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Abstract
The magic wand −∗ (also called separating implication) is a separa-

tion logic [4] connective commonly used to specify properties of partial
data structures, for instance during iterative traversals. A footprint of
a magic wand formula A−∗B is a state that, combined with any state
in which A holds, yields a state in which B holds. The key challenge of
proving a magic wand (also called packaging a wand) is to find such a
footprint. Existing package algorithms either have a high annotation
overhead or are unsound.

In this entry, we formally define a framework for the sound automa-
tion of magic wands, described in a paper at CAV 2022 [2], and prove
that it is sound and complete. This framework, called the package
logic, precisely characterises a wide design space of possible package
algorithms applicable to a large class of separation logics.
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1 Separation Algebra

In this section, we formalize the concept of a separation algebra [1, 3], on
which our package logic is based.
theory SepAlgebra

imports Main
begin

type-synonym ′a property = ′a ⇒ bool

locale sep-algebra =

fixes plus :: ′a ⇒ ′a ⇒ ′a option (infixl ‹⊕› 63 )

fixes core :: ′a ⇒ ′a (‹ |-| ›)

assumes commutative: a ⊕ b = b ⊕ a
and asso1 : a ⊕ b = Some ab ∧ b ⊕ c = Some bc =⇒ ab ⊕ c = a ⊕ bc
and asso2 : a ⊕ b = Some ab ∧ b ⊕ c = None =⇒ ab ⊕ c = None

and core-is-smaller : Some x = x ⊕ |x|
and core-is-pure: Some |x| = |x| ⊕ |x|
and core-max: Some x = x ⊕ c =⇒ (∃ r . Some |x| = c ⊕ r)
and core-sum: Some c = a ⊕ b =⇒ Some |c| = |a| ⊕ |b|

and positivity: a ⊕ b = Some c =⇒ Some c = c ⊕ c =⇒ Some a = a ⊕ a
and cancellative: Some a = b ⊕ x =⇒ Some a = b ⊕ y =⇒ |x| = |y| =⇒ x

= y

begin

lemma asso3 :
assumes a ⊕ b = None

and b ⊕ c = Some bc
shows a ⊕ bc = None

by (metis assms(1 ) assms(2 ) sep-algebra.asso2 sep-algebra.commutative sep-algebra-axioms)

1.1 Definitions
definition defined :: ′a ⇒ ′a ⇒ bool (infixl ‹##› 62 ) where

a ## b ←→ a ⊕ b 6= None

definition greater :: ′a ⇒ ′a ⇒ bool (infixl ‹�› 50 ) where
a � b ←→ (∃ c. Some a = b ⊕ c)

definition pure :: ′a ⇒ bool where
pure a ←→ Some a = a ⊕ a
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definition minus :: ′a ⇒ ′a ⇒ ′a (infixl ‹	› 63 )
where b 	 a = (THE-default b (λx. Some b = a ⊕ x ∧ x � |b| ))

definition add-set :: ′a set ⇒ ′a set ⇒ ′a set (infixl ‹⊗› 60 ) where
A ⊗ B = { ϕ | ϕ a b. a ∈ A ∧ b ∈ B ∧ Some ϕ = a ⊕ b }

definition greater-set :: ′a set ⇒ ′a set ⇒ bool (infixl ‹�› 50 ) where
A � B ←→ (∀ a ∈ A. ∃ b ∈ B. a � b)

definition up-closed :: ′a set ⇒ bool where
up-closed A ←→ (∀ϕ ′. (∃ϕ ∈ A. ϕ ′ � ϕ) −→ ϕ ′ ∈ A)

definition equiv :: ′a set ⇒ ′a set ⇒ bool (infixl ‹∼› 40 ) where
A ∼ B ←→ A � B ∧ B � A

definition setify :: ′a property ⇒ ( ′a set ⇒ bool) where
setify P A ←→ (∀ x ∈ A. P x)

definition mono-prop :: ′a property ⇒ bool where
mono-prop P ←→ (∀ x y. y � x ∧ P x −→ P y)

definition under :: ′a set ⇒ ′a ⇒ ′a set where
under A ω = { ω ′ | ω ′. ω ′ ∈ A ∧ ω � ω ′}

definition max-projection-prop :: ( ′a ⇒ bool) ⇒ ( ′a ⇒ ′a) ⇒ bool where
max-projection-prop P f ←→ (∀ x. x � f x ∧ P (f x) ∧
(∀ p. P p ∧ x � p −→ f x � p))

inductive multi-plus :: ′a list ⇒ ′a ⇒ bool where
MPSingle: multi-plus [a] a
| MPConcat: [[ length la > 0 ; length lb > 0 ; multi-plus la a ; multi-plus lb b ;
Some ω = a ⊕ b ]] =⇒ multi-plus (la @ lb) ω

fun splus :: ′a option ⇒ ′a option ⇒ ′a option where
splus None - = None
| splus - None = None
| splus (Some a) (Some b) = a ⊕ b

1.2 First lemmata
lemma greater-equiv:

a � b ←→ (∃ c. Some a = c ⊕ b)
using commutative greater-def by auto

lemma smaller-compatible:
assumes a ′ ## b

and a ′ � a
shows a ## b
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by (metis (full-types) assms(1 ) assms(2 ) asso3 commutative defined-def greater-def )

lemma bigger-sum-smaller :
assumes Some c = a ⊕ b

and a � a ′

shows ∃ b ′. b ′ � b ∧ Some c = a ′ ⊕ b ′

proof −
obtain r where Some a = a ′ ⊕ r

using assms(2 ) greater-def by auto
then obtain br where Some br = r ⊕ b

by (metis assms(1 ) asso2 domD domIff option.discI )
then have Some c = a ′ ⊕ br

by (metis ‹Some a = a ′ ⊕ r› assms(1 ) asso1 )
then show ?thesis

using ‹Some br = r ⊕ b› commutative greater-def by force
qed

1.2.1 splus
lemma splus-develop:

assumes Some a = b ⊕ c
shows a ⊕ d = splus (splus (Some b) (Some c)) (Some d)
by (metis assms splus.simps(3 ))

lemma splus-comm:
splus a b = splus b a
apply (cases a)
apply (cases b)
apply simp-all

apply (cases b)
by (simp-all add: commutative)

lemma splus-asso:
splus (splus a b) c = splus a (splus b c)

proof (cases a)
case None
then show ?thesis

by simp
next

case (Some a ′)
then have a = Some a ′ by simp
then show ?thesis
proof (cases b)

case None
then show ?thesis by (simp add: Some)

next
case (Some b ′)
then have b = Some b ′ by simp
then show ?thesis
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proof (cases c)
case None
then show ?thesis by (simp add: splus-comm)

next
case (Some c ′)
then have c = Some c ′ by simp
then show ?thesis
proof (cases a ′ ⊕ b ′)

case None
then have a ′ ⊕ b ′ = None by simp
then show ?thesis
proof (cases b ′ ⊕ c ′)

case None
then show ?thesis

by (simp add: Some ‹a = Some a ′› ‹a ′ ⊕ b ′ = None› ‹b = Some b ′›)
next

case (Some bc)
then show ?thesis

by (metis (full-types) None ‹a = Some a ′› ‹b = Some b ′› ‹c = Some c ′›
sep-algebra.asso2 sep-algebra-axioms splus.simps(2 ) splus.simps(3 ) splus-comm)

qed
next

case (Some ab)
then have Some ab = a ′ ⊕ b ′ by simp
then show ?thesis
proof (cases b ′ ⊕ c ′)

case None
then show ?thesis

by (metis Some ‹a = Some a ′› ‹b = Some b ′› ‹c = Some c ′› asso2
splus.simps(2 ) splus.simps(3 ))

next
case (Some bc)
then show ?thesis
by (metis ‹Some ab = a ′ ⊕ b ′› ‹a = Some a ′› ‹b = Some b ′› ‹c = Some

c ′› sep-algebra.asso1 sep-algebra-axioms splus.simps(3 ))
qed

qed
qed

qed
qed

1.2.2 Pure
lemma pure-stable:

assumes pure a
and pure b
and Some c = a ⊕ b

shows pure c
by (metis assms asso1 commutative pure-def )
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lemma pure-smaller :
assumes pure a

and a � b
shows pure b

by (metis assms greater-def positivity pure-def )

1.3 Succ is an order
lemma succ-antisym:

assumes a � b
and b � a

shows a = b
proof −

obtain ra where Some a = b ⊕ ra
using assms(1 ) greater-def by auto

obtain rb where Some b = a ⊕ rb
using assms(2 ) greater-def by auto

then have Some a = splus (Some a) (splus (Some ra) (Some rb))
proof −

have Some b = splus (Some a) (Some rb)
by (simp add: ‹Some b = a ⊕ rb›)

then show ?thesis
by (metis (full-types) ‹Some a = b ⊕ ra› sep-algebra.splus.simps(3 ) sep-algebra-axioms

splus-asso splus-comm)
qed
moreover have Some b = splus (Some b) (splus (Some ra) (Some rb))

by (metis ‹Some a = b ⊕ ra› ‹Some b = a ⊕ rb› sep-algebra.splus.simps(3 )
sep-algebra-axioms splus-asso)

moreover have pure ra ∧ pure rb
proof −

obtain rab where Some rab = ra ⊕ rb
by (metis calculation(2 ) splus.elims splus.simps(3 ))

then have |a| � rab
by (metis calculation(1 ) core-max greater-def splus.simps(3 ))

then have pure rab
using core-is-pure pure-def pure-smaller by blast

moreover have rab � ra ∧ rab � rb
using ‹Some rab = ra ⊕ rb› greater-def greater-equiv by blast

ultimately have pure ra using pure-smaller
by blast

moreover have pure rb
using ‹pure rab› ‹rab � ra ∧ rab � rb› pure-smaller by blast

ultimately show ?thesis
by blast

qed
ultimately show ?thesis

by (metis ‹Some b = a ⊕ rb› option.inject pure-def sep-algebra.splus.simps(3 )
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sep-algebra-axioms splus-asso)
qed

lemma succ-trans:
assumes a � b

and b � c
shows a � c

using assms(1 ) assms(2 ) bigger-sum-smaller greater-def by blast

lemma succ-refl:
a � a
using core-is-smaller greater-def by blast

1.4 Core (pure) and stabilize (stable)
lemma max-projection-propI :

assumes
∧

x. x � f x
and

∧
x. P (f x)

and
∧

x p. P p ∧ x � p =⇒ f x � p
shows max-projection-prop P f

by (simp add: assms(1 ) assms(2 ) assms(3 ) max-projection-prop-def )

lemma max-projection-propE :
assumes max-projection-prop P f

shows
∧

x. x � f x
and

∧
x. P (f x)

and
∧

x p. P p ∧ x � p =⇒ f x � p
using assms max-projection-prop-def by auto

lemma max-projection-prop-pure-core:
max-projection-prop pure core

proof (rule max-projection-propI )
fix x
show x � |x|

using core-is-smaller greater-equiv by blast
show pure |x|

by (simp add: core-is-pure pure-def )
show

∧
p. pure p ∧ x � p =⇒ |x| � p

proof −
fix p assume pure p ∧ x � p
then obtain r where Some x = p ⊕ r

using greater-def by blast
then show |x| � p
by (metis ‹pure p ∧ x � p› asso1 commutative core-max greater-equiv pure-def )

qed
qed

lemma mpp-smaller :
assumes max-projection-prop P f
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shows x � f x
using assms max-projection-propE(1 ) by auto

lemma mpp-compatible:
assumes max-projection-prop P f

and a ## b
shows f a ## f b

by (metis (mono-tags, opaque-lifting) assms(1 ) assms(2 ) commutative defined-def
max-projection-prop-def smaller-compatible)

lemma mpp-prop:
assumes max-projection-prop P f
shows P (f x)
by (simp add: assms max-projection-propE(2 ))

lemma mppI :
assumes max-projection-prop P f

and a � x
and P x
and x � f a

shows x = f a
proof −

have f a � x
using assms max-projection-propE(3 ) by auto

then show ?thesis
by (simp add: assms(4 ) succ-antisym)

qed

lemma mpp-invo:
assumes max-projection-prop P f
shows f (f x) = f x
using assms max-projection-prop-def succ-antisym by auto

lemma mpp-mono:
assumes max-projection-prop P f

and a � b
shows f a � f b

by (metis assms max-projection-prop-def succ-trans)

1.5 Subtraction
lemma addition-bigger :

assumes a ′ � a
and Some x ′ = a ′ ⊕ b
and Some x = a ⊕ b

shows x ′ � x
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by (metis assms asso1 bigger-sum-smaller greater-def )

lemma smaller-than-core:
assumes y � x

and Some z = x ⊕ |y|
shows |z| = |y|

proof −
have Some |z| = |x| ⊕ |y|

using assms(2 ) core-sum max-projection-prop-pure-core mpp-invo by fastforce
then have Some |z| = |x| ⊕ |y|

by simp
moreover have |z| � |y|

using calculation greater-equiv by blast
ultimately show ?thesis
by (meson addition-bigger assms(1 ) assms(2 ) core-is-smaller core-sum greater-def

succ-antisym)
qed

lemma extract-core:
assumes Some b = a ⊕ x ∧ x � |b|
shows |x| = |b|

proof −
obtain r where Some x = r ⊕ |b|

using assms greater-equiv by auto
show ?thesis
proof (rule smaller-than-core)

show Some x = r ⊕ |b|
using ‹Some x = r ⊕ |b|› by auto

show b � r
by (metis ‹Some x = r ⊕ |b|› assms commutative greater-def succ-trans)

qed
qed

lemma minus-unique:
assumes Some b = a ⊕ x ∧ x � |b|

and Some b = a ⊕ y ∧ y � |b|
shows x = y

proof −
have |x| = |b|

using assms(1 ) extract-core by blast
moreover have |y| = |b|

using assms(2 ) extract-core by blast
ultimately show ?thesis

using assms(1 ) assms(2 ) cancellative by auto
qed

lemma minus-exists:
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assumes b � a
shows ∃ x. Some b = a ⊕ x ∧ x � |b|
using assms bigger-sum-smaller core-is-smaller by blast

lemma minus-equiv-def :
assumes b � a

shows Some b = a ⊕ (b 	 a) ∧ (b 	 a) � |b|
proof −

let ?x = THE-default b (λx. Some b = a ⊕ x ∧ x � |b| )
have (λx. Some b = a ⊕ x ∧ x � |b| ) ?x
proof (rule THE-defaultI ′)

show ∃ !x. Some b = a ⊕ x ∧ x � |b|
using assms local.minus-unique minus-exists by blast

qed
then show ?thesis by (metis minus-def )

qed

lemma minus-default:
assumes ¬ b � a
shows b 	 a = b
using THE-default-none assms greater-def minus-def by fastforce

lemma minusI :
assumes Some b = a ⊕ x

and x � |b|
shows x = b 	 a

using assms(1 ) assms(2 ) greater-def local.minus-unique minus-equiv-def by blast

lemma minus-core:
|a 	 b| = |a|

proof (cases a � b)
case True
then have Some a = b ⊕ (a 	 b) ∧ a 	 b � |a|

using minus-equiv-def by auto
then show ?thesis

using extract-core by blast
next

case False
then show ?thesis by (simp add: minus-default)

qed

lemma minus-core-weaker :
|a 	 b| = |a| 	 |b|

proof (cases a � b)
case True
then show ?thesis

by (metis greater-equiv max-projection-prop-pure-core minus-core minus-default
minus-equiv-def mpp-invo succ-antisym)
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next
case False
then show ?thesis
by (metis greater-equiv max-projection-prop-pure-core minus-default minus-equiv-def

mpp-invo succ-antisym)
qed

lemma minus-equiv-def-any-elem:
assumes Some x = a ⊕ b
shows Some (x 	 a) = b ⊕ |x|

proof −
obtain r where Some r = b ⊕ |x|
by (metis assms core-is-smaller domD domIff option.simps(3 ) sep-algebra.asso2

sep-algebra-axioms)
have r = x 	 a
proof (rule minusI )

show Some x = a ⊕ r
by (metis ‹Some r = b ⊕ |x|› assms asso1 core-is-smaller)

moreover show r � |x|
using ‹Some r = b ⊕ |x|› greater-equiv by blast

qed
then show ?thesis

using ‹Some r = b ⊕ |x|› by blast
qed

lemma minus-bigger :
assumes Some x = a ⊕ b
shows x 	 a � b
using assms greater-def minus-equiv-def-any-elem by blast

lemma minus-smaller :
assumes x � a
shows x � x 	 a
using assms greater-equiv minus-equiv-def by blast

lemma minus-sum:
assumes Some a = b ⊕ c

and x � a
shows x 	 a = (x 	 b) 	 c

proof (rule minusI )
obtain r where Some r = c ⊕ (x 	 a)

by (metis assms(1 ) assms(2 ) asso2 minus-equiv-def option.exhaust-sel)
have r = (x 	 b)
proof (rule minusI )

show Some x = b ⊕ r
by (metis ‹Some r = c ⊕ (x 	 a)› assms(1 ) assms(2 ) asso1 minus-equiv-def )

moreover show r � |x|
by (meson ‹Some r = c ⊕ (x 	 a)› assms(2 ) greater-equiv sep-algebra.minus-equiv-def

sep-algebra-axioms succ-trans)
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qed
then show Some (x 	 b) = c ⊕ (x 	 a)

using ‹Some r = c ⊕ (x 	 a)› by blast
moreover show x 	 a � |x 	 b|

by (simp add: assms(2 ) minus-core minus-equiv-def )
qed

lemma smaller-compatible-core:
assumes y � x
shows x ## |y|
by (metis assms asso2 core-is-smaller defined-def greater-equiv option.discI )

lemma smaller-pure-sum-smaller :
assumes y � a

and y � b
and Some x = a ⊕ b
and pure b

shows y � x
proof −

obtain r where Some y = r ⊕ b r � a
by (metis assms(1 ) assms(2 ) assms(4 ) asso1 greater-equiv pure-def )

then show ?thesis
using addition-bigger assms(3 ) by blast

qed

lemma greater-minus-trans:
assumes y � x

and x � a
shows y 	 a � x 	 a

proof −
obtain r where Some y = x ⊕ r

using assms(1 ) greater-def by blast
then obtain ra where Some x = a ⊕ ra

using assms(2 ) greater-def by blast
then have Some (x 	 a) = ra ⊕ |x|

by (simp add: minus-equiv-def-any-elem)
then obtain yy where Some yy = (x 	 a) ⊕ r

by (metis (full-types) ‹Some y = x ⊕ r› assms(2 ) asso3 commutative mi-
nus-equiv-def not-Some-eq)

then obtain Some x = a ⊕ (x 	 a) x 	 a � |x|
by (simp-all add: assms(2 ) sep-algebra.minus-equiv-def sep-algebra-axioms)

then obtain y ′ where Some y ′ = a ⊕ yy
using ‹Some y = x ⊕ r› ‹Some yy = x 	 a ⊕ r› asso1
by metis

moreover have y � y ′

by (metis ‹Some x = a ⊕ (x 	 a)› ‹Some y = x ⊕ r› ‹Some yy = x 	 a ⊕ r›
asso1 calculation option.inject succ-refl)

moreover obtain x ′ where Some x ′ = (x 	 a) ⊕ a
using assms(2 ) commutative minus-equiv-def by fastforce
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then have y � x ′

by (metis assms(1 ) assms(2 ) commutative minus-equiv-def option.sel)
moreover have x ′ � x 	 a

using ‹Some x ′ = x 	 a ⊕ a› greater-def by auto
ultimately show ?thesis

using ‹Some x ′ = x 	 a ⊕ a› ‹Some y = x ⊕ r› assms(2 ) asso1 commu-
tative greater-equiv minus-bigger minus-equiv-def option.sel sep-algebra.succ-trans
sep-algebra-axioms

proof −
have f1 : Some y ′ = a ⊕ yy

by (simp add: ‹Some y ′ = a ⊕ yy› commutative)
then have y = y ′

by (metis ‹Some y = x ⊕ r› ‹Some yy = x 	 a ⊕ r› ‹x � a› asso1
minus-equiv-def option.sel)

then show ?thesis
using f1 by (metis (no-types) ‹Some yy = x 	 a ⊕ r› commutative

greater-equiv minus-bigger sep-algebra.succ-trans sep-algebra-axioms)
qed

qed

lemma minus-and-plus:
assumes Some ω ′ = ω ⊕ r

and ω � a
shows Some (ω ′ 	 a) = (ω 	 a) ⊕ r

proof −
have ω � ω 	 a

by (simp add: assms(2 ) minus-smaller)
then have (ω 	 a) ## r
by (metis (full-types) assms(1 ) defined-def option.discI sep-algebra.smaller-compatible

sep-algebra-axioms)
then obtain x where Some x = (ω 	 a) ⊕ r

using defined-def by auto
then have Some ω ′ = a ⊕ x ∧ x � |ω ′|
by (metis (no-types, lifting) assms asso1 core-sum max-projection-prop-pure-core

minus-core minus-equiv-def mpp-smaller option.inject)
then have x = ω ′ 	 a

by (simp add: minusI )
then show ?thesis

using ‹Some x = ω 	 a ⊕ r› by blast
qed

1.6 Lifting the algebra to sets of states
lemma add-set-commm:

A ⊗ B = B ⊗ A
proof
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show A ⊗ B ⊆ B ⊗ A
using add-set-def sep-algebra.commutative sep-algebra-axioms by fastforce

show B ⊗ A ⊆ A ⊗ B
using add-set-def commutative by fastforce

qed

lemma x-elem-set-product:
x ∈ A ⊗ B ←→ (∃ a b. a ∈ A ∧ b ∈ B ∧ Some x = a ⊕ b)
using sep-algebra.add-set-def sep-algebra-axioms by fastforce

lemma x-elem-set-product-splus:
x ∈ A ⊗ B ←→ (∃ a b. a ∈ A ∧ b ∈ B ∧ Some x = splus (Some a) (Some b))
using sep-algebra.add-set-def sep-algebra-axioms by fastforce

lemma add-set-asso:
(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C ) (is ?A = ?B)

proof −
have ?A ⊆ ?B
proof (rule subsetI )

fix x assume x ∈ ?A
then obtain ab c where Some x = ab ⊕ c ab ∈ A ⊗ B c ∈ C

using x-elem-set-product by auto
then obtain a b where Some ab = a ⊕ b a ∈ A b ∈ B

using x-elem-set-product by auto
then obtain bc where Some bc = b ⊕ c

by (metis ‹Some x = ab ⊕ c› asso2 option.exhaust)
then show x ∈ ?B

by (metis ‹Some ab = a ⊕ b› ‹Some x = ab ⊕ c› ‹a ∈ A› ‹b ∈ B› ‹c ∈ C ›
asso1 x-elem-set-product)

qed
moreover have ?B ⊆ ?A
proof (rule subsetI )

fix x assume x ∈ ?B
then obtain a bc where Some x = a ⊕ bc a ∈ A bc ∈ B ⊗ C

using x-elem-set-product by auto
then obtain b c where Some bc = b ⊕ c c ∈ C b ∈ B

using x-elem-set-product by auto
then obtain ab where Some ab = a ⊕ b

by (metis ‹Some x = a ⊕ bc› asso3 option.collapse)
then show x ∈ ?A

by (metis ‹Some bc = b ⊕ c› ‹Some x = a ⊕ bc› ‹a ∈ A› ‹b ∈ B› ‹c ∈ C ›
asso1 x-elem-set-product)

qed
ultimately show ?thesis by blast

qed

lemma up-closedI :
assumes

∧
ϕ ′ ϕ. (ϕ ′ :: ′a) � ϕ ∧ ϕ ∈ A =⇒ ϕ ′ ∈ A

shows up-closed A
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using assms up-closed-def by blast

lemma up-closed-plus-UNIV :
up-closed (A ⊗ UNIV )

proof (rule up-closedI )
fix ϕ ϕ ′

assume asm: ϕ ′ � ϕ ∧ ϕ ∈ A ⊗ UNIV
then obtain r a b where Some ϕ ′ = ϕ ⊕ r Some ϕ = a ⊕ b a ∈ A

using greater-def x-elem-set-product by auto
then obtain br where Some br = b ⊕ r

by (metis asso2 option.exhaust-sel)
then have Some ϕ ′ = a ⊕ br

by (metis ‹Some ϕ = a ⊕ b› ‹Some ϕ ′ = ϕ ⊕ r› splus.simps(3 ) splus-asso)
then show ϕ ′ ∈ A ⊗ UNIV

using ‹a ∈ A› x-elem-set-product by auto
qed

lemma succ-set-trans:
assumes A � B

and B � C
shows A � C

by (meson assms(1 ) assms(2 ) greater-set-def succ-trans)

lemma greater-setI :
assumes

∧
a. a ∈ A =⇒ (∃ b ∈ B. a � b)

shows A � B
by (simp add: assms greater-set-def )

lemma bigger-set:
assumes A ′� A
shows A ′ ⊗ B � A ⊗ B

proof (rule greater-setI )
fix x assume x ∈ A ′ ⊗ B
then obtain a ′ b where Some x = a ′ ⊕ b a ′ ∈ A ′ b ∈ B

using x-elem-set-product by auto
then obtain a where a ′ � a a ∈ A

using assms greater-set-def by blast
then obtain ab where Some ab = a ⊕ b

by (metis ‹Some x = a ′ ⊕ b› asso2 domD domIff greater-equiv)
then show ∃ ab∈A ⊗ B. x � ab
using ‹Some x = a ′⊕ b› ‹a ∈ A› ‹a ′� a› ‹b ∈ B› addition-bigger x-elem-set-product

by blast
qed

lemma bigger-singleton:
assumes ϕ ′ � ϕ
shows {ϕ ′} � {ϕ}
by (simp add: assms greater-set-def )
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lemma add-set-elem:
ϕ ∈ A ⊗ B ←→ (∃ a b. Some ϕ = a ⊕ b ∧ a ∈ A ∧ b ∈ B)
using add-set-def by auto

lemma up-closed-sum:
assumes up-closed A

shows up-closed (A ⊗ B)
proof (rule up-closedI )

fix ϕ ′ ϕ assume asm: ϕ ′ � ϕ ∧ ϕ ∈ A ⊗ B
then obtain a b where a ∈ A b ∈ B Some ϕ = a ⊕ b

using add-set-elem by auto
moreover obtain r where Some ϕ ′ = ϕ ⊕ r

using asm greater-def by blast
then obtain ar where Some ar = a ⊕ r
by (metis asso2 calculation(3 ) commutative option.exhaust-sel option.simps(3 ))

then have ar ∈ A
by (meson assms calculation(1 ) greater-def sep-algebra.up-closed-def sep-algebra-axioms)

then show ϕ ′ ∈ A ⊗ B
by (metis ‹Some ϕ ′ = ϕ ⊕ r› ‹Some ar = a ⊕ r› add-set-elem asso1 calcula-

tion(2 ) calculation(3 ) commutative)
qed

lemma up-closed-bigger-subset:
assumes up-closed B

and A � B
shows A ⊆ B

by (meson assms(1 ) assms(2 ) greater-set-def sep-algebra.up-closed-def sep-algebra-axioms
subsetI )

lemma up-close-equiv:
assumes up-closed A

and up-closed B
shows A ∼ B ←→ A = B

proof −
have A ∼ B ←→ A � B ∧ B � A

using local.equiv-def by auto
also have ... ←→ A ⊆ B ∧ B ⊆ A
by (metis assms(1 ) assms(2 ) greater-set-def set-eq-subset succ-refl up-closed-bigger-subset)

ultimately show ?thesis
by blast

qed

lemma equiv-stable-sum:
assumes A ∼ B
shows A ⊗ C ∼ B ⊗ C
using assms bigger-set local.equiv-def by auto

lemma equiv-up-closed-subset:
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assumes up-closed A
and equiv B C

shows B ⊆ A ←→ C ⊆ A (is ?B ←→ ?C )
proof −

have ?B =⇒ ?C
by (meson greater-set-def up-closed-def equiv-def assms(1 ) assms(2 ) subsetD

subsetI )
moreover have ?C =⇒ ?B

by (meson greater-set-def up-closed-def equiv-def assms(1 ) assms(2 ) subsetD
subsetI )

ultimately show ?thesis by blast
qed

lemma mono-propI :
assumes

∧
x y. y � x ∧ P x =⇒ P y

shows mono-prop P
using assms mono-prop-def by blast

lemma mono-prop-set:
assumes A � B

and setify P B
and mono-prop P

shows setify P A
using assms(1 ) assms(2 ) assms(3 ) greater-set-def local.setify-def mono-prop-def

by auto

lemma mono-prop-set-equiv:
assumes mono-prop P

and equiv A B
shows setify P A ←→ setify P B

by (meson assms(1 ) assms(2 ) local.equiv-def sep-algebra.mono-prop-set sep-algebra-axioms)

lemma setify-sum:
setify P (A ⊗ B) ←→ (∀ x ∈ A. setify P ({x} ⊗ B)) (is ?A ←→ ?B)

proof −
have ?A =⇒ ?B
using local.setify-def sep-algebra.add-set-elem sep-algebra-axioms singletonD by

fastforce
moreover have ?B =⇒ ?A

using add-set-elem local.setify-def by fastforce
ultimately show ?thesis by blast

qed

lemma setify-sum-image:
setify P ((Set.image f A) ⊗ B) ←→ (∀ x ∈ A. setify P ({f x} ⊗ B))

proof
show setify P (f ‘ A ⊗ B) =⇒ ∀ x∈A. setify P ({f x} ⊗ B)

by (meson rev-image-eqI sep-algebra.setify-sum sep-algebra-axioms)
show ∀ x∈A. setify P ({f x} ⊗ B) =⇒ setify P (f ‘ A ⊗ B)
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by (metis (mono-tags, lifting) image-iff sep-algebra.setify-sum sep-algebra-axioms)
qed

lemma equivI :
assumes A � B

and B � A
shows equiv A B

by (simp add: assms(1 ) assms(2 ) local.equiv-def )

lemma sub-bigger :
assumes A ⊆ B
shows A � B
by (meson assms greater-set-def in-mono succ-refl)

lemma larger-set-refl:
A � A
by (simp add: sub-bigger)

definition upper-closure where
upper-closure A = { ϕ ′ |ϕ ′ ϕ. ϕ ′ � ϕ ∧ ϕ ∈ A }

lemma upper-closure-up-closed:
up-closed (upper-closure A)

proof (rule up-closedI )
fix ϕ ′ ϕ
assume asm0 : ϕ ′ � ϕ ∧ ϕ ∈ upper-closure A
then obtain a where a ∈ A ∧ ϕ � a

using sep-algebra.upper-closure-def sep-algebra-axioms by fastforce
then have ϕ ′ � a

using asm0 succ-trans by blast
then show ϕ ′ ∈ upper-closure A

using ‹a ∈ A ∧ ϕ � a› upper-closure-def by auto
qed

1.7 Addition of more than two states
lemma multi-decompose:

assumes multi-plus l ω
shows length l ≥ 2 =⇒ (∃ a b la lb. l = la @ lb ∧ length la > 0 ∧ length lb >

0 ∧ multi-plus la a ∧ multi-plus lb b ∧ Some ω = a ⊕ b)
using assms
apply (rule multi-plus.cases)
by auto[2 ]
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lemma multi-take-drop:
assumes multi-plus l ω

and length l ≥ 2
shows ∃n a b. n > 0 ∧ n < length l ∧ multi-plus (take n l) a ∧ multi-plus

(drop n l) b ∧ Some ω = a ⊕ b
proof −

obtain a b la lb where asm0 : l = la @ lb ∧ length la > 0 ∧ length lb > 0 ∧
multi-plus la a ∧ multi-plus lb b ∧ Some ω = a ⊕ b

using assms(1 ) assms(2 ) multi-decompose by blast
let ?n = length la
have la = take ?n l

by (simp add: asm0 )
moreover have lb = drop ?n l

by (simp add: asm0 )
ultimately show ?thesis

by (metis asm0 length-drop zero-less-diff )
qed

lemma multi-plus-single:
assumes multi-plus [v] a
shows a = v
using assms
apply (cases)
apply simp
by (metis (no-types, lifting) Nil-is-append-conv butlast.simps(2 ) butlast-append

length-greater-0-conv)

lemma multi-plus-two:
assumes length l ≥ 2
shows multi-plus l ω ←→ (∃ a b la lb. l = (la @ lb) ∧ length la > 0 ∧ length lb

> 0 ∧ multi-plus la a ∧ multi-plus lb b ∧ Some ω = a ⊕ b) (is ?A ←→ ?B)
by (meson MPConcat assms multi-decompose)

lemma multi-plus-head-tail:
length l ≤ n ∧ length l ≥ 2 −→ (multi-plus l ω ←→ (∃ r . Some ω = (List.hd l)
⊕ r ∧ multi-plus (List.tl l) r))
proof (induction n arbitrary: l ω)

case 0
then show ?case by auto

next
case (Suc n)
then have IH :

∧
(l :: ′a list) ω. length l ≤ n ∧ length l ≥ 2 −→ multi-plus l ω

= (∃ r . Some ω = hd l ⊕ r ∧ multi-plus (tl l) r)
by blast

then show ?case
proof (cases n = 0 )

case True
then have n = 0 by simp
then show ?thesis by linarith
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next
case False
then have length (l :: ′a list) ≥ 2 ∧ length l ≤ n + 1 =⇒ multi-plus l ω ←→

(∃ r . Some ω = hd l ⊕ r ∧ multi-plus (tl l) r)
(is length l ≥ 2 ∧ length l ≤ n + 1 =⇒ ?A ←→ ?B)

proof −
assume asm: length (l :: ′a list) ≥ 2 ∧ length l ≤ n + 1
have ?B =⇒ ?A
proof −

assume ?B
then obtain r where Some ω = hd l ⊕ r ∧ multi-plus (tl l) r by blast
then have multi-plus [hd l] (hd l)

using MPSingle by blast
moreover have [hd l] @ (tl l) = l

by (metis Suc-le-length-iff asm append-Cons list.collapse list.simps(3 )
numeral-2-eq-2 self-append-conv2 )

ultimately show ?A
by (metis (no-types, lifting) MPConcat Suc-1 Suc-le-mono asm ‹Some

ω = hd l ⊕ r ∧ multi-plus (tl l) r› append-Nil2 length-Cons length-greater-0-conv
list.size(3 ) not-one-le-zero zero-less-Suc)

qed
moreover have ?A =⇒ ?B
proof −

assume ?A
then obtain la lb a b where l = la @ lb length la > 0 length lb > 0

multi-plus la a multi-plus lb b Some ω = a ⊕ b
using asm multi-decompose by blast

then have r0 : length la ≤ n ∧ length la ≥ 2 −→ multi-plus la a = (∃ r .
Some a = hd la ⊕ r ∧ multi-plus (tl la) r)

using IH by blast
then show ?B
proof (cases length la ≥ 2 )

case True
then obtain ra where Some a = (hd la) ⊕ ra multi-plus (tl la) ra
by (metis Suc-eq-plus1 ‹0 < length lb› ‹l = la @ lb› r0 ‹multi-plus la a› ap-

pend-eq-conv-conj asm drop-eq-Nil le-add1 le-less-trans length-append length-greater-0-conv
less-Suc-eq-le order .not-eq-order-implies-strict)

moreover obtain rab where Some rab = ra ⊕ b
by (metis ‹Some ω = a ⊕ b› calculation(1 ) asso2 option.exhaust-sel)

then have multi-plus ((tl la) @ lb) rab
by (metis (no-types, lifting) Nil-is-append-conv ‹multi-plus lb b› calcula-

tion(2 ) length-greater-0-conv list.simps(3 ) multi-plus.cases sep-algebra.MPConcat
sep-algebra-axioms)

moreover have Some ω = hd la ⊕ rab
by (metis ‹Some ω = a ⊕ b› ‹Some rab = ra ⊕ b› asso1 calculation(1 ))

ultimately show ?B
using ‹0 < length la› ‹l = la @ lb› by auto

next
case False
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then have length la = 1
using ‹0 < length la› by linarith

then have la = [a]
by (metis Nitpick.size-list-simp(2 ) One-nat-def Suc-le-length-iff ‹multi-plus

la a› diff-Suc-1 le-numeral-extra(4 ) length-0-conv list.sel(3 ) sep-algebra.multi-plus-single
sep-algebra-axioms)

then show ?thesis
using ‹Some ω = a ⊕ b› ‹l = la @ lb› ‹multi-plus lb b› by auto

qed
qed
then show ?thesis using calculation by blast

qed
then show ?thesis by (metis (no-types, lifting) Suc-eq-plus1 )

qed
qed

lemma not-multi-plus-empty:
¬ multi-plus [] ω
by (metis Nil-is-append-conv length-greater-0-conv list.simps(3 ) sep-algebra.multi-plus.simps

sep-algebra-axioms)

lemma multi-plus-deter :
length l ≤ n =⇒ multi-plus l ω =⇒ multi-plus l ω ′ =⇒ ω = ω ′

proof (induction n arbitrary: l ω ω ′)
case 0
then show ?case

using multi-plus.cases by auto
next

case (Suc n)
then show ?case
proof (cases length l ≥ 2 )

case True
then obtain r where Some ω = (List.hd l) ⊕ r ∧ multi-plus (List.tl l) r

using Suc.prems(2 ) multi-plus-head-tail by blast
moreover obtain r ′ where Some ω ′ = (List.hd l) ⊕ r ′ ∧ multi-plus (List.tl

l) r ′

using Suc.prems(3 ) True multi-plus-head-tail by blast
ultimately have r = r ′

by (metis Suc.IH Suc.prems(1 ) drop-Suc drop-eq-Nil)
then show ?thesis

by (metis ‹Some ω = hd l ⊕ r ∧ multi-plus (tl l) r› ‹Some ω ′ = hd l ⊕ r ′ ∧
multi-plus (tl l) r ′› option.inject)

next
case False
then have length l ≤ 1

by simp
then show ?thesis
proof (cases length l = 0 )

case True
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then show ?thesis
using Suc.prems(2 ) sep-algebra.not-multi-plus-empty sep-algebra-axioms by

fastforce
next

case False
then show ?thesis
by (metis One-nat-def Suc.prems(2 ) Suc.prems(3 ) Suc-length-conv ‹length l ≤

1 › le-SucE le-zero-eq length-greater-0-conv less-numeral-extra(3 ) sep-algebra.multi-plus-single
sep-algebra-axioms)

qed
qed

qed

lemma multi-plus-implies-multi-plus-of-drop:
assumes multi-plus l ω

and n < length l
shows ∃ a. multi-plus (drop n l) a ∧ ω � a

using assms
proof (induction n arbitrary: l ω)

case 0
then show ?case using succ-refl by fastforce

next
case (Suc n)
then have length l ≥ 2

by linarith
then obtain r where Some ω = (List.hd l) ⊕ r ∧ multi-plus (List.tl l) r

using Suc.prems(1 ) multi-plus-head-tail by blast
then obtain a where multi-plus (drop n (List.tl l)) a ∧ r � a

using Suc.IH Suc.prems(2 ) by fastforce
then show ?case

by (metis ‹Some ω = hd l ⊕ r ∧ multi-plus (tl l) r› bigger-sum-smaller com-
mutative drop-Suc greater-def )
qed

lemma multi-plus-bigger-than-head:
assumes length l > 0

and multi-plus l ω
shows ω � List.hd l

proof (cases length l ≥ 2 )
case True
then obtain r where Some ω = (List.hd l) ⊕ r ∧ multi-plus (List.tl l) r

using assms(1 ) assms(2 ) multi-plus-head-tail by blast
then show ?thesis

using greater-def by blast
next

case False
then show ?thesis

by (metis Cons-nth-drop-Suc MPSingle assms(1 ) assms(2 ) drop-0 drop-eq-Nil
hd-conv-nth length-greater-0-conv not-less-eq-eq numeral-2-eq-2 sep-algebra.multi-plus-deter
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sep-algebra-axioms succ-refl)
qed

lemma multi-plus-bigger :
assumes i < length l

and multi-plus l ω
shows ω � (l ! i)

proof −
obtain a where multi-plus (drop i l) a ∧ ω � a
using assms(1 ) assms(2 ) multi-plus-implies-multi-plus-of-drop order .strict-trans

by blast
moreover have List.hd (drop i l) = l ! i

by (simp add: assms(1 ) hd-drop-conv-nth)
then show ?thesis

by (metis (no-types, lifting) succ-trans assms(1 ) assms(2 ) drop-eq-Nil leD
length-greater-0-conv multi-plus-bigger-than-head multi-plus-implies-multi-plus-of-drop)
qed

lemma sum-then-singleton:
Some a = b ⊕ c ←→ {a} = {b} ⊗ {c} (is ?A ←→ ?B)

proof −
have ?A =⇒ ?B
proof −

assume ?A
then have {a} ⊆ {b} ⊗ {c}

using add-set-elem by auto
moreover have {b} ⊗ {c} ⊆ {a}
proof (rule subsetI )

fix x assume x ∈ {b} ⊗ {c}
then show x ∈ {a}
by (metis ‹Some a = b ⊕ c› option.sel sep-algebra.add-set-elem sep-algebra-axioms

singleton-iff )
qed
ultimately show ?thesis by blast

qed
moreover have ?B =⇒ ?A

using add-set-elem by auto
ultimately show ?thesis by blast

qed

lemma empty-set-sum:
{} ⊗ A = {}
by (simp add: add-set-def )

end

end
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2 Package Logic

In this section, we define our package logic, as described in [2], and then
prove that this logic is sound and complete for packaging magic wands.
theory PackageLogic

imports Main SepAlgebra
begin

2.1 Definitions
type-synonym ′a abool = ′a ⇒ bool

datatype ′a aassertion =
AStar ′a aassertion ′a aassertion
| AImp ′a abool ′a aassertion
| ASem ′a abool

locale package-logic = sep-algebra +

fixes unit :: ′a
fixes stable :: ′a ⇒ bool

assumes unit-neutral: Some a = a ⊕ unit
and stable-sum: stable a =⇒ stable b =⇒ Some x = a ⊕ b =⇒ stable x
and stable-unit: stable unit

begin

fun sat :: ′a aassertion ⇒ ′a ⇒ bool where
sat (AStar A B) ϕ ←→ (∃ a b. Some ϕ = a ⊕ b ∧ sat A a ∧ sat B b)
| sat (AImp b A) ϕ ←→ (b ϕ −→ sat A ϕ)
| sat (ASem A) ϕ ←→ A ϕ

definition mono-pure-cond where
mono-pure-cond b ←→ (∀ϕ. b ϕ ←→ b |ϕ| ) ∧ (∀ϕ ′ ϕ r . pure r ∧ Some ϕ ′ = ϕ
⊕ r ∧ ¬ b ϕ −→ ¬ b ϕ ′)

definition bool-conj where
bool-conj a b x ←→ a x ∧ b x

type-synonym ′c pruner = ′c ⇒ bool

definition mono-pruner :: ′a pruner ⇒ bool where
mono-pruner p ←→ (∀ϕ ′ ϕ r . pure r ∧ p ϕ ∧ Some ϕ ′ = ϕ ⊕ r −→ p ϕ ′)

fun wf-assertion where
wf-assertion (AStar A B) ←→ wf-assertion A ∧ wf-assertion B
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| wf-assertion (AImp b A) ←→ mono-pure-cond b ∧ wf-assertion A
| wf-assertion (ASem A) ←→ mono-pruner A

type-synonym ′c transformer = ′c ⇒ ′c

type-synonym ′c ext-state = ′c × ′c × ′c transformer

inductive package-rhs ::
′a ⇒ ′a ⇒ ′a ext-state set ⇒ ′a abool ⇒ ′a aassertion ⇒ ′a ⇒ ′a ⇒ ′a ext-state

set ⇒ bool where

AStar : [[ package-rhs ϕ f S pc A ϕ ′ f ′ S ′ ; package-rhs ϕ ′ f ′ S ′ pc B ϕ ′′ f ′′ S ′′ ]]
=⇒ package-rhs ϕ f S pc (AStar A B) ϕ ′′ f ′′ S ′′

| AImp: package-rhs ϕ f S (bool-conj pc b) A ϕ ′ f ′ S ′ =⇒ package-rhs ϕ f S pc
(AImp b A) ϕ ′ f ′ S ′

| ASem: [[
∧

a u T b. (a, u, T ) ∈ S =⇒ pc a =⇒ b = witness (a, u, T ) =⇒ a � b
∧ B b ;

S ′ = { (a, u, T ) |a u T . (a, u, T ) ∈ S ∧ ¬ pc a }
∪ { (a 	 b, the (u ⊕ b), T ) |a u T b. (a, u, T ) ∈ S ∧ pc a ∧ b = witness (a, u,

T ) } ]]
=⇒ package-rhs ϕ f S pc (ASem B) ϕ f S ′

| AddFromOutside: [[ Some ϕ = ϕ ′ ⊕ m ; package-rhs ϕ ′ f ′ S ′ pc A ϕ ′′ f ′′ S ′′ ;
stable m ; Some f ′ = f ⊕ m ;

S ′ = { (r , u, T ) |a u T r . (a, u, T ) ∈ S ∧ Some r = a ⊕ (T f ′ 	 T f ) ∧ r ##
u } ]]
=⇒ package-rhs ϕ f S pc A ϕ ′′ f ′′ S ′′

definition package-sat where
package-sat pc A a ′ u ′ u ←→ (pc |a ′| −→ (∃ x. Some x = |a ′| ⊕ (u ′ 	 u ) ∧ sat

A x))

definition package-rhs-connection :: ′a ⇒ ′a ⇒ ′a ext-state set ⇒ ′a abool ⇒ ′a
aassertion ⇒ ′a ⇒ ′a ⇒ ′a ext-state set ⇒ bool where

package-rhs-connection ϕ f S pc A ϕ ′ f ′ S ′←→ f ′ � f ∧ ϕ ## f ∧ ϕ ⊕ f = ϕ ′

⊕ f ′ ∧ stable f ′ ∧
(∀ (a, u, T ) ∈ S . ∃ au. Some au = a ⊕ u ∧ (au ## (T f ′ 	 T f ) −→
(∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f ) = a ′ ⊕ u ′ ∧ u ′ �

u ∧ package-sat pc A a ′ u ′ u)))

definition mono-transformer :: ′a transformer ⇒ bool where
mono-transformer T ←→ (∀ϕ ϕ ′. ϕ ′ � ϕ −→ T ϕ ′ � T ϕ) ∧ T unit = unit

definition valid-package-set where
valid-package-set S f ←→ (∀ (a, u, T ) ∈ S . a ## u ∧ |a| � |u| ∧ mono-transformer

T ∧ a � |T f | )
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definition intuitionistic where
intuitionistic A ←→ (∀ϕ ′ ϕ. ϕ ′ � ϕ ∧ A ϕ −→ A ϕ ′)

definition pure-remains where
pure-remains S ←→ (∀ (a, u, p) ∈ S . pure a)

definition is-footprint-general :: ′a ⇒ ( ′a ⇒ ′a ⇒ ′a)⇒ ′a aassertion ⇒ ′a aasser-
tion ⇒ bool where

is-footprint-general w R A B ←→ (∀ a b. sat A a ∧ Some b = a ⊕ R a w −→ sat
B b)

definition is-footprint-standard :: ′a ⇒ ′a aassertion ⇒ ′a aassertion ⇒ bool
where

is-footprint-standard w A B ←→ (∀ a b. sat A a ∧ Some b = a ⊕ w −→ sat B b)

2.2 Lemmas
lemma is-footprint-generalI :

assumes
∧

a b. sat A a ∧ Some b = a ⊕ R a w =⇒ sat B b
shows is-footprint-general w R A B
using assms is-footprint-general-def by blast

lemma is-footprint-standardI :
assumes

∧
a b. sat A a ∧ Some b = a ⊕ w =⇒ sat B b

shows is-footprint-standard w A B
using assms is-footprint-standard-def by blast

lemma mono-pure-condI :
assumes

∧
ϕ. b ϕ ←→ b |ϕ|

and
∧
ϕ ϕ ′ r . pure r ∧ Some ϕ ′ = ϕ ⊕ r ∧ ¬ b ϕ =⇒ ¬ b ϕ ′

shows mono-pure-cond b
using assms(1 ) assms(2 ) mono-pure-cond-def by blast

lemma mono-pure-cond-conj:
assumes mono-pure-cond pc

and mono-pure-cond b
shows mono-pure-cond (bool-conj pc b)

proof (rule mono-pure-condI )
show

∧
ϕ. bool-conj pc b ϕ = bool-conj pc b |ϕ|

by (metis assms(1 ) assms(2 ) bool-conj-def mono-pure-cond-def )
show

∧
ϕ ϕ ′ r . pure r ∧ Some ϕ ′ = ϕ ⊕ r ∧ ¬ bool-conj pc b ϕ =⇒ ¬ bool-conj

pc b ϕ ′

by (metis assms(1 ) assms(2 ) bool-conj-def mono-pure-cond-def )
qed

lemma bigger-sum:
assumes Some ϕ = a ⊕ b

and ϕ ′ � ϕ
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shows ∃ b ′. b ′ � b ∧ Some ϕ ′ = a ⊕ b ′

proof −
obtain r where Some ϕ ′ = ϕ ⊕ r

using assms(2 ) greater-def by blast
then obtain b ′ where Some b ′ = b ⊕ r

by (metis assms(1 ) asso2 domD domI domIff )
then show ?thesis
by (metis ‹Some ϕ ′= ϕ ⊕ r› assms(1 ) asso1 commutative sep-algebra.greater-equiv

sep-algebra-axioms)
qed

lemma wf-assertion-sat-larger-pure:
assumes wf-assertion A

and sat A ϕ
and Some ϕ ′ = ϕ ⊕ r
and pure r

shows sat A ϕ ′

using assms
proof (induct arbitrary: ϕ ϕ ′ r rule: wf-assertion.induct)

case (1 A B)
then obtain a b where Some ϕ = a ⊕ b sat A a sat B b by (meson sat.simps(1 ))
then obtain b ′ where Some b ′ = b ⊕ r

by (metis 1 .prems(3 ) asso2 option.collapse)
moreover obtain a ′ where Some a ′ = a ⊕ r

by (metis 1 .prems(3 ) ‹Some ϕ = a ⊕ b› asso2 commutative option.collapse)
ultimately show ?case

using 1
by (metis ‹Some ϕ = a ⊕ b› ‹sat A a› ‹sat B b› asso1 sat.simps(1 ) wf-assertion.simps(1 ))

next
case (2 b A)
then show ?case

by (metis mono-pure-cond-def sat.simps(2 ) wf-assertion.simps(2 ))
next

case (3 A)
then show ?case

by (metis mono-pruner-def sat.simps(3 ) wf-assertion.simps(3 ))
qed

lemma package-satI :
assumes pc |a ′| =⇒ (∃ x. Some x = |a ′| ⊕ (u ′ 	 u ) ∧ sat A x)
shows package-sat pc A a ′ u ′ u
by (simp add: assms package-sat-def )

lemma package-rhs-connection-instantiate:
assumes package-rhs-connection ϕ f S pc A ϕ ′ f ′ S ′

and (a, u, T ) ∈ S
obtains au where Some au = a ⊕ u
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and au ## (T f ′ 	 T f ) =⇒ ∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T
f ′ 	 T f ) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat pc A a ′ u ′ u

using assms(1 ) assms(2 ) package-rhs-connection-def by fastforce

lemma package-rhs-connectionI :
assumes ϕ ⊕ f = ϕ ′ ⊕ f ′

and stable f ′

and ϕ ## f
and f ′ � f

and
∧

a u T . (a, u, T ) ∈ S =⇒ (∃ au. Some au = a ⊕ u ∧ (au ## (T f ′ 	
T f ) −→

(∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f ) = a ′ ⊕ u ′∧ u ′ � u
∧ package-sat pc A a ′ u ′ u)))

shows package-rhs-connection ϕ f S pc A ϕ ′ f ′ S ′

using package-rhs-connection-def assms by auto

lemma valid-package-setI :
assumes

∧
a u T . (a, u, T ) ∈ S =⇒ a ## u ∧ |a| � |u| ∧ mono-transformer

T ∧ a � |T f |
shows valid-package-set S f
using assms valid-package-set-def by auto

lemma defined-sum-move:
assumes a ## b

and Some b = x ⊕ y
and Some a ′ = a ⊕ x

shows a ′ ## y
by (metis assms defined-def sep-algebra.asso1 sep-algebra-axioms)

lemma bigger-core-sum-defined:
assumes |a| � b
shows Some a = a ⊕ b
by (metis (no-types, lifting) assms asso1 core-is-smaller greater-equiv max-projection-prop-pure-core

mpp-prop pure-def pure-smaller)

lemma package-rhs-proof :
assumes package-rhs ϕ f S pc A ϕ ′ f ′ S ′

and valid-package-set S f
and wf-assertion A
and mono-pure-cond pc
and stable f
and ϕ ## f

shows package-rhs-connection ϕ f S pc A ϕ ′ f ′ S ′ ∧ valid-package-set S ′ f ′

using assms
proof (induct rule: package-rhs.induct)

case (AImp ϕ f S pc b A ϕ ′ f ′ S ′)
then have asm0 : package-rhs-connection ϕ f S (bool-conj pc b) A ϕ ′ f ′ S ′ ∧

valid-package-set S ′ f ′
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using mono-pure-cond-conj wf-assertion.simps(2 ) by blast
let ?pc = bool-conj pc b
obtain ϕ ⊕ f = ϕ ′ ⊕ f ′ stable f ′ ϕ ## f f ′ � f

and §:
∧

a u T . (a, u, T ) ∈ S =⇒ (∃ au. Some au = a ⊕ u ∧ (au ## (T f ′

	 T f ) −→
(∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f ) = a ′ ⊕ u ′ ∧ u ′ �

u ∧ package-sat ?pc A a ′ u ′ u)))
using asm0 package-rhs-connection-def by force

have package-rhs-connection ϕ f S pc (AImp b A) ϕ ′ f ′ S ′

proof (rule package-rhs-connectionI )
show ϕ ## f

by (simp add: ‹ϕ ## f ›)
show ϕ ⊕ f = ϕ ′ ⊕ f ′ by (simp add: ‹ϕ ⊕ f = ϕ ′ ⊕ f ′›)
show stable f ′ using ‹stable f ′› by simp
show f ′ � f by (simp add: ‹f ′ � f ›)
fix a u T assume asm1 : (a, u, T ) ∈ S
then obtain au where asm2 : Some au = a ⊕ u ∧ (au ## (T f ′ 	 T f ) −→
(∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f ) = a ′ ⊕ u ′ ∧ u ′ �

u ∧ package-sat ?pc A a ′ u ′ u))
using § by presburger

then have au ## (T f ′ 	 T f ) =⇒
(∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f ) = a ′ ⊕ u ′ ∧ u ′ �

u ∧ package-sat pc (AImp b A) a ′ u ′ u)
proof −

assume asm3 : au ## (T f ′ 	 T f )
then obtain a ′ u ′ where au ′: (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	

T f ) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat ?pc A a ′ u ′ u
using asm2 by blast

have (the ( |a ′| ⊕ (u ′ 	 u))) � |a ′|
proof −

have u ′ � u ′ 	 u
by (metis minus-default minus-smaller succ-refl)

then have a ′ ## (u ′ 	 u)
by (metis au ′ asm3 asso3 defined-def minus-exists)

then show ?thesis
by (metis core-is-smaller defined-def greater-def option.exhaust-sel sep-algebra.asso2

sep-algebra-axioms)
qed
have package-sat pc (AImp b A) a ′ u ′ u
proof (rule package-satI )

assume pc |a ′|
then show ∃ x. Some x = |a ′| ⊕ (u ′ 	 u) ∧ sat (AImp b A) x
proof (cases b |a ′|)

case True
then have ?pc |a ′|

by (simp add: ‹pc |a ′|› bool-conj-def )
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then show ?thesis
by (metis au ′ package-logic.package-sat-def package-logic-axioms sat.simps(2 ))
next

case False
then have ¬ b (the ( |a ′| ⊕ (u ′ 	 u)))

using AImp.prems(2 ) ‹the ( |a ′| ⊕ (u ′ 	 u)) � |a ′|› core-sum
max-projection-prop-def max-projection-prop-pure-core minus-exists mono-pure-cond-def
wf-assertion.simps(2 )

by metis
moreover obtain x where Some x = |a ′| ⊕ (u ′ 	 u)

by (metis au ′ asm3 asso2 commutative core-is-smaller defined-def
minus-and-plus option.collapse)

ultimately show ?thesis by (metis option.sel sat.simps(2 ))
qed

qed
then show ∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f ) = a ′ ⊕

u ′ ∧ u ′ � u ∧ package-sat pc (AImp b A) a ′ u ′ u
using au ′ by blast

qed
then show ∃ au. Some au = a ⊕ u ∧ (au ## (T f ′ 	 T f ) −→ (∃ a ′ u ′. (a ′,

u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f ) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat
pc (AImp b A) a ′ u ′ u))

using asm2 by auto
qed
then show ?case
using ‹package-rhs-connection ϕ f S (bool-conj pc b) A ϕ ′ f ′ S ′∧ valid-package-set

S ′ f ′› by blast
next

case (AStar ϕ f S pc A ϕ ′ f ′ S ′ B ϕ ′′ f ′′ S ′′)
then have r1 : package-rhs-connection ϕ f S pc A ϕ ′ f ′ S ′ ∧ valid-package-set S ′

f ′

using wf-assertion.simps(1 ) by blast
moreover have ϕ ′ ## f ′ using r1 package-rhs-connection-def [of ϕ f S pc A ϕ ′

f ′ S ′] defined-def
by fastforce

ultimately have r2 : package-rhs-connection ϕ ′ f ′ S ′ pc B ϕ ′′ f ′′ S ′′∧ valid-package-set
S ′′ f ′′

using AStar .hyps(4 ) AStar .prems(2 ) AStar .prems(3 ) package-rhs-connection-def
by force

moreover obtain fa-def : ϕ ⊕ f = ϕ ′ ⊕ f ′ stable f ′ ϕ ## f f ′ � f
and ∗∗:

∧
a u T . (a, u, T ) ∈ S =⇒ (∃ au. Some au = a ⊕ u ∧ (au ## (T f ′

	 T f ) −→
(∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f ) = a ′ ⊕ u ′ ∧ u ′ �

u ∧ package-sat pc A a ′ u ′ u)))
using r1 package-rhs-connection-def by fastforce
then obtain fb-def : ϕ ′ ⊕ f ′ = ϕ ′′ ⊕ f ′′ stable f ′′ ϕ ′ ## f ′ f ′′ � f ′

and
∧

a u T . (a, u, T ) ∈ S ′ =⇒ (∃ au. Some au = a ⊕ u ∧ (au ## (T f ′′ 	
T f ′) −→
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(∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′′ 	 T f ′) = a ′ ⊕ u ′ ∧ u ′

� u ∧ package-sat pc B a ′ u ′ u)))
using r2 package-rhs-connection-def by fastforce

moreover have package-rhs-connection ϕ f S pc (AStar A B) ϕ ′′ f ′′ S ′′

proof (rule package-rhs-connectionI )
show ϕ ⊕ f = ϕ ′′ ⊕ f ′′ by (simp add: fa-def (1 ) fb-def (1 ))
show stable f ′′ by (simp add: fb-def (2 ))
show ϕ ## f using fa-def (3 ) by auto
show f ′′ � f using fa-def (4 ) fb-def (4 ) succ-trans by blast

fix a u T assume asm0 : (a, u, T ) ∈ S
then have f-def : Some (T f ′′ 	 T f ) = (T f ′′ 	 T f ′) ⊕ (T f ′ 	 T f )
proof −
have mono-transformer T using valid-package-set-def asm0 ‹valid-package-set

S f › by fastforce
then have T f ′′ � T f ′

by (simp add: fb-def (4 ) mono-transformer-def )
moreover have T f ′ � T f

using ‹mono-transformer T › fa-def (4 ) mono-transformer-def by blast
ultimately show ?thesis

using commutative minus-and-plus minus-equiv-def by presburger
qed

then obtain au where au-def : Some au = a ⊕ u
au ## (T f ′ 	 T f ) =⇒ (∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′

	 T f ) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat pc A a ′ u ′ u)
using ∗∗ asm0 by blast

then show ∃ au. Some au = a ⊕ u ∧ (au ## (T f ′′ 	 T f ) −→ (∃ a ′ u ′. (a ′,
u ′, T ) ∈ S ′′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′′ 	 T f ) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat
pc (AStar A B) a ′ u ′ u))

proof (cases au ## (T f ′′ 	 T f ))
case True

moreover have mono-transformer T using ‹valid-package-set S f › valid-package-set-def
asm0 by fastforce

ultimately have au ## (T f ′′ 	 T f ′) ∧ au ## (T f ′ 	 T f ) using asso3
commutative defined-def f-def

by metis
then obtain a ′ u ′ where r3 : (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T

f ) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat pc A a ′ u ′ u
using au-def (2 ) by blast

then obtain au ′ where au ′-def : Some au ′ = a ′ ⊕ u ′

au ′ ## (T f ′′ 	 T f ′) =⇒ (∃ a ′′ u ′′. (a ′′, u ′′, T ) ∈ S ′′ ∧ |a ′′| � |a ′| ∧ au ′

⊕ (T f ′′ 	 T f ′) = a ′′ ⊕ u ′′ ∧ u ′′ � u ′ ∧ package-sat pc B a ′′ u ′′ u ′)
by (meson package-logic.package-rhs-connection-instantiate package-logic-axioms

r2 )
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moreover have au ′ ## T f ′′ 	 T f ′

using True r3 calculation(1 ) commutative defined-sum-move f-def by fast-
force

ultimately obtain a ′′ u ′′ where r4 : (a ′′, u ′′, T ) ∈ S ′′ ∧ |a ′′| � |a ′| ∧ au ′

⊕ (T f ′′ 	 T f ′) = a ′′ ⊕ u ′′ ∧ u ′′ � u ′ ∧ package-sat pc B a ′′ u ′′ u ′

by blast

then have au ⊕ (T f ′′ 	 T f ) = a ′′ ⊕ u ′′

proof −
have au ⊕ (T f ′′ 	 T f ) = splus (Some au) (Some (T f ′′ 	 T f ))

by simp
also have ... = splus (Some au) (splus (Some (T f ′′ 	 T f ′)) (Some (T f ′

	 T f )))
using f-def by auto

finally show ?thesis
by (metis (full-types) r3 r4 au ′-def (1 ) splus.simps(3 ) splus-asso splus-comm)

qed
moreover have package-sat pc (AStar A B) a ′′ u ′′ u
proof (rule package-satI )

assume pc |a ′′|
then have pc |a ′|

by (metis AStar .prems(3 ) r4 greater-equiv minus-core minus-core-weaker
minus-equiv-def mono-pure-cond-def pure-def )

then obtain x where Some x = |a ′| ⊕ (u ′ 	 u) ∧ sat A x
using r3 package-sat-def by fastforce

then obtain x ′ where Some x ′ = |a ′′| ⊕ (u ′′ 	 u ′) ∧ sat B x ′

using ‹pc |a ′′|› package-sat-def r4 by presburger

have u ′′ � u ′′ 	 u
by (metis minus-default minus-smaller succ-refl)

moreover have a ′′ ## u ′′

using True ‹au ⊕ (T f ′′ 	 T f ) = a ′′ ⊕ u ′′› defined-def by auto
ultimately obtain x ′′ where Some x ′′ = |a ′′| ⊕ (u ′′ 	 u)

by (metis commutative defined-def max-projection-prop-pure-core mpp-smaller
not-None-eq smaller-compatible)

moreover have Some (u ′′ 	 u) = (u ′′ 	 u ′) ⊕ (u ′ 	 u)
using r4 ‹(a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′ 	 T f ) = a ′ ⊕ u ′ ∧

u ′ � u ∧ package-sat pc A a ′ u ′ u› commutative minus-and-plus minus-equiv-def
by presburger

moreover have |a ′′| � |a ′|
using r4 by blast

moreover have Some |a ′′| = |a ′| ⊕ |a ′′|
by (metis (no-types, lifting) calculation(3 ) core-is-pure sep-algebra.asso1

sep-algebra.minus-exists sep-algebra-axioms)
ultimately have Some x ′′ = x ′ ⊕ x

using asso1 [of - - x ′] ‹Some x = |a ′| ⊕ (u ′ 	 u) ∧ sat A x› ‹Some x ′ =
|a ′′| ⊕ (u ′′ 	 u ′) ∧ sat B x ′› commutative

by metis
then show ∃ x. Some x = |a ′′| ⊕ (u ′′ 	 u) ∧ sat (AStar A B) x
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using ‹Some x = |a ′| ⊕ (u ′ 	 u) ∧ sat A x› ‹Some x ′ = |a ′′| ⊕ (u ′′ 	 u ′)
∧ sat B x ′› ‹Some x ′′ = |a ′′| ⊕ (u ′′ 	 u)› commutative by fastforce

qed
ultimately show ?thesis

using r3 r4 au-def (1 ) succ-trans by blast
next

case False
then show ?thesis

using au-def (1 ) by blast
qed

qed
ultimately show ?case by blast

next
case (ASem S pc witness B S ′ ϕ f )
have valid-package-set S ′ f
proof (rule valid-package-setI )

fix a ′ u ′ T assume asm0 : (a ′, u ′, T ) ∈ S ′

then show a ′ ## u ′ ∧ |a ′| � |u ′| ∧ mono-transformer T ∧ a ′ � |T f |
proof (cases (a ′, u ′, T ) ∈ S)

case True
then show ?thesis

using ASem.prems(1 ) valid-package-set-def by auto
next

case False
then have (a ′, u ′, T ) ∈ {(a 	 b, the (u ⊕ b), T ) |a u T b. (a, u, T ) ∈ S ∧

pc a ∧ b = witness (a, u, T )}
using ASem.hyps(2 ) asm0 by blast

then obtain a u b where (a, u, T ) ∈ S pc a b = witness (a, u, T ) a ′ = a
	 b u ′ = the (u ⊕ b) by blast

then have a � b ∧ B b
using ASem.hyps(1 ) by presburger

have a ## u
using ASem.prems(1 ) ‹(a, u, T ) ∈ S› valid-package-set-def by fastforce

then have Some u ′ = u ⊕ b
by (metis ‹a � b ∧ B b› ‹u ′ = the (u ⊕ b)› commutative defined-def

option.exhaust-sel smaller-compatible)
moreover have Some a = a ′ ⊕ b
using ‹a � b ∧ B b› ‹a ′ = a 	 b› commutative minus-equiv-def by presburger

ultimately have a ′ ## u ′

by (metis ‹a ## u› asso1 commutative defined-def )
moreover have |a ′| � |u ′|
proof −

have |a| � |u|
using ASem.prems(1 ) ‹(a, u, T ) ∈ S› valid-package-set-def by fastforce

moreover have |a ′| � |a|
by (simp add: ‹a ′ = a 	 b› minus-core succ-refl)

moreover have |a ′| � |b|
using ‹a � b ∧ B b› ‹a ′ = a 	 b› max-projection-prop-pure-core minus-core
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mpp-mono by presburger
ultimately show ?thesis
by (metis ‹Some u ′ = u ⊕ b› ‹a ′ = a 	 b› core-is-pure core-sum minus-core

pure-def smaller-pure-sum-smaller)
qed
moreover have a ′ � |T f |
proof −
have a � |T f | using ‹(a, u, T ) ∈ S› ‹valid-package-set S f › valid-package-set-def

by fastforce
then show ?thesis
by (metis ‹a ′ = a 	 b› max-projection-prop-pure-core minus-core mpp-mono

mpp-smaller sep-algebra.mpp-invo sep-algebra.succ-trans sep-algebra-axioms)
qed

ultimately show ?thesis using ‹(a, u, T ) ∈ S› ‹valid-package-set S f ›
valid-package-set-def

by fastforce
qed

qed
moreover have package-rhs-connection ϕ f S pc (ASem B) ϕ f S ′

proof (rule package-rhs-connectionI )
show ϕ ⊕ f = ϕ ⊕ f

by simp
show stable f by (simp add: ASem.prems(4 ))
show ϕ ## f by (simp add: ASem.prems(5 ))
show f � f by (simp add: succ-refl)

fix a u T assume asm0 : (a, u, T ) ∈ S

then obtain au where Some au = a ⊕ u using ‹valid-package-set S f ›
valid-package-set-def defined-def by auto

then have r0 : (∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ Some au = a ′ ⊕ u ′ ∧
u ′ � u ∧ package-sat pc (ASem B) a ′ u ′ u)

proof −
let ?b = witness (a, u, T )
let ?a = a 	 ?b
let ?u = the (u ⊕ ?b)
show ∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ Some au = a ′ ⊕ u ′ ∧ u ′ � u ∧

package-sat pc (ASem B) a ′ u ′ u
proof (cases pc a)

case True
then have (?a, ?u, T ) ∈ S ′ using ASem.hyps(2 ) asm0 by blast
then have a � ?b ∧ B ?b using ASem.hyps(1 ) True asm0 by blast
moreover have r1 : (?a, ?u, T ) ∈ S ′ ∧ |?a| � |a| ∧ Some au = ?a ⊕ ?u

∧ ?u � u
proof

show (a 	 witness (a, u, T ), the (u ⊕ witness (a, u, T )), T ) ∈ S ′

by (simp add: ‹(a 	 witness (a, u, T ), the (u ⊕ witness (a, u, T )), T )
∈ S ′›)

have |a 	 witness (a, u, T )| � |a|
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by (simp add: minus-core succ-refl)
moreover have Some au = a 	 witness (a, u, T ) ⊕ the (u ⊕ witness (a,

u, T ))
using ‹Some au = a ⊕ u› ‹a � witness (a, u, T ) ∧ B (witness (a, u,

T ))›
asso1 [of a 	 witness (a, u, T ) witness (a, u, T ) a u the (u ⊕ witness

(a, u, T ))]
commutative option.distinct(1 ) option.exhaust-sel asso3 minus-equiv-def
by metis

moreover have the (u ⊕ witness (a, u, T )) � u
using ‹Some au = a ⊕ u› ‹a � witness (a, u, T ) ∧ B (witness (a, u,

T ))› commutative
greater-def option.distinct(1 ) option.exhaust-sel asso3 [of u witness (a,

u, T ) ]
by metis
ultimately show |a 	 witness (a, u, T )| � |a| ∧ Some au = a 	

witness (a, u, T ) ⊕ the (u ⊕ witness (a, u, T )) ∧ the (u ⊕ witness (a, u, T )) � u
by blast

qed
moreover have package-sat pc (ASem B) ?a ?u u
proof (rule package-satI )

assume pc |a 	 witness (a, u, T )|
have Some ?u = u ⊕ ?b

by (metis (no-types, lifting) ‹Some au = a ⊕ u› calculation(1 ) commutative
minus-equiv-def option.distinct(1 ) option.exhaust-sel sep-algebra.asso3 sep-algebra-axioms)

moreover have ?a ## ?u
by (metis r1 defined-def option.distinct(1 ))

moreover have ?u � ?u 	 u
using r1 minus-smaller by blast

ultimately obtain x where Some x = |a 	 ?b| ⊕ (?u 	 u)
by (metis (no-types, opaque-lifting) ‹a � witness (a, u, T ) ∧ B (witness (a,

u, T ))› commutative defined-def minus-core minus-equiv-def option.exhaust smaller-compatible)
moreover have x � ?b
proof −

have ?u 	 u � ?b
using ‹Some (the (u ⊕ witness (a, u, T ))) = u ⊕ witness (a, u, T )›

minus-bigger by blast
then show ?thesis

using calculation greater-equiv succ-trans by blast
qed

ultimately show ∃ x. Some x = |a 	 witness (a, u, T )| ⊕ (the (u ⊕
witness (a, u, T )) 	 u) ∧ sat (ASem B) x

using ASem.prems(2 ) ‹Some (the (u ⊕ witness (a, u, T ))) = u ⊕ witness
(a, u, T )›

‹a � witness (a, u, T ) ∧ B (witness (a, u, T ))› commutative
max-projection-prop-def [of pure core]

max-projection-prop-pure-core minus-equiv-def-any-elem mono-pruner-def [of
B]

sat.simps(3 )[of B] wf-assertion.simps(3 )[of B]
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by metis
qed
ultimately show ?thesis by blast

next
case False
then have package-sat pc (ASem B) a u u

by (metis ASem.prems(3 ) mono-pure-cond-def package-sat-def )
moreover have (a, u, T ) ∈ S ′

using False ASem.hyps(2 ) asm0 by blast
ultimately show ?thesis

using ‹Some au = a ⊕ u› succ-refl by blast
qed

qed
moreover have au ⊕ (T f 	 T f ) = Some au
proof −
have a � |T f | using ‹(a, u, T ) ∈ S› ‹valid-package-set S f › valid-package-set-def

by fastforce
then have |a| � T f 	 T f
using core-is-smaller max-projection-prop-def max-projection-prop-pure-core

minusI by presburger
then have |au| � T f 	 T f

using ‹Some au = a ⊕ u› core-sum greater-def succ-trans by blast
then show ?thesis using bigger-core-sum-defined by force

qed
ultimately show ∃ au. Some au = a ⊕ u ∧ (au ## (T f 	 T f ) −→ (∃ a ′ u ′.

(a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f 	 T f ) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat
pc (ASem B) a ′ u ′ u))

using ‹Some au = a ⊕ u› by fastforce
qed
ultimately show ?case by blast

next
case (AddFromOutside ϕ ϕ ′ m f ′ S ′ pc A ϕ ′′ f ′′ S ′′ f S)
have valid-package-set S ′ f ′

proof (rule valid-package-setI )
fix a ′ u T assume asm0 : (a ′, u, T ) ∈ S ′

then obtain a where (a, u, T ) ∈ S a ′ ## u Some a ′ = a ⊕ (T f ′ 	 T f )
using AddFromOutside.hyps(6 ) by blast

then have |a| � |u| ∧ mono-transformer T ∧ a � |T f | using ‹valid-package-set
S f › valid-package-set-def

by fastforce
moreover have a ′ � |T f ′|
by (metis (no-types, opaque-lifting) ‹Some a ′ = a ⊕ (T f ′	 T f )› commutative

greater-equiv minus-core minus-equiv-def minus-smaller succ-trans unit-neutral)
ultimately show a ′ ## u ∧ |a ′| � |u| ∧ mono-transformer T ∧ a ′ � |T f ′|
using ‹Some a ′= a ⊕ (T f ′	 T f )› ‹a ′## u› greater-def max-projection-prop-pure-core

mpp-mono succ-trans by blast
qed
then have r : package-rhs-connection ϕ ′ f ′ S ′ pc A ϕ ′′ f ′′ S ′′ ∧ valid-package-set

S ′′ f ′′
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by (metis AddFromOutside.hyps(1 ) AddFromOutside.hyps(3 ) AddFromOut-
side.hyps(4 ) AddFromOutside.hyps(5 ) AddFromOutside.prems(2 ) AddFromOutside.prems(3 )
AddFromOutside.prems(4 ) AddFromOutside.prems(5 ) asso1 commutative defined-def
stable-sum)

then obtain r2 : ϕ ′ ⊕ f ′ = ϕ ′′ ⊕ f ′′ stable f ′′ ϕ ′ ## f ′ f ′′ � f ′∧
a u T . (a, u, T ) ∈ S ′ =⇒ (∃ au. Some au = a ⊕ u ∧ (au ## (T f ′′ 	 T f ′)

−→
(∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′′ 	 T f ′) = a ′ ⊕ u ′ ∧ u ′

� u ∧ package-sat pc A a ′ u ′ u)))
using package-rhs-connection-def by fastforce

moreover have package-rhs-connection ϕ f S pc A ϕ ′′ f ′′ S ′′

proof (rule package-rhs-connectionI )
show ϕ ⊕ f = ϕ ′′ ⊕ f ′′

by (metis AddFromOutside.hyps(1 ) AddFromOutside.hyps(5 ) asso1 commu-
tative r2 (1 ))

show stable f ′′

using AddFromOutside.hyps(4 ) calculation(4 ) r2 (2 ) stable-sum by blast
show ϕ ## f

by (simp add: AddFromOutside.prems(5 ))
show f ′′ � f

using AddFromOutside.hyps(5 ) bigger-sum greater-def r2 (4 ) by blast

fix a u T
assume asm0 : (a, u, T ) ∈ S

then obtain au where Some au = a ⊕ u using ‹valid-package-set S f ›
valid-package-set-def defined-def

by fastforce
moreover have au ## (T f ′′ 	 T f ) =⇒ (∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′′ ∧ |a ′| �

|a| ∧ au ⊕ (T f ′′ 	 T f ) = a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat pc A a ′ u ′ u)
proof −

assume asm1 : au ## (T f ′′ 	 T f )
moreover have mono-transformer T using ‹valid-package-set S f › valid-package-set-def

asm0
by fastforce

then have Some (T f ′′ 	 T f ) = (T f ′′ 	 T f ′) ⊕ (T f ′ 	 T f )
by (metis AddFromOutside.hyps(5 ) commutative greater-equiv minus-and-plus

minus-equiv-def mono-transformer-def r2 (4 ))
ultimately have a ## (T f ′ 	 T f )

using ‹Some au = a ⊕ u› asso2 commutative defined-def minus-exists
by metis

then obtain a ′ where Some a ′ = a ⊕ (T f ′ 	 T f )
by (meson defined-def option.collapse)

moreover have a ′ ## u
proof −

have T f ′′ 	 T f � T f ′ 	 T f
using ‹Some (T f ′′ 	 T f ) = T f ′′ 	 T f ′ ⊕ (T f ′ 	 T f )› greater-equiv

by blast
then show ?thesis
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using ‹Some au = a ⊕ u› asm1 asso1 [of u a au T f ′ 	 T f a ′] asso2 [of ]
calculation commutative

defined-def [of ] greater-equiv[of T f ′′ 	 T f T f ′ 	 T f ]
by metis

qed

ultimately have (a ′, u, T ) ∈ S ′

using AddFromOutside.hyps(6 ) asm0 by blast

moreover have au ## (T f ′′ 	 T f ′)
by (metis ‹Some (T f ′′ 	 T f ) = T f ′′ 	 T f ′ ⊕ (T f ′ 	 T f )› asm1 asso3

defined-def )

then have ∃ au. Some au = a ′ ⊕ u ∧ (au ## (T f ′′ 	 T f ′) −→ (∃ a ′a u ′.
(a ′a, u ′, T ) ∈ S ′′ ∧ |a ′a| � |a ′| ∧ au ⊕ (T f ′′ 	 T f ′) = a ′a ⊕ u ′ ∧ u ′ � u ∧
package-sat pc A a ′a u ′ u))

using r2 (5 ) calculation by blast

then obtain au ′ a ′′ u ′ where r3 : Some au ′ = a ′ ⊕ u au ′ ## (T f ′′ 	 T f ′)
=⇒ (a ′′, u ′, T ) ∈ S ′′ ∧ |a ′′| � |a ′| ∧ au ′ ⊕ (T f ′′ 	 T f ′) = a ′′ ⊕ u ′ ∧ u ′ � u ∧
package-sat pc A a ′′ u ′ u

using ‹au ## (T f ′′ 	 T f ′)› by blast
moreover have au ′ ## (T f ′′ 	 T f ′) using ‹au ## (T f ′′ 	 T f )› ‹Some

au = a ⊕ u› r3 (1 )
‹Some (T f ′′ 	 T f ) = (T f ′′ 	 T f ′) ⊕ (T f ′ 	 T f )›

‹Some a ′ = a ⊕ (T f ′ 	 T f )› asso1 [of u a au T f ′ 	 T f a ′] commutative
defined-sum-move[of au T f ′′ 	 T f ]

by metis
ultimately have r4 : (a ′′, u ′, T ) ∈ S ′′ ∧ |a ′′| � |a ′| ∧ au ′ ⊕ (T f ′′ 	 T f ′)

= a ′′ ⊕ u ′ ∧ u ′ � u ∧ package-sat pc A a ′′ u ′ u
by blast

moreover have |a ′′| � |a|
proof −

have |a ′| � |a|
using ‹Some a ′ = a ⊕ (T f ′ 	 T f )› core-sum greater-def by blast

then show ?thesis
using r4 succ-trans by blast

qed
ultimately show ∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′′ 	 T f )

= a ′ ⊕ u ′ ∧ u ′ � u ∧ package-sat pc A a ′ u ′ u
using ‹Some (T f ′′ 	 T f ) = T f ′′ 	 T f ′ ⊕ (T f ′ 	 T f )› ‹Some a ′ = a

⊕ (T f ′ 	 T f )› ‹Some au = a ⊕ u›
commutative r3 (1 ) asso1 splus.simps(3 ) splus-asso by metis

qed
ultimately show ∃ au. Some au = a ⊕ u ∧ (au ## (T f ′′ 	 T f ) −→ (∃ a ′

u ′. (a ′, u ′, T ) ∈ S ′′ ∧ |a ′| � |a| ∧ au ⊕ (T f ′′ 	 T f ) = a ′ ⊕ u ′ ∧ u ′ � u ∧
package-sat pc A a ′ u ′ u))

by blast
qed
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ultimately show ?case using r by blast
qed

lemma unit-core:
|unit| = unit
by (meson core-is-pure max-projection-prop-pure-core sep-algebra.cancellative sep-algebra.mpp-invo

sep-algebra-axioms unit-neutral)

lemma unit-smaller :
ϕ � unit
using greater-equiv unit-neutral by auto

2.3 Lemmas for completeness
lemma sat-star-exists-bigger :

assumes sat (AStar A B) ϕ
and wf-assertion A
and wf-assertion B

shows ∃ a b. |a| � |ϕ| ∧ |b| � |ϕ| ∧ Some ϕ = a ⊕ b ∧ sat A a ∧ sat B b
proof −

obtain a b where Some ϕ = a ⊕ b sat A a sat B b
using assms sat.simps(1 ) by blast

then obtain a ′ b ′ where Some a ′ = a ⊕ |ϕ| Some b ′ = b ⊕ |ϕ|
by (meson defined-def greater-def greater-equiv option.collapse smaller-compatible-core)

then have a ′ � a ∧ b ′ � b
using greater-def by blast

then have sat A a ′ ∧ sat B b ′

by (metis ‹Some a ′ = a ⊕ |ϕ|› ‹Some b ′ = b ⊕ |ϕ|› ‹sat A a› ‹sat B b› assms(2 )
assms(3 ) max-projection-prop-pure-core mpp-prop package-logic.wf-assertion-sat-larger-pure
package-logic-axioms)

moreover have Some ϕ = a ′ ⊕ b ′

by (metis (no-types, lifting) ‹Some ϕ = a ⊕ b› ‹Some a ′ = a ⊕ |ϕ|› ‹Some b ′

= b ⊕ |ϕ|› asso1 commutative core-is-smaller)
ultimately show ?thesis

by (metis ‹Some a ′ = a ⊕ |ϕ|› ‹Some b ′ = b ⊕ |ϕ|› commutative extract-core
greater-equiv max-projection-prop-pure-core mpp-mono)
qed

lemma let-pair-instantiate:
assumes (a, b) = f x y
shows (let (a, b) = f x y in g a b) = g a b
by (metis assms case-prod-conv)

lemma greater-than-sum-exists:
assumes a � b

and Some b = b1 ⊕ b2
shows ∃ r . Some a = r ⊕ b2 ∧ |r | � |a| ∧ r � b1

proof −
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obtain r where Some a = r ⊕ b2 ∧ r � b1
by (metis assms(1 ) assms(2 ) bigger-sum commutative)

then obtain r ′ where Some r ′ = r ⊕ |a|
by (metis defined-def greater-def option.exhaust smaller-compatible-core)

then have Some a = r ′ ⊕ b2
by (metis ‹Some a = r ⊕ b2 ∧ r � b1 › commutative core-is-smaller sep-algebra.asso1

sep-algebra-axioms)
then show ?thesis

by (metis ‹Some a = r ⊕ b2 ∧ r � b1 › ‹Some r ′ = r ⊕ |a|› core-is-pure
greater-def smaller-than-core succ-trans)
qed

lemma bigger-the:
assumes Some a = x ′ ⊕ y

and x ′ � x
shows the ( |a| ⊕ x ′) � the ( |a| ⊕ x)

proof −
have a � x ′

using assms(1 ) greater-def by blast
then have |a| ## x ′

using commutative defined-def smaller-compatible-core by auto
moreover have |a| ## x
by (metis assms(2 ) calculation defined-def sep-algebra.asso3 sep-algebra.minus-exists

sep-algebra-axioms)
ultimately show ?thesis

using addition-bigger assms(2 ) commutative defined-def by force
qed

lemma wf-assertion-and-the:
assumes |a| ## b

and sat A b
and wf-assertion A

shows sat A (the ( |a| ⊕ b))
by (metis assms(1 ) assms(2 ) assms(3 ) commutative defined-def max-projection-prop-pure-core

option.collapse sep-algebra.mpp-prop sep-algebra-axioms wf-assertion-sat-larger-pure)

lemma minus-some:
assumes a � b
shows Some a = b ⊕ (a 	 b)
using assms commutative minus-equiv-def by force

lemma core-mono:
assumes a � b
shows |a| � |b|
using assms max-projection-prop-pure-core mpp-mono by auto

lemma prove-last-completeness:
assumes a ′ � a

and Some a = nf1 ⊕ f2
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shows a ′ 	 nf1 � f2
by (meson assms(1 ) assms(2 ) greater-def greater-minus-trans minus-bigger succ-trans)

lemma completeness-aux:
assumes

∧
a u T . (a, u, T ) ∈ S =⇒ |f1 a u T | � |a| ∧ Some a = f1 a u T ⊕

f2 a u T ∧ (pc |a| −→ sat A (the ( |a| ⊕ (f1 a u T ))))
and valid-package-set S f
and wf-assertion A
and mono-pure-cond pc
and stable f ∧ ϕ ## f

shows ∃S ′. package-rhs ϕ f S pc A ϕ f S ′ ∧ (∀ (a ′, u ′, T ) ∈ S ′. ∃ a u. (a, u,
T ) ∈ S ∧ a ′ � f2 a u T ∧ |a ′| = |a| )

using assms
proof (induct A arbitrary: S pc f1 f2 )

case (AImp b A)
let ?pc = bool-conj pc b

have r0 : ∃S ′. package-rhs ϕ f S (bool-conj pc b) A ϕ f S ′ ∧ (∀ a∈S ′. case a of
(a ′, u ′, T ) ⇒ ∃ a u. (a, u, T ) ∈ S ∧ a ′ � f2 a u T ∧ |a ′| = |a| )

proof (rule AImp(1 ))
show valid-package-set S f

by (simp add: AImp.prems(2 ))
show wf-assertion A using AImp.prems(3 ) by auto
show mono-pure-cond (bool-conj pc b)
by (meson AImp.prems(3 ) AImp.prems(4 ) mono-pure-cond-conj wf-assertion.simps(2 ))
show stable f ∧ ϕ ## f using ‹stable f ∧ ϕ ## f › by simp

fix a u T
assume asm0 : (a, u, T ) ∈ S
then have Some a = f1 a u T ⊕ f2 a u T

using AImp.prems(1 ) by blast
moreover have bool-conj pc b |a| =⇒ sat A (the ( |a| ⊕ f1 a u T ))
proof −

assume bool-conj pc b |a|
then have pc |a|

by (meson bool-conj-def )
then have |f1 a u T | � |a| ∧ Some a = f1 a u T ⊕ f2 a u T ∧ sat (AImp b

A) (the ( |a| ⊕ f1 a u T ))
using AImp.prems(1 ) asm0 (1 ) by blast

moreover have b (the ( |a| ⊕ f1 a u T ))
proof −

have |a| ## f1 a u T ∧ |a| � |f1 a u T |
by (metis calculation commutative core-is-smaller defined-def greater-def

max-projection-prop-pure-core mpp-mono option.discI succ-antisym)
then obtain x where Some x = |a| ⊕ f1 a u T

by (meson defined-def option.collapse)
then have |x| = |a|

by (metis ‹Some x = |a| ⊕ f1 a u T › ‹|a| ## f1 a u T ∧ |a| � |f1 a u
T |› commutative core-is-pure core-sum max-projection-prop-pure-core mpp-smaller
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smaller-than-core)
then show ?thesis

by (metis AImp.prems(3 ) ‹Some x = |a| ⊕ f1 a u T › ‹bool-conj pc b |a|›
bool-conj-def mono-pure-cond-def option.sel wf-assertion.simps(2 ))

qed
ultimately show sat A (the ( |a| ⊕ f1 a u T )) by (metis sat.simps(2 ))

qed
ultimately show |f1 a u T | � |a| ∧ Some a = f1 a u T ⊕ f2 a u T ∧ (bool-conj

pc b |a| −→ sat A (the ( |a| ⊕ f1 a u T )))
by (metis AImp.prems(1 ) asm0 )

qed
then obtain S ′ where r : package-rhs ϕ f S (bool-conj pc b) A ϕ f S ′ ∧a ′ u ′ T .

(a ′, u ′, T ) ∈ S ′ =⇒ (∃ a u. (a, u, T ) ∈ S ∧ a ′ � f2 a u T )
by fast

moreover have package-rhs ϕ f S pc (AImp b A) ϕ f S ′

by (simp add: package-rhs.AImp r(1 ))
ultimately show ?case

using r0 package-rhs.AImp by blast
next

case (ASem A)
let ?witness = λ(a, u, T ). the ( |a| ⊕ f1 a u T )

obtain S ′ where S ′-def : S ′ = { (a, u, T ) |a u T . (a, u, T ) ∈ S ∧ ¬ pc a }
∪ { (a 	 b, the (u ⊕ b), T ) |a u T b. (a, u, T ) ∈ S ∧ pc a ∧ b = ?witness (a,

u, T ) }
by blast

have package-rhs ϕ f S pc (ASem A) ϕ f S ′

proof (rule package-rhs.ASem)
show S ′ = {(a, u, T ) |a u T . (a, u, T ) ∈ S ∧ ¬ pc a} ∪ {(a 	 b, the (u ⊕ b),

T ) |a u T b. (a, u, T ) ∈ S ∧ pc a ∧ b = ?witness (a, u, T )}
using S ′-def by blast

fix a u T b
assume asm0 : (a, u, T ) ∈ S pc a b = (case (a, u, T ) of (a, u, T ) ⇒ the ( |a|

⊕ f1 a u T ))
then have b = the ( |a| ⊕ f1 a u T ) by fastforce
moreover have pc |a|

by (meson ASem.prems(4 ) asm0 (2 ) mono-pure-cond-def )
then obtain |f1 a u T | � |a| Some a = f1 a u T ⊕ f2 a u T sat (ASem A)

(the ( |a| ⊕ f1 a u T ))
using ASem.prems(1 ) asm0 (1 ) by blast
then have Some b = |a| ⊕ f1 a u T by (metis calculation commutative

defined-def minus-bigger minus-core option.exhaust-sel smaller-compatible-core)
moreover have a � b
proof −

have a � f1 a u T
using ‹Some a = f1 a u T ⊕ f2 a u T › greater-def by blast

then show ?thesis
by (metis calculation(2 ) commutative max-projection-prop-pure-core mpp-smaller
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sep-algebra.mpp-prop sep-algebra-axioms smaller-pure-sum-smaller)
qed
ultimately show a � b ∧ A b

using ‹sat (ASem A) (the ( |a| ⊕ f1 a u T ))› sat.simps(3 ) by blast
qed

moreover have r0 :
∧

a ′ u ′ T . (a ′, u ′, T ) ∈ S ′ =⇒ (∃ a u. (a, u, T ) ∈ S ∧ a ′

� f2 a u T ∧ |a ′| = |a| )
proof −

fix a ′ u ′ T assume asm0 : (a ′, u ′, T ) ∈ S ′

then show ∃ a u. (a, u, T ) ∈ S ∧ a ′ � f2 a u T ∧ |a ′| = |a|
proof (cases (a ′, u ′, T ) ∈ {(a, u, T ) |a u T . (a, u, T ) ∈ S ∧ ¬ pc a})

case True
then show ?thesis using ASem.prems(1 ) greater-equiv by fastforce

next
case False
then have (a ′, u ′, T ) ∈ { (a 	 b, the (u ⊕ b), T ) |a u T b. (a, u, T ) ∈ S ∧

pc a ∧ b = ?witness (a, u, T ) }
using S ′-def asm0 by blast

then obtain a u b where a ′ = a 	 b u ′ = the (u ⊕ b) (a, u, T ) ∈ S pc a b
= ?witness (a, u, T )

by blast
then have a ′ � f2 a u T
proof −

have a � b
proof −

have a � f1 a u T
using ASem.prems(1 ) ‹(a, u, T ) ∈ S› greater-def by blast

moreover have Some b = |a| ⊕ f1 a u T
by (metis ‹b = (case (a, u, T ) of (a, u, T )⇒ the ( |a| ⊕ f1 a u T ))› calcula-

tion case-prod-conv commutative defined-def option.exhaust-sel smaller-compatible-core)
ultimately show ?thesis

by (metis commutative max-projection-prop-pure-core mpp-smaller
sep-algebra.mpp-prop sep-algebra-axioms smaller-pure-sum-smaller)

qed
then show ?thesis

using ASem.prems(1 )[of a u T ]
‹(a, u, T ) ∈ S› ‹a ′ = a 	 b› ‹b = (case (a, u, T ) of (a, u, T ) ⇒ the (

|a| ⊕ f1 a u T ))›
commutative core-is-smaller minus-bigger option.exhaust-sel option.simps(3 )

asso1 [of f2 a u T f1 a u T a |a| the ( |a| ⊕ f1 a u T )] asso2 [of f2 a u T
f1 a u T ]

split-conv
by metis

qed
then show ?thesis

using ‹(a, u, T ) ∈ S› ‹a ′ = a 	 b› minus-core by blast
qed

qed
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ultimately show ?case by blast
next

case (AStar A B)

let ?fA = λa u T . SOME x. ∃ y. Some (f1 a u T ) = x ⊕ y ∧ |x| � |f1 a u T | ∧
|y| � |a| ∧ (pc |a| −→ sat A (the ( |a| ⊕ x)) ∧ sat B (the ( |a| ⊕ y)))

let ?fB = λa u T . SOME y. Some (f1 a u T ) = ?fA a u T ⊕ y ∧ |y| � |a| ∧
(pc |a| −→ sat B (the ( |a| ⊕ y)))

let ?f2 = λa u T . the (?fB a u T ⊕ f2 a u T )

have r :
∧

a u T . (a, u, T ) ∈ S =⇒ Some (f1 a u T ) = ?fA a u T ⊕ ?fB a u T
∧ |?fA a u T | � |f1 a u T | ∧ |?fB a u T | � |a| ∧ (pc |a| −→ sat A (the ( |a| ⊕
?fA a u T )) ∧ sat B (the ( |a| ⊕ ?fB a u T )))
∧ Some (?f2 a u T ) = ?fB a u T ⊕ f2 a u T
proof −

fix a u T assume asm0 : (a, u, T ) ∈ S
then have r0 : Some a = f1 a u T ⊕ f2 a u T ∧ (pc |a| −→ sat (AStar A B)

(the ( |a| ⊕ f1 a u T )))
using AStar .prems(1 ) by blast

then have ∃ x y. Some (the ( |a| ⊕ f1 a u T )) = x ⊕ y ∧ (pc |a| −→ sat A
x) ∧ (pc |a| −→ sat B y) ∧

x � |(the ( |a| ⊕ f1 a u T ))| ∧ y � |(the ( |a| ⊕ f1 a u T ))|
proof (cases pc |a|)

case True
then show ?thesis

using AStar .prems(3 ) r0
max-projection-prop-def [of pure core] max-projection-prop-pure-core
sat-star-exists-bigger [of A B (the ( |a| ⊕ f1 a u T ))]
succ-trans[of ] wf-assertion.simps(1 )[of A B]

by blast
next

case False
then have Some (the ( |a| ⊕ f1 a u T )) = the ( |a| ⊕ f1 a u T ) ⊕ |the ( |a|

⊕ f1 a u T )|
by (simp add: core-is-smaller)

then show ?thesis by (metis False max-projection-prop-pure-core mpp-smaller
succ-refl)

qed
then obtain x y where Some (the ( |a| ⊕ f1 a u T )) = x ⊕ y pc |a| −→ sat

A x pc |a| −→ sat B y
x � |(the ( |a| ⊕ f1 a u T ))| y � |(the ( |a| ⊕ f1 a u T ))| by blast

moreover obtain af where Some af = |a| ⊕ f1 a u T
by (metis r0 commutative defined-def minus-bigger minus-core option.exhaust-sel

smaller-compatible-core)
ultimately have Some (f1 a u T ) = x ⊕ y

by (metis AStar .prems(1 ) r0 asm0 commutative core-is-smaller greater-def
max-projection-prop-pure-core mpp-mono option.sel succ-antisym)

moreover have |a| ## x ∧ |a| ## y
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by (metis ‹Some af = |a| ⊕ f1 a u T › calculation commutative defined-def
option.discI sep-algebra.asso3 sep-algebra-axioms)

then have the ( |a| ⊕ x) � x ∧ the ( |a| ⊕ y) � y
using commutative defined-def greater-def by auto

ultimately have pc-implies-sat: pc |a| =⇒ sat A (the ( |a| ⊕ x)) ∧ sat B (the
( |a| ⊕ y))

by (metis AStar .prems(3 ) ‹pc |a| −→ sat A x› ‹pc |a| −→ sat B y› ‹|a|
## x ∧ |a| ## y› commutative defined-def max-projection-prop-pure-core op-
tion.exhaust-sel package-logic.wf-assertion.simps(1 ) package-logic-axioms sep-algebra.mpp-prop
sep-algebra-axioms wf-assertion-sat-larger-pure)

have r1 : ∃ y. Some (f1 a u T ) = ?fA a u T ⊕ y ∧ |?fA a u T | � |f1 a u T | ∧
|y| � |a| ∧ (pc |a| −→ sat A (the ( |a| ⊕ ?fA a u T )) ∧ sat B (the ( |a| ⊕ y)))

proof (rule someI-ex)
show ∃ x y. Some (f1 a u T ) = x ⊕ y ∧ |x| � |f1 a u T | ∧ |y| � |a| ∧ (pc |a|

−→ sat A (the ( |a| ⊕ x)) ∧ sat B (the ( |a| ⊕ y)))
using ‹Some (f1 a u T ) = x ⊕ y› ‹Some (the ( |a| ⊕ f1 a u T )) = x ⊕ y›

pc-implies-sat ‹x � |the ( |a| ⊕ f1 a u T )|› ‹y � |the ( |a| ⊕ f1 a u T )|› core-is-pure
max-projection-propE(3 ) max-projection-prop-pure-core option.sel pure-def

by (metis AStar .prems(1 ) asm0 minusI minus-core)
qed
then obtain yy where yy-prop: Some (f1 a u T ) = ?fA a u T ⊕ yy ∧ |?fA a

u T | � |f1 a u T | ∧ |yy| � |a| ∧ (pc |a| −→ sat A (the ( |a| ⊕ ?fA a u T )) ∧ sat
B (the ( |a| ⊕ yy)))

by blast
moreover have r2 : Some (f1 a u T ) = ?fA a u T ⊕ ?fB a u T ∧ |?fB a u T |

� |a| ∧ (pc |a| −→ sat B (the ( |a| ⊕ ?fB a u T )))
proof (rule someI-ex)

show ∃ y. Some (f1 a u T ) = ?fA a u T ⊕ y ∧ |y| � |a| ∧ (pc |a| −→ sat B
(the ( |a| ⊕ y)))

using r1 by blast
qed
ultimately have ?fB a u T ⊕ f2 a u T 6= None

using r0
option.distinct(1 ) [of ] option.exhaust-sel[of ?fB a u T ⊕ f2 a u T ] asso2 [of

?fA a u T ?fB a u T f1 a u T f2 a u T ]
by metis

then show Some (f1 a u T ) = ?fA a u T ⊕ ?fB a u T ∧ |?fA a u T | � |f1 a
u T | ∧ |?fB a u T | � |a|
∧ (pc |a| −→ sat A (the ( |a| ⊕ ?fA a u T )) ∧ sat B (the ( |a| ⊕ ?fB a u T )))

∧ Some (?f2 a u T ) = ?fB a u T ⊕ f2 a u T
using r0 r2 yy-prop

option.distinct(1 ) option.exhaust-sel[of ?fB a u T ⊕ f2 a u T ] asso2 [of ?fA
a u T ?fB a u T f1 a u T f2 a u T ]

by simp
qed
have ih1 : ∃S ′. package-rhs ϕ f S pc A ϕ f S ′ ∧ (∀ a∈S ′. case a of (a ′, u ′, T ) ⇒
∃ a u. (a, u, T ) ∈ S ∧ a ′ � ?f2 a u T ∧ |a ′| = |a| )
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proof (rule AStar(1 ))
show valid-package-set S f

by (simp add: AStar .prems(2 ))
show wf-assertion A

using AStar .prems(3 ) by auto
show mono-pure-cond pc

by (simp add: AStar .prems(4 ))
show stable f ∧ ϕ ## f using ‹stable f ∧ ϕ ## f › by simp

fix a u T
assume asm0 : (a, u, T ) ∈ S
then have b: Some (f1 a u T ) = ?fA a u T ⊕ ?fB a u T ∧ |?fA a u T | � |f1

a u T | ∧ |?fB a u T | � |a| ∧ (pc |a| −→ sat A (the ( |a| ⊕ ?fA a u T )) ∧ sat B
(the ( |a| ⊕ ?fB a u T )))

using r by fast
show |?fA a u T | � |a| ∧ Some a = ?fA a u T ⊕ ?f2 a u T ∧ (pc |a| −→ sat

A (the ( |a| ⊕ ?fA a u T )))
proof −

have |?fA a u T | � |a|
using AStar .prems(1 )[of a u T ] asm0 b asso1 [of ?fA a u T ?fB a u T f1 a u

T ]
asso2 [of ?fA a u T ?fB a u T ] option.sel succ-trans[of |?fA a u T | - |a|]
by blast

moreover have Some a = ?fA a u T ⊕ ?f2 a u T
using AStar .prems(1 )[of a u T ] asm0 b asso1 [of ?fA a u T ?fB a u T f1 a

u T f2 a u T ?f2 a u T ]
asso2 [of ?fA a u T ?fB a u T f1 a u T f2 a u T ] option.sel

option.exhaust-sel[of ?fB a u T ⊕ f2 a u T Some a = ?fA a u T ⊕ ?f2 a u T ]
by force

moreover have pc |a| −→ sat A (the ( |a| ⊕ ?fA a u T ))
using AStar .prems(1 )[of a u T ] asm0 b

asso2 [of ?fA a u T ?fB a u T ] option.sel succ-trans[of |?fA a u T | - |a|]
by blast

ultimately show ?thesis
by blast

qed
qed
then obtain S ′ where r ′: package-rhs ϕ f S pc A ϕ f S ′ ∧a ′ u ′ T . (a ′, u ′, T )
∈ S ′ =⇒ ∃ a u. (a, u, T ) ∈ S ∧ a ′ � ?f2 a u T ∧ |a ′| = |a|

by fast

let ?project = λa ′ T . (SOME r . ∃ a u. r = (a, u) ∧ (a, u, T ) ∈ S ∧ a ′ � ?f2 a
u T ∧ |a ′| = |a| )

have project-prop:
∧

a ′ u ′ T . (a ′, u ′, T ) ∈ S ′ =⇒ ∃ a u. ?project a ′ T = (a, u)
∧ (a, u, T ) ∈ S ∧ a ′ � ?f2 a u T ∧ |a ′| = |a|

proof −
fix a ′ u ′ T assume (a ′, u ′, T ) ∈ S ′

then obtain a u where (a, u, T ) ∈ S ∧ a ′ � ?f2 a u T ∧ |a ′| = |a|
using r ′ by blast
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moreover show ∃ a u. ?project a ′ T = (a, u) ∧ (a, u, T ) ∈ S ∧ a ′ � ?f2 a u
T ∧ |a ′| = |a|

proof (rule someI-ex)
show ∃ r a u. r = (a, u) ∧ (a, u, T ) ∈ S ∧ a ′ � ?f2 a u T ∧ |a ′| = |a| using

calculation by blast
qed

qed

let ?nf1 = λa ′ u ′ T . let (a, u) = ?project a ′ T in (SOME r . Some r = |a ′| ⊕
?fB a u T )

let ?nf2 = λa ′ u ′ T . a ′ 	 ?nf1 a ′ u ′ T

have ∃S ′′. package-rhs ϕ f S ′ pc B ϕ f S ′′ ∧ (∀ a∈S ′′. case a of (a ′, u ′, T ) ⇒
∃ a u. (a, u, T ) ∈ S ′ ∧ a ′ � ?nf2 a u T ∧ |a ′| = |a| )

proof (rule AStar(2 ))
show stable f ∧ ϕ ## f using ‹stable f ∧ ϕ ## f › by simp

then show valid-package-set S ′ f
using AStar .prems ‹package-rhs ϕ f S pc A ϕ f S ′› package-logic.package-rhs-proof

package-logic.wf-assertion.simps(1 ) package-logic-axioms
by metis

show wf-assertion B
using AStar .prems(3 ) by auto

show mono-pure-cond pc
by (simp add: AStar .prems(4 ))

fix a ′ u ′ T assume (a ′, u ′, T ) ∈ S ′

then obtain a u where a-u-def : (a, u) = ?project a ′ T (a, u, T ) ∈ S a ′ �
?f2 a u T |a ′| = |a|

using project-prop by force
define nf1 where nf1 = ?nf1 a ′ u ′ T
define nf2 where nf2 = ?nf2 a ′ u ′ T
moreover have rnf1-def : Some nf1 = |a ′| ⊕ ?fB a u T
proof −

let ?x = (SOME r . Some r = |a ′| ⊕ ?fB a u T )
have Some ?x = |a ′| ⊕ ?fB a u T
proof (rule someI-ex)

have Some (f1 a u T ) = ?fA a u T ⊕ ?fB a u T ∧ |?fA a u T | � |f1 a u
T | ∧ |?fB a u T | � |a|

∧ (pc |a| −→ sat A (the ( |a| ⊕ ?fA a u T )) ∧ sat B (the ( |a| ⊕ ?fB a u
T )))

using r a-u-def by blast
then have Some (?f2 a u T ) = ?fB a u T ⊕ f2 a u T

by (metis (no-types, lifting) AStar .prems(1 ) a-u-def (2 ) asso2 option.distinct(1 )
option.exhaust-sel)

moreover have a ′ � (?f2 a u T ) using ‹a ′ � ?f2 a u T › by blast
ultimately have a ′ � ?fB a u T using succ-trans greater-def

by blast
then obtain r where Some r = |a ′| ⊕ ?fB a u T

using
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commutative
greater-equiv[of a ′ ?fB a u T ]
minus-equiv-def-any-elem[of a ′]

by fastforce
then show ∃ r . Some r = |a ′| ⊕ ?fB a u T by blast

qed
moreover have ?nf1 a ′ u ′ T = ?x

using let-pair-instantiate[of a u - a ′ T λa u. (SOME r . Some r = |a ′| ⊕
?fB a u T )] a-u-def

by fast
ultimately show ?thesis using nf1-def by argo

qed

moreover have rnf2-def : Some a ′ = nf1 ⊕ nf2
proof −

have nf2 = a ′ 	 nf1 using nf1-def nf2-def by blast
moreover have a ′ � nf1
proof −

have ?f2 a u T � nf1
proof −

have Some (?f2 a u T ) = ?fB a u T ⊕ f2 a u T using r ‹(a, u, T ) ∈ S›
by blast

then have ?f2 a u T � ?fB a u T
using greater-def by blast

moreover have ?f2 a u T � |a ′|
proof −

have |?f2 a u T | � |a|
proof −

have |?f2 a u T | � |?fB a u T | using ‹?f2 a u T � ?fB a u T ›
core-mono by blast

moreover have |?fB a u T | � |a| using r ‹(a, u, T ) ∈ S› by blast
ultimately show ?thesis using succ-trans ‹|a ′| = |a|› by blast

qed
then show ?thesis

using a-u-def (4 )
bigger-core-sum-defined[of ?f2 a u T ]
greater-equiv[of - |a|]

by auto
qed
ultimately show ?thesis using
core-is-pure[of a ′] commutative pure-def [of |a ′|] smaller-pure-sum-smaller [of

- - |a ′|] rnf1-def
by (metis (no-types, lifting))

qed
then show ?thesis using ‹a ′ � ?f2 a u T › succ-trans by blast

qed
ultimately show ?thesis using minus-some nf2-def by blast

qed
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moreover have pc |a ′| =⇒ sat B (the ( |a ′| ⊕ ?nf1 a ′ u ′ T ))
proof −

assume pc |a ′|
moreover have |a ′| = |a|

by (simp add: a-u-def (4 ))
then have pc |a| using ‹pc |a ′|› by simp
ultimately have sat B (the ( |a| ⊕ ?fB a u T ))

using r a-u-def by blast
then have sat B (the ( |a ′| ⊕ ?fB a u T )) using ‹|a ′| = |a|› by simp

then show sat B (the ( |a ′| ⊕ ?nf1 a ′ u ′ T ))
proof −

have nf1 � |a ′| using rnf1-def
using greater-def by blast

then have Some nf1 = |a ′| ⊕ nf1
by (metis bigger-core-sum-defined commutative core-mono max-projection-prop-pure-core

mpp-invo)
then show ?thesis using nf1-def rnf1-def ‹sat B (the ( |a ′| ⊕ ?fB a u T ))›

by argo
qed

qed
moreover have |?nf1 a ′ u ′ T | � |a ′|
proof −

have ?nf1 a ′ u ′ T � |a ′| using nf1-def greater-def rnf1-def by blast
then show ?thesis
using max-projection-propE(3 ) max-projection-prop-pure-core sep-algebra.mpp-prop

sep-algebra-axioms by fastforce
qed
ultimately show |?nf1 a ′ u ′ T | � |a ′| ∧ Some a ′ = ?nf1 a ′ u ′ T ⊕ ?nf2 a ′

u ′ T ∧ (pc |a ′| −→ sat B (the ( |a ′| ⊕ ?nf1 a ′ u ′ T )))
using nf1-def
by blast

qed

then obtain S ′′ where S ′′-prop: package-rhs ϕ f S ′ pc B ϕ f S ′′ ∧a ′ u ′ T . (a ′,
u ′, T ) ∈ S ′′ =⇒ ∃ a u. (a, u, T ) ∈ S ′ ∧ a ′ � ?nf2 a u T ∧ |a ′| = |a|

by fast

then have package-rhs ϕ f S pc (AStar A B) ϕ f S ′′

using ‹package-rhs ϕ f S pc A ϕ f S ′› package-rhs.AStar by presburger
moreover have

∧
a ′′ u ′′ T . (a ′′, u ′′, T ) ∈ S ′′ =⇒ ∃ a u. (a, u, T ) ∈ S ∧ a ′′ �

f2 a u T ∧ |a ′′| = |a|
proof −

fix a ′′ u ′′ T assume asm0 : (a ′′, u ′′, T ) ∈ S ′′

then obtain a ′ u ′ where (a ′, u ′, T ) ∈ S ′ ∧ a ′′ � ?nf2 a ′ u ′ T ∧ |a ′′| = |a ′|
using S ′′-prop by blast
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then obtain a u where a-u-def : (a, u) = ?project a ′ T (a, u, T ) ∈ S a ′ �
?f2 a u T |a ′| = |a|

using project-prop by force

define nf1 where nf1 = ?nf1 a ′ u ′ T
define nf2 where nf2 = ?nf2 a ′ u ′ T

moreover have rnf1-def : Some nf1 = |a ′| ⊕ ?fB a u T
proof −

let ?x = (SOME r . Some r = |a ′| ⊕ ?fB a u T )
have Some ?x = |a ′| ⊕ ?fB a u T
proof (rule someI-ex)

have Some (f1 a u T ) = ?fA a u T ⊕ ?fB a u T ∧ |?fA a u T | � |f1 a u
T | ∧ |?fB a u T | � |a|

∧ (pc |a| −→ sat A (the ( |a| ⊕ ?fA a u T )) ∧ sat B (the ( |a| ⊕ ?fB a u
T )))

using r a-u-def by blast
then have Some (?f2 a u T ) = ?fB a u T ⊕ f2 a u T

by (metis (no-types, lifting) AStar .prems(1 ) a-u-def (2 ) asso2 option.distinct(1 )
option.exhaust-sel)

moreover have a ′ � (?f2 a u T ) using ‹a ′ � ?f2 a u T › by blast
ultimately have a ′ � ?fB a u T using succ-trans greater-def

by blast
then obtain r where Some r = |a ′| ⊕ ?fB a u T

using commutative greater-equiv[of a ′ ?fB a u T ] minus-equiv-def-any-elem[of
a ′ ] by fastforce

then show ∃ r . Some r = |a ′| ⊕ ?fB a u T by blast
qed
moreover have ?nf1 a ′ u ′ T = ?x

using let-pair-instantiate[of a u - a ′ T λa u. (SOME r . Some r = |a ′| ⊕
?fB a u T )] a-u-def

by fast
ultimately show ?thesis using nf1-def by argo

qed

moreover have rnf2-def : a ′ � nf1 ∧ ?nf2 a ′ u ′ T � f2 a u T
proof −

have nf2 = a ′ 	 nf1 using nf1-def nf2-def by blast
moreover have a ′ � nf1 ∧ a ′ 	 nf1 � f2 a u T
proof −

have ?f2 a u T � nf1
proof −

have Some (?f2 a u T ) = ?fB a u T ⊕ f2 a u T using r ‹(a, u, T ) ∈ S›
by blast

then have ?f2 a u T � ?fB a u T
using greater-def by blast

moreover have ?f2 a u T � |a ′|
proof −

have |?f2 a u T | � |a|
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proof −
have |?f2 a u T | � |?fB a u T | using ‹?f2 a u T � ?fB a u T ›

core-mono by blast
moreover have |?fB a u T | � |a| using r ‹(a, u, T ) ∈ S› by blast
ultimately show ?thesis using succ-trans ‹|a ′| = |a|› by blast

qed
then show ?thesis

using a-u-def (4 )
bigger-core-sum-defined
greater-equiv[of ?f2 a u T |a ′|]

by auto
qed
ultimately show ?thesis using
core-is-pure[of a ′] commutative pure-def [of |a ′|] smaller-pure-sum-smaller [of

?f2 a u T - |a ′|] rnf1-def
by simp

qed
then have r1 : a ′ � nf1 using ‹a ′ � ?f2 a u T › succ-trans by blast
then have Some a ′ = nf1 ⊕ nf2 using minus-some nf2-def ‹nf2 = a ′ 	

nf1 › by presburger
have r2 : a ′ 	 nf1 � f2 a u T

using ‹a ′ � ?f2 a u T ›
proof (rule prove-last-completeness)

have Some (?f2 a u T ) = ?fB a u T ⊕ f2 a u T
using r ‹(a, u, T ) ∈ S› by blast

moreover have Some nf1 = |a ′| ⊕ ?fB a u T using rnf1-def by blast

have Some (?f2 a u T ) = ?fB a u T ⊕ f2 a u T using r ‹(a, u, T ) ∈ S›
by blast

then have ?f2 a u T � ?fB a u T
using greater-def by blast

moreover have ?f2 a u T � |a ′|
proof −

have |?f2 a u T | � |a|
proof −

have |?f2 a u T | � |?fB a u T | using ‹?f2 a u T � ?fB a u T ›
core-mono by blast

moreover have |?fB a u T | � |a| using r ‹(a, u, T ) ∈ S› by blast
ultimately show ?thesis using succ-trans ‹|a ′| = |a|› by blast

qed
then show ?thesis

using a-u-def (4 )
bigger-core-sum-defined[of - |a|]
greater-equiv[of ?f2 a u T |a|]

by auto
qed
ultimately show Some (?f2 a u T ) = nf1 ⊕ f2 a u T

using asso1 [of |a ′| ?fB a u T nf1 f2 a u T ?f2 a u T ]
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asso1 [of |a ′| |a ′| |a ′| ] core-is-pure[of a ′] greater-def [of ?f2 a u T |a ′|]
rnf1-def

by (metis (no-types, lifting))
qed
then show ?thesis using ‹a ′ � ?f2 a u T › succ-trans using r1 by force

qed
ultimately show ?thesis using nf2-def by argo

qed
ultimately have (a, u, T ) ∈ S ∧ a ′ � ?f2 a u T ∧ ?nf2 a ′ u ′ T � f2 a u T

using nf1-def nf2-def
a-u-def by blast

then have a ′′ � f2 a u T ∧ |a ′′| = |a ′| using ‹(a ′, u ′, T ) ∈ S ′ ∧ a ′′ � ?nf2
a ′ u ′ T ∧ |a ′′| = |a ′| ›

using succ-trans by blast
then show ∃ a u. (a, u, T ) ∈ S ∧ a ′′ � f2 a u T ∧ |a ′′| = |a| using r ′

using a-u-def (2 ) a-u-def (4 ) by auto
qed
ultimately show ?case by blast

qed

2.4 Soundness
theorem general-soundness:

assumes package-rhs ϕ unit { (a, unit, T ) |a T . (a, T ) ∈ S } (λ-. True) A ϕ ′ f
S ′

and
∧

a T . (a, T ) ∈ S =⇒ mono-transformer T
and wf-assertion A
and intuitionistic (sat A) ∨ pure-remains S ′

shows Some ϕ = ϕ ′ ⊕ f ∧ stable f ∧ (∀ (a, T ) ∈ S . a ## T f −→ sat A (the
(a ⊕ T f )))
proof −

let ?S = { (a, unit, p) |a p. (a, p) ∈ S }
let ?pc = λ-. True
have package-rhs-connection ϕ unit ?S ?pc A ϕ ′ f S ′ ∧ valid-package-set S ′ f
proof (rule package-rhs-proof )

show package-rhs ϕ unit {(a, unit, p) |a p. (a, p) ∈ S} (λ-. True) A ϕ ′ f S ′

using assms(1 ) by auto
show valid-package-set {(a, unit, p) |a p. (a, p) ∈ S} unit
proof (rule valid-package-setI )

fix a u T
assume (a, u, T ) ∈ {(a, unit, p) |a p. (a, p) ∈ S}
then have u = unit by blast
moreover have |T unit| = unit
using ‹(a, u, T ) ∈ {(a, unit, p) |a p. (a, p) ∈ S}› assms(2 ) mono-transformer-def

unit-core by fastforce
then show a ## u ∧ |a| � |u| ∧ mono-transformer T ∧ a � |T unit|

using ‹(a, u, T ) ∈ {(a, unit, p) |a p. (a, p) ∈ S}› assms(2 ) defined-def
unit-core unit-neutral unit-smaller by auto

qed
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show wf-assertion A by (simp add: assms(3 ))
show mono-pure-cond (λ-. True)

using mono-pure-cond-def by auto
show stable unit by (simp add: stable-unit)
show ϕ ## unit

using defined-def unit-neutral by auto
qed

then obtain r : ϕ ⊕ unit = ϕ ′ ⊕ f stable f∧
a u T . (a, u, T ) ∈ ?S =⇒ (∃ au. Some au = a ⊕ u ∧ (au ## (T f 	 T

unit) −→
(∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ (T f 	 T unit) = a ′ ⊕ u ′ ∧ u ′

� u ∧ package-sat ?pc A a ′ u ′ u)))
using package-rhs-connection-def by force

moreover have
∧

a T x. (a, T ) ∈ S ∧ Some x = a ⊕ T f =⇒ sat A x
proof −

fix a T x assume asm0 : (a, T ) ∈ S ∧ Some x = a ⊕ T f
then have T f 	 T unit = T f

by (metis assms(2 ) commutative minus-equiv-def mono-transformer-def op-
tion.sel unit-neutral unit-smaller)

then obtain au where au-def : Some au = a ⊕ unit ∧ (au ## T f −→
(∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ au ⊕ T f = a ′ ⊕ u ′ ∧ u ′ � unit ∧

package-sat ?pc A a ′ u ′ unit))
using r asm0 by fastforce

then have au = a by (metis option.inject unit-neutral)
then have (∃ a ′ u ′. (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ a ⊕ T f = a ′ ⊕ u ′ ∧

package-sat ?pc A a ′ u ′ unit)
using au-def asm0 defined-def
by auto

then obtain a ′ u ′ where r0 : (a ′, u ′, T ) ∈ S ′ ∧ |a ′| � |a| ∧ a ⊕ T f = a ′ ⊕
u ′ ∧ package-sat ?pc A a ′ u ′ unit

by presburger
then obtain y where Some y = |a ′| ⊕ (u ′ 	 unit) sat A y

using package-sat-def by auto
then have Some y = |a ′| ⊕ u ′

by (metis commutative minus-equiv-def splus.simps(3 ) unit-neutral unit-smaller)
then have x � y
by (metis r0 addition-bigger asm0 max-projection-prop-pure-core mpp-smaller)

then show sat A x
proof (cases intuitionistic (sat A))

case True
then show ?thesis by (meson ‹Some y = |a ′| ⊕ (u ′ 	 unit)› ‹sat A y› ‹x �

y› intuitionistic-def )
next

case False
then have pure-remains S ′ using assms(4 ) by auto
then have pure a ′ using pure-remains-def r0

by fast
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then show ?thesis using r0 ‹Some y = |a ′| ⊕ (u ′ 	 unit)› ‹sat A y› ‹Some
y = |a ′| ⊕ u ′› asm0 core-is-smaller

core-max option.sel pure-def asso1 [of a ′] by metis
qed

qed
then have (∀ (a, T ) ∈ S . a ## T f −→ sat A (the (a ⊕ T f )))

using sep-algebra.defined-def sep-algebra-axioms by fastforce
moreover have Some ϕ = ϕ ′ ⊕ f ∧ stable f

using r(1 ) r(2 ) unit-neutral by auto
ultimately show ?thesis by blast

qed

theorem soundness:
assumes wf-assertion B

and
∧

a. sat A a =⇒ a ∈ S
and

∧
a. a ∈ S =⇒ mono-transformer (R a)

and package-rhs σ unit { (a, unit, R a) |a. a ∈ S } (λ-. True) B σ ′ w S ′

and intuitionistic (sat B) ∨ pure-remains S ′

shows stable w ∧ Some σ = σ ′ ⊕ w ∧ is-footprint-general w R A B
proof −

let ?S = { (a, R a) |a. a ∈ S}
have r : Some σ = σ ′ ⊕ w ∧ stable w ∧ (∀ (a, T )∈{(a, R a) |a. a ∈ S}. a ##

T w −→ sat B (the (a ⊕ T w)))
proof (rule general-soundness)

show package-rhs σ unit {(a, unit, T ) |a T . (a, T ) ∈ {(a, R a) |a. a ∈ S}}
(λ-. True) B σ ′ w S ′

using assms(4 ) by auto
show

∧
a T . (a, T ) ∈ {(a, R a) |a. a ∈ S} =⇒ mono-transformer T using

assms(3 ) by blast
show wf-assertion B by (simp add: assms(1 ))
show intuitionistic (sat B) ∨ pure-remains S ′ by (simp add: assms(5 ))

qed
moreover have is-footprint-general w R A B
proof (rule is-footprint-generalI )

fix a b assume asm: sat A a ∧ Some b = a ⊕ R a w
then have (a, R a) ∈ ?S

using assms(2 ) by blast
then have sat B (the (a ⊕ R a w)) using r using asm defined-def by fastforce
then show sat B b by (metis asm option.sel)

qed
ultimately show ?thesis by blast

qed

corollary soundness-paper :
assumes wf-assertion B

and
∧

a. sat A a =⇒ a ∈ S
and package-rhs σ unit { (a, unit, id) |a. a ∈ S } (λ-. True) B σ ′ w S ′

and intuitionistic (sat B) ∨ pure-remains S ′

shows stable w ∧ Some σ = σ ′ ⊕ w ∧ is-footprint-standard w A B
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proof −
have stable w ∧ Some σ = σ ′ ⊕ w ∧ is-footprint-general w (λ-. id) A B

using assms soundness[of B A S λ-. id σ σ ′ w S ′]
by (simp add: mono-transformer-def )

then show ?thesis
using is-footprint-general-def is-footprint-standardI by fastforce

qed

2.5 Completeness
theorem general-completeness:

assumes
∧

a u T x. (a, u, T ) ∈ S =⇒ Some x = a ⊕ T f =⇒ sat A x
and Some ϕ = ϕ ′ ⊕ f
and stable f
and valid-package-set S unit
and wf-assertion A

shows ∃S ′. package-rhs ϕ unit S (λ-. True) A ϕ ′ f S ′

proof −
define S ′ where S ′ = { (r , u, T ) |a u T r . (a, u, T ) ∈ S ∧ Some r = a ⊕ (T

f 	 T unit) ∧ r ## u }
let ?pc = λ-. True
have ∃S ′′. package-rhs ϕ ′ f S ′ ?pc A ϕ ′ f S ′′

proof −
let ?f2 = λa u T . unit
let ?f1 = λa u T . a
have ∃S ′′. package-rhs ϕ ′ f S ′ ?pc A ϕ ′ f S ′′ ∧ (∀ (a ′, u ′, T ) ∈ S ′′. ∃ a u. (a,

u, T ) ∈ S ′ ∧ a ′ � ?f2 a u T ∧ |a ′| = |a| )
proof (rule completeness-aux)

show mono-pure-cond (λ-. True) by (simp add: mono-pure-cond-def )
show wf-assertion A by (simp add: assms(5 ))
show valid-package-set S ′ f
proof (rule valid-package-setI )

fix a ′ u ′ T
assume (a ′, u ′, T ) ∈ S ′

then obtain a where asm: (a, u ′, T ) ∈ S ∧ Some a ′ = a ⊕ (T f 	 T
unit) ∧ a ′ ## u ′

using S ′-def by blast
then have a ## u ′ ∧ |a| � |u ′| ∧ mono-transformer T

using assms(4 ) valid-package-set-def by fastforce
moreover have |T f 	 T unit| = |T f |

by (simp add: minus-core)
ultimately show a ′ ## u ′ ∧ |a ′| � |u ′| ∧ mono-transformer T ∧ a ′ �

|T f |
by (meson asm core-sum greater-def greater-equiv minus-equiv-def mono-transformer-def

succ-trans unit-neutral)
qed
show stable f ∧ ϕ ′ ## f

by (metis assms(2 ) assms(3 ) defined-def domI domIff )
fix a u T
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assume (a, u, T ) ∈ S ′

then obtain a ′ u ′ where (a ′, u ′, T ) ∈ S Some a = a ′ ⊕ (T f 	 T unit)
using S ′-def by blast

moreover have T f 	 T unit = T f
proof −
have mono-transformer T using ‹valid-package-set S unit› valid-package-set-def

‹(a ′, u ′, T ) ∈ S› by auto
then show ?thesis
by (metis commutative minus-default minus-equiv-def mono-transformer-def

option.sel unit-neutral)
qed

then have sat A (the ( |a| ⊕ a))
by (metis assms(1 ) calculation(1 ) calculation(2 ) commutative core-is-smaller

option.sel)
then show |a| � |a| ∧ Some a = a ⊕ unit ∧ (True −→ sat A (the ( |a| ⊕

a)))
by (simp add: succ-refl unit-neutral)

qed
then show ?thesis by auto

qed
then obtain S ′′ where package-rhs ϕ ′ f S ′ ?pc A ϕ ′ f S ′′ by blast
have package-rhs ϕ unit S ?pc A ϕ ′ f S ′′

using assms(2 )
proof (rule package-rhs.AddFromOutside)

show package-rhs ϕ ′ f S ′ ?pc A ϕ ′ f S ′′

by (simp add: ‹package-rhs ϕ ′ f S ′ ?pc A ϕ ′ f S ′′›)
show stable f using assms(3 ) by simp
show Some f = unit ⊕ f

by (simp add: commutative unit-neutral)
show S ′ = { (r , u, T ) |a u T r . (a, u, T ) ∈ S ∧ Some r = a ⊕ (T f 	 T unit)

∧ r ## u }
using S ′-def by blast

qed
then show ?thesis

by blast
qed

theorem completeness:
assumes wf-assertion B

and stable w ∧ is-footprint-general w R A B
and Some σ = σ ′ ⊕ w
and

∧
a. sat A a =⇒ mono-transformer (R a)

shows ∃S ′. package-rhs σ unit {(a, unit, R a) |a. sat A a} (λ-. True) B σ ′ w
S ′

proof −
let ?S = {(a, unit, R a) |a. sat A a}
have ∃S ′. package-rhs σ unit {(a, unit, R a) |a. sat A a} (λ-. True) B σ ′ w S ′

proof (rule general-completeness[of ?S w B σ σ ′])
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show
∧

a u T x. (a, u, T ) ∈ {(a, unit, R a) |a. sat A a} =⇒ Some x = a ⊕
T w =⇒ sat B x

using assms(2 ) is-footprint-general-def by blast
show Some σ = σ ′ ⊕ w by (simp add: assms(3 ))
show stable w by (simp add: assms(2 ))
show wf-assertion B by (simp add: assms(1 ))

show valid-package-set {(a, unit, R a) |a. sat A a} unit
proof (rule valid-package-setI )

fix a u T assume asm0 : (a, u, T ) ∈ {(a, unit, R a) |a. sat A a}
then have u = unit ∧ T = R a ∧ sat A a by fastforce
then show a ## u ∧ |a| � |u| ∧ mono-transformer T ∧ a � |T unit|

using assms(4 ) defined-def mono-transformer-def unit-core unit-neutral
unit-smaller by auto

qed
qed
then show ?thesis by meson

qed

corollary completeness-paper :
assumes wf-assertion B

and stable w ∧ is-footprint-standard w A B
and Some σ = σ ′ ⊕ w

shows ∃S ′. package-rhs σ unit {(a, unit, id) |a. sat A a} (λ-. True) B σ ′ w S ′

proof −
have ∃S ′. package-rhs σ unit {(a, unit, (λ-. id) a) |a. sat A a} (λ-. True) B σ ′

w S ′

using assms(1 )
proof (rule completeness)

show stable w ∧ is-footprint-general w (λa. id) A B
using assms(2 ) is-footprint-general-def is-footprint-standard-def by force

show Some σ = σ ′ ⊕ w by (simp add: assms(3 ))
show

∧
a. sat A a =⇒ mono-transformer id using mono-transformer-def by

auto
qed
then show ?thesis by meson

qed

end

end
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