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Abstract

The magic wand — (also called separating implication) is a separa-
tion logic [4] connective commonly used to specify properties of partial
data structures, for instance during iterative traversals. A footprint of
a magic wand formula A — B is a state that, combined with any state
in which A holds, yields a state in which B holds. The key challenge of
proving a magic wand (also called packaging a wand) is to find such a
footprint. Existing package algorithms either have a high annotation
overhead or are unsound.

In this entry, we formally define a framework for the sound automa-
tion of magic wands, described in a paper at CAV 2022 [2], and prove
that it is sound and complete. This framework, called the package
logic, precisely characterises a wide design space of possible package
algorithms applicable to a large class of separation logics.
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1 Separation Algebra

In this section, we formalize the concept of a separation algebra [1, 3], on
which our package logic is based.

theory SepAlgebra
imports Main
begin
type-synonym ’‘a property = 'a = bool
locale sep-algebra =
fixes plus :: 'a = 'a = 'a option (infix]l «®> 63)
fixes core :: 'a = 'a (< |- »)
assumes commutative: a & b =0 & a

and assol: a & b= Someab AN b® c = Some bc = ab ® ¢ = a O be
and asso2: a ® b= Some ab AN b @ ¢ = None =—> ab & ¢ = None

and core-is-smaller: Some x = © @ |z

and core-is-pure: Some |z| = |z| & |z|
and core-maz: Some x = & ¢ = (Ir. Some |z| =c S 1)
and core-sum: Some ¢ = a ® b = Some |c| = |a| ® |b]|

and positivity: a & b = Some ¢ = Some c = ¢ ® ¢ = Somea=a @ a
and cancellative: Some a = b ® v = Somea =0 y = |z| = |y| = =
=Y

begin

lemma asso3:
assumes a & b = None
and b @ ¢ = Some bc
shows a @ bc = None
by (metis assms(1) assms(2) sep-algebra.asso2 sep-algebra.commutative sep-algebra-axioms)

1.1 Definitions

definition defined :: 'a = ’a = bool (infixl <##)> 62) where
a ## b<+— a® b+ None

definition greater :: 'a = 'a = bool (infixl <> 50) where
a¥>b+— (Je. Somea=1"bd ¢

definition pure :: 'a = bool where
pure a <— Some a = a & a



definition minus :: ‘/a = 'a = 'a (infixl «©) 63)
where b © a = (THE-default b (Ax. Some b =a @ z Az > |b]))

definition add-set :: ‘a set = 'a set = 'a set (infixl «®» 60) where
A@B={p|lpab.ac ANbE BANSomep=adb}

definition greater-set :: 'a set = 'a set = bool (infixl > 50) where
A>» B+ Vaec A. 3be B.a*>b)

definition up-closed :: 'a set = bool where
up-closed A +— (Vo' (o € A. ' = ) — ' € A)

definition equiv :: 'a set = ‘a set = bool (infixl «~» 40) where
A~B+—=A>BANB>A

definition setify :: 'a property = (‘a set = bool) where
setify PA <— (Vz € A. P x)

definition mono-prop :: 'a property = bool where
mono-prop P +— (Vzy. y = x AN Pz — Py)

definition under :: 'a set = 'a = 'a set where
under Aw ={ w'|w. we€eANw>rw'}

definition maz-projection-prop :: ('a = bool) = (‘a = 'a) = bool where
maz-projection-prop P f +— (Vz. 2 = fz AP (fz) A
(Vp. PpAz=p— fz2=p)

inductive multi-plus :: 'a list = ’'a = bool where

MPSingle: multi-plus [a] a
| MPConcat: [ length la > 0 ; length b > 0 ; multi-plus la a ; multi-plus b b ;
Some w = a @ b ]| = multi-plus (la Q Ib) w

fun splus :: 'a option = 'a option = ’a option where
splus None - = None

| splus - None = None

| splus (Some a) (Some b) = a @ b

1.2 First lemmata

lemma greater-equiv:
a>=b<<— (Je. Somea=c P b)
using commutative greater-def by auto

lemma smaller-compatible:
assumes a’ ## b
and a’ > a
shows a ## b



by (metis (full-types) assms(1) assms(2) assod commutative defined-def greater-def)

lemma bigger-sum-smaller:
assumes Some ¢ = a ® b
and a > a’
shows 3b". b’ > b A Somec=a"® b’
proof —
obtain r where Some a = o’ ® r
using assms(2) greater-def by auto
then obtain br where Some br = r ® b
by (metis assms(1) asso2 domD domlff option.discl)
then have Some ¢ = a’ & br
by (metis <Some a = a’ ® r> assms(1) assol)
then show ?thesis
using <Some br = r ® b> commutative greater-def by force
qed

1.2.1 splus

lemma splus-develop:
assumes Some a = b & ¢
shows a @& d = splus (splus (Some b) (Some ¢)) (Some d)
by (metis assms splus.simps(3))

lemma splus-comm:
splus a b = splus b a

apply (cases a)
apply (cases b)
apply simp-all

apply (cases b)
by (simp-all add: commutative)

lemma splus-asso:
splus (splus a b) ¢ = splus a (splus b ¢)
proof (cases a)
case None
then show ?thesis
by simp
next
case (Some a’)
then have a = Some a’ by simp
then show ?%thesis
proof (cases b)
case None
then show ?thesis by (simp add: Some)
next
case (Some b’)
then have b = Some b’ by simp
then show ?thesis



proof (cases ¢)
case None
then show %thesis by (simp add: splus-comm)
next
case (Some ¢)
then have ¢ = Some ¢’ by simp
then show ?thesis
proof (cases a’ & b’)
case None
then have a’ @ b’ = None by simp
then show ?thesis
proof (cases b’ @ ¢’
case None
then show ?thesis
by (simp add: Some <a = Some a’y <a’ @ b’ = None> <b = Some b")
next
case (Some bc)
then show ?thesis
by (metis (full-types) None <a = Some a’y <b = Some by <c = Some ¢
sep-algebra.asso? sep-algebra-azioms splus.simps(2) splus.simps(8) splus-comm)
qged
next
case (Some ab)
then have Some ab = a’ ® b’ by simp
then show ?thesis
proof (cases b’ @ ¢’
case None
then show ?thesis
by (metis Some <a = Some a’» <b = Some b’» <¢c = Some ¢’ asso2
splus.simps(2) splus.simps(3))
next
case (Some bc)
then show ?thesis
by (metis <Some ab = a’ ® b’ <a = Some a’y <b = Some by <¢c = Some
¢’y sep-algebra.assol sep-algebra-azioms splus.simps(3))
qed
qed
qed
qed
qed

1.2.2 Pure

lemma pure-stable:
assumes pure a
and pure b
and Somec=a @ b
shows pure ¢
by (metis assms assol commutative pure-def)



lemma pure-smaller:
assumes pure a
and a = b
shows pure b
by (metis assms greater-def positivity pure-def)

1.3 Succ is an order

lemma succ-antisym:
assumes a = b
and b = a
shows a = b
proof —
obtain ra where Some a = b ® ra
using assms(1) greater-def by auto
obtain rb where Some b = a @ rb
using assms(2) greater-def by auto
then have Some a = splus (Some a) (splus (Some ra) (Some b))
proof —
have Some b = splus (Some a) (Some rb)
by (simp add: <Some b = a & rb)
then show ?thesis
by (metis (full-types) <Some a = b ® ray sep-algebra.splus.simps(3) sep-algebra-axioms
splus-asso splus-comm)
qed
moreover have Some b = splus (Some b) (splus (Some ra) (Some rb))
by (metis <Some a = b @ ra> «Some b = a @ rb> sep-algebra.splus.simps(3)
sep-algebra-axioms splus-asso)
moreover have pure ra A pure b
proof —
obtain rab where Some rab = ra ® rb
by (metis calculation(2) splus.elims splus.simps(3))
then have |a| > rab
by (metis calculation(1) core-max greater-def splus.simps(3))
then have pure rab
using core-is-pure pure-def pure-smaller by blast
moreover have rab = ra N\ rab = rb
using <Some rab = ra @ rb> greater-def greater-equiv by blast
ultimately have pure ra using pure-smaller
by blast
moreover have pure rb
using <pure raby <rab = ra A rab = rb> pure-smaller by blast
ultimately show ¢thesis
by blast
qed
ultimately show ?thesis
by (metis <Some b = a @ rby option.inject pure-def sep-algebra.splus.simps(3)



sep-algebra-axioms splus-asso)
qed

lemma succ-trans:
assumes a = b
and b = ¢
shows a > ¢
using assms(1) assms(2) bigger-sum-smaller greater-def by blast

lemma succ-refl:
a>~a
using core-is-smaller greater-def by blast

1.4 Core (pure) and stabilize (stable)

lemma maz-projection-propl:
assumes A\z. z = fx
and Az. P (fx)
and Azp. PpAz=p= faxrp
shows maz-projection-prop P f
by (simp add: assms(1) assms(2) assms(3) maz-projection-prop-def)

lemma maz-projection-propk:
assumes maz-projection-prop P f
shows Az. z = fz
and Az. P (fz)
and Azp. PpAhoz=p=farp
using assms maz-projection-prop-def by auto

lemma maz-projection-prop-pure-core:
maz-projection-prop pure core
proof (rule max-projection-propl)
fix z
show z > |z
using core-is-smaller greater-equiv by blast
show pure |z
by (simp add: core-is-pure pure-def)
show Ap. purep ANz = p = |z| = p
proof —
fix p assume pure p A x = p
then obtain r where Somez =p & r
using greater-def by blast
then show |z| = p
by (metis <pure p A x = p» assol commutative core-mazx greater-equiv pure-def)
qed
qed

lemma mpp-smaller:
assumes maz-projection-prop P f



shows z = fx
using assms maz-projection-propE(1) by auto

lemma mpp-compatible:
assumes maz-projection-prop P f
and a ## b
shows fa ## fb
by (metis (mono-tags, opaque-lifting) assms(1) assms(2) commutative defined-def
max-projection-prop-def smaller-compatible)

lemma mpp-prop:
assumes maz-projection-prop P f
shows P (f z)
by (simp add: assms maz-projection-propE(2))

lemma mppl:
assumes maz-projection-prop P f
and a = z
and Pz
and z > fa
shows z = fa
proof —
have fa > z
using assms maz-projection-propE(3) by auto
then show ?thesis
by (simp add: assms(4) succ-antisym)
qed

lemma mpp-invo:
assumes maz-projection-prop P f
shows f (fz) = fz
using assms maz-projection-prop-def succ-antisym by auto

lemma mpp-mono:
assumes maz-projection-prop P f
and a = b
shows fa = fb
by (metis assms maz-projection-prop-def succ-trans)

1.5 Subtraction

lemma addition-bigger:
assumes a’ > a
and Somez' ' =a' ® b
and Somez =a ® b
shows z/ > z



by (metis assms assol bigger-sum-smaller greater-def)

lemma smaller-than-core:
assumes y = T
and Some z = z @ |y|
shows |z| = |y
proof —
have Some |z| = |z| & |y
using assms(2) core-sum maz-projection-prop-pure-core mpp-invo by fastforce
then have Some |z| = |z| @ |y|
by simp
moreover have |z| = |y|
using calculation greater-equiv by blast
ultimately show “thesis
by (meson addition-bigger assms(1) assms(2) core-is-smaller core-sum greater-def
succ-antisym)
qed

lemma extract-core:
assumes Some b = a @ x A z = |
shows |z| = |b|
proof —
obtain r where Some © = r @ ||
using assms greater-equiv by auto
show ?thesis
proof (rule smaller-than-core)
show Some z = r @ |b|
using «Some z = r @ |b» by auto
show b > r
by (metis <Some © = r & |b|> assms commutative greater-def succ-trans)
qed
qed

lemma minus-unique:
assumes Some b =a ® x A z = |
and Someb=a® y Ay = |
shows z = y

proof —
have |z| = |b]
using assms(1) extract-core by blast
moreover have |y| = ||

using assms(2) extract-core by blast
ultimately show ?thesis
using assms(1) assms(2) cancellative by auto
qed

lemma minus-exists:



assumes b > a
shows Jz. Some b =a @ z Az > |b]
using assms bigger-sum-smaller core-is-smaller by blast

lemma minus-equiv-def:
assumes b > a
shows Some b =a & (b S a) A (b S a) = |b
proof —
let %z = THE-default b (Az. Some b=a & x A z = |b| )
have (A\z. Someb=a® z Az = |b) %
proof (rule THE-defaultl’)
show Jlz. Some b =a @ x A = = |
using assms local.minus-unique minus-exists by blast
qed
then show ?thesis by (metis minus-def)
qed

lemma minus-default:
assumes - b > a
shows b © a = b
using THE-default-none assms greater-def minus-def by fastforce

lemma minusl:
assumes Some b =a @© x
and z = |b]
shows 2 = b © a
using assms(1) assms(2) greater-def local.minus-unique minus-equiv-def by blast

lemma minus-core:
la © b] = |a
proof (cases a = b)
case True
then have Somea =0 ® (e © b) A a © b > g
using minus-equiv-def by auto
then show ?thesis
using extract-core by blast
next
case Fulse
then show %thesis by (simp add: minus-default)
qed

lemma minus-core-weaker:
la & b = lal & |3
proof (cases a = b)
case True
then show ?thesis
by (metis greater-equiv maz-projection-prop-pure-core minus-core minus-default
minus-equiv-def mpp-invo succ-antisym,)
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next

case Fulse

then show ?thesis

by (metis greater-equiv maz-projection-prop-pure-core minus-default minus-equiv-def
mpp-invo succ-antisym,)
qed

lemma minus-equiv-def-any-elem:
assumes Somez = a @ b
shows Some (z © a) = b @ |z]
proof —
obtain r where Some r = b @ |z
by (metis assms core-is-smaller domD domlff option.simps(3) sep-algebra.asso2
sep-algebra-azioms)
have r =z 6 a
proof (rule minusI)
show Somex =a @ r
by (metis <Some r = b @ |z|> assms assol core-is-smaller)
moreover show r = |z|
using <Some r = b @ |z|» greater-equiv by blast
qged
then show ?thesis
using «Some r = b @ |z|» by blast
qed

lemma minus-bigger:
assumes Some r = a ® b
shows z© a >0
using assms greater-def minus-equiv-def-any-elem by blast

lemma minus-smaller:
assumes r >~ a
shows z > 26 a
using assms greater-equiv minus-equiv-def by blast

lemma minus-sum:
assumes Some a = b @ c
and z = a
shows z©a=(z6b) O ¢
proof (rule minusl)
obtain r where Some r = ¢ @ (z S a)
by (metis assms(1) assms(2) asso2 minus-equiv-def option.exhaust-sel)
have r = (z © b)
proof (rule minusl)
show Somez =b& r
by (metis «Some r = ¢ ® (x © a)) assms(1) assms(2) assol minus-equiv-def)
moreover show r = |z
by (meson «Somer = c® (z © a) assms(2) greater-equiv sep-algebra.minus-equiv-def
sep-algebra-azioms succ-trans)
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qed
then show Some (z © b) = ¢ ® (z S a)
using «Some r = ¢ @ (z © a)) by blast
moreover show z © a = |z © b]
by (simp add: assms(2) minus-core minus-equiv-def)
qed

lemma smaller-compatible-core:
assumes y = T

shows z #+# |y|
by (metis assms asso2 core-is-smaller defined-def greater-equiv option.discl)

lemma smaller-pure-sum-smaller:
assumes y >~ a
and y >~ b
and Somezr = a & b
and pure b
shows y =
proof —
obtain r where Some y=r ® br > a
by (metis assms(1) assms(2) assms(4) assol greater-equiv pure-def)
then show ?thesis
using addition-bigger assms(3) by blast
qed

lemma greater-minus-trans:
assumes y =~ T
and z = a
shows y o a > 26 a
proof —
obtain r where Some y =z & r
using assms(1) greater-def by blast
then obtain ra where Some z = a @ ra
using assms(2) greater-def by blast
then have Some (z © a) = 10 @ |7
by (simp add: minus-equiv-def-any-elem)
then obtain yy where Some yy = (z © a) & r
by (metis (full-types) «Some y = x & v assms(2) asso3 commutative mi-
nus-equiv-def not-Some-eq)
then obtain Somez =a @ (zr S a) 2 & a = |z]
by (simp-all add: assms(2) sep-algebra.minus-equiv-def sep-algebra-axioms)
then obtain y’ where Some y' = a © yy
using (Some y =z @ r «Some yy = © a B r assol
by metis
moreover have y = y’
by (metis <Some z = a ® (z © a)y «Somey =z ® r Someyy =z O a d
assol calculation option.inject succ-refl)
moreover obtain z’ where Some 2’ = (2 © a) ® a
using assms(2) commutative minus-equiv-def by fastforce
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then have y = z’
by (metis assms(1) assms(2) commutative minus-equiv-def option.sel)
moreover have z’ = 2 © a
using «Some ©' =z © a @ a> greater-def by auto
ultimately show ?thesis
using «Some ' = 2 © a ® @ «Some y = x B 1 assms(2) assol commu-
tative greater-equiv minus-bigger minus-equiv-def option.sel sep-algebra.succ-trans
sep-algebra-axioms
proof —
have f1: Some y' = a ® yy
by (simp add: «Some y' = a & yy> commutative)
then have y = ¢’
by (metis «Some y = © ® ™ Some yy = 2 © a ® r @& = a> assol
minus-equiv-def option.sel)
then show ?thesis
using f1 by (metis (no-types) «Some yy = z © a ® r» commutative
greater-equiv minus-bigger sep-algebra.succ-trans sep-algebra-azioms)
qed
qed

lemma minus-and-plus:
assumes Some w' = w O r
and w = ¢
shows Some (W' © a) = (WS a) ® r
proof —
have w = w © a
by (simp add: assms(2) minus-smaller)
then have (w © a) ## r
by (metis (full-types) assms(1) defined-def option.discl sep-algebra.smaller-compatible
sep-algebra-axioms)
then obtain z where Some z = (w & a) ® r
using defined-def by auto
then have Somew’' = a ® z ANz = |w
by (metis (no-types, lifting) assms assol core-sum maz-projection-prop-pure-core
minus-core minus-equiv-def mpp-smaller option.inject)
then have z = w’' S a
by (simp add: minusl)
then show ?thesis
using <Some z = w © a @ r» by blast
qed

|

1.6 Lifting the algebra to sets of states

lemma add-set-commm:
AR B=B®A
proof
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show A BC B® A
using add-set-def sep-algebra.commutative sep-algebra-axioms by fastforce
show B® AC A® B
using add-set-def commutative by fastforce
qed

lemma z-elem-set-product:
zr€A®B<+— (Jab.ac ANbeE BN Somezx=a@b)
using sep-algebra.add-set-def sep-algebra-axioms by fastforce

lemma z-elem-set-product-splus:
z€A®B<+— (Jab.a€ ANDbe BA Somex = splus (Some a) (Some b))
using sep-algebra.add-set-def sep-algebra-axioms by fastforce

lemma add-set-asso:
(AB)®@ C=A® (B () (is A = ?B)
proof —
have 74 C ?B
proof (rule subsetl)
fix z assume z € 74
then obtain ab ¢ where Somez =ab® cabe A® Bece C
using z-elem-set-product by auto
then obtain a b where Someab=a® ba € Abe B
using z-elem-set-product by auto
then obtain bc where Some bc = b @ ¢
by (metis <Some © = ab ® ¢ asso2 option.exhaust)
then show z € 7B
by (metis «Some ab = a & b «Some x = ab & ¢ <a € A <b€ By <ce O
assol x-elem-set-product)
qed
moreover have ?B C 2?4
proof (rule subsetl)
fix z assume = € ?B
then obtain a bc where Somez =a @ bca € Abce B® C
using z-elem-set-product by auto
then obtain b ¢ where Some bc=b0@ cce Cbe B
using z-elem-set-product by auto
then obtain ab where Some ab =a & b
by (metis <Some x = a ® bey assod option.collapse)
then show z € ¢4
by (metis «Some bc = b @ ¢» «Somex = a @ bey <a € Ay <b € By <c € C»
assol z-elem-set-product)
qed
ultimately show ?thesis by blast
qed

lemma up-closedl:

assumes A\p’ p. (¢’ 2'a) mphNpe A= p' € A
shows up-closed A
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using assms up-closed-def by blast

lemma up-closed-plus-UNIV:
up-closed (A ® UNIV)
proof (rule up-closedI)
fix o ¢’
assume asm: ¢’ = o AN p € A ® UNIV
then obtain r a b where Some o' = & r Some p =ad ba € A
using greater-def z-elem-set-product by auto
then obtain br where Some br = b & r
by (metis asso2 option.erhaust-sel)
then have Some ¢’ = a @ br
by (metis <Some ¢ = a ® by «Some ' = p B r> splus.simps(3) splus-asso)
then show ¢’ € A @ UNIV
using <a € A) x-elem-set-product by auto
qed

lemma succ-set-trans:
assumes A > B
and B > C
shows A > C
by (meson assms(1) assms(2) greater-set-def succ-trans)

lemma greater-setl:
assumes Aa. a € A = (3b € B. a = b)
shows A > B
by (simp add: assms greater-set-def)

lemma bigger-set:
assumes A’ > A
shows A’® B> A® B
proof (rule greater-setl)
fix z assume z € A’ ® B
then obtain o’ b where Somez =a’ ® ba’€ A’ be B
using z-elem-set-product by auto
then obtain ¢ where ¢’ > aa € A
using assms greater-set-def by blast
then obtain ab where Some ab = a & b
by (metis <Some z = a’ & b> asso2 domD domlff greater-equiv)
then show JabcA ® B. z = ab
using «Somez =a’'® b» <a € A> <a’ = a» «b € By addition-bigger z-elem-set-product
by blast
qed

lemma bigger-singleton:
assumes ¢’ = ¢

shows {p'} > {¢}
by (simp add: assms greater-set-def)
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lemma add-set-elem:
peA®B<+— (Fab Somep=adbANacANDbE B)
using add-set-def by auto

lemma up-closed-sum:
assumes up-closed A
shows up-closed (A ® B)
proof (rule up-closedI)
fix ¢’ p assume asm: o' = p AN p e A® B
then obtain a b where a € A b€ B Some p =a @ b
using add-set-elem by auto
moreover obtain r where Some o' = ¢ & r
using asm greater-def by blast
then obtain ar where Some ar = a @ r
by (metis asso2 calculation(3) commutative option.exhaust-sel option.simps(3))
then have ar € A
by (meson assms calculation(1) greater-def sep-algebra.up-closed-def sep-algebra-axioms)
then show ¢’ € A ® B
by (metis «Some ¢’ = ¢ @& ry (Some ar = a ® r» add-set-elem assol calcula-
tion(2) calculation(3) commutative)
qged

lemma up-closed-bigger-subset:
assumes up-closed B
and A > B
shows A C B
by (meson assms(1) assms(2) greater-set-def sep-algebra.up-closed-def sep-algebra-azioms
subsetl)

lemma up-close-equiv:
assumes up-closed A
and up-closed B
shows A~ B+— A=1H
proof —
have A~ B+— A> BAB> A
using local.equiv-def by auto
also have ... +— ACBABCA
by (metis assms(1) assms(2) greater-set-def set-eq-subset succ-refl up-closed-bigger-subset)
ultimately show ?thesis
by blast
qged

lemma equiv-stable-sum:
assumes A ~ B
shows A ® C ~ B® C

using assms bigger-set local.equiv-def by auto

lemma equiv-up-closed-subset:
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assumes up-closed A
and equiv B C
shows BC A<+— C C A (is ?B +— ?C)
proof —
have ?B — ?C
by (meson greater-set-def up-closed-def equiv-def assms(1) assms(2) subsetD
subsetl)
moreover have ?C — ?B
by (meson greater-set-def up-closed-def equiv-def assms(1) assms(2) subsetD
subsetl)
ultimately show ¢thesis by blast
qed

lemma mono-propl:
assumes Az y. y =z ANPx = Py
shows mono-prop P
using assms mono-prop-def by blast

lemma mono-prop-set:
assumes A > B
and setify P B
and mono-prop P
shows setify P A
using assms(1) assms(2) assms(3) greater-set-def local.setify-def mono-prop-def
by auto

lemma mono-prop-set-equiv:
assumes mono-prop P
and equiv A B
shows setify P A +— setify P B
by (meson assms(1) assms(2) local.equiv-def sep-algebra.mono-prop-set sep-algebra-azioms)

lemma setify-sum:

setify P (A ® B) «— (Vz € A. setify P ({z} ® B)) (is ?A <— ?B)
proof —

have A = “B

using local.setify-def sep-algebra.add-set-elem sep-algebra-axioms singletonD by
fastforce

moreover have B = ¢4

using add-set-elem local.setify-def by fastforce

ultimately show ¢thesis by blast
qged

lemma setify-sum-image:
setify P ((Set.image f A) @ B) «— (Vz € A. setify P ({fz} ® B))
proof
show setify P (f ‘A ® B) = Vz€A. setify P ({fz} ® B)
by (meson rev-image-eql sep-algebra.setify-sum sep-algebra-azioms)
show VzecA. setify P ({fz} ® B) = setify P (f ‘A ® B)
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by (metis (mono-tags, lifting) image-iff sep-algebra.setify-sum sep-algebra-azxioms)
qed

lemma equivl:
assumes A > B
and B > A
shows equiv A B
by (simp add: assms(1) assms(2) local.equiv-def)

lemma sub-bigger:
assumes A C B
shows A > B
by (meson assms greater-set-def in-mono succ-refl)

lemma larger-set-refi:
A> A
by (simp add: sub-bigger)

definition upper-closure where
upper-closure A = { ¢’ |p' v. o' = o Np € A}

lemma upper-closure-up-closed:
up-closed (upper-closure A)
proof (rule up-closedI)
fix o’
assume asm0: o' = ¢ N @ € upper-closure A
then obtain ¢ where a € A AN ¢ = a
using sep-algebra.upper-closure-def sep-algebra-azioms by fastforce
then have ¢’ = a
using asm0 succ-trans by blast
then show ¢’ € upper-closure A
using <a € A A ¢ = a> upper-closure-def by auto
qed

1.7 Addition of more than two states

lemma multi-decompose:
assumes multi-plus | w
shows length 1 > 2 = (Ja blalb. | = la Q Ib A length la > 0 A length Ib >
0 A multi-plus la a N multi-plus b b A Some w = a © b)
using assms
apply (rule multi-plus.cases)
by auto[2]
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lemma multi-take-drop:
assumes multi-plus | w
and length | > 2
shows In a b. n > 0 A n < length I A multi-plus (take n 1) a N multi-plus
(dropml) b A Somew =a @ b
proof —
obtain a b la b where asm0: | = la @Q Ib A length la > 0 A length b > 0 A
multi-plus la a A multi-plus Ib b A Some w = a ® b
using assms(1) assms(2) multi-decompose by blast
let ?n = length la
have la = take ?n 1
by (simp add: asm0)
moreover have (b = drop 7n |
by (simp add: asm0)
ultimately show “thesis
by (metis asm0 length-drop zero-less-diff)
qed

lemma multi-plus-single:

assumes multi-plus [v] a

shows a = v

using assms

apply (cases)

apply simp

by (metis (no-types, lifting) Nil-is-append-conv butlast.simps(2) butlast-append
length-greater-0-conv)

lemma multi-plus-two:

assumes length [ > 2

shows multi-plus | w <— (Fa b la lb. I = (la @ b) A length la > 0 A length b
> 0 A multi-plus la a A multi-plus Ib b A Some w = a ® b) (is ?A +— ?B)

by (meson MPConcat assms multi-decompose)

lemma multi-plus-head-tail:
length | < n A length I > 2 — (multi-plus | w <— (3 7. Some w = (List.hd [)
@ r A multi-plus (List.tl 1) 1))
proof (induction n arbitrary: | w)
case (
then show ?case by auto
next
case (Suc n)
then have ITH: A\(l :: 'a list) w. length | < n A length | > 2 — multi-plus | w
= (3r. Some w = hd I & r A multi-plus (¢ 1) r)
by blast
then show ?case
proof (cases n = 0)
case True
then have n = 0 by simp
then show ?thesis by linarith
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next
case Fulse
then have length (I :: 'a list) > 2 A length | < n + 1 = multi-plus | w +—
(3r. Some w = hd 1l & r A multi-plus (t 1) r)
(is length 1 > 2 Alengthl < n+ 1 = 2?4 +— ?B)
proof —
assume asm: length (I :: 'a list) > 2 Alength | < n + 1
have ?B — 74
proof —
assume ?B
then obtain r where Some w = hd | ® r A multi-plus (¢l 1) r by blast
then have multi-plus [hd 1] (hd )
using MPSingle by blast
moreover have [hd ]] @ (¢ 1) =1
by (metis Suc-le-length-iff asm append-Cons list.collapse list.simps(3)
numeral-2-eq-2 self-append-conv2)
ultimately show 74
by (metis (no-types, lifting) MPConcat Suc-1 Suc-le-mono asm <Some
w = hdl® r A multi-plus (tL 1) > append-Nil2 length-Cons length-greater-0-conv
list.size(8) not-one-le-zero zero-less-Suc)
qed
moreover have ?A — ?B
proof —
assume ?A
then obtain la (b a b where | = la Q b length la > 0 length b > 0
multi-plus la a multi-plus Ib b Some w = a ® b
using asm multi-decompose by blast
then have r0: length la < n A length la > 2 — multi-plus la o = (3.
Some a = hd la & r A multi-plus (¢ la) T)
using [H by blast
then show ?B
proof (cases length la > 2)
case True
then obtain ra where Some a = (hd la) & ra multi-plus (¢ la) ra
by (metis Suc-eq-plusl <0 < length lby <l = la @Q Iby 70 <multi-plus la a> ap-
pend-eq-conv-conj asm drop-eq-Nil le-addl le-less-trans length-append length-greater-0-conv
less-Suc-eq-le order.not-eq-order-implies-strict)
moreover obtain rab where Some rab = ra & b
by (metis <Some w = a & b calculation(1) asso2 option.erhaust-sel)
then have multi-plus ((t la) @ Ib) rab
by (metis (no-types, lifting) Nil-is-append-conv <multi-plus Ib by calcula-
tion(2) length-greater-0-conv list.simps(8) multi-plus.cases sep-algebra. MPConcat
sep-algebra-axioms)
moreover have Some w = hd la & rab
by (metis <Some w = a @ b» «Some rab = ra & b assol calculation(1))
ultimately show ¢B
using <0 < length la> <l = la Q [b> by auto
next
case Fulse
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then have length la = 1
using <0 < length la> by linarith
then have la = [d]
by (metis Nitpick.size-list-simp(2) One-nat-def Suc-le-length-iff <multi-plus
la a> diff-Suc-1 le-numeral-extra(4) length-0-conv list.sel(8) sep-algebra.multi-plus-single
sep-algebra-axioms)
then show ?thesis
using <Some w = a & by <l = la Q by <multi-plus Ib by by auto

qed
qed
then show ?thesis using calculation by blast
qed
then show ?thesis by (metis (no-types, lifting) Suc-eg-plusi)
qed
qed

lemma not-multi-plus-empty:

= multi-plus || w

by (metis Nil-is-append-conv length-greater-0-conv list.simps(3) sep-algebra.multi-plus.simps
sep-algebra-azioms)

lemma multi-plus-deter:
length | < n = multi-plus | w = multi-plus | v’ — w = W’
proof (induction n arbitrary: | w w’)
case ()
then show ?case
using multi-plus.cases by auto
next
case (Suc n)
then show ?case
proof (cases length | > 2)
case True
then obtain r where Some w = (List.hd l) ® r A multi-plus (List.tl 1) r
using Suc.prems(2) multi-plus-head-tail by blast
moreover obtain r’ where Some w’ = (List.hd 1) ® v’ A multi-plus (List.tl
nr'
using Suc.prems(3) True multi-plus-head-tail by blast
ultimately have r = r’
by (metis Suc.IH Suc.prems(1) drop-Suc drop-eq-Nil)
then show ?thesis
by (metis <Some w = hd I & r A multi-plus (¢ 1) ry <Some w’' = hd l & r’' A
multi-plus (¢t 1) v’y option.inject)
next
case Fulse
then have length | < 1
by simp
then show ?thesis
proof (cases length I = 0)
case True
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then show ?thesis
using Suc.prems(2) sep-algebra.not-multi-plus-empty sep-algebra-azioms by
fastforce
next
case Fulse
then show ?thesis
by (metis One-nat-def Suc.prems(2) Suc.prems(3) Suc-length-conv <length | <
1) le-SucE le-zero-eq length-greater-0-conv less-numeral-extra(3) sep-algebra.multi-plus-single
sep-algebra-azioms)
qed
qed
qed

lemma multi-plus-implies-multi-plus-of-drop:
assumes multi-plus [ w
and n < length [
shows 3 a. multi-plus (drop nl) a Nw > a
using assms
proof (induction n arbitrary: | w)
case (
then show ?case using succ-refl by fastforce
next
case (Suc n)
then have length | > 2
by linarith
then obtain r where Some w = (List.hd 1) & r A multi-plus (List.tl 1) r
using Suc.prems(1) multi-plus-head-tail by blast
then obtain a where multi-plus (drop n (List.tl 1)) a AT = a
using Suc.IH Suc.prems(2) by fastforce
then show ?case
by (metis «Some w = hd I & r A multi-plus (t 1) r bigger-sum-smaller com-
mutative drop-Suc greater-def)
qed

lemma multi-plus-bigger-than-head:
assumes length | > 0
and multi-plus | w
shows w > List.hd [
proof (cases length | > 2)
case True
then obtain r where Some w = (List.hd I) & r A multi-plus (List.tl ) r
using assms(1) assms(2) multi-plus-head-tail by blast
then show ?thesis
using greater-def by blast
next
case Fulse
then show ?thesis
by (metis Cons-nth-drop-Suc MPSingle assms(1) assms(2) drop-0 drop-eq-Nil
hd-conv-nth length-greater-0-conv not-less-eq-eq numeral-2-eq-2 sep-algebra.multi-plus-deter
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sep-algebra-axioms succ-refl)
qed

lemma multi-plus-bigger:
assumes i < length |
and multi-plus | w
shows w = (1! 1)
proof —
obtain a where multi-plus (drop il) a AN w = a
using assms(1) assms(2) multi-plus-implies-multi-plus-of-drop order.strict-trans
by blast
moreover have List.hd (drop il) =111
by (simp add: assms(1) hd-drop-conv-nth)
then show ?thesis
by (metis (no-types, lifting) succ-trans assms(1) assms(2) drop-eq-Nil leD
length-greater-0-conv multi-plus-bigger-than-head multi-plus-implies-multi-plus-of-drop)
qed

lemma sum-then-singleton:
Some a=b® c+— {a} = {b} ® {c} (is ?A «— ?B)
proof —
have ?A — ?B
proof —
assume 74
then have {a} C {b} ® {c}
using add-set-elem by auto
moreover have {0} ® {c¢} C {a}
proof (rule subsetl)
fix z assume z € {b} ® {c}
then show z € {a}
by (metis <Some a = b ® ¢ option.sel sep-algebra.add-set-elem sep-algebra-azioms
singleton-iff)
qed
ultimately show ?thesis by blast
qed
moreover have B — %4
using add-set-elem by auto
ultimately show ?thesis by blast
qed

lemma empty-set-sum:

{} A=A}

by (simp add: add-set-def)
end

end
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2 Package Logic

In this section, we define our package logic, as described in [2], and then
prove that this logic is sound and complete for packaging magic wands.

theory PackageLogic
imports Main SepAlgebra
begin

2.1 Definitions

type-synonym ’a abool = ’'a = bool

datatype ’a aassertion =

AStar 'a aassertion 'a aassertion
| AImp 'a abool 'a aassertion
| ASem 'a abool

locale package-logic = sep-algebra +

fixes unit :: 'a
fixes stable :: 'a = bool

assumes unit-neutral: Some a = a © unit
and stable-sum: stable a = stable b = Some x = a & b = stable x
and stable-unit: stable unit

begin
fun sat :: ‘a aassertion = 'a = bool where
sat (AStar A B) ¢ «+— (Fa b. Some o = a @ b A sat A a A sat B b)
| sat (AImp b A) ¢ «— (b o — sat A p)
| sat (ASem A) p «— A ¢
definition mono-pure-cond where
mono-pure-cond b +— (V. b o +— b lp| ) A (Yo' @ r. pure r A Some ¢’ = ¢
DrA-by— by

definition bool-conj where
bool-conja bz <— azxz ANbzx

type-synonym ’c pruner = 'c = bool

definition mono-pruner :: ‘a pruner = bool where
mono-pruner p +— (Vo' @ r. pure v A p o A Some o' = & 1r — p @)

fun wf-assertion where
wf-assertion (AStar A B) <— wf-assertion A N\ wf-assertion B
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| wf-assertion (AImp b A) <— mono-pure-cond b A\ wf-assertion A
| wf-assertion (ASem A) <— mono-pruner A

type-synonym ’c transformer = 'c = 'c
type-synonym ’c ext-state = ‘¢ X ‘c x 'c transformer

inductive package-rhs ::
'a = 'a = 'a ext-state set = 'a abool = 'a aassertion = 'a = 'a = 'a ext-state
set = bool where

AStar: | package-rhs o f S pc A o' f'S"; package-rhs ' f" S’ pc B " f'"S"]
= package-rhs ¢ f S pc (AStar A B) @' f'" S§"
| AImp: package-rhs ¢ f S (bool-conj pc b) A ¢’ ' S' = package-rhs ¢ f S pc
(AImp b A) ¢’ f' S’

| ASem: [ Naw Tb. (a, u, T) € S = pc a = b = witness (a, u, T) = a > b
A Bb;

S'={(a,u, T) lauT. (a,u, T) € SA—-pca}

U{(ao b the(u®db), T)]auTh. (a,u, T) €S A pca b= witness (a, u,

T)}]
= package-ths ¢ [ S pc (ASem B) ¢ f S’

| AddFromOutside: | Some ¢ = ¢’ & m ; package-rhs ¢’ f' S  pc A " f'" S";
stable m ; Some f' = f ® m ;

S'={(r,u, T)lauTr. (a,u, T) € SASomer=a® (Tf ©Tf) Nr##
ut]

= package-ths @ f S pc A " f" S"

definition package-sat where
package-sat pc A o’ v’ u <— (pc |a'| — (Fz. Some z = |a’'| ® (' © u ) A sat
A )

definition package-rhs-connection :: 'a = 'a = 'a ext-state set = 'a abool = 'a
aassertion = 'a = 'a = 'a ext-state set = bool where
package-rhs-connection @ fSpc A o' f'S'«— f'=fANOoH#H#H [N D f =’
@ f' A stable f' N
(V(a, u, T) € S. Jau. Some au = a ® u A (au ## (T f' Tf) —
Fa' v (¢, u, T)eS'N|a| =la| Naud (Tf'OoTf)=ad"@u ANu' >
u A package-sat pc A a’ u' u)))

definition mono-transformer :: 'a transformer = bool where
mono-transformer T +— (Vo @' o' = o — T @' = T p) A T unit = unit

definition valid-package-set where

valid-package-set S f «— (¥ (a, u, T) € S. a ## u A |a| = |u| A mono-transformer
TANax|Tfl)
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definition intuitionistic where
intuitionistic A +— (Vo' o. o' = o N Ao — A ')

definition pure-remains where
pure-remains S <— (V(a, u, p) € S. pure a)

definition is-footprint-general :: 'a = ('a = 'a = 'a) = 'a aassertion = 'a aasser-
tion = bool where

is-footprint-general w R A B +— (Va b. sat A a A\ Some b=a ® R a w — sat
B b)

definition is-footprint-standard :: 'a = 'a aassertion = ’'a aassertion = bool
where
is-footprint-standard w A B «— (Y a b. sat A a A Some b = a & w — sat B b)

2.2 Lemmas

lemma is-footprint-generall:
assumes Aa b. sat A a A Someb=a & R a w=> sat Bb
shows is-footprint-general w R A B
using assms is-footprint-general-def by blast

lemma is-footprint-standardl:
assumes Aa b. sat A a A Some b =a & w = sat B b
shows is-footprint-standard w A B
using assms is-footprint-standard-def by blast

lemma mono-pure-condl:
assumes A\p. b o «— b |p]
and Ap ' r. pure r A Some o' = B r A—-bp = by’
shows mono-pure-cond b
using assms(1) assms(2) mono-pure-cond-def by blast

lemma mono-pure-cond-cony:
assumes mono-pure-cond pc
and mono-pure-cond b
shows mono-pure-cond (bool-conj pc b)
proof (rule mono-pure-condl)
show A¢g. bool-conj pc b ¢ = bool-conj pc b ||
by (metis assms(1) assms(2) bool-conj-def mono-pure-cond-def)
show Ay ¢’ r. pure r A Some ¢’ = ¢ ® r A = bool-conj pc b ¢ = — bool-conj
peb o’
by (metis assms(1) assms(2) bool-conj-def mono-pure-cond-def)
qged

lemma bigger-sum:

assumes Some ¢ = a B b
and ¢’ = ¢
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shows 3b". b' = b A Some o' = a ® b’
proof —
obtain r where Some o' = ¢ & r
using assms(2) greater-def by blast
then obtain b’ where Some b/ = b & r
by (metis assms(1) asso2 domD domlI domlIff)
then show ?thesis
by (metis <Some ¢’ = p & > assms(1) assol commutative sep-algebra.greater-equiv
sep-algebra-azioms)
qed

lemma wf-assertion-sat-larger-pure:
assumes wf-assertion A
and sat A ¢
and Some o' = o ® T
and pure r
shows sat A ¢’
using assms
proof (induct arbitrary: ¢ @' r rule: wf-assertion.induct)
case (I A B)
then obtain a b where Some ¢ = a @ b sat A a sat B b by (meson sat.simps(1))
then obtain b’ where Some b' =0 & r
by (metis 1.prems(3) asso2 option.collapse)
moreover obtain o’ where Some o’ = a @ r
by (metis 1.prems(3) «Some ¢ = a @ by asso2 commutative option.collapse)
ultimately show “case
using 1
by (metis <Some ¢ = a ® by <sat A a> <sat B by assol sat.simps(1) wf-assertion.simps(1))
next
case (2 b A)
then show ?case
by (metis mono-pure-cond-def sat.simps(2) wf-assertion.simps(2))
next
case (3 A)
then show ?case
by (metis mono-pruner-def sat.simps(3) wf-assertion.simps(3))
qed

lemma package-satl:
assumes pc |a’| = (Fz. Some z = |a’| ® (v © u ) A sat A )
shows package-sat pc A a’ v’ u
by (simp add: assms package-sat-def)

lemma package-rhs-connection-instantiate:
assumes package-rhs-connection ¢ fS pc A ¢’ f' S’
and (a, u, T) € S
obtains au where Some au = a & u
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and au ## (T f'o Tf) = Fa' v’ (a’,u', T) € S"ANla'| = |a| AN au & (T
f'eTf)=a & u Au' = uA package-sat pc A a’ u' u
using assms(1) assms(2) package-rhs-connection-def by fastforce

lemma package-rhs-connectionl:
assumes 0 & f = o' P [’
and stable [’
and ¢ ## f
and f' = f
and Aau T. (a,u, T) € S = (Jau. Some au = a ® u A (au ## (T f' ©
Tf) —
Fa'u' (o, u, T)ye S'"N|a| = |la|lNavd (Tf'eTf)=d durNu>u
A package-sat pc A a’ u' u)))
shows package-rhs-connection ¢ f S pc A o' f' S8’
using package-rhs-connection-def assms by auto

lemma valid-package-setl:

assumes Na u T. (a, u, T) € S = a ## u A |a| > |u| A mono-transformer
TAar|Tf

shows walid-package-set S f

using assms valid-package-set-def by auto

lemma defined-sum-move:
assumes a ## b

and Some b=z & y

and Some o’ = a @ z
shows a’ #+# y

by (metis assms defined-def sep-algebra.assol sep-algebra-azioms)

lemma bigger-core-sum-defined:

assumes |a| = b

shows Some a =a @ b

by (metis (no-types, lifting) assms assol core-is-smaller greater-equiv maz-projection-prop-pure-core
mpp-prop pure-def pure-smaller)

lemma package-rhs-proof:
assumes package-rhs o f S pc A o' f' S’
and valid-package-set S f
and wf-assertion A
and mono-pure-cond pc
and stable f
and ¢ ## f
shows package-rhs-connection ¢ f S pc A o' f' S' A valid-package-set S’ f'
using assms
proof (induct rule: package-rhs.induct)
case (AImp o f Spcb A’ f'5)
then have asm0: package-rhs-connection ¢ f S (bool-conj pc b) A ¢’ f' S" A
valid-package-set S’ f'
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using mono-pure-cond-conj wf-assertion.simps(2) by blast
let ?pc = bool-conj pc b
obtain o & f =o' @ [/ stable f' o ## ff = f
and § Aeu T. (a, u, T) € S = (Jau. Some au = a & u A (au ## (T f’
eTf) —
Ha' v (a,u, TYe S'ANa| =|a|Nauvd (TffOoTf)=d®u ANu' =
u A package-sat ?pc A a’ u' u)))
using asm0 package-rhs-connection-def by force

have package-rhs-connection ¢ f.S pc (AImp b A) ' f' S’
proof (rule package-rhs-connectionl)
show ¢ #4# f
by (simp add: <o ## f>)
show o @ f = ¢’ @& f' by (simp add: <p & f = ' B f))
show stable f' using «stable 'y by simp
show f’ > f by (simp add: <f' = [»)
fix a u T assume asml!: (a, u, T) € §
then obtain au where asm2: Some au = a ® u A (au ## (T f e Tf) —
Fa'u' (o, u, T)eS'AN|a| =la|Nav® (Tf'oTf)=ad ®u Au' =
u A package-sat Zpc A o’ u’ u))
using § by presburger

then have au ## (T f'6 Tf) =
Fa' v (¢, u, T)e S'N|a| =la| Naud (Tf'oTf)=ad" @ u Nu' >
u A package-sat pc (AImp b A) o’ u’ u)
proof —
assume asm3: au ## (T f'© Tf)
then obtain o’ v’ where au” (a’, v’, T) € S"AJa'| = |a| AN auv ® (T f'©
Tf)=a & u' Au = uA package-sat ?pc A o’ v’ u
using asm?2 by blast
have (the ( |a'| ® (uv' © u))) = |a|
proof —
have v/ > u' © u
by (metis minus-default minus-smaller succ-refl)
then have a’ ## (v’ © u)
by (metis au’ asm3 asso8 defined-def minus-exists)
then show ?thesis
by (metis core-is-smaller defined-def greater-def option.exhaust-sel sep-algebra.asso2
sep-algebra-axioms)
qed
have package-sat pc (AImp b A) o’ v’ u
proof (rule package-satl)
assume pc |a’|
then show Jz. Some z = |a’/| ® (u' © u) A sat (AImp b A) z
proof (cases b |a’])
case True
then have ?pc |a
by (simp add: <pc |a’]» bool-cong-def)

{
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then show ?thesis
by (metis au’ package-logic.package-sat-def package-logic-azioms sat.simps(2))
next
case Fulse
then have — b (the (|a/] ® (v’ © w)))
using AImp.prems(2) <the ( |a/] & (u' & w)) = |a'] core-sum
mazx-projection-prop-def max-projection-prop-pure-core minus-exrists mono-pure-cond-def
wf-assertion.simps(2)
by metis
moreover obtain z where Some z = |a’| ® (v’ © u)
by (metis au’ asm3 asso2 commutative core-is-smaller defined-def
minus-and-plus option.collapse)
ultimately show ?thesis by (metis option.sel sat.simps(2))
qed
qed
then show Ja’ v’ (a’, u', T) € S'ANl|a/| = |la|Naud (Tf o Tf)=a @
u' A u' = u A package-sat pc (AImp b A) o’ v’ u
using au’ by blast
qed
then show Jau. Some au = a ® u A (au ## (T f ' Tf) — (Fa' u'. (a’,
u, TYe S'"ANla| = la|Nau @ (Tf'oTf)=a @& u Au > uA package-sat
pc (AImp b A) a’ v’ u))
using asm?2 by auto
qed
then show ?case
using <package-rhs-connection ¢ S (bool-conjpc b) A ¢’ f' S’ A valid-package-set
S’ f"» by blast
next
case (AStar o fSpc A ' f'S' B " f"S")
then have r1: package-rhs-connection ¢ f S pc A ' f' S’ A valid-package-set S’
f/
using wf-assertion.simps(1) by blast
moreover have ¢’ ## [’ using r1 package-rhs-connection-def|of ¢ fS pc A o’
1’8’ defined-def
by fastforce
ultimately have r2: package-rhs-connection ¢’ ' S'pc B " f S"" A valid-package-set
S//f//
using AStar.hyps(4) AStar.prems(2) AStar.prems(3) package-rhs-connection-def
by force

moreover obtain fa-def: ¢ @& f = o' © f' stable f' o ## ff = f
and xx: NAau T. (a, u, T) € S = (Jau. Some au = a ® u A (au ## (T f’
oeTf)—
Fa'u' (o, u, T)e S'"AN|a| =la|Nav® (Tf'eTf)=ad ®u Au' >
u A package-sat pc A a’ u' u)))
using r1 package-rhs-connection-def by fastforce
then obtain fb-def: o' ® f' = " @ f' stable f"" o' ## f' f'" = f'
and Aau T. (a, u, T) € "= (Fau. Some au = a ® u A (auw ## (T f" ©
Tf) —
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Fa' v (a,u', T)e S"Nl|a| = |a|Navd (Tf'e Tf)=a"&u Au
= u A package-sat pc B a’ u’ u)))
using r2 package-rhs-connection-def by fastforce

moreover have package-rhs-connection ¢ f S pc (AStar A B) " f" 8"
proof (rule package-rhs-connectionl)

show ¢ & f = " @ f' by (simp add: fa-def(1) fo-def(1))

show stable ' by (simp add: fbo-def(2))

show ¢ ## f using fa-def(3) by auto

show [’ = f using fa-def(4) fb-def(4) succ-trans by blast

fix ¢ u T assume asm0: (a, u, T) € S
then have f-def: Some (Tf"e Tf)=(Tf"e Tf)e (Tf' o Tf)
proof —
have mono-transformer T using valid-package-set-def asm0 <valid-package-set
S > by fastforce
then have T f" = T f'
by (simp add: fb-def(4) mono-transformer-def)
moreover have T f' = T f
using <mono-transformer T fa-def(4) mono-transformer-def by blast
ultimately show ?thesis
using commutative minus-and-plus minus-equiv-def by presburger
qed

then obtain au where au-def: Some au = a ® u
av ## (Tf'oTf) = Fa'u. (o', v, T)e S"ANla'| = |a| AN au® (T f’
©Tf)=a & u Au' > uA package-sat pc A a’ u' u)
using *x asm0 by blast
then show Jau. Some au = a ® u A (au ## (T f" S Tf) — (Fa’ v’ (a
v, TYyeS"ANla | =lalANaud (Tf'e Tf)=a @u Au'=uA package-sat
pc (AStar A B) o’ u' u))
proof (cases au #4# (T f" o Tf))
case True
moreover have mono-transformer T using (valid-package-set S f> valid-package-set-def
asm0 by fastforce
ultimately have au ## (T f"© T f') AN au ## (T f' © T f) using asso3
commutative defined-def f-def
by metis
then obtain o’ v’ where r3: (¢, v/, T) € S'A|a/| = |a| Nauv®d (Tf'© T
f)=a @ u' Au' = uA package-sat pc A o’ u' u
using au-def(2) by blast

then obtain au’ where au’-def: Some au’ = a’ ® u’
aw' #H# (T "o Tf)= Fa" v (", u", T) € S" Nl|a"| = |a'| A au’
S (Tf'eTf)=a"®u" ANu">=u' A package-sat pc B a" u' u’)
by (meson package-logic.package-rhs-connection-instantiate package-logic-axioms
r2)
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moreover have au’ ## T f" & T f’
using True r3 calculation(1) commutative defined-sum-move f-def by fast-
force
ultimately obtain o’ v’ where r4: (a", u", T) € S A |a"] = |a/] A au’
& (Tf'eTf)=a"®u" ANu">u' A package-sat pc B a" u'" v’
by blast

then have au & (T f"6 Tf)=a" & u"
proof —
have au @ (T f" © T f) = splus (Some au) (Some (T f" © T f))
by simp
also have ... = splus (Some au) (splus (Some (T f”" & T f') (Some (T f’
& T )
using f-def by auto
finally show ?thesis
by (metis (full-types) r3 r4 au’-def (1) splus.simps(3) splus-asso splus-comm,)
qed
moreover have package-sat pc (AStar A B) o’ v"" u
proof (rule package-satl)
assume pc |a”/|
then have pc |a
by (metis AStar.prems(3) r4 greater-equiv minus-core minus-core-weaker
minus-equiv-def mono-pure-cond-def pure-def)
then obtain z where Some z = |a/| @ (uv' © u) A sat A x
using 3 package-sat-def by fastforce
then obtain z’ where Some 2’ = |a"| ® (u" © u') A sat B z’
using <pc |a’’|> package-sat-def r4 by presburger

’I

have v > u"" 6 u
by (metis minus-default minus-smaller succ-refl)
moreover have a'' ## u’’
using True <au ® (T f" © T f) = o’ ® u' defined-def by auto
ultimately obtain z'’ where Some z'' = |a'"| @ (v" © w)
by (metis commutative defined-def maz-projection-prop-pure-core mpp-smaller
not-None-eq smaller-compatible)
moreover have Some (v © u) = (v © u) & (v’ © u)
using f «(a’, u, T) € S'Ala/| = |a| Nau & (Tf e Tf)=a @ u' A
u’ = u A package-sat pc A a’ u’ wy commutative minus-and-plus minus-equiv-def
by presburger
moreover have |a”| > |a
using 74 by blast
moreover have Some |a”| = |a'| @ |a”/|
by (metis (no-types, lifting) calculation(3) core-is-pure sep-algebra.assol
sep-algebra.minus-exists sep-algebra-axioms)
ultimately have Some 2" = 2’ ® x
using assol[of - - 2] <Some z = |a’| ® (v" © u) A sat A x> <Some z' =
la”| ® (u” & u') A sat Bz's commutative
by metis
then show Jz. Some z = |a"| & (u” & u) A sat (AStar A B)

|
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using <Some z = |a/| & (v’ © u) A sat A x> «Some z' = |a”| & (v" S u)
A sat B z'y «Some z' = |a"| & (u"" © u)» commutative by fastforce
qed
ultimately show ?thesis
using 73 4 au-def(1) succ-trans by blast
next
case Fulse
then show ?thesis
using au-def(1) by blast
qed
qed
ultimately show ?case by blast
next
case (ASem S pc witness B S’ ¢ f)
have valid-package-set S’ f
proof (rule valid-package-setl)
fix o’ v’ T assume asm0: (a’, u’, T) € S’
then show a’ ## u’ A |a’| = |u’| A mono-transformer T A o’ = |T f|
proof (cases (a’, v/, T) € S)
case True
then show ?thesis
using ASem.prems(1) valid-package-set-def by auto
next
case Fualse
then have (a’, v/, T) € {(a © b, the (u® b), T) lau T b. (a, u, T) € S A
pc a A b = witness (a, u, T)}
using ASem.hyps(2) asm0 by blast
then obtain a u b where (a, u, T) € S pc a b = witness (a, u, T) a’ = a
© bu' = the (u P b) by blast
then have a = b A Bb
using ASem.hyps(1) by presburger
have a ## u
using ASem.prems(1) «(a, u, T) € S» valid-package-set-def by fastforce
then have Some u’' = u ® b
by (metis <a = b A B by «u' = the (u & b))y commutative defined-def
option.ezhaust-sel smaller-compatible)
moreover have Some a = a’ ® b
using <a = b A B by <a’ = a © b> commutative minus-equiv-def by presburger

ultimately have o’ ## u’
by (metis <a ## w assol commutative defined-def)
moreover have |a’| = |u/|
proof —
have |a| = |u]
using ASem.prems(1) «(a, u, T) € S» valid-package-set-def by fastforce
moreover have |a’| > |a]
by (simp add: <a’ = a © b» minus-core succ-refl)
moreover have |a’| = ||
using <a = b A B by <a’ = a © by maz-projection-prop-pure-core minus-core
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mpp-mono by presburger
ultimately show ?thesis
by (metis <Some u' = u & b> <a’ = a & b> core-is-pure core-sum minus-core
pure-def smaller-pure-sum-smaller)
qed
moreover have o’ = |T f|
proof —
have a = |T f| using ¢(a, u, T) € S» (valid-package-set S f» valid-package-set-def
by fastforce
then show ?thesis
by (metis <a’ = a © by maz-projection-prop-pure-core minus-core mpp-mono
mpp-smaller sep-algebra.mpp-invo sep-algebra.succ-trans sep-algebra-azioms)
qed
ultimately show ?thesis using «(a, u, T) € S» (valid-package-set S f»
valid-package-set-def
by fastforce
qed
qed
moreover have package-rhs-connection ¢ f .S pc (ASem B) ¢ f S’
proof (rule package-rhs-connectionI)
show o @ f=p @ f
by simp
show stable f by (simp add: ASem.prems(4))
show ¢ ## f by (simp add: ASem.prems(5))
show f = f by (simp add: succ-refl)

fix a u T assume asm0: (a, u, T) € S

then obtain au where Some au = a @ u using <valid-package-set S f»
valid-package-set-def defined-def by auto
then have r0: (3a’ v’ (a’, v/, T) € S" A|a’| = |a| A Some au = o’ ® u’ A
u’ = u A package-sat pc (ASem B) a’ u’ u)
proof —
let ?b = witness (a, u, T)
let 20 =a© 7
let ?u = the (u © 2b)
show Ja’ v’ (a’, u’, T) € S" A |a’| = |a| A Some au = a’ ® v’ A u' = u A
package-sat pc (ASem B) a’ v’ u
proof (cases pc a)
case True
then have (%a, %u, T) € S’ using ASem.hyps(2) asm0 by blast
then have a = %0 A B ?b using ASem.hyps(1) True asm0 by blast
moreover have r1: (%a, %u, T) € S’ A |?a] = |a| A Some au = %a @ ?u
A Pu = u
proof
show (a © witness (a, u, T), the (u @ witness (a, u, T)), T) € S’
by (simp add: «(a © witness (a, u, T), the (u & witness (a, u, T)), T)
e Sh)
have |a © witness (a, u, T)| = |a
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by (simp add: minus-core succ-refl)
moreover have Some au = a © witness (a, u, T) @ the (v @ witness (a,

using «(Some au = a @ w <a > witness (a, u, T) A B (witness (a, u,

assol[of a © witness (a, u, T) witness (a, u, T) a u the (v ® witness
(a, u, T))]
commutative option.distinct(1) option.ezhaust-sel assod minus-equiv-def
by metis
moreover have the (u @ witness (a, u, T)) = u
using «Some au = a B w <a = witness (a, u, T) A B (witness (a, u,
T))» commutative
greater-def option.distinct(1) option.exhaust-sel asso3[of u witness (a,
u, T) ]
by metis
ultimately show |a © witness (a, u, T)| *= |a| A Some au = a ©
witness (a, u, T) @ the (u ® witness (a, u, T)) A the (u @ witness (a, u, T)) = u
by blast
qed
moreover have package-sat pc (ASem B) ?a %u u
proof (rule package-satl)
assume pc |a © witness (a, u, T)|
have Some 2u = v ® ?b
by (metis (no-types, lifting) <Some au = a ® w» calculation(1) commutative
minus-equiv-def option.distinct(1) option.exhaust-sel sep-algebra.assod sep-algebra-azioms)
moreover have %a ## ?u
by (metis r1 defined-def option.distinct(1))
moreover have 2u > %u O u
using 71 minus-smaller by blast
ultimately obtain © where Some © = |a © 2b] ® (%u © u)
by (metis (no-types, opaque-lifting) <a > witness (a, u, T) A B (witness (a,
u, T))» commutative defined-def minus-core minus-equiv-def option.exhaust smaller-compatible)
moreover have z = 2b
proof —
have 20 © u > 2b
using «Some (the (u & witness (a, u, T))) = u ® witness (a, u, T)
minus-bigger by blast
then show ?thesis
using calculation greater-equiv succ-trans by blast
qed
ultimately show Jz. Some © = |a & witness (a, u, T)| & (the (u @
witness (a, u, T)) © u) A sat (ASem B) x
using ASem.prems(2) «Some (the (u ® witness (a, u, T))) = u @ witness
(a, u, T)
<a = witness (a, u, T) N B (witness (a, u, T))> commutative
maz-projection-prop-def [of pure core]
maz-projection-prop-pure-core minus-equiv-def-any-elem mono-pruner-def [of
B
sat.simps(3)[of B] wf-assertion.simps(3)[of B]
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by metis
qged
ultimately show ?thesis by blast
next
case Fulse
then have package-sat pc (ASem B) a u u
by (metis ASem.prems(3) mono-pure-cond-def package-sat-def)
moreover have (a, u, T) € §’
using False ASem.hyps(2) asm0 by blast
ultimately show ?thesis
using <Some au = a & w succ-refl by blast
qed
qed
moreover have au ® (T f © T f) = Some au
proof —
have a = | T f| using «(a, u, T) € S» <valid-package-set S f» valid-package-set-def
by fastforce
then have |a| = TfO Tf
using core-is-smaller maz-projection-prop-def mazx-projection-prop-pure-core
minusl by presburger
then have |au| = Tfo Tf
using <Some au = a & w> core-sum greater-def succ-trans by blast
then show ?thesis using bigger-core-sum-defined by force
qed
ultimately show Jau. Some au = a ® u A (au ## (Tfe Tf) — (Fa' v
(o’ u', T)e S'"Nla'| =la|Nauw @ (TfOS Tf)=a" ®u Au' = uA package-sat
pc (ASem B) a’ v’ u))
using «Some au = a & w by fastforce
qed
ultimately show ?case by blast
next
case (AddFromOQutside ¢ o' m f' S  pc A " f'" 8" f§)
have valid-package-set S’ f'
proof (rule valid-package-setl)
fix o’ v T assume asm0: (a’, u, T) € S’
then obtain « where (a, u, T) € S o’ ## u Some o’ =a ® (T f'© Tf)
using AddFromOutside.hyps(6) by blast
then have |a| = |u| A mono-transformer T A a = |T f| using <valid-package-set
S fr valid-package-set-def
by fastforce
moreover have o’ = |T f
by (metis (no-types, opaque-lifting) «Some o’ = a ® (T f'© T f)» commutative
greater-equiv minus-core minus-equiv-def minus-smaller succ-trans unit-neutral)
ultimately show o’ ## u A |a'| = |u| A mono-transformer T A a' = |T /|
using «Some a’'=a ® (Tf'© Tf) «a' ## w greater-def maz-projection-prop-pure-core
mpp-mono succ-trans by blast
qed
then have r: package-rhs-connection @' f' S’ pc A o ' S" A valid-package-set
S fr

!
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by (metis AddFromQutside.hyps(1) AddFromOutside.hyps(3) AddFromOut-
side.hyps(4) AddFromOutside.hyps(5) AddFromOutside.prems(2) AddFromOutside.prems(3)
AddFromOutside.prems(4) AddFromQutside.prems(5) assol commutative defined-def
stable-sum,)
then obtain r2: ¢’ @ f' = " & f" stable f" @' ## f' f" = f'
NaeuT. (a,u, T) € "= (Fau. Some au=a ® u A (au ## (T f" S T [
N
Fa' v (a,u, T)eS"ANl|a'| = la| Navd (Tf"OTf)=0a@&u Au
= u A package-sat pc A o’ u’ u)))
using package-rhs-connection-def by fastforce

moreover have package-rhs-connection ¢ f S pc A " f"" S
proof (rule package-rhs-connectionl)
show o ® f =" @& f"
by (metis AddFromOutside.hyps(1) AddFromQutside.hyps(5) assol commu-
tative r2(1))
show stable [’
using AddFromOutside.hyps(4) calculation(4) r2(2) stable-sum by blast
show ¢ #7 [
by (simp add: AddFromOutside.prems(5))
show " = f
using AddFromOutside.hyps(5) bigger-sum greater-def r2(4) by blast

fixauT
assume asm0: (a, u, T) € S
then obtain au where Some au = o ® u using <(wvalid-package-set S f»
valid-package-set-def defined-def
by fastforce
moreover have au ## (T f" o T f) = (Fa' v’ (a/,u’, T) € S" A || =
lal Naud (Tf"e Tf)=a ®u' Au = uA package-sat pc A o’ u’ u)
proof —
assume asml: au ## (T f" © Tf)
moreover have mono-transformer T using <valid-package-set S f» valid-package-set-def
asm0
by fastforce
then have Some (T f" e T =(Tf"eTfe (Tf e Ty
by (metis AddFromQutside.hyps(5) commutative greater-equiv minus-and-plus
minus-equiv-def mono-transformer-def r2(4))
ultimately have a ## (T f'© T f)
using (Some au = a ® w» asso?2 commutative defined-def minus-exists
by metis
then obtain ¢’ where Some o’ = a @ (T f'© T f)
by (meson defined-def option.collapse)
moreover have a’ ## u
proof —
have Tf"o Tf=Tf o Tf
using «Some (T f"o T =Tf' o Tf & (Tf ©Tf) greater-equiv
by blast
then show ?thesis
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using «Some au = a ® w asml assol[of ua au T f' S T fa'] asso2]of ]
calculation commutative
defined-def|of | greater-equiviof T f"" © T fTf & T f]
by metis
qed

ultimately have (a’, u, T) € S’
using AddFromOutside.hyps(6) asm0 by blast

moreover have au ## (T f" o T ')
by (metis «<Some (T f"o TH=Tf'oTf' & (Tf o Tf) asml assol
defined-def)

then have Jau. Some au = o’ @ u A (au ## (T f"0 Tf) — (Fa'a v’
(a’a, ', T) € S”" N |a'al = ol ANau & (Tf"e Tf)=ada®u ANu' = uA
package-sat pc A a’a u’ w))

using r2(5) calculation by blast

then obtain au’ a’”’ v’ where r8: Some au’ = o' ® v av’ ## (T f"© T f)
= (¢ u, T)eS"AN|a"| = |d|Nau'"® (Tf'eoTf)=a"®u' Au'" = uA
package-sat pc A o’ u' u

using <au ## (T f” © T f')> by blast

moreover have au’ ## (T f"" © T f') using <au ## (T f"" © T f)) <Some
au=a ® w r3(1)

Some (Tf"OTH=(Tf'eoTf)e(TfeTf

Somea’=a® (Tf © Tf) assollofuaau Tf' © Tfa'] commutative
defined-sum-move[of au T f"' © T f]
by metis
ultimately have r4: (a”, u’, T) € S”" Ala"| = |a| AN av' @ (T f" & Tf)
=a”" @ u' ANu' = uA package-sat pc A o’ u' u
by blast
moreover have |a”| = |q]
proof —
have |a'| » |a]
using «Some o' = a @ (T f' & T f)» core-sum greater-def by blast
then show ?thesis
using 4 succ-trans by blast

qed

ultimately show Ja’ v’ (a’, v/, T) € S”" A|a’| = |a| AN au & (T f"© Tf)
=a" ®u A u' = uA package-sat pc A a’ v’ u

using «Some (T f"o TH=Tf'eTf e (Tf & Tf) «Somea =a
@ (Tf o Tf) «Someavw=a® w
commutative r3(1) assol splus.simps(3) splus-asso by metis

qed

ultimately show Jau. Some au = a & u A (au ## (T f" 6 Tf) — (Fa’
u'. (o, u, Ty e S"ANla'| =Ja|Navd (Tf'oTfl=ad du ANu »=uA
package-sat pc A a’ u' u))

by blast
qed
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ultimately show ?case using r by blast
qed

lemma unit-core:

|unit| = unit

by (meson core-is-pure max-projection-prop-pure-core sep-algebra.cancellative sep-algebra.mpp-invo
sep-algebra-axioms unit-neutral)

lemma unit-smaller:
@ = unit
using greater-equiv unit-neutral by auto

2.3 Lemmas for completeness

lemma sat-star-exists-bigger:
assumes sat (AStar A B) ¢
and wf-assertion A
and wf-assertion B
shows Ja b. |a| = |¢| A |b| = || A Some ¢ = a ® b A sat A a A sat B b
proof —
obtain a b where Some ¢ = a ® b sat A a sat B b
using assms sat.simps(1) by blast
then obtain a’ b’ where Some a’ = a ® |p| Some b’ = b @ |¢|
by (meson defined-def greater-def greater-equiv option.collapse smaller-compatible-core)
then have ¢’ = a AN b = b
using greater-def by blast
then have sat A a’ A sat B b’
by (metis <Some a’ = a @ |¢|> «<Some b’ =b & |p|» <sat A a> <sat B by assms(2)
assms(8) maz-projection-prop-pure-core mpp-prop package-logic.wf-assertion-sat-larger-pure
package-logic-axioms)
moreover have Some ¢ = a’ ® b’
by (metis (no-types, lifting) <Some ¢ = a & by <Some a’ = a & |p|> «Some b’
= b ® |p| assol commutative core-is-smaller)
ultimately show ?thesis
by (metis «Some o’ = a @ |p|> <Some b’ = b @ |p|> commutative extract-core
greater-equiv max-projection-prop-pure-core mpp-mono)
qed

lemma let-pair-instantiate:
assumes (a, b) = fz y
shows (let (a, b)) = fzyingabd) =gabd
by (metis assms case-prod-conv)

lemma greater-than-sum-ezists:
assumes a =~ b
and Some b = bl @ b2
shows Jr. Some a = r @ b2 A |r| = |a| A r = bl
proof —
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obtain r where Some a = r & b2 N r > bl
by (metis assms(1) assms(2) bigger-sum commutative)
then obtain r’ where Some r' = r @ |a|
by (metis defined-def greater-def option.exhaust smaller-compatible-core)
then have Some a = r' & b2
by (metis <Some a = r @ b2 A r > bl> commutative core-is-smaller sep-algebra.assol
sep-algebra-axioms)
then show ?thesis
by (metis <Some a = r @ b2 A r = bl <Some r’ = r & |a|> core-is-pure
greater-def smaller-than-core succ-trans)
qged

lemma bigger-the:
assumes Some a =z’ @ y
and z' > z
shows the ( |a] @ z') = the ( |a| @ z)
proof —
have a > z’
using assms(1) greater-def by blast
then have |a| ## 1z’
using commutative defined-def smaller-compatible-core by auto
moreover have |a| ## z
by (metis assms(2) calculation defined-def sep-algebra.asso3 sep-algebra.minus-exists
sep-algebra-axioms)
ultimately show ?thesis
using addition-bigger assms(2) commutative defined-def by force
qged

lemma wf-assertion-and-the:
assumes |a| ## b
and sat A b
and wf-assertion A
shows sat A (the ( |a| ® b))
by (metis assms(1) assms(2) assms(3) commutative defined-def maz-projection-prop-pure-core
option.collapse sep-algebra.mpp-prop sep-algebra-axioms wf-assertion-sat-larger-pure)

lemma minus-some:
assumes a =~ b
shows Some a = b @ (a © b)
using assms commutative minus-equiv-def by force

lemma core-mono:
assumes a =~ b
shows |a| > ||
using assms maz-projection-prop-pure-core mpp-mono by auto

lemma prove-last-completeness:

assumes a’ = a
and Some a = nfl & f2
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shows a’ © nfl > f2
by (meson assms(1) assms(2) greater-def greater-minus-trans minus-bigger succ-trans)

lemma completeness-aur:
assumes Na u T. (a, u, T) €
f2auT A (pcla] — sat A (the
and valid-package-set S f
and wf-assertion A
and mono-pure-cond pc
and stable f N o #F# f
shows 35". package-rhs ¢ fSpc Ao fS'"A(V(a,u', T) € S’ Fau. (a, u,
TYeSAa' =f2auTAlad|=]al)
using assms
proof (induct A arbitrary: S pc f1 f2)
case (AImp b A)
let ?pc = bool-conj pc b

S=|flauT|>l|a|]ANSomea=flauT®
(lal & (f1 a u T))))

have r0: 35’. package-rhs ¢ f S (bool-conj pc b) A ¢ f S’ A (Va€S’. case a of
(ayu, T)=3Fau (a,u, T)eSAa =f2auTAl|a|=]lal)

proof (rule AImp(1))

show walid-package-set S f
by (simp add: AImp.prems(2))

show wf-assertion A using Almp.prems(8) by auto
show mono-pure-cond (bool-conj pc b)
by (meson AImp.prems(8) Almp.prems(4 ) mono-pure-cond-conj wf-assertion.simps(2))
show stable f A @ #4 f using <stable f N ¢ #4# f> by simp

fixauT
assume asm0: (a, u, T) € S
then have Somea=flau T ® f2au T
using AImp.prems(1) by blast
moreover have bool-conj pc b |a| = sat A (the (|a| ® fl a u T))
proof —
assume bool-conj pc b |al
then have pc |qf
by (meson bool-conj-def)
then have |fl au T| = |a| A Somea=flau T & f2au T A sat (AImp b
A) (the (|a| ® f1l au T))
using AImp.prems(1) asm0(1) by blast
moreover have b (the (|a| ® f1 au T))
proof —
have |a| ## flau T A |a| = |fl a u T|
by (metis calculation commutative core-is-smaller defined-def greater-def
maz-projection-prop-pure-core mpp-mono option.discl succ-antisym)
then obtain z where Some z = |a| ® fl au T
by (meson defined-def option.collapse)
then have |z| = |q
by (metis <Some z = |a| @ fl a u T» <|a| ## flau T A |a] = |fl a u
T|> commutative core-is-pure core-sum maz-projection-prop-pure-core mpp-smaller
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smaller-than-core)
then show ?thesis
by (metis AImp.prems(3) «Some z = |a| ® f1 a u T» <bool-conj pc b |al>
bool-conj-def mono-pure-cond-def option.sel wf-assertion.simps(2))
qed
ultimately show sat A (the ( |a| ® fI a u T)) by (metis sat.simps(2))
qed
ultimately show |fl a u T| > |a| A Somea=flau T & f2au T A (bool-conj
pc b la] — sat A (the (|a| ® f1 a u T)))
by (metis AImp.prems(1) asm0)
qed
then obtain S’ where r: package-rhs ¢ f S (bool-conj pc b) A ¢ fS' Na’ v’ T.
(ayu,T)e S = Fawu (a,u, T) e SNa">f2auT)
by fast
moreover have package-rhs ¢ f S pc (AImp b A) ¢ f S’
by (simp add: package-rhs.AImp r(1))
ultimately show ?case
using r0 package-rhs.AImp by blast
next
case (ASem A)
let ?witness = M a, u, T). the (|a| ® fl au T)

obtain S’ where S’-def: S’ ={ (a, u, T) lau T. (a, u, T) € S A= pca}
U{(eob the(udd), T)|lauTh. (a, u, T) € S A pca A b= %witness (a,
u, T) }

by blast

have package-rhs ¢ f S pc (ASem A) ¢ f S’
proof (rule package-rhs.ASem)
show S'={(a, u, T) |lau T. (a, u, T) € S A= pca} U{(a ©Db, the (ud b),
T)lauTh (a,u, T) € S ApcaAb= ?witness (a, u, T)}
using S’-def by blast
fixauTh
assume asm0: (a, u, T) € S pc a b = (case (a, u, T) of (a, u, T) = the ( |a]
®flauT))
then have b = the ( |a| @ f1 a u T) by fastforce
moreover have pc |a
by (meson ASem.prems(4) asm0(2) mono-pure-cond-def)
then obtain |fl a u T| * |a| Some a =flau T & f2 a u T sat (ASem A)
(the (la] ® f1 au T))
using ASem.prems(1) asm0(1) by blast
then have Some b = |a| @ f1 a u T by (metis calculation commutative
defined-def minus-bigger minus-core option.exhaust-sel smaller-compatible-core)
moreover have a = b
proof —
have a = flau T
using <Somea=flau T & f2au T greater-def by blast
then show ?thesis
by (metis calculation(2) commutative maz-projection-prop-pure-core mpp-smaller
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sep-algebra.mpp-prop sep-algebra-axioms smaller-pure-sum-smaller)
qed
ultimately show a = b A A b
using <sat (ASem A) (the ( |a| ® f1 a u T))» sat.simps(3) by blast
qed

moreover have r0: Ao’ v’ T. (a/,u', T) € "= (Jau. (a,u, T) € S A a’
=f2auTA|a)|=]al)
proof —
fix ¢’ v’ T assume asm0: (a’, u’, T) € S’
then show Ja u. (a, u, T) € SANa" > f2auT A |a'| =|q
proof (cases (a’, u', T) € {(a, u, T) lauw T. (a, u, T) € S A = pc a})
case True
then show %thesis using ASem.prems(1) greater-equiv by fastforce
next
case Fulse
then have (a/, v/, T) € { (a © b, the (u® b), T) l[au Tb. (a, u, T) € S A
pc a A b= ?witness (a, u, T) }
using S’-def asm0 by blast
then obtain a u b where ¢’ = a¢ & b u’ = the (u ® b) (a, u, T) € Spcad
= %witness (a, u, T)
by blast
then have o’ > f2au T
proof —
have a = b
proof —
have a = flau T
using ASem.prems(1) «(a, u, T) € S» greater-def by blast
moreover have Some b= |a| ® flau T
by (metis <b = (case (a, u, T) of (a, u, T) = the (|a|® fl au T))» calcula-
tion case-prod-conv commutative defined-def option.exhaust-sel smaller-compatible-core)
ultimately show ?thesis
by (metis commutative maz-projection-prop-pure-core mpp-smaller
sep-algebra.mpp-prop sep-algebra-axioms smaller-pure-sum-smaller)
qed
then show ?thesis
using ASem.prems(1)[of a u T
(a, u, T) € Sy <a’'=a & b b= (case (a, u, T) of (a, u, T) = the (
la| ® fl aw T))
commutative core-is-smaller minus-bigger option.exhaust-sel option.simps(3)
assolfof f2au T fl au T ala| the (|a] & f1 au T)] asso2lof f2au T
flauT]
split-conv
by metis
qed
then show ?thesis
using ¢(a, u, T) € S) <a’ = a © b> minus-core by blast
qed
qed
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ultimately show ?case by blast
next
case (AStar A B)

let %A =MXau T. SOME x. 3y. Some (flauvT)=xz® y Alz| = |fl au T| A
ly| = |a| A (pc |a| — sat A (the ( |a] & z)) A sat B (the ( |a| @ y)))

let /B =XauT. SOMEvy. Some (fl auT)=2AauT®yA |yl = |al A
(pc |a| — sat B (the ( |a| & v)))

let 22 =XauT.the (fBauT ® f2auT)

have r: Aau T. (a, u, T) € S = Some (flauT)= %A auT @ BauT
AN?fAauT| = |flauwT| AN|?BauT| > |al A (pcla| — sat A (the ( |a| @
A au T)) A sat B (the (o] @ ?fBau T)))
A Some (?f2auT)=9%BauT®f2auT
proof —
fix ¢ v T assume asm0: (a, u, T) € S
then have 70: Somea=flau T ® f2au T A (pc |a]| — sat (AStar A B)
(the (la] ® f1 au T)))
using AStar.prems(1) by blast
then have 3z y. Some (the (|a| ® flau T )) =2 @ y A (pc |a|] — sat A
x) A (pc |la]| — sat B y) A
z > |(the (|a] ® fl au T))| Ay > |(the (|a] & f1 au T))]
proof (cases pc |al)
case True
then show ?thesis
using AStar.prems(3) r0
max-projection-prop-def|of pure core] max-projection-prop-pure-core
sat-star-ezists-bigger[of A B (the (|la| & fl au T))]
succ-trans|of | wf-assertion.simps(1)[of A B]
by blast
next
case Fulse
then have Some (the (|a| ® fl au T )) = the (|a| ® fl aw T) & |the ( |q
®flauT)
by (simp add: core-is-smaller)
then show ?thesis by (metis False max-projection-prop-pure-core mpp-smaller
succ-refl)
qed
then obtain z y where Some (the (|a| ® fl au T)) = 2 & y pc |a] — sat
Az pclal — sat By
z = |(the (|a] ® fl au T))| y = |(the (|a| ® fI au T))| by blast
moreover obtain af where Some af = |a| ® flau T
by (metis 0 commutative defined-def minus-bigger minus-core option.ezhaust-sel
smaller-compatible-core)
ultimately have Some (flauv T) =2 ® y
by (metis AStar.prems(1) r0 asm0 commutative core-is-smaller greater-def
max-projection-prop-pure-core mpp-mono option.sel succ-antisym,)
moreover have |a| ## z A |a| ## y
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by (metis <Some af = |a| ® f1 a u Ty calculation commutative defined-def
option.discl sep-algebra.asso3 sep-algebra-axioms)
then have the (|a| ® z) = x A the (|a] & y) = ¥
using commutative defined-def greater-def by auto

ultimately have pc-implies-sat: pc |a| = sat A (the ( |a| ® z)) A sat B (the
(la] @ y)
by (metis AStar.prems(3) <pc |a| — sat A x» <pc |a| — sat B y» ¢|al
## x A |a| ## v commutative defined-def maz-projection-prop-pure-core op-
tion.ezhaust-sel package-logic.wf-assertion.simps(1) package-logic-axioms sep-algebra.mpp-prop
sep-algebra-axioms wf-assertion-sat-larger-pure)

have r1: 3y. Some (flauT)=?%fAauvT @y AN |?fAauT|>|flauT|A
ly| = |a| A (pc |a| — sat A (the ( |a| ® ?fA a u T)) A sat B (the ( |a| © y)))
proof (rule somel-ex)
show 3z y. Some (flauT)=2@yAlz| = |flauw T| A |yl = |a] A (pc |a]
— sat A (the ( |a] ® z)) A sat B (the ( |a| @ y)))
using «Some (fl au T) =z & y» <Some (the (|a| ® flauT)) =2y
pe-implies-sat <z = |the (|a| ® f1 auw T)|» <y = |the (|a| ® f1 a u T)|» core-is-pure
maz-projection-propE(8) max-projection-prop-pure-core option.sel pure-def
by (metis AStar.prems(1) asm0 minusl minus-core)
qed
then obtain yy where yy-prop: Some (fl a u T) = %fA au T ® yy A |9fA a
uT| = |flauT|Alyyl = |a] A (pc |a]| — sat A (the (o] @ fA auw T)) A sat
B (the ( |a] © yy)))
by blast
moreover have 72: Some (flauT)= %A auT ® ?(BauT AN|?BauT|
= la|l A (pc |a| — sat B (the ( |a] @ 2B au T)))
proof (rule somel-ex)
show Jy. Some (flauT)= %A auT @y A |yl = |a| A (pc |a| — sat B
(the (|a| © y)))
using r! by blast
qed
ultimately have fBau T @ f2 a u T # None
using 70
option.distinct(1) [of | option.ezhaust-sellof /B au T ® f2 a u T)] asso2]of
YA auT?%BauTflauTfRauT)
by metis
then show Some (flauT)= %A auT ® fBauT AN|?%AauT| > |fla
uT|AN|?fBauT| > g
A (pe |a] — sat A (the (|a| @ ?fA au T)) A sat B (the ( |a] ® /B awu T)))
A Some (?f2auT)=%BauvT®fPauT
using 70 r2 yy-prop
option.distinct(1) option.ezhaust-sellof ?fB au T @ f2 a u T) asso2|of ?fA
auT?%BauTflauTf2auT)
by simp
qed
have ih1: 35’ package-rhs ¢ f S pc A fS' N (VaeS". case a of (a’, u', T) =
Jawu. (a,u, T) e SANa" =2 2auTAlad|=]lal)
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proof (rule AStar(1))
show wvalid-package-set S f
by (simp add: AStar.prems(2))
show wf-assertion A
using AStar.prems(3) by auto
show mono-pure-cond pc
by (simp add: AStar.prems(4))
show stable f N\ ¢ ## f using «stable f N ¢ ## f> by simp

fixauT
assume asm0: (a, u, T) € S
then have b: Some (flauT)= %A auT & fBauT AN|%A au T| = |f1
auT|AN|?2BauwT|>la| A(pclal — sat A (the (|a] @ A a u T)) A sat B
(the (|a| ® 9B au T)))
using 7 by fast
show |?fA au T| = |a|] A Somea = %fAauT ® ?f2au T A (pc |a] — sat
A (the (|a| ® 7fA a u T)))
proof —
have |?fA a u T| = |a|
using AStar.prems(1)[of a uw T| asm0 b assol[of fA auw T %fBau T fl au
7]
asso2[of fA a uw T ?fB a u T ] option.sel succ-trans|of |?fA a u T| - |al]
by blast
moreover have Somea = %fAauT @ ?2au T
using AStar.prems(1)[of a u T] asm0 b assol[of ?fA auw T %fBau T fl a
vuTfauT?2auT]
asso2[of %fA au T ?2fBau T fl au T f2au T] option.sel
option.ezhaust-sellof ?fBau T ® f2au T Somea = %fAauT @® ?f2a u T)
by force
moreover have pc |a| — sat A (the ( |a| @ fA a u T))
using AStar.prems(1)[of a u T] asm0 b
asso2[of %A a uw T ?fB a u T | option.sel succ-trans[of |?fA a u T| - |al]
by blast
ultimately show ?thesis
by blast
qed
qged
then obtain S’ where r’: package-rhs ¢ f Spc A p fS' Na’" v' T. (a’, v/, T)
€S = 3Jau. (a,u, TYESNa = ?%2auT Ala| =g
by fast

let ?project = Aa’ T. (SOME r. 3a u. r = (a, u) A (a, u, T) € SN a' = ?f2a
wT Al = o] )

have project-prop: Na’ v’ T. (a’, v/, T) € ' = Ja u. ?project o’ T = (a, u)
A(a,u, T) e SANa" > 22auT Ala| =|a

proof —
fix o’ v/ T assume (o, v/, T) € S’
then obtain ¢ u where (a, u, T) € SAa' = 2au T A |a'| =|a

using r’ by blast

46



moreover show Ja u. ?project a’ T = (a, u) A (a, u, T) € SN a’' = 2 au
T A Ja/ = |af
proof (rule somel-ex)
show 3rawu. r=(a, u) A (a,u, T) € SANa" = ?f2au T A |a’| = |a| using
calculation by blast
qed
qed

let ?nf1 = Xa’ u’ T. let (a, u) = ?project a’ T in (SOME r. Some r = |a’| &
fBauT)
let nf2 =Xa’ v T.a"© nfla’ v’ T

have 35", package-rhs ¢ f S’ pc B ¢ fS" N (VaeS”. case a of (a’, v/, T) =
Jau (a,u, TYeS'ANa" = nf2auT Ala'| =la|)
proof (rule AStar(2))
show stable f A @ #4 f using <stable f N ¢ #4# f> by simp

then show wvalid-package-set S’ f
using AStar.prems <package-rhs ¢ f S pc A o fS" package-logic.package-rhs-proof
package-logic.wf-assertion.simps(1) package-logic-axioms
by metis
show wf-assertion B
using AStar.prems(3) by auto
show mono-pure-cond pc
by (simp add: AStar.prems(4))
fix o’ v’ T assume (o, v/, T) € S’
then obtain a¢ u where a-u-def: (a, u) = project o’ T (a, u, T) € S a’ =
2 au T |a'| = |a
using project-prop by force
define nf! where nfl = ?nfl o’ v’ T
define nf2 where nf2 = ?nf2a’ u' T
moreover have rnfl-def: Some nfl = |a’| ® ?/Bau T
proof —
let %z = (SOME r. Some r = |a’| @ 9fBau T )
have Some %z = |a’| ® ?fBau T
proof (rule somel-ex)
have Some (flauT)= %A auT ® BauTA|?%fAauT| = |fl au
TIAN|?BauT| > |a
A (pc |a] — sat A (the ( |a] @ ?fA a uw T)) A sat B (the ( |a| ® ?fBau
7))
using r a-u-def by blast
then have Some (f2au T)=2BauT ®f2auT
by (metis (no-types, lifting) AStar.prems(1) a-u-def(2) asso2 option.distinct(1)
option.ezhaust-sel)
moreover have o’ = (/2 a v T) using <a’ = 22 a u T) by blast
ultimately have a’ = 9fB a u T using succ-trans greater-def
by blast
then obtain r where Some r = |a/| ® ?(Bau T
using
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commutative
greater-equiv[of a’ ?fB a u T]
minus-equiv-def-any-elem|[of a]
by fastforce
then show 3r. Some r = |a'| ® ?fB a u T by blast
qed
moreover have ?nfl o’ v/ T = %z
using let-pair-instantiate[of a u - '’ T Aa u. (SOME r. Some r = |a’| ®
fBauT)| au-def
by fast
ultimately show ¢thesis using nfi-def by argo
qed

moreover have rf2-def: Some a’ = nfl ® nf2
proof —
have nf2 = a’ & nfl using nfl-def nf2-def by blast
moreover have a’ > nfl
proof —
have ?f2 a u T > nfl
proof —
have Some (?f2auT)=?BauT ® f2au T using r «(a, u, T) € S»
by blast
then have ?2au T > ?fBau T
using greater-def by blast
moreover have ?f2au T > |a
proof —
have |?f2 a v T| = |a
proof —
have |22 a u T| = |%/Ba u T| using <?f2au T »= %fBau T
core-mono by blast
moreover have |?fB a u T| = |a| using r «(a, u, T) € S» by blast
ultimately show ?thesis using succ-trans <|a’| = |a|> by blast

|

qed
then show ?thesis
using a-u-def(4)
bigger-core-sum-defined|of ?f2 a u T)
greater-equiv|of - |al]
by auto
qed
ultimately show #thesis using
core-is-pure[of a’] commutative pure-def|[of |a’|] smaller-pure-sum-smaller|of
- - |a'|] rnf1-def
by (metis (no-types, lifting))
qed
then show ?thesis using <a’ = ?2f2 a u T) succ-trans by blast

qed
ultimately show ?thesis using minus-some nf2-def by blast

qed
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moreover have pc |a’| = sat B (the (|a’| ® ?nfl o’ u' T))

proof —
assume pc |a’|
moreover have |a’| = |a|

by (simp add: a-u-def(4))
then have pc |a| using «pc |a’]) by simp
ultimately have sat B (the ( |a] ® ?/Bau T))
using 7 a-u-def by blast
then have sat B (the ( |a’| & 9B a u T)) using «|a’| = |a|> by simp

then show sat B (the ( |a’| @& ?nfl o’ v’ T))
proof —
have nf1 = |a’| using rnfI-def
using greater-def by blast
then have Some nfl = |a’'| ® nfl
by (metis bigger-core-sum-defined commutative core-mono maz-projection-prop-pure-core
mpp-invo)
then show ?thesis using nfl-def rnfl-def <sat B (the (|a'| & ?/fBau T))»
by argo
qed
qed
moreover have |?nfl o’ v’ T| = |a
proof —
have ?nfl o’ v’ T = |a’| using nf1-def greater-def rnfl-def by blast
then show ?thesis
using maz-projection-propE(3) maz-projection-prop-pure-core sep-algebra.mpp-prop
sep-algebra-axioms by fastforce
qed
ultimately show |?nff o’ v’ T| = |a'| A Somea’ = ?nfl o’ v’ T @ ?nf2 o’
uw' T A (pc |a'| — sat B (the (|a’| @ nfl o’ v’ T)))
using nfl-def

|

by blast
qed
then obtain S’ where S'-prop: package-rhs ¢ f S pc B fS" Na’ v’ T. (a,
v, T)eS"= Fau (a,u, T) € S'"Na'" > ?nf2auT Ala| =lq
by fast

then have package-rhs ¢ f S pc (AStar A B) ¢ f S
using <package-rhs ¢ f S pc A ¢ f S’ package-rhs.AStar by presburger
moreover have Aa” v T. (a”, v", T) € " = Jau. (a,u, T) € SAa" =
f2auT Ala”| =|a
proof —
fix o’ v” T assume asm0: (a", u", T) € §”

then obtain o’ v’ where (a’, v/, T) € S’ ANa" = nf2a’ v’ T A |a”| = |a|
using S'-prop by blast
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then obtain a u where a-u-def: (a, u) = project o’ T (a, u, T) € S a’ =
f2au T |a'] = |a
using project-prop by force

define nf! where nfl = ?nfl o’ v’ T
define nf2 where nf2 = ?nf2 a’ v’ T

moreover have rnfl-def: Some nfl = |a’| ® ?/Bau T
proof —
let 2z = (SOME r. Somer = |a'| ® ?fBau T)
have Some %z = |a'| ® Bau T
proof (rule somel-ex)
have Some (flauT)= %A auvT ® BauT A|?%fAauT| > |fl au
T|AN|2BauT|*> |
A (pc |a] — sat A (the (|a] @ ?fA a uw T)) A sat B (the (|a| ® ?fBau
7))

using r a-u-def by blast
then have Some (?f2auT)=%?BauvT ® f2auT
by (metis (no-types, lifting) AStar.prems(1) a-u-def(2) asso2 option.distinct(1)
option.exhaust-sel)
moreover have o’ = (/2 a v T) using <a’ = ?f2 a v T» by blast
ultimately have o’ = ?fB a u T using succ-trans greater-def
by blast
then obtain r where Some r = |a/| ® fBau T
using commutative greater-equiv|of a’ ?fB a u T| minus-equiv-def-any-elem|[of
a’] by fastforce
then show Jr. Some r = |a'| ® 9B a u T by blast
qed
moreover have ?nfl o’ u' T = %z
using let-pair-instantiate[of a u - '’ T Aa u. (SOME r. Some r = |a’| ®
fBauT)| a-u-def
by fast
ultimately show ¢thesis using nfi-def by argo
qed

moreover have rf2-def: a’ = nfl A nf2a’ v' T = f2au T
proof —
have nf2 = a’ & nfl using nfl-def nf2-def by blast
moreover have a’ = nfi ANa' & nfl = f2au T
proof —
have ?f2 a uw T > nf1
proof —
have Some (?f2auT)=%BauT ® f2au T using r <(a, u, T) € S
by blast
then have ?f2au T > ?fBau T
using greater-def by blast
moreover have ?f2au T * |a
proof —
have |?f2 a v T| > |a

|

50



proof —
have |22 a u T| = |%/B a u T| using <?f2au T »= ?/Bau T»
core-mono by blast
moreover have |?fB a u T| = |a| using r «(a, u, T) € S» by blast
ultimately show ?thesis using succ-trans <|a’| = |a|> by blast
qed
then show ?thesis
using a-u-def(4)
bigger-core-sum-defined
greater-equiv|of ?f2 a u T |a|]
by auto
qed
ultimately show ?thesis using
core-is-pure[of a’] commutative pure-def|[of |a’|] smaller-pure-sum-smaller|of
2 a uw T - |a'|] rnfi-def
by simp
qged
then have r1: o’ = nfl using <a’ = /2 a u T» succ-trans by blast
then have Some a’ = nfl ® nf2 using minus-some nf2-def «nf2 = o’ ©
nfl» by presburger
have r2: o’ © nfl = f2au T
using <a’ = 2 au T»
proof (rule prove-last-completeness)

have Some (f2au T)=2?BauT & f2auT
using 7 <(a, u, T) € S» by blast
moreover have Some nfl = |a’| ® ?fB a u T using rnfl-def by blast

have Some (?f2auT)=%BauT ® f2au T using r <(a, u, T) € S
by blast
then have f2au T = ?f(Bau T
using greater-def by blast
moreover have ?f2a u T » |a|
proof —
have |?f2 a v T| > |a]
proof —
have |92 a u T| = |%fB au T| using <?f2au T = ?fBau T
core-mono by blast
moreover have |?fB a u T| = |a| using r «(a, u, T) € S» by blast
ultimately show ?thesis using succ-trans <|a’| = |a|> by blast
qed
then show ?thesis
using a-u-def(4)
bigger-core-sum-defined|of - |al]
greater-equiv|of ?f2 a u T |al]
by auto
qed
ultimately show Some (f2au T)=nfl & f2au T
using assol[of |a'| ?2fBauw T nfl f2au T ?2f2a u T
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assol[of |a’| |a'| |a’| ] core-is-pure[of a'] greater-def[of 2f2 a u T |a'|]
rnfl-def
by (metis (no-types, lifting))
qed
then show ?thesis using <a’ = ?f2 a u T succ-trans using r1 by force
qed
ultimately show ?thesis using nf2-def by argo
qed
ultimately have (a, u, T) € SAa’ = %2auT AN nf2a’v' T = f2auT
using nfl-def nf2-def
a-u-def by blast
then have " = f2au T A |a”| = |a’| using «(a’, v/, T) € S’ A a” = ?nf2
a"uw' T A la”| =la’]>
using succ-trans by blast
then show Ja u. (a, u, T) € SAa" > f2auT A |a”| =]|a| using r’
using a-u-def(2) a-u-def(4) by auto
qed
ultimately show ?case by blast
qed

2.4 Soundness

theorem general-soundness:
assumes package-rhs ¢ unit { (a, unit, T) |a T. (a, T) € S } (A-. True) A ¢’ f
S/
and Aa T. (a, T) € S = mono-transformer T
and wf-assertion A
and intuitionistic (sat A) V pure-remains S’
shows Some ¢ = ¢’ @ f A stable f A (V(a, T) € S. a ## T f — sat A (the
(a® Tf)))
proof —
let 25 = { (a, unit, p) la p. (a,p) € S}
let ?pc = A-. True
have package-rhs-connection ¢ unit 2S ?pc A ¢’ f S’ A valid-package-set S’ f
proof (rule package-rhs-proof)
show package-rhs ¢ unit {(a, unit, p) |a p. (a, p) € S} (A-. True) A ¢’ f S’
using assms(1) by auto
show wvalid-package-set {(a, unit, p) |a p. (a, p) € S} unit
proof (rule valid-package-setI)
fixauT
assume (a, u, T) € {(a, unit, p) |a p. (a, p) € S}
then have u = unit by blast
moreover have |T unit| = unit

using «(a, u, T) € {(a, unit, p) lap. (a, p) € S}» assms(2) mono-transformer-def

unit-core by fastforce
then show a ## u A |a| > |u| A mono-transformer T N a = |T unit|
using «(a, u, T) € {(a, unit, p) |a p. (a, p) € S assms(2) defined-def
unit-core unit-neutral unit-smaller by auto
qed
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show wf-assertion A by (simp add: assms(3))
show mono-pure-cond (A-. True)
using mono-pure-cond-def by auto
show stable unit by (simp add: stable-unit)
show ¢ ## unit
using defined-def unit-neutral by auto
qed

then obtain 7: © ® unit = ¢’ @ f stable f
NaeuwT. (a, u, T) € 25 = (Jau. Some au = a ® u A (au ## (T fO T
unit) —
(Fa' v (a,u', T)e S"ANla| = |a] Nau® (Tfe Tunit)=a" @ u' A u’
= u A package-sat ?pc A o’ u' u)))
using package-rhs-connection-def by force

moreover have A\a T'z. (a, T) € SASomez=a @ Tf = sat A x
proof —
fix o T z assume asm0: (a, T) € SN Somez =a @ Tf
then have T'f & T unit = T f
by (metis assms(2) commutative minus-equiv-def mono-transformer-def op-
tion.sel unit-neutral unit-smaller)
then obtain au where au-def: Some au = a ® unit A (au ## T f —
(Fa' v (a/, v, T)e S"ANla| = la| ANauv® Tf=a" & u Au > unit A
package-sat ?pc A a’ u’ unit))
using 7 asm0 by fastforce
then have au = a by (metis option.inject unit-neutral)
then have (Ja’ v’ (a’, v/, T) € S"Ala| = |a| ANa® Tf=a @ u A
package-sat ?pc A a’ u' unit)
using au-def asm0 defined-def
by auto
then obtain ¢’ v’ where 70: (a/, v/, T) € S'"A|a/| = |a|] ANa® Tf=a' &
u’ A package-sat ?pc A a’ u' unit
by presburger
then obtain y where Some y = |a’| ® (v’ © unit) sat A y
using package-sat-def by auto
then have Some y = |a'| ® u’
by (metis commutative minus-equiv-def splus.simps(3) unit-neutral unit-smaller)
then have z > y
by (metis r0 addition-bigger asm0 maz-projection-prop-pure-core mpp-smaller)
then show sat A z
proof (cases intuitionistic (sat A))
case True
then show ?thesis by (meson «Some y = |a’| ® (uv' © unit)y <sat A y» <x =
y» intuitionistic-def)
next
case Fulse
then have pure-remains S’ using assms(4) by auto
then have pure o’ using pure-remains-def r0
by fast
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then show ?thesis using r0 «Some y = |a’| ® (v’ © unit)) <sat A y» <Some
y = la’| ® u" asm0 core-is-smaller
core-maz option.sel pure-def assol|of a’| by metis
qed
qed
then have (V(a, T) € S. a ## T f — sat A (the (a @ T f)))
using sep-algebra.defined-def sep-algebra-azxioms by fastforce
moreover have Some ¢ = ¢’ & f A stable f
using r(1) r(2) unit-neutral by auto
ultimately show ?thesis by blast
qged

theorem soundness:
assumes wf-assertion B
and Aa. sat Aa = a €S
and Aa. a € S = mono-transformer (R a)
and package-rhs o unit { (a, unit, R a) |a. a € S } (A-. True) Bo' w S’
and intuitionistic (sat B) V pure-remains S’
shows stable w A Some o = o’ ® w A is-footprint-general w R A B
proof —
let 25 ={(a, R a)|a. a € S}
have r: Some 0 = o’ ® w A stable w A (V(a, T)e{(a, R a) |a. a € S}. a ##
T w — sat B (the (a ® T w)))
proof (rule general-soundness)
show package-rhs o unit {(a, unit, T) |a T. (a, T) € {(a, R a) |a. a € S}}
(A-. True) Bo' w S’
using assms(4) by auto
show Aa T. (a, T) € {(a, R a) |a. a € S} = mono-transformer T using
assms(3) by blast
show wf-assertion B by (simp add: assms(1))
show intuitionistic (sat B) V pure-remains S’ by (simp add: assms(5))
qed
moreover have is-footprint-general w R A B
proof (rule is-footprint-generall)
fix a b assume asm: sat A a N Some b=a ® Raw
then have (a, R a) € 25
using assms(2) by blast
then have sat B (the (a @ R a w)) using r using asm defined-def by fastforce
then show sat B b by (metis asm option.sel)
qed
ultimately show ¢thesis by blast
qged

corollary soundness-paper:
assumes wjf-assertion B
and Aa. sat Aa = a € S
and package-rhs o unit { (a, unit, id) |a. a € S } (A-. True) B o’ w S’
and intuitionistic (sat B) V pure-remains S’
shows stable w A Some 0 = o' ® w A is-footprint-standard w A B
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proof —
have stable w A Some 0 = o' & w A is-footprint-general w (A-. id) A B
using assms soundnessjof B A S M- id o o’ w S’
by (simp add: mono-transformer-def)
then show ?%thesis
using is-footprint-general-def is-footprint-standardl by fastforce
qed

2.5 Completeness

theorem general-completeness:
assumes Aau Tz (a,u, T) €S = Somez=a® Tf= sat A x
and Some p = ' @ f
and stable f
and valid-package-set S unit
and wf-assertion A
shows 35'. package-rhs ¢ unit S (A-. True) A ¢’ f S’
proof —
define S’ where S'={ (r,u, T) lau T r. (a, u, T) € S A Somer =a @ (T
fe Tunit) Nr ## u}
let ?pc = A-. True
have 3S5". package-rhs o' f S’ ?pc A o' f 8"
proof —
let /2 = Aa v T. unit
let 2f1 =XauT. a
have 35". package-rhs @' fS" ?pc A @' fS" AN (V(a', v/, T) € S”. Ja u. (a,
u, TYeS'ANa" > 92auT Ala'] =]a|)
proof (rule completeness-aux)
show mono-pure-cond (A-. True) by (simp add: mono-pure-cond-def)
show wf-assertion A by (simp add: assms(5))
show wvalid-package-set S’ f
proof (rule valid-package-setl)
fix o’ u' T
assume (a’, v/, T) € S’
then obtain o where asm: (a, v/, T) € S A Somea'=a® (TfS T
unit) A o' ## u’
using S’-def by blast
then have a ## u' A |a| > |u'| A mono-transformer T
using assms(4) valid-package-set-def by fastforce
moreover have |T f © T unit| = |T f]|
by (simp add: minus-core)
ultimately show o’ ## u' A |a’| = |u/| A mono-transformer T A a’ =
77
by (meson asm core-sum greater-def greater-equiv minus-equiv-def mono-transformer-def
suce-trans unit-neutral)
qed
show stable f N @' ## [
by (metis assms(2) assms(3) defined-def domI domlIff)
fixauT

95



assume (a, u, T) € S’
then obtain o’ " where (a/, u’, T) € S Some a = o' ® (T f © T unit)
using S’-def by blast
moreover have T f © Tunit = T f
proof —
have mono-transformer T using <valid-package-set S unity valid-package-set-def
«(a’, u', T) € S» by auto
then show ?thesis
by (metis commutative minus-default minus-equiv-def mono-transformer-def
option.sel unit-neutral)
qed

then have sat A (the ( |a| @ a))
by (metis assms(1) calculation(1) calculation(2) commutative core-is-smaller
option.sel)
then show |a| = |a] A Some a = a ® unit A (True — sat A (the ( |a| @
)
by (simp add: succ-refl unit-neutral)
qed
then show %thesis by auto
qged
then obtain S’ where package-rhs ¢’ f S’ ?pc A o' f S' by blast
have package-rhs ¢ unit S ?pc A @' f S
using assms(2)
proof (rule package-rhs. AddEFromQutside)
show package-rhs @' f S’ ?pc A @' f S
by (simp add: <package-rhs o' f S’ ?pc A @' fS')
show stable f using assms(3) by simp
show Some f = unit @ f
by (simp add: commutative unit-neutral)
show S'={ (r,u, T) lauTr.(a,u, T) € S A Somer=a® (Tfe Tunit)
ANr #HH#u}
using S’-def by blast
qed
then show ?thesis
by blast
qed

theorem completeness:
assumes wjf-assertion B
and stable w A is-footprint-general w R A B
and Some o =0’ ® w
and Aa. sat A a = mono-transformer (R a)
shows 35’. package-rhs o unit {(a, unit, R a) |a. sat A a} (A-. True) B o’ w
S/
proof —
let 25 = {(a, unit, R a) |a. sat A a}
have 3 5. package-rhs o unit {(a, unit, R a) |a. sat A a} (A-. True) B o’ w S’
proof (rule general-completeness[of S w B o ')
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show Aa v T z. (a, u, T) € {(a, unit, R a) |a. sat A a} = Some z = a &
Tw= sat Bx
using assms(2) is-footprint-general-def by blast
show Some o = ¢’ @ w by (simp add: assms(3))
show stable w by (simp add: assms(2))
show wf-assertion B by (simp add: assms(1))

show wvalid-package-set {(a, unit, R a) |a. sat A a} unit
proof (rule valid-package-setI)
fix a u T assume asm0: (a, u, T) € {(a, unit, R a) |a. sat A a}
then have u = unit A T = R a A sat A a by fastforce
then show a ## u A |a| > |u| A mono-transformer T A a = |T unit|
using assms(4) defined-def mono-transformer-def unit-core unit-neutral
unit-smaller by auto
qed
qged
then show ?thesis by meson
qed

corollary completeness-paper:
assumes wf-assertion B
and stable w A is-footprint-standard w A B
and Some o =o' ® w
shows 35", package-rhs o unit {(a, unit, id) |a. sat A a} (A-. True) B o’ w S’
proof —
have 35'. package-rhs o unit {(a, unit, (A-. id) a) |a. sat A a} (A-. True) B o’
w S’
using assms(1)
proof (rule completeness)
show stable w A is-footprint-general w (Aa. id) A B
using assms(2) is-footprint-general-def is-footprint-standard-def by force
show Some 0 = ¢’ ® w by (simp add: assms(3))
show Aa. sat A a = mono-transformer id using mono-transformer-def by
auto
qed
then show “thesis by meson
qed

end

end
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