
Parikh’s theorem

Fabian Lehr

July 7, 2025

Abstract

In formal language theory, the Parikh image of a language L is the
set of multisets of the words in L: the order of letters becomes irrel-
evant, only the number of occurrences is relevant. Parikh’s Theorem
states that the Parikh image of a context-free language is the same as
the Parikh image of some regular language. This formalization closely
follows Pilling’s proof [1]: It describes a context-free language as a
minimal solution to a system of equations induced by a context free
grammar for this language. Then it is shown that there exists a min-
imal solution to this system which is regular, such that the regular
solution and the context-free language have the same Parikh image.

Contents
1 Regular language expressions 2

1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Basic lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Regular language expressions which evaluate to regular lan-

guages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Constant regular language expressions . . . . . . . . . . . . . 6

2 Parikh images 6
2.1 Definition and basic lemmas . . . . . . . . . . . . . . . . . . . 6
2.2 Monotonicity properties . . . . . . . . . . . . . . . . . . . . . 7
2.3 Ψ (A ∪B)∗ = Ψ A∗B∗ . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Ψ (E∗F )∗ = Ψ ({ε} ∪ E∗F ∗F ) . . . . . . . . . . . . . . . . . 8
2.5 A homogeneous-like property for regular language expressions 9
2.6 Extension of Arden’s lemma to Parikh images . . . . . . . . . 9
2.7 Equivalence class of languages with identical Parikh image . . 9

3 Context free grammars and systems of equations 10
3.1 Introduction of systems of equations . . . . . . . . . . . . . . 10
3.2 Partial solutions of systems of equations . . . . . . . . . . . . 11

1



3.3 CFLs as minimal solutions to systems of equations . . . . . . 12
3.4 Relation between the two types of systems of equations . . . 15

4 Pilling’s proof of Parikh’s theorem 16
4.1 Special representation of regular language expressions . . . . 17
4.2 Minimal solution for a single equation . . . . . . . . . . . . . 18
4.3 Minimal solution of the whole system of equations . . . . . . 19
4.4 Parikh’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . 21

1 Regular language expressions
theory Reg_Lang_Exp

imports
Regular−Sets.Regular_Exp

begin

1.1 Definition
We introduce regular language expressions which will be the building blocks
of the systems of equations defined later. Regular language expressions
can contain both constant languages and variable languages where variables
are natural numbers for simplicity. Given a valuation, i.e. an instantiation
of each variable with a language, the regular language expression can be
evaluated, yielding a language.
datatype ′a rlexp = Var nat

| Const ′a lang
| Union ′a rlexp ′a rlexp
| Concat ′a rlexp ′a rlexp
| Star ′a rlexp

type_synonym ′a valuation = nat ⇒ ′a lang

primrec eval :: ′a rlexp ⇒ ′a valuation ⇒ ′a lang where
eval (Var n) v = v n |
eval (Const l) _ = l |
eval (Union f g) v = eval f v ∪ eval g v |
eval (Concat f g) v = eval f v @@ eval g v |
eval (Star f ) v = star (eval f v)

primrec vars :: ′a rlexp ⇒ nat set where
vars (Var n) = {n} |
vars (Const _) = {} |
vars (Union f g) = vars f ∪ vars g |
vars (Concat f g) = vars f ∪ vars g |
vars (Star f ) = vars f

Given some regular language expression, substituting each occurrence

2



of a variable i by the regular language expression s i yields the following
regular language expression:
primrec subst :: (nat ⇒ ′a rlexp) ⇒ ′a rlexp ⇒ ′a rlexp where

subst s (Var n) = s n |
subst _ (Const l) = Const l |
subst s (Union f g) = Union (subst s f ) (subst s g) |
subst s (Concat f g) = Concat (subst s f ) (subst s g) |
subst s (Star f ) = Star (subst s f )

1.2 Basic lemmas
lemma substitution_lemma:

assumes ∀ i. v ′ i = eval (upd i) v
shows eval (subst upd f ) v = eval f v ′

〈proof 〉

lemma substitution_lemma_upd:
eval (subst (Var(x := f ′)) f ) v = eval f (v(x := eval f ′ v))
〈proof 〉

lemma subst_id: eval (subst Var f ) v = eval f v
〈proof 〉

lemma vars_subst: vars (subst upd f ) = (
⋃

x ∈ vars f . vars (upd x))
〈proof 〉

lemma vars_subst_upd_upper : vars (subst (Var(x := fx)) f ) ⊆ vars f − {x} ∪
vars fx
〈proof 〉

lemma eval_vars:
assumes ∀ i ∈ vars f . s i = s ′ i
shows eval f s = eval f s ′

〈proof 〉

lemma eval_vars_subst:
assumes ∀ i ∈ vars f . v i = eval (upd i) v
shows eval (subst upd f ) v = eval f v
〈proof 〉

eval f is monotone:
lemma rlexp_mono:

assumes ∀ i ∈ vars f . v i ⊆ v ′ i
shows eval f v ⊆ eval f v ′

〈proof 〉

3



1.3 Continuity
lemma lang_pow_mono:

fixes A :: ′a lang
assumes A ⊆ B
shows A ^^ n ⊆ B ^^ n
〈proof 〉

lemma rlexp_cont_aux1 :
assumes ∀ i. v i ≤ v (Suc i)

and w ∈ (
⋃

i. eval f (v i))
shows w ∈ eval f (λx.

⋃
i. v i x)

〈proof 〉

lemma langpow_Union_eval:
assumes ∀ i. v i ≤ v (Suc i)

and w ∈ (
⋃

i. eval f (v i)) ^^ n
shows w ∈ (

⋃
i. eval f (v i) ^^ n)

〈proof 〉

lemma rlexp_cont_aux2 :
assumes ∀ i. v i ≤ v (Suc i)

and w ∈ eval f (λx.
⋃

i. v i x)
shows w ∈ (

⋃
i. eval f (v i))

〈proof 〉

Now we prove that eval f is continuous. This result is not needed in the
further proof, but it is interesting anyway:
lemma rlexp_cont:

assumes ∀ i. v i ≤ v (Suc i)
shows eval f (λx.

⋃
i. v i x) = (

⋃
i. eval f (v i))

〈proof 〉

1.4 Regular language expressions which evaluate to regular
languages

Evaluating regular language expressions can yield non-regular languages
even if the valuation maps each variable to a regular language. This is
because Const may introduce non-regular languages. We therefore define
the following predicate which guarantees that a regular language expres-
sion f yields a regular language if the valuation maps all variables occurring
in f to some regular language. This is achieved by only allowing regular
languages as constants. However, note that this predicate is just an under-
approximation, i.e. there exist regular language expressions which do not
satisfy this predicate but evaluate to regular languages anyway.
fun reg_eval :: ′a rlexp ⇒ bool where

reg_eval (Var _) ←→ True |
reg_eval (Const l) ←→ regular_lang l |

4



reg_eval (Union f g) ←→ reg_eval f ∧ reg_eval g |
reg_eval (Concat f g) ←→ reg_eval f ∧ reg_eval g |
reg_eval (Star f ) ←→ reg_eval f

lemma emptyset_regular : reg_eval (Const {})
〈proof 〉

lemma epsilon_regular : reg_eval (Const {[]})
〈proof 〉

If the valuation v maps all variables occurring in the regular language
expression f to a regular language, then evaluating f again yields a regular
language:
lemma reg_eval_regular :

assumes reg_eval f
and

∧
n. n ∈ vars f =⇒ regular_lang (v n)

shows regular_lang (eval f v)
〈proof 〉

A reg_eval regular language expression stays reg_eval if all variables are
substituted by reg_eval regular language expressions:
lemma subst_reg_eval:

assumes reg_eval f
and ∀ x ∈ vars f . reg_eval (upd x)

shows reg_eval (subst upd f )
〈proof 〉

lemma subst_reg_eval_update:
assumes reg_eval f

and reg_eval g
shows reg_eval (subst (Var(x := g)) f )
〈proof 〉

For any finite union of reg_eval regular language expressions exists a
reg_eval regular language expression:
lemma finite_Union_regular_aux:
∀ f ∈ set fs. reg_eval f =⇒ ∃ g. reg_eval g ∧

⋃
(vars ‘ set fs) = vars g

∧ (∀ v. (
⋃

f ∈ set fs. eval f v) = eval g v)
〈proof 〉

lemma finite_Union_regular :
assumes finite F

and ∀ f ∈ F . reg_eval f
shows ∃ g. reg_eval g ∧

⋃
(vars ‘ F) = vars g ∧ (∀ v. (

⋃
f∈F . eval f v) = eval

g v)
〈proof 〉

5



1.5 Constant regular language expressions
We call a regular language expression constant if it contains no variables. A
constant regular language expression always evaluates to the same language,
independent on the valuation. Thus, if the constant regular language ex-
pression is reg_eval, then it evaluates to some regular language, independent
on the valuation.
abbreviation const_rlexp :: ′a rlexp ⇒ bool where

const_rlexp f ≡ vars f = {}

lemma const_rlexp_lang: const_rlexp f =⇒ ∃ l. ∀ v. eval f v = l
〈proof 〉

lemma const_rlexp_regular_lang:
assumes const_rlexp f

and reg_eval f
shows ∃ l. regular_lang l ∧ (∀ v. eval f v = l)
〈proof 〉

end

2 Parikh images
theory Parikh_Img

imports
Reg_Lang_Exp
HOL−Library.Multiset

begin

2.1 Definition and basic lemmas
The Parikh vector of a finite word describes how often each symbol of the
alphabet occurs in the word. We represent parikh vectors by multisets. The
Parikh image of a language L, denoted by Ψ L, is then the set of Parikh
vectors of all words in the language.
definition parikh_img :: ′a lang ⇒ ′a multiset set where

parikh_img L ≡ mset ‘ L

notation parikh_img (Ψ)

lemma parikh_img_Un [simp]: Ψ (L1 ∪ L2 ) = Ψ L1 ∪ Ψ L2
〈proof 〉

lemma parikh_img_UNION : Ψ (
⋃
(L ‘ I )) =

⋃
((λi. Ψ (L i)) ‘ I )

〈proof 〉

lemma parikh_img_conc: Ψ (L1 @@ L2 ) = { m1 + m2 | m1 m2 . m1 ∈ Ψ L1
∧ m2 ∈ Ψ L2 }

6



〈proof 〉

lemma parikh_img_commut: Ψ (L1 @@ L2 ) = Ψ (L2 @@ L1 )
〈proof 〉

2.2 Monotonicity properties
lemma parikh_img_mono: A ⊆ B =⇒ Ψ A ⊆ Ψ B
〈proof 〉

lemma parikh_conc_right_subset: Ψ A ⊆ Ψ B =⇒ Ψ (A @@ C ) ⊆ Ψ (B @@ C )
〈proof 〉

lemma parikh_conc_left_subset: Ψ A ⊆ Ψ B =⇒ Ψ (C @@ A) ⊆ Ψ (C @@ B)
〈proof 〉

lemma parikh_conc_subset:
assumes Ψ A ⊆ Ψ C

and Ψ B ⊆ Ψ D
shows Ψ (A @@ B) ⊆ Ψ (C @@ D)
〈proof 〉

lemma parikh_conc_right: Ψ A = Ψ B =⇒ Ψ (A @@ C ) = Ψ (B @@ C )
〈proof 〉

lemma parikh_conc_left: Ψ A = Ψ B =⇒ Ψ (C @@ A) = Ψ (C @@ B)
〈proof 〉

lemma parikh_pow_mono: Ψ A ⊆ Ψ B =⇒ Ψ (A ^^ n) ⊆ Ψ (B ^^ n)
〈proof 〉

lemma parikh_star_mono:
assumes Ψ A ⊆ Ψ B
shows Ψ (star A) ⊆ Ψ (star B)
〈proof 〉

lemma parikh_star_mono_eq:
assumes Ψ A = Ψ B
shows Ψ (star A) = Ψ (star B)
〈proof 〉

lemma parikh_img_subst_mono:
assumes ∀ i. Ψ (eval (A i) v) ⊆ Ψ (eval (B i) v)
shows Ψ (eval (subst A f ) v) ⊆ Ψ (eval (subst B f ) v)
〈proof 〉

lemma parikh_img_subst_mono_upd:

7



assumes Ψ (eval A v) ⊆ Ψ (eval B v)
shows Ψ (eval (subst (Var(x := A)) f ) v) ⊆ Ψ (eval (subst (Var(x := B)) f ) v)
〈proof 〉

lemma rlexp_mono_parikh:
assumes ∀ i ∈ vars f . Ψ (v i) ⊆ Ψ (v ′ i)
shows Ψ (eval f v) ⊆ Ψ (eval f v ′)
〈proof 〉

lemma rlexp_mono_parikh_eq:
assumes ∀ i ∈ vars f . Ψ (v i) = Ψ (v ′ i)
shows Ψ (eval f v) = Ψ (eval f v ′)
〈proof 〉

2.3 Ψ (A ∪B)∗ = Ψ A∗B∗

This property is claimed by Pilling in [1] and will be needed later.
lemma parikh_img_union_pow_aux1 :

assumes v ∈ Ψ ((A ∪ B) ^^ n)
shows v ∈ Ψ (

⋃
i ≤ n. A ^^ i @@ B ^^ (n−i))

〈proof 〉

lemma parikh_img_star_aux1 :
assumes v ∈ Ψ (star (A ∪ B))
shows v ∈ Ψ (star A @@ star B)
〈proof 〉

lemma parikh_img_star_aux2 :
assumes v ∈ Ψ (star A @@ star B)
shows v ∈ Ψ (star (A ∪ B))
〈proof 〉

lemma parikh_img_star : Ψ (star (A ∪ B)) = Ψ (star A @@ star B)
〈proof 〉

2.4 Ψ (E∗F )∗ = Ψ ({ε} ∪ E∗F ∗F )

This property (where ε denotes the empty word) is claimed by Pilling as
well [1]; we will use it later.
lemma parikh_img_conc_pow: Ψ ((A @@ B) ^^ n) ⊆ Ψ (A ^^ n @@ B ^^ n)
〈proof 〉

lemma parikh_img_conc_star : Ψ (star (A @@ B)) ⊆ Ψ (star A @@ star B)
〈proof 〉

lemma parikh_img_conc_pow2 : Ψ ((A @@ B) ^^ Suc n) ⊆ Ψ (star A @@ star
B @@ B)

8



〈proof 〉

lemma parikh_img_star2_aux1 :
Ψ (star (star E @@ F)) ⊆ Ψ ({[]} ∪ star E @@ star F @@ F)
〈proof 〉

lemma parikh_img_star2_aux2 : Ψ (star E @@ star F @@ F) ⊆ Ψ (star (star E
@@ F))
〈proof 〉

lemma parikh_img_star2 : Ψ (star (star E @@ F)) = Ψ ({[]} ∪ star E @@ star
F @@ F)
〈proof 〉

2.5 A homogeneous-like property for regular language ex-
pressions

lemma rlexp_homogeneous_aux:
assumes v x = star Y @@ Z

shows Ψ (eval f v) ⊆ Ψ (star Y @@ eval f (v(x := Z )))
〈proof 〉

Now we can prove the desired homogeneous-like property which will
become useful later. Notably this property slightly differs from the property
claimed in [1]. However, our property is easier to prove formally and it
suffices for the rest of the proof.
lemma rlexp_homogeneous: Ψ (eval (subst (Var(x := Concat (Star y) z)) f ) v)

⊆ Ψ (eval (Concat (Star y) (subst (Var(x := z)) f )) v)
(is Ψ ?L ⊆ Ψ ?R)

〈proof 〉

2.6 Extension of Arden’s lemma to Parikh images

lemma parikh_img_arden_aux:
assumes Ψ (A @@ X ∪ B) ⊆ Ψ X
shows Ψ (A ^^ n @@ B) ⊆ Ψ X
〈proof 〉

lemma parikh_img_arden:
assumes Ψ (A @@ X ∪ B) ⊆ Ψ X
shows Ψ (star A @@ B) ⊆ Ψ X
〈proof 〉

2.7 Equivalence class of languages with identical Parikh im-
age

For a given language L, we define the equivalence class of all languages with
identical Parikh image:

9



definition parikh_img_eq_class :: ′a lang ⇒ ′a lang set where
parikh_img_eq_class L ≡ {L ′. Ψ L ′ = Ψ L}

lemma parikh_img_Union_class: Ψ A = Ψ (
⋃

(parikh_img_eq_class A))
〈proof 〉

lemma subseteq_comm_subseteq:
assumes Ψ A ⊆ Ψ B
shows A ⊆

⋃
(parikh_img_eq_class B) (is A ⊆ ?B ′)

〈proof 〉

end

3 Context free grammars and systems of equa-
tions

theory Reg_Lang_Exp_Eqns
imports

Parikh_Img
Context_Free_Grammar .Context_Free_Language

begin

In this section, we will first introduce two types of systems of equations.
Then we will show that to each CFG corresponds a system of equations
of the first type and that the language defined by the CFG is a minimal
solution of this systems. Lastly we prove some relations between the two
types of systems of equations.

3.1 Introduction of systems of equations
For the first type of systems, each equation is of the form

Xi ⊇ ri

For the second type of systems, each equation is of the form

Ψ Xi ⊇ Ψ ri

i.e. the Parikh image is applied on both sides of each equation. In both cases,
we represent the whole system by a list of regular language expressions where
each of the variables X0, X1, . . . is identified by its integer, i.e. Var i denotes
the variable X i. The i-th item of the list then represents the right-hand side
r i of the i-th equation:
type_synonym ′a eq_sys = ′a rlexp list

Now we can define what it means for a valuation v to solve a system of
equations of the first type, i.e. a system without Parikh images. Afterwards
we characterize minimal solutions of such a system.

10



definition solves_ineq_sys :: ′a eq_sys ⇒ ′a valuation ⇒ bool where
solves_ineq_sys sys v ≡ ∀ i < length sys. eval (sys ! i) v ⊆ v i

definition min_sol_ineq_sys :: ′a eq_sys ⇒ ′a valuation ⇒ bool where
min_sol_ineq_sys sys sol ≡
solves_ineq_sys sys sol ∧ (∀ sol ′. solves_ineq_sys sys sol ′ −→ (∀ x. sol x ⊆ sol ′

x))

The previous definitions can easily be extended to the second type of
systems of equations where the Parikh image is applied on both sides of
each equation:
definition solves_ineq_comm :: nat ⇒ ′a rlexp ⇒ ′a valuation ⇒ bool where

solves_ineq_comm x eq v ≡ Ψ (eval eq v) ⊆ Ψ (v x)

definition solves_ineq_sys_comm :: ′a eq_sys ⇒ ′a valuation ⇒ bool where
solves_ineq_sys_comm sys v ≡ ∀ i < length sys. solves_ineq_comm i (sys ! i) v

definition min_sol_ineq_sys_comm :: ′a eq_sys ⇒ ′a valuation ⇒ bool where
min_sol_ineq_sys_comm sys sol ≡

solves_ineq_sys_comm sys sol ∧
(∀ sol ′. solves_ineq_sys_comm sys sol ′ −→ (∀ x. Ψ (sol x) ⊆ Ψ (sol ′ x)))

Substitution into each equation of a system:
definition subst_sys :: (nat ⇒ ′a rlexp) ⇒ ′a eq_sys ⇒ ′a eq_sys where

subst_sys ≡ map ◦ subst

lemma subst_sys_subst:
assumes i < length sys
shows (subst_sys s sys) ! i = subst s (sys ! i)
〈proof 〉

3.2 Partial solutions of systems of equations
We introduce partial solutions, i.e. solutions which might depend on one or
multiple variables. They are therefore not represented as languages, but as
regular language expressions. sol is a partial solution of the x-th equation
if and only if it solves the equation independently on the values of the other
variables:
definition partial_sol_ineq :: nat ⇒ ′a rlexp ⇒ ′a rlexp ⇒ bool where

partial_sol_ineq x eq sol ≡ ∀ v. v x = eval sol v −→ solves_ineq_comm x eq v

We generalize the previous definition to partial solutions of whole sys-
tems of equations: sols maps each variable i to a regular language expression
representing the partial solution of the i-th equation. sols is then a partial
solution of the whole system if it satisfies the following predicate:
definition solution_ineq_sys :: ′a eq_sys ⇒ (nat ⇒ ′a rlexp) ⇒ bool where
solution_ineq_sys sys sols ≡ ∀ v. (∀ x. v x = eval (sols x) v) −→ solves_ineq_sys_comm

sys v

11



Given the x-th equation eq, sol is a minimal partial solution of this
equation if and only if

1. sol is a partial solution of eq

2. sol is a proper partial solution (i.e. it does not depend on x) and only
depends on variables occurring in the equation eq

3. no partial solution of the equation eq is smaller than sol

definition partial_min_sol_one_ineq :: nat ⇒ ′a rlexp ⇒ ′a rlexp ⇒ bool where
partial_min_sol_one_ineq x eq sol ≡

partial_sol_ineq x eq sol ∧
vars sol ⊆ vars eq − {x} ∧
(∀ sol ′ v ′. solves_ineq_comm x eq v ′ ∧ v ′ x = eval sol ′ v ′

−→ Ψ (eval sol v ′) ⊆ Ψ (v ′ x))

Given a whole system of equations sys, we can generalize the previous
definition such that sols is a minimal solution (possibly dependent on the
variables Xn, Xn+1, . . .) of the first n equations. Besides the three conditions
described above, we introduce a forth condition: sols i = Var i for i ≥ n,
i.e. sols assigns only spurious solutions to the equations which are not yet
solved:
definition partial_min_sol_ineq_sys :: nat ⇒ ′a eq_sys ⇒ (nat ⇒ ′a rlexp) ⇒
bool where

partial_min_sol_ineq_sys n sys sols ≡
solution_ineq_sys (take n sys) sols ∧
(∀ i ≥ n. sols i = Var i) ∧
(∀ i < n. ∀ x ∈ vars (sols i). x ≥ n ∧ x < length sys) ∧
(∀ sols ′ v ′. (∀ x. v ′ x = eval (sols ′ x) v ′)

∧ solves_ineq_sys_comm (take n sys) v ′

−→ (∀ i. Ψ (eval (sols i) v ′) ⊆ Ψ (v ′ i)))

If the Parikh image of two equations f and g is identical on all valuations,
then their minimal partial solutions are identical, too:
lemma same_min_sol_if_same_parikh_img:

assumes same_parikh_img: ∀ v. Ψ (eval f v) = Ψ (eval g v)
and same_vars: vars f − {x} = vars g − {x}
and minimal_sol: partial_min_sol_one_ineq x f sol

shows partial_min_sol_one_ineq x g sol
〈proof 〉

3.3 CFLs as minimal solutions to systems of equations

We show that each CFG induces a system of equations of the first type,
i.e. without Parikh images, such that each equation is reg_eval and the
CFG’s language is the minimal solution of the system. First, we describe
how to derive the system of equations from a CFG. This requires us to fix

12



some bijection between the variables in the system and the non-terminals
occurring in the CFG:
definition bij_Nt_Var :: ′n set ⇒ (nat ⇒ ′n) ⇒ ( ′n ⇒ nat) ⇒ bool where

bij_Nt_Var A γ γ ′ ≡ bij_betw γ {..< card A} A ∧ bij_betw γ ′ A {..< card A}
∧ (∀ x ∈ {..< card A}. γ ′ (γ x) = x) ∧ (∀ y ∈ A. γ (γ ′ y) = y)

lemma exists_bij_Nt_Var :
assumes finite A
shows ∃ γ γ ′. bij_Nt_Var A γ γ ′

〈proof 〉

locale CFG_eq_sys =
fixes P :: ( ′n, ′a) Prods
fixes S :: ′n
fixes γ :: nat ⇒ ′n
fixes γ ′ :: ′n ⇒ nat
assumes finite_P: finite P
assumes bij_γ_γ ′: bij_Nt_Var (Nts P) γ γ ′

begin

The following definitions construct a regular language expression for a
single production. This happens step by step, i.e. starting with a single
symbol (terminal or non-terminal) and then extending this to a single pro-
duction. The definitions closely follow the definitions inst_sym, concats and
inst_syms in Context_Free_Grammar .Context_Free_Language.
definition rlexp_sym :: ( ′n, ′a) sym ⇒ ′a rlexp where

rlexp_sym s = (case s of Tm a ⇒ Const {[a]} | Nt A ⇒ Var (γ ′ A))

definition rlexp_concats :: ′a rlexp list ⇒ ′a rlexp where
rlexp_concats fs = foldr Concat fs (Const {[]})

definition rlexp_syms :: ( ′n, ′a) syms ⇒ ′a rlexp where
rlexp_syms w = rlexp_concats (map rlexp_sym w)

Now it is shown that the regular language expression constructed for a
single production is reg_eval. Again, this happens step by step:
lemma rlexp_sym_reg: reg_eval (rlexp_sym s)
〈proof 〉

lemma rlexp_concats_reg:
assumes ∀ f ∈ set fs. reg_eval f

shows reg_eval (rlexp_concats fs)
〈proof 〉

lemma rlexp_syms_reg: reg_eval (rlexp_syms w)
〈proof 〉

The subsequent lemmas prove that all variables appearing in the regu-

13



lar language expression of a single production correspond to non-terminals
appearing in the production:
lemma rlexp_sym_vars_Nt:

assumes s (γ ′ A) = L A
shows vars (rlexp_sym (Nt A)) = {γ ′ A}
〈proof 〉

lemma rlexp_sym_vars_Tm: vars (rlexp_sym (Tm x)) = {}
〈proof 〉

lemma rlexp_concats_vars: vars (rlexp_concats fs) =
⋃
(vars ‘ set fs)

〈proof 〉

lemma insts ′_vars: vars (rlexp_syms w) ⊆ γ ′ ‘ nts_syms w
〈proof 〉

Evaluating the regular language expression of a single production under
a valuation corresponds to instantiating the non-terminals in the production
according to the valuation:
lemma rlexp_sym_inst_Nt:

assumes v (γ ′ A) = L A
shows eval (rlexp_sym (Nt A)) v = inst_sym L (Nt A)
〈proof 〉

lemma rlexp_sym_inst_Tm: eval (rlexp_sym (Tm a)) v = inst_sym L (Tm a)
〈proof 〉

lemma rlexp_concats_concats:
assumes length fs = length Ls

and ∀ i < length fs. eval (fs ! i) v = Ls ! i
shows eval (rlexp_concats fs) v = concats Ls

〈proof 〉

lemma rlexp_syms_insts:
assumes ∀A ∈ nts_syms w. v (γ ′ A) = L A

shows eval (rlexp_syms w) v = inst_syms L w
〈proof 〉

Each non-terminal of the CFG induces some reg_eval equation. We do
not directly construct the equation but only prove its existence:
lemma subst_lang_rlexp:
∃ eq. reg_eval eq ∧ vars eq ⊆ γ ′ ‘ Nts P

∧ (∀ v L. (∀A ∈ Nts P. v (γ ′ A) = L A) −→ eval eq v = subst_lang P L A)
〈proof 〉

The whole CFG induces a system of reg_eval equations. We first define
which conditions this system should fulfill and show its existence in the
second step:

14



abbreviation CFG_sys sys ≡
length sys = card (Nts P) ∧
(∀ i < card (Nts P). reg_eval (sys ! i) ∧ (∀ x ∈ vars (sys ! i). x < card (Nts

P))
∧ (∀ s L. (∀A ∈ Nts P. s (γ ′ A) = L A)
−→ eval (sys ! i) s = subst_lang P L (γ i)))

lemma CFG_as_eq_sys: ∃ sys. CFG_sys sys
〈proof 〉

As we have proved that each CFG induces a system of reg_eval equa-
tions, it remains to show that the CFG’s language is a minimal solution of
this system. The first lemma proves that the CFG’s language is a solution
and the next two lemmas prove that it is minimal:
abbreviation sol ≡ λi. if i < card (Nts P) then Lang_lfp P (γ i) else {}

lemma CFG_sys_CFL_is_sol:
assumes CFG_sys sys
shows solves_ineq_sys sys sol
〈proof 〉

lemma CFG_sys_CFL_is_min_aux:
assumes CFG_sys sys

and solves_ineq_sys sys sol ′
shows Lang_lfp P ≤ (λA. sol ′ (γ ′ A)) (is _ ≤ ?L ′)

〈proof 〉

lemma CFG_sys_CFL_is_min:
assumes CFG_sys sys

and solves_ineq_sys sys sol ′
shows sol x ⊆ sol ′ x

〈proof 〉

Lastly we combine all of the previous lemmas into the desired result of
this section, namely that each CFG induces a system of reg_eval equations
such that the CFG’s language is a minimal solution of the system:
lemma CFL_is_min_sol:
∃ sys. (∀ eq ∈ set sys. reg_eval eq) ∧ (∀ eq ∈ set sys. ∀ x ∈ vars eq. x < length

sys)
∧ min_sol_ineq_sys sys sol

〈proof 〉

end

3.4 Relation between the two types of systems of equations

One can simply convert a system sys of equations of the second type (i.e.
with Parikh images) into a system of equations of the first type by dropping

15



the Parikh images on both sides of each equation. The following lemmas
describe how the two systems are related to each other.

First of all, to any solution sol of sys exists a valuation whose Parikh im-
age is identical to that of sol and which is a solution of the other system (i.e.
the system obtained by dropping all Parikh images in sys). The following
proof explicitly gives such a solution, namely λx.

⋃
(parikh_img_eq_class

(sol x)), benefiting from the results of section 2.7:
lemma sol_comm_sol:

assumes sol_is_sol_comm: solves_ineq_sys_comm sys sol
shows ∃ sol ′. (∀ x. Ψ (sol x) = Ψ (sol ′ x)) ∧ solves_ineq_sys sys sol ′
〈proof 〉

The converse works similarly: Given a minimal solution sol of the sys-
tem sys of the first type, then sol is also a minimal solution to the system
obtained by converting sys into a system of the second type (which can be
achieved by applying the Parikh image on both sides of each equation):
lemma min_sol_min_sol_comm:

assumes min_sol_ineq_sys sys sol
shows min_sol_ineq_sys_comm sys sol

〈proof 〉

All minimal solutions of a system of the second type have the same
Parikh image:
lemma min_sol_comm_unique:

assumes sol1_is_min_sol: min_sol_ineq_sys_comm sys sol1
and sol2_is_min_sol: min_sol_ineq_sys_comm sys sol2

shows Ψ (sol1 x) = Ψ (sol2 x)
〈proof 〉

end

4 Pilling’s proof of Parikh’s theorem
theory Pilling

imports
Reg_Lang_Exp_Eqns

begin

We prove Parikh’s theorem, closely following Pilling’s proof [1]. The
rough idea is as follows: As seen in section 3.3, each CFG can be interpreted
as a system of reg_eval equations of the first type and we can easily convert
it into a system of the second type by applying the Parikh image on both
sides of each equation. Pilling now shows that there is a regular solution
to the latter system and that this solution is furthermore minimal. Using
the relations explored in section 3.4 we prove that the CFG’s language is a
minimal solution of the same sytem and hence that the Parikh image of the

16



CFG’s language and of the regular solution must be identical; this finishes
the proof of Parikh’s theorem.

Notably, while in [1] Pilling proves an auxiliary lemma first and applies
this lemma in the proof of the main theorem, we were able to complete the
whole proof without using the lemma.

4.1 Special representation of regular language expressions
To each reg_eval regular language expression and variable x corresponds a
second regular language expression with the same Parikh image and of the
form depicted in equation (3) in [1]. We call regular language expressions
of this form "bipartite regular language expressions" since they decompose
into two subexpressions where one of them contains the variable x and the
other one does not:
definition bipart_rlexp :: nat ⇒ ′a rlexp ⇒ bool where

bipart_rlexp x f ≡ ∃ p q. reg_eval p ∧ reg_eval q ∧
f = Union p (Concat q (Var x)) ∧ x /∈ vars p

All bipartite regular language expressions evaluate to regular languages.
Additionally, for each reg_eval regular language expression and variable x,
there exists a bipartite regular language expression with identical Parikh
image and almost identical set of variables. While the first proof is simple,
the second one is more complex and needs the results of the sections 2.3 and
2.4:
lemma bipart_rlexp x f =⇒ reg_eval f
〈proof 〉

lemma reg_eval_bipart_rlexp_Variable: ∃ f ′. bipart_rlexp x f ′ ∧ vars f ′ = vars
(Var y) ∪ {x}

∧ (∀ v. Ψ (eval (Var y) v) = Ψ (eval f ′ v))
〈proof 〉

lemma reg_eval_bipart_rlexp_Const:
assumes regular_lang l

shows ∃ f ′. bipart_rlexp x f ′ ∧ vars f ′ = vars (Const l) ∪ {x}
∧ (∀ v. Ψ (eval (Const l) v) = Ψ (eval f ′ v))

〈proof 〉

lemma reg_eval_bipart_rlexp_Union:
assumes ∃ f ′. bipart_rlexp x f ′ ∧ vars f ′ = vars f1 ∪ {x} ∧

(∀ v. Ψ (eval f1 v) = Ψ (eval f ′ v))
∃ f ′. bipart_rlexp x f ′ ∧ vars f ′ = vars f2 ∪ {x} ∧

(∀ v. Ψ (eval f2 v) = Ψ (eval f ′ v))
shows ∃ f ′. bipart_rlexp x f ′ ∧ vars f ′ = vars (Union f1 f2 ) ∪ {x} ∧

(∀ v. Ψ (eval (Union f1 f2 ) v) = Ψ (eval f ′ v))
〈proof 〉

17



lemma reg_eval_bipart_rlexp_Concat:
assumes ∃ f ′. bipart_rlexp x f ′ ∧ vars f ′ = vars f1 ∪ {x} ∧

(∀ v. Ψ (eval f1 v) = Ψ (eval f ′ v))
∃ f ′. bipart_rlexp x f ′ ∧ vars f ′ = vars f2 ∪ {x} ∧

(∀ v. Ψ (eval f2 v) = Ψ (eval f ′ v))
shows ∃ f ′. bipart_rlexp x f ′ ∧ vars f ′ = vars (Concat f1 f2 ) ∪ {x} ∧

(∀ v. Ψ (eval (Concat f1 f2 ) v) = Ψ (eval f ′ v))
〈proof 〉

lemma reg_eval_bipart_rlexp_Star :
assumes ∃ f ′. bipart_rlexp x f ′ ∧ vars f ′ = vars f ∪ {x}

∧ (∀ v. Ψ (eval f v) = Ψ (eval f ′ v))
shows ∃ f ′. bipart_rlexp x f ′ ∧ vars f ′ = vars (Star f ) ∪ {x}

∧ (∀ v. Ψ (eval (Star f ) v) = Ψ (eval f ′ v))
〈proof 〉

lemma reg_eval_bipart_rlexp: reg_eval f =⇒
∃ f ′. bipart_rlexp x f ′ ∧ vars f ′ = vars f ∪ {x} ∧

(∀ s. Ψ (eval f s) = Ψ (eval f ′ s))
〈proof 〉

4.2 Minimal solution for a single equation
The aim is to prove that every system of reg_eval equations of the sec-
ond type has some minimal solution which is reg_eval. In this section, we
prove this property only for the case of a single equation. First we assume
that the equation is bipartite but later in this section we will abandon this
assumption.
locale single_bipartite_eq =

fixes x :: nat
fixes p :: ′a rlexp
fixes q :: ′a rlexp
assumes p_reg: reg_eval p
assumes q_reg: reg_eval q
assumes x_not_in_p: x /∈ vars p

begin

The equation and the minimal solution look as follows. Here, x describes
the variable whose solution is to be determined. In the subsequent lemmas,
we prove that the solution is reg_eval and fulfills each of the three conditions
of the predicate partial_min_sol_one_ineq. In particular, we will use the
lemmas of the sections 2.5 and 2.6 here:
abbreviation eq ≡ Union p (Concat q (Var x))
abbreviation sol ≡ Concat (Star (subst (Var(x := p)) q)) p

lemma sol_is_reg: reg_eval sol
〈proof 〉

18



lemma sol_vars: vars sol ⊆ vars eq − {x}
〈proof 〉

lemma sol_is_sol_ineq: partial_sol_ineq x eq sol
〈proof 〉

lemma sol_is_minimal:
assumes is_sol: solves_ineq_comm x eq v

and sol ′_s: v x = eval sol ′ v
shows Ψ (eval sol v) ⊆ Ψ (v x)

〈proof 〉

In summary, sol is a minimal partial solution and it is reg_eval:
lemma sol_is_minimal_reg_sol:

reg_eval sol ∧ partial_min_sol_one_ineq x eq sol
〈proof 〉

end

As announced at the beginning of this section, we now extend the previ-
ous result to arbitrary equations, i.e. we show that each reg_eval equation
has some minimal partial solution which is reg_eval:
lemma exists_minimal_reg_sol:

assumes eq_reg: reg_eval eq
shows ∃ sol. reg_eval sol ∧ partial_min_sol_one_ineq x eq sol
〈proof 〉

4.3 Minimal solution of the whole system of equations
In this section we will extend the last section’s result to whole systems of
reg_eval equations. For this purpose, we will show by induction on r that
the first r equations have some minimal partial solution which is reg_eval.

We start with the centerpiece of the induction step: If a reg_eval and
minimal partial solution sols exists for the first r equations and furthermore
a reg_eval and minimal partial solution sol_r exists for the r-th equation,
then there exists a reg_eval and minimal partial solution for the first Suc r
equations as well.
locale min_sol_induction_step =

fixes r :: nat
and sys :: ′a eq_sys
and sols :: nat ⇒ ′a rlexp
and sol_r :: ′a rlexp

assumes eqs_reg: ∀ eq ∈ set sys. reg_eval eq
and sys_valid: ∀ eq ∈ set sys. ∀ x ∈ vars eq. x < length sys
and r_valid: r < length sys
and sols_is_sol: partial_min_sol_ineq_sys r sys sols
and sols_reg: ∀ i. reg_eval (sols i)

19



and sol_r_is_sol: partial_min_sol_one_ineq r (subst_sys sols sys ! r) sol_r
and sol_r_reg: reg_eval sol_r

begin

Throughout the proof, a modified system of equations will be occasion-
ally used to simplify the proof; this modified system is obtained by substi-
tuting the partial solutions of the first r equations into the original system.
Additionally we retrieve a partial solution for the first Suc r equations -
named sols ′ - by substituting the partial solution of the r-th equation into
the partial solutions of each of the first r equations:
abbreviation sys ′ ≡ subst_sys sols sys
abbreviation sols ′ ≡ λi. subst (Var(r := sol_r)) (sols i)

lemma sols ′_r : sols ′ r = sol_r
〈proof 〉

The next lemmas show that sols ′ is still reg_eval and that it complies
with each of the four conditions defined by the predicate partial_min_sol_ineq_sys:
lemma sols ′_reg: ∀ i. reg_eval (sols ′ i)
〈proof 〉

lemma sols ′_is_sol: solution_ineq_sys (take (Suc r) sys) sols ′

〈proof 〉

lemma sols ′_min: ∀ sols2 v2 . (∀ x. v2 x = eval (sols2 x) v2 )
∧ solves_ineq_sys_comm (take (Suc r) sys) v2
−→ (∀ i. Ψ (eval (sols ′ i) v2 ) ⊆ Ψ (v2 i))

〈proof 〉

lemma sols ′_vars_gt_r : ∀ i ≥ Suc r . sols ′ i = Var i
〈proof 〉

lemma sols ′_vars_leq_r : ∀ i < Suc r . ∀ x ∈ vars (sols ′ i). x ≥ Suc r ∧ x < length
sys
〈proof 〉

In summary, sols ′ is a minimal partial solution of the first Suc r equa-
tions. This allows us to prove the centerpiece of the induction step in the
next lemma, namely that there exists a reg_eval and minimal partial solu-
tion for the first Suc r equations:
lemma sols ′_is_min_sol: partial_min_sol_ineq_sys (Suc r) sys sols ′

〈proof 〉

lemma exists_min_sol_Suc_r :
∃ sols ′. partial_min_sol_ineq_sys (Suc r) sys sols ′ ∧ (∀ i. reg_eval (sols ′ i))
〈proof 〉

end

20



Now follows the actual induction proof: For every r, there exists a reg_eval
and minimal partial solution of the first r equations. This then implies that
there exists a regular and minimal (non-partial) solution of the whole sys-
tem:
lemma exists_minimal_reg_sol_sys_aux:

assumes eqs_reg: ∀ eq ∈ set sys. reg_eval eq
and sys_valid: ∀ eq ∈ set sys. ∀ x ∈ vars eq. x < length sys
and r_valid: r ≤ length sys

shows ∃ sols. partial_min_sol_ineq_sys r sys sols ∧ (∀ i. reg_eval
(sols i))
〈proof 〉

lemma exists_minimal_reg_sol_sys:
assumes eqs_reg: ∀ eq ∈ set sys. reg_eval eq

and sys_valid: ∀ eq ∈ set sys. ∀ x ∈ vars eq. x < length sys
shows ∃ sols. min_sol_ineq_sys_comm sys sols ∧ (∀ i. regular_lang

(sols i))
〈proof 〉

4.4 Parikh’s theorem
Finally we are able to prove Parikh’s theorem, i.e. that to each context free
language exists a regular language with identical Parikh image:
theorem Parikh:

assumes CFL (TYPE( ′n)) L
shows ∃L ′. regular_lang L ′ ∧ Ψ L = Ψ L ′

〈proof 〉

lemma singleton_set_mset_subset: fixes X Y :: ′a list set
assumes ∀ xs ∈ X . set xs ⊆ {a} mset ‘ X ⊆ mset ‘ Y
shows X ⊆ Y
〈proof 〉

lemma singleton_set_mset_eq: fixes X Y :: ′a list set
assumes ∀ xs ∈ X . set xs ⊆ {a} mset ‘ X = mset ‘ Y
shows X = Y
〈proof 〉

lemma derives_tms_syms_subset:
P ` α ⇒∗ γ =⇒ tms_syms γ ⊆ tms_syms α ∪ Tms P
〈proof 〉

Corollary: Every context-free language over a single letter is regular.
corollary CFL_1_Tm_regular :

assumes CFL (TYPE( ′n)) L and ∀w ∈ L. set w ⊆ {a}
shows regular_lang L
〈proof 〉

21



corollary CFG_1_Tm_regular :
assumes finite P Tms P = {a}
shows regular_lang (Lang P A)
〈proof 〉

no_notation parikh_img (Ψ)

end

References
[1] D. L. Pilling. Commutative regular equations and Parikh’s theorem.

Journal of the London Mathematical Society, s2-6(4):663–666, 1973.
https://doi.org/10.1112/jlms/s2-6.4.663.

22

https://doi.org/10.1112/jlms/s2-6.4.663

	Regular language expressions
	Definition
	Basic lemmas
	Continuity
	Regular language expressions which evaluate to regular languages
	Constant regular language expressions

	Parikh images
	Definition and basic lemmas
	Monotonicity properties
	 (A B)* =  A* B*
	 (E* F)* =  ({} E* F* F)
	A homogeneous-like property for regular language expressions
	Extension of Arden's lemma to Parikh images
	Equivalence class of languages with identical Parikh image

	Context free grammars and systems of equations
	Introduction of systems of equations
	Partial solutions of systems of equations
	CFLs as minimal solutions to systems of equations
	Relation between the two types of systems of equations

	Pilling's proof of Parikh's theorem
	Special representation of regular language expressions
	Minimal solution for a single equation
	Minimal solution of the whole system of equations
	Parikh's theorem


