
Mutually Recursive Partial Functions∗

René Thiemann

March 17, 2025

Abstract

We provide a wrapper around the partial-function command which
supports mutual recursion.

Our results have been used to simplify the development of mutually
recursive parsers, e.g., a parser to convert external proofs given in XML
into some mutually recursive datatype within Isabelle/HOL.

Contents
1 Introduction 1

2 Implementation 4
2.1 Known limitations . 4
2.2 Register the partial-function-mr command 4
2.3 Register the "option"-monad 4
2.4 Register the "tailrec"-monad 6

3 Examples 6
3.1 Collatz function . 6
3.2 Evaluating expressions . 7
3.3 An example with contexts . 8

1 Introduction
The partial function command of Krauss [1] turns monotone monadic func-
tion specifications into equational theorems. Here, monadic means that the
output type of the function must be a monad like the option-monad. This
is required to prohibit specifications like

f x = 1 + f x

∗This research is supported by FWF (Austrian Science Fund) project P22767-N13. We
thank Makarius Wenzel for several hints on how to properly localize our wrapper.

1

which would immediately lead to a contradiction. Since the command pro-
duces unconditional equations, it is extremely helpful in writing possibly
nonterminating functions which are amenable to code generation. For exam-
ple, using partial-function, one can write a recursive parser in Isabelle/HOL
and can then use it in several target languages—without having to strug-
gle with a tedious termination proof which might have to reason about the
internal state of the parser.

Unfortunately, the command currently does not support mutually recur-
sive functions, which however would be a convenient feature when writing
parsers for mutually recursive datatypes. To be more precise, a specification
of a partial function has to be of the following shape

f −→xs = F f −→xs (1)

where −→xs is a sequence of distinct variables and F is an arbitrary monotone
functional that may depend on f and −→xs.

For mutually recursive functions we would like to specify functions in
the more general form

f1
−→xs1 = F1

−→fs −→xs1
... (2)

fn
−→xsn = Fn

−→fs −→xsn

where −→fs = f1, . . . , fn and −→xsi are the individual arguments to each of the
functions fi.

In the following, we describe our wrapper around the partial function
command which supports mutual recursion. We first synthesize a global
function g from the specifications in (2) which itself has a defining equation
in the form of (1). Then we register g and derive the defining equation for
g as theorem in Isabelle/HOL using partial-function. Afterwards, it will be
easy to define each fi in terms of g, and finally derive the equations in (2)
as theorems.

Let us now consider the details. Assume each fi has a type ini,1 ⇒
. . . ⇒ ini,ar(fi) ⇒ outfi monad, where for each f , ar(f) is the arity of f ,
and monad is the common monad. For g there will only be one input,
and this input has type (inf1) + . . . + (infn): each sequence of input types
ini,1, . . . , ini,ar(fi) is first transformed into a single argument of type (infi) :=
ini,1 × . . . × ini,ar(fi), and afterwards the sum type is used to distinguish
between the inputs of the individual functions. Similarly, the output type
of g will be (outf1 + . . . + outfn) monad. Note that we did not choose
outf1 monad + . . . + outfnmonad as output of g as it is not monadic, and
thus, g would not be definable via partial-function.

Next, we define g via a single equation which can then be passed to
partial-function. Here, we have to

2

• convert between tuples and sequences of arguments via currying and
uncurrying. To this end, we use the predefined curry-function for cur-
rying and for uncurrying we perform pattern matching in expressions
like λ(xs).h −→xs which take a tuple of variables as argument and then
feed these variables sequentially to some function h.

• convert between argument and sum-types. To this end, we use con-
structors inji of type αi ⇒ α1+ . . .+αi+ . . . αn, and destructors proji
which work in exactly the opposite direction. Moreover, we perform
case-analyses via pattern matching on the inji’s. Note that internally
each inji is encoded via repeated usage of the constructors Inl and Inr
of Isabelle/HOL’s sum-type, and similarly we nest Projl and Projr to
encode arbitrary proji-functions.

• work within the monad to combine the various result types into a single
one. To this end, we demand that there is some map-monad-function
which lifts an operation α ⇒ β to a function of type α monad ⇒
β monad. In general, these mappings may also take several functions
as input, depending on the number of type-variables of the monad-
constructor. For each kind of monad that should be supported by our
method, a user-defined map-monad function can be registered. It is
important, to also register a monotonicity lemma of each map-monad
function within the partial function package. Otherwise, monotonicity
proofs for g will most likely fail.

Putting everything together, we setup the following equation

g x = case x of

inj1xst ⇒ map-monad inj1 ((λ(xs).F1

−→
fs′ −→xs) xst)

| . . . (3)

| injnxst ⇒ map-monad injn ((λ(xs).Fn

−→
fs′ −→xs) xst)

where
−→
fs′ is the sequence of abbreviations f ′

1, . . . , f ′
n and where

f ′
i = curry (λxst. map-monad proji (g (inji xst))) (4)

Once, g has been defined using partial-function, we obtain Equality (3) as
a theorem. Afterwards, it is easy to define

fi = curry (λxst. map-monad proji (g (inji xst))) (5)

and it remains to derive the equations in (2) as theorems. To this end, first
note the difference in (4) and (5). In the former, g is a free variable which
should be defined as a constant at that point, whereas g is already the newly
defined constant in (5). Obviously, at this point one can now replace the

3

abbreviations (4) in Equation (3) by the real constants fi via the defining
equations (5). This yields the following modified theorem for g where now
−→fs is the sequence f1, . . . , fn.

g x = case x of

inj1xst ⇒ map-monad inj1 ((λ(xs).F1
−→fs −→xs) xst)

| . . . (6)

| injnxst ⇒ map-monad injn ((λ(xs).Fn
−→fs −→xs) xst)

Now it is indeed easy to derive the desired equations in (2):

fi
−→xs (5)

= (curry (λxst. map-monad proji (g (inji xst)))) −→xs
(?)
= map-monad proji (g (inji (−→xs))))
(6)
= map-monad proji (map-monad inji (Fi

−→fs −→xs))
(??)
= Fi

−→fs −→xs

Here, (?) used the definition of curry and splitting of tuples, and for (??)
we demand that map-monad is compositional and that map-monad applied
on the identity function is the identity function itself.

2 Implementation

2.1 Known limitations

• The method does only provide equational theorems. It does not con-
vert the induction rule for the global function g from the partial func-
tion command into an induction rule for the set of mutually recursive
functions.

theory Partial-Function-MR
imports Main
keywords partial-function-mr :: thy-decl
begin

2.2 Register the partial-function-mr command
ML-file ‹partial-function-mr .ML›

2.3 Register the "option"-monad
Obviously, the map-function for the option-monad is map-option.

4

First, derive the required identity lemma.
lemma option-map-id: map-option (λ x. x) x = x

by (cases x, auto)

Second, register map-option as being monotone.
lemma option-map-mono[partial-function-mono]:

assumes mf : mono-option B
shows mono-option (λf . map-option h (B f))

proof (rule monotoneI)
fix f g :: ′a ⇒ ′b option assume fg: fun-ord option-ord f g
with mf
have option-ord (B f) (B g) by (rule monotoneD[of - - - f g])
then show option-ord (map-option h (B f)) (map-option h (B g))

unfolding flat-ord-def by auto
qed

And finally perform the registration. We need

• a constructor for map: it takes a monadic term mt of type mtT, a list
of functions t-to-ss with corresponding types in t-to-sTs, a resulting
monadic type msT, and it should return a monad term ms of type msT
which is obtained by applying the functions on mt. Although for the
option-monad, the lengths of the lists will always be one, there might
be more elements for monads having more than one type-parameter.

• a function to perform type-construction for monads: it takes a list of
fixed parameters and a list of flexible parameters and has to construct
a monadic type out of these parameters. The user can freely choose
which parameters should be fixed, and which are flexible. Only flexible
parameters can be changes in the return type of each set of mutual
recursive functions. Since in the option-monad we would like to be able
to change the type-parameter, we ignore the fixed parameters here.

• a function to deconstruct monadic types into fixed and flexible type
arguments.

• a compositionality theorem of the form map f (map g x) = map (f ◦
g) x

• an identity theorem of the form map (λx. x) m = m

declaration ‹Partial-Function-MR.init
option
(fn (mt, t-to-ss, mtT , msT , t-to-sTs) =>

list-comb (Const (@{const-name map-option}, t-to-sTs −−−> mtT −−>
msT), t-to-ss) $ mt)
(fn (-,argTs) => Type (@{type-name option}, argTs))
(fn mT => ([],Term.dest-Type mT |> #2))

5

@{thms option.map-comp}
@{thms option-map-id}

›

2.4 Register the "tailrec"-monad
For the "tailrec"-monad (which is the identity monad) we take the identity
function as map, there are no flexible parameters, and the monadic type
itself is the (only) fixed argument. As a consequence, we can only define
tail-recursive and mutual recursive functions which share the same return
type.
declaration ‹Partial-Function-MR.init

tailrec
(fn (mt, t-to-ss, mtT , msT , t-to-sTs) => mt)
(fn (commonT ,-) => hd commonT)
(fn mT => ([mT],[]))
[]
[]

›

end

3 Examples
theory Partial-Function-MR-Examples
imports

Partial-Function-MR
HOL−Library.Monad-Syntax
HOL.Rat

begin

3.1 Collatz function
In the following, we define the Collatz function, which is artificially encoded
via mutually recursive functions. As second argument we store the interme-
diate values. It is currently unknown whether this function is terminating
for all inputs or not.
partial-function-mr (tailrec) collatz and even-case and odd-case where

collatz (x :: int) xs =
(if (x ≤ 1) then rev (x # xs) else
(if (x mod 2 = 0) then even-case x (x # xs)
else odd-case x xs))

| even-case x xs = collatz (x div 2) xs
| [simp]: odd-case x xs = collatz (3 ∗ x + 1) (x # xs)

The equations are registered as code-equations.
lemma length (collatz 327 []) = 144 by eval

6

The equations are accessible via .simps, but are not put in the standard
simpset.
lemma collatz 5 [] = [5 ,16 ,8 ,4 ,2 ,1] by (simp add: collatz.simps even-case.simps)

3.2 Evaluating expressions
Note that we also provide a least fixpoint operator. Hence, the evaluation
function will clearly be partial. The example also illustrates the usage of
polymorphism and of different return types.

In the following datatype, Mu b f a encodes the least n such that b(fn(a)).
datatype ′a bexp =

BConst bool
| Less ′a aexp ′a aexp
| Eq ′a aexp ′a aexp
| And ′a bexp ′a bexp
and ′a aexp =

Plus ′a aexp ′a aexp
| Div ′a aexp ′a aexp
| IfThenElse ′a bexp ′a aexp ′a aexp
| AConst ′a
| Mu ′a ⇒ ′a bexp ′a ⇒ ′a aexp ′a aexp

partial-function-mr (option)
b-eval and a-eval and mu-eval where
b-eval bexp = (case bexp of

BConst b ⇒ Some b
| Less a1 a2 ⇒ do {

x1 ← a-eval a1 ;
x2 ← a-eval a2 ;
Some (x1 < x2)

}
| Eq a1 a2 ⇒ do {

x1 ← a-eval a1 ;
x2 ← a-eval a2 ;
Some (x1 = x2)

}
| And be1 be2 ⇒ do {

b1 ← b-eval be1 ;
b2 ← b-eval be2 ;
Some (b1 ∧ b2)

}
)
| a-eval aexp = (case aexp of

AConst x ⇒ Some x
| Plus a1 a2 ⇒ do {

x1 ← a-eval a1 ;
x2 ← a-eval a2 ;
Some (x1 + x2)

7

}
| Div a1 a2 ⇒ do {

x1 ← a-eval a1 ;
x2 ← a-eval a2 ;
if (x2 = 0) then None else Some (x1 / x2)

}
| IfThenElse bexp a1 a2 ⇒ do {

b ← b-eval bexp;
(if b then a-eval a1 else a-eval a2)

}
| Mu b f a ⇒ do {

mu-eval b f a 0
}

)
| mu-eval b f a n = do {

x ← a-eval a;
check ← b-eval (b x);
(if check then Some (of-nat n) else
mu-eval b f (f x) (Suc n))

}

definition
five-minus-two = a-eval (Mu (λ x. Eq (AConst 5) (AConst x)) (λ x. Plus (AConst

x) (AConst 1)) (AConst (2 :: rat)))

value five-minus-two

3.3 An example with contexts
Mutual recursive partial functions also work within contexts.
context

fixes y :: int
begin
partial-function-mr (tailrec) foo and bar where

foo x = (if x = y then foo (x − 1) else (bar x (y − 1)))
| bar x z = foo (x + (1 :: int) + y)
end

end

References
[1] A. Krauss. Recursive definitions of monadic functions. In Proc. of the

International Workshop on Partiality and Recursion in Interactive The-
orem Proving, volume 43 of EPTCS, pages 1–13, 2010. doi:10.4204/
EPTCS.43.1.

8

http://dx.doi.org/10.4204/EPTCS.43.1
http://dx.doi.org/10.4204/EPTCS.43.1

	Introduction
	Implementation
	Known limitations
	Register the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 partial-function-mr command
	Register the "option"-monad
	Register the "tailrec"-monad

	Examples
	Collatz function
	Evaluating expressions
	An example with contexts

