Properties of Orderings and Lattices

Georg Struth
March 17, 2025

Abstract

These components add further fundamental order and lattice-theoretic

concepts and properties to Isabelle’s libraries. They follow by and large
the introductory sections of the Compendium of Continuous Lattices,
covering directed and filtered sets, down-closed and up-closed sets,
ideals and filters, Galois connections, closure and co-closure operators.
Some emphasis is on duality and morphisms between structures—as
in the Compendium. To this end, three ad-hoc approaches to duality
are compared.

Contents

1 Introductory Remarks

2 Sup-Lattices and Other Simplifications

3 Ad-Hoc Duality for Orderings and Lattices

4 Properties of Orderings and Lattices

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Basic Definitions for Orderings and Lattices . . . . . . . . ..
Properties of Orderings . . . . . . ... ... ... ... ...
Dual Properties of Orderings . . . . .. .. .. .. ... ...
Properties of Complete Lattices . . . . . . ... ... ... ..
Sup- and Inf-Preservation . . .. ... ... ... .......
Alternative Definitions for Complete Boolean Algebras . . . .
Atomic Boolean Algebras . . . . .. ... ... ... ... ..

5 Representation Theorems for Orderings and Lattices

5.1
5.2

Representation of Posets . . . . . . ... ... . 0L
Stone’s Theorem in the Presence of Atoms . . . . . . . . ...

6 Galois Connections

6.1
6.2
6.3

Definitions and Basic Properties . . . . ... ... ... ...
Properties for (Pre)Orders . . . . . ... ... .. ... ....
Properties for Complete Lattices . . . . .. ... ... .. ..

13
13
19
22
25
26
31
32

34
34
40



7 Fixpoint Fusion 49

8 Closure and Co-Closure Operators 51
8.1 Closure Operators . . . . . ... ... ... ... ... .... 51
8.2 Co-Closure Operators . . . . .. .. .. .. ... ... .... 55
8.3 Complete Lattices of Closed Elements . . . ... ... .. .. 57
8.4 A Quick Example: Dedekind-MacNeille Completions . . . . . 60

9 Locale-Based Duality 60
9.1 Duality via Locales . . . . . .. ... ... ... ... 62
9.2 Properties of Orderings, Again . . . . ... ... ... .... 64
9.3 Dual Properties of Orderings from Locales . . . . . . . .. .. 66
9.4 Examples that Do Not Dualise . . ... ... ... ...... 68

10 Duality Based on a Data Type 71
10.1 Wenzel’s Approach Revisited . . . . ... .. .. ... .... 71
10.2 Examples that Do Not Dualise . . . . . .. ... ... .... 75

1 Introductory Remarks

Basic order- and lattice-theoretic concepts are well covered in Isabelle’s li-
braries, and widely used. More advanced components are spread out over
various sites (e.g. [11, 9, 8, 1, 4, 2]).

This formalisation takes the initial steps towards a modern structural
approach to orderings and lattices, as for instance in denotational semantics
of programs, algebraic logic or pointfree topology. Building on the com-
ponents for orderings and lattices in Isabelle’s main libraries, it follows the
classical textbook A Compendium of Continuous Lattices [3] and, to a lesser
extent, Johnstone’s monograph on Stone Spaces [5]. By integrating material
from other sources and extending it, a formalisation of undergraduate-level
textbook material on orderings and lattices might eventually emerge.

In the textbooks mentioned, concepts such as dualities, isomorphisms
between structures and relationships between categories are emphasised.
These are essential to modern mathematics beyond orderings and lattices;
their formalisation with interactive theorem provers is therefore of wider
interest. Nevertheless such notions seem rather underexplored with Isabelle,
and I am not aware of a standard way of modelling and using them. The
present setting is perhaps the simplest one in which their formalisation can
be studied.

These components use Isabelle’s axiomatic approach without carrier sets.
This is certainly a limitation, but it can be taken quite far. Yet well known
facts such as Tarski’s theorem—the set of fixpoints of an isotone endofunc-
tion on a complete lattice forms a complete lattice—seem hard to formalise
with it (at least without using recent experimental extensions [7]).



Firstly, leaner versions of complete lattices are introduced: Sup-lattices
(and their dual Inf-lattices), in which only Sups (or Infs) are axiomatised,
whereas the remaining operators, which are axiomatised in the standard
Isabelle class for complete lattices, are defined explicitly. This not only
reduces of proof obligations in instantiation or interpretation proofs, it also
helps in constructions where only suprema are represented faithfully (e.g.
using morphisms that preserve sups, but not infs, or vice versa). At the
moment, Sup-lattices remain rather loosely integrated into Isabelle’s lattice
hierarchy; a tighter one seems rather delicate.

Order and lattice duality is modelled, rather ad hoc, within a type class
that can be added to those for orderings and lattices. Duality thus becomes
a functor that reverses the order and maps Sups to Infs and vice versa, as
expected. It also maps order-preserving functions to order-preserving func-
tions, Sup-preserving to Inf-preserving ones and vice versa. This simple
approach has not yet been optimised for automatic generation of dual state-
ments (which seems hard to achieve anyway). It works quite well on simple
examples.

The class-based approach to duality is contrasted by an implicit, locale-
based one (which is quite standard in Isabelle), and Wenzel’s data-type-
based one [11]. Wenzel’s approach generates many properties of the duality
functor automatically from Isabelle’s data type package. However, duality
is not involutive, and this limits the dualisation of theorems quite severely.
The local-based approach dualises theorems within the context of a type
class or locale highly automatically. But, unlike the present approach, it is
limited to such contexts. Yet another approach to duality has been taken
in HOL-Algebra [2], but it is essentially based on set theory and therefore
beyond the reach of simple axiomatic type classes.

The components presented also cover fundamental concepts such as di-
rected and filtered sets, down-closed and up-closed sets, ideals and filters,
notions of sup-closure and inf-closure, sup-preservation and inf-preservation,
properties of adjunctions (or Galois connections) between orderings and
(complete) lattices, fusion theorems for least and greatest fixpoints, and
basic properties of closure and co-closure (kernel) operations, following the
Compendium (most of these concepts come as dual pairs!). As in this
monograph, emphasis lies on categorical aspects, but no formal category
theory is used. In addition, some simple representation theorems have been
formalised, including Stone’s theorem for atomic boolean algebras (objects
only). The non-atomic case seems possible, but is left for future work. Deal-
ing with opposite maps properly, which is essential for dualities, remains an
issue.

Finally, in Isabelle’s main libraries, complete distributive lattices and
complete boolean algebras are currently based on a very strong distributiv-
ity law, which makes these structures completely distributive and is basically
an Axiom of Choice. While powerset algebras satisfy this law, other appli-



cations, for instance in topology require different axiomatisations. Com-
plete boolean algebras, in particular, are usually defined as complete lat-
tices which are also boolean algebras. Hence only a finite distributivity
law holds. Weaker distributivity laws are also essential for axiomatising
complete Heyting algebras (aka frames or locales), which are relevant for
point-free topology [5].

Many questions remain, in particular on tighter integrations of duality
and reasoning up to isomorphism with Isabelle and beyond. In its present
form, duality is often not picked up in the proofs of more complex state-
ments. Some statements from the Compendium and Johnstone’s book had
to be ignored due to the absence of carrier sets in Isabelle’s standard com-
ponents for orderings and lattices. Whether Kuncar and Popescu’s new
types-to-sets translation [7] provides a satisfactory solution remains to be
seen.

2 Sup-Lattices and Other Simplifications

theory Sup-Lattice
imports Main
begin

unbundle lattice-syntax

Some definitions for orderings and lattices in Isabelle could be simpler.
The strict order in in ord could be defined instead of being axiomatised.
The function mono could have been defined on ord and not on order—even
on a general (di)graph it serves as a morphism. In complete lattices, the
supremum—and dually the infimum—suffices to define the other operations
(in the Isabelle/HOL-definition infimum, binary supremum and infimum,
bottom and top element are axiomatised). This not only increases the num-
ber of proof obligations in subclass or sublocale statements, instantiations or
interpretations, it also complicates situations where suprema are presented
faithfully, e.g. mapped onto suprema in some subalgebra, whereas infima in
the subalgebra are different from those in the super-structure.

It would be even nicer to use a class less-eq which dispenses with the strict
order symbol in ord. Then one would not have to redefine this symbol in
all instantiations or interpretations. At least, it does not carry any proof
obligations.

context ord
begin
ub-set yields the set of all upper bounds of a set; Ib-set the set of all lower

bounds.

definition ub-set :: ‘a set = 'a set where



ub-set X = {y.Vz € X. z < y}

definition [b-set :: ‘a set = ’a set where
lb-set X = {y. Vo € X. y < z}

end

definition ord-pres :: (‘a::ord = 'b:ord) = bool where
ord-pres f = Vzy. <y — fz < fy)

lemma ord-pres-mono:
fixes [ :: 'a::order = 'b::order
shows mono f = ord-pres f
(proof )

class preorder-lean = ord +
assumes preorder-refl: v < x
and preorder-trans: t < y = y < z =z < 2

begin

definition le :: 'a = 'a = bool where
lexy=(z<yA-(z>y)

end

sublocale preorder-lean C prel: preorder (<) le
(proof)

class order-lean = preorder-lean +
assumes order-antisym: t < y = x >y = T =y

sublocale order-lean C posl: order (<) le
{proof)

class Sup-lattice = order-lean + Sup +
assumes Sups-upper: ¢ € X —= z < || X
and Sups-least: (A\z. 1€ X = < 2) = ||X <z

begin

definition Infs :: 'a set = 'a where
Infs X = | [{y.Vz € X. y < z}

definition sups :: '/a = 'a = 'a where
sups z y = | |{z.y}

definition infs :: 'a = ‘a = 'a where
infs vy = Infs{z,y}



definition bots :: ‘a where

bots = | |{}

definition tops :: ‘a where
tops = Infs{}

lemma Infs-prop: Infs = Sup o [b-set
(proof )

end

class Inf-lattice = order-lean + Inf +
assumes Infi-lower: € X = []X <
and Infi-greatest: (Nz. 2 € X = 2 <2) = 2z <[|X

begin

definition Supi :: 'a set = 'a where
Supi X =[{y.Vz € X. z < y}

definition supi :: 'a = ‘a = 'a where
supi x y = Supi{z,y}

definition nfi :: 'a = 'a = 'a where

infizy = [{z,y}

definition boti :: 'a where
boti = Supi{}

definition topi :: 'a where

topi = [1{}

lemma Supi-prop: Supi = Inf o ub-set
(proof)

end

sublocale Inf-lattice C ldual: Sup-lattice Inf (>)
rewrites ldual.Infs = Supi
and Idual.infs = supi
and ldual.sups = infi
and [ldual.tops = boti
and ldual.bots = topi

(proof)

sublocale Sup-lattice C supclat: complete-lattice Infs Sup-class.Sup infs (<) le sups
bots tops

{proof)



sublocale Inf-lattice C infclat: complete-lattice Inf-class.Inf Supi infi (<) le supi
boti topt
(proof )

end

3 Ad-Hoc Duality for Orderings and Lattices

theory Order-Duality
imports Sup-Lattice

begin

This component presents an "explicit" formalisation of order and lattice du-
ality. It augments the data type based one used by Wenzel in his lattice
components [11], and complements the "implicit" formalisation given by lo-
cales. It uses a functor dual, supplied within a type class, which is simply a
bijection (isomorphism) between types, with the constraint that the dual of
a dual object is the original object. In Wenzel’s formalisation, by contrast,
dual is a bijection, but not idempotent or involutive. In the past, Preoteasa
has used a similar approach with Isabelle [8].

Duality is such a fundamental concept in order and lattice theory that it
probably deserves to be included in the type classes for these objects, as in
this section.

class dual =
fixes dual :: 'a = 'a (xO»)
assumes nj-dual: inj 0
and invol-dual [simp]: O o O = id

This type class allows one to define a type dual. It is actually a dependent
type for which dual can be instantiated.
typedef (overloaded) ‘a dual = range (dual::'a::dual = 'a)
(proof)
setup-lifting type-definition-dual

At the moment I have no use for this type.
context dual

begin

lemma invol-dual-var [simpl: 0 (0 ©) = z
{proof)

lemma surj-dual: surj 0
(proof )



lemma bij-dual: bij 0
(proof)

lemma inj-dual-iff: (0 x =0 y) = (z = y)
(proof)

lemma dual-iff: (0 z =y) = (x =0 y)
{proof)

lemma the-inv-dual: the-inv O = 0
(proof )

end

In boolean algebras, duality is of course De Morgan duality and can be
expressed within the language.

sublocale boolean-algebra C ba-dual: dual uminus

(proof)

definition map-dual:: (‘a = 'b) = ’a::dual = 'b::dual («0p») where
opf=00fod

lemma map-dual-funcl: O (f o g) = Op f 0 OF ¢
{proof)

lemma map-dual-func2 [simp]: Op id = id
(proof )

lemma map-dual-nat-iso: Op f o 0 = 0 o id f

{proof)
lemma map-dual-invol [simp]: Op o Op = id
{proof)

Thus map-dual is naturally isomorphic to the identify functor: The function
dual is a natural transformation between map-dual and the identity functor,
and, because it has a two-sided inverse — itself, it is a natural isomorphism.

The generic function set-dual provides another natural transformation (see
below). Before introducing it, we introduce useful notation for a widely used
function.

abbreviation n = (Az. {z})

lemma eta-inj: inj n
(proof)

definition set-dual = n o 0



lemma set-dual-prop: set-dual (0 z) = {z}

{proof )
The next four lemmas show that (functional) image and preimage are func-
tors (on functions). This does not really belong here, but it is useful for

what follows. The interaction between duality and (pre)images is needed in
applications.

lemma image-funcl: (*) (f o g) = () fo () g
{proof)

lemma image-func2: () id = id
{proof)

lemma vimage-funcl: (=) (fog) = (=) go (=9 f
{proof )

lemma vimage-func2: (—°) id = id
(proof)

lemma iso-image: mono ((¥) f)
(proof)

lemma iso-preimage: mono ((—9) f)
(proof )

context dual
begin

lemma image-dual [simp]: () 0 o () 0 = id
(proof)

lemma vimage-dual [simp]: (=) 0 o (—9) 0 = id
{proof)

end
The following natural transformation between the powerset functor (image)
and the identity functor is well known.
lemma power-set-func-nat-trans: n o id f = () f on
(proof )

As an instance, set-dual is a natural transformation with built-in type coer-
cion.

lemma dual-singleton: () d on=mno 0

(proof)

lemma finite-dual [simp]: finite o () O = finite
{proof)



lemma finite-dual-var [simp]: finite (0 * X) = finite X
{proof)

lemma subset-dual: (X =0 ‘Y)=(0 ‘X =7)
(proof)

lemma subset-duall: (X CY)=(0 ‘X C0 ‘Y)
{proof)

lemma dual-empty [simp]: 0 ‘{} = {}
{proof)

lemma dual-UNIV [simp]: O ¢ UNIV = UNIV
{proof)

lemma fun-duall: (f = go d) = (f o0 =g)
{proof)

lemma fun-dual2: (f = 0o g) = (0o f = g)
(proof)

lemma fun-dual3: (f = go (90)=(fo()d=yg)
(proof)

lemma fun-dualf: (f = () 0o g)=(()dof=yg)
(proof )

lemma fun-duals: (f = 0o god)=(0ofod=yg)
(proof)

lemma fun-dual6: (f = () Do go (90)=(()Y0ofo()d=yg)
{proof)

lemma fun-dual?: (f = 0o go () 9)= (Do fo()d=yg)
(proof)

lemma fun-dual8: (f = ()00 god)=(()Ydofod=yg)
{proof)

lemma map-dual-dual: (O f = g) = (Or g = f)
(proof)

The next facts show incrementally that the dual of a complete lattice is a
complete lattice.

class ord-with-dual = dual + ord +
assumes ord-dual: t < y=—= 0y <9dzx

begin

10



lemma dual-dual-ord: (0 x < 0 y) = (y < )
{proof)

end

lemma ord-pres-dual:
fixes [ :: 'a::ord-with-dual = 'b::ord-with-dual
shows ord-pres f = ord-pres (O f)
(proof )

lemma map-dual-anti: (f::'a::ord-with-dual = 'b::ord-with-dual) < ¢ = Op g <
or f
(proof)

class preorder-with-dual = ord-with-dual + preorder
begin

lemma less-dual-def-var: (0 y < 0 z) = (z < y)
(proof)

end
class order-with-dual = preorder-with-dual + order

lemma iso-map-dual:
fixes [ :: 'a::order-with-dual = 'b::order-with-dual
shows mono f = mono (Of f)
(proof )

class lattice-with-dual = lattice + dual +
assumes sup-dual-def: 0 (z U y) =0zMNJy

begin

subclass order-with-dual
(proof )

lemma inf-dual: 0 (z M y) =02z U0y
{proof)

lemma inf-to-sup: t My =0 (0 z U J y)
(proof)

lemma sup-to-inf: x Uy =0 (0 M0 y)
(proof )

end

11



class bounded-lattice-with-dual = lattice-with-dual + bounded-lattice
begin

lemma bot-dual: 0 L =T
(proof )

lemma top-dual: 0 T = L
(proof )

end
class boolean-algebra-with-dual = lattice-with-dual + boolean-algebra

sublocale boolean-algebra C badual: boolean-algebra-with-dual - - - - - - - - UMINUS
(proof)

class Sup-lattice-with-dual = Sup-lattice + dual +
assumes Sups-dual-def: 0 o Sup = Infs o ()

class Inf-lattice-with-dual = Inf-lattice + dual +
assumes Sups-dual-def: 0 o Supi = Inf o () 0

class complete-lattice-with-dual = complete-lattice + dual +
assumes Sups-dual-def: 0 o Sup = Inf o ()

sublocale Sup-lattice-with-dual C sclatd: complete-lattice-with-dual Infs Sup infs
(<) le sups bots tops O

{proof)

sublocale Inf-lattice-with-dual C iclatd: complete-lattice-with-dual Inf Supi infi
(<) le supi boti topi O
(proof)

context complete-lattice-with-dual
begin

lemma Inf-dual: 9 o Inf = Sup o () 0
(proof )

lemma Inf-dual-var: 0 ([1X) =|](0 ‘ X)
{proof)

lemma Inf-to-Sup: Inf = 9 o Sup o () 0
(proof)

lemma Inf-to-Sup-var: [1X =9 (|| (9 ‘ X))
{proof)

12



lemma Sup-to-Inf: Sup = 9 o Inf o (¥) 0
(proof )

lemma Sup-to-Inf-var: | | X = 9 ([1(9 ‘ X))
{proof)

lemma Sup-dual-def-var: 8 (| JX) =[] (0 ‘ X)
{proof)

lemma bot-dual-def: 0 T = L
(proof )

lemma top-dual-def: 0 L =T
(proof )

lemma inf-dual2: 0 (z M y) =0z LIy
{proof)

lemma sup-dual: 0 (x Uy) =0axMdy
{proof)

subclass lattice-with-dual
(proof )

subclass bounded-lattice-with-dual(proof)
end

end

4 Properties of Orderings and Lattices

theory Order-Lattice-Props
imports Order-Duality

begin

4.1 Basic Definitions for Orderings and Lattices

The first definition is for order morphisms — isotone (order-preserving,
monotone) functions. An order isomorphism is an order-preserving bijec-
tion. This should be defined in the class ord, but mono requires order.

definition ord-homset :: (‘a::order = 'b::order) set where
ord-homset = {f::'a::order = 'b::order. mono f}

definition ord-embed :: (‘a::order = 'b::order) = bool where
ord-embed f = Vzy. fo < fy+— 2z <y)

13



definition ord-iso :: (‘a::order = 'b::order) = bool where
ord-iso = bij M mono M (mono o the-inv)

lemma ord-embed-alt: ord-embed f = (mono f AN Vzy. fz < fy— z<y))
(proof )

lemma ord-embed-homset: ord-embed f = f € ord-homset
(proof )

lemma ord-embed-inj: ord-embed f = inj f
(proof)

lemma ord-iso-ord-embed: ord-iso f = ord-embed f

(proof)

lemma ord-iso-alt: ord-iso f = (ord-embed f N surj f)
{proof )

lemma ord-iso-the-inv: ord-iso f = mono (the-inv f)
{proof)

lemma ord-iso-invl: ord-iso f = (the-inv f) o f = id

{proof)

lemma ord-iso-inv2: ord-iso f = f o (the-inv f) = id
(proof )

typedef (overloaded) ('a,’b) ord-homset = ord-homset::('a::order = 'b::order)
set

(proof )
setup-lifting type-definition-ord-homset

The next definition is for the set of fixpoints of a given function. It is
important in the context of orders, for instance for proving Tarski’s fixpoint
theorem, but does not really belong here.

definition Fiz :: (a = ’a) = 'a set where
Fiz f = {x. fz =z}

lemma retraction-prop: f o f = f = fz = x +— x € range f

{proof)

lemma retraction-prop-fiz: f o f = f = range f = Fiz f
(proof )

lemma Fiz-map-dual: Fiz o Op = (‘) d o Fix
(proof)

14



lemma Fiz-map-dual-var: Fiz (0p f) = 0 * (Fiz f)
{proof)

lemma gfp-dual: (0::'a::complete-lattice-with-dual = 'a) o gfp = Ifp o IF
{proof)

lemma gfp-dual-var:
fixes [ :: 'a::complete-lattice-with-dual = 'a

shows 0 (gfp f) = Ifp (OF f)
(proof)

lemma gfp-to-lfp: gfp = (0::'a::complete-lattice-with-dual = 'a) o Ifp o Op
(proof )

lemma gfp-to-lfp-var:
fixes [ :: 'a::complete-lattice-with-dual = 'a
shows gfp f = 0 (Ifp (9r [))
{proof )

lemma Ifp-dual: (9::'a::complete-lattice-with-dual = 'a) o Ifp = gfp o OF
(proof )

lemma [fp-dual-var:
fixes [ :: 'a::complete-lattice-with-dual = 'a
shows 0 (Iifp f) = gfp (map-dual f)
(proof )

lemma Ifp-to-gfp: lifp = (0::'a::complete-lattice-with-dual = 'a) o gfp o Op
(proof )

lemma [fp-to-gfp-var:
fixes [ :: 'a::complete-lattice-with-dual = 'a
shows Ifp f = 0 (gfp (OF f))
(proof)

lemma [fp-in-Fiz:
fixes [ :: 'a::complete-lattice = 'a
shows mono f = Ifp f € Fix f
(proof)

lemma gfp-in-Fiz:
fixes [ :: 'a::complete-lattice = 'a
shows mono f = ¢gfp f € Fiz f
(proof)

lemma nonempty-Fiz:
fixes [ :: 'a::complete-lattice = 'a
shows mono f = Fiz f # {}

{proof)

15



Next the minimal and maximal elements of an ordering are defined.

context ord
begin

definition min-set :: 'a set = 'a set where
min-set X ={ye X.Ve e X. 2 <y — z =y}

definition maz-set :: ‘a set = 'a set where
maz-set X = {z € X.Vye X. 2 <y — z =y}

end

context ord-with-dual
begin

lemma min-mazx-set-dual: () 0 o min-set = maz-set o () J
{proof)

lemma min-maz-set-dual-var: 0 ‘ (min-set X) = maz-set (0 ‘ X)
{proof)

lemma max-min-set-dual: (‘) O o maz-set = min-set o () 0
(proof)

lemma min-to-max-set: min-set = (‘) 0 o mazx-set o () 0

(proof)

lemma maz-min-set-dual-var: 0 * (maz-set X) = min-set (0 ‘ X)
(proof)

lemma min-to-max-set-var: min-set X = 0 ‘ (maz-set (0 * X))
{proof)

end

Next, directed and filtered sets, upsets, downsets, filters and ideals in posets
are defined.
context ord

begin

definition directed :: 'a set = bool where
directed X = (VY. finite Y N Y CX — (Jze X.Vye Y.y <ux)

definition filtered :: 'a set = bool where
filtered X = (VY. finite Y AN Y CX — (Jze X.Vye Y.z <y))

definition downset-set :: 'a set = 'a set («|}») where
X ={y. o e X. y <z}

16



definition upset-set :: 'a set = 'a set (¢f») where
X ={y.dz € X. 2 < y}

definition downset :: ‘a = 'a set (<|») where

L=don

definition upset :: ‘a = 'a set («1) where

t=1fon

definition downsets :: 'a set set where
downsets = Fix |}

definition upsets :: 'a set set where
upsets = Fix

definition downclosed-set X = (X € downsets)
definition upclosed-set X = (X € upsets)

definition ideals :: 'a set set where
ideals = {X. X # {} A downclosed-set X N directed X}

definition filters :: 'a set set where
filters = {X. X # {} A upclosed-set X A filtered X}

abbreviation idealp X = X € ideals
abbreviation filterp X = X € filters

end
These notions are pair-wise dual.

Filtered and directed sets are dual.
context ord-with-dual

begin

lemma filtered-directed-dual: filtered o () 0 = directed
{proof)

lemma directed-filtered-dual: directed o (¥) O = filtered
{proof)

lemma filtered-to-directed: filtered X = directed (0 * X)
{proof)

Upsets and downsets are dual.

lemma downset-set-upset-set-dual: () d ol =1 o () 0

(proof)

17



lemma upset-set-downset-set-dual: () 9 o = o () 9
{proof)

lemma upset-set-to-downset-set: ff = () 0 o | o () 0
{proof)

lemma upset-set-to-downset-set2: f X =9 ‘ (J (0 ‘ X))
(proof)

lemma downset-upset-dual: () d o =100
(proof)

lemma upset-to-downset: () 0ot =00

(proof)

lemma upset-to-downset2: + = () d o ] o d
(proof )

lemma upset-to-downsets: 1+ =9 * (} (0 z))
{proof)

lemma downsets-upsets-dual: (X € downsets) = (0 ‘ X € upsets)
{proof)

lemma downset-setp-upset-setp-dual: upclosed-set o (¥) 0 = downclosed-set
(proof )

lemma upsets-to-downsets: (X € upsets) = (0 ‘ X € downsets)
{proof)

lemma upset-setp-downset-setp-dual: downclosed-set o () & = upclosed-set

{proof)

Filters and ideals are dual.

lemma ideals-filters-dual: (X € ideals) = ((0 ‘ X) € filters)
{proof)

lemma idealp-filterp-dual: idealp = filterp o (¥) 0
(proof)

lemma filters-to-ideals: (X € filters) = ((0 ‘ X) € ideals)
{proof)

lemma filterp-idealp-dual: filterp = idealp o (¥) O
(proof)

end

18



4.2 Properties of Orderings
context ord

begin

lemma directed-nonempty: directed X — X # {}
(proof)

lemma directed-ub: directed X — (Ve € X.Vye X.F3ze X. 2 <z Ay < 2)
(proof)

lemma downset-set-prop: || = Union o (¥) |
(proof)

lemma downset-set-prop-var: X = (Jz € X. |x)
(proof)

lemma downset-prop: lz = {y. y < z}
(proof )

lemma downset-prop2: y < x = y € |z
(proof )

lemma ideals-downsets: X € ideals — X € downsets
(proof)

lemma ideals-directed: X € ideals —> directed X
(proof )

end

context preorder
begin

lemma directed-prop: X # {} = Ve e X. Vye X. Fze X. 2 < zANy<2)
= directed X

(proof)

lemma directed-alt: directed X = (X #{} AN(Vz e X.Vye X. Fze€ X. z < z
Ay < z2)
{proof)

lemma downset-set-prop-var2: ¢ € | X —= y <z = y € | X
(proof)

lemma downclosed-set-iff: downclosed-set X = (Vz € X. Vy. y <z — y € X)

(proof )

lemma downclosed-downset-set: downclosed-set (J.X)
{proof)

19



lemma downclosed-downset: downclosed-set (|x)
{proof)

lemma downset-set-ext: id < ||
(proof)

lemma downset-set-iso: mono ||
(proof)

lemma downset-set-idem [simp]: | o | = |
{proof)

lemma downset-faithful: oz C ly = z < y

(proof)

lemma downset-iso-iff: (Jz C ly) = (z < y)
{proof )

The following proof uses the Axiom of Choice.

lemma downset-directed-downset-var [simpl: directed (1 X) = directed X
(proof)

lemma downset-directed-downset [simp|: directed o |} = directed
{proof)

lemma directed-downset-ideals: directed (1X) = (UX € ideals)
{proof)

lemma downclosed-Fiz: downclosed-set X = (X = X)
{proof)

end

lemma downset-iso: mono (}::'a::order = 'a set)
(proof)

lemma mono-downclosed:
fixes [ :: 'a::order = 'b::order
assumes mono f
shows V Y. downclosed-set Y — downclosed-set (f —¢Y)

{proof)

lemma
fixes [ :: 'a::order = 'b::order
assumes mono f
shows V Y. downclosed-set X — downclosed-set (f * X)

{proof)

20



lemma downclosed-mono:
fixes [ :: 'a::order = 'b::order
assumes V Y. downclosed-set Y — downclosed-set (f —Y)
shows mono f

(proof)

lemma mono-downclosed-iff: mono f = (VY. downclosed-set Y — downclosed-set
(f="Y))
(proof )

context order
begin

lemma downset-inj: inj |

(proof)

lemma (X C V)= (X C|Y)
{proof)

end

context lattice
begin

lemma lat-ideals: X € ideals = (X # {} AN X € downsets N Vz € X.V y € X.
rUye X))
{proof)

end

context bounded-lattice
begin

lemma bot-ideal: X € ideals — 1 € X
(proof)

end

context complete-lattice
begin

lemma Sup-downset-id [simp]: Sup o | = id
(proof)

lemma downset-Sup-id: id < | o Sup

(proof)

lemma Inf-Sup-var: | |[(Nz € X. lz) =[]X

21



{proof)

lemma Inf-pres-downset-var: (z € X. lz) = L([]X)
{proof)

end

4.3 Dual Properties of Orderings
context ord-with-dual

begin

lemma filtered-nonempty: filtered X — X # {}
(proof )

lemma filtered-lb: filtered X — (Vz € X.Vye X. 3z X. z2<z AN z<y)
(proof )

lemma upset-set-prop-var: X = (Jz € X. Tz)
(proof)

lemma upset-set-prop: f = Union o () 1
(proof )

lemma upset-prop: tx = {y. = < y}
(proof )

lemma upset-prop2: ¢ < y = y € T
(proof )

lemma filters-upsets: X € filters = X € upsets
(proof)

lemma filters-filtered: X € filters = filtered X
(proof )

end

context preorder-with-dual
begin

lemma filtered-prop: X # {} = Ve e X.Vye X. 3z X. 2<z AN 2<y) =
filtered X

{proof)

lemma filtered-alt: filtered X = (X #{} NVz e X.Vye X.Fz€e X. 2z <z A
2 < y))
(proof)

22



lemma up-set-prop-var2: r € X = < y=y € X
(proof)

lemma upclosed-set-iff: upclosed-set X = Vz € X. Vy. 2 <y — y € X)
(proof )

lemma upclosed-upset-set: upclosed-set (1X)
(proof )

lemma upclosed-upset: upclosed-set (1)
(proof )

lemma upset-set-ext: id <
{proof)

lemma upset-set-anti: mono f
(proof )

lemma up-set-idem [simpl: f} o f} = 9
{proof)

lemma upset-faithful: To C ty —= y < z
(proof)

lemma upset-anti-iff: (Ty C Tz) = (z < y)
(proof )

lemma upset-filtered-upset [simp]: filtered o f = filtered
(proof )

lemma filtered-upset-filters: filtered (1X) = (X € filters)
(proof )

lemma upclosed-Fix: upclosed-set X = (X = X)
(proof )

end

lemma upset-anti: antimono (1::'a::order-with-dual = 'a set)
{proof)

lemma mono-upclosed:
fixes [ :: 'a::order-with-dual = 'b::order-with-dual
assumes mono f
shows V Y. upclosed-set Y — upclosed-set (f —¢Y)

{proof)

lemma mono-upclosed:
fixes [ :: 'a::order-with-dual = 'b::order-with-dual

23



assumes mono f
shows V Y. upclosed-set X — upclosed-set (f < X)

{proof)

lemma upclosed-mono:
fixes [ :: 'a::order-with-dual = 'b::order-with-dual
assumes V Y. upclosed-set Y — upclosed-set (f —°Y)
shows mono f

(proof )
lemma mono-upclosed-iff:
fixes [ :: 'a::order-with-dual = 'b::order-with-dual
shows mono f = (VY. upclosed-set Y — upclosed-set (f —Y))
(proof )

context order-with-dual
begin

lemma upset-inj: inj 1
(proof )

lemma (X C V)= (Y C X)
{proof)

end

context lattice-with-dual
begin

lemma lat-filters: X € filters = (X #{} AN X € upsets A\ Vz € X.V ye X. z 1N
y € X))
(proof )

end

context bounded-lattice-with-dual
begin

lemma top-filter: X € filters —= T € X
(proof)

end

context complete-lattice-with-dual
begin

lemma Inf-upset-id [simp]: Inf o 1 = id
(proof)

24



lemma upset-Inf-id: id < 1 o Inf
(proof)

lemma Sup-Inf-var: [Nz € X. tz) =X
(proof)

lemma Sup-dual-upset-var: (N z € X. tz) = (| X)
{proof)

end

4.4 Properties of Complete Lattices
definition Inf-closed-set X = (VY C X.[]Y € X)

definition Sup-closed-set X = (VY C X. | |Y € X)
definition inf-closed-set X = (Vz € X.Vye X. 2z My € X)

definition sup-closed-set X = (Vx € X.Vye X. z Uy € X)

The following facts about complete lattices add to those in the Isabelle
libraries.

context complete-lattice

begin

The translation between sup and Sup could be improved. The sup-theorems
should be direct consequences of Sup-ones. In addition, duality between sup
and inf is currently not exploited.
lemma sup-Sup: z U y = | |{z,y}

(proof )

lemma inf-Inf: © Ny = []{z,y}
(proof )

The next two lemmas are about Sups and Infs of indexed families. These
are interesting for iterations and fixpoints.
lemma fSup-unfold: (f::nat = ‘a) 0 U (| |n. f (Suc n)) = (| |n. fn)

(proof )

lemma fInf-unfold: (f::nat = ‘a) 0 11 ([|n. f (Suc n)) = ([n. fn)
{proof)

end

lemma Sup-sup-closed: Sup-closed-set (X::'a::complete-lattice set) = sup-closed-set
X

{proof)

25



lemma Inf-inf-closed: Inf-closed-set (X::'a::complete-lattice set) = inf-closed-set
X

{proof)

4.5 Sup- and Inf-Preservation
Next, important notation for morphism between posets and lattices is intro-
duced: sup-preservation, inf-preservation and related properties.
abbreviation Sup-pres :: (‘a::Sup = 'b::Sup) = bool where

Sup-pres f = f o Sup = Sup o () f

abbreviation Inf-pres :: (‘a::Inf = 'b::Inf) = bool where

Inf-pres f = f o Inf = Inf o () f

abbreviation sup-pres :: (‘a::sup = 'b::sup) = bool where
sup-pres f = (Vo y. f (zUy) = fo U fy)

abbreviation inf-pres :: (‘a::inf = 'b::inf) = bool where
inf-pres f = NVay. f(zNy)=fzNfy)

abbreviation bot-pres :: (‘a::bot = 'b::bot) = bool where
bot-pres f = f L = L

abbreviation top-pres :: (‘a::top = 'b::top) = bool where
top-pres f =f T =T

abbreviation Sup-dual :: (‘a::Sup = 'b::Inf) = bool where
Sup-dual f = f o Sup = Inf o (9 f

abbreviation Inf-dual :: (‘a::Inf = 'b::Sup) = bool where
Inf-dual f = f o Inf = Sup o () f

abbreviation sup-dual :: (‘a::sup = 'b::inf) = bool where
sup-dual f = Vzy. f(xUy)=fzNfy)

abbreviation inf-dual :: ('a::inf = 'b::sup) = bool where
inf-dual f = Vzy. f(zNy) =fzU fy)

abbreviation bot-dual :: (‘a::bot = 'b::top) = bool where
bot-dual f =f L =T

abbreviation top-dual :: (‘a::top = 'b::bot) = bool where
top-dual f = f T = L

Inf-preservation and sup-preservation relate with duality.

lemma Inf-pres-map-dual-var:
Inf-pres f = Sup-pres (Or f)

26



for f :: 'a::complete-lattice-with-dual = 'b::complete-lattice-with-dual
(proof)

lemma Inf-pres-map-dual: Inf-pres = Sup-pres o (Op::('a::complete-lattice-with-dual
= 'b::complete-lattice-with-dual) = 'a = 'b)
(proof)

lemma Sup-pres-map-dual-var:
fixes [ :: 'a::complete-lattice-with-dual = 'b::complete-lattice-with-dual
shows Sup-pres f = Inf-pres (Of f)
(proof)

lemma Sup-pres-map-dual: Sup-pres = Inf-pres o (Op::('a::complete-lattice-with-dual
= 'b::complete-lattice-with-dual) = 'a = 'b)

(proof)

The following lemmas relate isotonicity of functions between complete lat-
tices with weak (left) preservation properties of sups and infs.

lemma fun-isol: mono f = mono ((o) f)
{proof)

lemma fun-isor: mono f = mono (A\z. z o f)
(proof)

lemma Sup-sup-pres:
fixes f :: 'a::complete-lattice = 'b::complete-lattice
shows Sup-pres f = sup-pres f

(proof)

lemma Inf-inf-pres:
fixes f :: 'a::complete-lattice = 'b::complete-lattice
showsInf-pres f = inf-pres f
(proof)

lemma Sup-bot-pres:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows Sup-pres f = bot-pres f
(proof )

lemma Inf-top-pres:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows Inf-pres f = top-pres f
(proof )

lemma Sup-sup-dual:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows Sup-dual f = sup-dual f
(proof )

27



lemma Inf-inf-dual:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows Inf-dual f = inf-dual f
(proof )

lemma Sup-bot-dual:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows Sup-dual f = bot-dual f
(proof )

lemma Inf-top-dual:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows Inf-dual f = top-dual f
(proof )

However, Inf-preservation does not imply top-preservation and Sup-preservation
does not imply bottom-preservation.

lemma
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows Sup-pres f = top-pres f
(proof )

lemma
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows Inf-pres f = bot-pres f

(proof)

context complete-lattice
begin

lemma iso-Inf-subdistl:
fixes [ :: 'a = 'b::complete-lattice
shows mono f =>f o Inf < Inf o () f
(proof)

lemma iso-Sup-supdistl:
fixes [ :: 'a = 'b::complete-lattice
shows mono f = Sup o () f < f o Sup
(proof )

lemma Inf-subdistl-iso:
fixes [ :: 'a = 'b::complete-lattice
shows f o Inf < Inf o () f = mono f

{proof)

lemma Sup-supdistl-iso:
fixes f :: 'a = 'b::complete-lattice
shows Sup o (‘) f < f o Sup = mono f
(proof)

28



lemma supdistl-iso:
fixes [ :: 'a = 'b::complete-lattice
shows (Sup o () f < f o Sup) = mono f
(proof )

lemma subdistl-iso:
fixes [ :: 'a = 'b::complete-lattice
shows (f o Inf < Inf o (9) f) = mono f
(proof )

end

lemma ord-iso-Inf-pres:
fixes f :: 'a::complete-lattice = 'b::complete-lattice
shows ord-iso f = Inf o () f = f o Inf

(proof)

lemma ord-iso-Sup-pres:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows ord-iso f = Sup o () f = f o Sup
(proof)

Right preservation of sups and infs is trivial.

lemma fSup-distr: Sup-pres (Az. z o f)
(proof )

lemma fSup-distr-var: | |F o g= (| |f € F. fog)
(proof)

lemma fInf-distr: Inf-pres (Az. x o f)
(proof )

lemma fInf-distr-var: [|F o g= ([|f € F. fog)
{proof)

The next set of lemma revisits the preservation properties in the function
space.
lemma fSup-subdistl:
assumes mono (f::’a::complete-lattice = 'b::complete-lattice)
shows Sup o (9 ((¢) ) < (o) f o Sup
(proof)
lemma fSup-subdisti-var:
fixes f :: 'a::complete-lattice = 'b::complete-lattice
shows mono f = (| Jge€ G. fog) <follG
(proof)

lemma fInf-subdistl:

29



fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows mono f = (o) f o Inf < Inf o () ((o) f)
(proof)

lemma fInf-subdistl-var:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows mono f = fo[|G < ([lg€ G. fog)
{proof )

lemma fSup-distl: Sup-pres f = Sup-pres ((o) f)
(proof )

lemma fSup-distl-var: Sup-pres f = fo | |G =(]g € G. foyg)
(proof)

lemma fInf-distl: Inf-pres {f = Inf-pres ((o) f)
{proof)

lemma fInf-distl-var: Inf-pres f = fo[|G = (lg € G. f o g)
(proof)

Downsets preserve infs whereas upsets preserve sups.

lemma Inf-pres-downset: Inf-pres (|::'a::complete-lattice-with-dual = 'a set)
(proof)

lemma Sup-dual-upset: Sup-dual (1::'a::complete-lattice-with-dual = 'a set)

{proof)

Images of Sup-morphisms are closed under Sups and images of Inf-morphisms
are closed under Infs.

lemma Sup-pres-Sup-closed: Sup-pres f = Sup-closed-set (range f)
(proof)
lemma Inf-pres-Inf-closed: Inf-pres f = Inf-closed-set (range f)

{proof)

It is well known that functions into complete lattices form complete lattices.
Here, such results are shown for the subclasses of isotone functions, where
additional closure conditions must be respected.

typedef (overloaded) ‘a iso = {f::'a::order = 'a::order. mono f}
{proof)

setup-lifting type-definition-iso

instantiation iso :: (complete-lattice) complete-lattice
begin

lift-definition Inf-iso :: ’‘a::complete-lattice iso set = 'a iso is Sup

30



{proof)

lift-definition Sup-iso :: ‘a::complete-lattice iso set = 'a iso is Inf
(proof )

lift-definition bot-iso :: 'a::complete-lattice iso is T
(proof )

lift-definition sup-iso :: 'a::complete-lattice iso = 'a iso = 'a iso is inf
(proof )

lift-definition top-iso :: 'a::complete-lattice iso is L

{proof)

lift-definition inf-iso :: ‘a::complete-lattice iso = 'a iso = 'a iso is sup
(proof)

lift-definition less-eg-iso :: 'a::complete-lattice iso = 'a iso = bool is (>)(proof)
lift-definition less-iso :: ‘a::complete-lattice iso = 'a iso = bool is (>){proof)

instance
(proof )

end

Duality has been baked into this result because of its relevance for predicate
transformers. A proof where Sups are mapped to Sups and Infs to Infs
is certainly possible, but two instantiation of the same type and the same
classes are unfortunately impossible. Interpretations could be used instead.
A corresponding result for Inf-preseving functions and Sup-lattices, is proved
in components on transformers, as more advanced properties about Inf-
preserving functions are needed.

4.6 Alternative Definitions for Complete Boolean Algebras

The current definitions of complete boolean algebras deviates from that in
most textbooks in that a distributive law with infinite sups and infinite infs
is used. There are interesting applications, for instance in topology, where
weaker laws are needed — for instance for frames and locales.

class complete-heyting-algebra = complete-lattice +
assumes ch-dist: c M| | Y = (Jy € Y. 2 M y)

Complete Heyting algebras are also known as frames or locales (they differ
with respect to their morphisms).

class complete-co-heyting-algebra = complete-lattice +
assumes co-ch-dist: t U[|Y = ([lye Y. 2 U y)

31



class complete-boolean-algebra-alt = complete-lattice + boolean-algebra
instance set :: (type) complete-boolean-algebra-alt(proof)

context complete-boolean-algebra-alt
begin

subclass complete-heyting-algebra

{(proof)

subclass complete-co-heyting-algebra
(proof)

lemma de-morganl: —(| | X) = ([|z € X. —x)
(proof)

lemma de-morgan2: —([1X) = (| Jz € X. —x)
{proof)

end

class complete-boolean-algebra-alt-with-dual = complete-lattice-with-dual + com-
plete-boolean-algebra-alt

instantiation set :: (type) complete-boolean-algebra-alt-with-dual
begin

definition dual-set :: 'a set = 'a set where
dual-set = uminus

instance
(proof )

end

context complete-boolean-algebra-alt
begin

sublocale cba-dual: complete-boolean-algebra-alt-with-dual - - - - - - - - UMinus - -
(proof )

end

4.7 Atomic Boolean Algebras

Next, atomic boolean algebras are defined.

context bounded-lattice
begin

32



Atoms are covers of bottom.
definition atom z = (z # L A -(Jy. L <y Ay < 1))
definition atom-map x = {y. atom y A y < z}

lemma atom-map-def-var: atom-map x = Lz N Collect atom
(proof)

lemma atom-map-atoms: | (range atom-map) = Collect atom
{proof)

end

typedef (overloaded) ‘a atoms = range (atom-map::'a::bounded-lattice = 'a set)
(proof)

setup-lifting type-definition-atoms

definition at-map :: 'a::bounded-lattice = 'a atoms where
at-map = Abs-atoms o atom-map

class atomic-boolean-algebra = boolean-algebra +
assumes atomicity: © # L = (Jy. atom y A y < x)

class complete-atomic-boolean-algebra = complete-lattice + atomic-boolean-algebra
begin
subclass complete-boolean-algebra-alt(proof)

end
Here are two equivalent definitions for atoms; first in boolean algebras, and
then in complete boolean algebras.
context boolean-algebra
begin
The following two conditions are taken from Koppelberg’s book [6].
lemma atom-neg: atomx —= z# LA Vyz. 2 <y V< —y)
(proof )

lemma atom-sup: Vy. z < yVae<—y) = Vyz. (e<yVvVae<z)=(a<y
U 2))
(proof )

lemma sup-atom: z # L = Vyz. (2 <yVaz<z)=(x<yUz) = atomz
{proof)

33



lemma atom-sup-iff: atomz = (z # LA NVyz (2 <yVz<z)=(z<ylU2))
{proof)

lemma atom-neg-iff: atomx = (x # LA NVyz. z <y Vz < —y))
(proof)

lemma atom-map-bot-pres: atom-map L = {}
(proof )

lemma atom-map-top-pres: atom-map T = Collect atom
(proof )

end

context complete-boolean-algebra-alt
begin

lemma atom-Sup: N\Y. 2 # L = Vy. 2 <yvae<—y) = (Fye Y.z <y
= (z<UY))
{proof)

lemma Sup-atom: ¢ # L = VY. Bye Y. 2<y) = <|]Y)) = atomz
(proof)

lemma atom-Sup-iff: atomz = (z # LANMY. ByeY.2<y) =< ]Y))
(proof )

end

end

5 Representation Theorems for Orderings and Lat-
tices

theory Representations
imports Order-Lattice-Props

begin

5.1 Representation of Posets

The isomorphism between partial orders and downsets with set inclusion is
well known. It forms the basis of Priestley and Stone duality. I show it not
only for objects, but also order morphisms, hence establish equivalences and
isomorphisms between categories.

typedef (overloaded) ‘a downset = range (}::'a::ord = 'a set)
{proof)

34



setup-lifting type-definition-downset

The map ds yields the isomorphism between the set and the powerset level
if its range is restricted to downsets.

definition ds :: ‘a::0rd = 'a downset where
ds = Abs-downset o |

In a complete lattice, its inverse is Sup.

definition SSup :: 'a::complete-lattice downset = 'a where
SSup = Sup o Rep-downset

lemma ds-SSup-inv: ds o SSup = (id::'a::complete-lattice downset = 'a downset)
(proof)

lemma SSup-ds-inv: SSup o ds = (id::'a::complete-lattice = 'a)
(proof)

instantiation downset :: (ord) order
begin

lift-definition less-eq-downset :: 'a downset = 'a downset = bool is (A X Y.
Rep-downset X C Rep-downset Y) (proof)

lift-definition less-downset :: 'a downset = 'a downset = bool is (AX Y. Rep-downset
X C Rep-downset Y) (proof)

instance
(proof)

end

lemma ds-iso: mono ds
(proof)

lemma ds-faithful: ds ¢ < ds y = = < (y::’a::order)
{proof)

lemma ds-inj: inj (ds::'a::order = ’a downset)
(proof)

lemma ds-surj: surj ds
(proof)

lemma ds-bij: bij (ds::'a::order = 'a downset)
(proof)

lemma ds-ord-iso: ord-iso ds
(proof)

35



The morphishms between orderings and downsets are isotone functions. One
can define functors mapping back and forth between these.

definition map-ds :: (‘a::complete-lattice = 'b::complete-lattice) = (‘a downset =
‘b downset) where
map-ds f = ds o f o SSup

This definition is actually contrived. We have shown that a function f be-
tween posets P and Q is isotone if and only if the inverse image of f maps
downclosed sets in Q to downclosed sets in P. There is the following duality:
ds is a natural transformation between the identity functor and the preim-
age functor as a contravariant functor from P to Q. Hence orderings with
isotone maps and downsets with downset-preserving maps are dual, which
is a first step towards Stone duality. I don’t see a way of proving this with
Isabelle, as the types of the preimage of f are the wrong way and I don’t see
how I could capture opposition with what I have.
lemma map-ds-prop:

fixes [ :: 'a::complete-lattice = 'b::complete-lattice

shows map-ds f o ds = ds o f

(proof)

lemma map-ds-prop2:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows map-ds f o ds = ds o id f
(proof)

This is part of showing that map-ds is naturally isomorphic to the identity
functor, ds being the natural isomorphism.

definition map-SSup :: (‘a downset = 'b downset) = (‘a::complete-lattice =
'b::complete-lattice) where
map-SSup F' = SSup o F o ds

lemma map-ds-iso-pres:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows mono f = mono (map-ds f)
(proof )

lemma map-SSup-iso-pres:
fixes F :: 'a::complete-lattice downset = 'b::complete-lattice downset
shows mono F = mono (map-SSup F)

(proof )
lemma map-SSup-prop:
fixes F :: 'a::complete-lattice downset = 'b::complete-lattice downset

shows ds o map-SSup F = F o ds
(proof)

lemma map-SSup-prop2:

36



fixes F' :: 'a::complete-lattice downset = 'b::complete-lattice downset
shows ds o map-SSup F = id F o ds
(proof)

lemma map-ds-funcl: map-ds id = (id::'a::complete-lattice downset= 'a downset)
(proof)

lemma map-ds-func2:
fixes g :: 'a::complete-lattice = 'b::complete-lattice
shows map-ds (f o g) = map-ds f o map-ds g
(proof )

lemma map-SSup-funcl: map-SSup (id::'a::complete-lattice downset= 'a downset)
=1id
(proof )

lemma map-SSup-func2:
fixes F :: 'c::complete-lattice downset = 'b::complete-lattice downset
and G :: 'a::complete-lattice downset = ‘¢ downset
shows map-SSup (F o G) = map-SSup F o map-SSup G
(proof )

lemma map-SSup-map-ds-inv: map-SSup o map-ds = (id::('a::complete-lattice =
"b::complete-lattice) = ('a = 'b))
(proof )

lemma map-ds-map-SSup-inv: map-ds o map-SSup = (id::('a::complete-lattice downset
= 'b::complete-lattice downset) = ('a downset = 'b downset))
(proof )

lemma inj-map-ds: inj (map-ds::('a::complete-lattice = 'b::complete-lattice) = ('a

downset = 'b downset))

{proof)

lemma inj-map-SSup: inj (map-SSup::(’a::complete-lattice downset = 'b::complete-lattice
downset) = (‘a = 'b))
(proof )

lemma map-ds-map-SSup-iff:
fixes g :: ‘a::complete-lattice = 'b::complete-lattice
shows (f = map-ds g) = (map-SSup f = g)
(proof )

This gives an isomorphism between categories.

lemma surj-map-ds: surj (map-ds::('a::complete-lattice = 'b::complete-lattice) =
("a downset = b downset))
(proof)

lemma surj-map-SSup: surj (map-SSup::('a::complete-lattice-with-dual downset =

37



'b::complete-lattice-with-dual downset) = ('a = 'b))
{proof)

There is of course a dual result for upsets with the reverse inclusion ordering.
Once again, it seems impossible to capture the "real" duality that uses the
inverse image functor.

typedef (overloaded) ‘a upset = range (1::'a::ord = 'a set)
{proof)
setup-lifting type-definition-upset

definition us :: ‘a::ord = 'a upset where
us = Abs-upset o T

definition IInf :: 'a::complete-lattice upset = 'a where
IInf = Inf o Rep-upset

lemma us-ds: us = Abs-upset o () O o Rep-downset o ds o (0::'a::ord-with-dual
= a)
(proof)
lemma IInf-SSup: IInf = 9 o SSup o Abs-downset o (¥) (9::'a::complete-lattice-with-dual
= 'a) o Rep-upset

(proof)

lemma us-IInf-inv: us o IInf = (id::’a::complete-lattice-with-dual upset = 'a up-
set)
(proof )

lemma IInf-us-inv: IInf o us = (id::'a::complete-lattice-with-dual = 'a)
{proof)

instantiation upset :: (ord) order
begin

lift-definition less-eg-upset :: 'a upset = 'a upset = bool is (AX Y. Rep-upset X
D Rep-upset Y) (proof)

lift-definition less-upset :: ‘a upset = 'a upset = bool is (AX Y. Rep-upset X D
Rep-upset Y') (proof)

instance
(proof )

end

lemma us-iso: z < y = us x < us (y::'a::order-with-dual)
(proof)

38



lemma us-faithful: us v < us y = = < (y::'a::order-with-dual)
{proof )

lemma us-ing: inj (us::’a::order-with-dual = 'a upset)
(proof )

lemma us-surj: surj (us::'a::order-with-dual = 'a upset)
(proof )

lemma us-bij: bij (us::’a::order-with-dual = 'a upset)
(proof)

lemma us-ord-iso: ord-iso (us::'a::order-with-dual = 'a upset)
{proof)

definition map-us :: ('a::complete-lattice = 'b::complete-lattice) = ('a upset = b
upset) where
map-us f = us o f o IInf

lemma map-us-prop: map-us f o (us::’a::complete-lattice-with-dual = 'a upset) =
us o id f
(proof )

definition map-IInf :: (a upset = 'b upset) = ('a::complete-lattice = 'b::complete-lattice)
where
map-IInf F = IInf o F o us

lemma map-IInf-prop: (us::'a::complete-lattice-with-dual = 'a upset) o map-IInf
F=1idF ous
(proof)

lemma map-us-funcl: map-us id = (id::'a::complete-lattice-with-dual upset = 'a
upset)
(proof)

lemma map-us-func2:
fixes f :: 'c::complete-lattice-with-dual = 'b::complete-lattice-with-dual
and g :: 'a::complete-lattice-with-dual = 'c
shows map-us (f o g) = map-us f o map-us g

{proof)

lemma map-IInf-funcl: map-IInf id = (id::'a::complete-lattice-with-dual = 'a)
(proof)

lemma map-IInf-func?:

fixes F :: 'c::complete-lattice-with-dual upset = 'b::complete-lattice-with-dual up-
set

and G :: 'a:complete-lattice-with-dual upset = 'c upset

shows map-IInf (F o G) = map-IInf F o map-IInf G

39



{proof)

lemma map-IInf-map-us-inv: map-Inf o map-us = (id::('a:: complete-lattice-with-dual
= 'b::complete-lattice-with-dual) = (‘a = 'b))
(proof )

lemma map-us-map-IInf-inv: map-us o map-Inf = (id::('a::complete-lattice-with-dual
upset = 'b::complete-lattice-with-dual upset) = (‘a upset = 'b upset))
(proof)

lemma inj-map-us: inj (map-us::('a::complete-lattice-with-dual = 'b::complete-lattice-with-dual)
= ('a upset = 'b upset))
(proof)

lemma inj-map-IInf: inj (map-IInf::('a::complete-lattice-with-dual upset = 'b::complete-lattice-with-dual
upset) = (‘a = 'b))
(proof)

lemma map-us-map-IInf-iff:
fixes g :: 'a::complete-lattice-with-dual = 'b::complete-lattice-with-dual
shows (f = map-us g) = (map-IInf f = g)
(proof)

lemma map-us-mono-pres:
fixes [ :: 'a::complete-lattice-with-dual = 'b::complete-lattice-with-dual
shows mono f = mono (map-us f)
(proof)

lemma map-IInf-mono-pres:

fixes F' :: 'a::complete-lattice-with-dual upset = 'b::complete-lattice-with-dual up-
set

shows mono F = mono (map-IInf F)

{proof)

lemma surj-map-us: surj (map-us::('a::complete-lattice-with-dual = 'b::complete-lattice-with-dual)
= ('a upset = 'b upset))
(proof )

lemma surj-map-IInf: surj (map-IInf::('a::complete-lattice-with-dual upset = 'b::complete-lattice-with-dual
upset) = (‘a = b))
(proof )

Hence we have again an isomorphism — or rather equivalence — between
categories. Here, however, duality is not consistently picked up.

5.2 Stone’s Theorem in the Presence of Atoms

Atom-map is a boolean algebra morphism.

context boolean-algebra

40



begin

lemma atom-map-compl-pres: atom-map (—z) = Collect atom — atom-map x

(proof)

lemma atom-map-sup-pres: atom-map (z U y) = atom-map z U atom-map y
(proof)

lemma atom-map-inf-pres: atom-map (z M y) = atom-map x N atom-map y
(proof )

lemma atom-map-minus-pres: atom-map (x — y) = atom-map x — atom-map y
{proof )

end

The homomorphic images of boolean algebras under atom-map are boolean
algebras — in fact powerset boolean algebras.

instantiation atoms :: (boolean-algebra) boolean-algebra
begin

lift-definition minus-atoms :: 'a atoms = 'a atoms = ’a atoms is Az y. Abs-atoms
(Rep-atoms © — Rep-atoms y){proof)

lift-definition uminus-atoms :: 'a atoms = 'a atoms is Az. Abs-atoms (Collect
atom — Rep-atoms x){proof)

lift-definition bot-atoms :: 'a atoms is Abs-atoms {}(proof)

lift-definition sup-atoms :: 'a atoms = 'a atoms = 'a atoms is Az y. Abs-atoms
(Rep-atoms x U Rep-atoms y){proof)

lift-definition top-atoms :: 'a atoms is Abs-atoms (Collect atom){proof)

lift-definition inf-atoms :: 'a atoms = 'a atoms = 'a atoms is Az y. Abs-atoms
(Rep-atoms x N Rep-atoms y){proof )

lift-definition less-eg-atoms :: 'a atoms = 'a atoms = bool is (A\z y. Rep-atoms
x C Rep-atoms y)(proof)

lift-definition less-atoms :: ‘a atoms = 'a atoms = bool is (Az y. Rep-atoms x C
Rep-atoms y){proof)

instance
(proof )

end

The homomorphism atom-map can then be restricted in its output type to

41



the powerset boolean algebra.
lemma at-map-bot-pres: at-map 1. = L

(proof)

lemma at-map-top-pres: at-map T = T
(proof)

lemma at-map-compl-pres: at-map o uminus = uminus o at-map

(proof)

lemma at-map-sup-pres: at-map (z U y) = at-map z U at-map y

{proof)

lemma at-map-inf-pres: at-map (x M y) = at-map x M at-map y
{proof )

lemma at-map-minus-pres: at-map (z — y) = at-map r — at-map y
(proof)

context atomic-boolean-algebra
begin

In atomic boolean algebras, atom-map is an embedding that maps atoms of
the boolean algebra to those of the powerset boolean algebra. Analogous
properties hold for at-map.

lemma inj-atom-map: inj atom-map

(proof)

lemma atom-map-atom-pres: atom © = atom-map r = {z}
{proof )

lemma atom-map-atom-pres2: atom x = atom (atom-map x)

(proof)

end

lemma inj-at-map: inj (at-map::’a::atomic-boolean-algebra = 'a atoms)
(proof )

lemma at-map-atom-pres: atom (z::'a::atomic-boolean-algebra) = at-map = =
Abs-atoms {z}

(proof)
lemma at-map-atom-pres2: atom (z::'a::atomic-boolean-algebra) = atom (at-map

z)
{proof)

Homomorphic images of atomic boolean algebras under atom-map are there-

42



fore atomic (rather obviously).
instance atoms :: (atomic-boolean-algebra) atomic-boolean-algebra

(proof)

context complete-boolean-algebra-alt
begin

In complete boolean algebras, atom-map is surjective; more precisely it is
the left inverse of Sup, at least for sets of atoms. Below, this statement is
made more explicit for at-map.

lemma surj-atom-map: Y C Collect atom = Y = atom-map (|| Y)
(proof)

In this setting, atom-map is a complete boolean algebra morphism.
lemma atom-map-Sup-pres: atom-map (| |X) = (Uz € X. atom-map )
(proof)

lemma atom-map-Sup-pres-var: atom-map o Sup = Sup o (‘) atom-map

{proof)

For Inf-preservation, it is important that Infs are restricted to homomorphic
images; hence they need to be pushed into the set of all atoms.

lemma atom-map-Inf-pres: atom-map ([ 1 X) = Collect atom N (= € X. atom-map
z)
(proof)

end

It follows that homomorphic images of complete boolean algebras under
atom-map form complete boolean algebras.

instantiation atoms :: (complete-boolean-algebra-alt) complete-boolean-algebra-alt
begin

lift-definition Inf-atoms :: 'a::complete-boolean-algebra-alt atoms set = 'a::complete-boolean-algebra-alt
atoms is AX. Abs-atoms (Collect atom N Inter ((*) Rep-atoms X))(proof)

lift-definition Sup-atoms :: 'a::complete-boolean-algebra-alt atoms set = 'a::complete-boolean-algebra-alt
atoms is AX. Abs-atoms (Union (() Rep-atoms X))(proof)

instance
(proof )

end

Once more, properties proved above can now be restricted to at-map.

lemma surj-at-map-var: at-map o Sup o Rep-atoms = (id::'a::complete-boolean-algebra-alt
atoms = 'a atoms)

43



{proof)

lemma surj-at-map: surj (at-map::’a::complete-boolean-algebra-alt = 'a atoms)
(proof )

lemma at-map-Sup-pres: at-map o Sup = Sup o () (at-map::'a::complete-boolean-algebra-alt
= 'a atoms)
(proof )

lemma at-map-Sup-pres-var: at-map (| | X) = (|| (2::'a::complete-boolean-algebra-alt)
€ X. (at-map x))
{proof )

lemma at-map-Inf-pres: at-map ([ X) = Abs-atoms (Collect atom M ([z € X.
(Rep-atoms (at-map (x::'a::complete-boolean-algebra-alt)))))
{proof)

lemma at-map-Inf-pres-var: at-map o Inf = Inf o () (at-map::'a::complete-boolean-algebra-alt
= 'a atoms)
(proof )

Finally, on complete atomic boolean algebras (CABAs), at-map is an iso-
morphism, that is, a bijection that preserves the complete boolean algebra
operations. Thus every CABA is isomorphic to a powerset boolean algebra
and every powerset boolean algebra is a CABA. The bijective pair is given
by at-map and Sup (defined on the powerset algebra). This theorem is a
little version of Stone’s theorem. In the general case, ultrafilters play the
role of atoms.

lemma Sup o atom-map = (id::'a::complete-atomic-boolean-algebra = 'a)
(proof)

lemma inj-at-map-var: Sup o Rep-atoms o at-map = (id ::'a::complete-atomic-boolean-algebra
= 'a)

{proof)

lemma bij-at-map: bij (at-map::’a::complete-atomic-boolean-algebra = 'a atoms)
(proof )

instance atoms :: (complete-atomic-boolean-algebra) complete-atomic-boolean-algebra{proof)

A full consideration of Stone duality is left for future work.

end

6 Galois Connections

theory Galois-Connections
imports Order-Lattice-Props

44



begin

6.1 Definitions and Basic Properties

The approach follows the Compendium of Continuous Lattices [3], without

attempting completeness. First, left and right adjoints of a Galois connection

are defined.

definition adj :: (‘a::ord = 'b:iord) = ('b = 'a) = bool (infixl 4> 70) where
(fH9)=Vzy (fz<y =(@<gy)

definition ladj (g::'a::Inf = 'biiord) = (Az. [{y. z < g y})
definition radj (f::'a::Sup = 'brord) = (Ay. [ {z. fz < y})

lemma ladj-radj-dual:
fixes [ :: 'a::complete-lattice-with-dual = 'b::ord-with-dual
shows ladj fz = 0 (radj (OF f) (0 x))

(proof)

lemma radj-ladj-dual:
fixes [ :: 'a::complete-lattice-with-dual = 'b::ord-with-dual
shows radj f x = 0 (ladj (OF f) (0 x))
(proof )

lemma ladj-prop:
fixes g :: 'b::Inf = 'a::ord-with-dual
shows ladj g = Inf o (=) go t
(proof )

lemma radj-prop:
fixes [ :: 'b::Sup = ‘a::ord
shows radj f = Sup o (—) f o]
(proof )

The first set of properties holds without any sort assumptions.

lemma adj-isol: f 4 g = mono f
(proof)

lemma adj-iso2: f 4 g = mono g
(proof)

lemma adj-comp: f 4 g = adjhk = (f o h) 4 (ko g)
(proof )

lemma adj-dual:
fixes [ :: 'a::ord-with-dual = 'b::ord-with-dual
shows f 4 g = (9r g) 7 (9F f)
(proof )

45



6.2 Properties for (Pre)Orders

The next set of properties holds in preorders or orders.

lemma adj-cancell:
fixes f :: 'a::preorder = 'b::ord
shows f 1g= fog<id
(proof )

lemma adj-cancel?:
fixes [ :: 'a::ord = 'b::preorder
shows f 1g=id < go f
(proof )

lemma adj-prop:
fixes [ :: 'a::preorder ='a
shows f 1g=—= fog<gof
(proof )

lemma adj-cancel-eq!:
fixes [ :: 'a:preorder = 'b::order
shows f 1g= fogof=f
(proof )

lemma adj-cancel-eq2:
fixes f :: 'a::order = 'b::preorder
shows f 1g=—= gofog=yg
(proof)

lemma adj-idem1:
fixes [ :: 'a::preorder = 'b:iorder
shows f 4 g = (fog)o(fog)=foyg
(proof )

lemma adj-idem?2:
fixes [ :: 'a::order = 'b::preorder
shows f 4 g = (gof)o(gof)=gof
(proof )

lemma adj-iso3:
fixes [ :: 'a::order = 'b::order
shows f 4 ¢ = mono (f o g)
(proof)

lemma adj-iso4:
fixes [ :: 'a::order = 'b::order
shows f 4 ¢ = mono (g o f)
(proof)

lemma adj-canct:

46



fixes f :: 'a::order = 'b:ord
shows f 4g—= ((feg)z=(fog)y —gz=19gy)
(proof )

lemma adj-canc2:
fixes f :: 'a::ord = 'b::order
shows f g = ((gof)z=(90f)y — fz=1[y)
(proof )

lemma adj-sur-inv:
fixes f :: 'a:preorder = 'b::order
shows f 4 g = ((surj f) = (f o g = id))
{proof )

lemma adj-surj-ing:
fixes [ :: 'a::order = 'b::order
shows [ 4 g = ((surj f) = (inj g))
(proof)

lemma adj-inj-inv:
fixes [ :: 'a:preorder = 'b::order
shows f 4 g = ((inj f) = (g o f = id))
(proof)

lemma adj-inj-surj:
fixes [ :: 'a::order = 'b::order
shows [ 4 g = ((inj f) = (surj g))
(proof)

lemma surj-id-the-inv: surj f = g o f = id = g = the-inv f

(proof)

lemma inj-id-the-inv: inj f = f o g =1id = f = the-inv g
(proof )

6.3 Properties for Complete Lattices

The next laws state that a function between complete lattices preserves infs
if and only if it has a lower adjoint.

lemma radj-Inf-pres:
fixes g :: 'b::complete-lattice = 'a::complete-lattice
shows (3f. f 4 g) = Inf-pres g
(proof)

lemma ladj-Sup-pres:
fixes [ :: 'a::complete-lattice-with-dual = 'b::complete-lattice-with-dual
shows (3 g. f 4 g) = Sup-pres
(proof)

47



lemma radj-adj:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows [ 4 g = g = (radj f)
(proof)

lemma ladj-adj:
fixes g :: 'b::complete-lattice-with-dual = 'a::complete-lattice-with-dual
shows [ 4 g = f = (ladj g)
(proof )

lemma Inf-pres-radj-aux:
fixes g :: 'a::complete-lattice = 'b::complete-lattice
shows Inf-pres ¢ = (ladj g) 4 g

(proof)

lemma Sup-pres-ladj-auz:
fixes [ :: 'a::complete-lattice-with-dual = 'b::complete-lattice-with-dual
shows Sup-pres f = f - (radj f)
(proof)

lemma Inf-pres-radj:
fixes g :: 'b::complete-lattice = 'a::complete-lattice
shows Inf-pres g = (3f. f 4 ¢g)
(proof)

lemma Sup-pres-ladj:
fixes [ :: 'a::complete-lattice-with-dual = 'b::complete-lattice-with-dual
shows Sup-pres f = (3g. f 1 g)
{proof )

lemma Inf-pres-upper-adj-eq:
fixes g :: 'b::complete-lattice = 'a::complete-lattice
shows (Inf-pres g) = (3f. f 4 g)
(proof )

lemma Sup-pres-ladj-eq:
fixes [ :: 'a::complete-lattice-with-dual = 'b::complete-lattice-with-dual
shows (Sup-pres f) = (g. f 1 g)
(proof )

lemma Sup-downset-adj: (Sup::'a::complete-lattice set = 'a) 4 ]
(proof )

lemma Sup-downset-adj-var: (Sup (X::'a::complete-lattice set) < y) = (X C ly)
(proof )

Once again many statements arise by duality, which Isabelle usually picks
up.

end

48



7 Fixpoint Fusion

theory Fizpoint-Fusion
imports Galois-Connections

begin

Least and greatest fixpoint fusion laws for adjoints in a Galois connection,
including some variants, are proved in this section. Again, the laws for least
and greatest fixpoints are duals.

lemma Ifp-Fiz:
fixes [ :: 'a::complete-lattice-with-dual = 'a
shows mono f = Ifp f =[] (Fiz f)
(proof )

lemma gfp-Fiz:
fixes [ :: 'a::complete-lattice-with-dual = 'a
shows mono f = ¢fp f = || (Fiz f)
(proof )

lemma gfp-little-fusion:
fixes [ :: 'a::complete-lattice = 'a
and g :: 'b::complete-lattice = b
assumes mono f
assumes ho f < goh
shows h (gfp f) < gfp g

(proof)

lemma [fp-little-fusion:
fixes [ :: 'a::complete-lattice-with-dual = 'a
and g :: 'b::complete-lattice-with-dual = 'b
assumes mono f
assumes go h < ho f
shows Ifp g < h (Ifp f)

(proof)

lemma gfp-fusion:
fixes f :: 'a::complete-lattice = 'a
and g :: 'b::complete-lattice = b
assumes 3f. f 1 h
and mono f
and mono g
and hof=goh
shows h (gfp f) = gfp g
(proof)

lemma Ifp-fusion:

fixes [ :: 'a::complete-lattice-with-dual = 'a
and g :: 'b::complete-lattice-with-dual = 'b

49



assumes 3f. h - f

and mono f

and mono g

and hof=goh

shows h (Ifp f) = Ifp g
(proof)

lemma gfp-fusion-inf-pres:
fixes f :: 'a::complete-lattice = 'a
and g :: 'b::complete-lattice = 'b
assumes Inf-pres h
and mono f
and mono g
and hof=goh
shows h (gfp f) = gfp g
(proof )

lemma [fp-fusion-sup-pres:
fixes [ :: 'a::complete-lattice-with-dual = 'a
and g :: 'b::complete-lattice-with-dual = 'b
assumes Sup-pres h
and mono f
and mono g
and hof=goh
shows h (ifp f) = lfp g
(proof )

The following facts are usueful for the semantics of isotone predicate trans-
formers. A dual statement for least fixpoints can be proved, but is not
spelled out here.

lemma k-adju:
fixes k :: ‘a::order = 'b::complete-lattice
shows 3FVz. (Fi:'b = 'a = 'b) 4 (\k. ky)
(proof )

lemma k-adju-var: 3F. V.V f::'a::order = 'b::complete-lattice. (Fz < f) = (z <
(Ak. ky) f)
(proof)

lemma gfp-fusion-var:
fixes F :: (‘a::order = 'b::complete-lattice) = 'a = 'b
and g:: b= "b
assumes mono F'
and mono g
andVh. Fhz =g (hz)
shows gfp Fz = gfp g
(proof)

This time, Isabelle is picking up dualities rather inconsistently.

50



end

8 Closure and Co-Closure Operators

theory Closure-Operators
imports Galois-Connections

begin

8.1 Closure Operators

Closure and coclosure operators in orders and complete lattices are defined
in this section, and some basic properties are proved. Isabelle infers the
appropriate types. Facts are taken mainly from the Compendium of Con-
tinuous Lattices [3] and Rosenthal’s book on quantales [10].

definition clop :: (‘a::order = 'a) = bool where
clop f = (id < f A mono f A f o f < f)

lemma clop-extensive: clop f = id < f
(proof)

lemma clop-extensive-var: clop f = x < fz
(proof)

lemma clop-iso: clop f = mono f
(proof)

lemma clop-iso-var: clop f —= z < y= fz < fy
(proof )

lemma clop-idem: clop f = fo f=f

{proof)

lemma clop-Fiz-range: clop f = (Fiz f = range f)

(proof)

lemma clop-idem-var: clop f = f (fz) = f=z
(proof)

lemma clop-Inf-closed-var:
fixes [ :: 'a::complete-lattice = 'a
shows clop f = foInfo () f =1Info (9 f
(proof)

lemma clop-top:
fixes [ :: 'a::complete-lattice = 'a
shows clop f = f T =T
(proof)

o1



lemma clop (f::'a::complete-lattice = 'a) = f (Jz € X. fz) = (| Uz € X. f2)
{proof)

lemma clop (f::'a::complete-lattice = 'a) = f (fz U fy)=fzUfy
(proof )

lemma clop (f::'a::complete-lattice = 'a) = f L = L
(proof)

lemma clop (f::'a set = 'a set) = f (| Jz € X. fz) = (| z € X. fz)
(proof)

lemma clop (f::'a set = 'a set) = f (fa U fy)=fzUfy
(proof)

lemma clop (f::'a set = ‘a set) = f L =1
{proof)

lemma clop-closure: clop f = (z € range f) = (fz = z)
(proof )

lemma clop-closure-set: clop f = range f = Fix f
(proof)

lemma clop-closure-prop: (clop::('a::complete-lattice-with-dual= 'a) = bool) (Inf
o1)
(proof)

lemma clop-closure-prop-var: clop (Az::'a::complete-lattice. [ 1{y. z < y})

(proof)

lemma clop-alt: (clop f) = Vzy. 2 < fy+— fz < fy)
{proof )

Finally it is shown that adjoints in a Galois connection yield closure opera-
tors.
lemma clop-adj:

fixes [ :: 'a::order = 'b::order

shows [ 4 g = clop (g o f)

(proof )

Closure operators are monads for posets, and monads arise from adjunctions.
This fact is not formalised at this point. But here is the first step: every
function can be decomposed into a surjection followed by an injection.

definition surj-on f Y = Vy € Y. Jz. y = f 1)

lemma surj-surj-on: surj f = surj-on f Y
(proof )

52



lemma fun-surj-inj: 3g h. f = g o h A surj-on h (range f) A inj-on g (range f)
(proof)

Connections between downsets, upsets and closure operators are outlined
next.

lemma preorder-clop: clop ({::'a::preorder set = 'a set)
(proof )

lemma clop-preorder-auz: clop f = (x € f {y} +— f {z} C f {y})
(proof )

lemma clop-preorder: clop f = class.preorder (Az y. f {z} C f {y}) Az y. f {z}

c Ay
(proof )

lemma preorder-clop-dual: clop (fy::'a::preorder-with-dual set = 'a set)

(proof)

The closed elements of any closure operator over a complete lattice form an
Inf-closed set (a Moore family).

lemma clop-Inf-closed:
fixes [ :: 'a::complete-lattice = 'a
shows clop f = Inf-closed-set (Fix f)
(proof)

lemma clop-top-Fix:
fixes [ :: 'a::complete-lattice = 'a
shows clop f = T € Fiz f
(proof)

Conversely, every Inf-closed subset of a complete lattice is the set of fixpoints
of some closure operator.

lemma Inf-closed-clop:
fixes X :: 'a::complete-lattice set
shows Inf-closed-set X = clop (Ay. [1{z € X. y < z})

{proof)

lemma Inf-closed-clop-var:
fixes X :: 'a::complete-lattice set
shows clop f = Vz € X. z € range f = [ | X € range f

{proof)

It is well known that downsets and upsets over an ordering form subalgebras
of the complete powerset lattice.

typedef (overloaded) ‘a downsets = range ({::'a::order set = 'a set)
{proof)

93



setup-lifting type-definition-downsets

typedef (overloaded) ‘a upsets = range ({::'a::order set = 'a set)

(proof )
setup-lifting type-definition-upsets

instantiation downsets :: (order) Inf-lattice
begin

lift-definition Inf-downsets :: 'a downsets set = 'a downsets is Abs-downsets o
Inf o () Rep-downsets(proof)

lift-definition less-eq-downsets :: ‘a downsets = 'a downsets = bool is AX Y.
Rep-downsets X C Rep-downsets Y (proof)

lift-definition less-downsets :: 'a downsets = 'a downsets = bool is AX Y. Rep-downsets
X C Rep-downsets Y (proof)

instance
(proof)

end

instantiation upsets :: (order-with-dual) Inf-lattice
begin

lift-definition Inf-upsets :: 'a upsets set = 'a upsets is Abs-upsets o Inf o ()
Rep-upsets(proof)

lift-definition less-eg-upsets :: 'a upsets = 'a upsets = bool is \X Y. Rep-upsets
X C Rep-upsets Y (proof)

lift-definition less-upsets :: ‘a upsets = 'a upsets = bool is AX Y. Rep-upsets X
C Rep-upsets Y (proof)

instance
(proof )

end

It has already been shown in the section on representations that the map
ds, which maps elements of the order to its downset, is an order embedding.
However, the duality between the underlying ordering and the lattices of up-
and down-closed sets as categories can probably not be expressed, as there
is no easy access to contravariant functors.

54



8.2 C(Co-Closure Operators

Next, the co-closure (or kernel) operation satisfies dual laws.

definition coclop :: (‘a::order = 'a::order) = bool where
coclop f = (f < id A mono f A f < fof)

lemma coclop-dual: (coclop::('a::order-with-dual = 'a) = bool) = clop o O

{proof)

lemma coclop-dual-var:
fixes [ :: 'a:order-with-dual = 'a
shows coclop f = clop (OF f)
(proof )

lemma clop-dual: (clop::('a::order-with-dual = 'a) = bool) = coclop o O
{proof)

lemma clop-dual-var:
fixes [ :: 'a:order-with-dual = 'a
shows clop f = coclop (OF f)
(proof)

lemma coclop-coeztensive: coclop [ = f < id

{proof)

lemma coclop-coextensive-var: coclop f = fz <z
(proof )

lemma coclop-iso: coclop f = mono f
(proof)

lemma coclop-iso-var: coclop f = (z <y — fz < fy)
(proof)

lemma coclop-idem: coclop f = fo f=f
{proof )

lemma coclop-closure: coclop f = (x € range f) = (f z = z)
(proof )

lemma coclop-Fiz-range: coclop f = (Fiz f = range f)
(proof)

lemma coclop-idem-var: coclop f = f (fz) = f=x
(proof )

lemma coclop-Sup-closed-var:

fixes f :: 'a::complete-lattice-with-dual = 'a
shows coclop f = f o Supo () f = Supo () f

95



{proof)

lemma Sup-closed-coclop-var:
fixes X :: 'a::complete-lattice set
shows coclop f = Vz € X. z € range f = | | X € range f

{proof)

lemma coclop-bot:
fixes f :: 'a::complete-lattice-with-dual = 'a
shows coclop f = f L = L
(proof )

lemma coclop (f::'a::complete-lattice = 'a) = f ([Jz € X. fz) = (lz e X. f
z)
(proof )

lemma coclop (f::'a::complete-lattice = 'a) = f (fz N fy)=fz N fy
{proof )

lemma coclop (f::'a::complete-lattice = 'a) = f T =T
(proof )

lemma coclop (f::'a set = 'a set) = f ([|z € X. fz) = (z € X. fz)
{proof)

lemma coclop (f::'a set = 'a set) = f (fe N fy)=fazNfy
(proof )

lemma coclop (f::'a set = '‘a set) = f T =T
(proof)

lemma coclop-coclosure: coclop f = fx = x +— = € range f

{proof)

lemma coclop-coclosure-set: coclop f = range f = Fiz f
(proof )

lemma coclop-coclosure-prop: (coclop::('a::complete-lattice = 'a) = bool) (Sup o

Y
(proof )

lemma coclop-coclosure-prop-var: coclop (Az::'a::complete-lattice. | |{y. vy < x})
(proof)

lemma coclop-alt: (coclop f) = Vzy. fz < y<+— fz < fy)
(proof )

lemma coclop-ady:
fixes [ :: 'a::order = 'b::order

o6



shows [ 4 g = coclop (f o g)
(proof)

Finally, a subset of a complete lattice is Sup-closed if and only if it is the
set of fixpoints of some co-closure operator.

lemma coclop-Sup-closed:
fixes [ :: 'a::complete-lattice = 'a
shows coclop f = Sup-closed-set (Fix f)
(proof)

lemma Sup-closed-coclop:
fixes X :: 'a::complete-lattice set
shows Sup-closed-set X = coclop (A\y. | J[{z € X. z < y})

{proof)

8.3 Complete Lattices of Closed Elements

The machinery developed allows showing that the closed elements in a com-
plete lattice (with respect to some closure operation) form themselves a
complete lattice.

class cl-op = ord +
fixes cl-op :: 'a = ’a
assumes clop-ext: x < cl-op x
and clop-iso: © < y = cl-op x
and clop-wtrans: cl-op (cl-op z)

cl-op y

<
< cl-opzx

class clattice-with-clop = complete-lattice + cl-op
begin

lemma clop-cl-op: clop cl-op
(proof )

lemma clop-idem [simp]: cl-op o cl-op = cl-op
(proof)

lemma clop-idem-var [simpl: cl-op (cl-op ) = cl-op z
(proof )

lemma clop-range-Fiz: range cl-op = Fiz cl-op
(proof)

lemma Inf-closed-cl-op-var:
fixes X :: ‘a set
shows Vz € X. z € range cl-op = [ | X € range cl-op

(proof)

o7



lemma inf-closed-cl-op-var: © € range cl-op = y € range cl-op = x M y € range
cl-op
{proof )

end

typedef (overloaded) 'a::clattice-with-clop cl-op-im = range (cl-op::'a = 'a)
(proof )

setup-lifting type-definition-cl-op-im

lemma cl-op-prop [iff]: (cl-op (z U y) = cl-op y) = (cl-op (z::'a:: clattice-with-clop)
< cl-op y)
(proof )
lemma cl-op-prop-var [iff]: (cl-op (x U cl-op y) = cl-op y) = (cl-op (z::"a:: clattice-with-clop)
< cl-op y)
(proof)

instantiation cl-op-im :: (clattice-with-clop) complete-lattice
begin

lift-definition Inf-cl-op-im :: 'a cl-op-im set = 'a cl-op-im is Inf
(proof )

lift-definition Sup-cl-op-im :: 'a cl-op-im set = 'a cl-op-im is AX. cl-op (| | X)
(proof )

lift-definition inf-cl-op-im :: 'a cl-op-im = 'a cl-op-im = 'a cl-op-im is inf
(proof)

lift-definition sup-cl-op-im :: 'a cl-op-im = 'a cl-op-im = 'a cl-op-im is Az y.
cl-op (z U y)

(proof)
lift-definition less-eg-cl-op-im :: 'a cl-op-im = 'a cl-op-im = bool is (<)(proof)

lift-definition less-cl-op-im :: 'a cl-op-im = 'a cl-op-im = bool is (<)(proof)

lift-definition bot-cl-op-im :: 'a cl-op-im is cl-op L
(proof )

lift-definition top-cl-op-im :: 'a cl-op-im is T
(proof )

instance
(proof)

o8



end

This statement is perhaps less useful as it might seem, because it is difficult
to make it cooperate with concrete closure operators, which one would not
generally like to define within a type class. Alternatively, a sublocale state-
ment could perhaps be given. It would also have been nice to prove this
statement for Sup-lattices—this would have cut down the number of proof
obligations significantly. But this would require a tighter integration of
these structures. A similar statement could have been proved for co-closure
operators. But this would not lead to new insights.

Next I show that for every surjective Sup-preserving function between com-
plete lattices there is a closure operator such that the set of closed elements
is isomorphic to the range of the surjection.

lemma surj-Sup-pres-id:
fixes [ :: 'a::complete-lattice-with-dual = 'b::complete-lattice-with-dual
assumes surj f
and Sup-pres f
shows f o (radj f) = id
(proof)

lemma surj-Sup-pres-inj:
fixes [ :: 'a::complete-lattice-with-dual = 'b::complete-lattice-with-dual
assumes surj f
and Sup-pres f
shows inj (radj f)
(proof )

lemma surj-Sup-pres-inj-on:
fixes [ :: 'a::complete-lattice-with-dual = 'b::complete-lattice-with-dual
assumes surj f
and Sup-pres f
shows inj-on f (range (radj f o f))
(proof)

lemma surj-Sup-pres-bij-on:
fixes [ :: 'a::complete-lattice-with-dual = 'b::complete-lattice-with-dual
assumes surj f
and Sup-pres f
shows bij-betw f (range (radj f o f)) UNIV
(proof )

Thus the restriction of f to the set of closed elements is indeed a bijection.
The final fact shows that it preserves Sups of closed elements, and hence is
an isomorphism of complete lattices.
lemma surj-Sup-pres-iso:
fixes [ :: 'a::complete-lattice-with-dual = 'b::complete-lattice-with-dual
assumes surj f

99



and Sup-pres f

shows f ((radj f o f) (LX) = (Lls € X. )
(proof)

8.4 A Quick Example: Dedekind-MacNeille Completions

I only outline the basic construction. Additional facts about join density,
and that the completion yields the least complete lattice that contains all
Sups and Infs of the underlying posets, are left for future consideration.

abbreviation dm = [b-set o ub-set

lemma up-set-prop: (X::'a::preorder set) # {} = ub-set X = {tz |z. z € X}
{proof)

lemma (b-set-prop: (X::'a::preorder set) # {} = lb-set X = N {lz |z. z € X}
{proof)

lemma dm-downset-var: dm {z} = |(z::’a::preorder)
{proof)

lemma dm-downset: dm o n = (}::'a::preorder = 'a set)
{proof)

lemma dm-ing: inj ((dm::'a::order set = 'a set) o n)
{proof)

lemma clop (lb-set o ub-set)
{proof)

end

9 Locale-Based Duality

theory Order-Lattice-Props-Loc
imports Main
begin

unbundle lattice-syntax

This section explores order and lattice duality based on locales. Used within
the context of a class or locale, this is very effective, though more opaque
than the previous approach. Outside of such a context, however, it appar-
ently cannot be used for dualising theorems. Examples are properties of
functions between orderings or lattices.

definition Fiz :: (‘a = 'a) = 'a set where
Fiz f ={z. fz =z}

60



context ord
begin

definition min-set :: 'a set = ’‘a set where
min-set X ={ye X.Ve e X. 2 <y — z =y}

definition maz-set :: 'a set = 'a set where
maz-set X = {x € X.Vye X. 2 <y — z =y}

definition directed :: 'a set = bool where
directed X = (VY. finite Y N Y CX — ez e X.Vye Y.y <x)

definition filtered :: 'a set = bool where
filtered X = (VY. finite Y AN Y CX — Gz e X.Vye Y.z <y))

definition downset-set :: 'a set = 'a set («|») where
X ={y.Jz e X. y <z}

definition upset-set :: 'a set = 'a set («f») where
X ={y. Jz e X. z < y}

definition downset :: ‘a = 'a set (+]») where

=10 Az {z})

definition upset :: ‘a = 'a set (x1») where

T=1o Az {z})

definition downsets :: 'a set set where
downsets = Fix |}

definition upsets :: 'a set set where
upsets = Fix |

abbreviation downset-setp X = X € downsets
abbreviation upset-setp X = X € upsets

definition ideals :: 'a set set where
ideals = {X. X # {} N downset-setp X A directed X}

definition filters :: 'a set set where
filters = {X. X # {} A upset-setp X A filtered X}

abbreviation idealp X = X € ideals
abbreviation filterp X = X € filters

end

61



abbreviation Sup-pres :: (‘a::Sup = 'b::Sup) = bool where
Sup-pres f = f o Sup = Sup o () f

abbreviation Inf-pres :: (‘a::Inf = 'b::Inf) = bool where

Inf-pres f = f o Inf = Inf o () f

abbreviation sup-pres :: (‘a::sup = 'b::sup) = bool where
sup-pres f = (Vo y. f (v U y) = fo U fy)

abbreviation inf-pres :: (‘a::inf = 'b::inf) = bool where
inf-pres f = Vo y. f(zNy)=fzNfy)

abbreviation bot-pres :: (‘a::bot = 'b::bot) = bool where
bot-pres f=f L = L

abbreviation top-pres :: (‘a::top = 'b::top) = bool where
top-presf=fT =T

abbreviation Sup-dual :: (a::Sup = 'b::Inf) = bool where
Sup-dual f = f o Sup = Inf o (9 f

abbreviation Inf-dual :: (‘a::Inf = 'b::Sup) = bool where
Inf-dual f = f o Inf = Sup o () f

abbreviation sup-dual :: (‘a::sup = ’b:inf) = bool where
sup-dual f = Vo y. f(zUy)=fzNfy)

abbreviation inf-dual :: (‘a::inf = 'b::sup) = bool where
inf-dual f = Vzy. f(zMNy) =fzUfy)

abbreviation bot-dual :: (‘a::bot = 'b::top) = bool where
bot-dual f =f L =T

abbreviation top-dual :: (‘a::top = 'b::bot) = bool where
top-dual f = f T = L

9.1 Duality via Locales

sublocale ord C dual-ord: ord (>) (>)
rewrites dual-max-set: max-set = dual-ord.min-set
and dual-filtered: filtered = dual-ord.directed
and dual-upset-set: upset-set = dual-ord.downset-set
and dual-upset: upset = dual-ord.downset
and dual-upsets: upsets = dual-ord.downsets
and dual-filters: filters = dual-ord.ideals
(proof)

sublocale preorder C dual-preorder: preorder (>) (>)
(proof)

62



sublocale order C dual-order: order (>) (>)
{proof )

sublocale lattice C dual-lattice: lattice sup (>) (>) inf
(proof)

sublocale bounded-lattice C dual-bounded-lattice: bounded-lattice sup (>) (>) inf
T L

(proof)

sublocale boolean-algebra C dual-boolean-algebra: boolean-algebra Az y. x LI —y
uminus sup (>) (>) inf T L

(proof)
sublocale complete-lattice C dual-complete-lattice: complete-lattice Sup Inf sup (>)
(>)inf T L

rewrites dual-gfp: gfp = dual-complete-lattice.lfp
(proof)

context ord
begin

lemma dual-min-set: min-set = dual-ord.maz-set
(proof)

lemma dual-directed: directed = dual-ord.filtered
(proof)

lemma dual-downset: downset = dual-ord.upset

(proof)

lemma dual-downset-set: downset-set = dual-ord.upset-set
(proof)

lemma dual-downsets: downsets = dual-ord.upsets
(proof )

lemma dual-ideals: ideals = dual-ord.filters
(proof)

end

context complete-lattice
begin

lemma dual-Ifp: Ifp = dual-complete-lattice.gfp
(proof )

63



end

9.2 Properties of Orderings, Again
context ord

begin

lemma directed-nonempty: directed X — X # {}
{proof)

lemma directed-ub: directed X — (Vz € X.Vye X. FJze X. 2 <z Ay <2)
(proof)

lemma downset-set-prop: || = Union o (¥) |
(proof)

lemma downset-set-prop-var: | X = ([Jz € X. lx)
{proof)

lemma downset-prop: Lz = {y. y
(proof)

IA

7}

end

context preorder
begin

lemma directed-prop: X # {} = Vz € X.Vye X.F3ze X. 2 <z Ay <2)
= directed X

(proof)

lemma directed-alt: directed X = (X #{} N(Vz e X.Vye X. Fze€ X. z < z
Ay < z2)
{proof)

lemma downset-set-ext: id < |}
{proof )

lemma downset-set-iso: mono ||
(proof)

lemma downset-set-idem [simp]: || o | = ||
{proof )

lemma downset-faithful: |z C ly = z < y
(proof)

lemma downset-iso-iff: (Jz C ly) = (z < y)
(proof)

64



lemma downset-directed-downset-var [simp]: directed (1 X) = directed X
(proof)

lemma downset-directed-downset [simp]: directed o |} = directed
{proof)

lemma directed-downset-ideals: directed (JX) = (JX € ideals)
{proof)

end

lemma downset-iso: mono (}::’a::order = 'a set)
{proof)

context order
begin

lemma downset-inj: inj |
(proof )

end

context lattice
begin

lemma lat-ideals: X € ideals = (X # {} A X € downsets N (Vz € X.V y € X.
zUye X))
{proof)

end

context bounded-lattice
begin

lemma bot-ideal: X € ideals — 1 € X
(proof)

end

context complete-lattice
begin

lemma Sup-downset-id [simp]: Sup o | = id
(proof )

lemma downset-Sup-id: id < | o Sup
(proof)

65



lemma Inf-Sup-var: | |[(Nz € X. lz) =[]X
{proof)

lemma Inf-pres-downset-var: (Nz € X. lz) = [([]X)
(proof)

end

lemma [fp-in-Fiz:
fixes [ :: 'a::complete-lattice = 'a
shows mono f = Ifp f € Fix f
(proof)

lemma gfp-in-Fiz:
fixes [ :: 'a::complete-lattice = 'a
shows mono f = ¢gfp f € Fiz f
(proof)

lemma nonempty-Fiz:
fixes [ :: 'a::complete-lattice = 'a
shows mono f = Fiz f # {}
(proof)

9.3 Dual Properties of Orderings from Locales

These properties can be proved very smoothly overall. But only within the
context of a class or locale!

context ord
begin

lemma filtered-nonempty: filtered X — X # {}
(proof )

lemma filtered-ib: filtered X — (Vz € X.Vye X.Fze X. z2<z Nz < y)
(proof )

lemma upset-set-prop: f = Union o (‘) 1
(proof )

lemma upset-set-prop-var: X = (Jz € X. Tz)
(proof)

lemma upset-prop: tz = {y. z < y}
(proof)

end

context preorder
begin

66



lemma filtered-prop: X # {} = Ve e X. Vye X. 3z X. 2<z AN z2<y) =
filtered X
(proof)

lemma filtered-alt: filtered X = (X #{} A Vz e X.Vye X. 3z X. 2 <z A
2 < y))
(proof)

lemma upset-set-ext: id < )
(proof )

lemma upset-set-anti: mono
(proof )

lemma up-set-idem [simp]: f} o f} =
(proof)

lemma upset-faithful: To C Ty = y < x
(proof)

lemma upset-anti-iff: (Ty C Tz) = (z < y)
{proof)

lemma upset-filtered-upset [simp): filtered o f} = filtered
(proof )

lemma filtered-upset-filters: filtered (1X) = (1 X € filters)
(proof )

end

context order
begin

lemma upset-inj: inj 1
(proof )

end

context lattice
begin

lemma lat-filters: X € filters = (X #{} AN X € upsets N Nz € X.V ye€ X. z N
y € X))
{proof)

end

67



context bounded-lattice
begin

lemma top-filter: X € filters = T € X
(proof )

end

context complete-lattice
begin

lemma Inf-upset-id [simp]: Inf o T = id
(proof )

lemma upset-Inf-id: id < 1 o Inf
(proof )

lemma Sup-Inf-var: [1(Nz € X. tz) =X
{proof)

lemma Sup-dual-upset-var: (Nz € X. tz) = (| X)
(proof)

end

9.4 Examples that Do Not Dualise

lemma upset-anti: antimono (1::'a::order = 'a set)
{proof)

context complete-lattice
begin

lemma fSup-unfold: (f::nat = ‘a) 0 U (|| n. f (Suc n)) = (| |n. fn)
(proof )

lemma fInf-unfold: (f::nat = ‘'a) 0 1 ([n. f (Suc n)) = ([n. fn)
{proof)

end

lemma fun-isol: mono f = mono ((o) f)
{proof)

lemma fun-isor: mono f = mono (A\z. z o f)
(proof)

lemma Sup-sup-pres:

68



fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows Sup-pres f = sup-pres f
(proof)

lemma Inf-inf-pres:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
showsInf-pres f = inf-pres f
(proof)

lemma Sup-bot-pres:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows Sup-pres f = bot-pres f
(proof)

lemma Inf-top-pres:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows Inf-pres f = top-pres f
(proof )

context complete-lattice
begin

lemma iso-Inf-subdistl:
assumes mono (f:'a = 'b::complete-lattice)
shows f o Inf < Inf o () f
(proof )

lemma iso-Sup-supdistl:
assumes mono (f:'a = 'b::complete-lattice)
shows Sup o () f < f o Sup
(proof )

lemma Inf-subdistl-iso:
fixes f :: ‘a = 'b::complete-lattice
shows f o Inf < Inf o (‘) f = mono f
(proof )

lemma Sup-supdistl-iso:
fixes [ :: ‘a = 'b::complete-lattice
shows Sup o () f < f o Sup = mono f
(proof)

lemma supdistl-iso:
fixes f :: ‘a = 'b::complete-lattice
shows (Sup o () f < f o Sup) = mono f
(proof)

lemma subdistl-iso:
fixes f :: 'a = 'b::complete-lattice

69



shows (f o Inf < Inf o (‘) f) = mono f
{proof)

end

lemma fSup-distr: Sup-pres (Az. x o f)
(proof)

lemma fSup-distr-var: | |[F o g=(|f € F. fog)
{proof)

lemma fInf-distr: Inf-pres (Az. z o f)
(proof )

lemma fInf-distr-var: [|F o g= ([|f € F. fog)
(proof )

lemma fSup-subdistl:
assumes mono (f::'a::complete-lattice = 'b::complete-lattice)
shows Sup o () (o) f) < (o) f o Sup
(proof )

lemma fSup-subdistl-var:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows mono f = (|J]g € G.fog) <fol||G
(proof )

lemma fInf-subdistl:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows mono f = (o) f o Inf < Inf o () ((0) f)
(proof )

lemma fInf-subdistl-var:
fixes [ :: 'a::complete-lattice = 'b::complete-lattice
shows mono f = fo[|]G < ([lg€ G. foyg)
(proof )

lemma Inf-pres-downset: Inf-pres (|::'a::complete-lattice = 'a set)
(proof)

lemma Sup-dual-upset: Sup-dual (1::'a::complete-lattice = 'a set)
(proof )

This approach could probably be combined with the explicit functor-based
one. This may be good for proofs, but seems conceptually rather ugly.

end

70



10 Duality Based on a Data Type

theory Order-Lattice-Props- Wenzel
imports Main
begin

unbundle lattice-syntax

10.1 Wenzel’s Approach Revisited

This approach is similar to, but inferior to the explicit class-based one. The
main caveat is that duality is not involutive with this approach, and this
allows dualising less theorems.

I copy Wenzel’s development [11] in this subsection and extend it with ad-
ditional properties. I show only the most important properties.

datatype ‘a dual = dual (un-dual: 'a) (10)
notation un-dual (<07>)

lemma dual-inj: inj O
(proof)

lemma dual-surj: surj 0
(proof)

lemma dual-bij: bij 0
(proof)

Dual is not idempotent, and I see no way of imposing this condition. Yet at
least an inverse exists — namely un-dual..

lemma dual-invl [simp]: 0~ o 0 = id
{proof)

lemma dual-inv2 [simp]: 0 o 0~ = id
{proof)

lemma dual-inv-inj: inj 0~
(proof)

lemma dual-inv-surj: surj 0~

{proof)

lemma dual-inv-bij: bij 0~
(proof )

lemma dual-iff: (0 z = y) +— (z =0 y)
(proof)

71



Isabelle data types come with a number of generic functions.

The functor map-dual lifts functions to dual types. Isabelle’s generic defini-
tion is not straightforward to understand and use. Yet conceptually it can
be explained as follows.

lemma map-dual-def-var [simp]: (map-dual::("a = 'b) = 'a dual = 'b dual) f =
dofoo~

{proof)
lemma map-dual-def-var2: 0~ o map-dual f = f o 0~

{proof )

lemma map-dual-funcl: map-dual (f o g) = map-dual f o map-dual g
(proof )

lemma map-dual-func2 : map-dual id = id
(proof)

The functor map-dual has an inverse functor as well.
definition map-dual-inv :: (a dual = b dual) => (‘a => 'b) where
map-dual-inv f = 9~ o f o 0

lemma map-dual-inv-funcl: map-dual-inv id = id
(proof)

lemma map-dual-inv-func2: map-dual-inv (f o g) = map-dual-inv f o map-dual-inv
9
(proof)

lemma map-dual-invl: map-dual o map-dual-inv = id
(proof )

lemma map-dual-inv2: map-dual-inv o map-dual = id
(proof)

Hence dual is an isomorphism between categories.

lemma subset-dual: (0 ‘X =Y)+— (X =0 ‘Y)
{proof)

lemma subset-duall: (X C V) +— (0 ‘X C9 ‘YY)
{proof)

lemma dual-ball: (Vz € X. P (0 z)) «— (Vy€ 0 ‘X. Py)
{proof)

lemma dual-inv-ball: Vz € X. P (0~ z)) +— Wy 0~ ‘X. Py)
(proof)

72



lemma dual-all: (Vz. P (0 z)) «— (Vy. Py)
{proof)

lemma dual-inv-all: Vz. P (0~ z)) +— (Vy. Py)
(proof)

lemma dual-ez: (3z. P (0 z)) «— (3y. Py)
{proof)

lemma dual-inv-ez: (3z. P (0~ z)) +— (Jy. Py)
(proof)

lemma dual-Collect: {0 = |z. P (0 )} = {y. P y}
{proof)

lemma dual-inv-Collect: {0~ z |z. P (0~ z)} = {y. P y}
(proof)

lemma fun-duall: (f o 0 =g) +— (f=9go0d7)
(proof)

lemma fun-dual2: (0 o f = g) «— (f =90~ o g)
{proof)

lemma fun-dual3: (f o (0 =g)«— (f=go(907)
(proof )

lemma fun-dualj: (f =9~ o go () 9) +— (o fo () =yg)
(proof)

The next facts show incrementally that the dual of a complete lattice is a
complete lattice. This follows once again Wenzel.

instantiation dual :: (ord) ord
begin

definition less-eq-dual-def: (<) = rel-dual (>)
definition less-dual-def: (<) = rel-dual (>)
instance(proof)

end

lemma less-eg-dual-def-var: (z < y) = (0~ y < 9~ x)
{proof )

lemma less-dual-def-var: (z < y) = (0~ y < 0~ z)
{proof)

73



instance dual :: (preorder) preorder
{proof)

instance dual :: (order) order
(proof)

lemma dual-anti: t <y = 0y <0dz
(proof )

lemma dual-anti-iff: (z < y) = (0 y < 0 z)
(proof)

map-dual does not map isotone functions to antitone ones. It simply lifts
the type!

lemma mono f = mono (map-dual f)
(proof )

instantiation dual :: (lattice) lattice
begin

definition inf-dual-def: x My =0 (0~ z U 0~ y)
definition sup-dual-def: z Uy =0 (0~ x M I~ y)

instance
(proof)

end

instantiation dual :: (complete-lattice) complete-lattice
begin

definition Inf-dual-def: Inf = 0 o Sup o (¥) 0~
definition Sup-dual-def: Sup = 0 o Inf o () O~
definition bot-dual-def: 1. =0 T
definition top-dual-def: T =0 L

instance

{proof)

end

Next, directed and filtered sets, upsets, downsets, filters and ideals in posets
are defined.

context ord
begin

74



definition directed :: 'a set = bool where
directed X = (VY. finite Y AN Y CX — Bz e X.Vye Y.y <ux))

definition filtered :: 'a set = bool where
filtered X = (VY. finite Y N Y CX — Jze X.Vye Y.z <y))

definition downset-set :: ‘a set = 'a set («{») where
VX ={y. Jz e X. y <z}

definition upset-set :: ‘a set = 'a set («fp>) where
X ={y.dz € X. z < y}

end

10.2 Examples that Do Not Dualise
Filtered and directed sets are dual.

Proofs could be simplified if dual was idempotent.

lemma filtered-directed-dual: filtered o () 0 = directed
(proof)

lemma directed-filtered-dual: directed o () O = filtered
(proof)

This example illustrates the deficiency of the approach. In the class-based
approach the second proof is trivial.

The next example shows that this is a systematic problem.

lemma downset-set-upset-set-dual: () 0 o |} =1 o (9) I
(proof)

lemma upset-set-downset-set-dual: () d ot =1 o (9 0
{proof)

end

References

[1] A. Armstrong and G. Struth. Automated reasoning in higher-order
regular algebra. In RAMICS 2012, volume 7560 of LNCS, pages 66-81.
Springer, 2012.

[2] C. Ballarin. The Isabelle/HOL algebra library. https://isabelle.in.tum.
de/dist/library/HOL/HOL- Algebra/index.html.

75


https://isabelle.in.tum.de/dist/library/HOL/HOL-Algebra/index.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Algebra/index.html

[3] G. Gierz, K. H. Hofmann, J. D. Lawson, M. Mislove, and D. S. Scott.
A Compendium of Continuous Lattices. Springer, 1980.

[4] V. B. F. Gomes and G. Struth. Residuated lattices. Archive of Formal
Proofs, 2015.

[5] P. T. Johnstone. Stone Spaces. Cambridge University Press, 1982.
[6] S. Koppelberg. Handbook of Boolean Algebras. North-Holland, 1989.

[7] O. Kuncar and A. Popescu. From types to sets by local type defini-
tions in higher-order logic. In ITP 2016, volume 9807 of LNCS, pages
200-218. Springer, 2016.

[8] V. Preoteasa. Algebra of monotonic boolean transformers. Archive of
Formal Proofs, 2011.

[9] V. Preoteasa. Lattice properties. Archive of Formal Proofs, 2011.

[10] K. I. Rosenthal. Quantales and their Applications. Longman Scientific
& Technical, 1990.

[11] M. Wenzel. Session HOL-Lattice. https://isabelle.in.tum.de/dist/
library /HOL/HOL-Lattice/index.html.

76


https://isabelle.in.tum.de/dist/library/HOL/HOL-Lattice/index.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Lattice/index.html

	Introductory Remarks
	Sup-Lattices and Other Simplifications
	Ad-Hoc Duality for Orderings and Lattices
	Properties of Orderings and Lattices
	Basic Definitions for Orderings and Lattices
	Properties of Orderings
	Dual Properties of Orderings
	Properties of Complete Lattices
	Sup- and Inf-Preservation
	Alternative Definitions for Complete Boolean Algebras
	Atomic Boolean Algebras

	Representation Theorems for Orderings and Lattices
	Representation of Posets
	Stone's Theorem in the Presence of Atoms

	Galois Connections
	Definitions and Basic Properties
	Properties for (Pre)Orders
	Properties for Complete Lattices

	Fixpoint Fusion
	Closure and Co-Closure Operators
	Closure Operators
	Co-Closure Operators
	Complete Lattices of Closed Elements
	A Quick Example: Dedekind-MacNeille Completions

	Locale-Based Duality
	Duality via Locales
	Properties of Orderings, Again
	Dual Properties of Orderings from Locales
	Examples that Do Not Dualise

	Duality Based on a Data Type
	Wenzel's Approach Revisited
	Examples that Do Not Dualise


