
Parallel Shear Sort

Manuel Eberl and Peter Lammich

March 17, 2025

Abstract

This entry provides a formalisation of parallel shear sort, a comparison-
based sorting algorithm intended for highly parallel systems. It sorts
n elements in O(log n) steps, each of which involves sorting

√
n inde-

pendent lists of
√
n elements each.

If these smaller sort operations are done in parallel with a conven-
tional O(n log n) sorting algorithm, this leads to an overall work of
O(n log2(n)) and a span of O(

√
n log2(n)) – a considerable improve-

ment over conventional non-parallel sorting.

Contents
0.0.1 Facts about sorting . 2
0.0.2 Miscellaneous . 2

0.1 Auxiliary definitions . 2
0.2 Matrices . 3
0.3 Snake-wise sortedness . 5
0.4 Definition of the abstract algorithm 6

0.4.1 Sorting the rows . 7
0.4.2 Sorting the columns 7
0.4.3 Combining the two steps 8

0.5 Restriction to boolean matrices 8
0.5.1 Preliminary definitions 8
0.5.2 Shearsort steps ignore clean rows 10
0.5.3 Correctness of boolean shear sort 11

0.6 Shearsort commutes with monotone functions 13
0.7 Final correctness theorem . 14
0.8 Refinement to lists . 14

1

theory Parallel_Shear_Sort
imports Complex_Main "HOL-Library.Multiset" "HOL-Library.FuncSet" "HOL-Library.Log_Nat"

begin

0.0.1 Facts about sorting
lemma sort_map_mono: "mono f =⇒ sort (map f xs) = map f (sort xs)"
〈proof 〉

lemma sorted_boolE:
assumes "sorted xs" "length xs = w"
shows "∃ k≤w. xs = replicate k False @ replicate (w - k) True"

〈proof 〉

lemma rev_sorted_boolE:
assumes "sorted (rev xs)" "length xs = w"
shows "∃ k≤w. xs = replicate k True @ replicate (w - k) False"

〈proof 〉

0.0.2 Miscellaneous
lemma map_nth_shift:

assumes "length xs = b - a"
shows "map (λj. xs ! (j - a)) [a..<b] = xs"

〈proof 〉

0.1 Auxiliary definitions

The following predicate states that all elements of a list are equal to one
another.
definition all_same :: "’a list ⇒ bool"

where "all_same xs = (∃ x. set xs ⊆ {x})"

lemma all_same_replicate [intro]: "all_same (replicate n x)"
〈proof 〉

lemma all_same_altdef: "all_same xs ←→ xs = replicate (length xs) (hd
xs)"
〈proof 〉

lemma all_sameE:
assumes "all_same xs"
obtains n x where "xs = replicate n x"
〈proof 〉

The following predicate states that a list is sorted in ascending or descending
order, depending on the boolean flag.
definition sorted_asc_desc :: "bool ⇒ ’a :: linorder list ⇒ bool"

2

where "sorted_asc_desc asc xs = (if asc then sorted xs else sorted
(rev xs))"

Analogously, we define a sorting function that takes such a flag.
definition sort_asc_desc :: "bool ⇒ ’a :: linorder list ⇒ ’a list"

where "sort_asc_desc asc xs = (if asc then sort xs else rev (sort xs))"

lemma length_sort_asc_desc [simp]: "length (sort_asc_desc asc xs) = length
xs"
〈proof 〉

lemma mset_sort_asc_desc [simp]: "mset (sort_asc_desc asc xs) = mset
xs"
〈proof 〉

lemma sort_asc_desc_map_mono: "mono f =⇒ sort_asc_desc b (map f xs)
= map f (sort_asc_desc b xs)"
〈proof 〉

lemma sort_asc_desc_all_same: "all_same xs =⇒ sort_asc_desc asc xs
= xs"
〈proof 〉

0.2 Matrices

We represent matrices as functions mapping index pairs to elements. The
first index is the row, the second the column. For convenience, we also fix
explicit lower and upper bounds for the indices so that we can easily talk
about minors of a matrix (or “submatrices”). The lower bound is inclusive,
the upper bound exclusive.
type_synonym ’a mat = "nat × nat ⇒ ’a"

locale shearsort =
fixes lrow urow lcol ucol :: nat and dummy :: "’a :: linorder"
assumes lrow_le_urow: "lrow ≤ urow"
assumes lcol_le_ucol: "lcol ≤ ucol"

begin

The set of valid indices:
definition idxs :: "(nat × nat) set" where "idxs = {lrow..<urow} × {lcol..<ucol}"

The multiset of all entries in the matrix:
definition mset_mat :: "(nat × nat ⇒ ’b) ⇒ ’b multiset"

where "mset_mat m = image_mset m (mset_set idxs)"

The i -th row and j -th column of a matrix:
definition row :: "(nat × nat ⇒ ’b) ⇒ nat ⇒ ’b list"

3

where "row m i = map (λj. m (i, j)) [lcol..<ucol]"
definition col :: "(nat × nat ⇒ ’b) ⇒ nat ⇒ ’b list"

where "col m j = map (λi. m (i, j)) [lrow..<urow]"

lemma length_row [simp]: "length (row m i) = ucol - lcol"
and length_col [simp]: "length (col m i) = urow - lrow"
〈proof 〉

lemma nth_row [simp]: "j < ucol - lcol =⇒ row m i ! j = m (i, lcol
+ j)"
〈proof 〉

lemma set_row: "set (row m i) = (λj. m (i, j)) ‘ {lcol..<ucol}"
〈proof 〉

lemma set_col: "set (col m j) = (λi. m (i, j)) ‘ {lrow..<urow}"
〈proof 〉

lemma mset_row: "mset (row m i) = image_mset (λj. m (i, j)) (mset [lcol..<ucol])"
〈proof 〉

lemma mset_col: "mset (col m j) = image_mset (λi. m (i, j)) (mset [lrow..<urow])"
〈proof 〉

lemma nth_col [simp]: "i < urow - lrow =⇒ col m j ! i = m (lrow + i,
j)"
〈proof 〉

The following helps us to restrict a matrix operation to the valid indices.
Here, m is the original matrix and m’ the changed matrix that we obtained
after applying some operation on it.
definition restrict_mat :: "’a mat ⇒ ’a mat ⇒ ’a mat" where

"restrict_mat m m’ = (λij. if ij ∈ idxs then m’ ij else m ij)"

lemma row_restrict_mat [simp]:
"row (restrict_mat m m’) i = (if i ∈ {lrow..<urow} then row m’ i else

row m i)"
〈proof 〉

lemma col_restrict_mat [simp]:
"col (restrict_mat m m’) j = (if j ∈ {lcol..<ucol} then col m’ j else

col m j)"
〈proof 〉

The following lemmas allow us to prove that two matrices are equal by
showing that their rows (or columns) are the same.
lemma matrix_eqI_rows:

assumes "
∧

i. i ∈ {lrow..<urow} =⇒ row m1 i = row m2 i"
assumes "

∧
i j. (i, j) /∈ idxs =⇒ m1 (i, j) = m2 (i, j)"

4

shows "m1 = m2"
〈proof 〉

lemma matrix_eqI_cols:
assumes "

∧
j. j ∈ {lcol..<ucol} =⇒ col m1 j = col m2 j"

assumes "
∧

i j. (i, j) /∈ idxs =⇒ m1 (i, j) = m2 (i, j)"
shows "m1 = m2"
〈proof 〉

The following lemmas express the multiset of elements as a sum of rows (or
columns):
lemma mset_mat_conv_sum_rows: "mset_mat m = (

∑
i∈{lrow..<urow}. mset

(row m i))"
〈proof 〉

lemma mset_mat_conv_sum_cols: "mset_mat m = (
∑

j∈{lcol..<ucol}. mset
(col m j))"
〈proof 〉

Lastly, we define the transposition operation:
definition transpose_mat :: "((nat × nat) ⇒ ’a) ⇒ (nat × nat) ⇒ ’a"

where "transpose_mat m = (λ(i,j). m (j, i))"

lemma transpose_mat_apply: "transpose_mat m (j, i) = m (i, j)"
〈proof 〉

sublocale transpose: shearsort lcol ucol lrow urow
〈proof 〉

lemma row_transpose [simp]: "transpose.row (transpose_mat m) i = col
m i"

and col_transpose [simp]: "transpose.col (transpose_mat m) i = row m
i"
〈proof 〉

lemma in_transpose_idxs_iff: "(j, i) ∈ transpose.idxs ←→ (i, j) ∈
idxs"
〈proof 〉

0.3 Snake-wise sortedness

Next, we define snake-wise sortedness. For this, even-numbered rows must
be sorted ascendingly, the odd-numbered ones descendingly, etc. We will
show a nicer characterisation of this below.
definition snake_sorted :: "’a mat ⇒ bool" where

"snake_sorted m ←→
(∀ i∈{lrow..<urow}. sorted_asc_desc (even i) (row m i)) ∧

5

(∀ i i’ x y. lrow ≤ i ∧ i < i’ ∧ i’ < urow ∧ x ∈ set (row m i)
∧ y ∈ set (row m i’) −→ x ≤ y)"

Next, we define the list of elements encountered on the snake-like path
through the matrix, i.e. when traversing the matrix top to bottom, even-
numbered rows left-to-right and odd-numbered rows right-to-left.
context

fixes m :: "’a mat"
begin

function snake_aux :: "nat ⇒ ’a list" where
"snake_aux i =

(if i ≥ urow then [] else (if even i then row m i else rev (row
m i)) @ snake_aux (Suc i))"
〈proof 〉

termination 〈proof 〉

lemmas [simp del] = snake_aux.simps

definition snake :: "’a list"
where "snake = snake_aux lrow"

lemma mset_snake_aux: "mset (snake_aux lrow’) = (
∑

i∈{lrow’..<urow}.
mset (row m i))"
〈proof 〉

lemma set_snake_aux: "set (snake_aux lrow’) = (
⋃

i∈{lrow’..<urow}. set
(row m i))"
〈proof 〉

We can now show that snake-wise sortedness is equivalent to saying that
snake is sorted.
lemma sorted_snake_aux_iff:

"sorted (snake_aux lrow’) ←→
(∀ i∈{lrow’..<urow}. sorted_asc_desc (even i) (row m i)) ∧
(∀ i i’ x y. lrow’ ≤ i ∧ i < i’ ∧ i’ < urow ∧ x ∈ set (row m i)

∧ y ∈ set (row m i’) −→ x ≤ y)"
〈proof 〉

lemma sorted_snake_iff: "sorted snake ←→ snake_sorted m"
〈proof 〉

end

0.4 Definition of the abstract algorithm

We can now define shear sort on matrices. We will also show that the
multiset of elements is preserved.

6

0.4.1 Sorting the rows
definition step1 :: "’a mat ⇒ ’a mat" where

"step1 m = restrict_mat m (λ(i,j). sort_asc_desc (even i) (row m i)
! (j - lcol))"

lemma step1_outside [simp]: "z /∈ idxs =⇒ step1 m z = m z"
〈proof 〉

lemma row_step1:
"row (step1 m) i = (if i ∈ {lrow..<urow} then sort_asc_desc (even i)

(row m i) else row m i)"
〈proof 〉

lemma mset_mat_step1 [simp]: "mset_mat (step1 m) = mset_mat m"
〈proof 〉

0.4.2 Sorting the columns
definition step2 :: "’a mat ⇒ ’a mat" where

"step2 m = restrict_mat m (λ(i,j). sort (col m j) ! (i - lrow))"

lemma step2_outside [simp]: "z /∈ idxs =⇒ step2 m z = m z"
〈proof 〉

lemma col_step2: "col (step2 m) j = (if j ∈ {lcol..<ucol} then sort
(col m j) else col m j)"
〈proof 〉

lemma mset_mat_step2 [simp]: "mset_mat (step2 m) = mset_mat m"
〈proof 〉

lemma step2_height_le_1:
assumes "urow ≤ lrow + 1"
shows "step2 m = m"

〈proof 〉

We also show the alternative definiton of step2 involving transposition and
sorting rows:
definition step2’ :: "’a mat ⇒ ’a mat" where

"step2’ m = restrict_mat m (λ(i,j). sort (row m i) ! (j - lcol))"

lemma step2’_outside [simp]: "z /∈ idxs =⇒ step2’ m z = m z"
〈proof 〉

lemma row_step2’: "row (step2’ m) i = (if i ∈ {lrow..<urow} then sort
(row m i) else row m i)"
〈proof 〉

end

7

context shearsort
begin

lemma step2_altdef: "step2 m = transpose.transpose_mat (transpose.step2’
(transpose_mat m))"
〈proof 〉

0.4.3 Combining the two steps
definition step where "step = step2 ◦ step1"

lemma step_outside [simp]: "z /∈ idxs =⇒ step m z = m z"
〈proof 〉

lemma row_step_outside [simp]: "i /∈ {lrow..<urow} =⇒ row (step m) i
= row m i"
〈proof 〉

lemma mset_mat_step [simp]: "mset_mat (step m) = mset_mat m"
〈proof 〉

The overall algorithm now simply alternates between steps 1 and 2 suffi-
ciently often for the result to stabilise. We will show below that a logarithmic
number of steps suffices.
definition shearsort :: "’a mat ⇒ ’a mat" where

"shearsort = step ^^ (ceillog2 (urow - lrow) + 1)"

The preservation of the multiset of elements is very easy to show:
theorem mset_mat_shearsort [simp]: "mset_mat (shearsort m) = mset_mat
m"
〈proof 〉

end

0.5 Restriction to boolean matrices

To more towards the proof of sortedness, we first take a closer look at shear
sort on boolean matrices. Our ultimate goal is to show that shear sort
correctly sorts any boolean matrix in dlog2 he + 1 steps, where h is the
height of the matrix. By the 0–1 principle, this implies that shear sort
works on a matrix of any type.

0.5.1 Preliminary definitions

We first define predicates that tell us whether a list is all zeros (i.e. False)
or all ones (i.e. True). The significance of such lists is that we call all-zero

8

rows at the top of the matrix and all-one rows at the bottom “clean”, and we
will show that even in the worst case, the number of non-clean rows halves
in every step.
definition all0 :: "bool list ⇒ bool" where "all0 xs = (set xs ⊆ {False})"
definition all1 :: "bool list ⇒ bool" where "all1 xs = (set xs ⊆ {True})"

lemma all0_nth: "all0 xs =⇒ i < length xs =⇒ xs ! i = False"
and all1_nth: "all1 xs =⇒ i < length xs =⇒ xs ! i = True"
〈proof 〉

lemma all0_imp_all_same [dest]: "all0 xs =⇒ all_same xs"
and all1_imp_all_same [dest]: "all1 xs =⇒ all_same xs"
〈proof 〉

locale shearsort_bool =
fixes lrow urow lcol ucol :: nat
assumes lrow_le_urow: "lrow ≤ urow"
assumes lcol_le_ucol: "lcol ≤ ucol"

begin

sublocale shearsort lrow urow lcol ucol True
〈proof 〉

We say that a matrix m of height h has a clean decomposition of order n
if there are at most n non-clean rows, i.e. there exists a k such that m has
k lines that are all 0 at the top and h - n - k lines that are all 1 at the
bottom.
definition clean_decomp where

"clean_decomp n m ←→ (∃ k. lrow ≤ k ∧ k + n ≤ urow ∧
(∀ i∈{lrow..<k}. all0 (row m i)) ∧ (∀ i∈{k+n..<urow}. all1 (row m

i)))"

A matrix of height h trivially has a clean decomposition of order h.
lemma clean_decomp_initial: "clean_decomp (urow - lrow) m"
〈proof 〉

lemma all0_rowI:
assumes "i ∈ {lrow..<urow}" "

∧
j. j ∈ {lcol..<ucol} =⇒ ¬m (i, j)"

shows "all0 (row m i)"
〈proof 〉

lemma all1_rowI:
assumes "i ∈ {lrow..<urow}" "

∧
j. j ∈ {lcol..<ucol} =⇒ m (i, j)"

shows "all1 (row m i)"
〈proof 〉

The step2 function on boolean matrices has the following nice characterisa-

9

tion: step2 m has a 1 at position (i, j) iff the number of 0s in the column
j is at most i.
lemma step2_bool:

assumes "(i, j) ∈ idxs"
shows "step2 m (i, j) ←→ i ≥ lrow + size (count (mset (col m j))

False)"
〈proof 〉

end

0.5.2 Shearsort steps ignore clean rows

We now look at a at the matrix minor consisting of the n (possibly) non-
clean rows in the middle of a matrix with a clean decomposition of order
n. We call the new upper and lower index bounds for the rows lrow’ and
urow’.
locale sub_shearsort_bool = shearsort_bool +

fixes lrow’ urow’ :: nat and m :: "bool mat"
assumes subrows: "lrow ≤ lrow’" "lrow’ ≤ urow’" "urow’ ≤ urow"
assumes all0_first: "

∧
i. i ∈ {lrow..<lrow’} =⇒ all0 (row m i)"

assumes all1_last: "
∧

i. i ∈ {urow’..<urow} =⇒ all1 (row m i)"
begin

sublocale sub: shearsort_bool lrow’ urow’ lcol ucol
〈proof 〉

lemma idxs_subset: "sub.idxs ⊆ idxs"
〈proof 〉

It is easy to see that step1 does not touch the clean rows at all (i.e. it can
be seen as operating entirely on the minor):
lemma sub_step1: "sub.step1 m = step1 m"
〈proof 〉

Every column of the matrix has lrow’ - lrow 0s at the top and urow -
urow’ 1s at the bottom:
lemma col_conv_sub_col:

assumes "j ∈ {lcol..<ucol}"
shows "col m j = replicate (lrow’ - lrow) False @ sub.col m j @ replicate

(urow - urow’) True"
〈proof 〉

mset step2 preserves the clean rows at the bottom and top.
lemma all0_step2:

assumes "i ∈ {lrow..<lrow’}"
shows "all0 (row (step2 m) i)"

〈proof 〉

10

lemma all1_step2:
assumes "i ∈ {urow’..<urow}"
shows "all1 (row (step2 m) i)"

〈proof 〉

Consequently, step2 can also be seen as operating only on the minor.
lemma sub_step2: "sub.step2 m = step2 m"
〈proof 〉

Thus, the same holds for the combined shear sort step.
lemma sub_step: "sub.step m = step m"
〈proof 〉

end

0.5.3 Correctness of boolean shear sort

We are now ready for the final push. The main work in this section is to
show that if we run a single shear sort step on a matrix of height h, the
number of non-clean rows in the result is no greater than dh/2e.
Together with the fact from above that the step preserves clean rows and can
such be thought of as operating solely on the non-clean minor, this means
that the number of non-clean rows at least halves in every step, leading to
a matrix with at most one non-clean row after dlog2 he steps.
context shearsort_bool
begin

If we look at two rows, one of which is sorted in ascending order and one
in descending order, there exists a boolean value x such that every column
contains an x (i.e. for every column index j, at least one of the two rows has
an x at index j).
lemma clean_decomp_step2_aux:

fixes m :: "bool mat"
assumes "i ∈ {lrow..<urow}" "i’ ∈ {lrow..<urow}"
assumes "sorted (row m i)" "sorted (rev (row m i’))"
shows "∃ x. ∀ j∈{lcol..<ucol}. x ∈ {m (i, j), m (i’, j)}"

〈proof 〉

step1 leaves every even-numbered row in the matrix sorted in ascending
order and every odd-numbered row in descending order:
lemma sorted_asc_desc_row_step1:

"i ∈ {lrow..<urow} =⇒ sorted_asc_desc (even i) (row (step1 m) i)"
〈proof 〉

These two facts imply that applying step2 to such a matrix indeed leads to
at most dh/2e non-clean rows. The argument is as follows: we go through

11

the matrix top-to-bottom, grouping adjacent rows into pairs of two (ignoring
the last row if the matrix has odd height).
The above lemma proves that each such pair of rows either has a 1 in every
column or a 0 in every column. Thus, the maximum number k0 such that
every column contains at least k0 0s plus the maximum number k1 such that
every column contains at least k1 1s is at least bh/2c. Thus, after applying
step2, we have at least k0 all-zero rows at the top and at least k1 all-one
rows at the bottom, and therefore at least bh/2c clean lines in total.
lemma clean_decomp_step2:

assumes "
∧

i. i ∈ {lrow..<urow} =⇒ sorted_asc_desc (even i) (row m
i)"

shows "clean_decomp ((urow - lrow + 1) div 2) (step2 m)"
〈proof 〉

lemma clean_decomp_step_aux:
"clean_decomp ((urow - lrow + 1) div 2) (step m)"
〈proof 〉

We can now finally show that the number of non-clean rows halves in every
step:
lemma clean_decomp_step:

assumes "clean_decomp n m"
shows "clean_decomp ((n + 1) div 2) (step m)"

〈proof 〉

Moreover, if we have a matrix that has at most one non-clean row, applying
one last step of shear sort leads to a snake-sorted matrix. This is because

1. step1 leaves the clean rows untouched and sorts the non-clean row (if
it exists) in the correct order.

2. step2 leaves the clean parts of the columns untouched, and since the
non-clean part has height at most 1, it also leaves that part untouched.

lemma snake_sorted_step_final:
assumes "clean_decomp n m" and "n ≤ 1"
shows "snake_sorted (step m)"

〈proof 〉

It is now easy to show that shear sort is indeed correct for boolean matrices.
lemma snake_sorted_shearsort_bool: "snake_sorted (shearsort m)"
〈proof 〉

end

12

0.6 Shearsort commutes with monotone functions

To invoke the 0–1 principle, we must now prove that shear sort commutes
with monotone functions. We will only show it for functions that return
booleans, since that is all we need, but it could easily be shown the same
way for a more general result type as well.
context shearsort
begin

interpretation bool: shearsort_bool lrow urow lcol ucol
〈proof 〉

context
fixes f :: "’a ⇒ bool"

begin

lemma row_commute: "row (f ◦ m) i = map f (row m i)"
and col_commute: "col (f ◦ m) i = map f (col m i)"
〈proof 〉

lemma restrict_mat_commute:
assumes "

∧
i j. (i, j) ∈ idxs =⇒ f (m’ (i, j)) = fm’ (i, j)"

shows "bool.restrict_mat (f ◦ m) fm’ = f ◦ restrict_mat m m’"
〈proof 〉

lemma step1_mono_commute: "mono f =⇒ bool.step1 (f ◦ m) = f ◦ step1
m"
〈proof 〉

lemma step2_mono_commute: "mono f =⇒ bool.step2 (f ◦ m) = f ◦ step2
m"
〈proof 〉

lemma step_mono_commute: "mono f =⇒ bool.step (f ◦ m) = f ◦ step m"
〈proof 〉

lemma snake_aux_commute: "bool.snake_aux (f ◦ m) lrow’ = map f (snake_aux
m lrow’)"
〈proof 〉

lemma snake_commute: "bool.snake (f ◦ m) = map f (snake m)"
〈proof 〉

lemma shearsort_mono_commute:
assumes "mono f"
shows "bool.shearsort (f ◦ m) = f ◦ shearsort m"

〈proof 〉

end

13

0.7 Final correctness theorem

All that is left now is a routine application of the 0–1 principle.
theorem snake_sorted_shearsort: "snake_sorted (shearsort m)"
〈proof 〉

end

0.8 Refinement to lists

Next, we define a refinement of matrices to lists of lists and show the correct-
ness of the corresponding shear sort implementation. Note that this is not
useful as an actual implementation in practice since the fact that we have
to transpose the list of lists once in every step negates all the advantage of
having a parallel algorithm.
primrec step1_list :: "bool ⇒ ’a :: linorder list list ⇒ ’a list list"
where

"step1_list b [] = []"
| "step1_list b (xs # xss) = sort_asc_desc b xs # step1_list (¬b) xss"

definition step2_list :: "’a :: linorder list list ⇒ ’a list list"
where "step2_list xss =

(if xss = [] ∨ hd xss = [] then xss else transpose (map sort
(transpose xss)))"

definition shearsort_list :: "bool ⇒ ’a :: linorder list list ⇒ ’a list
list" where

"shearsort_list b xss = ((step2_list ◦ step1_list b) ^^ (ceillog2 (length
xss) + 1)) xss"

primrec snake_list :: "bool ⇒ ’a list list ⇒ ’a list" where
"snake_list asc [] = []"

| "snake_list asc (xs # xss) = (if asc then xs else rev xs) @ snake_list
(¬asc) xss"

lemma mset_snake_list: "mset (snake_list b xss) = mset (concat xss)"
〈proof 〉

definition (in shearsort) mat_of_list :: "’a list list ⇒ ’a mat"
where "mat_of_list xss = (λ(i,j). xss ! (i - lrow) ! (j - lcol))"

The following relator relates a matrix to a list of rows. It ensure that the
dimensions and the entries are the same.
definition (in shearsort) mat_list_rel :: "’a mat ⇒ ’a list list ⇒ bool"
where

"mat_list_rel m xss ←→
length xss = urow - lrow ∧ (∀ xs∈set xss. length xs = ucol - lcol)

∧

14

(∀ i j. i < urow - lrow ∧ j < ucol - lcol −→ xss ! i ! j = m (lrow
+ i, lcol + j))"

lemma (in shearsort) mat_list_rel_transpose [intro]:
assumes "mat_list_rel m xss" "xss 6= []"
shows "transpose.mat_list_rel (transpose_mat m) (transpose xss)"

〈proof 〉

lemma (in shearsort) mat_list_rel_row [intro]:
assumes "mat_list_rel m xss" "i ∈ {lrow..<urow}"
shows "row m i = xss ! (i - lrow)"
〈proof 〉

lemma (in shearsort) mat_list_rel_mset:
assumes "mat_list_rel m xss"
shows "mset_mat m = (

∑
xs←xss. mset xs)"

〈proof 〉

lemma (in shearsort) mat_list_rel_of_list:
assumes "length xss = urow - lrow" "

∧
xs. xs ∈ set xss =⇒ length xs

= ucol - lcol"
shows "mat_list_rel (mat_of_list xss) xss"
〈proof 〉

lemma (in shearsort) mset_mat_of_list:
assumes "length xss = urow - lrow" "

∧
xs. xs ∈ set xss =⇒ length xs

= ucol - lcol"
shows "mset_mat (mat_of_list xss) = (

∑
xs←xss. mset xs)"

〈proof 〉

context shearsort
begin

lemma mat_list_rel_col [intro]:
assumes "mat_list_rel m xss" "j ∈ {lcol..<ucol}" "xss 6= []"
shows "col m j = transpose xss ! (j - lcol)"
〈proof 〉

lemma length_step1_list [simp]: "length (step1_list b xss) = length xss"
〈proof 〉

lemma nth_step1_list:
"i < length xss =⇒ step1_list b xss ! i = sort_asc_desc (b = even i)

(xss ! i)"
〈proof 〉

lemma mat_list_rel_step1:
assumes "mat_list_rel m xss"

15

shows "mat_list_rel (step1 m) (step1_list (even lrow) xss)"
〈proof 〉

lemma mat_list_rel_step2:
assumes [intro]: "mat_list_rel m xss"
shows "mat_list_rel (step2 m) (step2_list xss)"

〈proof 〉

lemma mat_list_rel_step:
"mat_list_rel m xss =⇒ mat_list_rel (step m) (step2_list (step1_list

(even lrow) xss))"
〈proof 〉

lemma mat_list_rel_shearsort:
assumes "mat_list_rel m xss"
shows "mat_list_rel (shearsort m) (shearsort_list (even lrow) xss)"

〈proof 〉

lemma mat_list_rel_snake_aux:
assumes "mat_list_rel m xss" "lrow’ ∈ {lrow..urow}"
shows "snake_aux m lrow’ = snake_list (even lrow’) (drop (lrow’ -

lrow) xss)"
〈proof 〉

lemma mat_list_rel_snake:
assumes "mat_list_rel m xss"
shows "snake m = snake_list (even lrow) xss"
〈proof 〉

end

The final correctness theorem for shear sort on lists of lists:
theorem shearsort_list_correct:

assumes "
∧

xs. xs ∈ set xss =⇒ length xs = ncols"
shows "mset (concat (shearsort_list True xss)) = mset (concat xss)"

and "sorted (snake_list True (shearsort_list True xss))"
〈proof 〉

value "shearsort_list True [[5, 8, 2], [9, 1, 7], [3, 6, 4 :: int]]"

end

References

[1] S. Sen, I. D. Scherson, and A. Shamir. Shear sort: A true
two-dimensional sorting techniques for VLSI networks. In International
Conference on Parallel Processing, ICPP’86, University Park, PA,

16

USA, August 1986, pages 903–908. IEEE Computer Society Press,
1986.

17

	Facts about sorting
	Miscellaneous
	Auxiliary definitions
	Matrices
	Snake-wise sortedness
	Definition of the abstract algorithm
	Sorting the rows
	Sorting the columns
	Combining the two steps

	Restriction to boolean matrices
	Preliminary definitions
	Shearsort steps ignore clean rows
	Correctness of boolean shear sort

	Shearsort commutes with monotone functions
	Final correctness theorem
	Refinement to lists

