
Undecidability Results on Orienting Single Rewrite
Rules∗

René Thiemann, Fabian Mitterwallner, and Aart Middeldorp

University of Innsbruck

May 3, 2024

Abstract
We formalize several undecidability results on termination for one-

rule term rewrite systems by means of simple reductions from Hilbert’s
10th problem. To be more precise, for a class C of reduction orders, we
consider the question for a given rewrite rule ` → r, whether there is
some reduction order� ∈ C such that ` � r. We include undecidability
results for each of the following classes C:

• the class of linear polynomial interpretations over the natural
numbers,

• the class of linear polynomial interpretations over the natural
numbers in the weakly monotone setting,

• the class of Knuth–Bendix orders with subterm coefficients,
• the class of non-linear polynomial interpretations over the natu-

ral numbers, and
• the class of non-linear polynomial interpretations over the ratio-

nal and real numbers.

Contents
1 Introduction 2

2 Preliminaries: Extending the Library on Multivariate Poly-
nomials 2
2.1 Part 1 – Extensions Without Importing Univariate Polynomials 2
2.2 Part 2 – Extensions With Importing Univariate Polynomials . 15

3 Definition of Monotone Algebras and Polynomial Interpre-
tations 36

∗This research was supported by the Austrian Science Fund (FWF) project I 5943.

1

4 Hilbert’s 10th Problem to Linear Inequality 43

5 Undecidability of Linear Polynomial Termination 47

6 Undecidability of KBO with Subterm Coefficients 81

7 Undecidability of Polynomial Termination over Integers 89

8 Undecidability of Polynomial Termination using δ-Orders 123

1 Introduction

The main part of this paper is about one of the earliest termination methods
for term rewrite systems: using a polynomial interpretation over the natural
numbers, which goes back to Lankford [1].
In a recent paper [3] it was shown that this and other related techniques
are undecidable, even for one-rule rewrite systems. This AFP entry for-
mally proves the results in [3]. These are all based on reduction from a
variant of Hilbert’s 10th problem, which was shown to be undecidable by
Matiyasevich [2].

2 Preliminaries: Extending the Library on Multi-
variate Polynomials

2.1 Part 1 – Extensions Without Importing Univariate Poly-
nomials

theory Preliminaries-on-Polynomials-1
imports

Polynomials.More-MPoly-Type
Polynomials.MPoly-Type-Class-FMap

begin

type-synonym var = nat
type-synonym monom = var ⇒0 nat

definition substitute :: (var ⇒ ′a mpoly) ⇒ ′a :: comm-semiring-1 mpoly ⇒ ′a
mpoly where

substitute σ p = insertion σ (replace-coeff Const p)

lemma Const-0 : Const 0 = 0
by (transfer , simp add: Const0-zero)

lemma Const-1 : Const 1 = 1
by (transfer , simp add: Const0-one)

2

lemma insertion-Var : insertion α (Var x) = α x
apply transfer
by (metis One-nat-def Var0-def insertion.abs-eq insertion-single mapping-of-inverse

monom.rep-eq mult.right-neutral mult-1 power .simps(2) power-0)

lemma insertion-Const: insertion α (Const a) = a
by (metis Const.abs-eq Const0-def insertion-single monom.abs-eq mult.right-neutral

power-0 single-zero)

lemma insertion-power : insertion α (p^n) = (insertion α p)^n
by (induct n, auto simp: insertion-mult)

lemma insertion-monom-add: insertion α (monom (f + g) a) = insertion α
(monom f 1) ∗ insertion α (monom g a)

by (metis insertion-mult mult-1 mult-monom)

lemma insertion-uminus: insertion α (− p) = − insertion α p
by (metis add-eq-0-iff insertion-add insertion-zero)

lemma insertion-sum-list: insertion α (sum-list ps) = sum-list (map (insertion α)
ps)

by (induct ps, auto simp: insertion-add)

lemma coeff-uminus: coeff (− p) m = − coeff p m
by (simp add: coeff-def uminus-mpoly.rep-eq)

lemma insertion-substitute: insertion α (substitute σ p) = insertion (λ x. insertion
α (σ x)) p

unfolding substitute-def
proof (induct p rule: mpoly-induct)

case (monom m a)
show ?case

apply (subst replace-coeff-monom)
subgoal by (simp add: Const-0)
subgoal proof (induct m arbitrary: a rule: poly-mapping-induct)

case (single k v)
show ?case by (simp add: insertion-mult insertion-Const insertion-power)

next
case (sum f g k v a)
from sum(1)[of 1] sum(2)[of a] show ?case

by (simp add: insertion-monom-add insertion-mult Const-1)
qed
done

next
case (sum p1 p2 m a)
then show ?case

apply (subst replace-coeff-add)
subgoal by (simp add: Const-0)
subgoal by (transfer ′, simp add: Const0-def single-add)

3

by (simp add: insertion-add)
qed

lemma Const-add: Const (x + y) = Const x + Const y
by (transfer , auto simp: Const0-def single-add)

lemma substitute-add[simp]: substitute σ (p + q) = substitute σ p + substitute σ
q

unfolding substitute-def insertion-add[symmetric]
by (subst replace-coeff-add, auto simp: Const-0 Const-add)

lemma Const-sum: Const (sum f A) = sum (Const o f) A
by (metis Const-0 Const-add sum-comp-morphism)

lemma Const-sum-list: Const (sum-list (map f xs)) = sum-list (map (Const o f)
xs)

by (induct xs, auto simp: Const-0 Const-add)

lemma Const-0-eq[simp]: Const x = 0 ←→ x = 0
by (smt (verit) Const.abs-eq Const0-def coeff-monom monom.abs-eq single-zero

when-def zero-mpoly-def)

lemma Const-sum-any: Const (Sum-any f) = Sum-any (Const o f)
unfolding Sum-any.expand-set Const-sum o-def
by (intro sum.cong[OF - refl], auto simp: Const-0)

lemma Const-mult: Const (x ∗ y) = Const x ∗ Const y
by (metis Const.abs-eq Const0-def monom.abs-eq smult-conv-mult smult-monom)

lemma Const-power : Const (x ^ e) = Const x ^ e
by (induct e, auto simp: Const-1 Const-mult)

lemma lookup-replace-Const: lookup (mapping-of (replace-coeff Const p)) l = Const
(lookup (mapping-of p) l)

by (metis Const-0 coeff-def coeff-replace-coeff)

lemma replace-coeff-mult: replace-coeff Const (p ∗ q) = replace-coeff Const p ∗
replace-coeff Const q
apply (subst coeff-eq[symmetric], intro ext, subst coeff-replace-coeff , rule Const-0)
apply (unfold coeff-def)
apply (unfold times-mpoly.rep-eq)
apply (unfold Poly-Mapping.lookup-mult)
apply (unfold Const-sum-any o-def Const-mult lookup-replace-Const)
apply (unfold when-def if-distrib Const-0)
by auto

lemma substitute-mult[simp]: substitute σ (p ∗ q) = substitute σ p ∗ substitute σ
q

4

unfolding substitute-def insertion-mult[symmetric] replace-coeff-mult ..

lemma replace-coeff-Var [simp]: replace-coeff Const (Var x) = Var x
by (metis Const-0 Const-1 Var .abs-eq Var0-def monom.abs-eq replace-coeff-monom)

lemma replace-coeff-Const[simp]: replace-coeff Const (Const c) = Const (Const
c)

by (metis Const.abs-eq Const0-def Const-0 monom.abs-eq replace-coeff-monom)

lemma substitute-Var [simp]: substitute σ (Var x) = σ x
unfolding substitute-def by (simp add: insertion-Var)

lemma substitute-Const[simp]: substitute σ (Const c) = Const c
unfolding substitute-def by (simp add: insertion-Const)

lemma substitute-0 [simp]: substitute σ 0 = 0
using substitute-Const[of σ 0 , unfolded Const-0] .

lemma substitute-1 [simp]: substitute σ 1 = 1
using substitute-Const[of σ 1 , unfolded Const-1] .

lemma substitute-power [simp]: substitute σ (p^e) = (substitute σ p)^e
by (induct e, auto)

lemma substitute-monom[simp]: substitute σ (monom (monomial e x) c) = Const
c ∗ (σ x)^e

by (simp add: replace-coeff-monom substitute-def)

lemma substitute-sum-list: substitute σ (sum-list (map f xs)) = sum-list (map
(substitute σ o f) xs)

by (induct xs, auto)

lemma substitute-sum: substitute σ (sum f xs) = sum (substitute σ o f) xs
by (induct xs rule: infinite-finite-induct, auto)

lemma substitute-prod: substitute σ (prod f xs) = prod (substitute σ o f) xs
by (induct xs rule: infinite-finite-induct, auto)

definition vars-list where vars-list = sorted-list-of-set o vars

lemma set-vars-list[simp]: set (vars-list p) = vars p
unfolding vars-list-def o-def using vars-finite[of p] by auto

lift-definition mpoly-coeff-filter :: (′a :: zero ⇒ bool) ⇒ ′a mpoly ⇒ ′a mpoly is
λ f p. Poly-Mapping.mapp (λ m c. c when f c) p .

lemma mpoly-coeff-filter : coeff (mpoly-coeff-filter f p) m = (coeff p m when f (coeff
p m))

unfolding coeff-def by transfer (simp add: in-keys-iff mapp.rep-eq)

5

lemma total-degree-add: assumes total-degree p ≤ d total-degree q ≤ d
shows total-degree (p + q) ≤ d
using assms

proof transfer
fix d and p q :: (nat ⇒0 nat) ⇒0

′a
let ?exp = λ p. Max (insert (0 :: nat) ((λm. sum (lookup m) (keys m)) ‘ keys

p))
assume d: ?exp p ≤ d ?exp q ≤ d
have ?exp (p + q) ≤ Max (insert (0 :: nat) ((λm. sum (lookup m) (keys m)) ‘

(keys p ∪ keys q)))
using Poly-Mapping.keys-add[of p q]
by (intro Max-mono, auto)

also have . . . = max (?exp p) (?exp q)
by (subst Max-Un[symmetric], auto simp: image-Un)

also have . . . ≤ d using d by auto
finally show ?exp (p + q) ≤ d .

qed

lemma total-degree-Var [simp]: total-degree (Var x :: ′a :: comm-semiring-1 mpoly)
= Suc 0

by (transfer , auto simp: Var0-def)

lemma total-degree-Const[simp]: total-degree (Const x) = 0
by (transfer , auto simp: Const0-def)

lemma total-degree-Const-mult: assumes total-degree p ≤ d
shows total-degree (Const x ∗ p) ≤ d
using assms

proof (transfer , goal-cases)
case (1 p d x)
have sub: keys (Const0 x ∗ p) ⊆ keys p

by (rule order .trans[OF keys-mult], auto simp: Const0-def)
show ?case

by (rule order .trans[OF - 1], rule Max-mono, insert sub, auto)
qed

lemma vars-0 [simp]: vars 0 = {}
unfolding vars-def by (simp add: zero-mpoly.rep-eq)

lemma vars-1 [simp]: vars 1 = {}
unfolding vars-def by (simp add: one-mpoly.rep-eq)

lemma vars-Var [simp]: vars (Var x :: ′a :: comm-semiring-1 mpoly) = {x}
unfolding vars-def by (transfer , auto simp: Var0-def)

lemma vars-Const[simp]: vars (Const c) = {}
unfolding vars-def by (transfer , auto simp: Const0-def)

6

lemma coeff-sum-list: coeff (sum-list ps) m = (
∑

p←ps. coeff p m)
by (induct ps, auto simp: coeff-add[symmetric])
(metis coeff-monom monom-zero zero-when)

lemma coeff-Const-mult: coeff (Const c ∗ p) m = c ∗ coeff p m
by (metis Const.abs-eq Const0-def add-0 coeff-monom-mult monom.abs-eq)

lemma coeff-Const: coeff (Const c) m = (if m = 0 then (c :: ′a :: comm-semiring-1)
else 0)

by (simp add: Const.rep-eq Const0-def coeff-def lookup-single-not-eq)

lemma coeff-Var : coeff (Var x) m = (if m = monomial 1 x then 1 :: ′a ::
comm-semiring-1 else 0)

by (simp add: Var .rep-eq Var0-def coeff-def lookup-single-not-eq)

list-based representations, so that polynomials can be converted to first-
order terms
lift-definition monom-list :: ′a :: comm-semiring-1 mpoly ⇒ (monom × ′a) list

is λ p. map (λ m. (m, lookup p m)) (sorted-list-of-set (keys p)) .

lift-definition var-list :: monom ⇒ (var × nat) list
is λ m. map (λ x. (x, lookup m x)) (sorted-list-of-set (keys m)) .

lemma monom-list: p = (
∑

(m, c) ← monom-list p. monom m c)
apply transfer
subgoal for p

apply (subst poly-mapping-sum-monomials[symmetric])
apply (subst distinct-sum-list-conv-Sum)
apply (unfold distinct-map, simp add: inj-on-def)
apply (meson in-keys-iff monomial-inj)

apply (unfold set-map image-comp o-def split)
apply (subst set-sorted-list-of-set, force)
by (smt (verit, best) finite-keys lookup-eq-zero-in-keys-contradict monomial-inj

o-def sum.cong sum.reindex-nontrivial)
done

lemma monom-list-coeff : (m,c) ∈ set (monom-list p) =⇒ coeff p m = c
unfolding coeff-def by (transfer , auto)

lemma monom-list-keys: (m,c) ∈ set (monom-list p) =⇒ keys m ⊆ vars p
unfolding vars-def by (transfer , auto)

lemma var-list: monom m c = Const (c :: ′a :: comm-semiring-1) ∗ (
∏

(x, e) ←
var-list m. (Var x)^e)
proof transfer

fix m :: monom and c :: ′a
have set: set (sorted-list-of-set (keys m)) = keys m

by (subst set-sorted-list-of-set, force+)

7

have id: (
∏

(x, y)←map (λx. (x, lookup m x)) (sorted-list-of-set (keys m)). Var0

x ^ y)
= (

∏
x ∈ keys m. Var0 x ^ lookup m x) (is ?r1 = ?r2)

apply (unfold map-map o-def split)
apply (subst prod.distinct-set-conv-list[symmetric])
by auto

have monomial c m = Const0 c ∗ monomial 1 m
by (simp add: Const0-one monomial-mp)

also have monomial (1 :: ′a) m = ?r1 unfolding id
proof (induction m rule: poly-mapping-induct)

case (single k v)
then show ?case by (auto simp: Var0-power mult-single)

next
case (sum f g k v)
have id: monomial (1 :: ′a) (f + g) = monomial 1 f ∗ monomial 1 g

by (simp add: mult-single)
have keys: keys (f + g) = keys f ∪ keys g keys f ∩ keys g = {}

apply (intro keys-plus-ninv-comm-monoid-add)
using sum(3−4) by simp

show ?case unfolding id sum(1−2) unfolding keys(1)
apply (subst prod.union-disjoint, force, force, rule keys)
apply (intro arg-cong2 [of - - - - (∗)] prod.cong refl)
apply (insert keys(2), simp add: disjoint-iff in-keys-iff lookup-add)

by (metis add-cancel-left-left disjoint-iff-not-equal in-keys-iff plus-poly-mapping.rep-eq)
qed
finally show monomial c m = Const0 c ∗ ?r1 .

qed

lemma var-list-keys: (x,e) ∈ set (var-list m) =⇒ x ∈ keys m
by (transfer , auto)

lemma vars-substitute: assumes
∧

x. vars (σ x) ⊆ V
shows vars (substitute σ p) ⊆ V

proof −
define mcs where mcs = monom-list p
show ?thesis unfolding monom-list[of p, folded mcs-def]
proof (induct mcs)

case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
define xes where xes = var-list m
have monom: vars (substitute σ (monom m c)) ⊆ V unfolding var-list[of m,

folded xes-def]
proof (induct xes)

case (Cons xe xes)
obtain x e where xe: xe = (x,e) by force
from assms have vars (σ x) ⊆ V .
hence x: vars ((σ x)^e) ⊆ V
proof (induct e)

case (Suc e)

8

then show ?case
by (simp, intro order .trans[OF vars-mult], auto)

qed force
have id: substitute σ (Const c ∗ (

∏
a←xe # xes. case a of (x, a) ⇒ Var x ^

a))
= σ x ^ e ∗ (Const c ∗ substitute σ (

∏
(x, y)←xes. Var x ^ y)) unfolding

xe
by (simp add: ac-simps)

show ?case unfolding id
apply (rule order .trans[OF vars-mult])
using Cons x by auto

qed force
show ?case unfolding mc

apply simp
apply (rule order .trans[OF vars-add])
using monom Cons by auto

qed force
qed

lemma insertion-monom-nonneg: assumes
∧

x. α x ≥ 0 and c: (c :: ′a ::
{linordered-nonzero-semiring,ordered-semiring-0}) ≥ 0

shows insertion α (monom m c) ≥ 0
proof −

define xes where xes = var-list m
show ?thesis unfolding var-list[of m c, folded xes-def]
proof (induct xes)

case Nil
thus ?case using c by (auto simp: insertion-Const)

next
case (Cons xe xes)
obtain x e where xe: xe = (x,e) by force
have id: insertion α (Const c ∗ (

∏
a←xe # xes. case a of (x, a) ⇒ Var x ^

a))
= α x ^ e ∗ insertion α (Const c ∗ (

∏
a←xes. case a of (x, a) ⇒ Var x ^ a))

unfolding xe
by (simp add: insertion-mult insertion-power insertion-Var algebra-simps)

show ?case unfolding id
proof (intro mult-nonneg-nonneg Cons)

show 0 ≤ α x ^ e using assms(1)[of x]
by (induct e, auto)

qed
qed

qed

lemma insertion-nonneg: assumes
∧

x. α x ≥ (0 :: ′a :: linordered-idom)
and

∧
m. coeff p m ≥ 0

shows insertion α p ≥ 0
proof −

9

define mcs where mcs = monom-list p
from monom-list[of p] have p: p = (

∑
(m, c)← mcs. monom m c) unfolding

mcs-def by auto
have mcs: (m,c) ∈ set mcs =⇒ c ≥ 0 for m c

using monom-list-coeff assms(2) unfolding mcs-def by auto
show ?thesis using mcs unfolding p
proof (induct mcs)

case Nil
thus ?case by (auto simp: insertion-Const)

next
case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
with Cons have c ≥ 0 by auto
from insertion-monom-nonneg[OF assms(1) this]
have m: 0 ≤ insertion α (monom m c) by auto
from Cons(1)[OF Cons(2)]
have IH : 0 ≤ insertion α (

∑
a←mcs. case a of (a, b) ⇒ monom a b) by force

show ?case unfolding mc using IH m
by (auto simp: insertion-add)

qed
qed

lemma vars-sumlist: vars (sum-list ps) ⊆
⋃

(vars ‘ set ps)
by (induct ps, insert vars-add, auto)

lemma coefficients-of-linear-poly: assumes linear : total-degree (p :: ′a :: comm-semiring-1
mpoly) ≤ 1

shows ∃ c a vs. p = Const c + (
∑

i←vs. Const (a i) ∗ Var i)
∧ distinct vs ∧ set vs = vars p ∧ sorted-list-of-set (vars p) = vs ∧ (∀ v ∈ set

vs. a v 6= 0)
∧ (∀ i. a i = coeff p (monomial 1 i)) ∧ (c = coeff p 0)

proof −
have sum-zero: (

∧
x. x ∈ set xs =⇒ x = 0) =⇒ sum-list (xs :: ′a list) = 0 for

xs by (induct xs, auto)
define a :: var ⇒ ′a where a i = coeff p (monomial 1 i) for i
define vs where vs = sorted-list-of-set (vars p)
define c where c = coeff p 0
define q where q = Const c + (

∑
i← vs. Const (a i) ∗ Var i)

show ?thesis
proof (intro exI [of - vs] exI [of - a] exI [of - c] conjI ballI vs-def [symmetric] c-def

allI a-def ,
unfold q-def [symmetric])

show set vs = vars p and dist: distinct vs
using sorted-list-of-set[of vars p, folded vs-def] vars-finite[of p] by auto

show p = q
unfolding coeff-eq[symmetric]

proof (intro ext)
fix m
have coeff q m = coeff (Const c) m + (

∑
x←vs. a x ∗ coeff (Var x) m)

10

unfolding q-def coeff-add[symmetric] coeff-sum-list map-map o-def co-
eff-Const-mult ..

also have . . . = coeff p m
proof (cases m = 0)

case True
thus ?thesis by (simp add: coeff-Const coeff-Var monomial-0-iff c-def)

next
case False
from False have coeff (Const (coeff p 0)) m + (

∑
x←vs. a x ∗ coeff (Var

x) m)
= (

∑
x←vs. a x ∗ coeff (Var x) m) unfolding coeff-Const by simp

also have . . . = coeff p m
proof (cases ∃ i ∈ set vs. m = monomial 1 i)

case True
then obtain i where i: i ∈ set vs and m: m = monomial 1 i by auto
from split-list[OF i] obtain bef aft where id: vs = bef @ i # aft by auto
from id dist have i: i /∈ set bef i /∈ set aft by auto
have [simp]: (monomial (Suc 0) i = monomial (Suc 0) j) = (i = j) for i

j :: var
using monomial-inj by fastforce

show ?thesis
apply (subst id, unfold coeff-Var m, simp)
apply (subst sum-zero, use i in force)
apply (subst sum-zero, use i in force)
by (simp add: a-def)

next
case mon: False
hence one: (

∑
x←vs. a x ∗ coeff (Var x) m) = 0

by (intro sum-zero, auto simp: coeff-Var)
have two: coeff p m = 0
proof (rule ccontr)

assume n0 : coeff p m 6= 0
show False
proof (cases ∃ i. m = monomial 1 i)

case True
with mon obtain i where i: i /∈ set vs and m: m = monomial 1 i by

auto
from n0 m have i ∈ vars p unfolding vars-def coeff-def

by (metis UN-I in-keys-iff lookup-single-eq one-neq-zero)
with i ‹set vs = vars p› show False by auto

next
case False
have sum (lookup m) (keys m) ≤ total-degree p using n0 unfolding

coeff-def
apply transfer

by transfer (metis (no-types, lifting) Max-ge finite.insertI finite-imageI
finite-keys image-eqI in-keys-iff insertCI)

also have . . . ≤ 1 using linear .
finally have linear : sum (lookup m) (keys m) ≤ 1 by auto

11

consider (single) x where keys m = {x} | (null) keys m = {} |
(two) x y k where keys m = {x,y} ∪ k and x 6= y by blast

thus False
proof cases

case null
hence m = 0 by simp
with ‹m 6= 0 › show False by simp

next
case (single x)
with linear have lookup m x ≤ 1 by auto
moreover from single have nz: lookup m x 6= 0

by (metis in-keys-iff insertI1)
ultimately have lookup m x = 1 by auto
with single have m = monomial 1 x

by (metis Diff-cancel Diff-eq-empty-iff keys-subset-singleton-imp-monomial)
with False show False by auto

next
case (two x y k)
define k ′ where k ′ = k − {x,y}
have keys m = insert x (insert y k ′) x 6= y x /∈ k ′ y /∈ k ′ finite k ′

unfolding k ′-def using two finite-keys[of m] by auto
hence lookup m x + lookup m y ≤ sum (lookup m) (keys m) by simp
also have . . . ≤ 1 by fact
finally have lookup m x = 0 ∨ lookup m y = 0 by auto
with two show False by blast

qed
qed

qed
from one two show ?thesis by simp

qed
finally show ?thesis by (simp add: c-def)

qed
finally show coeff p m = coeff q m ..

qed

fix v
assume v: v ∈ set vs
hence v ∈ vars p using ‹set vs = vars p› by auto
hence vq: v ∈ vars q unfolding ‹p = q› .
from split-list[OF v] obtain bef aft where vs: vs = bef @ v # aft by auto
with dist have vba: v /∈ set bef v /∈ set aft by auto
show a v 6= 0
proof

assume a0 : a v = 0
have v ∈ vars p by fact
also have p = q by fact
also have vars q ⊆ vars (sum-list (map (λ x. Const (a x) ∗ Var x) bef)) ∪

vars (Const (a v) ∗ Var v)
∪ vars (sum-list (map (λ x. Const (a x) ∗ Var x) aft))

12

unfolding q-def vs apply simp
apply (rule order .trans[OF vars-add], simp)
apply (rule order .trans[OF vars-add])
by (insert vars-add, blast)

also have vars (Const (a v) ∗ Var v) = {} unfolding a0 Const-0 by simp
finally obtain list where v: v ∈ vars (sum-list (map (λ x. Const (a x) ∗ Var

x) list))
and not-v: v /∈ set list using vba by auto

from set-mp[OF vars-sumlist v] obtain x where x ∈ set list and v ∈ vars
(Const (a x) ∗ Var x)

by auto
with vars-mult[of Const (a x) Var x] not-v show False by auto

qed
qed

qed

Introduce notion for degree of monom
definition degree-monom :: (var ⇒0 nat) ⇒ nat where

degree-monom m = sum (lookup m) (keys m)

lemma total-degree-alt-def : total-degree p = Max (insert 0 (degree-monom ‘ keys
(mapping-of p)))

unfolding degree-monom-def
by transfer ′ simp

lemma degree-monon-le-total-degree: assumes coeff p m 6= 0
shows degree-monom m ≤ total-degree p
using assms unfolding total-degree-alt-def by (simp add: coeff-keys)

lemma degree-monom-eq-total-degree: assumes p 6= 0
shows ∃ m. coeff p m 6= 0 ∧ degree-monom m = total-degree p

proof (cases total-degree p = 0)
case False
thus ?thesis unfolding total-degree-alt-def
by (metis (full-types) Max-in coeff-keys empty-not-insert finite-imageI finite-insert

finite-keys image-iff insertE)
next

case True
from assms obtain m where coeff p m 6= 0

using coeff-all-0 by auto
with degree-monon-le-total-degree[OF this] True show ?thesis by auto

qed

lemma degree-add-leI : degree p x ≤ d =⇒ degree q x ≤ d =⇒ degree (p + q) x ≤
d

apply transfer
subgoal for p x d q using Poly-Mapping.keys-add[of p q]

by (intro Max.boundedI , auto)
done

13

lemma degree-sum-leI : assumes
∧

i. i ∈ A =⇒ degree (p i) x ≤ d
shows degree (sum p A) x ≤ d
using assms
by (induct A rule: infinite-finite-induct, auto intro: degree-add-leI)

lemma total-degree-sum-leI : assumes
∧

i. i ∈ A =⇒ total-degree (p i) ≤ d
shows total-degree (sum p A) ≤ d
using assms
by (induct A rule: infinite-finite-induct, auto intro: total-degree-add)

lemma total-degree-monom: assumes c 6= 0
shows total-degree (monom m c) = degree-monom m
unfolding total-degree-alt-def using assms by auto

lemma degree-Var [simp]: degree (Var x :: ′a :: comm-semiring-1 mpoly) x = 1
by (transfer , unfold Var0-def , simp)

lemma Var-neq-0 [simp]: Var x 6= (0 :: ′a :: comm-semiring-1 mpoly)
proof

assume Var x = (0 :: ′a mpoly)
from arg-cong[OF this, of λ p. degree p x]
show False by simp

qed

lemma degree-Const[simp]: degree (Const c) x = 0
by transfer (auto simp: Const0-def)

lemma vars-add-subI : vars p ⊆ A =⇒ vars q ⊆ A =⇒ vars (p + q) ⊆ A
by (metis le-supI subset-trans vars-add)

lemma vars-mult-subI : vars p ⊆ A =⇒ vars q ⊆ A =⇒ vars (p ∗ q) ⊆ A
by (metis le-supI subset-trans vars-mult)

lemma vars-eqI : assumes vars (p :: ′a :: comm-ring-1 mpoly) ⊆ V∧
v. v ∈ V =⇒ ∃ a b. insertion a p 6= insertion (a(v := b)) p

shows vars p = V
proof (rule ccontr)

assume ¬ ?thesis
with assms obtain v where v ∈ V and not: v /∈ vars p by auto
from assms(2)[OF this(1)] obtain a b where insertion a p 6= insertion (a(v :=

b)) p by auto
moreover have insertion a p = insertion (a(v := b)) p

by (rule insertion-irrelevant-vars, insert not, auto)
ultimately show False by auto

qed

end

14

2.2 Part 2 – Extensions With Importing Univariate Polyno-
mials

theory Preliminaries-on-Polynomials-2
imports

Preliminaries-on-Polynomials-1
Factor-Algebraic-Polynomial.Poly-Connection

begin

Several definitions have the same name for univariate and multivariate poly-
nomials, so we use a prefix m for multi-variate.
hide-const (open) Symmetric-Polynomials.lead-coeff

abbreviation mdegree where mdegree ≡ MPoly-Type.degree
abbreviation mcoeff where mcoeff ≡ MPoly-Type.coeff
abbreviation mmonom where mmonom ≡ MPoly-Type.monom

lemma range-coeff-poly-to-mpoly: assumes mcoeff (poly-to-mpoly x p) m 6= 0
shows ∃ d. m = monomial d x
using assms
unfolding coeff-def poly-to-mpoly-def MPoly-inverse[OF Set.UNIV-I] lookup-Abs-poly-mapping[OF

poly-to-mpoly-finite]
by simp (metis keys-subset-singleton-imp-monomial)

lemma degree-poly-to-mpoly[simp]: mdegree (poly-to-mpoly x p) x = degree p
proof (cases p = 0)

case True
thus ?thesis by (simp add: poly-to-mpoly0)

next
case p: False
let ?q = poly-to-mpoly x p
define q where q = ?q
define dp where dp = degree p
define dq where dq = mdegree q x
from p have q: ?q 6= 0

by (metis poly-to-mpoly0 poly-to-mpoly-inverse)
have pq: p = mpoly-to-poly x q unfolding q-def

by (simp add: poly-to-mpoly-inverse)
{

have 0 6= coeff p dp using p by (auto simp: dp-def)
also have coeff p dp = coeff (mpoly-to-poly x q) dp unfolding pq by simp
also have . . . = mcoeff q (monomial dp x) unfolding coeff-mpoly-to-poly by

simp
finally have mcoeff q (monomial dp x) 6= 0 by simp

}
hence first-part: dq ≥ dp unfolding dq-def by (metis degree-geI lookup-single-eq)
{

from monom-of-degree-exists[OF q, folded q-def , of x] obtain m where mc:
mcoeff q m 6= 0

15

and look: lookup m x = dq by (auto simp: dq-def)
from range-coeff-poly-to-mpoly[OF mc[unfolded q-def]] obtain d where m: m

= monomial d x by auto
from m look have m: m = monomial dq x by simp
have coeff p dq = mcoeff q (monomial dq x)

unfolding coeff-poly-to-mpoly[of x, symmetric] q-def dq-def by auto
also have . . . 6= 0 using m mc by auto
finally have dp ≥ dq unfolding dp-def by (rule le-degree)

}
with first-part have dp = dq by auto
thus ?thesis unfolding dp-def dq-def q-def by auto

qed

lemma degree-mpoly-to-poly: assumes vars p ⊆ {x}
shows degree (mpoly-to-poly x p) = mdegree p x

proof −
define q where q = mpoly-to-poly x p
from mpoly-to-poly-inverse[OF assms]
have mdegree p x = mdegree (poly-to-mpoly x (mpoly-to-poly x p)) x by simp
also have . . . = degree (mpoly-to-poly x p) by simp
finally show ?thesis ..

qed

lemma degree-partial-insertion-bound: degree (partial-insertion a x p) ≤MPoly-Type.degree
p x

using degree-partial-insertion-le-mpoly by auto

lemma insertion-partial-insertion-vars: assumes
∧

y. y 6= x =⇒ y ∈ vars p =⇒
β y = α y

shows poly (partial-insertion β x p) (α x) = insertion α p
proof −

let ?α = (λ y. if y ∈ insert x (vars p) then α y else β y)
have insertion α p = insertion ?α p

by (rule insertion-irrelevant-vars, auto)
also have . . . = poly (partial-insertion β x p) (?α x)

by (rule insertion-partial-insertion[symmetric], insert assms, auto)
finally show ?thesis by auto

qed

lemma degree-mpoly-of-poly[simp]: mdegree (mpoly-of-poly x p) x = degree p
proof −

have mdegree (mpoly-of-poly x p) x ≤ degree p
by (simp add: coeff-eq-0 coeff-mpoly-of-poly degree-leI)

moreover have degree p ≤ mdegree (mpoly-of-poly x p) x
proof (cases degree p = 0)

case True
thus ?thesis by auto

next
case 0 : False

16

hence coeff p (degree p) 6= 0 by auto
also have coeff p (degree p) = MPoly-Type.coeff (mpoly-of-poly x p) (monomial

(degree p) x)
by simp

finally show ?thesis by (metis degree-geI lookup-single-eq)
qed
ultimately show ?thesis by auto

qed

lemma mpoly-extI : assumes
∧

α. insertion α p = insertion α (q :: ′a :: {ring-char-0 ,idom}
mpoly)

shows p = q
proof −

have main: finite vs =⇒ vars p ⊆ vs =⇒ vars q ⊆ vs =⇒ (
∧

α. insertion α p
= insertion α q) =⇒ p = q for vs

proof (induction vs arbitrary: p q rule: finite-induct)
case (insert x vs p q)
have p = q ←→ mpoly-to-mpoly-poly x p = mpoly-to-mpoly-poly x q

by (metis poly-mpoly-to-mpoly-poly)
also have . . .←→ (∀ m. coeff (mpoly-to-mpoly-poly x p) m = coeff (mpoly-to-mpoly-poly

x q) m)
by (metis poly-eqI)

also have . . . using insert
proof (intro allI insert.IH)

fix m α
show vars (coeff (mpoly-to-mpoly-poly x p) m) ⊆ vs using insert.prems(1)
by (metis Diff-eq-empty-iff Diff-insert2 dual-order .trans vars-coeff-mpoly-to-mpoly-poly)
show vars (coeff (mpoly-to-mpoly-poly x q) m) ⊆ vs using insert.prems(2)
by (metis Diff-eq-empty-iff Diff-insert2 dual-order .trans vars-coeff-mpoly-to-mpoly-poly)
have IH : partial-insertion α x p = partial-insertion α x q
proof (intro poly-ext)

fix y
have poly (partial-insertion α x p) y = poly (partial-insertion α x q) y ←→
insertion (α(x := y)) p = insertion (α(x := y)) q
using insertion-partial-insertion[of x α α(x := y)] by simp

moreover have . . . by (intro insert)
finally show poly (partial-insertion α x p) y = poly (partial-insertion α x

q) y by blast
qed
show insertion α (coeff (mpoly-to-mpoly-poly x p) m) = insertion α (coeff

(mpoly-to-mpoly-poly x q) m)
using insert.prems(3) by (simp add: IH)

qed
finally show ?case .

next
case (empty p q)
hence vars: vars p = {} vars q = {} by auto
from vars-emptyE [OF vars(1)] obtain c where p: p = Const c .
from vars-emptyE [OF vars(2)] obtain d where q: q = Const d .

17

from empty(3)[of undefined, unfolded p q] have c = d by auto
thus ?case unfolding p q by simp

qed
show ?thesis

by (rule main[of vars p ∪ vars q], insert assms, auto simp: vars-finite)
qed

lemma vars-empty-Const: assumes vars (p :: ′a :: {ring-char-0 ,idom} mpoly) =
{}

shows ∃ c. p = Const c
proof −

{
fix α
have insertion α p = insertion (λ -. 0) p using assms

by (intro insertion-irrelevant-vars, auto)
also have . . . = mcoeff p 0 by simp
also have . . . = insertion α (Const (mcoeff p 0)) unfolding insertion-Const

..
finally have insertion α p = insertion α (Const (mcoeff p 0)) .

}
hence p = (Const (mcoeff p 0)) by (rule mpoly-extI)
thus ?thesis by auto

qed

context
assumes ge1 :

∧
c :: ′a :: linordered-idom. c > 0 =⇒ ∃ x. c ∗ x ≥ 1

begin

lemma poly-ext-bounded:
fixes p q :: ′a poly
assumes

∧
x. x ≥ b =⇒ poly p x = poly q x shows p = q

proof −
define r where r = p − q
from assms have r : x ≥ b =⇒ poly r x = 0 for x by (auto simp: r-def)
have ?thesis ←→ r = 0 unfolding r-def by simp
also have . . .
proof (cases degree r = 0)

case True
from degree0-coeffs[OF this] r [of b] show ?thesis by auto

next
case dr : False
define lc where lc = lead-coeff r
from dr have lc: lc 6= 0 by (auto simp: lc-def)
define d where d = degree r
define s where s = r − monom lc d
have ds: degree s < d unfolding s-def lc-def using dr

by (smt (verit, del-insts) Polynomial.coeff-diff Polynomial.coeff-monom
cancel-comm-monoid-add-class.diff-cancel coeff-eq-0 d-def degree-0

18

diff-is-0-eq leading-coeff-0-iff linorder-neqE-nat linorder-not-le zero-diff)
{

fix x
have poly r x = poly (monom lc d + s) x unfolding s-def by simp
also have . . . = lc ∗ x ^ d + poly s x by (simp add: poly-monom)
finally have poly r x = lc ∗ x ^ d + poly s x .

} note eq = this
have ∃ p c. (∀ x ≥ b. (c :: ′a) ∗ x ^ d + poly p x = 0) ∧ c > 0 ∧ degree p <

d
proof (cases lc > 0)

case True
show ?thesis by (rule exI [of - s], rule exI [of - lc], insert True eq r ds, auto)

next
case False
with lc have True: − lc > 0 by auto
show ?thesis
proof (rule exI [of - − s], rule exI [of - − lc], intro conjI allI True)

fix x
show b ≤ x −→ − lc ∗ x ^ d + poly (− s) x = 0 using r [of x] eq[of x] by

auto
qed (insert ds, auto)

qed
then obtain p and c :: ′a

where c: c > 0 and dp: degree p < d and 0 :
∧

x. x ≥ b =⇒ c ∗ x ^ d +
poly p x = 0

by auto
define m where m = Max (insert 1 ((λ i. abs (coeff p i)) ‘ {..degree p}))
define M where M = (1 + of-nat (degree p)) ∗ m
have m1 : m ≥ 1 unfolding m-def by auto
have mc: i ≤ degree p =⇒ m ≥ abs (coeff p i) for i unfolding m-def

by (intro Max-ge, auto)
define B where B = max b 1
{

fix x
assume x: x ≥ B
hence x1 : x ≥ 1 unfolding B-def by auto
have abs (poly p x) = abs (

∑
i≤degree p. coeff p i ∗ x ^ i)

by (simp add: poly-altdef)
also have . . . ≤ (

∑
i≤degree p. abs (coeff p i ∗ x ^ i)) by blast

also have . . . ≤ (
∑

i≤degree p. m ∗ x ^ degree p)
proof (intro sum-mono)

fix i
assume i ∈ {..degree p}
hence i: i ≤ degree p by auto
have |coeff p i ∗ x ^ i| = |coeff p i| ∗ |x ^ i| by (auto simp: abs-mult)
also have . . . ≤ m ∗ x ^ degree p
proof (intro mult-mono)

show |coeff p i| ≤ m using mc i by auto
show 0 ≤ m using m1 by auto

19

have |x ^ i| = |x| ^ i unfolding power-abs ..
also have . . . = x ^ i using x1 by simp
also have . . . ≤ x ^ degree p using x1 i

using power-increasing by blast
finally show |x ^ i| ≤ x ^ degree p by auto

qed simp
finally show |coeff p i ∗ x ^ i| ≤ m ∗ x ^ degree p by simp

qed
also have . . . = M ∗ x ^ degree p by (simp add: M-def)
finally have ineq: |poly p x| ≤ M ∗ x ^ degree p .

have x ≥ b using x unfolding B-def by auto
from 0 [OF this] have abs (c ∗ x ^ d) = abs (poly p x) by auto
with ineq have ineq: c ∗ x ^ d ≤ M ∗ x ^ degree p by auto

define k where k = d − Suc (degree p)
from dp have d: d = degree p + Suc k unfolding k-def by auto
have xp: x ^ degree p ≥ 1 using x1 by simp
have c ∗ x ^ d = (c ∗ x ^ k ∗ x) ∗ x ^ degree p unfolding d

by (simp add: algebra-simps power-add)
from ineq[unfolded this] have ineq: c ∗ x ^ k ∗ x ≤ M using xp by simp
have c ∗ x ≤ c ∗ x^k ∗ x using c x1 by fastforce
also have . . . ≤ M by fact
finally have c ∗ x ≤ M .

}
hence contra: B ≤ x =⇒ c ∗ x ≤ M for x .
have ∃ x. c ∗ x ≥ 1 using c ge1 by auto
then obtain d where cd: c ∗ d ≥ 1 by auto
with c have d: d > 0

by (meson less-numeral-extra(1) order-less-le-trans zero-less-mult-pos)
have M1 : M ≥ 1 unfolding M-def using m1

by (simp add: order-trans)

have M < M + 1 by auto
also have . . . ≤ (c ∗ d) ∗ (M + 1) using cd M1 by simp
also have . . . ≤ c ∗ max B (d ∗ (M + 1)) using M1 c d by auto
also have . . . ≤ M using contra[of max B (d ∗ (M + 1))] by simp
finally have False by simp
thus ?thesis ..

qed
finally show ?thesis by simp

qed

lemma mpoly-ext-bounded:
assumes

∧
α. (

∧
x. α x ≥ b) =⇒ insertion α p = insertion α (q :: ′a ::

linordered-idom mpoly)
shows p = q

proof −

20

have main: finite vs =⇒ vars p ⊆ vs =⇒ vars q ⊆ vs =⇒ (
∧

α. (
∧

x. α x ≥ b)
=⇒ insertion α p = insertion α q) =⇒ p = q for vs

proof (induction vs arbitrary: p q rule: finite-induct)
case (insert x vs p q)
have p = q ←→ mpoly-to-mpoly-poly x p = mpoly-to-mpoly-poly x q

by (metis poly-mpoly-to-mpoly-poly)
also have . . .←→ (∀ m. coeff (mpoly-to-mpoly-poly x p) m = coeff (mpoly-to-mpoly-poly

x q) m)
by (metis poly-eqI)

also have . . .
proof (intro allI insert.IH)

fix m α
show vars (coeff (mpoly-to-mpoly-poly x p) m) ⊆ vs using insert.prems(1)
by (metis Diff-eq-empty-iff Diff-insert2 dual-order .trans vars-coeff-mpoly-to-mpoly-poly)
show vars (coeff (mpoly-to-mpoly-poly x q) m) ⊆ vs using insert.prems(2)
by (metis Diff-eq-empty-iff Diff-insert2 dual-order .trans vars-coeff-mpoly-to-mpoly-poly)
assume alpha:

∧
x. α (x :: nat) ≥ (b :: ′a)

have IH : partial-insertion α x p = partial-insertion α x q
proof (intro poly-ext-bounded[of b])

fix y
assume y: y ≥ (b :: ′a)
have poly (partial-insertion α x p) y = poly (partial-insertion α x q) y ←→
insertion (α(x := y)) p = insertion (α(x := y)) q
using insertion-partial-insertion[of x α α(x := y)] by simp

moreover have . . . by (intro insert, insert y alpha, auto)
finally show poly (partial-insertion α x p) y = poly (partial-insertion α x

q) y by blast
qed
show insertion α (coeff (mpoly-to-mpoly-poly x p) m) = insertion α (coeff

(mpoly-to-mpoly-poly x q) m)
using insert.prems(3) by (simp add: IH)

qed
finally show ?case .

next
case (empty p q)
hence vars: vars p = {} vars q = {} by auto
from vars-emptyE [OF vars(1)] obtain c where p: p = Const c .
from vars-emptyE [OF vars(2)] obtain d where q: q = Const d .
from empty(3)[of λ -. b, unfolded p q] have c = d

by (simp add: coeff-Const)
thus ?case unfolding p q by simp

qed
show ?thesis

by (rule main[of vars p ∪ vars q], insert assms, auto simp: vars-finite)
qed
end

lemma mpoly-ext-bounded-int:
assumes

∧
α. (

∧
x. α x ≥ b) =⇒ insertion α p = insertion α (q :: int mpoly)

21

shows p = q
by (rule mpoly-ext-bounded[of b], insert assms, auto simp: exI [of - 1])

lemma mpoly-ext-bounded-field:
assumes

∧
α. (

∧
x. α x ≥ b) =⇒ insertion α p = insertion α (q :: ′a ::

linordered-field mpoly)
shows p = q
apply (rule mpoly-ext-bounded[of b])
subgoal for c by (intro exI [of - inverse c], auto)
subgoal using assms by auto
done

lemma mpoly-of-poly-is-poly-to-mpoly: mpoly-of-poly = poly-to-mpoly
unfolding poly-to-mpoly-def
apply transfer ′

apply (unfold mpoly-of-poly-aux-def)
apply transfer ′

apply (unfold when-def [symmetric])
by (intro ext, auto)

lemma insertion-poly-to-mpoly [simp]: insertion f (poly-to-mpoly i p) = poly p (f
i)

unfolding mpoly-of-poly-is-poly-to-mpoly[symmetric] by simp

lemma substitute-poly-to-mpoly:
assumes x: α x = poly-to-mpoly y (q :: ′a :: {ring-char-0 ,idom} poly)
shows substitute α (poly-to-mpoly x p) = poly-to-mpoly y (pcompose p q)
apply (rule mpoly-extI)
apply (unfold insertion-substitute insertion-poly-to-mpoly x)
apply (unfold poly-pcompose)
by auto

lemma total-degree-add-Const: total-degree (p + Const (c :: ′a :: comm-ring-1))
= total-degree p
proof −

have total-degree (p + Const c) ≤ total-degree p
by (rule total-degree-add, auto)

moreover have total-degree ((p + Const c) + Const (−c)) ≤ total-degree (p +
Const c)

by (rule total-degree-add, auto)
moreover have (p + Const c) + Const (− c) = p by (simp add: Const-add[symmetric])
ultimately show ?thesis by auto

qed

lemma mpoly-as-sum-any: (p :: ′a :: comm-ring-1 mpoly) = Sum-any (λ m. mmonom
m (mcoeff p m))
proof (induct p rule: mpoly-induct)

case (monom m a)
thus ?case

22

by transfer (smt (verit) Sum-any.cong Sum-any-when-equal ′ lookup-single-eq
lookup-single-not-eq single-zero when-neq-zero when-simps(1))
next

case 1 : (sum p1 p2 m a)
show ?case

apply (subst 1 (1), subst 1 (2))
apply (unfold coeff-add monom-add)

by (smt (z3) 1 (1) 1 (2) MPoly-Type-monom-zero Sum-any.cong Sum-any.distrib
Sum-any.infinite add-cancel-left-left add-cancel-left-right mpoly-coeff-0)
qed

lemma mpoly-as-sum: (p :: ′a :: comm-ring-1 mpoly) = sum (λ m. mmonom m
(mcoeff p m)) {m . mcoeff p m 6= 0}

apply (subst mpoly-as-sum-any)
by (smt (verit, ccfv-SIG) Collect-cong MPoly-Type-monom-0-iff Sum-any.expand-set)

lemma monom-as-prod: mmonom m c = Const (c :: ′a :: comm-semiring-1) ∗
prod (λ i. Var i ^ lookup m i) (keys m)

unfolding var-list
apply (intro arg-cong[of - - λ x. - ∗ x])
apply transfer ′

apply (subst prod.distinct-set-conv-list[symmetric])
subgoal unfolding distinct-map by (auto simp: inj-on-def)
subgoal unfolding set-map image-comp set-sorted-list-of-set[OF finite-keys]

by (smt (verit, best) case-prod-conv finite-keys o-def prod.cong prod.inject
prod.reindex-nontrivial)

done

lemma poly-to-mpoly-substitute-same: assumes poly-to-mpoly x q = substitute (λi.
Var x) p

shows poly q a = insertion (λx. a) p
using arg-cong[OF assms, of insertion (λ -. a), unfolded insertion-poly-to-mpoly

insertion-substitute insertion-Var]
by simp

lemma substitute-monom: fixes c :: ′a :: comm-semiring-1
shows substitute a (mmonom m c) = Const c ∗ prod (λ i. a i ^ lookup m i) (keys

m)
by (subst monom-as-prod) (simp add: substitute-prod o-def)

lemma degree-prod: assumes prod p A 6= (0 :: ′a :: idom mpoly)
shows mdegree (prod p A) x = sum (λ i. mdegree (p i) x) A
using assms
by (induct A rule: infinite-finite-induct) (auto simp: mpoly-degree-mult-eq)

lemma degree-prod-le: fixes p :: - ⇒ ′a :: idom mpoly
shows mdegree (prod p A) x ≤ sum (λ i. mdegree (p i) x) A
using degree-prod[of p A x] by (cases prod p A = 0 ; auto)

23

lemma degree-power : assumes p 6= (0 :: ′a :: idom mpoly)
shows mdegree (p^n) x = n ∗ mdegree p x
by (induct n) (insert assms, auto simp: mpoly-degree-mult-eq)

lemma mdegree-Const-mult-le: mdegree (Const (c :: ′a :: idom) ∗ p) x ≤ mdegree
p x

using mpoly-degree-mult-eq[of Const c p x]
by (cases c = 0 ; cases p = 0 ; auto)

lemma degree-substitute-const-same-var : mdegree (substitute (λi. Const (c i) ∗
Var x) (p :: ′a :: idom mpoly)) x ≤ total-degree p
proof −

{
fix i
let ?x = Var x :: ′a mpoly
assume i: mcoeff p i 6= 0
have mdegree (

∏
ia∈keys i. (Const (c ia) ∗ ?x) ^ lookup i ia) x ≤ total-degree

p
apply (intro order .trans[OF - degree-monon-le-total-degree[of p i, OF i]])
apply (intro order .trans[OF degree-prod-le])
apply (rule order .trans[OF sum-mono[of - - lookup i]])
apply (unfold power-mult-distrib Const-power [symmetric])
apply (rule order .trans[OF mdegree-Const-mult-le])
apply (subst degree-power , force)
apply (subst degree-Var)

by (auto simp add: degree-monom-def)
} note main = this
show ?thesis

apply (subst (5) mpoly-as-sum)
apply (unfold substitute-sum o-def substitute-monom substitute-mult)
apply (intro degree-sum-leI)
apply (rule order .trans[OF mdegree-Const-mult-le])
using main by auto

qed

lemma degree-substitute-same-var : mdegree (substitute (λi. Var x) (p :: ′a :: idom
mpoly)) x ≤ total-degree p

using degree-substitute-const-same-var [of λ -. 1 , unfolded Const-1] by auto

lemma poly-pinfty-ge-int: assumes 0 < lead-coeff (p :: int poly)
and degree p 6= 0
shows ∃n. ∀ x≥n. b ≤ poly p x

proof −
let ?q = of-int-poly p :: real poly
from assms have 0 < lead-coeff ?q degree ?q 6= 0 by auto
from poly-pinfty-ge[OF this, of of-int b] obtain n

where le:
∧

x. x ≥ n =⇒ real-of-int b ≤ poly ?q x by auto
show ?thesis
proof (intro exI [of - ceiling n] allI impI)

24

fix x
assume x ≥ dne
hence of-int x ≥ n by linarith
from le[OF this] show b ≤ poly p x by simp

qed
qed

context
assumes poly-pinfty-ge:

∧
p b. 0 < lead-coeff (p :: ′a :: linordered-idom poly)

=⇒ degree p 6= 0 =⇒ ∃n. ∀ x≥n. b ≤ poly p x
begin
lemma degree-mono-generic: assumes pos: lead-coeff p ≥ (0 :: ′a)

and le:
∧

x. x ≥ c =⇒ poly p x ≤ poly q x
shows degree p ≤ degree q
proof (rule ccontr)

let ?lc = lead-coeff
define r where r = p − q
assume ¬ ?thesis
hence deg: degree p > degree q by auto
hence deg-eq: degree r = degree p unfolding r-def

by (metis degree-add-eq-right degree-minus uminus-add-conv-diff)
from deg have ?lc p 6= 0 by auto
with pos have pos: ?lc p > 0 by auto
have ?lc r = ?lc p unfolding r-def

using deg-eq le-degree r-def deg by fastforce
with pos have lcr : ?lc r > 0 by auto
from deg-eq deg have dr : degree r 6= 0 by auto
have x ≥ c =⇒ poly r x ≤ 0 for x using le[of x] unfolding r-def by auto
with poly-pinfty-ge[OF lcr dr] show False

by (metis dual-order .trans nle-le not-one-le-zero)
qed

lemma degree-mono ′-generic: assumes le:
∧

x. x ≥ c =⇒ (bnd :: ′a) ≤ poly p x
∧ poly p x ≤ poly q x

shows degree p ≤ degree q
proof (cases degree p = 0)

case deg: False
show ?thesis
proof (rule degree-mono-generic[of - c])

show
∧

x. c ≤ x =⇒ poly p x ≤ poly q x using le by auto
let ?lc = lead-coeff
show 0 ≤ ?lc p
proof (rule ccontr)

assume ¬ ?thesis
hence ?lc (− p) > 0 degree (− p) 6= 0 using deg by auto
from poly-pinfty-ge[OF this, of − bnd + 1 , simplified]
obtain n where

∧
x. x ≥ n =⇒ 1 − bnd ≤ − poly p x by auto

from le[of max n c] this[of max n c] show False by auto
qed

25

qed
qed auto

end

definition nneg-poly :: ′a :: {linordered-semidom, semiring-no-zero-divisors} poly
⇒ bool where

nneg-poly p = ((∀ x. x ≥ 0 −→ poly p x ≥ 0) ∧ lead-coeff p ≥ 0)

lemma nneg-poly-nneg: assumes nneg-poly p
and x ≥ 0

shows poly p x ≥ 0
using assms unfolding nneg-poly-def by auto

lemma nneg-poly-lead-coeff : assumes nneg-poly p
shows p 6= 0 =⇒ lead-coeff p > 0
using assms unfolding nneg-poly-def
by (metis antisym-conv2 leading-coeff-neq-0)

lemma nneg-poly-add: assumes nneg-poly p nneg-poly q
shows nneg-poly (p + q) degree (p + q) = max (degree p) (degree q)

proof −
{

fix p q :: ′a poly
assume le: degree p ≤ degree q and pq: nneg-poly p nneg-poly q
have nneg-poly (p + q) ∧ degree (p + q) = max (degree p) (degree q)
proof (cases degree p = degree q)

case True
show ?thesis
proof (cases p = 0 ∨ q = 0)

case True
thus ?thesis using pq by auto

next
case False
with nneg-poly-lead-coeff [of p] nneg-poly-lead-coeff [of q] pq
have lc: lead-coeff p > 0 lead-coeff q > 0 by auto
have degree (p + q) = degree q using lc True

by (smt (verit, del-insts) Polynomial.coeff-add add-cancel-left-left add-le-same-cancel2
le-degree leading-coeff-0-iff linorder-not-le order-less-le)

with lc pq True show ?thesis unfolding nneg-poly-def by auto
qed

next
case False
with le have lt: degree p < degree q by auto
hence 1 : degree (p + q) = degree q

by (simp add: degree-add-eq-right)
with lt have 2 : lead-coeff (p + q) = lead-coeff q

using lead-coeff-add-le by blast

26

from 1 2 pq lt show ?thesis by (auto simp: nneg-poly-def)
qed

} note main = this
have degree p ≤ degree q ∨ degree q ≤ degree p by linarith
with main[of p q] main[of q p] assms
have nneg-poly (p + q) ∧ degree (p + q) = max (degree p) (degree q)

by (auto simp: ac-simps)
thus nneg-poly (p + q) degree (p + q) = max (degree p) (degree q)

by auto
qed

lemma nneg-poly-mult: assumes nneg-poly p nneg-poly q
shows nneg-poly (p ∗ q)
using assms unfolding nneg-poly-def poly-mult Polynomial.lead-coeff-mult
by (intro allI conjI mult-nonneg-nonneg impI , auto)

lemma nneg-poly-const[simp]: nneg-poly [:c:] = (c ≥ 0)
unfolding nneg-poly-def by (auto dest: spec[of - 0] simp add: coeff-const)

lemma nneg-poly-pCons[simp]: a ≥ 0 ∧ nneg-poly p =⇒ nneg-poly (pCons a p)
unfolding nneg-poly-def by (auto simp: coeff-pCons split: nat.splits)

lemma nneg-poly-0 [simp]: nneg-poly 0
unfolding nneg-poly-def by auto

lemma nneg-poly-pcompose: assumes nneg-poly p nneg-poly q
shows nneg-poly (pcompose p q)

proof (cases degree q > 0)
case True
show ?thesis unfolding nneg-poly-def poly-pcompose lead-coeff-comp[OF True]

using assms unfolding nneg-poly-def by auto
next

case False
hence degree q = 0 by auto
from degree0-coeffs[OF this] obtain c where q: q = [:c:] by auto
with assms[unfolded nneg-poly-def] have c: c ≥ 0 by auto
have pq: p ◦p q = [: poly p c :] unfolding q
by (metis (no-types, opaque-lifting) add.right-neutral coeff-pCons-0 mult-zero-left

pcompose-0 ′ pcompose-assoc poly-pCons poly-pcompose)
show ?thesis using assms(1) unfolding nneg-poly-def pq using c by auto

qed

lemma nneg-poly-degree-add-1 : assumes p: nneg-poly p and a: a1 > 0 a2 > 0
shows degree (p ∗ [:b, a1 :] + [:c, a2 :]) = 1 + degree p

proof (cases degree p = 0)
case False
thus ?thesis

27

apply (subst degree-add-eq-left, insert p)
subgoal using a

by (metis One-nat-def degree-mult-eq-0 degree-pCons-eq-if irreducibled-multD
less-one linear-irreducibled linorder-neqE-nat order-less-le pCons-eq-0-iff)

subgoal using a
by (metis Suc-eq-plus1 add.commute add.right-neutral degree-mult-eq de-

gree-pCons-eq-if not-pos-poly-0 pCons-eq-0-iff pos-poly-pCons)
done

next
case True
then obtain c where p: p = [:c:] and c: c ≥ 0 using p degree0-coeffs[of p] by

auto
show ?thesis unfolding p using c a by (auto simp: add-nonneg-eq-0-iff)

qed

lemma nneg-poly-degree-add: assumes pq: nneg-poly (p :: ′a :: linordered-idom
poly) nneg-poly q

and a: a3 > 0 a2 > 0 a1 > 0
shows degree ([:a3 :] ∗ q ∗ p + ([:a2 :] ∗ q + [:a1 :] ∗ p + [:a0 :])) = degree p +
degree q
proof −

{
fix p q :: ′a poly and a2 a1 :: ′a
assume pq: nneg-poly p nneg-poly q
and dq: degree q 6= 0
and a: a2 > 0 a1 > 0

have deg0 : p 6= 0 =⇒ degree ([:a3 :] ∗ q ∗ p) = degree p + degree q using dq
‹a3 > 0 › a

by (metis (no-types, lifting) add.commute add-cancel-left-left degree-mult-eq
degree-pCons-eq-if linorder-not-le nle-le pCons-eq-0-iff)

have degmax: degree ([:a2 :] ∗ q + [:a1 :] ∗ p + [:a0 :]) ≤ max (degree q) (degree
p)

by (simp add: degree-add-le)
have deg: degree ([:a3 :] ∗ q ∗ p + ([:a2 :] ∗ q + [:a1 :] ∗ p + [:a0 :])) = degree p

+ degree q
proof (cases degree p = 0)

case False
have id: degree ([:a3 :] ∗ q ∗ p) = degree p + degree q by (rule deg0 , insert

False, auto)
moreover have max (degree q) (degree p) < degree p + degree q using False

dq by auto
ultimately show ?thesis by (subst degree-add-eq-left, insert degmax, auto)

next
case True
with pq obtain c where p: p = [:c:] and c: c ≥ 0 using degree0-coeffs[of p]

by auto
define d where d = c ∗ a3 + a2
from a ‹a3 > 0 › c have d0 : d 6= 0

by (simp add: add-nonneg-eq-0-iff d-def)

28

have id: [:a3 :] ∗ q ∗ [:c:] + ([:a2 :] ∗ q + [:a1 :] ∗ [:c:] + [:a0 :])
= [:c ∗ a1 + a0 :] + [:d:] ∗ q

by (simp add: smult-add-left d-def)
show ?thesis unfolding p unfolding id

by (subst degree-add-eq-right, insert d0 dq, auto)
qed

} note main = this
show ?thesis
proof (cases degree q = 0)

case False
from main[OF pq False a(2 ,3)] show ?thesis .

next
case dq: True
show ?thesis
proof (cases degree p = 0)

case False
from main[OF pq(2 ,1) False a(3 ,2)] show ?thesis by (simp add: alge-

bra-simps)
next

case dp: True
from degree0-coeffs[OF dp] degree0-coeffs[OF dq] show ?thesis by auto

qed
qed

qed

lemma poly-pinfty-gt-lc:
fixes p :: ′a :: linordered-field poly
assumes lead-coeff p > 0
shows ∃n. ∀ x ≥ n. poly p x ≥ lead-coeff p
using assms

proof (induct p)
case 0
then show ?case by auto

next
case (pCons a p)
from this(1) consider a 6= 0 p = 0 | p 6= 0 by auto
then show ?case
proof cases

case 1
then show ?thesis by auto

next
case 2
with pCons obtain n1 where gte-lcoeff : ∀ x≥n1 . lead-coeff p ≤ poly p x

by auto
from pCons(3) ‹p 6= 0 › have gt-0 : lead-coeff p > 0 by auto
define n where n = max n1 (1 + |a| / lead-coeff p)
have lead-coeff (pCons a p) ≤ poly (pCons a p) x if n ≤ x for x
proof −

29

from gte-lcoeff that have lead-coeff p ≤ poly p x
by (auto simp: n-def)

with gt-0 have |a| / lead-coeff p ≥ |a| / poly p x and poly p x > 0
by (auto intro: frac-le)

with ‹n ≤ x›[unfolded n-def] have x ≥ 1 + |a| / poly p x
by auto

with ‹lead-coeff p ≤ poly p x› ‹poly p x > 0 › ‹p 6= 0 ›
show lead-coeff (pCons a p) ≤ poly (pCons a p) x

by (auto simp: field-simps)
qed
then show ?thesis by blast

qed
qed

lemma poly-pinfty-ge:
fixes p :: ′a :: linordered-field poly
assumes lead-coeff p > 0 degree p 6= 0
shows ∃n. ∀ x ≥ n. poly p x ≥ b

proof −
let ?p = p − [:b − lead-coeff p :]
have id: lead-coeff ?p = lead-coeff p using assms(2)

by (cases p, auto)
with assms(1) have lead-coeff ?p > 0 by auto
from poly-pinfty-gt-lc[OF this, unfolded id] obtain n

where
∧

x. x ≥ n =⇒ 0 ≤ poly p x − b by auto
thus ?thesis by auto

qed

lemma nneg-polyI : fixes p :: ′a::linordered-field poly
assumes

∧
x. 0 ≤ x =⇒ 0 ≤ poly p x

shows nneg-poly p
unfolding nneg-poly-def

proof (intro allI conjI impI assms)

{
assume lc: lead-coeff p < 0
hence lc0 : lead-coeff (− p) > 0 by auto
from lc assms[of 0] have degree p 6= 0 using degree0-coeffs[of p]

by (cases degree p = 0 ; auto)
from poly-pinfty-ge[OF lc0 , of 1] this obtain n where

∧
x. x ≥ n =⇒ poly p

x ≤ − 1
by auto

with assms have False
by (meson neg-0-le-iff-le nle-le not-one-le-zero order-trans)

}
thus lead-coeff p ≥ 0 by force

qed

30

lemma poly-bounded: fixes x :: ′a:: linordered-idom
assumes abs x ≤ b
shows abs (poly p x) ≤ (

∑
i ≤ degree p. abs (coeff p i) ∗ b ^ i)

unfolding poly-altdef
apply (intro order .trans[OF sum-abs] sum-mono)
apply (unfold abs-mult power-abs, intro mult-left-mono power-mono assms)
by auto

lemma poly-degree-le-large-const:
assumes pq: degree (p :: ′a :: linordered-field poly) ≥ degree q
and p0 :

∧
x. x ≥ 0 =⇒ poly p x ≥ 0

shows ∃ H . ∀ h ≥ H . ∀ x ≥ 0 . h ∗ poly p x + h ≥ poly q x
proof (cases degree p = 0)

case True
with pq p0 [of 0] obtain c d where p: p = [:c:] and q: q = [:d:] and c: c ≥ 0

using degree0-coeffs[of p] degree0-coeffs[of q] by auto
show ?thesis unfolding p q using c

apply (intro exI [of - max d 0], cases d ≤ 0)
subgoal using order-trans by fastforce
by (simp add: add.commute add-increasing2)

next
case False
define lc where lc = lead-coeff p
define dp where dp = degree p
have dp1 : dp ≥ 1 using False unfolding dp-def by auto
from p0 have lc ≥ 0 unfolding lc-def using poly-pinfty-ge[of −p 1]
by (metis (no-types, opaque-lifting) False degree-minus lead-coeff-minus linorder-not-le

neg-le-0-iff-le nle-le not-one-le-zero order-le-less-trans poly-minus)
with False have lc: lc > 0 by (cases lc = 0 , auto simp: lc-def)
define d where d = inverse lc
define dlc where dlc = d ∗ lc
have dlc: dlc ≥ 1 using lc by (auto simp: field-simps d-def dlc-def)
with lc have d: d > 0 unfolding dlc-def

by (simp add: d-def)
define h1 where h1 = d ∗ (1 + abs (coeff q dp))
define r where r = smult h1 p − q
have coeff r dp = h1 ∗ lc − coeff q dp unfolding r-def lc-def dp-def by simp
also have . . . = dlc ∗ (1 + abs (coeff q dp)) − coeff q dp unfolding h1-def

dlc-def by simp
also have − . . . ≤ − ((1 + abs (coeff q dp)) − coeff q dp)

unfolding neg-le-iff-le using dlc
by (intro diff-right-mono)
(simp add: abs-add-one-gt-zero)

also have . . . ≤ − 1 by simp
finally have coeff-r : coeff r dp > 0 by auto

have dpr : dp = degree r
proof −

have le: dp ≤ degree r using coeff-r

31

by (simp add: le-degree)
have degree r ≤ dp unfolding dp-def r-def using assms(1)

by (simp add: degree-diff-le)
with le show ?thesis by auto

qed
with coeff-r have lcr : lead-coeff r > 0 by auto
from dpr dp1 have degree r 6= 0 by auto
from poly-pinfty-ge[OF lcr this, of 0]
obtain n where n:

∧
x. x ≥ n =⇒ 0 ≤ poly r x by auto

define M where M = max n 0
from poly-bounded[of - M r] obtain h2 where h2 : abs x ≤ M =⇒ abs (poly r

x) ≤ h2 for x by blast
have h20 : h2 ≥ 0 using h2 [of 0] unfolding M-def by auto
have h10 : h1 > 0 using d unfolding h1-def by auto
define H where H = max h1 h2
have H0 : H ≥ 0 using h10 unfolding H-def by auto
show ?thesis
proof (intro exI [of - H] conjI allI impI)

fix h x :: ′a
assume h: h ≥ H
with H0 have h0 : h ≥ 0 by auto
assume x0 : x ≥ 0
show poly q x ≤ h ∗ poly p x + h
proof (cases x ≥ M)

case x: True
have h: h ≥ h1 using h H-def by auto
define h3 where h3 = h − h1
have h: h = h1 + h3 and h2 : h3 ≥ 0 using h unfolding h3-def by auto
have r : 0 ≤ poly r x and p: 0 ≤ poly p x

using x n[of x] p0 [of x] unfolding M-def by auto
have h ∗ poly p x = h1 ∗ poly p x + h3 ∗ poly p x unfolding h by (simp

add: algebra-simps)
also have − . . . ≤ − (h1 ∗ poly p x)

unfolding neg-le-iff-le using h2 p by auto
also have . . . ≤ − (poly q x)

unfolding neg-le-iff-le using r unfolding r-def
by simp

finally have h ∗ poly p x ≥ poly q x by simp
with h0 show ?thesis by auto

next
case False
with x0 have abs x ≤ M by auto
from h2 [OF this] have poly r x ≥ − h2 by auto
from this[unfolded r-def]
have poly q x ≤ h1 ∗ poly p x + h2 by simp
also have . . . ≤ h ∗ poly p x + h

by (intro add-mono mult-right-mono p0 x0)
(insert h, auto simp: H-def)

finally show ?thesis .

32

qed
qed

qed

lemma degree-monom-0 [simp]: degree-monom 0 = 0
unfolding degree-monom-def by auto

lemma degree-monom-monomial[simp]: degree-monom (monomial n x) = n
unfolding degree-monom-def by auto

lemma keys-add: keys (m + n :: monom) = keys m ∪ keys n
by (rule keys-plus-ninv-comm-monoid-add)

lemma degree-monom-add[simp]: degree-monom (m + n) = degree-monom m +
degree-monom n

unfolding degree-monom-def keys-add lookup-plus-fun
proof (transfer , goal-cases)

case (1 m n)
have id: {k. m k 6= 0} ∪ {k. n k 6= 0} =
{k. m k 6= 0} ∩ {k. n k = 0} ∪ {k. n k 6= 0} ∩ {k. m k = 0}
∪ {k. m k 6= 0} ∩ {k. n k 6= 0} by auto
have id1 : sum m {k. m k 6= 0} = sum m ({k. m k 6= 0} ∩ {k. n k = 0} ∪ {k.

m k 6= 0} ∩ {k. n k 6= 0})
by (rule sum.cong, auto)

have id2 : sum n {k. n k 6= 0} = sum n ({k. n k 6= 0} ∩ {k. m k = 0} ∪ {k. m
k 6= 0} ∩ {k. n k 6= 0})

by (rule sum.cong, auto)
show ?case unfolding id

apply (subst sum.union-disjoint)
subgoal using 1 by auto
subgoal using 1 by auto
subgoal by auto
apply (subst sum.union-disjoint)
subgoal using 1 by auto
subgoal using 1 by auto
subgoal by auto
apply (unfold id1)
apply (subst sum.union-disjoint)
subgoal using 1 by auto
subgoal using 1 by auto
subgoal by auto
apply (unfold id2)
apply (subst sum.union-disjoint)
subgoal using 1 by auto
subgoal using 1 by auto
subgoal by auto
by (simp add: sum.distrib)

qed

33

lemma degree-monom-of-set: finite xs =⇒ degree-monom (monom-of-set xs) =
card xs

unfolding degree-monom-def
by (transfer , auto)

lemma keys-singletonE : assumes keys m = {x}
shows ∃ c. m = monomial c x ∧ c = degree-monom m ∧ c 6= 0

proof −
define c where c = degree-monom m
from assms have mc: m = monomial c x unfolding c-def

by (metis degree-monom-monomial except-keys group-cancel.rule0 plus-except)
have c 6= 0 using assms unfolding mc by (simp split: if-splits)
from mc c-def this show ?thesis by blast

qed

lemma binary-degree-2-poly: fixes p :: ′a :: {ring-char-0 ,idom} mpoly
assumes td: total-degree p ≤ 2
and vars: vars p = {x,y}
and xy: x 6= y

shows ∃ a b c d e f .
p = Const a + Const b ∗ Var x + Const c ∗ Var y +

Const d ∗ Var x ∗ Var x + Const e ∗ Var y ∗ Var y + Const f ∗ Var x ∗ Var
y
proof −

let ?p = mcoeff p
let ?x = monomial 1 x
let ?y = monomial 1 y
let ?a = ?p 0
let ?b = ?p ?x
let ?c = ?p ?y
let ?d = ?p (monomial 2 x)
let ?e = ?p (monomial 2 y)
let ?f = ?p (monom-of-set {x,y})
define XY where XY = {m :: nat ⇒0 nat. keys m ⊆ {x,y} ∧ degree-monom

m ≤ 2}
let ?xy = [0 ,?x,?y, monomial 2 x, monomial 2 y, monom-of-set {x,y}]
have eq: m = n =⇒ keys m = keys n for m n :: monom by auto
have xy: distinct ?xy using xy

by (auto dest: eq)
have XY : XY = set ?xy
proof
show set ?xy ⊆ XY unfolding XY-def by (simp add: keys-add degree-monom-of-set

card-insert-if)
show XY ⊆ set ?xy
proof

fix m
assume m ∈ XY

hence keys: keys m ⊆ {x,y} and deg: degree-monom m ≤ 2 unfolding
XY-def by auto

34

define km where km = keys m
from keys have keys m ∈ {{}, {x}, {y}, {x,y}} unfolding km-def [symmetric]

by auto
then consider (e) keys m = {} | (x) keys m = {x} | (y) keys m = {y} | (xy)

keys m = {x,y} by auto
thus m ∈ set ?xy
proof cases

case e
thus ?thesis by auto

next
case x
from keys-singletonE [OF this]
obtain c where m: m = monomial c x and c: c = degree-monom m c 6= 0

by auto
from c deg have c ∈ {1 ,2} by auto
with m show ?thesis by auto

next
case y
from keys-singletonE [OF this]
obtain c where m: m = monomial c y and c: c = degree-monom m c 6= 0

by auto
from c deg have c ∈ {1 ,2} by auto
with m show ?thesis by auto

next
case xy
have m = monom-of-set {x, y} using xy deg ‹x 6= y›

unfolding degree-monom-def
proof (transfer , goal-cases)

case (1 m x y)
have xy: m x 6= 0 m y 6= 0 using 1 (2) by auto
have sum m {k. m k 6= 0} = m x + m y + sum m ({k. m k 6= 0} −

{x,y})
using xy 1 (1 ,2 ,4) by auto

with 1 (3) xy have xy: m x = 1 m y = 1 and
rest: sum m ({k. m k 6= 0} − {x,y}) = 0 by auto

from rest have rest: z /∈ {x,y} =⇒ m z = 0 for z using 1 (2) by blast
show ?case by (intro ext, insert xy rest, auto)

qed
thus ?thesis by auto

qed
qed

qed
have p = (

∑
m. mmonom m (mcoeff p m))

by (rule mpoly-as-sum-any)
also have . . . = (

∑
m∈{a. mmonom a (mcoeff p a) 6= 0}. mmonom m (mcoeff

p m))
unfolding Sum-any.expand-set by simp

also have . . . = (
∑

m∈{a. mmonom a (mcoeff p a) 6= 0} ∩ XY . mmonom m
(mcoeff p m))

35

apply (rule sum.mono-neutral-right; (intro ballI)?)
subgoal by auto
subgoal by auto
subgoal for m using vars order .trans[OF degree-monon-le-total-degree[of p m]

td] unfolding XY-def
by simp (smt (verit, best) DiffD2 MPoly-Type-monom-zero coeff-notin-vars

mem-Collect-eq)
done

also have . . . = (
∑

m∈XY . mmonom m (mcoeff p m))
apply (rule sum.mono-neutral-left)
subgoal unfolding XY by auto
subgoal by auto
subgoal by auto
done

also have . . . = (
∑

m ← ?xy. mmonom m (mcoeff p m))
unfolding XY using xy by force

also have . . . = Const ?a + Const ?b ∗ Var x + Const ?c ∗ Var y +
Const ?d ∗ Var x ∗ Var x + Const ?e ∗ Var y ∗ Var y + Const ?f ∗ Var x ∗

Var y
apply (intro mpoly-extI)
unfolding insertion-sum-list map-map o-def insertion-add insertion-mult in-

sertion-Const insertion-Var
sum-list.Cons list.simps insertion-single insertion-monom-of-set mpoly-monom-0-eq-Const

using xy
by (simp add: power2-eq-square)

finally show ?thesis by blast
qed

lemma bounded-negative-factor : assumes
∧

x. c ≤ (x :: ′a :: linordered-field) =⇒
a ∗ x ≤ b

shows a ≤ 0
proof (rule ccontr)

assume ¬ ?thesis
hence a > 0 by auto
hence y ≥ c =⇒ y ≥ 0 =⇒ y ≤ b for y using assms[of inverse a ∗ y]
by (metis (no-types, opaque-lifting) assms dual-order .trans linorder-not-le mult.commute

mult-imp-less-div-pos nle-le)
from this[of 1 + max 0 (max c b)]
show False by linarith

qed

end

3 Definition of Monotone Algebras and Polyno-
mial Interpretations

theory Polynomial-Interpretation

36

imports
Preliminaries-on-Polynomials-1
First-Order-Terms.Term
First-Order-Terms.Subterm-and-Context

begin
abbreviation PVar ≡ MPoly-Type.Var
abbreviation TVar ≡ Term.Var

type-synonym (′f , ′v)rule = (′f , ′v)term × (′f , ′v)term

We fix the domain to the set of nonnegative numbers
lemma subterm-size[termination-simp]: x < length ts =⇒ size (ts ! x) < Suc
(size-list size ts)

by (meson Suc-n-not-le-n less-eq-Suc-le not-less-eq nth-mem size-list-estimation)

definition assignment :: (var ⇒ ′a :: {ord,zero}) ⇒ bool where
assignment α = (∀ x. α x ≥ 0)

lemma assignmentD: assumes assignment α
shows α x ≥ 0
using assms unfolding assignment-def by auto

definition monotone-fun-wrt :: (′a :: {zero,ord} ⇒ ′a ⇒ bool) ⇒ nat ⇒ (′a list
⇒ ′a) ⇒ bool where

monotone-fun-wrt gt n f = (∀ v ′ i vs. length vs = n −→ (∀ v ∈ set vs. v ≥ 0)
−→ i < n −→ gt v ′ (vs ! i) −→
gt (f (vs [i := v ′])) (f vs))

definition valid-fun :: nat ⇒ (′a list ⇒ ′a :: {zero,ord}) ⇒ bool where
valid-fun n f = (∀ vs. length vs = n −→ (∀ v ∈ set vs. v ≥ 0) −→ f vs ≥ 0)

definition monotone-poly-wrt :: (′a :: {comm-semiring-1 ,zero,ord} ⇒ ′a ⇒ bool)
⇒ var set ⇒ ′a mpoly ⇒ bool where

monotone-poly-wrt gt V p = (∀ α x v. assignment α −→ x ∈ V −→ gt v (α x)
−→

gt (insertion (α(x := v)) p) (insertion α p))

definition valid-poly :: ′a :: {ord,comm-semiring-1} mpoly ⇒ bool where
valid-poly p = (∀ α. assignment α −→ insertion α p ≥ 0)

locale term-algebra =
fixes F :: (′f × nat) set
and I :: ′f ⇒ (′a :: {ord,zero} list) ⇒ ′a
and gt :: ′a ⇒ ′a ⇒ bool

begin

abbreviation monotone-fun where monotone-fun ≡ monotone-fun-wrt gt

37

definition valid-monotone-fun :: (′f × nat) ⇒ bool where
valid-monotone-fun fn = (∀ f n p. fn = (f ,n) −→ p = I f
−→ valid-fun n p ∧ monotone-fun n p)

definition valid-monotone-inter where valid-monotone-inter = Ball F valid-monotone-fun

definition orient-rule :: (′f ,var)rule ⇒ bool where
orient-rule rule = (case rule of (l,r) ⇒ (∀ α. assignment α −→ gt (I [[l]]α)

(I [[r]]α)))
end

locale omega-term-algebra = term-algebra F I (>) :: int ⇒ int ⇒ bool for F and
I :: ′f ⇒ - +

assumes vm-inter : valid-monotone-inter
begin
definition termination-by-interpretation :: (′f ,var) rule set ⇒ bool where

termination-by-interpretation R = (∀ (l,r) ∈ R. orient-rule (l,r) ∧ funas-term l
∪ funas-term r ⊆ F)
end

locale poly-inter =
fixes F :: (′f × nat) set
and I :: ′f ⇒ ′a :: linordered-idom mpoly
and gt :: ′a ⇒ ′a ⇒ bool (infix � 50)

begin

definition I ′ where I ′ f vs = insertion (λ i. if i < length vs then vs ! i else 0) (I
f)
sublocale term-algebra F I ′ gt .

abbreviation monotone-poly where monotone-poly ≡ monotone-poly-wrt gt

abbreviation weakly-monotone-poly where weakly-monotone-poly ≡ monotone-poly-wrt
(≥)

definition gt-poly :: ′a mpoly ⇒ ′a mpoly ⇒ bool (infix �p 50) where
(p �p q) = (∀ α. assignment α −→ insertion α p � insertion α q)

definition valid-monotone-poly :: (′f × nat) ⇒ bool where
valid-monotone-poly fn = (∀ f n p. fn = (f ,n) −→ p = I f
−→ valid-poly p ∧ monotone-poly {..<n} p ∧ vars p = {..<n})

definition valid-weakly-monotone-poly :: (′f × nat) ⇒ bool where
valid-weakly-monotone-poly fn = (∀ f n p. fn = (f ,n) −→ p = I f
−→ valid-poly p ∧ weakly-monotone-poly {..<n} p ∧ vars p ⊆ {..<n})

definition valid-monotone-poly-inter where valid-monotone-poly-inter = Ball F
valid-monotone-poly

38

definition valid-weakly-monotone-inter where valid-weakly-monotone-inter = Ball
F valid-weakly-monotone-poly

fun eval :: (′f ,var)term ⇒ ′a mpoly where
eval (TVar x) = PVar x
| eval (Fun f ts) = substitute (λ i. if i < length ts then eval (ts ! i) else 0) (I f)

lemma I ′-is-insertion-eval: I ′ [[t]] α = insertion α (eval t)
proof (induct t)

case (Var x)
then show ?case by (simp add: insertion-Var)

next
case (Fun f ts)
then show ?case

apply (simp add: insertion-substitute I ′-def [of f])
apply (intro arg-cong[of - - λ α. insertion α (I f)] ext)
subgoal for i by (cases i < length ts, auto)
done

qed

lemma orient-rule: orient-rule (l,r) = (eval l �p eval r)
unfolding orient-rule-def split I ′-is-insertion-eval gt-poly-def ..

lemma vars-eval: vars (eval t) ⊆ vars-term t
proof (induct t)

case (Fun f ts)
define V where V = vars-term (Fun f ts)
define σ where σ = (λi. if i < length ts then eval (ts ! i) else 0)
{

fix i
have IH : vars (σ i) ⊆ V
proof (cases i < length ts)

case False
thus ?thesis unfolding σ-def by auto

next
case True
hence ts ! i ∈ set ts by auto
with Fun(1)[OF this] have vars (eval (ts ! i)) ⊆ V by (auto simp: V-def)
thus ?thesis unfolding σ-def using True by auto

qed
} note σ-vars = this
define p where p = (I f)
show ?case unfolding eval.simps σ-def [symmetric] V-def [symmetric] p-def [symmetric]

using σ-vars
vars-substitute[of σ] by auto

qed auto

lemma monotone-imp-weakly-monotone: assumes valid: valid-monotone-poly p
and gt:

∧
x y. (x � y) = (x > y)

39

shows valid-weakly-monotone-poly p
unfolding valid-weakly-monotone-poly-def

proof (intro allI impI , clarify, intro conjI)
fix f n
assume p = (f ,n)
note ∗ = valid[unfolded valid-monotone-poly-def , rule-format, OF this refl]
from ∗ show valid-poly (I f) by auto
from ∗ show vars (I f) ⊆ {..<n} by auto
show weakly-monotone-poly {..<n} (I f)

unfolding monotone-poly-wrt-def
proof (intro allI impI , goal-cases)

case (1 α x a)
from ∗ have monotone-poly {..<n} (I f) by auto
from this[unfolded monotone-poly-wrt-def , rule-format, OF 1 (1−2), of a]
show ?case unfolding gt using 1 (3) by force

qed
qed

lemma valid-imp-insertion-eval-pos: assumes valid: valid-monotone-poly-inter
and funas-term t ⊆ F
and assignment α

shows insertion α (eval t) ≥ 0
using assms(2−3)

proof (induct t arbitrary: α)
case (Var x)
thus ?case by (auto simp: assignment-def insertion-Var)

next
case (Fun f ts)
let ?n = length ts
let ?f = (f ,?n)
let ?p = I f
from Fun have ?f ∈ F by auto
from valid[unfolded valid-monotone-poly-inter-def , rule-format, OF this, unfolded

valid-monotone-poly-def]
have valid: valid-poly ?p and vars ?p = {..<?n} by auto
from valid[unfolded valid-poly-def]
have ins: assignment α =⇒ 0 ≤ insertion α (I f) for α by auto
{

fix i
assume i < ?n
hence ts ! i ∈ set ts by auto
with Fun(1)[OF this - Fun(3)] Fun(2) have 0 ≤ insertion α (eval (ts ! i)) by

auto
}
note IH = this
show ?case

apply (simp add: insertion-substitute)
apply (intro ins, unfold assignment-def , intro allI)
subgoal for i using IH [of i] by auto

40

done
qed

end

locale delta-poly-inter = poly-inter F I (λ x y. x ≥ y + δ) for F :: (′f × nat) set
and I and
δ :: ′a :: {floor-ceiling,linordered-field} +
assumes valid: valid-monotone-poly-inter
and δ0 : δ > 0

begin
definition termination-by-delta-interpretation :: (′f ,var) rule set ⇒ bool where

termination-by-delta-interpretation R = (∀ (l,r) ∈ R. orient-rule (l,r) ∧ fu-
nas-term l ∪ funas-term r ⊆ F)
end

locale int-poly-inter = poly-inter F I (>) :: int ⇒ int ⇒ bool for F :: (′f × nat)
set and I +

assumes valid: valid-monotone-poly-inter
begin

sublocale omega-term-algebra F I ′

proof (unfold-locales, unfold valid-monotone-inter-def , intro ballI)
fix fn
assume fn ∈ F
from valid[unfolded valid-monotone-poly-inter-def , rule-format, OF this]
have valid: valid-monotone-poly fn .
show valid-monotone-fun fn unfolding valid-monotone-fun-def
proof (intro allI impI conjI)

fix f n p
assume fn: fn = (f ,n) and p: p = I ′ f
from valid[unfolded valid-monotone-poly-def , rule-format, OF fn refl]
have valid: valid-poly (I f) and mono: monotone-poly {..<n} (I f) by auto

show valid-fun n p unfolding valid-fun-def
proof (intro allI impI)

fix vs
assume length vs = n and vs: Ball (set vs) ((≤) (0 :: int))
show 0 ≤ p vs unfolding p I ′-def

by (rule valid[unfolded valid-poly-def , rule-format], insert vs, auto simp:
assignment-def)

qed

show monotone-fun n p unfolding monotone-fun-wrt-def
proof (intro allI impI)

fix v ′ i vs
assume ∗: length vs = n Ball (set vs) ((≤) (0 :: int)) i < n vs ! i < v ′

show p vs < p (vs[i := v ′]) unfolding p I ′-def
by (rule ord-less-eq-trans[OF mono[unfolded monotone-poly-wrt-def , rule-format,

41

of - i v ′]
insertion-irrelevant-vars], insert ∗, auto simp: assignment-def)

qed
qed

qed

definition termination-by-poly-interpretation :: (′f ,var) rule set ⇒ bool where
termination-by-poly-interpretation = termination-by-interpretation

end

locale wm-int-poly-inter = poly-inter F I (>) :: int ⇒ int ⇒ bool for F :: (′f ×
nat) set and I +

assumes valid: valid-weakly-monotone-inter
begin
definition oriented-by-interpretation :: (′f ,var) rule set ⇒ bool where

oriented-by-interpretation R = (∀ (l,r) ∈ R. orient-rule (l,r) ∧ funas-term l ∪
funas-term r ⊆ F)
end

locale linear-poly-inter = poly-inter F I gt for F I gt +
assumes linear :

∧
f n. (f ,n) ∈ F =⇒ total-degree (I f) ≤ 1

locale linear-int-poly-inter = int-poly-inter F I + linear-poly-inter F I (>)
for F :: (′f × nat) set and I

locale linear-wm-int-poly-inter = wm-int-poly-inter F I + linear-poly-inter F I
(>)

for F :: (′f × nat) set and I

definition termination-by-linear-int-poly-interpretation :: (′f × nat)set ⇒ (′f ,var)rule
set ⇒ bool where

termination-by-linear-int-poly-interpretation F R = (∃ I . linear-int-poly-inter F
I ∧

int-poly-inter .termination-by-poly-interpretation F I R)

definition omega-termination :: (′f × nat)set ⇒ (′f ,var)rule set ⇒ bool where
omega-termination F R = (∃ I . omega-term-algebra F I ∧

omega-term-algebra.termination-by-interpretation F I R)

definition termination-by-int-poly-interpretation :: (′f × nat)set ⇒ (′f ,var)rule
set ⇒ bool where

termination-by-int-poly-interpretation F R = (∃ I . int-poly-inter F I ∧
int-poly-inter .termination-by-poly-interpretation F I R)

definition termination-by-delta-poly-interpretation :: ′a :: {floor-ceiling,linordered-field}
itself ⇒ (′f × nat)set ⇒ (′f ,var)rule set ⇒ bool where

termination-by-delta-poly-interpretation TYPE(′a) F R = (∃ I δ. delta-poly-inter
F I (δ :: ′a) ∧

42

delta-poly-inter .termination-by-delta-interpretation F I δ R)

definition orientation-by-linear-wm-int-poly-interpretation :: (′f × nat)set ⇒ (′f ,var)rule
set ⇒ bool where
orientation-by-linear-wm-int-poly-interpretation F R = (∃ I . linear-wm-int-poly-inter

F I ∧
wm-int-poly-inter .oriented-by-interpretation F I R)

end

4 Hilbert’s 10th Problem to Linear Inequality
theory Hilbert10-to-Inequality

imports
Preliminaries-on-Polynomials-1

begin

definition hilbert10-problem :: int mpoly ⇒ bool where
hilbert10-problem p = (∃ α. insertion α p = 0)

A polynomial is positive, if every coefficient is positive. Since the @{const
coeff }-function of ′a mpoly maps a coefficient to every monomial, this means
that positiveness is expressed as coeff p m 6= (0 :: ′a) −→ (0 :: ′a) < coeff p
m for monomials m. However, this condition is equivalent to just demand
(0 :: ′a) ≤ coeff p m for all m.
This is the reason why positive polynomials are defined in the same way as
one would define non−negative polynomials.
definition positive-poly :: ′a :: linordered-idom mpoly ⇒ bool where

positive-poly p = (∀ m. coeff p m ≥ 0)

definition positive-interpr :: (var ⇒ ′a :: linordered-idom) ⇒ bool where
positive-interpr α = (∀ x. α x > 0)

definition positive-poly-problem :: ′a :: linordered-idom mpoly ⇒ ′a mpoly ⇒ bool
where

positive-poly p =⇒ positive-poly q =⇒ positive-poly-problem p q =
(∃ α. positive-interpr α ∧ insertion α p ≥ insertion α q)

datatype flag = Positive | Negative | Zero

fun flag-of :: ′a :: {ord,zero} ⇒ flag where
flag-of x = (if x < 0 then Negative else if x > 0 then Positive else Zero)

definition subst-flag :: var set ⇒ (var ⇒ flag) ⇒ var ⇒ ′a :: comm-ring-1 mpoly
where

subst-flag V flag x = (if x ∈ V then (case flag x of
Positive ⇒ Var x
| Negative ⇒ − Var x

43

| Zero ⇒ 0)
else 0)

definition assignment-flag :: var set ⇒ (var ⇒ flag)⇒ (var ⇒ ′a :: comm-ring-1)
⇒ (var ⇒ ′a) where

assignment-flag V flag α x = (if x ∈ V then (case flag x of
Positive ⇒ α x
| Negative ⇒ − α x
| Zero ⇒ 1)
else 1)

definition correct-flags :: var set ⇒ (var ⇒ flag)⇒ (var ⇒ ′a :: ordered-comm-ring)
⇒ bool where

correct-flags V flag α = (∀ x ∈ V . flag x = flag-of (α x))

lemma correct-flag-substitutions: fixes p :: ′a :: linordered-idom mpoly
assumes vars p ⊆ V

and beta: β = assignment-flag V flag α
and sigma: σ = subst-flag V flag
and q: q = substitute σ p
and corr : correct-flags V flag α

shows insertion β q = insertion α p positive-interpr β
proof −

show insertion β q = insertion α p unfolding q insertion-substitute
proof (rule insertion-irrelevant-vars)

fix x
assume x ∈ vars p
with assms have x: x ∈ V by auto
with corr have flag: flag x = flag-of (α x) unfolding correct-flags-def by auto

show insertion β (σ x) = α x
unfolding beta sigma assignment-flag-def subst-flag-def using x flag
by (cases flag x, auto split: if-splits simp: insertion-Var insertion-uminus)

qed
show positive-interpr β using corr

unfolding positive-interpr-def beta assignment-flag-def correct-flags-def
by auto

qed

definition hilbert-encode1 :: int mpoly ⇒ int mpoly list where
hilbert-encode1 r = (let r2 = r^2 ;

V = vars-list r2 ;
flag-lists = product-lists (map (λ x. map (λ f . (x,f)) [Positive,Negative,Zero])

V);
subst = (λ fl. subst-flag (set V) (λ x. case map-of fl x of Some f ⇒ f | None

⇒ Zero))
in map (λ fl. substitute (subst fl) r2) flag-lists)

lemma hilbert-encode1 :

44

hilbert10-problem r ←→ (∃ p ∈ set (hilbert-encode1 r). ∃ α. positive-interpr α ∧
insertion α p ≤ 0)
proof

define r2 where r2 = r^2
define V where V = vars-list r2
define flag-list where flag-list = product-lists (map (λ x. map (λ f . (x,f))

[Positive,Negative,Zero]) V)
define subst where subst = (λ fl. subst-flag (set V) (λ x. case map-of fl x of

Some f ⇒ f | None ⇒ Zero) :: var ⇒ int mpoly)
have hilb-enc: hilbert-encode1 r = map (λ fl. substitute (subst fl) r2) flag-list

unfolding subst-def flag-list-def V-def r2-def Let-def hilbert-encode1-def ..
have hilbert10-problem r ←→ (∃ α. insertion α r = 0) unfolding hilbert10-problem-def

by auto
also have . . . ←→ (∃ α. (insertion α r)^2 ≤ 0)

by (intro ex-cong1 , auto)
also have . . . ←→ (∃ α. insertion α r2 ≤ 0)

by (intro ex-cong1 , auto simp: power2-eq-square insertion-mult r2-def)
finally have hilb: hilbert10-problem r = (∃α. insertion α r2 ≤ 0) (is ?h1 =

?h2) .
let ?r1 = (∃ p ∈ set (hilbert-encode1 r). ∃ α. positive-interpr α ∧ insertion α

p ≤ 0)
{

assume ?r1
from this[unfolded hilb-enc]

show hilbert10-problem r unfolding hilb by (auto simp add: insertion-substitute)
}
{

assume ?h1
with hilb obtain α where solution: insertion α r2 ≤ 0 by auto
define fl where fl = map (λ x. (x, flag-of (α x))) V
define flag where flag = (λ x. case map-of fl x of Some f ⇒ f | None ⇒ Zero)

have vars: vars r2 ⊆ set V unfolding V-def by simp
have fl: fl ∈ set flag-list unfolding flag-list-def product-lists-set fl-def

apply (simp add: list-all2-map2 list-all2-map1 , intro list-all2-refl)
by auto

have mem: substitute (subst-flag (set V) flag) r2 ∈ set (hilbert-encode1 r)
unfolding hilb-enc subst-def flag-def using fl by auto

have corr : correct-flags (set V) flag α unfolding correct-flags-def flag-def fl-def
by (auto split: option.splits dest!: map-of-SomeD simp: map-of-eq-None-iff

image-comp)
show ?r1 using solution correct-flag-substitutions[OF vars refl refl refl corr]

by (intro bexI [OF - mem], auto)
}

qed

lemma pos-neg-split: mpoly-coeff-filter (λ x. (x :: ′a :: linordered-idom) > 0) p +
mpoly-coeff-filter (λ x. x < 0) p = p (is ?l + ?r = p)
proof −

45

{
fix m
let ?c = coeff p m
have coeff (?l + ?r) m = coeff ?l m + coeff ?r m by (simp add: coeff-add)
also have . . . = coeff p m unfolding mpoly-coeff-filter

by (cases ?c < 0 ; cases ?c > 0 ; cases ?c = 0 , auto)
finally have coeff (?l + ?r) m = coeff p m .

}
thus ?thesis using coeff-eq by blast

qed

definition hilbert-encode2 :: int mpoly ⇒ int mpoly × int mpoly where
hilbert-encode2 p =

(− mpoly-coeff-filter (λ x. x < 0) p, mpoly-coeff-filter (λ x. x > 0) p)

lemma hilbert-encode2 : assumes hilbert-encode2 p = (r ,s)
shows positive-poly r positive-poly s insertion α p ≤ 0 ←→ insertion α r ≥

insertion α s
proof −

from assms[unfolded hilbert-encode2-def , simplified]
have s: s = mpoly-coeff-filter (λ x. x > 0) p

and r : r = − mpoly-coeff-filter (λ x. x < 0) p (is - = − ?q) by auto
have p = s + ?q unfolding s using pos-neg-split[of p] by simp
also have . . . = s − r unfolding s r by simp
finally have insertion α p ≤ 0 ←→ insertion α (s − r) ≤ 0 by simp
also have insertion α (s − r) = insertion α s − insertion α r

by (metis add-uminus-conv-diff insertion-add insertion-uminus)
finally show insertion α p ≤ 0 ←→ insertion α r ≥ insertion α s by auto
show positive-poly s unfolding positive-poly-def s using mpoly-coeff-filter [of (λ

x. x > 0) p]
by (auto simp: when-def)

show positive-poly r unfolding positive-poly-def r coeff-uminus using mpoly-coeff-filter [of
(λ x. x < 0) p]

by (auto simp: when-def)
qed

definition hilbert-encode :: int mpoly ⇒ (int mpoly × int mpoly)list where
hilbert-encode = map hilbert-encode2 o hilbert-encode1

Lemma 2.2 in paper
lemma hilbert-encode-positive: hilbert10-problem p
←→ (∃ (r ,s) ∈ set (hilbert-encode p). positive-poly-problem r s)

proof −
have hilbert10-problem p ←→ (∃ p ′∈set (hilbert-encode1 p). ∃α. positive-interpr

α ∧ insertion α p ′ ≤ 0)
using hilbert-encode1 [of p] by blast

also have . . . ←→ (∃ (r ,s) ∈ set (hilbert-encode p). positive-poly-problem r s) (is
?l = ?r)

proof

46

assume ?l
then obtain p ′ α where mem: p ′∈set (hilbert-encode1 p) and sol: posi-

tive-interpr α insertion α p ′ ≤ 0 by blast
obtain r s where 2 : hilbert-encode2 p ′ = (r ,s) by force

from mem 2 have mem: (r ,s) ∈ set (hilbert-encode p) unfolding hilbert-encode-def
o-def by force

from hilbert-encode2 [OF 2] sol have positive-poly-problem r s using posi-
tive-poly-problem-def [of r s] by force

with mem show ?r by blast
next

assume ?r
then obtain r s where mem: (r ,s) ∈ set (hilbert-encode p) and sol: posi-

tive-poly-problem r s by auto
from mem[unfolded hilbert-encode-def o-def] obtain p ′ where

mem: p ′ ∈ set (hilbert-encode1 p)
and hilbert-encode2 p ′ = (r ,s) by force

from hilbert-encode2 [OF this(2)] sol positive-poly-problem-def [of r s]
have (∃α. positive-interpr α ∧ insertion α p ′ ≤ 0) by auto
with mem hilbert-encode1 [of p] show ?l by auto

qed
finally show ?thesis .

qed

end

5 Undecidability of Linear Polynomial Termina-
tion

theory Linear-Poly-Termination-Undecidable
imports

Hilbert10-to-Inequality
Polynomial-Interpretation

begin

Definition 3.1
locale poly-input =

fixes p q :: int mpoly
assumes pq: positive-poly p positive-poly q

begin

datatype symbol = a-sym | z-sym | o-sym | f-sym | v-sym var | q-sym | h-sym |
g-sym

abbreviation a-t where a-t t1 t2 ≡ Fun a-sym [t1 , t2]
abbreviation z-t where z-t ≡ Fun z-sym []
abbreviation o-t where o-t ≡ Fun o-sym []
abbreviation f-t where f-t t1 t2 t3 t4 ≡ Fun f-sym [t1 ,t2 ,t3 ,t4]
abbreviation v-t where v-t i t ≡ Fun (v-sym i) [t]

47

definition encode-num :: var ⇒ int ⇒ (symbol,var)term where
encode-num x n = ((λ t. a-t (Var x) t)^^(nat n)) z-t

definition encode-monom :: var ⇒ monom ⇒ int ⇒ (symbol,var)term where
encode-monom x m c = rec-list (encode-num x c) (λ (i,e) -. (λ t. v-t i t)^^e)

(var-list m)

definition encode-poly :: var ⇒ int mpoly ⇒ (symbol,var)term where
encode-poly x r = rec-list z-t (λ (m,c) - t. a-t (encode-monom x m c) t) (monom-list

r)

lemma vars-encode-num: vars-term (encode-num x n) ⊆ {x}
proof −

define m where m = nat n
show ?thesis

unfolding encode-num-def m-def [symmetric]
by (induct m, auto)

qed

lemma vars-encode-monom: vars-term (encode-monom x m c) ⊆ {x}
proof −

define xes where xes = var-list m
show ?thesis unfolding encode-monom-def xes-def [symmetric]
proof (induct xes)

case Nil
thus ?case using vars-encode-num by auto

next
case (Cons ye xes)
obtain y e where ye: ye = (y,e) by force
have [simp]: vars-term ((v-t y ^^ e) t) = vars-term t for t :: (symbol,var)term

by (induct e arbitrary: t, auto)
from Cons show ?case unfolding ye by auto

qed
qed

lemma vars-encode-poly: vars-term (encode-poly x r) ⊆ {x}
proof −

define mcs where mcs = monom-list r
show ?thesis unfolding encode-poly-def mcs-def [symmetric]
proof (induct mcs)

case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
from Cons show ?case unfolding mc using vars-encode-monom[of x m c] by

auto
qed auto

qed

definition V where V = vars p ∪ vars q

48

definition y1 :: var where y1 = 0
definition y2 :: var where y2 = 1
definition y3 :: var where y3 = 2

lemma y-vars: y1 6= y2 y2 6= y3 y1 6= y3
unfolding y1-def y2-def y3-def by auto

Definition 3.3
definition lhs-R = f-t (Var y1) (Var y2) (a-t (encode-poly y3 p) (Var y3)) o-t
definition rhs-R = f-t (a-t (Var y1) z-t) (a-t z-t (Var y2)) (a-t (encode-poly y3
q) (Var y3)) z-t

definition F where F = {(a-sym, 2), (z-sym, 0)} ∪ (λ i. (v-sym i, 1 :: nat)) ‘
V
definition F-R where F-R = {(f-sym,4), (o-sym, 0)} ∪ F

definition R where R = {(lhs-R,rhs-R)}

definition V-list where V-list = sorted-list-of-set V

definition contexts :: (symbol × nat × nat) list
where contexts = [
(a-sym, 2 , 0),
(a-sym, 2 , 1),
(f-sym, 4 , 0),
(f-sym, 4 , 1),
(f-sym, 4 , 2),
(f-sym, 4 , 3)] @
map (λ i. (v-sym i, 1 ,0)) V-list

replace t by f(z,...z,t,z,...,z)
definition z-context :: symbol × nat × nat ⇒ (symbol, var)term ⇒ (symbol, var)
term where

z-context c t = (case c of (f ,n,i) ⇒ Fun f (replicate i z-t @ [t] @ replicate (n −
i − 1) z-t))

definition z-contexts where
z-contexts cs = foldr z-context cs

definition all-symbol-pos-ctxt :: (symbol,var)term ⇒ (symbol,var)term where
all-symbol-pos-ctxt = z-contexts contexts

definition lhs-R ′ = all-symbol-pos-ctxt lhs-R
definition rhs-R ′ = all-symbol-pos-ctxt rhs-R
definition R ′ where R ′ = {(lhs-R ′, rhs-R ′)}

lemma funas-encode-num: funas-term (encode-num x n) ⊆ F
proof −

49

define m where m = nat n
show ?thesis

unfolding encode-num-def m-def [symmetric]
by (induct m, auto simp: F-def)

qed

lemma funas-encode-monom: assumes keys m ⊆ V
shows funas-term (encode-monom x m c) ⊆ F

proof −
define xes where xes = var-list m
show ?thesis using var-list-keys[of - - m] unfolding encode-monom-def xes-def [symmetric]
proof (induct xes)

case Nil
thus ?case using funas-encode-num by auto

next
case (Cons ye xes)
obtain y e where ye: ye = (y,e) by force
have sub: funas-term ((v-t y ^^ e) t) ⊆ insert (v-sym y, 1) (funas-term t) for

t :: (symbol,var)term
by (induct e arbitrary: t, auto)

from Cons(2)[unfolded ye] assms have y ∈ V by auto
hence inF : (v-sym y, 1) ∈ F unfolding F-def by auto
from Cons sub inF show ?case unfolding ye by fastforce

qed
qed

lemma funas-encode-poly: assumes vars r ⊆ V shows funas-term (encode-poly x
r) ⊆ F
proof −

define mcs where mcs = monom-list r
show ?thesis using monom-list-keys[of - - r] unfolding encode-poly-def mcs-def [symmetric]
proof (induct mcs)

case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
have a: (a-sym, 2) ∈ F unfolding F-def by auto
from Cons(2)[unfolded mc] assms have keys m ⊆ V by auto
from funas-encode-monom[OF this, of x c] Cons(1)[OF Cons(2)] a
show ?case unfolding mc by (force simp: numeral-eq-Suc)

qed (auto simp: F-def)
qed

lemma funas-encode-poly-p: funas-term (encode-poly x p) ⊆ F
by (rule funas-encode-poly, auto simp: V-def)

lemma funas-encode-poly-q: funas-term (encode-poly x q) ⊆ F
by (rule funas-encode-poly, auto simp: V-def)

lemma lhs-R-F : funas-term lhs-R ⊆ F-R
proof −

50

from funas-encode-poly-p
show funas-term lhs-R ⊆ F-R unfolding lhs-R-def by (auto simp: F-R-def

F-def)
qed

lemma rhs-R-F : funas-term rhs-R ⊆ F-R
proof −

from funas-encode-poly-q
show funas-term rhs-R ⊆ F-R unfolding rhs-R-def by (auto simp: F-R-def

F-def)
qed

lemma finite-V : finite V unfolding V-def using vars-finite by auto

lemma V-list: set V-list = V unfolding V-list-def using finite-V by auto

lemma contexts: assumes (f ,n,i) ∈ set contexts
shows (f ,n) ∈ F-R i < n
using assms unfolding contexts-def F-R-def F-def by (auto simp: V-list)

lemma z-contexts-append: z-contexts (cs @ ds) t = z-contexts cs (z-contexts ds t)
unfolding z-contexts-def by (induct cs, auto)

lemma z-context: assumes (f ,n) ∈ F-R i < n and funas-term t ⊆ F-R
shows funas-term (z-context (f ,n,i) t) ⊆ F-R

proof −
have z: (z-sym,0) ∈ F-R unfolding F-R-def F-def by auto
thus ?thesis unfolding z-context-def split using assms by auto

qed

lemma funas-all-symbol-pos-ctxt: assumes funas-term t ⊆ F-R
shows funas-term (all-symbol-pos-ctxt t) ⊆ F-R

proof −
define cs where cs = contexts
have sub: set cs ⊆ set contexts unfolding cs-def by auto
have id: all-symbol-pos-ctxt t = foldr z-context cs t unfolding cs-def all-symbol-pos-ctxt-def

z-contexts-def
by (auto simp: id-def)

show ?thesis unfolding id using sub assms(1)
proof (induct cs arbitrary: t)

case (Cons c cs t)
obtain f n i where c: c = (f ,n,i) by (cases c, auto)
from c Cons have (f ,n,i) ∈ set contexts by auto
from z-context[OF contexts[OF this], folded c] Cons
show ?case by auto

qed auto
qed

51

lemma lhs-R ′-F : funas-term lhs-R ′ ⊆ F-R
unfolding lhs-R ′-def by (rule funas-all-symbol-pos-ctxt[OF lhs-R-F])

lemma rhs-R ′-F : funas-term rhs-R ′ ⊆ F-R
unfolding rhs-R ′-def by (rule funas-all-symbol-pos-ctxt[OF rhs-R-F])

end

lemma insertion-positive-poly: assumes
∧

x. α x ≥ (0 :: ′a :: linordered-idom)
and positive-poly p

shows insertion α p ≥ 0
by (rule insertion-nonneg, insert assms[unfolded positive-poly-def], auto)

locale solvable-poly-problem = poly-input p q for p q +
assumes sol: positive-poly-problem p q

begin

definition α where α = (SOME α. positive-interpr α ∧ insertion α q ≤ insertion
α p)

lemma α: positive-interpr α insertion α q ≤ insertion α p
using someI-ex[OF sol[unfolded positive-poly-problem-def [OF pq]], folded α-def]
by auto

lemma α1 : α x > 0 using α unfolding positive-interpr-def by auto

context
fixes I :: symbol ⇒ int mpoly
assumes inter : I a-sym = PVar 0 + PVar 1

I z-sym = 0
I o-sym = 1
I (v-sym i) = Const (α i) ∗ PVar 0

begin

lemma inter-encode-num: assumes c ≥ 0
shows poly-inter .eval I (encode-num x c) = Const c ∗ PVar x

proof −
from assms obtain n where cn: c = int n by (metis nonneg-eq-int)
hence natc: nat c = n by auto
show ?thesis unfolding encode-num-def natc unfolding cn

by (induct n, auto simp: inter poly-inter .eval.simps Const-0 Const-1 alge-
bra-simps Const-add)
qed

lemma inter-v-pow-e: poly-inter .eval I ((v-t x ^^ e) t) = Const ((α x)^e) ∗
poly-inter .eval I t

by (induct e, auto simp: Const-1 Const-mult inter poly-inter .eval.simps)

lemma inter-encode-monom: assumes c: c ≥ 0

52

shows poly-inter .eval I (encode-monom y m c) = Const (insertion α (monom m
c)) ∗ PVar y
proof −

define xes where xes = var-list m
from var-list[of m c]
have monom: monom m c = Const c ∗ (

∏
(x, e)← xes . PVar x ^ e) unfolding

xes-def .
show ?thesis unfolding encode-monom-def monom xes-def [symmetric]
proof (induct xes)

case Nil
show ?case by (simp add: inter-encode-num[OF c] insertion-Const)

next
case (Cons xe xes)
obtain x e where xe: xe = (x,e) by force
show ?case by (simp add: xe inter-v-pow-e Cons Const-power

insertion-Const insertion-mult insertion-power insertion-Var Const-mult)
qed

qed

lemma inter-foldr-v-t:
poly-inter .eval I (foldr v-t xs t) = Const (prod-list (map α xs)) ∗ poly-inter .eval

I t
by (induct xs arbitrary: t, auto simp: Const-1 inter poly-inter .eval.simps Const-mult)

lemma inter-encode-poly-generic: assumes positive-poly r
shows poly-inter .eval I (encode-poly x r) = Const (insertion α r) ∗ PVar x

proof −
define mcs where mcs = monom-list r
from monom-list[of r] have r : r = (

∑
(m, c)← mcs. monom m c) unfolding

mcs-def by auto
have mcs: (m,c) ∈ set mcs =⇒ c ≥ 0 for m c

using monom-list-coeff assms unfolding mcs-def positive-poly-def by auto
note [simp] = inter poly-inter .eval.simps
show ?thesis unfolding encode-poly-def mcs-def [symmetric] unfolding r inser-

tion-sum-list map-map o-def
using mcs

proof (induct mcs)
case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
from Cons(2) mc have c: c ≥ 0 by auto
note monom = inter-encode-monom[OF this, of x m]
show ?case

by (simp add: mc monom algebra-simps, subst Cons(1), insert Cons(2), auto
simp: Const-add algebra-simps)

qed simp
qed

lemma valid-monotone-inter-F : assumes positive-interpr α

53

and inF : fn ∈ F
shows poly-inter .valid-monotone-poly I (>) fn
proof −

obtain f n where fn: fn = (f ,n) by force
with inF have f : (f ,n) ∈ F by auto
show ?thesis unfolding poly-inter .valid-monotone-poly-def fn
proof (intro allI impI , clarify, intro conjI)

let ?valid = valid-poly
let ?mono = poly-inter .monotone-poly (>)
have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0) + PVar 2 + PVar

3) = {0 ,1 ,2 ,3}
unfolding vars-def apply (transfer , simp add: Var0-def image-comp) by

code-simp
have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0)) = {0 ,1}

unfolding vars-def apply (transfer , simp add: Var0-def image-comp) by
code-simp

note [simp] = inter poly-inter .eval.simps
{

fix i
assume i: i ∈ V and f = v-sym i and n: n = 1
hence I : I f = Const (α i) ∗ PVar 0 by simp
from assms[unfolded positive-interpr-def] have alpha: α i > 0 by auto
have valid: ?valid (I f)

unfolding I valid-poly-def using alpha
by (auto simp: insertion-mult insertion-Const insertion-Var assignment-def

intro!: mult-nonneg-nonneg)
have mono: ?mono {..<n} (I f)

unfolding I unfolding n monotone-poly-wrt-def using alpha
by (auto simp: insertion-Const insertion-mult insertion-Var)

have vars (I f) ⊆ {..<n} unfolding I unfolding n
by (rule order .trans[OF vars-mult], auto)

moreover have 0 ∈ vars (I f)
unfolding I unfolding n

proof (rule ccontr)
let ?p = Const (α i) ∗ PVar 0
assume not: 0 /∈ vars ?p
define β :: var ⇒ int where β x = 0 for x
have insertion β ?p = insertion (β(0 := 1)) ?p

by (rule insertion-irrelevant-vars, insert not, auto)
thus False using alpha by (simp add: β-def insertion-mult insertion-Const

insertion-Var)
qed
ultimately have vars (I f) = {..< n} unfolding n by auto
note this valid mono

} note v-sym = this
from f v-sym show vars (I f) = {..< n} unfolding F-def by auto
from f v-sym show ?valid (I f) unfolding F-def

by (auto simp: valid-poly-def insertion-add assignment-def insertion-Var)
have x4 : x < 4 =⇒ x = 0 ∨ x = Suc 0 ∨ x = 2 ∨ x = 3 for x by linarith

54

have x2 : x < 2 =⇒ x = 0 ∨ x = Suc 0 for x by linarith
from f v-sym show ?mono {..<n} (I f) unfolding F-R-def F-def

by (auto simp: monotone-poly-wrt-def insertion-add insertion-Var assign-
ment-def

dest: x4 x2)
qed

qed

end

fun I-R :: symbol ⇒ int mpoly where
I-R f-sym = PVar 0 + PVar 1 + PVar 2 + PVar 3
| I-R a-sym = PVar 0 + PVar 1
| I-R z-sym = 0
| I-R o-sym = 1
| I-R (v-sym i) = Const (α i) ∗ PVar 0

interpretation inter-R: poly-inter F-R I-R (>) .

lemma inter-R-encode-poly: assumes positive-poly r
shows inter-R.eval (encode-poly x r) = Const (insertion α r) ∗ PVar x
by (rule inter-encode-poly-generic[OF - - - - assms], auto)

lemma valid-monotone-inter-R: inter-R.valid-monotone-poly-inter unfolding in-
ter-R.valid-monotone-poly-inter-def
proof (intro ballI)

fix fn
assume f : fn ∈ F-R
show inter-R.valid-monotone-poly fn
proof (cases fn ∈ F)

case True
show inter-R.valid-monotone-poly fn

by (rule valid-monotone-inter-F [OF - - - - α(1) True], auto)
next

case False
with f have f : fn ∈ F-R − F by auto
have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0) + PVar 2 + PVar

3) = {0 ,1 ,2 ,3}
unfolding vars-def apply (transfer , simp add: Var0-def image-comp) by

code-simp
show ?thesis unfolding inter-R.valid-monotone-poly-def using f
proof (intro ballI impI allI , clarify, intro conjI)

fix f n
assume f : (f ,n) ∈ F-R (f ,n) /∈ F
from f show vars (I-R f) = {..< n} unfolding F-R-def by auto
from f show valid-poly (I-R f) unfolding F-R-def

by (auto simp: valid-poly-def insertion-add assignment-def insertion-Var)
have x4 : x < 4 =⇒ x = 0 ∨ x = Suc 0 ∨ x = 2 ∨ x = 3 for x by linarith
from f show inter-R.monotone-poly {..<n} (I-R f) unfolding F-R-def

55

by (auto simp: monotone-poly-wrt-def insertion-add insertion-Var assign-
ment-def

dest: x4)
qed

qed
qed

sublocale inter-R: linear-int-poly-inter F-R I-R
proof

show inter-R.valid-monotone-poly-inter by (rule valid-monotone-inter-R)
fix f n
assume (f ,n) ∈ F-R
thus total-degree (I-R f) ≤ 1 by (cases f , auto simp: F-R-def F-def intro!:

total-degree-add total-degree-Const-mult)
qed

lemma orient-R-main: assumes assignment β
shows insertion β (inter-R.eval lhs-R) > insertion β (inter-R.eval rhs-R)

proof −
have lhs-R: inter-R.eval lhs-R = PVar y1 + PVar y2 + Const (insertion α p +

1) ∗ PVar y3 + 1
unfolding lhs-R-def by (simp add: inter-R-encode-poly[OF pq(1)] algebra-simps

Const-add Const-1)
have rhs-R: inter-R.eval rhs-R = PVar y1 + PVar y2 + Const (insertion α q

+ 1) ∗ PVar y3
unfolding rhs-R-def by (simp add: inter-R-encode-poly[OF pq(2)] algebra-simps

Const-add Const-1)
show ?thesis

unfolding lhs-R rhs-R
apply (simp add: insertion-add insertion-mult insertion-Var insertion-Const)
apply (intro mult-right-mono)
subgoal using α(2) by simp
subgoal using assms unfolding assignment-def by auto
done

qed

The easy direction of Theorem 3.4
lemma orient-R: inter-R.termination-by-poly-interpretation R
unfolding inter-R.termination-by-poly-interpretation-def inter-R.termination-by-interpretation-def

R-def inter-R.orient-rule
proof (clarify, intro conjI)

show inter-R.gt-poly (inter-R.eval lhs-R) (inter-R.eval rhs-R)
unfolding inter-R.gt-poly-def
by (intro allI impI orient-R-main)

qed (insert lhs-R-F rhs-R-F , auto)

lemma solution-imp-linear-termination-R: termination-by-linear-int-poly-interpretation
F-R R

unfolding termination-by-linear-int-poly-interpretation-def

56

by (intro exI , rule conjI [OF - orient-R], unfold-locales)
end

context poly-input
begin

lemma inter-z-context:
assumes i: i < n and I : I f = Const c0 + (sum-list (map (λ j. Const (c j) ∗

PVar j) [0 ..<n]))
and Ize: I z-sym = Const d0

shows ∃ d. ∀ t. poly-inter .eval I (z-context (f ,n,i) t) = Const d + Const (c i)
∗ poly-inter .eval I t
proof −

define d where d = c0 + (
∑

x←[0 ..<i]. c x ∗ d0) + (
∑

x←[Suc i..<n]. c x ∗
d0)

show ?thesis
proof (intro exI [of - d] allI)

fix t :: (symbol, nat) term
define list where list = replicate i (Fun z-sym []) @ [t] @ replicate (n − i −

1) (Fun z-sym [])
have len: length list = n

using i unfolding list-def by auto
have z[simp]: poly-inter .eval I (Fun z-sym []) = Const d0 unfolding poly-inter .eval.simps

using Ize by auto
let ?xs1 = [0 ..< i]
let ?xs2 = [Suc i ..< n]
define ev where ev = (λ x. Const (c x) ∗ poly-inter .eval I (list ! x))
have poly-inter .eval I (z-context (f ,n,i) t) = Const c0 +
(
∑

x←[0 ..<n]. ev x)
unfolding z-context-def split list-def [symmetric]
unfolding poly-inter .eval.simps len I ev-def

unfolding substitute-add substitute-Const substitute-sum-list o-def substi-
tute-mult substitute-Var

apply (rule arg-cong[of - - λ xs. (+) - (sum-list xs)])
by (rule map-cong[OF refl], auto)

also have [0 ..< n] = ?xs1 @ i # ?xs2 using i
by (metis less-imp-add-positive upt-add-eq-append upt-rec zero-le)

also have sum-list (map ev . . .) = sum-list (map ev ?xs1) + sum-list (map ev
?xs2) + ev i by simp

also have map ev ?xs1 = map (λ x. (Const (c x ∗ d0))) ?xs1
unfolding o-def by (intro map-cong, auto simp: ev-def list-def nth-append

Const-mult)
also have sum-list . . . = Const (sum-list (map (λ x. c x ∗ d0) ?xs1)) unfolding

Const-sum-list o-def ..
also have map ev ?xs2 = map (λ x. (Const (c x ∗ d0))) ?xs2

unfolding o-def by (intro map-cong, auto simp: ev-def list-def nth-append
Const-mult)

also have sum-list . . . = Const (sum-list (map (λ x. c x ∗ d0) ?xs2)) unfolding
Const-sum-list o-def ..

57

also have ev i = Const (c i) ∗ poly-inter .eval I t unfolding ev-def list-def by
(auto simp: nth-append)

finally show poly-inter .eval I (z-context (f , n, i) t) = Const d + Const (c i)
∗ poly-inter .eval I t

unfolding add.assoc[symmetric] Const-add[symmetric] d-def by blast
qed

qed

lemma inter-z-contexts:
assumes cs:

∧
f n i. (f ,n,i) ∈ set cs =⇒ i < n ∧ I f = Const (c0 f) + (sum-list

(map (λ j. Const (c f j) ∗ PVar j) [0 ..<n]))
and Ize: I z-sym = Const d0

shows ∃ d. ∀ t. poly-inter .eval I (z-contexts cs t) = Const d + Const (prod-list
(map (λ (f ,n,i). c f i) cs)) ∗ poly-inter .eval I t
proof −

define c ′ where c ′ = (λ (f ,n :: nat,i). c f i)
have c ′: c f i = c ′ (f ,n,i) for f i n unfolding c ′-def split ..
{

fix fni
assume mem: fni ∈ set cs
obtain f n i where fni: fni = (f ,n,i) by (cases fni, auto)
from cs[OF mem[unfolded fni]]
have i: i < n and I f = Const (c0 f) + (

∑
j←[0 ..<n]. Const (c f j) ∗ PVar

j) by auto
note inter-z-context[OF this Ize, unfolded c ′[of - - n], folded fni]

} note z-pre-ctxt = this
define p where p fni d t = (fni ∈ set cs −→ poly-inter .eval I (z-context fni t)

= Const d + Const (c ′ fni) ∗ poly-inter .eval I t)
for fni d t

from z-pre-ctxt
have ∀ fni. ∃ d. ∀ t. p fni d t by (auto simp: p-def)
from choice[OF this] obtain d ′ where

∧
fni t. p fni (d ′ fni) t by auto

hence z-ctxt:
∧

fni t. fni ∈ set cs =⇒ poly-inter .eval I (z-context fni t) = Const
(d ′ fni) + Const (c ′ fni) ∗ poly-inter .eval I t

unfolding p-def by auto
define d where d = foldr (λ fni c. d ′ fni + c ′ fni ∗ c) cs 0
show ?thesis
proof (intro exI [of - d] allI)

fix t :: (symbol,var)term
show poly-inter .eval I (z-contexts cs t) = Const d + Const (

∏
(f , n, i)←cs. c

f i) ∗ poly-inter .eval I t
unfolding d-def z-contexts-def using z-ctxt

proof (induct cs)
case Nil
show ?case by (simp add: Const-0 Const-1)

next
case (Cons fni cs)
from Cons(2)[of fni]
have z-ctxt: poly-inter .eval I (z-context fni t) = Const (d ′ fni) + Const (c ′

58

fni) ∗ poly-inter .eval I t for t by auto
from Cons(1)[OF Cons(2)]
have IH : poly-inter .eval I (foldr z-context cs t) =

Const (foldr (λfni c. d ′ fni + c ′ fni ∗ c) cs 0) + Const (
∏

(f , n, y)←cs. c
f y) ∗ poly-inter .eval I t

by auto
have [simp]: (case fni of (f , n, xa) ⇒ c f xa) = c ′ fni unfolding c ′-def ..
show ?case

by (simp add: z-ctxt IH algebra-simps Const-mult)
(simp add: Const-add[symmetric] Const-mult[symmetric])

qed
qed

qed

lemma inter-all-symbol-pos-ctxt-generic:
assumes f : I f-sym = Const fc + Const f0 ∗ PVar 0 + Const f1 ∗ PVar 1 +

Const f2 ∗ PVar 2 + Const f3 ∗ PVar 3
and a: I a-sym = Const ac + Const a0 ∗ PVar 0 + Const a1 ∗ PVar 1
and v:

∧
i. i ∈ V =⇒ I (v-sym i) = Const (vc i) + Const (v0 i) ∗ PVar 0

and I z-sym = Const zc
shows ∃ d. ∀ t. poly-inter .eval I (all-symbol-pos-ctxt t) = Const d + Const

(prod-list ([a0 , a1 , f0 , f1 , f2 , f3] @ map v0 V-list))
∗ poly-inter .eval I t

proof −
define c where c = (λ f i. case f of

a-sym ⇒ if i = 0 then a0 else a1
| v-sym x ⇒ v0 x
| f-sym ⇒ if i = 0 then f0 else if i = Suc 0 then f1 else if i = 2 then f2 else f3)
define c0 where c0 = (λ f . case f of a-sym ⇒ ac | f-sym ⇒ fc | v-sym x ⇒ vc

x)
have id: [a0 , a1 , f0 , f1 , f2 , f3] @ map v0 V-list = map (λ (f ,n,i). c f i) contexts

unfolding contexts-def map-append
by (auto simp: c-def)

have lists: [0 ..<2] = [0 ,Suc 0] [0 ..< 4] = [0 ,Suc 0 , 2 ,3] by code-simp+
show ?thesis unfolding id all-symbol-pos-ctxt-def
proof (rule inter-z-contexts[of - - c0 c zc])

show I z-sym = Const zc by fact
fix f n i
assume (f , n, i) ∈ set contexts
thus i < n ∧ I f = Const (c0 f) + (

∑
j←[0 ..<n]. Const (c f j) ∗ PVar j)

unfolding contexts-def c0-def c-def by (auto simp: f a v V-list lists)
qed

qed
end

context solvable-poly-problem
begin

59

lemma inter-all-symbol-pos-ctxt:
∃ d e. e ≥ 1 ∧ (∀ t. inter-R.eval (all-symbol-pos-ctxt t) = Const d + Const e ∗

inter-R.eval t)
proof −

from inter-all-symbol-pos-ctxt-generic[of I-R 0 1 1 1 1 0 1 1 0 α 0 , unfolded
Const-0 Const-1]

obtain d where inter :
∧

t. inter-R.eval (all-symbol-pos-ctxt t) = Const d +
Const (prod-list (map α V-list)) ∗ inter-R.eval t

by auto
show ?thesis
proof (rule exI [of - d], rule exI [of - prod-list (map α V-list)], intro conjI allI

inter)
define vs where vs = V-list
show 1 ≤ prod-list (map α V-list) unfolding vs-def [symmetric]
proof (induct vs)

case (Cons v vs)
from α(1)[unfolded positive-interpr-def , rule-format, of v] have 1 ≤ α v by

auto
with Cons show ?case by simp (smt (verit, ccfv-threshold) mult-pos-pos)

qed auto
qed

qed

The easy direction of Theorem 3.4 for R’
lemma orient-R ′: inter-R.termination-by-poly-interpretation R ′

unfolding inter-R.termination-by-interpretation-def inter-R.termination-by-poly-interpretation-def
R ′-def inter-R.orient-rule
proof (clarify, intro conjI)

from inter-all-symbol-pos-ctxt obtain d e where
e: e ≥ 1 and

ctxt:
∧

t. inter-R.eval (all-symbol-pos-ctxt t) = Const d + Const e ∗ inter-R.eval
t

by auto
let ?ctxt = λ f . Const d + Const e ∗ f
show inter-R.gt-poly (inter-R.eval lhs-R ′) (inter-R.eval rhs-R ′)

unfolding inter-R.gt-poly-def
proof (intro allI impI)

fix β :: var ⇒ int
assume ass: assignment β
have insertion β (inter-R.eval lhs-R ′) > insertion β (inter-R.eval rhs-R ′)
←→ insertion β (inter-R.eval lhs-R) > insertion β (inter-R.eval rhs-R)
unfolding lhs-R ′-def rhs-R ′-def ctxt using e
by (simp add: insertion-add insertion-mult insertion-Var insertion-Const)

also have . . . using orient-R-main[OF ass] .
finally show insertion β (inter-R.eval rhs-R ′) < insertion β (inter-R.eval

lhs-R ′) .
qed

qed (insert lhs-R ′-F rhs-R ′-F , auto)

60

lemma solution-imp-linear-termination-R ′: termination-by-linear-int-poly-interpretation
F-R R ′

unfolding termination-by-linear-int-poly-interpretation-def
by (intro exI , rule conjI [OF - orient-R ′], unfold-locales)

end

Now for the other direction of Theorem 3.4
lemma monotone-linear-poly-to-coeffs: fixes p :: int mpoly

assumes linear : total-degree p ≤ 1
and poly: valid-poly p
and mono: poly-inter .monotone-poly (>) {..<n} p
and vars: vars p = {..<n}

shows ∃ c a. p = Const c + (
∑

i←[0 ..<n]. Const (a i) ∗ PVar i)
∧ c ≥ 0 ∧ (∀ i < n. a i > 0)

proof −
have sum-zero: (

∧
x. x ∈ set xs =⇒ x = 0) =⇒ sum-list (xs :: int list) = 0 for

xs by (induct xs, auto)
interpret poly-inter undefined undefined (>) :: int ⇒ - .
from coefficients-of-linear-poly[OF linear] obtain c a vs

where p: p = Const c + (
∑

i←vs. Const (a i) ∗ PVar i)
and vsd: distinct vs set vs = vars p sorted-list-of-set (vars p) = vs
and nz:

∧
v. v ∈ set vs =⇒ a v 6= 0

and c: c = coeff p 0
and a:

∧
i. a i = coeff p (monomial 1 i) by blast

have vs: vs = [0 ..<n] unfolding vsd(3)[symmetric] unfolding vars
by (simp add: lessThan-atLeast0)

show ?thesis unfolding p vs
proof (intro exI conjI allI impI , rule refl)

show c: c ≥ 0 using poly[unfolded valid-poly-def , rule-format, of λ -. 0 ,
unfolded p]

by (auto simp: coeff-add[symmetric] coeff-Const coeff-sum-list o-def co-
eff-Const-mult

coeff-Var monomial-0-iff assignment-def)
fix i
assume i < n
hence i: i ∈ set vs unfolding vs by auto
from nz[OF this] have a0 : a i 6= 0 by auto
from split-list[OF i] obtain bef aft where vsi: vs = bef @ [i] @ aft by auto
with vsd(1) have i: i /∈ set (bef @ aft) by auto
define α where α = (λ x. if x = i then c + 1 else 0)
have assignment α unfolding assignment-def α-def using c by auto
from poly[unfolded valid-poly-def , rule-format, OF this, unfolded p]
have 0 ≤ c + (

∑
x←bef @ aft. a x ∗ α x) + (a i ∗ α i)

unfolding insertion-add vsi map-append sum-list-append insertion-Const
insertion-sum-list

map-map o-def insertion-mult insertion-Var
by (simp add: algebra-simps)

also have (
∑

x←bef @ aft. a x ∗ α x) = 0 by (rule sum-zero, insert i, auto
simp: α-def)

61

also have α i = (c + 1) unfolding α-def by auto
finally have le: 0 ≤ c ∗ (a i + 1) + a i by (simp add: algebra-simps)
with c have a i ≥ 0

by (smt (verit, best) mult-le-0-iff)
with a0 show a i > 0 by simp

qed
qed

locale poly-input-to-solution-common = poly-input p q +
poly-inter F ′ I (>) :: int ⇒ int ⇒ bool for p q I and F ′ :: (poly-input.symbol ×

nat) set and argsL argsR +
assumes orient:

orient-rule (Fun f-sym ([Var y1 , Var y2 , a-t (encode-poly y3 p) (Var y3)] @
argsL),

Fun f-sym ([a-t (Var y1) z-t, a-t z-t (Var y2), a-t (encode-poly y3 q) (Var y3)]
@ argsR))

and len-args:length argsL = length argsR
and y123 : {y1 ,y2 ,y3} ∩ (

⋃
(vars-term ‘ set (argsL @ argsR))) = {}

and FF ′: insert (f-sym, 3 + length argsR) F ⊆ F ′

and linear-mono-interpretation: (g,n) ∈ insert (f-sym, 3 + length argsR) F =⇒

∃ c a. I g = Const c + (
∑

i←[0 ..<n]. Const (a i) ∗ PVar i)
∧ c ≥ 0 ∧ (∀ i < n. a i > 0)

begin

abbreviation ff where ff ≡ (f-sym, 3 + length argsR)
abbreviation args where args ≡ [3 ..<length argsR + 3]

lemma extract-a-poly: ∃ a0 a1 a2 . I a-sym = Const a0 + Const a1 ∗ PVar 0 +
Const a2 ∗ PVar 1
∧ a0 ≥ 0 ∧ a1 > 0 ∧ a2 > 0

proof −
have [simp]: [0 ..<2] = [0 ,1] by code-simp
have [simp]: (∀ i<2 . P i) = (P 0 ∧ P (1 :: nat)) for P by (auto simp add:

numeral-eq-Suc less-Suc-eq)
have (a-sym,2) ∈ insert ff F unfolding F-def by auto
from linear-mono-interpretation[OF this]
show ?thesis by force

qed

lemma extract-f-poly: ∃ f0 f1 f2 f3 f4 . I f-sym = Const f0 + Const f1 ∗ PVar 0
+ Const f2 ∗ PVar 1

+ Const f3 ∗ PVar 2 + (
∑

i← args. Const (f4 i) ∗ PVar i)
∧ f0 ≥ 0 ∧ f1 > 0 ∧ f2 > 0 ∧ f3 > 0

proof −
have id: [0 ..<3 + length argsR] = [0 ,1 ,2] @ args

by (simp add: numeral-3-eq-3 upt-rec)
have ff ∈ insert ff F by auto
from linear-mono-interpretation[OF this] obtain c a

62

where Iff : I f-sym = Const c + (
∑

i←[0 ..<3 + length argsR]. Const (a i) ∗
PVar i)

and c: 0 ≤ c and a:
∧

i. i < 3 + length argsR =⇒ 0 < a i by blast
show ?thesis

apply (rule exI [of - c])
apply (rule exI [of - a 0])
apply (rule exI [of - a 1])
apply (rule exI [of - a 2])
apply (rule exI [of - a])
using c a[of 0] a[of 1] a [of 2] Iff id by auto

qed

lemma extract-z-poly: ∃ ze0 . I z-sym = Const ze0 ∧ ze0 ≥ 0
proof −

have (z-sym,0) ∈ insert ff F unfolding F-def by auto
from linear-mono-interpretation[OF this] show ?thesis by auto

qed

lemma solution: positive-poly-problem p q
proof −

from extract-a-poly obtain a0 a1 a2 where
Ia: I a-sym = Const a0 + Const a1 ∗ PVar 0 + Const a2 ∗ PVar 1
and a: 0 ≤ a0 0 < a1 0 < a2
by auto

from extract-f-poly obtain f0 f1 f2 f3 f4 where
If : I f-sym = Const f0 + Const f1 ∗ PVar 0 + Const f2 ∗ PVar 1 + Const f3

∗ PVar 2 + (
∑

i←args. Const (f4 i) ∗ PVar i)
and f : 0 ≤ f0 0 < f1 0 < f2 0 < f3
by auto

from extract-z-poly obtain ze0 where
Iz: I z-sym = Const ze0
and z: 0 ≤ ze0
by auto

{
fix x
assume x ∈ V
hence (v-sym x, 1) ∈ insert ff F unfolding F-def by auto
from linear-mono-interpretation[OF this]
have ∃ c a. I (v-sym x) = Const c + Const a ∗ PVar 0 ∧ 0 < a by auto

}
hence ∀ x. ∃ c a. x ∈ V −→ I (v-sym x) = Const c + Const a ∗ PVar 0 ∧ 0

< a by auto
from choice[OF this] obtain v0 where ∀ x. ∃ a. x ∈ V −→ I (v-sym x) =

Const (v0 x) + Const a ∗ PVar 0 ∧ 0 < a by auto
from choice[OF this] obtain v1 where

Iv:
∧

x. x ∈ V =⇒ I (v-sym x) = Const (v0 x) + Const (v1 x) ∗ PVar 0 and
v:

∧
x. x ∈ V =⇒ 0 < v1 x by auto

let ?lhs = Fun f-sym ([TVar y1 , TVar y2 , Fun a-sym [encode-poly y3 p, TVar

63

y3]] @ argsL)
let ?rhs = Fun f-sym

([Fun a-sym [TVar y1 , Fun z-sym []], Fun a-sym [Fun z-sym [], TVar y2],
Fun a-sym [encode-poly y3 q, TVar y3]] @

argsR)

from orient[unfolded orient-rule]
have gt: gt-poly (eval ?lhs) (eval ?rhs) by auto
have [simp]: Suc (Suc (Suc (Suc 0))) = 4 by simp
have [simp]: Suc (Suc 0) = 2 by simp
define restL where restL = substitute

(λi. if i < length argsR + 3
then eval ((TVar y1 # TVar y2 # Fun a-sym [encode-poly y3 p, TVar y3]

argsL) ! i) else 0)
(
∑

i←local.args. PVar i ∗ Const (f4 i))
define b0 where b0 = f3 ∗ a0 + f0
define b1 where b1 = f3 ∗ a0 + f0 + f1 ∗ a0 + f1 ∗ a2 ∗ ze0 + f2 ∗ a0 +

f2 ∗ a1 ∗ ze0
define b2 where b2 = f3 ∗ a1
define b3 where b3 = f3 ∗ a2
have b23 : b2 > 0 b3 > 0 unfolding b2-def b3-def using a f by auto
let ?pt = encode-poly y3 p
let ?qt = encode-poly y3 q
from vars-encode-poly[of y3]
have vars: vars-term ?pt ∪ vars-term ?qt ⊆ {y3} by auto
from vars-eval vars
have vars: vars (eval ?pt) ∪ vars (eval ?qt) ⊆ {y3} by auto
have [simp]: Suc (Suc (Suc (length argsR))) = length argsR + 3

by presburger

have lhs: eval ?lhs = Const b0 +
Const f1 ∗ PVar y1 +
Const f2 ∗ PVar y2 +
Const b2 ∗ eval ?pt + Const b3 ∗ PVar y3 + restL
using If Ia len-args by (simp add: algebra-simps Const-add Const-mult b0-def

b2-def b3-def restL-def)
define β where β z1 z2 z3 = (((λ x. 0 :: int) (y1 := z1)) (y2 := z2)) (y3 :=

z3) for z1 z2 z3
have args: args = map (λ z. z + 3) [0 ..<length argsR]

using map-add-upt by presburger
define rl where rl = insertion (β 0 0 0) restL
{

have insRestL: insertion (β z1 z2 z3) restL = (
∑

x←[0 ..<length
argsR]. (insertion (β z1 z2 z3) (eval (argsL ! x)) ∗ (f4 (x + 3)))) for

z1 z2 z3
unfolding restL-def insertion-substitute insertion-sum-list map-map o-def

if-distrib args insertion-mult insertion-Var insertion-Const
apply (rule arg-cong[of - - sum-list])
apply (rule map-cong[OF refl]) by auto

64

have insRestL: insertion (β z1 z2 z3) restL = rl for z1 z2 z3
unfolding insRestL rl-def
apply (rule arg-cong[of - - sum-list])
apply (rule map-cong[OF refl])
apply (rule arg-cong[of - - λ x. x ∗ -])
apply (rule insertion-irrelevant-vars)
subgoal for v i unfolding len-args[symmetric] using y123 vars-eval[of argsL

! v]
by (auto simp: β-def)

done
} note ins-restL = this

define restR where restR = substitute
(λi. if i < length argsR + 3

then eval
((Fun a-sym [TVar y1 , Fun z-sym []] #

Fun a-sym [Fun z-sym [], TVar y2] # Fun a-sym [encode-poly y3 q,
TVar y3] # argsR) !

i)
else 0)

(
∑

i←args. PVar i ∗ Const (f4 i))
have rhs: eval ?rhs = Const b1 +

Const (f1 ∗ a1) ∗ PVar y1 +
Const (f2 ∗ a2) ∗ PVar y2 +
Const b2 ∗ eval ?qt + Const b3 ∗ PVar y3 + restR
unfolding restR-def using If Ia Iz by (simp add: algebra-simps Const-add

Const-mult b1-def b2-def b3-def)
define rr where rr = insertion (β 0 0 0) restR
{

have insRestR: insertion (β z1 z2 z3) restR = (
∑

x←[0 ..<length
argsR]. (insertion (β z1 z2 z3) (eval (argsR ! x)) ∗ (f4 (x + 3)))) for

z1 z2 z3
unfolding restR-def insertion-substitute insertion-sum-list map-map o-def

if-distrib args insertion-mult insertion-Var insertion-Const
apply (rule arg-cong[of - - sum-list])
apply (rule map-cong[OF refl]) by auto

have insRestR: insertion (β z1 z2 z3) restR = rr for z1 z2 z3
unfolding insRestR rr-def
apply (rule arg-cong[of - - sum-list])
apply (rule map-cong[OF refl])
apply (rule arg-cong[of - - λ x. x ∗ -])
apply (rule insertion-irrelevant-vars)
subgoal for v i using y123 vars-eval[of argsR ! v]

by (auto simp: β-def)
done

} note ins-restR = this

have [simp]: β z1 z2 z3 y1 = z1 for z1 z2 z3 unfolding β-def using y-vars by
auto

65

have [simp]: β z1 z2 z3 y2 = z2 for z1 z2 z3 unfolding β-def using y-vars by
auto

have [simp]: β z1 z2 z3 y3 = z3 for z1 z2 z3 unfolding β-def using y-vars by
auto

have β: z1 ≥ 0 =⇒ z2 ≥ 0 =⇒ z3 ≥ 0 =⇒ assignment (β z1 z2 z3) for z1 z2
z3

unfolding assignment-def β-def by auto
define l1 where l1 = insertion (β 0 0 0) (eval ?lhs)
have ins-lhs: insertion (β z1 z2 0) (eval ?lhs) = f1 ∗ z1 + f2 ∗ z2 + l1 for z1

z2
unfolding lhs l1-def
apply (simp add: insertion-add insertion-mult insertion-Const insertion-Var

ins-restL)
apply (rule disjI2)
apply (rule insertion-irrelevant-vars)
using vars by auto

define l2 where l2 = insertion (β 0 0 0) (eval ?rhs)
have ins-rhs: insertion (β z1 z2 0) (eval ?rhs) = f1 ∗ a1 ∗ z1 + f2 ∗ a2 ∗ z2

+ l2 for z1 z2
unfolding rhs l2-def
apply (simp add: insertion-add insertion-mult insertion-Const insertion-Var

ins-restR)
apply (rule disjI2)
apply (rule insertion-irrelevant-vars)
using vars by auto

define l where l = l2 − l1
have gt-inst: 0 ≤ z1 =⇒ 0 ≤ z2 =⇒ f1 ∗ a1 ∗ z1 + f2 ∗ a2 ∗ z2 + l < f1 ∗

z1 + f2 ∗ z2 for z1 z2
using gt[unfolded gt-poly-def , rule-format, OF β, of z1 z2 0 , unfolded ins-lhs

ins-rhs]
by (auto simp: l-def)

{
define a1 ′ where a1 ′ = a1 − 1
define z where z = f1 ∗ a1 ′

have a1 : a1 = 1 + a1 ′ unfolding a1 ′-def by auto
have a1 ′: a1 ′ ≥ 0 using a unfolding a1 by auto
from gt-inst[of abs l 0 , unfolded a1]
have z ∗ |l| + l < 0

by (simp add: algebra-simps z-def)
hence z ≤ 0

by (smt (verit) mult-le-cancel-right1)
with ‹0 < f1 › have a1 ′ ≤ 0 unfolding z-def

by (simp add: mult-le-0-iff)
with a1 ′ a1 have a1 = 1 by auto

} note a1 = this
{

define a2 ′ where a2 ′ = a2 − 1
define z where z = f2 ∗ a2 ′

66

have a2 : a2 = 1 + a2 ′ unfolding a2 ′-def by auto
have a2 ′: a2 ′ ≥ 0 using a unfolding a2 by auto
from gt-inst[of 0 abs l, unfolded a2]
have z ∗ |l| + l < 0

by (simp add: algebra-simps z-def)
hence z ≤ 0

by (smt (verit) mult-le-cancel-right1)
with ‹0 < f2 › have a2 ′ ≤ 0 unfolding z-def

by (simp add: mult-le-0-iff)
with a2 ′ a2 have a2 = 1 by auto

} note a2 = this

have Ia: I a-sym = Const a0 + PVar 0 + PVar 1
unfolding Ia a1 a2 Const-1 by simp

{
fix c :: int
assume c ≥ 0
then obtain n where cn: c = int n by (metis nonneg-eq-int)
hence natc: nat c = n by auto
have ∃ d. eval (encode-num y3 c) = Const d + Const c ∗ PVar y3

unfolding encode-num-def natc unfolding cn
by (induct n, auto simp: Iz Ia Const-0 Const-1 algebra-simps Const-add, auto

simp: Const-add[symmetric])
} note encode-num = this

{
fix x e f t
assume x: x ∈ V and eval: ∃ c. eval t = Const c + Const f ∗ PVar y3
have ∃ d. eval ((v-t x ^^ e) t) = Const d + Const ((v1 x)^ e ∗ f) ∗ PVar y3
proof (induct e)

case 0
show ?case using eval by auto

next
case (Suc e)
then obtain d where IH : eval ((v-t x ^^ e) t) = Const d + Const (v1 x ^

e ∗ f) ∗ PVar y3 by auto
show ?case by (simp add: IH Iv[OF x] algebra-simps Const-mult)

(auto simp: Const-mult[symmetric] Const-add[symmetric])
qed

} note v-pow-e = this

{
fix c :: int and m
assume c: c ≥ 0
define base where base = encode-num y3 c
define xes where xes = var-list m
assume keys: keys m ⊆ V

67

from encode-num[OF c] obtain d where base: eval base = Const d + Const
c ∗ PVar y3

by (auto simp: base-def)
from var-list[of m c]

have monom: monom m c = Const c ∗ (
∏

(x, e)← xes . PVar x ^ e) unfolding
xes-def .

have ∃ d. eval (encode-monom y3 m c) = Const d + Const (insertion v1
(monom m c)) ∗ PVar y3

using var-list-keys[of - - m]
unfolding encode-monom-def monom xes-def [symmetric] base-def [symmetric]

proof (induct xes)
case Nil
show ?case by (auto simp: base insertion-Const)

next
case (Cons xe xes)
obtain x e where xe: xe = (x,e) by force
with Cons keys have x: x ∈ V by auto
from Cons
have ∃ d. eval (rec-list base (λ (i, e) -. v-t i ^^ e) xes) =
Const d + Const (c ∗ insertion v1 (

∏
(x, y)←xes. PVar x ^ y)) ∗ PVar y3

by (auto simp: insertion-mult insertion-Const)
from v-pow-e[OF x this, of e] obtain d where

id: eval ((v-t x ^^ e) (rec-list base (λ(i, e) -. v-t i ^^ e) xes)) =
Const d + Const (v1 x ^ e ∗ (c ∗ insertion v1 (

∏
(x, y)←xes. PVar x ^

y))) ∗ PVar y3
by auto

show ?case by (intro exI [of - d], simp add: xe id,
auto simp: Const-power Const-mult insertion-mult insertion-Const

insertion-power insertion-Var)
qed

} note encode-monom = this

{
fix r :: int mpoly
assume vars: vars r ⊆ V and pos: positive-poly r
define mcs where mcs = monom-list r
from monom-list[of r] have r : r = (

∑
(m, c)← mcs. monom m c) unfolding

mcs-def by auto
have mcs-pos: (m,c) ∈ set mcs =⇒ c ≥ 0 for m c

using monom-list-coeff pos unfolding mcs-def positive-poly-def by auto
from monom-list-keys[of - - r , folded mcs-def] vars
have mcs-V : (m,c) ∈ set mcs =⇒ keys m ⊆ V for m c by auto
have ∃ d. eval (encode-poly y3 r) = Const d + Const (insertion v1 r) ∗ PVar

y3
unfolding encode-poly-def mcs-def [symmetric] unfolding r using mcs-pos

mcs-V
unfolding insertion-sum-list map-map o-def

proof (induct mcs)
case Nil

68

show ?case by (auto simp add: Iz Const-0)
next

case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
from Cons(2) mc have c: c ≥ 0 by auto
from Cons(3) mc have keys m ⊆ V by auto
from encode-monom[OF c this]
obtain d1 where m: eval (encode-monom y3 m c) = Const d1 + Const

(insertion v1 (monom m c)) ∗ PVar y3 by auto
from Cons(1)[OF Cons(2−3)]
obtain d2 where IH : eval (rec-list z-t (λ (m,c)-. a-t (encode-monom y3 m

c)) mcs) =
Const d2 + Const (

∑
mc←mcs. insertion v1 (case mc of (m, c) ⇒ monom

m c)) ∗ PVar y3
by force

show ?case unfolding mc
apply (simp add: Ia m IH)
apply (simp add: Const-add algebra-simps)
by (auto simp flip: Const-add)

qed
} note encode-poly = this

from encode-poly[OF - pq(1)] V-def
obtain d1 where p: eval (encode-poly y3 p) = Const d1 + Const (insertion v1

p) ∗ PVar y3 by auto

from encode-poly[OF - pq(2)] V-def
obtain d2 where q: eval (encode-poly y3 q) = Const d2 + Const (insertion v1

q) ∗ PVar y3 by auto

define d3 where d3 = b0 + b2 ∗ d1 + rl
have ins-lhs: insertion (β 0 0 z3) (eval ?lhs) = d3 + (b3 + b2 ∗ insertion v1 p)
∗ z3 for z3

unfolding p d3-def lhs
by (simp add: insertion-add insertion-mult insertion-Const insertion-Var alge-

bra-simps ins-restL)

define d4 where d4 = b1 + b2 ∗ d2 + rr
have ins-rhs: insertion (β 0 0 z3) (eval ?rhs) = d4 + (b3 + b2 ∗ insertion v1

q) ∗ z3 for z3
unfolding q d4-def rhs
by (simp add: insertion-add insertion-mult insertion-Const insertion-Var alge-

bra-simps ins-restR)

define d5 where d5 = d4 − d3

define left where left = b3 + b2 ∗ insertion v1 p
define right where right = b3 + b2 ∗ insertion v1 q
define diff where diff = left − right

69

have gt-inst: z3 ≥ 0 =⇒ diff ∗ z3 > d5 for z3
using gt[unfolded gt-poly-def , rule-format, OF β, of 0 0 z3 , unfolded ins-lhs

ins-rhs]
by (auto simp: d5-def left-def right-def diff-def algebra-simps)

from this[of abs d5]
have diff ≥ 0

by (smt (verit) Groups.mult-ac(2) mult-le-cancel-right1 mult-minus-right)
from this[unfolded diff-def left-def right-def]
have b2 ∗ insertion v1 p ≥ b2 ∗ insertion v1 q by auto
with ‹b2 > 0 › have solution: insertion v1 p ≥ insertion v1 q by simp

define α where α x = (if x ∈ V then v1 x else 1) for x
from v have α: positive-interpr α unfolding positive-interpr-def α-def by auto
have insertion α q = insertion v1 q

by (rule insertion-irrelevant-vars, auto simp: α-def V-def)
also have . . . ≤ insertion v1 p by fact
also have . . . = insertion α p

by (rule insertion-irrelevant-vars, auto simp: α-def V-def)
finally show positive-poly-problem p q

unfolding positive-poly-problem-def [OF pq] using α by auto
qed
end

locale solution-poly-input-R = poly-input p q + poly-inter F-R I (>) :: int ⇒ -
for p q I +

assumes orient: orient-rule (lhs-R,rhs-R)
and linear-mono-interpretation: (g,n) ∈ F-R =⇒
∃ c a. I g = Const c + (

∑
i←[0 ..<n]. Const (a i) ∗ PVar i)

∧ c ≥ 0 ∧ (∀ i < n. a i > 0)
begin

lemma solution: positive-poly-problem p q
apply (rule poly-input-to-solution-common.solution[of - - I F-R [o-t] [z-t]])
apply (unfold-locales)
subgoal using orient unfolding lhs-R-def rhs-R-def by simp
subgoal by simp
subgoal by simp
subgoal unfolding F-R-def by auto
subgoal for g n using linear-mono-interpretation[of g n] unfolding F-R-def by

auto
done

end

locale lin-term-poly-input = poly-input p q for p q +
assumes lin-term: termination-by-linear-int-poly-interpretation F-R R

begin

definition I where I = (SOME I . linear-int-poly-inter F-R I ∧ int-poly-inter .termination-by-poly-interpretation

70

F-R I R)

lemma I : linear-int-poly-inter F-R I int-poly-inter .termination-by-poly-interpretation
F-R I R
using someI-ex[OF lin-term[unfolded termination-by-linear-int-poly-interpretation-def],

folded I-def] by auto

sublocale linear-int-poly-inter F-R I by (rule I (1))

lemma orient: orient-rule (lhs-R,rhs-R)
using I (2)[unfolded termination-by-interpretation-def termination-by-poly-interpretation-def]

unfolding R-def by auto

lemma extract-linear-poly: assumes g: (g,n) ∈ F-R
shows ∃ c a. I g = Const c + (

∑
i←[0 ..<n]. Const (a i) ∗ PVar i)

∧ c ≥ 0 ∧ (∀ i < n. a i > 0)
proof −

define p where p = I g
have sum-zero: (

∧
x. x ∈ set xs =⇒ x = 0) =⇒ sum-list (xs :: int list) = 0 for

xs by (induct xs, auto)
from valid[unfolded valid-monotone-poly-inter-def , rule-format, OF g]
have poly: valid-poly p

and mono: monotone-poly {..<n} p
and vars: vars p = {..<n}
by (auto simp: valid-monotone-poly-def p-def)

from linear [OF g] p-def
have linear : total-degree p ≤ 1 by auto
show ?thesis unfolding p-def [symmetric]

by (rule monotone-linear-poly-to-coeffs[OF linear poly mono vars])
qed

lemma solution: positive-poly-problem p q
apply (rule solution-poly-input-R.solution[of - - I])
apply (unfold-locales)
apply (rule orient)

apply (rule extract-linear-poly)
by auto

end

locale wm-lin-orient-poly-input = poly-input p q for p q +
assumes wm-orient: orientation-by-linear-wm-int-poly-interpretation F-R R ′

begin

definition I where I = (SOME I . linear-wm-int-poly-inter F-R I ∧ wm-int-poly-inter .oriented-by-interpretation
F-R I R ′)

lemma I : linear-wm-int-poly-inter F-R I wm-int-poly-inter .oriented-by-interpretation
F-R I R ′

using someI-ex[OF wm-orient[unfolded orientation-by-linear-wm-int-poly-interpretation-def],

71

folded I-def] by auto

sublocale linear-wm-int-poly-inter F-R I by (rule I (1))

lemma orient-R ′: orient-rule (lhs-R ′,rhs-R ′)
using I (2)[unfolded oriented-by-interpretation-def] unfolding R ′-def by auto

lemma extract-linear-poly: assumes g: (g,n) ∈ F-R
shows ∃ c a. I g = Const c + (

∑
i←[0 ..<n]. Const (a i) ∗ PVar i)

∧ c ≥ 0 ∧ (∀ i < n. a i ≥ 0)
proof −

define p where p = I g
have sum-zero: (

∧
x. x ∈ set xs =⇒ x = 0) =⇒ sum-list (xs :: int list) = 0 for

xs by (induct xs, auto)
from valid[unfolded valid-weakly-monotone-inter-def valid-weakly-monotone-poly-def ,

rule-format, OF g refl p-def]
have poly: valid-poly p

and mono: weakly-monotone-poly {..<n} p
and vars: vars p ⊆ {..<n}
by (auto simp: valid-monotone-poly-def p-def)

from linear [OF g] p-def
have linear : total-degree p ≤ 1 by auto
from coefficients-of-linear-poly[OF linear] obtain c b vs

where p: p = Const c + (
∑

i←vs. Const (b i) ∗ PVar i)
and vsd: distinct vs set vs = vars p sorted-list-of-set (vars p) = vs
and nz:

∧
v. v ∈ set vs =⇒ b v 6= 0

and c: c = coeff p 0
and b:

∧
i. b i = coeff p (monomial 1 i) by blast

define a where a x = (if x ∈ vars p then b x else 0) for x
have p = Const c + (

∑
i←vs. Const (b i) ∗ PVar i) by fact

also have (
∑

i←vs. Const (b i) ∗ PVar i) = (
∑

i ∈ set vs. Const (b i) ∗ PVar
i) using vsd(1)

by (rule sum-list-distinct-conv-sum-set)
also have . . . = (

∑
i ∈ set vs. Const (a i) ∗ PVar i) + 0 by (subst sum.cong,

auto simp: a-def vsd)
also have 0 = (

∑
i ∈ {..<n} − set vs. Const (a i) ∗ PVar i)

by (subst sum.neutral, auto simp: a-def vsd)
also have (

∑
i ∈ set vs. Const (a i) ∗ PVar i) + . . . = (

∑
i ∈ set vs ∪ ({..<n}

− set vs). Const (a i) ∗ PVar i)
by (subst sum.union-inter [symmetric], auto)

also have set vs ∪ ({..<n} − set vs) = set [0 ..<n] using vars vsd by auto
finally have pca: p = Const c + (

∑
i ← [0 ..<n]. Const (a i) ∗ PVar i)

by (subst sum-list-distinct-conv-sum-set, auto)

show ?thesis unfolding p-def [symmetric] pca
proof (intro exI conjI allI impI , rule refl)

show c: c ≥ 0 using poly[unfolded valid-poly-def , rule-format, of λ -. 0 ,
unfolded p]

by (auto simp: coeff-add[symmetric] coeff-Const coeff-sum-list o-def co-

72

eff-Const-mult
coeff-Var monomial-0-iff assignment-def)

fix i
assume i < n
show a i ≥ 0
proof (cases i ∈ set vs)

case False
thus ?thesis unfolding a-def using vsd by auto

next
case i: True
from nz[OF this] have a0 : a i 6= 0 b i = a i using i by (auto simp: a-def

vsd)
from split-list[OF i] obtain bef aft where vsi: vs = bef @ [i] @ aft by auto
with vsd(1) have i: i /∈ set (bef @ aft) by auto
define α where α = (λ x. if x = i then c + 1 else 0)
have assignment α unfolding assignment-def α-def using c by auto
from poly[unfolded valid-poly-def , rule-format, OF this, unfolded p]
have 0 ≤ c + (

∑
x←bef @ aft. b x ∗ α x) + (b i ∗ α i)

unfolding insertion-add vsi map-append sum-list-append insertion-Const
insertion-sum-list

map-map o-def insertion-mult insertion-Var
by (simp add: algebra-simps)

also have (
∑

x←bef @ aft. b x ∗ α x) = 0 by (rule sum-zero, insert i, auto
simp: α-def)

also have α i = (c + 1) unfolding α-def by auto
finally have le: 0 ≤ c ∗ (a i + 1) + a i using a0 by (simp add: algebra-simps)
with c show a i ≥ 0

by (smt (verit, best) mult-le-0-iff)
qed

qed
qed

lemma extract-a-poly: ∃ a0 a1 a2 . I a-sym = Const a0 + Const a1 ∗ PVar 0 +
Const a2 ∗ PVar 1
∧ a0 ≥ 0 ∧ a1 ≥ 0 ∧ a2 ≥ 0

proof −
have [simp]: [0 ..<2] = [0 ,1] by code-simp
have [simp]: (∀ i<2 . P i) = (P 0 ∧ P (1 :: nat)) for P by (auto simp add:

numeral-eq-Suc less-Suc-eq)
have (a-sym,2) ∈ F-R unfolding F-R-def F-def by auto
from extract-linear-poly[OF this]
show ?thesis by force

qed

lemma extract-f-poly: ∃ f0 f1 f2 f3 f4 . I f-sym = Const f0 + Const f1 ∗ PVar 0
+ Const f2 ∗ PVar 1

+ Const f3 ∗ PVar 2 + Const f4 ∗ PVar 3
∧ f0 ≥ 0 ∧ f1 ≥ 0 ∧ f2 ≥ 0 ∧ f3 ≥ 0 ∧ f4 ≥ 0

proof −

73

have [simp]: [0 ..<4] = [0 ,1 ,2 ,3] by code-simp
have [simp]: (∀ i<4 . P i) = (P 0 ∧ P (1 :: nat) ∧ P 2 ∧ P 3) for P

by (auto simp add: numeral-eq-Suc less-Suc-eq)
have (f-sym,4) ∈ F-R unfolding F-R-def by auto
from extract-linear-poly[OF this] obtain c f where

main: I f-sym = Const c + (
∑

i←[0 ..<4]. Const (f i) ∗ PVar i) ∧ 0 ≤ c ∧
(∀ i<4 . 0 ≤ f i) by auto

show ?thesis
apply (rule exI [of - c])
apply (rule exI [of - f 0])
apply (rule exI [of - f 1])
apply (rule exI [of - f 2])
apply (rule exI [of - f 3])
by (insert main, auto)

qed

lemma solution: positive-poly-problem p q
proof −

from extract-f-poly obtain f0 f1 f2 f3 f4 where
If : I f-sym =

Const f0 + Const f1 ∗ PVar 0 + Const f2 ∗ PVar 1 + Const f3 ∗ PVar 2
+ Const f4 ∗ PVar 3

and fpos: 0 ≤ f0 0 ≤ f1 0 ≤ f2 0 ≤ f3 0 ≤ f4 by auto
from extract-a-poly obtain a0 a1 a2 where

Ia: I a-sym = Const a0 + Const a1 ∗ PVar 0 + Const a2 ∗ PVar 1
and apos: 0 ≤ a0 0 ≤ a1 0 ≤ a2 by auto

{
fix i
assume i ∈ V
hence v: (v-sym i, 1) ∈ F-R unfolding F-R-def F-def by auto
from extract-linear-poly[OF v] have ∃ v0 v1 . I (v-sym i) = Const v0 + Const

v1 ∗ PVar 0 ∧ v0 ≥ 0 ∧ v1 ≥ 0
by auto

}
hence ∀ i. ∃ v0 v1 . i ∈ V −→ I (v-sym i) = Const v0 + Const v1 ∗ PVar 0
∧ v0 ≥ 0 ∧ v1 ≥ 0 by auto

from choice[OF this] obtain v0 where ∀ i. ∃ v1 . i ∈ V −→ I (v-sym i) =
Const (v0 i) + Const v1 ∗ PVar 0 ∧ v0 i ≥ 0 ∧ v1 ≥ 0 by auto

from choice[OF this] obtain v1 where Iv:
∧

i. i ∈ V =⇒ I (v-sym i) = Const
(v0 i) + Const (v1 i) ∗ PVar 0

and vpos:
∧

i. i ∈ V =⇒ v0 i ≥ 0 ∧ v1 i ≥ 0 by auto

have (z-sym,0) ∈ F-R unfolding F-R-def F-def by auto
from extract-linear-poly[OF this] obtain z0 where

Iz: I z-sym = Const z0
and zpos: z0 ≥ 0 by auto

have (o-sym,0) ∈ F-R unfolding F-R-def F-def by auto

74

from extract-linear-poly[OF this] obtain o0 where
Io: I o-sym = Const o0
and opos: o0 ≥ 0 by auto

have prod-ge: (
∧

x. x ∈ set xs =⇒ x ≥ 0) =⇒ prod-list xs ≥ 0 for xs :: int list
by (induct xs, auto)

define d1 where d1 = prod-list ([a1 , a2 , f1 , f2 , f3 , f4] @ map v1 V-list)
have d1 : d1 ≥ 0 unfolding d1-def using apos fpos vpos

by (intro prod-ge, auto simp: V-list)
from inter-all-symbol-pos-ctxt-generic[of I , OF If Ia Iv Iz]
obtain d where ctxt:

∧
t. eval (all-symbol-pos-ctxt t) =

Const d + Const d1 ∗ eval t by (auto simp: d1-def)

{
fix β :: var ⇒ int
assume assignment β
from orient-R ′[unfolded orient-rule split gt-poly-def , rule-format, OF this]
have insertion β (eval lhs-R ′) > insertion β (eval rhs-R ′) (is ?A) by auto
also have ?A←→ d1 ∗ insertion β (eval lhs-R) > d1 ∗ insertion β (eval rhs-R)

unfolding lhs-R ′-def rhs-R ′-def ctxt
insertion-add insertion-mult insertion-Const by auto

also have . . . ←→ (d1 > 0 ∧ insertion β (eval lhs-R) > insertion β (eval
rhs-R))

using d1 by (simp add: mult-less-cancel-left-disj)
finally have d1 > 0 insertion β (eval lhs-R) > insertion β (eval rhs-R) by

auto
}
from this(2) this(1)[of λ -. 0]
have d1 : d1 > 0 and gt: gt-poly (eval lhs-R) (eval rhs-R)

unfolding gt-poly-def by (auto simp: assignment-def)

hence orient-R: orient-rule (lhs-R, rhs-R) unfolding orient-rule by auto

from d1 have d1 6= 0 by auto
from this[unfolded d1-def , simplified] apos fpos
have apos: a0 ≥ 0 a1 > 0 a2 > 0

and fpos: f0 ≥ 0 f1 > 0 f2 > 0 f3 > 0 f4 > 0
and prod: prod-list (map v1 V-list) 6= 0 by auto

from prod have vpos1 : i ∈ V =⇒ v0 i ≥ 0 ∧ v1 i > 0 for i using vpos[of i]
unfolding prod-list-zero-iff set-map V-list by auto

{
fix g n
assume (g,n) ∈ F-R
then consider (f) (g,n) = (f-sym,4) | (a) (g,n) = (a-sym,2) | (z) (g,n) =

(z-sym,0)
| (o) (g,n) = (o-sym,0) | (v) i where (g,n) = (v-sym i, Suc 0) i ∈ V
unfolding F-R-def F-def by auto

75

hence ∃ c a. I g = Const c + (
∑

i←[0 ..<n]. Const (a i) ∗ PVar i) ∧ 0 ≤ c ∧
(∀ i<n. 0 < a i)

proof cases
case ∗: a
have [simp]: [0 ..<2] = [0 ,1] by code-simp
thus ?thesis using ∗ apos Ia

by (intro exI [of - a0] exI [of - λ i. if i = 0 then a1 else a2], auto)
next

case ∗: f
have [simp]: [0 ..<4] = [0 ,1 ,2 ,3] by code-simp
thus ?thesis using ∗ If fpos

by (intro exI [of - f0]
exI [of - λ i. if i = 0 then f1 else if i = 1 then f2 else if i = 2 then f3 else

f4], auto)
next

case ∗: z
show ?thesis using ∗ Iz zpos by auto

next
case ∗: o
show ?thesis using ∗ Io opos by auto

next
case ∗: (v i)
show ?thesis using ∗ Iv[OF ∗(2)] vpos1 [OF ∗(2)]

by (intro exI [of - v0 i] exI [of - λ -. v1 i], auto)
qed

} note main = this

show ?thesis
apply (rule solution-poly-input-R.solution[of - - I])
apply unfold-locales
using orient-R main by auto

qed
end

context poly-input
begin

Theorem 3.4 in paper
theorem linear-polynomial-termination-with-natural-numbers-undecidable:

positive-poly-problem p q ←→ termination-by-linear-int-poly-interpretation F-R
R
proof

assume positive-poly-problem p q
interpret solvable-poly-problem

by (unfold-locales, fact)
from solution-imp-linear-termination-R
show termination-by-linear-int-poly-interpretation F-R R .

next
assume termination-by-linear-int-poly-interpretation F-R R

76

interpret lin-term-poly-input
by (unfold-locales, fact)

from solution show positive-poly-problem p q .
qed

Theorem 3.9
theorem orientation-by-linear-wm-int-poly-interpretation-undecidable:
positive-poly-problem p q ←→ orientation-by-linear-wm-int-poly-interpretation F-R

R ′

proof
assume positive-poly-problem p q
interpret solvable-poly-problem

by (unfold-locales, fact)
from solution-imp-linear-termination-R ′

have termination-by-linear-int-poly-interpretation F-R R ′ .
from this[unfolded termination-by-linear-int-poly-interpretation-def] obtain I

where lin: linear-int-poly-inter F-R I and
R ′: int-poly-inter .termination-by-poly-interpretation F-R I R ′

by auto
interpret linear-int-poly-inter F-R I by fact
show orientation-by-linear-wm-int-poly-interpretation F-R R ′

unfolding orientation-by-linear-wm-int-poly-interpretation-def
proof (intro exI conjI)

show linear-wm-int-poly-inter F-R I
proof
show valid-weakly-monotone-inter unfolding valid-weakly-monotone-inter-def
proof

fix f
assume f ∈ F-R
from valid[unfolded valid-monotone-poly-inter-def , rule-format, OF this]
have valid-monotone-poly f by auto
thus valid-weakly-monotone-poly f

by (rule monotone-imp-weakly-monotone, auto)
qed

qed
interpret linear-wm-int-poly-inter F-R I by fact
show oriented-by-interpretation R ′ unfolding oriented-by-interpretation-def
using R ′ unfolding termination-by-poly-interpretation-def termination-by-interpretation-def

.
qed

next
assume orientation-by-linear-wm-int-poly-interpretation F-R R ′

interpret wm-lin-orient-poly-input
by (unfold-locales, fact)

from solution show positive-poly-problem p q .
qed

end

Separate locale to define another interpretation, i.e., the one of Lemma 3.6

77

locale poly-input-non-lin-solution = poly-input
begin

Non-linear interpretation of Lemma 3.6
fun I :: symbol ⇒ int mpoly where

I f-sym = PVar 2 ∗ PVar 3 + PVar 0 + PVar 1 + PVar 2 + PVar 3
| I a-sym = PVar 0 + PVar 1
| I z-sym = 0
| I o-sym = Const (1 + insertion (λ -. 1) q)
| I (v-sym i) = PVar 0

sublocale inter-R: poly-inter F-R I (>) .

lemma inter-encode-num: assumes c ≥ 0
shows inter-R.eval (encode-num x c) = Const c ∗ PVar x

proof −
from assms obtain n where cn: c = int n by (metis nonneg-eq-int)
hence natc: nat c = n by auto
show ?thesis unfolding encode-num-def natc unfolding cn

by (induct n, auto simp: Const-0 Const-1 algebra-simps Const-add)
qed

lemma inter-v-pow-e: inter-R.eval ((v-t x ^^ e) t) = inter-R.eval t
by (induct e, auto)

lemma inter-encode-monom: assumes c: c ≥ 0
shows inter-R.eval (encode-monom y m c) = Const (insertion (λ -.1) (monom

m c)) ∗ PVar y
proof −

define xes where xes = var-list m
from var-list[of m c]
have monom: monom m c = Const c ∗ (

∏
(x, e)← xes . PVar x ^ e) unfolding

xes-def .
show ?thesis unfolding encode-monom-def monom xes-def [symmetric]
proof (induct xes)

case Nil
show ?case by (simp add: inter-encode-num[OF c] insertion-Const)

next
case (Cons xe xes)
obtain x e where xe: xe = (x,e) by force
show ?case by (simp add: xe inter-v-pow-e Cons Const-power

insertion-Const insertion-mult insertion-power insertion-Var Const-mult)
qed

qed

lemma inter-encode-poly: assumes positive-poly r
shows inter-R.eval (encode-poly x r) = Const (insertion (λ -.1) r) ∗ PVar x

proof −
define mcs where mcs = monom-list r

78

from monom-list[of r] have r : r = (
∑

(m, c)← mcs. monom m c) unfolding
mcs-def by auto

have mcs: (m,c) ∈ set mcs =⇒ c ≥ 0 for m c
using monom-list-coeff assms unfolding mcs-def positive-poly-def by auto

show ?thesis unfolding encode-poly-def mcs-def [symmetric] unfolding r inser-
tion-sum-list map-map o-def

using mcs
proof (induct mcs)

case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
from Cons(2) mc have c: c ≥ 0 by auto
note monom = inter-encode-monom[OF this, of x m]
show ?case

by (simp add: mc monom algebra-simps, subst Cons(1), insert Cons(2), auto
simp: Const-add algebra-simps)

qed simp
qed

lemma valid-monotone-inter : inter-R.valid-monotone-poly-inter
unfolding inter-R.valid-monotone-poly-inter-def

proof (intro ballI , unfold inter-R.valid-monotone-poly-def , clarify, intro conjI)
fix f n
assume f : (f ,n) ∈ F-R
have [simp]: vars (PVar 2 ∗ PVar 3 + (PVar 0 :: int mpoly) + PVar (Suc 0)

+ PVar 2 + PVar 3) = {0 ,1 ,2 ,3}
unfolding vars-def apply (transfer , simp add: Var0-def image-comp) by

code-simp
have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0)) = {0 ,1}

unfolding vars-def apply (transfer , simp add: Var0-def image-comp) by
code-simp

from f show vars (I f) = {..< n} unfolding F-R-def F-def by auto
have insertion (λ -. 1) q ≥ 0

by (rule insertion-positive-poly[OF - pq(2)], auto)
with f show valid-poly (I f) unfolding F-R-def F-def

by (auto simp: valid-poly-def insertion-add assignment-def insertion-Var inser-
tion-mult insertion-Const)

have x4 : x < 4 =⇒ x = 0 ∨ x = Suc 0 ∨ x = 2 ∨ x = 3 for x by linarith
have x2 : x < 2 =⇒ x = 0 ∨ x = Suc 0 for x by linarith
have tedious-case: inter-R.monotone-poly {..<4} (I f-sym) unfolding

monotone-poly-wrt-def I .simps
proof (intro allI impI , goal-cases)

case (1 α x v)
have manual: (α(x := v)) 2 ∗ (α(x := v)) 3 ≥ α 2 ∗ α 3

by (intro mult-mono, insert 1 , auto simp: assignment-def dest: spec[of - 2])
thus ?case unfolding insertion-add insertion-mult insertion-Var using 1 x4

by auto
qed
with f show inter-R.monotone-poly {..<n} (I f) unfolding F-R-def F-def
by (auto simp: monotone-poly-wrt-def insertion-add insertion-mult insertion-Var

79

assignment-def
dest: x4 x2)

qed

Lemma 3.6 in the paper
lemma orient-R-main: assumes assignment β

shows insertion β (inter-R.eval lhs-R) > insertion β (inter-R.eval rhs-R)
proof −

let ?α = λ -. 1
have reason: insertion ?α q + β y3 + insertion ?α p ∗ insertion ?α q ∗ β y3 +

insertion ?α p ∗ 2 ∗ β y3 ≥ 0
by (intro add-nonneg-nonneg mult-nonneg-nonneg insertion-positive-poly pq,

insert assms, auto simp: assignment-def)
show insertion β (inter-R.eval lhs-R) > insertion β (inter-R.eval rhs-R)

unfolding lhs-R-def rhs-R-def
using reason
by (simp add: inter-encode-poly[OF pq(1)] inter-encode-poly[OF pq(2)]

insertion-add insertion-mult insertion-Const insertion-Var algebra-simps)
qed

lemma polynomial-termination-R: termination-by-int-poly-interpretation F-R R
unfolding termination-by-int-poly-interpretation-def

proof (intro exI conjI)
interpret int-poly-inter F-R I

by (unfold-locales, rule valid-monotone-inter)
show int-poly-inter F-R I ..
show termination-by-poly-interpretation R
unfolding termination-by-interpretation-def termination-by-poly-interpretation-def

R-def
proof (clarify, intro conjI)

show inter-R.orient-rule (lhs-R,rhs-R)
unfolding inter-R.gt-poly-def inter-R.orient-rule
by (intro allI impI orient-R-main)

qed (insert lhs-R-F rhs-R-F , auto)
qed

lemma polynomial-termination-R ′: termination-by-int-poly-interpretation F-R R ′

unfolding termination-by-int-poly-interpretation-def
proof (intro exI conjI)

interpret int-poly-inter F-R I
by (unfold-locales, rule valid-monotone-inter)

show int-poly-inter F-R I ..
show termination-by-poly-interpretation R ′

unfolding termination-by-poly-interpretation-def termination-by-interpretation-def
R ′-def

proof (clarify, intro conjI)
show inter-R.orient-rule (lhs-R ′,rhs-R ′)

unfolding inter-R.gt-poly-def inter-R.orient-rule
proof (intro allI impI)

80

fix β :: var ⇒ int
assume ass: assignment β
define zctxt where zctxt vs = z-contexts (map (λi. (v-sym i, 1 , 0)) vs) for

vs
have zctxt: inter-R.eval (zctxt vs t) = inter-R.eval t for vs t

unfolding zctxt-def z-contexts-def z-context-def by (induct vs, auto)
have (insertion β (inter-R.eval lhs-R ′) > insertion β (inter-R.eval rhs-R ′))
←→ insertion β (inter-R.eval (zctxt V-list lhs-R)) > insertion β (inter-R.eval

(zctxt V-list rhs-R))
unfolding lhs-R ′-def rhs-R ′-def
unfolding all-symbol-pos-ctxt-def contexts-def
unfolding z-contexts-append zctxt-def [symmetric]
by (simp add: z-contexts-def z-context-def nth-append)

also have . . . ←→ insertion β (inter-R.eval lhs-R) > insertion β (inter-R.eval
rhs-R)

unfolding zctxt ..
also have . . . by (rule orient-R-main[OF ass])
finally show insertion β (inter-R.eval lhs-R ′) > insertion β (inter-R.eval

rhs-R ′) .
qed

qed (insert lhs-R ′-F rhs-R ′-F , auto)
qed

end
end

6 Undecidability of KBO with Subterm Coefficients
theory KBO-Subterm-Coefficients-Undecidable

imports
Hilbert10-to-Inequality
Knuth-Bendix-Order .KBO
Linear-Poly-Termination-Undecidable

begin

lemma count-sum-list: count (sum-list ms) x = sum-list (map (λ m. count m x)
ms)

by (induct ms, auto)

lemma sum-list-scf-list-prod: sum-list (map f (scf-list scf as)) = sum-list (map (λ
i. scf i ∗ f (as ! i)) [0 ..<length as])

unfolding scf-list-def
unfolding map-concat
unfolding sum-list-concat map-map o-def
apply (subst zip-nth-conv, force)
unfolding map-map o-def split
apply (rule arg-cong[of - - sum-list])
by (intro nth-equalityI , auto simp: sum-list-replicate)

81

lemma count-vars-term-different-var : assumes x: x /∈ vars-term t
shows count (vars-term-ms (scf-term scf t)) x = 0

proof −
from assms have x /∈ vars-term (scf-term scf t)

using vars-term-scf-subset by fastforce
thus ?thesis

by (simp add: count-eq-zero-iff)
qed

context kbo
begin
definition kbo-orientation :: (′f , ′v)rule set ⇒ bool where

kbo-orientation R = (∀ (l,r) ∈ R. fst (kbo l r))
end

definition kbo-with-sc-termination :: (′f , ′v)rule set ⇒ bool where
kbo-with-sc-termination R = (∃ w w0 sc least pr-strict pr-weak. admissible-kbo w

w0 pr-strict pr-weak least sc
∧ kbo.kbo-orientation w w0 sc least pr-strict pr-weak R)

context poly-input
begin

context
fixes sc
assumes sc: sc (a-sym, Suc (Suc 0)) 0 = (1 :: nat)

sc (a-sym, Suc (Suc 0)) (Suc 0) = 1
begin
lemma count-vars-term-encode-num-nat:

count (vars-term-ms (scf-term sc (encode-num x (int n)))) x = n
unfolding encode-num-def nat-int
by (induct n, auto simp add: scf-list-def sc)

lemma count-vars-term-encode-num:
c ≥ 0 =⇒ int (count (vars-term-ms (scf-term sc (encode-num x c))) x) = c
using count-vars-term-encode-num-nat[of x nat c] by auto

lemma count-vars-term-v-pow-e:
count (vars-term-ms (scf-term sc ((v-t x ^^ e) t))) y
= (sc (v-sym x,1) 0)^e ∗ count (vars-term-ms (scf-term sc t)) y

proof (induct e)
case (Suc e)
thus ?case by (simp split: if-splits add: scf-list-def sum-mset-sum-list sum-list-replicate

count-sum-list sc)
qed force

lemma count-vars-term-encode-monom: assumes c: c ≥ 0
shows int (count (vars-term-ms (scf-term sc (encode-monom x m c))) x)

82

= insertion (λ v. int (sc (v-sym v,1) 0)) (monom m c)
proof −

define xes where xes = var-list m
from var-list[of m c]
have monom: monom m c = Const c ∗ (

∏
(x, e)← xes . PVar x ^ e) unfolding

xes-def .
show ?thesis unfolding encode-monom-def monom xes-def [symmetric]
proof (induct xes)

case Nil
show ?case by (simp add: count-vars-term-encode-num[OF c] insertion-Const

sc)
next

case (Cons xe xes)
obtain x e where xe: xe = (x,e) by force
show ?case

by (simp add: xe count-vars-term-v-pow-e Cons
insertion-Const insertion-mult insertion-power insertion-Var when-def)

qed
qed

Lemma 4.5
lemma count-vars-term-encode-poly-generic: assumes positive-poly r

shows int (count (vars-term-ms (scf-term sc (encode-poly x r))) x) =
insertion (λ v. int (sc (v-sym v,1) 0)) r

proof −
define mcs where mcs = monom-list r
from monom-list[of r] have r : r = (

∑
(m, c)← mcs. monom m c) unfolding

mcs-def by auto
have mcs: (m,c) ∈ set mcs =⇒ c ≥ 0 for m c

using monom-list-coeff assms unfolding mcs-def positive-poly-def by auto
show ?thesis unfolding encode-poly-def mcs-def [symmetric] unfolding r inser-

tion-sum-list map-map o-def
using mcs

proof (induct mcs)
case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
from Cons(2) mc have c: c ≥ 0 by auto
note monom = count-vars-term-encode-monom[OF this, of x m]
show ?case

apply (simp add: mc monom scf-list-def sc)
apply (subst Cons(1))
using Cons(2) by (auto simp: when-def)

qed simp
qed
end

Theorem 4.6
theorem kbo-sc-termination-R-imp-solution:

assumes kbo-with-sc-termination R

83

shows positive-poly-problem p q
proof −

from assms[unfolded kbo-with-sc-termination-def] obtain w w0 sc least pr-strict
pr-weak

where
admissible-kbo w w0 pr-strict pr-weak least sc

and orient: kbo.kbo-orientation w w0 sc least pr-strict pr-weak R
by blast

interpret admissible-kbo w w0 pr-strict pr-weak least sc by fact
define l where l i = args lhs-R ! i for i
define r where r i = args rhs-R ! i for i
define as :: nat list where as = [0 ,1 ,2 ,3]
have upt-as: [0 ..<length as] = as unfolding as-def by auto
have lhs: lhs-R = Fun f-sym (map l as) unfolding lhs-R-def l-def as-def by simp
have rhs: rhs-R = Fun f-sym (map r as) unfolding rhs-R-def r-def as-def by

simp
from orient[unfolded kbo-orientation-def R-def]
have fst (kbo lhs-R rhs-R) by auto
from this[unfolded kbo.simps[of lhs-R]]
have vars-term-ms (SCF rhs-R) ⊆# vars-term-ms (SCF lhs-R) by (auto split:

if-splits)
hence count: count (vars-term-ms (SCF rhs-R)) x ≤ count (vars-term-ms (SCF

lhs-R)) x for x
by (rule mset-subset-eq-count)

let ?f = (f-sym, length as)
{

fix i
assume i: i ∈ set as
from i have vl: vars-term (l i) ⊆ {i} unfolding l-def lhs-R-def as-def y1-def

y2-def y3-def
using vars-encode-poly[of i p] by auto

from count-vars-term-different-var [of - l i sc] vl
have count-l-diff : i 6= j =⇒ count (vars-term-ms (SCF (l i))) j = 0 for j by

auto
from i have vr : vars-term (r i) ⊆ {i} unfolding r-def rhs-R-def as-def y1-def

y2-def y3-def
using vars-encode-poly[of i q] by auto

from count-vars-term-different-var [of - r i sc] vr
have count-r-diff : i 6= j =⇒ count (vars-term-ms (SCF (r i))) j = 0 for j by

auto
{

fix x
have count (vars-term-ms (SCF rhs-R)) x
= sum-list (map (λ i. count (vars-term-ms (SCF (r i))) x) (scf-list (sc ?f)

as)) unfolding rhs
apply (simp add: o-def)
apply (unfold mset-map[symmetric] sum-mset-sum-list)
apply (unfold count-sum-list map-map o-def)
by simp

84

also have . . . = (
∑

i←as. sc ?f i ∗ count (vars-term-ms (SCF (r (as ! i))))
x)

unfolding sum-list-scf-list-prod upt-as ..
finally have count (vars-term-ms (SCF rhs-R)) x = (

∑
i←as. sc ?f i ∗ count

(vars-term-ms (SCF (r (as ! i)))) x) .
} note count-rhs = this
{

fix x
have count (vars-term-ms (SCF lhs-R)) x
= sum-list (map (λ i. count (vars-term-ms (SCF (l i))) x) (scf-list (sc ?f)

as)) unfolding lhs
apply (simp add: o-def)
apply (unfold mset-map[symmetric] sum-mset-sum-list)
apply (unfold count-sum-list map-map o-def)
by simp
also have . . . = (

∑
i←as. sc ?f i ∗ count (vars-term-ms (SCF (l (as ! i))))

x)
unfolding sum-list-scf-list-prod upt-as ..

finally have count (vars-term-ms (SCF lhs-R)) x = (
∑

i←as. sc ?f i ∗ count
(vars-term-ms (SCF (l (as ! i)))) x) .

} note count-lhs = this
note count-lhs count-rhs count-l-diff count-r-diff

} note cf = this[unfolded as-def]
let ?f = (f-sym, Suc (Suc (Suc (Suc 0))))

{
fix i :: nat
assume i: i ∈ {0 ,1 ,2 ,3}
have sc ?f i ∗ count (vars-term-ms (SCF (r i))) i = count (vars-term-ms (SCF

rhs-R)) i
by (subst cf (2), insert i, auto simp add: cf)

also have . . . ≤ count (vars-term-ms (SCF lhs-R)) i by fact
also have . . . = sc ?f i ∗ count (vars-term-ms (SCF (l i))) i

by (subst cf (1), insert i, auto simp add: cf)
finally have count (vars-term-ms (SCF (r i))) i ≤ count (vars-term-ms (SCF

(l i))) i
using scf [of i Suc (Suc (Suc (Suc 0))) f-sym] i by auto

} note count-le = this

from count-le[of 0 , unfolded r-def l-def rhs-R-def lhs-R-def y1-def]
have sc (a-sym, Suc (Suc 0)) 0 ≤ 1

apply simp
apply (unfold mset-map[symmetric] sum-mset-sum-list)
by (simp add: count-sum-list sum-list-scf-list-prod)

with scf [of 0 Suc (Suc 0) a-sym]
have a20 : sc (a-sym, Suc (Suc 0)) 0 = 1 by auto

from count-le[of 1 , unfolded r-def l-def rhs-R-def lhs-R-def y2-def]
have sc (a-sym, Suc (Suc 0)) 1 ≤ 1

85

apply simp
apply (unfold mset-map[symmetric] sum-mset-sum-list)
by (simp add: count-sum-list sum-list-scf-list-prod)

with scf [of 1 Suc (Suc 0) a-sym]
have a21 : sc (a-sym, Suc (Suc 0)) (Suc 0) = 1 by auto

note encode = count-vars-term-encode-poly-generic[of sc, OF a20 a21]

have Suc (count (vars-term-ms (SCF (encode-poly y3 q))) y3) = count (vars-term-ms
(SCF (r 2))) 2

by (simp add: r-def rhs-R-def scf-list-def a20 a21 y3-def)
also have . . . ≤ count (vars-term-ms (SCF (l 2))) 2 using count-le[of 2] by

simp
also have . . . = Suc (count (vars-term-ms (SCF (encode-poly y3 p))) y3)

by (simp add: l-def lhs-R-def scf-list-def a20 a21 y3-def)
finally have int (count (vars-term-ms (SCF (encode-poly y3 q))) y3) ≤ int

(count (vars-term-ms (SCF (encode-poly y3 p))) y3)
by auto

from this[unfolded encode[OF pq(1)] encode[OF pq(2)]]
show ?thesis

unfolding positive-poly-problem-def [OF pq]
by (intro exI [of - λv. int (sc (v-sym v, 1) 0)], auto simp: positive-interpr-def

scf)
qed
end

context solvable-poly-problem
begin

definition w0 :: nat where w0 = 1

fun sc :: symbol × nat ⇒ nat ⇒ nat where
sc (v-sym i, Suc 0) - = nat (α i)
| sc - - = 1

context fixes wr :: nat
begin
fun w-R :: symbol × nat ⇒ nat where

w-R (f-sym,n) = (if n = 4 then 0 else 1)
| w-R (a-sym,n) = (if n = 2 then 0 else 1)
| w-R (o-sym,0) = wr
| w-R - = 1
end

definition w-rhs where w-rhs = weight-fun.weight (w-R 1) w0 sc rhs-R

abbreviation w where w ≡ w-R w-rhs

definition least where least f = (w (f , 0) = w0 ∧ (∀ g. w (g, 0) = w0 −→ (g,

86

0 :: nat) = (f , 0)))

lemma α0 : α x > 0 using α(1) unfolding positive-interpr-def by auto

sublocale admissible-kbo w w0 (λ - -. False) (=) least sc
apply (unfold-locales)
subgoal for f unfolding w0-def

by (cases f , auto simp add: weight-fun.weight.simps w-rhs-def rhs-R-def)
subgoal by (simp add: w0-def)
subgoal for f g n by (cases f , auto)
subgoal for f unfolding least-def by auto
subgoal for i n f by (cases f ; cases n; cases n − 1 ; auto intro: α0)
by auto

lemma insertion-pos: positive-poly r =⇒ insertion α r ≥ 0
unfolding positive-poly-def by (smt (verit) α0 insertion-nonneg)

lemma count-vars-term-encode-poly: assumes positive-poly r
shows count (vars-term-ms (SCF (encode-poly x r))) y = (nat (insertion α r)

when x = y)
proof (cases y = x)

case False
with count-vars-term-different-var [of y encode-poly x r sc] vars-encode-poly[of x

r]
show ?thesis by (auto simp: when-def)

next
case y: True
from count-vars-term-encode-poly-generic[of sc - x, OF - - assms]
have int (count (vars-term-ms (SCF (encode-poly x r))) x)
= insertion (λv. int (sc (v-sym v, 1) 0)) r by auto

also have (λv. int (sc (v-sym v, 1) 0)) = α
by (intro ext, insert α0 , auto simp: order .order-iff-strict)

finally show ?thesis unfolding y
using insertion-pos[OF assms] by auto

qed

Theorem 4.7 in context
theorem kbo-with-sc-termination: kbo-with-sc-termination R

unfolding kbo-with-sc-termination-def
proof (intro exI conjI)

show admissible-kbo w w0 (λ - -. False) (=) least sc ..
show kbo-orientation R unfolding R-def kbo-orientation-def
proof (clarify)

{
fix t :: (symbol,var)term
assume (o-sym,0) /∈ funas-term t
hence weight-fun.weight (w-R (Suc 0)) w0 sc t = weight t (is ?id t)
proof (induct t)

case (Var x)

87

show ?case by (auto simp: weight-fun.weight.simps)
next

case (Fun f ts)
hence t ∈ set ts =⇒ ?id t for t by auto
hence IH : map2 (λti i. weight-fun.weight (w-R (Suc 0)) w0 sc ti ∗ sc (f ,

length ts) i) ts
[0 ..<length ts] =

map2 (λti i. weight ti ∗ sc (f , length ts) i) ts [0 ..<length ts]
by (intro nth-equalityI , auto)

have id: w-R (Suc 0) (f , length ts) = w (f , length ts)
using Fun(2) by (cases f ; cases ts, auto)

show ?case by (auto simp: id weight-fun.weight.simps Let-def IH)
qed

} note weight-switch = this

from funas-encode-poly-q[of y3]
have o-q: (o-sym,0) /∈ funas-term (encode-poly y3 q) by (auto simp: F-def)
have weight rhs-R = 3 + 3 ∗ w0 + weight (encode-poly y3 q)

unfolding rhs-R-def by (simp add: scf-list-def)
also have . . . = w-rhs unfolding weight-switch[OF o-q, symmetric]

unfolding w-rhs-def rhs-R-def by (simp add: weight-fun.weight.simps)
also have . . . < w0 + w-rhs using w0 by auto
also have . . . ≤ weight lhs-R unfolding lhs-R-def

by (simp add: scf-list-def)
finally have weight: weight rhs-R < weight lhs-R .
from α(2) insertion-pos[OF pq(1)] insertion-pos[OF pq(2)]
have sol: nat (insertion α q) ≤ nat (insertion α p) by auto
have vars: vars-term-ms (SCF rhs-R) ⊆# vars-term-ms (SCF lhs-R)
proof (intro mset-subset-eqI)

fix x
show count (vars-term-ms (SCF rhs-R)) x ≤ count (vars-term-ms (SCF

lhs-R)) x
unfolding rhs-R-def lhs-R-def using y-vars sol

by (simp add: scf-list-def count-vars-term-encode-poly[OF pq(1)] count-vars-term-encode-poly[OF
pq(2)])

qed
from weight vars show fst (kbo lhs-R rhs-R)

unfolding kbo.simps[of lhs-R rhs-R] by auto
qed

qed

end

Theorem 4.7 outside solvable-context
context poly-input
begin
theorem solvable-imp-kbo-with-sc-termination:

assumes positive-poly-problem p q
shows kbo-with-sc-termination R

88

by (rule solvable-poly-problem.kbo-with-sc-termination, unfold-locales, fact)

Combining 4.6 and 4.7
corollary solvable-iff-kbo-with-sc-termination:

positive-poly-problem p q ←→ kbo-with-sc-termination R
using solvable-imp-kbo-with-sc-termination kbo-sc-termination-R-imp-solution by

blast
end
end

7 Undecidability of Polynomial Termination over
Integers

theory Poly-Termination-Undecidable
imports

Linear-Poly-Termination-Undecidable
Preliminaries-on-Polynomials-2

begin

context poly-input
begin

definition y4 :: var where y4 = 3
definition y5 :: var where y5 = 4
definition y6 :: var where y6 = 5
definition y7 :: var where y7 = 6

abbreviation q-t where q-t t ≡ Fun q-sym [t]
abbreviation h-t where h-t t ≡ Fun h-sym [t]
abbreviation g-t where g-t t1 t2 ≡ Fun g-sym [t1 , t2]

Definition 5.1
definition lhs-S = Fun f-sym [

Var y1 ,
Var y2 ,
a-t (encode-poly y3 p) (Var y3),
q-t (h-t (Var y4)),
h-t (Var y5),
h-t (Var y6),
g-t (Var y7) o-t]

definition rhs-S = Fun f-sym [
a-t (Var y1) z-t,
a-t z-t (Var y2),
a-t (encode-poly y3 q) (Var y3),
h-t (h-t (q-t (Var y4))),
foldr v-t V-list (a-t (Var y5) (Var y5)),
Fun f-sym (replicate 7 (Var y6)),

89

g-t (Var y7) z-t]

definition S where S = {(lhs-S , rhs-S)}

definition F-S where F-S = {(f-sym,7), (h-sym,1), (g-sym,2), (o-sym,0), (q-sym,1)}
∪ F

lemma lhs-S-F : funas-term lhs-S ⊆ F-S
proof −

from funas-encode-poly-p
show funas-term lhs-S ⊆ F-S unfolding lhs-S-def by (auto simp: F-S-def F-def)

qed

lemma funas-fold-vs[simp]: funas-term (foldr v-t V-list t) = (λ i. (v-sym i,1)) ‘ V
∪ funas-term t
proof −

have id: funas-term (foldr v-t xs t) = (λ i. (v-sym i,1)) ‘ set xs ∪ funas-term t
for xs

by (induct xs, auto)
show ?thesis unfolding id

by (auto simp: V-list)
qed

lemma vars-fold-vs[simp]: vars-term (foldr v-t vs t) = vars-term t
by (induct vs, auto)

lemma funas-term-r5 : funas-term (foldr v-t V-list (a-t (Var y5) (Var y5))) ⊆ F-S

by (auto simp: F-S-def F-def)

lemma rhs-S-F : funas-term rhs-S ⊆ F-S
proof −

from funas-encode-poly-q funas-term-r5
show funas-term rhs-S ⊆ F-S unfolding rhs-S-def by (auto simp: F-S-def F-def)

qed
end

lemma poly-inter-eval-cong: assumes
∧

f a. (f ,a) ∈ funas-term t =⇒ I f = I ′ f
shows poly-inter .eval I t = poly-inter .eval I ′ t
using assms

proof (induct t)
case (Var x)
show ?case by (simp add: poly-inter .eval.simps)

next
case (Fun f ts)
{

fix i
assume i < length ts
hence ts ! i ∈ set ts

90

by auto
with Fun(1)[OF this Fun(2)]
have poly-inter .eval I (ts ! i) = poly-inter .eval I ′ (ts ! i) by force

} note IH = this
from Fun(2) have I f = I ′ f by auto
thus ?case using IH

by (auto simp: poly-inter .eval.simps insertion-substitute intro!: mpoly-extI in-
sertion-irrelevant-vars)
qed

The easy direction of Theorem 5.4
context solvable-poly-problem
begin

definition c-S where c-S = max 7 (2 ∗ prod-list (map α V-list))

lemma c-S : c-S > 0 unfolding c-S-def by auto

fun I-S :: symbol ⇒ int mpoly where
I-S f-sym = PVar 0 + PVar 1 + PVar 2 + PVar 3 + PVar 4 + PVar 5 +

PVar 6
| I-S a-sym = PVar 0 + PVar 1
| I-S z-sym = 0
| I-S o-sym = 1
| I-S (v-sym i) = Const (α i) ∗ PVar 0
| I-S q-sym = mmonom (monomial 2 0) c-S — c ∗ (PVar 0)2
| I-S g-sym = PVar 0 + PVar 1
| I-S h-sym = mmonom (monomial 1 0) c-S — c ∗ PVar 0

declare single-numeral[simp del]
declare insertion-monom[simp del]

interpretation inter-S : poly-inter F-S I-S (>) .

lemma inter-S-encode-poly: assumes positive-poly r
shows inter-S .eval (encode-poly x r) = Const (insertion α r) ∗ PVar x
by (rule inter-encode-poly-generic[OF - - - - assms], auto)

lemma valid-monotone-inter-S : inter-S .valid-monotone-poly-inter
unfolding inter-S .valid-monotone-poly-inter-def

proof (intro ballI)
fix fn
assume f : fn ∈ F-S
show inter-S .valid-monotone-poly fn
proof (cases fn ∈ F)

case True
show inter-S .valid-monotone-poly fn

by (rule valid-monotone-inter-F [OF - - - - α(1) True], auto)
next

91

case False
with f have f : fn ∈ F-S − F by auto
have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0) + PVar 2 + PVar 3

+ PVar 4 + PVar 5 + PVar 6) = {0 ,1 ,2 ,3 ,4 ,5 ,6}
unfolding vars-def apply (transfer ′, simp add: Var0-def image-comp) by

code-simp
have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0)) = {0 ,1}

unfolding vars-def apply (transfer ′, simp add: Var0-def image-comp) by
code-simp

show ?thesis unfolding inter-S .valid-monotone-poly-def using f
proof (intro ballI impI allI , clarify, intro conjI)

fix f n
assume f : (f ,n) ∈ F-S (f ,n) /∈ F
from f show vars (I-S f) = {..< n} unfolding F-S-def using c-S

by (auto simp: vars-monom-single-cases)
from f c-S show valid-poly (I-S f) unfolding F-S-def

by (auto simp: valid-poly-def insertion-add assignment-def)
have x2 : x < 2 =⇒ x = 0 ∨ x = Suc 0 for x by linarith
have x7 : x < 7 =⇒ x = 0 ∨ x = Suc 0 ∨ x = 2 ∨ x = 3 ∨ x = 4 ∨ x = 5

∨ x = 6 for x by linarith
from f c-S show inter-S .monotone-poly {..<n} (I-S f) unfolding F-S-def
by (auto simp: monotone-poly-wrt-def insertion-add assignment-def power-strict-mono

dest: x2 x7)
qed

qed
qed

interpretation inter-S : int-poly-inter F-S I-S
proof

show inter-S .valid-monotone-poly-inter by (rule valid-monotone-inter-S)
qed

lemma orient-trs: inter-S .termination-by-poly-interpretation S
unfolding inter-S .termination-by-poly-interpretation-def

inter-S .termination-by-interpretation-def S-def inter-S .orient-rule
proof (clarify, intro conjI)

have lhs-S : inter-S .eval lhs-S =
(PVar y1 +
PVar y2 +
(Const (insertion α p) + 1) ∗ PVar y3 +
(Const c-S)^3 ∗ (PVar y4)^2 +
Const c-S ∗ PVar y5 +
Const c-S ∗ PVar y6 +
PVar y7) +
1

unfolding lhs-S-def by (simp add: inter-S-encode-poly[OF pq(1)]
power2-eq-square power3-eq-cube algebra-simps)

have foldr : inter-S .eval (foldr (λi t. Fun (v-sym i) [t]) V-list (Fun a-sym [TVar
y5 , TVar y5])) =

92

Const (prod-list (map α V-list)) ∗ 2 ∗ PVar y5
by (subst inter-foldr-v-t, auto)

have rhs-S : inter-S .eval rhs-S =
(PVar y1 +
PVar y2 +
(Const (insertion α q) + 1) ∗ PVar y3 +
(Const c-S)^3 ∗ (PVar y4)2 +
Const (prod-list (map α V-list)) ∗ 2 ∗ PVar y5 +
7 ∗ PVar y6 +
PVar y7) +
0

unfolding rhs-S-def by (simp add: inter-S-encode-poly[OF pq(2)] Const-add
power2-eq-square power3-eq-cube algebra-simps foldr)

show inter-S .gt-poly (inter-S .eval lhs-S) (inter-S .eval rhs-S)
unfolding inter-S .gt-poly-def

proof (intro allI impI)
fix β :: var ⇒ int
assume ass: assignment β
hence β:

∧
x. β x ≥ 0 unfolding assignment-def by auto

have α0 : α x ≥ 0 for x using α(1)[unfolded positive-interpr-def , rule-format,
of x] by auto

from c-S have c0 : c-S ≥ 0 by simp
have 7 : 7 = (Const 7 :: int mpoly) by code-simp
have 2 : 2 = (Const 2 :: int mpoly) by code-simp
have ins7 : insertion β 7 = (7 :: int) unfolding 7 insertion-Const by simp
have ins2 : insertion β 2 = (2 :: int) unfolding 2 insertion-Const by simp
show insertion β (inter-S .eval lhs-S) > insertion β (inter-S .eval rhs-S)

unfolding lhs-S rhs-S insertion-add ins7 ins2 insertion-mult insertion-Var
insertion-Const insertion-Const insertion-power

proof (intro add-le-less-mono add-mono mult-mono add-nonneg-nonneg zero-le-power
α(2) β c0)

show 0 ≤ insertion α p by (intro insertion-positive-poly[OF α0 pq(1)])
show 7 ≤ c-S unfolding c-S-def by auto
show prod-list (map α V-list) ∗ 2 ≤ c-S unfolding c-S-def by simp

qed (force+)
qed

qed (insert lhs-S-F rhs-S-F , auto)

lemma solution-imp-poly-termination: termination-by-int-poly-interpretation F-S
S

unfolding termination-by-int-poly-interpretation-def
by (intro exI , rule conjI [OF - orient-trs], unfold-locales)

end

Towards Lemma 5.2
lemma (in int-poly-inter) monotone-imp-weakly-monotone: assumes monotone-poly
xs p

shows weakly-monotone-poly xs p

93

unfolding monotone-poly-wrt-def
proof (intro allI impI)

fix α :: var ⇒ int and x v
assume assignment α x ∈ xs α x ≤ v
from assms[unfolded monotone-poly-wrt-def , rule-format, OF this(1−2), of v]

this(3)
show insertion α p ≤ insertion (α(x := v)) p

by (cases α x < v, auto)
qed

context
fixes gt :: ′a :: linordered-idom ⇒ ′a ⇒ bool
assumes trans-gt: transp gt
and gt-imp-ge:

∧
x y. gt x y =⇒ x ≥ y

begin

lemma monotone-poly-wrt-insertion-main: assumes monotone-poly-wrt gt xs p
and a: assignment (a :: var ⇒ ′a :: linordered-idom)
and b:

∧
x. x ∈ xs =⇒ gt== (b x) (a x)∧

x. x /∈ xs =⇒ a x = b x
shows gt== (insertion b p) (insertion a p)

proof −
from sorted-list-of-set(1)[OF vars-finite[of p]] sorted-list-of-set[of vars p] obtain

ys where
ysp: set ys = vars p and dist: distinct ys by auto

define c where c ys = (λ x. if x ∈ set ys then a x else b x) for ys
have ass: assignment (c ys) for ys unfolding assignment-def
proof

fix x
show 0 ≤ c ys x using b[of x] a[unfolded assignment-def , rule-format, of x]

gt-imp-ge[of b x a x]
unfolding c-def by auto linarith

qed
have id: insertion a p = insertion (c ys) p unfolding c-def ysp

by (rule insertion-irrelevant-vars, auto)
also have gt^== (insertion b p) (insertion (c ys) p) using dist
proof (induct ys)

case Nil
show ?case unfolding c-def by auto

next
case (Cons x ys)
show ?case
proof (cases x ∈ xs)

case False
from b(2)[OF this] have c (Cons x ys) = c ys

unfolding c-def by auto
thus ?thesis using Cons by auto

next
case True

94

from b(1)[OF this] have ab: gt^== (b x) (a x) by auto
let ?c = c (Cons x ys)
have id1 : c ys = ?c(x := b x)

using Cons(2) unfolding c-def by auto
have id2 : c (x # ys) x = a x using True unfolding c-def by auto
have IH : gt^== (insertion b p) (insertion (c ys) p) using Cons by auto
have gt^== (insertion (?c(x := b x)) p) (insertion ?c p)
proof (cases b x = a x)

case True
hence ?c(x := b x) = ?c using id1 id2

by (intro ext, auto)
thus ?thesis by simp

next
case False
with ab have ab: gt (b x) (a x) by auto
have gt(insertion (?c(x := b x)) p) (insertion ?c p)
proof (rule assms(1)[unfolded monotone-poly-wrt-def , rule-format, OF ass

True])
show gt (b x) (c (x # ys) x) unfolding id2 by fact

qed
thus ?thesis by auto

qed
also have insertion (?c(x := b x)) p = insertion (c ys) p unfolding id1 ..
finally have gt^== (insertion (c ys) p) (insertion (c (x # ys)) p) .
from transpE [OF trans-gt] IH this
show ?thesis by auto

qed
qed
finally show ?thesis .

qed

lemma monotone-poly-wrt-insertion: assumes monotone-poly-wrt gt (vars p) p
and a: assignment (a :: var ⇒ ′a :: linordered-idom)
and b:

∧
x. x ∈ vars p =⇒ gt== (b x) (a x)

shows gt== (insertion b p) (insertion a p)
proof −

define b ′ where b ′ x = (if x ∈ vars p then b x else a x) for x
have gt^== (insertion b ′ p) (insertion a p)

by (rule monotone-poly-wrt-insertion-main[OF assms(1−2)], insert b, auto
simp: b ′-def)

also have insertion b ′ p = insertion b p
by (rule insertion-irrelevant-vars, auto simp: b ′-def)

finally show ?thesis .
qed

lemma partial-insertion-mono-wrt: assumes mono: monotone-poly-wrt gt (vars
p) p

and a: assignment a
and b:

∧
y. y 6= x =⇒ gt== (b y) (a y)

95

and d:
∧

y. y ≥ d =⇒ gt== y 0
shows ∃ c. ∀ y. y ≥ d −→ c ≤ poly (partial-insertion a x p) y
∧ poly (partial-insertion a x p) y ≤ poly (partial-insertion b x p) y

proof −
define pa where pa = partial-insertion a x p
define pb where pb = partial-insertion b x p
define c where c = insertion (a(x := 0)) p
{

fix y :: ′a
assume y: y ≥ d
with d have gty: gt== y 0 by auto
from a have ass: assignment (a(x := 0)) unfolding assignment-def by auto
from monotone-poly-wrt-insertion[OF mono ass, of a(x := y)]
have gt== (insertion (a(x := y)) p) (insertion (a(x := 0)) p) using gty by

auto
from this[folded c-def] gt-imp-ge[of - c]
have c ≤ insertion (a(x := y)) p by auto

} note le-c = this
{

fix y :: ′a
assume y: y ≥ d
with d have gty: gt== y 0 by auto
from y a gty gt-imp-ge[of y] have ass: assignment (a(x := y)) unfolding

assignment-def by auto
from monotone-poly-wrt-insertion[OF mono this, of b(x := y)]
have gt== (insertion (b(x := y)) p) (insertion (a(x := y)) p)

using b by auto
with gt-imp-ge
have insertion (a(x := y)) p ≤ insertion (b(x := y)) p by auto

} note le-ab = this
have id: poly (partial-insertion a x p) y = insertion (a(x := y)) p for a y

using insertion-partial-insertion[of x a a(x := y) p] by auto
{

fix y :: ′a
assume y: y ≥ d
from le-ab[OF y, folded id, folded pa-def pb-def]
have poly pa y ≤ poly pb y by auto

} note le1 = this
show ?thesis
proof (intro exI [of - c], intro allI impI conjI le1 [unfolded pa-def pb-def])

fix y :: ′a
assume y: y ≥ d
show c ≤ poly (partial-insertion a x p) y using le-c[OF y] unfolding id .

qed
qed

context
assumes poly-pinfty-ge:

∧
p b. 0 < lead-coeff (p :: ′a poly) =⇒ degree p 6= 0

=⇒ ∃n. ∀ x≥n. b ≤ poly p x

96

begin

context
fixes p d
assumes mono: monotone-poly-wrt gt (vars p) p
and d:

∧
y. y ≥ d =⇒ gt== y 0

begin

lemma degree-partial-insertion-mono-generic: assumes
a: assignment a

and b:
∧

y. y 6= x =⇒ gt== (b y) (a y)
shows degree (partial-insertion a x p) ≤ degree (partial-insertion b x p)

proof −
define qa where qa = partial-insertion a x p
define qb where qb = partial-insertion b x p
from partial-insertion-mono-wrt[OF mono a b d, of x d]
obtain c where c:

∧
y. y ≥ d =⇒ c ≤ poly qa y

and ab:
∧

y. y ≥ d =⇒ poly qa y ≤ poly qb y
by (auto simp: qa-def qb-def)

show ?thesis
proof (cases degree qa = 0)

case True
thus ?thesis unfolding qa-def by auto

next
case False
let ?lc = lead-coeff
have lc-pos: ?lc qa > 0
proof (rule ccontr)

assume ¬ ?thesis
with False have ?lc qa < 0 using leading-coeff-neq-0 by force
hence ?lc (−qa) > 0 by simp
from poly-pinfty-ge[OF this, of − c + 2] False
obtain n where le:

∧
x. x ≥ n =⇒ − c + 2 ≤ − poly qa x by auto

from le[of max n d] c[of max n d] show False by auto
qed
from this ab have degree qa ≤ degree qb by (intro degree-mono-generic[OF

poly-pinfty-ge], auto)
thus ?thesis unfolding qa-def qb-def by auto

qed
qed

lemma degree-partial-insertion-stays-constant-generic:
∃ a. assignment a ∧
(∀ b. (∀ y. gt== (b y) (a y)) −→ degree (partial-insertion a x p) = degree

(partial-insertion b x p))
proof −

define n where n = mdegree p x
define pi where pi a = partial-insertion a x p for a
have n: assignment a =⇒ degree (pi a) ≤ n for a unfolding n-def pi-def

97

by (rule degree-partial-insertion-bound)
thus ?thesis unfolding pi-def [symmetric]
proof (induct n rule: less-induct)

case (less n)
show ?case
proof (cases ∃ a. assignment a ∧ degree (pi a) = n)

case True
then obtain a where a: assignment a and deg: degree (pi a) = n by auto
show ?thesis
proof (intro exI [of - a] conjI a allI impI)

fix b
assume ge: ∀ y. gt== (b y) (a y)
with a gt-imp-ge[of b y a y for y] have b: assignment b unfolding assign-

ment-def
using order-trans[of 0 a y for y] by fastforce

have degree (pi a) ≤ degree (pi b)
by (rule degree-partial-insertion-mono-generic[OF a, of x b, folded pi-def],

insert ge, auto)
with less(2)[of b] deg b
show degree (pi a) = degree (pi b) by simp

qed
next

case False
with less(2) have deg: assignment b =⇒ degree (pi b) < n for b by fastforce
have ass: assignment (λ -. 0 :: ′a) unfolding assignment-def by auto
define m where m = n − 1
from deg[OF ass] have mn: m < n and less-id: x < n ←→ x ≤ m for x

unfolding m-def by auto
from less(1)[OF mn deg[unfolded less-id]] show ?thesis by auto

qed
qed

qed
end

lemma monotone-poly-partial-insertion-generic:
assumes delta-order :

∧
x y. gt y x ←→ y ≥ x + δ

and delta: δ > 0
and eps-delta: ε ∗ δ ≥ 1
and ceil-nat:

∧
x :: ′a. of-nat (ceil-nat x) ≥ x

assumes x: x ∈ xs
and mono: monotone-poly-wrt gt xs p
and ass: assignment a

shows 0 < degree (partial-insertion a x p)
lead-coeff (partial-insertion a x p) > 0
valid-poly p =⇒ poly (partial-insertion a x p) (δ ∗ of-nat y) ≥ δ ∗ of-nat y

proof −
define q where q = partial-insertion a x p
{

fix w1 w2 :: ′a

98

assume w: 0 ≤ w1 gt w2 w1
from gt-imp-ge[OF w(2)] w have w2 : w2 ≥ 0 by auto
have assw: assignment (a (x := w1)) using ass w(1) w2 unfolding assign-

ment-def by auto
note main = insertion-partial-insertion[of x - - p, symmetric]
have gt (insertion (a(x := w2)) p) (insertion (a(x := w1)) p)

using mono[unfolded monotone-poly-wrt-def , rule-format, OF assw x, of w2]
by (auto simp: w)

also have insertion (a(x := w2)) p = poly (partial-insertion a x p) w2 using
main[of a a(x := w2)] by auto

also have insertion (a(x := w1)) p = poly (partial-insertion a x p) w1 using
main[of a a(x := w1)] by auto

finally have gt (poly q w2) (poly q w1) by (auto simp: q-def)
} note gt = this
have 0 ≤ a x using ass unfolding assignment-def by auto
from gt[OF this, of a x + δ] have poly q (a x) 6= poly q (a x + δ) unfolding

delta-order using delta by auto
hence deg: degree q > 0

using degree0-coeffs[of q] by force
show 0 < degree (partial-insertion a x p) unfolding q-def [symmetric] by fact

have unbounded: poly q (δ ∗ of-nat n) ≥ poly q 0 + δ ∗ of-nat n for n
proof (induct n)

case (Suc n)
have poly q 0 + δ ∗ of-nat (Suc n) = (poly q 0 + δ ∗ of-nat n) + δ by (simp

add: algebra-simps)
also have . . . ≤ poly q (δ ∗ of-nat n) + δ using Suc by simp
also have . . . ≤ poly q (δ ∗ of-nat n + δ)

by (rule gt[unfolded delta-order], insert delta, auto)
finally show ?case by (simp add: algebra-simps)

qed force
let ?lc = lead-coeff
have ?lc q > 0
proof (rule ccontr)

define d where d = poly q 0
assume ¬ ?thesis
hence ?lc q ≤ 0 by auto
moreover have ?lc q 6= 0 using deg by auto
ultimately have ?lc q < 0 by auto
hence ?lc (−q) > 0 by auto
from poly-pinfty-ge[OF this, of −d] deg obtain n where le:

∧
x. x ≥ n =⇒

− d ≤ − poly q x by auto
have d: x ≥ n =⇒ d ≥ poly q x for x using le[of x] by linarith
define m where m = ε ∗ (max n 0 + 1)
from eps-delta delta have eps: ε > 0

by (metis mult.commute order-less-le-trans zero-less-mult-pos zero-less-one)
hence m: m > 0 unfolding m-def by auto
from ceil-nat[of m] m have cm: ceil-nat m > 0

using linorder-not-less by force

99

have poly q (δ ∗ of-nat (ceil-nat m)) ≤ d
proof (rule d)

have n ≤ max n 0 ∗ 1 by simp
also have . . . ≤ max n 0 ∗ (ε ∗ δ) using eps-delta

by (simp add: max-def)
also have . . . = δ ∗ m − δ ∗ ε unfolding m-def by (simp add: field-simps)
also have . . . ≤ δ ∗ m using eps-delta by (auto simp: ac-simps)
also have . . . ≤ δ ∗ of-nat (ceil-nat m)

by (rule mult-left-mono[OF ceil-nat], insert delta, auto)
finally show n ≤ δ ∗ of-nat (ceil-nat m) .

qed
also have . . . < poly q 0 + δ ∗ of-nat (ceil-nat m) unfolding d-def using

delta cm by auto
also have . . . ≤ poly q (δ ∗ of-nat (ceil-nat m)) by (rule unbounded)
finally show False by simp

qed
thus lead-coeff q > 0 unfolding q-def .

assume valid: valid-poly p
{

fix y :: nat
let ?y = δ ∗ of-nat y
from unbounded[of y]
have poly q ?y ≥ poly q 0 + ?y .
moreover have poly q 0 = insertion (a(x := 0)) p unfolding q-def

using insertion-partial-insertion[of x a a(x := 0) p] by auto
moreover have . . . ≥ 0

by (intro valid[unfolded valid-poly-def , rule-format], insert ass, auto simp:
assignment-def)

ultimately have poly q ?y ≥ ?y by auto
thus poly (partial-insertion a x p) ?y ≥ ?y unfolding q-def .

} note ge = this
qed
end
end

context poly-inter
begin

lemma monotone-poly-eval-generic:
assumes valid: valid-monotone-poly-inter

and trans-gt: transp (�)
and gt-imp-ge:

∧
x y. x � y =⇒ y ≤ x

and gt-exists:
∧

x. x ≥ 0 =⇒ ∃ y. y � x
and gt-irrefl:

∧
x. ¬ (x � x)

and tF : funas-term t ⊆ F
shows monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t

proof −
have monotone-poly (vars-term t) (eval t) ∧ vars (eval t) = vars-term t using

100

tF
proof (induct t)

case (Var x)
show ?case by (auto simp: monotone-poly-wrt-def)

next
case (Fun f ts)
{

fix t
assume t ∈ set ts
with Fun(1)[OF this] Fun(2)
have monotone-poly (vars-term t) (eval t)

vars (eval t) = vars-term t
by auto

} note IH = this
let ?n = length ts
let ?f = (f ,?n)
define p where p = I f
from Fun have ?f ∈ F by auto
from valid[unfolded valid-monotone-poly-inter-def , rule-format, OF this, un-

folded valid-monotone-poly-def]
have valid: valid-poly p and mono: monotone-poly (vars p) p and vars: vars p

= {..<?n}
unfolding p-def by auto

have wm: assignment b =⇒ (
∧

x. x ∈ vars p =⇒ (�)== (a x) (b x)) =⇒ (�)==

(insertion a p) (insertion b p)
for b a using monotone-poly-wrt-insertion[OF trans-gt gt-imp-ge mono] by

auto
have id: eval (Fun f ts) = substitute (λi. if i < length ts then eval (ts ! i) else

0) p
unfolding eval.simps p-def [symmetric] id by simp

have mono: monotone-poly (vars-term (Fun f ts)) (eval (Fun f ts))
unfolding monotone-poly-wrt-def

proof (intro allI impI)
fix α :: - ⇒ ′a and x v
assume α: assignment α

and x: x ∈ vars-term (Fun f ts)
and v: v � α x

define β where β = α(x := v)
define α ′ where α ′ = (λ i. if i < ?n then insertion α (eval (ts ! i)) else 0)
define β ′ where β ′ = (λ i. if i < ?n then insertion β (eval (ts ! i)) else 0)
{

fix i
assume n: i < ?n
hence tsi: ts ! i ∈ set ts by auto
{

assume x ∈ vars-term (ts ! i)
from IH (1)[OF tsi, unfolded monotone-poly-wrt-def , rule-format, OF α

this v]

101

have ins: β ′ i � α ′ i unfolding β-def α ′-def β ′-def using n by auto
} note gt = this
{

assume x /∈ vars-term (ts ! i)
with IH (2)[OF tsi] have x: x /∈ vars (eval (ts ! i)) by auto
hence α ′ i = β ′ i unfolding α ′-def β ′-def using n

by (auto simp: β-def intro: insertion-irrelevant-vars)
}
with gt have gt^== (β ′ i) (α ′ i) by fastforce
note gt this

} note gt-le = this

have α ′: assignment α ′ unfolding α ′-def assignment-def using Fun(2)
by (force intro!: valid-imp-insertion-eval-pos[OF assms(1) - α] set-conv-nth)

define γ where γ n i = (if i < n then β ′ i else α ′ i) for n i
have γ: n < ?n =⇒ assignment (γ n) for n unfolding γ-def using gt-le(2)

α ′ gt-imp-ge
unfolding assignment-def using order .trans[of 0 α x β x for x]
by (smt (verit, best) dual-order .strict-trans dual-order .trans sup2E)

from x obtain i where x: x ∈ vars-term (ts ! i) and i: i < ?n by (auto
simp: set-conv-nth)

from i vars have iv: i ∈ vars p by auto
have γi: (γ (Suc i)) = (γ i)(i := β ′ i) unfolding γ-def using i by (intro

ext, auto)
have 1 : gt^== (insertion (γ i) p) (insertion α ′ p)
by (rule monotone-poly-wrt-insertion[OF trans-gt gt-imp-ge mono α ′], insert

gt-le i, auto simp: γ-def)
have 2 : gt (insertion (γ (Suc i)) p) (insertion (γ i) p)

using mono[unfolded monotone-poly-wrt-def , rule-format, OF γ[OF i] iv,
of β ′ i] gt-le(1)[OF i x]

unfolding γi by (auto simp: γ-def)
have 3 : gt^== (insertion (γ ?n) p) (insertion (γ (Suc i)) p)
proof (cases Suc i < ?n)

case True
show ?thesis

by (rule monotone-poly-wrt-insertion[OF trans-gt gt-imp-ge mono γ[OF
True]], insert gt-le True, auto simp: γ-def)

next
case False
with i have Suc i = ?n by auto
thus ?thesis by simp

qed
have 4 : insertion β ′ p = (insertion (γ ?n) p)

unfolding γ-def by (rule insertion-irrelevant-vars, insert vars, auto)
from 1 2 3
have gt (insertion β ′ p) (insertion α ′ p) using trans-gt unfolding 4

by (metis (full-types) sup2E transp-def)

102

moreover have insertion α ′ p = insertion α (eval (Fun f ts)) ∧
insertion β ′ p = insertion (α(x := v)) (eval (Fun f ts))
unfolding id insertion-substitute
unfolding β ′-def α ′-def if-distrib β-def [symmetric]
by (auto intro: insertion-irrelevant-vars)

ultimately show gt (insertion (α(x := v)) (eval (Fun f ts))) (insertion α
(eval (Fun f ts))) by auto

qed
define t ′ where t ′ = Fun f ts
define α where α = (λ - :: nat. 0 :: ′a)
have ass: assignment α by (auto simp: assignment-def α-def)
show ?case
proof (intro conjI mono, unfold t ′-def [symmetric])

have vars (eval t ′) ⊆ vars-term t ′ by (rule vars-eval)
moreover have vars-term t ′ ⊆ vars (eval t ′)
proof (rule ccontr)

assume ¬ ?thesis
then obtain x where xt: x ∈ vars-term t ′ and x: x /∈ vars (eval t ′) by

auto
from gt-exists[of α x] obtain l where l: l � α x unfolding α-def by auto

from mono[folded t ′-def , unfolded monotone-poly-wrt-def , rule-format, OF
ass xt l]

have insertion (α(x := l)) (eval t ′) � insertion α (eval t ′) by auto
also have insertion (α(x := l)) (eval t ′) = insertion α (eval t ′)

by (rule insertion-irrelevant-vars, insert x, auto)
finally show False using gt-irrefl by auto

qed
ultimately show vars (eval t ′) = vars-term t ′ by auto

qed
qed
thus monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t by auto

qed
end

context int-poly-inter
begin

lemma degree-mono: assumes pos: lead-coeff p ≥ (0 :: int)
and le:

∧
x. x ≥ c =⇒ poly p x ≤ poly q x

shows degree p ≤ degree q
by (rule degree-mono-generic[OF poly-pinfty-ge-int assms])

lemma degree-mono ′: assumes
∧

x. x ≥ c =⇒ (bnd :: int) ≤ poly p x ∧ poly p x
≤ poly q x

shows degree p ≤ degree q
by (rule degree-mono ′-generic[OF poly-pinfty-ge-int assms])

103

lemma weakly-monotone-insertion: assumes weakly-monotone-poly (vars p) p
and assignment (a :: - ⇒ int)
and

∧
x. x ∈ vars p =⇒ a x ≤ b x

shows insertion a p ≤ insertion b p
proof −

from monotone-poly-wrt-insertion[OF - - assms(1 ,2), of b] assms(3)
show ?thesis by auto

qed

Lemma 5.2
lemma degree-partial-insertion-stays-constant: assumes mono: monotone-poly (vars
p) p

shows ∃ a. assignment (a :: - ⇒ int) ∧
(∀ b. (∀ y. a y ≤ b y) −→ degree (partial-insertion a x p) = degree (partial-insertion

b x p))
using degree-partial-insertion-stays-constant-generic[OF - - poly-pinfty-ge-int mono,

of 0 x]
by (simp, metis le-less)

lemma degree-partial-insertion-stays-constant-wm: assumes wm: weakly-monotone-poly
(vars p) p

shows ∃ a. assignment (a :: - ⇒ int) ∧
(∀ b. (∀ y. a y ≤ b y) −→ degree (partial-insertion a x p) = degree (partial-insertion

b x p))
using degree-partial-insertion-stays-constant-generic[OF - - poly-pinfty-ge-int wm,

of 0 x]
by auto

Lemma 5.3
lemma subst-same-var-weakly-monotone-imp-same-degree:

assumes wm: weakly-monotone-poly (vars p) (p :: int mpoly)
and dq: degree q = d
and d0 : d 6= 0
and qp: poly-to-mpoly x q = substitute (λi. PVar x) p

shows total-degree p = d
proof −

let ?mc = (λ m. mmonom m (mcoeff p m))
let ?cfs = {m . mcoeff p m 6= 0}
let ?lc = lead-coeff
note fin = finite-coeff-support[of p]
from poly-to-mpoly-substitute-same[OF qp] d0 [folded dq] have p0 : p 6= 0

by (metis degree-0 insertion-zero poly-all-0-iff-0)
define M where M = total-degree p
from degree-monom-eq-total-degree[OF p0]
obtain mM where mM : mcoeff p mM 6= 0 degree-monom mM = M unfolding

M-def by blast
from degree-substitute-same-var [of x p, folded M-def qp]
have dM : d ≤ M unfolding dq degree-poly-to-mpoly .

104

with d0 have M1 : M ≥ 1 by auto
define p1 where p1 = sum ?mc (?cfs ∩ {m. degree-monom m = M})
define p2 where p2 = sum ?mc (?cfs ∩ {m. degree-monom m < M})
have p = sum ?mc ?cfs

by (rule mpoly-as-sum)
also have ?cfs = ?cfs ∩ {m. degree-monom m = M}
∪ ?cfs ∩ {m. degree-monom m 6= M} by auto

also have ?cfs ∩ {m. degree-monom m 6= M} = ?cfs ∩ {m. degree-monom m <
M}

using degree-monon-le-total-degree[of p, folded M-def] by force
also have sum ?mc (?cfs ∩ {m. degree-monom m = M} ∪ . . .) = p1 + p2

unfolding p1-def p2-def
using fin by (intro sum.union-disjoint, auto)

finally have p-split: p = p1 + p2 .
have total-degree p2 ≤ M − 1 unfolding p2-def

by (intro total-degree-sum-leI , subst total-degree-monom, auto)
also have . . . < M using M1 by auto
finally have deg-p ′: total-degree p2 < M by auto
have p1 6= 0
proof

assume p1 = 0
hence p = p2 unfolding p-split by auto
hence M = total-degree p2 unfolding M-def by simp
with deg-p ′ show False by auto

qed
with mpoly-ext-bounded-int[of 0 p1 0] obtain b

where b:
∧

v. b v ≥ 0 and bpm0 : insertion b p1 6= 0 by auto
define B where B = Max (insert 1 (b ‘ vars p))
define X where X = (0 :: nat)
define pb where pb p = mpoly-to-poly X (substitute (λ v. Const (b v) ∗ PVar

X) p) for p
have varsX : vars (substitute (λ v. Const (b v) ∗ PVar X) p) ⊆ {X} for p

by (intro vars-substitute order .trans[OF vars-mult], auto)
have pb: substitute (λ v. Const (b v) ∗ PVar X) p = poly-to-mpoly X (pb p) for

p
unfolding pb-def
by (rule mpoly-to-poly-inverse[symmetric, OF varsX])

have poly-pb: poly (pb p) x = insertion (λv. b v ∗ x) p for x p
using arg-cong[OF pb, of insertion (λ -. x),

unfolded insertion-poly-to-mpoly]
by (auto simp: insertion-substitute insertion-mult)

define lb where lb = insertion (λ -. 0) p
{

fix x
have poly (pb p) x = insertion (λv. b v ∗ x) p by fact
also have . . . = insertion (λv. b v ∗ x) p1 + insertion (λv. b v ∗ x) p2

unfolding p-split
by (simp add: insertion-add)

also have insertion (λv. b v ∗ x) p1 = insertion b p1 ∗ x^M

105

unfolding p1-def insertion-sum insertion-mult insertion-monom sum-distrib-right

power-mult-distrib
proof (intro sum.cong[OF refl], goal-cases)

case (1 m)
from 1 have M : M = degree-monom m by auto
have { v. lookup m v 6= 0} ⊆ keys m

by (simp add: keys.rep-eq)
from finite-subset[OF this] have fin: finite { v. lookup m v 6= 0} by auto
have (

∏
v. b v ^ lookup m v ∗ x ^ lookup m v)

= (
∏

v. b v ^ lookup m v) ∗ (
∏

v. x ^ lookup m v)
by (subst (1 2 3) Prod-any.expand-superset[OF fin])
(insert zero-less-iff-neq-zero, force simp: prod.distrib)+

also have (
∏

v. x ^ lookup m v) = x ^ M unfolding M degree-monom-def
by (smt (verit) Prod-any.conditionalize Prod-any.cong finite-keys in-keys-iff

power-0 power-sum)
finally show ?case by simp

qed
also have insertion (λv. b v ∗ x) p2 = poly (pb p2) x unfolding poly-pb ..
finally have poly (pb p) x = poly (monom (insertion b p1) M + pb p2) x by

(simp add: poly-monom)
}
hence pbp-split: pb p = monom (insertion b p1) M + pb p2 by blast
have degree (pb p2) ≤ total-degree p2 unfolding pb-def

apply (subst degree-mpoly-to-poly)
apply (simp add: varsX)

by (rule degree-substitute-const-same-var)
also have . . . < M by fact
finally have deg-pbp2 : degree (pb p2) < M .
have degree (monom (insertion b p1) M) = M using bpm0 by (rule de-

gree-monom-eq)
with deg-pbp2 pbp-split have deg-pbp: degree (pb p) = M unfolding pbp-split

by (subst degree-add-eq-left, auto)
have ?lc (pb p) = insertion b p1 unfolding pbp-split

using deg-pbp2 bpm0 coeff-eq-0 deg-pbp pbp-split by auto
define bnd where bnd = insertion (λ -. 0) p

{
fix x :: int
assume x: x ≥ 0
have ass: assignment (λ v. b v ∗ x) unfolding assignment-def using x b by

auto
have poly (pb p) x = insertion (λv. b v ∗ x) p by fact
also have insertion (λ v. b v ∗ x) p ≤ insertion (λ v. B ∗ x) p
proof (rule weakly-monotone-insertion[OF wm ass])

fix v
show v ∈ vars p =⇒ b v ∗ x ≤ B ∗ x using b[of v] x unfolding B-def

by (intro mult-right-mono, auto intro!: Max-ge vars-finite)
qed

106

also have . . . = poly q (B ∗ x) unfolding poly-to-mpoly-substitute-same[OF
qp] ..

also have . . . = poly (q ◦p [:0 , B:]) x by (simp add: poly-pcompose ac-simps)
finally have ineq: poly (pb p) x ≤ poly (q ◦p [:0 , B:]) x .
have bnd ≤ insertion (λv. b v ∗ x) p unfolding bnd-def

by (intro weakly-monotone-insertion[OF wm], insert b x, auto simp: assign-
ment-def)

also have . . . = poly (pb p) x using poly-pb by auto
finally have bnd ≤ poly (pb p) x by auto
note this ineq

} note pb-approx = this
have M = degree (pb p) unfolding deg-pbp ..
also have . . . ≤ degree (q ◦p [:0 , B:])

by (intro degree-mono ′[of 0 bnd], insert pb-approx, auto)
also have . . . ≤ d by (simp add: dq)
finally have deg-pbp: M ≤ d .
with dM have M = d by auto
thus ?thesis unfolding M-def .

qed

lemma monotone-poly-partial-insertion:
assumes x: x ∈ xs
and mono: monotone-poly xs p
and ass: assignment a

shows 0 < degree (partial-insertion a x p)
lead-coeff (partial-insertion a x p) > 0
valid-poly p =⇒ y ≥ 0 =⇒ poly (partial-insertion a x p) y ≥ y
valid-poly p =⇒ insertion a p ≥ a x

proof −
have 0 : transp ((>) :: int ⇒ -) by auto
have 1 : (x < y) = (x + 1 ≤ y) for x y :: int by auto
have 2 : x ≤ int (nat x) for x by auto
note main = monotone-poly-partial-insertion-generic[of (>) 1 1 nat, OF 0 -

poly-pinfty-ge-int 1 - - 2 x mono ass, simplified]
show 0 < degree (partial-insertion a x p) 0 < lead-coeff (partial-insertion a x p)

using main by auto
assume valid: valid-poly p
{

fix y :: int
assume y ≥ 0
then obtain n where y: y = int n

by (metis int-nat-eq)
from main(3)[OF valid, of n, folded y]
show y ≤ poly (partial-insertion a x p) y by auto

} note estimation = this
from ass have a x ≥ 0 unfolding assignment-def by auto
from estimation[OF this] show insertion a p ≥ a x

using insertion-partial-insertion[of x a a p] by auto

107

qed

end

context int-poly-inter
begin

lemma insertion-eval-pos: assumes funas-term t ⊆ F
and assignment α

shows insertion α (eval t) ≥ 0
by (rule valid-imp-insertion-eval-pos[OF valid assms])

lemma monotone-poly-eval: assumes funas-term t ⊆ F
shows monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t

proof −
have ∃ y. x < y for x :: int by (intro exI [of - x + 1], auto)
from monotone-poly-eval-generic[OF valid - - this - assms]
show monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t by auto

qed
end

locale term-poly-input = poly-input p q for p q +
assumes terminating-poly: termination-by-int-poly-interpretation F-S S

begin

definition I where I = (SOME I . int-poly-inter F-S I ∧ int-poly-inter .termination-by-poly-interpretation
F-S I S)

lemma I : int-poly-inter F-S I int-poly-inter .termination-by-poly-interpretation F-S
I S
using someI-ex[OF terminating-poly[unfolded termination-by-int-poly-interpretation-def],

folded I-def] by auto

sublocale int-poly-inter F-S I by (rule I (1))

lemma orient: orient-rule (lhs-S ,rhs-S)
using I (2)[unfolded termination-by-interpretation-def termination-by-poly-interpretation-def]

unfolding S-def by auto

lemma solution: positive-poly-problem p q
proof −

from orient[unfolded orient-rule]
have gt: gt-poly (eval lhs-S) (eval rhs-S) by auto
from valid[unfolded valid-monotone-poly-inter-def]
have valid:

∧
f . f ∈ F-S =⇒ valid-monotone-poly f by auto

let ?lc = lead-coeff
let ?f = (f-sym,7)
have ?f ∈ F-S unfolding F-S-def by auto

108

from valid[OF this, unfolded valid-monotone-poly-def] obtain f where
If : I f-sym = f and f : valid-poly f monotone-poly (vars f) f vars f = {..< 7}

by auto
from f (2) have wmf : weakly-monotone-poly (vars f) f by (rule monotone-imp-weakly-monotone)
define l where l i = args (lhs-S) ! i for i
define r where r i = args (rhs-S) ! i for i
have list: [0 ..<7] = [0 ,1 ,2 ,3 ,4 ,5 ,6 :: nat] by code-simp
have lhs-S : lhs-S = Fun f-sym (map l [0 ..<7]) unfolding lhs-S-def l-def by

(auto simp: list)
have rhs-S : rhs-S = Fun f-sym (map r [0 ..<7]) unfolding rhs-S-def r-def by

(auto simp: list)
{

fix i :: var
define vs where vs = V-list
assume i < 7
hence choice: i = 0 ∨ i = 1 ∨ i = 2 ∨ i = 3 ∨ i = 4 ∨ i = 5 ∨ i = 6 by

linarith
have set: {0 ..<7 :: nat} = {0 ,1 ,2 ,3 ,4 ,5 ,6} by code-simp
from choice have vars: vars-term (l i) = {i} vars-term (r i) = {i} unfolding

l-def lhs-S-def r-def rhs-S-def
using vars-encode-poly[of 2 p] vars-encode-poly[of 2 q]

by (auto simp: y1-def y2-def y3-def y4-def y5-def y6-def y7-def vs-def [symmetric])
from choice set have funs: funas-term (l i) ∪ funas-term (r i) ⊆ F-S using

rhs-S-F lhs-S-F unfolding lhs-S rhs-S
by auto

have lr ∈ {l,r} =⇒ vars-term (lr i) = {i} lr ∈ {l,r} =⇒ funas-term (lr i) ⊆
F-S for lr

by (insert vars funs, force)+
} note signature-l-r = this
{

fix i :: var and lr
assume i: i < 7 and lr : lr ∈ {l,r}
from signature-l-r [OF i lr] monotone-poly-eval[of lr i]
have vars: vars (eval (lr i)) = {i}

and mono: monotone-poly {i} (eval (lr i)) by auto
} note eval-l-r = this

define upoly where upoly l-or-r i = mpoly-to-poly i (eval (l-or-r i)) for l-or-r ::
var ⇒ (-,-)term and i

{
fix lr and i :: nat and a :: - ⇒ int
assume a: assignment a and i: i < 7 and lr : lr ∈ {l,r}
with eval-l-r [OF i] signature-l-r [OF i]
have vars: vars (eval (lr i)) = {i} and mono: monotone-poly {i} (eval (lr i))

and funs: funas-term (lr i) ⊆ F-S by auto
from insertion-eval-pos[OF funs]
have valid: valid-poly (eval (lr i)) unfolding valid-poly-def by auto
from monotone-poly-partial-insertion[OF - mono a, of i] valid

109

have deg: degree (partial-insertion a i (eval (lr i))) > 0
and lc: ?lc (partial-insertion a i (eval (lr i))) > 0
and ineq: insertion a (eval (lr i)) ≥ a i by auto
moreover have partial-insertion a i (eval (lr i)) = upoly lr i unfolding

upoly-def
using vars eval-l-r [OF i, of r , simplified]
by (intro poly-ext)
(metis i insertion-partial-insertion-vars poly-eq-insertion poly-inter .vars-eval

signature-l-r(1)[of - r , simplified] singletonD)
ultimately
have degree (upoly lr i) > 0 ?lc (upoly lr i) > 0

insertion a (eval (lr i)) ≥ a i by auto
} note upoly-pos-subterm = this

{
fix i :: var
assume i: i < 7
from degree-partial-insertion-stays-constant[OF f (2), of i] obtain a where

a: assignment a and
deg-a:

∧
b. (

∧
y. a y ≤ b y) =⇒ degree (partial-insertion a i f) = degree

(partial-insertion b i f)
by auto

define c where c j = (if j < 7 then insertion a (eval (l j)) else a j) for j
define e where e j = (if j < 7 then insertion a (eval (r j)) else a j) for j
{

fix x :: int
assume x: x ≥ 0
have ass: assignment (a (i := x)) using x a unfolding assignment-def by

auto
from gt[unfolded gt-poly-def , rule-format, OF ass, unfolded rhs-S lhs-S]
have insertion (a(i := x)) (eval (Fun f-sym (map r [0 ..<7])))
< insertion (a(i := x)) (eval (Fun f-sym (map l [0 ..<7]))) by simp

also have insertion (a(i := x)) (eval (Fun f-sym (map r [0 ..<7]))) =
insertion (λj. insertion (a(i := x)) (eval (r j))) f
by (simp add: If insertion-substitute, intro insertion-irrelevant-vars, auto

simp: f)
also have . . . = poly (partial-insertion e i f) (poly (upoly r i) x)
proof −

let ?α = (λj. insertion (a(i := x)) (eval (r j)))
have insi: poly (upoly r i) x = insertion (a(i := x)) (eval (r i))

unfolding upoly-def using eval-l-r(1)[OF i, of r]
by (subst poly-eq-insertion, force)
(intro insertion-irrelevant-vars, auto)

show ?thesis unfolding insi
proof (rule insertion-partial-insertion-vars[of i f e ?α, symmetric])

fix j
show j 6= i =⇒ j ∈ vars f =⇒ e j = insertion (a(i := x)) (eval (r j))

unfolding e-def f using eval-l-r [of j] f by (auto intro!: inser-

110

tion-irrelevant-vars)
qed

qed
also have insertion (a(i := x)) (eval (Fun f-sym (map l [0 ..<7]))) =

insertion (λj. insertion (a(i := x)) (eval (l j))) f
by (simp add: If insertion-substitute, intro insertion-irrelevant-vars, auto

simp: f)
also have . . . = poly (partial-insertion c i f) (poly (upoly l i) x)
proof −

let ?α = (λj. insertion (a(i := x)) (eval (l j)))
have insi: poly (upoly l i) x = insertion (a(i := x)) (eval (l i))

unfolding upoly-def using eval-l-r [OF i]
by (subst poly-eq-insertion, force)
(intro insertion-irrelevant-vars, auto)

show ?thesis unfolding insi
proof (rule insertion-partial-insertion-vars[of i f c ?α, symmetric])

fix j
show j 6= i =⇒ j ∈ vars f =⇒ c j = insertion (a(i := x)) (eval (l j))

unfolding c-def f using eval-l-r [of j] f by (auto intro!: inser-
tion-irrelevant-vars)

qed
qed

finally have poly (partial-insertion c i f) (poly (upoly l i) x)
> poly (partial-insertion e i f) (poly (upoly r i) x) .

} note 1 = this

define er where er = partial-insertion e i f ◦p upoly r i
define cl where cl = partial-insertion c i f ◦p upoly l i
define d where d = degree (partial-insertion e i f)
{

fix x
have a x ≤ c x ∧ a x ≤ e x
proof (cases x ∈ vars f)

case False
thus ?thesis unfolding c-def e-def f by auto

next
case True
hence id: (x < 7) = True and x: x < 7 unfolding f by auto

show ?thesis unfolding c-def e-def id if-True using upoly-pos-subterm(3)[OF
a x] by auto

qed
hence a x ≤ c x a x ≤ e x by auto

} note a-ce = this

have d-eq: d = degree (partial-insertion c i f) unfolding d-def
by (subst (1 2) deg-a[symmetric], insert a-ce, auto)

have e: assignment e using a a-ce(2) unfolding assignment-def

111

by (smt (verit, del-insts))

have d-pos: d > 0 unfolding d-def
by (intro monotone-poly-partial-insertion[OF - f (2) e], insert f i, auto)

have lc-e-pos: ?lc (partial-insertion e i f) > 0
by (intro monotone-poly-partial-insertion[OF - f (2) e], insert f i, auto)

have lc-r-pos: ?lc (upoly r i) > 0 by (intro upoly-pos-subterm[OF a i], auto)
have deg-r : 0 < degree (upoly r i) by (intro upoly-pos-subterm[OF a i], auto)
have lc-er-pos: ?lc er > 0 unfolding er-def

by (subst lead-coeff-comp[OF deg-r], insert lc-e-pos deg-r lc-r-pos, auto)

from 1 [folded poly-pcompose, folded er-def cl-def]
have er-cl-poly: 0 ≤ x =⇒ poly er x < poly cl x for x by auto
have degree er ≤ degree cl
proof (intro degree-mono[of - 0])

show 0 ≤ ?lc er using lc-er-pos by auto
show 0 ≤ x =⇒ poly er x ≤ poly cl x for x using er-cl-poly[of x] by auto

qed
also have degree er = d ∗ degree (upoly r i)

unfolding er-def d-def by simp
also have degree cl = d ∗ degree (upoly l i)

unfolding cl-def d-eq by simp
finally have degree (upoly l i) ≥ degree (upoly r i) using d-pos by auto

} note deg-inequality = this

{
fix p :: int mpoly and x
assume p: monotone-poly {x} p vars p = {x}
define q where q = mpoly-to-poly x p
from mpoly-to-poly-inverse[of p x]
have pq: p = poly-to-mpoly x q using p unfolding q-def by auto
from pq p(2) have deg: degree q > 0

by (simp add: degree-mpoly-to-poly degree-pos-iff q-def)
from deg pq have ∃ q. p = poly-to-mpoly x q ∧ degree q > 0 unfolding q-def

by auto
} note mono-unary-poly = this

{
fix f
assume f ∈ {q-sym, h-sym} ∪ v-sym ‘ V
hence (f , 1) ∈ F-S unfolding F-S-def F-def by auto
from valid[OF this, unfolded valid-monotone-poly-def] obtain p

where p: p = I f monotone-poly {..<1} p vars p = {0} by auto
have id: {..< (1 :: nat)} = {0} by auto
have ∃ q. I f = poly-to-mpoly 0 q ∧ degree q > 0 unfolding p(1)[symmetric]

by (intro mono-unary-poly, insert p(2−3)[unfolded id], auto)
} note unary-symbol = this

112

{
fix f and n :: nat and x :: var
assume f ∈ {f-sym,a-sym} f = f-sym =⇒ n = 7 f = a-sym =⇒ n = 2
hence n: n > 1 and f : (f ,n) ∈ F-S unfolding F-def F-S-def by force+
define p where p = I f
from valid[OF f , unfolded valid-monotone-poly-def , rule-format, OF refl p-def]
have mono: monotone-poly (vars p) p and vars: vars p = {..<n} and valid:

valid-poly p by auto
let ?t = Fun f (replicate n (TVar x))
have t-F : funas-term ?t ⊆ F-S using f by auto
have vt: vars-term ?t = {x} using n by auto
define q where q = eval ?t
from monotone-poly-eval[OF t-F , unfolded vt, folded q-def]
have monotone-poly {x} q vars q = {x} by auto
from mono-unary-poly[OF this] obtain q ′ where

qq ′: q = poly-to-mpoly x q ′ and dq ′: degree q ′ > 0 by auto
have q ′t: poly-to-mpoly x q ′ = eval ?t unfolding qq ′[symmetric] q-def by simp
also have . . . = substitute (λi. if i < n then eval (replicate n (TVar x) ! i) else

0) p
by (simp add: p-def [symmetric])

also have (λi. if i < n then eval (replicate n (TVar x) ! i) else 0) = (λi. if i
< n then PVar x else 0)

by (intro ext, auto)
also have substitute . . . p = substitute (λ i. PVar x) p using vars

unfolding substitute-def using vars-replace-coeff [of Const, OF Const-0]
by (intro insertion-irrelevant-vars, auto)

finally have eq: poly-to-mpoly x q ′ = substitute (λi. PVar x) p .
have ∃ p q. I f = p ∧ eval ?t = poly-to-mpoly x q ∧ poly-to-mpoly x q =

substitute (λi. PVar x) p ∧ degree q > 0
∧ vars p = {..<n} ∧ monotone-poly (vars p) p

by (intro exI [of - p] exI [of - q ′] conjI valid eq dq ′ p-def [symmetric] q ′t[symmetric]
mono vars)

} note f-a-sym = this

from unary-symbol[of q-sym] obtain q where Iq: I q-sym = poly-to-mpoly 0 q
and dq: degree q > 0 by auto

from unary-symbol[of h-sym] obtain h where Ih: I h-sym = poly-to-mpoly 0 h
and dh: degree h > 0 by auto

from unary-symbol[of v-sym i for i] have ∀ i. ∃ q. i ∈ V −→ I (v-sym i) =
poly-to-mpoly 0 q ∧ 0 < degree q by auto

from choice[OF this] obtain v where
Iv: i ∈ V =⇒ I (v-sym i) = poly-to-mpoly 0 (v i) and
dv: i ∈ V =⇒ degree (v i) > 0

for i by auto

have eval-pm-Var : eval (TVar y) = poly-to-mpoly y [:0 ,1 :] for y
unfolding eval.simps mpoly-of-poly-is-poly-to-mpoly[symmetric] by simp

have id: (if 0 = (0 :: nat) then eval ([t] ! 0) else 0) = eval t for t by simp

113

{
have y: eval (TVar y4) = poly-to-mpoly y4 [:0 ,1 :] (is - = poly-to-mpoly -

?poly1) by fact
have hy: eval (Fun h-sym [TVar y4]) = poly-to-mpoly y4 h using Ih

apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y4 ?poly1])
apply (unfold id, intro y)

by simp
have qhy: eval (Fun q-sym [Fun h-sym [TVar y4]]) = poly-to-mpoly y4 (pcompose

q h) using Iq
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y4 h])
apply (unfold id, intro hy)

by simp
hence l3 : eval (l 3) = poly-to-mpoly y4 (pcompose q h) unfolding l-def lhs-S-def

by simp

have qy: eval (Fun q-sym [TVar y4]) = poly-to-mpoly y4 q using Iq
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y4 ?poly1])
apply (unfold id, intro y)

by simp
have hqy: eval (Fun h-sym [Fun q-sym [TVar y4]]) = poly-to-mpoly y4 (pcompose

h q) using Ih
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y4 q])
apply (unfold id, intro qy)

by simp
have hhqy: eval (Fun h-sym [Fun h-sym [Fun q-sym [TVar y4]]]) = poly-to-mpoly

y4 (pcompose h (pcompose h q)) using Ih
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y4 pcompose h q])
apply (unfold id, intro hqy)

by simp
hence r3 : eval (r 3) = poly-to-mpoly y4 (pcompose h (pcompose h q)) unfolding

r-def rhs-S-def by simp

from deg-inequality[of 3] have deg: degree (upoly r 3) ≤ degree (upoly l 3) by
simp

hence degree h ∗ (degree h ∗ degree q) ≤ degree q ∗ degree h
unfolding upoly-def l3 r3 y4-def poly-to-mpoly-inverse by simp

with dq have degree h ∗ degree h ≤ degree h by simp
with dh have degree h = 1 by auto

} note dh = this

define tayy where tayy = Fun a-sym (replicate 2 (TVar y5))
from f-a-sym[of a-sym 2 y5 , folded tayy-def] obtain a ayy where

Ia: I a-sym = a
and eval-ayy: eval tayy = poly-to-mpoly y5 ayy

114

and dayy: degree ayy > 0 and payy: poly-to-mpoly y5 ayy = substitute (λi.
PVar y5) a

and monoa: monotone-poly (vars a) a and varsa: vars a = {..<2} by blast

{
define vs where vs = V-list
have vs: set vs ⊆ V unfolding vs-def V-list by auto
have r 4 = foldr (λi t. Fun (v-sym i) [t]) vs tayy unfolding tayy-def r-def

rhs-S-def sub-def vs-def
by (simp add: numeral-eq-Suc)

also have ∃ q. eval . . . = poly-to-mpoly y5 q ∧ degree q = prod-list (map (λ i.
degree (v i)) vs) ∗ degree ayy

using vs
proof (induct vs)

case Nil
show ?case using eval-ayy by auto

next
case (Cons x vs)
from Cons obtain q where IH1 : eval (foldr (λi t. Fun (v-sym i) [t]) vs tayy)

= poly-to-mpoly y5 q
and IH2 : degree q = (

∏
i←vs. degree (v i)) ∗ degree ayy by auto

from Cons have x: x ∈ V by auto
have eval: eval (foldr (λi t. Fun (v-sym i) [t]) (x # vs) tayy) = poly-to-mpoly

y5 (v x ◦p q) using Iv[OF x]
apply simp
apply (subst substitute-poly-to-mpoly[of - - y5 q])
apply (unfold id, intro IH1)

by simp
show ?case unfolding eval by (intro exI [of - v x ◦p q], auto simp: IH2)

qed
finally obtain q where

r4 : eval (r 4) = poly-to-mpoly y5 q and
q: degree q = prod-list (map (λ i. degree (v i)) vs) ∗ degree ayy
by auto

have y: eval (TVar y5) = poly-to-mpoly y5 [:0 ,1 :] (is - = poly-to-mpoly -
?poly1) by fact

have hy: eval (Fun h-sym [TVar y5]) = poly-to-mpoly y5 h using Ih
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y5 ?poly1])
apply (unfold id, intro y)

by simp

hence l4 : eval (l 4) = poly-to-mpoly y5 h unfolding l-def lhs-S-def by simp

from deg-inequality[of 4] have deg: degree (upoly r 4) ≤ degree (upoly l 4) by
simp

hence degree q ≤ degree h
unfolding upoly-def l4 r4 y5-def poly-to-mpoly-inverse by simp

115

hence degq: degree q ≤ 1 unfolding dh by simp
hence (∀ x ∈ set vs. degree (v x) = 1) ∧ degree ayy = 1 ∧ degree q = 1 using

vs unfolding q
proof (induct vs)

case Nil
thus ?case using dayy by auto

next
case (Cons x vs)
define rec where rec = (

∏
i←vs. degree (v i)) ∗ degree ayy

have id: (
∏

i←x # vs. degree (v i)) ∗ degree ayy = degree (v x) ∗ rec
unfolding rec-def by auto

from Cons(2)[unfolded id] have prems: degree (v x) ∗ rec ≤ 1 by auto
from Cons(3) have x: x ∈ V and sub: set vs ⊆ V by auto
from dv[OF x] have dv: degree (v x) ≥ 1 by auto
from dv prems have rec ≤ 1
by (metis dual-order .trans mult.commute mult.right-neutral mult-le-mono2)

from Cons(1)[folded rec-def , OF this sub]
have IH : (∀ x∈set vs. degree (v x) = 1) degree ayy = 1 rec = 1 by auto
from IH (3) dv prems have dvx: degree (v x) = 1 by simp
show ?case unfolding id using dvx IH by auto

qed
from this[unfolded vs-def V-list]
have dv:

∧
x. x ∈ V =⇒ degree (v x) = 1 and dayy: degree ayy = 1 by auto

}
hence dv:

∧
x. x ∈ V =⇒ degree (v x) = 1 and dayy: degree ayy = 1 by auto

define tfyy where tfyy = Fun f-sym (replicate 7 (TVar y6))
from f-a-sym[of f-sym 7 y6 , folded tfyy-def] obtain f fyy where

If : I f-sym = f
and eval-fyy: eval tfyy = poly-to-mpoly y6 fyy
and dfyy: degree fyy > 0 and pfyy: poly-to-mpoly y6 fyy = substitute (λi. PVar

y6) f
and monof : monotone-poly (vars f) f and varsf : vars f = {..<7} by blast

{
have y: eval (TVar y6) = poly-to-mpoly y6 [:0 ,1 :] (is - = poly-to-mpoly -

?poly1) by fact
have hy: eval (Fun h-sym [TVar y6]) = poly-to-mpoly y6 h using Ih

apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y6 ?poly1])
apply (unfold id, intro y)

by simp

hence l5 : eval (l 5) = poly-to-mpoly y6 h unfolding l-def lhs-S-def by simp
have r 5 = tfyy unfolding tfyy-def r-def rhs-S-def by simp
hence r5 : eval (r 5) = poly-to-mpoly y6 fyy using eval-fyy by simp

from deg-inequality[of 5] have deg: degree (upoly r 5) ≤ degree (upoly l 5) by
simp

116

from this[unfolded upoly-def l5 r5 y6-def poly-to-mpoly-inverse dh]
have degree fyy ≤ 1 .

}
with dfyy
have dfyy: degree fyy = 1 by auto

note lemma-5-3 = subst-same-var-weakly-monotone-imp-same-degree[OF mono-
tone-imp-weakly-monotone]

from lemma-5-3 [OF monof dfyy - pfyy] have df : total-degree f = 1 by auto
from lemma-5-3 [OF monoa dayy - payy] have da: total-degree a = 1 by auto

let ?argsL = [q-t (h-t (Var y4)),
h-t (Var y5),
h-t (Var y6),
g-t (Var y7) o-t]

let ?argsR = [h-t (h-t (q-t (Var y4))),
foldr v-t V-list (a-t (Var y5) (Var y5)),
Fun f-sym (replicate 7 (Var y6)),
g-t (Var y7) z-t]

show ?thesis
apply (rule poly-input-to-solution-common.solution[of - - I F-S ?argsL ?argsR])
apply (unfold-locales)
subgoal using orient unfolding lhs-S-def rhs-S-def by simp
subgoal by simp
subgoal using signature-l-r(1)[of 4 r]
by (auto simp: y1-def y2-def y3-def y4-def y5-def y6-def y7-def r-def rhs-S-def)

subgoal unfolding F-S-def by auto
subgoal for g n
proof (goal-cases)

case 1
hence ch: (g,n) = (f-sym,7) ∨ (g,n) ∈ F by auto
hence (g,n) ∈ F-S unfolding F-S-def by auto

from valid[rule-format, OF this, unfolded valid-monotone-poly-def , rule-format,
OF refl refl]

have ∗: valid-poly (I g) monotone-poly {..<n} (I g) vars (I g) = {..<n}
by auto

show ?case
proof (intro monotone-linear-poly-to-coeffs ∗)

show total-degree (I g) ≤ 1
proof (rule ccontr)

assume not: ¬ ?thesis
with ch df da If Ia have (g,n) ∈ F − {(a-sym,2)} by auto
then consider (V) i where i ∈ V g = v-sym i n = 1 | (z) g = z-sym n

= 0
unfolding F-def by auto

thus False
proof cases

case V

117

have total-degree (I g) = 1
proof (rule lemma-5-3 [OF ∗(2)[folded ∗(3)] dv[OF V (1)]])

show poly-to-mpoly 0 (v i) = substitute (λi. PVar 0) (I g)
unfolding V Iv[OF V (1)]
by (intro mpoly-extI , auto simp: insertion-substitute)

qed force
with not show False by auto

next
case z
with ∗ have vars (I g) = {} by auto

from vars-empty-Const[OF this] obtain c where I g = Const c by auto
hence total-degree (I g) = 0 by simp
with not show False by auto

qed
qed

qed
qed
done

qed
end

context poly-input
begin

Theorem 5.4 in paper
theorem polynomial-termination-with-natural-numbers-undecidable:

positive-poly-problem p q ←→ termination-by-int-poly-interpretation F-S S
proof

assume positive-poly-problem p q
interpret solvable-poly-problem

by (unfold-locales, fact)
from solution-imp-poly-termination
show termination-by-int-poly-interpretation F-S S .

next
assume termination-by-int-poly-interpretation F-S S
interpret term-poly-input

by (unfold-locales, fact)
from solution show positive-poly-problem p q .

qed

end

Now head for Lemma 5.6
locale poly-input-omega-solution = poly-input
begin

fun I :: symbol ⇒ int list ⇒ int where
I o-sym xs = insertion (λ -. 1) q
| I z-sym xs = 0

118

| I a-sym xs = xs ! 0 + xs ! 1
| I g-sym xs = (xs ! 1 + 1) ∗ xs ! 0 + xs ! 1
| I h-sym xs = (xs ! 0)^2 + 7 ∗ (xs ! 0) + 4
| I f-sym xs = xs ! 2 ∗ xs ! 6 + sum-list xs
| I q-sym xs = 5^(nat (xs ! 0))
| I (v-sym i) xs = xs ! 0

lemma I-encode-num: assumes c ≥ 0
shows I [[encode-num x c]]α = c ∗ α x

proof −
from assms obtain n where cn: c = int n by (metis nonneg-eq-int)
hence natc: nat c = n by auto
show ?thesis unfolding encode-num-def natc unfolding cn

by (induct n, auto simp: algebra-simps)
qed

lemma I-v-pow-e: I [[(v-t x ^^ e) t]]α = I [[t]]α
by (induct e, auto)

lemma I-encode-monom: assumes c: c ≥ 0
shows I [[encode-monom x m c]]α = c ∗ α x

proof −
define xes where xes = var-list m
from var-list[of m c]
have monom: mmonom m c = Const c ∗ (

∏
(x, e)← xes . PVar x ^ e) unfolding

xes-def .
show ?thesis unfolding encode-monom-def monom xes-def [symmetric]

by (induct xes, auto simp: I-encode-num[OF c] I-v-pow-e)
qed

lemma I-encode-poly: assumes positive-poly r
shows I [[encode-poly x r]]α = insertion (λ -. 1) r ∗ α x

proof −
define mcs where mcs = monom-list r
from monom-list[of r] have r : r = (

∑
(m, c)← mcs. mmonom m c) unfolding

mcs-def by auto
have mcs: (m,c) ∈ set mcs =⇒ c ≥ 0 for m c

using monom-list-coeff assms unfolding mcs-def positive-poly-def by auto
show ?thesis unfolding encode-poly-def mcs-def [symmetric] unfolding r inser-

tion-sum-list map-map o-def
using mcs

proof (induct mcs)
case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
from Cons(2) mc have c: c ≥ 0 by auto
note monom = I-encode-monom[OF this, of x m]
show ?case

by (simp add: mc monom algebra-simps, subst Cons(1), insert Cons(2), auto
simp: Const-add algebra-simps)

119

qed simp
qed
end

lemma length2-cases: length xs = 2 =⇒ ∃ x y. xs = [x,y]
by (cases xs; cases tl xs, auto)

lemma length7-cases: length xs = 7 =⇒ ∃ x1 x2 x3 x4 x5 x6 x7 . xs = [x1 ,x2 ,x3 ,x4 ,x5 ,x6 ,x7]
apply (cases xs, force)
apply (cases drop 1 xs, force)
apply (cases drop 2 xs, force)
apply (cases drop 3 xs, force)
apply (cases drop 4 xs, force)
apply (cases drop 5 xs, force)
by (cases drop 6 xs, force+)

lemma length1-cases: length xs = Suc 0 =⇒ ∃ x. xs = [x]
by (cases xs; auto)

lemma less2-cases: i < 2 =⇒ i = 0 ∨ (i :: nat) = 1
by auto

lemma less7-cases: i < 7 =⇒ i = 0 ∨ (i :: nat) = 1 ∨ i = 2 ∨ i = 3 ∨ i = 4
∨ i = 5 ∨ i = 6

by auto

context poly-input-omega-solution
begin

sublocale inter-S : term-algebra F-S I (>) .
sublocale inter-S : omega-term-algebra F-S I
proof (unfold-locales, unfold inter-S .valid-monotone-inter-def , intro ballI)

fix fn
assume fn ∈ F-S
note F = this[unfolded F-S-def F-def]
show inter-S .valid-monotone-fun fn

unfolding inter-S .valid-monotone-fun-def
proof (intro allI impI , clarify)

fix f n
assume fn: fn = (f ,n)
note defs = valid-fun-def monotone-fun-wrt-def
show valid-fun n (I f) ∧ inter-S .monotone-fun n (I f)
proof (cases f)

case f : a-sym
with F fn have n: n = 2 by auto
show ?thesis unfolding f n

by (auto simp: defs dest!: length2-cases less2-cases)
next

case f : g-sym

120

with F fn have n: n = 2 by auto
show ?thesis unfolding f n

by (auto simp: defs dest!: length2-cases less2-cases)
(smt (verit, ccfv-SIG) mult-mono ′)

next
case f : z-sym
with F fn have n: n = 0 by auto
show ?thesis unfolding f n

by (auto simp: defs)
next

case f : o-sym
with F fn have n: n = 0 by auto
show ?thesis unfolding f n

by (auto simp: defs intro!: insertion-positive-poly pq)
next

case f : f-sym
with F fn have n: n = 7 by auto
show ?thesis unfolding f n

by (auto simp: defs intro!: add-le-less-mono mult-mono
dest!: length7-cases less7-cases)

next
case f : (v-sym i)
with F fn have n: n = 1 by auto
show ?thesis unfolding f n

by (auto simp: defs)
next

case f : q-sym
with F fn have n: n = 1 by auto
show ?thesis unfolding f n

by (auto simp: defs dest: length1-cases)
next

case f : h-sym
with F fn have n: n = 1 by auto
show ?thesis unfolding f n

by (auto simp: defs power2-eq-square dest!: length1-cases)
(insert mult-strict-mono ′, fastforce)

qed
qed

qed

Lemma 5.6
lemma S-is-omega-terminating: omega-termination F-S S

unfolding omega-termination-def
proof (intro exI [of - I] conjI)

show omega-term-algebra F-S I ..
show inter-S .termination-by-interpretation S

unfolding inter-S .termination-by-interpretation-def S-def
proof (clarify, intro conjI)

show funas-term lhs-S ∪ funas-term rhs-S ⊆ F-S using lhs-S-F rhs-S-F by

121

auto
show inter-S .orient-rule (lhs-S , rhs-S) unfolding inter-S .orient-rule-def split
proof (intro allI impI)

fix α :: var ⇒ int
assume assignment α
hence α: α x ≥ 0 for x unfolding assignment-def by auto
from α[of y4] obtain n4 where n4 : α y4 = int n4

using nonneg-int-cases by blast
define q1 where q1 = insertion (λ-. 1) q
have q1 : q1 ≥ 0 unfolding q1-def using pq(2)

by (simp add: insertion-positive-poly)
define p1 where p1 = insertion (λ-. 1) p
have p1 : p1 ≥ 0 unfolding p1-def using pq(1)

by (simp add: insertion-positive-poly)
have [simp]: I [[foldr (λi t. Fun (v-sym i) [t]) xs t]]α = I [[t]]α for xs t

by (induct xs, auto)
define l where l i = args (lhs-S) ! i for i
define r where r i = args (rhs-S) ! i for i
note defs = l-def r-def lhs-S-def rhs-S-def
have 1 : I [[l 0]]α ≥ I [[r 0]]α unfolding defs by auto
have 2 : I [[l 1]]α ≥ I [[r 1]]α unfolding defs by auto
have 5 : I [[l 4]]α ≥ I [[r 4]]α unfolding defs using α[of y5] by auto
have 6 : I [[l 5]]α > I [[r 5]]α unfolding defs using α[of y6] by (auto simp:

power2-eq-square)
have 7 : I [[l 6]]α ≥ I [[r 6]]α unfolding defs using α[of y7] q1

by (auto simp: q1-def [symmetric] field-simps)

have n44 : n4 ∗ 4 = n4 + n4 + n4 + n4 by simp
have r3 : I [[r 3]]α = 1 ∗ 5^(4 ∗ n4) + 14 ∗ 5^(3 ∗ n4) + 64 ∗ 5^(2 ∗ n4)

+ 105 ∗ 5^n4 + 48 ∗ 5^0
unfolding defs by (simp add: n4 field-simps power-mult power2-eq-square)
(simp flip: power-add power-mult add: field-simps n44)

let ?large = 125 ∗ 5^(n4^2 + 7 ∗ n4)
have l3 : I [[l 3]]α = ?large + ?large + ?large + ?large + ?large
unfolding defs by (simp add: n4 power2-eq-square nat-add-distrib nat-mult-distrib

power-add)
have 4 : I [[l 3]]α ≥ I [[r 3]]α unfolding l3 r3

by (intro add-mono mult-mono power-increasing, auto)

have I [[r 2]]α ∗ I [[r 6]]α + I [[r 2]]α
= ((q1 + 1) ∗ α y7 + q1 + 1) ∗ α y3
unfolding defs by (simp add: I-encode-poly[OF pq(2)] q1-def field-simps)

also have . . . ≤ ((q1 + 1) ∗ α y7 + q1 + 1) ∗ ((p1 + 1) ∗ α y3)
by (rule mult-left-mono, insert p1 q1 α, auto simp: field-simps)

also have . . . = I [[l 2]]α ∗ I [[l 6]]α + I [[l 2]]α
unfolding defs by (simp add: I-encode-poly[OF pq(1)] q1-def p1-def

field-simps)
finally have 37 : I [[l 2]]α ∗ I [[l 6]]α + I [[l 2]]α ≥ I [[r 2]]α ∗ I [[r 6]]α + I [[r 2]]α

.

122

have lhs: lhs-S = Fun f-sym (map l [0 ,1 ,2 ,3 ,4 ,5 ,6]) unfolding lhs-S-def l-def
by simp

have rhs: rhs-S = Fun f-sym (map r [0 ,1 ,2 ,3 ,4 ,5 ,6]) unfolding rhs-S-def
r-def by simp

have I [[rhs-S]]α = (I [[r 2]]α ∗ I [[r 6]]α + I [[r 2]]α) +
(I [[r 0]]α + I [[r 1]]α + I [[r 3]]α + I [[r 4]]α + I [[r 6]]α) + I [[r 5]]α

unfolding rhs by simp
also have . . . < (I [[l 2]]α ∗ I [[l 6]]α + I [[l 2]]α) +

(I [[l 0]]α + I [[l 1]]α + I [[l 3]]α + I [[l 4]]α + I [[l 6]]α) + I [[l 5]]α
apply (rule add-le-less-mono[OF - 6])
apply (rule add-mono[OF 37])
by (intro add-mono 1 2 4 5 7)

also have . . . = I [[lhs-S]]α unfolding lhs by simp
finally show I [[lhs-S]]α > I [[rhs-S]]α .

qed
qed

qed
end

end

8 Undecidability of Polynomial Termination using
δ-Orders

theory Delta-Poly-Termination-Undecidable
imports

Poly-Termination-Undecidable
begin

context poly-input
begin

definition y8 :: var where y8 = 7
definition y9 :: var where y9 = 8

Definition 6.3
definition lhs-Q = Fun f-sym [

q-t (h-t (Var y1)),
h-t (Var y2),
h-t (Var y3),
g-t (q-t (Var y4)) (h-t (h-t (h-t (Var y4)))),
q-t (Var y5),
a-t (Var y6) (Var y6),
Var y7 ,
Var y8 ,
h-t (a-t (encode-poly y9 p) (Var y9))]

123

fun g-list :: - ⇒ (symbol,var)term where
g-list [] = z-t
| g-list ((f ,n) # fs) = g-t (Fun f (replicate n z-t)) (g-list fs)

definition symbol-list where symbol-list = [(f-sym,9),(q-sym,1),(h-sym,1),(a-sym,2)]
@ map (λ i. (v-sym i, 1)) V-list

definition t-t :: (symbol,var)term where t-t = (g-list ((z-sym,0) # symbol-list))

definition rhs-Q = Fun f-sym [
h-t (h-t (q-t (Var y1))),
g-t (Var y2) (Var y2),
Fun f-sym (replicate 9 (Var y3)),
q-t (g-t (Var y4) t-t),
a-t (Var y5) (Var y5),
q-t (Var y6),
a-t z-t (Var y7),
a-t (Var y8) z-t,
a-t (encode-poly y9 q) (Var y9)]

definition Q where Q = {(lhs-Q, rhs-Q)}

definition F-Q where F-Q = {(f-sym,9), (h-sym,1), (g-sym,2), (q-sym,1)} ∪ F

lemma lhs-Q-F : funas-term lhs-Q ⊆ F-Q
proof −

from funas-encode-poly-p
show funas-term lhs-Q ⊆ F-Q unfolding lhs-Q-def by (auto simp: F-Q-def

F-def)
qed

lemma g-list-F : set zs ⊆ F-Q =⇒ funas-term (g-list zs) ⊆ F-Q
proof (induct zs)

case Nil
thus ?case by (auto simp: F-Q-def F-def)

next
case (Cons fa ts)
then obtain f a where fa: fa = (f ,a) and inF : (f ,a) ∈ F-Q by (cases fa, auto)
have {(g-sym,Suc (Suc 0)),(z-sym,0)} ⊆ F-Q by (auto simp: F-Q-def F-def)
with Cons fa inF show ?case by auto

qed

lemma symbol-list: set symbol-list ⊆ F-Q unfolding symbol-list-def F-Q-def F-def
using V-list by auto

lemma t-F : funas-term t-t ⊆ F-Q
unfolding t-t-def using g-list-F [OF symbol-list]
by (auto simp: F-Q-def F-def)

124

lemma vars-g-list[simp]: vars-term (g-list zs) = {}
by (induct zs, auto)

lemma vars-t: vars-term t-t = {}
unfolding t-t-def by simp

lemma rhs-Q-F : funas-term rhs-Q ⊆ F-Q
proof −

from funas-encode-poly-q
show funas-term rhs-Q ⊆ F-Q unfolding rhs-Q-def using t-F by (auto simp:

F-Q-def F-def)
qed

context
fixes I :: symbol ⇒ ′a :: linordered-field mpoly and δ :: ′a and a3 a2 a1 a0 z0 v
assumes I : I a-sym = Const a3 ∗ PVar 0 ∗ PVar 1 + Const a2 ∗ PVar 0 +

Const a1 ∗ PVar 1 + Const a0
I z-sym = Const z0
I (v-sym i) = mpoly-of-poly 0 (v i)

and a: a3 > 0 a2 > 0 a1 > 0 a0 ≥ 0
and z: z0 ≥ 0
and v: nneg-poly (v i) degree (v i) > 0

begin

lemma nneg-combination: assumes nneg-poly r
shows nneg-poly ([:a1 , a3 :] ∗ r + [:a0 , a2 :])
by (intro nneg-poly-add nneg-poly-mult assms, insert a, auto)

lemma degree-combination: assumes nneg-poly r
shows degree ([:a1 , a3 :] ∗ r + [:a0 , a2 :]) = Suc (degree r)
using nneg-poly-degree-add-1 [OF assms, OF a(1) a(2)] by auto

lemma degree-eval-encode-num: assumes c: c ≥ 0
shows ∃ p. mpoly-of-poly x p = poly-inter .eval I (encode-num x c) ∧ nneg-poly

p ∧ int (degree p) = c
proof −

interpret poly-inter UNIV I .
from assms obtain n where cn: c = int n by (metis nonneg-eq-int)
hence natc: nat c = n by auto
note [simp] = I
show ?thesis unfolding encode-num-def natc unfolding cn int-int-eq
proof (induct n)

case 0
show ?case using z by (auto simp: intro!: exI [of - [:z0 :]])

next
case (Suc n)
define t where t = (((λt. Fun a-sym [TVar x, t]) ^^ n) (Fun z-sym []))
from Suc obtain p where mp: mpoly-of-poly x p = eval t

125

and deg: degree p = n and p: nneg-poly p by (auto simp: t-def)
show ?case apply (simp add: t-def [symmetric])

apply (unfold deg[symmetric])
apply (intro exI [of - [: a1 , a3 :] ∗ p + [:a0 , a2 :]] conjI mpoly-extI de-

gree-combination p nneg-combination)
by (simp add: mp insertion-add insertion-mult field-simps)

qed
qed

lemma degree-eval-encode-monom: assumes c: c > 0
and α: α = (λ i. int (degree (v i)))

shows ∃ p. mpoly-of-poly y p = poly-inter .eval I (encode-monom y m c) ∧ nneg-poly
p ∧

int (degree p) = insertion α (mmonom m c) ∧ degree p > 0
proof −

interpret poly-inter UNIV I .
define xes where xes = var-list m
from var-list[of m c]
have monom: mmonom m c = Const c ∗ (

∏
(x, e)← xes . PVar x ^ e) unfolding

xes-def .
show ?thesis unfolding encode-monom-def monom xes-def [symmetric]
proof (induct xes)

case Nil
show ?case using degree-eval-encode-num[of c y] c by auto

next
case (Cons xe xes)
obtain x e where xe: xe = (x,e) by force
define expr where expr = rec-list (encode-num y c) (λa. case a of (i, e) ⇒

λ-. (λt. Fun (v-sym i) [t]) ^^ e)
define exes where exes = expr xes
define ixes where ixes = insertion α (Const c ∗ (

∏
a← xes. case a of (x, a)

⇒ PVar x ^ a))
have step: expr (xe # xes) = ((λt. Fun (v-sym x) [t]) ^^ e) (exes)

unfolding xe expr-def exes-def by auto
have step ′: insertion α (Const c ∗ (

∏
a←xe # xes. case a of (x, a) ⇒ PVar x

^ a))
= (α x)^e ∗ ixes
unfolding xe ixes-def by (simp add: insertion-mult insertion-power)

from Cons(1)[folded expr-def exes-def ixes-def] obtain p where
IH : mpoly-of-poly y p = eval exes nneg-poly p
int (degree p) = ixes degree p > 0
by auto

show ?case
unfolding expr-def [symmetric]
unfolding step step ′

proof (induct e)
case 0
thus ?case using IH by auto

next

126

case (Suc e)
define rec where rec = ((λt. Fun (v-sym x) [t]) ^^ e) exes
from Suc[folded rec-def] obtain p where

IH : mpoly-of-poly y p = eval rec nneg-poly p int (degree p) = α x ^ e ∗ ixes
degree p > 0 by auto

have ((λt. Fun (v-sym x) [t]) ^^ Suc e) exes = Fun (v-sym x) [rec]
unfolding rec-def by simp
also have eval . . . = substitute (λi. if i = 0 then eval ([rec] ! i) else 0)

(poly-to-mpoly 0 (v x))
by (simp add: I mpoly-of-poly-is-poly-to-mpoly)

also have . . . = poly-to-mpoly y (v x ◦p p)
by (rule substitute-poly-to-mpoly, auto simp: IH (1)[symmetric] mpoly-of-poly-is-poly-to-mpoly)
finally have id: eval (((λt. Fun (v-sym x) [t]) ^^ Suc e) exes) = poly-to-mpoly

y (v x ◦p p) .
show ?case unfolding id mpoly-of-poly-is-poly-to-mpoly
proof (intro exI [of - v x ◦p p] conjI refl)

show int (degree (v x ◦p p)) = α x ^ Suc e ∗ ixes
unfolding degree-pcompose using IH (3) by (auto simp: α)

show nneg-poly (v x ◦p p) using IH (2) v[of x]
by (intro nneg-poly-pcompose, insert IH , auto)

show 0 < degree (v x ◦p p) unfolding degree-pcompose using IH (4) v[of
x] by auto

qed
qed

qed
qed

Lemma 6.2
lemma degree-eval-encode-poly-generic: assumes positive-poly r

and α: α = (λ i. int (degree (v i)))
shows ∃ p. poly-to-mpoly x p = poly-inter .eval I (encode-poly x r) ∧ nneg-poly p
∧

int (degree p) = insertion α r
proof −

interpret poly-inter UNIV I .
define mcs where mcs = monom-list r
from monom-list[of r] have r : r = (

∑
(m, c)← mcs. mmonom m c) unfolding

mcs-def by auto
{

fix m c
assume mc: (m,c) ∈ set mcs
hence c ≥ 0

using monom-list-coeff assms unfolding mcs-def positive-poly-def by auto
moreover from mc have c 6= 0 unfolding mcs-def

by (transfer , auto)
ultimately have c > 0 by auto

} note mcs = this
note [simp] = I
show ?thesis unfolding encode-poly-def mcs-def [symmetric] unfolding r inser-

127

tion-sum-list map-map o-def
unfolding mpoly-of-poly-is-poly-to-mpoly[symmetric]
using mcs

proof (induct mcs)
case Nil
show ?case by (rule exI [of - [:z0 :]], insert z, auto)

next
case (Cons mc mcs)
define trm where trm = rec-list (Fun z-sym []) (λa. case a of (m, c) ⇒ λ- t.

Fun a-sym [encode-monom x m c, t])
define expr where expr mcs = (

∑
x←mcs. insertion α (case x of (x, xa) ⇒

mmonom x xa)) for mcs
obtain m c where mc: mc = (m,c) by force
from Cons(2) mc have c: c > 0 by auto
from degree-eval-encode-monom[OF this α, of x m]
obtain q where monom: mpoly-of-poly x q = eval (encode-monom x m c)

nneg-poly q int (degree q) = insertion α (mmonom m c)
and dq: degree q > 0 by auto

from Cons(1)[folded trm-def expr-def , OF Cons(2)]
obtain p where IH : mpoly-of-poly x p = eval (trm mcs) nneg-poly p int (degree

p) = expr mcs by force
have step: trm (mc # mcs) = Fun a-sym [encode-monom x m c, trm mcs]

unfolding mc trm-def by simp
have step ′: expr (mc # mcs) = insertion α (mmonom m c) + expr mcs

unfolding mc expr-def by simp
have deg: degree ([:a3 :] ∗ q ∗ p + ([:a2 :] ∗ q + [:a1 :] ∗ p + [:a0 :])) = degree p

+ degree q
by (rule nneg-poly-degree-add, insert a IH monom, auto)

show ?case unfolding expr-def [symmetric] trm-def [symmetric]
unfolding step step ′

unfolding IH (3)[symmetric] monom(3)[symmetric]
apply (intro exI [of - [:a3 :] ∗ q ∗ p + [:a2 :] ∗ q + [:a1 :] ∗ p + [:a0 :]] conjI)

subgoal by (intro mpoly-extI , simp add: IH (1)[symmetric] monom(1)[symmetric]
insertion-mult insertion-add)

subgoal by (intro nneg-poly-mult nneg-poly-add IH monom, insert a, auto)
subgoal using deg by (auto simp: ac-simps)
done

qed
qed
end
end

context delta-poly-inter
begin

lemma transp-gt-delta: transp (λ x y. x ≥ y + δ) using δ0
by (auto simp: transp-def)

lemma gt-delta-imp-ge: y + δ ≤ x =⇒ y ≤ x using δ0 by auto

128

lemma weakly-monotone-insertion: assumes mono: monotone-poly (vars p) p
and a: assignment (a :: - ⇒ ′a)
and gt:

∧
x. x ∈ vars p =⇒ a x + δ ≤ b x

shows insertion a p ≤ insertion b p
using monotone-poly-wrt-insertion[OF transp-gt-delta gt-delta-imp-ge mono a, of

b] gt δ0 by auto

Lemma 6.5
lemma degree-partial-insertion-stays-constant: assumes mono: monotone-poly (vars
p) p

shows ∃ a. assignment a ∧
(∀ b. (∀ y. a y + δ ≤ b y) −→ degree (partial-insertion a x p) = degree

(partial-insertion b x p))
using degree-partial-insertion-stays-constant-generic
[OF transp-gt-delta gt-delta-imp-ge poly-pinfty-ge mono, of δ x, simplified]

by metis

lemma degree-mono: assumes pos: lead-coeff p ≥ (0 :: ′a)
and le:

∧
x. x ≥ c =⇒ poly p x ≤ poly q x

shows degree p ≤ degree q
by (rule degree-mono-generic[OF poly-pinfty-ge assms])

lemma degree-mono ′: assumes
∧

x. x ≥ c =⇒ (bnd :: ′a) ≤ poly p x ∧ poly p x
≤ poly q x

shows degree p ≤ degree q
by (rule degree-mono ′-generic[OF poly-pinfty-ge assms])

Lemma 6.6
lemma subst-same-var-monotone-imp-same-degree:

assumes mono: monotone-poly (vars p) (p :: ′a mpoly)
and dq: degree q = d
and d0 : d 6= 0
and qp: poly-to-mpoly x q = substitute (λi. PVar x) p

shows total-degree p = d
proof −

let ?mc = (λ m. mmonom m (mcoeff p m))
let ?cfs = {m . mcoeff p m 6= 0}
let ?lc = lead-coeff
note fin = finite-coeff-support[of p]
from poly-to-mpoly-substitute-same[OF qp] d0 [folded dq] have p0 : p 6= 0

by (metis degree-0 insertion-zero poly-all-0-iff-0)
define M where M = total-degree p
from degree-monom-eq-total-degree[OF p0]
obtain mM where mM : mcoeff p mM 6= 0 degree-monom mM = M unfolding

M-def by blast
from degree-substitute-same-var [of x p, folded M-def qp]
have dM : d ≤ M unfolding dq degree-poly-to-mpoly .
with d0 have M1 : M ≥ 1 by auto

129

define p1 where p1 = sum ?mc (?cfs ∩ {m. degree-monom m = M})
define p2 where p2 = sum ?mc (?cfs ∩ {m. degree-monom m < M})
have p = sum ?mc ?cfs

by (rule mpoly-as-sum)
also have ?cfs = ?cfs ∩ {m. degree-monom m = M}
∪ ?cfs ∩ {m. degree-monom m 6= M} by auto

also have ?cfs ∩ {m. degree-monom m 6= M} = ?cfs ∩ {m. degree-monom m <
M}

using degree-monon-le-total-degree[of p, folded M-def] by force
also have sum ?mc (?cfs ∩ {m. degree-monom m = M} ∪ . . .) = p1 + p2

unfolding p1-def p2-def
using fin by (intro sum.union-disjoint, auto)

finally have p-split: p = p1 + p2 .
have total-degree p2 ≤ M − 1 unfolding p2-def

by (intro total-degree-sum-leI , subst total-degree-monom, auto)
also have . . . < M using M1 by auto
finally have deg-p ′: total-degree p2 < M by auto
have p1 6= 0
proof

assume p1 = 0
hence p = p2 unfolding p-split by auto
hence M = total-degree p2 unfolding M-def by simp
with deg-p ′ show False by auto

qed
with mpoly-ext-bounded-field[of max 1 δ p1 0] obtain b

where b:
∧

v. b v ≥ max 1 δ and bpm0 : insertion b p1 6= 0 by auto
from b have b1 :

∧
v. b v ≥ 1 and bδ:

∧
v. b v ≥ δ by auto

define c where c = Max (insert 1 (b ‘ vars p)) + δ
define X where X = (0 :: nat)
define pb where pb p = mpoly-to-poly X (substitute (λ v. Const (b v) ∗ PVar

X) p) for p
have c1 : c ≥ 1 unfolding c-def using vars-finite[of p] δ0 Max-ge[of - 1 :: ′a]

by (meson add-increasing2 finite.insertI finite-imageI insertI1 nless-le)
have varsX : vars (substitute (λ v. Const (b v) ∗ PVar X) p) ⊆ {X} for p

by (intro vars-substitute order .trans[OF vars-mult], auto)
have pb: substitute (λ v. Const (b v) ∗ PVar X) p = poly-to-mpoly X (pb p) for

p
unfolding pb-def
by (rule mpoly-to-poly-inverse[symmetric, OF varsX])

have poly-pb: poly (pb p) x = insertion (λv. b v ∗ x) p for x p
using arg-cong[OF pb, of insertion (λ -. x),

unfolded insertion-poly-to-mpoly]
by (auto simp: insertion-substitute insertion-mult)

define lb where lb = insertion (λ -. 0) p
{

fix x
have poly (pb p) x = insertion (λv. b v ∗ x) p by fact
also have . . . = insertion (λv. b v ∗ x) p1 + insertion (λv. b v ∗ x) p2

unfolding p-split

130

by (simp add: insertion-add)
also have insertion (λv. b v ∗ x) p1 = insertion b p1 ∗ x^M
unfolding p1-def insertion-sum insertion-mult insertion-monom sum-distrib-right

power-mult-distrib
proof (intro sum.cong[OF refl], goal-cases)

case (1 m)
from 1 have M : M = degree-monom m by auto
have { v. lookup m v 6= 0} ⊆ keys m

by (simp add: keys.rep-eq)
from finite-subset[OF this] have fin: finite { v. lookup m v 6= 0} by auto
have (

∏
v. b v ^ lookup m v ∗ x ^ lookup m v)

= (
∏

v. b v ^ lookup m v) ∗ (
∏

v. x ^ lookup m v)
by (subst (1 2 3) Prod-any.expand-superset[OF fin])
(insert zero-less-iff-neq-zero, force simp: prod.distrib)+

also have (
∏

v. x ^ lookup m v) = x ^ M unfolding M degree-monom-def
by (smt (verit) Prod-any.conditionalize Prod-any.cong finite-keys in-keys-iff

power-0 power-sum)
finally show ?case by simp

qed
also have insertion (λv. b v ∗ x) p2 = poly (pb p2) x unfolding poly-pb ..
finally have poly (pb p) x = poly (monom (insertion b p1) M + pb p2) x by

(simp add: poly-monom)
}
hence pbp-split: pb p = monom (insertion b p1) M + pb p2 by blast
have degree (pb p2) ≤ total-degree p2 unfolding pb-def

apply (subst degree-mpoly-to-poly)
apply (simp add: varsX)

by (rule degree-substitute-const-same-var)
also have . . . < M by fact
finally have deg-pbp2 : degree (pb p2) < M .
have degree (monom (insertion b p1) M) = M using bpm0 by (rule de-

gree-monom-eq)
with deg-pbp2 pbp-split have deg-pbp: degree (pb p) = M unfolding pbp-split

by (subst degree-add-eq-left, auto)
have ?lc (pb p) = insertion b p1 unfolding pbp-split

using deg-pbp2 bpm0 coeff-eq-0 deg-pbp pbp-split by auto
define bnd where bnd = insertion (λ -. 0) p

{
fix x :: ′a
assume x1 : x ≥ 1
hence x: x ≥ 0 by simp
have ass: assignment (λ v. b v ∗ x) unfolding assignment-def using x b1

by (meson linorder-not-le mult-le-cancel-right1 order-trans)
have poly (pb p) x = insertion (λv. b v ∗ x) p by fact
also have insertion (λ v. b v ∗ x) p ≤ insertion (λ v. c ∗ x) p
proof (rule weakly-monotone-insertion[OF mono ass])

fix v

131

assume v: v ∈ vars p
have b v + δ ≤ c unfolding c-def using vars-finite[of p] v Max-ge[of - b v]

by auto
thus b v ∗ x + δ ≤ c ∗ x using b[of v] x1 c1 δ0
by (smt (verit) c-def add-le-imp-le-right add-mono comm-semiring-class.distrib

mult.commute mult-le-cancel-right1 mult-right-mono order .asym x)
qed
also have . . . = poly q (c ∗ x) unfolding poly-to-mpoly-substitute-same[OF qp]

..
also have . . . = poly (q ◦p [:0 , c:]) x by (simp add: poly-pcompose ac-simps)
finally have ineq: poly (pb p) x ≤ poly (q ◦p [:0 , c:]) x .
have bnd ≤ insertion (λv. b v ∗ x) p unfolding bnd-def

apply (intro weakly-monotone-insertion[OF mono])
subgoal by (simp add: assignment-def)
subgoal for v using bδ[of v] x1 δ0

by simp (metis dual-order .trans less-le-not-le mult-le-cancel-left1)
done

also have . . . = poly (pb p) x using poly-pb by auto
finally have bnd ≤ poly (pb p) x by auto
note this ineq

} note pb-approx = this
have M = degree (pb p) unfolding deg-pbp ..
also have . . . ≤ degree (q ◦p [:0 , c:])

by (intro degree-mono ′[of 1 bnd], insert pb-approx, auto)
also have . . . ≤ d by (simp add: dq)
finally have deg-pbp: M ≤ d .
with dM have M = d by auto
thus ?thesis unfolding M-def .

qed

lemma monotone-poly-partial-insertion:
assumes x: x ∈ xs
and mono: monotone-poly xs p
and ass: assignment a

shows 0 < degree (partial-insertion a x p)
lead-coeff (partial-insertion a x p) > 0
valid-poly p =⇒ y ≥ 0 =⇒ poly (partial-insertion a x p) y ≥ y − δ
valid-poly p =⇒ insertion a p ≥ a x − δ

proof −
have 0 : 1 ≤ inverse δ ∗ δ using δ0 by auto
define ceil-nat :: ′a ⇒ nat where ceil-nat x = nat (ceiling x) for x
have 1 : x ≤ of-nat (ceil-nat x) for x unfolding ceil-nat-def

by (simp add: of-nat-ceiling)
note main = monotone-poly-partial-insertion-generic[OF transp-gt-delta gt-delta-imp-ge

poly-pinfty-ge refl δ0 0 1 x mono ass, simplified]
show 0 < degree (partial-insertion a x p) 0 < lead-coeff (partial-insertion a x p)

using main by auto
assume valid: valid-poly p

132

from main(3)[OF this] have estimation: δ ∗ of-nat y ≤ poly (partial-insertion a
x p) (δ ∗ of-nat y) for y by auto

{
fix y :: ′a
assume y: y ≥ 0
with ass have ass ′: assignment (a(x := y)) unfolding assignment-def by auto
from valid[unfolded valid-poly-def , rule-format, OF ass ′]
have ge0 : insertion (a(x := y)) p ≥ 0 by auto
have id: poly (partial-insertion a x p) y = insertion (a(x := y)) p

using insertion-partial-insertion[of x a a(x:=y) p] by auto
show y − δ ≤ poly (partial-insertion a x p) y
proof (cases y ≥ δ)

case False
with ge0 [folded id] y show ?thesis by auto

next
case True
define z where z = y − δ
from True have z0 : z ≥ 0 unfolding z-def by auto
define n where n = nat (floor (z ∗ inverse δ))
have δ ∗ of-nat n ≤ z unfolding n-def using δ0 z0

by (metis field-class.field-divide-inverse mult-of-nat-commute mult-zero-left
of-nat-floor pos-le-divide-eq)

hence gt: δ ∗ of-nat n + δ ≤ y unfolding z-def by auto

define b where b = a(x := δ ∗ of-nat n)
have ass-b: assignment b using δ0 ass unfolding b-def assignment-def by

auto
from mono[unfolded monotone-poly-wrt-def , rule-format, OF ass-b x , of y] gt
have gt: insertion b p ≤ insertion (b(x := y)) p − δ by (auto simp: b-def)

have δ ∗ of-nat n + δ ≥ z unfolding n-def using δ0 z0
by (smt (verit, del-insts) comm-semiring-class.distrib field-class.field-divide-inverse

floor-divide-upper inverse-nonnegative-iff-nonnegative mult.commute mult-cancel-left2
mult-nonneg-nonneg of-nat-nat order-less-le z-def z-def z-def zero-le-floor)

hence y − 2 ∗ δ ≤ δ ∗ of-nat n unfolding z-def by auto
also have δ ∗ of-nat n ≤ poly (partial-insertion a x p) (δ ∗ of-nat n)

by fact
also have . . . = insertion b p using insertion-partial-insertion[of x a b p]

by (auto simp: b-def)
also have . . . ≤ insertion (b(x := y)) p − δ by fact
also have insertion (b(x := y)) p = poly (partial-insertion a x p) y

using insertion-partial-insertion[of x a b(x := y) p]
by (auto simp: b-def)

finally show ?thesis by simp
qed

} note estimation = this
from ass have a x ≥ 0 unfolding assignment-def by auto
from estimation[OF this] show insertion a p ≥ a x − δ

using insertion-partial-insertion[of x a a p] by auto

133

qed
end

context solvable-poly-problem
begin

context
assumes SORT-CONSTRAINT (′a :: floor-ceiling)

begin

context
fixes h :: ′a

begin

fun IQ :: symbol ⇒ ′a mpoly where
IQ f-sym = PVar 0 + PVar 1 + PVar 2 + PVar 3 + PVar 4 + PVar 5 + PVar

6 + PVar 7 + PVar 8
| IQ a-sym = PVar 0 ∗ PVar 1 + PVar 0 + PVar 1
| IQ z-sym = 0
| IQ (v-sym i) = PVar 0 ^ (nat (α i))
| IQ q-sym = PVar 0 ∗ PVar 0 + Const 2 ∗ PVar 0
| IQ g-sym = PVar 0 + PVar 1
| IQ h-sym = Const h ∗ PVar 0 + Const h
| IQ o-sym = 0

interpretation interQ: poly-inter F-Q IQ (λx y. x ≥ y + (1 :: ′a)) .

Lemma 6.2 specialized for this interpretation
lemma degree-eval-encode-poly: assumes positive-poly r

shows ∃ p. poly-to-mpoly y9 p = interQ.eval (encode-poly y9 r) ∧ nneg-poly p ∧
int (degree p) = insertion α r
proof −

define v where v i = (monom 1 (nat (α i)) :: ′a poly) for i
define γ where γ = (λi. int (degree (v i)))
have nneg-v: nneg-poly (v i) 0 < degree (v i) for i unfolding v-def using α1 [of

i]
by (auto simp: nneg-poly-def degree-monom-eq poly-monom)

have id: int (Polynomial.degree (v i)) = α i for i unfolding v-def
using α1 [of i] by (auto simp: nneg-poly-def degree-monom-eq)

have IQ (v-sym i) = mpoly-of-poly 0 (v i) for i
unfolding v-def by (intro mpoly-extI , simp add: insertion-power poly-monom)

from degree-eval-encode-poly-generic[of IQ 1 1 1 0 0 v - γ, OF - - this, simplified,
OF nneg-v assms γ-def ,

unfolded id]
show ?thesis by auto

qed

definition pp where pp = (SOME pp. poly-to-mpoly y9 pp = interQ.eval (encode-poly
y9 p) ∧ nneg-poly pp ∧ int (degree pp) = insertion α p)

134

lemma pp: interQ.eval (encode-poly y9 p) = poly-to-mpoly y9 pp
nneg-poly pp int (degree pp) = insertion α p
using someI-ex[OF degree-eval-encode-poly[OF pq(1)], folded pp-def] by auto

definition qq where qq = (SOME qq. poly-to-mpoly y9 qq = interQ.eval (encode-poly
y9 q) ∧ nneg-poly qq ∧ int (degree qq) = insertion α q)

lemma qq: interQ.eval (encode-poly y9 q) = poly-to-mpoly y9 qq
nneg-poly qq int (degree qq) = insertion α q
using someI-ex[OF degree-eval-encode-poly[OF pq(2)], folded qq-def] by auto

definition ppp = pp ∗ [:1 ,1 :] + [:0 ,1 :]
definition qqq = qq ∗ [:1 ,1 :] + [:0 ,1 :]

lemma degree-ppp: int (degree ppp) = 1 + insertion α p
unfolding ppp-def pp(3)[symmetric]
using nneg-poly-degree-add-1 [OF pp(2), of 1 1 1 0] by simp

lemma degree-qqq: int (degree qqq) = 1 + insertion α q
unfolding qqq-def qq(3)[symmetric]
using nneg-poly-degree-add-1 [OF qq(2), of 1 1 1 0] by simp

lemma ppp-qqq: degree ppp ≥ degree qqq
using degree-ppp degree-qqq α(2) by auto

lemma nneg-ppp: nneg-poly ppp
unfolding ppp-def
by (intro nneg-poly-add nneg-poly-mult pp, auto)

definition H where H = (SOME H . ∀ h ≥ H . ∀ x≥0 . poly qqq x ≤ h ∗ poly ppp
x + h)

lemma H : h ≥ H =⇒ x ≥ 0 =⇒ poly qqq x ≤ h ∗ poly ppp x + h
proof −

from poly-degree-le-large-const[OF ppp-qqq nneg-poly-nneg[OF nneg-ppp]]
have ∃H . ∀ h≥H . ∀ x≥0 . poly qqq x ≤ h ∗ poly ppp x + h by auto
from someI-ex[OF this, folded H-def]
show h ≥ H =⇒ x ≥ 0 =⇒ poly qqq x ≤ h ∗ poly ppp x + h by auto

qed
end

definition h where h = max 9 (H 1)

lemma h: h ≥ 1 unfolding h-def by auto

abbreviation I-Q where I-Q ≡ IQ h

interpretation inter-Q: poly-inter F-Q I-Q (λx y. x ≥ y + (1 :: ′a)) .

135

Well-definedness of Interpretation in Theorem 6.4
lemma valid-monotone-inter-Q:

inter-Q.valid-monotone-poly-inter
unfolding inter-Q.valid-monotone-poly-inter-def

proof (intro ballI)
note [simp] = insertion-add insertion-mult
fix fn
assume f : fn ∈ F-Q
then consider
(a) fn = (a-sym,2)
| (g) fn = (g-sym,2)
| (h) fn = (h-sym,1)
| (q) fn = (q-sym,1)
| (f) fn = (f-sym,9)
| (z) fn = (z-sym,0)
| (v) i where fn = (v-sym i, 1) i ∈ V
unfolding F-Q-def F-def by auto

thus inter-Q.valid-monotone-poly fn
proof cases

case ∗: a
have vars: vars (PVar 0 ∗ PVar 1 + PVar 0 + PVar 1 :: ′a mpoly) = {0 ,1}

apply (intro vars-eqI)
subgoal by (intro vars-mult-subI vars-add-subI , auto)
subgoal for v by (intro exI [of - λ -. 1] exI [of - 0], auto)
done

show ?thesis unfolding inter-Q.valid-monotone-poly-def ∗
apply (intro allI impI , clarify, unfold IQ.simps vars valid-poly-def

monotone-poly-wrt-def
insertion-mult insertion-add insertion-Var ,
intro conjI allI impI)

subgoal for α unfolding assignment-def by simp
subgoal for - - - α x v
proof goal-cases

case 1
from assignmentD[OF 1 (1)] have 0 : α 0 ≥ 0 α 1 ≥ 0 by auto
from 1 have x = 0 ∨ x = 1 by auto
thus ?case using 0 1 (3) mult-right-mono[OF 1 (3), of α (x − 1)]

by (auto simp: field-simps)
(smt (verit, ccfv-threshold) 1 (3) add.assoc add.commute add-increasing

add-le-imp-le-right add-right-mono diff-ge-0-iff-ge le-add-diff-inverse2 mult-right-mono
zero-less-one-class.zero-le-one)

qed
subgoal by auto
done

next
case ∗: f
have vars: vars (PVar 0 + PVar 1 + PVar 2 + PVar 3 + PVar 4 + PVar 5

+ PVar 6 + PVar 7 + PVar 8 :: ′a mpoly) = {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8}
apply (intro vars-eqI)

136

subgoal by (intro vars-mult-subI vars-add-subI , auto)
subgoal for v by (intro exI [of - λ -. 1] exI [of - 0], auto)
done

show ?thesis unfolding inter-Q.valid-monotone-poly-def ∗
apply (intro allI impI , clarify, unfold IQ.simps vars valid-poly-def

monotone-poly-wrt-def
insertion-mult insertion-add insertion-Var ,
intro conjI allI impI)

subgoal for α unfolding assignment-def by simp
subgoal for - - - α x v
proof goal-cases

case 1
hence x ∈ {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8} by auto
thus ?case using 1 (3) by auto

qed
subgoal by auto
done

next
case ∗: h
have vars: vars (Const h ∗ PVar 0 + Const h :: ′a mpoly) = {0}

apply (intro vars-eqI)
subgoal by (intro vars-mult-subI vars-add-subI , auto)
subgoal for v using h by (intro exI [of - λ -. 1] exI [of - 0], auto)
done

show ?thesis unfolding inter-Q.valid-monotone-poly-def ∗
apply (intro allI impI , clarify, unfold IQ.simps vars valid-poly-def

monotone-poly-wrt-def
insertion-mult insertion-add insertion-Var ,
intro conjI allI impI)

subgoal for α using h unfolding assignment-def by simp
subgoal for - - - α x v
proof goal-cases

case 1
from assignmentD[OF 1 (1), of 0]
show ?case using 1 h

by (auto simp: field-simps)
(smt (verit, ccfv-threshold) add.commute add-le-cancel-left distrib-left

linordered-nonzero-semiring-class.zero-le-one mult.commute mult-cancel-left1 mult-left-mono
nle-le order-trans)

qed
subgoal by auto
done

next
case z

thus ?thesis by (auto simp: inter-Q.valid-monotone-poly-def valid-poly-def
monotone-poly-wrt-def)

next
case ∗: g
have vars: vars (PVar 0 + PVar 1 :: ′a mpoly) = {0 ,1}

137

apply (intro vars-eqI)
subgoal by (intro vars-mult-subI vars-add-subI , auto)
subgoal for v by (intro exI [of - λ -. 1] exI [of - 0], auto)
done

show ?thesis unfolding inter-Q.valid-monotone-poly-def ∗
apply (intro allI impI , clarify, unfold IQ.simps vars valid-poly-def

monotone-poly-wrt-def
insertion-mult insertion-add insertion-Var ,
intro conjI allI impI)

subgoal for α unfolding assignment-def by simp
subgoal for - - - α x v
proof goal-cases

case 1
hence x ∈ {0 ,1} by auto
thus ?case using 1 (3) by auto

qed
subgoal by auto
done

next
case ∗: q
have vars: vars (PVar 0 ∗ PVar 0 + Const 2 ∗ PVar 0 :: ′a mpoly) = {0}

apply (intro vars-eqI)
subgoal by (intro vars-mult-subI vars-add-subI , auto)
subgoal for v by (intro exI [of - λ -. 1] exI [of - 2], auto)
done

show ?thesis unfolding inter-Q.valid-monotone-poly-def ∗
apply (intro allI impI , clarify, unfold IQ.simps vars valid-poly-def

monotone-poly-wrt-def
insertion-mult insertion-add insertion-Var ,
intro conjI allI impI)

subgoal for α unfolding assignment-def by simp
subgoal for - - - α x v
proof goal-cases

case 1
hence [simp]: x = 0 by auto
from 1 (1) have α 0 ≥ 0 unfolding assignment-def by simp
thus ?case using 1 (3)

by auto
(metis (no-types, opaque-lifting) add.assoc add-mono le-add-same-cancel1

mult-2 mult-mono order-trans zero-less-one-class.zero-le-one)
qed
subgoal by auto
done

next
case ∗: (v i)
from α[unfolded positive-interpr-def] have pos: α i > 0 by auto
have vars: vars ((PVar 0)^(nat (α i)):: ′a mpoly) = {0}

apply (intro vars-eqI)
subgoal by (metis Preliminaries-on-Polynomials-1 .vars-Var vars-power)

138

subgoal for v using pos apply (intro exI [of - λ -. 2] exI [of - 1])
by (auto simp: insertion-power)

(metis less-numeral-extra(4) one-less-numeral-iff one-less-power semir-
ing-norm(76) zero-less-nat-eq)

done
show ?thesis unfolding inter-Q.valid-monotone-poly-def ∗

apply (intro allI impI , clarify, unfold IQ.simps vars valid-poly-def
monotone-poly-wrt-def
insertion-Var insertion-power ,
intro conjI allI impI)

subgoal for - - - β using pos unfolding assignment-def by simp
subgoal for - - - β x v
proof goal-cases

case 1
hence [simp]: x = 0 by auto
from 1 (1) have b0 : β 0 ≥ 0 unfolding assignment-def by simp
from pos obtain k where nik: nat (α i) = Suc k

using gr0-implies-Suc zero-less-nat-eq by presburger
define b0 where b0 = β 0
have β 0 ^ nat (α i) + 1 ≤ (β 0 + 1) ^ nat (α i) using b0 unfolding

nik b0-def [symmetric]
proof (induct k)

case (Suc k)
define sk where sk = Suc k
from Suc show ?case unfolding sk-def [symmetric]

by (auto simp: field-simps add-mono ordered-comm-semiring-class.comm-mult-left-mono)
qed auto
also have . . . ≤ v ^ nat (α i) using 1 (3) by (simp add: b0 power-mono)
finally show ?case by simp

qed
subgoal by auto
done

qed
qed

lemma I-Q-delta-poly-inter : delta-poly-inter F-Q I-Q (1 :: ′a)
by (unfold-locales, rule valid-monotone-inter-Q, auto)

interpretation inter-Q: delta-poly-inter F-Q I-Q 1 :: ′a by (rule I-Q-delta-poly-inter)

Orientation part of Theorem 6.4
lemma orient-Q: inter-Q.orient-rule (lhs-Q, rhs-Q)

unfolding inter-Q.orient-rule-def split inter-Q.I ′-is-insertion-eval
proof (intro allI impI)

fix x :: - ⇒ ′a
assume assignment x
hence x: x i ≥ 0 for i unfolding assignment-def by auto
have h9 : h ≥ 9 unfolding h-def by auto
define l where l i = args (lhs-Q) ! i for i

139

define r where r i = args (rhs-Q) ! i for i
let ?e = inter-Q.eval
let ?poly = λ t. insertion x (?e t)
note defs = l-def r-def lhs-Q-def rhs-Q-def
let ?nums = [0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8] :: nat list
note [simp] = insertion-add insertion-mult y1-def y2-def y3-def y4-def y5-def

y6-def y7-def y8-def y9-def

have e-lhs: ?e lhs-Q = sum-list (map (λ i. (?e (l i))) ?nums)
unfolding defs by simp

have e-rhs: ?e rhs-Q = sum-list (map (λ i. (?e (r i))) ?nums)
unfolding defs by simp

have [simp]: 2 = (Const (2 :: ′a))
by (metis mpoly-Const-1 mpoly-Const-add one-add-one)

have ?poly (r 0) = h^2 ∗ ((x 0)^2 + 2 ∗ x 0) + h^2 + h
by (simp add: field-simps power2-eq-square defs)

also have . . . ≤ (h ∗ x 0 + h)^2 + 2 ∗ (h ∗ x 0 + h) using h x[of 0]
by (simp add: field-simps power2-eq-square)

also have . . . = ?poly (l 0)
by (simp add: field-simps power2-eq-square defs)

finally have 1 : ?poly (l 0) ≥ ?poly (r 0) .

from h9 have h2 : h ≥ 2 by auto
have ?poly (r 1) = 2 ∗ x 1

by (simp add: field-simps defs)
also have . . . ≤ h ∗ x 1 + h using mult-right-mono[OF h2 x[of 1]] h

by auto
also have . . . = ?poly (l 1)

by (simp add: field-simps power2-eq-square defs)
finally have 2 : ?poly (l 1) ≥ ?poly (r 1) .

have ?poly (r 2) + 1 = 9 ∗ x 2 + 1 unfolding defs by simp
also have . . . ≤ h ∗ x 2 + h

by (intro add-mono h mult-right-mono h9 x)
also have . . . = ?poly (l 2) unfolding defs by simp
finally have 3 : ?poly (l 2) ≥ ?poly (r 2) + 1 .

have eval-vs: insertion x (inter-Q.eval (g-list (map (λi. (v-sym i, Suc 0)) xs)))
= 0

for xs by (induct xs, auto simp: insertion-power α1)
have [simp]: insertion x (inter-Q.eval t-t) = h unfolding t-t-def symbol-list-def

by (simp add: eval-vs)
have ?poly (r 3) = (x 3 + h)^2 + 2 ∗ (x 3 + h)

by (simp add: field-simps power2-eq-square defs)
also have . . . ≤ (x 3)^2 + 2 ∗ x 3 + h^3∗x 3 + h^3 + h^2 + h (is ?l ≤ ?r)
proof −

have 2 ∗ 1 ≤ h ∗ h

140

by (intro mult-mono, insert h2 , auto)
hence hh: h ∗ h ≥ 2 by auto
have ?l ≤ ?r ←→ 1 ∗ h + (2 ∗ h) ∗ x 3 ≤ (h ∗ h) ∗ h + ((h ∗ h) ∗ h) ∗ x 3

by (auto simp: field-simps power2-eq-square defs power3-eq-cube)
also have . . .

by (intro add-mono mult-right-mono x, insert h hh, auto)
finally show ?thesis .

qed
also have . . . = ?poly (l 3)

by (simp add: field-simps power2-eq-square defs power3-eq-cube)
finally have 4 : ?poly (l 3) ≥ ?poly (r 3) .

have ?poly (r 4) = ((x 4)^2 + 2 ∗ x 4)
by (simp add: field-simps power2-eq-square defs)

also have . . . = ?poly (l 4)
by (simp add: field-simps power2-eq-square defs)

finally have 5 : ?poly (l 4) ≥ ?poly (r 4) by simp

have ?poly (r 5) = (x 5)^2 + 2 ∗ x 5
by (simp add: field-simps power2-eq-square defs)

also have . . . = ?poly (l 5)
by (simp add: field-simps power2-eq-square defs)

finally have 6 : ?poly (l 5) ≥ ?poly (r 5) by simp

have 7 : ?poly (l 6) ≥ ?poly (r 6) unfolding defs using h x[of 6]
by (simp add: add-increasing2 linorder-not-le mult-le-cancel-right1)

have 8 : ?poly (l 7) ≥ ?poly (r 7) unfolding defs using h x[of 7]
by (simp add: add-increasing2 linorder-not-le mult-le-cancel-right1)

have 9 : ?poly (l 8) ≥ ?poly (r 8)
proof −

have r : ?e (r 8) = poly-to-mpoly 8 (qqq h)
unfolding defs qqq-def

by (simp add: qq[unfolded y9-def] algebra-simps smult-conv-mult-Const Const-mult
flip: mpoly-of-poly-is-poly-to-mpoly)

have l: ?e (l 8) = poly-to-mpoly 8 ([:h:] ∗ (ppp h) + [:h:])
unfolding defs ppp-def

by (simp add: pp[unfolded y9-def] algebra-simps smult-conv-mult-Const Const-mult
flip: mpoly-of-poly-is-poly-to-mpoly)

{
fix r
assume r : r ∈ {p,q}
with funas-encode-poly-p funas-encode-poly-q
have funas: funas-term (encode-poly y9 r) ⊆ F by auto
have poly-inter .eval (IQ 1) (encode-poly y9 r) = inter-Q.eval (encode-poly y9

r)
by (rule poly-inter-eval-cong, insert funas, auto simp: F-def)

} note encode-eq = this
have pp-eq: pp h = pp 1 unfolding pp-def using encode-eq[of p] by auto

141

have qq-eq: qq h = qq 1 unfolding qq-def using encode-eq[of q] by auto
have ppp-eq: ppp h = ppp 1 unfolding ppp-def pp-eq ..
have qqq-eq: qqq h = qqq 1 unfolding qqq-def qq-eq ..
have H h = H 1 unfolding H-def ppp-eq qqq-eq ..
also have . . . ≤ h unfolding h-def by auto
finally have h: h ≥ H h .
show ?thesis unfolding l r using H [OF h x[of 8]] by simp

qed

have ?poly rhs-Q + 1 =
?poly (r 0) + ?poly (r 1) + (?poly (r 2) + 1) + ?poly (r 3) + ?poly (r 4) +

?poly (r 5) + ?poly (r 6) + ?poly (r 7) + ?poly (r 8)
unfolding e-rhs by simp

also have . . . ≤ ?poly (l 0) + ?poly (l 1) + ?poly (l 2) + ?poly (l 3) + ?poly (l
4) + ?poly (l 5) + ?poly (l 6) + ?poly (l 7) + ?poly (l 8)

by (intro add-mono 1 2 3 4 5 6 7 8 9)
also have . . . = ?poly lhs-Q

unfolding e-lhs by simp

finally show ?poly rhs-Q + 1 ≤ ?poly lhs-Q by auto
qed
end
end

context poly-input
begin

Theorem 6.4
theorem solution-impl-delta-termination-of-Q:

assumes positive-poly-problem p q
shows termination-by-delta-poly-interpretation (TYPE(′a :: floor-ceiling)) F-Q

Q
proof −

interpret solvable-poly-problem
by (unfold-locales, fact)

interpret I : delta-poly-inter F-Q I-Q (1 :: ′a) by (rule I-Q-delta-poly-inter)
show ?thesis

unfolding termination-by-delta-poly-interpretation-def
proof (intro exI [of - 1 :: ′a] exI [of - I-Q] conjI I-Q-delta-poly-inter)

show I .termination-by-delta-interpretation Q
unfolding I .termination-by-delta-interpretation-def Q-def

proof (clarify, intro conjI)
show funas-term lhs-Q ∪ funas-term rhs-Q ⊆ F-Q using lhs-Q-F rhs-Q-F

by auto
show I .orient-rule (lhs-Q, rhs-Q) using orient-Q by simp

qed
qed

qed

142

end

context delta-poly-inter
begin

lemma insertion-eval-pos: assumes funas-term t ⊆ F
and assignment α

shows insertion α (eval t) ≥ 0
by (rule valid-imp-insertion-eval-pos[OF valid assms])

lemma monotone-poly-eval: assumes funas-term t ⊆ F
shows monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t

proof −
have ∃ y. x + δ ≤ y for x :: ′a by (intro exI [of - x + δ], auto)
from monotone-poly-eval-generic[OF valid transp-gt-delta gt-delta-imp-ge this -

assms] δ0
show monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t by auto

qed

lemma monotone-linear-poly-to-coeffs: fixes p :: ′a mpoly
assumes linear : total-degree p ≤ 1

and poly: valid-poly p
and mono: monotone-poly {..<n} p
and vars: vars p = {..<n}

shows ∃ c a. p = Const c + (
∑

i←[0 ..<n]. Const (a i) ∗ PVar i)
∧ c ≥ 0 ∧ (∀ i < n. a i ≥ 1)

proof −
have sum-zero: (

∧
x. x ∈ set xs =⇒ x = 0) =⇒ sum-list (xs :: int list) = 0 for

xs by (induct xs, auto)
from coefficients-of-linear-poly[OF linear] obtain c a vs

where p: p = Const c + (
∑

i←vs. Const (a i) ∗ PVar i)
and vsd: distinct vs set vs = vars p sorted-list-of-set (vars p) = vs
and nz:

∧
v. v ∈ set vs =⇒ a v 6= 0

and c: c = mcoeff p 0
and a:

∧
i. a i = mcoeff p (monomial 1 i) by blast

have vs: vs = [0 ..<n] unfolding vsd(3)[symmetric] unfolding vars
by (simp add: lessThan-atLeast0)

show ?thesis unfolding p vs
proof (intro exI conjI allI impI , rule refl)

show c: c ≥ 0 using poly[unfolded valid-poly-def , rule-format, of λ -. 0 ,
unfolded p]

by (auto simp: coeff-add[symmetric] coeff-Const coeff-sum-list o-def co-
eff-Const-mult

coeff-Var monomial-0-iff assignment-def)
fix i
assume i < n
hence i: i ∈ set vs unfolding vs by auto
from nz[OF i] have a0 : a i 6= 0 by auto
from split-list[OF i] obtain bef aft where vsi: vs = bef @ [i] @ aft by auto

143

with vsd(1) have i: i /∈ set (bef @ aft) by auto
define α where α = (λ x :: var . 0 :: ′a)
have assignment α unfolding assignment-def α-def using c by auto
from mono[unfolded monotone-poly-wrt-def , rule-format, OF this, of i δ] ‹i <

n›
have insertion α p + δ ≤ insertion (α(i := δ)) p by (auto simp: α-def)

from this[unfolded p vsi insertion-add insertion-sum-list insertion-Const map-map
o-def insertion-mult insertion-Var]

have (
∑

x← bef @ aft. a x ∗ α x) + δ ≤ (
∑

x←bef @ aft. a x ∗ (α(i := δ))
x) + a i ∗ δ

by (auto simp: α-def)
also have (

∑
x←bef @ aft. a x ∗ (α(i := δ)) x) = (

∑
x←bef @ aft. a x ∗ α

x)
by (subst map-cong[OF refl, of - - λ x. a x ∗ α x], insert i, auto simp: α-def)

finally have δ ≤ a i ∗ δ by auto
with δ0 show a i ≥ 1 by simp

qed
qed

end

Lemma 6.7
lemma criterion-for-degree-2 : assumes qq-def : qq = q ◦p [:c, a:] − smult a q

and dq: degree q ≥ 2
and ineq:

∧
x :: ′a :: linordered-field. x ≥ 0 =⇒ poly qq x ≤ poly p x

and dp: degree p ≤ 1
and a1 : a ≥ 1
and lq0 : lead-coeff q > 0
and c: c > 0

shows degree q = 2 a = 1
proof −

have deg: degree (q ◦p [:c, a:]) = degree q
unfolding degree-pcompose using a1 by simp

have coeff-dq: coeff qq (degree q) = lead-coeff q ∗ (a ^ degree q − a)
apply (simp add: qq-def)
apply (subst deg[symmetric])
apply (subst lead-coeff-comp)
subgoal using a1 by simp
subgoal using a1 by (simp add: field-simps)
done

have deg-qq: degree qq ≤ degree q using deg
by (simp add: degree-diff-le qq-def)

{
assume a 6= 1
with a1 have a1 : a > 1 by auto
hence a ^ degree q > a ^ 1 using dq
by (metis add-strict-increasing linorder-not-less one-add-one power-le-imp-le-exp

144

zero-less-one)
hence coeff : coeff qq (degree q) > 0

unfolding coeff-dq using dq by (auto intro!: mult-pos-pos lq0)
hence degree qq ≥ degree q

by (simp add: le-degree)
with deg-qq have eq: degree qq = degree q by auto
from coeff [folded eq] have lcqq: lead-coeff qq > 0 by auto
from dq[folded eq] have 2 ≤ degree qq by auto
also have degree qq ≤ degree p using ineq lcqq

by (metis Preliminaries-on-Polynomials-2 .poly-pinfty-ge degree-mono-generic
linorder-le-less-linear order-less-not-sym)

also have . . . ≤ 1 by fact
finally have False by simp

}
thus a1 : a = 1 by auto
hence qq: qq = q ◦p [:c, 1 :] − q unfolding qq-def by auto
from coeff-dq[unfolded a1] have coeff qq (degree q) = 0 by simp
with deg-qq dq have deq-qq: degree qq < degree q

using degree-less-if-less-eqI by fastforce
define m where m = degree q
define m1 where m1 = m − 1
from dq have mm1 : m = Suc m1 unfolding m1-def m-def by auto
define qi where qi = coeff q
define cf where cf k i = (qi k ∗ of-nat (k choose i) ∗ c ^ (k − i)) for i k
define inner where inner k = (

∑
i<k. monom (cf k i) i) for k

define rem where rem = (
∑

i< m1 . monom (cf m i) i) + sum inner {..<m}
{

fix x
define e where e i k = of-nat (k choose i) ∗ x ^ i ∗ c ^ (k − i) for k i
have poly qq x = poly (q ◦p [:c, 1 :]) x − poly q x unfolding qq by simp
also have . . . = (

∑
k≤m. qi k ∗ (x + c) ^ k) − (

∑
k≤m. qi k ∗ x ^ k)

unfolding qi-def
by (subst (1 2) poly-as-sum-of-monoms[of q, symmetric, folded m-def])
(simp add: poly-sum poly-pcompose poly-monom ac-simps)

also have . . . = (
∑

k≤m. qi k ∗ (
∑

i≤k. e i k)) − (
∑

k≤m. qi k ∗ x ^ k)
by (subst binomial-ring, auto simp: e-def)

also have . . . = (
∑

k≤m. qi k ∗ (e k k + (
∑

i<k. e i k))) − (
∑

k≤m. qi k ∗
x ^ k)

by (intro arg-cong[of - - λ x. x − -] sum.cong refl arg-cong2 [of - - - - (∗)])
(metis add.commute lessThan-Suc-atMost sum.lessThan-Suc)

also have . . . = (
∑

k≤m. qi k ∗ e k k) + (
∑

k≤m. qi k ∗ (
∑

i<k. e i k)) −
(
∑

k≤m. qi k ∗ x ^ k)
by (simp add: field-simps sum.distrib)

also have . . . = (
∑

k≤m. qi k ∗ (
∑

i<k. e i k))
unfolding e-def by simp

also have . . . = poly (
∑

k≤m. inner k) x unfolding e-def inner-def cf-def
by (simp add: poly-sum poly-monom ac-simps sum-distrib-left)

finally have poly qq x = poly (sum inner {..m}) x .
}

145

hence qq = sum inner {..m} by (intro poly-ext, auto)
also have . . . = inner m + sum inner {..<m}

by (metis add.commute lessThan-Suc-atMost sum.lessThan-Suc)
also have inner m = monom (cf m m1) m1 + (

∑
i< m1 . monom (cf m i) i)

unfolding inner-def mm1 by simp
finally have qq: qq = monom (cf m m1) m1 + rem by (simp add: rem-def)
have cf-mm1 : cf m m1 > 0 unfolding cf-def
proof (intro mult-pos-pos)

show 0 < qi m unfolding qi-def m-def by fact
show 0 < (of-nat (m choose m1) :: ′a) unfolding mm1

by (simp add: add-strict-increasing)
show 0 < c ^ (m − m1) using c by simp

qed
{

fix k
assume k: k ≥ m1
have coeff rem k = (

∑
i<m. coeff (inner i) k) using k

by (simp add: rem-def Polynomial.coeff-sum)
also have . . . = 0
proof (intro sum.neutral ballI)

fix i
show i ∈ {..<m} =⇒ coeff (inner i) k = 0

unfolding inner-def Polynomial.coeff-sum using k mm1
by auto

qed
finally have coeff rem k = 0 .

} note zero = this
from cf-mm1 zero[of m1]
have qq-m1 : coeff qq m1 > 0 unfolding qq by auto
{

fix k
assume k > m1
with zero[of k] have coeff qq k = 0 unfolding qq by auto

}
with qq-m1 have deg-qq: degree qq = m1

by (metis coeff-0 le-degree leading-coeff-0-iff order-less-le)
with qq-m1 have lc-qq: lead-coeff qq > 0 by auto

from ineq lc-qq have degree qq ≤ degree p
by (metis Preliminaries-on-Polynomials-2 .poly-pinfty-ge degree-mono-generic

linorder-le-less-linear order-less-not-sym)
also have . . . ≤ 1 by fact
finally have m1 ≤ 1 unfolding deg-qq by simp
with mm1 have m ≤ 2 by auto
hence degree q ≤ 2 unfolding m-def by auto
with dq show degree q = 2 by auto

qed

146

locale term-delta-poly-input = poly-input p q for p q +
fixes type-of-field :: ′a :: floor-ceiling itself
assumes terminating-delta-poly: termination-by-delta-poly-interpretation TYPE(′a)

F-Q Q
begin

definition I where I = (SOME I . ∃ δ. delta-poly-inter F-Q I (δ :: ′a) ∧
delta-poly-inter .termination-by-delta-interpretation F-Q I δ Q)

definition δ where δ = (SOME δ. delta-poly-inter F-Q I (δ :: ′a) ∧
delta-poly-inter .termination-by-delta-interpretation F-Q I δ Q)

lemma I : delta-poly-inter F-Q I δ delta-poly-inter .termination-by-delta-interpretation
F-Q I δ Q
using someI-ex[OF someI-ex[OF terminating-delta-poly[unfolded termination-by-delta-poly-interpretation-def],

folded I-def], folded δ-def]
by auto

sublocale delta-poly-inter F-Q I δ by (rule I (1))

lemma orient: orient-rule (lhs-Q,rhs-Q)
using I (2)[unfolded termination-by-delta-interpretation-def] unfolding Q-def

by auto

lemma eval-t-t-gt-0 : assumes Ig: I g-sym = Const g0 + Const g1 ∗ PVar 0 +
Const g2 ∗ PVar 1

and Iz: I z-sym = Const z0
and z0 : z0 ≥ 0
and g0 : g0 ≥ 0
and g12 : g1 > 0 g2 > 0

shows insertion β (eval t-t) > 0
proof −

define α where α = (λ - :: var . 0 :: ′a)
have α: assignment α by (auto simp: assignment-def α-def)
have id: insertion β (eval t-t) = insertion α (eval t-t)

by (rule insertion-irrelevant-vars, insert vars-t vars-eval, auto)
note pos = insertion-eval-pos[OF - α]
show ?thesis
proof (rule ccontr)

assume ‹¬ ?thesis›
from this[unfolded id] have insertion α (eval t-t) ≤ 0 by auto
with pos[OF t-F] have 0 : insertion α (eval t-t) = 0 by auto
note [simp] = insertion-add insertion-mult insertion-substitute

define IA where IA t = insertion α (eval t) for t
note pos = pos[folded IA-def]
let ?zz = g-list symbol-list

147

from pos[OF g-list-F [OF symbol-list]]
have zz: 0 ≤ IA ?zz by auto
have 0 : 0 = IA t-t using 0 by (auto simp: IA-def)
also have . . . = g0 + g1 ∗ z0 + g2 ∗ IA ?zz unfolding t-t-def by (simp add:

Ig IA-def Iz)
finally have g0 : g0 = 0 and g1 ∗ z0 = 0 g2 ∗ IA ?zz = 0

using g0 z0 g12 zz mult-nonneg-nonneg[of g1 z0] mult-nonneg-nonneg[of g2
IA ?zz]

by linarith+
with g12 have z0 : z0 = 0 and 0 : IA ?zz = 0 by auto
from Ig g0 have Ig: I g-sym = Const g1 ∗ PVar 0 + Const g2 ∗ PVar 1 by

simp
from z0 Iz have Iz: I z-sym = 0 by auto

{
fix fs f a
assume set fs ⊆ F-Q and IA (g-list fs) = 0

and (f ,a) ∈ set fs
hence mcoeff (I f) 0 = 0
proof (induct fs)

case (Cons kb fs)
obtain k b where kb: kb = (k,b) by force
let ?t = Fun k (replicate b z-t) :: (symbol,var)term
from Cons(3)[unfolded kb]
have 0 : g1 ∗ IA ?t + g2 ∗ IA (g-list fs) = 0

by (simp add: IA-def Ig)
from Cons(2)[unfolded kb] have (k,b) ∈ F-Q by auto
hence funas-term ?t ⊆ F-Q by (force simp: F-Q-def F-def)
from pos[OF this] have pos1 : 0 ≤ IA ?t by auto
from Cons(2) have fs: set fs ⊆ F-Q by auto
from pos[OF g-list-F [OF this]] have pos2 : 0 ≤ IA (g-list fs) by auto
from 0 g12 pos1 pos2 mult-nonneg-nonneg[of g1 IA ?t]

mult-nonneg-nonneg[of g2 IA (g-list fs)]
have g1 ∗ IA ?t = 0 g2 ∗ IA (g-list fs) = 0

by linarith+
with g12 have t: IA ?t = 0 and 0 : IA (g-list fs) = 0 by auto
from Cons(1)[OF fs 0] have IH : (f , a) ∈ set fs =⇒ mcoeff (I f) 0 = 0 by

auto
show ?case
proof (cases (f ,a) = (k,b))

case False
with IH Cons(4) kb show ?thesis by auto

next
case True
have 0 = IA ?t using t by simp
also have . . . = insertion α (I k)

apply (simp add: IA-def)
apply (rule insertion-irrelevant-vars)
subgoal for v by (auto simp: Iz α-def)

148

done
also have . . . = mcoeff (I k) 0 unfolding α-def by simp
finally show ?thesis using True by simp

qed
qed auto

} note main = this

{
fix k ka
assume (k,ka) ∈ F-Q
then consider (z) (k,ka) = (z-sym,0) | (g) (k,ka) = (g-sym,2) | (zl) (k,ka)

∈ set symbol-list
unfolding symbol-list-def F-Q-def F-def using V-list by auto

hence mcoeff (I k) 0 = 0
proof cases

case (zl)
from main[OF symbol-list 0 zl] show ?thesis .

next
case z
thus ?thesis using Iz by simp

next
case g
thus ?thesis using Ig by (simp add: coeff-Const-mult coeff-Var)

qed
} note coeff-0 = this

have ins-0 : funas-term t ⊆ F-Q =⇒ insertion α (eval t) = 0 for t
proof (induct t)

case (Var x)
show ?case by (auto simp: α-def coeff-Var)

next
case (Fun f ts)
{

fix i
assume i < length ts
hence ts ! i ∈ set ts by auto
from Fun(1)[OF this] Fun(2) this
have insertion α (eval (ts ! i)) = 0 by auto

} note IH = this
have insertion α (eval (Fun f ts)) = insertion α (I f)

apply (simp)
apply (intro insertion-irrelevant-vars)
subgoal for v using IH [of v] by (auto simp: α-def)
done

also have . . . = mcoeff (I f) 0 unfolding α-def by simp
also have . . . = 0 using Fun(2) coeff-0 by auto
finally show ?case by simp

qed

149

from orient[unfolded orient-rule gt-poly-def , rule-format, OF α] ins-0 [OF
lhs-Q-F] ins-0 [OF rhs-Q-F]

show False using δ0 by auto
qed

qed

Theorem 6.8
theorem solution: positive-poly-problem p q
proof −

let ?q = q
from orient[unfolded orient-rule]
have gt: gt-poly (eval lhs-Q) (eval rhs-Q) by auto
from valid[unfolded valid-monotone-poly-inter-def]
have valid:

∧
f . f ∈ F-Q =⇒ valid-monotone-poly f by auto

let ?lc = lead-coeff
let ?f = (f-sym,9)
have ?f ∈ F-Q unfolding F-Q-def by auto
from valid[OF this, unfolded valid-monotone-poly-def] obtain f where

If : I f-sym = f and f : valid-poly f monotone-poly (vars f) f vars f = {..< 9}
by auto

note mono = f (2)
define l where l i = args (lhs-Q) ! i for i
define r where r i = args (rhs-Q) ! i for i
have list: [0 ..<9] = [0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 :: nat] by code-simp
have lhs-Q: lhs-Q = Fun f-sym (map l [0 ..<9]) unfolding lhs-Q-def l-def by

(auto simp: list)
have rhs-Q: rhs-Q = Fun f-sym (map r [0 ..<9]) unfolding rhs-Q-def r-def by

(auto simp: list)
{

fix i :: var
define vs where vs = V-list
assume i < 9
hence choice: i = 0 ∨ i = 1 ∨ i = 2 ∨ i = 3 ∨ i = 4 ∨ i = 5 ∨ i = 6 ∨ i

= 7 ∨ i = 8 by linarith
have set: {0 ..<9 :: nat} = {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8} by code-simp
from choice have vars: vars-term (l i) = {i} vars-term (r i) = {i} unfolding

l-def lhs-Q-def r-def rhs-Q-def
using vars-encode-poly[of 8 p] vars-encode-poly[of 8 q] vars-t
by (auto simp: y1-def y2-def y3-def y4-def y5-def y6-def y7-def y8-def y9-def

vs-def [symmetric])
from choice set have funs: funas-term (l i) ∪ funas-term (r i) ⊆ F-Q using

rhs-Q-F lhs-Q-F unfolding lhs-Q rhs-Q
by auto

have lr ∈ {l,r} =⇒ vars-term (lr i) = {i} lr ∈ {l,r} =⇒ funas-term (lr i) ⊆
F-Q for lr

by (insert vars funs, force)+
} note signature-l-r = this
{

150

fix i :: var and lr
assume i: i < 9 and lr : lr ∈ {l,r}
from signature-l-r [OF i lr] monotone-poly-eval[of lr i]
have vars: vars (eval (lr i)) = {i}

and mono: monotone-poly {i} (eval (lr i)) by auto
} note eval-l-r = this

define upoly where upoly l-or-r i = mpoly-to-poly i (eval (l-or-r i)) for l-or-r ::
var ⇒ (-,-)term and i

{
fix lr and i :: nat and a :: - ⇒ ′a
assume a: assignment a and i: i < 9 and lr : lr ∈ {l,r}
with eval-l-r [OF i] signature-l-r [OF i]
have vars: vars (eval (lr i)) = {i} and mono: monotone-poly {i} (eval (lr i))

and funs: funas-term (lr i) ⊆ F-Q by auto
from insertion-eval-pos[OF funs]
have valid: valid-poly (eval (lr i)) unfolding valid-poly-def by auto
from monotone-poly-partial-insertion[OF - mono a, of i] valid
have deg: degree (partial-insertion a i (eval (lr i))) > 0

and lc: ?lc (partial-insertion a i (eval (lr i))) > 0
and ineq: insertion a (eval (lr i)) ≥ a i − δ by auto
moreover have partial-insertion a i (eval (lr i)) = upoly lr i unfolding

upoly-def
using vars eval-l-r [OF i, of r , simplified]
by (intro poly-ext)
(metis i insertion-partial-insertion-vars poly-eq-insertion poly-inter .vars-eval

signature-l-r(1)[of - r , simplified] singletonD)
ultimately
have degree (upoly lr i) > 0 ?lc (upoly lr i) > 0

insertion a (eval (lr i)) ≥ a i − δ by auto
} note upoly-pos-subterm = this

{
fix i :: var
assume i: i < 9
from degree-partial-insertion-stays-constant[OF f (2), of i] obtain a ′ where

a ′: assignment a ′ and
deg-a ′:

∧
b. (

∧
y. a ′ y + δ ≤ b y) =⇒ degree (partial-insertion a ′ i f) =

degree (partial-insertion b i f)
by auto

define a where a j = a ′ j + 2 ∗ δ for j
from a ′ have a: assignment a unfolding assignment-def a-def using δ0 by

auto
{

fix b
assume le:

∧
y. a y − δ ≤ b y

have a ′ y + δ ≤ b y for y using le[of y] unfolding a-def by auto

151

from deg-a ′[OF this]
have 1 : degree (partial-insertion a ′ i f) = degree (partial-insertion b i f) by

auto
have a ′ y + δ ≤ a y for y unfolding a-def using δ0 by auto
from deg-a ′[OF this] 1
have degree (partial-insertion a i f) = degree (partial-insertion b i f) by auto

} note deg-a = this

define c where c j = (if j < 9 then insertion a (eval (l j)) else a j) for j
define e where e j = (if j < 9 then insertion a (eval (r j)) else a j) for j
{

fix x :: ′a
assume x: x ≥ 0
have ass: assignment (a (i := x)) using x a unfolding assignment-def by

auto
from gt[unfolded gt-poly-def , rule-format, OF ass, unfolded rhs-Q lhs-Q]
have insertion (a(i := x)) (eval (Fun f-sym (map r [0 ..<9]))) + δ
≤ insertion (a(i := x)) (eval (Fun f-sym (map l [0 ..<9]))) by simp

also have insertion (a(i := x)) (eval (Fun f-sym (map r [0 ..<9]))) =
insertion (λj. insertion (a(i := x)) (eval (r j))) f
by (simp add: If insertion-substitute, intro insertion-irrelevant-vars, auto

simp: f)
also have . . . = poly (partial-insertion e i f) (poly (upoly r i) x)
proof −

let ?α = (λj. insertion (a(i := x)) (eval (r j)))
have insi: poly (upoly r i) x = insertion (a(i := x)) (eval (r i))

unfolding upoly-def using eval-l-r(1)[OF i, of r]
by (subst poly-eq-insertion, force)
(intro insertion-irrelevant-vars, auto)

show ?thesis unfolding insi
proof (rule insertion-partial-insertion-vars[of i f e ?α, symmetric])

fix j
show j 6= i =⇒ j ∈ vars f =⇒ e j = insertion (a(i := x)) (eval (r j))

unfolding e-def f using eval-l-r [of j] f by (auto intro!: inser-
tion-irrelevant-vars)

qed
qed
also have insertion (a(i := x)) (eval (Fun f-sym (map l [0 ..<9]))) =

insertion (λj. insertion (a(i := x)) (eval (l j))) f
by (simp add: If insertion-substitute, intro insertion-irrelevant-vars, auto

simp: f)
also have . . . = poly (partial-insertion c i f) (poly (upoly l i) x)
proof −

let ?α = (λj. insertion (a(i := x)) (eval (l j)))
have insi: poly (upoly l i) x = insertion (a(i := x)) (eval (l i))

unfolding upoly-def using eval-l-r [OF i]
by (subst poly-eq-insertion, force)
(intro insertion-irrelevant-vars, auto)

show ?thesis unfolding insi

152

proof (rule insertion-partial-insertion-vars[of i f c ?α, symmetric])
fix j
show j 6= i =⇒ j ∈ vars f =⇒ c j = insertion (a(i := x)) (eval (l j))

unfolding c-def f using eval-l-r [of j] f by (auto intro!: inser-
tion-irrelevant-vars)

qed
qed

finally have poly (partial-insertion c i f) (poly (upoly l i) x)
≥ poly (partial-insertion e i f) (poly (upoly r i) x) + δ .

} note 1 = this

define er where er = partial-insertion e i f ◦p upoly r i
define cl where cl = partial-insertion c i f ◦p upoly l i
define d where d = degree (partial-insertion e i f)
{

fix x
have a x − δ ≤ c x ∧ a x − δ ≤ e x
proof (cases x ∈ vars f)

case False
thus ?thesis unfolding c-def e-def f using δ0 by auto

next
case True
hence id: (x < 9) = True and x: x < 9 unfolding f by auto

show ?thesis unfolding c-def e-def id if-True using upoly-pos-subterm(3)[OF
a x]

by auto
qed
hence a x − δ ≤ c x a x − δ ≤ e x by auto

} note a-ce = this

have d-eq: d = degree (partial-insertion c i f) unfolding d-def
by (subst (1 2) deg-a[symmetric], insert a-ce, auto)

have e: assignment e using a ′ a-ce(2) δ0 unfolding assignment-def a-def
by (metis (no-types, lifting) diff-ge-0-iff-ge gt-delta-imp-ge le-add-same-cancel2

linorder-not-less mult-2 order-le-less-trans)

have d-pos: d > 0 unfolding d-def
by (intro monotone-poly-partial-insertion[OF - f (2) e], insert f i, auto)

have lc-e-pos: ?lc (partial-insertion e i f) > 0
by (intro monotone-poly-partial-insertion[OF - f (2) e], insert f i, auto)

have lc-r-pos: ?lc (upoly r i) > 0 by (intro upoly-pos-subterm[OF a i], auto)
have deg-r : 0 < degree (upoly r i) by (intro upoly-pos-subterm[OF a i], auto)
have lc-er-pos: ?lc er > 0 unfolding er-def

by (subst lead-coeff-comp[OF deg-r], insert lc-e-pos deg-r lc-r-pos, auto)

from 1 [folded poly-pcompose, folded er-def cl-def]

153

have er-cl-poly: 0 ≤ x =⇒ poly er x + δ ≤ poly cl x for x by auto
have degree er ≤ degree cl
proof (intro degree-mono[of - 0])

show 0 ≤ ?lc er using lc-er-pos by auto
show 0 ≤ x =⇒ poly er x ≤ poly cl x for x using er-cl-poly[of x] δ0 by auto

qed
also have degree er = d ∗ degree (upoly r i)

unfolding er-def d-def by simp
also have degree cl = d ∗ degree (upoly l i)

unfolding cl-def d-eq by simp
finally have degree (upoly l i) ≥ degree (upoly r i) using d-pos by auto

} note deg-inequality = this

{
fix p :: ′a mpoly and x
assume p: monotone-poly {x} p vars p = {x}
define q where q = mpoly-to-poly x p
from mpoly-to-poly-inverse[of p x]
have pq: p = poly-to-mpoly x q using p unfolding q-def by auto
from pq p(2) have deg: degree q > 0

by (simp add: degree-mpoly-to-poly degree-pos-iff q-def)
from deg pq have ∃ q. p = poly-to-mpoly x q ∧ degree q > 0 unfolding q-def

by auto
} note mono-unary-poly = this

{
fix f
assume f ∈ {q-sym, h-sym} ∪ v-sym ‘ V
hence (f , 1) ∈ F-Q unfolding F-Q-def F-def by auto
from valid[OF this, unfolded valid-monotone-poly-def] obtain p

where p: p = I f monotone-poly {..<1} p vars p = {0} by auto
have id: {..< (1 :: nat)} = {0} by auto
have ∃ q. I f = poly-to-mpoly 0 q ∧ degree q > 0 unfolding p(1)[symmetric]

by (intro mono-unary-poly, insert p(2−3)[unfolded id], auto)
} note unary-symbol = this

{
fix f and n :: nat and x :: var
assume f ∈ {g-sym, f-sym,a-sym} f = f-sym =⇒ n = 9 f ∈ {a-sym,g-sym}

=⇒ n = 2
hence n: n > 1 and f : (f ,n) ∈ F-Q unfolding F-def F-Q-def by force+
define p where p = I f
from valid[OF f , unfolded valid-monotone-poly-def , rule-format, OF refl p-def]
have mono: monotone-poly (vars p) p and vars: vars p = {..<n} and valid:

valid-poly p by auto
let ?t = Fun f (replicate n (TVar x))
have t-F : funas-term ?t ⊆ F-Q using f by auto
have vt: vars-term ?t = {x} using n by auto
define q where q = eval ?t

154

from monotone-poly-eval[OF t-F , unfolded vt, folded q-def]
have monotone-poly {x} q vars q = {x} by auto
from mono-unary-poly[OF this] obtain q ′ where

qq ′: q = poly-to-mpoly x q ′ and dq ′: degree q ′ > 0 by auto
have q ′t: poly-to-mpoly x q ′ = eval ?t unfolding qq ′[symmetric] q-def by simp
also have . . . = substitute (λi. if i < n then eval (replicate n (TVar x) ! i) else

0) p
by (simp add: p-def [symmetric])

also have (λi. if i < n then eval (replicate n (TVar x) ! i) else 0) = (λi. if i
< n then PVar x else 0)

by (intro ext, auto)
also have substitute . . . p = substitute (λ i. PVar x) p using vars

unfolding substitute-def using vars-replace-coeff [of Const, OF Const-0]
by (intro insertion-irrelevant-vars, auto)

finally have eq: poly-to-mpoly x q ′ = substitute (λi. PVar x) p .
have ∃ p q. I f = p ∧ eval ?t = poly-to-mpoly x q ∧ poly-to-mpoly x q =

substitute (λi. PVar x) p ∧ degree q > 0
∧ vars p = {..<n} ∧ monotone-poly (vars p) p ∧ valid-poly p

by (intro exI [of - p] exI [of - q ′] conjI valid eq dq ′ p-def [symmetric] q ′t[symmetric]
mono vars)

} note g-f-a-sym = this

from unary-symbol[of q-sym] obtain q where Iq: I q-sym = poly-to-mpoly 0 q
and dq: degree q > 0 by auto

from unary-symbol[of h-sym] obtain h where Ih: I h-sym = poly-to-mpoly 0 h
and dh: degree h > 0 by auto

from g-f-a-sym[of f-sym 9 , of y3] obtain f fu where
If : I f-sym = f
and eval-fyy: eval (Fun f-sym (replicate 9 (TVar y3))) = poly-to-mpoly y3 fu
and poly-f : poly-to-mpoly y3 fu = substitute (λi. PVar y3) f
and df : 0 < degree fu
and vars-f : vars f = {..<9}
and mono-f : monotone-poly (vars f) f
and valid-f : valid-poly f by auto

from g-f-a-sym[of a-sym 2 , of y5] obtain a au where
Ia: I a-sym = a
and eval-ayy: eval (Fun a-sym (replicate 2 (TVar y5))) = poly-to-mpoly y5 au
and poly-a: poly-to-mpoly y5 au = substitute (λi. PVar y5) a
and da: 0 < degree au
and vars-a: vars a = {..<2}
and valid-a: valid-poly a
and mono-a: monotone-poly (vars a) a by auto

with g-f-a-sym[of a-sym 2 , of y6] obtain au ′ where
eval-ayy ′: eval (Fun a-sym (replicate 2 (TVar y6))) = poly-to-mpoly y6 au ′

and poly-a ′: poly-to-mpoly y6 au ′ = substitute (λi. PVar y6) a
and da ′: 0 < degree au ′

155

by auto

from g-f-a-sym[of g-sym 2 , of y2] obtain g gu where
Ig: I g-sym = g
and eval-gyy: eval (Fun g-sym (replicate 2 (TVar y2))) = poly-to-mpoly y2 gu
and poly-g: poly-to-mpoly y2 gu = substitute (λi. PVar y2) g
and dg: 0 < degree gu
and vars-g: vars g = {..<2}
and valid-g: valid-poly g
and mono-g: monotone-poly (vars g) g by auto

from unary-symbol[of v-sym i for i] have ∀ i. ∃ q. i ∈ V −→ I (v-sym i) =
poly-to-mpoly 0 q ∧ 0 < degree q by auto

from choice[OF this] obtain v where
Iv: i ∈ V =⇒ I (v-sym i) = poly-to-mpoly 0 (v i) and
dv: i ∈ V =⇒ degree (v i) > 0

for i by auto

have eval-pm-Var : eval (TVar y) = poly-to-mpoly y [:0 ,1 :] for y
unfolding eval.simps mpoly-of-poly-is-poly-to-mpoly[symmetric] by simp

have id: (if 0 = (0 :: nat) then eval ([t] ! 0) else 0) = eval t for t by simp

{
fix y
have y: eval (TVar y) = poly-to-mpoly y [:0 ,1 :] (is - = poly-to-mpoly - ?poly1)

by fact
have hy: eval (Fun h-sym [TVar y]) = poly-to-mpoly y h using Ih

apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y ?poly1])
apply (unfold id, intro y)

by simp
have qy: eval (Fun q-sym [TVar y]) = poly-to-mpoly y q using Iq

apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y ?poly1])
apply (unfold id, intro y)

by simp
have qhy: eval (Fun q-sym [Fun h-sym [TVar y]]) = poly-to-mpoly y (pcompose

q h) using Iq
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y h])
apply (unfold id, intro hy)

by simp
have hqy: eval (Fun h-sym [Fun q-sym [TVar y]]) = poly-to-mpoly y (pcompose

h q) using Ih
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y q])
apply (unfold id, intro qy)

by simp
have hhqy: eval (Fun h-sym [Fun h-sym [Fun q-sym [TVar y]]]) = poly-to-mpoly

156

y (pcompose h (pcompose h q))
apply (simp)
apply (subst Ih)
apply (subst substitute-poly-to-mpoly[of - - y pcompose h q])
apply (unfold id, intro hqy)

by simp
{

assume y: y = 0
have l: eval (l 0) = poly-to-mpoly 0 (pcompose q h) unfolding

l-def lhs-Q-def using y qhy by (simp add: Ih y1-def)
have r : eval (r 0) = poly-to-mpoly 0 (pcompose h (pcompose h q)) unfolding

r-def rhs-Q-def using y hhqy by (simp add: Ih y1-def)
from deg-inequality[of 0 , unfolded upoly-def l r poly-to-mpoly-inverse]
have dh: degree h = 1 using dq and dh by auto

} note hy qy this
}
hence dh: degree h = 1

and hy:
∧

y. eval (Fun h-sym [TVar y]) = poly-to-mpoly y h
and qy:

∧
y. eval (Fun q-sym [TVar y]) = poly-to-mpoly y q

by auto

{
have l: eval (l 1) = poly-to-mpoly 1 h unfolding

l-def lhs-Q-def using hy by (simp add: Ih y2-def)
have eval (r 1) = eval (Fun g-sym (replicate 2 (TVar y2))) unfolding r-def

rhs-Q-def
apply (simp)
apply (intro arg-cong[of - - λ x. substitute x -] ext)
subgoal for i by (cases i; cases i − 1 ; auto)
done

also have . . . = poly-to-mpoly y2 gu by fact
finally have r : eval (r 1) = poly-to-mpoly 1 gu by (auto simp: y2-def)
from deg-inequality[of 1 , unfolded upoly-def l r poly-to-mpoly-inverse] dh dg
have degree gu = 1 by auto
from subst-same-var-monotone-imp-same-degree[OF mono-g this - poly-g]
have total-degree g = 1 by auto

}
hence dg: total-degree g = 1 by auto

{
have l: eval (l 2) = poly-to-mpoly 2 h unfolding

l-def lhs-Q-def using hy by (simp add: Ih y3-def)
have eval (r 2) = eval (Fun f-sym (replicate 9 (TVar y3))) unfolding r-def

rhs-Q-def
by simp

also have . . . = poly-to-mpoly y3 fu by fact
finally have r : eval (r 2) = poly-to-mpoly 2 fu by (auto simp: y3-def)
from deg-inequality[of 2 , unfolded upoly-def l r poly-to-mpoly-inverse] df dh

157

have degree fu = 1 by auto
from subst-same-var-monotone-imp-same-degree[OF mono-f this - poly-f]
have total-degree f = 1 by auto

}
hence df : total-degree f = 1 by auto

{
fix gs g
assume gs: (gs,1) ∈ F-Q and I : I gs = poly-to-mpoly 0 g and dg: degree g =

1
from valid[OF gs, unfolded valid-monotone-poly-def , rule-format, OF refl I [symmetric]]
have valid: valid-poly (poly-to-mpoly 0 g) monotone-poly {..<1} (poly-to-mpoly

0 g)
vars (poly-to-mpoly 0 g) = {..<1}
by auto

hence mono: monotone-poly (vars (I gs)) (I gs) unfolding I by auto
have total-degree (I gs) = 1

proof (rule subst-same-var-monotone-imp-same-degree[OF mono dg, of 0],
force)

show poly-to-mpoly 0 g = substitute (λi. PVar 0) (I gs) unfolding I
by (intro mpoly-extI , auto simp: insertion-substitute)

qed
hence total-degree (I gs) ≤ 1 by auto
from monotone-linear-poly-to-coeffs[OF this valid[folded I]]
obtain c a where I ′: I gs = Const c + Const a ∗ PVar 0 and pos: 0 ≤ c 1

≤ a
by auto

from I ′ have I gs = poly-to-mpoly 0 [:c, a:]
unfolding mpoly-of-poly-is-poly-to-mpoly[symmetric] by simp

from arg-cong[OF this[unfolded I], of mpoly-to-poly 0]
have g = [:c,a:] by (simp add: poly-to-mpoly-inverse)
with I ′ pos have ∃ c a. I gs = Const c + Const a ∗ PVar 0 ∧ 0 ≤ c ∧ 1 ≤

a ∧ g = [:c,a:] by auto
} note unary-linear = this[unfolded F-Q-def F-def]

from unary-linear [OF - Ih dh] obtain h0 h1 where
Ih ′: I h-sym = Const h0 + Const h1 ∗ PVar 0
and h0 : 0 ≤ h0
and h1 : 1 ≤ h1
and h: h = [:h0 ,h1 :]
by auto

from df have total-degree f ≤ 1 by auto
from monotone-linear-poly-to-coeffs[OF this valid-f mono-f [unfolded vars-f] vars-f]

obtain f0 fi where f : f = Const f0 + (
∑

i←[0 ..<9]. Const (fi i) ∗ PVar i)
and f0 : 0 ≤ f0 and fi:

∧
i. i<9 =⇒ 1 ≤ fi i

158

by auto

from dg have total-degree g ≤ 1 by auto
from monotone-linear-poly-to-coeffs[OF this valid-g mono-g[unfolded vars-g] vars-g]

obtain g0 gi where g: g = Const g0 + (
∑

i←[0 ..<2]. Const (gi i) ∗ PVar i)
and g0 : 0 ≤ g0 and gi:

∧
i. i<2 =⇒ 1 ≤ gi i

by auto
define g1 where g1 = gi 0
define g2 where g2 = gi 1
have id2 : [0 ..<2] = [0 ,1 :: nat] by code-simp
from gi[of 0] gi[of 1] have g1 : g1 ≥ 1 and g2 : g2 ≥ 1 by (auto simp: g1-def

g2-def)
have g: g = Const g0 + Const g1 ∗ PVar 0 + Const g2 ∗ PVar 1

unfolding g g1-def g2-def by (auto simp: id2)

define α where α = (λ x :: var . 0 :: ′a)
have α: assignment α unfolding α-def assignment-def by auto
{

fix i :: nat
assume i: i < 9
from i have i ∈ set [0 ..<9] by auto
from split-list[OF this] obtain bef aft where id: [0 ..<9] = bef @ [i] @ aft by

auto
define ba where ba = bef @ aft
have distinct [0 ..<9] by simp
from this[unfolded id]
have i /∈ set (bef @ aft) by auto
with id have iba: set ba = {0 ..<9} − {i} unfolding ba-def
by (metis Diff-insert-absorb Un-insert-right append-Cons append-Nil list.simps(15)

set-append set-upt)
have len: length [0 ..<9] = 9 by simp
define diff where diff = (

∑
x←ba. fi x ∗ insertion α (eval (r x))) − (

∑
x←ba.

fi x ∗ insertion α (eval (l x))) + δ
{

fix x :: ′a
assume x: x ≥ 0
define a where a = α(i := x)
have a: assignment a using α unfolding a-def assignment-def using x by

auto
from gt[unfolded gt-poly-def , rule-format, OF this]
have insertion a (eval rhs-Q) + δ ≤ insertion a (eval lhs-Q) by auto
also have insertion a (eval lhs-Q) = f0 + (

∑
x←[0 ..<9]. fi x ∗ insertion a

(eval (l x)))
unfolding lhs-Q eval.simps If f length-map len insertion-substitute inser-

tion-add insertion-Const
insertion-sum-list insertion-mult map-map o-def insertion-Var

by (intro arg-cong[of - - λ x. (+) - (sum-list x)] map-cong refl arg-cong[of -
- (∗) -], simp)

159

also have (
∑

x←[0 ..<9]. fi x ∗ insertion a (eval (l x))) =
(
∑

x←ba. fi x ∗ insertion a (eval (l x))) + fi i ∗ insertion a (eval (l i))
unfolding id ba-def by simp

also have (
∑

x←ba. fi x ∗ insertion a (eval (l x))) = (
∑

x←ba. fi x ∗ insertion
α (eval (l x)))

apply (intro arg-cong[of - - sum-list] map-cong refl arg-cong[of - - (∗) -]
insertion-irrelevant-vars)

subgoal for v j unfolding iba using eval-l-r [of v l] by (auto simp: a-def)

done
also have insertion a (eval rhs-Q) = f0 + (

∑
x←[0 ..<9]. fi x ∗ insertion a

(eval (r x)))
unfolding rhs-Q eval.simps If f length-map len insertion-substitute inser-

tion-add insertion-Const
insertion-sum-list insertion-mult map-map o-def insertion-Var

by (intro arg-cong[of - - λ x. (+) - (sum-list x)] map-cong refl arg-cong[of -
- (∗) -], simp)

also have (
∑

x←[0 ..<9]. fi x ∗ insertion a (eval (r x))) =
(
∑

x←ba. fi x ∗ insertion a (eval (r x))) + fi i ∗ insertion a (eval (r i))
unfolding id ba-def by simp
also have (

∑
x←ba. fi x ∗ insertion a (eval (r x))) = (

∑
x←ba. fi x ∗

insertion α (eval (r x)))
apply (intro arg-cong[of - - sum-list] map-cong refl arg-cong[of - - (∗) -]

insertion-irrelevant-vars)
subgoal for v j unfolding iba using eval-l-r [of v r] by (auto simp: a-def)

done
finally have ineq: fi i ∗ insertion a (eval (r i)) ≤ fi i ∗ insertion a (eval (l

i)) − diff
unfolding diff-def by (simp add: algebra-simps)

from fi[OF i] have fi: fi i 6= 0 and inv: inverse (fi i) ≥ 0 by auto
from mult-left-mono[OF ineq inv]
have insertion a (eval (r i)) ≤ insertion a (eval (l i)) + (− inverse (fi i) ∗

diff)
using fi by (simp add: field-simps)

}
hence ∃ diff . ∀ x ≥ 0 . insertion (α(i := x)) (eval (r i)) ≤ insertion (α(i :=

x)) (eval (l i)) + diff
by blast

}
hence ∀ i. ∃ diff . i < 9 −→ (∀ x ≥ 0 . insertion (α(i := x)) (eval (r i)) ≤

insertion (α(i := x)) (eval (l i)) + diff)
by auto

from choice[OF this]

Inequality (2) in paper
obtain diff where inequality2 :

∧
i x. i < 9 =⇒ x ≥ 0 =⇒

insertion (α(i := x)) (eval (r i)) ≤ insertion (α(i := x)) (eval (l i)) + diff i
by auto

160

note [simp] = insertion-mult insertion-add insertion-substitute

define delt2 where delt2 = h0 + diff 1 − g0
{

fix x
assume x ≥ (0 :: ′a)
from inequality2 [of 1 , OF - this]
have insertion (α(1 := x)) (eval (r 1)) ≤ insertion (α(1 := x)) (eval (l 1)) +

diff 1 by auto
also have insertion (α(1 := x)) (eval (r 1)) = g0 + g1 ∗ x + g2 ∗ x

by (simp add: r-def rhs-Q-def Ig g y2-def)
also have insertion (α(1 := x)) (eval (l 1)) = h0 + x ∗ h1

by (simp add: l-def lhs-Q-def Ih h y2-def)
finally have (g1 + g2 − h1) ∗ x ≤ delt2 unfolding delt2-def

by (simp add: algebra-simps)
} note ineq2 = this
from bounded-negative-factor [OF this] have g1 + g2 ≤ h1 by auto
with g1 g2 have h1 : h1 ≥ 2 by auto

{
assume degree q = 1
from unary-linear [OF - Iq this]
obtain q0 q1 where Iq ′: I q-sym = Const q0 + Const q1 ∗ PVar 0

and q0 : 0 ≤ q0 and q1 : 1 ≤ q1 and q: q = [:q0 , q1 :]
by auto

define d1 where d1 = h0 + h0 ∗ h1 + h1 ∗ h1 ∗ q0
define d2 where d2 = q0 + h0 ∗ q1
define delt1 where delt1 = d2 + diff 0 − d1
define fact1 where fact1 = (q1 ∗ h1 ∗ h1 − h1 ∗ q1)
{

fix x :: ′a
assume x: x ≥ 0
from inequality2 [of 0 , OF - this]
have insertion (α(0 := x)) (eval (r 0)) ≤ insertion (α(0 := x)) (eval (l 0))

+ diff 0 by auto
also have insertion (α(0 := x)) (eval (r 0)) = d1 + q1 ∗ h1 ∗ h1 ∗ x

by (simp add: r-def rhs-Q-def Ih h Iq q y1-def field-simps d1-def)
also have insertion (α(0 := x)) (eval (l 0)) = d2 + h1 ∗ q1 ∗ x

by (simp add: l-def lhs-Q-def Ih h Iq q y1-def field-simps d2-def)
finally have fact1 ∗ x ≤ delt1 by (simp add: field-simps delt1-def fact1-def)

} note ineq1 = this
from bounded-negative-factor [OF this]
have fact1 ≤ 0 .
from this[unfolded fact1-def] h1 q1 have False by auto

}
with dq have dq: degree q ≥ 2 by (cases degree q; cases degree q − 1 ; auto)

161

have (z-sym, 0) ∈ F-Q unfolding F-def F-Q-def by auto
from valid[OF this, unfolded valid-monotone-poly-def , rule-format, OF refl refl]
obtain z where Iz: I z-sym = z and vars-z: vars z = {} and valid-z: valid-poly

z by auto
from vars-empty-Const[OF vars-z] obtain z0 where z: z = Const z0 by auto
from valid-z[unfolded valid-poly-def , rule-format, OF α, unfolded z] have z0 : z0
≥ 0 by auto

{
fix i
assume i ∈ V
hence v-sym i ∈ {q-sym, h-sym} ∪ v-sym ‘ V by auto
note unary-symbol[OF this]

}
hence ∀ i. ∃ q. i ∈ V −→ I (v-sym i) = poly-to-mpoly 0 q ∧ 0 < degree q by

auto
from choice[OF this] obtain v where Iv:

∧
i. i ∈ V =⇒ I (v-sym i) =

poly-to-mpoly 0 (v i)
and dv:

∧
i. i ∈ V =⇒ 0 < degree (v i)

by auto

define const-t where const-t = insertion α (eval t-t)
have const-t: const-t > 0

unfolding const-t-def
by (rule eval-t-t-gt-0 [OF Ig[unfolded g] Iz[unfolded z]], insert z0 g0 g1 g2 , auto)

{
define d1 where d1 = g0 + g2 ∗ h0 + g2 ∗ h1 ∗ h0 + g2 ∗ h1 ∗ h1 ∗ h0
define c where c = g0 + g2 ∗ const-t
define delt4 where delt4 = d1 + diff 3
have [simp]: insertion a (eval t-t) = const-t for a unfolding const-t-def

by (rule insertion-irrelevant-vars, insert vars-t vars-eval, force)
let ?qq = q ◦p [:c, g1 :] − smult g1 q
define qq where qq = ?qq
define hhh where hhh = [:delt4 , g2 ∗ h1 ∗ h1 ∗ h1 :]
{

fix x :: ′a
assume x: x ≥ 0
from inequality2 [of 3 , OF - this]
have insertion (α(3 := x)) (eval (r 3)) ≤ insertion (α(3 := x)) (eval (l 3))

+ diff 3 by auto
also have insertion (α(3 := x)) (eval (r 3)) = poly q (g0 + g1 ∗ x + g2 ∗

const-t)
by (simp add: r-def rhs-Q-def y4-def Iq Ig g)

also have insertion (α(3 := x)) (eval (l 3)) =
g1 ∗ poly q x + g2 ∗ h1 ∗ h1 ∗ h1 ∗ x + d1

162

by (simp add: l-def lhs-Q-def y4-def Iq Ig g Ih h field-simps d1-def)
finally have poly q (g0 + g1 ∗ x + g2 ∗ const-t) − poly (smult g1 q) x − g2

∗ h1 ∗ h1 ∗ h1 ∗ x ≤ delt4
by (simp add: delt4-def)

also have g2 ∗ h1 ∗ h1 ∗ h1 ∗ x = poly [:0 , g2 ∗ h1 ∗ h1 ∗ h1 :] x by simp
also have poly q (g0 + g1 ∗ x + g2 ∗ const-t) = poly (pcompose q [:c, g1 :])

x
by (simp add: poly-pcompose ac-simps c-def)

finally have poly qq x ≤ poly hhh x
by (simp add: qq-def hhh-def)

} note ineq3 = this

have lq0 : lead-coeff q > 0
proof (rule ccontr)

assume ¬ ?thesis
with dq have lq: lead-coeff (− q) > 0 by (cases q = 0 , auto)
from poly-pinfty-ge[OF this, of 1] dq obtain n where

∧
x. x ≥ n =⇒ poly

q x ≤ −1 by auto
from this[of max n 0] have 1 : poly q (max n 0) ≤ − 1 by auto
let ?a = λ x :: var . max n 0
have a: assignment ?a unfolding assignment-def by auto
have (q-sym,1) ∈ F-Q unfolding F-Q-def by auto
from valid[OF this, unfolded valid-monotone-poly-def , rule-format, OF refl

Iq[symmetric]]
have valid-poly (poly-to-mpoly 0 q) by auto
from this[unfolded valid-poly-def , rule-format, OF a]
have 0 ≤ poly q (max n 0) by auto
with 1 show False by auto

qed

from const-t g0 g2 have c: c > 0 unfolding c-def
by (metis le-add-same-cancel2 linorder-not-le mult-less-cancel-right2 order-le-less-trans

order-less-le)

have degree hhh ≤ 1 unfolding hhh-def by simp

from criterion-for-degree-2 [OF qq-def dq ineq3 this g1 lq0 c]
have degree q = 2 g1 = 1 by auto

}
hence dq: degree q = 2 and g1 : g1 = 1 by auto

{
have l: eval (l 4) = poly-to-mpoly 4 q unfolding

l-def lhs-Q-def using qy by (simp add: y5-def)
have eval (r 4) = eval (Fun a-sym (replicate 2 (TVar y5))) unfolding r-def

rhs-Q-def
apply (simp)
apply (intro arg-cong[of - - λ x. substitute x -] ext)

163

subgoal for i by (cases i; cases i − 1 ; auto)
done

also have . . . = poly-to-mpoly y5 au by fact
finally have r : eval (r 4) = poly-to-mpoly 4 au by (auto simp: y5-def)
from deg-inequality[of 4 , unfolded upoly-def l r poly-to-mpoly-inverse]
have degree au ≤ degree q by auto
with subst-same-var-monotone-imp-same-degree[OF mono-a refl - poly-a] da
have total-degree a ≤ degree q by auto

}
hence d-aq: total-degree a ≤ degree q by auto

{
have r : eval (r 5) = poly-to-mpoly 5 q unfolding

r-def rhs-Q-def using qy by (simp add: y6-def)
have eval (l 5) = eval (Fun a-sym (replicate 2 (TVar y6))) unfolding l-def

lhs-Q-def
apply (simp)
apply (intro arg-cong[of - - λ x. substitute x -] ext)
subgoal for i by (cases i; cases i − 1 ; auto)
done

also have . . . = poly-to-mpoly y6 au ′ by fact
finally have l: eval (l 5) = poly-to-mpoly 5 au ′ by (auto simp: y6-def)
from deg-inequality[of 5 , unfolded upoly-def l r poly-to-mpoly-inverse]
have degree q ≤ degree au ′ by auto
with subst-same-var-monotone-imp-same-degree[OF mono-a refl - poly-a ′] da ′

have degree q ≤ total-degree a by auto
}

with d-aq
have d-aq: total-degree a = degree q by auto

with dq have da: total-degree a = 2 by simp
have vars a = {0 ,1} unfolding vars-a by code-simp

from binary-degree-2-poly[OF - this] da
obtain a0 a1 a2 a3 a4 a5 where a: a = Const a0 + Const a1 ∗ PVar 0 +

Const a2 ∗ PVar 1 +
Const a3 ∗ PVar 0 ∗ PVar 0 + Const a4 ∗ PVar 1 ∗ PVar 1 +
Const a5 ∗ PVar 0 ∗ PVar 1 by auto

define d1 where d1 = a0 + a1 ∗ z0 + a3 ∗ z0 ∗ z0
define d2 where d2 = (a2 + a5 ∗ z0)
define delt7 where delt7 = diff 6 − d1
{

fix x
assume x ≥ (0 :: ′a)
from inequality2 [of 6 , OF - this]

164

have insertion (α(6 := x)) (eval (r 6)) ≤ insertion (α(6 := x)) (eval (l 6)) +
diff 6 by auto

also have insertion (α(6 := x)) (eval (r 6)) = a4 ∗ x ∗ x + d2 ∗ x + d1
by (simp add: r-def rhs-Q-def Ig g y7-def Ia a Iz z algebra-simps d1-def d2-def)

also have insertion (α(6 := x)) (eval (l 6)) = x
by (simp add: l-def lhs-Q-def Ih h y7-def)

finally have 0 ≥ poly [:−delt7 ,d2 − 1 ,a4 :] x unfolding delt7-def
by (simp add: algebra-simps)

} note ineq7 = this
{

define p where p = [:−delt7 ,d2 − 1 ,a4 :]
assume a4 > 0
hence lead-coeff p > 0 degree p > 0 by (auto simp: p-def)
with poly-pinfty-ge[OF this(1), of 1] obtain n where

∧
x. x≥n =⇒ 1 ≤ poly

p x by blast
from this[of max n 0] ineq7 [of max n 0] have False unfolding p-def by auto

}
hence a4 : a4 ≤ 0 by force

note valid-a = valid-a[unfolded a valid-poly-def , rule-format]
{

define p where p = [:−a0 ,−a2 ,−a4 :]
assume a4 < 0
hence p: lead-coeff p > 0 degree p 6= 0 unfolding p-def by auto
{

fix x :: ′a
assume x ≥ 0
hence assignment (λ v. if v = 1 then x else 0) unfolding assignment-def by

auto
from valid-a[OF this]
have 0 ≥ poly p x by (auto simp: algebra-simps p-def)

}
with poly-pinfty-ge[OF p] have False

by (metis (no-types, opaque-lifting) dual-order .trans nle-le not-one-le-zero)
}
with a4 have a4 : a4 = 0 by force

define d1 where d1 = a0 + a2 ∗ z0
define d2 where d2 = (a5 ∗ z0 + a1)
define delt8 where delt8 = diff 7 − d1
{

fix x
assume x ≥ (0 :: ′a)
from inequality2 [of 7 , OF - this]
have insertion (α(7 := x)) (eval (r 7)) ≤ insertion (α(7 := x)) (eval (l 7)) +

diff 7 by auto
also have insertion (α(7 := x)) (eval (r 7)) = d1 + a3 ∗ (x ∗ x) + d2 ∗ x

by (simp add: r-def rhs-Q-def Ig g y8-def Ia a a4 Iz z algebra-simps d1-def

165

d2-def)
also have insertion (α(7 := x)) (eval (l 7)) = x

by (simp add: l-def lhs-Q-def Ih h y8-def)
finally have 0 ≥ poly [:−delt8 ,d2 − 1 ,a3 :] x unfolding delt8-def

by (simp add: algebra-simps)
} note ineq8 = this
{

define p where p = [:−delt8 ,d2 − 1 ,a3 :]
assume a3 > 0
hence lead-coeff p > 0 degree p > 0 by (auto simp: p-def)
with poly-pinfty-ge[OF this(1), of 1] obtain n where

∧
x. x≥n =⇒ 1 ≤ poly

p x by blast
from this[of max n 0] ineq8 [of max n 0] have False unfolding p-def by auto

}
hence a3 : a3 ≤ 0 by force
{

define p where p = [:−a0 ,−a1 ,−a3 :]
assume a3 < 0
hence p: lead-coeff p > 0 degree p 6= 0 unfolding p-def by auto
{

fix x :: ′a
assume x ≥ 0
hence assignment (λ v. if v = 0 then x else 0) unfolding assignment-def by

auto
from valid-a[OF this, simplified]
have 0 ≥ poly p x by (auto simp: algebra-simps p-def)

}
with poly-pinfty-ge[OF p] have False

by (metis (no-types, opaque-lifting) dual-order .trans nle-le not-one-le-zero)
}
with a3 have a3 : a3 = 0 by force

from a a3 a4 have a: a = Const a5 ∗ PVar 0 ∗ PVar 1 + Const a1 ∗ PVar 0
+ Const a2 ∗ PVar 1 + Const a0 by simp

note valid-a = valid-a[unfolded a3 a4]
from valid-a[OF α, simplified, unfolded α-def]
have a0 : a0 ≥ 0 by auto

note mono-a ′ = mono-a[unfolded monotone-poly-wrt-def , rule-format, unfolded
vars-a, OF α, unfolded a, simplified,

unfolded α-def , simplified]
from mono-a ′[of 0] have a1 : δ ≤ x =⇒ δ ≤ a1 ∗ x for x by auto
from mono-a ′[of 1] have a2 : δ ≤ x =⇒ δ ≤ a2 ∗ x for x by auto
{

fix a
assume a ∈ {a1 ,a2}
with a1 a2 have δ ≤ x =⇒ δ ≤ a ∗ x for x by auto
with δ0 have a ≥ 1

166

using mult-le-cancel-right1 by auto
hence a > 0 by simp

}
hence a1 : a1 > 0 and a2 : a2 > 0 by auto

{
assume a5 : a5 = 0
from da[unfolded a a5]
have 2 = total-degree (Const a1 ∗ PVar 0 + Const a2 ∗ PVar (Suc 0) +

Const a0) by simp
also have . . . ≤ 1

by (intro total-degree-add total-degree-Const-mult, auto)
finally have False by simp

}
hence a5 : a5 6= 0 by force
{

define p where p = [:−a0 , −a1 −a2 , − a5 :]
assume a5 : a5 < 0
hence p: lead-coeff p > 0 degree p 6= 0 by (auto simp: p-def)
{

fix x :: ′a
assume x ≥ 0
hence assignment (λ -. x) by (auto simp: assignment-def)
from valid-a[OF this]
have 0 ≥ poly p x by (simp add: p-def algebra-simps)

}
with poly-pinfty-ge[OF p] have False

by (metis (no-types, opaque-lifting) dual-order .trans nle-le not-one-le-zero)
}
with a5 have a5 : a5 > 0 by force

define I ′ where I ′ = (λ f . if f ∈ v-sym ‘ (UNIV − V) then PVar 0 else I f)
define v ′ where v ′ = (λ i. if i ∈ V then v i else [:0 ,1 :])
have Iv ′: I ′ (v-sym i) = poly-to-mpoly 0 (v ′ i) for i
unfolding I ′-def v ′-def using Iv by (auto simp: mpoly-of-poly-is-poly-to-mpoly[symmetric])

have dv ′: 0 < degree (v ′ i) for i using dv[of i] by (auto simp: v ′-def)
have Ia ′: I ′ a-sym = a unfolding I ′-def using Ia by auto
have Iz ′: I ′ z-sym = z unfolding I ′-def using Iz by auto
{

fix i
have nneg-poly (v ′ i)
proof (cases i ∈ V)

case False
thus ?thesis by (auto simp: v ′-def)

next
case i: True
hence id: v ′ i = v i by (auto simp: v ′-def)
from i have (v-sym i, 1) ∈ F-Q unfolding F-Q-def F-def by auto
from valid[OF this, unfolded valid-monotone-poly-def] Iv[OF i]

167

have valid: valid-poly (poly-to-mpoly 0 (v i)) by auto
define p where p = v i
have valid: 0 ≤ x =⇒ 0 ≤ poly p x for x unfolding p-def

using valid[unfolded valid-poly-def , rule-format, of λ -. x]
by (auto simp: assignment-def)

hence nneg-poly p by (intro nneg-polyI , auto)
thus ?thesis unfolding id p-def .

qed
} note nneg-v = this

{
fix r x
assume r ∈ {p,?q}
with pq funas-encode-poly-p[of x] funas-encode-poly-q[of x]
have pos: positive-poly r and inF : funas-term (encode-poly x r) ⊆ F by auto

from degree-eval-encode-poly-generic[of I ′, unfolded mpoly-of-poly-is-poly-to-mpoly,

OF Ia ′[unfolded a] Iz ′[unfolded z] - a5 a1 a2 a0 z0 , of v ′, OF Iv ′ nneg-v dv ′

pos refl, of x]
obtain rr where id: poly-to-mpoly x rr = poly-inter .eval I ′ (encode-poly x r)

and deg: int (degree rr) = insertion (λi. int (degree (v ′ i))) r
and nneg: nneg-poly rr
by auto

have poly-to-mpoly x rr = poly-inter .eval I (encode-poly x r) unfolding id
proof (rule poly-inter-eval-cong)

fix f a
assume (f ,a) ∈ funas-term (encode-poly x r)
hence (f ,a) ∈ F using inF by auto
thus I ′ f = I f unfolding F-def I ′-def by auto

qed
with deg nneg have ∃ p. mpoly-of-poly x p = eval (encode-poly x r) ∧

int (degree p) = insertion (λi. int (degree (v ′ i))) r ∧ nneg-poly p
by (auto simp: mpoly-of-poly-is-poly-to-mpoly)

} note encode = this
from encode[of p y9]
obtain pp where pp: mpoly-of-poly y9 pp = eval (encode-poly y9 p)

int (degree pp) = insertion (λi. int (degree (v ′ i))) p
nneg-poly pp by auto

from encode[of ?q y9]
obtain qq where qq: mpoly-of-poly y9 qq = eval (encode-poly y9 ?q)

int (degree qq) = insertion (λi. int (degree (v ′ i))) ?q
nneg-poly qq by auto

define ppp where ppp = (pp ∗ [:a1 , a5 :] + [:a0 , a2 :])
from deg-inequality[of 8]
have degree (upoly r 8) ≤ degree (upoly l 8) by simp
also have upoly r 8 = mpoly-to-poly 8

168

(mpoly-of-poly y9 [: a1 , a5 :] ∗ mpoly-of-poly y9 qq + mpoly-of-poly y9 [: a0 ,
a2 :])

unfolding r-def rhs-Q-def by (simp add: upoly-def Ia a qq algebra-simps)
also have . . . = qq ∗ [:a1 , a5 :] + [:a0 , a2 :] unfolding mpoly-of-poly-add[symmetric]

mpoly-of-poly-mult[symmetric]
unfolding mpoly-of-poly-is-poly-to-mpoly y9-def poly-to-mpoly-inverse by simp

also have degree . . . = 1 + degree qq
by (rule nneg-poly-degree-add-1 [OF qq(3)], insert a5 a2 , auto)

also have upoly l 8 = mpoly-to-poly 8
(mpoly-of-poly y9 [: h0 :] + mpoly-of-poly y9 [: h1 :] ∗ (mpoly-of-poly y9 [: a1 ,

a5 :] ∗ mpoly-of-poly y9 pp + mpoly-of-poly y9 [: a0 , a2 :]))
unfolding l-def lhs-Q-def by (simp add: upoly-def Ih h mpoly-of-poly-is-poly-to-mpoly[symmetric]

Ia a pp algebra-simps)
also have . . . = [:h0 :] + [: h1 :] ∗ ppp unfolding mpoly-of-poly-add[symmetric]

mpoly-of-poly-mult[symmetric] ppp-def
unfolding mpoly-of-poly-is-poly-to-mpoly y9-def poly-to-mpoly-inverse by simp

also have degree . . . = degree ([:h1 :] ∗ ppp)
by (metis degree-add-eq-right degree-add-le degree-pCons-0 le-zero-eq zero-less-iff-neq-zero)

also have . . . = degree ppp using h1 by simp
also have . . . = 1 + degree pp unfolding ppp-def

by (rule nneg-poly-degree-add-1 [OF pp(3)], insert a5 a2 , auto)
finally have deg-qq-pp: int (degree qq) ≤ int (degree pp) by simp

show ?thesis unfolding positive-poly-problem-def [OF pq]
proof (intro exI [of - (λi. int (Polynomial.degree (v ′ i)))] conjI deg-qq-pp[unfolded

pp(2) qq(2)])
show positive-interpr (λi. int (Polynomial.degree (v ′ i)))

unfolding positive-interpr-def using dv ′ by auto
qed

qed
end

context poly-input
begin

corollary polynomial-termination-with-delta-orders-undecidable:
positive-poly-problem p q ←→
termination-by-delta-poly-interpretation (TYPE(′a :: floor-ceiling)) F-Q Q

proof
show positive-poly-problem p q =⇒ termination-by-delta-poly-interpretation TYPE(′a)

F-Q Q
using solution-impl-delta-termination-of-Q by blast

assume termination-by-delta-poly-interpretation TYPE(′a) F-Q Q
interpret term-delta-poly-input p q TYPE(′a)

by (unfold-locales, fact)
from solution show positive-poly-problem p q by auto

qed

169

end

end

References

[1] D. Lankford. On proving term rewrite systems are Noetherian. Technical
Report MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

[2] Y. Y. Matijasevic. Enumerable sets are diophantine (translated from
Russian). In Soviet Mathematics Doklady, volume 11, pages 354–358,
1970.

[3] F. Mitterwallner, A. Middeldorp, and R. Thiemann. Linear termination
is undecidable. In Proceedings of the 39th Annual IEEE Symposium on
Logic in Computer Science. IEEE Computer Society, 2024. To appear.

170

	Introduction
	Preliminaries: Extending the Library on Multivariate Polynomials
	Part 1 – Extensions Without Importing Univariate Polynomials
	Part 2 – Extensions With Importing Univariate Polynomials

	Definition of Monotone Algebras and Polynomial Interpretations
	Hilbert's 10th Problem to Linear Inequality
	Undecidability of Linear Polynomial Termination
	Undecidability of KBO with Subterm Coefficients
	Undecidability of Polynomial Termination over Integers
	Undecidability of Polynomial Termination using 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -Orders

