
The Incompatibility of Strategy-Proofness
and Representation in Party-Approval

Multi-Winner Elections
Théo Delemazure

Tom Demeulemeester
Manuel Eberl
Jonas Israel

Patrick Lederer

March 17, 2025

In party-approval multi-winner elections, the goal is to allocate the seats
of a fixed-size committee to parties based on approval ballots of the voters
over the parties. In particular, each voter can approve multiple parties and
each party can be assigned multiple seats.

Three central requirements in this settings are:
Anonymity: The result is invariant under renaming the voters.
Representation: Every sufficiently large group of voters with similar prefer-

ences is represented by some committee members.
Strategy-proofness: No voter can benefit by misreporting her true prefer-

ences.
We show that these three basic axioms are incompatible for party-approval
multi-winner voting rules, thus proving a far-reaching impossibility theorem.

The proof of this result is obtained by formulating the problem in propo-
sitional logic and then letting a SAT solver show that the formula is un-
satisfiable. The DRUP proof output by the SAT solver is then converted
into Lammich’s GRAT format and imported into Isabelle/HOL with some
custom-written ML code.

This transformation is proof-producing, so the final Isabelle/HOL theorem
does not rely on any oracles or other trusted external trusted components.

1

Contents
1 Auxiliary Facts About Multisets 3

2 Anonymous Party Approval Rules 4
2.1 Definition of the General Setting . 4
2.2 P-APP rules and Desirable Properties . 6
2.3 Efficiency . 7
2.4 Strategyproofness . 8
2.5 Representation . 9
2.6 Proportional Representation . 11

3 The Base Case of the Impossibility 12
3.1 Auxiliary Material . 13
3.2 Setup for the Base Case . 14
3.3 Symmetry Breaking . 18
3.4 The Set of Possible Committees . 24
3.5 Generating Clauses and Replaying the SAT Proof 25

4 Lowering P-APP Rules to Smaller Settings 26
4.1 Preliminary Lemmas . 26
4.2 Dividing the number of voters . 32
4.3 Decreasing the number of parties . 35
4.4 Decreasing the committee size . 41

5 Lifting the Impossibility Result to Larger Settings 52

2

1 Auxiliary Facts About Multisets
theory PAPP-Multiset-Extras

imports HOL−Library.Multiset
begin

This section contains a number of not particularly interesting small facts about multisets.
lemma mset-set-subset-iff : finite A =⇒ mset-set A ⊆# B ←→ A ⊆ set-mset B

by (metis finite-set-mset finite-set-mset-mset-set mset-set-set-mset-msubset
msubset-mset-set-iff set-mset-mono subset-mset.trans)

lemma mset-subset-size-ge-imp-eq:
assumes A ⊆# B size A ≥ size B
shows A = B
using assms

proof (induction A arbitrary: B)
case empty
thus ?case by auto

next
case (add x A B)
have [simp]: x ∈# B

using add.prems by (simp add: insert-subset-eq-iff)
define B ′ where B ′ = B − {#x#}
have B-eq: B = add-mset x B ′

using add.prems unfolding B ′-def by (auto simp: add-mset-remove-trivial-If)
have A = B ′

using add.prems by (intro add.IH) (auto simp: B-eq)
thus ?case

by (auto simp: B-eq)
qed

lemma mset-psubset-iff :
X ⊂# Y ←→ X ⊆# Y ∧ (∃ x. count X x < count Y x)
by (meson less-le-not-le subset-mset.less-le-not-le subseteq-mset-def)

lemma count-le-size: count A x ≤ size A
by (induction A) auto

lemma size-filter-eq-conv-count [simp]: size (filter-mset (λy. y = x) A) = count A x
by (induction A) auto

lemma multiset-filter-mono ′:
assumes

∧
x. x ∈# A =⇒ P x =⇒ Q x

shows filter-mset P A ⊆# filter-mset Q A
using assms by (induction A) (auto simp: subset-mset.absorb-iff1 add-mset-union)

lemma multiset-filter-mono ′′:
assumes A ⊆# B

∧
x. x ∈# A =⇒ P x =⇒ Q x

shows filter-mset P A ⊆# filter-mset Q B

3

using assms multiset-filter-mono multiset-filter-mono ′

by (metis subset-mset.order-trans)

lemma filter-mset-disjunction:
assumes

∧
x. x ∈# X =⇒ P x =⇒ Q x =⇒ False

shows filter-mset (λx. P x ∨ Q x) X = filter-mset P X + filter-mset Q X
using assms by (induction X) auto

lemma size-mset-sum-mset: size (sum-mset X) = (
∑

x∈#X . size (x :: ′a multiset))
by (induction X) auto

lemma count-sum-mset: count (sum-mset X) x = (
∑

Y∈#X . count Y x)
by (induction X) auto

lemma replicate-mset-rec: n > 0 =⇒ replicate-mset n x = add-mset x (replicate-mset (n − 1)
x)

by (cases n) auto

lemma add-mset-neq: x /∈# B =⇒ add-mset x A 6= B
by force

lemma filter-replicate-mset:
filter-mset P (replicate-mset n x) = (if P x then replicate-mset n x else {#})
by (induction n) auto

lemma filter-diff-mset ′: filter-mset P (X − Y) = filter-mset P X − Y
by (rule multiset-eqI) auto

lemma in-diff-multiset-absorb2 : x /∈# B =⇒ x ∈# A − B ←→ x ∈# A
by (metis count-greater-zero-iff count-inI in-diff-count)

end

2 Anonymous Party Approval Rules
theory Anonymous-PAPP

imports Complex-Main Randomised-Social-Choice.Order-Predicates PAPP-Multiset-Extras
begin

In this section we will define (anonymous) P-APP rules and some basic desirable prop-
erties of P-APP rules.

2.1 Definition of the General Setting

The following locale encapsulates an anonymous party approval election; that is:
• a number of voters
• a set of parties

4

• the size of the desired committee
The number of parties and voters is assumed to be finite and non-zero. As a modelling
choice, we do not distinguish the voters at all; there is no explicit set of voters. We only
care about their number.
locale anon-papp-election =

fixes n-voters :: nat and parties :: ′a set and committee-size :: nat
assumes finite-parties [simp, intro]: finite parties
assumes n-voters-pos: n-voters > 0
assumes nonempty-parties [simp]: parties 6= {}

begin

The result of a P-APP election is a committee, i.e. a multiset of parties with the desired
size.
definition is-committee :: ′a multiset ⇒ bool where

is-committee W ←→ set-mset W ⊆ parties ∧ size W = committee-size

end

A preference profile for a P-APP collection consists of one approval list (i.e. a set of
approved parties) for each voter. Since we are in an anonymous setting, this means that
we have a multiset consisting of n sets of parties (where n is the number of voters).
Moreover, we make the usual assumption that the approval lists must be non-empty.
locale anon-papp-profile = anon-papp-election +

fixes A :: ′a set multiset
assumes A-subset:

∧
X . X ∈# A =⇒ X ⊆ parties

assumes A-nonempty: {} /∈# A
assumes size-A: size A = n-voters

begin

lemma A-nonempty ′: A 6= {#}
using size-A n-voters-pos by auto

end

context anon-papp-election
begin

abbreviation
is-pref-profile where is-pref-profile ≡ anon-papp-profile n-voters parties

lemma is-pref-profile-iff :
is-pref-profile A ←→ set-mset A ⊆ Pow parties − {{}} ∧ size A = n-voters
unfolding anon-papp-profile-def anon-papp-profile-axioms-def
using anon-papp-election-axioms by auto

5

lemma not-is-pref-profile-empty [simp]: ¬is-pref-profile {#}
using anon-papp-profile.A-nonempty ′[of n-voters]
by auto

The following relation is a key definition: it takes an approval list A and turns it into a
preference relation on committees. A committee is to be at least as good as another if
the number of approved parties in it is at least as big.
This relation is a reflexive, transitive, and total.
definition committee-preference :: ′a set ⇒ ′a multiset relation (‹Comm›) where

W1 �[Comm(A)] W2 ←→ size {# x∈#W1 . x ∈ A #} ≤ size {# x∈#W2 . x ∈ A #}

lemma not-strict-Comm [simp]: ¬(W1 ≺[Comm(A)] W2) ←→ W1 �[Comm(A)] W2
by (auto simp: committee-preference-def strongly-preferred-def)

lemma not-weak-Comm [simp]: ¬(W1 �[Comm(A)] W2) ←→ W1 �[Comm(A)] W2
by (auto simp: committee-preference-def strongly-preferred-def)

sublocale Comm: preorder Comm(A) λx y. x ≺[Comm(A)] y
by standard (auto simp: committee-preference-def strongly-preferred-def)

lemma strong-committee-preference-iff :
W1 ≺[Comm(A)] W2 ←→ size {# x∈#W1 . x ∈ A #} < size {# x∈#W2 . x ∈ A #}
by (auto simp: committee-preference-def strongly-preferred-def)

We also define the Pareto ordering on parties induced by a given preference profile: One
party is at least as good (in the Pareto relation) as another if all voters agree that it is
at least as good. That is, y � x in the Pareto ordering if all voters who approve x also
approve y.
This relation is also reflexive and transitive.
definition Pareto :: ′a set multiset ⇒ ′a relation where

x �[Pareto(A)] y ←→ x ∈ parties ∧ y ∈ parties ∧ (∀X∈#A. x ∈ X −→ y ∈ X)

sublocale Pareto: preorder-on parties Pareto A
by standard (auto simp: Pareto-def)

Pareto losers are parties that are (strictly) Pareto-dominated, i.e. there exists some other
party that all voters consider to be at least as good and at least one voter considers it
to be strictly better.
definition pareto-losers :: ′a set multiset ⇒ ′a set where

pareto-losers A = {x. ∃ y. y �[Pareto(A)] x}

end

2.2 P-APP rules and Desirable Properties

The following locale describes a P-APP rule. This is simply a function that maps every
preference profile to a committee of the desired size.

6

Note that in our setting, a P-APP rule has a fixed number of voters, a fixed set of parties,
and a fixed desired committee size.
locale anon-papp = anon-papp-election +

fixes r :: ′a set multiset ⇒ ′a multiset
assumes rule-wf : is-pref-profile A =⇒ is-committee (r A)

2.3 Efficiency

Efficiency is a common notion in Social Choice Theory. The idea is that if a party is
“obviously bad”, then it should not be chosen. What “obviously bad” means depends
on the precise notion of Efficiency that is used. We will talk about two notions: Weak
Efficiency and Pareto Efficiency.
A P-APP rule is weakly efficient if a party that is approved by no one is never part of
the output committee.
Note that approval lists must be non-empty, so there is always at least one party that is
approved by at least one voter.
locale weakly-efficient-anon-papp = anon-papp +

assumes weakly-efficient: is-pref-profile A =⇒ ∀X∈#A. x /∈ X =⇒ x /∈# r A

A P-APP rule is Pareto-efficient if a Pareto-dominated party is never part of the output
committee.
locale pareto-optimal-anon-papp = anon-papp +

assumes pareto-optimal: is-pref-profile A =⇒ x ∈ pareto-losers A =⇒ x /∈# r A
begin

Pareto-efficiency implies weak efficiency:
sublocale weakly-efficient-anon-papp
proof

fix A x
assume A: is-pref-profile A and x: ∀X∈#A. x /∈ X
interpret anon-papp-profile n-voters parties committee-size A

by fact
have A 6= {#}

using A-nonempty ′ .
then obtain X where X : X ∈# A

by auto
with A-nonempty have X 6= {}

by auto
then obtain y where y: y ∈ X

by auto
show x /∈# r A
proof (cases x ∈ parties)

case False
thus ?thesis

using rule-wf [OF A] by (auto simp: is-committee-def)
next

7

case True
have y �[Pareto(A)] x

unfolding Pareto-def using X x y True A-subset[of X]
by (auto simp: strongly-preferred-def)

hence x ∈ pareto-losers A
by (auto simp: pareto-losers-def)

thus ?thesis
using pareto-optimal[OF A] by auto

qed
qed

end

2.4 Strategyproofness

Strategyproofness is another common notion in Social Choice Theory that generally
encapsulates the notion that an voter should not be able to manipulate the outcome of
an election in their favour by (unilaterally) submitting fake preferences; i.e. reporting
one’s preferences truthfully should always be the optimal choice.
A P-APP rule is called cardinality-strategyproof if an voter cannot obtain a better com-
mittee (i.e. one that contains strictly more of their approved parties) by submitting an
approval list that is different from their real approval list.

To make the definition simpler, we first define the notion of manipulability: in the context
of a particular P-APP rule r, a preference profile A is said to be manipulable by the
voter i with the fake preference list Y if r(A(i := Y)) contains strictly more parties
approved by i than r(A).
Since we have anonymous profiles and do not talk about particular voters, we replace i
with their approval list X. Since A is a multiset, the definition of manipulability becomes
r(A− {X}+ {Y }) �X r(A).
definition (in anon-papp) card-manipulable where

card-manipulable A X Y ←→
is-pref-profile A ∧ X ∈# A ∧ Y 6= {} ∧ Y ⊆ parties ∧ r (A − {#X#} + {#Y#})

�[Comm(X)] r A

A technical (and fairly obvious) lemma: replacing an voter’s approval list with a different
approval list again yields a valid preference profile.
lemma (in anon-papp) is-pref-profile-replace:

assumes is-pref-profile A and X ∈# A and Y 6= {} and Y ⊆ parties
shows is-pref-profile (A − {#X#} + {#Y#})

proof −
interpret anon-papp-profile n-voters parties committee-size A

by fact
show ?thesis

using assms A-subset A-nonempty unfolding is-pref-profile-iff
by (auto dest: in-diffD simp: size-Suc-Diff1)

qed

8

locale card-stratproof-anon-papp = anon-papp +
assumes not-manipulable: ¬card-manipulable A X Y

begin

The two following alternative versions of non-manipulability are somewhat nicer to use
in practice.
lemma not-manipulable ′:

assumes is-pref-profile A is-pref-profile A ′ A + {#Y#} = A ′ + {#X#}
shows ¬(r A ′ �[Comm(X)] r A)

proof (cases X = Y)
case True
thus ?thesis

using assms by (simp add: strongly-preferred-def)
next

case False
interpret A: anon-papp-profile n-voters parties committee-size A

by fact
interpret A ′: anon-papp-profile n-voters parties committee-size A ′

by fact
from assms(3) False have ∗: Y ∈# A ′ X ∈# A

by (metis add-mset-add-single insert-noteq-member)+

have ¬card-manipulable A X Y
by (intro not-manipulable)

hence ¬r (A − {#X#} + {#Y#}) �[Comm(X)] r A
using assms ∗ A.A-subset A ′.A-subset A.A-nonempty A ′.A-nonempty
by (auto simp: card-manipulable-def)

also have A − {#X#} + {#Y#} = A ′

using assms(3) False by (metis add-eq-conv-diff add-mset-add-single)
finally show ?thesis .

qed

lemma not-manipulable ′′:
assumes is-pref-profile A is-pref-profile A ′ A + {#Y#} = A ′ + {#X#}
shows r A ′ �[Comm(X)] r A
using not-manipulable ′[OF assms] by simp

end

2.5 Representation

Representation properties are in a sense the opposite of Efficiency properties: if a suffi-
ciently high voters agree that certain parties are good, then these should, to some extent,
be present in the result. For instance, if we have 20 voters and 5 of them approve parties
A and B, then if the output committee has size 4, we would expect either A or B to be
in the committee to ensure that these voters’ preferences are represented fairly.
Weak representation is a particularly weak variant of this that states that if at least one

9

k-th of the voters (where k is the size of the output committee) approve only a single
party x, then x should be in the committee at least once:
locale weak-rep-anon-papp =

anon-papp n-voters parties committee-size r
for n-voters and parties :: ′alt set and committee-size :: nat and r +
assumes weak-representation:

is-pref-profile A =⇒ committee-size ∗ count A {x} ≥ n-voters =⇒ x ∈# r A

The following alternative definition of Weak Representation is a bit closer to the defini-
tion given in the paper.
lemma weak-rep-anon-papp-altdef :

weak-rep-anon-papp n-voters parties committee-size r ←→
anon-papp n-voters parties committee-size r ∧ (committee-size = 0 ∨
(∀A x . anon-papp-profile n-voters parties A −→

count A {x} ≥ n-voters / committee-size −→ x ∈# r A))
by (cases committee-size = 0)

(auto simp: field-simps weak-rep-anon-papp-def
weak-rep-anon-papp-axioms-def
anon-papp-def anon-papp-axioms-def anon-papp-election-def

simp flip: of-nat-mult)

Justified Representation is a stronger notion which demands that if there is a subgroup
of voters that comprises at least one k-th of all voters and for which the intersection of
their approval lists is some nonempty set X, then at least one of the parties approved
by at least one voter in that subgroup must be in the result committee.
locale justified-rep-anon-papp =

anon-papp n-voters parties committee-size r
for n-voters and parties :: ′alt set and committee-size :: nat and r +
assumes justified-representation:

is-pref-profile A =⇒ G ⊆# A =⇒ committee-size ∗ size G ≥ n-voters =⇒
(
⋂

X∈set-mset G. X) 6= {} =⇒ ∃X x . X ∈# G ∧ x ∈ X ∧ x ∈# r A
begin

Any rule that satisfies Justified Representation also satisfies Weak Representation
sublocale weak-rep-anon-papp
proof

fix A x
assume ∗: is-pref-profile A n-voters ≤ committee-size ∗ count A {x}
define G where G = replicate-mset (count A {x}) {x}
have [simp]: size G = count A {x}

by (auto simp: G-def)
have ∗∗: set-mset G ⊆ {{x}}

by (auto simp: G-def)
have ∗∗∗: G ⊆# A

unfolding G-def by (meson count-le-replicate-mset-subset-eq order-refl)
have ∃X x. X ∈# G ∧ x ∈ X ∧ x ∈# r A

by (rule justified-representation) (use ∗ ∗∗ ∗∗∗ in auto)
thus x ∈# r A

10

using ∗∗ by auto
qed

end

locale card-stratproof-weak-rep-anon-papp =
card-stratproof-anon-papp + weak-rep-anon-papp

2.6 Proportional Representation

The notions of Representation we have seen so far are fairly week in that they only
demand that certain parties be in the committee at least once if enough voters approve
them. Notions of Proportional Representation strengthen this by demanding that if a
sufficiently large subgroup of voters approve some parties, then these voters must be
represented in the result committe not just once, but to a degree proportional to the
size of that subgroup of voters.
For Weak Representation, the proportional generalization is fairly simple: if a fraction
of at least ln

k of the voters uniquely approve a party x, then x must be in the committee
at least l times.
locale weak-prop-rep-anon-papp =

anon-papp n-voters parties committee-size r
for n-voters and parties :: ′alt set and committee-size :: nat and r +
assumes weak-proportional-representation:

is-pref-profile A =⇒ committee-size ∗ count A {x} ≥ l ∗ n-voters =⇒ count (r A) x ≥ l
begin

sublocale weak-rep-anon-papp
proof

fix A x
assume is-pref-profile A n-voters ≤ committee-size ∗ count A {x}
thus x ∈# r A

using weak-proportional-representation[of A 1] by auto
qed

end

Similarly, Justified Proportional Representation demands that if the approval lists of a
subgroup of at least ln

k voters have a non-empty intersection, then at least l parties in
the result committee are each approved by at least one of the voters in the subgroup.
locale justified-prop-rep-anon-papp =

anon-papp n-voters parties committee-size r
for n-voters and parties :: ′alt set and committee-size :: nat and r +
assumes justified-proportional-representation:

is-pref-profile A =⇒ G ⊆# A =⇒ committee-size ∗ size G ≥ l ∗ n-voters =⇒
(
⋂

X∈set-mset G. X) 6= {} =⇒ size {# x ∈# r A. x ∈ (
⋃

X∈set-mset G. X) #} ≥ l
begin

11

sublocale justified-rep-anon-papp
proof

fix A G
assume is-pref-profile A G ⊆# A n-voters ≤ committee-size ∗ size G

(
⋂

X∈set-mset G. X) 6= {}
hence size {#x ∈# r A. ∃X∈#G. x ∈ X#} ≥ 1

using justified-proportional-representation[of A G 1] by auto
hence {#x ∈# r A. ∃X∈#G. x ∈ X#} 6= {#}

by auto
thus ∃X x . X ∈# G ∧ x ∈ X ∧ x ∈# r A

by fastforce
qed

sublocale weak-prop-rep-anon-papp
proof

fix A l x
assume ∗: is-pref-profile A l ∗ n-voters ≤ committee-size ∗ count A {x}
define G where G = replicate-mset (count A {x}) {x}
from ∗ have size {#x ∈# r A. x ∈ (

⋃
X∈set-mset G. X)#} ≥ l

by (intro justified-proportional-representation)
(auto simp: G-def simp flip: count-le-replicate-mset-subset-eq)

also have size {#x ∈# r A. x ∈ (
⋃

X∈set-mset G. X)#} ≤ count (r A) x
by (auto simp: G-def)

finally show count (r A) x ≥ l .
qed

end

locale card-stratproof-weak-prop-rep-anon-papp =
card-stratproof-anon-papp + weak-prop-rep-anon-papp

end

3 The Base Case of the Impossibility
theory PAPP-Impossibility-Base-Case

imports Anonymous-PAPP SAT-Replay
begin

In this section, we will prove the base case of our P-APP impossibility result, namely
that there exists no anonymous P-APP rule f for 6 voters, 4 parties, and committee size
3 that satisfies Weak Representation and Cardinality Strategyproofness.
The proof works by looking at some (comparatively small) set of preference profiles and
the set of all 20 possible output committees. Each proposition f(A) = C (where A is a
profile from our set and C is one of the 20 possible output committees) is considered as
a Boolean variable.

12

All the conditions arising on these variables based on the fact that f is a function
and the additional properties (Representation, Strategyproofness) are encoded as SAT
clauses. This SAT problem is then proven unsatisfiable by an external SAT solver and
the resulting proof re-imported into Isabelle/HOL.

3.1 Auxiliary Material

We define the set of committees of the given size k for a given set of parties P.
definition committees :: nat ⇒ ′a set ⇒ ′a multiset set where

committees k P = {W . set-mset W ⊆ P ∧ size W = k}

We now prove a recurrence for this set so that we can more easily compute the set of all
possible committees:
lemma committees-0 [simp]: committees 0 P = {{#}}

by (auto simp: committees-def)

lemma committees-Suc:
committees (Suc n) P = (

⋃
x∈P.

⋃
W∈committees n P. {{#x#} + W })

proof safe
fix C assume C : C ∈ committees (Suc n) P
hence size C = Suc n

by (auto simp: committees-def)
hence C 6= {#}

by auto
then obtain x where x: x ∈# C

by auto
define C ′ where C ′ = C − {#x#}
have C = {#x#} + C ′ x ∈ P C ′ ∈ committees n P

using C x by (auto simp: committees-def C ′-def size-Diff-singleton dest: in-diffD)
thus C ∈ (

⋃
x∈P.

⋃
W∈committees n P. {{#x#} + W })

by blast
qed (auto simp: committees-def)

The following function takes a list [a1, . . . , an] and computes the list of all pairs of the
form (ai, aj) with i < j:
fun pairs :: ′a list ⇒ (′a × ′a) list where

pairs [] = []
| pairs (x # xs) = map (λy. (x, y)) xs @ pairs xs

lemma distinct-conv-pairs: distinct xs ←→ list-all (λ(x,y). x 6= y) (pairs xs)
by (induction xs) (auto simp: list-all-iff)

lemma list-ex-unfold: list-ex P (x # y # xs) ←→ P x ∨ list-ex P (y # xs) list-ex P [x] ←→ P
x

by simp-all

lemma list-all-unfold: list-all P (x # y # xs) ←→ P x ∧ list-all P (y # xs) list-all P [x] ←→
P x

13

by simp-all

3.2 Setup for the Base Case

We define a locale for an anonymous P-APP rule for 6 voters, 4 parties, and committee
size 3 that satisfies weak representation and cardinality strategyproofness. Our goal is
to prove the theorem False inside this locale.
locale papp-impossibility-base-case =

card-stratproof-weak-rep-anon-papp 6 parties 3 r
for parties :: ′a set and r +
assumes card-parties: card parties = 4

begin

A slightly more convenient version of Weak Representation:
lemma weak-representation ′:

assumes is-pref-profile A A ′ ≡ A ∀ z∈Z . count A {z} ≥ 2 ¬Z ⊆ set-mset W
shows r A ′ 6= W
using weak-representation[OF assms(1)] assms(2−4) by auto

The following lemma (Lemma 2 in the appendix of the paper) is a strengthening of Weak
Representation and Strategyproofness in our concrete setting:
Let A be a preference profile containing approval lists X and let Z be a set of parties
such that each element of Z is uniquely approved by at least two voters in A. Due to
Weak Representation, at least |X ∩ Z | members of the committee are then approved by
X.
What the lemma now says is that if there exists another voter with approval list Y ⊆
X and Y * Z, then there is an additional committee member that is approved by X.
This lemma will be used both in our symmetry-breaking argument and as a means to
add more clauses to the SAT instance. Since these clauses are logical consequences of
Strategyproofness and Weak Representation, they are technically redundant – but their
presence allows us to use consider a smaller set of profiles and still get a contradiction.
Without using the lemma, we would need to feed more profiles to the SAT solver to
obtain the same information.
lemma lemma2 :

assumes A: is-pref-profile A
assumes X ∈# A and Y ∈# A − {#X#} and Y ⊆ X and ¬Y ⊆ Z
assumes Z : ∀ z∈Z . count A {z} ≥ 2
shows size (filter-mset (λx. x ∈ X) (r A)) > card (X ∩ Z)

proof (rule ccontr)

For the sake of contradiction, suppose the number of elements approved by X were no
larger than |X ∩ Z |.

assume ¬size (filter-mset (λx. x ∈ X) (r A)) > card (X ∩ Z)
hence le: size (filter-mset (λx. x ∈ X) (r A)) ≤ card (X ∩ Z)

by linarith

14

interpret anon-papp-profile 6 parties 3 A
by fact

have Z ⊆ parties
using assms(1 ,6) by (meson is-committee-def order .trans rule-wf weak-representation ′)

have [simp]: finite Z
by (rule finite-subset[OF - finite-parties]) fact

Due to Weak Representation, each member of X ∩ Z must be chosen at least once. But
due to the above, it cannot be chosen more than once. So it has to be chosen exactly
once.

have X-approved-A-eq: filter-mset (λx. x ∈ X) (r A) = mset-set (X ∩ Z)
proof −

have mset-set Z ⊆# r A
using Z weak-representation[OF A] by (subst mset-set-subset-iff) auto

hence size (filter-mset (λx. x ∈ X) (mset-set Z)) ≤ size (filter-mset (λx. x ∈ X) (r A))
by (intro size-mset-mono multiset-filter-mono)

also have filter-mset (λx. x ∈ X) (mset-set Z) = mset-set {x∈Z . x ∈ X}
by simp

also have {x∈Z . x ∈ X} = X ∩ Z
by auto

also have size (mset-set (X ∩ Z)) = card (X ∩ Z)
by simp

finally have size (filter-mset (λx. x ∈ X) (r A)) = card (X ∩ Z)
using le by linarith

moreover have mset-set (X ∩ Z) ⊆# filter-mset (λx. x ∈ X) (r A)
using Z weak-representation[OF A] by (subst mset-set-subset-iff) auto

ultimately show filter-mset (λx. x ∈ X) (r A) = mset-set (X ∩ Z)
by (intro mset-subset-size-ge-imp-eq [symmetric]) auto

qed

have count-eq-1 : count (r A) x = 1 if x ∈ X ∩ Z for x
using that X-approved-A-eq
by (metis ‹finite Z › count-filter-mset count-mset-set ′ diff-is-0-eq diff-zero

finite-subset inf-le2 not-one-le-zero)

Let x be some element of Y that is not in Z.
obtain x where x: x ∈ Y − Z

using ‹¬Y ⊆ Z › by blast
with assms have x ′: x ∈ X − Z

by auto
have [simp]: x ∈ parties

using A-subset assms(2) x ′ by blast

Let A ′ be the preference profile obtained by having voter X lying and pretending she
only approves x.

define A ′ where A ′ = A − {#X#} + {#{x}#}
have A ′: is-pref-profile A ′

using is-pref-profile-replace[OF A ‹X ∈# A›, of {x}] by (auto simp: A ′-def)

15

We now show that even with this manipulated profile, the committee members approved
by X are exactly the same as before:

have X-approved-A ′-eq: filter-mset (λx. x ∈ X) (r A ′) = mset-set (X ∩ Z)
proof −

Every element of Z must still be in the result committee due to Weak Representation.
have mset-set Z ⊆# r A ′

proof (subst mset-set-subset-iff)
show Z ⊆ set-mset (r A ′)
proof

fix z assume z: z ∈ Z
from x ′ z have [simp]: x 6= z

by auto
have [simp]: X 6= {z}

using x ′ by auto
show z ∈# r A ′

using Z weak-representation[OF A ′, of z] z x x ′ by (auto simp: A ′-def)
qed

qed auto

Thus the parties in X ∩ Z must be in the committee (and they are approved by X).
have mset-set (X ∩ Z) ⊆# filter-mset (λx. x ∈ X) (r A ′)
proof −

have filter-mset (λx. x ∈ X) (mset-set Z) ⊆# filter-mset (λx. x ∈ X) (r A ′)
using ‹mset-set Z ⊆# r A ′› by (intro multiset-filter-mono) auto

also have filter-mset (λx. x ∈ X) (mset-set Z) = mset-set (X ∩ Z)
by auto

finally show mset-set (X ∩ Z) ⊆# filter-mset (λx. x ∈ X) (r A ′) .
qed

Due to Strategyproofness, no additional committee members can be approved by X, so
indeed only X ∩ Z is approved by X, and they each occur only once.

moreover have ¬card-manipulable A X {x}
using not-manipulable by blast

hence size (mset-set (X ∩ Z)) ≥ size (filter-mset (λx. x ∈ X) (r A ′)) using assms
by (simp add: card-manipulable-def A ′-def strong-committee-preference-iff not-less

X-approved-A-eq)
ultimately show filter-mset (λx. x ∈ X) (r A ′) = mset-set (X ∩ Z)

by (metis mset-subset-size-ge-imp-eq)
qed

Next, we show that the set of committee members approved by Y in the committee
returned for the manipulated profile is exactly Y ∩ Z (and again, each party only
occurs once).

have Y-approved-A ′-eq: filter-mset (λx. x ∈ Y) (r A ′) = mset-set (Y ∩ Z)
proof −

have filter-mset (λx. x ∈ Y) (filter-mset (λx. x ∈ X) (r A ′)) =

16

filter-mset (λx. x ∈ Y) (mset-set (X ∩ Z))
by (simp only: X-approved-A ′-eq)

also have filter-mset (λx. x ∈ Y) (filter-mset (λx. x ∈ X) (r A ′)) =
filter-mset (λx. x ∈ Y ∧ x ∈ X) (r A ′)

by (simp add: filter-filter-mset conj-commute)
also have (λx. x ∈ Y ∧ x ∈ X) = (λx. x ∈ Y)

using assms by auto
also have filter-mset (λx. x ∈ Y) (mset-set (X ∩ Z)) = mset-set (Y ∩ Z)

using assms by auto
finally show ?thesis .

qed

Next, define the profile A ′′ obtained from A ′ by also having Y pretend to approve only
x.

define A ′′ where A ′′ = A ′ − {#Y#} + {#{x}#}
have Y ∈# A ′

using assms by (auto simp: A ′-def)
hence A ′′: is-pref-profile A ′′

using is-pref-profile-replace[OF A ′, of Y {x}] by (auto simp: A ′′-def)

Again, the elements of Z must be chosen due to Weak Representation.
have Z ⊆ set-mset (r A ′′)
proof

fix z assume z: z ∈ Z
from x ′ z have [simp]: x 6= z

by auto
have [simp]: X 6= {z} Y 6= {z}

using x x ′ by auto
show z ∈# r A ′′

using Z weak-representation[OF A ′′, of z] z x x ′

by (auto simp: A ′′-def A ′-def)
qed

But now additionally, x must be chosen, since both X and Y uniquely approve it.
moreover have x ∈# r A ′′

using x x ′ ‹Y ∈# A − {#X#}› by (intro weak-representation A ′′) (auto simp: A ′′-def
A ′-def)

ultimately have insert x (Y ∩ Z) ⊆ set-mset (r A ′′) ∩ Y
using x by blast

Now we have a contradiction due to Strategyproofness, since Y can force the additional
member x into the committee by lying.

hence mset-set (insert x (Y ∩ Z)) ⊆# filter-mset (λw. w ∈ Y) (r A ′′)
by (subst mset-set-subset-iff) auto

hence size (mset-set (insert x (Y ∩ Z))) ≤ size (filter-mset (λw. w ∈ Y) (r A ′′))
by (rule size-mset-mono)

hence size (filter-mset (λx. x ∈ Y) (r A ′′)) > size (filter-mset (λx. x ∈ Y) (r A ′))
using x by (simp add: Y-approved-A ′-eq)

17

hence card-manipulable A ′ Y {x}
using A ′ x ‹Y ∈# A ′›
unfolding card-manipulable-def strong-committee-preference-iff A ′′-def by auto

thus False
using not-manipulable by blast

qed

The following are merely reformulation of the above lemma for technical reasons.
lemma lemma2 ′:

assumes is-pref-profile A
assumes ∀ z∈Z . count A {z} ≥ 2
assumes X ∈# A ∧ (∃Y . Y ∈# A − {#X#} ∧ Y ⊆ X ∧ ¬Y ⊆ Z)
shows ¬filter-mset (λx. x ∈ X) (r A) ⊆# mset-set (X ∩ Z)

proof
assume subset: filter-mset (λx. x ∈ X) (r A) ⊆# mset-set (X ∩ Z)
from assms(3) obtain Y where Y : X ∈# A Y ∈# A − {#X#} Y ⊆ X ¬Y ⊆ Z

by blast
have card (X ∩ Z) < size {#x ∈# r A. x ∈ X#}

by (rule lemma2 [where Y = Y]) (use Y assms(1 ,2) in auto)
with size-mset-mono[OF subset] show False

by simp
qed

lemma lemma2 ′′:
assumes is-pref-profile A
assumes A ′ ≡ A
assumes ∀ z∈Z . count A {z} ≥ 2
assumes X ∈# A ∧ (∃Y∈set-mset (A − {#X#}). Y ⊆ X ∧ ¬Y ⊆ Z)
assumes filter-mset (λx. x ∈ X) W ⊆# mset-set (X ∩ Z)
shows r A ′ 6= W
using lemma2 ′[of A Z X] assms by auto

3.3 Symmetry Breaking

In the following, we formalize the symmetry-breaking argument that shows that we can
reorder the four alternatives C1 to C4 in such a way that the preference profile

{C1} {C2} {C1, C2} {C3} {C3} {C3, C4}

is mapped to one of the committees [C1, C1, C3] or [C1, C2, C3].
We start with a simple technical lemma that states that if we have a multiset A of size 3
consisting of the elements x and y and x occurs at least as often as y, then A = [x, x, y].
lemma papp-multiset-3-aux:

assumes size A = 3 x ∈# A y ∈# A set-mset A ⊆ {x, y} x 6= y count A x ≥ count A y
shows A = {#x, x, y#}

proof −
have count A x > 0

using assms by force

18

have size A = (
∑

z∈set-mset A. count A z)
by (rule size-multiset-overloaded-eq)

also have set-mset A = {x, y}
using assms by auto

also have (
∑

z∈. . . . count A z) = count A x + count A y
using assms by auto

finally have count A x + count A y = 3
by (simp add: assms(1))

moreover from assms have count A x > 0 count A y > 0
by auto

ultimately have ∗: count A x = 2 ∧ count A y = 1
using ‹count A x ≥ count A y› by linarith

show ?thesis
proof (rule multiset-eqI)

fix z show count A z = count {#x, x, y#} z
proof (cases z ∈ {x, y})

case False
with assms have z /∈ set-mset A

by auto
hence count A z = 0

by (simp add: Multiset.not-in-iff)
thus ?thesis

using False by auto
qed (use ∗ in auto)

qed
qed

The following is the main symmetry-breaking result. It shows that we can find parties
C1 to C4 with the desired property.
This is a somewhat ad-hoc argument; in the appendix of the paper this is done more
systematically in Lemma 3.
lemma symmetry-break-aux:

obtains C1 C2 C3 C4 where
parties = {C1 , C2 , C3 , C4} distinct [C1 , C2 , C3 , C4]
r ({#{C1}, {C2}, {C1 , C2}, {C3}, {C4}, {C3 , C4}#}) ∈ {{#C1 , C1 , C3#}, {#C1 , C2 ,

C3#}}
proof −

note I = that
have ∃ xs. set xs = parties ∧ distinct xs

using finite-distinct-list[of parties] by blast
then obtain xs where xs: set xs = parties distinct xs

by blast
from xs have length xs = 4

using card-parties distinct-card[of xs] by auto
then obtain C1 C2 C3 C4 where xs-eq: xs = [C1 , C2 , C3 , C4]

by (auto simp: eval-nat-numeral length-Suc-conv)
have parties-eq: parties = {C1 , C2 , C3 , C4}

by (subst xs(1) [symmetric], subst xs-eq) auto
have [simp]:

19

C1 6= C2 C1 6= C3 C1 6= C4
C2 6= C1 C2 6= C3 C2 6= C4
C3 6= C1 C3 6= C2 C3 6= C4
C4 6= C1 C4 6= C2 C4 6= C3

using ‹distinct xs› unfolding xs-eq by auto

define A where A = {#{C1}, {C2}, {C1 , C2}, {C3}, {C4}, {C3 , C4}#}
define m where m = Max (count (r A) ‘ parties)

have A: is-pref-profile A
unfolding A-def is-pref-profile-iff by (simp add: parties-eq)

hence is-committee (r A)
by (rule rule-wf)

hence rA: size (r A) = 3 set-mset (r A) ⊆ parties
unfolding is-committee-def by auto

define X where X = set-mset (r A)
have X 6= {} X ⊆ parties

using rA by (auto simp: X-def)

have m > 0
proof −

obtain x where x ∈ X
using ‹X 6= {}› by blast

with ‹X ⊆ parties› have C1 ∈ X ∨ C2 ∈ X ∨ C3 ∈ X ∨ C4 ∈ X
unfolding parties-eq by blast

thus ?thesis
unfolding m-def X-def by (subst Max-gr-iff) (auto simp: parties-eq)

qed

have m ≤ 3
proof −

have m ≤ size (r A)
unfolding m-def by (subst Max-le-iff) (auto simp: count-le-size)

also have . . . = 3
by fact

finally show ?thesis .
qed

have m ∈ (count (r A) ‘ parties)
unfolding m-def by (intro Max-in) auto

then obtain C1 ′ where C1 ′: count (r A) C1 ′ = m C1 ′ ∈ parties
by blast

have C1 ′ ∈# r A
using ‹m > 0 › C1 ′(1) by auto

have ∃C2 ′∈parties−{C1 ′}. {C1 ′, C2 ′} ∈# A
using C1 ′ unfolding A-def parties-eq
by (elim insertE ; simp add: insert-Diff-if insert-commute)

then obtain C2 ′ where C2 ′: C2 ′ ∈ parties − {C1 ′} {C1 ′, C2 ′} ∈# A

20

by blast
have [simp]: C1 ′ 6= C2 ′ C2 ′ 6= C1 ′

using C2 ′ by auto
have disj: C1 ′ = C1 ∧ C2 ′ = C2 ∨ C1 ′ = C2 ∧ C2 ′ = C1 ∨ C1 ′ = C3 ∧ C2 ′ = C4 ∨ C1 ′

= C4 ∧ C2 ′ = C3
using C1 ′(2) C2 ′ unfolding A-def parties-eq
by (elim insertE ; force simp: insert-commute)

obtain C3 ′ where C3 ′: C3 ′ ∈ parties−{C1 ′, C2 ′}
using C1 ′(2) C2 ′ unfolding parties-eq by (fastforce simp: insert-Diff-if)

obtain C4 ′ where C4 ′: C4 ′ ∈ parties−{C1 ′, C2 ′, C3 ′}
using C1 ′(2) C2 ′ C3 ′ unfolding parties-eq by (fastforce simp: insert-Diff-if)

have A-eq: A = {#{C1 ′}, {C2 ′}, {C1 ′, C2 ′}, {C3 ′}, {C4 ′}, {C3 ′, C4 ′}#}
using disj C3 ′ C4 ′

by (elim disjE) (auto simp: A-def parties-eq insert-commute)
have distinct:

C1 ′ 6= C2 ′ C1 ′ 6= C3 ′ C1 ′ 6= C4 ′

C2 ′ 6= C1 ′ C2 ′ 6= C3 ′ C2 ′ 6= C4 ′

C3 ′ 6= C1 ′ C3 ′ 6= C2 ′ C3 ′ 6= C4 ′

C4 ′ 6= C1 ′ C4 ′ 6= C2 ′ C4 ′ 6= C3 ′

using C1 ′ C2 ′ C3 ′ C4 ′ by blast+
have parties-eq ′: parties = {C1 ′, C2 ′, C3 ′, C4 ′}

using C1 ′(2) C2 ′(1) C3 ′ C4 ′ distinct unfolding parties-eq by (elim insertE) auto

have ¬{#x ∈# r A. x ∈ {C3 ′, C4 ′}#} ⊆# mset-set ({C3 ′, C4 ′} ∩ {})
by (rule lemma2 ′[OF A]) (auto simp: A-eq)

hence C34 ′: C3 ′ ∈# r A ∨ C4 ′ ∈# r A
by auto

then consider C3 ′ ∈# r A C4 ′ ∈# r A | C3 ′ ∈# r A C4 ′ /∈# r A | C3 ′ /∈# r A C4 ′ ∈# r
A

by blast

thus ?thesis
proof cases

assume ∗: C3 ′ ∈# r A C4 ′ ∈# r A
have r A = {#C3 ′, C4 ′, C1 ′#}

by (rule sym, rule mset-subset-size-ge-imp-eq)
(use ∗ ‹C1 ′ ∈# r A› distinct in

‹auto simp: ‹size (r A) = 3 › Multiset.insert-subset-eq-iff in-diff-multiset-absorb2 ›)
thus ?thesis using distinct

by (intro that[of C3 ′ C4 ′ C1 ′ C2 ′])
(auto simp: parties-eq ′ A-eq add-mset-commute insert-commute)

next

assume ∗: C3 ′ ∈# r A C4 ′ /∈# r A
show ?thesis
proof (cases C2 ′ ∈# r A)

case True

21

have r A = {#C1 ′, C2 ′, C3 ′#}
by (rule sym, rule mset-subset-size-ge-imp-eq)

(use ∗ ‹C1 ′ ∈# r A› distinct True in
‹auto simp: ‹size (r A) = 3 › Multiset.insert-subset-eq-iff in-diff-multiset-absorb2 ›)

thus ?thesis using distinct
by (intro that[of C1 ′ C2 ′ C3 ′ C4 ′])

(auto simp: parties-eq ′ A-eq add-mset-commute insert-commute)
next

case False
have r A = {#C1 ′, C1 ′, C3 ′#}
proof (rule papp-multiset-3-aux)

show set-mset (r A) ⊆ {C1 ′, C3 ′}
using ‹set-mset (r A) ⊆ -› ∗ False unfolding parties-eq ′ by auto

next
have count (r A) C3 ′ ≤ m

unfolding m-def by (subst Max-ge-iff) (auto simp: parties-eq ′)
also have m = count (r A) C1 ′

by (simp add: C1 ′)
finally show count (r A) C3 ′ ≤ count (r A) C1 ′ .

qed (use C1 ′ ∗ False ‹C1 ′ ∈# r A› distinct in ‹auto simp: ‹size (r A) = 3 ››)
thus ?thesis using distinct

by (intro that[of C1 ′ C2 ′ C3 ′ C4 ′])
(auto simp: parties-eq ′ insert-commute add-mset-commute A-eq)

qed

next

assume ∗: C3 ′ /∈# r A C4 ′ ∈# r A
show ?thesis
proof (cases C2 ′ ∈# r A)

case True
have r A = {#C1 ′, C2 ′, C4 ′#}

by (rule sym, rule mset-subset-size-ge-imp-eq)
(use ∗ ‹C1 ′ ∈# r A› distinct True in

‹auto simp: ‹size (r A) = 3 › Multiset.insert-subset-eq-iff in-diff-multiset-absorb2 ›)
thus ?thesis using distinct

by (intro that[of C1 ′ C2 ′ C4 ′ C3 ′])
(auto simp: parties-eq ′ A-eq add-mset-commute insert-commute)

next
case False
have r A = {#C1 ′, C1 ′, C4 ′#}
proof (rule papp-multiset-3-aux)

show set-mset (r A) ⊆ {C1 ′, C4 ′}
using ‹set-mset (r A) ⊆ -› ∗ False unfolding parties-eq ′ by auto

next
have count (r A) C4 ′ ≤ m

unfolding m-def by (subst Max-ge-iff) (auto simp: parties-eq ′)
also have m = count (r A) C1 ′

by (simp add: C1 ′)

22

finally show count (r A) C4 ′ ≤ count (r A) C1 ′ .
qed (use C1 ′ ∗ False ‹C1 ′ ∈# r A› distinct in ‹auto simp: ‹size (r A) = 3 ››)
thus ?thesis using distinct

by (intro that[of C1 ′ C2 ′ C4 ′ C3 ′])
(auto simp: parties-eq ′ insert-commute add-mset-commute A-eq)

qed
qed

qed

We now use the choice operator to get our hands on such values C1 to C4.
definition C1234 where

C1234 = (SOME xs. set xs = parties ∧ distinct xs ∧
(case xs of [C1 , C2 , C3 , C4] ⇒
r ({#{C1}, {C2}, {C1 , C2}, {C3}, {C4}, {C3 , C4}#}) ∈ {{#C1 , C1 , C3#},

{#C1 , C2 , C3#}}))

definition C1 where C1 = C1234 ! 0
definition C2 where C2 = C1234 ! 1
definition C3 where C3 = C1234 ! 2
definition C4 where C4 = C1234 ! 3

lemma distinct: distinct [C1 , C2 , C3 , C4]
and parties-eq: parties = {C1 , C2 , C3 , C4}
and symmetry-break:

r ({#{C1}, {C2}, {C1 , C2}, {C3}, {C4}, {C3 , C4}#}) ∈ {{#C1 , C1 , C3#}, {#C1 ,
C2 , C3#}}
proof −

have C1234 :
set C1234 = parties ∧ distinct C1234 ∧
(case C1234 of [C1 ′, C2 ′, C3 ′, C4 ′] ⇒

r ({#{C1 ′}, {C2 ′}, {C1 ′, C2 ′}, {C3 ′}, {C4 ′}, {C3 ′, C4 ′}#}) ∈
{{#C1 ′, C1 ′, C3 ′#}, {#C1 ′, C2 ′, C3 ′#}})

unfolding C1234-def
proof (rule someI-ex)

obtain C1 ′ C2 ′ C3 ′ C4 ′ where ∗:
parties = {C1 ′, C2 ′, C3 ′, C4 ′} distinct [C1 ′, C2 ′, C3 ′, C4 ′]
r ({#{C1 ′}, {C2 ′}, {C1 ′, C2 ′}, {C3 ′}, {C4 ′}, {C3 ′, C4 ′}#}) ∈
{{#C1 ′, C1 ′, C3 ′#}, {#C1 ′, C2 ′, C3 ′#}}

using symmetry-break-aux by blast
show ∃ xs. set xs = parties ∧ distinct xs ∧

(case xs of [C1 ′, C2 ′, C3 ′, C4 ′] ⇒
r ({#{C1 ′}, {C2 ′}, {C1 ′, C2 ′}, {C3 ′}, {C4 ′}, {C3 ′, C4 ′}#}) ∈
{{#C1 ′, C1 ′, C3 ′#}, {#C1 ′, C2 ′, C3 ′#}})

by (intro exI [of - [C1 ′, C2 ′, C3 ′, C4 ′]]) (use ∗ in auto)
qed

have length C1234 = 4
using C1234 card-parties distinct-card[of C1234] by simp

then obtain C1 ′ C2 ′ C3 ′ C4 ′ where C1234-eq: C1234 = [C1 ′, C2 ′, C3 ′, C4 ′]

23

by (auto simp: eval-nat-numeral length-Suc-conv)
show distinct [C1 , C2 , C3 , C4] parties = {C1 , C2 , C3 , C4}

r ({#{C1}, {C2}, {C1 , C2}, {C3}, {C4}, {C3 , C4}#}) ∈ {{#C1 , C1 , C3#}, {#C1 ,
C2 , C3#}}

using C1234 by (simp-all add: C1234-eq C1-def C2-def C3-def C4-def)
qed

lemma distinct ′ [simp]:
C1 6= C2 C1 6= C3 C1 6= C4 C2 6= C1 C2 6= C3 C2 6= C4
C3 6= C1 C3 6= C2 C3 6= C4 C4 6= C1 C4 6= C2 C4 6= C3

using distinct by auto

lemma in-parties [simp]: C1 ∈ parties C2 ∈ parties C3 ∈ parties C4 ∈ parties
by (subst (2) parties-eq; simp; fail)+

3.4 The Set of Possible Committees

Next, we compute the set of the 20 possible committees.
abbreviation COM where COM ≡ committees 3 parties

definition COM ′ where COM ′ =
[{#C1 , C1 , C1#}, {#C1 , C1 , C2#}, {#C1 , C1 , C3#}, {#C1 , C1 , C4#},
{#C1 , C2 , C2#}, {#C1 , C2 , C3#}, {#C1 , C2 , C4#}, {#C1 , C3 , C3#},
{#C1 , C3 , C4#}, {#C1 , C4 , C4#}, {#C2 , C2 , C2#}, {#C2 , C2 , C3#},
{#C2 , C2 , C4#}, {#C2 , C3 , C3#}, {#C2 , C3 , C4#}, {#C2 , C4 , C4#},
{#C3 , C3 , C3#}, {#C3 , C3 , C4#}, {#C3 , C4 , C4#},
{#C4 , C4 , C4#}]

lemma distinct-COM ′: distinct COM ′

by (simp add: COM ′-def add-mset-neq)

lemma COM-eq: COM = set COM ′

by (subst parties-eq)
(simp-all add: COM ′-def numeral-3-eq-3 committees-Suc add-ac insert-commute add-mset-commute)

lemma r-in-COM :
assumes is-pref-profile A
shows r A ∈ COM
using rule-wf [OF assms] unfolding committees-def is-committee-def by auto

lemma r-in-COM ′:
assumes is-pref-profile A A ′ ≡ A
shows list-ex (λW . r A ′ = W) COM ′

using r-in-COM [OF assms(1)] assms(2) by (auto simp: list-ex-iff COM-eq)

lemma r-right-unique:
list-all (λ(W1 ,W2). r A 6= W1 ∨ r A 6= W2) (pairs COM ′)

proof −
have list-all (λ(W1 ,W2). W1 6= W2) (pairs COM ′)

24

using distinct-COM ′ unfolding distinct-conv-pairs by blast
thus ?thesis

unfolding list-all-iff by blast
qed

end

3.5 Generating Clauses and Replaying the SAT Proof

We now employ some custom-written ML code to generate all the SAT clauses arising
from the given profiles (read from an external file) as Isabelle/HOL theorems. From
these, we then derive False by replaying an externally found SAT proof (also written
from an external file).
The proof was found with the glucose SAT solver, which outputs proofs in the DRUP
format (a subset of the more powerful DRAT format). We then used the DRAT-trim
tool by Wetzler et al. [2] to make the proof smaller. This was done repeatedly until the
proof size did not decrease any longer. Then, the proof was converted into the GRAT
format introduced by Lammich [1], which is easier to check (or in our case replay) than
the less explicit DRAT (or DRUP) format.
external-file sat-data/profiles
external-file sat-data/papp-impossibility.grat.xz

context papp-impossibility-base-case
begin

ML-file ‹papp-impossibility.ML›

This invocation proves a theorem called contradiction whose statement is False. Note
that the DIMACS version of the SAT file that is being generated can be viewed by
clicking on “See theory exports” in the messages output by the invocation below.
On a 2021 desktop PC with 12 cores, proving all the clauses takes 8.4 s (multithreaded;
CPU time 55 s). Replaying the proof takes 30 s (singlethreaded).
local-setup ‹fn lthy =>

let
val thm =

PAPP-Impossibility.derive-false lthy
(master-dir + path ‹sat-data/profiles›)
(master-dir + path ‹sat-data/papp-impossibility.grat.xz›)

in
Local-Theory.note ((binding ‹contradiction›, []), [thm]) lthy |> snd

end
›

end

With this, we can now prove the impossibility result:

25

lemma papp-impossibility-base-case:
assumes card parties = 4
shows ¬card-stratproof-weak-rep-anon-papp 6 parties 3 r

proof
assume card-stratproof-weak-rep-anon-papp 6 parties 3 r
then interpret card-stratproof-weak-rep-anon-papp 6 parties 3 r .
interpret papp-impossibility-base-case parties r

by unfold-locales fact+
show False

by (rule contradiction)
qed

end

4 Lowering P-APP Rules to Smaller Settings
theory Anonymous-PAPP-Lowering

imports Anonymous-PAPP
begin

In this section, we prove a number of lemmas (corresponding to Lemma 1 in the paper)
that allow us to take an anonymous P-APP rule with some additional properties (typ-
ically Cardinality-Strategyproofness and Weak Representation or Weak Proportional
Representation) and construct from it an anonymous P-APP rule for a different setting,
i.e. different number of voters, parties, and/or result committee size.
In the reverse direction, this also allows us to lift impossibility results from one setting
to another.

4.1 Preliminary Lemmas
context card-stratproof-anon-papp
begin

The following lemma is obtained by applying Strategyproofness repeatedly. It shows
that if we have l voters with identical approval lists, then this entire group of voters
has no incentive to submit wrong preferences. That is, the outcome they obtain by
submitting their genuine approval lists is weakly preferred by them over all outcomes
obtained where these l voters submit any other preferences (and the remaining n − l
voters submit the same preferences as before).
This is stronger than regular Strategyproofness, where we only demand that no voter
has an incentive to submit wrong preferences unilaterally (and everyone else keeps the
same preferences). Here we know that the entire group of l voters has no incentive to
submit wrong preferences in coordination with one another.
lemma proposition2 :

assumes size B = l size A + l = n-voters
assumes X 6= {} X ⊆ parties {} /∈# A+B ∀X ′∈#A+B. X ′ ⊆ parties

26

shows r (replicate-mset l X + A) �[Comm(X)] r (B + A)
using assms

proof (induction l arbitrary: A B)
case 0
thus ?case

by simp
next

case (Suc l A B)
from Suc.prems have set-mset B 6= {}

by auto
then obtain Y where Y : Y ∈# B

by blast
define B ′ where B ′ = B − {#Y#}
define A ′ where A ′ = A + {#Y#}
have [simp]: size B ′ = l

using Suc.prems Y by (simp add: B ′-def size-Diff-singleton)
have [simp]: size A ′ = n-voters − l

using Suc.prems Y by (simp add: A ′-def)

have r (B ′ + A ′) �[Comm(X)] r (replicate-mset l X + A ′)
by (rule Suc.IH) (use Suc.prems Y in ‹auto simp: A ′-def B ′-def size-Diff-singleton›)

also have B ′ + A ′ = B + A
using Y by (simp add: B ′-def A ′-def)

also have r (replicate-mset l X + A ′) �[Comm(X)] r (replicate-mset (Suc l) X + A)
proof (rule not-manipulable ′′)

show replicate-mset (Suc l) X + A + {#Y#} = replicate-mset l X + A ′ + {#X#}
by (simp add: A ′-def)

next
show is-pref-profile (replicate-mset (Suc l) X + A)
using Suc.prems by unfold-locales (auto split: if-splits)

next
show is-pref-profile (replicate-mset l X + A ′)

using Suc.prems Y by unfold-locales (auto split: if-splits simp: A ′-def)
qed
finally show ?case .

qed

end

context card-stratproof-weak-rep-anon-papp
begin

In a setting with Weak Representation and Cardinality-Strategyproofness, Proposition
2 allows us to strengthen Weak Representation in the following way: Suppose we at least
lbn/kc voters with the same approval list X, and X consists of at least l parties. Then
at least l of the members of the result committee are in X.
lemma proposition3 :

assumes is-pref-profile A X ⊆ parties card X ≥ l

27

assumes committee-size > 0
assumes count A X ≥ l ∗ dn-voters / committee-sizee
shows size {# x∈# r A. x ∈ X #} ≥ l
using assms

proof (induction l arbitrary: A X rule: less-induct)
case (less l A X)
interpret A: anon-papp-profile n-voters parties committee-size A

by fact
consider l = 0 | l = 1 | l > 1

by force
thus ?case
proof cases

assume l = 0
thus ?thesis by simp

next
assume [simp]: l = 1
define n where n = count A X
with less.prems have X 6= {}

by auto
then obtain x where x: x ∈ X

by blast
have n ≤ size A

unfolding n-def by (rule count-le-size)
hence n ≤ n-voters

by (simp add: A.size-A)

have count A X > 0
by (rule Nat.gr0I) (use n-voters-pos less.prems in ‹auto simp: field-simps›)

hence X ∈# A
by force

have [simp]: replicate-mset n X ⊆# A
by (simp add: n-def flip: count-le-replicate-mset-subset-eq)

define A ′′ where A ′′ = A − replicate-mset n X
define A ′ where A ′ = A ′′ + replicate-mset n {x}
interpret A ′: anon-papp-profile n-voters parties committee-size A ′

using A.A-nonempty A.A-subset A.size-A x ‹X ∈# A›
by unfold-locales

(fastforce simp: A ′-def A ′′-def size-Diff-submset subset-mset.add-increasing2
split: if-splits dest!: in-diffD)+

have x ∈# r A ′

proof (rule weak-representation)
show is-pref-profile A ′

by (fact A ′.anon-papp-profile-axioms)
next

have n-voters ≤ committee-size ∗ n
using less.prems by (simp add: n-def ceiling-le-iff field-simps flip: of-nat-mult)

also have n ≤ count A ′ {x}

28

by (simp add: A ′-def)
finally show n-voters ≤ committee-size ∗ count A ′ {x}

by simp
qed
hence 1 ≤ count (r A ′) x

by simp
also have . . . = size {# y ∈# r A ′. y = x #}

by simp
also have . . . ≤ size {# y ∈# r A ′. y ∈ X #}

by (intro size-mset-mono multiset-filter-mono ′) (use x in auto)

also have r A ′ �[Comm(X)] r A
proof −

have r (replicate-mset n {x} + A ′′) �[Comm(X)] r (replicate-mset n X + A ′′)
proof (rule proposition2)

show {} /∈# A ′′ + replicate-mset n {x}
using A ′.A-nonempty by (auto simp: A ′-def)

show ∀X ′∈#A ′′ + replicate-mset n {x}. X ′ ⊆ parties
using A ′.A-subset x by (auto simp: A ′-def dest: in-diffD)

show size A ′′ + n = n-voters
using ‹n ≤ n-voters› by (auto simp: A ′′-def size-Diff-submset A.size-A)

qed (use less.prems in auto)
also have replicate-mset n X + A ′′ = A

by (simp add: A ′′-def n-def flip: count-le-replicate-mset-subset-eq)
finally show ?thesis

by (simp add: A ′-def add-ac)
qed
hence size {# y ∈# r A ′. y ∈ X #} ≤ size {# y ∈# r A. y ∈ X #}

by (simp add: committee-preference-def)

finally show ?thesis
by simp

next
assume l: l > 1

define n where n = count A X
have n ≤ size A

unfolding n-def by (rule count-le-size)
hence n ≤ n-voters

by (simp add: A.size-A)

define m where m = nat (ceiling (n-voters / committee-size))
have n-voters / committee-size ≤ m

unfolding m-def by linarith
hence m: n-voters ≤ committee-size ∗ m

using ‹committee-size > 0 › by (simp add: field-simps flip: of-nat-mult)
have real n-voters / real committee-size > 0

using n-voters-pos less.prems by auto

29

hence m ′: dreal n-voters / real committee-sizee = int m
by (simp add: m-def)

have 1 ∗ m ≤ l ∗ m
using l by (intro mult-right-mono) auto

also have l ∗ m ≤ n
using less.prems by (simp add: m ′ n-def flip: of-nat-mult)

finally have m ≤ n
by simp

with less.prems l have X 6= {}
by auto

then obtain x where x: x ∈ X
by blast

have card (X − {x}) > 0
using less.prems x l by simp

hence X − {x} 6= {}
by force

have count A X > 0
by (rule Nat.gr0I) (use n-voters-pos less.prems l in ‹auto simp: field-simps mult-le-0-iff ›)

hence X ∈# A
by force

have [simp]: replicate-mset n X ⊆# A
by (simp add: n-def flip: count-le-replicate-mset-subset-eq)

define A ′′ where A ′′ = A − replicate-mset n X
define A ′ where A ′ = A ′′ + replicate-mset m {x} + replicate-mset (n − m) (X − {x})
interpret A ′: anon-papp-profile n-voters parties committee-size A ′

proof
show Y ⊆ parties if Y ∈# A ′ for Y

using that A.A-subset x ‹X ∈# A›
by (fastforce simp: A ′-def A ′′-def dest!: in-diffD split: if-splits)

next
show {} /∈# A ′

using A.A-nonempty x ‹X ∈# A› ‹X − {x} 6= {}›
by (auto simp: A ′-def A ′′-def dest!: in-diffD split: if-splits)

next
show size A ′ = n-voters

using ‹m ≤ n›
by (auto simp: A ′-def A ′′-def A.size-A subset-mset.add-increasing2 size-Diff-submset)

qed

have x ∈# r A ′

proof (rule weak-representation)
show is-pref-profile A ′

by (fact A ′.anon-papp-profile-axioms)
next

have n-voters ≤ committee-size ∗ m
by (fact m)

30

also have m ≤ count A ′ {x}
by (simp add: A ′-def)

finally show n-voters ≤ committee-size ∗ count A ′ {x}
by simp

qed
hence 1 ≤ count (r A ′) x

by simp
also have . . . = size {# y ∈# r A ′. y = x #}

by simp
finally have 1 : size {#y ∈# r A ′. y = x#} ≥ 1 .

have 2 : size {# y ∈# r A ′. y ∈ X − {x} #} ≥ l − 1
proof (rule less.IH)

have int (l − 1) ∗ dreal n-voters / real committee-sizee = int ((l − 1) ∗ m)
by (auto simp add: m ′ not-less)

also have (l − 1) ∗ m = l ∗ m − m
by (simp add: algebra-simps)

also have l ∗ m ≤ n
using less.prems by (simp add: m ′ n-def flip: of-nat-mult)

hence l ∗ m − m ≤ n − m
by (meson diff-le-mono)

also have n − m ≤ count A ′ (X − {x})
by (simp add: A ′-def A ′′-def)

finally show int (l − 1) ∗ dreal n-voters / real committee-sizee ≤ int (count A ′ (X −
{x}))

by simp
qed (use l A ′.anon-papp-profile-axioms x less.prems in ‹auto›)

have 1 + (l − 1) ≤ size {#y ∈# r A ′. y = x#} + size {#y ∈# r A ′. y ∈ X − {x}#}
by (intro add-mono 1 2)

also have . . . = size ({#y ∈# r A ′. y = x#} + {#y ∈# r A ′. y ∈ X − {x}#})
by simp

also have {#y ∈# r A ′. y = x#} + {#y ∈# r A ′. y ∈ X − {x}#} =
{#y ∈# r A ′. y = x ∨ y ∈ X − {x}#}

by (rule filter-mset-disjunction [symmetric]) auto
also have (λy. y = x ∨ y ∈ X − {x}) = (λy. y ∈ X)

using x by auto
also have 1 + (l − 1) = l

using l by simp

also have r A ′ �[Comm(X)] r A
proof −

have r (replicate-mset m {x} + replicate-mset (n − m) (X − {x}) + A ′′) �[Comm(X)]
r (replicate-mset n X + A ′′)

proof (rule proposition2)
show {} /∈# A ′′ + (replicate-mset m {x} + replicate-mset (n − m) (X − {x}))

using A ′.A-nonempty by (auto simp: A ′-def)
show ∀X ′∈# A ′′ + (replicate-mset m {x} + replicate-mset (n − m) (X − {x})). X ′ ⊆

parties

31

using A ′.A-subset x by (auto simp: A ′-def dest: in-diffD)
show size A ′′ + n = n-voters

using ‹n ≤ n-voters› by (auto simp: A ′′-def size-Diff-submset A.size-A)
qed (use less.prems l ‹m ≤ n› in auto)
also have replicate-mset n X + A ′′ = A

by (simp add: A ′′-def n-def flip: count-le-replicate-mset-subset-eq)
finally show ?thesis

by (simp add: A ′-def add-ac)
qed
hence size {# y ∈# r A ′. y ∈ X #} ≤ size {# y ∈# r A. y ∈ X #}

by (simp add: committee-preference-def)

finally show ?thesis
by simp

qed
qed

end

4.2 Dividing the number of voters

If we have a PAPP rule that satisfies weak representation and cardinality strategyproof-
ness, for ln voters, we can turn it into one for n voters. This is done by simply cloning
each voter l times.
Consequently, if we have an impossibility result for n voters, it also holds for any integer
multiple of n.
locale divide-voters-card-stratproof-weak-rep-anon-papp =

card-stratproof-weak-rep-anon-papp l ∗ n-voters parties committee-size r
for l n-voters parties committee-size r

begin

definition lift-profile :: ′a set multiset ⇒ ′a set multiset where
lift-profile A = (

∑
X∈#A. replicate-mset l X)

sublocale lowered: anon-papp-election n-voters parties
by standard (use n-voters-pos in auto)

lemma l-pos: l > 0
using n-voters-pos by auto

lemma empty-in-lift-profile-iff [simp]: {} ∈# lift-profile A ←→ {} ∈# A
using l-pos by (auto simp: lift-profile-def)

lemma set-mset-lift-profile [simp]: set-mset (lift-profile A) = set-mset A
using l-pos by (auto simp: lift-profile-def)

lemma size-lift-profile: size (lift-profile A) = l ∗ size A
by (simp add: size-mset-sum-mset lift-profile-def image-mset.compositionality o-def)

32

lemma count-lift-profile [simp]: count (lift-profile A) x = l ∗ count A x
unfolding lift-profile-def by (induction A) auto

lemma is-pref-profile-lift-profile [intro]:
assumes lowered.is-pref-profile A
shows is-pref-profile (lift-profile A)

proof −
interpret anon-papp-profile n-voters parties committee-size A

by fact
show ?thesis

using A-nonempty A-subset size-A
by unfold-locales

(auto simp: lift-profile-def size-mset-sum-mset image-mset.compositionality o-def)
qed

sublocale lowered: anon-papp n-voters parties committee-size r ◦ lift-profile
proof

fix A assume lowered.is-pref-profile A
hence is-pref-profile (lift-profile A)

by blast
hence is-committee (r (lift-profile A))

using rule-wf by blast
thus lowered.is-committee ((r ◦ lift-profile) A)

by simp
qed

sublocale lowered: weak-rep-anon-papp n-voters parties committee-size r ◦ lift-profile
proof

fix A x
assume A: lowered.is-pref-profile A and x: n-voters ≤ committee-size ∗ count A {x}
from A have A ′: is-pref-profile (lift-profile A)

by blast
from x have l ∗ n-voters ≤ l ∗ (committee-size ∗ count A {x})

by (rule mult-left-mono) auto
also have . . . = committee-size ∗ count (lift-profile A) {x}

by simp
finally have x ∈# r (lift-profile A)

by (intro weak-representation A ′)
thus x ∈# (r ◦ lift-profile) A

by simp
qed

sublocale lowered: card-stratproof-anon-papp n-voters parties committee-size r ◦ lift-profile
proof

fix A X Y
show ¬lowered.card-manipulable A X Y

unfolding lowered.card-manipulable-def
proof (rule notI , elim conjE)

33

assume A: lowered.is-pref-profile A and XY : X ∈# A Y 6= {} Y ⊆ parties
assume ∗: (r ◦ lift-profile) A ≺[lowered.committee-preference X]

(r ◦ lift-profile) (A − {#X#} + {#Y#})
interpret anon-papp-profile n-voters parties committee-size A

by fact
have X : X 6= {} X ⊆ parties

using XY A-nonempty A-subset by auto

define A ′ where A ′ = A − {#X#}
have A ′: A = A ′ + {#X#}

using XY by (simp add: A ′-def)

have r (lift-profile A) ≺[committee-preference X]
r (lift-profile (A − {#X#} + {#Y#}))

using ∗ by simp
also have r (lift-profile (A − {#X#} + {#Y#})) �[committee-preference X]

r (lift-profile A − {#X#} + {#Y#})
proof −
have r (replicate-mset (l − 1) Y + (lift-profile A ′ + {#Y#})) �[committee-preference X]

r (replicate-mset (l − 1) X + (lift-profile A ′ + {#Y#}))
proof (rule proposition2)

show size (lift-profile A ′ + {#Y#}) + (l − 1) = l ∗ n-voters
using XY l-pos n-voters-pos
by (simp add: A ′-def size-lift-profile size-Diff-singleton

algebra-simps Suc-diff-le size-A)
next

show {} /∈# lift-profile A ′ + {#Y#} + replicate-mset (l − 1) Y
using XY A-nonempty by (auto simp: A ′-def dest: in-diffD)

next
show ∀X ′∈#lift-profile A ′ + {#Y#} + replicate-mset (l − 1) Y . X ′ ⊆ parties

using XY A-subset by (auto simp: A ′-def dest: in-diffD)
qed (use X in auto)
thus ?thesis

by (simp add: A ′ replicate-mset-rec l-pos lift-profile-def)
qed
finally have card-manipulable (lift-profile A) X Y

unfolding card-manipulable-def using XY A by auto
with not-manipulable show False

by blast
qed

qed

sublocale lowered: card-stratproof-weak-rep-anon-papp n-voters parties committee-size r ◦ lift-profile
..

end

locale divide-voters-card-stratproof-weak-prop-rep-anon-papp =

34

card-stratproof-weak-prop-rep-anon-papp l ∗ n-voters parties committee-size r
for l n-voters parties committee-size r

begin

sublocale divide-voters-card-stratproof-weak-rep-anon-papp ..

sublocale lowered: card-stratproof-weak-prop-rep-anon-papp
n-voters parties committee-size r ◦ lift-profile

proof
fix A x l ′
assume A: lowered.is-pref-profile A and x: l ′ ∗ n-voters ≤ committee-size ∗ count A {x}
from A have A ′: is-pref-profile (lift-profile A)

by blast
from x have l ∗ (l ′ ∗ n-voters) ≤ l ∗ (committee-size ∗ count A {x})

by (rule mult-left-mono) auto
also have . . . = committee-size ∗ count (lift-profile A) {x}

by simp
also have l ∗ (l ′ ∗ n-voters) = l ′ ∗ (l ∗ n-voters)

by (simp add: algebra-simps)
finally have count (r (lift-profile A)) x ≥ l ′

by (intro weak-proportional-representation A ′)
thus count ((r ◦ lift-profile) A) x ≥ l ′

by simp
qed

end

4.3 Decreasing the number of parties

If we have a PAPP rule that satisfies weak representation and cardinality strategyproof-
ness, for m parties, we can turn it into one for m − 1 parties. This is done by simply
duplicating one particular party (say x) in the preference profile, i.e. whenever x is part
of an approval list, we add a clone of x (say y) as well. Should y then end up in the
committee, we simply replace it with x.
Consequently, if we have an impossibility result for k parties, it also holds for ≥ m
parties.
locale remove-alt-card-stratproof-weak-rep-anon-papp =

card-stratproof-weak-rep-anon-papp n-voters parties committee-size r
for n-voters and parties :: ′a set and committee-size r +
fixes x y :: ′a
assumes xy: x ∈ parties y ∈ parties x 6= y

begin

definition lift-applist :: ′a set ⇒ ′a set where
lift-applist X = (if x ∈ X then insert y X else X)

definition lift-profile :: ′a set multiset ⇒ ′a set multiset where
lift-profile A = image-mset lift-applist A

35

definition lower-result where lower-result C = image-mset (λz. if z = y then x else z) C

definition lowered where lowered = lower-result ◦ r ◦ lift-profile

lemma lift-profile-empty [simp]: lift-profile {#} = {#}
by (simp add: lift-profile-def)

lemma lift-profile-add-mset [simp]:
lift-profile (add-mset X A) = add-mset (lift-applist X) (lift-profile A)
by (simp add: lift-profile-def)

lemma empty-in-lift-profile-iff [simp]: {} ∈# lift-profile A ←→ {} ∈# A
by (auto simp: lift-applist-def lift-profile-def)

lemma size-lift-profile [simp]: size (lift-profile A) = size A
by (simp add: lift-profile-def)

lemma lift-applist-eq-self-iff [simp]: lift-applist X = X ←→ x /∈ X ∨ y ∈ X
by (auto simp: lift-applist-def)

lemma lift-applist-eq-self-iff ′ [simp]: lift-applist (X − {y}) = X ←→ (x ∈ X ←→ y ∈ X)
by (cases y ∈ X) (auto simp: lift-applist-def xy)

lemma in-lift-applist-iff : z ∈ lift-applist X ←→ z ∈ X ∨ (z = y ∧ x ∈ X)
by (auto simp: lift-applist-def)

lemma count-lift-profile:
assumes ∀Y∈#A. y /∈ Y
shows count (lift-profile A) X = (if x ∈ X ←→ y ∈ X then count A (X − {y}) else 0)
using assms xy by (induction A) (auto simp: lift-applist-def)

lemma y-notin-lower-result [simp]: y /∈# lower-result C
using xy by (auto simp: lower-result-def)

lemma lower-result-subset: set-mset (lower-result C) ⊆ insert x (set-mset C − {y})
using xy by (auto simp: lower-result-def)

lemma lower-result-subset ′: set-mset C ⊆ parties =⇒ set-mset (lower-result C) ⊆ parties
using xy by (auto simp: lower-result-def)

lemma size-lower-result [simp]: size (lower-result C) = size C
by (simp add: lower-result-def)

lemma count-lower-result:
count (lower-result C) z =

(if z = y then 0
else if z = x then count C x + count C y

36

else count C z)
using xy by (induction C) (auto simp: lower-result-def)

lemma in-lower-result-iff :
z ∈# lower-result C ←→ z 6= y ∧ (z ∈# C ∨ (z = x ∧ y ∈# C))
unfolding lower-result-def using xy by (induction C) auto

sublocale lowered: anon-papp-election n-voters parties − {y}
by standard (use n-voters-pos xy in auto)

lemma is-pref-profile-lift-profile [intro]:
assumes lowered.is-pref-profile A
shows is-pref-profile (lift-profile A)

proof −
interpret anon-papp-profile n-voters parties − {y} committee-size A

by fact
show ?thesis

using A-nonempty A-subset size-A
by unfold-locales

(auto simp: lift-profile-def lift-applist-def xy
size-mset-sum-mset image-mset.compositionality o-def)

qed

sublocale lowered: anon-papp n-voters parties − {y} committee-size lowered
proof

fix A assume lowered.is-pref-profile A
hence is-pref-profile (lift-profile A)

by blast
hence is-committee (r (lift-profile A))

using rule-wf by blast
thus lowered.is-committee (lowered A)

unfolding lowered.is-committee-def is-committee-def lowered-def
using lower-result-subset ′[of r (lift-profile A)] by auto

qed

sublocale lowered: weak-rep-anon-papp n-voters parties − {y} committee-size lowered
proof

fix A z
assume A: lowered.is-pref-profile A and z: n-voters ≤ committee-size ∗ count A {z}
interpret A: anon-papp-profile n-voters parties − {y} committee-size A

by fact
have committee-size > 0

using z n-voters-pos by (intro Nat.gr0I) auto

from A have A ′: is-pref-profile (lift-profile A)
by blast

have count A {z} > 0
using z n-voters-pos by (intro Nat.gr0I) auto

37

hence {z} ∈# A
by simp

hence z ′: z ∈ parties − {y}
using A.A-subset z by auto

define C where C = r (lift-profile A)

show z ∈# lowered A
proof (cases z = x)

case False
have n-voters ≤ committee-size ∗ count A {z}

by fact
also have count A {z} ≤ count (lift-profile A) {z}

using A.A-subset z ′ False by (subst count-lift-profile) auto
hence committee-size ∗ count A {z} ≤ committee-size ∗ count (lift-profile A) {z}

by (intro mult-left-mono) auto
finally have z ∈# r (lift-profile A)

by (intro weak-representation A ′)
thus z ∈# lowered A

using False z ′ by (simp add: lowered-def in-lower-result-iff)
next

case [simp]: True
have 1 ≤ size {#z ∈# C . z ∈ {x, y}#}

unfolding C-def
proof (rule proposition3)

have [simp]: {x, y} − {y} = {x}
using xy by auto

hence n-voters ≤ committee-size ∗ count (lift-profile A) {x, y}
using xy A.A-subset z by (subst count-lift-profile) auto

thus int 1 ∗ dreal n-voters / real committee-sizee ≤ int (count (lift-profile A) {x, y})
using ‹committee-size > 0 ›
by (auto simp: ceiling-le-iff field-simps simp flip: of-nat-mult)

qed (use A ′ xy ‹committee-size > 0 › in auto)
also have . . . = count C x + count C y

using xy by (induction C) auto
also have . . . = count (lowered A) x

using xy by (simp add: lowered-def count-lower-result C-def)
finally show z ∈# lowered A

by simp
qed

qed

lemma filter-lower-result-eq:
y /∈ X =⇒ {#x ∈# lower-result C . x ∈ X#} = lower-result {#x ∈# C . x ∈ lift-applist X#}
by (induction C) (auto simp: lower-result-def lift-applist-def)

sublocale lowered: card-stratproof-anon-papp n-voters parties − {y} committee-size lowered
proof

fix A X Y

38

show ¬lowered.card-manipulable A X Y
unfolding lowered.card-manipulable-def

proof (rule notI , elim conjE)
assume A: lowered.is-pref-profile A and XY : X ∈# A Y 6= {} Y ⊆ parties − {y}
assume ∗: lowered A ≺[lowered.committee-preference X] lowered (A − {#X#} + {#Y#})
interpret anon-papp-profile n-voters parties − {y} committee-size A

by fact
have X : X 6= {} X ⊆ parties − {y}

using XY A-nonempty A-subset by auto
define A ′ where A ′ = A − {#X#}
have A ′: A = A ′ + {#X#}

using XY by (simp add: A ′-def)

from ∗ have size {#x ∈# lower-result (r (lift-profile A ′ + {#lift-applist X#})). x ∈ X#}
<

size {#x ∈# lower-result (r (lift-profile A ′ + {#lift-applist Y#})). x ∈ X#}
by (simp add: lowered-def A ′ lowered.strong-committee-preference-iff)

also have {#x ∈# lower-result (r (lift-profile A ′ + {#lift-applist X#})). x ∈ X#} =
lower-result {#x ∈# r (lift-profile A ′ + {#lift-applist X#}). x ∈ lift-applist X#}

using X by (subst filter-lower-result-eq) auto
also have {#x ∈# lower-result (r (lift-profile A ′ + {#lift-applist Y#})). x ∈ X#} =

lower-result {#x ∈# r (lift-profile A ′ + {#lift-applist Y#}). x ∈ lift-applist X#}
using X by (subst filter-lower-result-eq) auto

finally have size {#x ∈# r (lift-profile A ′ + {#lift-applist X#}). x ∈ lift-applist X#} <
size {#x ∈# r (lift-profile A ′ + {#lift-applist Y#}). x ∈ lift-applist X#}

by simp
hence r (lift-profile A ′ + {#lift-applist X#}) ≺[committee-preference (lift-applist X)]

r (lift-profile A ′ + {#lift-applist Y#})
by (simp add: strong-committee-preference-iff)

moreover have ¬r (lift-profile A ′ + {#lift-applist X#}) ≺[committee-preference (lift-applist
X)]

r (lift-profile A ′ + {#lift-applist Y#})
proof (rule not-manipulable ′ [where Y = lift-applist Y])

have is-pref-profile (lift-profile A)
using A by blast

thus is-pref-profile (lift-profile A ′ + {#lift-applist X#})
using A by (simp add: A ′)

next
have is-pref-profile (lift-profile (A − {#X#} + {#Y#}))

using A XY lowered.is-pref-profile-replace by blast
thus is-pref-profile (lift-profile A ′ + {#lift-applist Y#})

by (simp add: A ′)
qed auto
ultimately show False

by contradiction
qed

qed

sublocale lowered: card-stratproof-weak-rep-anon-papp n-voters parties − {y} committee-size

39

lowered
..

end

The following lemma is now simply an iterated application of the above. This allows us
to restrict a P-APP rule to any non-empty subset of parties.
lemma card-stratproof-weak-rep-anon-papp-restrict-parties:

assumes card-stratproof-weak-rep-anon-papp n parties k r parties ′ ⊆ parties parties ′ 6= {}
shows ∃ r . card-stratproof-weak-rep-anon-papp n parties ′ k r

proof −
have finite parties
proof −

interpret card-stratproof-weak-rep-anon-papp n parties k r
by fact

show ?thesis
by (rule finite-parties)

qed
thus ?thesis

using assms
proof (induction parties arbitrary: r rule: finite-psubset-induct)

case (psubset parties r)
show ?thesis
proof (cases parties = parties ′)

case True
thus ?thesis

using psubset.prems by auto
next

case False
obtain x where x: x ∈ parties ′

using psubset.prems by blast
from False and psubset.prems have parties − parties ′ 6= {}

by auto
then obtain y where y: y ∈ parties − parties ′

by blast

interpret card-stratproof-weak-rep-anon-papp n parties k r
by fact

interpret remove-alt-card-stratproof-weak-rep-anon-papp n parties k r x y
by standard (use x y psubset.prems in auto)

show ?thesis
proof (rule psubset.IH)

show parties − {y} ⊂ parties and parties ′ ⊆ parties − {y} parties ′ 6= {}
using x y psubset.prems by auto

next
show card-stratproof-weak-rep-anon-papp n (parties − {y}) k lowered

using lowered.card-stratproof-weak-rep-anon-papp-axioms .
qed

qed

40

qed
qed

4.4 Decreasing the committee size

If we have a PAPP rule that satisfies weak representation and cardinality strategyproof-
ness, for l(k+1) voters, m+1 parties, and a committee size of k+1, we can turn it into
one for lk voters, m parties, and a committee size of k.
This is done by again cloning a party x into a new party y and additionally adding l
new voters whose preferences are {x, y}. We again replace any y occuring in the output
committee with x. Weak representation then ensures that x occurs in the output at
least once, and we then simply remove one x from the committee to obtain an output
committee of size k − 1.
Consequently, if we have an impossibility result for a committee size of m, we can extend
it to a larger committee size, but at the cost of introducing a new party and new voters,
and with a restriction on the number of voters.
locale decrease-committee-card-stratproof-weak-rep-anon-papp =

card-stratproof-weak-rep-anon-papp l ∗ (k + 1) insert y parties k + 1 r
for l k y and parties :: ′a set and r +
fixes x :: ′a
assumes xy: x ∈ parties y /∈ parties
assumes k: k > 0

begin

definition lift-applist :: ′a set ⇒ ′a set where
lift-applist X = (if x ∈ X then insert y X else X)

definition lift-profile :: ′a set multiset ⇒ ′a set multiset where
lift-profile A = image-mset lift-applist A + replicate-mset l {x, y}

definition lower-result
where lower-result C = image-mset (λz. if z = y then x else z) C − {#x#}

definition lowered where lowered = lower-result ◦ r ◦ lift-profile

lemma l: l > 0
using n-voters-pos by auto

lemma x-neq-y [simp]: x 6= y y 6= x
using xy by auto

lemma lift-profile-empty [simp]: lift-profile {#} = replicate-mset l {x, y}
by (simp add: lift-profile-def)

lemma lift-profile-add-mset [simp]:
lift-profile (add-mset X A) = add-mset (lift-applist X) (lift-profile A)

41

by (simp add: lift-profile-def)

lemma empty-in-lift-profile-iff [simp]: {} ∈# lift-profile A ←→ {} ∈# A
by (auto simp: lift-applist-def lift-profile-def)

lemma size-lift-profile [simp]: size (lift-profile A) = size A + l
by (simp add: lift-profile-def)

lemma lift-applist-eq-self-iff [simp]: lift-applist X = X ←→ x /∈ X ∨ y ∈ X
by (auto simp: lift-applist-def)

lemma lift-applist-eq-self-iff ′ [simp]: lift-applist (X − {y}) = X ←→ (x ∈ X ←→ y ∈ X)
by (cases y ∈ X) (auto simp: lift-applist-def xy)

lemma in-lift-applist-iff : z ∈ lift-applist X ←→ z ∈ X ∨ (z = y ∧ x ∈ X)
by (auto simp: lift-applist-def)

lemma count-lift-profile:
assumes ∀Y∈#A. y /∈ Y
shows count (lift-profile A) X =

(if x ∈ X ←→ y ∈ X then count A (X − {y}) else 0) +
(if X = {x, y} then l else 0)

using assms xy by (induction A) (auto simp: lift-applist-def)

lemma y-notin-lower-result [simp]: y /∈# lower-result C
using xy by (auto simp: lower-result-def dest: in-diffD)

lemma lower-result-subset: set-mset (lower-result C) ⊆ insert x (set-mset C − {y})
using xy by (auto simp: lower-result-def dest: in-diffD)

lemma lower-result-subset ′: set-mset C ⊆ insert y parties =⇒ set-mset (lower-result C) ⊆
parties

by (rule order .trans[OF lower-result-subset]) (use xy in auto)

lemma size-lower-result [simp]:
assumes x ∈# C ∨ y ∈# C
shows size (lower-result C) = size C − 1
using assms by (auto simp: lower-result-def size-Diff-singleton)

lemma size-lower-result ′: size (lower-result C) = size C − (if x ∈# C ∨ y ∈# C then 1 else
0)
proof −

define f where f = (λC . image-mset (λz. if z = y then x else z) C)
have size (lower-result C) = size (f C − {#x#})

by (simp add: lower-result-def f-def)
also have . . . = size (f C) − (if x ∈# f C then 1 else 0)

by (simp add: diff-single-trivial size-Diff-singleton)

42

finally show ?thesis
by (auto simp: f-def)

qed

lemma count-lower-result:
count (lower-result C) z =

(if z = y then 0
else if z = x then count C x + count C y − 1
else count C z) (is - = ?rhs)

proof −
define f where f = (λC . image-mset (λz. if z = y then x else z) C)
have count (lower-result C) z = count (f C − {#x#}) z

by (simp add: lower-result-def f-def)
also have . . . = count (f C) z − (if z = x then 1 else 0)

by auto
also have count (f C) z = (if z = y then 0 else if z = x then count C x + count C y else

count C z)
using xy by (induction C) (auto simp: f-def)

also have . . . − (if z = x then 1 else 0) = ?rhs
by auto

finally show ?thesis .
qed

lemma in-lower-resultD:
z ∈# lower-result C =⇒ z = x ∨ z ∈# C
using xy by (auto simp: lower-result-def dest!: in-diffD)

lemma in-lower-result-iff :
z ∈# lower-result C ←→ z 6= y ∧ (if z = x then count C x + count C y > 1 else z ∈# C)
(is - = ?rhs)

proof −
have z ∈# lower-result C ←→ count (lower-result C) z > 0

by auto
also have . . . ←→ ?rhs

by (subst count-lower-result) auto
finally show ?thesis .

qed

lemma filter-lower-result-eq:
assumes y /∈ X
shows {#z ∈# lower-result C . z ∈ X#} = lower-result {#z ∈# C . z ∈ lift-applist X#}

proof −
define f where f = (λC . {#if z = y then x else z. z ∈# C#})
have lower-result {#z ∈# C . z ∈ lift-applist X#} = f {#z ∈# C . z ∈ lift-applist X#} −
{#x#}

by (simp add: f-def lower-result-def)
also have f {#z ∈# C . z ∈ lift-applist X#} = {#z ∈# f C . z ∈ X#}

using assms by (induction C) (auto simp: f-def lift-applist-def)
also have . . . − {#x#} = {#z ∈# f C − {#x#}. z ∈ X#}

43

by (subst filter-diff-mset ′) auto
also have f C − {#x#} = lower-result C

by (simp add: f-def lower-result-def)
finally show ?thesis ..

qed

sublocale lowered: anon-papp-election l ∗ k parties k
by standard (use n-voters-pos xy finite-parties k in auto)

lemma is-pref-profile-lift-profile [intro]:
assumes lowered.is-pref-profile A
shows is-pref-profile (lift-profile A)

proof −
interpret A: anon-papp-profile l ∗ k parties k A

by fact
show ?thesis

using A.A-nonempty A.A-subset A.size-A l
by unfold-locales

(auto simp: lift-profile-def lift-applist-def xy
size-mset-sum-mset image-mset.compositionality o-def)

qed

lemma is-committee-lower-result:
assumes is-committee C x ∈# C ∨ y ∈# C
shows lowered.is-committee (lower-result C)
using assms unfolding is-committee-def lowered.is-committee-def
using lower-result-subset ′[of C] by auto

lemma x-or-y-in-r-lift-profile:
assumes lowered.is-pref-profile A
shows x ∈# r (lift-profile A) ∨ y ∈# r (lift-profile A)

proof −
interpret A: anon-papp-profile l ∗ k parties k A

by fact
have size {#z ∈# r (lift-profile A). z ∈ {x, y}#} ≥ 1
proof (rule proposition3)

have real (l ∗ (k + 1)) / real (k + 1) = real l
by (simp add: field-simps)

also have int 1 ∗ d. . . e = int l
by simp

also have l ≤ count (lift-profile A) {x, y}
using xy A.A-subset by (subst count-lift-profile) auto

finally show int 1 ∗ dreal (l ∗ (k + 1)) / real (k + 1)e ≤ int (count (lift-profile A) {x, y})
by simp

next
show is-pref-profile (lift-profile A)

by (intro is-pref-profile-lift-profile) fact
qed (use xy in auto)

44

hence {#z ∈# r (lift-profile A). z ∈ {x, y}#} 6= {#}
by force

thus ?thesis
by auto

qed

sublocale lowered: anon-papp l ∗ k parties k lowered
proof

fix A assume A: lowered.is-pref-profile A
hence is-pref-profile (lift-profile A)

by blast
hence is-committee (r (lift-profile A))

using rule-wf by blast
thus lowered.is-committee (lowered A)

unfolding lowered-def o-def using x-or-y-in-r-lift-profile[of A] A
by (intro is-committee-lower-result) auto

qed

sublocale lowered: weak-rep-anon-papp l ∗ k parties k lowered
proof

fix A z
assume A: lowered.is-pref-profile A and z: l ∗ k ≤ k ∗ count A {z}
interpret A: anon-papp-profile l ∗ k parties k A

by fact

from A have A ′: is-pref-profile (lift-profile A)
by blast

have count A {z} > 0
using z k n-voters-pos by (intro Nat.gr0I) auto

hence {z} ∈# A
by simp

hence z ′: z ∈ parties
using A.A-subset z by auto

hence [simp]: y 6= z z 6= y
using xy by auto

define C where C = r (lift-profile A)

show z ∈# lowered A
proof (cases z = x)

case False
have l ≤ count A {z}

using z k by (simp add: algebra-simps)
hence l ∗ (k + 1) ≤ (k + 1) ∗ count A {z}

by (subst mult.commute, intro mult-right-mono) auto
also have count A {z} = count (lift-profile A) {z}

using False A.A-subset xy by (subst count-lift-profile) auto
finally have z ∈# r (lift-profile A)

by (intro weak-representation A ′)

45

thus z ∈# lowered A
using False by (auto simp: lowered-def in-lower-result-iff)

next
case [simp]: True
from xy have [simp]: {x, y} − {y} = {x}

by auto

have size {#z ∈# C . z ∈ {x, y}#} ≥ 2
unfolding C-def

proof (rule proposition3)
have real (l ∗ (k + 1)) / real (k + 1) = l

unfolding of-nat-mult using k by (simp add: divide-simps)
also have int 2 ∗ d. . . e = int (2 ∗ l)

by simp
also have . . . ≤ count (lift-profile A) {x, y}

using z k xy A.A-subset by (subst count-lift-profile) auto
finally show int 2 ∗ dreal (l ∗ (k + 1)) / real (k + 1)e ≤

qed (use A ′ xy in auto)
also have size {#z ∈# C . z ∈ {x, y}#} = count C x + count C y

by (induction C) auto
finally have x ∈# lower-result C

by (subst in-lower-result-iff) auto
thus z ∈# lowered A

by (simp add: lowered-def C-def)
qed

qed

sublocale lowered: card-stratproof-anon-papp l ∗ k parties k lowered
proof

fix A X Y
show ¬lowered.card-manipulable A X Y

unfolding lowered.card-manipulable-def
proof (rule notI , elim conjE)

assume A: lowered.is-pref-profile A and XY : X ∈# A Y 6= {} Y ⊆ parties
assume ∗: lowered A ≺[lowered.committee-preference X] lowered (A − {#X#} + {#Y#})
interpret anon-papp-profile l ∗ k parties k A

by fact
have X : X 6= {} X ⊆ parties

using XY A-nonempty A-subset by auto
define A ′ where A ′ = A − {#X#}
have A ′: A = A ′ + {#X#}

using XY by (simp add: A ′-def)
from xy X XY have [simp]: y /∈ X y /∈ Y

by auto

define Al1 where Al1 = lift-profile A
define Al2 where Al2 = lift-profile (A ′ + {#Y#})
have A ′-plus-Y : lowered.is-pref-profile (A ′ + {#Y#})

unfolding A ′-def using A XY lowered.is-pref-profile-replace by blast

46

have Al1 : is-pref-profile Al1
unfolding Al1-def using A by blast

have Al2 : is-pref-profile Al2
unfolding Al2-def unfolding A ′-def using A XY lowered.is-pref-profile-replace by blast

have size-aux: size (lower-result {#x ∈# r (lift-profile A). x ∈ lift-applist X#}) =
size {#x ∈# r (lift-profile A). x ∈ lift-applist X#} − (if x ∈ X then 1 else 0)

if A: lowered.is-pref-profile A for A
using x-or-y-in-r-lift-profile[OF A]
by (subst size-lower-result ′) (auto simp: lift-applist-def)

from ∗ have size {#x ∈# lower-result (r Al1). x ∈ X#} <
size {#x ∈# lower-result (r Al2). x ∈ X#}

by (simp add: Al1-def Al2-def lowered-def A ′ lowered.strong-committee-preference-iff)
also have {#x ∈# lower-result (r Al1). x ∈ X#} = lower-result {#x ∈# r Al1 . x ∈

lift-applist X#}
using X xy by (subst filter-lower-result-eq) auto
also have {#x ∈# lower-result (r Al2). x ∈ X#} = lower-result {#x ∈# r Al2 . x ∈

lift-applist X#}
using X xy by (subst filter-lower-result-eq) auto

also have size (lower-result {#x ∈# r Al1 . x ∈ lift-applist X#}) =
size {#x ∈# r Al1 . x ∈ lift-applist X#} − (if x ∈ X then 1 else 0)

unfolding Al1-def by (rule size-aux) fact
also have size (lower-result {#x ∈# r Al2 . x ∈ lift-applist X#}) =

size {#x ∈# r Al2 . x ∈ lift-applist X#} − (if x ∈ X then 1 else 0)
unfolding Al2-def by (rule size-aux) fact

finally have size {#x ∈# r Al1 . x ∈ lift-applist X#} < size {#x ∈# r Al2 . x ∈ lift-applist
X#}

by auto
hence r Al1 ≺[committee-preference (lift-applist X)] r Al2

by (simp add: strong-committee-preference-iff)

moreover have ¬r Al1 ≺[committee-preference (lift-applist X)] r Al2
by (rule not-manipulable ′ [where Y = lift-applist Y])

(use Al1 Al2 in ‹auto simp: Al1-def Al2-def A ′›)

ultimately show False
by contradiction

qed
qed

sublocale lowered: card-stratproof-weak-rep-anon-papp l ∗ k parties k lowered
..

end

For Weak Proportional Representation, the lowering argument to decrease the committee
size is somewhat easier since it does not involve adding a new party; instead, we simply
add l new voters whose preferences are {x}.

47

locale decrease-committee-card-stratproof-weak-prop-rep-anon-papp =
card-stratproof-weak-prop-rep-anon-papp l ∗ (k + 1) parties k + 1 r
for l k and parties :: ′a set and r +
fixes x :: ′a
assumes x: x ∈ parties
assumes k: k > 0

begin

definition lift-profile :: ′a set multiset ⇒ ′a set multiset where
lift-profile A = A + replicate-mset l {x}

definition lower-result
where lower-result C = C − {#x#}

definition lowered where lowered = lower-result ◦ r ◦ lift-profile

lemma l: l > 0
using n-voters-pos by auto

lemma lift-profile-empty [simp]: lift-profile {#} = replicate-mset l {x}
by (simp add: lift-profile-def)

lemma lift-profile-add-mset [simp]:
lift-profile (add-mset X A) = add-mset X (lift-profile A)
by (simp add: lift-profile-def)

lemma empty-in-lift-profile-iff [simp]: {} ∈# lift-profile A ←→ {} ∈# A
by (auto simp: lift-profile-def)

lemma size-lift-profile [simp]: size (lift-profile A) = size A + l
by (simp add: lift-profile-def)

lemma count-lift-profile:
count (lift-profile A) X = count A X + (if X = {x} then l else 0)
by (auto simp: lift-profile-def)

lemma size-lower-result [simp]:
assumes x ∈# C
shows size (lower-result C) = size C − 1
using assms by (auto simp: lower-result-def size-Diff-singleton)

lemma size-lower-result ′: size (lower-result C) = size C − (if x ∈# C then 1 else 0)
by (induction C) (auto simp: lower-result-def size-Diff-singleton)

lemma count-lower-result:
count (lower-result C) z = count C z − (if z = x then 1 else 0)
by (auto simp: lower-result-def)

48

lemma in-lower-resultD:
z ∈# lower-result C =⇒ z ∈# C
by (auto simp: lower-result-def dest!: in-diffD)

lemma in-lower-result-iff :
z ∈# lower-result C ←→ (if z = x then count C x > 1 else z ∈# C)
(is - = ?rhs)

proof −
have z ∈# lower-result C ←→ count (lower-result C) z > 0

by auto
also have . . . ←→ ?rhs

by (subst count-lower-result) auto
finally show ?thesis .

qed

sublocale lowered: anon-papp-election l ∗ k parties k
by standard (use n-voters-pos finite-parties k in auto)

lemma is-pref-profile-lift-profile [intro]:
assumes lowered.is-pref-profile A
shows is-pref-profile (lift-profile A)

proof −
interpret A: anon-papp-profile l ∗ k parties k A

by fact
show ?thesis

using A.A-nonempty A.A-subset A.size-A l
by unfold-locales

(auto simp: lift-profile-def x size-mset-sum-mset image-mset.compositionality o-def)
qed

lemma is-committee-lower-result:
assumes is-committee C x ∈# C
shows lowered.is-committee (lower-result C)
using assms unfolding is-committee-def lowered.is-committee-def
by (auto simp: lower-result-def size-Diff-singleton dest: in-diffD)

lemma x-in-r-lift-profile:
assumes lowered.is-pref-profile A
shows x ∈# r (lift-profile A)

proof (rule weak-representation)
show is-pref-profile (lift-profile A)

using assms by blast
next

have (k + 1) ∗ l ≤ (k + 1) ∗ count (lift-profile A) {x}
by (intro mult-left-mono) (auto simp: count-lift-profile)

thus l ∗ (k + 1) ≤ (k + 1) ∗ count (lift-profile A) {x}
by (simp add: algebra-simps)

49

qed

sublocale lowered: anon-papp l ∗ k parties k lowered
proof

fix A assume A: lowered.is-pref-profile A
hence is-pref-profile (lift-profile A)

by blast
hence is-committee (r (lift-profile A))

using rule-wf by blast
thus lowered.is-committee (lowered A)

unfolding lowered-def o-def using x-in-r-lift-profile[of A] A
by (intro is-committee-lower-result) auto

qed

sublocale lowered: weak-prop-rep-anon-papp l ∗ k parties k lowered
proof

fix A z l ′
assume A: lowered.is-pref-profile A and z: l ′ ∗ (l ∗ k) ≤ k ∗ count A {z}
interpret A: anon-papp-profile l ∗ k parties k A

by fact

show count (lowered A) z ≥ l ′
proof (cases l ′ > 0)

case False
thus ?thesis by auto

next
case l: True

from A have A ′: is-pref-profile (lift-profile A)
by blast

have count A {z} > 0
using z k n-voters-pos l by (intro Nat.gr0I) auto

hence {z} ∈# A
by simp

hence z ′: z ∈ parties
using A.A-subset z by auto

define C where C = r (lift-profile A)

show count (lowered A) z ≥ l ′
proof (cases z = x)

case False
have l ′ ∗ l ≤ count A {z}

using z k by (simp add: algebra-simps)
hence l ′ ∗ l ∗ (k + 1) ≤ (k + 1) ∗ count A {z}

by (subst mult.commute, intro mult-right-mono) auto
also have count A {z} = count (lift-profile A) {z}

using False A.A-subset by (subst count-lift-profile) auto
finally have count (r (lift-profile A)) z ≥ l ′

50

by (intro weak-proportional-representation A ′) (auto simp: algebra-simps)
thus l ′ ≤ count (lowered A) z

using False by (simp add: lowered-def lower-result-def)
next

case [simp]: True
have l ′ ∗ l ≤ count A {x}

using z k by (simp add: algebra-simps)
hence l ′ ∗ l ∗ (k + 1) ≤ (k + 1) ∗ count A {x}

by (subst mult.commute, intro mult-right-mono) auto
also have . . . + (k + 1) ∗ l = (k + 1) ∗ count (lift-profile A) {x}

by (simp add: count-lift-profile algebra-simps)
finally have (l ′ + 1) ∗ (l ∗ (k + 1)) ≤ (k + 1) ∗ count (lift-profile A) {x}

by (simp add: algebra-simps)
hence count (r (lift-profile A)) x ≥ l ′ + 1

by (intro weak-proportional-representation A ′)
thus l ′ ≤ count (lowered A) z

by (simp add: lowered-def lower-result-def)
qed

qed
qed

sublocale lowered: card-stratproof-anon-papp l ∗ k parties k lowered
proof

fix A X Y
show ¬lowered.card-manipulable A X Y

unfolding lowered.card-manipulable-def
proof (rule notI , elim conjE)

assume A: lowered.is-pref-profile A and XY : X ∈# A Y 6= {} Y ⊆ parties
assume ∗: lowered A ≺[lowered.committee-preference X] lowered (A − {#X#} + {#Y#})
interpret anon-papp-profile l ∗ k parties k A

by fact
have X : X 6= {} X ⊆ parties

using XY A-nonempty A-subset by auto
define A ′ where A ′ = A − {#X#}
have A ′: A = A ′ + {#X#}

using XY by (simp add: A ′-def)

define Al1 where Al1 = lift-profile A
define Al2 where Al2 = lift-profile (A ′ + {#Y#})
have A ′-plus-Y : lowered.is-pref-profile (A ′ + {#Y#})

unfolding A ′-def using A XY lowered.is-pref-profile-replace by blast
have Al1 : is-pref-profile Al1

unfolding Al1-def using A by blast
have Al2 : is-pref-profile Al2

unfolding Al2-def unfolding A ′-def using A XY lowered.is-pref-profile-replace by blast

have size-aux: size (lower-result {#x ∈# r (lift-profile A). x ∈ X#}) =
size {#x ∈# r (lift-profile A). x ∈ X#} − (if x ∈ X then 1 else 0)

if A: lowered.is-pref-profile A for A

51

using x-in-r-lift-profile[OF A] by (subst size-lower-result ′) auto

from ∗ have size {#x ∈# lower-result (r Al1). x ∈ X#} <
size {#x ∈# lower-result (r Al2). x ∈ X#}

by (simp add: Al1-def Al2-def lowered-def A ′ lowered.strong-committee-preference-iff)
also have {#x ∈# lower-result (r Al1). x ∈ X#} = lower-result {#x ∈# r Al1 . x ∈ X#}

using X x unfolding lower-result-def by (subst filter-diff-mset ′) auto
also have {#x ∈# lower-result (r Al2). x ∈ X#} = lower-result {#x ∈# r Al2 . x ∈ X#}

using X x unfolding lower-result-def by (subst filter-diff-mset ′) auto
also have size (lower-result {#x ∈# r Al1 . x ∈ X#}) =

size {#x ∈# r Al1 . x ∈ X#} − (if x ∈ X then 1 else 0)
unfolding Al1-def by (rule size-aux) fact

also have size (lower-result {#x ∈# r Al2 . x ∈ X#}) =
size {#x ∈# r Al2 . x ∈ X#} − (if x ∈ X then 1 else 0)

unfolding Al2-def by (rule size-aux) fact
finally have size {#x ∈# r Al1 . x ∈ X#} < size {#x ∈# r Al2 . x ∈ X#}

by auto
hence r Al1 ≺[committee-preference X] r Al2

by (simp add: strong-committee-preference-iff)

moreover have ¬r Al1 ≺[committee-preference X] r Al2
by (rule not-manipulable ′ [where Y = Y])

(use Al1 Al2 in ‹auto simp: Al1-def Al2-def A ′›)

ultimately show False
by contradiction

qed
qed

sublocale lowered: card-stratproof-weak-prop-rep-anon-papp l ∗ k parties k lowered
..

end

end

5 Lifting the Impossibility Result to Larger Settings
theory PAPP-Impossibility

imports PAPP-Impossibility-Base-Case Anonymous-PAPP-Lowering
begin

In this section, we now prove the main results of this work by combining the base case
with the lifting arguments formalized earlier.
First, we prove the following very simple technical lemma: a set that is infinite or finite
with cardinality at least 2 contains two different elements x and y.
lemma obtain-2-elements:

assumes infinite X ∨ card X ≥ 2

52

obtains x y where x ∈ X y ∈ X x 6= y
proof −

from assms have X 6= {}
by auto

then obtain x where x ∈ X
by blast

with assms have infinite X ∨ card (X − {x}) > 0
by (subst card-Diff-subset) auto

hence X − {x} 6= {}
by (metis card-gt-0-iff finite.emptyI infinite-remove)

then obtain y where y ∈ X − {x}
by blast

with ‹x ∈ X› show ?thesis
using that[of x y] by blast

qed

We now have all the ingredients to formalise the first main impossibility result: There
is no P-APP rule that satisfies Anonymity, Cardinality-Strategyproofness, and Weak
Representation if k ≥ 3 and m ≥ k + 1 and n is a multiple of 2k.
The proof simply uses the lowering lemmas we proved earlier to first reduce the commit-
tee size to 3, then reduce the voters to 6, and finally restrict the parties to 4. At that
point, the base case we proved with SAT solving earlier kicks in.
This corresponds to Theorem 1 in the paper.
theorem papp-impossibility1 :

assumes k ≥ 3 and card parties ≥ k + 1 and finite parties
shows ¬card-stratproof-weak-rep-anon-papp (2 ∗ k ∗ l) parties k r
using assms

proof (induction k arbitrary: parties r rule: less-induct)
case (less k parties r)
show ?case
proof (cases k = 3)

assume [simp]: k = 3

If the committee size is 3, we first use our voter-division lemma to go from a P-APP rule
for 6l voters to one with just 6 voters. Next, we choose 4 arbitrary parties and use our
party-restriction lemma to obtain a P-APP rule for just 4 parties.
But this is exactly our base case, which we already know to be infeasible.

show ?thesis
proof

assume card-stratproof-weak-rep-anon-papp (2 ∗ k ∗ l) parties k r
then interpret card-stratproof-weak-rep-anon-papp l ∗ 6 parties 3 r

by (simp add: mult-ac)
interpret divide-voters-card-stratproof-weak-rep-anon-papp l 6 parties 3 r ..

have card parties ≥ 4
using less.prems by auto

then obtain parties ′ where parties ′: parties ′ ⊆ parties card parties ′ = 4

53

by (metis obtain-subset-with-card-n)
have ∃ r . card-stratproof-weak-rep-anon-papp 6 parties ′ 3 r
proof (rule card-stratproof-weak-rep-anon-papp-restrict-parties)

show card-stratproof-weak-rep-anon-papp 6 parties 3 (r ◦ lift-profile)
by (rule lowered.card-stratproof-weak-rep-anon-papp-axioms)

qed (use parties ′ in auto)
thus False

using papp-impossibility-base-case[OF parties ′(2)] by blast
qed

next
assume k 6= 3

If the committee size is greater than 3, we use our other lowering lemma to reduce the
committee size by 1 (while also reducing the number of voters by 2l and the number of
parties by 1).

with less.prems have k > 3
by simp

obtain x y where xy: x ∈ parties y ∈ parties x 6= y
using obtain-2-elements[of parties] less.prems by auto

define parties ′ where parties ′ = parties − {y}
have [simp]: card parties ′ = card parties − 1

unfolding parties ′-def using xy by (subst card-Diff-subset) auto

show ?thesis
proof

assume card-stratproof-weak-rep-anon-papp (2 ∗ k ∗ l) parties k r
then interpret card-stratproof-weak-rep-anon-papp

2 ∗ l ∗ (k − 1 + 1) insert y parties ′ k − 1 + 1 r
using ‹k > 3 › xy by (simp add: parties ′-def insert-absorb mult-ac)

interpret decrease-committee-card-stratproof-weak-rep-anon-papp 2 ∗ l k − 1 y parties ′ r x
by unfold-locales (use ‹k > 3 › xy in ‹auto simp: parties ′-def ›)

have ¬card-stratproof-weak-rep-anon-papp (2 ∗ (k − 1) ∗ l) parties ′ (k − 1) lowered
by (rule less.IH) (use ‹k > 3 › xy less.prems in auto)

with lowered.card-stratproof-weak-rep-anon-papp-axioms show False
by (simp add: mult-ac)

qed
qed

qed

If Weak Representation is replaced with Weak Proportional Representation, we can
strengthen the impossibility result by relaxing the conditions on the number of parties
to m ≥ 4.
This works because with Weak Proportional Representation, we can reduce the size of
the committee without changing the number of parties. We use this to again bring
k down to 3 without changing m, at which point we can simply apply our previous
impossibility result for Weak Representation.
This corresponds to Theorem 2 in the paper.

54

corollary papp-impossibility2 :
assumes k ≥ 3 and card parties ≥ 4 and finite parties
shows ¬card-stratproof-weak-prop-rep-anon-papp (2 ∗ k ∗ l) parties k r
using assms

proof (induction k arbitrary: parties r rule: less-induct)
case (less k parties r)
show ?case
proof (cases k = 3)

assume [simp]: k = 3

For committee size 3, we simply employ our previous impossibility result:
show ?thesis
proof

assume card-stratproof-weak-prop-rep-anon-papp (2 ∗ k ∗ l) parties k r
then interpret card-stratproof-weak-prop-rep-anon-papp l ∗ 6 parties 3 r

by (simp add: mult-ac)
have card-stratproof-weak-rep-anon-papp (l ∗ 6) parties 3 r ..
moreover have ¬card-stratproof-weak-rep-anon-papp (l ∗ 6) parties 3 r

using papp-impossibility1 [of 3 parties l r] less.prems by (simp add: mult-ac)
ultimately show False

by contradiction
qed

next
assume k 6= 3

If the committee size is greater than 3, we use our other lowering lemma to reduce the
committee size by 1 (while also reducing the number of voters by 2l).

with less.prems have k > 3
by simp

have parties 6= {}
using less.prems by auto

then obtain x where x: x ∈ parties
by blast

show ?thesis
proof

assume card-stratproof-weak-prop-rep-anon-papp (2 ∗ k ∗ l) parties k r
then interpret card-stratproof-weak-prop-rep-anon-papp

2 ∗ l ∗ (k − 1 + 1) parties k − 1 + 1 r
using ‹k > 3 › by (simp add: mult-ac)

interpret decrease-committee-card-stratproof-weak-prop-rep-anon-papp 2 ∗ l k − 1 parties
r x

by unfold-locales (use ‹k > 3 › x in auto)
have ¬card-stratproof-weak-prop-rep-anon-papp (2 ∗ (k − 1) ∗ l) parties (k − 1) lowered

by (rule less.IH) (use ‹k > 3 › less.prems in auto)
with lowered.card-stratproof-weak-prop-rep-anon-papp-axioms show False

by (simp add: mult-ac)
qed

55

qed
qed

end

References

[1] P. Lammich. The GRAT tool chain – efficient (UN)SAT certificate checking with
formal correctness guarantees. In S. Gaspers and T. Walsh, editors, Theory and Ap-
plications of Satisfiability Testing – SAT 2017, Proceedings, volume 10491 of Lecture
Notes in Computer Science, pages 457–463. Springer, 2017.

[2] N. Wetzler, M. Heule, and W. A. H. Jr. DRAT-trim: Efficient checking and trimming
using expressive clausal proofs. In C. Sinz and U. Egly, editors, Theory and Applica-
tions of Satisfiability Testing – SAT 2014, Proceedings, volume 8561 of Lecture Notes
in Computer Science, pages 422–429. Springer, 2014.

56

	Auxiliary Facts About Multisets
	Anonymous Party Approval Rules
	Definition of the General Setting
	P-APP rules and Desirable Properties
	Efficiency
	Strategyproofness
	Representation
	Proportional Representation

	The Base Case of the Impossibility
	Auxiliary Material
	Setup for the Base Case
	Symmetry Breaking
	The Set of Possible Committees
	Generating Clauses and Replaying the SAT Proof

	Lowering P-APP Rules to Smaller Settings
	Preliminary Lemmas
	Dividing the number of voters
	Decreasing the number of parties
	Decreasing the committee size

	Lifting the Impossibility Result to Larger Settings

