Prime Number Theorem with Remainder Term

Shuhao Song and Bowen Yao

May 8, 2024

Abstract

We have formalized the proof of the Prime Number Theorem with remainder term. This is the first formalized version of PNT with an explicit error term.

There are many useful results in this AFP entry.

First, the main result, prime number theorem with remainder:

$$\pi(x) = \operatorname{Li}(x) + O\left(x \exp\left(-\sqrt{\log x}/3653\right)\right)$$

Second, the zero-free region of the Riemann zeta function:

$$\zeta(\beta + i\gamma) \neq 0 \text{ when } \beta \geq 1 - \frac{1}{952320} (\log(|\gamma| + 2))^{-1}$$

Moreover, we proved a revised version of Perron's formula, together with the zero-free region we can prove the main result.

Contents

1	Auxiliary library for prime number theorem	2
	1.1 Zeta function	2
	1.2 Logarithm derivatives	3
	1.3 Lemmas of integration and integrability	6
	1.4 Lemmas on asymptotics	10
	1.5 Lemmas of floor, ceil and nat_powr	11
	1.6 Elementary estimation of exp and ln	12
	1.7 Miscellaneous lemmas	13
2	Implication relation of many forms of prime number theorem	14
3	Some basic theorems in complex analysis	21
	3.1 Introduction rules for holomorphic functions and analytic functions	21
	3.2 Factorization of analytic function on compact region	22
	3.2.1 Auxiliary propositions for theorem analytic_factorization	24
	3.3 Schwarz theorem in complex analysis	27
	3.4 Borel-Carathedory theorem	28
	3.5 Lemma 3.9	30
4	Zero-free region of zeta function	36
5	Perron's formula	58
6	Estimation of the order of $\frac{\zeta'(s)}{\zeta(s)}$	77

```
theory PNT_Notation
imports
 Prime_Number_Theorem.Prime_Counting_Functions
begin
definition PNT\_const\_C_1 \equiv 1 / 952320 :: real
abbreviation nat powr
 (infixr nat'_powr 80)
where
 n \ nat\_powr \ x \equiv (of\_nat \ n) \ powr \ x
bundle pnt notation
begin
notation PNT\_const\_C_1 (C_1)
notation norm (\parallel_\parallel)
notation Suc (_+ [101] 100)
end
bundle no_pnt_notation
begin
no_notation PNT\_const\_C_1 (C_1)
no_notation norm (\|\_\|)
no_notation Suc (__+ [101] 100)
end
end
theory PNT_Remainder_Library
imports
 PNT\_Notation
begin
unbundle pnt_notation
```

1 Auxiliary library for prime number theorem

1.1 Zeta function

```
lemma pre_zeta_1_bound:
  assumes \theta < Re s
  \mathbf{shows} \ \|\mathit{pre}\_\mathit{zeta} \ \mathit{1} \ \mathit{s}\| \leq \|\mathit{s}\| \ / \ \mathit{Re} \ \mathit{s}
proof -
  have ||pre\_zeta \ 1 \ s|| \le ||s|| \ / \ (Re \ s * 1 \ powr \ Re \ s)
    by (rule pre_zeta_bound') (use assms in auto)
  also have ... = ||s|| / Re s by auto
  finally show ?thesis.
qed
lemma zeta_pole_eq:
  assumes s \neq 1
  shows zeta s = pre\_zeta \ 1 \ s + 1 \ / \ (s - 1)
proof -
  have zeta s - 1 / (s - 1) = pre\_zeta \ 1 \ s by (intro zeta\_minus\_pole\_eq \ assms)
  thus ?thesis by (simp add: field_simps)
qed
```

```
definition zeta' where zeta' s \equiv pre zeta 1 \cdot s * (s - 1) + 1
lemma zeta'_analytic:
  zeta' analytic on UNIV
 unfolding zeta'_def by (intro analytic_intros) auto
lemma zeta'_analytic_on [analytic_intros]:
  zeta' analytic on A using zeta' analytic analytic on subset by auto
lemma zeta'_holomorphic_on [holomorphic_intros]:
  zeta' holomorphic_on A using zeta'_analytic_on by (intro analytic_imp_holomorphic)
lemma zeta_eq_zeta':
  zeta \ s = zeta' \ s \ / \ (s - 1)
proof (cases\ s=1)
 case True thus ?thesis using zeta_1 unfolding zeta'_def by auto
next
 case False with zeta_pole_eq [OF this]
 show ?thesis unfolding zeta'_def by (auto simp add: field_simps)
qed
lemma zeta'_1 [simp]: zeta' 1 = 1 unfolding zeta'_def by auto
lemma zeta_eq_zero_iff_zeta':
 shows s \neq 1 \Longrightarrow zeta' s = 0 \longleftrightarrow zeta s = 0
 using zeta eq zeta' [of s] by auto
lemma zeta'_eq_zero_iff:
 shows zeta's = 0 \longleftrightarrow zeta s = 0 \land s \neq 1
 by (cases\ s = 1,\ use\ zeta\_eq\_zero\_iff\_zeta'\ in\ auto)
lemma zeta_eq_zero_iff:
 shows zeta \ s = 0 \longleftrightarrow zeta' \ s = 0 \lor s = 1
 by (subst zeta'_eq_zero_iff, use zeta_1 in auto)
1.2
        Logarithm derivatives
definition logderiv f x \equiv deriv f x / f x
definition log_differentiable
 (infixr (log'_differentiable) 50)
where
 f \log_{differentiable} x \equiv (f field_differentiable (at x)) \land f x \neq 0
lemma logderiv_prod':
 fixes f :: 'n \Rightarrow 'f \Rightarrow 'f :: real\_normed\_field
 assumes fin: finite I
   and lder: \land i. i \in I \Longrightarrow f \ i \ log\_differentiable \ a
 shows logderiv (\lambda x. \prod i \in I. f(i,x)) a = (\sum i \in I. logderiv (f(i)) a) (is ?P)
   and (\lambda x. \prod i \in I. f i x) log\_differentiable a (is ?Q)
proof -
 let ?a = \lambda i. deriv (f i) a
 let ?b = \lambda i. \prod j \in I - \{i\}. f j a
 let ?c = \lambda i. f i a
 let ?d = \prod i \in I. ?c i
 have der: \land i. i \in I \Longrightarrow f \ i \ field\_differentiable (at a)
```

```
and nz: \land i. i \in I \Longrightarrow f i \ a \neq 0
   using lder unfolding log_differentiable_def by auto
  have 1: (*) x = (\lambda y. \ y * x) for x :: 'f by auto
 have ((\lambda x. \prod i \in I. f i x) has\_derivative
   (\lambda y. \sum i \in I. ?a \ i * y *?b \ i)) \ (at \ a \ within \ UNIV)
   by (rule has_derivative_prod, fold has_field_derivative_def)
      (rule field_differentiable_derivI, elim der)
 hence 2: DERIV (\lambda x. \prod i \in I. f i x) a :> (\sum i \in I. ?a i * ?b i)
   unfolding has field derivative def
   by (simp add: sum distrib left [symmetric] mult ac)
      (subst\ 1,\ blast)
 have prod\_nz: (\prod i \in I. ?c i) \neq 0
   using prod_zero_iff nz fin by auto
 have mult cong: b = c \implies a * b = a * c for a b c :: real by auto
 have logderiv (\lambda x. \prod i \in I. f i x) a = deriv (\lambda x. \prod i \in I. f i x) a / ?d
   unfolding logderiv_def by auto
 also have \dots = (\sum i \in I. ?a i * ?b i) / ?d
   using 2 DERIV_imp_deriv by auto
 also have ... = (\sum i \in I. ?a i * (?b i / ?d))
   by (auto simp add: sum_divide_distrib)
 also have ... = (\sum i \in I. logderiv (f i) a)
 proof -
   have \bigwedge a \ b \ c :: f \ a \neq 0 \Longrightarrow a = b * c \Longrightarrow c / a = inverse b
     by (auto simp add: field_simps)
   moreover have ?d = ?c \ i * ?b \ i \ if \ i \in I \ for \ i
     by (intro prod.remove that fin)
   ultimately have ?b \ i \ / \ ?d = inverse \ (?c \ i) \ if \ i \in I \ for \ i
     using prod_nz that by auto
   thus ?thesis unfolding logderiv_def using 2
     by (auto simp add: divide inverse intro: sum.cong)
 qed
 finally show ?P.
 show ?Q by (auto
   simp: log_differentiable_def field_differentiable_def
   intro!: 2 prod_nz)
qed
lemma logderiv prod:
 fixes f :: 'n \Rightarrow 'f \Rightarrow 'f :: real normed field
 assumes lder: \land i. i \in I \Longrightarrow f \ i \ log\_differentiable \ a
 shows logderiv\ (\lambda x.\ \prod i \in I.\ f\ i\ x)\ a = (\sum i \in I.\ logderiv\ (f\ i)\ a)\ (is\ ?P)
   and (\lambda x. \prod i \in I. f i x) log\_differentiable a (is ?Q)
proof -
 consider finite I \mid infinite I by auto
 hence ?P \land ?Q
 proof cases
   assume fin: finite I
   show ?thesis by (auto intro: logderiv_prod' lder fin)
 next
   assume nfin: infinite I
   show ?thesis using nfin
     {\bf unfolding} \ log deriv\_def \ log\_differentiable\_def \ {\bf by} \ auto
 qed
 thus ?P ?Q by auto
qed
```

```
lemma loqderiv mult:
 assumes f log\_differentiable a
   and g \log differentiable a
 shows logderiv (\lambda z. f z * g z) a = logderiv f a + logderiv g a (is ?P)
   and (\lambda z. fz * gz) log\_differentiable a (is ?Q)
proof -
 have logderiv (\lambda z. fz * gz) a
     = logderiv (\lambda z. \prod i \in \{0, 1\}. ([f, g]!i) z) a by auto
 also have \dots = (\sum i \in \{0, 1\}, logderiv ([f, g]!i) a)
   by (rule logderiv_prod(1), use assms in auto)
 also have \dots = logderiv f a + logderiv g a
   by auto
 finally show ?P.
 have (\lambda z. \prod i \in \{0, 1\}. ([f, g]!i) z) log\_differentiable a
   by (rule\ logderiv\_prod(2),\ use\ assms\ in\ auto)
 thus ?Q by auto
qed
lemma logderiv_cong_ev:
 assumes \forall F x \text{ in } nhds x. f x = g x
   and x = y
 shows logderiv f x = logderiv g y
proof -
 have deriv f x = deriv g y using assms by (rule \ deriv\_cong\_ev)
 moreover have f x = q y using assms by (auto intro: eventually nhds x imp x)
 ultimately show ?thesis unfolding logderiv def by auto
qed
lemma logderiv_linear:
 assumes z \neq a
 shows logderiv (\lambda w. w - a) z = 1 / (z - a)
   and (\lambda w. \ w - z) \ log\_differentiable \ a
unfolding logderiv def log differentiable def
  using assms by (auto simp add: derivative_intros)
lemma deriv_shift:
 assumes f field differentiable at (a + x)
 shows deriv (\lambda t. f(a + t)) x = deriv f(a + x)
proof -
 have deriv (f \circ (\lambda t. \ a + t)) \ x = deriv \ f \ (a + x)
   by (subst deriv_chain) (auto intro: assms)
 thus ?thesis unfolding comp def by auto
qed
lemma logderiv_shift:
 assumes f field\_differentiable at (a + x)
 shows logderiv (\lambda t. f(a + t)) x = logderiv f(a + x)
 unfolding logderiv_def by (subst deriv_shift) (auto intro: assms)
lemma loqderiv inverse:
 assumes x \neq 0
 shows logderiv (\lambda x. 1 / x) x = -1 / x
proof -
 have deriv (\lambda x. 1 / x) x = (deriv (\lambda x. 1) x * x - 1 * deriv (\lambda x. x) x) / x^2
```

```
by (rule deriv divide) (use assms in auto)
 hence deriv (\lambda x. 1 / x) x = -1 / x^2 by auto
 thus ?thesis unfolding logderiv_def power2_eq_square using assms by auto
qed
lemma logderiv_zeta_eq_zeta':
 assumes s \neq 1 zeta s \neq 0
 shows logderiv zeta s = logderiv zeta s - 1 / (s - 1)
proof -
 have logderiv zeta s = logderiv (\lambda s. zeta' s * (1 / (s - 1))) s
   using zeta_eq_zeta' by auto metis
 also have ... = logderiv zeta' s + logderiv (\lambda s. 1 / (s - 1)) s
 proof -
   have zeta' s \neq 0 using assms zeta eq zero iff zeta' by auto
   hence zeta' log differentiable s
     unfolding log_differentiable_def
     by (intro conjI analytic_on_imp_differentiable_at)
       (rule zeta'_analytic, auto)
   moreover have (\lambda z. 1 / (z - 1)) log\_differentiable s
     unfolding log_differentiable_def using assms(1)
     by (intro derivative_intros conjI, auto)
   ultimately show ?thesis using assms by (intro logderiv_mult(1))
 also have logderiv (\lambda s. 1 / (-1 + s)) s = logderiv (\lambda s. 1 / s) (-1 + s)
   by (rule logderiv_shift) (insert assms(1), auto intro: derivative_intros)
 moreover have \dots = -1 / (-1 + s)
   by (rule logderiv inverse) (use assms(1) in auto)
 ultimately show ?thesis by auto
qed
lemma analytic_logderiv [analytic_intros]:
 assumes f analytic_on A \land z. z \in A \Longrightarrow f z \neq 0
 shows (\lambda s.\ logderiv\ f\ s) analytic_on A
 using assms unfolding logderiv_def by (intro analytic_intros)
```

1.3 Lemmas of integration and integrability

```
lemma powr_has_integral:
 fixes a \ b \ w :: real
 assumes Hab: a \leq b and Hw: w > 0 \land w \neq 1
 shows ((\lambda x. \ w \ powr \ x) \ has\_integral \ w \ powr \ b \ / \ ln \ w \ - \ w \ powr \ a \ / \ ln \ w) \ \{a..b\}
proof (rule fundamental_theorem_of_calculus)
 show a \le b using assms by auto
next
 fix x assume x \in \{a..b\}
 have ((\lambda x. exp (x * ln w)) has\_vector\_derivative exp (x * ln w) * (1 * ln w)) (at x within {a..b})
   by (subst has_real_derivative_iff_has_vector_derivative [symmetric])
      (rule derivative intros DERIV cmult right)+
 hence ((powr) \ w \ has\_vector\_derivative \ w \ powr \ x * ln \ w) \ (at \ x \ within \ \{a..b\})
   unfolding powr_def using Hw by (simp add: DERIV_fun_exp)
 moreover have ln \ w \neq 0 using Hw by auto
 ultimately show ((\lambda x. \ w \ powr \ x \ / \ ln \ w) \ has\_vector\_derivative \ w \ powr \ x) \ (at \ x \ within \ \{a..b\})
   by (auto intro: derivative_eq_intros)
qed
```

```
fixes a \ b \ w :: real
  assumes Hab: a \leq b and Hw: w > 0 \land w \neq 1
  shows (\lambda x. \ w \ powr \ x) \ integrable\_on \ \{a..b\}
by (rule has_integral_integrable, rule powr_has_integral)
  (use assms in auto)
lemma powr_integral_bound_gt_1:
  fixes a \ b \ w :: real
  assumes Hab: a < b and Hw: w > 1
  shows integral \{a..b\} (\lambda x. \ w \ powr \ x) \le w \ powr \ b \ / \ |ln \ w|
proof -
  have integral \{a..b\} (\lambda x.\ w\ powr\ x) = w\ powr\ b\ /\ ln\ w\ -\ w\ powr\ a\ /\ ln\ w
    by (intro integral unique powr has integral) (use assms in auto)
  also have ... \leq w \ powr \ b \ / \ |ln \ w| \ using \ Hw \ by \ auto
  finally show ?thesis.
qed
lemma powr_integral_bound_lt_1:
  fixes a \ b \ w :: real
  assumes Hab: a < b and Hw: 0 < w \land w < 1
  shows integral \{a..b\} (\lambda x.\ w\ powr\ x) \leq w\ powr\ a\ /\ |ln\ w|
proof -
  have integral \{a..b\} (\lambda x.\ w\ powr\ x) = w\ powr\ b\ /\ ln\ w\ -\ w\ powr\ a\ /\ ln\ w
    by (intro integral_unique powr_has_integral) (use assms in auto)
  also have ... \leq w \ powr \ a \ / \ |ln \ w| \ using \ Hw \ by \ (auto \ simp \ add: field\_simps)
  finally show ?thesis.
qed
lemma set_integrableI_bounded:
  fixes f :: 'a \Rightarrow 'b :: \{banach, second\_countable\_topology\}
  shows A \in sets M
  \implies (\lambda x. \ indicator \ A \ x *_R f x) \in borel\_measurable \ M
  \implies emeasure M A < \infty
  \implies (AE \ x \ in \ M. \ x \in A \longrightarrow norm \ (f \ x) < B)
  \implies set\_integrable\ M\ A\ f
unfolding set_integrable_def
  by (rule\ integrableI\_bounded\_set[\mathbf{where}\ A=A])\ auto
lemma integrable cut':
  fixes a \ b \ c :: real \ \mathbf{and} \ f :: real \Rightarrow real
  assumes a \leq b \ b \leq c
  and Hf: \land x. \ a \leq x \Longrightarrow f \ integrable\_on \ \{a..x\}
  shows f integrable on \{b..c\}
proof -
  have a \leq c using assms by linarith
  hence f integrable\_on \{a..c\} by (rule\ Hf)
  thus ?thesis by
    (rule integrable subinterval real)
    (subst subset_iff, (subst atLeastAtMost_iff)+,
    blast intro: \langle a \leq b \rangle order_trans [of a b])
qed
lemma integration_by_part':
  fixes a \ b :: real
    and f g :: real \Rightarrow 'a :: \{real \ normed \ field, banach\}
```

```
and f' g' :: real \Rightarrow 'a
  assumes a \leq b
    and \bigwedge x. \ x \in \{a..b\} \Longrightarrow (f \ has\_vector\_derivative \ f' \ x) \ (at \ x)
    and \bigwedge x. \ x \in \{a..b\} \Longrightarrow (g \ has\_vector\_derivative \ g' \ x) \ (at \ x)
    and int: (\lambda x. f x * g' x) integrable_on \{a..b\}
  shows ((\lambda x. f' x * g x) has\_integral
   f \ b * g \ b - f \ a * g \ a - integral\{a..b\} \ (\lambda x. \ f \ x * g' \ x)) \ \{a..b\}
proof -
  define prod where prod \equiv (*) :: 'a \Rightarrow 'a \Rightarrow 'a
  define y where y \equiv f \ b * g \ b - f \ a * g \ a - integral \{a..b\} \ (\lambda x. \ f \ x * g' \ x)
  have 0: bounded_bilinear prod unfolding prod_def
    by (rule bounded_bilinear_mult)
  have 1: ((\lambda x. f x * g' x) has\_integral f b * g b - f a * g a - y) \{a..b\}
  using y def and int and integrable integral by auto
  note 2 = integration\_by\_parts
    [where y = y and prod = prod, OF 0, unfolded prod\_def]
  have continuous\_on \{a..b\} f continuous\_on \{a..b\} g
    by (auto intro: has_vector_derivative_continuous
                   has \ \ vector\_derivative\_at\_within \ assms
            simp: continuous_on_eq_continuous_within)
  with assms and 1 show ?thesis by (fold y_def, intro 2) auto
qed
lemma integral_bigo:
  fixes a :: real \text{ and } f g :: real \Rightarrow real
  assumes f bound: f \in O(q)
    and Hf': \Lambda x. \ a \leq x \Longrightarrow (\lambda x. |f x|) \ integrable\_on \{a..x\}
    and Hg': \bigwedge x. \ a \leq x \Longrightarrow (\lambda x. |g x|) \ integrable\_on \{a..x\}
  shows (\lambda x. integral\{a..x\} f) \in O(\lambda x. 1 + integral\{a..x\} (\lambda x. |g x|))
proof -
  from \langle f \in O(g) \rangle obtain c where \forall F \ x \ in \ at\_top. |f \ x| \leq c * |g \ x|
    unfolding bigo_def by auto
  then obtain N' :: real where asymp: \land n. \ n > N' \Longrightarrow |f \ n| < c * |q \ n|
    by (subst (asm) eventually_at_top_linorder) (blast)
  define N where N \equiv max \ a \ N'
  define I where I \equiv |integral \{a..N\} f|
  define J where J \equiv integral \{a..N\} (\lambda x. |q|x|)
  define c' where c' \equiv max (I + J * |c|) |c|
  have \bigwedge x. N \leq x \Longrightarrow |integral \{a..x\} f|
     \leq c' * |1 + integral \{a..x\} (\lambda x. |g x|)|
  proof -
    \mathbf{fix} \ x :: real
    assume 1: N \leq x
    define K where K \equiv integral \{a..x\} (\lambda x. |g|x|)
    have 2: a \leq N unfolding N\_def by linarith
    hence 3: a \le x using 1 by linarith
    have nnegs: 0 \le I \ 0 \le J \ 0 \le K
     unfolding I_def J_def K_def using 1 2 Hg'
     by (auto intro!: integral nonneg)
    hence abs eq: |I| = I |J| = J |K| = K
     using nnegs by simp+
    have int|f|: (\lambda x. |f x|) integrable\_on \{N..x\}
     using 2 1 Hf' by (rule integrable_cut')
    have intf: f integrable on \{N..x\}
```

```
using 2 1 Hf by (rule integrable_cut')
 have \bigwedge x. a \leq x \Longrightarrow (\lambda x. c * |q x|) integrable on \{a..x\}
   by (blast intro: Hg' integrable_cmul [OF Hg', simplified])
 hence intc|g|: (\lambda x. \ c * |g \ x|) \ integrable\_on \ \{N..x\}
   using 2 1 by (blast intro: integrable cut')
 have |integral \{a...x\} f| \le I + |integral \{N...x\} f|
   unfolding I\_def
   by (subst Henstock_Kurzweil_Integration.integral_combine
       [OF \ 2 \ 1 \ Hf \ [of \ x], \ THEN \ sym])
      (rule 3, rule abs triangle ineq)
 also have ... \leq I + integral \{N..x\} (\lambda x. |f x|)
 proof -
   note integral norm bound integral [OF intf int|f|]
   then have |integral \{N..x\}| f| \leq integral \{N..x\}| (\lambda x. |f|x|) by auto
   then show ?thesis by linarith
 qed
 also have ... \leq I + c * integral \{N..x\} (\lambda x. |g x|)
 proof -
   have 1: N' \leq N unfolding N\_def by linarith
   hence \bigwedge y :: real. \ N \leq y \Longrightarrow |f y| \leq c * |g y|
   proof -
     \mathbf{fix} \ y :: real
     assume N \leq y
     thus |f y| \leq c * |g y|
       by (rule asymp [OF order_trans [OF 1]])
   ged
   hence integral \{N..x\} (\lambda x. |f x|) \leq integral \{N..x\} (\lambda x. |c * |g x|)
     by (rule\ integral\_le\ [OF\ int|f|\ intc|g|])\ simp
   thus ?thesis by simp
 qed
 also have ... \langle I + |c| * (J + integral \{a..x\} (\lambda x. ||q|x||))
 proof -
   note Henstock_Kurzweil_Integration.integral_combine [OF 2 1 Hg' [of x]]
   hence K_{min}J: integral \{N..x\} (\lambda x. |g|x|) = K - J
     unfolding J\_def K\_def using 3 by auto
   have c * (K - J) \le |c| * (J + K) proof -
     have c * (K - J) \le |c * (K - J)| by simp
     also have ... = |c| * |K - J| by (simp add: abs mult)
     also have \ldots \leq |c| * (|J| + |K|) by (simp add: mult_left_mono)
     finally show ?thesis by (simp add: abs_eq)
   qed
   thus ?thesis by simp (subst K_min_J, fold K_def)
 ged
 also have ... = (I + J * |c|) + |c| * integral \{a..x\} (\lambda x. |g|x|)
   by (simp add: field_simps)
 also have ... \leq c' + c' * integral \{a..x\} (\lambda x. |g x|)
 proof -
   have I + J * |c| \le c' unfolding c'_def by auto
   thus ?thesis unfolding c'_def
     by (auto intro!: add_mono mult_mono integral_nonneg Hg' 3)
 ged
 finally show |integral \{a..x\} f|
   \leq c' * |1 + integral \{a..x\} (\lambda x. |g x|)|
   by (simp add: integral_nonneg Hg' 3 field_simps)
qed
```

```
note \theta = this
 show ?thesis proof (rule eventually_mono [THEN bigoI])
   show \forall Fx \text{ in } at\_top. N \leq x \text{ by } simp
   show \bigwedge x. \ N \leq x \Longrightarrow \|integral \{a..x\} f\| \leq c' *
     ||1 + integral \{a...x\} (\lambda x. |g x|)|| by (simp, rule \ \theta)
 qed
qed
lemma integral linepath same Re:
 assumes Ha: Re \ a = Re \ b
   and Hb: Im \ a < Im \ b
   and Hf: (f has_contour_integral x) (linepath a b)
 shows ((\lambda t. f (Complex (Re a) t) * i) has integral x) \{Im a..Im b\}
proof -
 define path where path \equiv linepath \ a \ b
 define c d e g where c \equiv Re a and d \equiv Im a and e \equiv Im b and g \equiv e - d
 hence [simp]: a = Complex \ c \ d \ b = Complex \ c \ e \ by \ auto \ (subst \ Ha, \ auto)
 have hg: 0 < g unfolding g\_def using Hb by auto
 have [simp]: a *_R z = a *_Z  for a and z :: complex by (rule\ complex\_eq I) auto
 have ((\lambda t. f (path t) * (b - a)) has\_integral x) \{0...1\}
   unfolding path_def by (subst has_contour_integral_linepath [symmetric]) (intro Hf)
 moreover have path t = Complex \ c \ (g *_R t + d) for t
   unfolding path_def linepath_def g_def
   by (auto simp add: field_simps legacy_Complex_simps)
 moreover have b - a = g * i
   unfolding q def by (auto simp add: legacy Complex simps)
  ultimately have
   ((\lambda t. f (Complex c (g *_R t + d)) * (g *_i)) has\_integral g *_x /_R g \cap DIM(real))
    (cbox ((d-d)/_R g) ((e-d)/_R g))
   by (subst (6) g_def) (auto simp add: field_simps)
 hence ((\lambda t. f (Complex c t) * i * g) has_integral x * g) {d..e}
   by (subst (asm) has_integral_affinity_iff)
      (auto simp add: field_simps hg)
 hence ((\lambda t. f (Complex c t) * i * g * (1 / g)) has_integral x * g * (1 / g)) {d..e}
   by (rule has_integral_mult_left)
 thus ?thesis using hg by auto
qed
1.4
        Lemmas on asymptotics
lemma eventually_at_top_linorderI':
 fixes c :: 'a :: \{no\_top, linorder\}
 assumes h: \bigwedge x. \ c < x \Longrightarrow P x
 shows eventually P at top
proof (rule eventually mono)
 show \forall_F x \text{ in } at\_top. \ c < x \text{ by } (rule \ eventually\_gt\_at\_top)
 from h show \bigwedge x. c < x \Longrightarrow P x.
qed
lemma eventually_le_imp_bigo:
 assumes \forall F \ x \ in \ F. \ ||f \ x|| \leq g \ x
```

from assms have $\forall_F x \text{ in } F$. $||f x|| \leq 1 * ||g x||$ by eventually_elim auto

shows $f \in O[F](g)$

qed

thus ?thesis by (rule bigoI)

```
lemma eventually le imp biqo':
  assumes \forall F \ x \ in \ F. \ ||f \ x|| \leq g \ x
  shows (\lambda x. ||f x||) \in O[F](g)
proof -
  from assms have \forall_F x \text{ in } F. ||||f x||| \le 1 * ||g x||
    by eventually_elim auto
  thus ?thesis by (rule bigoI)
qed
lemma le\_imp\_bigo:
  assumes \bigwedge x. ||f x|| \leq g x
  shows f \in O[F](q)
  by (intro eventually le imp bigo eventually I assms)
lemma le_imp_bigo':
  assumes \bigwedge x. ||f x|| \leq g x
  shows (\lambda x. \|f x\|) \in O[F](g)
  by (intro eventually_le_imp_bigo' eventuallyI assms)
lemma exp_bigo:
  fixes f g :: real \Rightarrow real
  assumes \forall F \ x \ in \ at\_top. \ f \ x \leq g \ x
  shows (\lambda x. \ exp \ (f \ x)) \in O(\lambda x. \ exp \ (g \ x))
proof -
  from assms have \forall_F x \text{ in at top. } exp(fx) \leq exp(gx) by simp
  hence \forall F \ x \ in \ at\_top. \|exp \ (f \ x)\| \le 1 * \|exp \ (g \ x)\|  by simp
  thus ?thesis by blast
qed
lemma ev\_le\_imp\_exp\_bigo:
  fixes f g :: real \Rightarrow real
  assumes hf: \forall_F x \text{ in } at\_top. \ 0 < f x
    and hg: \forall_F \ x \ in \ at\_top. \ \theta < g \ x
    and le: \forall_F \ x \ in \ at\_top. \ ln \ (f \ x) \leq ln \ (g \ x)
  shows f \in O(g)
proof -
  have \forall F x \text{ in at top. } exp(\ln(fx)) \leq exp(\ln(gx))
    using le by simp
  hence \forall_F x \text{ in } at\_top. \|f x\| \leq 1 * \|g x\|
    using hf hg by eventually_elim auto
  thus ?thesis by (intro bigoI)
qed
lemma smallo_ln_diverge_1:
  fixes f :: real \Rightarrow real
  assumes f_ln: f \in o(ln)
  shows LIM x at_top. x * exp(-fx) :> at_top
proof -
  have (\lambda x. \ln x - f x) \sim [at\_top] (\lambda x. \ln x)
    using assms by (simp add: asymp equiv altdef)
  moreover have filterlim (\lambda x. ln x :: real) at\_top at\_top
    by real_asymp
  ultimately have filterlim (\lambda x. ln x - f x) at_top at_top
    using asymp equiv at top transfer asymp equiv sym by blast
```

```
hence filterlim (\lambda x. exp (ln x - f x)) at\_top at\_top
   by (rule filterlim compose[OF exp at top])
 moreover have \forall F x \text{ in } at\_top. exp (ln x - f x) = x * exp (-f x)
   using eventually\_gt\_at\_top[of 0]
   by eventually_elim (auto simp: exp_diff exp_minus field_simps)
 ultimately show ?thesis
   using filterlim_cong by fast
qed
lemma ln\_ln\_asymp\_pos: \forall_F x :: real in at\_top. 0 < ln (ln x) by real\_asymp
lemma ln\_asymp\_pos: \forall F x :: real in at\_top. \theta < ln x by real\_asymp
lemma x_asymp_pos: \forall_F x :: real in at_top. 0 < x by auto
        Lemmas of floor, ceil and nat powr
1.5
lemma nat\_le\_self: 0 \le x \Longrightarrow nat (int x) \le x by auto
lemma floor_le: \bigwedge x :: real. |x| \leq x by auto
lemma ceil\_ge: \land x :: real. \ x \leq \lceil x \rceil by auto
lemma nat lt real iff:
 (n :: nat) < (a :: real) = (n < nat \lceil a \rceil)
proof -
 have n < a = (of_int \ n < a) by auto
 also have ... = (n < \lceil a \rceil) by (rule\ less\_ceiling\_iff\ [symmetric])
 also have ... = (n < nat \lceil a \rceil) by auto
 finally show ?thesis.
qed
lemma nat_le_real_iff:
 (n :: nat) \le (a :: real) = (n < nat(|a| + 1))
proof -
 have n \leq a = (of\_int \ n \leq a) by auto
 also have ... = (n \le |a|) by (rule\ le\_floor\_iff\ [symmetric])
 also have \dots = (n < |a| + 1) by auto
 also have ... = (n < nat (|a| + 1)) by auto
 finally show ?thesis.
qed
lemma of real_nat_power: n nat_power (of_real x :: complex) = of_real (n nat_power x) for n x
 by (subst of_real_of_nat_eq [symmetric])
    (subst\ powr\_of\_real,\ auto)
lemma norm\_nat\_power: ||n \ nat\_powr \ (s :: complex)|| = n \ powr \ (Re \ s)
 unfolding powr def by auto
1.6
        Elementary estimation of exp and ln
lemma ln when qe 3:
  1 < \ln x \text{ if } 3 \le x \text{ for } x :: real
proof (rule ccontr)
 assume \neg 1 < \ln x
 hence exp (ln x) \le exp 1 by auto
```

hence $x \le exp \ 1$ using that by auto thus False using e_less_272 that by auto

qed

```
lemma exp lemma 1:
 fixes x :: real
 assumes 1 \le x
 shows 1 + exp \ x \le exp \ (2 * x)
proof -
 let ?y = exp \ x
 have ln 2 \le x using assms ln_2_less_1 by auto
 hence exp\ (ln\ 2) \le ?y by (subst\ exp\_le\_cancel\_iff)
 hence (3 / 2)^2 \le (?y - 1 / 2)^2 by auto
 hence 0 \le -5 / 4 + (?y - 1 / 2)^2 by (simp add: power2_eq_square) also have ... = ?y^2 - ?y - 1 by (simp add: power2_eq_square field_simps)
 finally show ?thesis by (simp add: exp_double)
qed
lemma ln bound 1:
 fixes t :: real
 assumes Ht: 0 \le t
 shows ln (14 + 4 * t) \le 4 * ln (t + 2)
proof -
 have ln (14 + 4 * t) \leq ln (14 / 2 * (t + 2)) using Ht by auto
 also have ... = ln \ 7 + ln \ (t + 2) using Ht by (subst ln\_mult) auto
 also have ... \leq 3 * ln (t + 2) + ln (t + 2) proof -
   have (14 :: real) \leq 2 powr 4 by auto
   hence exp (ln (14 :: real)) \leq exp (4 * ln 2)
     unfolding powr_def by (subst exp_ln) auto
   hence ln(14 :: real) \le 4 * ln 2 by (subst(asm) exp le cancel iff)
   hence ln (14 / 2 :: real) \le 3 * ln 2 by (subst ln\_div) auto
   also have ... \leq 3 * ln (t + 2) using Ht by auto
   finally show ?thesis by auto
 qed
 also have ... = 4 * ln (t + 2) by auto
 finally show ?thesis by (auto simp add: field simps)
qed
1.7
        Miscellaneous lemmas
abbreviation fds\_zeta\_complex :: complex <math>fds \equiv fds\_zeta
lemma powr mono lt 1 cancel:
 fixes x \ a \ b :: real
 assumes Hx: 0 < x \land x < 1
 shows (x \ powr \ a \le x \ powr \ b) = (b \le a)
 have (x \ powr \ a \le x \ powr \ b) = ((x \ powr \ -1) \ powr \ -a \le (x \ powr \ -1) \ powr \ -b) by (simp \ add: \ powr \ powr)
 also have ... = (-a \le -b) using Hx by (intro\ powr\_le\_cancel\_iff) (auto\ simp\ add:\ powr\_neg\_one)
 also have \dots = (b \le a) by auto
 finally show ?thesis.
qed
abbreviation mangoldt\_real :: \_ \Rightarrow real \equiv mangoldt
abbreviation mangoldt\_complex :: \_ \Rightarrow complex \equiv mangoldt
lemma norm fds mangoldt complex:
 \land n. \|fds\_nth (fds \ mangoldt\_complex) \ n\| = mangoldt\_real \ n \ by (simp \ add: fds\_nth\_fds)
lemma suminf_norm_bound:
```

```
fixes f :: nat \Rightarrow 'a :: banach
 assumes summable q
   and \bigwedge n. ||f n|| \leq g n
 shows ||suminf f|| \le (\sum n. \ g \ n)
proof -
 have *: summable (\lambda n. ||f n||)
   by (rule summable_comparison_test' [where g = g])
      (use assms in auto)
 hence ||suminf f|| \le (\sum n. ||f n||) by (rule summable\_norm)
 also have (\sum n. ||f n||) \le (\sum n. ||f n||)
   by (rule\ suminf\_le)\ (use\ assms*\ in\ auto)
 finally show ?thesis.
qed
lemma C_1\_gt\_zero: \theta < C_1 unfolding PNT\_const\_C_1\_def by auto
unbundle no_pnt_notation
end
theory Relation_of_PNTs
imports
 PNT\_Remainder\_Library
begin
unbundle pnt notation
unbundle prime_counting_notation
```

2 Implication relation of many forms of prime number theorem

```
definition rem\_est :: real \Rightarrow real \Rightarrow real \Rightarrow \_ where
rem\_est\ c\ m\ n \equiv O(\lambda\ x.\ x * exp\ (-c * ln\ x\ powr\ m * ln\ (ln\ x)\ powr\ n))
definition Li :: real \Rightarrow real where Li x \equiv integral \{2...x\} (\lambda x. 1 / ln x)
definition PNT 1 where PNT 1 c m n \equiv ((\lambda x. \pi x - Li x) \in rem \ est \ c \ m \ n)
definition PNT_2 where PNT_2 c m n \equiv ((\lambda x. \vartheta x - x) \in rem_est \ c \ m \ n)
definition PNT_3 where PNT_3 c m n \equiv ((\lambda x. \psi x - x) \in rem\_est \ c \ m \ n)
lemma rem_est_compare_powr:
  fixes c \ m \ n :: real
  assumes h: 0 < m m < 1
  shows (\lambda x. \ x \ powr \ (2 \ / \ 3)) \in rem\_est \ c \ m \ n
  unfolding rem_est_def using assms
  by (cases c 0 :: real rule: linorder_cases; real_asymp)
lemma PNT_3_imp_PNT_2:
  fixes c \ m \ n :: real
  assumes h: 0 < m m < 1 and PNT\_3 \ c \ m \ n
  shows PNT_2 c m n
proof -
  have 1: (\lambda \ x. \ \psi \ x - x) \in rem\_est \ c \ m \ n
    using assms(3) unfolding PNT 3 def by auto
  have (\lambda x. \ \psi \ x - \vartheta \ x) \in O(\lambda x. \ ln \ x * sqrt \ x) by (rule \ \psi\_minus\_\vartheta\_bigo)
  moreover have (\lambda x. \ln x * sqrt x) \in O(\lambda x. x powr (2 / 3)) by real_asymp
  ultimately have 2: (\lambda x. \ \psi \ x - \vartheta \ x) \in rem\_est \ c \ m \ n
    using rem_est_compare_powr [OF h, of c n] unfolding rem_est_def
```

```
by (blast intro: landau o.big.trans)
 have (\lambda x. \ \psi \ x - x - (\psi \ x - \vartheta \ x)) \in rem \ est \ c \ m \ n
   using 1 2 unfolding rem_est_def by (rule sum_in_bigo)
 thus ?thesis unfolding PNT_2_def by simp
qed
definition r_1 where r_1 x \equiv \pi \ x - Li \ x for x
definition r_2 where r_2 x \equiv \vartheta x - x for x
lemma pi represent by theta:
 fixes x :: real
 assumes 2 \le x
 shows \pi x = \vartheta x / (\ln x) + integral \{2...x\} (\lambda t. \vartheta t / (t * (\ln t)^2))
proof -
 note integral unique [OF \pi conv \vartheta integral]
 with assms show ?thesis by auto
qed
lemma Li_integrate_by_part:
 fixes x :: real
 assumes 2 \le x
 shows
 (\lambda x. 1 / (\ln x)^2) integrable\_on \{2..x\}
 Li \ x = x / (ln \ x) - 2 / (ln \ 2) + integral \{2..x\} (\lambda t. \ 1 / (ln \ t)^2)
proof -
 have (\lambda x. \ x * (-1 / (x * (\ln x)^2))) integrable on \{2...x\}
   by (rule integrable continuous interval)
      ((rule\ continuous\_intros)+,\ auto)
 hence (\lambda x. - (if \ x = 0 \ then \ 0 \ else \ 1 \ / (ln \ x)^2)) integrable_on \{2...x\}
 moreover have ((\lambda t. 1 / ln t) has\_vector\_derivative -1 / (t * (ln t)^2)) (at t)
   when Ht: 2 \le t for t
  proof -
   define a where a \equiv (0 * ln t - 1 * (1 / t))/(ln t * ln t)
   have DERIV (\lambda t. 1 / (ln t)) t :> a
   unfolding a\_def
   proof (rule derivative_intros DERIV_ln_divide)+
     from Ht show \theta < t by linarith
     note ln \ gt \ zero and Ht thus ln \ t \neq 0 by auto
   qed
   also have a = -1 / (t * (ln \ t)^2)
     unfolding a_def by (simp add: power2_eq_square)
   finally have DERIV (\lambda t. 1 / (\ln t)) t :> -1 / (t * (\ln t)^2) by auto
   thus ?thesis
     by (subst has_real_derivative_iff_has_vector_derivative [symmetric])
  ultimately have ((\lambda x. \ 1 * (1 / ln \ x)) \ has\_integral
   x * (1 / \ln x) - 2 * (1 / \ln 2) - integral \{2..x\} (\lambda x. x * (-1 / (x * (\ln x)^2))))
   \{2..x\}
   using \langle 2 \leq x \rangle by (intro integration_by_part') auto
  note \beta = this [simplified]
 have ((\lambda x. \ 1 \ / \ ln \ x) \ has\_integral \ (x \ / \ ln \ x - \ 2 \ / \ ln \ 2 + integral \ \{2..x\} \ (\lambda x. \ 1 \ / \ (ln \ x)^2))) \ \{2..x\}
 proof -
   define a where a t \equiv if t = 0 then 0 else 1 / (\ln t)^2 for t :: real
   have \bigwedge t :: real. \ t \in \{2..x\} \Longrightarrow a \ t = 1 \ / \ (\ln t)^2
```

```
unfolding a def by auto
    hence 4: integral \{2...x\} a = integral \{2...x\} (\lambda x. 1 / (\ln x)^2) by (rule integral conq)
    from 3 show ?thesis
     by (subst (asm) 4 [unfolded a_def])
  qed
  thus Li x = x / ln x - 2 / ln 2 + integral \{2...x\} (\lambda t. 1 / (ln t)^2) unfolding Li\_def by auto
  show (\lambda x. 1 / (\ln x)^2) integrable_on \{2..x\}
    by (rule integrable_continuous_interval)
      ((rule\ continuous\ intros)+,\ auto)
qed
lemma \vartheta_integrable:
  fixes x :: real
  assumes 2 \le x
  shows (\lambda t. \vartheta t / (t * (ln t)^2)) integrable on \{2..x\}
by (rule \pi_conv_\vartheta_integral [THEN has_integral_integrable], rule assms)
lemma r_1_represent_by_r_2:
  fixes x :: real
  assumes Hx: 2 < x
  shows (\lambda t. \ r_2 \ t \ / \ (t * (ln \ t)^2)) \ integrable\_on \ \{2..x\} \ (is \ ?P)
    r_1 x = r_2 x / (\ln x) + 2 / \ln 2 + integral \{2...x\} (\lambda t. r_2 t / (t * (\ln t)^2)) (is ?Q)
proof -
  have \theta: \bigwedge t. \ t \in \{2..x\} \Longrightarrow (\vartheta \ t - t) \ / \ (t * (\ln t)^2) = \vartheta \ t \ / \ (t * (\ln t)^2) - 1 \ / \ (\ln t)^2
    by (subst diff_divide_distrib, auto)
  note integrables = \vartheta integrable Li integrate by part(1)
  let ?D = integral \{2..x\} (\lambda t. \vartheta t / (t * (ln t)^2)) -
    integral \{2...x\} (\lambda t. 1 / (\ln t)^2)
  have ((\lambda t. \vartheta t / (t * (\ln t)^2) - 1 / (\ln t)^2) has\_integral
    ?D) \{2..x\}
  unfolding r_2_def by
    (rule\ has\_integral\_diff)
    (rule integrables [THEN integrable_integral], rule Hx)+
  hence \theta: ((\lambda t. r_2 t / (t * (ln t)^2)) has\_integral
    ?D) \{2..x\}
  unfolding r_2_def by (subst has_integral_cong [OF 0])
  thus ?P by (rule has_integral_integrable)
  note 1 = 0 [THEN integral unique]
  have 2: r_2 x / \ln x = \vartheta x / \ln x - x / \ln x
    unfolding r_2\_def by (rule\ diff\_divide\_distrib)
  from pi_represent_by_theta and Li_integrate_by_part(2) and assms
  have \pi x - Li x = \vartheta x / ln x
    + integral \{2..x\} (\lambda t. \vartheta t / (t * (\ln t)^2))
    -(x / \ln x - 2 / \ln 2 + integral \{2...x\} (\lambda t. 1 / (\ln t)^2))
    by auto
  also have ... = r_2 x / ln x + 2 / ln 2
    + integral \{2..x\} (\lambda t. r_2 t / (t * (ln t)^2))
    by (subst 2, subst 1) auto
  finally show ?Q unfolding r_1\_def by auto
qed
lemma exp_integral_asymp:
  fixes ff' :: real \Rightarrow real
  assumes cf: continuous\_on \{a..\} f
     and der: \bigwedge x. a < x \Longrightarrow DERIV f x :> f' x
```

```
and td: ((\lambda x. \ x * f' \ x) \longrightarrow 0) \ at\_top
     and f ln: f \in o(ln)
  shows (\lambda x. integral \{a..x\} (\lambda t. exp (-f t))) \sim [at\_top] (\lambda x. x * exp(-f x))
proof (rule asymp_equivI', rule lhospital_at_top_at_top)
  have cont\_exp: continuous\_on \{a..\} (\lambda t. exp (-f t))
    using cf by (intro continuous_intros)
  show \forall_F x in at_top. ((\lambda x. integral \{a..x\} (\lambda t. exp (-f t)))
    has\_real\_derivative\ exp\ (-f\ x))\ (at\ x)\ (is\ eventually\ ?P\ ?F)
  proof (rule eventually at top linorderI')
    fix x assume 1: a < x
    hence 2: a \leq x by linarith
    have \beta: (at \ x \ within \ \{a..x+1\}) = (at \ x)
     by (rule at within interior) (auto intro: 1)
    show P x
     by (subst 3 [symmetric], rule integral has real derivative)
        (rule continuous_on_subset [OF cont_exp], auto intro: 2)
  qed
  have \forall F \ x \ in \ at\_top. \ ((\lambda x. \ x * exp \ (-f \ x)))
    has\_real\_derivative \ 1 * exp \ (-f \ x) + exp \ (-f \ x) * (-f' \ x) * x) \ (at \ x)
    (is eventually ?P ?F)
  proof (rule eventually_at_top_linorderI')
    fix x assume 1: a < x
    hence 2: (at \ x \ within \ \{a < ...\}) = (at \ x) by (auto \ intro: \ at\_within\_open)
    show P x
     by (subst 2 [symmetric], intro derivative_intros)
        (subst 2, rule der, rule 1)
  qed
  moreover have
    1 * exp (-f x) + exp (-f x) * (-f' x) * x
    = exp (-f x) * (1 - x * f' x)  for x :: real
    by (simp add: field_simps)
  ultimately show \forall_F \ x \ in \ at\_top.
      ((\lambda x. \ x * exp \ (-f \ x)))
    has_real_derivative exp (-fx) * (1 - x * f'x) (at x) by auto
  show LIM x at_top. x * exp(-fx) :> at_top
    using f_ln by (rule smallo_ln_diverge_1)
  have ((\lambda x. \ 1 \ / \ (1 - x * f' x)) \longrightarrow 1 \ / \ (1 - \theta)) \ at\_top
    by ((rule tendsto intros)+, rule td, linarith)
  thus ((\lambda x. \ exp \ (-f \ x) \ / \ (exp \ (-f \ x) * (1 - x * f' \ x))) \longrightarrow 1) \ at\_top \ by \ auto
  have ((\lambda x. \ 1 - x * f' x) \longrightarrow 1 - \theta) at top
    by ((rule tendsto_intros)+, rule td)
  hence \theta: ((\lambda x. \ 1 - x * f' \ x) \longrightarrow 1) \ at\_top \ by \ simp
  hence \forall_F x \text{ in at top. } 0 < 1 - x * f' x
    by (rule order_tendstoD) linarith
  moreover have \forall F \ x \ in \ at\_top. \ 0 < 1 - x * f' \ x \longrightarrow exp \ (-f \ x) * (1 - x * f' \ x) \neq 0 by auto
  ultimately show \forall F \ x \ in \ at\_top. \ exp \ (-f \ x) * (1 - x * f' \ x) \neq 0
    by (rule eventually rev mp)
qed
lemma x_mul_exp_larger_than_const:
  fixes c :: real \text{ and } g :: real \Rightarrow real
  assumes g_ln: g \in o(ln)
  shows (\lambda x. \ c) \in O(\lambda x. \ x * exp(-g \ x))
proof -
  have LIM x at top. x * exp(-qx) :> at top
```

```
using q ln by (rule smallo ln diverge 1)
  hence \forall_F x \text{ in at top. } 1 \leq x * exp (-q x)
    using filterlim_at_top by fast
  hence \forall_F \ x \ in \ at\_top. \ \|c\| * 1 \le \|c\| * \|x * exp \ (-g \ x)\|
    by (rule eventually_rev_mp)
      (auto simp del: mult_1_right
            intro!: eventuallyI mult_left_mono)
  thus (\lambda x. \ c :: real) \in O(\lambda x. \ x * exp(-g x)) by auto
ged
lemma integral bigo exp':
  fixes a :: real \text{ and } f g g' :: real \Rightarrow real
  assumes f_bound: f \in O(\lambda x. exp(-g x))
    and Hf': \bigwedge x. a \leq x \Longrightarrow (\lambda x. |f x|) integrable_on \{a..x\}
    and Hg: continuous\_on \{a..\} g
    and der: \bigwedge x. a < x \Longrightarrow DERIV g x :> g' x
    and td: ((\lambda x. \ x * g' \ x) \longrightarrow 0) \ at\_top
    and g_ln: g \in o(ln)
  shows (\lambda x. integral\{a..x\} f) \in O(\lambda x. x * exp(-g x))
proof -
  have \bigwedge y. continuous_on \{a..y\} g
    by (rule continuous_on_subset, rule Hg) auto
  hence \bigwedge y. (\lambda x. exp(-g x)) integrable\_on \{a..y\}
    by (intro integrable_continuous_interval)
      (rule\ continuous\ intros)+
  hence \bigwedge y. (\lambda x. |exp(-g x)|) integrable_on \{a..y\} by simp
  hence (\lambda x. integral\{a..x\} f) \in O(\lambda x. 1 + integral\{a..x\} (\lambda x. |exp(-g x)|))
    using assms by (intro integral_bigo)
  hence (\lambda x. integral\{a..x\} f) \in O(\lambda x. 1 + integral\{a..x\} (\lambda x. exp(-g x))) by simp
  also have (\lambda x. \ 1 + integral\{a..x\} \ (\lambda x. \ exp(-g \ x))) \in O(\lambda x. \ x * exp(-g \ x))
  proof (rule sum_in_bigo)
    show (\lambda x. 1 :: real) \in O(\lambda x. x * exp(-gx))
     by (intro x_mul_exp_larger_than_const q ln)
    show (\lambda x. integral \{a..x\} (\lambda x. exp (-g x))) \in O(\lambda x. x * exp (-g x))
     by (rule asymp_equiv_imp_bigo, rule exp_integral_asymp, auto intro: assms)
  qed
  finally show ?thesis.
qed
lemma integral_bigo_exp:
  fixes a \ b :: real \ \mathbf{and} \ f \ g \ g' :: real \Rightarrow real
  assumes le: a \leq b
    and f_bound: f \in O(\lambda x. exp(-g x))
    and Hf': \Lambda x. \ b \leq x \Longrightarrow (\lambda x. \ |f \ x|) \ integrable\_on \ \{b..x\}
    and Hg: continuous\_on \{b..\} g
    and der: \bigwedge x. b < x \Longrightarrow DERIV g x :> g' x
    and td: ((\lambda x. \ x * g' \ x) \longrightarrow \theta) \ at\_top
    and q ln: q \in o(ln)
  shows (\lambda x. integral \{a..x\} f) \in O(\lambda x. x * exp(-q x))
proof -
  have (\lambda x. integral \{a..b\} f) \in O(\lambda x. x * exp(-g x))
    by (intro x_mul_exp_larger_than_const g_ln)
  moreover have (\lambda x. integral \{b..x\} f) \in O(\lambda x. x * exp(-q x))
```

```
by (intro integral_bigo_exp' [where ?g' = g']
            f_bound Hf Hf' Hg der td g_ln)
      (use le Hf integrable_cut' in auto)
  ultimately have (\lambda x. integral \{a..b\} f + integral \{b..x\} f) \in O(\lambda x. x * exp(-g x))
   by (rule sum in bigo)
 moreover have integral \{a..x\} f = integral \{a..b\} f + integral \{b..x\} f when b \le x for x
   by (subst eq_commute, rule Henstock_Kurzweil_Integration.integral_combine)
      (insert le that, auto intro: Hf)
 hence \forall F in at top, integral \{a...x\} f = integral \{a...b\} f + integral \{b...x\} f
   by (rule eventually at top linorderI)
 ultimately show ?thesis
   by (simp add: landau_o.big.in_cong)
qed
lemma integrate r_2 estimate:
 fixes c \ m \ n :: real
 assumes hm: 0 < m m < 1
   and h: r_2 \in rem\_est \ c \ m \ n
 shows (\lambda x. integral \{2..x\} (\lambda t. r_2 t / (t * (ln t)^2))) \in rem\_est c m n
unfolding rem est def
proof (subst mult.assoc,
      subst minus_mult_left [symmetric],
      rule\ integral\_bigo\_exp)
 show (2 :: real) \leq 3 by auto
 show (\lambda x. \ c * (ln \ x \ powr \ m * ln \ (ln \ x) \ powr \ n)) \in o(ln)
   using hm by real asymp
 have ln \ x \neq 1 when 3 \leq x for x :: real
   using ln\_when\_ge\_3 [of x] that by auto
 thus continuous_on \{3..\} (\lambda x. c * (ln x powr m * ln (ln x) powr n))
   by (intro continuous_intros) auto
 show (\lambda t. r_2 t / (t * (ln t)^2)) integrable on \{2..x\}
   if 2 \le x for x using that by (rule r_1_represent_by_r_2(1))
  define g where g x \equiv
   c * (m * ln \ x \ powr \ (m - 1) * (1 / x * 1) * ln \ (ln \ x) \ powr \ n
      + n * ln (ln x) powr (n - 1) * (1 / ln x * (1 / x)) * ln x powr m)
   for x
 show ((\lambda x. \ c * (\ln x \ powr \ m * \ln (\ln x) \ powr \ n)) \ has\_real\_derivative \ g \ x) \ (at \ x)
   if \beta < x for x
 proof -
   have *: at x within \{3 < ...\} = at x
     by (rule at_within_open) (auto intro: that)
   moreover have
     ((\lambda x. \ c * (\ln x \ powr \ m * \ln (\ln x) \ powr \ n)) \ has \ real \ derivative \ q \ x)
      (at \ x \ within \ \{3<..\})
   unfolding g\_def using that
   by (intro derivative_intros DERIV_mult DERIV_cmult)
      (auto intro: ln_when_ge_3 DERIV_ln_divide simp add: *)
   ultimately show ?thesis by auto
 qed
 show ((\lambda x. \ x * q \ x) \longrightarrow \theta) at top
   unfolding q def using hm by real asymp
 have nz: \forall_F \ t :: real \ in \ at\_top. \ t * (ln \ t)^2 \neq 0
 proof (rule eventually_at_top_linorderI')
   fix x :: real assume 1 < x
   thus x * (\ln x)^2 \neq 0 by auto
```

```
qed
define h where h x \equiv exp (-c * ln x powr m * ln (ln x) powr n) for x
have (\lambda t. \ r_2 \ t \ / \ (t * (ln \ t)^2)) \in O(\lambda x. \ (x * h \ x) \ / \ (x * (ln \ x)^2))
  by (rule landau_o.big.divide_right, rule nz)
    (unfold h def, fold rem est def, rule h)
also have (\lambda x. (x * h x) / (x * (\ln x)^2)) \in O(\lambda x. h x)
proof -
  have (\lambda x :: real. \ 1 \ / \ (ln \ x)^2) \in O(\lambda x. \ 1) by real\_asymp
  hence (\lambda x. \ h \ x * (1 \ / \ (\ln x)^2)) \in O(\lambda x. \ h \ x * 1)
   by (rule landau o.biq.mult left)
  thus ?thesis
   by (auto simp add: field_simps
            intro!: landau o.biq.ev eq trans2)
      (auto intro: eventually at top linorderI [of 1])
qed
finally show (\lambda t. \ r_2 \ t \ / \ (t * (ln \ t)^2))
  \in O(\lambda x. \ exp \ (- \ (c * (ln \ x \ powr \ m * ln \ (ln \ x) \ powr \ n))))
  unfolding h_def by (simp add: algebra_simps)
have (\lambda x. \ r_2 \ x \ / \ (x * (ln \ x)^2)) absolutely_integrable_on \{2..x\}
  if *:2 \le x for x
proof (rule set_integrableI_bounded)
  show \{2..x\} \in sets \ lebesgue \ by \ auto
  show emeasure lebesgue \{2...x\} < \infty using * by auto
  have (\lambda t. \ r_2 \ t \ / \ (t * (ln \ t)^2) * indicator \{2..x\} \ t) \in borel\_measurable \ lebesgue
   using * by (intro integrable_integral
     [THEN has integral implies lebesque measurable real])
     (rule r_1 represent by r_2(1))
  thus (\lambda t. indicat\_real \{2..x\} t *_R (r_2 t / (t * (ln t)^2))) \in borel\_measurable lebesgue
   by (simp add: mult_ac)
  let ?C = (ln 4 + 1) / (ln 2)^2 :: real
  show AE \ t \in \{2...x\} in lebesgue. ||r_2 \ t \ / \ (t * (ln \ t)^2)|| \le ?C
  proof (rule AE_I2, safe)
   fix t assume t \in \{2..x\}
   hence h: 1 < t 2 < t by auto
   hence 0 \le \vartheta \ t \land \vartheta \ t < ln \ 4 * t \ by (auto intro: \vartheta\_upper\_bound)
   hence *: |\vartheta| t| \leq \ln 4 * t by auto
   have 1 \le ln \ t \ / \ ln \ 2 using h by auto
   hence 1 \leq (\ln t / \ln 2)^2 by auto
   also have ... = (\ln t)^2 / (\ln 2)^2 unfolding power2_eq_square by auto finally have 1 \le (\ln t)^2 / (\ln 2)^2.
   hence |r_2|t| \leq |\vartheta|t| + |t| unfolding r_2\_def by auto
   also have \dots \le \ln 4 * t + 1 * t using h * by auto
   also have ... = (ln \ 4 + 1) * t by (simp \ add: \ algebra \ simps)
   also have ... \leq (\ln 4 + 1) * t * ((\ln t)^2 / (\ln 2)^2)
     by (auto simp add: field_simps)
        (rule add_mono; rule rev_mp[OF h(2)], auto)
   finally have *:|r_2|t| \leq ?C * (t * (ln|t)^2) by auto
   thus ||r_2|t / (t * (ln t)^2)|| \le ?C
     using h * \mathbf{by} (auto simp add: field_simps)
  qed
qed
hence \bigwedge x. 2 \le x \Longrightarrow (\lambda x. |r_2| x / (x * (ln|x)^2)|) integrable_on \{2...x\}
  by (fold real norm def)
    (rule\ absolutely\_integrable\_on\_def\ [THEN\ iffD1,\ THEN\ conjunct2])
thus \bigwedge x. 3 \le x \Longrightarrow (\lambda x . |r_2| x / (x * (\ln x)^2)|) integrable on \{3...x\}
```

```
qed
lemma r_2_div_ln_estimate:
 fixes c m n :: real
 assumes hm: 0 < m m < 1
   and h: r_2 \in rem\_est \ c \ m \ n
 shows (\lambda x. \ r_2 \ x \ / \ (\ln x) + 2 \ / \ \ln 2) \in rem\_est \ c \ m \ n
proof -
 have (\lambda x. \ r_2 \ x \ / \ ln \ x) \in O(r_2)
 proof (intro bigoI eventually_at_top_linorderI)
   fix x :: real assume 1 : exp \ 1 \le x
   have 2:(0 :: real) < exp 1 by simp
   hence 3:0 < x using 1 by linarith
   have 4: 0 \leq |r_2| x| by auto
   have (1 :: real) = ln (exp 1) by simp
   also have ... \leq ln \ x \ using \ 1 \ 2 \ 3 \ by \ (subst \ ln\_le\_cancel\_iff)
   finally have 1 \le \ln x.
   thus ||r_2|x| / |ln|x|| \le 1 * ||r_2|x||
     by (auto simp add: field_simps, subst mult_le_cancel_right1, auto)
 qed
 with h have 1: (\lambda x. r_2 x / ln x) \in rem\_est c m n
   unfolding rem_est_def using landau_o.big_trans by blast
 moreover have (\lambda x :: real. 2 / ln 2) \in O(\lambda x. x powr (2 / 3))
   by real_asymp
 hence (\lambda x :: real. 2 / ln 2) \in rem \ est \ c \ m \ n
   using rem est compare powr [OF hm, of c n]
   unfolding rem_est_def by (rule landau_o.big.trans)
 ultimately show ?thesis
   unfolding rem_est_def by (rule sum_in_bigo)
qed
lemma PNT_2_imp_PNT_1:
 fixes l :: real
 assumes h: 0 < m m < 1 and PNT_2 c m n
 shows PNT 1 c m n
proof -
 from assms(3) have h': r_2 \in rem \ est \ c \ m \ n
   unfolding PNT\_2\_def \ r_2\_def \ by \ auto
 let ?a = \lambda x. r_2 x / \ln x + 2 / \ln 2
 let ?b = \lambda x. integral {2..x} (\lambda t. r_2 t / (t * (ln t)^2))
 have 1: \forall_F x \text{ in } at\_top. \ \pi \ x - Li \ x = ?a \ x + ?b \ x
   by (rule eventually_at_top_linorderI, fold r_1_def)
      (rule \ r_1\_represent\_by\_r_2(2), \ blast)
 have 2: (\lambda x. ?a x + ?b x) \in rem\_est c m n
   by (unfold rem_est_def, (rule sum_in_bigo; fold rem_est_def))
      (intro\ r_2\_div\_ln\_estimate\ integrate\_r_2\_estimate\ h\ h')+
 from landau_o.big.in_cong [OF 1] and 2 show ?thesis
   unfolding PNT_1_def rem_est_def by blast
qed
theorem PNT 3 imp PNT 1:
 fixes l :: real
 assumes h: 0 < m \ m < 1 and PNT\_3 \ c \ m \ n
 shows PNT 1 c m n
```

using $\langle 2 \leq 3 \rangle$ integrable cut' by blast

```
by (intro PNT_2_imp_PNT_1 PNT_3_imp_PNT_2 assms)

hide_const (open) r_1 r_2
unbundle no_prime_counting_notation
unbundle no_pnt_notation
end
theory PNT_Complex_Analysis_Lemmas
imports
PNT_Remainder_Library
begin
unbundle pnt_notation
```

3 Some basic theorems in complex analysis

3.1 Introduction rules for holomorphic functions and analytic functions

```
lemma holomorphic on shift [holomorphic intros]:
 assumes f holomorphic\_on ((\lambda z. s + z) `A)
 shows (\lambda z. f(s+z)) holomorphic on A
proof -
 have (f \circ (\lambda z. \ s + z)) holomorphic on A
   using assms by (intro holomorphic_on_compose holomorphic_intros)
 thus ?thesis unfolding comp_def by auto
qed
lemma holomorphic_logderiv [holomorphic_intros]:
 assumes f holomorphic_on A open A \land z. z \in A \Longrightarrow f z \neq 0
 shows (\lambda s.\ logderiv\ f\ s) holomorphic on A
 using assms unfolding logderiv_def by (intro holomorphic_intros)
lemma holomorphic_glue_to_analytic:
 assumes o: open S open T
    and hf: f holomorphic on S
    and hq: q holomorphic on T
    and hI: \land z. \ z \in S \Longrightarrow z \in T \Longrightarrow f z = g z
    and hU: U \subseteq S \cup T
 obtains h
  where h analytic_on U
       \bigwedge z. \ z \in S \Longrightarrow h \ z = f \ z
       \bigwedge z. \ z \in T \Longrightarrow h \ z = q \ z
proof -
 define h where h z \equiv if z \in S then f z else g z for z
 show ?thesis proof
   have h holomorphic on S \cup T
     unfolding h def by (rule holomorphic on If Un) (use assms in auto)
   thus h analytic on U
     by (subst analytic_on_holomorphic) (use hU o in auto)
 next
   fix z assume *:z \in S
   show h z = f z unfolding h\_def using * by auto
   fix z assume *:z \in T
   show h z = g z unfolding h\_def using *hI by auto
 qed
qed
```

```
lemma analytic_on_powr_right [analytic_intros]:
   assumes f analytic_on s
   shows (\lambda z. w powr f z) analytic_on s

proof (cases w = 0)
   case False
   with assms show ?thesis
   unfolding analytic_on_def holomorphic_on_def field_differentiable_def
   by (metis (full_types) DERIV_chain' has_field_derivative_powr_right)
qed simp

3.2 Factorization of analytic function on compact re-
```

```
3.2
        Factorization of analytic function on compact region
definition not zero on (infixr not' zero' on 46)
 where f \ not\_zero\_on \ S \equiv \exists \ z \in S. \ f \ z \neq 0
lemma not_zero_on_obtain:
 assumes f not zero on S and S \subseteq T
 obtains t where f t \neq 0 and t \in T
using assms unfolding not zero on def by auto
lemma analytic on holomorphic connected:
 \mathbf{assumes}\ \mathit{hf} \colon \mathit{f}\ \mathit{analytic\_on}\ \mathit{S}
   and con: connected A
   and ne: \xi \in A and AS: A \subseteq S
 obtains T T' where
   f holomorphic on T f holomorphic on T'
   open T open T'A \subseteq TS \subseteq T' connected T
proof -
 obtain T'
 where oT': open T' and sT': S \subseteq T'
   and holf': f holomorphic on T'
   using analytic_on_holomorphic hf by blast
  define T where T \equiv connected component set T' \xi
 have TT': T \subseteq T' unfolding T\_def by (rule\ connected\_component\_subset)
 hence holf: f holomorphic on T using holf' by auto
 have op T: open T unfolding T_def using oT' by (rule open_connected_component)
 have conT: connected T unfolding T_def by (rule connected_connected_component)
 have A \subseteq T' using AS \ sT' by blast
 hence AT: A \subseteq T unfolding T\_def using ne con by (intro connected\_component\_maximal)
 show ?thesis using holf holf' op T o T' AT sT' con T that by blast
qed
lemma analytic factor zero:
 assumes hf: f analytic_on S
   and KS: K \subseteq S and con: connected K
   and \xi K: \xi \in K and \xi z: f \xi = 0
   and nz: f not zero on K
 obtains q r n
   where \theta < n \theta < r
        q analytic on S q not zero on K
        \bigwedge z. \ z \in S \Longrightarrow f \ z = (z - \xi) \hat{n} * g \ z
        \bigwedge z. \ z \in ball \ \xi \ r \Longrightarrow g \ z \neq 0
proof -
 have f analytic_on S connected K
      \xi \in K K \subseteq S  using assms by auto
```

```
then obtain T T'
  where holf: f holomorphic on T
    and holf': f holomorphic_on T'
    and opT: open T and oT': open T'
    and KT: K \subseteq T and ST': S \subseteq T'
    and con T: connected T
    by (rule analytic_on_holomorphic_connected)
  obtain \eta where f\eta: f \eta \neq 0 and \eta K: \eta \in K
    using nz by (rule not_zero_on obtain, blast)
  hence \xi T: \xi \in T and \xi T': \xi \in T'
    and \eta T: \eta \in T using \xi K \eta K KT KS ST' by blast+
  hence nc: \neg f constant\_on \ T \ using f \eta \ \xi z \ unfolding \ constant\_on\_def \ by \ fastforce
  obtain q r n
  where 1: \theta < n and 2: \theta < r
    and bT: ball \xi r \subseteq T
    and hg: g \ holomorphic\_on \ ball \ \xi \ r
    and fw: \bigwedge z. z \in ball \ \xi \ r \Longrightarrow f \ z = (z - \xi) \ \widehat{\ } n * g \ z
    and gw: \bigwedge z. z \in ball \ \xi \ r \Longrightarrow g \ z \neq 0
    by (rule holomorphic_factor_zero_nonconstant, (rule holf op T con T \notin T \notin z nc)+, blast)
  have sT: S \subseteq T' - \{\xi\} \cup ball \ \xi \ r \ using \ 2 \ ST' \ by \ auto
  have hz: (\lambda z. fz / (z - \xi) \hat{n}) holomorphic\_on (T' - \{\xi\})
    using holf' by ((intro holomorphic_intros)+, auto)
  obtain h
   where 3: h analytic_on S
     and hf: \Lambda z. \ z \in T' - \{\xi\} \Longrightarrow h \ z = f \ z \ / \ (z - \xi) \widehat{\ } n
     and hb: \bigwedge z. z \in ball \xi r \Longrightarrow h z = g z
    \mathbf{by}\ (\mathit{rule}\ \mathit{holomorphic\_glue\_to\_analytic}
       [where f = \lambda z. f z / (z - \xi) \hat{} n and
         g = g and S = T' - \{\xi\} and T = ball \xi r and U = S
       (use oT' 2 ST' hg fw hz in \langle auto \ simp \ add : holomorphic\_intros \rangle)
  have \xi \in ball \ \xi \ r \ using \ 2 \ by \ auto
  hence h \xi \neq 0 using hb gw 2 by auto
  hence 4: h \ not \_zero\_on \ K unfolding not \_zero\_on\_def using \xi K by auto
  have 5: fz = (z - \xi) \hat{n} * hz  if *: z \in S for z
  proof -
    consider z = \xi \mid z \in S - \{\xi\} \text{ using } * \text{ by } auto
    thus ?thesis proof cases
      assume *: z = \xi
      show ?thesis using \xi z \ 1 by (subst (1 \ 2) *, auto)
    next
      assume *: z \in S - \{\xi\}
     \mathbf{show} \ ? the sis \ \mathbf{using} \ hf \ ST' * \ \mathbf{by} \ (auto \ simp \ add: field\_simps)
    qed
  qed
  have \theta \colon \bigwedge w. \ w \in ball \ \xi \ r \Longrightarrow h \ w \neq 0 \ using \ hb \ gw \ by \ auto
  show ?thesis by ((standard; rule 1 2 3 4 5 6), blast+)
qed
lemma analytic_compact_finite_zeros:
  assumes af: f analytic on S
    and KS: K \subseteq S
    and con: connected K
    and cm: compact K
    and nz: f not_zero_on K
  shows finite \{z \in K. fz = 0\}
```

```
proof (cases f constant on K)
  assume *: f constant on K
  have \Delta z. z \in K \Longrightarrow f z \neq 0 using nz * unfolding not\_zero\_on\_def constant\_on\_def by auto
  hence **: \{z \in K. \ f \ z = 0\} = \{\} by auto
  thus ?thesis by (subst **, auto)
next
  assume *: \neg f constant\_on K
  obtain \xi where ne: \xi \in K using not\_zero\_on\_obtain nz by blast
  obtain T T' where opT: open T and conT: connected T
    and ST: K \subseteq T and holf: f holomorphic on T
    and f holomorphic on T'
    by (metis af KS con ne analytic_on_holomorphic_connected)
  have \neg f constant on T using ST * unfolding constant on def by blast
  thus ?thesis using holf op T con T cm ST by (intro holomorphic compact finite zeros)
qed
3.2.1
          Auxiliary propositions for theorem analytic factorization
definition analytic factor p'where
 \langle analytic\_factor\_p' f S K \equiv
  \exists g \ n. \ \exists \alpha :: nat \Rightarrow complex.
        g analytic_on S
     \land (\forall z \in K. \ g \ z \neq 0)
     \land (\forall z \in S. \ f \ z = g \ z * (\prod k < n. \ z - \alpha \ k))
     \land \alpha ` \{ .. < n \} \subseteq K \land
definition analytic factor p where
 \langle analytic\ factor\ p\ F \equiv
  \forall f \ S \ K. \ f \ analytic\_on \ S
    \longrightarrow K \subseteq S
    \longrightarrow connected K
    \longrightarrow compact K
    \longrightarrow f \ not\_zero\_on \ K
    \longrightarrow \{z \in K. \ f z = 0\} = F
    \longrightarrow analytic\_factor\_p' f S K
lemma analytic_factorization_E:
  shows analytic_factor_p {}
unfolding analytic_factor_p_def
proof (intro conjI allI impI)
  \mathbf{fix} \ f \ S \ K
  assume af: f analytic on S
     and KS: K \subseteq S
     and con: connected K
     and cm: compact K
     and nz: \{z \in K. \ f \ z = \theta\} = \{\}
  show analytic_factor_p' f S K
  unfolding analytic factor p' def
  proof (intro ballI conjI exI)
    show f analytic_on S \land z. z \in K \Longrightarrow f z \neq 0
        \bigwedge z. \ z \in S \Longrightarrow f \ z = f \ z * (\prod k < (0 :: nat). \ z - (\lambda_{\underline{}}. \ 0) \ k)
     by (rule af, use nz in auto)
    show (\lambda k :: nat. \ \theta) '\{..<\theta\} \subseteq K by auto
  qed
qed
```

```
lemma analytic_factorization_I:
  assumes ind: analytic factor p F
    and \xi ni: \xi \notin F
  shows analytic\_factor\_p (insert \xi F)
unfolding analytic_factor_p_def
proof (intro allI impI)
  \mathbf{fix} f S K
  assume af: f analytic_on S
    and KS: K \subseteq S
    and con: connected K
    and nz: f not_zero_on K
    and cm: compact K
    and zr: \{z \in K. \ fz = 0\} = insert \xi F
  show analytic factor p' f S K
  proof -
    have f analytic_on S K \subseteq S connected K
        \xi \in K f \xi = 0 f not\_zero\_on K
    using af KS con zr nz by auto
    then obtain h r k
    where 0 < k and 0 < r and ah: h analytic_on S
     and nh: h not_zero_on K
     and f_z: \Lambda z. \ z \in S \Longrightarrow f z = (z - \xi) \hat{k} * h z
     and ball: \bigwedge z. z \in ball \xi r \Longrightarrow h z \neq 0
    by (rule analytic_factor_zero) blast
    hence h\xi: h \xi \neq 0 using ball by auto
    hence \bigwedge z. z \in K \Longrightarrow h \ z = 0 \longleftrightarrow f \ z = 0 \land z \neq \xi  by (subst f \ z) (use KS in auto)
    hence \{z \in K. \ h \ z = 0\} = \{z \in K. \ f \ z = 0\} - \{\xi\} by auto
    also have ... = F by (subst zr, intro Diff_insert_absorb \xi ni)
    finally have \{z \in K. \ h \ z = 0\} = F.
    hence analytic\_factor\_p' \ h \ S \ K
     using ind ah KS con cm nh
     unfolding analytic_factor_p_def by auto
    then obtain g n and \alpha :: nat \Rightarrow complex
    where ag: g analytic_on S and
     ng: \Lambda z. \ z \in K \Longrightarrow g \ z \neq 0 \ \text{and}
     h\_z: \land z. \ z \in S \Longrightarrow h \ z = g \ z * (\prod k < n. \ z - \alpha \ k) and
     Im\alpha: \alpha ` \{..< n\} \subseteq K
    unfolding analytic factor p' def by fastforce
    define \beta where \beta j \equiv if j < n then <math>\alpha j else \xi for j
    show ?thesis
    unfolding analytic_factor_p'_def
    proof (intro ballI conjI exI)
     show g analytic_on S \land z. z \in K \Longrightarrow g \ z \neq 0
       by (rule ag, rule ng)
    next
     fix z assume *: z \in S
     show f z = g z * (\prod j < n+k. z - \beta j)
       have (\prod j < n. \ z - \beta \ j) = (\prod j < n. \ z - \alpha \ j)
           (\prod j = n ... < n + k ... z - \beta j) = (z - \xi) \hat{k}
       unfolding \beta def by auto
       moreover have (\prod j < n+k. \ z-\beta \ j) = (\prod j < n. \ z-\beta \ j) * (\prod j=n..< n+k. \ z-\beta \ j)
       by (metis Metric_Arith.nnf_simps(8) atLeast0LessThan
          not\_add\_less1\ prod.atLeastLessThan\_concat\ zero\_order(1))
       ultimately have (\prod j < n+k, z-\beta j) = (z-\xi) \hat{k} * (\prod j < n, z-\alpha j) by auto
```

```
moreover have fz=gz*((z-\xi)^k*(\prod j< n.\ z-\alpha\ j)) by (subst\ f\_z;\ (subst\ h\_z)?,\ use* in\ auto) ultimately show ?thesis by auto qed next show \beta`\{..< n+k\}\subseteq K unfolding \beta\_def using Im\alpha \ \langle \xi \in K \rangle by auto qed qed qed
```

A nontrivial analytic function on connected compact region can be factorized as a everywherenon-zero function and linear terms $z - s_0$ for all zeros s_0 . Note that the connected assumption of Kmay be removed, but we remain it just for simplicity of proof.

```
theorem analytic_factorization:
  assumes af: f analytic_on S
    and KS: K \subseteq S
    and con: connected K
    and compact K
    and f not_zero_on K
  obtains g \ n \ \text{and} \ \alpha :: nat \Rightarrow complex \ \text{where}
    g analytic_on S
    \bigwedge z. \ z \in K \Longrightarrow g \ z \neq 0
    \bigwedge z. \ z \in S \Longrightarrow f \ z = g \ z * (\prod k < n. \ (z - \alpha \ k))
    \alpha '\{..< n\} \subseteq K
proof -
  have \langle finite \ \{z \in K. \ f \ z = \theta \} \rangle using assms by (rule analytic_compact_finite_zeros)
  moreover have \langle finite \ F \implies analytic\_factor\_p \ F \rangle for F
    by (induct rule: finite_induct; rule analytic_factorization_E analytic_factorization_I)
  ultimately have analytic_factor_p \{z \in K. f z = 0\} by auto
  hence analytic_factor_p' f S K unfolding analytic_factor_p_def using assms by auto
  thus ?thesis unfolding analytic_factor_p'_def using assms that by metis
qed
```

3.3 Schwarz theorem in complex analysis

```
lemma Schwarz Lemma1:
  fixes f :: complex \Rightarrow complex
    and \xi :: complex
  assumes f holomorphic_on ball 0 1
    and f \theta = \theta
    and \bigwedge z. ||z|| < 1 \Longrightarrow ||fz|| \le 1
    and \|\xi\| < 1
  shows ||f|\xi|| \leq ||\xi||
proof (cases f constant on ball 0 1)
  \mathbf{assume}\ f\ constant\_on\ ball\ 0\ 1
  thus ?thesis unfolding constant_on_def
    using assms by auto
  assume nc: \neg f constant\_on \ ball \ 0 \ 1
  have \bigwedge z. ||z|| < 1 \Longrightarrow ||fz|| < 1
  proof -
    fix z :: complex assume *: ||z|| < 1
    have ||fz|| \neq 1
    proof
      assume ||fz|| = 1
      hence \bigwedge w. \ w \in ball \ 0 \ 1 \Longrightarrow ||f \ w|| \le ||f \ z||
```

```
using assms(3) by auto
     hence f constant on ball 0 1
       by (intro maximum_modulus_principle [where U = ball\ 0\ 1 and \xi = z])
          (use * assms(1) in auto)
     thus False using nc by blast
   qed
   with assms(3) [OF *] show ||fz|| < 1 by auto
 thus ||f|\xi|| \le ||\xi|| by (intro Schwarz Lemma(1), use assms in auto)
qed
theorem Schwarz_Lemma2:
 fixes f :: complex \Rightarrow complex
   and \xi :: complex
 assumes holf: f holomorphic on ball 0 R
   and hR: \theta < R and nz: f \theta = \theta
   and bn: \bigwedge z. ||z|| < R \Longrightarrow ||fz|| \le 1
   and \xi R: \|\xi\| < R
 shows ||f|\xi|| \leq ||\xi|| / R
proof -
 define \varphi where \varphi z \equiv f (R * z) for z :: complex
 have \|\xi / R\| < 1 using \xi R \ hR by (subst nonzero_norm_divide, auto)
 moreover have f holomorphic\_on (*) (R :: complex) ' ball 0 1
   by (rule holomorphic_on_subset, rule holf)
      (use hR in \(\cap auto \) simp: norm_mult \(\rangle\)
 hence (f \circ (\lambda z. R * z)) holomorphic on ball 0.1
   by (auto intro: holomorphic on compose)
 moreover have \varphi \theta = \theta unfolding \varphi def using nz by auto
 moreover have \bigwedge z. ||z|| < 1 \Longrightarrow ||\varphi|| \le 1
 proof -
   fix z :: complex  assume *: ||z|| < 1
   have ||R*z|| < R using hR*by (fold scaleR_conv_of_real) auto
   thus \|\varphi z\| \leq 1 unfolding \varphi_{def} using bn by auto
 qed
 ultimately have \|\varphi(\xi/R)\| \leq \|\xi/R\|
   unfolding comp\_def by (fold \varphi\_def, intro Schwarz\_Lemma1)
 thus ?thesis unfolding \varphi_{-}def using hR by (subst (asm) nonzero_norm_divide, auto)
qed
```

3.4 Borel-Carathedory theorem

Borel-Carathedory theorem, from book Theorem 5.5, The Theory of Functions, E. C. Titchmarsh

```
lemma Borel\_Caratheodory1:
   assumes hr: 0 < R \ 0 < r \ r < R
   and f0: f \ 0 = 0
   and hf: \land z. \ \|z\| < R \Longrightarrow Re \ (f \ z) \le A
   and holf: f \ holomorphic\_on \ (ball \ 0 \ R)
   and zr: \ \|z\| \le r
   shows \|f \ z\| \le 2*r/(R-r) * A

proof -
   have A\_ge\_0: A \ge 0
   using f0 \ hf by (metis \ hr(1) \ norm\_zero \ zero\_complex.simps(1))
   then consider A = 0 \ | \ A > 0 by linarith
   thus \|f \ z\| \le 2*r/(R-r) * A
   proof (cases)
```

```
assume *: A = 0
 have 1: \bigwedge w. \ w \in ball \ 0 \ R \Longrightarrow \|exp(f \ w)\| \le \|exp(f \ 0)\|  using hf \ f0 * by \ auto
 have 2: exp \circ f constant\_on (ball 0 R)
   by (rule maximum_modulus_principle [where f = exp \circ f and U = ball \ 0 \ R])
       (use 1 hr(1) in \(\alpha\) auto intro: holomorphic on compose holf holomorphic on \(\ext{exp}\))
 have f constant\_on (ball 0 R)
 proof (rule classical)
   assume *: \neg f constant\_on \ ball \ 0 \ R
   have open (f ' (ball \ \theta \ R))
     by (rule open mapping thm [where S = ball \ 0 \ R], use holf * in auto)
   then obtain e where e > \theta and cball\ \theta\ e \subseteq f ' (ball\ \theta\ R)
     by (metis hr(1) f0 centre_in_ball imageI open_contains_cball)
   then obtain w
     where hw: w \in ball \ 0 \ R \ f \ w = e
     by (metis abs of nonneq imageE less eq real def mem chall 0 norm of real subset eq)
   have exp \ e = exp \ (f \ w)
     using hw(2) by (fold\ exp\_of\_real) auto
   also have \dots = exp(f \theta)
     using hw(1) 2 hr(1) unfolding constant\_on\_def comp\_def by auto
   also have ... = exp(0 :: real) by (subst f0) auto
   finally have e = 0 by auto
   with \langle e > \theta \rangle show ?thesis by blast
 qed
 hence f z = 0 using f0 hr zr unfolding constant\_on\_def by auto
 hence ||fz|| = \theta by auto
 also have ... \leq 2 * r/(R-r) * A using hr \langle A \geq 0 \rangle by auto
 finally show ?thesis.
\mathbf{next}
 assume A\_gt\_\theta: A > \theta
 define \varphi where \varphi z \equiv (f z)/(2*A - f z) for z :: complex
 have \varphi\_bound: \|\varphi z\| \le 1 if *: \|z\| < R for z
 proof -
   define u v where u \equiv Re(fz) and v \equiv Im(fz)
   hence u \leq A unfolding u\_def using hf * by blast
   hence u^2 \leq (2*A-u)^2 using A\_ge\_0 by (simp\ add:\ sqrt\_ge\_absD)
   hence u^2 + v^2 \le (2*A - u)^2 + (-v)^2 by auto
   moreover have 2*A - fz = Complex (2*A-u) (-v) by (simp add: complex_eq_iff u_def v_def)
   hence ||fz||^2 = u^2 + v^2
        ||2*A - fz||^2 = (2*A-u)^2 + (-v)^2
   unfolding u_def v_def using cmod_power2 complex.sel by presburger+
   ultimately have ||f z||^2 \le ||2*A - f z||^2 by auto
   hence ||fz|| \le ||2*A - fz|| by auto
   thus ?thesis unfolding \varphi def by (subst norm divide) (simp add: divide le eq 1)
 moreover have nz: \land z :: complex. z \in ball \ 0 \ R \Longrightarrow 2*A - f \ z \neq 0
 proof
   \mathbf{fix} \ z :: complex
   assume *: z \in ball \ 0 \ R
     and eq: 2*A - fz = 0
   hence Re(fz) \leq A using hf by auto
   moreover have Re(fz) = 2*A
     by (metis eq Re_complex_of_real right_minus_eq)
   ultimately show False using A_gt_0 by auto
 qed
 ultimately have \varphi holomorphic on ball 0 R
```

```
unfolding \varphi_{def} comp_def by (intro holomorphic_intros holf)
   moreover have \varphi \theta = \theta unfolding \varphi def using \theta by auto
   ultimately have *: \|\varphi z\| \le \|z\| / R
     using hr(1) \varphi_bound zr hr Schwarz_Lemma2 by auto
   also have \dots < 1 using zr hr by auto
   finally have h\varphi: \|\varphi\| \le r / R \|\varphi\| = 1 + \varphi \ne 0
   proof (safe)
     show \|\varphi z\| \le r / R \text{ using } * zr hr(1)
       by (metis divide le cancel dual order.trans nle le)
   next
     assume 1 + \varphi z = 0
     hence \varphi z = -1 using add\_eq\_0_iff by blast
     thus \|\varphi z\| < 1 \Longrightarrow False by auto
   qed
   have 2*A - fz \neq 0 using nz \ hr(3) \ zr by auto
   hence f z = 2*A*\varphi z / (1 + \varphi z)
     using h\varphi(3) unfolding \varphi_{def} by (auto simp add: field_simps)
   hence ||fz|| = 2*A*||\varphi z|| / ||1 + \varphi z||
     by (auto simp add: norm_divide norm_mult A_ge_0)
   also have ... \leq 2*A*(\|\varphi z\| / (1 - \|\varphi z\|))
   proof -
     have ||1 + \varphi z|| \ge 1 - ||\varphi z||
       by (metis norm_diff_ineq norm_one)
     thus ?thesis
       by (simp, rule divide_left_mono, use A_ge_0 in auto)
         (intro mult pos pos, use h\varphi(2) in auto)
   qed
   also have ... \leq 2*A*((r/R) / (1 - r/R))
   proof -
     have *: a / (1 - a) \le b / (1 - b)
      if a < 1 b < 1 a \le b for a b :: real
     using that by (auto simp add: field_simps)
     have \|\varphi z\| / (1 - \|\varphi z\|) \le (r/R) / (1 - r/R)
       by (rule *; (intro h\varphi)?) (use hr in auto)
     thus ?thesis by (rule mult_left_mono, use A_ge_0 in auto)
   qed
   also have ... = 2*r/(R-r)*A using hr(1) by (auto simp add: field simps)
   finally show ?thesis.
 qed
qed
lemma Borel_Caratheodory2:
 assumes hr: 0 < R 0 < r r < R
   and hf: \Lambda z. ||z|| < R \Longrightarrow Re (f z - f \theta) \le A
   and holf: f holomorphic\_on (ball 0 R)
   and zr: ||z|| \leq r
 shows ||f z - f 0|| \le 2*r/(R-r) * A
proof -
 define g where g z \equiv f z - f \theta for z
 show ?thesis
   by (fold q def, rule Borel Caratheodory1)
      (unfold q def, insert assms, auto intro: holomorphic intros)
qed
theorem Borel Caratheodory3:
```

```
assumes hr: 0 < R \ 0 < r \ r < R and hf: \land w. \ w \in ball \ s \ R \Longrightarrow Re \ (f \ w - f \ s) \le A and holf: f \ holomorphic\_on \ (ball \ s \ R) and zr: z \in ball \ s \ r shows \|f \ z - f \ s\| \le 2*r/(R-r) * A proof — define g where g \ w \equiv f \ (s + w) for w have \land w. \ \|w\| < R \Longrightarrow Re \ (f \ (s + w) - f \ s) \le A by (intro \ hf) (auto \ simp \ add: \ dist\_complex\_def) hence \|g \ (z - s) - g \ 0\| \le 2*r/(R-r) * A by (intro \ Borel\_Caratheodory2, \ unfold \ g\_def, \ insert \ assms) (auto \ intro: \ holomorphic\_intros \ simp \ add: \ dist\_complex\_def \ norm\_minus\_commute) thus ?thesis unfolding g\_def by auto qed
```

3.5 Lemma 3.9

These lemmas is referred to the following material: Theorem 3.9, The Theory of the Riemann Zeta-Function, E. C. Titchmarsh, D. R. Heath-Brown.

```
lemma lemma 3 9 beta1:
  fixes f M r s_0
  assumes zl: 0 < r \ 0 \le M
    and hf: f holomorphic on ball 0 r
    and ne: \bigwedge z. z \in ball \ 0 \ r \Longrightarrow f \ z \neq 0
    and bn: \Lambda z. \ z \in ball \ 0 \ r \Longrightarrow ||f \ z \ / \ f \ 0|| \le exp \ M
  shows \|logderiv f \theta\| \le 4 * M / r
    and \forall s \in cball \ 0 \ (r \ / \ 4). \ \|logderiv \ f \ s\| \le 8 * M \ / \ r
proof (goal_cases)
  obtain q
  where holg: g holomorphic_on ball 0 r
    and exp\_g: \bigwedge x. x \in ball\ 0\ r \Longrightarrow exp\ (g\ x) = f\ x
    by (rule holomorphic_logarithm_exists [of ball 0 r f 0])
      (use zl(1) ne hf in auto)
  have f\theta: exp(g\theta) = f\theta using exp\_g zl(1) by auto
  have Re (g z - g \theta) \leq M if *: ||z|| < r for z
  proof -
    have exp (Re (g z - g \theta)) = ||exp (g z - g \theta)||
     by (rule norm_exp_eq_Re [symmetric])
    also have ... = ||fz/f\theta||
     by (subst\ exp\_diff,\ subst\ f0,\ subst\ exp\_g)
         (use * in auto)
    also have \dots \le exp \ M by (rule \ bn) \ (use * in \ auto)
    finally show ?thesis by auto
  hence ||g|z - g|0|| \le 2 * (r/2) / (r - r/2) * M
    if *: ||z|| \le r / 2 for z
    by (intro Borel_Caratheodory2 [where f = g])
       (use \ zl(1) \ holg * \mathbf{in} \ auto)
  also have ... = 2 * M using zl(1) by auto
  finally have hg: \Lambda z. ||z|| \le r / 2 \Longrightarrow ||g|z - g|\theta|| \le 2 * M.
  have result: \|logderiv f s\| \le 2 * M / r'
    when chall s r' \subseteq chall \ \theta \ (r / 2) \ \theta < r' \|s\| < r / 2 \text{ for } s \ r'
  proof -
    have contain: A |z| |s - z| \le r' \Longrightarrow ||z|| \le r / 2
     using that by (auto simp add: cball_def subset_eq dist_complex_def)
```

```
have contain': ||z|| < r when ||s - z|| \le r' for z
     using zl(1) contain [of z] that by auto
   have s_in_ball: s \in ball \ 0 \ r \ using \ that(3) \ zl(1) by auto
   have deriv f s = deriv (\lambda x. exp (g x)) s
     by (rule deriv_cong_ev, subst eventually_nhds)
        (rule exI [where x = ball \ 0 \ (r / 2)], use exp\_g \ zl(1) \ that(3) in auto)
   also have ... = exp(g s) * deriv g s
     by (intro\ DERIV\_fun\_exp\ [THEN\ DERIV\_imp\_deriv]\ field\_differentiable\_derivI)
        (meson hold open balls in ball holomorphic on imp differentiable at)
   finally have df: logderiv f s = deriv q s
   proof -
     assume deriv f s = exp (g s) * deriv g s
     moreover have f s \neq 0 by (intro ne s in ball)
     ultimately show ?thesis
       unfolding logderiv_def using exp_g [OF s_in_ball] by auto
   have \bigwedge z. ||s-z|| = r' \Longrightarrow ||g|z-g|\theta|| \le 2 * M
     using contain by (intro hg) auto
   moreover have (\lambda z. g z - g \theta) holomorphic_on chall s r'
     by (rule holomorphic_on_subset [where s=ball\ 0\ r], insert holg)
        (auto intro: holomorphic_intros contain' simp add: dist_complex_def)
   moreover hence continuous_on (cball s r') (\lambda z. g z - g \theta)
     by (rule holomorphic_on_imp_continuous_on)
   ultimately have \|(deriv \ \widehat{} \ 1) \ (\lambda z. \ g \ z - g \ 0) \ s\| \le fact \ 1 * (2 * M) / r' \ \widehat{} \ 1
     using that(2) by (intro Cauchy_inequality) auto
   also have ... = 2 * M / r' by auto
   also have deriv q s = deriv (\lambda z. q z - q \theta) s
     by (subst deriv_diff, auto)
        (rule holomorphic_on_imp_differentiable_at, use holg s_in_ball in auto)
   hence ||deriv \ g \ s|| = ||(deriv \ \widehat{} \ 1) \ (\lambda z. \ g \ z - g \ \theta) \ s||
     by (auto simp add: derivative_intros)
   ultimately show ?thesis by (subst df) auto
 case 1 show ?case using result [of 0 r / 2] zl(1) by auto
 case 2 show ?case proof safe
   fix s :: complex assume hs: s \in cball 0 (r / 4)
   hence z \in cball\ s\ (r\ /\ 4) \Longrightarrow ||z|| \le r\ /\ 2 for z
     using norm triangle sub [of z s]
     by (auto simp add: dist complex def norm minus commute)
   hence \|logderiv f s\| \le 2 * M / (r / 4)
     by (intro result) (use zl(1) hs in auto)
   also have \dots = 8 * M / r by auto
   finally show \|logderiv f s\| \le 8 * M / r.
 qed
qed
lemma lemma 3 9 beta1':
 fixes f M r s_0
 assumes zl: 0 < r \theta \le M
   and hf: f holomorphic on ball s r
   and ne: \bigwedge z. z \in ball \ s \ r \Longrightarrow f \ z \neq 0
   and bn: \bigwedge z. z \in ball\ s\ r \Longrightarrow ||f\ z\ /\ f\ s|| \le exp\ M
   and hs: z \in cball \ s \ (r / 4)
 shows \|logderiv f z\| \le 8 * M / r
proof -
```

```
define g where g z \equiv f (s + z) for z
  have \forall z \in cball \ 0 \ (r / 4). ||logderiv \ g \ z|| \leq 8 * M / r
    \mathbf{by}\ (intro\ lemma\_3\_9\_beta1\ assms,\ unfold\ g\_def)
       (auto simp add: dist_complex_def intro!: assms holomorphic_on_shift)
  note bspec [OF this, of z - s]
  moreover have f field_differentiable at z
    by (rule\ holomorphic\_on\_imp\_differentiable\_at\ [where\ ?s = ball\ s\ r])
       (insert hs zl(1), auto intro: hf simp add: dist_complex_def)
  ultimately show ?thesis unfolding q def using hs
    by (auto simp add: dist complex def logderiv shift)
qed
lemma lemma 3 9 beta2:
  fixes f M r
  assumes zl: 0 < r \ 0 \le M
    and af: f analytic_on cball 0 r
    and f\theta: f\theta \neq \theta
    and rz: \bigwedge z. z \in cball\ 0\ r \Longrightarrow Re\ z > 0 \Longrightarrow f\ z \neq 0
    and bn: \bigwedge z. z \in cball\ \theta\ r \Longrightarrow ||f\ z\ /\ f\ \theta|| \le exp\ M
    and hg: \Gamma \subseteq \{z \in cball \ \theta \ (r / 2). \ fz = \theta \land Re \ z \leq \theta\}
  shows - Re (logderiv f(\theta) \le 8 * M / r + Re (\sum z \in \Gamma. 1 / z)
proof -
  have nz': f not\_zero\_on \ cball \ \theta \ (r \ / \ 2)
    unfolding not_zero_on_def using f0 zl(1) by auto
  hence fin_zeros: finite \{z \in cball \ 0 \ (r / 2). \ f \ z = 0\}
    by (intro analytic compact finite zeros [where S = cball \ 0 \ r])
       (use af zl in auto)
  obtain g n and \alpha :: nat \Rightarrow complex
  where ag: g analytic_on cball 0 r
    and ng: \bigwedge z. z \in cball\ \theta\ (r / 2) \Longrightarrow g\ z \neq \theta
    and fac: \bigwedge z. z \in cball\ 0\ r \Longrightarrow f\ z = g\ z * (\prod k < n.\ (z - \alpha\ k))
    and Im\alpha: \alpha '\{...< n\} \subseteq cball\ \theta\ (r\ /\ 2)
    by (rule analytic_factorization [
      where K = cball \ \theta \ (r / 2)
       and S = cball \ \theta \ r \ and \ f = f
       (use zl(1) af nz' in auto)
  have g\theta: ||g \theta|| \neq \theta using ng zl(1) by auto
  hence q holomorphic on chall 0 r
        (\lambda z. q z / q 0) holomorphic on chall 0 r
    using ag by (auto simp add: analytic_intros intro: analytic_imp_holomorphic)
  hence holg:
      g\ holomorphic\_on\ ball\ 0\ r
      (\lambda z. q z / q \theta) holomorphic on ball \theta r
      continuous\_on (cball 0 r) (\lambda z. g z / g 0)
    by (auto intro!: holomorphic_on_imp_continuous_on
                    holomorphic\_on\_subset [where t = ball \ 0 \ r])
  have nz\_\alpha: \bigwedge k. k < n \Longrightarrow \alpha \ k \neq 0 using zl(1) f0 fac by auto
  have ||g z / g \theta|| \le exp M \text{ if } *: z \in sphere \theta r \text{ for } z
  proof -
    let ?p = \|(\prod k < n. (z - \alpha k)) / (\prod k < n. (\theta - \alpha k))\|
    have 1: ||f z / f 0|| \le exp \ M using bn * by auto
    have 2: ||fz/f0|| = ||gz/g0|| * ?p
      by (subst norm_mult [symmetric], subst (1 2) fac)
         (use that zl(1) in auto)
    have ?p = (\prod k < n. (||z - \alpha k|| / ||\theta - \alpha k||))
```

```
by (auto simp add: prod_norm [symmetric] norm_divide prod_dividef)
  also have ||z - \alpha k|| \ge ||\theta - \alpha k|| if k < n for k
  proof (rule ccontr)
   assume **: \neg \|z - \alpha k\| \ge \|\theta - \alpha k\|
   have r = ||z|| \text{ using } * \text{ by } auto
   also have ... \leq \|\theta - \alpha k\| + \|z - \alpha k\| by (simp add: norm_triangle_sub)
   also have ... < 2 * \|\alpha k\| using ** by auto
   also have \alpha \ k \in cball \ \theta \ (r / 2) using Im\alpha \ that \ by \ blast
   hence 2 * \|\alpha k\| < r by auto
   finally show False by linarith
  qed
  hence \bigwedge k. k < n \Longrightarrow ||z - \alpha k|| / ||\theta - \alpha k|| \ge 1
   using nz\_\alpha by (subst\ le\_divide\_eq\_1\_pos) auto
  hence (\prod k < n. (\|z - \alpha k\| / \|\theta - \alpha k\|)) \ge 1 by (rule\ prod\_ge\_1)\ simp
  finally have 3: ?p \ge 1.
  have rule1: b = a * c \Longrightarrow a \ge 0 \Longrightarrow c \ge 1 \Longrightarrow a \le b for a \ b \ c :: real
   by (metis landau_omega.R_mult_left_mono more_arith_simps(6))
  have ||g|z|/|g|\theta|| \le ||f|z|/|f|\theta||
   by (rule rule1) (rule 2 3 norm_ge_zero)+
  thus ?thesis using 1 by linarith
qed
hence \bigwedge z. z \in cball\ 0\ r \Longrightarrow \|g\ z\ /\ g\ 0\| \le exp\ M
  using holq
  by (auto intro: maximum_modulus_frontier
     [where f = \lambda z. g z / g \theta and S = cball \theta r])
hence bn': \Lambda z. \ z \in cball \ \theta \ (r / 2) \Longrightarrow \|g \ z / g \ \theta\| \le exp \ M \ using \ zl(1) \ by \ auto
have ag': q analytic on chall \theta (r / 2)
  by (rule\ analytic\_on\_subset\ [where\ S = cball\ 0\ r])
    (use ag zl(1) in auto)
have \|logderiv\ g\ \theta\| \le 4*M/(r/2)
  by (rule lemma_3_9_beta1(1) [where f = g])
     (use zl ng bn' holg in auto)
also have \dots = 8 * M / r by auto
finally have bn_g: ||logderiv \ g \ \theta|| \le 8 * M / r \ unfolding \ logderiv_def \ by \ auto
let ?P = \lambda w. \prod k < n. (w - \alpha k)
let ?S' = \sum k < n. \ logderiv \ (\lambda z. \ z - \alpha \ k) \ \theta
let ?S = \sum k < n. - (1 / \alpha k)
have q field differentiable at 0 using holq zl(1)
  by (auto intro!: holomorphic on imp differentiable at)
hence ld_g: g log_differentiable \theta unfolding log_differentiable_def using g\theta by auto
have log deriv ?P 0 = ?S' and ld_P: ?P log_differentiable 0
  by (auto intro!: logderiv_linear nz_α logderiv_prod)
note this(1)
also have ?S' = ?S
  by (rule sum.cong)
    (use nz\_\alpha in auto cong: logderiv\_linear(1))
finally have cd_P: logderiv ?P 0 = ?S.
have logderiv f \theta = logderiv (\lambda z. \ g \ z * ?P \ z) \ \theta
  by (rule logderiv_cong_ev, subst eventually_nhds)
    (intro exI [where x = ball \ 0 \ r], use fac zl(1) in auto)
also have ... = logderiv \ g \ \theta + logderiv \ P \ \theta
  by (subst logderiv_mult) (use ld_g ld_P in auto)
also have ... = logderiv \ g \ \theta + ?S \ using \ cd\_P \ by \ auto
finally have Re\ (logderiv\ f\ \theta) = Re\ (logderiv\ g\ \theta) + Re\ ?S\ by\ simp
moreover have -Re(\sum z \in \Gamma. 1 / z) \leq Re?S
```

```
proof -
    have -Re(\sum z \in \Gamma. 1 / z) = (\sum z \in \Gamma. Re(-(1 / z))) by (auto simp add: sum_negf)
    also have \dots \leq (\sum k < n. Re (-(1 / \alpha k)))
    proof (rule sum_le_included)
      show \forall z \in \Gamma. \exists k \in \{... < n\}. \alpha k = z \land Re (-(1 / z)) \le Re (-(1 / \alpha k))
           (is Ball _ ?P)
      proof
        fix z assume hz: z \in \Gamma
        have \exists k \in \{... < n\}. \alpha k = z
        proof (rule ccontr)
          assume ne\_\alpha: \neg (\exists k \in \{... < n\}. \alpha k = z)
          have z_in: z \in cball \ 0 \ (r / 2) \ z \in cball \ 0 \ r \ using \ hg \ hz \ zl(1) by auto
          hence q z \neq 0 using nq by auto
          moreover have (\prod k < n. (z - \alpha k)) \neq 0 using ne \alpha hz by auto
          ultimately have f z \neq 0 using fac z_in by auto
          moreover have f z = 0 using hz hg by auto
          ultimately show False by auto
        qed
        thus ?P z by auto
      qed
      show \forall k \in \{... < n\}. 0 \le Re (-(1 / \alpha k)) (is Ball \_ ?P)
      proof
        fix k assume *: k \in \{... < n\}
        have 1: \alpha \ k \in cball \ 0 \ r \ using \ Im \alpha \ zl(1) * by \ auto
        hence (\prod j < n. (\alpha k - \alpha j)) = 0
          by (subst\ prod\_zero\_iff)\ (use * in\ auto)
        with 1 have f(\alpha k) = 0 by (subst fac) auto
        hence Re(\alpha k) \leq \theta using 1 rz f\theta by fastforce
        hence Re (1 * cnj (\alpha k)) \leq 0 by auto
        thus ?P k using Re_complex_div_le_0 by auto
      qed
      show finite \{..< n\} by auto
      have \Gamma \subseteq \{z \in cball \ \theta \ (r / 2), f z = \theta \} using hg by auto
      thus finite \Gamma using fin_zeros by (rule finite_subset)
    qed
    also have \dots = Re ?S by auto
    finally show ?thesis.
  ultimately have -Re\ (logderiv\ f\ \theta) - Re\ (\sum z \in \Gamma.\ 1\ /\ z) \le Re\ (-logderiv\ g\ \theta) by auto
  also have ... \leq \|-\log deriv \ g \ \theta\| by (rule complex_Re_le_cmod)
  also have \dots \leq 8 * M / r by simp (rule \ bn\_g)
  finally show ?thesis by auto
qed
theorem lemma\_3\_9\_beta3:
  fixes f M r and s :: complex
  assumes zl: 0 < r \theta \le M
    and af: f analytic_on cball s r
    and f\theta: f s \neq \theta
    and rz: \bigwedge z. \ z \in cball \ s \ r \Longrightarrow Re \ z > Re \ s \Longrightarrow f \ z \neq 0
    and bn: \bigwedge z. z \in cball\ s\ r \Longrightarrow ||f\ z\ /\ f\ s|| \le exp\ M
    and hg: \Gamma \subseteq \{z \in cball \ s \ (r / 2). \ f \ z = 0 \land Re \ z \leq Re \ s\}
  shows - Re (logderiv f s) \le 8 * M / r + Re (\sum z \in \Gamma. 1 / (z - s))
proof -
  define q where q \equiv f \circ (\lambda z. \ s + z)
```

```
define \Delta where \Delta \equiv (\lambda z. z - s) ' \Gamma
 hence 1: g analytic on chall 0 r
   unfolding g\_def using af
   by (intro analytic_on_compose) (auto simp add: analytic_intros)
 moreover have g \theta \neq \theta unfolding g\_def using f\theta by auto
 moreover have (Re \ z > 0 \longrightarrow g \ z \neq 0) \land ||g \ z \ / \ g \ 0|| \leq exp \ M
   if hz: z \in cball \ \theta \ r \ \mathbf{for} \ z
  proof (intro\ impI\ conjI)
   assume hz': \theta < Re z
   thus g z \neq 0 unfolding g\_def comp\_def
     using hz by (intro rz) (auto simp add: dist_complex_def)
 next
   show ||g z / g \theta|| \le exp M
     unfolding g def comp def using hz
     by (auto simp add: dist complex def intro!: bn)
 moreover have \Delta \subseteq \{z \in cball \ \theta \ (r / 2). \ g \ z = \theta \land Re \ z \leq \theta\}
 proof safe
   fix z assume z \in \Delta
   hence s + z \in \Gamma unfolding \Delta_def by auto
   thus g z = 0 Re z \le 0 z \in cball 0 (r / 2)
     unfolding g_def comp_def using hg by (auto simp add: dist_complex_def)
 qed
  ultimately have -Re\ (logderiv\ g\ 0) \le 8*M/r+Re\ (\sum z \in \Delta.\ 1/z)
   by (intro lemma_3_9_beta2) (use zl in auto)
 also have ... = 8 * M / r + Re \left(\sum z \in \Gamma. \ 1 / (z - s)\right)
   unfolding \Delta def by (subst sum.reindex) (unfold inj on def, auto)
 finally show ?thesis
   unfolding g\_def comp\_def using zl(1)
   by (subst (asm) logderiv shift)
      (auto intro: analytic_on_imp_differentiable_at [OF af])
qed
unbundle no_pnt_notation
end
theory Zeta_Zerofree
imports
  PNT Complex Analysis Lemmas
begin
unbundle pnt_notation
```

4 Zero-free region of zeta function

```
lemma cos\_inequality\_1:
fixes x :: real
shows 3 + 4 * cos x + cos (2 * x) \ge 0
proof —
have cos (2 * x) = (cos x)^2 - (sin x)^2
by (rule \ cos\_double)
also have ... = (cos \ x)^2 - (1 - (cos \ x)^2)
unfolding sin\_squared\_eq ..
also have ... = 2 * (cos \ x)^2 - 1 by auto
finally have 1: cos (2 * x) = 2 * (cos \ x)^2 - 1.
have 0 \le 2 * (1 + cos \ x)^2 by auto
also have ... = 3 + 4 * cos \ x + (2 * (cos \ x)^2 - 1)
```

```
by (simp add: field simps power2 eq square)
 finally show ?thesis unfolding 1.
qed
lemma multiplicative fds zeta:
 completely_multiplicative_function (fds_nth fds_zeta_complex)
 by standard auto
lemma fds mangoldt eg:
 fds \ mangoldt \ complex = -(fds \ deriv \ fds \ zeta \ / \ fds \ zeta)
proof -
 have fds\_nth\ fds\_zeta\_complex\ 1 \neq 0 by auto
 hence fds nth (fds deriv fds zeta complex / fds zeta) n = -fds nth fds zeta n * mangoldt n for n
   using multiplicative fds zeta
   by (intro fds nth logderiv completely multiplicative)
 thus ?thesis by (intro fds_eqI, auto)
qed
lemma abs_conv_abscissa_log_deriv:
 abs\_conv\_abscissa (fds\_deriv fds\_zeta\_complex / fds\_zeta) \le 1
 by (rule abs_conv_abscissa_completely_multiplicative_log_deriv
    [OF multiplicative_fds_zeta, unfolded abs_conv_abscissa_zeta], auto)
lemma abs_conv_abscissa_mangoldt:
 abs\_conv\_abscissa (fds mangoldt\_complex) \le 1
 using abs conv abscissa log deriv
 by (subst fds mangoldt eq, subst abs conv abscissa minus)
lemma
 assumes s: Re \ s > 1
 shows eval\_fds\_mangoldt: eval\_fds (fds mangoldt) s = -deriv zeta s / zeta s
   and abs_conv_mangoldt: fds_abs_converges (fds mangoldt) s
proof -
 from abs conv abscissa log deriv
 have 1: abs\_conv\_abscissa (fds\_deriv fds\_zeta\_complex / fds\_zeta) < ereal (s \cdot 1)
   using s by (intro le_ereal_less, auto simp: one_ereal_def)
 have 2: abs conv abscissa fds zeta complex < ereal (s \cdot 1)
   using s by (subst abs conv abscissa zeta, auto)
 hence 3: fds abs converges (fds deriv fds zeta complex / fds zeta) s
   by (intro fds abs converges) (rule 1)
 have eval\_fds (fds mangoldt) s = eval\_fds (-(fds\_deriv fds\_zeta\_complex / fds\_zeta)) s
   using fds_mangoldt_eq by auto
 also have ... = -eval fds (fds deriv fds zeta complex / fds zeta) s
   by (intro eval_fds_uminus fds_abs_converges_imp_converges 3)
 also have ... = -(eval\_fds (fds\_deriv fds\_zeta\_complex) s / eval\_fds fds\_zeta s)
   using s by (subst eval_fds_log_deriv; ((intro 1 2)?, (auto intro!: eval_fds_zeta_nonzero)?))
 also have ... = - deriv zeta s / zeta s
   using s by (subst eval_fds_zeta, blast, subst eval_fds_deriv_zeta, auto)
 finally show eval_fds (fds mangoldt) s = - deriv zeta s / zeta s.
 show fds abs converges (fds mangoldt) s
   by (subst fds mangoldt eq) (intro fds abs converges uminus 3)
qed
lemma sums_mangoldt:
 fixes s :: complex
```

```
assumes s: Re \ s > 1
 shows (\lambda n. mangoldt \ n \ / \ n \ nat \ powr \ s) \ has \ sum - deriv \ zeta \ s \ / \ zeta \ s) \ \{1..\}
proof -
 let ?f = (\lambda n. \ mangoldt \ n \ / \ n \ nat\_powr \ s)
 have 1: fds abs converges (fds mangoldt) s
   by (intro abs_conv_mangoldt s)
 hence 2: fds_converges (fds mangoldt) s
   by (rule fds_abs_converges_imp_converges)
 hence summable (\lambda n. \|fds \ nth \ (fds \ mangoldt) \ n \ / \ nat \ power \ n \ s\|)
   by (fold fds abs converges def, intro 1)
 moreover have (\lambda n. fds\_nth (fds mangoldt) n / nat\_power n s) sums <math>(-deriv zeta s / zeta s)
   by (subst eval_fds_mangoldt(1) [symmetric], intro s, fold fds_converges_iff, intro 2)
  ultimately have ((\lambda n. fds\_nth (fds mangoldt) n / n nat\_powr s) has\_sum - deriv zeta s / zeta s)
UNIV
   by (fold nat_power_complex_def, rule norm_summable_imp_has_sum)
 moreover have [simp]: (if n = 0 then 0 else mangeldt n) = mangeldt n for n by auto
 ultimately have (?f has_sum - deriv zeta s / zeta s) UNIV by (auto simp add: fds_nth_fds)
 hence 3: (?f has_sum - deriv zeta s / zeta s) UNIV by auto
 have sum ?f {0} = 0 by auto
 moreover have (?f has\_sum sum ?f \{0\}) \{0\}
   by (rule has_sum_finite, auto)
 ultimately have (?f has\_sum \ \theta) \ \{\theta\} by auto
 hence (?f has sum - deriv zeta s / zeta s - 0) (UNIV - {0})
   by (intro has_sum_Diff 3, auto)
 moreover have UNIV - \{0 :: nat\} = \{1..\} by auto
 ultimately show (?f has sum - deriv zeta s / zeta s) {1..} by auto
qed
lemma sums_Re_logderiv_zeta:
 fixes \sigma t :: real
 assumes s: \sigma > 1
 shows ((\lambda n. mangoldt\_real \ n * n \ nat\_powr \ (-\sigma) * cos \ (t * ln \ n))
   has\_sum\ Re\ (-\ deriv\ zeta\ (Complex\ \sigma\ t)\ /\ zeta\ (Complex\ \sigma\ t)))\ \{1..\}
proof -
 have ((\lambda x. Re \ (mangoldt\_complex \ x \ / \ x \ nat\_powr \ Complex \ \sigma \ t))
   has\_sum\ Re\ (-\ deriv\ zeta\ (Complex\ \sigma\ t)\ /\ zeta\ (Complex\ \sigma\ t)))\ \{1..\}
   using s by (intro has_sum_Re sums_mangoldt) auto
 moreover have Re (mangoldt n / n nat powr (Complex \sigma t))
   = mangoldt real n * n nat powr (-\sigma) * cos (t * ln n) if *: 1 \le n for n
 proof -
   let ?n = n :: complex
   have 1 / n nat_powr (Complex \sigma t) = n nat_powr (Complex (-\sigma) (-t))
     by (fold powr minus divide, auto simp add: legacy Complex simps)
   also have ... = exp (Complex (-\sigma * ln n) (-t * ln n))
     unfolding powr_def by (auto simp add: field_simps legacy_Complex_simps, use * in linarith)
   finally have Re (1 / n \ nat\_powr (Complex \ \sigma \ t)) = Re \dots by auto
   also have ... = n \ nat\_powr \ (-\sigma) * cos \ (t * ln \ n)
     by (unfold powr_def, subst Re_exp, use * in auto)
   finally have 1: mangoldt\_real\ n * Re\ (1\ /\ n\ nat\_powr\ (Complex\ \sigma\ t))
     = mangoldt real n * n nat powr (-\sigma) * cos (t * ln n) by auto
   have rule 1: Re(w*z) = Re w*Re z \text{ if } *: Im w = 0 \text{ for } z w :: complex using * by auto
   have Re (mangoldt n * (1 / n \ nat\_powr \ (Complex \ \sigma \ t)))
     = mangoldt\_real \ n * Re \ (1 \ / \ n \ nat\_powr \ (Complex \ \sigma \ t))
     by (subst rule_1, auto)
   with 1 show ?thesis by auto
```

```
qed
 ultimately show ((\lambda n. \ mangoldt \ real \ n*n \ nat \ powr \ (-\sigma)*cos \ (t*ln \ (real \ n)))
   has\_sum\ Re\ (-\ deriv\ zeta\ (Complex\ \sigma\ t)\ /\ zeta\ (Complex\ \sigma\ t)))\ \{1..\}
   by (subst has_sum_cong) auto
qed
lemma logderiv_zeta_ineq:
 fixes \sigma t :: real
 assumes s: \sigma > 1
 shows 3 * Re (logderiv zeta (Complex \sigma 0)) + 4 * Re (logderiv zeta (Complex \sigma t))
   + Re (logderiv zeta (Complex \sigma (2*t))) \leq \theta (is ?x \leq \theta)
proof -
 have [simp]: Re(-z) = -Rez for z by auto
 have ((\lambda n.
     3 * (mangoldt\_real \ n * n \ nat\_powr \ (-\sigma) * cos \ (0 * ln \ n))
   + 4 * (mangoldt\_real \ n * n \ nat\_powr \ (-\sigma) * cos \ (t * ln \ n))
   + 1 * (mangoldt\_real \ n * n \ nat\_powr \ (-\sigma) * cos \ (2*t * ln \ n))
   ) has sum
     3 * Re (- deriv zeta (Complex \sigma \theta) / zeta (Complex \sigma \theta))
   + 4 * Re (- deriv zeta (Complex \sigma t) / zeta (Complex \sigma t))
   + 1 * Re (- deriv zeta (Complex \sigma (2*t)) / zeta (Complex \sigma (2*t)))
   ) {1..}
 by (intro has_sum_add has_sum_cmult_right sums_Re_logderiv_zeta s)
 hence *: ((\lambda n. mangoldt\_real \ n * n \ nat\_powr \ (-\sigma))
   *(3 + 4 * cos (t * ln n) + cos (2 * (t * ln n)))
   ) has sum - ?x) {1..}
  unfolding logderiv def by (auto simp add: field simps)
 have -?x \ge \theta
 by (rule has_sum_nonneg, rule *,
    intro mult_nonneg_nonneg,
    auto intro: mangoldt_nonneg cos_inequality_1)
 thus ?x \le \theta by linarith
qed
lemma sums_zeta_real:
 fixes r :: real
 assumes 1 < r
 shows (\sum n. (n_+) powr - r) = Re (zeta r)
proof -
 have (\sum n. (n_+) powr - r) = (\sum n. Re (n_+ powr (-r :: complex)))
   by (subst of_real_nat_power) auto
 also have ... = (\sum n. Re (n_+ powr - (r :: complex))) by auto
 also have ... = Re \left( \sum n. \ n_{+} \ powr - (r :: complex) \right)
   by (intro Re_suminf [symmetric] summable_zeta)
      (use assms in auto)
 also have \dots = Re (zeta \ r)
   using Re_complex_of_real_zeta_conv_suminf_assms_by_presburger
 finally show ?thesis.
qed
lemma inverse zeta bound':
 assumes 1 < Re s
 shows ||inverse(zeta s)|| \le Re(zeta(Re s))
proof -
 write moebius mu (\langle \mu \rangle)
```

```
let ?f = \lambda n :: nat. \ \mu \ (n_+) \ / \ (n_+) \ powr \ s
 let ?g = \lambda n :: nat. (n_+) powr - Re s
 have \|\mu \ n :: complex\| \le 1 for n by (auto simp add: power_neg_one_If moebius_mu_def)
 hence 1: \|?f n\| \le ?g n for n
   by (auto simp add: powr_minus norm_divide norm_powr_real_powr_field_simps)
 have inverse (zeta s) = (\sum n. ?f n)
   by (intro sums_unique inverse_zeta_sums assms)
 hence ||inverse||(zeta|s)|| = ||\sum n| ?f n|| by auto
 also have ... \leq (\sum n. ?g n) by (intro suminf_norm_bound summable_zeta_real assms 1)
 finally show ?thesis using sums zeta real assms by auto
qed
lemma zeta bound':
 assumes 1 < Re s
 shows ||zeta|| \le Re (zeta (Re s))
proof -
 let ?f = \lambda n :: nat. (n_+) powr - s
 let ?g = \lambda n :: nat. (n_+) powr - Re s
 have zeta s = (\sum n. ?f n) by (intro sums_unique sums_zeta assms)
 hence ||zeta|| = ||\sum n|? f n|| by auto
 also have \dots \leq (\sum n. ?g n)
   by (intro suminf_norm_bound summable_zeta_real assms)
     (subst norm nat power, auto)
 also have ... = Re\ (zeta\ (Re\ s)) by (subst\ sums\_zeta\_real)\ (use\ assms\ in\ auto)
 finally show ?thesis.
qed
lemma zeta_bound_trivial':
 assumes 1 / 2 \le Re \ s \land Re \ s \le 2
   and |Im \ s| \ge 1 \ / \ 11
 shows ||zeta| \le 12 + 2 * |Im| s|
proof -
 have ||pre\_zeta \ 1 \ s|| \le ||s|| / Re \ s
   by (rule pre_zeta_1_bound) (use assms in auto)
 also have ... \leq (|Re\ s| + |Im\ s|) / Re\ s
 proof
   have ||s|| \le |Re \ s| + |Im \ s| using cmod\_le by auto
   thus ?thesis using assms by (auto intro: divide right mono)
 qed
 also have \dots = 1 + |Im \ s| / Re \ s
   using assms by (simp add: field_simps)
 also have ... \leq 1 + |Im \ s| / (1 / 2)
   using assms by (intro add left mono divide left mono) auto
 finally have 1: ||pre\_zeta \ 1 \ s|| \le 1 + 2 * |Im \ s| by auto
 have ||1|/(s-1)|| = 1/||s-1|| by (subst norm_divide) auto
 also have \dots \leq 11 proof -
   have 1 / 11 \le |Im \ s| by (rule \ assms(2))
   also have ... = |Im(s-1)| by auto
   also have ... \leq ||s-1|| by (rule abs_Im\_le\_cmod)
   finally show ?thesis by (intro mult_imp_div_pos_le) auto
 finally have 2: ||1|/(s-1)|| \le 11 by auto
 have zeta s = pre\_zeta \ 1 \ s + 1 \ / \ (s - 1) by (intro zeta\_pole_eq) (use assms in auto)
 moreover have \|...\| \le \|pre\_zeta\ 1\ s\| + \|1\ /\ (s-1)\| by (rule norm_triangle_ineq)
 ultimately have ||zeta| \le ... by auto
```

```
also have ... \leq 12 + 2 * |Im s| using 1 2 by auto
 finally show ?thesis.
qed
lemma zeta bound qt 1:
 assumes 1 < Re s
 shows ||zeta|| \le Re|s| / (Re|s-1)
proof -
 have ||zeta| \le Re (zeta (Re s)) by (intro zeta bound' assms)
 also have ... \leq \|zeta\ (Re\ s)\| by (rule complex Re le cmod)
 also have ... = ||pre\_zeta \ 1 \ (Re \ s) + 1 \ / \ (Re \ s - 1)||
   by (subst zeta_pole_eq) (use assms in auto)
 also have ... \leq \|pre\| zeta \ 1 \ (Re \ s)\| + \|1 \ / \ (Re \ s - 1) :: complex\|
   by (rule norm triangle ineq)
 also have ... \leq 1 + 1 / (Re \ s - 1)
 proof -
   have ||pre\_zeta \ 1 \ (Re \ s)|| \le ||Re \ s :: complex|| / Re \ (Re \ s)
     by (rule pre_zeta_1_bound) (use assms in auto)
   also have \dots = 1 using assms by auto
   moreover have ||1|/(Re s - 1) :: complex|| = 1 / (Re s - 1)
     by (subst norm_of_real) (use assms in auto)
   ultimately show ?thesis by auto
 qed
 also have \dots = Re \ s \ / \ (Re \ s - 1)
   using assms by (auto simp add: field_simps)
 finally show ?thesis.
qed
lemma zeta_bound_trivial:
 assumes 1 / 2 \le Re \ s and |Im \ s| \ge 1 / 11
 shows ||zeta| \le 12 + 2 * |Im| s|
proof (cases Re s \leq 2)
 assume Re \ s \leq 2
 thus ?thesis by (intro zeta_bound_trivial') (use assms in auto)
next
 assume \neg Re \ s \leq 2
 hence *: Re \ s > 1 \ Re \ s > 2 by auto
 hence ||zeta s|| \le Re s / (Re s - 1) by (intro zeta bound qt 1)
 also have ... \leq 2 using * by (auto simp add: field simps)
 also have ... \leq 12 + 2 * |Im s| by auto
 finally show ?thesis.
qed
lemma zeta nonzero small imaq':
 assumes |Im\ s| \le 13 / 22 and Re\ s \ge 1 / 2 and Re\ s < 1
 shows zeta s \neq 0
proof -
 have ||pre\_zeta \ 1 \ s|| \le (1 + ||s|| / Re \ s) / 2 * 1 powr - Re \ s
   by (rule pre_zeta_bound) (use assms(2) in auto)
 also have ... \leq 129 / 100 \text{ proof} -
   have ||s|| / Re \ s \le 79 / 50
   proof (rule ccontr)
     assume \neg \|s\| / Re \ s \le 79 / 50
     hence sqrt (6241 / 2500) < ||s|| / Re s by (simp add: real_sqrt_divide)
     also have ... = ||s|| / sqrt ((Re \ s)^2) using assms(2) by simp
```

```
also have ... = sqrt (1 + (Im \ s \ / Re \ s)^2)
      unfolding cmod def using assms(2)
      by (auto simp add: real_sqrt_divide [symmetric] field_simps
             simp del: real_sqrt_abs)
    finally have 1: 6241 / 2500 < 1 + (Im s / Re s)^2 by auto
    have |Im\ s\ /\ Re\ s| \le |6\ /\ 5| using assms by (auto simp add: field_simps abs_le_square_iff)
    hence (Im \ s \ / \ Re \ s)^2 \le (6 \ / \ 5)^2 by (subst \ (asm) \ abs\_le\_square \ iff)
    hence 2: 1 + (Im \ s \ / \ Re \ s)^2 \le 61 \ / \ 25 unfolding power2_eq_square by auto
    from 1 2 show False by auto
   qed
   hence (1 + ||s|| / Re s) / 2 \le (129 / 50) / 2 by (subst\ divide\_right\_mono)\ auto
   also have \dots = 129 / 100 by auto
   finally show ?thesis by auto
 ged
 finally have 1: ||pre|| zeta \ 1 \ s|| \le 129 \ / \ 100.
 have ||s - 1|| < 100 / 129 proof -
   from assms have (Re\ (s-1))^2 \le (1\ /\ 2)^2 by (simp\ add:\ abs\_le\_square\_iff\ [symmetric])
    moreover have (Im\ (s-1))^2 \le (13/22)^2 using assms(1) by (simp\ add:\ abs\_le\_square\_iff
[symmetric]
   ultimately have (Re\ (s-1))^2 + (Im\ (s-1))^2 \le 145 / 242 by (auto simp add: power2_eq_square)
   hence sqrt ((Re(s-1))^2 + (Im(s-1))^2) \le sqrt(145 / 242) by (rule real\_sqrt\_le\_mono)
   also have ... \langle sqrt ((100 / 129)^2)  by (subst real\_sqrt\_less\_iff) (simp add: power2\_eq\_square)
   finally show ?thesis unfolding cmod def by auto
 qed
 moreover have ||s - 1|| \neq 0 using assms(3) by auto
 ultimately have 2: ||1|/(s-1)|| > 129/100 by (auto simp add: field simps norm divide)
 from 1 2 have \theta < \|1\ /\ (s-1)\| - \|pre\_zeta\ 1\ s\| by auto
 also have ... \leq \|pre\_zeta\ 1\ s+1\ /\ (s-1)\| by (subst add.commute) (rule norm_diff_ineq)
 also from assms(3) have s \neq 1 by auto
 hence ||pre\_zeta \ 1 \ s + 1 \ / \ (s - 1)|| = ||zeta \ s|| using zeta\_pole\_eq by auto
 finally show ?thesis by auto
qed
lemma zeta nonzero small imag:
 assumes |Im\ s| \le 13 / 22 and Re\ s > 0 and s \ne 1
 shows zeta s \neq 0
proof -
 consider Re s \le 1 / 2 | 1 / 2 \le Re s \land Re s < 1 | Re s \ge 1 by fastforce
 thus ?thesis proof cases
   case 1 hence zeta (1-s) \neq 0 using assms by (intro zeta nonzero small imag') auto
   moreover case 1
   ultimately show ?thesis using assms(2) zeta zero reflect iff by auto
 next
   case 2 thus ?thesis using assms(1) by (intro zeta nonzero small imaq') auto
   case 3 thus ?thesis using zeta\_Re\_ge\_1\_nonzero\ assms(3) by auto
 qed
qed
lemma inverse zeta bound:
 assumes 1 < Re s
 shows ||inverse(zeta s)|| \le Re s / (Re s - 1)
 have ||inverse(zeta s)|| \le Re(zeta(Re s)) by (intro inverse\_zeta\_bound' assms)
 also have ... \leq \|zeta(Re\ s)\| by (rule complex Re le cmod)
```

```
also have \dots \leq Re (Re \ s) / (Re (Re \ s) - 1)
   by (intro zeta bound qt 1) (use assms in auto)
 also have ... = Re\ s\ /\ (Re\ s-1) by auto
 finally show ?thesis.
qed
lemma deriv_zeta_bound:
 fixes s :: complex
 assumes Hr: 0 < r and Hs: s \neq 1
   and hB: \bigwedge w. ||s - w|| = r \Longrightarrow ||pre\_zeta \ 1 \ w|| \le B
 shows ||deriv\ zeta\ s|| \le B / r + 1 / ||s - 1||^2
proof -
 have ||deriv\ zeta\ s|| = ||deriv\ (pre\ zeta\ 1)\ s-1\ /\ (s-1)^2||
 proof -
   let ?A = UNIV - \{1 :: complex\}
   let ?f = \lambda s. pre\_zeta\ 1\ s+1\ /\ (s-1)
   let ?v = deriv (pre\_zeta \ 1) \ s + (0 * (s - 1) - 1 * (1 - 0)) / (s - 1)^2
   let ?v' = deriv (pre\_zeta 1) s - 1 / (s - 1 :: complex)^2
   have \forall z \in ?A. zeta z = pre\_zeta \ 1 \ z + 1 \ / \ (z - 1)
     by (auto intro: zeta_pole_eq)
   hence \forall_F \ z \ in \ nhds \ s. \ zeta \ z = pre\_zeta \ 1 \ z + 1 \ / \ (z - 1)
     using Hs by (subst eventually_nhds, intro exI [where x = ?A]) auto
   hence DERIV zeta s :> ?v' = DERIV ?f s :> ?v'
     by (intro DERIV_cong_ev) auto
   moreover have DERIV ?f s :> ?v
     unfolding power2 eq square
     by (intro derivative intros field differentiable derivI holomorphic pre zeta
        holomorphic\_on\_imp\_differentiable\_at [where s = ?A])
       (use Hs in auto)
   moreover have ?v = ?v' by (auto simp add: field_simps)
   ultimately have DERIV zeta s :> ?v' by auto
   moreover have DERIV zeta s :> deriv zeta s
     by (intro field_differentiable_derivI field_differentiable_at_zeta)
       (use Hs in auto)
   ultimately have ?v' = deriv zeta s  by (rule DERIV\_unique)
   thus ?thesis by auto
 qed
 also have ... \leq \| deriv (pre\_zeta \ 1) \ s \| + \| 1 \ / \ (s-1)^2 \|  by (rule \ norm\_triangle\_ineq4)
 also have ... \leq B / r + 1 / ||s - 1||^2
 proof -
   have ||(deriv ^ 1) (pre\_zeta 1) s|| \le fact 1 * B / r 1
     by (intro Cauchy_inequality holomorphic_pre_zeta continuous_on_pre_zeta assms) auto
   thus ?thesis by (auto simp add: norm divide norm power)
 qed
 finally show ?thesis.
qed
lemma zeta lower bound:
 assumes 0 < Re \ s \ne 1
 shows 1 / ||s - 1|| - ||s|| / Re s \le ||zeta s||
proof -
 have ||pre\_zeta \ 1 \ s|| \le ||s|| / Re \ s by (intro pre\_zeta\_1\_bound \ assms)
 hence 1 / \|s - 1\| - \|s\| / Re \ s \le \|1 / (s - 1)\| - \|pre\_zeta \ 1 \ s\|
   using assms by (auto simp add: norm_divide)
 also have ... \leq \|pre \ zeta \ 1 \ s + 1 \ / \ (s - 1)\|
```

```
by (subst add.commute) (rule norm diff ineq)
 also have ... = \|zeta\ s\| using assms by (subst zeta pole eq) auto
 finally show ?thesis.
qed
lemma logderiv_zeta_bound:
 fixes \sigma :: real
 assumes 1 < \sigma \sigma \le 23 / 20
 shows \|logderiv\ zeta\ \sigma\| \le 5 / 4*(1/(\sigma-1))
proof -
 have ||pre\_zeta \ 1 \ s|| \le sqrt \ 2 \ \text{if} \ *: ||\sigma - s|| = 1 \ / \ sqrt \ 2 \ \text{for} \ s :: complex
 proof -
   have 1: \theta < Re \ s \ proof -
     have 1 - Re \ s \le Re \ (\sigma - s) using assms(1) by auto
     also have Re(\sigma - s) \leq \|\sigma - s\| by (rule complex_Re_le_cmod)
     also have ... = 1 / sqrt 2 by (rule *)
     finally have 1 - 1 / sqrt 2 \le Re s by auto
     moreover have 0 < 1 - 1 / sqrt 2 by auto
     ultimately show ?thesis by linarith
   qed
   hence ||pre\_zeta \ 1 \ s|| \le ||s|| / Re \ s by (rule \ pre\_zeta\_1\_bound)
   also have \dots \leq sqrt \ 2 \text{ proof } -
     define x \ y where x \equiv Re \ s and y \equiv Im \ s
     have sqrt ((\sigma - x)^2 + y^2) = 1 / sqrt 2
       using * unfolding cmod_def x_def y_def by auto
     also have ... = sqrt(1/2) by (auto simp add: field simps real sqrt mult [symmetric])
     finally have 2: x^2 + y^2 - 2*\sigma*x + \sigma^2 = 1 / 2 by (auto simp add: field simps power2 eq square)
     have y^2 \le x^2 proof (rule ccontr)
      assume \neg y^2 \le x^2
      hence x^2 < y^2 by auto
       with 2 have 2*x^2 - 2*\sigma*x + \sigma^2 < 1 / 2 by auto
       hence 2 * (x - \sigma / 2)^2 < (1 - \sigma^2) / 2 by (auto simp add: field_simps power2_eq_square)
       also have ... < \theta using \langle 1 < \sigma \rangle by auto
       finally show False by auto
     qed
     moreover have x \neq 0 unfolding x\_def using 1 by auto
     ultimately have sqrt((x^2 + y^2) / x^2) \le sqrt 2 by (auto simp\ add:\ field\_simps)
     with 1 show ?thesis unfolding cmod def x def y def by (auto simp add: real sqrt divide)
   qed
   finally show ?thesis.
 qed
 hence ||deriv\ zeta\ \sigma|| \le sqrt\ 2\ /\ (1\ /\ sqrt\ 2) + 1\ /\ ||(\sigma::complex) - 1||^2
   by (intro deriv zeta bound) (use assms(1) in auto)
 also have ... \leq 2 + 1 / (\sigma - 1)^2
   by (subst in_Reals_norm) (use assms(1) in auto)
 also have ... = (2 * \sigma^2 - 4 * \sigma + 3) / (\sigma - 1)^2
 proof -
   have \sigma * \sigma - 2 * \sigma + 1 = (\sigma - 1) * (\sigma - 1) by (auto simp add: field_simps)
   also have ... \neq 0 using assms(1) by auto
   finally show ?thesis by (auto simp add: power2 eq square field simps)
 finally have 1: ||deriv\ zeta\ \sigma|| \le (2 * \sigma^2 - 4 * \sigma + 3) / (\sigma - 1)^2.
 have (2-\sigma)/(\sigma-1)=1/\|(\sigma::complex)-1\|-\|\sigma::complex\|/Re\ \sigma
   using assms(1) by (auto simp add: field_simps in_Reals_norm)
  also have ... \leq \|zeta \ \sigma\| by (rule zeta lower bound) (use assms(1) in auto)
```

```
finally have 2: (2 - \sigma) / (\sigma - 1) \le ||zeta \sigma||.
  have 4 * (2 * \sigma^2 - 4 * \sigma + 3) - 5 * (2 - \sigma) = 8 * (\sigma - 11 / 16)^2 - 57 / 32
    by (auto simp add: field_simps power2_eq_square)
  also have \dots \leq \theta proof –
    have 0 \le \sigma - 11 / 16 using assms(1) by auto
    moreover have \sigma - 11 / 16 \le 37 / 80 using assms(2) by auto
    ultimately have (\sigma - 11 / 16)^2 \le (37 / 80)^2 by auto
    thus ?thesis by (auto simp add: power2_eq_square)
  ged
  finally have 4 * (2 * \sigma^2 - 4 * \sigma + 3) - 5 * (2 - \sigma) \le 0.
  moreover have 0 < 2 - \sigma using assms(2) by auto
  ultimately have 3: (2 * \sigma^2 - 4 * \sigma + 3) / (2 - \sigma) \le 5 / 4 by (subst\ pos\_divide\_le\_eq) auto
  moreover have 0 \le 2 * \sigma^2 - 4 * \sigma + 3 proof –
    have 0 \le 2 * (\sigma - 1)^2 + 1 by auto
    also have ... = 2 * \sigma^2 - 4 * \sigma + 3 by (auto simp add: field simps power2 eq square)
    finally show ?thesis.
  qed
  moreover have 0 < (2 - \sigma) / (\sigma - 1) using assms by auto
  ultimately have \|logderiv\ zeta\ \sigma\| \le ((2 * \sigma^2 - 4 * \sigma + 3) / (\sigma - 1)^2) / ((2 - \sigma) / (\sigma - 1))
    unfolding logderiv_def using 1 2 by (subst norm_divide) (rule frac_le, auto)
  also have ... = (2 * \sigma^2 - 4 * \sigma + 3) / (2 - \sigma) * (1 / (\sigma - 1))
    by (simp add: power2_eq_square)
  also have ... \leq 5 / 4 * (1 / (\sigma - 1))
    using 3 by (rule mult_right_mono) (use assms(1) in auto)
  finally show ?thesis.
qed
lemma Re_logderiv_zeta_bound:
  fixes \sigma :: real
  assumes 1 < \sigma \sigma < 23 / 20
  shows Re (logderiv zeta \sigma) \geq -5 / 4 * (1 / (\sigma - 1))
proof -
  have -Re (logderiv zeta \sigma) = Re (-logderiv zeta \sigma) by auto
  also have Re\ (-logderiv\ zeta\ \sigma) \le ||-logderiv\ zeta\ \sigma|| by (rule\ complex\_Re\_le\_cmod)
  also have ... = \|logderiv\ zeta\ \sigma\| by auto
  also have ... \leq 5 / 4 * (1 / (\sigma - 1)) by (intro logderiv_zeta_bound assms)
  finally show ?thesis by auto
qed
{\bf locale}\ zeta\_bound\_param =
  fixes \vartheta \varphi :: real \Rightarrow real
  assumes zeta\_bn': \land z. 1 - \vartheta (Im z) \le Re z \Longrightarrow Im z \ge 1 / 11 \Longrightarrow ||zeta z|| \le exp (\varphi(Im z))
    and \vartheta pos: \bigwedge t. \theta < \vartheta t \wedge \vartheta t \leq 1 / 2
    and \varphi_pos: \wedge t. 1 \leq \varphi t
    and inv\_\vartheta: \bigwedge t. \varphi t / \vartheta t \leq 1 / 960 * exp(\varphi t)
    and mo\vartheta: antimono\ \vartheta and mo\varphi: mono\ \varphi
begin
  definition region \equiv \{z. \ 1 - \vartheta \ (Im \ z) \le Re \ z \land Im \ z \ge 1 \ / \ 11\}
  lemma zeta\_bn: \land z. z \in region \Longrightarrow ||zeta|| \le exp(\varphi(Im|z))
    using zeta_bn' unfolding region_def by auto
  lemma \vartheta pos': \bigwedge t. \theta < \vartheta t \wedge \vartheta t \leq 1
    using \vartheta_pos by (smt (verit) exp_ge_add_one_self exp_half_le2)
  lemma \varphi_pos': \wedge t. \theta < \varphi t using \varphi_pos by (smt (verit, ccfv_SIG))
end
```

```
locale zeta bound param 1 = zeta bound param +
 fixes \gamma :: real
 assumes \gamma_cnd: \gamma \geq 13 / 22
begin
 definition r where r \equiv \vartheta (2 * \gamma + 1)
end
locale zeta_bound_param_2 = zeta_bound_param_1 +
 fixes \sigma \delta :: real
 assumes \sigma cnd: \sigma \geq 1 + exp(-\varphi(2 * \gamma + 1))
     and \delta cnd: \delta = \gamma \vee \delta = 2 * \gamma
begin
 definition s where s \equiv Complex \sigma \delta
end
context zeta_bound_param_2 begin
declare dist_complex_def [simp] norm_minus_commute [simp]
declare legacy_Complex_simps [simp]
lemma cball lm:
 assumes z \in cball \ s \ r
 shows r \le 1 |Re z - \sigma| \le r |Im z - \delta| \le r
       1 / 11 \leq Im \ z \ Im \ z \leq 2 * \gamma + r
proof -
 have |Re(z-s)| \le ||z-s|| |Im(z-s)| \le ||z-s||
   by (rule abs Re le cmod) (rule abs Im le cmod)
 moreover have ||z - s|| \le r using assms by auto
 ultimately show 1: |Re\ z - \sigma| \le r |Im\ z - \delta| \le r unfolding s\_def by auto
 moreover have 3: r \leq 1 / 2 unfolding r\_def using \vartheta\_pos by auto
 ultimately have 2: |Re z - \sigma| \le 1 / 2 |Im z - \delta| \le 1 / 2 by auto
 moreover have \delta \leq 2 * \gamma using \delta\_cnd \gamma\_cnd by auto
 ultimately show Im z \leq 2 * \gamma + r  using 1 by auto
 have 1/11 \le \delta - 1/2 using \delta_cnd \gamma_cnd by auto
 also have ... \leq Im \ z \ using \ 2 \ by (auto \ simp \ del: Num.le_divide_eq_numeral1)
 finally show 1 / 11 \le Im z.
 from 3 show r \le 1 by auto
qed
lemma cball in region:
 shows cball\ s\ r\subseteq region
proof
 fix z :: complex
 assume hz: z \in cball \ s \ r
 note lm = cball\_lm [OF hz]
 hence 1 - \vartheta (Im z) \le 1 - \vartheta (2 * \gamma + \vartheta (2 * \gamma + 1))
   unfolding r\_def using mo\vartheta lm by (auto intro: antimonoD)
 also have ... \leq 1 + exp(-\varphi(2 * \gamma + 1)) - \vartheta(2 * \gamma + 1)
 proof -
   have 2 * \gamma + \vartheta (2 * \gamma + 1) \leq 2 * \gamma + 1
     unfolding r\_def using \vartheta\_pos' by auto
   hence \vartheta (2 * \gamma + 1) - \vartheta (2 * \gamma + \vartheta (2 * \gamma + 1)) \leq \theta
     using mo\theta by (auto intro: antimonoD)
   also have 0 \le exp(-\varphi(2 * \gamma + 1)) by auto
   finally show ?thesis by auto
 qed
```

```
also have ... \leq \sigma - r using \sigma\_cnd unfolding r\_def s\_def by auto
 also have \dots \leq Re \ z  using lm by auto
 finally have 1 - \vartheta (Im z) \le Re z.
 thus z \in region unfolding region\_def using lm by auto
qed
lemma Re\_s\_gt\_1:
 shows 1 < Re s
proof -
 have *: exp(-\varphi(2*\gamma+1)) > 0 by auto
 show ?thesis using \sigma\_cnd\ s\_def by auto (use * in linarith)
qed
lemma zeta analytic on region:
 shows zeta analytic on region
 by (rule analytic_zeta) (unfold region_def, auto)
lemma zeta_div_bound:
 assumes z \in cball \ s \ r
 shows \|zeta\ z\ /\ zeta\ s\| \le exp\left(3*\varphi\left(2*\gamma+1\right)\right)
proof -
 let ?\varphi = \varphi (2 * \gamma + 1)
 have ||zeta|| \le exp \ (\varphi \ (Im \ z)) using cball\_in\_region \ zeta\_bn \ assms by auto
 also have \dots \leq exp(?\varphi)
 proof -
   have Im \ z \le 2 * \gamma + 1 using cball\_lm \ [OF \ assms] by auto
   thus ?thesis by auto (rule monoD [OF mo\varphi])
 also have ||inverse(zeta s)|| \le exp(2 * ?\varphi)
 proof -
   have ||inverse(zeta s)|| \le Re s / (Re s - 1)
     by (intro inverse_zeta_bound Re_s_gt_1)
   also have ... = 1 + 1 / (Re \ s - 1)
     using Re_s_gt_1 by (auto simp add: field_simps)
   also have \dots \leq 1 + exp(?\varphi)
   proof -
     have Re \ s - 1 \ge exp \ (-?\varphi) using s\_def \ \sigma\_cnd by auto
     hence 1 / (Re \ s - 1) \le 1 / exp(-?\varphi)
       using Re s qt 1 by (auto intro: divide left mono)
     thus ?thesis by (auto simp add: exp_minus field_simps)
   qed
   also have ... \leq exp \ (2 * ?\varphi) by (intro\ exp\_lemma\_1\ less\_imp\_le\ \varphi\_pos)
   finally show ?thesis.
 qed
 ultimately have ||zeta||z*|inverse|(zeta|s)|| \le exp(?\varphi)*|exp(2*?\varphi)
   by (subst norm_mult, intro mult_mono') auto
 also have ... = exp(3 * ?\varphi) by (subst exp\_add [symmetric]) auto
 finally show ?thesis by (auto simp add: divide inverse)
qed
lemma loqderiv zeta bound:
 shows Re (logderiv zeta s) \geq -24 * \varphi (2 * \gamma + 1) / r
   and \bigwedge \beta. \sigma - r / 2 \le \beta \Longrightarrow zeta (Complex <math>\beta \delta) = 0 \Longrightarrow
       Re (logderiv zeta s) \geq -24 * \varphi (2 * \gamma + 1) / r + 1 / (\sigma - \beta)
proof -
```

```
have 1: \theta < r unfolding r\_def using \theta\_pos' by auto
  have 2: 0 \leq 3 * \varphi (2 * \gamma + 1) using \varphi_{pos} by (auto simp add: less_imp_le)
  have 3: zeta s \neq 0 \ \land z. Re s < Re z \Longrightarrow zeta z \neq 0
    using Re_s_gt_1 by (auto intro!: zeta_Re_gt_1_nonzero)
  have 4: zeta analytic on chall s r
    by (rule analytic_on_subset;
        rule cball_in_region zeta_analytic_on_region)
  have 5: z \in cball\ s\ r \Longrightarrow ||zeta\ z\ /\ zeta\ s|| \le exp\ (3*\varphi\ (2*\gamma+1))
    for z by (rule zeta div bound)
  have 6: \{\} \subseteq \{z \in cball \ s \ (r / 2). \ zeta \ z = 0 \land Re \ z \leq Re \ s\} by auto
  have 7: \{Complex \ \beta \ \delta\} \subseteq \{z \in cball \ s \ (r \ / \ 2). \ zeta \ z = 0 \ \land \ Re \ z \leq Re \ s\}
   if \sigma - r / 2 \le \beta zeta (Complex \beta \delta) = 0 for \beta
  proof -
    have \beta \leq \sigma
     using zeta\_Re\_gt\_1\_nonzero [of Complex \beta \delta] Re\_s\_gt\_1 that(2)
     unfolding s\_def by fastforce
    thus ?thesis using that unfolding s_def by auto
  qed
  have -Re\ (logderiv\ zeta\ s) \le 8*(3*\varphi\ (2*\gamma+1))\ /\ r+Re\ (\sum z\in \{\}.\ 1\ /\ (z-s))
    by (intro lemma_3_9_beta3 1 2 3 4 5 6)
  thus Re (logderiv zeta s) \geq -24 * \varphi (2 * \gamma + 1) / r by auto
  show Re (logderiv zeta s) \geq -24 * \varphi (2 * \gamma + 1) / r + 1 / (\sigma - \beta)
    if *: \sigma - r / 2 \le \beta zeta (Complex \beta \delta) = 0 for \beta
  proof -
    have bs: \beta \neq \sigma using *(2) 3(1) unfolding s_def by auto
    hence bs': 1/(\beta-\sigma)=-1/(\sigma-\beta) by (auto simp add: field simps)
    have inv_r: 1 / (Complex \ r \ \theta) = Complex \ (1 / r) \ \theta \ \text{if} \ r \neq \theta \ \text{for} \ r
     using that by (auto simp add: field_simps)
    have -Re\ (logderiv\ zeta\ s) \le 8*(3*\varphi\ (2*\gamma+1))\ /\ r+Re\ (\sum z \in \{Complex\ \beta\ \delta\}.\ 1\ /\ (z-s))
     by (intro lemma_3_9_beta3 1 2 3 4 5 7 *)
    thus ?thesis unfolding s def
     by (auto simp add: field simps)
        (subst (asm) inv\_r, use bs bs' in auto)
  qed
qed
end
context zeta bound param 1 begin
lemma zeta nonzero region':
  assumes 1 + 1 / 960 * (r / \varphi (2 * \gamma + 1)) - r / 2 \le \beta
    and zeta (Complex \beta \gamma) = 0
  shows 1 - \beta \ge 1 / 29760 * (r / \varphi (2 * \gamma + 1))
  let ?\varphi = \varphi (2 * \gamma + 1) and ?\vartheta = \vartheta (2 * \gamma + 1)
  define \sigma where \sigma \equiv 1 + 1 / 960 * (r / \varphi (2 * \gamma + 1))
  define a where a \equiv -5 / 4 * (1 / (\sigma - 1))
  define b where b \equiv -24 * \varphi (2 * \gamma + 1) / r + 1 / (\sigma - \beta)
  define c where c \equiv -24 * \varphi (2 * \gamma + 1) / r
  have 1 + exp (-?\varphi) \le \sigma
  proof -
    have 960 * exp (-?\varphi) = 1 / (1 / 960 * exp ?\varphi)
     by (auto simp add: exp_add [symmetric] field_simps)
    also have ... \leq 1 / (?\varphi / ?\vartheta) proof –
     have ?\varphi / ?\vartheta \le 1 / 960 * exp ?\varphi by (rule inv\_\vartheta)
     thus ?thesis by (intro divide left mono) (use \vartheta pos \varphi pos' in auto)
```

```
qed
   also have ... = r / ?\varphi unfolding r\_def by auto
   finally show ?thesis unfolding \sigma_{-}def by auto
 qed
 note * = this \gamma cnd
 interpret z: zeta_bound_param_2 \vartheta \varphi \gamma \sigma \gamma by (standard, use * in auto)
 interpret z': zeta_bound_param_2 \vartheta \varphi \gamma \sigma \vartheta * \gamma by (standard, use * in auto)
 have r \leq 1 unfolding r\_def using \vartheta\_pos'[of 2 * \gamma + 1] by auto
 moreover have 1 \leq \varphi \ (2 * \gamma + 1) using \varphi pos by auto
 ultimately have r / \varphi (2 * \gamma + 1) \le 1 by auto
 moreover have 0 < r \ 0 < \varphi \ (2 * \gamma + 1) unfolding r\_def using \vartheta\_pos' \ \varphi\_pos' by auto
 hence \theta < r / \varphi (2 * \gamma + 1) by auto
 ultimately have 1: 1 < \sigma \sigma \le 23 / 20 unfolding \sigma def by auto
 hence Re\ (logderiv\ zeta\ \sigma) \geq a\ unfolding\ a\ def\ by\ (intro\ Re\ logderiv\ zeta\ bound)
 hence Re (logderiv zeta (Complex \sigma 0)) \geq a by auto
 moreover have Re (logderiv zeta z.s) \geq b unfolding b\_def
   by (rule z.logderiv_zeta_bound) (use assms r_def \sigma_def in auto)
 hence Re (logderiv zeta (Complex \sigma \gamma)) \geq b unfolding z.s_def by auto
 moreover have Re (logderiv zeta z'.s) \geq c unfolding c\_def by (rule z'.logderiv\_zeta\_bound)
 hence Re (logderiv zeta (Complex \sigma (2 * \gamma))) \geq c unfolding z'.s_def by auto
 ultimately have 3 * a + 4 * b + c
   \leq 3 * Re (logderiv zeta (Complex \sigma 0)) + 4 * Re (logderiv zeta (Complex \sigma \gamma))
   + Re (logderiv zeta (Complex \sigma (2 * \gamma))) by auto
 also have \dots \leq 0 by (rule logderiv_zeta_ineq, rule 1)
 finally have 3*a+4*b+c\leq 0.
 hence 4/(\sigma-\beta) \le 15/4*(1/(\sigma-1)) + 120*\varphi(2*\gamma+1)/r
   unfolding a_def b_def c_def by auto
 also have ... = 3720 * \varphi (2 * \gamma + 1) / r unfolding \sigma_{def} by auto
 finally have 2: inverse (\sigma - \beta) \leq 930 * \varphi (2 * \gamma + 1) / r by (auto simp add: inverse_eq_divide)
 have 3: \sigma - \beta \ge 1 / 930 * (r / \varphi (2 * \gamma + 1))
 proof -
   have 1 / 930 * (r / \varphi (2 * \gamma + 1)) = 1 / (930 * (\varphi (2 * \gamma + 1) / r))
     by (auto simp add: field_simps)
   also have \ldots \leq \sigma - \beta proof –
     have \beta \leq 1 using assms(2) zeta_Re_gt_1_nonzero [of Complex \beta \gamma] by fastforce
     also have 1 < \sigma by (rule 1)
     finally have \beta < \sigma.
     thus ?thesis using 2 by (auto intro: inverse le imp le)
   qed
   finally show ?thesis.
 qed
 show ?thesis proof -
   let ?x = r / \varphi (2 * \gamma + 1)
   have 1 / 29760 * ?x = 1 / 930 * ?x - 1 / 960 * ?x by auto
   also have ... \leq (\sigma - \beta) - (\sigma - 1) using 3 by (subst (2) \sigma_{def}) auto
   also have ... = 1 - \beta by auto
   finally show ?thesis.
 qed
qed
lemma zeta nonzero region:
 assumes zeta (Complex \beta \gamma) = 0
 shows 1 - \beta \ge 1 / 29760 * (r / \varphi (2 * \gamma + 1))
proof (cases 1 + 1 / 960 * (r / \varphi (2 * \gamma + 1)) - r / 2 \le \beta)
 case True
```

```
thus ?thesis using assms by (rule zeta nonzero region')
next
  case False
  let ?x = r / \varphi (2 * \gamma + 1)
  assume 1: \neg 1 + 1 / 960 * ?x - r / 2 \le \beta
  have \theta < r using \theta \_pos' unfolding r\_def by auto
  hence 1 / 930 * ?x \le r / 2
    using \varphi_pos [of 2 * \gamma + 1] by (auto intro!: mult_imp_div_pos_le)
  hence 1 / 29760 * ?x \le r / 2 - 1 / 960 * ?x by auto
  also have \dots \leq 1 - \beta using 1 by auto
  finally show ?thesis.
qed
end
context zeta_bound_param begin
theorem zeta_nonzero_region:
  assumes zeta (Complex \beta \gamma) = 0 and Complex \beta \gamma \neq 1
  shows 1 - \beta \ge 1 / 29760 * (\vartheta (2 * |\gamma| + 1) / \varphi (2 * |\gamma| + 1))
proof (cases |\gamma| \ge 13 / 22)
  case True
  assume 1: 13 / 22 \leq |\gamma|
  have 2: zeta (Complex \beta |\gamma|) = 0
  proof (cases \gamma \geq \theta)
    case True thus ?thesis using assms by auto
  next
    case False thus ?thesis by (auto simp add: complex cnj [symmetric] intro: assms)
  qed
  interpret z: zeta_bound_param_1 \vartheta \varphi \langle |\gamma| \rangle by standard (use 1 in auto)
  show ?thesis by (intro z.zeta_nonzero_region [unfolded z.r_def] 2)
next
  case False
  hence 1: |\gamma| \leq 13 / 22 by auto
  show ?thesis
  proof (cases \theta < \beta, rule ccontr)
    case True thus False using zeta_nonzero_small_imag [of Complex \beta \gamma] assms 1 by auto
  next
    have 0 < \vartheta (2 * |\gamma| + 1) \vartheta (2 * |\gamma| + 1) \le 1 \ 1 \le \varphi (2 * |\gamma| + 1)
      using \vartheta \quad pos' \varphi \quad pos  by auto
    hence 1 / 29760 * (\vartheta (2 * |\gamma| + 1) / \varphi (2 * |\gamma| + 1)) \le 1 by auto
    also case False hence 1 \leq 1 - \beta by auto
    finally show ?thesis.
  qed
qed
end
lemma zeta_bound_param_nonneg:
  fixes \vartheta \varphi :: real \Rightarrow real
  assumes zeta\_bn': \bigwedge z. 1 - \vartheta (Im z) \le Re z \Longrightarrow Im z \ge 1 / 11 \Longrightarrow ||zeta z|| \le exp (\varphi(Im z))
    and \vartheta_pos: \bigwedge t. 0 \le t \Longrightarrow 0 < \vartheta \ t \land \vartheta \ t \le 1 / 2
    and \varphi_pos: \bigwedge t. 0 \le t \Longrightarrow 1 \le \varphi t
    and inv\_\vartheta: \bigwedge t. 0 \le t \Longrightarrow \varphi \ t \ / \ \vartheta \ t \le 1 \ / \ 960 * exp \ (\varphi \ t)
    and mo\vartheta: \bigwedge x \ y. 0 \le x \Longrightarrow x \le y \Longrightarrow \vartheta \ y \le \vartheta \ x
    and mo\varphi: \bigwedge x \ y. \ 0 \le x \Longrightarrow x \le y \Longrightarrow \varphi \ x \le \varphi \ y
  shows zeta\_bound\_param (\lambda t. \vartheta (max \theta t)) (\lambda t. \varphi (max \theta t))
  by standard (insert assms, auto simp add: antimono def mono def)
```

```
interpretation classical zeta bound:
  zeta\_bound\_param \ \lambda t. \ 1 \ / \ 2 \ \lambda t. \ 4 * ln \ (12 + 2 * max \ 0 \ t)
proof -
 define \vartheta :: real \Rightarrow real where \vartheta \equiv \lambda t. 1 / 2
 define \varphi :: real \Rightarrow real where \varphi \equiv \lambda t. 4 * ln (12 + 2 * t)
 have zeta\_bound\_param (\lambda t. \vartheta (max \theta t)) (\lambda t. \varphi (max \theta t))
 proof (rule zeta_bound_param_nonneg)
   fix z assume *: 1 - \vartheta (Im z) \leq Re z Im z \geq 1 / 11
   have ||zeta|| \le 12 + 2 * |Im|z|
     using * unfolding \vartheta_{-}def by (intro zeta_bound_trivial) auto
   also have ... = exp (ln (12 + 2 * Im z)) using *(2) by auto
   also have ... \leq exp \ (\varphi \ (Im \ z)) \ \mathbf{proof} \ -
     have 0 \le ln (12 + 2 * Im z) using *(2) by auto
     thus ?thesis unfolding \varphi def by auto
   qed
   finally show ||zeta|| \le exp (\varphi (Im z)).
   fix t :: real \text{ assume } *: \theta \leq t
   have \varphi t / \vartheta t = 8 * ln (12 + 2 * t) unfolding \varphi_def \vartheta_def by auto
   also have ... \leq 8 * (5 / 2 + t)
   proof -
     have ln(12 + 2 * t) = ln(12 * (1 + t / 6)) by auto
     also have ... = ln 12 + ln (1 + t / 6) by (rule ln\_mult) (use * in auto)
     also have \dots \leq 5 / 2 + t / 6
     proof (rule add mono)
       have (144 :: real) < (271 / 100) ^5
        by (simp add: power_numeral_reduce)
       also have 271 / 100 < exp (1 :: real)
        using e_approx_32 by (simp add: abs_if split: if_split_asm)
       hence (271 / 100) \hat{5} < exp(1 :: real) \hat{5}
        by (rule power_strict_mono) auto
       also have \dots = exp((5 :: nat) * (1 :: real))
        by (rule exp_of_nat_mult [symmetric])
       also have \dots = exp (5 :: real)
        by auto
       finally have exp\ (ln\ (12::real)*(2::nat)) \leq exp\ 5
        by (subst exp of nat2 mult) auto
       thus ln (12 :: real) \le 5 / 2
        by auto
       show ln (1 + t / 6) \le t / 6
        by (intro ln_add_one_self_le_self) (use * in auto)
     finally show ?thesis using * by auto
   also have ... \leq 1 / 960 * exp (\varphi t)
   proof -
     have 8 * (5 / 2 + t) - 1 / 960 * (12 + 2 * t) ^4
        = -(1 / 60 * t ^4 + 2 / 5 * t ^3 + 18 / 5 * t ^2 + 32 / 5 * t + 8 / 5)
       by (simp add: power numeral reduce field simps)
     also have ... \leq \theta using *
       by (subst neg_le_0_iff_le) (auto intro: add_nonneg_nonneg)
     moreover have exp(\varphi t) = (12 + 2 * t)^4
     proof -
       have exp(\varphi t) = (12 + 2 * t) powr(real 4) unfolding \varphi def powr def using * by auto
```

```
also have ... = (12 + 2 * t) ^4 by (rule powr_realpow) (use * in auto)
       finally show ?thesis.
     qed
     ultimately show ?thesis by auto
    qed
    finally show \varphi t / \vartheta t \le 1 / 960 * exp (\varphi t).
  \mathbf{next}
    fix t :: real \text{ assume } *: 0 \leq t
    have (1 :: real) \leq 4 * 1 by auto
    also have \dots \leq 4 * ln 12
    proof -
     have exp (1 :: real) \leq 3 by (rule \ exp\_le)
     also have ... \leq exp (ln \ 12) by auto
     finally have (1 :: real) \leq ln \ 12  using exp le cancel iff by blast
     thus ?thesis by auto
    qed
    also have ... \leq 4 * ln (12 + 2 * t) using * by auto
    finally show 1 \leq \varphi t unfolding \varphi def.
  next
    show \bigwedge t. \theta < \vartheta t \wedge \vartheta t \leq 1 / 2
        \bigwedge x \ y. \ 0 \le x \Longrightarrow x \le y \Longrightarrow \vartheta \ y \le \vartheta \ x
        \bigwedge x \ y. \ 0 \le x \Longrightarrow x \le y \Longrightarrow \varphi \ x \le \varphi \ y
     unfolding \vartheta_{-}def \varphi_{-}def by auto
  qed
  thus zeta_bound_param (\lambda t. 1 / 2) (\lambda t. 4 * ln (12 + 2 * max 0 t))
    unfolding \vartheta def \varphi def by auto
qed
theorem zeta_nonzero_region:
  assumes zeta (Complex \beta \gamma) = 0 and Complex \beta \gamma \neq 1
  shows 1 - \beta \ge C_1 / \ln (|\gamma| + 2)
proof -
  have 1 / 952320 * (1 / ln (|\gamma| + 2))
     \leq 1 / 29760 * (1 / 2 / (4 * ln (12 + 2 * max 0 (2 * |\gamma| + 1)))) (is ?x \leq ?y)
  proof -
    have \ln (14 + 4 * |\gamma|) \le 4 * \ln (|\gamma| + 2) by (rule \ln bound_1) auto
    hence 1 / 238080 / (4 * ln (|\gamma| + 2)) \le 1 / 238080 / (ln (14 + 4 * |\gamma|))
     by (intro divide left mono) auto
    also have \dots = ?y by auto
    finally show ?thesis by auto
  qed
  also have ... \leq 1 - \beta by (intro classical_zeta_bound.zeta_nonzero_region assms)
  finally show ?thesis unfolding PNT const C_1 def by auto
qed
\mathbf{unbundle}\ no\_pnt\_notation
end
theory PNT_Subsummable
imports
  PNT Remainder Library
begin
unbundle pnt notation
definition has_subsum where has_subsum f S x \equiv (\lambda n. \ if \ n \in S \ then \ f \ n \ else \ 0) \ sums \ x
definition subsum where subsum f S \equiv \sum n if n \in S then f n else 0
```

```
definition subsummable (infix subsummable 50)
 where f subsummable S \equiv summable (\lambda n. if n \in S then f n else 0)
syntax \_subsum :: pttrn \Rightarrow nat set \Rightarrow 'a \Rightarrow 'a
 ((2\sum` \in (\_)./\_) [0, 0, 10] 10)
translations
 \sum ' x \in S. t = CONST subsum (\lambda x. t) S
syntax subsum prop :: pttrn \Rightarrow bool \Rightarrow 'a \Rightarrow 'a
 ((2\sum'_{-}|(_{-})./_{-})[0, 0, 10]10)
translations
 \sum 'x|P.\ t => CONST\ subsum\ (\lambda x.\ t)\ \{x.\ P\}
syntax \_subsum\_ge :: pttrn \Rightarrow nat \Rightarrow 'a \Rightarrow 'a
 ((2\sum '\_ \ge \_./\_) [0, 0, 10] 10)
translations
 \sum 'x \ge n. \ t = > CONST \ subsum \ (\lambda x. \ t) \ \{n..\}
lemma has_subsum_finite:
 finite F \Longrightarrow has subsum f F (sum f F)
 unfolding has_subsum_def by (rule sums_If_finite_set)
lemma has subsum If finite set:
 assumes finite F
 shows has_subsum (\lambda n. if n \in F then f n else 0) A (sum f <math>(F \cap A))
proof -
 have F \cap A = \{x. \ x \in A \land x \in F\} by auto
 thus ?thesis unfolding has_subsum_def using assms
   by (auto simp add: if_if_eq_conj intro!: sums_If_finite)
qed
lemma has_subsum_If_finite:
 assumes finite \{n \in A. p n\}
 shows has subsum (\lambda n. if p n then f n else 0) A (sum f <math>\{n \in A. p n\})
unfolding has_subsum_def using assms
 by (auto simp add: if_if_eq_conj intro!: sums_If_finite)
lemma has subsum univ:
 f sums v \Longrightarrow has subsum f UNIV v
 unfolding has_subsum_def by auto
lemma subsumI:
 fixes f :: nat \Rightarrow 'a :: \{t2\_space, comm\_monoid\_add\}
 shows has subsum f A x \Longrightarrow x = subsum f A
 unfolding has_subsum_def subsum_def by (intro sums_unique)
lemma has_subsum_summable:
 has subsum f A x \Longrightarrow f subsummable A
 unfolding has_subsum_def subsummable_def by (rule sums_summable)
lemma subsummable sums:
 fixes f :: nat \Rightarrow 'a :: \{comm\_monoid\_add, t2\_space\}
 shows f subsummable S \Longrightarrow has\_subsum f S (subsum f S)
 unfolding subsummable_def has_subsum_def subsum_def by (intro summable_sums)
```

```
lemma has subsum diff finite:
 fixes S :: 'a :: \{topological \ ab \ group \ add, t2 \ space\}
 assumes finite F has_subsum f A S F \subseteq A
 shows has\_subsum f (A - F) (S - sum f F)
proof -
 define p where p n \equiv if n \in F then 0 else (if n \in A then f n else 0) for n
 define q where q n \equiv if n \in A - F then f n else 0 for n
 have F \cap A = F using assms(3) by auto
 hence p \ sums \ (S - sum \ f \ F)
   using assms unfolding p def has subsum def
   by (auto intro: sums\_If\_finite\_set' [where ?S = S]
          simp: sum_negf sum.inter_restrict [symmetric])
 moreover have p = q unfolding p\_def q\_def by auto
 finally show ?thesis unfolding q def has subsum def by auto
qed
lemma subsum_split:
 fixes f :: nat \Rightarrow 'a :: \{topological\_ab\_group\_add, t2\_space\}
 assumes f subsummable A finite F F \subseteq A
 shows subsum f A = sum f F + subsum f (A - F)
proof -
 from assms(1) have has_subsum f A (subsum f A) by (intro subsummable_sums)
 hence has subsum f(A - F) (subsum fA - sum fF)
   using assms by (intro has_subsum_diff_finite)
 hence subsum f A - sum f F = subsum f (A - F) by (rule \ subsum I)
 thus ?thesis by (auto simp add: algebra simps)
qed
lemma has\_subsum\_zero [simp]: has\_subsum (\lambda n. 0) A 0 unfolding has\_subsum\_def by auto
lemma zero_subsummable [simp]: (\lambda n. \ 0) subsummable A unfolding subsummable_def by auto
lemma zero_subsum [simp]: (\sum `n \in A. \ 0 :: 'a :: \{comm\_monoid\_add, \ t2\_space\}) = 0 unfolding sub-
sum_def by auto
lemma has subsum minus:
 fixes f :: nat \Rightarrow 'a :: real\_normed\_vector
 assumes has_subsum f A a has_subsum g A b
 shows has\_subsum (\lambda n. f n - g n) A (a - b)
 define p where p \ n = (if \ n \in A \ then \ f \ n \ else \ 0) for n
 define q where q n = (if n \in A then g n else 0) for n
 have (\lambda n. p n - q n) sums (a - b)
   using assms unfolding p_def q_def has_subsum_def by (intro sums_diff)
 moreover have (if n \in A then f(n - q) n else \theta) = p(n - q) n for n
   unfolding p_def q_def by auto
 ultimately show ?thesis unfolding has_subsum_def by auto
qed
lemma subsum_minus:
 assumes f subsummable A g subsummable A
 shows subsum fA - subsum gA = (\sum 'n \in A. fn - gn :: 'a :: real\_normed\_vector)
 by (intro subsumI has subsum minus subsummable sums assms)
lemma subsummable_minus:
 assumes f subsummable A g subsummable A
 shows (\lambda n. f n - q n :: 'a :: real normed vector) subsummable A
```

```
by (auto intro: has subsum summable has subsum minus subsummable sums assms)
lemma has subsum uminus:
 assumes has\_subsum f A a
 shows has\_subsum (\lambda n. - f n :: 'a :: real\_normed\_vector) <math>A (-a)
proof -
 have has\_subsum (\lambda n. \theta - f n) A (\theta - a)
   by (intro has_subsum_minus) (use assms in auto)
 thus ?thesis by auto
qed
lemma subsum_uminus:
 f \text{ subsummable } A \Longrightarrow - \text{ subsum } f A = (\sum `n \in A. - f n :: 'a :: real\_normed\_vector)
 by (intro subsumI has subsum uminus subsummable sums)
lemma subsummable_uminus:
 f subsummable A \Longrightarrow (\lambda n. - f n :: 'a :: real\_normed\_vector) subsummable A
 by (auto intro: has_subsum_summable has_subsum_uminus subsummable_sums)
lemma has subsum add:
 fixes f :: nat \Rightarrow 'a :: real\_normed\_vector
 assumes has_subsum f A a has_subsum g A b
 shows has_subsum (\lambda n. f n + g n) A (a + b)
proof -
 have has\_subsum (\lambda n. f n - - g n) A (a - - b)
   by (intro has subsum minus has subsum uminus assms)
 thus ?thesis by auto
qed
lemma subsum add:
 assumes f subsummable A g subsummable A
 shows subsum\ f\ A\ +\ subsum\ g\ A\ =\ (\sum `n\in A.\ f\ n\ +\ g\ n\ ::\ 'a\ ::\ real\_normed\_vector)
 by (intro subsumI has_subsum_add subsummable_sums assms)
lemma subsummable_add:
 assumes f subsummable A g subsummable A
 shows (\lambda n. f n + g n :: 'a :: real\_normed\_vector) subsummable A
 by (auto intro: has subsum summable has subsum add subsummable sums assms)
lemma subsum conq:
 (\bigwedge x. \ x \in A \Longrightarrow f \ x = g \ x) \Longrightarrow subsum f \ A = subsum g \ A
 unfolding subsum_def by (intro suminf_cong) auto
lemma subsummable conq:
 fixes f :: nat \Rightarrow 'a :: real\_normed\_vector
 shows (\bigwedge x. \ x \in A \Longrightarrow f \ x = g \ x) \Longrightarrow (f \ subsummable \ A) = (g \ subsummable \ A)
 unfolding subsummable_def by (intro summable_cong) auto
\mathbf{lemma}\ subsum\_norm\_bound:
 fixes f :: nat \Rightarrow 'a :: banach
 assumes q subsummable A \land n. n \in A \Longrightarrow ||f n|| \leq q n
 shows ||subsum f A|| \le subsum g A
 using assms unfolding subsummable_def subsum_def
 by (intro suminf_norm_bound) auto
```

```
lemma eval fds subsum:
 fixes f :: 'a :: \{nat \ power, banach, real \ normed \ field\} fds
 assumes fds converges f s
 shows has_subsum (\lambda n. fds_nth f n / nat_power n s) \{1..\} (eval_fds f s)
proof -
 let ?f = \lambda n. fds\_nth f n / nat\_power n s
 \mathbf{let} ? v = \mathit{eval\_fds} \ f \ s
 have has\_subsum (\lambda n. ?f n) UNIV ?v
   by (intro has subsum univ fds converges iff [THEN iffD1] assms)
 hence has subsum ?f(UNIV - \{0\})(?v - sum ?f\{0\})
   by (intro has_subsum_diff_finite) auto
 moreover have UNIV - \{\theta :: nat\} = \{1..\} by auto
 ultimately show ?thesis by auto
qed
lemma fds_abs_subsummable:
 fixes f :: 'a :: \{nat\_power, banach, real\_normed\_field\} fds
 assumes fds\_abs\_converges f s
 shows (\lambda n. \|fds\_nth\ f\ n\ /\ nat\_power\ n\ s\|) subsummable \{1..\}
proof -
 have summable (\lambda n. \|fds\_nth\ f\ n\ /\ nat\_power\ n\ s\|)
   by (subst fds_abs_converges_def [symmetric]) (rule assms)
 moreover have ||fds\_nth\ f\ n\ /\ nat\_power\ n\ s|| = 0 when \neg\ 1 \le n for n
 proof -
   have n = \theta using that by auto
   thus ?thesis by auto
 qed
 hence (\lambda n. if 1 \le n then || fds_nth f n / nat_power n s || else 0)
      = (\lambda n. \|fds\_nth \ f \ n \ / \ nat\_power \ n \ s\|) by auto
 ultimately show ?thesis unfolding subsummable def by auto
qed
lemma subsum_mult2:
 fixes f :: nat \Rightarrow 'a :: real normed algebra
 shows f subsummable A \Longrightarrow (\sum x \in A. f \times c) = subsum f A \times c
unfolding subsum_def subsummable_def
 by (subst suminf_mult2) (auto intro: suminf_cong)
lemma subsummable mult2:
 fixes f :: nat \Rightarrow 'a :: real normed algebra
 assumes f subsummable A
 shows (\lambda x. f x * c) subsummable A
 have summable (\lambda n. (if n \in A then f n else 0) * c) (is ?P)
   using assms unfolding subsummable_def by (intro summable_mult2)
 moreover have ?P = ?thesis
   unfolding subsummable_def by (rule summable_cong) auto
 ultimately show ?thesis by auto
qed
lemma subsum_ge_limit:
 lim~(\lambda N.~\sum n=m..N.~f~n)=(\sum \mbox{`}n\geq m.~f~n)
 define g where g n \equiv if n \in \{m..\} then f n else \theta for n
 have (\sum n. g n) = \lim (\lambda N. \sum n < N. g n) by (rule suminf\_eq\_lim)
```

```
also have ... = lim (\lambda N. \sum n < N + 1. g n)
   unfolding lim def using LIMSEQ ignore initial segment LIMSEQ offset
   by (intro The_cong iffI) blast
 also have ... = lim (\lambda N. \sum n = m..N. f n)
 proof -
   have \{x. \ x < N + 1 \land m \le x\} = \{m..N\} for N by auto
   thus ?thesis unfolding g\_def by (subst\ sum.inter\_filter\ [symmetric]) auto
 qed
 finally show ?thesis unfolding subsum def q def by auto
qed
lemma has_subsum_ge_limit:
 fixes f :: nat \Rightarrow 'a :: \{t2\_space, comm\_monoid\_add, topological\_space\}
 assumes ((\lambda N. \sum n = m..N. f n) \longrightarrow l) at_top
 shows has\_subsum f \{m..\} l
proof -
 define g where g n \equiv if n \in \{m..\} then f n else 0 for n
 have ((\lambda N. \sum n < N + 1. g n) \longrightarrow l) at\_top
 proof -
   have \{x. \ x < N + 1 \land m \le x\} = \{m..N\} for N by auto
   with assms show ?thesis
     unfolding g_def by (subst sum.inter_filter [symmetric]) auto
 qed
 hence ((\lambda N. \sum n < N. g n) \longrightarrow l) at_top by (rule LIMSEQ_offset)
 thus ?thesis unfolding has_subsum_def sums_def g_def by auto
qed
lemma eval_fds_complex:
 fixes f :: complex fds
 assumes fds converges f s
 shows has_subsum (\lambda n. fds_nth f n / n nat_powr s) \{1..\} (eval_fds f s)
proof -
 have has\_subsum (\lambda n. fds\_nth f n / nat\_power n s) {1..} (eval\_fds f s)
   by (intro eval fds subsum assms)
 thus ?thesis unfolding nat_power_complex_def.
qed
lemma eval fds complex subsum:
 fixes f :: complex fds
 assumes fds_converges f s
 shows eval\_fds\ f\ s = (\sum `n \ge 1.\ fds\_nth\ f\ n\ /\ n\ nat\_powr\ s)
      (\lambda n. fds\_nth f n / n nat\_powr s) subsummable \{1..\}
proof (qoal cases)
 case 1 show ?case by (intro subsumI eval fds complex assms)
 case 2 show ?case by (intro has_subsum_summable) (rule eval_fds_complex assms)+
qed
lemma has_sum_imp_has_subsum:
 fixes x :: 'a :: \{comm\_monoid\_add, t2\_space\}
 assumes (f has sum x) A
 shows has subsum f A x
proof -
 have (\forall_F \ x \ in \ at\_top. \ sum \ f \ (\{..< x\} \cap A) \in S)
   when open S x \in S for S
 proof -
```

```
have \forall S. open S \longrightarrow x \in S \longrightarrow (\forall_F x in finite subsets at top A. sum <math>f x \in S)
     using assms unfolding has sum def tendsto def.
   hence \forall_F \ x \ in \ finite\_subsets\_at\_top \ A. \ sum \ f \ x \in S \ using \ that \ by \ auto
   then obtain X where hX: finite XX \subseteq A
     and hY: \bigwedge Y. finite Y \Longrightarrow X \subseteq Y \Longrightarrow Y \subseteq A \Longrightarrow sum f Y \in S
     unfolding eventually_finite_subsets_at_top by metis
   define n where n \equiv Max X + 1
   show ?thesis
   proof (subst eventually sequentially, standard, safe)
     fix m assume Hm: n \leq m
     moreover have x \in X \Longrightarrow x < n for x
       unfolding n\_def using Max\_ge [OF hX(1), of x] by auto
     ultimately show sum f (\{..< m\} \cap A) \in S
       using hX(2) by (intro hY, auto) (metis order.strict trans2)
   qed
 qed
 thus ?thesis unfolding has_subsum_def sums_def tendsto_def
   by (simp add: sum.inter_restrict [symmetric])
qed
unbundle no_pnt_notation
end
theory Perron Formula
imports
  PNT\_Remainder\_Library
  PNT Subsummable
begin
unbundle pnt notation
```

5 Perron's formula

This version of Perron's theorem is referenced to: Perron's Formula and the Prime Number Theorem for Automorphic L-Functions, Jianya Liu, Y. Ye

A contour integral estimation lemma that will be used both in proof of Perron's formula and the prime number theorem.

```
lemma perron aux 3':
 fixes f :: complex \Rightarrow complex and a \ b \ B \ T :: real
 assumes Ha: 0 < a and Hb: 0 < b and hT: 0 < T
   and Hf: \Lambda t. \ t \in \{-T..T\} \Longrightarrow ||f(Complex \ b \ t)|| \leq B
   and Hf': (\lambda s. \ f \ s * a \ powr \ s \ / \ s) contour integrable on (linepath (Complex b (-T)) (Complex b (-T))
 shows ||1|/(2*pi*i)*contour_integral (line path (Complex b (-T)) (Complex b T)) (\lambda s. fs*a powr
s / s) \parallel
      \leq B * a powr b * ln (1 + T / b)
proof -
 define path where path \equiv linepath (Complex b (-T)) (Complex b T)
 define t' where t' t \equiv Complex (Re (Complex b (-T))) t for t
 define q where q t \equiv f (Complex \ b \ t) * a \ powr (Complex \ b \ t) / Complex \ b \ t * i \ for \ t
 have ||f(Complex \ b \ \theta)|| \le B \text{ using } hT \text{ by } (auto \ intro: Hf \ [of \ \theta])
 hence hB: 0 \leq B using hT by (smt (verit) norm\_ge\_zero)
 have ((\lambda t. f(t't) * a powr(t't) / (t't) * i)
       has_integral contour_integral path (\lambda s. fs * a powr s / s)) {Im (Complex b (-T))...Im (Complex b (-T))...Im (Complex b)
T)
   unfolding t' def using hT
   by (intro integral linepath same Re, unfold path def)
```

```
(auto intro: has contour integral integral Hf')
hence h int: (q \text{ has integral contour integral path } (\lambda s. fs * a powr s / s)) \{-T...T\}
 unfolding g\_def t'\_def by auto
hence int: g integrable_on \{-T...T\} by (rule has_integral_integrable)
have contour integral path (\lambda s. fs * a powr s / s) = integral \{-T...T\} q
 using h_int by (rule integral_unique [symmetric])
also have \|...\| \le integral \{-T..T\} (\lambda t. 2 * B * a powr b / (b + |t|))
proof (rule integral_norm_bound_integral, goal_cases)
 case 1 from int show ?case.
 case 2 show ?case
   by (intro integrable continuous interval continuous intros)
      (use Hb in auto)
next
 fix t assume *: t \in \{-T..T\}
 have (b + |t|)^2 - 4 * (b^2 + t^2) = -3 * (b - |t|)^2 + -4 * b * |t|
   by (simp add: field_simps power2_eq_square)
 also have ... \leq 0 using Hb by (intro add_nonpos_nonpos) auto
 finally have (b + |t|)^2 - 4 * (b^2 + t^2) \le 0.
 hence b + |t| \le 2 * \|Complex b t\|
   unfolding cmod_def by (auto intro: power2_le_imp_le)
 hence a powr b / \|Complex\ b\ t\| \le a\ powr\ b\ /\ ((b+|t|)\ /\ 2)
   using Hb by (intro divide_left_mono) (auto intro!: mult_pos_pos)
 hence a powr b \mid \|Complex\ b\ t\| * \|f\ (Complex\ b\ t)\| \le a\ powr\ b \mid ((b+|t|)/2) * B
   by (insert Hf [OF *], rule mult_mono) (use Hb in auto)
 thus ||g|t|| \le 2 * B * a powr b / (b + |t|)
   unfolding q def
   by (auto simp add: norm mult norm divide)
      (subst norm_powr_real_powr, insert Ha, auto simp add: mult_ac)
qed
also have ... = 2 * B * a powr b * integral \{-T..T\} (\lambda t. 1 / (b + |t|))
 by (subst divide inverse, subst integral mult right) (simp add: inverse eq divide)
also have ... = 4 * B * a powr b * integral \{0...T\} (\lambda t. 1 / (b + |t|))
proof -
 let ?f = \lambda t. 1 / (b + |t|)
 have integral \{-T..0\} ? f + integral \{0..T\} ? f = integral \{-T..T\} ? f
   by (intro Henstock_Kurzweil_Integration.integral_combine
            integrable continuous interval continuous intros)
      (use Hb \ hT \ in \ auto)
 moreover have integral \{-T...-0\} (\lambda t. ?f(-t)) = integral \{0...T\} ?f
   by (rule Henstock Kurzweil Integration.integral reflect real)
 hence integral \{-T..0\} ? f = integral \{0..T\} ? f by auto
 ultimately show ?thesis by auto
qed
also have \dots = 4 * B * a powr b * ln (1 + T / b)
proof -
 have ((\lambda t. 1 / (b + |t|)) has\_integral (ln (b + T) - ln (b + \theta))) \{\theta...T\}
 proof (rule fundamental_theorem_of_calculus, goal_cases)
   case 1 show ?case using hT by auto
 next
   fix x assume *: x \in \{0...T\}
   have ((\lambda x. \ln (b+x)) \text{ has real derivative } 1 / (b+x) * (0+1)) (at x \text{ within } \{0...T\})
     by (intro\ derivative\_intros) (use\ Hb*in\ auto)
   thus ((\lambda x. \ln (b+x)) \ has\_vector\_derivative 1 / (b+|x|)) \ (at x \ within \{0...T\})
     using * by (subst has_real_derivative_iff_has_vector_derivative [symmetric]) auto
 qed
```

```
moreover have ln(b+T) - ln(b+\theta) = ln(1+T/b)
     using Hb hT by (subst ln div [symmetric]) (auto simp add: field simps)
   ultimately show ?thesis by auto
 qed
 finally have ||1|/(2*pi*i)*contour_integral path (\lambda s. fs*a powrs/s)||
   \leq 1 / (2*pi) * 4 * B * a powr b * ln (1 + T / b)
   by (simp add: norm_divide norm_mult field_simps)
 also have ... \leq 1 * B * a powr b * ln (1 + T / b)
 proof -
   have 1/(2*pi)*4 \leq 1 using pi qt3 by auto
   thus ?thesis by (intro mult_right_mono) (use hT Hb hB in auto)
 finally show ?thesis unfolding path def by auto
qed
locale perron_locale =
 fixes b B H T x :: real  and f :: complex fds
 assumes Hb: 0 < b and hT: b \leq T
   and Hb': abs\_conv\_abscissa\ f < b
   and hH: 2 \le H and hH': b + 1 \le H and Hx: 0 < x
   and hB: (\sum 'n \geq 1. \|fds\_nth f n\| / n \ nat\_powr b) \leq B
begin
definition r where r a \equiv
 if a \neq 1 then min (1 / (2 * T * |ln a|)) (2 + ln (T / b))
 else (2 + ln (T / b))
definition path where path \equiv linepath (Complex b (-T)) (Complex b T)
definition img\_path where img\_path \equiv path\_image path
definition \sigma_a where \sigma_a \equiv abs\_conv\_abscissa f
definition region where region = \{n :: nat. \ x - x \ / \ H \le n \land n \le x + x \ / \ H\}
definition F where F(a :: real) \equiv
  1/(2*pi*i)*contour\_integral\ path\ (\lambda s.\ a\ powr\ s/s)-(if\ 1\leq a\ then\ 1\ else\ 0)
definition F' where F' (n :: nat) \equiv F (x / n)
lemma hT': \theta < T using Hb hT by auto
lemma cond: 0 < b \ b \le T \ 0 < T \ using Hb \ hT \ hT' by auto
lemma perron_integrable:
 assumes (\theta :: real) < a
 shows (\lambda s. \ a \ powr \ s \ / \ s) contour integrable on (linepath (Complex b (-T)) (Complex b (-T))
using cond assms
by (intro contour_integrable_continuous_linepath continuous_intros)
  (auto simp add: closed_segment_def legacy_Complex_simps field_simps)
lemma perron aux 1':
 fixes U :: real
 assumes hU: 0 < U and Ha: 1 < a
 shows ||F a|| \le 1 / pi * a powr b / (T * |ln a|) + a powr - U * T / (pi * U)
proof -
 define f where f \equiv \lambda s :: complex. a powr <math>s / s
 note assms' = cond assms this
 define P_1 where P_1 \equiv linepath (Complex <math>(-U) (-T)) (Complex b (-T))
 define P_2 where P_2 \equiv linepath (Complex b (-T)) (Complex b T)
 define P_3 where P_3 \equiv linepath (Complex b T) (Complex <math>(-U) T)
 define P_4 where P_4 \equiv linepath (Complex (-U) T) (Complex (-U) (-T))
 define P where P \equiv P_1 ++++ P_2 ++++ P_3 ++++ P_4
```

```
define I_1 I_2 I_3 I_4 where
   I_1 \equiv contour\_integral \ P_1 \ f \ and \ I_2 \equiv contour\_integral \ P_2 \ f \ and
   I_3 \equiv contour\_integral \ P_3 \ f \ {\bf and} \ I_4 \equiv contour\_integral \ P_4 \ f
 define rpath where rpath \equiv rectpath (Complex (-U) (-T)) (Complex b T)
note P\_defs = P\_def P_1\_def P_2\_def P_3\_def P_4\_def
note I\_defs = I_1\_def I_2\_def I_3\_def I_4\_def
have 1: \bigwedge A \ B \ x. A \subseteq B \Longrightarrow x \notin A \Longrightarrow A \subseteq B - \{x\} by auto
have path\_image (rectpath (Complex (- U) (- T)) (Complex b T))
         \subseteq cbox \ (Complex \ (-U) \ (-T)) \ (Complex \ b \ T) - \{0\}
   using assms'
   by (intro 1 path_image_rectpath_subset_cbox)
       (auto simp add: path_image_rectpath)
 moreover have 0 \in box (Complex (-U) (-T)) (Complex b T)
   using assms' by (simp add: mem box Basis complex def)
 ultimately have
   ((\lambda s. \ a \ powr \ s \ / \ (s - \theta)) \ has\_contour\_integral
      2 * pi * i * winding\_number rpath 0 * a powr (0 :: complex)) rpath
   winding\_number\ rpath\ 0=1
   unfolding rpath_def
   by (intro Cauchy_integral_formula_convex_simple
                  [where S = cbox (Complex (-U) (-T)) (Complex b T)])
       (auto\ intro!:\ assms'\ holomorphic\_on\_powr\_right\ winding\_number\ \ rectpath
                simp add: mem box Basis complex def)
hence (f has\_contour\_integral \ 2 * pi * i) \ rpath \ unfolding \ f\_def \ using \ Ha \ by \ auto
hence 2: (f has\_contour\_integral 2 * pi * i) P
   unfolding rpath def P defs rectpath def Let def by simp
hence f contour integrable on P by (intro has contour integral integrable) (use 2 in auto)
hence 3: f contour_integrable_on P_1 f contour_integrable_on P_2
             f contour_integrable_on P<sub>3</sub> f contour_integrable_on P<sub>4</sub> unfolding P_defs by auto
from 2 have I_1 + I_2 + I_3 + I_4 = 2 * pi * i unfolding P\_defs\ I\_defs\ by\ (rule\ has\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_integral\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_chain\_c
hence I_2 - 2 * pi * i = -(I_1 + I_3 + I_4) by (simp add: field_simps)
hence ||I_2 - 2 * pi * i|| = ||-(I_1 + I_3 + I_4)|| by auto
also have ... = ||I_1 + I_3 + I_4|| by (rule norm_minus_cancel)
also have ... \leq ||I_1 + I_3|| + ||I_4|| by (rule norm_triangle_ineq)
also have ... \leq ||I_1|| + ||I_3|| + ||I_4|| using norm_triangle_ineq by auto
finally have *: ||I_2 - 2 * pi * i|| \le ||I_1|| + ||I_3|| + ||I_4||.
have I_2\_val: ||I_2|/(2*pi*i) - 1|| \le 1/(2*pi)*(||I_1|| + ||I_3|| + ||I_4||)
proof -
   have I_2 - 2 * pi * i = (I_2 / (2 * pi * i) - 1) * (2 * pi * i) by (auto simp add: field_simps)
   hence ||I_2 - 2 * pi * i|| = ||(I_2 / (2 * pi * i) - 1) * (2 * pi * i)|| by auto
   also have ... = ||I_2|/(2*pi*i) - 1||*(2*pi) by (auto simp add: norm_mult)
   finally have ||I_2|/(2*pi*i) - 1|| = 1/(2*pi)*||I_2 - 2*pi*i|| by auto
   also have ... \leq 1 / (2*pi) * (||I_1|| + ||I_3|| + ||I_4||)
      using * by (subst mult le cancel left pos) auto
   finally show ?thesis.
qed
define Q where Q t \equiv line path (Complex (-U) t) (Complex b t) for t
define g where g t \equiv contour\_integral (Q t) f for t
have Q_1: (f has\_contour\_integral I_1) (Q (-T))
   using 3(1) unfolding P_1_def I_1_def Q_def
   by (rule has contour integral integral)
have Q_2: (f has\_contour\_integral -I_3) (Q T)
   using 3(3) unfolding P_3_def I_3_def Q_def
   by (subst contour_integral_reversepath [symmetric],
         auto intro!: has contour integral integral)
```

```
(subst contour_integrable_reversepath_eq [symmetric], auto)
 have subst_I_{1}I_3: I_1 = g (-T) I_3 = -g T
   using Q_1 Q_2 unfolding g_def by (auto simp add: contour_integral_unique)
 have g\_bound: ||g|t|| \le a powr b / (T * |ln|a|)
   when Ht: |t| = T for t
 proof -
   have (f has_contour_integral g t) (Q t) proof -
     consider t = T \mid t = -T using Ht by fastforce
     hence f contour integrable on Q t using Q_1 Q_2 by (metis has_contour_integral_integrable)
     thus ?thesis unfolding q def by (rule has contour integral integral)
   qed
   hence ((\lambda x. \ a \ powr \ (x + Im \ (Complex \ (-U) \ t) * i) / (x + Im \ (Complex \ (-U) \ t) * i)) \ has\_integral \ (g
t))
        \{Re\ (Complex\ (-U)\ t)\ ..\ Re\ (Complex\ b\ t)\}
     unfolding Q def f def
     by (subst has_contour_integral_linepath_same_Im_iff [symmetric])
       (use hU Hb in auto)
   hence *: ((\lambda x. \ a \ powr \ (x + t * i) \ / \ (x + t * i)) \ has\_integral \ g \ t) \ \{-U..b\} by auto
   hence ||g|t|| = ||integral| \{-U..b\} (\lambda x. \ a \ powr (x + t * i) / (x + t * i))|| by (auto simp add: inte-
gral\_unique)
   also have ... \leq integral \{-U..b\} (\lambda x. \ a \ powr \ x \ / \ T)
   proof (rule integral_norm_bound_integral)
     show (\lambda x. \ a \ powr \ (x + t * i) \ / \ (x + t * i)) \ integrable\_on \ \{-U..b\} \ using * by \ auto
     have (\lambda x. \ a \ powr \ x \ / \ (of\_real \ T)) \ integrable\_on \ \{-U..b\}
      by (intro iffD2 [OF integrable_on_cdivide_iff] powr_integrable) (use hU Ha Hb hT' in auto)
     thus (\lambda x. \ a \ powr \ x \ / \ T) \ integrable \ on \{-U..b\} by auto
   next
     fix x assume x \in \{-U..b\}
     have ||a \ powr \ (x + t * i)|| = Re \ a \ powr \ Re \ (x + t * i) by (rule norm_powr_real_powr) (use Ha in
auto)
     also have \dots = a powr x by auto
     finally have *: ||a \ powr \ (x + t * i)|| = a \ powr \ x.
     have T = |Im(x + t * i)| using Ht by auto
     also have ... < \|x + t * i\| by (rule abs Im le cmod)
     finally have T \leq ||x + t * i||.
     with * show ||a| powr(x + t * i) / (x + t * i)|| \le a powr x / T
      by (subst norm_divide) (rule frac_le, use assms' in auto)
   also have ... = integral \{-U..b\} (\lambda x.\ a\ powr\ x) / T by auto
   also have ... \leq a \ powr \ b \ / \ (T * |ln \ a|)
   proof -
     have integral \{-U..b\} (\lambda x.\ a\ powr\ x) \leq a\ powr\ b\ /\ |ln\ a|
      by (rule powr integral bound qt 1) (use hU Ha Hb in auto)
     thus ?thesis using hT' by (auto simp add: field_simps)
   qed
   finally show ?thesis.
 qed
 have ||I_4|| \le a \ powr - U \ / \ U * ||Complex (-U) (-T) - Complex (-U) T||
 proof -
   have f contour_integrable_on P_4 by (rule 3)
   moreover have 0 \le a \ powr - U \ / \ U \ using \ hU \ by \ auto
   moreover have ||fz|| \le a \ powr - U / U
     when *: z \in closed\_segment (Complex (-U) T) (Complex (-U) (-T))  for z
   proof -
     from * have Re \ z: Re \ z = - \ U
```

```
unfolding closed segment def
      by (auto simp add: legacy Complex simps field simps)
     hence U = |Re\ z| using hU by auto
     also have ... \leq ||z|| by (rule abs_Re_le_cmod)
     finally have zmod: U \leq ||z||.
     have ||fz|| = ||a \ powr \ z|| / ||z|| unfolding f\_def by (rule norm_divide)
     also have \dots \leq a \ powr - U \ / \ U
      by (subst norm_powr_real_powr, use Ha in auto)
         (rule frac le, use hU Re z zmod in auto)
     finally show ?thesis.
   qed
   ultimately show ?thesis unfolding I_4_def P_4_def by (rule contour_integral_bound_linepath)
 also have \dots = a \ powr - U \ / \ U * (2 * T)
 proof -
   have sqrt((2 * T)^2) = |2 * T| by (rule real\_sqrt\_abs)
   thus ?thesis using hT' by (auto simp add: field_simps legacy_Complex_simps)
 qed
 finally have I_4_bound: ||I_4|| \le a \ powr - U \ / \ U * (2 * T).
 have ||I_2|/(2*pi*i)-1|| \le 1/(2*pi)*(||g(-T)||+||-gT||+||I_4||)
   using I_2\_val\ subst\_I_1\_I_3 by auto
 also have ... \leq 1 / (2*pi) * (2*a powr b / (T*|ln a|) + a powr - U / U*(2*T))
 proof -
   have ||g|T|| \leq a \ powr \ b \ / \ (T * |ln|a|)
       ||g(-T)|| \le a \ powr \ b \ / \ (T * |ln \ a|)
     using hT' by (auto intro: g bound)
   hence ||g(-T)|| + ||-gT|| + ||I_4|| \le 2 * a powr b / (T * |ln a|) + a powr - U / U * (2*T)
     using I_4_bound by auto
   thus ?thesis by (auto simp add: field_simps)
 also have ... = 1 / pi * a powr b / (T * |ln a|) + a powr - U * T / (pi * U)
   using hT' by (auto simp add: field_simps)
 finally show ?thesis
   using Ha unfolding I2_def P2_def f_def F_def path_def by auto
qed
lemma perron_aux_1:
 assumes Ha: 1 < a
 shows ||F a|| \le 1 / pi * a powr b / (T * |ln a|) (is \le ?x)
proof -
 let ?y = \lambda U :: real. \ a \ powr - U * T / (pi * U)
 have ((\lambda U :: real. ?x) \longrightarrow ?x) at_top by auto
 moreover have ((\lambda U. ?y U) \longrightarrow 0) at top using Ha by real asymp
 ultimately have ((\lambda U. ?x + ?y \ U) \longrightarrow ?x + \theta) at_top by (rule tendsto_add)
 hence ((\lambda U. ?x + ?y \ U) \longrightarrow ?x) at_top by auto
 moreover have ||F a|| \le ?x + ?y U when hU: 0 < U for U
   by (subst perron_aux_1' [OF hU Ha], standard)
 hence \forall_F \ U \ in \ at\_top. \ ||F \ a|| \leq ?x + ?y \ U
   by (rule eventually_at_top_linorderI')
 ultimately show ?thesis
   by (intro tendsto lowerbound) auto
qed
lemma perron_aux_2':
 fixes U :: real
```

```
assumes hU: 0 < U b < U and Ha: 0 < a \land a < 1
 shows ||Fa|| \le 1 / pi * a powr b / (T * |ln a|) + a powr U * T / <math>(pi * U)
proof -
 define f where f \equiv \lambda s :: complex. a powr <math>s / s
 note assms' = cond assms hU
 define P_1 where P_1 \equiv linepath (Complex b (-T)) (Complex U (-T))
 define P_2 where P_2 \equiv linepath (Complex U (-T)) (Complex U T)
 define P_3 where P_3 \equiv linepath (Complex U T) (Complex b T)
 define P_4 where P_4 \equiv linepath (Complex b T) (Complex b <math>(-T))
 define P where P \equiv P_1 ++++ P_2 ++++ P_3 ++++ P_4
 define I_1 I_2 I_3 I_4 where
   I_1 \equiv contour\_integral \ P_1 \ f \ and \ I_2 \equiv contour\_integral \ P_2 \ f \ and
   I_3 \equiv contour\_integral \ P_3 \ f \ \mathbf{and} \ I_4 \equiv contour\_integral \ P_4 \ f
 define rpath where rpath \equiv rectpath (Complex b (- T)) (Complex U T)
 note P\_defs = P\_def P_1\_def P_2\_def P_3\_def P_4\_def
 note I\_defs = I_1\_def I_2\_def I_3\_def I_4\_def
 have path\_image (rectpath (Complex b (- T)) (Complex U T)) \subseteq cbox (Complex b (- T)) (Complex U
T
   by (intro path image rectpath subset cbox) (use assms' in auto)
 moreover have 0 \notin cbox (Complex \ b \ (-T)) (Complex \ U \ T)
   using Hb unfolding cbox_def by (auto simp add: Basis_complex_def)
 ultimately have ((\lambda s. \ a \ powr \ s \ / \ (s - \theta)) \ has\_contour\_integral \ \theta) \ rpath
   unfolding rpath def
   by (intro Cauchy_theorem_convex_simple
           [where S = cbox (Complex b (-T)) (Complex U T)])
     (auto intro!: holomorphic on powr right holomorphic on divide)
 hence (f has contour integral 0) reath unfolding f def using Ha by auto
 hence 1: (f has_contour_integral 0) P unfolding rpath_def P_defs rectpath_def Let_def by simp
 hence f contour_integrable_on P by (intro has_contour_integral_integrable) (use 1 in auto)
 hence 2: f contour_integrable_on P_1 f contour_integrable_on P_2
         f contour_integrable_on P<sub>3</sub> f contour_integrable_on P<sub>4</sub> unfolding P_defs by auto
 from 1 have I_1 + I_2 + I_3 + I_4 = 0 unfolding P\_defs\ I\_defs\ by\ (rule\ has\_chain\_integral\_chain\_integral_4)
 hence I_4 = -(I_1 + I_2 + I_3) by (metis neg_eq_iff_add_eq_0)
 hence ||I_4|| = ||-(I_1 + I_2 + I_3)|| by auto
 also have ... = ||I_1 + I_2 + I_3|| by (rule norm_minus_cancel)
 also have ... \leq ||I_1 + I_2|| + ||I_3|| by (rule norm_triangle_ineq)
 also have ... \leq ||I_1|| + ||I_2|| + ||I_3|| using norm_triangle_ineq by auto
 finally have ||I_4|| \le ||I_1|| + ||I_2|| + ||I_3||.
 hence I_4\_val: ||I_4|/(2*pi*i)|| \le 1/(2*pi)*(||I_1|| + ||I_2|| + ||I_3||)
   by (auto simp add: norm_divide norm_mult field_simps)
 define Q where Q t \equiv line path (Complex b t) (Complex U t) for t
 define g where g t \equiv contour\_integral (Q t) f for t
 have Q 1: (f has contour integral I_1) (Q (-T))
   using 2(1) unfolding P_1_def I_1_def Q_def
   by (rule has_contour_integral_integral)
 have Q_2: (f has\_contour\_integral - I_3) (Q T)
   using 2(3) unfolding P_3_def I_3_def Q_def
   by (subst contour_integral_reversepath [symmetric],
      auto intro!: has_contour_integral_integral)
     (subst contour_integrable_reversepath_eq [symmetric], auto)
 have subst I_1 I_3: I_1 = q (-T) I_3 = -q T
   using Q_1 Q_2 unfolding g_def by (auto simp add: contour_integral_unique)
 have g\_bound: ||g|t|| \le a powr b / (T * |ln|a|)
   when Ht: |t| = T for t
 proof -
```

```
have (f has\_contour\_integral \ g \ t) \ (Q \ t) proof -
     consider t = T \mid t = -T using Ht by fastforce
     hence f contour_integrable_on Q t using Q_1 Q_2 by (metis\ has\_contour\_integral\_integrable)
     thus ?thesis unfolding g_def by (rule has_contour_integral_integral)
   qed
   hence ((\lambda x. \ a \ powr \ (x + Im \ (Complex \ b \ t) * i) / (x + Im \ (Complex \ b \ t) * i)) \ has\_integral \ (g \ t))
        \{Re\ (Complex\ b\ t)\ ..\ Re\ (Complex\ U\ t)\}
     unfolding Q_def_def
     by (subst has contour integral linepath same Im iff [symmetric])
       (use assms' in auto)
   hence *: ((\lambda x. \ a \ powr \ (x + t * i) / (x + t * i)) \ has\_integral \ g \ t) \ \{b..U\} by auto
  hence ||gt|| = ||integral\{b..U\}(\lambda x. \ a \ powr(x+t*i)/(x+t*i))|| by (auto simp add: integral_unique)
   also have \dots \leq integral \{b..U\} (\lambda x. \ a \ powr \ x \ / \ T)
   proof (rule integral norm bound integral)
     show (\lambda x. \ a \ powr \ (x + t * i) / (x + t * i)) \ integrable\_on \ \{b...U\} using * by auto
     have (\lambda x. \ a \ powr \ x \ / \ (of\_real \ T)) \ integrable\_on \ \{b.. U\}
      by (intro iffD2 [OF integrable_on_cdivide_iff] powr_integrable) (use assms' in auto)
     thus (\lambda x. \ a \ powr \ x \ / \ T) \ integrable\_on \ \{b..U\} by auto
   next
     fix x assume x \in \{b..U\}
     have ||a\ powr\ (x+t*i)|| = Re\ a\ powr\ Re\ (x+t*i) by (rule norm_powr_real_powr) (use Ha in
auto)
     also have \dots = a \ powr \ x \ by \ auto
     finally have 1: ||a powr(x + t * i)|| = a powr x.
     have T = |Im(x + t * i)| using Ht by auto
     also have \dots \le ||x + t * i|| by (rule \ abs\_Im\_le\_cmod)
     finally have 2: T \leq ||x + t * i||.
     from 1 2 show ||a| powr (x + t * i) / (x + t * i)|| \le a powr x / T
      by (subst norm_divide) (rule frac_le, use hT' in auto)
   also have ... = integral \{b..U\} (\lambda x.\ a\ powr\ x) / T by auto
   also have ... \leq a \ powr \ b \ / \ (T * |ln \ a|)
   proof -
    have integral \{b..U\} (\lambda x.\ a\ powr\ x) \leq a\ powr\ b\ /\ |ln\ a|
      by (rule powr_integral_bound_lt_1) (use assms' in auto)
     thus ?thesis using hT' by (auto simp add: field_simps)
   qed
   finally show ?thesis.
 qed
 have ||I_2|| \le a \ powr \ U \ / \ U * ||Complex \ U \ T - Complex \ U \ (-T)||
 proof -
   have f contour_integrable_on P_2 by (rule 2)
   moreover have 0 \le a \ powr \ U \ / \ U \ using \ hU \ by \ auto
   moreover have ||fz|| \le a \ powr \ U \ / \ U
     when *: z \in closed\_segment (Complex U (-T)) (Complex U T) for z
   proof -
     from * have Re\_z: Re\ z = U
      {\bf unfolding} \ {\it closed\_segment\_def}
      by (auto simp add: legacy_Complex_simps field_simps)
     hence U = |Re\ z| using hU by auto
     also have ... \leq ||z|| by (rule abs Re le cmod)
     finally have zmod: U \leq ||z||.
     have ||fz|| = ||a \ powr \ z|| / ||z|| unfolding f\_def by (rule norm_divide)
     also have \dots \leq a \ powr \ U \ / \ U
      by (subst norm powr real powr, use Ha in auto)
```

```
(rule frac le, use hU Re z zmod in auto)
        finally show ?thesis.
     qed
     ultimately show ?thesis unfolding I_2_def P_2_def by (rule contour_integral_bound_linepath)
   qed
  also have ... \leq a \ powr \ U \ / \ U * (2 * T)
  proof -
     have sqrt ((2 * T)^2) = |2 * T| by (rule \ real\_sqrt\_abs)
     thus ?thesis using hT' by (simp add: field simps legacy Complex simps)
  finally have I_2\_bound: ||I_2|| \le a \ powr \ U \ / \ U * (2 * T).
  have ||I_4|/(2*pi*i)|| \le 1/(2*pi)*(||g(-T)|| + ||I_2|| + ||-gT||)
     using I_4_val subst_I_1_I_3 by auto
  also have ... \leq 1 / (2*pi) * (2*a powr b / (T*|ln a|) + a powr U / U*(2*T))
  proof -
     have ||g|T|| \leq a \ powr \ b \ / \ (T * |ln|a|)
            ||g(-T)|| \le a \ powr \ b \ / \ (T * |ln \ a|)
        using hT' by (auto intro: g\_bound)
     hence ||g(-T)|| + ||-gT|| + ||I_2|| \le 2 * a powr b / (T * |ln a|) + a powr U / U * (2*T)
        using I_2_bound by auto
     thus ?thesis by (auto simp add: field_simps)
  qed
  also have ... = 1 / pi * a powr b / (T * |ln a|) + a powr U * T / (pi * U)
     using hT' by (auto simp add: field_simps)
  finally have ||1|/(2*pi*i)*contour\_integral (reverse path P_4) f||
     \leq 1 / pi * a powr b / (T * |ln a|) + a powr U * T / (pi * U)
     unfolding I_4 def P_4 def by (subst contour integral reversepath) auto
  thus ?thesis using Ha unfolding I<sub>4</sub>_def P<sub>4</sub>_def f_def F_def path_def by auto
qed
lemma perron aux 2:
  assumes Ha: 0 < a \land a < 1
  shows ||F a|| \le 1 / pi * a powr b / (T * |ln a|) (is \underline{\phantom{a}} \le ?x)
proof -
  let ?y = \lambda U :: real. \ a \ powr \ U * T / (pi * U)
  have ((\lambda U :: real. ?x) \longrightarrow ?x) at_top by auto
  moreover have ((\lambda U. ?y U) \longrightarrow 0) at_top using Ha by real_asymp
  ultimately have ((\lambda U. ?x + ?y \ U) \longrightarrow ?x + \theta) at top by (rule tends to add)
  hence ((\lambda U. ?x + ?y \ U) \longrightarrow ?x) at top by auto
  moreover have ||F a|| \le ?x + ?y U when hU: 0 < U b < U for U
     by (subst perron_aux_2' [OF hU Ha], standard)
  hence \forall_F \ U \ in \ at\_top. \ ||F \ a|| \leq ?x + ?y \ U
     by (rule eventually at top linorderI') (use Hb in auto)
  ultimately show ?thesis
     by (intro tendsto_lowerbound) auto
qed
lemma perron aux 3:
  assumes Ha: 0 < a
  shows ||1|/(2*pi*i)*contour_integral path (\lambda s. a powr s / s)|| \leq a powr b * ln (1 + T / b)
proof -
  have ||1|/(2*pi*i)*contour integral (linepath (Complex b (-T)) (Complex b (-T)) ((-T)) ((-T)
/ s) \parallel
          \leq 1 * a powr b * ln (1 + T / b)
     by (rule perron aux 3') (auto intro: Ha cond perron integrable)
```

```
qed
lemma perron_aux':
 assumes Ha: 0 < a
 shows ||F a|| \le a \ powr \ b * r a
proof -
 note assms' = assms \ cond
 define P where P \equiv 1 / (2 * pi * i) * contour integral path (\lambda s. a powr s / s)
 have lm_1: 1 + ln (1 + T / b) \le 2 + ln (T / b)
 proof -
   have 1 \leq T / b using hT Hb by auto
   hence 1 + T / b \le 2 * (T / b) by auto
   hence \ln (1 + T / b) \le \ln 2 + \ln (T / b) by (subst \ln \text{ mult [symmetric]}) auto
   thus ?thesis using ln 2 less 1 by auto
 qed
 have *: ||F a|| \le a \ powr \ b * (2 + ln \ (T / b))
 proof (cases 1 \le a)
   assume Ha': 1 < a
   have ||P - 1|| \le ||P|| + 1 by (simp add: norm_triangle_le_diff)
   also have \dots \leq a \ powr \ b * ln \ (1 + T / b) + 1
   proof -
     have ||P|| \le a \ powr \ b * ln \ (1 + T / b)
      unfolding P_def by (intro perron_aux_3 assms')
     thus ?thesis by auto
   qed
   also have \dots \leq a \ powr \ b * (2 + ln \ (T / b))
   proof -
     have 1 = a powr \theta using Ha' by auto
     also have a powr 0 \le a powr b using Ha'Hb by (intro\ powr\_mono) auto
     finally have a powr b * ln (1 + T / b) + 1 \le a powr b * (1 + ln (1 + T / b))
      by (auto simp add: algebra_simps)
     also have ... \leq a \ powr \ b * (2 + ln \ (T / b)) \ using \ Ha' \ lm_1 \ by \ auto
     finally show ?thesis.
   qed
   finally show ?thesis using Ha' unfolding F\_def\ P\_def by auto
 next
   assume Ha': \neg 1 \leq a
   hence ||P|| \le a \ powr \ b * ln \ (1 + T / b)
     unfolding P_def by (intro perron_aux_3 assms')
   also have ... \leq a \ powr \ b * (2 + ln \ (T / b))
     by (rule mult_left_mono) (use lm_1 in auto)
   finally show ?thesis using Ha' unfolding F def P def by auto
 qed
 consider 0 < a \land a \neq 1 \mid a = 1 using Ha by linarith
 thus ?thesis proof cases
   define c where c = 1 / 2 * a powr b / (T * |ln a|)
   assume Ha': 0 < a \land a \neq 1
   hence (0 < a \land a < 1) \lor a > 1 by auto
   hence ||F a|| \le 1 / pi * a powr b / (T * |ln a|)
     using perron aux 1 perron aux 2 by auto
   also have \dots \leq c unfolding c def
     using Ha'hT'pi\_gt3 by (auto simp\ add: field\_simps)
   finally have ||F a|| \le c.
   hence ||F|a|| \le min \ c \ (a \ powr \ b * (2 + ln \ (T / b))) using * by auto
```

thus ?thesis unfolding path def by auto

```
also have \dots = a \ powr \ b * r \ a
    unfolding r def c def using Ha' by auto (subst min mult distrib left, auto)
   finally show ?thesis using Ha' unfolding P_def by auto
 \mathbf{next}
   assume Ha': a = 1
   with * show ?thesis unfolding r def by auto
 qed
qed
lemma r bound:
 assumes Hn: 1 \leq n
 shows r(x / n) \le H / T + (if n \in region then 2 + ln(T / b) else 0)
proof (cases n \in region)
 assume *: n \notin region
 then consider n < x - x / H \mid x + x / H < n unfolding region_def by auto
 hence 1 / |ln(x/n)| \le 2 * H
 proof cases
   have hH': 1 / (1 - 1 / H) > 1 using hH by auto
   case 1 hence x / n > x / (x - x / H)
    using Hx hH Hn by (intro divide_strict_left_mono) auto
   also have x / (x - x / H) = 1 / (1 - 1 / H)
    using Hx hH by (auto simp add: field_simps)
   finally have xn: x / n > 1 / (1 - 1 / H).
   moreover have xn': x / n > 1 using xn hH' by linarith
   ultimately have |ln(x/n)| > ln(1/(1-1/H))
    using hH Hx Hn by auto
   hence 1 / |ln(x/n)| < 1 / ln(1/(1-1/H))
    using xn' hH' by (intro divide_strict_left_mono mult_pos_pos ln_gt_zero) auto
   also have \dots \leq H proof –
    have ln (1 - 1 / H) \le - (1 / H)
      using hH by (intro ln_one_minus_pos_upper_bound) auto
    hence -1 / ln (1 - 1 / H) \le -1 / (- (1 / H))
      using hH by (intro divide_left_mono_neg) (auto intro: divide_neg_pos)
    also have \dots = H by auto
    finally show ?thesis
      by (subst (2) inverse_eq_divide [symmetric])
        (subst ln inverse, use hH in auto)
   qed
   finally show ?thesis using hH by auto
 next
   case 2 hence x / n < x / (x + x / H)
    using Hx hH Hn by (auto intro!: divide_strict_left_mono mult_pos_pos add_pos_pos)
   also have ... = 1 / (1 + 1 / H)
   proof -
    have 0 < x + x * H using Hx \ hH by (auto intro: add_pos_pos)
    thus ?thesis using Hx hH by (auto simp add: field_simps)
   qed
   finally have xn: x / n < 1 / (1 + 1 / H).
   also have hH': \ldots < 1 using hH by (auto simp add: field_simps)
   finally have xn': 0 < x / n \wedge x / n < 1 using Hx Hn by auto
   have 1 / |ln(x/n)| = -1 / ln(x/n)
    using xn' by (auto simp add: field_simps)
   also have ... \leq 2 * H proof -
    have ln(x / n) < ln(1 / (1 + 1 / H))
      using xn \ xn' by (subst ln less cancel iff) (blast, linarith)
```

```
also have \dots = - \ln (1 + 1 / H)
      by (subst (1) inverse eq divide [symmetric])
        (subst ln_inverse, intro add_pos_pos, use hH in auto)
    also have \dots \leq -1 / (2 * H)
    proof -
      have 1 / H - (1 / H)^2 \le ln (1 + 1 / H)
       by (rule ln_one_plus_pos_lower_bound) (use hH in auto)
      hence - \ln (1 + 1 / H) \le - 1 / H + (1 / H)^2 by auto
      also have ... < -1 / (2 * H)
       using hH unfolding power2 eq square by (auto simp add: field simps)
      finally show ?thesis.
    qed
    finally have -1 / ln (x / n) \le -1 / (-1 / (2 * H))
      by (intro divide left mono neg) (insert xn' hH, auto simp add: field simps)
    thus ?thesis by auto
   qed
   finally show ?thesis.
 qed
 hence (1 / |ln(x/n)|) / (2 * T) \le (2 * H) / (2 * T)
   using hT' by (intro divide_right_mono) auto
 hence 1 / (2 * T * |ln (x / n)|) \le H / T
   by (simp add: field_simps)
 moreover have x / n \neq 1 using * hH unfolding region def by auto
 ultimately show ?thesis unfolding r_def using * by auto
next
 assume *: n \in region
 moreover have 2 + ln (T / b) \leq H / T + (2 + ln (T / b))
   using hH hT' by auto
 ultimately show ?thesis unfolding r\_def by auto
qed
lemma perron_aux:
 assumes Hn: 0 < n
 shows ||F'|n|| < 1 / n nat powr b * (x powr b * H / T)
   + (if \ n \in region \ then \ 3 * (2 + ln \ (T / b)) \ else \ 0) \ (is \ ?P \le ?Q)
proof -
 have ||F(x / n)|| \le (x / n) \ powr \ b * r \ (x / n)
   by (rule perron aux') (use Hx Hn in auto)
 also have ... \leq (x / n) powr b * (H / T + (if n \in region then 2 + ln (T / b) else 0))
   by (intro mult_left_mono r_bound) (use Hn in auto)
 also have \dots \leq ?Q
 proof -
   have *: (x / n) powr b * (H / T) = 1 / n nat powr b * (x powr b * H / T)
    using Hx Hn by (subst powr_divide) (auto simp add: field_simps)
   moreover have (x / n) powr b * (H / T + (2 + ln (T / b)))
    \leq 1 / n \ nat\_powr \ b * (x \ powr \ b * H / T) + 3 * (2 + ln \ (T / b))
    when Hn': n \in region
   proof -
    have (x / n) powr b \leq 3
    proof -
      have x - x / H \le n using Hn' unfolding region def by auto
      moreover have x / H < x / 1 using hH Hx by (intro divide_strict_left_mono) auto
      ultimately have x / n \le x / (x - x / H)
       using Hx hH Hn by (intro divide_left_mono mult_pos_pos) auto
      also have ... = 1 + 1 / (H - 1)
```

```
using Hx hH by (auto simp add: field simps)
      finally have (x / n) powr b \le (1 + 1 / (H - 1)) powr b
        using Hx Hn Hb by (intro powr_mono2) auto
      also have \dots \leq exp(b/(H-1))
      proof -
       have ln (1 + 1 / (H - 1)) \le 1 / (H - 1)
         using hH by (intro ln_add_one_self_le_self) auto
       hence b * ln (1 + 1 / (H - 1)) \le b * (1 / (H - 1))
         using Hb by (intro mult left mono) auto
        thus ?thesis unfolding powr def by auto
      qed
      also have ... \leq exp \ 1 using Hb \ hH' by auto
      also have \dots \leq 3 by (rule \ exp\_le)
      finally show ?thesis.
    qed
    moreover have 0 \leq \ln (T / b) using hT Hb by (auto intro!: \ln ge\_zero)
    ultimately show ?thesis using hT
      by (subst ring_distribs, subst *, subst add_le_cancel_left)
        (intro mult_right_mono, auto intro!: add_nonneg_nonneg)
   qed
   ultimately show ?thesis by auto
 finally show ? thesis unfolding F' def.
qed
definition a where a n \equiv fds nth f n
lemma finite_region: finite region
 unfolding region_def by (subst nat_le_real_iff) auto
lemma zero_notin_region: 0 \notin region
 unfolding region_def using hH Hx by (auto simp add: field_simps)
lemma path_image_conv:
 assumes s \in img\_path
 shows conv\_abscissa\ f < s \cdot 1
proof -
 from assms have Re \ s = b
   unfolding imq path def path def
   by (auto simp add: closed segment def legacy Complex simps field simps)
 thus ?thesis using Hb' conv_le_abs_conv_abscissa [of f] by auto
qed
lemma converge_on_path:
 assumes s \in imq\_path
 shows fds\_converges f s
 by (intro fds_converges path_image_conv assms)
lemma summable_on_path:
 assumes s \in imq path
 shows (\lambda n. a n / n nat powr s) subsummable {1..}
  unfolding \ a\_def \ by \ (intro \ eval\_fds\_complex\_subsum(2) \ converge\_on\_path \ assms) 
lemma zero_notin_path:
 shows 0 \notin closed segment (Complex b \in T) (Complex b \in T)
```

```
using Hb unfolding img\_path\_def path\_def
 by (auto simp add: closed segment def legacy Complex simps field simps)
lemma perron_bound:
  \|\sum 'n \ge 1. a \ n * F' \ n\| \le x \ powr \ b * H * B / T
   + 3 * (2 + ln (T / b)) * (\sum n \in region. ||a n||)
proof -
 define M where M \equiv 3 * (2 + ln (T / b))
 have sum 1: (\lambda n. \|a \ n \ / \ n \ nat \ powr \ (b :: complex)\|) subsummable \{1..\}
   unfolding a def
   by (fold nat_power_complex_def)
      (fastforce intro: Hb' fds_abs_subsummable fds_abs_converges)
 hence sum_2: (\lambda n. \|a\ n\| * 1 / n\ nat\_powr\ b) subsummable\ \{1..\}
 proof -
   have ||a n / n \text{ nat powr } (b :: complex)|| = ||a n|| * 1 / n \text{ nat powr } b \text{ for } n
     by (auto simp add: norm_divide field_simps norm_powr_real_powr')
   thus ?thesis using sum_1 by auto
 qed
 hence sum\_3: (\lambda n. ||a n|| * 1 / n nat\_powr b * (x powr b * H / T)) subsummable <math>\{1..\}
   by (rule subsummable mult2)
 moreover have sum\_4: (\lambda n. if n \in region then <math>M * || a n || else 0) subsummable \{1..\}
   by (intro has_subsum_summable, rule has_subsum_If_finite)
      (insert finite region, auto)
 moreover have ||a n * F' n||
   \leq \|a \, n\| * 1 / n \, nat\_powr \, b * (x \, powr \, b * H / T)
   + (if \ n \in region \ then \ M * ||a \ n|| \ else \ 0) (is ?x' \le ?x)
   when n \in \{1..\} for n
 proof -
   have ||a \ n * F' \ n|| \le ||a \ n|| *
     (1 / n \ nat\_powr \ b * (x \ powr \ b * H / T) + (if \ n \in region \ then \ M \ else \ 0))
     unfolding M\_def
     by (subst norm mult)
        (intro mult_left_mono perron_aux, use that in auto)
   also have ... = ?x by (simp \ add: field\_simps)
   finally show ?thesis.
 qed
  ultimately have \|\sum n \ge 1. a n * F' n\|
   \leq (\sum n \geq 1. \|a\| + 1 / n \text{ nat\_powr } b * (x \text{ powr } b * H / T)
   + (if \ n \in region \ then \ M * ||a \ n|| \ else \ \theta))
   by (intro subsum_norm_bound subsummable_add)
 also have ... \leq x \ powr \ b * H * B / T + M * (\sum n \in region. ||a \ n||)
 proof -
   have (\sum 'n \ge 1. \ (if \ n \in region \ then \ M * ||a \ n|| \ else \ 0))
       = (\sum n \in region \cap \{1..\}. M * ||a n||)
     by (intro subsumI [symmetric] has_subsum_If_finite_set finite_region)
   also have ... = M * (\sum n \in region. ||a n||)
   proof -
     have region \cap \{1..\} = region
       using zero_notin_region zero_less_iff_neq_zero by (auto intro: Suc_leI)
     thus ?thesis by (subst sum_distrib_left) (use zero_notin_region in auto)
   ged
   also have
     (\sum `n \ge 1. \|a\ n\| * 1\ /\ n\ nat\_powr\ b * (x\ powr\ b * H\ /\ T))
     \leq x \ powr \ b * H * B / T
     by (subst subsum_mult2, rule sum_2, insert hB hH hT', fold a_def)
```

```
(auto simp add: field simps, subst (1) mult.commute, auto intro: mult right mono)
   ultimately show ?thesis
     by (subst subsum_add [symmetric]) ((rule sum_3 sum_4)+, auto)
 finally show ?thesis unfolding M def.
qed
lemma perron:
 (\lambda s. \ eval \ fds \ fs * x \ powr \ s \ / \ s) \ contour \ integrable \ on \ path
  \|sum\ up to\ a\ x-1\ /\ (2*pi*i)*contour\ integral\ path\ (\lambda s.\ eval\ fds\ fs*x\ powr\ s\ /\ s)\|
   \leq x \ powr \ b * H * B \ / \ T + 3 * (2 + ln \ (T \ / \ b)) * (\sum n \in region. ||a \ n||)
proof (goal_cases)
 define g where g s \equiv eval\_fds f s * x powr s / s for s :: complex
 define h where h s n \equiv a n / n nat powr s * (x powr s / s) for s :: complex and n :: nat
 define G where G n \equiv contour\_integral path (<math>\lambda s. (x / n) powr s / s) for n :: nat
 define H where H n \equiv 1 / (2 * pi * i) * G n for n :: nat
 have h_integrable: (\lambda s. \ h \ s \ n) contour_integrable_on path when 0 < n for n
   using Hb Hx unfolding path_def h_def
   by (intro contour_integrable_continuous_linepath continuous_intros)
      (use that zero_notin_path in auto)
 have contour_integral path g = contour_integral path (\lambda s. <math>\sum n \ge 1. h s n)
 proof (rule contour_integral_eq, fold img_path_def)
   fix s assume *: s \in img\_path
   hence g \ s = (\sum 'n \ge 1. \ a \ n \ / \ n \ nat\_powr \ s) * (x \ powr \ s \ / \ s)
     unfolding g\_def a\_def
     by (subst eval_fds_complex_subsum) (auto intro!: converge_on_path)
   also have ... = (\sum 'n \ge 1. a \ n \ / \ n \ nat\_powr \ s * <math>(x \ powr \ s \ / \ s))
     by (intro subsum_mult2 [symmetric] summable) (intro summable_on_path *)
   finally show g s = (\sum n \ge 1. h s n) unfolding h\_def.
 qed
 also have
   sum\_1: (\lambda n. \ contour\_integral \ path \ (\lambda s. \ h \ s \ n)) \ subsummable \ \{1..\}
   and ... = (\sum 'n \ge 1. \ contour\_integral \ path \ (\lambda s. \ h \ s \ n))
  proof (goal_cases)
   have ((\lambda N. contour\_integral path (\lambda s. sum (h s) \{1..N\}))
         \rightarrow contour\_integral\ path\ (\lambda s.\ subsum\ (h\ s)\ \{1..\}))\ at\_top
   proof (rule contour_integral_uniform_limit)
     show valid path path unfolding path def by auto
     show sequentially \neq bot by auto
   next
     \mathbf{fix} \ t :: real
     show ||vector\_derivative\ path\ (at\ t)|| \le sqrt\ (\cancel{4} * T^2)
       unfolding path def by (auto simp add: legacy Complex simps)
   next
     from path_image_conv
     have *: uniformly\_convergent\_on\ img\_path\ (\lambda N\ s.\ \sum n \leq N.\ fds\_nth\ f\ n\ /\ nat\_power\ n\ s)
       by (intro uniformly_convergent_eval_fds) (unfold path_def img_path_def, auto)
     have *: uniformly\_convergent\_on\ img\_path\ (\lambda N\ s.\ \sum n=1..N.\ a\ n\ /\ n\ nat\_powr\ s)
     proof -
       have (\sum n \le N. fds\_nth \ f \ n \ / \ nat\_power \ n \ s) = (\sum n = 1..N. \ a \ n \ / \ n \ nat\_powr \ s) for N \ s
       proof -
         have (\sum n \le N. fds\_nth f n / nat\_power n s) = (\sum n \le N. a n / n nat\_powr s)
           unfolding a_def nat_power_complex_def by auto
         also have \dots = (\sum n \in \{..N\} - \{0\}. \ a \ n \ / \ n \ nat\_powr \ s)
           by (subst sum diff1) auto
```

```
also have ... = (\sum n = 1..N. \ a \ n \ / \ n \ nat\_powr \ s)
          have \{..N\} - \{0\} = \{1..N\} by auto
          thus ?thesis by auto
        qed
        finally show ?thesis by auto
       qed
       thus ?thesis using * by auto
     ged
     hence uniform limit ima path
      (\lambda N s. \sum n = 1..N. a n / n nat\_powr s)
      (\lambda s. \sum \dot{n} \geq 1. \ a \ n \ / \ n \ nat\_powr \ s) \ at\_top
     proof -
       have uniform limit imq path
        (\lambda N s. \sum n = 1..N. a n / n nat\_powr s)
        (\lambda s. \ lim \ (\lambda N. \sum n = 1..N. \ a \ n \ / \ n \ nat\_powr \ s)) \ at\_top
        using * by (subst (asm) uniformly_convergent_uniform_limit_iff)
      moreover have lim(\lambda N. \sum n = 1..N. \ a \ n \ / \ n \ nat\_powr \ s) = (\sum 'n \ge 1. \ a \ n \ / \ n \ nat\_powr \ s) for
S
        by (rule subsum_ge_limit)
       ultimately show ?thesis by auto
     qed
     moreover have bounded ((\lambda s. \ subsum \ (\lambda n. \ a \ n \ / \ n \ nat\_powr \ s) \ \{1..\}) 'img\_path) (is bounded ?A)
     proof -
      have bounded (eval_fds f 'img_path)
        by (intro compact imp bounded compact continuous image continuous on eval fds)
           (use path image conv image path def path def in auto)
       moreover have \dots = ?A
        unfolding a_def by (intro image_cong refl eval_fds_complex_subsum(1) converge_on_path)
       ultimately show ?thesis by auto
     qed
     moreover have 0 \notin closed\_segment (Complex b (-T)) (Complex b T)
       using Hb by (auto simp: closed_segment_def legacy_Complex_simps algebra_simps)
     hence bounded ((\lambda s. \ x \ powr \ s \ / \ s) 'imq path)
       unfolding img_path_def path_def using Hx Hb
       \mathbf{by}\ (intro\ compact\_imp\_bounded\ compact\_continuous\_image\ continuous\_intros)\ auto
     ultimately have uniform_limit img_path
       (\lambda N s. (\sum n = 1..N. a n / n nat\_powr s) * (x powr s / s))
       (\lambda s. (\sum `n \ge 1. \ a \ n \ / \ n \ nat\_powr \ s) * (x \ powr \ s \ / \ s)) \ at\_top (is ?P)
       by (intro uniform_lim_mult uniform_limit_const)
     moreover have ?P = uniform\_limit\ (path\_image\ path)
       (\lambda N \ s. \ sum \ (h \ s) \ \{1..N\}) \ (\lambda s. \ subsum \ (h \ s) \ \{1..\}) \ at\_top \ (is \ ?P = ?Q)
       unfolding h def
       by (fold img_path_def, rule uniform_limit_cong', subst sum_distrib_right [symmetric], rule refl)
         (subst subsum_mult2, intro summable_on_path, auto)
     ultimately show ?Q by blast
   next
     from h integrable
     show \forall_F \ N \ in \ at\_top. \ (\lambda s. \ sum \ (h \ s) \ \{1..N\}) \ contour\_integrable\_on \ path
       unfolding h_def by (intro eventuallyI contour_integrable_sum) auto
   hence *: has\_subsum (\lambda n.\ contour\_integral\ path (\lambda s.\ h\ s\ n)) {1..} (contour\_integral\ path (\lambda s.\ subsum
(h \ s) \ \{1..\}))
     using h_integrable by (subst (asm) contour_integral_sum) (auto intro: has_subsum_ge_limit)
   case 1 from * show ?case unfolding h def by (intro has subsum summable)
```

```
case 2 from * show ?case unfolding h def by (rule subsumI)
 qed
 note this(2) also have
   sum\_2: (\lambda n. \ a \ n * G \ n) \ subsummable \{1..\}
   and \dots = (\sum n \ge 1. \ a \ n * G \ n)
 proof (goal_cases)
   have *: a \ n * G \ n = contour\_integral \ path \ (\lambda s. \ h \ s. n) when Hn: n \in \{1..\} for n :: nat
   proof -
     have (\lambda s. (x / n) powr s / s) contour integrable on path
       unfolding path def by (rule perron integrable) (use Hn Hx hT in auto)
     moreover have contour_integral path (\lambda s.\ h\ s\ n) = contour_integral\ path\ (\lambda s.\ a\ n*((x\ /\ n)\ powr\ s
/s)
     proof (intro contour integral cong refl)
       \mathbf{fix} \ s :: complex
       have (x / n) powr s * n powr s = ((x / n :: complex) * n) powr s
        by (rule powr_times_real [symmetric]) (use Hn Hx in auto)
       also have \dots = x powr s using Hn by auto
       finally have (x / n) powr s = x powr s / n powr s using Hn by (intro\ eq\_divide\_imp) auto
       thus h s n = a n * ((x / n) powr s / s) unfolding h_def by (auto simp add: field_simps)
     qed
     ultimately show ?thesis unfolding G_def by (subst (asm) contour_integral_lmul) auto
   case 1 show ?case by (subst subsummable_cong) (use * sum_1 in auto)
   case 2 show ?case by (intro subsum_cong * [symmetric])
 qed
 note this(2) finally have
   1 / (2 * pi * i) * contour\_integral path g = (\sum 'n \ge 1. \ a \ n * G \ n) * (1 / (2 * pi * i)) by auto
 also have
   sum_3: (\lambda n. \ a \ n * G \ n * (1 \ / \ (2 * pi * i))) \ subsummable \{1..\}
   and ... = (\sum 'n \ge 1. a \ n * G \ n * (1 / (2 * pi * i)))
   by (intro subsummable_mult2 subsum_mult2 [symmetric] sum_2)+
 note this(2) also have
   sum\_4: (\lambda n. \ a \ n * H \ n) \ subsummable \{1..\}
   and ... = (\sum n \ge 1. \ a \ n * H \ n)
   unfolding H_def using sum_3 by auto
 note this(2) also have
   ... -(\sum 'n \ge 1. if n \le x then a n else 0)
= (\sum 'n \ge 1. a n * H n - (if n \le x then a n else 0))
   using sum 4
   by (rule subsum_minus(1), unfold subsummable_def)
      (auto simp add: if_if_eq_conj nat_le_real_iff)
 moreover have (\sum {}^{c}n \geq 1. if n \leq x then a n else 0) = sum\_upto a x
   have (\sum n \le 1 \text{ if } n \le x \text{ then } a \text{ } n \text{ else } 0) = (\sum n :: nat | n \in \{1..\} \land n \le x. \text{ } a \text{ } n)
     by (intro subsum [symmetric] has subsum If finite) (auto simp add: nat_le_real_iff)
   also have ... = sum\_upto \ a \ x
   proof -
     have \{n :: nat. \ n \in \{1..\} \land n \le x\} = \{n. \ 0 < n \land n \le x\} by auto
     thus ?thesis unfolding sum_upto_def by auto
   qed
   finally show ?thesis.
 moreover have (\sum 'n \geq 1. \ a \ n*H \ n - (if \ n \leq x \ then \ a \ n \ else \ \theta)) = (\sum 'n \geq 1. \ a \ n*F' \ n)
   \mathbf{unfolding}\ F\_def\ F'\_def\ G\_def\ H\_def\ \mathbf{by}\ (rule\ subsum\_cong)\ (auto\ simp\ add:\ algebra\_simps)
 ultimately have result: ||sum\_upto\ a\ x-1|/(2*pi*i)*contour\_integral\ path\ g|| = ||\sum n \ge 1. a
```

```
n * F' n \parallel
   by (subst norm minus commute) auto
 case 1 show ?case
 proof -
   have closed_segment (Complex b (-T)) (Complex b T) \subseteq \{s. conv\_abscissa f < ereal <math>(s \cdot 1)\}
     using path_image_conv unfolding img_path_def path_def by auto
   thus ?thesis unfolding path_def
     by (intro contour_integrable_continuous_linepath continuous_intros)
        (use Hx zero notin path in auto)
 qed
 case 2 show ?case using perron bound result unfolding q def by linarith
qed
end
theorem perron formula:
 fixes b B H T x :: real \text{ and } f :: complex fds
 assumes Hb: \theta < b and hT: b \leq T
   and Hb': abs\_conv\_abscissa\ f < b
   and hH: 2 \leq H and hH': b + 1 \leq H and Hx: 2 \leq x
   and hB: (\sum 'n \geq 1. \|fds\_nth f n\| / n \ nat\_powr b) \leq B
  shows (\lambda s. \ eval\_fds \ f \ s * x \ powr \ s \ / \ s) \ contour\_integrable\_on \ (line path \ (Complex \ b \ (-T)) \ (Complex \ b
T))
       ||sum\_upto (fds\_nth f) x - 1 / (2 * pi * i) *
        contour\_integral\ (line path\ (Complex\ b\ (-T))\ (Complex\ b\ T))\ (\lambda s.\ eval\_fds\ f\ s\ *\ x\ powr\ s\ /\ s)||
         \leq x \ powr \ b * H * B / T + 3 * (2 + ln \ (T / b)) * (\sum n \mid x - x / H \leq n \land n \leq x + x / H.
||fds \mid nth \mid f \mid n||
proof (qoal cases)
 interpret z: perron locale using assms unfolding perron locale def by auto
 case 1 show ?case using z.perron(1) unfolding z.path\_def.
 case 2 show ?case using z.perron(2) unfolding z.path_def z.region_def z.a_def.
qed
theorem perron_asymp:
 fixes b x :: real
 assumes b: b > 0 ereal b > abs\_conv\_abscissa f
 assumes x: x \geq 2 \ x \notin \mathbb{N}
 defines L \equiv (\lambda T. linepath (Complex b (-T)) (Complex b T))
          ((\lambda T. contour integral (L T) (\lambda s. eval fds f s * of real x powr s / s))
             \longrightarrow 2 * pi * i * sum upto (\lambda n. fds nth f n) x) at top
proof -
 define R where R = (\lambda H. \{n. x - x \mid H \leq real \ n \wedge real \ n \leq x + x \mid H\})
 have R\_altdef: R H = \{n. dist (of\_nat n) x \le x / H\} for H
   unfolding R def by (intro Collect conq) (auto simp: dist norm)
 obtain H where H: H \geq 2 H \geq b + 1 R H = (if x \in \mathbb{N} then \{nat |x|\} else \{\})
 proof (cases x \in \mathbb{N})
   {f case} True
   then obtain m where [simp]: x = of_nat m by (elim Nats_cases)
   define H where H = Max \{2, b + 1, x / 2\}
   have H: H \ge 2 H \ge b + 1 H \ge x / 2
     unfolding H def by (rule Max.coboundedI; simp)+
   show ?thesis
   proof (rule that[of H])
     have n \notin R H if n \neq m for n :: nat
     proof -
       have x / H \le x / (x / 2)
```

```
by (intro divide_left_mono) (use H x in auto)
     hence x / H < 1 using x by simp
     also have ... \leq |int \ n - int \ m| using \langle n \neq m \rangle by linarith
     also have ... = dist (of_nat n) x
       unfolding \langle x = of \ nat \ m \rangle \ dist \ of \ nat \ by \ simp
     finally show n \notin R H by (simp add: R_altdef)
   qed
   moreover have m \in R H using x by (auto simp: R\_def)
   ultimately show R H = (if x \in \mathbb{N} \ then \{ nat | x | \} \ else \{ \} ) by auto
 qed (use H in auto)
next
 case False
 define d where d = set dist \{x\} N
 have \theta \in (\mathbb{N} :: real \ set) by auto
 hence (N :: real set) \neq {} by blast
 hence d > \theta
   unfolding d_def using False by (subst setdist_gt_0_compact_closed) auto
 define H where H = Max \{2, b + 1, 2 * x / d\}
 have H: H \ge 2 H \ge b + 1 H \ge 2 * x / d
   unfolding H_def by (rule Max.coboundedI; simp)+
 show ?thesis
 proof (rule that [of H])
   have n \notin R H for n :: nat
   proof -
     have x / H \le x / (2 * x / d)
       using H x \langle d > 0 \rangle
       by (intro divide_left_mono) (auto intro!: mult_pos_pos)
     also have \dots < d
       using x \langle d > \theta \rangle by simp
     also have d \leq dist (of_nat n) x
       unfolding d_def by (subst dist_commute, rule setdist_le_dist) auto
     finally show n \notin R H
       by (auto simp: R_altdef)
   qed
   thus R H = (if x \in \mathbb{N} \ then \{nat |x|\} \ else \{\})
     using False by auto
 qed (use H in auto)
qed
define g where g = (\lambda s. \ eval\_fds \ f \ s * of\_real \ x \ powr \ s \ / \ s)
define I where I = (\lambda T. contour\_integral (L T) g)
define c where c = 2 * pi * i
define A where A = sum\_upto (fds\_nth f)
define B where B = subsum (\lambda n. norm (fds_nth f n) / n nat_powr b) {0_+..}
define X where X = (if \ x \in \mathbb{Z} \ then \ \{nat \ |x|\} \ else \ \{\})
have norm\_le: norm (A x - I T / c) \le x powr b * H * B / T if T: T \ge b for T
proof -
 interpret perron locale b B H T x f
   by standard (use b T x H(1,2) in \langle auto \ simp : B \ def \rangle)
 from perron
 have norm (A x - I T / c) \le x powr b * H * B / T
     + 3 * (\sum n \in R \ H. \ norm \ (fds\_nth \ f \ n)) * (2 + ln \ (T \ / b))
   by (simp add: I def A def q def a def local.path def L def c def R def
```

```
region def algebra simps)
   also have (\sum n \in R \ H. \ norm \ (fds\_nth \ f \ n)) = 0
     using x H by auto
   finally show norm (A x - I T / c) \le x powr b * H * B / T
     by simp
 qed
 have eventually (\lambda T. norm (A x - I T / c) \le x powr b * H * B / T) at_top
   using eventually ge_at_top[of b] by eventually elim (use norm_le in auto)
 moreover have ((\lambda T. \ x \ powr \ b * H * B \ / \ T) \longrightarrow 0) \ at \ top
   by real asymp
 ultimately have lim: ((\lambda T. A x - I T / c) \longrightarrow 0) at\_top
   using Lim_null_comparison by fast
 have ((\lambda T. -c * (A x - I T / c) + c * A x) \longrightarrow -c * \theta + c * A x) at\_top
   by (rule tendsto intros lim)+
 also have (\lambda T. -c * (A x - I T / c) + c * A x) = I
   by (simp add: algebra_simps c_def)
 finally show ?thesis
   by (simp add: c_def A_def I_def g_def)
qed
unbundle no_pnt_notation
theory PNT with Remainder
imports
 Relation\_of\_PNTs
 Zeta Zerofree
 Perron Formula
begin
unbundle pnt_notation
      Estimation of the order of \frac{\zeta'(s)}{\zeta'(s)}
```

6

```
notation primes psi (\psi)
lemma zeta div bound':
 assumes 1 + exp(-4 * ln(14 + 4 * t)) \le \sigma
   and 13 / 22 \le t
   and z \in cball (Complex \sigma t) (1 / 2)
 shows ||zeta|| z / zeta (Complex \sigma t)|| \le exp (12 * ln (14 + 4 * t))
proof -
 interpret z: zeta_bound_param_2
   \lambda t. \ 1 \ / \ 2 \ \lambda t. \ 4 * ln \ (12 + 2 * max \ 0 \ t) \ t \ \sigma \ t
   unfolding zeta_bound_param_1_def zeta_bound_param_2_def
            zeta_bound_param_1_axioms_def zeta_bound_param_2_axioms_def
   using assms by (auto intro: classical_zeta_bound.zeta_bound_param_axioms)
 show ?thesis using z.zeta div bound assms(2) assms(3)
   unfolding z.s def z.r def by auto
qed
lemma zeta div bound:
 assumes 1 + exp(-4 * ln(14 + 4 * |t|)) \le \sigma
   and 13 / 22 \leq |t|
   and z \in cball \ (Complex \ \sigma \ t) \ (1 \ / \ 2)
 shows ||zeta|| z / zeta (Complex \sigma t)|| \le exp (12 * ln (14 + 4 * |t|))
proof (cases 0 \le t)
```

```
case True with assms(2) have 13 / 22 \le t by auto
 thus ?thesis using assms by (auto intro: zeta div bound')
next
 case False with assms(2) have Ht: t \le -13 / 22 by auto
 moreover have 1: Complex \sigma (- t) = cnj (Complex \sigma t) by (auto simp add: legacy_Complex_simps)
 ultimately have ||zeta\ (cnj\ z)\ /\ zeta\ (Complex\ \sigma\ (-t))|| \le exp\ (12*ln\ (14+4*(-t)))
   using assms(1) assms(3)
   by (intro zeta_div_bound', auto simp add: dist_complex_def)
      (subst complex cnj diff [symmetric], subst complex mod cnj)
 thus ?thesis using Ht by (subst (asm) 1) (simp add: norm divide)
qed
definition C_2 where C_2 \equiv 319979520 :: real
lemma C_2\_gt\_zero: \theta < C_2 unfolding C_2\_def by auto
lemma logderiv_zeta_order_estimate':
\forall_F \ t \ in \ (abs \ going\_to \ at\_top).
 \forall \sigma. \ 1 - 1 \ / \ 7 * C_1 \ / \ ln \ (|t| + 3) \le \sigma
 \longrightarrow \|logderiv\ zeta\ (Complex\ \sigma\ t)\| \le C_2 * (ln\ (|t|+3))^2
proof -
 define F where F :: real filter \equiv abs going\_to at\_top
 define r where r t \equiv C_1 / ln (|t| + 3) for t :: real
 define s where s \sigma t \equiv Complex (\sigma + 2 / 7 * r t) t for \sigma t
 have r\_nonneg: 0 \le r \ t \ \text{for} \ t \ \text{unfolding} \ PNT\_const\_C_1\_def \ r\_def \ \text{by} \ auto
 have \|logderiv\ zeta\ (Complex\ \sigma\ t)\| \le C_2*(ln\ (|t|+3))^2
   when h: 1 - 1 / 7 * r t \leq \sigma
          exp (-4 * ln (14 + 4 * |t|)) \le 1 / 7 * r t
          8 / 7 * r t \leq |t|
          8 / 7 * r t \leq 1 / 2
          13 / 22 \leq |t| for \sigma t
 proof -
   have \|logderiv\ zeta\ (Complex\ \sigma\ t)\| \le 8*(12*ln\ (14+4*|t|))/(8/7*r\ t)
   proof (rule lemma_3_9_beta1' [where ?s = s \sigma t], goal_cases)
     case 1 show ?case unfolding PNT_const_C1_def r_def by auto
     case 2 show ?case by auto
     have notin\_ball: 1 \notin ball (s \sigma t) (8 / 7 * r t)
     proof -
       note h(3)
      also have |t| = |Im \ (Complex \ (\sigma + 2 \ / \ 7 * r \ t) \ t - 1)| by auto
      also have ... \leq \|Complex(\sigma + 2 / 7 * r t) t - 1\| by (rule abs_Im_le_cmod)
       finally show ?thesis
        unfolding s def by (auto simp add: dist complex def)
     qed
     case 3 show ?case by (intro holomorphic_zeta notin_ball)
     case 6 show ?case
       using r_nonneg unfolding s_def
      by (auto simp add: dist_complex_def legacy_Complex_simps)
     fix z assume Hz: z \in ball (s \sigma t) (8 / 7 * r t)
     show zeta z \neq 0
     proof (rule ccontr)
      assume \neg zeta z \neq 0
       hence zero: zeta (Complex (Re z) (Im z)) = 0 by auto
       have r t \leq C_1 / ln (|Im z| + 2)
       proof -
```

```
have ||s \sigma t - z|| < 1
                using Hz h(4) by (auto simp add: dist complex def)
             hence |t - Im z| < 1
                 using abs\_Im\_le\_cmod [of s \sigma t - z]
                 unfolding s_def by (auto simp add: legacy_Complex_ simps)
             hence |Im z| < |t| + 1 by auto
             thus ?thesis unfolding r\_def
                by (intro divide_left_mono mult_pos_pos)
                      (subst ln le cancel iff, use C_1 qt zero in auto)
          qed
          also have \dots \leq 1 - Re z
             using notin_ball Hz by (intro zeta_nonzero_region zero) auto
          also have ... < 1 - Re(s \sigma t) + 8 / 7 * r t
          proof -
             have Re(s \sigma t - z) \leq |Re(s \sigma t - z)| by auto
             also have ... < 8 / 7 * r t
                using Hz abs\_Re\_le\_cmod [of s \sigma t - z]
                by (auto simp add: dist_complex_def)
             ultimately show ?thesis by auto
          qed
          also have ... = 1 - \sigma + 6 / 7 * r t unfolding s\_def by auto
          also have ... \leq r t using h(1) by auto
          finally show False by auto
      qed
      from Hz have z \in cball (s \sigma t) (1 / 2)
          using h(4) by auto
      thus ||zeta|| z + |zeta|| z + |zeta|| ||zeta|| ||zeta|||zeta|| ||zeta|| ||zeta|||zeta|| ||zeta|| ||zeta|| ||zeta|| ||zeta|| ||zeta|| ||zeta|| ||z
          using h(1) h(2) unfolding s\_def
          by (intro\ zeta\_div\_bound\ h(5)) auto
   qed
   also have ... = 84 / r t * ln (14 + 4 * |t|)
      by (auto simp add: field_simps)
   also have ... \leq 336 / C_1 * ln (|t| + 2) * ln (|t| + 3)
   proof -
      have 84 / r t * ln (14 + 4 * |t|) \le 84 / r t * (4 * ln (|t| + 2))
          using r_nonneg by (intro mult_left_mono mult_right_mono ln_bound_1) auto
      thus ?thesis unfolding r def by (simp add: mult ac)
   also have ... \leq 336 / C_1 * (ln (|t| + 3))^2
      unfolding power2_eq_square
      by (simp add: mult_ac, intro divide_right_mono mult_right_mono)
            (subst\ ln\_le\_cancel\_iff,\ use\ C_1\_gt\_zero\ \mathbf{in}\ auto)
   also have ... = C_2 * (ln (|t| + 3))^2
      unfolding PNT\_const\_C_1\_def\ C_2\_def\ by auto
   finally show ?thesis.
qed
hence
   \forall_F \ t \ in \ F.
          exp (-4 * ln (14 + 4 * |t|)) \le 1 / 7 * r t
   \longrightarrow 8 / 7 * r t \leq |t|
   \longrightarrow 8 / 7 * r t \leq 1 / 2
   \longrightarrow 13 / 22 \leq |t|
   \longrightarrow (\forall \sigma. \ 1 - 1 \ / \ 7 * r \ t \leq \sigma)
       \longrightarrow \|logderiv\ zeta\ (Complex\ \sigma\ t)\| \le C_2*(ln\ (|t|+3))^2)
   by (blast intro: eventuallyI)
```

```
moreover have \forall_F t \text{ in } F. exp (-4 * ln (14 + 4 * |t|)) \leq 1 / 7 * r t
    unfolding F\_def\ r\_def\ PNT\_const\_C_1\_def
    by (rule eventually_going_toI) real_asymp
  moreover have \forall_F \ t \ in \ F. \ 8 \ / \ 7 * r \ t \le |t|
    unfolding F\_def\ r\_def\ PNT\_const\_C_1\_def
    by (rule eventually_going_toI) real_asymp
  moreover have \forall_F t \text{ in } F. \ 8 \ / \ 7 * r \ t \leq 1 \ / \ 2
    unfolding F\_def r\_def PNT\_const\_C_1\_def
    by (rule eventually going toI) real asymp
  moreover have \forall_F \ t \ in \ F. \ 13 \ / \ 22 \le |t|
    unfolding F_def by (rule eventually_going_toI) real_asymp
  ultimately have
    \forall_F \ t \ in \ F. \ (\forall \sigma. \ 1 - 1 \ / \ 7 * r \ t \leq \sigma
      \longrightarrow \|logderiv\ zeta\ (Complex\ \sigma\ t)\| \le C_2*(ln\ (|t|+3))^2)
    by eventually elim blast
  thus ?thesis unfolding F_def r_def by auto
qed
definition C_3 where
C_3 \equiv SOME \ T. \ 0 < T \land
  (\forall t. T \leq |t| \longrightarrow
    (\forall \sigma. \ 1 - 1 \ / \ 7 * C_1 \ / \ ln \ (|t| + 3) \le \sigma
     \longrightarrow \|logderiv\ zeta\ (Complex\ \sigma\ t)\| \le C_2 * (ln\ (|t|+3))^2)
lemma C_3_prop:
  \theta < C_3 \wedge
  (\forall t. \ C_3 \leq |t| \longrightarrow
    (\forall \sigma.\ 1\ -\ 1\ /\ 7\ *\ C_1\ /\ ln\ (|t|\ +\ 3) \le \sigma
    \longrightarrow \|logderiv\ zeta\ (Complex\ \sigma\ t)\| \le C_2 * (ln\ (|t|+3))^2))
proof -
  obtain T' where hT:
  \bigwedge t. \ T' \leq |t| \Longrightarrow
    (\forall \sigma. \ 1 - 1 \ / \ 7 * C_1 \ / \ ln \ (|t| + 3) \le \sigma
     \longrightarrow \|logderiv\ zeta\ (Complex\ \sigma\ t)\| \le C_2 * (ln\ (|t|+3))^2)
    using logderiv_zeta_order_estimate'
      [unfolded going_to_def, THEN rev_iffD1,
      OF eventually_filtercomap_at_top_linorder] by blast
  define T where T \equiv max \ 1 \ T'
  show ?thesis unfolding C_3 def
    by (rule\ someI\ [of\ \_\ T])\ (unfold\ T\_def,\ use\ hT\ in\ auto)
qed
lemma C_3\_gt\_zero: \theta < C_3 using C_3\_prop by blast
lemma logderiv_zeta_order_estimate:
  assumes 1 - 1 / 7 * C_1 / ln (|t| + 3) \le \sigma C_3 \le |t|
  shows ||logderiv\ zeta\ (Complex\ \sigma\ t)|| \le C_2 * (ln\ (|t|+3))^2
  using assms C_3_prop by blast
definition zeta zerofree region
  where zeta_zerofree_region \equiv \{s. \ s \neq 1 \land 1 - C_1 \ / \ ln \ (|Im \ s| + 2) < Re \ s\}
definition logderiv zeta region
  where logderiv\_zeta\_region \equiv \{s. \ C_3 \leq |Im \ s| \land 1 - 1 \ / \ 7 * C_1 \ / \ ln \ (|Im \ s| + 3) \leq Re \ s\}
definition zeta_strip_region
  where zeta strip region \sigma T \equiv \{s. \ s \neq 1 \land \sigma \leq Re \ s \land |Im \ s| \leq T\}
```

```
definition zeta strip region'
 where zeta_strip_region' \sigma T \equiv \{s. \ s \neq 1 \land \sigma \leq Re \ s \land C_3 \leq |Im \ s| \land |Im \ s| \leq T\}
lemma strip_in_zerofree_region:
 assumes 1 - C_1 / ln (T + 2) < \sigma
 shows zeta\_strip\_region \ \sigma \ T \subseteq zeta\_zerofree\_region
proof
 fix s assume Hs: s \in zeta\_strip\_region \sigma T
 hence Hs': s \neq 1 \sigma \leq Re \ s \ |Im \ s| \leq T unfolding zeta strip region def by auto
 from this(3) have C_1 / ln (T + 2) \le C_1 / ln (|Im s| + 2)
   using C_1_gt_zero by (intro divide_left_mono mult_pos_pos) auto
 thus s \in zeta\_zerofree\_region using Hs' assms unfolding zeta\_zerofree\_region\_def by auto
qed
lemma strip_in_logderiv_zeta_region:
 assumes 1-1 / 7*C_1 / ln(T+3) \leq \sigma
 shows zeta\_strip\_region' \sigma \ T \subseteq logderiv\_zeta\_region
proof
 fix s assume Hs: s \in zeta\_strip\_region' \sigma T
 hence Hs': s \neq 1 \ \sigma \leq Re \ s \ C_3 \leq |Im \ s| \ |Im \ s| \leq T \ unfolding \ zeta\_strip\_region'\_def \ by \ auto
 from this(4) have C_1 / (7 * ln (T + 3)) \le C_1 / (7 * ln (|Im s| + 3))
   using C_1_gt_zero by (intro divide_left_mono mult_pos_pos) auto
 thus s \in logderiv\_zeta\_region using Hs' assms unfolding logderiv\_zeta\_region\_def by auto
qed
lemma strip condition imp:
 assumes 0 \le T \ 1 - 1 \ / \ 7 * C_1 \ / \ ln \ (T + 3) \le \sigma
 shows 1 - C_1 / ln (T + 2) < \sigma
proof -
 have ln(T + 2) \le 7 * ln(T + 2) using assms(1) by auto
 also have ... < 7 * ln (T + 3)  using assms(1) by auto
 finally have C_1 / (7 * ln (T + 3)) < C_1 / ln (T + 2)
   using C_1 gt_zero assms(1) by (intro divide_strict_left_mono mult_pos_pos) auto
 thus ?thesis using assms(2) by auto
qed
lemma zeta_zerofree_region:
 assumes s \in zeta zerofree region
 shows zeta s \neq 0
 using zeta_nonzero_region [of Re s Im s] assms
 unfolding zeta_zerofree_region_def by auto
lemma logderiv zeta region estimate:
 assumes s \in logderiv\_zeta\_region
 shows \|logderiv\ zeta\ s\| \le C_2 * (ln\ (|Im\ s| + 3))^2
 using logderiv_zeta_order_estimate [of Im s Re s] assms
 unfolding logderiv_zeta_region_def by auto
definition C_4 :: real where C_4 \equiv 1 / 6666241
lemma C_4_prop:
 \forall_F \ x \ in \ at\_top. \ C_4 \ / \ ln \ x \leq C_1 \ / \ (7 * ln \ (x + 3))
 unfolding PNT\_const\_C_1\_def\ C_4\_def\ by\ real\_asymp
lemma C_4_gt_zero: \theta < C_4 unfolding C_4_def by auto
```

```
definition C_5_prop where
C_5_prop C_5 \equiv
  0 < C_5 \land (\forall_F \ x \ in \ at\_top. \ (\forall t. \ |t| \leq x)
   \longrightarrow \|logderiv\ zeta\ (Complex\ (1-C_4\ /\ ln\ x)\ t)\| \le C_5*(ln\ x)^2))
lemma logderiv_zeta_bound_vertical':
  \exists C_5. C_5\_prop C_5
proof -
 define K where K \equiv cbox (Complex 0 (-C_3)) (Complex 2 C_3)
 define \Gamma where \Gamma \equiv \{s \in K. zeta' \ s = 0\}
 have zeta' not_zero_on K
   unfolding not zero on def K def using C_3 qt zero
   by (intro bexI [where x = 2])
      (auto simp add: zeta_eq_zero_iff_zeta' zeta_2 in_cbox_complex_iff)
 hence fin: finite \Gamma
   unfolding \Gamma_{-}def K_{-}def
   by (auto intro!: convex_connected analytic_compact_finite_zeros zeta'_analytic)
  define \alpha where \alpha \equiv if \Gamma = \{\}\ then \ 0 \ else \ (1 + Max \ (Re \ \Gamma)) \ / \ 2
  define K' where K' \equiv cbox (Complex \alpha (-C<sub>3</sub>)) (Complex 1 C<sub>3</sub>)
 have H\alpha: \alpha \in \{0..<1\}
  proof (cases \Gamma = \{\})
   case True thus ?thesis unfolding \alpha def by auto
 next
   case False hence h\Gamma: \Gamma \neq \{\}.
   moreover have Re \ a < 1 if Ha: a \in \Gamma for a
   proof (rule ccontr)
     assume \neg Re \ a < 1 \ \text{hence} \ 1 \leq Re \ a \ \text{by} \ auto
     hence zeta' a \neq 0 by (subst zeta'_eq_zero_iff) (use zeta_Re_ge_1_nonzero in auto)
     thus False using Ha unfolding \Gamma_{-}def by auto
   qed
   moreover have \exists a \in \Gamma. \theta \leq Re \ a
   proof -
     from h\Gamma have \exists a. a \in \Gamma by auto
     moreover have \bigwedge a. \ a \in \Gamma \Longrightarrow \emptyset \leq Re \ a
       unfolding \Gamma_def K_def by (auto simp add: in_cbox_complex_iff)
     ultimately show ?thesis by auto
   ultimately have 0 \leq Max (Re '\Gamma) Max (Re '\Gamma) < 1
     using fin by (auto simp add: Max qe iff)
   thus ?thesis unfolding \alpha_{-}def using h\Gamma by auto
 qed
 have nonzero: zeta' z \neq 0 when z \in K' for z
 proof (rule ccontr)
   assume \neg zeta'z \neq 0
   moreover have K' \subseteq K unfolding K'\_def K\_def
     by (rule subset_box_imp) (insert H\alpha, simp add: Basis_complex_def)
   ultimately have Hz: z \in \Gamma unfolding \Gamma_def using that by auto
   hence Re \ z \leq Max \ (Re \ '\Gamma) \ using fin by (intro Max\_ge) auto
   also have \dots < \alpha
   proof -
     from Hz have \Gamma \neq \{\} by auto
     thus ?thesis using H\alpha unfolding \alpha\_def by auto
   qed
   finally have Re z < \alpha.
```

```
moreover from \langle z \in K' \rangle have \alpha \leq Re \ z
     unfolding K' def by (simp add: in cbox complex iff)
   ultimately show False by auto
 qed
 hence logderiv zeta' analytic on K' by (intro analytic intros)
 moreover have compact K' unfolding K'_def by auto
 ultimately have bounded ((logderiv zeta') 'K')
   by (intro analytic_imp_holomorphic holomorphic_on_imp_continuous_on
       compact imp bounded compact continuous image)
 from this [THEN rev iffD1, OF bounded pos]
 obtain M where
   hM: \Lambda s. \ s \in K' \Longrightarrow \|logderiv\ zeta'\ s\| \le M \ by \ auto
 have (\lambda t. \ C_2 * (ln \ (t + 3))^2) \in O(\lambda x. \ (ln \ x)^2) using C_2\_gt\_zero by real\_asymp
 then obtain \gamma where
   H\gamma: \forall_F \ x \ in \ at\_top. \ \|C_2 * (ln \ (x+3))^2\| \le \gamma * \|(ln \ x)^2\|
   unfolding bigo_def by auto
 define C_5 where C_5 \equiv max \ 1 \ \gamma
 have C_5\_gt\_zero: \theta < C_5 unfolding C_5\_def by auto
 have \forall_F x \text{ in at\_top. } \gamma * (\ln x)^2 \leq C_5 * (\ln x)^2
   by (intro eventually I mult_right_mono) (unfold C_5_def, auto)
 with H\gamma have hC_5: \forall_F x \text{ in at\_top. } C_2 * (\ln(x+3))^2 \leq C_5 * (\ln x)^2
   by eventually\_elim (use C_2\_gt\_zero in auto)
 have \|logderiv\ zeta\ (Complex\ (1-C_4\ /\ ln\ x)\ t)\| \le C_5*(ln\ x)^2
   when h: C_3 \le |t| |t| \le x \ 1 < x
           C_4 / \ln x \le C_1 / (7 * \ln (x + 3))
           (C_2 * (ln (x + 3))^2 \le C_5 * (ln x)^2  for x t
 proof -
   have Re (Complex (1 - C_4 / \ln x) t) \neq Re 1 using C_4\_gt\_zero h(3) by auto
   hence Complex (1 - C_4 / \ln x) t \neq 1 by metis
   hence Complex (1 - C_4 / \ln x) t \in zeta\_strip\_region' <math>(1 - C_4 / \ln x) x
     unfolding zeta\_strip\_region'\_def using h(1) h(2) by auto
   moreover hence 1-1 / 7*C_1 / ln(x+3) \le 1-C_4 / ln x using h(4) by auto
   ultimately have \|log deriv \ zeta \ (Complex \ (1 - C_4 \ / \ ln \ x) \ t)\| \le C_2 * (ln \ (|Im \ (Complex \ (1 - C_4 \ / \ ln \ x)))\|
|\ln x(t)| + |3(t)|^2
     using strip\_in\_logderiv\_zeta\_region [where ?\sigma = 1 - C_4 / ln \ x and ?T = x]
     by (intro logderiv_zeta_region_estimate) auto
   also have ... \leq C_2 * (ln (x + 3))^2
     by (intro mult left mono, subst power2 le iff abs le)
        (use C_2 qt zero h(2) h(3) in auto)
   also have ... \leq C_5 * (\ln x)^2 by (rule \ h(5))
   finally show ?thesis.
 qed
 hence \forall_F \ x \ in \ at\_top. \ \forall \ t. \ C_3 \leq |t| \longrightarrow |t| \leq x
   \longrightarrow 1 < x \longrightarrow C_4 / \ln x \le C_1 / (7 * \ln (x + 3))
   \longrightarrow C_2 * (ln (x + 3))^2 \le C_5 * (ln x)^2
   \longrightarrow \|logderiv\ zeta\ (Complex\ (1-C_4\ /\ ln\ x)\ t)\| \le C_5*(ln\ x)^2
   by (intro eventuallyI) blast
 moreover have \forall F x in at\_top. (1 :: real) < x by auto
 ultimately have 1: \forall_F \ x \ in \ at\_top. \ \forall t. \ C_3 \leq |t| \longrightarrow |t| \leq x
   \longrightarrow \|logderiv\ zeta\ (Complex\ (1-C_4\ /\ ln\ x)\ t)\| \le C_5*(ln\ x)^2
   using C_4_prop hC_5 by eventually_elim blast
 define f where f x \equiv 1 - C_4 / \ln x for x
 define g where g x t \equiv Complex (f x) t for x t
 let P = \lambda x t. \|logderiv\ zeta\ (g\ x\ t)\| \leq M + ln\ x / C_4
 have \alpha < 1 using H\alpha by auto
```

```
hence \forall_F \ x \ in \ at\_top. \ \alpha \leq f \ x \ unfolding \ f\_def \ using \ C_4\_gt\_zero \ by \ real\_asymp
  moreover have f_lt_1: \forall_F \ x \ in \ at\_top. \ f \ x < 1 \ unfolding \ f_def \ using \ C_4\_gt\_zero \ by \ real\_asymp
  ultimately have \forall F \ x \ in \ at\_top. \ \forall t. \ |t| \leq C_3 \longrightarrow g \ x \ t \in K' - \{1\}
   unfolding g\_def K'\_def by eventually\_elim (auto simp add: in\_cbox\_complex\_iff legacy\_Complex\_simps)
  moreover have \|logderiv\ zeta\ (g\ x\ t)\| \le M+1\ /\ (1-f\ x)
    when h: g \ x \ t \in K' - \{1\} \ f \ x < 1 \ \text{for} \ x \ t
  proof -
    from h(1) have ne_1: g \ x \ t \neq 1 by auto
    hence \|logderiv\ zeta\ (q\ x\ t)\| = \|logderiv\ zeta'\ (q\ x\ t) - 1\ /\ (q\ x\ t-1)\|
      using h(1) nonzero
      by (subst logderiv_zeta_eq_zeta')
         (auto simp add: zeta_eq_zero_iff_zeta' [symmetric])
    also have ... \leq \|logderiv\ zeta'(g\ x\ t)\| + \|1/(g\ x\ t-1)\| by (rule norm_triangle_ineq4)
    also have ... \leq M + 1 / (1 - f x)
    proof -
      have \|logderiv\ zeta'\ (g\ x\ t)\| \le M using that by (auto intro: hM)
      moreover have |Re(g x t - 1)| \le ||g x t - 1|| by (rule\ abs\_Re\_le\_cmod)
      hence ||1|/(g x t - 1)|| \le 1/(1 - f x)
        using ne_1 h(2)
       by (auto simp add: norm_divide g_def
                 intro!: divide_left_mono mult_pos_pos)
      ultimately show ?thesis by auto
    qed
    finally show ?thesis.
  qed
  hence \forall F x \text{ in at top. } \forall t. f x < 1
    \longrightarrow g \ x \ t \in K' - \{1\}
    \longrightarrow \|logderiv\ zeta\ (g\ x\ t)\| \le M+1\ /\ (1-f\ x)\ by\ auto
  ultimately have \forall_F \ x \ in \ at\_top. \ \forall \ t. \ |t| \leq C_3 \longrightarrow \|logderiv \ zeta \ (g \ x \ t)\| \leq M + 1 \ / \ (1 - f \ x)
    using f_lt_1 by eventually_elim blast
  hence \forall F \ x \ in \ at\_top. \ \forall t. \ |t| \leq C_3 \longrightarrow \|logderiv \ zeta \ (g \ x \ t)\| \leq M + ln \ x \ / \ C_4 \ unfolding \ f\_def \ by
  moreover have \forall_F \ x \ in \ at\_top. \ M + ln \ x \ / \ C_4 \le C_5 * (ln \ x)^2 \ using \ C_4\_gt\_zero \ C_5\_gt\_zero \ by
real asymp
   ultimately have 2: \forall_F \ x \ in \ at\_top. \ \forall t. \ |t| \leq C_3 \longrightarrow \|logderiv \ zeta \ (g \ x \ t)\| \leq C_5 * (ln \ x)^2 by
eventually_elim auto
  show ?thesis
  proof (unfold C_5 prop def, intro exI conjI)
    show 0 < C_5 by (rule \ C_5 \_gt\_zero) +
    have \forall_F \ x \ in \ at\_top. \ \forall \ t. \ C_3 \leq |t| \lor |t| \leq C_3
      by (rule eventuallyI) auto
    with 1 2 show \forall_F x in at_top. \forall t. |t| \leq x \longrightarrow \|logderiv\ zeta\ (Complex\ (1 - C_4 / ln\ x)\ t)\| \leq C_5 *
      unfolding f_def g_def by eventually_elim blast
  qed
qed
definition C_5 where C_5 \equiv SOME \ C_5. C_5\_prop \ C_5
lemma
  C_5 qt zero: \theta < C_5 (is ?prop 1) and
  logderiv\_zeta\_bound\_vertical:
    \forall_F \ x \ in \ at\_top. \ \forall t. \ |t| \leq x
      \longrightarrow \|logderiv\ zeta\ (Complex\ (1-C_4\ /\ ln\ x)\ t)\| \le C_5*(ln\ x)^2\ (is\ ?prop\_2)
proof -
```

```
have C_5\_prop\ C_5 unfolding C_5\_def
by (rule\ someI\_ex)\ (rule\ logderiv\_zeta\_bound\_vertical')
thus ?prop\_1\ ?prop\_2 unfolding C_5\_prop\_def by auto
qed
```

7 Deducing prime number theorem using Perron's formula

```
locale prime number theorem =
 fixes c \in :: real
 assumes \mathit{Hc} : 0 < c \text{ and } \mathit{Hc}' : c * c < 2 * C_4 \text{ and } \mathit{H\varepsilon} : 0 < \varepsilon \ 2 * \varepsilon < c
begin
notation primes\_psi(\psi)
definition H where H x \equiv exp (c / 2 * (ln x) powr (1 / 2)) for x :: real
definition T where T x \equiv exp (c * (ln x) powr (1 / 2)) for x :: real
definition a where a x \equiv 1 - C_4 / (c * (ln x) powr (1 / 2)) for x :: real
definition b where b x \equiv 1 + 1 / (ln x) for x :: real
definition B where B x \equiv 5 / 4 * ln x  for x :: real
definition f where f x s \equiv x powr s / s * logderiv zeta s for <math>x :: real and s :: complex
definition R where R x \equiv
 x \ powr \ (b \ x) * H \ x * B \ x \ / \ T \ x + 3 * (2 + ln \ (T \ x \ / \ b \ x))
  * (\sum n \mid x - x \mid H \mid x \leq n \land n \leq x + x \mid H \mid x. \mid fds\_nth (fds \mid mangoldt\_complex) \mid n \mid) for x :: real
definition Rc' where Rc' \equiv O(\lambda x. \ x * exp(-(c/2-\varepsilon)* ln \ x \ powr(1/2)))
definition Rc where Rc \equiv O(\lambda x. \ x * exp \ (-(c / 2 - 2 * \varepsilon) * ln \ x \ powr \ (1 / 2)))
definition z_1 where z_1 x \equiv Complex (a x) (-T x) for x
definition z_2 where z_2 x \equiv Complex (b x) (-T x) for x
definition z_3 where z_3 x \equiv Complex (b x) (T x) for x
definition z_4 where z_4 x \equiv Complex (a x) (T x) for x
definition rect where rect x \equiv cbox(z_1 x)(z_3 x) for x
definition rect' where rect' x \equiv rect x - \{1\} for x
definition P_t where P_t x t \equiv line path (Complex (a \ x) t) (Complex (b \ x) t) for x t
definition P_1 where P_1 x \equiv linepath (z_1 x) (z_4 x) for x
definition P_2 where P_2 x \equiv linepath (z_2 x) (z_3 x) for x
definition P_3 where P_3 x \equiv P_t x (-Tx) for x
definition P_4 where P_4 x \equiv P_t x (T x) for x
definition P_r where P_r x \equiv rectpath (z_1 \ x) (z_3 \ x) for x
lemma Rc\_eq\_rem\_est:
  Rc = rem\_est (c / 2 - 2 * \varepsilon) (1 / 2) 0
proof -
 have *: \forall_F x :: real \ in \ at\_top. \ 0 < ln \ (ln \ x) \ by \ real\_asymp
 show ?thesis unfolding Rc_def rem_est_def
   by (rule\ landau\_o.big.cong)\ (use * in\ eventually\_elim,\ auto)
qed
lemma residue_f:
 residue (f x) 1 = -x
proof -
 define A where A \equiv box (Complex 0 (-1/2)) (Complex 2 (1/2))
 have hA: 0 \notin A \ 1 \in A \ open \ A
   unfolding A_def by (auto simp add: mem_box Basis_complex_def)
 have zeta' s \neq 0 when s \in A for s
 proof -
   have s \neq 1 \Longrightarrow zeta \ s \neq 0
     using that unfolding A\_def
     by (intro zeta_nonzero_small_imag)
```

```
(auto simp add: mem_box Basis_complex_def)
   thus ?thesis by (subst zeta' eq zero iff) auto
 qed
 hence h: (\lambda s. \ x \ powr \ s \ / \ s * logderiv \ zeta' \ s) \ holomorphic\_on \ A
   by (intro holomorphic_intros) (use hA in auto)
 have h': (\lambda s. \ x \ powr \ s \ / \ (s * (s - 1))) \ holomorphic\_on \ A - \{1\}
   by (auto intro!: holomorphic_intros) (use hA in auto)
 have s\_ne\_1: \forall_F \ s :: complex \ in \ at \ 1. \ s \neq 1
   by (subst eventually at filter) auto
  moreover have \forall F \ s \ in \ at \ 1. \ zeta \ s \neq 0
   by (intro non_zero_neighbour_pole is_pole_zeta)
  ultimately have \forall_F \ s \ in \ at \ 1. \ logderiv \ zeta \ s = logderiv \ zeta' \ s - 1 \ / \ (s - 1)
   by eventually elim (rule logderiv zeta eq zeta')
  moreover have
   f x s = x powr s / s * logderiv zeta' s - x powr s / s / (s - 1)
   when logderiv zeta s = logderiv zeta' s - 1 / (s - 1) s \neq 0 s \neq 1 for s :: complex
   unfolding f_def by (subst that(1)) (insert that, auto simp add: field_simps)
 hence \forall_F s :: complex in at 1. s \neq 0 \longrightarrow s \neq 1
   \longrightarrow logderiv zeta s = logderiv zeta' s - 1 / (s - 1)
   \longrightarrow f x s = x powr s / s * logderiv zeta' s - x powr s / s / (s - 1)
   by (intro eventuallyI) blast
 moreover have \forall_F \ s :: complex \ in \ at \ 1. \ s \neq 0
   by (subst eventually_at_topological)
      (intro\ exI\ [of\ \_\ UNIV\ -\ \{0\}],\ auto)
 ultimately have \forall F : s :: complex in at 1. fx s = x powr s / s * logderiv zeta' s - x powr s / s / (s - 1)
   using s ne 1 by eventually elim blast
 hence residue (f x) 1 = residue (\lambda s. x powr s / s * logderiv zeta' s - x powr s / s / (s - 1)) 1
   by (intro residue_cong refl)
 also have ... = residue (\lambda s. \ x \ powr \ s \ / \ s * \ logderiv \ zeta' \ s) 1 - residue (\lambda s. \ x \ powr \ s \ / \ (s - 1)) 1
   by (subst\ residue\_diff\ [where\ ?s = A])\ (use\ h\ h'\ hA\ in\ auto)
 also have \dots = -x
 proof -
   have residue (\lambda s. \ x \ powr \ s \ / \ s * \ logderiv \ zeta' \ s) 1 = 0
     by (rule residue_holo [where ?s = A]) (use hA h in auto)
   moreover have residue (\lambda s. \ x \ powr \ s \ / \ (s-1)) 1 = (x :: complex) \ powr \ 1 \ / \ 1
     by (rule residue_simple [where ?s = A]) (use hA in \( auto intro!: holomorphic_intros \))
   ultimately show ?thesis by auto
 qed
 finally show ?thesis.
qed
lemma rect_in_strip:
 rect \ x - \{1\} \subseteq zeta \ strip \ region (a x) (T x)
 unfolding rect\_def zeta\_strip\_region\_def z_1\_def z_3\_def
 by (auto simp add: in_cbox_complex_iff)
lemma rect_in_strip':
  \{s \in rect \ x. \ C_3 \leq |Im \ s|\} \subseteq zeta\_strip\_region' (a \ x) \ (T \ x)
  unfolding rect\_def zeta\_strip\_region'\_def z_1\_def z_3\_def
 using C_3_gt_zero by (auto simp add: in_cbox_complex_iff)
lemma
 rect'_in\_zerofree: \forall_F \ x \ in \ at\_top. \ rect' \ x \subseteq zeta\_zerofree\_region \ and
 rect\_in\_logderiv\_zeta: \forall_F \ x \ in \ at\_top. \{s \in rect \ x. \ C_3 \leq |Im \ s|\} \subseteq logderiv\_zeta\_region
proof (goal_cases)
```

```
case 1 have
   \forall_F \ x \ in \ at\_top. \ C_4 \ / \ ln \ x \leq C_1 \ / \ (7 * ln \ (x + 3)) \ \mathbf{by} \ (rule \ C_4\_prop)
 moreover have LIM x at_top. exp (c * (ln x) powr (1 / 2)) :> at_top using Hc by real_asymp
  ultimately have h:
  \forall_F \ x \ in \ at\_top. \ C_4 \ / \ ln \ (exp \ (c * (ln \ x) \ powr \ (1 \ / \ 2)))
   \leq C_1 / (7 * ln (exp (c * (ln x) powr (1 / 2)) + 3))  (is eventually ?P_)
   by (rule eventually_compose_filterlim)
  moreover have
    ?P x \Longrightarrow zeta \ strip \ region (a x) (T x) \subseteq zeta \ zerofree \ region
   (is \_ \implies ?Q) for x unfolding T\_def a\_def
   by (intro strip_in_zerofree_region strip_condition_imp) auto
 hence \forall_F \ x \ in \ at\_top. \ ?P \ x \longrightarrow ?Q \ x \ by \ (intro \ eventuallyI) \ blast
  ultimately show ?case unfolding rect'_def by eventually_elim (use rect_in_strip in auto)
 case 2 from h have
    ?P x \Longrightarrow zeta\_strip\_region'(a x)(T x) \subseteq logderiv\_zeta\_region
   (is \_ \implies ?Q) for x unfolding T\_def a\_def
   by (intro strip_in_logderiv_zeta_region) auto
 hence \forall_F \ x \ in \ at\_top. \ ?P \ x \longrightarrow ?Q \ x \ by \ (intro \ eventuallyI) \ blast
 thus ?case using h by eventually_elim (use rect_in_strip' in auto)
qed
lemma zeta nonzero in rect:
 \forall_F \ x \ in \ at \ top. \ \forall s. \ s \in rect' \ x \longrightarrow zeta \ s \neq 0
 using rect'_in_zerofree by eventually_elim (use zeta_zerofree_region in auto)
lemma zero notin rect: \forall_F x \text{ in at top. } 0 \notin rect' x
proof -
 have \forall_F x \text{ in at\_top. } C_4 / (c * (\ln x) \text{ powr } (1 / 2)) < 1
   using Hc by real_asymp
 thus ?thesis
   unfolding rect'_def rect_def z_1_def z_4_def T_def a_def
   by eventually_elim (simp add: in_cbox_complex_iff)
qed
lemma f_analytic:
 \forall_F \ x \ in \ at\_top. \ f \ x \ analytic\_on \ rect' \ x
 using zeta nonzero in rect zero notin rect unfolding f def
 by eventually elim (intro analytic intros, auto simp: rect' def)
lemma path_image_in_rect_1:
 assumes 0 \le T x \land a x \le b x
 shows path\_image\ (P_1\ x) \subseteq rect\ x \land path\_image\ (P_2\ x) \subseteq rect\ x
 unfolding P_1 def P_2 def rect def z_1 def z_2 def z_3 def z_4 def
 by (simp, intro conjI closed_segment_subset)
    (insert assms, auto simp add: in_cbox_complex_iff)
lemma path_image_in_rect_2:
 assumes 0 \le T x \land a x \le b x \land t \in \{-T x... T x\}
 shows path\_image (P_t \ x \ t) \subseteq rect \ x
 unfolding P_t_def rect_def z_1_def z_3_def
 by (simp, intro conjI closed segment subset)
    (insert assms, auto simp add: in_cbox_complex_iff)
definition path_in_rect' where
path in rect' x \equiv
```

```
path\_image\ (P_1\ x) \subseteq rect'\ x \land path\_image\ (P_2\ x) \subseteq rect'\ x \land
 path\_image\ (P_3\ x) \subseteq rect'\ x \land path\_image\ (P_4\ x) \subseteq rect'\ x
lemma path_image_in_rect':
 assumes 0 < T x \land a x < 1 \land 1 < b x
 shows path_in_rect' x
proof -
 have path\_image\ (P_1\ x) \subseteq rect\ x \land path\_image\ (P_2\ x) \subseteq rect\ x
   by (rule path image in rect 1) (use assms in auto)
 moreover have path image (P_3 x) \subseteq rect x path image (P_4 x) \subseteq rect x
   unfolding P_3\_def P_4\_def
   by (intro\ path\_image\_in\_rect\_2, (use\ assms\ in\ auto)[1])+
 moreover have
    1 \notin path\_image\ (P_1\ x) \land 1 \notin path\_image\ (P_2\ x) \land
     1 \notin path\_image (P_3 x) \land 1 \notin path\_image (P_4 x)
   unfolding P_1_def P_2_def P_3_def P_4_def P_4_def Z_1_def Z_2_def Z_3_def Z_4_def using assms
   by (auto simp add: closed_segment_def legacy_Complex_simps field_simps)
 ultimately show ?thesis unfolding path_in_rect'_def rect'_def by blast
qed
lemma asymp_1:
 \forall_F x \text{ in at\_top. } 0 < Tx \land ax < 1 \land 1 < bx
 unfolding T def a def b def
 by (intro eventually_conj, insert Hc\ C_4\_gt\_zero) (real_asymp)+
lemma f continuous on:
 \forall_F \ x \ in \ at\_top. \ \forall A \subseteq rect' \ x. \ continuous\_on \ A \ (f \ x)
 using f_analytic
 by (eventually_elim, safe)
    (intro holomorphic_on_imp_continuous_on analytic_imp_holomorphic,
     elim analytic on subset)
lemma contour_integrability:
 \forall_F \ x \ in \ at \ top.
   f \ x \ contour\_integrable\_on \ P_1 \ x \land f \ x \ contour\_integrable\_on \ P_2 \ x \land
   f \ x \ contour\_integrable\_on \ P_3 \ x \land f \ x \ contour\_integrable\_on \ P_4 \ x
proof -
 have \forall_F x in at\_top. path\_in\_rect' x
   using asymp 1 by eventually elim (rule path image in rect')
 thus ?thesis using f_continuous_on
   \mathbf{unfolding}\ P_1\_\mathit{def}\ P_2\_\mathit{def}\ P_3\_\mathit{def}\ P_4\_\mathit{def}\ P_t\_\mathit{def}\ \mathit{path\_in\_rect'\_def}
   by eventually_elim
      (intro conjI contour integrable continuous linepath,
       fold \ z_1\_def \ z_2\_def \ z_3\_def \ z_4\_def, \ auto)
qed
lemma contour_integral_rectpath':
 assumes f \times analytic\_on (rect' \times x) = 0 < T \times x \land a \times x < 1 \land 1 < b \times x
 shows contour_integral (P_r \ x) \ (f \ x) = -2 * pi * i * x
proof -
 define z where z \equiv (1 + b x) / 2
 have Hz: z \in box(z_1 x)(z_3 x)
   unfolding z_1_def z_3_def z_def using assms(2)
   by (auto simp add: mem_box Basis_complex_def)
 have Hz': z \neq 1 unfolding z def using assms(2) by auto
```

```
have connected (rect' x)
 proof -
   have box_nonempty: box (z_1 \ x) \ (z_3 \ x) \neq \{\} using Hz by auto
   hence aff_dim (closure (box (z_1 x) (z_3 x))) = 2
     by (subst closure_aff_dim, subst aff_dim_open) auto
   thus ?thesis
     unfolding rect'_def using box_nonempty
     by (subst (asm) closure_box)
       (auto intro: connected punctured convex simp add: rect def)
 qed
 moreover have Hz'': z \in rect' x
   unfolding rect'_def rect_def using box_subset_cbox Hz Hz' by auto
 ultimately obtain T where hT:
   f \ x \ holomorphic \ on \ T \ open \ T \ rect' \ x \subseteq T \ connected \ T
   using analytic_on_holomorphic_connected assms(1) by (metis dual_order.reft)
 define U where U \equiv T \cup box(z_1 x)(z_3 x)
 have one\_in\_box: 1 \in box (z_1 x) (z_3 x)
   unfolding z_1 _ def z_3 _ def z _ def using assms(2) by (auto\ simp\ add:\ mem\_box\ Basis\_complex\_def)
 have contour_integral (P_r \ x) \ (f \ x) = 2 * pi * i *
   (\sum s \in \{1\}. winding\_number (P_r x) s * residue (f x) s)
 proof (rule Residue_theorem)
   show finite {1} valid_path (P_r x) pathfinish (P_r x) = pathstart (P_r x)
     unfolding P_r\_def by auto
   show open U unfolding U\_def using hT(2) by auto
   show connected U unfolding U_def
     by (intro connected Un hT(4) convex connected)
       (use Hz Hz'' hT(3) in auto)
   have f \ x \ holomorphic\_on \ box \ (z_1 \ x) \ (z_3 \ x) - \{1\}
     by (rule holomorphic_on_subset, rule analytic_imp_holomorphic, rule assms(1))
       (unfold rect'_def rect_def, use box_subset_cbox in auto)
   hence f \times holomorphic\_on ((T - \{1\}) \cup (box (z_1 x) (z_3 x) - \{1\}))
     by (intro holomorphic_on_Un) (use hT(1) hT(2) in auto)
   moreover have ... = U - \{1\} unfolding U_def by auto
   ultimately show f x holomorphic\_on U - \{1\} by auto
   have Hz: Re(z_1 x) \leq Re(z_3 x) Im(z_1 x) \leq Im(z_3 x)
     unfolding z_1_def z_3_def using assms(2) by auto
   have path\_image (P_r x) = rect x - box (z_1 x) (z_3 x)
     unfolding rect def P_r def
     by (intro path image rectpath cbox minus box Hz)
   thus path\_image\ (P_r\ x)\subseteq U-\{1\}
     using one\_in\_box\ hT(3)\ U\_def unfolding rect'\_def by auto
   have hU': rect x \subseteq U
     using hT(3) one in box unfolding U def rect' def by auto
   show \forall z. z \notin U \longrightarrow winding\_number (P_r x) z = 0
     using Hz P_r def hU' rect def winding number rectpath outside by fastforce
 also have ... = -2 * pi * i * x unfolding P_r\_def
   by (simp add: residue_f, subst winding_number_rectpath, auto intro: one_in_box)
 finally show ?thesis.
qed
lemma contour_integral_rectpath:
 \forall_F \ x \ in \ at\_top. \ contour\_integral \ (P_r \ x) \ (f \ x) = -2 * pi * i * x
 using f_analytic asymp_1 by eventually_elim (rule contour_integral_rectpath')
```

```
lemma valid paths:
  valid\_path\ (P_1\ x)\ valid\_path\ (P_2\ x)\ valid\_path\ (P_3\ x)\ valid\_path\ (P_4\ x)
 unfolding P_1\_def P_2\_def P_3\_def P_4\_def P_t\_def by auto
\mathbf{lemma}\ integral\_rectpath\_split:
 assumes f \ x \ contour\_integrable\_on \ P_1 \ x \land f \ x \ contour\_integrable\_on \ P_2 \ x \land
         f \ x \ contour\_integrable\_on \ P_3 \ x \land f \ x \ contour\_integrable\_on \ P_4 \ x
 shows contour_integral (P_3 \ x) \ (f \ x) + contour_integral \ (P_2 \ x) \ (f \ x)
      - contour integral (P_4 \ x) (f \ x) - contour integral (P_1 \ x) (f \ x) = contour integral (P_r \ x) (f \ x)
proof -
 define Q_1 where Q_1 \equiv linepath (z_3 x) (z_4 x)
 define Q_2 where Q_2 \equiv linepath (z_4 x) (z_1 x)
 have Q_eq: Q_1 = reverse path (P_4 x) Q_2 = reverse path (P_1 x)
   unfolding Q_1_def Q_2_def P_1_def P_4_def P_t_def by (fold z_3_def z_4_def) auto
 hence contour\_integral\ Q_1\ (f\ x) = -\ contour\_integral\ (P_4\ x)\ (f\ x)
       contour\_integral\ Q_2\ (f\ x) = -\ contour\_integral\ (P_1\ x)\ (f\ x)
   by (auto intro: contour_integral_reversepath valid_paths)
 moreover have contour_integral (P_3 x ++++ P_2 x ++++ Q_1 ++++ Q_2) (f x)
      = contour\_integral (P_3 x) (f x) + contour\_integral (P_2 x) (f x)
      + contour\_integral Q_1 (f x) + contour\_integral Q_2 (f x)
 proof -
   have 1: pathfinish (P_2 x) = pathstart (Q_1 + +++ Q_2) pathfinish Q_1 = pathstart Q_2
     unfolding P_2\_def\ Q_1\_def\ Q_2\_def by auto
   have 2: valid\_path\ Q_1\ valid\_path\ Q_2\ unfolding\ Q_1\_def\ Q_2\_def\ by\ auto
   have 3: f \ x \ contour\_integrable\_on \ P_1 \ x \ f \ x \ contour\_integrable\_on \ P_2 \ x
          f \ x \ contour\_integrable\_on \ P_3 \ x \ f \ x \ contour\_integrable\_on \ P_4 \ x
          f \ x \ contour\_integrable\_on \ Q_1 \ f \ x \ contour\_integrable\_on \ Q_2
     using assms by (auto simp add: Q_eq intro: contour_integrable_reversepath valid_paths)
   show ?thesis by (subst contour_integral_join |
     auto intro: valid_paths valid_path_join contour_integrable_joinI 1 2 3)+
 qed
  ultimately show ?thesis
   unfolding P_r def z_1 def z_3 def rectpath def
   by (simp add: Let_def, fold P_t_def P_3_def z_1_def z_2_def z_3_def z_4_def)
      (fold P_2\_def Q_1\_def Q_2\_def, auto)
qed
lemma P_2 eq:
 \forall F \ x \ in \ at \ top. \ contour \ integral \ (P_2 \ x) \ (f \ x) + 2 * pi * i * x
 = contour\_integral\ (P_1\ x)\ (f\ x) - contour\_integral\ (P_3\ x)\ (f\ x) + contour\_integral\ (P_4\ x)\ (f\ x)
proof -
 have \forall_F x \text{ in at\_top. contour\_integral } (P_3 x) (f x) + contour\_integral (P_2 x) (f x)
     - contour_integral (P_4 \ x) \ (f \ x) - contour_integral (P_1 \ x) \ (f \ x) = - \ 2 * pi * i * x
   using contour_integrability contour_integral_rectpath asymp_1 f_analytic
   by eventually_elim (metis integral_rectpath_split)
 thus ?thesis by (auto simp add: field_simps)
qed
lemma estimation\_P_1:
 (\lambda x. \| contour\_integral (P_1 x) (f x) \|) \in Rc
proof -
 define r where r x \equiv
    C_5 * (c * (ln \ x) \ powr \ (1 \ / \ 2))^2 * x \ powr \ a \ x * ln \ (1 + T \ x \ / \ a \ x) \ for \ x
 note logderiv_zeta_bound_vertical
 moreover have LIM x at top. T x :> at top
```

```
unfolding T_def using Hc by real_asymp
ultimately have \forall_F \ x \ in \ at \ top. \ \forall t. \ |t| \leq T \ x
  \longrightarrow \|logderiv\ zeta\ (Complex\ (1-C_4\ /\ ln\ (T\ x))\ t)\| \le C_5*(ln\ (T\ x))^2
 unfolding a_def by (rule eventually_compose_filterlim)
hence \forall_F x \text{ in } at\_top. \ \forall t. \ |t| \leq T x
 \longrightarrow \|logderiv\ zeta\ (Complex\ (a\ x)\ t)\| \le C_5 * (c*(ln\ x)\ powr\ (1\ /\ 2))^2
 unfolding a_def T_def by auto
moreover have \forall_F x in at\_top. (f x) contour\_integrable\_on (P_1 x)
 using contour integrability by eventually elim auto
hence \forall F in at top. (\lambda s. logderiv zeta s * x powr s / s) contour integrable on (P_1 x)
  unfolding <u>f_def</u> by eventually_elim (auto simp add: field_simps)
moreover have \forall F \ x :: real \ in \ at\_top. \ 0 < x \ by \ auto
moreover have \forall_F \ x \ in \ at \ top. \ 0 < a \ x \ unfolding \ a \ def \ using \ Hc \ by \ real \ asymp
ultimately have \forall_F x \text{ in } at \text{ top.}
 ||1|/(2*pi*i)*contour\_integral(P_1 x)(\lambda s. logderiv zeta s*x powr s/s)|| \le r x
 unfolding r_def P_1_def z_1_def z_4_def using asymp_1
 by eventually_elim (rule perron_aux_3', auto)
hence \forall_F x \text{ in at\_top. } ||1|/(2*pi*i)*contour\_integral (P_1 x) (f x)|| \leq r x
 unfolding f_def by eventually_elim (auto simp add: mult_ac)
hence (\lambda x. \parallel 1 \mid (2 * pi * i) * contour\_integral (P_1 x) (f x) \parallel) \in O(r)
 unfolding f_def by (rule eventually_le_imp_bigo')
moreover have r \in Rc
proof -
 define r_1 where r_1 x \equiv C_5 * c^2 * ln x * ln (1 + T x / a x) for x
 define r_2 where r_2 x \equiv exp (a \ x * ln \ x) for x
 have r_1 \in O(\lambda x. (\ln x)^2)
   unfolding r_1_def T_def a_def using Hc\ C_5_gt_zero by real\_asymp
 moreover have r_2 \in Rc'
 proof -
   have 1: ||r_2|| \le x * exp(-(c/2 - \varepsilon) * (ln x) powr(1/2))
     when h: 0 < x \ 0 < \ln x  for x
   proof -
     have a \times x + \ln x = \ln x + - C_4 / c + (\ln x) powr (1 / 2)
       unfolding a\_def using h(2) Hc
       by (auto simp add: field_simps powr_add [symmetric] frac_eq_eq)
     hence r_2 x = exp (...) unfolding r_2\_def by blast
     also have ... = x * exp (-C_4 / c * (ln x) powr (1 / 2))
       by (subst exp add) (use h(1) in auto)
     also have ... \leq x * exp (-(c / 2 - \varepsilon) * (ln x) powr (1 / 2))
       by (intro mult_left_mono, subst exp_le_cancel_iff, intro mult_right_mono)
          (use Hc\ Hc'\ H\varepsilon\ C_4\_gt\_zero\ h\ in\ \langle auto\ simp:\ field\_simps\ intro:\ add\_increasing2\rangle)
     finally show ?thesis unfolding r_2\_def by auto
   have \forall_F x \text{ in at\_top. } ||r_2 x|| \leq x * exp \left(-\left(c / 2 - \varepsilon\right) * \left(\ln x\right) powr \left(1 / 2\right)\right)
     using ln_asymp_pos x_asymp_pos by eventually_elim (rule 1)
   thus ?thesis unfolding Rc'_def by (rule eventually_le_imp_bigo)
 qed
 ultimately have (\lambda x. r_1 x * r_2 x)
   \in O(\lambda x. (\ln x)^2 * (x * exp (-(c / 2 - \varepsilon) * (\ln x) powr (1 / 2))))
   unfolding Rc'_def by (rule landau_o.big.mult)
 moreover have (\lambda x. (\ln x)^2 * (x * exp(-(c/2 - \varepsilon) * (\ln x) powr(1/2)))) \in Rc
   unfolding Rc def using Hc H\varepsilon
   by (real_asymp simp add: field_simps)
 ultimately have (\lambda x. \ r_1 \ x * r_2 \ x) \in Rc
   unfolding Rc def by (rule landau o.biq trans)
```

```
moreover have \forall_F x \text{ in } at\_top. \ r x = r_1 x * r_2 x
     using ln_ln_asymp_pos ln_asymp_pos x_asymp_pos
     unfolding r_def r_1_def r_2_def a_def powr_def power2_eq_square
     by (eventually_elim) (simp add: field_simps exp_add [symmetric])
   ultimately show ?thesis unfolding Rc def
     using landau_o.big.ev_eq_trans2 by auto
 qed
 ultimately have (\lambda x. \parallel 1 / (2 * pi * i) * contour\_integral (P_1 x) (f x) \parallel) \in Rc
   unfolding Rc def by (rule landau o.biq trans)
 thus ?thesis unfolding Rc def by (simp add: norm divide)
qed
lemma estimation P_t':
 assumes h:
   1 < x \land max \ 1 \ C_3 \le T \ x \ a \ x < 1 \land 1 < b \ x
   \{s \in rect \ x. \ C_3 \leq |Im \ s|\} \subseteq logderiv\_zeta\_region
   f \ x \ contour\_integrable\_on \ P_3 \ x \land f \ x \ contour\_integrable\_on \ P_4 \ x
   and Ht: |t| = T x
 shows ||contour\_integral(P_t x t)(f x)|| \le C_2 * exp 1 * x / T x * (ln(T x + 3))^2 * (b x - a x)
proof -
 consider t = T x \mid t = -T x using Ht by fastforce
 hence f x contour\_integrable\_on P_t x t
   using Ht h(4) unfolding P_t\_def P_3\_def P_4\_def by cases auto
 moreover have ||f x s|| \le exp \ 1 * x / T x * (C_2 * (ln \ (T x + 3))^2)
   when s \in closed\_segment (Complex (a x) t) (Complex (b x) t) for s
 proof -
   have Hs: s \in path\_image\ (P_t\ x\ t) using that unfolding P_t\_def by auto
   have path\_image (P_t \ x \ t) \subseteq rect \ x
     by (rule\ path\_image\_in\_rect\_2) (use\ h(2)\ Ht\ in\ auto)
   moreover have Hs': Re \ s \le b \ x \ Im \ s = t
   proof -
     have u \le 1 \Longrightarrow (1-u) * a x \le (1-u) * b x for u
       using h(2) by (intro mult_left_mono) auto
     thus Re \ s < b \ x \ Im \ s = t
       using that h(2) unfolding closed\_segment\_def
       by (auto simp add: legacy_Complex_simps field_simps)
   qed
   hence C_3 \leq |Im\ s| using h(1) Ht by auto
   ultimately have s \in logderiv\_zeta\_region using Hs h(3) by auto
   hence \|logderiv\ zeta\ s\| \leq C_2 * (ln\ (|Im\ s| + 3))^2
     by (rule logderiv_zeta_region_estimate)
   also have ... = C_2 * (ln (T x + 3))^2 using Hs'(2) Ht by auto
   also have ||x \ powr \ s \ / \ s|| \le exp \ 1 * x \ / \ T \ x
   proof -
     have ||x| powr s|| = Re \ x \ powr \ Re \ s \ using \ h(1) by (intro norm_powr_real_powr) auto
     also have \dots = x powr Re s by auto
     also have ... \leq x \ powr \ b \ x by (intro powr_mono Hs') (use h(1) in auto)
     also have \dots = exp \ 1 * x
       using h(1) unfolding powr_def b_def by (auto simp add: field_simps exp_add)
     finally have ||x \ powr \ s|| \le exp \ 1 * x.
     moreover have T \times s = \|s\| using abs Im le cmod [of s] Hs'(2) h(1) Ht by auto
     hence 1: ||x|| powr s|| / ||s|| \le ||x|| powr s|| / T x
       using h(1) by (intro divide_left_mono mult_pos_pos) auto
     ultimately have \dots \le exp \ 1 * x / T x
       by (intro divide right mono) (use h(1) in auto)
```

```
thus ?thesis using 1 by (subst norm divide) linarith
    ultimately show ?thesis unfolding f_def
     by (subst norm_mult, intro mult_mono, auto)
        (metis norm_ge_zero order.trans)
  qed
  ultimately have ||contour\_integral|(P_t \mid x \mid t)||
    \leq exp \ 1 * x / T x * (C_2 * (ln \ (T x + 3))^2) * || Complex \ (b \ x) \ t - Complex \ (a \ x) \ t ||
    unfolding P_t def
    by (intro contour integral bound linepath)
      (use C_2_gt_zero h(1) in auto)
  also have ... = C_2 * exp \ 1 * x / T \ x * (ln \ (T \ x + 3))^2 * (b \ x - a \ x)
    using h(2) by (simp add: legacy Complex simps)
  finally show ?thesis.
qed
lemma estimation\_P_t:
  (\lambda x. \| contour\_integral (P_3 x) (f x) \|) \in Rc \land
  (\lambda x. \| contour\_integral (P_4 x) (f x) \|) \in Rc
  define r where r x \equiv C_2 * exp \ 1 * x / T x * (ln (T x + 3))^2 * (b x - a x) for x
  define p where p x \equiv \|contour\_integral\ (P_3\ x)\ (f\ x)\| \le r\ x \land \|contour\_integral\ (P_4\ x)\ (f\ x)\| \le r\ x
  have \forall_F x \text{ in } at\_top. \ 1 < x \land max \ 1 \ C_3 \leq T \ x
    unfolding T_def by (rule eventually_conj) (simp, use Hc in real_asymp)
  hence \forall_F \ x \ in \ at \ top. \ \forall t. \ |t| = T \ x \longrightarrow \|contour \ integral \ (P_t \ x \ t) \ (f \ x)\| \le r \ x \ (is \ eventually \ ?P \ )
    unfolding r def using asymp 1 rect in logderiv zeta contour integrability
    by eventually\_elim (use estimation\_P_t' in blast)
  moreover have \bigwedge x. ?P x \Longrightarrow 0 < T x \Longrightarrow p x
    unfolding p\_def P_3\_def P_4\_def by auto
  hence \forall F \ x \ in \ at\_top. \ ?P \ x \longrightarrow \theta < T \ x \longrightarrow p \ x
    by (intro eventuallyI) blast
  ultimately have \forall_F \ x \ in \ at\_top. \ p \ x \ using \ asymp\_1 \ by \ eventually\_elim \ blast
  hence \forall_F x in at\_top.
    \|\|contour\_integral\ (P_3\ x)\ (f\ x)\|\| \le 1 * \|r\ x\| \land
    \|\|contour\_integral\ (P_4\ x)\ (f\ x)\|\| \le 1 * \|r\ x\|
    unfolding p_def by eventually_elim auto
  hence (\lambda x. \| contour \ integral \ (P_3 \ x) \ (f \ x) \|) \in O(r) \land (\lambda x. \| contour \ integral \ (P_4 \ x) \ (f \ x) \|) \in O(r)
    by (subst (asm) eventually conj iff, blast)+
  moreover have r \in Rc
    unfolding r\_def Rc\_def a\_def b\_def T\_def using Hc H\varepsilon
    by (real_asymp simp add: field_simps)
  ultimately show ?thesis
    unfolding Rc_def using landau_o.big_trans by blast
qed
lemma Re\_path\_P_2:
  \bigwedge z. \ z \in path\_image\ (P_2\ x) \Longrightarrow Re\ z = b\ x
  unfolding P_2_def z_2_def z_3_def
  by (auto simp add: closed_segment_def legacy_Complex_simps field_simps)
lemma estimation P_2:
  (\lambda x. \parallel 1 \mid (2 * pi * i) * contour\_integral (P_2 x) (f x) + x \parallel) \in Rc
proof -
  define r where r x \equiv ||contour| integral (P_1 x) (f x)|| +
```

```
||contour\_integral\ (P_3\ x)\ (f\ x)|| + ||contour\_integral\ (P_4\ x)\ (f\ x)|| for x
 have [simp]: ||a - b + c|| \le ||a|| + ||b|| + ||c|| for a \ b \ c :: complex
   using adhoc_norm_triangle norm_triangle_ineq4 by blast
 have \forall_F x \text{ in at\_top. } \|\text{contour\_integral } (P_2 x) (f x) + 2 * pi * i * x \| \leq r x
   unfolding r\_def using P_2\_eq by eventually\_elim auto
 hence (\lambda x. \| contour\_integral (P_2 x) (f x) + 2 * pi * i * x \|) \in O(r)
   by (rule eventually_le_imp_bigo')
 moreover have r \in Rc
   using estimation P_1 estimation P_t
   unfolding r def Rc def by (intro sum in bigo) auto
 ultimately have (\lambda x. \| contour\_integral (P_2 x) (f x) + 2 * pi * i * x \|) \in Rc
   unfolding Rc_def by (rule landau_o.big_trans)
 hence (\lambda x. \parallel 1 / (2 * pi * i) * (contour\_integral (P_2 x) (f x) + 2 * pi * i * x) \parallel) \in Rc
   unfolding Rc def by (auto simp add: norm mult norm divide)
 thus ?thesis by (auto simp add: algebra simps)
qed
lemma estimation R:
  R \in Rc
proof -
 define \Gamma where \Gamma x \equiv \{n :: nat. \ x - x \ / \ H \ x \le n \land n \le x + x \ / \ H \ x \} for x \in \{n :: nat. \ x - x \ / \ H \ x \le n \land n \le x + x \ / \ H \ x \}
 have 1: (\lambda x. \ x \ powr \ b \ x * H \ x * B \ x \ / \ T \ x) \in Rc
   unfolding b def H def B def T def Rc def using Hc H\varepsilon
   by (real_asymp simp add: field_simps)
 have \|\sum n \in \Gamma \ x. \|fds\_nth \ (fds \ mangoldt\_complex) \ n\|\| \le (2 * x / H x + 1) * ln \ (x + x / H x)
   when h: 0 < x - x / H x 0 < x / H x 0 \le ln (x + x / H x) for x
 proof -
   have \|\sum n \in \Gamma x. \|fds\_nth (fds mangoldt\_complex) n\|\| = (\sum n \in \Gamma x) \|fds\_nth (fds mangoldt\_complex)
n\|)
     by simp (subst abs_of_nonneg, auto intro: sum_nonneg)
   also have ... = sum\ mangoldt\_real\ (\Gamma\ x)
     by (subst norm_fds_mangoldt_complex) (rule refl)
   also have ... \leq card (\Gamma x) * ln (x + x / H x)
   proof (rule sum bounded above)
     fix n assume n \in \Gamma x
     hence Hn: 0 < n \ n \le x + x \ / \ H \ x \ unfolding \ \Gamma def \ using \ h \ by \ auto
     hence mangoldt\_real n \le ln n by (intro\ mangoldt\_le)
     also have ... \leq \ln (x + x / H x) using Hn by auto
     finally show mangoldt real n \leq \ln(x + x / Hx).
   also have ... \leq (2 * x / H x + 1) * ln (x + x / H x)
   proof -
     have \Gamma_eq: \Gamma x = \{ nat [x - x / H x] ... < nat ([x + x / H x] + 1) \}
       unfolding Γ_def by (subst nat_le_real_iff) (subst nat_ceiling_le_eq [symmetric], auto)
     moreover have nat (|x+x|/Hx|+1) = |x+x|/Hx|+1 using h(1) h(2) by auto
     moreover have nat [x - x / H x] = [x - x / H x] using h(1) by auto
     moreover have |x + x / H x| \le x + x / H x by (rule floor_le)
     moreover have [x - x / H x] \ge x - x / H x by (rule \ ceil\_ge)
      ultimately have (nat (\lfloor x + x / H x \rfloor + 1) :: real) - nat \lceil x - x / H x \rceil \le 2 * x / H x + 1 by
linarith
     hence card (\Gamma x) \leq 2 * x / H x + 1 using h(2) by (subst \Gamma_eq) (auto simp add: of_nat_diff_real)
     thus ?thesis using h(3) by (rule mult_right_mono)
   qed
   finally show ?thesis.
 qed
```

```
hence \forall_F x in at\_top.
    0 < x - x / Hx \longrightarrow 0 < x / Hx \longrightarrow 0 \le ln (x + x / Hx)
    \longrightarrow \|\sum n \in \Gamma \ x. \ \|fds\_nth \ (fds \ mangoldt\_complex) \ n\|\| \le (2 * x / H x + 1) * ln \ (x + x / H x)
    by (intro eventuallyI) blast
  moreover have \forall_F \ x \ in \ at\_top. \ 0 < x - x \ / \ H \ x \ unfolding \ H\_def \ using \ Hc \ H\varepsilon \ by \ real\_asymp
  moreover have \forall_F \ x \ in \ at\_top. \ 0 < x \ / \ H \ x \ unfolding \ H\_def \ using \ Hc \ H\varepsilon \ by \ real\_asymp
  moreover have \forall_F \ x \ in \ at\_top. \ 0 \le ln \ (x + x \ / \ H \ x) unfolding H\_def using Hc \ H\varepsilon by real\_asymp
  ultimately have \forall_F \ x \ in \ at\_top. \ \|\sum n \in \Gamma \ x. \ \|fds\_nth \ (fds \ mangoldt\_complex) \ n\|\| \le (2 * x / H x + 1)
1) * ln (x + x / H x)
    by eventually elim blast
  hence (\lambda x. \sum n \in \Gamma x. \|fds\_nth (fds mangoldt\_complex) n\|) \in O(\lambda x. (2 * x / H x + 1) * ln (x + x / H x + 1))
H(x)
    by (rule eventually_le_imp_bigo)
  moreover have (\lambda x. (2 * x / H x + 1) * ln (x + x / H x)) \in Rc'
    unfolding Rc'\_def H\_def using Hc H\varepsilon
    by (real_asymp simp add: field_simps)
  ultimately have (\lambda x. \sum n \in \Gamma x. \|fds\_nth (fds mangoldt\_complex) n\|) \in Rc'
    unfolding Rc'_def by (rule landau_o.big_trans)
  hence (\lambda x. \ 3 * (2 + ln \ (T \ x \ / \ b \ x)) * (\sum n \in \Gamma \ x. \|fds\_nth \ (fds \ mangoldt\_complex) \ n\|))
      \in O(\lambda x. \ 3 * (2 + \ln (T x / b x)) * (x * exp (- (c / 2 - \varepsilon) * (\ln x) powr (1 / 2))))
    unfolding Rc'_def by (intro landau_o.big.mult_left) auto
  moreover have (\lambda x. \ 3*(2+\ln(Tx/bx))*(x*exp(-(c/2-\varepsilon)*(\ln x) powr(1/2)))) \in Rc
    unfolding Rc\_def\ T\_def\ b\_def\ using\ Hc\ H\varepsilon by (real\_asymp\ simp\ add:\ field\_simps)
  ultimately have 2: (\lambda x. \ 3*(2 + ln\ (T\ x\ /\ b\ x))*(\sum n \in \Gamma\ x. \|fds\_nth\ (fds\ mangoldt\_complex)\ n\|))
\in Rc
    unfolding Rc def by (rule landau o.biq trans)
  from 1.2 show ?thesis unfolding Rc def R def \Gamma def by (rule sum in bigo)
qed
lemma perron_psi:
  \forall_F \ x \ in \ at\_top. \ \|\psi \ x + 1 \ / \ (2 * pi * i) * contour\_integral \ (P_2 \ x) \ (f \ x) \| \le R \ x
proof -
  have Hb: \forall_F \ x \ in \ at\_top. \ 1 < b \ x \ unfolding \ b\_def \ by \ real\_asymp
  hence \forall_F x \text{ in at\_top. } 0 < b x \text{ by } eventually\_elim auto
  moreover have \forall_F x \text{ in at\_top. } b \text{ } x \leq T \text{ } x \text{ unfolding } b\_\text{def } T\_\text{def using } Hc \text{ by } real\_asymp
  moreover have \forall F \ x \ in \ at\_top. \ abs\_conv\_abscissa \ (fds \ mangoldt\_complex) < ereal \ (b \ x)
  proof -
    have abs conv abscissa (fds mangoldt complex) \leq 1 by (rule abs conv abscissa mangoldt)
    hence \forall_F x \text{ in at top. } 1 < b x \longrightarrow abs \text{ conv abscissa (fds mangoldt complex)} < ereal (b x)
      by (auto intro: eventuallyI
               simp add: le_ereal_less one_ereal_def)
    thus ?thesis using Hb by (rule eventually_mp)
  moreover have \forall_F \ x \ in \ at\_top. \ 2 \leq H \ x \ unfolding \ H\_def \ using \ Hc \ by \ real\_asymp
  moreover have \forall_F \ x \ in \ at\_top. \ b \ x+1 \leq H \ x \ unfolding \ b\_def \ H\_def \ using \ Hc \ by \ real\_asymp
  moreover have \forall_F \ x :: real \ in \ at\_top. \ 2 \leq x \ by \ auto
  moreover have \forall_F \ x \ in \ at\_top.
    (\sum n \ge 1) \cdot \|fds\_nth \cdot (fds \cdot mangoldt\_complex) \cdot n\| / n \cdot nat\_powr \cdot b \cdot x) \le B \cdot x
    (is eventually ?P ?F)
  proof -
    have ?P \ x when Hb: 1 < b \ x \land b \ x \le 23 \ / \ 20 for x
    proof -
      have (\sum 'n\geq 1. ||fds\_nth (fds mangoldt\_complex) n|| / n nat\_powr (b x))
          = (\sum_{n \geq 1} f_n = 1 \cdot mangoldt_real \ n \ / \ n \ nat_powr \ (b \ x))
        by (subst norm fds mangoldt complex) (rule refl)
```

```
also have \dots = -Re (logderiv zeta (b x))
     proof -
       have ((\lambda n. mangoldt\_real \ n * n \ nat\_powr \ (-b \ x) * cos \ (0 * ln \ (real \ n)))
          has\_sum\ Re\ (-\ deriv\ zeta\ (Complex\ (b\ x)\ 0)\ /\ zeta\ (Complex\ (b\ x)\ 0)))\ \{1..\}
        by (intro sums_Re_logderiv_zeta) (use Hb in auto)
       moreover have Complex (b \ x) \ \theta = b \ x \ \text{by} \ (rule \ complex\_eqI) \ auto
       moreover have Re(-deriv zeta(b x) / zeta(b x)) = -Re(logderiv zeta(b x))
        unfolding logderiv_def by auto
       ultimately have ((\lambda n. mangoldt\_real \ n * n \ nat\_powr \ (-b \ x)) \ has\_sum
                      - Re (logderiv zeta (b x))) \{1..\} by auto
       hence - Re (logderiv zeta (b x)) = (\sum 'n \ge 1. mangoldt_real n * n nat_powr (-b x))
        by (intro has_sum_imp_has_subsum subsumI)
       also have ... = (\sum 'n \ge 1. \ mangoldt\_real \ n \ / \ n \ nat\_powr \ (b \ x))
        by (intro subsum_cong) (auto simp add: powr_minus_divide)
       finally show ?thesis by auto
     qed
     also have ... \leq |Re\ (logderiv\ zeta\ (b\ x))| by auto
     also have ... \leq \|logderiv\ zeta\ (b\ x)\| by (rule\ abs\_Re\_le\_cmod)
     also have ... \leq 5 / 4 * (1 / (b x - 1))
       by (rule logderiv_zeta_bound) (use Hb in auto)
     also have ... = B x unfolding b\_def B\_def by auto
     finally show ?thesis.
   qed
   hence \forall F \ x \ in \ at\_top. \ 1 < b \ x \land b \ x \leq 23 \ / \ 20 \longrightarrow ?P \ x \ by \ auto
   moreover have \forall_F \ x \ in \ at\_top. \ b \ x \leq 23 \ / \ 20 \ unfolding \ b\_def \ by \ real\_asymp
   ultimately show ?thesis using Hb by eventually elim auto
 qed
 ultimately have \forall_F \ x \ in \ at\_top.
   ||sum\_upto\ (fds\_nth\ (fds\ mangoldt\_complex))\ x-1\ /\ (2*pi*i)
     * contour\_integral\ (P_2\ x)\ (\lambda s.\ eval\_fds\ (fds\ mangoldt\_complex)\ s*x\ powr\ s\ /\ s)\| \le R\ x
   unfolding R_def P_2_def z_2_def z_3_def
   by eventually_elim (rule perron_formula(2))
 moreover have \forall F x \text{ in at\_top. } sum\_upto (fds\_nth (fds mangoldt\_complex)) x = \psi x \text{ for } x :: real
   unfolding primes_psi_def sum_upto_def by auto
 moreover have
    contour\_integral\ (P_2\ x)\ (\lambda s.\ eval\_fds\ (fds\ mangoldt\_complex)\ s*x\ powr\ s\ /\ s)
   = contour\_integral\ (P_2\ x)\ (\lambda s. - (x\ powr\ s\ /\ s*logderiv\ zeta\ s))
   when 1 < b x for x
 proof (rule contour integral eq, goal cases)
   case (1 s)
   hence Re \ s = b \ x \ \text{by} \ (rule \ Re\_path\_P_2)
   hence eval\_fds (fds mangoldt\_complex) s = -deriv zeta s / zeta s
     by (intro eval fds mangoldt) (use that in auto)
   thus ?case unfolding logderiv_def by (auto simp add: field_simps)
 qed
 hence \forall F x in at\_top. 1 < b x \longrightarrow
     contour\_integral\ (P_2\ x)\ (\lambda s.\ eval\_fds\ (fds\ mangoldt\_complex)\ s*x\ powr\ s\ /\ s)
   = contour\_integral\ (P_2\ x)\ (\lambda s. - (x\ powr\ s\ /\ s*logderiv\ zeta\ s))
   using Hb by (intro eventuallyI) blast
 ultimately have \forall_F \ x \ in \ at \ top.
   \|\psi x - 1 / (2 * pi * i) * contour integral (P_2 x) (\lambda s. - (x powr s / s * logderiv zeta s))\| \le R x
   using Hb by eventually elim auto
 thus ?thesis unfolding f def
   by eventually_elim (auto simp add: contour_integral_neg)
qed
```

```
lemma estimation perron psi:
  (\lambda x. \|\psi x + 1 / (2 * pi * i) * contour\_integral (P_2 x) (f x)\|) \in Rc
proof -
 have (\lambda x. \|\psi x + 1 / (2 * pi * i) * contour\_integral (P_2 x) (f x)\|) \in O(R)
   by (intro eventually_le_imp_bigo' perron_psi)
 moreover have R \in Rc by (rule estimation_R)
 ultimately show ?thesis unfolding Rc_def by (rule landau_o.big_trans)
ged
theorem prime_number_theorem:
  PNT_{3} (c / 2 - 2 * \varepsilon) (1 / 2) 0
proof -
 define r where r x \equiv
     \|\psi x + 1 / (2 * pi * i) * contour\_integral (P_2 x) (f x)\|
   + \parallel 1 \mid (2 * pi * i) * contour\_integral (P_2 x) (f x) + x \parallel  for x
 have \|\psi x - x\| \le r x for x
 proof -
   have \|\psi \ x - x\| = \|(\psi \ x :: complex) - x\|
     by (fold dist_complex_def, simp add: dist_real_def)
   also have ... \leq \|\psi x - - 1 / (2 * pi * i) * contour\_integral (P_2 x) (f x)\|
     + \|x - - 1 / (2 * pi * i) * contour\_integral (P_2 x) (f x) \|
     by (fold dist_complex_def, rule dist_triangle2)
   finally show ?thesis unfolding r\_def by (simp add: add_ac)
 qed
 hence (\lambda x. \ \psi \ x - x) \in O(r) by (rule le imp bigo)
 moreover have r \in Rc
   unfolding r\_def Rc\_def
   by (intro sum_in_bigo, fold Rc_def)
      (rule\ estimation\_perron\_psi,\ rule\ estimation\_P_2)
 ultimately show ?thesis unfolding PNT_3_def
   by (subst Rc_eq_rem_est [symmetric], unfold Rc_def)
      (rule\ landau\_o.big\_trans)
qed
no_notation primes_psi(\psi)
end
unbundle prime counting notation
theorem prime_number_theorem:
 shows (\lambda x. \pi x - Li x) \in O(\lambda x. x * exp(-1 / 3653 * (ln x) powr(1 / 2)))
 define c :: real where c \equiv 1 / 1826
 define \varepsilon :: real where \varepsilon \equiv 1 / 26681512
 interpret z: prime\_number\_theorem c \varepsilon
   unfolding c\_def \ \varepsilon\_def by standard \ (auto \ simp: \ C_4\_def)
 have PNT_3 (c / 2 - 2 * \varepsilon) (1 / 2) 0 by (rule z.prime_number_theorem)
 hence PNT_1 (c / 2 - 2 * \varepsilon) (1 / 2) 0 by (auto intro: PNT_3_imp_PNT_1)
 thus (\lambda x. \ \pi \ x - Li \ x) \in O(\lambda x. \ x * exp \ (-1 \ / \ 3653 * (ln \ x) \ powr \ (1 \ / \ 2)))
   unfolding PNT 1 def rem est def c def \varepsilon def
   by (rule landau_o.big.ev_eq_trans1, use ln_ln_asymp_pos in eventually_elim)
      (auto intro: eventually_at_top_linorderI [of 1] simp: powr_half_sqrt)
qed
```