A Solution to the POPLMARK Challenge in
[sabelle/HOL

Stefan Berghofer
March 17, 2025

Abstract

We present a solution to the POPLMARK challenge designed by
Aydemir et al., which has as a goal the formalization of the meta-
theory of System F ... The formalization is carried out in the theorem
prover Isabelle/HOL using an encoding based on de Bruijn indices.
We start with a relatively simple formalization covering only the basic
features of System F_.., and explain how it can be extended to also
cover records and more advanced binding constructs.

Contents
1 General Utilities

2 Formalization of the basic calculus
2.1 Typesand Terms
2.2 Lifting and Substitution
2.3 Well-formedness
2.4 Subtyping
25 Typing o o
2.6 Evaluation.

3 Extending the calculus with records
3.1 Typesand Terms,
3.2 Lifting and Substitution00
3.3 Well-formedness
3.4 Subtyping
3.5 Typing o o
3.6 Evaluation.

4 Evaluation contexts

5 Executing the specification

1 General Utilities

This section introduces some general utilities that will be useful later on in
the formalization of System F...

The following rewrite rules are useful for simplifying mutual induction rules.

lemma True-simps:

(True = PROP P) = PROP P
(PROP P = True) = PROP Trueprop True
(Az. True) = PROP Trueprop True
(

proof)

Unfortunately, the standard introduction and elimination rules for bounded
universal and existential quantifier do not work properly for sets of pairs.

lemma ballpl: (Nzy. (z,y) € A= Pzy) = V(z,y) € A. Pzy
(proof)

lemma bpspec: V(z, y) € A. Pzy— (z,y) € A=— Pzy
(proof)

lemma ballpE: V (z, y) € A.
(z,9) ¢ A= Q) = @Q
(proof)

Pry=— (Pzy= Q) =

lemma bexpl: Pz y = (z,y) € A= 3(z,y) € A. Pay
(proof)

lemma bexpE: 3 (z, y) € A. Pz y =
Azy. (z,y) e A= Pry—= Q) = @
(proof)

lemma ball-eq-sym: V(z, y) € S. fry=gzy=V(z,y) € S. gzy=fzy
(proof)

lemma wf-measure-size: wf (measure size) {proof)

notation

Some (¢|-]»)

notation
None (<L)

notation
length (<]|-]]>)

notation
Cons (¢-::/ -» [66, 65] 65)

The following variant of the standard nth function returns L if the index is

out of range.

primrec

nth-el :: 'a list = nat = 'a option («-(-)» [90, 0] 91)
where

i) = 1
| (z # xs)(i) = (case i of 0 = |z] | Suc j = xs (j))

lemma nth-el-append! [simp]: i < ||zs|| = (xs Q ys)(i) = zs(7)

{(proof)

lemma nth-el-append?2 [simp]: ||zs|]| < i = (xs Q ys)(i) = ys{i — ||zs]|)
(proof)

Association lists

primrec assoc :: (‘a x 'b) list = 'a = 'b option (<-(-)» [90, 0] 91)
where

({a)e = L
| (z # zs){a)? = (if fst x = a then |snd x| else zs(a)7)

primrec unique :: (‘a x 'b) list = bool
where
unique [| = True
| unique (z # xs) = (zs(fst)2 = L A unique zs)

lemma assoc-set: ps{z)? = |y] = (z, y) € set ps
{proof)

lemma map-assoc-None [simp]:
ps(z)e = L = map (\(z, y). (z, fzy)) ps(z)r = L
{proof)

no-syntax
-Map :: maplets => 'a — 'b («(<indent=1 notation=<mizfiz map»[-])»)

2 Formalization of the basic calculus

In this section, we describe the formalization of the basic calculus without
records. As a main result, we prove type safety, presented as two separate
theorems, namely preservation and progress.

2.1 Types and Terms

The types of System F.. are represented by the following datatype:

datatype type =
TVar nat

| Top
| Fun type type (infixr <—» 200)
| TyAll type type («(8V <:-./ -)» [0, 10] 10)

The subtyping and typing judgements depend on a context (or environment)
I" containing bindings for term and type variables. A context is a list of
bindings, where the ith element I'(i) corresponds to the variable with index
.

datatype binding = VarB type | TVarB type
type-synonym env = binding list

In contrast to the usual presentation of type systems often found in text-
books, new elements are added to the left of a context using the Cons op-
erator :: for lists. We write is-TVarB for the predicate that returns True
when applied to a type variable binding, function type-ofB extracts the type
contained in a binding, and mapB f applies f to the type contained in a
binding.

primrec is-TVarB :: binding = bool

where

is-TVarB (VarB T) = Fualse
| is-TVarB (TVarB T) = True

primrec type-ofB :: binding = type
where

type-ofB (VarB T) = T
| type-ofB (TVarB T) = T

primrec mapB :: (type = type) = binding = binding
where

mapB f (VarB T) = VarB (f T)
| mapB f (TVarB T) = TVarB (f T)

The following datatype represents the terms of System F_.:

datatype trm =
Var nat
| Abs type trm (x(3X:-./ -)» [0, 10] 10)
| TAbs type trm (<(3A<:-./ -)» [0, 10] 10)
| App trm trm (infix] <> 200)
| TApp trm type (infixl > 200)

2.2 Lifting and Substitution

One of the central operations of A-calculus is substitution. In order to avoid
that free variables in a term or type get “captured” when substituting it
for a variable occurring in the scope of a binder, we have to increment the
indices of its free variables during substitution. This is done by the lifting
functions 1+ n k and T n k for types and terms, respectively, which increment

the indices of all free variables with indices > &k by n. The lifting functions
on types and terms are defined by

primrec liftT :: nat = nat = type = type (1)
where
Tr nk (TVari) = (if i < k then TVar i else TVar (i + n))
| 1+ n k Top = Top
4 nk (T U)=t nkT =1 nkU
|t nk(V<T. U)=N<trnkT . trn(k+1)0U)

primrec lift :: nat = nat = trm = trm (<)
where

It is useful to also define an “unlifting” function |, n k for decrementing all
free variables with indices > k by n. Moreover, we need several substitution
functions, denoted by T'[k —- S|-, t|k —- S], and t[k — s], which substi-
tute type variables in types, type variables in terms, and term variables in
terms, respectively. They are defined as follows:

primrec substTT :: type = nat = type = type (-[- —- -] [300, 0, 0] 300)
where
(TVar i)k —, S); =
(if k < ithen TVar (i — 1) elseif i = k then 1 k 0 S else TVar i)
| Toplk —, S); = Top
| (T = U)lk —: S|y = Tk~ Sy = Ulk —- S,
| V<:T. U)[k 7 S|, = (V<: Tk =, S];. Ulk+1 —- S];)

primrec decT :: nat = nat = type = type ()
where

L 0kT=T
| - (Sucn) kT =1, nk (Tk—, Topl,)

primrec subst :: trm = nat = trm = trm («-[- — -] [300, 0, 0] 300)
where
(Var i)k — s] = (if k < i then Var (i — 1) else if i = k then T k 0 s else Var i)
| (t - uw)k— s] =tk s - ulk— 4
| (tr T)[k— s =tk s+ L 1kT
| (CT. Dk 8] = by 1k T. tfk+1 — 8]
| A<:T.)k s] = (A<e)r 1ET. tlk+1 — s])

primrec substT :: trm = nat = type = trm («-[- —, -] [300, 0, 0] 300)
where
(Var)|k —- S] = (if k < i then Var (i — 1) else Var i)
| (¢t - w)k —- S] =tk —r 5] - ulk —; 5]
| (¢t -7 T)[k = S =tk —r S|+ Tk —: S5]r

(N)]k =, S] = (\T[k =5y 8]y k1 —, S])
| (A<:T. t)[k >y 8] = A<:T[k 7 Sy tlk+1 5, S])

Lifting and substitution extends to typing contexts as follows:

primrec liftE :: nat = nat = env = env (<T¢)
where

Tenk[=
| tenk (B:T) = mapB (tr n (k + [IT])) B fe n kT

primrec substE :: env = nat = type = env (-[- =, -] [300, 0, 0] 300)
where

([k =+ Tle =[]
| (B D)k =y T)e = mapB (ANU. Ulk + |T|| =+ T];) B = Tk —, Tl

primrec decE :: nat = nat = env = env ()
where

e 0KT =T
| Je (Sucn) kT =l nk (T[k —, Tople)

Note that in a context of the form B :: I', all variables in B with indices
smaller than the length of I' refer to entries in I' and therefore must not be
affected by substitution and lifting. This is the reason why an additional
offset ||I'|| needs to be added to the index k in the second clauses of the above
functions. Some standard properties of lifting and substitution, which can
be proved by structural induction on terms and types, are proved below.
Properties of this kind are quite standard for encodings using de Bruijn
indices and can also be found in papers by Barras and Werner [2] and Nipkow

[3].
lemma liftE-length [simp]: ||t n &k T|| = ||T|
{proof)

lemma substE-length [simp]: |T[k —, Ule]l = |||l
(proof)

lemma liftE-nth [simp]:
< (e ff;k I')(i) = map-option (mapB (- n (k + [[T|| — i — 1))) (I'(7))
proo,

lemma substE-nth [simp):
< (F[%n—n T)e) (i) = map-option (mapB AU. U[|T|| — i — 1 —, T];)) (T'(5))
Proo

lemma liftT-liftT [simpl:
i<j=j<i+m=1tnj(trmiT)=1 (m+n)iT
{proof)

lemma lift T-lift T’ [simp):
i+m<j=TnjitrmiT)=1tmi(T,n(G—m)T)

(proof)

lemma lift-size [simp]: size (1> nk T) = size T
{proof)

lemma liftTO [simp]: T, 0¢ T =T
{proof)

lemma [ift0 [simp]: + 0it =1
{proof)

theorem substT-lift T [simp]:
k<k =k <k+n= MrnkDk' =, U,=1(n-101)kT
{proof)

theorem lift T-substT [simp]:
k<k'= 1. nk (Tk' =, Ul) =1, nk Tk’ + n s, U,
{proof)

theorem lift T-substT' [simp]: k' < k =
trnk (T —; Ul)=1nk+ 1) Tk' =t n (k- k") Ul;
{proof)

lemma lift T-substT-Top [simp):
k<k'= 1, nk' (Tkw~—, Topl;) =1+ n (Suc k') T[k —, Top],
(proof)

lemma [lift T-substT-strange:
Y nk Tn+kw—, Uy =1 n(Suck) Tk —, 1T n0Ul
(proof)

lemma lift-lift [simp]:
E<k =k <k+n=1tnkKtnkt)="(n+n")kt
{proof)

lemma substT-substT:
i <j= T[Sucj—, V][i —; Uj—i; Vl]r = Tli = Ul:[j —+ V]s
(proof)

2.3 Well-formedness

The subtyping and typing judgements to be defined in §2.4 and §2.5 may
only operate on types and contexts that are well-formed. Intuitively, a type
T is well-formed with respect to a context I, if all variables occurring in it
are defined in I'. More precisely, if T contains a type variable T'Var i, then
the ith element of I' must exist and have the form TVarB U.

inductive
well-formed :: env = type = bool (<- Fyyp - [50, 50] 50)

where
wf-TVar: T(i) = |[TVarB T| =Tty TVari
| wf-Top: T 5 Top
| wf-arrow: T' by T =T by U =Tty T = U
| wf-all: T kyy T = TVarBT =T kyy U =Tty (V<:T. U)

A context I' is well-formed, if all types occurring in it only refer to type
variables declared “further to the right”:

inductive
well-formedE :: env = bool (¢- 5> [50] 50)
and well-formedB :: env = binding = bool («-Fyrp - [50, 50] 50)
where
I'twip B =T kg type-of B B
| wf-Nil: [] by
| wf-Cons: T' Fyyp B= T Fyr = B T Fyuy

The judgement I' -, rp B, which denotes well-formedness of the binding B
with respect to context I, is just an abbreviation for I' -, ¢ type-ofB B. We
now present a number of properties of the well-formedness judgements that
will be used in the proofs in the following sections.

inductive-cases well-formed-cases:
'y TVar i
'y Top
r wa T—U
Iy (V<:T. U)

inductive-cases well-formedE-cases:
BT by

lemma wf-TVarB: T' Fyy T = T' by = TVarB T :: T by 5
(proof)

lemma wf-VarB: I' -y T = T'Fyp = VarB T :: I' 5
(proof)

lemma map-is-TVarb:
map is-TVarB T'' = map is-TVarB T’ =
D(i) = |TVarB T| = 3T.T'(i) = | TVarB T|
{proof)

A type that is well-formed in a context I' is also well-formed in another
context I'' that contains type variable bindings at the same positions as I':

lemma wf-equallength:
assumes H: ', ; T
shows map is-TVarB I'' = map is-TVarBT = T/ by T (proof)

A well-formed context of the form A @ B :: T' remains well-formed if we
replace the binding B by another well-formed binding B”:

lemma wfE-replace:
AQB:Ttkyy =Tty B'= is-TVarB B’ = is-TVarB B =
A QBT Fyy
(proof)

The following weakening lemmas can easily be proved by structural induc-
tion on types and contexts:

lemma wf-weaken:
assumes H: AQT -, T
shows 1. (Suc 0) 0 A Q@ B :: T by T (Suc 0) ||A] T

(proof)

lemma wf-weaken” I' by T = A QT Fyyp 1 |A| 0T
(proof)

lemma wfE-weaken: A QT+, =T Fyrp B= 1. (Suc0) 0 AQB::T F,y
(proof)

Intuitively, lemma wf-weaken states that a type T which is well-formed in a
context is still well-formed in a larger context, whereas lemma wfE-weaken
states that a well-formed context remains well-formed when extended with
a well-formed binding. Owing to the encoding of variables using de Bruijn
indices, the statements of the above lemmas involve additional lifting func-
tions. The typing judgement, which will be described in §2.5, involves the
lookup of variables in a context. It has already been pointed out earlier
that each entry in a context may only depend on types declared “further to
the right”. To ensure that a type T stored at position 7 in an environment
I' is valid in the full environment, as opposed to the smaller environment
consisting only of the entries in ' at positions greater than 4, we need to
increment the indices of all free type variables in T by Suc i:

lemma wf-liftB:
assumes H: I' -, ¢
shows I'(i) = |[VarB T] =T Fyu5 - (Suci) 0T
(proof)

We also need lemmas stating that substitution of well-formed types preserves
the well-formedness of types and contexts:

theorem wf-subst:
AQ@B:Thy; T=Tkys U= Al0—, U QT by T[|A] =~ Ul
(proof)

theorem wfE-subst: A @ BT by =T by U= A[0 —; Ule QT Fyy
(proof)

2.4 Subtyping

We now come to the definition of the subtyping judgement I' H T' <: U.

inductive
subtyping :: env = type = type = bool (- /F - <: - [50, 50, 50] 50)
where
SA-Top: T Fyp =T hkyp S =T+ S < Top
| SA-refl-TVar: T by = T byy TVari = T F TVar i <: TVar i
| SA-trans-TVar: T'({) = |TVarB U| =
Pt (Sucd) 0U<: T=TFTVari<: T
| SA-arrow: T'H T7 <: §1 =T F Sy < Ty=TFS = Soa<:T1 = Ts
| SA-all: THFT1 <: 81 = TVerB T, =T F S <: Ty =
ME (V<:81. S9) < (V<:T1. T9)

The rules SA-Top and SA-refl-TVar, which appear at the leaves of the
derivation tree for a judgement I' F T <: U, contain additional side con-
ditions ensuring the well-formedness of the contexts and types involved. In
order for the rule SA-trans-TVar to be applicable, the context I' must be
of the form I'y @ B :: 'y, where I'; has the length 4. Since the indices of
variables in B can only refer to variables defined in I'e, they have to be
incremented by Suc i to ensure that they point to the right variables in the
larger context I'.

lemma wf-subtype-env:
assumes PQ: ' P <: @)
shows I k-, ¢ (proof)

lemma wf-subtype:
assumes PQ: '+ P <: @
shows I' -, p P AT Fyp Q (proof)

lemma wf-subtypek:
assumes H: '+ T <: U
and H ' Tty =Tty T =Tty U= P
shows P
(proof)

By induction on the derivation of I' = T <: U, it can easily be shown that all
types and contexts occurring in a subtyping judgement must be well-formed:
lemma wf-subtype-conj:

I'FT<U=TkyAlbkys TATFys U

(proof)

By induction on types, we can prove that the subtyping relation is reflexive:

lemma subtype-refl: — A.1
by =Try T=1TFT<:T

{proof)

The weakening lemma for the subtyping relation is proved in two steps: by
induction on the derivation of the subtyping relation, we first prove that
inserting a single type into the context preserves subtyping:

10

lemma subtype-weaken:
assumes H: AQT F P <: @
and wf: I' Fyyp B
shows 1. 10 AQB:=TF1, 1A P<:1r1]A| Q {proof)

All cases are trivial, except for the SA-trans-TVar case, which requires a
case distinction on whether the index of the variable is smaller than ||A]].
The stronger result that appending a new context A to a context I' preserves
subtyping can be proved by induction on A, using the previous result in the
induction step:

lemma subtype-weaken’: — A.2
PFP< Q=AQTDF, ;= AQTF1, |A] 0P <:1, ||A] 0Q

(proof)

An unrestricted transitivity rule has the disadvantage that it can be applied
in any situation. In order to make the above definition of the subtyping
relation syntax-directed, the transitivity rule SA-trans-TVar is restricted
to the case where the type on the left-hand side of the <: operator is a
variable. However, the unrestricted transitivity rule can be derived from
this definition. In order for the proof to go through, we have to simulta-
neously prove another property called narrowing. The two properties are
proved by nested induction. The outer induction is on the size of the type
@), whereas the two inner inductions for proving transitivity and narrow-
ing are on the derivation of the subtyping judgements. The transitivity
property is needed in the proof of narrowing, which is by induction on the
derivation of A @ TVarB @ :: '+ M <: N. In the case corresponding to
the rule SA-trans-TVar, we must prove A Q TVarB P :: T+ TVari <: T.
The only interesting case is the one where ¢ = ||A||. By induction hypoth-
esis, we know that A @ TVarB P =T 1, (i + 1) 0 Q <: T and (A @
TVarB Q :: T')(i) = [TVarB Q]. By assumption, we have I' - P <: () and
hence A Q TVarBP :: T F 1, (i + 1) 0P <1, (i + 1) 0 Q by weaken-
ing. Since T+ (i + 1) 0 @ has the same size as), we can use the transitivity
property, which yields A @ TVarB P :: T+ 1, (i + 1) 0 P <: T. The claim
then follows easily by an application of SA-trans-T Var.

lemma subtype-trans: — A.3

r'ES< Q=TIrE< I'=TIrFS<:T

AQTVarBQ :THFM<:N=TFP< Q=
AQTVarBP :T+M<: N

{proof)

In the proof of the preservation theorem presented in §2.6, we will also
need a substitution theorem, which is proved by induction on the subtyping
derivation:

lemma substT-subtype: — A.10
assumes H: A Q TVarB Q =T FH S <: T

11

shows T P <: Q = A[0 —, P|. QT F S[|A| =, P|, <: T[|A]| =, P,
(proof)

lemma subst-subtype:
assumes H: AQ VarBV =T F T <: U
shows |, 10 AQTHF | 1Al T<:l-1]|A|U

{proof)

2.5 Typing

We are now ready to give a definition of the typing judgement I' - ¢ : T.

inductive
typing = env = trm = type = bool («- /b -: - [50, 50, 50] 50)
where
T-Var:T by =T() = |VorBU| = T =", (Suci) 0U =T+ Vari: T
T-Abs: VarB T 2T kty: To—=TF ()\Tl tg) T — \LT 10T,
T—AppZPFt12T11—> Tio=TtFty: Ty1 =Tkt -ty: Tqo
T-TAbs: TVarB Ty =Tk ty: To = T F (A<:Ty. t2) : (V<:T1. T2)
T-TApp: Tt : (V<:T11. T12) =T F Ty <t Ty =
Ik t1 7 T2 : T12[0 —r TQ]-,-
| T-Sub:THt: S=ThFHS<:T=TF¢:T

Note that in the rule T-Var, the indices of the type U looked up in the
context I' need to be incremented in order for the type to be well-formed
with respect to I'. In the rule T-Abs, the type T5 of the abstraction body
to may not contain the variable with index 0, since it is a term variable. To
compensate for the disappearance of the context element VarB T in the
conclusion of thy typing rule, the indices of all free type variables in T3 have
to be decremented by 1.

theorem wf-typeE1:
assumes H: '+t : T
shows I' b, ¢ (proof)

theorem wf-typeF2:
assumes H: 't : T
shows I' -,y T (proof)

Like for the subtyping judgement, we can again prove that all types and
contexts involved in a typing judgement are well-formed:
lemma wf-type-conj: I' =t : T = T' by AL Fyyp T

(proof)

The narrowing theorem for the typing judgement states that replacing the
type of a variable in the context by a subtype preserves typability:

lemma narrow-type: — A.7
assumes H: AQ TVarB Q =T Ft¢t: T
showsI'FP < Q=AQTVarBP :TF¢t:T

12

{proof)

lemma subtype-refl”:
assumes t: ' ¢: T
shows '+ T <. T

{proof)

lemma Abs-type: — A.13(1)
assumes H: T'F (\:S.s): T
showsI'F T <: U - U =
(ANS"THU<S= VarBS =:TkFs:58 =
r+4,108 < U = P)=P
(proof)

lemma Abs-type’:
assumes H: T F (\:S.s) : U — U’
and R: A" THU<:S= VarBS :T+s:5 =
'y, 108 < U =P
shows P
{proof)

lemma TAbs-type: — A.13(2)
assumes H: '+ (A\<:S. 5): T
shows '+ T <: (V<:U. U') =
ANS'"THU<: 8= TVarBU =T+ s: 58 =
TVarBU =:TFS' < U = P)=— P
{proof)

lemma TAbs-type:
assumes H: '+ (A<:S. s) : (V<:U. U)
and R: A" THU<:S= TVarBU =Tk s: 58 =
TVarBU =T+ S'"<:U' =P
shows P (proof)

lemma T-e: THt: T = T=T =TFt: T (proof)

The weakening theorem states that inserting a binding B does not affect
typing:

lemma type-weaken:
assumes H: AQT'+F¢t: T
shows I' -, s p B =
TeI0AQB =TI |A|t:1 1 ||A|l T (proof)

We can strengthen this result, so as to mean that concatenating a new
context A to the context I' preserves typing:

lemma type-weaken’: — A.5(6)
Pht:T=AQT,; = AQLF1[A]0¢:1, |A]0T

{(proof)

13

This property is proved by structural induction on the context A, using the
previous result in the induction step. In the proof of the preservation the-
orem, we will need two substitution theorems for term and type variables,
both of which are proved by induction on the typing derivation. Since term
and type variables are stored in the same context, we again have to decre-
ment the free type variables in A and T by 1 in the substitution rule for
term variables in order to compensate for the disappearance of the variable.

theorem subst-type: — A.8
assumes H: AQ VarBU =T F¢: T
shows ' u: U =
de 10 AQT F (subst t (length A) u) : |+ 1 ||A|| T (proof)

theorem substT-type: — A.11
assumes H: AQ TVarB Q =T FHt¢: T
shows ' - P <: Q =
A0 =, Pl QT F t[||A]| =+ P]: T[||A]| =+ P]+ (proof)

2.6 Evaluation

For the formalization of the evaluation strategy, it is useful to first define
a set of canonical values that are not evaluated any further. The canonical
values of call-by-value F.. are exactly the abstractions over term and type
variables:

inductive-set
value :: trm set
where
Abs: (A:T. t) € value
| TAbs: (A<:T. t) € value

The notion of a value is now used in the defintion of the evaluation relation
t — t’. There are several ways for defining this evaluation relation: Ay-
demir et al. [1] advocate the use of evaluation contexts that allow to separate
the description of the “immediate” reduction rules, i.e. S-reduction, from the
description of the context in which these reductions may occur in. The ra-
tionale behind this approach is to keep the formalization more modular. We
will take a closer look at this style of presentation in section §4. For the rest
of this section, we will use a different approach: both the “immediate” re-
ductions and the reduction context are described within the same inductive
definition, where the context is described by additional congruence rules.

inductive
eval :: trm = trm = bool (infixl «—) 50)
where
E-Abs: va € value = (A\:T11. t12) + v2 — 1120 — 2]
| E-TAbs: ()\<2T11. tlg) o To —> t12[0 —r TQ]
| B-Appl:t— t' = t-ur— 1t -u
| B-App2: v € value = t— t' = v-t+— v -t

14

| B-TApp: t — t' =t T+—t' -+ T

Here, the rules E-Abs and E-TAbs describe the “immediate” reductions,
whereas E-Appl, E-App2, and E-TApp are additional congruence rules de-
scribing reductions in a context. The most important theorems of this sec-
tion are the preservation theorem, stating that the reduction of a well-typed
term does not change its type, and the progress theorem, stating that re-
duction of a well-typed term does not “get stuck” — in other words, every
well-typed, closed term ¢ is either a value, or there is a term ¢’ to which ¢
can be reduced. The preservation theorem is proved by induction on the
derivation of I' ¢ : T, followed by a case distinction on the last rule used
in the derivation of ¢t — t'.

theorem preservation: — A.20
assumes H: 't : T
shows t — t' = T+ t’': T (proof)

The progress theorem is also proved by induction on the derivation of ||
F ¢t : T. In the induction steps, we need the following two lemmas about
canonical forms stating that closed values of types T7 — T and V<:T.
T's must be abstractions over term and type variables, respectively.

lemma Fun-canonical: — A.14(1)
assumes ty: [|[Fv: Ty = To
shows v € value = 3t 5. v = (A\:S. t) (proof)

lemma TyAll-canonical: — A.14(3)
assumes ty: [| F v: (V<:Ty. T2)
shows v € value = 3t 5. v = (A<:S. 1) (proof)

theorem progress:
assumes ty: [[F¢: T
shows t € value V (3t'. t — t') (proof)

3 Extending the calculus with records

We now describe how the calculus introduced in the previous section can
be extended with records. An important point to note is that many of the
definitions and proofs developed for the simple calculus can be reused.

3.1 Types and Terms

In order to represent records, we also need a type of field names. For this
purpose, we simply use the type of strings. We extend the datatype of types
of System F .. by a new constructor RedT representing record types.

type-synonym name = string

15

datatype type =
TVar nat
| Top
| Fun type type (infixr <—» 200)
| TyAll type type («(3V <:-./ -)» [0, 10] 10)
| RedT (name x type) list

type-synonym fldT = name X type
type-synonym rcdT = (name x type) list

datatype binding = VarB type | TVarB type
type-synonym env = binding list

primrec is-TVarB :: binding = bool
where

is-TVarB (VarB T) = Fualse
| is-TVarB (TVarB T) = True

primrec type-ofB :: binding = type
where

type-ofB (VarB T) = T
| type-of B (TVarB T) = T

primrec mapB :: (type = type) = binding = binding

where
mapB f (VarB T) = VarB (f T)
| mapB f (TVarB T) = TVarB (f T)

A record type is essentially an association list, mapping names of record
fields to their types. The types of bindings and environments remain un-
changed. The datatype trm of terms is extended with three new constructors
Red, Proj, and LET, denoting construction of a new record, selection of a
specific field of a record (projection), and matching of a record against a
pattern, respectively. A pattern, represented by datatype pat, can be either
a variable matching any value of a given type, or a nested record pattern.
Due to the encoding of variables using de Bruijn indices, a variable pattern

only consists of a type.

datatype pat = PVar type | PRed (name x pat) list

datatype trm =
Var nat
| Abs type trm (<(3X:-./ -)» [0, 10] 10)
| TAbs type trm («(8A<:-./ -)» [0, 10] 10)
| App trm trm (infix] <> 200)
| TApp trm type (infixl <> 200)
| Red (name x trm) list

16

| Proj trm name (<(-..-)> [90, 91] 90)
| LET pat trm trm («(LET (- =/ -)/ IN (-))> 10)

type-synonym fld = name X trm
type-synonym rcd = (name X trm) list
type-synonym fpat = name X pat
type-synonym rpat = (name X pat) list

In order to motivate the typing and evaluation rules for the LET, it is
important to note that an expression of the form

LET PRcd [(Ih, PVar Ty), ..., (ln, PVar T,)] = Red [(11, v1)y vy (In, vn)] IN &

can be treated like a nested abstraction (A\:Tq. ... XiTp. &)« v1 « ... - v,

3.2 Lifting and Substitution

primrec psize :: pat = nat (¢||-||,»)
and rsize :: rpat = nat (¢||-||>)
and fsize :: fpat = nat (<||-|s»)

where

|PVar T, = 1
| |PRed fsllp = lfsl»
|0l = 0

LIF == folle = s+ (sl
I P = el

primrec liftT :: nat = nat = type = type (1)
and liftrT :: nat = nat = redT = redT (<Trrd)
and liftfT :: nat = nat = fldT = fldT ()

where
Tr nk (TVari) = (if i < k then TVar i else TVar (i + n))

| 1+ n k Top = Top

|TTnk(T—> U)=1:nkT =1 nkU

|1, nk(V<:T.U)=NF<trnkT.trnk+1)0)

| 1+ n k (RedT fs) = RedT (1,7 n k fs)

| Trr n b [] =]

| Trr n K (f 2 f5) =t nkfaternkfs

|Tf7' nk(l,T)=(1 nkT)

primrec liftp :: nat = nat = pat = pat («1,)
and liftrp :: nat = nat = rpat = rpat (<typ))
and liftfp 2 nat = nat = fpat = fpat (1)

where
tp nk (PVar T) = PVar (- nk T)

| Tp n k (PRcd fs) = PRed (Trp n k fs)

[Trp n k] =]

| ep nk (f s fs) =Tppnkftpnkfs

17

primrec lift :: nat = nat = trm = trm (1)
and liftr :: nat = nat = red = red (1)
and liftf :: nat = nat = fld = fld (<Tp)

where

T nk (Vari) = (if i < k then Var i else Var (i + n))
4k ANT.) =ty nk Tt n (k+ 1) t)
1tk O<T. t) = A<ty nk T. 4 n (k+ 1) t)
|[Tnk(s-t)=Tnks-tTnkt
|[Tnk(t-sT)=TnktTrnkT

| * nk (Red fs) = Red (1 n k fs)

|t nk(t.a) = nkt).a

|t nk (LETp=tINu) = (LET t, nkp=1TnktIN 1t n(k+|pl) v
[tr k=1

[T nk (fufs)=Tfnkfatrnkfs
[Tynk(Lt)y=>U1Tnkt)

primrec substTT :: type = nat = type = type («-[- =, -] [300, 0, 0] 300)
and substrTT :: redT = nat = type = redT (4-[- —, -] [300, 0, 0] 300)
and substfTT :: fldT = nat = type = fldT (<-[- —, -]y [300, 0, 0] 300)

where
(TVar i)k —, S); =

(if k < ithen TVar (i — 1) else if i = k then 1, k 0 S else TVar i)

| Toplk —, S); = Top

| (T = U)lk —: S|y = Tk —, Sy = Ulk —- S,

| (V<:T. U)[k v+, S]r = (V<:T[k =, S];. Ulk+1 - S];)

| (RedT fs)[k = S], = RedT (filk - S],)

| 0[k =+ Slr =[]

| (f = fs)[k =7 Slpr = flk =7 Slfr it folk =7 S)er

| (I, Tk =+ Slg- = (1, Tk —+ S]7)

primrec substpT :: pat = nat = type = pat (
and substrpT :: rpat = nat = type = rpat (¢-[-
and substfpT :: fpat = nat = type = fpat (<-[-

where

(PVar T)[k —, S), = PVar (T[k —+ S];)

(PRcd fs)[k ~—+ S|, = PRed (fslk —+ S]rp)

[k =7 Slrp = |]

(f fs)[k = S]T’p = f[k —r S]fp " fs[k —rr S]rp

(L, p)lk =7 Slpp = (I, plk =7 S]p)

[~ Fr 0 [300, 0, 0] 300)
5 epr [800, 0, 0] 300)
e g [300, 0, 0] 500)

primrec decp :: nat = nat = pat = pat (<))
where

W Okp=p
| p (Sucn) kp = lp nk (plk —- Toplp)

In addition to the lifting and substitution functions already needed for the
basic calculus, we also have to define lifting and substitution functions for
patterns, which we denote by 1, n k p and Tk —, S],, respectively. The

18

extension of the existing lifting and substitution functions to records is fairly
standard.

primrec subst :: trm = nat = trm = trm («-[- — -] [300, 0, 0] 300)
and substr :: red = nat = trm = red (<-[- = -],» [300, 0, 0] 300)
and substf :: fld = nat = trm = fld («-[- — -]y [300, 0, 0] 300)

where
(Var i)[k — 5] =
(if k < ithen Var (i — 1) else if i = k then T k 0 s else Var 7)

t-u)k— s =tk s ulk— g

t-r Tk s =tk s - Tk —, Top],

XT. D[k~ s] = ATk —, Topl,. tlk+1 — s])

A< T.)k — s] = A<:T[k —, Top|,. tlk+1 — s])
cd fs)[k — 8] = Red (fs[k — s]r)

a)lk = 8] = (i[k — s))..a
ETp =t INu)lk — s| = (LET |, 1 kp = tlk — s| IN ulk + ||p|l, — s])

(f = fs)[k = slp = flk — s]p i fslk — s8],
(I,)k — sly = (1, tlk — s])

Note that the substitution function on terms is defined simultaneously with
a substitution function fs[k — s, on records (i.e. lists of fields), and a sub-
stitution function f[k — s|; on fields. To avoid conflicts with locally bound
variables, we have to add an offset ||p||, to & when performing substitution
in the body of the LET binder, where ||pl|, is the number of variables in the
pattern p.

primrec substT :: trm = nat = type = trm (-[- =, -]» [300, 0, 0] 300)
and substrT :: red = nat = type = red (¢-[- —- -|»» [300, 0, 0] 300)
and substfT :: fid = nat = type = fld («-[- —- -]p» [300, 0, 0] 300)

where
(Var 0)[k —- S] = (if k < i then Var (i — 1) else Var i)

t-u)k—, S| =tlk—r S| - ulk—, 9]

ter Tk s S| =tlk—, 8]+ Tlkw—; 5]

XT.)k, S = NTk —r S)r. tlk+1 —; 5))

A< T.)k =, S] = A<:T[k =, S]7. tlk+1 —, S])
cd fs)[k —- S| = Red (fs[k —- S];)

t..a)[k —, S| = (t[k —- 9])..a

LET p =t IN)k s, S] =
(LET plk v, S)y = tlk —+ 8] IN ulk + [pll, =+ 5])

| [k =+ Sl =]

| (f = f9)lk =7 S = [k =7 S]y = fs[k =7 S

| (I, t)[k —, Sl = (1, tlk —; S])

| (
| (
| (
| (
| (R
| (
| (

primrec liftE :: nat = nat = env = env («T¢>)
where
Tenk[=]
|[Tenk (B:T)=mapB (T n(k+ ||T']) B:tenkD

primrec substE :: env = nat = type = env («-[- =, -0 [300, 0, 0] 300)

19

where
[k =+ Tle =]
| (B:: D)k, T)e = mapB (AU. Ulk + ||T|| =+ T];) B = T[k —; Tl

For the formalization of the reduction rules for LET, we need a function
tlk —s us] for simultaneously substituting terms us for variables with con-
secutive indices:

primrec substs :: trm = nat = trm list = trm ([—, -]» [300, 0, 0] 300)
where

thk s] =t
| tlk —s uw i us] = t[k + |us|| — ul[k —s us]

primrec decT :: nat = nat = type = type ()
where

b 0kT =T
| - (Sucn) kT =1, nk (Tk—, Topl,)

primrec decE :: nat = nat = env = env ()
where

be 0OKT =T
| Je (Sucn) kT =l nk (T[k —, Tople)

primrec decrT :: nat = nat = redT = redT (Lpr?)
where

drr 0k fTs = fTs
| 4rr (Suc n) k fTs = Lor n k (fT5[k —, Topl,r)

The lemmas about substitution and lifting are very similar to those needed
for the simple calculus without records, with the difference that most of
them have to be proved simultaneously with a suitable property for records.
lemma liftE-length [simp]: ||[te n k T|| = ||T||

(proof)

lemma substE-length [simp]: |T[k —, Ule]l = |||l
{proof)

lemma liftE-nth [simp]:
(1 28100 = mapeoption (mapP (. (& + IF = £ = 1) (°)
Proo

lemma substE-nth [simp]:
EF[O ;T T)e) (i) = map-option (mapB (AU. U[|T|| — i — 1 —, T];)) (I'(7))
PrOoo

lemma liftT-liftT [simpl:
i<j=j<i+m=1Tnj(trmiT)=1(m+n)iT

igj:>j;i+m:>TrTnj(TrTmirT):TTT(ern)irT
i<j=j<i+tm= Tsrnjlpr mifT)="Tsr (m+n)ifl
(proof)

20

lemma lift T-lift T’ [simp):
itm<j="Tnjt-miT)="%mi(t-n(G—-m)7)
i+m<j="TrrnjtrmirT)="%7rmi(Tn(—m)rT)
it m<j= T njPprmifl)="1p-mi(tgrn (G —m)fT)
(proof)

lemma lift-size [simp]:

size (T nk T) = size T

size-list (size-prod (Ax. 0) size) (Trr n k rT) = size-list (size-prod (Az. 0) size)
rT

size-prod (Az. 0) size (15, n k fT) = size-prod (Az. 0) size fT

{proof)

lemma liftTO [simp):
t+,0iT=T
Trr 07T =1rT
tye 00 fT = fT
(proof)

lemma liftp0 [simp):
TpOip=p
Trp 0dfs = fs
Tip 0if =T
{proof)

lemma [ift0 [simp]:
00t =t
T 0ifs=fs
TrO0if=f
{proof)

theorem substT-lift T [simp]:
k<k = k'<k+n= Ty nk)k s Upr =1 (n— 1) k
E<k =k <k+n= (Trr nkrT)k'—=; Ulpr =Trr (n — 1
k<k'=k'<k+n= (trr nk DK s Ulsr =+ (n — 1
(proof)

T
) krT
) k[T

theorem lift T-substT [simp]:
k<k'= 1, nk(Tk'—; Ul;) =1, nk Tk'+nw—,; Ul
k<kl= 1t nk (rTk' = Ur) =Trr nkrTk' + n—; Upr
E<k = Trrnk (fT[k/ = U]f-,—) =T¢r n ka[k/ + n >, U]fT
(proof)

theorem [lift T-substT' [simp]:
k< k=
4ok (T = Ul) =40 0 (k+ 1) T =y 15 1 (k — k) U],
K <k =
Yrr 0k (rTk =y Ulpr) =T n (k+ 1) v Tk = tr n (k= k) Uy

21

< k=
Trr nk (fTE" = Ulpr) =Ty n (b + 1) fTE" - e n (k= k) Uly-
(proof)

lemma lift T-substT-Top [simp]:
k<k' =1, nk' (Tk—, Topl.) =1 n (Suc k') T[k —, Topl],
kE<k'= 1 nk' (+Tlk —; Toplyr) = Trr n (Suc k') rT[k —, Topl,r
k<k'= 1¢; nk' (fTk —- Topls.) = t¢r n (Suc k') fT[k —- Topls-
(proof)

theorem liftE-substE [simp]:
k<k'= tenk (k"= Ul) =t nkT[k' + n sy Ul
(proof)

lemma liftT-decT [simp):
E<k =1t nk'l-mkT)=l mk(rn(m+ k)T
{proof)

lemma [iftT-substT-strange:
trnkTn+ke—: Ur=1 n(Suck) Tk —; 1t n0 Ul
TrrnkrTn+ kw—r Upr =1 n (Suc k) 1Tk =7 T n 0 Ulpr
Trr nk fTn+ kvwr Ulpr =15 n (Suc k) fTk —r 1t n 0 Uly,
(proof)

lemma liftp-liftp [simp]:

E<k =k <k+n=1,nk(tpnkp =1 n+n)kp
Ek<k =k <k+n=1Tpn k' Trpnkrp)="1p (n+n)krm
<k =k <k+n=1pn k' Tpnkfp)="1, n-+n)kfp

{proof)

lemma liftp-psize]simp]:
”Tp nk p”p = ”pHp
||T7"p nk fs|- = || fsll-
[trp nk flly =111y
(proof)

lemma lift-lift [simp]:

E<k =k <k+n=1tnk(Tnkt)y=1"(n+n")kt
E<kl =k <k+n="1Tn k(M nkfs)="1 (n+n')kfs
E<k =k <k+n="Tn"kEtynkf)=1(n+n)kf

{proof)

lemma liftE-liftE [simp]:
E<k =k <k+n="Tenk'(fenkD)=1 (n+n) kT
(proof)

lemma liftE-liftE’ [simp):
i+m<j=Tenj(Temil)=Temi(ten(j—m)T)
(proof)

22

lemma substT-substT:
1< j =
T[S’LLC] = V]T[Z = U[] — iy V]T]T = T[Z = U]T[j = V]T
i <=
rT[Sucj —r V]pli —=r Ulj — i =7 Vieler = rTli =0 Ulpr[j =7 Vier
fT[SUCj = V}f‘r[i = U[] — iy V]'r]f‘r = fT[Z = U}f‘r[] = V]f'r
(proof)

lemma substT-decT [simp]:
k<j= (s ik T)j =y Uy =L ik (T[i +j s U]5)
{proof)

lemma substT-decT’ [simp]:
i < j = Lr k (Sucj) Tli s Topls = Lr kj (T[i 5 Topl,)
(proof)

lemma substE-substE:
i <j= F[SUC] = V]e[i = U[] — i V]T]e = F[Z = U]e[] = V]e
(proof)

lemma substT-decE [simpl:
i <j= le k (Sucj) I'[i =, Tople = le kj (L[=, Tople)
{proof)

lemma liftE-app [simp]: Te nk (T Q@A) =T n (k+ ||ADT Q@1 nk A
(proof)

lemma substE-app [simp):
(T @ Ak —, Tle =Tk + ||A]] =+ T)e @ Alk —, Te
(proof)

lemma substs-app [simp]: t[k s ts @Q us] = t[k + ||us|| —s ts][k —s us]
{proof)

theorem decE-Nil [simp]: L n k [] = |]
(proof)

theorem decE-Cons [simp]:
benk (B:T)=mapB (; n (k+ |T|)) B::lenkT
(proof)

theorem decE-app [simp]:
lenkTQA)=l.n(k+ AT @lc.nk A
(proof)

theorem decT-liftT [simp]:
E<k=k+m<k+n=L{ mkt:nkl)=1(n—-—m)kT

23

{proof)

theorem decE-liftE [simp]:
E<k=k+m<k+n=lemk’ (tenkD)=1(n—m) kT
(proof)

theorem liftE0Q [simp]: T. 0k T =T
(proof)

lemma decT-decT [simp]: - nk (- n' (k+n) T)=4 (n+n") kT
(proof)

lemma decE-decE [simp]: e nk (Je n’ (k+n)T) =] (n+n) kT
{proof)

lemma decE-length [simp]: ||[{e n &k T|| = ||T||
(proof)

lemma liftrT-assoc-None [simpl: (Trr n k fs(l)» = L) = (fs(l)» = 1)
{proof)

lemma liftrT-assoc-Some: fs(ly = |T] = Tvr n k fs{l)» = [T+ n k T|
(proof)

lemma liftrp-assoc-None [simpl: (Trp n k fps{l)s = L) = (fps{l)» = L)
(proof)

lemma liftr-assoc-None [simp]: (T, n k fs{l)» = L) = (fs(l)» = 1)
{proof)

lemma unique-liftrT [simp]: unique (T,- n k fs) = unique fs
(proof)

lemma substrTT-assoc-None [simp]: (fslk —+ Ulyr(a)s = L) = (fs{a)? = 1)
{proof)

lemma substrTT-assoc-Some [simp:
fs(ay, = | T| = fslk —; Ulyr(a)r = [Tk —- Ul;]
{proof)

lemma substrT-assoc-None [simpl: (fs[k —- P).(l)» = L) = (fs{l), = 1)
(proof)

lemma substrp-assoc-None [simp]: (fps[k —+ Ulrp(D)2 = L) = (fps(l)» = L)
{proof)

lemma substr-assoc-None [simpl: (fs[k — u].()» = L) = (fs(l)» = 1)
(proof)

24

lemma unique-substrT [simp]: unique (fs|k —, Ulyr) = unique fs
{proof)

lemma liftrT-set: (a, T) € set fs = (a, T nk T) € set (T,r n k fs)
(proof)

lemma [liftrT-setD:
(a, T) € set (Trr nkfs) = 3T (a, T EsetfsNT =1 nkT'
{proof)

lemma substrT-set: (a, T) € set fs = (a, Tk —, Ul;) € set (fs|k — Ulyr)
{proof)

lemma substrT-setD:
(a, T) € set (fslk —r Ulpr) = 3T (a, T)) € set fs AN T = T'lk —, Ul,;
(proof)

3.3 Well-formedness

The definition of well-formedness is extended with a rule stating that a
record type RedT fs is well-formed, if for all fields (I, T') contained in the
list fs, the type T is well-formed, and all labels [in fs are unique.

inductive
well-formed :: env = type = bool (¢~ Fyy - [50, 50] 50)
where
wf-TVar: T(i) = |TVarB T| =T bty TVari
| wf-Top: T' by Top
| wf-arrow: T by T =T kyp U=T1tyu T = U
| w-all: T kyy T = TVarBT T by U =Tty (V< T. U)
| wf-RedT: unique fs =V (I, T)eset fs. T by T =T by RedT fs

inductive
well-formedE :: env = bool (¢- 5> [50] 50)
and well-formedB :: env = binding = bool («- 5 - [50, 50] 50)
where
I'Fwip B =T by type-ofB B
| wf-Nil: [] by
| wf-Cons: T byrp B=Ttys = BT Fyy

inductive-cases well-formed-cases:
I'Fwy TVar i
I'~wy Top
by T = U
'ty (V<:T. V)
I Fywyp (RedT fT5)

inductive-cases well-formedFE-cases:

BT byy

25

lemma wf-TVarB: T' Fyy T = T' by = TVarB T i T by 5
(proof)

lemma wf-VarB: I' -y T = DI'Fyp = VarB T :: I k5
(proof)

lemma map-is-TVarb:
map is-TVarB T'' = map is-TVarB T =
D(i) = |TVarB T| = 3T.T'(i) = | TVarB T|
{(proof)

lemma wf-equallength:
assumes H: I' -, ; T
shows map is-TVarB I'' = map is-TVarBT = TI'' ks T (proof)

lemma wfE-replace:
AQB:Ttky;=Ttyrp B = is-TVarB B’ = is-TVarB B =
A QBT Fyy
(proof)

lemma wf-weaken:
assumes H: A QT F,¢ T
shows 1. (Suc 0) 0 A @ B :: T by T (Suc 0) A T
(proof)

lemma wf-weaken T'Fyy T = A QT Fyr 1 A 0T
(proof)

lemma wfE-weaken: A QI b, =T kg B=1Tc (Suc 0) 0 AQ B ::T'
(proof)

lemma wf-liftB:
assumes H: I' -, ¢
shows I'(i) = |[VarB T| =T Fyuf - (Suci) 0T
{proof)

theorem wf-subst:
AQB:Thy T=Thry U= A0+, Ul QT Fy; T[|A] —, U],
V(, T)eset (rTuredT). AQB Tty T =Tty U=
V(l, T) € set rT. Al0 - Ul QT by f T[|A|| —- Ul-
A QBT Fyy snd (fT:fldT) =T byy U =
A0 5y U) T Fyp snd fTA] e U,
(proof)

theorem wf-dec: A QT by T = T kyyp b A 0T
(proof)

theorem wfE-subst: A @ BT by =Tty U= A[0 =, Ule QT Fyy
(proof)

26

3.4 Subtyping

The definition of the subtyping judgement is extended with a rule SA-Rcd
stating that a record type RcdT fs is a subtype of RedT fs', if for all fields
(I, T) contained in fs’, there exists a corresponding field (I, S) such that S
is a subtype of T. If the list fs’ is empty, SA-Rcd can appear as a leaf in
the derivation tree of the subtyping judgement. Therefore, the introduction
rule needs an additional premise I' -, s to make sure that only subtyping
judgements with well-formed contexts are derivable. Moreover, since fs can
contain additional fields not present in fs’, we also have to require that the
type RedT fs is well-formed. In order to ensure that the type RedT fs'
is well-formed, too, we only have to require that labels in fs’ are unique,
since, by induction on the subtyping derivation, all types contained in fs’
are already well-formed.

inductive
subtyping :: env = type = type = bool (¢- /F - <: - [50, 50, 50] 50)
where
SA-Top: T' Fypy =T hkyr S=TFS < Top
| SA-refl-TVar: T by = T byy TVar i = T F TVar i <: TVar i
| SA-trans-TVar: T'(i) = |TVarB U| =
Pty (Suci) 00U < T=TFTVari<: T
| SA-arrow: T Ty <: S =TF Sy <:Ty=TFS =9 <:T, = T,
| SA-all: TH Ty <: Sy = TVarB Ty =T F Sy <t Ty =
F'F (V<:81. 89) <0 (V<:Tq. T2)
| SA-Red: T' by = T' b5 RedT fs = unique fs' =
V(l, T)eset fs'.3S. (I, S)eset fs N\T' F S <: T = T'F RedT fs <: RedT fs'

lemma wf-subtype-env:
assumes PQ: '+ P <: @)
shows I' k¢ (proof)

lemma wf-subtype:
assumes PQ: '+ P <: @
shows I' -,y P AT by Q (proof)

lemma wf-subtypekF:
assumes H: ' - T <: U
and H Tty =Tty T =Tty U= P
shows P
(proof)

lemma subtype-refl: — A.1
F}—wfﬁl—‘l—wf T—=TIT+HT<:T
Ibyyp = VY(uname, T)eset fIs. Tk T —THT < T
Pryp =T tys snd (fT:fldT) = T F snd fT <: snd fT
(procf)

lemma subtype-weaken:

27

assumes H: AQT'F P <: @
and wf: I' Fyyp B
shows 1. 10 AQB =T F1, 1A P<:1r1]A4| Q {(proof)

lemma subtype-weaken’: — A.2
TFP < Qe=AQTF,; = AQTF 1, A 0P <4, |A] 0Q
(proof)

lemma fieldT-size [simp]:
(a, T) € set fs = size T < Suc (size-list (size-prod (Az. 0) size) fs)
(proof)

lemma subtype-trans: — A.3

r-S<Q=r~rr+-Q< T'=TIrFS<T

AQTVarBQ: :THFM< N=TFP< Q=
AQTVarBP::T+FM<:N

(proof)

lemma substT-subtype: — A.10
assumes H: AQ TVarB @Q =T F S <. T
showsT'F P <: Q = A[0 —, P]. QT F S[||A]| =+ Pl <: T[|A|| =+ P+
(proof)

lemma subst-subtype:
assumes H: AQ VarBV =T+ T <: U
shows | 10 AQTF | 1|A| T<:l,1]A|TU
(proof)

3.5 Typing

In the formalization of the type checking rule for the LET binder, we use an
additional judgement F p : T = A for checking whether a given pattern p is
compatible with the type T of an object that is to be matched against this
pattern. The judgement will be defined simultaneously with a judgement
F ps ;] Ts = A for type checking field patterns. Apart from checking the
type, the judgement also returns a list of bindings A, which can be thought
of as a “flattened” list of types of the variables occurring in the pattern.
Since typing environments are extended “to the left”, the bindings in A
appear in reverse order.

inductive

plyping :: pat = type = env = bool (+ -:-= - [50, 50, 50] 50)

and ptypings :: rpat = redT = env = bool (- - [:] - = - [50, 50, 50] 50)
where

P-Var:+ PVar T : T = [VarB T
| P-Red: & fps 1] fTs = A = F PRed fps : RedT fTs = A
| PN [=]
| P-Cons:-p: T = Ay =+ fps [[] fTs = Ay = fps(l), = L =
F (L p) i fps) [] (1, T) = fT5) = T [|AL]] 0 Ay @ Ay

28

The definition of the typing judgement for terms is extended with the rules
T-Let, T-Rcd, and T-Proj for pattern matching, record construction and field
selection, respectively. The above typing judgement for patterns is used in
the rule T-Let. The typing judgement for terms is defined simultaneously
with a typing judgement I' - fs [:] fTs for record fields.

inductive

typing = env = trm = type = bool (- F -: - [50, 50, 50] 50)

and typings :: env = red = redT = bool («-+ -[:] - [50, 50, 50] 50)
where

T-Var:T by =1I() = |VorBU| = T =71 (Suci) 0U =T+ Vari: T
T-Abs: VarB Ty =Tk ty: To=THF (AMT1.12): T1 = |+ 10 Ts
T-App:Fl—t1:T11—> Tio=TtFty: Ty1 =Tkt -ty: Tqo
T-TAbs: TVarB T1 =Tk ty: To = T F (A<:Tq. &) : (V<:T1. T2)
T-TApp: T+ t1 : (V<:T11. T12) =T F Ty <: T =

'+ t1 7 T2 : T12[0 —r TQ]T
T-Sub: TFHt: S=TFS<:T=TFt:T
T-Let: T+t Ty =Fp: T1=A=AQTF ty: Ty =

T (LETp =t INt): L |A]| 0 T2
T-Red: T F fs [)] fTs = T+ Red fs : RedT fTs
T-Proj: T'F t : RedT fTs = fT5(l) = |T|] =T F t.l: T
T-Nil: T by =TF][]]
T-Cons:THt: T =Tk fs[] fTs= fs(l)o = L =

e fs[)] (I, T) = fTs

theorem wf-typeE1:
F'Et: T =T tkyy
'k fs] fTs = T Fuy
(proof)

theorem wf-typeE2:
ThHi:T—Th, T
'Ffs)] fTs = (Y(I, T) € set fTs. T'' by T) A
unique fTs A (V1. (fs(l)» = L) = (fTs(ly, = 1))
(proof)

lemmas ptyping-induct = ptyping-ptypings.inducts(1)
[of - - - - Az y z. True, simplified True-simps, consumes 1,
case-names P-Var P-Rcd]

lemmas ptypings-induct = ptyping-ptypings.inducts(2)
[of - - - Az y 2. True, simplified True-simps, consumes 1,
case-names P-Nil P-Cons|

lemmas typing-induct = typing-typings.inducts(1)
[of - - - - Az y z. True, simplified True-simps, consumes 1,

case-names T-Var T-Abs T-App T-TAbs T-TApp T-Sub T-Let T-Red T-Proj)

lemmas typings-induct = typing-typings.inducts(2)

29

[of - - - Az y 2. True, simplified True-simps, consumes 1,
case-names T-Nil T-Cons|

lemma narrow-type: — A.7
AQTVarBQ : :TFt: T=
r-P<:Q=AQTVarBP:=THF1t:T
AQTVarBQ:TFits[] Ts =
'rP<:Q=AQTVarBP ::Tkris[] Ts
(proof)

lemma typings-setD:
assumes H: T' + fs [:] fTs
shows (I, T') € set fTs = 3t. fs{(l)ys = [t] AT F¢: T
{proof)

lemma subtype-refl”:
assumes &: 't : T
shows I' - T <: T

{proof)

lemma Abs-type: — A.13(1)
assumes H: T'F (\:S.s): T
showsT'F T < U - U =
(NS"THU<:S= VarBS =:TFs:5 =
'}, 108< U = P)=P
(proof)

lemma Abs-type”:

assumes ' - (X\:S. s) : U — U’

and A" THU<:S= VarBS =T Fs:9=TF|, 108< U =P
shows P

(proof)

lemma TAbs-type: — A.13(2)
assumes H: ' (A\<:S.s): T
showsT'H T <: (V<:U. U') =
(NS THU<:S= TVarBU =Tk s:5 =
TVarBU =T+ S < U= P)= P
(proof)

lemma TAbs-type:

assumes I' F (A\<:S. 5) : (V<:U. U’)

and AS"THU<S= TVarBU =Tk s:8 = TVarBU =T+ S' < U’
== P

shows P

{proof)

In the proof of the preservation theorem, the following elimination rule for
typing judgements on record types will be useful:

30

lemma Red-typel: — A.13(3)
assumes '+t : T
shows t = Red fs = T' - T <: RedT fTs =
YV (I, U) € set fTs. Ju. fs{l)s = |u) ATFu: U
(proof)

lemma Red-typel "
assumes H: I' - Red fs : RedT fTs
shows V (I, U) € set fTs. u. fs(l)» = |ul/ ATFu: U
(proof)

Intuitively, this means that for a record Red fs of type RedT fTs, each field
with name [associated with a type U in fTs must correspond to a field in fs
with value u, where u has type U. Thanks to the subsumption rule 7T-Sub,
the typing judgement for terms is not sensitive to the order of record fields.
For example,

I' - Red [(11, 251)7 (127 tg), (13, t3)] : RedT [(12, Tz), (11, Tl)]
provided that I' F ¢; : T;. Note however that this does not imply
't [(llv tl)a (125 tQ)a (l3a t3)] H [(127 T2)7 (l17 Tl)]

In order for this statement to hold, we need to remove the field I3 and
exchange the order of the fields I; and l;. This gives rise to the following
variant of the above elimination rule:

lemma Rcd-type2-auz:
[T T <: RedT fTs; ¥ (I, U)eset fTs. Ju. fs{l)s = |u] AT F u: UJ
=T F map (\(I, T). (I, the (fs{l)~))) fTs [:] fTs
(proof)

lemma Rced-type2:
IFRedfs: T — T F T <: RedT fTs —>
I'F map (A1, T). (I, the (fs{l)~))) fTs [:] fTs
(proof)

lemma Rcd-type2’:
assumes H: I' - Red fs : RedT fTs
shows I' - map (A(l, T). (I, the (fs{I)2))) fTs [:] fTs
(proof)

lemma T-e¢: T'Ht: T — T =T = TFt: T (proof)
lemma ptyping-length [simp]:
Fp: T = A= |pll, = |A]

= fps [1fTs = A = |fpsllr = [[A]l
(proof)

lemma [lift-ptyping:

31

Fp:T=A=tfpnkp:TrnkT="1nkA
Ffps [fTs = A= Ftpnkfps[]trr nkfTs=TenkA
{(proof)

lemma type-weaken:
AQTF ¢: T:>F|—U,fBB:>
TelOAQB:THELT|AE: 11 |A| T
AQTF fs[}] fTs =Tty B=
Te 10AQBTHET 1 |A|fs]] Trr LA fTs
(proof)

lemma type-weaken’: — A.5(6)
F'tt: T=AQT ky,y=AQTHF1|A||O0t: 1T, |A]| 0T

(proof)

The substitution lemmas are now proved by mutual induction on the deriva-
tions of the typing derivations for terms and lists of fields.

lemma subst-ptyping:

Fp:T=A=Fpk—; Ul: Tk—, Ul; = Ak —; Ul

Fofps [1] fTs = A = & fpslk =+ Ulyp [}] fTs[k —r Ulyr = Alk —, Ule
(proof)

theorem subst-type: — A.8
AQVerBU :THt: T=TFu: U=
e ITOAQTF Al — u]: s 1A T
AQVarBU =:TtHfs[[]fTs=TFu: U=
Ve 10AQTF KA ul,] dr 1 [A] ST

(proof)

theorem substT-type: — A.11
AQTVarBQ :THt:T—TFP< Q—
A0 =, Pl QT F ¢t[||A]| =+ P]: T[A|l —+ P]r
AQTVarBQ :TFf[[]|fTs=TFP< Q=
Al0 =+ Ple QT+ fs[|Al| =7 Pl [}] [TS[|[A]l =7 Pler
(proof)

3.6 Evaluation

The definition of canonical values is extended with a clause saying that a
record Red fs is a canonical value if all fields contain canonical values:

inductive-set
value :: trm set
where
Abs: (A:T. t) € value
| TAbs: (A<:T. t) € value
| Red: V (I, t) € set fs. t € value => Red fs € value

In order to formalize the evaluation rule for LET, we introduce another
relation F p > t = ts expressing that a pattern p matches a term ¢t. The

32

relation also yields a list of terms ts corresponding to the variables in the
pattern. The relation is defined simultaneously with another relation - fps
[>] fs = ts for matching a list of field patterns fps against a list of fields fs:

inductive

match :: pat = trm = trm list = bool («F - 1> - = - [50, 50, 50] 50)

and matchs :: rpat = red = trm list = bool (< - [>] - = - [60, 50, 50] 50)
where

M-PVar: = PVar T > t = [t]
| M-Rcd: & fps [>] fs = ts = + PRed fps > Red fs = ts
| M-Nil: =[]] fs =]
| M-Cons: fs(l), = |t] = F p> t=ts=F fps [>] fs = us =

F (I, p) = fps [>] fs = ts Q us

The rules of the evaluation relation for the calculus with records are as
follows:

inductive
eval :: trm = trm = bool (infixl «—) 50)
and evals :: red = red = bool (infixl <[—]> 50)
where
E-Abs: vy € value = (A\:T11. t12) + v2 — t12[0 — v9]
| E-TAbs: (>\<2T11. tlg) o Ty —> t12[0 = TQ]
| B-Appl:t—t' = t-ur—t'-u
| B-App2: v € value = t— t' = v-t+— v - t’
| B-TApp: t — t' =t -+ T+—t' - T
| EB-LetV: v € value =+ p > v = ts = (LET p = v IN t) — [0 —; ts]
| E-ProjRed: fs(l)» = |v] = v € value = Rcd fs..l — v
| E-Proj: t — t' = t..l —> t'..
| E-Red: fs [—] fs' = Red fs — Red fs’
| B-Let: t — t' = (LET p = t IN u) — (LET p = t' IN u)
| B-hd: t— t' = (I, t) = fs [(I, t)) == fs
| E-tl: v € value = fs [—] fs' = (I, v) == fs [—>] (I, v) = fs'

The relation ¢ — ¢ is defined simultaneously with a relation fs [—] fs’
for evaluating record fields. The “immediate” reductions, namely pattern
matching and projection, are described by the rules E-LetV and E-ProjRcd,
respectively, whereas E-Proj, E-Rcd, E-Let, E-hd and E-tl are congruence
rules.

lemmas matchs-induct = match-matchs.inducts(2)
[of - - - Az y z. True, simplified True-simps, consumes 1,
case-names M-Nil M-Cons|

lemmas evals-induct = eval-evals.inducts(2)
[of - - Az y. True, simplified True-simps, consumes 1,
case-names E-hd E-tl]

lemma matchs-mono:

assumes H: F fps [>] fs = ts
shows fps(l)s = L =+ fps [>] (I, t) 2 fs = ts

33

{proof)

lemma matchs-eq:
assumes H: F fps [>] fs = ts
shows V (I, p) € set fps. fs(l)» = fs'{I)yy =+ fps [>] fs' = ts
(proof)

lemma reorder-eq:
assumes H: b fps [] fTs = A

< fV;(l, p) € set fps. fs(l)e = (map (A(I, T). (I, the (fs(l)7))) fTs)(l)7
proo

lemma matchs-reorder:
Ffps [:] fTs = A = VY (I, U)eset fTs. Ju. fs(l)r = |u] =
- fos [5] fs = ts => & fps [>] map (\(I, T). (I, the (fs(l)2))) fTs = ts
{proof)

lemma matchs-reorder’:
Ffps [fTs = A =V (I, U)eset fTs. Ju. fs(l)s = |u] =
E fps] map (A(L, T). (I, the (fs(l)2))) fTs = ts = F fps [>] fs = ts
(proof)

theorem matchs-tl:
assumes H: b fps [>] (I, t) = fs = ts
shows fps(l), = L =+ fps [>] fs = ts
(proof)

theorem match-length:

Fpot=ts=tp: T=A=|ts|| = |A]
Ffos[] ft = ts =+t fps[[] f[Ts = A = ||ts|]| = ||A]|
(proof)

In the proof of the preservation theorem for the calculus with records, we
need the following lemma relating the matching and typing judgements for
patterns, which means that well-typed matching preserves typing. Although
this property will only be used for I'y = [] later, the statement must be proved

in a more general form in order for the induction to go through.

theorem match-type: — A.17
l_pl Ti=A=1Iyrt; : Ty =
Fl@A@Fgl—tQ:T2:>|—pl>t1:>ts:>
Le A 0Ty @Ty b tofIDy | 1= t5] < 4o [A] [T1]| T
Ffps [f[Ts = A =Tyt fs[] [Ts =
Fl@A@Fgl—tQZT2:>|—fp8[l>}f8$t8$
L IIA]l 0 Ty @ Ty F oDy = #8] £ 4o IA] [T T
(proof)

lemma evals-labels [simp]:
assumes H: fs [—] fs’

34

shows (fs(l); = L) = (fs'(l) = L) (proof)

theorem preservation: — A.20
rct:T=tr—t'=Trt:T
TEfs[] fTs = fs [~ fs' = T F fs' [:] fTs

(proof)

lemma Fun-canonical: — A.14(1)
assumes ty: [|[Fov: Ty = To
shows v € value = 3t S. v = (\:S. t) (proof)

lemma TyAll-canonical: — A.14(3)
assumes ty: [| F v (V<:Ty1. T2)
shows v € value = 3t 5. v = (A<:S. t) (proof)

Like in the case of the simple calculus, we also need a canonical values
theorem for record types:

lemma RedT-canonical: — A.14(2)
assumes ty: [| v : RedT fT5
shows v € value =
dfs. v = Red fs N (V(I, t) € set fs. t € value) (proof)

theorem reorder-prop:
V(l, t) € setfs. Pt =V (I, U)eset fTs. u. fs{l)? = |u] =
YV (I, t) € set (map (A(I, T). (I, the (fs(l)2))) fT5s). Pt
(proof)

Another central property needed in the proof of the progress theorem is
that well-typed matching is defined. This means that if the pattern p is
compatible with the type T of the closed term ¢ that it has to match, then
it is always possible to extract a list of terms ts corresponding to the variables
in p. Interestingly, this important property is missing in the description of
the POPLMARK Challenge [1].

theorem ptyping-match:
Fp: T=A=[Ft:T=tec value=
Jts. Fp>t=ts
Ffps] fTs = A =[] F fs [}] f[Ts =
V(l, t) € set fs. t € value = Jus. - fps [>] fs = us
(proof)

theorem progress: — A.16
JFt:T=t¢€value v (3t t — 1t
Ffs[] fTs = (V(I, t) € set fs. t € value) V (I fs'. fs [—] fs')
(proof)

35

4 FEvaluation contexts

In this section, we present a different way of formalizing the evaluation rela-
tion. Rather than using additional congruence rules, we first formalize a set
ctxt of evaluation contexts, describing the locations in a term where reduc-
tions can occur. We have chosen a higher-order formalization of evaluation
contexts as functions from terms to terms. We define simultaneously a set
rctxt of evaluation contexts for records represented as functions from terms
to lists of fields.

inductive-set
ctat :: (trm = trm) set
and rctzt = (trm = red) set
where
C-Hole: (M. t) € ctat
| C-Appl: E € ctot = (M. E't - u) € ctat
| C-App2: v € value = E € ctat = (At. v+ E't) € ctat
| C-TApp: E € ctat = (\t. Et - T) € ctat
| C-Proj: E € ctzt = (At. E't..l) € ctat
| C-Red: E € rctat = (At. Red (E't)) € ctat
| C-Let: E € ctat = (At. LET p = Et IN u) € ctat
| C-hd: E € ctat = (At. (I, E't) == fs) € rctat
| C-tl: v € value = E € rctat = (At. (I, v) = E't) € rctat

lemmas rctzt-induct = ctat-retzt.inducts(2)
[of - Ax. True, simplified True-simps, consumes 1, case-names C-hd C-tl]

lemma rctzt-labels:
assumes H: E € rctat
shows F t(l), = L = E t'(l)» = L (proof)

The evaluation relation ¢ —. t’ is now characterized by the rule E-Ctxt,
which allows reductions in arbitrary contexts, as well as the rules E-Abs,
E-TAbs, E-LetV, and FE-ProjRcd describing the “immediate” reductions,
which have already been presented in §2.6 and §3.6.

inductive
eval :: trm = trm = bool (infixl +—.> 50)
where
E-Ctat: t —. t' = F € ctat = Et—. Et’
| E-Abs: vy € value — ()\ITll. tlg) Vg ¢ t12[0 — ’UQ]
| E-TAbs: (>\<ZT11. tlg) o Ty —, t12[0 = TQ]
| E-LetV: v € value = F p > v = ts = (LET p = v IN t) — t[0 5 ts]
| E-ProjRed: fs(l), = |v] = v € value = Rcd fs..l — . v

In the proof of the preservation theorem, the case corresponding to the rule
E-Ctxt requires a lemma stating that replacing a term ¢ in a well-typed term
of the form F t, where E is a context, by a term ¢’ of the same type does not
change the type of the resulting term F t’. The proof is by mutual induction

36

on the typing derivations for terms and records.

lemma context-typing: — A.18
l''w: T—= Fecctat—=u=FEt—=
(/\Tor}_tTo:Fl_t/To):}FkEt/T
'k fs[:] fTs = E, € rctat = fs = E, t =
(ANTo. T t:To=TFt':To) =T F E, t'[]fIs
{proof)

The fact that immediate reduction preserves the types of terms is proved
in several parts. The proof of each statement is by induction on the typing
derivation.

theorem Abs-preservation: — A.19(1)
assumes H: T'F (A\:Tq1. t12) + Lo : T
shows ' F t12[0 — &3] : T
(proof)

theorem TAbs-preservation: — A.19(2)
assumes H: I' - (A<:T1. t12) «» To: T
shows T' - ¢12[0 —, Ts] : T
(proof)

theorem Let-preservation: — A.19(3)
assumes H: T'- (LETp =1t INty) : T
shows b p>t; = ts = TF 3]0 —s ts] : T

(proof)

theorem Proj-preservation: — A.19(4)
assumes H: I' - Red fs..l : T
shows fs(l); = |v| =T Fov: T
{proof)

theorem preservation: — A.20
assumes H: t —, t'
shows '+ t¢: T =T+ t': T (proof)

For the proof of the progress theorem, we need a lemma stating that each
well-typed, closed term t is either a canonical value, or can be decomposed
into an evaluation context F and a term ty such that tg is a redex. The
proof of this result, which is called the decomposition lemma, is again by
induction on the typing derivation. A similar property is also needed for
records.

theorem context-decomp: — A.15
[Ft: T=
t € value V (AE tg to'. E € ctat Nt = E tg A tog —c to)
0F fs [JTs =
(V(l, t) € set fs. t € value) V (FE tg to". E € rctwt A fs = E tg A tg —c to')
(proof)

37

theorem progress: — A.16
assumes H: [|F¢t: T
shows t € value V (3t'. t —. t')

(proof)

Finally, we prove that the two definitions of the evaluation relation are
equivalent. The proof that t ——. t’ implies ¢t — t’ requires a lemma
stating that — is compatible with evaluation contexts.

lemma ctxt-imp-eval:
EFEcctat = tr—t' = Et— Et'
E, € retet = t —> t' = B, t [—] E, t’
(proof)

lemma eval-evalc-eq: (t — t') = (t —¢ t')

(proof)

5 Executing the specification

An important criterion that a solution to the POPLMARK Challenge should
fulfill is the possibility to animate the specification. For example, it should
be possible to apply the reduction relation for the calculus to example terms.
Since the reduction relations are defined inductively, they can be interpreted
as a logic program in the style of PROLOG. The definition of the single-step
evaluation relation presented in §2.6 and §3.6 is directly executable.

In order to compute the normal form of a term using the one-step evaluation
relation —, we introduce the inductive predicate ¢ || u, denoting that w is
a normal form of ¢.

inductive norm :: trm = trm = bool (infixl > 50)
where

t € value =t | ¢
[t—s=sJlu=1t]u

definition normal-forms where
normal-forms t = {u. t | u}

lemma [code-pred-intro Red-Nil]: valuep (Red [])
(proof)

lemma [code-pred-intro Red-Cons): valuep t = valuep (Red fs) = valuep (Red
((1, 1) # fs))
(proof)

lemmas valuep.intros(1)[code-pred-intro Abs'] valuep.intros(2)[code-pred-intro TAbs'|

code-pred (modes: i => bool) valuep

38

(proof)

thm valuep.equation
code-pred (modes: { => i => bool, i => o => bool as normalize) norm (proof)
thm norm.equation

lemma [code]:
normal-forms = set-of-pred o normalize

(proof)

lemma [code-unfold]: x € value <— valuep x
{proof)

definition

natT :: type where

natT =V <:Top. V<:TVar 0. (V<:TVar 1. (TVar 2 — TVar 1) — TVar 0 —
TVar 1))

definition
fact2 :: trm where
fact2 =

LET PVar natT =
(A<:Top. A<:TVar 0. A<:TVar 1. xxTVar 2 — TVar 1. X\: TVar 1. Var 1 -
Var 0)
IN
LET PRcd
[("pluspp"’, PVar (natT — natT — natT)),
("multpp”’, PVar (natT — natT — natT))] = Red
[("multpp”’, XinatT. AinatT. A<:Top. A<:TVar 0. \<:TVar 1. \:TVar 2 —
TVar 1.
Var 5 « TVar 8 - TVar 2 - TVar 1 - (Var 4 - TVar 3 - TVar 2 -,
TVar 1)« Var 0),
(""pluspp”’; inatT. XinatT. A\<:Top. A\<:TVar 0. A<:TVar 1. X:TVar 2 —
TVar 1. XxTVar 1.
Var 6 - TVar 4 - TVar 8 - TVar 8 - Var 1 -
(Var 5 - TVar 4 «» TVar 8 - TVar 2 - Var 1 « Var 0))]
IN
Var 0 - (Var 1+ Var 2 « Var 2) - Var 2

value normal-forms fact2

Unfortunately, the definition based on evaluation contexts from §4 is not
directly executable. The reason is that from the definition of evaluation
contexts, the code generator cannot immediately read off an algorithm that,
given a term ¢, computes a context F and a term ty such that ¢ = F ty. In
order to do this, one would have to extract the algorithm contained in the
proof of the decomposition lemma from §4.

39

values {u. norm fact2 u}

References

[1] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce,
P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic.
Mechanized Metatheory for the Masses: The POPLMARK Challenge. In
T. Melham and J. Hurd, editors, Theorem Proving in Higher Order Log-
ics: TPHOLs 2005, LNCS. Springer-Verlag, 2005.

[2] B. Barras and B. Werner. Coq in Coq. To appear in Journal of Auto-
mated Reasoning.

[3] T. Nipkow. More Church-Rosser proofs (in Isabelle/HOL). Journal of
Automated Reasoning, 26:51-66, 2001.

40

	General Utilities
	Formalization of the basic calculus
	Types and Terms
	Lifting and Substitution
	Well-formedness
	Subtyping
	Typing
	Evaluation

	Extending the calculus with records
	Types and Terms
	Lifting and Substitution
	Well-formedness
	Subtyping
	Typing
	Evaluation

	Evaluation contexts
	Executing the specification

