The Incompatibility of Strategy-Proofness
and Representation in Party-Approval
Multi-Winner Elections

Théo Delemazure
Tom Demeulemeester
Manuel Eberl
Jonas Israel
Patrick Lederer

March 17, 2025

In party-approval multi-winner elections, the goal is to allocate the seats
of a fixed-size committee to parties based on approval ballots of the voters
over the parties. In particular, each voter can approve multiple parties and
each party can be assigned multiple seats.

Three central requirements in this settings are:

Anonymity: The result is invariant under renaming the voters.

Representation: Every sufficiently large group of voters with similar prefer-
ences is represented by some committee members.

Strategy-proofness: No voter can benefit by misreporting her true prefer-
ences.

We show that these three basic axioms are incompatible for party-approval
multi-winner voting rules, thus proving a far-reaching impossibility theorem.

The proof of this result is obtained by formulating the problem in propo-
sitional logic and then letting a SAT solver show that the formula is un-
satisfiable. The DRUP proof output by the SAT solver is then converted
into Lammich’s GRAT format and imported into Isabelle/HOL with some
custom-written ML code.

This transformation is proof-producing, so the final Isabelle/HOL theorem
does not rely on any oracles or other trusted external trusted components.

Contents

1

2

Auxiliary Facts About Multisets

Anonymous Party Approval Rules

2.1 Definition of the General Setting
2.2 P-APP rules and Desirable Properties
2.3 Efficiency e
2.4 Strategyproofness e
2.5 Representation
2.6 Proportional Representation

The Base Case of the Impossibility

3.1 Auxiliary Material
3.2 Setup for the Base Case
3.3 Symmetry Breaking oo
3.4 The Set of Possible Committees
3.5 Generating Clauses and Replaying the SAT Proof.

Lowering P-APP Rules to Smaller Settings

4.1 Preliminary Lemmas
4.2 Dividing the number of voters oL
4.3 Decreasing the number of parties
4.4 Decreasing the committee size

Lifting the Impossibility Result to Larger Settings

10
10
11
12
13
14

15
15
16
17
20

25

1 Auxiliary Facts About Multisets

theory PAPP-Multiset-Extras
imports HOL— Library. Multiset
begin

This section contains a number of not particularly interesting small facts about multisets.

lemma mset-set-subset-iff: finite A = mset-set A CH# B +— A C set-mset B

{proof)

lemma mset-subset-size-ge-imp-eq:
assumes A C# B size A > size B
shows A =B

{proof)

lemma mset-psubset-iff:
XCH# Y+ XCH Y APz count X z < count Y z)
(proof)

lemma count-le-size: count A x < size A

{proof)

lemma size-filter-eq-conv-count [simp]: size (filter-mset (A\y. y = z) A) = count A z

{proof)

lemma multiset-filter-mono’:
assumes \z. 2 E# A — Pz — Quz
shows filter-mset P A C# filter-mset @Q A

{proof)

lemma multiset-filter-mono’”:
assumes A C# BAz.t e# A— P2z = Q=
shows filter-mset P A C# filter-mset Q B

{proof)

lemma filter-mset-disjunction:
assumes A\z. z €# X = Pz = Q x = Fulse
shows filter-mset (Az. Pz V Q z) X = filter-mset P X + filter-mset Q X

{proof)

lemma size-mset-sum-mset: size (sum-mset X) = (O z€#X. size (z = 'a multiset))

{proof)

lemma count-sum-mset: count (sum-mset X) x = (3, YE#X. count Y x)

{proof)

lemma replicate-mset-rec: n > 0 = replicate-mset n © = add-mset © (replicate-mset (n — 1)
z)
{proof)

lemma add-mset-neq: © ¢# B — add-mset t A # B
(proof)

lemma filter-replicate-mset:
filter-mset P (replicate-mset n z) = (if P x then replicate-mset n z else {#})

(proof)

lemma filter-diff-mset”. filter-mset P (X — Y) = filter-mset P X — Y
(proof)

lemma in-diff-multiset-absorb2: x ¢# B=— v €# A — B+— x €# A
(proof)

end

2 Anonymous Party Approval Rules

theory Anonymous-PAPP
imports Complex-Main Randomised-Social-Choice. Order-Predicates PAPP-Multiset-Extras
begin

In this section we will define (anonymous) P-APP rules and some basic desirable prop-
erties of P-APP rules.

2.1 Definition of the General Setting

The following locale encapsulates an anonymous party approval election; that is:

e a number of voters
e a set of parties

o the size of the desired committee

The number of parties and voters is assumed to be finite and non-zero. As a modelling
choice, we do not distinguish the voters at all; there is no explicit set of voters. We only
care about their number.

locale anon-papp-election =
fixes n-voters :: nat and parties :: 'a set and committee-size :: nat
assumes finite-parties [simp, intro|: finite parties
assumes n-voters-pos: n-voters > (
assumes nonempty-parties [simp|: parties # {}
begin

The result of a P-APP election is a committee, i.e. a multiset of parties with the desired
size.

definition is-committee :: 'a multiset = bool where
is-committee W <— set-mset W C parties N\ size W = committee-size

end

A preference profile for a P-APP collection consists of one approval list (i.e. a set of
approved parties) for each voter. Since we are in an anonymous setting, this means that
we have a multiset consisting of n sets of parties (where n is the number of voters).

Moreover, we make the usual assumption that the approval lists must be non-empty.

locale anon-papp-profile = anon-papp-election +
fixes A :: 'a set multiset
assumes A-subset: ANX. X €e# A = X C parties
assumes A-nonempty: {} ¢# A
assumes size-A: size A = n-voters

begin

lemma A-nonempty’s A # {#}
(proof)

end

context anon-papp-election
begin

abbreviation
is-pref-profile where is-pref-profile = anon-papp-profile n-voters parties

lemma is-pref-profile-iff:
is-pref-profile A +— set-mset A C Pow parties — {{}} A size A = n-voters

(proof)

lemma not-is-pref-profile-empty [simp|: —is-pref-profile {#}
(proof)

The following relation is a key definition: it takes an approval list A and turns it into a
preference relation on committees. A committee is to be at least as good as another if
the number of approved parties in it is at least as big.

This relation is a reflexive, transitive, and total.

definition committee-preference :: 'a set = 'a multiset relation («Comm)) where
W1 <[Comm(A)] W2 «— size {# z€H#WI. x € A #} < size {# zc#W2. x € A #}

lemma not-strict-Comm [simp]: =(W1 <[Comm(A)] W2) +— W1 =[Comm(A)] W2
{proof)

lemma not-weak-Comm [simp]: =(W1 <[Comm(A)] W2) <— W1 =[Comm(A)] W2
{proof)

sublocale Comm: preorder Comm(A) Az y. x <[Comm(A4)] y

{proof)

lemma strong-committee-preference-iff:
W1 <[Comm(A)] W2 — size {# cz€#WI1. z € A #} < size {# zc#W2. z € A #}
(proof)

We also define the Pareto ordering on parties induced by a given preference profile: One
party is at least as good (in the Pareto relation) as another if all voters agree that it is
at least as good. That is, y > = in the Pareto ordering if all voters who approve x also
approve y.

This relation is also reflexive and transitive.

definition Pareto :: 'a set multiset = 'a relation where
z X[Pareto(A)] y «— = € parties A y € parties N VXe#A. € X — y € X)

sublocale Pareto: preorder-on parties Pareto A

{proof)

Pareto losers are parties that are (strictly) Pareto-dominated, i.e. there exists some other
party that all voters consider to be at least as good and at least one voter considers it
to be strictly better.

definition pareto-losers :: 'a set multiset = 'a set where
pareto-losers A = {x. Jy. y »=[Pareto(4)] z}

end

2.2 P-APP rules and Desirable Properties

The following locale describes a P-APP rule. This is simply a function that maps every
preference profile to a committee of the desired size.

Note that in our setting, a P-APP rule has a fixed number of voters, a fixed set of parties,
and a fixed desired committee size.

locale anon-papp = anon-papp-election +
fixes r :: 'a set multiset = 'a multiset
assumes rule-wf: is-pref-profile A = is-committee (r A)

2.3 Efficiency

Efficiency is a common notion in Social Choice Theory. The idea is that if a party is
“obviously bad”, then it should not be chosen. What “obviously bad” means depends
on the precise notion of Efficiency that is used. We will talk about two notions: Weak
Efficiency and Pareto Efficiency.

A P-APP rule is weakly efficient if a party that is approved by no one is never part of
the output committee.

Note that approval lists must be non-empty, so there is always at least one party that is
approved by at least one voter.

locale weakly-efficient-anon-papp = anon-papp +
assumes weakly-efficient: is-pref-profile A = VXe#A. 1 ¢ X = z ¢# r A

A P-APP rule is Pareto-efficient if a Pareto-dominated party is never part of the output
committee.
locale pareto-optimal-anon-papp = anon-papp +
assumes pareto-optimal: is-pref-profile A = x € pareto-losers A = x ¢# r A
begin

Pareto-efficiency implies weak efficiency:

sublocale weakly-efficient-anon-papp
(proof)

end

2.4 Strategyproofness

Strategyproofness is another common notion in Social Choice Theory that generally
encapsulates the notion that an voter should not be able to manipulate the outcome of
an election in their favour by (unilaterally) submitting fake preferences; i.e. reporting
one’s preferences truthfully should always be the optimal choice.

A P-APP rule is called cardinality-strategyproof if an voter cannot obtain a better com-
mittee (i.e. one that contains strictly more of their approved parties) by submitting an
approval list that is different from their real approval list.

To make the definition simpler, we first define the notion of manipulability: in the context
of a particular P-APP rule r, a preference profile A is said to be manipulable by the
voter ¢ with the fake preference list Y if r(A(¢ := Y')) contains strictly more parties
approved by ¢ than r(A4).
Since we have anonymous profiles and do not talk about particular voters, we replace 4
with their approval list X. Since A is a multiset, the definition of manipulability becomes
r(A—{X}+{Y}) =x r(A).
definition (in anon-papp) card-manipulable where

card-manipulable A X Y +—

is-pref-profile A N X € ANY # {} NY C parties N v (A — {#X#} + {#Y#})

=[Comm(X)] r A

A technical (and fairly obvious) lemma: replacing an voter’s approval list with a different
approval list again yields a valid preference profile.
lemma (in anon-papp) is-pref-profile-replace:
assumes is-pref-profile A and X €# A and Y # {} and Y C parties
shows is-pref-profile (A — {#X#} + {#Y#})
(proof)

locale card-stratproof-anon-papp = anon-papp +
assumes not-manipulable: —~card-manipulable A X Y

begin

The two following alternative versions of non-manipulability are somewhat nicer to use
in practice.

lemma not-manipulable’:
assumes is-pref-profile A is-pref-profile A’ A + {#Y#} = A" + {#X#}
shows —(r A’ =[Comm(X)] r A)

(proof)

lemma not-manipulable’”:
assumes is-pref-profile A is-pref-profile A’ A + {#Y#} = A’ + {#X#}
shows r A’ <[Comm(X)] r A
(proof)

end

2.5 Representation

Representation properties are in a sense the opposite of Efficiency properties: if a suffi-
ciently high voters agree that certain parties are good, then these should, to some extent,
be present in the result. For instance, if we have 20 voters and 5 of them approve parties
A and B, then if the output committee has size 4, we would expect either A or B to be
in the committee to ensure that these voters’ preferences are represented fairly.

Weak representation is a particularly weak variant of this that states that if at least one
k-th of the voters (where k is the size of the output committee) approve only a single
party z, then z should be in the committee at least once:

locale weak-rep-anon-papp =
anon-papp n-voters parties commitlee-size r
for n-voters and parties :: 'alt set and committee-size :: nat and r +
assumes weak-representation:
is-pref-profile A = committee-size * count A {x} > n-voters = z €# r A

The following alternative definition of Weak Representation is a bit closer to the defini-
tion given in the paper.
lemma weak-rep-anon-papp-altdef:
weak-rep-anon-papp n-voters parties committee-size r +—>
anon-papp n-voters parties committee-size v N\ (committee-size = 0 V

(VA x. anon-papp-profile n-voters parties A —»
count A {z} > n-voters /| committee-size — x €# r A))

{proof)

Justified Representation is a stronger notion which demands that if there is a subgroup
of voters that comprises at least one k-th of all voters and for which the intersection of
their approval lists is some nonempty set X, then at least one of the parties approved
by at least one voter in that subgroup must be in the result committee.

locale justified-rep-anon-papp =

anon-papp n-voters parties commitlee-size r
for n-voters and parties :: 'alt set and committee-size :: nat and r +
assumes justified-representation:
is-pref-profile A = G C# A = committee-size x size G > n-voters =
(NXeset-mset G. X) #{} = IXaz. X e# GAze X Nz ecH#Hr A
begin

Any rule that satisfies Justified Representation also satisfies Weak Representation

sublocale weak-rep-anon-papp

(proof)

end

locale card-stratproof-weak-rep-anon-papp =
card-stratproof-anon-papp + weak-rep-anon-papp

2.6 Proportional Representation

The notions of Representation we have seen so far are fairly week in that they only
demand that certain parties be in the committee at least once if enough voters approve
them. Notions of Proportional Representation strengthen this by demanding that if a
sufficiently large subgroup of voters approve some parties, then these voters must be
represented in the result committe not just once, but to a degree proportional to the
size of that subgroup of voters.

For Weak Representation, the proportional generalization is fairly simple: if a fraction
of at least % of the voters uniquely approve a party z, then z must be in the committee
at least [times.

locale weak-prop-rep-anon-papp =
anon-papp n-voters parties committee-size r
for n-voters and parties :: 'alt set and committee-size :: nat and r +
assumes weak-proportional-representation:
is-pref-profile A = committee-size * count A {z} > | x n-voters = count (r A) © > 1
begin

sublocale weak-rep-anon-papp

(proof)

end

Similarly, Justified Proportional Representation demands that if the approval lists of a

subgroup of at least %” voters have a non-empty intersection, then at least [parties in

the result committee are each approved by at least one of the voters in the subgroup.

locale justified-prop-rep-anon-papp =
anon-papp n-voters parties committee-size r
for n-voters and parties :: 'alt set and committee-size :: nat and r +
assumes justified-proportional-representation:

is-pref-profile A = G C# A = committee-size x size G > | x n-voters =
(NXeset-mset G. X) # {} = size {# z €# r A. z € (U X€eset-mset G. X) #} > 1
begin

sublocale justified-rep-anon-papp
(proof)

sublocale weak-prop-rep-anon-papp

(proof)

end

locale card-stratproof-weak-prop-rep-anon-papp =
card-stratproof-anon-papp + weak-prop-rep-anon-papp

end

3 The Base Case of the Impossibility

theory PAPP-Impossibility-Base-Case
imports Anonymous-PAPP SAT-Replay
begin

In this section, we will prove the base case of our P-APP impossibility result, namely
that there exists no anonymous P-APP rule f for 6 voters, 4 parties, and committee size
3 that satisfies Weak Representation and Cardinality Strategyproofness.

The proof works by looking at some (comparatively small) set of preference profiles and
the set of all 20 possible output committees. Each proposition f(A) = C' (where A is a
profile from our set and C' is one of the 20 possible output committees) is considered as
a Boolean variable.

All the conditions arising on these variables based on the fact that f is a function
and the additional properties (Representation, Strategyproofness) are encoded as SAT
clauses. This SAT problem is then proven unsatisfiable by an external SAT solver and
the resulting proof re-imported into Isabelle/HOL.

3.1 Auxiliary Material

We define the set of committees of the given size k for a given set of parties P.

definition committees :: nat = 'a set = 'a multiset set where
committees k P = {W. set-mset W C P A size W = k}

We now prove a recurrence for this set so that we can more easily compute the set of all
possible committees:

lemma committees-0 [simp]: committees 0 P = {{#}}

{proof)

10

lemma committees-Suc:
committees (Suc n) P = (|JzeP. |J Wecommittees n P. {{#a#} + W})
(proof)

The following function takes a list [aq,...,ay,] and computes the list of all pairs of the
form (a;,a;) with i < j:
fun pairs :: a list = ('a x 'a) list where

pairs [| =]
| pairs (x # zs) = map (M\y. (z, y)) zs @ pairs zs

lemma distinct-conv-pairs: distinct zs <— list-all (Mz,y). © # y) (pairs zs)

{proof)

lemma list-ez-unfold: list-ex P (z # y # xs) «— Pz V list-ex P (y # xs) list-ex P [z] <— P
T

{proof)

lemma list-all-unfold: list-all P (z # y # xs) «— Pz A list-all P (y # xs) list-all P [z] +—
Px

{proof)

3.2 Setup for the Base Case

We define a locale for an anonymous P-APP rule for 6 voters, 4 parties, and committee
size 3 that satisfies weak representation and cardinality strategyproofness. Our goal is
to prove the theorem False inside this locale.
locale papp-impossibility-base-case =

card-stratproof-weak-rep-anon-papp 6 parties 3 r

for parties :: 'a set and r +

assumes card-parties: card parties = 4
begin

A slightly more convenient version of Weak Representation:

lemma weak-representation’:
assumes is-pref-profile A A’ = AV z€Z. count A {z} > 2 =Z C set-mset W
shows rA'#£ W
(proof)

The following lemma (Lemma 2 in the appendix of the paper) is a strengthening of Weak
Representation and Strategyproofness in our concrete setting:

Let A be a preference profile containing approval lists X and let Z be a set of parties
such that each element of Z is uniquely approved by at least two voters in A. Due to

Weak Representation, at least | X N Z| members of the committee are then approved by
X.

What the lemma now says is that if there exists another voter with approval list ¥ C
X and Y ¢ Z, then there is an additional committee member that is approved by X.

11

This lemma will be used both in our symmetry-breaking argument and as a means to
add more clauses to the SAT instance. Since these clauses are logical consequences of
Strategyproofness and Weak Representation, they are technically redundant — but their
presence allows us to use consider a smaller set of profiles and still get a contradiction.
Without using the lemma, we would need to feed more profiles to the SAT solver to
obtain the same information.

lemma lemma2:
assumes A: is-pref-profile A
assumes X €# Aand YV e# A — {#X#}and Y C X and -Y C Z
assumes Z: Vz€Z. count A {z} > 2
shows size (filter-mset (Az. x € X) (r A)) > card (X N Z)

(proof)

The following are merely reformulation of the above lemma for technical reasons.

lemma lemma2’:
assumes is-pref-profile A
assumes Vz€Z. count A {z} > 2
assumes X €e# AN QY. Ye# A—{#XH#}ANY C X A-Y C 2)
shows —filter-mset (Az. x € X) (r A) C# mset-set (X N Z)
(proof)

lemma lemma2’
assumes is-pref-profile A
assumes A’ = A
assumes Vz€Z. count A {z} > 2
assumes X €# A N (3 Yeset-mset (A — {#X#}). Y C X AN-Y C Z)
assumes filter-mset (Az. z € X) W C# mset-set (X N Z)
shows rA'# W

(proof)

3.3 Symmetry Breaking

In the following, we formalize the symmetry-breaking argument that shows that we can
reorder the four alternatives C to Cy in such a way that the preference profile

{Ci} {Co} {C1,Co} {Cs} {C3} {C3,C4}

is mapped to one of the committees [C1, Cy, Cs] or [Cy, Cy, C3].

We start with a simple technical lemma that states that if we have a multiset A of size 3
consisting of the elements x and y and = occurs at least as often as y, then A = [z, z, y].

lemma papp-multiset-3-auz:
assumes size A = 3z €# Ay €# A set-mset A C {z, y} © # y count A x > count A y
shows A = {#z, z, y#}

(proof)

The following is the main symmetry-breaking result. It shows that we can find parties
C1 to Cy with the desired property.

12

This is a somewhat ad-hoc argument; in the appendix of the paper this is done more
systematically in Lemma 3.

lemma symmetry-break-aux:
obtains C1 C2 C3 C4 where
parties = {C1, C2, C3, C4} distinct [C1, C2, C3, C4]
r ({#{C1}, {C2}, {C1, C2}, {C3}, {C4}, {C3, C4}#}) € {{#C1, C1, C3#}, {#C1, C2,
C3#}}
(proof)

We now use the choice operator to get our hands on such values C to Cj.

definition C123/ where
C1234 = (SOME zs. set xs = parties N distinct s N
(case zs of [C1, C2, C3, C4] =

r ({(#{C1}, {C2}, {C1, C2}, {C3}, {C4}, {C3, C4ya#}) € {{#C1, C1, O34},
{#C1, C2, C3#}}))

definition C! where C1 = C1234 ! 0
definition C2 where C2 = C1234 ! 1
definition C3 where C3 = (C1234 ! 2
definition C/ where C/ = C1234 ! 3

lemma distinct: distinct [C1, C2, C3, C4]
and parties-eq: parties = {C1, C2, C3, C4}
and symmetry-break:

r ({#{C1}, {C2}, {C1, C2}, {C3}, {C4}, {C3, C4}#}) € {{#C1, C1, 34}, {#C1,
C2, C34}}

(proof)

lemma distinct’ [simp):

Cl1# C2C1#C3C1# C4C2+#C1 #

C3# C1C3#C203+# C4ClL+#C1CY #C2C, +#C3
{proof)

lemma in-parties [simp]: C1 € parties C2 € parties C3 € parties C4 € parties

{proof)

3.4 The Set of Possible Committees

Next, we compute the set of the 20 possible committees.

abbreviation COM where COM = committees 3 parties

definition COM’ where COM' =
{#C1, C1, C1#}, {#C1, C1, C2#}, {#C1, C1, C34#}, {#C1, C1, C}#},
{#C1, C2, C2#}, {#C1, C2, C3#}, {#C1, C2, C4#}, {#C1, C3, C3#},
{#C1, C3, C4#}, {#C1, C4, CL#}, {#C2, C2, C2#}, {#C2, C2, C3#},
{#C2, C2, C4#}, {#C2, O3, O34}, {#C2, C3, Ch#}, {#C2, Cf, C4#},
{#C3, C3, C3#}, {#C3, C3, Cf4}, {#C3, C4, C4#},
{#0C4, C4, C4#}]

13

lemma distinct-COM": distinct COM’
(proof)

lemma COM-eq: COM = set COM'
(proof)

lemma r-in-COM:
assumes is-pref-profile A
shows r A € COM
(proof)

lemma r-in-COM":
assumes is-pref-profile A A’ = A
shows list-ex (AW.r A’= W) COM’
{proof)

lemma r-right-unique:
list-all A(W1,W2). r A+ W1V r A% W2) (pairs COM’)
(proof)

end

3.5 Generating Clauses and Replaying the SAT Proof

We now employ some custom-written ML code to generate all the SAT clauses arising
from the given profiles (read from an external file) as Isabelle/HOL theorems. From
these, we then derive Fualse by replaying an externally found SAT proof (also written
from an external file).

The proof was found with the glucose SAT solver, which outputs proofs in the DRUP
format (a subset of the more powerful DRAT format). We then used the DRAT-trim
tool by Wetzler et al. [2] to make the proof smaller. This was done repeatedly until the
proof size did not decrease any longer. Then, the proof was converted into the GRAT
format introduced by Lammich [1], which is easier to check (or in our case replay) than
the less explicit DRAT (or DRUP) format.

external-file sat-data/profiles
external-file sat-data/papp-impossibility.grat.zz

context papp-impossibility-base-case
begin
(ML)

This invocation proves a theorem called contradiction whose statement is False. Note
that the DIMACS version of the SAT file that is being generated can be viewed by
clicking on “See theory exports” in the messages output by the invocation below.

On a 2021 desktop PC with 12 cores, proving all the clauses takes 8.4 s (multithreaded;

14

CPU time 55s). Replaying the proof takes 30s (singlethreaded).
(ML)

end

With this, we can now prove the impossibility result:

lemma papp-impossibility-base-case:
assumes card parties = 4
shows —card-stratproof-weak-rep-anon-papp 6 parties 3 r

(proof)

end

4 Lowering P-APP Rules to Smaller Settings

theory Anonymous-PAPP-Lowering
imports Anonymous-PAPP
begin

In this section, we prove a number of lemmas (corresponding to Lemma 1 in the paper)
that allow us to take an anonymous P-APP rule with some additional properties (typ-
ically Cardinality-Strategyproofness and Weak Representation or Weak Proportional
Representation) and construct from it an anonymous P-APP rule for a different setting,
i.e. different number of voters, parties, and/or result committee size.

In the reverse direction, this also allows us to lift impossibility results from one setting
to another.

4.1 Preliminary Lemmas

context card-stratproof-anon-papp
begin

The following lemma is obtained by applying Strategyproofness repeatedly. It shows
that if we have [voters with identical approval lists, then this entire group of voters
has no incentive to submit wrong preferences. That is, the outcome they obtain by
submitting their genuine approval lists is weakly preferred by them over all outcomes
obtained where these [voters submit any other preferences (and the remaining n — [
voters submit the same preferences as before).

This is stronger than regular Strategyproofness, where we only demand that no voter
has an incentive to submit wrong preferences unilaterally (and everyone else keeps the
same preferences). Here we know that the entire group of [voters has no incentive to
submit wrong preferences in coordination with one another.

lemma proposition2:

assumes size B = [size A + | = n-voters
assumes X # {} X C parties {} ¢# A+B VYV X'e#A+B. X' C parties

15

shows r (replicate-mset | X + A) =[Comm(X)] r (B + A)
{proof)

end

context card-stratproof-weak-rep-anon-papp
begin

In a setting with Weak Representation and Cardinality-Strategyproofness, Proposition
2 allows us to strengthen Weak Representation in the following way: Suppose we at least
[[n/k| voters with the same approval list X, and X consists of at least [parties. Then
at least [of the members of the result committee are in X.

lemma proposition3:
assumes is-pref-profile A X C parties card X > 1
assumes committee-size > ()
assumes count A X > | % [n-voters /| committee-size|
shows size {# ze# rA. z e X #} > 1

{proof)

end

4.2 Dividing the number of voters

If we have a PAPP rule that satisfies weak representation and cardinality strategyproof-
ness, for In voters, we can turn it into one for n voters. This is done by simply cloning
each voter [times.

Consequently, if we have an impossibility result for n voters, it also holds for any integer
multiple of n.

locale divide-voters-card-stratproof-weak-rep-anon-papp =
card-stratproof-weak-rep-anon-papp | * n-voters parties committee-size r
for [n-voters parties committee-size r

begin

definition lift-profile :: 'a set multiset = ’a set multiset where
lift-profile A = (> Xe€#A. replicate-mset | X)

sublocale lowered: anon-papp-election n-voters parties

{proof)

lemma I-pos: | > 0

{proof)

lemma empty-in-lift-profile-iff [simp]: {} €4 lift-profile A +— {} €# A
(proof)

lemma set-mset-lift-profile [simp]: set-mset (lift-profile A) = set-mset A

16

{proof)

lemma size-lift-profile: size (lift-profile A) = | * size A
(proof)

lemma count-lift-profile [simp]: count (lift-profile A) z = 1 * count A x
(proof)

lemma is-pref-profile-lift-profile [introl:
assumes lowered.is-pref-profile A
shows is-pref-profile (lift-profile A)
(proof)

sublocale lowered: anon-papp n-voters parties committee-size r o lift-profile
(proof)

sublocale lowered: weak-rep-anon-papp n-voters parties committee-size r o lift-profile

(proof)

sublocale lowered: card-stratproof-anon-papp n-voters parties committee-size r o lift-profile
(proof)

sublocale lowered: card-stratproof-weak-rep-anon-papp n-voters parties committee-size r o lift-profile

(proof)

end

locale divide-voters-card-stratproof-weak-prop-rep-anon-papp =
card-stratproof-weak-prop-rep-anon-papp |l * n-voters parties committee-size
for | n-voters parties committee-size r

begin

sublocale divide-voters-card-stratproof-weak-rep-anon-papp {proof)

sublocale lowered: card-stratproof-weak-prop-rep-anon-papp
n-voters parties committee-size v o lift-profile

(proof)

end

4.3 Decreasing the number of parties

If we have a PAPP rule that satisfies weak representation and cardinality strategyproof-
ness, for m parties, we can turn it into one for m — 1 parties. This is done by simply
duplicating one particular party (say z) in the preference profile, i.e. whenever z is part
of an approval list, we add a clone of = (say y) as well. Should y then end up in the
committee, we simply replace it with .

17

Consequently, if we have an impossibility result for k parties, it also holds for > m
parties.

locale remove-alt-card-stratproof-weak-rep-anon-papp =
card-stratproof-weak-rep-anon-papp n-voters parties committee-size r
for n-voters and parties :: 'a set and committee-size v +
fixeszy :: 'a
assumes xy: T € parties y € parties © # y

begin

definition lift-applist :: 'a set = 'a set where
lift-applist X = (if © € X then insert y X else X)

definition lift-profile :: 'a set multiset = 'a set multiset where
lift-profile A = image-mset lift-applist A

definition lower-result where lower-result C = image-mset (Az. if z = y then z else z) C

definition lowered where lowered = lower-result o r o lift-profile

lemma lift-profile-empty [simp]: lift-profile {#} = {#}
{proof)

lemma lift-profile-add-mset [simp]:
lift-profile (add-mset X A) = add-mset (lift-applist X) (lift-profile A)
(proof)

lemma empty-in-lift-profile-iff [simp]: {} €4 lift-profile A +— {} €# A
(proof)

lemma size-lift-profile [simp]: size (lift-profile A) = size A
(proof)

lemma lift-applist-eq-self-iff [simp]: lift-applist X = X +— 2z ¢ X Vye X
(proof)

lemma lift-applist-eq-self-iff ' [simp]: lift-applist (X — {y}) = X +— (2 € X +— y € X)
(proof)

lemma in-lift-applist-iff: z € lift-applist X +— z2€ X V (z=y ANz € X)
(proof)

lemma count-lift-profile:
assumes VYeE#A. y ¢ YV
shows count (lift-profile A) X = (if z € X <— y € X then count A (X — {y}) else 0)

{proof)

lemma y-notin-lower-result [simp|: y ¢# lower-result C

{proof)

18

lemma lower-result-subset: set-mset (lower-result C) C insert © (set-mset C — {y})

{proof)

lemma lower-result-subset”: set-mset C' C parties => set-mset (lower-result C') C parties

{proof)

lemma size-lower-result [simp]: size (lower-result C') = size C

{proof)

lemma count-lower-result:
count (lower-result C) z =
(if z =y then 0
else if z = x then count C z + count C'y
else count C z)

{proof)

lemma in-lower-result-iff:
z €# lower-result C «— 2 £ y AN (z€# CV (z=z Ny c# C))
(proof)

sublocale lowered: anon-papp-election n-voters parties — {y}

(proof)

lemma is-pref-profile-lift-profile [intro|:
assumes lowered.is-pref-profile A
shows is-pref-profile (lift-profile A)
(proof)

sublocale lowered: anon-papp n-voters parties — {y} committee-size lowered
(proof)

sublocale lowered: weak-rep-anon-papp n-voters parties — {y} committee-size lowered

(proof)

lemma filter-lower-result-eq:
y & X = {#xz €# lower-result C. x € X#} = lower-result {#z €# C. x € lift-applist X#}
(proof)

sublocale lowered: card-stratproof-anon-papp n-voters parties — {y} committee-size lowered
(proof)

sublocale lowered: card-stratproof-weak-rep-anon-papp n-voters parties — {y} committee-size
lowered

{proof)

end

The following lemma is now simply an iterated application of the above. This allows us

19

to restrict a P-APP rule to any non-empty subset of parties.

lemma card-stratproof-weak-rep-anon-papp-restrict-parties:
assumes card-stratproof-weak-rep-anon-papp n parties k r parties’ C parties parties’ # {}
shows 3Jr. card-stratproof-weak-rep-anon-papp n parties’ k r

(proof)

4.4 Decreasing the committee size

If we have a PAPP rule that satisfies weak representation and cardinality strategyproof-
ness, for [(k+ 1) voters, m + 1 parties, and a committee size of k+ 1, we can turn it into
one for [k voters, m parties, and a committee size of k.

This is done by again cloning a party x into a new party y and additionally adding [
new voters whose preferences are {z, y}. We again replace any y occuring in the output
committee with x. Weak representation then ensures that x occurs in the output at
least once, and we then simply remove one z from the committee to obtain an output
committee of size k — 1.

Consequently, if we have an impossibility result for a committee size of m, we can extend
it to a larger committee size, but at the cost of introducing a new party and new voters,
and with a restriction on the number of voters.

locale decrease-committee-card-stratproof-weak-rep-anon-papp =
card-stratproof-weak-rep-anon-papp | x (k + 1) insert y parties k + 1 r
for [k y and parties :: 'a set and r +
fixes z :: 'a
assumes zy: © € parties y ¢ parties
assumes k: k > 0

begin

definition lift-applist :: 'a set = 'a set where
lift-applist X = (if x € X then insert y X else X)

definition lift-profile :: 'a set multiset = 'a set multiset where
lift-profile A = image-mset lift-applist A + replicate-mset | {z, y}

definition lower-result
where lower-result C = image-mset (Az. if z = y then x else z) C — {#a#}

definition lowered where lowered = lower-result o r o lift-profile

lemma I: | > 0

{proof)

lemma z-neg-y [simp): © # yy # «
(proof)

lemma lift-profile-empty [simpl: lift-profile {#} = replicate-mset | {z, y}
(proof)

20

lemma lift-profile-add-mset [simp]:
lift-profile (add-mset X A) = add-mset (lift-applist X) (lift-profile A)
(proof)

lemma empty-in-lift-profile-iff [simp]: {} €# lift-profile A +— {} €# A
(proof)

lemma size-lift-profile [simp]: size (lift--profile A) = size A + 1
(proof)

lemma lift-applist-eq-self-iff [simp): lift-applist X = X +— ¢ X Vye X
(proof)

lemma lift-applist-eg-self-iff ' [simp]: lift-applist (X — {y}) = X +— (z € X +— y € X)
(proof)

lemma in-lift-applist-iff: z € lift-applist X +— z€ X V(z=y Az € X)
(proof)

lemma count-lift-profile:
assumes VYe#A y ¢ Y
shows count (lift-profile A) X =
(if v € X «— y € X then count A (X — {y}) else 0) +
(if X = {xz, y} then [else 0)
(proof)

lemma y-notin-lower-result [simp|: y ¢# lower-result C

{proof)

lemma lower-result-subset: set-mset (lower-result C) C insert © (set-mset C — {y})

(proof)

lemma lower-result-subset”. set-mset C' C insert y parties = set-mset (lower-result C) C
parties

{proof)

lemma size-lower-result [simp]:
assumes ¢ €# C V y €# C
shows size (lower-result C) = size C — 1

(proof)
lemma size-lower-result”: size (lower-result C') = size C — (if ¢ €# C V y €# C then 1 else
0)
(proof)

lemma count-lower-result:

21

count (lower-result C) z =
(if z =y then 0
else if z = x then count C' v + count C'y — 1
else count C z) (is - = ?rhs)

(proof)

lemma in-lower-resultD:
z €4 lower-result C = z =z V z €# C

{proof)

lemma in-lower-result-iff:
z €4 lower-result C +— z # y A (if z = z then count C x + count Cy > 1 else z €# C)
(is - = ?rhs)

(proof)

lemma filter-lower-result-eq:
assumes y ¢ X
shows {#z €# lower-result C. z € X#} = lower-result {#z €# C. z € lift-applist X#}

(proof)

sublocale lowered: anon-papp-election | x k parties k

(proof)

lemma is-pref-profile-lift-profile [introl:
assumes lowered.is-pref-profile A
shows is-pref-profile (lift-profile A)
(proof)

lemma is-committee-lower-result:
assumes is-committee Cx €# C V y €# C
shows lowered.is-committee (lower-result C')

{proof)

lemma z-or-y-in-r-lift-profile:

assumes lowered.is-pref-profile A

shows xz €# r (lift-profile A) V y €# r (lift-profile A)
(proof)

sublocale lowered: anon-papp | x k parties k lowered

(proof)

sublocale lowered: weak-rep-anon-papp | * k parties k lowered
(proof)

sublocale lowered: card-stratproof-anon-papp | x k parties k lowered
(proof)

sublocale lowered: card-stratproof-weak-rep-anon-papp | * k parties k lowered

22

{proof)

end

For Weak Proportional Representation, the lowering argument to decrease the committee
size is somewhat easier since it does not involve adding a new party; instead, we simply
add [new voters whose preferences are {z}.

locale decrease-committee-card-stratproof-weak-prop-rep-anon-papp =
card-stratproof-weak-prop-rep-anon-papp | x (k + 1) parties k + 1 r
for [k and parties :: 'a set and r +
fixes = :: 'a
assumes z: ¢ € parties
assumes k: k > 0

begin

definition lift-profile :: 'a set multiset = 'a set multiset where
lift-profile A = A + replicate-mset | {z}

definition lower-result
where lower-result C = C — {#a#}

definition lowered where lowered = lower-result o r o lift-profile

lemma [: [> 0

{proof)

lemma lift-profile-empty [simp]: lift-profile {#} = replicate-mset | {z}
{proof)

lemma lift-profile-add-mset [simp]:
lift-profile (add-mset X A) = add-mset X (lift-profile A)
(proof)

lemma empty-in-lift-profile-iff [simp]: {} €4 lift-profile A +— {} €# A
(proof)

lemma size-lift-profile [simp): size (lift-profile A) = size A + 1
(proof)

lemma count-lift-profile:
count (lift-profile A) X = count A X + (if X = {x} then [else 0)
(proof)

lemma size-lower-result [simp]:
assumes z €# C
shows size (lower-result C) = size C — 1

(proof)

23

lemma size-lower-result”: size (lower-result C') = size C — (if x €# C then 1 else 0)

{proof)

lemma count-lower-result:
count (lower-result C') z = count C z — (if z = x then I else 0)

(proof)

lemma in-lower-resultD:
z €4 lower-result C = z €# C

{proof)

lemma in-lower-result-iff:
z €4 lower-result C <— (if z = x then count C x > 1 else z €# C)
(is - = ?rhs)

(proof)

sublocale lowered: anon-papp-election | x k parties k

{proof)

lemma is-pref-profile-lift-profile [intro):
assumes lowered.is-pref-profile A
shows is-pref-profile (lift-profile A)
(proof)

lemma is-committee-lower-result:
assumes is-committee C z €# C
shows lowered.is-committee (lower-result C)

{proof)

lemma x-in-r-lift-profile:
assumes lowered.is-pref-profile A
shows x €# r (lift-profile A)
(proof)

sublocale lowered: anon-papp | * k parties k lowered
(proof)

sublocale lowered: weak-prop-rep-anon-papp | x k parties k lowered

(proof)

sublocale lowered: card-stratproof-anon-papp | * k parties k lowered
(proof)

sublocale lowered: card-stratproof-weak-prop-rep-anon-papp | x k parties k lowered

{proof)

end

24

end

5 Lifting the Impossibility Result to Larger Settings

theory PAPP-Impossibility
imports PAPP-Impossibility-Base-Case Anonymous-PAPP-Lowering
begin

In this section, we now prove the main results of this work by combining the base case
with the lifting arguments formalized earlier.

First, we prove the following very simple technical lemma: a set that is infinite or finite
with cardinality at least 2 contains two different elements = and y.

lemma obtain-2-elements:
assumes nfinite X V card X > 2
obtains z y where z € Xye€ Xz # y

(proof)

We now have all the ingredients to formalise the first main impossibility result: There
is no P-APP rule that satisfies Anonymity, Cardinality-Strategyproofness, and Weak
Representation if £ > & and m > k + I and n is a multiple of 2k.

The proof simply uses the lowering lemmas we proved earlier to first reduce the commit-
tee size to 3, then reduce the voters to 6, and finally restrict the parties to 4. At that
point, the base case we proved with SAT solving earlier kicks in.

This corresponds to Theorem 1 in the paper.

theorem papp-impossibilityl :
assumes k > & and card parties > k + 1 and finite parties
shows —card-stratproof-weak-rep-anon-papp (2 = k * 1) parties k r

(proof)

If Weak Representation is replaced with Weak Proportional Representation, we can
strengthen the impossibility result by relaxing the conditions on the number of parties
to m > 4.

This works because with Weak Proportional Representation, we can reduce the size of
the committee without changing the number of parties. We use this to again bring
k down to 3 without changing m, at which point we can simply apply our previous
impossibility result for Weak Representation.

This corresponds to Theorem 2 in the paper.

corollary papp-impossibility2:
assumes k > 8 and card parties > 4 and finite parties
shows —card-stratproof-weak-prop-rep-anon-papp (2 * k = 1) parties k r

(proof)

end

25

References

[1] P. Lammich. The GRAT tool chain — efficient (UN)SAT certificate checking with

formal correctness guarantees. In S. Gaspers and T. Walsh, editors, Theory and Ap-
plications of Satisfiability Testing — SAT 2017, Proceedings, volume 10491 of Lecture
Notes in Computer Science, pages 457-463. Springer, 2017.

N. Wetzler, M. Heule, and W. A. H. Jr. DRAT-trim: Efficient checking and trimming
using expressive clausal proofs. In C. Sinz and U. Egly, editors, Theory and Applica-
tions of Satisfiability Testing — SAT 201/, Proceedings, volume 8561 of Lecture Notes
in Computer Science, pages 422-429. Springer, 2014.

26

	Auxiliary Facts About Multisets
	Anonymous Party Approval Rules
	Definition of the General Setting
	P-APP rules and Desirable Properties
	Efficiency
	Strategyproofness
	Representation
	Proportional Representation

	The Base Case of the Impossibility
	Auxiliary Material
	Setup for the Base Case
	Symmetry Breaking
	The Set of Possible Committees
	Generating Clauses and Replaying the SAT Proof

	Lowering P-APP Rules to Smaller Settings
	Preliminary Lemmas
	Dividing the number of voters
	Decreasing the number of parties
	Decreasing the committee size

	Lifting the Impossibility Result to Larger Settings

