le \ 0 \text{ by } fast
```

```
obtain i where 2: i \in s enat i < llength w using \theta unfolding lselect-llength
by auto
     have enat (least s) \leq enat i using 1 2(1) by auto
     also have ... < llength w using 2(2) by this
     finally show enat (least s) < llength w by this
   qed
   lemma lselect-lnull: lnull (lselect s w) \longleftrightarrow (\forall i \in s. enat i \geq llength w)
     unfolding llength-eq-0[symmetric] lselect-llength by auto
   \mathbf{lemma}\ \mathit{lselect-discard-start} \colon
     assumes \bigwedge i. i \in s \Longrightarrow k \leq i
     shows lselect \{i. k + i \in s\} (ldropn k w) = lselect s w
   proof
     have 1: lselect\ s\ (ltake\ (enat\ k)\ w) = <>
       using assms by (fastforce simp add: lselect-lnull min-le-iff-disj)
     have lselect \{m. k + m \in s\} (ldropn k w) =
       lselect s (ltake (enat k) w) \$ lselect \{m, k+m \in s\} (ldropn k w) unfolding
1 by simp
     also have \dots = lselect \ s \ w \ using \ lnths-split \ by \ rule
     finally show ?thesis by this
   qed
   lemma lselect-discard-end:
     assumes \bigwedge i. i \in s \Longrightarrow i < k
     shows lselect\ s\ (ltake\ (enat\ k)\ w) = lselect\ s\ w
   proof -
     have 1: lselect \{m. k + m \in s\} (ldropn k w) = <>
       using assms by (fastforce simp add: lselect-lnull min-le-iff-disj)
     have lselect \ s \ (ltake \ (enat \ k) \ w) =
       lselect s (ltake (enat k) w) $ lselect \{m. k + m \in s\} (ldropn k w) unfolding
1 by simp
     also have \dots = lselect \ s \ w \ using \ lnths-split \ by \ rule
     finally show ?thesis by this
   qed
   lemma lselect-least:
     assumes \neg lnull (lselect s w)
     shows lselect s \ w = w \ ?! \ least \ s \ \% \ lselect \ (s - \{least \ s\}) \ w
     have \theta: s \neq \{\} using assms by auto
     have 1: least s \in s using Least I 0 by fast
     have 2: \bigwedge i. i \in s \Longrightarrow least \ s \le i \ using \ Least-le \ 0 \ by \ fast
     have 3: \bigwedge i. i \in s - \{least \ s\} \Longrightarrow Suc \ (least \ s) \le i \ using \ least-unique \ 2 \ by
     have 4: insert (least s) (s - \{least \ s\}) = s using 1 by auto
     have 5: enat (least s) < llength w using least-lselect-llength assms by this
     have 6: lselect (s - \{least s\}) (ltake (enat (least s)) w) = <>
       by (rule, auto simp: lselect-llength dest: least-not-less)
     have 7: lselect \{i. Suc (least s) + i \in s - \{least s\}\}\ (ldropn (Suc (least s)))
w) =
```

```
lselect (s - \{least s\}) w using lselect-discard-start 3 by this
    have lselect\ s\ w = lselect\ (insert\ (least\ s)\ (s - \{least\ s\}))\ w unfolding 4 by
simp
    also have ... = lselect (s - \{least s\}) (ltake (enat (least s)) w) \$ < w ?! least
s> $
       lselect \{m. Suc (least s) + m \in s - \{least s\}\} (ldropn (Suc (least s)) w)
      unfolding lnths-insert[OF 5] by simp
     also have \dots = \langle w ?! least s \rangle \$
       lselect \{m. Suc (least s) + m \in s - \{least s\}\} (ldropn (Suc (least s)) w)
      unfolding 6 by simp
     also have ... = w ?! (least s) % lselect (s - {least s}) w unfolding 7 by
     finally show ?thesis by this
   qed
   lemma lselect-lnth[simp]:
     assumes enat i < llength (lselect s w)
     shows lselect \ s \ w \ ?! \ i = w \ ?! \ nth-least \ s \ i
   using assms
   proof (induct i arbitrary: s)
     case \theta
     have 1: \neg lnull (lselect s w) using 0 by auto
     show ?case using lselect-least 1 by force
   \mathbf{next}
     case (Suc \ i)
     have 1: \neg lnull (lselect s w) using Suc(2) by auto
    have 2: lselect s w = w?! least s \% lselect (s - \{least s\}) w using lselect-least
1 by this
    have 3: llength (lselect s w) = eSuc (llength (lselect (s - \{least s\}) w)) using
2 by simp
     have 4: enat i < llength (lselect (s - \{least \ s\}) w) using 3 Suc(2) by simp
     have lselect s \ w ?! \ Suc \ i = (w ?! \ least \ s \% \ lselect \ (s - \{least \ s\}) \ w) ?! \ Suc \ i
using 2 by simp
     also have ... = lselect (s - \{least s\}) w ?! i by simp
     also have ... = w?! nth-least (s - \{least \ s\}) i using Suc(1) 4 by simp
     also have \dots = w?! nth-least s (Suc i) by simp
     finally show ?case by this
   qed
   lemma lproject-lnth[simp]:
     assumes enat i < llength (lproject A w)
     shows lproject A w ?! i = w ?! nth-least (liset <math>A w) i
     using assms unfolding lproject-to-lselect by simp
   lemma lproject-ltake[simp]:
     assumes enat k \leq llength (lproject A w)
     shows lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) =
       ltake (enat k) (lproject A w)
   proof
     have llength (lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w)) =
```

```
enat (card (liset A w \cap \{... < nth\text{-least (lift (liset A w)) } k\})) by simp
     also have ... = enat (card \{i \in liset \ A \ w. \ i < nth-least (lift (liset \ A \ w)) \ k\})
       unfolding lessThan-def Collect-conj-eq by simp
     also have \dots = enat \ k  using assms by simp
      also have ... = llength (ltake (enat k) (lproject A w)) using min-absorb 1
assms by force
     finally show llength (lproject A (ltake (enat (nth-least (lift (liset A w)) k))
w)) =
       llength (ltake (enat k) (lproject A w)) by this
   next
     \mathbf{fix} i
     assume 1: enat i < llength (lproject A (ltake (enat (nth-least (lift (liset A
(w)(k)(w)
     assume 2: enat i < llength (ltake (enat k) (lproject A w))
     obtain k' where 3: k = Suc \ k' using 2 nat.exhaust by auto
     have 4: enat k' < llength (lproject A w) using assms 3 by simp
     have 5: i < k' \text{ using } 2 3 \text{ by } simp
     have 6: nth-least (lift (liset A w)) k = Suc (nth-least (liset A w) k')
       using 3 4 by (simp del: nth-least.simps)
     have 7: nth-least (liset A w) i < Suc (nth-least (liset A w) k')
     proof -
       have nth-least (liset A w) i \leq nth-least (liset A w) k' using 4 5 by simp
       also have ... < Suc (nth\text{-}least (liset A w) k') by simp
       finally show ?thesis by this
     qed
     have 8: nth-least (liset A w \cap \{... < Suc (nth-least (liset A w) k')\}) i =
       nth-least (liset A w) i
     proof (rule nth-least-eq)
      show enat i < esize (liset A w \cap \{... < Suc (nth-least (liset <math>A w) k'\}\}) using
1 6 by simp
       have enat i \leq enat \ k' using 5 by simp
       also have enat k' < esize (liset A w) using 4 by simp
       finally show enat i < esize (liset A w) by this
     next
       \mathbf{fix} \ j
       assume 1: i < nth-least (liset A w) i
      show j \in liset \ A \ w \cap \{..< Suc \ (nth-least \ (liset \ A \ w) \ k')\} \longleftrightarrow j \in liset \ A \ w
        using 1 7 by simp
     qed
     have lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) ?! i =
       ltake\ (enat\ (Suc\ (nth-least\ (liset\ A\ w)\ k')))\ w\ ?!
       nth-least (liset A \ w \cap \{... < Suc \ (nth-least (liset A \ w) \ k')\}) i
       using 1 6 by simp
      also have ... = ltake (enat (Suc (nth-least (liset A w) k'))) w ?! nth-least
(liset A w) i
       using 8 by simp
     also have \dots = w?! nth-least (liset A w) i using 7 by simp
     also have ... = lproject \ A \ w \ ?! \ i \ using \ 2 \ by \ simp
     also have ... = ltake (enat k) (lproject A w) ?! i using 2 by simp
```

```
finally show lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) ?! i =
       ltake\ (enat\ k)\ (lproject\ A\ w)\ ?!\ i\ \mathbf{by}\ this
   qed
   \mathbf{lemma}\ llength\text{-}less\text{-}llength\text{-}lselect\text{-}less:
     enat i < esize \ s \land enat \ (nth\text{-}least \ s \ i) < llength \ w \longleftrightarrow enat \ i < llength \ (lselect
s w
     using nth-least-less-esize-less unfolding lselect-llength by this
   lemma lselect-lselect'':
     assumes \bigwedge i. i \in s \Longrightarrow enat \ i < llength \ w
     assumes \bigwedge i. i \in t \Longrightarrow enat \ i < llength \ (lselect \ s \ w)
     shows lselect\ t\ (lselect\ s\ w) = lselect\ (nth-least\ s\ `t)\ w
   proof
     note lselect-llength[simp]
     have 1: \bigwedge i. i \in nth-least s 't \Longrightarrow enat i < llength w using assms by auto
     have 2: t \subseteq \{i. \ enat \ i < esize \ s\}
       using assms(2) lselect-llength-le less-le-trans by blast
     have 3: inj-on (nth-least s) t using subset-inj-on nth-least.inj-on 2 by this
     have llength (lselect t (lselect s w)) = esize t using assms(2) by simp
     also have ... = esize (nth-least \ s \ 't) using 3 by auto
     also have ... = llength (lselect (nth-least s 't) w) using 1 by simp
     finally show llength (lselect t (lselect s w)) = llength (lselect (nth-least s 't)
w)
       by this
   \mathbf{next}
     \mathbf{fix} i
     assume 1: enat i < llength (lselect t (lselect s w))
     assume 2: enat i < llength (lselect (nth-least s 't) w)
     have 3: enat i < esize \ t \ using \ less-le-trans \ 1 \ lselect-llength-le \ by \ this
     have 4: \bigwedge i. i \in t \Longrightarrow enat i < esize s
       using assms(2) lselect-llength-le less-le-trans by blast
     have lselect t (lselect s w) ?! i = lselect s w ?! nth-least t i using 1 by simp
     also have ... = w?! nth-least s (nth-least t i) using assms(2) 3 by simp
     also have ... = w?! nth-least (nth-least s 't) i using 3 4 by simp
     also have ... = lselect (nth-least s 't) w ?! i using 2 by simp
     finally show lselect t (lselect s w) ?! i = lselect (nth-least s 't) w ?! i by this
    qed
   lemma lselect-lselect'[simp]:
     assumes \bigwedge i. i \in t \Longrightarrow enat \ i < esize \ s
     shows lselect\ t\ (lselect\ s\ w) = lselect\ (nth-least\ s\ `t)\ w
   proof -
     have 1: nth-least \{i \in s. \ enat \ i < llength \ w\} '\{i \in t. \ enat \ i < llength \ (lselect
s w)\} =
        \{i \in nth\text{-}least\ s\ `t.\ enat\ i < llength\ w\}
     unfolding Compr-image-eq
     proof (rule image-cong)
       show \{i \in t. \ enat \ i < llength \ (lselect \ s \ w)\} = \{i \in t. \ enat \ (nth-least \ s \ i) < t\}
```

```
llength w
         using llength-less-llength-lselect-less assms by blast
      next
       \mathbf{fix} i
       assume 1: i \in \{i \in t. \ enat \ (nth\text{-}least \ s \ i) < llength \ w\}
       have 2: enat i < esize \{i \in s. \ enat \ i < llength \ w\}
         using nth-least-less-esize-less assms 1 by blast
         show nth-least \{i \in s. \ enat \ i < llength \ w\} i = nth-least \ s \ i  using 2 by
simp
      qed
      have lselect\ t\ (lselect\ s\ w) =
       lselect \{i \in t. \ enat \ i < llength \ (lselect \ s \ w)\} \ (lselect \ \{i \in s. \ enat \ i < llength \ select\}\}
w \} w)
       by simp
      also have ... = lselect (nth-least \{i \in s. \ enat \ i < llength \ w\}'
        \{i \in t. \ enat \ i < llength \ (lselect \ s \ w)\}) \ w
       by (rule lselect-lselect", auto simp: lselect-llength)
     also have ... = lselect \{i \in nth-least \ s \ 't. \ enat \ i < llength \ w \} \ w \ unfolding
1 by rule
      also have \dots = lselect (nth-least \ s \ 't) \ w \ by \ simp
      finally show ?thesis by this
   \mathbf{qed}
   lemma lselect-lselect:
      lselect\ t\ (lselect\ s\ w) = lselect\ (nth-least\ s\ `\{i\in t.\ enat\ i< esize\ s\})\ w
   proof -
      have lselect\ t\ (lselect\ s\ w) = lselect\ \{i \in t.\ enat\ i < llength\ (lselect\ s\ w)\}
(lselect \ s \ w)
       by simp
     also have ... = lselect (nth-least \ s \ (i \in t. \ enat \ i < llength (lselect \ s \ w))) \ w
       using lselect-llength-le less-le-trans by (blast intro: lselect-lselect')
      also have ... = lselect (nth-least \ s \ (i \in t. \ enat \ i < esize \ s)) \ w
       using llength-less-llength-lselect-less by (auto intro!: lnths-cong)
      finally show ?thesis by this
   qed
   lemma lselect-lproject':
      assumes \bigwedge i. i \in s \Longrightarrow enat \ i < llength \ w
      shows lproject A (lselect s w) = lselect (s \cap liset A w) w
   proof -
     have 1: \bigwedge i. i \in liset A (lselect s w) \Longrightarrow enat i < esize s using less-le-trans
by force
      have 2: \{i \in liset \ A \ (lselect \ s \ w). \ enat \ i < esize \ s\} = liset \ A \ (lselect \ s \ w)
       using 1 by auto
      have 3: nth-least s ' liset A (lselect s w) = s \cap liset A w
      proof safe
       \mathbf{fix} \ k
       assume 4: k \in liset \ A \ (lselect \ s \ w)
       show nth-least s \ k \in s  using 1 4 by simp
```

```
show nth-least s \ k \in liset \ A \ w
         using llength-less-llength-lselect-less 4 unfolding liset-def by auto
     next
       \mathbf{fix} \ k
       assume 1: k \in s \ k \in liset \ A \ w
       have 2: nth-least s (card \{i \in s. i < k\}) = k using nth-least-card I(1) by
this
       have 3: enat (card \{i \in s. \ i < k\}) < llength (lselect s. \ w)
         unfolding lselect-llength using assms 1(1) by simp
       show k \in nth\text{-}least \ s ' liset A (lselect s \ w)
       proof
         show k = nth\text{-least } s \text{ (card } \{i \in s. \ i < k\}) \text{ using } 2 \text{ by } simp
       show card \{i \in s. \ i < k\} \in liset \ A \ (lselect \ s \ w) \ using \ 1(2) \ 2 \ 3 \ by \ fastforce
       qed
     qed
     have lproject\ A\ (lselect\ s\ w) = lselect\ (liset\ A\ (lselect\ s\ w))\ (lselect\ s\ w)
       unfolding lproject-to-lselect by rule
     also have ... = lselect (nth-least s '\{i \in liset \ A \ (lselect \ s \ w). \ enat \ i < esize
s}) w
       unfolding lselect-lselect by rule
     also have \dots = lselect (nth-least s 'liset A (lselect s w)) w unfolding 2 by
rule
     also have ... = lselect (s \cap liset A w) w unfolding 3 by rule
     finally show ?thesis by this
   qed
   lemma lselect-lproject[simp]: lproject A (lselect s w) = lselect (s \cap liset A w) w
   proof -
     have 1: \{i \in s. \ enat \ i < llength \ w\} \cap liset \ A \ w = s \cap liset \ A \ w by auto
     have lproject\ A\ (lselect\ s\ w) = lproject\ A\ (lselect\ \{i \in s.\ enat\ i < llength\ w\}
w) by simp
     also have ... = lselect (\{i \in s. enat \ i < llength \ w\} \cap liset \ A \ w) \ w
       by (rule lselect-lproject', simp)
     also have ... = lselect (s \cap liset A w) w unfolding 1 by rule
     finally show ?thesis by this
   qed
   lemma lproject-lselect-subset[simp]:
     assumes liset A \ w \subseteq s
     shows lproject\ A\ (lselect\ s\ w) = lproject\ A\ w
   proof -
     have 1: s \cap liset A w = liset A w using assms by auto
     have lproject A (lselect s w) = lselect (s \cap liset A w) w by simp
     also have \dots = lselect \ (liset \ A \ w) \ w \ unfolding \ 1 \ by \ rule
     also have \dots = lproject \ A \ w \ unfolding \ lproject-to-lselect \ by \ rule
     finally show ?thesis by this
   lemma lselect-prefix[intro]:
```

```
assumes u \leq v
     shows lselect s u \leq lselect s v
   proof (cases lfinite u)
     case False
     show ?thesis using lprefix-infinite assms False by auto
   next
     {f case}\ True
     obtain k where 1: llength u = enat k using True length-list-of by metis
     obtain w where 2: v = u $ w using lprefix-conv-lappend assms by auto
     have lselect s \ u \le lselect \ s \ u \ $ lselect \{n. \ n+k \in s\} \ w \ by simp
     also have ... = lselect\ s\ (u\ \$\ w) using lnths-lappend-lfinite[symmetric]\ 1 by
this
     also have \dots = lselect \ s \ v \ unfolding \ 2 \ by \ rule
     finally show ?thesis by this
   qed
   lemma lproject-prefix[intro]:
     assumes u \leq v
     shows lproject \ A \ u \leq lproject \ A \ v
     using lprefix-lfilterI assms by auto
   lemma lproject-prefix-limit[intro?]:
     assumes \bigwedge v. \ v \leq w \Longrightarrow lfinite \ v \Longrightarrow lproject \ A \ v \leq x
     shows lproject \ A \ w \leq x
   proof -
     have 1: ccpo.admissible lSup lprefix (\lambda v. lproject A v \leq x) by simp
     show ?thesis using llist-lift-admissible 1 assms(1) by this
   qed
   lemma lproject-prefix-limit':
     assumes \bigwedge k. \exists v. v \leq w \land enat k < llength <math>v \land lproject \land v \leq x
     shows lproject \ A \ w \leq x
   proof (rule lproject-prefix-limit)
     \mathbf{fix} \ u
     assume 1: u \leq w lfinite u
     obtain k where 2: llength u = enat k using 1(2) by (metis length-list-of)
     obtain v where 3: v \le w llength u < llength v lproject A v \le x
       unfolding 2 using assms(1) by auto
     have 4: llength u \leq llength \ v \ using \ 3(2) by simp
     have 5: u \le v using prefix-subsume 1(1) 3(1) 4 by this
     have lproject\ A\ u \leq lproject\ A\ v using 5 by rule
     also have \dots \leq x using \Im(\Im) by this
     finally show lproject A \ u \leq x by this
   qed
```

end

#### 15 Prefixes on Coinductive Lists

 $\begin{array}{l} \textbf{theory} \ \textit{LList-Prefixes} \\ \textbf{imports} \end{array}$ 

```
Word-Prefixes
  ../Extensions/Coinductive\text{-}List\text{-}Extensions
begin
 lemma unfold-stream-siterate-smap: unfold-stream f g = smap f \circ siterate g
   by (rule, coinduction, auto) (metis unfold-stream-eq-SCons)+
  lemma lappend-stream-of-llist:
   assumes lfinite u
   shows stream-of-llist (u \ \ v) = list-of u \ @-stream-of-llist v
   using assms unfolding stream-of-llist-def by induct auto
 lemma llist-of-inf-llist-prefix[intro]: u \leq_{FI} v \Longrightarrow llist-of u \leq llist-of-stream v
    \mathbf{by}\ (\mathit{metis}\ \mathit{lappend-llist-of-stream-conv-shift}\ \mathit{le-llist-conv-lprefix}\ \mathit{lprefix-lappend}
prefix-fininfE)
 lemma prefix-llist-of-inf-llist[intro]: lfinite u \Longrightarrow u < v \Longrightarrow list-of u <_{FI} stream-of-llist
    by (metis lappend-stream-of-llist le-llist-conv-lprefix lprefix-conv-lappend pre-
fix-fininfI)
 lemma lproject-prefix-limit-chain:
   assumes chain w \land k. lproject A (llist-of (w \ k)) \leq x
   shows lproject A (llist-of-stream (limit w)) \leq x
  proof (rule lproject-prefix-limit')
   \mathbf{fix} \ k
   obtain l where 1: k < length (w l) using assms(1) by rule
   show \exists v \leq llist-of-stream (limit w). enat k < llength v \wedge lproject A v \leq x
   proof (intro exI conjI)
     show llist-of (w \ l) \leq llist-of-stream (limit \ w)
       using llist-of-inf-llist-prefix chain-prefix-limit assms(1) by this
     show enat k < llength (llist-of (w l)) using 1 by simp
     show lproject A (llist-of (w \ l)) \leq x \ using \ assms(2) by this
   qed
  qed
 lemma lproject-eq-limit-chain:
   assumes chain u chain v \wedge k. project A(u k) = project A(v k)
    shows lproject\ A\ (llist-of-stream\ (limit\ u)) = lproject\ A\ (llist-of-stream\ (limit\ u))
v))
  proof (rule antisym)
    show lproject A (llist-of-stream (limit u)) \leq lproject A (llist-of-stream (limit
   proof (rule lproject-prefix-limit-chain)
     show chain u using assms(1) by this
   next
     \mathbf{fix} \ k
     have lproject\ A\ (llist-of\ (u\ k)) = lproject\ A\ (llist-of\ (v\ k)) using assms(3)
     also have \dots \leq lproject \ A \ (llist-of-stream \ (limit \ v)) using chain-prefix-limit
assms(2) by blast
```

```
finally show lproject A (llist-of (u \ k)) \leq lproject \ A (llist-of-stream (limit v))
by this
   qed
    show lproject A (llist-of-stream (limit v)) \leq lproject A (llist-of-stream (limit
u))
   proof (rule lproject-prefix-limit-chain)
     show chain v using assms(2) by this
   \mathbf{next}
     \mathbf{fix} \ k
     have lproject\ A\ (llist-of\ (v\ k)) = lproject\ A\ (llist-of\ (u\ k)) using assms(3)
     also have \ldots \leq lproject \ A \ (llist-of-stream \ (limit \ u)) using chain-prefix-limit
assms(1) by blast
     finally show lproject A (llist-of (v k)) \leq lproject A (llist-of-stream (limit u))
\mathbf{by} this
   qed
 qed
end
16
        Stuttering
theory Stuttering
imports
  Stuttering	ext{-}Equivalence. Stutter Equivalence
  LList-Prefixes
begin
 function nth-least-ext :: nat \ set \Rightarrow nat \Rightarrow nat
     enat \ k < esize \ A \Longrightarrow nth-least-ext \ A \ k = nth-least \ A \ k
     enat \ k \ge esize \ A \Longrightarrow nth-least-ext \ A \ k = Suc \ (Max \ A + (k - card \ A))
   by force+ termination by lexicographic-order
 lemma nth-least-ext-strict-mono:
   assumes k < l
   shows nth-least-ext s k < nth-least-ext s l
 proof (cases enat l < esize s)
   \mathbf{case} \ \mathit{True}
     have 1: enat k < esize \ s using assms True by (metis enat-ord-simps(2))
   show ?thesis using nth-least-strict-mono assms True 1 by simp
 next
   {\bf case}\ \mathit{False}
   have 1: finite s using False esize-infinite-enat by auto
   have 2: enat l \ge esize \ s \ using \ False \ by \ simp
   have 3: l \ge card \ s \ using \ 1 \ 2 \ by \ simp
   show ?thesis
```

**proof** (cases enat k < esize s)

```
case True
     have 4: s \neq \{\} using True by auto
     have nth-least-ext s k = nth-least s k using True by simp
     also have ... \leq Max \ s \ using \ nth-least-le-Max \ 1 \ 4 \ True \ by \ this
     also have \dots < Suc (Max s) by auto
     also have ... \leq Suc \; (Max \; s + (l - card \; s)) by auto
     also have Suc\ (Max\ s + (l - card\ s)) = nth\text{-}least\text{-}ext\ s\ l\ using\ 2\ by\ simp
     finally show ?thesis by this
   next
     case False
     have 4: enat k \ge esize \ s \ using \ False \ by \ simp
     have 5: k \ge card \ s \ using 1 \ 4 \ by \ simp
     have nth-least-ext s \ k = Suc \ (Max \ s + (k - card \ s)) using 4 by simp
    also have ... < Suc (Max s + (l - card s)) using assms 5 by simp
     also have ... = nth-least-ext s l using 2 by simp
     finally show ?thesis by this
   qed
 qed
 definition stutter-selection :: nat set \Rightarrow 'a llist \Rightarrow bool
   where stutter-selection s \ w \equiv \theta \in s \land
     (\forall k i. enat i < llength w \longrightarrow enat (Suc k) < esize s \longrightarrow
    (\forall i. \ enat \ i < llength \ w \longrightarrow finite \ s \longrightarrow Max \ s < i \longrightarrow w \ ?! \ i = w \ ?! \ Max \ s)
 lemma stutter-selection I[intro]:
   assumes \theta \in s
   assumes \bigwedge k \ i. \ enat \ i < llength \ w \Longrightarrow enat \ (Suc \ k) < esize \ s \Longrightarrow
     nth-least s \ k < i \implies i < nth-least s \ (Suc \ k) \implies w \ ?! \ i = w \ ?! \ nth-least s \ k
   assumes \bigwedge i. enat i < llength \ w \Longrightarrow finite \ s \Longrightarrow Max \ s < i \Longrightarrow w ?! \ i = w
?! Max s
   shows stutter-selection s w
   using assms unfolding stutter-selection-def by auto
 lemma stutter-selection D-\theta[dest]:
   {\bf assumes}\ stutter\text{-}selection\ s\ w
   shows \theta \in s
   using assms unfolding stutter-selection-def by auto
 lemma stutter-selection D-inside[dest]:
   assumes stutter-selection s w
   assumes enat i < llength w enat (Suc k) < esize s
   assumes nth-least s k < i i < nth-least s (Suc k)
   shows w ?! i = w ?! nth-least s k
   using assms unfolding stutter-selection-def by auto
 lemma stutter-selection D-infinite[dest]:
   {\bf assumes}\ stutter\text{-}selection\ s\ w
   assumes enat i < llength w finite s Max s < i
   shows w ?! i = w ?! Max s
   using assms unfolding stutter-selection-def by auto
```

```
lemma stutter-selection-stutter-sampler[intro]:
   {\bf assumes}\ linfinite\ w\ stutter\text{-}selection\ s\ w
   shows stutter-sampler (nth-least-ext s) (lnth w)
  unfolding stutter-sampler-def
  proof safe
   show nth-least-ext s \theta = \theta using assms(2) by (cases enat \theta < esize s, auto)
   show strict-mono (nth-least-ext s) using strict-monoI nth-least-ext-strict-mono
by blast
 next
   \mathbf{fix} \ k \ i
   assume 1: nth-least-ext s k < i i < nth-least-ext s (Suc k)
   show w ?! i = w ?! nth-least-ext s k
   proof (cases enat (Suc k) esize s rule: linorder-cases)
     case less
     have w ?! i = w ?! nth-least s k
     proof (rule stutter-selectionD-inside)
       show statter-selection s w using assms(2) by this
       show enat i < llength w using assms(1) by auto
       show enat (Suc\ k) < esize\ s using less by this
       show nth-least s k < i using I(1) less by auto
       show i < nth-least s (Suc k) using I(2) less by simp
     qed
     also have w ?! nth\text{-}least \ s \ k = w ?! nth\text{-}least\text{-}ext \ s \ k \ using \ less \ by \ auto
     finally show ?thesis by this
   \mathbf{next}
     case equal
     have 2: enat k < esize \ s \ using \ equal \ by \ (metis \ enat-ord-simps(2) \ lessI)
     have 3: finite s using equal by (metis esize-infinite-enat less-irreft)
     have 4: \bigwedge i. i > Max \ s \Longrightarrow w \ ?! \ i = w \ ?! \ Max \ s \ using \ assms \ 3 \ by \ auto
      have 5: k = card \ s - 1 using equal 3 by (metis diff-Suc-1 enat.inject
esize-set.simps(1)
     have Max \ s = nth{-}least \ s \ (card \ s - 1) using nth{-}least{-}Max \ 3 \ assms(2) by
force
     also have \dots = nth\text{-}least\ s\ k unfolding 5 by rule
     also have ... = nth-least-ext s k using 2 by simp
     finally have 6: Max s = nth-least-ext s k by this
     have w ?! i = w ?! Max s using 1(1) 4 6 by auto
     also have \dots = w?! nth-least-ext s k unfolding \theta by rule
     finally show ?thesis by this
   next
     case greater
     have 2: enat k \ge esize \ s using greater by (metis Suc-ile-eq not-le)
     have 3: finite s using greater by (metis esize-infinite-enat less-asym)
     have 4: \bigwedge i. i > Max \ s \Longrightarrow w ?! \ i = w ?! \ Max \ s \ using \ assms 3 \ by \ auto
     have w ?! i = w ?! Max s using 1(1) 2 4 by auto
     also have ... = w ?! Suc (Max \ s + (k - card \ s)) using 4 by simp
     also have \dots = w?! nth-least-ext s k using 2 by simp
     finally show ?thesis by this
   qed
```

```
qed
```

```
lemma stutter-equivI-selection[intro]:
   assumes linfinite u linfinite v
   assumes stutter-selection s u stutter-selection t v
   assumes lselect \ s \ u = lselect \ t \ v
   shows lnth \ u \approx lnth \ v
  proof (rule stutter-equivI)
   have 1: llength (lselect s u) = llength (lselect t v) unfolding assms(5) by rule
    have 2: esize s = esize t using 1 assms(1, 2) unfolding lselect-llength by
simp
   show stutter-sampler (nth-least-ext s) (lnth u) using assms(1, 3) by rule
   show stutter-sampler (nth-least-ext t) (lnth v) using assms(2, 4) by rule
   show lnth \ u \circ nth\text{-}least\text{-}ext \ s = lnth \ v \circ nth\text{-}least\text{-}ext \ t
   proof (rule ext, unfold comp-apply)
     \mathbf{fix} i
     show u ?! nth-least-ext s i = v ?! nth-least-ext t i
     proof (cases enat i < esize s)
       case True
       have 3: enat i < llength (lselect s u) enat i < llength (lselect t v)
        using assms(1, 2) 2 True unfolding lselect-llength by auto
       have u?! nth-least-ext s i = u?! nth-least s i using True by simp
       also have ... = lselect \ s \ u \ ?! \ i \ using \ 3(1) by simp
       also have ... = lselect \ t \ v \ ?! \ i \ unfolding \ assms(5) \ by \ rule
       also have ... = v?! nth-least t i using 3(2) by simp
       also have ... = v?! nth-least-ext t i using True unfolding 2 by simp
       finally show u?! nth-least-ext s i = v?! nth-least-ext t i by this
     next
       case False
       have \beta: s \neq \{\} t \neq \{\} using assms(\beta, 4) by auto
       have 4: finite s finite t using esize-infinite-enat 2 False by metis+
       have 5: \bigwedge i. i > Max \ s \Longrightarrow u \ ?! \ i = u \ ?! \ Max \ s \ using \ assms(1, 3) \ 4(1)
by auto
       have 6: \bigwedge i. i > Max \ t \Longrightarrow v ?! \ i = v ?! \ Max \ t \ using \ assms(2, 4) \ 4(2)
by auto
       have 7: esize s = enat (card s) esize t = enat (card t) using 4 by auto
       have 8: card s \neq 0 card t \neq 0 using 3 4 by auto
       have 9: enat (card s-1) < llength (lselect s u)
        using assms(1) 7(1) 8(1) unfolding lselect-llength by simp
       have 10: enat (card t-1) < llength (lselect t v)
        using assms(2) 7(2) 8(2) unfolding lselect-llength by simp
       have u ?! nth-least-ext s i = u ?! Suc (Max s + (i - card s)) using False
by simp
       also have \dots = u ?! Max s using 5 by simp
      also have ... = u?! nth-least s (card s - 1) using nth-least-Max 4(1) 3(1)
by force
       also have ... = lselect \ s \ u \ ?! \ (card \ s - 1) \ using \ lselect-lnth \ 9 \ by \ simp
       also have ... = lselect \ s \ u \ ?! \ (card \ t - 1) \ using \ 2 \ 4 \ by \ simp
       also have ... = lselect \ t \ v \ ?! \ (card \ t - 1) \ unfolding \ assms(5) \ by \ rule
```

```
also have ... = v?! nth-least t (card t-1) using lselect-lnth 10 by simp
      also have ... = v ?! Max t using nth-least-Max 4(2) 3(2) by force
      also have ... = v ?! Suc (Max t + (i - card t)) using \theta by simp
      also have \dots = v?! nth-least-ext t i using 2 False by simp
      finally show ?thesis by this
     qed
   qed
 qed
 definition stuttering-invariant :: 'a word set \Rightarrow bool
   where stuttering-invariant A \equiv \forall u \ v. \ u \approx v \longrightarrow u \in A \longleftrightarrow v \in A
 lemma stuttering-invariant-complement[intro!]:
   assumes stuttering-invariant A
   shows stuttering-invariant (-A)
   using assms unfolding stuttering-invariant-def by simp
 lemma stutter-equiv-forw-subst[trans]: w_1 = w_2 \implies w_2 \approx w_3 \implies w_1 \approx w_3 by
 lemma stutter-sampler-build:
   assumes stutter-sampler f w
   shows stutter-sampler (0 \#\# (Suc \circ f)) (a \#\# w)
 unfolding stutter-sampler-def
 proof safe
   have \theta: f \theta = \theta using assms unfolding stutter-sampler-def by auto
   have 1: f x < f y if x < y for x y
     using assms that unfolding stutter-sampler-def strict-mono-def by auto
   have 2: (0 \#\# (Suc \circ f)) x < (0 \#\# (Suc \circ f)) y if x < y for x y
    using 1 that by (cases x; cases y) (auto)
   have 3: w n = w (f k) if f k < n n < f (Suc k) for k n
     using assms that unfolding stutter-sampler-def by auto
   show (0 \#\# (Suc \circ f)) \ \theta = \theta by simp
   show strict-mono (0 \# \# (Suc \circ f)) using 2 by rule
   show (a \# \# w) \ n = (a \# \# w) \ ((0 \# \# (Suc \circ f)) \ k)
    if (0 \#\# (Suc \circ f)) k < n n < (0 \#\# (Suc \circ f)) (Suc k) for k n
     using 0 \ 3 \ that by (cases \ k; \ cases \ n) \ (force) +
 qed
 lemma stutter-extend-build:
   assumes u \approx v
   shows a \#\# u \approx a \#\# v
   obtain f g where 1: stutter-sampler f u stutter-sampler g v u \circ f = v \circ g
     using stutter-equivE assms by this
   show ?thesis
   proof (intro stutter-equivI ext)
    show stutter-sampler (0 \# \# (Suc \circ f)) (a \# \# u) using stutter-sampler-build
1(1) by this
    show stutter-sampler (0 \# \# (Suc \circ g)) (a \# \# v) using stutter-sampler-build
```

```
1(2) by this
     show (a \# \# u \circ 0 \# \# (Suc \circ f)) i = (a \# \# v \circ 0 \# \# (Suc \circ g)) i for i
        using fun\text{-}cong[OF\ 1(3)] by (cases\ i)\ (auto)
  ged
  {f lemma} stutter\text{-}extend\text{-}concat:
   assumes u \approx v
   shows w \frown u \approx w \frown v
   using stutter-extend-build assms by (induct w, force+)
  lemma build-stutter: w \ 0 \ \#\# \ w \approx w
  proof (rule stutter-equivI)
   show stutter-sampler (Suc (0 := 0)) (w \ 0 \# \# w)
   unfolding stutter-sampler-def
   proof safe
     show (Suc (\theta := \theta)) \theta = \theta by simp
      show strict-mono (Suc (0 := 0)) by (rule strict-monoI, simp)
   next
      \mathbf{fix} \ k \ n
     assume 1: (Suc\ (\theta := \theta))\ k < n\ n < (Suc\ (\theta := \theta))\ (Suc\ k)
      show (w \ 0 \ \# \# \ w) \ n = (w \ 0 \ \# \# \ w) \ ((Suc \ (0 := 0)) \ k) using 1 by (cases
n, auto)
   \mathbf{qed}
   show stutter-sampler id w by rule
   show w \theta \# \# w \circ (Suc (\theta := \theta)) = w \circ id by auto
  qed
  lemma replicate-stutter: replicate n(v \theta) \frown v \approx v
  proof (induct n)
   case \theta
   \mathbf{show} \ ? case \ \mathbf{using} \ stutter\text{-}equiv\text{-}refl \ \mathbf{by} \ simp
  next
   case (Suc \ n)
   have replicate (Suc n) (v 0) \sim v = v 0 ## replicate n (v 0) \sim v by simp
   also have ... = (replicate n (v 0) \frown v) 0 ## replicate n (v 0) \frown v by (cases
   also have ... \approx replicate n (v \ \theta) \frown v using build-stutter by this
   also have \dots \approx v using Suc by this
   finally show ?case by this
  qed
  lemma replicate-stutter': u \frown replicate \ n \ (v \ 0) \frown v \approx u \frown v
   using stutter-extend-concat replicate-stutter by this
```

end

## 17 Interpreted Transition Systems and Traces

```
\begin{array}{c} \textbf{theory} \ \textit{Transition-System-Interpreted-Traces} \\ \textbf{imports} \\ \textit{Transition-System-Traces} \end{array}
```

```
begin
 \mathbf{locale}\ transition\text{-}system\text{-}interpreted\text{-}traces =
    transition-system-interpreted ex en int +
   transition-system-traces ex en ind
   for ex :: 'action \Rightarrow 'state \Rightarrow 'state
   and en :: 'action \Rightarrow 'state \Rightarrow bool
   and int :: 'state \Rightarrow 'interpretation
   and ind :: 'action \Rightarrow 'action \Rightarrow bool
   assumes independence-invisible: a \in visible \implies b \in visible \implies \neg ind \ a \ b
  begin
   lemma eq-swap-lproject-visible:
     assumes u =_S v
     shows lproject visible (llist-of u) = lproject visible (llist-of v)
     using assms independence-invisible by (induct, auto)
   \mathbf{lemma}\ \textit{eq-fin-lproject-visible} :
     assumes u =_F v
     shows lproject visible (llist-of u) = lproject visible (llist-of v)
     using assms eq-swap-lproject-visible by (induct, auto)
   lemma le-fin-lproject-visible:
     assumes u \leq_F v
     shows lproject visible (llist-of u) \leq lproject visible (llist-of v)
   proof -
     obtain w where 1: u @ w =_F v using assms by rule
     have lproject\ visible\ (llist-of\ u) \le
       lproject visible (llist-of u) $ lproject visible (llist-of w) by auto
    also have ... = lproject visible (llist-of (u @ w)) using lappend-llist-of-llist-of
by auto
      also have \dots = lproject\ visible\ (llist-of\ v)\ using\ eq-fin-lproject-visible\ 1\ by
this
     finally show ?thesis by this
   qed
   lemma le-fininf-lproject-visible:
     assumes u \leq_{FI} v
     shows lproject visible (llist-of u) \leq lproject visible (llist-of-stream v)
   proof -
     obtain w where 1: w \leq_{FI} v \ u \leq_F w using assms by rule
     have lproject\ visible\ (llist-of\ u) \leq lproject\ visible\ (llist-of\ w)
       using le-fin-lproject-visible 1(2) by this
     also have \dots \leq lproject \ visible \ (llist-of-stream \ v) \ using \ 1(1) \ by \ blast
     finally show ?thesis by this
    qed
   lemma le-inf-lproject-visible:
     assumes u \prec_I v
     shows lproject visible (llist-of-stream u) \leq lproject visible (llist-of-stream v)
   proof (rule lproject-prefix-limit)
```

Basics/Stuttering

```
\mathbf{fix} \ w
     assume 1: w \leq llist-of-stream u lfinite w
     have 2: list-of w \leq_{FI} stream-of-llist (llist-of-stream u) using 1 by blast
     have 3: list-of w \leq_{FI} v using assms 2 by auto
     have lproject visible w = lproject \ visible \ (llist-of \ (list-of \ w)) \ using \ 1(2) by
simp
    also have \ldots \leq lproject\ visible\ (llist-of-stream\ v)\ {\bf using}\ le-fininf-lproject-visible
3 by this
     finally show lproject visible w \leq lproject visible (llist-of-stream v) by this
   qed
   lemma eq-inf-lproject-visible:
     assumes u =_I v
     shows lproject visible (llist-of-stream u) = lproject visible (llist-of-stream v)
     using le-inf-lproject-visible assms by (metis antisym eq-infE)
   lemma stutter-selection-lproject-visible:
     assumes run u p
     shows stutter-selection (lift (liset visible (llist-of-stream u)))
       (llist-of-stream\ (smap\ int\ (p\ \#\#\ trace\ u\ p)))
     show \theta \in lift (liset visible (llist-of-stream u)) by auto
   \mathbf{next}
     \mathbf{fix} \ k \ i
     assume 3: enat (Suc k) < esize (lift (liset visible (llist-of-stream u)))
     assume 4: nth-least (lift (liset visible (llist-of-stream u))) k < i
     assume 5: i < nth-least (lift (liset visible (llist-of-stream u))) (Suc k)
      have 6: int ((p ## trace u p) !! nth-least (lift (liset visible (llist-of-stream
(u))) k) =
       int ((p \#\# trace \ u \ p) !! \ i)
     proof (rule execute-inf-word-invisible)
       show run u p using assms by this
      show nth-least (lift (liset visible (llist-of-stream u))) k \leq i using 4 by auto
     \mathbf{next}
       \mathbf{fix} \ j
       assume 6: nth-least (lift (liset visible (llist-of-stream u))) k \leq j
       assume 7: i < i
       have 8: Suc j \notin lift (liset visible (llist-of-stream u))
       proof (rule nth-least-not-contains)
         show enat (Suc k) < esize (lift (liset visible (llist-of-stream u))) using 3
by this
          show nth-least (lift (liset visible (llist-of-stream u))) k < Suc j using \theta
by auto
        show Suc\ j < nth-least (lift (liset visible (llist-of-stream u))) (Suc\ k) using
5 7 by simp
       qed
       have 9: j \notin liset \ visible \ (llist-of-stream \ u) \ using \ 8 \ by \ auto
       show u !! j \notin visible using 9 by auto
     qed
     show llist-of-stream (smap int (p \#\# trace \ u \ p)) ?! i = llist-of-stream (smap)
```

```
int (p \#\# trace \ u \ p)) ?!
       nth-least (lift (liset visible (llist-of-stream u))) k
       using 6 by (metis lnth-list-of-stream snth-smap)
     \mathbf{fix} i
     \mathbf{assume}\ 1{:}\ finite\ (lift\ (liset\ visible\ (llist-of\text{-}stream\ u)))
     assume 3: Max (lift (liset visible (llist-of-stream u))) < i
     have 4: int ((p \#\# trace \ u \ p) !! Max (lift (liset visible (llist-of-stream \ u))))
       int ((p \#\# trace \ u \ p) !! \ i)
     {f proof} (rule execute-inf-word-invisible)
       show run u p using assms by this
       show Max (lift (liset visible (llist-of-stream u))) \leq i using 3 by auto
     next
       \mathbf{fix} \ j
       assume 6: Max (lift (liset visible (llist-of-stream u))) \leq j
       assume 7: i < i
       have 8: Suc j \notin lift (liset visible (llist-of-stream u))
       proof (rule ccontr)
         assume 9: \neg Suc j \notin lift (liset visible (llist-of-stream u))
         have 10: Suc j \in lift (liset visible (llist-of-stream u)) using 9 by simp
        have 11: Suc j \leq Max (lift (liset visible (llist-of-stream u))) using Max-ge
1 10 by this
         show False using 6 11 by auto
       qed
       have 9: j \notin liset \ visible \ (llist-of-stream \ u) \ using \ 8 \ by \ auto
       show u !! j \notin visible using 9 by auto
     ged
    show llist-of-stream (smap int (p \#\# trace \ u \ p)) ?! \ i = llist-of-stream (smap)
int (p \#\# trace \ u \ p)) ?!
     Max (lift (liset visible (llist-of-stream u))) using 4 by (metis lnth-list-of-stream
snth-smap)
   qed
   lemma execute-fin-visible:
     assumes path u q path v q u \preceq_{FI} w v \preceq_{FI} w
     assumes project visible u = project \ visible \ v
     shows int (target u q) = int (target v q)
   proof -
      obtain w' where 1: u \leq_F w' v \leq_F w' using subsume-fin assms(3, 4) by
this
     obtain u' v' where 2: u @ u' =_F w' v @ v' =_F w' using 1 by blast
     have u @ u' =_F w'  using 2(1) by this
     also have ... =<sub>F</sub> v @ v' using 2(2) by blast
     finally have 3: u @ u' =_F v @ v' by this
     obtain s_1 s_2 s_3 where 4: u =_F s_1 @ s_2 v =_F s_1 @ s_3 Ind (set s_2) (set s_3)
       using levi-lemma 3 by this
     have 5: project visible (s_1 @ s_2) = project \ visible \ (s_1 @ s_3)
       using eq-fin-lproject-visible assms(5) 4(1, 2) by auto
```

```
have 6: project visible s_2 = project \ visible \ s_3 \ using 5 \ by \ simp
         have 7: set (project visible s_2) = set (project visible s_3) using 6 by simp
         have 8: set s_2 \cap visible = set s_3 \cap visible using 7 by auto
          have 9: set s_2 \subseteq invisible \lor set s_3 \subseteq invisible using independence-invisible
4(3) by auto
         have 10: set s_2 \subseteq invisible \text{ set } s_3 \subseteq invisible \text{ using } 8 \text{ 9 by } auto
         have 11: path s_2 (target s_1 q) using eq-fin-word 4(1) assms(1) by auto
         have 12: path s_3 (target s_1 q) using eq-fin-word 4(2) assms(2) by auto
       have int (fold ex u q) = int (fold ex (s_1 @ s_2) q) using eq-fin-execute assms(1)
4(1) by simp
         also have ... = int (fold ex s_1 q) using execute-fin-word-invisible 11 10(1)
by simp
         also have ... = int (fold \ ex (s_1 @ s_3) \ q) using execute-fin-word-invisible 12
10(2) by simp
        also have ... = int (fold ex v q) using eq-fin-execute assms(2) 4(2) by simp
         finally show ?thesis by this
      qed
      lemma execute-inf-visible:
         assumes run u q run v q u \leq_I w v \leq_I w
        assumes lproject\ visible\ (llist-of-stream\ u) = lproject\ visible\ (llist-of-stream\ v)
        shows snth (smap int (q \# \# trace \ u \ q)) \approx snth (smap int <math>(q \# \# trace \ v \ q))
      proof -
         have 1: lnth (llist-of-stream (smap int (q \# \# trace \ u \ q))) \approx
             lnth \ (llist\text{-}of\text{-}stream \ (smap \ int \ (q \ \#\# \ trace \ v \ q)))
         proof
            show linfinite (llist-of-stream (smap int (q \# \# trace \ u \ q))) by simp
            show linfinite (llist-of-stream (smap int (q \#\# trace \ v \ q))) by simp
            show stutter-selection (lift (liset visible (llist-of-stream u))) (llist-of-stream
(smap\ int\ (q\ \#\#\ trace\ u\ q)))
               using stutter-selection-lproject-visible assms(1) by this
             show stutter-selection (lift (liset visible (llist-of-stream v))) (llist-of-stream
(smap\ int\ (q\ \#\#\ trace\ v\ q)))
               using stutter-selection-lproject-visible assms(2) by this
            show lselect (lift (liset visible (llist-of-stream u))) (llist-of-stream (smap int
(q \# \# \ trace \ u \ q))) =
                 lselect (lift (liset visible (llist-of-stream v))) (llist-of-stream (smap int (q
## trace v q)))
            proof
               have llength (lselect (lift (liset visible (llist-of-stream u)))
                    (llist-of-stream\ (smap\ int\ (q\ \#\#\ trace\ u\ q))))=eSuc\ (llength\ (lproject\ length\ (lproject\ length
visible (llist-of-stream u)))
                  by (simp add: lselect-llength)
               also have ... = eSuc (llength (lproject visible (llist-of-stream v)))
                   unfolding assms(5) by rule
               also have ... = llength (lselect (lift (liset visible (llist-of-stream v)))
               (llist-of-stream (smap int (q \#\# trace\ v\ q)))) by (simp add: lselect-llength)
               finally show llength (lselect (lift (liset visible (llist-of-stream u)))
                 (llist-of-stream\ (smap\ int\ (q\ \#\#\ trace\ u\ q)))) = llength\ (lselect\ (lift\ (liset
visible (llist-of-stream v)))
```

```
(llist-of-stream (smap int (q \#\# trace \ v \ q)))) by this
       \mathbf{next}
         \mathbf{fix} i
         assume 1:
           enat \ i < llength \ (lselect \ (lift \ (liset \ visible \ (llist-of-stream \ u)))
             (llist-of-stream\ (smap\ int\ (q\ \#\#\ trace\ u\ q))))
           enat \ i < llength \ (lselect \ (lift \ (liset \ visible \ (llist-of-stream \ v)))
             (llist-of-stream\ (smap\ int\ (q\ \#\#\ trace\ v\ q))))
         have 2:
           enat \ i \leq llength \ (lproject \ visible \ (llist-of-stream \ u))
           enat \ i \leq llength \ (lproject \ visible \ (llist-of-stream \ v))
           using 1 by (simp add: lselect-llength)+
         define k where k \equiv nth-least (lift (liset visible (llist-of-stream u))) i
         define l where l \equiv nth-least (lift (liset visible (llist-of-stream v))) i
          have lselect (lift (liset visible (llist-of-stream u))) (llist-of-stream (smap
int (q \#\# trace u q))) ?! i =
          int ((q \#\# trace \ u \ q) !! \ nth-least (lift (liset visible (llist-of-stream \ u))) \ i)
          by (metis 1(1) lnth-list-of-stream lselect-lnth snth-smap)
         also have ... = int ((q \#\# trace \ u \ q) !! \ k) unfolding k-def by rule
         also have \dots = int ((q \# \# trace \ v \ q) !! \ l)
         unfolding sscan-scons-snth
         proof (rule execute-fin-visible)
              show path (stake k u) q using assms(1) by (metis run-shift-elim
stake-sdrop)
               show path (stake l v) q using assms(2) by (metis run-shift-elim
stake-sdrop)
           show stake k \ u \preceq_{FI} w \ stake \ l \ v \preceq_{FI} w \ using \ assms(3, 4) by auto
           have project visible (stake k u) =
             list-of (lproject visible (llist-of (stake k u))) by simp
            also have \dots = list-of (lproject visible (ltake (enat k) (llist-of-stream))
u)))
            by (metis length-stake llength-llist-of-llist-prefix lprefix-ltake
prefix-fininf-prefix)
         also have ... = list-of (ltake (enat i) (lproject visible (<math>llist-of-stream u)))
             unfolding k-def lproject-ltake[OF 2(1)] by rule
         also have ... = list-of (ltake (enat i) (lproject visible (<math>llist-of-stream v)))
             unfolding assms(5) by rule
          also have ... = list-of (lproject\ visible\ (ltake\ (enat\ l)\ (llist-of-stream\ v)))
             unfolding l-def lproject-ltake[OF 2(2)] by rule
           also have \dots = project \ visible \ (stake \ l \ v)
            by (metis length-stake lfilter-llist-of list-of-llist-of llength-llist-of
              llist-of-inf-llist-prefix lprefix-ltake prefix-fininf-prefix)
           finally show project visible (stake k u) = project visible (stake l v) by
this
         qed
            also have ... = int ((q \#\# trace \ v \ q) !! \ nth-least (lift (liset visible
(llist-of-stream\ v)))\ i)
           unfolding l-def by simp
         also have ... = lselect (lift (liset visible (llist-of-stream v)))
```

## 18 Abstract Theory of Ample Set Partial Order Reduction

```
theory Ample-Abstract
imports
Transition-System-Interpreted-Traces
Extensions/Relation-Extensions
begin
```

```
locale \ ample-base =
  transition-system-interpreted-traces ex en int ind +
  wellfounded-relation src
  for ex :: 'action \Rightarrow 'state \Rightarrow 'state
  and en :: 'action \Rightarrow 'state \Rightarrow bool
  and int :: 'state \Rightarrow 'interpretation
  and ind :: 'action \Rightarrow 'action \Rightarrow bool
  and src :: 'state \Rightarrow 'state \Rightarrow bool
begin
  definition ample-set :: 'state \Rightarrow 'action set \Rightarrow bool
    where ample-set q A \equiv
       A \subseteq \{a. \ en \ a \ q\} \land
       (\overset{-}{A}\subset \{a.\ en\ a\ q\}\longrightarrow A\neq \{\})\ \land
       (\forall \ a.\ A \subset \{a.\ en\ a\ q\} \longrightarrow a \in A \longrightarrow src\ (ex\ a\ q)\ q)\ \land
       (A \subset \{a.\ en\ a\ q\} \longrightarrow A \subseteq invisible) \ \land
      (\forall \ w.\ A\subset \{a.\ en\ a\ q\}\longrightarrow path\ w\ q\longrightarrow A\cap set\ w=\{\}\longrightarrow \mathit{Ind}\ A\ (set\ w))
  lemma ample-subset:
    assumes ample-set q A
    shows A \subseteq \{a. \ en \ a \ q\}
```

```
using assms unfolding ample-set-def by auto
   {f lemma} ample-nonempty:
     assumes ample-set q A A \subset \{a. en a q\}
     shows A \neq \{\}
     using assms unfolding ample-set-def by auto
   lemma ample-wellfounded:
     assumes ample-set q A A \subset \{a. en a q\} a \in A
     shows src (ex \ a \ q) \ q
     using assms unfolding ample-set-def by auto
   \mathbf{lemma}\ ample\textit{-}invisible\text{:}
     assumes ample-set q A A \subset \{a. en a q\}
     shows A \subseteq invisible
     using assms unfolding ample-set-def by auto
   lemma ample-independent:
     assumes ample-set q A A \subset \{a. \ en \ a \ q\} \ path \ w \ q \ A \cap set \ w = \{\}
     shows Ind A (set w)
     using assms unfolding ample-set-def by auto
    lemma ample-en[intro]: ample-set \ q \ \{a. \ en \ a \ q\} unfolding ample-set-def by
blast
 end
 locale \ ample-abstract =
   S?: transition-system-complete ex en init int +
   R: transition-system-complete ex ren init int +
   ample-base ex en int ind src
   for ex :: 'action \Rightarrow 'state \Rightarrow 'state
   and en :: 'action \Rightarrow 'state \Rightarrow bool
   and init :: 'state \Rightarrow bool
   and int :: 'state \Rightarrow 'interpretation
   and ind :: 'action \Rightarrow 'action \Rightarrow bool
   and src :: 'state \Rightarrow 'state \Rightarrow bool
   and ren :: 'action \Rightarrow 'state \Rightarrow bool
   assumes reduction-ample: q \in nodes \implies ample\text{-set } q \{a. ren a q\}
  begin
   lemma reduction-words-fin:
     assumes q \in nodes R.path w q
     shows S.path w q
     using assms(2, 1) ample-subset reduction-ample by induct auto
   lemma reduction-words-inf:
     assumes q \in nodes R.run \ w \ q
     shows S.run \ w \ q
```

```
lemma reduction-step:
     assumes q \in nodes run w q
     obtains
       (deferred) a where ren a q [a] \leq_{FI} w |
       (omitted) \{a. ren a q\} \subseteq invisible Ind <math>\{a. ren a q\} (sset w)
   proof (cases \{a. en a q\} = \{a. ren a q\})
     case True
     have 1: run (shd \ w \ \#\# \ sdrop \ 1 \ w) \ q \ using \ assms(2) by simp
     show ?thesis
     proof (rule deferred)
       show ren (shd w) q using True 1 by blast
      show [shd \ w] \preceq_{FI} w by simp
     qed
   next
     {f case} False
      have 1: \{a. ren a q\} \subset \{a. en a q\} using ample-subset reduction-ample
assms(1) False by auto
     show ?thesis
     proof (cases \{a. ren a q\} \cap sset w = \{\})
       case True
       show ?thesis
       proof (rule omitted)
           show \{a. ren \ a \ q\} \subseteq invisible using ample-invisible reduction-ample
assms(1) 1 by auto
        show Ind \{a. ren a q\} (sset w)
        proof safe
          \mathbf{fix} \ a \ b
          assume 2: b \in sset \ w \ ren \ a \ q
          obtain u v where \beta: w = u @-b \#\# v using split-stream-first' 2(1)
by this
          have 4: Ind \{a. ren a q\} (set (u @ [b]))
          proof (rule ample-independent)
           show ample-set q \{a. ren a q\} using reduction-ample assms(1) by this
            show \{a. ren a q\} \subset \{a. en a q\} using 1 by this
            show path (u @ [b]) \ q \ using \ assms(2) \ 3 \ by \ blast
            show \{a. ren \ a \ q\} \cap set \ (u @ [b]) = \{\} using True 3 by auto
          qed
          show ind a b using 2 3 4 by auto
        qed
       qed
     next
       {\bf case}\ \mathit{False}
      obtain u a v where 2: w = u @- a \#\# v \{a. ren a q\} \cap set u = \{\} ren a
q
        using split-stream-first[OF False] by auto
       have 3: path u q using assms(2) unfolding 2(1) by auto
```

```
have 4: Ind \{a. ren a q\} (set u)
     using ample-independent reduction-ample assms(1) 1 3 2(2) by this
   have 5: Ind (set [a]) (set u) using 4\ 2(3) by simp
   have \theta: [a] @ u =_F u @ [a] using 5 by blast
   show ?thesis
   proof (rule deferred)
     show ren a q using 2(3) by this
     have [a] \leq_{FI} [a] @- u @- v by blast
     also have [a] @- u @- v = ([a] @ u) @- v by simp
     also have ([a] @ u) @- v =_I (u @ [a]) @- v using 6 by blast
     also have (u @ [a]) @-v = u @-[a] @-v by simp
     also have \dots = w unfolding 2(1) by simp
     finally show [a] \leq_{FI} w by this
   qed
 qed
qed
lemma reduction-chunk:
 assumes q \in nodes run ([a] @-v) q
 obtains b b_1 b_2 u
 where
   R.path (b @ [a]) q
   Ind \{a\} (set b) set b \subseteq invisible
   b =_F b_1 @ b_2 b_1 @ - u =_I v Ind (set b_2) (sset u)
using wellfounded assms
proof (induct q arbitrary: thesis v rule: wfp-induct-rule)
 case (less q)
 show ?case
 proof (cases ren a q)
   case (True)
   show ?thesis
   proof (rule\ less(2))
     show R.path ([] @ [a]) q using True by auto
     show Ind \{a\} (set []) by auto
     show set [] \subseteq invisible by auto
     \mathbf{show} \ [] =_F [] @ [] \mathbf{by} \ auto
     \mathbf{show} \stackrel{..}{[} \stackrel{..}{@} - \stackrel{..}{v} =_I v \mathbf{by} \ auto
     show Ind (set []) (sset v) by auto
   qed
 next
   case (False)
   have \theta: \{a. \ en \ a \ q\} \neq \{a. \ ren \ a \ q\} using False less(4) by auto
   show ?thesis
   using less(3, 4)
   proof (cases rule: reduction-step)
     case (deferred c)
     have 1: ren c q using deferred(1) by simp
     have 2: ind a c
```

```
proof (rule le-fininf-ind'')
          show [a] \leq_{FI} [a] @- v  by blast
         show [c] \leq_{FI} [a] @-v  using deferred(2) by this
         show a \neq c using False 1 by auto
        obtain v' where \beta: [a] @-v =_I [c] @-[a] @-v'
        proof -
         have 10: [c] \leq_{FI} v
          proof (rule le-fininf-not-member')
           show [c] \leq_{FI} [a] @-v  using deferred(2) by this
           show c \notin set [a] using False 1 by auto
          obtain v' where 11: v =_I [c] @-v' using 10 by blast
         have 12: Ind (set [a]) (set [c]) using 2 by auto
         have 13: [a] @ [c] =_F [c] @ [a] using 12 by blast
         have [a] @-v =_I [a] @-[c] @-v' using 11 by blast
          also have \dots = ([a] @ [c]) @-v' by simp
         also have ... =_I ([c] @ [a]) @- v' using 13 by blast
         also have \dots = [c] @- [a] @- v' by simp
         finally show ?thesis using that by auto
        qed
        have 4: run ([c] @- [a] @- v') q using eq-inf-word 3 less(4) by this
        show ?thesis
        proof (rule\ less(1))
         show src (ex \ c \ q) \ q
           using ample-wellfounded ample-subset reduction-ample less(3) 0 1 by
blast
         have 100: en c q using less(4) deferred(2) le-fininf-word by auto
         show ex \ c \ q \in nodes \ using \ less(3) \ 100 \ by \ auto
         show run ([a] @-v') (ex c q) using 4 by auto
        next
          fix b b_1 b_2 u
          assume 5: R.path (b @ [a]) (ex c q)
         assume 6: Ind \{a\} (set b)
         assume 7: set b \subseteq invisible
          assume 8: b =_F b_1 @ b_2
          assume 9: b_1 @- u =_I v'
          assume 10: Ind (set b_2) (sset u)
          show thesis
          proof (rule\ less(2))
           show R.path (([c] @ b) @ [a]) q using 1 5 by auto
           show Ind \{a\} (set ([c] @ b)) using 6 2 by auto
           have 11: c \in invisible
              using ample-invisible ample-subset reduction-ample less(3) 0 1 by
blast
           show set ([c] @ b) \subseteq invisible using 7 11 by auto
           have [c] @ b =_F [c] @ b_1 @ b_2 using 8 by blast
           also have [c] @ b_1 @ b_2 = ([c] @ b_1) @ b_2 by simp
           finally show [c] @ b =_F ([c] @ b_1) @ b_2 by this
```

```
show ([c] @ b_1) @- u =_I v
           proof -
             have 10: Ind (set [a]) (set [c]) using 2 by auto
             have 11: [a] @ [c] =_F [c] @ [a] using 10 by blast
             have [a] @-v =_I [c] @-[a] @-v' using 3 by this
             also have \dots = ([c] @ [a]) @-v' by simp
             also have ... =_I ([a] @ [c]) @- v' using 11 by blast
             also have \dots = [a] @-[c] @-v' by simp
             finally have 12: [a] @- v =_I [a] @- [c] @- v' by this
             have 12: v =_I [c] @-v' using 12 by blast
             have ([c] @ b_1) @- u = [c] @- b_1 @- u by simp
             also have ... =<sub>I</sub> [c] @- v' using 9 by blast
             also have ... =_I v using 12 by blast
             finally show ?thesis by this
           show Ind (set b_2) (set u) using 10 by this
          qed
        qed
      next
        case (omitted)
        have 1: \{a. ren a q\} \subseteq invisible using omitted(1) by simp
        have 2: Ind \{a. ren a q\} (sset ([a] @-v)) using omitted(2) by simp
        obtain c where \beta: ren \ c \ q
        proof -
         have 1: en\ a\ q using less(4) by auto
          show ?thesis using reduction-ample ample-nonempty less(3) 1 that by
blast
        ged
        have 4: Ind (set [c]) (sset ([a] @-v)) using 2 3 by auto
        have 6: path [c] q using reduction-ample ample-subset less(3) 3 by auto
        have 7: run([a] @-v) (target [c] q) using diamond-fin-word-inf-word 4
6 less(4) by this
        show ?thesis
        proof (rule\ less(1))
         show src (ex \ c \ q) q
           using reduction-ample ample-wellfounded ample-subset less(3) 0 3 by
blast
         show ex \ c \ q \in nodes \ using \ less(3) \ 6 \ by \ auto
         show run ([a] @-v) (ex c q) using 7 by auto
        next
          \mathbf{fix} \ b \ s \ b_1 \ b_2 \ u
         assume 5: R.path (b @ [a]) (ex c q)
         assume 6: Ind \{a\} (set b)
          assume 7: set b \subseteq invisible
         assume 8: b =_F b_1 @ b_2
         assume 9: b_1 @- u =_I v
          assume 10: Ind (set b_2) (sset u)
         show thesis
         proof (rule \ less(2))
```

```
show Ind \{a\} (set ([c] @ b))
             proof -
               have 1: ind \ c \ a \ using \ 4 \ by \ simp
               have 2: ind a c using independence-symmetric 1 by this
               show ?thesis using 6 2 by auto
             qed
             have 11: c \in invisible using 1 3 by auto
             show set ([c] @ b) \subseteq invisible using 7 11 by auto
             have 12: Ind (set [c]) (set b_1)
             proof -
               have 1: set b_1 \subseteq sset \ v \ using \ 9 \ by force
               have 2: Ind (set [c]) (sset v) using 4 by simp
               show ?thesis using 1 2 by auto
             qed
             have [c] @ b =_F [c] @ b_1 @ b_2 using 8 by blast
             also have \dots = ([c] @ b_1) @ b_2 by simp
             also have ... =_F (b_1 @ [c]) @ b_2 using 12 by blast
             also have \dots = b_1 @ [c] @ b_2 by simp
             finally show [c] @ b =_F b_1 @ [c] @ b_2 by this
             show b_1 @- u =_I v using g by this
             have 13: Ind (set [c]) (sset u)
             proof -
               have 1: sset u \subseteq sset \ v  using 9 by force
               have 2: Ind (set [c]) (sset v) using 4 by simp
               show ?thesis using 1 2 by blast
             show Ind (set ([c] @ b_2)) (sset u) using 10 13 by auto
            qed
         qed
       qed
     qed
   qed
    inductive reduced-run :: 'state \Rightarrow 'action list \Rightarrow 'action stream \Rightarrow 'action list
\Rightarrow
      'action\ list \Rightarrow 'action\ list \Rightarrow 'action\ list \Rightarrow 'action\ stream \Rightarrow bool
      where
        init: reduced-run q [] v [] [] [] v |
        absorb: reduced-run q \ v_1 \ ([a] \ @-v_2) \ l \ w \ w_1 \ w_2 \ u \Longrightarrow a \in set \ l \Longrightarrow
         reduced-run q (v_1 @ [a]) v_2 (remove1 \ a \ l) w w_1 w_2 u \mid
        extend: reduced-run q v_1 ([a] @- v_2) l w w_1 w_2 u \Longrightarrow a \notin set l \Longrightarrow
         R.path (b @ [a]) (target w q) \Longrightarrow
         Ind \{a\} (set b) \Longrightarrow set b \subseteq invisible \Longrightarrow
         b =_F b_1 \otimes b_2 \Longrightarrow [a] \otimes -b_1 \otimes -u' =_I u \Longrightarrow Ind (set b_2) (sset u') \Longrightarrow
         reduced-run\ q\ (v_1\ @\ [a])\ v_2\ (l\ @\ b_1)\ (w\ @\ b\ @\ [a])\ (w_1\ @\ b_1\ @\ [a])\ (w_2\ @\ a_1)
b_2) u'
```

show R.path (([c] @ b) @ [a]) q using 3 5 by auto

```
lemma reduced-run-words-fin:
     assumes reduced-run q v_1 v_2 l w w_1 w_2 u
     shows R.path w q
     using assms by induct auto
   lemma reduced-run-invar-2:
     assumes reduced-run q v_1 v_2 l w w_1 w_2 u
     shows v_2 =_I l @- u
   using assms
   proof induct
     case (init q v)
     show ?case by simp
   next
     case (absorb \ q \ v_1 \ a \ v_2 \ l \ w \ w_1 \ w_2 \ u)
     obtain l_1 l_2 where 10: l = l_1 @ [a] @ l_2 a \notin set l_1
       using split-list-first [OF\ absorb(3)] by auto
     have 11: Ind \{a\} (set l_1)
     proof (rule le-fininf-ind')
      show [a] \leq_{FI} l @- u \text{ using } absorb(2) \text{ by } auto
      show l_1 \leq_{FI} l @- u unfolding 10(1) by auto
      show a \notin set l_1 using 10(2) by this
     qed
     have 12: Ind (set [a]) (set l_1) using 11 by auto
     have [a] @ remove1 a l = [a] @ l_1 @ l_2 unfolding 10(1) remove1-append
using 10(2) by auto
     also have \ldots =_F ([a] @ l_1) @ l_2 by simp
     also have \ldots =_F (l_1 @ [a]) @ l_2  using 12 by blast
     also have \dots = l unfolding 10(1) by simp
     finally have 13: [a] @ remove1 a l =_F l by this
      have [a] @- remove1 a l @- u = ([a] @ remove1 a l) @- u unfolding
conc-conc by simp
     also have ... =_I l @- u  using 13 by blast
     also have ... =<sub>I</sub> [a] @- v_2 using absorb(2) by auto
     finally show ?case by blast
     case (extend q v_1 \ a v_2 \ l \ w \ w_1 \ w_2 \ u \ b \ b_1 \ b_2 \ u')
     have 11: Ind \{a\} (set l)
     proof (rule le-fininf-ind')
      show [a] \leq_{FI} l @- u \text{ using } extend(2) \text{ by } auto
      show l \leq_{FI} l @- u by auto
      show a \notin set \ l \ using \ extend(3) by this
     qed
     have 11: Ind (set [a]) (set l) using 11 by auto
     have 12: eq-fin ([a] @ l) (l @ [a]) using 11 by blast
     have 131: set b_1 \subseteq set \ b \ using \ extend(7) by auto
     have 132: Ind (set [a]) (set b) using extend(5) by auto
     have 13: Ind (set [a]) (set b_1) using 131 132 by auto
     have 14: eq-fin ([a] @ b_1) (b_1 @ [a]) using 13 by blast
     have [a] @-((l @ b_1) @- u') = ([a] @ l) @- b_1 @- u' by simp
```

```
also have eq-inf ... ((l @ [a]) @- b_1 @- u') using 12 by blast
     also have ... = l @- [a] @- b_1 @- u' by simp
     also have eq-inf ... (l @- u) using extend(8) by blast
     also have eq-inf ... ([a] @-v_2) using extend(2) by auto
     finally show ?case by blast
   qed
   lemma reduced-run-invar-1:
     assumes reduced-run q v_1 v_2 l w w_1 w_2 u
     shows v_1 @ l =_F w_1
   using assms
   proof induct
     case (init q v)
     show ?case by simp
   next
     case (absorb \ q \ v_1 \ a \ v_2 \ l \ w \ w_1 \ w_2 \ u)
     have 1: [a] @- v_2 =_I l @- u using reduced-run-invar-2 absorb(1) by this
     obtain l_1 l_2 where 10: l = l_1 @ [a] @ l_2 a \notin set l_1
       using split-list-first[OF\ absorb(3)] by auto
     have 11: Ind \{a\} (set l_1)
     proof (rule le-fininf-ind')
       show [a] \leq_{FI} l @- u \text{ using } 1 \text{ by } auto
       show l_1 \leq_{FI} l @- u unfolding 10(1) by auto
       show a \notin set l_1 using 10(2) by this
     qed
     have 12: Ind (set [a]) (set l_1) using 11 by auto
     have [a] @ remove1 a l = [a] @ l1 @ l2 unfolding 10(1) remove1-append
using 10(2) by auto
     also have \ldots =_F ([a] @ l_1) @ l_2 by simp
     also have \ldots =_F (l_1 @ [a]) @ l_2  using 12 by blast
     also have ... = l unfolding 10(1) by simp
     finally have 13: [a] @ remove1 a l =_F l by this
     have w_1 =_F v_1 \otimes l using absorb(2) by auto
     also have ... =_F v_1 @ ([a] @ remove1 \ a \ l) using 13 by blast
     also have ... = (v_1 @ [a]) @ remove1 \ a \ l \ by \ simp
     finally show ?case by auto
   next
     case (extend q v_1 \ a v_2 \ l \ w \ w_1 \ w_2 \ u \ b \ b_1 \ b_2 \ u')
     have 1: [a] @- v_2 =_I l @- u using reduced-run-invar-2 extend(1) by this
     have 11: Ind \{a\} (set l)
     proof (rule le-fininf-ind')
       show [a] \leq_{FI} l @- u \text{ using } 1 \text{ by } auto
       show l \leq_{FI} l @- u by auto
       show a \notin set \ l \ using \ extend(3) by auto
     have 11: Ind (set [a]) (set l) using 11 by auto
     have 12: eq-fin ([a] @ l) (l @ [a]) using 11 by blast
     have 131: set b_1 \subseteq set \ b \ \mathbf{using} \ extend(7) \ \mathbf{by} \ auto
     have 132: Ind (set [a]) (set b) using extend(5) by auto
```

```
have 13: Ind (set [a]) (set b_1) using 131 132 by auto
 have 14: eq-fin ([a] @ b_1) (b_1 @ [a]) using 13 by blast
 have eq-fin (w_1 @ b_1 @ [a]) (w_1 @ [a] @ b_1) using 14 by blast
 also have eq-fin ... ((v_1 @ l) @ [a] @ b_1) using extend(2) by blast
 also have eq-fin ... (v_1 @ (l @ [a]) @ b_1) by simp
 also have eq-fin ... (v_1 @ ([a] @ l) @ b_1) using 12 by blast
 also have ... = (v_1 @ [a]) @ l @ b_1 by simp
 finally show ?case by auto
qed
\mathbf{lemma} reduced-run-invisible:
 assumes reduced-run q \ v_1 \ v_2 \ l \ w \ w_1 \ w_2 \ u
 shows set w_2 \subseteq invisible
using assms
proof induct
 case (init q v)
 show ?case by simp
 case (absorb q v_1 a v_2 l w w_1 w_2 u)
 show ?case using absorb(2) by this
 case (extend q \ v_1 \ a \ v_2 \ l \ w \ w_1 \ w_2 \ u \ b \ b_1 \ b_2 \ u')
 have 1: set b_2 \subseteq set \ b \ using \ extend(7) by auto
 show ?case unfolding set-append using extend(2) extend(6) 1 by blast
qed
lemma reduced-run-ind:
 assumes reduced-run q v_1 v_2 l w w_1 w_2 u
 shows Ind (set w_2) (sset u)
using assms
proof induct
 case (init q v)
 show ?case by simp
 case (absorb \ q \ v_1 \ a \ v_2 \ l \ w \ w_1 \ w_2 \ u)
 show ?case using absorb(2) by this
next
 case (extend q v_1 \ a v_2 \ l \ w \ w_1 \ w_2 \ u \ b \ b_1 \ b_2 \ u')
 have 1: sset u' \subseteq sset\ u using extend(8) by force
 show ?case using extend(2) extend(9) 1 unfolding set-append by blast
qed
lemma reduced-run-decompose:
 assumes reduced-run q v_1 v_2 l w w_1 w_2 u
 shows w =_F w_1 @ w_2
using assms
proof induct
 case (init q v)
 show ?case by simp
```

```
next
     case (absorb \ q \ v_1 \ a \ v_2 \ l \ w \ w_1 \ w_2 \ u)
     show ?case using absorb(2) by this
     case (extend q v_1 \ a v_2 \ l \ w \ w_1 \ w_2 \ u \ b \ b_1 \ b_2 \ u')
     have 1: Ind (set [a]) (set b_2) using extend(5) extend(7) by auto
     have 2: Ind (set w_2) (set (b_1 @ [a]))
     proof -
       have 1: Ind (set w_2) (set u) using reduced-run-ind extend(1) by this
      have 2: u =_I [a] @-b_1 @-u'  using extend(8) by auto
      have 3: sset u = sset ([a] @- b_1 @- u') using 2 by blast
       show ?thesis unfolding set-append using 1 3 by simp
     qed
     have w @ b @ [a] =_F (w_1 @ w_2) @ b @ [a] using extend(2) by blast
     also have ... =_F (w_1 @ w_2) @ (b_1 @ b_2) @ [a]  using extend(7) by blast
     also have ... = w_1 @ w_2 @ b_1 @ (b_2 @ [a]) by simp
     also have ... =_F w_1 @ w_2 @ b_1 @ ([a] @ b_2) using 1 by blast
     also have ... =<sub>F</sub> w_1 @ (w_2 @ (b_1 @ [a])) @ b_2 by simp
     also have \ldots =_F w_1 @ ((b_1 @ [a]) @ w_2) @ b_2  using 2 by blast
     also have \dots =_F (w_1 @ b_1 @ [a]) @ w_2 @ b_2 by simp
     finally show ?case by this
   \mathbf{qed}
   lemma reduced-run-project:
     assumes reduced-run q v_1 v_2 l w w_1 w_2 u
     shows project visible w_1 = project \ visible \ w
   proof -
     have 1: w_1 @ w_2 =_F w using reduced-run-decompose assms by auto
     have 2: set w_2 \subseteq invisible using reduced-run-invisible assms by this
     have 3: project visible w_2 = [] unfolding filter-empty-conv using 2 by auto
     have project visible w_1 = project \ visible \ w_1 @ project \ visible \ w_2 \ using \ 3 \ by
simp
     also have ... = project visible (w_1 @ w_2) by simp
     also have ... = list-of (lproject visible (llist-of (w_1 @ w_2))) by simp
     also have ... = list-of (lproject\ visible\ (<math>llist-of\ w))
       using eq-fin-lproject-visible 1 by metis
     also have \dots = project \ visible \ w \ by \ simp
     finally show ?thesis by this
   qed
   lemma reduced-run-length-1:
     assumes reduced-run q \ v_1 \ v_2 \ l \ w \ w_1 \ w_2 \ u
     shows length v_1 \leq length w_1
     using reduced-run-invar-1 assms by force
   \mathbf{lemma}\ \mathit{reduced}\text{-}\mathit{run}\text{-}\mathit{length}\text{:}
     assumes reduced-run q v_1 v_2 l w w_1 w_2 u
     shows length v_1 \leq length w
   proof -
     have length v_1 \leq length \ w_1 using reduced-run-length-1 assms by this
```

```
also have \dots \le length \ w \ using \ reduced-run-decompose assms by force
     finally show ?thesis by this
   qed
   lemma reduced-run-step:
     assumes q \in nodes run (v_1 @- [a] @- v_2) q
     assumes reduced-run q \ v_1 \ ([a] @-v_2) \ l \ w \ w_1 \ w_2 \ u
     obtains l' w' w_1' w_2' u'
     where reduced-run q (v_1 @ [a]) v_2 l' (w @ w') (w_1 @ w_1') (w_2 @ w_2') u'
   proof (cases \ a \in set \ l)
     case True
     show ?thesis
     proof (rule that, rule absorb)
      show reduced-run q v_1 ([a] @- v_2) l (w @ []) (w_1 @ []) (w_2 @ []) u using
assms(3) by simp
      show a \in set \ l \ using \ True \ by \ this
     qed
   next
     case False
     have 1: v_1 @ l =_F w_1 using reduced-run-invar-1 assms(3) by this
     have 2: [a] @-v_2 =_I l @-u \text{ using } reduced\text{-run-invar-2 } assms(3) \text{ by } this
     have 3: w =_F w_1 @ w_2 using reduced-run-decompose assms(3) by this
     have v_1 @ l @ w_2 = (v_1 @ l) @ w_2 by simp
     also have \dots =_F w_1 \otimes w_2 using 1 by blast
     also have \dots =_F w using \beta by blast
     finally have 4: v_1 @ l @ w_2 =_F w by this
     have 5: run ((v_1 @ l) @ - w_2 @ - u) q
     proof (rule diamond-fin-word-inf-word')
      show Ind (set w_2) (sset u) using reduced-run-ind assms(3) by this
      have \theta: R.path w q using reduced-run-words-fin assms(3) by this
      have 7: path w q using reduction-words-fin assms(1) 6 by auto
      show path ((v_1 @ l) @ w_2) q using eq-fin-word 4 7 by auto
      have 8: v_1 @-[a] @-v_2 =_I v_1 @-l @-u  using 2 by blast
      show run ((v_1 @ l) @ - u) q using eq-inf-word assms(2) 8 by auto
     have \theta: run (w @- u) q using eq-inf-word 4.5 by (metis eq-inf-concat-end
shift-append)
     have 7: [a] \leq_{FI} l @- u \text{ using } 2 \text{ by } blast
     have 8: a \leq_{FI} u using le-fininf-not-member' 7 False by this
     obtain u' where \theta: u =_I [a] @- u' using \theta by rule
     have 101: target w \in nodes using assms(1) \in by auto
     have 10: run ([a] @-u') (target w q) using eq-inf-word 9 6 by blast
     obtain b \ b_1 \ b_2 \ u'' where 11:
      R.path (b @ [a]) (target w q)
      Ind \{a\} (set b) set b \subseteq invisible
      b =_F b_1 @ b_2 b_1 @ - u'' =_I u' Ind (set b_2) (sset u'')
      using reduction-chunk 101 10 by this
     show ?thesis
     proof (rule that, rule extend)
```

```
show reduced-run q v_1 ([a] @- v_2) l w w_1 w_2 u using assms(3) by this
       show a \notin set \ l  using False by this
       show R.path (b @ [a]) (target w \ q) using 11(1) by this
       show Ind \{a\} (set b) using 11(2) by this
       show set b \subseteq invisible using 11(3) by this
       show b =_F b_1 \otimes b_2 using 11(4) by this
       show [a] @- b_1 @- u'' =_I u using 9 11(5) by blast
       show Ind (set b_2) (set u'') using 11(6) by this
     qed
   qed
   lemma reduction-word:
     assumes q \in nodes run \ v \ q
     obtains u w
     where
       R.run \ w \ a
       v =_I u u \preceq_I w
       lproject\ visible\ (llist-of-stream\ u) = lproject\ visible\ (llist-of-stream\ w)
     define P where P \equiv \lambda \ k \ w \ w_1. \exists \ l \ w_2 \ u. reduced-run q (stake k v) (sdrop k
v) l w w_1 w_2 u
     obtain w w_1 where 1: \bigwedge k. P k (w k) (w_1 k) chain w chain w_1
     proof (rule chain-construct-2'[of P])
       show P \theta \parallel \parallel unfolding P-def using init by force
     next
       fix k w w_1
       assume 1: P k w w_1
       obtain l w_2 u where 2: reduced-run q (stake k v) (sdrop k v) l w w_1 w_2 u
        using 1 unfolding P-def by auto
       obtain l' w' w_1' w_2' u' where \beta:
         reduced-run q (stake k v @ [v !! k]) (sdrop (Suc k) v) l' (w @ w') (w_1 @
w_1') (w_2 @ w_2') u'
       proof (rule reduced-run-step)
        show q \in nodes \text{ using } assms(1) \text{ by } this
        show run (stake k v @- [v !! k] @- sdrop (Suc k) v) <math>q
          using assms(2) by (metis\ shift-append\ stake-Suc\ stake-sdrop)
        show reduced-run q (stake k v) ([v 	ext{ !! } k] @- sdrop (Suc k) v) l w w_1 w_2 u
          using 2 by (metis sdrop-simps shift.simps stream.collapse)
       show \exists w' w_1'. P(Suc k) w' w_1' \land w \leq w' \land w_1 \leq w_1'
        unfolding P-def using 3 by (metis prefix-fin-append stake-Suc)
       show k \leq length \ w \ using \ reduced-run-length 2 by force
       show k \leq length \ w_1 using reduced-run-length-1 2 by force
     qed rule
     obtain l w_2 u where 2:
       \bigwedge k. reduced-run q (stake k v) (sdrop k v) (l k) (w k) (w<sub>1</sub> k) (w<sub>2</sub> k) (u k)
       using 1(1) unfolding P-def by metis
     show ?thesis
```

```
proof
       show R.run (Word-Prefixes.limit w) q using reduced-run-words-fin 1(2) 2
by blast
      show v =_I Word-Prefixes.limit w_1
      proof
        show v \leq_I Word-Prefixes.limit w_1
        proof (rule le-infI-chain-right')
          show chain w_1 using I(3) by this
         show \bigwedge k. stake k \ v \leq_F w_1 \ k using reduced-run-invar-1 [OF 2] by auto
        qed
        show Word-Prefixes.limit w_1 \leq_I v
        proof (rule le-infI-chain-left)
          show chain w_1 using I(3) by this
        next
          \mathbf{fix} \ k
          have w_1 \ k =_F stake \ k \ v @ l \ k  using reduced-run-invar-1 2 by blast
          also have ... \leq_{FI} stake k \ v @- l \ k @- u \ k by auto
          also have ... = _I stake k v @- sdrop k v using reduced-run-invar-2[OF
2] by blast
          also have \dots = v by simp
          finally show w_1 \ k \leq_{FI} v by this
        qed
       qed
      show Word-Prefixes.limit w_1 \leq_I Word-Prefixes.limit w
      proof (rule le-infI-chain-left)
        show chain w_1 using I(3) by this
      next
        \mathbf{fix} \ k
        have w_1 \ k \leq_F w \ k using reduced-run-decompose [OF 2] by blast
       also have ... \leq_{FI} Word-Prefixes.limit w using chain-prefix-limit 1(2) by
this
        finally show w_1 \ k \leq_{FI} Word-Prefixes.limit w by this
       qed
      show lproject visible (llist-of-stream (Word-Prefixes.limit w_1)) =
        lproject visible (llist-of-stream (Word-Prefixes.limit w))
         using lproject-eq-limit-chain reduced-run-project 1 unfolding P-def by
metis
     qed
   qed
   lemma reduction-equivalent:
     assumes q \in nodes run u q
     where R.run v q snth (smap int (q ## trace u q)) \approx snth (smap int (q ##
trace\ v\ q))
   proof -
     obtain v w where 1: R.run w q u =_I v v \preceq_I w
       lproject\ visible\ (llist-of-stream\ v) = lproject\ visible\ (llist-of-stream\ w)
```

```
using reduction-word assms by this
     show ?thesis
     proof
      show R.run \ w \ q  using 1(1) by this
      show snth (smap int (q \# \# trace \ u \ q)) \approx snth (smap int <math>(q \# \# trace \ w \ q))
      proof (rule execute-inf-visible)
        show run u q using assms(2) by this
        show run w q using reduction-words-inf assms(1) 1(1) by auto
        have u =_I v using I(2) by this
        also have ... \leq_I w using 1(3) by this
        finally show u \leq_I w by this
        show w \leq_I w by simp
        have lproject\ visible\ (llist-of-stream\ u) = lproject\ visible\ (llist-of-stream\ v)
          using eq-inf-lproject-visible 1(2) by this
        also have \dots = lproject \ visible \ (llist-of-stream \ w) \ using \ 1(4) \ by \ this
      finally show lproject visible (llist-of-stream u) = lproject visible (llist-of-stream
w) by this
      qed
     qed
   qed
   lemma reduction-language-subset: R.language \subseteq S.language
    unfolding S.language-def R.language-def using reduction-words-inf by blast
   lemma reduction-language-stuttering:
     assumes u \in S.language
     obtains v
     where v \in R.language snth u \approx snth v
   proof -
     obtain q v where 1: u = smap int (q \#\# trace v q) init q S.run v q using
assms by rule
      obtain v' where 2: R.run v' q snth (smap int (q ## trace v q)) \approx snth
(smap int (q \#\# trace v'q))
      using reduction-equivalent 1(2, 3) by blast
     show ?thesis
     proof (intro that R.languageI)
      show smap int (q \#\# trace v' q) = smap int <math>(q \#\# trace v' q) by rule
      show init q using 1(2) by this
      show R.run v' q using \mathcal{Z}(1) by this
       show snth u \approx snth \ (smap \ int \ (q \ \#\# \ trace \ v' \ q)) unfolding 1(1) using
2(2) by this
     qed
   qed
 end
end
```

### 19 LTL Formulae

```
theory Formula
imports
  Basics/Stuttering
  Stuttering\hbox{-}Equivalence.PLTL
begin
 {\bf locale} \ formula =
    fixes \varphi :: 'a \ pltl
  begin
    definition language :: 'a stream set
      where language \equiv \{w. snth \ w \models_p \varphi\}
    lemma language-entails[iff]: w \in language \longleftrightarrow snth \ w \models_p \varphi  unfolding lan-
guage-def by simp
  end
  locale formula-next-free =
    formula \varphi
    for \varphi :: 'a pltl
    assumes next-free: next-free \varphi
  begin
   lemma stutter-equivalent-entails[dest]: u \approx v \Longrightarrow u \models_p \varphi \longleftrightarrow v \models_p \varphi
      using next-free-stutter-invariant next-free by blast
  end
end
```

# 20 Correctness Theorem of Partial Order Reduction

```
theory Ample-Correctness imports Ample-Abstract Formula begin locale ample-correctness = S: transition-system-complete ex en init int <math>+ R: transition-system-complete ex ren init int <math>+ F: formula-next-free \varphi + ample-abstract ex en init int ind src ren
```

```
for ex :: 'action \Rightarrow 'state \Rightarrow 'state
    and en :: 'action \Rightarrow 'state \Rightarrow bool
    and init :: 'state \Rightarrow bool
   and int :: 'state \Rightarrow 'interpretation
    and ind :: 'action \Rightarrow 'action \Rightarrow bool
    and src :: 'state \Rightarrow 'state \Rightarrow bool
    and ren :: 'action \Rightarrow 'state \Rightarrow bool
    and \varphi :: 'interpretation pltl
  begin
    {\bf lemma}\ reduction\hbox{-} language\hbox{-} in distinguishable:
      assumes R.language \subseteq F.language
      shows S.language \subseteq F.language
    proof
      \mathbf{fix} \ u
      assume 1: u \in S.language
    obtain v where 2: v \in R.language snth <math>u \approx snth v using reduction-language-stuttering
1 by this
      have 3: v \in F.language using assms 2(1) by rule
      show u \in F.language using 2(2) 3 by auto
    qed
  theorem reduction-correct: S.language \subseteq F.language \longleftrightarrow R.language \subseteq F.language
     using reduction-language-subset reduction-language-indistinguishable by blast
  end
end
```

## 21 Static Analysis for Partial Order Reduction

```
theory Ample-Analysis
imports
Ample-Abstract
begin

locale transition-system-ample =
transition-system-sticky ex en init int sticky +
transition-system-interpreted-traces ex en int ind
for ex: 'action \Rightarrow 'state \Rightarrow 'state
and en:: 'action \Rightarrow 'state \Rightarrow bool
and init:: 'state \Rightarrow bool
and it:: 'state \Rightarrow 'interpretation
and sticky:: 'action set
and ind:: 'action \Rightarrow 'action \Rightarrow bool
begin

sublocale ample-base ex en int ind scut<sup>-1-1</sup> by unfold-locales
```

```
lemma restrict-ample-set:
      assumes s \in nodes
      assumes A \cap \{a. \ en \ a \ s\} \neq \{\} A \cap \{a. \ en \ a \ s\} \cap sticky = \{\}
      assumes Ind (A \cap \{a. \ en \ a \ s\}) (executable -A)
      assumes \bigwedge w. path w s \Longrightarrow A \cap \{a. \ en \ a \ s\} \cap set \ w = \{\} \Longrightarrow A \cap set \ w = \{\}
{}
      shows ample-set s (A \cap \{a. en a s\})
    unfolding ample-set-def
    proof (intro conjI allI impI)
      show A \cap \{a. \ en \ a \ s\} \subseteq \{a. \ en \ a \ s\} by simp
      show A \cap \{a. \ en \ a \ s\} \neq \{\}  using assms(2) by this
    next
      \mathbf{fix} \ a
      assume 1: a \in A \cap \{a. \ en \ a \ s\}
      show scut^{-1-1} (ex a s) s
      proof (rule no-cut-scut)
        show s \in nodes using assms(1) by this
        show en a s using 1 by simp
        show a \notin sticky using assms(3) 1 by auto
      qed
    \mathbf{next}
      have 1: A \cap \{a. \ en \ a \ s\} \subseteq executable \ using \ executable \ assms(1) \ by \ blast
      show A \cap \{a. \ en \ a \ s\} \subseteq invisible using executable-visible-sticky assms(3) 1
by blast
   \mathbf{next}
      \mathbf{fix} \ w
      assume 1: path w \ s \ A \cap \{a. \ en \ a \ s\} \cap set \ w = \{\}
      have 2: A \cap set \ w = \{\}  using assms(5) \ 1 by this
      have 3: set w \subseteq executable using assms(1) 1(1) by rule
      show Ind (A \cap \{a. \ en \ a \ s\}) (set w) using assms(4) 2 3 by blast
    qed
  end
  locale transition-system-concurrent =
    transition-system-initial ex en init
    for ex :: 'action \Rightarrow 'state \Rightarrow 'state
    and en :: 'action \Rightarrow 'state \Rightarrow bool
    and init :: 'state \Rightarrow bool
    +
    fixes procs :: 'state \Rightarrow 'process set
    fixes pac :: 'process \Rightarrow 'action set
    fixes psen :: 'process \Rightarrow 'state \Rightarrow 'action set
    assumes procs-finite: s \in nodes \Longrightarrow finite (procs s)
    assumes psen-en: s \in nodes \Longrightarrow pac \ p \cap \{a. \ en \ a \ s\} \subseteq psen \ p \ s
    assumes psen-ex: s \in nodes \implies a \in \{a. \ en \ a \ s\} - pac \ p \implies psen \ p \ (ex \ a \ s)
= psen p s
  begin
```

```
lemma psen-fin-word:
     assumes s \in nodes \ path \ w \ s \ pac \ p \cap set \ w = \{\}
     shows psen \ p \ (target \ w \ s) = psen \ p \ s
    using assms(2, 1, 3)
   proof induct
     case (nil\ s)
     show ?case by simp
   next
     case (cons \ a \ s \ w)
     have 1: ex \ a \ s \in nodes \ using \ cons(4, 1) \ by \ rule
     have psen p (target (a \# w) s) = psen p (target w (ex a s)) by simp
     also have \dots = psen \ p \ (ex \ a \ s) using cons \ 1 by simp
     also have \dots = psen \ p \ s \ using \ psen-ex \ cons \ by \ simp
     finally show ?case by this
   qed
   lemma en-fin-word:
     assumes \bigwedge r \ a \ b. \ r \in nodes \Longrightarrow a \in psen \ p \ s - \{a. \ en \ a \ s\} \Longrightarrow b \in \{a. \ en \ a \ s\}
a r} - pac p \Longrightarrow
       en\ a\ (ex\ b\ r) \Longrightarrow en\ a\ r
     assumes s \in nodes \ path \ w \ s \ pac \ p \cap set \ w = \{\}
     shows pac \ p \cap \{a. \ en \ a \ (target \ w \ s)\} \subseteq pac \ p \cap \{a. \ en \ a \ s\}
   using assms
   proof (induct w rule: rev-induct)
     {\bf case}\ {\it Nil}
     show ?case by simp
   next
     case (snoc \ b \ w)
     show ?case
     proof (safe, rule ccontr)
       assume 2: a \in pac \ p \ en \ a \ (target \ (w @ [b]) \ s) \neg \ en \ a \ s
       have \beta: a \in psen p s
       proof -
        have 3: psen\ p\ (target\ (w\ @\ [b])\ s) = psen\ p\ s\ using\ psen-fin-word\ snoc(3,
4, 5) by this
         have 4: target (w @ [b]) s \in nodes using snoc(3, 4) by rule
         have 5: a \in psen \ p \ (target \ (w @ [b]) \ s) using psen-en \ 4 \ 2(1, 2) by auto
         show ?thesis using 2(1) 3 5 by auto
        qed
       have 4: en\ a\ (target\ w\ s)
       proof (rule\ snoc(2))
         show target w s \in nodes using snoc(3, 4) by auto
         show a \in psen \ p \ s - \{a. \ en \ a \ s\} using 2(3) \ 3 by simp
         show b \in \{a. \ en \ a \ (target \ w \ s)\} - pac \ p \ using \ snoc(4, 5)  by auto
         show en a (ex b (target w s)) using 2(2) by simp
        qed
       have 5: pac \ p \cap \{a. \ en \ a \ (target \ w \ s)\} \subseteq pac \ p \cap \{a. \ en \ a \ s\}
```

```
proof (rule\ snoc(1))
           show \bigwedge r \ a \ b. \ r \in nodes \Longrightarrow a \in psen \ p \ s - \{a. \ en \ a \ s\} \Longrightarrow b \in \{a. \ en
a r} - pac p \Longrightarrow
             en \ a \ (ex \ b \ r) \Longrightarrow en \ a \ r \ using \ snoc(2) \ by \ this
           show s \in nodes using snoc(3) by this
           show path w \ s \ using \ snoc(4) by auto
           show pac p \cap set w = \{\} using snoc(5) by auto
         have \theta: en a s using 2(1) \downarrow 5 by auto
         show False using 2(3) 6 by simp
      qed
    qed
    lemma pac-en-blocked:
      assumes \bigwedge r \ a \ b. \ r \in nodes \Longrightarrow a \in psen \ p \ s - \{a. \ en \ a \ s\} \Longrightarrow b \in \{a. \ en
a r} - pac p \Longrightarrow
         en\ a\ (ex\ b\ r) \Longrightarrow en\ a\ r
      assumes s \in nodes \ path \ w \ s \ pac \ p \cap \{a. \ en \ a \ s\} \cap set \ w = \{\}
      shows pac \ p \cap set \ w = \{\}
      using words-fin-blocked en-fin-word assms by metis
    abbreviation proc \ a \equiv \{p. \ a \in pac \ p\}
    abbreviation Proc A \equiv \bigcup a \in A. proc a
    lemma psen-simple:
      assumes Proc\ (psen\ p\ s) = \{p\}
      assumes \bigwedge r \ a \ b. \ r \in nodes \Longrightarrow a \in psen \ p \ s - \{a. \ en \ a \ s\} \Longrightarrow en \ b \ r \Longrightarrow
         proc \ a \cap proc \ b = \{\} \Longrightarrow en \ a \ (ex \ b \ r) \Longrightarrow en \ a \ r
      shows \bigwedge r \ a \ b. \ r \in nodes \Longrightarrow a \in psen \ p \ s - \{a. \ en \ a \ s\} \Longrightarrow b \in \{a. \ en \ a
r} – pac p \Longrightarrow
         en\ a\ (ex\ b\ r) \Longrightarrow en\ a\ r
      using assms by force
  end
end
```

#### References

- [1] C.-T. Chou and D. Peled. Formal verification of a partial-order reduction technique for model checking. In T. Margaria and B. Steffen, editors, Tools and Algorithms for the Construction and Analysis of Systems, volume 1055 of Lecture Notes in Computer Science, pages 241–257. Springer Berlin Heidelberg, 1996.
- [2] D. Peled. Combining partial order reductions with on-the-fly model-checking. Formal Methods in System Design, 8(1):39–64, 1996.