Positional Determinacy of Parity Games

Christoph Dittmann
christoph.dittmann@tu-berlin.de

September 13, 2023

Abstract

We present a formalization of parity games (a two-player game on directed graphs) and a proof of their positional determinacy in Isabelle/HOL. This proof works for both finite and infinite games. We follow the proof in [2], which is based on [5].

Contents

1 Introduction 4
1.1 Formal Introduction 4
1.2 Overview 4
1.3 Technical Aspects 5
2 Auxiliary Lemmas for Coinductive Lists 5
2.1 lset 5
2.2 llength 6
2.3 ltake 6
2.4 ldropn 7
2.5 lfinite 7
2.6 lmap 8
2.7 Notation 8
3 Parity Games 8
3.1 Basic definitions 8
3.2 Graphs 9
3.3 Valid Paths 9
3.4 Maximal Paths 11
3.5 Parity Games 12
3.6 Sets of Deadends 13
3.7 Subgames 13
3.8 Priorities Occurring Infinitely Often 15
3.9 Winning Condition 16
3.10 Valid Maximal Paths 18
4 Positional Strategies 20
4.1 Definitions 20
4.2 Strategy-Conforming Paths 20
4.3 An Arbitrary Strategy 20
4.4 Valid Strategies 21
4.5 Conforming Strategies 22
4.6 Greedy Conforming Path 25
4.7 Valid Maximal Conforming Paths 28
4.8 Valid Maximal Conforming Paths with One Edge 29
4.9 lset Induction Schemas for Paths 30
5 Attracting Strategies 31
5.1 Paths Visiting a Set 31
5.2 Attracting Strategy from a Single Node 32
5.3 Attracting strategy from a set of nodes 35
6 Attractor Sets 38
6.1 directly-attracted 38
6.2 attractor-step 38
6.3 Basic Properties of an Attractor 39
6.4 Attractor Set Extensions 39
6.5 Removing an Attractor 39
6.6 Attractor Set Induction 40
7 Winning Strategies 41
7.1 Deadends 42
7.2 Extension Theorems 43
8 Well-Ordered Strategy 44
8.1 Strategies on a Path 46
8.2 Eventually One Strategy 48
9 Winning Regions 49
9.1 Paths in Winning Regions 50
9.2 Irrelevant Updates 51
9.3 Extending Winning Regions 51
10 Uniform Strategies 52
10.1 A Uniform Attractor Strategy 52
10.2 A Uniform Winning Strategy 54
10.3 Extending Winning Regions 56
11 Attractor Strategies 56
11.1 Existence 58
12 Positional Determinacy of Parity Games 58
12.1 Induction Step 59
12.2 Positional Determinacy without Deadends 67
12.3 Positional Determinacy with Deadends 67
12.4 The Main Theorem: Positional Determinacy 70
13 Defining the Attractor with inductive_set 70
13.1 attractor-inductive 70
14 Compatibility with the Graph Theory Package 72
14.1 To Graph Theory 72
14.2 From Graph Theory 72
14.3 Isomorphisms 73
Bibliography 75

1 Introduction

Parity games are games played by two players, called Even and Odd, on labelled directed graphs. Each node is labelled with their player and with a natural number, called its priority.

To call this a parity game, we only need to assume that the number of different priorities is finite. Of course, this condition is only relevant on infinite graphs.

One reason parity games are important is that determining the winner is polynomial-time equivalent to the model-checking problem of the modal μ-calculus, a logic able to express LTL and CTL* properties ([1]).

1.1 Formal Introduction

Formally, a parity game is $G=\left(V, E, V_{0}, \omega\right)$, where (V, E) is a directed graph, $V_{0} \subseteq V$ is the set of Even nodes, and $\omega: V \rightarrow \mathbb{N}$ is a function with $|f(V)|<\infty$.

A play is a maximal path in G. A finite play is winning for Even iff the last node is not in V_{0}. An infinite play is winning for Even iff the minimum priority occurring infinitely often on the path is even. On an infinite path at least one priority occurs infinitely often because there is only a finite number of different priorities.

A node v is winning for a player p iff all plays starting from v are winning for p. It is well-known that parity games are determined, that is, every node is winning for some player.

A more surprising property is that parity games are also positionally determined. This means that for every node v winning for Even, there is a function $\sigma: V_{0} \rightarrow V$ such that all Even needs to do in order to win from v is to consult this function whenever it is his turn (similarly if v is winning for ODD). This is also called a positional strategy for the winning player.

We define the winning region of player p as the set of nodes from which player p has positional winning strategies. Positional determinacy then says that the winning regions of Even and of Odd partition the graph.

See [3] for a modern survey on positional determinacy of parity games. Their proof is based on a proof by Zielonka [5].

1.2 Overview

Here we formalize the proof from [2] in Isabelle/HOL. This proof is similar to the proof in [3], but we do not explicitly define so-called " σ-traps". Using σ-traps could be worth exploring, because it has the potential to simplify our formalization.

Our proof has no assumptions except those required by every parity game. In particular the parity game

- may have arbitrary cardinality,
- may have loops,
- may have deadends, that is, nodes with no successors.

The main theorem is in section 12.4.

1.3 Technical Aspects

We use a coinductive list of nodes to represent paths in a graph because this gives us a uniform representation for finite and infinite paths. We can then express properties such as that a path is maximal or conforms to a given strategy directly as coinductive properties. We use the coinductive list developed by Lochbihler in [4].

We also explored representing paths as functions nat \Rightarrow 'a option with the property that the domain is an initial segment of nat (and where ' a is the node type). However, it turned out that coinductive lists give simpler proofs.

It is possible to represent a graph as a function ${ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow b o o l$, see for example in the proof of König's lemma in [4]. However, we instead go for a record which contains a set of nodes and a set of edges explicitly. By not requiring that the set of nodes is UNIV :: 'a set but rather a subset of $U N I V::$ 'a set, it becomes easier to reason about subgraphs.
Another point is that we make extensive use of locales, in particular to represent maximal paths conforming to a specific strategy. Thus proofs often start with interpret vmc-path G $P v_{0} p \sigma$ to say that P is a valid maximal path in the graph G starting in v_{0} and conforming to the strategy σ for player p.

2 Auxiliary Lemmas for Coinductive Lists

Some lemmas to allow better reasoning with coinductive lists.

```
theory MoreCoinductiveList
imports
    Main
    Coinductive.Coinductive-List
begin
```

2.1 lset
lemma lset-lnth: $x \in$ lset $x s \Longrightarrow \exists n$. lnth xs $n=x$
by (induct rule: llist.set-induct, meson lnth-0, meson lnth-Suc-LCons)
lemma lset-lnth-member: \llbracket lset $x s \subseteq A$; enat $n<$ llength xs $\rrbracket \Longrightarrow$ lnth xs $n \in A$
using contra-subsetD[of lset xs A] in-lset-conv-lnth[of - xs] by blast
lemma lset-nth-member-inf: $\llbracket \neg$ lfinite xs; lset $x s \subseteq A \rrbracket \Longrightarrow$ lnth $x s ~ n \in A$
by (metis contra-subsetD inf-llist-lnth lset-inf-llist rangeI)
lemma lset-intersect-lnth: lset xs $\cap A \neq\{ \} \Longrightarrow \exists$ n. enat $n<$ llength $x s \wedge$ lnth $x s n \in A$
by (metis disjoint-iff-not-equal in-lset-conv-lnth)
lemma lset-ltake-Suc:
assumes \neg lnull xs lnth xs $0=x$ lset $($ ltake $($ enat $n)(l t l x s)) \subseteq A$
shows lset (ltake (enat (Suc n)) xs) \subseteq insert x A
proof-
have lset (ltake (eSuc (enat n)) (LCons $x($ ltl $x s))) \subseteq$ insert $x A$
using assms(3) by auto
moreover from assms $(1,2)$ have LCons $x(l t l x s)=x s$
by (metis lnth-0 ltl-simps(2) not-lnull-conv)

```
    ultimately show ?thesis by (simp add: eSuc-enat)
qed
lemma lfinite-lset:lfinite xs \Longrightarrow \neglnull xs \Longrightarrow llast xs }\in\mathrm{ lset xs
proof (induct rule: lfinite-induct)
    case (LCons xs)
    show ?case proof (cases)
    assume *: \neglnull (ltl xs)
    hence llast (ltl xs) \in lset (ltl xs) using LCons.hyps(3) by blast
    hence llast (ltl xs) \in lset xs by (simp add: in-lset-ltlD)
    thus ?thesis by (metis * LCons.prems lhd-LCons-ltl llast-LCons2)
    qed (metis LCons.prems lhd-LCons-ltl llast-LCons llist.set-sel(1))
qed simp
lemma lset-subset: }\neg(\mathrm{ lset xs }\subseteqA)\Longrightarrow\existsn. enat n<llength xs ^lnth xs n #A
    by (metis in-lset-conv-lnth subsetI)
```


2.2 llength

```
lemma enat-Suc-ltl:
assumes enat (Suc n) < llength xs
    shows enat n < llength (ltl xs)
proof-
    from assms have eSuc (enat n) < llength xs by (simp add: eSuc-enat)
    hence enat n < epred (llength xs) using eSuc-le-iff ileI1 by fastforce
    thus ?thesis by (simp add: epred-llength)
qed
lemma enat-ltl-Suc: enat n < llength (ltl xs)\Longrightarrow enat (Suc n) < llength xs
    by (metis eSuc-enat ldrop-ltl leD leI lnull-ldrop)
lemma infinite-small-llength [intro]: ᄀlfinite xs \Longrightarrow enat n < llength xs
    using enat-iless lfinite-conv-llength-enat neq-iff by blast
lemma lnull-0-llength: \neglnull xs \Longrightarrow enat 0 < llength xs
    using zero-enat-def by auto
lemma Suc-llength: enat (Suc n) < llength xs \Longrightarrow enat n < llength xs
    using dual-order.strict-trans enat-ord-simps(2) by blast
```


2.3 ltake

lemma ltake-lnth: ltake $n x s=$ ltake $n y s \Longrightarrow$ enat $m<n \Longrightarrow$ lnth $x s m=$ lnth ys m by (metis lnth-ltake)
lemma lset-ltake-prefix $[$ simp $]: n \leq m \Longrightarrow$ lset (ltake n xs) \subseteq lset (ltake m xs) by (simp add: lprefix-lsetD)
lemma lset-ltake: $(\bigwedge m . m<n \Longrightarrow$ lnth $x s ~ m \in A) \Longrightarrow$ lset (ltake (enat n) $x s) \subseteq A$ proof (induct n arbitrary: xs)
case 0
have ltake (enat 0) xs =LNil by (simp add: zero-enat-def)

```
    thus ?case by simp
next
    case (Suc n)
    show ?case proof (cases)
        assume xs \not= LNil
        then obtain x xs'' where xs: xs =LCons x xs'' by (meson neq-LNil-conv)
        { fix m assume m<n
        hence Suc m < Suc n by simp
        hence lnth xs (Suc m)\inA using Suc.prems by presburger
        hence lnth xs' }m\inA\mathrm{ using xs by simp
    }
        hence lset (ltake (enat n) xs')\subseteqA using Suc.hyps by blast
        moreover have ltake (enat (Suc n)) xs = LCons x (ltake (enat n) xs')
            using xs ltake-eSuc-LCons[of - x xs'] by (metis (no-types) eSuc-enat)
        moreover have x\inA using Suc.prems xs by force
        ultimately show ?thesis by simp
    qed simp
qed
```

lemma llength-ltake': enat $n<$ llength $x s \Longrightarrow$ llength (ltake (enat n) xs) $=$ enat n
by (metis llength-ltake min.strict-order-iff)
lemma llast-ltake:
assumes enat (Suc n) < llength xs
shows llast (ltake (enat (Suc n)) xs) = lnth xs n (is llast ? $A=-$)
unfolding llast-def using llength-ltake ${ }^{\prime}$ OF assms] by (auto simp add: lnth-ltake)
lemma lset-ltake-ltl:lset (ltake (enat $n)(l t l$ xs $)) \subseteq l s e t(l t a k e ~(e n a t ~(S u c ~ n)) ~ x s) ~$
proof (cases)
assume \neg lnull xs
then obtain $v 0$ where $x s=L C o n s v 0(l t l x s)$ by (metis lhd-LCons-ltl)
hence ltake (eSuc (enat n)) xs = LCons v0 (ltake (enat n) (ltl xs))
by (metis ltake-eSuc-LCons)
hence lset (ltake (enat (Suc n)) xs) = lset (LCons v0 (ltake (enat n) (ltl xs)))
by (simp add: eSuc-enat)
thus ?thesis using lset-LCons[of v0 ltake (enat n) (ltl xs)] by blast
qed (simp add: lnull-def)

2.4 ldropn

lemma ltl-ldrop: $\llbracket \bigwedge x s . P x s \Longrightarrow P(l t l x s) ; P x s \rrbracket \Longrightarrow P(l d r o p n n x s)$
unfolding ldropn-def by (induct n) simp-all

2.5 linite

lemma lfinite-drop-set: lfinite $x s \Longrightarrow \exists n . v \notin$ lset (ldrop $n x s$)
by (metis ldrop-inf lmember-code(1) lset-lmember)
lemma index-infinite-set:
$\llbracket \neg l$ finite $x ;$ lnth $x m=y ; \bigwedge i$. lnth $x i=y \Longrightarrow(\exists m>i$. lnth $x m=y) \rrbracket \Longrightarrow y \in \operatorname{lset}$ (ldropn n x)
proof (induct n arbitrary: x m)

```
    case 0 thus ?case using lset-nth-member-inf by auto
next
    case (Suc n)
    obtain a xs where x: x=LCons a xs by (meson Suc.prems(1) lnull-imp-lfinite not-lnull-conv)
    obtain j where j:j>m lnth x j = y using Suc.prems(2,3) by blast
    have lnth xs (j-1) = y by (metis lnth-LCons' j(1,2) not-less0 x)
    moreover {
        fix i assume lnth xs i=y
        hence lnth x (Suc i) = y by (simp add: x)
        hence }\existsj>i\mathrm{ . lnth xs j=y by (metis Suc.prems(3) Suc-lessE lnth-Suc-LCons x)
    }
    ultimately show ?case using Suc.hyps Suc.prems(1) x by auto
qed
2.6 lmap
lemma lnth-lmap-ldropn:
enat \(n<\) llength \(x s \Longrightarrow \operatorname{lnth}(\operatorname{lmap} f(\operatorname{ldropn} n x s)) 0=\operatorname{lnth}(\operatorname{lmap} f x s) n\)
by (simp add: lhd-ldropn lnth-0-conv-lhd)
lemma lnth-lmap-ldropn-Suc:
enat \((\) Suc \(n)<\) llength \(x s \Longrightarrow \operatorname{lnth}(\operatorname{lmap} f(l d r o p n n x s))(S u c 0)=\operatorname{lnth}(\operatorname{lmap} f x s)(S u c n)\)
by (metis (no-types, lifting) Suc-llength ldropn-ltl leD llist.map-disc-iff lnth-lmap-ldropn lnth-ltl lnull-ldropn ltl-ldropn ltl-lmap)
```


2.7 Notation

We introduce the notation $\$$ to denote $\ln t h$.
notation lnth (infix \$ 61)
end

3 Parity Games

theory ParityGame
imports
Main
MoreCoinductiveList
begin

3.1 Basic definitions

' a is the node type. Edges are pairs of nodes.
type-synonym 'a Edge $=$ ' $a \times{ }^{\prime} a$
A path is a possibly infinite list of nodes.
type-synonym 'a Path $=$ ' a llist

3.2 Graphs

We define graphs as a locale over a record. The record contains nodes (AKA vertices) and edges. The locale adds the assumption that the edges are pairs of nodes.
record 'a Graph $=$
verts :: 'a set (V_{1})
arcs :: 'a Edge set (E1)
abbreviation is-arc :: ('a, 'b) Graph-scheme $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool (infixl $\rightarrow 160$) where $v \rightarrow_{G} w \equiv(v, w) \in E_{G}$
locale Digraph $=$
fixes G (structure)
assumes valid-edge-set: $E \subseteq V \times V$
begin
lemma edges-are-in- V [intro]: $v \rightarrow w \Longrightarrow v \in V v \rightarrow w \Longrightarrow w \in V$ using valid-edge-set by blast+
A node without successors is a deadend.
abbreviation deadend $::{ }^{\prime} a \Rightarrow$ bool where deadend $v \equiv \neg(\exists w \in V . v \rightarrow w)$

3.3 Valid Paths

We say that a path is valid if it is empty or if it starts in V and walks along edges.
coinductive valid-path :: ' a Path \Rightarrow bool where
valid-path-base: valid-path LNil
| valid-path-base': $v \in V \Longrightarrow$ valid-path (LCons v LNil)
| valid-path-cons: $\llbracket v \in V ; w \in V ; v \rightarrow w ;$ valid-path Ps; $\neg l n u l l$ Ps; lhd Ps $=w \rrbracket$ \Longrightarrow valid-path (LCons vPs)
inductive-simps valid-path-cons-simp: valid-path (LCons x xs)
lemma valid-path-ltl': valid-path (LCons vPs) \Longrightarrow valid-path Ps using valid-path.simps by blast
lemma valid-path-ltl: valid-path $P \Longrightarrow$ valid-path (ltl P)
by (metis llist.exhaust-sel ltl-simps(1) valid-path-ltl')
lemma valid-path-drop: valid-path $P \Longrightarrow$ valid-path (ldropn $n P$)
by (simp add: valid-path-ltl ltl-ldrop)
lemma valid-path-in- V : assumes valid-path P shows lset $P \subseteq V$ proof
fix x assume $x \in l$ set P thus $x \in V$
using assms by (induct rule: llist.set-induct) (auto intro: valid-path.cases)
qed
lemma valid-path-finite-in- $V: \llbracket$ valid-path P; enat $n<$ llength $P \rrbracket \Longrightarrow P \$ n \in V$
using valid-path-in-V lset-lnth-member by blast
lemma valid-path-edges': valid-path (LCons $v($ LCons wPs)) $\Longrightarrow v \rightarrow w$
using valid-path.cases by fastforce
lemma valid-path-edges:
assumes valid-path P enat (Suc n) < llength P
shows $P \$ n \rightarrow P \$$ Suc n
proof -

```
    define \(P^{\prime}\) where \(P^{\prime}=l d r o p n\) n \(P\)
    have enat \(n<\) llength \(P\) using assms(2) enat-ord-simps(2) less-trans by blast
    hence \(P^{\prime} \$ 0=P \$ n\) by ( \(\operatorname{simp}\) add: \(P^{\prime}\)-def)
    moreover have \(P^{\prime} \$\) Suc \(0=P \$\) Suc \(n\)
    by (metis One-nat-def \(P^{\prime}\)-def Suc-eq-plus1 add.commute assms(2) lnth-ldropn)
    ultimately have \(\exists P s . P^{\prime}=L\) Cons \((P \$ n)(\) LCons \((P \$\) Suc n) Ps)
    by (metis \(P^{\prime}\)-def 〈enat \(n<\) llength \(P\) 〉assms(2) ldropn-Suc-conv-ldropn)
    moreover have valid-path \(P^{\prime}\) by (simp add: \(P^{\prime}\)-def assms(1) valid-path-drop)
    ultimately show ?thesis using valid-path-edges' by blast
qed
lemma valid-path-coinduct [consumes 1, case-names base step, coinduct pred: valid-path]:
    assumes major: \(Q P\)
        and base: \(\bigwedge v P . Q(\) LCons \(v\) LNil \() \Longrightarrow v \in V\)
        and step: \(\bigwedge v w P . Q(L C o n s v(L C o n s w P)) \Longrightarrow v \rightarrow w \wedge(Q(\) LCons \(w P) \vee\) valid-path (LCons
    \(w P)\) )
    shows valid-path \(P\)
using major proof (coinduction arbitrary: \(P\) )
    case valid-path
    \{ assume \(P \neq\) LNil \(\neg(\exists v . P=\) LCons \(v\) LNil \(\wedge v \in V)\)
        then obtain \(v w P^{\prime}\) where \(P=L\) Cons \(v\) (LCons w \(P^{\prime}\) )
            using neq-LNil-conv base valid-path by metis
        hence ?case using step valid-path by auto
    \}
    thus ?case by blast
qed
lemma valid-path-no-deadends:
    【 valid-path P; enat (Suc i) <llength \(P \rrbracket \Longrightarrow \neg\) deadend \((P \$ i)\)
    using valid-path-edges by blast
lemma valid-path-ends-on-deadend:
    \(\llbracket\) valid-path \(P\); enat \(i<\) llength \(P\); deadend \((P \$ i) \rrbracket \Longrightarrow\) enat \((S u c i)=\) llength \(P\)
    using valid-path-no-deadends by (metis enat-iless enat-ord-simps(2) neq-iff not-less-eq)
lemma valid-path-prefix: 【 valid-path \(P\); lprefix \(P^{\prime} P \rrbracket \Longrightarrow\) valid-path \(P^{\prime}\)
proof (coinduction arbitrary: \(P^{\prime} P\) )
    case (step \(v\) w \(P^{\prime \prime} P^{\prime} P\) )
    then obtain Ps where Ps: LCons \(v\) (LCons w Ps) \(=P\) by (metis LCons-lprefix-conv)
    hence valid-path (LCons w Ps) using valid-path-ltl' step(2) by blast
    moreover have lprefix (LCons w \(P^{\prime \prime}\) ) (LCons w Ps) using Ps step \((1,3)\) by auto
    ultimately show ?case using Ps step(2) valid-path-edges' by blast
qed (metis LCons-lprefix-conv valid-path-cons-simp)
lemma valid-path-lappend:
    assumes valid-path \(P\) valid-path \(P^{\prime} \llbracket \neg\) lnull \(P ; \neg\) lnull \(P^{\prime} \rrbracket \Longrightarrow\) llast \(P \rightarrow\) lhd \(P^{\prime}\)
    shows valid-path (lappend \(P P^{\prime}\) )
proof (cases, cases)
    assume \(\neg\) lnull \(P \neg\) lnull \(P^{\prime}\)
    thus ?thesis using assms proof (coinduction arbitrary: \(P^{\prime} P\) )
        case (step \(v\) w \(P^{\prime \prime} P^{\prime} P\) )
        show ?case proof (cases)
```

```
        assume lnull (ltl P)
        thus ?case using step (1,2,3,5,6)
            by (metis lhd-LCons lhd-LCons-ltl lhd-lappend llast-singleton
                    llist.collapse(1) ltl-lappend ltl-simps(2))
    next
        assume }\neg\mathrm{ lnull (ltl P)
        moreover have ltl (lappend P P') = lappend (ltl P) P' using step(2) by simp
        ultimately show ?case using step
        by (metis (no-types, lifting)
            lhd-LCons lhd-LCons-ltl lhd-lappend llast-LCons ltl-simps(2)
            valid-path-edges' valid-path-ltl)
        qed
    qed (metis llist.disc(1) lnull-lappend ltl-lappend ltl-simps(2))
qed (simp-all add: assms(1,2) lappend-lnull1 lappend-lnull2)
A valid path is still valid in a supergame.
lemma valid-path-supergame:
assumes valid-path \(P\) and \(G^{\prime}:\) Digraph \(G^{\prime} V \subseteq V_{G^{\prime}} E \subseteq E_{G^{\prime}}\)
shows Digraph.valid-path \(G^{\prime} P\)
using <valid-path \(P\) 〉proof (coinduction arbitrary: \(P\)
rule: Digraph.valid-path-coinduct \(\left[\right.\) OF \(G^{\prime}(1)\), case-names base step \(\left.]\right)\)
case base thus ?case using \(G^{\prime}(2)\) valid-path-cons-simp by auto
qed (meson \(G^{\prime}(3)\) subset-eq valid-path-edges' valid-path-ltl')
```


3.4 Maximal Paths

We say that a path is maximal if it is empty or if it ends in a deadend.

```
coinductive maximal-path where
    maximal-path-base: maximal-path LNil
| maximal-path-base': deadend v\Longrightarrow maximal-path (LCons v LNil)
| maximal-path-cons: \neglnull Ps \Longrightarrow maximal-path Ps \Longrightarrow maximal-path (LCons v Ps)
lemma maximal-no-deadend: maximal-path (LCons v Ps) \Longrightarrow \negdeadend v \Longrightarrow \neglnull Ps
    by (metis lhd-LCons llist.distinct(1) ltl-simps(2) maximal-path.simps)
lemma maximal-ltl: maximal-path P \Longrightarrow maximal-path (ltl P)
    by (metis ltl-simps(1) ltl-simps(2) maximal-path.simps)
lemma maximal-drop: maximal-path P\Longrightarrow maximal-path (ldropn n P)
    by (simp add: maximal-ltl ltl-ldrop)
lemma maximal-path-lappend:
    assumes }\neg\mathrm{ lnull P' maximal-path P'
    shows maximal-path (lappend P P')
proof (cases)
    assume \neglnull P
    thus ?thesis using assms proof (coinduction arbitrary: P' P rule: maximal-path.coinduct)
        case (maximal-path P' P)
        let ?P = lappend P P'
        show ?case proof (cases ?P = LNil \vee ( \existsv.?P = LCons v LNil ^ deadend v))
            case False
            then obtain Ps v where P:?P=LCons v Ps by (meson neq-LNil-conv)
            hence Ps = lappend (ltl P) P' by (simp add: lappend-ltl maximal-path(1))
```

```
            hence \existsPs1 P'. Ps = lappend Ps1 P'^ \neglnull P' ^ maximal-path P'
            using maximal-path(2) maximal-path(3) by auto
            thus ?thesis using P lappend-lnull1 by fastforce
    qed blast
    qed
qed (simp add: assms(2) lappend-lnull1[of P P `])
lemma maximal-ends-on-deadend:
    assumes maximal-path P lfinite P }\neg\mathrm{ lnull P
    shows deadend (llast P)
proof-
    from 〈lfinite P>\langle\neglnull P> obtain n where n: llength P = enat (Suc n)
        by (metis enat-ord-simps(2) gr0-implies-Suc lfinite-llength-enat lnull-0-llength)
    define }\mp@subsup{P}{}{\prime}\mathrm{ where }\mp@subsup{P}{}{\prime}=ldropn n P
    hence maximal-path P' using assms(1) maximal-drop by blast
    thus ?thesis proof (cases rule: maximal-path.cases)
        case (maximal-path-base' v)
        hence deadend (llast P') unfolding P'-def by simp
        thus ?thesis unfolding P'-def using llast-ldropn[of n P] n
            by (metis P'-def ldropn-eq-LConsD local.maximal-path-base'(1))
    next
        case (maximal-path-cons P'/ v)
        hence ldropn (Suc n) P= P'\prime unfolding P'-def by (metis ldrop-eSuc-ltl ltl-ldropn ltl-simps(2))
        thus ?thesis using n maximal-path-cons(2) by auto
    qed (simp add: P'-def n ldropn-eq-LNil)
qed
lemma maximal-ends-on-deadend': \llbracket lfinite P; deadend (llast P)\rrbracket\Longrightarrow maximal-path P
proof (coinduction arbitrary: P rule: maximal-path.coinduct)
    case (maximal-path P)
    show ?case proof (cases)
        assume P}\not=LN\mp@code{L
        then obtain v P' where P}\mp@subsup{P}{}{\prime}:P=LCons v P' by (meson neq-LNil-conv
        show ?thesis proof (cases)
            assume P' = LNil thus ?thesis using P' maximal-path(2) by auto
        qed (metis P'lfinite-LCons llast-LCons llist.collapse(1) maximal-path(1,2))
    qed simp
qed
lemma infinite-path-is-maximal: \llbracket valid-path P; ᄀlfinite P \rrbracket \Longrightarrow maximal-path P
    by (coinduction arbitrary: P rule: maximal-path.coinduct)
        (cases rule: valid-path.cases, auto)
end - locale Digraph
```


3.5 Parity Games

```
Parity games are games played by two players, called Even and Odd.
datatype Player \(=\) Even \(\mid\) Odd
abbreviation other-player \(p \equiv\) (if \(p=\) Even then Odd else Even)
```

notation other-player ((-**) [1000] 1000)
lemma other-other-player [simp]: $p * * * *=p$ using Player.exhaust by auto
A parity game is tuple $\left(V, E, V_{0}, \omega\right)$, where (V, E) is a graph, $V_{0} \subseteq V$ and ω is a function from $V \rightarrow \mathbb{N}$ with finite image.

```
record 'a ParityGame \(=\) 'a Graph +
    player0 :: 'a set (V01)
    priority :: ' \(a \Rightarrow\) nat ( \(\omega_{1}\) )
```

locale ParityGame $=$ Digraph G for $G::\left({ }^{\prime} a,{ }^{\prime} b\right)$ ParityGame-scheme (structure) +
assumes valid-player0-set: V0 $\subseteq V$
and priorities-finite: finite (ω ‘ V)
begin
$V V p$ is the set of nodes belonging to player p.
abbreviation $V V::$ Player \Rightarrow 'a set where $V V p \equiv($ if $p=$ Even then $V 0$ else $V-V 0)$
lemma $V V p$-to- V [intro]: $v \in V V p \Longrightarrow v \in V$ using valid-player0-set by (cases p) auto
lemma $V V$-impl1: $v \in V V p \Longrightarrow v \notin V V p * *$ by auto
lemma $V V$-impl2: $v \in V V p * * \Longrightarrow v \notin V V p$ by auto
lemma $V V$-equivalence [iff]: $v \in V \Longrightarrow v \notin V V p \longleftrightarrow v \in V V p * *$ by auto
lemma $V V$-cases [consumes 1]: $\llbracket v \in V ; v \in V V p \Longrightarrow P ; v \in V V p * * \Longrightarrow P \rrbracket \Longrightarrow P$ by auto

3.6 Sets of Deadends

definition deadends $p \equiv\{v \in V V p$. deadend $v\}$
lemma deadends-in- V : deadends $p \subseteq V$ unfolding deadends-def by blast

3.7 Subgames

We define a subgame by restricting the set of nodes to a given subset.

```
definition subgame where
    subgame \(V^{\prime} \equiv G(\)
        verts \(:=V \cap V^{\prime}\),
        arcs \(:=E \cap\left(V^{\prime} \times V^{\prime}\right)\),
        player0 \(\left.:=V 0 \cap V^{\prime}\right)\)
lemma subgame- \(V[\) simp \(]: V_{\text {subgame } V^{\prime}} \subseteq V\)
    and subgame- \(E[\) simp \(]: E_{\text {subgame }} V^{\prime} \subseteq E\)
    and subgame- \(\omega\) : \(\omega_{\text {subgame }} V^{\prime}=\omega\)
    unfolding subgame-def by simp-all
```


lemma

```
    assumes \(V^{\prime} \subseteq V\)
    shows subgame- \(V^{\prime}[\) simp \(]\) : \(V_{\text {subgame } V^{\prime}}=V^{\prime}\)
        and subgame- \(E^{\prime}[\) simp \(]\) : \(E_{\text {subgame } V^{\prime}}=E \cap\left(V_{\text {subgame } V^{\prime}} \times V_{\text {subgame } V^{\prime}}\right)\)
    unfolding subgame-def using assms by auto
lemma subgame- \(V V\) [simp]: ParityGame. \(V V\) (subgame \(V^{\prime}\) ) \(p=V^{\prime} \cap V V p\) proof-
    have ParityGame. \(V V\) (subgame \(V^{\prime}\) ) Even \(=V^{\prime} \cap V V\) Even unfolding subgame-def by auto
    moreover have ParityGame. \(V V\) (subgame \(V^{\prime}\) ) \(O d d=V^{\prime} \cap V V\) Odd proof-
```

```
    have V'\capV-(V0\cap V')= V'\capV\cap(V - V0) by blast
    thus ?thesis unfolding subgame-def by auto
    qed
    ultimately show ?thesis by simp
qed
corollary subgame-VV-subset [simp]: ParityGame.VV (subgame V') p\subseteqVV p by simp
lemma subgame-finite [simp]: finite ( }\mp@subsup{\omega}{\mathrm{ subgame }\mp@subsup{V}{}{\prime}`}{
    have finite ( }\omega\mathrm{ '`}\mp@subsup{V}{\mathrm{ subgame }\mp@subsup{V}{}{\prime}}{}\mathrm{ ) using subgame-V priorities-finite
        by (meson finite-subset image-mono)
    thus ?thesis by (simp add: subgame-def)
qed
lemma subgame-\omega-subset [simp]: \omega
    by (simp add: image-mono subgame-\omega)
    lemma subgame-Digraph: Digraph (subgame V')
    by (unfold-locales) (auto simp add: subgame-def)
    lemma subgame-ParityGame:
    shows ParityGame (subgame V')
    proof (unfold-locales)
    show E subgame V }\mp@subsup{V}{}{\prime}\subseteq\mp@subsup{V}{\mathrm{ subgame }\mp@subsup{V}{}{\prime}\times}{}\times\mp@subsup{V}{\mathrm{ subgame }\mp@subsup{V}{}{\prime}}{
        using subgame-Digraph[unfolded Digraph-def].
    show V0 subgame V'` V subqame V }\mp@subsup{V}{}{\prime}\mathrm{ unfolding subgame-def using valid-player0-set by auto
    show finite ( }\mp@subsup{\omega}{\mathrm{ subgame }\mp@subsup{V}{}{\prime}}{
    qed
    lemma subgame-valid-path:
    assumes P: valid-path P lset P}\subseteq\mp@subsup{V}{}{\prime
    shows Digraph.valid-path (subgame V')P
proof-
    have lset P\subseteqV using P(1) valid-path-in-V by blast
    hence lset P\subseteqV subgame V ' unfolding subgame-def using P(2) by auto
    with P(1) show ?thesis
    proof (coinduction arbitrary: P
        rule: Digraph.valid-path.coinduct[OF subgame-Digraph, case-names IH])
        case IH
        thus ?case proof (cases rule: valid-path.cases)
            case (valid-path-cons v w Ps)
            moreover hence v\in V subgame V 'w\in V subgame V ' using IH(2) by auto
```



```
            moreover have valid-path Ps using IH(1) valid-path-ltl' local.valid-path-cons(1) by blast
            ultimately show ?thesis using IH(2) by auto
        qed auto
    qed
qed
lemma subgame-maximal-path:
assumes \(V^{\prime}: V^{\prime} \subseteq V\) and \(P\) : maximal-path \(P\) lset \(P \subseteq V^{\prime}\)
```

```
    shows Digraph.maximal-path (subgame V') P
proof-
    have lset P\subseteqV V subgame V ' unfolding subgame-def using P(2) V' by auto
    with P(1) V' show ?thesis
    by (coinduction arbitrary: P rule: Digraph.maximal-path.coinduct[OF subgame-Digraph])
        (cases rule: maximal-path.cases, auto)
qed
```


3.8 Priorities Occurring Infinitely Often

The set of priorities that occur infinitely often on a given path. We need this to define the winning condition of parity games.
definition path-inf-priorities :: ' a Path \Rightarrow nat set where path-inf-priorities $P \equiv\{k . \forall n . k \in l$ let $(\operatorname{ldropn} n(\operatorname{lmap} \omega P))\}$

Because ω is image-finite, by the pigeon-hole principle every infinite path has at least one priority that occurs infinitely often.
lemma path-inf-priorities-is-nonempty:
assumes P : valid-path $P \neg$ lfinite P
shows $\exists k$. $k \in$ path-inf-priorities P
proof-
Define a map from indices to priorities on the path.

```
define f where fi=\omega(P$i) for i
have range f\subseteq\omega'V unfolding f-def
    using valid-path-in-V[OF P(1)] lset-nth-member-inf[OF P(2)]
    by blast
hence finite (range f)
    using priorities-finite finite-subset by blast
then obtain n0 where n0: ᄀ(finite {n.f n=fn0})
    using pigeonhole-infinite[of UNIV f] by auto
define }k\mathrm{ where }k=fn
The priority \(k\) occurs infinitely often.
```

```
have lmap \(\omega P \$ n 0=k\) unfolding \(f\)-def \(k\)-def
```

have lmap $\omega P \$ n 0=k$ unfolding f-def k-def
using assms(2) by (simp add: infinite-small-llength)
using assms(2) by (simp add: infinite-small-llength)
moreover \{
moreover \{
fix n assume $\operatorname{lmap} \omega P \$ n=k$
fix n assume $\operatorname{lmap} \omega P \$ n=k$
have $\exists n^{\prime}>n$. f $n^{\prime}=k$ unfolding k-def using n0 infinite-nat-iff-unbounded by auto
have $\exists n^{\prime}>n$. f $n^{\prime}=k$ unfolding k-def using n0 infinite-nat-iff-unbounded by auto
hence $\exists n^{\prime}>n$. lmap $\omega P \$ n^{\prime}=k$ unfolding f-def
hence $\exists n^{\prime}>n$. lmap $\omega P \$ n^{\prime}=k$ unfolding f-def
using assms(2) by (simp add: infinite-small-llength)
using assms(2) by (simp add: infinite-small-llength)
\}
\}
ultimately have $\forall n . k \in l$ lset (ldropn $n(\operatorname{lmap} \omega P)$)
ultimately have $\forall n . k \in l$ lset (ldropn $n(\operatorname{lmap} \omega P)$)
using index-infinite-set[of lmap ωP n0 k] P (2) lfinite-lmap
using index-infinite-set[of lmap ωP n0 k] P (2) lfinite-lmap
by blast
by blast
thus ?thesis unfolding path-inf-priorities-def by blast
thus ?thesis unfolding path-inf-priorities-def by blast
qed
qed
lemma path-inf-priorities-at-least-min-prio:
lemma path-inf-priorities-at-least-min-prio:
assumes P : valid-path P and $a: a \in$ path-inf-priorities P

```
    assumes \(P\) : valid-path \(P\) and \(a: a \in\) path-inf-priorities \(P\)
```

```
    shows \(\operatorname{Min}(\omega ‘ V) \leq a\)
proof-
    have \(a \in l\) lset (ldropn 0 (lmap \(\omega P)\) ) using \(a\) unfolding path-inf-priorities-def by blast
    hence \(a \in \omega\) ' lset \(P\) by simp
    thus ?thesis using \(P\) valid-path-in-V priorities-finite Min-le by blast
qed
lemma path-inf-priorities-LCons:
    path-inf-priorities \(P=\) path-inf-priorities \((L C o n s v P)(\) is \(? A=? B)\)
proof
    show ? \(A \subseteq ? B\) proof
        fix \(a\) assume \(a \in\) ? \(A\)
        hence \(\forall n\). \(a \in \operatorname{lset}(l d r o p n ~ n(l m a p ~ \omega(L C o n s v P)))\)
            unfolding path-inf-priorities-def
            using in-lset-ltlD \([\) of a] by (simp add: ltl-ldropn)
        thus \(a \in\) ? \(B\) unfolding path-inf-priorities-def by blast
    qed
next
    show ? \(B \subseteq\) ? A proof
        fix \(a\) assume \(a \in\) ? \(B\)
        hence \(\forall n\). \(a \in \operatorname{lset}(l d r o p n(S u c n)(l m a p \omega(L C o n s v P)))\)
            unfolding path-inf-priorities-def by blast
        thus \(a \in\) ?A unfolding path-inf-priorities-def by simp
    qed
qed
corollary path-inf-priorities-ltl: path-inf-priorities \(P=\) path-inf-priorities (ltl \(P\) )
by (metis llist.exhaust ltl-simps path-inf-priorities-LCons)
```


3.9 Winning Condition

Let $G=\left(V, E, V_{0}, \omega\right)$ be a parity game. An infinite path v_{0}, v_{1}, \ldots in G is winning for player Even (ODD) if the minimum priority occurring infinitely often is even (odd). A finite path is winning for player p iff the last node on the path belongs to the other player.
Empty paths are irrelevant, but it is useful to assign a fixed winner to them in order to get simpler lemmas.
abbreviation winning-priority $p \equiv$ (if $p=$ Even then even else odd $)$
definition winning-path $::$ Player $\Rightarrow{ }^{\prime}$ a Path \Rightarrow bool where
winning-path p $P \equiv$
$(\neg$ lfinite $P \wedge(\exists a \in$ path-inf-priorities P.
$(\forall b \in$ path-inf-priorities $P . a \leq b) \wedge$ winning-priority $p a))$
$\vee(\neg$ lnull $P \wedge$ lfinite $P \wedge$ llast $P \in V V p * *)$ $\vee($ lnull $P \wedge p=$ Even $)$

Every path has a unique winner.
lemma paths-are-winning-for-one-player:
assumes valid-path P
shows winning-path $p P \longleftrightarrow$ winning-path $p * * P$
proof (cases)
assume \neg lnull P

```
    show ?thesis proof (cases)
    assume linite P
    thus ?thesis
        using assms lfinite-lset valid-path-in-V
        unfolding winning-path-def
        by auto
    next
    assume \neglfinite P
    then obtain a where a fath-inf-priorities P \b. b<a\Longrightarrowb\not\in path-inf-priorities P
        using assms ex-least-nat-le[of \lambdaa.a \in path-inf-priorities P] path-inf-priorities-is-nonempty
        by blast
    hence }\forallq.\mathrm{ winning-priority q a }\longleftrightarrow\mathrm{ winning-path q P
        unfolding winning-path-def using <\neglnull P>\langle\neglfinite P> by (metis le-antisym not-le)
    moreover have }\forallq\mathrm{ . winning-priority p q }\longleftrightarrow\neg\mathrm{ winning-priority p** q by simp
    ultimately show ?thesis by blast
    qed
qed (simp add: winning-path-def)
lemma winning-path-ltl:
    assumes P: winning-path p P \neglnull P }\neg\mathrm{ lnull (ltl P)
    shows winning-path p (ltl P)
proof (cases)
    assume lfinite P
    moreover have llast P = llast (ltl P)
        using P(2,3) by (metis llast-LCons2 ltl-simps(2) not-lnull-conv)
    ultimately show ?thesis using P by (simp add: winning-path-def)
next
    assume }\neg\mathrm{ lfinite P
    thus ?thesis using winning-path-def path-inf-priorities-ltl P(1,2) by auto
qed
corollary winning-path-drop:
    assumes winning-path p P enat n<llength P
    shows winning-path p (ldropn n P)
using assms proof (induct n)
    case (Suc n)
    hence winning-path p (ldropn n P) using dual-order.strict-trans enat-ord-simps(2) by blast
    moreover have ltl (ldropn n P) = ldropn (Suc n) P by (simp add: ldrop-eSuc-ltl ltl-ldropn)
    moreover hence }\neg\mathrm{ lnull (ldropn n P) using Suc.prems(2) by (metis leD lnull-ldropn lnull-ltlI)
    ultimately show ?case using winning-path-ltl[of p ldropn n P] Suc.prems(2) by auto
qed simp
corollary winning-path-drop-add:
    assumes valid-path P winning-path p (ldropn n P) enat n<llength P
    shows winning-path p P
    using assms paths-are-winning-for-one-player valid-path-drop winning-path-drop by blast
lemma winning-path-LCons:
    assumes }P\mathrm{ : winning-path p P}\neg\mathrm{ lnull }
    shows winning-path p (LCons v P)
proof (cases)
    assume lfinite P
```

```
    moreover have llast P = llast (LCons v P)
    using P(2) by (metis llast-LCons2 not-lnull-conv)
    ultimately show ?thesis using P unfolding winning-path-def by simp
next
    assume }\neg\mathrm{ lfinite P
    thus ?thesis using P path-inf-priorities-LCons unfolding winning-path-def by simp
qed
lemma winning-path-supergame:
    assumes winning-path pP
    and G': ParityGame G' VV p**\subseteq ParityGame.VV G' p** }\omega=\mp@subsup{\omega}{\mp@subsup{G}{}{\prime}}{
    shows ParityGame.winning-path G' p P
proof-
    interpret G': ParityGame G' using G'(1) .
    have \llbracketlfinite P; \neglnull P\rrbracket\Longrightarrowllast P 但.VV p** and lnull P\Longrightarrowp=Even
        using assms(1) unfolding winning-path-def using G'(2) by auto
    thus ?thesis unfolding G'.winning-path-def
        using lnull-imp-lfinite assms(1)
        unfolding winning-path-def path-inf-priorities-def G'.path-inf-priorities-def G'(3)
        by blast
qed
end - locale ParityGame
```


3.10 Valid Maximal Paths

Define a locale for valid maximal paths, because we need them often.

```
locale \(v m\)-path \(=\) ParityGame +
    fixes \(P v 0\)
    assumes \(P\)-not-null \([\) simp \(]: \neg \operatorname{lnull} P\)
        and \(P\)-valid \(\quad[\) simp \(]\) : valid-path \(P\)
        and \(P\)-maximal \([\) simp \(]\) : maximal-path \(P\)
        and \(P\)-v0 \(\quad[\) simp \(]: \operatorname{lh} d P=v 0\)
```

begin
lemma P-LCons: $P=$ LCons v0 (ltl P) using lhd-LCons-ltl[OF P-not-null] by simp
lemma P-len [simp]: enat $0<$ llength P by (simp add: lnull- 0 -llength)
lemma $P-0[$ simp $]: P \$ 0=v 0$ by (simp add: lnth-0-conv-lhd)
lemma P-lnth-Suc: $P \$$ Suc $n=l t l P \$ n$ by (simp add: lnth-ltl)
lemma P-no-deadends: enat $($ Suc $n)<$ length $P \Longrightarrow \neg$ deadend $(P \$ n)$
using valid-path-no-deadends by simp
lemma P-no-deadend-v0: \neg lnull (ltl $P) \Longrightarrow \neg$ deadend v0
by (metis P-LCons P-valid edges-are-in- $V(2)$ not-lnull-conv valid-path-edges')
lemma P-no-deadend-v0-llength: enat $($ Suc $n)<$ llength $P \Longrightarrow \neg$ deadend v0
by (metis P-0 P-len P-valid enat-ord-simps(2) not-less-eq valid-path-ends-on-deadend zero-less-Suc)
lemma P-ends-on-deadend: \llbracket enat $n<$ llength P; deadend $(P \$ n) \rrbracket \Longrightarrow$ enat $($ Suc $n)=$ llength P
using P-valid valid-path-ends-on-deadend by blast
lemma P-lnull-ltl-deadend-v0: lnull $($ ltl $P) \Longrightarrow$ deadend v0
using P-LCons maximal-no-deadend by force
lemma P-lnull-ltl-LCons: lnull (ltl $P) \Longrightarrow P=$ LCons v0 LNil
using P-LCons lnull-def by metis
lemma P-deadend-v0-LCons: deadend v0 $\Longrightarrow P=$ LCons v0 LNil
using P-lnull-ltl-LCons P-no-deadend-v0 by blast
lemma Ptl-valid [simp]: valid-path (ltl P) using valid-path-ltl by auto
lemma Ptl-maximal [simp]: maximal-path (ltl P) using maximal-ltl by auto
lemma Pdrop-valid [simp]: valid-path (ldropn $n P$) using valid-path-drop by auto
lemma Pdrop-maximal [simp]: maximal-path (ldropn $n P$) using maximal-drop by auto
lemma prefix-valid [simp]: valid-path (ltake n P)
using valid-path-prefix $[o f ~ P]$ by auto
lemma extension-valid $[$ simp $]: v \rightarrow v 0 \Longrightarrow$ valid-path $(L$ Cons v $P)$ using P-not-null P-v0 P-valid valid-path-cons by blast
lemma extension-maximal $[$ simp $]$: maximal-path (LCons $v P$) by (simp add: maximal-path-cons)
lemma lappend-maximal $[$ simp $]$: maximal-path (lappend $P^{\prime} P$) by (simp add: maximal-path-lappend)
lemma $v 0-V[$ simp $]: v 0 \in V$ by (metis P-LCons P-valid valid-path-cons-simp)
lemma v0-lset- $P[$ simp $]: v 0 \in$ lset P using P-not-null P-v0 llist.set-sel(1) by blast
lemma $v 0-V V: v 0 \in V V p \vee v 0 \in V V p * *$ by simp
lemma lset- $P-V[$ simp $]$: lset $P \subseteq V$ by (simp add: valid-path-in- V)
lemma lset-ltl- $P-V[$ simp $]$: lset $($ ltl $P) \subseteq V$ by (simp add: valid-path-in- V)
lemma finite-llast-deadend [simp]: lfinite $P \Longrightarrow$ deadend (llast P)
using P-maximal P-not-null maximal-ends-on-deadend by blast
lemma finite-llast- V [simp]: lfinite $P \Longrightarrow$ llast $P \in V$
using P-not-null lfinite-lset lset- $P-V$ by blast
If a path visits a deadend, it is winning for the other player.
lemma visits-deadend:
assumes lset $P \cap$ deadends $p \neq\{ \}$
shows winning-path $p * * P$
proof-
obtain n where n : enat $n<$ llength $P P \$ n \in$ deadends p using assms by (meson lset-intersect-lnth)
hence $*$: enat (Suc n) $=$ llength P using P-ends-on-deadend unfolding deadends-def by blast
hence llast $P=P \$ n$ by (simp add: eSuc-enat llast-conv-lnth)
hence llast $P \in$ deadends p using $n(2)$ by simp
moreover have lfinite P using * llength-eq-enat-lfiniteD by force
ultimately show ?thesis unfolding winning-path-def deadends-def by auto
qed
end
end

4 Positional Strategies

theory Strategy
imports
Main
ParityGame
begin

4.1 Definitions

A strategy is simply a function from nodes to nodes We only consider positional strategies.
type-synonym ' a Strategy $=$ ' $a \Rightarrow{ }^{\prime} a$
A valid strategy for player p is a function assigning a successor to each node in $V V p$.
definition (in ParityGame) strategy :: Player $\Rightarrow{ }^{\prime} a$ Strategy \Rightarrow bool where strategy $p \sigma \equiv \forall v \in V V p$. \neg deadend $v \longrightarrow v \rightarrow \sigma v$
lemma (in ParityGame) strategyI [intro]:
$(\bigwedge v . \llbracket v \in V V p ; \neg$ deadend $v \rrbracket \Longrightarrow v \rightarrow \sigma v) \Longrightarrow$ strategy $p \sigma$ unfolding strategy-def by blast

4.2 Strategy-Conforming Paths

If path-conforms-with-strategy $p P \sigma$ holds, then we call P a σ-path. This means that P follows σ on all nodes of player p except maybe the last node on the path.

```
coinductive (in ParityGame) path-conforms-with-strategy
    \(::\) Player \(\Rightarrow\) 'a Path \(\Rightarrow\) 'a Strategy \(\Rightarrow\) bool where
    path-conforms-LNil: path-conforms-with-strategy p LNil \(\sigma\)
| path-conforms-LCons-LNil: path-conforms-with-strategy p(LCons v LNil) \(\sigma\)
| path-conforms-VVp: \(\llbracket v \in V V p ; w=\sigma v ;\) path-conforms-with-strategy \(p\) (LCons wPs) \(\sigma \rrbracket\)
    \(\Longrightarrow\) path-conforms-with-strategy \(p\) (LCons \(v\) (LCons w Ps)) \(\sigma\)
| path-conforms-VVpstar: \(\llbracket v \notin V V\) p; path-conforms-with-strategy p Ps \(\sigma \rrbracket\)
    \(\Longrightarrow\) path-conforms-with-strategy \(p\) (LCons \(v P s\) ) \(\sigma\)
```

Define a locale for valid maximal paths that conform to a given strategy, because we need this concept quite often. However, we are not yet able to add interesting lemmas to this locale. We will do this at the end of this section, where we have more lemmas available.
locale vmc-path $=$ vm-path +
fixes $p \sigma$ assumes P-conforms $[$ simp $]$: path-conforms-with-strategy p $P \sigma$
Similary, define a locale for valid maximal paths that conform to given strategies for both players.
locale vmc2-path $=$ comp?: vmc-path $G P v 0 p * * \sigma^{\prime}+v m c-p a t h ~ G P v 0 p \sigma$ for $G P v 0 p \sigma \sigma^{\prime}$

4.3 An Arbitrary Strategy

context ParityGame begin

Define an arbitrary strategy. This is useful to define other strategies by overriding part of this strategy.
definition σ-arbitrary $\equiv \lambda v . S O M E w . v \rightarrow w$
lemma valid-arbitrary-strategy [simp]: strategy $p \sigma$-arbitrary proof
fix v assume \neg deadend v
thus $v \rightarrow \sigma$-arbitrary v unfolding σ-arbitrary-def using someI-ex $[o f \lambda w . v \rightarrow w]$ by blast qed

4.4 Valid Strategies

lemma valid-strategy-updates: \llbracket strategy $p \sigma ; v 0 \rightarrow w 0 \rrbracket \Longrightarrow$ strategy $p(\sigma(v 0:=w 0))$
unfolding strategy-def by auto
lemma valid-strategy-updates-set:
assumes strategy $p \sigma \bigwedge v . \llbracket v \in A ; v \in V V p ; \neg$ deadend $v \rrbracket \Longrightarrow v \rightarrow \sigma^{\prime} v$
shows strategy p (override-on $\sigma \sigma^{\prime} A$)
unfolding strategy-def by (metis assms override-on-def strategy-def)
lemma valid-strategy-updates-set-strong:
assumes strategy $p \sigma$ strategy $p \sigma^{\prime}$
shows strategy p (override-on $\sigma \sigma^{\prime} A$)
using assms(1) assms(2)[unfolded strategy-def] valid-strategy-updates-set by simp
lemma subgame-strategy-stays-in-subgame:
assumes σ : ParityGame.strategy (subgame V^{\prime}) $p \sigma$
and $v \in$ ParityGame. $V V$ (subgame V^{\prime}) $p \neg$ Digraph.deadend (subgame V^{\prime}) v
shows $\sigma v \in V^{\prime}$
proof-
interpret G^{\prime} : ParityGame subgame V^{\prime} using subgame-ParityGame .
have $\sigma v \in V_{\text {subgame } V^{\prime}}$ using assms unfolding G^{\prime}.strategy-def G^{\prime}.edges-are-in- $V(2)$ by blast
thus $\sigma v \in V^{\prime}$ by (metis Diff-iff IntE subgame-VV Player.distinct(2))
qed
lemma valid-strategy-supergame:
assumes σ : strategy $p \sigma$
and σ^{\prime} : ParityGame.strategy (subgame $\left.V^{\prime}\right) p \sigma^{\prime}$
and G^{\prime}-no-deadends: $\bigwedge v . v \in V^{\prime} \Longrightarrow \neg$ Digraph.deadend (subgame V^{\prime}) v
shows strategy p (override-on $\sigma \sigma^{\prime} V^{\prime}$) (is strategy p ? σ)
proof
interpret G^{\prime} : ParityGame subgame V^{\prime} using subgame-ParityGame .
fix v assume $v: v \in V V p \neg$ deadend v
show $v \rightarrow$? σv proof (cases)
assume $v \in V^{\prime}$
hence $v \in G^{\prime}$. $V V$ p using subgame- $V V\langle v \in V V p\rangle$ by blast
moreover have $\neg G^{\prime}$. deadend v using G^{\prime}-no-deadends $\left\langle v \in V^{\prime}\right\rangle$ by blast
ultimately have $v \rightarrow_{\text {subgame }} V^{\prime} \sigma^{\prime} v$ using σ^{\prime} unfolding G^{\prime}.strategy-def by blast
moreover have $\sigma^{\prime} v=$? σv using $\left\langle v \in V^{\prime}\right\rangle$ by simp
ultimately show ?thesis by (metis subgame- E subset $C E$)
next
assume $v \notin V^{\prime}$
thus ?thesis using $v \sigma$ unfolding strategy-def by simp
qed
qed
lemma valid-strategy-in- $V: \llbracket$ strategy $p \sigma ; v \in V V p ; \neg$ deadend $v \rrbracket \Longrightarrow \sigma v \in V$
unfolding strategy-def using valid-edge-set by auto
lemma valid-strategy-only-in- $V: \llbracket$ strategy $p \sigma ; \bigwedge v . v \in V \Longrightarrow \sigma v=\sigma^{\prime} v \rrbracket \Longrightarrow$ strategy $p \sigma^{\prime}$ unfolding strategy-def using edges-are-in- $V(1)$ by auto

4.5 Conforming Strategies

lemma path-conforms-with-strategy-ltl [intro]:
path-conforms-with-strategy p $P \sigma \Longrightarrow$ path-conforms-with-strategy p (ltl P) σ
by (drule path-conforms-with-strategy.cases) (simp-all add: path-conforms-with-strategy.intros(1))
lemma path-conforms-with-strategy-drop:
path-conforms-with-strategy p $P \sigma \Longrightarrow$ path-conforms-with-strategy p (ldropn $n P$) σ
by (simp add: path-conforms-with-strategy-ltl ltl-ldrop $\left.\left[\begin{array}{ll}\text { of } \lambda P \text {. path-conforms-with-strategy } p & P\end{array} \sigma\right]\right)$
lemma path-conforms-with-strategy-prefix:
path-conforms-with-strategy p $P \sigma \Longrightarrow$ lprefix $P^{\prime} P \Longrightarrow$ path-conforms-with-strategy $p P^{\prime} \sigma$
proof (coinduction arbitrary: $P P^{\prime}$)
case (path-conforms-with-strategy $P P^{\prime}$)
thus ?case proof (cases rule: path-conforms-with-strategy.cases)
case path-conforms-LNil
thus ?thesis using path-conforms-with-strategy(2) by auto
next
case path-conforms-LCons-LNil
thus ?thesis by (metis lprefix-LCons-conv lprefix-antisym lprefix-code(1) path-conforms-with-strategy(2))
next
case (path-conforms-VVp v w)
thus ?thesis proof (cases)
assume $P^{\prime} \neq$ LNil $\wedge P^{\prime} \neq$ LCons v LNil
hence $\exists Q . P^{\prime}=L$ Cons $v($ LCons $w Q)$
by (metis local.path-conforms-VVp(1) lprefix-LCons-conv path-conforms-with-strategy(2))
thus ?thesis using local.path-conforms- $\operatorname{VVp}(1,3,4)$ path-conforms-with-strategy(2) by force qed auto
next
case (path-conforms-VVpstar v)
thus ?thesis proof (cases)
assume $P^{\prime} \neq$ LNil
hence $\exists Q$. $P^{\prime}=L$ Cons $v Q$
using local.path-conforms-VVpstar(1) lprefix-LCons-conv path-conforms-with-strategy(2) by
fastforce
thus ?thesis using local.path-conforms-VVpstar path-conforms-with-strategy(2) by auto qed simp
qed
qed
lemma path-conforms-with-strategy-irrelevant:
assumes path-conforms-with-strategy p $P \sigma v \notin$ lset P
shows path-conforms-with-strategy $p P(\sigma(v:=w))$
using assms apply (coinduction arbitrary: P) by (drule path-conforms-with-strategy.cases) auto
lemma path-conforms-with-strategy-irrelevant-deadend:
assumes path-conforms-with-strategy $p P \sigma$ deadend $v \vee v \notin V V p$ valid-path P
shows path-conforms-with-strategy p P $(\sigma(v:=w))$
using assms proof (coinduction arbitrary: P)
let $? \sigma=\sigma(v:=w)$
case (path-conforms-with-strategy P)
thus ?case proof (cases rule: path-conforms-with-strategy.cases)
case (path-conforms-VVp v^{\prime} w Ps)
have $w=? \sigma v^{\prime}$ proof -
from 〈valid-path $P\rangle$ have \neg deadend v^{\prime}
using local.path-conforms-VVp(1) valid-path-cons-simp by blast
with $\operatorname{assms}(2)$ have $v^{\prime} \neq v$ using local.path-conforms-VVp(2) by blast
thus $w=? \sigma v^{\prime}$ by (simp add: local.path-conforms- $V V p(3)$)
qed
moreover
have $\exists P$. LCons $w P s=P \wedge$ path-conforms-with-strategy $p P \sigma \wedge($ deadend $v \vee v \notin V V p)$
\wedge valid-path P
proof -
have valid-path (LCons w Ps)
using local.path-conforms-VVp(1) path-conforms-with-strategy(3) valid-path-ltl' by blast
thus ?thesis using local.path-conforms-VVp(4) path-conforms-with-strategy(2) by blast qed
ultimately show ?thesis using local.path-conforms- $V V(1,2)$ by blast
next
case (path-conforms-VVpstar $v^{\prime} P s$)
have $\exists P$. path-conforms-with-strategy p Ps $\sigma \wedge($ deadend $v \vee v \notin V V p) \wedge$ valid-path $P s$ using local.path-conforms-VVpstar (1,3) path-conforms-with-strategy(2,3) valid-path-ltl' by
blast
thus ?thesis by (simp add: local.path-conforms-VVpstar(1,2))
qed simp-all
qed
lemma path-conforms-with-strategy-irrelevant-updates:
assumes path-conforms-with-strategy $p P \sigma \bigwedge v . v \in l$ lset $P \Longrightarrow \sigma v=\sigma^{\prime} v$
shows path-conforms-with-strategy p $P \sigma^{\prime}$
using assms proof (coinduction arbitrary: P)
case (path-conforms-with-strategy P)
thus ?case proof (cases rule: path-conforms-with-strategy.cases)
case (path-conforms-VVp $v^{\prime} w P s$)
have $w=\sigma^{\prime} v^{\prime}$ using local.path-conforms- $V V p(1,3)$ path-conforms-with-strategy(2) by auto
thus ?thesis using local.path-conforms-VVp(1,4) path-conforms-with-strategy(2) by auto
qed simp-all
qed
lemma path-conforms-with-strategy-irrelevant':
assumes path-conforms-with-strategy p $P(\sigma(v:=w)) v \notin$ lset P
shows path-conforms-with-strategy $p P \sigma$
by (metis assms fun-upd-triv fun-upd-upd path-conforms-with-strategy-irrelevant)
lemma path－conforms－with－strategy－irrelevant－deadend＇：
assumes path－conforms－with－strategy p $P(\sigma(v:=w))$ deadend $v \vee v \notin V V$ p valid－path P
shows path－conforms－with－strategy $p P \sigma$
by（metis assms fun－upd－triv fun－upd－upd path－conforms－with－strategy－irrelevant－deadend）
lemma path－conforms－with－strategy－start：
path－conforms－with－strategy p（LCons $v(L C o n s w P)) \sigma \Longrightarrow v \in V V p \Longrightarrow \sigma v=w$
by（drule path－conforms－with－strategy．cases）simp－all
lemma path－conforms－with－strategy－lappend：
assumes
P：linite $P \neg$ lnull P path－conforms－with－strategy p $P \sigma$
and $P^{\prime}: \neg$ lnull P^{\prime} path－conforms－with－strategy $p P^{\prime} \sigma$
and conforms：llast $P \in V V p \Longrightarrow \sigma($ llast $P)=\operatorname{lhd} P^{\prime}$
shows path－conforms－with－strategy p（lappend $\left.P P^{\prime}\right) \sigma$
using assms proof（induct P rule：lfinite－induct）
case（LCons P）
show ？case proof（cases）
assume lnull（ltl P）
then obtain $v 0$ where $v 0: P=L C o n s v 0$ LNil
by（metis LCons．prems（1）lhd－LCons－ltl llist．collapse（1））
have path－conforms－with－strategy p（LCons（lhd P ）$\left.P^{\prime}\right) \sigma$ proof（cases）
assume $l h d P \in V V p$
moreover with $v 0$ have $l h d P^{\prime}=\sigma(l h d P)$
using LCons．prems（5）by auto
ultimately show ？thesis
using path－conforms－VVp［of lhd P p lhd $\left.P^{\prime} \sigma\right]$
by（metis（no－types）LCons．prems（4）〔ᄀlnull $P^{\prime} 〉$ lhd－LCons－ltl）
next
assume lhd $P \notin V V p$
thus ？thesis using path－conforms－VVpstar using LCons．prems（4）v0 by blast
qed
thus ？thesis by（simp add：v0）
next
assume \neg lnull $(l t l ~ P)$
hence＊：path－conforms－with－strategy p（lappend（ltl P ）P^{\prime} ）σ
by（metis LCons．hyps（3）LCons．prems（1）LCons．prems（2）LCons．prems（5）LCons．prems（5）
$\operatorname{assms}(4) \operatorname{assms}(5)$ lhd－LCons－ltl llast－LCons2 path－conforms－with－strategy－ltl）
have path－conforms－with－strategy p（LCons（lhd P）（lappend（ltl P）P^{\prime} ））σ proof（cases）
assume lhd $P \in V V p$
moreover hence $l h d(l t l P)=\sigma(l h d P)$
by（metis LCons．prems（1）LCons．prems（2）〔ᄀlnull（ltl P）〉
lhd－LCons－ltl path－conforms－with－strategy－start）
ultimately show ？thesis
using path－conforms－VVp［of lhd P p lhd（ltl P）σ ］＊〈 \neg lnull（ltl P）＞
by（metis lappend－code（2）lhd－LCons－ltl）
next
assume lhd $P \notin V V p$
thus ？thesis by（simp add：＊path－conforms－VVpstar）
qed
with $\langle\neg$ lnull $P\rangle$ show path－conforms－with－strategy $p\left(l a p p e n d ~ P P^{\prime}\right) \sigma$
by（metis lappend－code（2）lhd－LCons－ltl）

```
    qed
qed simp
lemma path-conforms-with-strategy-VVpstar:
    assumes lset P\subseteqVV p**
    shows path-conforms-with-strategy p P \sigma
using assms proof (coinduction arbitrary: P)
    case (path-conforms-with-strategy P)
    moreover have \v Ps. P=LCons v Ps \Longrightarrow? ?case using path-conforms-with-strategy by auto
    ultimately show? case by (cases P = LNil, simp) (metis lnull-def not-lnull-conv)
qed
lemma subgame-path-conforms-with-strategy:
    assumes }\mp@subsup{V}{}{\prime}:\mp@subsup{V}{}{\prime}\subseteqV\mathrm{ and }P:\mathrm{ path-conforms-with-strategy p P }\sigma\mathrm{ lset }P\subseteq\mp@subsup{V}{}{\prime
    shows ParityGame.path-conforms-with-strategy (subgame V') p P\sigma
proof-
    have lset P\subseteqVV subgame V' unfolding subgame-def using P(2) V' by auto
    with P(1) show ?thesis
        by (coinduction arbitrary: P rule: ParityGame.path-conforms-with-strategy.coinduct[OF sub-
game-ParityGame])
        (cases rule: path-conforms-with-strategy.cases, auto)
qed
lemma (in vmc-path) subgame-path-vmc-path:
    assumes }\mp@subsup{V}{}{\prime}:\mp@subsup{V}{}{\prime}\subseteqV\mathrm{ and }P:\mathrm{ lset }P\subseteq\mp@subsup{V}{}{\prime
    shows vmc-path (subgame V') Pv0 p\sigma
proof-
    interpret G': ParityGame subgame V' using subgame-ParityGame by blast
    show ?thesis proof
        show G'.valid-path P using subgame-valid-path P-valid P by blast
        show G'.maximal-path P using subgame-maximal-path V' P-maximal P by blast
        show G'.path-conforms-with-strategy p P \sigma
            using subgame-path-conforms-with-strategy }\mp@subsup{V}{}{\prime}P\mathrm{ -conforms }P\mathrm{ by blast
    qed simp-all
qed
```


4.6 Greedy Conforming Path

Given a starting point and two strategies, there exists a path conforming to both strategies. Here we define this path. Incidentally, this also shows that the assumptions of the locales $v m c-p a t h$ and vmc2-path are satisfiable.
We are only interested in proving the existence of such a path, so the definition (i.e., the implementation) and most lemmas are private.
context begin
private primcorec greedy-conforming-path :: Player $\Rightarrow{ }^{\prime} a$ Strategy \Rightarrow 'a Strategy $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ Path where
greedy-conforming-path $p \sigma \sigma^{\prime} v 0=$
LCons v0 (if deadend v0
then LNil

```
else if v0 \in VV p
    then greedy-conforming-path p \sigma \sigma' (\sigmav0)
    else greedy-conforming-path p \sigma \sigma' (\sigma'v0))
```

private lemma greedy-path-LNil: greedy-conforming-path p $\sigma \sigma^{\prime} v 0 \neq L N i l$ using greedy-conforming-path.disc-iff llist.discI(1) by blast
private lemma greedy-path-lhd: greedy-conforming-path p $\sigma \sigma^{\prime} v 0=L C o n s v P \Longrightarrow v=v 0$ using greedy-conforming-path.code by auto
private lemma greedy-path-deadend-v0: greedy-conforming-path p $\sigma \sigma^{\prime} v 0=L C o n s v P \Longrightarrow P=$ LNil \longleftrightarrow deadend v0
by (metis (no-types, lifting) greedy-conforming-path.disc-iff
greedy-conforming-path.simps(3) llist.disc(1) ltl-simps(2))
private corollary greedy-path-deadend-v:
greedy-conforming-path p $\sigma \sigma^{\prime} v 0=L C o n s v P \Longrightarrow P=L N i l \longleftrightarrow$ deadend v
using greedy-path-deadend-v0 greedy-path-lhd by metis
corollary greedy-path-deadend-v': greedy-conforming-path p $\sigma \sigma^{\prime} v 0=$ LCons v LNil \Longrightarrow deadend v
using greedy-path-deadend-v by blast
private lemma greedy-path-ltl:
assumes greedy-conforming-path p $\sigma \sigma^{\prime} v 0=L C o n s v P$
shows $P=L N i l \vee P=$ greedy-conforming-path $p \sigma \sigma^{\prime}(\sigma v 0) \vee P=$ greedy-conforming-path $p \sigma$
$\sigma^{\prime}\left(\sigma^{\prime} v 0\right)$
apply (insert assms, frule greedy-path-lhd)
apply (cases deadend v0, simp add: greedy-conforming-path.code)
by (metis (no-types, lifting) greedy-conforming-path.sel(2) ltl-simps(2))
private lemma greedy-path-ltl-ex:
assumes greedy-conforming-path $p \sigma \sigma^{\prime} v 0=L C o n s ~ v P$
shows $P=L N i l \vee\left(\exists v . P=\right.$ greedy-conforming-path $\left.p \sigma \sigma^{\prime} v\right)$
using assms greedy-path-ltl by blast
private lemma greedy-path-ltl-VVp:
assumes greedy-conforming-path p $\sigma \sigma^{\prime} v 0=$ LCons v0 P v0 $\operatorname{loV} p \neg$ deadend v0
shows $\sigma v 0=\operatorname{lh} d P$
using assms greedy-conforming-path.code by auto
private lemma greedy-path-ltl-VVpstar:
assumes greedy-conforming-path p $\sigma \sigma^{\prime} v 0=$ LCons v0 P v0 $\in V V p * * \neg$ deadend v0 shows $\sigma^{\prime} v 0=\operatorname{lh} d P$
using assms greedy-conforming-path.code by auto
private lemma greedy-conforming-path-properties:
assumes $v 0 \in V$ strategy $p \sigma$ strategy $p * * \sigma^{\prime}$
shows
greedy-path-not-null: \neg lnull (greedy-conforming-path $p \sigma \sigma^{\prime} v 0$)
and greedy-path-v0: greedy-conforming-path $p \sigma \sigma^{\prime} v 0 \$ 0=v 0$
and greedy-path-valid: valid-path (greedy-conforming-path $p \sigma \sigma^{\prime} v 0$)
and greedy-path-maximal: maximal-path (greedy-conforming-path $p \sigma \sigma^{\prime} v 0$)
and greedy-path-conforms: path-conforms-with-strategy p (greedy-conforming-path $\left.p \sigma \sigma^{\prime} v 0\right) \sigma$
and greedy-path-conforms': path-conforms-with-strategy $p * *\left(g r e e d y\right.$-conforming-path $\left.p \sigma \sigma^{\prime} v 0\right)$ σ^{\prime}
proof-
define P where [simp]: $P=$ greedy-conforming-path $p \sigma \sigma^{\prime} v 0$
show $\neg \operatorname{lnull} P$ P $\$ 0=v 0$ by (simp-all add: lnth-0-conv-lhd)
$\{$
fix $v 0$ assume $v 0 \in V$
let $? P=$ greedy-conforming-path $p \sigma \sigma^{\prime} v 0$
assume asm: $\neg(\exists v . ? P=$ LCons v LNil $)$
obtain P^{\prime} where $P^{\prime}: ? P=L C o n s$ v0 P^{\prime} by (metis greedy-path-LNil greedy-path-lhd neq-LNil-conv)
hence \neg deadend v0 using asm greedy-path-deadend-v0 $\langle v 0 \in V\rangle$ by blast
from P^{\prime} have 1: \neg lnull P^{\prime} using asm llist.collapse (1) $\langle v 0 \in V\rangle$ greedy-path-deadend-v0 by blast
moreover from $P^{\prime}\langle\neg$ deadend $v 0\rangle \operatorname{assms}(2,3)\langle v 0 \in V\rangle$
have $v 0 \rightarrow l h d P^{\prime}$
unfolding strategy-def using greedy-path-ltl-VVp greedy-path-ltl-VVpstar
by (cases v0 $\in V V p$) auto
moreover hence $l h d P^{\prime} \in V$ by blast
moreover hence $\exists v$. $P^{\prime}=$ greedy-conforming-path $p \sigma \sigma^{\prime} v \wedge v \in V$
by (metis P^{\prime} calculation(1) greedy-conforming-path.simps(2) greedy-path-ltl-ex lnull-def)
The conjunction of all the above.

```
ultimately
    have }\exists\mp@subsup{P}{}{\prime}.?PP=LCons v0 P ' ^ ᄀlnull P'^v0->lhd P P'^lhd P' 的 V
        \wedge(\existsv. P
    using P' by blast
} note coinduction-helper = this
show valid-path P using assms unfolding P-def
proof (coinduction arbitrary: v0 rule: valid-path.coinduct)
    case (valid-path v0)
    from }\langlev0\inV\rangle\operatorname{assms(2,3) show ?case
        using coinduction-helper[of v0] greedy-path-lhd by blast
qed
show maximal-path P using assms unfolding P-def
proof (coinduction arbitrary: v0)
    case (maximal-path v0)
    from }\langlev0\inV\rangle\operatorname{assms(2,3) show ?case
        using coinduction-helper[of v0] greedy-path-deadend-v' by blast
qed
{
    fix p' }\mp@subsup{\sigma}{}{\prime\prime}\mathrm{ assume }\mp@subsup{p}{}{\prime\prime}:(\mp@subsup{p}{}{\prime\prime}=p\wedge\mp@subsup{\sigma}{}{\prime\prime}=\sigma)\vee(\mp@subsup{p}{}{\prime\prime}=p**\wedge\mp@subsup{\sigma}{}{\prime\prime}=\mp@subsup{\sigma}{}{\prime}
    moreover with assms have strategy p" }\mp@subsup{\sigma}{}{\prime\prime}\mathrm{ by blast
    hence path-conforms-with-strategy p p' P 年 using <v0 \inV\rangle unfolding P-def
    proof (coinduction arbitrary: v0)
    case (path-conforms-with-strategy v0)
        show ?case proof (cases v0 \inVV p'\prime)
```

```
            case True
            { assume }\neg(\exists\mathrm{ v. greedy-conforming-path p 唔 v0 = LCons v LNil)
                        with }\langlev0\inV\rangle\mathrm{ obtain }\mp@subsup{P}{}{\prime}\mathrm{ where
                P': greedy-conforming-path p\sigma \sigma' v0 = LCons v0 P'}\neg\mathrm{ lnull }\mp@subsup{P}{}{\prime}v0->lhd P'
                    lhd P}\mp@subsup{P}{}{\prime}\inV\existsv.\mp@subsup{P}{}{\prime}=\mathrm{ greedy-conforming-path p }\sigma\mp@subsup{\sigma}{}{\prime}v\wedgev\in
                using coinduction-helper by blast
                with <v0 \inVV p'> p'\prime have }\mp@subsup{\sigma}{}{\prime\prime}v0=lhd P
                using greedy-path-ltl-VVp greedy-path-ltl-VVpstar by blast
                    with <v0 \inVV p'>}\mp@subsup{P}{}{\prime}(1,2,5) have ?path-conforms-VV
                using greedy-conforming-path.code path-conforms-with-strategy(1) by fastforce
            }
            thus ?thesis by auto
            next
                case False
                thus ?thesis using coinduction-helper[of v0] path-conforms-with-strategy by auto
            qed
        qed
    }
    thus path-conforms-with-strategy p P \sigma path-conforms-with-strategy p** P 重 by blast+
qed
corollary strategy-conforming-path-exists:
    assumes v0 \inV strategy p \sigma strategy p** \sigma'
    obtains P where vmc2-path G P v0 p\sigma \sigma'
proof
    show vmc2-path G (greedy-conforming-path p\sigma \sigma
        using assms by unfold-locales (simp-all add: greedy-conforming-path-properties)
qed
corollary strategy-conforming-path-exists-single:
    assumes v0 \inV strategy p\sigma
    obtains P where vmc-path G P v0 p\sigma
proof
    show vmc-path G (greedy-conforming-path p \sigma \sigma-arbitrary v0) v0 p\sigma
        using assms by unfold-locales (simp-all add: greedy-conforming-path-properties)
qed
end
end
```


4.7 Valid Maximal Conforming Paths

```
Now is the time to add some lemmas to the locale vmc-path.
context vmc-path begin
lemma Ptl-conforms [simp]: path-conforms-with-strategy p (ltl P) \(\sigma\) using \(P\)-conforms path-conforms-with-strategy-ltl by blast
lemma Pdrop-conforms [simp]: path-conforms-with-strategy \(p(l d r o p n n P) \sigma\) using \(P\)-conforms path-conforms-with-strategy-drop by blast
lemma prefix-conforms [simp]: path-conforms-with-strategy \(p\) (ltake n P) \(\sigma\) using \(P\)-conforms path-conforms-with-strategy-prefix by blast
```

lemma extension-conforms $[$ simp $]$:
$\left(v^{\prime} \in V V p \Longrightarrow \sigma v^{\prime}=v 0\right) \Longrightarrow$ path-conforms-with-strategy $p\left(\right.$ LCons $\left.v^{\prime} P\right) \sigma$
by (metis P-LCons P-conforms path-conforms-VVp path-conforms-VVpstar)
lemma extension-valid-maximal-conforming:
assumes $v^{\prime} \rightarrow v 0 v^{\prime} \in V V p \Longrightarrow \sigma v^{\prime}=v 0$
shows vmc-path G (LCons $\left.v^{\prime} P\right) v^{\prime} p \sigma$
using assms by unfold-locales simp-all
lemma vmc-path-ldropn:
assumes enat $n<$ llength P
shows vmc-path G (ldropn n $P)(P \$ n) p \sigma$
using assms by unfold-locales (simp-all add: lhd-ldropn)
lemma conforms-to-another-strategy:
path-conforms-with-strategy $p P \sigma^{\prime} \Longrightarrow$ vmc-path $G P v 0 p \sigma^{\prime}$ using P-not-null P-valid P-maximal P-v0 by unfold-locales blast+
end
lemma (in ParityGame) valid-maximal-conforming-path-0:
assumes \neg lnull P valid-path P maximal-path P path-conforms-with-strategy p $P \sigma$ shows vmc-path $G P(P \$ 0) p \sigma$
using assms by unfold-locales (simp-all add: lnth-0-conv-lhd)

4.8 Valid Maximal Conforming Paths with One Edge

We define a locale for valid maximal conforming paths that contain at least one edge. This is equivalent to the first node being no deadend. This assumption allows us to prove much stronger lemmas about $l t l P$ compared to $v m c$-path.
locale vmc-path-no-deadend $=$ vmc-path +
assumes v0-no-deadend [simp]: \neg deadend v0
begin
definition $w 0 \equiv l h d(l t l P)$
lemma Ptl-not-null [simp]: \neg lnull (ltl P)
using P-LCons P-maximal maximal-no-deadend v0-no-deadend by metis
lemma Ptl-LCons: ltl $P=$ LCons w0 (ltl (ltl $P)$) unfolding w0-def by simp
lemma P-LCons': $P=$ LCons v0 (LCons w0 (ltl (ltl P))) using P-LCons Ptl-LCons by simp
lemma v0-edge-w0 [simp]: v0 \rightarrow w0 using P-valid P-LCons' by (metis valid-path-edges')
lemma Ptl-0: ltl P \$ $0=$ lhd (ltl P) by (simp add: lhd-conv-lnth)
lemma P-Suc-0: P \$ Suc $0=w 0$ by (simp add: P-lnth-Suc Ptl-0 w0-def)
lemma Ptl-edge [simp]: v0 \rightarrow lhd (ltl P) by (metis P-LCons ${ }^{\prime}$ P-valid valid-path-edges' ${ }^{\prime}$ w-def)
lemma v0-conforms: v0 $\in V V p \Longrightarrow \sigma v 0=w 0$
using path-conforms-with-strategy-start by (metis P-LCons ${ }^{\prime} P$-conforms)
lemma wo-V [simp]: w0 \quad by (metis Ptl-LCons Ptl-valid valid-path-cons-simp)
lemma wo-lset- $P[$ simp $]: w 0 \in$ lset P by (metis P-LCons' lset-intros(1) lset-intros(2))
lemma vmc-path-ltl [simp]: vmc-path $G(l t l P) w 0 p \sigma$ by (unfold-locales) (simp-all add: w0-def)
end
context vmc-path begin
lemma vmc-path-lnull-ltl-no-deadend:
\neg lnull $($ ltl $P) \Longrightarrow$ vmc-path-no-deadend $G P$ v0 p σ
using P-0 P-no-deadends by (unfold-locales) (metis enat-ltl-Suc lnull-0-llength)
lemma vmc-path-conforms:
assumes enat (Suc n) < llength P P $\$ n \in V V p$
shows $\sigma(P \$ n)=P$ \$ Suc n
proof-
define P^{\prime} where $P^{\prime}=l d r o p n ~ n ~ P$
then interpret P^{\prime} : vmc-path $G P^{\prime} P \$ n p \sigma$ using vmc-path-ldropn assms(1) Suc-llength by blast
have \neg deadend ($P \$ n$) using assms(1) P-no-deadends by blast
then interpret $P^{\prime}: v m c-p a t h-n o-d e a d e n d ~ G P^{\prime} P \$ n p \sigma$ by unfold-locales
have $\sigma(P \$ n)=P^{\prime} . w 0$ using $P^{\prime} . v 0$-conforms assms(2) by blast
thus ?thesis using P^{\prime}-def $P^{\prime} . P-$ Suc-0 assms(1) by simp
qed

4.9 lset Induction Schemas for Paths

Let us define an induction schema useful for proving lset $P \subseteq S$.
lemma vmc-path-lset-induction [consumes 1, case-names base step]:
assumes $Q P$
and base: v0 $\in S$
and step-assumption: $\bigwedge P v 0 . \llbracket v m c-p a t h-n o-d e a d e n d G P v 0 p \sigma ; v 0 \in S ; Q P \rrbracket$
$\Longrightarrow Q(l t l P) \wedge(v m c-p a t h-n o-d e a d e n d . w 0 P) \in S$
shows lset $P \subseteq S$
proof
fix v assume $v \in$ lset P
thus $v \in S$ using $v m c$-path-axioms assms(1,2) proof (induct arbitrary: v0 rule: llist-set-induct) case (find P)
then interpret $v m c$-path $G P v 0 p \sigma$ by blast
show ?case by (simp add: find.prems(3))
next
case (step P v)
then interpret vmc-path $G P v 0 p \sigma$ by blast
show ?case proof (cases)
assume lnull (ltl P)
hence $P=L C o n s v$ LNil by (metis llist.disc(2) lset-cases step.hyps(2))
thus ?thesis using step.prems(3) P-LCons by blast
next
assume $\neg \operatorname{lnull}($ ltl P)
then interpret vmc-path-no-deadend G Pv0p σ
using vmc-path-lnull-ltl-no-deadend by blast
show $v \in S$
using step.hyps(3)
step-assumption $[O F$ vmc-path-no-deadend-axioms $\langle v 0 \in S\rangle\langle Q P\rangle]$ vmc-path-ltl
$\llbracket ? Q P ; v 0 \in ? S ; \wedge P v 0 \llbracket v m c$-path-no-deadend $G P v 0 p \sigma ; v 0 \in ? S ; ? Q P \rrbracket \Longrightarrow ? Q($ ltl $P) \wedge$ vmc-path-no-deadend.w0 $P \in ? S \rrbracket \Longrightarrow$ lset $P \subseteq$?S without the Q predicate.
corollary vmc-path-lset-induction-simple [case-names base step]:
assumes base: v0 $\in S$
and step: $\bigwedge P$ v0.【vmc-path-no-deadend $G P v 0 p \sigma ; v 0 \in S \rrbracket$
\Longrightarrow vmc-path-no-deadend.w0 $P \in S$
shows lset $P \subseteq S$
using assms vmc-path-lset-induction $[o f ~ \lambda P$. True] by blast
Another induction schema for proving lset $P \subseteq S$ based on closure properties.
lemma vmc-path-lset-induction-closed-subset [case-names VVp VVpstar v0 disjoint]:
assumes $V V p: \bigwedge v . \llbracket v \in S ; \neg$ deadend $v ; v \in V V p \rrbracket \Longrightarrow \sigma v \in S \cup T$
and VVpstar: $\bigwedge v w . \llbracket v \in S ; \neg$ deadend $v ; v \in V V p * * ; v \rightarrow w \rrbracket \Longrightarrow w \in S \cup T$
and $v 0: v 0 \in S$
and disjoint: lset $P \cap T=\{ \}$
shows lset $P \subseteq S$
using disjoint proof (induct rule: vmc-path-lset-induction)
case (step Pv0)
interpret vmc-path-no-deadend $G P v 0 p \sigma$ using step.hyps(1).
have lset $(l t l P) \cap T=\{ \}$ using step.hyps(3)
by (meson disjoint-eq-subset-Compl lset-ltl order.trans)
moreover have $w 0 \in S \cup T$
using $\operatorname{assms}(1,2)[$ of v0] step.hyps(2) v0-no-deadend v0-conforms
by (cases $v 0 \in V V p)$ simp-all
ultimately show ? case using step.hyps(3) w0-lset-P by blast
qed (insert v0)
end
end

5 Attracting Strategies

theory AttractingStrategy
imports
Main
Strategy
begin
Here we introduce the concept of attracting strategies.
context ParityGame begin

5.1 Paths Visiting a Set

A path that stays in A until eventually it visits W.
definition visits-via $P A W \equiv \exists n$. enat $n<l l e n g t h ~ P \wedge P \$ n \in W \wedge l$ let $($ ltake $($ enat $n) P) \subseteq A$
lemma visits-via-monotone: \llbracket visits-via $P A W ; A \subseteq A^{\prime} \rrbracket \Longrightarrow$ visits-via $P A^{\prime} W$ unfolding visits-via-def by blast
lemma visits-via-visits: visits-via $P A W \Longrightarrow$ lset $P \cap W \neq\{ \}$
unfolding visits-via-def by (meson disjoint-iff-not-equal in-lset-conv-lnth)
lemma (in vmc-path) visits-via-trivial: $v 0 \in W \Longrightarrow$ visits-via $P A W$
unfolding visits-via-def apply (rule exI $[o f-0]$) using zero-enat-def by auto
lemma visits-via-LCons:
assumes visits-via $P A W$
shows visits-via (LCons v0 P) (insert v0 A) W
proof-
obtain n where n : enat $n<l$ length $P P \$ n \in W$ lset (ltake (enat n) P) $\subseteq A$
using assms unfolding visits-via-def by blast
define P^{\prime} where $P^{\prime}=L$ Cons v0 P
have enat (Suc n) < llength P^{\prime} unfolding P^{\prime}-def
by (metis $n(1)$ ldropn-Suc-LCons ldropn-Suc-conv-ldropn ldropn-eq-LConsD)
moreover have $P^{\prime} \$$ Suc $n \in W$ unfolding P^{\prime}-def by (simp add: n(2))
moreover have lset (ltake (enat (Suc n)) P^{\prime}) \subseteq insert v0 A using lset-ltake-Suc [of $\left.P^{\prime} v 0 n A\right]$ unfolding P^{\prime}-def by (simp add: n(3))
ultimately show ?thesis unfolding visits-via-def P^{\prime}-def by blast
qed
lemma (in vmc-path-no-deadend) visits-via-ltl:
assumes visits-via $P A W$ and $v 0$: v0 $\notin W$
shows visits-via (ltl P) A W
proof-
obtain n where n : enat $n<$ llength $P P \$ n \in W$ lset (ltake (enat n) P) $\subseteq A$
using assms(1)[unfolded visits-via-def] by blast
have $n \neq 0$ using v0 n(2) Diffe by force
then obtain n^{\prime} where n^{\prime} : Suc $n^{\prime}=n$ using nat.exhaust by metis
have $\exists n$. enat $n<l l e n g t h(l t l P) \wedge(l t l P) \$ n \in W \wedge l$ lset (ltake (enat $n)(l t l P)) \subseteq A$
apply (rule exI[of - $n]$)
using $n n^{\prime}$ enat-Suc-ltl[of $\left.n^{\prime} P\right]$ P-lnth-Suc lset-ltake-ltl[$\left[\right.$ of $\left.n^{\prime} P\right]$ by auto
thus ?thesis using visits-via-def by blast
qed
lemma (in vm-path) visits-via-deadend:
assumes visits-via $P A$ (deadends p)
shows winning-path $p * * P$
using assms visits-via-visits visits-deadend by blast

5.2 Attracting Strategy from a Single Node

All σ-paths starting from $v 0$ visit W and until then they stay in A.
definition strategy-attracts-via :: Player \Rightarrow ' a Strategy $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ set \Rightarrow 'a set \Rightarrow bool where strategy-attracts-via $p \sigma v 0 A W \equiv \forall P$.vmc-path $G P v 0 p \sigma \longrightarrow$ visits-via $P A W$

```
lemma (in vmc-path) strategy-attracts-viaE:
    assumes strategy-attracts-via p \sigma v0 A W
    shows visits-via P A W
    using strategy-attracts-via-def assms vmc-path-axioms by blast
lemma (in vmc-path) strategy-attracts-via-SucE:
    assumes strategy-attracts-via p \sigma v0 A W v0 #W
    shows \existsn. enat (Suc n)<llength P}\wedgeP$Sucn\inW\wedgelset (ltake (enat (Suc n)) P)\subseteq
proof-
    obtain n where n: enat n < llength P P $ n \inW lset (ltake (enat n) P)\subseteqA
        using strategy-attracts-viaE[unfolded visits-via-def] assms(1) by blast
    have n\not=0 using assms(2) n(2) by (metis P-0)
    thus ?thesis using n not0-implies-Suc by blast
qed
lemma (in vmc-path) strategy-attracts-via-lset:
    assumes strategy-attracts-via p \sigma v0 A W
    shows lset }P\capW\not={
    using assms[THEN strategy-attracts-viaE, unfolded visits-via-def]
    by (meson disjoint-iff-not-equal lset-lnth-member subset-refl)
lemma strategy-attracts-via-v0:
    assumes \sigma: strategy p \sigma strategy-attracts-via p \sigma v0 A W
        and v0:v0 \inV
    shows v0\inA\cupW
proof-
    obtain P where vmc-path G P v0 p\sigma using strategy-conforming-path-exists-single assms by blast
    then interpret vmc-path GPv0 p \sigma.
    obtain n where n: enat n < llength P P $ n \inW lset (ltake (enat n) P)\subseteqA
        using \sigma(2)[unfolded strategy-attracts-via-def visits-via-def] vmc-path-axioms by blast
    show ?thesis proof (cases n=0)
        case True thus ?thesis using n(2) by simp
    next
        case False
        hence lhd (ltake (enat n) P) = lhd P by (simp add: enat-0-iff(1))
        hence v0 flset (ltake (enat n) P)
            by (metis <n\not=0\rangleP-not-null P-v0 enat-0-iff(1) llist.set-sel(1) ltake.disc(2))
        thus ?thesis using n(3) by blast
    qed
qed
corollary strategy-attracts-not-outside:
    \llbracket v 0 \in V - A - W ; ~ s t r a t e g y ~ p \sigma \rrbracket \Longrightarrow ~ \neg s t r a t e g y - a t t r a c t s - v i a ~ p ~ \sigma v 0 ~ A ~ W ~
    using strategy-attracts-via-v0 by blast
lemma strategy-attracts-viaI [intro]:
    assumes }\bigwedgeP\mathrm{ .vmc-path GPv0p 
    shows strategy-attracts-via p \sigmav0 A W
    unfolding strategy-attracts-via-def using assms by blast
lemma strategy-attracts-via-no-deadends:
```

```
    assumes \(v \in V v \in A-W\) strategy-attracts-via \(p \sigma v A W\)
    shows \(\neg\) deadend \(v\)
proof
    assume deadend \(v\)
    define \(P\) where [simp]: \(P=\) LCons \(v\) LNil
    interpret vmc-path GPvp \(\sigma\) proof
        show valid-path \(P\) using \(\langle v \in A-W\rangle\langle v \in V\rangle\) valid-path-base' by auto
        show maximal-path \(P\) using 〈deadend \(v\rangle\) by (simp add: maximal-path.intros(2))
        show path-conforms-with-strategy \(p P \sigma\) by (simp add: path-conforms-LCons-LNil)
    qed simp-all
    have visits-via \(P A W\) using assms(3) strategy-attracts-viaE by blast
    moreover have llength \(P=\) eSuc 0 by simp
    ultimately have \(P \$ 0 \in W\) by (simp add: enat-0-iff(1) visits-via-def)
    with \(\langle v \in A-W\rangle\) show False by auto
qed
lemma attractor-strategy-on-extends:
    \(\llbracket\) strategy-attracts-via \(p \sigma\) v0 \(A W ; A \subseteq A^{\prime} \rrbracket \Longrightarrow\) strategy-attracts-via \(p \sigma v 0 A^{\prime} W\)
    unfolding strategy-attracts-via-def using visits-via-monotone by blast
lemma strategy-attracts-via-trivial: v0 \(\in W \Longrightarrow\) strategy-attracts-via p \(\sigma\) v0 \(A W\)
proof
    fix \(P\) assume \(v 0 \in W\) vmc-path \(G P v 0 p \sigma\)
    then interpret vmc-path \(G P v 0 p \sigma\) by blast
    show visits-via \(P A W\) using visits-via-trivial using \(\langle v 0 \in W\rangle\) by blast
qed
lemma strategy-attracts-via-successor:
    assumes \(\sigma\) : strategy \(p \sigma\) strategy-attracts-via \(p \sigma\) v0 A W
        and \(v 0: v 0 \in A-W\)
        and \(w 0: v 0 \rightarrow w 0 v 0 \in V V p \Longrightarrow \sigma v 0=w 0\)
    shows strategy-attracts-via p \(\sigma\) w0 A W
proof
    fix \(P\) assume vmc-path \(G P\) w0 \(p \sigma\)
    then interpret vmc-path \(G P\) w0 \(p \sigma\).
    define \(P^{\prime}\) where \([\) simp \(]: P^{\prime}=L\) Cons v0 \(P\)
    then interpret \(P^{\prime}\) : vmc-path \(G P^{\prime}\) v0 \(p \sigma\)
        using extension-valid-maximal-conforming w0 by blast
    interpret \(P^{\prime}\) : vmc-path-no-deadend \(G P^{\prime}\) v0 \(p \sigma\) using \(\langle v 0 \rightarrow w 0\rangle\) by unfold-locales blast
    have visits-via \(P^{\prime} A W\) using \(\sigma(2) P^{\prime}\).strategy-attracts-viaE by blast
    thus visits-via \(P A W\) using \(P^{\prime}\).visits-via-ltl v0 by simp
qed
lemma strategy-attracts-VVp:
    assumes \(\sigma\) : strategy \(p \sigma\) strategy-attracts-via \(p \sigma\) v0 A W
        and \(v: v 0 \in A-W v 0 \in V V p \neg\) deadend \(v 0\)
    shows \(\sigma v 0 \in A \cup W\)
proof-
    have \(v 0 \rightarrow \sigma\) v0 using \(\sigma(1)\) [unfolded strategy-def] \(v(2,3)\) by blast
    hence strategy-attracts-via \(p \sigma(\sigma v 0) A W\)
        using strategy-attracts-via-successor \(\sigma v(1)\) by blast
    thus ?thesis using strategy-attracts-via-v0 \(\langle v 0 \rightarrow \sigma v 0\rangle \sigma(1)\) by blast
```

qed
lemma strategy-attracts-VVpstar:
assumes strategy $p \sigma$ strategy-attracts-via $p \sigma v 0 A W$
and $v 0 \in A-W v 0 \notin V V p w 0 \in V-A-W$
shows $\neg v 0 \rightarrow w 0$
by (metis assms strategy-attracts-not-outside strategy-attracts-via-successor)

5.3 Attracting strategy from a set of nodes

All σ-paths starting from A visit W and until then they stay in A.
definition strategy-attracts :: Player $\Rightarrow{ }^{\prime} a$ Strategy $\Rightarrow{ }^{\prime} a$ set \Rightarrow 'a set \Rightarrow bool where strategy-attracts $p \sigma A W \equiv \forall v 0 \in A$. strategy-attracts-via $p \sigma v 0 A W$
lemma (in vmc-path) strategy-attractsE:
assumes strategy-attracts p σA W0 $\in A$
shows visits-via $P A W$
using assms(1)[unfolded strategy-attracts-def] assms(2) strategy-attracts-viaE by blast
lemma strategy-attractsI [intro]:
assumes $\bigwedge P v . \llbracket v \in A ; v m c-p a t h G P v p \sigma \rrbracket \Longrightarrow$ visits-via $P A W$
shows strategy-attracts $p \sigma A W$
unfolding strategy-attracts-def using assms by blast
lemma (in vmc-path) strategy-attracts-lset:
assumes strategy-attracts $p \sigma A W v 0 \in A$
shows lset $P \cap W \neq\{ \}$
using assms(1)[unfolded strategy-attracts-def] assms(2) strategy-attracts-via-lset(1)[of A W]
by blast
lemma strategy-attracts-empty [simp]: strategy-attracts $p \sigma\} W$ by blast
lemma strategy-attracts-invalid-path:
assumes $P: P=L$ Cons $v\left(L C o n s w P^{\prime}\right) v \in A-W w \notin A \cup W$
shows \neg visits-via $P A W($ is \neg ? $A)$
proof
assume ? A
then obtain n where n : enat $n<l$ length $P P \$ n \in W$ lset (ltake (enat n) P) $\subseteq A$ unfolding visits-via-def by blast
have $n \neq 0$ using $\langle v \in A-W\rangle n(2) P(1)$ DiffD2 by force
moreover have $n \neq S u c 0$ using $\langle w \notin A \cup W\rangle n(2) P(1)$ by auto
ultimately have $S u c(S u c 0) \leq n$ by presburger
hence lset (ltake (enat (Suc (Suc 0))) P) $\subseteq A$ using $n(3)$
by (meson contra-subsetD enat-ord-simps(1) lset-ltake-prefix lset-lnth-member lset-subset)
moreover have enat (Suc 0) < llength (ltake (eSuc (eSuc 0)) P) proof-
have $*$: enat $($ Suc $($ Suc 0$))<$ llength P
using $\langle\operatorname{Suc}(S u c 0) \leq n\rangle n(1)$ by (meson enat-ord-simps(2) le-less-linear less-le-trans neq-iff)
have llength (ltake (enat $(\operatorname{Suc}(\operatorname{Suc} 0))) P)=\min ($ enat $(S u c(S u c ~ 0)))$ (llength P) by simp
hence llength (ltake (enat $(\operatorname{Suc}(S u c ~ 0))) P)=\operatorname{enat}(S u c(S u c ~ 0))$
using * by (simp add: min-absorb1)
thus ?thesis by (simp add: eSuc-enat zero-enat-def)

```
qed
    ultimately have ltake (enat (Suc (Suc 0))) P $ Suc 0 \in A by (simp add:lset-lnth-member)
    hence P $ Suc 0 \in A by (simp add: lnth-ltake)
    thus False using P(1,3) by auto
qed
```

If A is an attractor set of W and an edge leaves A without going through W, then v belongs to $V V p$ and the attractor strategy σ avoids this edge. All other cases give a contradiction.
lemma strategy-attracts-does-not-leave:
assumes σ : strategy-attracts $p \sigma A W$ strategy $p \sigma$ and $v: v \rightarrow w v \in A-W w \notin A \cup W$
shows $v \in V V p \wedge \sigma v \neq w$
proof (rule ccontr)
assume contra: $\neg(v \in V V p \wedge \sigma v \neq w)$
define σ^{\prime} where $\sigma^{\prime}=\sigma-\operatorname{arbitrary}(v:=w)$
hence strategy $p * * \sigma^{\prime}$ using $\langle v \rightarrow w\rangle$ by (simp add: valid-strategy-updates)
then obtain P where P : vmc2-path $G P v p \sigma \sigma^{\prime}$
using $\langle v \rightarrow w\rangle$ strategy-conforming-path-exists $\sigma(2)$ by blast
then interpret vmc2-path GPvp $\sigma \sigma^{\prime}$.
interpret vmc-path-no-deadend $G P v p \sigma$ using $\langle v \rightarrow w\rangle$ by unfold-locales blast
interpret comp: vmc-path-no-deadend $G P v p * * \sigma^{\prime}$ using $\langle v \rightarrow w\rangle$ by unfold-locales blast
have $w=w 0$ using contra σ^{\prime}-def v0-conforms comp.v0-conforms by (cases $v \in V V p$) auto
hence \neg visits-via $P A W$
using strategy-attracts-invalid-path[of P vwltl (ltl P)] v(2,3) P-LCons' by simp
thus False by (meson Diffe $\sigma(1)$ strategy-attractsE v(2))
qed
Given an attracting strategy σ, we can turn every strategy σ^{\prime} into an attracting strategy by overriding σ^{\prime} on a suitable subset of the nodes. This also means that an attracting strategy is still attracting if we override it outside of $A-W$.

```
lemma strategy-attracts-irrelevant-override:
    assumes strategy-attracts \(p \sigma A W\) strategy \(p \sigma\) strategy \(p \sigma^{\prime}\)
    shows strategy-attracts \(p\) (override-on \(\sigma^{\prime} \sigma(A-W)\) ) \(A W\)
proof (rule strategy-attracts \(I\), rule ccontr)
    fix \(P v\)
    let ? \(\sigma=\) override-on \(\sigma^{\prime} \sigma(A-W)\)
    assume vmc-path \(G P v p ? \sigma\)
    then interpret \(v m c\)-path \(G P v p ? \sigma\).
    assume \(v \in A\)
    hence \(P \$ 0 \in A\) using \(\langle v \in A\rangle\) by simp
    moreover assume contra: \(\neg\) visits-via \(P A W\)
    ultimately have \(P \$ 0 \in A-W\) unfolding visits-via-def by (meson DiffI P-len not-less0
lset-ltake)
    have \(\neg l\) set \(P \subseteq A-W\) proof
        assume lset \(P \subseteq A-W\)
        hence \(\bigwedge v . v \in\) lset \(P \Longrightarrow\) override-on \(\sigma^{\prime} \sigma(A-W) v=\sigma v\) by auto
        hence path-conforms-with-strategy p \(P \sigma\)
        using path-conforms-with-strategy-irrelevant-updates[OF P-conforms] by blast
        hence vmc-path \(G P(P \$ 0) p \sigma\)
        using conforms-to-another-strategy \(P-0\) by blast
```

```
    thus False
    using contra }\langleP$0\inA\rangle\operatorname{assms(1)
    by (meson vmc-path.strategy-attractsE)
    qed
    hence \existsn. enat n<llength P}\wedgeP$n\not\inA-W\mathrm{ by (meson lset-subset)
    then obtain n where n: enat n< llength P ^ P$ n\not\inA-W
        \i. i<n\Longrightarrow\neg(enat i< llength P}\wedgeP$i\not\inA-W
        using ex-least-nat-le[of \lambdan. enat n < llength P ^ P $ n\not\inA - W] by blast
    hence n-min: \i. i<n\LongrightarrowP$i\inA-W
        using dual-order.strict-trans enat-ord-simps(2) by blast
    have n\not=0 using }\langleP$0\inA-W\ranglen(1) by meso
    then obtain n' where n':Suc n'=n using not0-implies-Suc by blast
    hence P$ n' }\inA-W\mathrm{ using n-min by blast
    moreover have P$ n'->P$Suc n' using P-valid n(1) n' valid-path-edges by blast
    moreover have P$Suc n' 生A\cupW proof-
        have P$n\not\inW using contra n(1) n-min unfolding visits-via-def
        by (meson Diff-subset lset-ltake subsetCE)
    thus ?thesis using n(1) n' by blast
    qed
    ultimately have P$ n'\inVV p\wedge\sigma(P$ n')\not=P$Suc n'
        using strategy-attracts-does-not-leave[of p\sigmaAW W $ n'P $ Suc n']
            assms(1,2) by blast
    thus False
    using n(1) n' vmc-path-conforms }\langleP$$\mp@subsup{n}{}{\prime}\inA-W\rangle\mathrm{ by (metis override-on-apply-in)
qed
lemma strategy-attracts-trivial [simp]: strategy-attracts p}\sigma\quadW
    by (simp add: strategy-attracts-def strategy-attracts-via-trivial)
If a \(\sigma\)-conforming path \(P\) hits an attractor \(A\), it will visit \(W\).
lemma (in vmc-path) attracted-path:
assumes \(W \subseteq V\)
and \(\sigma\) : strategy-attracts \(p \sigma A W\)
and \(P\)-hits- \(A\) : lset \(P \cap A \neq\{ \}\)
shows lset \(P \cap W \neq\{ \}\)
proof-
obtain \(n\) where \(n\) : enat \(n<\) llength \(P P \$ n \in A\) using \(P\)-hits- \(A\) by (meson lset-intersect-lnth)
define \(P^{\prime}\) where \(P^{\prime}=l d r o p n\) n \(P\)
interpret vmc-path \(G P^{\prime} P \$ n p \sigma\) unfolding \(P^{\prime}\)-def using vmc-path-ldropn \(n(1)\) by blast
have visits-via \(P^{\prime} A W\) using \(\sigma n(2)\) strategy-attractsE by blast
thus ?thesis unfolding \(P^{\prime}\)-def using visits-via-visits in-lset-ldropn \(D[o f-n P]\) by blast
qed
lemma attracted-strategy-step:
assumes \(\sigma\) : strategy \(p \sigma\) strategy-attracts \(p \sigma A W\) and \(v 0\) : \(\neg\) deadend \(v 0 v 0 \in A-W v 0 \in V V p\)
shows \(\sigma v 0 \in A \cup W\)
by (metis DiffD1 strategy-attracts-VVp assms strategy-attracts-def)
lemma (in vmc-path-no-deadend) attracted-path-step:
assumes \(\sigma\) : strategy-attracts \(p \sigma A W\)
and \(v 0: v 0 \in A-W\)
```

```
    shows w0 \in A\cupW
    by (metis (no-types) DiffD1 P-LCons' \sigma strategy-attractsE strategy-attracts-invalid-path v0)
end - context ParityGame
end
```


6 Attractor Sets

```
theory Attractor
imports
    Main
    AttractingStrategy
begin
```

Here we define the p-attractor of a set of nodes.

```
context ParityGame begin
```

We define the conditions for a node to be directly attracted from a given set.
definition directly-attracted $::$ Player \Rightarrow 'a set \Rightarrow ' a set where
directly-attracted $p S \equiv\{v \in V-S . \neg$ deadend $v \wedge$
$(v \in V V p \longrightarrow(\exists w . v \rightarrow w \wedge w \in S))$
$\wedge(v \in V V p * * \longrightarrow(\forall w . v \rightarrow w \longrightarrow w \in S))\}$
abbreviation attractor-step $p W S \equiv W \cup S \cup$ directly-attracted p S
The p-attractor set of W, defined as a least fixed point.
definition attractor :: Player \Rightarrow ' a set \Rightarrow 'a set where
attractor $p W=l f p$ (attractor-step $p W$)

6.1 directly-attracted

Show a few basic properties of directly-attracted.

```
lemma directly-attracted-disjoint \(\quad[\) simp \(]\) : directly-attracted \(p W \cap W=\{ \}\)
    and directly-attracted-empty \(\quad[\) simp \(]\) : directly-attracted \(p\}=\{ \}\)
    and directly-attracted-V-empty \(\quad[\) simp \(]\) : directly-attracted \(p V=\{ \}\)
    and directly-attracted-bounded-by-V [simp]: directly-attracted \(p W \subseteq V\)
    and directly-attracted-contains-no-deadends \([\) elim \(]: v \in\) directly-attracted \(p W \Longrightarrow \neg\) deadend \(v\)
    unfolding directly-attracted-def by blast+
```


6.2 attractor-step

lemma attractor-step-empty: attractor-step $p\}\}=\{ \}$
and attractor-step-bounded-by-V: $\llbracket W \subseteq V ; S \subseteq V \rrbracket \Longrightarrow$ attractor-step p $W S \subseteq V$
by simp-all
The definition of attractor uses lfp. For this to be well-defined, we need show that attrac-tor-step is monotone.
lemma attractor-step-mono: mono (attractor-step p W)
unfolding directly-attracted-def by (rule monoI) auto

6.3 Basic Properties of an Attractor

lemma attractor-unfolding: attractor $p W=$ attractor-step $p W$ (attractor $p W$)
unfolding attractor-def using attractor-step-mono lfp-unfold by blast
lemma attractor-lowerbound: attractor-step p $W S \subseteq S \Longrightarrow$ attractor $p W \subseteq S$
unfolding attractor-def using attractor-step-mono by (simp add: lfp-lowerbound)
lemma attractor-set-non-empty: $W \neq\{ \} \Longrightarrow$ attractor $p W \neq\{ \}$
and attractor-set-base: $W \subseteq$ attractor $p W$
using attractor-unfolding by auto
lemma attractor-in- $V: W \subseteq V \Longrightarrow$ attractor $p W \subseteq V$
using attractor-lowerbound attractor-step-bounded-by- V by auto

6.4 Attractor Set Extensions

lemma attractor-set-VVp:
assumes $v \in V V p v \rightarrow w w \in$ attractor $p W$
shows $v \in$ attractor $p W$
apply (subst attractor-unfolding) unfolding directly-attracted-def using assms by auto
lemma attractor-set-VVpstar:
assumes \neg deadend $v \bigwedge w . v \rightarrow w \Longrightarrow w \in$ attractor $p W$
shows $v \in$ attractor $p W$
apply (subst attractor-unfolding) unfolding directly-attracted-def using assms by auto

6.5 Removing an Attractor

```
lemma removing-attractor-induces-no-deadends:
    assumes v\inS-attractor p Wv->ww\inS \w.\llbracketv\inVV p**;v->w\rrbracket\Longrightarroww\inS
    shows }\existsw\inS-attractor p W.v->
proof-
    have v\inV using }\langlev->w\rangle\mathrm{ by blast
    thus ?thesis proof (cases rule: VV-cases)
        assume v}\inVV
        thus ?thesis using attractor-set-VVp assms by blast
    next
        assume v\inVV p**
        thus ?thesis using attractor-set-VVpstar assms by (metis Diff-iff edges-are-in-V(2))
    qed
qed
```

Removing the attractor sets of deadends leaves a subgame without deadends.
lemma subgame-without-deadends:
assumes V^{\prime}-def: $V^{\prime}=V$ - attractor p (deadends $p * *$) - attractor $p * *$ (deadends $p * * * *$)
(is $V^{\prime}=V-? A-? B$)
and $v: v \in V_{\text {subgame }} V^{\prime}$
shows \neg Digraph.deadend (subgame V^{\prime}) v
proof (cases)
assume deadend v
have $v: v \in V-? A-? B$ using v unfolding V^{\prime}-def subgame-def by simp
\{ fix p^{\prime} assume $v \in V V p^{\prime} * *$
hence $v \in$ attractor p^{\prime} (deadends $p^{\prime} * *$)
using 〈deadend $v\rangle$ attractor-set-base[of deadends $p^{\prime} * * p$]

```
        unfolding deadends-def by blast
        hence False using v by (cases p'; cases p) auto
    }
    thus ?thesis using v by blast
next
    assume \negdeadend v
    have v:v\inV - ?A - ?B using v unfolding V'-def subgame-def by simp
    define G' where G' = subgame V'
    interpret G': ParityGame G' unfolding G'-def using subgame-ParityGame .
    show ?thesis proof
        assume Digraph.deadend (subgame V')v
        hence G'.deadend v unfolding G'-def .
        have all-in-attractor: }\w.v->w\Longrightarroww\in?A\veew\in?B proof (rule ccontr
            fix }
            assume }v->w\neg(w\in?A\veew\in?B
            hence w}\in\mp@subsup{V}{}{\prime}\mathrm{ unfolding }\mp@subsup{V}{}{\prime}\mathrm{ -def by blast
            hence w}\in\mp@subsup{V}{G}{\prime
            hence v 基它 using \langlev->w\rangle assms(2) unfolding G'-def subgame-def by auto
            thus False using {G'.deadend v\rangle using }\langlew\in\mp@subsup{V}{\mp@subsup{G}{}{\prime}}{}\rangle\mathrm{ by blast
        qed
        { fix p' assume v\inVV p
            { assume \existsw.v->w}\wedgew\in\mathrm{ attractor p (deadends p'**)
                hence v\inattractor p' (deadends p}\mp@subsup{p}{}{\prime**)}\mathrm{ using <v GVV p'> attractor-set-VVp by blast
                hence False using v by (cases p'; cases p) auto
            }
            hence }\w.v->w\Longrightarroww\in\mathrm{ attractor }\mp@subsup{p}{}{\prime}** (deadends p'*****
            using all-in-attractor by (cases p'; cases p) auto
            hence v}\in\mathrm{ attractor p}\mp@subsup{p}{}{\prime**}(\mathrm{ deadends }\mp@subsup{p}{}{\prime}****
                using <\negdeadend v\rangle\langlev\inVV p}>\mathrm{ \attractor-set-VVpstar by auto
            hence False using v by (cases p'; cases p) auto
    }
    thus False using v by blast
    qed
qed
```


6.6 Attractor Set Induction

lemma mono-restriction-is-mono: mono $f \Longrightarrow$ mono $(\lambda S . f(S \cap V))$
unfolding mono-def by (meson inf-mono monoD subset-refl)
Here we prove a powerful induction schema for attractor. Being able to prove this is the only reason why we do not use inductive_set to define the attractor set.
See also https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-October/msg00123.html
lemma attractor-set-induction [consumes 1, case-names step union]:
assumes $W \subseteq V$
and step: $\wedge S . S \subseteq V \Longrightarrow P S \Longrightarrow P($ attractor-step $p W S)$
and union: $\wedge M . \forall S \in M . S \subseteq V \wedge P S \Longrightarrow P(\bigcup M)$
shows P (attractor $p W$)
proof-
let $? P=\lambda S . P(S \cap V)$
let ?f $=\lambda S$. attractor-step $p W(S \cap V)$

```
    let \(? A=l f p\) ?f
    let ?B \(=l f p\) (attractor-step \(p W\) )
    have \(f\)-mono: mono?f
    using mono-restriction-is-mono[of attractor-step \(p W\) ] attractor-step-mono by simp
    have \(P-A\) : ? P ?A proof (rule lfp-ordinal-induct-set)
    show \(\wedge S . ? P S \Longrightarrow\) ? \(P(W \cup(S \cap V) \cup\) directly-attracted \(p(S \cap V))\)
        by (metis assms(1) attractor-step-bounded-by-V inf.absorb1 inf-le2 local.step)
    show \(\wedge M . \forall S \in M . ? P S \Longrightarrow ? P(\bigcup M)\) proof-
        fix \(M\)
        let \(? M=\{S \cap V \mid S . S \in M\}\)
        assume \(\forall S \in M\). ?P \(S\)
        hence \(\forall S \in\) ?M. \(S \subseteq V \wedge P S\) by auto
        hence \(*: P(\bigcup\) ?M) by (simp add: union)
        have \(\bigcup\) ? \(M=(\bigcup M) \cap V\) by blast
        thus ? \(P(\bigcup M)\) using \(*\) by auto
    qed
qed (insert f-mono)
    have \(*: W \cup(V \cap V) \cup\) directly-attracted \(p(V \cap V) \subseteq V\)
    using \(\langle W \subseteq V\rangle\) attractor-step-bounded-by- \(V\) by auto
    have \(? A \subseteq V ? B \subseteq V\) using \(*\) by (simp-all add:lfp-lowerbound)
    have ? \(A=\) ?f ?A using \(f\)-mono lfp-unfold by blast
    hence ? \(A=W \cup(? A \cap V) \cup\) directly-attracted \(p(? A \cap V)\) using 〈?A \(\subseteq V\) 〉 by simp
    hence \(*\) : attractor-step \(p W ? A \subseteq\) ? \(A\) using 〈? \(A \subseteq V\) inf.absorb1 by fastforce
    have ? \(B=\) attractor-step \(p W\) ? \(B\) using attractor-step-mono lfp-unfold by blast
    hence ?f ? \(B \subseteq\) ? \(B\) using \(\langle ? B \subseteq V\rangle\) by (metis (no-types, lifting) equalityD2 le-iff-inf)
    have ? \(A=\) ? \(B\) proof
    show ? \(A \subseteq\) ? \(B\) using 〈?f ? \(B \subseteq\) ? \(B\) 〉 by (simp add: lfp-lowerbound)
    show ? \(B \subseteq ? A\) using \(*\) by (simp add: lfp-lowerbound)
    qed
    hence ?P ? \(B\) using \(P-A\) by (simp add: attractor-def)
    thus ?thesis using 〈? \(B \subseteq V\rangle\) by (simp add: attractor-def le-iff-inf)
qed
end - context ParityGame
end
```


7 Winning Strategies

theory WinningStrategy
imports
Main
Strategy
begin
context ParityGame begin

Here we define winning strategies.
A strategy is winning for player p from $v 0$ if every maximal σ-path starting in $v 0$ is winning.
definition winning-strategy $::$ Player \Rightarrow 'a Strategy $\Rightarrow{ }^{\prime} a \Rightarrow$ bool where
winning-strategy $p \sigma v 0 \equiv \forall P$.vmc-path $G P v 0 p \sigma \longrightarrow$ winning-path $p P$
lemma winning-strategy I [intro]:
assumes $\bigwedge P$. vmc-path $G P$ v0 p $\sigma \Longrightarrow$ winning-path $p P$
shows winning-strategy $p \sigma v 0$
unfolding winning-strategy-def using assms by blast
lemma (in vmc-path) paths-hits-winning-strategy-is-winning:
assumes σ : winning-strategy $p \sigma v$
and $v: v \in$ lset P
shows winning-path $p P$
proof-
obtain n where n : enat $n<$ llength $P P \$ n=v$ using v by (meson in-lset-conv-lnth)
interpret P^{\prime} : vmc-path G ldropn $n P v p \sigma$ using $n v m c$-path-ldropn by blast
have winning-path p (ldropn $n P$) using σ by (simp add: winning-strategy-def $P^{\prime} . v m c$-path-axioms)
thus ?thesis using winning-path-drop-add P-valid $n(1)$ by blast
qed
There cannot exist winning strategies for both players for the same node.
lemma winning-strategy-only-for-one-player:
assumes σ : strategy $p \sigma$ winning-strategy $p \sigma v$ and σ^{\prime} : strategy $p * * \sigma^{\prime}$ winning-strategy $p * * \sigma^{\prime} v$ and $v: v \in V$
shows False
proof-
obtain P where vmc2-path $G P v p \sigma \sigma^{\prime}$ using assms strategy-conforming-path-exists by blast
then interpret vmc2-path $G P v p \sigma \sigma^{\prime}$.
have winning-path $p P$
using paths-hits-winning-strategy-is-winning $\sigma(2) v 0$-lset- P by blast
moreover have winning-path $p * * P$
using comp.paths-hits-winning-strategy-is-winning $\sigma^{\prime}(2) v 0$-lset- P by blast
ultimately show False using P-valid paths-are-winning-for-one-player by blast
qed

7.1 Deadends

lemma no-winning-strategy-on-deadends:
assumes $v \in V V p$ deadend v strategy $p \sigma$
shows \neg winning-strategy $p \sigma v$
proof-
obtain P where vmc-path $G P v p \sigma$ using strategy-conforming-path-exists-single assms by blast
then interpret vmc-path $G P v p \sigma$.
have $P=$ LCons v LNil using P-deadend-v0-LCons $\langle d e a d e n d v$ by blast
hence \neg winning-path $p P$ unfolding winning-path-def using $\langle v \in V V p\rangle$ by auto
thus ?thesis using winning-strategy-def vmc-path-axioms by blast
qed
lemma winning-strategy-on-deadends:

```
    assumes v\inVV p deadend v strategy p \sigma
    shows winning-strategy p** \sigmav
proof
    fix P assume vmc-path G Pv p** \sigma
    then interpret vmc-path GPvp** \sigma .
    have P=LCons v LNil using P-deadend-v0-LCons 〈deadend v> by blast
    thus winning-path p** P unfolding winning-path-def
        using }\langlev\inVV p\rangleP\mathrm{ -valid paths-are-winning-for-one-player by auto
qed
```


7.2 Extension Theorems

lemma strategy-extends- $V V$:
assumes $v 0: v 0 \in V V p \neg$ deadend $v 0$
and σ : strategy $p \sigma$ winning-strategy $p \sigma v 0$
shows winning-strategy $p \sigma(\sigma v 0)$
proof
fix P assume vmc-path $G P(\sigma v 0) p \sigma$
then interpret vmc-path $G P \sigma v 0 p \sigma$.
have $v 0 \rightarrow \sigma v 0$ using $v 0 \sigma(1)$ strategy-def by blast
hence winning-path p (LCons v0 P)
using $\sigma(2)$ extension-valid-maximal-conforming winning-strategy-def by blast
thus winning-path p P using winning-path-ltl[of p LCons v0 P] by simp
qed
lemma strategy-extends-VVpstar:
assumes $v 0: v 0 \in V V p * * v 0 \rightarrow w 0$
and σ : winning-strategy $p \sigma v 0$
shows winning-strategy $p \sigma$ w0
proof
fix P assume $v m c$-path $G P$ wo p σ
then interpret vmc-path $G P w 0 p \sigma$.
have winning-path p (LCons v0 P)
using extension-valid-maximal-conforming VV-impl1 σ v0 winning-strategy-def
by auto
thus winning-path $p P$ using winning-path-ltl[of p LCons v0 $P]$ by auto
qed
lemma strategy-extends-backwards-VVpstar:
assumes $v 0: v 0 \in V V p * *$
and σ : strategy $p \sigma \bigwedge w . v 0 \rightarrow w \Longrightarrow$ winning-strategy $p \sigma w$
shows winning-strategy $p \sigma$ v0
proof
fix P assume vmc-path $G P v 0 p \sigma$
then interpret $v m c$-path $G P v 0 p \sigma$.
show winning-path $p P$ proof (cases)
assume deadend v0
thus ?thesis using P-deadend-v0-LCons winning-path-def v0 by auto
next
assume \neg deadend v0
then interpret vmc-path-no-deadend $G P v 0 p \sigma$ by unfold-locales
interpret ltlP: vmc-path G ltl P wo p σ using vmc-path-ltl.

```
    have winning-path p (ltl P)
            using \sigma(2) v0-edge-w0 vmc-path-ltl winning-strategy-def by blast
    thus winning-path p P
        using winning-path-LCons by (metis P-LCons' ltlP.P-LCons ltlP.P-not-null)
    qed
qed
lemma strategy-extends-backwards-VVp:
    assumes v0:v0 \inVV p\sigmav0=wv0
        and \sigma: strategy p\sigma winning-strategy p \sigmaw
    shows winning-strategy p \sigma v0
proof
    fix P assume vmc-path G P v0 p\sigma
    then interpret vmc-path G P v0 p \sigma .
    have \negdeadend v0 using \langlev0->w\rangle by blast
    then interpret vmc-path-no-deadend G Pv0 p\sigma by unfold-locales
    have winning-path p (ltl P)
        using \sigma(2)[unfolded winning-strategy-def] v0(1,2) v0-conforms vmc-path-ltl by presburger
    thus winning-path p P using winning-path-LCons by (metis P-LCons Ptl-not-null)
qed
end - context ParityGame
end
```


8 Well-Ordered Strategy

```
theory WellOrderedStrategy
imports
    Main
    Strategy
begin
```

Constructing a uniform strategy from a set of strategies on a set of nodes often works by well-ordering the strategies and then choosing the minimal strategy on each node. Then every path eventually follows one strategy because we choose the strategies along the path to be non-increasing in the well-ordering.
The following locale formalizes this idea.
We will use this to construct uniform attractor and winning strategies.

```
locale WellOrderedStrategies \(=\) ParityGame +
    fixes \(S\) :: 'a set
        and \(p::\) Player
        - The set of good strategies on a node \(v\)
    and good :: ' \(a \Rightarrow\) 'a Strategy set
    and \(r::(' a\) Strategy \(\times\) 'a Strategy) set
assumes \(S-V: S \subseteq V\)
    - \(r\) is a wellorder on the set of all strategies which are good somewhere.
    and \(r\)-wo: well-order-on \(\{\sigma . \exists v \in S . \sigma \in\) good \(v\} r\)
    - Every node has a good strategy.
    and good-ex: \(\bigwedge v . v \in S \Longrightarrow \exists \sigma . \sigma \in \operatorname{good} v\)
```

- good strategies are well-formed strategies.
and good-strategies: $\bigwedge v \sigma . \sigma \in \operatorname{good} v \Longrightarrow$ strategy $p \sigma$
- A good strategy on v is also good on possible successors of v.
and strategies-continue: $\bigwedge v w \sigma . \llbracket v \in S ; v \rightarrow w ; v \in V V p \Longrightarrow \sigma v=w ; \sigma \in \operatorname{good} v \rrbracket \Longrightarrow \sigma \in$ good w
begin
The set of all strategies which are good somewhere.
abbreviation Strategies $\equiv\{\sigma . \exists v \in S . \sigma \in$ good $v\}$
definition minimal-good-strategy where

```
minimal-good-strategy v \sigma\equiv\sigma\in good v}\wedge(\forall\mp@subsup{\sigma}{}{\prime}.(\mp@subsup{\sigma}{}{\prime},\sigma)\inr-Id\longrightarrow\mp@subsup{\sigma}{}{\prime}\not\in\mathrm{ good v)
```

no-notation binomial (infixl choose 65)
Among the good strategies on v, choose the minimum.
definition choose where
choose $v \equiv$ THE σ. minimal-good-strategy $v \sigma$
Define a strategy which uses the minimum strategy on all nodes of S. Of course, we need to prove that this is a well-formed strategy.
definition well-ordered-strategy where
well-ordered-strategy \equiv override-on σ-arbitrary $(\lambda v$. choose $v v) S$
Show some simple properties of the binary relation r on the set Strategies.
lemma r-refl [simp]: refl-on Strategies r
using r-wo unfolding well-order-on-def linear-order-on-def partial-order-on-def preorder-on-def by blast
lemma r-total $[$ simp $]$: total-on Strategies r
using r-wo unfolding well-order-on-def linear-order-on-def by blast
lemma r-trans $[$ simp $]$: trans r
using r-wo unfolding well-order-on-def linear-order-on-def partial-order-on-def preorder-on-def by blast
lemma r-wf $[s i m p]: w f(r-I d)$
using well-order-on-def r-wo by blast
choose always chooses a minimal good strategy on S.
lemma choose-works:
assumes $v \in S$
shows minimal-good-strategy v (choose v)
proof-
have $w f: w f(r-I d)$ using well-order-on-def r-wo by blast
obtain σ where $\sigma 1$: minimal-good-strategy $v \sigma$ unfolding minimal-good-strategy-def by (meson good-ex $[O F\langle v \in S\rangle]$ wf wf-eq-minimal)
hence $\sigma: \sigma \in$ good $v \bigwedge \sigma^{\prime} .\left(\sigma^{\prime}, \sigma\right) \in r-I d \Longrightarrow \sigma^{\prime} \notin$ good v
unfolding minimal-good-strategy-def by auto
$\left\{\right.$ fix σ^{\prime} assume minimal-good-strategy $v \sigma^{\prime}$
hence $\sigma^{\prime}: \sigma^{\prime} \in \operatorname{good} v \bigwedge \sigma .\left(\sigma, \sigma^{\prime}\right) \in r-I d \Longrightarrow \sigma \notin$ good v
unfolding minimal-good-strategy-def by auto have $\left(\sigma, \sigma^{\prime}\right) \notin r-I d$ using $\sigma(1) \sigma^{\prime}(2)$ by blast

```
    moreover have ( }\mp@subsup{\sigma}{}{\prime},\sigma)\not\inr-Id\mathrm{ using }\sigma(2)\mp@subsup{\sigma}{}{\prime}(1)\mathrm{ by auto
    moreover have }\sigma\in\mathrm{ Strategies using }\sigma(1)\langlev\inS\rangle\mathrm{ by auto
    moreover have }\mp@subsup{\sigma}{}{\prime}\in\mathrm{ Strategies using }\mp@subsup{\sigma}{}{\prime}(1)\langlev\inS\rangle\mathrm{ by auto
    ultimately have }\mp@subsup{\sigma}{}{\prime}=
        using r-wo Linear-order-in-diff-Id well-order-on-Field well-order-on-def by fastforce
    }
    with }\sigma1\mathrm{ have }\exists\mathrm{ ! }\sigma\mathrm{ . minimal-good-strategy v }\sigma\mathrm{ by blast
    thus ?thesis using theI'[of minimal-good-strategy v, folded choose-def] by blast
qed
corollary
    assumes v\inS
    shows choose-good: choose v\in good v
        and choose-minimal: }\bigwedge\mp@subsup{\sigma}{}{\prime}.(\mp@subsup{\sigma}{}{\prime},\mathrm{ choose v) 
        and choose-strategy: strategy p (choose v)
    using choose-works[OF assms, unfolded minimal-good-strategy-def] good-strategies by blast+
corollary choose-in-Strategies: v\inS\Longrightarrow choose v\inStrategies using choose-good by blast
lemma well-ordered-strategy-valid: strategy p well-ordered-strategy
proof-
    {
        fix v assume v\inSv\inVV p\negdeadend v
        moreover have strategy p (choose v)
        using choose-works[OF }vv\inS\rangle\mathrm{ , unfolded minimal-good-strategy-def,THEN conjunct1] good-strategies
            by blast
        ultimately have v->(\lambdav. choose vv)v}\mathrm{ using strategy-def by blast
    }
    thus ?thesis unfolding well-ordered-strategy-def using valid-strategy-updates-set by force
qed
```


8.1 Strategies on a Path

Maps a path to its strategies.
definition path-strategies \equiv lmap choose
lemma path-strategies-in-Strategies:
assumes lset $P \subseteq S$
shows lset (path-strategies P) \subseteq Strategies
using path-strategies-def assms choose-in-Strategies by auto
lemma path-strategies-good:
assumes lset $P \subseteq S$ enat $n<$ llength P
shows path-strategies $P \$ n \in \operatorname{good}(P \$ n)$
by (simp add: path-strategies-def assms choose-good lset-lnth-member)
lemma path-strategies-strategy:
assumes lset $P \subseteq S$ enat $n<$ llength P
shows strategy p (path-strategies $P \$ n$)
using path-strategies-good assms good-strategies by blast
lemma path-strategies-monotone-Suc:
assumes P : lset $P \subseteq S$ valid-path P path-conforms-with-strategy $p P$ well-ordered-strategy enat (Suc n) $<$ llength P
shows (path-strategies $P \$$ Suc n, path-strategies $P \$ n) \in r$
proof-
define P^{\prime} where $P^{\prime}=$ ldropn $n P$
hence enat (Suc 0) < llength P^{\prime} using $P(4)$
by (metis enat-ltl-Suc ldrop-eSuc-ltl ldropn-Suc-conv-ldropn llist.disc(2) lnull-0-llength ltl-ldropn)
then obtain $v w$ Ps where $v w: P^{\prime}=L C o n s v(L C o n s w P s)$
by (metis ldropn-0 ldropn-Suc-conv-ldropn ldropn-lnull lnull-0-llength)
moreover have lset $P^{\prime} \subseteq S$ unfolding P^{\prime}-def using $P(1)$ lset-ldropn-subset $[$ of $n P]$ by blast
ultimately have $v \in S w \in S$ by auto
moreover have $v \rightarrow w$ using valid-path-edges'[of v w Ps, folded vw] valid-path-drop[OF P(2)]
P^{\prime}-def by blast
moreover have choose $v \in$ good v using choose-good $\langle v \in S\rangle$ by blast
moreover have $v \in V V p \Longrightarrow$ choose $v v=w$ proof-
assume $v \in V V p$
moreover have path-conforms-with-strategy $p P^{\prime}$ well-ordered-strategy
unfolding P^{\prime}-def using path-conforms-with-strategy-drop $P(3)$ by blast
ultimately have well-ordered-strategy $v=w$ using vw path-conforms-with-strategy-start by
blast
thus choose $v v=w$ unfolding well-ordered-strategy-def using $\langle v \in S\rangle$ by auto
qed
ultimately have choose $v \in$ good w using strategies-continue by blast
hence $*$: (choose v, choose $w) \notin r-I d$ using choose-minimal $\langle w \in S\rangle$ by blast
have (choose w, choose v) $\in r$ proof (cases)
assume choose $v=$ choose w
thus ?thesis using r-refl refl-onD choose-in-Strategies[OF $\langle v \in S\rangle]$ by fastforce
next
assume choose $v \neq$ choose w
thus ?thesis using $* r$-total choose-in-Strategies[OF $\langle v \in S\rangle$] choose-in-Strategies $[O F\langle w \in S\rangle]$
by (metis (lifting) Linear-order-in-diff-Id r-wo well-order-on-Field well-order-on-def)
qed
hence (path-strategies P^{\prime} \$ Suc 0, path-strategies $\left.P^{\prime} \$ 0\right) \in r$ unfolding path-strategies-def using $v w$ by simp
thus ?thesis unfolding path-strategies-def P^{\prime}-def using lnth-lmap-ldropn[OF Suc-llength[OF P(4)], of choose]
lnth-lmap-ldropn-Suc[OF P(4), of choose] by simp
qed
lemma path-strategies-monotone:
assumes P : lset $P \subseteq S$ valid-path P path-conforms-with-strategy p P well-ordered-strategy $n<m$ enat $m<$ llength P
shows (path-strategies $P \$ m$, path-strategies $P \$ n) \in r$
using assms proof (induct $m-n$ arbitrary: $n m$)
case (Suc d)
show ?case proof (cases)
assume $d=0$
thus ?thesis using path-strategies-monotone-Suc[OF P(1,2,3)]

```
            by (metis (no-types) Suc.hyps(2) Suc.prems(4,5) Suc-diff-Suc Suc-inject Suc-leI diff-is-0-eq
diffs0-imp-equal)
    next
        assume d\not=0
        have m\not=0 using Suc.hyps(2) by linarith
        then obtain m' where m':Suc m'=m using not0-implies-Suc by blast
        hence d}=\mp@subsup{m}{}{\prime}-n\mathrm{ using Suc.hyps(2) by presburger
        moreover hence n< m' using <d\not=0\rangle by presburger
        ultimately have (path-strategies P $ m', path-strategies P $ n) \inr
        using Suc.hyps(1)[of m'n,OF-P(1,2,3)] Suc.prems(5) dual-order.strict-trans enat-ord-simps(2)
m'
            by blast
        thus ?thesis
        using m' path-strategies-monotone-Suc[OF P(1,2,3)] by (metis (no-types) Suc.prems(5)r-trans
trans-def)
    qed
qed simp
lemma path-strategies-eventually-constant:
    assumes \neglfinite P lset P\subseteqS valid-path P path-conforms-with-strategy p P well-ordered-strategy
    shows }\existsn.\forallm\geqn. path-strategies P$n= path-strategies P$
proof-
    define }\sigma\mathrm{ -set where }\sigma\mathrm{ -set =lset (path-strategies P)
    have }\exists\sigma.\sigma\in\sigma\mathrm{ -set unfolding }\sigma\mathrm{ -set-def path-strategies-def
        using assms(1) lfinite-lmap lset-nth-member-inf by blast
    then obtain }\mp@subsup{\sigma}{}{\prime}\mathrm{ where }\mp@subsup{\sigma}{}{\prime}:\mp@subsup{\sigma}{}{\prime}\in\sigma\mathrm{ -set }\bigwedge\tau.(\tau,\mp@subsup{\sigma}{}{\prime})\inr-Id\Longrightarrow\tau\not\in\sigma\mathrm{ -set
        using wfE-min[of r - Id - \sigma-set] by auto
    obtain n where n: path-strategies P $ n= 尔
        using }\mp@subsup{\sigma}{}{\prime}(1) lset-lnth[of \sigma] unfolding \sigma-set-def by blas
    {
        fix m assume n\leqm
        have path-strategies P$ n= path-strategies P$ m proof (rule ccontr)
            assume *: path-strategies P $ n}=\mathrm{ path-strategies P $ m
            with {n\leqm\rangle have n<m using le-imp-less-or-eq by blast
            with path-strategies-monotone have (path-strategies P $ m, path-strategies P $ n) \inr
                using assms by (simp add: infinite-small-llength)
            with * have (path-strategies P $ m, path-strategies P $ n)\inr-Id by simp
            with }\mp@subsup{\sigma}{}{\prime}(2)n\mathrm{ have path-strategies }P$m\not\in\sigma\mathrm{ -set by blast
            thus False unfolding \sigma-set-def path-strategies-def
                using assms(1) linite-lmap lset-nth-member-inf by blast
            qed
    }
    thus ?thesis by blast
qed
```


8.2 Eventually One Strategy

The key lemma: Every path that stays in S and follows well-ordered-strategy eventually follows one strategy because the strategies are well-ordered and non-increasing along the path.
lemma path-eventually-conforms-to- σ-map-n:

```
    assumes lset \(P \subseteq S\) valid-path \(P\) path-conforms-with-strategy p \(P\) well-ordered-strategy
    shows \(\exists n\). path-conforms-with-strategy \(p(l d r o p n n P)(\) path-strategies \(P \$ n)\)
proof (cases)
    assume lfinite \(P\)
    then obtain \(n\) where llength \(P=\) enat \(n\) using linite-llength-enat by blast
    hence ldropn \(n P=\) LNil by simp
    thus ?thesis by (metis path-conforms-LNil)
next
    assume \(\neg\) lfinite \(P\)
    then obtain \(n\) where \(n: \wedge m . n \leq m \Longrightarrow\) path-strategies \(P \$ n=\) path-strategies \(P \$ m\)
        using path-strategies-eventually-constant assms by blast
    let \(? \sigma=\) well-ordered-strategy
    define \(P^{\prime}\) where \(P^{\prime}=l\) dropn \(n P\)
    \(\left\{\right.\) fix \(v\) assume \(v \in\) lset \(P^{\prime}\)
        hence \(v \in S\) using «lset \(P \subseteq S\rangle P^{\prime}\)-def in-lset-ldropnD by fastforce
            from \(\left\langle v \in\right.\) lset \(\left.P^{\prime}\right\rangle\) obtain \(m\) where \(m\) : enat \(m<\) length \(P^{\prime} P^{\prime} \$ m=v\) by (meson
in-lset-conv-lnth)
        hence \(P \$ m+n=v\) unfolding \(P^{\prime}\)-def by (simp add: \(\langle\neg l\) finite \(P\rangle\) infinite-small-llength)
        moreover have ? \(\sigma v=\) choose \(v v\) unfolding well-ordered-strategy-def using \(\langle v \in S\rangle\) by auto
        ultimately have ? \(\sigma v=(\) path-strategies \(P \$ m+n) v\)
            unfolding path-strategies-def using infinite-small-llength \([O F « \neg l f i n i t e ~ P\rangle\) ] by simp
        hence ? \(\sigma v=(\) path-strategies \(P \$ n) v\) using \(n[o f m+n]\) by simp
    \}
    moreover have path-conforms-with-strategy p \(P^{\prime}\) well-ordered-strategy
        unfolding \(P^{\prime}\)-def by (simp add: assms(3) path-conforms-with-strategy-drop)
    ultimately show? thesis
    using path-conforms-with-strategy-irrelevant-updates \(P^{\prime}\)-def by blast
qed
end - WellOrderedStrategies
end
```


9 Winning Regions

```
theory WinningRegion
imports
    Main
    WinningStrategy
begin
```

Here we define winning regions of parity games. The winning region for player p is the set of nodes from which p has a positional winning strategy.
context ParityGame begin
definition winning-region $p \equiv\{v \in V . \exists \sigma$. strategy $p \sigma \wedge$ winning-strategy $p \sigma v\}$
lemma winning-regionI [intro]:
assumes $v \in V$ strategy $p \sigma$ winning-strategy $p \sigma v$
shows $v \in$ winning-region p
using assms unfolding winning-region-def by blast
lemma winning-region-in- V [simp]: winning-region $p \subseteq V$ unfolding winning-region-def by blast

```
lemma winning-region-deadends:
    assumes v\inVV p deadend v
    shows v\in winning-region p**
proof
    show }v\inV\mathrm{ using }\langlev\inVV p\rangle by blas
    show winning-strategy p** \sigma-arbitrary v using assms winning-strategy-on-deadends by simp
qed simp
```


9.1 Paths in Winning Regions

lemma (in vmc-path) paths-stay-in-winning-region:
assumes σ^{\prime} : strategy $p \sigma^{\prime}$ winning-strategy $p \sigma^{\prime} v 0$ and $\sigma: \bigwedge v . v \in$ winning-region $p \Longrightarrow \sigma^{\prime} v=\sigma v$
shows lset $P \subseteq$ winning-region p
proof
fix x assume $x \in$ lset P
thus $x \in$ winning-region p using assms vmc-path-axioms
proof (induct arbitrary: v0 rule: llist-set-induct)
case (find Pv0)
interpret vmc-path $G P v 0 p \sigma$ using find.prems(4).
show ?case using $P-v 0 \sigma^{\prime}(1)$ find.prems(2) $v 0-V$ unfolding winning-region-def by blast
next
case (step $P \times v 0$)
interpret vmc-path $G P v 0 p \sigma$ using step.prems(4).
show ?case proof (cases)
assume lnull (ltl P)
thus ?thesis using P-lnull-ltl-LCons step.hyps(2) by auto
next
assume \neg lnull (ltl P)
then interpret vmc-path-no-deadend GPv0p σ using P-no-deadend-v0 by unfold-locales
have winning-strategy $p \sigma^{\prime}$ w0 proof (cases)
assume $v 0 \in V V p$
hence winning-strategy $p \sigma^{\prime}\left(\sigma^{\prime} v 0\right)$
using strategy-extends-VVp local.step(4) step.prems(2) v0-no-deadend by blast
moreover have $\sigma v 0=w 0$ using v0-conforms $\langle v 0 \in V V p\rangle$ by blast
moreover have $\sigma^{\prime} v 0=\sigma v 0$
using σ assms(1) step.prems(2) v0-V unfolding winning-region-def by blast
ultimately show ?thesis by simp
next
assume $v 0 \notin V V p$
thus ?thesis using $v 0$ - V strategy-extends-VVpstar step(4) step.prems(2) by simp
qed
thus ?thesis using step.hyps(3) step(4) σ vmc-path-ltl by blast
qed
qed
qed
lemma (in vmc-path) path-hits-winning-region-is-winning:
assumes σ^{\prime} : strategy $p \sigma^{\prime} \bigwedge v . v \in$ winning-region $p \Longrightarrow$ winning-strategy $p \sigma^{\prime} v$
and $\sigma: \bigwedge v . v \in$ winning-region $p \Longrightarrow \sigma^{\prime} v=\sigma v$
and P : lset $P \cap$ winning-region $p \neq\{ \}$
shows winning-path $p P$
proof-
obtain n where n : enat $n<$ llength $P P \$ n \in$ winning-region p
using P by (meson lset-intersect-lnth)
define P^{\prime} where $P^{\prime}=l$ dropn $n P$
then interpret $P^{\prime}: v m c$-path $G P^{\prime} P \$ n p \sigma$
unfolding P^{\prime}-def using vmc-path-ldropn $n(1)$ by blast
have winning-strategy $p \sigma^{\prime}(P \$ n)$ using $\sigma^{\prime}(2) n(2)$ by blast
hence lset $P^{\prime} \subseteq$ winning-region p
using P^{\prime}.paths-stay-in-winning-region $\left[O F \sigma^{\prime}(1)-\sigma\right]$
by blast
hence $\bigwedge v . v \in l$ set $P^{\prime} \Longrightarrow \sigma v=\sigma^{\prime} v$ using σ by auto
hence path-conforms-with-strategy $p P^{\prime} \sigma^{\prime}$
using path-conforms-with-strategy-irrelevant-updates $P^{\prime} . P$-conforms
by blast
then interpret P^{\prime} : vmc-path $G P^{\prime} P \$ n p \sigma^{\prime}$ using P^{\prime}.conforms-to-another-strategy by blast
have winning-path $p P^{\prime}$ using $\sigma^{\prime}(2) n(2) P^{\prime}$.vmc-path-axioms winning-strategy-def by blast
thus winning-path $p P$ unfolding P^{\prime}-def using winning-path-drop-add $n(1) P$-valid by blast qed

9.2 Irrelevant Updates

Updating a winning strategy outside of the winning region is irrelevant.
lemma winning-strategy-updates:
assumes σ : strategy $p \sigma$ winning-strategy $p \sigma v 0$
and $v: v \notin$ winning-region $p \quad v \rightarrow w$
shows winning-strategy $p(\sigma(v:=w))$ v0
proof
fix P assume vmc-path $G P v 0 p(\sigma(v:=w))$
then interpret vmc-path GPv0p $\sigma(v:=w)$.
have $\bigwedge v^{\prime} . v^{\prime} \in$ winning-region $p \Longrightarrow \sigma v^{\prime}=(\sigma(v:=w)) v^{\prime}$ using v by auto
hence $v \notin$ lset P using v paths-stay-in-winning-region σ unfolding winning-region-def by blast
hence path-conforms-with-strategy p $P \sigma$
using P-conforms path-conforms-with-strategy-irrelevant' by blast
thus winning-path p P using conforms-to-another-strategy $\sigma(2)$ winning-strategy-def by blast
qed

9.3 Extending Winning Regions

lemma winning-region-extends-VVp:
assumes $v: v \in V V p \quad v \rightarrow w$ and $w: w \in$ winning-region p
shows $v \in$ winning-region p
proof (rule ccontr)
obtain σ where σ : strategy $p \sigma$ winning-strategy $p \sigma w$
using w unfolding winning-region-def by blast
let ? $\sigma=\sigma(v:=w)$
assume contra: $v \notin$ winning-region p
moreover have strategy p ? σ using valid-strategy-updates $\sigma(1)\langle v \rightarrow w\rangle$ by blast
moreover hence winning-strategy p ? σv
using winning-strategy-updates σ contra v strategy-extends-backwards-VVp
by auto
ultimately show False using $\langle v \rightarrow w\rangle$ unfolding winning-region-def by auto qed

Unfortunately, we cannot prove the corresponding theorem winning-region-extends-VVpstar for $V V p * *$-nodes yet. First, we need to show that there exists a uniform winning strategy on winning-region p. We will prove winning-region-extends-VVpstar as soon as we have this. end - context ParityGame
end

10 Uniform Strategies

Theorems about how to get a uniform strategy given strategies for each node.

```
theory UniformStrategy
imports
    Main
    AttractingStrategy WinningStrategy WellOrderedStrategy WinningRegion
begin
context ParityGame begin
```


10.1 A Uniform Attractor Strategy

lemma merge-attractor-strategies:
assumes $S \subseteq V$
and strategies-ex: $\bigwedge v . v \in S \Longrightarrow \exists \sigma$. strategy $p \sigma \wedge$ strategy-attracts-via $p \sigma v S W$
shows $\exists \sigma$. strategy $p \sigma \wedge$ strategy-attracts $p \sigma S W$
proof-
define good where good $v=\{\sigma$. strategy $p \sigma \wedge$ strategy-attracts-via $p \sigma v S W\}$ for v
let ? $G=\{\sigma . \exists v \in S-W . \sigma \in \operatorname{good} v\}$
obtain r where r : well-order-on ? $G r$ using well-order-on by blast
interpret WellOrderedStrategies $G S-W$ p good r proof
show $S-W \subseteq V$ using $\langle S \subseteq V\rangle$ by blast
next
show $\bigwedge v . v \in S-W \Longrightarrow \exists \sigma . \sigma \in$ good v unfolding good-def using strategies-ex by blast
next
show $\wedge v \sigma . \sigma \in$ good $v \Longrightarrow$ strategy $p \sigma$ unfolding good-def by blast
next
fix $v w \sigma$ assume $v: v \in S-W v \rightarrow w v \in V V p \Longrightarrow \sigma v=w \sigma \in \operatorname{good} v$
hence σ : strategy $p \sigma$ strategy-attracts-via $p \sigma v S W$ unfolding good-def by simp-all
hence strategy-attracts-via $p \sigma w S W$ using strategy-attracts-via-successor v by blast
thus $\sigma \in$ good w unfolding good-def using $\sigma(1)$ by blast
qed (insert r)
have S-W-no-deadends: $\bigwedge v . v \in S-W \Longrightarrow \neg$ deadend v
using strategy-attracts-via-no-deadends[of - S W] strategies-ex
by (metis (no-types) Diff-iff S - V rev-subsetD)
fix $v 0$ assume $v 0 \in S$
fix P assume P : vmc-path $G P v 0 p$ well-ordered-strategy
then interpret vmc-path GPv0 p well-ordered-strategy.
have visits-via $P S W$ proof (rule ccontr)
assume contra: \neg visits-via $P S W$
hence lset $P \subseteq S-W$ proof (induct rule: vmc-path-lset-induction)
case base
show $v 0 \in S-W$ using $\langle v 0 \in S\rangle$ contra visits-via-trivial by blast
next
case (step P vo)
interpret vmc-path-no-deadend GPv0p well-ordered-strategy using step.hyps(1).
have insert vo $S=S$ using step.hyps(2) by blast
hence *: ᄀvisits-via (ltl P) S W
using visits-via-LCons[of ltl PS W0, folded P-LCons] step.hyps(3) by auto
hence $* *: w 0 \notin W$ using vmc-path.visits-via-trivial[OF vmc-path-ltl] by blast
have $w 0 \in S \cup W$ proof (cases)
assume $v 0 \in V V p$
hence well-ordered-strategy $v 0=w 0$ using $v 0$-conforms by blast
hence choose v0 v0 $=w 0$ using step.hyps(2) well-ordered-strategy-def by auto
moreover have strategy-attracts-via p (choose v0) v0 S W
using choose-good good-def step.hyps(2) by blast
ultimately show ? thesis
by (metis strategy-attracts-via-successor strategy-attracts-via-v0 choose-strategy step.hyps(2) v0-edge-w0 w0-V)
qed (metis DiffD1 assms(2) step.hyps(2) strategy-attracts-via-successor strategy-attracts-via-v0 v0-edge-w0 w0-V)
with $* * *$ show ?case by blast
qed
have \neg lfinite P proof
assume lfinite P
hence deadend (llast P) using P-maximal P-not-null maximal-ends-on-deadend by blast
moreover have llast $P \in S-W$ using «lset $P \subseteq S-W\rangle P$-not-null «lfinite P 〉 lfinite-lset
by blast
ultimately show False using S-W-no-deadends by blast
qed
obtain n where n : path-conforms-with-strategy $p(l d r o p n n P)($ path-strategies $P \$ n)$
using path-eventually-conforms-to- σ-map-n[OF «lset $P \subseteq S-W\rangle P$-valid P-conforms]
by blast
define σ^{\prime} where [simp]: $\sigma^{\prime}=$ path-strategies $P \$ n$
define P^{\prime} where $\left[\right.$ simp]: $P^{\prime}=l$ dropn n P
interpret vmc-path $G P^{\prime}$ lhd $P^{\prime} p \sigma^{\prime}$
proof
show \neg lnull P^{\prime} unfolding P^{\prime}-def
using «ᄀlfinite P 〉lfinite-ldropn lnull-imp-lfinite by blast
qed (simp-all add: n)
have strategy $p \sigma^{\prime}$ unfolding σ^{\prime}-def
using path-strategies-strategy $« l$ lset $P \subseteq S-W\rangle\langle\neg l$ finite $P\rangle$ infinite-small-llength

```
            by blast
            moreover have strategy-attracts-via p \mp@subsup{\sigma}{}{\prime}(lhd P}\mp@subsup{P}{}{\prime})SW\mathrm{ proof-
            have P$n GS - W using <lset P\subseteqS - W`\langle\neglfinite P〉 lset-nth-member-inf by blast
            hence }\mp@subsup{\sigma}{}{\prime}\in\operatorname{good}(P$n
            using path-strategies-good 攼-def \\neglfinite P\rangle\langlelset P\subseteqS-W\rangle by blast
            hence strategy-attracts-via p 尔(P$n)S W unfolding good-def by blast
            thus ?thesis unfolding }\mp@subsup{P}{}{\prime}\mathrm{ -def using P-0 by (simp add:<ᄀlfinite P> infinite-small-llength)
        qed
            moreover from <lset P\subseteqS-W〉 have lset P}\mp@subsup{P}{}{\prime}\subseteqS-
            unfolding }\mp@subsup{P}{}{\prime}\mathrm{ -def using lset-ldropn-subset [of n P] by blast
            ultimately show False using strategy-attracts-via-lset by blast
        qed
    }
    thus ?thesis using well-ordered-strategy-valid by blast
qed
```


10．2 A Uniform Winning Strategy

Let S be the winning region of player p ．Then there exists a uniform winning strategy on S ．
lemma merge－winning－strategies：
shows $\exists \sigma$ ．strategy $p \sigma \wedge(\forall v \in$ winning－region p ．winning－strategy $p \sigma v)$
proof－
define good where good $v=\{\sigma$ ．strategy $p \sigma \wedge$ winning－strategy $p \sigma v\}$ for v
let ？$G=\{\sigma . \exists v \in$ winning－region $p . \sigma \in$ good $v\}$
obtain r where r ：well－order－on ？G r using well－order－on by blast
have no－VVp－deadends：$\Lambda v . \llbracket v \in$ winning－region $p ; v \in V V p \rrbracket \Longrightarrow \neg$ deadend v using no－winning－strategy－on－deadends unfolding winning－region－def by blast
interpret WellOrderedStrategies G winning－region p p good r proof
show $\wedge v . v \in$ winning－region $p \Longrightarrow \exists \sigma . \sigma \in$ good v
unfolding good－def winning－region－def by blast
next
show $\wedge v \sigma . \sigma \in$ good $v \Longrightarrow$ strategy $p \sigma$ unfolding good－def by blast
next
fix $v w \sigma$ assume $v: v \in$ winning－region $p v \rightarrow w v \in V V p \Longrightarrow \sigma v=w \sigma \in$ good v
hence σ ：strategy $p \sigma$ winning－strategy $p \sigma v$ unfolding good－def by simp－all
hence winning－strategy $p \sigma$ wroof（cases）
assume $*: v \in V V p$
hence $* *: \sigma v=w$ using $v(3)$ by blast
have \neg deadend v using no－VVp－deadends $\langle v \in V V p\rangle v(1)$ by blast
with $* * *$ show ？thesis using strategy－extends－VVp σ by blast
next
assume $v \notin V V p$
thus ？thesis using strategy－extends－VVpstar $\sigma\langle v \rightarrow w\rangle$ by blast
qed
thus $\sigma \in$ good w unfolding good－def using $\sigma(1)$ by blast
qed（insert winning－region－in－V r）
\｛
fix $v 0$ assume $v 0 \in$ winning－region p
fix P assume P ：vmc－path $G P$ v0 p well－ordered－strategy
then interpret vmc－path G P v0 p well－ordered－strategy．
have lset $P \subseteq$ winning－region p proof（induct rule：vmc－path－lset－induction－simple） case（step P v0）
interpret vmc－path－no－deadend GP v0 p well－ordered－strategy using step．hyps（1）．
\｛ assume $v 0 \in V V p$ hence well－ordered－strategy v0 $=w 0$ using $v 0$－conforms by blast hence choose v0 v0＝w0 by（simp add：step．hyps（2）well－ordered－strategy－def）
\}
hence choose v0 \in good w0 using strategies－continue choose－good step．hyps（2）by simp
thus ？case unfolding good－def winning－region－def using $w 0-V$ by blast
qed（insert $\langle v 0 \in$ winning－region $p\rangle$ ）
have winning－path p P proof（rule ccontr）
assume contra：\neg winning－path $p P$
have \neg lfinite P proof
assume lfinite P
hence deadend（llast P ）using maximal－ends－on－deadend by simp
moreover have llast $P \in$ winning－region p
using 〈lset $P \subseteq$ winning－region p 〉 P－not－null 〈lfinite P 〉lfinite－lset by blast
moreover have llast $P \in V V p$
using contra paths－are－winning－for－one－player 〈lfinite P 〉
unfolding winning－path－def by simp
ultimately show False using no－VVp－deadends by blast
qed
obtain n where n ：path－conforms－with－strategy p（ldropn $n P$ ）（path－strategies $P \$ n$ ）
using path－eventually－conforms－to－σ－map－$n[O F$ 〈lset $P \subseteq$ winning－region $p>P$－valid P－conforms $]$
by blast
define σ^{\prime} where $[$ simp $]: \sigma^{\prime}=$ path－strategies $P \$ n$
define P^{\prime} where［simp］：$P^{\prime}=$ ldropn $n P$
interpret P^{\prime} ：vmc－path $G P^{\prime}$ lhd $P^{\prime} p \sigma^{\prime}$ proof
show \neg lnull P^{\prime} using $\langle\neg$ lfinite $P\rangle$ unfolding P^{\prime}－def
using lfinite－ldropn lnull－imp－lfinite by blast
qed（simp－all add：n）
have strategy $p \sigma^{\prime}$ unfolding σ^{\prime}－def
using path－strategies－strategy 〈lset $P \subseteq$ winning－region $p\rangle\langle\neg l$ finite $P\rangle$ by blast
moreover have winning－strategy $p \sigma^{\prime}\left(\right.$ lhd $\left.P^{\prime}\right)$ proof－
have $P \$ n \in$ winning－region p
using 〈lset $P \subseteq$ winning－region $p\rangle\langle\neg$ lininite $P\rangle$ lset－nth－member－inf by blast
hence $\sigma^{\prime} \in \operatorname{good}(P \$ n)$
using path－strategies－good choose－good σ^{\prime}－def $\langle\neg$ lfinite $P\rangle\langle l$ set $P \subseteq$ winning－region $p\rangle$ by blast
hence winning－strategy $p \sigma^{\prime}(P \$ n)$ unfolding good－def by blast
thus ？thesis
unfolding P^{\prime}－def using $P-0$ 亿lfinite P 〉 by（simp add：infinite－small－llength lhd－ldropn）
qed
ultimately have winning－path $p P^{\prime}$ unfolding winning－strategy－def
using P^{\prime} ．vmc－path－axioms by blast

```
        moreover have }\neg\mathrm{ lfinite }\mp@subsup{P}{}{\prime}\mathrm{ using «ᄀlfinite P> P'-def by simp
        ultimately show False using contra winning-path-drop-add[OF P-valid] by auto
    qed
    }
    thus ?thesis unfolding winning-strategy-def using well-ordered-strategy-valid by auto
qed
```


10.3 Extending Winning Regions

Now we are finally able to prove the complement of winning-region-extends-VVp for $V V p * *$ nodes, which was still missing.
lemma winning-region-extends-VVpstar:
assumes $v: v \in V V p * *$ and $w: \bigwedge w . v \rightarrow w \Longrightarrow w \in$ winning-region p
shows $v \in$ winning-region p
proof-
obtain σ where σ : strategy $p \sigma \bigwedge v . v \in$ winning-region $p \Longrightarrow$ winning-strategy $p \sigma v$ using merge-winning-strategies by blast
have winning-strategy $p \sigma v$ using strategy-extends-backwards-VVpstar[OF $v \sigma(1)] \sigma(2) w$ by blast
thus ?thesis unfolding winning-region-def using $v \sigma(1)$ by blast
qed
It immediately follows that removing a winning region cannot create new deadends.
lemma removing-winning-region-induces-no-deadends:
assumes $v \in V$ - winning-region $p \neg$ deadend v
shows $\exists w \in V-$ winning-region $p . v \rightarrow w$
using assms winning-region-extends-VVp winning-region-extends-VVpstar by blast
end - context ParityGame
end

11 Attractor Strategies

theory AttractorStrategy
imports
Main
Attractor UniformStrategy
begin
This section proves that every attractor set has an attractor strategy.
context ParityGame begin
lemma strategy-attracts-extends-VVp:
assumes σ : strategy $p \sigma$ strategy-attracts $p \sigma S W$
and $v 0: v 0 \in V V p v 0 \in$ directly-attracted $p S v 0 \notin S$
shows $\exists \sigma$. strategy $p \sigma \wedge$ strategy-attracts-via $p \sigma v 0$ (insert v0 S) W
proof-
from $v 0(1,2)$ obtain w where $v 0 \rightarrow w w \in S$ using directly-attracted-def by blast
from $\langle w \in S\rangle \sigma(2)$ have strategy-attracts-via $p \sigma w S W$ unfolding strategy-attracts-def by blast
let $? \sigma=\sigma(v 0:=w)$ - Extend σ to the new node.
have strategy $p ? \sigma$ using $\sigma(1)\langle v 0 \rightarrow w\rangle$ valid-strategy-updates by blast
moreover have strategy-attracts-via p ? σ v0 (insert v0 S) W proof
fix P
assume vmc-path $G P v 0 p$? σ
then interpret vmc-path G Pv0 p ? σ.
have \neg deadend $v 0$ using $\langle v 0 \rightarrow w\rangle$ by blast
then interpret vmc-path-no-deadend G Pv0p ? σ by unfold-locales
define $P^{\prime \prime}$ where $[\operatorname{simp}]: P^{\prime \prime}=l t l P$
have $l h d P^{\prime \prime}=w$ using $v 0(1)$ v0-conforms w0-def by auto
hence vmc-path G $P^{\prime \prime} w p$? σ using vmc-path-ltl by (simp add: w0-def)
have $*: v 0 \notin S-W$ using $\langle v 0 \notin S\rangle$ by blast
have override-on $(\sigma(v 0:=w)) \sigma(S-W)=? \sigma$ by (rule ext) (metis * fun-upd-def override-on-def)
hence strategy-attracts p ? $\sigma S W$ using strategy-attracts-irrelevant-override $[O F \sigma(2,1)$ <strategy p ? $\sigma>$] by simp
hence strategy-attracts-via p ? σ w S W unfolding strategy-attracts-def using $\langle w \in S\rangle$ by blast
hence visits-via $P^{\prime \prime} S W$ unfolding strategy-attracts-via-def using <vmc-path $G P^{\prime \prime} w p$? $\left.\sigma\right\rangle$ by blast
thus visits-via P (insert v0 S) W using visits-via-LCons[of ltl PS W0] P-LCons by simp
qed
ultimately show?thesis by blast
qed
lemma strategy-attracts-extends-VVpstar:
assumes σ : strategy-attracts $p \sigma S W$
and $v 0: v 0 \notin V V p v 0 \in$ directly-attracted $p S$
shows strategy-attracts-via p $\sigma v 0$ (insert v0 S) W
proof
fix P
assume vmc-path GPv0p σ
then interpret vmc-path $G P v 0 p \sigma$.
have \neg deadend v0 using $v 0$ (2) directly-attracted-contains-no-deadends by blast
then interpret vmc-path-no-deadend $G P v 0 p \sigma$ by unfold-locales
have visits-via (ltl P) S W
using vmc-path.strategy-attractsE[OF vmc-path-ltl $\sigma]$ v0 directly-attracted-def by simp
thus visits-via P (insert v0 S) W using visits-via-LCons[of ltl $P S W$ v0] P-LCons by simp
qed
lemma attractor-has-strategy-single:
assumes $W \subseteq V$
and $v 0-\mathrm{def}: v 0 \in$ attractor $p W$ (is - \in ? A)
shows $\exists \sigma$. strategy $p \sigma \wedge$ strategy-attracts-via $p \sigma$ v0 ?A W
using assms proof (induct arbitrary: v0 rule: attractor-set-induction)
case (step S)
have $v 0 \in W \Longrightarrow \exists \sigma$. strategy $p \sigma \wedge$ strategy-attracts-via $p \sigma$ v0 \{\} W
using strategy-attracts-via-trivial valid-arbitrary-strategy by blast
moreover \{

```
    assume *:v0 \in directly-attracted p Sv0 &S
    from assms(1) step.hyps(1) step.hyps(2)
        have }\exists\sigma\mathrm{ . strategy p }\sigma\wedge\mathrm{ strategy-attracts p }\sigmaS
        using merge-attractor-strategies by auto
    with *
        have \exists\sigma. strategy p \sigma^ strategy-attracts-via p \sigma v0 (insert v0 S)W
        using strategy-attracts-extends-VVp strategy-attracts-extends-VVpstar by blast
    }
    ultimately show ?case
    using step.prems step.hyps(2)
    attractor-strategy-on-extends[of p-v0 insert v0 S W W US U directly-attracted p S]
    attractor-strategy-on-extends[of p-v0 S W W U S U directly-attracted p S]
    attractor-strategy-on-extends[of p-v0 {} W W U S\cup directly-attracted p S]
    by blast
next
    case (union M)
    hence }\existsS.S\inM\wedgev0\inS\mathrm{ by blast
    thus ?case by (meson Union-upper attractor-strategy-on-extends union.hyps)
qed
```


11.1 Existence

Prove that every attractor set has an attractor strategy.
theorem attractor-has-strategy:
assumes $W \subseteq V$
shows $\exists \sigma$. strategy $p \sigma \wedge$ strategy-attracts $p \sigma$ (attractor $p W) W$
proof-
let ? $A=$ attractor $p W$
have ? $A \subseteq V$ by $(\operatorname{simp}$ add: $\langle W \subseteq V\rangle$ attractor-in- V)
moreover
have $\bigwedge v . v \in ? A \Longrightarrow \exists \sigma$. strategy $p \sigma \wedge$ strategy-attracts-via $p \sigma v$? $A W$
using $\langle W \subseteq V\rangle$ attractor-has-strategy-single by blast
ultimately show ?thesis using merge-attractor-strategies $\langle W \subseteq V\rangle$ by blast qed
end - context ParityGame
end

12 Positional Determinacy of Parity Games

theory PositionalDeterminacy
imports
Main
AttractorStrategy
begin
context ParityGame begin

12.1 Induction Step

The proof of positional determinacy is by induction over the size of the finite set ω ' V, the set of priorities. The following lemma is the induction step.
For now, we assume there are no deadends in the graph. Later we will get rid of this assumption.

```
lemma positional-strategy-induction-step:
    assumes v\inV
        and no-deadends: }\bigwedgev.v\inV\Longrightarrow\neg\mathrm{ deadend v
        and IH: \bigwedge(G :: ('a, 'b) ParityGame-scheme)v.
            \llbracket card ( }\mp@subsup{\omega}{G}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{V}{G}{})<\operatorname{card}(\mp@subsup{\omega}{}{\prime}V);v\in\mp@subsup{V}{G}{\prime
                ParityGame G;
                \v.v\in V G \Longrightarrow \negDigraph.deadend Gv\rrbracket
                \Longrightarrow \exists p . v \in P a r i t y G a m e . w i n n i n g - r e g i o n ~ G ~ p ~
    shows }\existsp.v\in\mathrm{ winning-region p
proof-
```

First, we determine the minimum priority and the player who likes it.

```
define min-prio where min-prio = Min ( }\omega\mathrm{ ' V)
have }\exists\mathrm{ p. winning-priority p min-prio by auto
then obtain p}\mathrm{ where p: winning-priority p min-prio by blast
```

Then we define the tentative winning region of player $p * *$. The rest of the proof is to show that this is the complete winning region.

```
define W1 where W1 = winning-region p**
```

For this, we define several more sets of nodes. First, U is the tentative winning region of player p.

```
define \(U\) where \(U=V-W 1\)
define \(K\) where \(K=U \cap(\omega-\) ' \(\{\) min-prio \(\})\)
define \(V^{\prime}\) where \(V^{\prime}=U\) - attractor \(p K\)
define \(G^{\prime}\) where \([\) simp \(]: G^{\prime}=\) subgame \(V^{\prime}\)
interpret \(G^{\prime}\) : ParityGame \(G^{\prime}\) using subgame-ParityGame by simp
have \(U\)-equiv: \(\backslash v . v \in V \Longrightarrow v \in U \longleftrightarrow v \notin\) winning-region \(p * *\)
    unfolding \(U\)-def \(W 1\)-def by blast
have \(V^{\prime} \subseteq V\) unfolding \(U\)-def \(V^{\prime}\)-def by blast
hence \([\) simp \(]: V_{G^{\prime}}=V^{\prime}\) unfolding \(G^{\prime}\)-def by simp
have \(V_{G^{\prime}} \subseteq V E_{G^{\prime}} \subseteq E \omega_{G^{\prime}}=\omega\) unfolding \(G^{\prime}\)-def by (simp-all add: subgame- \(\omega\) )
have \(G^{\prime} \cdot V V p=V^{\prime} \cap V V p\) unfolding \(G^{\prime}\)-def using subgame- \(V V\) by simp
have \(V\)-decomp: \(V=\) attractor \(p K \cup V^{\prime} \cup W 1\) proof-
    have \(V \subseteq\) attractor \(p K \cup V^{\prime} \cup W 1\)
        unfolding \(V^{\prime}\)-def \(U\)-def by blast
    moreover have attractor \(p K \subseteq V\)
        using attractor-in- \(V[\) of \(K]\) unfolding \(K\)-def \(U\)-def by blast
    ultimately show? thesis
```

unfolding $W 1$-def winning-region-def using $\left\langle V^{\prime} \subseteq V\right\rangle$ by blast qed

```
have \(G^{\prime}\)-no-deadends: \(\bigwedge v . v \in V_{G^{\prime}} \Longrightarrow \neg G^{\prime}\).deadend \(v\) proof-
    fix \(v\) assume \(v \in V_{G^{\prime}}\)
    hence \(*: v \in U\) - attractor \(p K\) using \(\left\langle V_{G^{\prime}}=V^{\prime}\right\rangle V^{\prime}\)-def by blast
    moreover hence \(\exists w \in U . v \rightarrow w\)
        using removing-winning-region-induces-no-deadends[of v p**] no-deadends \(U\)-equiv \(U\)-def
        by blast
    moreover have \(\bigwedge w . \llbracket v \in V V p * * ; v \rightarrow w \rrbracket \Longrightarrow w \in U\)
        using \(* U\)-equiv winning-region-extends- \(V V p\) by blast
    ultimately have \(\exists w \in V^{\prime} . v \rightarrow w\)
        using \(U\)-equiv winning-region-extends-VVp removing-attractor-induces-no-deadends \(V^{\prime}\)-def
        by blast
    thus \(\neg G^{\prime}\). deadend \(v\) using \(\left\langle v \in V_{G^{\prime}}\left\langle V^{\prime} \subseteq V\right\rangle\right.\) by simp
qed
```

By definition of $W 1$, we obtain a winning strategy on $W 1$ for player $p * *$.

```
obtain \sigmaW1 where \sigmaW1:
    strategy p** \sigmaW1 \v.v\inW1\Longrightarrow winning-strategy p** \sigmaW1 v
    unfolding W1-def using merge-winning-strategies by blast
```

$\{$
fix v assume $v \in V_{G^{\prime}}$

Apply the induction hypothesis to get the winning strategy for v in G^{\prime}.

```
have \(G^{\prime}\)-winning-strategy: \(\exists p . v \in G^{\prime}\).winning-region \(p\) proof-
    have \(\operatorname{card}\left(\omega_{G^{\prime}}{ }^{\prime} V_{G^{\prime}}\right)<\operatorname{card}\left(\omega^{\prime} V\right)\) proof-
        \{ assume min-prio \(\in \omega_{G^{\prime}}{ }^{\prime} V_{G}\)
            then obtain \(v\) where \(v: v \in V_{G^{\prime}} \omega_{G^{\prime}} v=\) min-prio by blast
            hence \(v \in \omega-{ }^{\prime}\{\) min-prio \(\}\) using \(\left\langle\omega_{G^{\prime}}=\omega\right\rangle\) by simp
            hence False using \(V^{\prime}\)-def \(K\)-def attractor-set-base \(\left\langle V_{G^{\prime}}=V^{\prime}\right\rangle v(1)\)
            by (metis DiffD1 DiffD2 IntI contra-subsetD)
        \}
        hence min-prio \(\notin \omega_{G^{\prime}}{ }^{\prime} V_{G^{\prime}}\) by blast
        moreover have min-prio \(\in \omega\) ' \(V\)
            unfolding min-prio-def using priorities-finite Min-in assms(1) by blast
        moreover have \(\omega_{G^{\prime}}{ }^{\prime} V_{G^{\prime}} \subseteq \omega^{\prime} V\) unfolding \(G^{\prime}\)-def by simp
        ultimately show ?thesis by (metis priorities-finite psubsetI psubset-card-mono)
    qed
    thus ?thesis using \(I H\left[o f G^{\dagger}\right]\left\langle v \in V_{G^{\prime}} G^{\prime}\right.\)-no-deadends \(G^{\prime}\).ParityGame-axioms by blast
qed
```

It turns out the winning region of player $p * *$ is empty, so we have a strategy for player p.

```
have v}\in\mp@subsup{G}{}{\prime}\mathrm{ .winning-region p proof (rule ccontr)
    assume \neg?thesis
    moreover obtain p'\sigma where }\mp@subsup{p}{}{\prime}\mathrm{ : G'.strategy p}\mp@subsup{p}{}{\prime}\sigma\mp@subsup{G}{}{\prime}\mathrm{ .winning-strategy p}\mp@subsup{p}{}{\prime}\sigma
        using G''winning-strategy unfolding G'.winning-region-def by blast
    ultimately have }\mp@subsup{p}{}{\prime}\not=p\mathrm{ using }v\in\in\mp@subsup{V}{\mp@subsup{G}{}{\prime}}{}\rangle\mathrm{ unfolding G'.winning-region-def by blast
    hence }\mp@subsup{p}{}{\prime}=p** by (cases p; cases p') aut
    with p' have \sigma: G'.strategy p** \sigma G'.winning-strategy p** \sigma v by simp-all
```

```
have v}\in\mathrm{ winning-region p** proof
    show v\inV using }<v\in\mp@subsup{V}{\mp@subsup{G}{}{\prime}}{}\langle\mp@subsup{V}{\mp@subsup{G}{}{\prime}}{}\subseteqV\rangle\mathrm{ by blast
    define }\mp@subsup{\sigma}{}{\prime}\mathrm{ where }\mp@subsup{\sigma}{}{\prime}=\mathrm{ override-on (override-on }\sigma\mathrm{ -arbitrary }\sigmaW1 W1) \sigma V V'
    thus strategy p** 尔
        using valid-strategy-updates-set-strong valid-arbitrary-strategy \sigmaW1(1)
            valid-strategy-supergame \sigma(1) G'-no-deadends \langleV }\mp@subsup{G}{}{\prime}=\mp@subsup{V}{}{\prime}
        unfolding G'-def by blast
show winning-strategy p** \sigma}
proof (rule winning-strategyI, rule ccontr)
        fix P assume vmc-path G P v p** 尔
        then interpret vmc-path GPvp** 尔.
        assume \negwinning-path p** P
```

First we show that P stays in V^{\prime} ，because if it stays in V^{\prime} ，then it conforms to σ ，so it must be winning for $p * *$ ．

```
have lset P\subseteq\mp@subsup{V}{}{\prime}\mathrm{ proof (induct rule: vmc-path-lset-induction-closed-subset)}
    fix v}\mathrm{ assume v}\in\mp@subsup{V}{}{\prime}\neg\mathrm{ deadend v}v\inVVp*
    hence v\inParityGame.VV (subgame V') p** by auto
    moreover have }\neg\mp@subsup{G}{}{\prime}\mathrm{ .deadend v using G'-no-deadends }\langle\mp@subsup{V}{\mp@subsup{G}{}{\prime}}{}=\mp@subsup{V}{}{\prime}\rangle\langlev\in\mp@subsup{V}{}{\prime}\rangle\mathrm{ by blast
    ultimately have \sigma}v\in\mp@subsup{V}{}{\prime
        using subgame-strategy-stays-in-subgame p}\mp@subsup{p}{}{\prime}(1)\langle\mp@subsup{p}{}{\prime}=p**
        unfolding G'-def by blast
    thus \mp@subsup{\sigma}{}{\prime}v\in\mp@subsup{V}{}{\prime}\cupW1 unfolding }\mp@subsup{\sigma}{}{\prime}\mathrm{ -def using }\langlev\in\mp@subsup{V}{}{\prime}\rangle\mathrm{ by simp
next
    fix vw assume v\in V'\negdeadend vv\inVV p*****v->w
    show w\in V'\cupW1 proof (rule ccontr)
        assume w\not\in\mp@subsup{V}{}{\prime}\cupW1
        hence w}\in\mathrm{ attractor p K using V-decomp }\langlev->w\rangle\mathrm{ by blast
        hence v\in attractor p K using }\langlev\inVV p****\rangle attractor-set- VVp {v->w\rangle by aut
        thus False using }\langlev\in\mp@subsup{V}{}{\prime}\rangle\mp@subsup{V}{}{\prime}\mathrm{ -def by blast
    qed
next
    have }\bigwedgev.v\inW1\Longrightarrow\sigmaW1v=\mp@subsup{\sigma}{}{\prime}v\mathrm{ unfolding }\mp@subsup{\sigma}{}{\prime}\mathrm{ -def V'-def U-def by simp
    thus lset P\capW1={}
        using path-hits-winning-region-is-winning \sigmaW1〈\negwinning-path p** P〉
        unfolding W1-def
        by blast
next
    show }v\in\mp@subsup{V}{}{\prime}\mathrm{ using < V GG
qed
```

This concludes the proof of lset $P \subseteq V^{\prime}$ ．
hence G^{\prime} ．valid－path P using subgame－valid－path by simp
moreover have G^{\prime} ．maximal－path P
using 〈lset $\left.P \subseteq V^{\prime}\right\rangle$ subgame－maximal－path $\left\langle V^{\prime} \subseteq V\right\rangle$ by simp
moreover have G^{\prime} ．path－conforms－with－strategy $p * * P \sigma$ proof－
have G^{\prime} ．path－conforms－with－strategy $p * * P \sigma^{\prime}$
using subgame－path－conforms－with－strategy $\left\langle V^{\prime} \subseteq V\right\rangle\left\langle l\right.$ set $\left.P \subseteq V^{\prime}\right\rangle$
by simp
moreover have $\bigwedge v . v \in$ lset $P \Longrightarrow \sigma^{\prime} v=\sigma v$ using＜lset $\left.P \subseteq V^{\prime}\right\rangle \sigma^{\prime}$－def by auto

```
            ultimately show ?thesis
                    using G'.path-conforms-with-strategy-irrelevant-updates by blast
        qed
        ultimately have G'.winning-path p** P
            using \sigma(2) G'.winning-strategy-def G'.valid-maximal-conforming-path-0 P-0 P-not-null
            by blast
            moreover have G'.VV p**** \subseteqVV p**** using subgame-VV-subset G'-def by blast
            ultimately show False
            using G'.winning-path-supergame[of p**] {\mp@subsup{\omega}{\mp@subsup{G}{}{\prime}}{}=\omega\rangle
                \neg\mathrm{ winning-path p** P>ParityGame-axioms}
            by blast
        qed
    qed
    moreover have v\inV using \langleV }\mp@subsup{G}{\mp@subsup{G}{}{\prime}}{\subseteq
    ultimately have }v\inW1\mathrm{ unfolding W1-def winning-region-def by blast
    thus False using }\langlev\in\mp@subsup{V}{\mp@subsup{G}{}{\prime}}{}>\mathrm{ using U-def V}\mp@subsup{V}{}{\prime}-def\langleV\mp@subsup{V}{\mp@subsup{G}{}{\prime}}{}=\mp@subsup{V}{}{\prime}\rangle\langlev\in\mp@subsup{V}{\mp@subsup{G}{}{\prime}}{}\rangle\mathrm{ by blast
    qed
} note recursion = this
```

We compose a winning strategy for player p on $V-W 1$ out of three pieces.
First, if we happen to land in the attractor region of K, we follow the attractor strategy. This is good because the priority of the nodes in K is good for player p, so he likes to go there.

```
obtain \sigma1
    where \sigma1: strategy p \sigma1
        strategy-attracts p \sigma1 (attractor p K)K
    using attractor-has-strategy[of K p] K-def U-def by auto
```

Next, on G^{\prime} we follow the winning strategy whose existence we proved earlier.
have G^{\prime}.winning-region $p=V_{G^{\prime}}$ using recursion unfolding G^{\prime}.winning-region-def by blast
then obtain $\sigma 2$

```
where \(\sigma\) 2: \(\bigwedge v . v \in V_{G^{\prime}} \Longrightarrow G^{\prime}\).strategy \(p \sigma\) 2
    \(\bigwedge v . v \in V_{G^{\prime}} \Longrightarrow G^{\prime}\).winning-strategy \(p \sigma 2 v\)
using \(G^{\prime}\).merge-winning-strategies by blast
```

As a last option we choose an arbitrary successor but avoid entering W1. In particular, this defines the strategy on the set K.
define succ where succ $v=(S O M E w . v \rightarrow w \wedge(v \in W 1 \vee w \notin W 1))$ for v
Compose the three pieces.

```
define \(\sigma\) where \(\sigma=\) override-on (override-on succ \(\sigma 2 V^{\prime}\) ) \(\sigma 1\) (attractor p \(K-K\) )
have attractor \(p K \cap W 1=\{ \}\) proof (rule ccontr)
    assume attractor \(p K \cap W 1 \neq\{ \}\)
    then obtain \(v\) where \(v: v \in\) attractor \(p K v \in W 1\) by blast
    hence \(v \in V\) using \(W 1\)-def winning-region-def by blast
    obtain \(P\) where vmc2-path \(G P v p \sigma 1 \sigma W 1\)
        using strategy-conforming-path-exists \(\sigma W 1(1) \sigma 1(1)\langle v \in V\rangle\) by blast
    then interpret vmc2-path GPvpo1 \(\sigma W 1\).
```

have strategy-attracts-via $p \sigma 1 v($ attractor $p K) K$ using $v(1) \sigma 1(2)$ strategy-attracts-def by blast
hence lset $P \cap K \neq\{ \}$ using strategy-attracts-viaE visits-via-visits by blast hence \neg lset $P \subseteq W 1$ unfolding K-def U-def by blast
thus False unfolding W1-def using comp.paths-stay-in-winning-region $\sigma W 1 v(2)$ by auto qed

On specific sets, σ behaves like one of the three pieces.

```
have \(\sigma-\sigma 1: \bigwedge v . v \in\) attractor \(p K-K \Longrightarrow \sigma v=\sigma 1 v\) unfolding \(\sigma\)-def by simp
have \(\sigma-\sigma 2: \bigwedge v . v \in V^{\prime} \Longrightarrow \sigma v=\sigma 2 v\) unfolding \(\sigma\)-def \(V^{\prime}\)-def by auto
have \(\sigma-K: \bigwedge v . v \in K \cup W 1 \Longrightarrow \sigma v=\) succ \(v\) proof -
    fix \(v\) assume \(v: v \in K \cup W 1\)
    hence \(v \notin V^{\prime}\) unfolding \(V^{\prime}\)-def \(U\)-def using attractor-set-base by auto
    with \(v\) show \(\sigma v=\) succ \(v\) unfolding \(\sigma\)-def \(U\)-def using〈attractor \(p K \cap W 1=\{ \}\) 〉
        by (metis (mono-tags, lifting) Diff-iff IntI UnE override-on-def override-on-emptyset)
qed
```

Show that succ succeeds in avoiding entering W1.

```
\{ fix \(v\) assume \(v: v \in V V p\)
    hence \(\neg\) deadend \(v\) using no-deadends by blast
    have \(\exists w . v \rightarrow w \wedge(v \in W 1 \vee w \notin W 1)\) proof (cases)
        assume \(v \in W 1\)
        thus ?thesis using no-deadends \(\neg\) deadend \(v\rangle\) by blast
    next
        assume \(v \notin W 1\)
        show ?thesis proof (rule ccontr)
            assume \(\neg(\exists w . v \rightarrow w \wedge(v \in W 1 \vee w \notin W 1))\)
            hence \(\bigwedge w . v \rightarrow w \Longrightarrow\) winning-strategy \(p * * \sigma W 1 w\) using \(\sigma W 1\) (2) by blast
            hence winning-strategy \(p * * \sigma W 1 v\)
                using strategy-extends-backwards-VVpstar \(\sigma W 1(1)\langle v \in V V p\rangle\) by simp
            hence \(v \in W 1\) unfolding W1-def winning-region-def using \(\sigma W 1(1)\langle\neg\) deadend \(v\rangle\) by blast
            thus False using \(\langle v \notin W 1\rangle\) by blast
        qed
    qed
    hence \(v \rightarrow\) succ \(v v \in W 1 \vee\) succ \(v \notin W 1\) unfolding succ-def
        using someI-ex[of \(\lambda w . v \rightarrow w \wedge(v \in W 1 \vee w \notin W 1)]\) by blast +
\} note succ-works \(=\) this
have strategy \(p \sigma\)
proof
    fix \(v\) assume \(v: v \in V V p \neg\) deadend \(v\)
    hence \(v \in\) attractor \(p K-K \Longrightarrow v \rightarrow \sigma v\) using \(\sigma-\sigma 1 \sigma 1(1) v\) unfolding strategy-def by auto
    moreover have \(v \in V^{\prime} \Longrightarrow v \rightarrow \sigma v\) proof -
        assume \(v \in V^{\prime}\)
        moreover have \(v \in V_{G^{\prime}}\) using \(\left\langle v \in V^{\prime}\right\rangle\left\langle V_{G^{\prime}}=V^{\prime}\right\rangle\) by blast
        moreover have \(v \in G^{\prime}\). \(V V p\) using \(\left\langle G^{\prime} . V V p=V^{\prime} \cap V V p\right\rangle\left\langle v \in V^{\prime}\right\rangle\langle v \in V V p\rangle\) by blast
        moreover have \(\neg\) Digraph.deadend \(G^{\prime} v\) using \(G^{\prime}\)-no-deadends \(\left\langle v \in V_{G^{\prime}}\right\rangle\) by blast
        ultimately have \(v \rightarrow G^{\prime} \sigma \mathcal{L} v\) using \(\sigma 2(1) G^{\prime}\).strategy-def[of \(\left.p \sigma 2\right]\) by blast
        with \(\left\langle v \in V^{\prime}\right\rangle\) show \(v \rightarrow \sigma v\) using \(\left\langle E_{G^{\prime}} \subseteq E\right\rangle \sigma-\sigma 2\) by (metis subset \(C E\) )
    qed
    moreover have \(v \in K \cup W 1 \Longrightarrow v \rightarrow \sigma v\) using succ-works(1) \(v \sigma-K\) by auto
```

```
    moreover have v}\inV\mathrm{ using }\langlev\inVVp\rangle\mathrm{ by blast
    ultimately show v->\sigma v using V-decomp by blast
qed
have \sigma-attracts: strategy-attracts p \sigma (attractor p K) K proof-
    have strategy-attracts p (override-on \sigma \sigma1 (attractor p K - K)) (attractor p K)K
        using strategy-attracts-irrelevant-override \sigma1〈strategy p \sigma〉 by blast
    moreover have \sigma=override-on \sigma \sigma1 (attractor p K - K)
        by (rule ext) (simp add: override-on-def \sigma-\sigma1)
    ultimately show ?thesis by simp
qed
```

Show that σ is a winning strategy on $V-W 1$ ．

```
have \(\forall v \in V-W 1\). winning-strategy \(p \sigma v\) proof (intro ballI winning-strategyI)
    fix \(v P\) assume \(P: v \in V-W 1\) vmc-path \(G P v p \sigma\)
    interpret vmc-path \(G P v p \sigma\) using \(P(2)\).
    have lset \(P \subseteq V-W 1\)
    proof (induct rule: vmc-path-lset-induction-closed-subset)
    fix \(v\) assume \(v \in V-W 1 \neg\) deadend \(v v \in V V p\)
    show \(\sigma v \in V-W 1 \cup\{ \}\) proof (rule ccontr)
        assume \(\neg\) ?thesis
        hence \(\sigma v \in W 1\)
            using 〈strategy \(p \sigma\rangle\langle\neg\) deadend \(v\rangle\langle v \in V V p\rangle\)
            unfolding strategy-def by blast
            hence \(v \notin K\) using succ-works(2)[OF \(\langle v \in V V p\rangle]\langle v \in V-W 1\rangle \sigma-K\) by auto
            moreover have \(v \notin\) attractor \(p K-K\) proof
                    assume \(v \in\) attractor \(p K-K\)
                    hence \(\sigma v \in\) attractor \(p K\)
                    using attracted-strategy-step 〈strategy \(p \sigma\rangle \sigma\)-attracts \(\langle\neg\) deadend \(v\rangle\langle v \in V V p\rangle\)
                        attractor-set-base
                    by blast
            thus False using \(\langle\sigma v \in W 1\rangle\langle\) attractor \(p K \cap W 1=\{ \}\rangle\) by blast
        qed
        moreover have \(v \notin V^{\prime}\) proof
                    assume \(v \in V^{\prime}\)
                    have \(\sigma 2 v \in V_{G^{\prime}}\) proof (rule \(G^{\prime}\).valid-strategy-in- \(V\left[\begin{array}{ll}\text { of } p & \sigma 2 v\end{array}\right]\) )
                    have \(v \in V_{G^{\prime}}\) using \(\left\langle V_{G^{\prime}}=V^{\prime}\right\rangle\left\langle v \in V^{\prime}\right\rangle\) by simp
                    thus \(\neg G^{\prime}\). deadend \(v\) using \(G^{\prime}\)-no-deadends by blast
                    show \(G^{\prime}\).strategy \(p \sigma 2\) using \(\sigma \mathscr{2}(1)\left\langle v \in V_{G^{\prime}}\right.\) by blast
                    show \(v \in G^{\prime} . V V p\) using \(\langle v \in V V p\rangle\left\langle G^{\prime} . V V p=V^{\prime} \cap V V p\right\rangle\left\langle v \in V^{\prime}\right\rangle\) by simp
                    qed
                    hence \(\sigma v \in V_{G^{\prime}}\) using \(\left\langle v \in V^{\prime}\right\rangle \sigma-\sigma 2\) by simp
                    thus False using \(\left\langle V_{G^{\prime}}=V^{\prime}\right\rangle\langle\sigma v \in W 1\rangle V^{\prime}\)-def \(U\)-def by blast
        qed
        ultimately show False using \(\langle v \in V-W 1\rangle V\)-decomp by blast
        qed
    next
        fix \(v w\) assume \(v \in V-W 1 \neg\) deadend \(v v \in V V p * * v \rightarrow w\)
        show \(w \in V-W 1 \cup\{ \}\)
        proof (rule ccontr)
            assume \(\neg\) ?thesis
```

```
    hence \(w \in W 1\) using \(\langle v \rightarrow w\rangle\) by blast
    let ? \(\sigma=\sigma W 1(v:=w)\)
    have winning-strategy \(p * * \sigma W 1 w\) using \(\langle w \in W 1\rangle \sigma W 1(2)\) by blast
    moreover have \(\neg(\exists \sigma\). strategy \(p * * \sigma \wedge\) winning-strategy \(p * * \sigma v)\)
        using \(\langle v \in V-W 1\rangle\) unfolding W1-def winning-region-def by blast
    ultimately have winning-strategy \(p * *\) ? \(\sigma\) w
        using winning-strategy-updates[of p** \(\sigma W 1 w v w] \sigma W 1(1)\langle v \rightarrow w\rangle\)
        unfolding winning-region-def by blast
    moreover have strategy \(p * *\) ? \(\sigma\) using \(\langle v \rightarrow w\rangle \sigma W 1\) (1) valid-strategy-updates by blast
    ultimately have winning-strategy \(p * *\) ? \(\sigma v\)
        using strategy-extends-backwards-VVp[of v p** ? \(\sigma\) w]
            \(\langle v \in V V p * *\rangle\langle v \rightarrow w\rangle\)
        by auto
    hence \(v \in W 1\) unfolding W1-def winning-region-def
        using \(\langle\) strategy \(p * *\) ? \(\sigma\rangle\langle v \in V-W 1\rangle\) by blast
    thus False using \(\langle v \in V-W 1\rangle\) by blast
    qed
qed (insert \(P(1)\), simp-all)
```

This concludes the proof of lset $P \subseteq V-W 1$.
hence lset $P \subseteq$ attractor $p K \cup V^{\prime}$ using V-decomp by blast
have \neg lfinite P
using no-deadends lfinite-lset maximal-ends-on-deadend $[$ of $P] P$-maximal P-not-null lset- P - V by blast

Every σ-conforming path starting in $V-W 1$ is winning. We distinguish two cases:

1. P eventually stays in V^{\prime}. Then P is winning because $\sigma \mathscr{2}$ is winning.
2. P visits K infinitely often. Then P is winning because of the priority of the nodes in K.
show winning-path p P
proof (cases)
assume $\exists n$. lset $($ ldropn $n P) \subseteq V^{\prime}$
The first case: P eventually stays in V^{\prime}.
```
then obtain n where n:lset (ldropn n P)\subseteq }\subseteq\mp@subsup{V}{}{\prime}\mathrm{ by blast
define }\mp@subsup{P}{}{\prime}\mathrm{ where }\mp@subsup{P}{}{\prime}=ldropn n 
hence lset }\mp@subsup{P}{}{\prime}\subseteq\mp@subsup{V}{}{\prime}\mathrm{ using }n\mathrm{ by blast
interpret vmc-path': vmc-path G' P' lhd P' p \sigma2 proof
    show \neglnull P' unfolding }\mp@subsup{P}{}{\prime}\mathrm{ -def
        using <\neglfinite P> lfinite-ldropn lnull-imp-lfinite by blast
    show G'.valid-path P' proof-
        have valid-path P' unfolding P'-def by simp
        thus ?thesis using subgame-valid-path <lset P' }\mp@subsup{P}{}{\prime}\subseteq\mp@subsup{V}{}{\prime}>\mp@subsup{G}{}{\prime}\mathrm{ -def by blast
    qed
    show G'.maximal-path P' proof-
        have maximal-path P' unfolding }\mp@subsup{P}{}{\prime}\mathrm{ -def by simp
        thus ?thesis using subgame-maximal-path <lset P' }\subseteq\mp@subsup{P}{}{\prime}\rangle\langle\mp@subsup{V}{}{\prime}\subseteqV\rangle\mp@subsup{G}{}{\prime}\mathrm{ -def by blast
    qed
    show G'.path-conforms-with-strategy p P'\sigma2 proof-
```

```
    have path-conforms-with-strategy p P' \sigma unfolding P'-def by simp
    hence path-conforms-with-strategy p P'\sigma2
        using path-conforms-with-strategy-irrelevant-updates <lset P' }\subseteq\mp@subsup{V}{}{\prime}>\sigma-\sigma
        by blast
        thus ?thesis
        using subgame-path-conforms-with-strategy <lset P' }\mp@subsup{P}{}{\prime}\subseteq\mp@subsup{V}{}{\prime}\rangle\langle\mp@subsup{V}{}{\prime}\subseteqV\rangle\mp@subsup{G}{}{\prime}\mathrm{ -def
        by blast
    qed
    qed simp
    have G'.winning-strategy p \sigma\mathcal{L}}\mathrm{ (lhd P')
```



```
    by blast
    hence G'.winning-path p P' using G'.winning-strategy-def vmc-path'.vmc-path-axioms by blast
    moreover have G'.VV p**\subseteqVV p** unfolding G'-def using subgame- VV by simp
    ultimately have winning-path p P }\mp@subsup{P}{}{\prime
        using G'.winning-path-supergame[of p P'G] {\omega ( G ' =\omega\rangle ParityGame-axioms by blast
    thus ?thesis
        unfolding }\mp@subsup{P}{}{\prime}\mathrm{ -def
        using infinite-small-llength[OF «\neglfinite P`]
        winning-path-drop-add[of P p n] P-valid
    by blast
next
    assume asm: }\neg(\exists\mathrm{ n. lset (ldropn n P)}\subseteq\mp@subsup{V}{}{\prime}
The second case：\(P\) visits \(K\) infinitely often．Then min－prio occurs infinitely often on \(P\) ．
```

```
have min-prio \in path-inf-priorities P
```

have min-prio \in path-inf-priorities P
unfolding path-inf-priorities-def proof (intro CollectI allI)
unfolding path-inf-priorities-def proof (intro CollectI allI)
fix n
fix n
obtain k1 where k1: ldropn n P \$ k1 \not\inV'using asm by (metis lset-lnth subsetI)
obtain k1 where k1: ldropn n P \$ k1 \not\inV'using asm by (metis lset-lnth subsetI)
define k2 where k2 = k1 + n
define k2 where k2 = k1 + n
interpret vmc-path G ldropn k2 P P \$ k2 p \sigma
interpret vmc-path G ldropn k2 P P \$ k2 p \sigma
using vmc-path-ldropn infinite-small-llength }\neglfinite P> by blas
using vmc-path-ldropn infinite-small-llength }\neglfinite P> by blas
have P$k2 & V ' unfolding k2-def
 have P$k2 \& V ' unfolding k2-def
using k1 lnth-ldropn infinite-small-llength[OF «\neglfinite P〉] by simp
using k1 lnth-ldropn infinite-small-llength[OF «\neglfinite P〉] by simp
hence P$k2 \in attractor p K using <\neglfinite P><lset P\subseteqV - W1〉
 hence P$k2 \in attractor p K using <\neglfinite P><lset P\subseteqV - W1〉
by (metis DiffI U-def V'-def lset-nth-member-inf)
by (metis DiffI U-def V'-def lset-nth-member-inf)
then obtain k3 where k3: ldropn k2 P \$k3\inK
then obtain k3 where k3: ldropn k2 P \$k3\inK
using \sigma-attracts strategy-attractsE unfolding G'.visits-via-def by blast
using \sigma-attracts strategy-attractsE unfolding G'.visits-via-def by blast
define }\mp@subsup{k}{4}{}\mathrm{ where }\mp@subsup{k}{4}{}=k3+k
define }\mp@subsup{k}{4}{}\mathrm{ where }\mp@subsup{k}{4}{}=k3+k
hence P \$ k4 \inK
hence P \$ k4 \inK
using k3 lnth-ldropn infinite-small-llength[OF <\neglfinite P〉] by simp
using k3 lnth-ldropn infinite-small-llength[OF <\neglfinite P〉] by simp
moreover have k4 \geqn unfolding k4-def k2-def
moreover have k4 \geqn unfolding k4-def k2-def
using le-add2 le-trans by blast
using le-add2 le-trans by blast
moreover have ldropn n P \$ k4 - n=P\$ (k4 - n)+n
moreover have ldropn n P \$ k4 - n=P\$ (k4 - n)+n
using lnth-ldropn infinite-small-llength }\negl\mathrm{ linite }P>\mathrm{ by blast
using lnth-ldropn infinite-small-llength }\negl\mathrm{ linite }P>\mathrm{ by blast
ultimately have ldropn n P \$ k4 - n \inK by simp
ultimately have ldropn n P \$ k4 - n \inK by simp
hence lset (ldropn n P) \capK\not={}
hence lset (ldropn n P) \capK\not={}
using <\neglfinite P> lfinite-ldropn in-lset-conv-lnth[of ldropn n P \$ k4 - n]
using <\neglfinite P> lfinite-ldropn in-lset-conv-lnth[of ldropn n P \$ k4 - n]
by blast
by blast
thus min-prio \inlset (ldropn n (lmap \omega P)) unfolding K-def by auto
thus min-prio \inlset (ldropn n (lmap \omega P)) unfolding K-def by auto
qed
qed
thus ?thesis unfolding winning-path-def

```
thus ?thesis unfolding winning-path-def
```

 using path-inf-priorities-at-least-min-prio[OF P-valid, folded min-prio-def]
 \(\langle\) winning-priority \(p\) min-prio〉〈 \(\neg\) lfinite \(P\rangle\)
 by blast
 qed
 qed
 hence \(\forall v \in V . \exists p \sigma\). strategy \(p \sigma \wedge\) winning-strategy \(p \sigma v\)
 unfolding W1-def winning-region-def using <strategy \(p \sigma\rangle\) by blast
 hence \(\exists p \sigma\). strategy \(p \sigma \wedge\) winning-strategy \(p \sigma v\) using \(\langle v \in V\rangle\) by simp
 thus ?thesis unfolding winning-region-def using \(\langle v \in V\rangle\) by blast
 qed

12.2 Positional Determinacy without Deadends

theorem positional-strategy-exists-without-deadends:
assumes $v \in V \bigwedge v . v \in V \Longrightarrow \neg$ deadend v
shows $\exists p . v \in$ winning-region p
using assms ParityGame-axioms
by (induct card $\left(\omega^{\prime} V\right)$ arbitrary: G v rule: nat-less-induct)
(rule ParityGame.positional-strategy-induction-step, simp-all)

12.3 Positional Determinacy with Deadends

Prove a stronger version of the previous theorem: Allow deadends.

```
theorem positional-strategy-exists:
    assumes v0\inV
    shows \existsp.v0 \in winning-region p
proof-
    {fix p
        define }A\mathrm{ where }A=\mathrm{ attractor p (deadends p**)
        assume v0-in-attractor:v0 \in attractor p (deadends p**)
        then obtain \sigma where \sigma: strategy p \sigma strategy-attracts p \sigma A (deadends p**)
        using attractor-has-strategy[of deadends p** p] A-def deadends-in-V by blast
        have }A\subseteqV\mathrm{ using A-def using attractor-in-V deadends-in-V by blast
        hence }A-\mathrm{ deadends p** }\subseteqV\mathrm{ by auto
        have winning-strategy p \sigma v0 proof (unfold winning-strategy-def, intro allI impI)
        fix P assume vmc-path G P v0 p \sigma
        then interpret vmc-path G P v0 p \sigma.
        show winning-path p P
            using visits-deadend[of p**] \sigma(2) strategy-attracts-lset v0-in-attractor
            unfolding A-def by simp
        qed
        hence \exists}p\sigma\mathrm{ . strategy p }\sigma\wedge\mathrm{ winning-strategy p }\sigmav0\mathrm{ using }\sigma\mathrm{ by blast
    } note lemma-path-to-deadend = this
    define A where A p = attractor p (deadends p**) for p
```

Remove the attractor sets of the sets of deadends.
define V^{\prime} where $V^{\prime}=V-A$ Even $-A$ Odd
hence $V^{\prime} \subseteq V$ by blast
show ?thesis proof (cases)

```
assume v0 \in V'
define G' where G' = subgame V
interpret G': ParityGame G' unfolding G'-def using subgame-ParityGame .
have }\mp@subsup{V}{\mp@subsup{G}{}{\prime}}{}=\mp@subsup{V}{}{\prime}\mathrm{ unfolding }\mp@subsup{G}{}{\prime}\mathrm{ -def using }\langle\mp@subsup{V}{}{\prime}\subseteqV\rangle\mathrm{ by simp
hence v0}\in\mp@subsup{V}{\mp@subsup{G}{}{\prime}}{}\mathrm{ using }\langlev0\in\mp@subsup{V}{}{\prime}\rangle\mathrm{ by simp
moreover have V'-no-deadends: \bigwedgev.v\in V VG
    fix v assume v\in V 稆
    moreover have }\mp@subsup{V}{}{\prime}=V-A Even - A Even** using V'-def by sim
    ultimately show }\neg\mp@subsup{G}{}{\prime}\mathrm{ .deadend v
        using subgame-without-deadends }\langlev\in\mp@subsup{V}{\mp@subsup{G}{}{\prime\prime}}{}\mathrm{ unfolding A-def G'-def by blast
qed
ultimately obtain p\sigma where \sigma: G'.strategy p \sigma G'.winning-strategy p \sigma v0
    using G'.positional-strategy-exists-without-deadends
    unfolding G'.winning-region-def
    by blast
```



```
    fix v}\mathrm{ assume v}\in\mp@subsup{V}{}{\prime
    hence }\neg\mp@subsup{G}{}{\prime}\mathrm{ .deadend v using }\mp@subsup{V}{}{\prime}\mathrm{ -no-deadends }\langle\mp@subsup{V}{}{\prime}\subseteqV\rangle\mathrm{ unfolding G'-def by auto
    thus \negdeadend v unfolding G'-def using \langleV'}\subseteq\V\rangle\mathrm{ by auto
qed
obtain \sigma-attr
    where \sigma-attr: strategy p \sigma-attr strategy-attracts p \sigma-attr (A p) (deadends p**)
    using attractor-has-strategy[OF deadends-in-V] unfolding A-def by blast
define }\mp@subsup{\sigma}{}{\prime}\mathrm{ where }\mp@subsup{\sigma}{}{\prime}=\mathrm{ override-on }\sigma\sigma\mathrm{ -attr (A Even }\cupA\mathrm{ Odd)
have }\mp@subsup{\sigma}{}{\prime}-is-\sigma-on-\mp@subsup{V}{}{\prime}:\bigwedgev.v\in\mp@subsup{V}{}{\prime}\Longrightarrow\mp@subsup{\sigma}{}{\prime}v=\sigma
    unfolding }\mp@subsup{V}{}{\prime}\mathrm{ -def }\mp@subsup{\sigma}{}{\prime}\mathrm{ -def A-def by (cases p) simp-all
have strategy p \sigma' proof -
    have }\mp@subsup{\sigma}{}{\prime}=\mathrm{ override-on }\sigma\mathrm{ -attr }\sigma\mathrm{ (UNIV - A Even - A Odd)
        unfolding }\mp@subsup{\sigma}{}{\prime}\mathrm{ -def override-on-def by (rule ext) simp
    moreover have strategy p (override-on \sigma-attr \sigma V')
        using valid-strategy-supergame \sigma-attr(1) \sigma(1) V'-no-deadends 〈 V }\mp@subsup{G}{\mp@subsup{G}{}{\prime}}{}=\mp@subsup{V}{}{\prime}
        unfolding G'-def by blast
    ultimately show ?thesis by (simp add: valid-strategy-only-in-V V'-def override-on-def)
qed
moreover have winning-strategy p 尔v0 proof (rule winning-strategyI, rule ccontr)
    fix P assume vmc-path G P v0 p \sigma'
    then interpret vmc-path G P v0 p \mp@subsup{\sigma}{}{\prime}.
    interpret vmc-path-no-deadend G P v0 p \mp@subsup{\sigma}{}{\prime}
        using }\mp@subsup{V}{}{\prime}\mathrm{ -no-deadends' }\langlev0\in\mp@subsup{V}{}{\prime}\rangle\mathrm{ by unfold-locales
    assume contra: \negwinning-path p P
    have lset P\subseteq\mp@subsup{V}{}{\prime}\mathrm{ proof (induct rule: vmc-path-lset-induction-closed-subset)}\\mp@code{*}
        fix v}\mathrm{ assume v}\in\mp@subsup{V}{}{\prime}\neg\mathrm{ deadend v}v\inVV
        hence v}\in\mp@subsup{G}{}{\prime}.VVp\mathrm{ unfolding }\mp@subsup{G}{}{\prime}\mathrm{ -def by (simp add: <v }\in\mp@subsup{V}{}{\prime}>\mathrm{ )
        moreover have }\neg\mp@subsup{G}{}{\prime}\mathrm{ .deadend v}\mathrm{ using V V'-no-deadends }\langlev\in\mp@subsup{V}{}{\prime}\rangle\langle\mp@subsup{V}{\mp@subsup{G}{}{\prime}}{}=\mp@subsup{V}{}{\prime}\rangle\mathrm{ by blast
        moreover have G'.strategy p \sigma'
            using G'.valid-strategy-only-in-V 尔-def 重-is-\sigma-on-V}\mp@subsup{V}{}{\prime}\sigma(1)\langleV\mp@subsup{V}{\mp@subsup{G}{}{\prime}}{\prime}=\mp@subsup{V}{}{\prime}\rangle by aut
        ultimately show \mp@subsup{\sigma}{}{\prime}}v\in\mp@subsup{V}{}{\prime}\cupA p using subgame-strategy-stays-in-subgame
            unfolding G'-def by blast
```

```
    next
    fix v}w\mathrm{ assume }v\in\mp@subsup{V}{}{\prime}\negdeadend vv\inVV p**v->
    have w\not\inA p** proof
        assume w\inA p**
        hence v\inA p** unfolding A-def
            using }\langlev\inVV p**\rangle\langlev->w\rangle\mathrm{ attractor-set-VVp by blast
        thus False using }vv\in\mp@subsup{V}{}{\prime}\rangle\mathrm{ unfolding }\mp@subsup{V}{}{\prime}\mathrm{ -def by (cases p) auto
    qed
    thus w\in\mp@subsup{V}{}{\prime}\cupA p unfolding V V'-def using }\langlev->w\rangle\mathrm{ by (cases p) auto
    next
        show lset P\capA p={} proof (rule ccontr)
        assume lset P\capA p}\not={
        have strategy-attracts p (override-on \sigma' \sigma-attr (A p - deadends p**))
                            (A p)
                            (deadends p**)
            using strategy-attracts-irrelevant-override[OF \sigma-attr(2) \sigma-attr(1)<strategy p \sigma'>]
            by blast
        moreover have override-on \sigma' \sigma-attr (A p - deadends p**)= 㐌
            by (rule ext, unfold }\mp@subsup{\sigma}{}{\prime}\mathrm{ -def, cases p) (simp-all add: override-on-def)
        ultimately have strategy-attracts p 尔(A p) (deadends p**) by simp
        hence lset P\cap deadends p** 
            using <lset P \capA p\not={}> attracted-path[OF deadends-in-V] by simp
        thus False using contra visits-deadend[of p**] by simp
    qed
    qed (insert }\langlev0\in\mp@subsup{V}{}{\prime}>
    then interpret vmc-path G}\mp@subsup{G}{}{\prime}Pv0p\mp@subsup{\sigma}{}{\prime
    unfolding G'-def using subgame-path-vmc-path[OF \langleV'V}\subseteqV\rangle] by blas
    have G'.path-conforms-with-strategy p P \sigma proof-
    have }\v.v\inlset P\Longrightarrow\mp@subsup{\sigma}{}{\prime}v=\sigma
        using }\mp@subsup{\sigma}{}{\prime}-is-\sigma-on-\mp@subsup{V}{}{\prime}\langle\mp@subsup{V}{\mp@subsup{G}{}{\prime}}{}=\mp@subsup{V}{}{\prime}> lset-P-V by blas
        thus G'.path-conforms-with-strategy p P\sigma
        using P-conforms G'.path-conforms-with-strategy-irrelevant-updates by blast
    qed
    then interpret vmc-path G' P v0 p \sigma using conforms-to-another-strategy by blast
    have G'.winning-path p P
        using \sigma(2)[unfolded G'.winning-strategy-def] vmc-path-axioms by blast
        from <\negwinning-path p P>
            G'.winning-path-supergame[OF this ParityGame-axioms, unfolded G'-def]
            subgame-VV-subset[of p** V '
            subgame-\omega[of V']
        show False by blast
    qed
    ultimately show ?thesis unfolding winning-region-def using <v0 \inV\rangle by blast
next
    assume v0 & V V
    then obtain p where v0\in attractor p (deadends p**)
        unfolding }\mp@subsup{V}{}{\prime}\mathrm{ -def A-def using }\langlev0\inV\rangle\mathrm{ by blast
    thus ?thesis unfolding winning-region-def
        using lemma-path-to-deadend }\langlev0\inV\rangle\mathrm{ by blast
    qed
qed
```


12.4 The Main Theorem: Positional Determinacy

Prove the main theorem: The winning regions of player EvEn and ODD are a partition of the set of nodes V.
theorem partition-into-winning-regions:
shows $V=$ winning-region Even \cup winning-region Odd
and winning-region Even \cap winning-region $O d d=\{ \}$
proof
show $V \subseteq$ winning-region Even \cup winning-region $O d d$
by (rule subsetI) (metis (full-types) Un-iff other-other-player positional-strategy-exists)
next
show winning-region Even \cup winning-region $O d d \subseteq V$
by (rule subsetI) (meson Un-iff subsetCE winning-region-in-V)
next
show winning-region Even \cap winning-region Odd $=\{ \}$
using winning-strategy-only-for-one-player[of Even]
unfolding winning-region-def by auto
qed
end - context ParityGame
end

13 Defining the Attractor with inductive_set

theory AttractorInductive
imports
Main
Attractor
begin
context ParityGame begin
In section 6 we defined attractor manually via lfp. We can also define it with inductive_set. In this section, we do exactly this and prove that the new definition yields the same set as the old definition.

13.1 attractor-inductive

The attractor set of a given set of nodes, defined inductively.
inductive-set attractor-inductive :: Player $\Rightarrow{ }^{\prime}$ 'a set $\Rightarrow{ }^{\prime}$ a set
for $p::$ Player and W :: 'a set where
Base [intro!]: $v \in W \Longrightarrow v \in$ attractor-inductive $p W$
$\mid V V p: \llbracket v \in V V p ; \exists w . v \rightarrow w \wedge w \in$ attractor-inductive $p W \rrbracket$
$\Longrightarrow v \in$ attractor-inductive $p W$
\mid VVpstar: $\llbracket v \in V V p * * ; ~ \neg d e a d e n d ~ v ; \forall w . v \rightarrow w \longrightarrow w \in$ attractor-inductive $p W \rrbracket$
$\Longrightarrow v \in$ attractor-inductive $p W$
We show that the inductive definition and the definition via least fixed point are the same.

```
lemma attractor-inductive-is-attractor:
    assumes \(W \subseteq V\)
    shows attractor-inductive \(p W=\) attractor \(p W\)
proof
    show attractor-inductive \(p W \subseteq\) attractor \(p W\) proof
        fix \(v\) assume \(v \in\) attractor-inductive \(p W\)
        thus \(v \in\) attractor \(p W\) proof (induct rule: attractor-inductive.induct)
            case (Base \(v\) ) thus ?case using attractor-set-base by auto
        next
            case ( \(V V p v\) ) thus ?case using attractor-set- \(V V p\) by auto
        next
                case (VVpstar v) thus ?case using attractor-set-VVpstar by auto
        qed
    qed
    show attractor \(p W \subseteq\) attractor-inductive \(p W\)
    proof -
        define \(P\) where \(P S \longleftrightarrow S \subseteq\) attractor-inductive \(p W\) for \(S\)
        from \(\langle W \subseteq V\rangle\) have \(P\) (attractor \(p W\) ) proof (induct rule: attractor-set-induction)
        case (step \(S\) )
        hence \(S \subseteq\) attractor-inductive \(p W\) using \(P\)-def by simp
        have \(W \cup S \cup\) directly-attracted \(p S \subseteq\) attractor-inductive \(p W\) proof
            fix \(v\) assume \(v \in W \cup S \cup\) directly-attracted \(p S\)
                moreover
                \{ assume \(v \in W\) hence \(v \in\) attractor-inductive \(p W\) by blast \}
                moreover
                \{ assume \(v \in S\) hence \(v \in\) attractor-inductive \(p W\)
                    by (meson \(\langle S \subseteq\) attractor-inductive \(p W\rangle\) rev-subset \(D\) ) \}
                moreover
                \{ assume \(v\)-attracted: \(v \in\) directly-attracted \(p S\)
                    hence \(v \in V\) using \(\langle S \subseteq V\rangle\) attractor-step-bounded-by- \(V\) by blast
                    hence \(v \in\) attractor-inductive \(p W\) proof (cases rule: \(V V\)-cases)
                    assume \(v \in V V p\)
                    hence \(\exists w . v \rightarrow w \wedge w \in S\) using \(v\)-attracted directly-attracted-def by blast
                    hence \(\exists w . v \rightarrow w \wedge w \in\) attractor-inductive \(p W\)
                    using \(\langle S \subseteq\) attractor-inductive \(p W\rangle\) by blast
                    thus ?thesis by (simp add: \(\langle v \in V V\) p attractor-inductive. \(V V p\) )
                next
                    assume \(v \in V V p * *\)
                    hence \(*: \forall w . v \rightarrow w \longrightarrow w \in S\) using \(v\)-attracted directly-attracted-def by blast
                    have \(\neg\) deadend \(v\) using \(v\)-attracted directly-attracted-def by blast
                    show ?thesis proof (rule ccontr)
                    assume \(v \notin\) attractor-inductive \(p W\)
                    hence \(\exists w . v \rightarrow w \wedge w \notin\) attractor-inductive \(p W\)
                    by (metis attractor-inductive. VVpstar \(\langle v \in V V p * *\rangle\langle\neg\) deadend \(v\rangle\) )
                    hence \(\exists w . v \rightarrow w \wedge w \notin S\) using \(\langle S \subseteq\) attractor-inductive \(p W\rangle\) by (meson subsetCE)
                    thus False using * by blast
                    qed
                qed
                \}
                ultimately show \(v \in\) attractor-inductive \(p W\) by (meson UnE)
        qed
        thus \(P(W \cup S \cup\) directly-attracted \(p S)\) using \(P\)-def by \(\operatorname{simp}\)
```

```
    qed (simp add: P-def Sup-least)
    thus ?thesis using P-def by simp
    qed
qed
end
end
```


14 Compatibility with the Graph Theory Package

theory Graph-TheoryCompatibility
imports
ParityGame
Graph-Theory.Digraph
Graph-Theory.Digraph-Isomorphism

begin
In this section, we show that our Digraph locale is compatible to the nomulti-digraph locale from the graph theory package from the Archive of Formal Proofs.
For this, we will define two functions converting between the different types and show that with these conversion functions the locales interpret each other. Together, this indicates that our definition of digraph is reasonable.

14.1 To Graph Theory

We can easily convert our graphs into pre-digraph objects.

```
definition to-pre-digraph :: (' \(a\), 'b) Graph-scheme \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} a \times{ }^{\prime} a\right)\) pre-digraph
    where to-pre-digraph \(G \equiv 0\)
    pre-digraph.verts \(=\) Graph.verts \(G\),
    pre-digraph.arcs \(=\) Graph.arcs \(G\),
    tail \(=\) fst,
    head \(=\) snd
D
```

With this conversion function, our Digraph locale contains the locale nomulti-digraph from the graph theory package.

```
context Digraph begin
interpretation is-nomulti-digraph: nomulti-digraph to-pre-digraph G proof
    fix e assume *: e\in pre-digraph.arcs (to-pre-digraph G)
    show tail (to-pre-digraph G) e\in pre-digraph.verts (to-pre-digraph G)
    by (metis * edges-are-in-V (1) pre-digraph.ext-inject pre-digraph.surjective prod.collapse to-pre-digraph-def)
    show head (to-pre-digraph G) e \in pre-digraph.verts (to-pre-digraph G)
    by (metis * edges-are-in-V (2) pre-digraph.ext-inject pre-digraph.surjective prod.collapse to-pre-digraph-def)
qed (simp add: arc-to-ends-def to-pre-digraph-def)
end
```


14.2 From Graph Theory

We can also convert in the other direction.

```
definition from-pre-digraph :: ('a, 'b) pre-digraph => 'a Graph
    where from-pre-digraph G}\equiv
        Graph.verts = pre-digraph.verts G,
        Graph.arcs = arcs-ends G
    D
context nomulti-digraph begin
interpretation is-Digraph: Digraph from-pre-digraph G proof-
    {
        fix vw assume (v,w)\inE Efrom-pre-digraph G
        then obtain e where e:e\in pre-digraph.arcs G tail Ge=v head Ge=w
            unfolding from-pre-digraph-def by auto
        hence }(v,w)\in\mp@subsup{V}{\mathrm{ from-pre-digraph }G}{}\times\mp@subsup{V}{\mathrm{ from-pre-digraph }}{}
        unfolding from-pre-digraph-def by auto
    }
    thus Digraph (from-pre-digraph G) by (simp add: Digraph.intro subrelI)
qed
end
```


14.3 Isomorphisms

We also show that our conversion functions make sense. That is, we show that they are nearly inverses of each other. Unfortunately, from-pre-digraph irretrievably loses information about the arcs, and only keeps tail/head intact, so the best we can get for this case is that the back-and-forth converted graphs are isomorphic.
lemma graph-conversion-bij: $G=$ from-pre-digraph (to-pre-digraph G)
unfolding to-pre-digraph-def from-pre-digraph-def arcs-ends-def arc-to-ends-def by auto
lemma (in nomulti-digraph) graph-conversion-bij2: digraph-iso G (to-pre-digraph (from-pre-digraph G))
proof-
define iso

```
where iso = 0
            iso-verts = id :: ' }a=>\mp@subsup{}{}{\prime}a\mathrm{ ,
        iso-arcs = arc-to-ends G,
        iso-head = snd,
        iso-tail =fst
    D
```

have inj-on (iso-verts iso) (pre-digraph.verts G) unfolding iso-def by auto
moreover have inj-on (iso-arcs iso) (pre-digraph.arcs G)
unfolding iso-def arc-to-ends-def by (simp add: arc-to-ends-def inj-onI no-multi-arcs)
moreover have $\forall a \in$ pre-digraph.arcs G. iso-verts iso $($ tail G a) $=$ iso-tail iso (iso-arcs iso a)
\wedge iso-verts iso (head Ga) $=$ iso-head iso (iso-arcs iso a)
unfolding iso-def by (simp add: arc-to-ends-def)
ultimately have digraph-isomorphism iso
unfolding digraph-isomorphism-def using arc-to-ends-def wf-digraph-axioms by blast
moreover have to-pre-digraph (from-pre-digraph G) $=$ app-iso iso G
unfolding to-pre-digraph-def from-pre-digraph-def iso-def app-iso-def by (simp-all add: arcs-ends-def)
ultimately show ?thesis unfolding digraph-iso-def by blast qed
end

References

[1] Julian Bradfield and Colin Stirling. Modal mu-calculi. In Patrick Blackburn, Johan Van Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in Logic and Practical Reasoning, pages 721 - 756. Elsevier, 2007.
[2] Stephan Kreutzer. Logik, Spiele und Automaten. http://logic.las.tu-berlin.de/Teaching/ index.html, 2015. Lecture notes for a master's course on mathematical logic and games at Technische Universität Berlin (in German).
[3] Ralf Küsters. Memoryless determinacy of parity games. In Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors, Automata, Logics, and Infinite Games, volume 2500 of Lecture Notes in Computer Science, pages 95-106. Springer, 2001.
[4] Andreas Lochbihler. Coinductive. Archive of Formal Proofs, February 2010. http: //isa-afp.org/entries/Coinductive.shtml, Formal proof development.
[5] Wiesaw Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci., 200(1-2):135-183, 1998.

