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Abstract

The Orbit-Stabiliser theorem is a simple result in the algebra of
groups that factors the order of a group into the sizes of its orbits and
stabilisers.

We formalize the notion of a group action and the related concepts
of orbits and stabilisers. This allows us to prove the orbit-stabiliser
theorem.

In the second part of this work, we formalize the tetrahedral group
and use the orbit-stabiliser theorem to prove that there are twelve
(orientation-preserving) rotations of the tetrahedron.
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1 Orbit-Stabiliser Theorem

In this Theory we will prove the orbit-stabiliser theorem, a basic result in
the algebra of groups.

theory Orbit-Stabiliser
imports

HOL−Algebra.Left-Coset

begin

1.1 Imports

/HOL/Algebra/Group.thy is used for the definitions of groups and sub-
groups

Left_Coset.thy is a copy of /HOL/Algebra/Coset.thy that includes addi-
tional theorems about left cosets.
The version of Coset.thy in the Isabelle library is missing some theorems
about left cosets that are available for right cosets, so these had to be added
by simply replacing the definitions of right cosets with those of left cosets.
Coset.thy is used for definitions of group order, quotient groups (operator
LMod), and Lagranges theorem.

/HOL/Fun.thy is used for function composition and the identity function.

1.2 Group Actions

We begin by augmenting the existing definition of a group with a group
action.
The group action was defined according to [4].

locale orbit-stabiliser = group +
fixes action :: ′a ⇒ ′b ⇒ ′b (infixl ‹�› 51 )
assumes id-act [simp]: 1 � x = x

and compat-act:
g ∈ carrier G ∧ h ∈ carrier G −→ g � (h � x) = (g ⊗ h) � x

1.3 Orbit and stabiliser

Next, we define orbit and stabiliser, according to the same Wikipedia article.

context orbit-stabiliser
begin

definition orbit :: ′b ⇒ ′b set where
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orbit x = {y. (∃ g ∈ carrier G. y = g � x)}

definition stabiliser :: ′b ⇒ ′a set
where stabiliser x = {g ∈ carrier G. g � x = x}

1.4 Stabiliser Theorems

We begin our proofs by showing that the stabiliser forms a subgroup.
This proof follows the template from [2].

theorem stabiliser-subgroup: subgroup (stabiliser x) G
〈proof 〉

As an intermediate step we formulate a lemma about the relationship be-
tween the group action and the stabiliser.
This proof follows the template from [3].

corollary stabiliser-subgroup-corollary:
assumes g-car : g ∈ carrier G and

h-car : h ∈ carrier G
shows (g � x) = (h � x) ←→ ((inv g) ⊗ h) ∈ stabiliser x
〈proof 〉

Using the previous lemma and our proof that the stabiliser forms a subgroup,
we can now show that the elements of the orbit map to left cosets of the
stabiliser.
This will later form the basis of showing a bijection between the orbit and
those cosets.

lemma stabiliser-cosets-equivalent:
assumes g-car : g ∈ carrier G and

h-car : h ∈ carrier G
shows (g � x) = (h � x) ←→ (g <# stabiliser x) = (h <# stabiliser x)
〈proof 〉

1.5 Picking representatives from cosets

Before we can prove the bijection, we need a few lemmas about representa-
tives from sets.
First we define rep to be an arbitrary element from a left coset of the sta-
biliser.

definition rep :: ′a set ⇒ ′a where
(H ∈ carrier (G LMod (stabiliser x))) =⇒ rep H = (SOME y. y ∈ H )

The next lemma shows that the representative is always an element of its
coset.
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lemma quotient-rep-ex : H ∈ (carrier (G LMod (stabiliser x))) =⇒ rep H
∈ H
〈proof 〉

The final lemma about representatives shows that it does not matter which
element of the coset is picked, i.e. all representatives are equivalent.

lemma rep-equivalent:
assumes H :H ∈ carrier (G LMod stabiliser x) and

gH :g ∈ H
shows H = g <# (stabiliser x)
〈proof 〉

1.6 Orbit-Stabiliser Theorem

We can now establish the bijection between orbit(x) and the quotient group
G/(stabiliser(x))
The idea for this bijection is from [1]

theorem orbit-stabiliser-bij:
bij-betw (λH . rep H � x) (carrier (G LMod (stabiliser x))) (orbit x)
〈proof 〉

The actual orbit-stabiliser theorem is a consequence of the bijection we es-
tablished in the previous theorem and of Lagrange’s theorem

theorem orbit-stabiliser :
assumes finite: finite (carrier G)
shows order G = card (orbit x) ∗ card (stabiliser x)
〈proof 〉
end

end

2 Rotational Symmetries of the Tetrahedron
theory Tetrahedron
imports Orbit-Stabiliser
begin

2.1 Definition of the Tetrahedron and its Rotations

In this section we will use the orbit-stabiliser theorem to count the number
of rotational symmetries of a tetrahedron.
The tetrahedron will be defined as a set of four vertices, labelled A, B, C,
and D. A rotation is defined as a function between the vertices.
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datatype Vertex = A | B | C | D
definition vertices :: Vertex set where

vertices = {A, B, C , D}

type-synonym Rotation = (Vertex ⇒ Vertex)

We define four primitive rotations explicitly. The axis of each rotation is
the line through a vertex that is perpendicular to the face opposite to the
vertex. Every rotation is by 120 degrees counter clockwise.
We also define the identity as a possible rotation.

definition rotate-A :: Rotation where
rotate-A = (λv. (case v of A ⇒ A | B ⇒ C | C ⇒ D | D ⇒ B))

definition rotate-B :: Rotation where
rotate-B = (λv. (case v of A ⇒ D | B ⇒ B | C ⇒ A | D ⇒ C ))

definition rotate-C :: Rotation where
rotate-C = (λv. (case v of A ⇒ B | B ⇒ D | C ⇒ C | D ⇒ A))

definition rotate-D :: Rotation where
rotate-D = (λv. (case v of A ⇒ C | B ⇒ A | C ⇒ B | D ⇒ D))

named-theorems simple-rotations
declare rotate-A-def [simple-rotations] rotate-B-def [simple-rotations] ro-
tate-C-def [simple-rotations] rotate-D-def [simple-rotations]

definition simple-rotations :: Rotation set where
simple-rotations = {id, rotate-A, rotate-B, rotate-C , rotate-D}

All other rotations are combinations of the previously defined simple rota-
tions. We define these inductively.

inductive-set complex-rotations :: Rotation set where
simp: r ∈ simple-rotations =⇒ r ∈ complex-rotations |
comp: r ∈ simple-rotations =⇒ s ∈ complex-rotations =⇒ (r ◦ s) ∈ com-

plex-rotations

2.2 Properties of Rotations

In this section we prove some basic properties of rotations that will be useful
later. We begin by showing that rotations are bijections.

lemma simple-rotations-inj:
assumes r :r ∈ simple-rotations
shows inj r
〈proof 〉

lemma simple-rotations-surj:
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assumes r :r ∈ simple-rotations
shows surj r
〈proof 〉

lemma simple-rotations-bij:
assumes r :r ∈ simple-rotations
shows bij r
〈proof 〉

lemma complex-rotations-bij: r ∈ complex-rotations =⇒ bij r
〈proof 〉

lemma simple-rotation-bij-corollary: r ∈ simple-rotations =⇒ r x 6= r y
←→ x 6= y
〈proof 〉

lemma rotation-bij-corollary: r ∈ complex-rotations =⇒ r x 6= r y ←→ x
6= y
〈proof 〉

lemma complex-rotations-comp:
r ∈ complex-rotations =⇒ s ∈ complex-rotations =⇒ (r ◦ s) ∈ com-

plex-rotations
〈proof 〉

Next, we show that simple rotations (except the identity) keep exactly one
vertex fixed.

lemma simple-rotations-fix:
assumes r :r ∈ simple-rotations
shows ∃ v. r v = v
〈proof 〉

lemma simple-rotations-fix-unique:
assumes r :r ∈ simple-rotations
shows r 6= id =⇒ r v = v =⇒ r w = w =⇒ v = w
〈proof 〉

We also show that simple rotations do not contain cycles of length 2.

lemma simple-rotations-cycle:
assumes r :r ∈ simple-rotations
shows r 6= id =⇒ r v = w =⇒ v 6= w =⇒ r w 6= v
〈proof 〉

The following lemmas are all variations on the fact that any property that
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holds for 4 distinct vertices holds for all vertices. This is necessary to avoid
having to use Vertex.exhaust as much as possible.

lemma distinct-vertices: distinct[(a::Vertex),b,c,d] =⇒ (∀ e. e ∈ {a,b,c,d})
〈proof 〉

lemma distinct-map: r ∈ complex-rotations =⇒ distinct[a,b,c,d] =⇒ (∀ e
∈ {a,b,c}. r e 6= f ) =⇒ r d = f
〈proof 〉

lemma distinct-map ′: r ∈ complex-rotations =⇒ distinct[a,b,c,d] =⇒ (∀ e
∈ {a,b,c}. r f 6= e) =⇒ r f = d
〈proof 〉

lemma cycle-map: r ∈ complex-rotations =⇒ distinct[a,b,c,d] =⇒
r a = b =⇒ r b = a =⇒ r c = d =⇒ r d = c =⇒ ∀ v w. r v = w −→ r

w = v
〈proof 〉

lemma simple-distinct-map: r ∈ simple-rotations =⇒ distinct[a,b,c,d] =⇒
(∀ e ∈ {a,b,c}. r e 6= f ) =⇒ r d = f
〈proof 〉

lemma simple-distinct-map ′: r ∈ simple-rotations =⇒ distinct[a,b,c,d] =⇒
(∀ e ∈ {a,b,c}. r f 6= e) =⇒ r f = d
〈proof 〉

lemma simple-distinct-ident: r ∈ simple-rotations =⇒ distinct[a,b,c,d] =⇒
(∀ e ∈ {a,b,c}. r e 6= e) =⇒ r d = d
〈proof 〉

lemma id-decomp:
assumes distinct:distinct [(a::Vertex),b,c,d] and ident:(∀ x ∈ {a,b,c,d}.

r x = x)
shows r = id
〈proof 〉

Here we show that two invariants hold for rotations. Firstly, any rotation
that does not fix a vertex consists of 2-cycles. Secondly, the only rotation
that fixes more than one vertex is the identity.
This proof is very long in part because both invariants have to be proved
simultaneously because they depend on each other.

lemma complex-rotations-invariants:
r ∈ complex-rotations =⇒ (((∀ v. r v 6= v) −→ r v = w −→ r w = v) ∧
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(r v = v −→ r w = w −→ v 6= w −→ r = id))
〈proof 〉

This lemma is a simple corollary of the previous result. It is the main result
necessary to count stabilisers.
corollary complex-rotations-fix: r ∈ complex-rotations =⇒ r a = a =⇒ r
b = b =⇒ a 6= b =⇒ r = id
〈proof 〉

2.3 Inversions

In this section we show that inverses exist for each rotation, which we will
need to show that the rotations we defined indeed form a group.
lemma simple-rotations-rotate-id:

assumes r :r ∈ simple-rotations
shows r ◦ r ◦ r = id
〈proof 〉

lemma simple-rotations-inverses:
assumes r :r ∈ simple-rotations
shows ∃ y∈complex-rotations. y ◦ r = id
〈proof 〉

lemma complex-rotations-inverses:
r ∈ complex-rotations =⇒ ∃ y∈complex-rotations. y ◦ r = id
〈proof 〉

2.4 The Tetrahedral Group

We can now define the group of rotational symmetries of a tetrahedron.
Since we modeled rotations as functions, the group operation is functional
composition and the identity element of the group is the identity function
definition tetrahedral-group :: Rotation monoid where

tetrahedral-group = (|carrier = complex-rotations, mult = (◦), one = id|)

We now prove that this indeed forms a group. Most of the subgoals are
trivial, the last goal uses our results from the previous section about inverses.
lemma is-tetrahedral-group: group tetrahedral-group
〈proof 〉

Having proved that our definition forms a group we can now instantiate our
orbit-stabiliser locale. The group action is the application of a rotation.
fun apply-rotation :: Rotation ⇒ Vertex ⇒ Vertex where apply-rotation r
v = r v
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interpretation tetrahedral: orbit-stabiliser tetrahedral-group apply-rotation
:: Rotation ⇒ Vertex ⇒ Vertex
〈proof 〉

2.5 Counting Orbits

We now prove that there is an orbit for each vertex. That is, the group
action is transitive.

lemma orbit-is-transitive: tetrahedral.orbit A = vertices
〈proof 〉

It follows from the previous lemma, that the cardinality of the set of orbits
for a particular vertex is 4.

lemma card-orbit: card (tetrahedral.orbit A) = 4
〈proof 〉

2.6 Counting Stabilisers

Each vertex has three elements in its stabiliser - the identity, a rotation
around its axis by 120 degrees, and a rotation around its axis by 240 degrees.
We will prove this next.

definition stabiliser-A :: Rotation set where
stabiliser-A = {id, rotate-A, rotate-A ◦ rotate-A}

This lemma shows that our conjectured stabiliser is correct.

lemma is-stabiliser : tetrahedral.stabiliser A = stabiliser-A
〈proof 〉

Using the previous result, we can now show that the cardinality of the sta-
biliser is 3.

lemma card-stabiliser-help: card stabiliser-A = 3
〈proof 〉

lemma card-stabiliser : card (tetrahedral.stabiliser A) = 3
〈proof 〉

2.7 Proving Finiteness

In order to apply the orbit-stabiliser theorem, we need to prove that the set
of rotations is finite. We first prove that the set of vertices is finite.

lemma vertex-set: (UNIV ::Vertex set) = {A, B, C , D}
〈proof 〉
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lemma vertex-finite: finite (UNIV :: Vertex set)
〈proof 〉

Next we need instantiate Vertex as an element of the type class of finite sets
in HOL/Finite_Set.thy. This will allow us to use the lemma that functions
between finite sets are finite themselves.

instantiation Vertex :: finite
begin
instance 〈proof 〉

Now we can show that the set of rotations is finite.

lemma finite-carrier : finite (carrier tetrahedral-group)
〈proof 〉

2.8 Order of the Group

We can now finally apply the orbit-stabiliser theorem. Since we have orbits
of cardinality 4 and stabilisers of cardinality 3, the order of the tetrahedral
group, and with it the number of rotational symmetries of the tetrahedron,
is 12.

theorem order tetrahedral-group = 12
〈proof 〉

end

end
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