Formalization of a Framework for the Sound
Automation of Magic Wands

Thibault Dardinier

March 17, 2025

Abstract

The magic wand — (also called separating implication) is a separa-
tion logic [4] connective commonly used to specify properties of partial
data structures, for instance during iterative traversals. A footprint of
a magic wand formula A — B is a state that, combined with any state
in which A holds, yields a state in which B holds. The key challenge of
proving a magic wand (also called packaging a wand) is to find such a
footprint. Existing package algorithms either have a high annotation
overhead or are unsound.

In this entry, we formally define a framework for the sound automa-
tion of magic wands, described in a paper at CAV 2022 [2], and prove
that it is sound and complete. This framework, called the package
logic, precisely characterises a wide design space of possible package
algorithms applicable to a large class of separation logics.

Contents
1 Separation Algebra 2
1.1 Definitions 2
1.2 First lemmata 3
1.21 splus. 4
1.22 Pure 5!
1.3 Succisanorder. 6
1.4 Core (pure) and stabilize (stable) 7
1.5 Subtraction 8
1.6 Lifting the algebra to sets of states 13
1.7 Addition of more than two states 18
2 Package Logic 24
2.1 Definitions. 24
2.2 Lemmas e e e 26
2.3 Lemmas for completeness 39
2.4 Soundness 52
2.5 Completeness 55

1 Separation Algebra

In this section, we formalize the concept of a separation algebra [1, 3], on
which our package logic is based.

theory SepAlgebra
imports Main
begin
type-synonym ’‘a property = 'a = bool
locale sep-algebra =
fixes plus :: 'a = 'a = 'a option (infix]l «®> 63)
fixes core :: 'a = 'a (< |- »)
assumes commutative: a & b =0 & a

and assol: a & b= Someab AN b® c = Some bc = ab ® ¢ = a O be
and asso2: a ® b= Some ab AN b @ ¢ = None =—> ab & ¢ = None

and core-is-smaller: Some x = © @ |z

and core-is-pure: Some |z| = |z| & |z|
and core-maz: Some x = & ¢ = (Ir. Some |z| =c S 1)
and core-sum: Some ¢ = a ® b = Some |c| = |a| ® |b]|

and positivity: a & b = Some ¢ = Some c = ¢ ® ¢ = Somea=a @ a
and cancellative: Some a = b ® v = Somea =0 y = |z| = |y| = =
=Y

begin

lemma asso3:
assumes a & b = None
and b @ ¢ = Some bc
shows a @ bc = None
by (metis assms(1) assms(2) sep-algebra.asso2 sep-algebra.commutative sep-algebra-axioms)

1.1 Definitions

definition defined :: 'a = ’a = bool (infixl <##)> 62) where
a ## b<+— a® b+ None

definition greater :: 'a = 'a = bool (infixl <> 50) where
a¥>b+— (Je. Somea=1"bd ¢

definition pure :: 'a = bool where
pure a <— Some a = a & a

definition minus :: ‘/a = 'a = 'a (infixl «©) 63)
where b © a = (THE-default b (Ax. Some b =a @ z Az > |b]))

definition add-set :: ‘a set = 'a set = 'a set (infixl «®» 60) where
A@B={p|lpab.ac ANbE BANSomep=adb}

definition greater-set :: 'a set = 'a set = bool (infixl > 50) where
A>» B+ Vaec A. 3be B.a*>b)

definition up-closed :: 'a set = bool where
up-closed A +— (Vo' (o € A. ' =) — ' € A)

definition equiv :: 'a set = ‘a set = bool (infixl «~» 40) where
A~B+—=A>BANB>A

definition setify :: 'a property = (‘a set = bool) where
setify PA <— (Vz € A. P x)

definition mono-prop :: 'a property = bool where
mono-prop P +— (Vzy. y = x AN Pz — Py)

definition under :: 'a set = 'a = 'a set where
under Aw ={ w'|w. we€eANw>rw'}

definition maz-projection-prop :: ('a = bool) = (‘a = 'a) = bool where
maz-projection-prop P f +— (Vz. 2 = fz AP (fz) A
(Vp. PpAz=p— fz2=p)

inductive multi-plus :: 'a list = ’'a = bool where

MPSingle: multi-plus [a] a
| MPConcat: [length la > 0 ; length b > 0 ; multi-plus la a ; multi-plus b b ;
Some w = a @ b]| = multi-plus (la Q Ib) w

fun splus :: 'a option = 'a option = ’a option where
splus None - = None

| splus - None = None

| splus (Some a) (Some b) = a @ b

1.2 First lemmata

lemma greater-equiv:
a>=b<<— (Je. Somea=c P b)
using commutative greater-def by auto

lemma smaller-compatible:
assumes a’ ## b
and a’ > a
shows a ## b

by (metis (full-types) assms(1) assms(2) assod commutative defined-def greater-def)

lemma bigger-sum-smaller:
assumes Some ¢ = a ® b
and a > a’
shows 3b". b’ > b A Somec=a"® b’
proof —
obtain r where Some a = o’ ® r
using assms(2) greater-def by auto
then obtain br where Some br = r ® b
by (metis assms(1) asso2 domD domlff option.discl)
then have Some ¢ = a’ & br
by (metis <Some a = a’ ® r> assms(1) assol)
then show ?thesis
using <Some br = r ® b> commutative greater-def by force
qed

1.2.1 splus

lemma splus-develop:
assumes Some a = b & ¢
shows a @& d = splus (splus (Some b) (Some ¢)) (Some d)
by (metis assms splus.simps(3))

lemma splus-comm:
splus a b = splus b a

apply (cases a)
apply (cases b)
apply simp-all

apply (cases b)
by (simp-all add: commutative)

lemma splus-asso:
splus (splus a b) ¢ = splus a (splus b ¢)
proof (cases a)
case None
then show ?thesis
by simp
next
case (Some a’)
then have a = Some a’ by simp
then show ?%thesis
proof (cases b)
case None
then show ?thesis by (simp add: Some)
next
case (Some b’)
then have b = Some b’ by simp
then show ?thesis

proof (cases ¢)
case None
then show %thesis by (simp add: splus-comm)
next
case (Some ¢)
then have ¢ = Some ¢’ by simp
then show ?thesis
proof (cases a’ & b’)
case None
then have a’ @ b’ = None by simp
then show ?thesis
proof (cases b’ @ ¢’
case None
then show ?thesis
by (simp add: Some <a = Some a’y <a’ @ b’ = None> <b = Some b")
next
case (Some bc)
then show ?thesis
by (metis (full-types) None <a = Some a’y <b = Some by <c = Some ¢
sep-algebra.asso? sep-algebra-azioms splus.simps(2) splus.simps(8) splus-comm)
qged
next
case (Some ab)
then have Some ab = a’ ® b’ by simp
then show ?thesis
proof (cases b’ @ ¢’
case None
then show ?thesis
by (metis Some <a = Some a’» <b = Some b’» <¢c = Some ¢’ asso2
splus.simps(2) splus.simps(3))
next
case (Some bc)
then show ?thesis
by (metis <Some ab = a’ ® b’ <a = Some a’y <b = Some by <¢c = Some
¢’y sep-algebra.assol sep-algebra-azioms splus.simps(3))
qed
qed
qed
qed
qed

1.2.2 Pure

lemma pure-stable:
assumes pure a
and pure b
and Somec=a @ b
shows pure ¢
by (metis assms assol commutative pure-def)

lemma pure-smaller:
assumes pure a
and a = b
shows pure b
by (metis assms greater-def positivity pure-def)

1.3 Succ is an order

lemma succ-antisym:
assumes a = b
and b = a
shows a = b
proof —
obtain ra where Some a = b ® ra
using assms(1) greater-def by auto
obtain rb where Some b = a @ rb
using assms(2) greater-def by auto
then have Some a = splus (Some a) (splus (Some ra) (Some b))
proof —
have Some b = splus (Some a) (Some rb)
by (simp add: <Some b = a & rb)
then show ?thesis
by (metis (full-types) <Some a = b ® ray sep-algebra.splus.simps(3) sep-algebra-axioms
splus-asso splus-comm)
qed
moreover have Some b = splus (Some b) (splus (Some ra) (Some rb))
by (metis <Some a = b @ ra> «Some b = a @ rb> sep-algebra.splus.simps(3)
sep-algebra-axioms splus-asso)
moreover have pure ra A pure b
proof —
obtain rab where Some rab = ra ® rb
by (metis calculation(2) splus.elims splus.simps(3))
then have |a| > rab
by (metis calculation(1) core-max greater-def splus.simps(3))
then have pure rab
using core-is-pure pure-def pure-smaller by blast
moreover have rab = ra N\ rab = rb
using <Some rab = ra @ rb> greater-def greater-equiv by blast
ultimately have pure ra using pure-smaller
by blast
moreover have pure rb
using <pure raby <rab = ra A rab = rb> pure-smaller by blast
ultimately show ¢thesis
by blast
qed
ultimately show ?thesis
by (metis <Some b = a @ rby option.inject pure-def sep-algebra.splus.simps(3)

sep-algebra-axioms splus-asso)
qed

lemma succ-trans:
assumes a = b
and b = ¢
shows a > ¢
using assms(1) assms(2) bigger-sum-smaller greater-def by blast

lemma succ-refl:
a>~a
using core-is-smaller greater-def by blast

1.4 Core (pure) and stabilize (stable)

lemma maz-projection-propl:
assumes A\z. z = fx
and Az. P (fx)
and Azp. PpAz=p= faxrp
shows maz-projection-prop P f
by (simp add: assms(1) assms(2) assms(3) maz-projection-prop-def)

lemma maz-projection-propk:
assumes maz-projection-prop P f
shows Az. z = fz
and Az. P (fz)
and Azp. PpAhoz=p=farp
using assms maz-projection-prop-def by auto

lemma maz-projection-prop-pure-core:
maz-projection-prop pure core
proof (rule max-projection-propl)
fix z
show z > |z
using core-is-smaller greater-equiv by blast
show pure |z
by (simp add: core-is-pure pure-def)
show Ap. purep ANz = p = |z| = p
proof —
fix p assume pure p A x = p
then obtain r where Somez =p & r
using greater-def by blast
then show |z| = p
by (metis <pure p A x = p» assol commutative core-mazx greater-equiv pure-def)
qed
qed

lemma mpp-smaller:
assumes maz-projection-prop P f

shows z = fx
using assms maz-projection-propE(1) by auto

lemma mpp-compatible:
assumes maz-projection-prop P f
and a ## b
shows fa ## fb
by (metis (mono-tags, opaque-lifting) assms(1) assms(2) commutative defined-def
max-projection-prop-def smaller-compatible)

lemma mpp-prop:
assumes maz-projection-prop P f
shows P (f z)
by (simp add: assms maz-projection-propE(2))

lemma mppl:
assumes maz-projection-prop P f
and a = z
and Pz
and z > fa
shows z = fa
proof —
have fa > z
using assms maz-projection-propE(3) by auto
then show ?thesis
by (simp add: assms(4) succ-antisym)
qed

lemma mpp-invo:
assumes maz-projection-prop P f
shows f (fz) = fz
using assms maz-projection-prop-def succ-antisym by auto

lemma mpp-mono:
assumes maz-projection-prop P f
and a = b
shows fa = fb
by (metis assms maz-projection-prop-def succ-trans)

1.5 Subtraction

lemma addition-bigger:
assumes a’ > a
and Somez' ' =a' ® b
and Somez =a ® b
shows z/ > z

by (metis assms assol bigger-sum-smaller greater-def)

lemma smaller-than-core:
assumes y = T
and Some z = z @ |y|
shows |z| = |y
proof —
have Some |z| = |z| & |y
using assms(2) core-sum maz-projection-prop-pure-core mpp-invo by fastforce
then have Some |z| = |z| @ |y|
by simp
moreover have |z| = |y|
using calculation greater-equiv by blast
ultimately show “thesis
by (meson addition-bigger assms(1) assms(2) core-is-smaller core-sum greater-def
succ-antisym)
qed

lemma extract-core:
assumes Some b = a @ x A z = |
shows |z| = |b|
proof —
obtain r where Some © = r @ ||
using assms greater-equiv by auto
show ?thesis
proof (rule smaller-than-core)
show Some z = r @ |b|
using «Some z = r @ |b» by auto
show b > r
by (metis <Some © = r & |b|> assms commutative greater-def succ-trans)
qed
qed

lemma minus-unique:
assumes Some b =a ® x A z = |
and Someb=a® y Ay = |
shows z = y

proof —
have |z| = |b]
using assms(1) extract-core by blast
moreover have |y| = ||

using assms(2) extract-core by blast
ultimately show ?thesis
using assms(1) assms(2) cancellative by auto
qed

lemma minus-exists:

assumes b > a
shows Jz. Some b =a @ z Az > |b]
using assms bigger-sum-smaller core-is-smaller by blast

lemma minus-equiv-def:
assumes b > a
shows Some b =a & (b S a) A (b S a) = |b
proof —
let %z = THE-default b (Az. Some b=a & x A z = |b|)
have (A\z. Someb=a® z Az = |b) %
proof (rule THE-defaultl’)
show Jlz. Some b =a @ x A = = |
using assms local.minus-unique minus-exists by blast
qed
then show ?thesis by (metis minus-def)
qed

lemma minus-default:
assumes - b > a
shows b © a = b
using THE-default-none assms greater-def minus-def by fastforce

lemma minusl:
assumes Some b =a @© x
and z = |b]
shows 2 = b © a
using assms(1) assms(2) greater-def local.minus-unique minus-equiv-def by blast

lemma minus-core:
la © b] = |a
proof (cases a = b)
case True
then have Somea =0 ® (e © b) A a © b > g
using minus-equiv-def by auto
then show ?thesis
using extract-core by blast
next
case Fulse
then show %thesis by (simp add: minus-default)
qed

lemma minus-core-weaker:
la & b = lal & |3
proof (cases a = b)
case True
then show ?thesis
by (metis greater-equiv maz-projection-prop-pure-core minus-core minus-default
minus-equiv-def mpp-invo succ-antisym,)

10

next

case Fulse

then show ?thesis

by (metis greater-equiv maz-projection-prop-pure-core minus-default minus-equiv-def
mpp-invo succ-antisym,)
qed

lemma minus-equiv-def-any-elem:
assumes Somez = a @ b
shows Some (z © a) = b @ |z]
proof —
obtain r where Some r = b @ |z
by (metis assms core-is-smaller domD domlff option.simps(3) sep-algebra.asso2
sep-algebra-azioms)
have r =z 6 a
proof (rule minusI)
show Somex =a @ r
by (metis <Some r = b @ |z|> assms assol core-is-smaller)
moreover show r = |z|
using <Some r = b @ |z|» greater-equiv by blast
qged
then show ?thesis
using «Some r = b @ |z|» by blast
qed

lemma minus-bigger:
assumes Some r = a ® b
shows z© a >0
using assms greater-def minus-equiv-def-any-elem by blast

lemma minus-smaller:
assumes r >~ a
shows z > 26 a
using assms greater-equiv minus-equiv-def by blast

lemma minus-sum:
assumes Some a = b @ c
and z = a
shows z©a=(z6b) O ¢
proof (rule minusl)
obtain r where Some r = ¢ @ (z S a)
by (metis assms(1) assms(2) asso2 minus-equiv-def option.exhaust-sel)
have r = (z © b)
proof (rule minusl)
show Somez =b& r
by (metis «Some r = ¢ ® (x © a)) assms(1) assms(2) assol minus-equiv-def)
moreover show r = |z
by (meson «Somer = c® (z © a) assms(2) greater-equiv sep-algebra.minus-equiv-def
sep-algebra-azioms succ-trans)

11

qed
then show Some (z © b) = ¢ ® (z S a)
using «Some r = ¢ @ (z © a)) by blast
moreover show z © a = |z © b]
by (simp add: assms(2) minus-core minus-equiv-def)
qed

lemma smaller-compatible-core:
assumes y = T

shows z #+# |y|
by (metis assms asso2 core-is-smaller defined-def greater-equiv option.discl)

lemma smaller-pure-sum-smaller:
assumes y >~ a
and y >~ b
and Somezr = a & b
and pure b
shows y =
proof —
obtain r where Some y=r ® br > a
by (metis assms(1) assms(2) assms(4) assol greater-equiv pure-def)
then show ?thesis
using addition-bigger assms(3) by blast
qed

lemma greater-minus-trans:
assumes y =~ T
and z = a
shows y o a > 26 a
proof —
obtain r where Some y =z & r
using assms(1) greater-def by blast
then obtain ra where Some z = a @ ra
using assms(2) greater-def by blast
then have Some (z © a) = 10 @ |7
by (simp add: minus-equiv-def-any-elem)
then obtain yy where Some yy = (z © a) & r
by (metis (full-types) «Some y = x & v assms(2) asso3 commutative mi-
nus-equiv-def not-Some-eq)
then obtain Somez =a @ (zr S a) 2 & a = |z]
by (simp-all add: assms(2) sep-algebra.minus-equiv-def sep-algebra-axioms)
then obtain y’ where Some y' = a © yy
using (Some y =z @ r «Some yy = © a B r assol
by metis
moreover have y = y’
by (metis <Some z = a ® (z © a)y «Somey =z ® r Someyy =z O a d
assol calculation option.inject succ-refl)
moreover obtain z’ where Some 2’ = (2 © a) ® a
using assms(2) commutative minus-equiv-def by fastforce

12

then have y = z’
by (metis assms(1) assms(2) commutative minus-equiv-def option.sel)
moreover have z’ = 2 © a
using «Some ©' =z © a @ a> greater-def by auto
ultimately show ?thesis
using «Some ' = 2 © a ® @ «Some y = x B 1 assms(2) assol commu-
tative greater-equiv minus-bigger minus-equiv-def option.sel sep-algebra.succ-trans
sep-algebra-axioms
proof —
have f1: Some y' = a ® yy
by (simp add: «Some y' = a & yy> commutative)
then have y = ¢’
by (metis «Some y = © ® ™ Some yy = 2 © a ® r @& = a> assol
minus-equiv-def option.sel)
then show ?thesis
using f1 by (metis (no-types) «Some yy = z © a ® r» commutative
greater-equiv minus-bigger sep-algebra.succ-trans sep-algebra-azioms)
qed
qed

lemma minus-and-plus:
assumes Some w' = w O r
and w = ¢
shows Some (W' © a) = (WS a) ® r
proof —
have w = w © a
by (simp add: assms(2) minus-smaller)
then have (w © a) ## r
by (metis (full-types) assms(1) defined-def option.discl sep-algebra.smaller-compatible
sep-algebra-axioms)
then obtain z where Some z = (w & a) ® r
using defined-def by auto
then have Somew’' = a ® z ANz = |w
by (metis (no-types, lifting) assms assol core-sum maz-projection-prop-pure-core
minus-core minus-equiv-def mpp-smaller option.inject)
then have z = w’' S a
by (simp add: minusl)
then show ?thesis
using <Some z = w © a @ r» by blast
qed

|

1.6 Lifting the algebra to sets of states

lemma add-set-commm:
AR B=B®A
proof

13

show A BC B® A
using add-set-def sep-algebra.commutative sep-algebra-axioms by fastforce
show B® AC A® B
using add-set-def commutative by fastforce
qed

lemma z-elem-set-product:
zr€A®B<+— (Jab.ac ANbeE BN Somezx=a@b)
using sep-algebra.add-set-def sep-algebra-axioms by fastforce

lemma z-elem-set-product-splus:
z€A®B<+— (Jab.a€ ANDbe BA Somex = splus (Some a) (Some b))
using sep-algebra.add-set-def sep-algebra-axioms by fastforce

lemma add-set-asso:
(AB)®@ C=A® (B () (is A = ?B)
proof —
have 74 C ?B
proof (rule subsetl)
fix z assume z € 74
then obtain ab ¢ where Somez =ab® cabe A® Bece C
using z-elem-set-product by auto
then obtain a b where Someab=a® ba € Abe B
using z-elem-set-product by auto
then obtain bc where Some bc = b @ ¢
by (metis <Some © = ab ® ¢ asso2 option.exhaust)
then show z € 7B
by (metis «Some ab = a & b «Some x = ab & ¢ <a € A <b€ By <ce O
assol x-elem-set-product)
qed
moreover have ?B C 2?4
proof (rule subsetl)
fix z assume = € ?B
then obtain a bc where Somez =a @ bca € Abce B® C
using z-elem-set-product by auto
then obtain b ¢ where Some bc=b0@ cce Cbe B
using z-elem-set-product by auto
then obtain ab where Some ab =a & b
by (metis <Some x = a ® bey assod option.collapse)
then show z € ¢4
by (metis «Some bc = b @ ¢» «Somex = a @ bey <a € Ay <b € By <c € C»
assol z-elem-set-product)
qed
ultimately show ?thesis by blast
qed

lemma up-closedl:

assumes A\p’ p. (¢’ 2'a) mphNpe A= p' € A
shows up-closed A

14

using assms up-closed-def by blast

lemma up-closed-plus-UNIV:
up-closed (A ® UNIV)
proof (rule up-closedI)
fix o ¢’
assume asm: ¢’ = o AN p € A ® UNIV
then obtain r a b where Some o' = & r Some p =ad ba € A
using greater-def z-elem-set-product by auto
then obtain br where Some br = b & r
by (metis asso2 option.erhaust-sel)
then have Some ¢’ = a @ br
by (metis <Some ¢ = a ® by «Some ' = p B r> splus.simps(3) splus-asso)
then show ¢’ € A @ UNIV
using <a € A) x-elem-set-product by auto
qed

lemma succ-set-trans:
assumes A > B
and B > C
shows A > C
by (meson assms(1) assms(2) greater-set-def succ-trans)

lemma greater-setl:
assumes Aa. a € A = (3b € B. a = b)
shows A > B
by (simp add: assms greater-set-def)

lemma bigger-set:
assumes A’ > A
shows A’® B> A® B
proof (rule greater-setl)
fix z assume z € A’ ® B
then obtain o’ b where Somez =a’ ® ba’€ A’ be B
using z-elem-set-product by auto
then obtain ¢ where ¢’ > aa € A
using assms greater-set-def by blast
then obtain ab where Some ab = a & b
by (metis <Some z = a’ & b> asso2 domD domlff greater-equiv)
then show JabcA ® B. z = ab
using «Somez =a’'® b» <a € A> <a’ = a» «b € By addition-bigger z-elem-set-product
by blast
qed

lemma bigger-singleton:
assumes ¢’ = ¢

shows {p'} > {¢}
by (simp add: assms greater-set-def)

15

lemma add-set-elem:
peA®B<+— (Fab Somep=adbANacANDbE B)
using add-set-def by auto

lemma up-closed-sum:
assumes up-closed A
shows up-closed (A ® B)
proof (rule up-closedI)
fix ¢’ p assume asm: o' = p AN p e A® B
then obtain a b where a € A b€ B Some p =a @ b
using add-set-elem by auto
moreover obtain r where Some o' = ¢ & r
using asm greater-def by blast
then obtain ar where Some ar = a @ r
by (metis asso2 calculation(3) commutative option.exhaust-sel option.simps(3))
then have ar € A
by (meson assms calculation(1) greater-def sep-algebra.up-closed-def sep-algebra-axioms)
then show ¢’ € A ® B
by (metis «Some ¢’ = ¢ @& ry (Some ar = a ® r» add-set-elem assol calcula-
tion(2) calculation(3) commutative)
qged

lemma up-closed-bigger-subset:
assumes up-closed B
and A > B
shows A C B
by (meson assms(1) assms(2) greater-set-def sep-algebra.up-closed-def sep-algebra-azioms
subsetl)

lemma up-close-equiv:
assumes up-closed A
and up-closed B
shows A~ B+— A=1H
proof —
have A~ B+— A> BAB> A
using local.equiv-def by auto
also have ... +— ACBABCA
by (metis assms(1) assms(2) greater-set-def set-eq-subset succ-refl up-closed-bigger-subset)
ultimately show ?thesis
by blast
qged

lemma equiv-stable-sum:
assumes A ~ B
shows A ® C ~ B® C

using assms bigger-set local.equiv-def by auto

lemma equiv-up-closed-subset:

16

assumes up-closed A
and equiv B C
shows BC A<+— C C A (is ?B +— ?C)
proof —
have ?B — ?C
by (meson greater-set-def up-closed-def equiv-def assms(1) assms(2) subsetD
subsetl)
moreover have ?C — ?B
by (meson greater-set-def up-closed-def equiv-def assms(1) assms(2) subsetD
subsetl)
ultimately show ¢thesis by blast
qed

lemma mono-propl:
assumes Az y. y =z ANPx = Py
shows mono-prop P
using assms mono-prop-def by blast

lemma mono-prop-set:
assumes A > B
and setify P B
and mono-prop P
shows setify P A
using assms(1) assms(2) assms(3) greater-set-def local.setify-def mono-prop-def
by auto

lemma mono-prop-set-equiv:
assumes mono-prop P
and equiv A B
shows setify P A +— setify P B
by (meson assms(1) assms(2) local.equiv-def sep-algebra.mono-prop-set sep-algebra-azioms)

lemma setify-sum:

setify P (A ® B) «— (Vz € A. setify P ({z} ® B)) (is ?A <— ?B)
proof —

have A = “B

using local.setify-def sep-algebra.add-set-elem sep-algebra-axioms singletonD by
fastforce

moreover have B = ¢4

using add-set-elem local.setify-def by fastforce

ultimately show ¢thesis by blast
qged

lemma setify-sum-image:
setify P ((Set.image f A) @ B) «— (Vz € A. setify P ({fz} ® B))
proof
show setify P (f ‘A ® B) = Vz€A. setify P ({fz} ® B)
by (meson rev-image-eql sep-algebra.setify-sum sep-algebra-azioms)
show VzecA. setify P ({fz} ® B) = setify P (f ‘A ® B)

17

by (metis (mono-tags, lifting) image-iff sep-algebra.setify-sum sep-algebra-azxioms)
qed

lemma equivl:
assumes A > B
and B > A
shows equiv A B
by (simp add: assms(1) assms(2) local.equiv-def)

lemma sub-bigger:
assumes A C B
shows A > B
by (meson assms greater-set-def in-mono succ-refl)

lemma larger-set-refi:
A> A
by (simp add: sub-bigger)

definition upper-closure where
upper-closure A = { ¢’ |p' v. o' = o Np € A}

lemma upper-closure-up-closed:
up-closed (upper-closure A)
proof (rule up-closedI)
fix o’
assume asm0: o' = ¢ N @ € upper-closure A
then obtain ¢ where a € A AN ¢ = a
using sep-algebra.upper-closure-def sep-algebra-azioms by fastforce
then have ¢’ = a
using asm0 succ-trans by blast
then show ¢’ € upper-closure A
using <a € A A ¢ = a> upper-closure-def by auto
qed

1.7 Addition of more than two states

lemma multi-decompose:
assumes multi-plus | w
shows length 1 > 2 = (Ja blalb. | = la Q Ib A length la > 0 A length Ib >
0 A multi-plus la a N multi-plus b b A Some w = a © b)
using assms
apply (rule multi-plus.cases)
by auto[2]

18

lemma multi-take-drop:
assumes multi-plus | w
and length | > 2
shows In a b. n > 0 A n < length I A multi-plus (take n 1) a N multi-plus
(dropml) b A Somew =a @ b
proof —
obtain a b la b where asm0: | = la @Q Ib A length la > 0 A length b > 0 A
multi-plus la a A multi-plus Ib b A Some w = a ® b
using assms(1) assms(2) multi-decompose by blast
let ?n = length la
have la = take ?n 1
by (simp add: asm0)
moreover have (b = drop 7n |
by (simp add: asm0)
ultimately show “thesis
by (metis asm0 length-drop zero-less-diff)
qed

lemma multi-plus-single:

assumes multi-plus [v] a

shows a = v

using assms

apply (cases)

apply simp

by (metis (no-types, lifting) Nil-is-append-conv butlast.simps(2) butlast-append
length-greater-0-conv)

lemma multi-plus-two:

assumes length [> 2

shows multi-plus | w <— (Fa b la lb. I = (la @ b) A length la > 0 A length b
> 0 A multi-plus la a A multi-plus Ib b A Some w = a ® b) (is ?A +— ?B)

by (meson MPConcat assms multi-decompose)

lemma multi-plus-head-tail:
length | < n A length I > 2 — (multi-plus | w <— (3 7. Some w = (List.hd [)
@ r A multi-plus (List.tl 1) 1))
proof (induction n arbitrary: | w)
case (
then show ?case by auto
next
case (Suc n)
then have ITH: A\(l :: 'a list) w. length | < n A length | > 2 — multi-plus | w
= (3r. Some w = hd I & r A multi-plus (¢ 1) r)
by blast
then show ?case
proof (cases n = 0)
case True
then have n = 0 by simp
then show ?thesis by linarith

19

next
case Fulse
then have length (I :: 'a list) > 2 A length | < n + 1 = multi-plus | w +—
(3r. Some w = hd 1l & r A multi-plus (t 1) r)
(is length 1 > 2 Alengthl < n+ 1 = 2?4 +— ?B)
proof —
assume asm: length (I :: 'a list) > 2 Alength | < n + 1
have ?B — 74
proof —
assume ?B
then obtain r where Some w = hd | ® r A multi-plus (¢l 1) r by blast
then have multi-plus [hd 1] (hd)
using MPSingle by blast
moreover have [hd]] @ (¢ 1) =1
by (metis Suc-le-length-iff asm append-Cons list.collapse list.simps(3)
numeral-2-eq-2 self-append-conv2)
ultimately show 74
by (metis (no-types, lifting) MPConcat Suc-1 Suc-le-mono asm <Some
w = hdl® r A multi-plus (tL 1) > append-Nil2 length-Cons length-greater-0-conv
list.size(8) not-one-le-zero zero-less-Suc)
qed
moreover have ?A — ?B
proof —
assume ?A
then obtain la (b a b where | = la Q b length la > 0 length b > 0
multi-plus la a multi-plus Ib b Some w = a ® b
using asm multi-decompose by blast
then have r0: length la < n A length la > 2 — multi-plus la o = (3.
Some a = hd la & r A multi-plus (¢ la) T)
using [H by blast
then show ?B
proof (cases length la > 2)
case True
then obtain ra where Some a = (hd la) & ra multi-plus (¢ la) ra
by (metis Suc-eq-plusl <0 < length lby <l = la @Q Iby 70 <multi-plus la a> ap-
pend-eq-conv-conj asm drop-eq-Nil le-addl le-less-trans length-append length-greater-0-conv
less-Suc-eq-le order.not-eq-order-implies-strict)
moreover obtain rab where Some rab = ra & b
by (metis <Some w = a & b calculation(1) asso2 option.erhaust-sel)
then have multi-plus ((t la) @ Ib) rab
by (metis (no-types, lifting) Nil-is-append-conv <multi-plus Ib by calcula-
tion(2) length-greater-0-conv list.simps(8) multi-plus.cases sep-algebra. MPConcat
sep-algebra-axioms)
moreover have Some w = hd la & rab
by (metis <Some w = a @ b» «Some rab = ra & b assol calculation(1))
ultimately show ¢B
using <0 < length la> <l = la Q [b> by auto
next
case Fulse

20

then have length la = 1
using <0 < length la> by linarith
then have la = [d]
by (metis Nitpick.size-list-simp(2) One-nat-def Suc-le-length-iff <multi-plus
la a> diff-Suc-1 le-numeral-extra(4) length-0-conv list.sel(8) sep-algebra.multi-plus-single
sep-algebra-axioms)
then show ?thesis
using <Some w = a & by <l = la Q by <multi-plus Ib by by auto

qed
qed
then show ?thesis using calculation by blast
qed
then show ?thesis by (metis (no-types, lifting) Suc-eg-plusi)
qed
qed

lemma not-multi-plus-empty:

= multi-plus || w

by (metis Nil-is-append-conv length-greater-0-conv list.simps(3) sep-algebra.multi-plus.simps
sep-algebra-azioms)

lemma multi-plus-deter:
length | < n = multi-plus | w = multi-plus | v’ — w = W’
proof (induction n arbitrary: | w w’)
case ()
then show ?case
using multi-plus.cases by auto
next
case (Suc n)
then show ?case
proof (cases length | > 2)
case True
then obtain r where Some w = (List.hd l) ® r A multi-plus (List.tl 1) r
using Suc.prems(2) multi-plus-head-tail by blast
moreover obtain r’ where Some w’ = (List.hd 1) ® v’ A multi-plus (List.tl
nr'
using Suc.prems(3) True multi-plus-head-tail by blast
ultimately have r = r’
by (metis Suc.IH Suc.prems(1) drop-Suc drop-eq-Nil)
then show ?thesis
by (metis <Some w = hd I & r A multi-plus (¢ 1) ry <Some w’' = hd l & r’' A
multi-plus (¢t 1) v’y option.inject)
next
case Fulse
then have length | < 1
by simp
then show ?thesis
proof (cases length I = 0)
case True

21

then show ?thesis
using Suc.prems(2) sep-algebra.not-multi-plus-empty sep-algebra-azioms by
fastforce
next
case Fulse
then show ?thesis
by (metis One-nat-def Suc.prems(2) Suc.prems(3) Suc-length-conv <length | <
1) le-SucE le-zero-eq length-greater-0-conv less-numeral-extra(3) sep-algebra.multi-plus-single
sep-algebra-azioms)
qed
qed
qed

lemma multi-plus-implies-multi-plus-of-drop:
assumes multi-plus [w
and n < length [
shows 3 a. multi-plus (drop nl) a Nw > a
using assms
proof (induction n arbitrary: | w)
case (
then show ?case using succ-refl by fastforce
next
case (Suc n)
then have length | > 2
by linarith
then obtain r where Some w = (List.hd 1) & r A multi-plus (List.tl 1) r
using Suc.prems(1) multi-plus-head-tail by blast
then obtain a where multi-plus (drop n (List.tl 1)) a AT = a
using Suc.IH Suc.prems(2) by fastforce
then show ?case
by (metis «Some w = hd I & r A multi-plus (t 1) r bigger-sum-smaller com-
mutative drop-Suc greater-def)
qed

lemma multi-plus-bigger-than-head:
assumes length | > 0
and multi-plus | w
shows w > List.hd [
proof (cases length | > 2)
case True
then obtain r where Some w = (List.hd I) & r A multi-plus (List.tl) r
using assms(1) assms(2) multi-plus-head-tail by blast
then show ?thesis
using greater-def by blast
next
case Fulse
then show ?thesis
by (metis Cons-nth-drop-Suc MPSingle assms(1) assms(2) drop-0 drop-eq-Nil
hd-conv-nth length-greater-0-conv not-less-eq-eq numeral-2-eq-2 sep-algebra.multi-plus-deter

22

sep-algebra-axioms succ-refl)
qed

lemma multi-plus-bigger:
assumes i < length |
and multi-plus | w
shows w = (1! 1)
proof —
obtain a where multi-plus (drop il) a AN w = a
using assms(1) assms(2) multi-plus-implies-multi-plus-of-drop order.strict-trans
by blast
moreover have List.hd (drop il) =111
by (simp add: assms(1) hd-drop-conv-nth)
then show ?thesis
by (metis (no-types, lifting) succ-trans assms(1) assms(2) drop-eq-Nil leD
length-greater-0-conv multi-plus-bigger-than-head multi-plus-implies-multi-plus-of-drop)
qed

lemma sum-then-singleton:
Some a=b® c+— {a} = {b} ® {c} (is ?A «— ?B)
proof —
have ?A — ?B
proof —
assume 74
then have {a} C {b} ® {c}
using add-set-elem by auto
moreover have {0} ® {c¢} C {a}
proof (rule subsetl)
fix z assume z € {b} ® {c}
then show z € {a}
by (metis <Some a = b ® ¢ option.sel sep-algebra.add-set-elem sep-algebra-azioms
singleton-iff)
qed
ultimately show ?thesis by blast
qed
moreover have B — %4
using add-set-elem by auto
ultimately show ?thesis by blast
qed

lemma empty-set-sum:

{} A=A}

by (simp add: add-set-def)
end

end

23

2 Package Logic

In this section, we define our package logic, as described in [2], and then
prove that this logic is sound and complete for packaging magic wands.

theory PackageLogic
imports Main SepAlgebra
begin

2.1 Definitions

type-synonym ’a abool = ’'a = bool

datatype ’a aassertion =

AStar 'a aassertion 'a aassertion
| AImp 'a abool 'a aassertion
| ASem 'a abool

locale package-logic = sep-algebra +

fixes unit :: 'a
fixes stable :: 'a = bool

assumes unit-neutral: Some a = a © unit
and stable-sum: stable a = stable b = Some x = a & b = stable x
and stable-unit: stable unit

begin
fun sat :: ‘a aassertion = 'a = bool where
sat (AStar A B) ¢ «+— (Fa b. Some o = a @ b A sat A a A sat B b)
| sat (AImp b A) ¢ «— (b o — sat A p)
| sat (ASem A) p «— A ¢
definition mono-pure-cond where
mono-pure-cond b +— (V. b o +— b lp|) A (Yo' @ r. pure r A Some ¢’ = ¢
DrA-by— by

definition bool-conj where
bool-conja bz <— azxz ANbzx

type-synonym ’c pruner = 'c = bool

definition mono-pruner :: ‘a pruner = bool where
mono-pruner p +— (Vo' @ r. pure v A p o A Some o' = & 1r — p @)

fun wf-assertion where
wf-assertion (AStar A B) <— wf-assertion A N\ wf-assertion B

24

| wf-assertion (AImp b A) <— mono-pure-cond b A\ wf-assertion A
| wf-assertion (ASem A) <— mono-pruner A

type-synonym ’c transformer = 'c = 'c
type-synonym ’c ext-state = ‘¢ X ‘c x 'c transformer

inductive package-rhs ::
'a = 'a = 'a ext-state set = 'a abool = 'a aassertion = 'a = 'a = 'a ext-state
set = bool where

AStar: | package-rhs o f S pc A o' f'S"; package-rhs ' f" S’ pc B " f'"S"]
= package-rhs ¢ f S pc (AStar A B) @' f'" S§"
| AImp: package-rhs ¢ f S (bool-conj pc b) A ¢’ ' S' = package-rhs ¢ f S pc
(AImp b A) ¢’ f' S’

| ASem: [Naw Tb. (a, u, T) € S = pc a = b = witness (a, u, T) = a > b
A Bb;

S'={(a,u, T) lauT. (a,u, T) € SA—-pca}

U{(ao b the(u®db), T)]auTh. (a,u, T) €S A pca b= witness (a, u,

T)}]
= package-ths ¢ [S pc (ASem B) ¢ f S’

| AddFromOutside: | Some ¢ = ¢’ & m ; package-rhs ¢’ f' S pc A " f'" S";
stable m ; Some f' = f ® m ;

S'={(r,u, T)lauTr. (a,u, T) € SASomer=a® (Tf ©Tf) Nr##
ut]

= package-ths @ f S pc A " f" S"

definition package-sat where
package-sat pc A o’ v’ u <— (pc |a'| — (Fz. Some z = |a’'| ® (' © u) A sat
A)

definition package-rhs-connection :: 'a = 'a = 'a ext-state set = 'a abool = 'a
aassertion = 'a = 'a = 'a ext-state set = bool where
package-rhs-connection @ fSpc A o' f'S'«— f'=fANOoH#H#H [N D f =’
@ f' A stable f' N
(V(a, u, T) € S. Jau. Some au = a ® u A (au ## (T f' Tf) —
Fa' v (¢, u, T)eS'N|a| =la| Naud (Tf'OoTf)=ad"@u ANu' >
u A package-sat pc A a’ u' u)))

definition mono-transformer :: 'a transformer = bool where
mono-transformer T +— (Vo @' o' = o — T @' = T p) A T unit = unit

definition valid-package-set where

valid-package-set S f «— (¥ (a, u, T) € S. a ## u A |a| = |u| A mono-transformer
TANax|Tfl)

25

definition intuitionistic where
intuitionistic A +— (Vo' o. o' = o N Ao — A ')

definition pure-remains where
pure-remains S <— (V(a, u, p) € S. pure a)

definition is-footprint-general :: 'a = ('a = 'a = 'a) = 'a aassertion = 'a aasser-
tion = bool where

is-footprint-general w R A B +— (Va b. sat A a A\ Some b=a ® R a w — sat
B b)

definition is-footprint-standard :: 'a = 'a aassertion = ’'a aassertion = bool
where
is-footprint-standard w A B «— (Y a b. sat A a A Some b = a & w — sat B b)

2.2 Lemmas

lemma is-footprint-generall:
assumes Aa b. sat A a A Someb=a & R a w=> sat Bb
shows is-footprint-general w R A B
using assms is-footprint-general-def by blast

lemma is-footprint-standardl:
assumes Aa b. sat A a A Some b =a & w = sat B b
shows is-footprint-standard w A B
using assms is-footprint-standard-def by blast

lemma mono-pure-condl:
assumes A\p. b o «— b |p]
and Ap ' r. pure r A Some o' = B r A—-bp = by’
shows mono-pure-cond b
using assms(1) assms(2) mono-pure-cond-def by blast

lemma mono-pure-cond-cony:
assumes mono-pure-cond pc
and mono-pure-cond b
shows mono-pure-cond (bool-conj pc b)
proof (rule mono-pure-condl)
show A¢g. bool-conj pc b ¢ = bool-conj pc b ||
by (metis assms(1) assms(2) bool-conj-def mono-pure-cond-def)
show Ay ¢’ r. pure r A Some ¢’ = ¢ ® r A = bool-conj pc b ¢ = — bool-conj
peb o’
by (metis assms(1) assms(2) bool-conj-def mono-pure-cond-def)
qged

lemma bigger-sum:

assumes Some ¢ = a B b
and ¢’ = ¢

26

shows 3b". b' = b A Some o' = a ® b’
proof —
obtain r where Some o' = ¢ & r
using assms(2) greater-def by blast
then obtain b’ where Some b/ = b & r
by (metis assms(1) asso2 domD domlI domlIff)
then show ?thesis
by (metis <Some ¢’ = p & > assms(1) assol commutative sep-algebra.greater-equiv
sep-algebra-azioms)
qed

lemma wf-assertion-sat-larger-pure:
assumes wf-assertion A
and sat A ¢
and Some o' = o ® T
and pure r
shows sat A ¢’
using assms
proof (induct arbitrary: ¢ @' r rule: wf-assertion.induct)
case (I A B)
then obtain a b where Some ¢ = a @ b sat A a sat B b by (meson sat.simps(1))
then obtain b’ where Some b' =0 & r
by (metis 1.prems(3) asso2 option.collapse)
moreover obtain o’ where Some o’ = a @ r
by (metis 1.prems(3) «Some ¢ = a @ by asso2 commutative option.collapse)
ultimately show “case
using 1
by (metis <Some ¢ = a ® by <sat A a> <sat B by assol sat.simps(1) wf-assertion.simps(1))
next
case (2 b A)
then show ?case
by (metis mono-pure-cond-def sat.simps(2) wf-assertion.simps(2))
next
case (3 A)
then show ?case
by (metis mono-pruner-def sat.simps(3) wf-assertion.simps(3))
qed

lemma package-satl:
assumes pc |a’| = (Fz. Some z = |a’| ® (v © u) A sat A)
shows package-sat pc A a’ v’ u
by (simp add: assms package-sat-def)

lemma package-rhs-connection-instantiate:
assumes package-rhs-connection ¢ fS pc A ¢’ f' S’
and (a, u, T) € S
obtains au where Some au = a & u

27

and au ## (T f'o Tf) = Fa' v’ (a’,u', T) € S"ANla'| = |a| AN au & (T
f'eTf)=a & u Au' = uA package-sat pc A a’ u' u
using assms(1) assms(2) package-rhs-connection-def by fastforce

lemma package-rhs-connectionl:
assumes 0 & f = o' P [’
and stable [’
and ¢ ## f
and f' = f
and Aau T. (a,u, T) € S = (Jau. Some au = a ® u A (au ## (T f' ©
Tf) —
Fa'u' (o, u, T)ye S'"N|a| = |la|lNavd (Tf'eTf)=d durNu>u
A package-sat pc A a’ u' u)))
shows package-rhs-connection ¢ f S pc A o' f' S8’
using package-rhs-connection-def assms by auto

lemma valid-package-setl:

assumes Na u T. (a, u, T) € S = a ## u A |a| > |u| A mono-transformer
TAar|Tf

shows walid-package-set S f

using assms valid-package-set-def by auto

lemma defined-sum-move:
assumes a ## b

and Some b=z & y

and Some o’ = a @ z
shows a’ #+# y

by (metis assms defined-def sep-algebra.assol sep-algebra-azioms)

lemma bigger-core-sum-defined:

assumes |a| = b

shows Some a =a @ b

by (metis (no-types, lifting) assms assol core-is-smaller greater-equiv maz-projection-prop-pure-core
mpp-prop pure-def pure-smaller)

lemma package-rhs-proof:
assumes package-rhs o f S pc A o' f' S’
and valid-package-set S f
and wf-assertion A
and mono-pure-cond pc
and stable f
and ¢ ## f
shows package-rhs-connection ¢ f S pc A o' f' S' A valid-package-set S’ f'
using assms
proof (induct rule: package-rhs.induct)
case (AImp o f Spcb A’ f'5)
then have asm0: package-rhs-connection ¢ f S (bool-conj pc b) A ¢’ f' S" A
valid-package-set S’ f'

28

using mono-pure-cond-conj wf-assertion.simps(2) by blast
let ?pc = bool-conj pc b
obtain o & f =o' @ [/ stable f' o ## ff = f
and § Aeu T. (a, u, T) € S = (Jau. Some au = a & u A (au ## (T f’
eTf) —
Ha' v (a,u, TYe S'ANa| =|a|Nauvd (TffOoTf)=d®u ANu' =
u A package-sat ?pc A a’ u' u)))
using asm0 package-rhs-connection-def by force

have package-rhs-connection ¢ f.S pc (AImp b A) ' f' S’
proof (rule package-rhs-connectionl)
show ¢ #4# f
by (simp add: <o ## f>)
show o @ f = ¢’ @& f' by (simp add: <p & f = ' B f))
show stable f' using «stable 'y by simp
show f’ > f by (simp add: <f' = [»)
fix a u T assume asml!: (a, u, T) € §
then obtain au where asm2: Some au = a ® u A (au ## (T f e Tf) —
Fa'u' (o, u, T)eS'AN|a| =la|Nav® (Tf'oTf)=ad ®u Au' =
u A package-sat Zpc A o’ u’ u))
using § by presburger

then have au ## (T f'6 Tf) =
Fa' v (¢, u, T)e S'N|a| =la| Naud (Tf'oTf)=ad" @ u Nu' >
u A package-sat pc (AImp b A) o’ u’ u)
proof —
assume asm3: au ## (T f'© Tf)
then obtain o’ v’ where au” (a’, v’, T) € S"AJa'| = |a| AN auv ® (T f'©
Tf)=a & u' Au = uA package-sat ?pc A o’ v’ u
using asm?2 by blast
have (the (|a'| ® (uv' © u))) = |a|
proof —
have v/ > u' © u
by (metis minus-default minus-smaller succ-refl)
then have a’ ## (v’ © u)
by (metis au’ asm3 asso8 defined-def minus-exists)
then show ?thesis
by (metis core-is-smaller defined-def greater-def option.exhaust-sel sep-algebra.asso2
sep-algebra-axioms)
qed
have package-sat pc (AImp b A) o’ v’ u
proof (rule package-satl)
assume pc |a’|
then show Jz. Some z = |a’/| ® (u' © u) A sat (AImp b A) z
proof (cases b |a’])
case True
then have ?pc |a
by (simp add: <pc |a’]» bool-cong-def)

{

29

then show ?thesis
by (metis au’ package-logic.package-sat-def package-logic-azioms sat.simps(2))
next
case Fulse
then have — b (the (|a/] ® (v’ © w)))
using AImp.prems(2) <the (|a/] & (u' & w)) = |a'] core-sum
mazx-projection-prop-def max-projection-prop-pure-core minus-exrists mono-pure-cond-def
wf-assertion.simps(2)
by metis
moreover obtain z where Some z = |a’| ® (v’ © u)
by (metis au’ asm3 asso2 commutative core-is-smaller defined-def
minus-and-plus option.collapse)
ultimately show ?thesis by (metis option.sel sat.simps(2))
qed
qed
then show Ja’ v’ (a’, u', T) € S'ANl|a/| = |la|Naud (Tf o Tf)=a @
u' A u' = u A package-sat pc (AImp b A) o’ v’ u
using au’ by blast
qed
then show Jau. Some au = a ® u A (au ## (T f ' Tf) — (Fa' u'. (a’,
u, TYe S'"ANla| = la|Nau @ (Tf'oTf)=a @& u Au > uA package-sat
pc (AImp b A) a’ v’ u))
using asm?2 by auto
qed
then show ?case
using <package-rhs-connection ¢ S (bool-conjpc b) A ¢’ f' S’ A valid-package-set
S’ f"» by blast
next
case (AStar o fSpc A ' f'S' B " f"S")
then have r1: package-rhs-connection ¢ f S pc A ' f' S’ A valid-package-set S’
f/
using wf-assertion.simps(1) by blast
moreover have ¢’ ## [’ using r1 package-rhs-connection-def|of ¢ fS pc A o’
1’8’ defined-def
by fastforce
ultimately have r2: package-rhs-connection ¢’ ' S'pc B " f S"" A valid-package-set
S//f//
using AStar.hyps(4) AStar.prems(2) AStar.prems(3) package-rhs-connection-def
by force

moreover obtain fa-def: ¢ @& f = o' © f' stable f' o ## ff = f
and xx: NAau T. (a, u, T) € S = (Jau. Some au = a ® u A (au ## (T f’
oeTf)—
Fa'u' (o, u, T)e S'"AN|a| =la|Nav® (Tf'eTf)=ad ®u Au' >
u A package-sat pc A a’ u' u)))
using r1 package-rhs-connection-def by fastforce
then obtain fb-def: o' ® f' = " @ f' stable f"" o' ## f' f'" = f'
and Aau T. (a, u, T) € "= (Fau. Some au = a ® u A (auw ## (T f" ©
Tf) —

30

Fa' v (a,u', T)e S"Nl|a| = |a|Navd (Tf'e Tf)=a"&u Au
= u A package-sat pc B a’ u’ u)))
using r2 package-rhs-connection-def by fastforce

moreover have package-rhs-connection ¢ f S pc (AStar A B) " f" 8"
proof (rule package-rhs-connectionl)

show ¢ & f = " @ f' by (simp add: fa-def(1) fo-def(1))

show stable ' by (simp add: fbo-def(2))

show ¢ ## f using fa-def(3) by auto

show [’ = f using fa-def(4) fb-def(4) succ-trans by blast

fix ¢ u T assume asm0: (a, u, T) € S
then have f-def: Some (Tf"e Tf)=(Tf"e Tf)e (Tf' o Tf)
proof —
have mono-transformer T using valid-package-set-def asm0 <valid-package-set
S > by fastforce
then have T f" = T f'
by (simp add: fb-def(4) mono-transformer-def)
moreover have T f' = T f
using <mono-transformer T fa-def(4) mono-transformer-def by blast
ultimately show ?thesis
using commutative minus-and-plus minus-equiv-def by presburger
qed

then obtain au where au-def: Some au = a ® u
av ## (Tf'oTf) = Fa'u. (o', v, T)e S"ANla'| = |a| AN au® (T f’
©Tf)=a & u Au' > uA package-sat pc A a’ u' u)
using *x asm0 by blast
then show Jau. Some au = a ® u A (au ## (T f" S Tf) — (Fa’ v’ (a
v, TYyeS"ANla | =lalANaud (Tf'e Tf)=a @u Au'=uA package-sat
pc (AStar A B) o’ u' u))
proof (cases au #4# (T f" o Tf))
case True
moreover have mono-transformer T using (valid-package-set S f> valid-package-set-def
asm0 by fastforce
ultimately have au ## (T f"© T f') AN au ## (T f' © T f) using asso3
commutative defined-def f-def
by metis
then obtain o’ v’ where r3: (¢, v/, T) € S'A|a/| = |a| Nauv®d (Tf'© T
f)=a @ u' Au' = uA package-sat pc A o’ u' u
using au-def(2) by blast

then obtain au’ where au’-def: Some au’ = a’ ® u’
aw' #H# (T "o Tf)= Fa" v (", u", T) € S" Nl|a"| = |a'| A au’
S (Tf'eTf)=a"®u" ANu">=u' A package-sat pc B a" u' u’)
by (meson package-logic.package-rhs-connection-instantiate package-logic-axioms
r2)

31

moreover have au’ ## T f" & T f’
using True r3 calculation(1) commutative defined-sum-move f-def by fast-
force
ultimately obtain o’ v’ where r4: (a", u", T) € S A |a"] = |a/] A au’
& (Tf'eTf)=a"®u" ANu">u' A package-sat pc B a" u'" v’
by blast

then have au & (T f"6 Tf)=a" & u"
proof —
have au @ (T f" © T f) = splus (Some au) (Some (T f" © T f))
by simp
also have ... = splus (Some au) (splus (Some (T f”" & T f') (Some (T f’
& T)
using f-def by auto
finally show ?thesis
by (metis (full-types) r3 r4 au’-def (1) splus.simps(3) splus-asso splus-comm,)
qed
moreover have package-sat pc (AStar A B) o’ v"" u
proof (rule package-satl)
assume pc |a”/|
then have pc |a
by (metis AStar.prems(3) r4 greater-equiv minus-core minus-core-weaker
minus-equiv-def mono-pure-cond-def pure-def)
then obtain z where Some z = |a/| @ (uv' © u) A sat A x
using 3 package-sat-def by fastforce
then obtain z’ where Some 2’ = |a"| ® (u" © u') A sat B z’
using <pc |a’’|> package-sat-def r4 by presburger

’I

have v > u"" 6 u
by (metis minus-default minus-smaller succ-refl)
moreover have a'' ## u’’
using True <au ® (T f" © T f) = o’ ® u' defined-def by auto
ultimately obtain z'’ where Some z'' = |a'"| @ (v" © w)
by (metis commutative defined-def maz-projection-prop-pure-core mpp-smaller
not-None-eq smaller-compatible)
moreover have Some (v © u) = (v © u) & (v’ © u)
using f «(a’, u, T) € S'Ala/| = |a| Nau & (Tf e Tf)=a @ u' A
u’ = u A package-sat pc A a’ u’ wy commutative minus-and-plus minus-equiv-def
by presburger
moreover have |a”| > |a
using 74 by blast
moreover have Some |a”| = |a'| @ |a”/|
by (metis (no-types, lifting) calculation(3) core-is-pure sep-algebra.assol
sep-algebra.minus-exists sep-algebra-axioms)
ultimately have Some 2" = 2’ ® x
using assol[of - - 2] <Some z = |a’| ® (v" © u) A sat A x> <Some z' =
la”| ® (u” & u') A sat Bz's commutative
by metis
then show Jz. Some z = |a"| & (u” & u) A sat (AStar A B)

|

32

using <Some z = |a/| & (v’ © u) A sat A x> «Some z' = |a”| & (v" S u)
A sat B z'y «Some z' = |a"| & (u"" © u)» commutative by fastforce
qed
ultimately show ?thesis
using 73 4 au-def(1) succ-trans by blast
next
case Fulse
then show ?thesis
using au-def(1) by blast
qed
qed
ultimately show ?case by blast
next
case (ASem S pc witness B S’ ¢ f)
have valid-package-set S’ f
proof (rule valid-package-setl)
fix o’ v’ T assume asm0: (a’, u’, T) € S’
then show a’ ## u’ A |a’| = |u’| A mono-transformer T A o’ = |T f|
proof (cases (a’, v/, T) € S)
case True
then show ?thesis
using ASem.prems(1) valid-package-set-def by auto
next
case Fualse
then have (a’, v/, T) € {(a © b, the (u® b), T) lau T b. (a, u, T) € S A
pc a A b = witness (a, u, T)}
using ASem.hyps(2) asm0 by blast
then obtain a u b where (a, u, T) € S pc a b = witness (a, u, T) a’ = a
© bu' = the (u P b) by blast
then have a = b A Bb
using ASem.hyps(1) by presburger
have a ## u
using ASem.prems(1) «(a, u, T) € S» valid-package-set-def by fastforce
then have Some u’' = u ® b
by (metis <a = b A B by «u' = the (u & b))y commutative defined-def
option.ezhaust-sel smaller-compatible)
moreover have Some a = a’ ® b
using <a = b A B by <a’ = a © b> commutative minus-equiv-def by presburger

ultimately have o’ ## u’
by (metis <a ## w assol commutative defined-def)
moreover have |a’| = |u/|
proof —
have |a| = |u]
using ASem.prems(1) «(a, u, T) € S» valid-package-set-def by fastforce
moreover have |a’| > |a]
by (simp add: <a’ = a © b» minus-core succ-refl)
moreover have |a’| = ||
using <a = b A B by <a’ = a © by maz-projection-prop-pure-core minus-core

33

mpp-mono by presburger
ultimately show ?thesis
by (metis <Some u' = u & b> <a’ = a & b> core-is-pure core-sum minus-core
pure-def smaller-pure-sum-smaller)
qed
moreover have o’ = |T f|
proof —
have a = |T f| using ¢(a, u, T) € S» (valid-package-set S f» valid-package-set-def
by fastforce
then show ?thesis
by (metis <a’ = a © by maz-projection-prop-pure-core minus-core mpp-mono
mpp-smaller sep-algebra.mpp-invo sep-algebra.succ-trans sep-algebra-azioms)
qed
ultimately show ?thesis using «(a, u, T) € S» (valid-package-set S f»
valid-package-set-def
by fastforce
qed
qed
moreover have package-rhs-connection ¢ f .S pc (ASem B) ¢ f S’
proof (rule package-rhs-connectionI)
show o @ f=p @ f
by simp
show stable f by (simp add: ASem.prems(4))
show ¢ ## f by (simp add: ASem.prems(5))
show f = f by (simp add: succ-refl)

fix a u T assume asm0: (a, u, T) € S

then obtain au where Some au = a @ u using <valid-package-set S f»
valid-package-set-def defined-def by auto
then have r0: (3a’ v’ (a’, v/, T) € S" A|a’| = |a| A Some au = o’ ® u’ A
u’ = u A package-sat pc (ASem B) a’ u’ u)
proof —
let ?b = witness (a, u, T)
let 20 =a© 7
let ?u = the (u © 2b)
show Ja’ v’ (a’, u’, T) € S" A |a’| = |a| A Some au = a’ ® v’ A u' = u A
package-sat pc (ASem B) a’ v’ u
proof (cases pc a)
case True
then have (%a, %u, T) € S’ using ASem.hyps(2) asm0 by blast
then have a = %0 A B ?b using ASem.hyps(1) True asm0 by blast
moreover have r1: (%a, %u, T) € S’ A |?a] = |a| A Some au = %a @ ?u
A Pu = u
proof
show (a © witness (a, u, T), the (u @ witness (a, u, T)), T) € S’
by (simp add: «(a © witness (a, u, T), the (u & witness (a, u, T)), T)
e Sh)
have |a © witness (a, u, T)| = |a

34

by (simp add: minus-core succ-refl)
moreover have Some au = a © witness (a, u, T) @ the (v @ witness (a,

using «(Some au = a @ w <a > witness (a, u, T) A B (witness (a, u,

assol[of a © witness (a, u, T) witness (a, u, T) a u the (v ® witness
(a, u, T))]
commutative option.distinct(1) option.ezhaust-sel assod minus-equiv-def
by metis
moreover have the (u @ witness (a, u, T)) = u
using «Some au = a B w <a = witness (a, u, T) A B (witness (a, u,
T))» commutative
greater-def option.distinct(1) option.exhaust-sel asso3[of u witness (a,
u, T)]
by metis
ultimately show |a © witness (a, u, T)| *= |a| A Some au = a ©
witness (a, u, T) @ the (u ® witness (a, u, T)) A the (u @ witness (a, u, T)) = u
by blast
qed
moreover have package-sat pc (ASem B) ?a %u u
proof (rule package-satl)
assume pc |a © witness (a, u, T)|
have Some 2u = v ® ?b
by (metis (no-types, lifting) <Some au = a ® w» calculation(1) commutative
minus-equiv-def option.distinct(1) option.exhaust-sel sep-algebra.assod sep-algebra-azioms)
moreover have %a ## ?u
by (metis r1 defined-def option.distinct(1))
moreover have 2u > %u O u
using 71 minus-smaller by blast
ultimately obtain © where Some © = |a © 2b] ® (%u © u)
by (metis (no-types, opaque-lifting) <a > witness (a, u, T) A B (witness (a,
u, T))» commutative defined-def minus-core minus-equiv-def option.exhaust smaller-compatible)
moreover have z = 2b
proof —
have 20 © u > 2b
using «Some (the (u & witness (a, u, T))) = u ® witness (a, u, T)
minus-bigger by blast
then show ?thesis
using calculation greater-equiv succ-trans by blast
qed
ultimately show Jz. Some © = |a & witness (a, u, T)| & (the (u @
witness (a, u, T)) © u) A sat (ASem B) x
using ASem.prems(2) «Some (the (u ® witness (a, u, T))) = u @ witness
(a, u, T)
<a = witness (a, u, T) N B (witness (a, u, T))> commutative
maz-projection-prop-def [of pure core]
maz-projection-prop-pure-core minus-equiv-def-any-elem mono-pruner-def [of
B
sat.simps(3)[of B] wf-assertion.simps(3)[of B]

35

by metis
qged
ultimately show ?thesis by blast
next
case Fulse
then have package-sat pc (ASem B) a u u
by (metis ASem.prems(3) mono-pure-cond-def package-sat-def)
moreover have (a, u, T) € §’
using False ASem.hyps(2) asm0 by blast
ultimately show ?thesis
using <Some au = a & w succ-refl by blast
qed
qed
moreover have au ® (T f © T f) = Some au
proof —
have a = | T f| using «(a, u, T) € S» <valid-package-set S f» valid-package-set-def
by fastforce
then have |a| = TfO Tf
using core-is-smaller maz-projection-prop-def mazx-projection-prop-pure-core
minusl by presburger
then have |au| = Tfo Tf
using <Some au = a & w> core-sum greater-def succ-trans by blast
then show ?thesis using bigger-core-sum-defined by force
qed
ultimately show Jau. Some au = a ® u A (au ## (Tfe Tf) — (Fa' v
(o’ u', T)e S'"Nla'| =la|Nauw @ (TfOS Tf)=a" ®u Au' = uA package-sat
pc (ASem B) a’ v’ u))
using «Some au = a & w by fastforce
qed
ultimately show ?case by blast
next
case (AddFromOQutside ¢ o' m f' S pc A " f'" 8" f§)
have valid-package-set S’ f'
proof (rule valid-package-setl)
fix o’ v T assume asm0: (a’, u, T) € S’
then obtain « where (a, u, T) € S o’ ## u Some o’ =a ® (T f'© Tf)
using AddFromOutside.hyps(6) by blast
then have |a| = |u| A mono-transformer T A a = |T f| using <valid-package-set
S fr valid-package-set-def
by fastforce
moreover have o’ = |T f
by (metis (no-types, opaque-lifting) «Some o’ = a ® (T f'© T f)» commutative
greater-equiv minus-core minus-equiv-def minus-smaller succ-trans unit-neutral)
ultimately show o’ ## u A |a'| = |u| A mono-transformer T A a' = |T /|
using «Some a’'=a ® (Tf'© Tf) «a' ## w greater-def maz-projection-prop-pure-core
mpp-mono succ-trans by blast
qed
then have r: package-rhs-connection @' f' S’ pc A o ' S" A valid-package-set
S fr

!

36

by (metis AddFromQutside.hyps(1) AddFromOutside.hyps(3) AddFromOut-
side.hyps(4) AddFromOutside.hyps(5) AddFromOutside.prems(2) AddFromOutside.prems(3)
AddFromOutside.prems(4) AddFromQutside.prems(5) assol commutative defined-def
stable-sum,)
then obtain r2: ¢’ @ f' = " & f" stable f" @' ## f' f" = f'
NaeuT. (a,u, T) € "= (Fau. Some au=a ® u A (au ## (T f" S T [
N
Fa' v (a,u, T)eS"ANl|a'| = la| Navd (Tf"OTf)=0a@&u Au
= u A package-sat pc A o’ u’ u)))
using package-rhs-connection-def by fastforce

moreover have package-rhs-connection ¢ f S pc A " f"" S
proof (rule package-rhs-connectionl)
show o ® f =" @& f"
by (metis AddFromOutside.hyps(1) AddFromQutside.hyps(5) assol commu-
tative r2(1))
show stable [’
using AddFromOutside.hyps(4) calculation(4) r2(2) stable-sum by blast
show ¢ #7 [
by (simp add: AddFromOutside.prems(5))
show " = f
using AddFromOutside.hyps(5) bigger-sum greater-def r2(4) by blast

fixauT
assume asm0: (a, u, T) € S
then obtain au where Some au = o ® u using <(wvalid-package-set S f»
valid-package-set-def defined-def
by fastforce
moreover have au ## (T f" o T f) = (Fa' v’ (a/,u’, T) € S" A || =
lal Naud (Tf"e Tf)=a ®u' Au = uA package-sat pc A o’ u’ u)
proof —
assume asml: au ## (T f" © Tf)
moreover have mono-transformer T using <valid-package-set S f» valid-package-set-def
asm0
by fastforce
then have Some (T f" e T =(Tf"eTfe (Tf e Ty
by (metis AddFromQutside.hyps(5) commutative greater-equiv minus-and-plus
minus-equiv-def mono-transformer-def r2(4))
ultimately have a ## (T f'© T f)
using (Some au = a ® w» asso?2 commutative defined-def minus-exists
by metis
then obtain ¢’ where Some o’ = a @ (T f'© T f)
by (meson defined-def option.collapse)
moreover have a’ ## u
proof —
have Tf"o Tf=Tf o Tf
using «Some (T f"o T =Tf' o Tf & (Tf ©Tf) greater-equiv
by blast
then show ?thesis

37

using «Some au = a ® w asml assol[of ua au T f' S T fa'] asso2]of]
calculation commutative
defined-def|of | greater-equiviof T f"" © T fTf & T f]
by metis
qed

ultimately have (a’, u, T) € S’
using AddFromOutside.hyps(6) asm0 by blast

moreover have au ## (T f" o T ')
by (metis «<Some (T f"o TH=Tf'oTf' & (Tf o Tf) asml assol
defined-def)

then have Jau. Some au = o’ @ u A (au ## (T f"0 Tf) — (Fa'a v’
(a’a, ', T) € S”" N |a'al = ol ANau & (Tf"e Tf)=ada®u ANu' = uA
package-sat pc A a’a u’ w))

using r2(5) calculation by blast

then obtain au’ a’”’ v’ where r8: Some au’ = o' ® v av’ ## (T f"© T f)
= (¢ u, T)eS"AN|a"| = |d|Nau'"® (Tf'eoTf)=a"®u' Au'" = uA
package-sat pc A o’ u' u

using <au ## (T f” © T f')> by blast

moreover have au’ ## (T f"" © T f') using <au ## (T f"" © T f)) <Some
au=a ® w r3(1)

Some (Tf"OTH=(Tf'eoTf)e(TfeTf

Somea’=a® (Tf © Tf) assollofuaau Tf' © Tfa'] commutative
defined-sum-move[of au T f"' © T f]
by metis
ultimately have r4: (a”, u’, T) € S”" Ala"| = |a| AN av' @ (T f" & Tf)
=a”" @ u' ANu' = uA package-sat pc A o’ u' u
by blast
moreover have |a”| = |q]
proof —
have |a'| » |a]
using «Some o' = a @ (T f' & T f)» core-sum greater-def by blast
then show ?thesis
using 4 succ-trans by blast

qed

ultimately show Ja’ v’ (a’, v/, T) € S”" A|a’| = |a| AN au & (T f"© Tf)
=a" ®u A u' = uA package-sat pc A a’ v’ u

using «Some (T f"o TH=Tf'eTf e (Tf & Tf) «Somea =a
@ (Tf o Tf) «Someavw=a® w
commutative r3(1) assol splus.simps(3) splus-asso by metis

qed

ultimately show Jau. Some au = a & u A (au ## (T f" 6 Tf) — (Fa’
u'. (o, u, Ty e S"ANla'| =Ja|Navd (Tf'oTfl=ad du ANu »=uA
package-sat pc A a’ u' u))

by blast
qed

38

ultimately show ?case using r by blast
qed

lemma unit-core:

|unit| = unit

by (meson core-is-pure max-projection-prop-pure-core sep-algebra.cancellative sep-algebra.mpp-invo
sep-algebra-axioms unit-neutral)

lemma unit-smaller:
@ = unit
using greater-equiv unit-neutral by auto

2.3 Lemmas for completeness

lemma sat-star-exists-bigger:
assumes sat (AStar A B) ¢
and wf-assertion A
and wf-assertion B
shows Ja b. |a| = |¢| A |b| = || A Some ¢ = a ® b A sat A a A sat B b
proof —
obtain a b where Some ¢ = a ® b sat A a sat B b
using assms sat.simps(1) by blast
then obtain a’ b’ where Some a’ = a ® |p| Some b’ = b @ |¢|
by (meson defined-def greater-def greater-equiv option.collapse smaller-compatible-core)
then have ¢’ = a AN b = b
using greater-def by blast
then have sat A a’ A sat B b’
by (metis <Some a’ = a @ |¢|> «<Some b’ =b & |p|» <sat A a> <sat B by assms(2)
assms(8) maz-projection-prop-pure-core mpp-prop package-logic.wf-assertion-sat-larger-pure
package-logic-axioms)
moreover have Some ¢ = a’ ® b’
by (metis (no-types, lifting) <Some ¢ = a & by <Some a’ = a & |p|> «Some b’
= b ® |p| assol commutative core-is-smaller)
ultimately show ?thesis
by (metis «Some o’ = a @ |p|> <Some b’ = b @ |p|> commutative extract-core
greater-equiv max-projection-prop-pure-core mpp-mono)
qed

lemma let-pair-instantiate:
assumes (a, b) = fz y
shows (let (a, b)) = fzyingabd) =gabd
by (metis assms case-prod-conv)

lemma greater-than-sum-ezists:
assumes a =~ b
and Some b = bl @ b2
shows Jr. Some a = r @ b2 A |r| = |a| A r = bl
proof —

39

obtain r where Some a = r & b2 N r > bl
by (metis assms(1) assms(2) bigger-sum commutative)
then obtain r’ where Some r' = r @ |a|
by (metis defined-def greater-def option.exhaust smaller-compatible-core)
then have Some a = r' & b2
by (metis <Some a = r @ b2 A r > bl> commutative core-is-smaller sep-algebra.assol
sep-algebra-axioms)
then show ?thesis
by (metis <Some a = r @ b2 A r = bl <Some r’ = r & |a|> core-is-pure
greater-def smaller-than-core succ-trans)
qged

lemma bigger-the:
assumes Some a =z’ @ y
and z' > z
shows the (|a] @ z') = the (|a| @ z)
proof —
have a > z’
using assms(1) greater-def by blast
then have |a| ## 1z’
using commutative defined-def smaller-compatible-core by auto
moreover have |a| ## z
by (metis assms(2) calculation defined-def sep-algebra.asso3 sep-algebra.minus-exists
sep-algebra-axioms)
ultimately show ?thesis
using addition-bigger assms(2) commutative defined-def by force
qged

lemma wf-assertion-and-the:
assumes |a| ## b
and sat A b
and wf-assertion A
shows sat A (the (|a| ® b))
by (metis assms(1) assms(2) assms(3) commutative defined-def maz-projection-prop-pure-core
option.collapse sep-algebra.mpp-prop sep-algebra-axioms wf-assertion-sat-larger-pure)

lemma minus-some:
assumes a =~ b
shows Some a = b @ (a © b)
using assms commutative minus-equiv-def by force

lemma core-mono:
assumes a =~ b
shows |a| > ||
using assms maz-projection-prop-pure-core mpp-mono by auto

lemma prove-last-completeness:

assumes a’ = a
and Some a = nfl & f2

40

shows a’ © nfl > f2
by (meson assms(1) assms(2) greater-def greater-minus-trans minus-bigger succ-trans)

lemma completeness-aur:
assumes Na u T. (a, u, T) €
f2auT A (pcla] — sat A (the
and valid-package-set S f
and wf-assertion A
and mono-pure-cond pc
and stable f N o #F# f
shows 35". package-rhs ¢ fSpc Ao fS'"A(V(a,u', T) € S’ Fau. (a, u,
TYeSAa' =f2auTAlad|=]al)
using assms
proof (induct A arbitrary: S pc f1 f2)
case (AImp b A)
let ?pc = bool-conj pc b

S=|flauT|>l|a|]ANSomea=flauT®
(lal & (f1 a u T))))

have r0: 35’. package-rhs ¢ f S (bool-conj pc b) A ¢ f S’ A (Va€S’. case a of
(ayu, T)=3Fau (a,u, T)eSAa =f2auTAl|a|=]lal)

proof (rule AImp(1))

show walid-package-set S f
by (simp add: AImp.prems(2))

show wf-assertion A using Almp.prems(8) by auto
show mono-pure-cond (bool-conj pc b)
by (meson AImp.prems(8) Almp.prems(4) mono-pure-cond-conj wf-assertion.simps(2))
show stable f A @ #4 f using <stable f N ¢ #4# f> by simp

fixauT
assume asm0: (a, u, T) € S
then have Somea=flau T ® f2au T
using AImp.prems(1) by blast
moreover have bool-conj pc b |a| = sat A (the (|a| ® fl a u T))
proof —
assume bool-conj pc b |al
then have pc |qf
by (meson bool-conj-def)
then have |fl au T| = |a| A Somea=flau T & f2au T A sat (AImp b
A) (the (|a| ® f1l au T))
using AImp.prems(1) asm0(1) by blast
moreover have b (the (|a| ® f1 au T))
proof —
have |a| ## flau T A |a| = |fl a u T|
by (metis calculation commutative core-is-smaller defined-def greater-def
maz-projection-prop-pure-core mpp-mono option.discl succ-antisym)
then obtain z where Some z = |a| ® fl au T
by (meson defined-def option.collapse)
then have |z| = |q
by (metis <Some z = |a| @ fl a u T» <|a| ## flau T A |a] = |fl a u
T|> commutative core-is-pure core-sum maz-projection-prop-pure-core mpp-smaller

41

smaller-than-core)
then show ?thesis
by (metis AImp.prems(3) «Some z = |a| ® f1 a u T» <bool-conj pc b |al>
bool-conj-def mono-pure-cond-def option.sel wf-assertion.simps(2))
qed
ultimately show sat A (the (|a| ® fI a u T)) by (metis sat.simps(2))
qed
ultimately show |fl a u T| > |a| A Somea=flau T & f2au T A (bool-conj
pc b la] — sat A (the (|a| ® f1 a u T)))
by (metis AImp.prems(1) asm0)
qed
then obtain S’ where r: package-rhs ¢ f S (bool-conj pc b) A ¢ fS' Na’ v’ T.
(ayu,T)e S = Fawu (a,u, T) e SNa">f2auT)
by fast
moreover have package-rhs ¢ f S pc (AImp b A) ¢ f S’
by (simp add: package-rhs.AImp r(1))
ultimately show ?case
using r0 package-rhs.AImp by blast
next
case (ASem A)
let ?witness = M a, u, T). the (|a| ® fl au T)

obtain S’ where S’-def: S’ ={ (a, u, T) lau T. (a, u, T) € S A= pca}
U{(eob the(udd), T)|lauTh. (a, u, T) € S A pca A b= %witness (a,
u, T) }

by blast

have package-rhs ¢ f S pc (ASem A) ¢ f S’
proof (rule package-rhs.ASem)
show S'={(a, u, T) |lau T. (a, u, T) € S A= pca} U{(a ©Db, the (ud b),
T)lauTh (a,u, T) € S ApcaAb= ?witness (a, u, T)}
using S’-def by blast
fixauTh
assume asm0: (a, u, T) € S pc a b = (case (a, u, T) of (a, u, T) = the (|a]
®flauT))
then have b = the (|a| @ f1 a u T) by fastforce
moreover have pc |a
by (meson ASem.prems(4) asm0(2) mono-pure-cond-def)
then obtain |fl a u T| * |a| Some a =flau T & f2 a u T sat (ASem A)
(the (la] ® f1 au T))
using ASem.prems(1) asm0(1) by blast
then have Some b = |a| @ f1 a u T by (metis calculation commutative
defined-def minus-bigger minus-core option.exhaust-sel smaller-compatible-core)
moreover have a = b
proof —
have a = flau T
using <Somea=flau T & f2au T greater-def by blast
then show ?thesis
by (metis calculation(2) commutative maz-projection-prop-pure-core mpp-smaller

42

sep-algebra.mpp-prop sep-algebra-axioms smaller-pure-sum-smaller)
qed
ultimately show a = b A A b
using <sat (ASem A) (the (|a| ® f1 a u T))» sat.simps(3) by blast
qed

moreover have r0: Ao’ v’ T. (a/,u', T) € "= (Jau. (a,u, T) € S A a’
=f2auTA|a)|=]al)
proof —
fix ¢’ v’ T assume asm0: (a’, u’, T) € S’
then show Ja u. (a, u, T) € SANa" > f2auT A |a'| =|q
proof (cases (a’, u', T) € {(a, u, T) lauw T. (a, u, T) € S A = pc a})
case True
then show %thesis using ASem.prems(1) greater-equiv by fastforce
next
case Fulse
then have (a/, v/, T) € { (a © b, the (u® b), T) l[au Tb. (a, u, T) € S A
pc a A b= ?witness (a, u, T) }
using S’-def asm0 by blast
then obtain a u b where ¢’ = a¢ & b u’ = the (u ® b) (a, u, T) € Spcad
= %witness (a, u, T)
by blast
then have o’ > f2au T
proof —
have a = b
proof —
have a = flau T
using ASem.prems(1) «(a, u, T) € S» greater-def by blast
moreover have Some b= |a| ® flau T
by (metis <b = (case (a, u, T) of (a, u, T) = the (|a|® fl au T))» calcula-
tion case-prod-conv commutative defined-def option.exhaust-sel smaller-compatible-core)
ultimately show ?thesis
by (metis commutative maz-projection-prop-pure-core mpp-smaller
sep-algebra.mpp-prop sep-algebra-axioms smaller-pure-sum-smaller)
qed
then show ?thesis
using ASem.prems(1)[of a u T
(a, u, T) € Sy <a’'=a & b b= (case (a, u, T) of (a, u, T) = the (
la| ® fl aw T))
commutative core-is-smaller minus-bigger option.exhaust-sel option.simps(3)
assolfof f2au T fl au T ala| the (|a] & f1 au T)] asso2lof f2au T
flauT]
split-conv
by metis
qed
then show ?thesis
using ¢(a, u, T) € S) <a’ = a © b> minus-core by blast
qed
qed

43

ultimately show ?case by blast
next
case (AStar A B)

let %A =MXau T. SOME x. 3y. Some (flauvT)=xz® y Alz| = |fl au T| A
ly| = |a| A (pc |a| — sat A (the (|a] & z)) A sat B (the (|a| @ y)))

let /B =XauT. SOMEvy. Some (fl auT)=2AauT®yA |yl = |al A
(pc |a| — sat B (the (|a| & v)))

let 22 =XauT.the (fBauT ® f2auT)

have r: Aau T. (a, u, T) € S = Some (flauT)= %A auT @ BauT
AN?fAauT| = |flauwT| AN|?BauT| > |al A (pcla| — sat A (the (|a| @
A au T)) A sat B (the (o] @ ?fBau T)))
A Some (?f2auT)=9%BauT®f2auT
proof —
fix ¢ v T assume asm0: (a, u, T) € S
then have 70: Somea=flau T ® f2au T A (pc |a]| — sat (AStar A B)
(the (la] ® f1 au T)))
using AStar.prems(1) by blast
then have 3z y. Some (the (|a| ® flau T)) =2 @ y A (pc |a|] — sat A
x) A (pc |la]| — sat B y) A
z > |(the (|a] ® fl au T))| Ay > |(the (|a] & f1 au T))]
proof (cases pc |al)
case True
then show ?thesis
using AStar.prems(3) r0
max-projection-prop-def|of pure core] max-projection-prop-pure-core
sat-star-ezists-bigger[of A B (the (|la| & fl au T))]
succ-trans|of | wf-assertion.simps(1)[of A B]
by blast
next
case Fulse
then have Some (the (|a| ® fl au T)) = the (|a| ® fl aw T) & |the (|q
®flauT)
by (simp add: core-is-smaller)
then show ?thesis by (metis False max-projection-prop-pure-core mpp-smaller
succ-refl)
qed
then obtain z y where Some (the (|a| ® fl au T)) = 2 & y pc |a] — sat
Az pclal — sat By
z = |(the (|a] ® fl au T))| y = |(the (|a| ® fI au T))| by blast
moreover obtain af where Some af = |a| ® flau T
by (metis 0 commutative defined-def minus-bigger minus-core option.ezhaust-sel
smaller-compatible-core)
ultimately have Some (flauv T) =2 ® y
by (metis AStar.prems(1) r0 asm0 commutative core-is-smaller greater-def
max-projection-prop-pure-core mpp-mono option.sel succ-antisym,)
moreover have |a| ## z A |a| ## y

44

by (metis <Some af = |a| ® f1 a u Ty calculation commutative defined-def
option.discl sep-algebra.asso3 sep-algebra-axioms)
then have the (|a| ® z) = x A the (|a] & y) = ¥
using commutative defined-def greater-def by auto

ultimately have pc-implies-sat: pc |a| = sat A (the (|a| ® z)) A sat B (the
(la] @ y)
by (metis AStar.prems(3) <pc |a| — sat A x» <pc |a| — sat B y» ¢|al
x A |a| ## v commutative defined-def maz-projection-prop-pure-core op-
tion.ezhaust-sel package-logic.wf-assertion.simps(1) package-logic-axioms sep-algebra.mpp-prop
sep-algebra-axioms wf-assertion-sat-larger-pure)

have r1: 3y. Some (flauT)=?%fAauvT @y AN |?fAauT|>|flauT|A
ly| = |a| A (pc |a| — sat A (the (|a| ® ?fA a u T)) A sat B (the (|a| © y)))
proof (rule somel-ex)
show 3z y. Some (flauT)=2@yAlz| = |flauw T| A |yl = |a] A (pc |a]
— sat A (the (|a] ® z)) A sat B (the (|a| @ y)))
using «Some (fl au T) =z & y» <Some (the (|a| ® flauT)) =2y
pe-implies-sat <z = |the (|a| ® f1 auw T)|» <y = |the (|a| ® f1 a u T)|» core-is-pure
maz-projection-propE(8) max-projection-prop-pure-core option.sel pure-def
by (metis AStar.prems(1) asm0 minusl minus-core)
qed
then obtain yy where yy-prop: Some (fl a u T) = %fA au T ® yy A |9fA a
uT| = |flauT|Alyyl = |a] A (pc |a]| — sat A (the (o] @ fA auw T)) A sat
B (the (|a] © yy)))
by blast
moreover have 72: Some (flauT)= %A auT ® ?(BauT AN|?BauT|
= la|l A (pc |a| — sat B (the (|a] @ 2B au T)))
proof (rule somel-ex)
show Jy. Some (flauT)= %A auT @y A |yl = |a| A (pc |a| — sat B
(the (|a| © y)))
using r! by blast
qed
ultimately have fBau T @ f2 a u T # None
using 70
option.distinct(1) [of | option.ezhaust-sellof /B au T ® f2 a u T)] asso2]of
YA auT?%BauTflauTfRauT)
by metis
then show Some (flauT)= %A auT ® fBauT AN|?%AauT| > |fla
uT|AN|?fBauT| > g
A (pe |a] — sat A (the (|a| @ ?fA au T)) A sat B (the (|a] ® /B awu T)))
A Some (?f2auT)=%BauvT®fPauT
using 70 r2 yy-prop
option.distinct(1) option.ezhaust-sellof ?fB au T @ f2 a u T) asso2|of ?fA
auT?%BauTflauTf2auT)
by simp
qed
have ih1: 35’ package-rhs ¢ f S pc A fS' N (VaeS". case a of (a’, u', T) =
Jawu. (a,u, T) e SANa" =2 2auTAlad|=]lal)

45

proof (rule AStar(1))
show wvalid-package-set S f
by (simp add: AStar.prems(2))
show wf-assertion A
using AStar.prems(3) by auto
show mono-pure-cond pc
by (simp add: AStar.prems(4))
show stable f N\ ¢ ## f using «stable f N ¢ ## f> by simp

fixauT
assume asm0: (a, u, T) € S
then have b: Some (flauT)= %A auT & fBauT AN|%A au T| = |f1
auT|AN|?2BauwT|>la| A(pclal — sat A (the (|a] @ A a u T)) A sat B
(the (|a| ® 9B au T)))
using 7 by fast
show |?fA au T| = |a|] A Somea = %fAauT ® ?f2au T A (pc |a] — sat
A (the (|a| ® 7fA a u T)))
proof —
have |?fA a u T| = |a|
using AStar.prems(1)[of a uw T| asm0 b assol[of fA auw T %fBau T fl au
7]
asso2[of fA a uw T ?fB a u T] option.sel succ-trans|of |?fA a u T| - |al]
by blast
moreover have Somea = %fAauT @ ?2au T
using AStar.prems(1)[of a u T] asm0 b assol[of ?fA auw T %fBau T fl a
vuTfauT?2auT]
asso2[of %fA au T ?2fBau T fl au T f2au T] option.sel
option.ezhaust-sellof ?fBau T ® f2au T Somea = %fAauT @® ?f2a u T)
by force
moreover have pc |a| — sat A (the (|a| @ fA a u T))
using AStar.prems(1)[of a u T] asm0 b
asso2[of %A a uw T ?fB a u T | option.sel succ-trans[of |?fA a u T| - |al]
by blast
ultimately show ?thesis
by blast
qed
qged
then obtain S’ where r’: package-rhs ¢ f Spc A p fS' Na’" v' T. (a’, v/, T)
€S = 3Jau. (a,u, TYESNa = ?%2auT Ala| =g
by fast

let ?project = Aa’ T. (SOME r. 3a u. r = (a, u) A (a, u, T) € SN a' = ?f2a
wT Al = o])

have project-prop: Na’ v’ T. (a’, v/, T) € ' = Ja u. ?project o’ T = (a, u)
A(a,u, T) e SANa" > 22auT Ala| =|a

proof —
fix o’ v/ T assume (o, v/, T) € S’
then obtain ¢ u where (a, u, T) € SAa' = 2au T A |a'| =|a

using r’ by blast

46

moreover show Ja u. ?project a’ T = (a, u) A (a, u, T) € SN a’' = 2 au
T A Ja/ = |af
proof (rule somel-ex)
show 3rawu. r=(a, u) A (a,u, T) € SANa" = ?f2au T A |a’| = |a| using
calculation by blast
qed
qed

let ?nf1 = Xa’ u’ T. let (a, u) = ?project a’ T in (SOME r. Some r = |a’| &
fBauT)
let nf2 =Xa’ v T.a"© nfla’ v’ T

have 35", package-rhs ¢ f S’ pc B ¢ fS" N (VaeS”. case a of (a’, v/, T) =
Jau (a,u, TYeS'ANa" = nf2auT Ala'| =la|)
proof (rule AStar(2))
show stable f A @ #4 f using <stable f N ¢ #4# f> by simp

then show wvalid-package-set S’ f
using AStar.prems <package-rhs ¢ f S pc A o fS" package-logic.package-rhs-proof
package-logic.wf-assertion.simps(1) package-logic-axioms
by metis
show wf-assertion B
using AStar.prems(3) by auto
show mono-pure-cond pc
by (simp add: AStar.prems(4))
fix o’ v’ T assume (o, v/, T) € S’
then obtain a¢ u where a-u-def: (a, u) = project o’ T (a, u, T) € S a’ =
2 au T |a'| = |a
using project-prop by force
define nf! where nfl = ?nfl o’ v’ T
define nf2 where nf2 = ?nf2a’ u' T
moreover have rnfl-def: Some nfl = |a’| ® ?/Bau T
proof —
let %z = (SOME r. Some r = |a’| @ 9fBau T)
have Some %z = |a’| ® ?fBau T
proof (rule somel-ex)
have Some (flauT)= %A auT ® BauTA|?%fAauT| = |fl au
TIAN|?BauT| > |a
A (pc |a] — sat A (the (|a] @ ?fA a uw T)) A sat B (the (|a| ® ?fBau
7))
using r a-u-def by blast
then have Some (f2au T)=2BauT ®f2auT
by (metis (no-types, lifting) AStar.prems(1) a-u-def(2) asso2 option.distinct(1)
option.ezhaust-sel)
moreover have o’ = (/2 a v T) using <a’ = 22 a u T) by blast
ultimately have a’ = 9fB a u T using succ-trans greater-def
by blast
then obtain r where Some r = |a/| ® ?(Bau T
using

47

commutative
greater-equiv[of a’ ?fB a u T]
minus-equiv-def-any-elem|[of a]
by fastforce
then show 3r. Some r = |a'| ® ?fB a u T by blast
qed
moreover have ?nfl o’ v/ T = %z
using let-pair-instantiate[of a u - '’ T Aa u. (SOME r. Some r = |a’| ®
fBauT)| au-def
by fast
ultimately show ¢thesis using nfi-def by argo
qed

moreover have rf2-def: Some a’ = nfl ® nf2
proof —
have nf2 = a’ & nfl using nfl-def nf2-def by blast
moreover have a’ > nfl
proof —
have ?f2 a u T > nfl
proof —
have Some (?f2auT)=?BauT ® f2au T using r «(a, u, T) € S»
by blast
then have ?2au T > ?fBau T
using greater-def by blast
moreover have ?f2au T > |a
proof —
have |?f2 a v T| = |a
proof —
have |22 a u T| = |%/Ba u T| using <?f2au T »= %fBau T
core-mono by blast
moreover have |?fB a u T| = |a| using r «(a, u, T) € S» by blast
ultimately show ?thesis using succ-trans <|a’| = |a|> by blast

|

qed
then show ?thesis
using a-u-def(4)
bigger-core-sum-defined|of ?f2 a u T)
greater-equiv|of - |al]
by auto
qed
ultimately show #thesis using
core-is-pure[of a’] commutative pure-def|[of |a’|] smaller-pure-sum-smaller|of
- - |a'|] rnf1-def
by (metis (no-types, lifting))
qed
then show ?thesis using <a’ = ?2f2 a u T) succ-trans by blast

qed
ultimately show ?thesis using minus-some nf2-def by blast

qed

48

moreover have pc |a’| = sat B (the (|a’| ® ?nfl o’ u' T))

proof —
assume pc |a’|
moreover have |a’| = |a|

by (simp add: a-u-def(4))
then have pc |a| using «pc |a’]) by simp
ultimately have sat B (the (|a] ® ?/Bau T))
using 7 a-u-def by blast
then have sat B (the (|a’| & 9B a u T)) using «|a’| = |a|> by simp

then show sat B (the (|a’| @& ?nfl o’ v’ T))
proof —
have nf1 = |a’| using rnfI-def
using greater-def by blast
then have Some nfl = |a’'| ® nfl
by (metis bigger-core-sum-defined commutative core-mono maz-projection-prop-pure-core
mpp-invo)
then show ?thesis using nfl-def rnfl-def <sat B (the (|a'| & ?/fBau T))»
by argo
qed
qed
moreover have |?nfl o’ v’ T| = |a
proof —
have ?nfl o’ v’ T = |a’| using nf1-def greater-def rnfl-def by blast
then show ?thesis
using maz-projection-propE(3) maz-projection-prop-pure-core sep-algebra.mpp-prop
sep-algebra-axioms by fastforce
qed
ultimately show |?nff o’ v’ T| = |a'| A Somea’ = ?nfl o’ v’ T @ ?nf2 o’
uw' T A (pc |a'| — sat B (the (|a’| @ nfl o’ v’ T)))
using nfl-def

|

by blast
qed
then obtain S’ where S'-prop: package-rhs ¢ f S pc B fS" Na’ v’ T. (a,
v, T)eS"= Fau (a,u, T) € S'"Na'" > ?nf2auT Ala| =lq
by fast

then have package-rhs ¢ f S pc (AStar A B) ¢ f S
using <package-rhs ¢ f S pc A ¢ f S’ package-rhs.AStar by presburger
moreover have Aa” v T. (a”, v", T) € " = Jau. (a,u, T) € SAa" =
f2auT Ala”| =|a
proof —
fix o’ v” T assume asm0: (a", u", T) € §”

then obtain o’ v’ where (a’, v/, T) € S’ ANa" = nf2a’ v’ T A |a”| = |a|
using S'-prop by blast

49

then obtain a u where a-u-def: (a, u) = project o’ T (a, u, T) € S a’ =
f2au T |a'] = |a
using project-prop by force

define nf! where nfl = ?nfl o’ v’ T
define nf2 where nf2 = ?nf2 a’ v’ T

moreover have rnfl-def: Some nfl = |a’| ® ?/Bau T
proof —
let 2z = (SOME r. Somer = |a'| ® ?fBau T)
have Some %z = |a'| ® Bau T
proof (rule somel-ex)
have Some (flauT)= %A auvT ® BauT A|?%fAauT| > |fl au
T|AN|2BauT|*> |
A (pc |a] — sat A (the (|a] @ ?fA a uw T)) A sat B (the (|a| ® ?fBau
7))

using r a-u-def by blast
then have Some (?f2auT)=%?BauvT ® f2auT
by (metis (no-types, lifting) AStar.prems(1) a-u-def(2) asso2 option.distinct(1)
option.exhaust-sel)
moreover have o’ = (/2 a v T) using <a’ = ?f2 a v T» by blast
ultimately have o’ = ?fB a u T using succ-trans greater-def
by blast
then obtain r where Some r = |a/| ® fBau T
using commutative greater-equiv|of a’ ?fB a u T| minus-equiv-def-any-elem|[of
a’] by fastforce
then show Jr. Some r = |a'| ® 9B a u T by blast
qed
moreover have ?nfl o’ u' T = %z
using let-pair-instantiate[of a u - '’ T Aa u. (SOME r. Some r = |a’| ®
fBauT)| a-u-def
by fast
ultimately show ¢thesis using nfi-def by argo
qed

moreover have rf2-def: a’ = nfl A nf2a’ v' T = f2au T
proof —
have nf2 = a’ & nfl using nfl-def nf2-def by blast
moreover have a’ = nfi ANa' & nfl = f2au T
proof —
have ?f2 a uw T > nf1
proof —
have Some (?f2auT)=%BauT ® f2au T using r <(a, u, T) € S
by blast
then have ?f2au T > ?fBau T
using greater-def by blast
moreover have ?f2au T * |a
proof —
have |?f2 a v T| > |a

|

50

proof —
have |22 a u T| = |%/B a u T| using <?f2au T »= ?/Bau T»
core-mono by blast
moreover have |?fB a u T| = |a| using r «(a, u, T) € S» by blast
ultimately show ?thesis using succ-trans <|a’| = |a|> by blast
qed
then show ?thesis
using a-u-def(4)
bigger-core-sum-defined
greater-equiv|of ?f2 a u T |a|]
by auto
qed
ultimately show ?thesis using
core-is-pure[of a’] commutative pure-def|[of |a’|] smaller-pure-sum-smaller|of
2 a uw T - |a'|] rnfi-def
by simp
qged
then have r1: o’ = nfl using <a’ = /2 a u T» succ-trans by blast
then have Some a’ = nfl ® nf2 using minus-some nf2-def «nf2 = o’ ©
nfl» by presburger
have r2: o’ © nfl = f2au T
using <a’ = 2 au T»
proof (rule prove-last-completeness)

have Some (f2au T)=2?BauT & f2auT
using 7 <(a, u, T) € S» by blast
moreover have Some nfl = |a’| ® ?fB a u T using rnfl-def by blast

have Some (?f2auT)=%BauT ® f2au T using r <(a, u, T) € S
by blast
then have f2au T = ?f(Bau T
using greater-def by blast
moreover have ?f2a u T » |a|
proof —
have |?f2 a v T| > |a]
proof —
have |92 a u T| = |%fB au T| using <?f2au T = ?fBau T
core-mono by blast
moreover have |?fB a u T| = |a| using r «(a, u, T) € S» by blast
ultimately show ?thesis using succ-trans <|a’| = |a|> by blast
qed
then show ?thesis
using a-u-def(4)
bigger-core-sum-defined|of - |al]
greater-equiv|of ?f2 a u T |al]
by auto
qed
ultimately show Some (f2au T)=nfl & f2au T
using assol[of |a'| ?2fBauw T nfl f2au T ?2f2a u T

o1

assol[of |a’| |a'| |a’|] core-is-pure[of a'] greater-def[of 2f2 a u T |a'|]
rnfl-def
by (metis (no-types, lifting))
qed
then show ?thesis using <a’ = ?f2 a u T succ-trans using r1 by force
qed
ultimately show ?thesis using nf2-def by argo
qed
ultimately have (a, u, T) € SAa’ = %2auT AN nf2a’v' T = f2auT
using nfl-def nf2-def
a-u-def by blast
then have " = f2au T A |a”| = |a’| using «(a’, v/, T) € S’ A a” = ?nf2
a"uw' T A la”| =la’]>
using succ-trans by blast
then show Ja u. (a, u, T) € SAa" > f2auT A |a”| =]|a| using r’
using a-u-def(2) a-u-def(4) by auto
qed
ultimately show ?case by blast
qed

2.4 Soundness

theorem general-soundness:
assumes package-rhs ¢ unit { (a, unit, T) |a T. (a, T) € S } (A-. True) A ¢’ f
S/
and Aa T. (a, T) € S = mono-transformer T
and wf-assertion A
and intuitionistic (sat A) V pure-remains S’
shows Some ¢ = ¢’ @ f A stable f A (V(a, T) € S. a ## T f — sat A (the
(a® Tf)))
proof —
let 25 = { (a, unit, p) la p. (a,p) € S}
let ?pc = A-. True
have package-rhs-connection ¢ unit 2S ?pc A ¢’ f S’ A valid-package-set S’ f
proof (rule package-rhs-proof)
show package-rhs ¢ unit {(a, unit, p) |a p. (a, p) € S} (A-. True) A ¢’ f S’
using assms(1) by auto
show wvalid-package-set {(a, unit, p) |a p. (a, p) € S} unit
proof (rule valid-package-setI)
fixauT
assume (a, u, T) € {(a, unit, p) |a p. (a, p) € S}
then have u = unit by blast
moreover have |T unit| = unit

using «(a, u, T) € {(a, unit, p) lap. (a, p) € S}» assms(2) mono-transformer-def

unit-core by fastforce
then show a ## u A |a| > |u| A mono-transformer T N a = |T unit|
using «(a, u, T) € {(a, unit, p) |a p. (a, p) € S assms(2) defined-def
unit-core unit-neutral unit-smaller by auto
qed

52

show wf-assertion A by (simp add: assms(3))
show mono-pure-cond (A-. True)
using mono-pure-cond-def by auto
show stable unit by (simp add: stable-unit)
show ¢ ## unit
using defined-def unit-neutral by auto
qed

then obtain 7: © ® unit = ¢’ @ f stable f
NaeuwT. (a, u, T) € 25 = (Jau. Some au = a ® u A (au ## (T fO T
unit) —
(Fa' v (a,u', T)e S"ANla| = |a] Nau® (Tfe Tunit)=a" @ u' A u’
= u A package-sat ?pc A o’ u' u)))
using package-rhs-connection-def by force

moreover have A\a T'z. (a, T) € SASomez=a @ Tf = sat A x
proof —
fix o T z assume asm0: (a, T) € SN Somez =a @ Tf
then have T'f & T unit = T f
by (metis assms(2) commutative minus-equiv-def mono-transformer-def op-
tion.sel unit-neutral unit-smaller)
then obtain au where au-def: Some au = a ® unit A (au ## T f —
(Fa' v (a/, v, T)e S"ANla| = la| ANauv® Tf=a" & u Au > unit A
package-sat ?pc A a’ u’ unit))
using 7 asm0 by fastforce
then have au = a by (metis option.inject unit-neutral)
then have (Ja’ v’ (a’, v/, T) € S"Ala| = |a| ANa® Tf=a @ u A
package-sat ?pc A a’ u' unit)
using au-def asm0 defined-def
by auto
then obtain ¢’ v’ where 70: (a/, v/, T) € S'"A|a/| = |a|] ANa® Tf=a' &
u’ A package-sat ?pc A a’ u' unit
by presburger
then obtain y where Some y = |a’| ® (v’ © unit) sat A y
using package-sat-def by auto
then have Some y = |a'| ® u’
by (metis commutative minus-equiv-def splus.simps(3) unit-neutral unit-smaller)
then have z > y
by (metis r0 addition-bigger asm0 maz-projection-prop-pure-core mpp-smaller)
then show sat A z
proof (cases intuitionistic (sat A))
case True
then show ?thesis by (meson «Some y = |a’| ® (uv' © unit)y <sat A y» <x =
y» intuitionistic-def)
next
case Fulse
then have pure-remains S’ using assms(4) by auto
then have pure o’ using pure-remains-def r0
by fast

93

then show ?thesis using r0 «Some y = |a’| ® (v’ © unit)) <sat A y» <Some
y = la’| ® u" asm0 core-is-smaller
core-maz option.sel pure-def assol|of a’| by metis
qed
qed
then have (V(a, T) € S. a ## T f — sat A (the (a @ T f)))
using sep-algebra.defined-def sep-algebra-azxioms by fastforce
moreover have Some ¢ = ¢’ & f A stable f
using r(1) r(2) unit-neutral by auto
ultimately show ?thesis by blast
qged

theorem soundness:
assumes wf-assertion B
and Aa. sat Aa = a €S
and Aa. a € S = mono-transformer (R a)
and package-rhs o unit { (a, unit, R a) |a. a € S } (A-. True) Bo' w S’
and intuitionistic (sat B) V pure-remains S’
shows stable w A Some o = o’ ® w A is-footprint-general w R A B
proof —
let 25 ={(a, R a)|a. a € S}
have r: Some 0 = o’ ® w A stable w A (V(a, T)e{(a, R a) |a. a € S}. a ##
T w — sat B (the (a ® T w)))
proof (rule general-soundness)
show package-rhs o unit {(a, unit, T) |a T. (a, T) € {(a, R a) |a. a € S}}
(A-. True) Bo' w S’
using assms(4) by auto
show Aa T. (a, T) € {(a, R a) |a. a € S} = mono-transformer T using
assms(3) by blast
show wf-assertion B by (simp add: assms(1))
show intuitionistic (sat B) V pure-remains S’ by (simp add: assms(5))
qed
moreover have is-footprint-general w R A B
proof (rule is-footprint-generall)
fix a b assume asm: sat A a N Some b=a ® Raw
then have (a, R a) € 25
using assms(2) by blast
then have sat B (the (a @ R a w)) using r using asm defined-def by fastforce
then show sat B b by (metis asm option.sel)
qed
ultimately show ¢thesis by blast
qged

corollary soundness-paper:
assumes wjf-assertion B
and Aa. sat Aa = a € S
and package-rhs o unit { (a, unit, id) |a. a € S } (A-. True) B o’ w S’
and intuitionistic (sat B) V pure-remains S’
shows stable w A Some 0 = o' ® w A is-footprint-standard w A B

54

proof —
have stable w A Some 0 = o' & w A is-footprint-general w (A-. id) A B
using assms soundnessjof B A S M- id o o’ w S’
by (simp add: mono-transformer-def)
then show ?%thesis
using is-footprint-general-def is-footprint-standardl by fastforce
qed

2.5 Completeness

theorem general-completeness:
assumes Aau Tz (a,u, T) €S = Somez=a® Tf= sat A x
and Some p = ' @ f
and stable f
and valid-package-set S unit
and wf-assertion A
shows 35'. package-rhs ¢ unit S (A-. True) A ¢’ f S’
proof —
define S’ where S'={ (r,u, T) lau T r. (a, u, T) € S A Somer =a @ (T
fe Tunit) Nr ## u}
let ?pc = A-. True
have 3S5". package-rhs o' f S’ ?pc A o' f 8"
proof —
let /2 = Aa v T. unit
let 2f1 =XauT. a
have 35". package-rhs @' fS" ?pc A @' fS" AN (V(a', v/, T) € S”. Ja u. (a,
u, TYeS'ANa" > 92auT Ala'] =]a|)
proof (rule completeness-aux)
show mono-pure-cond (A-. True) by (simp add: mono-pure-cond-def)
show wf-assertion A by (simp add: assms(5))
show wvalid-package-set S’ f
proof (rule valid-package-setl)
fix o’ u' T
assume (a’, v/, T) € S’
then obtain o where asm: (a, v/, T) € S A Somea'=a® (TfS T
unit) A o' ## u’
using S’-def by blast
then have a ## u' A |a| > |u'| A mono-transformer T
using assms(4) valid-package-set-def by fastforce
moreover have |T f © T unit| = |T f]|
by (simp add: minus-core)
ultimately show o’ ## u' A |a’| = |u/| A mono-transformer T A a’ =
77
by (meson asm core-sum greater-def greater-equiv minus-equiv-def mono-transformer-def
suce-trans unit-neutral)
qed
show stable f N @' ## [
by (metis assms(2) assms(3) defined-def domI domlIff)
fixauT

95

assume (a, u, T) € S’
then obtain o’ " where (a/, u’, T) € S Some a = o' ® (T f © T unit)
using S’-def by blast
moreover have T f © Tunit = T f
proof —
have mono-transformer T using <valid-package-set S unity valid-package-set-def
«(a’, u', T) € S» by auto
then show ?thesis
by (metis commutative minus-default minus-equiv-def mono-transformer-def
option.sel unit-neutral)
qed

then have sat A (the (|a| @ a))
by (metis assms(1) calculation(1) calculation(2) commutative core-is-smaller
option.sel)
then show |a| = |a] A Some a = a ® unit A (True — sat A (the (|a| @
)
by (simp add: succ-refl unit-neutral)
qed
then show %thesis by auto
qged
then obtain S’ where package-rhs ¢’ f S’ ?pc A o' f S' by blast
have package-rhs ¢ unit S ?pc A @' f S
using assms(2)
proof (rule package-rhs. AddEFromQutside)
show package-rhs @' f S’ ?pc A @' f S
by (simp add: <package-rhs o' f S’ ?pc A @' fS')
show stable f using assms(3) by simp
show Some f = unit @ f
by (simp add: commutative unit-neutral)
show S'={ (r,u, T) lauTr.(a,u, T) € S A Somer=a® (Tfe Tunit)
ANr #HH#u}
using S’-def by blast
qed
then show ?thesis
by blast
qed

theorem completeness:
assumes wjf-assertion B
and stable w A is-footprint-general w R A B
and Some o =0’ ® w
and Aa. sat A a = mono-transformer (R a)
shows 35’. package-rhs o unit {(a, unit, R a) |a. sat A a} (A-. True) B o’ w
S/
proof —
let 25 = {(a, unit, R a) |a. sat A a}
have 3 5. package-rhs o unit {(a, unit, R a) |a. sat A a} (A-. True) B o’ w S’
proof (rule general-completeness[of S w B o ')

o6

show Aa v T z. (a, u, T) € {(a, unit, R a) |a. sat A a} = Some z = a &
Tw= sat Bx
using assms(2) is-footprint-general-def by blast
show Some o = ¢’ @ w by (simp add: assms(3))
show stable w by (simp add: assms(2))
show wf-assertion B by (simp add: assms(1))

show wvalid-package-set {(a, unit, R a) |a. sat A a} unit
proof (rule valid-package-setI)
fix a u T assume asm0: (a, u, T) € {(a, unit, R a) |a. sat A a}
then have u = unit A T = R a A sat A a by fastforce
then show a ## u A |a| > |u| A mono-transformer T A a = |T unit|
using assms(4) defined-def mono-transformer-def unit-core unit-neutral
unit-smaller by auto
qed
qged
then show ?thesis by meson
qed

corollary completeness-paper:
assumes wf-assertion B
and stable w A is-footprint-standard w A B
and Some o =o' ® w
shows 35", package-rhs o unit {(a, unit, id) |a. sat A a} (A-. True) B o’ w S’
proof —
have 35'. package-rhs o unit {(a, unit, (A-. id) a) |a. sat A a} (A-. True) B o’
w S’
using assms(1)
proof (rule completeness)
show stable w A is-footprint-general w (Aa. id) A B
using assms(2) is-footprint-general-def is-footprint-standard-def by force
show Some 0 = ¢’ ® w by (simp add: assms(3))
show Aa. sat A a = mono-transformer id using mono-transformer-def by
auto
qed
then show “thesis by meson
qed

end

end

References
[1] C. Calcagno, P. W. O’Hearn, and H. Yang. Local Action and Abstract

Separation Logic. In Logic in Computer Science (LICS), pages 366-375,
2007.

o7

2]

T. Dardinier, G. Parthasarathy, N. Weeks, P. Miiller, and A. J. Summers.
Sound automation of magic wands. In S. Shoham and Y. Vizel, editors,
Computer Aided Verification, pages 130-151, Cham, 2022. Springer In-
ternational Publishing.

R. Dockins, A. Hobor, and A. W. Appel. A Fresh Look at Separation
Algebras and Share Accounting. In Z. Hu, editor, Asian Symposium on
Programming Languages and Systems (APLAS), pages 161-177, 2009.

J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data
Structures. In Logic in Computer Science (LICS), pages 55-74. IEEE,
2002.

o8

	Separation Algebra
	Definitions
	First lemmata
	splus
	Pure

	Succ is an order
	Core (pure) and stabilize (stable)
	Subtraction
	Lifting the algebra to sets of states
	Addition of more than two states

	Package Logic
	Definitions
	Lemmas
	Lemmas for completeness
	Soundness
	Completeness

