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Abstract

This entry provides a formalization of the abstract theory of ample
set partial order reduction as presented in [2, 1]. The formalization
includes transition systems with actions, trace theory, as well as ba-
sics on finite, infinite, and lazy sequences. We also provide a basic
framework for static analysis on concurrent systems with respect to
the ample set condition.
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1 List Prefixes

theory List-Prefizes
imports HOL— Library. Prefiz-Order
begin

lemmas [intro] = prefizl strict-prefizl|[folded less-eq-list-def]
lemmas [elim] = prefixE strict-prefixE[folded less-eq-list-def]

lemmas [intro?] = take-is-prefix|folded less-eq-list-def]
hide-const (open) Sublist.prefix Sublist.suffiz

lemma prefiz-finl-item[introl]:
assumes a = bu < v
shows a # u < b # v
using assms by force

lemma prefiz-finE-item[elim!]:
assumes a # u < b # v
obtains a = bu < w
using assms by force

lemma prefiz-fin-append|intro]: u < u Q v by auto
lemma pprefiz-fin-length[dest]:

assumes u < v

shows length u < length v
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proof —
obtain ¢ w where 1: v = u @Q a # w using assms by rule
show ?thesis unfolding 1 by simp

qed

end

2 Lists

theory List-FExtensions
imports HOL— Library.Sublist
begin

declare removel-idem[simp]

lemma nth-append-simps|simp]:
i < lengthzs = (zs Q ys) ! i = zs | ¢
i > length xs = (s Q ys) ¢ = ys | (¢ — length zs)
unfolding nth-append by simp+

notation zip (infixr «<||> 51)

abbreviation project A = filter (A a. a € A)
abbreviation select s w = nths w s

lemma map-plus[simp]: map (plus n) [i ..< jl=[i + n .<j+ n]
proof (induct n)
case (
show ?case by simp
next
case (Suc n)
have map (plus (Suc n)) [i ..< j] = map (Suc o plus n) [i ..< j] by simp

also have ... = (map Suc o map (plus n)) [i ..< j] by simp
also have ... = map Suc (map (plus n) [i ..< j]) by simp
also have ... = map Suc [i + n ..< j + n] unfolding Suc by simp
also have ... = [Suc (i + n) ..< Suc (j + n)] unfolding map-Suc-upt by simp
also have ... = [i + Suc n ..< j + Suc n] by simp
finally show ?case by this
qed

lemma singleton-list-lengthE]elim):
assumes length xs = 1
obtains z
where zs = [z]
proof —
have 0: length s = Suc 0 using assms by simp
obtain y ys where 1: zs = y # ys length ys = 0 using 0 Suc-length-conv by
metis
show ?thesis using that 1 by blast



qed
lemma singleton-hd-last: length xs = 1 = hd zs = last xs by fastforce

lemma set-subsetI[intro]:
assumes )\ i. 7 < length xs = zs i € S
shows set zs C S
proof
fix z
assume 0: x € set zs
obtain i where 1: i < length zs x = xs ! ¢ using 0 unfolding in-set-conv-nth
by blast
show z € S using assms(1) 1 by auto
qed

lemma hd-take[simp]:
assumes n # 0 zs # ||
shows hd (take n xs) = hd zs
proof —
have 1: take n zs # [] using assms by simp
have 2: 0 < n using assms by simp
have hd (take n zs) = take n xzs ! 0 using hd-conv-nth[OF 1] by this

also have ... = zs | 0 using nth-take[OF 2] by this
also have ... = hd zs using hd-conv-nth[OF assms(2)] by simp
finally show ?thesis by this

qged

lemma hd-drop|simp]:

assumes n < length xs

shows hd (drop n zs) = xs | n

using hd-drop-conv-nth assms by this
lemma last-take[simp):

assumes n < length xs

shows last (take (Suc n) zs) = zs ! n
using assms
proof (induct xs arbitrary: n)

case (Nil)
show ?case using Nil by simp
next

case (Cons z zs)
show ?case using Cons by (auto) (metis Suc-less-eq Suc-pred)
qed

lemma split-list-first-unique:
assumes u; @ [a] @ uy = v1 Q [a] Q@ vo a & set uy a ¢ set vy
shows u; = v;
proof —
obtain w where u; = v; @ w A w @ [a] @ uy = [a] @ vy V
u Qw=uv; A[a] Quy =w Q [a] Q vy using assms(1) append-eq-append-conv2
by blast



thus ?thesis using assms(2, 3) by (auto) (metis hd-append?2 list.sel(1) list.set-sel(1))+
qed

end

3 Finite Prefixes of Infinite Sequences

theory Word-Prefixes
imports
List-Prefizes
../ Extensions/ List-Extensions
Transition-Systems-and-Automata.Sequence
begin

definition prefiz-fininf :: 'a list = 'a stream = bool (infix «<pp> 50)
where v <prv=3 w. v Q- w=v

lemma prefiz-fininfI [intro]:

assumes v Q— w = v

shows u <pj v

using assms unfolding prefiz-fininf-def by auto
lemma prefiz-fininfE|[elim]:

assumes u <pgy v

obtains w

where v = v Q— w

using assms unfolding prefiz-fininf-def by auto

lemma prefiz-fininflI-empty[introl]: [| <p; w by force
lemma prefiz-fininfI-item[intro!]:

assumes a = b u <pr v

shows a # u <py b ## v

using assms by force
lemma prefiz-fininfE-item[elim!]:

assumes a # u <p; b #H#H v

obtains a = b u <pr v

using assms by force

lemma prefiz-fininf-item[simp]: a # v <p; a ## v +— u <p; v by force

lemma prefiz-fininf-list[simp]: w Q u <p; w Q— v +— u <p; v by (induct w,
auto)

lemma prefiz-fininf-conclintro]: v <pr u @— v by auto

lemma prefiz-fininf-prefix[intro|: stake k w <p; w using stake-sdrop by blast

lemma prefiz-fininf-set-rangeldest]: uw <pj v = set u C sset v by auto

lemma prefiz-fininf-absorb:
assumes u <p; v Q— w length u < length v
shows v < v
proof —
obtain x where /: © @Q— z = v @— w using assms(1) by auto



have u < u @ stake (length v — length u) x by rule

also have ... = stake (length v) (u Q— z) using assms(2) by (simp add:
stake-shift)
also have ... = stake (length v) (v @— w) unfolding 1 by rule
also have ... = v using eg-shift by blast
finally show ?%thesis by this
qed

lemma prefiz-fininf-extend:
assumes u <p; v Q— w length v < length u
shows v < u
proof —
obtain x where /: © @Q— £ = v @— w using assms(1) by auto
have v < v @ stake (length u — length v) w by rule

also have ... = stake (length u) (v @Q— w) using assms(2) by (simp add:
stake-shift)
also have ... = stake (length u) (v @— z) unfolding 1 by rule
also have ... = u using eq-shift by blast
finally show ?thesis by this
qed

lemma prefiz-fininf-length:
assumes u <p; w v <p; w length u < length v
shows u < v
proof —
obtain v’ v’ where 1: w = v @— u' w = v @— v’ using assms(I, 2) by
blast+
have u = stake (length u) (v @Q— u') using shift-eq by blast

also have ... = stake (length u) w unfolding 1(1) by rule
also have ... = stake (length u) (v @Q— v’) unfolding 1(2) by rule
also have ... = take (length u) v using assms by (simp add: min.absorb2
stake-append)
also have ... < v by rule
finally show ?thesis by this
qed

lemma prefiz-fininf-append:

assumes u <p; v Q— w

obtains (absorb) u < v | (extend) z where v = v Q z z <p; w
proof (cases length u length v rule: le-cases)

case le

obtain z where /: © @Q— z = v @— w using assms(1) by auto

show ?thesis

proof (rule absorb)

have u < u @ stake (length v — length u) x by rule

also have ... = stake (length v) (v Q— z) using le by (simp add: stake-shift)
also have ... = stake (length v) (v @— w) unfolding 1 by rule
also have ... = v using eg-shift by blast
finally show v < v by this
qed
next



case ge
obtain z where /: © @Q— £ = v @— w using assms(1) by auto
show ?thesis
proof (rule extend)
have u = stake (length u) (v @Q— z) using shift-eq by auto
also have ... = stake (length u) (v @— w) unfolding 1 by rule
also have ... = v @ stake (length u — length v) w using ge by (simp add:
stake-shift)
finally show u = v @ stake (length u — length v) w by this
show stake (length u — length v) w <pr w by rule
qed
qed

lemma prefiz-fin-prefiz-fininf-trans[trans, intro]: u < v = v <p; W = u <pg
w
by (metis Prefiz-Order.prefizE prefiz-fininf-def shift-append)

lemma prefiz-finE-nth:
assumes u < v 1 < length u
shows u!i=v!1¢
proof —
obtain w where 1: v = v @ w using assms(1) by auto
show ?thesis unfolding 1 using assms(2) by (simp add: nth-append)
qed
lemma prefiz-fininfl-nth:
assumes A\ 1. { < lengthu = u!i=w!li
shows u <p; w
proof (rule prefiz-fininfI)
show u Q— sdrop (length u) w = w by (simp add: assms list-eq-iff-nth-eq
shift-eq)
qed

definition chain :: (nat = 'a list) = bool

where chain w = mono w A (V k. 3 1. k < length (w 1))
definition limit :: (nat = 'a list) = 'a stream

where limit w = smap (A k. w (SOME 1. k < length (w 1)) ! k) nats

lemma chainl[intro?):

assumes mono w

assumes A k. 3 [ k < length (w 1)

shows chain w

using assms unfolding chain-def by auto
lemma chainD-mono|dest?):

assumes chain w

shows mono w

using assms unfolding chain-def by auto
lemma chainE-length]elim?):

assumes chain w

obtains [



where k < length (w )
using assms unfolding chain-def by auto

lemma chain-prefix-limit:
assumes chain w
shows w k <py limit w
proof (rule prefiz-fininfI-nth)
fix ¢
assume [: i < length (w k)
have 2: mono w A\ k. 3 1. k < length (w ) using chainD-mono chainE-length
assms by blast+
have 3: i < length (w (SOME I. i < length (w 1))) using somel-ex 2(2) by
this
show w k! i = limit w!! 4
proof (cases k SOME l. i < length (w l) rule: le-cases)
case (le)
have /: wk < w (SOME l. i < length (w 1)) using monoD 2(1) le by this
show ?thesis unfolding limit-def using prefix-finE-nth 4 1 by auto
next
case (ge)
have /: w (SOME . i < length (w 1)) < w k using monoD 2(1) ge by this
show ?thesis unfolding limit-def using prefix-finE-nth / 3 by auto
qed
qed

lemma chain-construct-1:
assumes P 0 zg AN kz. Pkz = 3 z'. P (Suck) 2/ AN fz < faf
assumes A\ kz. P kz = k < length (f )

obtains
where A k. Pk (Q k) chain (f o Q)
proof —

obtain z’ where 1:
POxg Nkz. Pko = P (Suck) (' k) Nfao<f(z'kx)
using assms(1, 2) by metis
define Q where @ = rec-nat zg =’
have [simp]: Q 0 = 29 A\ k. Q (Suc k) = 2’ k (Q k) unfolding Q-def by
stmp+
have 2: A k. Pk (Qk)
proof —
fix k
show P k (Q k) using I by (induct k, auto)
qed
show ?thesis
proof (intro that chainl monol, unfold comp-apply)
fix k
show P k (Q k) using 2 by this
next
fix ¢ y :: nat
assume z < y



thus f (Q z) < f (Qy)

proof (induct y — z arbitrary: = y)
case ()
show ?case using 0 by simp
next
case (Suc k)
have f (Q z) < f (Q (Suc z)) using 1(2) 2 by auto
also have ... < f (Q y) using Suc(2) by (intro Suc(1), auto)
finally show ?case by this
qed
next
fix k
have 3: P (Suc k) (Q (Suc k)) using 2 by this
have /: Suc k < length (f (Q (Suc k))) using assms(3) 3 by this
have 5: k < length (f (Q (Suc k))) using 4 by auto
show 3 I. k < length (f (Q 1)) using 5 by blast
qed
qed
lemma chain-construct-2:
assumes POxzg A kz. Pka = 3 2’. P (Suck) ' ANfz < fa'ANgax<gz'
assumes A\ kz. Pka = k < length (fz) N kz. Pkaz = k < length (g z)
obtains ()
where A k. Pk (Q k) chain (f o Q) chain (g o Q)
proof —
obtain z’ where 1:
POxo Nkaz. Pkx = P (Suck) (' k) ANfa<f(z'kax)Nga<g(z
k x)
using assms(1, 2) by metis
define Q where @ = rec-nat zg =’
have [simp]: Q 0 = 29 A\ k. Q (Suc k) = 2’ k (Q k) unfolding Q-def by
stmp+
have 2: A k. Pk (Q k)
proof —
fix k
show P k (Q k) using I by (induct k, auto)
qed
show ?thesis
proof (intro that chainl monol, unfold comp-apply)
fix k
show P k (Q k) using 2 by this
next
fix z y :: nat
assume z < y
thus f (Q ) < f (Qy)
proof (induct y — z arbitrary: = y)
case ()
show ?case using 0 by simp
next
case (Suc k)



have f (Q z) < f (Q (Suc z)) using 1(2) 2 by auto
also have ... < f (Q y) using Suc(2) by (intro Suc(1), auto)
finally show ?case by this
qed
next
fix k
have 3: P (Suc k) (Q (Suc k)) using 2 by this
have 4: Suc k < length (f (@ (Suc k))) using assms(3) 3 by this
have 5: k < length (f (Q (Suc k))) using 4 by auto
show 3 [. k < length (f (Q 1)) using 5 by blast
next
fix z y :: nat
assume z < y
thus g (Qz) < g (Qy)
proof (induct y — x arbitrary: x y)
case (
show ?case using 0 by simp
next
case (Suc k)
have ¢ (Q z) < ¢ (Q (Suc z)) using 1(2) 2 by auto
also have ... < g (Q y) using Suc(2) by (intro Suc(1), auto)
finally show ?case by this
qed
next
fix k
have 3: P (Suc k) (Q (Suc k)) using 2 by this
have 4: Suc k < length (g (@ (Suc k))) using assms(4) 3 by this
have 5: k < length (g (Q (Suc k))) using 4 by auto
show 3 [. k < length (g (Q 1)) using 5 by blast
qed
qed
lemma chain-construct-2".
assumes P O ug vo A kuv. Pkuv= 3 u' v. P (Suck) v v'ANu<u A
v < v
assumes A kuwv. Pkuv =k <lengthu A kuv. Pkuv= k < length v
obtains v v
where A k. Pk (u k) (v k) chain u chain v
proof —
obtain @) where 1: A k. (case-prod o P) k (Q k) chain (fst o Q) chain (snd
° Q)
proof (rule chain-construct-2)
show 3 z'. (case-prod o P) (Suc k) ' A fst z < fstx’ A snd x < snd z’
if (case-prod o P) k x for k x using assms that by auto
show (case-prod o P) 0 (ug, vg) using assms by auto
show k < length (fst z) if (case-prod o P) k x for k z using assms that by
auto
show k < length (snd ) if (case-prod o P) k x for k z using assms that by
auto
qed rule

10



show ?thesis
proof
show P k ((fst o Q) k) ((snd o Q) k) for k using 1(1) by (auto simp:
prod.case-eq-if )
show chain (fst o Q) chain (snd o Q) using 1(2, 3) by this
qed
qed

end

4 Sets

theory Set-Extensions
imports

HOL- Library.Infinite-Set
begin

declare finite-subset[intro]

lemma set-not-emptyl[intro 0]: z € S = S # {} by auto
lemma sets-empty-iffI[intro 0]:
assumes \ a. a € A= 3 b. be B
assumes \ b. b€ B= 3 a.a € A
shows A = {} +— B={}
using assms by auto
lemma disjointl[intro 0]:
assumes A\ z. z € A = z € B = Fulse
shows A N B = {}
using assms by auto
lemma range-subsetl[intro 0]:
assumes A\ z. fz € S
shows range f C S
using assms by blast

lemma finite-imagel-range:
assumes finite (range f)
shows finite (f © A)

using finite-subset image-mono subset-UNIV assms by metis

lemma inf-img-fin-domE":

assumes nfinite A

assumes finite (f < A)

obtains y

where y € f ¢ A infinite (AN f —{y})
proof (rule ccontr)

assume [: - thesis

have 2: finite (J ye f A . Anf —{y})

proof (rule finite-UN-I)

show finite (f ¢ A) using assms(2) by this

11



show A\ y. y € f A = finite (AN f —*{y}) using that 1 by blast
qed
have 3: AC (Jyef A Anf—{y}) by blast
show Fulse using assms(1) 2 8 by blast
qed

lemma vimage-singleton[simp: f —‘{y} = {z. fx = y} unfolding vimage-def
by simp

lemma these-alt-def: Option.these S = Some —‘ S unfolding Option.these-def
by force
lemma the-vimage-subset: the — {a} C {None, Some a} by auto

lemma finite-induct-reverse[consumes 1, case-names remove):
assumes finite S
assumes A S. finite S = (Nz.z2€ S= P (S — {z})) = P S
shows P §
using assms(1)
proof (induct rule: finite-psubset-induct)
case (psubset S)
show Zcase
proof (rule assms(2))
show finite S using psubset(1) by this
next
fix z
assume 0: z € S
show P (S — {z})
proof (rule psubset(2))
show S — {z} C S using 0 by auto
qed
qed
qed

lemma zero-not-in-Suc-image[simp]: 0 ¢ Suc * A by auto

lemma Collect-split-Suc:
- P00 = {i. Pi} = Suc ‘{i. P (Suci)}
PO = {i. Pi} ={0} U Suc ‘{i. P (Suci)}
proof —
assume - P (
thus {i. P i} = Suc ‘ {i. P (Suc 7)}
by (auto, metis image-eql mem-Collect-eq nat.exhaust)
next
assume P (
thus {7. P i} = {0} U Suc ‘ {i. P (Suc i)}
by (auto, metis imagel mem-Collect-eq not0-implies-Suc)
qed

lemma Collect-subsume[simp]:

12



assumes \ z.z € A= Pz
shows {z € A. Pz} = A
using assms unfolding simp-implies-def by auto

lemma Maz-ge”
assumes finite A A # {}
assumes b € A a <)
shows a < Maz A
using assms Maz-ge-iff by auto

abbreviation least A = LEAST k. k€ A

lemma least-contains|intro?, simp):

fixes A :: 'a :: wellorder set

assumes k € A

shows least A € A

using assms by (metis Leastl)
lemma least-contains’[intro?, simpl:

fixes A :: 'a :: wellorder set

assumes A # {}

shows least A € A

using assms by (metis Leastl equalsOI)
lemma least-least[intro?, simp]:

fixes A :: 'a :: wellorder set

assumes k € A

shows least A < k

using assms by (metis Least-le)
lemma least-unique:

fixes A :: ‘a :: wellorder set

assumes k € A k < least A

shows k = least A

using assms by (metis Least-le antisym)
lemma least-not-less:

fixes A :: ‘a :: wellorder set

assumes k < least A

shows k ¢ A

using assms by (metis not-less-Least)
lemma leastI2-order[simp]:

fixes A :: ‘a :: wellorder set

assumes A # {} Ak ke A= (ANl.le A= k<)== Pk

shows P (least A)
proof (rule LeastI2-order)

show least A € A using assms(1) by rule
next

fix k

assume [: k € A

show least A < k using 1 by rule
next

fix k

13



assume [: ke AV Ile A— k<]
show P k using assms(2) 1 by auto
qed

lemma least-singleton|[simp:
fixes a :: ‘a :: wellorder
shows least {a} = a

by (metis insert-not-empty least-contains’ singletonD)

lemma least-image[simp]:
fixes [ :: 'a :: wellorder = 'b :: wellorder
assumes A # {} Nkl ke A=lc A= k<= fk<fl
shows least (f ¢ A) = f (least A)
proof (rule leastI2-order)
show A # {} using assms(1) by this
next
fix k
assume It k€ ANi. i€ A= k<1
show least (f ‘A) = fk
proof (rule leastI2-order)
show f ‘A # {} using assms(1) by simp
next
fix [
assume 2: e fANiief A= 1<1
show | = f k using assms(2) 1 2 by force
qged
qed

lemma least-le:
fixes A B :: 'a :: wellorder set
assumes B # {}
assumes A\ i. ¢ < least A = i < least B=—= i€ B= i€ A
shows least A < least B
proof (rule ccontr)
assume 1: — least A < least B
have 2: least B € A using assms(1, 2) 1 by simp
have 3: least A < least B using 2 by rule
show Fulse using 1 8 by rule
qed
lemma least-eq:
fixes A B :: 'a :: wellorder set
assumes A # {} B # {}
assumes A i. ¢ < least A = i < least B=—= i € A+— i€ B
shows least A = least B
using assms by (auto intro: antisym least-le)

lemma least-Suc[simpl:

assumes A # {}
shows least (Suc © A) = Suc (least A)

14



proof (rule antisym)
obtain k£ where 10: k € A using assms by blast
have 11: Suc k € Suc ‘ A using 10 by auto
have 20: least A € A using 10 Least] by metis
have 21: least (Suc ‘ A) € Suc * A using 11 Least] by metis
have 30: \ I. 1 € A = least A < [ using 10 Least-le by metis
have 31: A\ I. | € Suc * A = least (Suc * A) < | using 11 Least-le by metis
show least (Suc ‘ A) < Suc (least A) using 20 31 by auto
show Suc (least A) < least (Suc ¢ A) using 21 30 by auto
qged

lemma least-Suc-diff[simp]: Suc ¢ A — {least (Suc * A)} = Suc ‘(A — {least A})
proof (cases A = {})

case True

show ?thesis unfolding True by simp
next

case False

have Suc ‘ A — {least (Suc ‘ A)} = Suc * A — {Suc (least A)} using Fualse by

simp

also have ... = Suc ‘ A — Suc ‘ {least A} by simp
also have ... = Suc ‘ (A — {least A}) by blast
finally show ?%thesis by this

qed

lemma Maz-diff-least|simp]:
fixes A :: 'a :: wellorder set
assumes finite A A — {least A} # {}
shows Mazx (A — {least A}) = Max A
proof —
have 1: least A € A using assms(2) by auto
obtain a where 2: ¢ € A — {least A} using assms(2) by blast
have Maz A = Mazx (insert (least A) (A — {least A})) using insert-absorb 1
by force
also have ... = maz (least A) (Maz (A — {least A}))
proof (rule Maz-insert)
show finite (A — {least A}) using assms(1) by auto
show A — {least A} # {} using assms(2) by this
qed
also have ... = Maz (A — {least A})
proof (rule maz-absorb2, rule Maz-ge’)
show finite (A — {least A}) using assms(1) by auto
show A — {least A} # {} using assms(2) by this
show a € A — {least A} using 2 by this
show least A < a using 2 by simp
qed
finally show ?thesis by rule
qed

lemma nat-set-card-equality-less:

15



fixes A :: nat set
assumes z € Ay € Acard {z € A. z < z} = card {z € A. z < y}
shows z = y
proof (cases z y rule: linorder-cases)
case less
have 0: finite {z € A. z < y} by simp
have 1: {z € A. z < 2z} C {z € A. z < y} using assms(1, 2) less by force
have 2: card {z € A. z < z} < card {z € A. z < y} using psubset-card-mono
0 1 by this
show ?thesis using assms(3) 2 by simp
next
case equal
show ?thesis using equal by this
next
case greater
have 0: finite {z € A. z < z} by simp
have 1: {z € A. z < y} C {z € A. z < z} using assms(1, 2) greater by force
have 2: card {z € A. z < y} < card {z € A. z < z} using psubset-card-mono
0 1 by this
show ?thesis using assms(3) 2 by simp
qged

lemma nat-set-card-equality-le:
fixes A :: nat set
assumes 2 € Ay € Acard {z € A. 2 <z} =card {z € A. 2 < y}
shows z = y
proof (cases x y rule: linorder-cases)
case less
have 0: finite {z € A. z < y} by simp
have 1: {z € A. z <z} C {2z € A. z < y} using assms(1, 2) less by force
have 2: card {z € A. z < 2} < card {z € A. z < y} using psubset-card-mono
0 1 by this
show ?thesis using assms(3) 2 by simp

next

case equal

show ?thesis using equal by this
next

case greater
have 0: finite {z € A. z < z} by simp
have 1: {z € A. z <y} C {z € A. z < z} using assms(1, 2) greater by force
have 2: card {z € A. 2 < y} < card {z € A. z < z} using psubset-card-mono
0 1 by this
show ?thesis using assms(3) 2 by simp
qed

lemma nat-set-card-mono|simpl:
fixes A :: nat set
assumes z € A
shows card {z € A. z <z} < card{z€ A z <y} +—z <y
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proof
assume I: card {z € A. z < z} < card {z € A. z < y}
show z < y
proof (rule ccontr)
assume 2: 7z < ¥y
have 3: card {z € A. z < y} < card {z € A. z < z} using 2 by (auto intro:
card-mono)
show Fulse using 1 3 by simp
qed
next
assume [:z < y
show card {z € A. 2 < 2} < card {z € A. z < y}
proof (intro psubset-card-mono psubsetl)
show finite {z € A. z < y} by simp
show {z € A. z <z} C {2 € A. 2 < y} using 1 by auto
show {z € A. z < z} # {# € A. z < y} using assms 1 by blast
qed
qed

lemma card-onelelim]:
assumes card A = 1
obtains a
where A = {a}
using assms by (metis One-nat-def card-Suc-eq)

lemma image-alt-def: f A = {fx |z. z € A} by auto

lemma supset-mono-inductive[monol:
assumes \ z.z € B— 1z € C
shows ACB—ACC
using assms by auto

lemma Collect-mono-inductive[mono):
assumes \ z. Pz — Qz
shows z € {z. P2} — z € {z. Q z}
using assms by auto

lemma image-union-split:
assumes f ‘(AU B) =g ‘C
obtains D F
where f‘A=¢g‘Df‘B=g‘EDCCECC
using assms unfolding image-Un
by (metis (erased, lifting) inf-sup-ord(3) inf-sup-ord(4) subset-imageE)
lemma image-insert-split:
assumes nj g f ‘insert a B=g¢g ‘ C
obtains d E
where fa=gdf‘ B=g ' EFEde CECC
proof —
have 1: f * ({a} U B) = g ¢ C using assms(2) by simp
obtain D F where 2: f‘{a} =g ‘Df‘B=g‘EDC CECC
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using image-union-split 1 by this
obtain d where 3: D = {d} using assms(1) 2(1) by (auto, metis (erased,
opagque-lifting) imageE
image-empty image-insert inj-image-eq-iff singletonl)
show ?thesis using that 2 unfolding & by simp
qed

end

5 Basics

theory Basic-FExtensions
imports HOL— Library.Infinite-Set
begin

5.1 Types

type-synonym ’a step = 'a = a

5.2 Rules

declare less-imp-le[dest, simp]

declare le-funl[intro]
declare le-funE|elim)]
declare le-funD[dest]

lemma IdI'[intro]:
assumes r = y
shows (z, y) € Id
using assms by auto

lemma (in order) order-le-cases:
assumes z < y
obtains (eq) z =y | (It) x < y
using assms le-less by auto

lemma (in linorder) linorder-cases”:
obtains (le) x < y | (gt) z > y
by force

lemma monol-complintro):
assumes mono f mono g
shows mono (f o g)
using assms by (intro monol, auto dest: monoD)
lemma strict-monol-complintrol:
assumes strict-mono [ strict-mono g
shows strict-mono (f o g)
using assms by (intro strict-monol, auto dest: strict-monoD)
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lemma eg-le-absorb|simp]:
fixes z y :: 'a :: order
showsr=yANz<y+—zr=yar<yANr=y+—zxr=y
by auto

lemma INFM-Suc[simp]: (3o i P (Suc i)) «— (oo @. P 1)
unfolding INFM-nat using Suc-lessE less-Suc-eq by metis
lemma INFM-plus[simp]: (oo i. P (i + n :: nat)) +— (3o @. P i)
proof (induct n)
case (
show ?case by simp
next
case (Suc n)
have (3 i. P (i + Suc n)) +— (3 @. P (Suc i + n)) by simp
also have ... «— (o i. P (i + n)) using INFM-Suc by this
also have ... «— (3 i. P i) using Suc by this
finally show ?case by this
qed
lemma INFM-minus[simp]: (3o 7. P (i — n :: nat)) +— (3o i. P 1)
proof (induct n)
case (
show ?case by simp
next
case (Suc n)
have (3 . P (i — Sucn)) +— (o i. P (Suc i — Suc n)) using INFM-Suc
by meson
also have ... +— (3 i. P (i — n)) by simp
also have ... «— (I i. P i) using Suc by this
finally show ?case by this
qed

5.3 Constants

definition const :: 'a = b = 'a
where const t = \ -. z
definition const2 :: 'a = 'b = ‘c = 'a

where const2 x = X\ - -. x

definition consts :: 'a = b= ‘c = 'd = 'a
where const3 x =\ - - -. x

definition const/ :: ‘a = b= 'c = 'd= 'e="a
where constfj t =\ ----. x

definition const5 : ‘a = b= 'c= 'd='e= 'f = a
where constb zt = X\ - - - - - .z

lemma const-apply[simp]: const x y = = unfolding const-def by rule
lemma const2-apply[simp]: const2 x y z = z unfolding const2-def by rule
lemma const3-apply[simp): const3 z y z w = x unfolding const3-def by rule
lemma constf-apply[simpl: consts z y z w v = z unfolding constj-def by rule
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lemma const5-apply[simp]: consts © y z uw v w = z unfolding consts-def by
rule

definition zip-fun :: (Ya = b)) = (‘a = '¢) = ‘a = 'b x 'c (infixr «||> 51)
where f || g= Az (fz, g 2)

lemma zip-fun-simps|simp):
(fllg)z=(fz, gz
fsto(fllg)=f
snd o (f | g) =g
fstohl| sndoh=nh
fot < range (f | g) = range f
snd ‘ range (f || g) = range g
unfolding zip-fun-def by force+

lemma zip-fun-eq[dest]:
assumes f || g =h | ¢
shows f =hg=1
using assms unfolding zip-fun-def by (auto dest: fun-cong)

lemma zip-fun-range-subset[intro, simpl: range (f || g) C range f x range g
unfolding zip-fun-def by blast
lemma zip-fun-range-finite[elim):
assumes finite (range (f || 9))
obtains finite (range f) finite (range g)
proof
show finite (range f) using finite-imagel [OF assms(1), of fst]
by (simp add: image-image)
show finite (range g) using finite-imagel [OF assms(1), of snd|
by (simp add: image-image)
qed

lemma zip-fun-split:

obtains f g

where h = f || ¢
proof

show h = fst o h || snd o h by simp
qed

abbreviation None-None = (None, None)
abbreviation None-Some = X (y). (None, Some y)
abbreviation Some-None (). (Some z, None)
abbreviation Some-Some (z, y). (Some z, Some y)

e
>

abbreviation None-None-None = (None, None, None)
abbreviation None-None-Some = A (z). (None, None, Some z)
abbreviation None-Some-None = A (y). (None, Some y, None)
abbreviation None-Some-Some = A (y, z). (None, Some y, Some z)
abbreviation Some-None-None = X (z). (Some z, None, None)
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abbreviation Some-None-Some = X (z, z). (Some z, None, Some z)
abbreviation Some-Some-None = X (z, y). (Some z, Some y, None)
abbreviation Some-Some-Some = X (z, y, z). (Some x, Some y, Some z)

lemma inj-Some2[simp, intro]:
inj None-Some
inj Some-None
inj Some-Some
by (rule injI, force)+

lemma inj-Some3[simp, intro]:
inj None-None-Some
inj None-Some-None
inj None-Some-Some
inj Some-None-None
inj Some-None-Some
inj Some-Some-None
inj Some-Some-Some
by (rule injI, force)+

definition swap :: ‘a x 'b = b x 'a
where swap z = (snd z, fst x)

lemma swap-simps[simp|: swap (a, b) = (b, a) unfolding swap-def by simp

lemma swap-inj[intro, simp|: inj swap by (rule injl, auto)

lemma swap-surjlintro, simp): surj swap by (rule surjI[where ?f = swap],
auto)

lemma swap-bij[intro, simp|: bij swap by (rule bijI, auto)

definition push :: (‘a x b)) X ‘¢ = 'a x b x 'c
where push © = (fst (fst z), snd (fst x), snd x)

definition pull :: 'a x b x ‘¢ = ('a x 'b) x ‘¢
where pull z = ((fst z, fst (snd z)), snd (snd z))

lemma push-simps[simp|: push ((z, y), z) = (z, y, z) unfolding push-def by
stmp

lemma pull-simps[simp]: pull (z, y, z) = ((z, y), z) unfolding pull-def by
stmp

definition label :: 'vertex x 'label x 'vertex = 'label
where label = fst o snd

lemma label-select[simp]: label (p, a, ¢) = o unfolding label-def by simp

5.4 Theorems for @Qtermcurry and @Qtermsplit

lemma curry-split[simp]: curry o case-prod = id by auto
lemma split-curry[simpl: case-prod o curry = id by auto
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lemma curry-le[simp]: curry f < curry g +— f < g unfolding le-fun-def by
force

lemma split-le[simp]: case-prod f < case-prod g +— [ < g unfolding le-fun-def
by force

lemma mono-curry-left[simp]: mono (curry o h) +— mono h
unfolding mono-def by fastforce

lemma mono-split-left[simp]: mono (case-prod o h) +— mono h
unfolding mono-def by fastforce

lemma mono-curry-right[simp]: mono (h o curry) «— mono h
unfolding mono-def split-le[symmetric] by bestsimp

lemma mono-split-right[simp]: mono (h o case-prod) <— mono h
unfolding mono-def curry-le[symmetric] by bestsimp

lemma Collect-curry[simp]: {x. P (curry )} = case-prod ‘ {z. P x} using
image-Collect by fastforce

lemma Collect-split[simp]: {z. P (case-prod z)} = curry ‘ {z. P z} using
image-Collect by force

lemma gfp-split-curry[simpl: gfp (case-prod o f o curry) = case-prod (gfp f)
proof —
have gfp (case-prod o f o curry) = Sup {u. u < case-prod (f (curry u))}
unfolding gfp-def by simp

also have ... = Sup {u. curry u < curry (case-prod (f (curry v)))} unfolding
curry-le by simp
also have ... = Sup {u. curry u < f (curry u)} by simp
also have ... = Sup (case-prod ‘ {u. v < fu}) unfolding Collect-curry[of A
u. u < fu] by simp
also have ... = case-prod (Sup {u. u < fu}) by (force simp add: image-comp)
also have ... = case-prod (gfp f) unfolding gfp-def by simp
finally show ?thesis by this
qed
lemma gfp-curry-split[simp]: gfp (curry o f o case-prod) = curry (gfp f)
proof —

have gfp (curry o f o case-prod) = Sup {u. u < curry (f (case-prod u))}
unfolding gfp-def by simp

also have ... = Sup {u. case-prod u < case-prod (curry (f (case-prod u)))}
unfolding split-le by simp

also have ... = Sup {u. case-prod u < f (case-prod u)} by simp

also have ... = Sup (curry ‘ {u. u < f u}) unfolding Collect-split[of X u. u
< fu] by simp

also have ... = curry (Sup {u. u < fu}) by (force simp add: image-comp)

also have ... = curry (gfp f) unfolding gfp-def by simp

finally show ?thesis by this

qed

lemma not-somel:
assumes /\ z. P x = False
shows = P (SOME z. P x)
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using assms by blast
lemma some-ccontr:
assumes (A z. - P z) = Fualse

shows P (SOME z. P z)
using assms somel-ex ccontr by metis

end

6 Relations

theory Relation-FExtensions
imports

Basic-FExtensions
begin

abbreviation rev-lex-prod (infixr «<xrlexx>) 80)
where 11 <krlexx> ro = inv-image (ro <xlexx> r1) swap

lemmas sym-rtranclp|intro] = sym-rtrancl|to-pred)

definition liftablep :: (‘a = 'a = bool) = ('a = 'a) = bool
where liftablep r f =V zy. rzy — r (fz) (fy)

lemma liftablepl [intro):
assumes A\ zy. rzy = r (fz) (fy)
shows liftablep r f
using assms
unfolding liftablep-def
by simp

lemma liftablepE[elim]:
assumes liftablep r f
assumes 7 T ¥
obtains r (fz) (fy)
using assms
unfolding liftablep-def
by simp

lemma liftablep-rtranclp:
assumes liftablep r f
shows liftablep r** f
proof
fix z y
assume 7" 7 y
thus ** (fz) ()
using assms
by (induct rule: rtranclp-induct, force+)
qed

definition confluentp :: ('a = 'a = bool) = bool
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where confluentp r =V zyl y2. r** xyl — r* zy2 — (3 2. r** yl 2z A
Y2 2)

lemma confluentpl [intro]:
assumes \ z yl y2. r** zyl = r** zy2 = 3 2. yl z A1 y2 2z
shows confluentp r
using assms
unfolding confluentp-def
by simp

lemma confluentpE[elim]:
assumes confluentp r
assumes " ¢yl r** z y2
obtains z
where r** yl z r** y2 z
using assms
unfolding confluentp-def
by blast

lemma confluentpl [intro]:
assumes A\ z yl y2. r** zyl = razy2 = 3 2. r** yl z A r** y2 2
shows confluentp r
proof
fix z y1 y2
assume 7" x yl r** x y2
thus 3 z. 7* yl 2z A r** y2 z using assms by (induct rule: rtranclp-induct,
force+)
qed

lemma transclp-eq-implies-confluent-imp:
assumes rl1** = r2**
assumes confluentp rl1
shows confluentp r2
using assms
by force

lemma transclp-eq-implies-confluent-eq:
assumes rl** = r2**
shows confluentp r1 <— confluentp 2
using assms transclp-eq-implies-confluent-imp
by metis

definition diamondp :: ('a = 'a = bool) = bool
where diamondp r =V zyl y2. rayl — razy2 — (3 2. ryl 2z A ry22)

lemma diamondpl[introl:
assumes Az yl y2. raxyl = rey2 = I z.ryl zAry2z
shows diamondp r
using assms
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unfolding diamondp-def
by simp

lemma diamondpE[elim]:
assumes diamondp T
assumes 7 x yl r x y2
obtains z
where r y1 z r y2 z
using assms
unfolding diamondp-def
by blast

lemma diamondp-implies-confluentp:
assumes diamondp r
shows confluentp r
proof (rule confluentpl’)
fix x yl y2
assume 7" zyl rx y2
hence 3 z. 7 yI z A r** y2 z using assms by (induct rule: rtranclp-induct,
force+)
thus 3 z. 7" yI z A r** y2 z by blast
qed

locale wellfounded-relation =
fixes R :: 'a = 'a = bool
assumes wellfounded: wfP R

end

7 Transition Systems

theory Transition-System-FExtensions
imports
Basics/ Word-Prefizes
Extensions/ Set-Extensions
Eztensions/ Relation-Extensions
Transition-Systems-and-Automata. Transition-System
Transition-Systems-and-Automata. Transition-System-Eztra
Transition-Systems-and-Automata. Transition-System-Construction
begin

context transition-system-initial
begin

definition cycles :: 'state = 'transition list set
where cycles p = {w. path w p A target w p = p}

lemma cyclesl[intro!]:
assumes path w p target wp = p
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shows w € cycles p

using assms unfolding cycles-def by auto
lemma cyclesE[elim!]:

assumes w € cycles p

obtains path w p target wp = p

using assms unfolding cycles-def by auto

inductive-set executable :: "transition set
where ezecutable: p € nodes = enabled a p = a € executable

lemma ezecutablel-step[introl]:
assumes p € nodes enabled a p
shows a € ezecutable
using ezecutable assms by this
lemma ezecutablel-words-fin[intro!]:
assumes p € nodes path w p
shows set w C ezxecutable
using assms by (induct w arbitrary: p, auto del: subsetl)
lemma ezecutableE[elim?):
assumes a € executable
obtains p
where p € nodes enabled a p
using assms by induct auto

end

locale transition-system-interpreted =
transition-system ex en
for ez :: 'action = 'state = 'state
and en :: 'action = ’'state = bool
and int :: 'state = 'interpretation
begin

definition wvisible :: 'action set
where visible = {a. 3 ¢q. en a ¢ A int ¢ # int (ex a q)}

lemma visiblel[intro:

assumes en a g int ¢ # int (ex a q)

shows a € wvisible

using assms unfolding visible-def by auto
lemma visibleE[elim]:

assumes a € visible

obtains ¢

where en a q int ¢ # int (ex a q)

using assms unfolding visible-def by auto

abbreviation invisible = — wvisible

lemma execute-fin-word-invisible:
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assumes path w p set w C invisible
shows int (target w p) = int p
using assms by (induct w arbitrary: p rule: list.induct, auto)
lemma execute-inf-word-invisible:
assumes run w p k< I A\ i. k<i= i< l= w!l i ¢ visible
shows int ((p ## trace w p) ! k) = int ((p ## trace w p) ' 1)
proof —
have (p #+# trace w p) !! | = target (stake | w) p by simp
also have stake | w = stake k w @Q stake (I — k) (sdrop k w) using assms(2)
by simp
also have target ... p = target (stake (I — k) (sdrop k w)) (target (stake k
w) p)
unfolding fold-append comp-apply by rule
also have int ... = int (target (stake k w) p)
proof (rule execute-fin-word-invisible)
have w = stake | w Q— sdrop | w by simp
also have stake | w = stake k w Q stake (I — k) (sdrop k w) using assms(2)
by simp
finally have 1: run (stake k w @Q— stake (I — k) (sdrop k w) Q— sdrop [ w)
D
unfolding shift-append using assms(1) by simp
show path (stake (I — k) (sdrop k w)) (target (stake k w) p) using 1 by
auto
show set (stake (I — k) (sdrop k w)) C invisible using assms(3) by (auto
simp: set-stake-snth)

qed
also have ... = int ((p #+# trace w p) !! k) by simp
finally show ?thesis by rule
qed
end

locale transition-system-complete =
transition-system-initial ex en init +
transition-system-interpreted ex en int
for ez :: 'action = 'state = 'state
and en :: 'action = 'state = bool
and init :: 'state = bool
and int :: 'state = 'interpretation

begin

definition language :: interpretation stream set
where language = {smap int (p ## trace w p) |p w. init p A Tun w p}

lemma languagel[intro!]:
assumes w = smap int (p ## trace v p) init p run v p
shows w € language
using assms unfolding language-def by auto

lemma languageE[elim!]:
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assumes w € language

obtains p v

where w = smap int (p ## trace v p) init p run v p
using assms unfolding language-def by auto

end

locale transition-system-finite-nodes =
transition-system-initial ex en init
for ez :: 'action = 'state = 'state
and en :: 'action = ’'state = bool
and init :: 'state = bool
+
assumes reachable-finite: finite nodes

locale transition-system-cut =
transition-system-finite-nodes ex en init
for ex :: 'action = 'state = ’state
and en :: 'action = 'state = bool
and init :: 'state = bool
+
fixes cuts :: ‘action set
assumes cycles-cul: p € nodes = w € cycles p = w # [| = set w N cuts

#

begin

inductive scut :: state = ’state = bool
where scut: p € nodes = en a p = a ¢ cuts = scut p (ex a p)

declare scut.intros|intro!]
declare scut.cases|elim!]

lemma scut-reachable:
assumes scut p q
shows p € nodes q € nodes
using assms by auto
lemma scut-trancl:
assumes scut™ p g
obtains w
where path w p target wp = q set w N cuts = {} w # ||
using assms
proof (induct arbitrary: thesis)
case (base q)
show ?case using base by force
next
case (step q r)
obtain w where 1: path w p target wp = q set w N cuts = {} w # ||
using step(3) by this
obtain a where 2: en a q a ¢ cuts ex a ¢ = r using step(2) by auto
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show “case

proof (rule step(4))
show path (w @ [a]) p using I 2 by auto
show target (w @ [a]) p = r using 1 2 by auto
show set (w @ [a]) N cuts = {} using I 2 by auto
show w @ [a] # [] by auto

qed

qed

sublocale wellfounded-relation scut—'~1
proof (unfold-locales, intro finite-acyclic-wf-converse[to-pred] acyclic[to-pred)],
safe)
have 1: {(p, q). scut p q} C nodes x nodes using scut-reachable by blast
have 2: finite (nodes X nodes)
using finite-cartesian-product reachable-finite by blast
show finite {(p, q). scut p ¢} using 1 2 by blast
next
fix p
assume 1: scut™ pp
have 2: p € nodes using 1 tranclE[to-pred] scut-reachable by metis
obtain w where 3: path w p target w p = p set w N cuts = {} w # ]
using scut-trancl 1 by this
have 4: w € cycles p using 3(1, 2) by auto
have 5: set w N cuts # {} using cycles-cut 2 4 3(4) by this
show Fualse using 3(3) 5 by simp
qged

lemma no-cut-scut:
assumes p € nodes en a p a ¢ cuts
shows scut= 7! (ex a p) p
using assms by auto

end

locale transition-system-sticky =
transition-system-complete ex en init int +
transition-system-cut ex en init sticky
for ez :: 'action = 'state = 'state
and en :: ‘action = ’'state = bool
and init :: 'state = bool
and int :: 'state = 'interpretation
and sticky :: 'action set
+

assumes ezxecutable-visible-sticky: executable N wvisible C sticky

end
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8 Trace Theory

theory Traces
imports Basics/ Word-Prefizes
begin

locale traces =
fixes ind :: 'item = 'item = bool
assumes independence-symmetric[sym]: ind a b = ind b a

begin

abbreviation Ind :: 'item set = 'item set = bool
where Ind A B=V ac A.VY be B.indab

inductive eg-swap :: ‘item list = 'item list = bool (infix (=g> 50)
where swap: ind a b = 4 Q [a] Q [b)] Q v =g v Q [b] Q [a] @ v

declare eg-swap.intros|intro]
declare eg-swap.cases|elim]

lemma eq-swap-sym[sym]: v =g w = w =g v using independence-symmetric

by auto

lemma eg-swap-length|[dest]: wy =g wy = length wi = length we by force
lemma eg-swap-range[dest]: w1 =g we => set w1 = set wy by force

lemma eg-swap-extend:
assumes w; =g Ws
shows ©« Q wy Qv =g uQ wy Q@ v
using assms
proof induct
case (swap a b u’ v’
have v @Q (v' Q [a] @ [b] @ v) Q v = (v Q ') Q [a] @ [b] @ (v Q v) by

stmp

also have ... =g (v @ u') @ [b] @ [a] @ (v’ @ v) using swap by blast
also have ... = v @Q (v’ @ [b] Q [a] @ v') @ v by simp
finally show ?case by this

qed

lemma eg-swap-removel:
assumes w; =g W2
obtains (equal) removel ¢ w; = removel ¢ wy | (swap) removel ¢ w; =g
removel ¢ wo
using assms
proof induct
case (swap a b u v)
have ¢ ¢ set (u Q [a] Q [b] @ v) V
c € setuV
cdsetuNc=aV
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cgsetuNc#aNhc=0bV
cgsetuNcFaNc#bANcEsetv
by auto

thus ?case

proof (elim disjE)
assume 0: ¢ ¢ set (u @ [a] @ [b] Q v)

have 1: ¢ ¢ set (u @ [b] Q [a] @ v) using 0 by auto
have 2: removel ¢ (u @Q [a] @ [b] @ v) = u @ [a] @ [b] @ v using
removel-idem 0 by this
have 3: removel ¢ (v @ [b] @ [a] @ v) = v @Q [b] Q [a] @ v using

removel-idem 1 by this
have 4: removel ¢ (u @ [a] @ [b] @ v) =g removel ¢ (u @ [b] @ [a] @ v)
unfolding 2 3 using eg-swap.intros swap(1) by this
show thesis using swap(3) 4 by this
next
assume 0: c € set u
have 2: removel ¢ (u @ [a] @ [b] @ v) = removel ¢ u Q [a] Q [b] @ v
unfolding removel-append using 0 by simp
have 3: removel ¢ (v @ [b] @ [a] @ v) = removel ¢ u Q [b] @ [a] @ v
unfolding removel-append using 0 by simp
have /: removel ¢ (u @ [a] @ [b] @ v) =g removel ¢ (u @ [b] Q [a] Q v)
unfolding 2 3 using eg-swap.intros swap(1) by this
show thesis using swap(3) 4 by this
next
assume 0: c ¢ setu A ¢ = a
have 2: removel ¢ (v @ [a] Q [)] @ v) = u Q [b] @ v
unfolding removel-append using removel-idem 0 by auto
have 3: removel ¢ (v @ [b] Q [a] @ v) = u Q [b] @ v
unfolding removel-append using removel-idem 0 by auto
have /: removel ¢ (u @ [a] @ [b] @ v) = removel ¢ (u @ [b] Q [a] @ v)
unfolding 2 3 by rule
show thesis using swap(2) 4 by this
next
assume 0: c ¢ setu ANc# aNc=1b
have 2: removel ¢ (v Q [a] Q [b)] @ v) = v Q [a] @ v
unfolding removel-append using removel-idem 0 by auto
have 3: removel ¢ (v @ [b] Q [a] Q@ v) = v @ [a] Q@ v
unfolding removel-append using removel-idem 0 by auto
have 4: removel ¢ (u @ [a] @ [b] @ v) = removel ¢ (u Q [b] @Q [a] @ v)
unfolding 2 3 by rule
show thesis using swap(2) 4 by this
next
assume 0: c ¢ setu ANc#aNc#bAcé€Esetv
have 2: removel ¢ (v @ [a] @ [b] @ v) = v @ [a] Q [b] @ removel ¢ v
unfolding removel-append using 0 by simp
have 3: removel ¢ (v @ [b] @Q [a] @ v) = u @ [b] @ [a] @ removel c v
unfolding removel-append using 0 by simp
have 4: removel ¢ (u @ [a] @Q [b] @ v) =g removel ¢ (u @ [b] Q [a] Q v)
unfolding 2 3 using eg-swap.intros swap(1) by this
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show ?thesis using swap(3) 4 by this
qed
qed

lemma eg-swap-rev:
assumes w; =g Ws
shows rev wy =g rev wo
using assms
proof induct
case (swap a b u v)
have 1: rev v Q [a] @ [b] Q rev u =g rev v Q [b] Q [a] @ rev u using swap
by blast
have 2: rev v @Q [b] Q [a] Q@ rev u =g rev v Q [a] Q [b] @ rev u using I
eq-swap-sym by blast
show ?case using 2 by simp
qed

abbreviation eq-fin :: "item list = 'item list = bool (infix <=p> 50)
where eq-fin = eg-swap™*

lemma eg-fin-symp[intro, sym]: u =p v = v =p u
using eqg-swap-sym sym-rtrancl[to-pred] unfolding symp-def by metis

lemma eg-fin-length|[dest]: wi = wy = length wy = length ws
by (induct rule: rtranclp.induct, auto)

lemma eg-fin-rangeldest]: w1 =p we => set wy; = set wy
by (induct rule: rtranclp.induct, auto)

lemma eg-fin-removel:
assumes w; =p wWs
shows removel ¢ wy =g removel ¢ ws
using assms
proof induct
case (base)
show ?case by simp
next
case (step ws ws)
show ?Zcase
using step(2)
proof (cases rule: eg-swap-removel [where ?¢ = c|)

case equal
show ?thesis using step equal by simp
next
case swap
show ?thesis using step swap by auto
qed
qed

lemma eg-fin-rev:
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assumes w; =g Ws
shows rev w; =f rev ws
using assms by (induct, auto dest: eg-swap-rev)

lemma eg-fin-concat-eq-fin-start:
assumes © Q v; =p u Q vy
shows v, =f va
using assms
proof (induct u arbitrary: v1 ve rule: rev-induct)

case (Nil)
show ?case using Nil by simp
next

case (snoc a u)
have 1: v Q [a] @ v; =F u @ [a] @ vy using snoc(2) by simp
have 2: [a] @ v; =F [a] @ vy using snoc(1) 1 by this
show ?case using eg-fin-removel [OF 2, of a] by simp
qed

lemma eg-fin-concat: © Q@ w1 Q v =p u Q wy Q v +— w; =p wo

proof
assume 0: u @ w1 Qv =p u @ wy @ v
have 1: wy @ v =p wy @ v using eq-fin-concat-eq-fin-start 0 by this
have 2: rev (w; @ v) =p rev (wy @ v) using 1 by (blast dest: eq-fin-rev)
have &: rev v Q rev wy =p rev v Q rev wy using 2 by simp
have 4: rev w1 =F rev wy using eq-fin-concat-eq-fin-start 8 by this
have 5: rev (rev wy1) =p rev (rev we) using 4 by (blast dest: eq-fin-rev)
show w; =p ws using 5 by simp

next
show © Q@ w; Q v =p v Q wy @ v if w; =p wy

using that by (induct, auto dest: eg-swap-extend|of - - u v])
qed
lemma eg-fin-concat-start[iff]: w Q wy =p w Q@ wy +— w; =p wa

using eq-fin-concat[of w - [|] by simp
lemma eg-fin-concat-end[iff]: w1 Q@ w =p wo @ w +— w1 =F Wy
using eg-fin-concat[of [| - w] by simp

lemma ind-eq-fin":
assumes Ind {a} (set v)
shows [a] @ v =p v @ [d]
using assms
proof (induct v)
case (Nil)
show ?case by simp
next
case (Cons b v)
have 1: Ind {a} (set v) using Cons(2) by auto
have 2: ind a b using Cons(2) by auto
have [a] @ b # v = [a] @ [b] @ v by simp
also have ... =g [b] Q [a] @ v using eg-swap.intros|OF 2, of []] by auto
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also have ... =p [b] @ v @ [a] using Cons(1) 1 by blast

also have ... = (b # v) @ [a] by simp
finally show ?case by this
qed

lemma ind-eq-fin[intro):
assumes Ind (set u) (set v)
shows ©« Q v = v @Q u

using assms

proof (induct u)

case (Nil)
show ?case by simp
next

case (Cons a u)

have 1: Ind (set u) (set v) using Cons(2) by auto
have 2: Ind {a} (set v) using Cons(2) by auto
have (a # u) @ v = [a] @ u @ v by simp

also have ... =p [a] @ v @ u using Cons(1) 1 by blast
also have ... = ([a] @ v) @ u by simp
also have ... =p (v @ [a]) Q u using ind-eq-fin’ 2 by blast
also have ... = v @ (a # u) by simp
finally show ?case by this

qed

definition le-fin :: ‘item list = 'item list = bool (infix «<p» 50)
where w1 jF Wy = 3 V1. W1 @ V1 =F W2

lemma le-finI[intro 0]:

assumes w; Q v; =p wo

shows w; <pg ws

using assms unfolding le-fin-def by auto
lemma le-finE[elim 0]:

assumes w; <Xp W

obtains v;

where w; Q v; =f wo

using assms unfolding le-fin-def by auto

lemma le-fin-empty[simp]: | <r w by force
lemma le-fin-triviallintro]: w1 =p we = w1 <p wa
proof
assume 1: wy =g ws
show w; @ [| =f wy using I by simp
qed

lemma le-fin-length[dest]: w1 =<p we = length wy < length wy by force
lemma le-fin-range[dest]: w1 <p wy = set w1 C set we by force

lemma eg-fin-alt-def: wi =p ws +— w1 <p wa A wo <p w1
proof
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show wi <p ws A we <p wy if w; =F ws using that by blast
next
assume (: w; g wa N\ wy <p W
have 1: w1 <F w2 wy <XF wy using 0 by auto
have 10: length wi = length wo using 1 by force
obtain v; vs where 2: w; @ vy =p ws we @ vy =p w; using 1 by (elim
le-finE)
have 3: length wy = length (w1 @ v1) using 2 10 by force
have 4: wy; = w; @ v; using & by auto
have 5: length wy = length (w2 @Q vy) using 2 10 by force
have 6: wy = wy @Q vy using 5 by auto
show w; =p ws using 4 6 2 by simp
qed

lemma le-fin-reflp[simp, intro]: w <p w by auto

lemma le-fin-transp[intro, trans]:
assumes wi| g W2 W =<p W3
shows w; <p w3

proof —
obtain v; where I1: w; @ v; = wy using assms(1) by rule
obtain v, where 2: wy @ vy =p w3 using assms(2) by rule
show ?thesis

proof
have w1 @Q v; @ vy = (w1 @ v1) @ vy by simp
also have ... =p wy @Q vy using I by blast
also have ... =p w3 using 2 by blast
finally show w; @ vy @Q vy =g w3 by this
qed
qed

lemma eg-fin-le-fin-transp|intro, trans|:
assumes Wi =F W W <f W3
shows w; <p w3
using assms by auto
lemma le-fin-eq-fin-transplintro, trans]:
assumes Wi }p Wy Ws = W3
shows w; <g w3
using assms by auto
lemma prefiz-le-fin-transplintro, trans|:
assumes w; < Wy Wo g W3
shows w; <p w3
proof —
obtain v; where 1: wy = w; @ v; using assms(1) by rule
obtain v where 2: wy @ vy =p w3 using assms(2) by rule
show ?thesis
proof
show w; @ v; @ vy = w3 using 1 2 by simp
qed
qed
lemma le-fin-prefiz-transplintro, trans:
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assumes Wi g wo Wy < W3
shows w; <p w3

proof —
obtain v; where I1: w; @ v; = wy using assms(1) by rule
obtain v, where 2: w3 = ws @Q vy using assms(2) by rule
show ?thesis

proof
have w1 @Q v; @ vy = (w1 Q v1) @ vy by simp
also have ... =p wy @Q vy using I by blast
also have ... = w3 using 2 by simp
finally show w; @ vy @Q vy =g w3 by this
qed
qed

lemma prefiz-eq-fin-transplintro, trans|:
assumes Wi < Wo Wo =g W3
shows w; <p w3
using assms by auto

lemma le-fin-concat-start[iff]|: w Q@ wy < w Q@ wy +— wy <Xp wy
proof
assume 0: w Q@ w; <p w Q wy
obtain v; where 1: w @ w; Q@ vy =p w @Q wy using 0 by auto
show w; <p wy using 1 by auto
next
assume 0: wy; =g Wy
obtain v; where 1: w; @Q v; =p ws using 0 by auto
have 2: (w Q@ wy) @ v; =p w @ wy using 1 by auto
show w Q@ w; <p w @Q wy using 2 by blast
qed
lemma le-fin-concat-end|dest]:
assumes Wi g Wy
shows w; <p wy @ w
proof —
obtain v; where 1: w; @Q v; =p wsy using assms by rule
show ?thesis

proof
have w; @Q v; @ w = (w1 Q vy) Q@ w by simp
also have ... =p wy @Q w using 1 by blast
finally show w; @ v; @ w =p wy Q w by this
qed
qed

definition le-fininf :: 'item list = "item stream = bool (infix «<p;» 50)
where w; <p; wo =3 V9. vy <py Wa A Wy <F Vo

lemma le-fininfI[intro 0]:
assumes vy <pr Wy W1 <F VU2
shows wy <p; ws
using assms unfolding le-fininf-def by auto
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lemma le-fininfE[elim 0]:
assumes wi; gy Ws
obtains vs
where vy <pr w2 w1 =F V2
using assms unfolding le-fininf-def by auto

lemma le-fininf-empty[simp]: [| <pr w by force
lemma le-fininf-range[dest]: w1 <p; wy => set wy C sset wy by force

lemma eg-fin-le-fininf-transplintro, trans|:
assumes Wi =F W Wo =<py W3
shows w; <p; w3
using assms by blast

lemma le-fin-le-fininf-transp[intro, trans]:
assumes wi| g W Wo =fF1 W3
shows w; <p; w3
using assms by blast

lemma prefiz-le-fininf-transp|intro, trans|:
assumes Wy < Wo Wo Xpr W3
shows w1 jF] w3
using assms by auto

lemma le-fin-prefiz-fininf-transplintro, trans]:
assumes Wy <p wg W <py W3
shows w; <pr; w3
using assms by auto

lemma eg-fin-prefiz-fininf-transp[intro, trans]:
assumes Wi =F W Wo <py W3
shows w; <p; w3
using assms by auto

lemma le-fininf-concat-start[iff]: w Q wy <p; w Q— wy +— wy <p; ws
proof
assume 0: w Q wy <p; w Q— wy
obtain vy, where 1: vo <p; w Q— wy w Q@ w; <pg vy using 0 by rule
have 2: length w < length ve using 1(2) by force
have /: w < vy using prefiz-fininf-extend[OF 1(1) 2] by this
obtain v; where 5: v, = w @Q v, using 4/ by rule
show w; <pr wo
proof
show v; <p; we using (1) unfolding 5 by auto
show w; = v; using 1(2) unfolding 5 by simp
qed
next
assume (: wi <p; Wa
obtain vy, where 1: vy <p; ws wy <F v9 using 0 by rule
show w @ w; <p; w Q@— wy
proof
show w @ ve <p; (w Q— wq) using 1(1) by auto
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show w @ w; <p w @ vy using 1(2) by auto

qed
qed
lemma le-fininf-singleton[intro, simp): [shd v] <py v
proof —
have [shd v] <p; shd v ## sdrop 1 v by blast
also have ... = v by simp
finally show ?thesis by this
qed

definition le-inf :: 'item stream = 'item stream = bool (infix «<p) 50)
where wi X;y wo =V v1. v1 <pr wy — v1 Xpr wo

lemma le-infI[intro 0]:

assumes A v1. v1 <p; w1 = v; <p; Wo

shows w; =<5 ws

using assms unfolding le-inf-def by auto
lemma le-infE|[elim 0]:

assumes wq X7 ws V1 <pr Wi

obtains V1 jF] w2

using assms unfolding le-inf-def by auto

lemma le-inf-range[dest]:
assumes wq =<7 Ws
shows sset w; C sset wo
proof
fix a
assume 1: a € sset wy
obtain ¢ where 2: ¢ = wy !! i using I by (metis imageE sset-range)
have 3: stake (Suc i) w1 <pr w; by rule
have 4: stake (Suc i) w1 <p; we using assms 3 by rule
have 5: wy !l i € set (stake (Suc i) wy) by (meson lessI set-stake-snth)
show a € sset wy unfolding 2 using 5 4 by fastforce
qed

lemma le-inf-reflp[simp, intro]: w <; w by auto
lemma prefiz-fininf-le-inf-transplintro, trans]:
assumes Wi <pr W Wy X7 W3
shows w; <p; w3
using assms by blast
lemma le-fininf-le-inf-transp|intro, trans|:
assumes Wi gy W Wy X7 W3
shows w; <p; w3
using assms by blast
lemma le-inf-transplintro, trans|:
assumes wi <; Ws Wy =7 W3
shows w; =<; w3
using assms by blast
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lemma le-infl":
assumes A\ k. 3 v. v <pj w1 Ak < length v A v <p; we
shows wi <1 ws
proof
fix u
assume 1: u <pj w;
obtain v where 2: v <p; w;y length u < length v v <p; wo using assms by
auto
have 3: length u < length v using 2(2) by auto
have 4: u < v using prefiz-fininf-length 1 2(1) 3 by this
show u <p; we using / 2(3) by rule
qed

lemma le-infI-chain-left:
assumes chain w A k. wk <pr v
shows limit w <y v
proof (rule le-infI’)
fix k
obtain [ where I: k < length (w ) using assms(1) by rule
show 3 wva. va <p; limit w A k < length va A\ va <pr v
proof (intro exI conjl)
show w | <pj; limit w using chain-prefiz-limit assms(1) by this
show k < length (w l) using 1 by this
show w | <p; v using assms(2) by this
qed
qed
lemma le-infl-chain-right:
assumes chain w \ uv. u <p;y v = u <p w (l u)
shows v <1 limit w
proof
fix u
assume 1: u <pj v
show u =gy limit w
proof
show w (I u) <py limit w using chain-prefiz-limit assms(1) by this
show u <p w (I u) using assms(2) 1 by this
qed
qed
lemma le-infI-chain-right’:
assumes chain w A\ k. stake kv < w (L k)
shows v < limit w
proof (rule le-infl-chain-right)
show chain w using assms(1) by this
next
fix u
assume 1: u <py v
have 2: stake (length u) v = u using 1 by (simp add: prefiz-fininf-def shift-eq)
have 3: stake (length u) v <p w (I (length u)) using assms(2) by this
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show u <p w (I (length u)) using 3 unfolding 2 by this
qed

definition eg-inf :: "item stream = 'item stream = bool (infix «=p» 50)
where wi; =; wo = wy X1 w2 A wy =1 W1

lemma eg-infI[intro 0]:

assumes wi =<7 Wy Wy =7 Wi

shows w; =5 ws

using assms unfolding eg-inf-def by auto
lemma eg-infE|[elim 0]:

assumes w; =; ws

obtains w; <; ws wy =<1 Wy

using assms unfolding eg-inf-def by auto

lemma eg-inf-range[dest]: w1 =; wy = sset wy = sset we by force

lemma eg-inf-refip|simp, intro|: w =; w by auto
lemma eg-inf-symplintro]: wi =5 wy = we =y wy by auto
lemma eg-inf-transp[intro, trans|:
assumes Wy =y wy W =5 W3
shows wy =7 w3
using assms by blast
lemma le-fininf-eq-inf-transplintro, trans|:
assumes wi| g7 W Wy =7 W3
shows w1 jF] w3
using assms by blast
lemma le-inf-eq-inf-transplintro, trans|:
assumes wy Xy Wo W9 =5 W3
shows w; <5 w3
using assms by blast
lemma eg-inf-le-inf-transp[intro, trans]:
assumes wi| =y Wg Wo =y W3
shows wy <; w3
using assms by blast
lemma prefiz-fininf-eq-inf-transp|intro, trans]:
assumes wi; SFI W2 W =1 W3
shows w; <p; w3
using assms by blast

lemma le-inf-concat-start[iff]: w Q— w; <5 w Q— wy +— w1 =<7 Wy
proof
assume [: w Q— w; <7 w Q— wy
show w; <; ws>
proof
fix v
assume 2: v; <py wq
have w @ v; <p; w @— w; using 2 by auto
also have ... <; w @Q— wy using 1 by this
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finally show v; <p; ws by rule
qed
next
assume 1: wy X7 wo
show w @— w; <7 w Q— wq
proof
fix V1
assume 2: v1 <py w Q— w,
then show v; <p; w Q— wq
proof (cases rule: prefiz-fininf-append)
case (absord)
show ?thesis using absorb by auto
next
case (extend z)
show ?thesis using 1 extend by auto
qged
qed
qed
lemma eg-fin-le-inf-concat-end|dest]: w3 =p we = wy Q— w <5 wy Q— w
proof
fix (%4
assume 1: w; = wy v1 <py w3 Q— w
show v; <py wy Q— w
using 1(2)
proof (cases rule: prefiz-fininf-append)
case (absord)
show ?thesis
proof
show wy <p; (w2 @— w) by auto
show v; =< wy using absorb 1(1) by auto
qed
next
case (extend w)
show ?thesis
proof
show wy; @ w’ <p; (wy Q— w) using extend(2) by auto
show v <p we @ w’ unfolding extend(1) using 1(1) by auto
qed
qed
qed

lemma eg-inf-concat-start[iff]|: w Q— wy =5 w Q— wy +— w1 =; wy by blast
lemma eg-inf-concat-end|[dest]: wi = wy = w; Q@— w =5 we Q— w
proof —

assume (: wi =g Wo

have 1: wo = w; using 0 by auto

show w; @— w =5 w9 Q— w

using eg-fin-le-inf-concat-end[OF 0] eq-fin-le-inf-concat-end[OF 1] by auto

qed
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lemma le-fininf-suffixl [intro]:
assumes w =; w; Q— wq
shows w; <pr w
using assms by blast
lemma le-fininf-suffixE]elim]:
assumes w; g7 W
obtains wo
where w =; w; Q— wq
proof —
obtain vy where 1: vy <p; w w; < vy using assms(1) by rule
obtain u; where 2: w; @ u; =g vy using 1(2) by rule
obtain vy’ where 3: w = vy @Q— vy’ using 1(1) by rule
show ?thesis
proof
show w =; w; @Q— u; Q— vy’ unfolding 3 using 2 by fastforce
qed
qed

lemma subsume-fin:
assumes Ui jF] w V1 jFI w
obtains wq
where U1 jF w1 V1 jp w1
proof —
obtain uy; where 2: uy <p; w u; < uz using assms(1) by rule
obtain v where 3: vy <p; w v; <p vy using assms(2) by rule
show ?thesis
proof (cases length ug length vy rule: le-cases)
case le
show ?thesis
proof
show u; <p vy using 2(2) prefiz-fininf-length|OF 2(1) 3(1) le] by auto
show v; <p vy using 3(2) by this
qed
next
case ge
show ?thesis
proof
show u; <p ug using 2(2) by this
show vy < ug using 3(2) prefiz-fininf-length[OF 8(1) 2(1) ge] by auto
qed
qed
qed

lemma eg-fin-end:
assumes u; =p U 4] Q v; =p ug Q vy
shows vy = vs
proof —
have u; @ vo =p uy @ vy using assms(1) by blast
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also have ... =p u; @ v; using assms(2) by blast
finally show ?thesis by blast
qed

definition indoc :: 'item = 'item list = bool
where indoc a v =3 u; ug. v =u; Q [a] Q uz A a ¢ set uy A Ind {a} (set
ul)

lemma indoc-set: indoc a v = a € set u unfolding indoc-def by auto

lemma indoc-appendll [intro:
assumes indoc a u
shows indoc a (u @ v)
using assms unfolding indoc-def by force
lemma indoc-appendI2|intro):
assumes a ¢ set u Ind {a} (set u) indoc a v
shows indoc a (u @ v)
proof —
obtain v; vy where 1: v = v, @Q [a] @ vy a ¢ set vy Ind {a} (set v1)
using assms(3) unfolding indoc-def by blast
show ?thesis
proof (unfold indoc-def, intro exI conjI)
show v @ v = (v @ v1) @ [a] @ v, unfolding 1(1) by simp
show a ¢ set (u @ vy) using assms(1) 1(2) by auto
show Ind {a} (set (u @ vy)) using assms(2) 1(3) by auto
qed
qed
lemma indoc-appendE[elim!]:
assumes indoc a (v Q v)
obtains (first) a € set u indoc a u | (second) a ¢ set u Ind {a} (set u) indoc
av
proof —
obtain w; wy where 1: u Q@ v = w; Q [a] @ wy a ¢ set wy Ind {a} (set wy)
using assms unfolding indoc-def by blast
show ?thesis
proof (cases a € set u)
case True
obtain u; us where 2: u = u; Q [a] Q uy a ¢ set uy
using split-list-first{OF True] by auto
have 3: w; = u;
proof (rule split-list-first-unique)
show w; @Q [a] @ wy = u; @ [a] @ ug @ v using (1) unfolding 2(1)
by simp
show a ¢ set wy using 1(2) by auto
show a ¢ set u; using 2(2) by this
qed
show ?thesis
proof (rule first)
show a € set u using True by this
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show indoc a u
proof (unfold indoc-def, intro exI conjI)
show u = u; @ [a] @ up using 2(1) by this
show a ¢ set u; using 1(2) unfolding 3 by this
show Ind {a} (set u1) using 1(3) unfolding 3 by this
qed
qged
next
case Fulse
have 2: a € set v using indoc-set assms False by fastforce
obtain v; v2 where 3: v = v; @ [a] @ vy a ¢ set vy
using split-list-first[OF 2] by auto
have /: wy = u @Q v
proof (rule split-list-first-unique)
show w; Q [a] @ we = (u @ v1) Q [a] Q vy using 1(1) unfolding 3(1)
by simp
show a ¢ set wy using 1(2) by auto
show a ¢ set (v @ vy) using False 3(2) by auto
qed
show ?thesis
proof (rule second)
show a ¢ set u using False by this
show Ind {a} (set u) using 1(3) 4 by auto
show indoc a v
proof (unfold indoc-def, intro exl conjl)
show v = v1 Q [a] @ vy using 3(1) by this
show a ¢ set v; using 1(2) unfolding 4 by auto
show Ind {a} (set v1) using 1(3) unfolding 4 by auto
qed
qed
qed
qed

lemma indoc-single: indoc a [b] +— a =b
proof
assume [: indoc a [b]
obtain u; uy where 2: [b] = u; Q [a] @ ug Ind {a} (set u;)
using 7 unfolding indoc-def by auto
show a = b using 2(1)
by (metis append-eq-Cons-conv append-is-Nil-conv list.distinct(2) list.inject)
next
assume I:a =10
show indoc a [b]
unfolding indoc-def 1
proof (intro exI conjI)
show [b] =[] @ [b] @ [] by simp
show b ¢ set [| by simp
show Ind {b} (set []) by simp
qed
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qed

lemma indoc-append[simp|: indoc a (u @ v) +—
indoc a u vV a ¢ set u A Ind {a} (set u) A indoc a v by blast
lemma indoc-Nil[simp]: indoc a [| «— False unfolding indoc-def by auto
lemma indoc-Cons[simpl: indoc a (b # v) «— a=bV a# bAindabA
indoc a v
proof —
have indoc a (b # v) +— indoc a ([b] @ v) by simp
also have ... «— indoc a [b] V a ¢ set [b] A Ind {a} (set [b]) A indoc a v
unfolding indoc-append by rule
alsohave...«—a=bV a# bAindab A indoc a v unfolding indoc-single
by simp
finally show ?thesis by this
qed

lemma eg-swap-indoc: w =g v => indoc ¢ v => indoc ¢ v by auto
lemma eg-fin-indoc: w =p v = indoc ¢ v = indoc ¢ v by (induct rule:
rtranclp.induct, auto)

lemma eq-fin-ind’:
assumes [a] @ v =p uy Q [a] @ ug a ¢ set uy
shows Ind {a} (set uy)

proof —
have 1: indoc a ([a] @ u) by simp
have 2: indoc a (u1 @ [a] @ uy) using eg-fin-indoc assms(1) 1 by this
show ?thesis using assms(2) 2 by blast

qed

lemma eg-fin-ind:
assumes v Q v =p v @Q u set u N set v = {}
shows Ind (set u) (set v)

using assms

proof (induct u)

case Nil
show ?case by simp
next

case (Cons a u)

have 1: Ind {a} (set v)

proof (rule eq-fin-ind’)
show [a] @ 4 @ v =p v @ [a] @ v using Cons(2) by simp
show a ¢ set v using Cons(3) by simp

qed

have 2: Ind (set [a]) (set v) using I by simp

have 4: Ind (set u) (set v)

proof (rule Cons(1))
have [a] @ u Q v = (a # u) Q v by simp

also have ... =p v @ a # u using Cons(2) by this
also have ... = (v @ [a]) Q@ u by simp
also have ... =p ([a] @ v) Q u using 2 by blast
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also have ... = [a] @ v @ u by simp
finally show v @ v = v Q u by blast
show set u N set v = {} using Cons(3) by auto
qed
show ?case using 1 / by auto
qed

lemma le-fin-member”:
assumes [a] <=p u Q@ v a € set u
shows [a] <F u
proof —
obtain w where [: [a] @ w =p u @ v using assms(1) by rule
obtain u; us; where 2: u = u; @ [a] @ uy a ¢ set ug
using split-list-first[OF assms(2)] by auto
have 3: Ind {a} (set up)
proof (rule eq-fin-ind’)
show [a] @ w =p u; Q [a] Q uy @ v using I unfolding 2(1) by simp
show a ¢ set u; using 2(2) by this
qed
have /: Ind (set [a]) (set u1) using 3 by simp
have [a] < [a] @ u; @ uy by auto

also have ... = ([a] @ u1) @ uy by simp
also have ... =p (u; @ [a]) @ uy using /4 by blast
also have ... = u unfolding 2(1) by simp
finally show ?thesis by this

qged

lemma le-fin-not-member’:
assumes [a]| <p u Qv a ¢ set u
shows [a] <p v
proof —
obtain w where 1: [a] @ w =p u Q v using assms(1) by rule
have 3: a € set v using assms by auto
obtain v; v, where /: v = vy Q [a] Q vy a ¢ set vy using split-list-first|OF
3] by auto
have 5: [a] @ w =p u @ v; @ [a] @ vy using I unfolding 4 (1) by this
have 6: Ind {a} (set (u @ vy))
proof (rule eq-fin-ind’)
show [a] @ w =p (u @ v;) Q [a] @ vy using 5 by simp
show a ¢ set (u @ vy1) using assms(2) 4(2) by auto
qed
have 9: Ind (set [a]) (set v1) using 6 by auto
have [a] < [a] @ v; @ vy by auto
Q

also have ... = ([a] @ v1) @ vy by simp
also have ... =p (v; @ [a]) @ vy using 9 by blast
also have ... = v; @ [a] @ vy by simp
also have ... = v unfolding /(1) by rule
finally show ?thesis by this
qed

lemma le-fininf-not-member”:
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assumes [a] <p; v Q— v a ¢ set u
shows [a] <p; v
proof —
obtain vy where 1: vy <p; u Q— v [a] 2F v2 using le-fininfE assms(1) by

this

show ?thesis

using 1(1)

proof (cases rule: prefiz-fininf-append)
case absorb
have [a] =F v2 using 1(2) by this
also have ... < u using absorb by this
finally have 2: a € set u by force
show ?thesis using assms(2) 2 by simp

next
case (extend z)
have [a] <F v2 using 1(2) by this
also have ... = u @ 2z using extend(1) by this
finally have 2: [a] <F u @ z by this
have [a] <F z using le-fin-not-member’ 2 assms(2) by this
also have ... <p; v using extend(2) by this
finally show ?thesis by this

qed

qed

lemma le-fin-ind’":
assumes [a]| < w [b)] Xp wa # b
shows ind a b
proof —
obtain u where 1: [a] @ v = w using assms(1) by rule
obtain v where 2: [b] @ v = w using assms(2) by rule
have 3: [a] @ u =p [b] @ v using I 2[symmetric] by auto
have 4: a € set v using 3 assms(3)
by (metis append-Cons append-Nil eq-fin-range list.set-intros(1) set-ConsD)
obtain v; v, where 5: v = v1 Q [a] Q vy a ¢ set vy using split-list-first| OF
4] by auto
have 7: Ind {a} (set ([b] @ v1))
proof (rule eq-fin-ind’)
show [a] @ u =p ([b)] @ v1) Q [a] @ vy using & unfolding 5(1) by simp
show a ¢ set ([b] @ vy) using assms(3) 5(2) by auto
qed
show ?thesis using 7 by auto
qed
lemma le-fin-ind":
assumes [a] <p wv I wa ¢ set v
shows Ind {a} (set v)
using assms
proof (induct v arbitrary: w)
case Nil
show ?case by simp
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next
case (Cons b v)
have 1: ind a b
proof (rule le-fin-ind’’)
show [a] <r w using Cons(2) by this
show [b] <r w using Cons(3) by auto
show a # b using Cons(4) by auto
qed
obtain w’ where 2: [b] @ w’ = w using Cons(3) by auto
have 3: Ind {a} (set v)
proof (rule Cons(1))
show [a] <p w’
proof (rule le-fin-not-member’)
show [a] <F [b] @ w' using Cons(2) 2 by auto
show a ¢ set [b] using Cons(4) by auto
qged
have [b] @ v = b # v by simp
also have ... <p w using Cons(3) by this
also have ... =p [b] @ w' using 2 by auto
finally show v <r w’ by blast
show a ¢ set v using Cons(4) by auto
qed
show ?case using 1 3 by auto
qed
lemma le-fininf-ind’":
assumes [a] Sp; w [b] pr wa # b
shows ind a b
using subsume-fin le-fin-ind’’ assms by metis
lemma le-fininf-ind’:
assumes [a] Jp; wv <pr wa ¢ set v
shows Ind {a} (set v)
using subsume-fin le-fin-ind’ assms by metis

lemma indoc-alt-def: indoc a v <— v =p [a] Q@ removel a v
proof
assume 0: indoc a v
obtain v; vy where 1: v = v, Q [a] Q vs a ¢ set vy Ind {a} (set v1)
using 0 unfolding indoc-def by blast
have 2: Ind (set [a]) (set v1) using 1(3) by simp
have v = v; Q [a] @Q vy using 1(1) by this

also have ... = (v; Q [a]) @Q vy by simp

also have ... =f ([a] @ v;) @ vy using 2 by blast

also have ... = [a] @ v; @ vy by simp

also have ... = [a] @ removel a v unfolding 1(1) removel-append using

1(2) by auto
finally show v = [a] @ removel a v by this
next
assume 0: v =p [a] @ removel a v
have 1: indoc a ([a] @ removel a v) by simp
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show indoc a v using eq-fin-indoc 0 1 by blast
qed

lemma levi-lemma:
assumes t Q u =p v Q w
obtains p r s ¢
where t =p pQru=p sQqu=ppQ@sw=prQqlnd (setr) (sets)
using assms
proof (induct t arbitrary: thesis v w)
case Nil
show “case
proof (rule Nil(1))
show [| =r [| @ [] by simp
show v =p [] @ v by simp
show u =p v @ w using Nil(2) by simp
show w =p [] @ w by simp
show Ind (set []) (set v) by simp
qed
next
case (Cons a t')
have 1: [a] =F v @ w using Cons(3) by blast
show “case
proof (cases a € set v)
case Fulse
have 2: [a] <r w using le-fin-not-member’ 1 False by this
obtain w’ where 3: w = [a] @ w’ using 2 by blast
have /: v <p v Q@ w by auto
have 5: Ind (set [a]) (set v) using le-fin-ind'[OF 1 4] False by simp
have [a] @ ' Q u = (a # t') Q u by simp

also have ... =p v @ w using Cons(3) by this
also have ... =p v @ [a] @ w' using 3 by blast
also have ... = (v @ [a]) @ w' by simp

also have ... = ([a] @ v) @ w' using 5 by blast
also have ... = [a] @ v @ w’ by simp

finally have 6: t' Q@ u =r v @ w’ by blast
obtain pr’'sqgwhere 7: t' =p pQr'u=p sQqu=p pQsw =p r’

Ind (set r') (set s) using Cons(1)[OF - 6] by this
have 8: set v = set p U set s using eg-fin-range 7(3) by auto
have 9: Ind (set [a]) (set p) using 5 8 by auto
have 10: Ind (set [a]) (set s) using 5 8 by auto
show %thesis
proof (rule Cons(2))
have a # t' = [a] @ t’ by simp

also have ... =p [a] @ p @ 7’ using 7(1) by blast
also have ... = ([a] @ p) @ r' by simp
also have ... =p (p @ [a]) @Q r' using 9 by blast

also have ...

=p Q@ [a] @ 7’ by simp
finally show a # t'

=r p Q [a] Q 1" by this
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show u =p s @ ¢ using 7(2) by this
show v =p p @ s using 7(3) by this
have w =p [a] @ w' using 3 by this
also have ... =p [a] @ r' @Q ¢ using 7(4) by blast
also have ... = ([a] @ r") @Q ¢ by simp
finally show w =p ([a] @ r') @ ¢ by this
show Ind (set ([a] @ r')) (set s) using 7(5) 10 by auto
qed
next
case True
have 2: [a] <p v using le-fin-member’ 1 True by this
obtain v’ where 3: v =p [a] Q v’ using 2 by blast
have [a] @ ' Q@ u = (a # t') Q u by simp

also have ... =p v @ w using Cons(3) by this
also have ... = ([¢] Q v’) @ w using & by blast
also have ... = [a] @ v’ @ w by simp

finally have 4: t' Q uw = v/ @ w by blast
obtain p’ r s g where 7: t' =p p' Qru=p sQqv' =p p'Qsw=pr

@ gq

Ind (set r) (set s) using Cons(1)[OF - 4] by this

show ?thesis

proof (rule Cons(2))
have a # t' = [a] @ t' by simp
also have ... =p [a] @ p’ @ r using 7(1) by blast
also have ... = ([a] @ p’) @ r by simp
finally show a # t' = ([a] @ p’) @ r by this
show u =p s @ ¢ using 7(2) by this
have v =p [a] @ v’ using 3 by this
also have ... =p [a] @ p’ @ s using 7(3) by blast
also have ... = ([a] @ p’) @ s by simp
finally show v =p ([a] @ p') @ s by this
show w =g r @ ¢ using 7(4) by this
show Ind (set r) (set s) using 7(5) by this

qed

qed
qed
end
end

9 Transition Systems and Trace Theory

theory Transition-System-Traces

imports
Transition-System-Extensions
Traces

begin
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lemma (in transition-system) words-infI-construct[rule-format, intro?:
assumes V v. v <p;y w — path v p
shows run w p
using assms by coinduct auto

lemma (in transition-system) words-infI-construct”:
assumes A\ k. 3 v. v <p; w A k < length v A path v p
shows run w p

proof
fix u
assume I1: u <py w
obtain v where 2: v <p; w length u < length v path v p using assms(1) by

auto

have 3: length u < length v using 2(2) by simp
have /: u < v using prefiz-fininf-length 1 2(1) 3 by this
show path u p using 4 2(3) by auto

qed

lemma (in transition-system) words-infI-construct-chain[intro]:
assumes chain w A\ k. path (w k) p
shows run (limit w) p
proof (rule words-infl-construct’)
fix k
obtain [ where 1: k < length (w ) using assms(1) by rule
show 3 v. v <py limit w A\ k < length v A path v p
proof (intro exl congl)
show w | <p; limit w using chain-prefiz-limit assms(1) by this
show k < length (w 1) using 1 by this
show path (w l) p using assms(2) by this
qed
qed

lemma (in transition-system) words-fin-blocked:
assumes A\ w. path wp = A N set w = {} = A N {a. enabled a (target w
p)} € AN {a. enabled a p}
assumes path w p A N {a. enabled a p} N set w = {}
shows A N set w = {}
using assms by (induct w rule: rev-induct, auto)

locale transition-system-traces =

transition-system ex en +

traces ind

for ez :: 'action = 'state = 'state

and en :: 'action = ’'state = bool

and ind :: '‘action = 'action = bool

+

assumes en: ind a b= enap = enbp+— en b (ex ap)

assumes er: ind a b= enap = enbp = ex b (ex ap) = exa (exbp)
begin
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lemma diamond-bottom:

assumes ind a b

assumes en a p en b p

shows en a (ex b p) enb (ex ap) ex b (exap) = exa (ex b p)

using assms independence-symmetric en er by metis+
lemma diamond-right:

assumes ind a b

assumes en a p en b (ex a p)

shows en a (ex b p) enbpexd (exap) =exa (exbp)

using assms independence-symmetric en ex by metis+
lemma diamond-left:

assumes ind a b

assumes en a (ex b p) en b p

shows enapenbd (exap) exd (exap) = exa (exbdp)

using assms independence-symmetric en ex by metis+

lemma eg-swap-word:

assumes w; =g wy path wy p

shows path ws p

using assms diamond-right by (induct, auto)
lemma eq-fin-word:

assumes w, =p wg path wy p

shows path ws p

using assms eg-swap-word by (induct, auto)
lemma le-fin-word:

assumes w, =g wo path wy p

shows path wy p

using assms eq-fin-word by blast
lemma le-fininf-word:

assumes wi Spy Wa TUN Wa P

shows path wy p

using assms le-fin-word by blast
lemma le-inf-word:

assumes ws =<y Wi TUN Wi P

shows run ws p

using assms le-fininf-word by (blast intro: words-infI-construct)
lemma eg-inf-word:

assumes wi =j Ws TUN Wi P

shows run wy p

using assms le-inf-word by auto

lemma eg-swap-ezecute:

assumes path wy p wi =g ws

shows fold ex wy p = fold ex ws p

using assms(2, 1) diamond-right by (induct, auto)
lemma eq-fin-execute:

assumes path wy p wi =g wo

shows fold ex w1 p = fold ex ws p
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using assms(2, 1) eg-fin-word eq-swap-execute by (induct, auto)

lemma diamond-fin-word-step:

assumes Ind {a} (set v) en a p path v p

shows path v (ex a p)

using diamond-bottom assms by (induct v arbitrary: p, auto, metis)
lemma diamond-inf-word-step:

assumes Ind {a} (sset w) en a p run w p

shows run w (ezx a p)

using diamond-fin-word-step assms by (fast intro: words-infl-construct)
lemma diamond-fin-word-inf-word:

assumes Ind (set v) (sset w) path v p run w p

shows run w (fold ex v p)

using diamond-inf-word-step assms by (induct v arbitrary: p, auto)
lemma diamond-fin-word-inf-word':

assumes Ind (set v) (sset w) path (v @Q v) p run (u Q— w) p

shows run (v @— v Q— w) p

using assms diamond-fin-word-inf-word by auto

end

end

10 Functions

theory Functions
imports ../ Extensions/Set- Extensions
begin

locale bounded-function =
fixes A :: 'a set
fixes B :: b set
fixes f :: ‘a = b
assumes wellformed|intro?, simp|: © € A — fx € B

locale bounded-function-pair =
f: bounded-function A B f +
g: bounded-function B A g
for A :: 'a set
and B :: 'b set
and f :: 'la="b
and g :: 'b = 'a

locale injection = bounded-function-pair +
assumes left-inverse[simpl: © € A = g (fz) =z

begin

lemma inj-on[intro]: inj-on f A using inj-onl left-inverse by metis
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lemma injective-on:
assumes x € Ay Afx=fy
shows z = y
using assms left-inverse by metis

end
locale injective = bounded-function +
assumes injection: 3 g. injection A B f g
begin
definition ¢ = SOME g. injection A B f g

sublocale injection A B f g unfolding g-def using somel-ex[OF injection] by
this

end
locale surjection = bounded-function-pair +
assumes right-inverse[simpl: y € B= f (gy) = y

begin

lemma image-superset[introl: f ¢ A D B
using g.wellformed image-iff right-inverse subsetl by metis

lemma image-eq[simp]: f ¢ A = B using image-superset by auto
end
locale surjective = bounded-function +

assumes surjection: 3 g. surjection A B f g
begin

definition ¢ = SOME g. surjection A B f g

sublocale surjection A B f g unfolding g-def using somel-ex[OF surjection]
by this

end
locale bijection = injection + surjection

lemma inj-on-bijection:
assumes inj-on f A
shows bijection A (f ¢ A) f (inv-into A f)
proof
show \ 2. z € A = fuz € f‘ A using imagel by this
show A\ y. y € f ‘A = inv-into A fy € A using inv-into-into by this
show A z. z € A = inv-into A f (f ) = x using inv-into-f-f assms by this
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show A\ y. y € f ‘A = [ (inv-into A fy) = y using f-inv-into-f by this
qed

end

11 Extended Natural Numbers

theory FENat-FExtensions
imports

Coinductive. Coinductive-Nat
begin

declare eSuc-enat[simp]

declare iadd-Suc[simp] iadd-Suc-right|simp]
declare enat-0[simp] enat-1[simp] one-eSuc[simp]
declare enat-0-iff [iff] enat-1-iff[iff]

declare Suc-ile-eq[iff]

lemma enat-SucO[simpl: enat (Suc 0) = eSuc 0 by (metis One-nat-def one-eSuc
one-enat-def)

lemma le-epred[iff]: | < epred k <— eSuc 1 < k
by (metis eSuc-le-iff epred-eSuc epred-le-epredlI less-le-not-le not-le)

lemma eg-infI[intro]:
assumes /\ n. enat n < m
shows m = oo
using assms by (metis enat-less-imp-le enat-ord-simps(5) less-le-not-le)

end

12 Chain-Complete Partial Orders

theory CCPO-Extensions

imports
HOL- Library. Complete-Partial-Order2
ENat-FExtensions
Set-Extensions

begin

lemma chain-split[dest]:
assumes Complete-Partial-Order.chain ord C x € C
shows C ={ye C. ordzy} U{y € C. ord y z}
proof —
have 1: N y. y € C = ord z y V ord y x using chainD assms by this
show ?thesis using 1 by blast
qged
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lemma infinite-chain-below[dest]:
assumes Complete-Partial-Order.chain ord C infinite C x € C
assumes finite {y € C. ord z y}
shows infinite {y € C. ord y x}
proof —
have 1: C ={y e C. ordz y} U {y € C. ord y z} using assms(1, 3) by rule
show ?thesis using finite-Un assms(2, 4) 1 by (metis (poly-guards-query))
qed
lemma infinite-chain-above[dest):
assumes Complete-Partial-Order.chain ord C infinite C x € C
assumes finite {y € C. ord y z}
shows infinite {y € C. ord z y}
proof —
have 1: C ={y e C. ordz y} U{y € C. ord y z} using assms(1, &) by rule
show ?thesis using finite-Un assms(2, 4) 1 by (metis (poly-guards-query))
qged

lemma (in ccpo) cepo-Sup-upper-inv:
assumes Complete-Partial-Order.chain less-eq C z > | | C
shows z ¢ C
using assms ccpo-Sup-upper by fastforce
lemma (in ccpo) cepo-Sup-least-inv:
assumes Complete-Partial-Order.chain less-eq C || C > x
obtains y
where y € C -y <z
using assms ccpo-Sup-least that by fastforce

lemma ccpo-Sup-least-inv’:
fixes C :: 'a :: {cepo, linorder} set
assumes Complete-Partial-Order.chain less-eq C | | C > z
obtains y
where y € Cy >z
proof —
obtain y where 1: y € C = y < z using ccpo-Sup-least-inv assms by this
show ?thesis using that 1 by simp
qed

lemma mcont2mcont-lessThan| THEN Ifp.mcont2mcont, simp, cont-intro:
shows mcont-lessThan: mcont Sup less-eq Sup less-eq
(lessThan :: 'a :: {cepo, linorder} = 'a set)
proof
show monotone less-eq less-eq (lessThan :: 'a = 'a set) by (rule, auto)
show cont Sup less-eq Sup less-eq (lessThan :: 'a = 'a set)
proof
fix C :: 'a set
assume [: Complete-Partial-Order.chain less-eq C
show {.< || C} = (lessThan * C)
proof (intro equalityl subsetl)
fix A
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assume 2: A € {.< || C}
obtain B where 3: B € C B > A using ccpo-Sup-least-inv’ 1 2 by blast
show A € |J (lessThan ¢ C) using 3 by auto

next
fix A
assume 2: A € |J (lessThan ‘ C)
show A € {..< || C} using ccpo-Sup-upper 2 by force

qed

qed
qged

class esize =
fixes esize :: 'a = enat

class esize-order = esize + order +

assumes esize-finite[dest]: esize ¥ # co = finite {y. y < z}

assumes esize-monolintro|: x < y = esize x < esize y

assumes esize-strict-mono[intro]: esize ¥ # 0o = 1 < y = esize © < esize y
begin

lemma infinite-chain-eSuc-esize|dest):
assumes Complete-Partial-Order.chain less-eq C infinite C z € C
obtains y
where y € C esize y > eSuc (esize 1)

proof (cases esize x)
case (enat k)
have 1: finite {y € C. y < z} using esize-finite enat by simp
have 2: infinite {y € C. y > z} using assms 1 by rule
have 3: {y € C. y > 2} = {y € C. y > z} — {2} by auto
have /: infinite {y € C. y > z} using 2 unfolding 3 by simp
obtain y where 5: y € C'y > x using 4 by auto
have 6: esize y > esize z using esize-strict-mono enat 5(2) by blast
show %thesis using that 5(1) 6 ilel1 by simp

next
case (infinity)
show ?thesis using that infinity assms(3) by simp

qged

lemma infinite-chain-arbitrary-esize[dest]:
assumes Complete-Partial-Order.chain less-eq C infinite C
obtains z
where z € C esize x > enat n
proof (induct n arbitrary: thesis)
case (
show ?case using assms(2) 0 by force
next
case (Suc n)
obtain = where 1: z € C esize © > enat n using Suc(1) by blast
obtain y where 2: y € C esize y > eSuc (esize x) using assms 1(1) by rule
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show ?case using gfp.leg-trans Suc(2) 1(2) 2 by fastforce
qed

end

class esize-ccpo = esize-order + ccpo
begin

lemma esize-cont[dest]:
assumes Complete-Partial-Order.chain less-eq C C # {}
shows esize (|| C) = || (esize * C)
proof (cases finite C')
case Fulse
have 1: esize (|| C) = o0
proof
fix n
obtain A where 1: A € C esize A > enat n using assms(1) False by rule
have 2: A < || C using ccpo-Sup-upper assms(1) 1(1) by this
have enat n < esize A using 1(2) by this
also have ... < esize (| | C) using 2 by rule
finally show enat n < esize (| | C) by this
qed
have 2: (|| A € C. esize A) =
proof
fix n
obtain A where 1: A € C esize A > enat n using assms(1) False by rule
show enat n < (|| A € C. esize A) using SUP-upper2 1 by this

qed

show ?thesis using 1 2 by simp
next

case True

have 1: esize (|| C) = (|| = € C. esize )
proof (intro order-class.order.antisym SUP-upper SUP-least esize-mono)
show | | C € C using in-chain-finite assms(1) True assms(2) by this
show A\ z. z € C = z < || C using ccpo-Sup-upper assms(1) by this
qed
show ?thesis using 1 by simp
qed

lemma esize-mcont: mcont Sup less-eq Sup less-eq esize
by (blast intro: mcontl monotonel contl)

lemmas mcont2mcont-esize = esize-mcont[ THEN Ifp.mcont2mcont, simp, cont-intro]

end

end
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13 Sets and Extended Natural Numbers

theory ESet-FExtensions
imports
../ Basics/ Functions
Basic-FExtensions
CCPO-Eztensions
begin

lemma card-lessThan-enat[simp]: card {..< enat k} = card {..< k}
proof —
have 1: {..< enat k} = enat ‘ {..< k}
unfolding lessThan-def image-Collect using enat-iless by force
have card {..< enat k} = card (enat ‘ {..< k}) unfolding 1 by rule

also have ... = card {..< k} using card-image inj-enat by metis
finally show ?thesis by this
qged

lemma card-atMost-enat[simp]: card {.. enat k} = card {.. k}
proof —
have 1: {.. enat k} = enat ‘ {.. k}
unfolding atMost-def image-Collect using enat-ile by force
have card {.. enat k} = card (enat ‘ {.. k}) unfolding I by rule

also have ... = card {.. k} using card-image inj-enat by metis
finally show ?thesis by this
qed

lemma enat-Collect:
assumes co ¢ A
shows {i. enat i € A} = the-enat ‘* A
using assms by (safe, force) (metis enat-the-enat)

lemma Collect-lessThan: {i. enat i < n} = the-enat ‘{..< n}
proof —

have 1: 0o ¢ {..< n} by simp

have {i. enat i < n} = {i. enat i € {..< n}} by simp

also have ... = the-enat ‘ {..< n} using enat-Collect 1 by this
finally show ?thesis by this
qed

instantiation set :: (type) esize-ccpo
begin

function esize-set where finite A = esize A = enat (card A) | infinite A =
esize A = 00
by auto termination by lexicographic-order

lemma esize-iff-empty[iff]: esize A = 0 <— A = {} by (cases finite A, auto)

lemma esize-iff-infinite[iff]: esize A = oo «— infinite A by force
lemma esize-singleton[simp): esize {a} = eSuc 0 by simp
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lemma esize-infinite-enat[dest, simp]: infinite A => enat k < esize A by force

instance
proof
fix A :: 'a set
assume [: esize A # o0
show finite {B. B C A} using 1 by simp
next
fix A B :: 'a set
assume 1: A C B
show esize A < esize B
proof (cases finite B)
case Fulse
show ?thesis using Fualse by auto
next
case True
have 2: finite A using True 1 by auto
show ?thesis using card-mono True 1 2 by auto
qed
next
fix A B :: 'a set
assume [: esize A %200 A C B
show esize A < esize B using psubset-card-mono 1 by (cases finite B, auto)
qed

end

lemma esize-image[simp, intro):
assumes inj-on f A
shows esize (f ¢ A) = esize A
using card-image finite-imageD assms by (cases finite A, auto)
lemma esize-insert! [simp]: a ¢ A = esize (insert a A) = eSuc (esize A)
by (cases finite A, force+)
lemma esize-insert2[simp|: a« € A = esize (insert a A) = esize A
using insert-absorb by metis
lemma esize-removel [simp]: a ¢ A = esize (A — {a}) = esize A
by (cases finite A, force+)
lemma esize-remove2[simp]: a € A = esize (A — {a}) = epred (esize A)
by (cases finite A, force+)
lemma esize-union-disjoint[simp]:
assumes A N B = {}
shows esize (A U B) = esize A + esize B
proof (cases finite (A U B))

case True

show ?thesis using card-Un-disjoint assms True by auto
next

case Fulse

show ?thesis using False by (cases finite A, auto)
qed
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lemma esize-lessThan[simp]: esize {..< n} = n
proof (cases n)
case (enat k)
have I: finite {..< n} unfolding enat by (metis finite-lessThan-enat-iff
not-enat-eq)
show ?thesis using 1 unfolding enat by simp
next
case (infinity)
have 1: infinite {..< n} unfolding infinity using infinite-lessThan-infty by
simp
show ?thesis using 1 unfolding infinity by simp
qed
lemma esize-atMost[simp|: esize {.. n} = eSuc n
proof (cases n)
case (enat k)
have I: finite {.. n} unfolding enat by (metis atMost-iff finite-enat-bounded)
show ?thesis using 1 unfolding enat by simp
next
case (infinity)
have I: infinite {.. n}
unfolding infinity
by (metis atMost-iff enat-ord-code(3) infinite-lessThan-infty infinite-super
subsetl)
show ?thesis using 1 unfolding infinity by simp
qed

lemma least-eSuc[simp]:
assumes A # {}
shows least (eSuc ‘ A) = eSuc (least A)
proof (rule antisym)
obtain k¥ where 10: k € A using assms by blast
have 11: eSuc k € eSuc ‘ A using 10 by auto
have 20: least A € A using 10 Least] by metis
have 21: least (eSuc ‘ A) € eSuc ‘ A using 11 Least] by metis
have 30: \ I. 1 € A = least A < [ using 10 Least-le by metis
have 31: A\ l. | € eSuc * A = least (eSuc * A) < [ using 11 Least-le by metis
show least (eSuc ¢ A) < eSuc (least A) using 20 31 by auto
show eSuc (least A) < least (eSuc  A) using 21 30 by auto
qed

lemma Inf-enat-eSuc[simp]: [] (eSuc * A) = eSuc ([] A) unfolding Inf-enat-def
by simp

definition lift :: nat set = nat set
where lift A = insert 0 (Suc ¢ A)

lemma liftl-0[intro, simp]: 0 € lift A unfolding lift-def by auto

lemma liftI-Suclintro]: a € A = Suc a € lift A unfolding lift-def by auto
lemma liftE[elim]:

61



assumes b € lift A
obtains (0) b = 0 | (Suc) a where b = Sucaa € A
using assms unfolding lift-def by auto

lemma lift-esize[simp]: esize (lift A) = eSuc (esize A) unfolding lift-def by auto
lemma lift-least[simp]: least (lift A) = 0 unfolding lift-def by auto

primrec nth-least :: 'a set = nat = 'a :: wellorder
where nth-least A 0 = least A | nth-least A (Suc n) = nth-least (A — {least
A n

lemma nth-least-wellformed[intro?, simp]:
assumes enat n < esize A
shows nth-least A n € A
using assms
proof (induct n arbitrary: A)
case (
show ?case using 0 by simp
next
case (Suc n)
have 1: A # {} using Suc(2) by auto
have 2: enat n < esize (A — {least A}) using Suc(2) 1 by simp
have 3: nth-least (A — {least A}) n € A — {least A} using Suc(1) 2 by this
show ?case using 3 by simp
qged

lemma card-wellformed[intro?, simp):
fixes k :: ‘a :: wellorder
assumes k € A
shows enat (card {i € A. i < k}) < esize A
proof (cases finite A)
case Fulse
show ?thesis using Fulse by simp
next
case True
have 1: esize {i € A. i < k} < esize A using True assms by fastforce
show ?thesis using True 1 by simp
qed

lemma nth-least-strict-mono:
assumes enat | < esize A k < |
shows nth-least A k < nth-least A |
using assms
proof (induct k arbitrary: A I)
case (
obtain !’ where 1: | = Suc I’ using 0(2) by (metis gr0-conv-Suc)
have 2: A # {} using 0(1) by auto
have 3: enat I’ < esize (A — {least A}) using 0(1) 2 unfolding ! by simp
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have /: nth-least (A — {least A}) I’ € A — {least A} using 3 by rule
show ?case using 1 / by (auto intro: le-neg-trans)

next
case (Suc k)
obtain !’ where 1: | = Suc I’ using Suc(3) by (metis Suc-lessE)
have 2: A # {} using Suc(2) by auto
show ?case using Suc 2 unfolding 1 by simp

qed

lemma nth-least-mono[intro, simpl:
assumes enat | < esize A k <]
shows nth-least A k < nth-least A [
using nth-least-strict-mono le-less assms by metis

lemma card-nth-least[simp]:
assumes enat n < esize A
shows card {k € A. k < nth-least A n} = n
using assms
proof (induct n arbitrary: A)
case (
have 1: {k € A. k < least A} = {} using least-not-less by auto
show ?case using nth-least.simps(1) card.empty 1 by metis
next
case (Suc n)
have 1: A # {} using Suc(2) by auto
have 2: enat n < esize (A — {least A}) using Suc(2) 1 by simp
have 3: nth-least A 0 < nth-least A (Suc n) using nth-least-strict-mono Suc(2)
by blast
have 4: {k € A. k < nth-least A (Suc n)} =
{least A} U {k € A — {least A}. k < nth-least (A — {least A}) n} using I 3
by auto
have 5: card {k € A — {least A}. k < nth-least (A — {least A}) n} = n using
Suc(1) 2 by this
have 6: finite {k € A — {least A}. k < nth-least (A — {least A}) n}
using 5 Collect-empty-eq card.infinite infinite-imp-nonempty least-not-less
nth-least.simps(1)
by (metis (no-types, lifting))
have card {k € A. k < nth-least A (Suc n)} =
card ({least A} U {k € A — {least A}. k < nth-least (A — {least A}) n})
using 4 by simp
also have ... = card {least A} + card {k € A — {least A}. k < nth-least (A
— {least A}) n}
using 6 by simp

also have ... = Suc n using 5 by simp
finally show ?case by this
qed

lemma card-nth-least-le[simp):
assumes enat n < esize A
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shows card {k € A. k < nth-least A n} = Suc n
proof —
have 1: {k € A. k < nth-least A n} = {nth-least A n} U {k € A. k < nth-least
A n}
using assms by auto
have 2: card {k € A. k < nth-least A n} = n using assms by simp
have 3: finite {k € A. k < nth-least A n}
using 2 Collect-empty-eq card.infinite infinite-imp-nonempty least-not-less
nth-least.simps(1)
by (metis (no-types, lifting))
have card {k € A. k < nth-least A n} = card ({nth-least A n} U {k € A. k <
nth-least A n})
unfolding 1 by rule

also have ... = card {nth-least A n} + card {k € A. k < nth-least A n} using
3 by simp
also have ... = Suc n using assms by simp
finally show ?thesis by this
qed

lemma nth-least-card:
fixes k :: nat
assumes k € A
shows nth-least A (card {i € A. i < k}) =k
proof (rule nat-set-card-equality-less)
have 1: enat (card {l € A. | < k}) < esize A
proof (cases finite A)
case Fulse
show ?thesis using Fualse by simp
next
case True
have 1: {l € A. | < k} C A using assms by blast
have 2: card {l € A. | < k} < card A using psubset-card-mono True 1 by
this
show ?thesis using True 2 by simp
qed
show nth-least A (card {l € A. | < k}) € A using I by rule
show k € A using assms by this
show card {z € A. z < nth-least A (card {i € A. i < k})} = card {z € A. 2 <
k} using 1 by simp
qed

interpretation nth-least:
bounded-function-pair {i. enat i < esize A} A nth-least A X\ k. card {i € A. i

< k}
using nth-least-wellformed card-wellformed by (unfold-locales, blast+)

interpretation nth-least:

injection {i. enat i < esize A} A nth-least A X k. card {i € A. i < k}
using card-nth-least by (unfold-locales, blast)
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interpretation nth-least:
surjection {i. enat i < esize A} A nth-least A X k. card {i € A. i < k}
for A :: nat set
using nth-least-card by (unfold-locales, blast)

interpretation nth-least:
bijection {i. enat i < esize A} A nth-least A X k. card {i € A. i < k}
for A :: nat set
by unfold-locales

lemma nth-least-strict-mono-inverse:
fixes A :: nat set
assumes enat k < esize A enat | < esize A nth-least A k < nth-least A |
shows k < [
using assms by (metis not-less-iff-gr-or-eq nth-least-strict-mono)

lemma nth-least-less-card-less:
fixes k :: nat
shows enat n < esize A A\ nth-least An < k+—n < card {i € A. i < k}
proof safe
assume 1: enat n < esize A nth-least A n < k
have 2: nth-least A n € A using 1(1) by rule
have n = card {i € A. i < nth-least A n} using 1 by simp
also have ... < card {i € A. i < k} using 1(2) 2 by simp
finally show n < card {i € A. i < k} by this
next
assume 1: n < card {i € A. i < k}
have enat n < enat (card {i € A. i < k}) using 1 by simp
also have ... = esize {i € A. i < k} by simp
also have ... < esize A by blast
finally show 2: enat n < esize A by this
have 3: n = card {i € A. i < nth-least A n} using 2 by simp
have 4: card {i € A. i < nth-least A n} < card {i € A. i < k} using 1 2 by
stmp
have 5: nth-least A n € A using 2 by rule
show nth-least A n < k using 4 5 by simp
qed

lemma nth-least-less-esize-less:
enat n < esize A A\ enat (nth-least A n) < k <— enat n < esize {i € A. enat
i < k}
using nth-least-less-card-less by (cases k, simp+)

lemma nth-least-le:
assumes enat n < esize A
shows n < nth-least A n

using assms

proof (induct n)
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case (
show ?case using 0 by simp
next
case (Suc n)
have n < nth-least A n using Suc by (metis Suc-ile-eq less-imp-le)
also have ... < nth-least A (Suc n) using nth-least-strict-mono Suc(2) by
blast
finally show ?case by simp
qed

lemma nth-least-eq:
assumes enat n < esize A enat n < esize B
assumes A i. ¢ < nth-least A n = { < nth-least Bn — i € A+— i€ B
shows nth-least A n = nth-least B n
using assms
proof (induct n arbitrary: A B)
case (
have 1: least A = least B
proof (rule least-eq)
show A # {} using 0(1) by simp
show B # {} using 0(2) by simp
next
fix ¢
assume 2: ¢ < least A i < least B
show i € A +— i € B using 0(3) 2 unfolding nth-least.simps by this
qged
show ?case using 1 by simp
next
case (Suc n)
have 1: A # {} B # {} using Suc(2, 3) by auto
have 2: least A = least B
proof (rule least-eq)
show A # {} using 1(1) by this
show B # {} using 1(2) by this
next
fix ¢
assume 3: 7 < least A i < least B
have 4: nth-least A 0 < nth-least A (Suc n) using Suc(2) by blast
have 5: nth-least B 0 < nth-least B (Suc n) using Suc(3) by blast
have 6: i < nth-least A (Suc n) i < nth-least B (Suc n) using 3 4 5 by auto
show i € A +— i € B using Suc(4) 6 by this
qed
have 3: nth-least (A — {least A}) n = nth-least (B — {least B}) n
proof (rule Suc(1))
show enat n < esize (A — {least A}) using Suc(2) 1(1) by simp
show enat n < esize (B — {least B}) using Suc(3) 1(2) by simp
next
fix ¢
assume 3: ¢ < nth-least (A — {least A}) n i < nth-least (B — {least B}) n
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have 4: i < nth-least A (Suc n) i < nth-least B (Suc n) using 3 by simp+
have 5: i € A +— i € B using Suc(4) 4 by this
show i € A — {least A} «— i € B — {least B} using 2 5 by auto
qed
show ?case using 3 by simp
qed

lemma nth-least-restrict|simp:
assumes enat i < esize {i € s. enat i < k}
shows nth-least {i € s. enat i < k} i = nth-least s i
proof (rule nth-least-eq)
show enat i < esize {i € s. enat i < k} using assms by this
show enat i < esize s using nth-least-less-esize-less assms by auto
next
fix [
assume 1: [ < nth-least {i € s. enat i < k} ¢
have 2: nth-least {i € s. enat i < k} i € {i € s. enat { < k} using assms by
rule
have enat | < enat (nth-least {i € s. enat i < k} i) using 1 by simp
also have ... < k using 2 by simp
finally show [ € {i € s. enat i < k} +— | € s by auto
qed

lemma least-nth-least]simp):
assumes A # {} Ni.i € A = enat i < esize B
shows least (nth-least B ¢ A) = nth-least B (least A)
using assms by simp

lemma nth-least-nth-least][simp]:
assumes enat n < esize A \ i. i € A = enat i < esize B
shows nth-least B (nth-least A n) = nth-least (nth-least B < A) n
using assms
proof (induct n arbitrary: A)
case (
show ?case using 0 by simp
next
case (Suc n)
have 1: A # {} using Suc(2) by auto
have 2: nth-least B * (A — {least A}) = nth-least B * A — nth-least B ‘ {least
A}
proof (rule inj-on-image-set-diff)
show inj-on (nth-least B) {i. enat i < esize B} using nth-least.inj-on by this
show A — {least A} C {i. enat i < esize B} using Suc(8) by blast
show {least A} C {i. enat i < esize B} using Suc(3) 1 by force
qed
have nth-least B (nth-least A (Suc n)) = nth-least B (nth-least (A — {least A})
n) by simp
also have ... = nth-least (nth-least B * (A — {least A})) n using Suc I by
force
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also have ... = nth-least (nth-least B ¢ A — nth-least B ‘{least A}) n unfolding

2 by rule
also have ... = nth-least (nth-least B ¢ A — {nth-least B (least A)}) n by simp
also have ... = nth-least (nth-least B * A — {least (nth-least B * A)}) n using
Suc(3) 1 by auto
also have ... = nth-least (nth-least B * A) (Suc n) by simp
finally show ?case by this
qed

lemma nth-least-Max[simp]:
assumes finite A A # {}
shows nth-least A (card A — 1) = Maz A
using assms
proof (induct card A — 1 arbitrary: A)
case (
have 1: card A = 1 using 0 by (metis One-nat-def Suc-diff-1 card-gt-0-iff)
obtain a where 2: A = {a} using 1 by rule
show ?case unfolding 2 by (simp del: insert-iff)
next
case (Suc n)
have 1: least A € A using Suc(4) by rule
have 2: card (A — {least A}) = Suc n using Suc(2, 3) 1 by simp
have 3: A — {least A} # {} using 2 Suc(3) by fastforce
have nth-least A (card A — 1) = nth-least A (Suc n) unfolding Suc(2) by
rule

also have ... = nth-least (A — {least A}) n by simp

also have ... = nth-least (A — {least A}) (card (A — {least A}) — 1) unfolding
2 by simp

also have ... = Maz (A — {least A})

proof (rule Suc(1))
show n = card (A — {least A}) — 1 unfolding 2 by simp
show finite (A — {least A}) using Suc(3) by simp
show A — {least A} # {} using 3 by this

qed
also have ... = Maz A using Suc(3) 3 by simp
finally show ?case by this

qged

lemma nth-least-le-Max:
assumes finite A A # {} enat n < esize A
shows nth-least A n < Maz A
proof —
have nth-least A n < nth-least A (card A — 1)
proof (rule nth-least-mono)
show enat (card A — 1) < esize A by (metis Suc-diff-1 Suc-ile-eq assms(1)
assms(2)
card-eq-0-iff esize-set.simps(1) not-gr0 order-refl)
show n < card A — 1 by (metis Suc-diff-1 Suc-lel antisym-conv assms(1)
assms(3)
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enat-ord-simps(2) esize-set.simps(1) le-less neg-iff not-gro0)

qed
also have ... = Maz A using nth-least-Mazx assms(1, 2) by this
finally show ?thesis by this

qed

lemma nth-least-not-contains:
fixes k :: nat
assumes enat (Suc n) < esize A nth-least A n < k k < nth-least A (Suc n)
shows k ¢ A
proof
assume [: k € A
have 2: nth-least A (card {i € A. i < k}) = k using nth-least.right-inverse 1
by this
have 3: n < card {i € A. i < k}
proof (rule nth-least-strict-mono-inverse)
show enat n < esize A using assms(1) by auto
show enat (card {i € A. i < k}) < esize A using nth-least.g.wellformed 1
by simp
show nth-least A n < nth-least A (card {i € A. i < k}) using assms(2) 2
by simp
qed
have 4: card {i € A. i < k} < Sucn
proof (rule nth-least-strict-mono-inverse)
show enat (card {i € A. i < k}) < esize A using nth-least.g.wellformed 1
by simp
show enat (Suc n) < esize A using assms(1) by this
show nth-least A (card {i € A. i < k}) < nth-least A (Suc n) using assms(3)
2 by simp
qed
show Fulse using 3 4 by auto
qed

lemma nth-least-Suc|simp]:
assumes enat n < esize A
shows nth-least (Suc ¢ A) n = Suc (nth-least A n)
using assms
proof (induct n arbitrary: A)
case (0)
have 1: A # {} using 0 by auto
show ?case using 1 by simp
next
case (Suc n)
have 1: enat n < esize (A — {least A})
proof —
have 2: A # {} using Suc(2) by auto
have 3: least A € A using Leastl 2 by fast
have 4: A = insert (least A) A using & by auto
have eSuc (enat n) = enat (Suc n) by simp
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also have ... < esize A using Suc(2) by this

also have ... = esize (insert (least A) A) using / by simp

also have ... = eSuc (esize (A — {least A})) using 3 2 by simp

finally show ?thesis using FExtended-Nat.eSuc-mono by metis
qed

have nth-least (Suc ¢ A) (Suc n) = nth-least (Suc * A — {least (Suc * A)}) n

by simp
also have ... = nth-least (Suc ‘(A — {least A})) n by simp
also have ... = Suc (nth-least (A — {least A}) n) using Suc(1) 1 by this
also have ... = Suc (nth-least A (Suc n)) by simp
finally show ?case by this
qed

lemma nth-least-lift[simp]:
nth-least (lift A) 0 = 0
enat n < esize A => nth-least (lift A) (Suc n) = Suc (nth-least A n)
unfolding lift-def by simp+

lemma nth-least-list-card|[simp]:
assumes enat n < esize A
shows card {k € A. k < nth-least (lift A) n} = n
using less-Suc-eq-le assms by (cases n, auto simp del: nth-least.simps)

end

14 Coinductive Lists

theory Coinductive-List- Extensions
imports
Coinductive. Coinductive-List
Coinductive. Coinductive-List- Prefix
Coinductive. Coinductive-Stream
../ Extensions/ List- Extensions
../ Extensions/ ESet- Extensions
begin

hide-const (open) Sublist.prefix
hide-const (open) Sublist.suffix

declare list-of-lappend[simp)
declare Inth-lappend1 [simp)
declare Inth-lappend2[simp)
declare Iprefiz-llength-le[dest)
declare Sup-llist-def[simp]
declare length-list-of [simp]
declare llast-linfinite[simp)
declare Inth-ltake[simp]
declare lappend-assoc[simp)
declare lprefiz-lappend|[simp)
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lemma Iprefiz-1Sup-revert: [Sup = Sup lprefiv = less-eq by auto
lemma admissible-lprefizl[cont-intro]:
assumes mcont lub ord [Sup lprefix f
assumes mcont lub ord lSup lprefiz g
shows ccpo.admissible lub ord (A z. lprefiz (f z) (g x))
using ccpo-class.admissible-lel assms unfolding Iprefiz-ISup-revert by this
lemma [list-lift-admissible:
assumes ccpo.admissible ISup Iprefix P
assumes A\ u. u < v = Ifinite u = P u
shows P v
using assms by (metis LNil-lprefix le-llist-conv-lprefiz lfinite.simps llist-gen-induct)

abbreviation linfinite w = — Ifinite w

notation LNil («<>»)

notation LCons (infixr <% 65)
notation lzip (infixr «||» 51)
notation lappend (infixr <$» 65)
notation Inth (infixl <7 100)

syntax -llist :: args = 'a llist («<->»)
syntax-consts -llist = LCons
translations

<a, z> = a % <z>

<a>=a % <>

lemma eq-LNil-conv-lnull[simp]: w = <> «— Inull w by auto
lemma Collect-lnull[simp]: {w. Inull w} = {<>} by auto

lemma inj-on-ltake: inj-on (A k. ltake k w) {.. llength w}
by (rule inj-onl, auto, metis llength-ltake min-def)

lemma Inth-inf-llist'[simp): Inth (inf-llist f) = f by auto

lemma not-lnull-lappend-startE[elim]:
assumes — [null w
obtains a v
where w = <a> $ v
using not-lnull-conv assms by (simp, metis)
lemma not-lnull-lappend-endE|elim]:
assumes — [null w
obtains a v
where w = v § <a>
proof (cases lfinite w)
case Fulse
show ?thesis
proof
show w = w $ <a> using lappend-inf False by force
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qed
next
case True
show ?thesis
using True assms that
proof (induct arbitrary: thesis)
case (lfinite-LNil)
show ?case using Ifinite-LNil by auto
next
case (lfinite-LConsl w a)
show ?case
proof (cases Inull w)
case Fulse
obtain b v where 1: w = v $§ <b> using lfinite-LConsI(2) False by this
show ?thesis
proof (rule Ilfinite-LConsI(4))
show a % w = (a % v) $ <b> unfolding 1 by simp
qed
next
case True
show ?thesis
proof (rule Ilfinite-LConsI(4))
show a % w = <> $ <a> using True by simp
qed
qed
qged
qed

lemma llength-lappend-startE]elim]:
assumes llength w > eSuc n
obtains a v
where w = <a> $ v llength v > n
proof —
have 1: = Inull w using assms by auto
show ?thesis using assms 1 that by auto
qed
lemma llength-lappend-endE|elim]:
assumes llength w > eSuc n
obtains a v
where w = v $ <a> llength v > n
proof —
have 1: — Inull w using assms by auto
show ?thesis using assms 1 that by auto
qed

lemma llength-lappend-start’E|elim]:
assumes llength w = enat (Suc n)
obtains a v
where w = <a> $ v llength v = enat n
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proof —
have 1: llength w > eSuc (enat n) using assms by simp
obtain ¢ v where 2: w = <a> $ v using 1 by blast
show ?thesis
proof
show w = <a> $ v using 2(1) by this
show llength v = enat n using assms unfolding 2(1) by (simp, metis
eSuc-enat eSuc-inject)
qed
qged
lemma llength-lappend-end’E[elim]:
assumes llength w = enat (Suc n)
obtains a v
where w = v $ <a> llength v = enat n
proof —
have 1: llength w > eSuc (enat n) using assms by simp
obtain a v where 2: w = v $ <a> using 1 by blast
show ?thesis
proof
show w = v $ <a> using 2(1) by this
show llength v = enat n using assms unfolding 2(1) by (simp, metis
eSuc-enat eSuc-inject)
qed
qed

lemma ltake-llast[simp]:
assumes enat k < llength w
shows llast (ltake (enat (Suc k)) w) = w 9 k
proof —
have 1: llength (ltake (enat (Suc k)) w) = eSuc (enat k)using min.absorb-iff1
assms by auto
have llast (ltake (enat (Suc k)) w) = ltake (enat (Suc k)) w ! k
using llast-conv-Inth 1 by this

also have ... = w 2! k by (rule Inth-ltake, simp)
finally show ?thesis by this
qed

lemma linfinite-llength|[dest, simp]:
assumes linfinite w
shows enat k < llength w
using assms not-lfinite-llength by force

lemma [list-nth-eql[intro]:
assumes llength u = llength v
assumes \ i. enat i < llength u = enat { < llengthv —= u ?1 i =v 2 i
shows u = v
using assms
proof (coinduction arbitrary: u v)
case FEq-llist
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have 10: llength v = llength v using FEq-llist by auto
have 11: A i. enat i < llength w = enat i < llength v = u i =v 9 ¢
using Fq-llist by auto
show ?Zcase
proof (intro conjl impI exI alll)
show Inull u <— Inull v using 10 by auto
next
assume 20: — null u = Inull v
show [hd v = lhd v using lhd-conv-Inth enat-0 11 20 by force
next
show [tl u = [tl u by rule
next
show [tl v = Itl v by rule
next
assume 30: — null u = Inull v
show llength (It u) = llength (Itl v) using 10 30 by force
next
fix ¢
assume 40: = Inull v = Inull v enat © < llength (Itl w) enat i < length (It v)
have 41: u 9! Suc i = v 2! Suc i
proof (rule 11)
show enat (Suc i) < llength u using Suc-ile-eq 40(1) 40(3) by auto
show enat (Suc i) < llength v using Suc-ile-eq 40(2) 40(4) by auto
qed
show ltl u 2! i = ltl v 2! i using Inth-ltl 40(1—2) 41 by metis
qged
qed

primcorec Iscan :: (‘a = 'b = 'b) = 'a llist = 'b = 'b llist
where lscan fw a = (case w of <> = <a> |z % zs = a % Iscan fxs (fz a))

lemma Iscan-simps|simp]:
lscan f <> a = <a>
Iscan f (z % zs) a = a % Iscan fxs (f z a)
by (metis list.simps(4) lscan.code, metis llist.simps(5) Iscan.code)

lemma Iscan-lfiniteliff]: lfinite (Iscan fw a) <— Ifinite w
proof
assume Ifinite (Iscan f w a)
thus [finite w
proof (induct lscan f w a arbitrary: w a rule: lfinite-induct)
case LNil
show ?Zcase using LNil by simp
next
case LCons
show ?case by (cases w, simp, simp add: LCons(3))
qed
next
assume Ifinite w
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thus [finite (Iscan f w a) by (induct arbitrary: a, auto)
qed
lemma [scan-llength[simp]: llength (Iscan fw a) = eSuc (llength w)
proof (cases Ilfinite w)
case Fulse
have 1: llength (Iscan f w a) = oo using not-lfinite-llength False by auto
have 2: llength w = oo using not-lfinite-llength False by auto
show ?thesis using 1 2 by simp

next

case True

show ?thesis using True by (induct arbitrary: a, auto)
qed

function lfold :: (Y'a = b= 'b) = a llist = 'b="b
where Ifinite w = Ifold f w = fold f (list-of w) | linfinite w = Ifold f w = id
by (auto, metis) termination by lexicographic-order

lemma Ifold-llist-of [simp]: fold f (llist-of xs) = fold f xs by simp

lemma finite-UNIV-llength-eq:

assumes finite (UNIV :: 'a set)

shows finite {w :: 'a llist. llength w = enat n}
proof (induct n)

case (0)
show ?case by simp
next

case (Suc n)
have 1: finite ({v. llength v = enat n} x UNIV :: ('a llist x 'a) set)
using Suc assms by simp
have 2: finite (A (v, a). v § <a> = 'a llist ) * ({v. llength v = enat n} x
UNIV))
using 1 by auto
have 3: finite {v $ <a> :: ‘a llist |v a. llength v = enat n}
proof —
have 0: {v $ <a> :: 'a llist |v a. llength v = enat n} =
(A (v, a). v8 <a>::'allist) “ ({v. llength v = enat n} x UNIV) by auto
show ?thesis using 2 unfolding 0 by this
qed
have {: finite {w :: 'a llist . llength w = enat (Suc n)}
proof —
have 0: {w :: ’a llist . llength w = enat (Suc n)} =
{v$ <a>: 'allist |va. llength v = enat n} by force
show ?thesis using & unfolding 0 by this
qed
show ?case using 4 by this
qed
lemma finite-UNIV-llength-le:
assumes finite (UNIV :: 'a set)
shows finite {w :: 'a llist. llength w < enat n}
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proof —
have 1: {w. llength w < enat n} = (|J k < n. {w. llength w = enat k})
by (auto, metis atMost-iff enat-ile enat-ord-simps(1))
show ?thesis unfolding 1 using finite-UNIV-llength-eq assms by auto
qed

lemma Iprefiz-ltakel[dest]: u < v = u = ltake (llength u) v
by (metis le-llist-conv-lprefiz Iprefiz-conv-lappend ltake-all ltake-lappendl or-
der-refl)
lemma prefizes-set: {v. v < w} = {ltake k w |k. k < llength w} by fastforce
lemma esize-prefizes[simp]: esize {v. v < w} = eSuc (llength w)
proof —
have esize {v. v < w} = esize {ltake k w |k. k < llength w} unfolding
prefixes-set by rule

also have ... = esize (A k. ltake k w) ‘{.. llength w})
unfolding atMost-def image-Collect by rule
also have ... = esize {.. llength w} using inj-on-ltake esize-image by blast
also have ... = eSuc (llength w) by simp
finally show ?thesis by this
qed

lemma prefiz-subsume: v < w = u < w = llength v < llength u = v < u
by (metis le-llist-conv-Iprefix lprefix-conv-lappend
Iprefiz-ltake ltake-is-lprefix ltake-lappendl)

lemma ltake-infinite[simp]: ltake co w = w by (metis enat-ord-code(3) ltake-all)

lemma Iprefiz-infinite:
assumes u < v linfinite u
shows u = v
proof —
have 1: llength u = co using not-lfinite-llength assms(2) by this
have u = ltake (llength u) v using Iprefiz-ltake assms(1) by this

also have ... = v using I by simp
finally show ?thesis by this
qed

instantiation llist :: (type) esize-order
begin

definition [simp]: esize = llength

instance
proof
fix w:: ’a llist
assume [: esize w # 00
show finite {v. v < w}
using esize-prefives 1 by (metis eSuc-eg-infinity-iff esize-set.simps(2) es-
ize-llist-def)

next
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fix u v :: 'a llist

assume 1: u < v

show esize u < esize v using Iprefiz-llength-le 1 by auto
next

fix u v : 'allist

assume 1: u < v

show esize u < esize v using Istrict-prefiz-llength-less 1 by auto
qed

end

14.1 Index Sets

definition liset :: 'a set = 'a llist = nat set
where liset A w = {i. enat i < llength w A w 91 i € A}

lemma liset][intro):
assumes enat ¢ < llength ww 9! i € A
shows 7 € liset A w
using assms unfolding liset-def by auto
lemma lisetD[dest]:
assumes i € liset A w
shows enat i < llength ww 917 € A
using assms unfolding liset-def by auto

lemma liset-finite:

assumes Ifinite w

shows finite (liset A w)
proof

show liset A w C {i. enat i < llength w} by auto

show finite {i. enat i < llength w} using Ifinite-finite-index assms by this
qed

lemma liset-nil[simp]: liset A <> = {} by auto
lemma liset-cons-not-member|simp]:
assumes a ¢ A
shows liset A (a % w) = Suc ‘ liset A w
proof —
have liset A (a % w) = {i. enat i < llength (a % w) A (a % w) 2 i € A} by
auto

also have ... = Suc ‘ {i. enat (Suc i) < llength (a % w) A (@ % w) 9! Suc i

€ A}
using Collect-split-Suc(1) assms by simp

also have ... = Suc ‘ {i. enat i < llength w A w 9! i € A} using Suc-ile-eq
by simp

also have ... = Suc ‘ liset A w by auto

finally show ?thesis by this

qed

lemma liset-cons-member[simp):
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assumes a € A
shows liset A (a % w) = {0} U Suc * liset A w
proof —
have liset A (a % w) = {i. enat i < llength (a % w) A (a % w) 2 i € A} by
auto

also have ... = {0} U Suc ‘ {i. enat (Suc i) < llength (a % w) A (a % w)

21 Suc i € A}
using Collect-split-Suc(2) assms by simp

also have ... = {0} U Suc ‘ {i. enat i < llength w A w ?! i € A} using
Suc-ile-eq by simp

also have ... = {0} U Suc ‘ liset A w by auto

finally show ?thesis by this

qed

lemma liset-prefiz:
assumes i € liset A v u < v enat i < llength u
shows 7 € liset A u
unfolding liset-def
proof (intro Collect] conjl)
have 1: v 2! i € A using assms(1) by auto
show enat i < llength u using assms(3) by this
show u 9! i € A using lprefiz-InthD assms(2, 8) 1 by force
qed
lemma liset-suffix:
assumes ¢ € liset A uu<w
shows ¢ € liset A v
unfolding liset-def
proof (intro Collect] conjl)
have 1: enat i < llength u u 9! i € A using assms(1) by auto
show enat i < llength v using Iprefiz-llength-le 1(1) assms(2) by fastforce
show v 21 i € A using Iprefiz-InthD assms(2) 1 by force
qed

lemma liset-ltake[simp]: liset A (ltake (enat k) w) = liset A w N {..< k}
proof (intro equalityl subsetl)
fix ¢
assume [: i € liset A (ltake (enat k) w)
have 2: enat i < enat k using I by auto
have 3: ltake (enat k) w 9! ¢ = w 2 i using Inth-ltake 2 by this
show i € liset A w N {..< k} using 1 3 by fastforce
next
fix ¢
assume 1: 7 € liset A wn {.< k}
have 2: enat i < enat k using 1 by auto
have 3: ltake (enat k) w 2! ¢ = w 2 ¢ using Inth-ltake 2 by this
show i € liset A (ltake (enat k) w) using 1 3 by fastforce
qed

lemma liset-mono[dest]: v < v = liset A u C liset A v
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unfolding liset-def using lprefiz-InthD by fastforce
lemma liset-cont|dest]:
assumes Complete-Partial-Order.chain less-eq C C # {}
shows liset A (|| C) = (J w € C. liset A w)
proof safe
fix ¢
assume 1: 7 € liset A (| O)
show i € (| w e C. liset A w)
proof (cases finite C)
case Fulse
obtain w where 2: w € C enat i < llength w
using esize-llist-def infinite-chain-arbitrary-esize assms(1) False Suc-ile-eq
by metis
have 3: w < || C using chain-lprefiz-ISup assms(1) 2(1) by simp
have /: i € liset A w using liset-prefix 1 8 2(2) by this
show ?thesis using 2(1) 4 by auto
next
case True
have 2: | | C € C using in-chain-finite assms(1) True assms(2) by this
show ?thesis using 1 2 by auto
qed
next
fix wi
assume [: w € Ci € liset A w
have 2: w < || C using chain-lprefiz-ISup assms(1) 1(1) by simp
show i € liset A (|| C) using liset-suffix 1(2) 2 by this
qed

lemma liset-mcont: Complete-Partial-Order2.mcont [Sup Iprefic Sup less-eq
(liset A)
unfolding Iprefiz-lSup-revert by (blast intro: mcontl monotonel contl)

lemmas mcont2mcont-liset = liset-mcont[ THEN Ifp.mcont2mcont, simp, cont-intro]

14.2 Selections

abbreviation Iproject A = lIfilter (X a. a € A)
abbreviation Iselect s w = Inths w s

lemma Iselect-to-lproject: Iselect s w = Imap fst (Iproject (UNIV x s) (w ||
iterates Suc 0))
proof —
have 1: {(z, y). y € s} = UNIV x s by auto
have Iselect s w = Imap fst (Iproject {(z, y). y € s} (w || iterates Suc 0))
unfolding Inths-def by simp

also have ... = lmap fst (Iproject (UNIV x s) (w || iterates Suc 0)) unfolding
1 by rule
finally show ?thesis by this
qed
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lemma Iproject-to-lselect: Iproject A w = lselect (liset A w) w
unfolding [filter-conv-Inths liset-def by rule

lemma lproject-llength[simp]: llength (Iproject A w) = esize (liset A w)
by (induct rule: llist-induct) (auto)

lemma Iproject-lfinite[simp]: lfinite (lproject A w) «— finite (liset A w)
using Iproject-llength esize-iff-infinite llength-eq-infty-conv-lfinite by metis

lemma Iselect-restrict-indices[simp]: Iselect {i € s. enat i < llength w} w =
Iselect s w
proof (rule Inths-cong)
show w = w by rule
next
fix n
assume I: enat n < llength w
show n € {i € s. enat i < llength w} <— n € s using I by blast
qed

lemma Iselect-llength: llength (Iselect s w) = esize {i € s. enat i < llength w}
proof —
have 1: A i. enat i < llength w = (w || iterates Suc 0) 9 i = (w 2 4, i)
by (metis Suc-funpow enat.distinct(1) enat-ord-simps(4) llength-iterates
Inth-iterates
Inth-lzip monoid-add-class.add.right-neutral)
have 2: {i. enat i < llength w A (w || iterates Suc 0) 9 i € UNIV x s} =
{i € s. enat i < llength w} using I by auto
have llength (Iselect s w) = esize (liset (UNIV x s) (w || iterates Suc 0))
unfolding Iselect-to-lproject by simp

also have ... = esize {i. enat i < llength w A (w || iterates Suc 0) 9! i €
UNIV x s}
unfolding liset-def by simp
also have ... = esize {i € s. enat i < llength w} unfolding 2 by rule
finally show ?thesis by this
qed

lemma [select-llength-le[simp]: llength (lselect s w) < esize s
proof —
have llength (Iselect s w) = esize {i € s. enat i < llength w}
unfolding Iselect-llength by rule

also have ... = esize (s N {i. enat i < llength w}) unfolding Collect-conj-eq
by simp
also have ... < esize s by blast
finally show ?thesis by this
qed

lemma least-lselect-llength:
assumes — lnull (Iselect s w)
shows enat (least s) < llength w
proof —
have 0: llength (Iselect s w) > 0 using assms by auto
have 1: A\ i. i € s = least s < i using Least-le 0 by fast
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obtain ¢ where 2: i € s enat i < llength w using 0 unfolding Iselect-llength
by auto
have enat (least s) < enat ¢ using 1 2(1) by auto
also have ... < llength w using 2(2) by this
finally show enat (least s) < llength w by this
qed
lemma Iselect-Inull: Inull (Iselect s w) «— (V @ € s. enat i > llength w)
unfolding llength-eq-0[symmetric] lselect-llength by auto

lemma Iselect-discard-start:
assumes \ i. i € s =k < i
shows Iselect {i. k + i € s} (ldropn k w) = lselect s w
proof —
have 1: iselect s (ltake (enat k) w) = <>
using assms by (fastforce simp add: Iselect-Inull min-le-iff-disj)
have Iselect {m. k + m € s} (Ildropn k w) =
Iselect s (ltake (enat k) w) $ Iselect {m. k + m € s} (ldropn k w) unfolding
1 by simp

also have ... = Iselect s w using Inths-split by rule
finally show ?thesis by this
qed

lemma Iselect-discard-end:
assumes A\ i. 1 € s = i < k
shows Iselect s (ltake (enat k) w) = Iselect s w
proof —
have 1: Iselect {m. k + m € s} (ldropn k w) = <>
using assms by (fastforce simp add: lselect-Inull min-le-iff-disj)
have Iselect s (ltake (enat k) w) =
Iselect s (ltake (enat k) w) $ Iselect {m. k + m € s} (ldropn k w) unfolding
1 by simp

also have ... = Iselect s w using Inths-split by rule
finally show ?thesis by this
qed

lemma Iselect-least:
assumes — Inull (Iselect s w)
shows Iselect s w = w 9 least s % Iselect (s — {least s}) w
proof —
have 0: s # {} using assms by auto
have 1: least s € s using Least] 0 by fast
have 2: A\ i. i € s = least s < i using Least-le 0 by fast
have 3: A i. i € s — {least s} = Suc (least s) < i using least-unique 2 by
force
have 4: insert (least s) (s — {least s}) = s using I by auto
have 5: enat (least s) < llength w using least-lselect-llength assms by this
have 6: Iselect (s — {least s}) (Itake (enat (least s)) w) = <>
by (rule, auto simp: Ilselect-llength dest: least-not-less)
have 7: Iselect {i. Suc (least s) + i € s — {least s}} (ldropn (Suc (least s))
w) =
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Iselect (s — {least s}) w using Iselect-discard-start 3 by this
have [select s w = Iselect (insert (least s) (s — {least s})) w unfolding / by
stmp
also have ... = Iselect (s — {least s}) (Itake (enat (least s)) w) $ <w ? least
s> 8
Iselect {m. Suc (least s) + m € s — {least s}} (ldropn (Suc (least s)) w)
unfolding Inths-insert[OF 5] by simp
also have ... = <w # least s> §
Iselect {m. Suc (least s) + m € s — {least s}} (Idropn (Suc (least s)) w)
unfolding 6 by simp

also have ... = w 9 (least s) % lselect (s — {least s}) w unfolding 7 by
stmp
finally show ?thesis by this
qed

lemma [select-Inth[simp]:
assumes enat ¢ < llength (Iselect s w)
shows Iselect s w 2! i = w 2! nth-least s i
using assms
proof (induct i arbitrary: s)
case (
have 1: — Inull (Ilselect s w) using 0 by auto
show ?case using Iselect-least 1 by force
next
case (Suc 1)
have 1: = lnull (Iselect s w) using Suc(2) by auto
have 2: Iselect s w = w 9 least s % lselect (s — {least s}) w using Ilselect-least
1 by this
have 3: llength (Iselect s w) = eSuc (llength (Iselect (s — {least s}) w)) using
2 by simp
have /: enat i < llength (Iselect (s — {least s}) w) using & Suc(2) by simp
have Iselect s w 2! Suc i = (w 9 least s % lselect (s — {least s}) w) ?! Suc i
using 2 by simp

also have ... = Iselect (s — {least s}) w 2! i by simp
also have ... = w 2 nth-least (s — {least s}) i using Suc(1) 4 by simp
also have ... = w 7! nth-least s (Suc 7) by simp
finally show ?case by this
qed

lemma Ilproject-Inth|simp]:
assumes enal ¢ < llength (Iproject A w)
shows Ilproject A w 9 i = w ?! nth-least (liset A w) i
using assms unfolding Ilproject-to-lselect by simp

lemma Ilproject-ltake[simp]:
assumes enat k < llength (Iproject A w)
shows Iproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) =
ltake (enat k) (lproject A w)
proof
have llength (lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w)) =
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enat (card (liset A w N {..< nth-least (lift (liset A w)) k})) by simp

also have ... = enat (card {i € liset A w. i < nth-least (lift (liset A w)) k})
unfolding lessThan-def Collect-conj-eq by simp

also have ... = enat k using assms by simp

also have ... = llength (ltake (enat k) (Iproject A w)) using min-absorbl

assms by force
finally show llength (lproject A (ltake (enat (nth-least (lift (liset A w)) k))
w)) =
llength (ltake (enat k) (Iproject A w)) by this
next
fix ¢
assume I: enat { < llength (Iproject A (ltake (enat (nth-least (lift (liset A
w)) ) )
assume 2: enat i < llength (ltake (enat k) (Iproject A w))
obtain k' where 3: k = Suc k’ using 2 nat.ezhaust by auto
have 4: enat k' < llength (Iproject A w) using assms 3 by simp
have 5: i < k' using 2 3 by simp
have 6: nth-least (lift (liset A w)) k = Suc (nth-least (liset A w) k')
using 3 4 by (simp del: nth-least.simps)
have 7: nth-least (liset A w) i < Suc (nth-least (liset A w) k')
proof —
have nth-least (liset A w) i < nth-least (liset A w) k' using 4 5 by simp
also have ... < Suc (nth-least (liset A w) k') by simp
finally show ?thesis by this
qed
have 8: nth-least (liset A w N {..< Suc (nth-least (liset A w) k")}) i =
nth-least (liset A w) @
proof (rule nth-least-eq)
show enat i < esize (liset A w N {..< Suc (nth-least (liset A w) k)}) using
1 6 by simp
have enat i < enat k' using 5 by simp
also have enat k' < esize (liset A w) using 4 by simp
finally show enat i < esize (liset A w) by this
next
fix j
assume 1: j < nth-least (liset A w) i
show j € liset A w N {..< Suc (nth-least (liset A w) k")} +— j € liset A w
using 1 7 by simp
qed
have lproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) & i =
ltake (enat (Suc (nth-least (liset A w) k'))) w 2!
nth-least (liset A w N {..< Suc (nth-least (liset A w) k')}) ¢
using 1 6 by simp
also have ... = ltake (enat (Suc (nth-least (liset A w) k'))) w 2 nth-least
(liset A w) @
using § by simp

also have ... = w ? nth-least (liset A w) ¢ using 7 by simp
also have ... = Iproject A w ?! i using 2 by simp
also have ... = ltake (enat k) (Iproject A w) ?! i using 2 by simp
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finally show Iproject A (ltake (enat (nth-least (lift (liset A w)) k)) w) & i =
ltake (enat k) (lproject A w) 2! i by this
qed

lemma llength-less-llength-lselect-less:
enat i < esize s \ enat (nth-least s i) < llength w +— enat i < llength (lselect

s w)

w)

using nth-least-less-esize-less unfolding Iselect-llength by this

lemma [select-lselect’”:
assumes )\ i. i € s = enat i < llength w
assumes )\ i. i € t = enat i < llength (Iselect s w)
shows Iselect t (Iselect s w) = lselect (nth-least s ‘t) w
proof
note Iselect-llength[simp)
have 1: A i. i € nth-least s ‘'t => enat i < llength w using assms by auto
have 2: t C {i. enat i < esize s}
using assms(2) Ilselect-llength-le less-le-trans by blast
have 3: inj-on (nth-least s) t using subset-inj-on nth-least.inj-on 2 by this
have llength (Iselect t (Iselect s w)) = esize t using assms(2) by simp

also have ... = esize (nth-least s ‘ t) using 3 by auto
also have ... = llength (Iselect (nth-least s ‘ t) w) using I by simp
finally show llength (Iselect t (Iselect s w)) = llength (Iselect (nth-least s * t)
by this
next
fix ¢

assume 1: enat i < llength (Iselect t (Iselect s w))
assume 2: enat i < llength (Iselect (nth-least s ‘ t) w)
have 3: enat ¢ < esize t using less-le-trans 1 Iselect-llength-le by this
have 4: A\ i. i € t = enat i < esize s
using assms(2) Iselect-llength-le less-le-trans by blast
have Iselect t (Iselect s w) 9! i = lselect s w 9! nth-least t i using 1 by simp

also have ... = w 7 nth-least s (nth-least t ©) using assms(2) 3 by simp
also have ... = w 2 nth-least (nth-least s ‘ t) i using 3 4 by simp
also have ... = Iselect (nth-least s ‘t) w ¢! i using 2 by simp

finally show Iselect t (Iselect s w) ?! i = Iselect (nth-least s ‘t) w ?! i by this
qed

lemma [select-lselect’[simp]:
assumes \ i. { € t = enat i < esize s
shows Iselect t (Iselect s w) = lselect (nth-least s ‘ t) w
proof —
have 1: nth-least {i € s. enat i < llength w} ‘{i € t. enat i < llength (Iselect

sw)}t =

{i € nth-least s ‘ t. enat i < llength w}
unfolding Compr-image-eq
proof (rule image-cong)
show {i € t. enat i < llength (Iselect s w)} = {i € t. enat (nth-least s i) <
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llength w}
using llength-less-llength-lselect-less assms by blast

next
fix ¢

assume 1: ¢ € {i € t. enat (nth-least s ©) < llength w}
have 2: enat i < esize {i € s. enat i < llength w}
using nth-least-less-esize-less assms 1 by blast

show nth-least {i € s. enat i < llength w} i = nth-least s i using 2 by
stmp

qed
have Iselect t (Iselect s w) =

Iselect {i € t. enat i < llength (Iselect s w)} (Iselect {i € s. enat i < llength
w} w)
by simp

also have ... = Iselect (nth-least {i € s. enat i < llength w}
{i € t. enat i < llength (Iselect s w)}) w

by (rule lselect-lselect”’; auto simp: lselect-llength)
also have ...

1 by rule

also have ... = Iselect (nth-least s ‘ t) w by simp
finally show ?thesis by this
qed

= lIselect {i € nth-least s ‘ t. enat i < llength w} w unfolding

lemma Iselect-Iselect:

Iselect t (Iselect s w) = lselect (nth-least s ‘ {i € t. enat i < esize s}) w
proof —

have Iselect t (Iselect s w) = lselect {i € t. enat i < llength (lselect s w)}
(Iselect s w)
by simp

also have ... = Iselect (nth-least s  {i € t. enat i < llength (Iselect s w)}) w
using Iselect-llength-le less-le-trans by (blast intro: Iselect-lselect”)
also have ... = Iselect (nth-least s ‘ {i € t. enat i < esize s}) w

using llength-less-llength-lselect-less by (auto introl: Inths-cong)
finally show ?thesis by this
qed

lemma Iselect-Iproject:
assumes A i. i € s = enat { < llength w

shows Iproject A (Iselect s w) = Iselect (s N liset A w) w
proof —

have 1: A i. i € liset A (Iselect s w) = enat i < esize s using less-le-trans
by force

have 2: {i € liset A (Iselect s w). enat i < esize s} = liset A (Iselect s w)
using 1 by auto

have 3: nth-least s ¢ liset A (Iselect s w) = s N liset A w
proof safe

fix k

assume 4: k € liset A (Iselect s w)
show nth-least s k € s using 1 / by simp
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show nith-least s k € liset A w
using llength-less-llength-lselect-less 4 unfolding liset-def by auto
next
fix k
assume 1: k€ sk € liset A w
have 2: nth-least s (card {i € s. i < k}) = k using nth-least-card 1(1) by
this
have 3: enat (card {i € s. i < k}) < llength (Iselect s w)
unfolding Iselect-llength using assms 1(1) by simp
show k € nth-least s ‘ liset A (Iselect s w)
proof
show k = nth-least s (card {i € s. i < k}) using 2 by simp
show card {i € s. i < k} € liset A (Iselect s w) using 1(2) 2 3 by fastforce
qed
qed
have Iproject A (Iselect s w) = Iselect (liset A (Iselect s w)) (Iselect s w)
unfolding lproject-to-lselect by rule
also have ... = Iselect (nth-least s ‘ {i € liset A (Iselect s w). enat i < esize

unfolding [select-lselect by rule

also have ... = Iselect (nth-least s ¢ liset A (Iselect s w)) w unfolding 2 by
rule
also have ... = Iselect (s N liset A w) w unfolding 3 by rule
finally show ?thesis by this
qed

lemma Iselect-lproject[simp]: Iproject A (Iselect s w) = Iselect (s N liset A w) w
proof —

have 1: {i{ € s. enat i < llength w} N liset A w = s N liset A w by auto

have Iproject A (Iselect s w) = Iproject A (Iselect {i € s. enat i < llength w}

w) by simp
also have ... = Iselect ({i € s. enat i < llength w} N liset A w) w
by (rule lselect-lproject’, simp)

also have ... = Iselect (s N liset A w) w unfolding 1 by rule

finally show ?thesis by this
qed

lemma lproject-lselect-subset[simp]:
assumes liset A w C s
shows Iproject A (lselect s w) = Iproject A w
proof —
have 1: s N liset A w = liset A w using assms by auto
have Iproject A (Iselect s w) = Iselect (s N liset A w) w by simp

also have ... = Iselect (liset A w) w unfolding 1 by rule
also have ... = Iproject A w unfolding Iproject-to-lselect by rule
finally show ?thesis by this

qed

lemma [select-prefiz]intro]:
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assumes u < v
shows Iselect s u < Iselect s v
proof (cases lfinite u)
case Fulse
show ?thesis using Iprefix-infinite assms False by auto
next
case True
obtain k& where 1: llength u = enat k using True length-list-of by metis
obtain w where 2: v = u $ w using Iprefiz-conv-lappend assms by auto
have Iselect s u < Iselect s u $ Iselect {n. n + k € s} w by simp

also have ... = Iselect s (u $ w) using Inths-lappend-lfinite[symmetric] 1 by
this
also have ... = Iselect s v unfolding 2 by rule
finally show ?thesis by this
qed

lemma lproject-prefiz[intro]:
assumes u < v
shows [project A u < Iproject A v
using Iprefiz-lfilter] assms by auto

lemma lproject-prefiz-limit[intro?):
assumes A v. v < w = lfinite v => lproject A v < z
shows [project A w < x
proof —
have 1: ccpo.admissible ISup Iprefiz (A v. lproject A v < ) by simp
show ?thesis using llist-lift-admissible 1 assms(1) by this
qed
lemma Iproject-prefiz-limit’:
assumes A k. 3 v. v < w A enat k < llength v A Iproject A v < z
shows lproject A w < x
proof (rule Iproject-prefiz-limit)
fix u
assume 1: u < w lfinite u
obtain & where 2: llength u = enat k using 1(2) by (metis length-list-of)
obtain v where 3: v < w llength u < llength v lproject A v < x
unfolding 2 using assms(1) by auto
have /: llength u < llength v using 3(2) by simp
have 5: u < v using prefiz-subsume 1(1) 8(1) 4 by this
have Iproject A u < lproject A v using 5 by rule
also have ... < z using 3(3) by this
finally show Iproject A v < x by this
qed

end

15 Prefixes on Coinductive Lists

theory LList-Prefizes
imports
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Word-Prefizes
../ Extensions/ Coinductive- List- Extensions
begin

lemma unfold-stream-siterate-smap: unfold-stream f g = smap f o siterate g
by (rule, coinduction, auto) (metis unfold-stream-eq-SCons)+

lemma lappend-stream-of-llist:
assumes [finite u
shows stream-of-llist (u $ v) = list-of uw Q— stream-of-llist v
using assms unfolding stream-of-llist-def by induct auto

lemma llist-of-inf-llist-prefix[intro]: u <p; v => llist-of u < llist-of-stream v
by (metis lappend-llist-of-stream-conv-shift le-llist-conv-lprefix lprefiz-lappend
prefir-fininfE)
lemma prefiz-llist-of-inf-llist[intro]: lfinite u = u < v => list-of u <pj stream-of-llist
v
by (metis lappend-stream-of-llist le-llist-conv-lprefiz lprefix-conv-lappend pre-
fiz-fininfI)

lemma Iproject-prefiz-limit-chain:
assumes chain w A k. Iproject A (llist-of (wk)) < z
shows Ilproject A (llist-of-stream (limit w)) < x
proof (rule lproject-prefiz-limit”)
fix k
obtain [ where 1: k < length (w ) using assms(1) by rule
show 3 v < llist-of-stream (limit w). enat k < llength v A lproject A v < z
proof (intro exl conjI)
show llist-of (w 1) < llist-of-stream (limit w)
using llist-of-inf-llist-prefix chain-prefiz-limit assms(1) by this
show enat k < llength (llist-of (w 1)) using 1 by simp
show Ilproject A (llist-of (w 1)) < z using assms(2) by this
qed
qed
lemma Iproject-eq-limit-chain:
assumes chain u chain v \ k. project A (u k) = project A (v k)
shows Iproject A (llist-of-stream (limit u)) = Iproject A (llist-of-stream (limit
v))
proof (rule antisym)
show Iproject A (llist-of-stream (limit u)) < Iproject A (llist-of-stream (limit
v))
proof (rule lproject-prefiz-limit-chain)
show chain u using assms(1) by this
next
fix k
have Ilproject A (llist-of (u k)) = Iproject A (llist-of (v k)) using assms(3)
by simp
also have ... < Iproject A (llist-of-stream (limit v)) using chain-prefiz-limit
assms(2) by blast
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finally show Iproject A (llist-of (u k)) < Iproject A (llist-of-stream (limit v))
by this
qed
show Iproject A (llist-of-stream (limit v)) < Iproject A (llist-of-stream (limit
u))
proof (rule lproject-prefiz-limit-chain)
show chain v using assms(2) by this
next
fix k
have Ilproject A (llist-of (v k)) = Iproject A (llist-of (u k)) using assms(3)
by simp
also have ... < lproject A (llist-of-stream (limit u)) using chain-prefiz-limit
assms(1) by blast
finally show Iproject A (llist-of (v k)) < lproject A (llist-of-stream (limit u))
by this
qed
qed

end

16 Stuttering

theory Stuttering

imports
Stuttering- Equivalence. Stutter Equivalence
LList-Prefizes

begin

function nth-least-ext :: nat set = nat = nat
where
enat k < esize A = nth-least-ext A k = nth-least A k |
enat k > esize A => nth-least-ext A k = Suc (Maz A + (k — card A))
by force+ termination by lexicographic-order

lemma nth-least-ext-strict-mono:

assumes k£ < |

shows nth-least-ext s k < nth-least-ext s [
proof (cases enat | < esize s)

case True

have 1: enat k < esize s using assms True by (metis enat-ord-simps(2)
less-trans)

show ?thesis using nth-least-strict-mono assms True 1 by simp
next

case Fulse

have 1: finite s using Fulse esize-infinite-enat by auto

have 2: enat | > esize s using Fulse by simp

have 3: [ > card s using 1 2 by simp

show ?thesis

proof (cases enat k < esize s)
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case True
have 4: s # {} using True by auto
have nth-least-ext s k = nth-least s k using True by simp
also have ... < Maz s using nth-least-le-Max 1 4 True by this
also have ... < Suc (Maz s) by auto
also have ... < Suc (Max s + (I — card s)) by auto
also have Suc (Max s + (I — card s)) = nth-least-ext s | using 2 by simp
finally show ?thesis by this
next
case Fulse
have j: enat k > esize s using Fualse by simp
have 5: k > card s using 1 / by simp
have nth-least-ext s k = Suc (Maz s + (k — card s)) using 4 by simp
also have ... < Suc (Maz s + (I — card s)) using assms 5 by simp

also have ... = nth-least-ext s | using 2 by simp
finally show ?thesis by this
qed
qed

definition stutter-selection :: nat set = 'a llist = bool
where stutter-selection s w = 0 € s A
(V ki. enat i < llength w — enat (Suc k) < esize s —>
nth-least s k < i — i < nth-least s (Suc k) — w 9 i = w 9! nth-least s k) A
(V i. enat i < llength w — finite s — Max s < i — w 91 i = w 2! Maz s)

lemma stutter-selectionl [intro):
assumes ( € s
assumes A k7. enat i < llength w = enat (Suc k) < esize s =
nth-least s k < i = i < nth-least s (Suc k) = w 2! i = w 2! nth-least s k
assumes \ i. enat i < llength w = finite s = Mazx s < i = w ! i = w
2 Mazx s
shows stutter-selection s w
using assms unfolding stutter-selection-def by auto
lemma stutter-selectionD-0[dest]:
assumes stutter-selection s w
shows 0 € s
using assms unfolding stutter-selection-def by auto
lemma stutter-selectionD-inside|dest]:
assumes stutter-selection s w
assumes enat ¢ < llength w enat (Suc k) < esize s
assumes nth-least s k < {1 < nth-least s (Suc k)
shows w 9! i = w 9 nth-least s k
using assms unfolding stutter-selection-def by auto
lemma stutter-selectionD-infinite|dest]:
assumes stutter-selection s w
assumes enat i < llength w finite s Maz s < i
shows w 9! i = w 9! Max s
using assms unfolding stutter-selection-def by auto
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lemma stutter-selection-stutter-sampler|introl:
assumes linfinite w stutter-selection s w
shows stutter-sampler (nth-least-ext s) (Inth w)
unfolding stutter-sampler-def
proof safe
show nth-least-ext s 0 = 0 using assms(2) by (cases enat 0 < esize s, auto)
show strict-mono (nth-least-ext s) using strict-monol nth-least-ext-strict-mono
by blast
next
fix ki
assume [: nth-least-ext s k < i i < nth-least-ext s (Suc k)
show w 2! i = w 9! nth-least-ext s k
proof (cases enat (Suc k) esize s rule: linorder-cases)
case less
have w 9! i = w 9! nth-least s k
proof (rule stutter-selectionD-inside)
show stutter-selection s w using assms(2) by this
show enat i < llength w using assms(1) by auto
show enat (Suc k) < esize s using less by this
show nth-least s k < i using 1(1) less by auto
show i < nth-least s (Suc k) using 1(2) less by simp
qed
also have w 7! nth-least s k = w ?! nth-least-ext s k using less by auto
finally show ?thesis by this
next
case equal
have 2: enat k < esize s using equal by (metis enat-ord-simps(2) lessI)
have 3: finite s using equal by (metis esize-infinite-enat less-irrefl)
have 4: A\ i. i > Maz s = w 9 i = w 9! Maz s using assms 8 by auto
have 5: k = card s — 1 using equal 3 by (metis diff-Suc-1 enat.inject
esize-set.simps(1))
have Max s = nth-least s (card s — 1) using nth-least-Maz 3 assms(2) by
force
also have ... = nth-least s k unfolding 5 by rule
also have ... = nth-least-ext s k using 2 by simp
finally have 6: Max s = nth-least-ext s k by this
have w 7! i = w 9! Max s using 1(1) 4 6 by auto

also have ... = w ?! nth-least-ext s k unfolding ¢ by rule
finally show ?thesis by this
next

case greater

have 2: enat k > esize s using greater by (metis Suc-ile-eq not-le)

have 3: finite s using greater by (metis esize-infinite-enat less-asym)
have 4: A\ i. i > Maz s = w 9 i = w 9! Maz s using assms 3 by auto
have w 21 i = w 2! Max s using 1(1) 2 4 by auto

also have ... = w 7 Suc (Max s + (k — card s)) using 4 by simp
also have ... = w ?! nth-least-ext s k using 2 by simp
finally show ?thesis by this

qed
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qed

lemma stutter-equivl-selection[intro:
assumes linfinite u linfinite v
assumes stutter-selection s u stutter-selection t v
assumes Ilselect s u = Iselect t v
shows Inth u = Inth v
proof (rule stutter-equivl)
have 1: llength (Iselect s u) = llength (lselect ¢t v) unfolding assms(5) by rule
have 2: esize s = esize t using 1 assms(1, 2) unfolding Iselect-llength by

stmp

show stutter-sampler (nth-least-ext s) (Inth u) using assms(1, 3) by rule
show stutter-sampler (nth-least-ext t) (Inth v) using assms(?, 4) by rule
show Inth u o nth-least-ext s = Inth v o nth-least-ext t
proof (rule ext, unfold comp-apply)

fix ¢

show u 7| nth-least-ext s i = v ?! nth-least-ext t {

proof (cases enat i < esize s)

case True

have 3: enat i < llength (Iselect s u) enat i < llength (Iselect t v)
using assms(1, 2) 2 True unfolding Iselect-llength by auto

have u ?! nth-least-ext s i = u ?! nth-least s ¢ using True by simp

also have ... = Iselect s u 9! i using 3(1) by simp
also have ... = Iselect t v 7! i unfolding assms(5) by rule
also have ... = v ¢ nth-least t i using 3(2) by simp
also have ... = v 2 nth-least-ext t i using True unfolding 2 by simp
finally show u ?! nth-least-ext s i = v ?! nth-least-ext t i by this
next
case Fulse

have 3: s # {} ¢t # {} using assms(3, 4) by auto
have 4: finite s finite t using esize-infinite-enat 2 False by metis+
have 5: \ i. i > Mazx s = u 9! i = u 9 Max s using assms(1, 3) 4(1)

by auto

have 6: A\ i. i > Max t = v 9 ¢ = v 9! Maz t using assms(2, 4) 4(2)

by auto

have 7: esize s = enat (card s) esize t = enat (card t) using 4 by auto
have 8: card s # 0 card t # 0 using 3 4 by auto
have 9: enat (card s — 1) < llength (Iselect s u)
using assms(1) 7(1) 8(1) unfolding Iselect-llength by simp
have 10: enat (card t — 1) < llength (lselect t v)
using assms(2) 7(2) 8(2) unfolding Iselect-llength by simp
have u ? nth-least-ext s i = u 2! Suc (Maz s + (i — card s)) using False

by simp
also have ... = u 9! Max s using 5 by simp
also have ... = u 2 nth-least s (card s — 1) using nth-least-Maz 4 (1) 3(1)
by force
also have ... = Iselect s u ?! (card s — 1) using Iselect-Inth 9 by simp
also have ... = Iselect s u 9! (card t — 1) using 2 4 by simp
also have ... = Iselect t v ?! (card t — 1) unfolding assms(5) by rule
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also have ... = v 2 nth-least t (card t — 1) using Iselect-Inth 10 by simp

also have ... = v 7 Max t using nth-least-Maz 4(2) 3(2) by force
also have ... = v 9 Suc (Maz t + (i — card t)) using 6 by simp
also have ... = v 2! nth-least-ext t i using 2 Fulse by simp
finally show ?thesis by this
qed
qed
qed

definition stuttering-invariant :: 'a word set = bool
where stuttering-invariant A=V uv.uxv—u€Ad+—veA

lemma stuttering-invariant-complement|intro!]:
assumes stuttering-invariant A
shows stuttering-invariant (— A)
using assms unfolding stuttering-invariant-def by simp

lemma stutter-equiv-forw-subst[trans]: w1 = wy = wo ~ ws = wy ~ w3 by
auto

lemma stutter-sampler-build:
assumes stutter-sampler f w
shows stutter-sampler (0 ## (Suc o f)) (a ## w)
unfolding stutter-sampler-def
proof safe
have 0: f 0 = 0 using assms unfolding stutter-sampler-def by auto
have 1: fz < fyifz < y for z y
using assms that unfolding stutter-sampler-def strict-mono-def by auto
have 2: (0 ## (Suc o f)) o < (0 ## (Suco f)) yifz < y for z y
using 1 that by (cases z; cases y) (auto)
have 3: wn=w (fk)if fk <nn <f (Suck) for kn
using assms that unfolding stutter-sampler-def by auto
show (0 ## (Suc o f)) 0 = 0 by simp
show strict-mono (0 #4# (Suc o f)) using 2 by rule
show (o #4 w) n = (a 44 w) (0 44 (Suc o 1)) k)
if (0 ## (Suco f)) k< nn< (0 #%# (Suco f)) (Suck) for kn
using 0 3 that by (cases k; cases n) (force)+
qed
lemma stutter-extend-build:
assumes u &~ v
shows a ## u ~ a ## v
proof —
obtain f g where 1: stutter-sampler f u stutter-sampler gvuo f =vo g
using stutter-equivF assms by this
show ?thesis
proof (intro stutter-equivl ext)
show stutter-sampler (0 ## (Suc o f)) (a ## u) using stutter-sampler-build
1(1) by this
show stutter-sampler (0 ## (Suc o g)) (a ## v) using stutter-sampler-build
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1(2) by this
show (a ## uwo 0 ## (Suco f)) i = (a ## v o 0 ## (Suc o g)) i for ¢
using fun-cong[OF 1(8)] by (cases ) (auto)
qed
qed
lemma stutter-extend-concat:
assumes u &= v
shows w ~ u~ w ~ v
using stutter-extend-build assms by (induct w, force+)
lemma build-stutter: w 0 ## w ~ w
proof (rule stutter-equivl)
show stutter-sampler (Suc (0 := 0)) (w 0 ## w)
unfolding stutter-sampler-def

proof safe

show (Suc (0 := 0)) 0 = 0 by simp

show strict-mono (Suc (0 := 0)) by (rule strict-monol, simp)
next

fix kn

assume 1: (Suc (0 := 0)) k < nn < (Suc (0 := 0)) (Suc k)
show (w 0 ## w) n = (w 0 ## w) ((Suc (0 := 0)) k) using 1 by (cases
n, auto)
qed
show stutter-sampler id w by rule
show w 0 ## w o (Suc (0 := 0)) = w o id by auto
qed
lemma replicate-stutter: replicate n (v 0) ~ v &~ v
proof (induct n)
case (
show ?case using stutter-equiv-refl by simp
next
case (Suc n)

have replicate (Suc n) (v 0) ~ v = v 0 #F# replicate n (v 0) ~ v by simp

also have ... = (replicate n (v 0) —~ v) 0 #+4# replicate n (v 0) —~ v by (cases
n, auto)
also have ... = replicate n (v 0) —~ v using build-stutter by this
also have ... ~ v using Suc by this
finally show ?case by this
qed

lemma replicate-stutter”: w ~ replicate n (v 0) ~ v~ u ~ v
using stutter-extend-concat replicate-stutter by this

end

17 Interpreted Transition Systems and Traces
theory Transition-System-Interpreted-Traces

imports
Transition-System-Traces
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Basics/ Stuttering
begin

locale transition-system-interpreted-traces =
transition-system-interpreted ex en int +
transition-system-traces ex en ind
for ex :: 'action = 'state = 'state
and en :: 'action = 'state = bool
and int :: 'state = 'interpretation
and ind :: 'action = 'action = bool
+
assumes independence-invisible: a € visible =—> b € visible = = ind a b

begin

lemma eg-swap-Iproject-visible:

assumes u =g v

shows Iproject visible (llist-of u) = Iproject visible (llist-of v)

using assms independence-invisible by (induct, auto)
lemma eq-fin-Iproject-visible:

assumes v =p v

shows Iproject visible (llist-of u) = Iproject visible (llist-of v)

using assms eq-swap-lproject-visible by (induct, auto)
lemma le-fin-Iproject-visible:

assumes u =g v

shows Iproject visible (llist-of u) < lproject visible (llist-of v)
proof —

obtain w where 1: ©u @ w =p v using assms by rule

have Iproject visible (llist-of u) <

Iproject visible (llist-of u) $ Iproject visible (llist-of w) by auto

also have ... = [project visible (llist-of (v @ w)) using lappend-llist-of-llist-of
by auto
also have ... = Iproject visible (llist-of v) using eq-fin-lproject-visible 1 by
this
finally show ?thesis by this
qed

lemma le-fininf-Iproject-visible:

assumes u <pr v

shows Iproject visible (llist-of u) < Iproject visible (llist-of-stream v)
proof —

obtain w where 1: w <p; v u <p w using assms by rule

have Iproject visible (llist-of u) < Iproject visible (llist-of w)

using le-fin-lproject-visible 1(2) by this

also have ... < Iproject visible (llist-of-stream v) using 1(1) by blast

finally show ?thesis by this
qed
lemma le-inf-Iproject-visible:

assumes u <7 v

shows Iproject visible (llist-of-stream u) < lproject visible (llist-of-stream v)
proof (rule lproject-prefiz-limit)
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fix w
assume 1: w < llist-of-stream u lfinite w
have 2: list-of w <py stream-of-llist (llist-of-stream u) using I by blast
have 3: list-of w <p; v using assms 2 by auto
have Iproject visible w = Iproject visible (llist-of (list-of w)) using 1(2) by
stmp
also have ... < lproject visible (llist-of-stream v) using le-fininf-Iproject-visible
3 by this
finally show Iproject visible w < Iproject visible (llist-of-stream v) by this
qed
lemma eg-inf-lproject-visible:
assumes u =y v
shows Iproject visible (llist-of-stream u) = lproject visible (llist-of-stream v)
using le-inf-Iproject-visible assms by (metis antisym eq-infE)

lemma stutter-selection-lproject-visible:
assumes run u p
shows stutter-selection (lift (liset visible (llist-of-stream w)))
(llist-of-stream (smap int (p ## trace u p)))
proof
show 0 € lift (liset visible (llist-of-stream u)) by auto
next
fix ki
assume 3: enat (Suc k) < esize (lift (liset visible (llist-of-stream u)))
assume 4: nth-least (lift (liset visible (llist-of-stream u))) k < i
assume 5: ¢ < nth-least (lift (liset visible (llist-of-stream u))) (Suc k)
have 6: int ((p #+# trace u p) ! nth-least (lift (liset visible (llist-of-stream
W) k) =
int ((p ## trace u p) ! 7)
proof (rule execute-inf-word-invisible)
show run u p using assms by this
show nth-least (lift (liset visible (llist-of-stream w))) k < i using 4 by auto
next
fix j
assume 6: nth-least (lift (liset visible (llist-of-stream w))) k < j
assume 7: j < 1
have 8: Suc j ¢ lift (liset visible (llist-of-stream u))
proof (rule nth-least-not-contains)
show enat (Suc k) < esize (lift (liset visible (llist-of-stream w))) using 3
by this
show nth-least (lift (liset visible (llist-of-stream u))) k < Suc j using 6
by auto
show Suc j < nth-least (lift (liset visible (llist-of-stream w))) (Suc k) using
5 7 by simp
qed
have 9: j ¢ liset visible (llist-of-stream u) using 8 by auto
show u !! j ¢ visible using 9 by auto
qed
show llist-of-stream (smap int (p ## trace u p)) 9! i = llist-of-stream (smap
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int (p ## trace u p)) 9
nth-least (lift (liset visible (llist-of-stream u))) k
using 6 by (metis Inth-list-of-stream snth-smap)
next

fix ¢

assume 1: finite (lift (liset visible (llist-of-stream u)))

assume 3: Maz (lift (liset visible (llist-of-stream u))) < i

have 4: int ((p ## trace u p) ! Maxz (lift (liset visible (llist-of-stream u))))

int ((p ## trace u p) !l 0)
proof (rule execute-inf-word-invisible)
show run u p using assms by this
show Mazx (lift (liset visible (llist-of-stream u))) < ¢ using 3 by auto
next
fix j
assume 6: Maz (lift (liset visible (llist-of-stream w))) < j
assume 7: j < 1
have 8: Suc j ¢ lift (liset visible (llist-of-stream u))
proof (rule ccontr)
assume 9: - Suc j ¢ lift (liset visible (llist-of-stream u))
have 10: Suc j € lift (liset visible (llist-of-stream u)) using 9 by simp
have 11: Suc j < Max (lift (liset visible (llist-of-stream w))) using Maz-ge
1 10 by this
show Fulse using 6 11 by auto
qed
have 9: j ¢ liset visible (llist-of-stream u) using 8 by auto
show u !! j ¢ visible using 9 by auto
qed
show llist-of-stream (smap int (p ## trace u p)) 9! i = llist-of-stream (smap
int (p #+# trace u p)) 7
Maz (lift (liset visible (llist-of-stream u))) using 4 by (metis Inth-list-of-stream
snth-smap)
qed

lemma ezecute-fin-visible:
assumes path u q path v q u <p;r wv Jp; W
assumes project visible u = project visible v
shows int (target u q) = int (target v q)
proof —
obtain w’ where 1: u <p w' v <p w’ using subsume-fin assms(3, 4) by
this
obtain u’ v/ where 2: © Q v/ =p w' v Q v/ = w' using 1 by blast
have v Q@ v’ =p w’ using 2(1) by this
also have ... =p v Q v using 2(2) by blast
finally have 3: u @ v’ = v Q v’ by this
obtain s; so s3 where 4: u =p 51 @Q 55 v = 51 Q s3 Ind (set s2) (set s3)
using levi-lemma 3 by this
have 5: project visible (s1 Q s9) = project visible (s1 @ s3)
using eq-fin-Iproject-visible assms(5) 4(1, 2) by auto
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have 6: project visible s, = project visible s3 using 5 by simp
have 7: set (project visible so) = set (project visible s3) using 6 by simp
have §8: set sy N visible = set s3 N visible using 7 by auto
have 9: set so C invisible V set s3 C invisible using independence-invisible
4(3) by auto
have 10: set so C invisible set s3 C invisible using 8 9 by auto
have 11: path sy (target s1 ¢) using eq-fin-word 4 (1) assms(1) by auto
have 12: path s3 (target s1 ¢) using eq-fin-word 4(2) assms(2) by auto
have int (fold ex u q) = int (fold ex (s1 @Q s5) q) using eq-fin-execute assms(1)
4(1) by simp

also have ... = int (fold ex s1 q) using execute-fin-word-invisible 11 10(1)
by simp
also have ... = int (fold ex (s1 @ s3) q) using ezecute-fin-word-invisible 12
10(2) by simp
also have ... = int (fold ex v q) using eq-fin-execute assms(2) 4(2) by simp
finally show ?thesis by this
qed

lemma ezxecute-inf-visible:
assumes Tun 4 ¢ TUN v q U Xy w v Xy w
assumes lproject visible (llist-of-stream u) = Iproject visible (llist-of-stream v)
shows snth (smap int (q ## trace u q)) =~ snth (smap int (q¢ #4# trace v q))
proof —
have 1: Inth (llist-of-stream (smap int (q¢ #F# trace u q))) =~
Inth (llist-of-stream (smap int (q ## trace v q)))
proof
show linfinite (llist-of-stream (smap int (q ## trace u q))) by simp
show linfinite (Ilist-of-stream (smap int (q¢ ## trace v q))) by simp
show stutter-selection (lift (liset visible (llist-of-stream w))) (llist-of-stream
(smap int (q #+# trace u q)))
using stutter-selection-lproject-visible assms(1) by this
show stutter-selection (lift (liset visible (llist-of-stream v))) (llist-of-stream
(smap int (q ## trace v q)))
using stutter-selection-lproject-visible assms(2) by this
show Iselect (lift (liset visible (llist-of-stream w))) (llist-of-stream (smap int
(g 44 trace u q))) =
Iselect (lift (liset visible (llist-of-stream v))) (llist-of-stream (smap int (q
#4## trace v q)))
proof
have llength (Iselect (lift (liset visible (llist-of-stream w)))
(Ulist-of-stream (smap int (q ## trace u q)))) = eSuc (llength (Iproject
visible (llist-of-stream u)))
by (simp add: lselect-llength)

also have ... = eSuc (llength (lproject visible (llist-of-stream v)))
unfolding assms(5) by rule
also have ... = llength (Iselect (lift (liset visible (llist-of-stream v)))

(llist-of-stream (smap int (q #F trace v q)))) by (simp add: lselect-llength)

finally show llength (Iselect (lift (liset visible (llist-of-stream u)))

(llist-of-stream (smap int (q ## trace u q)))) = llength (Iselect (lift (liset
visible (llist-of-stream v)))
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(llist-of-stream (smap int (q #4 trace v q)))) by this
next
fix ¢
assume I:
enat i < llength (Iselect (lift (liset visible (llist-of-stream w)))
(llist-of-stream (smap int (q ## trace u q))))
enat i < llength (Iselect (lift (liset visible (llist-of-stream v)))
(llist-of-stream (smap int (q ## trace v q))))
have 2:
enat i < llength (Iproject visible (llist-of-stream u))
enat i < llength (Ilproject visible (llist-of-stream v))
using 1 by (simp add: lselect-llength)+
define k where k = nth-least (lift (liset visible (llist-of-stream u))) i
define | where | = nth-least (lift (liset visible (llist-of-stream v))) i
have Iselect (lift (liset visible (llist-of-stream w))) (llist-of-stream (smap
int (q¢ #4 trace u q))) 2 i =
int ((q #+4 trace u q) ! nth-least (lift (liset visible (llist-of-stream u))) 7)
by (metis 1(1) Inth-list-of-stream lselect-Inth snth-smap)
also have ... = int ((¢ ## trace u q) !! k) unfolding k-def by rule
also have ... = int ((¢ ## trace v ¢) ! ])
unfolding sscan-scons-snth
proof (rule execute-fin-visible)
show path (stake k u) ¢ using assms(1) by (metis run-shift-elim
stake-sdrop)
show path (stake 1 v) q using assms(2) by (metis run-shift-elim
stake-sdrop)
show stake k u <p; w stake | v Jp; w using assms(3, 4) by auto
have project visible (stake k u) =
list-of (Ilproject visible (llist-of (stake k u))) by simp
also have ... = list-of (Iproject visible (ltake (enat k) (llist-of-stream

u)))

by (metis length-stake llength-llist-of llist-of-inf-llist-prefix lprefiz-ltake

prefiz-fininf-prefiz)

also have ... = list-of (ltake (enat i) (Iproject visible (llist-of-stream w)))
unfolding k-def lproject-ltake[OF 2(1)] by rule

also have ... = list-of (ltake (enat i) (Iproject visible (llist-of-stream v)))
unfolding assms(5) by rule

also have ... = list-of (Iproject visible (Itake (enat 1) (Ilist-of-stream v)))
unfolding I-def lproject-ltake[OF 2(2)] by rule

also have ... = project visible (stake [ v)

by (metis length-stake lfilter-llist-of list-of-llist-of llength-llist-of
llist-of-inf-llist-prefix Iprefiz-ltake prefiz-fininf-prefix)
finally show project visible (stake k u) = project visible (stake I v) by
this
qed
also have ... = int ((q #+# trace v q) ! nth-least (lift (liset visible
(llist-of-stream v))) 1)
unfolding [-def by simp
also have ... = Iselect (lift (liset visible (llist-of-stream v)))

99



(llist-of-stream (smap int (q ## trace v q))) 2 i
using 1 by (metis Inth-list-of-stream lselect-Inth snth-smap)
finally show Iselect (lift (liset visible (llist-of-stream u)))
(llist-of-stream (smap int (q¢ ## trace u q))) 2 i = lselect (lift (liset
visible (llist-of-stream v)))
(llist-of-stream (smap int (q #4 trace v q))) 9! i by this
qged
qed
show ?thesis using 1 by simp
qed

end

end

18 Abstract Theory of Ample Set Partial Order
Reduction

theory Ample-Abstract

imports
Transition-System-Interpreted- Traces
Eztensions/ Relation-Extensions

begin

locale ample-base =
transition-system-interpreted-traces ex en int ind +
wellfounded-relation src
for ez :: 'action = 'state = 'state
and en :: 'action = ’state = bool
and int :: 'state = 'interpretation
and ind :: 'action = 'action = bool
and src :: 'state = 'state = bool
begin

definition ample-set :: 'state = ’action set = bool
where ample-set ¢ A =
A C{a. enaq} A
(Ac{a. enaqt — A#{}) A
Va AC{a. enagqt — a€ A— src(exaq) q) A
(A C {a. en a ¢} — A C invisible) N
(V w. AC{a. enaq} — pathwq— AN setw={} — Ind A (set w))

lemma ample-subset:
assumes ample-set q¢ A
shows A C {a. en a ¢}
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using assms unfolding ample-set-def by auto

lemma ample-nonempty:
assumes ample-set ¢ A A C {a. en a q}
shows A # {}
using assms unfolding ample-set-def by auto

lemma ample-wellfounded:
assumes ample-set ¢ A A C {a. ena q} a € A
shows src (ex a q) ¢
using assms unfolding ample-set-def by auto

lemma ample-invisible:
assumes ample-set ¢ A A C {a. en a q}
shows A C invisible
using assms unfolding ample-set-def by auto

lemma ample-independent:
assumes ample-set ¢ A A C {a. en a q} path w ¢ A N set w = {}
shows Ind A (set w)
using assms unfolding ample-set-def by auto

lemma ample-en[intro]: ample-set ¢ {a. en a ¢} unfolding ample-set-def by
blast

end

locale ample-abstract =

S?: transition-system-complete ex en init int +

R: transition-system-complete ex ren init int +

ample-base ex en int ind src

for ez :: 'action = 'state = 'state

and en :: 'action = ’'state = bool

and init :: 'state = bool

and int :: 'state = 'interpretation

and ind :: 'action = 'action = bool

and src :: 'state = 'state = bool

and ren :: 'action = 'state = bool

+

assumes reduction-ample: ¢ € nodes = ample-set q {a. ren a ¢}
begin

lemma reduction-words-fin:

assumes ¢ € nodes R.path w g

shows S.path w q

using assms(2, 1) ample-subset reduction-ample by induct auto
lemma reduction-words-inf:

assumes ¢ € nodes R.run w q

shows S.run w ¢
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using reduction-words-fin assms by (auto intro: words-infI-construct)

lemma reduction-step:
assumes q € nodes run w q
obtains
(deferred) a where ren a q [a] Sp1 w |
(omitted) {a. ren a q} C invisible Ind {a. ren a q} (sset w)
proof (cases {a. en a ¢} = {a. ren a ¢})
case True
have 1: run (shd w #+# sdrop 1 w) q using assms(2) by simp
show ?thesis
proof (rule deferred)
show ren (shd w) q using True 1 by blast
show [shd w] <p; w by simp
qed
next
case Fulse
have 1: {a. ren a q} C {a. en a ¢} using ample-subset reduction-ample
assms(1) False by auto
show ?thesis
proof (cases {a. ren a ¢} N sset w = {})
case True
show ?thesis
proof (rule omitted)
show {a. ren a ¢} C invisible using ample-invisible reduction-ample
assms(1) 1 by auto
show Ind {a. ren a q} (sset w)
proof safe
fix a b
assume 2: b € sset w ren a q
obtain u v where 3: w = u Q— b ## v using split-stream-first’ 2(1)

by this
have 4: Ind {a. ren a q} (set (u @ [b]))
proof (rule ample-independent)
show ample-set q {a. ren a ¢} using reduction-ample assms(1) by this
show {a. ren a q} C {a. en a ¢} using 1 by this
show path (u Q [b]) ¢ using assms(2) 3 by blast
show {a. ren a ¢} N set (u Q [b]) = {} using True 3 by auto
qed
show ind a b using 2 3 4 by auto
ged
qged
next
case Fulse

obtain v a v where 2: w = u Q— a ## v {a. ren a ¢} N set u = {} ren a

using split-stream-first|OF False] by auto
have 3: path u ¢ using assms(2) unfolding 2(1) by auto
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have 4: Ind {a. ren a q} (set u)
using ample-independent reduction-ample assms(1) 1 8 2(2) by this
have 5: Ind (set [a]) (set u) using 4 2(8) by simp
have 6: [a] @ u = u Q [a] using 5 by blast
show ?thesis
proof (rule deferred)
show ren a ¢ using 2(3) by this
have [a] <Fs [a] @— u Q— v by blast
also have [a] @— v @Q— v = ([a] @ u) @— v by simp
also have ([¢] @ ) @Q— v =7 (v @ [a]) @Q— v using 6 by blast
also have (u @ [a]) @— v = u Q— [a] @— v by simp

also have ... = w unfolding 2(1) by simp
finally show [a] <p; w by this
qed
qed
qed

lemma reduction-chunk:
assumes ¢ € nodes run ([a] @— v) ¢
obtains b b1 by u
where
R.path (b Q [a]) ¢
Ind {a} (set b) set b C invisible
b=p by Qby by Q— u =; v Ind (set by) (sset u)
using wellfounded assms
proof (induct q arbitrary: thesis v rule: wfp-induct-rule)
case (less q)
show ?Zcase
proof (cases ren a q)
case (True)
show ?thesis
proof (rule less(2))
show R.path (]] Q [a]) ¢ using True by auto
show Ind {a} (set []) by auto
show set [| C invisible by auto
show [| =r [] @ [] by auto
show [| @— v =; v by auto
show Ind (set []) (sset v) by auto
qed
next
case (False)
have 0: {a. en a ¢} # {a. ren a ¢} using Fualse less(4) by auto
show ?thesis
using less(3, 4)
proof (cases rule: reduction-step)
case (deferred c)
have 1: ren ¢ q using deferred(1) by simp
have 2: ind a ¢
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proof (rule le-fininf-ind'")
show [a] <p; [a] @— v by blast
show [¢] <ps [a] @— v using deferred(2) by this
show a # c using Fulse 1 by auto
qed
obtain v’ where 3: [a] @— v =] [¢] @Q— [a] @— v’
proof —
have 10: [c] <p1 v
proof (rule le-fininf-not-member’)
show [c] <p; [a] @Q— v using deferred(2) by this
show ¢ ¢ set [a] using False 1 by auto
qed
obtain v’ where 11: v = [¢] @— v’ using 10 by blast
have 12: Ind (set [a]) (set [c]) using 2 by auto
a

have 13: [a] Q [c] =F [c] @ | ] using 12 by blast
have [a] @— v =; [a] Q— [c] @Q— v’ using 11 by blast
also have ... = ([a] @ [¢]) @— v by simp
also have ... =; ([¢] @ [a]) @— v’ using 13 by blast
also have ... = [¢] @— [a] @— v’ by simp
finally show ?thesis using that by auto

qed

have /: run ([c] @Q— [a] @Q— v') q using eg-inf-word 3 less(4) by this
show ?thesis
proof (rule less(1))
show src (ex ¢ q) ¢
using ample-wellfounded ample-subset reduction-ample less(3) 0 1 by

blast

have 100: en ¢ q using less(4) deferred(2) le-fininf-word by auto

show ez ¢ ¢ € nodes using less(3) 100 by auto

show run ([a] @— v’) (ex ¢ q) using 4 by auto

next

fix b bl ()2 U

assume 5: R.path (b Q [a]) (ex ¢ q)

assume 6: Ind {a} (set b)

assume 7: set b C invisible

assume 8: b = by @Q by

assume 9: by Q— y =7 v’

assume 10: Ind (set by) (sset u)

show thesis

proof (rule less(2))
show R.path (([¢] @ b) @ [a]) ¢ using ! 5 by auto
show Ind {a} (set ([c] @ b)) using 6 2 by auto
have 11: ¢ € invisible

using ample-invisible ample-subset reduction-ample less(3) 0 1 by
blast

show set ([¢] @ b) C m’sible using 7 11 by auto
have [c] @ b =F [c] @ by @ by using 8 by blast

([¢] @ by) @ by by simp

alsohave[]@bl@b =
b=p ([c] @ b1) @ by by this

finally show [¢] @
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show ([c] @ b;) @— u =5 v
proof —
have 10: Ind (set [a]) (set [c]) using 2 by auto
have 11: [ ] @ [c] =F [c] @ [a] using 10 by blast
] @—la

have [a] @— v = [¢] @— [a] @— v using 3 by this
also have ... = ([¢] @ [a]) @— v’ by simp

also have ... =; ( a] @ [¢]) @— v’ using 11 by blast
also have ... = [a] @ [c] — v’ by simp

finally have 12: [a] @— v =] [a] @Q— [¢] @— v’ by this

ﬁwll

have 12: v = [¢] @— v’ using 12 by blast
have ([c] @ b)) @— u = [c] Q— b, Q— u by simp

also have ... = [¢] @— v using 9 by blast
also have ... =; v using 12 by blast
finally show ?thesis by this
qed
show Ind (set by) (sset u) using 10 by this
qed
qed
next

case (omitted)
have 1: {a. ren a ¢} C invisible using omitted(1) by simp
have 2: Ind {a. ren a ¢} (sset ([a] @Q— v)) using omitted(2) by simp
obtain ¢ where 3: ren c ¢
proof —
have I: en a q using less(4) by auto
show ?thesis using reduction-ample ample-nonempty less(3) 1 that by
blast
qed
have 4: Ind (set [c]) (sset ([a] @— v)) using 2 3 by auto
have 6: path [c] q using reduction-ample ample-subset less(3) 3 by auto
have 7: run ([a] @— v) (target [c] ¢) using diamond-fin-word-inf-word /
6 less(4) by this
show ?thesis
proof (rule less(1))
show src (ex ¢ q) q
using reduction-ample ample-wellfounded ample-subset less(3) 0 8 by
blast
show ez ¢ ¢ € nodes using less(3) 6 by auto
show run ([a] @— v) (ex ¢ ¢q) using 7 by auto
next
fix bsb by u
assume 5: R.path (b Q [a]) (ex ¢ q)
assume 6: Ind {a} (set b)
assume 7: set b C inwvisible
assume 8: b =p by Q by
assume 9: by Q— u =7 v
assume 10: Ind (set by) (sset u)
show thesis
proof (rule less(2))
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show R.path (([c] @ b) @ [a]) ¢ using 3 5 by auto
show Ind {a} (set ([c] @ b))
proof —
have 1: ind ¢ a using 4 by simp
have 2: ind a c using independence-symmetric 1 by this
show ?thesis using 6 2 by auto
qed
have 11: ¢ € invisible using 1 3 by auto
show set ([¢] @ b) C invisible using 7 11 by auto
have 12: Ind (set [c]) (set by)
proof —
have 1: set by C sset v using 9 by force
have 2: Ind (set [c]) (sset v) using 4 by simp
show ?thesis using 1 2 by auto

qed

have [c] @ b =F [c] @ b; Q by using 8 by blast
also have ... = ([c} @ bl) @ by by simp

also have ... =p (b; Q [¢]) @ by using 12 by blast
also have ... = b; @Q [¢] @ by by simp

finally show [c] @b=F b Q[c] @ by by this
show b @— u :1 v using 9 by this

have 13: Ind (set [c]) (sset u)

proof —

have 1: sset u C sset v using 9 by force
have 2: Ind (set [c]) (sset v) using 4 by simp
show ?thesis using 1 2 by blast

qged

show Ind (set ([c] @ bg)) (sset u) using 10 13 by auto

qed
qed
qed
qed
qed

inductive reduced-run :: 'state = 'action list = 'action stream = 'action list
=
‘action list = 'action list = 'action list = 'action stream = bool
where
init: reduced-run g [J v [J [ [] [] v |
absorb: reduced-run q v1 ([a] @— v) l w w1 wo u = a € set | =
reduced-run q (v1 @ [a]) vy (removel al) w wy wa u |
extend: reduced-run q v1 ([a] Q— v3) lw wy we u => a ¢ set | =
R.path (b Q [a]) (target w q) =
Ind {a} (set b) = set b C invisible =
b=p by Q by = [a] @— by Q— v’ =; u = Ind (set by) (sset u') =
reduced-run q (v1 @ [a]) v2 (1 Q b)) (w Q@ b Q [a]) (w1 @ by @ [a]) (w2 @
bg) u’
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lemma reduced-run-words-fin:
assumes reduced-run q v1 vo [ w wy wa U
shows R.path w q
using assms by induct auto

lemma reduced-run-invar-2:
assumes reduced-run q v1 vo I w wy wo U
shows vy =7 [ @Q— u
using assms
proof induct
case (init q v)
show ?case by simp
next
case (absorb q v1 a vy [ w wy wa u)
obtain [; Iy where 10: [ =1, @ [a] Q@ I3 a ¢ set 3
using split-list-firstOF absorb(3)] by auto
have 11: Ind {a} (set ly)
proof (rule le-fininf-ind’)
show [a] <p; | @Q— v using absorb(2) by auto
show [l; <p; | @— u unfolding 10(1) by auto
show a ¢ set Iy using 10(2) by this
qed
have 12: Ind (set [a]) (set 1) using 11 by auto
have [a] @ removel a | = [a] @ |3 @ Iy unfolding 10(1) removel-append
using 10(2) by auto

also have ... = ([a] @ 1) @ [ by simp
also have ... =p (I @Q [a]) @ [5 using 12 by blast
also have ... = [ unfolding 10(1) by simp

finally have 13: [a] @ removel a | =p [ by this
have [a] @— removel a | @Q— u = ([a] @ removel a ) @— u unfolding
conc-conc by simp

also have ... =; | @Q— v using 13 by blast
also have ... =; [a] @Q— vy using absorb(2) by auto
finally show ?case by blast

next

case (extend q v1 a va l w wy wy u b by by u’)
have 11: Ind {a} (setl)
proof (rule le-fininf-ind’)

show [a] <p; | @Q— u using extend(2) by auto

show | <p; | @Q— u by auto

show a ¢ set | using extend(3) by this
qed
have 11: Ind (set [a]) (set 1) using 11 by auto
have 12: eg-fin ([a] @ I) (I Q [a]) using 11 by blast
have 131: set by C set b using extend(7) by auto
have 132: Ind (set [a]) (set b) using extend(5) by auto
have 13: Ind (set [a]) (set by) using 131 132 by auto
have 14: eg-fin ([a] @ by) (b Q [a]) using 13 by blast
have [a] @— ((I Q b;) Q@— u') = ([¢] @ ]) @Q— by Q— u' by simp
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also have eg-inf ... ((I @ [a]) Q— b; Q— u’) using 12 by blast
also have ... =1 @— [a] @— b; @— v’ by simp
also have eg-inf ... (I @— u) using extend(8) by blast
also have eg-inf ... ([a] @Q— vy) using extend(2) by auto
finally show ?case by blast

qed

lemma reduced-run-invar-1:
assumes reduced-run q v1 ve [ w wy wa u
shows V1 Q] =F W1
using assms
proof induct
case (init q v)
show ?case by simp
next
case (absorb q v1 a vy l w wy wo u)
have 1: [a] @— vy =7 | @Q— v using reduced-run-invar-2 absorb(1) by this
obtain l; Iy where 10: [ =1; Q [a] Q I3 a ¢ set |y
using split-list-first| OF absorb(8)] by auto
have 11: Ind {a} (set ;)
proof (rule le-fininf-ind’)
show [a] <p; | @— u using I by auto
show [, <=p; | @— u unfolding 10(1) by auto
show a ¢ set Iy using 10(2) by this
qed
have 12: Ind (set [a]) (set 1) using 11 by auto
have [a] @ removel a | = [a] @ |3 @ I, unfolding 10(1) removel-append
using 10(2) by auto

also have ... = ([¢] @ ;) @Q I by simp
also have ... =r (I} Q [a]) @ 5 using 12 by blast
also have ... = [ unfolding 10(1) by simp

finally have 13: [a] @ removel a | =p [ by this
have w; = v; @ [ using absorb(2) by auto

also have ... =p v; @ ([a] @ removel a l) using 13 by blast
also have ... = (v, Q [a]) @ removel a l by simp
finally show ?case by auto

next

case (extend q v1 a vo l w wy wy u b by ba u’)
have 1: [a] @— vy =7 | @Q— v using reduced-run-invar-2 extend(1) by this
have 11: Ind {a} (set l)
proof (rule le-fininf-ind’)

show [a] <p; | @— u using ! by auto

show [ <p; | @— u by auto

show a ¢ set | using extend(3) by auto
qed
have 11: Ind (set [a]) (set l) using 11 by auto
have 12: eg-fin ([a] @ I) (I @Q [a]) using 11 by blast
have 131: set by C set b using extend(7) by auto
have 132: Ind (set [a]) (set b) using extend(5) by auto
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have 13: Ind (set [a]) (set by) using 131 132 by auto

have 14: eg-fin ([a] @ by) (b Q [a]) using 13 by blast

have eg-fin (w; @ b; @ [a]) (w; @ [a] @ by) using 14 by blast
a

also have eg-fin ... ((v1 @ 1) @Q [a] @ by) using extend(2) by blast
also have eg-fin ... (v1 Q@ (I Q [a]) @ by) by simp
also have eg-fin ... (v1 Q ([a] @ [) @ by) using 12 by blast
also have ... = (v; Q [a]) @ [ @Q b; by simp
finally show ?case by auto
qed

lemma reduced-run-invisible:
assumes reduced-run q v1 vo | w wy wo u
shows set wa C invisible
using assms
proof induct
case (init q v)
show ?case by simp
next
case (absorb q v1 a vy [ w wy wo u)
show ?case using absorb(2) by this
next
case (extend q v1 a vy lw wy wy u b by ba u')
have 1: set by C set b using extend(7) by auto
show ?case unfolding set-append using extend(2) extend(6) 1 by blast
qed

lemma reduced-run-ind:
assumes reduced-run q v1 vo | w wy wo u
shows Ind (set ws) (sset u)
using assms
proof induct
case (init q v)
show ?case by simp
next
case (absorb q v1 a vy [ w wy wo u)
show ?case using absorb(2) by this
next
case (extend q v1 a vo l w wy wy u b by ba u’)
have 1: sset u’ C sset u using extend(8) by force
show ?case using extend(2) extend(9) 1 unfolding set-append by blast
qed

lemma reduced-run-decompose:
assumes reduced-run q v1 vo | w wy wo u
shows w = w; @ wy
using assms
proof induct
case (init q v)
show ?case by simp
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next
case (absorb q v1 a vy | w wy wo u)
show ?case using absorb(2) by this
next
case (extend q v1 a vo l w wy wy u b by ba u')
have 1: Ind (set [a]) (set ba) using extend(5) extend(7) by auto
have 2: Ind (set wa) (set (b1 @ [a]))
proof —
have 1: Ind (set wy) (sset u) using reduced-run-ind extend(1) by this
have 2: u =; [a] @— b; Q— ' using extend(8) by auto
have 3: sset u = sset ([a] @— by @Q— u') using 2 by blast
show ?thesis unfolding set-append using 1 8 by simp

qed

have w @ b Q [a] =F (w1 @ wy) @ b Q [a] using extend(2) by blast
also have ... =p (w1 @ wq) Q (b @ b2) Q@ [a] using extend(7) by blast
also have ... = w; Q wy @ by Q (by Q [a]) by simp

also have ... =p w1 @ wy @ b; @ ([a] @ by) using I by blast

also have ... =p w; @ (wy @ (b; @ [a])) @ by by simp
w

also have ... =p w; @ ((b; Q [a]) @ wy) @ by using 2 by blast
also have ... =p (w1 @ b; Q [a]) @ we @ by by simp
finally show ?Zcase by this

qed

lemma reduced-run-project:
assumes reduced-run q v1 ve [ w wy wa u
shows project visible wy = project visible w
proof —
have 1: wy Q@ wy =p w using reduced-run-decompose assms by auto
have 2: set wy C invisible using reduced-run-invisible assms by this
have 3: project visible wy = [| unfolding filter-empty-conv using 2 by auto
have project visible w1 = project visible wy Q project visible wo using 3 by
simp

also have ... = project visible (w; @ wq) by simp
also have ... = list-of (Iproject visible (llist-of (w1 @ ws))) by simp
also have ... = list-of (Iproject visible (llist-of w))
using eq-fin-Ilproject-visible 1 by metis
also have ... = project visible w by simp
finally show ?thesis by this
qed

lemma reduced-run-length-1:
assumes reduced-run q v1 ve [ w wy wo u
shows length v1 < length w
using reduced-run-invar-1 assms by force
lemma reduced-run-length:
assumes reduced-run q v1 vo I w wy wa u
shows length v1 < length w
proof —
have length v1 < length wy using reduced-run-length-1 assms by this
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also have ... < length w using reduced-run-decompose assms by force
finally show ?thesis by this
qed

lemma reduced-run-step:
assumes ¢ € nodes run (v; Q— [a] @— v3) ¢
assumes reduced-run q v1 ([a] Q— vy) [ w wy we u
obtains I’ w’ wi’ wy' u’
where reduced-run q (v1 @ [a]) va I’ (w Q@ w’) (w1 Q@ wy’) (w2 Q@ wy') u
proof (cases a € set l)
case True
show ?thesis
proof (rule that, rule absorb)
show reduced-run q vy ([a] @— vy) I (w @ []) (w1 Q []) (we Q []) u using
assms(3) by simp
show a € set [ using True by this
qed
next
case Fulse
have 1: v1 @Q [ = w; using reduced-run-invar-1 assms(3) by this
have 2: [a] @Q— vy =; | @Q— v using reduced-run-invar-2 assms(3) by this
have 3: w = w1 @Q wy using reduced-run-decompose assms(3) by this
have v1 @ [ Q@ wy = (v; @ ) @ wy by simp
also have ... =p w; @Q wy using 1 by blast
also have ... =p w using 3 by blast
finally have /: v; @ [ @ wy =p w by this
have 5: run ((v; Q I) @— wy @— u) ¢
proof (rule diamond-fin-word-inf-word’)
show Ind (set ws) (sset u) using reduced-run-ind assms(3) by this
have 6: R.path w q using reduced-run-words-fin assms(3) by this
have 7: path w ¢ using reduction-words-fin assms(1) 6 by auto
show path ((v; @ [) @ wy) ¢ using eq-fin-word 4 7 by auto
have 8: v; @Q— [a] @— vy =7 v; @— | @Q— u using 2 by blast
show run ((v1 @Q [) Q— u) ¢ using eg-inf-word assms(2) 8 by auto
qed
have 6: run (w Q— u) ¢ using eg-inf-word 4 5 by (metis eg-inf-concat-end
shift-append)
have 7: [a] <p; | @Q— u using 2 by blast
have 8: [a] <p u using le-fininf-not-member’ 7 False by this
obtain u’ where 9: u =; [a] @— v’ using 8 by rule
have 101: target w q € nodes using assms(1) 6 by auto
have 10: run ([a] @— u’) (target w q) using eg-inf-word 9 6 by blast
obtain b b; by v’ where 11:
R.path (b Q [a]) (target w q)
Ind {a} (set b) set b C invisible
b=p by Qby by Q— u” =5 u' Ind (set by) (sset u"’)
using reduction-chunk 101 10 by this
show ?thesis
proof (rule that, rule extend)

!
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show reduced-run q v1 ([a] Q— v3) | w w1 w2 u using assms(3) by this
show a ¢ set | using Fulse by this
show R.path (b Q [a]) (target w q) using 11(1) by this
show Ind {a} (set b) using 11(2) by this
show set b C invisible using 11(3) by this
show b = b; @ by using 11(4) by this
show [a] @Q— b; Q— u'" =] u using 9 11(5) by blast
show Ind (set by) (sset u’") using 11(6) by this
qed
qed

lemma reduction-word:
assumes ¢ € nodes Tun v q
obtains u w
where
R.run w q
V=15 uu =y w
Iproject visible (llist-of-stream u) = lproject visible (llist-of-stream w)
proof —
define P where P = A k w wy. 3 [ wy u. reduced-run q (stake k v) (sdrop k
v) lww; wy u
obtain w w; where 1: A k. Pk (w k) (w1 k) chain w chain w,
proof (rule chain-construct-2'[of P])
show P 0 [| [| unfolding P-def using init by force
next
fix £k wwy
assume 1: Pk w w;
obtain [ we u where 2: reduced-run q (stake k v) (sdrop k v) l w w1 wa u
using ! unfolding P-def by auto
obtain !’ w’ wi’ wy’ u’ where 3:
reduced-run q (stake kv @Q [v 1! k]) (sdrop (Suc k) v) I’ (w Q@ w’) (wy Q@
wy’) (we Q wy’) u’
proof (rule reduced-run-step)
show ¢ € nodes using assms(1) by this
show run (stake kv Q— [v !l k] @Q— sdrop (Suc k) v) ¢
using assms(2) by (metis shift-append stake-Suc stake-sdrop)
show reduced-run q (stake k v) ([v ! k] @Q— sdrop (Suc k) v) | w wy wa u
using 2 by (metis sdrop-simps shift.simps stream.collapse)
qed
show 3 w' wy”. P (Suck) w w1’ Aw<w A w < w'
unfolding P-def using 3 by (metis prefiz-fin-append stake-Suc)
show k < length w using reduced-run-length 2 by force
show k < length wy using reduced-run-length-1 2 by force
qed rule
obtain [ wy u where 2:
N k. reduced-run q (stake k v) (sdrop kv) (1 k) (wk) (w1 k) (w2 k) (u k)
using 1(1) unfolding P-def by metis
show ?thesis
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proof
show R.run (Word-Prefizes.limit w) q using reduced-run-words-fin 1(2) 2
by blast
show v =; Word-Prefixes.limit w
proof
show v <X; Word-Prefixes.limit w,
proof (rule le-infl-chain-right’)
show chain wy using 1(3) by this
show A k. stake k v <p w1 k using reduced-run-invar-1[OF 2] by auto
qged
show Word-Prefizes.limit wy < v
proof (rule le-infI-chain-left)
show chain wy using 1(3) by this
next
fix k
have wy, k =p stake k v @Q [ k using reduced-run-invar-1 2 by blast
also have ... <pj stake k v Q— [ kK Q— u k by auto

also have ... =; stake k v Q— sdrop k v using reduced-run-invar-2[OF
2] by blast
also have ... = v by simp
finally show wy; &k <p; v by this
qed
qged

show Word-Prefizes.limit wi <y Word-Prefizes.limit w
proof (rule le-infI-chain-left)
show chain wy using 1(3) by this
next
fix k
have w; k <p w k using reduced-run-decompose[OF 2] by blast
also have ... <p; Word-Prefizes.limit w using chain-prefiz-limit 1(2) by
this
finally show wy k <Xp; Word-Prefizes.limit w by this
qed
show Iproject visible (llist-of-stream ( Word-Prefizes.limit wy)) =
Iproject visible (llist-of-stream ( Word-Prefives.limit w))
using Iproject-eq-limit-chain reduced-run-project 1 unfolding P-def by
metis
qed
qed

lemma reduction-equivalent:
assumes ¢ € nodes Tun u ¢
obtains v
where R.run v q snth (smap int (g ## trace u q)) =~ snth (smap int (q #+#
trace v q))
proof —
obtain v w where 1: R.run w qu =7 v v <7 w
Iproject visible (llist-of-stream v) = Iproject visible (llist-of-stream w)
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using reduction-word assms by this
show ?thesis
proof
show R.run w q using 1(1) by this
show snth (smap int (q ## trace u q)) ~ snth (smap int (q ## trace w q))
proof (rule execute-inf-visible)
show run u ¢ using assms(2) by this
show run w q using reduction-words-inf assms(1) 1(1) by auto
have u =y v using 1(2) by this
also have ... <; w using 1(3) by this
finally show u <; w by this
show w <; w by simp
have Iproject visible (llist-of-stream u) = Iproject visible (llist-of-stream v)
using eg-inf-lproject-visible 1(2) by this

also have ... = Iproject visible (llist-of-stream w) using 1(4) by this
finally show Iproject visible (llist-of-stream u) = Iproject visible (1list-of-stream
w) by this
qed
qed
qed

lemma reduction-language-subset: R.language C S.language
unfolding S.language-def R.language-def using reduction-words-inf by blast

lemma reduction-language-stuttering:
assumes u € S.language
obtains v
where v € R.language snth v = snth v
proof —
obtain ¢ v where 1: u = smap int (q ## trace v q) init ¢ S.run v q using
assms by rule
obtain v’ where 2: R.run v’ ¢ snth (smap int (q ## trace v q)) ~ snth
(smap int (q ## trace v’ q))
using reduction-equivalent 1(2, 3) by blast
show ?thesis
proof (intro that R.languagel)
show smap int (q ## trace v’ q) = smap int (q #4 trace v’ q) by rule
show init ¢ using 1(2) by this
show R.run v’ q using 2(1) by this
show snth u ~ snth (smap int (¢ ## trace v’ q)) unfolding 1(1) using
2(2) by this
qed
qed

end

end
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19 LTL Formulae

theory Formula
imports

Basics/ Stuttering

Stuttering- Equivalence. PLTL
begin

locale formula =
fixes o :: 'a pltl
begin

definition language :: 'a stream set
where language = {w. snth w =, ¢}

lemma language-entails[iff]: w € language <— snth w =, ¢ unfolding lan-
guage-def by simp

end

locale formula-next-free =
formula ¢
for ¢ :: ‘a pltl
+
assumes next-free: next-free
begin

lemma stutter-equivalent-entails|dest]: v~ v = u |=p @ +— v |&=p ¢
using nezt-free-stutter-invariant next-free by blast

end

end

20 Correctness Theorem of Partial Order Reduc-
tion

theory Ample-Correctness
imports

Ample-Abstract

Formula
begin

locale ample-correctness =
S: transition-system-complete ex en init int +
R: transition-system-complete ex ren init int +
F: formula-next-free ¢ +
ample-abstract ex en init int ind src ren
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for ex :: 'action = 'state = 'state
and en :: ‘action = ’'state = bool
and init :: 'state = bool
and int :: 'state = ’interpretation
and ind :: ‘action = 'action = bool
and src :: 'state = 'state = bool
and ren :: ‘action = 'state = bool
and ¢ :: "interpretation pltl

begin

lemma reduction-language-indistinguishable:
assumes R.language C F.language
shows S.language C F.language

proof
fix u
assume [: u € S.language

obtain v where 2: v € R.language snth u =~ snth v using reduction-language-stuttering

1 by this

have 3: v € F.language using assms 2(1) by rule
show u € F.language using 2(2) 3 by auto

qed

theorem reduction-correct: S.language C F.language <— R.language C F.language
using reduction-language-subset reduction-language-indistinguishable by blast

end

end

21 Static Analysis for Partial Order Reduction

theory Ample-Analysis
imports

Ample-Abstract
begin

locale transition-system-ample =
transition-system-sticky ex en init int sticky +
transition-system-interpreted-traces ex en int ind
for ex :: 'action = 'state = ’state
and en :: 'action = ’'state = bool
and init :: 'state = bool
and int :: 'state = 'interpretation
and sticky :: 'action set
and ind :: 'action = 'action = bool

begin

sublocale ample-base ex en int ind scut~'~1 by unfold-locales
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lemma restrict-ample-set:
assumes s € nodes
assumes A N {a. en a s} # {} AN {a. en a s} N sticky = {}
assumes Ind (A N {a. en a s}) (executable — A)
assumes \ w. path w s = AN{a. enas} Nsetw={} = AN setw=

{
shows ample-set s (A N {a. en a s})
unfolding ample-set-def
proof (intro congl alll impl)
show A N {a. en a s} C {a. en a s} by simp
next
show A N {a. en a s} # {} using assms(2) by this
next
fix a
assume 1: a € AN {a. en a s}
show scut™ 17! (ez a s) s
proof (rule no-cut-scut)
show s € nodes using assms(1) by this
show en a s using 1 by simp
show a ¢ sticky using assms(3) 1 by auto
qed
next
have 1: A N {a. en a s} C executable using executable assms(1) by blast
show A N {a. en a s} C invisible using ezecutable-visible-sticky assms(3) 1
by blast
next
fix w
assume 1: path w s AN {a. en a s} N set w = {}
have 2: A N set w = {} using assms(5) 1 by this
have 3: set w C executable using assms(1) 1(1) by rule
show Ind (A N {a. en a s}) (set w) using assms(4) 2 8 by blast
qed

end

locale transition-system-concurrent =
transition-system-initial ex en init
for ez :: 'action = 'state = 'state
and en :: 'action = ’'state = bool
and init :: 'state = bool
+
fixes procs :: 'state = ’process set
fixes pac :: 'process = 'action set
fixes psen :: 'process = 'state = 'action set
assumes procs-finite: s € nodes = finite (procs s)
assumes psen-en: s € nodes = pac p N {a. en a s} C psen p s
assumes psen-ex: s € nodes = a € {a. en a s} — pac p = psen p (ex a s)
= psen p s
begin
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lemma psen-fin-word:
assumes s € nodes path w s pac p N set w = {}
shows psen p (target w s) = psen p s
using assms(2, 1, 3)
proof induct
case (nil s)
show ?case by simp
next
case (cons a s w)
have 1: ex a s € nodes using cons(4, 1) by rule
have psen p (target (a # w) s) = psen p (target w (ex a s)) by simp

also have ... = psen p (ex a s) using cons 1 by simp
also have ... = psen p s using psen-ex cons by simp
finally show ?case by this

qed

lemma en-fin-word:

assumes A\ ra b. r € nodes = a € psenp s — {a. ena s} = b € {a. en

ar} — pacp =
ena(exbr) = enar

assumes s € nodes path w s pac p N set w = {}

shows pac p N {a. en a (target w s)} C pac p N {a. en a s}
using assms
proof (induct w rule: rev-induct)

case Nil
show ?case by simp
next

case (snoc b w)
show Zcase
proof (safe, rule ccontr)
fix a
assume 2: a € pac p en a (target (w @ [b]) s) " ena s
have 3: a € psen p s
proof —
have 3: psen p (target (w @ [b]) s) = psen p s using psen-fin-word snoc(3,
4, 5) by this
have /: target (w Q [b]) s € nodes using snoc(3, 4) by rule
have 5: a € psen p (target (w @ [b]) s) using psen-en 4 2(1, 2) by auto
show ?thesis using 2(1) 3 5 by auto
qed
have 4: en a (target w s)
proof (rule snoc(2))
show target w s € nodes using snoc(3, 4) by auto
show a € psen p s — {a. en a s} using 2(3) 3 by simp
show b € {a. en a (target w s)} — pac p using snoc(4, 5) by auto
show en a (ex b (target w s)) using 2(2) by simp
qged
have 5: pac p N {a. en a (target w $)} C pac p N {a. en a s}
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proof (rule snoc(1))
show A\ rab. r € nodes = a € psenp s — {a. ena s} = b € {a. en
ar}— pacp =
en a (ex b r) = en a r using snoc(2) by this
show s € nodes using snoc(3) by this
show path w s using snoc(4) by auto
show pac p N set w = {} using snoc(5) by auto
qed
have 6: en a s using 2(1) / 5 by auto
show Fulse using 2(3) 6 by simp
qed
qed

lemma pac-en-blocked:
assumes A ra b. r € nodes => a € psenp s — {a. ena s} = b € {a. en
ar} — pacp =
ena(exbr)= enar
assumes s € nodes path w s pac p N {a. en a s} N set w = {}
shows pac p N set w = {}
using words-fin-blocked en-fin-word assms by metis

abbreviation proc a = {p. a € pac p}
abbreviation Proc A =) a € A. proc a

lemma psen-simple:

assumes Proc (psen p s) = {p}

assumes A\ ra b. r € nodes = a € psenps — {a. ena s} = enbr =
proc a N procb = {} = ena(exbr) = enar

shows A\ rab. r € nodes = a € psenps — {a. enas} = be {a. ena

r} — pac p =

ena(exbr) = enar

using assms by force

end

end
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