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Abstract

We present an embedding of the second-order fragment of the Theory of Abstract Objects
as described in Edward Zalta’s upcoming work Principia Logico-Metaphysica (PLM[12])
in the automated reasoning framework Isabelle/HOL. The Theory of Abstract Objects
is a metaphysical theory that reifies property patterns, as they for example occur in
the abstract reasoning of mathematics, as abstract objects and provides an axiomatic
framework that allows to reason about these objects. It thereby serves as a fundamen-
tal metaphysical theory that can be used to axiomatize and describe a wide range of
philosophical objects, such as Platonic forms or Leibniz’ concepts, and has the ambition
to function as a foundational theory of mathematics. The target theory of our embed-
ding as described in chapters 7-9 of PLM[12] employs a modal relational type theory as
logical foundation for which a representation in functional type theory is known to be
challenging[8].

Nevertheless we arrive at a functioning representation of the theory in the functional
logic of Isabelle/HOL based on a semantical representation of an Aczel-model of the
theory. Based on this representation we construct an implementation of the deductive
system of PLM ([12, Chap. 9]) which allows to automatically and interactively find and
verify theorems of PLM.

Our work thereby supports the concept of shallow semantical embeddings of logical
systems in HOL as a universal tool for logical reasoning as promoted by Christoph
Benzmüller[1].

The most notable result of the presented work is the discovery of a previously unknown
paradox in the formulation of the Theory of Abstract Objects. The embedding of the
theory in Isabelle/HOL played a vital part in this discovery. Furthermore it was possible
to immediately offer several options to modify the theory to guarantee its consistency.
Thereby our work could provide a significant contribution to the development of a proper
grounding for object theory.
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1. Introduction

Calculemus!

Leibniz

1.1. Universal Logical Reasoning1

The concept of understanding rational argumentation and reasoning using formal log-
ical systems has a long tradition and can already be found in the study of syllogistic
arguments by Aristotle. Since then a large variety of formal systems has evolved, each
using different syntactical and semantical structures to capture specific aspects of log-
ical reasoning (e.g. propositional logic, first-order/higher-order logic, modal logic, free
logic, etc.). This diversity of formal systems gives rise to the question, whether a univer-
sal logic can be devised, that would be capable of expressing statements of all existing
specialized logical systems and provide a basis for meta-logical considerations like the
equivalence of or relations between those systems.
The idea of a universal logical framework is very prominent in the works of Gottfried Wil-
helm Leibniz (1646-1716) with his concept of a characteristica universalis, i.e. a univer-
sal formal language able to express metaphysical, scientific and mathematical concepts.
Based thereupon he envisioned the calculus ratiocinator, a universal logical calculus with
which the truth of statements formulated in the characteristica universalis could be de-
cided purely by formal calculation and thereby in an automated fashion, an idea that
became famous under the slogan: Calculemus!
Nowadays with the rise of powerful computer systems such a universal logical framework
could have repercussions throughout the sciences and may be a vital part of human-
machine interaction in the future. Leibniz’ ideas have inspired recent efforts to use
functional higher-order logic (HOL) as such a universal logical language and to represent
various logical systems by the use of shallow semantical embeddings[1].
Notably this approach received attention due to the formalization, validation and anal-
ysis of Gödel’s ontological proof of the existence of God by Christoph Benzmüller[5],
for which higher-order modal logic was embedded in the computerized logic framework
Isabelle/HOL.

1This introductory section is based on the description of the topic in [1].
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1.2. Shallow Semantical Embeddings in HOL

A semantic embedding of a target logical system defines the syntactic elements of the
target language in a background logic (e.g. in a framework like Isabelle/HOL) based
on their semantics. This way the background logic can be used as meta-logic to argue
about the semantic truth of syntactic statements in the embedded logic.
A deep embedding represents the complete syntactic structure of the target language
separately from the background logic, i.e. every term, variable symbol, connective, etc.
of the target language is represented as a syntactic object and then the background logic
is used to evaluate a syntactic expression by quantifying over all models that can be
associated with the syntax. Variable symbols of the target logic for instance would be
represented as constants in the background logic and a proposition would be considered
semantically valid if it holds for all possible denotations an interpretation function can
assign to them.
While this approach will work for most target logics, it has several drawbacks. It is
likely that there are principles that are shared between the target logic and the back-
ground logic, such as α-conversion for λ-expressions or the equivalence of terms with
renamed variables in general. In a deep embedding these principles usually have to be
explicitly shown to hold for the syntactic representation of the target logic, which is
usually connected with significant complexity. Furthermore if the framework used for
the background logic allows automated reasoning, the degree of automation that can
be achieved in the embedded logic is limited, as any reasoning in the target logic will
have to consider the meta-logical evaluation process in the background logic which will
usually be complex.
A shallow embedding uses a different approach based on the idea that most contemporary
logical systems are semantically characterized by the means of set theory. A shallow
embedding defines primitive syntactic objects of the target language such as variables or
propositions using a set theoretic representation. For example propositions in a modal
logic can be represented as functions from possible worlds to truth values in a non-modal
logic.
The shallow embedding aims to equationally define only the syntactic elements of the
target logic that are not already present in the background logic or whose semantics
behaves differently than in the background logic, while preserving as much of the logical
structure of the background logic as possible. The modal box operator for example can be
represented as a quantification over all possible worlds, satisfying an accessibility relation,
while negation and quantification can be directly represented using the negation and
quantification of the background logic (preserving the dependency on possible worlds).
This way basic principles of the background logic (such as alpha conversion) can often
be directly applied to the embedded logic and the equational, definitional nature of
the representation preserves a larger degree of automation. Furthermore, axioms in the
embedded logic can often be equivalently stated in the background logic, which makes the
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construction of models for the system easier and again increases the degree of automation
that can be retained.
The shallow semantical embedding of modal logic was the basis for the analysis of Gödel’s
ontological argument[5] and the general concept has shown great potential as a universal
tool for logical embeddings while retaining the existing infrastructure for automation as
for example present in a framework like Isabelle/HOL2.

1.3. Relational Type Theory vs. Functional Type Theory

The universality of this approach has since been challenged by Paul Oppenheimer and
Edward Zalta who argue in the paper Relations Versus Functions at the Foundations of
Logic: Type-Theoretic Considerations[8] that relational type theory is more general than
functional type theory. In particular they argue that the Theory of Abstract Objects,
which is founded in relational type theory, cannot be properly characterized in functional
type theory.
This has led to the question whether a shallow semantical embedding of the Theory of
Abstract Objects in a functional logic framework like Isabelle/HOL is at all possible,
which is the core question the work presented here attempts to examine and partially
answer.
One of their main arguments is that unrestricted λ-expressions as present in functional
type theory lead to an inconsistency when combined with one of the axioms of the theory
and indeed it has been shown for early attempts on embedding the theory that despite
significant efforts to avoid the aforementioned inconsistency by excluding problematic
λ-expressions in the embedded logic, it could still be reproduced using an appropriate
construction in the background logic3.
The solution presented here circumvents this problem by identifying λ-expressions as
one element of the target language that behaves differently than their counterparts in
the background logic and consequently by representing λ-expressions of the target logic
using a new defined kind of λ-expressions. This forces λ-expressions in the embedded
logic to have a particular semantics that is inspired by the Aczel-model of the target
theory (see 2.6) and avoids prior inconsistencies. The mentioned issue and the employed
solution is discussed in more detail in sections 3.2 and 3.4.7.

2See [1] for an overview and an description of the ambitions of the approach.
3Early attempts of an embedding by Christoph Benzmüller (see https://github.com/cbenzmueller/

PrincipiaMetaphysica) were discussed in his university lecture Computational Metaphysics (FU Berlin,
SS2016) and the proof of their inconsistency in the author’s final project for the course inspired the
continued research in this master’s thesis.
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1.4. Overview of the following Chapters

The following chapters are structured as follows:
• The second chapter gives an overview of the motivation and structure of the target

theory of the embedding, the Theory of Abstract Objects. It also introduces the
Aczel-model of the theory, that was adapted as the basis for the embedding.

• The third chapter is a detailed documentation of the concepts and technical struc-
ture of the embedding. This chapter references the Isabelle theory that can be
found in the appendix.

• The fourth chapter consists of a technical discussion about some of the issues
encountered during the construction of the embedding due to limitations of the
logic framework Isabelle/HOL and the solutions that were employed.

• The last chapter discusses the relation between the embedding and the target
theory of PLM and describes some of the results achieved using the embedding.
Furthermore it states some open questions for future research.

This entire document is generated from an Isabelle theory file and thereby in particular
all formal statements in the third chapter are well-formed terms, resp. verified valid
theorems in the constructed embedding unless the contrary is stated explicitly.
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2. The Theory of Abstract Objects

It is widely supposed that every
entity falls into one of two categories:
Some are concrete; the rest abstract.
The distinction is supposed to be of
fundamental significance for
metaphysics and epistemology.

Stanford Encyclopedia of
Philosophy[9]

2.1. Motivation

As the name suggests the Theory of Abstract Objects revolves around abstract objects
and is thereby a metaphysical theory. As Zalta puts it: “Whereas physics attempts a
systematic description of fundamental and complex concrete objects, metaphysics at-
tempts a systematic description of fundamental and complex abstract objects. [. . .] The
theory of abstract objects attempts to organize these objects within a systematic and
axiomatic framework. [. . .][We can] think of abstract objects as possible and actual
property-patterns. [. . .] Our theory of abstract objects will objectify or reify the group
of properties satisfying [such a] pattern.”[13]1

So what is the fundamental distinction between abstract and concrete objects? The anal-
ysis in the Theory of Abstract Objects is based on a distinction between two fundamental
modes of predication that is based on the ideas of Ernst Mally. Whereas objects that are
concrete (the Theory of Abstract Objects calls them ordinary objects) are characterized
by the classical mode of predication, i.e. exemplification, a second mode of predication is
introduced that is reserved for abstract objects. This new mode of predication is called
encoding and formally written as xF (x encodes F) in contrast to Fx (x exemplifies F).
Mally informally introduces this second mode of predication in order to represent sen-
tences about fictional objects. In his thinking, concrete objects, that for example have
a fixed spatiotemporal location, a body and shape, etc., only exemplify their properties
and are characterized by the properties they exemplify. Sentences about fictional objects
such as “Sherlock Holmes is a detective” have a different meaning. Stating that “Sher-
lock Holmes is a detective” does not imply that there is some concrete object that is

1The introduction to the theory in this and the next section is based on the documentation of the
theory in [13] and [14], which is paraphrased and summarized throughout the sections. Further references
about the topic include [12], [11], [10].
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Sherlock Holmes and this object exemplifies the property of being a detective - it rather
states that the concept we have of the fictional character Sherlock Holmes includes the
property of being a detective. Sherlock Holmes is not concrete, but an abstract object
that is determined by the properties Sherlock Holmes is given by the fictional works
involving him as character. This is expressed using the second mode of predication
Sherlock Holmes encodes the property of being a detective.
To clarify the difference between the two concepts note that any object either exemplifies
a property or its negation. The same is not true for encoding. For example it is not
determinate whether Sherlock Holmes has a mole on his left foot. Therefore the abstract
object Sherlock Holmes neither encodes the property of having a mole on his left foot,
nor the property of not having a mole on his left foot2.
The theory even allows for an abstract object to encode properties that no object could
possibly exemplify and reason about them, for example the quadratic circle. In classical
logic meaningful reasoning about a quadratic circle is impossible - as soon as I suppose
that an object exemplifies the properties of being a circle and of being quadratic, this
will lead to a contradiction and every statement becomes derivable.
In the Theory of Abstract Objects on the other hand there is an abstract object that
encodes exactly these two properties and it is possible to reason about it. For example
we can state that this object exemplifies the property of being thought about by the reader
of this paragraph. This shows that the Theory of Abstract Objects provides the means
to reason about processes of human thought in a much broader sense than classical logic
would allow.
It turns out that by the means of abstract objects and encoding the Theory of Abstract
Objects can be used to represent and reason about a large variety of concepts that
regularly occur in philosophy, mathematics or linguistics.
In [13] the principal objectives of the theory are summarized as follows:

• To describe the logic underlying (scientific) thought and reasoning by extending
classical propositional, predicate, and modal logic.

• To describe the laws governing universal entities such as properties, relations, and
propositions (i.e., states of affairs).

• To identify theoretical mathematical objects and relations as well as the natural
mathematical objects such as natural numbers and natural sets.

• To analyze the distinction between fact and fiction and systematize the various
relationships between stories, characters, and other fictional objects.

• To systematize our modal thoughts about possible (actual, necessary) objects,
states of affairs, situations and worlds.

• To account for the deviant logic of propositional attitude reports, explain the
informativeness of identity statements, and give a general account of the objective
and cognitive content of natural language.

2see [14]
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• To axiomatize philosophical objects postulated by other philosophers, such as
Forms (Plato), concepts (Leibniz), monads (Leibniz), possible worlds (Leibniz),
nonexistent objects (Meinong), senses (Frege), extensions of concepts (Frege), noe-
matic senses (Husserl), the world as a state of affairs (early Wittgenstein), moments
of time, etc.

The Theory of Abstract Objects has therefore the ambition and the potential to serve as
a foundational theory of metaphysics as well as mathematics and can provide a simple
unified axiomatic framework that allows reasoning about a huge variety of concepts
throughout the sciences. This makes the attempt to represent the theory using the
universal reasoning approach of shallow semantical embeddings outlined in the previous
chapter particularly challenging and at the same time rewarding, if successful.
A successful implementation of the theory which allows to utilize the existing sophisti-
cated infrastructure for automated reasoning present in a framework like Isabelle/HOL
would not only strongly support the applicability of shallow semantical embeddings as a
universal reasoning tool, but could also aid in spreading the utilization of the theory itself
as a foundational theory for various scientific fields by enabling convenient interactive
and automated reasoning in a verified framework.

2.2. Basic Principles

Although the formal language of the theory is introduced in the next section, some of
the basic concepts of the theory are presented in advance to provide further motivation
for the formalism.
The following are the two most important principles of the theory (see [13]):

• ∃ x(A!x & ∀F(xF ≡ ϕ))

• x = y ≡ �∀F(xF ≡ yF)

The first statement asserts that for every condition on properties ϕ there exists an
abstract object that encodes exactly those properties satisfying ϕ, whereas the second
statement holds for two abstract objects x and y and states that they are equal, if and
only if they necessarily encode the same properties.
Together these two principles clarify the notion of abstract objects as the reification of
property patterns: Any set of properties is objectified as a distinct abstract object.
Using these principles it is already possible to postulate interesting abstract objects.
For example the Leibnizian concept of an (ordinary) individual u can be defined as
the (unique) abstract object that encodes all properties that u exemplifies, formally:
ιx A!x & ∀F (xF ≡ Fu)
Other interesting examples include possible worlds, Platonic Forms or even basic logical
objects like truth values. The theory allows to formulate purely syntactic definitions of
objects like possible worlds and truth values and from these definitions it can be derived
that there are two truth values or that the application of the modal box operator to a
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proposition is equivalent to the proposition being true in all possible worlds (where being
true in a possible world is again defined syntactically).
This is an impressive property of the Theory of Abstract Objects: it can syntactically
define objects that are usually only considered semantically.

2.3. The Language of PLM

The target of the embedding is the second-order fragment of object theory as described
in chapter 7 of Edward Zalta’s upcoming Principia Logico-Metaphysica (PLM)[12]. The
logical foundation of the theory uses a second-order modal logic (without primitive
identity) formulated using relational type theory that is modified to admit encoding as
a second mode of predication besides the traditional exemplification. In the following an
informal description of the important aspects of the language is provided; for a detailed
and fully formal description and the type-theoretic background refer to the respective
chapters of PLM[12].
A compact description of the language can be given in Backus-Naur Form (BNF)[12, Definition (6)],
as shown in figure 2.1, in which the following grammatical categories are used:
δ individual constants
ν individual variables
Σn n-place relation constants (n ≥ 0)
Ωn n-place relation variables (n ≥ 0)
α variables
κ individual terms
Πn n-place relation terms (n ≥ 0)
Φ∗ propositional formulas
Φ formulas
τ terms

The language distinguishes between two types of basic formulas, namely (non-propositional)
formulas that may contain encoding subformulas and propositional formulas that may
not contain encoding subformulas. Only propositional formulas may be used in λ-
expressions. The main reason for this distinction will be explained in section 3.2.
Note that there is a case in which propositional formulas can contain encoding expres-
sions. This is due to the fact that subformula is defined in such a way that xQ is not
a subformula of ιx(xQ)3. Thereby Fιx(xQ) is a propositional formula and [λy Fιx(xQ)]

a well-formed λ-expression. On the other hand xF is not a propositional formula and
therefore [λx xF ] not a well-formed λ-expression. This fact will become relevant in the
discussion in section 5.2, that describes a paradox in the formulation of the theory in
the draft of PLM at the time of writing4.

3For a formal definition of subformula refer to definition (8) in [12].
4At the time of writing several options are being considered that can restore the consistency of the

theory while retaining all theorems of PLM.
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Figure 2.1.: BNF grammar of the language of PLM[12, p. 170]

Furthermore the theory contains a designated relation constant E ! to be read as being
concrete. Using this constant the distinction between ordinary and abstract objects is
defined as follows:

• O! =df [λx ♦E !x]
• A! =df [λx ¬♦E !x]

So ordinary objects are possibly concrete, whereas abstract objects cannot possibly be
concrete.
The language does not contain a primitive identity, but defines an identity for each type
of term as follows:
ordinary objects x =E y =df O!x & O!y & �(∀F Fx ≡ Fy)
individuals x = y =df x =E y ∨ (A!x & A!y & �(∀F xF ≡ yF))

one-place relations F1 = G1 =df �(∀ x xF1 ≡ xG1)

zero-place relations F0 = G0 =df [λy F0] = [λy G0]

The identity for n-place relations for n ≥ 2 is defined in terms of the identity of one-place
relations, see (16)[12] for the full details.
The identity for ordinary objects follows Leibniz’ law of the identity of indiscernibles: Two
ordinary objects that necessarily exemplify the same properties are identical. Abstract
objects, however, are only identical if they necessarily encode the same properties. As
mentioned in the previous section this goes along with the concept of abstract objects
as the reification of property patterns.
Notably the identity for properties has a different definition than one would expect
from classical logic. Classically two properties are considered identical if and only if
they necessarily are exemplified by the same objects. The Theory of Abstract Objects,
however, defines two properties to be identical if and only if they are necessarily encoded
by the same (abstract) objects. This has some interesting consequences that will be
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described in more detail in section 2.5 which describes the hyperintensionality of relations
in the theory.

2.4. The Axioms

Based on the language above, an axiom system is defined that constructs a S5 modal logic
with an actuality operator, axioms for definite descriptions that go along with Russell’s
analysis of descriptions, the substitution of identicals as per the defined identity, α-, β-,
η- and a special ι-conversion for λ-expressions, as well as dedicated axioms for encoding.
A full accounting of the axioms in their representation in the embedding is found in
section 3.10. For the original axioms refer to [12, Chap. 8]. At this point the axioms of
encoding are the most relevant, namely:

• xF → �xF
• O!x → ¬∃F xF
• ∃ x (A!x & ∀F (xF ≡ ϕ)),

provided x doesn’t occur free in ϕ

So encoding is modally rigid, ordinary objects do not encode properties and most im-
portantly the comprehension axiom for abstract objects that was already mentioned
above:
For every condition on properties ϕ there exists an abstract object, that encodes exactly
those properties, that satisfy ϕ.

2.5. Hyperintensionality of Relations

An interesting property of the Theory of Abstract Objects results from the definition of
identity for one-place relations. Recall that two properties are defined to be identical
if and only if they are encoded by the same (abstract) objects. The theory imposes no
restrictions whatsoever on which properties an abstract object encodes. Let for example
F be the property being the morning star and G be the property being the evening star.
Since the morning star and the evening star are actually both the planet Venus, every
object that exemplifies F will also exemplify G and vice-versa: �∀ x Fx ≡ Gx. However
the concept of being the morning star is different from the concept of being the evening
star. The Theory of Abstract Objects therefore does not prohibit the existence of an
abstract object that encodes F, but does not encode G. Therefore by the definition of
identity for properties it does not hold that F = G. As a matter of fact the Theory of
Abstract Objects does not force F = G for any F and G. It rather stipulates what needs
to be proven, if F = G is to be established, namely that they are necessarily encoded by
the same objects. Therefore if two properties should be equal in some context an axiom
has to be added to the theory that allows to prove that both properties are encoded by
the same abstract objects.
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The fact that the following relation terms do not necessarily denote the same relations
illustrates the extent of this hyperintensionality:

[λy p ∨ ¬p] and [λy q ∨ ¬q]
[λy p & q] and [λy q & p]

Of course the theory can be extended in such a way that these properties are equal.
However, without additional axioms their equality is not derivable.
Although the relations of object theory are hyperintensional entities, propositional rea-
soning is still governed by classical extensionality. For example properties that are
necessarily exemplified by the same objects can be substituted for each other in an
exemplification formula, the law of the excluded middle can be used in propositional
reasoning, etc.
The Theory of Abstract Objects is an extensional theory of intensional entities[12, (130)].

2.6. The Aczel-Model

When thinking about a model for the theory one will quickly notice the following prob-
lem: The comprehension axiom for abstract objects implies that for each set of properties
there exists an abstract object encoding exactly those properties. Considering the defi-
nition of identity there therefore exists an injective map from the power set of properties
to the set of abstract objects. On the other hand for an object y the term [λx Rxy]
constitutes a property. If for distinct abstract objects these properties were distinct,
this would result in a violation of Cantor’s theorem, since this would mean that there
is an injective map from the power set of properties to the set of properties. So does
the Theory of Abstract Objects as constructed above have a model? An answer to this
question was provided by Peter Aczel5 who proposed the model structure illustrated in
figure 2.2.
In the Aczel-model abstract objects are represented by sets of properties. This of course
validates the comprehension axiom of abstract objects. Properties on the other hand are
not naively represented by sets of objects, which would lead to a violation of Cantor’s
theorem, but rather as the sets of urelements. Urelements are partitioned into two
groups, ordinary urelements (C in the illustration) and special urelements (S in the
illustration). Ordinary urelements can serve as the denotations of ordinary objects.
Every abstract object on the other hand has a special urelement as its proxy. Which
properties an abstract object exemplifies depends solely on its proxy. However, the map
from abstract objects to special urelements is not injective; more than one abstract object
can share the same proxy. This way a violation of Cantor’s theorem is avoided. As a
consequence there are abstract objects, that cannot be distinguished by the properties

5In fact to our knowledge Dana Scott proposed a first model for the theory before Peter Aczel that
we believe is a special case of an Aczel-model with only one special urelement.
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Figure 2.2.: Illustration of the Aczel-Model, courtesy of Edward Zalta

C SU = Urelements = 

P = Properties = ℘(U)

A = Abstract Objects = ℘(P) 

Domain D = A U C
    Define for x ∈ D, |x|  =
 

{  x, when x ∈ C
||x||, when x ∈ A

Define, for assignment to variables g,
 g ⊨ Fx iff  |g(x)| ∈ g(F) 
 g ⊨ xF iff  g(F) ∈ g(x)
 

In this model, the following are true:
   ∃x (A! x  & ∀F (xF  ≡ ϕ))
   ∃F ∀x (Fx ≡ ϕ), ϕ has no encoding subformulas

     Aczel Model of Object Theory

Define a mapping:
    ||a||  :   A  →  S

they exemplify. Interestingly the existence of abstract objects that are exemplification-
indistinguishable is a theorem of PLM, see (197)[12].
Although the Aczel-model illustrated in figure 2.2 is non-modal, the extension to a modal
version is straightforward by introducing primitive possible worlds as in the Kripke
semantics of modal logic.
Further note that relations in the Aczel-model are extensional. Since properties are
represented as the power set of urelements, two properties are in fact equal if they are
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exemplified by the same objects. Consequently statements like [λ p ∨ ¬p] = [λ q ∨ ¬q]
are true in the model, although they are not derivable from the axioms of object theory
as explained in the previous section.
For this reason an intensional variant of the Aczel-model is developed and used as the
basis of the embedding. The technicalities of this model are described in the next chapter
(see 3.3.1).
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3. The Embedding

3.1. The Framework Isabelle/HOL

The embedding is implemented in Isabelle/HOL, that provides a functional higher-order
logic that serves as meta-logic. An introduction to Isabelle/HOL can be found in [7]1.
For a general introduction to HOL and its automation refer to [2].
The Isabelle theory containing the embedding is included in the appendix and docu-
mented in this chapter. Throughout the chapter references to the various sections of the
appendix can be found.
This document itself is generated from a separate Isabelle theory that imports the com-
plete embedding. The terms and theorems discussed throughout this chapter (starting
from 3.4) are well-formed terms or valid theorems in the embedding, unless the contrary
is stated explicitly. Furthermore the pretty printing facility of Isabelle’s document gen-
eration has been utilized to make it easier to distinguish between the embedded logic
and the meta-logic: all expressions that belong to the embedded logic are printed in blue
color throughout the chapter.
For technical reasons this color coding could not be used for the raw Isabelle theory in
the appendix. Still note the use of bold print for the quantifiers and connectives of the
embedded logic.

3.2. A Russell-style Paradox

One of the major challenges of an implementation of the Theory of Abstract Objects
in functional logic is the fact that a naive representation of the λ-expressions of the
theory using the unrestricted, β-convertible λ-expressions of functional logic results in
the following paradox (see [8, pp. 24-25]):
Assume [λx ∃F (xF & ¬Fx)] were a valid λ-expression denoting a relation. Now the
comprehension axiom of abstract objects requires the following:

∃ x (A!x & ∀F (xF ≡ F = [λx ∃F (xF & ¬Fx)]))

So there is an abstract object that encodes only the property [λx ∃F (xF & ¬Fx)]. Let b
be such an object. Now first assume b exemplifies [λx ∃F (xF & ¬Fx)]. By β-reduction
this implies that there exists a property, that b encodes, but does not exemplify. Since

1An updated version is available at http://isabelle.in.tum.de/doc/tutorial.pdf or in the documenta-
tion of the current Isabelle release, see http://isabelle.in.tum.de/.
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b only encodes [λx ∃F (xF & ¬Fx)], but does also exemplify it by assumption this is a
contradiction.
Now assume b does not exemplify [λx ∃F (xF & ¬Fx)]. By β-reduction it follows that
there does not exist a property that b encodes, but does not exemplify. Since b encodes
[λx ∃F (xF & ¬Fx)] by construction and does not exemplify it by assumption this is
again a contradiction.
This paradox is prevented in the formulation of object theory by disallowing encoding
subformulas in λ-expressions, so in particular [λx ∃F (xF & ¬Fx)] is not part of the
language. However during the construction of the embedding it was discovered that
this restriction is not sufficient to prevent paradoxes in general. This is discussed in
section 5.2. The solution used in the embedding is described in section 3.4.7.

3.3. Basic Concepts

The introduction mentioned that shallow semantical embeddings were used to success-
fully represent different varieties of modal logic by implementing them using Kripke
semantics. The advantage here is that Kripke semantics is well understood and there
are extensive results about its soundness and completeness that can be utilized in the
analysis of semantical embeddings (see [3]).
For the Theory of Abstract Objects the situation is different. Section 2.6 already es-
tablished that even a modal version of the traditional Aczel-model is extensional and
therefore theorems are true in it, that are not derivable from the axioms of object the-
ory. On the other hand the last section showed that care has to be taken to ensure the
consistency of an embedding of the theory in functional logic.
For this reason the embedding first constructs a hyperintensional version of the Aczel-
model that serves as a provably consistent basis for the theory. Then several abstraction
layers are implemented on top of the model structure in order to enable reasoning that
is independent of the particular representation. These concepts are described in more
detail in the following sections.

3.3.1. Hyperintensional Aczel-model

As mentioned in section 2.6 it is straightforward to extend the traditional (non-modal)
Aczel-model to a modal version by introducing primitive possible worlds following the
Kripke semantics for a modal S5 logic.
Relations in the resulting Aczel-model are, however, still extensional. Two relations
that are necessarily exemplified by the same objects are equal. The Aczel-model that
is used as the basis for the embedding therefore introduces states as another primitive
besides possible worlds. Truth values are represented as ternary functions from states and
possible worlds to booleans; relations as functions from urelements, states and possible
worlds to booleans.
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Abstract objects are still defined as sets of one-place relations and the division of urele-
ments into ordinary urelements and special urelements, that serve as proxies for abstract
objects, is retained as well. Consequently encoding can still be defined as set membership
of a relation in an abstract object. Exemplification is defined as function application of
a relation to the urelement corresponding to an individual, a state and a possible world.
The semantic truth evaluation of a proposition in a given possible world is defined as its
evaluation for a designated actual state and the possible world.
Logical connectives are defined to behave classically in the actual state, but have unde-
fined behavior in other states.
The reason for this construction becomes apparent if one considers the definition of
the identity of relations: relations are considered identical if they are encoded by the
same abstract objects. In the constructed model encoding depends on the behavior of a
relation in all states. Two relations can necessarily be exemplified by the same objects in
the actual state, but still not be identical, since they can differ in other states. Therefore
hyperintensionality of relations is achieved.
The dependency on states is not limited to relations, but introduced to propositions,
connectives and quantifiers as well, although the semantic truth conditions of formulas
only depend on the evaluation for the actual state. The reason for this is to be able to
define λ-expressions (see section 3.4.7) and to extend the hyperintensionality of relations
to them. Since the behavior of logical connectives is undefined in states other than
the actual state, the behavior of λ-expressions - although classical in the actual state -
remains undefined for different states.
In summary, since the semantic truth of a proposition solely depends on its evaluation for
the designated actual state, in which the logical connectives are defined to behave classi-
cally, the reasoning about propositions remains classical, as desired. On the other hand
the additional dependency on states allows a representation of the hyperintensionality
of relations.
The technical details of the implementation are described in section 3.4.

3.3.2. Layered Structure

Although the constructed variant of the Aczel-model preserves the hyperintensionality
of relations in the theory, it is still known that there are true theorems in this model
that are not derivable from the axioms of object theory (see 3.12).
Given this lack of a model with a well-understood degree of soundness and completeness,
the embedding uses a different approach than other semantical embeddings, namely the
embedding is divided into several layers as follows:

• The first layer represents the primitives of PLM using the described hyperinten-
sional and modal variant of the Aczel-model.

• In a second layer the objects of the embedded logic constructed in the first layer are
considered as primitives and some of their semantic properties are derived using
the background logic as meta-logic.

23



• The third layer derives the axiom system of PLM mostly using the semantics of
the second layer and partly using the model structure directly.

• Based on the third layer the deductive system PLM as described in [12, Chap. 9]
is derived solely using the axiom system of the third layer and the fundamental
meta-rules stated in PLM. The model structure and the constructed semantics
are explicitly not used in any proofs. Thereby the reasoning in this last layer is
independent of the first two layers.

The rationale behind this approach is the following: The first layer provides a represen-
tation of the embedded logic that is provably consistent. Only minimal axiomatization
is necessary, whereas the main construction is purely definitional. Since the subsequent
layers don’t contain any additional axiomatization (the axiom system in the third layer
is derived) their consistency is thereby guaranteed as well.
The second layer tries to abstract away from the details of the representation by imple-
menting an approximation of the formal semantics of PLM2. The long time goal would
be to arrive at the representation of a complete semantics in this layer, that would be
sufficient to derive the axiom system in the next layer and which any specific model
structure would have to satisfy. Unfortunately this could not be achieved so far, but it
was possible to lay some foundations for future work.
At the moment full abstraction from the representation layer is only achieved after de-
riving the axiom system in the third layer. Still it can be reasoned that in any model
of object theory the axiom system has to be derivable and therefore by disallowing all
further proofs to rely on the representation layer and model structure directly the deriva-
tion of the deductive system PLM is universal. The only exceptions are the primitive
meta-rules of PLM: modus ponens, RN (necessitation) and GEN (universal generaliza-
tion), as well as the deduction rule. These rules do not follow from the axiom system
itself, but are derived from the semantics in the second layer (see 3.11.2). Still as the
corresponding semantical rules will again have to be derivable for any model, this does
not have an impact on the universality of the subsequent reasoning.
The technical details of the constructed embedding are described in the following sec-
tions.

2Our thanks to Edward Zalta for supplying us with a preliminary version of the corresponding
unpublished chapter of PLM.
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3.4. The Representation Layer

The first layer of the embedding (see A.1) implements the variant of the Aczel-model
described in section 3.3.1 and builds a representation of the language of PLM in the
logic of Isabelle/HOL. This process is outlined step by step throughout this section.

3.4.1. Primitives

The following primitive types are the basis of the embedding (see A.1.1):

• Type i represents possible worlds in the Kripke semantics.
• Type j represents states as described in section 3.3.1.
• Type bool represents meta-logical truth values (True or False) and is inherited from

Isabelle/HOL.
• Type ω represents ordinary urelements.
• Type σ represents special urelements.

Two constants are introduced:

• The constant dw of type i represents the designated actual world.
• The constant dj of type j represents the designated actual state.

Based on the primitive types above the following types are defined (see A.1.2):

• Type o is defined as the set of all functions of type j ⇒ i ⇒ bool and represents
propositions in the embedded logic.

• Type υ is defined as datatype υ = ωυ ω | συ σ. This type represents urelements
and an object of this type can be either an ordinary or a special urelement (with
the respective type constructors ωυ and συ).

• Type Π0 is defined as a synonym for type o and represents zero-place relations.
• Type Π1 is defined as the set of all functions of type υ ⇒ j ⇒ i ⇒ bool and rep-

resents one-place relations (for an urelement a one-place relation evaluates to a
truth value in the embedded logic; for an urelement, a state and a possible world
it evaluates to a meta-logical truth value).

• Type Π2 is defined as the set of all functions of type υ ⇒ υ ⇒ j ⇒ i ⇒ bool and
represents two-place relations.

• Type Π3 is defined as the set of all functions of type υ ⇒ υ ⇒ υ ⇒ j ⇒ i ⇒ bool
and represents three-place relations.

• Type α is defined as a synonym of the type of sets of one-place relations Π1 set,
i.e. every set of one-place relations constitutes an object of type α. This type
represents abstract objects.

• Type ν is defined as datatype ν = ων ω | αν α. This type represents individuals
and can be either an ordinary urelement of type ω or an abstract object of type α
(with the respective type constructors ων and αν).
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• Type κ is defined as the set of all objects of type ν option and represents individual
terms. The type ′a option is part of Isabelle/HOL and consists of a type constructor
Some x for an object x of type ′a (in this case type ν) and an additional special
element called None. None is used to represent individual terms that are definite
descriptions that are not logically proper (i.e. they do not denote an individual).

Remark. The Isabelle syntax typedef o = UNIV ::(j⇒i⇒bool) set morphisms evalo makeo
.. found in the theory source in the appendix introduces a new abstract type o that is
represented by the full set ( UNIV) of objects of type j ⇒ i ⇒ bool. The morphism evalo
maps an object of abstract type o to its representative of type j ⇒ i ⇒ bool, whereas the
morphism makeo maps an object of type j ⇒ i ⇒ bool to the object of type o that is repre-
sented by it. Defining these abstract types makes it possible to consider the defined types
as primitives in later stages of the embedding, once their meta-logical properties are de-
rived from the underlying representation. For a theoretical analysis of the representation
layer the type o can be considered a synonym of j ⇒ i ⇒ bool.
The Isabelle syntax setup-lifting type-definition-o allows definitions for the abstract type o

to be stated directly for its representation type j ⇒ i ⇒ bool using the syntax lift-definition.
For the sake of readability in the documentation of the embedding the morphisms are
omitted and definitions are stated directly for the representation types3.

3.4.2. Individual Terms and Definite Descriptions

There are two basic types of individual terms in PLM: definite descriptions and indi-
vidual variables (and constants). Every logically proper definite description denotes an
individual. A definite description is logically proper if its matrix is (actually) true for a
unique individual.
In the embedding the type κ encompasses all individual terms, i.e. individual variables,
constants and definite descriptions. An individual (i.e. a variable or constant of type ν)
can be used in place of an individual term of type κ via the decoration _P (see A.1.3):

xP = Some x

The expression xP (of type κ) is marked to be logically proper (it can only be substituted
by objects that are internally of the form Some x) and to denote the individual x.
Definite descriptions are defined as follows:

ιx . ϕ x = (if ∃ !x. (ϕ x) dj dw then Some (THE x . (ϕ x) dj dw) else None)

If the propriety condition of a definite description ∃ !x. ϕ x dj dw holds, i.e. there exists a
unique x, such that ϕ x holds for the actual state and the actual world, the term ιx. ϕ x

3The omission of the morphisms is achieved using custom pretty printing rules for the document
generation facility of Isabelle. The full technical details without these minor omissions can be found in
the raw Isabelle theory in the appendix.
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evaluates to Some (THE x. ϕ x dj dw). Isabelle’s THE operator evaluates to the unique
object, for which the given condition holds, if there is such a unique object, and is
undefined otherwise. If the propriety condition does not hold, the term evaluates to
None.
The following meta-logical functions are defined to aid in handling individual terms:

• proper x = (None 6= x)
• rep x = the x

the maps an object of type ′a option that is of the form Some x to x and is undefined
for None. For an object of type κ the expression proper x is true, if the term is logically
proper, and if this is the case, the expression rep x evaluates to the individual of type ν
that the term denotes.

3.4.3. Mapping from Individuals to Urelements

To map abstract objects to urelements (for which relations can be evaluated), a constant
ασ of type α ⇒ σ is introduced, which maps abstract objects (of type α) to special
urelements (of type σ), see A.1.4.
To assure that every object in the full domain of urelements actually is an urelement for
(one or more) individual objects, the constant ασ is axiomatized to be surjective.
Now the mapping νυ of type ν ⇒ υ can be defined as follows:

νυ ≡ case-ν ωυ (συ ◦ ασ)

To clarify the syntax note that this is equivalent to the following:

(∀ x. νυ (ων x) = ωυ x) ∧ (∀ x. νυ (αν x) = συ (ασ x))

So ordinary objects are simply converted to an urelements by the type constructor ωυ,
whereas for abstract objects the corresponding special urelement under ασ is converted
to an urelement using the type constructor συ.

Remark. Future versions of the embedding may introduce a dependency of the mapping
from individuals to urelements on states (see 3.12).

3.4.4. Exemplification of n-place relations

Exemplification of n-place relations can now be defined. Exemplification of zero-place
relations is simply defined as the identity, whereas exemplification of n-place relations for
n ≥ 1 is defined to be true, if all individual terms are logically proper and the function
application of the relation to the urelements corresponding to the individuals yields true
for a given possible world and state (see A.1.5):
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• (|p|) = p
• (|F ,x|) = (λs w. proper x ∧ F (νυ (rep x)) s w)

• (|F ,x,y|) = (λs w. proper x ∧ proper y ∧ F (νυ (rep x)) (νυ (rep y)) s w)

• (|F ,x,y,z|) =
(λs w. proper x ∧

proper y ∧ proper z ∧ F (νυ (rep x)) (νυ (rep y)) (νυ (rep z)) s w)

3.4.5. Encoding

Encoding is defined as follows (see A.1.6):

{|x,F |} = (λs w. proper x ∧ (case rep x of ων ω ⇒ False | αν α ⇒ F ∈ α))

For a given state s and a given possible world w it holds that an individual term x
encodes F, if x is logically proper, the denoted individual rep x is of the form αν α for
some object α (i.e. it is an abstract object) and F is contained in α (recall that abstract
objects are defined to be sets of one-place relations).
Encoding is represented as a function of states and possible worlds to ensure type-
correctness, but its evaluation does not depend on either. On the other hand whether F
is contained in α does depend on the behavior of F in all states.

3.4.6. Connectives and Quantifiers

Following the model described in section 3.3.1 the connectives and quantifiers are defined
in such a way that they behave classically if evaluated for the designated actual state dj,
whereas their behavior is governed by uninterpreted constants in any other state4.
For this purpose the following uninterpreted constants are introduced (see A.1.7):

• I-NOT of type j ⇒ (i ⇒ bool) ⇒ i ⇒ bool
• I-IMPL of type j ⇒ (i ⇒ bool) ⇒ (i ⇒ bool) ⇒ i ⇒ bool

Modality is represented using the dependency on primitive possible worlds using a stan-
dard Kripke semantics for a S5 modal logic.
The basic connectives and quantifiers are defined as follows (see A.1.7):

• ¬p = (λs w. s = dj ∧ ¬ p dj w ∨ s 6= dj ∧ I-NOT s (p s) w)

• p → q =
(λs w. s = dj ∧ (p dj w −→ q dj w) ∨ s 6= dj ∧ I-IMPL s (p s) (q s) w)

• ∀ ν x . ϕ x = (λs w. ∀ x. (ϕ x) s w)

• ∀ 0 p . ϕ p = (λs w. ∀ p. (ϕ p) s w)

• ∀ 1 F . ϕ F = (λs w. ∀F . (ϕ F) s w)

• ∀ 2 F . ϕ F = (λs w. ∀F . (ϕ F) s w)

4Early attempts in using an intuitionistic version of connectives and quantifiers based on [6] were
found to be insufficient to capture the full hyperintensionality of PLM, but served as inspiration for the
current construction.
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• ∀ 3 F . ϕ F = (λs w. ∀F . (ϕ F) s w)

• �p = (λs w. ∀ v. p s v)
• Ap = (λs w. p s dw)

Note in particular that negation and implication behave classically if evaluated for the
actual state s = dj, but are governed by the uninterpreted constants I-NOT and I-IMPL
for s 6= dj:

• s = dj =⇒ ¬p s w = (¬ p s w)

• s 6= dj =⇒ ¬p s w = I-NOT s (p s) w
• s = dj =⇒ p → q s w = (p s w −→ q s w)

• s 6= dj =⇒ p → q s w = I-IMPL s (p s) (q s) w

Remark. Future research may conclude that non-classical behavior in states s 6= dj for
negation and implication is not sufficient for achieving the desired level of hyperinten-
sionality for λ-expressions. It would be trivial to introduce additional uninterpreted con-
stants to govern the behavior of the remaining connectives and quantifiers in such states
as well, though. The remainder of the embedding would not be affected, i.e. no assump-
tion about the behavior of connectives and quantifiers in states other than dj is made in
the subsequent reasoning. At the time of writing non-classical behavior for negation and
implication is considered sufficient.

3.4.7. λ-Expressions

The bound variables of the λ-expressions of the embedded logic are individual variables,
whereas relations are represented as functions acting on urelements. Therefore the defi-
nition of the λ-expressions of the embedded logic is non-trivial. The embedding defines
them as follows (see A.1.8):

• λ0 p = p
• λx. ϕ x = (λu s w. ∃ x. νυ x = u ∧ (ϕ x) s w)

• λ2 (λx y. ϕ x y) = (λu v s w. ∃ x y. νυ x = u ∧ νυ y = v ∧ (ϕ x y) s w)

• λ3 (λx y z. ϕ x y z) =
(λu v r s w. ∃ x y z. νυ x = u ∧ νυ y = v ∧ νυ z = r ∧ (ϕ x y z) s w)

Remark. For technical reasons Isabelle only allows λ-expressions for one-place relations
to use a nice binder notation. Although better workarounds may be possible, for now the
issue is avoided by the use of the primitive λ-expressions of the background logic in
combination with the constants λ2 and λ3 as shown above.

The representation of zero-place λ-expressions as the identity is straight-forward; the
representation of n-place λ-expressions for n ≥ 1 is illustrated for the case n = 1 :
The matrix of the λ-expression ϕ is a function from individuals (of type ν) to truth
values (of type o, resp. j ⇒ i ⇒ bool). One-place relations are represented as functions
of type υ ⇒ j ⇒ i ⇒ bool though, where υ is the type of urelements.
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The λ-expression λx. ϕ x evaluates to True for an urelement u, a state s and a world w,
if there is an individual x in the preimage of u under νυ and it holds that ϕ x s w.

λx. ϕ x u s w = (∃ x. νυ x = u ∧ ϕ x s w)

If restricted to ordinary objects, the definition can be simplified, since νυ is bijective on
the set of ordinary objects:

λx. ϕ x (ωυ u) s w = (ϕ (ων u)) s w

However in general νυ can map several abstract objects to the same special urelement,
so an analog statement for abstract objects does not hold for arbitrary ϕ. As described
in section 3.2 such a statement would in fact not be desirable, since it would lead to
inconsistencies.
Instead the embedding introduces the concept of proper maps. A map from individuals
to propositions is defined to be proper if its truth evaluation for the actual state only
depends on the urelements corresponding to the individuals (see A.1.9):

• IsProperInX ϕ = (∀ x v. (∃ a. νυ a = νυ x ∧ (ϕ (aP )) dj v) = (ϕ (xP )) dj v)
• IsProperInXY ϕ =

(∀ x y v.
(∃ a b. νυ a = νυ x ∧ νυ b = νυ y ∧ (ϕ (aP ) (bP )) dj v) =
(ϕ (xP ) (yP )) dj v)

• IsProperInXYZ ϕ =
(∀ x y z v.

(∃ a b c.
νυ a = νυ x ∧ νυ b = νυ y ∧ νυ c = νυ z ∧ (ϕ (aP ) (bP ) (cP )) dj v) =

(ϕ (xP ) (yP ) (zP )) dj v)

Now by the definition of proper maps the evaluation of λ-expressions behaves as expected
for proper ϕ:

IsProperInX ϕ = (∀w x . λx. ϕ (xP ) (νυ x) dj w = ϕ (xP ) dj w)

Remark. The right-hand side of the equation above does not quantify over all states,
but is restricted to the actual state dj. This is sufficient given that truth evaluation only
depends on the actual state and goes along with the desired semantics of λ-expressions
(see 3.5.5).

Maps that contain encoding formulas in their arguments are in general not proper and
thereby the paradox mentioned in section 3.2 is prevented.
In fact proper maps are the most general kind of functions that may appear in a lambda-
expression, such that β-conversion holds. In what way proper maps correspond to the
formulas that PLM allows as the matrix of a λ-expression is a complex question and
discussed separately in section 5.1.1.
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3.4.8. Validity

Semantic validity is defined as follows (see A.1.10):

[ϕ in v] = ϕ dj v

A formula is considered semantically valid for a possible world v if it evaluates to True
for the actual state dj and the given possible world v.

Remark. The Isabelle Theory in the appendix defines the syntax v |= p in the repre-
sentation layer, following the syntax used in the formal semantics of PLM. The syntax
[p in v] that is easier to use in Isabelle due to bracketing the expression is only introduced
after the semantics is derived in A.2.3. For simplicity only the latter syntax is used in
this documentation.

3.4.9. Concreteness

PLM defines concreteness as a one-place relation constant. For the embedding care
has to be taken that concreteness actually matches the primitive distinction between
ordinary and abstract objects. The following requirements have to be satisfied by the
introduced notion of concreteness:

• Ordinary objects are possibly concrete. In the meta-logic this means that for
every ordinary object there exists at least one possible world, in which the object
is concrete.

• Abstract objects are not possibly concrete.
An additional requirement is enforced by axiom (32.4)[12], see 3.10.7. To satisfy this
axiom the following has to be assured:

• Possibly contingent objects exist. In the meta-logic this means that there exists an
ordinary object and two possible worlds, such that the ordinary object is concrete
in one of the worlds, but not concrete in the other.

• Possibly no contingent objects exist. In the meta-logic this means that there exists
a possible world, such that all objects that are concrete in this world, are concrete
in all possible worlds.

In order to satisfy these requirements a constant ConcreteInWorld is introduced, that
maps ordinary objects (of type ω) and possible worlds (of type i) to meta-logical truth
values (of type bool). This constant is axiomatized in the following way (see A.1.11):

• ∀ x. ∃ v. ConcreteInWorld x v
• ∃ x v. ConcreteInWorld x v ∧ (∃w. ¬ ConcreteInWorld x w)

• ∃w. ∀ x. ConcreteInWorld x w −→ (∀ v. ConcreteInWorld x v)
Concreteness can now be defined as a one-place relation:

E ! = (λu s w. case u of ωυ x ⇒ ConcreteInWorld x w | συ σ ⇒ False)
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Whether an ordinary object is concrete is governed by the introduced constant, whereas
abstract objects are never concrete.

3.4.10. The Syntax of the Embedded Logic

The embedding aims to provide a readable syntax for the embedded logic that is as
close as possible to the syntax of PLM and clearly distinguishes between the embedded
logic and the meta-logic. Some concessions have to be made due to the limitations of
definable syntax in Isabelle, though. Moreover exemplification and encoding have to use
a dedicated syntax in order to be distinguishable from function application.
The syntax for the basic formulas of PLM used in the embedding is summarized in the
following table:

PLM syntax in words embedded logic type
ϕ it holds that ϕ ϕ o

¬ϕ not ϕ ¬ϕ o

ϕ → ψ ϕ implies ψ ϕ → ψ o

�ϕ necessarily ϕ �ϕ o

Aϕ actually ϕ Aϕ o

Πυ υ (an individual term) exemplifies Π (|Π,υ|) o

Πx x (an individual variable) exemplifies Π (|Π,xP |) o

Πυ1υ2 υ1 and υ2 exemplify Π (|Π,υ1,υ2|) o

Πxy x and y exemplify Π (|Π,xP ,yP |) o

Πυ1υ2υ3 υ1, υ2 and υ3 exemplify Π (|Π,υ1,υ2,υ3|) o

Πxyz x, y and z exemplify Π (|Π,xP ,yP ,zP |) o

υΠ υ encodes Π {|υ,Π|} o

ιxϕ the x, such that ϕ ιx. ϕ x κ

∀ x(ϕ) for all individuals x it holds that ϕ ∀ νx. ϕ x o

∀ p(ϕ) for all propositions p it holds that ϕ ∀ 0p. ϕ p o

∀F(ϕ) for all relations F it holds that ϕ ∀ 1F . ϕ F o

∀ 2F . ϕ F
∀ 3F . ϕ F

[λ p] being such that p λ0 p Π0

[λx ϕ] being x such that ϕ λx. ϕ x Π1

[λxy ϕ] being x and y such that ϕ λ2 (λx y. ϕ x y) Π2

[λxyz ϕ] being x, y and z such that ϕ λ3 (λx y z. ϕ x y z) Π3
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Several subtleties have to be considered:
• n-place relations are only represented for n ≤ 3 . As the resulting language is

already expressive enough to represent the most interesting parts of the theory
and it would be trivial to add analog implementations for n > 3 , this is considered
to be sufficient. Future work may attempt to construct a general representation
for n-place relations for arbitrary n.

• Individual terms (that can be descriptions) and individual variables, resp. con-
stants have different types. Exemplification and encoding is defined for individual
terms of type κ. Individual variables (i.e. variables of type ν) or individual con-
stants (i.e. constants of type ν) can be converted to type κ using the decoration _P .

• In PLM a general term ϕ, as it occurs in definite descriptions, quantification for-
mulas and λ-expressions above, can contain free variables. If such a term occurs
within the scope of a variable binding operator, free occurrences of the variable are
considered to be bound by the operator. In the embedding this concept is replaced
by representing ϕ as a function acting on the bound variables and using the native
concept of binding operators in Isabelle.

• The representation layer of the embedding defines a separate quantifier for every
type of variable in PLM. This is done to assure that only quantification ranging
over these types is part of the embedded language. The definition of a general
quantifier in the representation layer could for example be used to quantify over
individual terms (of type κ), whereas only quantification ranging over individuals
(of type ν) is part of the language of PLM. After the semantics is introduced in
section 3.5, a type class is constructed that is characterized by the semantics of
quantification and instantiated for all variable types. This way a general binder
that can be used for all variable types can be defined. The details of this approach
are explained in section 3.6.

The syntax used for stating that a proposition is semantically valid is the following:

[ϕ in v]

Here ϕ and v are free variables (in the meta-logic). Therefore, stating the expression
above as a lemma will implicitly be a quantified statement over all propositions ϕ and all
possible worlds v (unless ϕ or v are explicitly restricted in the current scope or globally
declared as constants).
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3.5. Semantic Abstraction

The second layer of the embedding (see A.2) abstracts away from the technicalities of
the representation layer and states the truth conditions for formulas of the embedded
logic in a similar way as the (at the time of writing unpublished) semantics of object
theory.

3.5.1. Domains and Denotation Functions

In order to do so the abstract types introduced in the representation layer κ, o resp. Π0,
Π1, Π2 and Π3 are considered as primitive types and assigned semantic domains: Rκ, R0,
R1, R2 and R3 (see A.2.1.1).
For the embedding the definition of these semantic domains is trivial, since the abstract
types of the representation layer are already modeled using representation sets. Therefore
the semantic domain for each type can simply be defined as the type of its representatives.
As a next step denotation functions are defined that assign semantic denotations to the
objects of each abstract type (see A.2.1.2). The formal semantics of PLM does not a
priori assume that every term has a denotation. Therefore, the denotation functions are
represented as functions that map to the option type of the respective domain. This way
they can either map a term to Some x, if the term denotes x, or to None, if the term does
not denote.
In the embedding all relation terms always denote, therefore the denotation functions
d0, . . . , d3 for relations can simply be defined as the type constructor Some. Individual
terms on the other hand are already represented by an option type, so the denotation
function dκ can be defined as the identity.
Moreover the primitive type of possible worlds i is used as the semantic domain of
possible worlds W and the primitive actual world dw as the semantic actual world w0

(see A.2.1.3).

Remark. Although the definitions for semantic domains and denotations may seem
redundant, conceptually the abstract types of the representation layer now have the role
of primitive types. Although for simplicity the last section regarded the type o as synonym
of j ⇒ i ⇒ bool, it was introduced as a distinct type for which the set of all functions of
type j ⇒ i ⇒ bool merely serves as the underlying set of representatives. An object of type
o cannot directly be substituted for a variable of type j ⇒ i ⇒ bool. To do so it first has
to be mapped to its representative of type j ⇒ i ⇒ bool by the use of the morphism evalo
that was introduced in the type definition and omitted in the last section for the sake of
readability. Therefore although the definitions of the semantic domains and denotation
functions may seem superfluous, the domains are different types than the corresponding
abstract type and the denotation functions are functions between distinct types (note the
use of lift-definition rather than definition for the denotation functions in A.2.1.2 that
allows to define functions on abstract types in the terms of the underlying representation
types).
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3.5.2. Exemplification and Encoding Extensions

Semantic truth conditions for exemplification formulas are defined using exemplification
extensions. Exemplification extensions are functions relative to semantic possible worlds
that map objects in the domain of n-place relations to meta-logical truth values in the
case n = 0 and sets of n-tuples of objects in the domain of individuals in the case n ≥ 1 .
Formally they are defined as follows (see A.2.1.4):

• ex0 p w = p dj w
• ex1 F w = {x | F (νυ x) dj w}
• ex2 R w = {(x, y) | R (νυ x) (νυ y) dj w}
• ex3 R w = {(x, y, z) | R (νυ x) (νυ y) (νυ z) dj w}

The exemplification extension of a 0 -place relation is its evaluation for the actual state
and the given possible world. The exemplification extension of n-place relations (n ≥ 1 )
in a possible world is the set of all (tuples of) individuals that are mapped to urelements
for which the relation evaluates to true for the given possible world and the actual state.
This is in accordance with the constructed Aczel-model (see 3.3.1).
Conceptually, exemplification extensions as maps to sets of individuals are independent
of the underlying model and in particular do not require the concept of urelements as
they are present in an Aczel-model. Their use in the definition of truth conditions for
exemplification formulas below is therefore an abstraction away from the technicalities
of the representation layer.
Similarly to the exemplification extension for one-place relations an encoding extension
is defined as follows (see A.2.1.5):

en F = {x | case x of ων ω ⇒ False | αν y ⇒ F ∈ y}

The encoding extension of a relation is defined as the set of all abstract objects that
contain the relation. Since encoding is modally rigid the encoding extension does not
need to be relativized for possible worlds.

3.5.3. Truth Conditions of Formulas

Based on the definitions above it is now possible to define truth conditions for the atomic
formulas of the language.
For exemplification formulas of n-place relations it suffices to consider the case of one-
place relations, for which the truth condition is defined as follows (see A.2.1.7):

[(|Π,κ|) in w] = (∃ r o1. Some r = d1 Π ∧ Some o1 = dκ κ ∧ o1 ∈ ex1 r w)

The relation term Π is exemplified by an individual term κ in a possible world w if both
terms have a denotation and the denoted individual is contained in the exemplification
extension of the denoted relation in w. The definitions for n-place relations (n > 1 ) and
0 -place relations are analog.
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The truth condition for encoding formulas is defined in a similar manner (see A.2.1.8):

[{|κ,Π|} in w] = (∃ r o1. Some r = d1 Π ∧ Some o1 = dκ κ ∧ o1 ∈ en r)

The only difference to exemplification formulas is that the encoding extension does not
depend on the possible world w.
The truth conditions for complex formulas are straightforward (see A.2.1.9):

• [¬ψ in w] = (¬ [ψ in w])

• [ψ → χ in w] = (¬ [ψ in w] ∨ [χ in w])

• [�ψ in w] = (∀ v. [ψ in v])
• [Aψ in w] = [ψ in dw]

• [∀ νx. ψ x in w] = (∀ x. [ψ x in w])

• [∀ 0x. ψ x in w] = (∀ x. [ψ x in w])

• [∀ 1x. ψ x in w] = (∀ x. [ψ x in w])

• [∀ 2x. ψ x in w] = (∀ x. [ψ x in w])

• [∀ 3x. ψ x in w] = (∀ x. [ψ x in w])

A negation formula ¬ψ is semantically true in a possible world, if and only if ψ is not
semantically true in the given possible world. Similarly truth conditions for implication
formulas and quantification formulas are defined canonically.
The truth condition of the modal box operator �ψ as ψ being true in all possible worlds,
shows that modality follows a S5 logic. A formula involving the actuality operator Aψ
is defined to be semantically true, if and only if ψ is true in the designated actual world.

3.5.4. Denotation of Definite Descriptions

The definition of the denotation of description terms (see A.2.1.10) can be presented in
a more readable form by splitting it into its two cases and by using the meta-logical
quantifier for unique existence:

• ∃ !x. [ψ x in w0] =⇒ dκ ιx. ψ x = Some (THE x. [ψ x in w0])

• @ !x. [ψ x in w0] =⇒ dκ ιx. ψ x = None
If there exists a unique x, such that ψ x is true in the actual world, the definite description
denotes and its denotation is this unique x. Otherwise the definite description fails to
denote.
It is important to consider what happens if a non-denoting definite description occurs
in a formula: The only positions in which such a term could occur in a complex formula
is in an exemplification expression or in an encoding expression. Given the above truth
conditions it becomes clear, that the presence of non-denoting terms does not mean
that there are formulas without truth conditions: Since exemplification and encoding
formulas are defined to be true only if the contained individual terms have denotations,
such formulas are False for non-denoting individual terms.
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3.5.5. Denotation of λ-Expressions

The most complex part of the semantic abstraction is the definition of denotations
for λ-expressions. The formal semantics of PLM is split into several cases and uses a
special class of Hilbert-Ackermann ε-terms that are challenging to represent. Therefore
a simplified formulation of the denotation criteria is used. Moreover the denotations
of λ-expressions are coupled to syntactical conditions. This fact is represented using
the notion of proper maps as a restriction for the matrix of a λ-expression that was
introduced in section 3.4.7. The definitions are implemented as follows (see A.2.1.11):

• d1 λx. (|Π,xP |) = d1 Π

• IsProperInX ϕ =⇒
Some r = d1 λx. ϕ (xP ) ∧ Some o1 = dκ x −→ (o1 ∈ ex1 r w) = [ϕ x in w]

• Some r = d0 λ0 ϕ −→ ex0 r w = [ϕ in w]

The first condition for elementary λ-expressions is straightforward. The general case in
the second condition is more complex: Given that the matrix ϕ is a proper map, the
relation denoted by the λ-expression has the property, that for a denoting individual
term x, the denoted individual is contained in its exemplification extension for a possible
world w, if and only if ϕ x holds in w. At a closer look this is the statement of β-
conversion restricted to denoting individuals: the truth condition of the λ-expression
being exemplified by some denoting individual term, is the same as the truth condition
of the matrix of the term for the denoted individual. Therefore it is clear that the
precondition that ϕ is a proper map is necessary and sufficient. Given this consideration
the case for 0 -place relations is straightforward and the cases for n ≥ 2 are analog to
the case n = 1 .

3.5.6. Properties of the Semantics

The formal semantics of PLM imposes several further restrictions some of which are
derived as auxiliary lemmas. Furthermore some auxiliary statements that are specific to
the underlying representation layer are proven.
The following auxiliary statements are derived (see A.2.1.12):

1. All relations denote, e.g.
∃ r . Some r = d1 F

2. An individual term of the form xP denotes x:
dκ xP = Some x

3. Every ordinary object is contained in the extension of the concreteness property
for some possible world:
Some r = d1 E ! =⇒ ∀ x. ∃w. ων x ∈ ex1 r w

4. An object that is contained in the extension of the concreteness property in any
world is an ordinary object:
Some r = d1 E ! =⇒ ∀ x. x ∈ ex1 r w −→ (∃ y. x = ων y)

5. The denotation functions for relation terms are injective, e.g.
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d1 F = d1 G =⇒ F = G
6. The denotation function for individual terms is injective for denoting terms:

Some o1 = dκ x ∧ Some o1 = dκ y =⇒ x = y
Especially statements 5 and 6 are only derivable due to the specific construction of the
representation layer: since the semantic domains were defined as the representation sets
of the respective abstract types and denotations were defined canonically, objects that
have the same denotation are identical as objects of the abstract type. 3 and 4 are
necessary to connect concreteness with the underlying distinction between ordinary and
abstract objects in the model.

3.5.7. Proper Maps

The definition of proper maps as described in section 3.4.7 is formulated in terms of the
meta-logic. Since denotation conditions in the semantics and later some of the axioms
have to be restricted to proper maps, a method has to be devised by which the propriety
of a map can easily be shown without using meta-logical concepts.
Therefore introduction rules for IsProperInX, IsProperInXY and IsProperInXYZ are derived
and a proving method show-proper is defined that can be used to proof the propriety of
a map using these introduction rules (see A.2.2).
The rules themselves rely on the power of the unifier of Isabelle/HOL: Any map acting
on individuals that can be expressed by another map that solely acts on exemplification
expressions involving the individuals, is shown to be proper. This effectively means that
all maps whose arguments only appear in exemplification expressions are proper. Using
the provided introduction rules Isabelle’s unifier can derive the propriety of such maps
automatically.
For a discussion about the relation between this concept and admissible λ-expressions
in PLM see section 5.1.1.

3.6. General All-Quantifier

Since the last section established the semantic truth conditions of the specific versions
of the all-quantifier for all variable types of PLM, it is now possible to define a binding
symbol for general all-quantification.
This is done using the concept of type classes in Isabelle/HOL. Type classes define
constants that depend on a type variable and state assumptions about this constant. In
subsequent reasoning the type of an object can be restricted to a type of the introduced
type class. Thereby the reasoning can make use of all assumptions that have been
stated about the constants of the type class. A priori it is not assumed that any type
actually satisfies the requirements of the type class, so initially statements involving
types restricted to a type class can not be applied to any specific type.
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To allow that the type class has to be instantiated for the desired type. This is done
by first providing definitions for the constants of the type class specific to the respective
type. Then each assumption made by the type class has to be proven given the particular
type and the provided definitions. After that any statement that was proven for the type
class can be applied to the instantiated type.
In the case of general all-quantification for the embedding this concept can be utilized
by introducing the type class quantifiable that is equipped with a constant that is used as
the general all-quantification binder (see A.3.1). For this constant it can now be assumed
that it satisfies the semantic property of all quantification: [∀ x. ψ x in w] = (∀ x. [ψ x in w]).
Since it was already shown in the last section that the specific all-quantifier for each
variable type satisfies this property, the type class can immediately be instantiated for
the types ν, Π0, Π1, Π2 and Π3 (see A.3.2). The instantiation proofs only need to refer to
the statements derived in the semantics section for the respective version of the quantifier
and are thereby independent of the representation layer.
From this point onward the general all-quantifier can completely replace the type specific
quantifiers. This is true even if a quantification is meant to only range over objects of
a particular type: In this case the desired type (if it can not implicitly be deduced from
the context) can be stated explicitly while still using the general quantifier.

Remark. Technically it would be possible to instantiate the type class quantifiable for
any other type that satisfies the semantic criterion, thereby compromising the restriction
of the all-quantifier to the primitive types of PLM. However, this is not done in the
embedding and therefore the introduction of a general quantifier using a type class is
considered a reasonable compromise.

3.7. Derived Language Elements

The language of the embedded logic constructed so far is limited to a minimal set of
primitive elements. This section introduces further derived language elements that are
defined directly in the embedded logic.
Notably identity is not part of the primitive language, but introduced as a defined con-
cept.

3.7.1. Connectives

The remaining classical connectives and the modal diamond operator are defined in the
traditional manner (see A.4.1):

• ϕ & ψ = ¬(ϕ → ¬ψ)
• ϕ ∨ ψ = ¬ϕ → ψ

• ϕ ≡ ψ = (ϕ → ψ) & (ψ → ϕ)

• ♦ϕ = ¬�¬ϕ
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Furthermore, the general all-quantifier is supplemented by an existential quantifier as
follows:

• ∃ α . ϕ α = ¬(∀α. ¬ϕ α)

3.7.2. Identity

The definitions for identity are stated separately for each type of term (see A.4.3):
• x =E y = (|λ2 (λx y. (|O!,xP |) & (|O!,yP |) & �(∀F . (|F ,xP |) ≡ (|F ,yP |))),x,y|)
• F =1 G = �(∀ x. {|xP ,F |} ≡ {|xP ,G|})
• F =2 G =

∀ x. (λy. (|F ,xP ,yP |)) =1 (λy. (|G,xP ,yP |)) & (λy. (|F ,yP ,xP |)) =1 (λy. (|G,yP ,xP |))
• F =3 G = ∀ x y. (λz. (|F ,zP ,xP ,yP |)) =1 (λz. (|G,zP ,xP ,yP |)) & (λz. (|F ,xP ,zP ,yP |)) =1

(λz. (|G,xP ,zP ,yP |)) & (λz. (|F ,xP ,yP ,zP |)) =1 (λz. (|G,xP ,yP ,zP |))
• p =0 q = (λx. p) =1 (λx. q)

Similarly to the general all-quantifier it makes sense to introduce a general identity rela-
tion for all types of terms (κ, o resp. Π0, Π1, Π2, Π3). However, whereas all-quantification
is characterized by a semantic criterion that can be generalized in a type class, identity
is defined independently for each type. Therefore a general identity symbol will only
be introduced in section 3.9, since it will then be possible to formulate and prove a
reasonable property shared by the identity of all types of terms.

3.8. The Proving Method meta_solver

3.8.1. General Concept

Since the semantics in section 3.5 constructed a first abstraction on top of the represen-
tation layer, it makes sense to revisit the general concept of the layered structure of the
embedding.
The idea behind this structure is that reasoning in subsequent layers should - as far as
possible - only rely on the previous layer. However, the restriction of proofs to a specific
subset of the facts that are valid in the global context can be cumbersome for automated
reasoning. While it is possible to restrict automated reasoning tools to only consider
specific sets of facts, it is still an interesting question whether the process of automated
reasoning in the layered approach can be made easier.
To that end the embedding utilizes the Isabelle package Eisbach. This package allows to
conveniently define new proving methods that are based on the systematic application
of existing methods.

Remark. The Eisbach package even allows the construction of more complex proving
methods that involve pattern matching. This functionality is utilized in the construction
of a substitution method as described in section 3.11.5.
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The idea is to construct a simple resolution prover that can deconstruct complex formulas
of the embedded logic to simpler formulas that are connected by a relation in the meta-
logic as required by the semantics.
For example an implication formula can be deconstructed as follows:

[ϕ → ψ in v] = ([ϕ in v] −→ [ψ in v])

Whereas the basic proving methods available in Isabelle cannot immediately prove
[ϕ → ϕ in v] without any facts about the definitions of validity and implication, they
can prove [ϕ in v] −→ [ϕ in v] directly as an instance of p −→ p.

3.8.2. Implementation

Following this idea the method meta-solver is introduced (see A.5) that repeatedly applies
rules like the above in order to translate complex formulas of the embedded logic to
meta-logical statements involving simpler formulas.
The formulation of appropriate introduction, elimination and substitution rules for the
logical connectives and quantifiers is straightforward. Beyond that the concept can be
used to resolve exemplification and encoding formulas to their semantic truth conditions
as well, e.g. (see A.5.10):

[(|F ,x|) in v] = (∃ r o1. Some r = d1 F ∧ Some o1 = dκ x ∧ o1 ∈ ex1 r v)

This way a large set of formulas can be decomposed to semantic expressions that can be
automatically proven without having to rely on the meta-logical definitions directly.
Additionally the meta-solver is equipped with rules for being abstract and ordinary and
for the defined identity.
Notably the representation layer has the property that the defined identities are equiv-
alent to the identity in the meta-logic. Formally the following statements are true and
derived as rules for the meta-solver :

• [x =E y in v] =
(∃ o1 o2. Some (ων o1) = dκ x ∧ Some (ων o2) = dκ y ∧ o1 = o2)

• [x =κ y in v] = (∃ o1 o2. Some o1 = dκ x ∧ Some o2 = dκ y ∧ o1 = o2)

• [F =1 G in v] = (F = G)

• [F =2 G in v] = (F = G)

• [F =3 G in v] = (F = G)

• [F =0 G in v] = (F = G)

The proofs for these facts (see A.5.15) are complex and do not solely rely on the properties
of the formal semantics of PLM.
The fact that they are derivable has a distinct advantage: since identical terms in
the sense of PLM are identical in the meta-logic, proving the axiom of substitution
(see 3.10.4) is trivial. A derivation that is solely based on the semantics on the other
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hand, would require a complex induction proof. For this reason it is considered a rea-
sonable compromise to include these statements as admissible rules for the meta-solver.
However, future work may attempt to enforce the separation of layers more strictly and
consequently abstain from these rules.

Remark. Instead of introducing a custom proving method using the Eisbach package, a
similar effect could be achieved by instead supplying the derived introduction, elimination
and substitution rules directly to one of the existing proving methods like auto or clarsimp.
In practice, however, we found that the custom meta-solver produces more reliable results,
especially in the case that a proving objective cannot be solved completely by the supplied
rules. Moreover the constructed custom proving method serves as a proof of concept and
may inspire the development of further more complex proving methods that go beyond a
simple resolution prover in the future.

3.8.3. Applicability
〈proof 〉
Given the discussion above and keeping the layered structure of the embedding in mind,
it is important to precisely determine for which purposes it is valid to use the constructed
meta-solver.
The main application of the method in the embedding is to support the derivation of
the axiom system as described in section 3.10. Furthermore the meta-solver can aid in
examining the meta-logical properties of the embedding. The meta-solver is only supplied
with rules that are reversible. Thereby it is justified to use it to simplify a statement
before employing a tool like nitpick in order to look for models or counter-models for a
statement.
However it is not justified to assume that a theorem that can be proven with the aid
of the meta-solver method is derivable in the formal system of PLM, since the result
still depends on the specific structure of the representation layer. However, based on
the concept of the meta-solver another proving method is introduced in section 3.11.3,
namely the PLM-solver. This proving method only employs rules that are derivable from
the formal system of PLM itself. Thereby this method can be used in proofs without
sacrificing the universality of the result.

3.9. General Identity Relation

As already mentioned in section 3.6 similarly to the general quantification binder it is
desirable to introduce a general identity relation.
Since the identity of PLM is not directly characterized by semantic truth conditions, but
instead defined using specific complex formulas in the embedded logic for each type of
term, some other property has to be found that is shared by the respective definitions
and can reasonably be used as the condition of a type class.
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A natural choice for such a condition is the axiom of the substitution of identicals
(see 3.10.4). The axiom states that if two objects are identical (in the sense of the
defined identity of PLM), then a formula involving the first object implies the formula
resulting from substituting the second object for the first object. This inspires the
following condition for the type class identifiable (see A.6.1):

[α = β in v] ∧ [ϕ α in v] =⇒ [ϕ β in v]

Using the fact that in the last section it was already derived, that the defined identity
in the embedded-logic for each term implies the primitive identity of the meta-logical
objects, this type class can be instantiated for all types of terms: κ, Π0 resp. o, Π1, Π2,
Π3 (see A.6.2).
Since now general quantification and general identity are available, an additional quanti-
fier for unique existence can be introduced (such a quantifier involves both quantification
and identity). To that end a derived type class is introduced that is the combination
of the quantifiable and the identifiable classes. Although this is straightforward for the
relation types, this reveals a subtlety involving the distinction between individuals of
type ν and individual terms of type κ: The type ν belongs to the class quantifiable, the
type κ on the other hand does not: no quantification over individual terms (that may
not denote) was defined. On the other hand the class identifiable was only instantiated
for the type κ, but not for the type ν. This issue can be solved by noticing that it is
straightforward and justified to define an identity for ν as follows:

x = y = xP = yP

This way type ν is equipped with both the general all-quantifier and the general identity
relation and unique existence can be defined for all variable types as expected:

∃ ! α . ϕ α = ∃α. ϕ α & (∀ β. ϕ β → β = α)

Another subtlety has to be considered: at times it is necessary to expand the definitions
of identity for a specific type to derive statements in PLM. Since the defined identities
were introduced prior to the general identity symbol, such an expansion is therefore so
far not possible for a statement that uses the general identity, even if the types are fixed
in the context.
To allow such an expansion the definitions of identity are equivalently restated for the
general identity symbol and each specific type (see A.6.3). This way the general identity
can from this point onward completely replace the type-specific identity symbols.
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3.10. The Axiom System of PLM

The last step in abstracting away from the representation layer is the derivation of the
axiom system of PLM. Conceptionally the derivation of the axioms is the last moment
in which it is deemed admissible to rely on the meta-logical properties of the underlying
model structure. Future work may even restrict this further to only allow the use of the
properties of the semantics in the proofs (if this is found to be possible).
To be able to distinguish between the axioms and other statements and theorems in the
embedded logic they are stated using a dedicated syntax (see A.7):

[[ ϕ ]] = (∀ v. [ϕ in v])

Axioms are unconditionally true in all possible worlds. The only exceptions are necessitation-
averse, resp. modally-fragile axioms5. Such axioms are stated using the following syntax:

[ϕ] = [ϕ in dw]

3.10.1. Axioms as Schemata

Most of the axioms in PLM are stated as axiom schemata. They use variables that
range over and can therefore be instantiated for any formula and term. Furthermore
PLM introduces the notion of closures (see [12, (20)]). Effectively this means that the
statement of an axiom schema implies that the universal generalization of the schema,
the actualization of the schema and (except for modally-fragile axioms) the necessitation
of the schema is also an axiom.
Since in Isabelle/HOL free variables in a theorem already range over all terms of the
same type no special measures have to be taken to allow instantiations for arbitrary
terms. The concept of closures is introduced using the following rules (see A.7.1):

• [[ ϕ ]] =⇒ [ϕ in v]
• (

∧
x. [[ ϕ x ]]) =⇒ [[ ∀ x. ϕ x ]]

• [[ ϕ ]] =⇒ [[ Aϕ ]]

• [[ ϕ ]] =⇒ [[ �ϕ ]]

For modally-fragile axioms only the following rules are introduced:
• [ϕ] =⇒ [ϕ in dw]

• (
∧

x. [ϕ x]) =⇒ [∀ x. ϕ x]

Remark. To simplify the instantiation of the axioms in subsequent proofs, a set of
attributes is defined that can be used to transform the statement of the axioms using the
rules defined above.
This way for example the axiom [[ �ϕ → ϕ ]] can be directly transformed to [∀ x. �ϕ x → ϕ x in v]
by not referencing it directly as qml-2, but by applying the defined attributes to it: qml-2 [axiom-universal,
axiom-instance]

5Currently PLM uses only one such axiom, see 3.10.6.
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3.10.2. Derivation of the Axioms

To simplify the derivation of the axioms a proving method axiom-meta-solver is intro-
duced, that unfolds the dedicated syntax, then applies the meta-solver and if possible
resolves the proof objective automatically.
Most of the axioms can be derived by the axiom-meta-solver directly. Some axioms,
however, require more verbose proofs or their representation in the functional setting of
Isabelle/HOL requires special attention. Therefore in the following the complete axiom
system is listed and discussed in detail where necessary. Additionally each axiom is
associated with the numbering in the current draft of PLM[12].

3.10.3. Axioms for Negations and Conditionals

The axioms for negations and conditionals can be derived automatically and present no
further issues (see A.7.2):

• [[ ϕ → (ψ → ϕ) ]] (21.1)
• [[ ϕ → (ψ → χ) → (ϕ → ψ → (ϕ → χ)) ]] (21.2)
• [[ ¬ϕ → ¬ψ → (¬ϕ → ψ → ϕ) ]] (21.3)

3.10.4. Axioms of Identity

The axiom of the substitution of identicals can be proven automatically, if additionally
supplied with the defining assumption of the type class identifiable. The statement is the
following (see A.7.3):

• [[ α = β → (ϕ α → ϕ β) ]] (25)

3.10.5. Axioms of Quantification

The axioms of quantification are formulated in a way that differs from the statements
in PLM, as follows (see A.7.4):

• [[ (∀α. ϕ α) → ϕ τ ]] (29.1a)
• [[ (∀α. ϕ (αP )) → ((∃ β. βP = τ) → ϕ τ) ]] (29.1b)
• [[ (∀α. ϕ α → ψ α) → ((∀α. ϕ α) → (∀α. ψ α)) ]] (29.3)
• [[ ϕ → (∀α. ϕ) ]] (29.4)
• SimpleExOrEnc ψ =⇒ [[ ψ (ιx. ϕ x) → (∃ ν. νP = (ιx. ϕ x)) ]] (29.5a)
• SimpleExOrEnc ψ =⇒ [[ ψ τ → (∃ ν. νP = τ) ]] (29.5b)

The original axioms in PLM6 are the following:
6Note that the axioms will in all likelihood be adjusted in future versions of PLM in order to prevent

the paradox described in section 5.2.
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• ∀αϕ → (∃β(β = τ) → ϕτ
α) (29.1)

• ∃β(β = τ), provided τ is not a description and β doesn’t occur free in τ . (29.2)
• ∀α(ϕ → ψ) → (∀α ϕ → ∀α ψ) (29.3)
• ϕ → (∀α ϕ), provided α doesn’t occur free in ϕ (29.4)
• ψιxϕ

µ → ∃ ν (ν = ιxϕ), provided (a) ψ is either an exemplification formula Πnκ1. . . κn
(n ≥ 1 ) or an encoding formula κ1Π

1, (b) µ is an individual variable that occurs
in ψ and only as one or more of the κi (1 ≤ i ≤ n), and (c) ν is any individual
variable that doesn’t occur free in ϕ. (29.5)

In the embedding definite descriptions have the type κ that is different from the type
for individuals ν. Quantification is only defined for ν, not for κ.
Therefore, the restriction of (29.2) does not apply, since the type restriction of quantifica-
tion ensures that τ cannot be a definite description. Consequently the inner precondition
of (29.1) can be dropped in (29.1a) - since a quantifier is used in the formulation, the
problematic case of definite descriptions is excluded and the dropped precondition would
always hold.
The second formulation (29.1b) for definite descriptions involves the type conversion _P

and keeps the inner precondition (since descriptions may not denote).
(29.5b) can be stated as a generalization of (29.5a) to general individual terms, since
(29.2) already implies its right hand side for every term except descriptions.
Consequently (29.1b) and (29.5b) can replace the original axioms (29.1) and (29.5) for
individual terms. For individual variables and constants as well as relations the simplified
formulation (29.1a) can be used instead.
Future work may want to reconsider the reformulation of the axioms, especially consid-
ering the most recent developments described in section 5.2. At the time of writing the
reformulation is considered a reasonable compromise, since due to the type restrictions
of the embedding the reformulated version of the axioms is an equivalent representation
of the original axioms.
The predicate SimpleExOrEnc used as the precondition for (29.5) is defined as an inductive
predicate with the following introduction rules:

• SimpleExOrEnc (λx. (|F ,x|))
• SimpleExOrEnc (λx. (|F ,x,_|))
• SimpleExOrEnc (λx. (|F ,_,x|))
• SimpleExOrEnc (λx. (|F ,x,_,_|))
• SimpleExOrEnc (λx. (|F ,_,x,_|))
• SimpleExOrEnc (λx. (|F ,_,_,x|))
• SimpleExOrEnc (λx. {|x,F |})

This corresponds exactly to the restriction of ψ to an exemplification or encoding formula
in PLM.
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3.10.6. Axioms of Actuality

As mentioned in the beginning of the section the modally-fragile axiom of actuality is
stated using a different syntax (see A.7.5):

• [Aϕ ≡ ϕ] (30)
Note that the model finding tool nitpick can find a counter-model for the formulation
as a regular axiom, as expected.
The remaining axioms of actuality are not modally-fragile and therefore stated as regular
axioms:

• [[ A¬ϕ ≡ ¬Aϕ ]] (31.1)
• [[ A(ϕ → ψ) ≡ (Aϕ → Aψ) ]] (31.2)
• [[ A(∀α. ϕ α) ≡ (∀α. Aϕ α) ]] (31.3)
• [[ Aϕ ≡ AAϕ ]] (31.4)

All of the above can be proven automatically by the axiom-meta-solver method.

3.10.7. Axioms of Necessity

The axioms of necessity are the following (see A.7.6):
• [[ �(ϕ → ψ) → (�ϕ → �ψ) ]] (32.1)
• [[ �ϕ → ϕ ]] (32.2)
• [[ ♦ϕ → �♦ϕ ]] (32.3)
• [[ ♦(∃ x. (|E !,xP |) & ♦¬(|E !,xP |)) & ♦¬(∃ x. (|E !,xP |) & ♦¬(|E !,xP |)) ]] (32.4)

While the first three axioms can be derived automatically, the last axiom requires special
attention. On a closer look the formulation may be familiar. The axiom was already
mentioned in section 3.4.9 while constructing the representation of the constant E !. To
be able to derive this axiom here the constant was specifically axiomatized. Consequently
the derivation requires the use of these meta-logical axioms stated in the representation
layer.

3.10.8. Axioms of Necessity and Actuality

The axioms of necessity and actuality can be derived automatically and require no further
attention (see A.7.7):

• [[ Aϕ → �Aϕ ]] (33.1)
• [[ �ϕ ≡ A(�ϕ) ]] (33.2)

3.10.9. Axioms of Descriptions

There is only one axiom dedicated to descriptions (note, however, that descriptions play
a role in the axioms of quantification). The statement is the following (see A.7.8):
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• [[ xP = (ιx. ϕ x) ≡ (∀ z. Aϕ z ≡ z = x) ]] (34)
Given the technicalities of descriptions already discussed in section 3.10.5 it comes at no
surprise that this statement requires a verbose proof.

3.10.10. Axioms of Complex Relation Terms
〈proof 〉
The axioms of complex relation terms deal with the properties of λ-expressions.
Since the meta-solver was not equipped with explicit rules for λ-expressions, the state-
ments rely on their semantic properties as described in section 3.5 directly.

The statements are the following (see A.7.9):
• λx. ϕ x = λy. ϕ y (36.1)
• IsProperInX ϕ =⇒ [[ (|λx. ϕ (xP ),xP |) ≡ ϕ (xP ) ]] (36.2)
• IsProperInXY ϕ =⇒ [[ (|λ2 (λx y. ϕ (xP ) (yP )),xP ,yP |) ≡ ϕ (xP ) (yP ) ]] (36.2)
• IsProperInXYZ ϕ =⇒

[[ (|λ3 (λx y z. ϕ (xP ) (yP ) (zP )),xP ,yP ,zP |) ≡ ϕ (xP ) (yP ) (zP ) ]] (36.2)
• [[ λ0 ϕ = ϕ ]] (36.3)
• [[ (λx. (|F ,xP |)) = F ]] (36.3)
• [[ λ2 (λx y. (|F ,xP ,yP |)) = F ]] (36.3)
• [[ λ3 (λx y z. (|F ,xP ,yP ,zP |)) = F ]] (36.3)
• (

∧
x. [A(ϕ x ≡ ψ x) in v]) =⇒ [[ λ0 (χ (ιx. ϕ x)) = λ0 (χ (ιx. ψ x)) ]] (36.4)

• (
∧

x. [A(ϕ x ≡ ψ x) in v]) =⇒ [[ (λx. χ (ιx. ϕ x) x) = (λx. χ (ιx. ψ x) x) ]] (36.4)
• (

∧
x. [A(ϕ x ≡ ψ x) in v]) =⇒ [[ λ2 (χ (ιx. ϕ x)) = λ2 (χ (ιx. ψ x)) ]] (36.4)

• (
∧

x. [A(ϕ x ≡ ψ x) in v]) =⇒ [[ λ3 (χ (ιx. ϕ x)) = λ3 (χ (ιx. ψ x)) ]] (36.4)
The first axiom, α-conversion, could be omitted entirely. Since lambda-expressions are
modeled using functions with bound variables and α-conversion is part of the logic of
Isabelle/HOL, it already holds implicitly.
As explained in section 3.4.7 β-conversion has to be restricted to proper maps. In PLM
this restriction is implicit due to the fact that λ-expressions are only well-formed if their
matrix is a propositional formula.
The formulation of the last class of axioms ((36.4), ι-conversion) has to be adjusted to be
representable in the functional setting. The original axiom is stated as follows in PLM:

A(ϕ ≡ ψ) → ([λx1· · · xn χ∗] = [λx1· · · xn χ∗ ′]

χ∗ ′ is required to be the result of substituting ιxψ for zero or more occurrences of ιxϕ
in χ∗. In the functional setting χ can be represented as function from individual terms
of type κ to propositions of type o. Thereby substituting ιxψ for occurrences of ιxϕ can
be expressed by comparing the function application of χ to ιx. ϕ x with the function
application of χ to ιx. ψ x.
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Since in this representation ϕ and ψ are functions as well (from type ν to type o) the
precondition has to be reformulated to hold for the application of ϕ and ψ to an arbitrary
individual x to capture the concept of A(ϕ ≡ ψ) in PLM, where ϕ and ψ may contain x
as a free variable.

3.10.11. Axioms of Encoding

The last class of axioms deals with encoding (see A.7.10):

• [[ {|x,F |} → �{|x,F |} ]] (37)
• [[ (|O!,x|) → ¬(∃F . {|x,F |}) ]] (38)
• [[ ∃ x. (|A!,xP |) & (∀F . {|xP ,F |} ≡ ϕ F) ]] (39)

Whereas the first statement, encoding is modally rigid, is a direct consequence of the
semantics (recall that the encoding extension of a property was not relativized to pos-
sible worlds; see section 3.5), the second axiom, ordinary objects do not encode, is only
derivable by expanding the definition of the encoding extension and the meta-logical
distinction between ordinary and abstract objects.
Similarly the comprehension axiom for abstract objects depends on the model structure
and follows from the representation of abstract objects as sets of one-place relations and
the definition of encoding as set membership.
Furthermore in the functional setting ϕ has to be represented as a function and the
condition it imposes on F is expressed as its application to F. The formulation in PLM
on the other hand has to explicitly exclude a free occurrence of x in ϕ. In the functional
setting this is not necessary. Since x is bound by the existential quantifier and not
explicitly given to ϕ as an argument, the condition ϕ imposes on F cannot depend on x
by construction.

3.10.12. Summary

Although some of the axioms have to be adjusted to be representable in the functional
environment, the resulting formulation faithfully represents the original axiom system
of PLM.
Furthermore a large part of the axioms can be derived independently of the technicalities
of the representation layer with proofs that only depend on the representation of the
semantics described in section 3.5. Future work may explore available options to further
minimize the dependency on the underlying model structure.
To verify that the axiom system faithfully represents the reference system, the deductive
system PLM as described in [12, Chap. 9] is derived solely based on the formulation of
the axioms without falling back to the model structure or the semantics (see A.9).
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3.11. The Deductive System PLM

The derivation of the deductive system PLM ([12, Chap. 9]) from the axiom system
constitutes a major part of the Isabelle theory in the appendix (see A.9). Its extent of
over one hundred pages makes it infeasible to discuss every aspect in full detail.
Nevertheless it is worthwhile to have a look at the mechanics of the derivation and to
highlight some interesting concepts.

3.11.1. Modally Strict Proofs

PLM distinguishes between two sets of theorems: the theorems, that are derivable from
the complete axiom system including the modally-fragile axiom, and the set of theorems,
that have modally-strict proofs (see [12, (42)]).
A proof is modally-strict, if it does not depend on any modally-fragile axioms.
In the embedding modally-strict theorems are stated to be true for an arbitrary semantic
possible world: [ϕ in v]
Here the variable v implicitly ranges over all semantic possible worlds of type i, including
the designated actual world dw. Since modally-fragile axioms only hold in dw, they
therefore cannot be used to prove a statement formulated this way, as desired.
Modally-fragile theorems on the other hand are stated to be true only for the designated
actual world: [ϕ in dw]

This way necessary axioms, as well as modally-fragile axioms can be used in their proofs.
However it is not possible to infer from a modally-fragile theorem that the same state-
ment holds as a modally-strict theorem.
This representation of modally-strict and modally-fragile theorems is discussed in more
detail in section 5.1.3.

3.11.2. Fundamental Metarules of PLM

The primitive rule of PLM is the modus ponens rule (see A.9.2):
• [ϕ in v] ∧ [ϕ → ψ in v] =⇒ [ψ in v] (41)

This rule is a direct consequence of the semantics of the implication.
Additionally two fundamental Metarules are derived in PLM, GEN and RN (see A.9.5):

• (
∧
α. [ϕ α in v]) =⇒ [∀α. ϕ α in v] (49)

• [[
∧

w. [ϕ in w] =⇒ [ψ in w]; [�ϕ in v]]] =⇒ [�ψ in v] (51)
Although in PLM these rules can be derived by structural induction on the length of a
derivation, this proving mechanism cannot be reproduced in Isabelle. However, the rules
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are direct consequences of the semantics described in section 3.5. The same is true for
the deduction rule (see A.9.6):

• ([ϕ in v] =⇒ [ψ in v]) =⇒ [ϕ → ψ in v] (54)
Consequently this rule is derived from the semantics as well.
These rules are the only exceptions to the concept that the deductive system of PLM
is derived solely from the axiom system without relying on the previous layers of the
embedding.

3.11.3. PLM Solver
〈proof 〉
Similarly to the meta-solver described in section 3.8 another proving method is intro-
duced, namely the PLM-solver (see A.9.1).
This proving method is initially not equipped with any rules. Throughout the derivation
of the deductive system, whenever an appropriate rule is derived as part of PLM directly
or becomes trivially derivable from the proven theorems, it is added to the PLM-solver.
Additionally the PLM-solver can instantiate any theorem of the deductive system PLM
as well as any axiom, if doing so resolves the current proving goal.
By its construction the PLM-solver has the property, that it can only prove statements
that are derivable from the deductive system PLM. Thereby it is safe to use to aid in any
proof throughout the section. In practice it can automatically prove a variety of simple
statements and aid in more complex proofs throughout the derivation of the deductive
system.

3.11.4. Additional Type Classes

In PLM it is possible to derive statements involving the general identity symbol by
case distinction: if such a statement is derivable for all types of terms in the language
separately, it can be concluded that it is derivable for the identity symbol in general.
Such a case distinction cannot be directly reproduced in the embedding, since it cannot
be assumed that every instantiation of the type class identifiable is in fact one of the
types of terms of PLM.
However, there is a simple way to still formulate such general statements. This is done
by the introduction of additional type classes. A simple example is the type class id-eq
(see A.9.7). This new type class assumes the following statements to be true:

• [α = α in v] (71.1)
• [α = β → β = α in v] (71.2)
• [α = β & β = γ → α = γ in v] (71.3)

Since these statements can be derived separately for the types ν, Π0, Π1, Π2 and Π3, the
type class id-eq can be instantiated for each of these types.
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3.11.5. The Rule of Substitution

A challenge in the derivation of the deductive system that is worth to examine in detail
is the rule of substitution. The rule is stated in PLM as follows (see (113)[12]):

If `� ψ ≡ χ and ϕ ′ is the result of substituting the formula χ for zero or
more occurrences of ψ where the latter is a subformula of ϕ, then if Γ ` ϕ,
then Γ ` ϕ ′. [Variant: If `� ψ ≡ χ, then ϕ ` ϕ ′]

A naive representation of the rule would be the following:

(
∧

v. [ψ ≡ χ in v]) =⇒ [ϕ ψ in v] = [ϕ χ in v]

However this statement is not derivable. The issue is connected to the restriction of
ψ to be a subformula of ϕ in PLM. The formulation above would allow the rule to be
instantiated for any function ϕ from formulas to formulas.
Formulas in the embedding have type o which is internally represented by functions of
the type j ⇒ i ⇒ bool. Therefore the formulation above could be instantiated with a
function ϕ that has the following internal representation: λψ s w. ∀ s. ψ s w
So nothing prevents ϕ from evaluating its argument for a state different from the desig-
nated actual state dj. The condition ∧

v. [ψ ≡ χ in v] on the other hand only requires ψ
and χ to be (necessarily) equivalent in the actual state - no statement about other states
is implied.
Another issue arises if one considers one of the example cases of legitimate uses of the
rule of substitution in PLM (see [12, (113)]):

If ` ∃ x A!x and `� A!x ≡ ¬♦E !x, then ` ∃ x ¬♦E !x.
This would not follow from the naive formulation above, even if it were derivable. Since
x is bound by the existential quantifier, in the functional representation ϕ has to have a
different type. In the example ϕ has to be λψ. ∃ x. ψ x which is of type (ν ⇒ o)⇒ o. ψ and
χ have to be functions as well: ψ = (λx. (|A!,x|)) and χ = (λx. ¬♦(|E !,x|)). Consequently
the equivalence condition for this case has to be reformulated to ∧

x v. [ψ x ≡ χ x in v]7.

Solution

The embedding employs a solution that is complex, but can successfully address the
described issues.
The following definition is introduced (see A.9.10):

Substable cond ϕ = (∀ψ χ v. cond ψ χ −→ [ϕ ψ ≡ ϕ χ in v])

Given a condition cond a function ϕ is considered Substable, if and only if for all ψ and χ

that satisfy cond it follows in each possible world v that [ϕ ψ ≡ ϕ χ in v]8.
7This is analog to the fact that x is a free variable in the condition `� A!x ≡ ¬♦E !x in PLM.
8ψ and χ can have an arbitrary type. ϕ is a function from this type to formulas.
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Now several introduction rules for this property are derived. The idea is to capture the
notion of subformula in PLM. A few examples are:

• Substable cond (λϕ. Θ)

• Substable cond ψ =⇒ Substable cond (λϕ. ¬ψ ϕ)

• Substable cond ψ ∧ Substable cond χ =⇒ Substable cond (λϕ. ψ ϕ → χ ϕ)

These rules can be derived using theorems of PLM.
As illustrated above in the functional setting substitution has to be allowed not only
for formulas, but also for functions to formulas. To that end the type class Substable
is introduced that fixes a condition Substable-Cond to be used as cond in the definition
above and assumes the following:

Substable Substable-Cond ϕ ∧ Substable-Cond ψ χ ∧ Θ [ϕ ψ in v] =⇒ Θ [ϕ χ in v]

If ϕ is Substable (as per the definition above) under the condition Substable-Cond that
was fixed in the type class, and ψ and χ satisfy the fixed condition Substable-Cond, then
everything that is true for [ϕ ψ in v] is also true for [ϕ χ in v].
As a base case this type class is instantiated for the type of formulas o with the following
definition of Substable-Cond:

Substable-Cond ψ χ = (∀ v. [ψ ≡ χ in v])

Furthermore the type class is instantiated for functions from an arbitrary type to a type
of the class Substable with the following definition of Substable-Cond:

Substable-Cond ψ χ = (∀ x. Substable-Cond (ψ x) (χ x))

Proving Methods

Although the construction above covers exactly the cases in which PLM allows sub-
stitutions, it does not yet have a form that allows to conveniently apply the rule of
substitution. In order to apply the rule, it first has to be established that a formula can
be decomposed into a function with the substituents as arguments and it further has to
be shown that this function satisfies the appropriate Substable condition. This complex-
ity prevents any reasonable use cases. This problem is mitigated by the introduction of
proving methods. The main method is called PLM-subst-method.
This method uses a combination of pattern matching and automatic rule application to
provide a convenient way to apply the rule of substitution in practice.
For example assume the current proof objective is [¬¬♦(|E !,x|) in v]. Now it is possible
to apply PLM-subst-method as follows:

apply (PLM-subst-method (|A!,x|) (¬(♦(|E !,x|)))
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The method automatically analyzes the current proving goal, uses pattern matching to
find an appropriate choice for a function ϕ, applies the substitution rule and resolves the
substitutability claim about ϕ.
Consequently it can resolve the current proof objective by producing two new proving
goals: ∀ v. [(|A!,x|) ≡ ¬♦(|E !,x|) in v] and [¬(|A!,x|) in v], as expected. The complexity of
the construction above is hidden away entirely.
Similarly assume the proof objective is [∃ x. ¬♦(|E !,xP |) in v]. Now the method PLM-subst-method
can be invoked as follows:

apply (PLM-subst-method λx . (|A!,xP |) λx . (¬(♦(|E !,xP |)))

This will result in the new proving goals: ∀ x v. [(|A!,xP |) ≡ ¬♦(|E !,xP |) in v] and [∃ x. (|A!,xP |) in v],
as desired.

Conclusion

Although an adequate representation of the rule of substitution in the functional setting
is challenging, the above construction allows a convenient use of the rule. Moreover it
is important to note that despite the complexity of the representation no assumptions
about the underlying model structure were made. The construction is completely deriv-
able from the rules of PLM itself, so the devised rule is safe to use without compromising
the provability claim of the layered structure of the embedding.
All statements that are proven using the constructed substitution methods, remain deriv-
able from the deductive system of PLM.

3.11.6. An Example Proof

To illustrate how the derivation of theorems in the embedding works in practice, consider
the following example9:

lemma [�(ϕ → �ϕ) → ((¬�ϕ) ≡ (�(¬ϕ))) in v]
〈proof 〉

Since the statement is an implication it is derived using a conditional proof. To that end
the proof statement already applies the initial rule CP.
The proof objective inside the proof body is now [�(ϕ → �ϕ) in v] =⇒ [¬�ϕ ≡ �¬ϕ in v],
so [¬�ϕ ≡ �¬ϕ in v] has to be shown under the assumption [�(ϕ → �ϕ) in v]. Therefore
the first step is to assume [�(ϕ → �ϕ) in v].
The second statement can now be automatically derived using the previously proven
theorem sc-eq-box-box-1, the definition of the diamond operator and a deduction rule.
The final proof objective follows from a combination of introduction and elimination
rules.

9Since the whole proof is stated as raw Isabelle code, unfortunately no color-coding can be applied.
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The automated reasoning tool sledgehammer can find proofs for the second and final
statement automatically. It can even automatically find a proof for the entire theorem
resulting in the following one-line proof:

lemma [�(ϕ → �ϕ) → ((¬�ϕ) ≡ (�(¬ϕ))) in v]
〈proof 〉

So it can be seen that the embedding can be used to interactively prove statements with
the support of automated reasoning tools and often even complete proofs for complex
statements can be found automatically.

3.11.7. Summary

A full representation of the deductive system PLM, as described in [12, Chap. 9], could
be derived without violating the layered structure of the embedding.
Although compromises affecting the degree of automation had to be made, the resulting
representation can conveniently be used for the interactive construction of complex proofs
while retaining the support of the automation facilities of Isabelle/HOL.

3.12. Artificial Theorems

The layered approach of the embedding provides the means to derive theorems indepen-
dently of the representation layer and model structure. It is still interesting to consider
some examples of theorems that are not part of PLM, but can be derived in the embed-
ding using its meta-logical properties.

3.12.1. Non-Standard λ-Expressions

The following statement involves a λ-expressions that contains encoding subformulas
and is consequently not part of PLM (see A.11):

[(|λx. {|FP ,y|},xP |) ≡ {|FP ,y|} in v]

In this case traditional β-conversion still holds, since the λ-expression does not contain
encoding expressions involving its bound variable10. On the other hand the following is
not a theorem in the embedding (the tool nitpick can find a counter-model):

[(|λx. {|xP ,F |},xP |) → {|xP ,F |} in v]

Instead the following generalized versions of β-conversion are theorems:
• [(|λx. {|xP ,F |},zP |) in v] = (∃ y. νυ y = νυ z ∧ [{|yP ,F |} in v])
10Consequently the matrix is a proper map.
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• [(|λx. ϕ (xP ),zP |) in v] = (∃ y. νυ y = νυ z ∧ [ϕ (yP ) in v])

These theorems can be equivalently stated purely in the embedded logic:

• [(|λx. {|xP ,F |},zP |) ≡ (∃ y. (∀F . (|F ,zP |) ≡ (|F ,yP |)) & {|yP ,F |}) in v]
• [(|λx. ϕ (xP ),zP |) ≡ (∃ y. (∀F . (|F ,zP |) ≡ (|F ,yP |)) & ϕ (yP )) in v]

The second statement shows that in general λ-expressions in the embedding have a non-
standard semantics. As a special case, however, the behavior of λ-expressions is classical
if restricted to proper maps, which is due to the following theorem11:

IsProperInX ϕ =⇒ [(∃ y. (∀F . (|F ,xP |) ≡ (|F ,yP |)) & ϕ (yP )) ≡ ϕ (xP ) in v]

As a consequence of the generalized β-conversion there are theorems in the embedding
involving λ-expressions that do contain encoding subformulas in the bound variable, e.g.:

[(|λx. {|xP ,F |} ≡ {|xP ,F |},yP |) in v]

This topic is discussed in more detail in section 5.1.1.

3.12.2. Consequences of the Aczel-model

Independently the following theorem is a consequence of the constructed Aczel-model:

[∀F . (|F ,aP |) ≡ (|F ,bP |) in v] =⇒ λx. (|R,xP ,aP |) = λx. (|R,xP ,bP |)

The reason for this theorem to hold is that the condition on a and b forces the embedding
to map both objects to the same urelement. By the definition of exemplification the
presented λ-expressions only depend on this urelement, therefore they are forced to
be equal. Neither the deductive system of PLM nor its formal semantics require this
equality.
Initial research suggests that this artificial theorem can be avoided by extending the
embedding in the following way: the mapping from abstract objects to special urelements
constructed in section 3.4.3 can be modified to depend on states. This way the condition
used in the theorem only implies that a and b are mapped to the same urelement in the
actual state. Since they can still be mapped to different urelements in different states,
the derived equality no longer follows.
This extension of the embedding increases the complexity of the representation layer
slightly, but its preliminary analysis suggests that it presents no further issues, so future
versions of the embedding will in all likelihood include such a modification.

11Note that for propositional formulas an equivalent statement is derivable in PLM as well.
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3.13. Sanity Tests

The consistency of the constructed embedding can be verified by the model-finding tool
nitpick (see A.12.1). Since the main construction of the embedding is definitional and
only a minimal set of meta-logical axioms is used, this is expected.
The hyperintensionality of the constructed model can be verified for some simple example
cases. The following statements have counter-models (see A.12.2):

• [(λy. q ∨ ¬q) = (λy. p ∨ ¬p) in v]
• [(λy. p ∨ q) = (λy. q ∨ p) in v]

Furthermore the meta-logical axioms stated in section 3.4.9 can be justified (see A.12.4):
• (∀ x. ∃ v. ConcreteInWorld x v) =

(∀ y. [(|λu. ¬�¬(|E !,uP |),yP |) in v] = (case y of ων z ⇒ True | αν z ⇒ False))
• (∀ x. ∃ v. ConcreteInWorld x v) =

(∀ y. [(|λu. �¬(|E !,uP |),yP |) in v] = (case y of ων z ⇒ False | αν z ⇒ True))
• (∃ x v. ConcreteInWorld x v ∧ (∃w. ¬ ConcreteInWorld x w)) =

[¬�(∀ x. (|E !,xP |) → �(|E !,xP |)) in v]
• (∃w. ∀ x. ConcreteInWorld x w −→ (∀ v. ConcreteInWorld x v)) =

[¬�¬(∀ x. (|E !,xP |) → �(|E !,xP |)) in v]
The first axiom is equivalent to the fact that concreteness matches the domains of or-
dinary, resp. abstract objects, whereas the second and third axiom correspond to the
conjuncts of axiom (32.4)[12].

Remark. Additionally some further desirable meta-logical properties of the embedding
are verified in A.12.5 and A.12.6.
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4. Technical Limitations of Isabelle/HOL

Although the presented embedding shows that the generic proof assistant Isabelle/HOL
offers a lot of flexibility in expressing even a very complex and challenging theory as the
Theory of Abstract Objects, it has some limitations that required compromises in the
formulation of the theory.
In this chapter some of these limitations and their consequences for the embedding are
discussed. Future versions of Isabelle may allow a clearer implementation especially of
the layered approach of the embedding.

4.1. Limitations of Type Classes and Locales

Isabelle provides a powerful tool for abstract reasoning called locale. Locales are used
for parametric reasoning. Type classes, as already described briefly in section 3.6 and
further mentioned in sections 3.9 and 3.11.4, are in fact special cases of locales that are
additionally connected to Isabelle’s internal type system.
The definition of a locale defines a set of constants that can use arbitrary type variables1.
Assumptions about these constants can be postulated that can be used in the reasoning
within the context of the locale. Similarly to the instantiation of a type class, a locale
can be interpreted for specific definitions of the introduced constants, if it can be proven
that the postulated assumptions are satisfied for the interpretation.
Thereby it is possible to reason about abstract structures that are solely characterized
by a specific set of assumptions. Given that it can be shown that these assumptions are
satisfied for a concrete case, an interpretation of the locale allows the use of all theorems
shown for the abstract case in the concrete application.
Therefore in principle locales would be a perfect fit for the layered structure of the
embedding: If the representation of the formal semantics and the axiom system could
both be formulated as locales, it could first be shown that the axiom system is a sublocale
of the formal semantics, i.e. every set of constants that satisfies the requirements of the
formal semantics also satisfies the requirements of the axiom system, and further the
formal semantics could be interpreted for a concrete model structure.
Since the reasoning within a locale cannot use further assumptions that are only satisfied
by a specific interpretation, this way the universality of the reasoning based on the axiom
system could be formally guaranteed - no proof that is solely based on the axiom locale

1Type classes on the other hand are restricted to only one type variable.
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could use any meta-logical statement tied to the underlying representation layer and
model structure2.
However, a major issue arises when trying to formulate the axiom system as a locale.
Constants in a locale have to be introduced with a fixed type. Although this type can
use type variables, e.g. ′a ⇒ ′a ⇒ ′o, the type variable ′a is fixed throughout the locale.
This makes it impossible to introduce a general binder for all-quantification or a general
identity symbol in a single axiom locale that could be used for the statement of the
axioms of quantification and the substitution of identicals.
Several solutions to this problem could be considered: the identity relation could be
introduced as a polymorphic constant outside the locale and the locale could assume
some properties for this constant for specific type variables. Before interpreting the
locale the polymorphic constant could then be overloaded for concrete types in order
to be able to satisfy the assumptions. However, it would still be impossible to prove
a general statement about identity: every statement would have to be restricted to a
specific type, because in general no assumptions about the properties of identity could
be made.
Another solution would be to refrain from using general quantifiers and identity rela-
tions altogether, but to introduce separate binders and identity symbols for the type
of individuals and each relation type. However, this would add a significant amount
of notational complexity and would require to duplicate all statements that hold for
quantification and identity in general for every specific type. Statements ranging over
multiple types would even have to be stated for every possible combination of types
separately.
It could also be considered to introduce the axioms of quantification and identity sepa-
rately from the axiom locale in a type class. An interpretation of the complete axiom
system would then have to interpret the axiom locale, as well as instantiate the respec-
tive type classes. Since type classes can only use one type variable, this would make
it impossible to use a type variable for truth values in the definition of the respective
type classes, though. Consequently it is unclear how appropriate assumptions for such
type classes could be formulated. Using separate locales instead of type classes would
be connected with different issues.
Several other concepts were considered during the construction of the embedding, but
no solution was found that would both accurately represent the axiom system and still
be notationally convenient.
The most natural extension of Isabelle’s locale system that would solve the described
issues, would be the ability to introduce polymorphic constants in a locale that can
be restricted to a type class (resp. a sort). The type class could potentially even be
introduced simultaneously with the locale. However, such a construction is currently
not possible in Isabelle and as of yet it is unknown whether the internal type system of
Isabelle would allow such an extension in general.

2Although the construction of chapter 3 provides the means for universal reasoning that is indepen-
dent of a model as well, it depends on fair use of the provided layer structure.
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4.2. Case Distinctions by Type

Although a general identity relation can be represented using type classes as described in
sections 3.6 and 3.9, this construction differs from the concept used in PLM. The identity
relation of PLM is not determined by some set of properties, but by its definition for
the specific concrete types.
Isabelle does not allow the restriction of a type variable in a statement to a specific set
of types. Type variables can only be restricted to specific sorts, so effectively to type
classes. As mentioned in section 3.11.4, this means that statements about the general
identity relation, that depend on the specific definitions for the concrete types, cannot
be proven as in PLM by case distinction on types. Instead additional type classes have
to be introduced that assume the statements and then have to be instantiated for the
concrete types.
Although this construction involves some technical overhead, the solution is elegant and
provides a flexible representation for such general statements.

4.3. Structural Induction and Proof-Theoretic Reasoning

As mentioned in section 3.11.2, some of the meta-rules that PLM can derive by induction
on the length of a derivation, have to be proven using the semantics instead in the
embedding, e.g. the deduction theorem ([ϕ in v] =⇒ [ψ in v]) =⇒ [ϕ → ψ in v].
While the derivation of these fundamental rules using the semantics is justified, it would
be interesting to investigate whether the proof-theoretic reasoning PLM uses in these
cases can be reproduced in Isabelle/HOL. A related topic is the representation of the
concept of modally-strict proofs as described in sections 3.11.1 and 5.1.3.
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5. Discussion and Results

5.1. Differences between the Embedding and PLM

Although the embedding attempts to represent the language and logic of PLM as pre-
cisely as possible, there remain some differences between PLM and its representation in
Isabelle/HOL. Some of the known differences are discussed in the following sections. A
complete analysis of the precise relation between PLM and the embedding unfortunately
goes beyond the scope of this thesis and will only be possible after PLM has recovered
from the discovered paradox (see 5.2). Such an analysis will be a highly interesting and
relevant topic for future research.

5.1.1. Propositional Formulas and λ-Expressions

The main difference between the embedding and PLM is the fact that the embedding
does not distinguish between propositional and non-propositional formulas.
This purely syntactic distinction is challenging to reproduce in a shallow embedding
that does not introduce the complete term structure of the embedded language directly.
Instead the embedding attempts to analyze the semantic reason for the syntactic dis-
tinction and to devise a semantic criterion that can be used as a replacement for the
syntactic restriction.
The identified issue, that is addressed by the distinction in PLM, is described in sec-
tion 3.2: Allowing non-propositional formulas in β-convertible λ-expressions without re-
striction leads to paradoxes.
Since the embedding is known to be consistent, the issue presents itself in a slightly
different fashion: the paradox is constructed under the assumption that β-conversion
holds unconditionally for all λ-expressions. In the embedding on the other hand in
general λ-expressions have a non-standard semantics and β-conversion only follows as a
special case (see 3.12.1). Thereby the consistency of the system is preserved.
With the definition of proper maps (see 3.4.7), the embedding constructs a necessary
and sufficient condition on functions that may serve as matrix of a λ-expression while
allowing β-conversion.
The idea is that every λ-expression that is syntactically well-formed in PLM should have
a proper map as its matrix. Two subtleties have to be considered, though:
It was discovered that there are λ-expressions which are part of PLM, whose matrix
does not correspond to a proper map in the embedding. The analysis of this issue led
to the discovery of a paradox in the formulation of PLM and is discussed in more detail
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in section 5.2. As a consequence these cases will not constitute proper λ-expressions in
future versions of PLM.
The remaining subtlety is the fact that there are proper maps, that do not correspond to
propositional formulas. Some examples have already been mentioned in section 3.12.1.
Therefore the embedding suggests that the theory of PLM can be consistently extended
to include a larger set of proper, β-convertible λ-expressions. Since the set of relations
of PLM already has to be adjusted to prevent the discovered paradox, such an extension
presents a viable option.
Once PLM has recovered from the paradox, future research can consider available options
to align the set of relations present in the embedding with the resulting set of relations
of the new version of PLM.

5.1.2. Terms and Variables

In PLM an individual term can be an individual variable, an individual constant or a
definite description. A large number of statements is formulated using specific object-
language variables instead of metavariables ranging over arbitrary terms. From such a
statement its universal generalization can be derived using the rule GEN, which then
can be instantiated for any individual term, given that it denotes (∃β β = τ).
As already mentioned in sections 3.4.2 and 3.10.5 the embedding uses a slightly different
approach: In the embedding individuals and individual terms have different types.
The technicalities of this approach and a discussion about the accuracy of this repre-
sentation were already given in the referenced sections, so at this point it suffices to
summarize the resulting differences between the embedding and PLM:

• The individual variables of PLM are represented as variables of type ν in the
embedding.

• Individual constants can be represented by declaring constants of type ν.
• Meta-level variables (like τ) ranging over all individual terms in PLM can be rep-

resented as variables of type κ.
• Objects of type ν have to be explicitly converted to objects of type κ using the

decoration _P , if they are to be used in a context that allows general individual
terms.

• The axioms of quantification are adjusted to go along with this representation
(see 3.10.5).

In PLM the situation for relation variables, constants and terms is analog. However, the
embedding uses the following simplification in order to avoid the additional complexity
introduced for individuals:
Since at the time of writing PLM unconditionally asserts ∃β β = τ for any relation term
by an axiom, the embedding uses only one type Πn for each arity of relations. Therefore
no special type conversion between variables and terms is necessary and every relation
term can immediately be instantiated for a variable of type Πn. This hides the additional
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steps PLM employs for such instantiations (the generalization by GEN followed by an
instantiation using quantification theory). Since ∃β β = τ holds unconditionally for
relation terms, this simplification is justified.
However, the recent developments described in section 5.2 suggest that ∃β β = τ will in
all likelihood no longer hold unconditionally for every relation term in future versions
of PLM. Therefore, future versions of the embedding will have to include a distinction
between relation terms and relation variables in a similar way as is already done for
individuals. An alternative approach that could result in a more elegant representation
would be to implement concepts of free logic based on the research in [4] for both
individuals and relations.

5.1.3. Modally-strict Proofs and the Converse of RN

As described in section 3.11.1 modally-strict theorems in the embedding are stated in
the form [ϕ in v], so they are stated to be semantically true for an arbitrary possible
world v.
Modally-strict theorems in PLM are defined using a proof-theoretic concept: modally-
strict proofs are not allowed to use modally-fragile axioms. They are solely derived from
axioms whose necessitations are axioms as well (see 3.10.1).
The metarule RN states in essence that if there is a modally-strict proof for ϕ, then
�ϕ is derivable as a theorem. PLM proves this fact by induction on the length of the
derivation. Remark (185)[12] gives an example of a case in which the converse is false:
if �ϕ is derivable as a theorem, this does not imply that there is a modally-strict proof
for ϕ.
However, in the embedding the following is derivable from the semantics of the box
operator:

[�ϕ in dw] =⇒ ∀ v. [ϕ in v]

So although the converse of RN is not true in PLM, an equivalent statement for theorems
of the form [ϕ in v] in the embedding can be derived from the semantics.
The modally-strict theorems of PLM are a subset of a larger class of theorems, namely
the theorems that are necessarily true. Semantically a statement of the form [ϕ in v] in
the embedding is derivable, whenever ϕ is a necessary theorem.
Unfortunately there is no semantic criterion that allows to decide whether a statement
is a necessary theorem or a modally-strict theorem. Therefore, the embedding has to
express modally-strict theorems as necessary theorems, for which the converse of RN is
in fact true.
This still does not compromise the claim that any statement that is derived in A.9 is
also derivable in PLM: the basis for this claim is that no proofs in this layer may rely
on the meta-logical properties of the embedding, but only the fundamental meta-rules
of PLM are allowed to derive theorems from the axioms. Since the converse of RN is

63



neither a fundamental meta-rule of PLM, nor derivable without using the semantics, it
is not stated as an admissible rule for these proofs. Thereby it is guaranteed that no
statement of the form [ϕ in v] is derived that is not a modally-strict theorem of PLM.
Unfortunately this has the consequence that the proving method PLM-solver cannot
be equipped with a reversible elimination rule for the box operator, which reduces its
power as a proving method. However, preserving the claim that theorems derived in the
embedding are also theorems of PLM even when restricting to modally-strict theorems
was given preference over an increased level of automation.

5.2. A Paradox in PLM

During the analysis of the constructed embedding it was discovered that the formulation
of the theory in PLM at the time of writing allowed paradoxical constructions.
This section first describes the process that led to the discovery of the paradox and the
role the embedding played in it, after which the construction of the paradox is outlined
in the language of PLM.
The paradox has since been confirmed by Edward Zalta and a vivid discussion about its
repercussions and possible solutions has developed. At the time of writing it has become
clear that there are several options to recover from the paradox while in essence retaining
the full set of theorems of PLM. So far no final decision has been reached about which
option will be implemented in future versions of PLM.

5.2.1. Discovery of the Paradox

The discovery of the paradox originates in the analysis of the concept of proper maps
in the embedding and its relation to propositional formulas in PLM, which are the only
formulas PLM allows as the matrix of λ-expressions (see 5.1.1).
While trying to verify the conjecture, that the matrix of every λ-expression allowed
in PLM corresponds to a proper map in the embedding, it was discovered, that λ-
expressions of the form [λy F ιx(y[λz Rxz])] in which the bound variable y occurs in an
encoding formula inside the matrix of a definite description, were part of PLM, but
their matrix was not a proper map in the embedding and therefore β-conversion was not
derivable for these terms.
Further analysis showed that a modification of the embedding which would allow β-
conversion for such expressions, would have to involve a restriction of the Aczel-model
(in particular of the map from abstract objects to urelements).
In order to understand how the Aczel-model could be adequately restricted, the conse-
quences of allowing β-conversion in the mentioned cases by assumption were studied in
the embedding. This led to the first proof of inconsistency (see A.13.4):

(
∧

G ϕ. IsProperInX (λx. (|G,ιy. ϕ y x|))) =⇒ False
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Under the assumption that λx. (|G,ιy. ϕ y x|) is a proper map for arbitrary G and ϕ, False
is derivable in the embedding. However λ-expressions with the equivalent of such maps
as matrix were in fact part of PLM.
Since the inconsistency can be derived without relying on the meta-logical properties of
the embedding, it was immediately possible to translate the proof back to the language
of PLM. The resulting formulation then served as the basis for further discussions with
Edward Zalta.
Since then the issue leading to the paradox was identified as the description backdoor
(see A.13.2) that can be used to construct a variety of paradoxical cases, e.g. the paradox
described in section 3.2 can be reconstructed. This refined version of the paradox is used
in the inconsistency proof in A.13.3 and is outlined in the language of PLM in the next
section. The general situation leading to the paradox is repeated without referring to
the particularities of the embedding.

5.2.2. Construction using the Language of PLM

Object theory distinguishes between propositional and non-propositional formulas. Propo-
sitional formulas are not allowed to contain encoding subformulas, so for example ∃F xF
is not propositional. Only propositional formulas can be the matrix of a λ-expression,
so [λx ∃F xF ] is not a valid term of the theory - it is excluded syntactically.
The reason for this is that considering [λx ∃F xF & ¬Fx] a valid, denoting λ-expression
for which β-conversion holds would result in a paradox as described in section 3.2.
Excluding non-propositional formulas in λ-expressions was believed to be sufficient to
prevent such inconsistencies. This was shown to be incorrect, though.
The problem is the description backdoor. The term [λy F ιxψ] is well-formed, even if ψ
is not propositional. This is due to the definition of subformula: ψ is not a subformula
of Fιxψ, so ψ may contain encoding subformulas itself and Fιxψ is still a propositional
formula.
This was deemed to be no problem and for cases like [λy F ιx(xG)] as they are mentioned
and used in PLM this is indeed true.
It had not been considered that y may appear within the matrix of such a description
and more so, it may appear in an encoding expression, for example [λy F ιx(xG & yG)] is
still a propositional formula.
Therefore, the following construction is possible:

[λy [λz ∀ p(p→p)]ιx(x = y & ψ)] (1)

Here ψ can be an arbitrary non-propositional formula in which x and y may be free and
(1) is still a valid, denoting λ-expression for which β-conversion holds.
By β-conversion and description theory the following is derivable:

[λy [λz ∀ p(p→p)]ιx(x = y & ψ)]x ≡ ψx
y (2)
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Remark. Using a modally-strict proof only the following is derivable:
[λy [λz ∀ p(p→p)]ιx(x = y & ψ)]x ≡ Aψx

y

For the construction of the paradox, the modally-fragile statement is sufficient. However,
it is possible to construct similar paradoxical cases without appealing to any modally-
fragile axioms or theorems as well.

This effectively undermines the intention of restricting λ-expressions to only proposi-
tional formulas:
Although [λx ∃F xF & ¬Fx] is not part of the language, it is possible to formulate the
following instead:

[λy [λz ∀ p(p→p)]ιx(x = y & (∃F yF & ¬Fy))] (3)

If one considers (2) now, one can see that this λ-expressions behaves exactly the way that
[λx ∃F xF & ¬Fx] would, if it were part of the language, i.e. the result of β-reduction
for [λx ∃F xF & ¬Fx] would be the same as the right hand side of (2) when applied to
(3). Therefore, the λ-expression in (3) can be used to reproduce the paradox described
in section 3.2.

5.2.3. Possible Solutions

Fortunately no theorems were derived in PLM, that actually use problematic λ-expressions
as described above. Therefore, it is possible to recover from the paradox without los-
ing any theorems. At the time of writing, it seems likely that a concept of proper λ-
expressions will be introduced to the theory and only proper λ-expressions will be forced
to have denotations and allow β-conversion. Problematic λ-expressions that would lead
to paradoxes, will not be considered proper. Several options are available to define the
propriety of λ-expressions and to adjust PLM in detail.
As a consequence the purely syntactical distinction between propositional and non-
propositional formulas is no longer sufficient to guarantee that every relation term has
a denotation. The embedding of the theory shows that an adequate definition of proper
λ-expressions can consistently replace this distinction entirely yielding a broader set of
relations. The philosophical implications of such a radical modification of the theory
have not yet been analyzed entirely though, and at the time of writing it is an open
question whether such a modification may be implemented in future versions of PLM.

5.3. A Meta-Conjecture about Possible Worlds

A conversation between Bruno Woltzenlogel Paleo and Edward Zalta about the Theory
of Abstract Objects led to the following meta-conjecture:
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“ For every syntactic possible world w, there exists a semantic point p which is the
denotation of w. ”1

Since the embedding constructs a representation of the semantics of PLM, it was possible
to formally analyze the relationship between syntactic and semantic possible worlds and
arrive at the following theorems (see A.10):

• ∀ x. [PossibleWorld (xP ) in w] −→ (∃ v. ∀ p. [xP |= p in w] = [p in v])
• ∀ v. ∃ x. [PossibleWorld (xP ) in w] ∧ (∀ p. [p in v] = [xP |= p in w])

The first statement shows that for every syntactic possible world x there is a semantic
possible world v, such that a proposition is syntactically true in x, if and only if it is
semantically true in v.
The second statement shows that for every semantic possible world v there is a syntactic
possible world x, such that a proposition is semantically true in v, if and only if it is
syntactically true in x.
This result extends the following theorems already derived syntactically in PLM (w is
restricted to only range over syntactic possible worlds):

• ♦p ≡ ∃w(w |= p) (433.1)
• �p ≡ ∀w(w |= p) (433.2)

Whereas the syntactic statements of PLM already show the relation between the modal
operators and syntactic possible worlds, the semantic statements derived in the em-
bedding show that there is in fact a natural bijection between syntactic and semantic
possible worlds.
This example shows that a semantical embedding allows a detailed analysis of the se-
mantical properties of a theory and to arrive at interesting meta-logical results.

5.4. Functional Object Theory

The first and foremost goal of the presented work was to show that the second-order
fragment of the Theory of Abstract Objects as described in PLM can be represented in
functional higher-order logic using a shallow semantical embedding.
As a result a theory was constructed in Isabelle/HOL that - although its faithfulness is
yet to be formally verified - is most likely able to represent and verify all reasoning in the
target theory. A formal analysis of the faithfulness of the embedding is unfortunately
not possible at this time, since the theory of PLM first has to be adjusted to prevent
the discovered paradox. Depending on the precise modifications of PLM the embedding
will have to be adjusted accordingly, after which the question can be revisited.
The embedding goes to great lengths to construct a restricted environment, in which it
is possible to derive new theorems that can easily be translated back to the reference
system of PLM. The fact that the construction of the paradox described in section 5.2

1This formulation originates in the resulting e-mail correspondence between Bruno Woltzenlogel
Paleo and Christoph Benzmüller.
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could be reproduced in the target logic, strongly indicates the merits and success of this
approach.
Independently of the relation between the embedding and the target system, a byproduct
of the embedding is a working functional variant of object theory that deserves to be
studied in its own right. To that end future research may want to drop the layered
structure of the embedding and dismiss all constructions that solely serve to restrict
reasoning in the embedding in order to more closely reproduce the language of PLM.
Automated reasoning in the resulting theory will be significantly more powerful and the
interesting properties of the original theory, that result from the introduction of abstract
objects and encoding, can still be preserved.

5.5. Relations vs. Functions

As mentioned in the introduction, Oppenheimer and Zalta argue that relational type
theory is more fundamental than functional type theory (see [8]). One of their main
arguments is that the Theory of Abstract Objects is not representable in functional type
theory. The success of the presented embedding, however, suggests that the topic has
to be examined more closely.
Their result is supported by the presented work in the following sense: it is impossible
to represent the Theory of Abstract Objects by representing its λ-expressions directly as
primitive λ-expressions in functional logic. Furthermore, exemplification cannot be rep-
resented classically as function application, while at the same time introducing encoding
as a second mode of predication.
This already establishes that the traditional approach of translating relational type the-
ory to functional type theory in fact fails for the Theory of Abstract Objects. A simple
version of functional type theory, that only involves two primitive types (for individuals
and propositions), is insufficient for a representation of the theory.
The embedding does not share several of the properties of the representative functional
type theory constructed in [8, pp. 9-12]:

• Relations are not represented as functions from individuals to propositions.
• Exemplification is not represented as simple function application.
• The λ-expressions of object theory are not represented as primitive λ-expressions.

To illustrate the general schema that the embedding uses instead assume that there is
a primitive type for each arity of relations Rn. Let further ι be the type of individuals
and o be the type of propositions. The general construct is now the following:

• Exemplification (of an n-place relation) is a function of type Rn⇒ι⇒. . .⇒ι⇒o.
• Encoding is a function of type ι⇒R1⇒o.
• To represent λ-expressions functions Λn of type (ι⇒. . .⇒ι⇒o)⇒Rn are introduced.

The λ-expression [λx1. . . xn ϕ] of object theory is represented as Λn[λx1. . . xn ϕ].
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The Theory of Abstract Objects restricts the matrix of λ-expressions to propositional
formulas, so not all functions of type ι⇒. . .⇒ι⇒o are supposed to denote relations.
However, since in classical functional type theory functions are total, Λn has to map
all these functions to some object of type Rn. To solve this problem concepts used
in the embedding of free logic can help2. The function Λn can map functions of type
ι⇒. . .⇒ι⇒o that do not correspond to propositional formulas to objects of type Rn that
represent invalid (resp. non-existing) relations. For invalid relations the functions used
to represent encoding and exemplification can be defined to map to an object of type o

that represents invalid propositions.
Oppenheimer and Zalta argue that using a free logic and letting non-propositional
formulas fail to denote is not an option, since it prevents classical reasoning for non-
propositional formulas3. Although this is true for the case of a simple functional type
theory, it does not apply to the constructed theory: since only objects of type Rn may
fail to denote, non-propositional reasoning is unaffected.

Remark. Although the constructed functional type theory is based on the general struc-
ture of the presented embedding, instead of introducing concepts of free logic, λ-expressions
involving non-propositional formulas are assigned non-standard denotations, i.e. they
do denote, but β-conversion only holds under certain conditions (see 5.1.1). Although
this concept has merits as well, future versions of the embedding may instead utilize
the concepts described in [4] to replace this construction by a free logic implementation
that will more closely reflect the concepts of propositional formulas and λ-expressions in
object theory.

The constructed theory can represent the relations and λ-expressions of object theory,
as well as exemplification and encoding. Furthermore, the embedding shows that it has
a model and that an adequate intensional interpretation of propositions can be used to
preserve the desired hyperintensionality of relations in λ-expressions.
In summary it can be concluded that a representation of object theory in functional type
theory is feasible, although it is connected with a fair amount of complexity (i.e. the
introduction of additional primitive types and the usage of concepts of intensional and
free logic). On the other hand, whether this result contradicts the philosophical claim
that relations are more fundamental than functions, is still debatable considering the fact
that the proposed construction has to introduce new primitive types for relations4 and
the construction is complex in general. Further it has to be noted that so far only the
second-order fragment of object theory has been considered and the full type-theoretic
version of the theory may present further challenges.

2See the embedding of free logic constructed in [4].
3See [8, pp. 30-31].
4Note, however, that the embedding can represent relations as functions acting on urelements fol-

lowing the Aczel-model.
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5.6. Conclusion

The presented work shows that shallow semantical embeddings in HOL have the potential
to represent even highly complex theories that originate in a fundamentally different
tradition of logical reasoning (e.g. relational instead of functional type theory). The
presented embedding represents the most ambitious project in this area so far and its
success clearly shows the merits of the approach.
Not only could the embedding uncover a previously unknown paradox in the formulation
of its target theory, but it could contribute to the understanding of the relation between
functional and relational type theory and provide further insights into the general struc-
ture of the target theory, its semantics and possible models. It can even show that a
consistent extension of the theory is possible that can increase its expressibility.
For the field of mathematics an analysis of chapters 14 and 15 of PLM, that construct
natural numbers and theoretical mathematical objects and relations in object theory,
is of particular interest. The embedding can be a significant aid in the study of these
chapters, since the properties of the derived objects and relations can immediately be
analyzed and verified using the extensive library for abstract mathematical reasoning
already present in Isabelle/HOL as a reference.
The presented work introduces novel concepts that can benefit future endeavors of se-
mantical embeddings in general: a layered structure allows the representation of a target
theory without extensive prior results about its model structure and provides the means
to comprehensively study potential models. Custom proving methods can benefit auto-
mated reasoning in an embedded logic and provide the means to reproduce even complex
deductive rules of a target system in a user-friendly manner.
The fact that the embedding can construct a verified environment which allows to con-
veniently prove and verify theorems in the complex target system while retaining the
support of automated reasoning tools, shows the great potential of semantical embed-
dings in providing the means for a productive interaction between humans and computer
systems.
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A. Isabelle Theory

A.1. Representation Layer

A.1.1. Primitives

typedecl i — possible worlds
typedecl j — states

consts dw :: i — actual world
consts dj :: j — actual state

typedecl ω — ordinary objects
typedecl σ — special urelements
datatype υ = ωυ ω | συ σ — urelements

A.1.2. Derived Types

typedef o = UNIV ::(j⇒i⇒bool) set
morphisms evalo makeo 〈proof 〉

type-synonym Π0 = o — zero place relations
typedef Π1 = UNIV ::(υ⇒j⇒i⇒bool) set

morphisms evalΠ1 makeΠ1 〈proof 〉
typedef Π2 = UNIV ::(υ⇒υ⇒j⇒i⇒bool) set

morphisms evalΠ2 makeΠ2 〈proof 〉
typedef Π3 = UNIV ::(υ⇒υ⇒υ⇒j⇒i⇒bool) set

morphisms evalΠ3 makeΠ3 〈proof 〉

type-synonym α = Π1 set — abstract objects

datatype ν = ων ω | αν α — individuals

typedef κ = UNIV ::(ν option) set
morphisms evalκ makeκ 〈proof 〉

setup-lifting type-definition-o
setup-lifting type-definition-κ
setup-lifting type-definition-Π1

setup-lifting type-definition-Π2

setup-lifting type-definition-Π3

A.1.3. Individual Terms and Definite Descriptions

lift-definition νκ :: ν⇒κ (‹-P › [90 ] 90 ) is Some 〈proof 〉
lift-definition proper :: κ⇒bool is ( 6=) None 〈proof 〉
lift-definition rep :: κ⇒ν is the 〈proof 〉

lift-definition that::(ν⇒o)⇒κ (binder ‹ι› [8 ] 9 ) is
λ ϕ . if (∃ ! x . (ϕ x) dj dw)

then Some (THE x . (ϕ x) dj dw)

71



else None 〈proof 〉

A.1.4. Mapping from Individuals to Urelements

consts ασ :: α⇒σ
axiomatization where ασ-surj: surj ασ
definition νυ :: ν⇒υ where νυ ≡ case-ν ωυ (συ ◦ ασ)

A.1.5. Exemplification of n-place-Relations.

lift-definition exe0 ::Π0⇒o (‹(|-|)›) is id 〈proof 〉
lift-definition exe1 ::Π1⇒κ⇒o (‹(|-,-|)›) is
λ F x s w . (proper x) ∧ F (νυ (rep x)) s w 〈proof 〉

lift-definition exe2 ::Π2⇒κ⇒κ⇒o (‹(|-,-,-|)›) is
λ F x y s w . (proper x) ∧ (proper y) ∧

F (νυ (rep x)) (νυ (rep y)) s w 〈proof 〉
lift-definition exe3 ::Π3⇒κ⇒κ⇒κ⇒o (‹(|-,-,-,-|)›) is
λ F x y z s w . (proper x) ∧ (proper y) ∧ (proper z) ∧

F (νυ (rep x)) (νυ (rep y)) (νυ (rep z)) s w 〈proof 〉

A.1.6. Encoding

lift-definition enc :: κ⇒Π1⇒o (‹{|-,-|}›) is
λ x F s w . (proper x) ∧ case-ν (λ ω . False) (λ α . F ∈ α) (rep x) 〈proof 〉

A.1.7. Connectives and Quantifiers

consts I-NOT :: j⇒(i⇒bool)⇒i⇒bool
consts I-IMPL :: j⇒(i⇒bool)⇒(i⇒bool)⇒(i⇒bool)

lift-definition not :: o⇒o (‹¬-› [54 ] 70 ) is
λ p s w . s = dj ∧ ¬p dj w ∨ s 6= dj ∧ (I-NOT s (p s) w) 〈proof 〉

lift-definition impl :: o⇒o⇒o (infixl ‹→› 51 ) is
λ p q s w . s = dj ∧ (p dj w −→ q dj w) ∨ s 6= dj ∧ (I-IMPL s (p s) (q s) w) 〈proof 〉

lift-definition forallν :: (ν⇒o)⇒o (binder ‹∀ ν› [8 ] 9 ) is
λ ϕ s w . ∀ x :: ν . (ϕ x) s w 〈proof 〉

lift-definition forall0 :: (Π0⇒o)⇒o (binder ‹∀ 0› [8 ] 9 ) is
λ ϕ s w . ∀ x :: Π0 . (ϕ x) s w 〈proof 〉

lift-definition forall1 :: (Π1⇒o)⇒o (binder ‹∀ 1› [8 ] 9 ) is
λ ϕ s w . ∀ x :: Π1 . (ϕ x) s w 〈proof 〉

lift-definition forall2 :: (Π2⇒o)⇒o (binder ‹∀ 2› [8 ] 9 ) is
λ ϕ s w . ∀ x :: Π2 . (ϕ x) s w 〈proof 〉

lift-definition forall3 :: (Π3⇒o)⇒o (binder ‹∀ 3› [8 ] 9 ) is
λ ϕ s w . ∀ x :: Π3 . (ϕ x) s w 〈proof 〉

lift-definition forallo :: (o⇒o)⇒o (binder ‹∀ o› [8 ] 9 ) is
λ ϕ s w . ∀ x :: o . (ϕ x) s w 〈proof 〉

lift-definition box :: o⇒o (‹�-› [62 ] 63 ) is
λ p s w . ∀ v . p s v 〈proof 〉

lift-definition actual :: o⇒o (‹A-› [64 ] 65 ) is
λ p s w . p s dw 〈proof 〉

Remark. The connectives behave classically if evaluated for the actual state dj, whereas their
behavior is governed by uninterpreted constants for any other state.
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A.1.8. Lambda Expressions

Remark. Lambda expressions have to convert maps from individuals to propositions to relations
that are represented by maps from urelements to truth values.

lift-definition lambdabinder0 :: o⇒Π0 (‹λ0›) is id 〈proof 〉
lift-definition lambdabinder1 :: (ν⇒o)⇒Π1 (binder ‹λ› [8 ] 9 ) is
λ ϕ u s w . ∃ x . νυ x = u ∧ ϕ x s w 〈proof 〉

lift-definition lambdabinder2 :: (ν⇒ν⇒o)⇒Π2 (‹λ2›) is
λ ϕ u v s w . ∃ x y . νυ x = u ∧ νυ y = v ∧ ϕ x y s w 〈proof 〉

lift-definition lambdabinder3 :: (ν⇒ν⇒ν⇒o)⇒Π3 (‹λ3›) is
λ ϕ u v r s w . ∃ x y z . νυ x = u ∧ νυ y = v ∧ νυ z = r ∧ ϕ x y z s w 〈proof 〉

A.1.9. Proper Maps

Remark. The embedding introduces the notion of proper maps from individual terms to propo-
sitions.
Such a map is proper if and only if for all proper individual terms its truth evaluation in the
actual state only depends on the urelements corresponding to the individuals the terms denote.
Proper maps are exactly those maps that - when used as matrix of a lambda-expression - un-
conditionally allow beta-reduction.

lift-definition IsProperInX :: (κ⇒o)⇒bool is
λ ϕ . ∀ x v . (∃ a . νυ a = νυ x ∧ (ϕ (aP ) dj v)) = (ϕ (xP ) dj v) 〈proof 〉

lift-definition IsProperInXY :: (κ⇒κ⇒o)⇒bool is
λ ϕ . ∀ x y v . (∃ a b . νυ a = νυ x ∧ νυ b = νυ y

∧ (ϕ (aP ) (bP ) dj v)) = (ϕ (xP ) (yP ) dj v) 〈proof 〉
lift-definition IsProperInXYZ :: (κ⇒κ⇒κ⇒o)⇒bool is
λ ϕ . ∀ x y z v . (∃ a b c . νυ a = νυ x ∧ νυ b = νυ y ∧ νυ c = νυ z

∧ (ϕ (aP ) (bP ) (cP ) dj v)) = (ϕ (xP ) (yP ) (zP ) dj v) 〈proof 〉

A.1.10. Validity

lift-definition valid-in :: i⇒o⇒bool (infixl ‹|=› 5 ) is
λ v ϕ . ϕ dj v 〈proof 〉

Remark. A formula is considered semantically valid for a possible world, if it evaluates to True
for the actual state dj and the given possible world.

A.1.11. Concreteness

consts ConcreteInWorld :: ω⇒i⇒bool

abbreviation (input) OrdinaryObjectsPossiblyConcrete where
OrdinaryObjectsPossiblyConcrete ≡ ∀ x . ∃ v . ConcreteInWorld x v

abbreviation (input) PossiblyContingentObjectExists where
PossiblyContingentObjectExists ≡ ∃ x v . ConcreteInWorld x v

∧ (∃ w . ¬ ConcreteInWorld x w)
abbreviation (input) PossiblyNoContingentObjectExists where

PossiblyNoContingentObjectExists ≡ ∃ w . ∀ x . ConcreteInWorld x w
−→ (∀ v . ConcreteInWorld x v)

axiomatization where
OrdinaryObjectsPossiblyConcreteAxiom:
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OrdinaryObjectsPossiblyConcrete
and PossiblyContingentObjectExistsAxiom:

PossiblyContingentObjectExists
and PossiblyNoContingentObjectExistsAxiom:

PossiblyNoContingentObjectExists

Remark. Care has to be taken that the defined notion of concreteness coincides with the meta-
logical distinction between abstract objects and ordinary objects. Furthermore the axioms about
concreteness have to be satisfied. This is achieved by introducing an uninterpreted constant
ConcreteInWorld that determines whether an ordinary object is concrete in a given possible world.
This constant is axiomatized, such that all ordinary objects are possibly concrete, contingent
objects possibly exist and possibly no contingent objects exist.

lift-definition Concrete::Π1 (‹E !›) is
λ u s w . case u of ωυ x ⇒ ConcreteInWorld x w | - ⇒ False 〈proof 〉

Remark. Concreteness of ordinary objects is now defined using this axiomatized uninterpreted
constant. Abstract objects on the other hand are never concrete.

A.1.12. Collection of Meta-Definitions

named-theorems meta-defs

declare not-def [meta-defs] impl-def [meta-defs] forallν-def [meta-defs]
forall0-def [meta-defs] forall1-def [meta-defs]
forall2-def [meta-defs] forall3-def [meta-defs] forallo-def [meta-defs]
box-def [meta-defs] actual-def [meta-defs] that-def [meta-defs]
lambdabinder0-def [meta-defs] lambdabinder1-def [meta-defs]
lambdabinder2-def [meta-defs] lambdabinder3-def [meta-defs]
exe0-def [meta-defs] exe1-def [meta-defs] exe2-def [meta-defs]
exe3-def [meta-defs] enc-def [meta-defs] inv-def [meta-defs]
that-def [meta-defs] valid-in-def [meta-defs] Concrete-def [meta-defs]

A.1.13. Auxiliary Lemmata

named-theorems meta-aux

declare makeκ-inverse[meta-aux] evalκ-inverse[meta-aux]
makeo-inverse[meta-aux] evalo-inverse[meta-aux]
makeΠ1-inverse[meta-aux] evalΠ1-inverse[meta-aux]
makeΠ2-inverse[meta-aux] evalΠ2-inverse[meta-aux]
makeΠ3-inverse[meta-aux] evalΠ3-inverse[meta-aux]

lemma νυ-ων-is-ωυ[meta-aux]: νυ (ων x) = ωυ x 〈proof 〉
lemma rep-proper-id[meta-aux]: rep (xP ) = x
〈proof 〉

lemma νκ-proper [meta-aux]: proper (xP )
〈proof 〉

lemma no-αω[meta-aux]: ¬(νυ (αν x) = ωυ y) 〈proof 〉
lemma no-σω[meta-aux]: ¬(συ x = ωυ y) 〈proof 〉
lemma νυ-surj[meta-aux]: surj νυ
〈proof 〉

lemma lambdaΠ1-aux[meta-aux]:
makeΠ1 (λu s w. ∃ x. νυ x = u ∧ evalΠ1 F (νυ x) s w) = F
〈proof 〉
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lemma lambdaΠ2-aux[meta-aux]:
makeΠ2 (λu v s w. ∃ x . νυ x = u ∧ (∃ y . νυ y = v ∧ evalΠ2 F (νυ x) (νυ y) s w)) = F
〈proof 〉

lemma lambdaΠ3-aux[meta-aux]:
makeΠ3 (λu v r s w. ∃ x. νυ x = u ∧ (∃ y. νυ y = v ∧
(∃ z. νυ z = r ∧ evalΠ3 F (νυ x) (νυ y) (νυ z) s w))) = F
〈proof 〉

A.2. Semantic Abstraction

A.2.1. Semantics

locale Semantics
begin

named-theorems semantics

A.2.1.1. Semantic Domains

type-synonym Rκ = ν
type-synonym R0 = j⇒i⇒bool
type-synonym R1 = υ⇒R0

type-synonym R2 = υ⇒υ⇒R0

type-synonym R3 = υ⇒υ⇒υ⇒R0

type-synonym W = i

A.2.1.2. Denotation Functions

lift-definition dκ :: κ⇒Rκ option is id 〈proof 〉
lift-definition d0 :: Π0⇒R0 option is Some 〈proof 〉
lift-definition d1 :: Π1⇒R1 option is Some 〈proof 〉
lift-definition d2 :: Π2⇒R2 option is Some 〈proof 〉
lift-definition d3 :: Π3⇒R3 option is Some 〈proof 〉

A.2.1.3. Actual World

definition w0 where w0 ≡ dw

A.2.1.4. Exemplification Extensions

definition ex0 :: R0⇒W⇒bool
where ex0 ≡ λ F . F dj

definition ex1 :: R1⇒W⇒(Rκ set)
where ex1 ≡ λ F w . { x . F (νυ x) dj w }

definition ex2 :: R2⇒W⇒((Rκ×Rκ) set)
where ex2 ≡ λ F w . { (x,y) . F (νυ x) (νυ y) dj w }

definition ex3 :: R3⇒W⇒((Rκ×Rκ×Rκ) set)
where ex3 ≡ λ F w . { (x,y,z) . F (νυ x) (νυ y) (νυ z) dj w }

A.2.1.5. Encoding Extensions

definition en :: R1⇒(Rκ set)
where en ≡ λ F . { x . case x of αν y ⇒ makeΠ1 (λ x . F x) ∈ y

| - ⇒ False }
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A.2.1.6. Collection of Semantic Definitions

named-theorems semantics-defs
declare d0-def [semantics-defs] d1-def [semantics-defs]

d2-def [semantics-defs] d3-def [semantics-defs]
ex0-def [semantics-defs] ex1-def [semantics-defs]
ex2-def [semantics-defs] ex3-def [semantics-defs]
en-def [semantics-defs] dκ-def [semantics-defs]
w0-def [semantics-defs]

A.2.1.7. Truth Conditions of Exemplification Formulas

lemma T1-1 [semantics]:
(w |= (|F ,x|)) = (∃ r o1 . Some r = d1 F ∧ Some o1 = dκ x ∧ o1 ∈ ex1 r w)
〈proof 〉

lemma T1-2 [semantics]:
(w |= (|F ,x,y|)) = (∃ r o1 o2 . Some r = d2 F ∧ Some o1 = dκ x

∧ Some o2 = dκ y ∧ (o1, o2) ∈ ex2 r w)
〈proof 〉

lemma T1-3 [semantics]:
(w |= (|F ,x,y,z|)) = (∃ r o1 o2 o3 . Some r = d3 F ∧ Some o1 = dκ x

∧ Some o2 = dκ y ∧ Some o3 = dκ z
∧ (o1, o2, o3) ∈ ex3 r w)

〈proof 〉

lemma T3 [semantics]:
(w |= (|F |)) = (∃ r . Some r = d0 F ∧ ex0 r w)
〈proof 〉

A.2.1.8. Truth Conditions of Encoding Formulas

lemma T2 [semantics]:
(w |= {|x,F |}) = (∃ r o1 . Some r = d1 F ∧ Some o1 = dκ x ∧ o1 ∈ en r)
〈proof 〉

A.2.1.9. Truth Conditions of Complex Formulas

lemma T4 [semantics]: (w |= ¬ψ) = (¬(w |= ψ))
〈proof 〉

lemma T5 [semantics]: (w |= ψ → χ) = (¬(w |= ψ) ∨ (w |= χ))
〈proof 〉

lemma T6 [semantics]: (w |= �ψ) = (∀ v . (v |= ψ))
〈proof 〉

lemma T7 [semantics]: (w |= Aψ) = (dw |= ψ)
〈proof 〉

lemma T8-ν[semantics]: (w |= ∀ ν x. ψ x) = (∀ x . (w |= ψ x))
〈proof 〉

lemma T8-0 [semantics]: (w |= ∀ 0 x. ψ x) = (∀ x . (w |= ψ x))
〈proof 〉
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lemma T8-1 [semantics]: (w |= ∀ 1 x. ψ x) = (∀ x . (w |= ψ x))
〈proof 〉

lemma T8-2 [semantics]: (w |= ∀ 2 x. ψ x) = (∀ x . (w |= ψ x))
〈proof 〉

lemma T8-3 [semantics]: (w |= ∀ 3 x. ψ x) = (∀ x . (w |= ψ x))
〈proof 〉

lemma T8-o[semantics]: (w |= ∀ o x. ψ x) = (∀ x . (w |= ψ x))
〈proof 〉

A.2.1.10. Denotations of Descriptions

lemma D3 [semantics]:
dκ (ιx . ψ x) = (if (∃ x . (w0 |= ψ x) ∧ (∀ y . (w0 |= ψ y) −→ y = x))

then (Some (THE x . (w0 |= ψ x))) else None)
〈proof 〉

A.2.1.11. Denotations of Lambda Expressions

lemma D4-1 [semantics]: d1 (λ x . (|F , xP |)) = d1 F
〈proof 〉

lemma D4-2 [semantics]: d2 (λ2 (λ x y . (|F , xP , yP |))) = d2 F
〈proof 〉

lemma D4-3 [semantics]: d3 (λ3 (λ x y z . (|F , xP , yP , zP |))) = d3 F
〈proof 〉

lemma D5-1 [semantics]:
assumes IsProperInX ϕ
shows

∧
w o1 r . Some r = d1 (λ x . (ϕ (xP ))) ∧ Some o1 = dκ x
−→ (o1 ∈ ex1 r w) = (w |= ϕ x)

〈proof 〉

lemma D5-2 [semantics]:
assumes IsProperInXY ϕ
shows

∧
w o1 o2 r . Some r = d2 (λ2 (λ x y . ϕ (xP ) (yP )))

∧ Some o1 = dκ x ∧ Some o2 = dκ y
−→ ((o1,o2) ∈ ex2 r w) = (w |= ϕ x y)

〈proof 〉

lemma D5-3 [semantics]:
assumes IsProperInXYZ ϕ
shows

∧
w o1 o2 o3 r . Some r = d3 (λ3 (λ x y z . ϕ (xP ) (yP ) (zP )))

∧ Some o1 = dκ x ∧ Some o2 = dκ y ∧ Some o3 = dκ z
−→ ((o1,o2,o3) ∈ ex3 r w) = (w |= ϕ x y z)

〈proof 〉

lemma D6 [semantics]: (
∧

w r . Some r = d0 (λ0 ϕ) −→ ex0 r w = (w |= ϕ))
〈proof 〉

A.2.1.12. Auxiliary Lemmas

lemma propex0: ∃ r . Some r = d0 F
〈proof 〉
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lemma propex1: ∃ r . Some r = d1 F
〈proof 〉

lemma propex2: ∃ r . Some r = d2 F
〈proof 〉

lemma propex3: ∃ r . Some r = d3 F
〈proof 〉

lemma dκ-proper : dκ (uP ) = Some u
〈proof 〉

lemma ConcretenessSemantics1 :
Some r = d1 E ! =⇒ (∃ w . ων x ∈ ex1 r w)
〈proof 〉

lemma ConcretenessSemantics2 :
Some r = d1 E ! =⇒ (x ∈ ex1 r w −→ (∃ y. x = ων y))
〈proof 〉

lemma d0-inject:
∧

x y. d0 x = d0 y =⇒ x = y
〈proof 〉

lemma d1-inject:
∧

x y. d1 x = d1 y =⇒ x = y
〈proof 〉

lemma d2-inject:
∧

x y. d2 x = d2 y =⇒ x = y
〈proof 〉

lemma d3-inject:
∧

x y. d3 x = d3 y =⇒ x = y
〈proof 〉

lemma dκ-inject:
∧

x y o1. Some o1 = dκ x ∧ Some o1 = dκ y =⇒ x = y
〈proof 〉

end

A.2.2. Introduction Rules for Proper Maps

Remark. Every map whose arguments only occur in exemplification expressions is proper.

named-theorems IsProper-intros

lemma IsProperInX-intro[IsProper-intros]:
IsProperInX (λ x . χ

— one place: (λ F . (|F ,x|))
— two place: (λ F . (|F ,x,x|)) (λ F a . (|F ,x,a|)) (λ F a . (|F ,a,x|))
— three place three x: (λ F . (|F ,x,x,x|))
— three place two x: (λ F a . (|F ,x,x,a|)) (λ F a . (|F ,x,a,x|))

(λ F a . (|F ,a,x,x|))
— three place one x: (λ F a b. (|F ,x,a,b|)) (λ F a b. (|F ,a,x,b|))

(λ F a b . (|F ,a,b,x|)))
〈proof 〉

lemma IsProperInXY-intro[IsProper-intros]:
IsProperInXY (λ x y . χ

— only x
— one place: (λ F . (|F ,x|))
— two place: (λ F . (|F ,x,x|)) (λ F a . (|F ,x,a|)) (λ F a . (|F ,a,x|))
— three place three x: (λ F . (|F ,x,x,x|))
— three place two x: (λ F a . (|F ,x,x,a|)) (λ F a . (|F ,x,a,x|))

(λ F a . (|F ,a,x,x|))
— three place one x: (λ F a b. (|F ,x,a,b|)) (λ F a b. (|F ,a,x,b|))

(λ F a b . (|F ,a,b,x|))
— only y

— one place: (λ F . (|F ,y|))
— two place: (λ F . (|F ,y,y|)) (λ F a . (|F ,y,a|)) (λ F a . (|F ,a,y|))
— three place three y: (λ F . (|F ,y,y,y|))
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— three place two y: (λ F a . (|F ,y,y,a|)) (λ F a . (|F ,y,a,y|))
(λ F a . (|F ,a,y,y|))

— three place one y: (λ F a b. (|F ,y,a,b|)) (λ F a b. (|F ,a,y,b|))
(λ F a b . (|F ,a,b,y|))

— x and y
— two place: (λ F . (|F ,x,y|)) (λ F . (|F ,y,x|))
— three place (x,y): (λ F a . (|F ,x,y,a|)) (λ F a . (|F ,x,a,y|))

(λ F a . (|F ,a,x,y|))
— three place (y,x): (λ F a . (|F ,y,x,a|)) (λ F a . (|F ,y,a,x|))

(λ F a . (|F ,a,y,x|))
— three place (x,x,y): (λ F . (|F ,x,x,y|)) (λ F . (|F ,x,y,x|))

(λ F . (|F ,y,x,x|))
— three place (x,y,y): (λ F . (|F ,x,y,y|)) (λ F . (|F ,y,x,y|))

(λ F . (|F ,y,y,x|))
— three place (x,x,x): (λ F . (|F ,x,x,x|))
— three place (y,y,y): (λ F . (|F ,y,y,y|)))

〈proof 〉

lemma IsProperInXYZ-intro[IsProper-intros]:
IsProperInXYZ (λ x y z . χ

— only x
— one place: (λ F . (|F ,x|))
— two place: (λ F . (|F ,x,x|)) (λ F a . (|F ,x,a|)) (λ F a . (|F ,a,x|))
— three place three x: (λ F . (|F ,x,x,x|))
— three place two x: (λ F a . (|F ,x,x,a|)) (λ F a . (|F ,x,a,x|))

(λ F a . (|F ,a,x,x|))
— three place one x: (λ F a b. (|F ,x,a,b|)) (λ F a b. (|F ,a,x,b|))

(λ F a b . (|F ,a,b,x|))
— only y

— one place: (λ F . (|F ,y|))
— two place: (λ F . (|F ,y,y|)) (λ F a . (|F ,y,a|)) (λ F a . (|F ,a,y|))
— three place three y: (λ F . (|F ,y,y,y|))
— three place two y: (λ F a . (|F ,y,y,a|)) (λ F a . (|F ,y,a,y|))

(λ F a . (|F ,a,y,y|))
— three place one y: (λ F a b. (|F ,y,a,b|)) (λ F a b. (|F ,a,y,b|))

(λ F a b . (|F ,a,b,y|))
— only z

— one place: (λ F . (|F ,z|))
— two place: (λ F . (|F ,z,z|)) (λ F a . (|F ,z,a|)) (λ F a . (|F ,a,z|))
— three place three z: (λ F . (|F ,z,z,z|))
— three place two z: (λ F a . (|F ,z,z,a|)) (λ F a . (|F ,z,a,z|))

(λ F a . (|F ,a,z,z|))
— three place one z: (λ F a b. (|F ,z,a,b|)) (λ F a b. (|F ,a,z,b|))

(λ F a b . (|F ,a,b,z|))
— x and y

— two place: (λ F . (|F ,x,y|)) (λ F . (|F ,y,x|))
— three place (x,y): (λ F a . (|F ,x,y,a|)) (λ F a . (|F ,x,a,y|))

(λ F a . (|F ,a,x,y|))
— three place (y,x): (λ F a . (|F ,y,x,a|)) (λ F a . (|F ,y,a,x|))

(λ F a . (|F ,a,y,x|))
— three place (x,x,y): (λ F . (|F ,x,x,y|)) (λ F . (|F ,x,y,x|))

(λ F . (|F ,y,x,x|))
— three place (x,y,y): (λ F . (|F ,x,y,y|)) (λ F . (|F ,y,x,y|))

(λ F . (|F ,y,y,x|))
— three place (x,x,x): (λ F . (|F ,x,x,x|))
— three place (y,y,y): (λ F . (|F ,y,y,y|))

— x and z
— two place: (λ F . (|F ,x,z|)) (λ F . (|F ,z,x|))

79



— three place (x,z): (λ F a . (|F ,x,z,a|)) (λ F a . (|F ,x,a,z|))
(λ F a . (|F ,a,x,z|))

— three place (z,x): (λ F a . (|F ,z,x,a|)) (λ F a . (|F ,z,a,x|))
(λ F a . (|F ,a,z,x|))

— three place (x,x,z): (λ F . (|F ,x,x,z|)) (λ F . (|F ,x,z,x|))
(λ F . (|F ,z,x,x|))

— three place (x,z,z): (λ F . (|F ,x,z,z|)) (λ F . (|F ,z,x,z|))
(λ F . (|F ,z,z,x|))

— three place (x,x,x): (λ F . (|F ,x,x,x|))
— three place (z,z,z): (λ F . (|F ,z,z,z|))

— y and z
— two place: (λ F . (|F ,y,z|)) (λ F . (|F ,z,y|))
— three place (y,z): (λ F a . (|F ,y,z,a|)) (λ F a . (|F ,y,a,z|))

(λ F a . (|F ,a,y,z|))
— three place (z,y): (λ F a . (|F ,z,y,a|)) (λ F a . (|F ,z,a,y|))

(λ F a . (|F ,a,z,y|))
— three place (y,y,z): (λ F . (|F ,y,y,z|)) (λ F . (|F ,y,z,y|))

(λ F . (|F ,z,y,y|))
— three place (y,z,z): (λ F . (|F ,y,z,z|)) (λ F . (|F ,z,y,z|))

(λ F . (|F ,z,z,y|))
— three place (y,y,y): (λ F . (|F ,y,y,y|))
— three place (z,z,z): (λ F . (|F ,z,z,z|))

— x y z
— three place (x,. . . ): (λ F . (|F ,x,y,z|)) (λ F . (|F ,x,z,y|))
— three place (y,. . . ): (λ F . (|F ,y,x,z|)) (λ F . (|F ,y,z,x|))
— three place (z,. . . ): (λ F . (|F ,z,x,y|)) (λ F . (|F ,z,y,x|)))

〈proof 〉

method show-proper = (fast intro: IsProper-intros)

A.2.3. Validity Syntax

abbreviation validity-in :: o⇒i⇒bool (‹[- in -]› [1 ]) where
validity-in ≡ λ ϕ v . v |= ϕ

definition actual-validity :: o⇒bool (‹[-]› [1 ]) where
actual-validity ≡ λ ϕ . dw |= ϕ

definition necessary-validity :: o⇒bool (‹�[-]› [1 ]) where
necessary-validity ≡ λ ϕ . ∀ v . (v |= ϕ)

A.3. General Quantification

Remark. In order to define general quantifiers that can act on individuals as well as relations
a type class is introduced which assumes the semantics of the all quantifier. This type class is
then instantiated for individuals and relations.

A.3.1. Type Class

class quantifiable = fixes forall :: ( ′a⇒o)⇒o (binder ‹∀ › [8 ] 9 )
assumes quantifiable-T8 : (w |= (∀ x . ψ x)) = (∀ x . (w |= (ψ x)))

begin
end

lemma (in Semantics) T8 : shows (w |= ∀ x . ψ x) = (∀ x . (w |= ψ x))
〈proof 〉

80



A.3.2. Instantiations

instantiation ν :: quantifiable
begin

definition forall-ν :: (ν⇒o)⇒o where forall-ν ≡ forallν
instance 〈proof 〉

end

instantiation o :: quantifiable
begin

definition forall-o :: (o⇒o)⇒o where forall-o ≡ forallo
instance 〈proof 〉

end

instantiation Π1 :: quantifiable
begin

definition forall-Π1 :: (Π1⇒o)⇒o where forall-Π1 ≡ forall1
instance 〈proof 〉

end

instantiation Π2 :: quantifiable
begin

definition forall-Π2 :: (Π2⇒o)⇒o where forall-Π2 ≡ forall2
instance 〈proof 〉

end

instantiation Π3 :: quantifiable
begin

definition forall-Π3 :: (Π3⇒o)⇒o where forall-Π3 ≡ forall3
instance 〈proof 〉

end

A.4. Basic Definitions

A.4.1. Derived Connectives

definition conj::o⇒o⇒o (infixl ‹&› 53 ) where
conj ≡ λ x y . ¬(x → ¬y)

definition disj::o⇒o⇒o (infixl ‹∨› 52 ) where
disj ≡ λ x y . ¬x → y

definition equiv::o⇒o⇒o (infixl ‹≡› 51 ) where
equiv ≡ λ x y . (x → y) & (y → x)

definition diamond::o⇒o (‹♦-› [62 ] 63 ) where
diamond ≡ λ ϕ . ¬�¬ϕ

definition (in quantifiable) exists :: ( ′a⇒o)⇒o (binder ‹∃ › [8 ] 9 ) where
exists ≡ λ ϕ . ¬(∀ x . ¬ϕ x)

named-theorems conn-defs
declare diamond-def [conn-defs] conj-def [conn-defs]

disj-def [conn-defs] equiv-def [conn-defs]
exists-def [conn-defs]

A.4.2. Abstract and Ordinary Objects

definition Ordinary :: Π1 (‹O!›) where Ordinary ≡ λx. ♦(|E !,xP |)
definition Abstract :: Π1 (‹A!›) where Abstract ≡ λx. ¬♦(|E !,xP |)
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A.4.3. Identity Definitions

definition basic-identityE ::Π2 where
basic-identityE ≡ λ2 (λ x y . (|O!,xP |) & (|O!,yP |)

& �(∀ F . (|F ,xP |) ≡ (|F ,yP |)))

definition basic-identityE-infix::κ⇒κ⇒o (infixl ‹=E› 63 ) where
x =E y ≡ (|basic-identityE , x, y|)

definition basic-identityκ (infixl ‹=κ› 63 ) where
basic-identityκ ≡ λ x y . (x =E y) ∨ (|A!,x|) & (|A!,y|)

& �(∀ F . {|x,F |} ≡ {|y,F |})

definition basic-identity1 (infixl ‹=1› 63 ) where
basic-identity1 ≡ λ F G . �(∀ x. {|xP ,F |} ≡ {|xP ,G|})

definition basic-identity2 :: Π2⇒Π2⇒o (infixl ‹=2› 63 ) where
basic-identity2 ≡ λ F G . ∀ x. ((λy. (|F ,xP ,yP |)) =1 (λy. (|G,xP ,yP |)))

& ((λy. (|F ,yP ,xP |)) =1 (λy. (|G,yP ,xP |)))

definition basic-identity3::Π3⇒Π3⇒o (infixl ‹=3› 63 ) where
basic-identity3 ≡ λ F G . ∀ x y. (λz. (|F ,zP ,xP ,yP |)) =1 (λz. (|G,zP ,xP ,yP |))

& (λz. (|F ,xP ,zP ,yP |)) =1 (λz. (|G,xP ,zP ,yP |))
& (λz. (|F ,xP ,yP ,zP |)) =1 (λz. (|G,xP ,yP ,zP |))

definition basic-identity0::o⇒o⇒o (infixl ‹=0› 63 ) where
basic-identity0 ≡ λ F G . (λy. F) =1 (λy. G)

A.5. MetaSolver

Remark. meta-solver is a resolution prover that translates expressions in the embedded logic to
expressions in the meta-logic, resp. semantic expressions. The rules for connectives, quantifiers,
exemplification and encoding are straightforward. Furthermore, rules for the defined identities
are derived. The defined identities in the embedded logic coincide with the meta-logical equality.

locale MetaSolver
begin

interpretation Semantics 〈proof 〉

named-theorems meta-intro
named-theorems meta-elim
named-theorems meta-subst
named-theorems meta-cong

method meta-solver = (assumption | rule meta-intro
| erule meta-elim | drule meta-elim | subst meta-subst
| subst (asm) meta-subst | (erule notE ; (meta-solver ; fail))
)+

A.5.1. Rules for Implication

lemma ImplI [meta-intro]: ([ϕ in v] =⇒ [ψ in v]) =⇒ ([ϕ → ψ in v])
〈proof 〉

lemma ImplE [meta-elim]: ([ϕ → ψ in v]) =⇒ ([ϕ in v] −→ [ψ in v])
〈proof 〉
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lemma ImplS [meta-subst]: ([ϕ → ψ in v]) = ([ϕ in v] −→ [ψ in v])
〈proof 〉

A.5.2. Rules for Negation

lemma NotI [meta-intro]: ¬[ϕ in v] =⇒ [¬ϕ in v]
〈proof 〉

lemma NotE [meta-elim]: [¬ϕ in v] =⇒ ¬[ϕ in v]
〈proof 〉

lemma NotS [meta-subst]: [¬ϕ in v] = (¬[ϕ in v])
〈proof 〉

A.5.3. Rules for Conjunction

lemma ConjI [meta-intro]: ([ϕ in v] ∧ [ψ in v]) =⇒ [ϕ & ψ in v]
〈proof 〉

lemma ConjE [meta-elim]: [ϕ & ψ in v] =⇒ ([ϕ in v] ∧ [ψ in v])
〈proof 〉

lemma ConjS [meta-subst]: [ϕ & ψ in v] = ([ϕ in v] ∧ [ψ in v])
〈proof 〉

A.5.4. Rules for Equivalence

lemma EquivI [meta-intro]: ([ϕ in v] ←→ [ψ in v]) =⇒ [ϕ ≡ ψ in v]
〈proof 〉

lemma EquivE [meta-elim]: [ϕ ≡ ψ in v] =⇒ ([ϕ in v] ←→ [ψ in v])
〈proof 〉

lemma EquivS [meta-subst]: [ϕ ≡ ψ in v] = ([ϕ in v] ←→ [ψ in v])
〈proof 〉

A.5.5. Rules for Disjunction

lemma DisjI [meta-intro]: ([ϕ in v] ∨ [ψ in v]) =⇒ [ϕ ∨ ψ in v]
〈proof 〉

lemma DisjE [meta-elim]: [ϕ ∨ ψ in v] =⇒ ([ϕ in v] ∨ [ψ in v])
〈proof 〉

lemma DisjS [meta-subst]: [ϕ ∨ ψ in v] = ([ϕ in v] ∨ [ψ in v])
〈proof 〉

A.5.6. Rules for Necessity

lemma BoxI [meta-intro]: (
∧

v.[ϕ in v]) =⇒ [�ϕ in v]
〈proof 〉

lemma BoxE [meta-elim]: [�ϕ in v] =⇒ (
∧

v.[ϕ in v])
〈proof 〉

lemma BoxS [meta-subst]: [�ϕ in v] = (∀ v.[ϕ in v])
〈proof 〉

A.5.7. Rules for Possibility

lemma DiaI [meta-intro]: (∃ v.[ϕ in v]) =⇒ [♦ϕ in v]
〈proof 〉

lemma DiaE [meta-elim]: [♦ϕ in v] =⇒ (∃ v.[ϕ in v])
〈proof 〉

lemma DiaS [meta-subst]: [♦ϕ in v] = (∃ v.[ϕ in v])
〈proof 〉
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A.5.8. Rules for Quantification

lemma AllI [meta-intro]: (
∧

x. [ϕ x in v]) =⇒ [∀ x. ϕ x in v]
〈proof 〉

lemma AllE [meta-elim]: [∀ x. ϕ x in v] =⇒ (
∧

x.[ϕ x in v])
〈proof 〉

lemma AllS [meta-subst]: [∀ x. ϕ x in v] = (∀ x.[ϕ x in v])
〈proof 〉

A.5.8.1. Rules for Existence
lemma ExIRule: ([ϕ y in v]) =⇒ [∃ x. ϕ x in v]
〈proof 〉

lemma ExI [meta-intro]: (∃ y . [ϕ y in v]) =⇒ [∃ x. ϕ x in v]
〈proof 〉

lemma ExE [meta-elim]: [∃ x. ϕ x in v] =⇒ (∃ y . [ϕ y in v])
〈proof 〉

lemma ExS [meta-subst]: [∃ x. ϕ x in v] = (∃ y . [ϕ y in v])
〈proof 〉

lemma ExERule: assumes [∃ x. ϕ x in v] obtains x where [ϕ x in v]
〈proof 〉

A.5.9. Rules for Actuality

lemma ActualI [meta-intro]: [ϕ in dw] =⇒ [Aϕ in v]
〈proof 〉

lemma ActualE [meta-elim]: [Aϕ in v] =⇒ [ϕ in dw]
〈proof 〉

lemma ActualS [meta-subst]: [Aϕ in v] = [ϕ in dw]
〈proof 〉

A.5.10. Rules for Encoding

lemma EncI [meta-intro]:
assumes ∃ r o1 . Some r = d1 F ∧ Some o1 = dκ x ∧ o1 ∈ en r
shows [{|x,F |} in v]
〈proof 〉

lemma EncE [meta-elim]:
assumes [{|x,F |} in v]
shows ∃ r o1 . Some r = d1 F ∧ Some o1 = dκ x ∧ o1 ∈ en r
〈proof 〉

lemma EncS [meta-subst]:
[{|x,F |} in v] = (∃ r o1 . Some r = d1 F ∧ Some o1 = dκ x ∧ o1 ∈ en r)
〈proof 〉

A.5.11. Rules for Exemplification

A.5.11.1. Zero-place Relations
lemma Exe0I [meta-intro]:

assumes ∃ r . Some r = d0 p ∧ ex0 r v
shows [(|p|) in v]
〈proof 〉

lemma Exe0E [meta-elim]:
assumes [(|p|) in v]
shows ∃ r . Some r = d0 p ∧ ex0 r v
〈proof 〉

lemma Exe0S [meta-subst]:
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[(|p|) in v] = (∃ r . Some r = d0 p ∧ ex0 r v)
〈proof 〉

A.5.11.2. One-Place Relations
lemma Exe1I [meta-intro]:

assumes ∃ r o1 . Some r = d1 F ∧ Some o1 = dκ x ∧ o1 ∈ ex1 r v
shows [(|F ,x|) in v]
〈proof 〉

lemma Exe1E [meta-elim]:
assumes [(|F ,x|) in v]
shows ∃ r o1 . Some r = d1 F ∧ Some o1 = dκ x ∧ o1 ∈ ex1 r v
〈proof 〉

lemma Exe1S [meta-subst]:
[(|F ,x|) in v] = (∃ r o1 . Some r = d1 F ∧ Some o1 = dκ x ∧ o1 ∈ ex1 r v)
〈proof 〉

A.5.11.3. Two-Place Relations
lemma Exe2I [meta-intro]:

assumes ∃ r o1 o2 . Some r = d2 F ∧ Some o1 = dκ x
∧ Some o2 = dκ y ∧ (o1, o2) ∈ ex2 r v

shows [(|F ,x,y|) in v]
〈proof 〉

lemma Exe2E [meta-elim]:
assumes [(|F ,x,y|) in v]
shows ∃ r o1 o2 . Some r = d2 F ∧ Some o1 = dκ x

∧ Some o2 = dκ y ∧ (o1, o2) ∈ ex2 r v
〈proof 〉

lemma Exe2S [meta-subst]:
[(|F ,x,y|) in v] = (∃ r o1 o2 . Some r = d2 F ∧ Some o1 = dκ x

∧ Some o2 = dκ y ∧ (o1, o2) ∈ ex2 r v)
〈proof 〉

A.5.11.4. Three-Place Relations
lemma Exe3I [meta-intro]:

assumes ∃ r o1 o2 o3 . Some r = d3 F ∧ Some o1 = dκ x
∧ Some o2 = dκ y ∧ Some o3 = dκ z
∧ (o1, o2, o3) ∈ ex3 r v

shows [(|F ,x,y,z|) in v]
〈proof 〉

lemma Exe3E [meta-elim]:
assumes [(|F ,x,y,z|) in v]
shows ∃ r o1 o2 o3 . Some r = d3 F ∧ Some o1 = dκ x

∧ Some o2 = dκ y ∧ Some o3 = dκ z
∧ (o1, o2, o3) ∈ ex3 r v

〈proof 〉
lemma Exe3S [meta-subst]:
[(|F ,x,y,z|) in v] = (∃ r o1 o2 o3 . Some r = d3 F ∧ Some o1 = dκ x

∧ Some o2 = dκ y ∧ Some o3 = dκ z
∧ (o1, o2, o3) ∈ ex3 r v)

〈proof 〉

A.5.12. Rules for Being Ordinary

lemma OrdI [meta-intro]:
assumes ∃ o1 y. Some o1 = dκ x ∧ o1 = ων y
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shows [(|O!,x|) in v]
〈proof 〉

lemma OrdE [meta-elim]:
assumes [(|O!,x|) in v]
shows ∃ o1 y. Some o1 = dκ x ∧ o1 = ων y
〈proof 〉

lemma OrdS [meta-cong]:
[(|O!,x|) in v] = (∃ o1 y. Some o1 = dκ x ∧ o1 = ων y)
〈proof 〉

A.5.13. Rules for Being Abstract

lemma AbsI [meta-intro]:
assumes ∃ o1 y. Some o1 = dκ x ∧ o1 = αν y
shows [(|A!,x|) in v]
〈proof 〉

lemma AbsE [meta-elim]:
assumes [(|A!,x|) in v]
shows ∃ o1 y. Some o1 = dκ x ∧ o1 = αν y
〈proof 〉

lemma AbsS [meta-cong]:
[(|A!,x|) in v] = (∃ o1 y. Some o1 = dκ x ∧ o1 = αν y)
〈proof 〉

A.5.14. Rules for Definite Descriptions

lemma TheEqI :
assumes

∧
x. [ϕ x in dw] = [ψ x in dw]

shows (ιx. ϕ x) = (ιx. ψ x)
〈proof 〉

A.5.15. Rules for Identity

A.5.15.1. Ordinary Objects

lemma EqEI [meta-intro]:
assumes ∃ o1 o2. Some (ων o1) = dκ x ∧ Some (ων o2) = dκ y ∧ o1 = o2

shows [x =E y in v]
〈proof 〉

lemma EqEE [meta-elim]:
assumes [x =E y in v]
shows ∃ o1 o2. Some (ων o1) = dκ x ∧ Some (ων o2) = dκ y ∧ o1 = o2

〈proof 〉
lemma EqES [meta-subst]:
[x =E y in v] = (∃ o1 o2. Some (ων o1) = dκ x ∧ Some (ων o2) = dκ y

∧ o1 = o2)
〈proof 〉

A.5.15.2. Individuals

lemma EqκI [meta-intro]:
assumes ∃ o1 o2. Some o1 = dκ x ∧ Some o2 = dκ y ∧ o1 = o2

shows [x =κ y in v]
〈proof 〉
lemma Eqκ-prop:

assumes [x =κ y in v]
shows [ϕ x in v] = [ϕ y in v]
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〈proof 〉
lemma EqκE [meta-elim]:

assumes [x =κ y in v]
shows ∃ o1 o2. Some o1 = dκ x ∧ Some o2 = dκ y ∧ o1 = o2

〈proof 〉
lemma EqκS [meta-subst]:
[x =κ y in v] = (∃ o1 o2. Some o1 = dκ x ∧ Some o2 = dκ y ∧ o1 = o2)
〈proof 〉

A.5.15.3. One-Place Relations

lemma Eq1I [meta-intro]: F = G =⇒ [F =1 G in v]
〈proof 〉

lemma Eq1E [meta-elim]: [F =1 G in v] =⇒ F = G
〈proof 〉

lemma Eq1S [meta-subst]: [F =1 G in v] = (F = G)
〈proof 〉

lemma Eq1-prop: [F =1 G in v] =⇒ [ϕ F in v] = [ϕ G in v]
〈proof 〉

A.5.15.4. Two-Place Relations

lemma Eq2I [meta-intro]: F = G =⇒ [F =2 G in v]
〈proof 〉

lemma Eq2E [meta-elim]: [F =2 G in v] =⇒ F = G
〈proof 〉
lemma Eq2S [meta-subst]: [F =2 G in v] = (F = G)
〈proof 〉

lemma Eq2-prop: [F =2 G in v] =⇒ [ϕ F in v] = [ϕ G in v]
〈proof 〉

A.5.15.5. Three-Place Relations

lemma Eq3I [meta-intro]: F = G =⇒ [F =3 G in v]
〈proof 〉

lemma Eq3E [meta-elim]: [F =3 G in v] =⇒ F = G
〈proof 〉
lemma Eq3S [meta-subst]: [F =3 G in v] = (F = G)
〈proof 〉

lemma Eq3-prop: [F =3 G in v] =⇒ [ϕ F in v] = [ϕ G in v]
〈proof 〉

A.5.15.6. Propositions

lemma Eq0I [meta-intro]: x = y =⇒ [x =0 y in v]
〈proof 〉

lemma Eq0E [meta-elim]: [F =0 G in v] =⇒ F = G
〈proof 〉

lemma Eq0S [meta-subst]: [F =0 G in v] = (F = G)
〈proof 〉

lemma Eq0-prop: [F =0 G in v] =⇒ [ϕ F in v] = [ϕ G in v]
〈proof 〉

end
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A.6. General Identity

Remark. In order to define a general identity symbol that can act on all types of terms a
type class is introduced which assumes the substitution property which is needed to derive the
corresponding axiom. This type class is instantiated for all relation types, individual terms and
individuals.

A.6.1. Type Classes

class identifiable =
fixes identity :: ′a⇒ ′a⇒o (infixl ‹=› 63 )
assumes l-identity:

w |= x = y =⇒ w |= ϕ x =⇒ w |= ϕ y
begin

abbreviation notequal (infixl ‹ 6=› 63 ) where
notequal ≡ λ x y . ¬(x = y)

end

class quantifiable-and-identifiable = quantifiable + identifiable
begin

definition exists-unique::( ′a⇒o)⇒o (binder ‹∃ !› [8 ] 9 ) where
exists-unique ≡ λ ϕ . ∃ α . ϕ α & (∀ β. ϕ β → β = α)

declare exists-unique-def [conn-defs]
end

A.6.2. Instantiations

instantiation κ :: identifiable
begin

definition identity-κ where identity-κ ≡ basic-identityκ

instance 〈proof 〉
end

instantiation ν :: identifiable
begin

definition identity-ν where identity-ν ≡ λ x y . xP = yP

instance 〈proof 〉
end

instantiation Π1 :: identifiable
begin

definition identity-Π1 where identity-Π1 ≡ basic-identity1

instance 〈proof 〉
end

instantiation Π2 :: identifiable
begin

definition identity-Π2 where identity-Π2 ≡ basic-identity2

instance 〈proof 〉
end

instantiation Π3 :: identifiable
begin

definition identity-Π3 where identity-Π3 ≡ basic-identity3
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instance 〈proof 〉
end

instantiation o :: identifiable
begin

definition identity-o where identity-o ≡ basic-identity0

instance 〈proof 〉
end

instance ν :: quantifiable-and-identifiable 〈proof 〉
instance Π1 :: quantifiable-and-identifiable 〈proof 〉
instance Π2 :: quantifiable-and-identifiable 〈proof 〉
instance Π3 :: quantifiable-and-identifiable 〈proof 〉
instance o :: quantifiable-and-identifiable 〈proof 〉

A.6.3. New Identity Definitions

Remark. The basic definitions of identity use type specific quantifiers and identity symbols.
Equivalent definitions that use the general identity symbol and general quantifiers are provided.

named-theorems identity-defs
lemma identityE-def [identity-defs]:

basic-identityE ≡ λ2 (λx y. (|O!,xP |) & (|O!,yP |) & �(∀F . (|F ,xP |) ≡ (|F ,yP |)))
〈proof 〉

lemma identityE-infix-def [identity-defs]:
x =E y ≡ (|basic-identityE ,x,y|) 〈proof 〉

lemma identityκ-def [identity-defs]:
(=) ≡ λx y. x =E y ∨ (|A!,x|) & (|A!,y|) & �(∀ F . {|x,F |} ≡ {|y,F |})
〈proof 〉

lemma identityν-def [identity-defs]:
(=) ≡ λx y. (xP ) =E (yP ) ∨ (|A!,xP |) & (|A!,yP |) & �(∀ F . {|xP ,F |} ≡ {|yP ,F |})
〈proof 〉

lemma identity1-def [identity-defs]:
(=) ≡ λF G. �(∀ x . {|xP ,F |} ≡ {|xP ,G|})
〈proof 〉

lemma identity2-def [identity-defs]:
(=) ≡ λF G. ∀ x. (λy. (|F ,xP ,yP |)) = (λy. (|G,xP ,yP |))

& (λy. (|F ,yP ,xP |)) = (λy. (|G,yP ,xP |))
〈proof 〉

lemma identity3-def [identity-defs]:
(=) ≡ λF G. ∀ x y. (λz. (|F ,zP ,xP ,yP |)) = (λz. (|G,zP ,xP ,yP |))

& (λz. (|F ,xP ,zP ,yP |)) = (λz. (|G,xP ,zP ,yP |))
& (λz. (|F ,xP ,yP ,zP |)) = (λz. (|G,xP ,yP ,zP |))

〈proof 〉
lemma identityo-def [identity-defs]: (=) ≡ λF G. (λy. F) = (λy. G)
〈proof 〉

A.7. The Axioms of PLM

Remark. The axioms of PLM can now be derived from the Semantics and the model structure.

locale Axioms
begin

interpretation MetaSolver 〈proof 〉
interpretation Semantics 〈proof 〉
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named-theorems axiom

Remark. The special syntax [[-]] is introduced for stating the axioms. Modally-fragile axioms
are stated with the syntax for actual validity [-].

definition axiom :: o⇒bool (‹[[-]]›) where axiom ≡ λ ϕ . ∀ v . [ϕ in v]

method axiom-meta-solver = ((((unfold axiom-def )?, rule allI ) | (unfold actual-validity-def )?), meta-solver ,
(simp | (auto; fail))?)

A.7.1. Closures

Remark. Rules resembling the concepts of closures in PLM are derived. Theorem attributes
are introduced to aid in the instantiation of the axioms.

lemma axiom-instance[axiom]: [[ϕ]] =⇒ [ϕ in v]
〈proof 〉

lemma closures-universal[axiom]: (
∧

x.[[ϕ x]]) =⇒ [[∀ x. ϕ x]]
〈proof 〉

lemma closures-actualization[axiom]: [[ϕ]] =⇒ [[A ϕ]]
〈proof 〉

lemma closures-necessitation[axiom]: [[ϕ]] =⇒ [[� ϕ]]
〈proof 〉

lemma necessitation-averse-axiom-instance[axiom]: [ϕ] =⇒ [ϕ in dw]
〈proof 〉

lemma necessitation-averse-closures-universal[axiom]: (
∧

x.[ϕ x]) =⇒ [∀ x. ϕ x]
〈proof 〉

〈ML〉

A.7.2. Axioms for Negations and Conditionals

lemma pl-1 [axiom]:
[[ϕ → (ψ → ϕ)]]
〈proof 〉

lemma pl-2 [axiom]:
[[(ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))]]
〈proof 〉

lemma pl-3 [axiom]:
[[(¬ϕ → ¬ψ) → ((¬ϕ → ψ) → ϕ)]]
〈proof 〉

A.7.3. Axioms of Identity

lemma l-identity[axiom]:
[[α = β → (ϕ α → ϕ β)]]
〈proof 〉

A.7.4. Axioms of Quantification

lemma cqt-1 [axiom]:
[[(∀ α. ϕ α) → ϕ α]]
〈proof 〉

lemma cqt-1-κ[axiom]:
[[(∀ α. ϕ (αP )) → ((∃ β . (βP ) = α) → ϕ α)]]
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〈proof 〉
lemma cqt-3 [axiom]:
[[(∀α. ϕ α → ψ α) → ((∀α. ϕ α) → (∀α. ψ α))]]
〈proof 〉

lemma cqt-4 [axiom]:
[[ϕ → (∀α. ϕ)]]
〈proof 〉

inductive SimpleExOrEnc
where SimpleExOrEnc (λ x . (|F ,x|))
| SimpleExOrEnc (λ x . (|F ,x,y|))
| SimpleExOrEnc (λ x . (|F ,y,x|))
| SimpleExOrEnc (λ x . (|F ,x,y,z|))
| SimpleExOrEnc (λ x . (|F ,y,x,z|))
| SimpleExOrEnc (λ x . (|F ,y,z,x|))
| SimpleExOrEnc (λ x . {|x,F |})

lemma cqt-5 [axiom]:
assumes SimpleExOrEnc ψ
shows [[(ψ (ιx . ϕ x)) → (∃ α. (αP ) = (ιx . ϕ x))]]
〈proof 〉

lemma cqt-5-mod[axiom]:
assumes SimpleExOrEnc ψ
shows [[ψ τ → (∃ α . (αP ) = τ)]]
〈proof 〉

A.7.5. Axioms of Actuality

lemma logic-actual[axiom]: [(Aϕ) ≡ ϕ]
〈proof 〉

lemma [[(Aϕ) ≡ ϕ]]
nitpick[user-axioms, expect = genuine, card = 1 , card i = 2 ]
〈proof 〉

lemma logic-actual-nec-1 [axiom]:
[[A¬ϕ ≡ ¬Aϕ]]
〈proof 〉

lemma logic-actual-nec-2 [axiom]:
[[(A(ϕ → ψ)) ≡ (Aϕ → Aψ)]]
〈proof 〉

lemma logic-actual-nec-3 [axiom]:
[[A(∀α. ϕ α) ≡ (∀α. A(ϕ α))]]
〈proof 〉

lemma logic-actual-nec-4 [axiom]:
[[Aϕ ≡ AAϕ]]
〈proof 〉

A.7.6. Axioms of Necessity

lemma qml-1 [axiom]:
[[�(ϕ → ψ) → (�ϕ → �ψ)]]
〈proof 〉

lemma qml-2 [axiom]:
[[�ϕ → ϕ]]
〈proof 〉

lemma qml-3 [axiom]:
[[♦ϕ → �♦ϕ]]
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〈proof 〉
lemma qml-4 [axiom]:
[[♦(∃ x. (|E !,xP |) & ♦¬(|E !,xP |)) & ♦¬(∃ x. (|E !,xP |) & ♦¬(|E !,xP |))]]
〈proof 〉

A.7.7. Axioms of Necessity and Actuality

lemma qml-act-1 [axiom]:
[[Aϕ → �Aϕ]]
〈proof 〉

lemma qml-act-2 [axiom]:
[[�ϕ ≡ A(�ϕ)]]
〈proof 〉

A.7.8. Axioms of Descriptions

lemma descriptions[axiom]:
[[xP = (ιx. ϕ x) ≡ (∀ z.(A(ϕ z) ≡ z = x))]]
〈proof 〉

A.7.9. Axioms for Complex Relation Terms

lemma lambda-predicates-1 [axiom]:
(λ x . ϕ x) = (λ y . ϕ y) 〈proof 〉

lemma lambda-predicates-2-1 [axiom]:
assumes IsProperInX ϕ
shows [[(|λ x . ϕ (xP ), xP |) ≡ ϕ (xP )]]
〈proof 〉

lemma lambda-predicates-2-2 [axiom]:
assumes IsProperInXY ϕ
shows [[(|(λ2 (λ x y . ϕ (xP ) (yP ))), xP , yP |) ≡ ϕ (xP ) (yP )]]
〈proof 〉

lemma lambda-predicates-2-3 [axiom]:
assumes IsProperInXYZ ϕ
shows [[(|(λ3 (λ x y z . ϕ (xP ) (yP ) (zP ))),xP ,yP ,zP |) ≡ ϕ (xP ) (yP ) (zP )]]
〈proof 〉

lemma lambda-predicates-3-0 [axiom]:
[[(λ0 ϕ) = ϕ]]
〈proof 〉

lemma lambda-predicates-3-1 [axiom]:
[[(λ x . (|F , xP |)) = F ]]
〈proof 〉

lemma lambda-predicates-3-2 [axiom]:
[[(λ2 (λ x y . (|F , xP , yP |))) = F ]]
〈proof 〉

lemma lambda-predicates-3-3 [axiom]:
[[(λ3 (λ x y z . (|F , xP , yP , zP |))) = F ]]
〈proof 〉

lemma lambda-predicates-4-0 [axiom]:
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assumes
∧

x.[(A(ϕ x ≡ ψ x)) in v]
shows [[(λ0 (χ (ιx. ϕ x)) = λ0 (χ (ιx. ψ x)))]]
〈proof 〉

lemma lambda-predicates-4-1 [axiom]:
assumes

∧
x.[(A(ϕ x ≡ ψ x)) in v]

shows [[((λ x . χ (ιx. ϕ x) x) = (λ x . χ (ιx. ψ x) x))]]
〈proof 〉

lemma lambda-predicates-4-2 [axiom]:
assumes

∧
x.[(A(ϕ x ≡ ψ x)) in v]

shows [[((λ2 (λ x y . χ (ιx. ϕ x) x y)) = (λ2 (λ x y . χ (ιx. ψ x) x y)))]]
〈proof 〉

lemma lambda-predicates-4-3 [axiom]:
assumes

∧
x.[(A(ϕ x ≡ ψ x)) in v]

shows [[(λ3 (λ x y z . χ (ιx. ϕ x) x y z)) = (λ3 (λ x y z . χ (ιx. ψ x) x y z))]]
〈proof 〉

A.7.10. Axioms of Encoding

lemma encoding[axiom]:
[[{|x,F |} → �{|x,F |}]]
〈proof 〉

lemma nocoder [axiom]:
[[(|O!,x|) → ¬(∃ F . {|x,F |})]]
〈proof 〉

lemma A-objects[axiom]:
[[∃ x. (|A!,xP |) & (∀ F . ({|xP ,F |} ≡ ϕ F))]]
〈proof 〉

end

A.8. Definitions

A.8.1. Property Negations
consts propnot :: ′a⇒ ′a (‹-−› [90 ] 90 )
overloading propnot0 ≡ propnot :: Π0⇒Π0

propnot1 ≡ propnot :: Π1⇒Π1

propnot2 ≡ propnot :: Π2⇒Π2

propnot3 ≡ propnot :: Π3⇒Π3

begin
definition propnot0 :: Π0⇒Π0 where

propnot0 ≡ λ p . λ0 (¬p)
definition propnot1 where

propnot1 ≡ λ F . λ x . ¬(|F , xP |)
definition propnot2 where

propnot2 ≡ λ F . λ2 (λ x y . ¬(|F , xP , yP |))
definition propnot3 where

propnot3 ≡ λ F . λ3 (λ x y z . ¬(|F , xP , yP , zP |))
end

named-theorems propnot-defs
declare propnot0-def [propnot-defs] propnot1-def [propnot-defs]

propnot2-def [propnot-defs] propnot3-def [propnot-defs]
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A.8.2. Noncontingent and Contingent Relations
consts Necessary :: ′a⇒o
overloading Necessary0 ≡ Necessary :: Π0⇒o

Necessary1 ≡ Necessary :: Π1⇒o
Necessary2 ≡ Necessary :: Π2⇒o
Necessary3 ≡ Necessary :: Π3⇒o

begin
definition Necessary0 where

Necessary0 ≡ λ p . �p
definition Necessary1 :: Π1⇒o where

Necessary1 ≡ λ F . �(∀ x . (|F ,xP |))
definition Necessary2 where

Necessary2 ≡ λ F . �(∀ x y . (|F ,xP ,yP |))
definition Necessary3 where

Necessary3 ≡ λ F . �(∀ x y z . (|F ,xP ,yP ,zP |))
end

named-theorems Necessary-defs
declare Necessary0-def [Necessary-defs] Necessary1-def [Necessary-defs]

Necessary2-def [Necessary-defs] Necessary3-def [Necessary-defs]

consts Impossible :: ′a⇒o
overloading Impossible0 ≡ Impossible :: Π0⇒o

Impossible1 ≡ Impossible :: Π1⇒o
Impossible2 ≡ Impossible :: Π2⇒o
Impossible3 ≡ Impossible :: Π3⇒o

begin
definition Impossible0 where

Impossible0 ≡ λ p . �¬p
definition Impossible1 where

Impossible1 ≡ λ F . �(∀ x. ¬(|F ,xP |))
definition Impossible2 where

Impossible2 ≡ λ F . �(∀ x y. ¬(|F ,xP ,yP |))
definition Impossible3 where

Impossible3 ≡ λ F . �(∀ x y z. ¬(|F ,xP ,yP ,zP |))
end

named-theorems Impossible-defs
declare Impossible0-def [Impossible-defs] Impossible1-def [Impossible-defs]

Impossible2-def [Impossible-defs] Impossible3-def [Impossible-defs]

definition NonContingent where
NonContingent ≡ λ F . (Necessary F) ∨ (Impossible F)

definition Contingent where
Contingent ≡ λ F . ¬(Necessary F ∨ Impossible F)

definition ContingentlyTrue :: o⇒o where
ContingentlyTrue ≡ λ p . p & ♦¬p

definition ContingentlyFalse :: o⇒o where
ContingentlyFalse ≡ λ p . ¬p & ♦p

definition WeaklyContingent where
WeaklyContingent ≡ λ F . Contingent F & (∀ x. ♦(|F ,xP |) → �(|F ,xP |))

A.8.3. Null and Universal Objects
definition Null :: κ⇒o where

Null ≡ λ x . (|A!,x|) & ¬(∃ F . {|x, F |})
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definition Universal :: κ⇒o where
Universal ≡ λ x . (|A!,x|) & (∀ F . {|x, F |})

definition NullObject :: κ (‹a∅›) where
NullObject ≡ (ιx . Null (xP ))

definition UniversalObject :: κ (‹aV ›) where
UniversalObject ≡ (ιx . Universal (xP ))

A.8.4. Propositional Properties
definition Propositional where

Propositional F ≡ ∃ p . F = (λ x . p)

A.8.5. Indiscriminate Properties
definition Indiscriminate :: Π1⇒o where

Indiscriminate ≡ λ F . �((∃ x . (|F ,xP |)) → (∀ x . (|F ,xP |)))

A.8.6. Miscellaneous
definition not-identicalE :: κ⇒κ⇒o (infixl ‹ 6=E› 63 )

where not-identicalE ≡ λ x y . (|(λ2 (λ x y . xP =E yP ))−, x, y|)

A.9. The Deductive System PLM

declare meta-defs[no-atp] meta-aux[no-atp]

locale PLM = Axioms
begin

A.9.1. Automatic Solver

named-theorems PLM
named-theorems PLM-intro
named-theorems PLM-elim
named-theorems PLM-dest
named-theorems PLM-subst

method PLM-solver declares PLM-intro PLM-elim PLM-subst PLM-dest PLM
= ((assumption | (match axiom in A: [[ϕ]] for ϕ ⇒ ‹fact A[axiom-instance]›)
| fact PLM | rule PLM-intro | subst PLM-subst | subst (asm) PLM-subst
| fastforce | safe | drule PLM-dest | erule PLM-elim); (PLM-solver)?)

A.9.2. Modus Ponens

lemma modus-ponens[PLM ]:
[[[ϕ in v]; [ϕ → ψ in v]]] =⇒ [ψ in v]
〈proof 〉

A.9.3. Axioms

interpretation Axioms 〈proof 〉
declare axiom[PLM ]
declare conn-defs[PLM ]
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A.9.4. (Modally Strict) Proofs and Derivations

lemma vdash-properties-6 [no-atp]:
[[[ϕ in v]; [ϕ → ψ in v]]] =⇒ [ψ in v]
〈proof 〉

lemma vdash-properties-9 [PLM ]:
[ϕ in v] =⇒ [ψ → ϕ in v]
〈proof 〉

lemma vdash-properties-10 [PLM ]:
[ϕ → ψ in v] =⇒ ([ϕ in v] =⇒ [ψ in v])
〈proof 〉

〈ML〉

A.9.5. GEN and RN

lemma rule-gen[PLM ]:
[[
∧
α . [ϕ α in v]]] =⇒ [∀α . ϕ α in v]

〈proof 〉

lemma RN-2 [PLM ]:
(
∧

v . [ψ in v] =⇒ [ϕ in v]) =⇒ ([�ψ in v] =⇒ [�ϕ in v])
〈proof 〉

lemma RN [PLM ]:
(
∧

v . [ϕ in v]) =⇒ [�ϕ in v]
〈proof 〉

A.9.6. Negations and Conditionals

lemma if-p-then-p[PLM ]:
[ϕ → ϕ in v]
〈proof 〉

lemma deduction-theorem[PLM ,PLM-intro]:
[[[ϕ in v] =⇒ [ψ in v]]] =⇒ [ϕ → ψ in v]
〈proof 〉

lemmas CP = deduction-theorem

lemma ded-thm-cor-3 [PLM ]:
[[[ϕ → ψ in v]; [ψ → χ in v]]] =⇒ [ϕ → χ in v]
〈proof 〉

lemma ded-thm-cor-4 [PLM ]:
[[[ϕ → (ψ → χ) in v]; [ψ in v]]] =⇒ [ϕ → χ in v]
〈proof 〉

lemma useful-tautologies-1 [PLM ]:
[¬¬ϕ → ϕ in v]
〈proof 〉

lemma useful-tautologies-2 [PLM ]:
[ϕ → ¬¬ϕ in v]
〈proof 〉

lemma useful-tautologies-3 [PLM ]:
[¬ϕ → (ϕ → ψ) in v]
〈proof 〉

lemma useful-tautologies-4 [PLM ]:
[(¬ψ → ¬ϕ) → (ϕ → ψ) in v]
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〈proof 〉
lemma useful-tautologies-5 [PLM ]:
[(ϕ → ψ) → (¬ψ → ¬ϕ) in v]
〈proof 〉

lemma useful-tautologies-6 [PLM ]:
[(ϕ → ¬ψ) → (ψ → ¬ϕ) in v]
〈proof 〉

lemma useful-tautologies-7 [PLM ]:
[(¬ϕ → ψ) → (¬ψ → ϕ) in v]
〈proof 〉

lemma useful-tautologies-8 [PLM ]:
[ϕ → (¬ψ → ¬(ϕ → ψ)) in v]
〈proof 〉

lemma useful-tautologies-9 [PLM ]:
[(ϕ → ψ) → ((¬ϕ → ψ) → ψ) in v]
〈proof 〉

lemma useful-tautologies-10 [PLM ]:
[(ϕ → ¬ψ) → ((ϕ → ψ) → ¬ϕ) in v]
〈proof 〉

lemma modus-tollens-1 [PLM ]:
[[[ϕ → ψ in v]; [¬ψ in v]]] =⇒ [¬ϕ in v]
〈proof 〉

lemma modus-tollens-2 [PLM ]:
[[[ϕ → ¬ψ in v]; [ψ in v]]] =⇒ [¬ϕ in v]
〈proof 〉

lemma contraposition-1 [PLM ]:
[ϕ → ψ in v] = [¬ψ → ¬ϕ in v]
〈proof 〉

lemma contraposition-2 [PLM ]:
[ϕ → ¬ψ in v] = [ψ → ¬ϕ in v]
〈proof 〉

lemma reductio-aa-1 [PLM ]:
[[[¬ϕ in v] =⇒ [¬ψ in v]; [¬ϕ in v] =⇒ [ψ in v]]] =⇒ [ϕ in v]
〈proof 〉

lemma reductio-aa-2 [PLM ]:
[[[ϕ in v] =⇒ [¬ψ in v]; [ϕ in v] =⇒ [ψ in v]]] =⇒ [¬ϕ in v]
〈proof 〉

lemma reductio-aa-3 [PLM ]:
[[[¬ϕ → ¬ψ in v]; [¬ϕ → ψ in v]]] =⇒ [ϕ in v]
〈proof 〉

lemma reductio-aa-4 [PLM ]:
[[[ϕ → ¬ψ in v]; [ϕ → ψ in v]]] =⇒ [¬ϕ in v]
〈proof 〉

lemma raa-cor-1 [PLM ]:
[[[ϕ in v]; [¬ψ in v] =⇒ [¬ϕ in v]]] =⇒ ([ϕ in v] =⇒ [ψ in v])
〈proof 〉

lemma raa-cor-2 [PLM ]:
[[[¬ϕ in v]; [¬ψ in v] =⇒ [ϕ in v]]] =⇒ ([¬ϕ in v] =⇒ [ψ in v])
〈proof 〉

lemma raa-cor-3 [PLM ]:
[[[ϕ in v]; [¬ψ → ¬ϕ in v]]] =⇒ ([ϕ in v] =⇒ [ψ in v])
〈proof 〉

lemma raa-cor-4 [PLM ]:
[[[¬ϕ in v]; [¬ψ → ϕ in v]]] =⇒ ([¬ϕ in v] =⇒ [ψ in v])
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〈proof 〉

Remark. In contrast to PLM the classical introduction and elimination rules are proven before
the tautologies. The statements proven so far are sufficient for the proofs and using the derived
rules the tautologies can be derived automatically.

lemma intro-elim-1 [PLM ]:
[[[ϕ in v]; [ψ in v]]] =⇒ [ϕ & ψ in v]
〈proof 〉

lemmas &I = intro-elim-1
lemma intro-elim-2-a[PLM ]:
[ϕ & ψ in v] =⇒ [ϕ in v]
〈proof 〉

lemma intro-elim-2-b[PLM ]:
[ϕ & ψ in v] =⇒ [ψ in v]
〈proof 〉

lemmas &E = intro-elim-2-a intro-elim-2-b
lemma intro-elim-3-a[PLM ]:
[ϕ in v] =⇒ [ϕ ∨ ψ in v]
〈proof 〉

lemma intro-elim-3-b[PLM ]:
[ψ in v] =⇒ [ϕ ∨ ψ in v]
〈proof 〉

lemmas ∨I = intro-elim-3-a intro-elim-3-b
lemma intro-elim-4-a[PLM ]:
[[[ϕ ∨ ψ in v]; [ϕ → χ in v]; [ψ → χ in v]]] =⇒ [χ in v]
〈proof 〉

lemma intro-elim-4-b[PLM ]:
[[[ϕ ∨ ψ in v]; [¬ϕ in v]]] =⇒ [ψ in v]
〈proof 〉

lemma intro-elim-4-c[PLM ]:
[[[ϕ ∨ ψ in v]; [¬ψ in v]]] =⇒ [ϕ in v]
〈proof 〉

lemma intro-elim-4-d[PLM ]:
[[[ϕ ∨ ψ in v]; [ϕ → χ in v]; [ψ → Θ in v]]] =⇒ [χ ∨ Θ in v]
〈proof 〉

lemma intro-elim-4-e[PLM ]:
[[[ϕ ∨ ψ in v]; [ϕ ≡ χ in v]; [ψ ≡ Θ in v]]] =⇒ [χ ∨ Θ in v]
〈proof 〉

lemmas ∨E = intro-elim-4-a intro-elim-4-b intro-elim-4-c intro-elim-4-d
lemma intro-elim-5 [PLM ]:
[[[ϕ → ψ in v]; [ψ → ϕ in v]]] =⇒ [ϕ ≡ ψ in v]
〈proof 〉

lemmas ≡I = intro-elim-5
lemma intro-elim-6-a[PLM ]:
[[[ϕ ≡ ψ in v]; [ϕ in v]]] =⇒ [ψ in v]
〈proof 〉

lemma intro-elim-6-b[PLM ]:
[[[ϕ ≡ ψ in v]; [ψ in v]]] =⇒ [ϕ in v]
〈proof 〉

lemma intro-elim-6-c[PLM ]:
[[[ϕ ≡ ψ in v]; [¬ϕ in v]]] =⇒ [¬ψ in v]
〈proof 〉

lemma intro-elim-6-d[PLM ]:
[[[ϕ ≡ ψ in v]; [¬ψ in v]]] =⇒ [¬ϕ in v]
〈proof 〉

lemma intro-elim-6-e[PLM ]:
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[[[ϕ ≡ ψ in v]; [ψ ≡ χ in v]]] =⇒ [ϕ ≡ χ in v]
〈proof 〉

lemma intro-elim-6-f [PLM ]:
[[[ϕ ≡ ψ in v]; [ϕ ≡ χ in v]]] =⇒ [χ ≡ ψ in v]
〈proof 〉

lemmas ≡E = intro-elim-6-a intro-elim-6-b intro-elim-6-c
intro-elim-6-d intro-elim-6-e intro-elim-6-f

lemma intro-elim-7 [PLM ]:
[ϕ in v] =⇒ [¬¬ϕ in v]
〈proof 〉

lemmas ¬¬I = intro-elim-7
lemma intro-elim-8 [PLM ]:
[¬¬ϕ in v] =⇒ [ϕ in v]
〈proof 〉

lemmas ¬¬E = intro-elim-8

context
begin

private lemma NotNotI [PLM-intro]:
[ϕ in v] =⇒ [¬(¬ϕ) in v]
〈proof 〉 lemma NotNotD[PLM-dest]:
[¬(¬ϕ) in v] =⇒ [ϕ in v]
〈proof 〉 lemma ImplI [PLM-intro]:
([ϕ in v] =⇒ [ψ in v]) =⇒ [ϕ → ψ in v]
〈proof 〉 lemma ImplE [PLM-elim, PLM-dest]:
[ϕ → ψ in v] =⇒ ([ϕ in v] =⇒ [ψ in v])
〈proof 〉 lemma ImplS [PLM-subst]:
[ϕ → ψ in v] = ([ϕ in v] −→ [ψ in v])
〈proof 〉 lemma NotI [PLM-intro]:
([ϕ in v] =⇒ (

∧
ψ .[ψ in v])) =⇒ [¬ϕ in v]

〈proof 〉 lemma NotE [PLM-elim,PLM-dest]:
[¬ϕ in v] =⇒ ([ϕ in v] −→ (∀ψ .[ψ in v]))
〈proof 〉 lemma NotS [PLM-subst]:
[¬ϕ in v] = ([ϕ in v] −→ (∀ψ .[ψ in v]))
〈proof 〉 lemma ConjI [PLM-intro]:
[[[ϕ in v]; [ψ in v]]] =⇒ [ϕ & ψ in v]
〈proof 〉 lemma ConjE [PLM-elim,PLM-dest]:
[ϕ & ψ in v] =⇒ (([ϕ in v] ∧ [ψ in v]))
〈proof 〉 lemma ConjS [PLM-subst]:
[ϕ & ψ in v] = (([ϕ in v] ∧ [ψ in v]))
〈proof 〉 lemma DisjI [PLM-intro]:
[ϕ in v] ∨ [ψ in v] =⇒ [ϕ ∨ ψ in v]
〈proof 〉 lemma DisjE [PLM-elim,PLM-dest]:
[ϕ ∨ ψ in v] =⇒ [ϕ in v] ∨ [ψ in v]
〈proof 〉 lemma DisjS [PLM-subst]:
[ϕ ∨ ψ in v] = ([ϕ in v] ∨ [ψ in v])
〈proof 〉 lemma EquivI [PLM-intro]:
[[[ϕ in v] =⇒ [ψ in v];[ψ in v] =⇒ [ϕ in v]]] =⇒ [ϕ ≡ ψ in v]
〈proof 〉 lemma EquivE [PLM-elim,PLM-dest]:
[ϕ ≡ ψ in v] =⇒ (([ϕ in v] −→ [ψ in v]) ∧ ([ψ in v] −→ [ϕ in v]))
〈proof 〉 lemma EquivS [PLM-subst]:
[ϕ ≡ ψ in v] = ([ϕ in v] ←→ [ψ in v])
〈proof 〉 lemma NotOrD[PLM-dest]:
¬[ϕ ∨ ψ in v] =⇒ ¬[ϕ in v] ∧ ¬[ψ in v]
〈proof 〉 lemma NotAndD[PLM-dest]:
¬[ϕ & ψ in v] =⇒ ¬[ϕ in v] ∨ ¬[ψ in v]
〈proof 〉 lemma NotEquivD[PLM-dest]:
¬[ϕ ≡ ψ in v] =⇒ [ϕ in v] 6= [ψ in v]
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〈proof 〉 lemma BoxI [PLM-intro]:
(
∧

v . [ϕ in v]) =⇒ [�ϕ in v]
〈proof 〉 lemma NotBoxD[PLM-dest]:
¬[�ϕ in v] =⇒ (∃ v . ¬[ϕ in v])
〈proof 〉 lemma AllI [PLM-intro]:
(
∧

x . [ϕ x in v]) =⇒ [∀ x . ϕ x in v]
〈proof 〉

lemma NotAllD[PLM-dest]:
¬[∀ x . ϕ x in v] =⇒ (∃ x . ¬[ϕ x in v])
〈proof 〉

end

lemma oth-class-taut-1-a[PLM ]:
[¬(ϕ & ¬ϕ) in v]
〈proof 〉

lemma oth-class-taut-1-b[PLM ]:
[¬(ϕ ≡ ¬ϕ) in v]
〈proof 〉

lemma oth-class-taut-2 [PLM ]:
[ϕ ∨ ¬ϕ in v]
〈proof 〉

lemma oth-class-taut-3-a[PLM ]:
[(ϕ & ϕ) ≡ ϕ in v]
〈proof 〉

lemma oth-class-taut-3-b[PLM ]:
[(ϕ & ψ) ≡ (ψ & ϕ) in v]
〈proof 〉

lemma oth-class-taut-3-c[PLM ]:
[(ϕ & (ψ & χ)) ≡ ((ϕ & ψ) & χ) in v]
〈proof 〉

lemma oth-class-taut-3-d[PLM ]:
[(ϕ ∨ ϕ) ≡ ϕ in v]
〈proof 〉

lemma oth-class-taut-3-e[PLM ]:
[(ϕ ∨ ψ) ≡ (ψ ∨ ϕ) in v]
〈proof 〉

lemma oth-class-taut-3-f [PLM ]:
[(ϕ ∨ (ψ ∨ χ)) ≡ ((ϕ ∨ ψ) ∨ χ) in v]
〈proof 〉

lemma oth-class-taut-3-g[PLM ]:
[(ϕ ≡ ψ) ≡ (ψ ≡ ϕ) in v]
〈proof 〉

lemma oth-class-taut-3-i[PLM ]:
[(ϕ ≡ (ψ ≡ χ)) ≡ ((ϕ ≡ ψ) ≡ χ) in v]
〈proof 〉

lemma oth-class-taut-4-a[PLM ]:
[ϕ ≡ ϕ in v]
〈proof 〉

lemma oth-class-taut-4-b[PLM ]:
[ϕ ≡ ¬¬ϕ in v]
〈proof 〉

lemma oth-class-taut-5-a[PLM ]:
[(ϕ → ψ) ≡ ¬(ϕ & ¬ψ) in v]
〈proof 〉

lemma oth-class-taut-5-b[PLM ]:
[¬(ϕ → ψ) ≡ (ϕ & ¬ψ) in v]
〈proof 〉

lemma oth-class-taut-5-c[PLM ]:
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[(ϕ → ψ) → ((ψ → χ) → (ϕ → χ)) in v]
〈proof 〉

lemma oth-class-taut-5-d[PLM ]:
[(ϕ ≡ ψ) ≡ (¬ϕ ≡ ¬ψ) in v]
〈proof 〉

lemma oth-class-taut-5-e[PLM ]:
[(ϕ ≡ ψ) → ((ϕ → χ) ≡ (ψ → χ)) in v]
〈proof 〉

lemma oth-class-taut-5-f [PLM ]:
[(ϕ ≡ ψ) → ((χ → ϕ) ≡ (χ → ψ)) in v]
〈proof 〉

lemma oth-class-taut-5-g[PLM ]:
[(ϕ ≡ ψ) → ((ϕ ≡ χ) ≡ (ψ ≡ χ)) in v]
〈proof 〉

lemma oth-class-taut-5-h[PLM ]:
[(ϕ ≡ ψ) → ((χ ≡ ϕ) ≡ (χ ≡ ψ)) in v]
〈proof 〉

lemma oth-class-taut-5-i[PLM ]:
[(ϕ ≡ ψ) ≡ ((ϕ & ψ) ∨ (¬ϕ & ¬ψ)) in v]
〈proof 〉

lemma oth-class-taut-5-j[PLM ]:
[(¬(ϕ ≡ ψ)) ≡ ((ϕ & ¬ψ) ∨ (¬ϕ & ψ)) in v]
〈proof 〉

lemma oth-class-taut-5-k[PLM ]:
[(ϕ → ψ) ≡ (¬ϕ ∨ ψ) in v]
〈proof 〉

lemma oth-class-taut-6-a[PLM ]:
[(ϕ & ψ) ≡ ¬(¬ϕ ∨ ¬ψ) in v]
〈proof 〉

lemma oth-class-taut-6-b[PLM ]:
[(ϕ ∨ ψ) ≡ ¬(¬ϕ & ¬ψ) in v]
〈proof 〉

lemma oth-class-taut-6-c[PLM ]:
[¬(ϕ & ψ) ≡ (¬ϕ ∨ ¬ψ) in v]
〈proof 〉

lemma oth-class-taut-6-d[PLM ]:
[¬(ϕ ∨ ψ) ≡ (¬ϕ & ¬ψ) in v]
〈proof 〉

lemma oth-class-taut-7-a[PLM ]:
[(ϕ & (ψ ∨ χ)) ≡ ((ϕ & ψ) ∨ (ϕ & χ)) in v]
〈proof 〉

lemma oth-class-taut-7-b[PLM ]:
[(ϕ ∨ (ψ & χ)) ≡ ((ϕ ∨ ψ) & (ϕ ∨ χ)) in v]
〈proof 〉

lemma oth-class-taut-8-a[PLM ]:
[((ϕ & ψ) → χ) → (ϕ → (ψ → χ)) in v]
〈proof 〉

lemma oth-class-taut-8-b[PLM ]:
[(ϕ → (ψ → χ)) → ((ϕ & ψ) → χ) in v]
〈proof 〉

lemma oth-class-taut-9-a[PLM ]:
[(ϕ & ψ) → ϕ in v]
〈proof 〉

lemma oth-class-taut-9-b[PLM ]:
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[(ϕ & ψ) → ψ in v]
〈proof 〉

lemma oth-class-taut-10-a[PLM ]:
[ϕ → (ψ → (ϕ & ψ)) in v]
〈proof 〉

lemma oth-class-taut-10-b[PLM ]:
[(ϕ → (ψ → χ)) ≡ (ψ → (ϕ → χ)) in v]
〈proof 〉

lemma oth-class-taut-10-c[PLM ]:
[(ϕ → ψ) → ((ϕ → χ) → (ϕ → (ψ & χ))) in v]
〈proof 〉

lemma oth-class-taut-10-d[PLM ]:
[(ϕ → χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ)) in v]
〈proof 〉

lemma oth-class-taut-10-e[PLM ]:
[(ϕ → ψ) → ((χ → Θ) → ((ϕ & χ) → (ψ & Θ))) in v]
〈proof 〉

lemma oth-class-taut-10-f [PLM ]:
[((ϕ & ψ) ≡ (ϕ & χ)) ≡ (ϕ → (ψ ≡ χ)) in v]
〈proof 〉

lemma oth-class-taut-10-g[PLM ]:
[((ϕ & ψ) ≡ (χ & ψ)) ≡ (ψ → (ϕ ≡ χ)) in v]
〈proof 〉

〈ML〉

A.9.7. Identity

lemma id-eq-prop-prop-1 [PLM ]:
[(F ::Π1) = F in v]
〈proof 〉

lemma id-eq-prop-prop-2 [PLM ]:
[((F ::Π1) = G) → (G = F) in v]
〈proof 〉

lemma id-eq-prop-prop-3 [PLM ]:
[(((F ::Π1) = G) & (G = H )) → (F = H ) in v]
〈proof 〉

lemma id-eq-prop-prop-4-a[PLM ]:
[(F ::Π2) = F in v]
〈proof 〉

lemma id-eq-prop-prop-4-b[PLM ]:
[(F ::Π3) = F in v]
〈proof 〉

lemma id-eq-prop-prop-5-a[PLM ]:
[((F ::Π2) = G) → (G = F) in v]
〈proof 〉

lemma id-eq-prop-prop-5-b[PLM ]:
[((F ::Π3) = G) → (G = F) in v]
〈proof 〉

lemma id-eq-prop-prop-6-a[PLM ]:
[(((F ::Π2) = G) & (G = H )) → (F = H ) in v]
〈proof 〉

lemma id-eq-prop-prop-6-b[PLM ]:
[(((F ::Π3) = G) & (G = H )) → (F = H ) in v]
〈proof 〉

lemma id-eq-prop-prop-7 [PLM ]:
[(p::Π0) = p in v]
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〈proof 〉
lemma id-eq-prop-prop-7-b[PLM ]:
[(p::o) = p in v]
〈proof 〉

lemma id-eq-prop-prop-8 [PLM ]:
[((p::Π0) = q) → (q = p) in v]
〈proof 〉

lemma id-eq-prop-prop-8-b[PLM ]:
[((p::o) = q) → (q = p) in v]
〈proof 〉

lemma id-eq-prop-prop-9 [PLM ]:
[(((p::Π0) = q) & (q = r)) → (p = r) in v]
〈proof 〉

lemma id-eq-prop-prop-9-b[PLM ]:
[(((p::o) = q) & (q = r)) → (p = r) in v]
〈proof 〉

lemma eq-E-simple-1 [PLM ]:
[(x =E y) ≡ ((|O!,x|) & (|O!,y|) & �(∀F . (|F ,x|) ≡ (|F ,y|))) in v]
〈proof 〉

lemma eq-E-simple-2 [PLM ]:
[(x =E y) → (x = y) in v]
〈proof 〉

lemma eq-E-simple-3 [PLM ]:
[(x = y) ≡ (((|O!,x|) & (|O!,y|) & �(∀F . (|F ,x|) ≡ (|F ,y|)))

∨ ((|A!,x|) & (|A!,y|) & �(∀F . {|x,F |} ≡ {|y,F |}))) in v]
〈proof 〉

lemma id-eq-obj-1 [PLM ]: [(xP ) = (xP ) in v]
〈proof 〉

lemma id-eq-obj-2 [PLM ]:
[((xP ) = (yP )) → ((yP ) = (xP )) in v]
〈proof 〉

lemma id-eq-obj-3 [PLM ]:
[((xP ) = (yP )) & ((yP ) = (zP )) → ((xP ) = (zP )) in v]
〈proof 〉

end

Remark. To unify the statements of the properties of equality a type class is introduced.

class id-eq = quantifiable-and-identifiable +
assumes id-eq-1 : [(x :: ′a) = x in v]
assumes id-eq-2 : [((x :: ′a) = y) → (y = x) in v]
assumes id-eq-3 : [((x :: ′a) = y) & (y = z) → (x = z) in v]

instantiation ν :: id-eq
begin

instance 〈proof 〉
end

instantiation o :: id-eq
begin

instance 〈proof 〉
end

instantiation Π1 :: id-eq
begin

instance 〈proof 〉
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end

instantiation Π2 :: id-eq
begin

instance 〈proof 〉
end

instantiation Π3 :: id-eq
begin

instance 〈proof 〉
end

context PLM
begin

lemma id-eq-1 [PLM ]:
[(x:: ′a::id-eq) = x in v]
〈proof 〉

lemma id-eq-2 [PLM ]:
[((x:: ′a::id-eq) = y) → (y = x) in v]
〈proof 〉

lemma id-eq-3 [PLM ]:
[((x:: ′a::id-eq) = y) & (y = z) → (x = z) in v]
〈proof 〉

〈ML〉

lemma all-self-eq-1 [PLM ]:
[�(∀ α :: ′a::id-eq . α = α) in v]
〈proof 〉

lemma all-self-eq-2 [PLM ]:
[∀α :: ′a::id-eq . �(α = α) in v]
〈proof 〉

lemma t-id-t-proper-1 [PLM ]:
[τ = τ ′ → (∃ β . (βP ) = τ) in v]
〈proof 〉

lemma t-id-t-proper-2 [PLM ]: [τ = τ ′ → (∃ β . (βP ) = τ ′) in v]
〈proof 〉

lemma id-nec[PLM ]: [((α:: ′a::id-eq) = (β)) ≡ �((α) = (β)) in v]
〈proof 〉

lemma id-nec-desc[PLM ]:
[((ιx. ϕ x) = (ιx. ψ x)) ≡ �((ιx. ϕ x) = (ιx. ψ x)) in v]
〈proof 〉

A.9.8. Quantification

lemma rule-ui[PLM ,PLM-elim,PLM-dest]:
[∀α . ϕ α in v] =⇒ [ϕ β in v]
〈proof 〉

lemmas ∀E = rule-ui

lemma rule-ui-2 [PLM ,PLM-elim,PLM-dest]:
[[[∀α . ϕ (αP ) in v]; [∃ α . (α)P = β in v]]] =⇒ [ϕ β in v]
〈proof 〉
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lemma cqt-orig-1 [PLM ]:
[(∀α. ϕ α) → ϕ β in v]
〈proof 〉

lemma cqt-orig-2 [PLM ]:
[(∀α. ϕ → ψ α) → (ϕ → (∀α. ψ α)) in v]
〈proof 〉

lemma universal[PLM ]:
(
∧
α . [ϕ α in v]) =⇒ [∀ α . ϕ α in v]

〈proof 〉
lemmas ∀ I = universal

lemma cqt-basic-1 [PLM ]:
[(∀α. (∀ β . ϕ α β)) ≡ (∀ β. (∀α. ϕ α β)) in v]
〈proof 〉

lemma cqt-basic-2 [PLM ]:
[(∀α. ϕ α ≡ ψ α) ≡ ((∀α. ϕ α → ψ α) & (∀α. ψ α → ϕ α)) in v]
〈proof 〉

lemma cqt-basic-3 [PLM ]:
[(∀α. ϕ α ≡ ψ α) → ((∀α. ϕ α) ≡ (∀α. ψ α)) in v]
〈proof 〉

lemma cqt-basic-4 [PLM ]:
[(∀α. ϕ α & ψ α) ≡ ((∀α. ϕ α) & (∀α. ψ α)) in v]
〈proof 〉

lemma cqt-basic-6 [PLM ]:
[(∀α. (∀α. ϕ α)) ≡ (∀α. ϕ α) in v]
〈proof 〉

lemma cqt-basic-7 [PLM ]:
[(ϕ → (∀α . ψ α)) ≡ (∀α.(ϕ → ψ α)) in v]
〈proof 〉

lemma cqt-basic-8 [PLM ]:
[((∀α. ϕ α) ∨ (∀α. ψ α)) → (∀α. (ϕ α ∨ ψ α)) in v]
〈proof 〉

lemma cqt-basic-9 [PLM ]:
[((∀α. ϕ α → ψ α) & (∀α. ψ α → χ α)) → (∀α. ϕ α → χ α) in v]
〈proof 〉

lemma cqt-basic-10 [PLM ]:
[((∀α. ϕ α ≡ ψ α) & (∀α. ψ α ≡ χ α)) → (∀α. ϕ α ≡ χ α) in v]
〈proof 〉

lemma cqt-basic-11 [PLM ]:
[(∀α. ϕ α ≡ ψ α) ≡ (∀α. ψ α ≡ ϕ α) in v]
〈proof 〉

lemma cqt-basic-12 [PLM ]:
[(∀α. ϕ α) ≡ (∀ β. ϕ β) in v]
〈proof 〉

lemma existential[PLM ,PLM-intro]:
[ϕ α in v] =⇒ [∃ α. ϕ α in v]
〈proof 〉

lemmas ∃ I = existential
lemma instantiation-[PLM ,PLM-elim,PLM-dest]:
[[[∃α . ϕ α in v]; (

∧
α.[ϕ α in v] =⇒ [ψ in v])]] =⇒ [ψ in v]

〈proof 〉

lemma Instantiate:
assumes [∃ x . ϕ x in v]
obtains x where [ϕ x in v]
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〈proof 〉
lemmas ∃E = Instantiate

lemma cqt-further-1 [PLM ]:
[(∀α. ϕ α) → (∃α. ϕ α) in v]
〈proof 〉

lemma cqt-further-2 [PLM ]:
[(¬(∀α. ϕ α)) ≡ (∃α. ¬ϕ α) in v]
〈proof 〉

lemma cqt-further-3 [PLM ]:
[(∀α. ϕ α) ≡ ¬(∃α. ¬ϕ α) in v]
〈proof 〉

lemma cqt-further-4 [PLM ]:
[(¬(∃α. ϕ α)) ≡ (∀α. ¬ϕ α) in v]
〈proof 〉

lemma cqt-further-5 [PLM ]:
[(∃α. ϕ α & ψ α) → ((∃α. ϕ α) & (∃α. ψ α)) in v]
〈proof 〉

lemma cqt-further-6 [PLM ]:
[(∃α. ϕ α ∨ ψ α) ≡ ((∃α. ϕ α) ∨ (∃α. ψ α)) in v]
〈proof 〉

lemma cqt-further-10 [PLM ]:
[(ϕ (α:: ′a::id-eq) & (∀ β . ϕ β → β = α)) ≡ (∀ β . ϕ β ≡ β = α) in v]
〈proof 〉

lemma cqt-further-11 [PLM ]:
[((∀α. ϕ α) & (∀α. ψ α)) → (∀α. ϕ α ≡ ψ α) in v]
〈proof 〉

lemma cqt-further-12 [PLM ]:
[((¬(∃α. ϕ α)) & (¬(∃α. ψ α))) → (∀α. ϕ α ≡ ψ α) in v]
〈proof 〉

lemma cqt-further-13 [PLM ]:
[((∃α. ϕ α) & (¬(∃α. ψ α))) → (¬(∀α. ϕ α ≡ ψ α)) in v]
〈proof 〉

lemma cqt-further-14 [PLM ]:
[(∃α. ∃ β. ϕ α β) ≡ (∃ β. ∃α. ϕ α β) in v]
〈proof 〉

lemma nec-exist-unique[PLM ]:
[(∀ x. ϕ x → �(ϕ x)) → ((∃ !x. ϕ x) → (∃ !x. �(ϕ x))) in v]
〈proof 〉

A.9.9. Actuality and Descriptions

lemma nec-imp-act[PLM ]: [�ϕ → Aϕ in v]
〈proof 〉

lemma act-conj-act-1 [PLM ]:
[A(Aϕ → ϕ) in v]
〈proof 〉

lemma act-conj-act-2 [PLM ]:
[A(ϕ → Aϕ) in v]
〈proof 〉

lemma act-conj-act-3 [PLM ]:
[(Aϕ & Aψ) → A(ϕ & ψ) in v]
〈proof 〉

lemma act-conj-act-4 [PLM ]:
[A(Aϕ ≡ ϕ) in v]
〈proof 〉

lemma closure-act-1a[PLM ]:
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[AA(Aϕ ≡ ϕ) in v]
〈proof 〉

lemma closure-act-1b[PLM ]:
[AAA(Aϕ ≡ ϕ) in v]
〈proof 〉

lemma closure-act-1c[PLM ]:
[AAAA(Aϕ ≡ ϕ) in v]
〈proof 〉

lemma closure-act-2 [PLM ]:
[∀α. A(A(ϕ α) ≡ ϕ α) in v]
〈proof 〉

lemma closure-act-3 [PLM ]:
[A(∀α. A(ϕ α) ≡ ϕ α) in v]
〈proof 〉

lemma closure-act-4 [PLM ]:
[A(∀α1 α2. A(ϕ α1 α2) ≡ ϕ α1 α2) in v]
〈proof 〉

lemma closure-act-4-b[PLM ]:
[A(∀α1 α2 α3. A(ϕ α1 α2 α3) ≡ ϕ α1 α2 α3) in v]
〈proof 〉

lemma closure-act-4-c[PLM ]:
[A(∀α1 α2 α3 α4. A(ϕ α1 α2 α3 α4) ≡ ϕ α1 α2 α3 α4) in v]
〈proof 〉

lemma RA[PLM ,PLM-intro]:
([ϕ in dw]) =⇒ [Aϕ in dw]
〈proof 〉

lemma RA-2 [PLM ,PLM-intro]:
([ψ in dw] =⇒ [ϕ in dw]) =⇒ ([Aψ in dw] =⇒ [Aϕ in dw])
〈proof 〉

context
begin

private lemma ActualE [PLM ,PLM-elim,PLM-dest]:
[Aϕ in dw] =⇒ [ϕ in dw]
〈proof 〉 lemma NotActualD[PLM-dest]:
¬[Aϕ in dw] =⇒ ¬[ϕ in dw]
〈proof 〉 lemma ActualImplI [PLM-intro]:
[Aϕ → Aψ in v] =⇒ [A(ϕ → ψ) in v]
〈proof 〉 lemma ActualImplE [PLM-dest, PLM-elim]:
[A(ϕ → ψ) in v] =⇒ [Aϕ → Aψ in v]
〈proof 〉 lemma NotActualImplD[PLM-dest]:
¬[A(ϕ → ψ) in v] =⇒ ¬[Aϕ → Aψ in v]
〈proof 〉 lemma ActualNotI [PLM-intro]:
[¬Aϕ in v] =⇒ [A¬ϕ in v]
〈proof 〉

lemma ActualNotE [PLM-elim,PLM-dest]:
[A¬ϕ in v] =⇒ [¬Aϕ in v]
〈proof 〉

lemma NotActualNotD[PLM-dest]:
¬[A¬ϕ in v] =⇒ ¬[¬Aϕ in v]
〈proof 〉 lemma ActualConjI [PLM-intro]:
[Aϕ & Aψ in v] =⇒ [A(ϕ & ψ) in v]
〈proof 〉 lemma ActualConjE [PLM-elim,PLM-dest]:
[A(ϕ & ψ) in v] =⇒ [Aϕ & Aψ in v]
〈proof 〉 lemma ActualEquivI [PLM-intro]:
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[Aϕ ≡ Aψ in v] =⇒ [A(ϕ ≡ ψ) in v]
〈proof 〉 lemma ActualEquivE [PLM-elim, PLM-dest]:
[A(ϕ ≡ ψ) in v] =⇒ [Aϕ ≡ Aψ in v]
〈proof 〉 lemma ActualBoxI [PLM-intro]:
[�ϕ in v] =⇒ [A(�ϕ) in v]
〈proof 〉 lemma ActualBoxE [PLM-elim, PLM-dest]:
[A(�ϕ) in v] =⇒ [�ϕ in v]
〈proof 〉 lemma NotActualBoxD[PLM-dest]:
¬[A(�ϕ) in v] =⇒ ¬[�ϕ in v]
〈proof 〉 lemma ActualDisjI [PLM-intro]:
[Aϕ ∨ Aψ in v] =⇒ [A(ϕ ∨ ψ) in v]
〈proof 〉 lemma ActualDisjE [PLM-elim,PLM-dest]:
[A(ϕ ∨ ψ) in v] =⇒ [Aϕ ∨ Aψ in v]
〈proof 〉 lemma NotActualDisjD[PLM-dest]:
¬[A(ϕ ∨ ψ) in v] =⇒ ¬[Aϕ ∨ Aψ in v]
〈proof 〉 lemma ActualForallI [PLM-intro]:
[∀ x . A(ϕ x) in v] =⇒ [A(∀ x . ϕ x) in v]
〈proof 〉

lemma ActualForallE [PLM-elim,PLM-dest]:
[A(∀ x . ϕ x) in v] =⇒ [∀ x . A(ϕ x) in v]
〈proof 〉

lemma NotActualForallD[PLM-dest]:
¬[A(∀ x . ϕ x) in v] =⇒ ¬[∀ x . A(ϕ x) in v]
〈proof 〉

lemma ActualActualI [PLM-intro]:
[Aϕ in v] =⇒ [AAϕ in v]
〈proof 〉

lemma ActualActualE [PLM-elim,PLM-dest]:
[AAϕ in v] =⇒ [Aϕ in v]
〈proof 〉

lemma NotActualActualD[PLM-dest]:
¬[AAϕ in v] =⇒ ¬[Aϕ in v]
〈proof 〉

end

lemma ANeg-1 [PLM ]:
[¬Aϕ ≡ ¬ϕ in dw]
〈proof 〉

lemma ANeg-2 [PLM ]:
[¬A¬ϕ ≡ ϕ in dw]
〈proof 〉

lemma Act-Basic-1 [PLM ]:
[Aϕ ∨ A¬ϕ in v]
〈proof 〉

lemma Act-Basic-2 [PLM ]:
[A(ϕ & ψ) ≡ (Aϕ & Aψ) in v]
〈proof 〉

lemma Act-Basic-3 [PLM ]:
[A(ϕ ≡ ψ) ≡ ((A(ϕ → ψ)) & (A(ψ → ϕ))) in v]
〈proof 〉

lemma Act-Basic-4 [PLM ]:
[(A(ϕ → ψ) & A(ψ → ϕ)) ≡ (Aϕ ≡ Aψ) in v]
〈proof 〉

lemma Act-Basic-5 [PLM ]:
[A(ϕ ≡ ψ) ≡ (Aϕ ≡ Aψ) in v]
〈proof 〉

lemma Act-Basic-6 [PLM ]:
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[♦ϕ ≡ A(♦ϕ) in v]
〈proof 〉

lemma Act-Basic-7 [PLM ]:
[Aϕ ≡ �Aϕ in v]
〈proof 〉

lemma Act-Basic-8 [PLM ]:
[A(�ϕ) → �Aϕ in v]
〈proof 〉

lemma Act-Basic-9 [PLM ]:
[�ϕ → �Aϕ in v]
〈proof 〉

lemma Act-Basic-10 [PLM ]:
[A(ϕ ∨ ψ) ≡ Aϕ ∨ Aψ in v]
〈proof 〉

lemma Act-Basic-11 [PLM ]:
[A(∃α. ϕ α) ≡ (∃α.A(ϕ α)) in v]
〈proof 〉

lemma act-quant-uniq[PLM ]:
[(∀ z . Aϕ z ≡ z = x) ≡ (∀ z . ϕ z ≡ z = x) in dw]
〈proof 〉

lemma fund-cont-desc[PLM ]:
[(xP = (ιx. ϕ x)) ≡ (∀ z . ϕ z ≡ (z = x)) in dw]
〈proof 〉

lemma hintikka[PLM ]:
[(xP = (ιx. ϕ x)) ≡ (ϕ x & (∀ z . ϕ z → z = x)) in dw]
〈proof 〉

lemma russell-axiom-a[PLM ]:
[((|F , ιx. ϕ x|)) ≡ (∃ x . ϕ x & (∀ z . ϕ z → z = x) & (|F , xP |)) in dw]
(is [?lhs ≡ ?rhs in dw])
〈proof 〉

lemma russell-axiom-g[PLM ]:
[{|ιx. ϕ x,F |} ≡ (∃ x . ϕ x & (∀ z . ϕ z → z = x) & {|xP , F |}) in dw]
(is [?lhs ≡ ?rhs in dw])
〈proof 〉

lemma russell-axiom[PLM ]:
assumes SimpleExOrEnc ψ
shows [ψ (ιx. ϕ x) ≡ (∃ x . ϕ x & (∀ z . ϕ z → z = x) & ψ (xP )) in dw]
(is [?lhs ≡ ?rhs in dw])
〈proof 〉

lemma unique-exists[PLM ]:
[(∃ y . yP = (ιx. ϕ x)) ≡ (∃ !x . ϕ x) in dw]
〈proof 〉

lemma y-in-1 [PLM ]:
[xP = (ιx . ϕ) → ϕ in dw]
〈proof 〉

lemma y-in-2 [PLM ]:
[zP = (ιx . ϕ x) → ϕ z in dw]
〈proof 〉
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lemma y-in-3 [PLM ]:
[(∃ y . yP = (ιx . ϕ (xP ))) → ϕ (ιx . ϕ (xP )) in dw]
〈proof 〉

lemma act-quant-nec[PLM ]:
[(∀ z . (Aϕ z ≡ z = x)) ≡ (∀ z. AAϕ z ≡ z = x) in v]
〈proof 〉

lemma equi-desc-descA-1 [PLM ]:
[(xP = (ιx . ϕ x)) ≡ (xP = (ιx . Aϕ x)) in v]
〈proof 〉

lemma equi-desc-descA-2 [PLM ]:
[(∃ y . yP = (ιx. ϕ x)) → ((ιx . ϕ x) = (ιx . Aϕ x)) in v]
〈proof 〉

lemma equi-desc-descA-3 [PLM ]:
assumes SimpleExOrEnc ψ
shows [ψ (ιx. ϕ x) → (∃ y . yP = (ιx. Aϕ x)) in v]
〈proof 〉

lemma equi-desc-descA-4 [PLM ]:
assumes SimpleExOrEnc ψ
shows [ψ (ιx. ϕ x) → ((ιx. ϕ x) = (ιx. Aϕ x)) in v]
〈proof 〉

lemma nec-hintikka-scheme[PLM ]:
[(xP = (ιx. ϕ x)) ≡ (Aϕ x & (∀ z . Aϕ z → z = x)) in v]
〈proof 〉

lemma equiv-desc-eq[PLM ]:
assumes

∧
x.[A(ϕ x ≡ ψ x) in v]

shows [(∀ x . ((xP = (ιx . ϕ x)) ≡ (xP = (ιx . ψ x)))) in v]
〈proof 〉

lemma UniqueAux:
assumes [(Aϕ (α::ν) & (∀ z . A(ϕ z) → z = α)) in v]
shows [(∀ z . (A(ϕ z) ≡ (z = α))) in v]
〈proof 〉

lemma nec-russell-axiom[PLM ]:
assumes SimpleExOrEnc ψ
shows [(ψ (ιx. ϕ x)) ≡ (∃ x . (Aϕ x & (∀ z . A(ϕ z) → z = x))

& ψ (xP )) in v]
(is [?lhs ≡ ?rhs in v])
〈proof 〉

lemma actual-desc-1 [PLM ]:
[(∃ y . (yP ) = (ιx. ϕ x)) ≡ (∃ ! x . A(ϕ x)) in v] (is [?lhs ≡ ?rhs in v])
〈proof 〉

lemma actual-desc-2 [PLM ]:
[(xP ) = (ιx. ϕ) → Aϕ in v]
〈proof 〉

lemma actual-desc-3 [PLM ]:
[(zP ) = (ιx. ϕ x) → A(ϕ z) in v]
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〈proof 〉

lemma actual-desc-4 [PLM ]:
[(∃ y . ((yP ) = (ιx. ϕ (xP )))) → A(ϕ (ιx. ϕ (xP ))) in v]
〈proof 〉

lemma unique-box-desc-1 [PLM ]:
[(∃ !x . �(ϕ x)) → (∀ y . (yP ) = (ιx. ϕ x) → ϕ y) in v]
〈proof 〉

lemma unique-box-desc[PLM ]:
[(∀ x . (ϕ x → �(ϕ x))) → ((∃ !x . ϕ x)
→ (∀ y . (yP = (ιx . ϕ x)) → ϕ y)) in v]
〈proof 〉

A.9.10. Necessity

lemma RM-1 [PLM ]:
(
∧

v.[ϕ → ψ in v]) =⇒ [�ϕ → �ψ in v]
〈proof 〉

lemma RM-1-b[PLM ]:
(
∧

v.[χ in v] =⇒ [ϕ → ψ in v]) =⇒ ([�χ in v] =⇒ [�ϕ → �ψ in v])
〈proof 〉

lemma RM-2 [PLM ]:
(
∧

v.[ϕ → ψ in v]) =⇒ [♦ϕ → ♦ψ in v]
〈proof 〉

lemma RM-2-b[PLM ]:
(
∧

v.[χ in v] =⇒ [ϕ → ψ in v]) =⇒ ([�χ in v] =⇒ [♦ϕ → ♦ψ in v])
〈proof 〉

lemma KBasic-1 [PLM ]:
[�ϕ → �(ψ → ϕ) in v]
〈proof 〉

lemma KBasic-2 [PLM ]:
[�(¬ϕ) → �(ϕ → ψ) in v]
〈proof 〉

lemma KBasic-3 [PLM ]:
[�(ϕ & ψ) ≡ �ϕ & �ψ in v]
〈proof 〉

lemma KBasic-4 [PLM ]:
[�(ϕ ≡ ψ) ≡ (�(ϕ → ψ) & �(ψ → ϕ)) in v]
〈proof 〉

lemma KBasic-5 [PLM ]:
[(�(ϕ → ψ) & �(ψ → ϕ)) → (�ϕ ≡ �ψ) in v]
〈proof 〉

lemma KBasic-6 [PLM ]:
[�(ϕ ≡ ψ) → (�ϕ ≡ �ψ) in v]
〈proof 〉

lemma [(�ϕ ≡ �ψ) → �(ϕ ≡ ψ) in v]
nitpick[expect=genuine, user-axioms, card = 1 , card i = 2 ]
〈proof 〉

lemma KBasic-7 [PLM ]:
[(�ϕ & �ψ) → �(ϕ ≡ ψ) in v]
〈proof 〉
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lemma KBasic-8 [PLM ]:
[�(ϕ & ψ) → �(ϕ ≡ ψ) in v]
〈proof 〉

lemma KBasic-9 [PLM ]:
[�((¬ϕ) & (¬ψ)) → �(ϕ ≡ ψ) in v]
〈proof 〉

lemma rule-sub-lem-1-a[PLM ]:
[�(ψ ≡ χ) in v] =⇒ [(¬ψ) ≡ (¬χ) in v]
〈proof 〉

lemma rule-sub-lem-1-b[PLM ]:
[�(ψ ≡ χ) in v] =⇒ [(ψ → Θ) ≡ (χ → Θ) in v]
〈proof 〉

lemma rule-sub-lem-1-c[PLM ]:
[�(ψ ≡ χ) in v] =⇒ [(Θ → ψ) ≡ (Θ → χ) in v]
〈proof 〉

lemma rule-sub-lem-1-d[PLM ]:
(
∧

x.[�(ψ x ≡ χ x) in v]) =⇒ [(∀α. ψ α) ≡ (∀α. χ α) in v]
〈proof 〉

lemma rule-sub-lem-1-e[PLM ]:
[�(ψ ≡ χ) in v] =⇒ [Aψ ≡ Aχ in v]
〈proof 〉

lemma rule-sub-lem-1-f [PLM ]:
[�(ψ ≡ χ) in v] =⇒ [�ψ ≡ �χ in v]
〈proof 〉

named-theorems Substable-intros

definition Substable :: ( ′a⇒ ′a⇒bool)⇒( ′a⇒o) ⇒ bool
where Substable ≡ (λ cond ϕ . ∀ ψ χ v . (cond ψ χ) −→ [ϕ ψ ≡ ϕ χ in v])

lemma Substable-intro-const[Substable-intros]:
Substable cond (λ ϕ . Θ)
〈proof 〉

lemma Substable-intro-not[Substable-intros]:
assumes Substable cond ψ
shows Substable cond (λ ϕ . ¬(ψ ϕ))
〈proof 〉

lemma Substable-intro-impl[Substable-intros]:
assumes Substable cond ψ

and Substable cond χ
shows Substable cond (λ ϕ . ψ ϕ → χ ϕ)
〈proof 〉

lemma Substable-intro-box[Substable-intros]:
assumes Substable cond ψ
shows Substable cond (λ ϕ . �(ψ ϕ))
〈proof 〉

lemma Substable-intro-actual[Substable-intros]:
assumes Substable cond ψ
shows Substable cond (λ ϕ . A(ψ ϕ))
〈proof 〉

lemma Substable-intro-all[Substable-intros]:
assumes ∀ x . Substable cond (ψ x)
shows Substable cond (λ ϕ . ∀ x . ψ x ϕ)
〈proof 〉
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named-theorems Substable-Cond-defs
end

class Substable =
fixes Substable-Cond :: ′a⇒ ′a⇒bool
assumes rule-sub-nec:∧

ϕ ψ χ Θ v . [[PLM .Substable Substable-Cond ϕ; Substable-Cond ψ χ]]
=⇒ Θ [ϕ ψ in v] =⇒ Θ [ϕ χ in v]

instantiation o :: Substable
begin

definition Substable-Cond-o where [PLM .Substable-Cond-defs]:
Substable-Cond-o ≡ λ ϕ ψ . ∀ v . [ϕ ≡ ψ in v]

instance 〈proof 〉
end

instantiation fun :: (type, Substable) Substable
begin

definition Substable-Cond-fun where [PLM .Substable-Cond-defs]:
Substable-Cond-fun ≡ λ ϕ ψ . ∀ x . Substable-Cond (ϕ x) (ψ x)

instance 〈proof 〉
end

context PLM
begin

lemma Substable-intro-equiv[Substable-intros]:
assumes Substable cond ψ

and Substable cond χ
shows Substable cond (λ ϕ . ψ ϕ ≡ χ ϕ)
〈proof 〉

lemma Substable-intro-conj[Substable-intros]:
assumes Substable cond ψ

and Substable cond χ
shows Substable cond (λ ϕ . ψ ϕ & χ ϕ)
〈proof 〉

lemma Substable-intro-disj[Substable-intros]:
assumes Substable cond ψ

and Substable cond χ
shows Substable cond (λ ϕ . ψ ϕ ∨ χ ϕ)
〈proof 〉

lemma Substable-intro-diamond[Substable-intros]:
assumes Substable cond ψ
shows Substable cond (λ ϕ . ♦(ψ ϕ))
〈proof 〉

lemma Substable-intro-exist[Substable-intros]:
assumes ∀ x . Substable cond (ψ x)
shows Substable cond (λ ϕ . ∃ x . ψ x ϕ)
〈proof 〉

lemma Substable-intro-id-o[Substable-intros]:
Substable Substable-Cond (λ ϕ . ϕ)
〈proof 〉

lemma Substable-intro-id-fun[Substable-intros]:
assumes Substable Substable-Cond ψ
shows Substable Substable-Cond (λ ϕ . ψ (ϕ x))
〈proof 〉
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method PLM-subst-method for ψ:: ′a::Substable and χ:: ′a::Substable =
(match conclusion in Θ [ϕ χ in v] for Θ and ϕ and v ⇒

‹(rule rule-sub-nec[where Θ=Θ and χ=χ and ψ=ψ and ϕ=ϕ and v=v],
((fast intro: Substable-intros, ((assumption)+)?)+; fail),
unfold Substable-Cond-defs)›)

method PLM-autosubst =
(match premises in

∧
v . [ψ ≡ χ in v] for ψ and χ ⇒

‹ match conclusion in Θ [ϕ χ in v] for Θ ϕ and v ⇒
‹(rule rule-sub-nec[where Θ=Θ and χ=χ and ψ=ψ and ϕ=ϕ and v=v],
((fast intro: Substable-intros, ((assumption)+)?)+; fail),
unfold Substable-Cond-defs)› ›)

method PLM-autosubst1 =
(match premises in

∧
v x . [ψ x ≡ χ x in v]

for ψ:: ′a::type⇒o and χ:: ′a⇒o ⇒
‹ match conclusion in Θ [ϕ χ in v] for Θ ϕ and v ⇒

‹(rule rule-sub-nec[where Θ=Θ and χ=χ and ψ=ψ and ϕ=ϕ and v=v],
((fast intro: Substable-intros, ((assumption)+)?)+; fail),
unfold Substable-Cond-defs)› ›)

method PLM-autosubst2 =
(match premises in

∧
v x y . [ψ x y ≡ χ x y in v]

for ψ:: ′a::type⇒ ′a⇒o and χ:: ′a::type⇒ ′a⇒o ⇒
‹ match conclusion in Θ [ϕ χ in v] for Θ ϕ and v ⇒

‹(rule rule-sub-nec[where Θ=Θ and χ=χ and ψ=ψ and ϕ=ϕ and v=v],
((fast intro: Substable-intros, ((assumption)+)?)+; fail),
unfold Substable-Cond-defs)› ›)

method PLM-subst-goal-method for ϕ:: ′a::Substable⇒o and ψ:: ′a =
(match conclusion in Θ [ϕ χ in v] for Θ and χ and v ⇒

‹(rule rule-sub-nec[where Θ=Θ and χ=χ and ψ=ψ and ϕ=ϕ and v=v],
((fast intro: Substable-intros, ((assumption)+)?)+; fail),
unfold Substable-Cond-defs)›)

lemma rule-sub-nec[PLM ]:
assumes Substable Substable-Cond ϕ
shows (

∧
v.[(ψ ≡ χ) in v]) =⇒ Θ [ϕ ψ in v] =⇒ Θ [ϕ χ in v]

〈proof 〉

lemma rule-sub-nec1 [PLM ]:
assumes Substable Substable-Cond ϕ
shows (

∧
v x .[(ψ x ≡ χ x) in v]) =⇒ Θ [ϕ ψ in v] =⇒ Θ [ϕ χ in v]

〈proof 〉

lemma rule-sub-nec2 [PLM ]:
assumes Substable Substable-Cond ϕ
shows (

∧
v x y .[ψ x y ≡ χ x y in v]) =⇒ Θ [ϕ ψ in v] =⇒ Θ [ϕ χ in v]

〈proof 〉

lemma rule-sub-remark-1-autosubst:
assumes (

∧
v.[(|A!,x|) ≡ (¬(♦(|E !,x|))) in v])

and [¬(|A!,x|) in v]
shows[¬¬♦(|E !,x|) in v]
〈proof 〉
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lemma rule-sub-remark-1 :
assumes (

∧
v.[(|A!,x|) ≡ (¬(♦(|E !,x|))) in v])

and [¬(|A!,x|) in v]
shows[¬¬♦(|E !,x|) in v]
〈proof 〉

lemma rule-sub-remark-2 :
assumes (

∧
v.[(|R,x,y|) ≡ ((|R,x,y|) & ((|Q,a|) ∨ (¬(|Q,a|)))) in v])

and [p → (|R,x,y|) in v]
shows[p → ((|R,x,y|) & ((|Q,a|) ∨ (¬(|Q,a|)))) in v]
〈proof 〉

lemma rule-sub-remark-3-autosubst:
assumes (

∧
v x.[(|A!,xP |) ≡ (¬(♦(|E !,xP |))) in v])

and [∃ x . (|A!,xP |) in v]
shows[∃ x . (¬(♦(|E !,xP |))) in v]
〈proof 〉

lemma rule-sub-remark-3 :
assumes (

∧
v x.[(|A!,xP |) ≡ (¬(♦(|E !,xP |))) in v])

and [∃ x . (|A!,xP |) in v]
shows [∃ x . (¬(♦(|E !,xP |))) in v]
〈proof 〉

lemma rule-sub-remark-4 :
assumes

∧
v x.[(¬(¬(|P,xP |))) ≡ (|P,xP |) in v]

and [A(¬(¬(|P,xP |))) in v]
shows [A(|P,xP |) in v]
〈proof 〉

lemma rule-sub-remark-5 :
assumes

∧
v.[(ϕ → ψ) ≡ ((¬ψ) → (¬ϕ)) in v]

and [�(ϕ → ψ) in v]
shows [�((¬ψ) → (¬ϕ)) in v]
〈proof 〉

lemma rule-sub-remark-6 :
assumes

∧
v.[ψ ≡ χ in v]

and [�(ϕ → ψ) in v]
shows [�(ϕ → χ) in v]
〈proof 〉

lemma rule-sub-remark-7 :
assumes

∧
v.[ϕ ≡ (¬(¬ϕ)) in v]

and [�(ϕ → ϕ) in v]
shows [�((¬(¬ϕ)) → ϕ) in v]
〈proof 〉

lemma rule-sub-remark-8 :
assumes

∧
v.[Aϕ ≡ ϕ in v]

and [�(Aϕ) in v]
shows [�(ϕ) in v]
〈proof 〉

lemma rule-sub-remark-9 :
assumes

∧
v.[(|P,a|) ≡ ((|P,a|) & ((|Q,b|) ∨ (¬(|Q,b|)))) in v]

and [(|P,a|) = (|P,a|) in v]
shows [(|P,a|) = ((|P,a|) & ((|Q,b|) ∨ (¬(|Q,b|)))) in v]
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〈proof 〉

lemma KBasic2-1 [PLM ]:
[�ϕ ≡ �(¬(¬ϕ)) in v]
〈proof 〉

lemma KBasic2-2 [PLM ]:
[(¬(�ϕ)) ≡ ♦(¬ϕ) in v]
〈proof 〉

lemma KBasic2-3 [PLM ]:
[�ϕ ≡ (¬(♦(¬ϕ))) in v]
〈proof 〉

lemmas Df� = KBasic2-3

lemma KBasic2-4 [PLM ]:
[�(¬(ϕ)) ≡ (¬(♦ϕ)) in v]
〈proof 〉

lemma KBasic2-5 [PLM ]:
[�(ϕ → ψ) → (♦ϕ → ♦ψ) in v]
〈proof 〉

lemmas K♦ = KBasic2-5

lemma KBasic2-6 [PLM ]:
[♦(ϕ ∨ ψ) ≡ (♦ϕ ∨ ♦ψ) in v]
〈proof 〉

lemma KBasic2-7 [PLM ]:
[(�ϕ ∨ �ψ) → �(ϕ ∨ ψ) in v]
〈proof 〉

lemma KBasic2-8 [PLM ]:
[♦(ϕ & ψ) → (♦ϕ & ♦ψ) in v]
〈proof 〉

lemma KBasic2-9 [PLM ]:
[♦(ϕ → ψ) ≡ (�ϕ → ♦ψ) in v]
〈proof 〉

lemma KBasic2-10 [PLM ]:
[♦(�ϕ) ≡ (¬(�♦(¬ϕ))) in v]
〈proof 〉

lemma KBasic2-11 [PLM ]:
[♦♦ϕ ≡ (¬(��(¬ϕ))) in v]
〈proof 〉

lemma KBasic2-12 [PLM ]: [�(ϕ ∨ ψ) → (�ϕ ∨ ♦ψ) in v]
〈proof 〉

lemma TBasic[PLM ]:
[ϕ → ♦ϕ in v]
〈proof 〉

lemmas T♦ = TBasic

lemma S5Basic-1 [PLM ]:
[♦�ϕ → �ϕ in v]
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〈proof 〉
lemmas 5♦ = S5Basic-1

lemma S5Basic-2 [PLM ]:
[�ϕ ≡ ♦�ϕ in v]
〈proof 〉

lemma S5Basic-3 [PLM ]:
[♦ϕ ≡ �♦ϕ in v]
〈proof 〉

lemma S5Basic-4 [PLM ]:
[ϕ → �♦ϕ in v]
〈proof 〉

lemma S5Basic-5 [PLM ]:
[♦�ϕ → ϕ in v]
〈proof 〉

lemmas B♦ = S5Basic-5

lemma S5Basic-6 [PLM ]:
[�ϕ → ��ϕ in v]
〈proof 〉

lemmas 4� = S5Basic-6

lemma S5Basic-7 [PLM ]:
[�ϕ ≡ ��ϕ in v]
〈proof 〉

lemma S5Basic-8 [PLM ]:
[♦♦ϕ → ♦ϕ in v]
〈proof 〉

lemmas 4♦ = S5Basic-8

lemma S5Basic-9 [PLM ]:
[♦♦ϕ ≡ ♦ϕ in v]
〈proof 〉

lemma S5Basic-10 [PLM ]:
[�(ϕ ∨ �ψ) ≡ (�ϕ ∨ �ψ) in v]
〈proof 〉

lemma S5Basic-11 [PLM ]:
[�(ϕ ∨ ♦ψ) ≡ (�ϕ ∨ ♦ψ) in v]
〈proof 〉

lemma S5Basic-12 [PLM ]:
[♦(ϕ & ♦ψ) ≡ (♦ϕ & ♦ψ) in v]
〈proof 〉

lemma S5Basic-13 [PLM ]:
[♦(ϕ & (�ψ)) ≡ (♦ϕ & (�ψ)) in v]
〈proof 〉

lemma S5Basic-14 [PLM ]:
[�(ϕ → (�ψ)) ≡ �(♦ϕ → ψ) in v]
〈proof 〉
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lemma sc-eq-box-box-1 [PLM ]:
[�(ϕ → �ϕ) → (♦ϕ ≡ �ϕ) in v]
〈proof 〉

lemma sc-eq-box-box-2 [PLM ]:
[�(ϕ → �ϕ) → ((¬�ϕ) ≡ (�(¬ϕ))) in v]
〈proof 〉

lemma sc-eq-box-box-3 [PLM ]:
[(�(ϕ → �ϕ) & �(ψ → �ψ)) → ((�ϕ ≡ �ψ) → �(ϕ ≡ ψ)) in v]
〈proof 〉

lemma derived-S5-rules-1-a[PLM ]:
assumes

∧
v. [χ in v] =⇒ [♦ϕ → ψ in v]

shows [�χ in v] =⇒ [ϕ → �ψ in v]
〈proof 〉

lemma derived-S5-rules-1-b[PLM ]:
assumes

∧
v. [♦ϕ → ψ in v]

shows [ϕ → �ψ in v]
〈proof 〉

lemma derived-S5-rules-2-a[PLM ]:
assumes

∧
v. [χ in v] =⇒ [ϕ → �ψ in v]

shows [�χ in v] =⇒ [♦ϕ → ψ in v]
〈proof 〉

lemma derived-S5-rules-2-b[PLM ]:
assumes

∧
v. [ϕ → �ψ in v]

shows [♦ϕ → ψ in v]
〈proof 〉

lemma BFs-1 [PLM ]: [(∀α. �(ϕ α)) → �(∀α. ϕ α) in v]
〈proof 〉

lemmas BF = BFs-1

lemma BFs-2 [PLM ]:
[�(∀α. ϕ α) → (∀α. �(ϕ α)) in v]
〈proof 〉

lemmas CBF = BFs-2

lemma BFs-3 [PLM ]:
[♦(∃ α. ϕ α) → (∃ α . ♦(ϕ α)) in v]
〈proof 〉

lemmas BF♦ = BFs-3

lemma BFs-4 [PLM ]:
[(∃ α . ♦(ϕ α)) → ♦(∃ α. ϕ α) in v]
〈proof 〉

lemmas CBF♦ = BFs-4

lemma sign-S5-thm-1 [PLM ]:
[(∃ α. �(ϕ α)) → �(∃ α. ϕ α) in v]
〈proof 〉

lemmas Buridan = sign-S5-thm-1

lemma sign-S5-thm-2 [PLM ]:
[♦(∀ α . ϕ α) → (∀ α . ♦(ϕ α)) in v]
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〈proof 〉
lemmas Buridan♦ = sign-S5-thm-2

lemma sign-S5-thm-3 [PLM ]:
[♦(∃ α . ϕ α & ψ α) → ♦((∃ α . ϕ α) & (∃ α . ψ α)) in v]
〈proof 〉

lemma sign-S5-thm-4 [PLM ]:
[((�(∀ α. ϕ α → ψ α)) & (�(∀ α . ψ α → χ α))) → �(∀α. ϕ α → χ α) in v]
〈proof 〉

lemma sign-S5-thm-5 [PLM ]:
[((�(∀α. ϕ α ≡ ψ α)) & (�(∀α. ψ α ≡ χ α))) → (�(∀α. ϕ α ≡ χ α)) in v]
〈proof 〉

lemma id-nec2-1 [PLM ]:
[♦((α:: ′a::id-eq) = β) ≡ (α = β) in v]
〈proof 〉

lemma id-nec2-2-Aux:
[(♦ϕ) ≡ ψ in v] =⇒ [(¬ψ) ≡ �(¬ϕ) in v]
〈proof 〉

lemma id-nec2-2 [PLM ]:
[((α:: ′a::id-eq) 6= β) ≡ �(α 6= β) in v]
〈proof 〉

lemma id-nec2-3 [PLM ]:
[(♦((α:: ′a::id-eq) 6= β)) ≡ (α 6= β) in v]
〈proof 〉

lemma exists-desc-box-1 [PLM ]:
[(∃ y . (yP ) = (ιx. ϕ x)) → (∃ y . �((yP ) = (ιx. ϕ x))) in v]
〈proof 〉

lemma exists-desc-box-2 [PLM ]:
[(∃ y . (yP ) = (ιx. ϕ x)) → �(∃ y .((yP ) = (ιx. ϕ x))) in v]
〈proof 〉

lemma en-eq-1 [PLM ]:
[♦{|x,F |} ≡ �{|x,F |} in v]
〈proof 〉

lemma en-eq-2 [PLM ]:
[{|x,F |} ≡ �{|x,F |} in v]
〈proof 〉

lemma en-eq-3 [PLM ]:
[♦{|x,F |} ≡ {|x,F |} in v]
〈proof 〉

lemma en-eq-4 [PLM ]:
[({|x,F |} ≡ {|y,G|}) ≡ (�{|x,F |} ≡ �{|y,G|}) in v]
〈proof 〉

lemma en-eq-5 [PLM ]:
[�({|x,F |} ≡ {|y,G|}) ≡ (�{|x,F |} ≡ �{|y,G|}) in v]
〈proof 〉

lemma en-eq-6 [PLM ]:
[({|x,F |} ≡ {|y,G|}) ≡ �({|x,F |} ≡ {|y,G|}) in v]
〈proof 〉

lemma en-eq-7 [PLM ]:
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[(¬{|x,F |}) ≡ �(¬{|x,F |}) in v]
〈proof 〉

lemma en-eq-8 [PLM ]:
[♦(¬{|x,F |}) ≡ (¬{|x,F |}) in v]
〈proof 〉

lemma en-eq-9 [PLM ]:
[♦(¬{|x,F |}) ≡ �(¬{|x,F |}) in v]
〈proof 〉

lemma en-eq-10 [PLM ]:
[A{|x,F |} ≡ {|x,F |} in v]
〈proof 〉

A.9.11. The Theory of Relations

lemma beta-equiv-eq-1-1 [PLM ]:
assumes IsProperInX ϕ

and IsProperInX ψ
and

∧
x.[ϕ (xP ) ≡ ψ (xP ) in v]

shows [(|λ y. ϕ (yP ), xP |) ≡ (|λ y. ψ (yP ), xP |) in v]
〈proof 〉

lemma beta-equiv-eq-1-2 [PLM ]:
assumes IsProperInXY ϕ

and IsProperInXY ψ
and

∧
x y.[ϕ (xP ) (yP ) ≡ ψ (xP ) (yP ) in v]

shows [(|λ2 (λ x y. ϕ (xP ) (yP )), xP , yP |)
≡ (|λ2 (λ x y. ψ (xP ) (yP )), xP , yP |) in v]

〈proof 〉

lemma beta-equiv-eq-1-3 [PLM ]:
assumes IsProperInXYZ ϕ

and IsProperInXYZ ψ
and

∧
x y z.[ϕ (xP ) (yP ) (zP ) ≡ ψ (xP ) (yP ) (zP ) in v]

shows [(|λ3 (λ x y z. ϕ (xP ) (yP ) (zP )), xP , yP , zP |)
≡ (|λ3 (λ x y z. ψ (xP ) (yP ) (zP )), xP , yP , zP |) in v]

〈proof 〉

lemma beta-equiv-eq-2-1 [PLM ]:
assumes IsProperInX ϕ

and IsProperInX ψ
shows [(�(∀ x . ϕ (xP ) ≡ ψ (xP ))) →

(�(∀ x . (|λ y. ϕ (yP ), xP |) ≡ (|λ y. ψ (yP ), xP |))) in v]
〈proof 〉

lemma beta-equiv-eq-2-2 [PLM ]:
assumes IsProperInXY ϕ

and IsProperInXY ψ
shows [(�(∀ x y . ϕ (xP ) (yP ) ≡ ψ (xP ) (yP ))) →

(�(∀ x y . (|λ2 (λ x y. ϕ (xP ) (yP )), xP , yP |)
≡ (|λ2 (λ x y. ψ (xP ) (yP )), xP , yP |))) in v]

〈proof 〉

lemma beta-equiv-eq-2-3 [PLM ]:
assumes IsProperInXYZ ϕ

and IsProperInXYZ ψ
shows [(�(∀ x y z . ϕ (xP ) (yP ) (zP ) ≡ ψ (xP ) (yP ) (zP ))) →

(�(∀ x y z . (|λ3 (λ x y z. ϕ (xP ) (yP ) (zP )), xP , yP , zP |)
≡ (|λ3 (λ x y z. ψ (xP ) (yP ) (zP )), xP , yP , zP |))) in v]
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〈proof 〉

lemma beta-C-meta-1 [PLM ]:
assumes IsProperInX ϕ
shows [(|λ y. ϕ (yP ), xP |) ≡ ϕ (xP ) in v]
〈proof 〉

lemma beta-C-meta-2 [PLM ]:
assumes IsProperInXY ϕ
shows [(|λ2 (λ x y. ϕ (xP ) (yP )), xP , yP |) ≡ ϕ (xP ) (yP ) in v]
〈proof 〉

lemma beta-C-meta-3 [PLM ]:
assumes IsProperInXYZ ϕ
shows [(|λ3 (λ x y z. ϕ (xP ) (yP ) (zP )), xP , yP , zP |) ≡ ϕ (xP ) (yP ) (zP ) in v]
〈proof 〉

lemma relations-1 [PLM ]:
assumes IsProperInX ϕ
shows [∃ F . �(∀ x. (|F ,xP |) ≡ ϕ (xP )) in v]
〈proof 〉

lemma relations-2 [PLM ]:
assumes IsProperInXY ϕ
shows [∃ F . �(∀ x y. (|F ,xP ,yP |) ≡ ϕ (xP ) (yP )) in v]
〈proof 〉

lemma relations-3 [PLM ]:
assumes IsProperInXYZ ϕ
shows [∃ F . �(∀ x y z. (|F ,xP ,yP ,zP |) ≡ ϕ (xP ) (yP ) (zP )) in v]
〈proof 〉

lemma prop-equiv[PLM ]:
shows [(∀ x . ({|xP ,F |} ≡ {|xP ,G|})) → F = G in v]
〈proof 〉

lemma propositions-lemma-1 [PLM ]:
[λ0 ϕ = ϕ in v]
〈proof 〉

lemma propositions-lemma-2 [PLM ]:
[λ0 ϕ ≡ ϕ in v]
〈proof 〉

lemma propositions-lemma-4 [PLM ]:
assumes

∧
x.[A(ϕ x ≡ ψ x) in v]

shows [(χ::κ⇒o) (ιx. ϕ x) = χ (ιx. ψ x) in v]
〈proof 〉

lemma propositions[PLM ]:
[∃ p . �(p ≡ p ′) in v]
〈proof 〉

lemma pos-not-equiv-then-not-eq[PLM ]:
[♦(¬(∀ x. (|F ,xP |) ≡ (|G,xP |))) → F 6= G in v]
〈proof 〉

lemma thm-relation-negation-1-1 [PLM ]:
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[(|F−, xP |) ≡ ¬(|F , xP |) in v]
〈proof 〉

lemma thm-relation-negation-1-2 [PLM ]:
[(|F−, xP , yP |) ≡ ¬(|F , xP , yP |) in v]
〈proof 〉

lemma thm-relation-negation-1-3 [PLM ]:
[(|F−, xP , yP , zP |) ≡ ¬(|F , xP , yP , zP |) in v]
〈proof 〉

lemma thm-relation-negation-2-1 [PLM ]:
[(¬(|F−, xP |)) ≡ (|F , xP |) in v]
〈proof 〉

lemma thm-relation-negation-2-2 [PLM ]:
[(¬(|F−, xP , yP |)) ≡ (|F , xP , yP |) in v]
〈proof 〉

lemma thm-relation-negation-2-3 [PLM ]:
[(¬(|F−, xP , yP , zP |)) ≡ (|F , xP , yP , zP |) in v]
〈proof 〉

lemma thm-relation-negation-3 [PLM ]:
[(p)− ≡ ¬p in v]
〈proof 〉

lemma thm-relation-negation-4 [PLM ]:
[(¬((p::o)−)) ≡ p in v]
〈proof 〉

lemma thm-relation-negation-5-1 [PLM ]:
[(F ::Π1) 6= (F−) in v]
〈proof 〉

lemma thm-relation-negation-5-2 [PLM ]:
[(F ::Π2) 6= (F−) in v]
〈proof 〉

lemma thm-relation-negation-5-3 [PLM ]:
[(F ::Π3) 6= (F−) in v]
〈proof 〉

lemma thm-relation-negation-6 [PLM ]:
[(p::o) 6= (p−) in v]
〈proof 〉

lemma thm-relation-negation-7 [PLM ]:
[((p::o)−) = ¬p in v]
〈proof 〉

lemma thm-relation-negation-8 [PLM ]:
[(p::o) 6= ¬p in v]
〈proof 〉

lemma thm-relation-negation-9 [PLM ]:
[((p::o) = q) → ((¬p) = (¬q)) in v]
〈proof 〉
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lemma thm-relation-negation-10 [PLM ]:
[((p::o) = q) → ((p−) = (q−)) in v]
〈proof 〉

lemma thm-cont-prop-1 [PLM ]:
[NonContingent (F ::Π1) ≡ NonContingent (F−) in v]
〈proof 〉

lemma thm-cont-prop-2 [PLM ]:
[Contingent F ≡ ♦(∃ x . (|F ,xP |)) & ♦(∃ x . ¬(|F ,xP |)) in v]
〈proof 〉

lemma thm-cont-prop-3 [PLM ]:
[Contingent (F ::Π1) ≡ Contingent (F−) in v]
〈proof 〉

lemma lem-cont-e[PLM ]:
[♦(∃ x . (|F ,xP |) & (♦(¬(|F ,xP |)))) ≡ ♦(∃ x . ((¬(|F ,xP |)) & ♦(|F ,xP |)))in v]
〈proof 〉

lemma lem-cont-e-2 [PLM ]:
[♦(∃ x . (|F ,xP |) & ♦(¬(|F ,xP |))) ≡ ♦(∃ x . (|F−,xP |) & ♦(¬(|F−,xP |))) in v]
〈proof 〉

lemma thm-cont-e-1 [PLM ]:
[♦(∃ x . ((¬(|E !,xP |)) & (♦(|E !,xP |)))) in v]
〈proof 〉

lemma thm-cont-e-2 [PLM ]:
[Contingent (E !) in v]
〈proof 〉

lemma thm-cont-e-3 [PLM ]:
[Contingent (E !−) in v]
〈proof 〉

lemma thm-cont-e-4 [PLM ]:
[∃ (F ::Π1) G . (F 6= G & Contingent F & Contingent G) in v]
〈proof 〉

context
begin

qualified definition L where L ≡ (λ x . (|E !, xP |) → (|E !, xP |))

lemma thm-noncont-e-e-1 [PLM ]:
[Necessary L in v]
〈proof 〉

lemma thm-noncont-e-e-2 [PLM ]:
[Impossible (L−) in v]
〈proof 〉

lemma thm-noncont-e-e-3 [PLM ]:
[NonContingent (L) in v]
〈proof 〉

lemma thm-noncont-e-e-4 [PLM ]:
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[NonContingent (L−) in v]
〈proof 〉

lemma thm-noncont-e-e-5 [PLM ]:
[∃ (F ::Π1) G . F 6= G & NonContingent F & NonContingent G in v]
〈proof 〉

lemma four-distinct-1 [PLM ]:
[NonContingent (F ::Π1) → ¬(∃ G . (Contingent G & G = F)) in v]
〈proof 〉

lemma four-distinct-2 [PLM ]:
[Contingent (F ::Π1) → ¬(∃ G . (NonContingent G & G = F)) in v]
〈proof 〉

lemma four-distinct-3 [PLM ]:
[L 6= (L−) & L 6= E ! & L 6= (E !−) & (L−) 6= E !
& (L−) 6= (E !−) & E ! 6= (E !−) in v]
〈proof 〉

end

lemma thm-cont-propos-1 [PLM ]:
[NonContingent (p::o) ≡ NonContingent (p−) in v]
〈proof 〉

lemma thm-cont-propos-2 [PLM ]:
[Contingent p ≡ ♦p & ♦(¬p) in v]
〈proof 〉

lemma thm-cont-propos-3 [PLM ]:
[Contingent (p::o) ≡ Contingent (p−) in v]
〈proof 〉

context
begin

private definition p0 where
p0 ≡ ∀ x. (|E !,xP |) → (|E !,xP |)

lemma thm-noncont-propos-1 [PLM ]:
[Necessary p0 in v]
〈proof 〉

lemma thm-noncont-propos-2 [PLM ]:
[Impossible (p0

−) in v]
〈proof 〉

lemma thm-noncont-propos-3 [PLM ]:
[NonContingent (p0) in v]
〈proof 〉

lemma thm-noncont-propos-4 [PLM ]:
[NonContingent (p0

−) in v]
〈proof 〉

lemma thm-noncont-propos-5 [PLM ]:
[∃ (p::o) q . p 6= q & NonContingent p & NonContingent q in v]
〈proof 〉 definition q0 where
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q0 ≡ ∃ x . (|E !,xP |) & ♦(¬(|E !,xP |))

lemma basic-prop-1 [PLM ]:
[∃ p . ♦p & ♦(¬p) in v]
〈proof 〉

lemma basic-prop-2 [PLM ]:
[Contingent q0 in v]
〈proof 〉

lemma basic-prop-3 [PLM ]:
[Contingent (q0

−) in v]
〈proof 〉

lemma basic-prop-4 [PLM ]:
[∃ (p::o) q . p 6= q & Contingent p & Contingent q in v]
〈proof 〉

lemma four-distinct-props-1 [PLM ]:
[NonContingent (p::Π0) → (¬(∃ q . Contingent q & q = p)) in v]
〈proof 〉

lemma four-distinct-props-2 [PLM ]:
[Contingent (p::o) → ¬(∃ q . (NonContingent q & q = p)) in v]
〈proof 〉

lemma four-distinct-props-4 [PLM ]:
[p0 6= (p0

−) & p0 6= q0 & p0 6= (q0
−) & (p0

−) 6= q0

& (p0
−) 6= (q0

−) & q0 6= (q0
−) in v]

〈proof 〉

lemma cont-true-cont-1 [PLM ]:
[ContingentlyTrue p → Contingent p in v]
〈proof 〉

lemma cont-true-cont-2 [PLM ]:
[ContingentlyFalse p → Contingent p in v]
〈proof 〉

lemma cont-true-cont-3 [PLM ]:
[ContingentlyTrue p ≡ ContingentlyFalse (p−) in v]
〈proof 〉

lemma cont-true-cont-4 [PLM ]:
[ContingentlyFalse p ≡ ContingentlyTrue (p−) in v]
〈proof 〉

lemma cont-tf-thm-1 [PLM ]:
[ContingentlyTrue q0 ∨ ContingentlyFalse q0 in v]
〈proof 〉

lemma cont-tf-thm-2 [PLM ]:
[ContingentlyFalse q0 ∨ ContingentlyFalse (q0

−) in v]
〈proof 〉

lemma cont-tf-thm-3 [PLM ]:
[∃ p . ContingentlyTrue p in v]
〈proof 〉
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lemma cont-tf-thm-4 [PLM ]:
[∃ p . ContingentlyFalse p in v]
〈proof 〉

lemma cont-tf-thm-5 [PLM ]:
[ContingentlyTrue p & Necessary q → p 6= q in v]
〈proof 〉

lemma cont-tf-thm-6 [PLM ]:
[(ContingentlyFalse p & Impossible q) → p 6= q in v]
〈proof 〉

end

lemma oa-contingent-1 [PLM ]:
[O! 6= A! in v]
〈proof 〉

lemma oa-contingent-2 [PLM ]:
[(|O!,xP |) ≡ ¬(|A!,xP |) in v]
〈proof 〉

lemma oa-contingent-3 [PLM ]:
[(|A!,xP |) ≡ ¬(|O!,xP |) in v]
〈proof 〉

lemma oa-contingent-4 [PLM ]:
[Contingent O! in v]
〈proof 〉

lemma oa-contingent-5 [PLM ]:
[Contingent A! in v]
〈proof 〉

lemma oa-contingent-6 [PLM ]:
[(O!−) 6= (A!−) in v]
〈proof 〉

lemma oa-contingent-7 [PLM ]:
[(|O!−,xP |) ≡ ¬(|A!−,xP |) in v]
〈proof 〉

lemma oa-contingent-8 [PLM ]:
[Contingent (O!−) in v]
〈proof 〉

lemma oa-contingent-9 [PLM ]:
[Contingent (A!−) in v]
〈proof 〉

lemma oa-facts-1 [PLM ]:
[(|O!,xP |) → �(|O!,xP |) in v]
〈proof 〉

lemma oa-facts-2 [PLM ]:
[(|A!,xP |) → �(|A!,xP |) in v]
〈proof 〉
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lemma oa-facts-3 [PLM ]:
[♦(|O!,xP |) → (|O!,xP |) in v]
〈proof 〉

lemma oa-facts-4 [PLM ]:
[♦(|A!,xP |) → (|A!,xP |) in v]
〈proof 〉

lemma oa-facts-5 [PLM ]:
[♦(|O!,xP |) ≡ �(|O!,xP |) in v]
〈proof 〉

lemma oa-facts-6 [PLM ]:
[♦(|A!,xP |) ≡ �(|A!,xP |) in v]
〈proof 〉

lemma oa-facts-7 [PLM ]:
[(|O!,xP |) ≡ A(|O!,xP |) in v]
〈proof 〉

lemma oa-facts-8 [PLM ]:
[(|A!,xP |) ≡ A(|A!,xP |) in v]
〈proof 〉

lemma cont-nec-fact1-1 [PLM ]:
[WeaklyContingent F ≡ WeaklyContingent (F−) in v]
〈proof 〉

lemma cont-nec-fact1-2 [PLM ]:
[(WeaklyContingent F & ¬(WeaklyContingent G)) → (F 6= G) in v]
〈proof 〉

lemma cont-nec-fact2-1 [PLM ]:
[WeaklyContingent (O!) in v]
〈proof 〉

lemma cont-nec-fact2-2 [PLM ]:
[WeaklyContingent (A!) in v]
〈proof 〉

lemma cont-nec-fact2-3 [PLM ]:
[¬(WeaklyContingent (E !)) in v]
〈proof 〉

lemma cont-nec-fact2-4 [PLM ]:
[¬(WeaklyContingent (PLM .L)) in v]
〈proof 〉

lemma cont-nec-fact2-5 [PLM ]:
[O! 6= E ! & O! 6= (E !−) & O! 6= PLM .L & O! 6= (PLM .L−) in v]
〈proof 〉

lemma cont-nec-fact2-6 [PLM ]:
[A! 6= E ! & A! 6= (E !−) & A! 6= PLM .L & A! 6= (PLM .L−) in v]
〈proof 〉

lemma id-nec3-1 [PLM ]:
[((xP ) =E (yP )) ≡ (�((xP ) =E (yP ))) in v]
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〈proof 〉

lemma id-nec3-2 [PLM ]:
[♦((xP ) =E (yP )) ≡ ((xP ) =E (yP )) in v]
〈proof 〉

lemma thm-neg-eqE [PLM ]:
[((xP ) 6=E (yP )) ≡ (¬((xP ) =E (yP ))) in v]
〈proof 〉

lemma id-nec4-1 [PLM ]:
[((xP ) 6=E (yP )) ≡ �((xP ) 6=E (yP )) in v]
〈proof 〉

lemma id-nec4-2 [PLM ]:
[♦((xP ) 6=E (yP )) ≡ ((xP ) 6=E (yP )) in v]
〈proof 〉

lemma id-act-1 [PLM ]:
[((xP ) =E (yP )) ≡ (A((xP ) =E (yP ))) in v]
〈proof 〉

lemma id-act-2 [PLM ]:
[((xP ) 6=E (yP )) ≡ (A((xP ) 6=E (yP ))) in v]
〈proof 〉

end

class id-act = id-eq +
assumes id-act-prop: [A(α = β) in v] =⇒ [(α = β) in v]

instantiation ν :: id-act
begin

instance 〈proof 〉
end

instantiation Π1 :: id-act
begin

instance 〈proof 〉
end

instantiation o :: id-act
begin

instance 〈proof 〉
end

instantiation Π2 :: id-act
begin

instance 〈proof 〉
end

instantiation Π3 :: id-act
begin

instance 〈proof 〉
end

context PLM
begin
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lemma id-act-3 [PLM ]:
[((α::( ′a::id-act)) = β) ≡ A(α = β) in v]
〈proof 〉

lemma id-act-4 [PLM ]:
[((α::( ′a::id-act)) 6= β) ≡ A(α 6= β) in v]
〈proof 〉

lemma id-act-desc[PLM ]:
[(yP ) = (ιx . x = y) in v]
〈proof 〉

lemma eta-conversion-lemma-1 [PLM ]:
[(λ x . (|F ,xP |)) = F in v]
〈proof 〉

lemma eta-conversion-lemma-0 [PLM ]:
[(λ0 p) = p in v]
〈proof 〉

lemma eta-conversion-lemma-2 [PLM ]:
[(λ2 (λ x y . (|F ,xP ,yP |))) = F in v]
〈proof 〉

lemma eta-conversion-lemma-3 [PLM ]:
[(λ3 (λ x y z . (|F ,xP ,yP ,zP |))) = F in v]
〈proof 〉

lemma lambda-p-q-p-eq-q[PLM ]:
[((λ0 p) = (λ0 q)) ≡ (p = q) in v]
〈proof 〉

A.9.12. The Theory of Objects

lemma partition-1 [PLM ]:
[∀ x . (|O!,xP |) ∨ (|A!,xP |) in v]
〈proof 〉

lemma partition-2 [PLM ]:
[¬(∃ x . (|O!,xP |) & (|A!,xP |)) in v]
〈proof 〉

lemma ord-eq-Eequiv-1 [PLM ]:
[(|O!,x|) → (x =E x) in v]
〈proof 〉

lemma ord-eq-Eequiv-2 [PLM ]:
[(x =E y) → (y =E x) in v]
〈proof 〉

lemma ord-eq-Eequiv-3 [PLM ]:
[((x =E y) & (y =E z)) → (x =E z) in v]
〈proof 〉

lemma ord-eq-E-eq[PLM ]:
[((|O!,xP |) ∨ (|O!,yP |)) → ((xP = yP ) ≡ (xP =E yP )) in v]
〈proof 〉
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lemma ord-eq-E [PLM ]:
[((|O!,xP |) & (|O!,yP |)) → ((∀ F . (|F ,xP |) ≡ (|F ,yP |)) → xP =E yP ) in v]
〈proof 〉

lemma ord-eq-E2 [PLM ]:
[((|O!,xP |) & (|O!,yP |)) →
((xP 6= yP ) ≡ (λz . zP =E xP ) 6= (λz . zP =E yP )) in v]
〈proof 〉

lemma ab-obey-1 [PLM ]:
[((|A!,xP |) & (|A!,yP |)) → ((∀ F . {|xP , F |} ≡ {|yP , F |}) → xP = yP ) in v]
〈proof 〉

lemma ab-obey-2 [PLM ]:
[((|A!,xP |) & (|A!,yP |)) → ((∃ F . {|xP , F |} & ¬{|yP , F |}) → xP 6= yP ) in v]
〈proof 〉

lemma ordnecfail[PLM ]:
[(|O!,xP |) → �(¬(∃ F . {|xP , F |})) in v]
〈proof 〉

lemma o-objects-exist-1 [PLM ]:
[♦(∃ x . (|E !,xP |)) in v]
〈proof 〉

lemma o-objects-exist-2 [PLM ]:
[�(∃ x . (|O!,xP |)) in v]
〈proof 〉

lemma o-objects-exist-3 [PLM ]:
[�(¬(∀ x . (|A!,xP |))) in v]
〈proof 〉

lemma a-objects-exist-1 [PLM ]:
[�(∃ x . (|A!,xP |)) in v]
〈proof 〉

lemma a-objects-exist-2 [PLM ]:
[�(¬(∀ x . (|O!,xP |))) in v]
〈proof 〉

lemma a-objects-exist-3 [PLM ]:
[�(¬(∀ x . (|E !,xP |))) in v]
〈proof 〉

lemma encoders-are-abstract[PLM ]:
[(∃ F . {|xP , F |}) → (|A!,xP |) in v]
〈proof 〉

lemma A-objects-unique[PLM ]:
[∃ ! x . (|A!,xP |) & (∀ F . {|xP , F |} ≡ ϕ F) in v]
〈proof 〉

lemma obj-oth-1 [PLM ]:
[∃ ! x . (|A!,xP |) & (∀ F . {|xP , F |} ≡ (|F , yP |)) in v]
〈proof 〉

lemma obj-oth-2 [PLM ]:
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[∃ ! x . (|A!,xP |) & (∀ F . {|xP , F |} ≡ ((|F , yP |) & (|F , zP |))) in v]
〈proof 〉

lemma obj-oth-3 [PLM ]:
[∃ ! x . (|A!,xP |) & (∀ F . {|xP , F |} ≡ ((|F , yP |) ∨ (|F , zP |))) in v]
〈proof 〉

lemma obj-oth-4 [PLM ]:
[∃ ! x . (|A!,xP |) & (∀ F . {|xP , F |} ≡ (�(|F , yP |))) in v]
〈proof 〉

lemma obj-oth-5 [PLM ]:
[∃ ! x . (|A!,xP |) & (∀ F . {|xP , F |} ≡ (F = G)) in v]
〈proof 〉

lemma obj-oth-6 [PLM ]:
[∃ ! x . (|A!,xP |) & (∀ F . {|xP , F |} ≡ �(∀ y . (|G, yP |) → (|F , yP |))) in v]
〈proof 〉

lemma A-Exists-1 [PLM ]:
[A(∃ ! x :: ( ′a :: id-act) . ϕ x) ≡ (∃ ! x . A(ϕ x)) in v]
〈proof 〉

lemma A-Exists-2 [PLM ]:
[(∃ y . yP = (ιx . ϕ x)) ≡ A(∃ !x . ϕ x) in v]
〈proof 〉

lemma A-descriptions[PLM ]:
[∃ y . yP = (ιx . (|A!,xP |) & (∀ F . {|xP ,F |} ≡ ϕ F)) in v]
〈proof 〉

lemma thm-can-terms2 [PLM ]:
[(yP = (ιx . (|A!,xP |) & (∀ F . {|xP ,F |} ≡ ϕ F)))
→ ((|A!,yP |) & (∀ F . {|yP ,F |} ≡ ϕ F)) in dw]
〈proof 〉

lemma can-ab2 [PLM ]:
[(yP = (ιx . (|A!,xP |) & (∀ F . {|xP ,F |} ≡ ϕ F))) → (|A!,yP |) in v]
〈proof 〉

lemma desc-encode[PLM ]:
[{|ιx . (|A!,xP |) & (∀ F . {|xP ,F |} ≡ ϕ F), G|} ≡ ϕ G in dw]
〈proof 〉

lemma desc-nec-encode[PLM ]:
[{|ιx . (|A!,xP |) & (∀ F . {|xP ,F |} ≡ ϕ F), G|} ≡ A(ϕ G) in v]
〈proof 〉

notepad
begin
〈proof 〉

end

lemma Box-desc-encode-1 [PLM ]:
[�(ϕ G) → {|(ιx . (|A!,xP |) & (∀ F . {|xP , F |} ≡ ϕ F)), G|} in v]
〈proof 〉

lemma Box-desc-encode-2 [PLM ]:
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[�(ϕ G) → �({|(ιx . (|A!,xP |) & (∀ F . {|xP , F |} ≡ ϕ F)), G|} ≡ ϕ G) in v]
〈proof 〉

lemma box-phi-a-1 [PLM ]:
assumes [�(∀ F . ϕ F → �(ϕ F)) in v]
shows [((|A!,xP |) & (∀ F . {|xP , F |} ≡ ϕ F)) → �((|A!,xP |)

& (∀ F . {|xP , F |} ≡ ϕ F)) in v]
〈proof 〉

lemma box-phi-a-2 [PLM ]:
assumes [�(∀ F . ϕ F → �(ϕ F)) in v]
shows [yP = (ιx . (|A!,xP |) & (∀ F . {|xP , F |} ≡ ϕ F))

→ ((|A!,yP |) & (∀ F . {|yP , F |} ≡ ϕ F)) in v]
〈proof 〉

lemma box-phi-a-3 [PLM ]:
assumes [�(∀ F . ϕ F → �(ϕ F)) in v]
shows [{|ιx . (|A!,xP |) & (∀ F . {|xP , F |} ≡ ϕ F), G|} ≡ ϕ G in v]
〈proof 〉

lemma null-uni-uniq-1 [PLM ]:
[∃ ! x . Null (xP ) in v]
〈proof 〉

lemma null-uni-uniq-2 [PLM ]:
[∃ ! x . Universal (xP ) in v]
〈proof 〉

lemma null-uni-uniq-3 [PLM ]:
[∃ y . yP = (ιx . Null (xP )) in v]
〈proof 〉

lemma null-uni-uniq-4 [PLM ]:
[∃ y . yP = (ιx . Universal (xP )) in v]
〈proof 〉

lemma null-uni-facts-1 [PLM ]:
[Null (xP ) → �(Null (xP )) in v]
〈proof 〉

lemma null-uni-facts-2 [PLM ]:
[Universal (xP ) → �(Universal (xP )) in v]
〈proof 〉

lemma null-uni-facts-3 [PLM ]:
[Null (a∅) in v]
〈proof 〉

lemma null-uni-facts-4 [PLM ]:
[Universal (aV ) in v]
〈proof 〉

lemma aclassical-1 [PLM ]:
[∀ R . ∃ x y . (|A!,xP |) & (|A!,yP |) & (x 6= y)
& (λ z . (|R,zP ,xP |)) = (λ z . (|R,zP ,yP |)) in v]
〈proof 〉

lemma aclassical-2 [PLM ]:
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[∀ R . ∃ x y . (|A!,xP |) & (|A!,yP |) & (x 6= y)
& (λ z . (|R,xP ,zP |)) = (λ z . (|R,yP ,zP |)) in v]
〈proof 〉

lemma aclassical-3 [PLM ]:
[∀ F . ∃ x y . (|A!,xP |) & (|A!,yP |) & (x 6= y)
& ((λ0 (|F ,xP |)) = (λ0 (|F ,yP |))) in v]
〈proof 〉

lemma aclassical2 [PLM ]:
[∃ x y . (|A!,xP |) & (|A!,yP |) & x 6= y & (∀ F . (|F ,xP |) ≡ (|F ,yP |)) in v]
〈proof 〉

A.9.13. Propositional Properties

lemma prop-prop2-1 :
[∀ p . ∃ F . F = (λ x . p) in v]
〈proof 〉

lemma prop-prop2-2 :
[F = (λ x . p) → �(∀ x . (|F ,xP |) ≡ p) in v]
〈proof 〉

lemma prop-prop2-3 :
[Propositional F → �(Propositional F) in v]
〈proof 〉

lemma prop-indis:
[Indiscriminate F → (¬(∃ x y . (|F ,xP |) & (¬(|F ,yP |)))) in v]
〈proof 〉

lemma prop-in-thm:
[Propositional F → Indiscriminate F in v]
〈proof 〉

lemma prop-in-f-1 :
[Necessary F → Indiscriminate F in v]
〈proof 〉

lemma prop-in-f-2 :
[Impossible F → Indiscriminate F in v]
〈proof 〉

lemma prop-in-f-3-a:
[¬(Indiscriminate (E !)) in v]
〈proof 〉

lemma prop-in-f-3-b:
[¬(Indiscriminate (E !−)) in v]
〈proof 〉

lemma prop-in-f-3-c:
[¬(Indiscriminate (O!)) in v]
〈proof 〉

lemma prop-in-f-3-d:
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[¬(Indiscriminate (A!)) in v]
〈proof 〉

lemma prop-in-f-4-a:
[¬(Propositional E !) in v]
〈proof 〉

lemma prop-in-f-4-b:
[¬(Propositional (E !−)) in v]
〈proof 〉

lemma prop-in-f-4-c:
[¬(Propositional (O!)) in v]
〈proof 〉

lemma prop-in-f-4-d:
[¬(Propositional (A!)) in v]
〈proof 〉

lemma prop-prop-nec-1 :
[♦(∃ p . F = (λ x . p)) → (∃ p . F = (λ x . p)) in v]
〈proof 〉

lemma prop-prop-nec-2 :
[(∀ p . F 6= (λ x . p)) → �(∀ p . F 6= (λ x . p)) in v]
〈proof 〉

lemma prop-prop-nec-3 :
[(∃ p . F = (λ x . p)) → �(∃ p . F = (λ x . p)) in v]
〈proof 〉

lemma prop-prop-nec-4 :
[♦(∀ p . F 6= (λ x . p)) → (∀ p . F 6= (λ x . p)) in v]
〈proof 〉

lemma enc-prop-nec-1 :
[♦(∀ F . {|xP , F |} → (∃ p . F = (λ x . p)))
→ (∀ F . {|xP , F |} → (∃ p . F = (λ x . p))) in v]
〈proof 〉

lemma enc-prop-nec-2 :
[(∀ F . {|xP , F |} → (∃ p . F = (λ x . p))) → �(∀ F . {|xP , F |}
→ (∃ p . F = (λ x . p))) in v]
〈proof 〉

end
end

A.10. Possible Worlds

locale PossibleWorlds = PLM
begin

A.10.1. Definitions

definition Situation where
Situation x ≡ (|A!,x|) & (∀ F . {|x,F |} → Propositional F)
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definition EncodeProposition (infixl ‹Σ› 70 ) where
xΣp ≡ (|A!,x|) & {|x, λ x . p|}

definition TrueInSituation (infixl ‹|=› 10 ) where
x |= p ≡ Situation x & xΣp

definition PossibleWorld where
PossibleWorld x ≡ Situation x & ♦(∀ p . xΣp ≡ p)

A.10.2. Auxiliary Lemmas

lemma possit-sit-1 :
[Situation (xP ) ≡ �(Situation (xP )) in v]
〈proof 〉

lemma possworld-nec:
[PossibleWorld (xP ) ≡ �(PossibleWorld (xP )) in v]
〈proof 〉

lemma TrueInWorldNecc:
[((xP ) |= p) ≡ �((xP ) |= p) in v]
〈proof 〉

lemma PossWorldAux:
[((|A!,xP |) & (∀ F . ({|xP ,F |} ≡ (∃ p . p & (F = (λ x . p))))))

→ (PossibleWorld (xP )) in v]
〈proof 〉

A.10.3. For every syntactic Possible World there is a semantic Possible World

theorem SemanticPossibleWorldForSyntacticPossibleWorlds:
∀ x . [PossibleWorld (xP ) in w] −→
(∃ v . ∀ p . [(xP |= p) in w] ←→ [p in v])
〈proof 〉

A.10.4. For every semantic Possible World there is a syntactic Possible World

theorem SyntacticPossibleWorldForSemanticPossibleWorlds:
∀ v . ∃ x . [PossibleWorld (xP ) in w] ∧
(∀ p . [p in v] ←→ [((xP ) |= p) in w])
〈proof 〉

end

A.11. Artificial Theorems

Remark. Some examples of theorems that can be derived from the model structure, but which
are not derivable from the deductive system PLM itself.

locale ArtificialTheorems
begin

lemma lambda-enc-1 :
[(|λx . {|xP , F |} ≡ {|xP , F |}, yP |) in v]
〈proof 〉

135



lemma lambda-enc-2 :
[(|λ x . {|yP , G|}, xP |) ≡ {|yP , G|} in v]
〈proof 〉

Remark. The following is not a theorem and nitpick can find a countermodel. This is expected
and important. If this were a theorem, the theory would become inconsistent.

lemma lambda-enc-3 :
[((|λ x . {|xP , F |}, xP |) → {|xP , F |}) in v]
〈proof 〉

Remark. Instead the following two statements hold.

lemma lambda-enc-4 :
[(|(λ x . {|xP , F |}), xP |) in v] = (∃ y . νυ y = νυ x ∧ [{|yP , F |} in v])
〈proof 〉

lemma lambda-ex:
[(|(λ x . ϕ (xP )), xP |) in v] = (∃ y . νυ y = νυ x ∧ [ϕ (yP ) in v])
〈proof 〉

Remark. These statements can be translated to statements in the embedded logic.

lemma lambda-ex-emb:
[(|(λ x . ϕ (xP )), xP |) ≡ (∃ y . (∀ F . (|F ,xP |) ≡ (|F ,yP |)) & ϕ (yP )) in v]
〈proof 〉

lemma lambda-enc-emb:
[(|(λ x . {|xP , F |}), xP |) ≡ (∃ y . (∀ F . (|F ,xP |) ≡ (|F ,yP |)) & {|yP , F |}) in v]
〈proof 〉

Remark. In the case of proper maps, the generalized β-conversion reduces to classical β-
conversion.

lemma proper-beta:
assumes IsProperInX ϕ
shows [(∃ y . (∀ F . (|F ,xP |) ≡ (|F ,yP |)) & ϕ (yP )) ≡ ϕ (xP ) in v]
〈proof 〉

Remark. The following theorem is a consequence of the constructed Aczel-model, but not part
of PLM. Separate research on possible modifications of the embedding suggest that this artificial
theorem can be avoided by introducing a dependency on states for the mapping from abstract
objects to special urelements.

lemma lambda-rel-extensional:
assumes [∀F . (|F ,aP |) ≡ (|F ,bP |) in v]
shows (λx. (|R,xP ,aP |)) = (λx . (|R,xP , bP |))
〈proof 〉

end
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A.12. Sanity Tests

locale SanityTests
begin

interpretation MetaSolver〈proof 〉
interpretation Semantics〈proof 〉

A.12.1. Consistency

lemma True
nitpick[expect=genuine, user-axioms, satisfy]
〈proof 〉

A.12.2. Intensionality

lemma [(λy. (q ∨ ¬q)) = (λy. (p ∨ ¬p)) in v]
〈proof 〉

lemma [(λy. (p ∨ q)) = (λy. (q ∨ p)) in v]
〈proof 〉

A.12.3. Concreteness coindices with Object Domains

lemma OrdCheck:
[(|λ x . ¬�(¬(|E !, xP |)), x|) in v] ←→
(proper x) ∧ (case (rep x) of ων y ⇒ True | - ⇒ False)
〈proof 〉

lemma AbsCheck:
[(|λ x . �(¬(|E !, xP |)), x|) in v] ←→
(proper x) ∧ (case (rep x) of αν y ⇒ True | - ⇒ False)
〈proof 〉

A.12.4. Justification for Meta-Logical Axioms

Remark. OrdinaryObjectsPossiblyConcreteAxiom is equivalent to "all ordinary objects are pos-
sibly concrete".

lemma OrdAxiomCheck:
OrdinaryObjectsPossiblyConcrete ←→
(∀ x. ([(|λ x . ¬�(¬(|E !, xP |)), xP |) in v]
←→ (case x of ων y ⇒ True | - ⇒ False)))

〈proof 〉

Remark. OrdinaryObjectsPossiblyConcreteAxiom is equivalent to "all abstract objects are nec-
essarily not concrete".

lemma AbsAxiomCheck:
OrdinaryObjectsPossiblyConcrete ←→
(∀ x. ([(|λ x . �(¬(|E !, xP |)), xP |) in v]
←→ (case x of αν y ⇒ True | - ⇒ False)))

〈proof 〉

Remark. PossiblyContingentObjectExistsAxiom is equivalent to the corresponding statement
in the embedded logic.
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lemma PossiblyContingentObjectExistsCheck:
PossiblyContingentObjectExists ←→ [¬(�(∀ x. (|E !,xP |) → �(|E !,xP |))) in v]
〈proof 〉

Remark. PossiblyNoContingentObjectExistsAxiom is equivalent to the corresponding statement
in the embedded logic.

lemma PossiblyNoContingentObjectExistsCheck:
PossiblyNoContingentObjectExists ←→ [¬(�(¬(∀ x. (|E !,xP |) → �(|E !,xP |)))) in v]
〈proof 〉

A.12.5. Relations in the Meta-Logic

Remark. Material equality in the embedded logic corresponds to equality in the actual state in
the meta-logic.

lemma mat-eq-is-eq-dj:
[∀ x . �((|F ,xP |) ≡ (|G,xP |)) in v] ←→
((λ x . (evalΠ1 F) x dj) = (λ x . (evalΠ1 G) x dj))

〈proof 〉

Remark. Materially equivalent relations are equal in the embedded logic if and only if they also
coincide in all other states.

lemma mat-eq-is-eq-if-eq-forall-j:
assumes [∀ x . �((|F ,xP |) ≡ (|G,xP |)) in v]
shows [F = G in v] ←→

(∀ s . s 6= dj −→ (∀ x . (evalΠ1 F) x s = (evalΠ1 G) x s))
〈proof 〉

Remark. Under the assumption that all properties behave in all states like in the actual state
the defined equality degenerates to material equality.

lemma assumes ∀ F x s . (evalΠ1 F) x s = (evalΠ1 F) x dj
shows [∀ x . �((|F ,xP |) ≡ (|G,xP |)) in v] ←→ [F = G in v]
〈proof 〉

A.12.6. Lambda Expressions

lemma lambda-interpret-1 :
assumes [a = b in v]
shows (λx. (|R,xP ,a|)) = (λx . (|R,xP , b|))
〈proof 〉

lemma lambda-interpret-2 :
assumes [a = (ιy. (|G,yP |)) in v]
shows (λx. (|R,xP ,a|)) = (λx . (|R,xP , ιy. (|G,yP |)|))
〈proof 〉

end

theory TAO-99-Paradox
imports TAO-9-PLM TAO-98-ArtificialTheorems
begin
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A.13. Paradox

Under the additional assumption that expressions of the form λx. (|G,ιy. ϕ y x |) for arbitrary ϕ

are proper maps, for which β-conversion holds, the theory becomes inconsistent.

A.13.1. Auxiliary Lemmas
lemma exe-impl-exists:
[(|(λx . ∀ p . p → p), ιy . ϕ y x|) ≡ (∃ !y . Aϕ y x) in v]
〈proof 〉

lemma exists-unique-actual-equiv:
[(∃ !y . A(y = x & ψ (xP ))) ≡ Aψ (xP ) in v]
〈proof 〉

A.13.2. Fake β-Conversion using Description Backdoor

definition backdoor where
backdoor ≡ λ ψ . λx . (|(λx . ∀ p . p → p), ιy . y = x & ψ (xP )|)

lemma fake-beta:
assumes

∧
G ϕ. IsProperInX (λx . (|G,ιy . ϕ y x|))

shows [(|backdoor (λ x . ψ x), xP |) ≡ Aψ (xP ) in v]
〈proof 〉

lemma fake-beta-act:
assumes

∧
G ϕ. IsProperInX (λx . (|G,ιy . ϕ y x|))

shows [(|backdoor (λ x . ψ x), xP |) ≡ ψ (xP ) in dw]
〈proof 〉

A.13.3. Resulting Paradox

lemma paradox:
assumes

∧
G ϕ. IsProperInX (λx . (|G,ιy . ϕ y x|))

shows False
〈proof 〉

A.13.4. Original Version of the Paradox

Originally the paradox was discovered using the following construction based on the compre-
hension theorem for relations without the explicit construction of the description backdoor and
the resulting fake-β-conversion.

lemma assumes
∧

G ϕ. IsProperInX (λx . (|G,ιy . ϕ y x|))
shows Fx-equiv-xH : [∀ H . ∃ F . �(∀ x. (|F ,xP |) ≡ {|xP ,H |}) in v]
〈proof 〉

lemma
assumes is-propositional: (

∧
G ϕ. IsProperInX (λx. (|G,ιy. ϕ y x |)))

and Abs-x: [(|A!,xP |) in v]
and Abs-y: [(|A!,yP |) in v]
and noteq: [x 6= y in v]

shows diffprop: [∃ F . ¬((|F ,xP |) ≡ (|F ,yP |)) in v]
〈proof 〉

lemma original-paradox:
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assumes is-propositional: (
∧

G ϕ. IsProperInX (λx. (|G,ιy. ϕ y x |)))
shows False
〈proof 〉

end
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