Undecidability Results on Orienting Single Rewrite Rules*

René Thiemann, Fabian Mitterwallner, and Aart Middeldorp
University of Innsbruck

May 3, 2024

Abstract

We formalize several undecidability results on termination for onerule term rewrite systems by means of simple reductions from Hilbert's 10th problem. To be more precise, for a class C of reduction orders, we consider the question for a given rewrite rule $\ell \rightarrow r$, whether there is some reduction order $\succ \in C$ such that $\ell \succ r$. We include undecidability results for each of the following classes C :

- the class of linear polynomial interpretations over the natural numbers,
- the class of linear polynomial interpretations over the natural numbers in the weakly monotone setting,
- the class of Knuth-Bendix orders with subterm coefficients,
- the class of non-linear polynomial interpretations over the natural numbers, and
- the class of non-linear polynomial interpretations over the rational and real numbers.

Contents

1 Introduction

2 Preliminaries: Extending the Library on Multivariate Poly- nomials 2
2.1 Part 1 - Extensions Without Importing Univariate Polynomials 2
2.2 Part 2 - Extensions With Importing Univariate Polynomials 15
3 Definition of Monotone Algebras and Polynomial Interpre- tations

[^0]4 Hilbert's 10th Problem to Linear Inequality 43
5 Undecidability of Linear Polynomial Termination 47
6 Undecidability of KBO with Subterm Coefficients 81
7 Undecidability of Polynomial Termination over Integers 89
8 Undecidability of Polynomial Termination using δ-Orders 123

1 Introduction

The main part of this paper is about one of the earliest termination methods for term rewrite systems: using a polynomial interpretation over the natural numbers, which goes back to Lankford [1].
In a recent paper [3] it was shown that this and other related techniques are undecidable, even for one-rule rewrite systems. This AFP entry formally proves the results in [3]. These are all based on reduction from a variant of Hilbert's 10th problem, which was shown to be undecidable by Matiyasevich [2].

2 Preliminaries: Extending the Library on Multivariate Polynomials

2.1 Part 1 - Extensions Without Importing Univariate Polynomials

```
theory Preliminaries-on-Polynomials-1
    imports
        Polynomials.More-MPoly-Type
        Polynomials.MPoly-Type-Class-FMap
begin
type-synonym \(v a r=n a t\)
type-synonym monom \(=\) var \(\Rightarrow_{0}\) nat
definition substitute :: (var \(\Rightarrow{ }^{\prime} a\) mpoly \() \Rightarrow{ }^{\prime} a::\) comm-semiring-1 mpoly \(\Rightarrow{ }^{\prime} a\)
mpoly where
    substitute \(\sigma p=\) insertion \(\sigma(\) replace-coeff Const \(p)\)
lemma Const-0: Const \(0=0\)
    by (transfer, simp add: Const \(_{0}\)-zero)
lemma Const-1: Const \(1=1\)
    by (transfer, simp add: Const \(_{0}\)-one)
```

```
lemma insertion-Var: insertion \(\alpha(\) Var \(x)=\alpha x\)
    apply transfer
    by (metis One-nat-def \(\operatorname{Var}_{0}\)-def insertion.abs-eq insertion-single mapping-of-inverse
monom.rep-eq mult.right-neutral mult-1 power.simps(2) power-0)
lemma insertion-Const: insertion \(\alpha(\) Const \(a)=a\)
    by (metis Const.abs-eq Const \({ }_{0}\)-def insertion-single monom.abs-eq mult.right-neutral
power-0 single-zero)
lemma insertion-power: insertion \(\alpha(p \widehat{ } n)=(\) insertion \(\alpha p)\) 〔 \(n\)
    by (induct \(n\), auto simp: insertion-mult)
lemma insertion-monom-add: insertion \(\alpha(\operatorname{monom}(f+g) a)=\) insertion \(\alpha\)
\((\) monom \(f 1) *\) insertion \(\alpha(\) monom \(g a)\)
    by (metis insertion-mult mult-1 mult-monom)
lemma insertion-uminus: insertion \(\alpha(-p)=-\) insertion \(\alpha p\)
    by (metis add-eq-0-iff insertion-add insertion-zero)
lemma insertion-sum-list: insertion \(\alpha(\) sum-list ps \()=\operatorname{sum-list}(\operatorname{map}(\) insertion \(\alpha)\)
\(p s)\)
    by (induct ps, auto simp: insertion-add)
lemma coeff-uminus: coeff \((-p) m=-\) coeff \(p m\)
    by (simp add: coeff-def uminus-mpoly.rep-eq)
lemma insertion-substitute: insertion \(\alpha\) (substitute \(\sigma p)=\) insertion \((\lambda x\). insertion
\(\alpha(\sigma x)) p\)
    unfolding substitute-def
proof (induct \(p\) rule: mpoly-induct)
    case (monom \(m a\) )
    show ?case
        apply (subst replace-coeff-monom)
        subgoal by (simp add: Const-0)
        subgoal proof (induct \(m\) arbitrary: a rule: poly-mapping-induct)
            case (single \(k v\) )
            show ?case by (simp add: insertion-mult insertion-Const insertion-power)
        next
            case \((\operatorname{sum} f g k v a)\)
            from \(\operatorname{sum}(1)[\) of 1] \(\operatorname{sum}(2)[o f a]\) show ?case
            by (simp add: insertion-monom-add insertion-mult Const-1)
        qed
        done
next
    case (sump1 p2 ma)
    then show? case
        apply (subst replace-coeff-add)
        subgoal by (simp add: Const-0)
        subgoal by (transfer', simp add: Const \(_{0}\)-def single-add)
```

```
    by (simp add: insertion-add)
qed
lemma Const-add: Const (x+y) = Const x + Const y
    by (transfer, auto simp: Const}\mp@subsup{)}{0}{}-def single-add
lemma substitute-add[simp]: substitute \sigma (p+q) = substitute \sigma p + substitute \sigma
q
    unfolding substitute-def insertion-add[symmetric]
    by (subst replace-coeff-add, auto simp: Const-0 Const-add)
lemma Const-sum: Const (sum f A) = sum (Const of) A
    by (metis Const-0 Const-add sum-comp-morphism)
lemma Const-sum-list:Const (sum-list (map f xs)) = sum-list (map (Const of)
xs)
    by (induct xs, auto simp: Const-0 Const-add)
lemma Const-0-eq[simp]: Const }x=0\longleftrightarrowx=
    by (smt (verit) Const.abs-eq Const}\mp@subsup{|}{0}{}-def coeff-monom monom.abs-eq single-zer
when-def zero-mpoly-def)
lemma Const-sum-any:Const (Sum-any f) = Sum-any (Const of)
    unfolding Sum-any.expand-set Const-sum o-def
    by (intro sum.cong[OF - refl], auto simp: Const-0)
lemma Const-mult:Const (x*y) = Const x * Const y
```



```
lemma Const-power: Const ( }\mp@subsup{x}{}{\wedge}e)=\mathrm{ Const x^e
    by (induct e, auto simp: Const-1 Const-mult)
lemma lookup-replace-Const: lookup (mapping-of (replace-coeff Const p)) l=Const
(lookup (mapping-of p) l)
    by (metis Const-0 coeff-def coeff-replace-coeff)
lemma replace-coeff-mult: replace-coeff Const (p*q) = replace-coeff Const p *
replace-coeff Const q
    apply (subst coeff-eq[symmetric], intro ext, subst coeff-replace-coeff, rule Const-0)
    apply (unfold coeff-def)
    apply (unfold times-mpoly.rep-eq)
    apply (unfold Poly-Mapping.lookup-mult)
    apply (unfold Const-sum-any o-def Const-mult lookup-replace-Const)
    apply (unfold when-def if-distrib Const-0)
    by auto
```

lemma substitute-mult $[$ simp $]$: substitute $\sigma(p * q)=$ substitute $\sigma p *$ substitute σ
q
unfolding substitute-def insertion-mult[symmetric] replace-coeff-mult ..
lemma replace-coeff-Var[simp]: replace-coeff Const (Var x) $=\operatorname{Var} x$ by (metis Const-0 Const-1 Var.abs-eq Var ${ }_{0}$-def monom.abs-eq replace-coeff-monom)
lemma replace-coeff-Const $[$ simp $]$: replace-coeff Const (Const $c)=$ Const (Const c)
by (metis Const.abs-eq Const ${ }_{0}$-def Const-0 monom.abs-eq replace-coeff-monom)
lemma substitute- $\operatorname{Var}[$ simp $]:$ substitute $\sigma(\operatorname{Var} x)=\sigma x$
unfolding substitute-def by (simp add: insertion-Var)
lemma substitute-Const[simp]: substitute $\sigma($ Const $c)=$ Const c
unfolding substitute-def by (simp add: insertion-Const)
lemma substitute- $0[\operatorname{simp}]$: substitute $\sigma 0=0$
using substitute-Const[of σ 0, unfolded Const-0].
lemma substitute- 1 [simp]: substitute $\sigma 1=1$
using substitute-Const[of σ 1, unfolded Const-1].
lemma substitute-power[simp]: substitute $\sigma\left(p^{\wedge} e\right)=($ substitute σ p) e
by (induct e, auto)
lemma substitute-monom $[$ simp $]$: substitute $\sigma($ monom $($ monomial ex) $c)=$ Const $c *(\sigma x) \uparrow e$
by (simp add: replace-coeff-monom substitute-def)
lemma substitute-sum-list: substitute σ (sum-list (map f xs)) $=$ sum-list (map (substitute σ of) xs)
by (induct xs, auto)
lemma substitute-sum: substitute $\sigma(\operatorname{sum} f x s)=\operatorname{sum}($ substitute $\sigma o f) x s$ by (induct xs rule: infinite-finite-induct, auto)
lemma substitute-prod: substitute $\sigma(\operatorname{prod} f x s)=\operatorname{prod}($ substitute $\sigma o f) x s$ by (induct xs rule: infinite-finite-induct, auto)
definition vars-list where vars-list $=$ sorted-list-of-set o vars
lemma set-vars-list[simp]: set (vars-list p) $=$ vars p
unfolding vars-list-def o-def using vars-finite[of $p]$ by auto
lift-definition mpoly-coeff-filter :: ('a :: zero \Rightarrow bool) $\Rightarrow{ }^{\prime}$ 'a mpoly \Rightarrow 'a mpoly is λf p. Poly-Mapping.mapp $(\lambda m c . c$ when $f c) p$.
lemma mpoly-coeff-filter: coeff (mpoly-coeff-filter f p) $m=($ coeff $p m$ when f (coeff p m))
unfolding coeff-def by transfer (simp add: in-keys-iff mapp.rep-eq)

```
lemma total-degree-add: assumes total-degree \(p \leq d\) total-degree \(q \leq d\)
    shows total-degree \((p+q) \leq d\)
    using assms
proof transfer
    fix \(d\) and \(p q::\left(\right.\) nat \(\Rightarrow_{0}\) nat \() \Rightarrow_{0}{ }^{\prime} a\)
    let ? exp \(=\lambda\) p. Max (insert \((0\) :: nat) \(((\lambda m\). sum (lookup \(m)(\) keys \(m))\) 'keys
p))
    assume \(d\) : ? \(\exp p \leq d ? \exp q \leq d\)
    have \({ }^{\exp }(p+q) \leq \operatorname{Max}\) (insert ( 0 :: nat) (( \(\lambda\) m. sum (lookup m) (keys m))'
\((\) keys \(p \cup\) keys \(q)\) ))
    using Poly-Mapping.keys-add[of \(p \quad q]\)
    by (intro Max-mono, auto)
    also have \(\ldots=\max (? \exp p)(? \exp q)\)
    by (subst Max-Un[symmetric], auto simp: image-Un)
    also have \(\ldots \leq d\) using \(d\) by auto
    finally show ? \(\exp (p+q) \leq d\).
qed
lemma total-degree-Var[simp]: total-degree (Var \(x\) :: ' \(a\) :: comm-semiring-1 mpoly)
= Suc 0
    by (transfer, auto simp: Var \({ }_{0}\)-def)
lemma total-degree-Const \([\) simp \(]\) : total-degree (Const \(x)=0\)
    by (transfer, auto simp: Const \(_{0}-\) def)
lemma total-degree-Const-mult: assumes total-degree \(p \leq d\)
    shows total-degree (Const \(x * p\) ) \(\leq d\)
    using assms
proof (transfer, goal-cases)
    case ( \(1 \quad p d x\) )
    have sub: keys \(\left(\right.\) Const \(\left._{0} x * p\right) \subseteq\) keys \(p\)
        by (rule order.trans[OF keys-mult], auto simp: Const \(_{0}\)-def)
    show ?case
    by (rule order.trans[OF-1], rule Max-mono, insert sub, auto)
qed
lemma vars- \(0[\) simp \(]:\) vars \(0=\{ \}\)
    unfolding vars-def by (simp add: zero-mpoly.rep-eq)
lemma vars 1 [simp]: vars \(1=\{ \}\)
    unfolding vars-def by (simp add: one-mpoly.rep-eq)
lemma vars-Var[simp]: vars (Var \(x::{ }^{\prime} a \operatorname{:~}\) comm-semiring-1 mpoly) \(=\{x\}\)
    unfolding vars-def by (transfer, auto simp: Var \({ }_{0}\)-def)
lemma vars-Const[simp]: vars (Const \(c)=\{ \}\)
    unfolding vars-def by (transfer, auto simp: Const \(_{0}\)-def)
```

```
lemma coeff-sum-list: coeff (sum-list ps) \(m=\left(\sum p \leftarrow p s\right.\). coeff \(\left.p m\right)\)
    by (induct ps, auto simp: coeff-add[symmetric])
        (metis coeff-monom monom-zero zero-when)
```

lemma coeff-Const-mult: coeff (Const $c * p$) $m=c *$ coeff $p m$
by (metis Const.abs-eq Const ${ }_{0}$-def add-0 coeff-monom-mult monom.abs-eq)
lemma coeff-Const: coeff (Const c) $m=\left(\right.$ if $m=0$ then ($c::{ }^{\prime} a::$ comm-semiring-1)
else 0)
by (simp add: Const.rep-eq Const $_{0}$-def coeff-def lookup-single-not-eq)

```
lemma coeff-Var: coeff (Var \(x) m=\left(\right.\) if \(m=\) monomial \(1 x\) then \(1::{ }^{\prime} a::\)
```

comm-semiring-1 else 0)
by (simp add: Var.rep-eq Var ${ }_{0}$-def coeff-def lookup-single-not-eq)
list-based representations, so that polynomials can be converted to firstorder terms
lift-definition monom-list :: 'a :: comm-semiring-1 mpoly \Rightarrow (monom $\times{ }^{\prime} a$) list is λp map $(\lambda m .(m$, lookup $p m))($ sorted-list-of-set $(k e y s p))$.
lift-definition var-list $::$ monom $\Rightarrow(v a r \times n a t)$ list
is $\lambda m . \operatorname{map}(\lambda x .(x$, lookup $m x))($ sorted-list-of-set (keys m)).
lemma monom-list: $p=\left(\sum(m, c) \leftarrow\right.$ monom-list p. monom $\left.m c\right)$
apply transfer
subgoal for p
apply (subst poly-mapping-sum-monomials[symmetric])
apply (subst distinct-sum-list-conv-Sum)
apply (unfold distinct-map, simp add: inj-on-def)
apply (meson in-keys-iff monomial-inj)
apply (unfold set-map image-comp o-def split)
apply (subst set-sorted-list-of-set, force)
by (smt (verit, best) finite-keys lookup-eq-zero-in-keys-contradict monomial-inj o-def sum.cong sum.reindex-nontrivial)
done
lemma monom-list-coeff: $(m, c) \in$ set (monom-list $p) \Longrightarrow$ coeff $p m=c$
unfolding coeff-def by (transfer, auto)
lemma monom-list-keys: $(m, c) \in$ set (monom-list $p) \Longrightarrow$ keys $m \subseteq$ vars p
unfolding vars-def by (transfer, auto)
lemma var-list: monom $m c=$ Const $(c:: ' a$:: comm-semiring- 1$) *(\Pi(x, e) \leftarrow$ var-list m. (Var $\left.x)^{\wedge} e\right)$
proof transfer
fix m :: monom and $c::{ }^{\prime} a$
have set: set (sorted-list-of-set (keys m)) $=$ keys m
by (subst set-sorted-list-of-set, force+)

```
    have id: (\prod(x,y)\leftarrowmap (\lambdax. (x,lookup m x)) (sorted-list-of-set (keys m)).Varo
x^ y)
    =(\Pix\in keys m. Varo x `lookup m x) (is ?r1 = ?r2)
    apply (unfold map-map o-def split)
    apply (subst prod.distinct-set-conv-list[symmetric])
    by auto
    have monomial c m=\mp@subsup{Const}{0}{}c*\mathrm{ monomial 1 m}
    by (simp add: Const}\mp@subsup{|}{0}{}\mathrm{ -one monomial-mp)
    also have monomial (1 :: 'a) m=? ?r1 unfolding id
    proof (induction m rule: poly-mapping-induct)
    case (single kv)
    then show ?case by (auto simp:Var --power mult-single)
    next
        case (sumfgkv)
        have id: monomial (1 :: 'a) (f+g)= monomial 1f * monomial 1g
            by (simp add: mult-single)
    have keys: keys (f+g)=keys f\cup keys g keys f\cap keys g={}
            apply (intro keys-plus-ninv-comm-monoid-add)
            using sum(3-4) by simp
    show ?case unfolding id sum(1-2) unfolding keys(1)
            apply (subst prod.union-disjoint, force, force, rule keys)
            apply (intro arg-cong2[of - - (*)] prod.cong refl)
            apply (insert keys(2), simp add: disjoint-iff in-keys-iff lookup-add)
        by (metis add-cancel-left-left disjoint-iff-not-equal in-keys-iff plus-poly-mapping.rep-eq)
    qed
    finally show monomial c m = Const }\mp@subsup{|}{0}{c*?r1.
qed
lemma var-list-keys: (x,e) \in set (var-list m)\Longrightarrowx\in keys m
    by (transfer, auto)
lemma vars-substitute: assumes }\x.vars (\sigmax)\subseteq
    shows vars (substitute \sigma p)\subseteqV
proof -
    define mcs where mcs= monom-list p
    show ?thesis unfolding monom-list[of p, folded mcs-def]
    proof (induct mcs)
        case (Cons mc mcs)
        obtain m c where mc: mc= (m,c) by force
    define xes where xes = var-list m
    have monom: vars (substitute \sigma(monom m c))\subseteqV unfolding var-list[of m,
folded xes-def]
    proof (induct xes)
            case (Cons xe xes)
            obtain x e where xe: xe = (x,e) by force
            from assms have vars ( }\sigmax)\subseteqV\mathrm{ .
            hence x: vars ((\sigmax)^e)\subseteqV
            proof (induct e)
                case (Suc e)
```

```
            then show ?case
                    by (simp, intro order.trans[OF vars-mult], auto)
qed force
    have id: substitute \sigma (Const c * (\proda\leftarrowxe # xes.case a of (x,a) => Var x ^
a))
            =\sigmax^e e*(Const c* substitute \sigma}(\Pi(x,y)\leftarrowxes.Var x^y)) unfoldin
xe
            by (simp add: ac-simps)
            show ?case unfolding id
            apply (rule order.trans[OF vars-mult])
            using Cons x by auto
    qed force
    show ?case unfolding mc
        apply simp
        apply (rule order.trans[OF vars-add])
        using monom Cons by auto
    qed force
qed
lemma insertion-monom-nonneg: assumes }\x.\alpha x\geq0 and c:(c :: 'a ::
{linordered-nonzero-semiring,ordered-semiring-0})\geq0
    shows insertion \alpha (monom m c)\geq0
proof -
    define xes where xes = var-list m
    show ?thesis unfolding var-list[of m c, folded xes-def]
    proof (induct xes)
        case Nil
        thus ?case using c by (auto simp: insertion-Const)
    next
        case (Cons xe xes)
        obtain x e where xe: xe= (x,e) by force
        have id: insertion \alpha (Const c * (\a\leftarrowxe # xes.case a of (x,a) => Var x^
    a))
        =\alphax^e*insertion \alpha (Const c*(\a\leftarrowxes.case a of (x,a)=> Var x^a))
        unfolding xe
        by (simp add: insertion-mult insertion-power insertion-Var algebra-simps)
    show ?case unfolding id
    proof (intro mult-nonneg-nonneg Cons)
            show 0\leq < x^e using assms(1)[of x]
                by (induct e, auto)
    qed
    qed
qed
lemma insertion-nonneg: assumes \ x. \alpha x \geq (0 :: 'a :: linordered-idom)
    and }\bigwedgem. coeff pm\geq
shows insertion \alpha p\geq0
proof -
```

define $m c s$ where $m c s=$ monom-list p
from monom-list [of p] have $p: p=\left(\sum(m, c) \leftarrow m c s\right.$. monom $\left.m c\right)$ unfolding mes-def by auto
have $m c s:(m, c) \in$ set $m c s \Longrightarrow c \geq 0$ for $m c$
using monom-list-coeff assms(2) unfolding mcs-def by auto
show ?thesis using mcs unfolding p
proof (induct mcs)
case Nil
thus ?case by (auto simp: insertion-Const)
next
case (Cons mc mcs)
obtain $m c$ where $m c: m c=(m, c)$ by force
with Cons have $c \geq 0$ by auto
from insertion-monom-nonneg[OF assms(1) this]
have $m: 0 \leq$ insertion α (monom $m c$) by auto
from Cons(1)[OF Cons(2)]
have $I H: 0 \leq$ insertion $\alpha\left(\sum a \leftarrow m c s\right.$. case a of $(a, b) \Rightarrow$ monom a b) by force
show ?case unfolding $m c$ using $I H m$
by (auto simp: insertion-add)
qed
qed
lemma vars-sumlist: vars (sum-list ps) \subseteq (vars' set ps)
by (induct ps, insert vars-add, auto)
lemma coefficients-of-linear-poly: assumes linear: total-degree (p :: ' a :: comm-semiring-1 mpoly) ≤ 1
shows $\exists c$ a vs. $p=$ Const $c+\left(\sum i \leftarrow v s\right.$. Const $\left.(a i) * \operatorname{Var} i\right)$
\wedge distinct vs \wedge set vs $=$ vars $p \wedge$ sorted-list-of-set (vars $p)=$ vs $\wedge(\forall v \in$ set vs. $a v \neq 0$)
$\wedge(\forall i . a i=$ coeff $p($ monomial $1 i)) \wedge(c=$ coeff $p 0)$
proof -
have sum-zero: $(\bigwedge x . x \in$ set $x s \Longrightarrow x=0) \Longrightarrow$ sum-list $(x s::$ 'a list $)=0$ for $x s$ by (induct xs, auto)
define $a::$ var $\Rightarrow{ }^{\prime} a$ where $a i=$ coeff p (monomial $1 i$) for i
define $v s$ where $v s=$ sorted-list-of-set (vars p)
define c where $c=$ coeff $p 0$
define q where $q=$ Const $c+\left(\sum i \leftarrow v s\right.$. Const ($\left.a i\right) *$ Var $\left.i\right)$
show ?thesis
proof (intro exI[of -vs]exI[of-a]exI[of-c] conjI ballI vs-def[symmetric] c-def
allI a-def,
unfold q-def[symmetric])
show set vs $=$ vars p and dist: distinct vs
using sorted-list-of-set[of vars p, folded vs-def] vars-finite[of $p]$ by auto
show $p=q$
unfolding coeff-eq[symmetric]
proof (intro ext)
fix m
have coeff $q m=$ coeff $($ Const $c) m+\left(\sum x \leftarrow v s . a x *\right.$ coeff $\left.(\operatorname{Var} x) m\right)$
unfolding q-def coeff-add[symmetric] coeff-sum-list map-map o-def co-eff-Const-mult ..
also have $\ldots=$ coeff $p m$
proof (cases $m=0$)
case True
thus ?thesis by (simp add: coeff-Const coeff-Var monomial-0-iff c-def)
next
case False
from False have coeff (Const (coeff p 0)) $m+\left(\sum x \leftarrow v s . a x *\right.$ coeff (Var x) m)
$=\left(\sum x \leftarrow v s . a x *\right.$ coeff $($ Var $\left.x) m\right)$ unfolding coeff-Const by simp
also have $\ldots=$ coeff $p m$
proof (cases $\exists i \in$ set vs. $m=$ monomial $1 i$)
case True
then obtain i where $i: i \in$ set vs and m : monomial $1 i$ by auto
from split-list $[O F i]$ obtain bef aft where $i d: v s=$ bef @ $i \#$ aft by auto
from id dist have $i: i \notin$ set bef $i \notin$ set aft by auto
have $[$ simp $]$: (monomial (Suc 0) $i=$ monomial $($ Suc 0) $j)=(i=j)$ for i
$j::$ var
using monomial-inj by fastforce
show ?thesis
apply (subst id, unfold coeff-Var m, simp)
apply (subst sum-zero, use i in force)
apply (subst sum-zero, use i in force)
by (simp add: a-def)
next
case mon: False
hence one: $\left(\sum x \leftarrow v s . a x *\right.$ coeff $\left.(\operatorname{Var} x) m\right)=0$
by (intro sum-zero, auto simp: coeff-Var)
have two: coeff $p m=0$
proof (rule ccontr)
assume n0: coeff p $m \neq 0$
show False
proof (cases \exists i. $m=$ monomial $1 i$)
case True
with mon obtain i where $i: i \notin$ set $v s$ and $m: m=$ monomial $1 i$ by
auto
from $n 0 m$ have $i \in$ vars p unfolding vars-def coeff-def
by (metis UN-I in-keys-iff lookup-single-eq one-neq-zero)
with $i \prec s e t v s=$ vars p show False by auto
next
case False
have sum (lookup m) (keys m) \leq total-degree p using n0 unfolding
coeff-def
apply transfer
by transfer (metis (no-types, lifting) Max-ge finite.insertI finite-imageI
finite-keys image-eqI in-keys-iff insertCI)
also have $\ldots \leq 1$ using linear .
finally have linear: sum (lookup m) (keys m) ≤ 1 by auto

```
            consider (single) \(x\) where keys \(m=\{x\} \mid\) (null) keys \(m=\{ \} \mid\)
                    (two) \(x y k\) where keys \(m=\{x, y\} \cup k\) and \(x \neq y\) by blast
            thus False
            proof cases
                        case null
            hence \(m=0\) by \(\operatorname{simp}\)
            with \(\langle m \neq 0\rangle\) show False by simp
        next
            case (single \(x\) )
            with linear have lookup \(m x \leq 1\) by auto
            moreover from single have \(n z\) : lookup \(m x \neq 0\)
                    by (metis in-keys-iff insertI1)
                        ultimately have lookup \(m x=1\) by auto
            with single have \(m=\) monomial \(1 x\)
        by (metis Diff-cancel Diff-eq-empty-iff keys-subset-singleton-imp-monomial)
            with False show False by auto
            next
                    case (two \(x\) y \(k\) )
            define \(k^{\prime}\) where \(k^{\prime}=k-\{x, y\}\)
            have keys \(m=\) insert \(x\) (insert \(\left.y k^{\prime}\right) x \neq y x \notin k^{\prime} y \notin k^{\prime}\) finite \(k^{\prime}\)
                    unfolding \(k^{\prime}\)-def using two finite-keys [of m] by auto
                    hence lookup \(m x+\) lookup \(m y \leq \operatorname{sum}\) (lookup m) (keys m) by simp
                    also have \(\ldots \leq 1\) by fact
                    finally have lookup \(m x=0 \vee\) lookup \(m y=0\) by auto
                    with two show False by blast
                    qed
            qed
            qed
            from one two show ?thesis by simp
    qed
    finally show ?thesis by (simp add: c-def)
    qed
    finally show coeff \(p m=\) coeff \(q m\)..
qed
fix \(v\)
assume \(v: v \in\) set \(v s\)
hence \(v \in\) vars \(p\) using \(\langle\) set \(v s=\) vars \(p\rangle\) by auto
hence \(v q: v \in\) vars \(q\) unfolding \(\langle p=q\rangle\).
from split-list \([O F v]\) obtain bef aft where vs: vs \(=\) bef @ \(v \#\) aft by auto
with dist have vba: \(v \notin\) set bef \(v \notin\) set aft by auto
show a \(v \neq 0\)
proof
    assume \(a 0: a v=0\)
    have \(v \in\) vars \(p\) by fact
    also have \(p=q\) by fact
    also have vars \(q \subseteq\) vars (sum-list (map \((\lambda\). Const \((a x) * \operatorname{Var} x)\) bef) \() \cup\)
        vars (Const (av) * Var v)
        \(\cup\) vars (sum-list (map ( \(\lambda\) x. Const \((a x) * \operatorname{Var} x)\) aft \())\)
```

```
            unfolding q-def vs apply simp
            apply (rule order.trans[OF vars-add], simp)
            apply (rule order.trans[OF vars-add])
            by (insert vars-add, blast)
            also have vars (Const (av)* Var v) ={} unfolding a0 Const-0 by simp
            finally obtain list where v: v\invars (sum-list (map (\lambda x. Const (a x) * Var
x) list)
            and not-v: v & set list using vba by auto
            from set-mp[OF vars-sumlist v] obtain }x\mathrm{ where }x\in\mathrm{ set list and vevars
(Const (a x) * Var x)
            by auto
            with vars-mult[of Const (a x) Var x] not-v show False by auto
    qed
    qed
qed
Introduce notion for degree of monom
definition degree-monom :: \(\left(\right.\) var \(\Rightarrow_{0}\) nat \() \Rightarrow\) nat where
degree-monom \(m=\) sum (lookup \(m\) ) (keys \(m\) )
lemma total-degree-alt-def: total-degree \(p=\operatorname{Max}\) (insert 0 (degree-monom'keys ( mapping-of p)) )
unfolding degree-monom-def
by transfer' simp
lemma degree-monon-le-total-degree: assumes coeff \(p m \neq 0\)
shows degree-monom \(m \leq\) total-degree \(p\)
using assms unfolding total-degree-alt-def by (simp add: coeff-keys)
lemma degree-monom-eq-total-degree: assumes \(p \neq 0\)
shows \(\exists m\). coeff \(p m \neq 0 \wedge\) degree-monom \(m=\) total-degree \(p\)
proof (cases total-degree \(p=0\) )
case False
thus ?thesis unfolding total-degree-alt-def
by (metis (full-types) Max-in coeff-keys empty-not-insert finite-imageI finite-insert
finite-keys image-iff insertE)
next
case True
from assms obtain \(m\) where coeff \(p m \neq 0\)
using coeff-all-0 by auto
with degree-monon-le-total-degree[OF this] True show ?thesis by auto
qed
lemma degree-add-leI: degree \(p x \leq d \Longrightarrow\) degree \(q x \leq d \Longrightarrow\) degree \((p+q) x \leq\) \(d\)
apply transfer
subgoal for \(p x d q\) using Poly-Mapping.keys-add[of \(p q]\)
by (intro Max.boundedI, auto)
done
```

lemma degree-sum-leI: assumes $\bigwedge i . i \in A \Longrightarrow$ degree $(p i) x \leq d$ shows degree (sum $p A$) $x \leq d$
using assms
by (induct A rule: infinite-finite-induct, auto intro: degree-add-leI)
lemma total-degree-sum-leI: assumes $\wedge i . i \in A \Longrightarrow$ total-degree $(p i) \leq d$ shows total-degree $($ sum $p A) \leq d$
using assms
by (induct A rule: infinite-finite-induct, auto intro: total-degree-add)
lemma total-degree-monom: assumes $c \neq 0$
shows total-degree (monom $m c$) $=$ degree-monom m
unfolding total-degree-alt-def using assms by auto
lemma degree-Var[simp]: degree (Var x ::' a :: comm-semiring-1 mpoly) $x=1$
by (transfer, unfold Var ${ }_{0}-$ def, simp)
lemma Var-neq- $0[$ simp $]: \operatorname{Var} x \neq(0:: ' a::$ comm-semiring-1 mpoly $)$
proof
assume Var $x=(0::$ 'a mpoly $)$
from arg-cong[OF this, of λ p. degree $p x]$
show False by simp
qed
lemma degree-Const[simp]: degree (Const c) $x=0$ by transfer (auto simp: Const $_{0}$-def)
lemma vars-add-subI: vars $p \subseteq A \Longrightarrow \operatorname{vars} q \subseteq A \Longrightarrow \operatorname{vars}(p+q) \subseteq A$ by (metis le-supI subset-trans vars-add)
lemma vars-mult-subI: vars $p \subseteq A \Longrightarrow$ vars $q \subseteq A \Longrightarrow$ vars $(p * q) \subseteq A$ by (metis le-supI subset-trans vars-mult)
lemma vars-eqI: assumes vars ($p::$ ' a :: comm-ring- 1 mpoly) $\subseteq V$
$\bigwedge v . v \in V \Longrightarrow \exists a b$. insertion a $p \neq \operatorname{insertion}(a(v:=b)) p$
shows vars $p=V$
proof (rule ccontr)
assume \neg ?thesis
with assms obtain v where $v \in V$ and not: $v \notin$ vars p by auto
from $\operatorname{assms}(\mathcal{Z})[O F$ this(1)] obtain $a b$ where insertion a $p \neq \operatorname{insertion}(a(v:=$ b)) p by auto
moreover have insertion a $p=$ insertion $(a(v:=b)) p$
by (rule insertion-irrelevant-vars, insert not, auto)
ultimately show False by auto
qed
end

2.2 Part 2 - Extensions With Importing Univariate Polynomials

theory Preliminaries-on-Polynomials-2 imports
Preliminaries-on-Polynomials-1
Factor-Algebraic-Polynomial.Poly-Connection

begin
Several definitions have the same name for univariate and multivariate polynomials, so we use a prefix m for multi-variate.
hide-const (open) Symmetric-Polynomials.lead-coeff
abbreviation mdegree where mdegree \equiv MPoly-Type.degree
abbreviation mcoeff where mcoeff \equiv MPoly-Type.coeff
abbreviation mmonom where mmonom \equiv MPoly-Type.monom
lemma range-coeff-poly-to-mpoly: assumes mcoeff (poly-to-mpoly x p) m $\neq 0$
shows $\exists d . m=$ monomial $d x$
using assms
unfolding coeff-def poly-to-mpoly-def MPoly-inverse[OF Set.UNIV-I] lookup-Abs-poly-mapping [OF poly-to-mpoly-finite]
by simp (metis keys-subset-singleton-imp-monomial)
lemma degree-poly-to-mpoly[simp]: mdegree (poly-to-mpoly x \quad) $x=$ degree p proof (cases $p=0$)
case True
thus ?thesis by (simp add: poly-to-mpoly0)
next
case p : False
let $? q=$ poly-to-mpoly $x p$
define q where $q=? q$
define $d p$ where $d p=$ degree p
define $d q$ where $d q=$ mdegree $q x$
from p have $q: ? q \neq 0$ by (metis poly-to-mpoly0 poly-to-mpoly-inverse)
have $p q$: $p=$ mpoly-to-poly $x q$ unfolding q-def
by (simp add: poly-to-mpoly-inverse)
\{
have $0 \neq$ coeff $p d p$ using p by (auto simp: $d p$-def)
also have coeff $p d p=$ coeff (mpoly-to-poly $x q$) $d p$ unfolding $p q$ by simp
also have $\ldots=$ mcoeff q (monomial $d p x$) unfolding coeff-mpoly-to-poly by simp
finally have mcoeff q (monomial $d p x) \neq 0$ by simp
\}
hence first-part: $d q \geq d p$ unfolding $d q$-def by (metis degree-geI lookup-single-eq) \{
from monom-of-degree-exists $[O F ~ q$, folded q-def, of $x]$ obtain m where $m c$: mcoeff $q m \neq 0$
and look: lookup $m x=d q$ by (auto simp: dq-def)
from range-coeff-poly-to-mpoly[OF mc[unfolded q-def]] obtain d where m : m $=$ monomial $d x$ by auto
from m look have m : $m=$ monomial $d q x$ by simp
have coeff $p d q=$ mcoeff q (monomial dq x)
unfolding coeff-poly-to-mpoly[of x, symmetric $] ~ q$-def $d q$-def by auto
also have $\ldots \neq 0$ using $m m c$ by auto
finally have $d p \geq d q$ unfolding $d p$-def by (rule le-degree)
\}
with first-part have $d p=d q$ by auto
thus ?thesis unfolding $d p$-def $d q-d e f q-d e f$ by auto
qed
lemma degree-mpoly-to-poly: assumes vars $p \subseteq\{x\}$
shows degree (mpoly-to-poly x p) $=$ mdegree $p x$
proof -
define q where $q=$ mpoly-to-poly $x p$
from mpoly-to-poly-inverse[OF assms]
have mdegree $p x=$ mdegree (poly-to-mpoly x (mpoly-to-poly $x p$)) x by simp
also have $\ldots=$ degree (m poly-to-poly $x p$) by simp
finally show ?thesis ..
qed
lemma degree-partial-insertion-bound: degree (partial-insertion a x p) \leq MPoly-Type.degree $p x$
using degree-partial-insertion-le-mpoly by auto
lemma insertion-partial-insertion-vars: assumes $\bigwedge y . y \neq x \Longrightarrow y \in$ vars $p \Longrightarrow$ $\beta y=\alpha y$
shows poly (partial-insertion $\beta x p)(\alpha x)=$ insertion αp
proof -
let ? $\alpha=(\lambda y$. if $y \in$ insert $x($ vars $p)$ then αy else $\beta y)$
have insertion $\alpha p=$ insertion ? αp
by (rule insertion-irrelevant-vars, auto)
also have $\ldots=$ poly (partial-insertion $\beta x p)(? \alpha x)$
by (rule insertion-partial-insertion[symmetric], insert assms, auto)
finally show?thesis by auto
qed
lemma degree-mpoly-of-poly[simp]: mdegree (mpoly-of-poly $x p$) $x=$ degree p proof -
have mdegree (mpoly-of-poly x p) $x \leq$ degree p
by (simp add: coeff-eq-0 coeff-mpoly-of-poly degree-leI)
moreover have degree $p \leq m d e g r e e ~(m p o l y$-of-poly $x p$) x
proof (cases degree $p=0$)
case True
thus ?thesis by auto
next
case 0: False

```
    hence coeff \(p(\) degree \(p) \neq 0\) by auto
    also have coeff \(p\) (degree \(p\) ) = MPoly-Type.coeff (mpoly-of-poly \(x p\) ) (monomial
(degree \(p\) ) \(x\) )
    by simp
    finally show ?thesis by (metis degree-geI lookup-single-eq)
    qed
    ultimately show ?thesis by auto
qed
lemma mpoly-extI: assumes \(\bigwedge \alpha\). insertion \(\alpha p=\) insertion \(\alpha\left(q::{ }^{\prime} a::\{\right.\) ring-char- \(0, i d o m\}\)
mpoly)
    shows \(p=q\)
proof -
    have main: finite vs \(\Longrightarrow\) vars \(p \subseteq\) vs \(\Longrightarrow\) vars \(q \subseteq v s \Longrightarrow(\bigwedge \alpha\). insertion \(\alpha p\)
\(=\) insertion \(\alpha q) \Longrightarrow p=q\) for \(v s\)
    proof (induction vs arbitrary: p q rule: finite-induct)
        case (insert x vs p q)
        have \(p=q \longleftrightarrow\) mpoly-to-mpoly-poly \(x \quad p=\) mpoly-to-mpoly-poly \(x q\)
            by (metis poly-mpoly-to-mpoly-poly)
    also have \(\ldots \longleftrightarrow(\forall\) m. coeff (mpoly-to-mpoly-poly x \(p\) ) \(m=\) coeff ( \(m\) poly-to-mpoly-poly
x q) \(m\) )
            by (metis poly-eqI)
    also have ... using insert
    proof (intro allI insert.IH)
        fix \(m \alpha\)
        show vars (coeff (mpoly-to-mpoly-poly \(x\) p) m) \(\subseteq\) vs using insert.prems(1)
        by (metis Diff-eq-empty-iff Diff-insert2 dual-order.trans vars-coeff-mpoly-to-mpoly-poly)
        show vars (coeff (mpoly-to-mpoly-poly \(x\) q) m) \(\subseteq\) vs using insert.prems(2)
        by (metis Diff-eq-empty-iff Diff-insert2 dual-order.trans vars-coeff-mpoly-to-mpoly-poly)
        have \(I H\) : partial-insertion \(\alpha x p=\) partial-insertion \(\alpha x q\)
        proof (intro poly-ext)
            fix \(y\)
            have poly (partial-insertion \(\alpha\) x p) \(y=\) poly (partial-insertion \(\alpha x\) q) \(y \longleftrightarrow\)
            insertion \((\alpha(x:=y)) p=\) insertion \((\alpha(x:=y)) q\)
            using insertion-partial-insertion[of \(x \alpha \alpha(x:=y)]\) by simp
            moreover have ... by (intro insert)
            finally show poly (partial-insertion \(\alpha x p) y=\) poly (partial-insertion \(\alpha x\)
q) \(y\) by blast
        qed
        show insertion \(\alpha\) (coeff (mpoly-to-mpoly-poly \(x\) p) m) \(=\) insertion \(\alpha\) (coeff
(mpoly-to-mpoly-poly \(x\) q) m)
            using insert.prems(3) by (simp add: IH)
        qed
        finally show ?case .
    next
    case (empty \(p q\) )
    hence vars: vars \(p=\{ \}\) vars \(q=\{ \}\) by auto
    from vars-emptyE[OF vars(1)] obtain \(c\) where \(p: p=\) Const \(c\).
    from vars-empty \(E[O F \operatorname{vars}(2)]\) obtain \(d\) where \(q: q=\) Const \(d\).
```

```
        from empty(3)[of undefined, unfolded p q] have c=d by auto
        thus ?case unfolding pq by simp
    qed
    show ?thesis
    by (rule main[of vars p\cup vars q], insert assms, auto simp: vars-finite)
qed
lemma vars-empty-Const: assumes vars ( }p::\mp@subsup{\}{}{\prime}a\mp@code{:: {ring-char-0,idom} mpoly)=
{}
    shows \existsc.p=Const c
proof -
    {
        fix }
        have insertion \alpha p = insertion ( }\lambda-.0)p\mathrm{ using assms
            by (intro insertion-irrelevant-vars, auto)
            also have ... = mcoeff p 0 by simp
            also have ... = insertion \alpha (Const (mcoeff p 0)) unfolding insertion-Const
            finally have insertion \alpha p= insertion \alpha (Const (mcoeff p 0)).
    }
    hence p=(Const (mcoeff p 0)) by (rule mpoly-extI)
    thus ?thesis by auto
qed
context
    assumes ge1: \bigwedge c :: 'a :: linordered-idom. c>0\Longrightarrow\exists x.c*x\geq1
begin
lemma poly-ext-bounded:
    fixes p q :: 'a poly
    assumes }\x.x\geqb\Longrightarrow\mathrm{ poly p x = poly q x shows }p=
proof -
    define r where r=p-q
    from assms have r: x \geqb\Longrightarrow poly r x = 0 for x by (auto simp: r-def)
    have ?thesis \longleftrightarrowr=0 unfolding r-def by simp
    also have ...
    proof (cases degree r=0)
        case True
        from degree0-coeffs[OF this] r[of b] show ?thesis by auto
    next
        case dr: False
        define lc where lc = lead-coeff r
        from dr have lc:lc\not= 0 by (auto simp:lc-def)
        define d}\mathrm{ where d= degree r
        define s}\mathrm{ where }s=r-\mathrm{ monom lc d
        have ds: degree s<d unfolding s-def lc-def using dr
            by (smt (verit, del-insts) Polynomial.coeff-diff Polynomial.coeff-monom
                    cancel-comm-monoid-add-class.diff-cancel coeff-eq-0 d-def degree-0
```

diff-is-0-eq leading-coeff-0-iff linorder-neqE-nat linorder-not-le zero-diff)
fix x
have poly $r x=$ poly (monom lc $d+s$) x unfolding s-def by simp
also have $\ldots=l c * x^{\wedge} d+$ poly s x by (simp add: poly-monom)
finally have poly $r x=l c * x^{\wedge} d+$ poly $s x$.
\} note $e q=$ this
have $\exists p c .(\forall x \geq b .(c:: ' a) * x \wedge d+$ poly $p x=0) \wedge c>0 \wedge$ degree $p<$
d
proof (cases lc >0)
case True
show ?thesis by (rule exI[of -s], rule exI $[o f-l c]$, insert True eq $r d s$, auto)

next

case False
with $l c$ have True: $-l c>0$ by auto
show ?thesis
proof (rule exI $[o f-s]$, rule exI[of $-l c]$, intro conjI allI True)
fix x
show $b \leq x \longrightarrow-l c * x^{\wedge} d+\operatorname{poly}(-s) x=0$ using $r[o f x]$ eq $[o f x]$ by
auto
qed (insert ds, auto)
qed
then obtain p and $c::{ }^{\prime} a$
where $c: c>0$ and $d p:$ degree $p<d$ and $0: \bigwedge x . x \geq b \Longrightarrow c * x^{\wedge} d+$
poly $p x=0$
by auto
define m where $m=\operatorname{Max}($ insert $1((\lambda i$. abs (coeff $p i))$ ' $\{$..degree $p\}))$
define M where $M=(1+$ of-nat $($ degree $p)) * m$
have $m 1: m \geq 1$ unfolding m-def by auto
have $m c: i \leq$ degree $p \Longrightarrow m \geq a b s$ (coeff $p i$) for i unfolding m-def by (intro Max-ge, auto)
define B where $B=\max b 1$
\{
fix x
assume $x: x \geq B$
hence $x 1: x \geq 1$ unfolding B-def by auto
have abs (poly $p x)=$ abs ($\sum i \leq$ degree p. coeff $\left.p i * x{ }^{\wedge} i\right)$
by (simp add: poly-altdef)
also have $\ldots \leq\left(\sum i \leq\right.$ degree p. abs $\left(\right.$ coeff $\left.\left.p i * x^{\wedge} i\right)\right)$ by blast
also have $\ldots \leq\left(\sum i \leq\right.$ degree $p . m * x \wedge$ degree $\left.p\right)$
proof (intro sum-mono)
fix i
assume $i \in\{$..degree $p\}$
hence $i: i \leq$ degree p by auto
have \mid coeff $p i * x^{\wedge} i|=|$ coeff $p i|*| x^{\wedge} i \mid$ by (auto simp: abs-mult)
also have $\ldots \leq m * x$ ^ degree p
proof (intro mult-mono)
show \mid coeff $p i \mid \leq m$ using $m c i$ by auto
show $0 \leq m$ using $m 1$ by auto

```
            have |x^ i| = |x|` i unfolding power-abs ..
            also have ...= 陪i}\mathrm{ using x1 by simp
            also have ... \leqx^ degree p using x1 i
                using power-increasing by blast
            finally show }|\mp@subsup{x}{}{^}i|\leqx^\mathrm{ degree }p\mathrm{ by auto
            qed simp
            finally show |coeff pi* x^ i| \leqm* x^ degree p by simp
        qed
        also have ... = M* x^ degree p by (simp add: M-def)
        finally have ineq: }|\mathrm{ poly p x| ड M*x` degree p.
    have }x\geqb\mathrm{ using x unfolding B-def by auto
    from O[OF this] have abs (c* x^d) =abs (poly px) by auto
```



```
    define k where k=d-Suc (degree p)
    from dp have d:d = degree p + Suc k unfolding k-def by auto
    have xp: x^ degree p \geq1 using x1 by simp
    have c* x^d=(c*x^ k*x)*x^ degree p unfolding d
        by (simp add: algebra-simps power-add)
    from ineq[unfolded this] have ineq: c* x^ k*x\leqM using xp by simp
    have c*x\leqc* ``k*x using cx1 by fastforce
    also have ... \leqM by fact
    finally have c*x\leqM.
    }
    hence contra: }B\leqx\Longrightarrowc*x\leqM\mathrm{ for }x\mathrm{ .
    have }\existsx.c*x\geq1\mathrm{ using c ge1 by auto
    then obtain d}\mathrm{ where cd:c*d}d\geq1\mathrm{ by auto
    with c have d: d>0
    by (meson less-numeral-extra(1) order-less-le-trans zero-less-mult-pos)
    have M1:M\geq1 unfolding M-def using m1
    by (simp add: order-trans)
    have M<M+1 by auto
    also have \ldots.\leq(c*d)*(M+1) using cd M1 by simp
    also have \ldots\leqc* max B (d* (M+1)) using M1 c d by auto
    also have ... \leqM using contra[of max B (d*(M+1))] by simp
    finally have False by simp
    thus ?thesis ..
    qed
    finally show ?thesis by simp
qed
lemma mpoly-ext-bounded:
assumes \(\bigwedge \alpha\). \((\bigwedge x . \alpha x \geq b) \Longrightarrow\) insertion \(\alpha p=\) insertion \(\alpha\left(q::{ }^{\prime} a::\right.\)
linordered-idom mpoly)
shows \(p=q\)
proof -
```

have main: finite vs \Longrightarrow vars $p \subseteq v s \Longrightarrow$ vars $q \subseteq v s \Longrightarrow(\bigwedge \alpha .(\bigwedge x . \alpha x \geq b)$ \Longrightarrow insertion $\alpha p=$ insertion $\alpha q) \Longrightarrow p=q$ for $v s$
proof (induction vs arbitrary: p q rule: finite-induct)
case (insert x vs $p q$)
have $p=q \longleftrightarrow$ mpoly-to-mpoly-poly $x \quad p=$ mpoly-to-mpoly-poly $x q$ by (metis poly-mpoly-to-mpoly-poly)
also have $\ldots \longleftrightarrow(\forall$ m. coeff (mpoly-to-mpoly-poly $x p$) $m=$ coeff (m moly-to-mpoly-poly $x q$) m)
by (metis poly-eqI)
also have ...
proof (intro allI insert.IH)
fix $m \alpha$
show vars (coeff (mpoly-to-mpoly-poly x p) m) \subseteq vs using insert.prems(1)
by (metis Diff-eq-empty-iff Diff-insert2 dual-order.trans vars-coeff-mpoly-to-mpoly-poly)
show vars (coeff (mpoly-to-mpoly-poly $x q$) m) $\subseteq v s$ using insert.prems(2)
by (metis Diff-eq-empty-iff Diff-insert2 dual-order.trans vars-coeff-mpoly-to-mpoly-poly)
assume alpha: $\bigwedge x . \alpha(x::$ nat $) \geq(b:: ' a)$
have $I H$: partial-insertion $\alpha x p=$ partial-insertion $\alpha x q$
proof (intro poly-ext-bounded [of b])
fix y
assume $y: y \geq\left(b::{ }^{\prime} a\right)$
have poly (partial-insertion $\alpha x p$) $y=$ poly (partial-insertion $\alpha x q$) $y \longleftrightarrow$
insertion $(\alpha(x:=y)) p=$ insertion $(\alpha(x:=y)) q$
using insertion-partial-insertion[of $x \alpha \alpha(x:=y)]$ by simp
moreover have ... by (intro insert, insert y alpha, auto)
finally show poly (partial-insertion $\alpha x p$) $y=$ poly (partial-insertion αx
q) y by blast
qed
show insertion α (coeff (mpoly-to-mpoly-poly x \quad) m) $=$ insertion α (coeff
(mpoly-to-mpoly-poly $x q$) m)
using insert.prems(3) by (simp add: IH)
qed
finally show ?case .
next
case (empty $p q$)
hence vars: vars $p=\{ \}$ vars $q=\{ \}$ by auto
from vars-emptyE[OF vars(1)] obtain c where $p: p=$ Const c.
from vars-emptyE[OF vars(2)] obtain d where $q: q=$ Const d.
from empty (3)[of $\lambda-. b$, unfolded $p q]$ have $c=d$
by (simp add: coeff-Const)
thus ?case unfolding $p q$ by simp
qed
show ?thesis
by (rule main[of vars $p \cup$ vars q], insert assms, auto simp: vars-finite)
qed
end
lemma mpoly-ext-bounded-int:
assumes $\bigwedge \alpha$. $(\bigwedge x . \alpha x \geq b) \Longrightarrow$ insertion $\alpha p=$ insertion $\alpha(q::$ int mpoly $)$

$$
\text { shows } p=q
$$

by (rule mpoly-ext-bounded $[$ of b], insert assms, auto simp: exI $[$ of - 1])
lemma mpoly-ext-bounded-field:
assumes $\bigwedge \alpha$. $(\bigwedge x . \alpha x \geq b) \Longrightarrow$ insertion $\alpha p=$ insertion $\alpha\left(q::{ }^{\prime} a::\right.$
linordered-field mpoly)
shows $p=q$
apply (rule mpoly-ext-bounded $[$ of $b]$)
subgoal for c by (intro exI[of-inverse $c]$, auto)
subgoal using assms by auto
done
lemma mpoly-of-poly-is-poly-to-mpoly: mpoly-of-poly $=$ poly-to-mpoly
unfolding poly-to-mpoly-def
apply transfer ${ }^{\prime}$
apply (unfold mpoly-of-poly-aux-def)
apply transfer ${ }^{\prime}$
apply (unfold when-def[symmetric])
by (intro ext, auto)
lemma insertion-poly-to-mpoly $[$ simp $]$: insertion $f($ poly-to-mpoly $i p)=$ poly $p(f$
i)
unfolding mpoly-of-poly-is-poly-to-mpoly[symmetric] by simp
lemma substitute-poly-to-mpoly:
assumes $x: \alpha x=$ poly-to-mpoly y ($q::{ }^{\prime} a::\{$ ring-char- $0, i d o m\}$ poly)
shows substitute α (poly-to-mpoly $x p$) poly-to-mpoly y (pcompose $p q$)
apply (rule mpoly-extI)
apply (unfold insertion-substitute insertion-poly-to-mpoly x)
apply (unfold poly-pcompose)
by auto
lemma total-degree-add-Const: total-degree ($p+$ Const ($c::$ 'a :: comm-ring-1))
$=$ total-degree p
proof -
have total-degree $(p+$ Const $c) \leq$ total-degree p
by (rule total-degree-add, auto)
moreover have total-degree $((p+$ Const $c)+$ Const $(-c)) \leq$ total-degree $(p+$
Const c)
by (rule total-degree-add, auto)
moreover have ($p+$ Const $c)+$ Const $(-c)=p$ by (simp add: Const-add[symmetric])
ultimately show ?thesis by auto
qed
lemma mpoly-as-sum-any: ($p::^{\prime} a$:: comm-ring-1 mpoly) $=$ Sum-any (λ m. mmonom m (mcoeff $p m)$)
proof (induct p rule: mpoly-induct)
case (monom ma)
thus ?case
by transfer (smt (verit) Sum-any.cong Sum-any-when-equal' lookup-single-eq lookup-single-not-eq single-zero when-neq-zero when-simps(1))
next
case 1: (sum p1 p2 ma)
show ?case
apply (subst 1(1), subst 1(2))
apply (unfold coeff-add monom-add)
by $($ smt (z3) 1 (1) 1 (2) MPoly-Type-monom-zero Sum-any.cong Sum-any.distrib Sum-any.infinite add-cancel-left-left add-cancel-left-right mpoly-coeff-0)
qed
lemma mpoly-as-sum: ($p::{ }^{\prime} a$:: comm-ring-1 mpoly) $=$ sum $(\lambda$ m. mmonom m (mcoeff $p m)$) $\{m$. mcoeff $p m \neq 0\}$
apply (subst mpoly-as-sum-any)
by (smt (verit, ccfv-SIG) Collect-cong MPoly-Type-monom-0-iff Sum-any.expand-set)
lemma monom-as-prod: mmonom $m c=$ Const ($c::$ ' a :: comm-semiring-1) * $\operatorname{prod}(\lambda i . \operatorname{Var} i \wedge$ lookup $m i)(k e y s m)$
unfolding var-list
apply (intro arg-cong[of $-\lambda x .-* x]$)
apply transfer ${ }^{\prime}$
apply (subst prod.distinct-set-conv-list[symmetric])
subgoal unfolding distinct-map by (auto simp: inj-on-def)
subgoal unfolding set-map image-comp set-sorted-list-of-set[OF finite-keys]
by (smt (verit, best) case-prod-conv finite-keys o-def prod.cong prod.inject prod.reindex-nontrivial)
done
lemma poly-to-mpoly-substitute-same: assumes poly-to-mpoly $x q=$ substitute (λ i. Var $x) p$
shows poly $q a=$ insertion $(\lambda x . a) p$
using arg-cong[OF assms, of insertion ($\lambda-$. a), unfolded insertion-poly-to-mpoly insertion-substitute insertion-Var]
by simp
lemma substitute-monom: fixes $c::{ }^{\prime} a$:: comm-semiring-1
shows substitute a (mmonom m c) = Const $c * \operatorname{prod}\left(\lambda i\right.$. a i^{\wedge} lookup mi) (keys m)
by (subst monom-as-prod) (simp add: substitute-prod o-def)
lemma degree-prod: assumes prod $p A \neq(0::$ 'a :: idom mpoly $)$
shows mdegree (prod $p A$) $x=\operatorname{sum}(\lambda i$. mdegree $(p i) x) A$
using assms
by (induct A rule: infinite-finite-induct) (auto simp: mpoly-degree-mult-eq)
lemma degree-prod-le: fixes $p::-\boldsymbol{A}^{\prime} a$:: idom mpoly
shows mdegree $(\operatorname{prod} p A) x \leq \operatorname{sum}(\lambda i$. mdegree $(p i) x) A$
using degree-prod $[$ of $p A x]$ by (cases prod $p A=0$; auto)

```
lemma degree-power: assumes p\not=(0 :: 'a :: idom mpoly)
    shows mdegree ( }\mp@subsup{p}{}{\wedge}n)x=n* mdegree p x
    by (induct n) (insert assms, auto simp: mpoly-degree-mult-eq)
lemma mdegree-Const-mult-le: mdegree (Const (c :: 'a :: idom) * p) x m mdegree
p x
    using mpoly-degree-mult-eq[of Const c p x]
    by (cases c = 0; cases p=0; auto)
lemma degree-substitute-const-same-var: mdegree (substitute (\lambdai. Const (c i) *
Var x)(p :: 'a :: idom mpoly)) x \leq total-degree p
proof -
    {
    fix }
    let ?x = Var x :: 'a mpoly
    assume i: mcoeff pi\not=0
    have mdegree (\prodia\inkeys i. (Const (c ia)* ?x) ^lookup i ia) x\leqtotal-degree
p
        apply (intro order.trans[OF - degree-monon-le-total-degree[of p i,OF i]])
        apply (intro order.trans[OF degree-prod-le])
        apply (rule order.trans[OF sum-mono[of - - lookup i]])
        apply (unfold power-mult-distrib Const-power[symmetric])
        apply (rule order.trans[OF mdegree-Const-mult-le])
        apply (subst degree-power, force)
        apply (subst degree-Var)
        by (auto simp add: degree-monom-def)
    } note main = this
    show ?thesis
    apply (subst (5) mpoly-as-sum)
    apply (unfold substitute-sum o-def substitute-monom substitute-mult)
    apply (intro degree-sum-leI)
    apply (rule order.trans[OF mdegree-Const-mult-le])
    using main by auto
qed
lemma degree-substitute-same-var: mdegree (substitute (\lambdai. Var x) ( p :: 'a :: idom
mpoly))}x\leqtotal-degree p
    using degree-substitute-const-same-var[of \lambda -. 1, unfolded Const-1] by auto
lemma poly-pinfty-ge-int: assumes 0<lead-coeff (p :: int poly)
    and degree p}\not=
    shows \existsn.\forallx\geqn. b\leqpoly px
proof -
    let ?q = of-int-poly p :: real poly
    from assms have 0<lead-coeff ?q degree ? q }=0\mathrm{ by auto
    from poly-pinfty-ge[OF this, of of-int b] obtain n
    where le: \bigwedge x. x \geq n\Longrightarrow real-of-int b}\leq\mathrm{ poly ?q }x\mathrm{ by auto
    show ?thesis
    proof (intro exI[of - ceiling n] allI impI)
```

```
    fix }
    assume }x\geq\lceiln
    hence of-int x \geq n by linarith
    from le[OF this] show b\leq poly p x by simp
    qed
qed
context
    assumes poly-pinfty-ge: \ p b. 0 < lead-coeff ( p :: 'a :: linordered-idom poly)
        \Longrightarrow \text { degree } p \neq 0 \Longrightarrow \exists n . \forall x \geq n . b \leq p o l y ~ p x
begin
lemma degree-mono-generic: assumes pos: lead-coeff p \geq(0 :: 'a)
    and le: \bigwedgex. x\geqc\Longrightarrow poly p x \leq poly q x
shows degree p\leqdegree q
proof (rule ccontr)
    let ?lc = lead-coeff
    define r where r=p-q
    assume ᄀ ?thesis
    hence deg: degree p> degree q by auto
    hence deg-eq: degree r = degree p unfolding r-def
        by (metis degree-add-eq-right degree-minus uminus-add-conv-diff)
    from deg have ?lc p\not=0 by auto
    with pos have pos: ?lc p>0 by auto
    have ?lc r = ?lc p unfolding r-def
        using deg-eq le-degree r-def deg by fastforce
    with pos have lcr: ?lc r > 0 by auto
    from deg-eq deg have dr: degree r}\not=0\mathrm{ by auto
    have }x\geqc\Longrightarrow\mathrm{ poly r x < 0 for }x\mathrm{ using le[of x] unfolding r-def by auto
    with poly-pinfty-ge[OF lcr dr] show False
    by (metis dual-order.trans nle-le not-one-le-zero)
qed
```

lemma degree-mono'-generic: assumes le: $\wedge x . x \geq c \Longrightarrow(b n d:: ' a) \leq p o l y p x$
\wedge poly $p x \leq$ poly $q x$
shows degree $p \leq$ degree q
proof (cases degree $p=0$)
case deg: False
show ?thesis
proof (rule degree-mono-generic $[o f-c]$)
show $\bigwedge x . c \leq x \Longrightarrow$ poly $p x \leq$ poly $q x$ using le by auto
let $? l c=$ lead-coeff
show $0 \leq$?lc p
proof (rule ccontr)
assume \neg ?thesis
hence ?lc $(-p)>0$ degree $(-p) \neq 0$ using deg by auto
from poly-pinfty-ge[OF this, of - bnd +1 , simplified]
obtain n where $\bigwedge x . x \geq n \Longrightarrow 1-b n d \leq-$ poly $p x$ by auto
from le[of max $n c]$ this[of max $n c]$ show False by auto
qed
qed
qed auto
end
definition nneg-poly :: ' a :: \{linordered-semidom, semiring-no-zero-divisors $\}$ poly
\Rightarrow bool where
nneg-poly $p=((\forall x . x \geq 0 \longrightarrow$ poly $p x \geq 0) \wedge$ lead-coeff $p \geq 0)$
lemma nneg-poly-nneg: assumes nneg-poly p
and $x \geq 0$
shows poly $p x \geq 0$
using assms unfolding nneg-poly-def by auto
lemma nneg-poly-lead-coeff: assumes nneg-poly p
shows $p \neq 0 \Longrightarrow$ lead-coeff $p>0$
using assms unfolding nneg-poly-def
by (metis antisym-conv2 leading-coeff-neq-0)
lemma nneg-poly-add: assumes nneg-poly p nneg-poly q shows nneg-poly $(p+q)$ degree $(p+q)=\max ($ degree $p)($ degree $q)$
proof \{
fix $p q$:: 'a poly
assume le: degree $p \leq$ degree q and $p q$: nneg-poly p nneg-poly q
have nneg-poly $(p+q) \wedge$ degree $(p+q)=\max ($ degree $p)($ degree $q)$
proof (cases degree $p=$ degree q)
case True
show ?thesis
proof (cases $p=0 \vee q=0$)
case True
thus ?thesis using $p q$ by auto
next
case False
with nneg-poly-lead-coeff[of p] nneg-poly-lead-coeff[of q] $p q$
have lc: lead-coeff $p>0$ lead-coeff $q>0$ by auto
have degree $(p+q)=$ degree q using lc True
by (smt (verit, del-insts) Polynomial.coeff-add add-cancel-left-left add-le-same-cancel2
le-degree leading-coeff-0-iff linorder-not-le order-less-le)
with $l c$ pq True show ?thesis unfolding nneg-poly-def by auto
qed
next
case False
with le have $l t$: degree $p<$ degree q by auto
hence 1: degree $(p+q)=$ degree q
by (simp add: degree-add-eq-right)
with $l t$ have 2: lead-coeff $(p+q)=$ lead-coeff q
using lead-coeff-add-le by blast
from 12 pq lt show ?thesis by (auto simp: nneg-poly-def) qed
\} note main $=$ this
have degree $p \leq$ degree $q \vee$ degree $q \leq$ degree p by linarith
with $\operatorname{main}[$ of $p q] \operatorname{main}[o f q p]$ assms
have nneg-poly $(p+q) \wedge$ degree $(p+q)=\max ($ degree $p)($ degree $q)$
by (auto simp: ac-simps)
thus nneg-poly $(p+q)$ degree $(p+q)=\max ($ degree $p)($ degree $q)$
by auto
qed

```
lemma nneg-poly-mult: assumes nneg-poly p nneg-poly q
    shows nneg-poly ( }p*q\mathrm{ )
    using assms unfolding nneg-poly-def poly-mult Polynomial.lead-coeff-mult
    by (intro allI conjI mult-nonneg-nonneg impI, auto)
lemma nneg-poly-const[simp]: nneg-poly [:c:] = (c\geq0)
    unfolding nneg-poly-def by (auto dest: spec[of - \overline{0}] simp add: coeff-const)
lemma nneg-poly-pCons[simp]: a \geq 0 ^ nneg-poly p mneg-poly (pCons a p)
    unfolding nneg-poly-def by (auto simp: coeff-pCons split: nat.splits)
lemma nneg-poly-0[simp]: nneg-poly 0
    unfolding nneg-poly-def by auto
lemma nneg-poly-pcompose: assumes nneg-poly p nneg-poly q
    shows nneg-poly (pcompose p q)
proof (cases degree q>0)
    case True
    show ?thesis unfolding nneg-poly-def poly-pcompose lead-coeff-comp[OF True]
        using assms unfolding nneg-poly-def by auto
next
    case False
    hence degree q=0 by auto
    from degree0-coeffs[OF this] obtain c where q: q= [:c:] by auto
    with assms[unfolded nneg-poly-def] have c:c\geq0 by auto
    have pq: p op q = [: poly p c:] unfolding q
        by (metis (no-types, opaque-lifting) add.right-neutral coeff-pCons-0 mult-zero-left
pcompose-0' pcompose-assoc poly-pCons poly-pcompose)
    show ?thesis using assms(1) unfolding nneg-poly-def pq using c by auto
qed
```

lemma nneg-poly-degree-add-1: assumes $p:$ nneg-poly p and $a: a 1>0$ a2 >0
shows degree $(p *[: b, a 1:]+[: c, a 2:])=1+$ degree p
proof (cases degree $p=0$)
case False
thus ?thesis
apply (subst degree-add-eq-left, insert p)
subgoal using a
by (metis One-nat-def degree-mult-eq-0 degree-pCons-eq-if irreducible ${ }_{d}$-multD less-one linear-irreducible ${ }_{d}$ linorder-neqE-nat order-less-le pCons-eq-0-iff)
subgoal using a
by (metis Suc-eq-plus1 add.commute add.right-neutral degree-mult-eq de-gree-pCons-eq-if not-pos-poly-0 pCons-eq-0-iff pos-poly-pCons)
done
next
case True
then obtain c where $p: p=[: c:]$ and $c: c \geq 0$ using p degree 0 -coeffs $[o f ~ p]$ by auto
show ?thesis unfolding p using c a by (auto simp: add-nonneg-eq-0-iff)
qed
lemma nneg-poly-degree-add: assumes pq: nneg-poly (p :: 'a :: linordered-idom poly) nneg-poly q
and $a: a 3>0 a 2>0 a 1>0$
shows degree $([: a 3:] * q * p+([: a 2:] * q+[: a 1:] * p+[: a 0:]))=$ degree $p+$ degree q
proof -
\{
fix $p q::$ ' a poly and $a 2$ a1 $::{ }^{\prime} a$
assume pq: nneg-poly p nneg-poly q
and $d q$: degree $q \neq 0$
and $a: a_{2}>0 a 1>0$
have deg0: $p \neq 0 \Longrightarrow$ degree $([: a 3:] * q * p)=$ degree $p+$ degree q using $d q$〈a3>0〉a
by (metis (no-types, lifting) add.commute add-cancel-left-left degree-mult-eq degree-pCons-eq-if linorder-not-le nle-le pCons-eq-0-iff)
have degmax: degree $([: a 2:] * q+[: a 1:] * p+[: a 0:]) \leq \max$ (degree q) (degree p)
by (simp add: degree-add-le)
have deg: degree $([: a 3:] * q * p+([: a 2:] * q+[: a 1:] * p+[: a 0:]))=$ degree p + degree q
proof (cases degree $p=0$)
case False
have $i d$: degree $([: a 3:] * q * p)=$ degree $p+$ degree q by (rule deg0, insert False, auto)
moreover have $\max ($ degree $q)($ degree $p)<$ degree $p+$ degree q using False $d q$ by auto
ultimately show ?thesis by (subst degree-add-eq-left, insert degmax, auto)
next
case True
with $p q$ obtain c where $p: p=[: c:]$ and $c: c \geq 0$ using degree0-coeffs[of $p]$ by auto
define d where $d=c * a 3+a 2$
from $a\langle a 3>0\rangle c$ have $d 0: d \neq 0$
by (simp add: add-nonneg-eq-0-iff d-def)

```
    have id:[:a3:]* q*[:c:] + ([:a2:] * q + [:a1:] * [:c:] + [:a0:])
        =[:c*a1 + a0:] +[:d:] * q
        by (simp add: smult-add-left d-def)
        show ?thesis unfolding p unfolding id
        by (subst degree-add-eq-right, insert d0 dq, auto)
    qed
} note main = this
show ?thesis
proof (cases degree q=0)
    case False
    from main[OF pq False a(2,3)] show ?thesis .
next
    case dq: True
    show ?thesis
    proof (cases degree p=0)
            case False
            from main[OF pq(2,1) False a(3,2)] show ?thesis by (simp add: alge-
bra-simps)
    next
            case dp:True
            from degree0-coeffs[OF dp] degree0-coeffs[OF dq] show ?thesis by auto
    qed
    qed
qed
lemma poly-pinfty-gt-lc:
    fixes p :: 'a :: linordered-field poly
    assumes lead-coeff p>0
    shows }\existsn.\forallx\geqn. poly px\geqlead-coeff 
    using assms
proof (induct p)
    case 0
    then show ?case by auto
next
    case (pCons a p)
    from this(1) consider a\not=0 p=0 | p\not=0 by auto
    then show ?case
    proof cases
        case 1
        then show ?thesis by auto
    next
        case 2
        with pCons obtain n1 where gte-lcoeff: }\forallx\geqn1. lead-coeff p \leq poly p x
        by auto
    from pCons(3)\langlep\not=0\rangle have gt-0: lead-coeff p>0 by auto
    define n where n= max n1 (1 + |a| / lead-coeff p)
    have lead-coeff (pCons a p)\leq poly (pCons a p) x if n \leqx for }
    proof -
```

```
            from gte-lcoeff that have lead-coeff p\leq poly px
            by (auto simp: n-def)
            with gt-0 have |a|/lead-coeff p\geq |a| / poly p x and poly px>0
            by (auto intro: frac-le)
            with}\langlen\leqx\rangle[unfolded n-def] have x\geq1+|a|/ poly p
                by auto
            with <lead-coeff p\leq poly px\rangle\langlepoly px>0\rangle\langlep}\not=0
            show lead-coeff (pCons a p) \leqpoly (pCons a p)x
                by (auto simp: field-simps)
    qed
    then show ?thesis by blast
    qed
qed
lemma poly-pinfty-ge:
    fixes p :: 'a :: linordered-field poly
    assumes lead-coeff p>0 degree p}\not=
    shows \existsn.\forallx\geqn. poly px\geqb
proof -
    let ?p = p - [:b - lead-coeff p :]
    have id: lead-coeff ?p = lead-coeff p using assms(2)
            by (cases p, auto)
    with assms(1) have lead-coeff ?p > 0 by auto
    from poly-pinfty-gt-lc[OF this, unfolded id] obtain n
            where }\x.x\geqn\Longrightarrow0\leq poly px-b by aut
    thus ?thesis by auto
qed
lemma nneg-polyI: fixes p :: 'a::linordered-field poly
    assumes }\x.0\leqx\Longrightarrow0\leqpoly p
    shows nneg-poly p
    unfolding nneg-poly-def
proof (intro allI conjI impI assms)
    {
    assume lc: lead-coeff p<0
    hence lc0: lead-coeff (-p)>0 by auto
    from lc assms[of 0] have degree p}\not=0\mathrm{ using degree0-coeffs[of p]
        by (cases degree p=0; auto)
    from poly-pinfty-ge[OF lcO, of 1] this obtain n where }\x.x\geqn\Longrightarrow\mathrm{ poly p
x}\leq-
        by auto
    with assms have False
        by (meson neg-0-le-iff-le nle-le not-one-le-zero order-trans)
    }
    thus lead-coeff p \geq0 by force
qed
```

```
lemma poly-bounded: fixes \(x\) :: 'a:: linordered-idom
    assumes abs \(x \leq b\)
    shows abs \((\) poly \(p x) \leq\left(\sum i \leq\right.\) degree \(p\). abs \((\) coeff \(\left.p i) * b{ }^{\wedge} i\right)\)
    unfolding poly-altdef
    apply (intro order.trans \([\) OF sum-abs \(]\) sum-mono)
    apply (unfold abs-mult power-abs, intro mult-left-mono power-mono assms)
    by auto
lemma poly-degree-le-large-const:
    assumes \(p q\) : degree ( \(p::{ }^{\prime} a\) :: linordered-field poly) \(\geq\) degree \(q\)
    and \(p 0: \wedge x . x \geq 0 \Longrightarrow\) poly \(p x \geq 0\)
    shows \(\exists H . \forall h \geq H . \forall x \geq 0 . h *\) poly \(p x+h \geq\) poly \(q x\)
proof (cases degree \(p=0\) )
    case True
    with \(p q p 0[\) of 0\(]\) obtain \(c d\) where \(p: p=[: c:]\) and \(q: q=[: d:]\) and \(c: c \geq 0\)
        using degree 0 -coeffs \([\) of \(p]\) degree 0 -coeffs \([o f ~ q]\) by auto
    show ?thesis unfolding \(p q\) using \(c\)
        apply (intro exI[of - max d 0], cases \(d \leq 0\) )
        subgoal using order-trans by fastforce
        by (simp add: add.commute add-increasing2)
next
    case False
    define \(l c\) where \(l c=\) lead-coeff \(p\)
    define \(d p\) where \(d p=\) degree \(p\)
    have \(d p 1: d p \geq 1\) using False unfolding \(d p\)-def by auto
    from \(p 0\) have \(l c \geq 0\) unfolding lc-def using poly-pinfty-ge[of \(-p 1]\)
    by (metis (no-types, opaque-lifting) False degree-minus lead-coeff-minus linorder-not-le
neg-le-0-iff-le nle-le not-one-le-zero order-le-less-trans poly-minus)
    with False have \(l c: l c>0\) by (cases \(l c=0\), auto simp: \(l c\)-def)
    define \(d\) where \(d=\) inverse lc
    define \(d l c\) where \(d l c=d * l c\)
    have dlc: dlc \(\geq 1\) using lc by (auto simp: field-simps \(d\)-def dlc-def)
    with \(l c\) have \(d: d>0\) unfolding \(d l c-d e f\)
        by (simp add: d-def)
    define \(h 1\) where \(h 1=d *(1+a b s(\) coeff \(q d p))\)
    define \(r\) where \(r=\) smult \(h 1 p-q\)
    have coeff \(r d p=h 1 * l c-c o e f f q d p\) unfolding \(r\)-def lc-def dp-def by simp
    also have \(\ldots=d l c *(1+a b s(\operatorname{coeff} q d p))-\) coeff \(q d p\) unfolding h1-def
dlc-def by simp
    also have \(-\ldots \leq-((1+\) abs \((\) coeff \(q d p))-\operatorname{coeff} q d p)\)
    unfolding neg-le-iff-le using dlc
    by (intro diff-right-mono)
    (simp add: abs-add-one-gt-zero)
    also have \(\ldots \leq-1\) by \(\operatorname{simp}\)
    finally have coeff- - : coeff \(r d p>0\) by auto
    have \(d p r: d p=\) degree \(r\)
    proof -
    have le: \(d p \leq\) degree \(r\) using coeff- \(r\)
```

```
        by (simp add:le-degree)
    have degree r \leqdp unfolding dp-def r-def using assms(1)
    by (simp add: degree-diff-le)
    with le show ?thesis by auto
qed
with coeff-r have lcr: lead-coeff r>0 by auto
from dpr dp1 have degree r}\not=0\mathrm{ by auto
from poly-pinfty-ge[OF lcr this, of 0]
obtain n where n: \bigwedgex. x\geqn\Longrightarrow0\leqpoly rx by auto
define }M\mathrm{ where }M=\operatorname{max}n
from poly-bounded[of - M r] obtain h2 where h2: abs x\leqM\Longrightarrowabs (polyr
x) \leqh2 for }x\mathrm{ by blast
    have h20: h2 \geq 0 using h2[of 0] unfolding M-def by auto
    have h10: h1 > 0 using d unfolding h1-def by auto
    define H where H}= max h1 h2
    have H0:H\geq0 using h10 unfolding H-def by auto
    show ?thesis
    proof (intro exI[of - H] conjI allI impI)
    fix }hx:: '
    assume h:h\geqH
    with H0 have h0: h\geq0 by auto
    assume x0: x \geq0
    show poly q x \leqh* poly p x +h
    proof (cases x\geqM)
    case x: True
    have h: h\geqh1 using h H-def by auto
    define h3 where h3 = h-h1
    have h:h=h1 + h3 and h2: h3 \geq0 using h unfolding h3-def by auto
    have r:0\leqpoly r x and p:0\leq poly p x
        using x n[of x] pO[of x] unfolding M-def by auto
        have h* poly px=h1 * poly px+h3 * poly p x unfolding h by (simp
add: algebra-simps)
    also have - .. \leq - (h1 * poly p x)
        unfolding neg-le-iff-le using h2 p by auto
    also have .. s \leq (poly q x)
        unfolding neg-le-iff-le using r unfolding r-def
        by simp
    finally have h* poly px\geq poly q x by simp
    with h0 show ?thesis by auto
next
    case False
    with x0 have abs x\leqM by auto
    from h2[OF this] have poly r x \geq-h2 by auto
    from this[unfolded r-def]
    have poly q x \leqh1 * poly p x + h2 by simp
    also have .. Sh* poly p x +h
        by (intro add-mono mult-right-mono p0 x0)
        (insert h, auto simp: H-def)
    finally show ?thesis.
```

```
        qed
    qed
qed
lemma degree-monom-0[simp]: degree-monom 0 = 0
    unfolding degree-monom-def by auto
lemma degree-monom-monomial[simp]:degree-monom (monomial nx)=n
    unfolding degree-monom-def by auto
lemma keys-add: keys ( }m+n:: monom)=keys m\cup keys 
    by (rule keys-plus-ninv-comm-monoid-add)
lemma degree-monom-add[simp]: degree-monom (m+n)= degree-monom m +
degree-monom n
    unfolding degree-monom-def keys-add lookup-plus-fun
proof (transfer, goal-cases)
    case (1mn)
    have id: {k.m k\not=0}\cup{k.nk\not=0}=
        {k.mk\not=0}\cap{k.nk=0}\cup{k.nk\not=0}\cap{k.mk=0}
    \cup \{ k . m k \neq 0 \} \cap \{ k . n k \neq 0 \} ~ b y ~ a u t o
    have id1: sum m{k.mk\not=0}= sum m ({k.mk\not=0}\cap{k.nk=0}\cup{k.
mk\not=0}\cap{k.nk\not=0})
    by (rule sum.cong, auto)
    have id2: sum n {k.nk\not=0}= sum n ({k.nk\not=0}\cap{k.mk=0}\cup{k.m
k\not=0}\cap{k.nk\not=0})
    by (rule sum.cong, auto)
    show ?case unfolding id
    apply (subst sum.union-disjoint)
    subgoal using 1 by auto
    subgoal using 1 by auto
    subgoal by auto
    apply (subst sum.union-disjoint)
    subgoal using 1 by auto
    subgoal using 1 by auto
    subgoal by auto
    apply (unfold id1)
    apply (subst sum.union-disjoint)
    subgoal using 1 by auto
    subgoal using 1 by auto
    subgoal by auto
    apply (unfold id2)
    apply (subst sum.union-disjoint)
    subgoal using 1 by auto
    subgoal using 1 by auto
    subgoal by auto
    by (simp add: sum.distrib)
qed
```

```
lemma degree-monom-of-set: finite \(x s \Longrightarrow\) degree-monom (monom-of-set \(x s\) ) \(=\)
card \(x s\)
    unfolding degree-monom-def
    by (transfer, auto)
lemma keys-singletonE: assumes keys \(m=\{x\}\)
    shows \(\exists c\). \(m=\) monomial \(c x \wedge c=\) degree-monom \(m \wedge c \neq 0\)
proof -
    define \(c\) where \(c=\) degree-monom \(m\)
    from assms have \(m c: m=\) monomial \(c x\) unfolding \(c\)-def
        by (metis degree-monom-monomial except-keys group-cancel.rule0 plus-except)
    have \(c \neq 0\) using assms unfolding \(m c\) by (simp split: if-splits)
    from me c-def this show ?thesis by blast
qed
lemma binary-degree-2-poly: fixes \(p:: ' a\) :: \{ring-char-0, idom \(\}\) mpoly
    assumes \(t d\) : total-degree \(p \leq 2\)
    and vars: vars \(p=\{x, y\}\)
    and \(x y: x \neq y\)
shows \(\exists a b c d e f\).
    \(p=\) Const \(a+\) Const \(b *\) Var \(x+\) Const \(c * \operatorname{Var} y+\)
    Const \(d * \operatorname{Var} x *\) Var \(x+\) Const \(e *\) Var \(y *\) Var \(y+\) Const \(f * \operatorname{Var} x * \operatorname{Var}\)
\(y\)
proof -
    let \(? p=\) mcoeff \(p\)
    let \(? x=\) monomial \(1 x\)
    let \(? y=\) monomial \(1 y\)
    let \(? a=? p 0\)
    let \(? b=? p ? x\)
    let \(? c=? p\) ? \(y\)
    let ? \(d=\) ? \(p(\) monomial \(2 x)\)
    let \(? e=\) ? \(p\) (monomial 2 \(y\) )
    let ?f \(=\) ? \(p\) (monom-of-set \(\{x, y\}\) )
    define \(X Y\) where \(X Y=\left\{m::\right.\) nat \(\Rightarrow_{0}\) nat. keys \(m \subseteq\{x, y\} \wedge\) degree-monom
\(m \leq 2\}\)
    let ? \(x y=[0, ? x, ? y\), monomial \(2 x\), monomial \(2 y\), monom-of-set \(\{x, y\}]\)
    have eq: \(m=n \Longrightarrow\) keys \(m=\) keys \(n\) for \(m n::\) monom by auto
    have \(x y\) : distinct ? \(x y\) using \(x y\)
    by (auto dest: eq)
    have \(X Y: X Y=\) set ? xy
    proof
    show set ? \(x y \subseteq X Y\) unfolding \(X Y\)-def by (simp add: keys-add degree-monom-of-set
card-insert-if)
    show \(X Y \subseteq\) set ? \(x y\)
    proof
        fix \(m\)
        assume \(m \in X Y\)
            hence keys: keys \(m \subseteq\{x, y\}\) and deg: degree-monom \(m \leq 2\) unfolding
XY-def by auto
```

define $k m$ where $k m=k e y s m$
from keys have keys $m \in\{\},\{x\},\{y\},\{x, y\}\}$ unfolding $k m$-def[symmetric] by auto
then consider (e) keys $m=\{ \} \mid(x)$ keys $m=\{x\} \mid(y)$ keys $m=\{y\} \mid(x y)$ keys $m=\{x, y\}$ by auto
thus $m \in$ set ? $x y$
proof cases
case e
thus ?thesis by auto
next
case x
from keys-singletonE[OF this]
obtain c where $m: m=$ monomial $c x$ and $c: c=$ degree-monom $m c \neq 0$ by auto
from c deg have $c \in\{1,2\}$ by auto
with m show ?thesis by auto
next
case y
from keys-singletonE[OF this]
obtain c where m : monomial $c y$ and $c: c=$ degree-monom $m ~ c \neq 0$ by auto
from c deg have $c \in\{1,2\}$ by auto
with m show ?thesis by auto
next
case $x y$
have $m=$ monom-of-set $\{x, y\}$ using $x y \operatorname{deg}\langle x \neq y\rangle$
unfolding degree-monom-def
proof (transfer, goal-cases)
case (1 mxy)
have $x y$: $m x \neq 0 m y \neq 0$ using 1 (2) by auto
have $\operatorname{sum} m\{k . m k \neq 0\}=m x+m y+\operatorname{sum} m(\{k . m k \neq 0\}-$ $\{x, y\})$
using $x y 1(1,2,4)$ by auto
with 1(3) $x y$ have $x y: m x=1 m y=1$ and
rest: sum $m(\{k . m k \neq 0\}-\{x, y\})=0$ by auto
from rest have rest: $z \notin\{x, y\} \Longrightarrow m z=0$ for z using 1 (2) by blast show ?case by (intro ext, insert xy rest, auto)
qed
thus ?thesis by auto
qed
qed
qed
have $p=\left(\sum m\right.$. mmonom m (mcoeff $\left.p m\right)$)
by (rule mpoly-as-sum-any)
also have $\ldots=\left(\sum m \in\{a\right.$. mmonom a (mcoeff $\left.p a) \neq 0\right\}$. mmonom m (mcoeff $p m)$)
unfolding Sum-any.expand-set by simp
also have $\ldots=\left(\sum m \in\{a\right.$. mmonom $a($ mcoeff $p a) \neq 0\} \cap X Y$. mmonom m (mcoeff p m))

```
    apply (rule sum.mono-neutral-right; (intro ballI)?)
    subgoal by auto
    subgoal by auto
    subgoal for m using vars order.trans[OF degree-monon-le-total-degree[of p m]
td] unfolding XY-def
        by simp (smt (verit, best) DiffD2 MPoly-Type-monom-zero coeff-notin-vars
mem-Collect-eq)
    done
    also have ... =( \summ\inXY. mmonom m (mcoeff p m))
        apply (rule sum.mono-neutral-left)
        subgoal unfolding XY by auto
        subgoal by auto
        subgoal by auto
        done
    also have ...=(\summ\leftarrow? ?xy. mmonom m (mcoeff p m))
        unfolding XY using xy by force
    also have ... = Const ?a + Const ?b * Var x + Const ?c * Var y +
        Const ?d * Var x * Var x + Const ?e * Var y * Var y + Const ?f * Var x *
Var y
    apply (intro mpoly-extI)
        unfolding insertion-sum-list map-map o-def insertion-add insertion-mult in-
sertion-Const insertion-Var
            sum-list.Cons list.simps insertion-single insertion-monom-of-set mpoly-monom-0-eq-Const
        using xy
        by (simp add: power2-eq-square)
    finally show ?thesis by blast
qed
lemma bounded-negative-factor: assumes }\x.c\leq(x:: 'a :: linordered-field ) \Longrightarrow
a*x\leqb
    shows a\leq0
proof (rule ccontr)
    assume \neg?thesis
    hence }a>0\mathrm{ by auto
    hence }y\geqc\Longrightarrowy\geq0\Longrightarrowy\leqb\mathrm{ for y using assms[of inverse a * y]
    by (metis (no-types, opaque-lifting) assms dual-order.trans linorder-not-le mult.commute
mult-imp-less-div-pos nle-le)
    from this[of 1 + max 0 (max c b)]
    show False by linarith
qed
```

end

3 Definition of Monotone Algebras and Polynomial Interpretations

theory Polynomial-Interpretation

imports

Preliminaries-on-Polynomials-1
First-Order-Terms.Term
First-Order-Terms.Subterm-and-Context

begin

abbreviation PVar \equiv MPoly-Type.Var
abbreviation TVar \equiv Term.Var
type-synonym $\left({ }^{\prime} f,^{\prime} v\right)$ rule $=\left({ }^{\prime} f, ' v\right)$ term $\times\left({ }^{\prime} f, ' v\right)$ term
We fix the domain to the set of nonnegative numbers
lemma subterm-size[termination-simp]: $x<$ length $t s \Longrightarrow$ size $(t s!x)<$ Suc (size-list size ts)
by (meson Suc-n-not-le-n less-eq-Suc-le not-less-eq nth-mem size-list-estimation)
definition assignment $::\left(\right.$ var $\Rightarrow{ }^{\prime} a::\{$ ord,zero $\left.\}\right) \Rightarrow$ bool where
assignment $\alpha=(\forall x . \alpha x \geq 0)$
lemma assignmentD: assumes assignment α
shows $\alpha x \geq 0$
using assms unfolding assignment-def by auto
definition monotone-fun-wrt :: ('a :: \{zero,ord $\} \Rightarrow{ }^{\prime} a \Rightarrow$ bool $) \Rightarrow$ nat $\Rightarrow\left({ }^{\prime} a\right.$ list $\left.\Rightarrow{ }^{\prime} a\right) \Rightarrow$ bool where

$$
\begin{aligned}
& \text { monotone-fun-wrt gt } n f=\left(\forall v^{\prime} i \text { vs. length vs }=n \longrightarrow(\forall v \in \text { set vs. } v \geq 0)\right. \\
& \quad \longrightarrow i<n \longrightarrow v^{\prime}(v s!i) \longrightarrow \\
& g t(f(v s[i:=v]))(f v s))
\end{aligned}
$$

definition valid-fun :: nat $\Rightarrow\left({ }^{\prime}\right.$ a list $\Rightarrow{ }^{\prime} a::\{$ zero,ord $\left.\}\right) \Rightarrow$ bool where valid-fun $n f=(\forall$ vs. length vs $=n \longrightarrow(\forall v \in$ set vs. $v \geq 0) \longrightarrow f v s \geq 0)$
definition monotone-poly-wrt :: ('a :: \{comm-semiring-1,zero,ord $\} \Rightarrow{ }^{\prime} a \Rightarrow$ bool $)$ \Rightarrow var set $\Rightarrow{ }^{\prime}$ a mpoly \Rightarrow bool where
monotone-poly-wrt gt Vp=($\forall \alpha x v$. assignment $\alpha \longrightarrow x \in V \longrightarrow g t v(\alpha x)$ \longrightarrow $g t($ insertion $(\alpha(x:=v)) p)($ insertion $\alpha p))$
definition valid-poly :: 'a :: \{ord,comm-semiring-1\} mpoly \Rightarrow bool where valid-poly $p=(\forall \alpha$. assignment $\alpha \longrightarrow$ insertion $\alpha p \geq 0)$
locale term-algebra $=$
fixes $F::\left(\begin{array}{l}\text { ' } f \times n a t) \text { set }\end{array}\right.$
and $I:: ' f \Rightarrow\left({ }^{\prime} a::\{\right.$ ord,zero $\}$ list $) \Rightarrow{ }^{\prime} a$
and $g t::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool
begin
abbreviation monotone-fun where monotone-fun \equiv monotone-fun-wrt gt
definition valid-monotone-fun $::\left({ }^{\prime} f \times n a t\right) \Rightarrow$ bool where
valid-monotone-fun $f n=(\forall f n p . f n=(f, n) \longrightarrow p=I f$
\longrightarrow valid-fun $n p \wedge$ monotone-fun $n p$)
definition valid-monotone-inter where valid-monotone-inter $=$ Ball F valid-monotone-fun

```
definition orient-rule :: (' \(f, v a r\) )rule \(\Rightarrow\) bool where
    orient-rule rule \(=(\) case rule of \((l, r) \Rightarrow(\forall \alpha\). assignment \(\alpha \longrightarrow g t(I \llbracket l \rrbracket \alpha)\)
\((I \llbracket r \rrbracket \alpha)))\)
end
locale omega-term-algebra \(=\) term-algebra \(F I(>)::\) int \(\Rightarrow\) int \(\Rightarrow\) bool for \(F\) and
\(I:: ' f \Rightarrow-+\)
    assumes vm-inter: valid-monotone-inter
begin
definition termination-by-interpretation :: ('f,var) rule set \(\Rightarrow\) bool where
    termination-by-interpretation \(R=(\forall(l, r) \in R\). orient-rule \((l, r) \wedge\) funas-term \(l\)
\(\cup\) funas-term \(r \subseteq F\) )
end
locale poly-inter \(=\)
    fixes \(F::\left({ }^{\prime} f \times n a t\right)\) set
    and \(\quad I:: ' f \Rightarrow{ }^{\prime} a::\) linordered-idom mpoly
    and \(g t::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\) bool (infix \(\succ 50\) )
begin
definition \(I^{\prime}\) where \(I^{\prime} f\) vs \(=\) insertion \((\lambda\) i. if \(i<\) length vs then vs \(!i\) else 0\()(I\)
f)
sublocale term-algebra \(F I^{\prime}\) gt.
abbreviation monotone-poly where monotone-poly \(\equiv\) monotone-poly-wrt gt
```

abbreviation weakly-monotone-poly where weakly-monotone-poly \equiv monotone-poly-wrt (\geq)
definition gt-poly :: 'a mpoly \Rightarrow 'a mpoly \Rightarrow bool (infix $\succ_{p} 50$) where $\left(p \succ_{p} q\right)=(\forall \alpha$. assignment $\alpha \longrightarrow$ insertion $\alpha p \succ$ insertion $\alpha q)$
definition valid-monotone-poly :: (' $f \times n a t) \Rightarrow$ bool where valid-monotone-poly $f n=(\forall f n p . f n=(f, n) \longrightarrow p=I f$
\longrightarrow valid-poly $p \wedge$ monotone-poly $\{. .<n\} p \wedge$ vars $p=\{. .<n\})$
definition valid-weakly-monotone-poly :: ('f \times nat $) \Rightarrow$ bool where
valid-weakly-monotone-poly $f n=(\forall f n p . f n=(f, n) \longrightarrow p=I f$
\longrightarrow valid-poly $p \wedge$ weakly-monotone-poly $\{. .<n\} p \wedge$ vars $p \subseteq\{. .<n\})$
definition valid-monotone-poly-inter where valid-monotone-poly-inter $=$ Ball F valid-monotone-poly
definition valid-weakly-monotone-inter where valid-weakly-monotone-inter $=$ Ball F valid-weakly-monotone-poly

```
fun eval :: ('f,var)term = 'a mpoly where
    eval (TVar x ) = PVar x
| eval (Fun fts)= substitute ( }\lambda\mathrm{ i. if i< length ts then eval (ts!i) else 0) (If)
```

lemma I^{\prime}-is-insertion-eval: $I^{\prime} \llbracket t \rrbracket \alpha=$ insertion $\alpha($ eval $t)$
proof (induct t)
case (Var x)
then show? case by (simp add: insertion-Var)
next
case (Fun fts)
then show? case
apply (simp add: insertion-substitute I^{\prime} - $\operatorname{def}[$ of $f]$)
apply (intro arg-cong[of $-\lambda \alpha$. insertion $\alpha(I f)]$ ext)
subgoal for i by (cases $i<$ length ts, auto)
done
qed
lemma orient-rule: orient-rule $(l, r)=\left(\right.$ eval $l \succ_{p}$ eval $\left.r\right)$
unfolding orient-rule-def split I'-is-insertion-eval gt-poly-def ..
lemma vars-eval: vars (eval $t) \subseteq$ vars-term t
proof (induct t)
case (Fun $f t s$)
define V where $V=$ vars-term (Fun f ts)
define σ where $\sigma=(\lambda i$. if $i<l e n g t h ~ t s ~ t h e n ~ e v a l ~(t s!i) ~ e l s e ~ 0) ~$
\{
fix i
have $I H: \operatorname{vars}(\sigma i) \subseteq V$
proof (cases $i<$ length $t s$)
case False
thus ?thesis unfolding σ-def by auto
next
case True
hence $t s!i \in$ set $t s$ by auto
with Fun (1)[OF this] have vars (eval (ts!i)) $\subseteq V$ by (auto simp: V-def)
thus ?thesis unfolding σ-def using True by auto
qed
$\}$ note σ-vars $=$ this
define p where $p=(I f)$
show ?case unfolding eval.simps σ-def[symmetric] V-def[symmetric] p-def[symmetric]
using σ-vars
vars-substitute $[o f \sigma]$ by auto
qed auto
lemma monotone-imp-weakly-monotone: assumes valid: valid-monotone-poly p
and $g t: \bigwedge x y .(x \succ y)=(x>y)$

```
        shows valid-weakly-monotone-poly p
        unfolding valid-weakly-monotone-poly-def
proof (intro allI impI, clarify, intro conjI)
    fix f n
    assume p=(f,n)
    note * = valid[unfolded valid-monotone-poly-def, rule-format, OF this refl]
    from * show valid-poly (I f) by auto
    from * show vars (If)\subseteq{..<n} by auto
    show weakly-monotone-poly {..<n} (If)
    unfolding monotone-poly-wrt-def
    proof (intro allI impI, goal-cases)
        case(1 \alpha x a)
        from * have monotone-poly {..<n} (If) by auto
        from this[unfolded monotone-poly-wrt-def, rule-format, OF 1(1-2), of a]
        show ?case unfolding gt using 1(3) by force
    qed
qed
lemma valid-imp-insertion-eval-pos: assumes valid: valid-monotone-poly-inter
    and funas-term t\subseteqF
    and assignment \alpha
shows insertion \alpha (eval t)\geq0
    using assms(2-3)
proof (induct t arbitrary: \alpha)
    case (Var x)
    thus ?case by (auto simp: assignment-def insertion-Var)
next
    case (Fun fts)
    let ?n = length ts
    let ?f = (f,?n)
    let ?p=If
    from Fun have ?f \inF by auto
    from valid[unfolded valid-monotone-poly-inter-def, rule-format, OF this, unfolded
valid-monotone-poly-def]
    have valid: valid-poly?p and vars ?p = {..<? n} by auto
    from valid[unfolded valid-poly-def]
    have ins: assignment \alpha\Longrightarrow0\leq insertion \alpha (If) for \alpha by auto
    {
        fix }
        assume i<?n
        hence ts ! i\in set ts by auto
        with Fun(1)[OF this - Fun(3)] Fun(2) have 0\leqinsertion \alpha (eval (ts!i)) by
auto
    }
    note IH = this
    show ?case
        apply (simp add: insertion-substitute)
        apply (intro ins, unfold assignment-def, intro allI)
        subgoal for i using IH[of i] by auto
```


done

qed
end
locale delta-poly-inter $=$ poly-inter $F I(\lambda x y . x \geq y+\delta)$ for $F::\left({ }^{\prime} f \times n a t\right)$ set and I and
$\delta::{ }^{\prime} a::\{$ floor-ceiling,linordered-field $\}+$
assumes valid: valid-monotone-poly-inter
and $\delta 0: \delta>0$
begin
definition termination-by-delta-interpretation :: ('f,var) rule set \Rightarrow bool where
termination-by-delta-interpretation $R=(\forall(l, r) \in R$. orient-rule $(l, r) \wedge f u$ -nas-term $l \cup$ funas-term $r \subseteq F$)
end
locale int-poly-inter $=$ poly-inter $F I(>)::$ int \Rightarrow int \Rightarrow bool for $F::\left({ }^{\prime} f \times n a t\right)$ set and $I+$
assumes valid: valid-monotone-poly-inter
begin
sublocale omega-term-algebra $F I^{\prime}$
proof (unfold-locales, unfold valid-monotone-inter-def, intro ballI)
fix $f n$
assume $f n \in F$
from valid[unfolded valid-monotone-poly-inter-def, rule-format, OF this]
have valid: valid-monotone-poly fn .
show valid-monotone-fun fn unfolding valid-monotone-fun-def
proof (intro allI impI conjI)
fix $f n p$
assume $f n$: $f n=(f, n)$ and $p: p=I^{\prime} f$
from valid[unfolded valid-monotone-poly-def, rule-format, OF fn refl]
have valid: valid-poly $(I f)$ and mono: monotone-poly $\{. .<n\}(I f)$ by auto
show valid-fun n p unfolding valid-fun-def
proof (intro allI impI)
fix $v s$
assume length vs $=n$ and vs: Ball (set vs) ((\leq) ($0::$ int $)$)
show $0 \leq p$ vs unfolding $p I^{\prime}$-def
by (rule valid[unfolded valid-poly-def, rule-format], insert vs, auto simp:
assignment-def)
qed
show monotone-fun n p unfolding monotone-fun-wrt-def
proof (intro allI impI)
fix $v^{\prime} i v s$
assume $*$: length vs $=n$ Ball (set vs) $((\leq)(0::$ int $)) i<n$ vs $!i<v^{\prime}$
show p vs $<p(v s[i:=v])$ unfolding $p I^{\prime}$-def
by (rule ord-less-eq-trans[OF mono[unfolded monotone-poly-wrt-def, rule-format,

```
\(o f-i v]\)
            insertion-irrelevant-vars], insert *, auto simp: assignment-def)
    qed
    qed
qed
```

definition termination-by-poly-interpretation :: ('f,var) rule set \Rightarrow bool where termination-by-poly-interpretation $=$ termination-by-interpretation end
locale w-int-poly-inter $=$ poly-inter $F I(>)::$ int \Rightarrow int \Rightarrow bool for $F::$ ('f \times nat) set and $I+$
assumes valid: valid-weakly-monotone-inter
begin
definition oriented-by-interpretation :: ('f,var) rule set \Rightarrow bool where
oriented-by-interpretation $R=(\forall(l, r) \in R$. orient-rule $(l, r) \wedge$ funas-term $l \cup$
funas-term $r \subseteq F$)
end
locale linear-poly-inter $=$ poly-inter F I gt for FI gt +
assumes linear: $\bigwedge f n .(f, n) \in F \Longrightarrow$ total-degree $(I f) \leq 1$
locale linear-int-poly-inter $=$ int-poly-inter FI+linear-poly-inter FI(>)
for $F::(' f \times n a t)$ set and I
locale linear-wm-int-poly-inter $=$ wm-int-poly-inter FI + linear-poly-inter FI (>)
for $F::(' f \times n a t)$ set and I
definition termination-by-linear-int-poly-interpretation :: (' $f \times n a t)$ set $\Rightarrow(' f, v a r)$ rule set \Rightarrow bool where
termination-by-linear-int-poly-interpretation $F R=(\exists$ I. linear-int-poly-inter F $I \wedge$ int-poly-inter.termination-by-poly-interpretation FI R)
definition omega-termination :: (' $f \times n a t)$ set \Rightarrow (' $f, v a r$)rule set \Rightarrow bool where omega-termination $F R=(\exists I$. omega-term-algebra $F I \wedge$ omega-term-algebra.termination-by-interpretation FI R)
definition termination-by-int-poly-interpretation :: ('f \times nat)set \Rightarrow ('f,var)rule set \Rightarrow bool where
termination-by-int-poly-interpretation $F R=(\exists$ I. int-poly-inter $F I \wedge$ int-poly-inter.termination-by-poly-interpretation FI R)
definition termination-by-delta-poly-interpretation :: ' a :: $\{$ floor-ceiling,linordered-field $\}$ itself \Rightarrow (' $f \times$ nat $)$ set $\Rightarrow\left({ }^{\prime} f, v a r\right)$ rule set \Rightarrow bool where termination-by-delta-poly-interpretation $\operatorname{TYPE}\left({ }^{\prime} a\right) F R=(\exists I \delta$. delta-poly-inter $F I\left(\delta::{ }^{\prime} a\right) \wedge$
definition orientation-by-linear-wm-int-poly-interpretation :: (' $f \times n a t)$ set \Rightarrow (' $f, v a r$)rule set \Rightarrow bool where
orientation-by-linear-wm-int-poly-interpretation $F R=(\exists$ I. linear-wm-int-poly-inter FI ^
wm-int-poly-inter.oriented-by-interpretation FI R)
end

4 Hilbert's 10th Problem to Linear Inequality

```
theory Hilbert10-to-Inequality
    imports
        Preliminaries-on-Polynomials-1
begin
definition hilbert10-problem :: int mpoly }=>\mathrm{ bool where
    hilbert10-problem p = (\exists\alpha. insertion \alpha p=0)
```

A polynomial is positive, if every coefficient is positive. Since the @\{const coeff \}-function of 'a mpoly maps a coefficient to every monomial, this means that positiveness is expressed as coeff $p m \neq\left(0:^{\prime} a\right) \longrightarrow\left(0:^{\prime} a\right)<$ coeff p m for monomials m. However, this condition is equivalent to just demand ($0::^{\prime} a$) \leq coeff $p m$ for all m.
This is the reason why positive polynomials are defined in the same way as one would define non-negative polynomials.
definition positive-poly :: ' a :: linordered-idom mpoly \Rightarrow bool where positive-poly $p=(\forall m$. coeff $p m \geq 0)$
definition positive-interpr :: (var $\Rightarrow^{\prime} a$:: linordered-idom $) \Rightarrow$ bool where positive-interpr $\alpha=(\forall x . \alpha x>0)$
definition positive-poly-problem $::$ ' a :: linordered-idom mpoly \Rightarrow ' a mpoly \Rightarrow bool where
positive-poly $p \Longrightarrow$ positive-poly $q \Longrightarrow$ positive-poly-problem p $q=$
$(\exists \alpha$. positive-interpr $\alpha \wedge$ insertion $\alpha p \geq$ insertion $\alpha q)$
datatype flag $=$ Positive \mid Negative \mid Zero
fun flag-of :: 'a :: \{ord,zero $\} \Rightarrow$ flag where
flag-of $x=($ if $x<0$ then Negative else if $x>0$ then Positive else Zero)
definition subst-flag :: var set $\Rightarrow($ var \Rightarrow flag $) \Rightarrow$ var $\Rightarrow{ }^{\prime} a::$ comm-ring-1 mpoly where
subst-flag V flag $x=$ (if $x \in V$ then (case flag x of
Positive \Rightarrow Var x
| Negative \Rightarrow - Var x

```
    | Zero \(\Rightarrow 0\) )
    else 0)
definition assignment-flag :: var set \(\Rightarrow(v a r \Rightarrow\) flag \() \Rightarrow\left(v a r \Rightarrow{ }^{\prime} a::\right.\) comm-ring-1 \()\)
\(\Rightarrow\left(v a r \Rightarrow{ }^{\prime} a\right)\) where
    assignment-flag \(V\) flag \(\alpha x=(\) if \(x \in V\) then (case flag \(x\) of
        Positive \(\Rightarrow \alpha x\)
    | Negative \(\Rightarrow-\alpha x\)
    | Zero \(\Rightarrow 1\) )
    else 1)
definition correct-flags \(::\) var set \(\Rightarrow(v a r \Rightarrow\) flag \() \Rightarrow\left(v a r \Rightarrow{ }^{\prime} a::\right.\) ordered-comm-ring \()\) \(\Rightarrow\) bool where
    correct-flags \(V\) flag \(\alpha=(\forall x \in V\).flag \(x=\) flag-of \((\alpha x))\)
lemma correct-flag-substitutions: fixes \(p::\) ' \(a\) :: linordered-idom mpoly
    assumes vars \(p \subseteq V\)
    and beta: \(\beta=\) assignment-flag \(V\) flag \(\alpha\)
    and sigma: \(\sigma=\) subst-flag \(V\) flag
    and \(q: q=\) substitute \(\sigma p\)
    and corr: correct-flags \(V\) flag \(\alpha\)
    shows insertion \(\beta q=\) insertion \(\alpha\) p positive-interpr \(\beta\)
proof -
    show insertion \(\beta q=\) insertion \(\alpha p\) unfolding \(q\) insertion-substitute
    proof (rule insertion-irrelevant-vars)
        fix \(x\)
        assume \(x \in\) vars \(p\)
    with assms have \(x: x \in V\) by auto
    with corr have flag: flag \(x=\) flag-of ( \(\alpha x\) ) unfolding correct-flags-def by auto
    show insertion \(\beta(\sigma x)=\alpha x\)
        unfolding beta sigma assignment-flag-def subst-flag-def using \(x\) flag
        by (cases flag \(x\), auto split: if-splits simp: insertion-Var insertion-uminus)
    qed
    show positive-interpr \(\beta\) using corr
        unfolding positive-interpr-def beta assignment-flag-def correct-flags-def
        by auto
qed
definition hilbert-encode1 :: int mpoly \(\Rightarrow\) int mpoly list where
    hilbert-encode1 \(r=(\) let r2 \(=r\) ^2;
        \(V=\) vars-list r2;
        flag-lists \(=\) product-lists \((\operatorname{map}(\lambda x . \operatorname{map}(\lambda f .(x, f))[\) Positive,Negative,Zero] \()\)
V);
    subst \(=(\lambda\) fl. subst-flag (set \(V)(\lambda x\). case map-of fl x of Some \(f \Rightarrow f \mid\) None
\(\Rightarrow\) Zero)
    in map ( \(\lambda\) fl. substitute (subst fl) r2) flag-lists)
lemma hilbert-encode1:
```

```
    hilbert10-problem r \longleftrightarrow (\exists p\in set (hilbert-encode1 r). \exists \alpha. positive-interpr }\alpha
insertion \alpha p}\leq0
proof
    define r2 where r2 = r^2
    define V where V = vars-list r2
    define flag-list where flag-list = product-lists (map ( }\lambda\mathrm{ x. map ( }\lambda\mathrm{ f. (x,f))
[Positive,Negative,Zero]) V)
    define subst where subst = ( }\lambda\mathrm{ fl. subst-flag (set V) ( }\lambda\mathrm{ x. case map-of fl x of
Some f }=>f|\mathrm{ None }=>\mathrm{ Zero) :: var }=>\mathrm{ int mpoly)
    have hilb-enc: hilbert-encode1 r = map (\lambda fl. substitute (subst fl) r2) flag-list
    unfolding subst-def flag-list-def V-def r2-def Let-def hilbert-encode1-def ..
    have hilbert10-problem r \longleftrightarrow (\exists \alpha. insertion \alpha r=0) unfolding hilbert10-problem-def
by auto
    also have }\ldots\longleftrightarrow(\exists\alpha.(\mathrm{ insertion }\alphar\mp@subsup{)}{}{`}\mathcal{Z}\leq0
    by (intro ex-cong1, auto)
    also have }\ldots\longleftrightarrow(\exists\alpha\mathrm{ . insertion }\alpha\mathrm{ r2 }\leq0
    by (intro ex-cong1, auto simp: power2-eq-square insertion-mult r2-def)
    finally have hilb: hilbert10-problem r = (\exists\alpha. insertion \alpha r2 \leq 0) (is ?h1 =
?h2).
    let ?r1 = (\exists p\in set (hilbert-encode1 r). \exists \alpha. positive-interpr \alpha^ insertion \alpha
p\leq0)
    {
        assume ?r1
        from this[unfolded hilb-enc]
    show hilbert10-problem r unfolding hilb by (auto simp add: insertion-substitute)
    }
    {
        assume ?h1
        with hilb obtain \alpha where solution: insertion \alpha r2 \leq 0 by auto
        define fl where fl=map (\lambdax.(x, flag-of (\alphax))) V
        define flag where flag = ( }\lambda\mathrm{ x. case map-offl x of Some f }=>f|None = Zero
    have vars: vars r2 \subseteq set V unfolding V-def by simp
    have fl: fl \in set flag-list unfolding flag-list-def product-lists-set fl-def
            apply (simp add: list-all2-map2 list-all2-map1, intro list-all2-refl)
            by auto
    have mem: substitute (subst-flag (set V) flag) r2 \in set (hilbert-encode1 r)
        unfolding hilb-enc subst-def flag-def using fl by auto
    have corr: correct-flags (set V) flag \alpha unfolding correct-flags-def flag-def fl-def
            by (auto split: option.splits dest!: map-of-SomeD simp: map-of-eq-None-iff
image-comp)
    show ?r1 using solution correct-flag-substitutions[OF vars refl refl refl corr]
        by (intro bexI[OF - mem], auto)
    }
qed
lemma pos-neg-split: mpoly-coeff-filter ( }\lambdax.(x:: 'a :: linordered-idom)>0) p
mpoly-coeff-filter ( }\lambdax.x<0) p=p(is ?l + ?r = p
proof -
```


\{

fix m
let $? c=$ coeff $p m$
have coeff (?l + ?r) $m=$ coeff ?l $m+$ coeff ? m by (simp add: coeff-add)
also have $\ldots=$ coeff $p m$ unfolding mpoly-coeff-filter
by (cases ?c <0; cases ?c >0; cases ?c $=0$, auto)
finally have coeff $(? l+? r) m=$ coeff $p m$.
\}
thus ?thesis using coeff-eq by blast
qed
definition hilbert-encode2 :: int mpoly \Rightarrow int mpoly \times int mpoly where
hilbert-encode2 $p=$
(- mpoly-coeff-filter $(\lambda x . x<0) p$, mpoly-coeff-filter $(\lambda x . x>0) p)$
lemma hilbert-encode2: assumes hilbert-encode2 $p=(r, s)$
shows positive-poly r positive-poly s insertion $\alpha p \leq 0 \longleftrightarrow$ insertion $\alpha r \geq$
insertion αs
proof -
from assms[unfolded hilbert-encode2-def, simplified]
have $s: s=$ mpoly-coeff-filter $(\lambda x . x>0) p$
and $r: r=-$ mpoly-coeff-filter $(\lambda x . x<0) p$ (is $-=-? q$) by auto
have $p=s+? q$ unfolding s using pos-neg-split $[o f ~ p]$ by simp
also have $\ldots=s-r$ unfolding $s r$ by simp
finally have insertion $\alpha p \leq 0 \longleftrightarrow$ insertion $\alpha(s-r) \leq 0$ by simp
also have insertion $\alpha(s-r)=$ insertion αs-insertion αr
by (metis add-uminus-conv-diff insertion-add insertion-uminus)
finally show insertion $\alpha p \leq 0 \longleftrightarrow$ insertion $\alpha r \geq$ insertion αs by auto
show positive-poly s unfolding positive-poly-def s using mpoly-coeff-filter [of (λ
$x . x>0) p]$
by (auto simp: when-def)
show positive-poly r unfolding positive-poly-def r coeff-uminus using mpoly-coeff-filter[of ($\lambda x . x<0) p$]
by (auto simp: when-def)
qed
definition hilbert-encode :: int mpoly \Rightarrow (int mpoly \times int mpoly) list where hilbert-encode $=$ map hilbert-encode2 o hilbert-encode 1

Lemma 2.2 in paper
lemma hilbert-encode-positive: hilbert10-problem p $\longleftrightarrow(\exists(r, s) \in$ set (hilbert-encode p). positive-poly-problem r s)
proof -
have hilbert10-problem $p \longleftrightarrow\left(\exists p^{\prime} \in\right.$ set (hilbert-encode1 p). $\exists \alpha$. positive-interpr $\alpha \wedge$ insertion $\alpha p^{\prime} \leq 0$) using hilbert-encode1 [of p] by blast
also have $\ldots \longleftrightarrow(\exists(r, s) \in$ set (hilbert-encode p). positive-poly-problem $r s$) (is $? l=? r)$
proof

assume ?l

then obtain $p^{\prime} \alpha$ where mem: $p^{\prime} \in$ set (hilbert-encode1 p) and sol: posi-tive-interpr α insertion $\alpha p^{\prime} \leq 0$ by blast
obtain $r s$ where 2: hilbert-encode2 $p^{\prime}=(r, s)$ by force
from mem 2 have mem: $(r, s) \in$ set (hilbert-encode p) unfolding hilbert-encode-def o-def by force
from hilbert-encode2[OF 2] sol have positive-poly-problem rsusing posi-tive-poly-problem-def[of r s] by force
with mem show ?r by blast
next
assume ?r
then obtain $r s$ where mem: $(r, s) \in$ set (hilbert-encode p) and sol: posi-tive-poly-problem $r s$ by auto
from mem [unfolded hilbert-encode-def o-def] obtain p^{\prime} where
mem: $p^{\prime} \in$ set (hilbert-encode1 p)
and hilbert-encode2 $p^{\prime}=(r, s)$ by force
from hilbert-encode2[OF this(2)] sol positive-poly-problem-def[of r s]
have $\left(\exists \alpha\right.$. positive-interpr $\alpha \wedge$ insertion $\left.\alpha p^{\prime} \leq 0\right)$ by auto
with mem hilbert-encode1[of p] show ?l by auto
qed
finally show ?thesis.
qed
end

5 Undecidability of Linear Polynomial Termination

theory Linear-Poly-Termination-Undecidable imports
Hilbert10-to-Inequality
Polynomial-Interpretation
begin

Definition 3.1
locale poly-input $=$
fixes $p q$:: int mpoly
assumes pq: positive-poly p positive-poly q
begin
datatype symbol $=a$-sym $\mid z$-sym $\mid o$-sym $\mid f$-sym $\mid v$-sym var $\mid q$-sym $\mid h$-sym \mid
g-sym
abbreviation $a-t$ where $a-t$ t1 $t 2 \equiv$ Fun a-sym $[t 1$, t2 $]$
abbreviation z - t where z - $t \equiv$ Fun z-sym []
abbreviation $o-t$ where $o-t \equiv$ Fun o-sym []
abbreviation f - t where f - $t 1$ t2 t3 $t 3$ t4 \equiv Fun f-sym $[t 1, t 2, t 3, t 4]$
abbreviation v - t where v - $t i t \equiv$ Fun (v-sym i) $[t]$

```
definition encode-num :: var }=>\mathrm{ int }=>\mathrm{ (symbol,var)term where
    encode-num x n = ((\lambdat. a-t (Var x) t)^(nat n)) z-t
definition encode-monom :: var }=>\mathrm{ monom }=>\mathrm{ int }=>\mathrm{ (symbol,var)term where
    encode-monom x m c = rec-list (encode-num x c) (\lambda (i,e) -. (\lambdat.v-t it)^^e)
(var-list m)
definition encode-poly :: var }=>\mathrm{ int mpoly }=>\mathrm{ (symbol,var)term where
    encode-poly x r = rec-list z-t (\lambda (m,c) - t.a-t (encode-monom x m c) t) (monom-list
r)
lemma vars-encode-num: vars-term (encode-num x n)\subseteq{x}
proof -
    define m}\mathrm{ where m=nat n
    show ?thesis
        unfolding encode-num-def m-def[symmetric]
        by (induct m,auto)
qed
lemma vars-encode-monom: vars-term (encode-monom x m c)\subseteq{x}
proof -
    define xes where xes = var-list m
    show ?thesis unfolding encode-monom-def xes-def[symmetric]
    proof (induct xes)
        case Nil
        thus ?case using vars-encode-num by auto
    next
        case (Cons ye xes)
        obtain y e where ye: ye = (y,e) by force
        have [simp]: vars-term ((v-t y ^~ e)t)=vars-term t for t :: (symbol,var)term
            by (induct e arbitrary: t, auto)
        from Cons show ?case unfolding ye by auto
    qed
qed
lemma vars-encode-poly: vars-term (encode-poly x r)\subseteq{x}
proof -
    define mcs where mcs = monom-list r
    show ?thesis unfolding encode-poly-def mcs-def[symmetric]
    proof (induct mcs)
        case (Cons mc mcs)
        obtain m c where mc: mc= (m,c) by force
    from Cons show ?case unfolding mc using vars-encode-monom[of x m c] by
auto
    qed auto
qed
definition V where V=vars p\cup vars q
```

definition $y 1::$ var where $y 1=0$
definition $y 2::$ var where $y 2=1$
definition $y 3$:: var where $y 3=2$
lemma y-vars: $y 1 \neq y 2$ y2 $\neq y 3$ y $1 \neq y 3$
unfolding y1-def y2-def y3-def by auto

Definition 3.3

definition lhs-R $=f-t$ (Var y1) (Var y2) (a-t (encode-poly y3 p) (Var y3)) o-t definition $r h s-R=f-t(a-t$ (Var y1) $z-t)(a-t z-t$ (Var y2)) (a-t (encode-poly y3 q) $(\operatorname{Var} y 3)) z-t$
definition F where $F=\{(a-$ sym, 2 $),(z$-sym, 0$)\} \cup(\lambda i .(v$-sym $i, 1::$ nat $))$ ' V
definition $F-R$ where $F-R=\{(f$-sym,4 $),(o-s y m, 0)\} \cup F$
definition R where $R=\{($ lhs- R, rhs $-R)\}$
definition V-list where V-list $=$ sorted-list-of-set V
definition contexts $::($ symbol \times nat \times nat $)$ list
where contexts $=[$
(a-sym, 2, 0),
(a-sym, 2, 1),
$(f$-sym, 4, 0$)$,
(f-sym, 4, 1),
(f-sym, 4, 2),
(f-sym, 4, 3)] @
$\operatorname{map}(\lambda i$. $(v$-sym $i, 1,0)) V$-list
replace t by $f(z, \ldots z, t, z, \ldots, z)$
definition z-context $::$ symbol \times nat \times nat \Rightarrow (symbol, var)term \Rightarrow (symbol, var $)$ term where
z-context $c t=($ case c of $(f, n, i) \Rightarrow$ Fun $f($ replicate $i z-t @[t] @$ replicate $(n-$ $i-1) z-t)$)

definition z-contexts where

z-contexts cs $=$ foldr z-context cs
definition all-symbol-pos-ctxt :: (symbol,var)term \Rightarrow (symbol,var)term where all-symbol-pos-ctxt $=z$-contexts contexts
definition lhs- $R^{\prime}=$ all-symbol-pos-ctxt lhs- R
definition rhs- $R^{\prime}=$ all-symbol-pos-ctxt rhs- R
definition R^{\prime} where $R^{\prime}=\left\{\left(l h s-R^{\prime}\right.\right.$, rhs- $\left.\left.R^{\prime}\right)\right\}$
lemma funas-encode-num: funas-term (encode-num $x n$) $\subseteq F$ proof -

```
    define m}\mathrm{ where m=nat n
    show ?thesis
    unfolding encode-num-def m-def[symmetric]
    by (induct m, auto simp: F-def)
qed
lemma funas-encode-monom: assumes keys m\subseteqV
    shows funas-term (encode-monom x m c)\subseteqF
proof -
    define xes where xes = var-list m
    show ?thesis using var-list-keys[of -- m] unfolding encode-monom-def xes-def[symmetric]
    proof (induct xes)
        case Nil
        thus ?case using funas-encode-num by auto
    next
        case (Cons ye xes)
        obtain y e where ye: ye = (y,e) by force
    have sub: funas-term ((v-t y ^e)t)\subseteqinsert (v-sym y, 1) (funas-term t) for
t :: (symbol,var)term
            by (induct e arbitrary: t, auto)
        from Cons(2)[unfolded ye] assms have y\inV by auto
    hence inF: (v-sym y,1)\inF unfolding F-def by auto
    from Cons sub inF show ?case unfolding ye by fastforce
    qed
qed
lemma funas-encode-poly: assumes vars r\subseteqV shows funas-term (encode-poly x
r)\subseteqF
proof -
    define mcs where mcs= monom-list r
    show ?thesis using monom-list-keys[of-- r] unfolding encode-poly-def mcs-def[symmetric]
    proof (induct mcs)
        case (Cons mc mcs)
        obtain mc where mc: mc= (m,c) by force
    have a: (a-sym, 2) \inF unfolding F-def by auto
    from Cons(2)[unfolded mc] assms have keys m}\subseteqVV\mathrm{ by auto
    from funas-encode-monom[OF this, of x c] Cons(1)[OF Cons(2)] a
    show ?case unfolding mc by (force simp: numeral-eq-Suc)
    qed (auto simp:F-def)
qed
lemma funas-encode-poly-p: funas-term (encode-poly x p)\subseteqF
    by (rule funas-encode-poly, auto simp:V-def)
lemma funas-encode-poly-q: funas-term (encode-poly x q)\subseteqF
    by (rule funas-encode-poly, auto simp: V-def)
lemma lhs-R-F: funas-term lhs-R\subseteqF-R
proof -
```

```
    from funas-encode-poly-p
    show funas-term lhs-R\subseteqF-R unfolding lhs-R-def by (auto simp: F-R-def
F-def)
qed
lemma rhs-R-F: funas-term rhs-R\subseteqF-R
proof -
    from funas-encode-poly-q
    show funas-term rhs-R\subseteqF-R unfolding rhs-R-def by (auto simp: F-R-def
F-def)
qed
lemma finite-V: finite V unfolding V-def using vars-finite by auto
lemma V-list: set V-list = V unfolding V-list-def using finite-V by auto
lemma contexts: assumes (f,n,i)\in set contexts
    shows (f,n)\inF-Ri<n
    using assms unfolding contexts-def F-R-def F-def by (auto simp: V-list)
lemma z-contexts-append: z-contexts (cs @ ds)t=z-contexts cs (z-contexts ds t)
    unfolding z-contexts-def by (induct cs, auto)
lemma z-context: assumes (f,n)\inF-R i<n and funas-term t\subseteqF-R
    shows funas-term (z-context (f,n,i)t)\subseteqF-R
proof -
    have z: (z-sym,0) \inF-R unfolding F-R-def F-def by auto
    thus ?thesis unfolding z-context-def split using assms by auto
qed
lemma funas-all-symbol-pos-ctxt: assumes funas-term t\subseteqF-R
    shows funas-term (all-symbol-pos-ctxt t)\subseteqF-R
proof -
    define cs where cs= contexts
    have sub: set cs\subseteq set contexts unfolding cs-def by auto
    have id: all-symbol-pos-ctxt t= foldr z-context cs t unfolding cs-def all-symbol-pos-ctxt-def
z-contexts-def
    by (auto simp: id-def)
    show ?thesis unfolding id using sub assms(1)
    proof (induct cs arbitrary: t)
        case (Cons c cs t)
        obtain fn i where c:c=(f,n,i) by (cases c, auto)
        from c Cons have (f,n,i) \in set contexts by auto
        from z-context[OF contexts[OF this], folded c] Cons
        show ?case by auto
    qed auto
qed
```

```
lemma lhs-R'-F: funas-term lhs- R'\subseteqF-R
    unfolding lhs-R'-def by (rule funas-all-symbol-pos-ctxt[OF lhs-R-F])
lemma rhs-R'-F: funas-term rhs-R' }\subseteqF-
    unfolding rhs-R'-def by (rule funas-all-symbol-pos-ctxt[OF rhs-R-F])
end
lemma insertion-positive-poly: assumes }\x.\alphax\geq(0 :: 'a :: linordered-idom
    and positive-poly p
shows insertion \alpha p\geq0
    by (rule insertion-nonneg, insert assms[unfolded positive-poly-def], auto)
locale solvable-poly-problem = poly-input p q for p q+
    assumes sol: positive-poly-problem p q
begin
definition \alpha where \alpha = (SOME \alpha. positive-interpr \alpha ^ insertion \alpha q\leqinsertion
\alpha p)
lemma \alpha: positive-interpr \alpha insertion \alpha q}\leq\mathrm{ insertion }\alpha
    using someI-ex[OF sol[unfolded positive-poly-problem-def[OF pq]], folded \alpha-def]
    by auto
lemma \alpha1: \alpha x > 0 using \alpha unfolding positive-interpr-def by auto
context
    fixes I :: symbol => int mpoly
    assumes inter: I a-sym = PVar 0 + PVar 1
        I z-sym = 0
    I o-sym = 1
    I (v-sym i) = Const (\alphai)*PVar 0
begin
lemma inter-encode-num: assumes c\geq0
    shows poly-inter.eval I (encode-num x c) = Const c*PVar x
proof -
    from assms obtain n where cn:c=int n by (metis nonneg-eq-int)
    hence natc: nat c=n by auto
    show ?thesis unfolding encode-num-def natc unfolding cn
            by (induct n, auto simp: inter poly-inter.eval.simps Const-0 Const-1 alge-
bra-simps Const-add)
qed
lemma inter-v-pow-e: poly-inter.eval I ((v-t x^^e) t) = Const ((\alpha x)^e) *
poly-inter.eval I t
    by (induct e, auto simp: Const-1 Const-mult inter poly-inter.eval.simps)
lemma inter-encode-monom: assumes c:c\geq0
```

shows poly-inter.eval I (encode-monom y $m c$) $=$ Const (insertion α (monom m c)) * PVar y
proof -
define xes where xes $=$ var-list m
from var-list[$o f m c$]
have monom: monom $m c=$ Const $c *\left(\prod(x, e) \leftarrow x e s . P V a r x^{\wedge} e\right)$ unfolding xes-def .
show ?thesis unfolding encode-monom-def monom xes-def[symmetric]
proof (induct xes)
case Nil
show ?case by (simp add: inter-encode-num [OF c] insertion-Const)
next
case (Cons xe xes)
obtain $x e$ where $x e$: $x e=(x, e)$ by force
show ?case by (simp add: xe inter-v-pow-e Cons Const-power
insertion-Const insertion-mult insertion-power insertion-Var Const-mult)
qed
qed
lemma inter-foldr-v-t:
poly-inter.eval I (foldr v-t xs $t)=$ Const $($ prod-list $($ map $\alpha x s)) *$ poly-inter.eval It
by (induct xs arbitrary: t, auto simp: Const-1 inter poly-inter.eval.simps Const-mult)
lemma inter-encode-poly-generic: assumes positive-poly r
shows poly-inter.eval I (encode-poly $x r$) $=$ Const (insertion αr) * PVar x
proof -
define mcs where mcs $=$ monom-list r
from monom-list $[$ of $r]$ have $r: r=\left(\sum(m, c) \leftarrow m c s\right.$. monom $\left.m c\right)$ unfolding mcs-def by auto
have $m c s:(m, c) \in$ set $m c s \Longrightarrow c \geq 0$ for $m c$
using monom-list-coeff assms unfolding mcs-def positive-poly-def by auto
note $[$ simp $]=$ inter poly-inter.eval.simps
show ?thesis unfolding encode-poly-def mcs-def[symmetric] unfolding r inser-
tion-sum-list map-map o-def
using $m c s$
proof (induct mcs)
case (Cons mc mcs)
obtain $m c$ where $m c: m c=(m, c)$ by force
from Cons(2) $m c$ have $c: c \geq 0$ by auto
note monom $=$ inter-encode-monom[OF this, of $x m]$
show ?case
by (simp add: mc monom algebra-simps, subst Cons(1), insert Cons(2), auto simp: Const-add algebra-simps)
qed simp
qed
lemma valid-monotone-inter- F : assumes positive-interpr α
and $i n F: f n \in F$
shows poly-inter.valid-monotone-poly $I(>) f n$
proof -
obtain $f n$ where $f n$: $f n=(f, n)$ by force
with inF have $f:(f, n) \in F$ by auto
show ?thesis unfolding poly-inter.valid-monotone-poly-def fn
proof (intro allI impI, clarify, intro conjI)
let ? valid $=$ valid-poly
let ? mono $=$ poly-inter.monotone-poly $(>)$
have $[$ simp $]$: vars $((P \operatorname{Var} 0$:: int mpoly $)+P \operatorname{Var}($ Suc 0$)+P \operatorname{Var} 2+P V a r$ 3) $=\{0,1,2,3\}$
unfolding vars-def apply (transfer, simp add: Var ${ }_{0}$-def image-comp) by code-simp
have $[$ simp $]: \operatorname{vars}((P \operatorname{Var} 0$:: int mpoly $)+P \operatorname{Var}($ Suc 0$))=\{0,1\}$
unfolding vars-def apply (transfer, simp add: Varo-def image-comp) by code-simp
note $[$ simp $]=$ inter poly-inter.eval.simps
\{
fix i
assume $i: i \in V$ and $f=v$-sym i and $n: n=1$
hence $I: I f=C o n s t(\alpha i) * P \operatorname{Var} 0$ by simp
from assms[unfolded positive-interpr-def] have alpha: $\alpha i>0$ by auto
have valid: ?valid ($I f$)
unfolding I valid-poly-def using alpha
by (auto simp: insertion-mult insertion-Const insertion-Var assignment-def intro!: mult-nonneg-nonneg)
have mono: ?mono $\{. .<n\}(I f)$
unfolding I unfolding n monotone-poly-wrt-def using alpha
by (auto simp: insertion-Const insertion-mult insertion-Var)
have $\operatorname{vars}(I f) \subseteq\{. .<n\}$ unfolding I unfolding n
by (rule order.trans $[$ OF vars-mult $]$, auto)
moreover have $0 \in \operatorname{vars}(I f)$ unfolding I unfolding n
proof (rule ccontr)
let $? p=$ Const $(\alpha i) * P V a r 0$
assume not: $0 \notin$ vars ? p
define $\beta::$ var \Rightarrow int where $\beta x=0$ for x
have insertion β ? $p=$ insertion $(\beta(0:=1))$?p
by (rule insertion-irrelevant-vars, insert not, auto)
thus False using alpha by (simp add: β-def insertion-mult insertion-Const insertion-Var)
qed
ultimately have vars $(I f)=\{. .<n\}$ unfolding n by auto
note this valid mono
\} note v-sym $=$ this
from f-sym show vars $(I f)=\{. .<n\}$ unfolding F-def by auto
from $f v$-sym show ?valid ($I f$) unfolding F-def
by (auto simp: valid-poly-def insertion-add assignment-def insertion-Var)
have $x_{4}: x<4 \Longrightarrow x=0 \vee x=$ Suc $0 \vee x=2 \vee x=3$ for x by linarith

```
    have x2: x < 2 \Longrightarrowx=0 \vee x = Suc 0 for x by linarith
    from f v-sym show ?mono {..<n} (If) unfolding F-R-def F-def
            by (auto simp: monotone-poly-wrt-def insertion-add insertion-Var assign-
ment-def
            dest: x4 x2)
    qed
qed
end
fun I-R :: symbol }=>\mathrm{ int mpoly where
    I-R f-sym = PVar 0 + PVar 1 + PVar 2 + PVar 3
I-R a-sym = PVar 0 + PVar 1
|-R z-sym = 0
I-R o-sym = 1
I-R(v-sym i) = Const (\alpha i)*PVar 0
interpretation inter-R: poly-inter F-R I-R (>).
lemma inter-R-encode-poly: assumes positive-poly r
    shows inter-R.eval (encode-poly x r) = Const (insertion \alpha r) * PVar x
    by (rule inter-encode-poly-generic[OF - - assms], auto)
lemma valid-monotone-inter-R: inter-R.valid-monotone-poly-inter unfolding in-
ter-R.valid-monotone-poly-inter-def
proof (intro ballI)
    fix fn
    assume f:fn \inF-R
    show inter-R.valid-monotone-poly fn
    proof (cases fn\inF)
        case True
        show inter-R.valid-monotone-poly fn
            by (rule valid-monotone-inter-F[OF ---\alpha(1) True], auto)
    next
        case False
        with f have f: fn \inF-R - F by auto
        have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0) + PVar 2 + PVar
3) = {0,1,2,3}
            unfolding vars-def apply (transfer, simp add: Varo-def image-comp) by
code-simp
    show ?thesis unfolding inter-R.valid-monotone-poly-def using f
    proof (intro ballI impI allI, clarify, intro conjI)
        fix fn
            assume f:(f,n)\inF-R(f,n)\not\inF
            from }f\mathrm{ show vars (I-R f)={..<n} unfolding F-R-def by auto
            from f show valid-poly (I-R f) unfolding F-R-def
                by (auto simp: valid-poly-def insertion-add assignment-def insertion-Var)
        have }x4:x<4\Longrightarrowx=0\ < S Suc 0\veex=2 \vee \ x=3 for x by linarith
        from f show inter-R.monotone-poly {..<n} (I-R f) unfolding F-R-def
```

by (auto simp: monotone-poly-wrt-def insertion-add insertion-Var assign-ment-def dest: x4)
qed
qed
qed
sublocale inter-R: linear-int-poly-inter $F-R I-R$
proof
show inter-R.valid-monotone-poly-inter by (rule valid-monotone-inter- R)
fix $f n$
assume $(f, n) \in F-R$
thus total-degree $(I-R f) \leq 1$ by (cases f, auto simp: F-R-def F-def intro!:
total-degree-add total-degree-Const-mult)
qed
lemma orient- R-main: assumes assignment β
shows insertion β (inter-R.eval lhs- R) > insertion β (inter-R.eval rhs- R)
proof -
have lhs-R: inter-R.eval lhs- $R=P \operatorname{Var} y 1+P \operatorname{Var} y 2+$ Const (insertion $\alpha p+$

1) $* P \operatorname{Var} y 3+1$
unfolding lhs-R-def by (simp add: inter-R-encode-poly[OF pq(1)] algebra-simps
Const-add Const-1)
have rhs-R: inter-R.eval rhs- $R=P \operatorname{Var} y 1+P \operatorname{Var} y^{2} 2+C o n s t($ insertion αq
$+1) * P \operatorname{Var} y 3$
unfolding rhs- R-def by (simp add: inter-R-encode-poly[OF pq(2)] algebra-simps Const-add Const-1)
show ?thesis
unfolding lhs- R rhs- R
apply (simp add: insertion-add insertion-mult insertion-Var insertion-Const)
apply (intro mult-right-mono)
subgoal using α (2) by simp
subgoal using assms unfolding assignment-def by auto
done
qed
The easy direction of Theorem 3.4
lemma orient-R: inter-R.termination-by-poly-interpretation R
unfolding inter-R.termination-by-poly-interpretation-def inter-R.termination-by-interpretation-def
R-def inter-R.orient-rule
proof (clarify, intro conjI)
show inter-R.gt-poly (inter-R.eval lhs-R) (inter-R.eval rhs-R)
unfolding inter-R.gt-poly-def
by (intro allI impI orient- R-main)
qed (insert lhs- $R-F$ rhs- $R-F$, auto)
lemma solution-imp-linear-termination-R: termination-by-linear-int-poly-interpretation $F-R R$
unfolding termination-by-linear-int-poly-interpretation-def
```
    by (intro exI, rule conjI[OF - orient-R], unfold-locales)
```

end
context poly-input
begin
lemma inter-z-context:
assumes $i: i<n$ and $I: I f=$ Const c0 $+($ sum-list $($ map $(\lambda j$. Const $(c j) *$
$P \operatorname{Var} j)[0 . .<n])$) and Ize: $I z$-sym $=$ Const d0
shows $\exists d . \forall t$. poly-inter.eval $I(z$-context $(f, n, i) t)=$ Const $d+$ Const $(c i)$

* poly-inter.eval It
proof -
define d where $d=c 0+\left(\sum x \leftarrow[0 . .<i] . c x * d 0\right)+\left(\sum x \leftarrow[\right.$ Suc $i . .<n] . c x *$
d0)
show ?thesis
proof (intro exI[of-d] allI)
fix $t::$ (symbol, nat) term
define list where list $=$ replicate $i($ Fun z-sym []$) @[t]$ @ replicate $(n-i-$

1) (Fun z-sym [])
have len: length list $=n$
using i unfolding list-def by auto
have $z[$ simp $]$: poly-inter.eval I (Fun z-sym []) = Const d0 unfolding poly-inter.eval.simps
using Ize by auto
let ? $x s 1=\left[\begin{array}{ll}0 & . .<i\end{array}\right]$
let ? xs2 $=[$ Suc $i . .<n]$
define $e v$ where $e v=(\lambda x$. Const $(c x) *$ poly-inter.eval $I($ list ! $x))$
have poly-inter.eval $I(z$-context $(f, n, i) t)=$ Const $c 0+$
$\left(\sum x \leftarrow[0 . .<n]\right.$. ev $\left.x\right)$
unfolding z-context-def split list-def[symmetric]
unfolding poly-inter.eval.simps len I ev-def
unfolding substitute-add substitute-Const substitute-sum-list o-def substi-tute-mult substitute-Var
apply (rule arg-cong[of - - λ xs. (+) - (sum-list xs $)]$)
by (rule map-cong[OF refl], auto)
also have $[0 . .<n]=$?xs1 @ $i \#$?xs2 using i
by (metis less-imp-add-positive upt-add-eq-append upt-rec zero-le)
also have sum-list (map ev ...) $=$ sum-list (map ev ?xs1) + sum-list (map ev ?xs2) $+e v i$ by simp
also have map ev ?xs1 $=\operatorname{map}(\lambda x$. (Const $(c x * d 0)))$?xs1
unfolding o-def by (intro map-cong, auto simp: ev-def list-def nth-append Const-mult)
also have sum-list $\ldots=$ Const (sum-list (map $(\lambda x . c x * d 0)$? $x s 1)$) unfolding Const-sum-list o-def ..
also have map ev ?xs2 $=\operatorname{map}(\lambda x$. (Const $(c x * d 0)))$?xs2
unfolding o-def by (intro map-cong, auto simp: ev-def list-def nth-append Const-mult)
also have sum-list $\ldots=$ Const (sum-list (map $(\lambda x . c x * d 0)$?xs2)) unfolding Const-sum-list o-def ..
also have ev $i=$ Const (c i) * poly-inter.eval It unfolding ev-def list-def by (auto simp: nth-append)
finally show poly-inter.eval $I(z$-context $(f, n, i) t)=$ Const $d+$ Const $(c i)$ * poly-inter.eval It
unfolding add.assoc[symmetric] Const-add[symmetric] d-def by blast qed
qed
lemma inter-z-contexts:
assumes $c s: \bigwedge f n i .(f, n, i) \in$ set $c s \Longrightarrow i<n \wedge I f=$ Const $(c 0 f)+($ sum-list $(\operatorname{map}(\lambda j$. Const $(c f j) * P \operatorname{Var} j)[0 . .<n]))$
and Ize: $I z$-sym $=$ Const d0
shows $\exists d . \forall t$. poly-inter.eval $I(z$-contexts cs $t)=$ Const $d+$ Const (prod-list $(\operatorname{map}(\lambda(f, n, i) . c f i) c s)) *$ poly-inter.eval It
proof -
define c^{\prime} where $c^{\prime}=(\lambda(f, n::$ nat,i). c f $i)$
have c^{\prime} : cfi$=c^{\prime}(f, n, i)$ for $f i n$ unfolding c^{\prime}-def split ..
\{
fix $f n i$
assume mem: fni \in set cs
obtain $f n i$ where $f n i$: $f n i=(f, n, i)$ by (cases fni, auto)
from $c s[O F$ mem[unfolded fni]]
have $i: i<n$ and $I f=$ Const $(c 0 f)+\left(\sum j \leftarrow[0 . .<n]\right.$. Const $(c f j) * P V a r$
j) by auto
note inter-z-context[OF this Ize, unfolded $c^{\prime}[$ of $-n]$, folded fni]
$\}$ note z-pre-ctxt $=$ this
define p where p fni $d t=(f n i \in$ set $c s \longrightarrow$ poly-inter.eval I (z-context fni t)
$=$ Const $d+$ Const $\left(c^{\prime}\right.$ fni $) *$ poly-inter.eval I t)
for $f n i d t$
from z-pre-ctxt
have \forall fni. $\exists d . \forall t . p$ fni $d t$ by (auto simp: p-def)
from choice $\left[O F\right.$ this] obtain d^{\prime} where \bigwedge fnit. p fni (d^{\prime} fni) t by auto
hence z-ctxt: \bigwedge fnit. fni \in set $c s \Longrightarrow$ poly-inter.eval $I(z$-context fni $t)=$ Const $\left(d^{\prime} f n i\right)+$ Const $\left(c^{\prime} f n i\right) *$ poly-inter.eval I t
unfolding p-def by auto
define d where $d=$ foldr $\left(\lambda\right.$ fni $\left.c . d^{\prime} f n i+c^{\prime} f n i * c\right) c s 0$
show ?thesis
proof (intro exI[of-d] allI)
fix $t::($ symbol,var $)$ term
show poly-inter.eval $I(z$-contexts cs $t)=C$ onst $d+\operatorname{Const}\left(\prod(f, n, i) \leftarrow c s . c\right.$
$f i) *$ poly-inter.eval It
unfolding d-def z-contexts-def using z-ctxt
proof (induct cs)
case Nil
show ?case by (simp add: Const-0 Const-1)
next
case (Cons fni cs)
from Cons(2)[of fni]
have z-ctxt: poly-inter.eval I $(z$-context fni $t)=$ Const $\left(d^{\prime}\right.$ fni $)+$ Const $\left(c^{\prime}\right.$
```
fni) * poly-inter.eval It for t by auto
    from Cons(1)[OF Cons(2)]
    have IH: poly-inter.eval I (foldr z-context cs t)=
                Const (foldr (\lambdafni c. d' fni + c'fni* c) cs 0) + Const (\prod (f,n,y)\leftarrowcs.c
fy) * poly-inter.eval I t
                by auto
    have [simp]:(case fni of (f,n,xa)=>cfxa)= c' fni unfolding c'-def ..
    show ?case
                by (simp add: z-ctxt IH algebra-simps Const-mult)
            (simp add: Const-add[symmetric] Const-mult[symmetric])
    qed
    qed
qed
lemma inter-all-symbol-pos-ctxt-generic:
    assumes f:I f-sym = Const fc + Const f0 * PVar 0 + Const f1 * PVar 1 +
Const f2 * PVar 2 + Const f3 * PVar 3
    and a:I a-sym = Const ac + Const a0 * PVar 0 + Const a1 * PVar 1
    and v:\bigwedgei.i\inV\LongrightarrowI(v-sym i)=Const (vci) +Const (v0 i) * PVar 0
    and Iz-sym = Const zc
    shows \existsd.\forall t. poly-inter.eval I (all-symbol-pos-ctxt t) = Const d + Const
(prod-list ([a0, a1, f0, f1, f2, f3] @ map v0 V-list))
            * poly-inter.eval I t
proof -
    define c where c=( }\lambdaf\mathrm{ f i. case f of
        a-sym }=>\mathrm{ if }i=0\mathrm{ then a0 else a1
    |v-sym x = v0 x
    |-sym => if i=0 then f0 else if i=Suc 0 then f1 else if i=2 then f2 else f3)
    define c0 where c0=(\lambdaf.case f of a-sym =>ac|f-sym mfc|v-sym x 友 vc
x)
    have id:[a0, a1, f0, f1, f2, f3] @ map v0 V-list =map (\lambda (f,n,i).c fi) contexts
        unfolding contexts-def map-append
        by (auto simp: c-def)
    have lists:[0..<2] = [0,Suc 0] [0 ..<4] = 0,Suc 0, 2,3] by code-simp+
    show ?thesis unfolding id all-symbol-pos-ctxt-def
    proof (rule inter-z-contexts[of - co c zc])
        show I z-sym = Const zc by fact
        fix fni
    assume (f,n,i)\in set contexts
    thus i<n\wedgeIf = Const (c0f) +(\sumj\leftarrow[0..<n]. Const (cfj)*PVar j)
            unfolding contexts-def c0-def c-def by (auto simp: f a v V-list lists)
    qed
qed
end
context solvable-poly-problem
begin
```

lemma inter-all-symbol-pos-ctxt:
$\exists d e . e \geq 1 \wedge(\forall t$. inter-R.eval (all-symbol-pos-ctxt $t)=$ Const $d+$ Const $e *$ inter-R.eval t)
proof -
 Const-0 Const-1]
obtain d where inter: $\wedge t$. inter-R.eval (all-symbol-pos-ctxt $t)=$ Const $d+$ Const (prod-list (map α V-list)) * inter-R.eval t
by auto
show ?thesis
proof (rule exI[of - d], rule exI[of - prod-list (map α V-list)], intro conjI allI inter) define $v s$ where $v s=V$-list
show $1 \leq$ prod-list (map α V-list) unfolding vs-def[symmetric] proof (induct vs)
case (Cons v vs)
from $\alpha(1)$ [unfolded positive-interpr-def, rule-format, of $v]$ have $1 \leq \alpha v$ by auto
with Cons show ?case by simp (smt (verit, ccfv-threshold) mult-pos-pos) qed auto
qed
qed
The easy direction of Theorem 3.4 for R '
lemma orient- R^{\prime} : inter-R.termination-by-poly-interpretation R^{\prime}
unfolding inter-R.termination-by-interpretation-def inter-R.termination-by-poly-interpretation-def
R^{\prime}-def inter-R.orient-rule
proof (clarify, intro conjI)
from inter-all-symbol-pos-ctxt obtain $d e$ where
$e: e \geq 1$ and
$c t x t: \bigwedge t$. inter-R.eval (all-symbol-pos-ctxt $t)=$ Const $d+$ Const $e *$ inter-R.eval
t
by auto
let ?ctxt $=\lambda f$. Const $d+$ Const $e * f$
show inter-R.gt-poly (inter-R.eval lhs- R^{\prime}) (inter-R.eval rhs- R^{\prime})
unfolding inter-R.gt-poly-def
proof (intro allI impI)
fix β :: var \Rightarrow int
assume ass: assignment β
have insertion β (inter-R.eval lhs- R^{\prime}) > insertion β (inter-R.eval rhs- R^{\prime})
\longleftrightarrow insertion β (inter-R.eval lhs- R) >insertion β (inter-R.eval rhs- R)
unfolding lhs- R^{\prime}-def rhs- R^{\prime}-def ctxt using e
by (simp add: insertion-add insertion-mult insertion-Var insertion-Const)
also have ... using orient- R-main $[O F$ ass $]$.
finally show insertion β (inter-R.eval rhs- R^{\prime}) $<$ insertion β (inter-R.eval lhs- R^{\prime}).
qed
qed (insert lhs- $R^{\prime}-F$ rhs- $R^{\prime}-F$, auto)
lemma solution-imp-linear-termination- R^{\prime} : termination-by-linear-int-poly-interpretation $F-R R^{\prime}$
unfolding termination-by-linear-int-poly-interpretation-def
by (intro exI, rule conjI[OF - orient- $R 7$, unfold-locales)
end
Now for the other direction of Theorem 3.4
lemma monotone-linear-poly-to-coeffs: fixes $p::$ int mpoly
assumes linear: total-degree $p \leq 1$
and poly: valid-poly p
and mono: poly-inter.monotone-poly (>) $\{. .<n\} p$
and vars: vars $p=\{. .<n\}$
shows \exists c a. $p=$ Const $c+\left(\sum i \leftarrow[0 . .<n]\right.$. Const $\left.(a i) * P \operatorname{Var} i\right)$
$\wedge c \geq 0 \wedge(\forall i<n . a i>0)$
proof -
have sum-zero: $(\bigwedge x . x \in$ set $x s \Longrightarrow x=0) \Longrightarrow$ sum-list $(x s::$ int list $)=0$ for
$x s$ by (induct xs, auto)
interpret poly-inter undefined undefined $(>)::$ int \Rightarrow - .
from coefficients-of-linear-poly[OF linear] obtain ca vs
where $p: p=$ Const $c+\left(\sum i \leftarrow v s\right.$. Const $\left.(a i) * P \operatorname{Var} i\right)$
and vsd: distinct vs set vs $=$ vars p sorted-list-of-set $($ vars $p)=v s$
and $n z: \bigwedge v . v \in$ set $v s \Longrightarrow a v \neq 0$
and $c: c=$ coeff $p 0$
and a : $\bigwedge i . a i=$ coeff p (monomial $1 i$) by blast
have vs: vs $=[0 . .<n]$ unfolding $v s d(3)[s y m m e t r i c]$ unfolding vars
by (simp add: lessThan-atLeast0)
show ?thesis unfolding p vs
proof (intro exI conjI allI impI, rule refl)
show $c: c \geq 0$ using poly[unfolded valid-poly-def, rule-format, of $\lambda-.0$, unfolded p]
by (auto simp: coeff-add[symmetric] coeff-Const coeff-sum-list o-def co-
eff-Const-mult
coeff-Var monomial-0-iff assignment-def)
fix i
assume $i<n$
hence $i: i \in$ set $v s$ unfolding vs by auto
from $n z[O F$ this $]$ have $a 0: a i \neq 0$ by auto
from split-list $[O F i]$ obtain bef aft where vsi:vs $=$ bef @ $[i]$ @ aft by auto with vsd(1) have $i: i \notin$ set (bef @ aft) by auto
define α where $\alpha=(\lambda x$. if $x=i$ then $c+1$ else 0$)$
have assignment α unfolding assignment-def α-def using c by auto
from poly[unfolded valid-poly-def, rule-format, OF this, unfolded p]
have $0 \leq c+\left(\sum x \leftarrow b e f\right.$ @ aft. $\left.a x * \alpha x\right)+(a i * \alpha i)$
unfolding insertion-add vsi map-append sum-list-append insertion-Const insertion-sum-list
map-map o-def insertion-mult insertion-Var
by (simp add: algebra-simps)
also have $\left(\sum x \leftarrow\right.$ bef @ aft. $\left.a x * \alpha x\right)=0$ by (rule sum-zero, insert i, auto simp: α-def)

```
    also have \alpha i=(c+1) unfolding \alpha-def by auto
    finally have le: 0\leqc*(ai+1)+ai by (simp add: algebra-simps)
    with c have a i\geq0
    by (smt (verit, best) mult-le-0-iff)
    with a0 show a i>0 by simp
    qed
qed
```

locale poly-input-to-solution-common $=$ poly-input $p q+$ poly-inter $F^{\prime} I(>)::$ int \Rightarrow int \Rightarrow bool for $p q I$ and $F^{\prime}::$ (poly-input.symbol \times nat) set and argsL args $R+$ assumes orient:
orient-rule (Fun f-sym ([Var y1, Var y2, a-t (encode-poly y3 p) (Var y3)] @ $\operatorname{args} L$),

Fun f-sym ([a-t (Var y1) z-t, a-t z-t (Var y2), a-t (encode-poly y3 q) (Var y3)] @ $\operatorname{argsR} R)$)
and len-args:length args $L=$ length args R
and $y 123:\{y 1, y 2, y 3\} \cap(\bigcup($ vars-term'set $(\operatorname{argsL} @ \operatorname{argsR})))=\{ \}$
and $F F^{\prime}:$ insert $(f$-sym, $3+$ length args $R) F \subseteq F^{\prime}$
and linear-mono-interpretation: $(g, n) \in \operatorname{insert}(f$-sym, $3+$ length $\operatorname{args} R) F \Longrightarrow$

$$
\exists \text { c a.I } g=\text { Const } c+\left(\sum i \leftarrow[0 . .<n] . \text { Const }(a i) * P \operatorname{Var} i\right)
$$

$$
\wedge c \geq 0 \wedge(\forall i<n . a \bar{i}>0)
$$

begin

abbreviation $f f$ where $f f \equiv(f$-sym, $3+$ length args $R)$
abbreviation args where args $\equiv[3 . .<$ length args $R+3]$
lemma extract-a-poly: \exists a0 a1 a2. I a-sym $=$ Const a0 + Const a1 $*$ PVar $0+$ Const a2 * PVar 1
$\wedge a 0 \geq 0 \wedge a 1>0 \wedge a 2>0$
proof -
have $[$ simp $]:[0 . .<2]=[0,1]$ by code-simp
have $[\operatorname{simp}]:(\forall i<2 . P i)=(P 0 \wedge P(1::$ nat) $)$ for P by (auto simp add: numeral-eq-Suc less-Suc-eq)
have $(a-s y m, \mathcal{Z}) \in$ insert ff F unfolding F-def by auto
from linear-mono-interpretation[OF this]
show ?thesis by force
qed
lemma extract-f-poly: \exists f0 f1 f2 f3 f4. I f-sym $=$ Const f0 + Const f1 $*$ PVar 0

+ Const f2 * PVar 1
+ Const f3 $*$ PVar $2+\left(\sum i \leftarrow \operatorname{args.Const}\left(f_{4} i\right) * P V a r i\right)$
$\wedge f 0 \geq 0 \wedge f 1>0 \wedge f 2>0 \wedge f 3>0$
proof -
have id: $[0 . .<3+$ length args $R]=[0,1,2]$ @ args
by (simp add: numeral-3-eq-3 upt-rec)
have $f f \in$ insert $f f F$ by auto
from linear-mono-interpretation $[$ OF this] obtain ca
where Iff: $I f$-sym $=$ Const $c+\left(\sum i \leftarrow[0 . .<3+\right.$ length $\operatorname{argsR}]$. Const $(a i) *$ PVar i)
and $c: 0 \leq c$ and $a: \bigwedge i . i<3+$ length $\operatorname{args} R \Longrightarrow 0<a i$ by blast
show ?thesis
apply (rule exI[of - c])
apply (rule ex $\left.\left[\begin{array}{lll}{[f-a} & 0\end{array}\right]\right)$
apply (rule exI[of - a 1])
apply (rule exI[of - a 2])
apply (rule exI[of-a])
using c a[of 0] a[of 1] a [of 2] Iff id by auto
qed
lemma extract-z-poly: \exists ze $0 . I z$-sym $=$ Const ze $0 \wedge z e 0 \geq 0$
proof -
have $(z$-sym, 0$) \in$ insert ff F unfolding F-def by auto
from linear-mono-interpretation[OF this] show ?thesis by auto
qed
lemma solution: positive-poly-problem p q
proof -
from extract-a-poly obtain a0 a1 a2 where
Ia: I a-sym $=$ Const a0 + Const a $1 *$ PVar $0+$ Const a2 $* P \operatorname{Var} 1$
and $a: 0 \leq a 00<a 10<a 2$
by auto
from extract-f-poly obtain f0 f1 f2 f3 $f 4$ where
If: $I f$-sym $=$ Const f0 + Const f1 $*$ PVar $0+$ Const f2 $* P \operatorname{Var} 1+$ Const f3
* PVar $2+\left(\sum i \leftarrow\right.$ args. Const $\left.\left(f_{4} i\right) * P \operatorname{Var} i\right)$
and $f: 0 \leq f 00<f 10<f 20<f 3$
by auto
from extract-z-poly obtain ze0 where
$I z: I z$-sym $=$ Const ze0
and $z: 0 \leq z e 0$
by auto
\{
fix x
assume $x \in V$
hence $(v$-sym $x, 1) \in$ insert ff F unfolding F-def by auto
from linear-mono-interpretation[OF this]
have $\exists c a . I(v$-sym $x)=$ Const $c+$ Const $a * P \operatorname{Var} 0 \wedge 0<a$ by auto

\}

hence $\forall x . \exists$ ca. $x \in V \longrightarrow I(v$-sym $x)=$ Const $c+$ Const $a * P \operatorname{Var} 0 \wedge 0$ $<a$ by auto
from choice $[$ OF this] obtain $v 0$ where $\forall x . \exists a . x \in V \longrightarrow I(v$-sym $x)=$ Const $(v 0 x)+$ Const $a * P \operatorname{Var} 0 \wedge 0<a$ by auto
from choice $[O F$ this] obtain $v 1$ where
$I v: \bigwedge x . x \in V \Longrightarrow I(v$-sym $x)=\operatorname{Const}(v 0 x)+\operatorname{Const}(v 1 x) * P \operatorname{Var} 0$ and
$v: \bigwedge x . x \in V \Longrightarrow 0<v 1 x$ by auto
let ?lhs $=$ Fun f-sym ([TVar y1, TVar y2, Fun a-sym [encode-poly y3 p, TVar

```
y3]] @ argsL)
    let ?rhs = Fun f-sym
                            ([Fun a-sym [TVar y1, Fun z-sym []], Fun a-sym [Fun z-sym [], TVar y2],
                Fun a-sym [encode-poly y3 q,TVar y3]] @
                argsR)
    from orient[unfolded orient-rule]
    have gt: gt-poly (eval ?lhs) (eval ?rhs) by auto
    have [simp]: Suc (Suc (Suc (Suc 0))) = 4 by simp
    have [simp]: Suc (Suc 0) = 2 by simp
    define restL where restL = substitute
        (\lambdai. if i< length argsR + 3
        then eval ((TVar y1 # TVar y2 # Fun a-sym [encode-poly y3 p, TVar y3]
# argsL)! i) else 0)
    (\sumi\leftarrowlocal.args. PVar i * Const (f4 i))
    define b0 where b0 = f3 *a0 + f0
    define b1 where b1 = f3 *a0 + f0 +f1*a0 + f1*a2*ze0 + f2 *a0 +
f2*a1*ze0
    define b2 where b2 = f3 *a1
    define b3 where b3 = f3*a2
    have b23: b2 > 0 b3 > 0 unfolding b2-def b3-def using a f by auto
    let ?pt = encode-poly y3 p
    let ?qt = encode-poly y3 q
    from vars-encode-poly[of y3]
    have vars: vars-term ?pt \cup vars-term ?qt }\subseteq{y}} by aut
    from vars-eval vars
    have vars: vars (eval ?pt) \cup vars (eval ?qt)\subseteq{y}} by auto
    have [simp]:Suc (Suc (Suc (length argsR))) = length argsR + 3
    by presburger
    have lhs: eval ?lhs = Const b0 +
    Const f1 * PVar y1 +
    Const f2 * PVar y2 +
    Const b2 * eval ?pt + Const b3 * PVar y3 + restL
    using If Ia len-args by (simp add: algebra-simps Const-add Const-mult b0-def
b2-def b3-def restL-def)
    define }\beta\mathrm{ where }\beta\mathrm{ z1 z2 z3 = ((( }\lambda\mathrm{ x. 0 :: int) (y1 := z1)) (y2 := z2)) (y3 :=
z3) for z1 z2 z3
    have args: args = map (\lambdaz.z+3)[0..<length argsR]
    using map-add-upt by presburger
    define rl where rl=insertion( }\begin{array}{llll}{0}&{0}&{0}\end{array})\mathrm{ restL
    {
    have insRestL: insertion ( }\beta\mathrm{ z1 z2 z3) restL = ( }\sumx\leftarrow[0..<length
                    argsR]. (insertion ( }\beta\mathrm{ z1 z2 z3) (eval (argsL!x))*(f4 (x+3)))) for
z1 z2 z3
            unfolding restL-def insertion-substitute insertion-sum-list map-map o-def
if-distrib args insertion-mult insertion-Var insertion-Const
        apply (rule arg-cong[of--sum-list])
        apply (rule map-cong[OF refl]) by auto
```

```
    have insRestL: insertion ( }\beta\mathrm{ z1 z2 z3) restL = rl for z1 z2 z3
        unfolding insRestL rl-def
        apply (rule arg-cong[of - sum-list])
        apply (rule map-cong[OF refl])
        apply (rule arg-cong[of - - \lambda x.x*-])
    apply (rule insertion-irrelevant-vars)
    subgoal for v i unfolding len-args[symmetric] using y123 vars-eval[of argsL
!v]
        by (auto simp: }\beta\mathrm{ -def)
    done
} note ins-restL = this
define restR where restR = substitute
    (\lambdai. if i< length argsR + 3
        then eval
                            ((Fun a-sym [TVar y1, Fun z-sym []] #
                            Fun a-sym [Fun z-sym [], TVar y2] # Fun a-sym [encode-poly y3 q,
TVar y3] # argsR)!
                    i)
            else 0)
    (\sumi\leftarrowargs. PVar i * Const (f4 i))
have rhs: eval ?rhs = Const b1 +
    Const (f1 * a1) * PVar y1 +
    Const (f2 * a2) * PVar y2 +
    Const b2 * eval ?qt + Const b3 * PVar y3 + restR
    unfolding restR-def using If Ia Iz by (simp add: algebra-simps Const-add
Const-mult b1-def b2-def b3-def)
    define rr where rr = insertion ( }\begin{array}{lllll}{0}&{0}&{0}\end{array})\mathrm{ restR
    {
    have insRestR: insertion ( }\beta\mathrm{ z1 z2 z3) restR = ( \x ¢[0..<length
                            argsR]. (insertion ( }\betaz1z2z3)(\operatorname{eval}(\operatorname{argsR!x))}*(f4(x+3))))\mathrm{ for
z1 z2 z3
            unfolding restR-def insertion-substitute insertion-sum-list map-map o-def
if-distrib args insertion-mult insertion-Var insertion-Const
        apply (rule arg-cong[of - sum-list])
        apply (rule map-cong[OF refl]) by auto
    have insRestR: insertion ( }\beta\mathrm{ z1 z2 z3) restR =rr for z1 z2 z3
        unfolding insRestR rr-def
        apply (rule arg-cong[of -- sum-list])
        apply (rule map-cong[OF refl])
        apply (rule arg-cong[of - - \lambda x.x* -])
        apply (rule insertion-irrelevant-vars)
        subgoal for vi using y123 vars-eval[of argsR!v]
            by (auto simp: }\beta\mathrm{ -def)
        done
    } note ins-restR= this
```

 have [simp]: \(\beta\) z1 z2 z3 y1 \(=z 1\) for \(z 1 z 2 z 3\) unfolding \(\beta\)-def using \(y\)-vars by
 auto

```
    have [simp]: \beta z1 z2 z3 y2 = z2 for z1 z2 z3 unfolding \beta-def using y-vars by
auto
    have [simp]: \beta z1 z2 z3 y3 = z3 for z1 z2 z3 unfolding \beta-def using y-vars by
auto
    have \beta:z1 \geq0\Longrightarrowz2 \geq0\Longrightarrowz3 \geq0\Longrightarrowassignment ( }\beta\mathrm{ z1 z2 z3) for z1 z2
z3
    unfolding assignment-def }\beta\mathrm{ -def by auto
    define l1 where l1 = insertion ( }\beta0000)(\mathrm{ eval ?lhs)
    have ins-lhs: insertion ( }\beta\mathrm{ z1 z2 0) (eval ?lhs) = f1*z1 + f2 * z2 +l1 for z1
z2
    unfolding lhs l1-def
            apply (simp add: insertion-add insertion-mult insertion-Const insertion-Var
ins-restL)
    apply (rule disjI2)
    apply (rule insertion-irrelevant-vars)
    using vars by auto
    define l2 where l2 = insertion ( }\begin{array}{l}{0}\end{array}000)(\mathrm{ eval ?rhs)
    have ins-rhs: insertion ( }\beta\mathrm{ z1 z2 0) (eval ?rhs) =f1*a1*z1 + f2 *a2*z2
+ l2 for z1 z2
    unfolding rhs l2-def
            apply (simp add: insertion-add insertion-mult insertion-Const insertion-Var
ins-restR)
    apply (rule disjI2)
    apply (rule insertion-irrelevant-vars)
    using vars by auto
    define l where l= l2 - l1
    have gt-inst: 0 \leqz1 \Longrightarrow0\leqz2\Longrightarrowf1*a1*z1 + f2 *a2*z2 +l<f1*
z1 + f2 * z2 for z1 z2
    using gt[unfolded gt-poly-def, rule-format, OF \beta, of z1 z2 0, unfolded ins-lhs
ins-rhs]
    by (auto simp:l-def)
    {
    define a1' where a1'=a1 - 1
    define z where z=f1*a1'
    have a1: a1 = 1 + a1' unfolding a1'-def by auto
    have a1':a\mp@subsup{1}{}{\prime}\geq0 using a unfolding a1 by auto
    from gt-inst[of abs l 0, unfolded a1]
    have}z*|l|+l<
    by (simp add: algebra-simps z-def)
    hence z\leq0
    by (smt (verit) mult-le-cancel-right1)
    with <0<f1> have a1'\leq0 unfolding z-def
        by (simp add: mult-le-0-iff)
    with a1'a1 have a1=1 by auto
    } note a1 = this
    {
    define a2' where a2' = a2 - 1
    define z where z=f2 *a\mp@subsup{2}{}{\prime}
```

```
    have a2: a2 = 1 + a2' unfolding a2'-def by auto
    have a2': a2' }\geq0\mathrm{ using a unfolding a2 by auto
    from gt-inst[of 0 abs l, unfolded a2]
    have z* |l| +l<0
        by (simp add: algebra-simps z-def)
    hence z\leq0
        by (smt (verit) mult-le-cancel-right1)
    with }\langle0<f2\rangle\mathrm{ have }a\mp@subsup{2}{}{\prime}\leq0\mathrm{ unfolding z-def
    by (simp add: mult-le-0-iff)
    with a2' a2 have a2 = 1 by auto
} note a2 = this
have Ia: I a-sym = Const a0 + PVar 0 + PVar 1
    unfolding Ia a1 a2 Const-1 by simp
{
    fix c :: int
    assume c\geq0
    then obtain n where cn:c= int n by (metis nonneg-eq-int)
    hence natc: nat c=n by auto
    have \existsd. eval (encode-num y3 c)= Const d + Const c * PVar y3
        unfolding encode-num-def natc unfolding cn
        by (induct n, auto simp: Iz Ia Const-0 Const-1 algebra-simps Const-add, auto
simp: Const-add[symmetric])
    } note encode-num = this
{
    fix x eft
    assume x: x \inV and eval: \exists c. eval t = Const c + Const f * PVar y3
    have \existsd. eval ((v-tx^^e)t)= Const d + Const ((v1 x)^e *f) * PVar y3
    proof (induct e)
        case 0
        show ?case using eval by auto
    next
        case (Suc e)
        then obtain d where IH: eval ((v-t x^e) t) = Const d + Const (v1 x^
e*f)*PVar y3 by auto
        show ?case by (simp add: IH Iv[OF x] algebra-simps Const-mult)
            (auto simp:Const-mult[symmetric] Const-add[symmetric])
    qed
} note v-pow-e = this
{
    fix c:: int and m
    assume c:c\geq0
    define base where base = encode-num y3 c
    define xes where xes = var-list m
    assume keys: keys m\subseteqV
```

from encode-num $[O F c]$ obtain d where base: eval base $=$ Const $d+$ Const $c * P V a r y 3$
by (auto simp: base-def)
from var-list[of $m c$]
have monom: monom $m c=$ Const $c *\left(\prod(x, e) \leftarrow x e s . P \operatorname{Var} x^{\wedge} e\right)$ unfolding xes-def .
have $\exists d$. eval (encode-monom y3 $m c$) $=$ Const $d+$ Const (insertion v1 $($ monom $m c)) * P \operatorname{Var} y 3$
using var-list-keys[of --m]
unfolding encode-monom-def monom xes-def[symmetric] base-def[symmetric]
proof (induct xes)
case Nil
show ?case by (auto simp: base insertion-Const)
next
case (Cons xe xes)
obtain $x e$ where $x e$: $x e=(x, e)$ by force
with Cons keys have $x: x \in V$ by auto
from Cons
have $\exists d$. eval (rec-list base $(\lambda(i, e)-. v-t i \leadsto e)$ xes $)=$
Const $d+$ Const $\left(c *\right.$ insertion v1 $\left.\left(\prod(x, y) \leftarrow x e s . P \operatorname{Var} x{ }^{\wedge} y\right)\right) * P \operatorname{Var} y 3$
by (auto simp: insertion-mult insertion-Const)
from v-pow-e[OF x this, of e] obtain d where
id: eval $\left(\left(v-t x x^{\leadsto} e\right)(\right.$ rec-list base $\left.(\lambda(i, e)-. v-t i \leadsto e) x e s)\right)=$
Const $d+$ Const $\left(v 1 x^{\wedge} e *(c *\right.$ insertion v1 $(\Pi(x, y) \leftarrow x e s . P V a r x \wedge$ $y))) * P \operatorname{Var} y 3$
by auto
show ?case by (intro exI $[o f-d]$, simp add: xe id,
auto simp: Const-power Const-mult insertion-mult insertion-Const insertion-power insertion- Var)
qed
$\}$ note encode-monom $=$ this

\{

fix r :: int mpoly
assume vars: vars $r \subseteq V$ and pos: positive-poly r
define mcs where mcs $=$ monom-list r
from monom-list $[$ of $r]$ have $r: r=\left(\sum(m, c) \leftarrow m c s\right.$. monom $\left.m c\right)$ unfolding mes-def by auto
have mcs-pos: $(m, c) \in$ set $m c s \Longrightarrow c \geq 0$ for $m c$
using monom-list-coeff pos unfolding mcs-def positive-poly-def by auto
from monom-list-keys[of--r, folded mcs-def] vars
have $m c s-V:(m, c) \in$ set $m c s \Longrightarrow$ keys $m \subseteq V$ for $m c$ by auto
have $\exists d$. eval (encode-poly y3 r) $=$ Const $d+$ Const (insertion v1 r) $* P \operatorname{Var}$ y3
unfolding encode-poly-def mcs-def[symmetric] unfolding r using mcs-pos mcs- V
unfolding insertion-sum-list map-map o-def
proof (induct mcs)
case Nil

```
        show ?case by (auto simp add: Iz Const-0)
    next
            case (Cons mc mcs)
            obtain mc where mc: mc=(m,c) by force
            from Cons(2) mc have c:c\geq0 by auto
            from Cons(3) mc have keys m}\subseteq\V\mathrm{ by auto
            from encode-monom[OF c this]
            obtain d1 where m: eval (encode-monom y3 m c) = Const d1 + Const
(insertion v1 (monom m c)) * PVar y3 by auto
            from Cons(1)[OF Cons(2-3)]
            obtain d2 where IH: eval (rec-list z-t (\lambda (m,c)-. a-t (encode-monom y3 m
c)) mcs) =
            Const d2 + Const ( \summc\leftarrowmcs. insertion v1 (case mc of (m,c) => monom
m c)) * PVar y3
            by force
            show ?case unfolding mc
            apply (simp add: Ia m IH)
            apply (simp add: Const-add algebra-simps)
            by (auto simp flip: Const-add)
    qed
    } note encode-poly = this
                            from encode-poly[OF - pq(1)] V-def
                            obtain d1 where p: eval (encode-poly y3 p) = Const d1 + Const (insertion v1
p) * PVar y3 by auto
from encode-poly[OF - pq(2)] V-def
obtain d2 where \(q\) : eval (encode-poly y3 q) \(=\) Const d2 + Const (insertion v1 \(q) * P \operatorname{Var} y 3\) by auto
define \(d 3\) where \(d 3=b 0+b 2 * d 1+r l\)
have ins-lhs: insertion ( \(\beta 00\) z3) (eval ?lhs \()=d 3+(b 3+b 2 *\) insertion \(v 1 p\) ) * \(z 3\) for \(z 3\)
unfolding \(p\) d3-def lhs
by (simp add: insertion-add insertion-mult insertion-Const insertion- Var alge-bra-simps ins-restL)
define \(d_{4}\) where \(d_{4}=b 1+b 2 * d 2+r r\)
have ins-rhs: insertion ( \(\beta 000\) z3) (eval ?rhs) \(=d_{4}+(b 3+b 2 *\) insertion v1 \(q) * z 3\) for \(z 3\)
unfolding \(q d_{4}\)-def rhs
by (simp add: insertion-add insertion-mult insertion-Const insertion-Var alge-bra-simps ins-rest \(R\) )
define \(d 5\) where \(d 5=d_{4}-d 3\)
define left where left \(=b 3+b 2 *\) insertion v1 \(p\)
define right where right \(=b 3+b 2 *\) insertion v1 \(q\)
define diff where diff \(=\) left - right
```

```
    have gt-inst: z3 \geq0 \Longrightarrow diff * z3 > d5 for z3
        using gt[unfolded gt-poly-def, rule-format, OF \beta, of 0 0 z3, unfolded ins-lhs
ins-rhs]
    by (auto simp:d5-def left-def right-def diff-def algebra-simps)
    from this[of abs d5]
    have diff \geq0
    by (smt (verit) Groups.mult-ac(2) mult-le-cancel-right1 mult-minus-right)
    from this[unfolded diff-def left-def right-def]
    have b2 * insertion v1 p\geqb2 * insertion v1 q by auto
    with <b2 > 0\rangle have solution: insertion v1 p \geq insertion v1 q by simp
    define }\alpha\mathrm{ where }\alphax=(\mathrm{ if }x\inV\mathrm{ then v1 x else 1) for }
    from v}\mathrm{ have }\alpha\mathrm{ : positive-interpr }\alpha\mathrm{ unfolding positive-interpr-def }\alpha\mathrm{ -def by auto
    have insertion \alpha q=insertion v1 q
    by (rule insertion-irrelevant-vars, auto simp: \alpha-def V-def)
    also have ... \leq insertion v1 p by fact
    also have ... = insertion \alpha p
    by (rule insertion-irrelevant-vars, auto simp: \alpha-def V-def)
    finally show positive-poly-problem p q
    unfolding positive-poly-problem-def[OF pq] using \alpha by auto
qed
end
locale solution-poly-input-R = poly-input p q + poly-inter F-R I(>) :: int # -
for p q I +
    assumes orient: orient-rule (lhs-R,rhs-R)
    and linear-mono-interpretation: }(g,n)\inF-R
            ` ca.Ig=Const c+(\sumi\leftarrow[0..<n]. Const (a i)*PVar i)
                \wedgec\geq0\wedge(\foralli<n.ai>0)
begin
lemma solution: positive-poly-problem p q
    apply (rule poly-input-to-solution-common.solution[of - - I F-R [o-t][z-t]])
    apply (unfold-locales)
    subgoal using orient unfolding lhs-R-def rhs-R-def by simp
    subgoal by simp
    subgoal by simp
    subgoal unfolding F-R-def by auto
    subgoal for g}n\mathrm{ using linear-mono-interpretation[of g n] unfolding F-R-def by
auto
    done
end
```

locale lin-term-poly-input $=$ poly-input $p q$ for $p q+$
assumes lin-term: termination-by-linear-int-poly-interpretation $F-R \quad R$
begin
definition I where $I=(S O M E I$. linear-int-poly-inter $F-R I \wedge$ int-poly-inter.termination-by-poly-interpretati

$F-R I R)$

lemma I : linear-int-poly-inter F-R I int-poly-inter.termination-by-poly-interpretation F-R I R
using someI-ex[OF lin-term[unfolded termination-by-linear-int-poly-interpretation-def], folded I-def] by auto
sublocale linear-int-poly-inter F-R I by (rule $I(1)$)
lemma orient: orient-rule (lhs-R,rhs-R)
using I (2)[unfolded termination-by-interpretation-def termination-by-poly-interpretation-def] unfolding R-def by auto
lemma extract-linear-poly: assumes $g:(g, n) \in F-R$
shows \exists c a.Ig $=$ Const $c+\left(\sum i \leftarrow[0 . .<n]\right.$. Const $\left.(a i) * P \operatorname{Var} i\right)$

```
        \wedge }\geq0\wedge(\foralli<n.ai>0
```

proof -
define p where $p=I g$
have sum-zero: $(\bigwedge x . x \in$ set $x s \Longrightarrow x=0) \Longrightarrow$ sum-list $(x s::$ int list $)=0$ for
$x s$ by (induct xs, auto)
from valid[unfolded valid-monotone-poly-inter-def, rule-format, OF g]
have poly: valid-poly p
and mono: monotone-poly $\{. .<n\} p$
and vars: vars $p=\{. .<n\}$
by (auto simp: valid-monotone-poly-def p-def)
from linear $[O F g] p$-def
have linear: total-degree $p \leq 1$ by auto
show ?thesis unfolding p-def[symmetric]
by (rule monotone-linear-poly-to-coeffs[OF linear poly mono vars])
qed
lemma solution: positive-poly-problem $p q$
apply (rule solution-poly-input-R.solution $[$ of $-I]$)
apply (unfold-locales)
apply (rule orient)
apply (rule extract-linear-poly)
by auto
end
locale wm-lin-orient-poly-input $=$ poly-input $p q$ for $p q+$
assumes wm-orient: orientation-by-linear-wm-int-poly-interpretation $F-R R^{\prime}$
begin
definition I where $I=(S O M E$ I. linear-wm-int-poly-inter $F-R I \wedge$ wm-int-poly-inter.oriented-by-interpretati F-RI R')
lemma I: linear-wm-int-poly-inter F-R I wm-int-poly-inter.oriented-by-interpretation
$F-R I R^{\prime}$
using someI-ex[OF wm-orient[unfolded orientation-by-linear-wm-int-poly-interpretation-def],
sublocale linear-wm-int-poly-inter F-R I by (rule I(1))

```
lemma orient- \(R^{\prime}\) : orient-rule (lhs- \(R^{\prime}\), rhs- \(R^{\prime}\) )
    using \(I(2)\left[\right.\) unfolded oriented-by-interpretation-def] unfolding \(R^{\prime}\)-def by auto
```

lemma extract-linear-poly: assumes $g:(g, n) \in F-R$
shows \exists c a. Ig $=$ Const $c+\left(\sum i \leftarrow[0 . .<n]\right.$. Const $\left.(a i) * P \operatorname{Var} i\right)$
$\wedge c \geq 0 \wedge(\forall i<n . a i \geq 0)$
proof -
define p where $p=I g$
have sum-zero: $(\bigwedge x . x \in$ set $x s \Longrightarrow x=0) \Longrightarrow$ sum-list $(x s::$ int list $)=0$ for
xs by (induct xs, auto)
from valid[unfolded valid-weakly-monotone-inter-def valid-weakly-monotone-poly-def,
rule-format, OF g refl p-def]
have poly: valid-poly p
and mono: weakly-monotone-poly $\{. .<n\} p$
and vars: vars $p \subseteq\{. .<n\}$
by (auto simp: valid-monotone-poly-def p-def)
from linear $[O F g] p$-def
have linear: total-degree $p \leq 1$ by auto
from coefficients-of-linear-poly[OF linear] obtain c b vs
where $p: p=$ Const $c+\left(\sum i \leftarrow v s\right.$. Const $\left.(b i) * P \operatorname{Var} i\right)$
and vsd: distinct vs set vs $=$ vars p sorted-list-of-set $($ vars $p)=$ vs
and $n z: \bigwedge v . v \in$ set $v s \Longrightarrow b v \neq 0$
and $c: c=$ coeff $p 0$
and $b: \bigwedge i . b i=$ coeff p (monomial $1 i$) by blast
define a where $a x=($ if $x \in$ vars p then $b x$ else 0$)$ for x
have $p=$ Const $c+\left(\sum i \leftarrow v s\right.$. Const $(b i) * P$ Var $\left.i\right)$ by fact
also have $\left(\sum i \leftarrow v s\right.$. Const $\left.(b i) * P V a r i\right)=\left(\sum i \in \operatorname{set} v s\right.$. Const $(b i) * P V a r$
i) using $v s d(1)$
by (rule sum-list-distinct-conv-sum-set)
also have $\ldots=\left(\sum i \in\right.$ set vs. Const $\left.(a i) * P \operatorname{Var} i\right)+0$ by (subst sum.cong,
auto simp: a-def vsd)
also have $0=\left(\sum i \in\{. .<n\}-\right.$ set vs. Const $\left.(a i) * P \operatorname{Var} i\right)$
by (subst sum.neutral, auto simp: a-def vsd)
also have $\left(\sum i \in\right.$ set vs. Const $\left.(a i) * P \operatorname{Var} i\right)+\ldots=\left(\sum i \in\right.$ set vs $\cup(\{. .<n\}$

- set vs). Const (a i) * PVar i)
by (subst sum.union-inter[symmetric], auto)
also have set vs $\cup(\{. .<n\}-$ set vs $)=$ set $[0 . .<n]$ using vars vsd by auto
finally have $p c a: p=$ Const $c+\left(\sum i \leftarrow[0 . .<n]\right.$. Const $\left.(a i) * P \operatorname{Var} i\right)$
by (subst sum-list-distinct-conv-sum-set, auto)
show ?thesis unfolding p-def[symmetric] pca
proof (intro exI conjI allI impI, rule refl)
show $c: c \geq 0$ using poly[unfolded valid-poly-def, rule-format, of $\lambda-.0$,
unfolded p]
by (auto simp: coeff-add[symmetric] coeff-Const coeff-sum-list o-def co-
coeff-Var monomial-0-iff assignment-def)
fix i
assume $i<n$
show a $i \geq 0$
proof (cases $i \in$ set vs)
case False
thus ?thesis unfolding a-def using vsd by auto
next
case i : True
from $n z[O F$ this $]$ have $a 0: a i \neq 0 b i=a i$ using i by (auto simp: a-def
vsd)
from split-list $[$ OF i] obtain bef aft where vsi:vs = bef @ [i] @ aft by auto
with $\operatorname{vsd}(1)$ have $i: i \notin$ set (bef @ aft) by auto
define α where $\alpha=(\lambda x$. if $x=i$ then $c+1$ else 0$)$
have assignment α unfolding assignment-def α-def using c by auto
from poly[unfolded valid-poly-def, rule-format, OF this, unfolded p]
have $0 \leq c+\left(\sum x \leftarrow b e f\right.$ @ aft. $\left.b x * \alpha x\right)+(b i * \alpha i)$
unfolding insertion-add vsi map-append sum-list-append insertion-Const
insertion-sum-list
map-map o-def insertion-mult insertion-Var
by (simp add: algebra-simps)
also have $\left(\sum x \leftarrow b e f\right.$ @ aft. $\left.b x * \alpha x\right)=0$ by (rule sum-zero, insert i, auto
simp: α-def)
also have $\alpha i=(c+1)$ unfolding α-def by auto
finally have le: $0 \leq c *(a i+1)+a i$ using $a 0$ by (simp add: algebra-simps)
with c show $a i \geq 0$
by (smt (verit, best) mult-le-0-iff)
qed
qed
qed
lemma extract-a-poly: \exists a0 a1 a2. I a-sym = Const a0 + Const a1 $*$ PVar $0+$
Const a2 * PVar 1
$\wedge a 0 \geq 0 \wedge a 1 \geq 0 \wedge a 2 \geq 0$
proof -
have $[$ simp $]:[0 \quad . .<2]=[0,1]$ by code-simp
have $[\operatorname{simp}]:(\forall i<2 . P i)=(P 0 \wedge P(1::$ nat) $)$ for P by (auto simp add:
numeral-eq-Suc less-Suc-eq)
have (a-sym, 2) $\in F$ - R unfolding F - R-def F-def by auto
from extract-linear-poly[OF this]
show ?thesis by force
qed
lemma extract-f-poly: \exists f0 f1 f2 f3 f4. I f-sym $=$ Const f0 + Const f1 $* P \operatorname{Var} 0$
+ Const f2 $*$ PVar 1
 + Const f3 $*$ PVar $2+$ Const $f 4 *$ PVar 3
$\wedge f 0 \geq 0 \wedge f 1 \geq 0 \wedge f 2 \geq 0 \wedge f 3 \geq 0 \wedge f 4 \geq 0$
proof -

```
    have [simp]:[0 ..<4] = [0,1,2,3] by code-simp
    have [simp]: (\foralli<4.Pi)=(P0\wedgeP(1 :: nat) ^P2\wedgeP 3) for P
    by (auto simp add: numeral-eq-Suc less-Suc-eq)
    have (f-sym,4) \inF-R unfolding F-R-def by auto
    from extract-linear-poly[OF this] obtain cf where
        main: I f-sym = Const c + (\sumi\leftarrow[0..<4]. Const (f i)*PVar i)^0\leqc^
( }\foralli<4.0\leqfi) by aut
    show ?thesis
    apply (rule exI[of-c])
    apply (rule exI[of - f 0])
    apply (rule exI[of-f 1])
    apply (rule exI[of-f 2])
    apply (rule exI[of - f 3])
    by (insert main, auto)
qed
```

```
lemma solution: positive-poly-problem \(p q\)
proof -
    from extract-f-poly obtain f0 f1 f2 f3 f4 where
        If: \(I\) f-sym \(=\)
            Const f0 + Const f1 \(*\) PVar \(0+\) Const f2 \(*\) PVar \(1+\) Const f3 \(*\) PVar 2
+ Const f4 * PVar 3
    and fpos: \(0 \leq f 00 \leq f 10 \leq f 20 \leq f 30 \leq f 4\) by auto
    from extract-a-poly obtain a0 a1 a2 where
        Ia: \(I\) a-sym \(=\) Const a \(0+\) Const \(a 1 * P \operatorname{Var} 0+\) Const a2 \(* P \operatorname{Var} 1\)
        and apos: \(0 \leq a 00 \leq a 10 \leq a 2\) by auto
    \{
        fix \(i\)
        assume \(i \in V\)
        hence \(v:(v\)-sym \(i, 1) \in F\) - \(R\) unfolding \(F\) - \(R\)-def \(F\)-def by auto
    from extract-linear-poly \([O F v]\) have \(\exists v 0\) v1. \(I(v\)-sym \(i)=\) Const \(v 0+\) Const
\(v 1 * P \operatorname{Var} 0 \wedge v 0 \geq 0 \wedge v 1 \geq 0\)
            by auto
    \}
    hence \(\forall i\). \(\exists\) v0 v1. \(i \in V \longrightarrow I(v\)-sym \(i)=\) Const v0 + Const v1 \(*\) PVar 0
\(\wedge v 0 \geq 0 \wedge v 1 \geq 0\) by auto
    from choice \([O F\) this] obtain \(v 0\) where \(\forall\) i. \(\exists v 1 . i \in V \longrightarrow I(v\)-sym \(i)=\)
Const \((v 0 i)+\) Const v1 * PVar \(0 \wedge v 0 i \geq 0 \wedge v 1 \geq 0\) by auto
    from choice \([\) OF this] obtain \(v 1\) where \(I v: \bigwedge i . i \in V \Longrightarrow I(v\)-sym \(i)=\) Const
\((v 0 i)+\) Const \((v 1 i) * P \operatorname{Var} 0\)
    and vpos: \(\bigwedge i . i \in V \Longrightarrow v 0 i \geq 0 \wedge v 1 i \geq 0\) by auto
    have \((z\)-sym, 0\() \in F\) - \(R\) unfolding \(F\) - \(R\)-def \(F\)-def by auto
    from extract-linear-poly[OF this] obtain \(z 0\) where
            Iz: \(I z\)-sym \(=\) Const \(z 0\)
            and zpos: \(z 0 \geq 0\) by auto
```

 have \((o-s y m, 0) \in F-R\) unfolding \(F\) - \(R\)-def \(F\)-def by auto
    ```
from extract-linear-poly[OF this] obtain o0 where
    Io:I o-sym = Const o0
    and opos:o0 \geq0 by auto
    have prod-ge: (\bigwedgex. x set xs \Longrightarrow < \geq 0) \Longrightarrow prod-list xs \geq0 for xs :: int list
by (induct xs, auto)
    define d1 where d1 = prod-list ([a1,a2,f1,f2,f3,f4]@ map v1 V-list)
    have d1:d1\geq0 unfolding d1-def using apos fpos vpos
    by (intro prod-ge, auto simp:V-list)
    from inter-all-symbol-pos-ctxt-generic[of I, OF If Ia Iv Iz]
    obtain d where ctxt: \t. eval (all-symbol-pos-ctxt t)=
    Const d + Const d1 * eval t by (auto simp: d1-def)
    {
    fix }\beta:: var => in
    assume assignment }
    from orient-R'[unfolded orient-rule split gt-poly-def, rule-format, OF this]
    have insertion \beta (eval lhs-R') > insertion \beta (eval rhs-R') (is ?A) by auto
    also have ?A }\longleftrightarrowd1*\mathrm{ insertion }\beta\mathrm{ (eval lhs-R)>d1*insertion }\beta\mathrm{ (eval rhs-R)
        unfolding lhs-R'-def rhs-R'-def ctxt
        insertion-add insertion-mult insertion-Const by auto
    also have }\ldots\longleftrightarrow(d1>0\wedge insertion \beta (eval lhs-R) > insertion \beta (eva
rhs-R))
            using d1 by (simp add: mult-less-cancel-left-disj)
    finally have d1>0 insertion \beta(eval lhs-R)> insertion \beta (eval rhs-R) by
auto
    }
    from this(2) this(1)[of \lambda -. 0]
    have d1:d1>0 and gt:gt-poly (eval lhs-R) (eval rhs-R)
    unfolding gt-poly-def by (auto simp: assignment-def)
    hence orient-R: orient-rule (lhs-R, rhs-R) unfolding orient-rule by auto
    from d1 have d1 f=0 by auto
    from this[unfolded d1-def, simplified] apos fpos
    have apos:a0}\geq0\mathrm{ a1 >0 a2 >0
        and fpos:f0\geq0f1>0 f2>0f3>0 f4>0
        and prod: prod-list (map v1 V-list) }\not=0\mathrm{ by auto
    from prod have vpos1:i\inV\Longrightarrowv0i\geq0^v1i>0 for i using vpos[of i]
        unfolding prod-list-zero-iff set-map V-list by auto
    {
        fix gn
        assume (g,n)\inF-R
        then consider (f) (g,n)=(f-sym,4)| (a)(g,n)=(a-sym,Q)|(z)(g,n)=
(z-sym,0)
        | (o) (g,n) = (o-sym,0)| (v) i where (g,n)=(v-sym i, Suc 0) i\inV
        unfolding F-R-def F-def by auto
```

```
    hence \(\exists\) c a. I \(g=\) Const \(c+\left(\sum i \leftarrow[0 . .<n]\right.\). Const \(\left.(a i) * P \operatorname{Var} i\right) \wedge 0 \leq c \wedge\)
( \(\forall i<n .0<a i\) )
    proof cases
            case *: \(a\)
            have \([\) simp \(]:[0 . .<2]=[0,1]\) by code-simp
            thus ?thesis using * apos Ia
                by (intro exI[of-a0] exI[of- \(\lambda\) i. if \(i=0\) then a1 else a2], auto)
    next
            case \(*: f\)
            have \([\) simp \(]:[0 . .<4]=[0,1,2,3]\) by code-simp
            thus ?thesis using \(*\) If fpos
            by (intro exI[of - f0]
                    \(\operatorname{exI}[o f-\lambda i\). if \(i=0\) then f1 else if \(i=1\) then f2 else if \(i=2\) then f3 else
f4], auto)
    next
            case \(*: z\)
            show ?thesis using \(* I z\) zpos by auto
    next
            case *: o
            show ?thesis using \(*\) Io opos by auto
    next
            case \(*:(v i)\)
            show ?thesis using \(* \operatorname{Iv}[O F *(2)] \operatorname{vpos} 1[O F *(2)]\)
                by (intro exI \([o f-v 0 i]\) exI \([o f-\lambda-. v 1 i]\), auto)
    qed
    \(\}\) note main \(=\) this
    show ?thesis
            apply (rule solution-poly-input-R.solution \([\) of - - I] )
            apply unfold-locales
            using orient- \(R\) main by auto
                    qed
end
context poly-input
begin
```


Theorem 3.4 in paper

```
theorem linear-polynomial-termination-with-natural-numbers-undecidable:
    positive-poly-problem p \(q \longleftrightarrow\) termination-by-linear-int-poly-interpretation \(F\) - \(R\)
R
proof
    assume positive-poly-problem \(p q\)
    interpret solvable-poly-problem
            by (unfold-locales, fact)
    from solution-imp-linear-termination- \(R\)
    show termination-by-linear-int-poly-interpretation \(F-R \quad R\).
next
    assume termination-by-linear-int-poly-interpretation \(F-R \quad R\)
```

```
    interpret lin-term-poly-input
    by (unfold-locales, fact)
    from solution show positive-poly-problem p q.
qed
```

Theorem 3.9
theorem orientation-by-linear-wm-int-poly-interpretation-undecidable:
positive-poly-problem $p q \longleftrightarrow$ orientation-by-linear-wm-int-poly-interpretation F - R
R^{\prime}
proof
assume positive-poly-problem p q
interpret solvable-poly-problem
by (unfold-locales, fact)
from solution-imp-linear-termination- R^{\prime}
have termination-by-linear-int-poly-interpretation $F-R R^{\prime}$.
from this[unfolded termination-by-linear-int-poly-interpretation-def] obtain I
where lin: linear-int-poly-inter $F-R I$ and
R^{\prime} : int-poly-inter.termination-by-poly-interpretation $F-R I R^{\prime}$
by auto
interpret linear-int-poly-inter F-R I by fact
show orientation-by-linear-wm-int-poly-interpretation $F-R R^{\prime}$
unfolding orientation-by-linear-wm-int-poly-interpretation-def
proof (intro exI conjI)
show linear-wm-int-poly-inter F-R I
proof
show valid-weakly-monotone-inter unfolding valid-weakly-monotone-inter-def
proof
fix f
assume $f \in F-R$
from valid[unfolded valid-monotone-poly-inter-def, rule-format, OF this]
have valid-monotone-poly f by auto
thus valid-weakly-monotone-poly f
by (rule monotone-imp-weakly-monotone, auto)
qed
qed
interpret linear-wm-int-poly-inter $F-R I$ by fact
show oriented-by-interpretation R^{\prime} unfolding oriented-by-interpretation-def
using R^{\prime} unfolding termination-by-poly-interpretation-def termination-by-interpretation-def
qed
next
assume orientation-by-linear-wm-int-poly-interpretation $F-R R^{\prime}$
interpret wm-lin-orient-poly-input
by (unfold-locales, fact)
from solution show positive-poly-problem p q.
qed
end

Separate locale to define another interpretation, i.e., the one of Lemma 3.6
locale poly-input-non-lin-solution $=$ poly-input
begin
Non-linear interpretation of Lemma 3.6
fun I :: symbol \Rightarrow int mpoly where
$I f$-sym $=P \operatorname{Var} 2 * P \operatorname{Var} 3+P \operatorname{Var} 0+P \operatorname{Var} 1+P \operatorname{Var} 2+P \operatorname{Var} 3$
| I a-sym $=P \operatorname{Var} 0+P \operatorname{Var} 1$
$\mid I z$-sym $=0$
|I o-sym $=$ Const $(1+\operatorname{insertion}(\lambda-.1) q)$
| $I(v$-sym $i)=P \operatorname{Var} 0$
sublocale inter-R: poly-inter $F-R I(>)$.
lemma inter-encode-num: assumes $c \geq 0$
shows inter-R.eval (encode-num x c) $=$ Const $c * P \operatorname{Var} x$
proof -
from assms obtain n where cn: $c=$ int n by (metis nonneg-eq-int)
hence natc: nat $c=n$ by auto
show ?thesis unfolding encode-num-def natc unfolding cn by (induct n, auto simp: Const-0 Const-1 algebra-simps Const-add)
qed
lemma inter-v-pow-e: inter-R.eval $((v-t x \leadsto e) t)=$ inter-R.eval t
by (induct e, auto)
lemma inter-encode-monom: assumes $c: c \geq 0$
shows inter-R.eval (encode-monom y $m c$) $=$ Const (insertion (λ-. 1) (monom
$m c)) * P \operatorname{Var} y$
proof -
define xes where xes $=$ var-list m
from var-list[of $m c$]
have monom: monom $m c=$ Const $c *\left(\prod(x, e) \leftarrow x e s . P \operatorname{Var} x^{\wedge} e\right)$ unfolding xes-def.
show ?thesis unfolding encode-monom-def monom xes-def[symmetric]
proof (induct xes)
case Nil
show ?case by (simp add: inter-encode-num [OF c] insertion-Const)
next
case (Cons xe xes)
obtain x e where $x e$: $x e=(x, e)$ by force
show ?case by (simp add: xe inter-v-pow-e Cons Const-power
insertion-Const insertion-mult insertion-power insertion-Var Const-mult)
qed
qed
lemma inter-encode-poly: assumes positive-poly r shows inter-R.eval (encode-poly x r) $=$ Const (insertion (λ-.1) r) * PVar x
proof -
define $m c s$ where $m c s=$ monom-list r

```
    from monom-list[of r] have r: r=(\sum(m,c)\leftarrowmcs. monom m c) unfolding
mcs-def by auto
    have mcs: }(m,c)\in\mathrm{ set mcs }\Longrightarrowc\geq0\mathrm{ for m c
    using monom-list-coeff assms unfolding mcs-def positive-poly-def by auto
    show ?thesis unfolding encode-poly-def mcs-def[symmetric] unfolding r inser-
tion-sum-list map-map o-def
    using mcs
    proof (induct mcs)
    case (Cons mc mcs)
    obtain m c where mc: mc= (m,c) by force
    from Cons(2) mc have c:c\geq0 by auto
    note monom = inter-encode-monom[OF this, of x m]
    show ?case
            by (simp add: mc monom algebra-simps, subst Cons(1), insert Cons(2), auto
simp: Const-add algebra-simps)
    qed simp
qed
lemma valid-monotone-inter: inter-R.valid-monotone-poly-inter
    unfolding inter-R.valid-monotone-poly-inter-def
proof (intro ballI, unfold inter-R.valid-monotone-poly-def, clarify, intro conjI)
    fix f n
    assume f:(f,n) \inF-R
    have [simp]: vars (PVar 2 * PVar 3 + (PVar 0 :: int mpoly) + PVar (Suc 0)
+PVar 2 + PVar 3) ={0,1,2,3}
        unfolding vars-def apply (transfer, simp add: Varo-def image-comp) by
code-simp
    have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0)) ={0,1}
        unfolding vars-def apply (transfer, simp add: Varo-def image-comp) by
code-simp
    from f show vars (If)={..<n} unfolding F-R-def F-def by auto
    have insertion (\lambda -. 1) q\geq0
        by (rule insertion-positive-poly[OF - pq(2)], auto)
    with f show valid-poly (If) unfolding F-R-def F-def
        by (auto simp: valid-poly-def insertion-add assignment-def insertion-Var inser-
tion-mult insertion-Const)
    have x4:x<4\Longrightarrowx=0 \ > x=Suc 0 \vee x=2 \vee x=3 for x by linarith
    have x2: x<2\Longrightarrowx=0\vee 㧨 Suc 0 for x by linarith
    have tedious-case: inter-R.monotone-poly {..<4} (I f-sym) unfolding
        monotone-poly-wrt-def I.simps
    proof (intro allI impI, goal-cases)
        case (1 \alpha x v)
        have manual: (\alpha(x:=v)) 2* (\alpha(x:=v)) 3 \geq\alpha 2 * 人 3
            by (intro mult-mono, insert 1, auto simp: assignment-def dest: spec[of - 2])
            thus ?case unfolding insertion-add insertion-mult insertion-Var using 1 x4
by auto
    qed
    with f show inter-R.monotone-poly {..<n} (I f) unfolding F-R-def F-def
    by (auto simp: monotone-poly-wrt-def insertion-add insertion-mult insertion-Var
```

```
assignment-def
    dest: x4 x2)
qed
```

Lemma 3.6 in the paper
lemma orient- R-main: assumes assignment β
shows insertion β (inter-R.eval lhs- R) > insertion β (inter-R.eval rhs- R)
proof -
let $? \alpha=\lambda-.1$
have reason: insertion ? $\alpha q+\beta y 3+$ insertion ? $\alpha p *$ insertion ? $\alpha q * \beta y 3+$ insertion ? $\alpha p * 2 * \beta y 3 \geq 0$
by (intro add-nonneg-nonneg mult-nonneg-nonneg insertion-positive-poly pq, insert assms, auto simp: assignment-def)
show insertion β (inter-R.eval lhs- R) > insertion β (inter-R.eval rhs- R)
unfolding lhs-R-def rhs-R-def
using reason
by (simp add: inter-encode-poly[OF pq(1)] inter-encode-poly[OF pq(2)] insertion-add insertion-mult insertion-Const insertion-Var algebra-simps)
qed
lemma polynomial-termination- R : termination-by-int-poly-interpretation F - R R unfolding termination-by-int-poly-interpretation-def
proof (intro exI conjI)
interpret int-poly-inter $F-R I$
by (unfold-locales, rule valid-monotone-inter)
show int-poly-inter F-R I ..
show termination-by-poly-interpretation R
unfolding termination-by-interpretation-def termination-by-poly-interpretation-def R-def proof (clarify, intro conjI)
show inter-R.orient-rule (lhs-R,rhs-R)
unfolding inter-R.gt-poly-def inter-R.orient-rule
by (intro allI impI orient- R-main)
qed (insert lhs- $R-F$ rhs- $R-F$, auto)
qed
lemma polynomial-termination- R^{\prime} : termination-by-int-poly-interpretation $F-R R^{\prime}$ unfolding termination-by-int-poly-interpretation-def
proof (intro exI conjI)
interpret int-poly-inter F-R I
by (unfold-locales, rule valid-monotone-inter)
show int-poly-inter F-R I ..
show termination-by-poly-interpretation R^{\prime}
unfolding termination-by-poly-interpretation-def termination-by-interpretation-def R^{\prime}-def
proof (clarify, intro conjI)
show inter-R.orient-rule (lhs- R^{\prime}, rhs- R^{\prime})
unfolding inter-R.gt-poly-def inter-R.orient-rule
proof (intro allI impI)

```
    fix }\beta:: var m in
    assume ass:assignment }
    define zctxt where zctxt vs = z-contexts (map ( }\lambdai.(v-sym i, 1, 0)) vs) for
vs
    have zctxt: inter-R.eval (zctxt vs t) = inter-R.eval t for vs t
        unfolding zctxt-def z-contexts-def z-context-def by (induct vs, auto)
    have (insertion \beta (inter-R.eval lhs-R') > insertion \beta (inter-R.eval rhs-R'))
    \longleftrightarrow insertion }\beta\mathrm{ (inter-R.eval (zctxt V-list lhs-R))> insertion }\beta\mathrm{ (inter-R.eval
(zctxt V-list rhs-R))
            unfolding lhs-R'-def rhs-R'-def
            unfolding all-symbol-pos-ctxt-def contexts-def
            unfolding z-contexts-append zctxt-def[symmetric]
            by (simp add: z-contexts-def z-context-def nth-append)
            also have }\ldots\longleftrightarrow\mathrm{ insertion }\beta\mathrm{ (inter-R.eval lhs-R)> insertion }\beta\mathrm{ (inter-R.eval
rhs-R)
            unfolding zctxt ..
            also have ... by (rule orient-R-main[OF ass])
            finally show insertion \beta (inter-R.eval lhs-R')> insertion \beta (inter-R.eval
rhs-R') .
    qed
    qed (insert lhs-R'-F rhs-R'-F, auto)
qed
end
end
```


6 Undecidability of KBO with Subterm Coefficients

theory KBO-Subterm-Coefficients-Undecidable imports
Hilbert10-to-Inequality
Knuth-Bendix-Order.KBO
Linear-Poly-Termination-Undecidable
begin

lemma count-sum-list: count (sum-list ms) $x=\operatorname{sum-list}(\operatorname{map}(\lambda m$. count $m x)$ $m s$)
by (induct ms, auto)
lemma sum-list-scf-list-prod: sum-list $(\operatorname{map} f(s c f-l i s t ~ s c f a s))=$ sum-list $(\operatorname{map}(\lambda$ i. scf $i * f($ as ! i)) $[0 . .<$ length as $])$
unfolding scf-list-def
unfolding map-concat
unfolding sum-list-concat map-map o-def
apply (subst zip-nth-conv, force)
unfolding map-map o-def split
apply (rule arg-cong[of - sum-list])
by (intro nth-equalityI, auto simp: sum-list-replicate)

```
lemma count-vars-term-different-var: assumes x: x \not\in vars-term t
    shows count (vars-term-ms (scf-term scf t)) x=0
proof -
    from assms have x & vars-term (scf-term scf t)
        using vars-term-scf-subset by fastforce
    thus ?thesis
        by (simp add: count-eq-zero-iff)
qed
context kbo
begin
definition kbo-orientation :: ('f,'v)rule set }=>\mathrm{ bool where
    kbo-orientation R}=(\forall(l,r)\inR.fst (kbo l r))
end
definition kbo-with-sc-termination :: ('f,v)rule set }=>\mathrm{ bool where
    kbo-with-sc-termination R = (\exists ww0 sc least pr-strict pr-weak. admissible-kbo w
w0 pr-strict pr-weak least sc
    ^ kbo.kbo-orientation w w0 sc least pr-strict pr-weak R)
context poly-input
begin
context
    fixes sc
    assumes sc: sc (a-sym, Suc (Suc 0)) 0 = (1 :: nat)
        sc (a-sym, Suc (Suc 0)) (Suc 0) = 1
begin
lemma count-vars-term-encode-num-nat:
    count (vars-term-ms (scf-term sc (encode-num x (int n)))) x = n
    unfolding encode-num-def nat-int
    by (induct n, auto simp add: scf-list-def sc)
lemma count-vars-term-encode-num:
    c\geq0\Longrightarrow int (count (vars-term-ms (scf-term sc (encode-num x c))) x)=c
    using count-vars-term-encode-num-nat[of x nat c] by auto
lemma count-vars-term-v-pow-e:
    count (vars-term-ms (scf-term sc ((v-t x ~ e) t))) y
    =(sc (v-sym x,1) 0)^e * count (vars-term-ms (scf-term sc t)) y
proof (induct e)
    case (Suc e)
    thus ?case by (simp split: if-splits add: scf-list-def sum-mset-sum-list sum-list-replicate
count-sum-list sc)
qed force
lemma count-vars-term-encode-monom: assumes c:c\geq0
    shows int (count (vars-term-ms (scf-term sc (encode-monom x m c))) x)
```

```
    = insertion ( }\lambdav.\operatorname{int}(sc(v-sym v,1) 0)) (monom m c)
proof -
    define xes where xes = var-list m
    from var-list[of m c]
    have monom: monom m c C Const c* (\prod (x,e)\leftarrowxes. PVar x^e) unfolding
xes-def.
    show ?thesis unfolding encode-monom-def monom xes-def[symmetric]
    proof (induct xes)
        case Nil
        show ?case by (simp add: count-vars-term-encode-num[OF c] insertion-Const
sc)
    next
        case (Cons xe xes)
        obtain x e where xe: xe=(x,e) by force
        show ?case
            by (simp add: xe count-vars-term-v-pow-e Cons
                insertion-Const insertion-mult insertion-power insertion-Var when-def)
    qed
qed
Lemma 4.5
lemma count-vars-term-encode-poly-generic: assumes positive-poly r
    shows int (count (vars-term-ms (scf-term sc (encode-poly x r))) x)=
        insertion ( }\lambdav\mathrm{ v.int (sc (v-sym v,1) 0)) r
proof -
    define mcs where mcs= monom-list r
    from monom-list[of r] have r: r=(\sum(m,c)\leftarrowmcs. monom m c) unfolding
mcs-def by auto
    have mcs: }(m,c)\in\mathrm{ set mcs #c\0 for m c
        using monom-list-coeff assms unfolding mcs-def positive-poly-def by auto
    show ?thesis unfolding encode-poly-def mcs-def[symmetric] unfolding r inser-
tion-sum-list map-map o-def
            using mcs
    proof (induct mcs)
        case (Cons mc mcs)
        obtain m c where mc: mc= (m,c) by force
        from Cons(2) mc have c:c\geq0 by auto
        note monom = count-vars-term-encode-monom[OF this, of x m]
        show ?case
            apply (simp add: mc monom scf-list-def sc)
            apply (subst Cons(1))
            using Cons(2) by (auto simp: when-def)
    qed simp
qed
end
Theorem 4.6
theorem kbo-sc-termination- \(R\)-imp-solution:
assumes kbo-with-sc-termination \(R\)
```

shows positive-poly-problem pq
proof -
from assms[unfolded kbo-with-sc-termination-def] obtain wwo sc least pr-strict pr-weak
where
admissible-kbo w w0 pr-strict pr-weak least sc
and orient: kbo.kbo-orientation w wo sc least pr-strict pr-weak R
by blast
interpret admissible-kbo wwo pr-strict pr-weak least sc by fact
define l where $l i=$ args $l h s-R!i$ for i
define r where $r i=$ args rhs- $R!i$ for i
define as :: nat list where as $=[0,1,2,3]$
have upt-as: $[0 . .<$ length as $]=$ as unfolding as-def by auto
have lhs: lhs- $R=$ Fun f-sym (map las) unfolding lhs- R-def l-def as-def by simp
have rhs: rhs- $R=$ Fun f-sym (map r as) unfolding rhs- R-def r-def as-def by simp
from orient[unfolded kbo-orientation-def R-def]
have $f s t$ (k bo lhs- R rhs- R) by auto
from this[unfolded kbo.simps[of lhs-R]]
have vars-term-ms (SCF rhs-R) \subseteq \# vars-term-ms (SCF lhs-R) by (auto split: if-splits)
hence count: count (vars-term-ms (SCF rhs-R)) $x \leq$ count (vars-term-ms (SCF lhs-R)) x for x
by (rule mset-subset-eq-count)
let ?f $=(f$-sym, length as $)$
\{
fix i
assume $i: i \in$ set as
from i have vl: vars-term $(l i) \subseteq\{i\}$ unfolding l-def lhs- R-def as-def y1-def y2-def y3-def
using vars-encode-poly[of $i p]$ by auto
from count-vars-term-different-var[of-lisc]vl
have count-l-diff: $i \neq j \Longrightarrow$ count (vars-term-ms $(S C F(l i))) j=0$ for j by auto
from i have $v r$: vars-term $(r i) \subseteq\{i\}$ unfolding r-def rhs- R-def as-def y1-def y2-def y3-def
using vars-encode-poly[of $i q]$ by auto
from count-vars-term-different-var[of-risc]vr
have count-r-diff: $i \neq j \Longrightarrow$ count (vars-term-ms $(S C F(r i))) j=0$ for j by auto
\{
fix x
have count (vars-term-ms (SCF rhs-R)) x
$=$ sum-list (map (λ i. count (vars-term-ms (SCF (ri))) x) (scf-list (sc ?f)
as)) unfolding rhs
apply (simp add: o-def)
apply (unfold mset-map[symmetric] sum-mset-sum-list)
apply (unfold count-sum-list map-map o-def)
by simp
also have $\ldots=\left(\sum i \leftarrow a s . s c\right.$?f $i *$ count (vars-term-ms $(S C F(r($ as ! i) $)))$
unfolding sum-list-scf-list-prod upt-as ..
finally have count (vars-term-ms (SCF rhs-R)) $x=\left(\sum i \leftarrow a s\right.$. sc ?f $i *$ count (vars-term-ms $(S C F(r(a s!i)))) x)$.
$\}$ note count-rhs $=$ this
\{
fix x
have count (vars-term-ms (SCF lhs-R)) x $=\operatorname{sum-list}(m a p(\lambda$ i. count (vars-term-ms (SCF (l i))) x) (scf-list (sc ?f)
as)) unfolding $l h s$
apply (simp add: o-def)
apply (unfold mset-map[symmetric] sum-mset-sum-list)
apply (unfold count-sum-list map-map o-def)
by simp
also have $\ldots=\left(\sum i \leftarrow a s . s c\right.$?f $i *$ count (vars-term-ms $\left.(S C F(l(a s!i)))\right)$
x)
unfolding sum-list-scf-list-prod upt-as ..
finally have count (vars-term-ms (SCF lhs-R)) $x=\left(\sum i \leftarrow a s . s c\right.$?f $i *$ count (vars-term-ms $(S C F(l(a s!i)))) x)$.
$\}$ note count-lhs $=$ this
note count-lhs count-rhs count-l-diff count-r-diff
$\}$ note $c f=$ this[unfolded as-def]
let ?f $=(f$-sym, Suc $(S u c(S u c(S u c ~ 0))))$

\{

fix $i::$ nat
assume $i: i \in\{0,1,2,3\}$
have $s c$?f $i *$ count (vars-term-ms $(S C F(r i))) i=$ count (vars-term-ms (SCF rhs-R)) i
by (subst cf(2), insert i, auto simp add: cf)
also have $\ldots \leq$ count (vars-term-ms (SCF lhs-R)) i by fact
also have $\ldots=s c$?f $i *$ count (vars-term-ms (SCF (l i))) i
by (subst cf(1), insert i, auto simp add: cf)
finally have count (vars-term-ms $(S C F(r i))) i \leq$ count (vars-term-ms (SCF ($l i))$) i
using scf[of iSuc (Suc (Suc (Suc 0))) f-sym] i by auto
$\}$ note count-le $=$ this
from count-le[of 0 , unfolded r-def l-def rhs- R-def lhs- R-def y1-def]
have sc (a-sym, Suc (Suc 0)) $0 \leq 1$
apply simp
apply (unfold mset-map[symmetric] sum-mset-sum-list)
by (simp add: count-sum-list sum-list-scf-list-prod)
with scf[of 0 Suc (Suc 0) a-sym]
have a20: sc (a-sym, Suc (Suc 0)) 0 = 1 by auto
from count-le[of 1, unfolded r-def l-def rhs-R-def lhs-R-def y2-def]
have $s c(a$-sym, Suc (Suc 0)) $1 \leq 1$

```
    apply simp
    apply (unfold mset-map[symmetric] sum-mset-sum-list)
    by (simp add: count-sum-list sum-list-scf-list-prod)
    with scf[of 1 Suc (Suc 0) a-sym]
    have a21: sc (a-sym, Suc (Suc 0)) (Suc 0) = 1 by auto
    note encode = count-vars-term-encode-poly-generic[of sc, OF a20 a21]
    have Suc (count (vars-term-ms (SCF (encode-poly y3 q)) y3) = count (vars-term-ms
(SCF (r 2)))2
    by (simp add: r-def rhs-R-def scf-list-def a20 a21 y3-def)
    also have ...\leq count (vars-term-ms (SCF (l 2))) 2 using count-le[of 2] by
simp
    also have ... = Suc (count (vars-term-ms (SCF (encode-poly y3 p))) y3)
    by (simp add: l-def lhs-R-def scf-list-def a20 a21 y3-def)
    finally have int (count (vars-term-ms (SCF (encode-poly y3 q))) y3) \leq int
(count (vars-term-ms (SCF (encode-poly y3 p))) y3)
    by auto
    from this[unfolded encode[OF pq(1)] encode[OF pq(2)]]
    show ?thesis
    unfolding positive-poly-problem-def[OF pq]
    by (intro exI[of - \lambdav. int (sc (v-sym v,1) 0)], auto simp: positive-interpr-def
scf)
qed
end
context solvable-poly-problem
begin
definition w0 :: nat where w0 = 1
fun sc :: symbol }\times\mathrm{ nat }=>\mathrm{ nat }=>\mathrm{ nat where
    sc (v-sym i, Suc 0) - = nat (\alpha i)
| sc -- = 1
context fixes wr :: nat
begin
fun w-R :: symbol }\times\mathrm{ nat }=>\mathrm{ nat where
    w-R(f-sym,n)=(if n=4 then 0 else 1)
|}w-R(a-sym,n)=(\mathrm{ if }n=2\mathrm{ then 0 else 1)
| w-R(o-sym,0)=wr
| w-R - = 1
end
definition \(w\)-rhs where \(w\)-rhs \(=\) weight-fun.weight \((w-R 1)\) w0 sc rhs- \(R\)
abbreviation \(w\) where \(w \equiv w-R\)-rhs
definition least where least \(f=(w(f, 0)=w 0 \wedge(\forall g . w(g, 0)=w 0 \longrightarrow(g\),
```

$0::$ nat $)=(f, 0)))$
lemma $\alpha 0: \alpha x>0$ using $\alpha(1)$ unfolding positive-interpr-def by auto

```
sublocale admissible-kbo w w0 ( \(\lambda\)--. False) (=) least sc
    apply (unfold-locales)
    subgoal for \(f\) unfolding \(w 0-d e f\)
        by (cases \(f\), auto simp add: weight-fun.weight.simps w-rhs-def rhs-R-def)
    subgoal by ( simp add: w0-def)
    subgoal for \(f g n\) by (cases \(f\), auto)
    subgoal for \(f\) unfolding least-def by auto
    subgoal for \(i n f\) by (cases \(f\); cases \(n\); cases \(n-1\); auto intro: \(\alpha 0\) )
    by auto
lemma insertion-pos: positive-poly \(r \Longrightarrow\) insertion \(\alpha r \geq 0\)
    unfolding positive-poly-def by (smt (verit) \(\alpha 0\) insertion-nonneg)
lemma count-vars-term-encode-poly: assumes positive-poly \(r\)
    shows count (vars-term-ms (SCF (encode-poly \(x r)\) )) \(y=(\) nat (insertion \(\alpha\) r)
when \(x=y\) )
proof (cases \(y=x\) )
    case False
    with count-vars-term-different-var[of y encode-poly \(x\) r sc] vars-encode-poly[of \(x\)
\(r]\)
    show ?thesis by (auto simp: when-def)
next
    case \(y\) : True
    from count-vars-term-encode-poly-generic \([o f ~ s c-x, O F-\) - assms \(]\)
    have int (count (vars-term-ms (SCF (encode-poly x r))) x)
        \(=\) insertion \((\lambda v\).int \((s c(v-s y m ~ v, 1) 0)) r\) by auto
    also have \((\lambda v\). int \((s c(v\)-sym \(v, 1) 0))=\alpha\)
        by (intro ext, insert \(\alpha 0\), auto simp: order.order-iff-strict)
    finally show ?thesis unfolding \(y\)
        using insertion-pos[OF assms] by auto
qed
Theorem 4.7 in context
theorem kbo-with-sc-termination: kbo-with-sc-termination \(R\)
    unfolding kbo-with-sc-termination-def
proof (intro exI conjI)
    show admissible-kbo w w0 ( \(\lambda\)--. False) (=) least sc ..
    show kbo-orientation \(R\) unfolding \(R\)-def kbo-orientation-def
    proof (clarify)
        \{
            fix \(t::(\) symbol,var \()\) term
            assume \((o-s y m, 0) \notin\) funas-term \(t\)
            hence weight-fun.weight ( \(w-R(S u c 0)\) ) w0 sc \(t=\) weight \(t\) (is ?id \(t\) )
            proof (induct t)
                case (Var \(x\) )
```

```
            show ?case by (auto simp: weight-fun.weight.simps)
        next
            case (Funfts)
            hence t\in set ts \Longrightarrow ?id t for t by auto
            hence IH: map2 (\lambdati i. weight-fun.weight (w-R (Suc 0)) w0 sc ti * sc (f,
length ts) i) ts
                [0..<length ts]=
            map2 (\lambdati i. weight ti * sc (f, length ts) i) ts [0..<length ts]
            by (intro nth-equalityI, auto)
            have id:w-R (Suc 0) (f, length ts) =w (f, length ts)
            using Fun(2) by (cases f; cases ts, auto)
            show ?case by (auto simp: id weight-fun.weight.simps Let-def IH)
    qed
    } note weight-switch = this
    from funas-encode-poly-q[of y3]
    have o-q: (o-sym,0) & funas-term (encode-poly y3 q) by (auto simp: F-def)
    have weight rhs-R=3+3*w0 + weight (encode-poly y3 q)
    unfolding rhs-R-def by (simp add: scf-list-def)
    also have ... = w-rhs unfolding weight-switch[OF o-q, symmetric]
    unfolding w-rhs-def rhs-R-def by (simp add: weight-fun.weight.simps)
    also have ...<w0 + w-rhs using w0 by auto
    also have ... \leq weight lhs-R unfolding lhs-R-def
        by (simp add: scf-list-def)
    finally have weight: weight rhs-R < weight lhs-R .
    from \alpha(2) insertion-pos[OF pq(1)] insertion-pos[OF pq(2)]
    have sol: nat (insertion \alpha q) \leq nat (insertion \alpha p) by auto
    have vars: vars-term-ms (SCF rhs-R)\subseteq# vars-term-ms (SCF lhs-R)
    proof (intro mset-subset-eqI)
            fix }
            show count (vars-term-ms (SCF rhs-R)) x \leq count (vars-term-ms (SCF
lhs-R)) x
            unfolding rhs-R-def lhs-R-def using y-vars sol
        by (simp add: scf-list-def count-vars-term-encode-poly[OF pq(1)] count-vars-term-encode-poly[OF
pq(2)])
    qed
    from weight vars show fst (kbo lhs-R rhs-R)
        unfolding kbo.simps[of lhs-R rhs-R] by auto
    qed
qed
end
```

Theorem 4.7 outside solvable-context
context poly-input
begin
theorem solvable-imp-kbo-with-sc-termination:
assumes positive-poly-problem p q
shows kbo-with-sc-termination R

```
by (rule solvable-poly-problem.kbo-with-sc-termination, unfold-locales, fact)
```


Combining 4.6 and 4.7

corollary solvable-iff-kbo-with-sc-termination:
positive-poly-problem $p q \longleftrightarrow$ kbo-with-sc-termination R
using solvable-imp-kbo-with-sc-termination kbo-sc-termination-R-imp-solution by blast
end
end

7 Undecidability of Polynomial Termination over Integers

theory Poly-Termination-Undecidable

imports
Linear-Poly-Termination-Undecidable
Preliminaries-on-Polynomials-2
begin
context poly-input
begin
definition $y_{4}::$ var where $y_{4}=3$
definition $y 5::$ var where $y 5=4$
definition $y 6::$ var where $y 6=5$
definition $y 7$:: var where $y 7=6$
abbreviation $q-t$ where $q-t t \equiv$ Fun $q-s y m[t]$
abbreviation $h-t$ where h - $t t \equiv$ Fun h-sym $[t]$
abbreviation g - t where g - $t t 1 t 2 \equiv$ Fun g-sym $[t 1, ~ t 2]$
Definition 5.1
definition lhs-S = Fun f-sym [
Var y1,
Var y2,
a-t (encode-poly y3 p) (Var y3),
$q-t(h-t(\operatorname{Var} y 4))$,
$h-t$ (Var y5),
$h-t$ (Var y6),
$g-t\left(\right.$ Var $\left.\left.y^{7}\right) \quad o-t\right]$
definition rhs-S $=$ Fun f-sym [
$a-t$ (Var y1) $z-t$,
$a-t z-t($ Var $y 2)$,
a-t (encode-poly y3 q) (Var y3),
$h-t(h-t(q-t(\operatorname{Var} y 4)))$,
foldr v-t V-list (a-t (Var y5) (Var y5)),
Fun f-sym (replicate 7 (Var y6)),

```
    g-t(Var y7) z-t]
definition S where S={(lhs-S, rhs-S)}
definition F-S where F-S ={(f-sym,7),(h-sym,1),(g-sym,2),(o-sym,0),(q-sym,1)}
\cupF
lemma lhs-S-F: funas-term lhs-S\subseteqF-S
proof -
    from funas-encode-poly-p
    show funas-term lhs-S \subseteqF-S unfolding lhs-S-def by (auto simp:F-S-def F-def)
qed
lemma funas-fold-vs[simp]: funas-term(foldr v-t V-list t)=(\lambda i.(v-sym i,1))'V
\cup \text { funas-term t}
proof -
    have id: funas-term (foldr v-t xs t)=(\lambda i.(v-sym i,1))'set xs \cup funas-term t
for xs
            by (induct xs,auto)
    show ?thesis unfolding id
        by (auto simp: V-list)
qed
lemma vars-fold-vs[simp]: vars-term (foldr v-t vs t)=vars-term t
    by (induct vs, auto)
lemma funas-term-r5: funas-term (foldr v-t V-list (a-t (Var y5) (Var y5))) \subseteqF-S
    by (auto simp: F-S-def F-def)
lemma rhs-S-F: funas-term rhs-S \subseteqF-S
proof -
    from funas-encode-poly-q funas-term-r5
    show funas-term rhs-S \subseteqF-S unfolding rhs-S-def by (auto simp: F-S-def F-def)
qed
end
lemma poly-inter-eval-cong: assumes }\bigwedgefa.(f,a)\in funas-term t\LongrightarrowIf=\mp@subsup{I}{}{\prime}
    shows poly-inter.eval It = poly-inter.eval I' }
    using assms
proof (induct t)
    case (Var x)
    show ?case by (simp add: poly-inter.eval.simps)
next
    case (Funfts)
    {
    fix }
    assume i< length ts
    hence ts!i\in set ts
```

```
        by auto
    with Fun(1)[OF this Fun(2)]
    have poly-inter.eval \(I(t s!i)=\) poly-inter.eval \(I^{\prime}(t s!i)\) by force
    \} note \(I H=\) this
    from \(\operatorname{Fun}(2)\) have \(I f=I^{\prime} f\) by auto
    thus ?case using \(I H\)
    by (auto simp: poly-inter.eval.simps insertion-substitute intro!: mpoly-extI in-
sertion-irrelevant-vars)
qed
The easy direction of Theorem 5.4
context solvable-poly-problem
begin
definition \(c-S\) where \(c-S=\max 7(2 * \operatorname{prod}-\) list \((\operatorname{map} \alpha \quad V\)-list \())\)
lemma \(c-S\) : \(c-S>0\) unfolding \(c\) - \(S\)-def by auto
fun \(I-S::\) symbol \(\Rightarrow\) int mpoly where
\(I\)-S f-sym \(=P \operatorname{Var} 0+P \operatorname{Var} 1+P \operatorname{Var} 2+P \operatorname{Var} 3+P \operatorname{Var} 4+P \operatorname{Var} 5+\) PVar 6
\(\mid I-S a-\) sym \(=P \operatorname{Var} 0+P \operatorname{Var} 1\)
| \(I\)-S \(z\)-sym \(=0\)
| \(I-S\) o-sym \(=1\)
\(I-S(v\)-sym \(i)=\) Const \((\alpha i) * P \operatorname{Var} 0\)
| I-S q-sym \(=\) mmonom \((\) monomial 20\() c-S-c *(P \operatorname{Var} 0)^{2}\)
\(\mid I-S g\)-sym \(=P \operatorname{Var} 0+P \operatorname{Var} 1\)
\(\mid I-S h\)-sym \(=\) mmonom \((\) monomial 10\() c-S-c * P \operatorname{Var} 0\)
declare single-numeral[simp del]
declare insertion-monom[simp del]
interpretation inter-S: poly-inter F-S I-S (>).
lemma inter-S-encode-poly: assumes positive-poly \(r\)
shows inter-S.eval (encode-poly x \(r\) ) \(=\) Const (insertion \(\alpha r) * P \operatorname{Var} x\)
by (rule inter-encode-poly-generic[OF - - assms], auto)
lemma valid-monotone-inter-S: inter-S.valid-monotone-poly-inter
unfolding inter-S.valid-monotone-poly-inter-def
proof (intro ballI)
fix \(f n\)
assume \(f: f n \in F-S\)
show inter-S.valid-monotone-poly \(f n\)
proof (cases \(f n \in F\) )
case True
show inter-S.valid-monotone-poly fn
by (rule valid-monotone-inter- \(F[O F \cdots-\alpha(1)\) True \(]\), auto)
next
```

```
    case False
    with f have f: fn \inF-S -F by auto
    have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0) + PVar 2 + PVar 3
+PVar 4 + PVar 5 + PVar 6) ={0,1,2,3,4,5,6}
        unfolding vars-def apply (transfer', simp add: Varo-def image-comp) by
code-simp
    have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0)) ={0,1}
        unfolding vars-def apply (transfer', simp add: Varo-def image-comp) by
code-simp
    show ?thesis unfolding inter-S.valid-monotone-poly-def using f
    proof (intro ballI impI allI, clarify, intro conjI)
        fix fn
        assume f:(f,n)\inF-S (f,n)\not\inF
        from f show vars (I-S f)={..<n} unfolding F-S-def using c-S
                by (auto simp: vars-monom-single-cases)
            from f c-S show valid-poly (I-S f) unfolding F-S-def
                by (auto simp: valid-poly-def insertion-add assignment-def)
            have x2: x < 2 \Longrightarrowx=0\vee x=Suc 0 for x by linarith
            have x7: x < 7 \Longrightarrowx=0 \vee x=Suc 0 \vee x=2 2 v x=3 ` x = 4 \vee x= 5
\veex=6 for x by linarith
            from f c-S show inter-S.monotone-poly {..<n} (I-S f) unfolding F-S-def
            by (auto simp: monotone-poly-wrt-def insertion-add assignment-def power-strict-mono
                dest: x2 x7)
    qed
    qed
qed
interpretation inter-S: int-poly-inter F-S I-S
proof
    show inter-S.valid-monotone-poly-inter by (rule valid-monotone-inter-S)
qed
lemma orient-trs: inter-S.termination-by-poly-interpretation S
    unfolding inter-S.termination-by-poly-interpretation-def
        inter-S.termination-by-interpretation-def S-def inter-S.orient-rule
proof (clarify, intro conjI)
    have lhs-S: inter-S.eval lhs-S=
        (PVar y1 +
        PVar y2 +
        (Const (insertion \alpha p) + 1)*PVar y3 +
        (Const c-S)^3 * (PVar y4)^2 +
        Const c-S * PVar y 5 +
        Const c-S * PVar y6 +
        PVar y7) +
        1
        unfolding lhs-S-def by (simp add: inter-S-encode-poly[OF pq(1)]
            power2-eq-square power3-eq-cube algebra-simps)
    have foldr: inter-S.eval (foldr (\lambdait. Fun (v-sym i) [t]) V-list (Fun a-sym [TVar
y5, TVar y5])) =
```

```
    Const (prod-list (map \alpha V-list)) * 2 * PVar y5
    by (subst inter-foldr-v-t, auto)
    have rhs-S: inter-S.eval rhs-S=
    (PVar y1 +
    PVar y2 +
    (Const (insertion \alpha q) + 1) * PVar y3 +
    (Const c-S)^3 * (PVar y4 )
    Const (prod-list (map \alpha V-list)) * 2 * PVar y5 +
    7* PVar y6 +
    PVar y7) +
    O
    unfolding rhs-S-def by (simp add: inter-S-encode-poly[OF pq(2)] Const-add
        power2-eq-square power3-eq-cube algebra-simps foldr)
    show inter-S.gt-poly (inter-S.eval lhs-S) (inter-S.eval rhs-S)
    unfolding inter-S.gt-poly-def
proof (intro allI impI)
    fix }\beta:: var => in
    assume ass: assignment \beta
    hence }\beta:\bigwedgex.\betax\geq0\mathrm{ unfolding assignment-def by auto
    have \alpha0:\alphax\geq0 for x using \alpha(1)[unfolded positive-interpr-def, rule-format,
of x] by auto
    from c-S have c0:c-S\geq0 by simp
    have 7:7 = (Const 7 :: int mpoly) by code-simp
    have 2:2 = (Const 2 :: int mpoly) by code-simp
    have ins7: insertion \beta 7 = (7 :: int) unfolding 7 insertion-Const by simp
    have ins2: insertion \beta 2 = (2 :: int) unfolding 2 insertion-Const by simp
    show insertion \beta (inter-S.eval lhs-S) > insertion }\beta\mathrm{ (inter-S.eval rhs-S)
        unfolding lhs-S rhs-S insertion-add ins7 ins2 insertion-mult insertion-Var
insertion-Const insertion-Const insertion-power
    proof (intro add-le-less-mono add-mono mult-mono add-nonneg-nonneg zero-le-power
\alpha(2) }\betac0\mathrm{ )
            show 0 \leq insertion \alpha p by (intro insertion-positive-poly[OF \alpha0 pq(1)])
            show 7 \leqc-S unfolding c-S-def by auto
            show prod-list (map \alpha V-list)* 2 \leqc-S unfolding c-S-def by simp
    qed (force+)
    qed
qed (insert lhs-S-F rhs-S-F, auto)
lemma solution-imp-poly-termination: termination-by-int-poly-interpretation F-S
S
    unfolding termination-by-int-poly-interpretation-def
    by (intro exI, rule conjI[OF - orient-trs], unfold-locales)
end
```


Towards Lemma 5.2

lemma (in int-poly-inter) monotone-imp-weakly-monotone: assumes monotone-poly xs p
shows weakly-monotone-poly xs p
unfolding monotone-poly-wrt-def proof (intro allI impI)
fix $\alpha::$ var \Rightarrow int and $x v$
assume assignment $\alpha x \in x s \quad \alpha \leq v$
from assms[unfolded monotone-poly-wrt-def, rule-format, OF this(1-2), of v] this(3)
show insertion $\alpha p \leq$ insertion $(\alpha(x:=v)) p$
by (cases $\alpha x<v$, auto)
qed
context
fixes $g t::$ ' a :: linordered-idom $\Rightarrow{ }^{\prime} a \Rightarrow$ bool
assumes trans-gt: transp gt
and gt-imp-ge: $\bigwedge x y$. gt $x y \Longrightarrow x \geq y$
begin
lemma monotone-poly-wrt-insertion-main: assumes monotone-poly-wrt gt xs p and a : assignment ($a::$ var $\Rightarrow^{\prime} a$:: linordered-idom)
and $b: \bigwedge x . x \in x s \Longrightarrow g t^{==}(b x)(a x)$

$$
\bigwedge x . x \notin x s \Longrightarrow a x=b x
$$

shows $g t^{=}=($insertion $b p)($ insertion a $p)$
proof -
from sorted-list-of-set(1)[OF vars-finite[of p]] sorted-list-of-set[of vars p] obtain ys where
$y s p:$ set $y s=$ vars p and dist: distinct ys by auto
define c where $c y s=(\lambda x$. if $x \in$ set ys then $a x$ else $b x)$ for $y s$
have ass: assignment ($c y s$) for $y s$ unfolding assignment-def
proof
fix x
show $0 \leq c$ ys x using $b[$ of $x]$ a[unfolded assignment-def, rule-format, of $x]$ gt-imp-ge[of blall
unfolding c-def by auto linarith
qed
have id: insertion a $p=$ insertion (c ys) p unfolding c-def ysp
by (rule insertion-irrelevant-vars, auto)
also have $g t \wedge=($ insertion $b p)($ insertion $(c y s) p)$ using dist
proof (induct ys)
case Nil
show ?case unfolding c-def by auto

next

case (Cons x ys)
show ?case
proof (cases $x \in x s$)
case False
from $b(2)[O F$ this $]$ have c (Cons $x y s)=c$ ys
unfolding c-def by auto
thus ?thesis using Cons by auto
next
case True

```
    from b(1)[OF this] have ab: gt == ( }bx)(ax)\mathrm{ by auto
    let ?c = c(Cons x ys)
    have id1: c ys =? c(x:= b x)
        using Cons(2) unfolding c-def by auto
    have id2: c (x#ys) x =ax using True unfolding c-def by auto
    have IH:gt^==(insertion b p)(insertion (c ys) p) using Cons by auto
    have gt^==(insertion (?c(x:=b x)) p)(insertion ?c p)
    proof (cases b x = a x)
        case True
        hence ?c(x:= b x) =?c using id1 id2
            by (intro ext, auto)
        thus ?thesis by simp
    next
        case False
        with ab have ab:gt (bx) (ax) by auto
        have gt(insertion (?c(x:=b x)) p)(insertion ?c p)
        proof (rule assms(1)[unfolded monotone-poly-wrt-def, rule-format, OF ass
True])
            show gt (b x) (c (x # ys) x) unfolding id2 by fact
        qed
        thus ?thesis by auto
        qed
        also have insertion (?c(x:= b x)) p=insertion (c ys) p unfolding id1 ..
        finally have gt^==(insertion (c ys) p) (insertion (c (x#ys)) p).
        from transpE[OF trans-gt] IH this
        show ?thesis by auto
        qed
    qed
    finally show ?thesis.
qed
lemma monotone-poly-wrt-insertion: assumes monotone-poly-wrt gt (vars p) p
    and a: assignment ( }a::\mathrm{ var }=>\mp@subsup{}{}{\prime}a\mp@code{:: linordered-idom)
    and b:\bigwedgex.x\in vars p\Longrightarrowgt== (bx) (ax)
shows gt== (insertion b p)(insertion a p)
proof -
    define b' where b}\mp@subsup{b}{}{\prime}x=(\mathrm{ if }x\in\mathrm{ vars p then b x else a x) for x
    have gt^==(\mathrm{ insertion b}}\mp@subsup{b}{}{\prime}p)(\mathrm{ insertion a p)
        by (rule monotone-poly-wrt-insertion-main[OF assms(1-2)], insert b, auto
simp: b'-def)
    also have insertion b' p=insertion b p
    by (rule insertion-irrelevant-vars, auto simp: b'-def)
    finally show ?thesis.
qed
lemma partial-insertion-mono-wrt: assumes mono: monotone-poly-wrt gt (vars p) \(p\)
and a: assignment a
and \(b: \bigwedge y \cdot y \neq x \Longrightarrow g t^{==}(b y)(a y)\)
```

```
    and \(d: \wedge y . y \geq d \Longrightarrow g t^{==} y 0\)
    shows \(\exists c . \forall y . y \geq d \longrightarrow c \leq\) poly (partial-insertion a \(x\) p) y
    \(\wedge\) poly (partial-insertion a \(x p\) ) \(y \leq\) poly (partial-insertion \(b x p\) ) \(y\)
proof -
    define \(p a\) where \(p a=\) partial-insertion a \(x p\)
    define \(p b\) where \(p b=\) partial-insertion \(b x p\)
    define \(c\) where \(c=\operatorname{insertion}(a(x:=0)) p\)
    \{
    fix \(y::^{\prime} a\)
    assume \(y: y \geq d\)
    with \(d\) have gty: gt \(==y 0\) by auto
    from \(a\) have ass: assignment \((a(x:=0))\) unfolding assignment-def by auto
    from monotone-poly-wrt-insertion[OF mono ass, of \(a(x:=y)\) ]
    have \(g t^{==}(\)insertion \((a(x:=y)) p)(\) insertion \((a(x:=0)) p)\) using gty by
auto
    from this[folded c-def] gt-imp-ge[of - c]
    have \(c \leq \operatorname{insertion}(a(x:=y)) p\) by auto
    \(\}\) note \(l e-c=\) this
    \{
    fix \(y::{ }^{\prime} a\)
    assume \(y: y \geq d\)
    with \(d\) have gty: \(g t^{==} y 0\) by auto
        from \(y\) a gty gt-imp-ge[of \(y]\) have ass: assignment \((a(x:=y)\) ) unfolding
assignment-def by auto
    from monotone-poly-wrt-insertion[OF mono this, of \(b(x:=y)\) ]
    have \(g t^{==}(\)insertion \((b(x:=y)) p)(\) insertion \((a(x:=y)) p)\)
        using \(b\) by auto
    with gt-imp-ge
    have insertion \((a(x:=y)) p \leq\) insertion \((b(x:=y)) p\) by auto
    \(\}\) note \(l e-a b=\) this
    have id: poly (partial-insertion a x p) y=insertion \((a(x:=y)) p\) for \(a y\)
    using insertion-partial-insertion \([\) of \(x\) a \(a(x:=y) p\) by auto
    \{
    fix \(y\) :: ' \(a\)
    assume \(y: y \geq d\)
    from le-ab[OF \(y\), folded id, folded pa-def pb-def]
    have poly pa \(y \leq\) poly \(p b y\) by auto
    \(\}\) note le1 \(=\) this
    show ?thesis
    proof (intro exI \([o f-c]\), intro allI impI conjI le1 [unfolded pa-def pb-def])
    fix \(y\) :: ' \(a\)
    assume \(y: y \geq d\)
    show \(c \leq\) poly (partial-insertion a \(x\) p) y using le-c[OF y] unfolding \(i d\).
    qed
qed
context
    assumes poly-pinfty-ge: \(\bigwedge p b .0<\) lead-coeff \(\left(p::{ }^{\prime} a \operatorname{poly}\right) \Longrightarrow\) degree \(p \neq 0\)
\(\Longrightarrow \exists n . \forall x \geq n . b \leq\) poly \(p x\)
```


begin

```
context
    fixes pd
    assumes mono: monotone-poly-wrt gt (vars p) p
    and d: \bigwedge y. y \geqd\Longrightarrowgt== y 0
begin
lemma degree-partial-insertion-mono-generic: assumes
        a: assignment a
    and b: \bigwedge y. y =x\Longrightarrowgt== (b y) (a y)
    shows degree (partial-insertion a x p) \leq degree (partial-insertion b x p)
proof -
    define qa where qa= partial-insertion a x p
    define qb where qb = partial-insertion b x p
    from partial-insertion-mono-wrt[OF mono a b d, of x d]
    obtain c}\mathrm{ where c:\ y. y \d ב c s poly qa y
        and ab:\ \. y \geqd \Longrightarrow poly qa y \leq poly qb y
        by (auto simp: qa-def qb-def)
    show ?thesis
    proof (cases degree qa = 0)
        case True
        thus ?thesis unfolding qa-def by auto
    next
        case False
        let ?lc = lead-coeff
    have lc-pos: ?lc qa > 0
    proof (rule ccontr)
            assume \neg ?thesis
            with False have ?lc qa<0 using leading-coeff-neq-0 by force
            hence ?lc (-qa)>0 by simp
            from poly-pinfty-ge[OF this, of - c + 2] False
            obtain n where le: \bigwedgex. x \geq n\Longrightarrow-c+2 2 - poly qa x by auto
            from le[of max n d] c[of max n d] show False by auto
    qed
            from this ab have degree qa \leq degree qb by (intro degree-mono-generic[OF
poly-pinfty-ge], auto)
    thus ?thesis unfolding qa-def qb-def by auto
    qed
qed
lemma degree-partial-insertion-stays-constant-generic:
    \exists a. assignment a ^
    (\forall b. (\forally.gt== (b y) (a y)) \longrightarrow degree (partial-insertion a x p) = degree
(partial-insertion b x p)
proof -
    define }n\mathrm{ where }n=m\mathrm{ megree }p
    define pi where pi a = partial-insertion a x p for a
    have n: assignment a\Longrightarrowdegree (pi a) \leq n for a unfolding n-def pi-def
```

```
    by (rule degree-partial-insertion-bound)
    thus ?thesis unfolding pi-def[symmetric]
    proof (induct n rule: less-induct)
    case (less n)
    show ?case
    proof (cases \exists a. assignment a ^ degree (pi a)=n)
            case True
    then obtain a where a: assignment a and deg: degree (pi a)=n by auto
    show ?thesis
    proof (intro exI[of - a] conjI a allI impI)
            fix b
            assume ge: }\forally.g\mp@subsup{t}{}{==}(by)(ay
            with a gt-imp-ge[of b y a y for y] have b: assignment b unfolding assign-
ment-def
            using order-trans[of 0 a y for y] by fastforce
            have degree (pi a) \leq degree (pi b)
                by (rule degree-partial-insertion-mono-generic[OF a, of x b, folded pi-def],
insert ge, auto)
            with less(2)[of b] deg b
            show degree (pi a) = degree (pi b) by simp
        qed
    next
            case False
            with less(2) have deg: assignment b\Longrightarrowdegree (pi b)<n for b by fastforce
            have ass: assignment ( }\lambda\mathrm{ -. 0 :: 'a) unfolding assignment-def by auto
            define m}\mathrm{ where m}=n-
            from deg[OF ass] have mn: m<n and less-id: }x<n\longleftrightarrowx\leqm\mathrm{ for }
unfolding m-def by auto
            from less(1)[OF mn deg[unfolded less-id]] show ?thesis by auto
    qed
    qed
qed
end
lemma monotone-poly-partial-insertion-generic:
    assumes delta-order: \ x y.gt y x \longleftrightarrowy\geqx+\delta
        and delta: }\delta>
        and eps-delta: }\varepsilon*\delta\geq
        and ceil-nat: \ x :: 'a. of-nat (ceil-nat x) \geqx
    assumes x: x \in xs
    and mono: monotone-poly-wrt gt xs p
    and ass: assignment a
shows 0<degree (partial-insertion a x p)
    lead-coeff (partial-insertion a x p)>0
    valid-poly p\Longrightarrow poly (partial-insertion a x p) (\delta* of-nat y) \geq\delta* of-nat y
proof -
    define q}\mathrm{ where q= partial-insertion a x p
    {
    fix w1 w2:: 'a
```

assume w: $0 \leq w 1$ gt w2 w1
from gt-imp-ge $[O F w(2)] w$ have $w 2: w 2 \geq 0$ by auto
have assw: assignment $(a(x:=w 1))$ using ass $w(1) w 2$ unfolding assign-ment-def by auto
note main $=$ insertion-partial-insertion $[$ of $x-p$, symmetric $]$
have gt (insertion $(a(x:=w \mathcal{2})) p)($ insertion $(a(x:=w 1)) p)$
using mono[unfolded monotone-poly-wrt-def, rule-format, OF assw x, of w2] by (auto simp: w)
also have insertion ($a(x:=$ w2 $)$) $p=$ poly (partial-insertion a x p) w2 using main[of a $a(x:=w 2)]$ by auto
also have insertion $(a(x:=w 1)) p=$ poly (partial-insertion a x p) w1 using main[of a $a(x:=w 1)]$ by auto
finally have $g t$ (poly q w2) (poly q w1) by (auto simp: q-def)
$\}$ note $g t=t h i s$
have $0 \leq a x$ using ass unfolding assignment-def by auto
from $g t[O F$ this, of $a x+\delta]$ have poly $q(a x) \neq \operatorname{poly} q(a x+\delta)$ unfolding delta-order using delta by auto
hence deg: degree $q>0$
using degree0-coeffs $[$ of q] by force
show $0<$ degree (partial-insertion a $x p$) unfolding q-def[symmetric] by fact
have unbounded: poly $q(\delta *$ of-nat $n) \geq$ poly $q 0+\delta *$ of-nat n for n
proof (induct n)
case (Suc n)
have poly $q 0+\delta *$ of-nat (Suc $n)=($ poly $q 0+\delta *$ of-nat $n)+\delta$ by $($ simp add: algebra-simps)
also have $\ldots \leq$ poly $q(\delta *$ of-nat $n)+\delta$ using Suc by simp
also have $\ldots \leq$ poly $q(\delta *$ of-nat $n+\delta)$
by (rule gt[unfolded delta-order], insert delta, auto)
finally show? case by (simp add: algebra-simps)
qed force
let $? l c=$ lead-coeff
have ?lc $q>0$
proof (rule ccontr)
define d where $d=$ poly $q 0$
assume \neg ?thesis
hence ?lc $q \leq 0$ by auto
moreover have ?lc $q \neq 0$ using deg by auto
ultimately have ?lc $q<0$ by auto
hence ?lc $(-q)>0$ by auto
from poly-pinfty-ge $[O F$ this, of $-d] \operatorname{deg}$ obtain n where $l e: ~ \bigwedge x . x \geq n \Longrightarrow$ $-d \leq-$ poly $q x$ by auto
have $d: x \geq n \Longrightarrow d \geq$ poly $q x$ for x using $l e[o f x]$ by linarith
define m where $m=\varepsilon *(\max n 0+1)$
from eps-delta delta have eps: $\varepsilon>0$
by (metis mult.commute order-less-le-trans zero-less-mult-pos zero-less-one)
hence m : $m>0$ unfolding m-def by auto
from ceil-nat[of m] m have cm : ceil-nat $m>0$
using linorder-not-less by force

```
    have poly \(q(\delta *\) of-nat \((\) ceil-nat \(m)) \leq d\)
    proof (rule d)
    have \(n \leq \max n 0 * 1\) by simp
    also have \(\ldots \leq \max n 0 *(\varepsilon * \delta)\) using eps-delta
        by (simp add: max-def)
    also have \(\ldots=\delta * m-\delta * \varepsilon\) unfolding \(m\)-def by (simp add: field-simps)
    also have \(\ldots \leq \delta * m\) using eps-delta by (auto simp: ac-simps)
    also have \(\ldots \leq \delta *\) of-nat (ceil-nat m)
            by (rule mult-left-mono[OF ceil-nat], insert delta, auto)
    finally show \(n \leq \delta *\) of-nat (ceil-nat m).
    qed
    also have \(\ldots<\) poly \(q 0+\delta *\) of-nat (ceil-nat m) unfolding d-def using
delta cm by auto
    also have \(\ldots \leq\) poly \(q(\delta *\) of-nat (ceil-nat \(m)\) ) by (rule unbounded)
    finally show False by simp
qed
thus lead-coeff \(q>0\) unfolding \(q\)-def.
assume valid: valid-poly \(p\)
\{
    fix \(y\) :: nat
    let \(? y=\delta *\) of-nat \(y\)
    from unbounded [of \(y\) ]
    have poly \(q\) ? \(y \geq\) poly \(q 0+\) ? \(y\).
    moreover have poly q \(0=\) insertion \((a(x:=0)) p\) unfolding \(q\)-def
        using insertion-partial-insertion \([\) of \(x\) a \(a(x:=0) p\) by auto
    moreover have ... \(\geq 0\)
            by (intro valid[unfolded valid-poly-def, rule-format], insert ass, auto simp:
assignment-def)
    ultimately have poly \(q\) ? \(y \geq\) ? \(y\) by auto
    thus poly (partial-insertion a \(x\) p) ?y \(\geq\) ? \(y\) unfolding \(q\)-def.
    \(\}\) note \(g e=t h i s\)
qed
end
end
context poly-inter
begin
lemma monotone-poly-eval-generic:
    assumes valid: valid-monotone-poly-inter
        and trans-gt: transp ( \(\succ\) )
        and gt-imp-ge: \(\bigwedge x y . x \succ y \Longrightarrow y \leq x\)
        and gt-exists: \(\bigwedge x . x \geq 0 \Longrightarrow \exists y . y \succ x\)
        and gt-irrefl: \(\bigwedge x . \neg(x \succ x)\)
        and \(t F\) : funas-term \(t \subseteq F\)
    shows monotone-poly (vars-term \(t\) ) (eval \(t\) ) vars (eval \(t)=\) vars-term \(t\)
proof -
    have monotone-poly (vars-term \(t\) ) (eval \(t) \wedge\) vars (eval \(t)=\) vars-term \(t\) using
```

```
tF
    proof (induct t)
        case (Var x)
        show ?case by (auto simp: monotone-poly-wrt-def)
    next
        case (Fun fts)
    {
        fix }
        assume t set ts
        with Fun(1)[OF this] Fun(2)
        have monotone-poly (vars-term t) (eval t)
                vars (eval t) = vars-term t
            by auto
    } note IH = this
    let ?n = length ts
    let ?f = (f,?n)
    define p}\mathrm{ where }p=I
    from Fun have ?f }\inF\mathrm{ by auto
        from valid[unfolded valid-monotone-poly-inter-def, rule-format, OF this, un-
folded valid-monotone-poly-def]
    have valid: valid-poly p and mono: monotone-poly (vars p) p and vars: vars p
={..<?n}
            unfolding p-def by auto
    have wm: assignment b\Longrightarrow(\bigwedgex. x v vars p\Longrightarrow(\succ)== (a x) (b x)) \Longrightarrow(\succ)==
(insertion a p)(insertion b p)
            for b a using monotone-poly-wrt-insertion[OF trans-gt gt-imp-ge mono] by
auto
    have id: eval (Fun fts)= substitute (\lambdai. if i< length ts then eval (ts!i) else
0) p
    unfolding eval.simps p-def[symmetric] id by simp
    have mono: monotone-poly (vars-term (Fun fts)) (eval (Fun fts))
        unfolding monotone-poly-wrt-def
    proof (intro allI impI)
        fix \alpha ::- >' 'a and x v
        assume \alpha: assignment \alpha
            and x:x v vars-term (Fun fts)
            and v:v\succ\alphax
        define }\beta\mathrm{ where }\beta=\alpha(x:=v
        define }\mp@subsup{\alpha}{}{\prime}\mathrm{ where }\mp@subsup{\alpha}{}{\prime}=(\lambda\mathrm{ i. if }i<\mathrm{ ? n then insertion }\alpha(\mathrm{ eval (ts!i)) else 0)
        define }\mp@subsup{\beta}{}{\prime}\mathrm{ where }\mp@subsup{\beta}{}{\prime}=(\lambda\mathrm{ i. if }i<\mathrm{ ? ? then insertion }\beta\mathrm{ (eval (ts!i)) else 0)
        {
            fix }
            assume n:i<?n
            hence tsi: ts !i\in set ts by auto
            {
                assume x \in vars-term (ts !i)
                from IH(1)[OF tsi, unfolded monotone-poly-wrt-def, rule-format, OF \alpha
this v]
```

have ins: $\beta^{\prime} i \succ \alpha^{\prime} i$ unfolding β-def α^{\prime}-def β^{\prime}-def using n by auto $\}$ note $g t=t h i s$
\{
assume $x \notin$ vars-term ($t s!i$)
with $I H(2)[$ OF tsi] have $x: x \notin \operatorname{vars}(e v a l(t s!i))$ by auto
hence $\alpha^{\prime} i=\beta^{\prime} i$ unfolding α^{\prime}-def β^{\prime}-def using n
by (auto simp: β-def intro: insertion-irrelevant-vars)
\}
with $g t$ have $g t \wedge==\left(\beta^{\prime} i\right)\left(\alpha^{\prime} i\right)$ by fastforce
note gt this
$\}$ note $g t-l e=t h i s$
have α^{\prime} : assignment α^{\prime} unfolding α^{\prime}-def assignment-def using Fun(2)
by (force intro!: valid-imp-insertion-eval-pos[OF assms(1)- α] set-conv-nth)
define γ where $\gamma n i=\left(\right.$ if $i<n$ then $\beta^{\prime} i$ else $\left.\alpha^{\prime} i\right)$ for $n i$
have $\gamma: n<$? $n \Longrightarrow$ assignment $(\gamma n$) for n unfolding γ-def using $g t-l e(2)$ α^{\prime} gt-imp-ge
unfolding assignment-def using order.trans[of $0 \alpha x \beta x$ for $x]$
by (smt (verit, best) dual-order.strict-trans dual-order.trans sup2E)
from x obtain i where $x: x \in \operatorname{vars-term}(t s!i)$ and $i: i<? n$ by (auto simp: set-conv-nth)
from i vars have $i v: i \in$ vars p by auto
have $\gamma i:(\gamma($ Suc $i))=(\gamma i)\left(i:=\beta^{\prime} i\right)$ unfolding γ-def using i by (intro ext, auto)
have 1: gt^==(insertion $(\gamma i) p)\left(\right.$ insertion $\left.\alpha^{\prime} p\right)$
by (rule monotone-poly-wrt-insertion[OF trans-gt gt-imp-ge mono α^{\prime}], insert gt-le i, auto simp: γ-def)
have 2: gt (insertion $(\gamma($ Suc $i)) p$) (insertion $(\gamma i) p)$
using mono[unfolded monotone-poly-wrt-def, rule-format, OF $\gamma[O F i] i v$, of $\left.\beta^{\prime} i\right]$ gt-le(1)[OF $\left.i x\right]$
unfolding γi by (auto simp: γ-def)
have 3: gt $\uparrow=($ insertion $(\gamma$?n) p) $($ insertion $(\gamma($ Suc $i)) p)$
proof (cases Suc $i<$? n)
case True
show ?thesis
by (rule monotone-poly-wrt-insertion[OF trans-gt gt-imp-ge mono $\gamma[O F$ True]], insert gt-le True, auto simp: γ-def)
next
case False
with i have Suc $i=? n$ by auto
thus?thesis by simp
qed
have 4: insertion $\beta^{\prime} p=($ insertion $(\gamma$? $n) p)$
unfolding γ-def by (rule insertion-irrelevant-vars, insert vars, auto)
from 123
have $g t\left(\right.$ insertion $\left.\beta^{\prime} p\right)\left(\right.$ insertion $\left.\alpha^{\prime} p\right)$ using trans-gt unfolding 4
by (metis (full-types) sup2E transp-def)

```
    moreover have insertion \alpha'p=insertion \alpha (eval (Funfts)) ^
            insertion }\mp@subsup{\beta}{}{\prime}p=\operatorname{insertion ( }\alpha(x:=v))(\mathrm{ eval (Fun fts))
            unfolding id insertion-substitute
            unfolding \beta'-def 利-def if-distrib \beta-def[symmetric]
            by (auto intro: insertion-irrelevant-vars)
            ultimately show gt (insertion (\alpha(x := v))(eval (Fun f ts)))(insertion \alpha
(eval (Funfts))) by auto
    qed
    define t' where t' = Fun f ts
    define }\alpha\mathrm{ where }\alpha=(\lambda-:: nat.0 0:: 'a
    have ass: assignment \alpha by (auto simp: assignment-def \alpha-def)
    show ?case
    proof (intro conjI mono, unfold t'-def[symmetric])
            have vars (eval t')\subseteqvars-term t' by (rule vars-eval)
            moreover have vars-term t'\subseteq vars (eval t')
            proof (rule ccontr)
            assume }\neg\mathrm{ ?thesis
                    then obtain }x\mathrm{ where xt:x}\in\mathrm{ vars-term t' and x:x}\not=\mathrm{ vars (eval t') by
auto
            from gt-exists[of \alpha x] obtain l where l:l\succ\alphax unfolding \alpha-def by auto
            from mono[folded t'-def, unfolded monotone-poly-wrt-def, rule-format, OF
                ass xt l]
            have insertion (\alpha(x:=l))(eval t')\succ insertion \alpha (eval t') by auto
            also have insertion ( }\alpha(x:=l))(\mathrm{ eval t')= insertion }\alpha(\mathrm{ (eval t')
                    by (rule insertion-irrelevant-vars, insert x, auto)
            finally show False using gt-irrefl by auto
            qed
            ultimately show vars (eval t')= vars-term t' by auto
        qed
    qed
    thus monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t by auto
qed
end
context int-poly-inter
begin
lemma degree-mono: assumes pos: lead-coeff p}\geq(0 :: int
    and le: \bigwedge x. x \geqc\Longrightarrow poly p x \leq poly q x
shows degree p}\leq\mathrm{ degree q
    by (rule degree-mono-generic[OF poly-pinfty-ge-int assms])
lemma degree-mono': assumes }\x.x\geqc\Longrightarrow(bnd:: int)\leqpoly px^ poly p
\leqpoly qx
    shows degree p}\leq\mathrm{ degree q
    by (rule degree-mono'-generic[OF poly-pinfty-ge-int assms])
```

```
lemma weakly-monotone-insertion: assumes weakly-monotone-poly (vars p) p
    and assignment (a :: - = int)
    and \x. x\in vars p\Longrightarrowax\leqbx
shows insertion a p}\leq\mathrm{ insertion b p
proof -
    from monotone-poly-wrt-insertion[OF - assms(1,2), of b] assms(3)
    show ?thesis by auto
qed
```


Lemma 5.2

lemma degree-partial-insertion-stays-constant: assumes mono: monotone-poly (vars p) p
shows \exists a. assignment $(a::-\Rightarrow$ int $) \wedge$
$(\forall$ b. $(\forall$ y. $a y \leq b y) \longrightarrow$ degree $($ partial-insertion a $x p)=$ degree $($ partial-insertion $b x p)$)
using degree-partial-insertion-stays-constant-generic [OF - - poly-pinfty-ge-int mono, of $0 x$]
by (simp, metis le-less)
lemma degree-partial-insertion-stays-constant-wm: assumes wm: weakly-monotone-poly (vars p) p

```
    shows \exists a. assignment (a:: - = int) ^
```

$(\forall$ b. $(\forall$ y. $a y \leq b y) \longrightarrow$ degree (partial-insertion a $x p)=$ degree (partial-insertion $b x p)$)
using degree-partial-insertion-stays-constant-generic[OF - poly-pinfty-ge-int wm, of $0 x$]
by auto
Lemma 5.3
lemma subst-same-var-weakly-monotone-imp-same-degree:
assumes wm: weakly-monotone-poly (vars p) (p :: int mpoly)
and $d q$: degree $q=d$
and $d 0: d \neq 0$
and $q p$: poly-to-mpoly $x q=$ substitute ($\lambda i . P \operatorname{Var} x) p$
shows total-degree $p=d$
proof -
let $? m c=(\lambda m$. mmonom $m(m c o e f f ~ p m))$
let ?cfs $=\{m$. mcoeff $p m \neq 0\}$
let ?lc = lead-coeff
note fin $=$ finite-coeff-support $[$ of $p]$
from poly-to-mpoly-substitute-same $[O F q p] d 0[$ folded $d q]$ have $p 0: p \neq 0$
by (metis degree-0 insertion-zero poly-all-0-iff-0)
define M where $M=$ total-degree p
from degree-monom-eq-total-degree[OF p0]
obtain $m M$ where $m M$: mcoeff p $m M \neq 0$ degree-monom $m M=M$ unfolding M-def by blast
from degree-substitute-same-var[of x p, folded M-def $q p$]
have $d M$: $d \leq M$ unfolding $d q$ degree-poly-to-mpoly.

```
    with d0 have M1: M\geq1 by auto
    define p1 where p1= sum ?mc (?cfs \cap{m. degree-monom m=M})
    define p2 where p2 = sum ?mc (?cfs \cap {m. degree-monom m<M})
    have }p=sum ?mc ?cf
    by (rule mpoly-as-sum)
    also have ?cfs =?cfs \cap{m. degree-monom m=M}
    \cupcfs \cap{m. degree-monom m}\not=M}\mathrm{ by auto
    also have ?cfs \cap{m. degree-monom m}\not=M}=\mathrm{ ?cfs }\cap{m\mathrm{ . degree-monom m}
M}
    using degree-monon-le-total-degree[of p, folded M-def] by force
    also have sum ?mc (?cfs \cap{m. degree-monom m=M}\cup...)=p1+p2
unfolding p1-def p2-def
    using fin by (intro sum.union-disjoint, auto)
    finally have p-split: }p=p1+p2
    have total-degree p2 \leqM-1 unfolding p2-def
    by (intro total-degree-sum-leI, subst total-degree-monom, auto)
    also have \ldots.<M using M1 by auto
    finally have deg-p': total-degree p2 < M by auto
    have p1 f=0
    proof
    assume p1=0
    hence p=p2 unfolding p-split by auto
    hence M = total-degree p2 unfolding M-def by simp
    with deg-p' show False by auto
    qed
    with mpoly-ext-bounded-int[of 0 p1 0] obtain b
    where b: \bigwedgev.bv\geq0 and bpm0: insertion b p1 \not=0 by auto
    define B where B = Max (insert 1 (b'vars p))
    define }X\mathrm{ where }X=(0:: nat
    define pb where pb p = mpoly-to-poly X (substitute ( }\lambda\mathrm{ v. Const (b v)*PVar
X) p) for }
    have varsX: vars (substitute ( }\lambdav.Const (bv)*PVar X) p)\subseteq{X} for 
    by (intro vars-substitute order.trans[OF vars-mult], auto)
    have pb: substitute ( }\lambdav.Const (bv)*PVar X) p= poly-to-mpoly X (pb p) for
p
    unfolding pb-def
    by (rule mpoly-to-poly-inverse[symmetric, OF varsX])
    have poly-pb: poly (pb p)x=insertion ( }\lambdav.bv*x) p\mathrm{ for x p
    using arg-cong[OF pb, of insertion ( }\lambda\mathrm{ -. x),
        unfolded insertion-poly-to-mpoly]
    by (auto simp: insertion-substitute insertion-mult)
define lb where lb = insertion ( }\lambda\mathrm{ -. 0) p
{
    fix }
    have poly (pb p)x= insertion ( }\lambdav.bv*x) p by fac
    also have \ldots.= insertion (\lambdav.b v*x) p1 + insertion (\lambdav.bv*x) p2
unfolding p-split
    by (simp add: insertion-add)
    also have insertion (\lambdav.b v*x) p1= insertion b p1*x^M
```

unfolding $p 1$-def insertion-sum insertion-mult insertion-monom sum-distrib-right

```
        power-mult-distrib
    proof (intro sum.cong[OF refl], goal-cases)
    case (1 m)
    from 1 have M:M= degree-monom m by auto
    have {v. lookup mv\not=0}\subseteq keys m
        by (simp add: keys.rep-eq)
    from finite-subset[OF this] have fin: finite {v.lookup m v\not=0} by auto
    have (\prodv.bv^lookup mv* ^^ lookup mv)
        =(\prodv.bv^lookup mv)*(\prodv. x^lookup mv)
        by (subst (1 2 3) Prod-any.expand-superset[OF fin])
            (insert zero-less-iff-neq-zero, force simp: prod.distrib)+
    also have ( }\v.\mp@subsup{x}{}{`}\mathrm{ lookup m v) = x^ M unfolding M degree-monom-def
            by (smt (verit) Prod-any.conditionalize Prod-any.cong finite-keys in-keys-iff
power-0 power-sum)
            finally show ?case by simp
    qed
    also have insertion ( }\lambdav.bv*x) p2 = poly (pb p2) x unfolding poly-pb ..
    finally have poly (pb p) x = poly (monom (insertion b p1) M + pb p2) x by
(simp add: poly-monom)
    }
    hence pbp-split: pb p=monom (insertion b p1) M + pb p2 by blast
    have degree ( pb p2) \leq total-degree p2 unfolding pb-def
        apply (subst degree-mpoly-to-poly)
            apply (simp add: varsX)
        by (rule degree-substitute-const-same-var)
    also have ...<M by fact
    finally have deg-pbp2: degree (pb p2) < M .
    have degree (monom (insertion b p1) M) = M using bpm0 by (rule de-
gree-monom-eq)
    with deg-pbp2 pbp-split have deg-pbp: degree ( }pb\mathrm{ p) = M unfolding pbp-split
        by (subst degree-add-eq-left, auto)
    have ?lc (pb p) = insertion b p1 unfolding pbp-split
    using deg-pbp2 bpm0 coeff-eq-0 deg-pbp pbp-split by auto
    define bnd where bnd = insertion ( }\lambda\mathrm{ -. 0) p
    {
        fix x :: int
        assume x: x\geq0
        have ass: assignment ( }\lambdav.bv*x)\mathrm{ unfolding assignment-def using x b by
auto
    have poly (pb p)x= insertion (\lambdav.bv*x) p by fact
    also have insertion ( }\lambdav.bv*x)p\leqinsertion (\lambdav.B*x) 
    proof (rule weakly-monotone-insertion[OF wm ass])
        fix v
        show v}\in\mathrm{ vars }p\Longrightarrowbv*x\leqB*x using b[of v] x unfolding B-def
                by (intro mult-right-mono, auto intro!: Max-ge vars-finite)
    qed
```

also have $\ldots=$ poly $q(B * x)$ unfolding poly-to-mpoly-substitute-same $[O F$ $q p]$..
also have $\ldots=\operatorname{poly}\left(q \circ_{p}[: 0, B:]\right) x$ by (simp add: poly-pcompose ac-simps)
finally have ineq: poly $(p b p) x \leq \operatorname{poly}\left(q \circ_{p}[: 0, B:]\right) x$.
have $b n d \leq \operatorname{insertion}(\lambda v . b v * x) p$ unfolding bnd-def
by (intro weakly-monotone-insertion[OF wm], insert b x, auto simp: assign-ment-def)
also have $\ldots=$ poly ($p b p$) x using poly-pb by auto
finally have bnd \leq poly $(p b p) x$ by auto
note this ineq
$\}$ note $p b$-approx $=$ this
have $M=$ degree ($p b p$) unfolding deg-pbp..
also have $\ldots \leq$ degree ($q \circ_{p}[: 0, B:]$)
by (intro degree-mono' [of 0 bnd], insert pb-approx, auto)
also have $\ldots \leq d$ by (simp add: $d q$)
finally have deg-pbp: $M \leq d$.
with $d M$ have $M=d$ by auto
thus ?thesis unfolding M-def.
qed
lemma monotone-poly-partial-insertion:
assumes $x: x \in x s$
and mono: monotone-poly xs p
and ass: assignment a
shows $0<$ degree (partial-insertion a x p)
lead-coeff (partial-insertion a x p) >0
valid-poly $p \Longrightarrow y \geq 0 \Longrightarrow$ poly (partial-insertion a x p) $y \geq y$
valid-poly $p \Longrightarrow$ insertion a $p \geq a x$
proof -
have 0 : transp $((>)::$ int $\Rightarrow-)$ by auto
have 1: $(x<y)=(x+1 \leq y)$ for $x y::$ int by auto
have 2: $x \leq \operatorname{int}($ nat $x)$ for x by auto
note main = monotone-poly-partial-insertion-generic[of (>) 11 nat, OF 0 -
poly-pinfty-ge-int 1--2 x mono ass, simplified]
show $0<$ degree (partial-insertion a x \quad p) $0<$ lead-coeff (partial-insertion a x p)
using main by auto
assume valid: valid-poly p
\{
fix y :: int
assume $y \geq 0$
then obtain n where $y: y=$ int n
by (metis int-nat-eq)
from $\operatorname{main}(3)[$ OF valid, of n, folded $y]$
show $y \leq$ poly (partial-insertion a $x p$) y by auto
\} note estimation $=$ this
from ass have a $x \geq 0$ unfolding assignment-def by auto
from estimation[OF this] show insertion a $p \geq a x$
using insertion-partial-insertion [of x a $a \operatorname{l} p]$ by auto

```
qed
end
context int-poly-inter
begin
lemma insertion-eval-pos: assumes funas-term t\subseteqF
    and assignment \alpha
shows insertion \alpha (eval t)\geq0
    by (rule valid-imp-insertion-eval-pos[OF valid assms])
lemma monotone-poly-eval: assumes funas-term t\subseteqF
    shows monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t
proof -
    have \existsy.x<y for x :: int by (intro exI[of-x+1], auto)
    from monotone-poly-eval-generic[OF valid - this - assms]
    show monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t by auto
qed
end
```

locale term-poly-input $=$ poly-input $p q$ for $p q+$
assumes terminating-poly: termination-by-int-poly-interpretation $F-S S$
begin
definition I where $I=(S O M E I$. int-poly-inter $F-S I \wedge$ int-poly-inter.termination-by-poly-interpretation $F-S I S$)
lemma I : int-poly-inter F-S I int-poly-inter.termination-by-poly-interpretation F-S IS
using someI-ex[OF terminating-poly[unfolded termination-by-int-poly-interpretation-def], folded I-def] by auto
sublocale int-poly-inter F-S I by (rule I(1))
lemma orient: orient-rule (lhs-S,rhs-S)
using I (2)[unfolded termination-by-interpretation-def termination-by-poly-interpretation-def]
unfolding S-def by auto
lemma solution: positive-poly-problem $p q$
proof -
from orient[unfolded orient-rule]
have gt: gt-poly (eval lhs-S) (eval rhs-S) by auto
from valid[unfolded valid-monotone-poly-inter-def]
have valid: $\bigwedge f . f \in F-S \Longrightarrow$ valid-monotone-poly f by auto
let ?lc = lead-coeff
let ?f $=(f$-sym,7)
have ?f $\in F-S$ unfolding F - S-def by auto

```
    from valid[OF this, unfolded valid-monotone-poly-def] obtain f}\mathrm{ where
    If:I f-sym = f and f:valid-poly f monotone-poly (vars f) f vars f}={..<7
by auto
    from f(2) have wmf: weakly-monotone-poly (vars f) f by (rule monotone-imp-weakly-monotone)
    define l where li= args (lhs-S)!i for i
    define r where r i= args (rhs-S)!i for i
    have list: [0..<7]=[0,1,2,3,4,5,6 :: nat] by code-simp
    have lhs-S:lhs-S = Fun f-sym (map l [0..<7]) unfolding lhs-S-def l-def by
(auto simp: list)
    have rhs-S:rhs-S = Fun f-sym (map r [0..<7]) unfolding rhs-S-def r-def by
(auto simp: list)
    {
        fix i :: var
        define vs where vs = V-list
    assume i<7
```



```
linarith
    have set: {0..<7 :: nat }}={0,1,2,3,4,5,6} by code-simp
    from choice have vars: vars-term (li)={i} vars-term (ri)={i} unfolding
l-def lhs-S-def r-def rhs-S-def
        using vars-encode-poly[of 2 p] vars-encode-poly[of 2 q]
    by (auto simp: y1-def y2-def y3-def y4-def y5-def y6-def y7-def vs-def[symmetric])
    from choice set have funs: funas-term (l i)\cupfunas-term (ri)\subseteqF-S using
rhs-S-F lhs-S-F unfolding lhs-S rhs-S
            by auto
    have lr \in{l,r}\Longrightarrow vars-term (lr i)={i} lr }\in{l,r}\Longrightarrow\mathrm{ funas-term (lr i)}
F-S for lr
    by (insert vars funs, force)+
    } note signature-l-r = this
    {
        fix }i:: var and lr
        assume i: i< 7 and lr:lr }\in{l,r
    from signature-l-r[OF i lr] monotone-poly-eval[of lr i]
    have vars: vars (eval (lr i))={i}
        and mono: monotone-poly {i} (eval (lr i)) by auto
    } note eval-l-r = this
    define upoly where upoly l-or-r i = mpoly-to-poly i (eval (l-or-r i)) for l-or-r ::
var }=>(-,-)term and 
    {
    fix lr and i :: nat and a :: - > int
    assume a: assignment a and i: i< 7 and lr:lr }\in{l,r
    with eval-l-r[OF i] signature-l-r[OF i]
    have vars: vars (eval (lr i)) ={i} and mono: monotone-poly {i} (eval (lr i))
    and funs: funas-term (lr i)\subseteqF-S by auto
    from insertion-eval-pos[OF funs]
    have valid: valid-poly (eval (lr i)) unfolding valid-poly-def by auto
    from monotone-poly-partial-insertion[OF - mono a, of i] valid
```

have deg: degree (partial-insertion a $i($ eval $(\operatorname{lr} i)))>0$
and lc: ?lc (partial-insertion a $i($ eval $(\operatorname{lr} i)))>0$
and ineq: insertion a (eval $(\operatorname{lr} i)) \geq a i$ by auto
moreover have partial-insertion a i (eval (lr i)) = upoly lr i unfolding upoly-def
using vars eval-l-r[OF i, of r, simplified $]$
by (intro poly-ext)
(metis i insertion-partial-insertion-vars poly-eq-insertion poly-inter.vars-eval signature-l-r(1)[of - r, simplified $]$ singletonD)

ultimately

have degree (upoly lr i) >0 ?lc (upoly lr i) >0
insertion a (eval (lr $i)) \geq a$ i by auto
\} note upoly-pos-subterm $=$ this

\{

fix $i::$ var
assume $i: i<7$
from degree-partial-insertion-stays-constant $[O F f(2)$, of $i]$ obtain a where
a: assignment a and
deg-a: $\bigwedge b .(\bigwedge y . a y \leq b y) \Longrightarrow$ degree (partial-insertion a $i f)=$ degree (partial-insertion bif)
by auto
define c where $c j=($ if $j<7$ then insertion a (eval $(l j))$ else $a j$) for j
define e where $e j=($ if $j<7$ then insertion a (eval ($r j$)) else a j) for j \{
fix x :: int
assume $x: x \geq 0$
have ass: assignment ($a(i:=x)$) using x a unfolding assignment-def by auto
from $g t[u n f o l d e d ~ g t-p o l y-d e f$, rule-format, $O F$ ass, unfolded rhs-S lhs-S]
have insertion $(a(i:=x))($ eval (Fun f-sym (map r $[0 . .<7])))$
$<\operatorname{insertion}(a(i:=x))($ eval $($ Fun f-sym $(\operatorname{map} l[0 . .<7])))$ by simp
also have insertion $(a(i:=x))($ eval $($ Fun f-sym $($ map $r[0 . .<7])))=$ insertion $(\lambda j$. insertion $(a(i:=x))($ eval $(r j))) f$
by (simp add: If insertion-substitute, intro insertion-irrelevant-vars, auto simp: f)
also have $\ldots=$ poly $($ partial-insertion eif) $($ poly $($ upoly $r i) x)$
proof -
let ? $\alpha=(\lambda j$. insertion $(a(i:=x))($ eval $(r j)))$
have insi: poly (upoly $r i) x=$ insertion $(a(i:=x))($ eval $(r i))$
unfolding upoly-def using eval-l-r(1)[OF i, of $r]$
by (subst poly-eq-insertion, force)
(intro insertion-irrelevant-vars, auto)
show ?thesis unfolding insi
proof (rule insertion-partial-insertion-vars[of ife ? α, symmetric])
fix j
show $j \neq i \Longrightarrow j \in \operatorname{vars} f \Longrightarrow e j=\operatorname{insertion}(a(i:=x))(e v a l(r j))$
unfolding e-def f using eval-l-r[of $j] f$ by (auto intro!: inser-

```
tion-irrelevant-vars)
            qed
    qed
    also have insertion (a(i:=x)) (eval (Fun f-sym (map l [0..<7]))) =
        insertion ( }\lambdaj\mathrm{ . insertion (a(i:= x)) (eval (l j))) f
            by (simp add: If insertion-substitute, intro insertion-irrelevant-vars, auto
simp: f)
    also have ... = poly (partial-insertion c if) (poly (upoly l i) x)
    proof -
        let ? }\alpha=(\lambdaj. insertion (a(i:= x)) (eval (l j))
        have insi: poly (upoly l i) x= insertion (a(i:=x)) (eval (l i))
            unfolding upoly-def using eval-l-r[OF i]
            by (subst poly-eq-insertion, force)
                    (intro insertion-irrelevant-vars, auto)
        show ?thesis unfolding insi
        proof (rule insertion-partial-insertion-vars[of if c ?\alpha, symmetric])
            fix }
            show j\not=i\Longrightarrowj\invars f\Longrightarrowcj= insertion (a(i:=x)) (eval (l j))
                    unfolding c-def f using eval-l-r[of j] f by (auto intro!: inser-
tion-irrelevant-vars)
            qed
        qed
        finally have poly (partial-insertion c i f) (poly (upoly l i) x)
        > poly (partial-insertion e if) (poly (upoly ri) x).
    } note 1 = this
    define er where er = partial-insertion e if op upoly ri
    define cl where cl= partial-insertion c if op upoly l i
    define d}\mathrm{ where d= degree (partial-insertion e if)
    {
        fix }
        have a x \leqcx^ax\leqex
        proof (cases x \in vars f)
            case False
            thus ?thesis unfolding c-def e-def f by auto
        next
            case True
            hence id: (x<7) = True and x:x<7 unfolding f by auto
            show ?thesis unfolding c-def e-def id if-True using upoly-pos-subterm(3)[OF
a x] by auto
            qed
            hence a x sc c x a x \leqe e by auto
            } note a-ce = this
            have d-eq: d = degree (partial-insertion c if) unfolding d-def
                by (subst (1 2) deg-a[symmetric], insert a-ce, auto)
    have e: assignment e using a a-ce(2) unfolding assignment-def
```

```
    by (smt (verit, del-insts))
    have \(d\)-pos: \(d>0\) unfolding \(d\)-def
    by (intro monotone-poly-partial-insertion \([O F-f(2) e]\), insert \(f\) i, auto)
    have lc-e-pos: ?lc (partial-insertion e if) >0
    by (intro monotone-poly-partial-insertion \([O F-f(2)\) e], insert \(f i\), auto)
    have lc-r-pos: ?lc (upoly \(r i\) ) \(>0\) by (intro upoly-pos-subterm[ \(O F\) a \(i]\), auto)
    have deg-r: \(0<\) degree (upoly ri) by (intro upoly-pos-subterm[OF a i], auto)
    have lc-er-pos: ?lc er \(>0\) unfolding er-def
    by (subst lead-coeff-comp[OF deg-r], insert lc-e-pos deg-r lc-r-pos, auto)
    from 1 [folded poly-pcompose, folded er-def cl-def]
    have er-cl-poly: \(0 \leq x \Longrightarrow\) poly er \(x<\) poly cl \(x\) for \(x\) by auto
    have degree er \(\leq\) degree cl
    proof (intro degree-mono[of - 0])
        show \(0 \leq\) ?lc er using lc-er-pos by auto
        show \(0 \leq x \Longrightarrow\) poly er \(x \leq\) poly cl \(x\) for \(x\) using er-cl-poly[of \(x]\) by auto
    qed
    also have degree er \(=d *\) degree (upoly \(r i\) )
        unfolding er-def \(d\)-def by simp
    also have degree cl \(=d *\) degree (upoly li)
        unfolding cl-def d-eq by simp
    finally have degree (upoly \(l i\) ) \(\geq\) degree (upoly \(r i\) ) using \(d\)-pos by auto
\} note deg-inequality \(=\) this
\{
    fix \(p\) :: int mpoly and \(x\)
    assume \(p\) : monotone-poly \(\{x\}\) p vars \(p=\{x\}\)
    define \(q\) where \(q=\) mpoly-to-poly \(x p\)
    from mpoly-to-poly-inverse[of \(p x]\)
    have \(p q: p=\) poly-to-mpoly \(x q\) using \(p\) unfolding \(q\)-def by auto
    from \(p q p(2)\) have deg: degree \(q>0\)
        by (simp add: degree-mpoly-to-poly degree-pos-iff \(q\)-def)
    from deg \(p q\) have \(\exists q . p=\) poly-to-mpoly \(x q \wedge\) degree \(q>0\) unfolding \(q\)-def
by auto
    \} note mono-unary-poly \(=\) this
\{
    fix \(f\)
    assume \(f \in\{q\)-sym, \(h\)-sym \(\} \cup v\)-sym' \(V\)
    hence \((f, 1) \in F\)-S unfolding \(F\)-S-def \(F\)-def by auto
    from valid \([O F\) this, unfolded valid-monotone-poly-def] obtain \(p\)
        where \(p\) : \(p=\) If monotone-poly \(\{. .<1\}\) p vars \(p=\{0\}\) by auto
    have \(i d:\{. .<(1::\) nat \()\}=\{0\}\) by auto
    have \(\exists\). \(I f=\) poly-to-mpoly \(0 q \wedge\) degree \(q>0\) unfolding \(p(1)\) [symmetric]
        by (intro mono-unary-poly, insert \(p(2-3)\) [unfolded id], auto)
\(\}\) note unary-symbol \(=\) this
```


\{

fix f and $n::$ nat and $x::$ var
assume $f \in\{f$-sym,a-sym $\} f=f$-sym $\Longrightarrow n=7 f=a$-sym $\Longrightarrow n=2$
hence $n: n>1$ and $f:(f, n) \in F$-S unfolding F-def F-S-def by force+
define p where $p=I f$
from valid[OF f, unfolded valid-monotone-poly-def, rule-format, OF refl p-def]
have mono: monotone-poly (vars p) p and vars: vars $p=\{. .<n\}$ and valid: valid-poly p by auto
let ? $t=$ Fun f (replicate $n(T V a r x))$
have t - F : funas-term ? $t \subseteq F$ - S using f by auto
have vt: vars-term ? $t=\{x\}$ using n by auto
define q where $q=$ eval ?t
from monotone-poly-eval[OF t - F, unfolded vt, folded q-def]
have monotone-poly $\{x\} q$ vars $q=\{x\}$ by auto
from mono-unary-poly[OF this] obtain q^{\prime} where
$q q^{\prime}: q=$ poly-to-mpoly $x q^{\prime}$ and $d q^{\prime}:$ degree $q^{\prime}>0$ by auto
have $q^{\prime} t$: poly-to-mpoly $x q^{\prime}=$ eval ?t unfolding $q q^{\prime}[$ symmetric] q-def by simp
also have $\ldots=$ substitute (λi. if $i<n$ then eval (replicate $n(T V a r x)!i$) else 0) p
by (simp add: p-def[symmetric])
also have $(\lambda i$. if $i<n$ then eval (replicate $n(T V a r x)!i)$ else 0$)=(\lambda i$. if i $<n$ then PVar x else 0)
by (intro ext, auto)
also have substitute $\ldots p=$ substitute ($\lambda i . P \operatorname{Var} x) p$ using vars
unfolding substitute-def using vars-replace-coeff [of Const, OF Const-0]
by (intro insertion-irrelevant-vars, auto)
finally have eq: poly-to-mpoly $x q^{\prime}=$ substitute $(\lambda i . P \operatorname{Var} x) p$.
have $\exists p$ q. If $f=p \wedge$ eval ?t = poly-to-mpoly $x q \wedge$ poly-to-mpoly $x q=$ substitute (λ i. P Var x) $p \wedge$ degree $q>0$
\wedge vars $p=\{. .<n\} \wedge$ monotone-poly (vars p) p
by (intro exI[of-p] exI[of-q' conjI valid eq dq' p-def[symmetric] $q^{\prime} t[s y m m e t r i c]$ mono vars)
$\}$ note f-a-sym $=$ this
from unary-symbol[of q-sym] obtain q where $I q$: I q-sym $=$ poly-to-mpoly $0 q$ and $d q$: degree $q>0$ by auto
from unary-symbol[of h-sym] obtain h where $I h$: I h-sym $=$ poly-to-mpoly $0 h$ and $d h$: degree $h>0$ by auto
from unary-symbol $[$ of v-sym i for $i]$ have $\forall i . \exists q . i \in V \longrightarrow I(v$-sym $i)=$ poly-to-mpoly $0 q \wedge 0<$ degree q by auto
from choice $[O F$ this] obtain v where
Iv: $i \in V \Longrightarrow I(v$-sym $i)=$ poly-to-mpoly $0(v i)$ and
$d v: i \in V \Longrightarrow$ degree $(v i)>0$
for i by auto
have eval-pm-Var: eval (TVar y) = poly-to-mpoly $y[: 0,1:]$ for y
unfolding eval.simps mpoly-of-poly-is-poly-to-mpoly[symmetric] by simp
have id: (if $0=(0::$ nat $)$ then eval $([t]!0)$ else 0$)=$ eval t for t by simp
have y: eval $\left(\right.$ TVar $\left.y^{4}\right)=$ poly-to-mpoly $y_{4}[: 0,1:]$ (is $-=$ poly-to-mpoly ?poly1) by fact
have hy: eval (Fun h-sym [TVar y4]) = poly-to-mpoly y4 h using $I h$
apply (simp)
apply (subst substitute-poly-to-mpoly[of --y4 ?poly1])
apply (unfold id, intro y)
by simp
have qhy: eval (Fun q-sym [Fun h-sym [TVar $\left.\left.\left.\mathrm{y}_{4}\right]\right]\right)=$ poly-to-mpoly y4 (pcompose $q h)$ using $I q$
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y4 h])
apply (unfold id, intro hy)
by simp
hence l3: eval (l 3) = poly-to-mpoly y4 (pcompose q h) unfolding l-def lhs-S-def by simp
have qy: eval (Fun q-sym [TVar $\left.\left.y_{4}\right]\right)=$ poly-to-mpoly y\& q using $I q$
apply ($\operatorname{simp\text {)}}$
apply (subst substitute-poly-to-mpoly[of -- y4 ?poly1])
apply (unfold id, intro y)
by simp
have hqy: eval (Fun h-sym [Fun q-sym [TVar y4]]) $=$ poly-to-mpoly y4 (pcompose $h q)$ using $I h$
apply (simp)
apply (subst substitute-poly-to-mpoly[of --y4 q])
apply (unfold id, intro qy)
by simp
have hhqy: eval (Fun h-sym [Fun h-sym [Fun q-sym [TVar 4 $\left.\left.\left.\left._{4}\right]\right]\right]\right)=$ poly-to-mpoly $y 4$ (pcompose h (pcompose $h q)$) using $I h$
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y4 pcompose h q])
apply (unfold id, intro hqy)
by simp
hence r3: eval (r 3) = poly-to-mpoly y4 $($ pcompose $h($ pcompose $h q))$ unfolding r-def rhs-S-def by simp
from deg-inequality[of 3] have deg: degree (upoly r 3) \leq degree (upoly l 3) by simp
hence degree $h *($ degree $h *$ degree $q) \leq$ degree $q *$ degree h
unfolding upoly-def l3 r3 y4-def poly-to-mpoly-inverse by simp
with $d q$ have degree $h *$ degree $h \leq$ degree h by simp
with $d h$ have degree $h=1$ by auto
$\}$ note $d h=$ this
define tayy where tayy $=$ Fun a-sym (replicate $2(T \operatorname{Var} y 5)$)
from f-a-sym $[$ of a-sym $2 y 5$, folded tayy-def] obtain a ayy where
Ia: $I a-s y m=a$
and eval-ayy: eval tayy $=$ poly-to-mpoly $y 5$ ayy
and dayy: degree ayy >0 and payy: poly-to-mpoly y5 ayy $=$ substitute $(\lambda i$. PVar y5) a
and monoa: monotone-poly (vars a) a and varsa: vars $a=\{. .<2\}$ by blast

\{

define $v s$ where $v s=V$-list
have $v s$: set $v s \subseteq V$ unfolding $v s$-def V-list by auto
have $r 4=$ foldr $(\lambda i t$. Fun (v-sym i) [t]) vs tayy unfolding tayy-def r-def rhs-S-def sub-def vs-def
by (simp add: numeral-eq-Suc)
also have \exists q. eval $\ldots=$ poly-to-mpoly y5 $q \wedge$ degree $q=$ prod-list (map $(\lambda i$.
degree (vi)) vs) * degree ayy
using vs
proof (induct vs)
case Nil
show ?case using eval-ayy by auto
next
case (Cons x vs)
from Cons obtain q where IH1: eval (foldr ($\lambda i t$. Fun (v-sym i) $[t]$) vs tayy) $=$ poly-to-mpoly y 5 q
and IH2: degree $q=\left(\prod i \leftarrow v\right.$ s. degree $\left.(v i)\right) *$ degree ayy by auto
from Cons have $x: x \in V$ by auto
have eval: eval (foldr (λi t. Fun $(v-s y m i)[t])(x \#$ vs) tayy $)=$ poly-to-mpoly $y 5\left(v x \circ_{p} q\right)$ using $I v[O F x]$
apply simp
apply (subst substitute-poly-to-mpoly[of --y5 q])
apply (unfold id, intro IH1)
by simp
show ?case unfolding eval by (intro exI $\left[o f-v x \circ_{p} q\right]$, auto simp: IH2)
qed
finally obtain q where
r4: eval $\left(r_{4}\right)=$ poly-to-mpoly y5 q and
q : degree $q=$ prod-list (map $(\lambda i$. degree $(v i)) v s) *$ degree ayy
by auto
have y : eval $($ TVar $y 5)=$ poly-to-mpoly $y 5[: 0,1:]$ (is $-=$ poly-to-mpoly ?poly1) by fact
have hy: eval (Fun h-sym [TVar y5]) = poly-to-mpoly y5 h using $I h$
apply ($\operatorname{simp\text {)}}$
apply (subst substitute-poly-to-mpoly[of - - y5 ?poly1])
apply (unfold id, intro y)
by simp
hence 14 : eval (l 4) $=$ poly-to-mpoly y5 h unfolding l-def lhs-S-def by simp
from deg-inequality $\left[\right.$ of 4] have deg: degree (upoly r_{4}) \leq degree (upoly l4) by simp
hence degree $q \leq$ degree h unfolding upoly-def l4 r4 y5-def poly-to-mpoly-inverse by simp
hence degq: degree $q \leq 1$ unfolding $d h$ by simp
hence $(\forall x \in$ set vs. degree $(v x)=1) \wedge$ degree ayy $=1 \wedge$ degree $q=1$ using $v s$ unfolding q
proof (induct vs)
case Nil
thus ?case using dayy by auto
next
case (Cons x vs)
define rec where rec $=\left(\prod i \leftarrow\right.$ vs. degree $\left.(v i)\right) *$ degree ayy
have $i d$: $\left(\prod i \leftarrow x \#\right.$ vs. degree $\left.(v i)\right) *$ degree ayy $=$ degree $(v x) *$ rec unfolding rec-def by auto
from Cons(2)[unfolded id] have prems: degree ($v x$) * rec ≤ 1 by auto
from $\operatorname{Cons}(3)$ have $x: x \in V$ and sub: set $v s \subseteq V$ by auto
from $d v[O F x]$ have $d v$: degree $(v x) \geq 1$ by auto
from $d v$ prems have rec ≤ 1
by (metis dual-order.trans mult.commute mult.right-neutral mult-le-mono2)
from Cons (1)[folded rec-def, OF this sub]
have $I H:(\forall x \in$ set vs. degree $(v x)=1)$ degree ayy $=1$ rec $=1$ by auto
from $\operatorname{IH}(3) d v$ prems have dvx: degree $(v x)=1$ by simp
show ?case unfolding id using $d v x I H$ by auto
qed
from this[unfolded vs-def V-list]
have $d v: \bigwedge x . x \in V \Longrightarrow$ degree $(v x)=1$ and dayy: degree ayy $=1$ by auto \}
hence $d v: \wedge x . x \in V \Longrightarrow$ degree $(v x)=1$ and dayy: degree ayy $=1$ by auto
define tfyy where tfyy = Fun f-sym (replicate 7 (TVar y6))
from f-a-sym $[$ of f-sym 7 y6, folded tfyy-def] obtain f fyy where
If: $I f$-sym $=f$
and eval-fyy: eval tfyy = poly-to-mpoly y6 fyy
and dfyy: degree fyy >0 and pfyy: poly-to-mpoly y6 fyy $=$ substitute (λi. PVar y6) f
and monof: monotone-poly (vars f) f and varsf: vars $f=\{. .<7\}$ by blast
\{
have y : eval $($ TVar y 6$)=$ poly-to-mpoly $y 6[: 0,1:]$ (is $-=$ poly-to-mpoly ?poly1) by fact
have hy: eval (Fun h-sym [TVar y6]) = poly-to-mpoly y6 h using $I h$ apply ($\operatorname{simp)}$
apply (subst substitute-poly-to-mpoly[of - - y6 ?poly1])
apply (unfold id, intro y)
by simp
hence 15 : eval ($l 5$) = poly-to-mpoly y6 h unfolding l-def lhs-S-def by simp
have $r 5=t f y y$ unfolding tfyy-def r-def rhs-S-def by simp
hence $r 5$: eval (r 5) $=$ poly-to-mpoly y6 fyy using eval-fyy by simp
from deg-inequality[of 5] have deg: degree (upoly r 5) \leq degree (upoly l 5) by simp
from this[unfolded upoly-def 15 r5 y6-def poly-to-mpoly-inverse dh] have degree fyy ≤ 1.
\}
with dfyy
have dfyy: degree fyy $=1$ by auto
note lemma-5-3 = subst-same-var-weakly-monotone-imp-same-degree[OF mono-tone-imp-weakly-monotone]
from lemma-5-3[OF monof dfyy - pfyy] have df: total-degree $f=1$ by auto
from lemma-5-3[OF monoa dayy - payy $]$ have da: total-degree $a=1$ by auto
let $? \operatorname{args} L=[q-t(h-t(\operatorname{Var} y 4))$,
$h-t(\operatorname{Var} y 5)$,
$h-t(\operatorname{Var} y 6)$,
$g-t($ Var $y 7$) o-t]
let ?args $R=[h-t(h-t(q-t(\operatorname{Var} y 4)))$,
foldr v - t V-list (a-t (Var y5) (Var y5)),
Fun f-sym (replicate 7 (Var y6)),
$\left.g-t\left(\operatorname{Var} y^{7}\right) z-t\right]$
show ?thesis
apply (rule poly-input-to-solution-common.solution $[$ of - I F-S ?argsL ? argsR])
apply (unfold-locales)
subgoal using orient unfolding lhs-S-def rhs-S-def by simp
subgoal by simp
subgoal using signature-l-r (1)[of $4 r]$
by (auto simp: y1-def y2-def y3-def y4-def y5-def y6-def y7-def r-def rhs-S-def)
subgoal unfolding F-S-def by auto
subgoal for $g n$
proof (goal-cases)
case 1
hence ch: $(g, n)=(f$-sym, 7$) \vee(g, n) \in F$ by auto
hence $(g, n) \in F$-S unfolding F-S-def by auto
from valid[rule-format, OF this, unfolded valid-monotone-poly-def, rule-format, OF refl refl]
have *: valid-poly (Ig) monotone-poly $\{. .<n\}(I g)$ vars $(I g)=\{. .<n\}$
by auto
show ?case
proof (intro monotone-linear-poly-to-coeffs *)
show total-degree $(I g) \leq 1$
proof (rule ccontr)
assume not: \neg ?thesis
with ch df da If Ia have $(g, n) \in F-\{(a-s y m, 2)\}$ by auto
then consider $(V) i$ where $i \in V g=v$-sym $i n=1 \mid(z) g=z$-sym n
$=0$
unfolding F-def by auto
thus False
proof cases
case V

```
                    have total-degree \((\operatorname{Ig})=1\)
                    proof (rule lemma-5-3[OF *(2)[folded \(*(3)] d v[O F\) V(1)]])
                    show poly-to-mpoly \(0(v i)=\) substitute \((\lambda i . P \operatorname{Var} 0)(I g)\)
                    unfolding \(V\) Iv[OF \(V(1)]\)
                    by (intro mpoly-extI, auto simp: insertion-substitute)
                    qed force
                    with not show False by auto
                next
                    case \(z\)
                    with \(*\) have vars \((I g)=\{ \}\) by auto
                    from vars-empty-Const[OF this] obtain \(c\) where \(I g=\) Const \(c\) by auto
                    hence total-degree ( \(I \mathrm{~g}\) ) \(=0\) by simp
                    with not show False by auto
                qed
            qed
        qed
    qed
    done
qed
end
context poly-input
begin
Theorem 5.4 in paper
theorem polynomial-termination-with-natural-numbers-undecidable:
positive-poly-problem p \(q \longleftrightarrow\) termination-by-int-poly-interpretation \(F\)-S S
proof
    assume positive-poly-problem \(p q\)
    interpret solvable-poly-problem
    by (unfold-locales, fact)
    from solution-imp-poly-termination
    show termination-by-int-poly-interpretation F-S S.
next
    assume termination-by-int-poly-interpretation F-S S
    interpret term-poly-input
        by (unfold-locales, fact)
    from solution show positive-poly-problem \(p q\).
qed
end
Now head for Lemma 5.6
locale poly-input-omega-solution \(=\) poly-input
begin
fun \(I::\) symbol \(\Rightarrow\) int list \(\Rightarrow\) int where
I o-sym xs \(=\) insertion \((\lambda-.1) q\)
| Iz-sym xs \(=0\)
```

```
| I a-sym xs = xs! 0 + xs!1
I g-sym xs =(xs!1 + 1)*xs!0 + xs!1
I h-sym xs = (xs!0)^2 +7*(xs!0) +4
| I f-sym xs =xs!2 * xs!6 + sum-list xs
I q-sym xs = 5^(nat (xs!0))
I (v-sym i) xs = xs!0
lemma I-encode-num: assumes c\geq0
    shows I\llbracketencode-num x c\rrbracket\alpha=c*\alpha x
proof -
    from assms obtain n where cn:c=int n by (metis nonneg-eq-int)
    hence natc: nat c = n by auto
    show ?thesis unfolding encode-num-def natc unfolding cn
        by (induct n, auto simp: algebra-simps)
qed
lemma I-v-pow-e:I \llbracket(v-t x^^e) t\rrbracket\alpha=I \llbrackett\rrbracket\alpha
    by (induct e, auto)
lemma I-encode-monom: assumes c:c\geq0
    shows I\llbracketencode-monom x m c\rrbracket\alpha=c*\alphax
proof -
    define xes where xes = var-list m
    from var-list[of m c]
    have monom: mmonom m c=Const c*(\prod(x,e)\leftarrowxes. PVar x^e) unfolding
xes-def.
    show ?thesis unfolding encode-monom-def monom xes-def[symmetric]
        by (induct xes, auto simp: I-encode-num[OF c] I-v-pow-e)
qed
lemma I-encode-poly: assumes positive-poly r
    shows I \llbracketencode-poly x r\rrbracket\alpha=insertion ( }\lambda\mathrm{ -. 1) r* 人 x
proof -
    define mcs where mcs= monom-list r
    from monom-list[of r] have r:r=(\sum(m,c)\leftarrowmcs. mmonom m c) unfolding
mcs-def by auto
    have mcs: }(m,c)\in\mathrm{ set mcs ב c \ 0 for m c
        using monom-list-coeff assms unfolding mcs-def positive-poly-def by auto
    show ?thesis unfolding encode-poly-def mcs-def[symmetric] unfolding r inser-
tion-sum-list map-map o-def
        using mcs
    proof (induct mcs)
        case (Cons mc mcs)
        obtain m c where mc: mc= (m,c) by force
        from Cons(2) mc have c:c\geq0 by auto
        note monom = I-encode-monom[OF this, of x m]
        show ?case
            by (simp add: mc monom algebra-simps, subst Cons(1), insert Cons(2), auto
simp: Const-add algebra-simps)
```

```
    qed simp
qed
end
```



```
    by (cases xs; cases tl xs, auto)
lemma length7-cases: length xs = 7 \Longrightarrow\exists x1 x2 x3 x4 x5 x6 x7. xs = [x1,x2,x3,x4, x5 ,x6,x7]
    apply (cases xs, force)
    apply (cases drop 1 xs, force)
    apply (cases drop 2 xs, force)
    apply (cases drop 3 xs, force)
    apply (cases drop 4 xs, force)
    apply (cases drop 5 xs, force)
    by (cases drop 6 xs, force+)
lemma length1-cases: length xs = Suc 0\Longrightarrow\exists x.xs = [x]
    by (cases xs; auto)
lemma less2-cases: i<2 \Longrightarrow i=0 \vee (i :: nat) = 1
    by auto
lemma less%-cases: i<7\Longrightarrow " 
\vee i=5\vee i=6
    by auto
context poly-input-omega-solution
begin
sublocale inter-S: term-algebra F-S I (>).
sublocale inter-S: omega-term-algebra F-S I
proof (unfold-locales, unfold inter-S.valid-monotone-inter-def, intro ballI)
    fix fn
    assume fn \inF-S
    note F = this[unfolded F-S-def F-def]
    show inter-S.valid-monotone-fun fn
        unfolding inter-S.valid-monotone-fun-def
    proof (intro allI impI, clarify)
        fix f n
        assume fn: fn = (f,n)
        note defs= valid-fun-def monotone-fun-wrt-def
        show valid-fun n (If)^ inter-S.monotone-fun n (If)
        proof (cases f)
            case f:a-sym
            with F fn have n: n=2 by auto
            show ?thesis unfolding f n
                by (auto simp: defs dest!: length2-cases less2-cases)
    next
                case f:g-sym
```

```
    with F fn have n: n=2 by auto
    show ?thesis unfolding f n
        by (auto simp: defs dest!: length2-cases less2-cases)
            (smt (verit, ccfv-SIG) mult-mono')
    next
    case f:z-sym
    with F fn have n: n=0 by auto
    show ?thesis unfolding f n
        by (auto simp: defs)
    next
    case f:o-sym
    with F fn have n: n=0 by auto
    show ?thesis unfolding f n
        by (auto simp: defs intro!: insertion-positive-poly pq)
    next
    case f:f-sym
    with F fn have n: n=7 by auto
    show ?thesis unfolding f n
        by (auto simp: defs intro!: add-le-less-mono mult-mono
            dest!: length7-cases less7-cases)
    next
    case f:(v-sym i)
    with F fn have n: n=1 by auto
    show ?thesis unfolding f n
        by (auto simp: defs)
    next
        case f:q-sym
        with F fn have n: n=1 by auto
        show ?thesis unfolding f n
        by (auto simp: defs dest: length1-cases)
    next
        case f:h-sym
        with F fn have n: n=1 by auto
        show ?thesis unfolding f n
            by (auto simp: defs power2-eq-square dest!: length1-cases)
            (insert mult-strict-mono', fastforce)
    qed
    qed
qed
Lemma 5.6
lemma S-is-omega-terminating: omega-termination F-S S
    unfolding omega-termination-def
proof (intro exI[of - I] conjI)
    show omega-term-algebra F-S I ..
    show inter-S.termination-by-interpretation S
        unfolding inter-S.termination-by-interpretation-def S-def
    proof (clarify, intro conjI)
        show funas-term lhs-S \cup funas-term rhs-S\subseteqF-S using lhs-S-F rhs-S-F by
```

```
auto
    show inter-S.orient-rule (lhs-S, rhs-S) unfolding inter-S.orient-rule-def split
    proof (intro allI impI)
        fix }\alpha:: var => in
        assume assignment \alpha
        hence \alpha: \alpha x\geq0 for x unfolding assignment-def by auto
        from \alpha[of y4] obtain n4 where n4:\alpha y4 = int n4
        using nonneg-int-cases by blast
    define q1 where q1 = insertion ( }\lambda\mathrm{ -. 1) q
    have q1: q1 \geq0 unfolding q1-def using pq(2)
        by (simp add: insertion-positive-poly)
    define p1 where p1= insertion ( }\lambda\mathrm{ -. 1) p
    have p1:p1\geq0 unfolding p1-def using pq(1)
        by (simp add: insertion-positive-poly)
    have [simp]: I\llbracketfoldr (\lambdai t. Fun (v-sym i) [t]) xs t\rrbracket\alpha=I\llbrackett\rrbracket\alpha for xs t
        by (induct xs, auto)
    define l where l i= args (lhs-S)!i for i
    define r where ri=args (rhs-S)!i for i
    note defs = l-def r-def lhs-S-def rhs-S-def
    have 1: I\llbracketl 0\rrbracket\alpha \geqI\llbracketr 0\rrbracket < unfolding defs by auto
    have 2: I\llbracketl 1\rrbracket\alpha \geqI\llbracketr 1\rrbracket\alpha unfolding defs by auto
    have 5:I\llbracketl 4\rrbracket\alpha \geqI\llbracketr 4\rrbracket\alpha unfolding defs using }\alpha[of y5] by aut
        have 6:I\llbracketl 5\rrbracket\alpha>I\llbracketr 5\rrbracket\alpha unfolding defs using \alpha[of y6] by (auto simp:
power2-eq-square)
    have 7: I\llbracketl 6\rrbracket\alpha \geqI\llbracketr 6\rrbracket\alpha unfolding defs using }\alpha[of y%] q1
        by (auto simp: q1-def[symmetric] field-simps)
    have n44:n4*4=n4 + n4 + n4 + n4 by simp
    have r3: I\llbracketr 3\rrbracket \alpha=1*5`(4*n4)+14*5`(3*n4)+64*5`(2*n4)
+105*5^n4 + 48*5`0
            unfolding defs by (simp add: n4 field-simps power-mult power2-eq-square)
            (simp flip: power-add power-mult add: field-simps n44)
    let ?large = 125*5^(n4^2 +7*n4)
    have l3:I\llbracketl 3\rrbracket\alpha= ?large + ?large + ?large + ?large + ?large
    unfolding defs by (simp add:n4 power2-eq-square nat-add-distrib nat-mult-distrib
power-add)
    have 4:I\llbracketl 3\rrbracket \alpha \geqI\llbracketr 3\rrbracket\alpha unfolding l3 r3
        by (intro add-mono mult-mono power-increasing, auto)
    have }I\llbracketr 2\rrbracket\alpha* I\llbracketr 6\rrbracket\alpha +I\llbracketr 2\rrbracket] <
        =((q1 + 1)*\alpha y% + q1 + 1)*\alpha y3
        unfolding defs by (simp add: I-encode-poly[OF pq(2)] q1-def field-simps)
    also have \ldots\leq ((q1 + 1)*\alpha y7 + q1 + 1) *((p1 + 1)*\alpha y3)
        by (rule mult-left-mono, insert p1 q1 \alpha, auto simp: field-simps)
    also have ... = I\llbracketl 2\rrbracket\alpha*I\llbracketl 6\rrbracket\alpha+I\llbracketl 2\rrbracket\alpha
            unfolding defs by (simp add: I-encode-poly[OF pq(1)] q1-def p1-def
field-simps)
```


have lhs: lhs-S = Fun f-sym (map $l[0,1,2,3,4,5,6])$ unfolding lhs-S-def l-def by simp
have rhs: rhs-S $=$ Fun f-sym (map $r[0,1,2,3,4,5,6]$) unfolding rhs-S-def r-def by simp
have $I \llbracket r h s-S \rrbracket \alpha=(I \llbracket r 2 \rrbracket \alpha * I \llbracket r 6 \rrbracket \alpha+I \llbracket r 2 \rrbracket \alpha)+$
$(I \llbracket r 0 \rrbracket \alpha+I \llbracket r 1 \rrbracket \alpha+I \llbracket r 3 \rrbracket \alpha+I \llbracket r 4 \rrbracket \alpha+I \llbracket r 6 \rrbracket \alpha)+I \llbracket r 5 \rrbracket \alpha$ unfolding rhs by simp
also have $\ldots<(I \llbracket l 2 \rrbracket \alpha * I \llbracket l 6 \rrbracket \alpha+I \llbracket l 2 \rrbracket \alpha)+$
$(I \llbracket l 0 \rrbracket \alpha+I \llbracket l 1 \rrbracket \alpha+I \llbracket l 3 \rrbracket \alpha+I \llbracket l 4 \rrbracket \alpha+I \llbracket l 6 \rrbracket \alpha)+I \llbracket l 5 \rrbracket \alpha$
apply (rule add-le-less-mono[OF - 6])
apply (rule add-mono[OF 37])
by (intro add-mono 1245 7)
also have $\ldots=I \llbracket l h s-S \rrbracket \alpha$ unfolding lhs by simp
finally show $I \llbracket l h s-S \rrbracket \alpha>I \llbracket r h s-S \rrbracket \alpha$.
qed
qed
qed
end
end

8 Undecidability of Polynomial Termination using δ-Orders

```
theory Delta-Poly-Termination-Undecidable
    imports
        Poly-Termination-Undecidable
begin
context poly-input
begin
definition y 8 :: var where y }8=
definition y9 :: var where y9 = 8
Definition 6.3
definition lhs-Q = Fun f-sym [
    q-t (h-t (Var y1)),
    h-t (Var y2),
    h-t (Var y3),
    g-t (q-t (Var y4)) (h-t (h-t (h-t (Var y4)))),
    q-t (Var y5),
    a-t (Var y6) (Var y6),
    Var y7,
    Var y8,
    h-t (a-t (encode-poly y9 p)(Var y9))]
```

```
fun g-list :: - = (symbol,var)term where
    g-list [] = z-t
|g-list ((f,n)# fs)=g-t (Funf(replicate n z-t)) (g-list fs)
definition symbol-list where symbol-list = [(f-sym,9),(q-sym,1),(h-sym,1),(a-sym,Q)]
@ map (\lambda i. (v-sym i, 1)) V-list
definition t-t :: (symbol,var)term where t-t =(g-list ((z-sym,0) # symbol-list))
definition rhs-Q = Fun f-sym [
    h-t (h-t (q-t (Var y1))),
    g-t (Var y2) (Var y2),
    Fun f-sym (replicate 9 (Var y3)),
    q-t (g-t (Var y4) t-t),
    a-t (Var y5) (Var y5),
    q-t (Var y6),
    a-t z-t (Var y 7),
    a-t (Var y8) z-t,
    a-t (encode-poly y9 q) (Var y9)]
definition Q where Q ={(lhs-Q, rhs-Q)}
definition F-Q where F-Q ={(f-sym,9),(h-sym,1),(g-sym,Q), (q-sym,1)}\cupF
lemma lhs-Q-F: funas-term lhs-Q\subseteqF-Q
proof -
    from funas-encode-poly-p
    show funas-term lhs-Q \subseteqF-Q unfolding lhs-Q-def by (auto simp: F-Q-def
F-def)
qed
lemma g-list-F: set zs \subseteqF-Q\Longrightarrow funas-term (g-list zs)\subseteqF-Q
proof (induct zs)
    case Nil
    thus ?case by (auto simp: F-Q-def F-def)
next
    case (Cons fa ts)
    then obtain fa where fa: fa=(f,a) and inF:(f,a)\inF-Q by (cases fa, auto)
    have {(g-sym,Suc (Suc 0)),(z-sym,0)}\subseteqF-Q by (auto simp: F-Q-def F-def)
    with Cons fa inF show ?case by auto
qed
lemma symbol-list: set symbol-list }\subseteqF-Q unfolding symbol-list-def F-Q-def F-def
using V-list by auto
lemma t-F: funas-term t-t\subseteqF-Q
    unfolding t-t-def using g-list-F[OF symbol-list]
    by (auto simp: F-Q-def F-def)
```

```
lemma vars-g-list[simp]: vars-term (g-list zs) = {}
    by (induct zs,auto)
lemma vars-t: vars-term t-t={}
    unfolding t-t-def by simp
lemma rhs-Q-F: funas-term rhs-Q\subseteqF-Q
proof -
    from funas-encode-poly-q
    show funas-term rhs-Q\subseteqF-Q unfolding rhs-Q-def using t-F by (auto simp:
F-Q-def F-def)
qed
context
    fixes I :: symbol # 'a :: linordered-field mpoly and \delta ::' 'a and a3 a2 a1 a0 z0 v
    assumes I: I a-sym = Const a3 * PVar 0 * PVar 1 + Const a2 * PVar 0 +
Const a1 * PVar 1 + Const a0
    I z-sym = Const z0
    I (v-sym i) = mpoly-of-poly 0 (v i )
    and a:a3>0a2>0 a1>0a0\geq0
    and z:z0\geq0
    and v: nneg-poly (vi) degree (vi)>0
begin
lemma nneg-combination: assumes nneg-poly r
    shows nneg-poly ([:a1, a3:] *r + [:a0, a2:])
    by (intro nneg-poly-add nneg-poly-mult assms, insert a, auto)
lemma degree-combination: assumes nneg-poly r
    shows degree ([:a1, a3:] * r + [:a0, a2:]) = Suc (degree r)
    using nneg-poly-degree-add-1[OF assms, OF a(1) a(2)] by auto
lemma degree-eval-encode-num: assumes c:c\geq0
    shows \exists p. mpoly-of-poly x p = poly-inter.eval I (encode-num x c) ^ nneg-poly
p\wedge int (degree p)=c
proof -
    interpret poly-inter UNIV I .
    from assms obtain n where cn: c = int n by (metis nonneg-eq-int)
    hence natc: nat c=n by auto
    note [simp] = I
    show ?thesis unfolding encode-num-def natc unfolding cn int-int-eq
    proof (induct n)
        case 0
        show ?case using z by (auto simp: intro!: exI[of - [:z0:]])
    next
        case (Suc n)
        define t where t=(((\lambdat. Fun a-sym [TVar x, t]) ^~ n) (Fun z-sym []))
    from Suc obtain p}\mathrm{ where mp: mpoly-of-poly x p = eval t
```

and deg: degree $p=n$ and p : nneg-poly p by (auto simp: t-def)
show ? case apply (simp add: t-def[symmetric])
apply (unfold deg[symmetric])
apply (intro exI[of - [: a1, a3:] * p + [:a0, a2:]] conjI mpoly-extI de-gree-combination p nneg-combination)
by (simp add: mp insertion-add insertion-mult field-simps)
qed
qed
lemma degree-eval-encode-monom: assumes $c: c>0$
and $\alpha: \alpha=(\lambda i$.int $(\operatorname{degree}(v i)))$
shows \exists p. mpoly-of-poly y $p=$ poly-inter.eval $I($ encode-monom y $m c) \wedge n n e g-p o l y$
$p \wedge$
int $($ degree $p)=$ insertion $\alpha($ mmonom $m c) \wedge$ degree $p>0$
proof -
interpret poly-inter UNIV I .
define xes where xes $=$ var-list m
from var-list[of $m c$]
have monom: mmonom $m c=$ Const $c *\left(\prod(x, e) \leftarrow x e s . P \operatorname{Var} x^{\wedge} e\right)$ unfolding xes-def.
show ?thesis unfolding encode-monom-def monom xes-def[symmetric]
proof (induct xes)
case Nil
show ?case using degree-eval-encode-num [of c y] c by auto
next
case (Cons xe xes)
obtain $x e$ where $x e$: $x e=(x, e)$ by force
define expr where expr $=$ rec-list (encode-num y $c)(\lambda a$. case a of $(i, e) \Rightarrow$
λ-. (λt. Fun (v-sym i) $[t]$) $\sim e$)
define exes where exes $=$ expr xes
define $i x e s$ where ixes $=$ insertion $\alpha\left(\right.$ Const $c *\left(\prod a \leftarrow\right.$ xes. case a of (x, a)
$\Rightarrow P \operatorname{Var} x^{\wedge} a$)
have step: expr $(x e \#$ xes $)=((\lambda t$. Fun $(v$-sym $x)[t]) \sim e)($ exes $)$ unfolding xe expr-def exes-def by auto
have step': insertion α (Const $c *\left(\prod a \leftarrow x e \#\right.$ xes. case a of $(x, a) \Rightarrow P \operatorname{Var} x$ - a)) $=(\alpha x) \widehat{e} *$ ixes unfolding xe ixes-def by (simp add: insertion-mult insertion-power)
from Cons(1)[folded expr-def exes-def ixes-def] obtain p where
IH: mpoly-of-poly y $p=$ eval exes nneg-poly p
int $($ degree $p)=$ ixes degree $p>0$
by auto
show ?case
unfolding expr-def[symmetric]
unfolding step step ${ }^{\prime}$
proof (induct e)
case 0
thus ?case using $I H$ by auto
next

```
    case (Suc e)
    define rec where rec = ((\lambdat. Fun (v-sym x) [t])~~e) exes
    from Suc[folded rec-def] obtain p}\mathrm{ where
    IH: mpoly-of-poly y p = eval rec nneg-poly p int (degree p)=\alpha x^e * ixes
degree p>0 by auto
    have ((\lambdat. Fun (v-sym x) [t]) ~ Suc e) exes = Fun (v-sym x) [rec]
        unfolding rec-def by simp
        also have eval ... = substitute (\lambdai. if i=0 then eval ([rec]!i) else 0)
(poly-to-mpoly 0 (v x))
            by (simp add: I mpoly-of-poly-is-poly-to-mpoly)
    also have ... = poly-to-mpoly y (vx道p)
    by (rule substitute-poly-to-mpoly, auto simp: IH(1)[symmetric] mpoly-of-poly-is-poly-to-mpoly)
    finally have id: eval (((\lambdat. Fun (v-sym x ) [t]) ~ Suc e) exes ) = poly-to-mpoly
y(vx 呅p).
    show ?case unfolding id mpoly-of-poly-is-poly-to-mpoly
    proof (intro exI[of-vx 趹 p] conjI refl)
        show int (degree (vx看p)) =\alpha x` Suc e * ixes
            unfolding degree-pcompose using IH(3) by (auto simp: \alpha)
        show nneg-poly (v x 呅 p) using IH(2) v[of x]
            by (intro nneg-poly-pcompose, insert IH, auto)
        show 0< degree (vx 的 p) unfolding degree-pcompose using IH(4)v[of
x] by auto
        qed
        qed
    qed
qed
```

Lemma 6.2
lemma degree－eval－encode－poly－generic：assumes positive－poly r and $\alpha: \alpha=(\lambda i$ ．int $(\operatorname{degree}(v i)))$
shows \exists p．poly－to－mpoly $x p=$ poly－inter．eval $I($ encode－poly $x r) \wedge$ nneg－poly p \wedge
int $($ degree $p)=$ insertion αr
proof－
interpret poly－inter UNIV I ．
define mcs where mcs $=$ monom－list r
from monom－list $[$ of $r]$ have $r: r=\left(\sum(m, c) \leftarrow m c s\right.$ ．mmonom $m c$ ）unfolding
mes－def by auto
\｛
fix $m c$
assume $m c:(m, c) \in$ set $m c s$
hence $c \geq 0$
using monom－list－coeff assms unfolding mcs－def positive－poly－def by auto
moreover from $m c$ have $c \neq 0$ unfolding $m c s$－def
by（transfer，auto）
ultimately have $c>0$ by auto
$\}$ note $m c s=t h i s$
note $[$ simp $]=I$
show ？thesis unfolding encode－poly－def mcs－def［symmetric］unfolding r inser－

```
tion-sum-list map-map o-def
    unfolding mpoly-of-poly-is-poly-to-mpoly[symmetric]
    using mcs
    proof (induct mcs)
    case Nil
    show ?case by (rule exI[of - [:z0:]], insert z, auto)
    next
    case (Cons mc mcs)
    define trm where trm = rec-list (Fun z-sym []) (\lambdaa. case a of (m,c) => \lambda-t.
Fun a-sym [encode-monom x m c,t])
    define expr where expr mcs = (\sumx\leftarrowmcs. insertion \alpha (case x of (x,xa) =>
mmonom x xa)) for mcs
    obtain mc where mc: mc= (m,c) by force
    from Cons(2) mc have c:c>0 by auto
    from degree-eval-encode-monom[OF this \alpha, of x m]
    obtain q}\mathrm{ where monom: mpoly-of-poly x q = eval (encode-monom x m c)
        nneg-poly q int (degree q) = insertion \alpha (mmonom m c)
        and dq: degree q>0 by auto
    from Cons(1)[folded trm-def expr-def, OF Cons(2)]
    obtain p where IH: mpoly-of-poly x p = eval (trm mcs) nneg-poly p int (degree
p)= expr mcs by force
    have step: trm (mc # mcs)= Fun a-sym [encode-monom x m c, trm mcs]
        unfolding mc trm-def by simp
        have step': expr (mc # mcs) = insertion \alpha (mmonom m c) + expr mcs
unfolding mc expr-def by simp
    have deg: degree ([:a3:] * q*p+([:a2:] * q+[:a1:] * p+[:a0:])) = degree p
+ degree q
            by (rule nneg-poly-degree-add, insert a IH monom, auto)
    show ?case unfolding expr-def[symmetric] trm-def[symmetric]
        unfolding step step'
        unfolding IH(3)[symmetric] monom(3)[symmetric]
        apply (intro exI[of - [:a3:] * q * p+[:a2:] * q+ [:a1:] * p + [:a0:]] conjI)
    subgoal by (intro mpoly-extI, simp add: IH(1)[symmetric] monom(1)[symmetric]
insertion-mult insertion-add)
    subgoal by (intro nneg-poly-mult nneg-poly-add IH monom, insert a, auto)
    subgoal using deg by (auto simp: ac-simps)
        done
    qed
qed
end
end
context delta-poly-inter
begin
lemma transp-gt-delta: transp ( }\lambdaxy.x\geqy+\delta)\mathrm{ using }\delta
    by (auto simp: transp-def)
```

lemma gt-delta-imp-ge: $y+\delta \leq x \Longrightarrow y \leq x$ using $\delta 0$ by auto
lemma weakly-monotone-insertion: assumes mono: monotone-poly (vars p) p
and a : assignment $\left(a::-\Rightarrow^{\prime} a\right)$
and $g t: \bigwedge x . x \in$ vars $p \Longrightarrow a x+\delta \leq b x$
shows insertion a $p \leq$ insertion $b p$
using monotone-poly-wrt-insertion[OF transp-gt-delta gt-delta-imp-ge mono a, of b] gt $\delta 0$ by auto

Lemma 6.5

lemma degree-partial-insertion-stays-constant: assumes mono: monotone-poly (vars p) p shows \exists a. assignment $a \wedge$
$(\forall b .(\forall y . a y+\delta \leq b y) \longrightarrow$ degree (partial-insertion a $x p$) $=$ degree (partial-insertion bxp)) using degree-partial-insertion-stays-constant-generic [OF transp-gt-delta gt-delta-imp-ge poly-pinfty-ge mono, of δ x, simplified] by metis
lemma degree-mono: assumes pos: lead-coeff $p \geq(0:: ' a)$ and le: $\bigwedge x . x \geq c \Longrightarrow$ poly $p x \leq$ poly $q x$
shows degree $p \leq$ degree q
by (rule degree-mono-generic[OF poly-pinfty-ge assms])
lemma degree-mono': assumes $\wedge x . x \geq c \Longrightarrow\left(b n d::{ }^{\prime} a\right) \leq$ poly $p x \wedge$ poly $p x$ \leq poly $q x$
shows degree $p \leq$ degree q
by (rule degree-mono'-generic [OF poly-pinfty-ge assms])
Lemma 6.6
lemma subst-same-var-monotone-imp-same-degree:
assumes mono: monotone-poly (vars p) ($\left.p::{ }^{\prime} a \operatorname{mpoly}\right)$
and $d q$: degree $q=d$
and $d 0: d \neq 0$
and $q p$: poly-to-mpoly $x q=$ substitute $(\lambda i . P \operatorname{Var} x) p$
shows total-degree $p=d$
proof -
let ? $m c=(\lambda m$. mmonom $m(m$ coeff $p m))$
let ?cfs $=\{m$. mcoeff $p m \neq 0\}$
let ?lc = lead-coeff
note fin $=$ finite-coeff-support [of p]
from poly-to-mpoly-substitute-same[OF $q p]$ d0[folded $d q]$ have $p 0: p \neq 0$
by (metis degree-0 insertion-zero poly-all-0-iff-0)
define M where $M=$ total-degree p
from degree-monom-eq-total-degree [OF p0]
obtain $m M$ where $m M$: mcoeff $p m M \neq 0$ degree-monom $m M=M$ unfolding
M-def by blast
from degree-substitute-same-var[of x p, folded M-def $q p$]
have $d M: d \leq M$ unfolding $d q$ degree-poly-to-mpoly .
with $d 0$ have $M 1: M \geq 1$ by auto
define $p 1$ where $p 1=$ sum ? $m c($?cfs $\cap\{m$. degree-monom $m=M\})$
define $p 2$ where $p 2=$ sum ? $m c(? c f s \cap\{m$. degree-monom $m<M\})$
have $p=$ sum ?mc ?cfs
by (rule mpoly-as-sum)
also have ?cfs $=$? $c f s \cap\{m$. degree-monom $m=M\}$
\cup ?cfs $\cap\{m$. degree-monom $m \neq M\}$ by auto
also have ? $c f s \cap\{m$. degree-monom $m \neq M\}=$? $c f s \cap\{m$. degree-monom $m<$ M\}
using degree-monon-le-total-degree[of p, folded M-def] by force
also have sum ?mc $($?cfs $\cap\{m$. degree-monom $m=M\} \cup \ldots)=p 1+p 2$
unfolding $p 1$-def p2-def
using fin by (intro sum.union-disjoint, auto)
finally have p-split: $p=p 1+p 2$.
have total-degree $p 2 \leq M-1$ unfolding $p 2$-def
by (intro total-degree-sum-leI, subst total-degree-monom, auto)
also have $\ldots<M$ using $M 1$ by auto
finally have deg-p': total-degree $p^{2}<M$ by auto
have $p 1 \neq 0$
proof
assume $p 1=0$
hence $p=p 2$ unfolding p-split by auto
hence $M=$ total-degree $p 2$ unfolding M-def by simp
with $d e g-p^{\prime}$ show False by auto
qed
with mpoly-ext-bounded-field[of $\max 1 \delta p 10]$ obtain b
where $b: \wedge v . b v \geq \max 1 \delta$ and bpm0: insertion $b p 1 \neq 0$ by auto
from b have $b 1: \bigwedge v . b v \geq 1$ and $b \delta: \bigwedge v . b v \geq \delta$ by auto
define c where $c=\operatorname{Max}($ insert $1(b$ 'vars $p))+\delta$
define X where $X=(0::$ nat $)$
define $p b$ where $p b p=$ mpoly-to-poly X (substitute $(\lambda v$. Const ($b v$) * PVar $X) p$) for p
have $c 1: c \geq 1$ unfolding c-def using vars-finite[of $p] \delta 0 \operatorname{Max-ge}\left[o f-1::{ }^{\prime} a\right]$
by (meson add-increasing2 finite.insertI finite-imageI insertI1 nless-le)
have vars X : vars (substitute (λ v. Const $(b v) * P \operatorname{Var} X) p$) $\subseteq\{X\}$ for p
by (intro vars-substitute order.trans[OF vars-mult], auto)
have $p b$: substitute (λv. Const $(b v) * P \operatorname{Var} X) p=$ poly-to-mpoly $X(p b p)$ for
p
unfolding $p b$-def
by (rule mpoly-to-poly-inverse[symmetric, OF varsX])
have poly-pb: poly $(p b p) x=\operatorname{insertion}(\lambda v . b v * x) p$ for $x p$
using arg-cong[OF pb, of insertion (λ-. x),
unfolded insertion-poly-to-mpoly]
by (auto simp: insertion-substitute insertion-mult)
define $l b$ where $l b=\operatorname{insertion}(\lambda-.0) p$
\{
fix x
have poly $(p b p) x=\operatorname{insertion}(\lambda v . b v * x) p$ by fact
also have $\ldots=\operatorname{insertion}(\lambda v . b v * x) p 1+\operatorname{insertion~}(\lambda v . b v * x) p 2$
unfolding p-split
by (simp add: insertion-add)
also have insertion $(\lambda v . b v * x) p 1=$ insertion b $p 1 * x^{\wedge} M$
unfolding $p 1$-def insertion-sum insertion-mult insertion-monom sum-distrib-right
power-mult-distrib
proof (intro sum.cong[OF refl], goal-cases)
case (1 m)
from 1 have $M: M=$ degree-monom m by auto
have $\{v$. lookup $m v \neq 0\} \subseteq$ keys m
by (simp add: keys.rep-eq)
from finite-subset $[O F$ this $]$ have fin: finite $\{v$. lookup $m v \neq 0\}$ by auto
have ($\Pi v . b v$ へlookup $m v * x$ ^lookup $m v$) $=\left(\prod v . b v \curlywedge\right.$ lookup $\left.m v\right) *\left(\prod v . x^{\wedge}\right.$ lookup $\left.m v\right)$ by (subst (1 2 3) Prod-any.expand-superset[OF fin]) (insert zero-less-iff-neq-zero, force simp: prod.distrib)+
also have $\left(\prod v . x^{\wedge}\right.$ lookup $\left.m v\right)=x^{\wedge} M$ unfolding M degree-monom-def
by (smt (verit) Prod-any.conditionalize Prod-any.cong finite-keys in-keys-iff power-0 power-sum)
finally show? case by simp
qed
also have insertion $(\lambda v . b v * x) p 2=$ poly ($p b$ p2) x unfolding poly-pb ..
finally have poly $(p b p) x=$ poly (monom (insertion bp1) $M+p b p 2) x$ by
(simp add: poly-monom)
\}
hence $p b p$-split: $p b p=$ monom (insertion $b p 1$) $M+p b p 2$ by blast
have degree ($p b$ p2) \leq total-degree $p 2$ unfolding $p b$-def
apply (subst degree-mpoly-to-poly)
apply (simp add: varsX)
by (rule degree-substitute-const-same-var)
also have $\ldots<M$ by fact
finally have deg-pbp2: degree ($p b$ p2) $<M$.
have degree (monom (insertion b p1) M) $=M$ using bpm0 by (rule de-gree-monom-eq)
with deg-pbp2 pbp-split have deg-pbp: degree ($p b$ p) = M unfolding $p b p$-split by (subst degree-add-eq-left, auto)
have ?lc $(p b p)=$ insertion $b p 1$ unfolding $p b p$-split
using deg-pbp2 bpm0 coeff-eq-0 deg-pbp pbp-split by auto
define $b n d$ where $b n d=\operatorname{insertion}(\lambda-.0) p$
f
fix $x::{ }^{\prime} a$
assume $x 1: x \geq 1$
hence $x: x \geq 0$ by simp
have ass: assignment ($\lambda v . b v * x$) unfolding assignment-def using x b1 by (meson linorder-not-le mult-le-cancel-right1 order-trans)
have poly $(p b p) x=\operatorname{insertion}(\lambda v . b v * x) p$ by fact
also have insertion $(\lambda v . b v * x) p \leq \operatorname{insertion}(\lambda v . c * x) p$ proof (rule weakly-monotone-insertion[OF mono ass])
fix v

```
    assume v:v\invars p
    have bv+\delta\leqc
by auto
    thus bv*x+\delta\leqc*x using b[of v] x1 c1 \delta0
    by (smt (verit) c-def add-le-imp-le-right add-mono comm-semiring-class.distrib
mult.commute mult-le-cancel-right1 mult-right-mono order.asym x)
    qed
    also have ... = poly q(c*x) unfolding poly-to-mpoly-substitute-same[OF qp]
    also have ... = poly ( }q\mp@subsup{\circ}{p}{}[:0,c:])x\mathrm{ by (simp add: poly-pcompose ac-simps)
    finally have ineq: poly ( }pbp\mathrm{ ) x < poly ( }q\mp@subsup{\circ}{p}{}[:0,c:])x
    have bnd \leqinsertion ( }\lambdav.bv*x) p unfolding bnd-def
        apply (intro weakly-monotone-insertion[OF mono])
        subgoal by (simp add: assignment-def)
        subgoal for v using b\delta[of v] x1 \delta0
            by simp (metis dual-order.trans less-le-not-le mult-le-cancel-left1)
        done
    also have ... = poly ( pb p) x using poly-pb by auto
    finally have bnd \leqpoly (pb p)x by auto
    note this ineq
    } note pb-approx = this
    have M = degree ( }pb\mathrm{ p) unfolding deg-pbp ..
    also have ...\leq degree ( }q\mp@subsup{\circ}{p}{}[:0,c:]
    by (intro degree-mono'[of 1 bnd], insert pb-approx, auto)
    also have ...\leqd by (simp add:dq)
    finally have deg-pbp: M\leqd.
    with }dM\mathrm{ have }M=d\mathrm{ by auto
    thus ?thesis unfolding M-def .
qed
lemma monotone-poly-partial-insertion:
    assumes x: x \in xs
    and mono: monotone-poly xs p
    and ass: assignment a
shows 0<degree (partial-insertion a x p)
    lead-coeff (partial-insertion a x p)>0
    valid-poly p\Longrightarrowy\geq0\Longrightarrow poly(partial-insertion a x p) y \geqy-\delta
    valid-poly p\Longrightarrowinsertion a p\geqax-\delta
proof -
    have 0:1\leq inverse }\delta*\delta\mathrm{ using }\delta0\mathrm{ by auto
    define ceil-nat :: ' }a=>\mathrm{ nat where ceil-nat }x=nat (ceiling x) for x
    have 1: x \leq of-nat (ceil-nat x) for x unfolding ceil-nat-def
    by (simp add: of-nat-ceiling)
    note main = monotone-poly-partial-insertion-generic[OF transp-gt-delta gt-delta-imp-ge
poly-pinfty-ge refl \delta0 0 1 x mono ass, simplified]
    show 0<degree (partial-insertion a x p) 0<lead-coeff (partial-insertion a x p)
    using main by auto
    assume valid: valid-poly p
```

from main(3)[OF this] have estimation: $\delta *$ of-nat $y \leq$ poly (partial-insertion a $x p)(\delta *$ of-nat $y)$ for y by auto
\{
fix $y::^{\prime} a$
assume $y: y \geq 0$
with ass have ass': assignment $(a(x:=y))$ unfolding assignment-def by auto
from valid[unfolded valid-poly-def, rule-format, OF ass]
have ge0: insertion $(a(x:=y)) p \geq 0$ by auto
have id: poly (partial-insertion a x p) y=insertion $(a(x:=y)) p$
using insertion-partial-insertion[of x a $a(x:=y) p]$ by auto
show $y-\delta \leq$ poly (partial-insertion a $x p$) y
proof (cases $y \geq \delta$)
case False
with geO[folded id] y show ?thesis by auto
next
case True
define z where $z=y-\delta$
from True have $z 0: z \geq 0$ unfolding z-def by auto
define n where $n=n a t$ (floor $(z *$ inverse δ))
have $\delta *$ of-nat $n \leq z$ unfolding n-def using $\delta 0 z 0$
by (metis field-class.field-divide-inverse mult-of-nat-commute mult-zero-left of-nat-floor pos-le-divide-eq)
hence gt: $\delta *$ of-nat $n+\delta \leq y$ unfolding z-def by auto
define b where $b=a(x:=\delta *$ of-nat $n)$
have ass-b: assignment b using $\delta 0$ ass unfolding b-def assignment-def by auto
from mono[unfolded monotone-poly-wrt-def, rule-format, $O F$ ass- $b x$, of $y] g t$ have $g t$: insertion b $p \leq \operatorname{insertion~}(b(x:=y)$) $p-\delta$ by (auto simp: b-def)
have $\delta *$ of-nat $n+\delta \geq z$ unfolding n-def using $\delta 0 z 0$
by (smt (verit, del-insts) comm-semiring-class.distrib field-class.field-divide-inverse
floor-divide-upper inverse-nonnegative-iff-nonnegative mult.commute mult-cancel-left2
mult-nonneg-nonneg of-nat-nat order-less-le z-def z-def z-def zero-le-floor)
hence $y-2 * \delta \leq \delta *$ of-nat n unfolding z-def by auto
also have $\delta *$ of-nat $n \leq$ poly (partial-insertion a xp) ($\delta *$ of-nat n) by fact
also have $\ldots=$ insertion b p using insertion-partial-insertion $[o f x a b l l$ by (auto simp: b-def)
also have $\ldots \leq \operatorname{insertion}(b(x:=y)) p-\delta$ by fact
also have insertion $(b(x:=y)) p=$ poly (partial-insertion a x \quad) $) y$
using insertion-partial-insertion[of x a $b(x:=y) p]$
by (auto simp: b-def)
finally show? ?thesis by simp
qed
\} note estimation $=$ this
from ass have a $x \geq 0$ unfolding assignment-def by auto
from estimation[OF this] show insertion a $p \geq a x-\delta$
using insertion-partial-insertion $\left[\begin{array}{llll}\text { of } & x & a & p\end{array}\right]$ by auto

qed
 end

context solvable-poly-problem
begin

```
context
    assumes SORT-CONSTRAINT('a :: floor-ceiling)
begin
context
    fixes h :: 'a
begin
fun IQ :: symbol = 'a mpoly where
    IQ f-sym = PVar 0 + PVar 1 + PVar 2 + PVar 3 + PVar 4 + PVar 5 + PVar
6+PVar 7 + PVar }
IQ a-sym = PVar 0 * PVar 1 + PVar 0 + PVar 1
IQ z-sym = 0
I IQ (v-sym i) = PVar 0 ^ (nat (\alpha i))
IQ q-sym = PVar 0 * PVar 0 + Const 2 * PVar 0
IQ g-sym = PVar 0 + PVar 1
IQ h-sym = Const h* PVar 0 + Const h
|Q o-sym = 0
```

interpretation inter Q : poly-inter $F-Q I Q\left(\lambda x y . x \geq y+\left(1::{ }^{\prime} a\right)\right)$.

Lemma 6.2 specialized for this interpretation
lemma degree-eval-encode-poly: assumes positive-poly r
shows \exists p. poly-to-mpoly y 9 p interQ.eval (encode-poly y $9 r$) \wedge nneg-poly $p \wedge$
int $($ degree $p)=$ insertion αr
proof -
define v where $v i=\left(\right.$ monom $1($ nat $(\alpha i))::{ }^{\prime}$ 'a poly) for i
define γ where $\gamma=(\lambda i$. int $($ degree $(v i)))$
have nneg-v: nneg-poly (vi) $0<$ degree ($v i$) for i unfolding v-def using $\alpha 1$ [of i]
by (auto simp: nneg-poly-def degree-monom-eq poly-monom)
have id: int (Polynomial.degree $(v i))=\alpha i$ for i unfolding v-def
using $\alpha 1[$ of $i]$ by (auto simp: nneg-poly-def degree-monom-eq)
have $I Q(v$-sym $i)=$ mpoly-of-poly $0(v i)$ for i
unfolding v-def by (intro mpoly-extI, simp add: insertion-power poly-monom)
from degree-eval-encode-poly-generic[of IQ $11100 v-\gamma$, OF - this, simplified,
OF nneg-v assms γ-def, unfolded id]
show ?thesis by auto
qed
definition $p p$ where $p p=$ (SOME pp. poly-to-mpoly y9 $p p=$ interQ.eval (encode-poly $y 9 p) \wedge$ nneg-poly $p p \wedge$ int $($ degree $p p)=$ insertion $\alpha p)$

```
lemma pp: interQ.eval (encode-poly y9 \(p\) ) \(=\) poly-to-mpoly y 9 pp
    nneg-poly pp int (degree pp) \(=\) insertion \(\alpha p\)
    using someI-ex [OF degree-eval-encode-poly[OF pq(1)], folded pp-def] by auto
definition \(q q\) where \(q q=(S O M E q q\). poly-to-mpoly y \(9 q q=\) interQ.eval (encode-poly
\(y 9 q) \wedge\) nneg-poly \(q q \wedge\) int \((\) degree \(q q)=\) insertion \(\alpha q)\)
lemma qq: interQ.eval (encode-poly y9 \(q\) ) = poly-to-mpoly y 9 qq
    nneg-poly \(q q\) int \((\) degree \(q q)=\) insertion \(\alpha q\)
    using someI-ex[OF degree-eval-encode-poly[OF pq(2)], folded qq-def] by auto
definition \(p p p=p p *[: 1,1:]+[: 0,1:]\)
definition \(q q q=q q *[: 1,1:]+[: 0,1:]\)
lemma degree-ppp: int \((\) degree \(p p p)=1+\) insertion \(\alpha p\)
    unfolding ppp-def pp(3)[symmetric]
    using nneg-poly-degree-add-1[OF pp(2), of \(\left.1 \begin{array}{lll}1 & 1 & 0\end{array}\right]\) by simp
lemma degree-qqq: int (degree \(q q q)=1+\) insertion \(\alpha q\)
    unfolding \(q q q\)-def \(q q(3)\) [symmetric]
    using nneg-poly-degree-add-1[OF qq(2), of 11110\(]\) by simp
lemma \(p p p-q q q\) : degree \(p p p \geq\) degree \(q q q\)
    using degree-ppp degree-qqq \(\alpha\) (2) by auto
lemma nneg-ppp: nneg-poly ppp
    unfolding ppp-def
    by (intro nneg-poly-add nneg-poly-mult pp, auto)
definition \(H\) where \(H=(S O M E H . \forall h \geq H . \forall x \geq 0\). poly \(q q q x \leq h *\) poly \(p p p\)
\(x+h\) )
lemma \(H: h \geq H \Longrightarrow x \geq 0 \Longrightarrow\) poly \(q q q x \leq h *\) poly \(p p p x+h\)
proof -
    from poly-degree-le-large-const[OF ppp-qqq nneg-poly-nneg[OF nneg-ppp]]
    have \(\exists H . \forall h \geq H . \forall x \geq 0\). poly \(q q q x \leq h *\) poly \(p p p x+h\) by auto
    from someI-ex[OF this, folded H-def]
    show \(h \geq H \Longrightarrow x \geq 0 \Longrightarrow\) poly \(q q q x \leq h *\) poly ppp \(x+h\) by auto
qed
end
definition \(h\) where \(h=\max 9\) (H1)
lemma \(h: h \geq 1\) unfolding \(h\)-def by auto
abbreviation \(I-Q\) where \(I-Q \equiv I Q h\)
interpretation inter- \(Q:\) poly-inter \(F-Q I-Q(\lambda x y . x \geq y+(1:: ' a))\).
```

Well-definedness of Interpretation in Theorem 6.4

```
lemma valid-monotone-inter- \(Q\) :
    inter-Q.valid-monotone-poly-inter
    unfolding inter-Q.valid-monotone-poly-inter-def
proof (intro balli)
    note \([\) simp \(]=\) insertion-add insertion-mult
    fix \(f n\)
    assume \(f: f n \in F-Q\)
    then consider
        (a) \(f n=(a-\) sym,2 \()\)
        ( \(g\) ) \(f n=(g\)-sym,2)
        (h) \(f n=(h\)-sym, 1\()\)
        (q) \(f n=(q-\) sym, 1\()\)
        | \((f) f n=(f\)-sym, 9\()\)
        (z) \(f n=(z\)-sym,0)
        | \((v) i\) where \(f n=(v\)-sym \(i, 1) i \in V\)
    unfolding \(F\) - \(Q\)-def \(F\)-def by auto
    thus inter-Q.valid-monotone-poly fn
    proof cases
        case \(*: a\)
        have vars: vars (PVar \(0 * P \operatorname{Var} 1+P \operatorname{Var} 0+P \operatorname{Var} 1:: ' a \operatorname{mpoly})=\{0,1\}\)
        apply (intro vars-eqI)
        subgoal by (intro vars-mult-subI vars-add-subI, auto)
        subgoal for \(v\) by (intro exI \([o f-\lambda-\) - 1] exI \([o f-0]\), auto)
        done
    show ?thesis unfolding inter-Q.valid-monotone-poly-def *
        apply (intro allI impI, clarify, unfold IQ.simps vars valid-poly-def
                monotone-poly-wrt-def
                insertion-mult insertion-add insertion-Var,
                intro conjI allI impI)
        subgoal for \(\alpha\) unfolding assignment-def by simp
        subgoal for \(--\alpha x v\)
        proof goal-cases
            case 1
            from assignment \(D[O F 1(1)]\) have \(0: \alpha 0 \geq 0 \alpha 1 \geq 0\) by auto
            from 1 have \(x=0 \vee x=1\) by auto
            thus ?case using 01 (3) mult-right-mono[OF 1(3), of \(\alpha(x-1)\) ]
                        by (auto simp: field-simps)
                    (smt (verit, ccfv-threshold) 1(3) add.assoc add.commute add-increasing
add-le-imp-le-right add-right-mono diff-ge-0-iff-ge le-add-diff-inverse2 mult-right-mono
zero-less-one-class.zero-le-one)
            qed
            subgoal by auto
            done
    next
        case \(*: f\)
    have vars: vars \((P \operatorname{Var} 0+P \operatorname{Var} 1+P \operatorname{Var} 2+P \operatorname{Var} 3+P \operatorname{Var} 4+P \operatorname{Var} 5\)
\(+P\) Var \(6+P\) Var \(7+P\) Var \(8::\) 'a mpoly \()=\{0,1,2,3,4,5,6,7,8\}\)
        apply (intro vars-eqI)
```

```
    subgoal by (intro vars-mult-subI vars-add-subI, auto)
    subgoal for v by (intro exI[of-\lambda -. 1] exI[of - 0], auto)
    done
    show ?thesis unfolding inter-Q.valid-monotone-poly-def *
    apply (intro allI impI, clarify, unfold IQ.simps vars valid-poly-def
        monotone-poly-wrt-def
        insertion-mult insertion-add insertion-Var,
        intro conjI allI impI)
    subgoal for \alpha unfolding assignment-def by simp
    subgoal for - - - 人 x v
    proof goal-cases
        case 1
        hence }x\in{0,1,2,3,4,5,6,7,8} by aut
        thus ?case using 1(3) by auto
    qed
    subgoal by auto
    done
next
    case *: h
    have vars: vars (Const h * PVar 0 + Const h :: 'a mpoly) ={0}
        apply (intro vars-eqI)
        subgoal by (intro vars-mult-subI vars-add-subI, auto)
        subgoal for v using h by (intro exI[of - \lambda -. 1] exI[of - 0], auto)
        done
    show ?thesis unfolding inter-Q.valid-monotone-poly-def *
    apply (intro allI impI, clarify, unfold IQ.simps vars valid-poly-def
        monotone-poly-wrt-def
        insertion-mult insertion-add insertion-Var,
        intro conjI allI impI)
    subgoal for \alpha using h unfolding assignment-def by simp
    subgoal for - - - < xv
    proof goal-cases
        case 1
        from assignmentD[OF 1(1), of 0]
        show ?case using 1 h
            by (auto simp: field-simps)
                (smt (verit, ccfv-threshold) add.commute add-le-cancel-left distrib-left
linordered-nonzero-semiring-class.zero-le-one mult.commute mult-cancel-left1 mult-left-mono
nle-le order-trans)
    qed
    subgoal by auto
    done
next
    case z
        thus ?thesis by (auto simp: inter-Q.valid-monotone-poly-def valid-poly-def
monotone-poly-wrt-def)
    next
        case *: g
        have vars: vars (PVar 0 + PVar 1 ::'a mpoly) ={0,1}
```

```
    apply (intro vars-eqI)
    subgoal by (intro vars-mult-subI vars-add-subI, auto)
    subgoal for v by (intro exI[of-\lambda -. 1] exI[of - 0], auto)
    done
    show ?thesis unfolding inter-Q.valid-monotone-poly-def *
    apply (intro allI impI, clarify, unfold IQ.simps vars valid-poly-def
        monotone-poly-wrt-def
        insertion-mult insertion-add insertion-Var,
        intro conjI allI impI)
    subgoal for \alpha unfolding assignment-def by simp
    subgoal for - - - < x v
    proof goal-cases
        case 1
        hence }x\in{0,1}\mathrm{ by auto
        thus ?case using 1(3) by auto
    qed
    subgoal by auto
    done
next
    case *: q
    have vars: vars (PVar 0 * PVar 0 + Const 2 * PVar 0 :: 'a mpoly) ={0}
        apply (intro vars-eqI)
        subgoal by (intro vars-mult-subI vars-add-subI, auto)
        subgoal for v by (intro exI[of-\lambda -. 1] exI[of - 2], auto)
        done
    show ?thesis unfolding inter-Q.valid-monotone-poly-def *
    apply (intro allI impI, clarify, unfold IQ.simps vars valid-poly-def
        monotone-poly-wrt-def
        insertion-mult insertion-add insertion-Var,
        intro conjI allI impI)
    subgoal for \alpha unfolding assignment-def by simp
    subgoal for - - \alpha xv
    proof goal-cases
        case 1
        hence [simp]: x=0 by auto
        from 1(1) have \alpha 0 \geq0 unfolding assignment-def by simp
        thus ?case using 1(3)
            by auto
                (metis (no-types, opaque-lifting) add.assoc add-mono le-add-same-cancel1
mult-2 mult-mono order-trans zero-less-one-class.zero-le-one)
    qed
    subgoal by auto
    done
next
    case *: (vi)
    from \alpha[unfolded positive-interpr-def] have pos: \alphai>0 by auto
    have vars: vars ((PVar 0)^(nat (\alpha i)):: 'a mpoly) ={0}
    apply (intro vars-eqI)
    subgoal by (metis Preliminaries-on-Polynomials-1.vars-Var vars-power)
```

```
    subgoal for v using pos apply (intro exI[of-\lambda -. 2] exI[of - 1])
        by (auto simp: insertion-power)
            (metis less-numeral-extra(4) one-less-numeral-iff one-less-power semir-
ing-norm(76) zero-less-nat-eq)
    done
    show ?thesis unfolding inter-Q.valid-monotone-poly-def *
        apply (intro allI impI, clarify, unfold IQ.simps vars valid-poly-def
            monotone-poly-wrt-def
            insertion-Var insertion-power,
            intro conjI allI impI)
    subgoal for - - \beta using pos unfolding assignment-def by simp
    subgoal for - - - < xv
    proof goal-cases
        case 1
        hence [simp]: x = 0 by auto
        from 1(1) have b0: \beta0\geq0 unfolding assignment-def by simp
        from pos obtain k where nik: nat (\alpha i) = Suc k
            using grO-implies-Suc zero-less-nat-eq by presburger
        define b0 where b0 = \beta 0
        have \beta0^nat (\alphai)+1\leq(\beta0 + 1) ^nat (\alpha i) using b0 unfolding
nik b0-def[symmetric]
            proof (induct k)
                case (Suc k)
                define sk where sk=Suc k
                from Suc show ?case unfolding sk-def[symmetric]
            by (auto simp: field-simps add-mono ordered-comm-semiring-class.comm-mult-left-mono)
            qed auto
            also have ... \leq v^nat (\alpha i) using 1(3) by (simp add: b0 power-mono)
            finally show ?case by simp
            qed
            subgoal by auto
            done
    qed
qed
lemma I-Q-delta-poly-inter: delta-poly-inter F-Q I-Q (1 :: 'a)
    by (unfold-locales, rule valid-monotone-inter-Q, auto)
interpretation inter-Q:delta-poly-inter F-Q I-Q 1 :: 'a by (rule I-Q-delta-poly-inter)
Orientation part of Theorem 6.4
lemma orient- \(Q\) : inter-Q.orient-rule (lhs- \(Q\), rhs- \(Q\) )
unfolding inter-Q.orient-rule-def split inter-Q.I'-is-insertion-eval
proof (intro allI impI)
    fix }x::->>'
    assume assignment x
    hence x: xi\geq0 for i unfolding assignment-def by auto
    have h9: h\geq9 unfolding h-def by auto
    define l where li}=\operatorname{args}(lhs-Q)!i for 
```

```
define \(r\) where \(r i=\operatorname{args}(r h s-Q)!i\) for \(i\)
let ? \(e=\) inter-Q.eval
let ?poly \(=\lambda\) t. insertion \(x(\) ? e t)
note defs \(=l\)-def \(r\)-def lhs- \(Q\)-def rhs- \(Q\)-def
let ?nums \(=[0,1,2,3,4,5,6,7,8]::\) nat list
    note \([\) simp \(]=\) insertion-add insertion-mult y1-def y2-def y3-def y4-def y5-def
y6-def \(y 7\)-def \(y 8\)-def \(y 9\)-def
    have \(e\)-lhs: ?e lhs- \(Q=\) sum-list (map \((\lambda i\). (?e (l \(i))\) ) ?nums)
    unfolding defs by simp
    have e-rhs: ?e rhs- \(Q=\) sum-list (map ( \(\lambda\) i. (?e (ri))) ?nums)
    unfolding defs by simp
    have \([\) simp \(]: \mathcal{Z}=(\) Const \((2:: ' a))\)
    by (metis mpoly-Const-1 mpoly-Const-add one-add-one)
    have ?poly \(\left.\left(\begin{array}{rl}(0)\end{array}\right)=h^{\wedge} 2 *((x 0))^{2}+2 * x 0\right)+h^{\wedge} 2+h\)
    by (simp add: field-simps power2-eq-square defs)
also have \(\ldots \leq(h * x 0+h)^{\wedge} 2+2 *(h * x 0+h)\) using \(h x[\) of 0 ]
    by (simp add: field-simps power2-eq-square)
also have \(\ldots=\) ? poly (l 0)
    by (simp add: field-simps power2-eq-square defs)
finally have 1: ?poly (l0) \(\geq\) ? poly (r 0) .
from \(h 9\) have \(h 2: h \geq 2\) by auto
have ?poly ( \(r 1\) ) \(=2 * x 1\)
    by (simp add: field-simps defs)
also have \(\ldots \leq h * x 1+h\) using mult-right-mono[OF h2 x[of 1]] \(h\)
    by auto
also have \(\ldots=\) ? poly (l 1)
    by (simp add: field-simps power2-eq-square defs)
finally have 2: ?poly (l 1) \(\geq\) ? poly (r 1) .
have ?poly \(\left(r^{2}\right)+1=9 * x 2+1\) unfolding defs by simp
also have \(\ldots \leq h * x 2+h\)
    by (intro add-mono \(h\) mult-right-mono h9 \(x\) )
    also have \(\ldots=\) ? poly (l 2) unfolding defs by simp
    finally have 3: ?poly (l 2) \(\geq\) ?poly (r 2) +1 .
    have eval-vs: insertion \(x(\) inter \(-Q . e v a l(g\)-list \((\operatorname{map}(\lambda i .(v-s y m i, S u c ~ 0)) x s)))\)
\(=0\)
    for \(x s\) by (induct xs, auto simp: insertion-power \(\alpha 1\) )
    have \([\) simp \(]\) : insertion \(x\) (inter-Q.eval \(t-t)=h\) unfolding \(t\) - \(t\)-def symbol-list-def
    by (simp add: eval-vs)
have ?poly \((r 3)=(x 3+h) \subset 2+2 *(x 3+h)\)
    by (simp add: field-simps power2-eq-square defs)
also have \(\ldots \leq(x 3) \wedge 2+2 * x 3+h \wedge 3 * x 3+h \wedge 3+h \wedge 2+h(i s ? l \leq ? r)\)
proof -
    have \(2 * 1 \leq h * h\)
```

```
    by (intro mult-mono, insert h2, auto)
    hence hh:h*h\geq2 by auto
    have ?l }\leq?r\longleftrightarrow\longleftrightarrow1*h+(2*h)*x 3\leq(h*h)*h+((h*h)*h)*x 3
        by (auto simp: field-simps power2-eq-square defs power3-eq-cube)
    also have ...
    by (intro add-mono mult-right-mono x, insert h hh, auto)
    finally show ?thesis.
qed
also have ... = ?poly (l 3)
    by (simp add: field-simps power2-eq-square defs power3-eq-cube)
finally have 4:?poly (l 3) \geq?poly (r 3).
have ?poly (r 4)=((x 4)^2 + 2* x 4)
    by (simp add: field-simps powerD-eq-square defs)
also have ... = ?poly (l 4)
    by (simp add: field-simps power2-eq-square defs)
finally have 5: ?poly (l 4) \geq?poly (r 4) by simp
have ?poly (r 5) = (x 5)^2 + 2*x 5
    by (simp add: field-simps power2-eq-square defs)
also have ... = ?poly (l 5)
    by (simp add: field-simps power2-eq-square defs)
finally have 6: ?poly (l 5) \geq ?poly (r 5) by simp
have 7: ?poly (l 6) \geq ?poly (r 6) unfolding defs using h x[of 6]
    by (simp add: add-increasing2 linorder-not-le mult-le-cancel-right1)
have 8: ?poly (l 7) \geq ?poly (r 7) unfolding defs using h x[of 7]
    by (simp add: add-increasing2 linorder-not-le mult-le-cancel-right1)
have 9:?poly (l 8) \geq ?poly (r 8)
proof -
    have r:?e (r 8) = poly-to-mpoly 8 (qqq h)
        unfolding defs qqq-def
    by (simp add: qq[unfolded y9-def] algebra-simps smult-conv-mult-Const Const-mult
flip: mpoly-of-poly-is-poly-to-mpoly)
    have l: ?e (l 8) = poly-to-mpoly 8 ([:h:] * (ppp h) + [:h:])
        unfolding defs ppp-def
    by (simp add: pp[unfolded y9-def] algebra-simps smult-conv-mult-Const Const-mult
flip: mpoly-of-poly-is-poly-to-mpoly)
    {
        fix r
        assume r:r\in{p,q}
        with funas-encode-poly-p funas-encode-poly-q
        have funas: funas-term (encode-poly y 9 r) \subseteqF by auto
        have poly-inter.eval (IQ 1) (encode-poly y9 r) = inter-Q.eval (encode-poly y9
r)
        by (rule poly-inter-eval-cong, insert funas, auto simp: F-def)
    } note encode-eq = this
    have pp-eq: pph=pp1 unfolding pp-def using encode-eq[of p] by auto
```

```
    have qq-eq: qq h=qq1 unfolding qq-def using encode-eq[of q] by auto
    have ppp-eq: ppp h = ppp 1 unfolding ppp-def pp-eq ..
    have qqq-eq: qqq h = qqq 1 unfolding qqq-def qq-eq ..
    have Hh=H1 unfolding H-def ppp-eq qqq-eq ..
    also have ...\leqh unfolding h-def by auto
    finally have h:h\geqHh.
    show ?thesis unfolding lr using H[OF h x[of 8]] by simp
qed
have ?poly rhs-Q + 1 =
    ?poly (r 0) + ?poly (r 1) + (?poly (r 2) + 1) + ?poly (r 3) + ?poly (r 4) +
?poly (r 5) + ?poly (r 6) + ?poly (r 7) + ?poly (r 8)
    unfolding e-rhs by simp
also have .. S ? poly (l 0) + ?poly (l 1) + ?poly (l 2) + ?poly (l 3) + ?poly (l
4) + ?poly (l 5) + ?poly (l 6) + ?poly (l 7) + ?poly (l 8)
    by (intro add-mono 123456789)
    also have ... = ?poly lhs-Q
    unfolding e-lhs by simp
    finally show ?poly rhs-Q + 1 \leq ?poly lhs-Q by auto
qed
end
end
context poly-input
begin
Theorem 6.4
theorem solution-impl-delta-termination-of-Q:
    assumes positive-poly-problem p q
    shows termination-by-delta-poly-interpretation (TYPE('a :: floor-ceiling)) F-Q
Q
proof -
    interpret solvable-poly-problem
        by (unfold-locales, fact)
    interpret I: delta-poly-inter F-Q I-Q (1 :: ' a) by (rule I-Q-delta-poly-inter)
    show ?thesis
        unfolding termination-by-delta-poly-interpretation-def
    proof (intro exI[of - 1 :: 'a] exI[of - I-Q] conjI I-Q-delta-poly-inter)
        show I.termination-by-delta-interpretation Q
            unfolding I.termination-by-delta-interpretation-def Q-def
        proof (clarify, intro conjI)
            show funas-term lhs-Q \cupfunas-term rhs-Q \subseteqF-Q using lhs-Q-F rhs-Q-F
by auto
                show I.orient-rule (lhs-Q, rhs-Q) using orient-Q by simp
        qed
    qed
qed
```

end
context delta-poly-inter
begin
lemma insertion-eval-pos: assumes funas-term $t \subseteq F$
and assignment α
shows insertion $\alpha($ eval $t) \geq 0$
by (rule valid-imp-insertion-eval-pos[OF valid assms])
lemma monotone-poly-eval: assumes funas-term $t \subseteq F$
shows monotone-poly (vars-term t) (eval t) vars (eval t) $=$ vars-term t
proof -
have $\exists y . x+\delta \leq y$ for $x::$ ' a by (intro exI $[$ of $-x+\delta]$, auto)
from monotone-poly-eval-generic[OF valid transp-gt-delta gt-delta-imp-ge this assms] $\delta 0$
show monotone-poly (vars-term t) (eval t) vars (eval $t)=$ vars-term t by auto qed
lemma monotone-linear-poly-to-coeffs: fixes p :: 'a mpoly
assumes linear: total-degree $p \leq 1$
and poly: valid-poly p
and mono: monotone-poly $\{. .<n\} p$
and vars: vars $p=\{. .<n\}$
shows \exists c a. $p=$ Const $c+\left(\sum i \leftarrow[0 . .<n]\right.$. Const $\left.(a i) * P \operatorname{Var} i\right)$ $\wedge c \geq 0 \wedge(\forall i<n . a i \geq 1)$
proof -
have sum-zero: $(\bigwedge x . x \in$ set $x s \Longrightarrow x=0) \Longrightarrow$ sum-list $(x s::$ int list $)=0$ for xs by (induct xs, auto)
from coefficients-of-linear-poly [OF linear] obtain c a vs
where $p: p=$ Const $c+\left(\sum i \leftarrow v s\right.$. Const $\left.(a i) * P \operatorname{Var} i\right)$
and vsd: distinct vs set vs $=$ vars p sorted-list-of-set (vars $p)=$ vs
and $n z: \bigwedge v . v \in \operatorname{set} v s \Longrightarrow a v \neq 0$
and $c: c=$ mcoeff $p 0$
and $a: \bigwedge i . a i=$ mcoeff p (monomial $1 i$) by blast
have vs: vs $=[0 . .<n]$ unfolding vsd(3)[symmetric $]$ unfolding vars
by (simp add: lessThan-atLeast0)
show ?thesis unfolding p vs
proof (intro exI conjI allI impI, rule refl)
show $c: c \geq 0$ using poly[unfolded valid-poly-def, rule-format, of $\lambda-.0$,
unfolded p]
by (auto simp: coeff-add[symmetric] coeff-Const coeff-sum-list o-def co-eff-Const-mult
coeff-Var monomial-0-iff assignment-def)
fix i
assume $i<n$
hence $i: i \in$ set $v s$ unfolding vs by auto
from $n z[O F i]$ have $a 0$: a $i \neq 0$ by auto
from split-list $[O F i]$ obtain bef aft where vsi: vs $=$ bef @ $[i]$ @ aft by auto

```
    with vsd(1) have i: i\not\in set (bef @ aft) by auto
    define }\alpha\mathrm{ where }\alpha=(\lambdax:: var.0 ::'a
    have assignment \alpha unfolding assignment-def \alpha-def using c by auto
    from mono[unfolded monotone-poly-wrt-def, rule-format, OF this, of i \delta]<i<
n>
    have insertion \alpha p+\delta\leqinsertion (\alpha(i:= \delta)) p by (auto simp: \alpha-def)
    from this[unfolded p vsi insertion-add insertion-sum-list insertion-Const map-map
o-def insertion-mult insertion-Var]
    have (\sumx\leftarrowbef @ aft. a x*\alpha x) + \delta \leq (\sumx\leftarrowbef @ aft. a x * (\alpha(i:= \delta))
x) +ai*\delta
            by (auto simp: \alpha-def)
    also have (\sumx\leftarrowbef @ aft. a x* (\alpha(i:= \delta)) x)=(\sumx\leftarrowbef @ aft. a x*\alpha
x)
            by (subst map-cong[OF refl, of - - \lambda x. a x* \alpha x], insert i, auto simp: \alpha-def)
    finally have }\delta\leqai*\delta\mathrm{ by auto
    with }\delta0\mathrm{ show a i \ 1 by simp
    qed
qed
```

end

Lemma 6.7
lemma criterion-for-degree-2: assumes $q q$-def: $q q=q \circ_{p}[: c, a:]-$ smult a q and dq: degree $q \geq 2$
and ineq: $\bigwedge x::{ }^{\prime} a::$ linordered-field. $x \geq 0 \Longrightarrow$ poly $q q x \leq$ poly $p x$
and $d p$: degree $p \leq 1$
and $a 1: a \geq 1$
and lq0: lead-coeff $q>0$
and $c: c>0$
shows degree $q=2 a=1$
proof -
have deg: degree $\left(q \circ_{p}[: c, a:]\right)=$ degree q
unfolding degree-pcompose using a1 by simp
have coeff-d q : coeff $q q($ degree $q)=$ lead-coeff $q *\left(a^{\wedge}\right.$ degree $\left.q-a\right)$
apply (simp add: qq-def)
apply (subst deg[symmetric])
apply (subst lead-coeff-comp)
subgoal using a1 by simp
subgoal using a1 by (simp add: field-simps)
done
have deg-qq: degree $q q \leq$ degree q using deg
by (simp add: degree-diff-le qq-def)
\{
assume $a \neq 1$
with a1 have a1: $a>1$ by auto
hence $a{ }^{\wedge}$ degree $q>a^{\wedge} 1$ using $d q$
by (metis add-strict-increasing linorder-not-less one-add-one power-le-imp-le-exp

```
zero-less-one)
    hence coeff: coeff qq (degree q) >0
            unfolding coeff-dq}\mathbf{using dq by (auto intro!: mult-pos-pos lq0)
    hence degree qq \geq degree q
            by (simp add: le-degree)
    with deg-qq have eq: degree qq = degree q by auto
    from coeff[folded eq] have lcqq: lead-coeff qq>0 by auto
    from dq[folded eq] have 2 
    also have degree qq}\leq\mathrm{ degree }p\mathrm{ using ineq lcqq
        by (metis Preliminaries-on-Polynomials-2.poly-pinfty-ge degree-mono-generic
linorder-le-less-linear order-less-not-sym)
    also have .. . \leq 1 by fact
    finally have False by simp
}
thus a1: a=1 by auto
hence qq:qq=q\mp@subsup{\circ}{p}{[:c, 1:] - q unfolding qq-def by auto}
from coeff-dq[unfolded a1] have coeff qq (degree q) = 0 by simp
with deg-qq dq have deq-qq: degree qq < degree q
    using degree-less-if-less-eqI by fastforce
define m}\mathrm{ where m= degree q
define m1 where m1 = m-1
from dq have mm1:m=Suc m1 unfolding m1-def m-def by auto
define qi where qi = coeff q
define cf where cf ki=(qik* of-nat (k choose i)* c^ (k-i)) for ik
define inner where inner k}=(\sumi<k\mathrm{ . monom (cf ki) i) for k
define rem where rem = (\sumi<m1. monom (cf m i) i) + sum inner {..<m}
{
    fix }
    define e where e ik=of-nat (k choose i)*x^ i* c^}(k-i) for k
    have poly qq x = poly ( }q\mp@subsup{\circ}{p}{[:c, 1:]) x - poly q x unfolding qq by simp
        also have ... = (\sumk\leqm.qi k* (x+c)^k) - (\sumk\leqm.qi k* x^k)
unfolding qi-def
        by (subst (1 2) poly-as-sum-of-monoms[of q, symmetric, folded m-def])
            (simp add: poly-sum poly-pcompose poly-monom ac-simps)
    also have ... =(\sumk\leqm.qi k*(\sumi\leqk. e ik)) - (\sumk\leqm.qik* x^k)
        by (subst binomial-ring, auto simp: e-def)
    also have ... = (\sumk\leqm.qi k*(ekk+(\sumi<k. e i k))) - (\sumk\leqm.qi k*
x^k)
            by (intro arg-cong[of - - \lambdax.x - -] sum.cong refl arg-cong2[of - - - (*)])
                (metis add.commute lessThan-Suc-atMost sum.lessThan-Suc)
    also have ... = (\sumk\leqm.qi k*ekk) + (\sumk\leqm.qik*(\sumi<k. eik))-
(\sumk\leqm.qi k* x^k)
            by (simp add: field-simps sum.distrib)
    also have ... = (\sumk\leqm.qi k*(\sumi<k. e ik))
            unfolding e-def by simp
    also have ... = poly ( }\sumk\leqm\mathrm{ . inner k) x unfolding e-def inner-def cf-def
    by (simp add: poly-sum poly-monom ac-simps sum-distrib-left)
    finally have poly qq x = poly (sum inner {..m}) x .
}
```

```
hence \(q q=\) sum inner \(\{. . m\}\) by (intro poly-ext, auto)
also have \(\ldots=\) inner \(m+\) sum inner \(\{. .<m\}\)
    by (metis add.commute lessThan-Suc-atMost sum.lessThan-Suc)
also have inner \(m=\) monom \((c f m m 1) m 1+\left(\sum i<m 1\right.\). monom \(\left.(c f m i) i\right)\)
    unfolding inner-def mm1 by simp
finally have \(q q: q q=\) monom \((c f m m 1) m 1+\) rem by (simp add: rem-def)
have cf-mm1: cf \(m m 1>0\) unfolding \(c f\)-def
proof (intro mult-pos-pos)
    show \(0<q i m\) unfolding qi-def \(m\)-def by fact
    show \(0<(o f-n a t(m\) choose \(m 1)\) :: 'a) unfolding mm1
        by (simp add: add-strict-increasing)
    show \(0<c^{\wedge}(m-m 1)\) using \(c\) by simp
qed
\{
    fix \(k\)
    assume \(k: k \geq m 1\)
    have coeff rem \(k=\left(\sum i<m\right.\). coeff (inner \(i\) ) \(k\) ) using \(k\)
        by (simp add: rem-def Polynomial.coeff-sum)
    also have \(\ldots=0\)
    proof (intro sum.neutral ballI)
        fix \(i\)
        show \(i \in\{. .<m\} \Longrightarrow\) coeff (inner i) \(k=0\)
            unfolding inner-def Polynomial.coeff-sum using \(k\) mm1
            by auto
    qed
    finally have coeff rem \(k=0\).
\(\}\) note zero \(=\) this
from \(c f-m m 1\) zero[of \(m 1\) ]
have \(q q-m 1\) : coeff \(q q m 1>0\) unfolding \(q q\) by auto
\{
    fix \(k\)
    assume \(k>m 1\)
    with zero[of \(k]\) have coeff \(q q k=0\) unfolding \(q q\) by auto
\}
with \(q q-m 1\) have deg-qq: degree \(q q=m 1\)
    by (metis coeff-0 le-degree leading-coeff-0-iff order-less-le)
with \(q q-m 1\) have \(l c-q q\) : lead-coeff \(q q>0\) by auto
from ineq \(l c-q q\) have degree \(q q \leq\) degree \(p\)
    by (metis Preliminaries-on-Polynomials-2.poly-pinfty-ge degree-mono-generic
linorder-le-less-linear order-less-not-sym)
    also have \(\ldots \leq 1\) by fact
    finally have \(m 1 \leq 1\) unfolding \(\operatorname{deg}-q q\) by \(\operatorname{simp}\)
    with \(m m 1\) have \(m \leq 2\) by auto
    hence degree \(q \leq 2\) unfolding \(m\)-def by auto
    with \(d q\) show degree \(q=2\) by auto
qed
```

locale term-delta-poly-input $=$ poly-input $p q$ for $p q+$
fixes type-of-field $::$ ' a :: floor-ceiling itself
assumes terminating-delta-poly: termination-by-delta-poly-interpretation TYPE ('a)
$F-Q Q$
begin
definition I where $I=\left(S O M E I\right.$. $\exists \delta$. delta-poly-inter $F-Q I\left(\delta::{ }^{\prime} a\right) \wedge$ delta-poly-inter.termination-by-delta-interpretation $F-Q \quad I \quad \delta \quad Q)$
definition δ where $\delta=\left(S O M E \delta\right.$. delta-poly-inter $F-Q I\left(\delta::{ }^{\prime} a\right) \wedge$ delta-poly-inter.termination-by-delta-interpretation $F-Q \quad I \quad \delta \quad Q)$
lemma I : delta-poly-inter F - Q I δ delta-poly-inter.termination-by-delta-interpretation $F-Q I \delta Q$
using someI-ex[OF someI-ex[OF terminating-delta-poly[unfolded termination-by-delta-poly-interpretation-def folded I-def], folded δ-def]
by auto
sublocale delta-poly-inter $F-Q I \delta$ by (rule $I(1))$
lemma orient: orient-rule (lhs-Q,rhs-Q)
using I (2)[unfolded termination-by-delta-interpretation-def] unfolding Q-def
by auto
lemma eval-t-t-gt-0: assumes $I g: I$ g-sym $=$ Const g0 + Const g1 $*$ PVar $0+$
Const g2 * PVar 1
and $I z: I z$-sym $=$ Const $z 0$
and $z 0: z 0 \geq 0$
and $g 0: g 0 \geq 0$
and $g 12: g 1>0 g 2>0$
shows insertion $\beta($ eval $t-t)>0$
proof -
define α where $\alpha=\left(\lambda-::\right.$ var. $\left.0::{ }^{\prime} a\right)$
have α : assignment α by (auto simp: assignment-def α-def)
have id: insertion $\beta($ eval $t-t)=$ insertion $\alpha($ eval $t-t)$
by (rule insertion-irrelevant-vars, insert vars-t vars-eval, auto)
note pos $=$ insertion-eval-pos $[O F-\alpha]$
show ?thesis
proof (rule ccontr)
assume 〈 \neg ?thesis〉
from this[unfolded $i d]$ have insertion $\alpha($ eval $t-t) \leq 0$ by auto
with $\operatorname{pos}[O F t-F]$ have 0 : insertion $\alpha($ eval $t-t)=0$ by auto
note $[$ simp $]=$ insertion-add insertion-mult insertion-substitute
define $I A$ where $I A t=$ insertion $\alpha($ eval $t)$ for t
note pos $=$ pos[folded IA-def]
let ? $z z=$ g-list symbol-list

```
    from pos[OF g-list-F[OF symbol-list]]
    have zz:0\leqIA ?zz by auto
    have 0:0=IA t-t using 0 by (auto simp:IA-def)
    also have \ldots= .. g0 + g1*z0 + g2 * IA ?zz unfolding t-t-def by (simp add:
Ig IA-def Iz)
    finally have g0:g0 = 0 and g1 * z0=0 g2 *IA ?zz=0
        using g0 z0 g12 zz mult-nonneg-nonneg[of g1 z0] mult-nonneg-nonneg[of g2
IA ?zz]
    by linarith+
    with g12 have z0:z0=0 and 0:IA ?zz=0 by auto
    from Ig g0 have Ig: I g-sym = Const g1 * PVar 0 + Const g2 * PVar 1 by
simp
    from z0 Iz have Iz:I z-sym = 0 by auto
    {
        fix fs f a
        assume set fs\subseteqF-Q and IA (g-list fs)=0
            and (f,a)\in set fs
    hence mcoeff (If) 0=0
    proof (induct fs)
        case (Cons kb fs)
        obtain k b where kb: kb=(k,b) by force
        let ?t = Fun k (replicate b z-t) :: (symbol,var)term
        from Cons(3)[unfolded kb]
        have 0:g1*IA ?t + g2 * IA (g-list fs) = 0
            by (simp add: IA-def Ig)
        from Cons(2)[unfolded kb] have (k,b)\inF-Q by auto
        hence funas-term?t \subseteqF-Q by (force simp:F-Q-def F-def)
        from pos[OF this] have pos1: 0\leqIA ?t by auto
        from Cons(2) have fs: set fs}\subseteqF-Q by aut
        from pos[OF g-list-F[OF this]] have pos2: 0 \leq IA (g-list fs) by auto
        from 0 g12 pos1 pos2 mult-nonneg-nonneg[of g1 IA ?t]
            mult-nonneg-nonneg[of g2 IA (g-list fs)]
        have g1 * IA ?t = 0 g2 *IA (g-list fs) = 0
            by linarith+
        with g12 have t:IA ?t = 0 and 0:IA (g-list fs)=0 by auto
        from Cons(1)[OF fs 0] have IH:(f,a)\in set fs \Longrightarrowmcoeff (If) 0 = 0 by
auto
    show ?case
    proof (cases (f,a)=(k,b))
        case False
        with IH Cons(4) kb show ?thesis by auto
    next
        case True
        have 0=IA ?t using t by simp
        also have ... = insertion \alpha (Ik)
            apply (simp add: IA-def)
            apply (rule insertion-irrelevant-vars)
            subgoal for v by (auto simp: Iz \alpha-def)
```

done
also have $\ldots=$ mcoeff $\left(\begin{array}{ll}I k\end{array}\right) 0$ unfolding α-def by simp
finally show? ?thesis using True by simp
qed
qed auto
$\}$ note main $=$ this

\{

fix $k k a$
assume $(k, k a) \in F-Q$
then consider $(z)(k, k a)=(z$-sym, 0$) \mid(g)(k, k a)=(g$-sym,2 $) \mid(z l)(k, k a)$
\in set symbol-list
unfolding symbol-list-def F-Q-def F-def using V-list by auto
hence mcoeff $\left(\begin{array}{ll} & k\end{array}\right) 0=0$
proof cases
case ($z l$)
from main $[$ OF symbol-list 0 zl$]$ show ?thesis.
next
case z
thus ?thesis using $I z$ by simp
next
case g
thus ?thesis using Ig by (simp add: coeff-Const-mult coeff-Var)
qed
$\}$ note coeff-0 $=$ this
have ins-0: funas-term $t \subseteq F-Q \Longrightarrow$ insertion $\alpha($ eval $t)=0$ for t
proof (induct t)
case (Var x)
show ?case by (auto simp: α-def coeff-Var)
next
case (Fun f ts)
\{
fix i
assume $i<$ length ts
hence $t s!i \in$ set ts by auto
from Fun(1)[OF this] Fun(2) this
have insertion $\alpha($ eval $(t s!i))=0$ by auto
\} note $I H=$ this
have insertion $\alpha($ eval $($ Fun $f t s))=$ insertion $\alpha(I f)$
apply (simp)
apply (intro insertion-irrelevant-vars)
subgoal for v using $I H[o f v]$ by (auto simp: α-def)
done
also have $\ldots=$ mcoeff $(I f) 0$ unfolding α-def by simp
also have $\ldots=0$ using Fun(2) coeff-0 by auto
finally show ?case by simp
qed
from orient[unfolded orient-rule gt-poly-def, rule-format, OF $\alpha]$ ins- $0[O F$ lhs- $Q-F]$ ins- $0[O F$ rhs- $Q-F]$
show False using $\delta 0$ by auto
qed
qed
Theorem 6.8
theorem solution: positive-poly-problem p q
proof -
let $? q=q$
from orient[unfolded orient-rule]
have gt: gt-poly (eval lhs-Q) (eval rhs-Q) by auto
from valid[unfolded valid-monotone-poly-inter-def]
have valid: $\bigwedge f . f \in F-Q \Longrightarrow$ valid-monotone-poly f by auto
let $? l c=$ lead-coeff
let ? $f=(f$-sym,, 9$)$
have ?f $\in F-Q$ unfolding $F-Q$-def by auto
from valid $[O F$ this, unfolded valid-monotone-poly-def] obtain f where
$I f: I f$-sym $=f$ and $f:$ valid-poly f monotone-poly (vars f) f vars $f=\{. .<9\}$
by auto
note mono $=f(2)$
define l where $l i=\operatorname{args}(l h s-Q)!i$ for i
define r where $r i=$ args (rhs-Q)! i for i
have list: $[0 . .<9]=[0,1,2,3,4,5,6,7,8::$ nat $]$ by code-simp
have lhs- Q : lhs- $Q=$ Fun f-sym (map $l[0 . .<9]$) unfolding lhs- Q-def l-def by (auto simp: list)
have rhs- Q : rhs- $Q=$ Fun f-sym (map $r[0 . .<9]$) unfolding rhs- Q-def r-def by (auto simp: list)
\{
fix $i::$ var
define $v s$ where $v s=V$-list
assume $i<9$
hence choice: $i=0 \vee i=1 \vee i=2 \vee i=3 \vee i=4 \vee i=5 \vee i=6 \vee i$ $=7 \vee i=8$ by linarith
have set: $\{0 . .<9::$ nat $\}=\{0,1,2,3,4,5,6,7,8\}$ by code-simp
from choice have vars: vars-term $(l i)=\{i\}$ vars-term $(r i)=\{i\}$ unfolding l-def lhs-Q-def r-def rhs-Q-def
using vars-encode-poly[of 8 p] vars-encode-poly[of 8 q] vars-t
by (auto simp: y1-def y2-def y3-def $y 4$-def 95 -def $y 6$-def $y^{7} 7$-def $y 8$-def y9-def vs-def[symmetric])
from choice set have funs: funas-term (l i) \cup funas-term ($r i$) $\subseteq F-Q$ using rhs- Q-F lhs- Q - F unfolding lhs- Q rhs- Q
by auto
have $l r \in\{l, r\} \Longrightarrow$ vars-term $(l r i)=\{i\} \operatorname{lr} \in\{l, r\} \Longrightarrow$ funas-term $(l r i) \subseteq$ $F-Q$ for $l r$
by (insert vars funs, force) +
\} note signature-l-r $=$ this
\{
fix $i::$ var and $l r$
assume $i: i<9$ and $l r: l r \in\{l, r\}$
from signature-l-r[OF ilr] monotone-poly-eval[of lr i]
have vars: vars (eval (lr i)) $=\{i\}$
and mono: monotone-poly $\{i\}$ (eval (lr i)) by auto
$\}$ note eval-l-r $=$ this
define upoly where upoly l-or-r $i=$ mpoly-to-poly $i($ eval (l-or-r $i)$) for l-or-r $::$ var $\Rightarrow(-,-)$ term and i
\{
fix $l r$ and $i::$ nat and $a::-\Rightarrow^{\prime} a$
assume a : assignment a and $i: i<9$ and $l r: l r \in\{l, r\}$
with eval-l-r $[O F i]$ signature-l-r $[O F i]$
have vars: vars (eval (lr $i)$) $=\{i\}$ and mono: monotone-poly $\{i\}$ (eval (lr $i)$) and funs: funas-term (lr $i) \subseteq F-Q$ by auto
from insertion-eval-pos[OF funs]
have valid: valid-poly (eval (lr i)) unfolding valid-poly-def by auto
from monotone-poly-partial-insertion $[O F-$ mono a, of $i]$ valid
have deg: degree (partial-insertion a $i($ eval $(\operatorname{lr} i)))>0$
and $l c$: ?lc $($ partial-insertion a $i($ eval $(l r i)))>0$
and ineq: insertion a (eval $(\operatorname{lr} i)) \geq a i-\delta$ by auto
moreover have partial-insertion a i (eval (lr i)) = upoly lr i unfolding upoly-def
using vars eval-l-r[OF i, of r, simplified $]$
by (intro poly-ext)
(metis i insertion-partial-insertion-vars poly-eq-insertion poly-inter.vars-eval signature-l-r $(1)[$ of $-r$, simplified $]$ singletonD)
ultimately
have degree (upoly lr i) >0 ?lc (upoly lr i) >0
insertion a $($ eval $($ lr $i)) \geq a i-\delta$ by auto
$\}$ note upoly-pos-subterm $=$ this
$\{$
fix $i::$ var
assume $i: i<9$
from degree-partial-insertion-stays-constant $[\operatorname{OF} f(2)$, of $i]$ obtain a^{\prime} where a^{\prime} : assignment a^{\prime} and
deg- $a^{\prime}: \bigwedge b .\left(\bigwedge y . a^{\prime} y+\delta \leq b y\right) \Longrightarrow$ degree (partial-insertion $\left.a^{\prime} i f\right)=$ degree (partial-insertion bif)
by auto
define a where $a j=a^{\prime} j+2 * \delta$ for j
from a^{\prime} have a : assignment a unfolding assignment-def a-def using $\delta 0$ by auto
\{
fix b
assume le: $\bigwedge y$. a $y-\delta \leq b y$
have $a^{\prime} y+\delta \leq b y$ for y using $l e[o f y]$ unfolding a-def by auto
from deg-a ${ }^{\prime}$ [OF this]
have 1: degree (partial-insertion a^{\prime} if) $=$ degree (partial-insertion bif) by auto
have $a^{\prime} y+\delta \leq a y$ for y unfolding a-def using $\delta 0$ by auto
from deg-a'[OF this $] 1$
have degree (partial-insertion a $i f$) $=$ degree (partial-insertion $b i f$) by auto $\}$ note $d e g-a=$ this
define c where $c j=($ if $j<9$ then insertion a (eval $(l j))$ else a j) for j define e where $e j=($ if $j<9$ then insertion a (eval ($r j$)) else a j) for j \{
fix $x::^{\prime} a$
assume $x: x \geq 0$
have ass: assignment $(a(i:=x))$ using $x a$ unfolding assignment-def by auto
from gt[unfolded gt-poly-def, rule-format, OF ass, unfolded rhs-Q lhs-Q]
have insertion $(a(i:=x))($ eval $($ Fun f-sym $(\operatorname{map} r[0 . .<9])))+\delta$
$\leq \operatorname{insertion}(a(i:=x))($ eval $($ Fun f-sym $($ map $l[0 . .<9])))$ by simp
also have insertion $(a(i:=x))($ eval $($ Fun f-sym $(\operatorname{map} r[0 . .<9])))=$ insertion $(\lambda j$. insertion $(a(i:=x))($ eval $(r j))) f$
by (simp add: If insertion-substitute, intro insertion-irrelevant-vars, auto simp: f)
also have $\ldots=$ poly $($ partial-insertion e if) $($ poly $($ upoly ri) $x)$
proof -
let ? $\alpha=(\lambda j$. insertion $(a(i:=x))($ eval $(r j)))$
have insi: poly (upoly $r i) x=$ insertion $(a(i:=x))($ eval $(r i))$
unfolding upoly-def using eval-l-r(1)[OF i, of $r]$
by (subst poly-eq-insertion, force)
(intro insertion-irrelevant-vars, auto)
show ?thesis unfolding insi
proof (rule insertion-partial-insertion-vars[of ife ? α, symmetric])
fix j
show $j \neq i \Longrightarrow j \in \operatorname{vars} f \Longrightarrow e j=\operatorname{insertion}(a(i:=x))(e v a l(r j))$
unfolding e-def f using eval-l-r[of j] f by (auto intro!: inser-
tion-irrelevant-vars)
qed
qed
also have insertion $(a(i:=x))($ eval $($ Fun f-sym $($ map $l[0 . .<9])))=$ insertion $(\lambda j$. insertion $(a(i:=x))($ eval $(l j))) f$
by (simp add: If insertion-substitute, intro insertion-irrelevant-vars, auto simp: f)
also have $\ldots=\operatorname{poly}($ partial-insertion $c i f)($ poly $($ upoly $l i) x)$
proof -
let $? \alpha=(\lambda j$. insertion $(a(i:=x))($ eval $(l j)))$
have insi: poly (upoly $l i) x=\operatorname{insertion}(a(i:=x))($ eval $(l i))$
unfolding upoly-def using eval-l-r[OF $i]$
by (subst poly-eq-insertion, force)
(intro insertion-irrelevant-vars, auto)
show ?thesis unfolding insi

```
    proof (rule insertion-partial-insertion-vars[of if c ?\alpha, symmetric])
        fix }
        show j\not=i\Longrightarrowj\invars f\Longrightarrowcj= insertion (a(i:= x)) (eval (l j))
                unfolding c-def f using eval-l-r[of j] f by (auto intro!: inser-
tion-irrelevant-vars)
    qed
    qed
    finally have poly (partial-insertion c i f) (poly (upoly l i) x)
        \geqpoly (partial-insertion e if)(poly (upoly ri) x) + . .
    } note 1 = this
    define er where er = partial-insertion e if op upoly ri
    define cl where cl= partial-insertion c if op upoly li
    define d}\mathrm{ where d= degree (partial-insertion e if)
    {
        fix }
        have ax-\delta\leqcx^ax-\delta\leqex
        proof (cases x vars f)
            case False
            thus ?thesis unfolding c-def e-def f using }\delta0\mathrm{ by auto
        next
            case True
            hence id: (x<9)= True and x:x<9 unfolding f by auto
    show ?thesis unfolding c-def e-def id if-True using upoly-pos-subterm(3)[OF
a x]
            by auto
    qed
    hence ax-\delta\leqcxax-\delta\leqe ex by auto
    } note a-ce=this
    have d-eq: d= degree (partial-insertion c if) unfolding d-def
    by (subst (1 2) deg-a[symmetric], insert a-ce, auto)
    have e: assignment e using a' a-ce(2) \delta0 unfolding assignment-def a-def
    by (metis (no-types, lifting) diff-ge-0-iff-ge gt-delta-imp-ge le-add-same-cancel2
linorder-not-less mult-2 order-le-less-trans)
    have d-pos: d>0 unfolding d-def
    by (intro monotone-poly-partial-insertion[OF - f(2) e], insert f i, auto)
    have lc-e-pos: ?lc (partial-insertion e if)>0
    by (intro monotone-poly-partial-insertion[OF - f(2) e], insert f i, auto)
    have lc-r-pos: ?lc (upoly r i)>0 by (intro upoly-pos-subterm[OF a i], auto)
    have deg-r: 0 < degree (upoly r i) by (intro upoly-pos-subterm[OF a i], auto)
    have lc-er-pos: ?lc er > 0 unfolding er-def
    by (subst lead-coeff-comp[OF deg-r], insert lc-e-pos deg-r lc-r-pos, auto)
    from 1[folded poly-pcompose, folded er-def cl-def]
```

have er-cl-poly: $0 \leq x \Longrightarrow$ poly er $x+\delta \leq$ poly $c l x$ for x by auto
have degree er \leq degree cl
proof (intro degree-mono[of - 0])
show $0 \leq$?lc er using lc-er-pos by auto
show $0 \leq x \Longrightarrow$ poly er $x \leq$ poly cl x for x using er-cl-poly $[$ of $x] \delta 0$ by auto
qed
also have degree er $=d *$ degree (upoly $r i$)
unfolding er-def d-def by simp
also have degree cl $=d *$ degree (upoly $l i$)
unfolding cl-def d-eq by simp
finally have degree (upoly $l i$) \geq degree (upoly $r i$) using d-pos by auto
$\}$ note deg-inequality $=$ this
\{
fix $p::$ 'a mpoly and x
assume p : monotone-poly $\{x\}$ p vars $p=\{x\}$
define q where $q=$ mpoly-to-poly $x p$
from mpoly-to-poly-inverse[of $p x]$
have $p q: p=$ poly-to-mpoly $x q$ using p unfolding q-def by auto
from $p q p$ (2) have deg: degree $q>0$
by (simp add: degree-mpoly-to-poly degree-pos-iff q-def)
from $\operatorname{deg} p q$ have $\exists q$. $p=$ poly-to-mpoly $x q \wedge$ degree $q>0$ unfolding q-def
by auto
\} note mono-unary-poly $=$ this

\{

fix f
assume $f \in\{q$-sym, h-sym $\} \cup v$-sym ' V
hence $(f, 1) \in F-Q$ unfolding $F-Q$-def F-def by auto
from valid $[O F$ this, unfolded valid-monotone-poly-def] obtain p
where $p: p=I f$ monotone-poly $\{. .<1\}$ p vars $p=\{0\}$ by auto
have $i d:\{. .<(1::$ nat $)\}=\{0\}$ by auto
have \exists q. If $=$ poly-to-mpoly $0 q \wedge$ degree $q>0$ unfolding $p(1)$ [symmetric]
by (intro mono-unary-poly, insert $p(2-3)[$ unfolded id], auto)
$\}$ note unary-symbol $=$ this
\{
fix f and $n::$ nat and $x::$ var
assume $f \in\{g$-sym, f-sym,a-sym $\} f=f$-sym $\Longrightarrow n=9 f \in\{a$-sym, g-sym $\}$
$\Longrightarrow n=2$
hence $n: n>1$ and $f:(f, n) \in F-Q$ unfolding F-def $F-Q$-def by force +
define p where $p=I f$
from valid[OF f, unfolded valid-monotone-poly-def, rule-format, OF refl p-def]
have mono: monotone-poly (vars p) p and vars: vars $p=\{. .<n\}$ and valid: valid-poly p by auto
let $? t=$ Fun $f($ replicate $n(T \operatorname{Var} x))$
have t - F : funas-term ?t $\subseteq F-Q$ using f by auto
have vt: vars-term ? $t=\{x\}$ using n by auto
define q where $q=$ eval ?t
from monotone-poly-eval[OF t - F, unfolded vt, folded q-def]
have monotone-poly $\{x\} q$ vars $q=\{x\}$ by auto
from mono-unary-poly[OF this] obtain q^{\prime} where
$q q^{\prime}: q=$ poly-to-mpoly $x q^{\prime}$ and $d q^{\prime}:$ degree $q^{\prime}>0$ by auto
have $q^{\prime} t$: poly-to-mpoly $x q^{\prime}=$ eval ?t unfolding $q q^{\prime}[$ symmetric] q-def by simp
also have $\ldots=$ substitute (λi. if $i<n$ then eval (replicate $n(T V a r x)!i$) else 0) p
by (simp add: p-def[symmetric])
also have $(\lambda i$. if $i<n$ then eval (replicate $n(T V a r x)!i)$ else 0$)=(\lambda i$. if i $<n$ then PVar x else 0)
by (intro ext, auto)
also have substitute $\ldots p=\operatorname{substitute}(\lambda i . P \operatorname{Var} x) p$ using vars
unfolding substitute-def using vars-replace-coeff[of Const, OF Const-0]
by (intro insertion-irrelevant-vars, auto)
finally have eq: poly-to-mpoly $x q^{\prime}=$ substitute ($\left.\lambda i . P \operatorname{Var} x\right) p$.
have $\exists p q . I f=p \wedge$ eval ? $t=$ poly-to-mpoly $x q \wedge$ poly-to-mpoly $x q=$ substitute (λ i. P Var x) $p \wedge$ degree $q>0$
\wedge vars $p=\{. .<n\} \wedge$ monotone-poly (vars $p) p \wedge$ valid-poly p
by (intro exI $[o f-p]$ exI $[o f-q]$ conjI valid eq $d q^{\prime} p$-def[symmetric] $q^{\prime} t[s y m m e t r i c]$ mono vars)
\} note g-f-a-sym $=$ this
from unary-symbol[of q-sym] obtain q where $I q$: I q-sym $=$ poly-to-mpoly $0 q$ and $d q$: degree $q>0$ by auto
from unary-symbol[of h-sym] obtain h where $I h: I h$-sym $=$ poly-to-mpoly $0 h$ and dh: degree $h>0$ by auto
from g-f-a-sym[of f-sym 9, of y3] obtain $f f u$ where
If: $I f$-sym $=f$
and eval-fyy: eval (Fun f-sym (replicate 9 (TVar y3))) = poly-to-mpoly y3 fu
and poly-f: poly-to-mpoly y3 fu $=$ substitute (λi. PVar y3) f
and $d f: 0<$ degree $f u$
and vars-f: vars $f=\{. .<9\}$
and mono-f: monotone-poly (vars f) f
and valid-f: valid-poly f by auto
from g-f-a-sym[of a-sym 2, of y5] obtain a au where
Ia: I a-sym $=a$
and eval-ayy: eval (Fun a-sym (replicate 2 (TVar 95$)$)) = poly-to-mpoly y 5 au
and poly-a: poly-to-mpoly y5 au $=$ substitute $(\lambda i . P \operatorname{Var} y 5) a$
and $d a: 0<$ degree au
and vars-a: vars $a=\{. .<2\}$
and valid-a: valid-poly a
and mono-a: monotone-poly (vars a) a by auto
with g-f-a-sym[of a-sym 2, of y6] obtain $a u^{\prime}$ where
eval-ayy': eval (Fun a-sym (replicate $2(T \operatorname{Var} y 6))$) $=$ poly-to-mpoly y6 au ${ }^{\prime}$ and poly- a^{\prime} : poly-to-mpoly y6 au' $=$ substitute $(\lambda i$. PVar y6) a
and $d a^{\prime}: 0<$ degree $a u^{\prime}$
by auto
from g-f-a-sym[of g-sym 2, of y2] obtain $g g u$ where
$I g: I g$-sym $=g$
and eval-gyy: eval (Fun g-sym (replicate 2 (TVar y2))) = poly-to-mpoly y2 gu
and poly-g: poly-to-mpoly y2 gu $=$ substitute (λi. PVar y2) g
and $d g: 0<$ degree $g u$
and vars-g: vars $g=\{. .<2\}$
and valid-g: valid-poly g
and mono-g: monotone-poly (vars g) g by auto
from unary-symbol[of v-sym i for $i]$ have $\forall i . \exists q . i \in V \longrightarrow I(v$-sym $i)=$ poly-to-mpoly $0 q \wedge 0<$ degree q by auto
from choice $[$ OF this] obtain v where
$I v: i \in V \Longrightarrow I(v$-sym $i)=$ poly-to-mpoly $0(v i)$ and
$d v: i \in V \Longrightarrow$ degree $(v i)>0$
for i by auto
have eval-pm-Var: eval (TVar y) = poly-to-mpoly y [:0,1:] for y
unfolding eval.simps mpoly-of-poly-is-poly-to-mpoly[symmetric] by simp
have $i d:($ if $0=(0::$ nat $)$ then eval $([t]!0)$ else 0$)=$ eval t for t by simp

\{

fix y
have y : eval $(T \operatorname{Var} y)=$ poly-to-mpoly $y[: 0,1:]$ (is $-=$ poly-to-mpoly - ?poly1 $)$
by fact
have hy: eval (Fun h-sym [TVar y]) = poly-to-mpoly y h using $I h$ apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y ?poly1])
apply (unfold id, intro y)
by simp
have qy: eval (Fun q-sym [TVar $y])=$ poly-to-mpoly y q using $I q$ apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y ?poly1])
apply (unfold id, intro y)
by simp
have qhy: eval (Fun q-sym [Fun h-sym [TVar y]]) $=$ poly-to-mpoly y (pcompose
$q h)$ using $I q$
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y h])
apply (unfold id, intro hy)
by simp
have hqy: eval (Fun h-sym [Fun q-sym [TVar y]]) $=$ poly-to-mpoly y (pcompose
h q) using $I h$
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y q])
apply (unfold id, intro qy)
by simp
have hhqy: eval (Fun h-sym [Fun h-sym [Fun q-sym [TVar y]]]) $=$ poly-to-mpoly

```
\(y\) (pcompose \(h\) (pcompose \(h\) q))
    apply ( \(\operatorname{simp}\) )
    apply (subst Ih)
    apply (subst substitute-poly-to-mpoly[of - - y pcompose \(h\) q])
        apply (unfold id, intro hqy)
        by \(\operatorname{simp}\)
    \{
        assume \(y: y=0\)
        have \(l\) : eval \((l 0)=\) poly-to-mpoly 0 (pcompose \(q h)\) unfolding
            \(l\)-def lhs-Q-def using \(y\) qhy by (simp add: Ih y1-def)
    have \(r\) : eval (r 0 ) \(=\) poly-to-mpoly 0 (pcompose \(h(\) pcompose \(h q)\) ) unfolding
                \(r\)-def rhs- \(Q\)-def using \(y\) hhqy by (simp add: Ih y1-def)
        from deg-inequality[of 0 , unfolded upoly-def \(l\) r poly-to-mpoly-inverse]
        have \(d h\) : degree \(h=1\) using \(d q\) and \(d h\) by auto
    \} note \(h y\) qy this
\}
hence \(d h\) : degree \(h=1\)
    and hy: \(\bigwedge y\).eval (Fun h-sym \([\) TVar \(y])=\) poly-to-mpoly \(y h\)
    and \(q y\) : \(\bigwedge y\).eval \((\) Fun \(q\)-sym \([\) TVar \(y])=\) poly-to-mpoly \(y q\)
    by auto
\{
    have \(l\) : eval ( \(l 1\) ) = poly-to-mpoly 1 h unfolding
        \(l-d e f ~ l h s-Q\)-def using hy by (simp add: Ih y2-def)
    have eval (r 1) \(=\) eval (Fun \(g\)-sym (replicate 2 (TVar y2))) unfolding \(r\)-def
rhs-Q-def
        apply ( \(\operatorname{simp}\) )
        apply (intro arg-cong[of - \(\lambda\) x. substitute \(x-]\) ext)
        subgoal for \(i\) by (cases \(i\); cases \(i-1\); auto)
        done
    also have \(\ldots=\) poly-to-mpoly y2 gu by fact
    finally have \(r\) : eval ( \(r\) 1) \(=\) poly-to-mpoly 1 gu by (auto simp: y2-def)
    from deg-inequality[of 1, unfolded upoly-def lr poly-to-mpoly-inverse] \(d h d g\)
    have degree \(g u=1\) by auto
    from subst-same-var-monotone-imp-same-degree[OF mono-g this - poly-g]
    have total-degree \(g=1\) by auto
\}
hence dg: total-degree \(g=1\) by auto
\{
    have \(l\) : eval (l 2) \(=\) poly-to-mpoly 2 h unfolding
        \(l-d e f ~ l h s-Q\)-def using hy by (simp add: Ih y3-def)
    have eval (r 2) \(=\operatorname{eval}(\) Fun f-sym (replicate 9 (TVar y3))) unfolding \(r\)-def
rhs- \(Q\)-def
    by simp
    also have \(\ldots=\) poly-to-mpoly y3 fu by fact
    finally have \(r\) : eval (r 2) = poly-to-mpoly 2 fu by (auto simp: y3-def)
    from deg-inequality[of 2, unfolded upoly-def l r poly-to-mpoly-inverse] \(d f d h\)
```

```
    have degree fu=1 by auto
    from subst-same-var-monotone-imp-same-degree[OF mono-f this - poly-f]
    have total-degree f=1 by auto
}
hence df: total-degree f=1 by auto
```


\{

fix $g s g$
assume $g s:(g s, 1) \in F-Q$ and $I: I g s=$ poly-to-mpoly $0 g$ and $d g$: degree $g=$ 1
from valid[OF gs, unfolded valid-monotone-poly-def, rule-format, OF refl I[symmetric]]
have valid: valid-poly (poly-to-mpoly 0 g) monotone-poly $\{. .<1\}$ (poly-to-mpoly 0 g)
vars (poly-to-mpoly 0 g$)=\{. .<1\}$
by auto
hence mono: monotone-poly (vars (I gs)) (I gs) unfolding I by auto
have total-degree (I gs) $=1$
proof (rule subst-same-var-monotone-imp-same-degree[OF mono dg, of 0$]$, force)
show poly-to-mpoly $0 \mathrm{~g}=$ substitute ($\lambda i . \mathrm{PVar} 0$) (I gs) unfolding I
by (intro mpoly-extI, auto simp: insertion-substitute)
qed
hence total-degree ($I \mathrm{gs}$) ≤ 1 by auto
from monotone-linear-poly-to-coeffs[OF this valid[folded I]]
obtain $c a$ where $I^{\prime}: I g s=$ Const $c+$ Const $a * P \operatorname{Var} 0$ and pos: $0 \leq c 1$ $\leq a$
by auto
from I^{\prime} have I gs $=$ poly-to-mpoly $0[: c, a:]$
unfolding mpoly-of-poly-is-poly-to-mpoly[symmetric] by simp
from arg-cong[OF this[unfolded I], of mpoly-to-poly 0]
have $g=[: c, a:]$ by (simp add: poly-to-mpoly-inverse)
with I^{\prime} pos have $\exists c a . I g s=$ Const $c+$ Const $a * P \operatorname{Var} 0 \wedge 0 \leq c \wedge 1 \leq$ $a \wedge g=[: c, a:]$ by auto
$\}$ note unary-linear $=$ this [unfolded F - Q-def F-def]
from unary-linear[OF - Ih dh] obtain h0 h1 where
Ih': I h-sym $=$ Const h0 + Const h1 $*$ PVar 0
and $h 0: 0 \leq h 0$
and $h 1: 1 \leq h 1$
and $h: h=[: h 0, h 1:]$
by auto
from $d f$ have total-degree $f \leq 1$ by auto
from monotone-linear-poly-to-coeffs[OF this valid-f mono-f[unfolded vars-f] vars-f]
obtain f0 $f i$ where $f: f=$ Const $f 0+\left(\sum i \leftarrow[0 . .<9]\right.$. Const $\left.(f i) * P \operatorname{Var} i\right)$ and $f 0: 0 \leq f 0$ and $f i: \bigwedge i . i<9 \Longrightarrow 1 \leq f i$

by auto

from $d g$ have total-degree $g \leq 1$ by auto
from monotone-linear-poly-to-coeffs[OF this valid-g mono-g[unfolded vars-g] vars-g]
obtain $g 0 g i$ where $g: g=$ Const $g 0+\left(\sum i \leftarrow[0 . .<2]\right.$. Const $\left.(g i ~ i) * P \operatorname{Var} i\right)$
and $g 0: 0 \leq g 0$ and $g i: \wedge i . i<2 \Longrightarrow 1 \leq g i i$
by auto
define $g 1$ where $g 1=g i 0$
define $g 2$ where $g 2=g i 1$
have id2: $[0 . .<2]=[0,1::$ nat $]$ by code-simp
from $g i[o f 0] g i[o f 1]$ have $g 1: g 1 \geq 1$ and $g 2: g_{2} \geq 1$ by (auto simp: g1-def g2-def)
have $g: g=$ Const $g 0+$ Const $g 1 *$ PVar $0+$ Const $g 2 * P \operatorname{Var} 1$
unfolding g g1-def g2-def by (auto simp: id2)
define α where $\alpha=\left(\lambda x::\right.$ var. $\left.0::{ }^{\prime} a\right)$
have α : assignment α unfolding α-def assignment-def by auto
\{
fix $i::$ nat
assume $i: i<9$
from i have $i \in \operatorname{set}[0 . .<9]$ by auto
from split-list $[$ OF this $]$ obtain bef aft where id: $[0 . .<9]=$ bef @ $[i]$ @ aft by auto
define $b a$ where $b a=b e f$ @ aft
have distinct $[0 . .<9]$ by simp
from this[unfolded id]
have $i \notin$ set (bef @ aft) by auto
with $i d$ have $i b a$: set $b a=\{0 . .<9\}-\{i\}$ unfolding $b a$-def
by (metis Diff-insert-absorb Un-insert-right append-Cons append-Nil list.simps(15) set-append set-upt)
have len: length $[0 . .<9]=9$ by simp
define diff where diff $=\left(\sum x \leftarrow b a\right.$. fi $x *$ insertion $\alpha($ eval $\left.(r x))\right)-\left(\sum x \leftarrow b a\right.$. $f i x *$ insertion $\alpha($ eval $(l x)))+\delta$
\{
fix $x::^{\prime} a$
assume $x: x \geq 0$
define a where $a=\alpha(i:=x)$
have a: assignment a using α unfolding a-def assignment-def using x by auto
from $g t$ [unfolded gt-poly-def, rule-format, OF this]
have insertion a (eval rhs- Q) $+\delta \leq$ insertion a (eval lhs- Q) by auto
also have insertion a (eval lhs- $Q)=f 0+\left(\sum x \leftarrow[0 . .<9] . f i x *\right.$ insertion a (eval (lx)))
unfolding lhs- Q eval.simps If f length-map len insertion-substitute inser-tion-add insertion-Const
insertion-sum-list insertion-mult map-map o-def insertion-Var
by (intro arg-cong[of - $\lambda x .(+)-($ sum-list $x)]$ map-cong refl arg-cong $[o f-$ - (*) -], simp)
also have $\left(\sum x \leftarrow[0 . .<9] . f i x *\right.$ insertion a $($ eval $\left.(l x))\right)=$
$\left(\sum x \leftarrow b a . f i x *\right.$ insertion a $($ eval $\left.(l x))\right)+f i i *$ insertion a $($ eval $(l i))$
unfolding id ba-def by simp
also have $\left(\sum x \leftarrow b a . f i x *\right.$ insertion $\left.a(e v a l(l x))\right)=\left(\sum x \leftarrow b a . f i x *\right.$ insertion $\alpha($ eval $(l x)))$
apply (intro arg-cong[of - sum-list] map-cong refl arg-cong[of - (*) -] insertion-irrelevant-vars)
subgoal for $v j$ unfolding iba using eval-l-r[of $v l]$ by (auto simp: a-def)
done
also have insertion a (eval rhs-Q) $=f 0+\left(\sum x \leftarrow[0 . .<9]\right.$. fi $x *$ insertion a (eval (rx)))
unfolding rhs- Q eval.simps If f length-map len insertion-substitute inser-tion-add insertion-Const
insertion-sum-list insertion-mult map-map o-def insertion-Var
by (intro arg-cong[of $-\lambda x$. $(+)-($ sum-list $x)]$ map-cong refl arg-cong $[o f-$ - (*) -], simp)
also have $\left(\sum x \leftarrow[0 . .<9] . f i x *\right.$ insertion a $($ eval $\left.(r x))\right)=$
$\left(\sum x \leftarrow b a\right.$. $f i x *$ insertion a $($ eval $\left.(r x))\right)+f i *$ insertion a $($ eval $(r i))$
unfolding id ba-def by simp
also have $\left(\sum x \leftarrow b a\right.$. $f i x *$ insertion a $($ eval $\left.(r x))\right)=\left(\sum x \leftarrow b a\right.$. fix* insertion $\alpha($ eval $(r x)))$
apply (intro arg-cong[of - sum-list $]$ map-cong refl $\arg -c o n g[o f ~-~(*) ~-] ~$ insertion-irrelevant-vars)
subgoal for $v j$ unfolding iba using eval-l-r[of $v r]$ by (auto simp: a-def)
done
finally have ineq: $f_{i} i *$ insertion a (eval $\left.(r i)\right) \leq f i i *$ insertion a (eval $(l$ i)) - diff
unfolding diff-def by (simp add: algebra-simps)
from $f[O F i]$ have $f i: f i \neq 0$ and inv: inverse $(f i) \geq 0$ by auto
from mult-left-mono[OF ineq inv]
have insertion a $($ eval $(r i)) \leq$ insertion a $($ eval $(l i))+(-$ inverse $(f i) *$ diff)
using $f i$ by (simp add: field-simps)
\}
hence \exists diff. $\forall x \geq 0$. insertion $(\alpha(i:=x))($ eval $(r i)) \leq \operatorname{insertion~}(\alpha(i:=$ x)) (eval (li)) + diff
by blast
\}
hence $\forall i$. \exists diff. $i<9 \longrightarrow(\forall x \geq 0$. insertion $(\alpha(i:=x))($ eval $(r i)) \leq$ insertion $(\alpha(i:=x))($ eval $(l i))+$ diff $)$
by auto
from choice[$O F$ this]
Inequality (2) in paper
obtain diff where inequality2: $\bigwedge i x . i<9 \Longrightarrow x \geq 0 \Longrightarrow$
insertion $(\alpha(i:=x))($ eval $(r i)) \leq$ insertion $(\alpha(i:=x))($ eval $(l i))+$ diff i by auto

```
note \([\) simp \(]=\) insertion-mult insertion-add insertion-substitute
define delt2 where delt2 \(=h 0+\) diff \(1-g 0\)
\{
    fix \(x\)
    assume \(x \geq(0:: ' a)\)
    from inequality 2 [of 1, OF - this]
    have insertion \((\alpha(1:=x))(\) eval \((r 1)) \leq \operatorname{insertion}(\alpha(1:=x))(\) eval \((l 1))+\)
diff 1 by auto
    also have insertion \((\alpha(1:=x))(\) eval \((r 1))=g 0+g 1 * x+g 2 * x\)
        by (simp add: r-def rhs-Q-def Ig g y2-def)
    also have insertion \((\alpha(1:=x))(\) eval \((l))=h 0+x * h 1\)
        by (simp add: l-def lhs-Q-def Ih h y2-def)
    finally have \((g 1+g 2-h 1) * x \leq \operatorname{delt2}\) unfolding delt2-def
        by (simp add: algebra-simps)
    \(\}\) note ineq2 \(=\) this
    from bounded-negative-factor[OF this] have \(g 1+g 2 \leq h 1\) by auto
    with \(g 1\) g2 have \(h 1: h 1 \geq 2\) by auto
\{
    assume degree \(q=1\)
    from unary-linear[OF - Iq this]
    obtain \(q 0 q 1\) where \(I q^{\prime}: I q\)-sym \(=\) Const \(q 0+\) Const \(q 1 * P \operatorname{Var} 0\)
        and \(q 0: 0 \leq q 0\) and \(q 1: 1 \leq q 1\) and \(q: q=[: q 0, q 1:]\)
        by auto
    define \(d 1\) where \(d 1=h 0+h 0 * h 1+h 1 * h 1 * q 0\)
    define \(d 2\) where \(d 2=q 0+h 0 * q 1\)
    define delt1 where delt \(1=d 2+\) diff \(0-d 1\)
    define fact1 where fact1 \(=(q 1 * h 1 * h 1-h 1 * q 1)\)
    \{
        fix \(x:{ }^{\prime}{ }^{\prime} a\)
        assume \(x: x \geq 0\)
        from inequality2[of \(0, O F-\) this \(]\)
        have insertion \((\alpha(0:=x))(\) eval (r 0\()) \leq \operatorname{insertion}(\alpha(0:=x))(\) eval (ll 0\())\)
+ diff 0 by auto
            also have insertion \((\alpha(0:=x))(\operatorname{eval}(r 0))=d 1+q 1 * h 1 * h 1 * x\)
                by (simp add: r-def rhs-Q-def Ih h Iq q y1-def field-simps d1-def)
    also have insertion \((\alpha(0:=x))(\) eval \((l 0))=d 2+h 1 * q 1 * x\)
            by (simp add: l-def lhs-Q-def Ih h Iq q y1-def field-simps d2-def)
    finally have fact1 \(* x \leq\) delt1 by (simp add: field-simps delt1-def fact1-def)
    \} note ineq1 \(=\) this
    from bounded-negative-factor[OF this]
    have fact \(1 \leq 0\).
    from this[unfolded fact1-def] h1 q1 have False by auto
\}
with \(d q\) have \(d q\) : degree \(q \geq 2\) by (cases degree \(q\); cases degree \(q-1\); auto)
```


have $(z$-sym, 0$) \in F$ - Q unfolding F-def F - Q-def by auto

from valid[OF this, unfolded valid-monotone-poly-def, rule-format, OF refl refl] obtain z where $I z: I z$-sym $=z$ and vars- z : vars $z=\{ \}$ and valid- $z:$ valid-poly z by auto
from vars-empty-Const $[$ OF vars- $z]$ obtain $z 0$ where $z: z=$ Const $z 0$ by auto from valid-z[unfolded valid-poly-def, rule-format, OF α, unfolded $z]$ have $z 0: z 0$ ≥ 0 by auto

\{

fix i
assume $i \in V$
hence v-sym $i \in\{q$-sym, h-sym $\} \cup v$-sym ' V by auto note unary-symbol[OF this]
\}
hence $\forall i . \exists q . i \in V \longrightarrow I(v$-sym $i)=$ poly-to-mpoly $0 q \wedge 0<$ degree q by auto
from choice $[O F$ this] obtain v where $I v: \bigwedge i . i \in V \Longrightarrow I(v-s y m i)=$ poly-to-mpoly 0 ($v i$)
and $d v: \bigwedge i . i \in V \Longrightarrow 0<\operatorname{degree}\left(\begin{array}{ll}v & i\end{array}\right.$
by auto
define const- t where const- $t=$ insertion $\alpha($ eval $t-t)$
have const- t : const- $t>0$
unfolding const-t-def
by (rule eval-t-t-gt-0[OF Ig[unfolded g] Iz[unfolded z]], insert z0 g0 g1 g2, auto)

\{

define $d 1$ where $d 1=g 0+g 2 * h 0+g 2 * h 1 * h 0+g 2 * h 1 * h 1 * h 0$
define c where $c=g 0+g 2 *$ const- t
define delt4 where delt4 $=d 1+$ diff 3
have [simp]: insertion a (eval $t-t$) $=$ const- t for a unfolding const- t-def
by (rule insertion-irrelevant-vars, insert vars-t vars-eval, force)
let ? $q q=q \circ_{p}[: c, g 1:]-$ smult $g 1 q$
define $q q$ where $q q=$? $q q$
define $h h h$ where $h h h=[:$ delt $4, g 2 * h 1 * h 1 * h 1:]$
\{
fix $x::^{\prime} a$
assume $x: x \geq 0$
from inequality2[of 3, OF - this]
have insertion $(\alpha(3:=x))($ eval (r 3) $) \leq \operatorname{insertion}(\alpha(3:=x))($ eval (l 3))

+ diff 3 by auto
also have insertion $(\alpha(3:=x))($ eval $(r 3))=\operatorname{poly} q(g 0+g 1 * x+g 2 *$ const-t)
by (simp add: r-def rhs-Q-def $y 4$-def $\operatorname{Iq} \operatorname{Ig} g)$
also have insertion $(\alpha(3:=x))($ eval $(l 3))=$
$g 1 *$ poly $q x+g 2 * h 1 * h 1 * h 1 * x+d 1$

```
            by (simp add:l-def lhs-Q-def y4-def Iq Ig g Ih h field-simps d1-def)
    finally have poly q(g0 + g1*x+g2* const-t) - poly (smult g1 q) x-g2
*h1 *h1 *h1 *x\leqdelt4
            by (simp add: delt4-def)
    also have g2*h1*h1*h1*x= poly [:0, g2 *h1 *h1*h1:] x by simp
    also have poly q(g0 + g1*x+g2* const-t)= poly(pcompose q[:c,g1:])
x
            by (simp add: poly-pcompose ac-simps c-def)
    finally have poly qq x \leq poly hhh x
        by (simp add: qq-def hhh-def)
    } note ineq3 = this
    have lq0: lead-coeff q>0
    proof (rule ccontr)
        assume \neg ?thesis
        with dq have lq}\mathrm{ : lead-coeff ( }-q\mathrm{ ) >0 by (cases q=0, auto)
        from poly-pinfty-ge[OF this, of 1] dq obtain n where }\x.x\geqn\Longrightarrow pol
qx}\leq-1 by auto
    from this[of max n 0] have 1: poly q (max n 0) \leq-1 by auto
    let ?a = \lambda x :: var. max n 0
    have a: assignment ?a unfolding assignment-def by auto
    have (q-sym,1) \inF-Q unfolding F-Q-def by auto
        from valid[OF this, unfolded valid-monotone-poly-def, rule-format, OF refl
Iq[symmetric]]
    have valid-poly (poly-to-mpoly 0 q) by auto
    from this[unfolded valid-poly-def, rule-format, OF a]
    have 0}\leq\mathrm{ poly q (max n 0) by auto
    with 1 show False by auto
    qed
    from const-t g0 g2 have c:c>0 unfolding c-def
    by (metis le-add-same-cancel2 linorder-not-le mult-less-cancel-right2 order-le-less-trans
order-less-le)
    have degree hhh\leq1 unfolding hhh-def by simp
    from criterion-for-degree-2[OF qq-def dq ineq3 this g1 lq0 c]
    have degree q=2 g1 = 1 by auto
}
hence dq: degree q=2 and g1:g1=1 by auto
{
    have l: eval (l 4) = poly-to-mpoly & q unfolding
            l-def lhs-Q-def using qy by (simp add: y5-def)
    have eval (r 4) = eval (Fun a-sym (replicate 2 (TVar y5))) unfolding r-def
rhs-Q-def
    apply (simp)
    apply (intro arg-cong[of - - \lambda x. substitute x -] ext)
```

```
        subgoal for i by (cases i; cases i - 1; auto)
        done
    also have ... = poly-to-mpoly y5 au by fact
    finally have r: eval (r 4) = poly-to-mpoly & au by (auto simp: y5-def)
    from deg-inequality[of 4, unfolded upoly-def l r poly-to-mpoly-inverse]
    have degree au \leq degree q by auto
    with subst-same-var-monotone-imp-same-degree[OF mono-a refl - poly-a] da
    have total-degree a\leqdegree q by auto
}
hence d-aq: total-degree a\leqdegree q by auto
{
    have r: eval (r 5) = poly-to-mpoly 5q unfolding
            r-def rhs-Q-def using qy by (simp add: y6-def)
    have eval (l 5) = eval (Fun a-sym (replicate 2 (TVar y6))) unfolding l-def
lhs-Q-def
        apply (simp)
        apply (intro arg-cong[of - - \lambda x. substitute x -] ext)
        subgoal for i by (cases i; cases i-1; auto)
        done
    also have ... = poly-to-mpoly y6 au' by fact
    finally have l: eval (l 5) = poly-to-mpoly 5 au' by (auto simp: y6-def)
    from deg-inequality[of 5, unfolded upoly-def l r poly-to-mpoly-inverse]
    have degree q}\leq\mathrm{ degree au' by auto
    with subst-same-var-monotone-imp-same-degree[OF mono-a refl - poly-a] da'
    have degree q}\leq\mathrm{ total-degree a by auto
}
with d-aq
have d-aq: total-degree a= degree q by auto
with dq have da: total-degree a=2 by simp
have vars }a={0,1}\mathrm{ unfolding vars-a by code-simp
from binary-degree-2-poly[OF - this] da
obtain a0 a1 a2 a3 a4 a5 where a: a = Const a0 + Const a1 * PVar 0 +
Const a2 * PVar 1 +
    Const a3 * PVar 0 * PVar 0 + Const a4 * PVar 1 * PVar 1 +
    Const a5 * PVar 0 * PVar 1 by auto
```

define $d 1$ where $d 1=a 0+a 1 * z 0+a 3 * z 0 * z 0$
define $d 2$ where $d 2=(a 2+a 5 * z 0)$
define delt' 7 where delt' $7=\operatorname{diff} 6-d 1$
\{
fix x
assume $x \geq\left(0::{ }^{\prime} a\right)$
from inequality2[of 6, OF - this]

```
    have insertion (\alpha(6:=x)) (eval (r 6)) \leq insertion (\alpha(6:=x)) (eval (l 6)) +
diff 6 by auto
    also have insertion ( }\alpha(6:=x))(eval (r 6)) =a4 * x*x+d2* x + d1
    by (simp add: r-def rhs-Q-def Ig g y7-def Ia a Iz z algebra-simps d1-def d2-def)
    also have insertion (\alpha(6:=x)) (eval (l 6)) = x
        by (simp add:l-def lhs-Q-def Ih h y%-def)
    finally have 0 \geq poly [:-delt7,d2 - 1,a4:] x unfolding delt7-def
        by (simp add: algebra-simps)
    } note ineq7 = this
    {
    define p where p= [:- delt7,d2 - 1,a4:]
    assume a4 > 0
    hence lead-coeff p>0 degree p>0 by (auto simp: p-def)
    with poly-pinfty-ge[OF this(1), of 1] obtain n where }\x.x\geqn\Longrightarrow1\leqpol
px by blast
    from this[of max n 0] ineq7[of max n 0] have False unfolding p-def by auto
    }
    hence a4:a4 \leq 0 by force
    note valid- }a=\mathrm{ valid-a[unfolded a valid-poly-def, rule-format]
    {
    define p where p=[:-a0,-a2,-a4:]
    assume a4 < 0
    hence p:lead-coeff p>0 degree p}=0\mathrm{ unfolding p-def by auto
    {
        fix }x::\mp@subsup{}{}{\prime}
        assume }x\geq
        hence assignment ( }\lambdav\mathrm{ v. if v=1 then x else 0) unfolding assignment-def by
auto
        from valid-a[OF this]
        have 0}\geq\mathrm{ poly px by (auto simp: algebra-simps p-def)
    }
    with poly-pinfty-ge[OF p] have False
        by (metis (no-types, opaque-lifting) dual-order.trans nle-le not-one-le-zero)
}
with a& have a4: a4 = 0 by force
```

 define \(d 1\) where \(d 1=a 0+a 2 * z 0\)
 define \(d 2\) where \(d 2=(a 5 * z 0+a 1)\)
 define delt 8 where delt \(8=\) diff \(7-d 1\)
 \{
 fix \(x\)
 assume \(x \geq\left(0::{ }^{\prime} a\right)\)
 from inequality2[of 7, OF - this]
 have insertion \((\alpha(7:=x))(\) eval \((r 7)) \leq \operatorname{insertion}(\alpha(7:=x))(\) eval \((l 7))+\)
 diff 7 by auto
also have insertion $(\alpha(7:=x))($ eval $(r 7))=d 1+a 3 *(x * x)+d 2 * x$
by (simp add: r-def rhs-Q-def Ig g y8-def Ia a a4 Iz z algebra-simps d1-def

```
d2-def)
    also have insertion (\alpha(7:=x))(eval (l 7)) = x
        by (simp add:l-def lhs-Q-def Ih h y8-def)
    finally have 0 \geq poly [:-delt8,d2 - 1,a3:] x unfolding delt8-def
        by (simp add: algebra-simps)
    } note ineq8 = this
    {
    define p where p=[:-delt8,d2 - 1,a3:]
    assume a3 > 0
    hence lead-coeff p>0 degree p>0 by (auto simp: p-def)
    with poly-pinfty-ge[OF this(1), of 1] obtain n where \ \. x\geqn\Longrightarrow1\leqpoly
px by blast
    from this[of max n 0] ineq8[of max n 0] have False unfolding p-def by auto
}
hence a3: a3 \leq 0 by force
{
    define p where p=[:-a0,-a1,-a3:]
    assume a3<0
    hence p:lead-coeff p>0 degree p}=0\mathrm{ unfolding p-def by auto
    {
        fix }x::\mp@subsup{}{}{\prime}
        assume x\geq0
        hence assignment ( }\lambdav\mathrm{ v. if v}=0\mathrm{ then x else 0) unfolding assignment-def by
auto
    from valid-a[OF this, simplified]
        have 0\geq poly px by (auto simp: algebra-simps p-def)
    }
    with poly-pinfty-ge[OF p] have False
        by (metis (no-types, opaque-lifting) dual-order.trans nle-le not-one-le-zero)
}
with a3 have a3: a3 = 0 by force
from \(a\) a3 \(a 4\) have \(a: a=\) Const \(a 5 * P \operatorname{Var} 0 * P \operatorname{Var} 1+\) Const a1 \(* P \operatorname{Var} 0\) + Const a2 \(*\) PVar \(1+\) Const a0 by simp
note valid- \(a=\) valid-a[unfolded a3 a4]
from valid- \(a[O F \alpha\), simplified, unfolded \(\alpha-d e f]\)
have \(a 0: a 0 \geq 0\) by auto
note mono- \(a^{\prime}=\) mono-a[unfolded monotone-poly-wrt-def, rule-format, unfolded vars-a, OF \(\alpha\), unfolded \(a\), simplified,
unfolded \(\alpha\)-def, simplified]
from mono- \(a\) ' \([\) of 0\(]\) have \(a 1: \delta \leq x \Longrightarrow \delta \leq a 1 * x\) for \(x\) by auto
from mono- \(a^{\prime}\) [of 1] have \(a 2: \delta \leq x \Longrightarrow \delta \leq a 2 * x\) for \(x\) by auto
\{
fix \(a\)
assume \(a \in\{a 1, a 2\}\)
with a1 a2 have \(\delta \leq x \Longrightarrow \delta \leq a * x\) for \(x\) by auto
with \(\delta 0\) have \(a \geq 1\)
```

using mult-le-cancel-right1 by auto
hence $a>0$ by simp
\}
hence $a 1: a 1>0$ and $a 2: a 2>0$ by auto

```
{
    assume a5: a5 = 0
    from da[unfolded a a5]
    have 2 = total-degree (Const a1 * PVar 0 + Const a2 * PVar (Suc 0) +
Const a0) by simp
    also have ... \leq 1
        by (intro total-degree-add total-degree-Const-mult, auto)
    finally have False by simp
}
hence a5: a5 \not=0 by force
{
    define p where p=[:-a0, -a1 -a2, -a5:]
    assume a5: a5 < 0
    hence p:lead-coeff p>0 degree p}\not=0\mathrm{ by (auto simp: p-def)
    {
    fix }x:: ' a
    assume }x\geq
    hence assignment ( }\lambda\mathrm{ -. x) by (auto simp: assignment-def)
    from valid-a[OF this]
    have 0}\geq\mathrm{ poly px by (simp add: p-def algebra-simps)
    }
    with poly-pinfty-ge[OF p] have False
    by (metis (no-types, opaque-lifting) dual-order.trans nle-le not-one-le-zero)
}
with a5 have a5: a5 > 0 by force
define I' where I'=(\lambdaf. if f\inv-sym'(UNIV - V) then PVar 0 else If )
define }\mp@subsup{v}{}{\prime}\mathrm{ where }\mp@subsup{v}{}{\prime}=(\lambda\mathrm{ . if }i\inV\mathrm{ then v i else [:0,1:])
have I\mp@subsup{v}{}{\prime}:\mp@subsup{I}{}{\prime}(v-sym i)= poly-to-mpoly 0 ( v' i) for }
    unfolding I''-def v'-def using Iv by (auto simp: mpoly-of-poly-is-poly-to-mpoly[symmetric])
have dv':0<degree ( }\mp@subsup{v}{}{\prime}i)\mathrm{ for i using dv[of i] by (auto simp: v'-def)
have}I\mp@subsup{a}{}{\prime}:\mp@subsup{I}{}{\prime} a-sym=a unfolding I'-def using Ia by aut
have }I\mp@subsup{z}{}{\prime}:\mp@subsup{I}{}{\prime}z\mathrm{ -sym = z unfolding I'-def using Iz by auto
{
    fix }
    have nneg-poly (v'i)
    proof (cases i\inV)
        case False
        thus ?thesis by (auto simp: v'-def)
    next
        case i:True
        hence id: v}\mp@subsup{v}{}{\prime}i=vi\mathrm{ by (auto simp: v'-def)
        from i have (v-sym i,1) \inF-Q unfolding F-Q-def F-def by auto
        from valid[OF this, unfolded valid-monotone-poly-def] Iv[OF i]
```

```
    have valid: valid-poly (poly-to-mpoly 0 (v i) ) by auto
    define }p\mathrm{ where }p=v
    have valid: 0\leqx\Longrightarrow0\leq poly px for x unfolding p-def
        using valid[unfolded valid-poly-def, rule-format, of \lambda -. x]
        by (auto simp: assignment-def)
    hence nneg-poly p by (intro nneg-polyI, auto)
    thus ?thesis unfolding id p-def .
    qed
} note nneg-v = this
{
    fix r }
    assume r\in{p,?q}
    with pq funas-encode-poly-p[of x] funas-encode-poly-q[of x]
    have pos: positive-poly r and inF: funas-term (encode-poly x r)\subseteqF by auto
    from degree-eval-encode-poly-generic[of I', unfolded mpoly-of-poly-is-poly-to-mpoly,
            OF Ia'[unfolded a] Iz'[unfolded z] - a5 a1 a2 a0 z0, of v', OF Iv' nneg-v dv'
pos refl, of x]
    obtain rr where id: poly-to-mpoly x rr = poly-inter.eval I' (encode-poly x r)
        and deg: int (degree rr) = insertion (\lambdai. int (degree (v' v))) r
        and nneg: nneg-poly rr
        by auto
    have poly-to-mpoly x rr = poly-inter.eval I (encode-poly x r) unfolding id
    proof (rule poly-inter-eval-cong)
        fix fa
        assume (f,a) \in funas-term (encode-poly x r)
        hence (f,a) \inF using inF by auto
        thus I'f}=If\mathrm{ unfolding F-def I'-def by auto
    qed
    with deg nneg have \exists p. mpoly-of-poly x p = eval (encode-poly x r) ^
        int (degree p)= insertion (\lambdai. int (degree (v'i)))r^ nneg-poly p
        by (auto simp: mpoly-of-poly-is-poly-to-mpoly)
} note encode = this
from encode[of p y9]
obtain pp where pp: mpoly-of-poly y9 pp = eval (encode-poly y9 p)
        int (degree pp) = insertion (\lambdai. int (degree (v'i))) p
        nneg-poly pp by auto
from encode[of ?q y9]
obtain qq where qq: mpoly-of-poly y9 qq = eval (encode-poly y9 ?q)
        int (degree qq) = insertion ( }\lambda\mathrm{ i. int (degree ( (v'i))) ?q
        nneg-poly qq by auto
define ppp where ppp =(pp*[:a1, a5:] + [:a0,a2:])
from deg-inequality[of 8]
have degree (upoly r 8) \leq degree (upoly l 8) by simp
also have upoly r 8 = mpoly-to-poly 8
```

(mpoly-of-poly y 9 [: a1, a5 :] * mpoly-of-poly y 9 qq + mpoly-of-poly y 9 [: a0, a2:])
unfolding r-def rhs- Q-def by (simp add: upoly-def Ia a qq algebra-simps)
also have $\ldots=q q *[: a 1, a 5:]+[: a 0, a 2:]$ unfolding mpoly-of-poly-add[symmetric] mpoly-of-poly-mult[symmetric]
unfolding mpoly-of-poly-is-poly-to-mpoly y9-def poly-to-mpoly-inverse by simp
also have degree $\ldots=1+$ degree $q q$
by (rule nneg-poly-degree-add-1[OF qq(3)], insert a5 a2, auto)
also have upoly $l 8=$ mpoly-to-poly 8
(mpoly-of-poly y 9 [: h0 :] + mpoly-of-poly y 9 [: h1:] * (mpoly-of-poly y 9 [: a1,
$a 5$:] * mpoly-of-poly y9 pp + mpoly-of-poly y9 [: a0, a2:]))
unfolding l-def lhs-Q-def by (simp add: upoly-def Ih h mpoly-of-poly-is-poly-to-mpoly [symmetric] Ia a pp algebra-simps)
also have $\ldots=[: h 0:]+[: h 1:] * p p p$ unfolding mpoly-of-poly-add[symmetric]
mpoly-of-poly-mult[symmetric] ppp-def
unfolding mpoly-of-poly-is-poly-to-mpoly y9-def poly-to-mpoly-inverse by simp
also have degree $\ldots=$ degree $([: h 1:] * p p p)$
by (metis degree-add-eq-right degree-add-le degree-pCons-0 le-zero-eq zero-less-iff-neq-zero)
also have $\ldots=$ degree ppp using $h 1$ by simp
also have $\ldots=1+$ degree $p p$ unfolding $p p p$-def
by (rule nneg-poly-degree-add-1[OF pp(3)], insert a5 a2, auto)
finally have deg-qq-pp: int (degree $q q) \leq$ int (degree $p p$) by simp
show ?thesis unfolding positive-poly-problem-def[OF pq]
proof (intro exI[of - (λ i. int (Polynomial.degree ($\left.v^{\prime} i\right)$))] conjI deg-qq-pp[unfolded
$p p(2) q q(2)])$
show positive-interpr (λi. int (Polynomial.degree $\left(v^{\prime} i\right)$))
unfolding positive-interpr-def using $d v^{\prime}$ by auto
qed
qed
end
context poly-input
begin
corollary polynomial-termination-with-delta-orders-undecidable:
positive-poly-problem $p q \longleftrightarrow$
termination-by-delta-poly-interpretation (TYPE('a :: floor-ceiling)) F-Q Q
proof
show positive-poly-problem p $q \Longrightarrow$ termination-by-delta-poly-interpretation TYPE ('a)
$F-Q Q$
using solution-impl-delta-termination-of- Q by blast
assume termination-by-delta-poly-interpretation $\operatorname{TYPE}\left({ }^{\prime} a\right) F-Q \quad Q$
interpret term-delta-poly-input p q TYPE ('a)
by (unfold-locales, fact)
from solution show positive-poly-problem p q by auto qed
end
end

References

[1] D. Lankford. On proving term rewrite systems are Noetherian. Technical Report MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.
[2] Y. Y. Matijasevic. Enumerable sets are diophantine (translated from Russian). In Soviet Mathematics Doklady, volume 11, pages 354-358, 1970.
[3] F. Mitterwallner, A. Middeldorp, and R. Thiemann. Linear termination is undecidable. In Proceedings of the 39th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society, 2024. To appear.

[^0]: *This research was supported by the Austrian Science Fund (FWF) project I 5943.

