
Formalization of a Framework for the Sound
Automation of Magic Wands

Thibault Dardinier

March 17, 2025

Abstract
The magic wand −∗ (also called separating implication) is a separa-

tion logic [4] connective commonly used to specify properties of partial
data structures, for instance during iterative traversals. A footprint of
a magic wand formula A−∗B is a state that, combined with any state
in which A holds, yields a state in which B holds. The key challenge of
proving a magic wand (also called packaging a wand) is to find such a
footprint. Existing package algorithms either have a high annotation
overhead or are unsound.

In this entry, we formally define a framework for the sound automa-
tion of magic wands, described in a paper at CAV 2022 [2], and prove
that it is sound and complete. This framework, called the package
logic, precisely characterises a wide design space of possible package
algorithms applicable to a large class of separation logics.

Contents
1 Separation Algebra 2

1.1 Definitions . 2
1.2 First lemmata . 3

1.2.1 splus . 4
1.2.2 Pure . 5

1.3 Succ is an order . 6
1.4 Core (pure) and stabilize (stable) 7
1.5 Subtraction . 8
1.6 Lifting the algebra to sets of states 13
1.7 Addition of more than two states 18

2 Package Logic 24
2.1 Definitions . 24
2.2 Lemmas . 26
2.3 Lemmas for completeness . 39
2.4 Soundness . 52
2.5 Completeness . 55

1

1 Separation Algebra

In this section, we formalize the concept of a separation algebra [1, 3], on
which our package logic is based.
theory SepAlgebra

imports Main
begin

type-synonym ′a property = ′a ⇒ bool

locale sep-algebra =

fixes plus :: ′a ⇒ ′a ⇒ ′a option (infixl ‹⊕› 63)

fixes core :: ′a ⇒ ′a (‹ |-| ›)

assumes commutative: a ⊕ b = b ⊕ a
and asso1 : a ⊕ b = Some ab ∧ b ⊕ c = Some bc =⇒ ab ⊕ c = a ⊕ bc
and asso2 : a ⊕ b = Some ab ∧ b ⊕ c = None =⇒ ab ⊕ c = None

and core-is-smaller : Some x = x ⊕ |x|
and core-is-pure: Some |x| = |x| ⊕ |x|
and core-max: Some x = x ⊕ c =⇒ (∃ r . Some |x| = c ⊕ r)
and core-sum: Some c = a ⊕ b =⇒ Some |c| = |a| ⊕ |b|

and positivity: a ⊕ b = Some c =⇒ Some c = c ⊕ c =⇒ Some a = a ⊕ a
and cancellative: Some a = b ⊕ x =⇒ Some a = b ⊕ y =⇒ |x| = |y| =⇒ x

= y

begin

lemma asso3 :
assumes a ⊕ b = None

and b ⊕ c = Some bc
shows a ⊕ bc = None

by (metis assms(1) assms(2) sep-algebra.asso2 sep-algebra.commutative sep-algebra-axioms)

1.1 Definitions
definition defined :: ′a ⇒ ′a ⇒ bool (infixl ‹##› 62) where

a ## b ←→ a ⊕ b 6= None

definition greater :: ′a ⇒ ′a ⇒ bool (infixl ‹�› 50) where
a � b ←→ (∃ c. Some a = b ⊕ c)

definition pure :: ′a ⇒ bool where
pure a ←→ Some a = a ⊕ a

2

definition minus :: ′a ⇒ ′a ⇒ ′a (infixl ‹	› 63)
where b 	 a = (THE-default b (λx. Some b = a ⊕ x ∧ x � |b|))

definition add-set :: ′a set ⇒ ′a set ⇒ ′a set (infixl ‹⊗› 60) where
A ⊗ B = { ϕ | ϕ a b. a ∈ A ∧ b ∈ B ∧ Some ϕ = a ⊕ b }

definition greater-set :: ′a set ⇒ ′a set ⇒ bool (infixl ‹�› 50) where
A � B ←→ (∀ a ∈ A. ∃ b ∈ B. a � b)

definition up-closed :: ′a set ⇒ bool where
up-closed A ←→ (∀ϕ ′. (∃ϕ ∈ A. ϕ ′ � ϕ) −→ ϕ ′ ∈ A)

definition equiv :: ′a set ⇒ ′a set ⇒ bool (infixl ‹∼› 40) where
A ∼ B ←→ A � B ∧ B � A

definition setify :: ′a property ⇒ (′a set ⇒ bool) where
setify P A ←→ (∀ x ∈ A. P x)

definition mono-prop :: ′a property ⇒ bool where
mono-prop P ←→ (∀ x y. y � x ∧ P x −→ P y)

definition under :: ′a set ⇒ ′a ⇒ ′a set where
under A ω = { ω ′ | ω ′. ω ′ ∈ A ∧ ω � ω ′}

definition max-projection-prop :: (′a ⇒ bool) ⇒ (′a ⇒ ′a) ⇒ bool where
max-projection-prop P f ←→ (∀ x. x � f x ∧ P (f x) ∧
(∀ p. P p ∧ x � p −→ f x � p))

inductive multi-plus :: ′a list ⇒ ′a ⇒ bool where
MPSingle: multi-plus [a] a
| MPConcat: [[length la > 0 ; length lb > 0 ; multi-plus la a ; multi-plus lb b ;
Some ω = a ⊕ b]] =⇒ multi-plus (la @ lb) ω

fun splus :: ′a option ⇒ ′a option ⇒ ′a option where
splus None - = None
| splus - None = None
| splus (Some a) (Some b) = a ⊕ b

1.2 First lemmata
lemma greater-equiv:

a � b ←→ (∃ c. Some a = c ⊕ b)
using commutative greater-def by auto

lemma smaller-compatible:
assumes a ′ ## b

and a ′ � a
shows a ## b

3

by (metis (full-types) assms(1) assms(2) asso3 commutative defined-def greater-def)

lemma bigger-sum-smaller :
assumes Some c = a ⊕ b

and a � a ′

shows ∃ b ′. b ′ � b ∧ Some c = a ′ ⊕ b ′

proof −
obtain r where Some a = a ′ ⊕ r

using assms(2) greater-def by auto
then obtain br where Some br = r ⊕ b

by (metis assms(1) asso2 domD domIff option.discI)
then have Some c = a ′ ⊕ br

by (metis ‹Some a = a ′ ⊕ r› assms(1) asso1)
then show ?thesis

using ‹Some br = r ⊕ b› commutative greater-def by force
qed

1.2.1 splus
lemma splus-develop:

assumes Some a = b ⊕ c
shows a ⊕ d = splus (splus (Some b) (Some c)) (Some d)
by (metis assms splus.simps(3))

lemma splus-comm:
splus a b = splus b a
apply (cases a)
apply (cases b)
apply simp-all

apply (cases b)
by (simp-all add: commutative)

lemma splus-asso:
splus (splus a b) c = splus a (splus b c)

proof (cases a)
case None
then show ?thesis

by simp
next

case (Some a ′)
then have a = Some a ′ by simp
then show ?thesis
proof (cases b)

case None
then show ?thesis by (simp add: Some)

next
case (Some b ′)
then have b = Some b ′ by simp
then show ?thesis

4

proof (cases c)
case None
then show ?thesis by (simp add: splus-comm)

next
case (Some c ′)
then have c = Some c ′ by simp
then show ?thesis
proof (cases a ′ ⊕ b ′)

case None
then have a ′ ⊕ b ′ = None by simp
then show ?thesis
proof (cases b ′ ⊕ c ′)

case None
then show ?thesis

by (simp add: Some ‹a = Some a ′› ‹a ′ ⊕ b ′ = None› ‹b = Some b ′›)
next

case (Some bc)
then show ?thesis

by (metis (full-types) None ‹a = Some a ′› ‹b = Some b ′› ‹c = Some c ′›
sep-algebra.asso2 sep-algebra-axioms splus.simps(2) splus.simps(3) splus-comm)

qed
next

case (Some ab)
then have Some ab = a ′ ⊕ b ′ by simp
then show ?thesis
proof (cases b ′ ⊕ c ′)

case None
then show ?thesis

by (metis Some ‹a = Some a ′› ‹b = Some b ′› ‹c = Some c ′› asso2
splus.simps(2) splus.simps(3))

next
case (Some bc)
then show ?thesis
by (metis ‹Some ab = a ′ ⊕ b ′› ‹a = Some a ′› ‹b = Some b ′› ‹c = Some

c ′› sep-algebra.asso1 sep-algebra-axioms splus.simps(3))
qed

qed
qed

qed
qed

1.2.2 Pure
lemma pure-stable:

assumes pure a
and pure b
and Some c = a ⊕ b

shows pure c
by (metis assms asso1 commutative pure-def)

5

lemma pure-smaller :
assumes pure a

and a � b
shows pure b

by (metis assms greater-def positivity pure-def)

1.3 Succ is an order
lemma succ-antisym:

assumes a � b
and b � a

shows a = b
proof −

obtain ra where Some a = b ⊕ ra
using assms(1) greater-def by auto

obtain rb where Some b = a ⊕ rb
using assms(2) greater-def by auto

then have Some a = splus (Some a) (splus (Some ra) (Some rb))
proof −

have Some b = splus (Some a) (Some rb)
by (simp add: ‹Some b = a ⊕ rb›)

then show ?thesis
by (metis (full-types) ‹Some a = b ⊕ ra› sep-algebra.splus.simps(3) sep-algebra-axioms

splus-asso splus-comm)
qed
moreover have Some b = splus (Some b) (splus (Some ra) (Some rb))

by (metis ‹Some a = b ⊕ ra› ‹Some b = a ⊕ rb› sep-algebra.splus.simps(3)
sep-algebra-axioms splus-asso)

moreover have pure ra ∧ pure rb
proof −

obtain rab where Some rab = ra ⊕ rb
by (metis calculation(2) splus.elims splus.simps(3))

then have |a| � rab
by (metis calculation(1) core-max greater-def splus.simps(3))

then have pure rab
using core-is-pure pure-def pure-smaller by blast

moreover have rab � ra ∧ rab � rb
using ‹Some rab = ra ⊕ rb› greater-def greater-equiv by blast

ultimately have pure ra using pure-smaller
by blast

moreover have pure rb
using ‹pure rab› ‹rab � ra ∧ rab � rb› pure-smaller by blast

ultimately show ?thesis
by blast

qed
ultimately show ?thesis

by (metis ‹Some b = a ⊕ rb› option.inject pure-def sep-algebra.splus.simps(3)

6

sep-algebra-axioms splus-asso)
qed

lemma succ-trans:
assumes a � b

and b � c
shows a � c

using assms(1) assms(2) bigger-sum-smaller greater-def by blast

lemma succ-refl:
a � a
using core-is-smaller greater-def by blast

1.4 Core (pure) and stabilize (stable)
lemma max-projection-propI :

assumes
∧

x. x � f x
and

∧
x. P (f x)

and
∧

x p. P p ∧ x � p =⇒ f x � p
shows max-projection-prop P f

by (simp add: assms(1) assms(2) assms(3) max-projection-prop-def)

lemma max-projection-propE :
assumes max-projection-prop P f

shows
∧

x. x � f x
and

∧
x. P (f x)

and
∧

x p. P p ∧ x � p =⇒ f x � p
using assms max-projection-prop-def by auto

lemma max-projection-prop-pure-core:
max-projection-prop pure core

proof (rule max-projection-propI)
fix x
show x � |x|

using core-is-smaller greater-equiv by blast
show pure |x|

by (simp add: core-is-pure pure-def)
show

∧
p. pure p ∧ x � p =⇒ |x| � p

proof −
fix p assume pure p ∧ x � p
then obtain r where Some x = p ⊕ r

using greater-def by blast
then show |x| � p
by (metis ‹pure p ∧ x � p› asso1 commutative core-max greater-equiv pure-def)

qed
qed

lemma mpp-smaller :
assumes max-projection-prop P f

7

shows x � f x
using assms max-projection-propE(1) by auto

lemma mpp-compatible:
assumes max-projection-prop P f

and a ## b
shows f a ## f b

by (metis (mono-tags, opaque-lifting) assms(1) assms(2) commutative defined-def
max-projection-prop-def smaller-compatible)

lemma mpp-prop:
assumes max-projection-prop P f
shows P (f x)
by (simp add: assms max-projection-propE(2))

lemma mppI :
assumes max-projection-prop P f

and a � x
and P x
and x � f a

shows x = f a
proof −

have f a � x
using assms max-projection-propE(3) by auto

then show ?thesis
by (simp add: assms(4) succ-antisym)

qed

lemma mpp-invo:
assumes max-projection-prop P f
shows f (f x) = f x
using assms max-projection-prop-def succ-antisym by auto

lemma mpp-mono:
assumes max-projection-prop P f

and a � b
shows f a � f b

by (metis assms max-projection-prop-def succ-trans)

1.5 Subtraction
lemma addition-bigger :

assumes a ′ � a
and Some x ′ = a ′ ⊕ b
and Some x = a ⊕ b

shows x ′ � x

8

by (metis assms asso1 bigger-sum-smaller greater-def)

lemma smaller-than-core:
assumes y � x

and Some z = x ⊕ |y|
shows |z| = |y|

proof −
have Some |z| = |x| ⊕ |y|

using assms(2) core-sum max-projection-prop-pure-core mpp-invo by fastforce
then have Some |z| = |x| ⊕ |y|

by simp
moreover have |z| � |y|

using calculation greater-equiv by blast
ultimately show ?thesis
by (meson addition-bigger assms(1) assms(2) core-is-smaller core-sum greater-def

succ-antisym)
qed

lemma extract-core:
assumes Some b = a ⊕ x ∧ x � |b|
shows |x| = |b|

proof −
obtain r where Some x = r ⊕ |b|

using assms greater-equiv by auto
show ?thesis
proof (rule smaller-than-core)

show Some x = r ⊕ |b|
using ‹Some x = r ⊕ |b|› by auto

show b � r
by (metis ‹Some x = r ⊕ |b|› assms commutative greater-def succ-trans)

qed
qed

lemma minus-unique:
assumes Some b = a ⊕ x ∧ x � |b|

and Some b = a ⊕ y ∧ y � |b|
shows x = y

proof −
have |x| = |b|

using assms(1) extract-core by blast
moreover have |y| = |b|

using assms(2) extract-core by blast
ultimately show ?thesis

using assms(1) assms(2) cancellative by auto
qed

lemma minus-exists:

9

assumes b � a
shows ∃ x. Some b = a ⊕ x ∧ x � |b|
using assms bigger-sum-smaller core-is-smaller by blast

lemma minus-equiv-def :
assumes b � a

shows Some b = a ⊕ (b 	 a) ∧ (b 	 a) � |b|
proof −

let ?x = THE-default b (λx. Some b = a ⊕ x ∧ x � |b|)
have (λx. Some b = a ⊕ x ∧ x � |b|) ?x
proof (rule THE-defaultI ′)

show ∃ !x. Some b = a ⊕ x ∧ x � |b|
using assms local.minus-unique minus-exists by blast

qed
then show ?thesis by (metis minus-def)

qed

lemma minus-default:
assumes ¬ b � a
shows b 	 a = b
using THE-default-none assms greater-def minus-def by fastforce

lemma minusI :
assumes Some b = a ⊕ x

and x � |b|
shows x = b 	 a

using assms(1) assms(2) greater-def local.minus-unique minus-equiv-def by blast

lemma minus-core:
|a 	 b| = |a|

proof (cases a � b)
case True
then have Some a = b ⊕ (a 	 b) ∧ a 	 b � |a|

using minus-equiv-def by auto
then show ?thesis

using extract-core by blast
next

case False
then show ?thesis by (simp add: minus-default)

qed

lemma minus-core-weaker :
|a 	 b| = |a| 	 |b|

proof (cases a � b)
case True
then show ?thesis

by (metis greater-equiv max-projection-prop-pure-core minus-core minus-default
minus-equiv-def mpp-invo succ-antisym)

10

next
case False
then show ?thesis
by (metis greater-equiv max-projection-prop-pure-core minus-default minus-equiv-def

mpp-invo succ-antisym)
qed

lemma minus-equiv-def-any-elem:
assumes Some x = a ⊕ b
shows Some (x 	 a) = b ⊕ |x|

proof −
obtain r where Some r = b ⊕ |x|
by (metis assms core-is-smaller domD domIff option.simps(3) sep-algebra.asso2

sep-algebra-axioms)
have r = x 	 a
proof (rule minusI)

show Some x = a ⊕ r
by (metis ‹Some r = b ⊕ |x|› assms asso1 core-is-smaller)

moreover show r � |x|
using ‹Some r = b ⊕ |x|› greater-equiv by blast

qed
then show ?thesis

using ‹Some r = b ⊕ |x|› by blast
qed

lemma minus-bigger :
assumes Some x = a ⊕ b
shows x 	 a � b
using assms greater-def minus-equiv-def-any-elem by blast

lemma minus-smaller :
assumes x � a
shows x � x 	 a
using assms greater-equiv minus-equiv-def by blast

lemma minus-sum:
assumes Some a = b ⊕ c

and x � a
shows x 	 a = (x 	 b) 	 c

proof (rule minusI)
obtain r where Some r = c ⊕ (x 	 a)

by (metis assms(1) assms(2) asso2 minus-equiv-def option.exhaust-sel)
have r = (x 	 b)
proof (rule minusI)

show Some x = b ⊕ r
by (metis ‹Some r = c ⊕ (x 	 a)› assms(1) assms(2) asso1 minus-equiv-def)

moreover show r � |x|
by (meson ‹Some r = c ⊕ (x 	 a)› assms(2) greater-equiv sep-algebra.minus-equiv-def

sep-algebra-axioms succ-trans)

11

qed
then show Some (x 	 b) = c ⊕ (x 	 a)

using ‹Some r = c ⊕ (x 	 a)› by blast
moreover show x 	 a � |x 	 b|

by (simp add: assms(2) minus-core minus-equiv-def)
qed

lemma smaller-compatible-core:
assumes y � x
shows x ## |y|
by (metis assms asso2 core-is-smaller defined-def greater-equiv option.discI)

lemma smaller-pure-sum-smaller :
assumes y � a

and y � b
and Some x = a ⊕ b
and pure b

shows y � x
proof −

obtain r where Some y = r ⊕ b r � a
by (metis assms(1) assms(2) assms(4) asso1 greater-equiv pure-def)

then show ?thesis
using addition-bigger assms(3) by blast

qed

lemma greater-minus-trans:
assumes y � x

and x � a
shows y 	 a � x 	 a

proof −
obtain r where Some y = x ⊕ r

using assms(1) greater-def by blast
then obtain ra where Some x = a ⊕ ra

using assms(2) greater-def by blast
then have Some (x 	 a) = ra ⊕ |x|

by (simp add: minus-equiv-def-any-elem)
then obtain yy where Some yy = (x 	 a) ⊕ r

by (metis (full-types) ‹Some y = x ⊕ r› assms(2) asso3 commutative mi-
nus-equiv-def not-Some-eq)

then obtain Some x = a ⊕ (x 	 a) x 	 a � |x|
by (simp-all add: assms(2) sep-algebra.minus-equiv-def sep-algebra-axioms)

then obtain y ′ where Some y ′ = a ⊕ yy
using ‹Some y = x ⊕ r› ‹Some yy = x 	 a ⊕ r› asso1
by metis

moreover have y � y ′

by (metis ‹Some x = a ⊕ (x 	 a)› ‹Some y = x ⊕ r› ‹Some yy = x 	 a ⊕ r›
asso1 calculation option.inject succ-refl)

moreover obtain x ′ where Some x ′ = (x 	 a) ⊕ a
using assms(2) commutative minus-equiv-def by fastforce

12

then have y � x ′

by (metis assms(1) assms(2) commutative minus-equiv-def option.sel)
moreover have x ′ � x 	 a

using ‹Some x ′ = x 	 a ⊕ a› greater-def by auto
ultimately show ?thesis

using ‹Some x ′ = x 	 a ⊕ a› ‹Some y = x ⊕ r› assms(2) asso1 commu-
tative greater-equiv minus-bigger minus-equiv-def option.sel sep-algebra.succ-trans
sep-algebra-axioms

proof −
have f1 : Some y ′ = a ⊕ yy

by (simp add: ‹Some y ′ = a ⊕ yy› commutative)
then have y = y ′

by (metis ‹Some y = x ⊕ r› ‹Some yy = x 	 a ⊕ r› ‹x � a› asso1
minus-equiv-def option.sel)

then show ?thesis
using f1 by (metis (no-types) ‹Some yy = x 	 a ⊕ r› commutative

greater-equiv minus-bigger sep-algebra.succ-trans sep-algebra-axioms)
qed

qed

lemma minus-and-plus:
assumes Some ω ′ = ω ⊕ r

and ω � a
shows Some (ω ′ 	 a) = (ω 	 a) ⊕ r

proof −
have ω � ω 	 a

by (simp add: assms(2) minus-smaller)
then have (ω 	 a) ## r
by (metis (full-types) assms(1) defined-def option.discI sep-algebra.smaller-compatible

sep-algebra-axioms)
then obtain x where Some x = (ω 	 a) ⊕ r

using defined-def by auto
then have Some ω ′ = a ⊕ x ∧ x � |ω ′|
by (metis (no-types, lifting) assms asso1 core-sum max-projection-prop-pure-core

minus-core minus-equiv-def mpp-smaller option.inject)
then have x = ω ′ 	 a

by (simp add: minusI)
then show ?thesis

using ‹Some x = ω 	 a ⊕ r› by blast
qed

1.6 Lifting the algebra to sets of states
lemma add-set-commm:

A ⊗ B = B ⊗ A
proof

13

show A ⊗ B ⊆ B ⊗ A
using add-set-def sep-algebra.commutative sep-algebra-axioms by fastforce

show B ⊗ A ⊆ A ⊗ B
using add-set-def commutative by fastforce

qed

lemma x-elem-set-product:
x ∈ A ⊗ B ←→ (∃ a b. a ∈ A ∧ b ∈ B ∧ Some x = a ⊕ b)
using sep-algebra.add-set-def sep-algebra-axioms by fastforce

lemma x-elem-set-product-splus:
x ∈ A ⊗ B ←→ (∃ a b. a ∈ A ∧ b ∈ B ∧ Some x = splus (Some a) (Some b))
using sep-algebra.add-set-def sep-algebra-axioms by fastforce

lemma add-set-asso:
(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) (is ?A = ?B)

proof −
have ?A ⊆ ?B
proof (rule subsetI)

fix x assume x ∈ ?A
then obtain ab c where Some x = ab ⊕ c ab ∈ A ⊗ B c ∈ C

using x-elem-set-product by auto
then obtain a b where Some ab = a ⊕ b a ∈ A b ∈ B

using x-elem-set-product by auto
then obtain bc where Some bc = b ⊕ c

by (metis ‹Some x = ab ⊕ c› asso2 option.exhaust)
then show x ∈ ?B

by (metis ‹Some ab = a ⊕ b› ‹Some x = ab ⊕ c› ‹a ∈ A› ‹b ∈ B› ‹c ∈ C ›
asso1 x-elem-set-product)

qed
moreover have ?B ⊆ ?A
proof (rule subsetI)

fix x assume x ∈ ?B
then obtain a bc where Some x = a ⊕ bc a ∈ A bc ∈ B ⊗ C

using x-elem-set-product by auto
then obtain b c where Some bc = b ⊕ c c ∈ C b ∈ B

using x-elem-set-product by auto
then obtain ab where Some ab = a ⊕ b

by (metis ‹Some x = a ⊕ bc› asso3 option.collapse)
then show x ∈ ?A

by (metis ‹Some bc = b ⊕ c› ‹Some x = a ⊕ bc› ‹a ∈ A› ‹b ∈ B› ‹c ∈ C ›
asso1 x-elem-set-product)

qed
ultimately show ?thesis by blast

qed

lemma up-closedI :
assumes

∧
ϕ ′ ϕ. (ϕ ′ :: ′a) � ϕ ∧ ϕ ∈ A =⇒ ϕ ′ ∈ A

shows up-closed A

14

using assms up-closed-def by blast

lemma up-closed-plus-UNIV :
up-closed (A ⊗ UNIV)

proof (rule up-closedI)
fix ϕ ϕ ′

assume asm: ϕ ′ � ϕ ∧ ϕ ∈ A ⊗ UNIV
then obtain r a b where Some ϕ ′ = ϕ ⊕ r Some ϕ = a ⊕ b a ∈ A

using greater-def x-elem-set-product by auto
then obtain br where Some br = b ⊕ r

by (metis asso2 option.exhaust-sel)
then have Some ϕ ′ = a ⊕ br

by (metis ‹Some ϕ = a ⊕ b› ‹Some ϕ ′ = ϕ ⊕ r› splus.simps(3) splus-asso)
then show ϕ ′ ∈ A ⊗ UNIV

using ‹a ∈ A› x-elem-set-product by auto
qed

lemma succ-set-trans:
assumes A � B

and B � C
shows A � C

by (meson assms(1) assms(2) greater-set-def succ-trans)

lemma greater-setI :
assumes

∧
a. a ∈ A =⇒ (∃ b ∈ B. a � b)

shows A � B
by (simp add: assms greater-set-def)

lemma bigger-set:
assumes A ′� A
shows A ′ ⊗ B � A ⊗ B

proof (rule greater-setI)
fix x assume x ∈ A ′ ⊗ B
then obtain a ′ b where Some x = a ′ ⊕ b a ′ ∈ A ′ b ∈ B

using x-elem-set-product by auto
then obtain a where a ′ � a a ∈ A

using assms greater-set-def by blast
then obtain ab where Some ab = a ⊕ b

by (metis ‹Some x = a ′ ⊕ b› asso2 domD domIff greater-equiv)
then show ∃ ab∈A ⊗ B. x � ab
using ‹Some x = a ′⊕ b› ‹a ∈ A› ‹a ′� a› ‹b ∈ B› addition-bigger x-elem-set-product

by blast
qed

lemma bigger-singleton:
assumes ϕ ′ � ϕ
shows {ϕ ′} � {ϕ}
by (simp add: assms greater-set-def)

15

lemma add-set-elem:
ϕ ∈ A ⊗ B ←→ (∃ a b. Some ϕ = a ⊕ b ∧ a ∈ A ∧ b ∈ B)
using add-set-def by auto

lemma up-closed-sum:
assumes up-closed A

shows up-closed (A ⊗ B)
proof (rule up-closedI)

fix ϕ ′ ϕ assume asm: ϕ ′ � ϕ ∧ ϕ ∈ A ⊗ B
then obtain a b where a ∈ A b ∈ B Some ϕ = a ⊕ b

using add-set-elem by auto
moreover obtain r where Some ϕ ′ = ϕ ⊕ r

using asm greater-def by blast
then obtain ar where Some ar = a ⊕ r
by (metis asso2 calculation(3) commutative option.exhaust-sel option.simps(3))

then have ar ∈ A
by (meson assms calculation(1) greater-def sep-algebra.up-closed-def sep-algebra-axioms)

then show ϕ ′ ∈ A ⊗ B
by (metis ‹Some ϕ ′ = ϕ ⊕ r› ‹Some ar = a ⊕ r› add-set-elem asso1 calcula-

tion(2) calculation(3) commutative)
qed

lemma up-closed-bigger-subset:
assumes up-closed B

and A � B
shows A ⊆ B

by (meson assms(1) assms(2) greater-set-def sep-algebra.up-closed-def sep-algebra-axioms
subsetI)

lemma up-close-equiv:
assumes up-closed A

and up-closed B
shows A ∼ B ←→ A = B

proof −
have A ∼ B ←→ A � B ∧ B � A

using local.equiv-def by auto
also have ... ←→ A ⊆ B ∧ B ⊆ A
by (metis assms(1) assms(2) greater-set-def set-eq-subset succ-refl up-closed-bigger-subset)

ultimately show ?thesis
by blast

qed

lemma equiv-stable-sum:
assumes A ∼ B
shows A ⊗ C ∼ B ⊗ C
using assms bigger-set local.equiv-def by auto

lemma equiv-up-closed-subset:

16

assumes up-closed A
and equiv B C

shows B ⊆ A ←→ C ⊆ A (is ?B ←→ ?C)
proof −

have ?B =⇒ ?C
by (meson greater-set-def up-closed-def equiv-def assms(1) assms(2) subsetD

subsetI)
moreover have ?C =⇒ ?B

by (meson greater-set-def up-closed-def equiv-def assms(1) assms(2) subsetD
subsetI)

ultimately show ?thesis by blast
qed

lemma mono-propI :
assumes

∧
x y. y � x ∧ P x =⇒ P y

shows mono-prop P
using assms mono-prop-def by blast

lemma mono-prop-set:
assumes A � B

and setify P B
and mono-prop P

shows setify P A
using assms(1) assms(2) assms(3) greater-set-def local.setify-def mono-prop-def

by auto

lemma mono-prop-set-equiv:
assumes mono-prop P

and equiv A B
shows setify P A ←→ setify P B

by (meson assms(1) assms(2) local.equiv-def sep-algebra.mono-prop-set sep-algebra-axioms)

lemma setify-sum:
setify P (A ⊗ B) ←→ (∀ x ∈ A. setify P ({x} ⊗ B)) (is ?A ←→ ?B)

proof −
have ?A =⇒ ?B
using local.setify-def sep-algebra.add-set-elem sep-algebra-axioms singletonD by

fastforce
moreover have ?B =⇒ ?A

using add-set-elem local.setify-def by fastforce
ultimately show ?thesis by blast

qed

lemma setify-sum-image:
setify P ((Set.image f A) ⊗ B) ←→ (∀ x ∈ A. setify P ({f x} ⊗ B))

proof
show setify P (f ‘ A ⊗ B) =⇒ ∀ x∈A. setify P ({f x} ⊗ B)

by (meson rev-image-eqI sep-algebra.setify-sum sep-algebra-axioms)
show ∀ x∈A. setify P ({f x} ⊗ B) =⇒ setify P (f ‘ A ⊗ B)

17

by (metis (mono-tags, lifting) image-iff sep-algebra.setify-sum sep-algebra-axioms)
qed

lemma equivI :
assumes A � B

and B � A
shows equiv A B

by (simp add: assms(1) assms(2) local.equiv-def)

lemma sub-bigger :
assumes A ⊆ B
shows A � B
by (meson assms greater-set-def in-mono succ-refl)

lemma larger-set-refl:
A � A
by (simp add: sub-bigger)

definition upper-closure where
upper-closure A = { ϕ ′ |ϕ ′ ϕ. ϕ ′ � ϕ ∧ ϕ ∈ A }

lemma upper-closure-up-closed:
up-closed (upper-closure A)

proof (rule up-closedI)
fix ϕ ′ ϕ
assume asm0 : ϕ ′ � ϕ ∧ ϕ ∈ upper-closure A
then obtain a where a ∈ A ∧ ϕ � a

using sep-algebra.upper-closure-def sep-algebra-axioms by fastforce
then have ϕ ′ � a

using asm0 succ-trans by blast
then show ϕ ′ ∈ upper-closure A

using ‹a ∈ A ∧ ϕ � a› upper-closure-def by auto
qed

1.7 Addition of more than two states
lemma multi-decompose:

assumes multi-plus l ω
shows length l ≥ 2 =⇒ (∃ a b la lb. l = la @ lb ∧ length la > 0 ∧ length lb >

0 ∧ multi-plus la a ∧ multi-plus lb b ∧ Some ω = a ⊕ b)
using assms
apply (rule multi-plus.cases)
by auto[2]

18

lemma multi-take-drop:
assumes multi-plus l ω

and length l ≥ 2
shows ∃n a b. n > 0 ∧ n < length l ∧ multi-plus (take n l) a ∧ multi-plus

(drop n l) b ∧ Some ω = a ⊕ b
proof −

obtain a b la lb where asm0 : l = la @ lb ∧ length la > 0 ∧ length lb > 0 ∧
multi-plus la a ∧ multi-plus lb b ∧ Some ω = a ⊕ b

using assms(1) assms(2) multi-decompose by blast
let ?n = length la
have la = take ?n l

by (simp add: asm0)
moreover have lb = drop ?n l

by (simp add: asm0)
ultimately show ?thesis

by (metis asm0 length-drop zero-less-diff)
qed

lemma multi-plus-single:
assumes multi-plus [v] a
shows a = v
using assms
apply (cases)
apply simp
by (metis (no-types, lifting) Nil-is-append-conv butlast.simps(2) butlast-append

length-greater-0-conv)

lemma multi-plus-two:
assumes length l ≥ 2
shows multi-plus l ω ←→ (∃ a b la lb. l = (la @ lb) ∧ length la > 0 ∧ length lb

> 0 ∧ multi-plus la a ∧ multi-plus lb b ∧ Some ω = a ⊕ b) (is ?A ←→ ?B)
by (meson MPConcat assms multi-decompose)

lemma multi-plus-head-tail:
length l ≤ n ∧ length l ≥ 2 −→ (multi-plus l ω ←→ (∃ r . Some ω = (List.hd l)
⊕ r ∧ multi-plus (List.tl l) r))
proof (induction n arbitrary: l ω)

case 0
then show ?case by auto

next
case (Suc n)
then have IH :

∧
(l :: ′a list) ω. length l ≤ n ∧ length l ≥ 2 −→ multi-plus l ω

= (∃ r . Some ω = hd l ⊕ r ∧ multi-plus (tl l) r)
by blast

then show ?case
proof (cases n = 0)

case True
then have n = 0 by simp
then show ?thesis by linarith

19

next
case False
then have length (l :: ′a list) ≥ 2 ∧ length l ≤ n + 1 =⇒ multi-plus l ω ←→

(∃ r . Some ω = hd l ⊕ r ∧ multi-plus (tl l) r)
(is length l ≥ 2 ∧ length l ≤ n + 1 =⇒ ?A ←→ ?B)

proof −
assume asm: length (l :: ′a list) ≥ 2 ∧ length l ≤ n + 1
have ?B =⇒ ?A
proof −

assume ?B
then obtain r where Some ω = hd l ⊕ r ∧ multi-plus (tl l) r by blast
then have multi-plus [hd l] (hd l)

using MPSingle by blast
moreover have [hd l] @ (tl l) = l

by (metis Suc-le-length-iff asm append-Cons list.collapse list.simps(3)
numeral-2-eq-2 self-append-conv2)

ultimately show ?A
by (metis (no-types, lifting) MPConcat Suc-1 Suc-le-mono asm ‹Some

ω = hd l ⊕ r ∧ multi-plus (tl l) r› append-Nil2 length-Cons length-greater-0-conv
list.size(3) not-one-le-zero zero-less-Suc)

qed
moreover have ?A =⇒ ?B
proof −

assume ?A
then obtain la lb a b where l = la @ lb length la > 0 length lb > 0

multi-plus la a multi-plus lb b Some ω = a ⊕ b
using asm multi-decompose by blast

then have r0 : length la ≤ n ∧ length la ≥ 2 −→ multi-plus la a = (∃ r .
Some a = hd la ⊕ r ∧ multi-plus (tl la) r)

using IH by blast
then show ?B
proof (cases length la ≥ 2)

case True
then obtain ra where Some a = (hd la) ⊕ ra multi-plus (tl la) ra
by (metis Suc-eq-plus1 ‹0 < length lb› ‹l = la @ lb› r0 ‹multi-plus la a› ap-

pend-eq-conv-conj asm drop-eq-Nil le-add1 le-less-trans length-append length-greater-0-conv
less-Suc-eq-le order .not-eq-order-implies-strict)

moreover obtain rab where Some rab = ra ⊕ b
by (metis ‹Some ω = a ⊕ b› calculation(1) asso2 option.exhaust-sel)

then have multi-plus ((tl la) @ lb) rab
by (metis (no-types, lifting) Nil-is-append-conv ‹multi-plus lb b› calcula-

tion(2) length-greater-0-conv list.simps(3) multi-plus.cases sep-algebra.MPConcat
sep-algebra-axioms)

moreover have Some ω = hd la ⊕ rab
by (metis ‹Some ω = a ⊕ b› ‹Some rab = ra ⊕ b› asso1 calculation(1))

ultimately show ?B
using ‹0 < length la› ‹l = la @ lb› by auto

next
case False

20

then have length la = 1
using ‹0 < length la› by linarith

then have la = [a]
by (metis Nitpick.size-list-simp(2) One-nat-def Suc-le-length-iff ‹multi-plus

la a› diff-Suc-1 le-numeral-extra(4) length-0-conv list.sel(3) sep-algebra.multi-plus-single
sep-algebra-axioms)

then show ?thesis
using ‹Some ω = a ⊕ b› ‹l = la @ lb› ‹multi-plus lb b› by auto

qed
qed
then show ?thesis using calculation by blast

qed
then show ?thesis by (metis (no-types, lifting) Suc-eq-plus1)

qed
qed

lemma not-multi-plus-empty:
¬ multi-plus [] ω
by (metis Nil-is-append-conv length-greater-0-conv list.simps(3) sep-algebra.multi-plus.simps

sep-algebra-axioms)

lemma multi-plus-deter :
length l ≤ n =⇒ multi-plus l ω =⇒ multi-plus l ω ′ =⇒ ω = ω ′

proof (induction n arbitrary: l ω ω ′)
case 0
then show ?case

using multi-plus.cases by auto
next

case (Suc n)
then show ?case
proof (cases length l ≥ 2)

case True
then obtain r where Some ω = (List.hd l) ⊕ r ∧ multi-plus (List.tl l) r

using Suc.prems(2) multi-plus-head-tail by blast
moreover obtain r ′ where Some ω ′ = (List.hd l) ⊕ r ′ ∧ multi-plus (List.tl

l) r ′

using Suc.prems(3) True multi-plus-head-tail by blast
ultimately have r = r ′

by (metis Suc.IH Suc.prems(1) drop-Suc drop-eq-Nil)
then show ?thesis

by (metis ‹Some ω = hd l ⊕ r ∧ multi-plus (tl l) r› ‹Some ω ′ = hd l ⊕ r ′ ∧
multi-plus (tl l) r ′› option.inject)

next
case False
then have length l ≤ 1

by simp
then show ?thesis
proof (cases length l = 0)

case True

21

then show ?thesis
using Suc.prems(2) sep-algebra.not-multi-plus-empty sep-algebra-axioms by

fastforce
next

case False
then show ?thesis
by (metis One-nat-def Suc.prems(2) Suc.prems(3) Suc-length-conv ‹length l ≤

1 › le-SucE le-zero-eq length-greater-0-conv less-numeral-extra(3) sep-algebra.multi-plus-single
sep-algebra-axioms)

qed
qed

qed

lemma multi-plus-implies-multi-plus-of-drop:
assumes multi-plus l ω

and n < length l
shows ∃ a. multi-plus (drop n l) a ∧ ω � a

using assms
proof (induction n arbitrary: l ω)

case 0
then show ?case using succ-refl by fastforce

next
case (Suc n)
then have length l ≥ 2

by linarith
then obtain r where Some ω = (List.hd l) ⊕ r ∧ multi-plus (List.tl l) r

using Suc.prems(1) multi-plus-head-tail by blast
then obtain a where multi-plus (drop n (List.tl l)) a ∧ r � a

using Suc.IH Suc.prems(2) by fastforce
then show ?case

by (metis ‹Some ω = hd l ⊕ r ∧ multi-plus (tl l) r› bigger-sum-smaller com-
mutative drop-Suc greater-def)
qed

lemma multi-plus-bigger-than-head:
assumes length l > 0

and multi-plus l ω
shows ω � List.hd l

proof (cases length l ≥ 2)
case True
then obtain r where Some ω = (List.hd l) ⊕ r ∧ multi-plus (List.tl l) r

using assms(1) assms(2) multi-plus-head-tail by blast
then show ?thesis

using greater-def by blast
next

case False
then show ?thesis

by (metis Cons-nth-drop-Suc MPSingle assms(1) assms(2) drop-0 drop-eq-Nil
hd-conv-nth length-greater-0-conv not-less-eq-eq numeral-2-eq-2 sep-algebra.multi-plus-deter

22

sep-algebra-axioms succ-refl)
qed

lemma multi-plus-bigger :
assumes i < length l

and multi-plus l ω
shows ω � (l ! i)

proof −
obtain a where multi-plus (drop i l) a ∧ ω � a
using assms(1) assms(2) multi-plus-implies-multi-plus-of-drop order .strict-trans

by blast
moreover have List.hd (drop i l) = l ! i

by (simp add: assms(1) hd-drop-conv-nth)
then show ?thesis

by (metis (no-types, lifting) succ-trans assms(1) assms(2) drop-eq-Nil leD
length-greater-0-conv multi-plus-bigger-than-head multi-plus-implies-multi-plus-of-drop)
qed

lemma sum-then-singleton:
Some a = b ⊕ c ←→ {a} = {b} ⊗ {c} (is ?A ←→ ?B)

proof −
have ?A =⇒ ?B
proof −

assume ?A
then have {a} ⊆ {b} ⊗ {c}

using add-set-elem by auto
moreover have {b} ⊗ {c} ⊆ {a}
proof (rule subsetI)

fix x assume x ∈ {b} ⊗ {c}
then show x ∈ {a}
by (metis ‹Some a = b ⊕ c› option.sel sep-algebra.add-set-elem sep-algebra-axioms

singleton-iff)
qed
ultimately show ?thesis by blast

qed
moreover have ?B =⇒ ?A

using add-set-elem by auto
ultimately show ?thesis by blast

qed

lemma empty-set-sum:
{} ⊗ A = {}
by (simp add: add-set-def)

end

end

23

2 Package Logic

In this section, we define our package logic, as described in [2], and then
prove that this logic is sound and complete for packaging magic wands.
theory PackageLogic

imports Main SepAlgebra
begin

2.1 Definitions
type-synonym ′a abool = ′a ⇒ bool

datatype ′a aassertion =
AStar ′a aassertion ′a aassertion
| AImp ′a abool ′a aassertion
| ASem ′a abool

locale package-logic = sep-algebra +

fixes unit :: ′a
fixes stable :: ′a ⇒ bool

assumes unit-neutral: Some a = a ⊕ unit
and stable-sum: stable a =⇒ stable b =⇒ Some x = a ⊕ b =⇒ stable x
and stable-unit: stable unit

begin

fun sat :: ′a aassertion ⇒ ′a ⇒ bool where
sat (AStar A B) ϕ ←→ (∃ a b. Some ϕ = a ⊕ b ∧ sat A a ∧ sat B b)
| sat (AImp b A) ϕ ←→ (b ϕ −→ sat A ϕ)
| sat (ASem A) ϕ ←→ A ϕ

definition mono-pure-cond where
mono-pure-cond b ←→ (∀ϕ. b ϕ ←→ b |ϕ|) ∧ (∀ϕ ′ ϕ r . pure r ∧ Some ϕ ′ = ϕ
⊕ r ∧ ¬ b ϕ −→ ¬ b ϕ ′)

definition bool-conj where
bool-conj a b x ←→ a x ∧ b x

type-synonym ′c pruner = ′c ⇒ bool

definition mono-pruner :: ′a pruner ⇒ bool where
mono-pruner p ←→ (∀ϕ ′ ϕ r . pure r ∧ p ϕ ∧ Some ϕ ′ = ϕ ⊕ r −→ p ϕ ′)

fun wf-assertion where
wf-assertion (AStar A B) ←→ wf-assertion A ∧ wf-assertion B

24

| wf-assertion (AImp b A) ←→ mono-pure-cond b ∧ wf-assertion A
| wf-assertion (ASem A) ←→ mono-pruner A

type-synonym ′c transformer = ′c ⇒ ′c

type-synonym ′c ext-state = ′c × ′c × ′c transformer

inductive package-rhs ::
′a ⇒ ′a ⇒ ′a ext-state set ⇒ ′a abool ⇒ ′a aassertion ⇒ ′a ⇒ ′a ⇒ ′a ext-state

set ⇒ bool where

AStar : [[package-rhs ϕ f S pc A ϕ ′ f ′ S ′ ; package-rhs ϕ ′ f ′ S ′ pc B ϕ ′′ f ′′ S ′′]]
=⇒ package-rhs ϕ f S pc (AStar A B) ϕ ′′ f ′′ S ′′

| AImp: package-rhs ϕ f S (bool-conj pc b) A ϕ ′ f ′ S ′ =⇒ package-rhs ϕ f S pc
(AImp b A) ϕ ′ f ′ S ′

| ASem: [[
∧

a u T b. (a, u, T) ∈ S =⇒ pc a =⇒ b = witness (a, u, T) =⇒ a � b
∧ B b ;

S ′ = { (a, u, T) |a u T . (a, u, T) ∈ S ∧ ¬ pc a }
∪ { (a 	 b, the (u ⊕ b), T) |a u T b. (a, u, T) ∈ S ∧ pc a ∧ b = witness (a, u,

T) }]]
=⇒ package-rhs ϕ f S pc (ASem B) ϕ f S ′

| AddFromOutside: [[Some ϕ = ϕ ′ ⊕ m ; package-rhs ϕ ′ f ′ S ′ pc A ϕ ′′ f ′′ S ′′ ;
stable m ; Some f ′ = f ⊕ m ;

S ′ = { (r , u, T) |a u T r . (a, u, T) ∈ S ∧ Some r = a ⊕ (T f ′ 	 T f) ∧ r ##
u }]]
=⇒ package-rhs ϕ f S pc A ϕ ′′ f ′′ S ′′

definition package-sat where
package-sat pc A a ′ u ′ u ←→ (pc |a ′| −→ (∃ x. Some x = |a ′| ⊕ (u ′ 	 u) ∧ sat

A x))

definition package-rhs-connection :: ′a ⇒ ′a ⇒ ′a ext-state set ⇒ ′a abool ⇒ ′a
aassertion ⇒ ′a ⇒ ′a ⇒ ′a ext-state set ⇒ bool where

package-rhs-connection ϕ f S pc A ϕ ′ f ′ S ′←→ f ′ � f ∧ ϕ ## f ∧ ϕ ⊕ f = ϕ ′

⊕ f ′ ∧ stable f ′ ∧
(∀ (a, u, T) ∈ S . ∃ au. Some au = a ⊕ u ∧ (au ## (T f ′ 	 T f) −→
(∃ a ′ u ′. (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f) = a ′ ⊕ u ′ ∧ u ′ �

u ∧ package-sat pc A a ′ u ′ u)))

definition mono-transformer :: ′a transformer ⇒ bool where
mono-transformer T ←→ (∀ϕ ϕ ′. ϕ ′ � ϕ −→ T ϕ ′ � T ϕ) ∧ T unit = unit

definition valid-package-set where
valid-package-set S f ←→ (∀ (a, u, T) ∈ S . a ## u ∧ |a| � |u| ∧ mono-transformer

T ∧ a � |T f |)

25

definition intuitionistic where
intuitionistic A ←→ (∀ϕ ′ ϕ. ϕ ′ � ϕ ∧ A ϕ −→ A ϕ ′)

definition pure-remains where
pure-remains S ←→ (∀ (a, u, p) ∈ S . pure a)

definition is-footprint-general :: ′a ⇒ (′a ⇒ ′a ⇒ ′a)⇒ ′a aassertion ⇒ ′a aasser-
tion ⇒ bool where

is-footprint-general w R A B ←→ (∀ a b. sat A a ∧ Some b = a ⊕ R a w −→ sat
B b)

definition is-footprint-standard :: ′a ⇒ ′a aassertion ⇒ ′a aassertion ⇒ bool
where

is-footprint-standard w A B ←→ (∀ a b. sat A a ∧ Some b = a ⊕ w −→ sat B b)

2.2 Lemmas
lemma is-footprint-generalI :

assumes
∧

a b. sat A a ∧ Some b = a ⊕ R a w =⇒ sat B b
shows is-footprint-general w R A B
using assms is-footprint-general-def by blast

lemma is-footprint-standardI :
assumes

∧
a b. sat A a ∧ Some b = a ⊕ w =⇒ sat B b

shows is-footprint-standard w A B
using assms is-footprint-standard-def by blast

lemma mono-pure-condI :
assumes

∧
ϕ. b ϕ ←→ b |ϕ|

and
∧
ϕ ϕ ′ r . pure r ∧ Some ϕ ′ = ϕ ⊕ r ∧ ¬ b ϕ =⇒ ¬ b ϕ ′

shows mono-pure-cond b
using assms(1) assms(2) mono-pure-cond-def by blast

lemma mono-pure-cond-conj:
assumes mono-pure-cond pc

and mono-pure-cond b
shows mono-pure-cond (bool-conj pc b)

proof (rule mono-pure-condI)
show

∧
ϕ. bool-conj pc b ϕ = bool-conj pc b |ϕ|

by (metis assms(1) assms(2) bool-conj-def mono-pure-cond-def)
show

∧
ϕ ϕ ′ r . pure r ∧ Some ϕ ′ = ϕ ⊕ r ∧ ¬ bool-conj pc b ϕ =⇒ ¬ bool-conj

pc b ϕ ′

by (metis assms(1) assms(2) bool-conj-def mono-pure-cond-def)
qed

lemma bigger-sum:
assumes Some ϕ = a ⊕ b

and ϕ ′ � ϕ

26

shows ∃ b ′. b ′ � b ∧ Some ϕ ′ = a ⊕ b ′

proof −
obtain r where Some ϕ ′ = ϕ ⊕ r

using assms(2) greater-def by blast
then obtain b ′ where Some b ′ = b ⊕ r

by (metis assms(1) asso2 domD domI domIff)
then show ?thesis
by (metis ‹Some ϕ ′= ϕ ⊕ r› assms(1) asso1 commutative sep-algebra.greater-equiv

sep-algebra-axioms)
qed

lemma wf-assertion-sat-larger-pure:
assumes wf-assertion A

and sat A ϕ
and Some ϕ ′ = ϕ ⊕ r
and pure r

shows sat A ϕ ′

using assms
proof (induct arbitrary: ϕ ϕ ′ r rule: wf-assertion.induct)

case (1 A B)
then obtain a b where Some ϕ = a ⊕ b sat A a sat B b by (meson sat.simps(1))
then obtain b ′ where Some b ′ = b ⊕ r

by (metis 1 .prems(3) asso2 option.collapse)
moreover obtain a ′ where Some a ′ = a ⊕ r

by (metis 1 .prems(3) ‹Some ϕ = a ⊕ b› asso2 commutative option.collapse)
ultimately show ?case

using 1
by (metis ‹Some ϕ = a ⊕ b› ‹sat A a› ‹sat B b› asso1 sat.simps(1) wf-assertion.simps(1))

next
case (2 b A)
then show ?case

by (metis mono-pure-cond-def sat.simps(2) wf-assertion.simps(2))
next

case (3 A)
then show ?case

by (metis mono-pruner-def sat.simps(3) wf-assertion.simps(3))
qed

lemma package-satI :
assumes pc |a ′| =⇒ (∃ x. Some x = |a ′| ⊕ (u ′ 	 u) ∧ sat A x)
shows package-sat pc A a ′ u ′ u
by (simp add: assms package-sat-def)

lemma package-rhs-connection-instantiate:
assumes package-rhs-connection ϕ f S pc A ϕ ′ f ′ S ′

and (a, u, T) ∈ S
obtains au where Some au = a ⊕ u

27

and au ## (T f ′ 	 T f) =⇒ ∃ a ′ u ′. (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T
f ′ 	 T f) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat pc A a ′ u ′ u

using assms(1) assms(2) package-rhs-connection-def by fastforce

lemma package-rhs-connectionI :
assumes ϕ ⊕ f = ϕ ′ ⊕ f ′

and stable f ′

and ϕ ## f
and f ′ � f

and
∧

a u T . (a, u, T) ∈ S =⇒ (∃ au. Some au = a ⊕ u ∧ (au ## (T f ′ 	
T f) −→

(∃ a ′ u ′. (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f) = a ′ ⊕ u ′∧ u ′ � u
∧ package-sat pc A a ′ u ′ u)))

shows package-rhs-connection ϕ f S pc A ϕ ′ f ′ S ′

using package-rhs-connection-def assms by auto

lemma valid-package-setI :
assumes

∧
a u T . (a, u, T) ∈ S =⇒ a ## u ∧ |a| � |u| ∧ mono-transformer

T ∧ a � |T f |
shows valid-package-set S f
using assms valid-package-set-def by auto

lemma defined-sum-move:
assumes a ## b

and Some b = x ⊕ y
and Some a ′ = a ⊕ x

shows a ′ ## y
by (metis assms defined-def sep-algebra.asso1 sep-algebra-axioms)

lemma bigger-core-sum-defined:
assumes |a| � b
shows Some a = a ⊕ b
by (metis (no-types, lifting) assms asso1 core-is-smaller greater-equiv max-projection-prop-pure-core

mpp-prop pure-def pure-smaller)

lemma package-rhs-proof :
assumes package-rhs ϕ f S pc A ϕ ′ f ′ S ′

and valid-package-set S f
and wf-assertion A
and mono-pure-cond pc
and stable f
and ϕ ## f

shows package-rhs-connection ϕ f S pc A ϕ ′ f ′ S ′ ∧ valid-package-set S ′ f ′

using assms
proof (induct rule: package-rhs.induct)

case (AImp ϕ f S pc b A ϕ ′ f ′ S ′)
then have asm0 : package-rhs-connection ϕ f S (bool-conj pc b) A ϕ ′ f ′ S ′ ∧

valid-package-set S ′ f ′

28

using mono-pure-cond-conj wf-assertion.simps(2) by blast
let ?pc = bool-conj pc b
obtain ϕ ⊕ f = ϕ ′ ⊕ f ′ stable f ′ ϕ ## f f ′ � f

and §:
∧

a u T . (a, u, T) ∈ S =⇒ (∃ au. Some au = a ⊕ u ∧ (au ## (T f ′

	 T f) −→
(∃ a ′ u ′. (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f) = a ′ ⊕ u ′ ∧ u ′ �

u ∧ package-sat ?pc A a ′ u ′ u)))
using asm0 package-rhs-connection-def by force

have package-rhs-connection ϕ f S pc (AImp b A) ϕ ′ f ′ S ′

proof (rule package-rhs-connectionI)
show ϕ ## f

by (simp add: ‹ϕ ## f ›)
show ϕ ⊕ f = ϕ ′ ⊕ f ′ by (simp add: ‹ϕ ⊕ f = ϕ ′ ⊕ f ′›)
show stable f ′ using ‹stable f ′› by simp
show f ′ � f by (simp add: ‹f ′ � f ›)
fix a u T assume asm1 : (a, u, T) ∈ S
then obtain au where asm2 : Some au = a ⊕ u ∧ (au ## (T f ′ 	 T f) −→
(∃ a ′ u ′. (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f) = a ′ ⊕ u ′ ∧ u ′ �

u ∧ package-sat ?pc A a ′ u ′ u))
using § by presburger

then have au ## (T f ′ 	 T f) =⇒
(∃ a ′ u ′. (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f) = a ′ ⊕ u ′ ∧ u ′ �

u ∧ package-sat pc (AImp b A) a ′ u ′ u)
proof −

assume asm3 : au ## (T f ′ 	 T f)
then obtain a ′ u ′ where au ′: (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	

T f) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat ?pc A a ′ u ′ u
using asm2 by blast

have (the (|a ′| ⊕ (u ′ 	 u))) � |a ′|
proof −

have u ′ � u ′ 	 u
by (metis minus-default minus-smaller succ-refl)

then have a ′ ## (u ′ 	 u)
by (metis au ′ asm3 asso3 defined-def minus-exists)

then show ?thesis
by (metis core-is-smaller defined-def greater-def option.exhaust-sel sep-algebra.asso2

sep-algebra-axioms)
qed
have package-sat pc (AImp b A) a ′ u ′ u
proof (rule package-satI)

assume pc |a ′|
then show ∃ x. Some x = |a ′| ⊕ (u ′ 	 u) ∧ sat (AImp b A) x
proof (cases b |a ′|)

case True
then have ?pc |a ′|

by (simp add: ‹pc |a ′|› bool-conj-def)

29

then show ?thesis
by (metis au ′ package-logic.package-sat-def package-logic-axioms sat.simps(2))
next

case False
then have ¬ b (the (|a ′| ⊕ (u ′ 	 u)))

using AImp.prems(2) ‹the (|a ′| ⊕ (u ′ 	 u)) � |a ′|› core-sum
max-projection-prop-def max-projection-prop-pure-core minus-exists mono-pure-cond-def
wf-assertion.simps(2)

by metis
moreover obtain x where Some x = |a ′| ⊕ (u ′ 	 u)

by (metis au ′ asm3 asso2 commutative core-is-smaller defined-def
minus-and-plus option.collapse)

ultimately show ?thesis by (metis option.sel sat.simps(2))
qed

qed
then show ∃ a ′ u ′. (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f) = a ′ ⊕

u ′ ∧ u ′ � u ∧ package-sat pc (AImp b A) a ′ u ′ u
using au ′ by blast

qed
then show ∃ au. Some au = a ⊕ u ∧ (au ## (T f ′ 	 T f) −→ (∃ a ′ u ′. (a ′,

u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat
pc (AImp b A) a ′ u ′ u))

using asm2 by auto
qed
then show ?case
using ‹package-rhs-connection ϕ f S (bool-conj pc b) A ϕ ′ f ′ S ′∧ valid-package-set

S ′ f ′› by blast
next

case (AStar ϕ f S pc A ϕ ′ f ′ S ′ B ϕ ′′ f ′′ S ′′)
then have r1 : package-rhs-connection ϕ f S pc A ϕ ′ f ′ S ′ ∧ valid-package-set S ′

f ′

using wf-assertion.simps(1) by blast
moreover have ϕ ′ ## f ′ using r1 package-rhs-connection-def [of ϕ f S pc A ϕ ′

f ′ S ′] defined-def
by fastforce

ultimately have r2 : package-rhs-connection ϕ ′ f ′ S ′ pc B ϕ ′′ f ′′ S ′′∧ valid-package-set
S ′′ f ′′

using AStar .hyps(4) AStar .prems(2) AStar .prems(3) package-rhs-connection-def
by force

moreover obtain fa-def : ϕ ⊕ f = ϕ ′ ⊕ f ′ stable f ′ ϕ ## f f ′ � f
and ∗∗:

∧
a u T . (a, u, T) ∈ S =⇒ (∃ au. Some au = a ⊕ u ∧ (au ## (T f ′

	 T f) −→
(∃ a ′ u ′. (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f) = a ′ ⊕ u ′ ∧ u ′ �

u ∧ package-sat pc A a ′ u ′ u)))
using r1 package-rhs-connection-def by fastforce
then obtain fb-def : ϕ ′ ⊕ f ′ = ϕ ′′ ⊕ f ′′ stable f ′′ ϕ ′ ## f ′ f ′′ � f ′

and
∧

a u T . (a, u, T) ∈ S ′ =⇒ (∃ au. Some au = a ⊕ u ∧ (au ## (T f ′′ 	
T f ′) −→

30

(∃ a ′ u ′. (a ′, u ′, T) ∈ S ′′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′′ 	 T f ′) = a ′ ⊕ u ′ ∧ u ′

� u ∧ package-sat pc B a ′ u ′ u)))
using r2 package-rhs-connection-def by fastforce

moreover have package-rhs-connection ϕ f S pc (AStar A B) ϕ ′′ f ′′ S ′′

proof (rule package-rhs-connectionI)
show ϕ ⊕ f = ϕ ′′ ⊕ f ′′ by (simp add: fa-def (1) fb-def (1))
show stable f ′′ by (simp add: fb-def (2))
show ϕ ## f using fa-def (3) by auto
show f ′′ � f using fa-def (4) fb-def (4) succ-trans by blast

fix a u T assume asm0 : (a, u, T) ∈ S
then have f-def : Some (T f ′′ 	 T f) = (T f ′′ 	 T f ′) ⊕ (T f ′ 	 T f)
proof −
have mono-transformer T using valid-package-set-def asm0 ‹valid-package-set

S f › by fastforce
then have T f ′′ � T f ′

by (simp add: fb-def (4) mono-transformer-def)
moreover have T f ′ � T f

using ‹mono-transformer T › fa-def (4) mono-transformer-def by blast
ultimately show ?thesis

using commutative minus-and-plus minus-equiv-def by presburger
qed

then obtain au where au-def : Some au = a ⊕ u
au ## (T f ′ 	 T f) =⇒ (∃ a ′ u ′. (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′

	 T f) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat pc A a ′ u ′ u)
using ∗∗ asm0 by blast

then show ∃ au. Some au = a ⊕ u ∧ (au ## (T f ′′ 	 T f) −→ (∃ a ′ u ′. (a ′,
u ′, T) ∈ S ′′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′′ 	 T f) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat
pc (AStar A B) a ′ u ′ u))

proof (cases au ## (T f ′′ 	 T f))
case True

moreover have mono-transformer T using ‹valid-package-set S f › valid-package-set-def
asm0 by fastforce

ultimately have au ## (T f ′′ 	 T f ′) ∧ au ## (T f ′ 	 T f) using asso3
commutative defined-def f-def

by metis
then obtain a ′ u ′ where r3 : (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T

f) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat pc A a ′ u ′ u
using au-def (2) by blast

then obtain au ′ where au ′-def : Some au ′ = a ′ ⊕ u ′

au ′ ## (T f ′′ 	 T f ′) =⇒ (∃ a ′′ u ′′. (a ′′, u ′′, T) ∈ S ′′ ∧ |a ′′| � |a ′| ∧ au ′

⊕ (T f ′′ 	 T f ′) = a ′′ ⊕ u ′′ ∧ u ′′ � u ′ ∧ package-sat pc B a ′′ u ′′ u ′)
by (meson package-logic.package-rhs-connection-instantiate package-logic-axioms

r2)

31

moreover have au ′ ## T f ′′ 	 T f ′

using True r3 calculation(1) commutative defined-sum-move f-def by fast-
force

ultimately obtain a ′′ u ′′ where r4 : (a ′′, u ′′, T) ∈ S ′′ ∧ |a ′′| � |a ′| ∧ au ′

⊕ (T f ′′ 	 T f ′) = a ′′ ⊕ u ′′ ∧ u ′′ � u ′ ∧ package-sat pc B a ′′ u ′′ u ′

by blast

then have au ⊕ (T f ′′ 	 T f) = a ′′ ⊕ u ′′

proof −
have au ⊕ (T f ′′ 	 T f) = splus (Some au) (Some (T f ′′ 	 T f))

by simp
also have ... = splus (Some au) (splus (Some (T f ′′ 	 T f ′)) (Some (T f ′

	 T f)))
using f-def by auto

finally show ?thesis
by (metis (full-types) r3 r4 au ′-def (1) splus.simps(3) splus-asso splus-comm)

qed
moreover have package-sat pc (AStar A B) a ′′ u ′′ u
proof (rule package-satI)

assume pc |a ′′|
then have pc |a ′|

by (metis AStar .prems(3) r4 greater-equiv minus-core minus-core-weaker
minus-equiv-def mono-pure-cond-def pure-def)

then obtain x where Some x = |a ′| ⊕ (u ′ 	 u) ∧ sat A x
using r3 package-sat-def by fastforce

then obtain x ′ where Some x ′ = |a ′′| ⊕ (u ′′ 	 u ′) ∧ sat B x ′

using ‹pc |a ′′|› package-sat-def r4 by presburger

have u ′′ � u ′′ 	 u
by (metis minus-default minus-smaller succ-refl)

moreover have a ′′ ## u ′′

using True ‹au ⊕ (T f ′′ 	 T f) = a ′′ ⊕ u ′′› defined-def by auto
ultimately obtain x ′′ where Some x ′′ = |a ′′| ⊕ (u ′′ 	 u)

by (metis commutative defined-def max-projection-prop-pure-core mpp-smaller
not-None-eq smaller-compatible)

moreover have Some (u ′′ 	 u) = (u ′′ 	 u ′) ⊕ (u ′ 	 u)
using r4 ‹(a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f) = a ′ ⊕ u ′ ∧

u ′ � u ∧ package-sat pc A a ′ u ′ u› commutative minus-and-plus minus-equiv-def
by presburger

moreover have |a ′′| � |a ′|
using r4 by blast

moreover have Some |a ′′| = |a ′| ⊕ |a ′′|
by (metis (no-types, lifting) calculation(3) core-is-pure sep-algebra.asso1

sep-algebra.minus-exists sep-algebra-axioms)
ultimately have Some x ′′ = x ′ ⊕ x

using asso1 [of - - x ′] ‹Some x = |a ′| ⊕ (u ′ 	 u) ∧ sat A x› ‹Some x ′ =
|a ′′| ⊕ (u ′′ 	 u ′) ∧ sat B x ′› commutative

by metis
then show ∃ x. Some x = |a ′′| ⊕ (u ′′ 	 u) ∧ sat (AStar A B) x

32

using ‹Some x = |a ′| ⊕ (u ′ 	 u) ∧ sat A x› ‹Some x ′ = |a ′′| ⊕ (u ′′ 	 u ′)
∧ sat B x ′› ‹Some x ′′ = |a ′′| ⊕ (u ′′ 	 u)› commutative by fastforce

qed
ultimately show ?thesis

using r3 r4 au-def (1) succ-trans by blast
next

case False
then show ?thesis

using au-def (1) by blast
qed

qed
ultimately show ?case by blast

next
case (ASem S pc witness B S ′ ϕ f)
have valid-package-set S ′ f
proof (rule valid-package-setI)

fix a ′ u ′ T assume asm0 : (a ′, u ′, T) ∈ S ′

then show a ′ ## u ′ ∧ |a ′| � |u ′| ∧ mono-transformer T ∧ a ′ � |T f |
proof (cases (a ′, u ′, T) ∈ S)

case True
then show ?thesis

using ASem.prems(1) valid-package-set-def by auto
next

case False
then have (a ′, u ′, T) ∈ {(a 	 b, the (u ⊕ b), T) |a u T b. (a, u, T) ∈ S ∧

pc a ∧ b = witness (a, u, T)}
using ASem.hyps(2) asm0 by blast

then obtain a u b where (a, u, T) ∈ S pc a b = witness (a, u, T) a ′ = a
	 b u ′ = the (u ⊕ b) by blast

then have a � b ∧ B b
using ASem.hyps(1) by presburger

have a ## u
using ASem.prems(1) ‹(a, u, T) ∈ S› valid-package-set-def by fastforce

then have Some u ′ = u ⊕ b
by (metis ‹a � b ∧ B b› ‹u ′ = the (u ⊕ b)› commutative defined-def

option.exhaust-sel smaller-compatible)
moreover have Some a = a ′ ⊕ b
using ‹a � b ∧ B b› ‹a ′ = a 	 b› commutative minus-equiv-def by presburger

ultimately have a ′ ## u ′

by (metis ‹a ## u› asso1 commutative defined-def)
moreover have |a ′| � |u ′|
proof −

have |a| � |u|
using ASem.prems(1) ‹(a, u, T) ∈ S› valid-package-set-def by fastforce

moreover have |a ′| � |a|
by (simp add: ‹a ′ = a 	 b› minus-core succ-refl)

moreover have |a ′| � |b|
using ‹a � b ∧ B b› ‹a ′ = a 	 b› max-projection-prop-pure-core minus-core

33

mpp-mono by presburger
ultimately show ?thesis
by (metis ‹Some u ′ = u ⊕ b› ‹a ′ = a 	 b› core-is-pure core-sum minus-core

pure-def smaller-pure-sum-smaller)
qed
moreover have a ′ � |T f |
proof −
have a � |T f | using ‹(a, u, T) ∈ S› ‹valid-package-set S f › valid-package-set-def

by fastforce
then show ?thesis
by (metis ‹a ′ = a 	 b› max-projection-prop-pure-core minus-core mpp-mono

mpp-smaller sep-algebra.mpp-invo sep-algebra.succ-trans sep-algebra-axioms)
qed

ultimately show ?thesis using ‹(a, u, T) ∈ S› ‹valid-package-set S f ›
valid-package-set-def

by fastforce
qed

qed
moreover have package-rhs-connection ϕ f S pc (ASem B) ϕ f S ′

proof (rule package-rhs-connectionI)
show ϕ ⊕ f = ϕ ⊕ f

by simp
show stable f by (simp add: ASem.prems(4))
show ϕ ## f by (simp add: ASem.prems(5))
show f � f by (simp add: succ-refl)

fix a u T assume asm0 : (a, u, T) ∈ S

then obtain au where Some au = a ⊕ u using ‹valid-package-set S f ›
valid-package-set-def defined-def by auto

then have r0 : (∃ a ′ u ′. (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ Some au = a ′ ⊕ u ′ ∧
u ′ � u ∧ package-sat pc (ASem B) a ′ u ′ u)

proof −
let ?b = witness (a, u, T)
let ?a = a 	 ?b
let ?u = the (u ⊕ ?b)
show ∃ a ′ u ′. (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ Some au = a ′ ⊕ u ′ ∧ u ′ � u ∧

package-sat pc (ASem B) a ′ u ′ u
proof (cases pc a)

case True
then have (?a, ?u, T) ∈ S ′ using ASem.hyps(2) asm0 by blast
then have a � ?b ∧ B ?b using ASem.hyps(1) True asm0 by blast
moreover have r1 : (?a, ?u, T) ∈ S ′ ∧ |?a| � |a| ∧ Some au = ?a ⊕ ?u

∧ ?u � u
proof

show (a 	 witness (a, u, T), the (u ⊕ witness (a, u, T)), T) ∈ S ′

by (simp add: ‹(a 	 witness (a, u, T), the (u ⊕ witness (a, u, T)), T)
∈ S ′›)

have |a 	 witness (a, u, T)| � |a|

34

by (simp add: minus-core succ-refl)
moreover have Some au = a 	 witness (a, u, T) ⊕ the (u ⊕ witness (a,

u, T))
using ‹Some au = a ⊕ u› ‹a � witness (a, u, T) ∧ B (witness (a, u,

T))›
asso1 [of a 	 witness (a, u, T) witness (a, u, T) a u the (u ⊕ witness

(a, u, T))]
commutative option.distinct(1) option.exhaust-sel asso3 minus-equiv-def
by metis

moreover have the (u ⊕ witness (a, u, T)) � u
using ‹Some au = a ⊕ u› ‹a � witness (a, u, T) ∧ B (witness (a, u,

T))› commutative
greater-def option.distinct(1) option.exhaust-sel asso3 [of u witness (a,

u, T)]
by metis
ultimately show |a 	 witness (a, u, T)| � |a| ∧ Some au = a 	

witness (a, u, T) ⊕ the (u ⊕ witness (a, u, T)) ∧ the (u ⊕ witness (a, u, T)) � u
by blast

qed
moreover have package-sat pc (ASem B) ?a ?u u
proof (rule package-satI)

assume pc |a 	 witness (a, u, T)|
have Some ?u = u ⊕ ?b

by (metis (no-types, lifting) ‹Some au = a ⊕ u› calculation(1) commutative
minus-equiv-def option.distinct(1) option.exhaust-sel sep-algebra.asso3 sep-algebra-axioms)

moreover have ?a ## ?u
by (metis r1 defined-def option.distinct(1))

moreover have ?u � ?u 	 u
using r1 minus-smaller by blast

ultimately obtain x where Some x = |a 	 ?b| ⊕ (?u 	 u)
by (metis (no-types, opaque-lifting) ‹a � witness (a, u, T) ∧ B (witness (a,

u, T))› commutative defined-def minus-core minus-equiv-def option.exhaust smaller-compatible)
moreover have x � ?b
proof −

have ?u 	 u � ?b
using ‹Some (the (u ⊕ witness (a, u, T))) = u ⊕ witness (a, u, T)›

minus-bigger by blast
then show ?thesis

using calculation greater-equiv succ-trans by blast
qed

ultimately show ∃ x. Some x = |a 	 witness (a, u, T)| ⊕ (the (u ⊕
witness (a, u, T)) 	 u) ∧ sat (ASem B) x

using ASem.prems(2) ‹Some (the (u ⊕ witness (a, u, T))) = u ⊕ witness
(a, u, T)›

‹a � witness (a, u, T) ∧ B (witness (a, u, T))› commutative
max-projection-prop-def [of pure core]

max-projection-prop-pure-core minus-equiv-def-any-elem mono-pruner-def [of
B]

sat.simps(3)[of B] wf-assertion.simps(3)[of B]

35

by metis
qed
ultimately show ?thesis by blast

next
case False
then have package-sat pc (ASem B) a u u

by (metis ASem.prems(3) mono-pure-cond-def package-sat-def)
moreover have (a, u, T) ∈ S ′

using False ASem.hyps(2) asm0 by blast
ultimately show ?thesis

using ‹Some au = a ⊕ u› succ-refl by blast
qed

qed
moreover have au ⊕ (T f 	 T f) = Some au
proof −
have a � |T f | using ‹(a, u, T) ∈ S› ‹valid-package-set S f › valid-package-set-def

by fastforce
then have |a| � T f 	 T f
using core-is-smaller max-projection-prop-def max-projection-prop-pure-core

minusI by presburger
then have |au| � T f 	 T f

using ‹Some au = a ⊕ u› core-sum greater-def succ-trans by blast
then show ?thesis using bigger-core-sum-defined by force

qed
ultimately show ∃ au. Some au = a ⊕ u ∧ (au ## (T f 	 T f) −→ (∃ a ′ u ′.

(a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f 	 T f) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat
pc (ASem B) a ′ u ′ u))

using ‹Some au = a ⊕ u› by fastforce
qed
ultimately show ?case by blast

next
case (AddFromOutside ϕ ϕ ′ m f ′ S ′ pc A ϕ ′′ f ′′ S ′′ f S)
have valid-package-set S ′ f ′

proof (rule valid-package-setI)
fix a ′ u T assume asm0 : (a ′, u, T) ∈ S ′

then obtain a where (a, u, T) ∈ S a ′ ## u Some a ′ = a ⊕ (T f ′ 	 T f)
using AddFromOutside.hyps(6) by blast

then have |a| � |u| ∧ mono-transformer T ∧ a � |T f | using ‹valid-package-set
S f › valid-package-set-def

by fastforce
moreover have a ′ � |T f ′|
by (metis (no-types, opaque-lifting) ‹Some a ′ = a ⊕ (T f ′	 T f)› commutative

greater-equiv minus-core minus-equiv-def minus-smaller succ-trans unit-neutral)
ultimately show a ′ ## u ∧ |a ′| � |u| ∧ mono-transformer T ∧ a ′ � |T f ′|
using ‹Some a ′= a ⊕ (T f ′	 T f)› ‹a ′## u› greater-def max-projection-prop-pure-core

mpp-mono succ-trans by blast
qed
then have r : package-rhs-connection ϕ ′ f ′ S ′ pc A ϕ ′′ f ′′ S ′′ ∧ valid-package-set

S ′′ f ′′

36

by (metis AddFromOutside.hyps(1) AddFromOutside.hyps(3) AddFromOut-
side.hyps(4) AddFromOutside.hyps(5) AddFromOutside.prems(2) AddFromOutside.prems(3)
AddFromOutside.prems(4) AddFromOutside.prems(5) asso1 commutative defined-def
stable-sum)

then obtain r2 : ϕ ′ ⊕ f ′ = ϕ ′′ ⊕ f ′′ stable f ′′ ϕ ′ ## f ′ f ′′ � f ′∧
a u T . (a, u, T) ∈ S ′ =⇒ (∃ au. Some au = a ⊕ u ∧ (au ## (T f ′′ 	 T f ′)

−→
(∃ a ′ u ′. (a ′, u ′, T) ∈ S ′′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′′ 	 T f ′) = a ′ ⊕ u ′ ∧ u ′

� u ∧ package-sat pc A a ′ u ′ u)))
using package-rhs-connection-def by fastforce

moreover have package-rhs-connection ϕ f S pc A ϕ ′′ f ′′ S ′′

proof (rule package-rhs-connectionI)
show ϕ ⊕ f = ϕ ′′ ⊕ f ′′

by (metis AddFromOutside.hyps(1) AddFromOutside.hyps(5) asso1 commu-
tative r2 (1))

show stable f ′′

using AddFromOutside.hyps(4) calculation(4) r2 (2) stable-sum by blast
show ϕ ## f

by (simp add: AddFromOutside.prems(5))
show f ′′ � f

using AddFromOutside.hyps(5) bigger-sum greater-def r2 (4) by blast

fix a u T
assume asm0 : (a, u, T) ∈ S

then obtain au where Some au = a ⊕ u using ‹valid-package-set S f ›
valid-package-set-def defined-def

by fastforce
moreover have au ## (T f ′′ 	 T f) =⇒ (∃ a ′ u ′. (a ′, u ′, T) ∈ S ′′ ∧ |a ′| �

|a| ∧ au ⊕ (T f ′′ 	 T f) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat pc A a ′ u ′ u)
proof −

assume asm1 : au ## (T f ′′ 	 T f)
moreover have mono-transformer T using ‹valid-package-set S f › valid-package-set-def

asm0
by fastforce

then have Some (T f ′′ 	 T f) = (T f ′′ 	 T f ′) ⊕ (T f ′ 	 T f)
by (metis AddFromOutside.hyps(5) commutative greater-equiv minus-and-plus

minus-equiv-def mono-transformer-def r2 (4))
ultimately have a ## (T f ′ 	 T f)

using ‹Some au = a ⊕ u› asso2 commutative defined-def minus-exists
by metis

then obtain a ′ where Some a ′ = a ⊕ (T f ′ 	 T f)
by (meson defined-def option.collapse)

moreover have a ′ ## u
proof −

have T f ′′ 	 T f � T f ′ 	 T f
using ‹Some (T f ′′ 	 T f) = T f ′′ 	 T f ′ ⊕ (T f ′ 	 T f)› greater-equiv

by blast
then show ?thesis

37

using ‹Some au = a ⊕ u› asm1 asso1 [of u a au T f ′ 	 T f a ′] asso2 [of]
calculation commutative

defined-def [of] greater-equiv[of T f ′′ 	 T f T f ′ 	 T f]
by metis

qed

ultimately have (a ′, u, T) ∈ S ′

using AddFromOutside.hyps(6) asm0 by blast

moreover have au ## (T f ′′ 	 T f ′)
by (metis ‹Some (T f ′′ 	 T f) = T f ′′ 	 T f ′ ⊕ (T f ′ 	 T f)› asm1 asso3

defined-def)

then have ∃ au. Some au = a ′ ⊕ u ∧ (au ## (T f ′′ 	 T f ′) −→ (∃ a ′a u ′.
(a ′a, u ′, T) ∈ S ′′ ∧ |a ′a| � |a ′| ∧ au ⊕ (T f ′′ 	 T f ′) = a ′a ⊕ u ′ ∧ u ′ � u ∧
package-sat pc A a ′a u ′ u))

using r2 (5) calculation by blast

then obtain au ′ a ′′ u ′ where r3 : Some au ′ = a ′ ⊕ u au ′ ## (T f ′′ 	 T f ′)
=⇒ (a ′′, u ′, T) ∈ S ′′ ∧ |a ′′| � |a ′| ∧ au ′ ⊕ (T f ′′ 	 T f ′) = a ′′ ⊕ u ′ ∧ u ′ � u ∧
package-sat pc A a ′′ u ′ u

using ‹au ## (T f ′′ 	 T f ′)› by blast
moreover have au ′ ## (T f ′′ 	 T f ′) using ‹au ## (T f ′′ 	 T f)› ‹Some

au = a ⊕ u› r3 (1)
‹Some (T f ′′ 	 T f) = (T f ′′ 	 T f ′) ⊕ (T f ′ 	 T f)›

‹Some a ′ = a ⊕ (T f ′ 	 T f)› asso1 [of u a au T f ′ 	 T f a ′] commutative
defined-sum-move[of au T f ′′ 	 T f]

by metis
ultimately have r4 : (a ′′, u ′, T) ∈ S ′′ ∧ |a ′′| � |a ′| ∧ au ′ ⊕ (T f ′′ 	 T f ′)

= a ′′ ⊕ u ′ ∧ u ′ � u ∧ package-sat pc A a ′′ u ′ u
by blast

moreover have |a ′′| � |a|
proof −

have |a ′| � |a|
using ‹Some a ′ = a ⊕ (T f ′ 	 T f)› core-sum greater-def by blast

then show ?thesis
using r4 succ-trans by blast

qed
ultimately show ∃ a ′ u ′. (a ′, u ′, T) ∈ S ′′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′′ 	 T f)

= a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat pc A a ′ u ′ u
using ‹Some (T f ′′ 	 T f) = T f ′′ 	 T f ′ ⊕ (T f ′ 	 T f)› ‹Some a ′ = a

⊕ (T f ′ 	 T f)› ‹Some au = a ⊕ u›
commutative r3 (1) asso1 splus.simps(3) splus-asso by metis

qed
ultimately show ∃ au. Some au = a ⊕ u ∧ (au ## (T f ′′ 	 T f) −→ (∃ a ′

u ′. (a ′, u ′, T) ∈ S ′′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′′ 	 T f) = a ′ ⊕ u ′ ∧ u ′ � u ∧
package-sat pc A a ′ u ′ u))

by blast
qed

38

ultimately show ?case using r by blast
qed

lemma unit-core:
|unit| = unit
by (meson core-is-pure max-projection-prop-pure-core sep-algebra.cancellative sep-algebra.mpp-invo

sep-algebra-axioms unit-neutral)

lemma unit-smaller :
ϕ � unit
using greater-equiv unit-neutral by auto

2.3 Lemmas for completeness
lemma sat-star-exists-bigger :

assumes sat (AStar A B) ϕ
and wf-assertion A
and wf-assertion B

shows ∃ a b. |a| � |ϕ| ∧ |b| � |ϕ| ∧ Some ϕ = a ⊕ b ∧ sat A a ∧ sat B b
proof −

obtain a b where Some ϕ = a ⊕ b sat A a sat B b
using assms sat.simps(1) by blast

then obtain a ′ b ′ where Some a ′ = a ⊕ |ϕ| Some b ′ = b ⊕ |ϕ|
by (meson defined-def greater-def greater-equiv option.collapse smaller-compatible-core)

then have a ′ � a ∧ b ′ � b
using greater-def by blast

then have sat A a ′ ∧ sat B b ′

by (metis ‹Some a ′ = a ⊕ |ϕ|› ‹Some b ′ = b ⊕ |ϕ|› ‹sat A a› ‹sat B b› assms(2)
assms(3) max-projection-prop-pure-core mpp-prop package-logic.wf-assertion-sat-larger-pure
package-logic-axioms)

moreover have Some ϕ = a ′ ⊕ b ′

by (metis (no-types, lifting) ‹Some ϕ = a ⊕ b› ‹Some a ′ = a ⊕ |ϕ|› ‹Some b ′

= b ⊕ |ϕ|› asso1 commutative core-is-smaller)
ultimately show ?thesis

by (metis ‹Some a ′ = a ⊕ |ϕ|› ‹Some b ′ = b ⊕ |ϕ|› commutative extract-core
greater-equiv max-projection-prop-pure-core mpp-mono)
qed

lemma let-pair-instantiate:
assumes (a, b) = f x y
shows (let (a, b) = f x y in g a b) = g a b
by (metis assms case-prod-conv)

lemma greater-than-sum-exists:
assumes a � b

and Some b = b1 ⊕ b2
shows ∃ r . Some a = r ⊕ b2 ∧ |r | � |a| ∧ r � b1

proof −

39

obtain r where Some a = r ⊕ b2 ∧ r � b1
by (metis assms(1) assms(2) bigger-sum commutative)

then obtain r ′ where Some r ′ = r ⊕ |a|
by (metis defined-def greater-def option.exhaust smaller-compatible-core)

then have Some a = r ′ ⊕ b2
by (metis ‹Some a = r ⊕ b2 ∧ r � b1 › commutative core-is-smaller sep-algebra.asso1

sep-algebra-axioms)
then show ?thesis

by (metis ‹Some a = r ⊕ b2 ∧ r � b1 › ‹Some r ′ = r ⊕ |a|› core-is-pure
greater-def smaller-than-core succ-trans)
qed

lemma bigger-the:
assumes Some a = x ′ ⊕ y

and x ′ � x
shows the (|a| ⊕ x ′) � the (|a| ⊕ x)

proof −
have a � x ′

using assms(1) greater-def by blast
then have |a| ## x ′

using commutative defined-def smaller-compatible-core by auto
moreover have |a| ## x
by (metis assms(2) calculation defined-def sep-algebra.asso3 sep-algebra.minus-exists

sep-algebra-axioms)
ultimately show ?thesis

using addition-bigger assms(2) commutative defined-def by force
qed

lemma wf-assertion-and-the:
assumes |a| ## b

and sat A b
and wf-assertion A

shows sat A (the (|a| ⊕ b))
by (metis assms(1) assms(2) assms(3) commutative defined-def max-projection-prop-pure-core

option.collapse sep-algebra.mpp-prop sep-algebra-axioms wf-assertion-sat-larger-pure)

lemma minus-some:
assumes a � b
shows Some a = b ⊕ (a 	 b)
using assms commutative minus-equiv-def by force

lemma core-mono:
assumes a � b
shows |a| � |b|
using assms max-projection-prop-pure-core mpp-mono by auto

lemma prove-last-completeness:
assumes a ′ � a

and Some a = nf1 ⊕ f2

40

shows a ′ 	 nf1 � f2
by (meson assms(1) assms(2) greater-def greater-minus-trans minus-bigger succ-trans)

lemma completeness-aux:
assumes

∧
a u T . (a, u, T) ∈ S =⇒ |f1 a u T | � |a| ∧ Some a = f1 a u T ⊕

f2 a u T ∧ (pc |a| −→ sat A (the (|a| ⊕ (f1 a u T))))
and valid-package-set S f
and wf-assertion A
and mono-pure-cond pc
and stable f ∧ ϕ ## f

shows ∃S ′. package-rhs ϕ f S pc A ϕ f S ′ ∧ (∀ (a ′, u ′, T) ∈ S ′. ∃ a u. (a, u,
T) ∈ S ∧ a ′ � f2 a u T ∧ |a ′| = |a|)

using assms
proof (induct A arbitrary: S pc f1 f2)

case (AImp b A)
let ?pc = bool-conj pc b

have r0 : ∃S ′. package-rhs ϕ f S (bool-conj pc b) A ϕ f S ′ ∧ (∀ a∈S ′. case a of
(a ′, u ′, T) ⇒ ∃ a u. (a, u, T) ∈ S ∧ a ′ � f2 a u T ∧ |a ′| = |a|)

proof (rule AImp(1))
show valid-package-set S f

by (simp add: AImp.prems(2))
show wf-assertion A using AImp.prems(3) by auto
show mono-pure-cond (bool-conj pc b)
by (meson AImp.prems(3) AImp.prems(4) mono-pure-cond-conj wf-assertion.simps(2))
show stable f ∧ ϕ ## f using ‹stable f ∧ ϕ ## f › by simp

fix a u T
assume asm0 : (a, u, T) ∈ S
then have Some a = f1 a u T ⊕ f2 a u T

using AImp.prems(1) by blast
moreover have bool-conj pc b |a| =⇒ sat A (the (|a| ⊕ f1 a u T))
proof −

assume bool-conj pc b |a|
then have pc |a|

by (meson bool-conj-def)
then have |f1 a u T | � |a| ∧ Some a = f1 a u T ⊕ f2 a u T ∧ sat (AImp b

A) (the (|a| ⊕ f1 a u T))
using AImp.prems(1) asm0 (1) by blast

moreover have b (the (|a| ⊕ f1 a u T))
proof −

have |a| ## f1 a u T ∧ |a| � |f1 a u T |
by (metis calculation commutative core-is-smaller defined-def greater-def

max-projection-prop-pure-core mpp-mono option.discI succ-antisym)
then obtain x where Some x = |a| ⊕ f1 a u T

by (meson defined-def option.collapse)
then have |x| = |a|

by (metis ‹Some x = |a| ⊕ f1 a u T › ‹|a| ## f1 a u T ∧ |a| � |f1 a u
T |› commutative core-is-pure core-sum max-projection-prop-pure-core mpp-smaller

41

smaller-than-core)
then show ?thesis

by (metis AImp.prems(3) ‹Some x = |a| ⊕ f1 a u T › ‹bool-conj pc b |a|›
bool-conj-def mono-pure-cond-def option.sel wf-assertion.simps(2))

qed
ultimately show sat A (the (|a| ⊕ f1 a u T)) by (metis sat.simps(2))

qed
ultimately show |f1 a u T | � |a| ∧ Some a = f1 a u T ⊕ f2 a u T ∧ (bool-conj

pc b |a| −→ sat A (the (|a| ⊕ f1 a u T)))
by (metis AImp.prems(1) asm0)

qed
then obtain S ′ where r : package-rhs ϕ f S (bool-conj pc b) A ϕ f S ′ ∧a ′ u ′ T .

(a ′, u ′, T) ∈ S ′ =⇒ (∃ a u. (a, u, T) ∈ S ∧ a ′ � f2 a u T)
by fast

moreover have package-rhs ϕ f S pc (AImp b A) ϕ f S ′

by (simp add: package-rhs.AImp r(1))
ultimately show ?case

using r0 package-rhs.AImp by blast
next

case (ASem A)
let ?witness = λ(a, u, T). the (|a| ⊕ f1 a u T)

obtain S ′ where S ′-def : S ′ = { (a, u, T) |a u T . (a, u, T) ∈ S ∧ ¬ pc a }
∪ { (a 	 b, the (u ⊕ b), T) |a u T b. (a, u, T) ∈ S ∧ pc a ∧ b = ?witness (a,

u, T) }
by blast

have package-rhs ϕ f S pc (ASem A) ϕ f S ′

proof (rule package-rhs.ASem)
show S ′ = {(a, u, T) |a u T . (a, u, T) ∈ S ∧ ¬ pc a} ∪ {(a 	 b, the (u ⊕ b),

T) |a u T b. (a, u, T) ∈ S ∧ pc a ∧ b = ?witness (a, u, T)}
using S ′-def by blast

fix a u T b
assume asm0 : (a, u, T) ∈ S pc a b = (case (a, u, T) of (a, u, T) ⇒ the (|a|

⊕ f1 a u T))
then have b = the (|a| ⊕ f1 a u T) by fastforce
moreover have pc |a|

by (meson ASem.prems(4) asm0 (2) mono-pure-cond-def)
then obtain |f1 a u T | � |a| Some a = f1 a u T ⊕ f2 a u T sat (ASem A)

(the (|a| ⊕ f1 a u T))
using ASem.prems(1) asm0 (1) by blast
then have Some b = |a| ⊕ f1 a u T by (metis calculation commutative

defined-def minus-bigger minus-core option.exhaust-sel smaller-compatible-core)
moreover have a � b
proof −

have a � f1 a u T
using ‹Some a = f1 a u T ⊕ f2 a u T › greater-def by blast

then show ?thesis
by (metis calculation(2) commutative max-projection-prop-pure-core mpp-smaller

42

sep-algebra.mpp-prop sep-algebra-axioms smaller-pure-sum-smaller)
qed
ultimately show a � b ∧ A b

using ‹sat (ASem A) (the (|a| ⊕ f1 a u T))› sat.simps(3) by blast
qed

moreover have r0 :
∧

a ′ u ′ T . (a ′, u ′, T) ∈ S ′ =⇒ (∃ a u. (a, u, T) ∈ S ∧ a ′

� f2 a u T ∧ |a ′| = |a|)
proof −

fix a ′ u ′ T assume asm0 : (a ′, u ′, T) ∈ S ′

then show ∃ a u. (a, u, T) ∈ S ∧ a ′ � f2 a u T ∧ |a ′| = |a|
proof (cases (a ′, u ′, T) ∈ {(a, u, T) |a u T . (a, u, T) ∈ S ∧ ¬ pc a})

case True
then show ?thesis using ASem.prems(1) greater-equiv by fastforce

next
case False
then have (a ′, u ′, T) ∈ { (a 	 b, the (u ⊕ b), T) |a u T b. (a, u, T) ∈ S ∧

pc a ∧ b = ?witness (a, u, T) }
using S ′-def asm0 by blast

then obtain a u b where a ′ = a 	 b u ′ = the (u ⊕ b) (a, u, T) ∈ S pc a b
= ?witness (a, u, T)

by blast
then have a ′ � f2 a u T
proof −

have a � b
proof −

have a � f1 a u T
using ASem.prems(1) ‹(a, u, T) ∈ S› greater-def by blast

moreover have Some b = |a| ⊕ f1 a u T
by (metis ‹b = (case (a, u, T) of (a, u, T)⇒ the (|a| ⊕ f1 a u T))› calcula-

tion case-prod-conv commutative defined-def option.exhaust-sel smaller-compatible-core)
ultimately show ?thesis

by (metis commutative max-projection-prop-pure-core mpp-smaller
sep-algebra.mpp-prop sep-algebra-axioms smaller-pure-sum-smaller)

qed
then show ?thesis

using ASem.prems(1)[of a u T]
‹(a, u, T) ∈ S› ‹a ′ = a 	 b› ‹b = (case (a, u, T) of (a, u, T) ⇒ the (

|a| ⊕ f1 a u T))›
commutative core-is-smaller minus-bigger option.exhaust-sel option.simps(3)

asso1 [of f2 a u T f1 a u T a |a| the (|a| ⊕ f1 a u T)] asso2 [of f2 a u T
f1 a u T]

split-conv
by metis

qed
then show ?thesis

using ‹(a, u, T) ∈ S› ‹a ′ = a 	 b› minus-core by blast
qed

qed

43

ultimately show ?case by blast
next

case (AStar A B)

let ?fA = λa u T . SOME x. ∃ y. Some (f1 a u T) = x ⊕ y ∧ |x| � |f1 a u T | ∧
|y| � |a| ∧ (pc |a| −→ sat A (the (|a| ⊕ x)) ∧ sat B (the (|a| ⊕ y)))

let ?fB = λa u T . SOME y. Some (f1 a u T) = ?fA a u T ⊕ y ∧ |y| � |a| ∧
(pc |a| −→ sat B (the (|a| ⊕ y)))

let ?f2 = λa u T . the (?fB a u T ⊕ f2 a u T)

have r :
∧

a u T . (a, u, T) ∈ S =⇒ Some (f1 a u T) = ?fA a u T ⊕ ?fB a u T
∧ |?fA a u T | � |f1 a u T | ∧ |?fB a u T | � |a| ∧ (pc |a| −→ sat A (the (|a| ⊕
?fA a u T)) ∧ sat B (the (|a| ⊕ ?fB a u T)))
∧ Some (?f2 a u T) = ?fB a u T ⊕ f2 a u T
proof −

fix a u T assume asm0 : (a, u, T) ∈ S
then have r0 : Some a = f1 a u T ⊕ f2 a u T ∧ (pc |a| −→ sat (AStar A B)

(the (|a| ⊕ f1 a u T)))
using AStar .prems(1) by blast

then have ∃ x y. Some (the (|a| ⊕ f1 a u T)) = x ⊕ y ∧ (pc |a| −→ sat A
x) ∧ (pc |a| −→ sat B y) ∧

x � |(the (|a| ⊕ f1 a u T))| ∧ y � |(the (|a| ⊕ f1 a u T))|
proof (cases pc |a|)

case True
then show ?thesis

using AStar .prems(3) r0
max-projection-prop-def [of pure core] max-projection-prop-pure-core
sat-star-exists-bigger [of A B (the (|a| ⊕ f1 a u T))]
succ-trans[of] wf-assertion.simps(1)[of A B]

by blast
next

case False
then have Some (the (|a| ⊕ f1 a u T)) = the (|a| ⊕ f1 a u T) ⊕ |the (|a|

⊕ f1 a u T)|
by (simp add: core-is-smaller)

then show ?thesis by (metis False max-projection-prop-pure-core mpp-smaller
succ-refl)

qed
then obtain x y where Some (the (|a| ⊕ f1 a u T)) = x ⊕ y pc |a| −→ sat

A x pc |a| −→ sat B y
x � |(the (|a| ⊕ f1 a u T))| y � |(the (|a| ⊕ f1 a u T))| by blast

moreover obtain af where Some af = |a| ⊕ f1 a u T
by (metis r0 commutative defined-def minus-bigger minus-core option.exhaust-sel

smaller-compatible-core)
ultimately have Some (f1 a u T) = x ⊕ y

by (metis AStar .prems(1) r0 asm0 commutative core-is-smaller greater-def
max-projection-prop-pure-core mpp-mono option.sel succ-antisym)

moreover have |a| ## x ∧ |a| ## y

44

by (metis ‹Some af = |a| ⊕ f1 a u T › calculation commutative defined-def
option.discI sep-algebra.asso3 sep-algebra-axioms)

then have the (|a| ⊕ x) � x ∧ the (|a| ⊕ y) � y
using commutative defined-def greater-def by auto

ultimately have pc-implies-sat: pc |a| =⇒ sat A (the (|a| ⊕ x)) ∧ sat B (the
(|a| ⊕ y))

by (metis AStar .prems(3) ‹pc |a| −→ sat A x› ‹pc |a| −→ sat B y› ‹|a|
x ∧ |a| ## y› commutative defined-def max-projection-prop-pure-core op-
tion.exhaust-sel package-logic.wf-assertion.simps(1) package-logic-axioms sep-algebra.mpp-prop
sep-algebra-axioms wf-assertion-sat-larger-pure)

have r1 : ∃ y. Some (f1 a u T) = ?fA a u T ⊕ y ∧ |?fA a u T | � |f1 a u T | ∧
|y| � |a| ∧ (pc |a| −→ sat A (the (|a| ⊕ ?fA a u T)) ∧ sat B (the (|a| ⊕ y)))

proof (rule someI-ex)
show ∃ x y. Some (f1 a u T) = x ⊕ y ∧ |x| � |f1 a u T | ∧ |y| � |a| ∧ (pc |a|

−→ sat A (the (|a| ⊕ x)) ∧ sat B (the (|a| ⊕ y)))
using ‹Some (f1 a u T) = x ⊕ y› ‹Some (the (|a| ⊕ f1 a u T)) = x ⊕ y›

pc-implies-sat ‹x � |the (|a| ⊕ f1 a u T)|› ‹y � |the (|a| ⊕ f1 a u T)|› core-is-pure
max-projection-propE(3) max-projection-prop-pure-core option.sel pure-def

by (metis AStar .prems(1) asm0 minusI minus-core)
qed
then obtain yy where yy-prop: Some (f1 a u T) = ?fA a u T ⊕ yy ∧ |?fA a

u T | � |f1 a u T | ∧ |yy| � |a| ∧ (pc |a| −→ sat A (the (|a| ⊕ ?fA a u T)) ∧ sat
B (the (|a| ⊕ yy)))

by blast
moreover have r2 : Some (f1 a u T) = ?fA a u T ⊕ ?fB a u T ∧ |?fB a u T |

� |a| ∧ (pc |a| −→ sat B (the (|a| ⊕ ?fB a u T)))
proof (rule someI-ex)

show ∃ y. Some (f1 a u T) = ?fA a u T ⊕ y ∧ |y| � |a| ∧ (pc |a| −→ sat B
(the (|a| ⊕ y)))

using r1 by blast
qed
ultimately have ?fB a u T ⊕ f2 a u T 6= None

using r0
option.distinct(1) [of] option.exhaust-sel[of ?fB a u T ⊕ f2 a u T] asso2 [of

?fA a u T ?fB a u T f1 a u T f2 a u T]
by metis

then show Some (f1 a u T) = ?fA a u T ⊕ ?fB a u T ∧ |?fA a u T | � |f1 a
u T | ∧ |?fB a u T | � |a|
∧ (pc |a| −→ sat A (the (|a| ⊕ ?fA a u T)) ∧ sat B (the (|a| ⊕ ?fB a u T)))

∧ Some (?f2 a u T) = ?fB a u T ⊕ f2 a u T
using r0 r2 yy-prop

option.distinct(1) option.exhaust-sel[of ?fB a u T ⊕ f2 a u T] asso2 [of ?fA
a u T ?fB a u T f1 a u T f2 a u T]

by simp
qed
have ih1 : ∃S ′. package-rhs ϕ f S pc A ϕ f S ′ ∧ (∀ a∈S ′. case a of (a ′, u ′, T) ⇒
∃ a u. (a, u, T) ∈ S ∧ a ′ � ?f2 a u T ∧ |a ′| = |a|)

45

proof (rule AStar(1))
show valid-package-set S f

by (simp add: AStar .prems(2))
show wf-assertion A

using AStar .prems(3) by auto
show mono-pure-cond pc

by (simp add: AStar .prems(4))
show stable f ∧ ϕ ## f using ‹stable f ∧ ϕ ## f › by simp

fix a u T
assume asm0 : (a, u, T) ∈ S
then have b: Some (f1 a u T) = ?fA a u T ⊕ ?fB a u T ∧ |?fA a u T | � |f1

a u T | ∧ |?fB a u T | � |a| ∧ (pc |a| −→ sat A (the (|a| ⊕ ?fA a u T)) ∧ sat B
(the (|a| ⊕ ?fB a u T)))

using r by fast
show |?fA a u T | � |a| ∧ Some a = ?fA a u T ⊕ ?f2 a u T ∧ (pc |a| −→ sat

A (the (|a| ⊕ ?fA a u T)))
proof −

have |?fA a u T | � |a|
using AStar .prems(1)[of a u T] asm0 b asso1 [of ?fA a u T ?fB a u T f1 a u

T]
asso2 [of ?fA a u T ?fB a u T] option.sel succ-trans[of |?fA a u T | - |a|]
by blast

moreover have Some a = ?fA a u T ⊕ ?f2 a u T
using AStar .prems(1)[of a u T] asm0 b asso1 [of ?fA a u T ?fB a u T f1 a

u T f2 a u T ?f2 a u T]
asso2 [of ?fA a u T ?fB a u T f1 a u T f2 a u T] option.sel

option.exhaust-sel[of ?fB a u T ⊕ f2 a u T Some a = ?fA a u T ⊕ ?f2 a u T]
by force

moreover have pc |a| −→ sat A (the (|a| ⊕ ?fA a u T))
using AStar .prems(1)[of a u T] asm0 b

asso2 [of ?fA a u T ?fB a u T] option.sel succ-trans[of |?fA a u T | - |a|]
by blast

ultimately show ?thesis
by blast

qed
qed
then obtain S ′ where r ′: package-rhs ϕ f S pc A ϕ f S ′ ∧a ′ u ′ T . (a ′, u ′, T)
∈ S ′ =⇒ ∃ a u. (a, u, T) ∈ S ∧ a ′ � ?f2 a u T ∧ |a ′| = |a|

by fast

let ?project = λa ′ T . (SOME r . ∃ a u. r = (a, u) ∧ (a, u, T) ∈ S ∧ a ′ � ?f2 a
u T ∧ |a ′| = |a|)

have project-prop:
∧

a ′ u ′ T . (a ′, u ′, T) ∈ S ′ =⇒ ∃ a u. ?project a ′ T = (a, u)
∧ (a, u, T) ∈ S ∧ a ′ � ?f2 a u T ∧ |a ′| = |a|

proof −
fix a ′ u ′ T assume (a ′, u ′, T) ∈ S ′

then obtain a u where (a, u, T) ∈ S ∧ a ′ � ?f2 a u T ∧ |a ′| = |a|
using r ′ by blast

46

moreover show ∃ a u. ?project a ′ T = (a, u) ∧ (a, u, T) ∈ S ∧ a ′ � ?f2 a u
T ∧ |a ′| = |a|

proof (rule someI-ex)
show ∃ r a u. r = (a, u) ∧ (a, u, T) ∈ S ∧ a ′ � ?f2 a u T ∧ |a ′| = |a| using

calculation by blast
qed

qed

let ?nf1 = λa ′ u ′ T . let (a, u) = ?project a ′ T in (SOME r . Some r = |a ′| ⊕
?fB a u T)

let ?nf2 = λa ′ u ′ T . a ′ 	 ?nf1 a ′ u ′ T

have ∃S ′′. package-rhs ϕ f S ′ pc B ϕ f S ′′ ∧ (∀ a∈S ′′. case a of (a ′, u ′, T) ⇒
∃ a u. (a, u, T) ∈ S ′ ∧ a ′ � ?nf2 a u T ∧ |a ′| = |a|)

proof (rule AStar(2))
show stable f ∧ ϕ ## f using ‹stable f ∧ ϕ ## f › by simp

then show valid-package-set S ′ f
using AStar .prems ‹package-rhs ϕ f S pc A ϕ f S ′› package-logic.package-rhs-proof

package-logic.wf-assertion.simps(1) package-logic-axioms
by metis

show wf-assertion B
using AStar .prems(3) by auto

show mono-pure-cond pc
by (simp add: AStar .prems(4))

fix a ′ u ′ T assume (a ′, u ′, T) ∈ S ′

then obtain a u where a-u-def : (a, u) = ?project a ′ T (a, u, T) ∈ S a ′ �
?f2 a u T |a ′| = |a|

using project-prop by force
define nf1 where nf1 = ?nf1 a ′ u ′ T
define nf2 where nf2 = ?nf2 a ′ u ′ T
moreover have rnf1-def : Some nf1 = |a ′| ⊕ ?fB a u T
proof −

let ?x = (SOME r . Some r = |a ′| ⊕ ?fB a u T)
have Some ?x = |a ′| ⊕ ?fB a u T
proof (rule someI-ex)

have Some (f1 a u T) = ?fA a u T ⊕ ?fB a u T ∧ |?fA a u T | � |f1 a u
T | ∧ |?fB a u T | � |a|

∧ (pc |a| −→ sat A (the (|a| ⊕ ?fA a u T)) ∧ sat B (the (|a| ⊕ ?fB a u
T)))

using r a-u-def by blast
then have Some (?f2 a u T) = ?fB a u T ⊕ f2 a u T

by (metis (no-types, lifting) AStar .prems(1) a-u-def (2) asso2 option.distinct(1)
option.exhaust-sel)

moreover have a ′ � (?f2 a u T) using ‹a ′ � ?f2 a u T › by blast
ultimately have a ′ � ?fB a u T using succ-trans greater-def

by blast
then obtain r where Some r = |a ′| ⊕ ?fB a u T

using

47

commutative
greater-equiv[of a ′ ?fB a u T]
minus-equiv-def-any-elem[of a ′]

by fastforce
then show ∃ r . Some r = |a ′| ⊕ ?fB a u T by blast

qed
moreover have ?nf1 a ′ u ′ T = ?x

using let-pair-instantiate[of a u - a ′ T λa u. (SOME r . Some r = |a ′| ⊕
?fB a u T)] a-u-def

by fast
ultimately show ?thesis using nf1-def by argo

qed

moreover have rnf2-def : Some a ′ = nf1 ⊕ nf2
proof −

have nf2 = a ′ 	 nf1 using nf1-def nf2-def by blast
moreover have a ′ � nf1
proof −

have ?f2 a u T � nf1
proof −

have Some (?f2 a u T) = ?fB a u T ⊕ f2 a u T using r ‹(a, u, T) ∈ S›
by blast

then have ?f2 a u T � ?fB a u T
using greater-def by blast

moreover have ?f2 a u T � |a ′|
proof −

have |?f2 a u T | � |a|
proof −

have |?f2 a u T | � |?fB a u T | using ‹?f2 a u T � ?fB a u T ›
core-mono by blast

moreover have |?fB a u T | � |a| using r ‹(a, u, T) ∈ S› by blast
ultimately show ?thesis using succ-trans ‹|a ′| = |a|› by blast

qed
then show ?thesis

using a-u-def (4)
bigger-core-sum-defined[of ?f2 a u T]
greater-equiv[of - |a|]

by auto
qed
ultimately show ?thesis using
core-is-pure[of a ′] commutative pure-def [of |a ′|] smaller-pure-sum-smaller [of

- - |a ′|] rnf1-def
by (metis (no-types, lifting))

qed
then show ?thesis using ‹a ′ � ?f2 a u T › succ-trans by blast

qed
ultimately show ?thesis using minus-some nf2-def by blast

qed

48

moreover have pc |a ′| =⇒ sat B (the (|a ′| ⊕ ?nf1 a ′ u ′ T))
proof −

assume pc |a ′|
moreover have |a ′| = |a|

by (simp add: a-u-def (4))
then have pc |a| using ‹pc |a ′|› by simp
ultimately have sat B (the (|a| ⊕ ?fB a u T))

using r a-u-def by blast
then have sat B (the (|a ′| ⊕ ?fB a u T)) using ‹|a ′| = |a|› by simp

then show sat B (the (|a ′| ⊕ ?nf1 a ′ u ′ T))
proof −

have nf1 � |a ′| using rnf1-def
using greater-def by blast

then have Some nf1 = |a ′| ⊕ nf1
by (metis bigger-core-sum-defined commutative core-mono max-projection-prop-pure-core

mpp-invo)
then show ?thesis using nf1-def rnf1-def ‹sat B (the (|a ′| ⊕ ?fB a u T))›

by argo
qed

qed
moreover have |?nf1 a ′ u ′ T | � |a ′|
proof −

have ?nf1 a ′ u ′ T � |a ′| using nf1-def greater-def rnf1-def by blast
then show ?thesis
using max-projection-propE(3) max-projection-prop-pure-core sep-algebra.mpp-prop

sep-algebra-axioms by fastforce
qed
ultimately show |?nf1 a ′ u ′ T | � |a ′| ∧ Some a ′ = ?nf1 a ′ u ′ T ⊕ ?nf2 a ′

u ′ T ∧ (pc |a ′| −→ sat B (the (|a ′| ⊕ ?nf1 a ′ u ′ T)))
using nf1-def
by blast

qed

then obtain S ′′ where S ′′-prop: package-rhs ϕ f S ′ pc B ϕ f S ′′ ∧a ′ u ′ T . (a ′,
u ′, T) ∈ S ′′ =⇒ ∃ a u. (a, u, T) ∈ S ′ ∧ a ′ � ?nf2 a u T ∧ |a ′| = |a|

by fast

then have package-rhs ϕ f S pc (AStar A B) ϕ f S ′′

using ‹package-rhs ϕ f S pc A ϕ f S ′› package-rhs.AStar by presburger
moreover have

∧
a ′′ u ′′ T . (a ′′, u ′′, T) ∈ S ′′ =⇒ ∃ a u. (a, u, T) ∈ S ∧ a ′′ �

f2 a u T ∧ |a ′′| = |a|
proof −

fix a ′′ u ′′ T assume asm0 : (a ′′, u ′′, T) ∈ S ′′

then obtain a ′ u ′ where (a ′, u ′, T) ∈ S ′ ∧ a ′′ � ?nf2 a ′ u ′ T ∧ |a ′′| = |a ′|
using S ′′-prop by blast

49

then obtain a u where a-u-def : (a, u) = ?project a ′ T (a, u, T) ∈ S a ′ �
?f2 a u T |a ′| = |a|

using project-prop by force

define nf1 where nf1 = ?nf1 a ′ u ′ T
define nf2 where nf2 = ?nf2 a ′ u ′ T

moreover have rnf1-def : Some nf1 = |a ′| ⊕ ?fB a u T
proof −

let ?x = (SOME r . Some r = |a ′| ⊕ ?fB a u T)
have Some ?x = |a ′| ⊕ ?fB a u T
proof (rule someI-ex)

have Some (f1 a u T) = ?fA a u T ⊕ ?fB a u T ∧ |?fA a u T | � |f1 a u
T | ∧ |?fB a u T | � |a|

∧ (pc |a| −→ sat A (the (|a| ⊕ ?fA a u T)) ∧ sat B (the (|a| ⊕ ?fB a u
T)))

using r a-u-def by blast
then have Some (?f2 a u T) = ?fB a u T ⊕ f2 a u T

by (metis (no-types, lifting) AStar .prems(1) a-u-def (2) asso2 option.distinct(1)
option.exhaust-sel)

moreover have a ′ � (?f2 a u T) using ‹a ′ � ?f2 a u T › by blast
ultimately have a ′ � ?fB a u T using succ-trans greater-def

by blast
then obtain r where Some r = |a ′| ⊕ ?fB a u T

using commutative greater-equiv[of a ′ ?fB a u T] minus-equiv-def-any-elem[of
a ′] by fastforce

then show ∃ r . Some r = |a ′| ⊕ ?fB a u T by blast
qed
moreover have ?nf1 a ′ u ′ T = ?x

using let-pair-instantiate[of a u - a ′ T λa u. (SOME r . Some r = |a ′| ⊕
?fB a u T)] a-u-def

by fast
ultimately show ?thesis using nf1-def by argo

qed

moreover have rnf2-def : a ′ � nf1 ∧ ?nf2 a ′ u ′ T � f2 a u T
proof −

have nf2 = a ′ 	 nf1 using nf1-def nf2-def by blast
moreover have a ′ � nf1 ∧ a ′ 	 nf1 � f2 a u T
proof −

have ?f2 a u T � nf1
proof −

have Some (?f2 a u T) = ?fB a u T ⊕ f2 a u T using r ‹(a, u, T) ∈ S›
by blast

then have ?f2 a u T � ?fB a u T
using greater-def by blast

moreover have ?f2 a u T � |a ′|
proof −

have |?f2 a u T | � |a|

50

proof −
have |?f2 a u T | � |?fB a u T | using ‹?f2 a u T � ?fB a u T ›

core-mono by blast
moreover have |?fB a u T | � |a| using r ‹(a, u, T) ∈ S› by blast
ultimately show ?thesis using succ-trans ‹|a ′| = |a|› by blast

qed
then show ?thesis

using a-u-def (4)
bigger-core-sum-defined
greater-equiv[of ?f2 a u T |a ′|]

by auto
qed
ultimately show ?thesis using
core-is-pure[of a ′] commutative pure-def [of |a ′|] smaller-pure-sum-smaller [of

?f2 a u T - |a ′|] rnf1-def
by simp

qed
then have r1 : a ′ � nf1 using ‹a ′ � ?f2 a u T › succ-trans by blast
then have Some a ′ = nf1 ⊕ nf2 using minus-some nf2-def ‹nf2 = a ′ 	

nf1 › by presburger
have r2 : a ′ 	 nf1 � f2 a u T

using ‹a ′ � ?f2 a u T ›
proof (rule prove-last-completeness)

have Some (?f2 a u T) = ?fB a u T ⊕ f2 a u T
using r ‹(a, u, T) ∈ S› by blast

moreover have Some nf1 = |a ′| ⊕ ?fB a u T using rnf1-def by blast

have Some (?f2 a u T) = ?fB a u T ⊕ f2 a u T using r ‹(a, u, T) ∈ S›
by blast

then have ?f2 a u T � ?fB a u T
using greater-def by blast

moreover have ?f2 a u T � |a ′|
proof −

have |?f2 a u T | � |a|
proof −

have |?f2 a u T | � |?fB a u T | using ‹?f2 a u T � ?fB a u T ›
core-mono by blast

moreover have |?fB a u T | � |a| using r ‹(a, u, T) ∈ S› by blast
ultimately show ?thesis using succ-trans ‹|a ′| = |a|› by blast

qed
then show ?thesis

using a-u-def (4)
bigger-core-sum-defined[of - |a|]
greater-equiv[of ?f2 a u T |a|]

by auto
qed
ultimately show Some (?f2 a u T) = nf1 ⊕ f2 a u T

using asso1 [of |a ′| ?fB a u T nf1 f2 a u T ?f2 a u T]

51

asso1 [of |a ′| |a ′| |a ′|] core-is-pure[of a ′] greater-def [of ?f2 a u T |a ′|]
rnf1-def

by (metis (no-types, lifting))
qed
then show ?thesis using ‹a ′ � ?f2 a u T › succ-trans using r1 by force

qed
ultimately show ?thesis using nf2-def by argo

qed
ultimately have (a, u, T) ∈ S ∧ a ′ � ?f2 a u T ∧ ?nf2 a ′ u ′ T � f2 a u T

using nf1-def nf2-def
a-u-def by blast

then have a ′′ � f2 a u T ∧ |a ′′| = |a ′| using ‹(a ′, u ′, T) ∈ S ′ ∧ a ′′ � ?nf2
a ′ u ′ T ∧ |a ′′| = |a ′| ›

using succ-trans by blast
then show ∃ a u. (a, u, T) ∈ S ∧ a ′′ � f2 a u T ∧ |a ′′| = |a| using r ′

using a-u-def (2) a-u-def (4) by auto
qed
ultimately show ?case by blast

qed

2.4 Soundness
theorem general-soundness:

assumes package-rhs ϕ unit { (a, unit, T) |a T . (a, T) ∈ S } (λ-. True) A ϕ ′ f
S ′

and
∧

a T . (a, T) ∈ S =⇒ mono-transformer T
and wf-assertion A
and intuitionistic (sat A) ∨ pure-remains S ′

shows Some ϕ = ϕ ′ ⊕ f ∧ stable f ∧ (∀ (a, T) ∈ S . a ## T f −→ sat A (the
(a ⊕ T f)))
proof −

let ?S = { (a, unit, p) |a p. (a, p) ∈ S }
let ?pc = λ-. True
have package-rhs-connection ϕ unit ?S ?pc A ϕ ′ f S ′ ∧ valid-package-set S ′ f
proof (rule package-rhs-proof)

show package-rhs ϕ unit {(a, unit, p) |a p. (a, p) ∈ S} (λ-. True) A ϕ ′ f S ′

using assms(1) by auto
show valid-package-set {(a, unit, p) |a p. (a, p) ∈ S} unit
proof (rule valid-package-setI)

fix a u T
assume (a, u, T) ∈ {(a, unit, p) |a p. (a, p) ∈ S}
then have u = unit by blast
moreover have |T unit| = unit
using ‹(a, u, T) ∈ {(a, unit, p) |a p. (a, p) ∈ S}› assms(2) mono-transformer-def

unit-core by fastforce
then show a ## u ∧ |a| � |u| ∧ mono-transformer T ∧ a � |T unit|

using ‹(a, u, T) ∈ {(a, unit, p) |a p. (a, p) ∈ S}› assms(2) defined-def
unit-core unit-neutral unit-smaller by auto

qed

52

show wf-assertion A by (simp add: assms(3))
show mono-pure-cond (λ-. True)

using mono-pure-cond-def by auto
show stable unit by (simp add: stable-unit)
show ϕ ## unit

using defined-def unit-neutral by auto
qed

then obtain r : ϕ ⊕ unit = ϕ ′ ⊕ f stable f∧
a u T . (a, u, T) ∈ ?S =⇒ (∃ au. Some au = a ⊕ u ∧ (au ## (T f 	 T

unit) −→
(∃ a ′ u ′. (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f 	 T unit) = a ′ ⊕ u ′ ∧ u ′

� u ∧ package-sat ?pc A a ′ u ′ u)))
using package-rhs-connection-def by force

moreover have
∧

a T x. (a, T) ∈ S ∧ Some x = a ⊕ T f =⇒ sat A x
proof −

fix a T x assume asm0 : (a, T) ∈ S ∧ Some x = a ⊕ T f
then have T f 	 T unit = T f

by (metis assms(2) commutative minus-equiv-def mono-transformer-def op-
tion.sel unit-neutral unit-smaller)

then obtain au where au-def : Some au = a ⊕ unit ∧ (au ## T f −→
(∃ a ′ u ′. (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ T f = a ′ ⊕ u ′ ∧ u ′ � unit ∧

package-sat ?pc A a ′ u ′ unit))
using r asm0 by fastforce

then have au = a by (metis option.inject unit-neutral)
then have (∃ a ′ u ′. (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ a ⊕ T f = a ′ ⊕ u ′ ∧

package-sat ?pc A a ′ u ′ unit)
using au-def asm0 defined-def
by auto

then obtain a ′ u ′ where r0 : (a ′, u ′, T) ∈ S ′ ∧ |a ′| � |a| ∧ a ⊕ T f = a ′ ⊕
u ′ ∧ package-sat ?pc A a ′ u ′ unit

by presburger
then obtain y where Some y = |a ′| ⊕ (u ′ 	 unit) sat A y

using package-sat-def by auto
then have Some y = |a ′| ⊕ u ′

by (metis commutative minus-equiv-def splus.simps(3) unit-neutral unit-smaller)
then have x � y
by (metis r0 addition-bigger asm0 max-projection-prop-pure-core mpp-smaller)

then show sat A x
proof (cases intuitionistic (sat A))

case True
then show ?thesis by (meson ‹Some y = |a ′| ⊕ (u ′ 	 unit)› ‹sat A y› ‹x �

y› intuitionistic-def)
next

case False
then have pure-remains S ′ using assms(4) by auto
then have pure a ′ using pure-remains-def r0

by fast

53

then show ?thesis using r0 ‹Some y = |a ′| ⊕ (u ′ 	 unit)› ‹sat A y› ‹Some
y = |a ′| ⊕ u ′› asm0 core-is-smaller

core-max option.sel pure-def asso1 [of a ′] by metis
qed

qed
then have (∀ (a, T) ∈ S . a ## T f −→ sat A (the (a ⊕ T f)))

using sep-algebra.defined-def sep-algebra-axioms by fastforce
moreover have Some ϕ = ϕ ′ ⊕ f ∧ stable f

using r(1) r(2) unit-neutral by auto
ultimately show ?thesis by blast

qed

theorem soundness:
assumes wf-assertion B

and
∧

a. sat A a =⇒ a ∈ S
and

∧
a. a ∈ S =⇒ mono-transformer (R a)

and package-rhs σ unit { (a, unit, R a) |a. a ∈ S } (λ-. True) B σ ′ w S ′

and intuitionistic (sat B) ∨ pure-remains S ′

shows stable w ∧ Some σ = σ ′ ⊕ w ∧ is-footprint-general w R A B
proof −

let ?S = { (a, R a) |a. a ∈ S}
have r : Some σ = σ ′ ⊕ w ∧ stable w ∧ (∀ (a, T)∈{(a, R a) |a. a ∈ S}. a ##

T w −→ sat B (the (a ⊕ T w)))
proof (rule general-soundness)

show package-rhs σ unit {(a, unit, T) |a T . (a, T) ∈ {(a, R a) |a. a ∈ S}}
(λ-. True) B σ ′ w S ′

using assms(4) by auto
show

∧
a T . (a, T) ∈ {(a, R a) |a. a ∈ S} =⇒ mono-transformer T using

assms(3) by blast
show wf-assertion B by (simp add: assms(1))
show intuitionistic (sat B) ∨ pure-remains S ′ by (simp add: assms(5))

qed
moreover have is-footprint-general w R A B
proof (rule is-footprint-generalI)

fix a b assume asm: sat A a ∧ Some b = a ⊕ R a w
then have (a, R a) ∈ ?S

using assms(2) by blast
then have sat B (the (a ⊕ R a w)) using r using asm defined-def by fastforce
then show sat B b by (metis asm option.sel)

qed
ultimately show ?thesis by blast

qed

corollary soundness-paper :
assumes wf-assertion B

and
∧

a. sat A a =⇒ a ∈ S
and package-rhs σ unit { (a, unit, id) |a. a ∈ S } (λ-. True) B σ ′ w S ′

and intuitionistic (sat B) ∨ pure-remains S ′

shows stable w ∧ Some σ = σ ′ ⊕ w ∧ is-footprint-standard w A B

54

proof −
have stable w ∧ Some σ = σ ′ ⊕ w ∧ is-footprint-general w (λ-. id) A B

using assms soundness[of B A S λ-. id σ σ ′ w S ′]
by (simp add: mono-transformer-def)

then show ?thesis
using is-footprint-general-def is-footprint-standardI by fastforce

qed

2.5 Completeness
theorem general-completeness:

assumes
∧

a u T x. (a, u, T) ∈ S =⇒ Some x = a ⊕ T f =⇒ sat A x
and Some ϕ = ϕ ′ ⊕ f
and stable f
and valid-package-set S unit
and wf-assertion A

shows ∃S ′. package-rhs ϕ unit S (λ-. True) A ϕ ′ f S ′

proof −
define S ′ where S ′ = { (r , u, T) |a u T r . (a, u, T) ∈ S ∧ Some r = a ⊕ (T

f 	 T unit) ∧ r ## u }
let ?pc = λ-. True
have ∃S ′′. package-rhs ϕ ′ f S ′ ?pc A ϕ ′ f S ′′

proof −
let ?f2 = λa u T . unit
let ?f1 = λa u T . a
have ∃S ′′. package-rhs ϕ ′ f S ′ ?pc A ϕ ′ f S ′′ ∧ (∀ (a ′, u ′, T) ∈ S ′′. ∃ a u. (a,

u, T) ∈ S ′ ∧ a ′ � ?f2 a u T ∧ |a ′| = |a|)
proof (rule completeness-aux)

show mono-pure-cond (λ-. True) by (simp add: mono-pure-cond-def)
show wf-assertion A by (simp add: assms(5))
show valid-package-set S ′ f
proof (rule valid-package-setI)

fix a ′ u ′ T
assume (a ′, u ′, T) ∈ S ′

then obtain a where asm: (a, u ′, T) ∈ S ∧ Some a ′ = a ⊕ (T f 	 T
unit) ∧ a ′ ## u ′

using S ′-def by blast
then have a ## u ′ ∧ |a| � |u ′| ∧ mono-transformer T

using assms(4) valid-package-set-def by fastforce
moreover have |T f 	 T unit| = |T f |

by (simp add: minus-core)
ultimately show a ′ ## u ′ ∧ |a ′| � |u ′| ∧ mono-transformer T ∧ a ′ �

|T f |
by (meson asm core-sum greater-def greater-equiv minus-equiv-def mono-transformer-def

succ-trans unit-neutral)
qed
show stable f ∧ ϕ ′ ## f

by (metis assms(2) assms(3) defined-def domI domIff)
fix a u T

55

assume (a, u, T) ∈ S ′

then obtain a ′ u ′ where (a ′, u ′, T) ∈ S Some a = a ′ ⊕ (T f 	 T unit)
using S ′-def by blast

moreover have T f 	 T unit = T f
proof −
have mono-transformer T using ‹valid-package-set S unit› valid-package-set-def

‹(a ′, u ′, T) ∈ S› by auto
then show ?thesis
by (metis commutative minus-default minus-equiv-def mono-transformer-def

option.sel unit-neutral)
qed

then have sat A (the (|a| ⊕ a))
by (metis assms(1) calculation(1) calculation(2) commutative core-is-smaller

option.sel)
then show |a| � |a| ∧ Some a = a ⊕ unit ∧ (True −→ sat A (the (|a| ⊕

a)))
by (simp add: succ-refl unit-neutral)

qed
then show ?thesis by auto

qed
then obtain S ′′ where package-rhs ϕ ′ f S ′ ?pc A ϕ ′ f S ′′ by blast
have package-rhs ϕ unit S ?pc A ϕ ′ f S ′′

using assms(2)
proof (rule package-rhs.AddFromOutside)

show package-rhs ϕ ′ f S ′ ?pc A ϕ ′ f S ′′

by (simp add: ‹package-rhs ϕ ′ f S ′ ?pc A ϕ ′ f S ′′›)
show stable f using assms(3) by simp
show Some f = unit ⊕ f

by (simp add: commutative unit-neutral)
show S ′ = { (r , u, T) |a u T r . (a, u, T) ∈ S ∧ Some r = a ⊕ (T f 	 T unit)

∧ r ## u }
using S ′-def by blast

qed
then show ?thesis

by blast
qed

theorem completeness:
assumes wf-assertion B

and stable w ∧ is-footprint-general w R A B
and Some σ = σ ′ ⊕ w
and

∧
a. sat A a =⇒ mono-transformer (R a)

shows ∃S ′. package-rhs σ unit {(a, unit, R a) |a. sat A a} (λ-. True) B σ ′ w
S ′

proof −
let ?S = {(a, unit, R a) |a. sat A a}
have ∃S ′. package-rhs σ unit {(a, unit, R a) |a. sat A a} (λ-. True) B σ ′ w S ′

proof (rule general-completeness[of ?S w B σ σ ′])

56

show
∧

a u T x. (a, u, T) ∈ {(a, unit, R a) |a. sat A a} =⇒ Some x = a ⊕
T w =⇒ sat B x

using assms(2) is-footprint-general-def by blast
show Some σ = σ ′ ⊕ w by (simp add: assms(3))
show stable w by (simp add: assms(2))
show wf-assertion B by (simp add: assms(1))

show valid-package-set {(a, unit, R a) |a. sat A a} unit
proof (rule valid-package-setI)

fix a u T assume asm0 : (a, u, T) ∈ {(a, unit, R a) |a. sat A a}
then have u = unit ∧ T = R a ∧ sat A a by fastforce
then show a ## u ∧ |a| � |u| ∧ mono-transformer T ∧ a � |T unit|

using assms(4) defined-def mono-transformer-def unit-core unit-neutral
unit-smaller by auto

qed
qed
then show ?thesis by meson

qed

corollary completeness-paper :
assumes wf-assertion B

and stable w ∧ is-footprint-standard w A B
and Some σ = σ ′ ⊕ w

shows ∃S ′. package-rhs σ unit {(a, unit, id) |a. sat A a} (λ-. True) B σ ′ w S ′

proof −
have ∃S ′. package-rhs σ unit {(a, unit, (λ-. id) a) |a. sat A a} (λ-. True) B σ ′

w S ′

using assms(1)
proof (rule completeness)

show stable w ∧ is-footprint-general w (λa. id) A B
using assms(2) is-footprint-general-def is-footprint-standard-def by force

show Some σ = σ ′ ⊕ w by (simp add: assms(3))
show

∧
a. sat A a =⇒ mono-transformer id using mono-transformer-def by

auto
qed
then show ?thesis by meson

qed

end

end

References

[1] C. Calcagno, P. W. O’Hearn, and H. Yang. Local Action and Abstract
Separation Logic. In Logic in Computer Science (LICS), pages 366–375,
2007.

57

[2] T. Dardinier, G. Parthasarathy, N. Weeks, P. Müller, and A. J. Summers.
Sound automation of magic wands. In S. Shoham and Y. Vizel, editors,
Computer Aided Verification, pages 130–151, Cham, 2022. Springer In-
ternational Publishing.

[3] R. Dockins, A. Hobor, and A. W. Appel. A Fresh Look at Separation
Algebras and Share Accounting. In Z. Hu, editor, Asian Symposium on
Programming Languages and Systems (APLAS), pages 161–177, 2009.

[4] J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data
Structures. In Logic in Computer Science (LICS), pages 55–74. IEEE,
2002.

58

	Separation Algebra
	Definitions
	First lemmata
	splus
	Pure

	Succ is an order
	Core (pure) and stabilize (stable)
	Subtraction
	Lifting the algebra to sets of states
	Addition of more than two states

	Package Logic
	Definitions
	Lemmas
	Lemmas for completeness
	Soundness
	Completeness

