
Positional Determinacy of Parity Games
Christoph Dittmann

christoph.dittmann@tu-berlin.de

March 17, 2025

We present a formalization of parity games (a two-player game on directed
graphs) and a proof of their positional determinacy in Isabelle/HOL. This proof
works for both finite and infinite games. We follow the proof in [2], which is
based on [5].

Contents
1 Introduction 4

1.1 Formal Introduction . 4
1.2 Overview . 4
1.3 Technical Aspects . 5

2 Auxiliary Lemmas for Coinductive Lists 5
2.1 lset . 5
2.2 llength . 6
2.3 ltake . 6
2.4 ldropn . 7
2.5 lfinite . 7
2.6 lmap . 8
2.7 Notation . 8

3 Parity Games 8
3.1 Basic definitions . 8
3.2 Graphs . 9
3.3 Valid Paths . 9
3.4 Maximal Paths . 11
3.5 Parity Games . 12
3.6 Sets of Deadends . 13
3.7 Subgames . 13
3.8 Priorities Occurring Infinitely Often . 15
3.9 Winning Condition . 16
3.10 Valid Maximal Paths . 18

1

4 Positional Strategies 20
4.1 Definitions . 20
4.2 Strategy-Conforming Paths . 20
4.3 An Arbitrary Strategy . 20
4.4 Valid Strategies . 21
4.5 Conforming Strategies . 22
4.6 Greedy Conforming Path . 25
4.7 Valid Maximal Conforming Paths . 28
4.8 Valid Maximal Conforming Paths with One Edge 29
4.9 lset Induction Schemas for Paths . 30

5 Attracting Strategies 31
5.1 Paths Visiting a Set . 31
5.2 Attracting Strategy from a Single Node . 32
5.3 Attracting strategy from a set of nodes . 35

6 Attractor Sets 38
6.1 directly-attracted . 38
6.2 attractor-step . 38
6.3 Basic Properties of an Attractor . 39
6.4 Attractor Set Extensions . 39
6.5 Removing an Attractor . 39
6.6 Attractor Set Induction . 40

7 Winning Strategies 41
7.1 Deadends . 42
7.2 Extension Theorems . 43

8 Well-Ordered Strategy 44
8.1 Strategies on a Path . 46
8.2 Eventually One Strategy . 48

9 Winning Regions 49
9.1 Paths in Winning Regions . 50
9.2 Irrelevant Updates . 51
9.3 Extending Winning Regions . 51

10 Uniform Strategies 52
10.1 A Uniform Attractor Strategy . 52
10.2 A Uniform Winning Strategy . 54
10.3 Extending Winning Regions . 56

11 Attractor Strategies 56
11.1 Existence . 58

12 Positional Determinacy of Parity Games 58
12.1 Induction Step . 59

2

12.2 Positional Determinacy without Deadends . 67
12.3 Positional Determinacy with Deadends . 67
12.4 The Main Theorem: Positional Determinacy 70

13 Defining the Attractor with inductive_set 70
13.1 attractor-inductive . 70

14 Compatibility with the Graph Theory Package 72
14.1 To Graph Theory . 72
14.2 From Graph Theory . 72
14.3 Isomorphisms . 73

Bibliography 75

3

1 Introduction
Parity games are games played by two players, called Even and Odd, on labelled directed
graphs. Each node is labelled with their player and with a natural number, called its
priority.

To call this a parity game, we only need to assume that the number of different priorities
is finite. Of course, this condition is only relevant on infinite graphs.

One reason parity games are important is that determining the winner is polynomial-time
equivalent to the model-checking problem of the modal µ-calculus, a logic able to express
LTL and CTL* properties ([1]).

1.1 Formal Introduction
Formally, a parity game is G = (V,E, V0, ω), where (V,E) is a directed graph, V0 ⊆ V is
the set of Even nodes, and ω : V → N is a function with |f(V)| <∞.

A play is a maximal path in G. A finite play is winning for Even iff the last node is not
in V0. An infinite play is winning for Even iff the minimum priority occurring infinitely
often on the path is even. On an infinite path at least one priority occurs infinitely often
because there is only a finite number of different priorities.

A node v is winning for a player p iff all plays starting from v are winning for p. It is
well-known that parity games are determined, that is, every node is winning for some player.

A more surprising property is that parity games are also positionally determined. This
means that for every node v winning for Even, there is a function σ : V0 → V such that all
Even needs to do in order to win from v is to consult this function whenever it is his turn
(similarly if v is winning for Odd). This is also called a positional strategy for the winning
player.

We define the winning region of player p as the set of nodes from which player p has
positional winning strategies. Positional determinacy then says that the winning regions of
Even and of Odd partition the graph.

See [3] for a modern survey on positional determinacy of parity games. Their proof is
based on a proof by Zielonka [5].

1.2 Overview
Here we formalize the proof from [2] in Isabelle/HOL. This proof is similar to the proof
in [3], but we do not explicitly define so-called “σ-traps”. Using σ-traps could be worth
exploring, because it has the potential to simplify our formalization.

Our proof has no assumptions except those required by every parity game. In particular
the parity game

• may have arbitrary cardinality,

• may have loops,

• may have deadends, that is, nodes with no successors.

The main theorem is in section 12.4.

4

1.3 Technical Aspects
We use a coinductive list of nodes to represent paths in a graph because this gives us a
uniform representation for finite and infinite paths. We can then express properties such as
that a path is maximal or conforms to a given strategy directly as coinductive properties.
We use the coinductive list developed by Lochbihler in [4].

We also explored representing paths as functions nat ⇒ ′a option with the property that
the domain is an initial segment of nat (and where ′a is the node type). However, it turned
out that coinductive lists give simpler proofs.

It is possible to represent a graph as a function ′a ⇒ ′a ⇒ bool, see for example in the
proof of König’s lemma in [4]. However, we instead go for a record which contains a set of
nodes and a set of edges explicitly. By not requiring that the set of nodes is UNIV :: ′a set
but rather a subset of UNIV :: ′a set, it becomes easier to reason about subgraphs.

Another point is that we make extensive use of locales, in particular to represent maximal
paths conforming to a specific strategy. Thus proofs often start with interpret vmc-path G
P v0 p σ to say that P is a valid maximal path in the graph G starting in v0 and conforming
to the strategy σ for player p.

2 Auxiliary Lemmas for Coinductive Lists

Some lemmas to allow better reasoning with coinductive lists.
theory MoreCoinductiveList
imports

Main
Coinductive.Coinductive-List

begin

2.1 lset
lemma lset-lnth: x ∈ lset xs =⇒ ∃n. lnth xs n = x

by (induct rule: llist.set-induct, meson lnth-0 , meson lnth-Suc-LCons)

lemma lset-lnth-member : [[lset xs ⊆ A; enat n < llength xs]] =⇒ lnth xs n ∈ A
using contra-subsetD[of lset xs A] in-lset-conv-lnth[of - xs] by blast

lemma lset-nth-member-inf : [[¬lfinite xs; lset xs ⊆ A]] =⇒ lnth xs n ∈ A
by (metis contra-subsetD inf-llist-lnth lset-inf-llist rangeI)

lemma lset-intersect-lnth: lset xs ∩ A 6= {} =⇒ ∃n. enat n < llength xs ∧ lnth xs n ∈ A
by (metis disjoint-iff-not-equal in-lset-conv-lnth)

lemma lset-ltake-Suc:
assumes ¬lnull xs lnth xs 0 = x lset (ltake (enat n) (ltl xs)) ⊆ A
shows lset (ltake (enat (Suc n)) xs) ⊆ insert x A

proof−
have lset (ltake (eSuc (enat n)) (LCons x (ltl xs))) ⊆ insert x A

using assms(3) by auto
moreover from assms(1 ,2) have LCons x (ltl xs) = xs

by (metis lnth-0 ltl-simps(2) not-lnull-conv)

5

ultimately show ?thesis by (simp add: eSuc-enat)
qed

lemma lfinite-lset: lfinite xs =⇒ ¬lnull xs =⇒ llast xs ∈ lset xs
proof (induct rule: lfinite-induct)

case (LCons xs)
show ?case proof (cases)

assume ∗: ¬lnull (ltl xs)
hence llast (ltl xs) ∈ lset (ltl xs) using LCons.hyps(3) by blast
hence llast (ltl xs) ∈ lset xs by (simp add: in-lset-ltlD)
thus ?thesis by (metis ∗ LCons.prems lhd-LCons-ltl llast-LCons2)

qed (metis LCons.prems lhd-LCons-ltl llast-LCons llist.set-sel(1))
qed simp

lemma lset-subset: ¬(lset xs ⊆ A) =⇒ ∃n. enat n < llength xs ∧ lnth xs n /∈ A
by (metis in-lset-conv-lnth subsetI)

2.2 llength
lemma enat-Suc-ltl:

assumes enat (Suc n) < llength xs
shows enat n < llength (ltl xs)

proof−
from assms have eSuc (enat n) < llength xs by (simp add: eSuc-enat)
hence enat n < epred (llength xs) using eSuc-le-iff ileI1 by fastforce
thus ?thesis by (simp add: epred-llength)

qed

lemma enat-ltl-Suc: enat n < llength (ltl xs) =⇒ enat (Suc n) < llength xs
by (metis eSuc-enat ldrop-ltl leD leI lnull-ldrop)

lemma infinite-small-llength [intro]: ¬lfinite xs =⇒ enat n < llength xs
using enat-iless lfinite-conv-llength-enat neq-iff by blast

lemma lnull-0-llength: ¬lnull xs =⇒ enat 0 < llength xs
using zero-enat-def by auto

lemma Suc-llength: enat (Suc n) < llength xs =⇒ enat n < llength xs
using dual-order .strict-trans enat-ord-simps(2) by blast

2.3 ltake
lemma ltake-lnth: ltake n xs = ltake n ys =⇒ enat m < n =⇒ lnth xs m = lnth ys m

by (metis lnth-ltake)

lemma lset-ltake-prefix [simp]: n ≤ m =⇒ lset (ltake n xs) ⊆ lset (ltake m xs)
by (simp add: lprefix-lsetD)

lemma lset-ltake: (
∧

m. m < n =⇒ lnth xs m ∈ A) =⇒ lset (ltake (enat n) xs) ⊆ A
proof (induct n arbitrary: xs)

case 0
have ltake (enat 0) xs = LNil by (simp add: zero-enat-def)

6

thus ?case by simp
next

case (Suc n)
show ?case proof (cases)

assume xs 6= LNil
then obtain x xs ′ where xs: xs = LCons x xs ′ by (meson neq-LNil-conv)
{ fix m assume m < n

hence Suc m < Suc n by simp
hence lnth xs (Suc m) ∈ A using Suc.prems by presburger
hence lnth xs ′ m ∈ A using xs by simp

}
hence lset (ltake (enat n) xs ′) ⊆ A using Suc.hyps by blast
moreover have ltake (enat (Suc n)) xs = LCons x (ltake (enat n) xs ′)

using xs ltake-eSuc-LCons[of - x xs ′] by (metis (no-types) eSuc-enat)
moreover have x ∈ A using Suc.prems xs by force
ultimately show ?thesis by simp

qed simp
qed

lemma llength-ltake ′: enat n < llength xs =⇒ llength (ltake (enat n) xs) = enat n
by (metis llength-ltake min.strict-order-iff)

lemma llast-ltake:
assumes enat (Suc n) < llength xs
shows llast (ltake (enat (Suc n)) xs) = lnth xs n (is llast ?A = -)
unfolding llast-def using llength-ltake ′[OF assms] by (auto simp add: lnth-ltake)

lemma lset-ltake-ltl: lset (ltake (enat n) (ltl xs)) ⊆ lset (ltake (enat (Suc n)) xs)
proof (cases)

assume ¬lnull xs
then obtain v0 where xs = LCons v0 (ltl xs) by (metis lhd-LCons-ltl)
hence ltake (eSuc (enat n)) xs = LCons v0 (ltake (enat n) (ltl xs))

by (metis ltake-eSuc-LCons)
hence lset (ltake (enat (Suc n)) xs) = lset (LCons v0 (ltake (enat n) (ltl xs)))

by (simp add: eSuc-enat)
thus ?thesis using lset-LCons[of v0 ltake (enat n) (ltl xs)] by blast

qed (simp add: lnull-def)

2.4 ldropn
lemma ltl-ldrop: [[

∧
xs. P xs =⇒ P (ltl xs); P xs]] =⇒ P (ldropn n xs)

unfolding ldropn-def by (induct n) simp-all

2.5 lfinite
lemma lfinite-drop-set: lfinite xs =⇒ ∃n. v /∈ lset (ldrop n xs)

by (metis ldrop-inf lmember-code(1) lset-lmember)

lemma index-infinite-set:
[[¬lfinite x; lnth x m = y;

∧
i. lnth x i = y =⇒ (∃m > i. lnth x m = y)]] =⇒ y ∈ lset (ldropn n

x)
proof (induct n arbitrary: x m)

7

case 0 thus ?case using lset-nth-member-inf by auto
next

case (Suc n)
obtain a xs where x: x = LCons a xs by (meson Suc.prems(1) lnull-imp-lfinite not-lnull-conv)
obtain j where j: j > m lnth x j = y using Suc.prems(2 ,3) by blast
have lnth xs (j − 1) = y by (metis lnth-LCons ′ j(1 ,2) not-less0 x)
moreover {

fix i assume lnth xs i = y
hence lnth x (Suc i) = y by (simp add: x)
hence ∃ j>i. lnth xs j = y by (metis Suc.prems(3) Suc-lessE lnth-Suc-LCons x)

}
ultimately show ?case using Suc.hyps Suc.prems(1) x by auto

qed

2.6 lmap
lemma lnth-lmap-ldropn:

enat n < llength xs =⇒ lnth (lmap f (ldropn n xs)) 0 = lnth (lmap f xs) n
by (simp add: lhd-ldropn lnth-0-conv-lhd)

lemma lnth-lmap-ldropn-Suc:
enat (Suc n) < llength xs =⇒ lnth (lmap f (ldropn n xs)) (Suc 0) = lnth (lmap f xs) (Suc n)
by (metis (no-types, lifting) Suc-llength ldropn-ltl leD llist.map-disc-iff lnth-lmap-ldropn

lnth-ltl lnull-ldropn ltl-ldropn ltl-lmap)

2.7 Notation

We introduce the notation $ to denote lnth.
notation lnth (infix ‹$› 61)

end

3 Parity Games
theory ParityGame
imports

Main
MoreCoinductiveList

begin

3.1 Basic definitions
′a is the node type. Edges are pairs of nodes.
type-synonym ′a Edge = ′a × ′a

A path is a possibly infinite list of nodes.
type-synonym ′a Path = ′a llist

8

3.2 Graphs

We define graphs as a locale over a record. The record contains nodes (AKA vertices) and
edges. The locale adds the assumption that the edges are pairs of nodes.
record ′a Graph =

verts :: ′a set (‹V ı›)
arcs :: ′a Edge set (‹E ı›)

abbreviation is-arc :: (′a, ′b) Graph-scheme ⇒ ′a ⇒ ′a ⇒ bool (infixl ‹→ı› 60) where
v →G w ≡ (v,w) ∈ EG

locale Digraph =
fixes G (structure)
assumes valid-edge-set: E ⊆ V × V

begin
lemma edges-are-in-V [intro]: v→w =⇒ v ∈ V v→w =⇒ w ∈ V using valid-edge-set by blast+

A node without successors is a deadend.
abbreviation deadend :: ′a ⇒ bool where deadend v ≡ ¬(∃w ∈ V . v → w)

3.3 Valid Paths

We say that a path is valid if it is empty or if it starts in V and walks along edges.
coinductive valid-path :: ′a Path ⇒ bool where

valid-path-base: valid-path LNil
| valid-path-base ′: v ∈ V =⇒ valid-path (LCons v LNil)
| valid-path-cons: [[v ∈ V ; w ∈ V ; v→w; valid-path Ps; ¬lnull Ps; lhd Ps = w]]

=⇒ valid-path (LCons v Ps)

inductive-simps valid-path-cons-simp: valid-path (LCons x xs)

lemma valid-path-ltl ′: valid-path (LCons v Ps) =⇒ valid-path Ps
using valid-path.simps by blast

lemma valid-path-ltl: valid-path P =⇒ valid-path (ltl P)
by (metis llist.exhaust-sel ltl-simps(1) valid-path-ltl ′)

lemma valid-path-drop: valid-path P =⇒ valid-path (ldropn n P)
by (simp add: valid-path-ltl ltl-ldrop)

lemma valid-path-in-V : assumes valid-path P shows lset P ⊆ V proof
fix x assume x ∈ lset P thus x ∈ V

using assms by (induct rule: llist.set-induct) (auto intro: valid-path.cases)
qed
lemma valid-path-finite-in-V : [[valid-path P; enat n < llength P]] =⇒ P $ n ∈ V

using valid-path-in-V lset-lnth-member by blast

lemma valid-path-edges ′: valid-path (LCons v (LCons w Ps)) =⇒ v→w
using valid-path.cases by fastforce

lemma valid-path-edges:
assumes valid-path P enat (Suc n) < llength P
shows P $ n → P $ Suc n

proof−

9

define P ′ where P ′ = ldropn n P
have enat n < llength P using assms(2) enat-ord-simps(2) less-trans by blast
hence P ′ $ 0 = P $ n by (simp add: P ′-def)
moreover have P ′ $ Suc 0 = P $ Suc n

by (metis One-nat-def P ′-def Suc-eq-plus1 add.commute assms(2) lnth-ldropn)
ultimately have ∃Ps. P ′ = LCons (P $ n) (LCons (P $ Suc n) Ps)

by (metis P ′-def ‹enat n < llength P› assms(2) ldropn-Suc-conv-ldropn)
moreover have valid-path P ′ by (simp add: P ′-def assms(1) valid-path-drop)
ultimately show ?thesis using valid-path-edges ′ by blast

qed

lemma valid-path-coinduct [consumes 1 , case-names base step, coinduct pred: valid-path]:
assumes major : Q P

and base:
∧

v P. Q (LCons v LNil) =⇒ v ∈ V
and step:

∧
v w P. Q (LCons v (LCons w P)) =⇒ v→w ∧ (Q (LCons w P) ∨ valid-path (LCons

w P))
shows valid-path P

using major proof (coinduction arbitrary: P)
case valid-path
{ assume P 6= LNil ¬(∃ v. P = LCons v LNil ∧ v ∈ V)

then obtain v w P ′ where P = LCons v (LCons w P ′)
using neq-LNil-conv base valid-path by metis

hence ?case using step valid-path by auto
}
thus ?case by blast

qed

lemma valid-path-no-deadends:
[[valid-path P; enat (Suc i) < llength P]] =⇒ ¬deadend (P $ i)
using valid-path-edges by blast

lemma valid-path-ends-on-deadend:
[[valid-path P; enat i < llength P; deadend (P $ i)]] =⇒ enat (Suc i) = llength P
using valid-path-no-deadends by (metis enat-iless enat-ord-simps(2) neq-iff not-less-eq)

lemma valid-path-prefix: [[valid-path P; lprefix P ′ P]] =⇒ valid-path P ′

proof (coinduction arbitrary: P ′ P)
case (step v w P ′′ P ′ P)
then obtain Ps where Ps: LCons v (LCons w Ps) = P by (metis LCons-lprefix-conv)
hence valid-path (LCons w Ps) using valid-path-ltl ′ step(2) by blast
moreover have lprefix (LCons w P ′′) (LCons w Ps) using Ps step(1 ,3) by auto
ultimately show ?case using Ps step(2) valid-path-edges ′ by blast

qed (metis LCons-lprefix-conv valid-path-cons-simp)

lemma valid-path-lappend:
assumes valid-path P valid-path P ′ [[¬lnull P; ¬lnull P ′]] =⇒ llast P→lhd P ′

shows valid-path (lappend P P ′)
proof (cases, cases)

assume ¬lnull P ¬lnull P ′

thus ?thesis using assms proof (coinduction arbitrary: P ′ P)
case (step v w P ′′ P ′ P)
show ?case proof (cases)

10

assume lnull (ltl P)
thus ?case using step(1 ,2 ,3 ,5 ,6)

by (metis lhd-LCons lhd-LCons-ltl lhd-lappend llast-singleton
llist.collapse(1) ltl-lappend ltl-simps(2))

next
assume ¬lnull (ltl P)
moreover have ltl (lappend P P ′) = lappend (ltl P) P ′ using step(2) by simp
ultimately show ?case using step

by (metis (no-types, lifting)
lhd-LCons lhd-LCons-ltl lhd-lappend llast-LCons ltl-simps(2)
valid-path-edges ′ valid-path-ltl)

qed
qed (metis llist.disc(1) lnull-lappend ltl-lappend ltl-simps(2))

qed (simp-all add: assms(1 ,2) lappend-lnull1 lappend-lnull2)

A valid path is still valid in a supergame.
lemma valid-path-supergame:

assumes valid-path P and G ′: Digraph G ′ V ⊆ V G ′ E ⊆ EG ′

shows Digraph.valid-path G ′ P
using ‹valid-path P› proof (coinduction arbitrary: P

rule: Digraph.valid-path-coinduct[OF G ′(1), case-names base step])
case base thus ?case using G ′(2) valid-path-cons-simp by auto

qed (meson G ′(3) subset-eq valid-path-edges ′ valid-path-ltl ′)

3.4 Maximal Paths

We say that a path is maximal if it is empty or if it ends in a deadend.
coinductive maximal-path where

maximal-path-base: maximal-path LNil
| maximal-path-base ′: deadend v =⇒ maximal-path (LCons v LNil)
| maximal-path-cons: ¬lnull Ps =⇒ maximal-path Ps =⇒ maximal-path (LCons v Ps)

lemma maximal-no-deadend: maximal-path (LCons v Ps) =⇒ ¬deadend v =⇒ ¬lnull Ps
by (metis lhd-LCons llist.distinct(1) ltl-simps(2) maximal-path.simps)

lemma maximal-ltl: maximal-path P =⇒ maximal-path (ltl P)
by (metis ltl-simps(1) ltl-simps(2) maximal-path.simps)

lemma maximal-drop: maximal-path P =⇒ maximal-path (ldropn n P)
by (simp add: maximal-ltl ltl-ldrop)

lemma maximal-path-lappend:
assumes ¬lnull P ′ maximal-path P ′

shows maximal-path (lappend P P ′)
proof (cases)

assume ¬lnull P
thus ?thesis using assms proof (coinduction arbitrary: P ′ P rule: maximal-path.coinduct)

case (maximal-path P ′ P)
let ?P = lappend P P ′

show ?case proof (cases ?P = LNil ∨ (∃ v. ?P = LCons v LNil ∧ deadend v))
case False
then obtain Ps v where P: ?P = LCons v Ps by (meson neq-LNil-conv)
hence Ps = lappend (ltl P) P ′ by (simp add: lappend-ltl maximal-path(1))

11

hence ∃Ps1 P ′. Ps = lappend Ps1 P ′ ∧ ¬lnull P ′ ∧ maximal-path P ′

using maximal-path(2) maximal-path(3) by auto
thus ?thesis using P lappend-lnull1 by fastforce

qed blast
qed

qed (simp add: assms(2) lappend-lnull1 [of P P ′])

lemma maximal-ends-on-deadend:
assumes maximal-path P lfinite P ¬lnull P
shows deadend (llast P)

proof−
from ‹lfinite P› ‹¬lnull P› obtain n where n: llength P = enat (Suc n)

by (metis enat-ord-simps(2) gr0-implies-Suc lfinite-llength-enat lnull-0-llength)
define P ′ where P ′ = ldropn n P
hence maximal-path P ′ using assms(1) maximal-drop by blast
thus ?thesis proof (cases rule: maximal-path.cases)

case (maximal-path-base ′ v)
hence deadend (llast P ′) unfolding P ′-def by simp
thus ?thesis unfolding P ′-def using llast-ldropn[of n P] n

by (metis P ′-def ldropn-eq-LConsD local.maximal-path-base ′(1))
next

case (maximal-path-cons P ′′ v)
hence ldropn (Suc n) P = P ′′ unfolding P ′-def by (metis ldrop-eSuc-ltl ltl-ldropn ltl-simps(2))
thus ?thesis using n maximal-path-cons(2) by auto

qed (simp add: P ′-def n ldropn-eq-LNil)
qed

lemma maximal-ends-on-deadend ′: [[lfinite P; deadend (llast P)]] =⇒ maximal-path P
proof (coinduction arbitrary: P rule: maximal-path.coinduct)

case (maximal-path P)
show ?case proof (cases)

assume P 6= LNil
then obtain v P ′ where P ′: P = LCons v P ′ by (meson neq-LNil-conv)
show ?thesis proof (cases)

assume P ′ = LNil thus ?thesis using P ′ maximal-path(2) by auto
qed (metis P ′ lfinite-LCons llast-LCons llist.collapse(1) maximal-path(1 ,2))

qed simp
qed

lemma infinite-path-is-maximal: [[valid-path P; ¬lfinite P]] =⇒ maximal-path P
by (coinduction arbitrary: P rule: maximal-path.coinduct)

(cases rule: valid-path.cases, auto)

end — locale Digraph

3.5 Parity Games

Parity games are games played by two players, called Even and Odd.
datatype Player = Even | Odd

abbreviation other-player p ≡ (if p = Even then Odd else Even)

12

notation other-player (‹(-∗∗)› [1000] 1000)
lemma other-other-player [simp]: p∗∗∗∗ = p using Player .exhaust by auto

A parity game is tuple (V,E, V0, ω), where (V,E) is a graph, V0 ⊆ V and ω is a function
from V → N with finite image.
record ′a ParityGame = ′a Graph +

player0 :: ′a set (‹V0 ı›)
priority :: ′a ⇒ nat (‹ωı›)

locale ParityGame = Digraph G for G :: (′a, ′b) ParityGame-scheme (structure) +
assumes valid-player0-set: V0 ⊆ V

and priorities-finite: finite (ω ‘ V)
begin

VV p is the set of nodes belonging to player p.
abbreviation VV :: Player ⇒ ′a set where VV p ≡ (if p = Even then V0 else V − V0)
lemma VVp-to-V [intro]: v ∈ VV p =⇒ v ∈ V using valid-player0-set by (cases p) auto
lemma VV-impl1 : v ∈ VV p =⇒ v /∈ VV p∗∗ by auto
lemma VV-impl2 : v ∈ VV p∗∗ =⇒ v /∈ VV p by auto
lemma VV-equivalence [iff]: v ∈ V =⇒ v /∈ VV p ←→ v ∈ VV p∗∗ by auto
lemma VV-cases [consumes 1]: [[v ∈ V ; v ∈ VV p =⇒ P ; v ∈ VV p∗∗ =⇒ P]] =⇒ P by auto

3.6 Sets of Deadends
definition deadends p ≡ {v ∈ VV p. deadend v}
lemma deadends-in-V : deadends p ⊆ V unfolding deadends-def by blast

3.7 Subgames

We define a subgame by restricting the set of nodes to a given subset.
definition subgame where

subgame V ′ ≡ G(|
verts := V ∩ V ′,
arcs := E ∩ (V ′ × V ′),
player0 := V0 ∩ V ′ |)

lemma subgame-V [simp]: V subgame V ′ ⊆ V
and subgame-E [simp]: Esubgame V ′ ⊆ E
and subgame-ω: ωsubgame V ′ = ω

unfolding subgame-def by simp-all

lemma
assumes V ′ ⊆ V
shows subgame-V ′ [simp]: V subgame V ′ = V ′

and subgame-E ′ [simp]: Esubgame V ′ = E ∩ (V subgame V ′ × V subgame V ′)

unfolding subgame-def using assms by auto

lemma subgame-VV [simp]: ParityGame.VV (subgame V ′) p = V ′ ∩ VV p proof−
have ParityGame.VV (subgame V ′) Even = V ′ ∩ VV Even unfolding subgame-def by auto
moreover have ParityGame.VV (subgame V ′) Odd = V ′ ∩ VV Odd proof−

13

have V ′ ∩ V − (V0 ∩ V ′) = V ′ ∩ V ∩ (V − V0) by blast
thus ?thesis unfolding subgame-def by auto

qed
ultimately show ?thesis by simp

qed
corollary subgame-VV-subset [simp]: ParityGame.VV (subgame V ′) p ⊆ VV p by simp

lemma subgame-finite [simp]: finite (ωsubgame V ′ ‘ V subgame V ′) proof−
have finite (ω ‘ V subgame V ′) using subgame-V priorities-finite

by (meson finite-subset image-mono)
thus ?thesis by (simp add: subgame-def)

qed

lemma subgame-ω-subset [simp]: ωsubgame V ′ ‘ V subgame V ′ ⊆ ω ‘ V
by (simp add: image-mono subgame-ω)

lemma subgame-Digraph: Digraph (subgame V ′)
by (unfold-locales) (auto simp add: subgame-def)

lemma subgame-ParityGame:
shows ParityGame (subgame V ′)

proof (unfold-locales)
show Esubgame V ′ ⊆ V subgame V ′ × V subgame V ′

using subgame-Digraph[unfolded Digraph-def] .
show V0 subgame V ′ ⊆ V subgame V ′ unfolding subgame-def using valid-player0-set by auto
show finite (ωsubgame V ′ ‘ V subgame V ′) by simp

qed

lemma subgame-valid-path:
assumes P: valid-path P lset P ⊆ V ′

shows Digraph.valid-path (subgame V ′) P
proof−

have lset P ⊆ V using P(1) valid-path-in-V by blast
hence lset P ⊆ V subgame V ′ unfolding subgame-def using P(2) by auto
with P(1) show ?thesis
proof (coinduction arbitrary: P

rule: Digraph.valid-path.coinduct[OF subgame-Digraph, case-names IH])
case IH
thus ?case proof (cases rule: valid-path.cases)

case (valid-path-cons v w Ps)
moreover hence v ∈ V subgame V ′ w ∈ V subgame V ′ using IH (2) by auto
moreover hence v →subgame V ′ w using local.valid-path-cons(4) subgame-def by auto
moreover have valid-path Ps using IH (1) valid-path-ltl ′ local.valid-path-cons(1) by blast
ultimately show ?thesis using IH (2) by auto

qed auto
qed

qed

lemma subgame-maximal-path:
assumes V ′: V ′ ⊆ V and P: maximal-path P lset P ⊆ V ′

14

shows Digraph.maximal-path (subgame V ′) P
proof−

have lset P ⊆ V subgame V ′ unfolding subgame-def using P(2) V ′ by auto
with P(1) V ′ show ?thesis

by (coinduction arbitrary: P rule: Digraph.maximal-path.coinduct[OF subgame-Digraph])
(cases rule: maximal-path.cases, auto)

qed

3.8 Priorities Occurring Infinitely Often

The set of priorities that occur infinitely often on a given path. We need this to define the
winning condition of parity games.
definition path-inf-priorities :: ′a Path ⇒ nat set where

path-inf-priorities P ≡ {k. ∀n. k ∈ lset (ldropn n (lmap ω P))}

Because ω is image-finite, by the pigeon-hole principle every infinite path has at least one
priority that occurs infinitely often.
lemma path-inf-priorities-is-nonempty:

assumes P: valid-path P ¬lfinite P
shows ∃ k. k ∈ path-inf-priorities P

proof−

Define a map from indices to priorities on the path.
define f where f i = ω (P $ i) for i
have range f ⊆ ω ‘ V unfolding f-def

using valid-path-in-V [OF P(1)] lset-nth-member-inf [OF P(2)]
by blast

hence finite (range f)
using priorities-finite finite-subset by blast

then obtain n0 where n0 : ¬(finite {n. f n = f n0})
using pigeonhole-infinite[of UNIV f] by auto

define k where k = f n0

The priority k occurs infinitely often.
have lmap ω P $ n0 = k unfolding f-def k-def

using assms(2) by (simp add: infinite-small-llength)
moreover {

fix n assume lmap ω P $ n = k
have ∃n ′ > n. f n ′ = k unfolding k-def using n0 infinite-nat-iff-unbounded by auto
hence ∃n ′ > n. lmap ω P $ n ′ = k unfolding f-def

using assms(2) by (simp add: infinite-small-llength)
}
ultimately have ∀n. k ∈ lset (ldropn n (lmap ω P))

using index-infinite-set[of lmap ω P n0 k] P(2) lfinite-lmap
by blast

thus ?thesis unfolding path-inf-priorities-def by blast
qed

lemma path-inf-priorities-at-least-min-prio:
assumes P: valid-path P and a: a ∈ path-inf-priorities P

15

shows Min (ω ‘ V) ≤ a
proof−

have a ∈ lset (ldropn 0 (lmap ω P)) using a unfolding path-inf-priorities-def by blast
hence a ∈ ω ‘ lset P by simp
thus ?thesis using P valid-path-in-V priorities-finite Min-le by blast

qed

lemma path-inf-priorities-LCons:
path-inf-priorities P = path-inf-priorities (LCons v P) (is ?A = ?B)

proof
show ?A ⊆ ?B proof

fix a assume a ∈ ?A
hence ∀n. a ∈ lset (ldropn n (lmap ω (LCons v P)))

unfolding path-inf-priorities-def
using in-lset-ltlD[of a] by (simp add: ltl-ldropn)

thus a ∈ ?B unfolding path-inf-priorities-def by blast
qed

next
show ?B ⊆ ?A proof

fix a assume a ∈ ?B
hence ∀n. a ∈ lset (ldropn (Suc n) (lmap ω (LCons v P)))

unfolding path-inf-priorities-def by blast
thus a ∈ ?A unfolding path-inf-priorities-def by simp

qed
qed
corollary path-inf-priorities-ltl: path-inf-priorities P = path-inf-priorities (ltl P)

by (metis llist.exhaust ltl-simps path-inf-priorities-LCons)

3.9 Winning Condition

Let G = (V,E, V0, ω) be a parity game. An infinite path v0, v1, . . . in G is winning for player
Even (Odd) if the minimum priority occurring infinitely often is even (odd). A finite path
is winning for player p iff the last node on the path belongs to the other player.
Empty paths are irrelevant, but it is useful to assign a fixed winner to them in order to get
simpler lemmas.
abbreviation winning-priority p ≡ (if p = Even then even else odd)

definition winning-path :: Player ⇒ ′a Path ⇒ bool where
winning-path p P ≡
(¬lfinite P ∧ (∃ a ∈ path-inf-priorities P.
(∀ b ∈ path-inf-priorities P. a ≤ b) ∧ winning-priority p a))
∨ (¬lnull P ∧ lfinite P ∧ llast P ∈ VV p∗∗)
∨ (lnull P ∧ p = Even)

Every path has a unique winner.
lemma paths-are-winning-for-one-player :

assumes valid-path P
shows winning-path p P ←→ ¬winning-path p∗∗ P

proof (cases)
assume ¬lnull P

16

show ?thesis proof (cases)
assume lfinite P
thus ?thesis

using assms lfinite-lset valid-path-in-V
unfolding winning-path-def
by auto

next
assume ¬lfinite P
then obtain a where a ∈ path-inf-priorities P

∧
b. b < a =⇒ b /∈ path-inf-priorities P

using assms ex-least-nat-le[of λa. a ∈ path-inf-priorities P] path-inf-priorities-is-nonempty
by blast

hence ∀ q. winning-priority q a ←→ winning-path q P
unfolding winning-path-def using ‹¬lnull P› ‹¬lfinite P› by (metis le-antisym not-le)

moreover have ∀ q. winning-priority p q ←→ ¬winning-priority p∗∗ q by simp
ultimately show ?thesis by blast

qed
qed (simp add: winning-path-def)

lemma winning-path-ltl:
assumes P: winning-path p P ¬lnull P ¬lnull (ltl P)
shows winning-path p (ltl P)

proof (cases)
assume lfinite P
moreover have llast P = llast (ltl P)

using P(2 ,3) by (metis llast-LCons2 ltl-simps(2) not-lnull-conv)
ultimately show ?thesis using P by (simp add: winning-path-def)

next
assume ¬lfinite P
thus ?thesis using winning-path-def path-inf-priorities-ltl P(1 ,2) by auto

qed

corollary winning-path-drop:
assumes winning-path p P enat n < llength P
shows winning-path p (ldropn n P)

using assms proof (induct n)
case (Suc n)
hence winning-path p (ldropn n P) using dual-order .strict-trans enat-ord-simps(2) by blast
moreover have ltl (ldropn n P) = ldropn (Suc n) P by (simp add: ldrop-eSuc-ltl ltl-ldropn)
moreover hence ¬lnull (ldropn n P) using Suc.prems(2) by (metis leD lnull-ldropn lnull-ltlI)
ultimately show ?case using winning-path-ltl[of p ldropn n P] Suc.prems(2) by auto

qed simp

corollary winning-path-drop-add:
assumes valid-path P winning-path p (ldropn n P) enat n < llength P
shows winning-path p P
using assms paths-are-winning-for-one-player valid-path-drop winning-path-drop by blast

lemma winning-path-LCons:
assumes P: winning-path p P ¬lnull P
shows winning-path p (LCons v P)

proof (cases)
assume lfinite P

17

moreover have llast P = llast (LCons v P)
using P(2) by (metis llast-LCons2 not-lnull-conv)

ultimately show ?thesis using P unfolding winning-path-def by simp
next

assume ¬lfinite P
thus ?thesis using P path-inf-priorities-LCons unfolding winning-path-def by simp

qed

lemma winning-path-supergame:
assumes winning-path p P
and G ′: ParityGame G ′ VV p∗∗ ⊆ ParityGame.VV G ′ p∗∗ ω = ωG ′

shows ParityGame.winning-path G ′ p P
proof−

interpret G ′: ParityGame G ′ using G ′(1) .
have [[lfinite P; ¬lnull P]] =⇒ llast P ∈ G ′.VV p∗∗ and lnull P =⇒ p = Even

using assms(1) unfolding winning-path-def using G ′(2) by auto
thus ?thesis unfolding G ′.winning-path-def

using lnull-imp-lfinite assms(1)
unfolding winning-path-def path-inf-priorities-def G ′.path-inf-priorities-def G ′(3)
by blast

qed

end — locale ParityGame

3.10 Valid Maximal Paths

Define a locale for valid maximal paths, because we need them often.
locale vm-path = ParityGame +

fixes P v0
assumes P-not-null [simp]: ¬lnull P

and P-valid [simp]: valid-path P
and P-maximal [simp]: maximal-path P
and P-v0 [simp]: lhd P = v0

begin
lemma P-LCons: P = LCons v0 (ltl P) using lhd-LCons-ltl[OF P-not-null] by simp

lemma P-len [simp]: enat 0 < llength P by (simp add: lnull-0-llength)
lemma P-0 [simp]: P $ 0 = v0 by (simp add: lnth-0-conv-lhd)
lemma P-lnth-Suc: P $ Suc n = ltl P $ n by (simp add: lnth-ltl)
lemma P-no-deadends: enat (Suc n) < llength P =⇒ ¬deadend (P $ n)

using valid-path-no-deadends by simp
lemma P-no-deadend-v0 : ¬lnull (ltl P) =⇒ ¬deadend v0

by (metis P-LCons P-valid edges-are-in-V (2) not-lnull-conv valid-path-edges ′)
lemma P-no-deadend-v0-llength: enat (Suc n) < llength P =⇒ ¬deadend v0
by (metis P-0 P-len P-valid enat-ord-simps(2) not-less-eq valid-path-ends-on-deadend zero-less-Suc)

lemma P-ends-on-deadend: [[enat n < llength P; deadend (P $ n)]] =⇒ enat (Suc n) = llength P
using P-valid valid-path-ends-on-deadend by blast

lemma P-lnull-ltl-deadend-v0 : lnull (ltl P) =⇒ deadend v0
using P-LCons maximal-no-deadend by force

lemma P-lnull-ltl-LCons: lnull (ltl P) =⇒ P = LCons v0 LNil

18

using P-LCons lnull-def by metis
lemma P-deadend-v0-LCons: deadend v0 =⇒ P = LCons v0 LNil

using P-lnull-ltl-LCons P-no-deadend-v0 by blast

lemma Ptl-valid [simp]: valid-path (ltl P) using valid-path-ltl by auto
lemma Ptl-maximal [simp]: maximal-path (ltl P) using maximal-ltl by auto

lemma Pdrop-valid [simp]: valid-path (ldropn n P) using valid-path-drop by auto
lemma Pdrop-maximal [simp]: maximal-path (ldropn n P) using maximal-drop by auto

lemma prefix-valid [simp]: valid-path (ltake n P)
using valid-path-prefix[of P] by auto

lemma extension-valid [simp]: v→v0 =⇒ valid-path (LCons v P)
using P-not-null P-v0 P-valid valid-path-cons by blast

lemma extension-maximal [simp]: maximal-path (LCons v P)
by (simp add: maximal-path-cons)

lemma lappend-maximal [simp]: maximal-path (lappend P ′ P)
by (simp add: maximal-path-lappend)

lemma v0-V [simp]: v0 ∈ V by (metis P-LCons P-valid valid-path-cons-simp)
lemma v0-lset-P [simp]: v0 ∈ lset P using P-not-null P-v0 llist.set-sel(1) by blast
lemma v0-VV : v0 ∈ VV p ∨ v0 ∈ VV p∗∗ by simp
lemma lset-P-V [simp]: lset P ⊆ V by (simp add: valid-path-in-V)
lemma lset-ltl-P-V [simp]: lset (ltl P) ⊆ V by (simp add: valid-path-in-V)

lemma finite-llast-deadend [simp]: lfinite P =⇒ deadend (llast P)
using P-maximal P-not-null maximal-ends-on-deadend by blast

lemma finite-llast-V [simp]: lfinite P =⇒ llast P ∈ V
using P-not-null lfinite-lset lset-P-V by blast

If a path visits a deadend, it is winning for the other player.
lemma visits-deadend:

assumes lset P ∩ deadends p 6= {}
shows winning-path p∗∗ P

proof−
obtain n where n: enat n < llength P P $ n ∈ deadends p

using assms by (meson lset-intersect-lnth)
hence ∗: enat (Suc n) = llength P using P-ends-on-deadend unfolding deadends-def by blast
hence llast P = P $ n by (simp add: eSuc-enat llast-conv-lnth)
hence llast P ∈ deadends p using n(2) by simp
moreover have lfinite P using ∗ llength-eq-enat-lfiniteD by force
ultimately show ?thesis unfolding winning-path-def deadends-def by auto

qed

end

end

19

4 Positional Strategies
theory Strategy
imports

Main
ParityGame

begin

4.1 Definitions

A strategy is simply a function from nodes to nodes We only consider positional strategies.
type-synonym ′a Strategy = ′a ⇒ ′a

A valid strategy for player p is a function assigning a successor to each node in VV p.
definition (in ParityGame) strategy :: Player ⇒ ′a Strategy ⇒ bool where

strategy p σ ≡ ∀ v ∈ VV p. ¬deadend v −→ v→σ v

lemma (in ParityGame) strategyI [intro]:
(
∧

v. [[v ∈ VV p; ¬deadend v]] =⇒ v→σ v) =⇒ strategy p σ
unfolding strategy-def by blast

4.2 Strategy-Conforming Paths

If path-conforms-with-strategy p P σ holds, then we call P a σ-path. This means that P
follows σ on all nodes of player p except maybe the last node on the path.
coinductive (in ParityGame) path-conforms-with-strategy
:: Player ⇒ ′a Path ⇒ ′a Strategy ⇒ bool where
path-conforms-LNil: path-conforms-with-strategy p LNil σ
| path-conforms-LCons-LNil: path-conforms-with-strategy p (LCons v LNil) σ
| path-conforms-VVp: [[v ∈ VV p; w = σ v; path-conforms-with-strategy p (LCons w Ps) σ]]

=⇒ path-conforms-with-strategy p (LCons v (LCons w Ps)) σ
| path-conforms-VVpstar : [[v /∈ VV p; path-conforms-with-strategy p Ps σ]]

=⇒ path-conforms-with-strategy p (LCons v Ps) σ

Define a locale for valid maximal paths that conform to a given strategy, because we need
this concept quite often. However, we are not yet able to add interesting lemmas to this
locale. We will do this at the end of this section, where we have more lemmas available.
locale vmc-path = vm-path +

fixes p σ assumes P-conforms [simp]: path-conforms-with-strategy p P σ

Similary, define a locale for valid maximal paths that conform to given strategies for both
players.
locale vmc2-path = comp?: vmc-path G P v0 p∗∗ σ ′ + vmc-path G P v0 p σ

for G P v0 p σ σ ′

4.3 An Arbitrary Strategy
context ParityGame begin

20

Define an arbitrary strategy. This is useful to define other strategies by overriding part of
this strategy.
definition σ-arbitrary ≡ λv. SOME w. v→w

lemma valid-arbitrary-strategy [simp]: strategy p σ-arbitrary proof
fix v assume ¬deadend v
thus v → σ-arbitrary v unfolding σ-arbitrary-def using someI-ex[of λw. v→w] by blast

qed

4.4 Valid Strategies
lemma valid-strategy-updates: [[strategy p σ; v0→w0]] =⇒ strategy p (σ(v0 := w0))

unfolding strategy-def by auto

lemma valid-strategy-updates-set:
assumes strategy p σ

∧
v. [[v ∈ A; v ∈ VV p; ¬deadend v]] =⇒ v→σ ′ v

shows strategy p (override-on σ σ ′ A)
unfolding strategy-def by (metis assms override-on-def strategy-def)

lemma valid-strategy-updates-set-strong:
assumes strategy p σ strategy p σ ′

shows strategy p (override-on σ σ ′ A)
using assms(1) assms(2)[unfolded strategy-def] valid-strategy-updates-set by simp

lemma subgame-strategy-stays-in-subgame:
assumes σ: ParityGame.strategy (subgame V ′) p σ

and v ∈ ParityGame.VV (subgame V ′) p ¬Digraph.deadend (subgame V ′) v
shows σ v ∈ V ′

proof−
interpret G ′: ParityGame subgame V ′ using subgame-ParityGame .
have σ v ∈ V subgame V ′ using assms unfolding G ′.strategy-def G ′.edges-are-in-V (2) by blast
thus σ v ∈ V ′ by (metis Diff-iff IntE subgame-VV Player .distinct(2))

qed

lemma valid-strategy-supergame:
assumes σ: strategy p σ

and σ ′: ParityGame.strategy (subgame V ′) p σ ′

and G ′-no-deadends:
∧

v. v ∈ V ′ =⇒ ¬Digraph.deadend (subgame V ′) v
shows strategy p (override-on σ σ ′ V ′) (is strategy p ?σ)

proof
interpret G ′: ParityGame subgame V ′ using subgame-ParityGame .
fix v assume v: v ∈ VV p ¬deadend v
show v → ?σ v proof (cases)

assume v ∈ V ′

hence v ∈ G ′.VV p using subgame-VV ‹v ∈ VV p› by blast
moreover have ¬G ′.deadend v using G ′-no-deadends ‹v ∈ V ′› by blast
ultimately have v →subgame V ′ σ ′ v using σ ′ unfolding G ′.strategy-def by blast
moreover have σ ′ v = ?σ v using ‹v ∈ V ′› by simp
ultimately show ?thesis by (metis subgame-E subsetCE)

next
assume v /∈ V ′

21

thus ?thesis using v σ unfolding strategy-def by simp
qed

qed

lemma valid-strategy-in-V : [[strategy p σ; v ∈ VV p; ¬deadend v]] =⇒ σ v ∈ V
unfolding strategy-def using valid-edge-set by auto

lemma valid-strategy-only-in-V : [[strategy p σ;
∧

v. v ∈ V =⇒ σ v = σ ′ v]] =⇒ strategy p σ ′

unfolding strategy-def using edges-are-in-V (1) by auto

4.5 Conforming Strategies
lemma path-conforms-with-strategy-ltl [intro]:

path-conforms-with-strategy p P σ =⇒ path-conforms-with-strategy p (ltl P) σ
by (drule path-conforms-with-strategy.cases) (simp-all add: path-conforms-with-strategy.intros(1))

lemma path-conforms-with-strategy-drop:
path-conforms-with-strategy p P σ =⇒ path-conforms-with-strategy p (ldropn n P) σ
by (simp add: path-conforms-with-strategy-ltl ltl-ldrop[of λP. path-conforms-with-strategy p P σ])

lemma path-conforms-with-strategy-prefix:
path-conforms-with-strategy p P σ =⇒ lprefix P ′ P =⇒ path-conforms-with-strategy p P ′ σ

proof (coinduction arbitrary: P P ′)
case (path-conforms-with-strategy P P ′)
thus ?case proof (cases rule: path-conforms-with-strategy.cases)

case path-conforms-LNil
thus ?thesis using path-conforms-with-strategy(2) by auto

next
case path-conforms-LCons-LNil

thus ?thesis by (metis lprefix-LCons-conv lprefix-antisym lprefix-code(1) path-conforms-with-strategy(2))
next

case (path-conforms-VVp v w)
thus ?thesis proof (cases)

assume P ′ 6= LNil ∧ P ′ 6= LCons v LNil
hence ∃Q. P ′ = LCons v (LCons w Q)

by (metis local.path-conforms-VVp(1) lprefix-LCons-conv path-conforms-with-strategy(2))
thus ?thesis using local.path-conforms-VVp(1 ,3 ,4) path-conforms-with-strategy(2) by force

qed auto
next

case (path-conforms-VVpstar v)
thus ?thesis proof (cases)

assume P ′ 6= LNil
hence ∃Q. P ′ = LCons v Q

using local.path-conforms-VVpstar(1) lprefix-LCons-conv path-conforms-with-strategy(2) by
fastforce

thus ?thesis using local.path-conforms-VVpstar path-conforms-with-strategy(2) by auto
qed simp

qed
qed

lemma path-conforms-with-strategy-irrelevant:
assumes path-conforms-with-strategy p P σ v /∈ lset P

22

shows path-conforms-with-strategy p P (σ(v := w))
using assms apply (coinduction arbitrary: P) by (drule path-conforms-with-strategy.cases) auto

lemma path-conforms-with-strategy-irrelevant-deadend:
assumes path-conforms-with-strategy p P σ deadend v ∨ v /∈ VV p valid-path P
shows path-conforms-with-strategy p P (σ(v := w))

using assms proof (coinduction arbitrary: P)
let ?σ = σ(v := w)
case (path-conforms-with-strategy P)
thus ?case proof (cases rule: path-conforms-with-strategy.cases)

case (path-conforms-VVp v ′ w Ps)
have w = ?σ v ′ proof−

from ‹valid-path P› have ¬deadend v ′

using local.path-conforms-VVp(1) valid-path-cons-simp by blast
with assms(2) have v ′ 6= v using local.path-conforms-VVp(2) by blast
thus w = ?σ v ′ by (simp add: local.path-conforms-VVp(3))

qed
moreover

have ∃P. LCons w Ps = P ∧ path-conforms-with-strategy p P σ ∧ (deadend v ∨ v /∈ VV p)
∧ valid-path P

proof−
have valid-path (LCons w Ps)

using local.path-conforms-VVp(1) path-conforms-with-strategy(3) valid-path-ltl ′ by blast
thus ?thesis using local.path-conforms-VVp(4) path-conforms-with-strategy(2) by blast

qed
ultimately show ?thesis using local.path-conforms-VVp(1 ,2) by blast

next
case (path-conforms-VVpstar v ′ Ps)
have ∃P. path-conforms-with-strategy p Ps σ ∧ (deadend v ∨ v /∈ VV p) ∧ valid-path Ps

using local.path-conforms-VVpstar(1 ,3) path-conforms-with-strategy(2 ,3) valid-path-ltl ′ by
blast

thus ?thesis by (simp add: local.path-conforms-VVpstar(1 ,2))
qed simp-all

qed

lemma path-conforms-with-strategy-irrelevant-updates:
assumes path-conforms-with-strategy p P σ

∧
v. v ∈ lset P =⇒ σ v = σ ′ v

shows path-conforms-with-strategy p P σ ′

using assms proof (coinduction arbitrary: P)
case (path-conforms-with-strategy P)
thus ?case proof (cases rule: path-conforms-with-strategy.cases)

case (path-conforms-VVp v ′ w Ps)
have w = σ ′ v ′ using local.path-conforms-VVp(1 ,3) path-conforms-with-strategy(2) by auto
thus ?thesis using local.path-conforms-VVp(1 ,4) path-conforms-with-strategy(2) by auto

qed simp-all
qed

lemma path-conforms-with-strategy-irrelevant ′:
assumes path-conforms-with-strategy p P (σ(v := w)) v /∈ lset P
shows path-conforms-with-strategy p P σ
by (metis assms fun-upd-triv fun-upd-upd path-conforms-with-strategy-irrelevant)

23

lemma path-conforms-with-strategy-irrelevant-deadend ′:
assumes path-conforms-with-strategy p P (σ(v := w)) deadend v ∨ v /∈ VV p valid-path P
shows path-conforms-with-strategy p P σ
by (metis assms fun-upd-triv fun-upd-upd path-conforms-with-strategy-irrelevant-deadend)

lemma path-conforms-with-strategy-start:
path-conforms-with-strategy p (LCons v (LCons w P)) σ =⇒ v ∈ VV p =⇒ σ v = w
by (drule path-conforms-with-strategy.cases) simp-all

lemma path-conforms-with-strategy-lappend:
assumes

P: lfinite P ¬lnull P path-conforms-with-strategy p P σ
and P ′: ¬lnull P ′ path-conforms-with-strategy p P ′ σ
and conforms: llast P ∈ VV p =⇒ σ (llast P) = lhd P ′

shows path-conforms-with-strategy p (lappend P P ′) σ
using assms proof (induct P rule: lfinite-induct)

case (LCons P)
show ?case proof (cases)

assume lnull (ltl P)
then obtain v0 where v0 : P = LCons v0 LNil

by (metis LCons.prems(1) lhd-LCons-ltl llist.collapse(1))
have path-conforms-with-strategy p (LCons (lhd P) P ′) σ proof (cases)

assume lhd P ∈ VV p
moreover with v0 have lhd P ′ = σ (lhd P)

using LCons.prems(5) by auto
ultimately show ?thesis

using path-conforms-VVp[of lhd P p lhd P ′ σ]
by (metis (no-types) LCons.prems(4) ‹¬lnull P ′› lhd-LCons-ltl)

next
assume lhd P /∈ VV p
thus ?thesis using path-conforms-VVpstar using LCons.prems(4) v0 by blast

qed
thus ?thesis by (simp add: v0)

next
assume ¬lnull (ltl P)
hence ∗: path-conforms-with-strategy p (lappend (ltl P) P ′) σ

by (metis LCons.hyps(3) LCons.prems(1) LCons.prems(2) LCons.prems(5) LCons.prems(5)
assms(4) assms(5) lhd-LCons-ltl llast-LCons2 path-conforms-with-strategy-ltl)

have path-conforms-with-strategy p (LCons (lhd P) (lappend (ltl P) P ′)) σ proof (cases)
assume lhd P ∈ VV p
moreover hence lhd (ltl P) = σ (lhd P)

by (metis LCons.prems(1) LCons.prems(2) ‹¬lnull (ltl P)›
lhd-LCons-ltl path-conforms-with-strategy-start)

ultimately show ?thesis
using path-conforms-VVp[of lhd P p lhd (ltl P) σ] ∗ ‹¬lnull (ltl P)›
by (metis lappend-code(2) lhd-LCons-ltl)

next
assume lhd P /∈ VV p
thus ?thesis by (simp add: ∗ path-conforms-VVpstar)

qed
with ‹¬lnull P› show path-conforms-with-strategy p (lappend P P ′) σ

by (metis lappend-code(2) lhd-LCons-ltl)

24

qed
qed simp

lemma path-conforms-with-strategy-VVpstar :
assumes lset P ⊆ VV p∗∗
shows path-conforms-with-strategy p P σ

using assms proof (coinduction arbitrary: P)
case (path-conforms-with-strategy P)
moreover have

∧
v Ps. P = LCons v Ps =⇒ ?case using path-conforms-with-strategy by auto

ultimately show ?case by (cases P = LNil, simp) (metis lnull-def not-lnull-conv)
qed

lemma subgame-path-conforms-with-strategy:
assumes V ′: V ′ ⊆ V and P: path-conforms-with-strategy p P σ lset P ⊆ V ′

shows ParityGame.path-conforms-with-strategy (subgame V ′) p P σ
proof−

have lset P ⊆ V subgame V ′ unfolding subgame-def using P(2) V ′ by auto
with P(1) show ?thesis

by (coinduction arbitrary: P rule: ParityGame.path-conforms-with-strategy.coinduct[OF sub-
game-ParityGame])

(cases rule: path-conforms-with-strategy.cases, auto)
qed

lemma (in vmc-path) subgame-path-vmc-path:
assumes V ′: V ′ ⊆ V and P: lset P ⊆ V ′

shows vmc-path (subgame V ′) P v0 p σ
proof−

interpret G ′: ParityGame subgame V ′ using subgame-ParityGame by blast
show ?thesis proof

show G ′.valid-path P using subgame-valid-path P-valid P by blast
show G ′.maximal-path P using subgame-maximal-path V ′ P-maximal P by blast
show G ′.path-conforms-with-strategy p P σ

using subgame-path-conforms-with-strategy V ′ P-conforms P by blast
qed simp-all

qed

4.6 Greedy Conforming Path

Given a starting point and two strategies, there exists a path conforming to both strategies.
Here we define this path. Incidentally, this also shows that the assumptions of the locales
vmc-path and vmc2-path are satisfiable.
We are only interested in proving the existence of such a path, so the definition (i.e., the
implementation) and most lemmas are private.
context begin

private primcorec greedy-conforming-path :: Player ⇒ ′a Strategy ⇒ ′a Strategy ⇒ ′a ⇒ ′a Path
where

greedy-conforming-path p σ σ ′ v0 =
LCons v0 (if deadend v0

then LNil

25

else if v0 ∈ VV p
then greedy-conforming-path p σ σ ′ (σ v0)
else greedy-conforming-path p σ σ ′ (σ ′ v0))

private lemma greedy-path-LNil: greedy-conforming-path p σ σ ′ v0 6= LNil
using greedy-conforming-path.disc-iff llist.discI (1) by blast

private lemma greedy-path-lhd: greedy-conforming-path p σ σ ′ v0 = LCons v P =⇒ v = v0
using greedy-conforming-path.code by auto

private lemma greedy-path-deadend-v0 : greedy-conforming-path p σ σ ′ v0 = LCons v P =⇒ P =
LNil ←→ deadend v0

by (metis (no-types, lifting) greedy-conforming-path.disc-iff
greedy-conforming-path.simps(3) llist.disc(1) ltl-simps(2))

private corollary greedy-path-deadend-v:
greedy-conforming-path p σ σ ′ v0 = LCons v P =⇒ P = LNil ←→ deadend v
using greedy-path-deadend-v0 greedy-path-lhd by metis

corollary greedy-path-deadend-v ′: greedy-conforming-path p σ σ ′ v0 = LCons v LNil =⇒ deadend
v

using greedy-path-deadend-v by blast

private lemma greedy-path-ltl:
assumes greedy-conforming-path p σ σ ′ v0 = LCons v P
shows P = LNil ∨ P = greedy-conforming-path p σ σ ′ (σ v0) ∨ P = greedy-conforming-path p σ

σ ′ (σ ′ v0)
apply (insert assms, frule greedy-path-lhd)
apply (cases deadend v0 , simp add: greedy-conforming-path.code)
by (metis (no-types, lifting) greedy-conforming-path.sel(2) ltl-simps(2))

private lemma greedy-path-ltl-ex:
assumes greedy-conforming-path p σ σ ′ v0 = LCons v P
shows P = LNil ∨ (∃ v. P = greedy-conforming-path p σ σ ′ v)
using assms greedy-path-ltl by blast

private lemma greedy-path-ltl-VVp:
assumes greedy-conforming-path p σ σ ′ v0 = LCons v0 P v0 ∈ VV p ¬deadend v0
shows σ v0 = lhd P
using assms greedy-conforming-path.code by auto

private lemma greedy-path-ltl-VVpstar :
assumes greedy-conforming-path p σ σ ′ v0 = LCons v0 P v0 ∈ VV p∗∗ ¬deadend v0
shows σ ′ v0 = lhd P
using assms greedy-conforming-path.code by auto

private lemma greedy-conforming-path-properties:
assumes v0 ∈ V strategy p σ strategy p∗∗ σ ′

shows
greedy-path-not-null: ¬lnull (greedy-conforming-path p σ σ ′ v0)

and greedy-path-v0 : greedy-conforming-path p σ σ ′ v0 $ 0 = v0
and greedy-path-valid: valid-path (greedy-conforming-path p σ σ ′ v0)
and greedy-path-maximal: maximal-path (greedy-conforming-path p σ σ ′ v0)

26

and greedy-path-conforms: path-conforms-with-strategy p (greedy-conforming-path p σ σ ′ v0) σ
and greedy-path-conforms ′: path-conforms-with-strategy p∗∗ (greedy-conforming-path p σ σ ′ v0)

σ ′

proof−
define P where [simp]: P = greedy-conforming-path p σ σ ′ v0

show ¬lnull P P $ 0 = v0 by (simp-all add: lnth-0-conv-lhd)

{
fix v0 assume v0 ∈ V
let ?P = greedy-conforming-path p σ σ ′ v0
assume asm: ¬(∃ v. ?P = LCons v LNil)

obtain P ′ where P ′: ?P = LCons v0 P ′ by (metis greedy-path-LNil greedy-path-lhd neq-LNil-conv)
hence ¬deadend v0 using asm greedy-path-deadend-v0 ‹v0 ∈ V › by blast
from P ′ have 1 : ¬lnull P ′ using asm llist.collapse(1) ‹v0 ∈ V › greedy-path-deadend-v0 by

blast
moreover from P ′ ‹¬deadend v0 › assms(2 ,3) ‹v0 ∈ V ›

have v0→lhd P ′

unfolding strategy-def using greedy-path-ltl-VVp greedy-path-ltl-VVpstar
by (cases v0 ∈ VV p) auto

moreover hence lhd P ′ ∈ V by blast
moreover hence ∃ v. P ′ = greedy-conforming-path p σ σ ′ v ∧ v ∈ V

by (metis P ′ calculation(1) greedy-conforming-path.simps(2) greedy-path-ltl-ex lnull-def)

The conjunction of all the above.
ultimately

have ∃P ′. ?P = LCons v0 P ′ ∧ ¬lnull P ′ ∧ v0→lhd P ′ ∧ lhd P ′ ∈ V
∧ (∃ v. P ′ = greedy-conforming-path p σ σ ′ v ∧ v ∈ V)

using P ′ by blast
} note coinduction-helper = this

show valid-path P using assms unfolding P-def
proof (coinduction arbitrary: v0 rule: valid-path.coinduct)

case (valid-path v0)
from ‹v0 ∈ V › assms(2 ,3) show ?case

using coinduction-helper [of v0] greedy-path-lhd by blast
qed

show maximal-path P using assms unfolding P-def
proof (coinduction arbitrary: v0)

case (maximal-path v0)
from ‹v0 ∈ V › assms(2 ,3) show ?case

using coinduction-helper [of v0] greedy-path-deadend-v ′ by blast
qed

{
fix p ′′ σ ′′ assume p ′′: (p ′′ = p ∧ σ ′′ = σ) ∨ (p ′′ = p∗∗ ∧ σ ′′ = σ ′)
moreover with assms have strategy p ′′ σ ′′ by blast
hence path-conforms-with-strategy p ′′ P σ ′′ using ‹v0 ∈ V › unfolding P-def
proof (coinduction arbitrary: v0)

case (path-conforms-with-strategy v0)
show ?case proof (cases v0 ∈ VV p ′′)

27

case True
{ assume ¬(∃ v. greedy-conforming-path p σ σ ′ v0 = LCons v LNil)

with ‹v0 ∈ V › obtain P ′ where
P ′: greedy-conforming-path p σ σ ′ v0 = LCons v0 P ′ ¬lnull P ′ v0→lhd P ′

lhd P ′ ∈ V ∃ v. P ′ = greedy-conforming-path p σ σ ′ v ∧ v ∈ V
using coinduction-helper by blast

with ‹v0 ∈ VV p ′′› p ′′ have σ ′′ v0 = lhd P ′

using greedy-path-ltl-VVp greedy-path-ltl-VVpstar by blast
with ‹v0 ∈ VV p ′′› P ′(1 ,2 ,5) have ?path-conforms-VVp

using greedy-conforming-path.code path-conforms-with-strategy(1) by fastforce
}
thus ?thesis by auto

next
case False
thus ?thesis using coinduction-helper [of v0] path-conforms-with-strategy by auto

qed
qed

}
thus path-conforms-with-strategy p P σ path-conforms-with-strategy p∗∗ P σ ′ by blast+

qed

corollary strategy-conforming-path-exists:
assumes v0 ∈ V strategy p σ strategy p∗∗ σ ′

obtains P where vmc2-path G P v0 p σ σ ′

proof
show vmc2-path G (greedy-conforming-path p σ σ ′ v0) v0 p σ σ ′

using assms by unfold-locales (simp-all add: greedy-conforming-path-properties)
qed

corollary strategy-conforming-path-exists-single:
assumes v0 ∈ V strategy p σ
obtains P where vmc-path G P v0 p σ

proof
show vmc-path G (greedy-conforming-path p σ σ-arbitrary v0) v0 p σ

using assms by unfold-locales (simp-all add: greedy-conforming-path-properties)
qed

end

end

4.7 Valid Maximal Conforming Paths

Now is the time to add some lemmas to the locale vmc-path.
context vmc-path begin
lemma Ptl-conforms [simp]: path-conforms-with-strategy p (ltl P) σ

using P-conforms path-conforms-with-strategy-ltl by blast
lemma Pdrop-conforms [simp]: path-conforms-with-strategy p (ldropn n P) σ

using P-conforms path-conforms-with-strategy-drop by blast
lemma prefix-conforms [simp]: path-conforms-with-strategy p (ltake n P) σ

using P-conforms path-conforms-with-strategy-prefix by blast

28

lemma extension-conforms [simp]:
(v ′ ∈ VV p =⇒ σ v ′ = v0) =⇒ path-conforms-with-strategy p (LCons v ′ P) σ
by (metis P-LCons P-conforms path-conforms-VVp path-conforms-VVpstar)

lemma extension-valid-maximal-conforming:
assumes v ′→v0 v ′ ∈ VV p =⇒ σ v ′ = v0
shows vmc-path G (LCons v ′ P) v ′ p σ
using assms by unfold-locales simp-all

lemma vmc-path-ldropn:
assumes enat n < llength P
shows vmc-path G (ldropn n P) (P $ n) p σ
using assms by unfold-locales (simp-all add: lhd-ldropn)

lemma conforms-to-another-strategy:
path-conforms-with-strategy p P σ ′ =⇒ vmc-path G P v0 p σ ′

using P-not-null P-valid P-maximal P-v0 by unfold-locales blast+
end

lemma (in ParityGame) valid-maximal-conforming-path-0 :
assumes ¬lnull P valid-path P maximal-path P path-conforms-with-strategy p P σ
shows vmc-path G P (P $ 0) p σ
using assms by unfold-locales (simp-all add: lnth-0-conv-lhd)

4.8 Valid Maximal Conforming Paths with One Edge

We define a locale for valid maximal conforming paths that contain at least one edge. This
is equivalent to the first node being no deadend. This assumption allows us to prove much
stronger lemmas about ltl P compared to vmc-path.
locale vmc-path-no-deadend = vmc-path +

assumes v0-no-deadend [simp]: ¬deadend v0
begin
definition w0 ≡ lhd (ltl P)

lemma Ptl-not-null [simp]: ¬lnull (ltl P)
using P-LCons P-maximal maximal-no-deadend v0-no-deadend by metis

lemma Ptl-LCons: ltl P = LCons w0 (ltl (ltl P)) unfolding w0-def by simp
lemma P-LCons ′: P = LCons v0 (LCons w0 (ltl (ltl P))) using P-LCons Ptl-LCons by simp
lemma v0-edge-w0 [simp]: v0→w0 using P-valid P-LCons ′ by (metis valid-path-edges ′)

lemma Ptl-0 : ltl P $ 0 = lhd (ltl P) by (simp add: lhd-conv-lnth)
lemma P-Suc-0 : P $ Suc 0 = w0 by (simp add: P-lnth-Suc Ptl-0 w0-def)
lemma Ptl-edge [simp]: v0 → lhd (ltl P) by (metis P-LCons ′ P-valid valid-path-edges ′ w0-def)

lemma v0-conforms: v0 ∈ VV p =⇒ σ v0 = w0
using path-conforms-with-strategy-start by (metis P-LCons ′ P-conforms)

lemma w0-V [simp]: w0 ∈ V by (metis Ptl-LCons Ptl-valid valid-path-cons-simp)
lemma w0-lset-P [simp]: w0 ∈ lset P by (metis P-LCons ′ lset-intros(1) lset-intros(2))

lemma vmc-path-ltl [simp]: vmc-path G (ltl P) w0 p σ by (unfold-locales) (simp-all add: w0-def)

29

end

context vmc-path begin

lemma vmc-path-lnull-ltl-no-deadend:
¬lnull (ltl P) =⇒ vmc-path-no-deadend G P v0 p σ
using P-0 P-no-deadends by (unfold-locales) (metis enat-ltl-Suc lnull-0-llength)

lemma vmc-path-conforms:
assumes enat (Suc n) < llength P P $ n ∈ VV p
shows σ (P $ n) = P $ Suc n

proof−
define P ′ where P ′ = ldropn n P
then interpret P ′: vmc-path G P ′ P $ n p σ using vmc-path-ldropn assms(1) Suc-llength by

blast
have ¬deadend (P $ n) using assms(1) P-no-deadends by blast
then interpret P ′: vmc-path-no-deadend G P ′ P $ n p σ by unfold-locales
have σ (P $ n) = P ′.w0 using P ′.v0-conforms assms(2) by blast
thus ?thesis using P ′-def P ′.P-Suc-0 assms(1) by simp

qed

4.9 lset Induction Schemas for Paths

Let us define an induction schema useful for proving lset P ⊆ S.
lemma vmc-path-lset-induction [consumes 1 , case-names base step]:

assumes Q P
and base: v0 ∈ S
and step-assumption:

∧
P v0 . [[vmc-path-no-deadend G P v0 p σ; v0 ∈ S ; Q P]]

=⇒ Q (ltl P) ∧ (vmc-path-no-deadend.w0 P) ∈ S
shows lset P ⊆ S

proof
fix v assume v ∈ lset P
thus v ∈ S using vmc-path-axioms assms(1 ,2) proof (induct arbitrary: v0 rule: llist-set-induct)

case (find P)
then interpret vmc-path G P v0 p σ by blast
show ?case by (simp add: find.prems(3))

next
case (step P v)
then interpret vmc-path G P v0 p σ by blast
show ?case proof (cases)

assume lnull (ltl P)
hence P = LCons v LNil by (metis llist.disc(2) lset-cases step.hyps(2))
thus ?thesis using step.prems(3) P-LCons by blast

next
assume ¬lnull (ltl P)
then interpret vmc-path-no-deadend G P v0 p σ

using vmc-path-lnull-ltl-no-deadend by blast
show v ∈ S

using step.hyps(3)
step-assumption[OF vmc-path-no-deadend-axioms ‹v0 ∈ S› ‹Q P›]
vmc-path-ltl

30

by blast
qed

qed
qed

[[?Q P; v0 ∈ ?S ;
∧

P v0 . [[vmc-path-no-deadend G P v0 p σ; v0 ∈ ?S ; ?Q P]] =⇒ ?Q (ltl
P) ∧ vmc-path-no-deadend.w0 P ∈ ?S]] =⇒ lset P ⊆ ?S without the Q predicate.
corollary vmc-path-lset-induction-simple [case-names base step]:

assumes base: v0 ∈ S
and step:

∧
P v0 . [[vmc-path-no-deadend G P v0 p σ; v0 ∈ S]]

=⇒ vmc-path-no-deadend.w0 P ∈ S
shows lset P ⊆ S
using assms vmc-path-lset-induction[of λP. True] by blast

Another induction schema for proving lset P ⊆ S based on closure properties.
lemma vmc-path-lset-induction-closed-subset [case-names VVp VVpstar v0 disjoint]:

assumes VVp:
∧

v. [[v ∈ S ; ¬deadend v; v ∈ VV p]] =⇒ σ v ∈ S ∪ T
and VVpstar :

∧
v w. [[v ∈ S ; ¬deadend v; v ∈ VV p∗∗ ; v→w]] =⇒ w ∈ S ∪ T

and v0 : v0 ∈ S
and disjoint: lset P ∩ T = {}

shows lset P ⊆ S
using disjoint proof (induct rule: vmc-path-lset-induction)

case (step P v0)
interpret vmc-path-no-deadend G P v0 p σ using step.hyps(1) .
have lset (ltl P) ∩ T = {} using step.hyps(3)

by (meson disjoint-eq-subset-Compl lset-ltl order .trans)
moreover have w0 ∈ S ∪ T

using assms(1 ,2)[of v0] step.hyps(2) v0-no-deadend v0-conforms
by (cases v0 ∈ VV p) simp-all

ultimately show ?case using step.hyps(3) w0-lset-P by blast
qed (insert v0)

end

end

5 Attracting Strategies
theory AttractingStrategy
imports

Main
Strategy

begin

Here we introduce the concept of attracting strategies.
context ParityGame begin

5.1 Paths Visiting a Set

A path that stays in A until eventually it visits W.

31

definition visits-via P A W ≡ ∃n. enat n < llength P ∧ P $ n ∈ W ∧ lset (ltake (enat n) P) ⊆ A

lemma visits-via-monotone: [[visits-via P A W ; A ⊆ A ′]] =⇒ visits-via P A ′ W
unfolding visits-via-def by blast

lemma visits-via-visits: visits-via P A W =⇒ lset P ∩ W 6= {}
unfolding visits-via-def by (meson disjoint-iff-not-equal in-lset-conv-lnth)

lemma (in vmc-path) visits-via-trivial: v0 ∈ W =⇒ visits-via P A W
unfolding visits-via-def apply (rule exI [of - 0]) using zero-enat-def by auto

lemma visits-via-LCons:
assumes visits-via P A W
shows visits-via (LCons v0 P) (insert v0 A) W

proof−
obtain n where n: enat n < llength P P $ n ∈ W lset (ltake (enat n) P) ⊆ A

using assms unfolding visits-via-def by blast
define P ′ where P ′ = LCons v0 P
have enat (Suc n) < llength P ′ unfolding P ′-def

by (metis n(1) ldropn-Suc-LCons ldropn-Suc-conv-ldropn ldropn-eq-LConsD)
moreover have P ′ $ Suc n ∈ W unfolding P ′-def by (simp add: n(2))
moreover have lset (ltake (enat (Suc n)) P ′) ⊆ insert v0 A

using lset-ltake-Suc[of P ′ v0 n A] unfolding P ′-def by (simp add: n(3))
ultimately show ?thesis unfolding visits-via-def P ′-def by blast

qed

lemma (in vmc-path-no-deadend) visits-via-ltl:
assumes visits-via P A W

and v0 : v0 /∈ W
shows visits-via (ltl P) A W

proof−
obtain n where n: enat n < llength P P $ n ∈ W lset (ltake (enat n) P) ⊆ A

using assms(1)[unfolded visits-via-def] by blast
have n 6= 0 using v0 n(2) DiffE by force
then obtain n ′ where n ′: Suc n ′ = n using nat.exhaust by metis
have ∃n. enat n < llength (ltl P) ∧ (ltl P) $ n ∈ W ∧ lset (ltake (enat n) (ltl P)) ⊆ A

apply (rule exI [of - n ′])
using n n ′ enat-Suc-ltl[of n ′ P] P-lnth-Suc lset-ltake-ltl[of n ′ P] by auto

thus ?thesis using visits-via-def by blast
qed

lemma (in vm-path) visits-via-deadend:
assumes visits-via P A (deadends p)
shows winning-path p∗∗ P
using assms visits-via-visits visits-deadend by blast

5.2 Attracting Strategy from a Single Node

All σ-paths starting from v0 visit W and until then they stay in A.
definition strategy-attracts-via :: Player ⇒ ′a Strategy ⇒ ′a ⇒ ′a set ⇒ ′a set ⇒ bool where

strategy-attracts-via p σ v0 A W ≡ ∀P. vmc-path G P v0 p σ −→ visits-via P A W

32

lemma (in vmc-path) strategy-attracts-viaE :
assumes strategy-attracts-via p σ v0 A W
shows visits-via P A W
using strategy-attracts-via-def assms vmc-path-axioms by blast

lemma (in vmc-path) strategy-attracts-via-SucE :
assumes strategy-attracts-via p σ v0 A W v0 /∈ W
shows ∃n. enat (Suc n) < llength P ∧ P $ Suc n ∈ W ∧ lset (ltake (enat (Suc n)) P) ⊆ A

proof−
obtain n where n: enat n < llength P P $ n ∈ W lset (ltake (enat n) P) ⊆ A

using strategy-attracts-viaE [unfolded visits-via-def] assms(1) by blast
have n 6= 0 using assms(2) n(2) by (metis P-0)
thus ?thesis using n not0-implies-Suc by blast

qed

lemma (in vmc-path) strategy-attracts-via-lset:
assumes strategy-attracts-via p σ v0 A W
shows lset P ∩ W 6= {}
using assms[THEN strategy-attracts-viaE , unfolded visits-via-def]
by (meson disjoint-iff-not-equal lset-lnth-member subset-refl)

lemma strategy-attracts-via-v0 :
assumes σ: strategy p σ strategy-attracts-via p σ v0 A W

and v0 : v0 ∈ V
shows v0 ∈ A ∪ W

proof−
obtain P where vmc-path G P v0 p σ using strategy-conforming-path-exists-single assms by blast
then interpret vmc-path G P v0 p σ .
obtain n where n: enat n < llength P P $ n ∈ W lset (ltake (enat n) P) ⊆ A

using σ(2)[unfolded strategy-attracts-via-def visits-via-def] vmc-path-axioms by blast
show ?thesis proof (cases n = 0)

case True thus ?thesis using n(2) by simp
next

case False
hence lhd (ltake (enat n) P) = lhd P by (simp add: enat-0-iff (1))
hence v0 ∈ lset (ltake (enat n) P)

by (metis ‹n 6= 0 › P-not-null P-v0 enat-0-iff (1) llist.set-sel(1) ltake.disc(2))
thus ?thesis using n(3) by blast

qed
qed
corollary strategy-attracts-not-outside:
[[v0 ∈ V − A − W ; strategy p σ]] =⇒ ¬strategy-attracts-via p σ v0 A W
using strategy-attracts-via-v0 by blast

lemma strategy-attracts-viaI [intro]:
assumes

∧
P. vmc-path G P v0 p σ =⇒ visits-via P A W

shows strategy-attracts-via p σ v0 A W
unfolding strategy-attracts-via-def using assms by blast

lemma strategy-attracts-via-no-deadends:

33

assumes v ∈ V v ∈ A − W strategy-attracts-via p σ v A W
shows ¬deadend v

proof
assume deadend v
define P where [simp]: P = LCons v LNil
interpret vmc-path G P v p σ proof

show valid-path P using ‹v ∈ A − W › ‹v ∈ V › valid-path-base ′ by auto
show maximal-path P using ‹deadend v› by (simp add: maximal-path.intros(2))
show path-conforms-with-strategy p P σ by (simp add: path-conforms-LCons-LNil)

qed simp-all
have visits-via P A W using assms(3) strategy-attracts-viaE by blast
moreover have llength P = eSuc 0 by simp
ultimately have P $ 0 ∈ W by (simp add: enat-0-iff (1) visits-via-def)
with ‹v ∈ A − W › show False by auto

qed

lemma attractor-strategy-on-extends:
[[strategy-attracts-via p σ v0 A W ; A ⊆ A ′]] =⇒ strategy-attracts-via p σ v0 A ′ W
unfolding strategy-attracts-via-def using visits-via-monotone by blast

lemma strategy-attracts-via-trivial: v0 ∈ W =⇒ strategy-attracts-via p σ v0 A W
proof

fix P assume v0 ∈ W vmc-path G P v0 p σ
then interpret vmc-path G P v0 p σ by blast
show visits-via P A W using visits-via-trivial using ‹v0 ∈ W › by blast

qed

lemma strategy-attracts-via-successor :
assumes σ: strategy p σ strategy-attracts-via p σ v0 A W

and v0 : v0 ∈ A − W
and w0 : v0→w0 v0 ∈ VV p =⇒ σ v0 = w0

shows strategy-attracts-via p σ w0 A W
proof

fix P assume vmc-path G P w0 p σ
then interpret vmc-path G P w0 p σ .
define P ′ where [simp]: P ′ = LCons v0 P
then interpret P ′: vmc-path G P ′ v0 p σ

using extension-valid-maximal-conforming w0 by blast
interpret P ′: vmc-path-no-deadend G P ′ v0 p σ using ‹v0→w0 › by unfold-locales blast
have visits-via P ′ A W using σ(2) P ′.strategy-attracts-viaE by blast
thus visits-via P A W using P ′.visits-via-ltl v0 by simp

qed

lemma strategy-attracts-VVp:
assumes σ: strategy p σ strategy-attracts-via p σ v0 A W

and v: v0 ∈ A − W v0 ∈ VV p ¬deadend v0
shows σ v0 ∈ A ∪ W

proof−
have v0→σ v0 using σ(1)[unfolded strategy-def] v(2 ,3) by blast
hence strategy-attracts-via p σ (σ v0) A W

using strategy-attracts-via-successor σ v(1) by blast
thus ?thesis using strategy-attracts-via-v0 ‹v0→σ v0 › σ(1) by blast

34

qed

lemma strategy-attracts-VVpstar :
assumes strategy p σ strategy-attracts-via p σ v0 A W

and v0 ∈ A − W v0 /∈ VV p w0 ∈ V − A − W
shows ¬v0 → w0
by (metis assms strategy-attracts-not-outside strategy-attracts-via-successor)

5.3 Attracting strategy from a set of nodes

All σ-paths starting from A visit W and until then they stay in A.
definition strategy-attracts :: Player ⇒ ′a Strategy ⇒ ′a set ⇒ ′a set ⇒ bool where

strategy-attracts p σ A W ≡ ∀ v0 ∈ A. strategy-attracts-via p σ v0 A W

lemma (in vmc-path) strategy-attractsE :
assumes strategy-attracts p σ A W v0 ∈ A
shows visits-via P A W
using assms(1)[unfolded strategy-attracts-def] assms(2) strategy-attracts-viaE by blast

lemma strategy-attractsI [intro]:
assumes

∧
P v. [[v ∈ A; vmc-path G P v p σ]] =⇒ visits-via P A W

shows strategy-attracts p σ A W
unfolding strategy-attracts-def using assms by blast

lemma (in vmc-path) strategy-attracts-lset:
assumes strategy-attracts p σ A W v0 ∈ A
shows lset P ∩ W 6= {}
using assms(1)[unfolded strategy-attracts-def] assms(2) strategy-attracts-via-lset(1)[of A W]
by blast

lemma strategy-attracts-empty [simp]: strategy-attracts p σ {} W by blast

lemma strategy-attracts-invalid-path:
assumes P: P = LCons v (LCons w P ′) v ∈ A − W w /∈ A ∪ W
shows ¬visits-via P A W (is ¬?A)

proof
assume ?A
then obtain n where n: enat n < llength P P $ n ∈ W lset (ltake (enat n) P) ⊆ A

unfolding visits-via-def by blast
have n 6= 0 using ‹v ∈ A − W › n(2) P(1) DiffD2 by force
moreover have n 6= Suc 0 using ‹w /∈ A ∪ W › n(2) P(1) by auto
ultimately have Suc (Suc 0) ≤ n by presburger
hence lset (ltake (enat (Suc (Suc 0))) P) ⊆ A using n(3)

by (meson contra-subsetD enat-ord-simps(1) lset-ltake-prefix lset-lnth-member lset-subset)
moreover have enat (Suc 0) < llength (ltake (eSuc (eSuc 0)) P) proof−

have ∗: enat (Suc (Suc 0)) < llength P
using ‹Suc (Suc 0) ≤ n› n(1) by (meson enat-ord-simps(2) le-less-linear less-le-trans neq-iff)

have llength (ltake (enat (Suc (Suc 0))) P) = min (enat (Suc (Suc 0))) (llength P) by simp
hence llength (ltake (enat (Suc (Suc 0))) P) = enat (Suc (Suc 0))

using ∗ by (simp add: min-absorb1)
thus ?thesis by (simp add: eSuc-enat zero-enat-def)

35

qed
ultimately have ltake (enat (Suc (Suc 0))) P $ Suc 0 ∈ A by (simp add: lset-lnth-member)
hence P $ Suc 0 ∈ A by (simp add: lnth-ltake)
thus False using P(1 ,3) by auto

qed

If A is an attractor set of W and an edge leaves A without going through W, then v belongs
to VV p and the attractor strategy σ avoids this edge. All other cases give a contradiction.
lemma strategy-attracts-does-not-leave:

assumes σ: strategy-attracts p σ A W strategy p σ
and v: v→w v ∈ A − W w /∈ A ∪ W

shows v ∈ VV p ∧ σ v 6= w
proof (rule ccontr)

assume contra: ¬(v ∈ VV p ∧ σ v 6= w)

define σ ′ where σ ′ = σ-arbitrary(v := w)
hence strategy p∗∗ σ ′ using ‹v→w› by (simp add: valid-strategy-updates)
then obtain P where P: vmc2-path G P v p σ σ ′

using ‹v→w› strategy-conforming-path-exists σ(2) by blast
then interpret vmc2-path G P v p σ σ ′ .
interpret vmc-path-no-deadend G P v p σ using ‹v→w› by unfold-locales blast
interpret comp: vmc-path-no-deadend G P v p∗∗ σ ′ using ‹v→w› by unfold-locales blast
have w = w0 using contra σ ′-def v0-conforms comp.v0-conforms by (cases v ∈ VV p) auto
hence ¬visits-via P A W

using strategy-attracts-invalid-path[of P v w ltl (ltl P)] v(2 ,3) P-LCons ′ by simp
thus False by (meson DiffE σ(1) strategy-attractsE v(2))

qed

Given an attracting strategy σ, we can turn every strategy σ ′ into an attracting strategy by
overriding σ ′ on a suitable subset of the nodes. This also means that an attracting strategy
is still attracting if we override it outside of A − W.
lemma strategy-attracts-irrelevant-override:

assumes strategy-attracts p σ A W strategy p σ strategy p σ ′

shows strategy-attracts p (override-on σ ′ σ (A − W)) A W
proof (rule strategy-attractsI , rule ccontr)

fix P v
let ?σ = override-on σ ′ σ (A − W)
assume vmc-path G P v p ?σ
then interpret vmc-path G P v p ?σ .
assume v ∈ A
hence P $ 0 ∈ A using ‹v ∈ A› by simp
moreover assume contra: ¬visits-via P A W
ultimately have P $ 0 ∈ A − W unfolding visits-via-def by (meson DiffI P-len not-less0

lset-ltake)
have ¬lset P ⊆ A − W proof

assume lset P ⊆ A − W
hence

∧
v. v ∈ lset P =⇒ override-on σ ′ σ (A − W) v = σ v by auto

hence path-conforms-with-strategy p P σ
using path-conforms-with-strategy-irrelevant-updates[OF P-conforms] by blast

hence vmc-path G P (P $ 0) p σ
using conforms-to-another-strategy P-0 by blast

36

thus False
using contra ‹P $ 0 ∈ A› assms(1)
by (meson vmc-path.strategy-attractsE)

qed
hence ∃n. enat n < llength P ∧ P $ n /∈ A − W by (meson lset-subset)
then obtain n where n: enat n < llength P ∧ P $ n /∈ A − W∧

i. i < n =⇒ ¬(enat i < llength P ∧ P $ i /∈ A − W)
using ex-least-nat-le[of λn. enat n < llength P ∧ P $ n /∈ A − W] by blast

hence n-min:
∧

i. i < n =⇒ P $ i ∈ A − W
using dual-order .strict-trans enat-ord-simps(2) by blast

have n 6= 0 using ‹P $ 0 ∈ A − W › n(1) by meson
then obtain n ′ where n ′: Suc n ′ = n using not0-implies-Suc by blast
hence P $ n ′ ∈ A − W using n-min by blast
moreover have P $ n ′→ P $ Suc n ′ using P-valid n(1) n ′ valid-path-edges by blast
moreover have P $ Suc n ′ /∈ A ∪ W proof−

have P $ n /∈ W using contra n(1) n-min unfolding visits-via-def
by (meson Diff-subset lset-ltake subsetCE)

thus ?thesis using n(1) n ′ by blast
qed
ultimately have P $ n ′ ∈ VV p ∧ σ (P $ n ′) 6= P $ Suc n ′

using strategy-attracts-does-not-leave[of p σ A W P $ n ′ P $ Suc n ′]
assms(1 ,2) by blast

thus False
using n(1) n ′ vmc-path-conforms ‹P $ n ′ ∈ A − W › by (metis override-on-apply-in)

qed

lemma strategy-attracts-trivial [simp]: strategy-attracts p σ W W
by (simp add: strategy-attracts-def strategy-attracts-via-trivial)

If a σ-conforming path P hits an attractor A, it will visit W.
lemma (in vmc-path) attracted-path:

assumes W ⊆ V
and σ: strategy-attracts p σ A W
and P-hits-A: lset P ∩ A 6= {}

shows lset P ∩ W 6= {}
proof−

obtain n where n: enat n < llength P P $ n ∈ A using P-hits-A by (meson lset-intersect-lnth)
define P ′ where P ′ = ldropn n P
interpret vmc-path G P ′ P $ n p σ unfolding P ′-def using vmc-path-ldropn n(1) by blast
have visits-via P ′ A W using σ n(2) strategy-attractsE by blast
thus ?thesis unfolding P ′-def using visits-via-visits in-lset-ldropnD[of - n P] by blast

qed

lemma attracted-strategy-step:
assumes σ: strategy p σ strategy-attracts p σ A W

and v0 : ¬deadend v0 v0 ∈ A − W v0 ∈ VV p
shows σ v0 ∈ A ∪ W
by (metis DiffD1 strategy-attracts-VVp assms strategy-attracts-def)

lemma (in vmc-path-no-deadend) attracted-path-step:
assumes σ: strategy-attracts p σ A W

and v0 : v0 ∈ A − W

37

shows w0 ∈ A ∪ W
by (metis (no-types) DiffD1 P-LCons ′ σ strategy-attractsE strategy-attracts-invalid-path v0)

end — context ParityGame

end

6 Attractor Sets

theory Attractor
imports

Main
AttractingStrategy

begin

Here we define the p-attractor of a set of nodes.
context ParityGame begin

We define the conditions for a node to be directly attracted from a given set.
definition directly-attracted :: Player ⇒ ′a set ⇒ ′a set where

directly-attracted p S ≡ {v ∈ V − S . ¬deadend v ∧
(v ∈ VV p −→ (∃w. v→w ∧ w ∈ S))
∧ (v ∈ VV p∗∗ −→ (∀w. v→w −→ w ∈ S))}

abbreviation attractor-step p W S ≡ W ∪ S ∪ directly-attracted p S

The p-attractor set of W, defined as a least fixed point.
definition attractor :: Player ⇒ ′a set ⇒ ′a set where

attractor p W = lfp (attractor-step p W)

6.1 directly-attracted

Show a few basic properties of directly-attracted.
lemma directly-attracted-disjoint [simp]: directly-attracted p W ∩ W = {}

and directly-attracted-empty [simp]: directly-attracted p {} = {}
and directly-attracted-V-empty [simp]: directly-attracted p V = {}
and directly-attracted-bounded-by-V [simp]: directly-attracted p W ⊆ V
and directly-attracted-contains-no-deadends [elim]: v ∈ directly-attracted p W =⇒ ¬deadend v
unfolding directly-attracted-def by blast+

6.2 attractor-step
lemma attractor-step-empty: attractor-step p {} {} = {}

and attractor-step-bounded-by-V : [[W ⊆ V ; S ⊆ V]] =⇒ attractor-step p W S ⊆ V
by simp-all

The definition of attractor uses lfp. For this to be well-defined, we need show that attrac-
tor-step is monotone.
lemma attractor-step-mono: mono (attractor-step p W)

unfolding directly-attracted-def by (rule monoI) auto

38

6.3 Basic Properties of an Attractor
lemma attractor-unfolding: attractor p W = attractor-step p W (attractor p W)

unfolding attractor-def using attractor-step-mono lfp-unfold by blast
lemma attractor-lowerbound: attractor-step p W S ⊆ S =⇒ attractor p W ⊆ S

unfolding attractor-def using attractor-step-mono by (simp add: lfp-lowerbound)
lemma attractor-set-non-empty: W 6= {} =⇒ attractor p W 6= {}

and attractor-set-base: W ⊆ attractor p W
using attractor-unfolding by auto

lemma attractor-in-V : W ⊆ V =⇒ attractor p W ⊆ V
using attractor-lowerbound attractor-step-bounded-by-V by auto

6.4 Attractor Set Extensions
lemma attractor-set-VVp:

assumes v ∈ VV p v→w w ∈ attractor p W
shows v ∈ attractor p W
apply (subst attractor-unfolding) unfolding directly-attracted-def using assms by auto

lemma attractor-set-VVpstar :
assumes ¬deadend v

∧
w. v→w =⇒ w ∈ attractor p W

shows v ∈ attractor p W
apply (subst attractor-unfolding) unfolding directly-attracted-def using assms by auto

6.5 Removing an Attractor
lemma removing-attractor-induces-no-deadends:

assumes v ∈ S − attractor p W v→w w ∈ S
∧

w. [[v ∈ VV p∗∗; v→w]] =⇒ w ∈ S
shows ∃w ∈ S − attractor p W . v→w

proof−
have v ∈ V using ‹v→w› by blast
thus ?thesis proof (cases rule: VV-cases)

assume v ∈ VV p
thus ?thesis using attractor-set-VVp assms by blast

next
assume v ∈ VV p∗∗
thus ?thesis using attractor-set-VVpstar assms by (metis Diff-iff edges-are-in-V (2))

qed
qed

Removing the attractor sets of deadends leaves a subgame without deadends.
lemma subgame-without-deadends:

assumes V ′-def : V ′ = V − attractor p (deadends p∗∗) − attractor p∗∗ (deadends p∗∗∗∗)
(is V ′ = V − ?A − ?B)
and v: v ∈ V subgame V ′

shows ¬Digraph.deadend (subgame V ′) v
proof (cases)

assume deadend v
have v: v ∈ V − ?A − ?B using v unfolding V ′-def subgame-def by simp
{ fix p ′ assume v ∈ VV p ′∗∗

hence v ∈ attractor p ′ (deadends p ′∗∗)
using ‹deadend v› attractor-set-base[of deadends p ′∗∗ p ′]

39

unfolding deadends-def by blast
hence False using v by (cases p ′; cases p) auto

}
thus ?thesis using v by blast

next
assume ¬deadend v
have v: v ∈ V − ?A − ?B using v unfolding V ′-def subgame-def by simp
define G ′ where G ′ = subgame V ′

interpret G ′: ParityGame G ′ unfolding G ′-def using subgame-ParityGame .
show ?thesis proof

assume Digraph.deadend (subgame V ′) v
hence G ′.deadend v unfolding G ′-def .
have all-in-attractor :

∧
w. v→w =⇒ w ∈ ?A ∨ w ∈ ?B proof (rule ccontr)

fix w
assume v→w ¬(w ∈ ?A ∨ w ∈ ?B)
hence w ∈ V ′ unfolding V ′-def by blast
hence w ∈ V G ′ unfolding G ′-def subgame-def using ‹v→w› by auto
hence v →G ′ w using ‹v→w› assms(2) unfolding G ′-def subgame-def by auto
thus False using ‹G ′.deadend v› using ‹w ∈ V G ′› by blast

qed
{ fix p ′ assume v ∈ VV p ′

{ assume ∃w. v→w ∧ w ∈ attractor p ′ (deadends p ′∗∗)
hence v ∈ attractor p ′ (deadends p ′∗∗) using ‹v ∈ VV p ′› attractor-set-VVp by blast
hence False using v by (cases p ′; cases p) auto

}
hence

∧
w. v→w =⇒ w ∈ attractor p ′∗∗ (deadends p ′∗∗∗∗)

using all-in-attractor by (cases p ′; cases p) auto
hence v ∈ attractor p ′∗∗ (deadends p ′∗∗∗∗)

using ‹¬deadend v› ‹v ∈ VV p ′› attractor-set-VVpstar by auto
hence False using v by (cases p ′; cases p) auto

}
thus False using v by blast

qed
qed

6.6 Attractor Set Induction
lemma mono-restriction-is-mono: mono f =⇒ mono (λS . f (S ∩ V))

unfolding mono-def by (meson inf-mono monoD subset-refl)

Here we prove a powerful induction schema for attractor. Being able to prove this is the
only reason why we do not use inductive_set to define the attractor set.
See also https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-October/msg00123.html
lemma attractor-set-induction [consumes 1 , case-names step union]:

assumes W ⊆ V
and step:

∧
S . S ⊆ V =⇒ P S =⇒ P (attractor-step p W S)

and union:
∧

M . ∀S ∈ M . S ⊆ V ∧ P S =⇒ P (
⋃

M)
shows P (attractor p W)

proof−
let ?P = λS . P (S ∩ V)
let ?f = λS . attractor-step p W (S ∩ V)

40

https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-October/msg00123.html

let ?A = lfp ?f
let ?B = lfp (attractor-step p W)
have f-mono: mono ?f

using mono-restriction-is-mono[of attractor-step p W] attractor-step-mono by simp
have P-A: ?P ?A proof (rule lfp-ordinal-induct-set)

show
∧

S . ?P S =⇒ ?P (W ∪ (S ∩ V) ∪ directly-attracted p (S ∩ V))
by (metis assms(1) attractor-step-bounded-by-V inf .absorb1 inf-le2 local.step)

show
∧

M . ∀S ∈ M . ?P S =⇒ ?P (
⋃

M) proof−
fix M
let ?M = {S ∩ V | S . S ∈ M}
assume ∀S∈M . ?P S
hence ∀S ∈ ?M . S ⊆ V ∧ P S by auto
hence ∗: P (

⋃
?M) by (simp add: union)

have
⋃

?M = (
⋃

M) ∩ V by blast
thus ?P (

⋃
M) using ∗ by auto

qed
qed (insert f-mono)

have ∗: W ∪ (V ∩ V) ∪ directly-attracted p (V ∩ V) ⊆ V
using ‹W ⊆ V › attractor-step-bounded-by-V by auto

have ?A ⊆ V ?B ⊆ V using ∗ by (simp-all add: lfp-lowerbound)

have ?A = ?f ?A using f-mono lfp-unfold by blast
hence ?A = W ∪ (?A ∩ V) ∪ directly-attracted p (?A ∩ V) using ‹?A ⊆ V › by simp
hence ∗: attractor-step p W ?A ⊆ ?A using ‹?A ⊆ V › inf .absorb1 by fastforce

have ?B = attractor-step p W ?B using attractor-step-mono lfp-unfold by blast
hence ?f ?B ⊆ ?B using ‹?B ⊆ V › by (metis (no-types, lifting) equalityD2 le-iff-inf)

have ?A = ?B proof
show ?A ⊆ ?B using ‹?f ?B ⊆ ?B› by (simp add: lfp-lowerbound)
show ?B ⊆ ?A using ∗ by (simp add: lfp-lowerbound)

qed
hence ?P ?B using P-A by (simp add: attractor-def)
thus ?thesis using ‹?B ⊆ V › by (simp add: attractor-def le-iff-inf)

qed

end — context ParityGame

end

7 Winning Strategies
theory WinningStrategy
imports

Main
Strategy

begin

context ParityGame begin

41

Here we define winning strategies.
A strategy is winning for player p from v0 if every maximal σ-path starting in v0 is winning.
definition winning-strategy :: Player ⇒ ′a Strategy ⇒ ′a ⇒ bool where

winning-strategy p σ v0 ≡ ∀P. vmc-path G P v0 p σ −→ winning-path p P

lemma winning-strategyI [intro]:
assumes

∧
P. vmc-path G P v0 p σ =⇒ winning-path p P

shows winning-strategy p σ v0
unfolding winning-strategy-def using assms by blast

lemma (in vmc-path) paths-hits-winning-strategy-is-winning:
assumes σ: winning-strategy p σ v

and v: v ∈ lset P
shows winning-path p P

proof−
obtain n where n: enat n < llength P P $ n = v using v by (meson in-lset-conv-lnth)
interpret P ′: vmc-path G ldropn n P v p σ using n vmc-path-ldropn by blast
have winning-path p (ldropn n P) using σ by (simp add: winning-strategy-def P ′.vmc-path-axioms)
thus ?thesis using winning-path-drop-add P-valid n(1) by blast

qed

There cannot exist winning strategies for both players for the same node.
lemma winning-strategy-only-for-one-player :

assumes σ: strategy p σ winning-strategy p σ v
and σ ′: strategy p∗∗ σ ′ winning-strategy p∗∗ σ ′ v
and v: v ∈ V

shows False
proof−

obtain P where vmc2-path G P v p σ σ ′ using assms strategy-conforming-path-exists by blast
then interpret vmc2-path G P v p σ σ ′ .
have winning-path p P

using paths-hits-winning-strategy-is-winning σ(2) v0-lset-P by blast
moreover have winning-path p∗∗ P

using comp.paths-hits-winning-strategy-is-winning σ ′(2) v0-lset-P by blast
ultimately show False using P-valid paths-are-winning-for-one-player by blast

qed

7.1 Deadends
lemma no-winning-strategy-on-deadends:

assumes v ∈ VV p deadend v strategy p σ
shows ¬winning-strategy p σ v

proof−
obtain P where vmc-path G P v p σ using strategy-conforming-path-exists-single assms by blast
then interpret vmc-path G P v p σ .
have P = LCons v LNil using P-deadend-v0-LCons ‹deadend v› by blast
hence ¬winning-path p P unfolding winning-path-def using ‹v ∈ VV p› by auto
thus ?thesis using winning-strategy-def vmc-path-axioms by blast

qed

lemma winning-strategy-on-deadends:

42

assumes v ∈ VV p deadend v strategy p σ
shows winning-strategy p∗∗ σ v

proof
fix P assume vmc-path G P v p∗∗ σ
then interpret vmc-path G P v p∗∗ σ .
have P = LCons v LNil using P-deadend-v0-LCons ‹deadend v› by blast
thus winning-path p∗∗ P unfolding winning-path-def

using ‹v ∈ VV p› P-valid paths-are-winning-for-one-player by auto
qed

7.2 Extension Theorems
lemma strategy-extends-VVp:

assumes v0 : v0 ∈ VV p ¬deadend v0
and σ: strategy p σ winning-strategy p σ v0
shows winning-strategy p σ (σ v0)

proof
fix P assume vmc-path G P (σ v0) p σ
then interpret vmc-path G P σ v0 p σ .
have v0→σ v0 using v0 σ(1) strategy-def by blast
hence winning-path p (LCons v0 P)

using σ(2) extension-valid-maximal-conforming winning-strategy-def by blast
thus winning-path p P using winning-path-ltl[of p LCons v0 P] by simp

qed

lemma strategy-extends-VVpstar :
assumes v0 : v0 ∈ VV p∗∗ v0→w0
and σ: winning-strategy p σ v0
shows winning-strategy p σ w0

proof
fix P assume vmc-path G P w0 p σ
then interpret vmc-path G P w0 p σ .
have winning-path p (LCons v0 P)

using extension-valid-maximal-conforming VV-impl1 σ v0 winning-strategy-def
by auto

thus winning-path p P using winning-path-ltl[of p LCons v0 P] by auto
qed

lemma strategy-extends-backwards-VVpstar :
assumes v0 : v0 ∈ VV p∗∗

and σ: strategy p σ
∧

w. v0→w =⇒ winning-strategy p σ w
shows winning-strategy p σ v0

proof
fix P assume vmc-path G P v0 p σ
then interpret vmc-path G P v0 p σ .
show winning-path p P proof (cases)

assume deadend v0
thus ?thesis using P-deadend-v0-LCons winning-path-def v0 by auto

next
assume ¬deadend v0
then interpret vmc-path-no-deadend G P v0 p σ by unfold-locales
interpret ltlP: vmc-path G ltl P w0 p σ using vmc-path-ltl .

43

have winning-path p (ltl P)
using σ(2) v0-edge-w0 vmc-path-ltl winning-strategy-def by blast

thus winning-path p P
using winning-path-LCons by (metis P-LCons ′ ltlP.P-LCons ltlP.P-not-null)

qed
qed

lemma strategy-extends-backwards-VVp:
assumes v0 : v0 ∈ VV p σ v0 = w v0→w

and σ: strategy p σ winning-strategy p σ w
shows winning-strategy p σ v0

proof
fix P assume vmc-path G P v0 p σ
then interpret vmc-path G P v0 p σ .
have ¬deadend v0 using ‹v0→w› by blast
then interpret vmc-path-no-deadend G P v0 p σ by unfold-locales
have winning-path p (ltl P)

using σ(2)[unfolded winning-strategy-def] v0 (1 ,2) v0-conforms vmc-path-ltl by presburger
thus winning-path p P using winning-path-LCons by (metis P-LCons Ptl-not-null)

qed

end — context ParityGame

end

8 Well-Ordered Strategy
theory WellOrderedStrategy
imports

Main
Strategy

begin

Constructing a uniform strategy from a set of strategies on a set of nodes often works by
well-ordering the strategies and then choosing the minimal strategy on each node. Then
every path eventually follows one strategy because we choose the strategies along the path
to be non-increasing in the well-ordering.
The following locale formalizes this idea.
We will use this to construct uniform attractor and winning strategies.
locale WellOrderedStrategies = ParityGame +

fixes S :: ′a set
and p :: Player
— The set of good strategies on a node v
and good :: ′a ⇒ ′a Strategy set
and r :: (′a Strategy × ′a Strategy) set

assumes S-V : S ⊆ V
— r is a wellorder on the set of all strategies which are good somewhere.
and r-wo: well-order-on {σ. ∃ v ∈ S . σ ∈ good v} r
— Every node has a good strategy.
and good-ex:

∧
v. v ∈ S =⇒ ∃σ. σ ∈ good v

44

— good strategies are well-formed strategies.
and good-strategies:

∧
v σ. σ ∈ good v =⇒ strategy p σ

— A good strategy on v is also good on possible successors of v.
and strategies-continue:

∧
v w σ. [[v ∈ S ; v→w; v ∈ VV p =⇒ σ v = w; σ ∈ good v]] =⇒ σ ∈

good w
begin

The set of all strategies which are good somewhere.
abbreviation Strategies ≡ {σ. ∃ v ∈ S . σ ∈ good v}

definition minimal-good-strategy where
minimal-good-strategy v σ ≡ σ ∈ good v ∧ (∀σ ′. (σ ′, σ) ∈ r − Id −→ σ ′ /∈ good v)

unbundle no binomial-syntax

Among the good strategies on v, choose the minimum.
definition choose where

choose v ≡ THE σ. minimal-good-strategy v σ

Define a strategy which uses the minimum strategy on all nodes of S. Of course, we need to
prove that this is a well-formed strategy.
definition well-ordered-strategy where

well-ordered-strategy ≡ override-on σ-arbitrary (λv. choose v v) S

Show some simple properties of the binary relation r on the set Strategies.
lemma r-refl [simp]: refl-on Strategies r

using r-wo unfolding well-order-on-def linear-order-on-def partial-order-on-def preorder-on-def
by blast
lemma r-total [simp]: total-on Strategies r

using r-wo unfolding well-order-on-def linear-order-on-def by blast
lemma r-trans [simp]: trans r

using r-wo unfolding well-order-on-def linear-order-on-def partial-order-on-def preorder-on-def
by blast
lemma r-wf [simp]: wf (r − Id)

using well-order-on-def r-wo by blast

choose always chooses a minimal good strategy on S.
lemma choose-works:

assumes v ∈ S
shows minimal-good-strategy v (choose v)

proof−
have wf : wf (r − Id) using well-order-on-def r-wo by blast
obtain σ where σ1 : minimal-good-strategy v σ

unfolding minimal-good-strategy-def by (meson good-ex[OF ‹v ∈ S›] wf wf-eq-minimal)
hence σ: σ ∈ good v

∧
σ ′. (σ ′, σ) ∈ r − Id =⇒ σ ′ /∈ good v

unfolding minimal-good-strategy-def by auto
{ fix σ ′ assume minimal-good-strategy v σ ′

hence σ ′: σ ′ ∈ good v
∧
σ. (σ, σ ′) ∈ r − Id =⇒ σ /∈ good v

unfolding minimal-good-strategy-def by auto
have (σ, σ ′) /∈ r − Id using σ(1) σ ′(2) by blast

45

moreover have (σ ′, σ) /∈ r − Id using σ(2) σ ′(1) by auto
moreover have σ ∈ Strategies using σ(1) ‹v ∈ S› by auto
moreover have σ ′ ∈ Strategies using σ ′(1) ‹v ∈ S› by auto
ultimately have σ ′ = σ

using r-wo Linear-order-in-diff-Id well-order-on-Field well-order-on-def by fastforce
}
with σ1 have ∃ !σ. minimal-good-strategy v σ by blast
thus ?thesis using theI ′[of minimal-good-strategy v, folded choose-def] by blast

qed

corollary
assumes v ∈ S
shows choose-good: choose v ∈ good v

and choose-minimal:
∧
σ ′. (σ ′, choose v) ∈ r − Id =⇒ σ ′ /∈ good v

and choose-strategy: strategy p (choose v)
using choose-works[OF assms, unfolded minimal-good-strategy-def] good-strategies by blast+

corollary choose-in-Strategies: v ∈ S =⇒ choose v ∈ Strategies using choose-good by blast

lemma well-ordered-strategy-valid: strategy p well-ordered-strategy
proof−

{
fix v assume v ∈ S v ∈ VV p ¬deadend v
moreover have strategy p (choose v)
using choose-works[OF ‹v ∈ S›, unfolded minimal-good-strategy-def , THEN conjunct1] good-strategies

by blast
ultimately have v→(λv. choose v v) v using strategy-def by blast

}
thus ?thesis unfolding well-ordered-strategy-def using valid-strategy-updates-set by force

qed

8.1 Strategies on a Path

Maps a path to its strategies.
definition path-strategies ≡ lmap choose

lemma path-strategies-in-Strategies:
assumes lset P ⊆ S
shows lset (path-strategies P) ⊆ Strategies
using path-strategies-def assms choose-in-Strategies by auto

lemma path-strategies-good:
assumes lset P ⊆ S enat n < llength P
shows path-strategies P $ n ∈ good (P $ n)
by (simp add: path-strategies-def assms choose-good lset-lnth-member)

lemma path-strategies-strategy:
assumes lset P ⊆ S enat n < llength P
shows strategy p (path-strategies P $ n)
using path-strategies-good assms good-strategies by blast

46

lemma path-strategies-monotone-Suc:
assumes P: lset P ⊆ S valid-path P path-conforms-with-strategy p P well-ordered-strategy

enat (Suc n) < llength P
shows (path-strategies P $ Suc n, path-strategies P $ n) ∈ r

proof−
define P ′ where P ′ = ldropn n P
hence enat (Suc 0) < llength P ′ using P(4)
by (metis enat-ltl-Suc ldrop-eSuc-ltl ldropn-Suc-conv-ldropn llist.disc(2) lnull-0-llength ltl-ldropn)

then obtain v w Ps where vw: P ′ = LCons v (LCons w Ps)
by (metis ldropn-0 ldropn-Suc-conv-ldropn ldropn-lnull lnull-0-llength)

moreover have lset P ′ ⊆ S unfolding P ′-def using P(1) lset-ldropn-subset[of n P] by blast
ultimately have v ∈ S w ∈ S by auto
moreover have v→w using valid-path-edges ′[of v w Ps, folded vw] valid-path-drop[OF P(2)]

P ′-def by blast
moreover have choose v ∈ good v using choose-good ‹v ∈ S› by blast
moreover have v ∈ VV p =⇒ choose v v = w proof−

assume v ∈ VV p
moreover have path-conforms-with-strategy p P ′ well-ordered-strategy

unfolding P ′-def using path-conforms-with-strategy-drop P(3) by blast
ultimately have well-ordered-strategy v = w using vw path-conforms-with-strategy-start by

blast
thus choose v v = w unfolding well-ordered-strategy-def using ‹v ∈ S› by auto

qed
ultimately have choose v ∈ good w using strategies-continue by blast
hence ∗: (choose v, choose w) /∈ r − Id using choose-minimal ‹w ∈ S› by blast

have (choose w, choose v) ∈ r proof (cases)
assume choose v = choose w
thus ?thesis using r-refl refl-onD choose-in-Strategies[OF ‹v ∈ S›] by fastforce

next
assume choose v 6= choose w
thus ?thesis using ∗ r-total choose-in-Strategies[OF ‹v ∈ S›] choose-in-Strategies[OF ‹w ∈ S›]

by (metis (lifting) Linear-order-in-diff-Id r-wo well-order-on-Field well-order-on-def)
qed
hence (path-strategies P ′ $ Suc 0 , path-strategies P ′ $ 0) ∈ r

unfolding path-strategies-def using vw by simp
thus ?thesis unfolding path-strategies-def P ′-def

using lnth-lmap-ldropn[OF Suc-llength[OF P(4)], of choose]
lnth-lmap-ldropn-Suc[OF P(4), of choose]

by simp
qed

lemma path-strategies-monotone:
assumes P: lset P ⊆ S valid-path P path-conforms-with-strategy p P well-ordered-strategy

n < m enat m < llength P
shows (path-strategies P $ m, path-strategies P $ n) ∈ r

using assms proof (induct m − n arbitrary: n m)
case (Suc d)
show ?case proof (cases)

assume d = 0
thus ?thesis using path-strategies-monotone-Suc[OF P(1 ,2 ,3)]

47

by (metis (no-types) Suc.hyps(2) Suc.prems(4 ,5) Suc-diff-Suc Suc-inject Suc-leI diff-is-0-eq
diffs0-imp-equal)

next
assume d 6= 0
have m 6= 0 using Suc.hyps(2) by linarith
then obtain m ′ where m ′: Suc m ′ = m using not0-implies-Suc by blast
hence d = m ′ − n using Suc.hyps(2) by presburger
moreover hence n < m ′ using ‹d 6= 0 › by presburger
ultimately have (path-strategies P $ m ′, path-strategies P $ n) ∈ r
using Suc.hyps(1)[of m ′ n, OF - P(1 ,2 ,3)] Suc.prems(5) dual-order .strict-trans enat-ord-simps(2)

m ′

by blast
thus ?thesis
using m ′ path-strategies-monotone-Suc[OF P(1 ,2 ,3)] by (metis (no-types) Suc.prems(5) r-trans

trans-def)
qed

qed simp

lemma path-strategies-eventually-constant:
assumes ¬lfinite P lset P ⊆ S valid-path P path-conforms-with-strategy p P well-ordered-strategy
shows ∃n. ∀m ≥ n. path-strategies P $ n = path-strategies P $ m

proof−
define σ-set where σ-set = lset (path-strategies P)
have ∃σ. σ ∈ σ-set unfolding σ-set-def path-strategies-def

using assms(1) lfinite-lmap lset-nth-member-inf by blast
then obtain σ ′ where σ ′: σ ′ ∈ σ-set

∧
τ . (τ , σ ′) ∈ r − Id =⇒ τ /∈ σ-set

using wfE-min[of r − Id - σ-set] by auto
obtain n where n: path-strategies P $ n = σ ′

using σ ′(1) lset-lnth[of σ ′] unfolding σ-set-def by blast
{

fix m assume n ≤ m
have path-strategies P $ n = path-strategies P $ m proof (rule ccontr)

assume ∗: path-strategies P $ n 6= path-strategies P $ m
with ‹n ≤ m› have n < m using le-imp-less-or-eq by blast
with path-strategies-monotone have (path-strategies P $ m, path-strategies P $ n) ∈ r

using assms by (simp add: infinite-small-llength)
with ∗ have (path-strategies P $ m, path-strategies P $ n) ∈ r − Id by simp
with σ ′(2) n have path-strategies P $ m /∈ σ-set by blast
thus False unfolding σ-set-def path-strategies-def

using assms(1) lfinite-lmap lset-nth-member-inf by blast
qed

}
thus ?thesis by blast

qed

8.2 Eventually One Strategy

The key lemma: Every path that stays in S and follows well-ordered-strategy eventually
follows one strategy because the strategies are well-ordered and non-increasing along the
path.
lemma path-eventually-conforms-to-σ-map-n:

48

assumes lset P ⊆ S valid-path P path-conforms-with-strategy p P well-ordered-strategy
shows ∃n. path-conforms-with-strategy p (ldropn n P) (path-strategies P $ n)

proof (cases)
assume lfinite P
then obtain n where llength P = enat n using lfinite-llength-enat by blast
hence ldropn n P = LNil by simp
thus ?thesis by (metis path-conforms-LNil)

next
assume ¬lfinite P
then obtain n where n:

∧
m. n ≤ m =⇒ path-strategies P $ n = path-strategies P $ m

using path-strategies-eventually-constant assms by blast
let ?σ = well-ordered-strategy
define P ′ where P ′ = ldropn n P
{ fix v assume v ∈ lset P ′

hence v ∈ S using ‹lset P ⊆ S› P ′-def in-lset-ldropnD by fastforce
from ‹v ∈ lset P ′› obtain m where m: enat m < llength P ′ P ′ $ m = v by (meson

in-lset-conv-lnth)
hence P $ m + n = v unfolding P ′-def by (simp add: ‹¬lfinite P› infinite-small-llength)
moreover have ?σ v = choose v v unfolding well-ordered-strategy-def using ‹v ∈ S› by auto
ultimately have ?σ v = (path-strategies P $ m + n) v

unfolding path-strategies-def using infinite-small-llength[OF ‹¬lfinite P›] by simp
hence ?σ v = (path-strategies P $ n) v using n[of m + n] by simp

}
moreover have path-conforms-with-strategy p P ′ well-ordered-strategy

unfolding P ′-def by (simp add: assms(3) path-conforms-with-strategy-drop)
ultimately show ?thesis

using path-conforms-with-strategy-irrelevant-updates P ′-def by blast
qed

end — WellOrderedStrategies

end

9 Winning Regions
theory WinningRegion
imports

Main
WinningStrategy

begin

Here we define winning regions of parity games. The winning region for player p is the set
of nodes from which p has a positional winning strategy.
context ParityGame begin

definition winning-region p ≡ { v ∈ V . ∃σ. strategy p σ ∧ winning-strategy p σ v }

lemma winning-regionI [intro]:
assumes v ∈ V strategy p σ winning-strategy p σ v
shows v ∈ winning-region p
using assms unfolding winning-region-def by blast

49

lemma winning-region-in-V [simp]: winning-region p ⊆ V unfolding winning-region-def by blast

lemma winning-region-deadends:
assumes v ∈ VV p deadend v
shows v ∈ winning-region p∗∗

proof
show v ∈ V using ‹v ∈ VV p› by blast
show winning-strategy p∗∗ σ-arbitrary v using assms winning-strategy-on-deadends by simp

qed simp

9.1 Paths in Winning Regions
lemma (in vmc-path) paths-stay-in-winning-region:

assumes σ ′: strategy p σ ′ winning-strategy p σ ′ v0
and σ:

∧
v. v ∈ winning-region p =⇒ σ ′ v = σ v

shows lset P ⊆ winning-region p
proof

fix x assume x ∈ lset P
thus x ∈ winning-region p using assms vmc-path-axioms
proof (induct arbitrary: v0 rule: llist-set-induct)

case (find P v0)
interpret vmc-path G P v0 p σ using find.prems(4) .
show ?case using P-v0 σ ′(1) find.prems(2) v0-V unfolding winning-region-def by blast

next
case (step P x v0)
interpret vmc-path G P v0 p σ using step.prems(4) .
show ?case proof (cases)

assume lnull (ltl P)
thus ?thesis using P-lnull-ltl-LCons step.hyps(2) by auto

next
assume ¬lnull (ltl P)
then interpret vmc-path-no-deadend G P v0 p σ using P-no-deadend-v0 by unfold-locales
have winning-strategy p σ ′ w0 proof (cases)

assume v0 ∈ VV p
hence winning-strategy p σ ′ (σ ′ v0)

using strategy-extends-VVp local.step(4) step.prems(2) v0-no-deadend by blast
moreover have σ v0 = w0 using v0-conforms ‹v0 ∈ VV p› by blast
moreover have σ ′ v0 = σ v0

using σ assms(1) step.prems(2) v0-V unfolding winning-region-def by blast
ultimately show ?thesis by simp

next
assume v0 /∈ VV p
thus ?thesis using v0-V strategy-extends-VVpstar step(4) step.prems(2) by simp

qed
thus ?thesis using step.hyps(3) step(4) σ vmc-path-ltl by blast

qed
qed

qed

lemma (in vmc-path) path-hits-winning-region-is-winning:
assumes σ ′: strategy p σ ′ ∧v. v ∈ winning-region p =⇒ winning-strategy p σ ′ v

50

and σ:
∧

v. v ∈ winning-region p =⇒ σ ′ v = σ v
and P: lset P ∩ winning-region p 6= {}

shows winning-path p P
proof−

obtain n where n: enat n < llength P P $ n ∈ winning-region p
using P by (meson lset-intersect-lnth)

define P ′ where P ′ = ldropn n P
then interpret P ′: vmc-path G P ′ P $ n p σ

unfolding P ′-def using vmc-path-ldropn n(1) by blast
have winning-strategy p σ ′ (P $ n) using σ ′(2) n(2) by blast
hence lset P ′ ⊆ winning-region p

using P ′.paths-stay-in-winning-region[OF σ ′(1) - σ]
by blast

hence
∧

v. v ∈ lset P ′ =⇒ σ v = σ ′ v using σ by auto
hence path-conforms-with-strategy p P ′ σ ′

using path-conforms-with-strategy-irrelevant-updates P ′.P-conforms
by blast

then interpret P ′: vmc-path G P ′ P $ n p σ ′ using P ′.conforms-to-another-strategy by blast
have winning-path p P ′ using σ ′(2) n(2) P ′.vmc-path-axioms winning-strategy-def by blast
thus winning-path p P unfolding P ′-def using winning-path-drop-add n(1) P-valid by blast

qed

9.2 Irrelevant Updates

Updating a winning strategy outside of the winning region is irrelevant.
lemma winning-strategy-updates:

assumes σ: strategy p σ winning-strategy p σ v0
and v: v /∈ winning-region p v→w

shows winning-strategy p (σ(v := w)) v0
proof

fix P assume vmc-path G P v0 p (σ(v := w))
then interpret vmc-path G P v0 p σ(v := w) .
have

∧
v ′. v ′ ∈ winning-region p =⇒ σ v ′ = (σ(v := w)) v ′ using v by auto

hence v /∈ lset P using v paths-stay-in-winning-region σ unfolding winning-region-def by blast
hence path-conforms-with-strategy p P σ

using P-conforms path-conforms-with-strategy-irrelevant ′ by blast
thus winning-path p P using conforms-to-another-strategy σ(2) winning-strategy-def by blast

qed

9.3 Extending Winning Regions
lemma winning-region-extends-VVp:

assumes v: v ∈ VV p v→w and w: w ∈ winning-region p
shows v ∈ winning-region p

proof (rule ccontr)
obtain σ where σ: strategy p σ winning-strategy p σ w

using w unfolding winning-region-def by blast
let ?σ = σ(v := w)
assume contra: v /∈ winning-region p
moreover have strategy p ?σ using valid-strategy-updates σ(1) ‹v→w› by blast
moreover hence winning-strategy p ?σ v

51

using winning-strategy-updates σ contra v strategy-extends-backwards-VVp
by auto

ultimately show False using ‹v→w› unfolding winning-region-def by auto
qed

Unfortunately, we cannot prove the corresponding theorem winning-region-extends-VVpstar
for VV p∗∗-nodes yet. First, we need to show that there exists a uniform winning strategy
on winning-region p. We will prove winning-region-extends-VVpstar as soon as we have this.
end — context ParityGame

end

10 Uniform Strategies

Theorems about how to get a uniform strategy given strategies for each node.
theory UniformStrategy
imports

Main
AttractingStrategy WinningStrategy WellOrderedStrategy WinningRegion

begin

context ParityGame begin

10.1 A Uniform Attractor Strategy
lemma merge-attractor-strategies:

assumes S ⊆ V
and strategies-ex:

∧
v. v ∈ S =⇒ ∃σ. strategy p σ ∧ strategy-attracts-via p σ v S W

shows ∃σ. strategy p σ ∧ strategy-attracts p σ S W
proof−

define good where good v = {σ. strategy p σ ∧ strategy-attracts-via p σ v S W } for v
let ?G = {σ. ∃ v ∈ S − W . σ ∈ good v}
obtain r where r : well-order-on ?G r using well-order-on by blast

interpret WellOrderedStrategies G S − W p good r proof
show S − W ⊆ V using ‹S ⊆ V › by blast

next
show

∧
v. v ∈ S − W =⇒ ∃σ. σ ∈ good v unfolding good-def using strategies-ex by blast

next
show

∧
v σ. σ ∈ good v =⇒ strategy p σ unfolding good-def by blast

next
fix v w σ assume v: v ∈ S − W v→w v ∈ VV p =⇒ σ v = w σ ∈ good v
hence σ: strategy p σ strategy-attracts-via p σ v S W unfolding good-def by simp-all
hence strategy-attracts-via p σ w S W using strategy-attracts-via-successor v by blast
thus σ ∈ good w unfolding good-def using σ(1) by blast

qed (insert r)

have S-W-no-deadends:
∧

v. v ∈ S − W =⇒ ¬deadend v
using strategy-attracts-via-no-deadends[of - S W] strategies-ex
by (metis (no-types) Diff-iff S-V rev-subsetD)

52

{
fix v0 assume v0 ∈ S
fix P assume P: vmc-path G P v0 p well-ordered-strategy
then interpret vmc-path G P v0 p well-ordered-strategy .
have visits-via P S W proof (rule ccontr)

assume contra: ¬visits-via P S W

hence lset P ⊆ S − W proof (induct rule: vmc-path-lset-induction)
case base
show v0 ∈ S − W using ‹v0 ∈ S› contra visits-via-trivial by blast

next
case (step P v0)
interpret vmc-path-no-deadend G P v0 p well-ordered-strategy using step.hyps(1) .
have insert v0 S = S using step.hyps(2) by blast
hence ∗: ¬visits-via (ltl P) S W

using visits-via-LCons[of ltl P S W v0 , folded P-LCons] step.hyps(3) by auto
hence ∗∗: w0 /∈ W using vmc-path.visits-via-trivial[OF vmc-path-ltl] by blast
have w0 ∈ S ∪ W proof (cases)

assume v0 ∈ VV p
hence well-ordered-strategy v0 = w0 using v0-conforms by blast
hence choose v0 v0 = w0 using step.hyps(2) well-ordered-strategy-def by auto
moreover have strategy-attracts-via p (choose v0) v0 S W

using choose-good good-def step.hyps(2) by blast
ultimately show ?thesis

by (metis strategy-attracts-via-successor strategy-attracts-via-v0
choose-strategy step.hyps(2) v0-edge-w0 w0-V)

qed (metis DiffD1 assms(2) step.hyps(2) strategy-attracts-via-successor
strategy-attracts-via-v0 v0-edge-w0 w0-V)

with ∗ ∗∗ show ?case by blast
qed

have ¬lfinite P proof
assume lfinite P
hence deadend (llast P) using P-maximal P-not-null maximal-ends-on-deadend by blast
moreover have llast P ∈ S − W using ‹lset P ⊆ S − W › P-not-null ‹lfinite P› lfinite-lset

by blast
ultimately show False using S-W-no-deadends by blast

qed

obtain n where n: path-conforms-with-strategy p (ldropn n P) (path-strategies P $ n)
using path-eventually-conforms-to-σ-map-n[OF ‹lset P ⊆ S − W › P-valid P-conforms]

by blast
define σ ′ where [simp]: σ ′ = path-strategies P $ n
define P ′ where [simp]: P ′ = ldropn n P
interpret vmc-path G P ′ lhd P ′ p σ ′

proof
show ¬lnull P ′ unfolding P ′-def

using ‹¬lfinite P› lfinite-ldropn lnull-imp-lfinite by blast
qed (simp-all add: n)
have strategy p σ ′ unfolding σ ′-def

using path-strategies-strategy ‹lset P ⊆ S − W › ‹¬lfinite P› infinite-small-llength

53

by blast
moreover have strategy-attracts-via p σ ′ (lhd P ′) S W proof−

have P $ n ∈ S − W using ‹lset P ⊆ S − W › ‹¬lfinite P› lset-nth-member-inf by blast
hence σ ′ ∈ good (P $ n)

using path-strategies-good σ ′-def ‹¬lfinite P› ‹lset P ⊆ S − W › by blast
hence strategy-attracts-via p σ ′ (P $ n) S W unfolding good-def by blast
thus ?thesis unfolding P ′-def using P-0 by (simp add: ‹¬lfinite P› infinite-small-llength)

qed
moreover from ‹lset P ⊆ S − W › have lset P ′ ⊆ S − W

unfolding P ′-def using lset-ldropn-subset[of n P] by blast
ultimately show False using strategy-attracts-via-lset by blast

qed
}
thus ?thesis using well-ordered-strategy-valid by blast

qed

10.2 A Uniform Winning Strategy

Let S be the winning region of player p. Then there exists a uniform winning strategy on
S.
lemma merge-winning-strategies:

shows ∃σ. strategy p σ ∧ (∀ v ∈ winning-region p. winning-strategy p σ v)
proof−

define good where good v = {σ. strategy p σ ∧ winning-strategy p σ v} for v
let ?G = {σ. ∃ v ∈ winning-region p. σ ∈ good v}
obtain r where r : well-order-on ?G r using well-order-on by blast

have no-VVp-deadends:
∧

v. [[v ∈ winning-region p; v ∈ VV p]] =⇒ ¬deadend v
using no-winning-strategy-on-deadends unfolding winning-region-def by blast

interpret WellOrderedStrategies G winning-region p p good r proof
show

∧
v. v ∈ winning-region p =⇒ ∃σ. σ ∈ good v

unfolding good-def winning-region-def by blast
next

show
∧

v σ. σ ∈ good v =⇒ strategy p σ unfolding good-def by blast
next

fix v w σ assume v: v ∈ winning-region p v→w v ∈ VV p =⇒ σ v = w σ ∈ good v
hence σ: strategy p σ winning-strategy p σ v unfolding good-def by simp-all
hence winning-strategy p σ w proof (cases)

assume ∗: v ∈ VV p
hence ∗∗: σ v = w using v(3) by blast
have ¬deadend v using no-VVp-deadends ‹v ∈ VV p› v(1) by blast
with ∗ ∗∗ show ?thesis using strategy-extends-VVp σ by blast

next
assume v /∈ VV p
thus ?thesis using strategy-extends-VVpstar σ ‹v→w› by blast

qed
thus σ ∈ good w unfolding good-def using σ(1) by blast

qed (insert winning-region-in-V r)

{

54

fix v0 assume v0 ∈ winning-region p
fix P assume P: vmc-path G P v0 p well-ordered-strategy
then interpret vmc-path G P v0 p well-ordered-strategy .

have lset P ⊆ winning-region p proof (induct rule: vmc-path-lset-induction-simple)
case (step P v0)
interpret vmc-path-no-deadend G P v0 p well-ordered-strategy using step.hyps(1) .
{ assume v0 ∈ VV p

hence well-ordered-strategy v0 = w0 using v0-conforms by blast
hence choose v0 v0 = w0 by (simp add: step.hyps(2) well-ordered-strategy-def)

}
hence choose v0 ∈ good w0 using strategies-continue choose-good step.hyps(2) by simp
thus ?case unfolding good-def winning-region-def using w0-V by blast

qed (insert ‹v0 ∈ winning-region p›)

have winning-path p P proof (rule ccontr)
assume contra: ¬winning-path p P

have ¬lfinite P proof
assume lfinite P
hence deadend (llast P) using maximal-ends-on-deadend by simp
moreover have llast P ∈ winning-region p

using ‹lset P ⊆ winning-region p› P-not-null ‹lfinite P› lfinite-lset by blast
moreover have llast P ∈ VV p

using contra paths-are-winning-for-one-player ‹lfinite P›
unfolding winning-path-def by simp

ultimately show False using no-VVp-deadends by blast
qed

obtain n where n: path-conforms-with-strategy p (ldropn n P) (path-strategies P $ n)
using path-eventually-conforms-to-σ-map-n[OF ‹lset P ⊆ winning-region p› P-valid P-conforms]

by blast
define σ ′ where [simp]: σ ′ = path-strategies P $ n
define P ′ where [simp]: P ′ = ldropn n P
interpret P ′: vmc-path G P ′ lhd P ′ p σ ′ proof

show ¬lnull P ′ using ‹¬lfinite P› unfolding P ′-def
using lfinite-ldropn lnull-imp-lfinite by blast

qed (simp-all add: n)
have strategy p σ ′ unfolding σ ′-def

using path-strategies-strategy ‹lset P ⊆ winning-region p› ‹¬lfinite P› by blast
moreover have winning-strategy p σ ′ (lhd P ′) proof−

have P $ n ∈ winning-region p
using ‹lset P ⊆ winning-region p› ‹¬lfinite P› lset-nth-member-inf by blast

hence σ ′ ∈ good (P $ n)
using path-strategies-good choose-good σ ′-def ‹¬lfinite P› ‹lset P ⊆ winning-region p›
by blast

hence winning-strategy p σ ′ (P $ n) unfolding good-def by blast
thus ?thesis

unfolding P ′-def using P-0 ‹¬lfinite P› by (simp add: infinite-small-llength lhd-ldropn)
qed
ultimately have winning-path p P ′ unfolding winning-strategy-def

using P ′.vmc-path-axioms by blast

55

moreover have ¬lfinite P ′ using ‹¬lfinite P› P ′-def by simp
ultimately show False using contra winning-path-drop-add[OF P-valid] by auto

qed
}
thus ?thesis unfolding winning-strategy-def using well-ordered-strategy-valid by auto

qed

10.3 Extending Winning Regions

Now we are finally able to prove the complement of winning-region-extends-VVp for VV p∗∗
nodes, which was still missing.
lemma winning-region-extends-VVpstar :

assumes v: v ∈ VV p∗∗ and w:
∧

w. v→w =⇒ w ∈ winning-region p
shows v ∈ winning-region p

proof−
obtain σ where σ: strategy p σ

∧
v. v ∈ winning-region p =⇒ winning-strategy p σ v

using merge-winning-strategies by blast
have winning-strategy p σ v using strategy-extends-backwards-VVpstar [OF v σ(1)] σ(2) w by

blast
thus ?thesis unfolding winning-region-def using v σ(1) by blast

qed

It immediately follows that removing a winning region cannot create new deadends.
lemma removing-winning-region-induces-no-deadends:

assumes v ∈ V − winning-region p ¬deadend v
shows ∃w ∈ V − winning-region p. v→w
using assms winning-region-extends-VVp winning-region-extends-VVpstar by blast

end — context ParityGame

end

11 Attractor Strategies
theory AttractorStrategy
imports

Main
Attractor UniformStrategy

begin

This section proves that every attractor set has an attractor strategy.
context ParityGame begin

lemma strategy-attracts-extends-VVp:
assumes σ: strategy p σ strategy-attracts p σ S W

and v0 : v0 ∈ VV p v0 ∈ directly-attracted p S v0 /∈ S
shows ∃σ. strategy p σ ∧ strategy-attracts-via p σ v0 (insert v0 S) W

proof−
from v0 (1 ,2) obtain w where v0→w w ∈ S using directly-attracted-def by blast
from ‹w ∈ S› σ(2) have strategy-attracts-via p σ w S W unfolding strategy-attracts-def by blast

56

let ?σ = σ(v0 := w) — Extend σ to the new node.
have strategy p ?σ using σ(1) ‹v0→w› valid-strategy-updates by blast
moreover have strategy-attracts-via p ?σ v0 (insert v0 S) W proof

fix P
assume vmc-path G P v0 p ?σ
then interpret vmc-path G P v0 p ?σ .
have ¬deadend v0 using ‹v0→w› by blast
then interpret vmc-path-no-deadend G P v0 p ?σ by unfold-locales

define P ′′ where [simp]: P ′′ = ltl P
have lhd P ′′ = w using v0 (1) v0-conforms w0-def by auto
hence vmc-path G P ′′ w p ?σ using vmc-path-ltl by (simp add: w0-def)

have ∗: v0 /∈ S − W using ‹v0 /∈ S› by blast
have override-on (σ(v0 := w)) σ (S − W) = ?σ

by (rule ext) (metis ∗ fun-upd-def override-on-def)
hence strategy-attracts p ?σ S W

using strategy-attracts-irrelevant-override[OF σ(2 ,1) ‹strategy p ?σ›] by simp
hence strategy-attracts-via p ?σ w S W unfolding strategy-attracts-def

using ‹w ∈ S› by blast
hence visits-via P ′′ S W unfolding strategy-attracts-via-def

using ‹vmc-path G P ′′ w p ?σ› by blast
thus visits-via P (insert v0 S) W

using visits-via-LCons[of ltl P S W v0] P-LCons by simp
qed
ultimately show ?thesis by blast

qed

lemma strategy-attracts-extends-VVpstar :
assumes σ: strategy-attracts p σ S W

and v0 : v0 /∈ VV p v0 ∈ directly-attracted p S
shows strategy-attracts-via p σ v0 (insert v0 S) W

proof
fix P
assume vmc-path G P v0 p σ
then interpret vmc-path G P v0 p σ .
have ¬deadend v0 using v0 (2) directly-attracted-contains-no-deadends by blast
then interpret vmc-path-no-deadend G P v0 p σ by unfold-locales
have visits-via (ltl P) S W

using vmc-path.strategy-attractsE [OF vmc-path-ltl σ] v0 directly-attracted-def by simp
thus visits-via P (insert v0 S) W using visits-via-LCons[of ltl P S W v0] P-LCons by simp

qed

lemma attractor-has-strategy-single:
assumes W ⊆ V

and v0-def : v0 ∈ attractor p W (is - ∈ ?A)
shows ∃σ. strategy p σ ∧ strategy-attracts-via p σ v0 ?A W

using assms proof (induct arbitrary: v0 rule: attractor-set-induction)
case (step S)
have v0 ∈ W =⇒ ∃σ. strategy p σ ∧ strategy-attracts-via p σ v0 {} W

using strategy-attracts-via-trivial valid-arbitrary-strategy by blast
moreover {

57

assume ∗: v0 ∈ directly-attracted p S v0 /∈ S
from assms(1) step.hyps(1) step.hyps(2)

have ∃σ. strategy p σ ∧ strategy-attracts p σ S W
using merge-attractor-strategies by auto

with ∗
have ∃σ. strategy p σ ∧ strategy-attracts-via p σ v0 (insert v0 S) W
using strategy-attracts-extends-VVp strategy-attracts-extends-VVpstar by blast

}
ultimately show ?case

using step.prems step.hyps(2)
attractor-strategy-on-extends[of p - v0 insert v0 S W W ∪ S ∪ directly-attracted p S]
attractor-strategy-on-extends[of p - v0 S W W ∪ S ∪ directly-attracted p S]
attractor-strategy-on-extends[of p - v0 {} W W ∪ S ∪ directly-attracted p S]
by blast

next
case (union M)
hence ∃S . S ∈ M ∧ v0 ∈ S by blast
thus ?case by (meson Union-upper attractor-strategy-on-extends union.hyps)

qed

11.1 Existence

Prove that every attractor set has an attractor strategy.
theorem attractor-has-strategy:

assumes W ⊆ V
shows ∃σ. strategy p σ ∧ strategy-attracts p σ (attractor p W) W

proof−
let ?A = attractor p W
have ?A ⊆ V by (simp add: ‹W ⊆ V › attractor-in-V)
moreover

have
∧

v. v ∈ ?A =⇒ ∃σ. strategy p σ ∧ strategy-attracts-via p σ v ?A W
using ‹W ⊆ V › attractor-has-strategy-single by blast

ultimately show ?thesis using merge-attractor-strategies ‹W ⊆ V › by blast
qed

end — context ParityGame

end

12 Positional Determinacy of Parity Games
theory PositionalDeterminacy
imports

Main
AttractorStrategy

begin

context ParityGame begin

58

12.1 Induction Step

The proof of positional determinacy is by induction over the size of the finite set ω ‘ V, the
set of priorities. The following lemma is the induction step.
For now, we assume there are no deadends in the graph. Later we will get rid of this
assumption.
lemma positional-strategy-induction-step:

assumes v ∈ V
and no-deadends:

∧
v. v ∈ V =⇒ ¬deadend v

and IH :
∧
(G :: (′a, ′b) ParityGame-scheme) v.

[[card (ωG ‘ V G) < card (ω ‘ V); v ∈ V G;
ParityGame G;∧

v. v ∈ V G =⇒ ¬Digraph.deadend G v]]
=⇒ ∃ p. v ∈ ParityGame.winning-region G p

shows ∃ p. v ∈ winning-region p
proof−

First, we determine the minimum priority and the player who likes it.
define min-prio where min-prio = Min (ω ‘ V)
have ∃ p. winning-priority p min-prio by auto
then obtain p where p: winning-priority p min-prio by blast

Then we define the tentative winning region of player p∗∗. The rest of the proof is to show
that this is the complete winning region.

define W1 where W1 = winning-region p∗∗

For this, we define several more sets of nodes. First, U is the tentative winning region of
player p.

define U where U = V − W1
define K where K = U ∩ (ω −‘ {min-prio})
define V ′ where V ′ = U − attractor p K

define G ′ where [simp]: G ′ = subgame V ′

interpret G ′: ParityGame G ′ using subgame-ParityGame by simp

have U-equiv:
∧

v. v ∈ V =⇒ v ∈ U ←→ v /∈ winning-region p∗∗
unfolding U-def W1-def by blast

have V ′ ⊆ V unfolding U-def V ′-def by blast
hence [simp]: V G ′ = V ′ unfolding G ′-def by simp

have V G ′ ⊆ V EG ′ ⊆ E ωG ′ = ω unfolding G ′-def by (simp-all add: subgame-ω)
have G ′.VV p = V ′ ∩ VV p unfolding G ′-def using subgame-VV by simp

have V-decomp: V = attractor p K ∪ V ′ ∪ W1 proof−
have V ⊆ attractor p K ∪ V ′ ∪ W1

unfolding V ′-def U-def by blast
moreover have attractor p K ⊆ V

using attractor-in-V [of K] unfolding K-def U-def by blast
ultimately show ?thesis

59

unfolding W1-def winning-region-def using ‹V ′ ⊆ V › by blast
qed

have G ′-no-deadends:
∧

v. v ∈ V G ′ =⇒ ¬G ′.deadend v proof−
fix v assume v ∈ V G ′

hence ∗: v ∈ U − attractor p K using ‹V G ′ = V ′› V ′-def by blast
moreover hence ∃w ∈ U . v→w

using removing-winning-region-induces-no-deadends[of v p∗∗] no-deadends U-equiv U-def
by blast

moreover have
∧

w. [[v ∈ VV p∗∗; v→w]] =⇒ w ∈ U
using ∗ U-equiv winning-region-extends-VVp by blast

ultimately have ∃w ∈ V ′. v→w
using U-equiv winning-region-extends-VVp removing-attractor-induces-no-deadends V ′-def
by blast

thus ¬G ′.deadend v using ‹v ∈ V G ′› ‹V ′ ⊆ V › by simp
qed

By definition of W1, we obtain a winning strategy on W1 for player p∗∗.
obtain σW1 where σW1 :

strategy p∗∗ σW1
∧

v. v ∈ W1 =⇒ winning-strategy p∗∗ σW1 v
unfolding W1-def using merge-winning-strategies by blast

{
fix v assume v ∈ V G ′

Apply the induction hypothesis to get the winning strategy for v in G ′.
have G ′-winning-strategy: ∃ p. v ∈ G ′.winning-region p proof−

have card (ωG ′ ‘ V G ′) < card (ω ‘ V) proof−
{ assume min-prio ∈ ωG ′ ‘ V G ′

then obtain v where v: v ∈ V G ′ ωG ′ v = min-prio by blast
hence v ∈ ω −‘ {min-prio} using ‹ωG ′ = ω› by simp
hence False using V ′-def K-def attractor-set-base ‹V G ′ = V ′› v(1)

by (metis DiffD1 DiffD2 IntI contra-subsetD)
}
hence min-prio /∈ ωG ′ ‘ V G ′ by blast
moreover have min-prio ∈ ω ‘ V

unfolding min-prio-def using priorities-finite Min-in assms(1) by blast
moreover have ωG ′ ‘ V G ′ ⊆ ω ‘ V unfolding G ′-def by simp
ultimately show ?thesis by (metis priorities-finite psubsetI psubset-card-mono)

qed
thus ?thesis using IH [of G ′] ‹v ∈ V G ′› G ′-no-deadends G ′.ParityGame-axioms by blast

qed

It turns out the winning region of player p∗∗ is empty, so we have a strategy for player p.
have v ∈ G ′.winning-region p proof (rule ccontr)

assume ¬?thesis
moreover obtain p ′ σ where p ′: G ′.strategy p ′ σ G ′.winning-strategy p ′ σ v

using G ′-winning-strategy unfolding G ′.winning-region-def by blast
ultimately have p ′ 6= p using ‹v ∈ V G ′› unfolding G ′.winning-region-def by blast
hence p ′ = p∗∗ by (cases p; cases p ′) auto
with p ′ have σ: G ′.strategy p∗∗ σ G ′.winning-strategy p∗∗ σ v by simp-all

60

have v ∈ winning-region p∗∗ proof
show v ∈ V using ‹v ∈ V G ′› ‹V G ′ ⊆ V › by blast
define σ ′ where σ ′ = override-on (override-on σ-arbitrary σW1 W1) σ V ′

thus strategy p∗∗ σ ′

using valid-strategy-updates-set-strong valid-arbitrary-strategy σW1 (1)
valid-strategy-supergame σ(1) G ′-no-deadends ‹V G ′ = V ′›

unfolding G ′-def by blast
show winning-strategy p∗∗ σ ′ v
proof (rule winning-strategyI , rule ccontr)

fix P assume vmc-path G P v p∗∗ σ ′

then interpret vmc-path G P v p∗∗ σ ′ .
assume ¬winning-path p∗∗ P

First we show that P stays in V ′, because if it stays in V ′, then it conforms to σ, so it must
be winning for p∗∗.

have lset P ⊆ V ′ proof (induct rule: vmc-path-lset-induction-closed-subset)
fix v assume v ∈ V ′ ¬deadend v v ∈ VV p∗∗
hence v ∈ ParityGame.VV (subgame V ′) p∗∗ by auto
moreover have ¬G ′.deadend v using G ′-no-deadends ‹V G ′ = V ′› ‹v ∈ V ′› by blast
ultimately have σ v ∈ V ′

using subgame-strategy-stays-in-subgame p ′(1) ‹p ′ = p∗∗›
unfolding G ′-def by blast

thus σ ′ v ∈ V ′ ∪ W1 unfolding σ ′-def using ‹v ∈ V ′› by simp
next

fix v w assume v ∈ V ′ ¬deadend v v ∈ VV p∗∗∗∗ v→w
show w ∈ V ′ ∪ W1 proof (rule ccontr)

assume w /∈ V ′ ∪ W1
hence w ∈ attractor p K using V-decomp ‹v→w› by blast
hence v ∈ attractor p K using ‹v ∈ VV p∗∗∗∗› attractor-set-VVp ‹v→w› by auto
thus False using ‹v ∈ V ′› V ′-def by blast

qed
next

have
∧

v. v ∈ W1 =⇒ σW1 v = σ ′ v unfolding σ ′-def V ′-def U-def by simp
thus lset P ∩ W1 = {}

using path-hits-winning-region-is-winning σW1 ‹¬winning-path p∗∗ P›
unfolding W1-def
by blast

next
show v ∈ V ′ using ‹V G ′ = V ′› ‹v ∈ V G ′› by blast

qed

This concludes the proof of lset P ⊆ V ′.
hence G ′.valid-path P using subgame-valid-path by simp
moreover have G ′.maximal-path P

using ‹lset P ⊆ V ′› subgame-maximal-path ‹V ′ ⊆ V › by simp
moreover have G ′.path-conforms-with-strategy p∗∗ P σ proof−

have G ′.path-conforms-with-strategy p∗∗ P σ ′

using subgame-path-conforms-with-strategy ‹V ′ ⊆ V › ‹lset P ⊆ V ′›
by simp

moreover have
∧

v. v ∈ lset P =⇒ σ ′ v = σ v using ‹lset P ⊆ V ′› σ ′-def by auto

61

ultimately show ?thesis
using G ′.path-conforms-with-strategy-irrelevant-updates by blast

qed
ultimately have G ′.winning-path p∗∗ P

using σ(2) G ′.winning-strategy-def G ′.valid-maximal-conforming-path-0 P-0 P-not-null
by blast

moreover have G ′.VV p∗∗∗∗ ⊆ VV p∗∗∗∗ using subgame-VV-subset G ′-def by blast
ultimately show False

using G ′.winning-path-supergame[of p∗∗] ‹ωG ′ = ω›
‹¬winning-path p∗∗ P› ParityGame-axioms

by blast
qed

qed
moreover have v ∈ V using ‹V G ′ ⊆ V › ‹v ∈ V G ′› by blast
ultimately have v ∈ W1 unfolding W1-def winning-region-def by blast
thus False using ‹v ∈ V G ′› using U-def V ′-def ‹V G ′ = V ′› ‹v ∈ V G ′› by blast

qed
} note recursion = this

We compose a winning strategy for player p on V − W1 out of three pieces.

First, if we happen to land in the attractor region of K, we follow the attractor strategy.
This is good because the priority of the nodes in K is good for player p, so he likes to go
there.

obtain σ1
where σ1 : strategy p σ1

strategy-attracts p σ1 (attractor p K) K
using attractor-has-strategy[of K p] K-def U-def by auto

Next, on G ′ we follow the winning strategy whose existence we proved earlier.
have G ′.winning-region p = V G ′ using recursion unfolding G ′.winning-region-def by blast
then obtain σ2

where σ2 :
∧

v. v ∈ V G ′ =⇒ G ′.strategy p σ2∧
v. v ∈ V G ′ =⇒ G ′.winning-strategy p σ2 v

using G ′.merge-winning-strategies by blast

As a last option we choose an arbitrary successor but avoid entering W1. In particular, this
defines the strategy on the set K.

define succ where succ v = (SOME w. v→w ∧ (v ∈ W1 ∨ w /∈ W1)) for v

Compose the three pieces.
define σ where σ = override-on (override-on succ σ2 V ′) σ1 (attractor p K − K)

have attractor p K ∩ W1 = {} proof (rule ccontr)
assume attractor p K ∩ W1 6= {}
then obtain v where v: v ∈ attractor p K v ∈ W1 by blast
hence v ∈ V using W1-def winning-region-def by blast
obtain P where vmc2-path G P v p σ1 σW1

using strategy-conforming-path-exists σW1 (1) σ1 (1) ‹v ∈ V › by blast
then interpret vmc2-path G P v p σ1 σW1 .

62

have strategy-attracts-via p σ1 v (attractor p K) K using v(1) σ1 (2) strategy-attracts-def by
blast

hence lset P ∩ K 6= {} using strategy-attracts-viaE visits-via-visits by blast
hence ¬lset P ⊆ W1 unfolding K-def U-def by blast
thus False unfolding W1-def using comp.paths-stay-in-winning-region σW1 v(2) by auto

qed

On specific sets, σ behaves like one of the three pieces.
have σ-σ1 :

∧
v. v ∈ attractor p K − K =⇒ σ v = σ1 v unfolding σ-def by simp

have σ-σ2 :
∧

v. v ∈ V ′ =⇒ σ v = σ2 v unfolding σ-def V ′-def by auto
have σ-K :

∧
v. v ∈ K ∪ W1 =⇒ σ v = succ v proof−

fix v assume v: v ∈ K ∪ W1
hence v /∈ V ′ unfolding V ′-def U-def using attractor-set-base by auto
with v show σ v = succ v unfolding σ-def U-def using ‹attractor p K ∩ W1 = {}›

by (metis (mono-tags, lifting) Diff-iff IntI UnE override-on-def override-on-emptyset)
qed

Show that succ succeeds in avoiding entering W1.
{ fix v assume v: v ∈ VV p

hence ¬deadend v using no-deadends by blast
have ∃w. v→w ∧ (v ∈ W1 ∨ w /∈ W1) proof (cases)

assume v ∈ W1
thus ?thesis using no-deadends ‹¬deadend v› by blast

next
assume v /∈ W1
show ?thesis proof (rule ccontr)

assume ¬(∃w. v→w ∧ (v ∈ W1 ∨ w /∈ W1))
hence

∧
w. v→w =⇒ winning-strategy p∗∗ σW1 w using σW1 (2) by blast

hence winning-strategy p∗∗ σW1 v
using strategy-extends-backwards-VVpstar σW1 (1) ‹v ∈ VV p› by simp

hence v ∈ W1 unfolding W1-def winning-region-def using σW1 (1) ‹¬deadend v› by blast
thus False using ‹v /∈ W1 › by blast

qed
qed
hence v→succ v v ∈ W1 ∨ succ v /∈ W1 unfolding succ-def

using someI-ex[of λw. v→w ∧ (v ∈ W1 ∨ w /∈ W1)] by blast+
} note succ-works = this

have strategy p σ
proof

fix v assume v: v ∈ VV p ¬deadend v
hence v ∈ attractor p K − K =⇒ v→σ v using σ-σ1 σ1 (1) v unfolding strategy-def by auto
moreover have v ∈ V ′ =⇒ v→σ v proof−

assume v ∈ V ′

moreover have v ∈ V G ′ using ‹v ∈ V ′› ‹V G ′ = V ′› by blast
moreover have v ∈ G ′.VV p using ‹G ′.VV p = V ′ ∩ VV p› ‹v ∈ V ′› ‹v ∈ VV p› by blast
moreover have ¬Digraph.deadend G ′ v using G ′-no-deadends ‹v ∈ V G ′› by blast
ultimately have v →G ′ σ2 v using σ2 (1) G ′.strategy-def [of p σ2] by blast
with ‹v ∈ V ′› show v→σ v using ‹EG ′ ⊆ E› σ-σ2 by (metis subsetCE)

qed
moreover have v ∈ K ∪ W1 =⇒ v→σ v using succ-works(1) v σ-K by auto

63

moreover have v ∈ V using ‹v ∈ VV p› by blast
ultimately show v→σ v using V-decomp by blast

qed

have σ-attracts: strategy-attracts p σ (attractor p K) K proof−
have strategy-attracts p (override-on σ σ1 (attractor p K − K)) (attractor p K) K

using strategy-attracts-irrelevant-override σ1 ‹strategy p σ› by blast
moreover have σ = override-on σ σ1 (attractor p K − K)

by (rule ext) (simp add: override-on-def σ-σ1)
ultimately show ?thesis by simp

qed

Show that σ is a winning strategy on V − W1.
have ∀ v ∈ V − W1 . winning-strategy p σ v proof (intro ballI winning-strategyI)

fix v P assume P: v ∈ V − W1 vmc-path G P v p σ
interpret vmc-path G P v p σ using P(2) .

have lset P ⊆ V − W1
proof (induct rule: vmc-path-lset-induction-closed-subset)

fix v assume v ∈ V − W1 ¬deadend v v ∈ VV p
show σ v ∈ V − W1 ∪ {} proof (rule ccontr)

assume ¬?thesis
hence σ v ∈ W1

using ‹strategy p σ› ‹¬deadend v› ‹v ∈ VV p›
unfolding strategy-def by blast

hence v /∈ K using succ-works(2)[OF ‹v ∈ VV p›] ‹v ∈ V − W1 › σ-K by auto
moreover have v /∈ attractor p K − K proof

assume v ∈ attractor p K − K
hence σ v ∈ attractor p K

using attracted-strategy-step ‹strategy p σ› σ-attracts ‹¬deadend v› ‹v ∈ VV p›
attractor-set-base

by blast
thus False using ‹σ v ∈ W1 › ‹attractor p K ∩ W1 = {}› by blast

qed
moreover have v /∈ V ′ proof

assume v ∈ V ′

have σ2 v ∈ V G ′ proof (rule G ′.valid-strategy-in-V [of p σ2 v])
have v ∈ V G ′ using ‹V G ′ = V ′› ‹v ∈ V ′› by simp
thus ¬G ′.deadend v using G ′-no-deadends by blast
show G ′.strategy p σ2 using σ2 (1) ‹v ∈ V G ′› by blast
show v ∈ G ′.VV p using ‹v ∈ VV p› ‹G ′.VV p = V ′ ∩ VV p› ‹v ∈ V ′› by simp

qed
hence σ v ∈ V G ′ using ‹v ∈ V ′› σ-σ2 by simp
thus False using ‹V G ′ = V ′› ‹σ v ∈ W1 › V ′-def U-def by blast

qed
ultimately show False using ‹v ∈ V − W1 › V-decomp by blast

qed
next

fix v w assume v ∈ V − W1 ¬deadend v v ∈ VV p∗∗ v→w
show w ∈ V − W1 ∪ {}
proof (rule ccontr)

assume ¬?thesis

64

hence w ∈ W1 using ‹v→w› by blast
let ?σ = σW1 (v := w)
have winning-strategy p∗∗ σW1 w using ‹w ∈ W1 › σW1 (2) by blast
moreover have ¬(∃σ. strategy p∗∗ σ ∧ winning-strategy p∗∗ σ v)

using ‹v ∈ V − W1 › unfolding W1-def winning-region-def by blast
ultimately have winning-strategy p∗∗ ?σ w

using winning-strategy-updates[of p∗∗ σW1 w v w] σW1 (1) ‹v→w›
unfolding winning-region-def by blast

moreover have strategy p∗∗ ?σ using ‹v→w› σW1 (1) valid-strategy-updates by blast
ultimately have winning-strategy p∗∗ ?σ v

using strategy-extends-backwards-VVp[of v p∗∗ ?σ w]
‹v ∈ VV p∗∗› ‹v→w›

by auto
hence v ∈ W1 unfolding W1-def winning-region-def

using ‹strategy p∗∗ ?σ› ‹v ∈ V − W1 › by blast
thus False using ‹v ∈ V − W1 › by blast

qed
qed (insert P(1), simp-all)

This concludes the proof of lset P ⊆ V − W1.
hence lset P ⊆ attractor p K ∪ V ′ using V-decomp by blast

have ¬lfinite P
using no-deadends lfinite-lset maximal-ends-on-deadend[of P] P-maximal P-not-null lset-P-V
by blast

Every σ-conforming path starting in V − W1 is winning. We distinguish two cases:
1. P eventually stays in V ′. Then P is winning because σ2 is winning.
2. P visits K infinitely often. Then P is winning because of the priority of the nodes in

K.
show winning-path p P
proof (cases)

assume ∃n. lset (ldropn n P) ⊆ V ′

The first case: P eventually stays in V ′.
then obtain n where n: lset (ldropn n P) ⊆ V ′ by blast
define P ′ where P ′ = ldropn n P
hence lset P ′ ⊆ V ′ using n by blast
interpret vmc-path ′: vmc-path G ′ P ′ lhd P ′ p σ2 proof

show ¬lnull P ′ unfolding P ′-def
using ‹¬lfinite P› lfinite-ldropn lnull-imp-lfinite by blast

show G ′.valid-path P ′ proof−
have valid-path P ′ unfolding P ′-def by simp
thus ?thesis using subgame-valid-path ‹lset P ′ ⊆ V ′› G ′-def by blast

qed
show G ′.maximal-path P ′ proof−

have maximal-path P ′ unfolding P ′-def by simp
thus ?thesis using subgame-maximal-path ‹lset P ′ ⊆ V ′› ‹V ′ ⊆ V › G ′-def by blast

qed
show G ′.path-conforms-with-strategy p P ′ σ2 proof−

65

have path-conforms-with-strategy p P ′ σ unfolding P ′-def by simp
hence path-conforms-with-strategy p P ′ σ2

using path-conforms-with-strategy-irrelevant-updates ‹lset P ′ ⊆ V ′› σ-σ2
by blast

thus ?thesis
using subgame-path-conforms-with-strategy ‹lset P ′ ⊆ V ′› ‹V ′ ⊆ V › G ′-def
by blast

qed
qed simp
have G ′.winning-strategy p σ2 (lhd P ′)

using ‹lset P ′ ⊆ V ′› vmc-path ′.P-not-null σ2 (2)[of lhd P ′] ‹V G ′ = V ′› llist.set-sel(1)
by blast

hence G ′.winning-path p P ′ using G ′.winning-strategy-def vmc-path ′.vmc-path-axioms by blast
moreover have G ′.VV p∗∗ ⊆ VV p∗∗ unfolding G ′-def using subgame-VV by simp
ultimately have winning-path p P ′

using G ′.winning-path-supergame[of p P ′ G] ‹ωG ′ = ω› ParityGame-axioms by blast
thus ?thesis

unfolding P ′-def
using infinite-small-llength[OF ‹¬lfinite P›]

winning-path-drop-add[of P p n] P-valid
by blast

next
assume asm: ¬(∃n. lset (ldropn n P) ⊆ V ′)

The second case: P visits K infinitely often. Then min-prio occurs infinitely often on P.
have min-prio ∈ path-inf-priorities P
unfolding path-inf-priorities-def proof (intro CollectI allI)

fix n
obtain k1 where k1 : ldropn n P $ k1 /∈ V ′ using asm by (metis lset-lnth subsetI)
define k2 where k2 = k1 + n
interpret vmc-path G ldropn k2 P P $ k2 p σ

using vmc-path-ldropn infinite-small-llength ‹¬lfinite P› by blast
have P $ k2 /∈ V ′ unfolding k2-def

using k1 lnth-ldropn infinite-small-llength[OF ‹¬lfinite P›] by simp
hence P $ k2 ∈ attractor p K using ‹¬lfinite P› ‹lset P ⊆ V − W1 ›

by (metis DiffI U-def V ′-def lset-nth-member-inf)
then obtain k3 where k3 : ldropn k2 P $ k3 ∈ K

using σ-attracts strategy-attractsE unfolding G ′.visits-via-def by blast
define k4 where k4 = k3 + k2
hence P $ k4 ∈ K

using k3 lnth-ldropn infinite-small-llength[OF ‹¬lfinite P›] by simp
moreover have k4 ≥ n unfolding k4-def k2-def

using le-add2 le-trans by blast
moreover have ldropn n P $ k4 − n = P $ (k4 − n) + n

using lnth-ldropn infinite-small-llength ‹¬lfinite P› by blast
ultimately have ldropn n P $ k4 − n ∈ K by simp
hence lset (ldropn n P) ∩ K 6= {}

using ‹¬lfinite P› lfinite-ldropn in-lset-conv-lnth[of ldropn n P $ k4 − n]
by blast

thus min-prio ∈ lset (ldropn n (lmap ω P)) unfolding K-def by auto
qed
thus ?thesis unfolding winning-path-def

66

using path-inf-priorities-at-least-min-prio[OF P-valid, folded min-prio-def]
‹winning-priority p min-prio› ‹¬lfinite P›

by blast
qed

qed
hence ∀ v ∈ V . ∃ p σ. strategy p σ ∧ winning-strategy p σ v

unfolding W1-def winning-region-def using ‹strategy p σ› by blast
hence ∃ p σ. strategy p σ ∧ winning-strategy p σ v using ‹v ∈ V › by simp
thus ?thesis unfolding winning-region-def using ‹v ∈ V › by blast

qed

12.2 Positional Determinacy without Deadends
theorem positional-strategy-exists-without-deadends:

assumes v ∈ V
∧

v. v ∈ V =⇒ ¬deadend v
shows ∃ p. v ∈ winning-region p
using assms ParityGame-axioms
by (induct card (ω ‘ V) arbitrary: G v rule: nat-less-induct)

(rule ParityGame.positional-strategy-induction-step, simp-all)

12.3 Positional Determinacy with Deadends

Prove a stronger version of the previous theorem: Allow deadends.
theorem positional-strategy-exists:

assumes v0 ∈ V
shows ∃ p. v0 ∈ winning-region p

proof−
{ fix p

define A where A = attractor p (deadends p∗∗)
assume v0-in-attractor : v0 ∈ attractor p (deadends p∗∗)
then obtain σ where σ: strategy p σ strategy-attracts p σ A (deadends p∗∗)

using attractor-has-strategy[of deadends p∗∗ p] A-def deadends-in-V by blast

have A ⊆ V using A-def using attractor-in-V deadends-in-V by blast
hence A − deadends p∗∗ ⊆ V by auto

have winning-strategy p σ v0 proof (unfold winning-strategy-def , intro allI impI)
fix P assume vmc-path G P v0 p σ
then interpret vmc-path G P v0 p σ .
show winning-path p P

using visits-deadend[of p∗∗] σ(2) strategy-attracts-lset v0-in-attractor
unfolding A-def by simp

qed
hence ∃ p σ. strategy p σ ∧ winning-strategy p σ v0 using σ by blast

} note lemma-path-to-deadend = this
define A where A p = attractor p (deadends p∗∗) for p

Remove the attractor sets of the sets of deadends.
define V ′ where V ′ = V − A Even − A Odd
hence V ′ ⊆ V by blast
show ?thesis proof (cases)

67

assume v0 ∈ V ′

define G ′ where G ′ = subgame V ′

interpret G ′: ParityGame G ′ unfolding G ′-def using subgame-ParityGame .
have V G ′ = V ′ unfolding G ′-def using ‹V ′ ⊆ V › by simp
hence v0 ∈ V G ′ using ‹v0 ∈ V ′› by simp
moreover have V ′-no-deadends:

∧
v. v ∈ V G ′ =⇒ ¬G ′.deadend v proof−

fix v assume v ∈ V G ′

moreover have V ′ = V − A Even − A Even∗∗ using V ′-def by simp
ultimately show ¬G ′.deadend v

using subgame-without-deadends ‹v ∈ V G ′› unfolding A-def G ′-def by blast
qed
ultimately obtain p σ where σ: G ′.strategy p σ G ′.winning-strategy p σ v0

using G ′.positional-strategy-exists-without-deadends
unfolding G ′.winning-region-def
by blast

have V ′-no-deadends ′:
∧

v. v ∈ V ′ =⇒ ¬deadend v proof−
fix v assume v ∈ V ′

hence ¬G ′.deadend v using V ′-no-deadends ‹V ′ ⊆ V › unfolding G ′-def by auto
thus ¬deadend v unfolding G ′-def using ‹V ′ ⊆ V › by auto

qed

obtain σ-attr
where σ-attr : strategy p σ-attr strategy-attracts p σ-attr (A p) (deadends p∗∗)
using attractor-has-strategy[OF deadends-in-V] unfolding A-def by blast

define σ ′ where σ ′ = override-on σ σ-attr (A Even ∪ A Odd)
have σ ′-is-σ-on-V ′:

∧
v. v ∈ V ′ =⇒ σ ′ v = σ v

unfolding V ′-def σ ′-def A-def by (cases p) simp-all

have strategy p σ ′ proof−
have σ ′ = override-on σ-attr σ (UNIV − A Even − A Odd)

unfolding σ ′-def override-on-def by (rule ext) simp
moreover have strategy p (override-on σ-attr σ V ′)

using valid-strategy-supergame σ-attr(1) σ(1) V ′-no-deadends ‹V G ′ = V ′›
unfolding G ′-def by blast

ultimately show ?thesis by (simp add: valid-strategy-only-in-V V ′-def override-on-def)
qed
moreover have winning-strategy p σ ′ v0 proof (rule winning-strategyI , rule ccontr)

fix P assume vmc-path G P v0 p σ ′

then interpret vmc-path G P v0 p σ ′ .
interpret vmc-path-no-deadend G P v0 p σ ′

using V ′-no-deadends ′ ‹v0 ∈ V ′› by unfold-locales
assume contra: ¬winning-path p P

have lset P ⊆ V ′ proof (induct rule: vmc-path-lset-induction-closed-subset)
fix v assume v ∈ V ′ ¬deadend v v ∈ VV p
hence v ∈ G ′.VV p unfolding G ′-def by (simp add: ‹v ∈ V ′›)
moreover have ¬G ′.deadend v using V ′-no-deadends ‹v ∈ V ′› ‹V G ′ = V ′› by blast
moreover have G ′.strategy p σ ′

using G ′.valid-strategy-only-in-V σ ′-def σ ′-is-σ-on-V ′ σ(1) ‹V G ′ = V ′› by auto
ultimately show σ ′ v ∈ V ′ ∪ A p using subgame-strategy-stays-in-subgame

unfolding G ′-def by blast

68

next
fix v w assume v ∈ V ′ ¬deadend v v ∈ VV p∗∗ v→w
have w /∈ A p∗∗ proof

assume w ∈ A p∗∗
hence v ∈ A p∗∗ unfolding A-def

using ‹v ∈ VV p∗∗› ‹v→w› attractor-set-VVp by blast
thus False using ‹v ∈ V ′› unfolding V ′-def by (cases p) auto

qed
thus w ∈ V ′ ∪ A p unfolding V ′-def using ‹v→w› by (cases p) auto

next
show lset P ∩ A p = {} proof (rule ccontr)

assume lset P ∩ A p 6= {}
have strategy-attracts p (override-on σ ′ σ-attr (A p − deadends p∗∗))

(A p)
(deadends p∗∗)

using strategy-attracts-irrelevant-override[OF σ-attr(2) σ-attr(1) ‹strategy p σ ′›]
by blast

moreover have override-on σ ′ σ-attr (A p − deadends p∗∗) = σ ′

by (rule ext, unfold σ ′-def , cases p) (simp-all add: override-on-def)
ultimately have strategy-attracts p σ ′ (A p) (deadends p∗∗) by simp
hence lset P ∩ deadends p∗∗ 6= {}

using ‹lset P ∩ A p 6= {}› attracted-path[OF deadends-in-V] by simp
thus False using contra visits-deadend[of p∗∗] by simp

qed
qed (insert ‹v0 ∈ V ′›)

then interpret vmc-path G ′ P v0 p σ ′

unfolding G ′-def using subgame-path-vmc-path[OF ‹V ′ ⊆ V ›] by blast
have G ′.path-conforms-with-strategy p P σ proof−

have
∧

v. v ∈ lset P =⇒ σ ′ v = σ v
using σ ′-is-σ-on-V ′ ‹V G ′ = V ′› lset-P-V by blast

thus G ′.path-conforms-with-strategy p P σ
using P-conforms G ′.path-conforms-with-strategy-irrelevant-updates by blast

qed
then interpret vmc-path G ′ P v0 p σ using conforms-to-another-strategy by blast
have G ′.winning-path p P

using σ(2)[unfolded G ′.winning-strategy-def] vmc-path-axioms by blast
from ‹¬winning-path p P›

G ′.winning-path-supergame[OF this ParityGame-axioms, unfolded G ′-def]
subgame-VV-subset[of p∗∗ V ′]
subgame-ω[of V ′]

show False by blast
qed
ultimately show ?thesis unfolding winning-region-def using ‹v0 ∈ V › by blast

next
assume v0 /∈ V ′

then obtain p where v0 ∈ attractor p (deadends p∗∗)
unfolding V ′-def A-def using ‹v0 ∈ V › by blast

thus ?thesis unfolding winning-region-def
using lemma-path-to-deadend ‹v0 ∈ V › by blast

qed
qed

69

12.4 The Main Theorem: Positional Determinacy

Prove the main theorem: The winning regions of player Even and Odd are a partition of
the set of nodes V.
theorem partition-into-winning-regions:

shows V = winning-region Even ∪ winning-region Odd
and winning-region Even ∩ winning-region Odd = {}

proof
show V ⊆ winning-region Even ∪ winning-region Odd

by (rule subsetI) (metis (full-types) Un-iff other-other-player positional-strategy-exists)
next

show winning-region Even ∪ winning-region Odd ⊆ V
by (rule subsetI) (meson Un-iff subsetCE winning-region-in-V)

next
show winning-region Even ∩ winning-region Odd = {}

using winning-strategy-only-for-one-player [of Even]
unfolding winning-region-def by auto

qed

end — context ParityGame

end

13 Defining the Attractor with inductive_set

theory AttractorInductive
imports

Main
Attractor

begin

context ParityGame begin

In section 6 we defined attractor manually via lfp. We can also define it with inductive_set.
In this section, we do exactly this and prove that the new definition yields the same set as
the old definition.

13.1 attractor-inductive

The attractor set of a given set of nodes, defined inductively.
inductive-set attractor-inductive :: Player ⇒ ′a set ⇒ ′a set

for p :: Player and W :: ′a set where
Base [intro!]: v ∈ W =⇒ v ∈ attractor-inductive p W
| VVp: [[v ∈ VV p; ∃w. v→w ∧ w ∈ attractor-inductive p W]]

=⇒ v ∈ attractor-inductive p W
| VVpstar : [[v ∈ VV p∗∗; ¬deadend v; ∀w. v→w −→ w ∈ attractor-inductive p W]]

=⇒ v ∈ attractor-inductive p W

We show that the inductive definition and the definition via least fixed point are the same.

70

lemma attractor-inductive-is-attractor :
assumes W ⊆ V
shows attractor-inductive p W = attractor p W

proof
show attractor-inductive p W ⊆ attractor p W proof

fix v assume v ∈ attractor-inductive p W
thus v ∈ attractor p W proof (induct rule: attractor-inductive.induct)

case (Base v) thus ?case using attractor-set-base by auto
next

case (VVp v) thus ?case using attractor-set-VVp by auto
next

case (VVpstar v) thus ?case using attractor-set-VVpstar by auto
qed

qed
show attractor p W ⊆ attractor-inductive p W
proof−

define P where P S ←→ S ⊆ attractor-inductive p W for S
from ‹W ⊆ V › have P (attractor p W) proof (induct rule: attractor-set-induction)

case (step S)
hence S ⊆ attractor-inductive p W using P-def by simp
have W ∪ S ∪ directly-attracted p S ⊆ attractor-inductive p W proof

fix v assume v ∈ W ∪ S ∪ directly-attracted p S
moreover
{ assume v ∈ W hence v ∈ attractor-inductive p W by blast }
moreover
{ assume v ∈ S hence v ∈ attractor-inductive p W

by (meson ‹S ⊆ attractor-inductive p W › rev-subsetD) }
moreover
{ assume v-attracted: v ∈ directly-attracted p S

hence v ∈ V using ‹S ⊆ V › attractor-step-bounded-by-V by blast
hence v ∈ attractor-inductive p W proof (cases rule: VV-cases)

assume v ∈ VV p
hence ∃w. v→w ∧ w ∈ S using v-attracted directly-attracted-def by blast
hence ∃w. v→w ∧ w ∈ attractor-inductive p W

using ‹S ⊆ attractor-inductive p W › by blast
thus ?thesis by (simp add: ‹v ∈ VV p› attractor-inductive.VVp)

next
assume v ∈ VV p∗∗
hence ∗: ∀w. v→w −→ w ∈ S using v-attracted directly-attracted-def by blast
have ¬deadend v using v-attracted directly-attracted-def by blast
show ?thesis proof (rule ccontr)

assume v /∈ attractor-inductive p W
hence ∃w. v→w ∧ w /∈ attractor-inductive p W

by (metis attractor-inductive.VVpstar ‹v ∈ VV p∗∗› ‹¬deadend v›)
hence ∃w. v→w ∧ w /∈ S using ‹S ⊆ attractor-inductive p W › by (meson subsetCE)
thus False using ∗ by blast

qed
qed

}
ultimately show v ∈ attractor-inductive p W by (meson UnE)

qed
thus P (W ∪ S ∪ directly-attracted p S) using P-def by simp

71

qed (simp add: P-def Sup-least)
thus ?thesis using P-def by simp

qed
qed

end

end

14 Compatibility with the Graph Theory Package
theory Graph-TheoryCompatibility
imports

ParityGame
Graph-Theory.Digraph
Graph-Theory.Digraph-Isomorphism

begin

In this section, we show that our Digraph locale is compatible to the nomulti-digraph locale
from the graph theory package from the Archive of Formal Proofs.
For this, we will define two functions converting between the different types and show that
with these conversion functions the locales interpret each other. Together, this indicates
that our definition of digraph is reasonable.

14.1 To Graph Theory

We can easily convert our graphs into pre-digraph objects.
definition to-pre-digraph :: (′a, ′b) Graph-scheme ⇒ (′a, ′a × ′a) pre-digraph

where to-pre-digraph G ≡ (|
pre-digraph.verts = Graph.verts G,
pre-digraph.arcs = Graph.arcs G,
tail = fst,
head = snd
|)

With this conversion function, our Digraph locale contains the locale nomulti-digraph from
the graph theory package.
context Digraph begin
interpretation is-nomulti-digraph: nomulti-digraph to-pre-digraph G proof

fix e assume ∗: e ∈ pre-digraph.arcs (to-pre-digraph G)
show tail (to-pre-digraph G) e ∈ pre-digraph.verts (to-pre-digraph G)
by (metis ∗ edges-are-in-V (1) pre-digraph.ext-inject pre-digraph.surjective prod.collapse to-pre-digraph-def)

show head (to-pre-digraph G) e ∈ pre-digraph.verts (to-pre-digraph G)
by (metis ∗ edges-are-in-V (2) pre-digraph.ext-inject pre-digraph.surjective prod.collapse to-pre-digraph-def)

qed (simp add: arc-to-ends-def to-pre-digraph-def)
end

14.2 From Graph Theory

We can also convert in the other direction.

72

definition from-pre-digraph :: (′a, ′b) pre-digraph ⇒ ′a Graph
where from-pre-digraph G ≡ (|

Graph.verts = pre-digraph.verts G,
Graph.arcs = arcs-ends G
|)

context nomulti-digraph begin
interpretation is-Digraph: Digraph from-pre-digraph G proof−

{
fix v w assume (v,w) ∈ E from-pre-digraph G
then obtain e where e: e ∈ pre-digraph.arcs G tail G e = v head G e = w

unfolding from-pre-digraph-def by auto
hence (v,w) ∈ V from-pre-digraph G × V from-pre-digraph G

unfolding from-pre-digraph-def by auto
}
thus Digraph (from-pre-digraph G) by (simp add: Digraph.intro subrelI)

qed
end

14.3 Isomorphisms

We also show that our conversion functions make sense. That is, we show that they are
nearly inverses of each other. Unfortunately, from-pre-digraph irretrievably loses information
about the arcs, and only keeps tail/head intact, so the best we can get for this case is that
the back-and-forth converted graphs are isomorphic.
lemma graph-conversion-bij: G = from-pre-digraph (to-pre-digraph G)

unfolding to-pre-digraph-def from-pre-digraph-def arcs-ends-def arc-to-ends-def by auto

lemma (in nomulti-digraph) graph-conversion-bij2 : digraph-iso G (to-pre-digraph (from-pre-digraph
G))
proof−

define iso
where iso = (|

iso-verts = id :: ′a ⇒ ′a,
iso-arcs = arc-to-ends G,
iso-head = snd,
iso-tail = fst
|)

have inj-on (iso-verts iso) (pre-digraph.verts G) unfolding iso-def by auto
moreover have inj-on (iso-arcs iso) (pre-digraph.arcs G)

unfolding iso-def arc-to-ends-def by (simp add: arc-to-ends-def inj-onI no-multi-arcs)
moreover have ∀ a ∈ pre-digraph.arcs G.

iso-verts iso (tail G a) = iso-tail iso (iso-arcs iso a)
∧ iso-verts iso (head G a) = iso-head iso (iso-arcs iso a)
unfolding iso-def by (simp add: arc-to-ends-def)

ultimately have digraph-isomorphism iso
unfolding digraph-isomorphism-def using arc-to-ends-def wf-digraph-axioms by blast

moreover have to-pre-digraph (from-pre-digraph G) = app-iso iso G

73

unfolding to-pre-digraph-def from-pre-digraph-def iso-def app-iso-def by (simp-all add: arcs-ends-def)

ultimately show ?thesis unfolding digraph-iso-def by blast
qed

end

74

References

[1] Julian Bradfield and Colin Stirling. Modal mu-calculi. In Patrick Blackburn, Johan Van
Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in
Logic and Practical Reasoning, pages 721 – 756. Elsevier, 2007.

[2] Stephan Kreutzer. Logik, Spiele und Automaten. http://logic.las.tu-berlin.de/Teaching/
index.html, 2015. Lecture notes for a master’s course on mathematical logic and games
at Technische Universität Berlin (in German).

[3] Ralf Küsters. Memoryless determinacy of parity games. In Erich Grädel, Wolfgang
Thomas, and Thomas Wilke, editors, Automata, Logics, and Infinite Games, volume
2500 of Lecture Notes in Computer Science, pages 95–106. Springer, 2001.

[4] Andreas Lochbihler. Coinductive. Archive of Formal Proofs, February 2010. http:
//isa-afp.org/entries/Coinductive.shtml, Formal proof development.

[5] Wiesaw Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998.

75

http://logic.las.tu-berlin.de/Teaching/index.html
http://logic.las.tu-berlin.de/Teaching/index.html
http://isa-afp.org/entries/Coinductive.shtml
http://isa-afp.org/entries/Coinductive.shtml

	Introduction
	Formal Introduction
	Overview
	Technical Aspects

	Auxiliary Lemmas for Coinductive Lists
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lset
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 llength
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ltake
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ldropn
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lfinite
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lmap
	Notation

	Parity Games
	Basic definitions
	Graphs
	Valid Paths
	Maximal Paths
	Parity Games
	Sets of Deadends
	Subgames
	Priorities Occurring Infinitely Often
	Winning Condition
	Valid Maximal Paths

	Positional Strategies
	Definitions
	Strategy-Conforming Paths
	An Arbitrary Strategy
	Valid Strategies
	Conforming Strategies
	Greedy Conforming Path
	Valid Maximal Conforming Paths
	Valid Maximal Conforming Paths with One Edge
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lset Induction Schemas for Paths

	Attracting Strategies
	Paths Visiting a Set
	Attracting Strategy from a Single Node
	Attracting strategy from a set of nodes

	Attractor Sets
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 directly-attracted
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 attractor-step
	Basic Properties of an Attractor
	Attractor Set Extensions
	Removing an Attractor
	Attractor Set Induction

	Winning Strategies
	Deadends
	Extension Theorems

	Well-Ordered Strategy
	Strategies on a Path
	Eventually One Strategy

	Winning Regions
	Paths in Winning Regions
	Irrelevant Updates
	Extending Winning Regions

	Uniform Strategies
	A Uniform Attractor Strategy
	A Uniform Winning Strategy
	Extending Winning Regions

	Attractor Strategies
	Existence

	Positional Determinacy of Parity Games
	Induction Step
	Positional Determinacy without Deadends
	Positional Determinacy with Deadends
	The Main Theorem: Positional Determinacy

	Defining the Attractor with inductive_set
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 attractor-inductive

	Compatibility with the Graph Theory Package
	To Graph Theory
	From Graph Theory
	Isomorphisms

	Bibliography

