Prime Number Theorem with Remainder Term

Shuhao Song and Bowen Yao
May 8, 2024

Abstract

We have formalized the proof of the Prime Number Theorem with remainder term. This is
the first formalized version of PNT with an explicit error term.

There are many useful results in this AFP entry.

First, the main result, prime number theorem with remainder:

7(z) = Li(z) + O (:c exp (—\/@/3653))

Second, the zero-free region of the Riemann zeta function:

¢(B+iv) #0 when 8> 1 (log(|y| +2))~"

952320

Moreover, we proved a revised version of Perron’s formula, together with the zero-free region
we can prove the main result.

Contents

1 Auxiliary library for prime number theorem
1.1 Zeta function
1.2 Logarithm derivatives
1.3 Lemmas of integration and integrability
1.4 Lemmas on asymptotics L
1.5 Lemmas of floor, ceil and nat_powro
1.6 Elementary estimation of exp and In
1.7 Miscellaneous lemmas

2 Implication relation of many forms of prime number theorem

3 Some basic theorems in complex analysis
3.1 Introduction rules for holomorphic functions and analytic functions
3.2 Factorization of analytic function on compact region.
3.2.1 Auxiliary propositions for theorem analytic_factorization
3.3 Schwarz theorem in complex analysis
3.4 Borel-Carathedory theorem
3.5 Lemma 3.9 L e

4 Zero-free region of zeta function

5 Perron’s formula

¢(s)
¢(s)

6 Estimation of the order of

14

21
21
22
24
27
28
30

36

58

77

7 Deducing prime number theorem using Perron’s formula
theory PNT Notation
imports
Prime_ Number__Theorem.Prime__ Counting_Functions
begin

definition PNT const_Cy = 1 | 952320 :: real

abbreviation nat_powr
(infixr nat’_powr 80)
where
n nat_powr r = (of _nat n) powr x

bundle pnt_notation

begin

notation PNT _const_C7 (C1)
notation norm (||_||)
notation Suc (_4 [101] 100)
end

bundle no_pnt_notation

begin

no_ notation PNT const_C; (Cy)
no__notation norm (||_||)
no__notation Suc (__ 4 [101] 100)
end

end
theory PNT Remainder Library
imports
PNT Notation
begin
unbundle pnt_notation

1 Auxiliary library for prime number theorem

1.1 Zeta function

lemma pre_zeta_1_bound:
assumes 0 < Re s
shows ||pre_zeta 1 s|| < ||s|| / Re s
proof —
have ||pre_zeta 1 s|| < ||s|| / (Re s * 1 powr Re s)
by (rule pre_ zeta__bound’) (use assms in auto)

also have ... = ||s|| / Re s by auto
finally show ?thesis .
qged

lemma zeta_ pole_eq:
assumes s # 1
shows zeta s = pre_zeta 1 s+ 1/ (s — 1)
proof —
have zeta s — 1 / (s — 1) = pre_zeta 1 s by (intro zeta__minus__pole__eq assms)
thus ?thesis by (simp add: field__simps)
qed

definition zeta’ where zeta’ s = pre_zeta 1 s x (s — 1) + 1

lemma zeta’ analytic:
zeta' analytic_on UNIV
unfolding zeta’ _def by (intro analytic_intros) auto

lemma zeta’ _analytic_on [analytic__intros]:
zeta' analytic_on A using zeta' _analytic analytic _on_subset by auto

lemma zeta’ _holomorphic__on [holomorphic__intros]:
zeta' holomorphic_on A using zeta’ _analytic_on by (intro analytic_imp__holomorphic)

lemma zeta eq zeta”:

zeta s = zeta' s | (s — 1)
proof (cases s = 1)

case True thus ?thesis using zeta 1 unfolding zeta’ def by auto
next

case Fualse with zeta_pole_eq [OF this)

show ?thesis unfolding zeta’ def by (auto simp add: field__simps)
qed

lemma zeta’ 1 [simp]: zeta’ 1 = 1 unfolding zeta’ def by auto

lemma zeta eq zero iff zeta”:
shows s # 1 = zeta' s = 0 «—— zeta s = 0
using zeta__eq_zeta’ [of s| by auto

lemma zeta’ eq zero_ iff:
shows zeta’ s = 0 «—— zeta s = 0 N\ s # 1
by (cases s = 1, use zeta__eq zero_iff zeta’ in auto)

lemma zeta eq zero iff:
shows zeta s = 0 «—— zeta’ s =0V s = 1
by (subst zeta’ _eq zero_iff, use zeta__1 in auto)

1.2 Logarithm derivatives

definition logderiv f x = deriv fz | fx
definition log_ differentiable
(infixr (log’_differentiable) 50)
where
[log__differentiable x = (f field_differentiable (at x)) A fz # 0

lemma logderiv_prod":
fixes f :: 'n = 'f = 'f :: real_normed_ field
assumes fin: finite 1
and lder: N\i. i € I = f i log_ differentiable a
shows logderiv (Az. [[i€l. fizx) a = ()] i€l. logderiv (f i) a) (is ?P)
and (Az. [[4€l. fiz) log_differentiable a (is Q)
proof —
let %a = \i. deriv (f i) a
let b = Ai. [[jel — {i}. fja
let 2c = MXi. fia
let 7d = []i€l. ?c i
have der: \i. i € I = [i field_differentiable (at a)

3

and nz: N\i. i€l = fia# 0
using [der unfolding log differentiable__def by auto
have 1: (x) z = (\y. y x z) for z :: 'f by auto
have ((Az. [[¢€l. fi x) has_derivative
(Ay. dDJi€l. Za i % y x2b 1)) (at a within UNIV)
by (rule has_derivative__prod, fold has_field__derivative__def)
(rule field_differentiable__derivl, elim der)
hence 2: DERIV (Az. [[i€l. fiz) a:> (D i€l. %ai* ?b 1)
unfolding has_field derivative def
by (simp add: sum__distrib__left [symmetric] mult_ac)
(subst 1, blast)
have prod_nz: ([[i€l. %c i) # 0
using prod_ zero__iff nz fin by auto
have mult_cong: b = c = a % b= a % c for a b c :: real by auto
have logderiv (Az. [[i€l. fiz) a = deriv (A\z. [[i€l. fiz)a/ ?2d
unfolding logderiv_def by auto

also have ... = (> iel. %aix* ?b i)/ ?d
using 2 DERIV__imp_ deriv by auto

also have ... = (> i€l. %a i x (?b i/ ?d))
by (auto simp add: sum__divide__distrib)

also have ... = (> i€l. logderiv (f i) a)

proof —

have Aabc:'f.a# 0= a=bxc= ¢/ a= inverse b
by (auto simp add: field _simps)
moreover have ?d = %c ¢ x ?b i if i € I for i
by (intro prod.remove that fin)
ultimately have b i / ?d = inverse (?c i) if i € I for ¢
using prod_nz that by auto
thus ?thesis unfolding logderiv_def using 2
by (auto simp add: divide inverse intro: sum.cong)
qed
finally show 2P .
show ?Q by (auto
simp: log_differentiable_def field_differentiable def
introl: 2 prod_nz)
qed

lemma logderiv_prod:
fixes f :: 'n = 'f = 'f :: real_normed_ field
assumes lder: N\i. i € [= f i log_ differentiable a
shows logderiv (Az. [[i€l. fizx) a = (). i€l. logderiv (f i) a) (is ?P)
and (Az. [[4€l. fiz) log_differentiable a (is Q)
proof —
consider finite I | infinite I by auto
hence ?P A ?Q)
proof cases
assume fin: finite 1
show ?thesis by (auto intro: logderiv_prod’ lder fin)
next
assume nfin: infinite 1
show ?thesis using nfin
unfolding logderiv_def log differentiable def by auto
qged
thus ?P ?Q) by auto
ged

lemma logderiv_mult:
assumes f log differentiable a
and g log_ differentiable a
shows logderiv (\z. fz x g z) a = logderiv f a + logderiv g a (is ?P)
and (\z. f z % g z) log_differentiable a (is 7Q))
proof —
have logderiv (A\z. fz % g z) a
= logderiv (Az. [[i€{0, 1}. ([f, g]'7) 2) a by auto

also have ... = (> i€{0, 1}. logderiv (If, g]'i) a)
by (rule logderiv_prod(1), use assms in auto)
also have ... = logderiv f a + logderiv g a
by auto

finally show ¢P .
have (\z. [[i€{0, 1}. ([f, 9]'i) 2) log_differentiable a
by (rule logderiv_prod(2), use assms in auto)
thus ?Q) by auto
qed

lemma logderiv_cong__ev:
assumes Vp zinnhdsz. fx = g x

and z = y
shows logderiv f © = logderiv g y
proof —

have deriv f z = deriv g y using assms by (rule deriv_cong_ev)
moreover have f 1z = g y using assms by (auto intro: eventually nhds_z_imp_x)
ultimately show ?thesis unfolding logderiv_def by auto

qed

lemma logderiv_linear:
assumes z # a
shows logderiv (Aw. w — a) z=1 / (z — a)
and (Aw. w — 2) log__differentiable a
unfolding logderiv__def log__differentiable__def
using assms by (auto simp add: derivative_intros)

lemma deriv_shift:
assumes [field_differentiable at (a + x)
shows deriv (At. f (a + t)) = deriv f (a +)
proof —
have deriv (f o (At. a + t)) = deriv f (a + z)
by (subst deriv_chain) (auto intro: assms)
thus ?thesis unfolding comp def by auto
qged

lemma logderiv_shift:
assumes [field_differentiable at (a + x)
shows logderiv (At. f (a + t)) x = logderiv f (a + z)
unfolding logderiv_def by (subst deriv_shift) (auto intro: assms)

lemma logderiv_inverse:
assumes z # 0
shows logderiv (A\z. 1 /z)x=— 1/ x
proof —
have deriv (\z. 1 / z) = (deriv (\z. 1) o % © — 1 * deriv (\z. 1) z) / 2°

by (rule deriv_divide) (use assms in auto)

hence deriv (Az. 1 / 1) x = — 1 / 2° by auto
thus ?thesis unfolding logderiv_def power2 eq square using assms by auto

qged

lemma logderiv_zeta__eq zeta”:
assumes s # 1 zeta s # 0
shows logderiv zeta s = logderiv zeta’ s — 1 |/ (s — 1)

proof —
have logderiv zeta s = logderiv (As. zeta’ s * (1 [/ (s — 1))) s

using zeta__eq zeta’ by auto metis
also have ... = logderiv zeta’ s + logderiv (A\s. 1 / (s — 1)) s

proof —
have zeta’ s # 0 using assms zeta__eq zero_iff zeta' by auto

hence zeta’ log differentiable s

unfolding log differentiable_ def
by (intro conjI analytic__on__imp__differentiable__at)

(rule zeta' _analytic, auto)
moreover have (\z. 1 / (z — 1)) log_ differentiable s

unfolding log_ differentiable_def using assms(1)

by (intro derivative_intros conjl, auto)
ultimately show ?thesis using assms by (intro logderiv_mult(1))

ged

also have logderiv (As. 1 / (— 1 + s)) s = logderiv (As. 1 / s) (— 1 + s)

by (rule logderiv_shift) (insert assms(1), auto intro: derivative_intros)
=—1/(—-1+5s)

moreover have ...
by (rule logderiv_inverse) (use assms(1) in auto)

ultimately show ?thesis by auto

qed

lemma analytic_logderiv [analytic__intros]:
assumes [analytic_ on A Nz. 2z € A = fz# 0

shows (As. logderiv f s) analytic_on A
using assms unfolding logderiv_def by (intro analytic__intros)

1.3 Lemmas of integration and integrability

lemma powr__has__integral:

fixes a b w :: real
assumes Hab: o < band Hw: w > 0 N w # 1
shows ((Az. w powr z) has_integral w powr b / In w — w powr a / In w) {a..b}

proof (rule fundamental _theorem__ of calculus)

show a < b using assms by auto

next
fix z assume z € {a..b}
have ((Az. exp (z * In w)) has_vector_derivative exp (z * In w) * (1 * In w)) (at x within {a..b})

by (subst has_real__derivative_iff _has_vector_derivative [symmetric])

(rule derivative__intros DERIV__cmult__right)+
hence ((powr) w has_vector__derivative w powr z * In w) (at x within {a..b})

unfolding powr_def using Hw by (simp add: DERIV_fun__exp)

moreover have In w # 0 using Hw by auto
ultimately show ((Az. w powr = / In w) has_vector_derivative w powr) (at x within {a..b})

by (auto intro: derivative__eq intros)

qed

lemma powr_integrable:

fixes a b w :: real
assumes Hab: ¢ < band Hw: w > 0 N w # 1
shows (Az. w powr z) integrable_on {a..b}
by (rule has_integral_integrable, rule powr__has__integral)
(use assms in auto)

lemma powr_integral _bound_gt 1:
fixes a b w :: real
assumes Hab: a < b and Hw: w > 1
shows integral {a..b} (Az. w powr) < w powr b / |ln w|
proof —
have integral {a..b} (Az. w powr) = w powr b / In w — w powr a / In w
by (intro integral _unique powr _has_integral) (use assms in auto)

also have ... < w powr b / |In w| using Hw by auto
finally show ?thesis .
qed

lemma powr_integral _bound_ It 1:
fixes a b w :: real
assumes Hab: a < band Hu: 0 < w A w < 1
shows integral {a..b} (Az. w powr z) < w powr a / |In w|
proof —
have integral {a..b} (Az. w powr) = w powr b / In w — w powr a / In w
by (intro integral _unique powr _has_integral) (use assms in auto)
also have ... < w powr a / |ln w| using Hw by (auto simp add: field _simps)
finally show ?thesis .
qed

lemma set_integrablel bounded:
fixes f :: 'a = 'b::{banach, second__countable__topology}
shows A € sets M
= (\z. indicator A x g fx) € borel_measurable M
= emeasure M A < oo
= (AEzin M.z € A — norm (fz) < B)
= set_integrable M A f
unfolding set integrable__def
by (rule integrablel _bounded__set|where A=A|) auto

lemma integrable_cut”:
fixes a b ¢ :: real and f :: real = real
assumes a < bbb <c¢
and Hf: N\z. a < z = f integrable_on {a..z}
shows f integrable_on {b..c}
proof —
have a < ¢ using assms by linarith
hence f integrable _on {a..c} by (rule Hf)
thus ?thesis by
(rule integrable__subinterval__real)
(subst subset_iff, (subst atLeastAtMost iff)+,
blast intro: <a < by order_trans [of a b))
qed

lemma integration_ by _part’”:
fixes a b :: real
and f g :: real = 'a :: {real_normed_field, banach}

and f' ¢/ :: real = a
assumes a < b
and Az. z € {a..b} = (f has_vector_derivative f' z) (at x)
and Az. z € {a..b} = (g has_vector_derivative g’ z) (at x)
and int: (A\z. fx x ¢’) integrable_on {a..b}
shows ((Az. f' x x g x) has_integral
fbxgb— faxga — integral{a..b} (\z. fz x g’ x)) {a..b}
proof —
define prod where prod = (x) : 'a = 'a = 'a
define y where y = fb* gb — fa * g a — integral{a..b} (\z. fz * g’)
have 0: bounded_bilinear prod unfolding prod_ def
by (rule bounded__bilinear _mult)
have 1: ((A\z. fz % ¢’) has_integral fbx gb — fa * g a — y) {a..b}
using y_def and int and integrable_integral by auto
note 2 = integration__by_ parts
[where y = y and prod = prod, OF 0, unfolded prod__def]
have continuous_on {a..b} f continuous_on {a..b} g
by (auto intro: has_vector_derivative__continuous
has_wvector derivative__at_within assms
sitmp: continuous__on__eq__continuous__within)
with assms and 1 show ?thesis by (fold y_def, intro 2) auto
qed

lemma integral_bigo:
fixes a :: real and f g :: real = real
assumes [bound: f € O(g)
and Hf: Az. a <z = fintegrable_on {a..zr}
and Hf" Az. a < z = (A\z. |f z|) integrable_on {a..x}
and Hg" N\z. a < © = (Az. |g z|) integrable_on {a..z}
shows (Az. integral{a..x} f) € O(A\z. 1 + integral{a..z} (\z. |g z|))
proof —
from «f € O(g)> obtain ¢ where Vp x in at_top. |fz| < ¢ * |g z|
unfolding bigo_def by auto
then obtain N':: real where asymp: An. n>N' = |fn| < ¢ x |g n|
by (subst (asm) eventually__at_top_ linorder) (blast)
define N where N = maz a N’
define I where I = |integral {a..N} f|
define J where J = integral {a..N} (A\z. |g z|)
define ¢’ where ¢’ = maz (I + J * |c|) |¢|
have A\z. N < z = |integral {a..z} f|
< ¢’ x |1 + integral {a..x} (A\z. |g z]|)]
proof —
fix z :: real
assume 1: N < z
define K where K = integral {a..x} (A\z. |g z|)
have 2: a < N unfolding N_def by linarith
hence 3: a < z using 1 by linarith
have nnegs: 0 <10 < J0 <K
unfolding I def J def K_def using 1 2 Hg'
by (auto intro!: integral _nonneg)
hence abs eq: |I| =1 |J| =J |K| =K
using nnegs by simp+
have int|f|: (A\z. |f z|) integrable_on {N..z}
using 2 1 Hf' by (rule integrable_cut’)
have intf: f integrable_on {N..z}

using 2 1 Hf by (rule integrable cut’)
have Az. a < z = (A\z. ¢ x |g z|) integrable _on {a..x}
by (blast intro: Hg' integrable__cmul [OF Hg', simplified))
hence intc|g|: (Az. ¢ * |g z|) integrable_on {N..z}
using 2 1 by (blast intro: integrable__cut’)
have |integral {a..x} f| < I + |integral {N..z} f|
unfolding I def
by (subst Henstock_Kurzweil Integration.integral _combine
[OF 2 1 Hf [of x|, THEN sym])
(rule 3, rule abs_triangle ineq)
also have ... < I + integral {N..z} (Az. |f z|)
proof —
note integral_norm__bound__integral [OF intf int|f]|]
then have |integral {N..x} f| < integral {N..x} (Az. |f z|) by auto
then show ?thesis by linarith
qed
also have ... < I + ¢ x integral {N..z} (A\z. |g z|)
proof —
have 1: N’ < N unfolding N def by linarith
hence Ay :: real. N <y = |fy| < ¢ * |g y|
proof —
fix y :: real
assume N < y
thus [fy| < c * [g y|
by (rule asymp [OF order_trans [OF 1]])
qed
hence integral {N..z} (Az. |f z|) < integral {N..x} (A\z. ¢ * |g z|)
by (rule integral_le [OF int|f| intc|g|]) simp
thus ?thesis by simp
qed
also have ... < I + |c| * (J + integral {a..x} (Az. ||g z|]))
proof —
note Henstock Kurzweil Integration.integral _combine [OF 2 1 Hg' [of z]]
hence K_min_J: integral {N..x} (A\z. |gz|) = K — J
unfolding J def K def using 3 by auto
have ¢ x (K — J) < |¢| * (J + K) proof —
have ¢ x (K — J) < |c x (K — J)| by simp
also have ... = |¢| x |K — J| by (simp add: abs_mult)
also have ... < |¢| * (|J| + |K]|) by (simp add: mult_left _mono)
finally show ?%thesis by (simp add: abs__eq)

qed
thus ?thesis by simp (subst K_min__J, fold K__def)
qed
also have ... = (I + J * |c|) + || * integral {a..z} (\z. |g z|)

by (simp add: field _simps)
also have ... < ¢/ + ¢’ x integral {a..z} (\z. |g z|)
proof —

have I + J x |¢| < ¢’ unfolding ¢’ _def by auto

thus ?thesis unfolding ¢’ def

by (auto introl: add_mono mult_mono integral _nonneg Hg' 3)

qed
finally show |integral {a..xz} f|

< ¢’ x |1 + integral {a..x} (Az. |g z]|)]

by (simp add: integral _nonneg Hg' 3 field _simps)

qed

note 0 = this
show ?thesis proof (rule eventually mono [THEN bigol])
show V px in at_top. N < z by simp
show Az. N < 2z = ||integral {a..x} f|| < ¢’ *
|1 + integral {a..z} (Az. |g z|)| by (simp, rule 0)
qed
qed

lemma integral linepath__same__Re:
assumes Ha: Re a = Re b
and Hb: Im a < Im b
and Hf: (f has__contour_integral z) (linepath a b)
shows ((At. f (Complex (Re a) t) * i) has_integral) {Im a..Im b}
proof —
define path where path = linepath a b
define ¢ d e g where c = Reaand d =Imaand e=Imband g=¢e — d
hence [simp]: a = Complex ¢ d b = Complex ¢ e by auto (subst Ha, auto)
have hg: 0 < g unfolding ¢ def using Hb by auto
have [simp]: a *g z = a % z for a and z :: complex by (rule complex_eql) auto
have ((At. f (path t) * (b — a)) has_integral x) {0..1}
unfolding path_def by (subst has__contour__integral linepath [symmetric]) (intro Hf)
moreover have path t = Complex ¢ (g xg t + d) for ¢
unfolding path_def linepath__def g def
by (auto simp add: field _simps legacy__Complex__simps)
moreover have b — a = ¢ *x i
unfolding g def by (auto simp add: legacy__Complex__simps)
ultimately have
((At. f (Complex ¢ (g xg t + d)) * (g * 1)) has_integral g x x /r g = DIM(real))
(cboz (d — d) /n 9) ((¢ — d) /r 9))
by (subst (6) g_def) (auto simp add: field _simps)
hence ((At. f (Complex ¢ t) x 1 x g) has_integral z * g) {d..e}
by (subst (asm) has_integral__affinity_iff)
(auto simp add: field__simps hg)
hence ((At. f (Complex c t) xix g * (1 / g)) has_integral z x g x (1 / g)) {d..e}
by (rule has_integral _mult_left)
thus ?thesis using hg by auto
qed

1.4 Lemmas on asymptotics

lemma eventually at_top_linorderI”:
fixes ¢ :: ‘a :: {no__top, linorder}
assumes h: A\z. c <z = Pz
shows eventually P at_top
proof (rule eventually mono)
show V g x in at_top. ¢ < = by (rule eventually gt _at_top)
from h show Az. c <z = Pux.
qed

lemma eventually le _imp_bigo:
assumes Vp zin F. |[fz|| < gz
shows f € O[F]|(g)
proof —
from assms have Vp xzin F. ||fz|| < 1 * ||g z|| by eventually__elim auto
thus ?thesis by (rule bigol)
qed

10

lemma eventually le_imp bigo”
assumes Vp zin F. |[fz|| < gz
shows (\z. [=) € O[F)(g)
proof —
from assms have Vp xzin F. ||||fz|||| < 1 * ||g z||
by eventually elim auto
thus ?thesis by (rule bigol)
ged

lemma le_imp_bigo:
assumes Az. ||fz|| < gz
shows f € O[F](g)

by (intro eventually le _imp__bigo eventuallyl assms)

lemma le_imp_bigo”:
assumes Az. ||fz|| < gz
shows (\a. ||f z])) € O[F)(g)
by (intro eventually le imp bigo’ eventuallyl assms)

lemma exp_bigo:
fixes f g :: real = real
assumes Vg zin at_top. fzr < gz
shows (A\z. ezp (fz)) € O(Az. exp (g x))

proof —
from assms have V p x in at_top. exp (f x) < exp (g x) by simp
hence V r z in at_top. ||exp (fz)|| < 1 * ||exp (g z)|| by simp
thus ?thesis by blast

qed

lemma ev_le imp_exp bigo:
fixes f g :: real = real
assumes hf: Vp x in at_top. 0 < fz
and hg: Vp zin at_top. 0 < gz
and le: Vg zin at_top. In (fz) < In (g x)
shows [€ O(yg)
proof —
have Vr z in at_top. exp (In (fz)) < exp (In (g z))
using le by simp
hence Vr z in at_top. ||[fz| < 1 * |g x|
using hf hg by eventually elim auto
thus ?thesis by (intro bigol)
qed

lemma smallo_In_ diverge_1:
fixes f :: real = real
assumes [_In: f € o(ln)
shows LIM z at_top. © x exp (— fx) :> at_top
proof —
have (A\z. In x — fz) ~[at_top] (\z. In x)
using assms by (simp add: asymp__equiv__altdef)
moreover have filterlim (Az. In x :: real) at_top at_top
by real__asymp
ultimately have filterlim (Az. In x — fx) at_top at_top
using asymp__equiv__at__top__transfer asymp__equiv__sym by blast

11

hence filterlim (Az. exp (In x — fx)) at_top at_top
by (rule filterlim__compose[OF exp__at_top))
moreover have YV z in at_top. exp (lnx — fx) = x * exp (— f)
using eventually gt _at_top|of 0]
by eventually _elim (auto simp: exp_ diff exp__minus field__simps)
ultimately show ?thesis
using filterlim__cong by fast
qed

lemma In_In_asymp_pos: ¥V g x :: real in at_top. 0 < In (In z) by real__asymp
lemma In_asymp_pos: Vg x :: real in at_top. 0 < In x by real__asymp
lemma z_asymp_pos: Vg x :: real in at_top. 0 < z by auto

1.5 Lemmas of floor, ceil and nat_powr

lemma nat_le_ self: 0 < x = nat (int z) < z by auto
lemma floor_le: Az :: real. |z| < z by auto
lemma ceil _ge: Az :: real. x < [z] by auto

lemma nat It real iff:
(n :: nat) < (a :: real) = (n < nat [a])

proof —
have n < a = (of int n < a) by auto
also have ... = (n < [a]) by (rule less_ceiling iff [symmetric])
also have ... = (n < nat [a]) by auto
finally show ?thesis .
qed

lemma nat_le_real iff:
(n = nat) < (a:: real) = (n < nat (la] + 1))

proof —
have n < a = (of _int n < a) by auto
also have ... = (n < |a]) by (rule le_floor__iff [symmetric])
also have ... = (n < |a] + 1) by auto
also have ... = (n < nat (|a] + 1)) by auto
finally show ?thesis .
qed

lemma of real_nat_power: n nat_powr (of _real x :: complex) = of _real (n nat_powr z) for n x
by (subst of _real_of nat_eq [symmetric])
(subst powr_of _real, auto)

lemma norm__nat_power: ||n nat_powr (s :: complex)|| = n powr (Re s)
unfolding powr_def by auto

1.6 Elementary estimation of exp and In

lemma In_when_ge 3:
1 <lnzif 8 <z for z :: real
proof (rule ccontr)
assume - 1 < In z
hence ezp (In z) < exp 1 by auto
hence z < exp 1 using that by auto
thus Fulse using e less 272 that by auto
qed

12

lemma exp_lemma_1:
fixes z :: real
assumes 1 < z
shows 1 + exp z < exp (2 * z)
proof —
let %y = exp x
have In 2 < z using assms In_2_less 1 by auto
hence ezp (In 2) < ?y by (subst exp_le_ cancel _iff)
hence (3 / 2)? < (?y — 1 / 2)? by auto
hence 0 < — 5 / 4 + (?2y — 1 / 2)? by (simp add: power2_eq_square)

also have ... = %2 — %y — 1 by (simp add: power2_eq square field_simps)
finally show ?thesis by (simp add: exp__double)
qed

lemma In_ bound 1:
fixes t :: real
assumes Ht: 0 < ¢
shows In (14 + 4 xt) < 4 xIn (t + 2)

proof —
have In (14 + 4 xt) <In (14 / 2 = (t + 2)) using Ht by auto
also have ... = In 7 + In (t + 2) using Ht by (subst In_mult) auto

also have ... < 3 xIn (t + 2) + In (t + 2) proof —
have (1 :: real) < 2 powr 4 by auto
hence ezp (In (14 :: real)) < exp (4 * In 2)
unfolding powr_def by (subst exp_In) auto
hence In (14 :: real) < 4 * In 2 by (subst (asm) exp_le__cancel iff)
hence in (14 / 2 :: real) < 8 x In 2 by (subst In__div) auto
also have ... < 3 x In (t + 2) using Ht by auto
finally show ?thesis by auto

qed

also have ... = / = In (t + 2) by auto

finally show ?thesis by (auto simp add: field__simps)
qged

1.7 Miscellaneous lemmas

abbreviation fds zeta_complex :: complex fds = fds_zeta

lemma powr mono_ It 1 cancel:
fixes z a b :: real
assumes Hx: 0 < z ANz < 1
shows (z powr a < z powr b) = (b < a)

proof —
have (z powr a < z powr b) = ((z powr —1) powr —a < (z powr —1) powr —b) by (simp add: powr_powr)
also have ... = (—a < —b) using Hz by (intro powr_le__cancel iff) (auto simp add: powr_neg_one)
also have ... = (b < a) by auto
finally show ?thesis .

qed

abbreviation mangoldt real :: _ = real = mangoldt

abbreviation mangoldt _complex :: _ = complex = mangoldt

lemma norm_ fds mangoldt__complez:
An. ||fds_nth (fds mangoldt_complex) n|| = mangoldt_real n by (simp add: fds_nth_fds)

lemma suminf norm__bound:

13

fixes f :: nat = ’a :: banach
assumes summable g
and An. |]l < g n
shows |[suminf f|| < (>_n. g n)
proof —
have *: summable (An. ||f n||)
by (rule summable__comparison__test’ [where g = g])
(use assms in auto)
hence |[suminf f|| < (3 n. ||f n|]) by (rule summable_norm)
also have (>_n. ||[fn|]) < (> n. gn)
by (rule suminf_le) (use assms * in auto)
finally show ?thesis .
qed

lemma Ci_ gt zero: 0 < C71 unfolding PNT const_Ci_ def by auto

unbundle no_pnt_notation

end
theory Relation_of PNTs
imports

PNT _Remainder__Library
begin

unbundle pnt_notation
unbundle prime__counting_notation

2 Implication relation of many forms of prime number the-
orem

definition rem_est :: real = real = real = _ where
rem_est cmn = O\ z. zx exp (—c * In x powr m * In (In x) powr n))

definition Li :: real = real where Li x = integral {2..x} (Az. 1 / In z)
definition PNT 1 where PNT 1 c¢mn = (Az. m © — Li x) € rem_est ¢ m n)
definition PNT 2 where PNT _2cmn = ((Az. 9 x — z) € rem__est ¢ m n)
definition PNT 3 where PNT _3c¢mn = ((Az. ¥ = — z) € rem_est ¢ m n)

lemma rem__est_compare_powr:
fixes ¢ m n :: real
assumes h: 0 < mm < 1
shows (Az. z powr (2 / 3)) € rem_est c m n
unfolding rem__est_def using assms
by (cases ¢ 0 :: real rule: linorder__cases; real _asymp)

lemma PNT 8 imp PNT 2:
fixes ¢ m n :: real
assumes h: 0 < mm < 1 and PNT 8cmn
shows PNT 2c¢mn
proof —
have 1: (A z. ¢z — z) € rem_est c mn
using assms(3) unfolding PNT 3 _def by auto
have (Az. ¥ z — ¢ z) € O(Az. In x * sqrt x) by (rule 1»_minus_ 1 _bigo)
moreover have (\z. In z * sqrt z) € O(Az. x powr (2 / 3)) by real _asymp
ultimately have 2: (Az. ¢ z — ¥ z) € rem_est c m n
using rem__est_compare__powr [OF h, of ¢ n] unfolding rem__est_def

14

by (blast intro: landau__o.big.trans)
have (A\z. Y 2 —z — (Y z — 9 z)) € rem_est c mn
using 1 2 unfolding rem__est_def by (rule sum__in__bigo)
thus ?thesis unfolding PNT 2 def by simp
qed

definition r; where r{ x =72 — Liz for z
definition ro where ro x = 9 x — z for ¢

lemma pi_represent by theta:

fixes z :: real

assumes 2 < ¢

shows m 2 = ¥ z / (In z) + integral {2..2} (A\t. 9 t / (¢ * (In t)?))
proof —

note integral_unique [OF m_conv_v__integral]

with assms show ?thesis by auto
qed

lemma Li integrate by part:
fixes x :: real
assumes 2 < ¢
shows
(Az. 1 / (In 1)?) integrable_on {2..7}
Liz=2xz/(lnx) — 2/ (In2) + integral {2..x} (\t. 1 / (In t)?)
proof —
have (\z. z * (— 1 / (z * (In 1)?))) integrable_on {2..1}
by (rule integrable__continuous__interval)
((rule continuous__intros)+, auto)
hence (Az. — (if z = 0 then 0 else 1 / (In z)?)) integrable_on {2..x}
by simp
moreover have ((At. 1 / In t) has_wvector derivative —1 / (t * (In t)?)) (at t)
when Ht: 2 < tfor ¢
proof —
define a where a = (0« Int — 1 % (1 / t))/(Int = Int)
have DERIV (At. 1 / (Int)) t:> a
unfolding a_ def
proof (rule derivative_intros DERIV__In__divide)+
from Ht show 0 < t by linarith
note In_ gt zero and Ht thus In t # 0 by auto
qed
also have a = —1 / (t * (In t)?)
unfolding a_ def by (simp add: power2__eq square)
finally have DERIV (A\t. 1 / (Int)) t:> —1 / (t % (In t)?) by auto
thus “thesis
by (subst has_real derivative iff _has_vector_ _derivative [symmetric])
qed
ultimately have ((Az. 1 % (1 / In x)) has_integral
zx (1 /Inz)— 2% (1/In2)— integral {2..2} Az. z % (=1 / (z * (In 2)?))))
using «2 < 1 by (intro integration_by_part’) auto
note 3 = this [simplified]
have ((Az. 1 / In x) has_integral (z / Inx — 2 / In 2 + integral {2..2} (M\z. 1 / (In 1)?))) {2..2}
proof —
define a where a t = if t = 0 then 0 else 1 / (In t)? for t :: real
have A\t :: real. t € {2.2} = at =1/ (In t)?

15

unfolding a_ def by auto
hence 4: integral {2..x} a = integral {2..x} (Az. 1 / (In z)?) by (rule integral _cong)
from 3 show Zthesis
by (subst (asm) 4 [unfolded a__def])
qged
thus Liz =z / Inz — 2 / In 2 + integral {2..z} (\t. 1 / (In t)?) unfolding Li_def by auto
show (\z. 1 / (In z)?) integrable_on {2..z}
by (rule integrable _continuous__interval)
((rule continuous__intros)+, auto)
qed

lemma ¢ __integrable:
fixes z :: real
assumes 2 < zx
shows (\t. ¥ t / (t * (In t)?)) integrable_on {2..x}
by (rule m_conv_v__integral [THEN has__integral_integrable], rule assms)

lemma r1_represent by ro:
fixes z :: real
assumes Hzr: 2 < x
shows (At. 7o t / (t * (In t)?)) integrable_on {2..x} (is ?P)
rmr=reox/(Inz)+ 2/ In2 + integral {2..2} (\t. 1o t / (t * (In 1)?)) (is ?Q)
proof —
have 0: N\t. t € {2.0} = (Wt —t))/ (t* (Imt)}) =9t/ (t* (Int)?) — 1/ (Int)?
by (subst diff _divide _distrib, auto)
note integrables = ¥__integrable Li_integrate by _part(1)
let ?D = integral {2..2} (At. 9 t / (t * (In t)?)) —
integral {2..z} (\t. 1 / (In t)?)
have ((At. 9 t / (t * (In t)?) — 1 / (In t)?) has_integral
unfolding ro_ def by
(rule has_integral__diff)
(rule integrables [THEN integrable_integral], rule Hz)+
hence 0: ((A\t. o t / (t * (In t)?)) has_integral
unfolding ro_ def by (subst has_integral _cong [OF 0])
thus ?P by (rule has_integral _integrable)
note ! = 0 [THEN integral unique]
have 2: roz /Inz =Yz /Inx—xz/Inc
unfolding ryo_ def by (rule diff _divide__distrib)
from pi_represent by _theta and Li_integrate_by part(2) and assms
have r z — Liz =9z / Inx
+ dntegral {2..2} (M. 9t / (t * (In t)?))
—(z/Inz— 2 /In2 + integral {2..x} (\t. 1 / (In t)?))
by auto
alsohave ... =roz /Inz+ 2 /In2
+ idntegral {2..x} (\t. ro t / (t * (In t)?))
by (subst 2, subst 1) auto
finally show ?Q) unfolding ri_ def by auto
qed

lemma exp_integral _asymp:
fixes f f' :: real = real
assumes cf: continuous_on {a..} f
and der: A\z. a <z = DERIV fz:> 'z

16

and td: ((A\z. z * f'z) —— 0) at_top
and f _In: f € o(ln)
shows (Az. integral {a..x} (\t. exp (—ft))) ~[at_top] (A\z. z * exp(—f x))
proof (rule asymp__equivl’, rule lhospital_at_top _at_top)
have cont__exp: continuous_on {a..} (At. exp (— f 1))
using cf by (intro continuous__intros)
show YV x in at_top. ((Az. integral {a..x} (At. exp (— f1)))
has__real__derivative exp (— fx)) (at z) (is eventually ?P ?F)
proof (rule eventually at_top linorderl’)
fix v assume 1: a < x
hence 2: a < z by linarith
have 3: (at = within {a..z+1}) = (at x)
by (rule at_within__interior) (auto intro: 1)
show 7P x
by (subst 3 [symmetric|, rule integral _has_real _derivative)
(rule continuous_on__subset [OF cont_exp|, auto intro: 2)
qed
have V r z in at_top. (Az. x % exp (— fx))
has_real _derivative 1 x exp (— fz) + exp (— fz) x (— f' z) * z) (at)
(is eventually ?P ?F)
proof (rule eventually at top linorderl’)
fix v assume 1: a < x
hence 2: (at z within {a<..}) = (at) by (auto intro: at_within__open)
show 7P x
by (subst 2 [symmetric], intro derivative__intros)
(subst 2, rule der, rule 1)
ged
moreover have
I xexp(—fa)+exp(—fa)*(—fz)*xz
=exp (— fz)*x (I —xx f') for z :: real
by (simp add: field__simps)
ultimately show V i z in at_top.
(A\z. z % exp (— fx))
has_real__derivative exp (— fz) * (I — z * f' z)) (at z) by auto
show LIM z at_top. x * exp (— fx) :> at_top
using f _In by (rule smallo_In__diverge_ 1)
have (A\z. 1 / (I —z* f'z)) —— 1 /(1 — 0)) at_top
by ((rule tendsto__intros)+, rule td, linarith)
thus ((\a. enp (- [2) / (exp (= [2) % (1 — 2 % [2))) —— 1) at_top by auto
have ((A\z. I — zx f'z2) —— 1 — 0) at_top
by ((rule tendsto__intros)+, rule td)
hence 0: (Az. 1 — z *x f') —— 1) at_top by simp
hence Vp zinat top. 0 < 1 —xzx f'x
by (rule order_tendstoD) linarith
moreover have Vp z in at_top. 0 < 1 —xzx f 'z — exp (— fz) x (I — z * f'z) # 0 by auto
ultimately show V z z in at_top. exp (— fz) x (I — z* f'x) # 0
by (rule eventually rev_mp)
qed

lemma z__mul exp larger than_ const:
fixes ¢ :: real and g :: real = real
assumes g _In: g € o(In)
shows (Az. ¢) € O(A\z. x * exp(—g z))
proof —
have LIM z at_top. x % exp (— g x) :> at_top

17

using g _In by (rule smallo_In_ diverge_1)
hence YV z in at_top. 1 < z x exp (— g x)
using filterlim__at_top by fast
hence Vi = in at_top. ||c|| * 1 < ||| * ||z * exp (— g z)]|
by (rule eventually rev_mp)
(auto simp del: mult_1_right
introl: eventuallyl mult_left _mono)
thus (Az. ¢ :: real) € O(Az. = x exp (— g x)) by auto
ged

lemma integral_bigo exp”:
fixes a :: real and f g g’ :: real = real
assumes [bound: f € O(Az. exp(—g z))
and Hf: Az. a < z = fintegrable_on {a..z}
and Hf" Az. a < 1z = (\z. |f z|) integrable _on {a..z}
and Hg: continuous_on {a..} ¢
and der: Az.a <z = DERIVgz:> g’z
and td: ((M\z. z * g’ z) —— 0) at_top
and g In: g € o(ln)
shows (\z. integral{a..x}) € O(A\z. z x exp(—g x))
proof —
have Ay. continuous_on {a..y} g
by (rule continuous_on__subset, rule Hg) auto
hence Ay. (A\z. exp(—g x)) integrable_on {a..y}
by (intro integrable__continuous__interval)
(rule continuous__intros)+
hence Ay. (A\z. |exp(—g x)|) integrable_on {a..y} by simp
hence (Az. integral{a..x} f) € O(A\z. 1 + integral{a..x} (Az. |exp(—g z)|))
using assms by (intro integral bigo)
hence (Az. integral{a..z} f) € O(A\z. 1 + integral{a..x} (A\z. exp(—g z))) by simp
also have (\z. 1 + integral{a..xz} (\z. exp(—g x))) € O(A\z. z * exp(—g x))
proof (rule sum__in_ bigo)
show (Az. 1 :: real) € O(Az. z * exp (— g x))
by (intro z_mul__exp_larger _than__const g_In)
show (\z. integral {a..x} (A\z. exp (— g z))) € O(Az. z * exp (— g z))
by (rule asymp__equiv_imp__bigo, rule exp_integral _asymp, auto intro: assms)
qed
finally show ?thesis .
qed

lemma integral bigo_ exp:
fixes a b :: real and f g ¢’ :: real = real
assumes le: a < b
and f bound: f € O(Az. exp(—g x))
and Hf: Az. a <z = fintegrable_on {a..z}
and Hf" Az. b < 2 = (\z. |f z|) integrable_on {b..z}
and Hg: continuous_on {b..} g
and der: A\z. b <z = DERIV gz :> g’z
and td: ((A\z. z x ¢’ 1) —— 0) at_top
and g In:g € o(in)
shows (Az. integral {a..x} f) € O(A\z. © * exp(—g z))
proof —
have (Az. integral {a..b} f) € O(Az. z * exp(—g x))
by (intro x_mul_exp larger than__const g_In)
moreover have (\z. integral {b..x} f) € O(A\z. z x exp(—g x))

18

by (intro integral_bigo__exp’ [where ?g' = ¢]
[_bound Hf Hf' Hg der td g_In)
(use le Hf integrable_cut’ in auto)
ultimately have (\z. integral {a..b} f + integral {b..x} f) € O(Az. z * exp(—g z))
by (rule sum__in__bigo)
moreover have integral {a..x} f = integral {a..b} f + integral {b..x} f when b < z for z
by (subst eq_commute, rule Henstock_Kurzweil _Integration.integral _combine)
(insert le that, auto intro: Hf)
hence V p z in at_top. integral {a..x} f = integral {a..b} f + integral {b..x} f
by (rule eventually at_top_linorderI)
ultimately show ?thesis
by (simp add: landau__0.big.in__cong)
qed

lemma integrate_ro__estimate:
fixes ¢ m n :: real
assumes hm: 0 < mm < 1
and h: ro € rem_est c mn
shows (\z. integral {2..2} (\t. o t / (t * (In t)?))) € rem_est c m n
unfolding rem__est_def
proof (subst mult.assoc,
subst minus_mult_left [symmetric],
rule integral _bigo__exp)
show (2 :: real) < 3 by auto
show (A\z. ¢ x (In z powr m * In (In z) powr n)) € o(ln)
using him by real asymp
have In z # 1 when 3 < z for z :: real
using In_when__ge_ 3 [of z] that by auto
thus continuous_on {3..} (Az. ¢ * (In x powr m * In (In z) powr n))
by (intro continuous_intros) auto
show (\t. ro t / (t * (In t)?)) integrable _on {2..x}
if 2 < z for x using that by (rule r1__represent_by_rq(1))
define g where g z =
c*x (mxInzpowr (m—1)* (1 /zx*1)x*In (Inx) powrn
+ nxln (Inx) powr (n — 1) % (1 /Inzx (1 /x))*Inxpowrm)
for »
show ((Az. ¢ x (In powr m * In (In z) powr n)) has_real_derivative g x) (at x)
if 3 <z for z
proof —
have *: at x within {3<..} = at x
by (rule at_within__open) (auto intro: that)
moreover have
((Az. ¢ * (In powr m * In (In x) powr n)) has_real derivative g x)
(at z within {3<..})
unfolding ¢g def using that
by (intro derivative_intros DERIV_mult DERIV_cmult)
(auto intro: In_when_ge 3 DERIV__In_ divide simp add: *)
ultimately show ?thesis by auto
ged
show ((\z. z * g x) —— 0) at_top
unfolding g def using hm by real asymp
have nz: Vp t :: real in at_top. t * (In t)> # 0
proof (rule eventually at_top linorderl’)
fix © :: real assume 1 < z
thus z * (In)% # 0 by auto

19

ged
define h where h 2 = exp (— ¢ * In x powr m * In (In) powr n) for x
have (\t. 7o t / (t x (In t)?)) € O(A\z. (z x hx) / (z * (In 2)?))
by (rule landau__o.big.divide__right, rule nz)
(unfold h__def, fold rem__est_def, rule h)
also have (\z. (z * hz) / (z * (In 2)?)) € O(\z. h 1)
proof —
have (\z :: real. 1 / (In 2)?) € O(\z. 1) by real_asymp
hence (A\z. hz * (1 / (In 1)?)) € O(\z. hx * 1)
by (rule landau__o0.big.mult_ left)
thus “thesis
by (auto simp add: field_simps
introl: landau__o0.big.ev_eq_trans2)
(auto intro: eventually_at_top_ linorderl [of 1))
qed
finally show (\t. ro t / (t * (In t)?))
€ O(Az. exp (— (¢ * (In z powr m * In (In z) powr n))))
unfolding h_def by (simp add: algebra__simps)
have (\z. ro © / (z * (In 2)?)) absolutely_integrable _on {2..x}
if x:2 < z for z
proof (rule set_integrablel _bounded)
show {2..z} € sets lebesgue by auto
show emeasure lebesgue {2..2} < oo using * by auto
have (\t. o t / (t * (In t)?) indicator {2..x} t) € borel measurable lebesque
using * by (intro integrable__integral
[THEN has__integral__implies__lebesgue__measurable__real))
(rule m1__represent_by_ro(1))
thus (\t. indicat_real {2..x} t xg (ro t / (t x (In t)?))) € borel _measurable lebesgue
by (simp add: mult_ac)
let 2C = (In 4 + 1) / (In 2)? :: real
show AE tc{2..x} in lebesgue. |[ro t / (t * (In t)?)|| < 2C
proof (rule AE_I2, safe)
fix t assume ¢ € {2..2}
hence h: 1 <t 2 <t by auto
hence 0 <9 t N9t < In 4 = t by (auto intro: ¥__upper_bound)
hence *:|¥ t| < In 4 * t by auto
have 1 < Int / In 2 using h by auto
hence 1 < (Int / In 2)? by auto
also have ... = (In t)? / (In 2)? unfolding power2 eq square by auto
finally have 1 < (In t)? / (In 2)% .
hence |ry t| < |U t| + |t| unfolding ro def by auto
also have ... <In 4 %t + 1 * t using h * by auto
also have ... = (In 4 + 1) x t by (simp add: algebra__simps)
alsohave ... < (In 4 + 1) x t = ((Iln t)? / (In 2)?)
by (auto simp add: field__simps)
(rule add_mono; rule rev_mp|OF h(2)], auto)
finally have *:|ry t| < 2C * (t * (In t)?) by auto
thus [|r2 t / (t * (In t)?)]| < 2C
using h * by (auto simp add: field _simps)
qed
ged
hence A\z. 2 < 1 = (\z. |re o / (z * (In 2)?)|) integrable_on {2..x}
by (fold real _norm__def)
(rule absolutely _integrable_on_def [THEN iffD1, THEN conjunct2])
thus A\z. 3 <z = (\z. |r2 2 / (z * (In 2)?)|) integrable_on {3..x}

20

using <2 < & integrable_cut’ by blast
qed

lemma ry div_In__estimate:
fixes ¢ m n :: real
assumes hm: 0 < mm < 1
and h: ro € rem_est c mn
shows (Az. ro x / (Inx) + 2 /In 2) € rem_est c mn
proof —
have (Az. 3 = / In z) € O(r2)
proof (intro bigol eventually__at_top_ linorderl)
fix = :: real assume 1:exp 1 < z
have 2:(0 :: real) < exp 1 by simp
hence 3:0 < z using 1 by linarith
have 4: 0 < |ry z| by auto
have (1 :: real) = In (exp 1) by simp
also have ... < [n z using 1 2 3 by (subst In_le cancel_iff)
finally have 1 < In z .
thus [[re z / Inz| < 1 % |ry z]|
by (auto simp add: field__simps, subst mult_le_cancel_rightl, auto)
qed
with h have 1: (Az. ro x / In z) € rem_est c m n
unfolding rem__est def using landau_o0.big trans by blast
moreover have (Az :: real. 2 / In 2) € O(Az. z powr (2 / 3))
by real__asymp
hence (\z :: real. 2 / In 2) € rem_est c m n
using rem__est_compare__powr [OF hm, of ¢ n]
unfolding rem__est_def by (rule landau__o0.big.trans)
ultimately show ?thesis
unfolding rem__est_def by (rule sum__in_ bigo)
qged

lemma PNT 2 imp PNT 1:
fixes [:: real
assumes h: 0 < mm < 1 and PNT 2cmn
shows PNT 1 c¢cmn
proof —
from assms(3) have h’: ro € rem_est c m n
unfolding PNT 2 def ro_ def by auto
let “a =Xe.roz /Inx+ 2 /1In2
let b = \z. integral {2..x} (A\t. ro t / (t * (In t)?))
have 1:Vp zinat top. mx — Liz = %ax + %bx
by (rule eventually at_top_linorderl, fold ri__def)
(rule r1__represent_by_r2(2), blast)
have 2: (A\z. %a z + %b x) € rem_est c m n
by (unfold rem__est_def, (rule sum__in__bigo; fold rem__est_def))
(intro ro__div_In__estimate integrate_ro__estimate h h')+
from landau__o0.big.in__cong [OF 1] and 2 show ?Zthesis
unfolding PNT 1 def rem__est def by blast
qed

theorem PNT 3 imp PNT 1:
fixes [:: real
assumes h: 0 < mm < 1 and PNT 3cmmn
shows PNT 1 c¢cmn

21

by (intro PNT _2 imp_PNT 1 PNT 3 imp_ PNT _2 assms)

hide__const (open) ry 79
unbundle no_ prime__counting notation
unbundle no_pnt_notation
end
theory PNT _Complex_Analysis Lemmas
imports
PNT _Remainder__Library
begin
unbundle pnt_ notation

3 Some basic theorems in complex analysis

3.1 Introduction rules for holomorphic functions and analytic functions

lemma holomorphic__on__shift [holomorphic__intros):
assumes [holomorphic_on ((Az. s + z) A)
shows (Az. f (s + z)) holomorphic_on A
proof —
have (f o (Az. s + z)) holomorphic_on A
using assms by (intro holomorphic__on__compose holomorphic__intros)
thus ?thesis unfolding comp def by auto
qed

lemma holomorphic_logderiv [holomorphic__intros]:
assumes [holomorphic_on A open A Nz. z€ A = fz# 0
shows (As. logderiv f s) holomorphic_on A
using assms unfolding logderiv__def by (intro holomorphic__intros)

lemma holomorphic_glue to__analytic:
assumes o: open S open T
and hf: f holomorphic_on S
and hg: g holomorphic_on T
and hl: N\z. z€ S=z2€ T = fz=9gz2
and hU: U C SU T
obtains h
where h analytic_on U
Ne.z€eS= hz=fz
Ne.ez€ T= hz=gz
proof —
define h where h z = if z € S then f z else g z for z
show ?thesis proof
have h holomorphic_on S U T
unfolding h_def by (rule holomorphic_on_If Un) (use assms in auto)
thus h analytic_on U
by (subst analytic _on__holomorphic) (use hU o in auto)
next
fix z assume x:z € S
show h z = f z unfolding h_def using * by auto
next
fix z assume x:z € T
show h z = ¢g z unfolding %_ def using * hl by auto
qged
qed

22

lemma analytic_on__powr_right [analytic__intros):
assumes f analytic_on s
shows (Az. w powr f z) analytic_on s
proof (cases w = 0)
case Fulse
with assms show ?thesis
unfolding analytic _on__def holomorphic__on__def field differentiable__def
by (metis (full_types) DERIV _chain’ has__field__derivative__powr_right)
qed simp

3.2 Factorization of analytic function on compact region

definition not_zero_on (infixr not’ zero’ on 46)
where fnot_zero_on S=dz€ S. fz# 0

lemma not_ zero on_ obtain:
assumes fnot_zero_on Sand S C T
obtains t where ft # 0 and t € T
using assms unfolding not_zero on__def by auto

lemma analytic_on__holomorphic__connected:
assumes hf: f analytic_on S
and con: connected A
and ne: £ € Aand AS: AC S
obtains T T’ where
f holomorphic_on T f holomorphic_on T’
open T open T' A C T S C T' connected T
proof —
obtain T’
where oT": open T'and sT" S C T'
and holf”. f holomorphic_on T’
using analytic_on__holomorphic hf by blast
define T where T = connected_component_set T' &
have TT" T C T'unfolding T def by (rule connected__component__subset)
hence holf: f holomorphic_on T using holf’ by auto

have opT: open T unfolding T _def using oT’' by (rule open__connected__component)
have conT: connected T unfolding T def by (rule connected__connected__component)

have A C T’ using AS sT' by blast

hence AT: A C T unfolding T def using ne con by (intro connected__component__maximal)

show ?thesis using holf holf’ opT oT' AT sT' conT that by blast
qed

lemma analytic_factor_zero:
assumes hf: f analytic_on S
and KS: K C S and con: connected K
and (EK: e Kand &z f €= 0
and nz: f not_zero_on K
obtains g r n
where 0 < n 0 <r
g analytic_on S g not_zero_on K
NeezeS=fz=(z—-& nxgz
Nz.z€ballér = gz # 0
proof —
have f analytic_on S connected K
£ € K K C S using assms by auto

23

then obtain T T’
where holf: f holomorphic_on T
and holf": f holomorphic_on T'
and opT: open T and oT": open T’
and KT: K C Tand ST" SC T'
and conT": connected T
by (rule analytic_on__holomorphic__connected)
obtain n where fn: fn# 0 and nK: n € K
using nz by (rule not_zero__on__obtain, blast)
hence (T: €€ Tand €T e T
and nT: n € T using EK nK KT KS ST' by blast+
hence nc: — f constant_on T using fn £z unfolding constant_on_ def by fastforce
obtain g r n
where 71: 0 < nand 2: 0 < r
and bT: ball E r C T
and hg: g holomorphic_on ball £ T
and fu: N\z. z€ ball{ r = fz=(2—-&) “nxgz
and gw: N\z. z€ ball §E r = gz # 0
by (rule holomorphic__factor _zero_nonconstant, (rule holf opT conT £T £z nc)+, blast)
have sT: S C T’ — {&} U ball £ r using 2 ST' by auto
have hz: (M\z. fz / (z — &) ~ n) holomorphic_on (T' — {£})
using holf’ by ((intro holomorphic__intros)+, auto)
obtain h
where 3: h analytic_on S
and hf: Nz. z€e T'—{{} = hz=fz/(z-& ~n
and hb: N\z. z€ ballé r = hz=gz
by (rule holomorphic__glue_to__analytic
[where f = Az. fz / (2 — &) “nand
g=gand S=T'—{¢}and T = ball £ r and U = S))
(use 0T’ 2 ST’ hg fw hz in <auto simp add: holomorphic__intros)
have ¢ € ball ¢ r using 2 by auto
hence h £ # 0 using hb gw 2 by auto
hence 4: h not_zero_on K unfolding not_zero on_ def using (K by auto
have 5: fz2= (2 — &) nxhzif x: z € S for z
proof —
consider z = ¢ | z € § — {£} using * by auto
thus “thesis proof cases
assume *: z = §
show ?thesis using £z 1 by (subst (1 2) *, auto)
next
assume x: z € S — {&}
show ?thesis using hf ST’ x by (auto simp add: field__simps)
qed
qed
have 6: Aw. w € ball £ r = h w # 0 using hb gw by auto
show ?thesis by ((standard; rule 1 2 8 4 5 6), blast+)
qed

lemma analytic_compact_finite_zeros:
assumes af: f analytic_on S
and KS: K C S
and con: connected K
and cm: compact K
and nz: f not_zero_on K
shows finite {z € K. fz = 0}

24

proof (cases f constant_on K)
assume x: f constant_on K
have A\z. z € K = [z # 0 using nz x unfolding not_zero__on_ def constant_on__def by auto
hence *x: {z € K. fz = 0} = {} by auto
thus ?thesis by (subst xx, auto)
next
assume *: - f constant_on K
obtain ¢ where ne: £ € K using not_zero__on__obtain nz by blast
obtain T T’ where opT: open T and conT: connected T
and ST: K C T and holf: f holomorphic_on T
and f holomorphic_on T'
by (metis af KS con ne analytic_on__holomorphic__connected)
have — f constant_on T using ST x unfolding constant on_ def by blast
thus ?thesis using holf opT conT ¢cm ST by (intro holomorphic__compact_finite_zeros)
qed

3.2.1 Auxiliary propositions for theorem analytic factorization

definition analytic _factor p’ where
<analytic_factor _p' f S K =
dg n. Ja 2 nat = complez.
g analytic_on S
NNVzeK.gz+#0)
ANNVzeS fz=gzx ([k<n. z— ak))
ANa ‘{.<n} C K>

definition analytic_factor _p where
<analytic_factor_p F =
VIS K. fanalytic_on S
— KCS§S
— connected K
— compact K
— fnot_zero_on K
—{ze K. fz=0}=F
— analytic_factor_p' f S K>

lemma analytic_factorization E:
shows analytic_ factor_p {}
unfolding analytic_factor _p_ def
proof (intro conjl alll impl)
fix fSK
assume af: f analytic_on S
and KS: K C S
and con: connected K
and cm: compact K
and nz: {z € K. fz= 0} = {}
show analytic_factor_p' f S K
unfolding analytic_factor p’ def
proof (intro balll conjl exl)
show f analytic_on S N\z. 2 € K = fz # 0
Nz.z€S = fz=fzx([[k<(0 :: nat). z — (A_. 0) k)
by (rule af, use nz in auto)
show (\k :: nat. 0) ‘{..<0} C K by auto
ged
qed

25

lemma analytic factorization I:
assumes ind: analytic_factor_p F
and &ni: £ ¢ F
shows analytic_factor_p (insert £ F)
unfolding analytic_factor _p_ def
proof (intro alll impl)
fix fSK
assume af: [analytic_on S
and KS: K C S
and con: connected K
and nz: f not_zero_on K
and cm: compact K
and zr: {z € K. fz= 0} = insert { F
show analytic_factor_p' f S K
proof —
have f analytic _on § K C § connected K
Ee Kf&=20fnot zero_on K
using af KS con zr nz by auto
then obtain h r k
where 0 < k and 0 < r and ah: h analytic_on S
and nh: h not _zero _on K
and f 22 N\z.z€ S = fz=(2-&) " kxhz
and ball: Nz. z € ball §E r = h z # 0
by (rule analytic_factor_zero) blast
hence h¢&: h € # 0 using ball by auto
hence \z. 2€ K = hz=0+«— fz=0 A z # £ by (subst f_z) (use KS in auto)
hence {r ¢ K. hz=0} ={z¢€ K. fz= 0} — {¢} by auto
also have ... = F' by (subst zr, intro Diff _insert_absorb {ni)
finally have {: €¢ K. hz= 0} = F .
hence analytic_factor _p’ h S K
using ind ah KS con cm nh
unfolding analytic_factor _p_ def by auto
then obtain g n and « :: nat = complex
where ag: g analytic_on S and
ng: N\z. 2z € K = gz # 0 and
h_zzNz.2€ S = hz=gzx ([[k<n.z— ak)and
Imo: o “{.<n} C K
unfolding analytic_factor p' def by fastforce
define 3 where 0 j = if j < n then « j else & for j
show ?Zthesis
unfolding analytic_factor p’ def
proof (intro balll conjI exI)
show g analytic_on S Nz. z€ K = gz # 0
by (rule ag, rule ng)
next
fix z assume *: z € §
show fz =gz * ([[j<n+k. z — 5 j)
proof —
have ([[j<n. z — B j) = ([[j<n. z — a j)
(Ilj=n.<n+k. 2z — Bj)=(z—-&) "k
unfolding 3 def by auto
moreover have ([[j<n+k. z — B j) = ([[j<n. z — B j) * ([[j=n..<n+k. z — 5 j)
by (metis Metric_Arith.nnf simps(8) atLeastOLessThan
not__add__less1 prod.atLeastLessThan__concat zero _order(1))
ultimately have ([[j<n+k. z — B j) = (z — &) "k ([[j<n. z — a j) by auto

26

moreover have fz =gz * ((z — &) "k = (J[j<n. z — a j))
by (subst f_z; (subst h_z)?, use * in auto)
ultimately show ?thesis by auto
qed
next
show ‘{..<n + k} C K unfolding §_def using Ima «¢ € K» by auto
qed
qed
ged

A nontrivial analytic function on connected compact region can be factorized as a everywhere-
non-zero function and linear terms z — sq for all zeros so. Note that the connected assumption of K
may be removed, but we remain it just for simplicity of proof.

theorem analytic factorization:
assumes af: f analytic_on S
and KS: K C S
and con: connected K
and compact K
and f not_zero_on K
obtains ¢ n and « :: nat = complex where
g analytic_on S
Ne. z€ K= gz# 0
Ne.z€S = fz=ygzx ([[k<n. (z — ak))
a ‘{.<n} CK
proof —
have «finite {z € K. f z = 0}» using assms by (rule analytic_compact_finite_zeros)
moreover have «<finite F = analytic_factor_p F» for F
by (induct rule: finite_induct; rule analytic_factorization_E analytic__factorization_I)
ultimately have analytic_factor_p {z € K. f z = 0} by auto
hence analytic_factor _p’ f S K unfolding analytic_factor p def using assms by auto
thus ?thesis unfolding analytic factor p’ def using assms that by metis
qed

3.3 Schwarz theorem in complex analysis

lemma Schwarz Lemmal:
fixes f :: complex = complex
and ¢ :: complex
assumes [holomorphic_on ball 0 1

and f0 =0
and A\z. |zl < 1 = ||fz|| £ 1
and ||| < 1

shows || &[] < [|¢]|

proof (cases f constant_on ball 0 1)
assume f constant_on ball 0 1
thus ?thesis unfolding constant__on__def

using assms by auto

next
assume nc: —f constant_on ball 0 1
have A\z. ||z|| < I = ||f || < 1

proof —
fix z :: complex assume x: ||z]| < 1
have ||f z|| # 1
proof
assume ||f z|| = 1

hence Aw. w € ball 0 1 = ||f w|| < ||f 2|

27

using assms(3) by auto
hence f constant_on ball 0 1
by (intro mazimum__modulus_principle [where U = ball 0 1 and & = z])
(use * assms(1) in auto)
thus Fulse using nc by blast

qed
with assms(3) [OF x| show ||f z|| < I by auto
qed
thus ||f £|| < ||&]| by (intro Schwarz _Lemma(1), use assms in auto)
qed

theorem Schwarz Lemma?2:
fixes f :: complex = complex
and & :: complex
assumes holf: f holomorphic_on ball 0 R
and hR: 0 < Rand nz: f0 = 0
and bn: Az ||z]| < R = ||f z|| < 1
and &R: ||€|| < R
shows | €] < i€l / R
proof —
define ¢ where ¢ z = f (R * 2) for z :: complex
have ||¢ / R|| < I using {R hR by (subst nonzero_norm_ divide, auto)
moreover have f holomorphic_on (x) (R :: complex) ‘ ball 0 1
by (rule holomorphic__on__subset, rule holf)
(use hR in <auto simp: norm_ mult»)
hence (f o (Az. R * z)) holomorphic_on ball 0 1
by (auto intro: holomorphic__on__compose)
moreover have ¢ 0 = 0 unfolding ¢_ def using nz by auto
moreover have A\z. ||z|| < I = |¢ 2| < 1
proof —
fix z ;1 complex assume x: ||z|| < 1
have ||Rxz|| < R using hR * by (fold scaleR__conv_of real) auto
thus ||¢ z|| < 1 unfolding ¢_ def using bn by auto
ged
ultimately have [(¢ / R)| < [|€ / R|
unfolding comp__def by (fold ¢__def, intro Schwarz_Lemmal)
thus ?thesis unfolding ¢_ def using hR by (subst (asm) nonzero_norm__divide, auto)
qed

3.4 Borel-Carathedory theorem
Borel-Carathedory theorem, from book Theorem 5.5, The Theory of Functions, E. C. Titchmarsh

lemma Borel Caratheodoryl:
assumes hr: 0 < RO <rr <R
and f0: f0 =0
and Af: Az ||z]|| < R= Re (fz) < A
and holf: f holomorphic__on (ball 0 R)
and zr: ||z|| < r
shows ||f z|| < 2xr/(R—r) x A
proof —
have A _ge 0: A > 0
using f0 hf by (metis hr(1) norm__zero zero__complex.simps(1))
then consider A = 0 | A > 0 by linarith
thus ||fz|| < 2 « r/(R—71) x A
proof (cases)

28

assume x: A = 0
have 1: Aw. w € ball 0 R = |lezp (f w)|| < ||exp (f 0)| using hf f0 * by auto
have 2: exp o f constant_on (ball 0 R)
by (rule mazimum__modulus__principle [where f = exp o f and U = ball 0 R])
(use 1 hr(1) in <auto intro: holomorphic__on__compose holf holomorphic__on__exp»)
have f constant_on (ball 0 R)
proof (rule classical)
assume *: = f constant_on ball 0 R
have open (f ‘ (ball 0 R))
by (rule open__mapping_thm [where S = ball 0 R|, use holf * in auto)
then obtain e where e > 0 and cball 0 e C f “ (ball 0 R)
by (metis hr(1) fO centre_in_ball imagel open__contains__cball)
then obtain w
where hw: w € ball 0 R fw = e
by (metis abs_of _nonneg imageE less__eq _real__def mem__cball _0 norm__of real subset__eq)
have exp e = exp (f w)
using hw(2) by (fold exp__of real) auto

also have ... = exp (f 0)
using hw(1) 2 hr(1) unfolding constant_on__def comp__def by auto
also have ... = exp (0 :: real) by (subst f0) auto

finally have e = 0 by auto
with (e > 0» show ?thesis by blast
qed
hence f z = 0 using f0 hr zr unfolding constant_on__ def by auto
hence ||f z|| = 0 by auto
also have ... < 2 % r/(R—r) * A using hr <A > 0» by auto
finally show “thesis .
next
assume A gt 0: A > 0
define ¢ where ¢ z = (f 2)/(2+xA — f z) for z :: complex
have ¢__bound: || z|| < 1 if x: ||z < R for z
proof —
define v v where u = Re (f z) and v = Im (f 2)
hence u < A unfolding u_def using hf * by blast
hence u? < (2+xA—u)? using A_ge 0 by (simp add: sqrt_ge_absD)
hence u? + v? < (2xA—u)? + (—v)? by auto
moreover have 2xA4 — fz = Complex (2xA—u) (—v) by (simp add: complex__eq iff u_def v_def)
hence ||f z||? = u? + v?
[25A — f 2| = (25A—u)® + (—v)?
unfolding u_def v_def using cmod_power?2 complex.sel by presburger+
ultimately have ||f z||> < ||2+4 — f 2| by auto
hence ||f z|| < ||2%A — [z|| by auto
thus ?thesis unfolding ¢ def by (subst norm__divide) (simp add: divide le _eq 1)
qed
moreover have nz: A\z :: complex. z € ball 0 R = 2xA — fz # 0
proof
fix z :: complex
assume *: z € ball 0 R
and eq: 2xA — fz= 10
hence Re (f z) < A using hf by auto
moreover have Re (f z) = 2xA
by (metis eq Re__complex_of real right_minus_eq)
ultimately show Fulse using A gt 0 by auto
qed
ultimately have ¢ holomorphic_on ball 0 R

29

unfolding ¢_ def comp__def by (intro holomorphic_intros holf)
moreover have ¢ (0 = (0 unfolding ¢_ def using f0 by auto
ultimately have x: [|¢ z|| < ||z / R
using hr(1) ¢_bound zr hr Schwarz_Lemma2 by auto
also have ... < 1 using zr hr by auto
finally have hy: |l z|| <7/ R|pz| <11+ ¢@z#0
proof (safe)
show |l¢ z|| < r / R using * zr hr(1)
by (metis divide_le__cancel dual_order.trans nle__le)
next
assume I + ¢ z = 0
hence ¢ z = —1 using add_eq 0 iff by blast
thus ||¢ z|| < 1 = False by auto
qed
have 2+xA — fz # 0 using nz hr(3) zr by auto
hence fz = 2xAxp z /| (1 + ¢ 2)
using he(3) unfolding ¢_ def by (auto simp add: field _simps)
hence |/ 2| = 2+l 2|l / 11 + ¢ 2]
by (auto simp add: norm__divide norm__mult A__ge_0)
also have ... < 2xAx(||¢ z|| / (1 — |l¢ z))
proof —
have |1 + ¢ 2| > 1 — [l¢ 4|
by (metis norm__diff _ineq norm__one)
thus ?thesis
by (simp, rule divide_left_mono, use A__ge_ 0 in auto)
(intro mult_pos_pos, use he(2) in auto)
qed
also have ... < 2«Ax((r/R) / (1 — r/R))
proof —
have «: a / (1 —a) <b/ (1 — b)
ifa<l1b<la<bforabd: real
using that by (auto simp add: field__simps)
have [l 2I| / (1 — g 2l) < (r/R) / (1 — v/R)
by (rule *; (intro hp)?) (use hr in auto)
thus Zthesis by (rule mult_left_mono, use A__ge_ 0 in auto)
qed

also have ... = 2xr/(R—r) * A using hr(1) by (auto simp add: field__simps)
finally show “thesis .
qed
qed

lemma Borel Caratheodory?2:
assumes hr: 0 < RO <rr <R
and hf: A\z. ||z]| < R = Re (fz—f0) < A
and holf: f holomorphic__on (ball 0 R)
and zr: ||z|| < r
shows ||fz — fO| < 2xr/(R—7r) * A
proof —
define ¢ where g 2 = f2z — f 0 for 2
show ?thesis
by (fold g_def, rule Borel Caratheodoryl)
(unfold g _def, insert assms, auto intro: holomorphic__intros)
qed

theorem Borel Caratheodorys:

30

assumes hr: 0 < R0 <rr <R
and hf: Aw. w € balls R = Re (fw — fs) < A
and holf: f holomorphic_on (ball s R)
and zr: z € ball s r
shows ||fz — fs|| < 2xr/(R—7r) * A
proof —
define g where g w = f (s + w) for w
have Aw. |[w|]| < R = Re (f (s + w) — fs) < A
by (intro hf) (auto simp add: dist__complex__def)
hence ||g (z — s) — g 0] < 2xr/(R—r) x A
by (intro Borel _Caratheodory?2, unfold g__def, insert assms)
(auto intro: holomorphic_intros simp add: dist_complex__def norm__minus__commute)
thus ?thesis unfolding g def by auto
qed

3.5 Lemma 3.9

These lemmas is referred to the following material: Theorem 3.9, The Theory of the Riemann
Zeta— Function, E. C. Titchmarsh, D. R. Heath— Brown.

lemma lemma_ 3 9 betal:
fixes f M r s
assumes 2I: 0 < r0 < M
and hf: f holomorphic_on ball 0 r
and ne: N\z. z€ ball 0 r = fz# 0
and bn: N\z. z€ ball 0 r = ||[fz / fO] < exp M
shows ||logderiv fO| < 4 « M / r
and Vsecball 0 (r | 4). ||logderiv fs|]| < 8 « M /[r
proof (goal cases)
obtain g¢
where holg: g holomorphic_on ball 0 r
and ezp g: Az. z € ball 0 r = exp (gz) = fux
by (rule holomorphic_logarithm__exists [of ball 0 r f 0])
(use 2l(1) ne hf in auto)
have f0: exp (g 0) = f 0 using exp_g 2l(1) by auto
have Re (9 z — g 0) < M if = ||z|| < r for z
proof —
have exp (Re (g2 — g 0)) = |lexp (92 — g 0)|
by (rule norm__exp_eq Re [symmetric])
also have ... = ||[fz / f 0]
by (subst exp__diff, subst f0, subst exp__g)
(use x in auto)

also have ... < exp M by (rule bn) (use x in auto)
finally show ?thesis by auto
qed

hence ||[gz — g 0| <2x(r/2)/(r—r/2)«xM
if « ||z|| < r / 2 for z
by (intro Borel Caratheodory2 [where f = g])
(use 2I(1) holg * in auto)
also have ... = 2 x M using 2((1) by auto
finally have hg: N\z. ||z| <r /2 =gz —g 0| <2 M.
have result: ||logderiv fs| < 2« M / r’
when cball s v/ C cball 0 (r /) 2) 0 <7r'|s|| <7/ 2 for s r’
proof —
have contain: Nz. ||s — 2| < r'=||z|| < r) 2
using that by (auto simp add: cball_def subset__eq dist_complex__def)

31

have contain”. ||z|| < r when ||s — z|| < r' for z
using zI(1) contain [of z] that by auto
have s _in_ball: s € ball 0 r using that(3) 2I(1) by auto
have deriv f s = deriv (Az. exp (g)) s
by (rule deriv_cong__ev, subst eventually nhds)
(rule ex] [where x = ball 0 (r / 2)], use exp__g 2I(1) that(3) in auto)
also have ... = ezp (g s) * deriv g s
by (intro DERIV__fun_exp [THEN DERIV _imp__deriv] field _differentiable_derivl)
(meson holg open__ball s__in__ball holomorphic__on__imp__differentiable__at)
finally have df: logderiv f s = deriv g s
proof —
assume deriv f s = exp (g s) * deriv g s
moreover have f s # 0 by (intro ne s_in__ball)
ultimately show ?thesis
unfolding logderiv__def using exp_g [OF s_in_ball] by auto
qed
have \z. s — z[| =7 = |lgz— g 0| < 2x M
using contain by (intro hg) auto
moreover have (\z. g z — g 0) holomorphic_on cball s r'
by (rule holomorphic_on_subset [where s=ball 0 r|, insert holg)
(auto intro: holomorphic_intros contain’ simp add: dist_complex_def)
moreover hence continuous_on (cball s ') (A\z. g z — g 0)
by (rule holomorphic__on__imp__continuous__on)
ultimately have ||(deriv =" 1) (Az. gz — g 0) s|| < fact 1 « (2« M) [/ r' ~ 1
using that(2) by (intro Cauchy_inequality) auto
also have ... = 2 x M / r’ by auto
also have deriv g s = deriv (A\z. gz — g 0) s
by (subst deriv_diff, auto)
(rule holomorphic__on__imp__differentiable _at, use holg s_in_ball in auto)
hence ||deriv g s|| = ||(deriv =" 1) (Az. gz — g 0) 5|
by (auto simp add: derivative_intros)
ultimately show ?thesis by (subst df) auto
qged
case 1 show ?Zcase using result [of 0 r / 2] zl(1) by auto
case 2 show ?case proof safe
fix s :: compler assume hs: s € cball 0 (r / 4)
hence z € cball s (r |) = ||z]| < r / 2 for z
using norm__triangle_sub [of z s]
by (auto simp add: dist_complex__def norm__minus__commute)
hence ||logderiv fs| < 2« M [/ (r / 4)
by (intro result) (use zI(1) hs in auto)

also have ... = 8 * M / r by auto
finally show ||logderiv fs| < 8 « M [r.
qed
qed

lemma lemma_3 9 betal”
fixes f M r sg
assumes 2I: 0 < r0 < M
and Af: f holomorphic_on ball s r
and ne: N\z. z € ball s = fz # 0
and bn: N\z. z € ballsr = ||fz / [s]| < exp M
and hs: z € cball s (r / 4)
shows ||logderiv fz|| < 8 « M / r
proof —

32

define g where g z = f (s + z) for 2
have Yz € cball 0 (r / 4). ||logderiv g z|| < 8 « M | r
by (intro lemma_3_9 betal assms, unfold g_ def)
(auto simp add: dist_complex__def introl: assms holomorphic__on__shift)
note bspec [OF this, of z — s
moreover have f field_ differentiable at z
by (rule holomorphic__on__imp__differentiable _at [where ?s = ball s r])
(insert hs 2l(1), auto intro: hf simp add: dist__complex_def)
ultimately show ?thesis unfolding g def using hs
by (auto simp add: dist_complex__def logderiv__shift)
qged

lemma lemma_3 9 beta2:
fixes fM r
assumes 2I: 0 < r0 < M
and af: f analytic _on cball 0 r
and f0: f0 # 0
and 7z: N\z. z € cball 0 r = Rez > 0 = fz # 0
and bn: N\z. z€ cball Or = ||[f 2/ fO|| < exp M
and hg: T C{z € cball 0 (r / 2).fz=0 N Re z < 0}
shows — Re (logderiv f0) < 8 x M |/ r+ Re (D z€l'. 1 / 2)
proof —
have nz" f not_zero_on cball 0 (r / 2)
unfolding not_zero__on__def using f0 zI(1) by auto
hence fin_zeros: finite {z € cball 0 (r /] 2). fz = 0}
by (intro analytic_compact_ finite_zeros [where S = cball 0 r])
(use af 2l in auto)
obtain ¢ n and « :: nat = complex
where ag: g analytic_on cball 0 r
and ng: N\z. z € cball 0 (r /] 2) = g2z # 0
and fac: N\z. z € cball 0 r = fz =gz x (][k<n. (z — a k))
and Ima: o “{..<n} C cball 0 (r / 2)
by (rule analytic_factorization [
where K = cball 0 (r / 2)
and S = cball 0 r and [= f])
(use zI(1) af nz' in auto)
have ¢0: ||g 0|| # 0 using ng zl(1) by auto
hence g holomorphic_on cball 0 r
(Az. g z / g 0) holomorphic_on cball 0 r
using ag by (auto simp add: analytic__intros intro: analytic__imp__holomorphic)
hence holg:
g holomorphic_on ball 0 r
(Az. g z / g 0) holomorphic_on ball 0 r
continuous_on (cball 0 1) (Az. gz / g 0)
by (auto intro!: holomorphic__on__imp__continuous__on
holomorphic__on__subset [where t = ball 0 r))
have nz_a: A\k. k <n = a k # 0 using 2l(1) f0 fac by auto
have ||g z / g 0|| < exp M if *: z € sphere 0 r for z
proof —
let 7p = ||(J[k<n. (z — a k) / ([[k<n. (0 — a k))||
have 1: |[fz / f 0] < exzp M using bn * by auto
have 2: [z / 0l = g2 / 9 0]l * %
by (subst norm_mult [symmetric], subst (1 2) fac)
(use that 2I(1) in auto)
have 7 = ([T k<n. (|2 — a k| / 0 — a k)

33

by (auto simp add: prod__norm [symmetric] norm__divide prod__dividef)
also have ||z — a k|| > ||0 — a k|| if K < n for k
proof (rule ccontr)
assume xx: — ||z — a k|| > [|0 — a k]|
have r = ||z|| using * by auto
also have ... < ||0 — a k|| + ||z — « k|| by (simp add: norm__triangle_sub)
also have ... < 2 % ||« k|| using *x by auto
also have a k € cball 0 (r / 2) using Ima that by blast
hence 2 x ||a k|| < r by auto
finally show Fulse by linarith
qed
hence A\k. k<n= |z —a k| /[0 —a k| > 1
using nz_« by (subst le__divide_eq _1_pos) auto
hence ([[k<n. (||z — a k|| / |0 — a k||)) > 1 by (rule prod_ge 1) simp
finally have 3: %p > 1 .
have rulel: b=a*xc=—a >0 =—c>1 —a < bfor abc:: real
by (metis landau__omega.R_mult_left_mono more__arith__simps(6))
have lgz / g 0] < |If / 1 0]
by (rule rulel) (rule 2 3 norm__ge_zero)+
thus ?thesis using 1 by linarith
qed
hence N\z. z € cball 0r = ||lgz [/ g 0| < exp M
using holg
by (auto intro: mazximum__modulus__frontier
[where f = Az. gz / g 0 and S = cball 0 7))
hence bn": \z. z € cball 0 (r /| 2) = |lg 2 / g 0| < exp M using zI(1) by auto
have ag” g analytic_on cball 0 (r / 2)
by (rule analytic_on__subset [where S = cball 0 r])
(use ag zI(1) in auto)
have ||logderiv g 0]| < 4 « M [(r /] 2)
by (rule lemma_3 9 betal(1) [where f = g])
(use zl ng bn' holg in auto)
also have ... = 8 «x M / r by auto
finally have bn_g: ||logderiv g 0|| < 8 «* M / r unfolding logderiv_def by auto
let 7P = \w. [[k<n. (w — a k)
let 25’ = > k<n. logderiv (A\z. z — a k) 0
let 25 =Y k<n.— (1 / ak)
have g field_ differentiable at 0 using holg 2I(1)
by (auto intro!: holomorphic_on_imp _differentiable_at)
hence Id_g: g log differentiable 0 unfolding log differentiable def using g0 by auto
have logderiv ?P 0 = 25" and ld_P: ?P log differentiable 0
by (auto intro!: logderiv_linear nz_« logderiv_prod)
note this(1)
also have 25’ = 29
by (rule sum.cong)
(use nz_a in auto cong: logderiv_linear(1))
finally have cd_ P: logderiv ?P 0 = 25 .
have logderiv f 0 = logderiv (Az. g z x P z) 0
by (rule logderiv_cong__ev, subst eventually nhds)
(intro exl [where x = ball 0 r], use fac 2l(1) in auto)

also have ... = logderiv g 0 + logderiv P 0
by (subst logderiv_mult) (use Id_g ld_P in auto)
also have ... = logderiv g 0 + ?S using cd_P by auto

finally have Re (logderiv f 0) = Re (logderiv g 0) + Re 2S by simp
moreover have — Re (> z€l’. 1 / z) < Re 7S

34

proof —
have — Re (> 2€l’. 1 / z) = (D] 2€l'. Re (—
also have ... < (D k<n. Re (— (1 / a k)))
proof (rule sum__le_included)
show Vzel'. Jke{..<n}. a k=2 A Re(— (1 / 2)) < Re (— (1 / ak))
(is Ball _ ?P)
proof
fix z assume hz: z € T
have Jke{..<n}. a k = z
proof (rule ccontr)
assume ne_«a: - (Fke{..<n}. a k = 2)
have z_in: z € cball 0 (r / 2) z € cball 0 r using hg hz zl(1) by auto
hence g z # 0 using ng by auto
moreover have ([[k<n. (z — a k)) # 0 using ne_a hz by auto
ultimately have f z # 0 using fac z _in by auto
moreover have f z = 0 using hz hg by auto
ultimately show Fulse by auto
qed
thus P z by auto
qged
show Vke{..<n}. 0 < Re (— (1 / a k)) (is Ball _ ?P)
proof
fix k assume x: ke{..<n}
have I1: a k € cball 0 r using Ima 2l(1) = by auto
hence ([[j<n. (a k — a j)) =0
by (subst prod_zero__iff) (use * in auto)
with 1 have f (a k) = 0 by (subst fac) auto
hence Re (« k) < 0 using 1 rz f0 by fastforce
hence Re (1 * cnj (a k)) < 0 by auto
thus ?P k using Re_complex_div_le 0 by auto
qged
show finite {..<n} by auto
have I' C {z € cball 0 (r / 2). f z = 0} using hg by auto
thus finite I using fin_ zeros by (rule finite_subset)

(1 / 2))) by (auto simp add: sum__negf)

qed
also have ... = Re 25 by auto
finally show “thesis .

qged

ultimately have — Re (logderiv f 0) — Re (>_z€l'. 1 / z) < Re (— logderiv g 0) by auto
also have ... < ||— logderiv g 0| by (rule complez _Re le cmod)
also have ... < 8 *x M / r by simp (rule bn__g)
finally show ?thesis by auto
qed

theorem lemma 3 9 beta3:
fixes f M r and s :: complex
assumes 2I: 0 < r0 < M
and af: f analytic_on cball s r
and f0: fs# 0
and 7z: \z. z € cballsr = Rez > Re s = fz # 0
and bn: \z. z € challsr = ||[fz)/ [s|]| < exp M
and hg: I' C{z € cball s (r / 2). fz= 0 A Re z < Re s}
shows — Re (logderiv fs) < 8« M /| r+ Re (> zel'. 1 / (2 — s))
proof —
define g where g = f o (Az. s + 2)

35

define A where A = (A\z. z —) ‘T
hence 1: g analytic_on cball 0 r
unfolding ¢ def using af
by (intro analytic_on__compose) (auto simp add: analytic__intros)
moreover have g 0 # 0 unfolding g def using f0 by auto
moreover have (Re z > 0 — gz # 0) Nl|lgz/ g 0| < exp M
if hz: z € cball 0 r for z
proof (intro impl conjl)
assume hz". 0 < Re z
thus g z # 0 unfolding g def comp_ def
using hz by (intro rz) (auto simp add: dist__complex__def)
next
show [[gz / g 0| < exp M
unfolding g def comp_ def using hz
by (auto simp add: dist_complex__def introl: bn)
ged
moreover have A C {z € cball 0 (r / 2). gz =0 N Rez < 0}
proof safe
fix z assume z € A
hence s + z € I unfolding A _def by auto
thus gz =0Rez< 0z ¢€ cball 0 (r /] 2)
unfolding g def comp__def using hg by (auto simp add: dist_complex__def)
ged
ultimately have — Re (logderiv g 0) < 8 «x M / r + Re (D z2€A. 1/ 2)
by (intro lemma_3 9 beta2) (use zl in auto)
alsohave ... =8« M /r+ Re (D zel'. 1 /(2 — s))
unfolding A _def by (subst sum.reindex) (unfold inj _on__def, auto)
finally show ?thesis
unfolding g def comp__def using zI(1)
by (subst (asm) logderiv__shift)
(auto intro: analytic_on__imp_ differentiable _at [OF af))
qed

unbundle no_pnt_notation
end
theory Zeta_ Zerofree
imports
PNT Complex_Analysis _Lemmas
begin
unbundle pnt_notation

4 Zero-free region of zeta function

lemma cos_inequality 1:
fixes x :: real
shows 3 + 4 * cos z + cos (2 x z) > 0
proof —
have cos (2 * 1) = (cos 7)? — (sin x)?
by (rule cos double)

also have ... = (cos 7)2 — (1 — (cos 7)?)
unfolding sin_squared eq ..
also have ... = 2 x (cos z)?> — 1 by auto

finally have 1: cos (2 * z) = 2 * (cos 2)® — 1 .
have 0 < 2 x (1 + cos x)? by auto
also have ... = 8 + 4 * cos v + (2 * (cos z)? — 1)

36

by (simp add: field__simps power2__eq square)
finally show ?thesis unfolding 1.
qed

lemma multiplicative fds zeta:
completely _multiplicative_ function (fds_nth fds zeta_ complex)
by standard auto

lemma fds mangoldt_eq:
fds mangoldt_complex = —(fds_deriv fds_zeta | fds_zeta)
proof —
have fds nth fds zeta complex 1 # 0 by auto
hence fds_nth (fds_deriv fds_zeta__complex | fds_zeta) n = —fds_nth fds_zeta n *x mangoldt n for n
using multiplicative_ fds zeta
by (intro fds_nth_logderiv__completely _multiplicative)
thus ?thesis by (intro fds_eql, auto)
qed

lemma abs_conv_abscissa_log deriv:
abs__conv_abscissa (fds__deriv fds_zeta__complex | fds_zeta) < 1
by (rule abs__conv__abscissa__completely multiplicative_log _deriv
[OF multiplicative_fds_zeta, unfolded abs__conv__abscissa__zeta], auto)

lemma abs_conv__abscissa_mangoldt:
abs__conv__abscissa (fds mangoldt__complex) < 1
using abs__conv__abscissa__log deriv
by (subst fds_mangoldt__eq, subst abs__conv__abscissa_minus)

lemma
assumes s: Re s > 1
shows eval_fds _mangoldt: eval fds (fds mangoldt) s = — deriv zeta s | zeta s
and abs__conv_mangoldt: fds_abs_converges (fds mangoldt) s
proof —

from abs_conv_abscissa__log deriv

have 1: abs_conv_abscissa (fds_deriv fds_zeta__complex | fds_zeta) < ereal (s - 1)
using s by (intro le__ereal_less, auto simp: one__ereal _def)

have 2: abs_conv__abscissa fds_zeta__complex < ereal (s - 1)
using s by (subst abs__conv__abscissa__zeta, auto)

hence 3: fds_abs_converges (fds_deriv fds_zeta__complex | fds_zeta) s
by (intro fds_abs_converges) (rule 1)

have eval fds (fds mangoldt) s = eval fds (—(fds_deriv fds_zeta__complex / fds_zeta)) s
using fds mangoldt_eq by auto

also have ... = —eval_fds (fds_deriv fds_zeta__complex | fds_zeta) s
by (intro eval _fds_uminus fds_abs__converges__imp__converges 3)
also have ... = —(eval_fds (fds_deriv fds_zeta__complex) s / eval fds fds_zeta s)

using s by (subst eval_fds_log_deriv; ((intro 1 2)?, (auto introl: eval fds zeta_nonzero)?))
also have ... = — deriv zeta s / zeta s
using s by (subst eval _fds_zeta, blast, subst eval _fds_deriv_zeta, auto)
finally show eval_fds (fds mangoldt) s = — deriv zeta s | zeta s .
show fds _abs__converges (fds mangoldt) s
by (subst fds_mangoldt__eq) (intro fds_abs_converges_uminus 3)
qed

lemma sums_mangoldt:
fixes s :: complex

37

assumes s: Re s > 1
shows ((An. mangoldt n / n nat_powr s) has_sum — deriv zeta s / zeta s) {1..}
proof —
let ?f = (An. mangoldt n / n nat_powr s)
have 1: fds_abs_converges (fds mangoldt) s
by (intro abs__conv_mangoldt s)
hence 2: fds _converges (fds mangoldt) s
by (rule fds _abs converges _imp__converges)
hence summable (An. ||fds_nth (fds mangoldt) n / nat_power n s||)
by (fold fds_abs converges def, intro 1)
moreover have (An. fds_nth (fds mangoldt) n / nat_power n s) sums (— deriv zeta s | zeta s)
by (subst eval _fds mangoldt(1) [symmetric], intro s, fold fds_converges_iff, intro 2)
ultimately have ((An. fds_nth (fds mangoldt) n / n nat_powr s) has_sum — deriv zeta s | zeta s)
UNIV
by (fold nat_power__complex__def, rule norm__summable__imp__has__sum)
moreover have [simpl|: (if n = 0 then 0 else mangoldt n) = mangoldt n for n by auto
ultimately have (?f has_sum — deriv zeta s | zeta s) UNIV by (auto simp add: fds_nth_fds)
hence 3: (?f has_sum — deriv zeta s | zeta s) UNIV by auto
have sum ?f {0} = 0 by auto
moreover have (?f has_sum sum ?f {0}) {0}
by (rule has__sum__ finite, auto)
ultimately have (?f has_sum 0) {0} by auto
hence (?f has_sum — deriv zeta s | zeta s — 0) (UNIV — {0})
by (intro has_sum__Diff 3, auto)
moreover have UNIV — {0 :: nat} = {1..} by auto
ultimately show (?f has_sum — deriv zeta s | zeta s) {1..} by auto
qed

lemma sums_Re logderiv_zeta:
fixes o ¢ :: real
assumes s: 0 > 1
shows ((An. mangoldt_real n x n nat_powr (—o) x cos (t * In n))
has_sum Re (— deriv zeta (Complex o t) | zeta (Complex o t))) {1..}
proof —
have ((Az. Re (mangoldt_complex x | x nat_powr Complex o t))
has_sum Re (— deriv zeta (Complex o t) / zeta (Complex o t))) {1..}
using s by (intro has_sum__Re sums_mangoldt) auto
moreover have Re (mangoldt n / n nat_powr (Complex o t))
= mangoldt_real n x n nat_powr (—o) % cos (t x In n) if x: 1 < n for n
proof —
let ?n = n :: complex
have 1 / n nat_powr (Complex o t) = n nat_powr (Complex (—o) (—t))
by (fold powr_minus__divide, auto simp add: legacy Complex__simps)
also have ... = exp (Complex (—o * In n) (—t x In n))
unfolding powr_def by (auto simp add: field_simps legacy_Complex__simps, use * in linarith)
finally have Re (1 / n nat_powr (Complex o t)) = Re ... by auto
also have ... = n nat_powr (—o) * cos (t * In n)
by (unfold powr_def, subst Re__exp, use * in auto)
finally have 1: mangoldt_real n x Re (1 / n nat_powr (Complezx o t))
= mangoldt_real n x n nat_powr (—o) * cos (t x In n) by auto
have rule_1: Re (w x z) = Re w x Re z if x: Im w = 0 for z w :: complez using * by auto
have Re (mangoldt n x (1 / n nat_powr (Complex o t)))
= mangoldt_real n x Re (1 / n nat_powr (Complezx o t))
by (subst rule_1, auto)
with 7 show ?thesis by auto

38

ged
ultimately show ((An. mangoldt_real n x n nat_powr (— o) x cos (t * In (real n)))
has_sum Re (— deriv zeta (Complex o t) / zeta (Complex o t))) {1..}
by (subst has_sum__cong) auto
qed

lemma logderiv_zeta_ ineq:
fixes o t :: real
assumes s: 0 > 1
shows 3 % Re (logderiv zeta (Complex o 0)) + 4 * Re (logderiv zeta (Complex o t))
+ Re (logderiv zeta (Complex o (2xt))) < 0 (is 7z < 0)
proof —
have [simp]: Re (—z) = — Re z for z by auto
have ((An.
3 * (mangoldt_real n x n nat_powr (—o) * cos (0 * In n))
+ 4 * (mangoldt_real n x n nat_powr (—o) * cos (t * In n))
+ 1 * (mangoldt_real n * n nat_powr (—oc) x cos (2%t * In n))
) has_sum
3 * Re (— deriv zeta (Complex o 0) / zeta (Complex o 0))
+ 4 * Re (— deriv zeta (Complex o t) / zeta (Complex o t))
+ 1 % Re (— deriv zeta (Complex o (2xt)) / zeta (Complex o (2xt)))
) {1}
by (intro has_sum__add has_sum__cmult_right sums_Re_logderiv_zeta s)
hence *: ((An. mangoldt_real n * n nat_powr (—o)
x (3 + 4 % cos (t *Inn)+ cos (2 x (t xInn)))
) has_sum —%z) {1..}
unfolding logderiv_def by (auto simp add: field__simps)
have — %z > 0
by (rule has_sum__nonneg, rule *,
intro mult _nonneg_nonneg,
auto intro: mangoldt_nonneg cos_inequality 1)
thus %z < 0 by linarith
qged

o~~~

lemma sums_zeta_real:
fixes r :: real
assumes [< r
shows (> n. (n4) powr —r) = Re (zeta r)
proof —
have (> n. (ny) powr —r) = (> n. Re (ny powr (—r :: complex)))
by (subst of real_nat_power) auto
also have ... = (3 n. Re (ny powr — (r :: complex))) by auto
also have ... = Re (). n. ny powr — (7 :: complex))
by (intro Re_suminf [symmetric] summable_zeta)
(use assms in auto)
also have ... = Re (zeta r)
using Re_complex_of real zeta_conv__suminf assms by presburger
finally show ?thesis .
qed

lemma inverse zeta bound"”
assumes 1 < Re s

shows ||inverse (zeta s)|| < Re (zeta (Re s))
proof —

write moebius _mu (<)

39

let 7f = An :: nat. p (ny) / (ny) powr s
let g = An :: nat. (ny) powr — Re s
have ||u n :: complex|| < 1 for n by (auto simp add: power_neg_one__If moebius_mu__def)
hence 1: ||?f n| < ?g n for n
by (auto simp add: powr_minus norm__divide norm__powr_real _powr field__simps)
have inverse (zeta s) = (. n. ?f n)
by (intro sums_unique inverse__zeta__sums assms)
hence |[inverse (zeta s)|| = ||>_ n. ?f n|| by auto
also have ... < (3> n. ?g n) by (intro suminf_norm__bound summable_ zeta__real assms 1)
finally show ?thesis using sums_zeta__real assms by auto
qged

lemma zeta bound'”:
assumes ! < Re s
shows ||zeta s|| < Re (zeta (Re s))
proof —
let ?f = A\n :: nat. (ny) powr — s
let ?g = An :: nat. (ny) powr — Re s
have zeta s = (D> n. ?f n) by (intro sums_unique sums__zeta assms)
hence ||zeta s|| = ||>_ n. ?f n|| by auto
also have ... < (> n. ?gn)
by (intro suminf_norm__bound summable_zeta__real assms)
(subst norm__nat__power, auto)

also have ... = Re (zeta (Re s)) by (subst sums_zeta_real) (use assms in auto)
finally show ?thesis .
qed

lemma zeta_bound_trivial”:
assumes I / 2 < Res AN Res < 2
and [Ims| > 1/ 11
shows |zeta s|| < 12 + 2 % |Im s
proof —
have ||pre_zeta 1 s| < ||s|| / Re s
by (rule pre_zeta__1_bound) (use assms in auto)
also have ... < (|Re s| + |Im s|) / Re s
proof —
have |[|s| < |Re s| + |Im s| using cmod_le by auto
thus ?thesis using assms by (auto intro: divide__right_mono)
qed
also have ... =1 + [Im s| / Re s
using assms by (simp add: field _simps)
alsohave ... < 1 + [Ims| /(1 / 2)
using assms by (intro add_left_mono divide_left _mono) auto
finally have 1: ||pre_zeta 1 s| < 1 + 2 |Im s| by auto
have ||1 /(s — 1)||=1 / ||s — 1|| by (subst norm__divide) auto

also have ... < 11 proof —
have 1 / 11 < |Im s| by (rule assms(2))
also have ... = |Im (s — 1)| by auto
also have ... < ||s — 1|| by (rule abs_Im_le cmod)
finally show ?thesis by (intro mult_imp__div_pos_le) auto
ged

finally have 2: |1 / (s — 1)|| < 11 by auto

have zeta s = pre_zeta 1 s+ 1 | (s — 1) by (intro zeta_pole eq) (use assms in auto)
moreover have ||...|| < ||pre_zeta 1 s| + ||1 / (s — 1)|| by (rule norm__triangle_ineq)
ultimately have ||zeta s|| < ... by auto

40

also have ... < 12 4+ 2 % |Im s| using 1 2 by auto
finally show ?thesis .
qed

lemma zeta_ bound gt 1:
assumes 1 < Re s
shows ||zeta s|| < Res / (Res — 1)

proof —
have ||zeta s|| < Re (zeta (Re s)) by (intro zeta__bound’ assms)
also have ... < |[[zeta (Re s)|| by (rule complex_Re_le__cmod)
also have ... = ||pre_zeta 1 (Res) + 1 / (Res — 1)

by (subst zeta__pole__eq) (use assms in auto)
also have ... < |pre_zeta 1 (Re s)|| + ||1 / (Res — 1) :: complex||
by (rule norm__triangle_ineq)
alsohave ... <1+ 1 /(Res— 1)
proof —
have ||pre_zeta 1 (Re s)|| < |Re s :: complezx|| / Re (Re s)
by (rule pre_zeta__1_bound) (use assms in auto)
also have ... = 1 using assms by auto
moreover have || / (Re s — 1) :: complex|| =1 / (Res — 1)
by (subst norm__of real) (use assms in auto)
ultimately show ?thesis by auto
ged
also have ... = Res / (Res — 1)
using assms by (auto simp add: field__simps)
finally show ?thesis .
qed

lemma zeta bound_trivial:
assumes ! / 2 < Resand |Im s| > 1 / 11
shows |zeta s|| < 12 + 2 % |Im s
proof (cases Re s < 2)
assume Re s < 2
thus ?thesis by (intro zeta__bound__trivial") (use assms in auto)
next
assume - Re s < 2
hence x: Re s > 1 Re s > 2 by auto
hence |zeta s|| < Re s / (Re s — 1) by (intro zeta_bound gt 1)
also have ... < 2 using * by (auto simp add: field__simps)
also have ... < 12 + 2 x |Im s| by auto
finally show ?thesis .
qed

lemma zeta nonzero__small_imag”:
assumes |[Im s| < 13 / 22 and Re s > 1 / 2 and Re s < 1
shows zeta s # 0
proof —
have ||pre_zeta 1 s|| < (1 + ||s| / Res) / 2 * 1 powr — Re s
by (rule pre_ zeta bound) (use assms(2) in auto)
also have ... < 129 / 100 proof —
have |[|s|| / Res < 79 / 50
proof (rule ccontr)
assume — ||s|| / Re s < 79 / 50
hence sqrt (6241 | 2500) < ||s|| / Re s by (simp add: real_sqrt_divide)
also have ... = ||s|| / sqrt ((Re 5)?) using assms(2) by simp

41

also have ... = sqrt (1 + (Im s / Re 5)?)
unfolding cmod__def using assms(2)
by (auto simp add: real_sqrt_divide [symmetric] field__simps
simp del: real__sqrt__abs)
finally have 1: 6241 / 2500 < 1 + (Im s / Re s)? by auto
have [Im s / Re s| < |6 / 5| using assms by (auto simp add: field _simps abs_le__square__iff)
hence (Im s / Re s5)? < (6 / 5)? by (subst (asm) abs_le_square_iff)
hence 2: 1 + (Im s / Re s)> < 61 / 25 unfolding power2_eq square by auto
from 1 2 show Fulse by auto
qed
hence (1 + ||s|| / Re s) / 2 < (129 / 50) / 2 by (subst divide_right _mono) auto
also have ... = 129 / 100 by auto
finally show ?thesis by auto
ged
finally have 1: ||pre_zeta 1 s|| < 129 / 100 .
have ||s — 1] < 100 / 129 proof —
from assms have (Re (s — 1))? < (1 / 2)? by (simp add: abs_le_square_iff [symmetric])
moreover have (Im (s — 1))2 < (13 / 22)? using assms(1) by (simp add: abs_le_square_iff
[symmetric])
ultimately have (Re (s — 1))? + (Im (s — 1))? < 145 / 242 by (auto simp add: power2_eq_square)
hence sqrt ((Re (s — 1))? + (Im (s — 1))?) < sqrt (145 / 242) by (rule real_sqrt_le_mono)
also have ... < sqrt ((100 / 129)?) by (subst real_sqrt_less_iff) (simp add: power2_eq_square)
finally show ?thesis unfolding cmod def by auto
qed
moreover have ||s — 1|| # 0 using assms(3) by auto
ultimately have 2: |1 / (s — 1)|| > 129 / 100 by (auto simp add: field__simps norm__divide)
from 1 2 have 0 < |1 / (s — 1)|| — ||pre_zeta 1 s|| by auto
also have ... < |pre_zeta 1 s+ 1 / (s — 1)|| by (subst add.commute) (rule norm__diff _ineq)
also from assms(3) have s # 1 by auto

hence ||pre_zeta 1 s + 1 / (s — 1)|| = ||zeta s|| using zeta_pole__eq by auto
finally show ?thesis by auto
qed

lemma zeta_monzero__small_imag:
assumes |[Im s| < 18 / 22 and Re s > 0 and s # 1
shows zeta s # 0
proof —
consider Res <1 /2|1 /2 <ResAN Res< 1| Res> 1 by fastforce
thus ?thesis proof cases
case I hence zeta (I — s) # 0 using assms by (intro zeta_nonzero__small_imag’) auto
moreover case I
ultimately show ?thesis using assms(2) zeta__zero__reflect_iff by auto
next
case 2 thus ?thesis using assms(1) by (intro zeta_nonzero_small_imag’) auto
next
case 3 thus ?thesis using zeta_ Re_ge_1_nonzero assms(3) by auto
ged
qed

lemma inverse zeta bound:
assumes I < Re s
shows |[inverse (zeta s)|| < Re s / (Res — 1)

proof —
have ||inverse (zeta s)|| < Re (zeta (Re s)) by (intro inverse_zeta_bound’ assms)
also have ... < ||zeta (Re s)|| by (rule complex Re_le cmod)

42

also have ... < Re (Res) / (Re (Res) — 1)
by (intro zeta__bound_gt_1) (use assms in auto)

also have ... = Re s / (Re s — 1) by auto
finally show ?thesis .
qed

lemma deriv_zeta bound:
fixes s :: complex
assumes Hr: 0 < r and Hs: s # 1
and hB: Nw. ||s — w|| = r = ||pre_zeta 1 w|| < B
shows ||deriv zeta s| < B/ r+ 1/ ||s — 1]?
proof —
have ||deriv zeta s|| = ||deriv (pre_zeta 1) s — 1 / (s — 1)?||
proof —
let YA = UNIV — {1 :: complex}
let ?f = As. pre_zeta 1 s+ 1 /(s — 1)
let 20 = deriv (pre_zeta 1) s + (0 % (s — 1) — 1 % (1 — 0)) / (s — 1)?
let 20’ = deriv (pre_zeta 1) s — 1 / (s — 1 :: complex)?
have V2€?A. zeta z = pre_zeta 1 z+ 1 / (z — 1)
by (auto intro: zeta__pole__eq)
hence Vp z in nhds s. zeta z = pre_zeta 1 2+ 1 / (z — 1)
using Hs by (subst eventually_nhds, intro ex] [where z = ?A]) auto
hence DERIV zeta s :> ?v' = DERIV ?f s :> %v/
by (intro DERIV_cong__ev) auto
moreover have DERIV ?f s :> %v
unfolding power2 eq square
by (intro derivative_intros field__differentiable__derivl holomorphic__pre_zeta
holomorphic__on__imp__differentiable__at [where s = ?4))
(use Hs in auto)
moreover have ?v = ?v’ by (auto simp add: field_simps)
ultimately have DERIV zeta s :> v’ by auto
moreover have DERIV zeta s :> deriv zeta s
by (intro field_differentiable__derivl field__differentiable _at_zeta)
(use Hs in auto)
ultimately have ?v’ = deriv zeta s by (rule DERIV_unique)
thus ?thesis by auto
qed
also have ... < ||deriv (pre_zeta 1) s|| + |1 / (s — 1)?|| by (rule norm_ triangle_ineqs)
alsohave ... < B /r+1/|s— 1]|?
proof —
have ||(deriv " 1) (pre_zeta 1) s| < fact 1 * B/ r 1
by (intro Cauchy__inequality holomorphic__pre_zeta continuous_on__pre_zeta assms) auto
thus ?thesis by (auto simp add: norm__divide norm__power)
qed
finally show ?thesis .
qed

lemma zeta_lower bound:
assumes () < Re s s # 1

shows 1 / ||s — 1|| — ||s|]| / Re s < ||zeta s||

proof —
have ||pre_zeta 1 s|| < ||s|]| / Re s by (intro pre_zeta__1_bound assms)
hence 1 /|s — 1|| = ||s|| / Res < |1 / (s — 1)|| — ||pre_zeta 1 s||

using assms by (auto simp add: norm__divide)
also have ... < |pre_zeta 1 s+ 1/ (s— 1)

43

by (subst add.commute) (rule norm__diff ineq)

also have ... = ||zeta s|| using assms by (subst zeta__pole__eq) auto
finally show ?thesis .
qged

lemma logderiv_zeta_ bound:
fixes o :: real
assumes 1 < oo < 23/ 20
shows ||logderiv zeta o|| < 5) 4 (1 / (0 — 1))
proof —
have ||pre_zeta 1 s|| < sqrt 2 if *: ||o — s|| = 1 / sqrt 2 for s :: complex
proof —
have 71: 0 < Re s proof —
have I — Re s < Re (0 — s) using assms(1) by auto
also have Re (0 — s) < |[[o — s|| by (rule complex_Re_le__cmod)
also have ... = 1 / sqrt 2 by (rule *)
finally have 1 — 1 / sqrt 2 < Re s by auto
moreover have 0 < 1 — 1 / sqrt 2 by auto
ultimately show ?thesis by linarith

qged
hence |pre_zeta 1 s|| < ||s|| / Re s by (rule pre_zeta__1__bound)
also have ... < sqrt 2 proof —

define z y where £ = Re sand y = Im s
have sqrt (o0 —)2 + y?) = 1 / sqrt 2
using x unfolding cmod_def z_def y_def by auto
also have ... = sqrt (1 / 2) by (auto simp add: field__simps real _sqrt_mult [symmetric])
finally have 2: 22 + y? — 2x0*z + 0> = 1 / 2 by (auto simp add: field_simps power2_eq square)
have y? < 2% proof (rule ccontr)
assume — y2 < g2
hence 2> < 4 by auto
with 2 have 2x2? — 2x0x1 + 02 < 1 / 2 by auto
hence 2 % (z — o / 2)? < (1 — 0?) / 2 by (auto simp add: field_simps power2_eq square)

also have ... < 0 using <1 < o) by auto
finally show Fulse by auto
qed

moreover have z # (unfolding z def using 1 by auto
ultimately have sqrt ((z2 + y?) / 2%) < sqrt 2 by (auto simp add: field _simps)
with 1 show ?thesis unfolding cmod_def x_def y_def by (auto simp add: real_sqrt_divide)
qed
finally show “thesis .
qed
hence ||deriv zeta o|| < sqrt 2 / (1 / sqrt 2) + 1 / ||(o :: complex) — 1|
by (intro deriv_zeta__bound) (use assms(1) in auto)
alsohave ... < 2+ 1 /(0 — 1)?
by (subst in__Reals_norm) (use assms(1) in auto)

alsohave ... = (2% 0% — fxo+ 3)/ (0 — 1)?

proof —
have o x 0 — 2x 0+ 1 = (0 — 1) x (0 — 1) by (auto simp add: field_simps)
also have ... # 0 using assms(1) by auto
finally show ?thesis by (auto simp add: power2_eq square field _simps)

ged

finally have 1: ||deriv zeta 0| < (2 x0?> — f x 0 + 3) / (0 — 1)?.

have (2 — o) /(6 — 1) =1/ ||(o :: complex) — 1| — |lo = complex| / Re o
using assms(1) by (auto simp add: field _simps in__Reals _norm)

also have ... < |zeta o|| by (rule zeta_lower_bound) (use assms(1) in auto)

44

finally have 2: (2 — o) / (0 — 1) < ||zeta o .
have [* (202 — 4 %0+ 3) =5+ (2 —0)=8x% (0 — 11 /] 16)*> — 57 /] 32
by (auto simp add: field _simps power2__eq square)
also have ... < (0 proof —
have 0 < o — 11 / 16 using assms(1) by auto
moreover have o — 11 / 16 < 37 / 80 using assms(2) by auto
ultimately have (0 — 11 / 16)* < (37 / 80)* by auto
thus ?thesis by (auto simp add: power2__eq square)
qed
finally have 4 * (2 %02 — fxo0 +3) - 5% (2 —0) < 0.
moreover have 0 < 2 — ¢ using assms(2) by auto
ultimately have 3: (2 x 02 — 4/ x o + 8) / (2 — 0) < 5 / 4 by (subst pos_divide_le_eq) auto
moreover have 0 < 2 x 2> — / % 0 + 3 proof —
have 0 < 2 * (0 — 1)? + 1 by auto

also have ... = 2 x 02 — / % 0 + 3 by (auto simp add: field_simps power2_eq square)
finally show “thesis .
qed

moreover have 0 < (2 — o) / (o — 1) using assms by auto

ultimately have ||logderiv zeta o|| < (2 x 0> — 4 xo + 83) /(60 — 1)®)) ((2 — o) / (0 — 1))
unfolding logderiv_def using 1 2 by (subst norm__divide) (rule frac_le, auto)

alsohave ... = (2%x02 — fx0+3)/(2—-0)x(1 /(0 — 1))
by (simp add: power2_eq square)

alsohave ... <5/ 4 x(1/(c — 1))
using 3 by (rule mult_right_mono) (use assms(1) in auto)

finally show ?thesis .

qed

lemma Re logderiv_zeta_ bound:
fixes o :: real
assumes 1 < oo < 23/ 20
shows Re (logderiv zeta) > — 5 / 4 (1 |/ (6 — 1))

proof —
have — Re (logderiv zeta o) = Re (— logderiv zeta o) by auto
also have Re (— logderiv zeta o) < ||— logderiv zeta o|| by (rule complez__Re_le cmod)
also have ... = ||logderiv zeta o| by auto

also have ... < 5/ 4 x (1 / (0 — 1)) by (intro logderiv_zeta__bound assms)
finally show ?thesis by auto
qed

locale zeta_bound_param =
fixes ¥ ¢ :: real = real
assumes zeta_bn”s N\z. 1 — 9 (Imz) < Rez= Imz> 1/ 11 = |zeta z|| < exp (¢ (Im 2))
and ¥_pos: \t. 0 <9 tANOt<1 /2
and ¢_pos: N\t. 1 < ¢ t
and inv_ 9 N\t. ot /9t <1/ 960 % exp (¢ t)
and mo?d: antimono ¥ and moy: mono ¢
begin
definition region = {2. 1 — 9 (Imz2) < RezANImz> 1/ 11}
lemma zeta bn: \z. z € region = ||zeta z|| < exp (¢ (Im z))
using zeta_ bn’ unfolding region_def by auto
lemma 9 _pos" \t. 0 <9t NIt <1
using ¢__pos by (smt (verit) exp__ge add_one_self exp_half le2)
lemma ¢_pos”: \t. 0 < ¢ t using ¢_ pos by (smt (verit, ccfu_SIG))
end

45

locale zeta__bound_param__1 = zeta__bound__param +
fixes v :: real
assumes y_cnd: vy > 13 | 22

begin
definition » where r = ¥ (2 x v + 1)

end

locale zeta_bound__param__2 = zeta__bound__param__1 +
fixes o § :: real
assumes o_cnd: 0 > 1 + exp (— (2 x v + 1))
and §_cnd: =7V Ii=2x7y
begin
definition s where s = Complex o §
end

context zeta_bound_param__2 begin
declare dist_complex__def [simp] norm__minus_commute [simp]
declare legacy_Complex__simps [simp]

lemma cball Im:
assumes z € cball s r
shows r < 1 |Rez —o| <7 |Imz—9| <r
1 /11 <ImzImz<2x~vy+r
proof —
have |Re (2 — 8)| < |z — sl [Im (= —)| < ||z — 5]
by (rule abs_Re_le_cmod) (rule abs_Im_le_cmod)
moreover have ||z — s|| < r using assms by auto
ultimately show 1: |Re z — o| < r [Im z — §| < r unfolding s def by auto
moreover have 3: r < 1 / 2 unfolding r_def using J__pos by auto
ultimately have 2: |[Rez — 0| < 1 / 2 |Imz — 6| < 1 / 2 by auto
moreover have § < 2 % v using 0__cnd v__cnd by auto
ultimately show Im z < 2 x v + r using 1 by auto
have 1 / 11 <6 — 1 / 2 using d__cnd v__cnd by auto
also have ... < Im z using 2 by (auto simp del: Num.le_divide eq numerall)
finally show 1 / 11 < Im z.
from & show r < 1 by auto
qed

lemma cball_in__ region:
shows cball s 7 C region
proof
fix z :: complex
assume hz: z € chall s r
note Im = cball_Im [OF hz]
hence I — V9 (Imz) <1 -9 (2xy+9(2*v+ 1))
unfolding r_def using mov Im by (auto intro: antimonoD)
alsohave ... < I +ep(—p (2xy+ 1) -V (2*x~v+1)
proof —
have 2 x v+ 9 (2x~v+ 1)< 2xvy+ 1
unfolding r_def using ¥_pos’ by auto
hence ¥ (2 x~v+ 1) -9 (2x~v+9 (2xy+1))<0
using mot by (auto intro: antimonoD)
also have 0 < exp (—¢p (2 * v + 1)) by auto
finally show ?thesis by auto
qed

46

also have ...
also have ...

< ¢ — r using o_cnd unfolding r_def s _def by auto
< Re z using Im by auto

finally have 1 — ¥ (Im z) < Re z .
thus z € region unfolding region_def using Im by auto

qed

lemma Re s gt 1:
shows 1 < Re s

proof —

have x: exp (— ¢ (2 x v+ 1)) > 0 by auto
show ?thesis using o__cnd s_def by auto (use * in linarith)

qed

lemma zeta__analytic_on__region:
shows zeta analytic__on region
by (rule analytic_zeta) (unfold region__def, auto)

lemma zeta div_bound:
assumes z € cball s r

shows ||zeta z
proof —

let 2p = ¢ (2

have ||zeta z||

also have ...

proof —

| zeta s|| < exp (3 % ¢ (2 xv+ 1))

*y + 1)
exp (¢ (Im z)) using cball_in_region zeta__bn assms by auto

exp (%p)

have Im z < 2 % v + 1 using cball_Im [OF assms| by auto

thus ?2thesis
qed

by auto (rule monoD [OF moy))

also have |[inverse (zeta s)|| < exp (2 * 2p)

proof —

have |[inverse (zeta s)| < Res / (Re s — 1)
by (intro inverse_zeta_bound Re_s gt 1)

also have ..

.=1+4+1/(Res—1)

using Re_ s gt 1 by (auto simp add: field _simps)

also have ...

proof —

< 1+ exp (%)

have Re s — 1 > exp (—%p) using s_def o__cnd by auto

hence 1 /

(Res—1) <1/ exp (—%)

using Re s gt 1 by (auto intro: divide_left _mono)
thus ?thesis by (auto simp add: exp__minus field__simps)

qed

also have ...

< exp (2 * 2p) by (intro exp_lemma__1 less_imp_le v__pos)

finally show ?thesis .

qed

ultimately have ||zeta z * inverse (zeta s)|| < exp (%p) * exp (2 * 2p)
by (subst norm_ mult, intro mult_mono’) auto

also have ...

= exp (8 * %) by (subst exp_add [symmetric]) auto

finally show ?thesis by (auto simp add: divide _inverse)

qed

lemma logderiv_zeta_bound:
shows Re (logderiv zeta s) > — 24 x ¢ (2 x~vy+ 1)/ r
and \G. o0 —r / 2 < 3 = zeta (Complex 3 J) = 0 =
Re (logderiv zeta s) > — 24 x o (2x~y+ 1)/ r+ 1/ (c —B)

proof —

47

have 1: 0 < r unfolding r def using 9 pos’ by auto
have 2: 0 < 3 % ¢ (2 x v + 1) using ¢_ pos’ by (auto simp add: less_imp_le)
have 3: zeta s # 0 N\z. Re s < Re z = zeta z # 0
using Re_s_gt_1 by (auto introl: zeta_Re_gt_1_nonzero)
have j: zeta analytic_on cball s
by (rule analytic _on__subset;
rule cball_in__region zeta__analytic__on__region)
have 5: z € cball s 1 = ||zeta z | zeta s|| < exp (3 % p (2 % v+ 1))
for z by (rule zeta__div_bound)
have 6: {} C {z € cball s (r /] 2). zeta z = 0 N Re z < Re s} by auto
have 7: {Complex 6} C {z € cball s (r / 2). zeta z = 0 N Re z < Re s}
if o —r /2 <[zeta (Complex 3) = 0 for 3
proof —
have 0 < ¢
using zeta__Re gt _1_nonzero [of Complex B §] Re_s_gt_1 that(2)
unfolding s def by fastforce
thus ?thesis using that unfolding s def by auto
qged
have — Re (logderiv zeta s) < 8 % (3 x @ (2x~v+ 1))/ r+ Re (D ze{}. 1 /(2 —s))
by (intro lemma_3_9 beta3 1 2 3 4 5 6)
thus Re (logderiv zeta s) > — 24 x ¢ (2 x v+ 1) / r by auto
show Re (logderiv zeta s) > — 24 xp (2x~v+ 1)/ r+ 1/ (o — f)
if x: 0 —r /2 < zeta (Complex 3) = 0 for [

proof —
have bs: 3 # o using *(2) 3(1) unfolding s _def by auto
hence bs: 1 / (8 — o) =— 1/ (0 — B) by (auto simp add: field_simps)

have inv_r: 1 / (Complex v 0) = Complex (1 / r) 0 if r # 0 for r
using that by (auto simp add: field__simps)
have — Re (logderiv zeta s) < 8 x (3 x @ (2 %y + 1))/ r+ Re (> ze{Complex 3 6}. 1 / (2 — s))
by (intro lemma_3 9 beta3 1 2 3 4 5 7 %)
thus ?thesis unfolding s def
by (auto simp add: field _simps)
(subst (asm) inv_r, use bs bs’ in auto)
ged
qged
end

context zeta_bound_param__1 begin
lemma zeta__nonzero__region”:
assumes 1 + 1 /960 x(r /o (2x~y+ 1)) —r/2<p
and zeta (Complex 5 v) = 0
shows 1 — 3> 1/ 29760 = (r / ¢ (2 xy + 1))
proof —
let % = (2x~v+ 1)and W =9 (2 xv + 1)
define o where o =1 + 1 /960 x (r / ¢ (2 v+ 1))
define a where a=— 5/ 4 (1 / (0 — 1))
define b where b= — 2/ xp (2x~y+ 1)/ r+ 1/ (c —)
define c where c = — 24/ x o (2 x~y+ 1)/ r
have 1 + exp (— %) < o
proof —
have 960 x exp (— 2p) =1 / (1 / 960 % exp ?p)
by (auto simp add: exp__add [symmetric] field _simps)
also have ... <1 / (% / ?9) proof —
have %p / 29 < 1 / 960 x exp %p by (rule inv_19)
thus ?thesis by (intro divide_left _mono) (use 9_pos ¢__pos’ in auto)

48

qed

also have ... = r / % unfolding r_def by auto
finally show ?thesis unfolding o def by auto
qed

note x = this v_cnd
interpret z: zeta_bound_param_2 ¥ ¢ v o v by (standard, use * in auto)
interpret z": zeta_bound_param_2 ¥ ¢ v o 2 x v by (standard, use x in auto)
have r < 1 unfolding r_def using ¥_pos’ [of 2 x v + 1] by auto
moreover have 1 < ¢ (2 x v + 1) using ¢_ pos by auto
ultimately have r / ¢ (2 x v + 1) < 1 by auto
moreover have 0 < r 0 < ¢ (2 * v + 1) unfolding r_def using ¥ _pos’ ¢__pos’ by auto
hence 0 < r / ¢ (2 * v + 1) by auto
ultimately have 1: 1 < 0 0 < 23 / 20 unfolding o__def by auto
hence Re (logderiv zeta o) > a unfolding a_def by (intro Re_logderiv_zeta__bound)
hence Re (logderiv zeta (Complex o 0)) > a by auto
moreover have Re (logderiv zeta z.s) > b unfolding b_ def
by (rule z.logderiv__zeta__bound) (use assms r_def o__def in auto)
hence Re (logderiv zeta (Complex o «y)) > b unfolding z.s def by auto
moreover have Re (logderiv zeta z'.s) > ¢ unfolding ¢_ def by (rule z’.logderiv_zeta__bound)
hence Re (logderiv zeta (Complex o (2 % v))) > ¢ unfolding z’.s _def by auto
ultimately have 3 x a + 4 * b+ ¢
< 3 * Re (logderiv zeta (Complex o 0)) + 4 * Re (logderiv zeta (Complex o 7))
+ Re (logderiv zeta (Complex o (2 * 7))) by auto
also have ... < 0 by (rule logderiv_zeta__ineq, rule 1)
finally have 8 x a + 4 x b+ c < 0.
hence / /(0 —B) <15/ 4x(1) (c—1)+ 120 (2x~v+ 1)/
unfolding a_def b _def c¢_def by auto

also have ... = 3720 « ¢ (2 x v + 1) / r unfolding o def by auto
finally have 2: inverse (6 — 3) < 930 x ¢ (2 * v + 1) / r by (auto simp add: inverse_eq divide)
have 3: 0 — >1 /930 x (r | ¢ (2 %y + 1))

proof —
have 1 /930 x (r / ¢ (2 x~y+ 1)) =1/ (930 % (¢ (2x~y+ 1)/ T))
by (auto simp add: field _simps)
also have ... < ¢ — [proof —
have § < 1 using assms(2) zeta_Re_gt_1_nonzero [of Complex 3 ~] by fastforce
also have 1 < o by (rule 1)
finally have 8 < o .
thus ?thesis using 2 by (auto intro: inverse_le_imp__le)
qed
finally show “thesis .
qed
show ?thesis proof —
let =1/ (2xv+ 1)
have 1 / 29760 « %z =1 / 930 x %z — 1 / 960 % ?z by auto
also have ... < (¢ —) — (0 — 1) using 3 by (subst (2) o__def) auto

also have ... = 1 — 8 by auto
finally show “thesis .
qed
qed

lemma zeta_nonzero__region:
assumes zeta (Complexr 3 v) = 0
shows 1 — 3> 1/ 29760 = (r / ¢ (2 v+ 1))

proof (cases 1 + 1 /960 « (r / ¢ (2x~v+ 1)) —r /2 <[)
case True

49

thus ?thesis using assms by (rule zeta__nonzero__region’)
next
case Fulse
let 2z =1/ (2x~vy+1)
assume 1: =1 +1 /960 x %z —r /] 2 <[
have (0 < r using ¥_ pos’ unfolding r_def by auto
hence 1 / 930 x %x < r | 2
using ¢_pos [of 2 x v + 1] by (auto introl: mult_imp__div_pos_le)
hence 1 / 29760 « %z < r / 2 — 1 | 960 * ?z by auto
also have ... < 1 — 3 using I by auto
finally show ?thesis .
qed
end

context zeta_ bound__param begin
theorem zeta_nonzero_region:
assumes zeta (Complex 3) = 0 and Complex 3 v # 1
shows 1 — 3 >1 /29760 x (9 (2 x|y + 1)/ o (2 x|y + 1))
proof (cases |y| > 13] 22)
case True
assume 1: 13 / 22 < |y
have 2: zeta (Complex 3 |v|) = 0
proof (cases v > 0)
case True thus ?thesis using assms by auto
next
case False thus ?thesis by (auto simp add: complex__cnj [symmetric] intro: assms)
ged
interpret z: zeta__bound_param__1 9 ¢ «|y|> by standard (use 1 in auto)
show ?thesis by (intro z.zeta_nonzero_region [unfolded z.r_def] 2)
next
case Fulse
hence 1: |y| < 13 / 22 by auto
show “thesis
proof (cases 0 < (3, rule ccontr)
case True thus False using zeta_nonzero__small_imag [of Complex (3 ~] assms 1 by auto
next
have 0 <9 (2 x|y +1)0 2|y +1)<11<p (2x*x|y+1)
using ¥_pos’ ¢_ pos by auto
hence 1 / 29760 « (¥ (2 = |y| + 1) / ¢ (2 % |y| + 1)) < 1 by auto
also case Fulse hence 1 < I — 3 by auto
finally show #“thesis .
qed
qed
end

lemma zeta_ bound__param__nonneg:

fixes ¥ ¢ :: real = real

assumes zeta_bn’s N\z. 1 — 9 (Im2) < Rez= Im 2> 1/ 11 = |zeta z|| < exp (¢ (Im 2))
and ¥_pos: \t. 0 <t= 0 <V tNIt<1]2
and p_pos: N\t. 0 <t—=1<opt
and inv 9: \t. 0 <t= @t /It <1/ 960 % exp (¢ t)
and mo: Az y. 0 <z =z <y=9Jy<duz
and mop: Nz y. 0 <z =z<y=pzr <9y

shows zeta__bound__param (\t. 9 (maz 0 t)) (At. ¢ (maz 0 t))

by standard (insert assms, auto simp add: antimono__def mono__def)

20

interpretation classical_zeta_bound:
zeta__bound_param Xt. 1 / 2 Xt. 4 % In (12 + 2 % maz 0 t)
proof —
define ¥ :: real = real where 9 = \t. 1 / 2
define ¢ :: real = real where ¢ = A\t. / *x In (12 + 2 % t)
have zeta bound_param (At. 9 (maz 0 t)) (At. ¢ (maz 0 t))
proof (rule zeta__bound__param__nonneg)
fix zassume x: 1 — Y (Imz) < RezImz> 1/ 11
have ||zeta z|| < 12 + 2 * |Im z|
using * unfolding ¥__def by (intro zeta__bound__trivial) auto
also have ... = exp (In (12 + 2 x Im z)) using *(2) by auto
also have ... < exp (¢ (Im z)) proof —
have 0 < In (12 + 2 x Im z) using *(2) by auto
thus ?thesis unfolding ¢ _ def by auto
qed
finally show | zeta z|| < exp (¢ (Im 2)) .
next
fix ¢t :: real assume *: 0 < ¢
have ot /9t =8 xIn (12 + 2 x t) unfolding ¢_ def ¥__def by auto
alsohave ... < 8 x (5 / 2 + t)

proof —
have In (12 + 2 xt) =1In (12 x (1 + t / 6)) by auto
also have ... =in 12 + In (1 + t / 6) by (rule In_mult) (use x in auto)

alsohave ... <5 /2+1t/06
proof (rule add_mono)
have (144 = real) < (271 / 100) ~ 5
by (simp add: power numeral_reduce)
also have 271 / 100 < exp (1 :: real)
using e _approz_32 by (simp add: abs_if split: if _split_asm)
hence (271 / 100) ~5 < exp (1 == real) — 5
by (rule power _strict_mono) auto

also have ... = exp ((5 :: nat) x (1 :: real))
by (rule exp__of nat_mult [symmetric])
also have ... = exp (5 :: real)
by auto

finally have exp (In (12 :: real) * (2 :: nat)) < exp 5
by (subst exp__of nat2_mult) auto

thus In (12 :: real) < 5 / 2
by auto

show In (1 +t/6)<t/6
by (intro In__add_one_self le_self) (use * in auto)

qed

finally show ?thesis using * by auto
qed
also have ... <1/ 960 % exp (¢ t)
proof —

have 8 x (5 / 2+ t) — 1/ 960 x (12 4+ 2 xt) 4
= (1) 60%t 4 +2/)5%t 83+18) 5%t 2+82/)5%t+8)/5)

by (simp add: power_numeral _reduce field _simps)
also have ... < (using *

by (subst neg_le_0_iff le) (auto intro: add_nonneg_nonneg)
moreover have exp (p t) = (12 + 2 x t) ~ 4
proof —

have exp (¢ t) = (12 4+ 2 * t) powr (real 4) unfolding ¢__ def powr__def using * by auto

51

also have ... = (12 4+ 2 x t) ~ 4 by (rule powr_realpow) (use * in auto)
finally show ?thesis .
ged
ultimately show ?thesis by auto
qed
finally show o ¢t /9 ¢t < 1 / 960 exp (¢ t) .
next
fix ¢t :: real assume *: 0 < ¢
have (1 :: real) < 4 % 1 by auto
also have ... < / xIn 12
proof —
have exp (1 :: real) < 3 by (rule exp_le)
also have ... < ezp (In 12) by auto
finally have (1 :: real) < In 12 using exp_le cancel iff by blast
thus ?thesis by auto
qed
also have ... < / % In (12 + 2 x t) using * by auto
finally show 1 < ¢ t unfolding ¢ def .
next
show A\t. 0 <9 tANIt< 1/ 2
Ney 0<z—=z<y=9dy<dz
Ney. 0<z=z<y=pz<qy
unfolding ¥ _def ¢ def by auto
qed
thus zeta_bound_param (At. 1 / 2) (At. 4 = In (12 + 2 % max 0 t))
unfolding ¥ _def ¢ def by auto
qed

theorem zeta_nonzero_region:
assumes zeta (Complex 3 v) = 0 and Complex 3 v # 1
shows 1 — > C1 [/ In (|| + 2)
proof —
have 1 / 952320 = (1 / In (|| + 2))
<1/29760 % (1 /2] (4*In(12+ 2%xmax0 (2 x|y + 1)))) (is %z < ?y)
proof —
have In (14 + 4 = |y]) < 4 * In (|| + 2) by (rule In_bound_1) auto
hence 1 / 298080 / (4 * In (7] + 2)) < 1 / 238080 | (In (14 + 4 = |7]))
by (intro divide_left _mono) auto

also have ... = %y by auto
finally show ?thesis by auto
qed
also have ... < 1 — [by (intro classical_zeta__bound.zeta__nonzero_region assms)
finally show ?thesis unfolding PNT const_C1__def by auto
qged

unbundle no_pnt_notation
end
theory PNT Subsummable
imports

PNT _Remainder__Library
begin
unbundle pnt_notation

definition has_subsum where has_subsum f S x = (An. if n € S then f n else 0) sums x
definition subsum where subsum f S = > n. if n € S then f n else 0

52

definition subsummable (infix subsummable 50)
where f subsummable S = summable (An. if n € S then fn else 0)

syntax _ subsum :: pttrn = nat set = 'a = 'a

(2> e)/)10, 0, 10] 10)
translations

> ‘xeS. t => CONST subsum (Az. t) S

syntax _ subsum_ prop :: pttrn = bool = 'a = 'a

(2 [()./) 1o, 0, 10] 10)
translations
> ‘x|P. t => CONST subsum (Az. t) {z. P}

syntax _ subsum__ge :: pttrn = nat = 'a = a

(2 >_./)10, 0, 10] 10)
translations
S fa>n. t => CONST subsum (Az. t) {n..}

lemma has_subsum,__finite:
finite F' = has__subsum f F (sum f F)
unfolding has_subsum__def by (rule sums_If finite_set)

lemma has_subsum__If finite set:

assumes finite F

shows has_subsum (An. if n € F then fn else 0) A (sum f (F' N A))
proof —

have FN A ={z. 2 € ANz € F} by auto

thus ?thesis unfolding has subsum__def using assms

by (auto simp add: if _if eq conj introl: sums_If finite)

qed

lemma has_subsum__If finite:

assumes finite {n € A. p n}

shows has_subsum (An. if p n then fn else 0) A (sum f {n € A. p n})
unfolding has_subsum__def using assms

by (auto simp add: if _if eq conj introl: sums_If finite)

lemma has subsum__univ:
f sums v = has__subsum f UNIV v
unfolding has_subsum__def by auto

lemma subsuml:
fixes [:: nat = 'a :: {t2_space, comm__monoid_add}
shows has subsum f A v = x = subsum f A
unfolding has_subsum__def subsum__def by (intro sums__unique)

lemma has subsum__summable:
has_subsum f A v = f subsummable A
unfolding has_subsum__def subsummable_def by (rule sums__summable)

lemma subsummable__sums:
fixes f :: nat = 'a :: {comm_monoid_add, t2_space}
shows f subsummable S = has__subsum f S (subsum fS)
unfolding subsummable__def has_subsum__def subsum__def by (intro summable__sums)

23

lemma has_subsum__diff _finite:
fixes S :: 'a :: {topological _ab__group__add, t2_space}
assumes finite F' has_subsum fA S F C A
shows has_subsum f (A — F) (S — sum f F)
proof —
define p where p n = if n € F then 0 else (if n € A then fn else 0) for n
define ¢ where qn =ifn € A — F then fn else 0 for n
have FF N A = F using assms(3) by auto
hence p sums (S — sum f F)
using assms unfolding p_ def has_subsum__def
by (auto intro: sums_If finite set’ [where 25 = S|
simp: sum__negf sum.inter_restrict [symmetric])
moreover have p = ¢ unfolding p_ def ¢ def by auto
finally show ?thesis unfolding ¢ def has subsum__def by auto
qed

lemma subsum,__split:
fixes f :: nat = 'a :: {topological _ab__group__add, t2_space}
assumes [subsummable A finite F F C A
shows subsum f A = sum f F + subsum f (A — F)
proof —
from assms(1) have has_subsum f A (subsum f A) by (intro subsummable__sums)
hence has_subsum f (A — F) (subsum f A — sum f F)
using assms by (intro has__subsum__diff _finite)
hence subsum f A — sum f F = subsum f (A — F) by (rule subsuml)
thus ?thesis by (auto simp add: algebra__simps)
qed

lemma has_subsum__zero [simpl: has_subsum (An. 0) A 0 unfolding has_subsum__def by auto
lemma zero__subsummable [simp]: (An. 0) subsummable A unfolding subsummable_ def by auto
lemma zero_subsum [simp]: (3. ‘n€A. 0 :: 'a = {comm_monoid_add, t2 space}) = 0 unfolding sub-
sum__def by auto

lemma has subsum__minus:
fixes f :: nat = 'a :: real_normed_vector
assumes has_subsum f A a has_subsum g A b
shows has_subsum (An. fn — gn) A (a — b)
proof —
define p where p n = (if n € A then fn else 0) for n
define ¢ where ¢ n = (if n € A then g n else 0) for n
have (An. p n — g n) sums (a — b)
using assms unfolding p_def ¢ _def has_subsum__def by (intro sums__diff)
moreover have (if n € A then fn — gnelse 0) =pn — gn for n
unfolding p_ def ¢ _def by auto
ultimately show ?thesis unfolding has subsum__def by auto
qed

lemma subsum__minus:
assumes [subsummable A g subsummable A
shows subsum f A — subsum g A = (3. ‘n€A. fn — gn 2 'a :: real _normed_vector)
by (intro subsuml has__subsum__minus subsummable__sums assms)

lemma subsummable__minus:
assumes [subsummable A g subsummable A

shows (An. fn — gn :: 'a:: real_normed_vector) subsummable A

54

by (auto intro: has__subsum__summable has _subsum_minus subsummable__sums assms)

lemma has subsum__uminus:

assumes has_subsum f A a

shows has_subsum (An. — fn :: 'a :: real _normed_vector) A (— a)
proof —

have has_subsum (An. 0 — fn) A (0 — a)

by (intro has_subsum__minus) (use assms in auto)

thus ?thesis by auto

qed

lemma subsum__uminus:
[subsummable A = — subsum f A = (> ‘n€A. — fn :: 'a :: real_normed_vector)
by (intro subsumlI has__subsum__uminus subsummable__sums)

lemma subsummable__uminus:
f subsummable A = (An. — fn :: 'a :: real _normed_vector) subsummable A
by (auto intro: has__subsum__summable has__subsum__uminus subsummable__sums)

lemma has subsum__add:
fixes f :: nat = 'a :: real _normed_vector
assumes has_subsum f A a has_subsum g A b
shows has_subsum (An. fn + gn) A (a + b)
proof —
have has_subsum (An. fn — — gn) A (a — — b)
by (intro has_subsum__minus has__subsum__uminus assms)
thus ?thesis by auto
qed

lemma subsum_add:
assumes [subsummable A g subsummable A
shows subsum f A + subsum g A = (3 ‘n€A. fn + gn 2 'a :: real_normed_vector)
by (intro subsuml has__subsum__add subsummable__sums assms)

lemma subsummable__add:
assumes [subsummable A g subsummable A
shows (An. fn + gn :: 'a :: real_normed_vector) subsummable A
by (auto intro: has__subsum__summable has__subsum__add subsummable__sums assms)

lemma subsum__cong:
(Nz. 2 € A = fz=gx) = subsum f A = subsum g A
unfolding subsum__def by (intro suminf_cong) auto

lemma subsummable__cong:
fixes f :: nat = 'a :: real _normed_ vector
shows (Az. 2 € A = fz = g x) = (f subsummable A) = (g subsummable A)
unfolding subsummable__def by (intro summable__cong) auto

lemma subsum_norm__bound:
fixes f :: nat = 'a :: banach
assumes g subsummable A A\n. n € A = ||fn|| < gn
shows ||subsum f A| < subsum g A
using assms unfolding subsummable def subsum__def
by (intro suminf _norm__bound) auto

95

lemma eval fds subsum:
fixes f :: ‘a :: {nat_power, banach, real_normed_field} fds
assumes fds converges f s
shows has__subsum (An. fds_nth fn / nat_power n s) {1..} (eval _fds f s)
proof —
let ?f = An. fds_nth fn / nat_power n s
let v = eval fds f s
have has_subsum (An. ?f n) UNIV %v
by (intro has_subsum__univ fds_converges iff [THEN iffD1] assms)
hence has_subsum ?f (UNIV — {0}) (Pv — sum ?f {0})
by (intro has__subsum__diff _finite) auto
moreover have UNIV — {0 :: nat} = {1..} by auto
ultimately show ?thesis by auto
qed

lemma fds abs subsummable:
fixes f :: ‘a :: {nat_power, banach, real_normed_field} fds
assumes fds abs_converges f s
shows (An. ||fds_nth fn / nat_power n s||) subsummable {1..}
proof —
have summable (An. ||fds_nth fn / nat_power n s||)
by (subst fds_abs__converges__def [symmetric]) (rule assms)
moreover have |fds_nth fn / nat_power n s|| = 0 when - 1 < n for n
proof —
have n = 0 using that by auto
thus “thesis by auto
ged
hence (An. if 1 < n then ||fds_nth fn / nat_power n s|| else 0)
= (An. ||[fds_nth fn / nat_power n s||) by auto
ultimately show ?thesis unfolding subsummable_def by auto
qged

lemma subsum_mult2:

fixes f :: nat = 'a :: real _normed_algebra

shows f subsummable A = (> ‘a€A. fz * ¢) = subsum f A * ¢
unfolding subsum__def subsummable__def

by (subst suminf_mult2) (auto intro: suminf_cong)

lemma subsummable _mult2:
fixes f :: nat = ’a :: real_normed__algebra
assumes [subsummable A
shows (Az. fz x ¢) subsummable A
proof —
have summable (An. (if n € A then fn else 0) x ¢) (is ?P)
using assms unfolding subsummable _def by (intro summable_mult?2)
moreover have ?P = ?thesis
unfolding subsummable _def by (rule summable_cong) auto
ultimately show ?thesis by auto
qed

lemma subsum__ge limit:
lim (AN.>>_n=m.N.fn)=(>_‘n>m. fn)
proof —
define g where g n = if n € {m..} then fn else 0 for n
have (> n. g n) = lim (AN. Y n<N. g n) by (rule suminf eq lim)

56

also have ... = lim (AN. Y n<N + 1. gn)
unfolding lim_ def using LIMSEQ ignore_ initial__segment LIMSEQ offset
by (intro The__cong iffI) blast
also have ... = lim (AN. > ,n = m..N. fn)
proof —
have {z. 2 < N + 1 A m < z} = {m..N} for N by auto
thus ?thesis unfolding g_def by (subst sum.inter _filter [symmetric]) auto
qed
finally show ?thesis unfolding subsum__def g def by auto
qed

lemma has_subsum__ge_ limit:
fixes f :: nat = 'a :: {t2_space, comm_monoid_add, topological__space}
assumes ((AN. > n=m.N. fn) —— 1) at_top
shows has__subsum f {m..}
proof —
define g where g n = if n € {m..} then fn else 0 for n
have ((AN. Y n<N + 1. gn) —— 1) at_top
proof —
have {z. 2 < N + 1 A m < z} = {m..N} for N by auto
with assms show ?thesis
unfolding g def by (subst sum.inter_filter [symmetric]) auto
ged
hence ((AN. > n<N. gn) —— 1) at_top by (rule LIMSEQ __offset)
thus ?thesis unfolding has subsum__def sums_def g def by auto
qed

lemma eval fds complex:

fixes f :: complex fds

assumes fds converges f s

shows has_subsum (An. fds_nth fn / n nat_powr s) {1..} (eval_fds f s)
proof —

have has_subsum (An. fds_nth fn / nat_power n s) {1..} (eval_fds f s)

by (intro eval fds_subsum assms)

thus ?thesis unfolding nat_power__complex_def .

qed

lemma eval_fds complex subsum:

fixes f :: complex fds

assumes fds converges f s

shows eval _fds fs= (>, ‘n> 1. fds_nth fn / n nat_powr s)

(An. fds_nth fn / n nat_powr s) subsummable {1..}

proof (goal cases)

case I show ?Zcase by (intro subsuml eval_fds__complex assms)

case 2 show ?Zcase by (intro has_subsum__summable) (rule eval fds complex assms)+
qed

lemma has_sum__imp_has_subsum:
fixes z :: 'a :: {comm_monoid_add, t2_space}
assumes (f has_sum z) A
shows has subsum f A z
proof —
have (Vr z in at_top. sum f ({..<z} N A4) € §)
when open Sz € S for S
proof —

o7

have VS. open S — =z € S — (Vg x in finite_subsets_at_top A. sum fx € S)
using assms unfolding has sum__def tendsto_ def .
hence V p x in finite _subsets at_top A. sum fx € S using that by auto
then obtain X where hX: finite X X C A
and hY: A\Y. finite Y = X CV =Y CA=sumfYeSs
unfolding eventually_finite subsets at_top by metis
define n where n = Maz X + 1
show ?thesis
proof (subst eventually__sequentially, standard, safe)
fix m assume Hm: n < m
moreover have z € X — z < n for z
unfolding n_ def using Max_ge [OF hX (1), of z| by auto
ultimately show sum f ({..<m} N A) € S
using hX(2) by (intro hY, auto) (metis order.strict_trans2)
qed
ged
thus ?thesis unfolding has subsum__def sums_def tendsto__def
by (simp add: sum.inter _restrict [symmetric))
qed

unbundle no_pnt_notation
end
theory Perron__ Formula
imports
PNT _Remainder__Library
PNT Subsummable
begin
unbundle pnt_notation

5 Perron’s formula

This version of Perron’s theorem is referenced to: Perron’s Formula and the Prime Number Theorem
for Automorphic L— Functions, Jianya Liu, Y. Ye

A contour integral estimation lemma that will be used both in proof of Perron’s formula and the
prime number theorem.

lemma perron_auz 3"
fixes f :: compler = complex and a b B T :: real
assumes Ha: 0 < aand Hb: 0 < band hT: 0 < T
and Hf: N\t. t € {=T..T} = ||f (Complex b t)|| < B
and Hf" (As. f s * a powr s / s) contour_integrable_on (linepath (Complex b (—T)) (Complex b T))
shows |1 / (2 % pi * 1) % contour__integral (linepath (Complex b (—T)) (Complex b T)) (As. f s x a powr
5/ 9l
< Bxapowrbxin (1 + T /b
proof —
define path where path = linepath (Complex b (—T)) (Complex b T)
define t’ where ¢’ t = Complex (Re (Complex b (—T))) t for ¢
define g where g t = f (Complex b t) * a powr (Complex b t) / Complex bt x i for ¢
have ||f (Complex b 0)|| < B using hT by (auto intro: Hf [of 0])
hence hB: 0 < B using hT by (smt (verit) norm__ge_ zero)
have ((At. f (t't) * a powr (t't) [(t't) * i)
has__integral contour_integral path (As. f s * a powr s / s)) {Im (Complex b (—T))..Im (Complex b
7))

unfolding t’ def using hT
by (intro integral_linepath__same__Re, unfold path__def)

o8

(auto intro: has__contour_integral_integral Hf")
hence h_int: (g has_integral contour integral path (Xs. f s * a powr s / s)) {—=T..T}
unfolding g def t' _def by auto
hence int: g integrable_on {—T..T} by (rule has_integral _integrable)
have contour_integral path (Xs. f s * a powr s / s) = integral {—T..T} g
using h__int by (rule integral_unique [symmetric])
also have ||...| < integral {—T.. T} (At. 2 * B * a powr b / (b + |t]))
proof (rule integral_norm__bound__integral, goal_cases)
case 1 from int show ?case .
case 2 show ?case
by (intro integrable__continuous__interval continuous__intros)
(use Hb in auto)

next
fix t assume x: t € {—T..T}
have (b + [t))2 — 4 = (0> + t2) = — 3 % (b — [t|)®2 + — 4 = b * [t]
by (simp add: field _simps power2_eq _square)
also have ... < 0 using Hb by (intro add_nonpos_nonpos) auto

finally have (b + [t])2 — 4 * (b> + 12) < 0 .
hence b + [t| < 2 x ||Complex b t]|
unfolding cmod__def by (auto intro: power2_le_imp_le)
hence a powr b / ||Complex b t| < a powr b/ ((b+ [t]) / 2)
using Hb by (intro divide__left_mono) (auto introl: mult_pos_pos)
hence a powr b / ||Complex b t|| = ||f (Complex b t)|| < a powr b/ (b + |t]) / 2) * B
by (insert Hf [OF], rule mult _mono) (use Hb in auto)
thus [[g t]| < 2« Bx apowrb / (b+ |t])
unfolding g def
by (auto simp add: norm_mult norm__divide)
(subst norm__powr_real _powr, insert Ha, auto simp add: mult_ac)

ged
also have ... = 2 x B x a powr b * integral {—T..T} (\t. 1 / (b + |t]))
by (subst divide__inverse, subst integral _mult_right) (simp add: inverse__eq divide)
also have ... = / x B x a powr b * integral {0..T} (\t. 1 / (b + |t]))
proof —

let 2f = Xt. 1 / (b + |t])
have integral {—T..0} ?f + integral {0..T} ?f = integral {—T..T} ?f
by (intro Henstock Kurzweil__Integration.integral__combine
integrable__continuous__interval continuous__intros)
(use Hb hT in auto)
moreover have integral {—T..—0} (At. ?f (—t)) = integral {0..T} ?f
by (rule Henstock_Kurzweil _Integration.integral _reflect_real)
hence integral {—T..0} ?f = integral {0..T} ?f by auto
ultimately show ?thesis by auto
qed
also have ... = 4/ «x Bx apowrbxlIn (1 + T /b)
proof —
have ((At. 1 / (b + |t])) has_integral (In (b + T) — In (b + 0))) {0..T}
proof (rule fundamental _theorem__ of calculus, goal cases)
case 1 show ?case using hT by auto
next
fix x assume x: z € {0..T}
have ((Az. In (b + z)) has_real derivative 1 / (b + z) * (0 + 1)) (at z within {0..T})
by (intro derivative_intros) (use Hb * in auto)
thus ((Az. In (b + z)) has_vector_derivative 1 / (b + |z|)) (at z within {0..T})
using * by (subst has_real _derivative_iff _has_vector__derivative [symmetric]) auto
qged

29

moreover have in (b + T) —in(b+ 0)=1In (1 + T /b)
using Hb hT by (subst In__div [symmetric]) (auto simp add: field__simps)

ultimately show ?thesis by auto

qed

finally have ||1 / (2 % pi * i) * contour_integral path (As. fs * a powr s / s)||
< 1/ (2%pi) x 4 * Bx apowrbxlIn (1 + T /D)
by (simp add: norm__divide norm__mult field__simps)

alsohave ... < 1« Bxapowrbx*in (1 + T/ b)

proof —
have 1 / (2xpi) x 4 < 1 using pi_gt3 by auto
thus ?thesis by (intro mult_right _mono) (use hT Hb hB in auto)

ged

finally show ?thesis unfolding path_def by auto

qed

locale perron__locale =
fixes b B H T x :: real and f :: complex fds
assumes Hb: 0 < band hT: b < T
and Hb": abs_conv_abscissa f < b
and hH: 2 < Hand hH: b+ 1 < Hand Hz: 0 < z
and hB: (3| ‘n > 1. ||fds_nth fn| / n nat_powr b) < B
begin
definition r where r a =
if a # 1 then min (1 / (2 T x|lnal)) (24 In (T /b))
else (2 4+ In (T /b))
definition path where path = linepath (Complex b (—T)) (Complex b T')
definition img_path where img path = path__image path
definition o, where o, = abs_conv_abscissa f
definition region where region = {n ::nat. z —z / H<nAn<z+ 2z / H}
definition F where F (a :: real) =
1 /(2 % pi * i) % contour_integral path (As. a powr s / s) — (if 1 < a then 1 else 0)
definition F’ where F' (n :: nat) = F (z / n)

lemma hT’: 0 < T using Hb hT by auto
lemma cond: 0 < bb < T 0 < T using Hb hT hT' by auto

lemma perron__integrable:

assumes (0 :: real) < a

shows (As. a powr s / s) contour_integrable _on (linepath (Complex b (—T)) (Complex b T'))
using cond assms
by (intro contour _integrable__continuous_linepath continuous__intros)

(auto simp add: closed__segment__def legacy__Complex__simps field__simps)

lemma perron__aux_ 1"
fixes U :: real
assumes hU: 0 < U and Ha: 1 < a
shows ||Fa| <1/ pi*xapowrd/ (T x|lnal) + apowr —Ux T/ (pix U)
proof —
define f where f = A\s :: complex. a powr s / s
note assms’ = cond assms this
define Py where P; = linepath (Complex (—U) (—T)) (Complex b (—1T))
define Py where Py = linepath (Complex b (—T)) (Complex b T)
define P3 where P3 = linepath (Complex b T') (Complex (—U) T)
define P4, where Py = linepath (Complex (—U) T) (Complex (—U
define P where P = Py +++ Py +++ P3 +++ P4

) (=T))

60

define I I, I3 I, where
11 = contour_integral P1 f and Iy = contour_integral Po f and
I3 = contour__integral P3 f and 14 = contour_integral P4 f
define rpath where rpath = rectpath (Complex (—U) (—T)) (Complex b T')
note P_defs = P_def P1_def Po__def Ps_def P, _def
note [defs = I1_def Io_def Is_def 14 _def
have 1: N\ABz. ACB=—=12¢ A= A C B — {z} by auto
have path_image (rectpath (Complex (— U) (— T)) (Complex b T))
C cbox (Complex (— U) (— T)) (Complex b T) — {0}
using assms’
by (intro 1 path__image_rectpath__subset_cbozx)
(auto simp add: path__image_rectpath)
moreover have 0 € box (Complex (— U) (— T)) (Complex b T')
using assms’ by (simp add: mem__box Basis_complex__def)
ultimately have
((As. a powr s / (s — 0)) has_contour_integral
2 x pi * i x winding _number rpath 0 x a powr (0 :: compler)) rpath
winding _number rpath 0 = 1
unfolding rpath__def
by (intro Cauchy__integral_formula__convex__simple
[where S = cbox (Complex (—U) (—T)) (Complez b T)))
(auto intro!: assms’ holomorphic_on__powr_right winding _number_rectpath
stmp add: mem__box Basis__complex__def)
hence (f has__contour_integral 2 * pi % i) rpath unfolding f def using Ha by auto
hence 2: (f has__contour__integral 2 * pi * i) P
unfolding rpath_def P_ defs rectpath__def Let_def by simp
hence f contour_integrable _on P by (intro has__contour_integral integrable) (use 2 in auto)
hence 3: f contour_integrable_on Py f contour__integrable_on Ps
f contour_integrable_on Ps f contour_integrable on P, unfolding P_defs by auto
from 2 have I1 + I + I3 + I4 = 2 x pi x i unfolding P_ defs I _defs by (rule has__chain__integral__chain__integral.

hence Iy — 2 x pi xi= — ([1 + I3 + I4) by (simp add: field_simps)
hence Iy — 2« pi + || = |- (I1 + I3 + L4)|| by auto

also have ... = |[I} + I3 + 14| by (rule norm_minus_cancel)

also have ... < |I1 + I3]| + ||14]] by (rule norm__triangle_ineq)

also have ... < |I1]| + || I3]| + || 14| using norm__triangle_ineq by auto

finally have x: ||[Io — 2 * pi * i|| < ||[I1|| + [[13]] + ||Z4]] -
have Io_uval: |2 / (2 % pi 1) — 1] < 1 / (25pi) + (|| + 5] + [Lal)
proof —
have Iy — 2 x pi x 1= (I3 / (2 x pi 1) — 1) * (2 * pi * 1) by (auto simp add: field_simps)
hence ||Io — 2 x pi || = ||(I2 / (2 * pi 1) — 1) % (2 % pi *x i)|| by auto
also have ... = ||[I2 / (2 x pi x 1) — 1|| x (2xpi) by (auto simp add: norm__mult)
finally have |1z / (2 + pi + i) — 1] = 1 / (24pi) Iz — 2 + pi = i|| by auto
also have ... < 1/ (2xpi) = (|| I1]] + || I3]] + [[14]])
using * by (subst mult_le__cancel_left _pos) auto
finally show ?thesis .
qed
define) where Q t = linepath (Complex (—U) t) (Complex b t) for ¢
define g where g t = contour_integral (Q t) f for ¢
have Q_1: (f has_contour_integral 1) (Q (—T))
using 3(1) unfolding Py_def I,__def Q_def
by (rule has__contour_integral_integral)
have Q_2: (f has__contour_integral —I3) (Q T)
using 3(3) unfolding Ps_ def Is__def Q) _def
by (subst contour _integral _reversepath [symmetric],
auto introl: has__contour_integral _integral)

61

(subst contour_integrable__reversepath__eq [symmetric], auto)
have subst_I; Is: Iy =g (— T)Is=—gT
using @)1 @ 2 unfolding ¢ def by (auto simp add: contour_integral__unique)
have g_bound: ||g t|| < a powr b / (T * |In a)
when Ht: |[t| = T for t
proof —
have (f has__contour_integral g t) (Q t) proof —
consider t = T | t = — T using Ht by fastforce
hence f contour_integrable_on @ t using Q_1 Q_2 by (metis has__contour_integral__integrable)
thus ?thesis unfolding ¢ def by (rule has_contour integral _integral)
qed
hence ((Az. a powr (z + Im (Complex (—U) t) x 1) / (z + Im (Complex (—U) t) = 1)) has_integral (g

t)
{Re (Complex (—U) t) .. Re (Complex b t)}
unfolding @ def f def
by (subst has__contour__integral_linepath__same__Im__iff [symmetric])
(use hU Hb in auto)
hence *: ((Az. a powr (z + t *1) / (x + t * 1)) has_integral g t) {—U..b} by auto
hence ||g t| = ||integral {—U..b} (A\z. a powr (z + t * 1) / (z + t = 1))| by (auto simp add: inte-
gral_unique)
also have ... < integral {—U..b} (Ax. a powr xz | T)
proof (rule integral _norm__bound__integral)
show (Az. a powr (x + t x1) / (x + t x 1)) integrable_on {—U..b} using * by auto
have (Az. a powr z / (of _real T)) integrable _on {—U..b}
by (intro iff D2 [OF integrable__on__cdivide _iff] powr _integrable) (use hU Ha Hb hT' in auto)
thus (Az. a powr z / T) integrable_on {—U..b} by auto

next
fix z assume z € {—U..b}
have ||a powr (z + t % i)|| = Re a powr Re (x + t * i) by (rule norm_powr _real powr) (use Ha in
auto)
also have ... = a powr x by auto
finally have *: ||a powr (z + t % 1)|| = a powr .

have T = |Im (z + t % 1)| using Ht by auto
also have ... < ||z + t * i|| by (rule abs_Im_le _cmod)
finally have T < ||z + ¢ * i| .
with % show ||a powr (z + t x1i) / (z + t xi)|| < apowrz /T
by (subst norm__divide) (rule frac_le, use assms’ in auto)
qed
also have ... = integral {—U..b} (Az. a powr z) / T by auto
also have ... < apowr b / (T * |in a|)
proof —
have integral {—U..b} (Az. a powr z) < a powr b / |in al
by (rule powr _integral_bound_ gt 1) (use hU Ha Hb in auto)
thus ?thesis using hT’' by (auto simp add: field _simps)
qed
finally show “thesis .
ged
have ||I4|| < a powr —U / U % ||[Complex (— U) (= T) — Complex (— U) T)||
proof —
have f contour_integrable_on P4 by (rule 3)
moreover have 0 < a powr — U / U using hU by auto
moreover have ||fz|| < a powr — U / U
when *: z € closed segment (Complex (— U) T) (Complex (— U) (— T)) for z
proof —
from x have Re z: Re z = — U

62

unfolding closed__segment__def
by (auto simp add: legacy__Complex__simps field__simps)
hence U = |Re z| using hU by auto

also have ... < ||z|| by (rule abs_Re_le__cmod)
finally have zmod: U < |7 .
have ||f z| = ||a powr z|| / ||z|| unfolding f_def by (rule norm__divide)

also have ... < apowr — U/ U
by (subst norm__powr_real _powr, use Ha in auto)
(rule frac_le, use hU Re_z zmod in auto)
finally show ?thesis .
qed
ultimately show ?thesis unfolding I, def P4 def by (rule contour_integral bound__linepath)
qed
also have ... = apowr —U / U x (2 % T)
proof —
have sqrt ((2 * T)?) = |2 * T| by (rule real_sqrt_abs)
thus ?thesis using hT' by (auto simp add: field_simps legacy Complex_simps)
qged
finally have I, bound: ||I4|| < a powr —U / U % (2 % T) .
have |1y / (2 * pi « i) — 1f| < 1/ (2xpi) * (g (= T)| + [I= g Tl + [[1al})
using Io_wval subst_I1__I3 by auto
also have ... < 1 / (2%pi) *x (2 x a powrb | (T * |In a|) + a powr —U / U * (2xT))
proof —
have ||g T|| < a powr b / (T * |In al)
lg (= T)l < apowr b/ (T x |in a)
using AT’ by (auto intro: g _bound)
hence (g (— T)|| + ||— g T|| + {4l £ 2 % a powr b / (T * |ln a|) + a powr —U |/ U * (2xT)
using 14 bound by auto
thus ?thesis by (auto simp add: field__simps)
qed
also have ... = 1 / pix a powr b / (T * |ln a|) + a powr —U x T / (pi x U)
using hT' by (auto simp add: field simps)
finally show ?thesis
using Ha unfolding I def Po_def f _def F_def path__def by auto
qged

lemma perron__aux_1:
assumes Ha: 1 < a
shows ||[F a| < 1/ pi*apowrd/ (T *|lnal) (is__ < %x)
proof —
let 2y = AU :: real. a powr —U x T / (pi x U)
have (AU :: real. ?z) —— ?z) at_top by auto
moreover have ((\U. ?y U) —— 0) at_top using Ha by real__asymp
ultimately have (A\U. %2 + %y U) —— 2z + 0) at_top by (rule tendsto_add)
hence ((AU. %z + %y U) —— ?%z) at_top by auto
moreover have ||F a|| < %2 + %y U when hU: 0 < U for U
by (subst perron__auz_1' [OF hU Ha|, standard)
hence Vr Uin at_top. ||[Fa| < %z + 2y U
by (rule eventually at_top_ linorderl’)
ultimately show ?thesis
by (intro tendsto__lowerbound) auto
qed

lemma perron_auz_ 2"
fixes U :: real

63

assumes hU: 0 < Ub < Uand Ha: 0 < a AN a < 1
shows ||F a| < 1 / pi* apowrd /(T *|lnal) + apowr Ux T /[(pix U)

proof —
define f where f = As :: complex. a powr s / s
note assms’ = cond assms hU

define Py where P; = linepath (Complex b (—T)) (Complex U (—T))
define Py where Py = linepath (Complex U (—T)) (Complex U T)
define P35 where P3 = linepath (Complex U T) (Complex b T)
define P, where Py = linepath (Complex b T') (Complex b (—1T))
define P where P = P; +++ Py +++ P3 +++ Py
define I, I, I3 I, where

11 = contour__integral P, f and Io contour__integral Po f and

I3 = contour_integral Ps f and I, = contour_integral Py f
define rpath where rpath = rectpath (Complex b (— T)) (Complex U T)
note P_defs = P_def P1_def Py def Ps_def P4 def
note I defs = I1_def Io_def I3 _def I, def
have path__image (rectpath (Complex b (— T)) (Complex U T)) C cbox (Complex b (— T)) (Complex U

7)

by (intro path_image_rectpath_subset cbox) (use assms’ in auto)
moreover have 0 ¢ cbox (Complez b (— T)) (Complex U T)

using Hb unfolding cbox_def by (auto simp add: Basis_complex__def)
ultimately have ((As. a powr s / (s — 0)) has_contour_integral 0) rpath

unfolding rpath_def

by (intro Cauchy__theorem__convex__simple

[where S = cbox (Complex b (— T)) (Complex U T)))
(auto intro!: holomorphic__on__powr_right holomorphic__on__divide)
hence (f has__contour__integral 0) rpath unfolding f def using Ha by auto
hence 1: (f has_contour_integral 0) P unfolding rpath_def P_ defs rectpath_def Let def by simp
hence f contour_integrable _on P by (intro has__contour_integral integrable) (use 1 in auto)
hence 2: f contour_integrable_on Py f contour__integrable_on Ps
f contour_integrable_on Ps f contour_integrable on P, unfolding P_ defs by auto

from 1 have I1 + I + I3 + I4 = 0 unfolding P_ defs I _defs by (rule has__chain__integral_chain__integralj)

hence I, = — (I1 + I3 + I3) by (metis neg_eq iff _add_eq 0)

hence || 14| = ||— (I1 + I2 + I3)|| by auto

also have ... = ||I1 + Iy + I3|| by (rule norm_minus__cancel)

also have ... < |[I} + 13| + ||I3]] by (rule norm__triangle_ineq)

also have ... < ||I1]| + || I2]| + ||I3]| using norm__triangle_ineq by auto

finally have |7,]| < |1i]| + |Tal] + | T3] -
hence I,_uval: |1y / (2% pi +)| < 1 / (25pi) 5 (I + I1Fall + 73]
by (auto simp add: norm__divide norm__mult field__simps)
define @ where Q t = linepath (Complex b t) (Complex U t) for t
define g where g t = contour_integral (Q t) f for t
have @ _1: (f has_contour_integral 11) (Q (—T))
using 2(1) unfolding Py__def I;__def) _def
by (rule has__contour__integral_integral)
have @ _2: (f has__contour_integral —I3) (Q T)
using 2(3) unfolding Ps_ def Is__def Q) _def
by (subst contour_integral _reversepath [symmetric],
auto introl: has__contour_integral integral)
(subst contour_integrable__reversepath__eq [symmetric], auto)
have subst_ Iy _Is: 11 =g (— T)I3=—g T
using @ 1 @ 2 unfolding ¢ def by (auto simp add: contour _integral__unique)
have g _bound: ||g t| < a powr b / (T * |in al)
when Ht: |t| = T for t
proof —

64

have (f has__contour_integral g t) (Q t) proof —
consider t = T | t = — T using Ht by fastforce
hence f contour_integrable _on @ t using Q_1 Q 2 by (metis has__contour_integral__integrable)
thus ?thesis unfolding ¢_def by (rule has__contour_integral__integral)
qed
hence ((Az. a powr (x + Im (Complex b t) x 1) / (z + Im (Complex b t) * 1)) has_integral (g t))
{Re (Complex b t) .. Re (Complex U t)}
unfolding @ def f def
by (subst has__contour _integral _linepath__same_ Im__iff [symmetric])
(use assms’ in auto)
hence *: ((Az. a powr (z + t x 1) / (z + t * 1)) has_integral g t) {b..U} by auto
hence ||g t|| = ||integral {b..U} (Az. a powr (z + t x1) / (z + t *1))|| by (auto simp add: integral_unique)
also have ... < integral {b..U} (Az. a powr xz /| T)
proof (rule integral_norm__bound__integral)
show (Az. a powr (z + t x 1) / (z + t * 1)) integrable_on {b..U} using * by auto
have (Az. a powr z / (of real T)) integrable _on {b..U}
by (intro iff D2 [OF integrable _on__cdivide iff] powr _integrable) (use assms’ in auto)
thus (Az. a powr z / T) integrable_on {b..U} by auto

next

fix z assume z € {b..U}

have ||a powr (z + t % i)|| = Re a powr Re (x + t * i) by (rule norm__powr_real_powr) (use Ha in
auto)

also have ... = a powr z by auto

finally have 1: ||a powr (z + t * i)|| = a powr z .

have T = |Im (z + t * 1)| using Ht by auto

also have ... < ||z + t * i|| by (rule abs_Im_le_cmod)

finally have 2: T < ||z + t * if| .
from 1 2 show ||a powr (z + t x1) / (z + ¢t x1)|| < a powrz /| T
by (subst norm__divide) (rule frac_le, use hT'in auto)
qed
also have ... = integral {b..U} (Az. a powr z) / T by auto
also have ... < apowr b / (T * |in a|)
proof —
have integral {b..U} (Az. a powr x) < a powr b / |In a|
by (rule powr_integral_bound_lt_1) (use assms’ in auto)
thus ?thesis using hT’' by (auto simp add: field__simps)

qed

finally show “thesis .
qed
have ||I2|| < a powr U / U * ||Complex U T — Complex U (— T)||
proof —

have f contour_integrable_on Py by (rule 2)
moreover have (0 < a powr U / U using hU by auto
moreover have ||f z| < a powr U /| U
when x: z € closed__segment (Complex U (— T)) (Complex U T) for z
proof —
from x have Re z: Re z = U
unfolding closed__segment__def
by (auto simp add: legacy_Complex__simps field__simps)
hence U = |Re z| using hU by auto
also have ... < ||z|| by (rule abs_Re_le_cmod)
finally have zmod: U < ||z .
have ||f z|| = ||a powr z|| / ||z|| unfolding f def by (rule norm__divide)
also have ... < apowr U / U
by (subst norm__powr_real _powr, use Ha in auto)

65

(rule frac_le, use hU Re_z zmod in auto)
finally show ?thesis .
qed
ultimately show ?thesis unfolding I def Py def by (rule contour integral bound_ linepath)
qged
also have ... < apowr U/ U x (2 * T)
proof —
have sqrt ((2 * T)?) = |2 x T| by (rule real_sqrt_abs)
thus ?thesis using hT' by (simp add: field__simps legacy__Complex__simps)
qed
finally have Iy bound: ||I2]| < a powr U /] U % (2 % T) .
have I3 / (2 = pi)| < 1 / (25pi) * (g (-) + 2]l + - ¢ TI)
using I, wval subst_I,_I3 by auto
also have ... < 1 / (2xpi) x (2 x a powr b / (T * |ln a|) + a powr U / U x (2xT))
proof —
have ||g T|| < a powr b / (T * |in a)
lg (= D) < apowr b / (T = |in al)
using hT' by (auto intro: g_bound)
hence |g (— T)|| + ||— g T|| + [Z2ll £ 2 x a powr b / (T * |ln a|) + a powr U | U = (2xT)
using Io_ bound by auto
thus ?thesis by (auto simp add: field__simps)
qed
also have ... =1 / pi x apowr b / (T * |ln a|) + a powr U x T / (pi x U)
using AT’ by (auto simp add: field_simps)
finally have ||1 / (2 % pi * i) * contour_integral (reversepath Pa) f||
<1 /pi*xapowrd/ (T« |lna|l)+ apowrUx T/ (pix* U)
unfolding I, def P4 _def by (subst contour_integral reversepath) auto
thus ?thesis using Ha unfolding I, def P4 def f def F_def path__def by auto
qed

lemma perron__auzr 2:
assumes Ha: 0 < a N a < 1
shows ||[F a| < 1/ pi* apowrd /(T *|lnal) (is__ < ?%x)
proof —
let 2y = AU :: real. a powr U x T / (pi x U)
have (AU :: real. ?z) —— ?z) at_top by auto
moreover have (AU. 7y U) —— 0) at_top using Ha by real _asymp
ultimately have (A\U. %z + %y U) —— 2z + 0) at_top by (rule tendsto_add)
hence ((AU. %z + %y U) —— ?%z) at_top by auto
moreover have ||F a| < %2 4+ %y U when hU: 0 < Ub < U for U
by (subst perron__auz_2' [OF hU Ha|, standard)
hence Vi U in at _top. ||[Fal < %z + 2y U
by (rule eventually at_top_ linorderl’) (use Hb in auto)
ultimately show ?thesis
by (intro tendsto__lowerbound) auto
qed

lemma perron__auz__3:

assumes Ha: 0 < a

shows |1 / (2 % pi * 1) * contour_integral path (As. a powr s /| s)|| < a powr b * In (1 + T / b)
proof —

have ||1 / (2 * pi % i) * contour_integral (linepath (Complex b (—T)) (Complex b T)) (As. 1 * a powr s
/9

<1 s*xapowrbxlin (1 + T)/Db)
by (rule perron_auz_3") (auto intro: Ha cond perron__integrable)

66

thus ?thesis unfolding path_def by auto
qed

lemma perron_aux':
assumes Ha: 0 < a
shows || F a| < a powr b 1 a
proof —
note assms’ = assms cond
define P where P = 1 / (2 % pi % i) % contour_integral path (\s. a powr s / s)
have im 1: 1 +in (1 + T /b) <2+ In(T /D)
proof —
have 1 < T / b using hT Hb by auto
hence 1 + T /b < 2 % (T / b) by auto
hence ln (1 + T/ b) <in 2 + In (T / b) by (subst In_mult [symmetric]) auto
thus ?thesis using In_ 2 less 1 by auto
ged
have «: ||F al| < a powr b (2 + In (T /b))
proof (cases 1 < a)
assume Ha”" 1 < a
have ||[P — 1| < ||P| + 1 by (simp add: norm__triangle_le diff)
also have ... < apowrbxin (1 + T /b) + 1
proof —
have ||P|| < a powr b« In (1 + T / b)
unfolding P_ def by (intro perron__aux_3 assms’)
thus ?thesis by auto
qed
also have ... < apowrbx (2 + In (T / b))
proof —
have I = a powr 0 using Ha' by auto
also have a powr 0 < a powr b using Ha' Hb by (intro powr _mono) auto
finally have a powr b« In (1 + T / b) + 1 < apowrbx* (1 +in (1 + T /b))
by (auto simp add: algebra__simps)
also have ... < apowr b« (2 + In (T /b)) using Ha' Im__1 by auto
finally show ?thesis .
qed
finally show ?thesis using Ha' unfolding F_def P_def by auto
next
assume Ha" -1 < a
hence ||P| < apowrbxIn (1 + T /b)
unfolding P_def by (intro perron__auz_3 assms’)
also have ... < apowr b (2 + In (T /b))
by (rule mult_left_mono) (use Im__1 in auto)
finally show ?thesis using Ha' unfolding Fdef P def by auto
qed
consider 0 < a A a # 1 | a = 1 using Ha by linarith
thus ?thesis proof cases
define ¢ where c =1 / 2 x a powr b / (T * |in a|)
assume Ha" 0 < a N a # 1
hence (0 < a AN a< 1)V a>1 by auto
hence ||F a|| < 1 / pi x a powrb / (T * |in a|)
using perron__auzx_ 1 perron_aux_2 by auto
also have ... < ¢ unfolding c_ def
using Ha' hT' pi_gt3 by (auto simp add: field _simps)
finally have ||F a| < c.
hence ||F a|| < min ¢ (a powr b x (2 + In (T / b))) using * by auto

67

also have ... = a powr b x r a
unfolding r_def ¢_def using Ha' by auto (subst min_mult_distrib_left, auto)

finally show ?thesis using Ha' unfolding P def by auto

next
assume Ha" a = 1
with *x show ?thesis unfolding r_def by auto

qged

qed

lemma r bound:
assumes Hn: 1 < n
shows r (z / n) < H / T + (if n € region then 2 + In (T / b) else 0)
proof (cases n € region)
assume *: n ¢ region
then consider n < z — z / H | z + x / H < n unfolding region__def by auto
hence 1 /|ln(z / n)| < 2« H
proof cases
have hH" 1 / (1 — 1 / H) > 1 using hH by auto
case hencez /n>z/ (z —x/ H)
using Hx hH Hn by (intro divide__strict_left_mono) auto
alsohavez /(v —z/H)=1/(1 —1/ H)
using Hzx hH by (auto simp add: field__simps)
finally have an: z /n>1 /(1 — 1/ H).
moreover have zn”: x / n > 1 using xn hH' by linarith
ultimately have |in (z / n)| >in (1 /(1 — 1 / H))
using hH Hzx Hn by auto
hence 1 /|ln(x /n)| <1 /In(1 /(1 -1/ H))
using zn’ hH' by (intro divide_strict_left _mono mult_pos_pos In__gt_zero) auto
also have ... < H proof —
have In (1 — 1 / H) < - (1 / H)
using hH by (intro In__one_minus_pos_upper_bound) auto
hence —1 /in(1 — 1/ H)< -1/ (- (1/ H))
using hH by (intro divide_left_mono_neg) (auto intro: divide__neg_pos)
also have ... = H by auto
finally show ?thesis
by (subst (2) inverse_eq divide [symmetric])
(subst In__inverse, use hH in auto)
qed
finally show ?thesis using hH by auto
next
case 2 hencezr /n<z/(z+x/ H)
using Hx hH Hn by (auto intro!: divide__strict_left _mono mult_pos_pos add_pos_pos)
alsohave ... =1 /(1 + 1/ H)
proof —
have 0 < x + x * H using Hzx hH by (auto intro: add_pos_pos)
thus ?thesis using Hz hH by (auto simp add: field _simps)

qed
finally have zn: z /n< 1 /(1 +1 / H).
also have hH': ... < 1 using hH by (auto simp add: field _simps)

finally have 2n”: 0 <z / n A x / n < 1 using Hz Hn by auto
have 1 /|ln (z / n)|=—1 /In (z / n)
using xn’ by (auto simp add: field_simps)
also have ... < 2 x H proof —
have In (z /n)<In (1 /(1 + 1/ H))
using an an’ by (subst In_less _cancel iff) (blast, linarith)

68

also have ... = —In (1 + 1 / H)
by (subst (1) inverse_eq divide [symmetric])
(subst In__inverse, intro add_pos_pos, use hH in auto)
also have ... < —1 /(2 x H)
proof —
have 1 / H — (1 / H?<In (1 + 1/ H)
by (rule In_one_plus_pos_lower_bound) (use hH in auto)
hence —In (1 + 1/ H) < — 1/ H+ (1 / H)? by auto
also have ... < —1 /(2 * H)
using hH unfolding power2_eq square by (auto simp add: field__simps)
finally show “thesis .
ged
finally have —1 /in (z / n) < —1 /(=1 /(2 x H))
by (intro divide left _mono_neg) (insert xn’ hH, auto simp add: field _simps)
thus ?thesis by auto
qed
finally show “thesis .
qged
hence (1 /|ln(z/n)])/ (2« T)<(2xH)/(2xT)
using AT’ by (intro divide_right_mono) auto
hence 1 / (2« Tx|ln(z/n))<H/T
by (simp add: field__simps)
moreover have z / n # 1 using * hH unfolding region__def by auto
ultimately show ?thesis unfolding r_def using * by auto
next
assume *: n € region
moreover have 2 +In (T /b)) < H / T+ (24 In(T /b))
using hH hT' by auto
ultimately show ?thesis unfolding r_def by auto
qed

lemma perron__aux:
assumes Hn: 0 < n
shows ||F' n|| < 1 / n nat_powr b x (z powr b« H /| T)
+ (if n € region then 3 % (2 + In (T / b)) else 0) (is 7P < ?Q)
proof —
have ||F (z / n)|| < (z / n) powr b x r (z / n)
by (rule perron__auz') (use Hx Hn in auto)
also have ... < (z / n) powr b (H /| T + (if n € region then 2 + In (T / b) else 0))
by (intro mult_left_mono r_bound) (use Hn in auto)
also have ... < ?(Q)
proof —
have x: (z / n) powr b« (H / T) =1 / n nat_powr b x (x powr b« H /| T)
using Hx Hn by (subst powr_divide) (auto simp add: field__simps)
moreover have (z / n) powrb*x (H /T + (2 + In (T /b))
<1/ nnat_powrbx (xpowrbx H/ T)+ 3% (2+In(T /D)
when Hn' n € region
proof —
have (z / n) powr b < 3
proof —
have z — » / H < n using Hn' unfolding region__def by auto
moreover have © / H < z / 1 using hH Hz by (intro divide _strict_left_mono) auto
ultimately have z / n <z / (z — z / H)
using Hz hH Hn by (intro divide left _mono mult_pos_pos) auto
alsohave ... =1+1/(H - 1)

69

using Hz hH by (auto simp add: field__simps)
finally have (z / n) powr b < (1 + 1 / (H — 1)) powr b
using Hx Hn Hb by (intro powr_mono2) auto
also have ... < exp (b/ (H — 1))
proof —
have In (1 +1) (H —1))<1/(H - 1)
using hH by (intro In__add_one_self le_self) auto
hence bxin (1 +1/(H—-1)<bx(1/(H—-1))
using Hb by (intro mult_left_mono) auto
thus ?thesis unfolding powr def by auto
qed
also have ... < exp 1 using Hb hH' by auto
also have ... < 3 by (rule exp_le)
finally show %thesis .
qed
moreover have 0 < In (T / b) using hT Hb by (auto intro!: In_ge zero)
ultimately show ?thesis using hT
by (subst ring_ distribs, subst *, subst add_le__cancel left)
(intro mult__right_mono, auto intro!: add_nonneg nonneq)

qged
ultimately show ?thesis by auto
qed
finally show ?thesis unfolding F'’ def .
qed

definition ¢ where a n = fds _nth fn

lemma finite region: finite region
unfolding region__def by (subst nat_le_real iff) auto

lemma zero_notin__region: 0 ¢ region
unfolding region_ def using hH Hx by (auto simp add: field__simps)

lemma path_image_ conv:
assumes s € img_path
shows conv__abscissa f < s - 1
proof —
from assms have Re s = b
unfolding img path__def path__def
by (auto simp add: closed__segment__def legacy Complex__simps field _simps)
thus ?thesis using Hb' conv_le__abs_conv_abscissa [of f] by auto
qed

lemma converge_on_ path:
assumes s € img_ path
shows fds converges f s
by (intro fds_converges path__image__conv assms)

lemma summable _on__ path:
assumes s € img_path
shows (An. a n / n nat_powr s) subsummable {1..}
unfolding a_def by (intro eval fds complex_subsum(2) converge on__path assms)

lemma zero_notin__path:
shows 0 ¢ closed_segment (Complex b (— T)) (Complex b T)

70

using Hb unfolding img path_ def path__def
by (auto simp add: closed__segment__def legacy__Complex__simps field__simps)

lemma perron__bound:
I>n>1.anx F'n| <xzpowrbx H*x B/ T
+ 8% (24 1In(T /b)) = (> neregion. ||a nl)
proof —
define M where M = 3 %« (2 + In (T / b))
have sum__1: (An. ||la n / n nat_powr (b :: complex)||) subsummable {1..}
unfolding a_ def
by (fold nat_power_complex__def)
(fastforce intro: Hb' fds__abs_subsummable fds _abs_converges)
hence sum_2: (An. ||a n|| * 1 / n nat_powr b) subsummable {1..}
proof —
have ||a n / n nat_powr (b :: complez)| = ||a n|| * 1 / n nat_powr b for n
by (auto simp add: norm__divide field__simps norm__powr_real__powr’)
thus “thesis using sum__1 by auto
qged
hence sum_3: (An. |la n|| * 1 / n nat_powr b x (z powr b x H / T)) subsummable {1..}
by (rule subsummable mult2)
moreover have sum_4: (An. if n € region then M x ||la n|| else 0) subsummable {1..}
by (intro has__subsum__summable, rule has__subsum__If _finite)
(insert finite__region, auto)
moreover have [[a n *x F' n||
< |lan| * 1 / nnat_powr b *x (z powr b H / T)
+ (if n € region then M x ||a n|| else 0) (is 2z’ < ?z)
when n € {1..} for n
proof —
have [[a n * F' n|| < |la n|| *
(1 / nnat_powr b x (z powr bx H / T) + (if n € region then M else 0))
unfolding M_ def
by (subst norm_ mult)
(intro mult_left_mono perron__auz, use that in auto)

also have ... = %z by (simp add: field_simps)
finally show ?thesis .
ged

ultimately have ||>. n > 1. an * F' n
<O ‘n>1.]lan| * 1/ nnat_powrbx (xpowrbx H | T)
+ (if n € region then M * ||a n|| else 0))
by (intro subsum__norm__bound subsummable__add)
also have ... < zpowrbx« H* B/ T + M * (> neregion. ||a n||)
proof —
have (> ‘n > 1. (if n € region then M x ||a n|| else 0))
= (D_n € region N {1..}. M * ||a n||)
by (intro subsumlI [symmetric] has_subsum__If finite_set finite_region)
also have ... = M * (> n€region. ||a n||)
proof —
have region N {1..} = region
using zero_notin_region zero_less iff _neq_zero by (auto intro: Suc_lel)
thus Zthesis by (subst sum__distrib__left) (use zero__notin__region in auto)
qed
also have
O-n>1.|lan|| %1/ nnat_powrbx (xpowrbx H / T))
<zpowrbx H=*B/ T
by (subst subsum_mult2, rule sum__2, insert hB hH hT’, fold a__def)

71

(auto simp add: field_simps, subst (1) mult.commute, auto intro: mult_right_mono)
ultimately show ?thesis
by (subst subsum__add [symmetric]) ((rule sum_3 sum_4)+, auto)
qed
finally show ?thesis unfolding M _def .
qed

lemma perron:
(As. eval_fds f s x x powr s | s) contour_integrable__on path
||sum__upto a x — 1 / (2 * pi * 1) * contour__integral path (\s. eval _fds f s * x powr s /| s)||
<zpowrbx Hx B/ T+ 38 (24 1In(T /b)) = (D ncregion. ||a nl)
proof (goal cases)
define g where g s = eval_fds f s x x powr s / s for s :: complex
define h where h s n = a n / n nat_powr s * (x powr s / s) for s :: complex and n :: nat
define G where G n = contour_integral path (As. (x / n) powr s / s) for n :: nat
define H where Hn =1 / (2 % pi x i) * G n for n :: nat
have h__integrable: (As. h s n) contour_integrable_on path when 0 < n for n
using Hb Hx unfolding path def h_def
by (intro contour _integrable__continuous_linepath continuous__intros)
(use that zero__notin__path in auto)
have contour_integral path g = contour_integral path (As. >, ‘n > 1. h sn)
proof (rule contour__integral _eq, fold img__path__def)
fix s assume *: s € img_path
hence g s = (>_n > 1. an / nnat_powr s) * (x powr s / s)
unfolding ¢ def a_ def
by (subst eval _fds_complex__subsum) (auto introl: converge__on__path)
also have ... = (3. ‘n> 1. an / nnat_powr s x (z powr s / s))
by (intro subsum__mult2 [symmetric] summable) (intro summable__on__path x)
finally show g s = (3] ‘n > 1. h s n) unfolding h_def .

qed

also have
sum__1: (An. contour_integral path (A\s. h s n)) subsummable {1..}
and ... = (3] ‘n > 1. contour_integral path (\s. h s n))

proof (goal_cases)
have ((AN. contour_integral path (As. sum (h s) {1..N}))
—— contour_integral path (As. subsum (h s) {1..})) at_top
proof (rule contour_integral_uniform__limit)
show walid_path path unfolding path_ def by auto
show sequentially # bot by auto
next
fix ¢ :: real
show ||vector derivative path (at t)| < sqrt (4 * T?)
unfolding path_def by (auto simp add: legacy Complex__simps)
next
from path_image_conv
have *: uniformly__convergent_on img_path (AN s. > n<N. fds_nth fn / nat_power n s)
by (intro uniformly _convergent _eval fds) (unfold path__def img_path__def, auto)
have : uniformly__convergent_on img_path (AN s. >.n = 1..N. a n / n nat_powr s)
proof —
have (Y n<N. fds_nth fn / nat_power ns) = (>.n = 1..N. an / n nat_powr s) for N s
proof —
have (Y n<N. fds_nth fn / nat_power n s) = (3. n<N. an / n nalt_powr s)
unfolding a_ def nat_power__complex__def by auto
also have ... = (> ne{.N} — {0}. a n / n nat_powr s)
by (subst sum__diff1) auto

72

also have ... = (D> n = 1..N. an / n nat_powr s)
proof —
have {..N} — {0} = {1..N} by auto
thus “thesis by auto
qged
finally show ?thesis by auto
qed
thus “thesis using * by auto
qed
hence uniform__limit img_path
(ANs.>n=1..N. an / n nat_powr s)
(As. > ‘n>1.an / nnat_powrs) at_top
proof —
have uniform__limit img_ path
(ANs.>n=1..N. an / nnat_powr s)
(As. lim (AN. Y. n = 1..N. an / nnat_powr s)) al_top
using * by (subst (asm) uniformly__convergent__uniform__limit_iff)
moreover have lim (AN. Y n=1..N.an / nnat_powrs) = (>, ‘n>1.an/ nnat_powrs) for

by (rule subsum__ge_limit)
ultimately show ?thesis by auto
qged
moreover have bounded ((As. subsum (An. a n / n nat_powr s) {1..}) ¢ img_path) (is bounded ?A)
proof —
have bounded (eval fds f ‘ img__path)
by (intro compact_imp__bounded compact__continuous__image continuous__on__eval_fds)
(use path__image__conv img__path__def path__def in auto)
moreover have ... = 74
unfolding a_ def by (intro image__cong refl eval_fds _complez__subsum(1) converge__on__path)
ultimately show ?thesis by auto
qged
moreover have 0 ¢ closed _segment (Complex b (— T)) (Complex b T)
using Hb by (auto simp: closed__segment__def legacy_Complex__simps algebra__simps)
hence bounded ((As. x powr s / s) ‘img_path)
unfolding img path_def path__def using Hx Hb
by (intro compact__imp__bounded compact__continuous__image continuous__intros) auto
ultimately have uniform_ limit img_path
(ANs. (Don=1..N. an / nnat_powr s) * (z powr s / s))
(As. O ‘n>1.an / nnat_powrs) * (x powrs [s)) at_top (is ?P)
by (intro uniform__lim__mult uniform__limit__const)
moreover have ?P = uniform_ limit (path__image path)
(AN s. sum (h s) {1..N}) (As. subsum (h s) {1..}) at_top (is ?P = ?Q))
unfolding /_ def
by (fold img_path__def, rule uniform_limit_cong’, subst sum__distrib_right [symmetric], rule refl)
(subst subsum__mult2, intro summable__on__path, auto)
ultimately show ?(Q) by blast
next
from h__integrable
show V p N in at_top. (As. sum (h s) {1..N}) contour_integrable on path
unfolding h_def by (intro eventuallyl contour integrable sum) auto
qed
hence x: has_subsum (An. contour_integral path (As. h s n)) {1..} (contour_integral path (A\s. subsum
(hs) {1.})
using h__integrable by (subst (asm) contour_integral sum) (auto intro: has_subsum__ge_ limit)
case ! from x show ?case unfolding h_def by (intro has_subsum__summable)

73

case 2 from x show ?case unfolding h_def by (rule subsuml)
qed
note this(2) also have
sum_2: (An. a n x G n) subsummable {1..}
and ... = (> n>1.an=x* Gn)
proof (goal_cases)
have *: a n * G n = contour_integral path (As. h s n) when Hn: n € {1..} for n :: nat
proof —
have (As. (x / n) powr s /| s) contour_integrable__on path
unfolding path_def by (rule perron__integrable) (use Hn Hx hT in auto)
moreover have contour__integral path (As. h s n) = contour_integral path (As. a n * ((z / n) powr s
/ 9))
proof (intro contour__integral cong refl)
fix s :: complex
have (z / n) powr s * n powr s = ((x / n :: complex) * n) powr s
by (rule powr_times_real [symmetric]) (use Hn Hz in auto)
also have ... = z powr s using Hn by auto
finally have (z / n) powr s = z powr s / n powr s using Hn by (intro eq divide__imp) auto
thus hsn=anx* ((z / n) powrs / s) unfolding h_def by (auto simp add: field_simps)
qged
ultimately show ?thesis unfolding G def by (subst (asm) contour_integral Imul) auto
qed
case 1 show ?case by (subst subsummable_cong) (use *x sum__1 in auto)
case 2 show ?case by (intro subsum__cong * [symmetric])
ged
note this(2) finally have
1/ (2 * pi % 1) * contour_integral path g = (D ‘n > 1. an* Gn) x (1 / (2 * pi x 1)) by auto
also have
sum_3: (An.anx Gnx* (1 /(2% pix*i))) subsummable {1..}
and ... = (> n>1.anx Gnx (1 /(2 x*pixi)))
by (intro subsummable_mult2 subsum__mult2 [symmetric] sum_2)+
note this(2) also have
sum_4: (An. a n x Hn) subsummable {1..}
and ... = (D_n>1.an=x Hn)
unfolding H_def using sum__3 by auto
note this(2) also have
.= O-m>1.149n<zthen an else 0)
=0O_n>1.anx Hn — (if n < z then a n else 0))
using sum_ 4
by (rule subsum__minus(1), unfold subsummable__def)
(auto simp add: if if eq conj nat_le real iff)
moreover have (Y ‘n > 1. if n < z then a n else 0) = sum_upto a
proof —
have (3" ‘n > 1.ifn < xzthenanelse 0) = (D n = natln € {1..} An <z an)
by (intro subsumlI [symmetric] has_subsum__If finite) (auto simp add: nat_le_real iff)
also have ... = sum_upto a x
proof —
have {n :: nat. n € {1.} An<z}={n 0<nAn<z} by auto
thus ?thesis unfolding sum_ upto_ def by auto
qed
finally show %thesis .
qed
moreover have (> ‘n>1.anx Hn — (ifn < zthenanelse 0)) = >, n>1.an=x F'n)
unfolding F_def F' def G_def H def by (rule subsum__cong) (auto simp add: algebra__simps)
ultimately have result: |[sum_upto a z — 1 / (2 = pi * i) % contour_integral path g|| = ||>.‘n > 1. a

74

nx F' n
by (subst norm__minus__commute) auto
case 1 show ?Zcase
proof —
have closed segment (Complex b (— T')) (Complex b T') C {s. conv_abscissa f < ereal (s - 1)}
using path__image_conv unfolding img path_def path__def by auto
thus ?thesis unfolding path_ def
by (intro contour _integrable _continuous_linepath continuous _intros)
(use Hx zero__notin__path in auto)
qed
case 2 show ?Zcase using perron_bound result unfolding g def by linarith
qed
end

theorem perron_ formula:
fixes b BH T z :: real and f :: complex fds
assumes Hb: 0 < band hT: b < T
and Hb": abs_conv_abscissa f < b
and hH: 2 < Hand hH b+ 1 < H and Hz: 2 < z
and hB: (3. ‘n > 1. ||fds_nth fn|| / n nat_powr b) < B
shows (As. eval _fds f s x x powr s | s) contour_integrable _on (linepath (Complex b (—T)) (Complex b
7))
lsum__upto (fds_nth f) z — 1 / (2 * pi % 1) *
contour_integral (linepath (Complex b (—T)) (Complex b T)) (As. eval_fds f s x x powr s / s)||
<zpowrbxHxB/T+3+«x 24+ (T/b)x O n|le—x/H<nAn<z+az/H.
|fds_nth f nl|)
proof (goal _cases)
interpret z: perron_ locale using assms unfolding perron_ locale def by auto
case I show ?Zcase using z.perron(1) unfolding z.path_ def .
case 2 show ?Zcase using z.perron(2) unfolding z.path_ def z.region_def z.a_ def .
qged

theorem perron__asymp:
fixes b x :: real
assumes b: b > 0 ereal b > abs_conv_abscissa f
assumes z: ¢ > 2z ¢ N
defines L = (AT. linepath (Complex b (—T)) (Complex b T))
shows ((AT. contour__integral (L T) (As. eval fds f s * of _real x powr s / s))
—— 2 % pi * 1% sum_upto (An. fds_nth fn) x) at_top
proof —
define R where R = (AH. {n.z —x / H<realn ANrealn <z +x/ H})
have R_altdef: R H = {n. dist (of natn) x <z / H} for H
unfolding R_ def by (intro Collect_cong) (auto simp: dist_norm)
obtain H where H: H > 2H > b+ 1 R H = (if v € N then {nat |z|} else {})
proof (cases © € N)
case True
then obtain m where [simp]: © = of _nat m by (elim Nats__cases)
define H where H = Maz {2, b+ 1,z / 2}
have HH H>2H >b+ 1H>z/ 2
unfolding H def by (rule Maz.coboundedI; simp)+
show “thesis
proof (rule thatlof H])
have n ¢ R H if n # m for n :: nat
proof —
havez / H <z /[(z/ 2)

75

by (intro divide_left _mono) (use H z in auto)
hence z / H < 1 using z by simp
also have ... < |int n — int m| using <n # m» by linarith
also have ... = dist (of _nat n) z
unfolding <z = of nat m» dist_of nat by simp
finally show n ¢ R H by (simp add: R__altdef)
qged
moreover have m € R H using z by (auto simp: R__def)
ultimately show R H = (if € N then {nat |z]|} else {}) by auto
qed (use H in auto)
next
case Fulse
define d where d = setdist {r} N
have 0 € (N :: real set) by auto
hence (N :: real set) # {} by blast
hence d > 0
unfolding d_ def using Fulse by (subst setdist_gt_0_compact__closed) auto
define H where H = Max {2, b+ 1, 2 x x / d}
have H: H>2H >b+ 1 H>2xz/d
unfolding H_def by (rule Maz.coboundedl; simp)+

show ?Zthesis
proof (rule thatlof H])
have n ¢ R H for n :: nat
proof —
havez / H<z/(2xz/d)
using H z <d > O»
by (intro divide_left _mono) (auto intro!: mult_pos pos)
also have ... < d
using z «<d > 0> by simp
also have d < dist (of _nat n) z
unfolding d_def by (subst dist_commute, rule setdist_le dist) auto
finally show n ¢ R H
by (auto simp: R__altdef)
qed
thus R H = (if x € N then {nat |z|} else {})
using Fulse by auto
qed (use H in auto)
qed

define g where g = (\s. eval_fds f s x of _real x powr s / s)

define I where I = (AT. contour_integral (L T) g)

define ¢ where ¢ = 2 * pi * i

define A where A = sum__upto (fds_nth f)

define B where B = subsum (An. norm (fds_nth fn) / n nat_powr b) {04..}
define X where X = (if x € Z then {nat |z]} else {})

have norm_le: norm (Az — 1T / ¢) <xzpowrbx H+« B/ Tif T: T > bfor T
proof —
interpret perron_locale b B H T x f
by standard (use b T x H(1,2) in <auto simp: B_def»)
from perron
have norm (Az — I T | ¢) <z powrbx Hx+« B/ T
+ 3 % (O neR H. norm (fds_nth fn)) * (2 + In (T / b))
by (simp add: I_def A__def g _def a__def local.path__def L__def c_def R__def

76

region__def algebra__simps)
also have (Y neR H. norm (fds_nth fn)) = 0
using ¢ H by auto
finally show norm (Az — I T / ¢) <zpowrbx Hx B/ T
by simp
qed
have eventually (A\T. norm (Axz — 1T [/ ¢) < xpowrbx Hx* B/ T) at_top
using eventually ge at_top[of b] by eventually__elim (use norm__le in auto)
moreover have ((A\T. z powr b x H « B/ T) —— 0) at_top
by real__asymp
ultimately have lim: (AT. Az — 1T / ¢) —— 0) at_top
using Lim_ null_comparison by fast
have (AT. —cx (Az—IT /c¢)+c*x Ax) — —c*x 0 + c*x Azx) at_top
by (rule tendsto__intros lim)-+
also have (\T. —cx (Az —IT /c)+cxAzx)=1
by (simp add: algebra__simps c__def)
finally show ?thesis
by (simp add: c_def A__def I _def g _def)
qed

unbundle no_pnt_notation
end
theory PNT _with_Remainder
imports
Relation__of PNTs
Zeta_ Zerofree
Perron__Formula
begin
unbundle pnt_notation

6 Estimation of the order of %

notation primes_psi (1)

lemma zeta div_ bound”
assumes [+ exp (— 4 xIn (14 + 4 xt)) <o
and 13 / 22 <t
and z € cball (Complez o t) (1 / 2)
shows ||zeta z / zeta (Complex o t)|| < exp (12 = In (14 + 4 * t))
proof —
interpret z: zeta_bound_param_ 2
M. 1 /2N 4 *xIn(12+2*xmaz0t)tot
unfolding zeta_ bound param__1_def zeta_ bound__param__2_ def
zeta__bound__param__1__axioms__def zeta__bound__param__2__axioms__def
using assms by (auto intro: classical_zeta__bound.zeta__bound__param__azioms)
show ?thesis using z.zeta_div_bound assms(2) assms(3)
unfolding z.s def z.r_def by auto
qed

lemma zeta div_bound:
assumes [+ exp (— 4 xIn (14 + 4 *|t])) <o
and 13 / 22 < |t|
and z € cball (Complez o t) (1 / 2)
shows ||zeta z | zeta (Complex o t)|| < exp (12 * In (14 + 4 = |t]))
proof (cases 0 < t)

77

case True with assms(2) have 13 / 22 < t by auto
thus ?thesis using assms by (auto intro: zeta_ div_bound’)
next
case Fualse with assms(2) have Ht: t < — 13 / 22 by auto
moreover have 1: Complex o (— t) = cnj (Complezx o t) by (auto simp add: legacy Complex__simps)
ultimately have |zeta (cnj z) / zeta (Complex o (— t))|| < exp (12 x In (14 + 4 * (— t)))
using assms(1) assms(3)
by (intro zeta__div_bound’, auto simp add: dist_complex_def)
(subst complex__cnj_diff [symmetric], subst complex__mod__cnj)
thus ?thesis using Ht by (subst (asm) 1) (simp add: norm__divide)
qged

definition C9 where Cy = 819979520 :: real
lemma Co_ gt zero: 0 < Cs9 unfolding Cs_ def by auto

lemma logderiv_zeta__order _estimate’:
YV tin (abs going_to at_top).
Vo.1 —1/7+«Cy/In(Jt|+38) <o
— ||logderiv zeta (Complez o t)|| < Ca * (In (|t| + 3))?
proof —
define F' where F :: real filter = abs going to at_top
define r where rt = Cy / In (|t| + &) for t :: real
define s where s 0 t = Complex (0 + 2 / 7+ rt) tforot
have r_nonneg: 0 < r t for t unfolding PNT const_C1__def r_def by auto
have ||logderiv zeta (Complex o t)|| < Co * (In (|t| + 3))?
whenh: 1 — 1/ 7xrt<o
exp (— 4 xIn (14 + 4 xt])) <1/ 7T=xrt
8/ 7xrt<|t
8/ Txrt<1/2
13) 22 < |t| for o ¢
proof —
have ||logderiv zeta (Complex o t)|| < 8 % (12 xIn (14 + 4 = |t])) / (8 /] 7T x rt)
proof (rule lemma_3 9 betal’ [where ?s = s o t], goal cases)
case 1 show ?case unfolding PNT const C1_ def r_def by auto
case 2 show ?case by auto
have notin_ball: 1 ¢ ball (so t) (8) 7 * rt)
proof —
note h(3)
also have |t| = |Im (Complex (c + 2 / 7 x rt) t — 1)| by auto
also have ... < ||Complex (o0 + 2 / 7 x rt) t — 1| by (rule abs_Im_le_cmod)
finally show ?thesis
unfolding s def by (auto simp add: dist_complex__def)
qged
case 3 show ?Zcase by (intro holomorphic_ zeta notin__ball)
case 6 show ?case
using 7_nonneg unfolding s def
by (auto simp add: dist_complex__def legacy Complex__simps)
fix z assume Hz: z € ball (so t) (8) 7 *rt)
show zeta z # 0
proof (rule ccontr)
assume — zeta z # 0
hence zero: zeta (Complex (Re z) (Im z)) = 0 by auto
have rt < Cy / In (|Im z| + 2)
proof —

78

have ||[so t — z|| < 1
using Hz h(4) by (auto simp add: dist_complex__def)
hence |t — Im 2| < 1
using abs_Im_le _cmod [of s 0 t — 2]
unfolding s _def by (auto simp add: legacy_Complex__simps)
hence |Im z| < |t| + 1 by auto
thus ?thesis unfolding r_def
by (intro divide left _mono mult_pos_pos)
(subst In__le__cancel iff, use C1__gt_zero in auto)
qed
also have ... <1 — Re z
using notin__ball Hz by (intro zeta_nonzero__region zero) auto
alsohave ... <1 — Re(sot)+ 8/ 7Txrt
proof —
have Re (s o t — z) < |Re (s 0 t — 2)| by auto
alsohave ... < 8/ 7xrt
using Hz abs_Re_le_cmod [of s 0 t — 2]
by (auto simp add: dist__complex__def)
ultimately show ?thesis by auto
qed
alsohave ... =1 — o + 6 / 7 % r t unfolding s def by auto
also have ... < rt using h(1) by auto
finally show Fulse by auto
qed
from Hz have z € cball (s o t) (1 / 2)
using h(4) by auto
thus ||zeta z / zeta (s o t)|| < exp (12 * In (14 + 4 = |t]))
using h(1) h(2) unfolding s def
by (intro zeta_ div_bound h(5)) auto
qed
also have ... =8/ /rtxIn (14 + 4 * |t])
by (auto simp add: field _simps)
also have ... < 336 / C1 = In (|t| + 2) = In (]t| + 3)
proof —
have 8/ /[rtxin (14 + 4 x[t|]) < 84 [/ rtx (4 = n (|t| + 2))
using r_nonneg by (intro mult_left _mono mult_right_mono In_bound_1) auto
thus ?thesis unfolding r_def by (simp add: mult_ac)
qed
also have ... < 336 / C1 = (In (Jt| + 3))?
unfolding power2 eq square
by (simp add: mult_ac, intro divide__right_mono mult_right_mono)
(subst In__le__cancel _iff, use C1__gt_zero in auto)
also have ... = Cy * (In (|t| + 3))?
unfolding PNT const_C__def Co_def by auto
finally show ?thesis .
qed
hence
VF tin F.
exp (— 4 xIn (14 + 4 x|t]) <1/ 7x*xrt
— 8/ Txrt<|t
— 8/ Txrt<1/2
— 18/ 22 < |{
— NVo. 1 —1/7Txrt<o
— ||logderiv zeta (Complex o t)|| < Ca * (In (|t| + 3))?)
by (blast intro: eventuallyl)

79

moreover have Vp tin F. exp (— 4 xIn (14 + 4 x|t]) <1/ 7Tx*rt
unfolding Fdef r_def PNT const_C1__def
by (rule eventually going tol) real__asymp
moreover have Vg tin F. 8 | 7 rt < |t
unfolding F_def r_def PNT const_C1_ def
by (rule eventually going tol) real__asymp
moreover have Vp tin F. 8 /| Txrt <1/ 2
unfolding F_def r_def PNT const_Cq__def
by (rule eventually going tol) real _asymp
moreover have Vp tin F. 13 / 22 < |t|
unfolding F'_def by (rule eventually going tol) real _asymp
ultimately have
VptinF.NVo.1 —-1/7xrt<o
— ||logderiv zeta (Complex o t)|| < Cq * (In ([t] + 3))?)
by eventually _elim blast
thus ?thesis unfolding Fdef r_def by auto
qed

definition C'3 where
Cs3=SOMET.0<TA
(Vt. T < |t| —
Vo.1 —1/7«C1/In(t|+3) <o
— ||logderiv zeta (Complex o t)|| < Cq * (In (|t| + 3))?))

lemma C5_ prop:
0 < CsA
(Vt. C3 < |t| —
NVo.1 —1/7xC1/In(t|+3) <o
— ||logderiv zeta (Complex o t)|| < Ca * (In (|t| + 3))?))
proof —
obtain T’/ where hT:
Nt T < |t| =
Vo.1 —1/7«xC1/In(t|+3) <o
— ||logderiv zeta (Complex o t)|| < Cq * (In (|t] + 3))?)
using logderiv_zeta__order _estimate’
[unfolded going to_def, THEN rev_iffD1,
OF eventually_filtercomap__at__top__linorder] by blast
define T where T = mazx 1 T’
show ?thesis unfolding C's_ def
by (rule somel [of _ T]) (unfold T _def, use hT in auto)
qed

lemma C3_ gt zero: 0 < Cg using C3_ prop by blast

lemma logderiv_zeta__order__estimate:
assumes 1 — 1 /7% Cy /In (Jt| + 3) <o C3 < |t
shows ||logderiv zeta (Complex o t)|| < Ca * (In (|t| + 3))?
using assms Cs__prop by blast

definition zeta_ zerofree region

where zeta_ zerofree_region = {s. s # 1 N1 — Cy / In (|Im s| + 2) < Re s}
definition logderiv_zeta_ region

where logderiv_zeta_region = {s. Cs < |[Ims| N1 —1 /7% Cy/In (|Ims| + 3) < Re s}
definition zeta_ strip_region

where zeta_strip_region o T ={s. s # 1 No < Res A |Ims| < T}

80

definition zeta_ strip_region’
where zeta_strip_region'c T ={s. s# 1 No < Res N C3 < |Ims| A |[Ims| < T}

lemma strip_in_ zerofree_region:

assumes I — C1 /In (T + 2) <o

shows zeta_ strip _region o T C zeta_ zerofree_region
proof

fix s assume Hs: s € zeta_ strip__region o T

hence Hs" s # 1 0 < Re s |Im s| < T unfolding zeta__strip_region__def by auto

from this(3) have Cy / in (T + 2) < C1 / In (|Im s| + 2)

using C1__gt_zero by (intro divide__left _mono mult_pos__pos) auto

thus s € zeta_zerofree_region using Hs' assms unfolding zeta zerofree_region def by auto

qed

lemma strip_in_ logderiv_zeta__region:

assumes | — 1 /7%« Cy /In(T+ 3) <o

shows zeta_strip _region’ o T C logderiv_zeta__region
proof

fix s assume Hs: s € zeta_ strip_region’ o T

hence Hs" s # 1 0 < Re s C3 < |Im s| |Im s| < T unfolding zeta_ strip_region’ _def by auto

from this(4) have C1 / (7« In (T + 3)) < C1 /(7 * In (|[Im s| + 3))

using C1__gt_zero by (intro divide__left _mono mult_pos__pos) auto

thus s € logderiv_zeta_region using Hs’ assms unfolding logderiv zeta_region_ def by auto

qed

lemma strip condition__imp:
assumes 0 < T1 —1/7xC1/In(T+3)<o
shows 1 — Cy /In (T + 2) <o
proof —
have In (T + 2) < 7 % In (T + 2) using assms(1) by auto
also have ... < 7 x In (T + 3) using assms(1) by auto
finally have Cy / (7« In (T + 3)) < C1 / In (T + 2)
using C1__gt_zero assms(1) by (intro divide__strict_left_mono mult_pos_pos) auto
thus ?thesis using assms(2) by auto
qged

lemma zeta zerofree_region:
assumes s € zeta_ zerofree_region
shows zeta s # 0
using zeta__nonzero_region [of Re s Im s| assms
unfolding zeta_ zerofree_region__def by auto

lemma logderiv_zeta__region__estimate:
assumes s € logderiv_zeta_region
shows ||logderiv zeta s| < Cq * (In (|Im s| + 3))?
using logderiv__zeta__order__estimate [of Im s Re s] assms
unfolding logderiv_zeta_region__def by auto

definition Cy :: real where Cy = 1 / 6666241

lemma C4 prop:
Ve axinat_top. Cy [Inx < Cy/(7x*In(z+ 3))
unfolding PNT const_C1__def C4 def by real asymp

lemma C4 gt zero: 0 < C4 unfolding C4 def by auto

81

definition Cs5_ prop where
Cs_prop Cs =
0 < Cs AN (Vg xinat_top. (Vit. [t] <z
— ||logderiv zeta (Complex (1 — C4 / In z) t)|| < C5 * (In)?))

lemma logderiv_zeta_bound_wvertical”:
34 C5. Cs_prop Cs
proof —
define K where K = cbox (Complex 0 (—C3)) (Complex 2 C3)
define I' where I' = {s € K. zeta’ s = 0}
have zeta’ not zero on K
unfolding not_zero _on_def K_def using Cs_ gt zero
by (intro bex] [where z = 2])
(auto simp add: zeta__eq zero iff zeta' zeta_ 2 in__cbox__complex__iff)
hence fin: finite I’
unfolding I'_def K def
by (auto intro!: convex__connected analytic__compact_finite_zeros zeta' _analytic)
define o where a = if I' = {} then 0 else (1 + Max (Re ‘T")) / 2
define K’/ where K' = cbox (Complex o (—C3)) (Complex 1 C3)
have Ha: o € {0..<1}
proof (cases T' = {})
case True thus ?thesis unfolding «a_ def by auto
next
case Fualse hence hI: T' # {} .
moreover have Re a < 1 if Ha: a € T for a
proof (rule ccontr)
assume — Re a < 1 hence I < Re a by auto
hence zeta’ a # 0 by (subst zeta’ _eq zero_iff) (use zeta__Re_ge_1_nonzero in auto)
thus Fulse using Ha unfolding I'__def by auto
qed
moreover have Facl’. 0 < Re a
proof —
from AI' have Ja. a € I' by auto
moreover have \a. a €' = 0 < Re a
unfolding I' def K_ def by (auto simp add: in__cbox__complex__iff)
ultimately show ?thesis by auto
qed
ultimately have 0 < Maz (Re ‘T') Max (Re ‘T') < 1
using fin by (auto simp add: Max__ge__iff)
thus ?thesis unfolding «_ def using hl' by auto
qed
have nonzero: zeta' z # (0 when z € K’ for 2
proof (rule ccontr)
assume — zeta' z # 0
moreover have K’ C K unfolding K’ def K _def
by (rule subset_box_imp) (insert Ha, simp add: Basis_complex_def)
ultimately have Hz: z € I' unfolding I' def using that by auto
hence Re z < Max (Re ‘T") using fin by (intro Maz_ge) auto
also have ... < «
proof —
from Hz have I' # {} by auto
thus ?thesis using Ha unfolding o_ def by auto
qed
finally have Re z < « .

82

moreover from «z € K» have o < Re 2
unfolding K’ def by (simp add: in__cbox__complex_iff)
ultimately show Fulse by auto
qed
hence logderiv zeta” analytic_on K' by (intro analytic__intros)
moreover have compact K’ unfolding K’ def by auto
ultimately have bounded ((logderiv zeta') * K')
by (intro analytic_imp__holomorphic holomorphic__on__imp__continuous_on
compact__imp__bounded compact__continuous__image)
from this [THEN rev_iffD1, OF bounded__pos]
obtain M where
hM: N\s. s € K' = ||logderiv zeta" s|| < M by auto
have (\t. Cy * (In (t + 3))?) € O(Az. (In 2)?) using Co_ gt _zero by real__asymp
then obtain v where
Hy: Vg zin at_top. |[Co * (In (z + 3))?| < v * [|(In 2)?||
unfolding bigo def by auto
define C'5 where C5 = max 1 v
have Cs_ gt zero: 0 < (5 unfolding C5_ def by auto
have V i z in at_top. v * (In z)?> < C5 * (In z)?
by (intro eventuallyl mult_right _mono) (unfold Cs__def, auto)
with Hy have hCs: VY x in at_top. Ca * (In (z + 3))? < Cs * (In z)?
by eventually _elim (use Co__gt_zero in auto)
have ||logderiv zeta (Complex (1 — C4 / In) t)|| < C5 * (In z)?
when h: C3 < [t| [t| <z 1 <z
Cy/lnz< Ci/(7TxIn(z+ 3))
Co x (In (x + 3))? < C5 * (In 1)? for z t
proof —
have Re (Complex (1 — C4 / In) t) # Re 1 using Cy4_gt_zero h(3) by auto
hence Complex (1 — Cy / Inx) t # 1 by metis
hence Complex (1 — Cy4 / In z) t € zeta_strip_region’ (1 — Cy / Inz) x
unfolding zeta_ strip_region’ _def using h(1) h(2) by auto
moreover hence 1 — 1 /7% Cy /In(z+ 3) <1 — C4 / Inz using h(4) by auto
ultimately have ||logderiv zeta (Complex (1 — Cy / In z) t)|| < Cq * (In ([Im (Complex (1 — Cy /
In) t) + 3))>
using strip__in_logderiv_zeta_region [where %0 = 1 — Cy / In x and ?T = z]
by (intro logderiv_zeta_region__estimate) auto
also have ... < Oy * (In (z + 3))?
by (intro mult_left_mono, subst power2_le_iff abs_le)
(use Co__gt_zero h(2) h(3) in auto)
also have ... < Cj5 * (In z)? by (rule h(5))
finally show #“thesis .
qed
hence YV z in at_top. Vt. Cs3 < [t| — |t| < z
— 1 <z— Cy/Inx<Cy/(7TxlIn(z+ 3))
— Co * (In (z + 3))2 < C5 * (In x)?
— ||logderiv zeta (Complex (1 — Cy / Inz) t)|| < C5 * (In 1)?
by (intro eventuallyl) blast
moreover have Vr z in at_top. (1 :: real) < x by auto
ultimately have 1: Vp z in at_top. Vi. Cs < |t| — |t| < x
— ||logderiv zeta (Complex (1 — Cy / Inz) t)|| < C5 * (In 1)?
using Cy prop hCs by eventually elim blast
define f where fz =1 — C4 / In x for z
define g where g z t = Complex (f x) t for z t
let P = Az t. ||logderiv zeta (g x t)|| < M + Inxz /| C4
have a < 1 using Ha by auto

83

hence V r z in at_top. a < fx unfolding f def using C4 gt zero by real asymp
moreover have f [t 1:Vp xin at_top. fx < 1 unfolding f def using C4 gt zero by real__asymp
ultimately have Vp z in at_top. Vt. |t| < C3 — gat € K' — {1}

unfolding g def K’ _def by eventually__elim (auto simp add: in__cbox__complex__iff legacy__ Complex__simps)

moreover have |logderiv zeta (g z t)| < M + 1 / (1 — fx)
when h: gz te K'— {1} fa < 1 for zt

proof —
from h(1) have ne_1: gzt # 1 by auto
hence ||logderiv zeta (g x t)|| = ||logderiv zeta’ (gxt) — 1 [/ (gxt — 1)

using h(1) nonzero
by (subst logderiv_zeta__eq zeta')
(auto simp add: zeta__eq zero_iff zeta’' [symmetric])
also have ... < ||logderiv zeta’ (g z t)|| + |1 / (9 xt — 1)| by (rule norm__triangle_ineq4)
alsohave ... <M + 1 /(1 — fx)
proof —
have ||logderiv zeta' (g x t)|| < M using that by (auto intro: hM)
moreover have |Re (gzt — 1)| < ||gzt — 1| by (rule abs_Re_le_cmod)
hence ||1 / (g2t — 1) < 1 /(1 - f2)
using ne_1 h(2)
by (auto simp add: norm__divide g__def
introl: divide_left _mono mult_pos_pos)
ultimately show ?thesis by auto
qed
finally show ?thesis .
ged
hence V z in at_top. Vi. foz < 1
—gzte K'— {1}
— ||logderiv zeta (g t)|| < M + 1 / (1 — fz) by auto
ultimately have V r z in at_top. Vt. |t| < C3 — ||logderiv zeta (g x t)|| < M + 1 /(1 — fx)
using f It 1 by eventually elim blast
hence Vi z in at_top. Vt. |t| < Cs3 — ||logderiv zeta (g x t)|| < M + In x / C4 unfolding f def by
auto
moreover have Vg z in at_top. M + Inxz /| Cy < C5 * (In J:)2 using C4_ gt zero Cs__gt zero by
real__asymp
ultimately have 2: Vp 1z in at_top. Vt. |t| < C3 — ||logderiv zeta (g z t)|| < Cs * (In z)? by
eventually__elim auto
show %thesis
proof (unfold Cs__prop_def, intro exl conjl)
show 0 < Cj5 by (rule C5__gt_zero)+
have YV z in at_top. V. C3 < |t| V [t| < C3
by (rule eventuallyl) auto
with 1 2 show Vp zin at_top. Vi. |t| < x — ||logderiv zeta (Complex (1 — Cyq / Inz) t)|| < Cs *
(In z)?
unfolding f def g def by eventually elim blast
ged
qed

definition C5 where C5 = SOMFE C5. Cs__prop Cs

lemma
Cs_gt_zero: 0 < C5 (is ?prop_1) and
logderiv__zeta_ bound__vertical:
Ve xinat _top. Vit [t] <z
— ||logderiv zeta (Complex (1 — Cy / Inz) t)|| < Cs * (In x)? (is ?prop_2)
proof —

84

have C5_ prop Cs unfolding Cs5_ def
by (rule somel _ex) (rule logderiv_zeta__bound_ vertical’)
thus ?prop_ 1 ?prop_ 2 unfolding C5_ prop def by auto
qged

7 Deducing prime number theorem using Perron’s formula

locale prime__number_theorem =
fixes c ¢ :: real
assumes Hc: 0 < cand He " cxc< 2+« Cpand He: 0 < 2xe < ¢
begin
notation primes_psi ()
definition H where H z = exp (¢ / 2 * (In x) powr (1 / 2)) for z :: real
definition 7 where T z = exp (¢ * (In x) powr (1 / 2)) for x :: real
definition ¢ where a z =1 — C4 / (¢ x (In x) powr (1 / 2)) for z :: real
definition b where bz =1 + 1 / (In z) for z :: real
definition B where Bz = 5 / 4 x In z for z :: real
definition f where fz s = z powr s / s x logderiv zeta s for z :: real and s :: complex
definition R where R z =
zpowr (b))« Hx«* Bx | Tx+ 3« (2+In(Tx/bzx)
xOn|z—2z/Hes<nAn<z+x/ Huz. |fds_nth (fds mangoldt complex) n|) for z :: real
definition Rc¢’ where Rc’' = O(A\z. z x exp (— (¢ / 2 — €) * In z powr (1 | 2)))
definition Rc where Rc = O(Az. z x exp (— (¢ / 2 — 2 x &) * In x powr (1 | 2)))

definition z; where z; © = Complex (a z) (— T z) for x
definition zo where z3 © = Complex (b z) (— T z) for z
definition 23 where z3 © = Complex (b z) (T z) for x
definition z, where z4 © = Complex (a z) (T z) for z

definition rect where rect © = cbox (21 z) (23 =) for z

definition rect’ where rect’ © = rect x — {1} for z

definition P; where P, z t = linepath (Complex (a x) t) (Complex (b x) t) for = t
definition P; where P z = linepath (21 z) (24 z) for z

definition Py where Py z = linepath (29 z) (23 z) for z

definition P3 where P3 z = P, z (— T z) for x

definition P, where Py x = P, z (T z) for z

definition P, where P, z = rectpath (21 z) (23 z) for x

lemma Rc _eq rem_ est:
Rc=rem_est (¢ /2 —2x¢e)(1/2)0
proof —
have x: V p z :: real in at_top. 0 < In (In x) by real _asymp
show ?thesis unfolding Rc def rem__est_def
by (rule landau__0.big.cong) (use * in eventually _elim, auto)
ged

lemma residue_f:
residue (fx) 1 = — x
proof —
define A where A = boz (Complex 0 (— 1 / 2)) (Complex 2 (1 / 2))
have hA: 0 ¢ A 1 € A open A
unfolding A_def by (auto simp add: mem__box Basis__complexr__def)
have zeta’ s # 0 when s € A for s
proof —
have s # 1 = zeta s # 0
using that unfolding A_ def
by (intro zeta__nonzero__small_imag)

85

(auto simp add: mem__box Basis__complex__def)
thus ?thesis by (subst zeta' _eq zero_iff) auto
ged
hence h: (As. © powr s / s * logderiv zeta’ s) holomorphic_on A
by (intro holomorphic_intros) (use hA in auto)
have h": (As. z powr s / (s x (s — 1))) holomorphic_on A — {1}
by (auto intro!: holomorphic__intros) (use hA in auto)
have s ne 1: Vg s:: complerin at 1. s # 1
by (subst eventually at_filter) auto
moreover have Vg sin at 1. zeta s # 0
by (intro non__zero__neighbour_pole is_pole_zeta)
ultimately have V p s in at 1. logderiv zeta s = logderiv zeta’ s — 1 | (s — 1)
by eventually__elim (rule logderiv_zeta__eq zeta’)
moreover have
fxs=xzpowrs/ sx logderiv zeta' s — x powr s | s/ (s — 1)
when logderiv zeta s = logderiv zeta’ s — 1 / (s — 1) s # 0 s # 1 for s :: complex
unfolding f def by (subst that(1)) (insert that, auto simp add: field_simps)
hence YV s :: complexinat 1. s # 0 — s # 1
— logderiv zeta s = logderiv zeta' s — 1 | (s — 1)
— fx s =xpowrs [s x* logderiv zeta" s — x powr s /| s [/ (s — 1)
by (intro eventuallyl) blast
moreover have Vp s :: complex in at 1. s # 0
by (subst eventually__at_topological)
(intro exI [of _ UNIV — {0}], auto)
ultimately have V i s :: complez in at 1. fz s = z powr s | s * logderiv zeta’ s — x powr s / s /| (s — 1)
using s ne 1 by eventually elim blast
hence residue (f z) 1 = residue (As. x powr s | s * logderiv zeta’ s — x powr s / s [(s — 1)) 1
by (intro residue__cong refl)

also have ... = residue (\s. z powr s | s x logderiv zeta' s) 1 — residue (As. z powr s | s/ (s — 1)) 1
by (subst residue__diff [where ?s = A]) (use h h’ hA in auto)

also have ... = — z

proof —

have residue (\s. z powr s | s x logderiv zeta' s) 1 = 0
by (rule residue_holo [where ?s = A]) (use hA h in auto)
moreover have residue (As. z powrs /[s/ (s — 1)) 1 = (x :: complex) powr 1 | 1
by (rule residue_simple [where ?s = A]) (use hA in <auto intro!: holomorphic_introsy)
ultimately show ?thesis by auto
qged
finally show ?thesis .
qed

lemma rect in_ strip:
rect v — {1} C zeta_strip_region (a x) (T x)
unfolding rect_def zeta_ strip_region__def z1__def zs__def
by (auto simp add: in__cbox__complex_iff)

lemma rect_in_ strip”:
{s € rect . C3 < |Im s|} C zeta_strip_region’ (a z) (T x)
unfolding rect def zeta_ strip_region’ def z1_ def z3_ def
using C3_ gt zero by (auto simp add: in__cbox__complex_iff)

lemma
rect’ _in_zerofree: ¥ g x in at_top. rect’ x C zeta_ zerofree_region and
rect_in_logderiv_zeta: ¥V p x in at_top. {s € rect xz. C3 < |Im s|} C logderiv_zeta__region
proof (goal _cases)

86

case I have
Ve xzinat_top. Cy [Inz < Cy /) (7x*In(z+ 3)) by (rule Cy__prop)
moreover have LIM x at_top. exp (¢ x (In x) powr (1 / 2)) :> at_top using Hc by real _asymp
ultimately have h:
Vg xin at_top. Cy / In (exp (¢ * (In x) powr (1 / 2)))
< Cy/(7=1In (exp (¢ * (Inx) powr (1 / 2)) + 3)) (is eventually ?P)
by (rule eventually compose__filterlim)
moreover have
P © = zeta__strip_region (a z) (T z) C zeta__zerofree_region
(is _ = ?Q) for z unfolding T def a_ def
by (intro strip__in__zerofree_region strip__condition__imp) auto
hence V p z in at_top. P x — ?Q x by (intro eventuallyl) blast
ultimately show ?case unfolding rect’ def by eventually elim (use rect_in__strip in auto)
case 2 from h have
?P © = zeta__strip_region’ (a z) (T x) C logderiv_zeta__region
(is _ = ?Q) for z unfolding T def a__def
by (intro strip_in_logderiv_zeta_region) auto
hence V r z in at_top. P © — ?Q x by (intro eventuallyl) blast
thus Zcase using h by eventually elim (use rect_in_ strip’ in auto)
qged

lemma zeta__nonzero _in__rect:
Vg xin at_top. Vs. s € rect’ x — zeta s # 0
using rect’ _in_ zerofree by eventually elim (use zeta_ zerofree_region in auto)

lemma zero_notin_rect: ¥V p x in at_top. 0 ¢ rect’
proof —
have Vp z in at_top. Cy / (¢ * (In x) powr (1 | 2)) < 1
using Hc by real__asymp
thus ?thesis
unfolding rect’ def rect_def zy__def z4 def T def a_ def
by eventually elim (simp add: in__cbox__complex_iff)
qged

lemma [analytic:
YV xin at_top. f x analytic_on rect’
using zeta_nonzero_in__rect zero__notin__rect unfolding f def
by eventually elim (intro analytic_intros, auto simp: rect’ _def)

lemma path_image_in_rect 1:
assumes 0 < Tz ANazx<bz
shows path__image (P z) C rect x A path_image (P2 x) C rect
unfolding P def Po_ def rect_def z1__def zo__def z3__def z4__def
by (simp, intro conjl closed__segment__subset)
(insert assms, auto simp add: in__cbox__complex_iff)

lemma path_image_in_rect 2:
assumes 0 < Tz ANaz<bazANte{-Tuz.Tuz}
shows path_image (P z t) C rect
unfolding P;_def rect_def z1_ def z5_ def
by (simp, intro conjl closed__segment__subset)
(insert assms, auto simp add: in__cbox__complex_iff)

definition path in_rect’ where
path_in_rect’ z =

87

path__image (P1 z) C rect’ z A path_image (Py z) C rect’ x A
path__image (P3 x) C rect’ z A path_image (P4 z) C rect’ x

lemma path_image_in_ rect”:
assumes 0 < Tz Naz <1 ANI<bzx
shows path_in_rect’ x
proof —
have path_image (P z) C rect © A path_image (P9 x) C rect
by (rule path__image_in_rect_1) (use assms in auto)
moreover have path_image (P3 x) C rect x path_image (P4 x) C rect x
unfolding Ps_ def P4 def
by (intro path_image_in_rect 2, (use assms in auto)[1])+
moreover have
1 ¢ path_image (Py) A 1 ¢ path_image (P2 x) A
1 ¢ path_image (P3) A 1 ¢ path_image (P4 x)
unfolding P;_def Po_ def P3_ def P4 def P;_def z1__def zo__def z3__def z4 def using assms
by (auto simp add: closed _segment__def legacy_Complex__simps field__simps)
ultimately show ?thesis unfolding path_in_rect’ def rect’ def by blast
qed

lemma asymp 1:
Vexzinat_top. 0 < TxNaxz<IANI<bzx
unfolding T def a_def b__def
by (intro eventually_conj, insert He Cy__gt_zero) (real _asymp)+

lemma [continuous on:
V@ xin at_top. Y ACrect’ z. continuous_on A (f x)
using f_analytic
by (eventually elim, safe)
(intro holomorphic__on__imp__continuous__on analytic__imp__holomorphic,
elim analytic__on__subset)

lemma contour__integrability:
Vr xin at_top.
f x contour__integrable_on Py x N f x contour_integrable_on Ps x A
f x contour_integrable_on Ps x A f x contour_integrable _on P4 x
proof —
have V r z in at_top. path_in_rect’ x
using asymp__ 1 by eventually__elim (rule path_image__in_rect’)
thus ?thesis using f_continuous on
unfolding P _def Po_def P3_def Py def P;_def path_in_rect’ def
by eventually elim
(intro congl contour _integrable _continuous_linepath,
fold z1__def zo__def zs__def z4__def, auto)
qed

lemma contour integral rectpath'’:
assumes f z analytic_on (rect’z) 0 < Tz Nax <1 N1 <bz
shows contour integral (P, x) (fz) = — 2 x pi % i* x
proof —
define z where z = (1 + bx) / 2
have Hz: z € box (21 z) (23 x)
unfolding z1_ def z3__def z_def using assms(2)
by (auto simp add: mem__box Basis__complex__def)
have Hz" 2z # 1 unfolding z def using assms(2) by auto

88

have connected (rect’ x)
proof —
have boz_nonempty: box (21 z) (23 z) # {} using Hz by auto
hence aff _dim (closure (box (z1 z) (23 z))) = 2
by (subst closure__aff _dim, subst aff _dim__open) auto
thus ?thesis
unfolding rect’ def using box_nonempty
by (subst (asm) closure__box)
(auto intro: connected__punctured__convexr simp add: rect_def)
qed
moreover have Hz'" 2z € rect’ x
unfolding rect’ def rect def using box _subset cbox Hz Hz' by auto
ultimately obtain 7 where hT"
f x holomorphic_on T open T rect’ x C T connected T
using analytic_on__holomorphic__connected assms(1) by (metis dual_order.refl)
define U where U = T U bozx (21 z) (23)
have one_in_box: 1 € box (21 z) (23 x)
unfolding z1_ def z3__def z_def using assms(2) by (auto simp add: mem__box Basis__complez__def)
have contour_integral (P, z) (fz) = 2 * pi % 1 %
(>° se{1}. winding _number (P, x) s x residue (f x) s)
proof (rule Residue theorem)
show finite {1} valid_path (P, z) pathfinish (P, x) = pathstart (P, x)
unfolding P,_ def by auto
show open U unfolding U_def using hT(2) by auto
show connected U unfolding U _ def
by (intro connected__Un hT(4) convex__connected)
(use Hz Hz" hT(3) in auto)
have f z holomorphic_on box (z1 z) (23) — {1}
by (rule holomorphic__on__subset, rule analytic_imp__holomorphic, rule assms(1))
(unfold rect’ _def rect_def, use box_subset_cbox in auto)
hence f z holomorphic_on (T — {1}) U (box (21 z) (23) — {1}))
by (intro holomorphic_on_Un) (use hT(1) hT(2) in auto)
moreover have ... = U — {1} unfolding U_def by auto
ultimately show f = holomorphic_on U — {1} by auto
have Hz: Re (z1) < Re (23 z) Im (21) < Im (23 z)
unfolding z;_def z3__def using assms(2) by auto
have path_image (P, z) = rect — box (21 z) (23 T)
unfolding rect def P,_ def
by (intro path__image_rectpath__cbox_minus_box Hz)
thus path_image (P, z) C U — {1}
using one_in_box hT(3) U_def unfolding rect’ def by auto
have hU" rect x C U
using hT(3) one_in_box unfolding U _def rect’ def by auto
show Vz. z ¢ U — winding_number (P, z) z = 0
using Hz P, def hU’ rect_def winding number _rectpath__outside by fastforce
qed
also have ... = — 2 x pi x i ¥ z unfolding P,_ def
by (simp add: residue_f, subst winding_number_rectpath, auto intro: one_in__box)
finally show ?thesis .
qed

lemma contour_integral rectpath:

V' xin at_top. contour _integral (P, x) (fz) = — 2 % pi x 1% x
using [_analytic asymp 1 by eventually elim (rule contour integral rectpath’)

89

lemma valid__paths:
valid__path (P1 z) valid_path (P2 x) valid _path (Ps3 x) valid_path (P4 x)
unfolding P def Po_ def P3_ def P4 _def P;__def by auto

lemma integral_rectpath__split:
assumes [z contour_integrable _on Py x A fx contour_integrable_on Py x A
f x contour__integrable_on Ps x A fx contour_integrable on Py x
shows contour_integral (P3 z) (f x) + contour_integral (P2 z) (f x)
— contour_integral (P4 x) (f) — contour_integral (P1 x) (f) = contour_integral (P, z) (f x)
proof —
define @); where Q1 = linepath (23 z) (24 x)
define @2 where Q3 = linepath (24 z) (21)
have @ _eq: Q1 = reversepath (P4 x) Q2 = reversepath (P1 x)
unfolding Q1_ def Q2 def P1__def Py_def P;__def by (fold zs__def z4__def) auto
hence contour_integral Q1 (f) = — contour_integral (P4 z) (f x)
contour_integral Q2 (f) = — contour_integral (Py z) (f z)
by (auto intro: contour__integral _reversepath valid__paths)
moreover have contour integral (P3 © +++ P2 z +++ Q1 +++ Q2) (fz)
= contour_integral (P3 z) (f x) + contour_integral (P2 z) (f x)
+ contour _integral Q1 (f) + contour integral Q2 (f x)
proof —
have 1: pathfinish (P x) = pathstart (Q1 +++ Q2) pathfinish Q1 = pathstart Qo
unfolding P def Q1__def Qo def by auto
have 2: valid__path Q1 valid_path Q2 unfolding @1 def Qo def by auto
have 3: f x contour_integrable_on P1 = f x contour_integrable on Po x
f x contour__integrable_on Ps3 x f x contour_integrable _on P4 x
f x contour__integrable_on @1 f x contour_integrable on Qs
using assms by (auto simp add: Q__eq intro: contour_integrable_reversepath valid__paths)
show ?thesis by (subst contour_integral_join |
auto intro: valid_paths valid__path__join contour_integrable_joinl 1 2 3)+
qed
ultimately show ?thesis
unfolding P,_ def z1_ def z3_ def rectpath__def
by (simp add: Let_def, fold Py__def Ps_ def z1__def zo__def zs__def z4__def)
(fold Py__def Q1__def Qo__def, auto)
qed

lemma Ps_ eq:
V' p xin at_top. contour_integral (P2 x) (fz) + 2 % pi xi* x
= contour_integral (P z) (f x) — contour_integral (Ps z) (f) + contour_integral (P4 z) (f x)
proof —
have V p z in at_top. contour integral (P3 x) (f z) + contour integral (P2 z) (f x)
— contour_integral (P4 x) (f) — contour_integral (P1 x) (fz) = — 2 x pi x1* x
using contour_integrability contour_integral rectpath asymp_ 1 f analytic
by eventually _elim (metis integral_rectpath__split)
thus ?thesis by (auto simp add: field__simps)
qed

lemma estimation Pj:
(Az. ||contour__integral (Py z) (f z)||) € Re
proof —
define r where r z =
Cs * (¢ x (Inz) powr (1 /] 2)?*zpowrazx*In(l1+ Tz /axz)forz
note logderiv_zeta__bound__vertical
moreover have LIM z at_top. T = :> at_top

90

unfolding T def using Hc by real _asymp
ultimately have Vr z in at_top. Vt. |t| < T x
— ||logderiv zeta (Complex (1 — C4 / In (T z)) t)|| < C5 * (In (T x))?
unfolding a_def by (rule eventually compose__filterlim)
hence Vp z in at_top. Vt. |t| < Tz
— ||logderiv zeta (Complex (a x) t)|| < C5 * (¢ * (In) powr (1 / 2))?
unfolding a_def T def by auto
moreover have YV p z in at_top. (f x) contour_integrable _on (P x)
using contour_integrability by eventually _elim auto
hence V p z in at_top. (As. logderiv zeta s * x powr s / s) contour_integrable_on (P1 x)
unfolding f def by eventually_elim (auto simp add: field__simps)
moreover have Vg z :: real in at_top. 0 < z by auto
moreover have Vg z in at_top. 0 < a x unfolding a_ def using Hc by real__asymp
ultimately have V r = in at_top.
|1 / (2 % pi % 1) * contour_integral (P1 x) (As. logderiv zeta s x x powr s | s)|| < rz
unfolding r_def P1_def z1__def z4 def using asymp_ 1
by eventually__elim (rule perron_aux_3’', auto)
hence YV r z in at_top. |1 / (2 * pi % i) * contour_integral (P1 z) (fz)|| < rz
unfolding f def by eventually_elim (auto simp add: mult_ac)
hence (Az. |1 / (2 % pi % 1) x contour_integral (P1 z) (f z)||) € O(r)
unfolding [def by (rule eventually le imp bigo’)
moreover have r € Rc
proof —
define r; where r1 2= C5 * 2 xInx*In (1 + Tx / ax) for z
define ro where ro = exp (a z * In z) for x
have r; € O(Az. (In z)?)
unfolding 1 def T def a_def using Hc C5_ gt zero by real _asymp
moreover have 7y € Rc’
proof —
have 1: ||re z|| < z % exp (— (¢ / 2 — €) % (In z) powr (1 / 2))
when h: 0 < z 0 < In z for z
proof —
have a z x Inz =Inz + — C4 / ¢ * (In z) powr (1 / 2)
unfolding a_def using h(2) Hc
by (auto simp add: field _simps powr_add [symmetric| frac_eq eq)
hence ry z = exp (...) unfolding ro_ def by blast
also have ... =z % exp (— Cy / ¢ * (In z) powr (1 / 2))
by (subst exp__add) (use h(1) in auto)
also have ... <z xexp (— (¢ / 2 —¢) * (In z) powr (1 | 2))
by (intro mult_left_mono, subst exp_le_cancel _iff, intro mult_right_mono)
(use Hc He' He Cy__gt_zero h in <auto simp: field_simps intro: add_increasing2»)
finally show ?thesis unfolding ro_ def by auto
qed
have Vp z in at_top. ||ro z|| < z x exp (— (¢ / 2 — ¢) * (In z) powr (1 /| 2))
using In__asymp_pos z_asymp__pos by eventually _elim (rule 1)
thus ?thesis unfolding Rc¢’ _def by (rule eventually_le imp_ bigo)
qed
ultimately have (Az. r1 x % rg x)
€ Oz. (In3)? % (z* exp (— (c/ 2 —¢) x (Inz) powr (1] 2))))
unfolding Rc¢’ _def by (rule landau__o.big.mult)
moreover have (\z. (In z)? * (z * exp (— (¢ / 2 — €) * (In x) powr (1 / 2)))) € Re
unfolding Rc¢ def using Hc He
by (real _asymp simp add: field__simps)
ultimately have (Az. r1 = * r2) € Rc
unfolding Rc_def by (rule landau__o.big_trans)

91

moreover have Vg zin at_top. rx =11 T * ro T
using In_In__asymp_pos In__asymp__pos x__asymp_ pos
unfolding r def r1_ def ro__def a_ def powr_def power2_eq square
by (eventually _elim) (simp add: field_simps exp__add [symmetric])
ultimately show ?thesis unfolding Rc def
using landau__0.big.ev_eq trans2 by auto
qged
ultimately have (A\z. |1 / (2 * pi % 1) * contour_integral (P1 z) (f z)||) € Re
unfolding Rc_def by (rule landau__o.big_trans)
thus ?thesis unfolding Rc_def by (simp add: norm__divide)
qged

lemma estimation_P;":
assumes h:
I<zAmarzl1C3<Trzaz<IANI<bz
{s € rect z. C3 < |Im s|} C logderiv_zeta_ region
f x contour__integrable_on Ps x A f x contour_integrable_on P, x
and Ht: |[t| =Tz
shows || contour _integral (Py v t) (fz)| < Coxexpl sz / Ta* (In (Tz+ 3))?* (bx — axz)
proof —
consider t = Tz | t = — T x using Ht by fastforce
hence f x contour_integrable_on P, z t
using Ht h(4) unfolding P; def Ps_ def P4_def by cases auto
moreover have |[fz s|| < exp 1 xz/ Tz * (Cy* (In(Tx+ 3))3?)
when s € closed__segment (Complex (a x) t) (Complex (b x) t) for s
proof —
have Hs: s € path_image (Py x t) using that unfolding P, def by auto
have path_image (P; z t) C rect ©
by (rule path_image_in_rect 2) (use h(2) Ht in auto)
moreover have Hs" Res < bzxIms =1t
proof —
have u <1 = (I —u)*azx < (I —u)*buzforu
using h(2) by (intro mult_left _mono) auto
thus Res < bxIms =1
using that h(2) unfolding closed _segment__def
by (auto simp add: legacy_Complex__simps field__simps)
qed
hence C3 < |Im s| using h(1) Ht by auto
ultimately have s € logderiv_zeta__region using Hs h(3) by auto
hence ||logderiv zeta s|| < Co * (In (|[Im s| + 3))?
by (rule logderiv_zeta_ region__estimate)

also have ... = Cy * (In (T z + 3))? using Hs'(2) Ht by auto

also have ||z pours [s| < ep 1 xxz/ Tz

proof —
have ||z powr s|| = Re x powr Re s using h(1) by (intro norm__powr_real_powr) auto
also have ... = z powr Re s by auto

also have ... < x powr b x by (intro powr_mono Hs’) (use h(1) in auto)
also have ... exp 1 * x

using h(1) unfolding powr def b__def by (auto simp add: field_simps exp__add)
finally have ||z powr s|| < exp I * .
moreover have T z < ||s|| using abs_Im_le _cmod [of s| Hs'(2) h(1) Ht by auto
hence 1: ||z powr s|| / ||s|| < ||z powrs|| /| T =

using h(1) by (intro divide_left_mono mult_pos_pos) auto
ultimately have ... < exp 1 x 2/ Tz

by (intro divide__right_mono) (use h(1) in auto)

IIA

92

thus ?thesis using 1 by (subst norm__divide) linarith
qed
ultimately show ?thesis unfolding f def
by (subst norm__mult, intro mult_mono, auto)
(metis norm__ge_ zero order.trans)
qed
ultimately have ||contour_integral (P z t) (f z)||
<ewplsxz/ Taxx*(Cyx* (In(Tz+ 3))3?) * ||Compler (bz)t — Complex (a) t|
unfolding P;_ def
by (intro contour _integral_bound__linepath)
(use Co_gt zero h(1) in auto)
alsohave ... = Coxexpl xx /) Ta*x (In (Tx+ 3)*x(bz — anx)
using h(2) by (simp add: legacy_Complex__simps)
finally show ?thesis .
qed

lemma estimation Py:
(Az. ||contour__integral (P3 z) (f z)||) € Re A
(Az. ||[contour__integral (P4 z) (f z)||) € Re
proof —
define r where rv = Co xexp 1 xx / Txx (In (Tz + 3))? % (bx — ax) for x
define p where p z = |contour_integral (Ps z) (f z)|| < r x A |[contour _integral (P4 z) (fz)|| < rz
for z
have Vi zin at_top. 1 <z Amaxl1 C3< Tz
unfolding T def by (rule eventually_conj) (simp, use He in real _asymp)
hence V r z in at_top. Vt. |t| = T x — ||contour_integral (Py x t) (f z)|| < r x (is eventually P _)
unfolding r_def using asymp_ 1 rect_in_ logderiv_zeta contour _integrability
by eventually__elim (use estimation_P¢' in blast)
moreover have \z. Pz —= 0 < Tz = pz
unfolding p_def Ps_def P4 def by auto
hence Vg zinat _top. Pr — 0 < Tz — px
by (intro eventuallyl) blast
ultimately have V r z in at_top. p z using asymp__ 1 by eventually elim blast
hence V r x in at_top.
llcontour__integral (Ps x) (fz)|||]| < 1 * ||rz| A
ll|contour__integral (P4 x) (fz)|||| < 1 * ||r |
unfolding p_ def by eventually elim auto
hence (Az. || contour _integral (P3 x) (f z)||) € O(r) A (Az. ||contour integral (P4 x) (f z)||) € O(r)
by (subst (asm) eventually conj iff, blast)+
moreover have r € Rc
unfolding r_def Rc_def a_def b_def T def using Hc He
by (real__asymp simp add: field__simps)
ultimately show ?thesis
unfolding Rc def using landau_o0.big_trans by blast
qed

VANVAN

lemma Re path_Ps:
Nz. z € path_image (P2 t) = Rez =bx
unfolding Po_ def zo_ def z3_ def
by (auto simp add: closed__segment__def legacy__Complex__simps field__simps)

lemma estimation Ps:

(Az. ||[1 / (2 % pi * 1) * contour_integral (Py z) (fz) + z||) € Re
proof —

define r where r © = ||contour_integral (P1 z) (f z)|| +

93

||contour _integral (Ps z) (f z)|| + ||contour integral (P4 z) (f z)|| for z

have [simp]: |la — b + ¢| < ||a|]| + ||b]| + ||¢|| for a b ¢ :: complex
using adhoc__norm,__triangle norm__triangle ineqj by blast

have YV z in at_top. ||contour integral (P2 z) (fz) + 2 *x pixix z|| < ruz
unfolding r_def using Py eq by eventually elim auto

hence (\z. || contour_integral (P x) (fz) + 2 * pi x 1 x z|)) € O(r)
by (rule eventually le imp_bigo’)

moreover have r € Rc
using estimation_ P1 estimation_ Py
unfolding r_def Rc_def by (intro sum__in_bigo) auto

ultimately have (A\z. ||contour_integral (P2 z) (fz) + 2 % pi *i* z||) € Rc
unfolding Rc_def by (rule landau__0.big_trans)

hence (Az. |1 / (2 % pi % 1) % (contour_integral (P2 z) (fz) + 2 % pi xix* z)||) € Re
unfolding Rc_def by (auto simp add: norm_mult norm__divide)

thus ?thesis by (auto simp add: algebra__simps)

qed

lemma estimation R:
R € Rc
proof —
define I’ where 'z ={n:nat. 2 —z/ Hx <nAn<xz+ax/ Hz} for x
have 1: (Az. x powr bx « Hz «x Bz / T x) € Re
unfolding b def H def B_def T _def Rc_def using Hc He
by (real _asymp simp add: field__simps)
have ||> " nel’ z. ||fds_nth (fds mangoldt _complex) nl|||| < (2xz / Hx + 1) xIn (x + z / Hx)
when h: 0 <z —2/Hz0<z/Hz0<In(zx+x/ Hz) for z
proof —
have [|>" nel z. ||fds_nth (fds mangoldt complex) nl||| = (3 nel z. ||fds_nth (fds mangoldt complex)
all)
by simp (subst abs_of nonneg, auto intro: sum__nonneq)
also have ... = sum mangoldt_real (I" z)
by (subst norm__fds_mangoldt _complex) (rule refl)
also have ... < card (T' z) xIn (z + =z / H x)
proof (rule sum__bounded__above)
fix nassume n € I' z
hence Hn: 0 < nn < z + z / H x unfolding I"__def using h by auto
hence mangoldt_real n < In n by (intro mangoldt_le)
also have ... < In (z + = / H z) using Hn by auto
finally show mangoldt_realn <In (z +z / Hz) .
qed
alsohave ... < (2xxz/ Hxz+ 1)*xIn(x+ 2/ Hx)
proof —
have ' _eq: Tz = {nat [zt — 2z / Hx]..<nat (|[z +z / Hz] + 1)}
unfolding I' _def by (subst nat_le_real iff) (subst nat_ceiling le__eq [symmetric], auto)
moreover have nat (|z +z / Hz| + 1) = |z + 2/ Hz] + 1 using h(1) h(2) by auto
moreover have nat [z — z / Hz| = [x — z / H z| using h(1) by auto
moreover have |z + z / Hz| < x + x / H z by (rule floor_le)
moreover have [z — x / Hz| > x — z / H z by (rule ceil_ge)
ultimately have (nat (| + 2 / Hz| + 1) real) — nat [zt —z / Hz)| < 2xx / Hz + 1 by
linarith
hence card (I' x) < 2 x x / Hx + 1 using h(2) by (subst I _eq) (auto simp add: of nat_diff real)
thus ?thesis using h(3) by (rule mult_right _mono)
qed
finally show ?thesis .
qed

94

hence V z in at__top.
0<z—z/Hzx—0<z/Hzx—0<In(z+2z/Huz)
— |>_nel’ . ||fds_nth (fds mangoldt_complex) nll|| < (2«xz / Hx + 1) xIn (x + z / Hx)
by (intro eventuallyl) blast
moreover have Vp z in at_top. 0 < © — = / H x unfolding H_def using Hc He by real _asymp
moreover have Vr z in at_top. 0 < x / H x unfolding H_def using Hc He by real _asymp
moreover have VYV z in at_top. 0 < In (z + = / H x) unfolding H_def using Hc He by real _asymp
ultimately have V r = in at_top. ||>_ nel’ z. ||fds_nth (fds mangoldt_complezx) n|||| < (2 x ¢ / Hzx +
1)xIn(z+ 2/ Hx)
by eventually _elim blast
hence (A\z. Y nel z. ||fds_nth (fds mangoldt_complezx) n|) € O(Az. (2 2 / Hx + 1) xIn (z + z /
H 2))
by (rule eventually le imp_ bigo)
moreover have (\z. (2«2 / Hz + 1) xIn (x + 2 / Hz)) € Rc’
unfolding Rc’ def H def using Hc He
by (real__asymp simp add: field__simps)
ultimately have (A\z. > nel' z. ||fds_nth (fds mangoldt_complex) n||) € Re’
unfolding Rc¢’ _def by (rule landau__o.big_trans)
hence (Az. 3 % (2 + In (T z / bx)) * (D>, nel z. ||fds_nth (fds mangoldt_complex) n||))
EO0MNe. 83+« (2+In(Txz/bzx))*x(xxexp(— (c/ 2 —c¢)x* (lnzx)powr (1]/ 2))))
unfolding Rc¢’ def by (intro landau_o.big.mult_left) auto
moreover have (Az. 3 x (2 +In (Txz [/ bx)) *x (zxexp (— (c/ 2 —¢)x (Inz) powr (1 / 2)))) € Re
unfolding Rc_def T def b__def using Hc He by (real _asymp simp add: field _simps)
ultimately have 2: (Az. 8 % (2 + In (Tz / bx)) x (O_ nel . ||fds_nth (fds mangoldt_complex) nl||))
€ Re
unfolding Rc_def by (rule landau__o.big_trans)
from 1 2 show ?thesis unfolding Rc_def R__def T'__def by (rule sum__in__bigo)
qed

lemma perron_ psi:
Vi zinat top. || x+ 1 /(2 * pi *1) * contour_integral (P2 z) (fz)|| < Rz
proof —
have Hb: Vi x in at_top. 1 < b x unfolding b _def by real asymp
hence V i z in at_top. 0 < b xz by eventually__elim auto
moreover have Vg z in at_top. b x < T x unfolding b def T def using Hc by real asymp
moreover have V r z in at_top. abs_conv_abscissa (fds mangoldt_complex) < ereal (b)
proof —
have abs__conv__abscissa (fds mangoldt_complex) < 1 by (rule abs_conv_abscissa__mangoldt)
hence Vr = in at_top. 1 < b x — abs_conv_abscissa (fds mangoldt__complex) < ereal (b x)
by (auto intro: eventuallyl
simp add: le__ereal_less one__ereal__def)
thus ?thesis using Hb by (rule eventually_mp)
qed
moreover have Vp z in at_top. 2 < H z unfolding H def using Hc by real asymp
moreover have YV z in at_top. b x + 1 < H z unfolding b def H def using Hc by real asymp
moreover have Vg z :: real in at_top. 2 < z by auto
moreover have Vg z in at_top.
(>° ‘n>1. ||fds_nth (fds mangoldt_complex) n|| / n nat_powr b z) < Bz
(is eventually ?P ?F)
proof —
have ?P x when Hb: 1 < bz ANbx < 23/ 20 for z
proof —
have (3 ‘n>1. ||fds_nth (fds mangoldt_complex) n|| / n nat_powr (b z))
= (3. ‘n>1. mangoldt_real n / n nat_powr (b z))
by (subst norm__fds_mangoldt__complex) (rule refl)

95

also have ... = — Re (logderiv zeta (b x))
proof —
have ((An. mangoldt_real n x n nat_powr (—b z) * cos (0 * In (real n)))
has_sum Re (— deriv zeta (Complex (b x) 0) / zeta (Complex (b z) 0))) {1..}
by (intro sums_Re logderiv_zeta) (use Hb in auto)
moreover have Complex (b z) 0 = b z by (rule complex__eql) auto
moreover have Re (— deriv zeta (b x) / zeta (b x)) = — Re (logderiv zeta (b x))
unfolding logderiv_def by auto
ultimately have ((An. mangoldt_real n x n nat_powr (—b x)) has_sum
— Re (logderiv zeta (b x))) {1..} by auto
hence — Re (logderiv zeta (b x)) = (Y. ‘n>1. mangoldt_real n * n nat_powr (—b x))
by (intro has_sum__imp__has__subsum subsuml)
also have ... = (> ‘n>1. mangoldt_real n / n nat_powr (b z))
by (intro subsum__cong) (auto simp add: powr_minus_divide)
finally show ?thesis by auto
ged
also have ... < |Re (logderiv zeta (b x))| by auto
also have ... < |logderiv zeta (b x)|| by (rule abs_Re le cmod)
alsohave ... <5 /4« (1 /(bz— 1))
by (rule logderiv_zeta__bound) (use Hb in auto)

also have ... = B z unfolding b _def B_def by auto
finally show ?thesis .
qed

hence Vg zin at_top. 1 <bx ANbz < 23/ 20 — ?P x by auto
moreover have VYV z in at_top. b x < 23 / 20 unfolding b_def by real _asymp
ultimately show ?thesis using Hb by eventually elim auto
ged
ultimately have V r x in at_top.
||sum__upto (fds_nth (fds mangoldt complex)) x — 1 / (2 * pi * i)
« contour_integral (Py x) (As. eval _fds (fds mangoldt_complex) s x x powr s / s)|| < Rz
unfolding R def Py def zo_ def zs_ def
by eventually _elim (rule perron_ formula(2))

moreover have V r z in at_top. sum_upto (fds_nth (fds mangoldt complex)) x = 1 z for z ::

unfolding primes_psi_def sum__upto__def by auto
moreover have
contour _integral (Po x) (As. eval fds (fds mangoldt_complez) s * x powr s / s)
= contour_integral (Py x) (As. — (z powr s / s x logderiv zeta s))
when 1 < bz for x
proof (rule contour_integral_eq, goal _cases)

case (1 s)
hence Re s = b x by (rule Re__path_Ps)
hence eval_fds (fds mangoldt_complex) s = — deriv zeta s | zeta s

by (intro eval_fds _mangoldt) (use that in auto)
thus ?case unfolding logderiv_def by (auto simp add: field__simps)
ged
hence Vi z in at_top. 1 < bx —
contour__integral (Py x) (As. eval fds (fds mangoldt_complex) s x x powr s / s)
= contour_integral (Py x) (As. — (z powr s / s x logderiv zeta s))
using Hb by (intro eventuallyl) blast
ultimately have V r x in at_top.

real

v & — 1 /(2 % pi*i)* contour_integral (Py) (As. — (z powr s / s * logderiv zeta s))|| < R z

using Hb by eventually elim auto
thus ?thesis unfolding f def

by eventually _elim (auto simp add: contour_integral_neg)
ged

96

lemma estimation__perron_ psi:

(Az. ||z + 1 /(2 % pi x 1) * contour_integral (Py z) (f x)||) € Re
proof —

have (A\z. ||[v» = + 1 / (2 % pi x i) * contour_integral (Py z) (f x)||) € O(R)

by (intro eventually le_imp_bigo’ perron_ psi)

moreover have R € Rc by (rule estimation_R)

ultimately show ?thesis unfolding Rc def by (rule landau_o.big trans)
ged

theorem prime_number_theorem:
PNT 3(c/2—2%¢e)(1/2)0
proof —
define r where r z =
|z + 1/ (2% pix*i)=* contour_integral (Py x) (f z)||
+ |1 / (2 % pi * 1) * contour_integral (Py z) (f z) + z| for z
have ||¢p z — z|| < r z for x

proof —
have || x — z|| = ||(¢ = :: complex) — x|
by (fold dist_complex__def, simp add: dist_real_def)
also have ... < ||z — — 1 / (2 % pi x 1) x contour_integral (P2 z) (f z)||
+ ||z — — 1 /(2 % pi % i) x contour_integral (Py z) (f z)||

by (fold dist_complex__def, rule dist_triangle2)
finally show ?thesis unfolding r_def by (simp add: add__ac)
ged
hence (Az. ¥ z — x) € O(r) by (rule le_imp__bigo)
moreover have r € Rc
unfolding r_def Rc_ def
by (intro sum__in__bigo, fold Rc__def)
(rule estimation__perron__psi, rule estimation_ P3)
ultimately show ?thesis unfolding PNT 3 def
by (subst Rc_eq_rem__est [symmetric], unfold Rc_def)
(rule landau__o0.big__trans)
qed

no__notation primes_psi (¢)
end

unbundle prime__counting_notation

theorem prime_number_theorem:
shows (A\z. mz — Liz) € O(Az. = % exp (— 1 / 83653 * (In x) powr (1 | 2)))
proof —
define c :: real where ¢ = 1 / 1826
define ¢ :: real where ¢ = 1 / 26681512
interpret z: prime_number_theorem c ¢
unfolding ¢_def ¢_def by standard (auto simp: C4__def)
have PNT 3 (¢ / 2 — 2 x¢) (1 / 2) 0 by (rule z.prime_number_theorem)
hence PNT 1 (¢ / 2 — 2 x¢) (1 / 2) 0 by (auto intro: PNT 3 imp_PNT 1)
thus (A\z. m ¢z — Liz) € O(Az. z % exp (— 1 | 3653 = (In) powr (1 / 2)))
unfolding PNT 1 def rem__est def c_def € def
by (rule landau__o.big.ev_eq transl, use In_In__asymp_pos in eventually _elim)
(auto intro: eventually at_top_linorderl [of 1] simp: powr__half _sqrt)
qed

97

hide__const (open) Cs C4 C5
unbundle no_ prime__counting notation
unbundle no_pnt_notation

end

98

	Auxiliary library for prime number theorem
	Zeta function
	Logarithm derivatives
	Lemmas of integration and integrability
	Lemmas on asymptotics
	Lemmas of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 floor, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ceil and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat_powr
	Elementary estimation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 exp and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ln
	Miscellaneous lemmas

	Implication relation of many forms of prime number theorem
	Some basic theorems in complex analysis
	Introduction rules for holomorphic functions and analytic functions
	Factorization of analytic function on compact region
	Auxiliary propositions for theorem 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 analytic_factorization

	Schwarz theorem in complex analysis
	Borel-Carathedory theorem
	Lemma 3.9

	Zero-free region of zeta function
	Perron's formula
	Estimation of the order of '(s)(s)
	Deducing prime number theorem using Perron's formula

