
Orbit-Stabiliser Theorem with Application to
Rotational Symmetries

Jonas Rädle

March 17, 2025

Abstract

The Orbit-Stabiliser theorem is a simple result in the algebra of
groups that factors the order of a group into the sizes of its orbits and
stabilisers.

We formalize the notion of a group action and the related concepts
of orbits and stabilisers. This allows us to prove the orbit-stabiliser
theorem.

In the second part of this work, we formalize the tetrahedral group
and use the orbit-stabiliser theorem to prove that there are twelve
(orientation-preserving) rotations of the tetrahedron.

Contents
1 Orbit-Stabiliser Theorem 2

1.1 Imports . 2
1.2 Group Actions . 2
1.3 Orbit and stabiliser . 2
1.4 Stabiliser Theorems . 3
1.5 Picking representatives from cosets 5
1.6 Orbit-Stabiliser Theorem . 6

2 Rotational Symmetries of the Tetrahedron 8
2.1 Definition of the Tetrahedron and its Rotations 9
2.2 Properties of Rotations . 9
2.3 Inversions . 25
2.4 The Tetrahedral Group . 26
2.5 Counting Orbits . 27
2.6 Counting Stabilisers . 29
2.7 Proving Finiteness . 32
2.8 Order of the Group . 32

1

1 Orbit-Stabiliser Theorem

In this Theory we will prove the orbit-stabiliser theorem, a basic result in
the algebra of groups.

theory Orbit-Stabiliser
imports

HOL−Algebra.Left-Coset

begin

1.1 Imports

/HOL/Algebra/Group.thy is used for the definitions of groups and sub-
groups

Left_Coset.thy is a copy of /HOL/Algebra/Coset.thy that includes addi-
tional theorems about left cosets.
The version of Coset.thy in the Isabelle library is missing some theorems
about left cosets that are available for right cosets, so these had to be added
by simply replacing the definitions of right cosets with those of left cosets.
Coset.thy is used for definitions of group order, quotient groups (operator
LMod), and Lagranges theorem.

/HOL/Fun.thy is used for function composition and the identity function.

1.2 Group Actions

We begin by augmenting the existing definition of a group with a group
action.
The group action was defined according to [4].

locale orbit-stabiliser = group +
fixes action :: ′a ⇒ ′b ⇒ ′b (infixl ‹�› 51)
assumes id-act [simp]: 1 � x = x

and compat-act:
g ∈ carrier G ∧ h ∈ carrier G −→ g � (h � x) = (g ⊗ h) � x

1.3 Orbit and stabiliser

Next, we define orbit and stabiliser, according to the same Wikipedia article.

context orbit-stabiliser
begin

definition orbit :: ′b ⇒ ′b set where

2

orbit x = {y. (∃ g ∈ carrier G. y = g � x)}

definition stabiliser :: ′b ⇒ ′a set
where stabiliser x = {g ∈ carrier G. g � x = x}

1.4 Stabiliser Theorems

We begin our proofs by showing that the stabiliser forms a subgroup.
This proof follows the template from [2].
theorem stabiliser-subgroup: subgroup (stabiliser x) G
proof(rule subgroupI)

show stabiliser x ⊆ carrier G using stabiliser-def by auto
next

fix x
from id-act have 1 � x = x by simp
then have 1 ∈ stabiliser x using stabiliser-def by auto
then show stabiliser x 6= {} by auto

next
fix g x
assume gStab:g ∈ stabiliser x
then have g-car :g ∈ carrier G using stabiliser-def by simp
then have invg-car :inv g ∈ carrier G using inv-closed by simp
have g � x = x using stabiliser-def gStab by simp
then have inv g � (g � x) = inv g � x by simp
then have (inv g ⊗ g) � x = inv g � x using compat-act g-car invg-car

by simp
then have x = (inv g) � x using g-car l-inv by simp
then show inv g ∈ stabiliser x using invg-car stabiliser-def by simp

next
fix g h x
assume g-stab: g ∈ stabiliser x and h-stab: h ∈ stabiliser x
then have g-car : g ∈ carrier G and h-car : h ∈ carrier G using sta-

biliser-def by auto
then have g � x = x h � x = x

using stabiliser-def g-stab h-stab by auto
then have g � (h � x) = x by simp
then have (g ⊗ h) � x = x using compat-act g-car h-car by simp
then show (g ⊗ h) ∈ stabiliser x

using g-stab h-stab stabiliser-def by auto
qed

As an intermediate step we formulate a lemma about the relationship be-
tween the group action and the stabiliser.
This proof follows the template from [3].

3

corollary stabiliser-subgroup-corollary:
assumes g-car : g ∈ carrier G and

h-car : h ∈ carrier G
shows (g � x) = (h � x) ←→ ((inv g) ⊗ h) ∈ stabiliser x

proof
from g-car have invg-car : (inv g) ∈ carrier G by auto
show (g � x) = (h � x) =⇒ inv g ⊗ h ∈ stabiliser x
proof −

assume gh: (g � x) = (h � x)
have ((inv g) ⊗ h) � x = (inv g) � (h � x) using assms compat-act

by simp
moreover have (inv g) � (h � x) = (inv g) � (g � x) using gh by

simp
moreover have (inv g) � (g � x) = ((inv g) ⊗ g) � x using invg-car

g-car compat-act by simp
moreover have ((inv g) ⊗ g) � x = x using g-car by simp
ultimately have ((inv g) ⊗ h) � x = x by simp
then show ?thesis using stabiliser-def assms by simp

qed

show inv g ⊗ h ∈ stabiliser x =⇒ g � x = h � x
proof −

assume gh-stab: inv g ⊗ h ∈ stabiliser x
with stabiliser-def have x = ((inv g) ⊗ h) � x by simp
then have 1 � x = ((inv g) ⊗ h) � x by simp
then have ((inv g) ⊗ g) � x = ((inv g) ⊗ h) � x using invg-car g-car

by simp
then have x = (inv g) � (h � x) using compat-act g-car h-car by simp
then have g � x = (g ⊗ (inv g)) � (h � x) using compat-act g-car

invg-car by metis
then have g � x = h � x using compat-act g-car id-act invg-car r-inv

by simp
then show ?thesis by simp

qed
qed

Using the previous lemma and our proof that the stabiliser forms a subgroup,
we can now show that the elements of the orbit map to left cosets of the
stabiliser.
This will later form the basis of showing a bijection between the orbit and
those cosets.
lemma stabiliser-cosets-equivalent:

assumes g-car : g ∈ carrier G and
h-car : h ∈ carrier G

4

shows (g � x) = (h � x) ←→ (g <# stabiliser x) = (h <# stabiliser x)
proof

show g � x = h � x =⇒ g <# stabiliser x = h <# stabiliser x
proof −

assume g � x = h � x
then have stab-elem: ((inv g) ⊗ h) ∈ stabiliser x

using assms stabiliser-subgroup-corollary by simp
with subgroup.lcos-module-rev[OF stabiliser-subgroup] have h ∈ g <#

(stabiliser x)
using assms is-group by simp

with l-repr-independence have g <# (stabiliser x) = h <# (stabiliser
x)

using assms stab-elem stabiliser-subgroup by auto
then show ?thesis by simp

qed
show g <# stabiliser x = h <# stabiliser x =⇒ g � x = h � x
proof −

assume g <# stabiliser x = h <# stabiliser x
with subgroup.lcos-module-rev[OF stabiliser-subgroup] have h ∈ g <#

(stabiliser x)
using assms is-group l-inv stabiliser-subgroup subgroup-def by metis

with subgroup.lcos-module-imp[OF stabiliser-subgroup] have ((inv g) ⊗
h) ∈ stabiliser x

using assms is-group by blast
with stabiliser-subgroup-corollary have g � x = h � x using assms by

simp
then show ?thesis by simp

qed
qed

1.5 Picking representatives from cosets

Before we can prove the bijection, we need a few lemmas about representa-
tives from sets.
First we define rep to be an arbitrary element from a left coset of the sta-
biliser.

definition rep :: ′a set ⇒ ′a where
(H ∈ carrier (G LMod (stabiliser x))) =⇒ rep H = (SOME y. y ∈ H)

The next lemma shows that the representative is always an element of its
coset.

lemma quotient-rep-ex : H ∈ (carrier (G LMod (stabiliser x))) =⇒ rep H
∈ H

5

proof −
fix H
assume H :H ∈ carrier (G LMod stabiliser x)
then obtain g where g ∈ carrier G H = g <# (stabiliser x)

unfolding LFactGroup-def LCOSETS-def by auto
then have (SOME x. x ∈ H) ∈ H using lcos-self stabiliser-subgroup

someI-ex by fast
then show rep H ∈ H using H rep-def by auto

qed

The final lemma about representatives shows that it does not matter which
element of the coset is picked, i.e. all representatives are equivalent.

lemma rep-equivalent:
assumes H :H ∈ carrier (G LMod stabiliser x) and

gH :g ∈ H
shows H = g <# (stabiliser x)

proof −
fix h
from H obtain h where hG:h ∈ carrier G and H2 :H = h <# (stabiliser

x)
unfolding LFactGroup-def LCOSETS-def by auto

with H gH have gh:g ∈ h <# (stabiliser x) by simp
from l-repr-independence have h <# stabiliser x = g <# stabiliser x

using hG gh stabiliser-subgroup by simp
with H2 have H = g <# (stabiliser x) by simp
then show ?thesis by simp

qed

1.6 Orbit-Stabiliser Theorem

We can now establish the bijection between orbit(x) and the quotient group
G/(stabiliser(x))
The idea for this bijection is from [1]

theorem orbit-stabiliser-bij:
bij-betw (λH . rep H � x) (carrier (G LMod (stabiliser x))) (orbit x)

proof (rule bij-betw-imageI)

show inj-on (λH . rep H � x) (carrier (G LMod stabiliser x))
proof(rule inj-onI)

fix H H ′

assume H :H ∈ carrier (G LMod (stabiliser x))
assume H ′:H ′ ∈ carrier (G LMod (stabiliser x))
obtain h h ′ where h:h = rep H and h ′: h ′ = rep H ′ by simp

6

assume act-equal: (rep H) � x = (rep H ′) � x
from H h quotient-rep-ex have hH : h ∈ H by simp
from H ′ h ′ quotient-rep-ex have hH ′: h ′ ∈ H ′ by simp
from subgroup.lcosets-carrier [OF stabiliser-subgroup is-group] H have

H ⊆ carrier G
unfolding LFactGroup-def by simp

then have hG: h ∈ carrier G using hH by auto
from subgroup.lcosets-carrier [OF stabiliser-subgroup is-group] H ′ have

H ′ ⊆ carrier G
unfolding LFactGroup-def by simp

then have h ′G: h ′ ∈ carrier G using hH ′ by auto

have hh ′-equiv:h <# (stabiliser x) = h ′ <# (stabiliser x)
using hG h ′G h h ′ act-equal stabiliser-cosets-equivalent by simp

from hh ′-equiv have H2 :H = h <# (stabiliser x)
using H hH rep-equivalent by blast

moreover from hh ′-equiv have H3 :H ′ = h <# (stabiliser x)
using H ′ hH ′ rep-equivalent by blast

then show H = H ′ using H2 H3 by simp
qed

next
show (λH . rep H � x) ‘ carrier (G LMod stabiliser x) = orbit x
proof(auto)

show
∧

H . H ∈ carrier (G LMod stabiliser x) =⇒ rep H � x ∈ orbit x
proof −

fix H
assume H :H ∈ carrier (G LMod (stabiliser x))
obtain h where h:h = rep H by simp
from H h quotient-rep-ex have hH : h ∈ H by simp
have stab-sub: (stabiliser x) ⊆ carrier G using stabiliser-def by auto
from subgroup.lcosets-carrier [OF stabiliser-subgroup is-group] H have

H ⊆ carrier G
unfolding LFactGroup-def by simp

with hH have h ∈ carrier G by auto
then show (rep H) � x ∈ orbit x using h orbit-def mem-Collect-eq

by blast
qed
show

∧
y. y ∈ orbit x =⇒ y ∈ (λH . rep H � x) ‘ carrier (G LMod

stabiliser x)
proof −

fix y
assume y:y ∈ orbit x

7

obtain g where gG:g ∈ carrier G and y = g � x using y orbit-def
by auto

obtain H where H :H = g <# (stabiliser x) by auto
with gG have H-carr :H ∈ carrier (G LMod stabiliser x)

unfolding LFactGroup-def LCOSETS-def by auto
then have rep H ∈ H using quotient-rep-ex by auto
then obtain h where h-stab:h ∈ stabiliser x and gh:rep H = g ⊗ h

unfolding H l-coset-def by auto
have hG:h ∈ carrier G using h-stab stabiliser-def by auto
from stabiliser-def h-stab have h � x = x by auto
with ‹y = g � x› have y = g � (h � x) by simp
then have y = (g ⊗ h) � x using gG hG compat-act by auto
then have y = (rep H) � x using gh by simp
then show y ∈ (λH . rep H � x) ‘ carrier (G LMod stabiliser x)

using H-carr by simp
qed

qed
qed

The actual orbit-stabiliser theorem is a consequence of the bijection we es-
tablished in the previous theorem and of Lagrange’s theorem

theorem orbit-stabiliser :
assumes finite: finite (carrier G)
shows order G = card (orbit x) ∗ card (stabiliser x)

proof −
have card (carrier (G LMod (stabiliser x))) = card (orbit x)

using bij-betw-same-card orbit-stabiliser-bij by auto
moreover have card (carrier (G LMod (stabiliser x))) ∗ card (stabiliser

x) = order G
using finite stabiliser-subgroup l-lagrange unfolding LFactGroup-def by

simp
ultimately show ?thesis by simp

qed
end

end

2 Rotational Symmetries of the Tetrahedron
theory Tetrahedron
imports Orbit-Stabiliser
begin

8

2.1 Definition of the Tetrahedron and its Rotations

In this section we will use the orbit-stabiliser theorem to count the number
of rotational symmetries of a tetrahedron.
The tetrahedron will be defined as a set of four vertices, labelled A, B, C,
and D. A rotation is defined as a function between the vertices.

datatype Vertex = A | B | C | D
definition vertices :: Vertex set where

vertices = {A, B, C , D}

type-synonym Rotation = (Vertex ⇒ Vertex)

We define four primitive rotations explicitly. The axis of each rotation is
the line through a vertex that is perpendicular to the face opposite to the
vertex. Every rotation is by 120 degrees counter clockwise.
We also define the identity as a possible rotation.

definition rotate-A :: Rotation where
rotate-A = (λv. (case v of A ⇒ A | B ⇒ C | C ⇒ D | D ⇒ B))

definition rotate-B :: Rotation where
rotate-B = (λv. (case v of A ⇒ D | B ⇒ B | C ⇒ A | D ⇒ C))

definition rotate-C :: Rotation where
rotate-C = (λv. (case v of A ⇒ B | B ⇒ D | C ⇒ C | D ⇒ A))

definition rotate-D :: Rotation where
rotate-D = (λv. (case v of A ⇒ C | B ⇒ A | C ⇒ B | D ⇒ D))

named-theorems simple-rotations
declare rotate-A-def [simple-rotations] rotate-B-def [simple-rotations] ro-
tate-C-def [simple-rotations] rotate-D-def [simple-rotations]

definition simple-rotations :: Rotation set where
simple-rotations = {id, rotate-A, rotate-B, rotate-C , rotate-D}

All other rotations are combinations of the previously defined simple rota-
tions. We define these inductively.

inductive-set complex-rotations :: Rotation set where
simp: r ∈ simple-rotations =⇒ r ∈ complex-rotations |
comp: r ∈ simple-rotations =⇒ s ∈ complex-rotations =⇒ (r ◦ s) ∈ com-

plex-rotations

2.2 Properties of Rotations

In this section we prove some basic properties of rotations that will be useful
later. We begin by showing that rotations are bijections.

9

lemma simple-rotations-inj:
assumes r :r ∈ simple-rotations
shows inj r
using r unfolding simple-rotations-def
by safe

(rule injI ; rename-tac a b; case-tac a; case-tac b;
simp add: simple-rotations
)+

lemma simple-rotations-surj:
assumes r :r ∈ simple-rotations
shows surj r
using r unfolding simple-rotations-def
by safe

(rename-tac a; case-tac a;
auto simp add: simple-rotations Vertex.split
)+

lemma simple-rotations-bij:
assumes r :r ∈ simple-rotations
shows bij r
by (simp add: r bij-def simple-rotations-surj simple-rotations-inj)

lemma complex-rotations-bij: r ∈ complex-rotations =⇒ bij r
proof(induction r rule: complex-rotations.induct)

case (simp r) then show ?case using simple-rotations-bij by simp
next

case (comp r s) then show ?case using bij-comp simple-rotations-bij by
blast
qed

lemma simple-rotation-bij-corollary: r ∈ simple-rotations =⇒ r x 6= r y
←→ x 6= y

using bij-def simple-rotations-bij inj-eq by metis

lemma rotation-bij-corollary: r ∈ complex-rotations =⇒ r x 6= r y ←→ x
6= y

using bij-def complex-rotations-bij inj-eq by metis

lemma complex-rotations-comp:
r ∈ complex-rotations =⇒ s ∈ complex-rotations =⇒ (r ◦ s) ∈ com-

plex-rotations
apply(induction arbitrary: s rule: complex-rotations.induct)
apply(auto simp add: comp-assoc complex-rotations.comp)

10

done

Next, we show that simple rotations (except the identity) keep exactly one
vertex fixed.

lemma simple-rotations-fix:
assumes r :r ∈ simple-rotations
shows ∃ v. r v = v
using r unfolding simple-rotations-def
by (auto simp add: simple-rotations split: Vertex.split)

lemma simple-rotations-fix-unique:
assumes r :r ∈ simple-rotations
shows r 6= id =⇒ r v = v =⇒ r w = w =⇒ v = w
using r unfolding simple-rotations-def
by safe

(case-tac v; case-tac w;
auto simp add: simple-rotations
)+

We also show that simple rotations do not contain cycles of length 2.

lemma simple-rotations-cycle:
assumes r :r ∈ simple-rotations
shows r 6= id =⇒ r v = w =⇒ v 6= w =⇒ r w 6= v
using r unfolding simple-rotations-def
by safe

(case-tac v;
auto simp add: simple-rotations
)+

The following lemmas are all variations on the fact that any property that
holds for 4 distinct vertices holds for all vertices. This is necessary to avoid
having to use Vertex.exhaust as much as possible.

lemma distinct-vertices: distinct[(a::Vertex),b,c,d] =⇒ (∀ e. e ∈ {a,b,c,d})
apply(safe)
apply(case-tac a)
apply(auto simp add: distinct-def)
apply(metis Vertex.exhaust)+
done

lemma distinct-map: r ∈ complex-rotations =⇒ distinct[a,b,c,d] =⇒ (∀ e
∈ {a,b,c}. r e 6= f) =⇒ r d = f
proof −

assume r :r ∈ complex-rotations and dist:distinct [a,b,c,d] and notf :∀ e
∈ {a,b,c}. r e 6= f

11

then have 1 :(∀ v. v ∈ {a,b,c,d}) using distinct-vertices by simp
from complex-rotations-bij have ∃ v. r v = f using r bij-pointE by metis
then have ∃ v ∈ {a,b,c,d}. r v = f using 1 by blast
then show r d = f using notf by simp

qed

lemma distinct-map ′: r ∈ complex-rotations =⇒ distinct[a,b,c,d] =⇒ (∀ e
∈ {a,b,c}. r f 6= e) =⇒ r f = d
proof −

assume r :r ∈ complex-rotations and dist:distinct [a,b,c,d] and notf :∀ e
∈ {a,b,c}. r f 6= e

then have 1 :(∀ v. v ∈ {a,b,c,d}) using distinct-vertices by simp
have ∃ v. r f = v by simp
then have ∃ v ∈ {a,b,c,d}. r f = v using 1 by blast
then show r f = d using notf by simp

qed

lemma cycle-map: r ∈ complex-rotations =⇒ distinct[a,b,c,d] =⇒
r a = b =⇒ r b = a =⇒ r c = d =⇒ r d = c =⇒ ∀ v w. r v = w −→ r

w = v
using distinct-map ′ rotation-bij-corollary by fastforce

lemma simple-distinct-map: r ∈ simple-rotations =⇒ distinct[a,b,c,d] =⇒
(∀ e ∈ {a,b,c}. r e 6= f) =⇒ r d = f

using complex-rotations.simp distinct-map by simp

lemma simple-distinct-map ′: r ∈ simple-rotations =⇒ distinct[a,b,c,d] =⇒
(∀ e ∈ {a,b,c}. r f 6= e) =⇒ r f = d

using complex-rotations.simp distinct-map ′ by simp

lemma simple-distinct-ident: r ∈ simple-rotations =⇒ distinct[a,b,c,d] =⇒
(∀ e ∈ {a,b,c}. r e 6= e) =⇒ r d = d

using simple-rotations-fix simple-distinct-map ′ by metis

lemma id-decomp:
assumes distinct:distinct [(a::Vertex),b,c,d] and ident:(∀ x ∈ {a,b,c,d}.

r x = x)
shows r = id

proof −
from distinct-vertices have ∀ e. e ∈ set [a,b,c,d] using distinct by simp
then have ∀ e. r e = e using ident by auto
then show r = id by auto

qed

12

Here we show that two invariants hold for rotations. Firstly, any rotation
that does not fix a vertex consists of 2-cycles. Secondly, the only rotation
that fixes more than one vertex is the identity.
This proof is very long in part because both invariants have to be proved
simultaneously because they depend on each other.

lemma complex-rotations-invariants:
r ∈ complex-rotations =⇒ (((∀ v. r v 6= v) −→ r v = w −→ r w = v) ∧

(r v = v −→ r w = w −→ v 6= w −→ r = id))
proof(induction r arbitrary: v w rule: complex-rotations.induct)

case (simp r)
assume r :r ∈ simple-rotations
show ?case
proof

have ∃ v. r v = v using simple-rotations-fix r by simp
then have ¬ (∀ v. r v 6= v) by simp
then show (∀ v. r v 6= v) −→ r v = w −→ r w = v by blast

show r v = v −→ r w = w −→ v 6= w −→ r = id using sim-
ple-rotations-fix-unique simp by blast

qed
next

case (comp r s)
assume r :r ∈ simple-rotations
assume s:s ∈ complex-rotations
have fix-unique:∀ v w. s v = v −→ s w = w −→ v 6= w −→ s = id using

comp by blast
show ?case
proof

show (∀ x. (r ◦ s) x 6= x) −→ (r ◦ s) v = w −→ (r ◦ s) w = v
proof (rule impI)+

assume nofixrs:∀ x.(r ◦ s) x 6= x
assume (r ◦ s) v = w
show (r ◦ s) w = v
proof (cases ∀ x. s x 6= x)

assume nofixs:∀ x. s x 6= x
then have cycle:∀ x y. (s x = y −→ s y = x) using comp.IH by

blast
then show ?thesis
proof (cases r = id)

assume id:r = id
then have s v = w using ‹(r ◦ s) v = w› by simp
then have s w = v using cycle by blast
then show (r ◦ s) w = v using id by simp

13

next
assume notid:r 6= id
obtain a where s v = a and s a = v and a 6= v using comp.IH

nofixs by blast
obtain b where s w = b and s b = w and b 6= w using comp.IH

nofixs by blast
have v 6= w using ‹(r ◦ s) v = w› nofixrs by blast
then have a 6= b using comp.hyps rotation-bij-corollary ‹s a = v›

‹s b = w› by auto
have r a = w using ‹s v = a› ‹(r ◦ s) v = w› by auto
then show ?thesis
proof (cases a = w)

assume a = w
then have r a = a using ‹r a = w› by simp
then have s v = w using ‹a = w› ‹s v = a› by simp

then have b = v using ‹s b = w› rotation-bij-corollary comp.hyps
by blast

then have s w = v using ‹s w = b› by simp
then have r v 6= v using simple-rotations-fix-unique notid ‹r a

= a› ‹a 6= v›
comp.hyps(1) by auto

obtain c d where s c = d and c 6= v and c 6= w
using ‹a 6= v› ‹r a = w› ‹r v 6= v› comp.hyps(1) sim-

ple-rotation-bij-corollary by blast
then have d 6= v and d 6= w

using ‹s w = v› ‹c 6= v› ‹s c = d› ‹s v = w› comp.hyps(2)
rotation-bij-corollary by auto

then have s d = c using ‹s c = d› comp.IH nofixs by blast
then have c 6= d using nofixs by auto
then show ?thesis
proof(cases r v = c)

assume r v = c
then have r c 6= v using ‹c 6= v› simple-rotations-cycle

comp.hyps(1) notid by simp
have r c 6= w
using ‹r a = a› ‹c 6= w› ‹r a = w› simple-rotation-bij-corollary

comp.hyps(1) by auto
have r c 6= c using ‹a = w› ‹c 6= w› ‹r a = a›

comp.hyps(1) simple-rotations-fix-unique notid by blast
have dist:distinct [v,w,c,d] using ‹c 6= v› ‹c 6= w› ‹c 6= d› ‹d

6= v› ‹d 6= w› ‹v 6= w› by simp
then have ∀ v ∈ {v,w,c}. r c 6= v using ‹r c 6= c› ‹r c 6= v› ‹r

c 6= w› by auto
then have r c = d using simple-distinct-map ′ comp.hyps(1)

14

dist by auto
then have (r ◦ s) d = d using ‹s d = c› by simp
then have False using nofixrs by blast
then show ?thesis by simp

next
assume r v 6= c
then have r v 6= w
using ‹r a = a› ‹v 6= w› ‹r a = w› simple-rotation-bij-corollary

comp.hyps(1) by auto
then have r v 6= v using ‹a = w› ‹r a = a›

comp.hyps(1) simple-rotations-fix-unique notid by blast
have dist:distinct [w,c,v,d] using ‹c 6= v› ‹c 6= w› ‹c 6= d› ‹d

6= v› ‹d 6= w› ‹v 6= w› by simp
then have ∀ x ∈ {w,c,v}. r v 6= x using ‹r v 6= c› ‹r v 6= v›

‹r v 6= w› by auto
then have r v = d using simple-distinct-map ′ comp.hyps(1)

dist by auto
then have r d 6= v using ‹d 6= v› simple-rotations-cycle

comp.hyps(1) notid by simp
have r d 6= w
using ‹r a = a› ‹d 6= w› ‹r a = w› simple-rotation-bij-corollary

comp.hyps(1) by auto
have r d 6= d using ‹a = w› ‹d 6= w› ‹r a = a›

comp.hyps(1) simple-rotations-fix-unique notid by blast
have dist ′:distinct [w,v,d,c] using ‹c 6= v› ‹c 6= w› ‹c 6= d› ‹d

6= v› ‹d 6= w› ‹v 6= w› by simp
then have ∀ v ∈ {w,v,d}. r d 6= v using ‹r d 6= d› ‹r d 6= w›

‹r d 6= v› by auto
then have r d = c using simple-distinct-map ′ comp.hyps(1)

dist ′ by auto
then have (r ◦ s) c = c using ‹s c = d› by simp
then have False using nofixrs by blast
then show ?thesis by simp

qed
next

assume a 6= w
then have r a 6= a using ‹r a = w› by simp
have b 6= v using ‹a 6= w› ‹s b = w› ‹s v = a› by auto

have r w 6= w using ‹a 6= w› ‹r a = w› comp.hyps(1) sim-
ple-rotation-bij-corollary by auto

from nofixs have s w 6= w by simp
then have r v 6= w using ‹a 6= v› ‹r a = w› comp.hyps

simple-rotation-bij-corollary by blast
have s v 6= w using ‹r a = w› ‹r a 6= a› ‹s v = a› by blast

15

then show ?thesis
proof (cases r b = b)

assume r b = b
then have r b 6= a using ‹a 6= b› by simp
have r w 6= a using ‹r a = w› ‹r w 6= w› comp.hyps(1) notid

simple-rotations-cycle by blast
have dist:distinct [a,b,w,v] using ‹a 6= w› ‹a 6= b› ‹a 6= v› ‹b

6= w› ‹b 6= v› ‹v 6= w› by simp
then have ∀ x ∈ {a,b,w}. r x 6= a using ‹r a 6= a› ‹r b 6= a›

‹r w 6= a› by auto
then have r v = a using simple-distinct-map comp.hyps(1) dist

by auto
then show ?thesis using ‹s a = v› nofixrs comp-apply by metis
next

assume r b 6= b
have dist:distinct [w,a,b,v] using ‹a 6= w› ‹a 6= b› ‹a 6= v› ‹b

6= w› ‹b 6= v› ‹v 6= w› by simp
then have ∀ x ∈ {w,a,b}. r x 6= x using ‹r w 6= w› ‹r a 6= a›

‹r b 6= b› by auto
then have r v = v using simple-distinct-ident comp.hyps(1)

dist by auto
have r w 6= a using ‹a 6= w› simple-rotations-cycle comp.hyps(1)

notid ‹r a = w› by simp
have r w 6= v using ‹r v = v› ‹v 6= w› comp.hyps(1)

simple-rotation-bij-corollary by blast
have dist ′:distinct [a,v,w,b] using ‹a 6= w› ‹a 6= b› ‹a 6= v› ‹b

6= w› ‹b 6= v› ‹v 6= w› by simp
then have ∀ x ∈ {a,v,w}. r w 6= x using ‹r w 6= a› ‹r w 6= v›

‹r w 6= w› by auto
then have r w = b using simple-distinct-map ′ comp.hyps(1)

dist ′ by auto
then show ?thesis using ‹s b = w› nofixrs comp-apply by metis
qed

qed
qed

next
assume ¬ (∀ v. s v 6= v)
then have fix1 :∃ v. s v = v by blast
then obtain a where a:s a = a by blast
then show ?thesis
proof (cases r = id)

assume id:r = id
then have (r ◦ s) a = a using a by simp
then have False using nofixrs by auto

16

then show ?thesis by simp
next

assume notid: r 6= id
then have fix1 :∃ v. r v = v using simple-rotations-fix comp.hyps

by simp
then obtain b where b:r b = b by blast
then show ?thesis
proof (cases a = b)

assume a = b
then have (r ◦ s) a = a using a b by simp
then have False using nofixrs by blast
then show ?thesis by simp

next
assume a 6= b

have r a 6= a using ‹a 6= b› b comp.hyps(1) notid simple-rotations-fix-unique
by blast

have r a 6= b using ‹a 6= b› b comp.hyps(1) simple-rotation-bij-corollary
by auto

then obtain c where r a = c and a 6= c and b 6= c using ‹r a
6= a› by auto

have s b 6= a using ‹a 6= b› a comp.hyps(2) rotation-bij-corollary
by blast

have s b 6= b using b nofixrs comp-apply by metis
then obtain d where s b = d and a 6= d and b 6= d using ‹s b

6= a› by auto
have r c 6= a using simple-rotations-cycle ‹a 6= c› ‹r a = c›

comp.hyps(1) notid by blast
have r c 6= b using ‹b 6= c› b comp.hyps(1) simple-rotation-bij-corollary

by blast
have r c 6= c using ‹b 6= c› b comp.hyps(1) notid simple-rotations-fix-unique

by blast
then show ?thesis
proof (cases c = d)

assume c = d
then have s c 6= c using ‹b 6= c› ‹s b = d› rotation-bij-corollary

s by auto
obtain e where r c = e and a 6= e and b 6= e and c 6= e and

d 6= e
using ‹r c 6= a› ‹r c 6= b› ‹r c 6= c› ‹c = d› by auto

have r e 6= b using ‹b 6= e› b r simple-rotation-bij-corollary by
blast

have r e 6= c using ‹a 6= e› ‹r a = c› r simple-rotation-bij-corollary
by blast

have r e 6= e using ‹b 6= e› b notid r simple-rotations-fix-unique

17

by blast
then have dist:distinct [b,c,e,a] using ‹a 6= b› ‹a 6= c› ‹a 6= e›

‹b 6= c› ‹b 6= e› ‹c 6= e› by simp
then have ∀ x ∈ {b,c,e}. r e 6= x using ‹r e 6= b› ‹r e 6= c› ‹r e

6= e› by auto
then have r e = a using simple-distinct-map ′ comp.hyps(1) dist

by auto
have dist:distinct [a,b,c,e] using ‹a 6= b› ‹a 6= c› ‹a 6= e› ‹b 6=

c› ‹b 6= e› ‹c 6= e› by simp
then have ∀ x ∈ {a,b,c}. r c 6= x using ‹r c 6= a› ‹r c 6= b› ‹r c

6= c› by auto
then have r c = e using simple-distinct-map ′ comp.hyps(1) dist

by auto
have s e 6= a using ‹a 6= e› a rotation-bij-corollary s by blast

have s e 6= c using ‹b 6= e› ‹c = d› ‹s b = d› rotation-bij-corollary
s by blast

have s e 6= e using ‹a 6= e› ‹s b 6= b› a fix-unique by fastforce

then have dist:distinct [a,c,e,b] using ‹a 6= b› ‹a 6= c› ‹a 6= e›
‹b 6= c› ‹b 6= e› ‹c 6= e› by simp

then have ∀ x ∈ {a,c,e}. s e 6= x using ‹s e 6= a› ‹s e 6= c› ‹s e
6= e› by auto

then have s e = b using distinct-map ′ comp.hyps(2) dist by auto
have s c 6= a using ‹a 6= c› a rotation-bij-corollary s by blast
have s c 6= b using ‹c 6= e› ‹s e = b› rotation-bij-corollary s by

blast
then have dist:distinct [a,b,c,e] using ‹a 6= b› ‹a 6= c› ‹a 6= e›

‹b 6= c› ‹b 6= e› ‹c 6= e› by simp
then have ∀ x ∈ {a,b,c}. s c 6= x using ‹s c 6= a› ‹s c 6= b› ‹s c

6= c› by auto
then have s c = e using distinct-map ′ comp.hyps(2) dist by

auto

have rsa:(r ◦ s) a = c using ‹r a = c› a by simp
have rsb:(r ◦ s) b = e using ‹c = d› ‹r c = e› ‹s b = d› by auto

have rsc:(r ◦ s) c = a using ‹r e = a› ‹s c = e› by auto
have rse:(r ◦ s) e = b using ‹s e = b› b by simp
then have dist:distinct [a,c,b,e] using ‹a 6= b› ‹a 6= c› ‹a 6= e›

‹b 6= c› ‹b 6= e› ‹c 6= e› by simp
have comprs:r ◦ s ∈ complex-rotations using complex-rotations.comp

r s by simp
show ?thesis using cycle-map[OF comprs dist rsa rsc rsb rse] ‹(r

◦ s) v = w› by blast

18

next
assume c 6= d
then have dist:distinct [a,b,c,d] using ‹a 6= b› ‹a 6= c› ‹a 6= d›

‹b 6= c› ‹b 6= d› ‹c 6= d› by simp
then have ∀ x ∈ {a,b,c}. r c 6= x using ‹r c 6= a› ‹r c 6= b› ‹r c

6= c› by auto
then have r c = d using simple-distinct-map ′ comp.hyps(1) dist

by auto
have r d 6= b using ‹b 6= d› b comp.hyps(1) simple-rotation-bij-corollary

by blast
have r d 6= c using ‹c 6= d› ‹r c = d› comp.hyps(1) notid

simple-rotations-cycle by blast
have r d 6= d using ‹c 6= d› ‹r c = d› comp.hyps(1) sim-

ple-rotation-bij-corollary by auto
have dist:distinct [b,c,d,a] using ‹a 6= b› ‹a 6= c› ‹a 6= d› ‹b 6=

c› ‹b 6= d› ‹c 6= d› by simp
then have ∀ x ∈ {b,c,d}. r d 6= x using ‹r d 6= b› ‹r d 6= c› ‹r

d 6= d› by auto
then have r d = a using simple-distinct-map ′ comp.hyps(1) dist

by auto
have s d 6= a using ‹a 6= d› a comp.hyps(2) rotation-bij-corollary

by blast
have s d 6= c using nofixrs ‹r c = d› ‹c 6= d› comp-apply by

metis
have s d 6= d using ‹b 6= d› ‹s b = d› comp.hyps(2) rota-

tion-bij-corollary by auto
have dist:distinct [a,c,d,b] using ‹a 6= b› ‹a 6= c› ‹a 6= d› ‹b 6=

c› ‹b 6= d› ‹c 6= d› by simp
then have ∀ x ∈ {a,c,d}. s d 6= x using ‹s d 6= a› ‹s d 6= c› ‹s

d 6= d› by auto
then have s d = b using distinct-map ′ comp.hyps(2) dist by

auto
have s c 6= a using ‹a 6= c› a comp.hyps(2) rotation-bij-corollary

by blast
have s c 6= b using ‹c 6= d› ‹s d = b› comp.hyps(2) rota-

tion-bij-corollary by blast
have s c 6= d using ‹b 6= c› ‹s b = d› comp.hyps(2) rota-

tion-bij-corollary by blast
have dist:distinct [a,b,d,c] using ‹a 6= b› ‹a 6= c› ‹a 6= d› ‹b 6=

c› ‹b 6= d› ‹c 6= d› by simp
then have ∀ x ∈ {a,b,d}. s c 6= x using ‹s c 6= a› ‹s c 6= b› ‹s

c 6= d› by auto
then have s c = c using distinct-map ′ comp.hyps(2) dist by

auto

19

then have False using fix-unique ‹s d 6= d› ‹a 6= c› a by fastforce

then show ?thesis by simp
qed

qed
qed

qed
qed

next
show (r ◦ s) v = v −→ (r ◦ s) w = w −→ v 6= w −→ r ◦ s = id
proof(rule impI)+

assume rsv:(r ◦ s) v = v and rsw:(r ◦ s) w = w and v 6= w
show r ◦ s = id
proof(cases s = id)

assume sid:s = id
then have s v = v and s w = w by auto
then have r = id using simple-rotations-fix-unique rsv rsw ‹v 6= w›

r by auto
with sid show ?thesis by simp

next
assume snotid:s 6= id
then show ?thesis
proof(cases r = id)

assume rid:r = id
then have s v = v and s w = w using rsv rsw by auto
then have s = id using ‹v 6= w› fix-unique by blast
with rid show ?thesis by simp

next
assume rnotid:r 6= id
from simple-rotations-fix-unique[OF comp.hyps(1) rnotid] have

r-fix-forall:∀ v w. r v = v ∧ r w = w −→ v = w by blast
from comp.IH snotid have

s-fix-forall:∀ v w. s v = v ∧ s w = w −→ v = w by blast
have fixes-two: ∃ a b. (r ◦ s) a = a ∧ (r ◦ s) b = b ∧ a 6= b using

‹v 6= w› rsv rsw by blast
then show ?thesis
proof (cases ∀ x. s x 6= x)

assume sfix ′:∀ x. s x 6= x
from simple-rotations-fix obtain a where a:r a = a using r by

blast
from sfix ′ have s a 6= a by blast

then have (r ◦ s) a 6= a using a simple-rotation-bij-corollary r by
fastforce

with fixes-two obtain b where (r ◦ s) b = b and b 6= a by blast

20

with fixes-two obtain c where (r ◦ s) c = c and c 6= a and c 6=
b

using ‹(r ◦ s) a 6= a› by blast

have s b 6= a using a ‹(r ◦ s) b = b› sfix ′ by force
have s c 6= a using a ‹(r ◦ s) c = c› sfix ′ by force

then obtain d where s d = a and d 6= a and d 6= b and d 6= c
using ‹s a 6= a› ‹s b 6= a› ‹s c 6= a› complex-rotations-bij s

bij-pointE by metis
have (r ◦ s) d = a using a ‹s d = a› by simp

have r b 6= a using a r simple-rotation-bij-corollary ‹b 6= a› by
auto

have r c 6= a using a r simple-rotation-bij-corollary ‹c 6= a› by
auto

have r d 6= a using a r simple-rotation-bij-corollary ‹d 6= a› by
auto

have r b 6= b using a r simple-rotations-fix-unique rnotid ‹b 6= a›
by blast

have r c 6= c using a r simple-rotations-fix-unique rnotid ‹c 6= a›
by blast

have r d 6= d using a r simple-rotations-fix-unique rnotid ‹d 6= a›
by blast

then have False using sfix ′

proof (cases r b = c)
assume r b = c
then have r c 6= c using r simple-rotation-bij-corollary ‹c 6= b›

by auto
then have r c 6= b using r rnotid simple-rotations-cycle ‹r b =

c› by auto
have dist:distinct [a,b,c,d] using ‹c 6= a› ‹d 6= a› ‹d 6= c› ‹d 6=

b› ‹c 6= b› ‹b 6= a› by simp
then have ∀ v ∈ {a,b,c}. r c 6= v using ‹r c 6= c› ‹r c 6= a› ‹r c

6= b› by auto
then have r c = d using simple-distinct-map ′ r dist by auto

have r d 6= c using r simple-rotation-bij-corollary ‹d 6= b› ‹r b
= c› by auto

have r d 6= d using r a ‹d 6= a› ‹r d 6= d› by simp
have dist ′:distinct [a,c,d,b] using ‹c 6= a› ‹d 6= a› ‹d 6= c› ‹d 6=

b› ‹c 6= b› ‹b 6= a› by simp
then have ∀ v ∈ {a,c,d}. r d 6= v using ‹r d 6= c› ‹r d 6= a› ‹r

21

d 6= d› by auto
then have r d = b using simple-distinct-map ′ r dist ′ by auto

then have s b = d using ‹(r ◦ s) b = b› r simple-rotation-bij-corollary
by auto

have s c = b using ‹(r ◦ s) c = c› ‹r b = c› r sim-
ple-rotation-bij-corollary by auto

then have s b 6= c using ‹s b = d› ‹d 6= c› by simp
then show False using s sfix ′ ‹s c = b› comp(3) by blast

next
assume r b 6= c
have dist ′:distinct [a,b,c,d] using ‹c 6= a› ‹d 6= a› ‹d 6= c› ‹d 6=

b› ‹c 6= b› ‹b 6= a› by simp
then have ∀ v ∈ {a,b,c}. r b 6= v using ‹r b 6= a› ‹r b 6= b› ‹r b

6= c› by auto
then have r b = d using simple-distinct-map ′ r dist ′ by auto

then have r c 6= d using r simple-rotation-bij-corollary ‹c 6= b›
by auto

have dist ′′:distinct [a,c,d,b] using ‹c 6= a› ‹d 6= a› ‹d 6= c› ‹d 6=
b› ‹c 6= b› ‹b 6= a› by simp

then have ∀ v ∈ {a,c,d}. r c 6= v using ‹r c 6= a› ‹r c 6= c› ‹r
c 6= d› by auto

then have r c = b using simple-distinct-map ′ r dist ′′ by auto

then have r d 6= b using r simple-rotation-bij-corollary ‹d 6= c›
by auto

have dist ′′′:distinct [a,b,d,c] using ‹c 6= a› ‹d 6= a› ‹d 6= c› ‹d 6=
b› ‹c 6= b› ‹b 6= a› by simp

then have ∀ v ∈ {a,b,d}. r d 6= v using ‹r d 6= a› ‹r d 6= b› ‹r
d 6= d› by auto

then have r d = c using simple-distinct-map ′ r dist ′′′ by auto

then have s b = c using ‹r c = b› ‹(r ◦ s) b = b› r sim-
ple-rotation-bij-corollary by auto

have s c = d using ‹(r ◦ s) c = c› ‹r d = c› r sim-
ple-rotation-bij-corollary by auto

then have s c 6= b using ‹d 6= b› by simp
then have False using comp(3) s sfix ′ ‹s b = c› by blast
then show ?thesis by simp

qed
then show ?thesis by simp

22

next
assume ¬ (∀ x. s x 6= x)
then have ∃ x. s x = x by simp
then obtain a where a:s a = a by blast
from simple-rotations-fix obtain b where b:r b = b using r by

blast
then show ?thesis
proof (cases a = b)

assume a 6= b
with a b have r a 6= a using r rnotid simple-rotations-fix-unique

by blast
then have (r ◦ s) a 6= a using a by simp
have s b 6= b using a ‹a 6= b› s-fix-forall by blast
then have (r ◦ s) b 6= b using b simple-rotations-inj r

complex-rotations.simp rotation-bij-corollary by fastforce
with fixes-two obtain c where (r ◦ s) c = c and c 6= a and c

6= b using ‹(r ◦ s) a 6= a› by blast
from fixes-two obtain d where (r ◦ s) d = d and d 6= a and d

6= b and d 6= c
using ‹(r ◦ s) a 6= a› ‹(r ◦ s) b 6= b› by blast

have s c 6= a using a ‹c 6= a› rotation-bij-corollary s by force
have s d 6= a using a ‹d 6= a› rotation-bij-corollary s by force

have r a 6= c using ‹s c 6= a› ‹(r ◦ s) c = c› ‹c 6= a› r
simple-rotation-bij-corollary by auto

have r a 6= d using ‹s d 6= a› ‹(r ◦ s) d = d› ‹d 6= a› r
simple-rotation-bij-corollary by auto

have r a 6= b using b simple-rotation-bij-corollary ‹a 6= b› r by
auto

have dist:distinct [b,c,d,a] using ‹c 6= a› ‹d 6= a› ‹c 6= b› ‹a 6=
b› ‹d 6= c› ‹d 6= b› by simp

then have ∀ v ∈ {b,c,d}. r a 6= v using ‹r a 6= b› ‹r a 6= c› ‹r
a 6= d› by auto

then have r a = a using simple-distinct-map ′ r dist by simp
then have False using ‹r a 6= a› by simp
then show ?thesis by simp

next
assume a = b
with a b have (r ◦ s) a = a by simp
from fixes-two obtain c where rsc:(r ◦ s) c = c and c 6= a by

blast
then have r c 6= c using b ‹a = b›r rnotid simple-rotations-fix-unique

23

by blast
then have s c 6= c using rsc by auto
then obtain d where s c = d and d 6= c by blast
then have d 6= a using a s rotation-bij-corollary by blast
have s d 6= d using a using ‹d 6= a› s-fix-forall by blast
have r d = c using rsc ‹s c = d› by simp
then have r c 6= d using ‹d 6= c› simple-rotations-cycle r rnotid

by auto
then obtain e where r c = e and e 6= d by blast
then have e 6= a using b ‹a = b› simple-rotation-bij-corollary ‹c

6= a› r by auto
then have e 6= c using b ‹a = b› ‹r c = e› ‹r c 6= c› by blast

then have r e 6= c using ‹r c = e› simple-rotations-cycle r rnotid
by auto

have r e 6= a using b ‹a = b› ‹e 6= a› simple-rotation-bij-corollary
r by auto

then have r e 6= e using ‹e 6= c› ‹r c = e› r simple-rotation-bij-corollary
by blast

have dist:distinct [a,c,d,e] using ‹c 6= a› ‹d 6= a› ‹d 6= c› ‹e 6=
a› ‹e 6= c› ‹e 6= d› by simp

then have ∀ v ∈ {a,c,d}. r v 6= d using ‹r b = b› ‹a = b› ‹r d
= c› ‹r c = e› by auto

then have r e = d using simple-distinct-map r dist by auto

have dist ′:distinct [a,c,e,d] using dist by auto
have s e 6= e using ‹e 6= a› a s-fix-forall by blast
then have ∀ v ∈ {a,c,e}. s v 6= e using ‹s a = a› ‹s c = d› dist

by auto
then have s d = e using distinct-map s dist ′ by auto
then have ∀ v ∈ {a,c,d}. s v 6= c using ‹s a = a › ‹s c = d›

dist by auto
then have s e = c using distinct-map s dist by auto
then have (r ◦ s) d = d using ‹s d = e› ‹r e = d› by auto
then have (r ◦ s) e = e using ‹s e = c› ‹r c = e› by auto
then show (r ◦ s) = id using ‹(r ◦ s) d = d› ‹(r ◦ s) a = a›

‹(r ◦ s) c = c› dist id-decomp by auto
qed

qed
qed

qed
qed

qed
qed

24

This lemma is a simple corollary of the previous result. It is the main result
necessary to count stabilisers.

corollary complex-rotations-fix: r ∈ complex-rotations =⇒ r a = a =⇒ r
b = b =⇒ a 6= b =⇒ r = id

using complex-rotations-invariants by blast

2.3 Inversions

In this section we show that inverses exist for each rotation, which we will
need to show that the rotations we defined indeed form a group.

lemma simple-rotations-rotate-id:
assumes r :r ∈ simple-rotations
shows r ◦ r ◦ r = id
using r unfolding simple-rotations-def
by safe

(rule ext; rename-tac a; case-tac a;
simp add: simple-rotations
)+

lemma simple-rotations-inverses:
assumes r :r ∈ simple-rotations
shows ∃ y∈complex-rotations. y ◦ r = id

proof
let ?y = r ◦ r
from r show y:?y ∈ complex-rotations using complex-rotations.intros by

simp
from simple-rotations-rotate-id show ?y ◦ r = id using r by auto

qed

lemma complex-rotations-inverses:
r ∈ complex-rotations =⇒ ∃ y∈complex-rotations. y ◦ r = id

proof (induction r rule: complex-rotations.induct)
case (simp r) then show ?case using simple-rotations-inverses by blast

next
case (comp r s)
obtain r ′ where r ′-comp:r ′∈complex-rotations and r ′-inv:r ′ ◦ r = id

using simple-rotations-inverses comp.hyps by auto
obtain y where y-comp:y∈complex-rotations and y-inv:y ◦ s = id using

comp.IH by blast
from complex-rotations-comp have yr ′:y ◦ r ′ ∈ complex-rotations using

r ′-comp y-comp by simp
have r ′ ◦ (r ◦ s) = r ′ ◦ r ◦ s using comp-assoc by metis
then have r ′ ◦ (r ◦ s) = s using r ′-inv by simp

25

then have y ◦ r ′ ◦ (r ◦ s) = id using y-inv comp-assoc by metis
then show ?case using yr ′ by metis

qed

2.4 The Tetrahedral Group

We can now define the group of rotational symmetries of a tetrahedron.
Since we modeled rotations as functions, the group operation is functional
composition and the identity element of the group is the identity function
definition tetrahedral-group :: Rotation monoid where

tetrahedral-group = (|carrier = complex-rotations, mult = (◦), one = id|)

We now prove that this indeed forms a group. Most of the subgoals are
trivial, the last goal uses our results from the previous section about inverses.
lemma is-tetrahedral-group: group tetrahedral-group
proof(rule groupI)

show 1tetrahedral-group ∈ carrier tetrahedral-group
by (simp add: complex-rotations.intros(1) simple-rotations-def tetrahe-

dral-group-def)
next

fix x
assume x ∈ carrier tetrahedral-group
show 1tetrahedral-group ⊗tetrahedral-group x = x
unfolding id-comp tetrahedral-group-def monoid.select-convs(1) monoid.select-convs(2)

..
next

fix x y z
assume x ∈ carrier tetrahedral-group and

y ∈ carrier tetrahedral-group and
z ∈ carrier tetrahedral-group

then show x ⊗tetrahedral-group y ⊗tetrahedral-group z =
x ⊗tetrahedral-group (y ⊗tetrahedral-group z)

unfolding tetrahedral-group-def monoid.select-convs(1) by auto
next

fix x y
assume x ∈ carrier tetrahedral-group and

y ∈ carrier tetrahedral-group
then show x ⊗tetrahedral-group y ∈ carrier tetrahedral-group

by (simp add: complex-rotations.intros(2) tetrahedral-group-def com-
plex-rotations-comp)
next

fix x
assume x ∈ carrier tetrahedral-group
then show ∃ y∈carrier tetrahedral-group.

26

y ⊗tetrahedral-group x = 1tetrahedral-group
using complex-rotations-inverses by (simp add: tetrahedral-group-def)

qed

Having proved that our definition forms a group we can now instantiate our
orbit-stabiliser locale. The group action is the application of a rotation.
fun apply-rotation :: Rotation ⇒ Vertex ⇒ Vertex where apply-rotation r
v = r v

interpretation tetrahedral: orbit-stabiliser tetrahedral-group apply-rotation
:: Rotation ⇒ Vertex ⇒ Vertex
proof intro-locales
show Group.monoid tetrahedral-group using is-tetrahedral-group by (simp

add: group.is-monoid)
show group-axioms tetrahedral-group using is-tetrahedral-group by (simp

add: group-def)
show orbit-stabiliser-axioms tetrahedral-group apply-rotation
proof

fix x
show apply-rotation 1tetrahedral-group x = x by (simp add: tetrahe-

dral-group-def)
next

fix g h x
show g ∈ carrier tetrahedral-group ∧ h ∈ carrier tetrahedral-group

−→ apply-rotation g (apply-rotation h x) = apply-rotation (g
⊗tetrahedral-group h) x

by (simp add: tetrahedral-group-def)
qed

qed

2.5 Counting Orbits

We now prove that there is an orbit for each vertex. That is, the group
action is transitive.
lemma orbit-is-transitive: tetrahedral.orbit A = vertices
proof

show tetrahedral.orbit A ⊆ vertices unfolding vertices-def using Ver-
tex.exhaust by blast
have id ∈ complex-rotations using complex-rotations.intros simple-rotations-def

by auto
then have id ∈ carrier tetrahedral-group

unfolding tetrahedral-group-def partial-object.select-convs(1).
moreover have apply-rotation id A = A by simp
ultimately have A:A ∈ (tetrahedral.orbit A)

27

using tetrahedral.orbit-def mem-Collect-eq by fastforce

have rotate-C ∈ simple-rotations
using simple-rotations-def insert-subset subset-insertI by blast

then have rotate-C ∈ complex-rotations using complex-rotations.intros(1)
by simp

then have rotate-C ∈ carrier tetrahedral-group
unfolding tetrahedral-group-def partial-object.select-convs(1).

moreover have apply-rotation rotate-C A = B by (simp add: rotate-C-def)
ultimately have B:B ∈ (tetrahedral.orbit A)

using tetrahedral.orbit-def mem-Collect-eq by fastforce

have rotate-D ∈ simple-rotations
using simple-rotations-def insert-subset subset-insertI by blast

then have rotate-D ∈ complex-rotations using complex-rotations.intros(1)
by simp

then have rotate-D ∈ carrier tetrahedral-group
unfolding tetrahedral-group-def partial-object.select-convs(1).

moreover have apply-rotation rotate-D A = C by (simp add: rotate-D-def)
ultimately have C :C ∈ (tetrahedral.orbit A)

using tetrahedral.orbit-def mem-Collect-eq by fastforce

have rotate-B ∈ simple-rotations
using simple-rotations-def insert-subset subset-insertI by blast

then have rotate-B ∈ complex-rotations using complex-rotations.intros(1)
by simp

then have rotate-B ∈ carrier tetrahedral-group
unfolding tetrahedral-group-def partial-object.select-convs(1).

moreover have apply-rotation rotate-B A = D by (simp add: rotate-B-def)
ultimately have D:D ∈ (tetrahedral.orbit A)

using tetrahedral.orbit-def mem-Collect-eq by fastforce

from A B C D show vertices ⊆ tetrahedral.orbit A by (simp add: ver-
tices-def subsetI)
qed

It follows from the previous lemma, that the cardinality of the set of orbits
for a particular vertex is 4.

lemma card-orbit: card (tetrahedral.orbit A) = 4
proof −

from card.empty card-insert-if have card vertices = 4 unfolding ver-
tices-def by auto

with orbit-is-transitive show card (tetrahedral.orbit A) = 4 by simp
qed

28

2.6 Counting Stabilisers

Each vertex has three elements in its stabiliser - the identity, a rotation
around its axis by 120 degrees, and a rotation around its axis by 240 degrees.
We will prove this next.
definition stabiliser-A :: Rotation set where

stabiliser-A = {id, rotate-A, rotate-A ◦ rotate-A}

This lemma shows that our conjectured stabiliser is correct.
lemma is-stabiliser : tetrahedral.stabiliser A = stabiliser-A
proof

show stabiliser-A ⊆ tetrahedral.stabiliser A
proof −
have id ∈ complex-rotations using complex-rotations.intros simple-rotations-def

by auto
then have id ∈ carrier tetrahedral-group

unfolding tetrahedral-group-def partial-object.select-convs(1) by simp
moreover have apply-rotation id A = A by simp
ultimately have id:id ∈ (tetrahedral.stabiliser A)

using tetrahedral.stabiliser-def mem-Collect-eq by fastforce

have rotate-A ∈ simple-rotations
using simple-rotations-def insert-subset subset-insertI by blast

then have rotate-A ∈ complex-rotations using complex-rotations.intros(1)
by simp

then have rotate-A ∈ carrier tetrahedral-group
unfolding tetrahedral-group-def partial-object.select-convs(1) by simp
moreover have apply-rotation rotate-A A = A by (simp add: ro-

tate-A-def)
ultimately have A:rotate-A ∈ (tetrahedral.stabiliser A)

using tetrahedral.stabiliser-def mem-Collect-eq by fastforce

have rotate-A ∈ simple-rotations
using simple-rotations-def insert-subset subset-insertI by blast

then have rotate-A ◦ rotate-A ∈ complex-rotations using complex-rotations.intros
by simp

then have rotate-A ◦ rotate-A ∈ carrier tetrahedral-group
unfolding tetrahedral-group-def partial-object.select-convs(1) by simp

moreover have apply-rotation (rotate-A ◦ rotate-A) A = A by (simp
add: rotate-A-def)

ultimately have AA:(rotate-A ◦ rotate-A) ∈ (tetrahedral.stabiliser A)
using tetrahedral.stabiliser-def mem-Collect-eq by fastforce

from id A AA show stabiliser-A ⊆ tetrahedral.stabiliser A

29

by (simp add: stabiliser-A-def subsetI)
qed
show tetrahedral.stabiliser A ⊆ stabiliser-A
proof

fix x
assume a:x ∈ tetrahedral.stabiliser A
with tetrahedral.stabiliser-def have apply-rotation x A = A by simp
with apply-rotation.simps have xA:x A = A by simp
from a have x ∈ carrier tetrahedral-group
using subgroup.mem-carrier [of tetrahedral.stabiliser A] tetrahedral.stabiliser-subgroup

by auto
then have xC :x ∈ complex-rotations

unfolding tetrahedral-group-def partial-object.select-convs(1) by simp
have x B 6= A using xA xC rotation-bij-corollary by fastforce
then have x ∈ complex-rotations =⇒ x A = A =⇒ x ∈ stabiliser-A
proof (cases x B, simp)

assume x B = B
then have x = id using complex-rotations-fix xC xA by simp
then show ?thesis using stabiliser-A-def by auto

next
assume x B = C
then have x 6= id by auto
then have x D 6= D using complex-rotations-fix xC xA by blast
have x D 6= C using xC ‹x B = C › rotation-bij-corollary by fastforce

have x D 6= A using xC xA rotation-bij-corollary by fastforce
then have x D = B using ‹x D 6= C › ‹x D 6= D› Vertex.exhaust by

blast

have x C 6= A using xC xA rotation-bij-corollary by fastforce
have x C 6= B using xC ‹x D = B› rotation-bij-corollary by fastforce

have x C 6= C using complex-rotations-fix xC xA ‹x 6= id› by blast
then have x C = D using ‹x C 6= A› ‹x C 6= B› Vertex.exhaust by

blast

have ∀ v. x v = rotate-A v
using xA ‹x B = C › ‹x D = B› ‹x C = D› Vertex.exhaust rotate-A-def

Vertex.simps by metis
then have x = rotate-A by auto
then show ?thesis using stabiliser-A-def by auto

next
assume x B = D
then have x 6= id by auto

30

then have x C 6= C using complex-rotations-fix xC xA by blast
have x C 6= D using xC ‹x B = D› rotation-bij-corollary by fastforce

have x C 6= A using xC xA rotation-bij-corollary by fastforce
then have x C = B using ‹x C 6= D› ‹x C 6= C › Vertex.exhaust by

blast

have x D 6= A using xC xA rotation-bij-corollary by fastforce
have x D 6= B using xC ‹x C = B› rotation-bij-corollary by fastforce

have x D 6= D using complex-rotations-fix xC xA ‹x 6= id› by blast
then have x D = C using ‹x D 6= A› ‹x D 6= B› Vertex.exhaust by

blast

have ∀ v. x v = (rotate-A ◦ rotate-A) v
using xA ‹x B = D› ‹x C = B› ‹x D = C › Vertex.exhaust rotate-A-def

Vertex.simps comp-apply by metis
then have x = rotate-A ◦ rotate-A by auto
then show ?thesis using stabiliser-A-def by auto

qed
then show x ∈ stabiliser-A using xA xC by simp

qed
qed

Using the previous result, we can now show that the cardinality of the sta-
biliser is 3.

lemma card-stabiliser-help: card stabiliser-A = 3
proof −

have idA:id 6= rotate-A
proof −

have id B = B by simp
moreover have rotate-A B = C by (simp add: rotate-A-def)
ultimately show id 6= rotate-A by force

qed
have idAA:id 6= rotate-A ◦ rotate-A
proof −

have id B = B by simp
moreover have (rotate-A ◦ rotate-A) B = D by (simp add: rotate-A-def)
ultimately show id 6= rotate-A ◦ rotate-A by force

qed
have AAA:rotate-A 6= rotate-A ◦ rotate-A
proof −

have rotate-A B = C by (simp add: rotate-A-def)
moreover have (rotate-A ◦ rotate-A) B = D by (simp add: rotate-A-def)

31

ultimately show rotate-A 6= rotate-A ◦ rotate-A by force
qed
from idA idAA AAA card.empty card-insert-if show
(card stabiliser-A) = 3 unfolding stabiliser-A-def by auto

qed

lemma card-stabiliser : card (tetrahedral.stabiliser A) = 3
using is-stabiliser card-stabiliser-help by simp

2.7 Proving Finiteness

In order to apply the orbit-stabiliser theorem, we need to prove that the set
of rotations is finite. We first prove that the set of vertices is finite.

lemma vertex-set: (UNIV ::Vertex set) = {A, B, C , D}
by(auto, metis Vertex.exhaust)

lemma vertex-finite: finite (UNIV :: Vertex set)
by (simp add: vertex-set)

Next we need instantiate Vertex as an element of the type class of finite sets
in HOL/Finite_Set.thy. This will allow us to use the lemma that functions
between finite sets are finite themselves.

instantiation Vertex :: finite
begin
instance proof

show finite (UNIV :: Vertex set) by (simp add: vertex-set)
qed

Now we can show that the set of rotations is finite.

lemma finite-carrier : finite (carrier tetrahedral-group)
proof −

have finite (UNIV :: (Vertex ⇒ Vertex) set) by simp
moreover have complex-rotations ⊆ (UNIV :: (Vertex ⇒ Vertex) set)

by simp
ultimately show finite (carrier tetrahedral-group) using finite-subset

top-greatest by blast
qed

2.8 Order of the Group

We can now finally apply the orbit-stabiliser theorem. Since we have orbits
of cardinality 4 and stabilisers of cardinality 3, the order of the tetrahedral

32

group, and with it the number of rotational symmetries of the tetrahedron,
is 12.

theorem order tetrahedral-group = 12
proof −

have card (tetrahedral.orbit A) ∗ card (tetrahedral.stabiliser A) = 12
using card-stabiliser card-orbit by simp

with tetrahedral.orbit-stabiliser [OF finite-carrier]
show order tetrahedral-group = 12 by simp

qed

end

end

References

[1] Proofwiki. Orbit-stabilizer theorem. https://proofwiki.org/wiki/
Orbit-Stabilizer_Theorem, 2017. [Online; accessed 18-July-2017].

[2] Proofwiki. Stabilizer is subgroup. https://proofwiki.org/wiki/
Stabilizer_is_Subgroup, 2017. [Online; accessed 18-July-2017].

[3] Proofwiki. Stabilizer is subgroup corollary 2. https://proofwiki.org/
wiki/Stabilizer_is_Subgroup/Corollary_2, 2017. [Online; accessed 18-
July-2017].

[4] Wikipedia. Group action. https://en.wikipedia.org/wiki/Group_action,
2017. [Online; accessed 18-July-2017].

33

https://proofwiki.org/wiki/Orbit-Stabilizer_Theorem
https://proofwiki.org/wiki/Orbit-Stabilizer_Theorem
https://proofwiki.org/wiki/Stabilizer_is_Subgroup
https://proofwiki.org/wiki/Stabilizer_is_Subgroup
https://proofwiki.org/wiki/Stabilizer_is_Subgroup/Corollary_2
https://proofwiki.org/wiki/Stabilizer_is_Subgroup/Corollary_2
https://en.wikipedia.org/wiki/Group_action

	Orbit-Stabiliser Theorem
	Imports
	Group Actions
	Orbit and stabiliser
	Stabiliser Theorems
	Picking representatives from cosets
	Orbit-Stabiliser Theorem

	Rotational Symmetries of the Tetrahedron
	Definition of the Tetrahedron and its Rotations
	Properties of Rotations
	Inversions
	The Tetrahedral Group
	Counting Orbits
	Counting Stabilisers
	Proving Finiteness
	Order of the Group

