Open Induction

Mizuhito Ogawa Christian Sternagel*
March 17, 2025

Abstract

A proof of the open induction schema based on [1].

Contents

1

Binary Predicates Restricted to Elements of a Given Set
1.1 Measures on Sets (Instead of Full Types)
1.2 Facts About Predecessor Sets

Open Induction

2.1 (Greatest) Lower Bounds and Chains
2.2 Open Properties 0.
2.3 Downward Completeness
2.4 The Open Induction Principle
2.5 Open Induction on Universal Domains
2.6 Type Class of Downward Complete Orders

1 Binary Predicates Restricted to Elements of a

Given Set

theory Restricted-Predicates
imports Main
begin

A subset C of A is a chain on A (w.r.t. P) iff for all pairs of elements of C,
one is less than or equal to the other one.

abbreviation chain-on P C A = pred-on.chain A P C
lemmas chain-on-def = pred-on.chain-def

lemma chain-on-subset:

A C B = chain-on P C A = chain-on P C B

*The research was partly funded by the Austrian Science Fund (FWF): J3202.

by (force simp: chain-on-def)

lemma chain-on-imp-subset:
chain-on P CA=— C C A
by (simp add: chain-on-def)

lemma subchain-on:
assumes C C D and chain-on P D A
shows chain-on P C A

using assms by (auto simp: chain-on-def)

definition restrict-to :: (‘a = 'a = bool) = 'a set = (‘a = 'a = bool) where
restrict-to PA = (Axy. s € ANy € ANPuay)

abbreviation strict P=Azy. Pxy A - (P yx)
abbreviation incomparable P = v y. -~ Pz y AN-~Pyzx

abbreviation antichain-on P f A =V (i::nat) j. fi € A A (i < j — incomparable

P (fi) (£7))

lemma strict-reflclp-conv [simp]:
strict (P==) = strict P by auto

lemma reflp-on-reflclp-simp [simp]:
assumes reflp-on A Pand a € Aand b€ A
shows P== ab=Pad
using assms by (auto simp: reflp-on-def)

lemmas refip-on-converse-simp = refip-on-conversp
lemmas irrefip-on-converse-simp = irrefip-on-converse
lemmas transp-on-converse-simp = transp-on-conversep

lemma transp-on-strict:
transp-on A P = transp-on A (strict P)
unfolding transp-on-def by blast

definition wfp-on :: (‘a = 'a = bool) = 'a set = bool
where
wfp-on P A +— = (3f.Vi.fi € AN P (f (Suci)) (fi))

definition inductive-on :: ('a = 'a = bool) = 'a set = bool where
inductive-on P A +— (VQ. VycA. Vz€A. Pz y — Qz) — Qy) —
(Vzed. Q z))

lemma inductive-onl [Pure.intro):

assumes N\Q z. [z € A; (A\y. [y € A; Nz. [xr € 4; Pz y] = Q2] = Q y)]
— Q=

shows inductive-on P A

using assms unfolding inductive-on-def by metis

If P is well-founded on A then every non-empty subset) of A has a minimal
element z w.r.t. P, i.e., all elements that are P-smaller than z are not in Q.

lemma wfp-on-imp-minimal:
assumes wfp-on P A
showsVQz.2€ QAN QCA— (32€Q.Vy. Pyz — y ¢ Q)
proof (rule ccontr)
assume — ?thesis
then obtain @ x where x: z € Q Q C A
and Vz. Jy. z€ Q@ — Pyz Ay € Q by metis
from choice [OF this(3)] obtain f
where sx: Vze@. P (fz) z A fz € Q by blast
let 25 =Xi. (f i)z
have x*x: Vi. 2S¢ € @
proof
fix i show 25 i € Q by (induct ©) (auto simp: * *x)
qed
then have Vi. S ¢ € A using * by blast
moreover have Vi. P (25 (Suc i)) (%S i)
proof
fix i show P (2S5 (Suc ©)) (25 1)
by (induct ©) (auto simp: x #x skx)
qed
ultimately have Vi. 25i € A A P (25 (Suc i) (25) by blast
with assms(1) show Fualse
unfolding wfp-on-def by fast
qed

lemma minimal-imp-inductive-on:
assumes VQuz.2 € QAN QC A— (32€6Q.Vy. Pyz — y ¢ Q)
shows inductive-on P A
proof (rule ccontr)
assume — ?thesis
then obtain Q z
where x: VycA. (Va€A. Pzy — Qz) — Quy
and xx: x € A - Qx
by (auto simp: inductive-on-def)
let 7Q = {z€A. - Q =}
from xx have z € ?Q by auto
moreover have ?Q) C A by auto
ultimately obtain z where z € 70
and min: Vy. Pyz — y ¢ 2Q
using assms [THEN spec [of - ?Q), THEN spec [of - z]] by blast
from «z € ?@Q» have z € A and -~ @ z by auto
with % obtain y where y € A and P y z and — @ y by auto
then have y € ?Q by auto
with (P y 2> and min show Fualse by auto
qed

lemmas wfp-on-imp-inductive-on =
wfp-on-imp-minimal [THEN minimal-imp-inductive-on)]

lemma inductive-on-induct [consumes 2, case-names less, induct pred: inductive-on]:
assumes inductive-on P A and z € A
and Ay. [y e A Ne. [z€ A Pzy] = Q2] = Qy
shows Q z
using assms unfolding inductive-on-def by metis

lemma inductive-on-imp-wfp-on:
assumes inductive-on P A
shows wfp-on P A
proof —
let 2Q =Xe. - (3f. fO=a AN Vi.fie ANP(f (Suci)) (f1)))
{ fix z assume z € A
with assms have 7Q) z
proof (induct rule: inductive-on-induct)
fix yassume y € Aand [H: A\e. c € A= Pzy = ?Qz
show 7Q y
proof (rule ccontr)
assume - ?Q y
then obtain f where x: f0 = y
Vi.fie ANP(f (Suci)) (fi) by auto
then have P (f (Suc 0)) (f 0) and f (Suc 0) € A by auto
with 7H and x have ?Q (f (Suc 0)) by auto
with * show Fulse by auto
qed
qed }
then show ?thesis unfolding wfp-on-def by blast
qed

definition qo-on :: (‘a = 'a = bool) = 'a set = bool where
go-on P A <— reflp-on A P A transp-on A P

definition po-on :: (‘a = 'a = bool) = 'a set = bool where
po-on P A «— (irreflp-on A P A transp-on A P)

lemma po-onl [Pure.intro]:
[érreflp-on A P; transp-on A P] = po-on P A
by (auto simp: po-on-def)

lemma po-on-converse-simp [simp]:
po-on P71 A «— po-on P A
by (simp add: po-on-def)

lemma po-on-imp-qo-on:
po-on P A = go-on (P==) A
unfolding po-on-def qo-on-def

by (metis reflp-on-reflclp transp-on-reficlp)

lemma po-on-imp-irrefip-on:
po-on P A = irrefip-on A P
by (auto simp: po-on-def)

lemma po-on-imp-transp-on:
po-on P A = transp-on A P
by (auto simp: po-on-def)

lemma po-on-subset:
assumes A C B and po-on P B
shows po-on P A
using transp-on-subset and irrefip-on-subset and assms
unfolding po-on-def by blast

lemma transp-on-irrefip-on-imp-antisymp-on:
assumes transp-on A P and irreflp-on A P
shows antisymp-on A (P=7)
proof (rule antisymp-onI)
fix a b assume a € A
and b € Aand P~= aband P== b a
show a = b
proof (rule ccontr)
assume a # b
with <P== a b» and <P== b a» have P a b and P b a by auto
with <transp-on A P> and (a € A» and <b € A have P a a unfolding
transp-on-def by blast
with <irrefip-on A P> and <a € Ay show Fulse unfolding irrefip-on-def by
blast
qed
qed

lemma po-on-imp-antisymp-on:

assumes po-on P A

shows antisymp-on A P
using transp-on-irreflp-on-imp-antisymp-on [of A P] and assms by (auto simp:
po-on-def)

lemma strict-reflclp [simp):
assumes z € Aand y € 4
and transp-on A P and irreflp-on A P
shows strict (P==)zy=Puzy
using assms unfolding transp-on-def irreflp-on-def
by blast

lemma go-on-imp-reflp-on:
qgo-on P A = reflp-on A P
by (auto simp: go-on-def)

lemma go-on-imp-transp-on:
go-on P A = transp-on A P
by (auto simp: qo-on-def)

lemma qo-on-subset:
ACB= go-on PB = gqo-on P A
unfolding qo-on-def
using reflp-on-subset
and transp-on-subset by blast

Quasi-orders are instances of the preorder class.

lemma qo-on-UNIV-conv:
go-on P UNIV <— class.preorder P (strict P) (is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs
unfolding qo-on-def class.preorder-def
using go-on-imp-refip-on [of P UNIV]
and qo-on-imp-transp-on [of P UNIV]
by (auto simp: reflp-on-def) (unfold transp-on-def, blast)
next
assume ?rhs then show ?lhs
unfolding class.preorder-def
by (auto simp: go-on-def reflp-on-def transp-on-def)
qed

lemma wfp-on-iff-inductive-on:
wfp-on P A <— inductive-on P A
by (blast intro: inductive-on-imp-wfp-on wfp-on-imp-inductive-on)

lemma wfp-on-iff-minimal:

wfp-on P A +— (VQ =.
r€EQNQCA—
(32€Q.YVy. Pyz— y ¢ Q))

using wfp-on-imp-minimal [of P A]
and minimal-imp-inductive-on [of A P]
and inductive-on-imp-wfp-on [of P A
by blast

Every non-empty well-founded set A has a minimal element, i.e., an element
that is not greater than any other element.

lemma wfp-on-imp-has-min-elt:
assumes wfp-on P A and A # {}
shows Jz€A. VycA. - Pyx
using assms unfolding wfp-on-iff-minimal by force

lemma wfp-on-induct [consumes 2, case-names less, induct pred: wfp-on:
assumes wfp-on P A and z € A
and Ay. [ve A N\e. [z€4 Pyl = Qz] = Quy

shows @ =
using assms and inductive-on-induct [of P A z]
unfolding wfp-on-iff-inductive-on by blast

lemma wfp-on-UNIV [simp]:
wfp-on P UNIV <— wfP P
unfolding wfp-on-iff-inductive-on inductive-on-def wfp-def wf-def by force

1.1 Measures on Sets (Instead of Full Types)

definition
inv-tmage-betw ::
('b="b = bool) = (Ya = 'b) = 'a set = b set = ('a = 'a = bool)
where
inv-image-betw P fA B= (Azy. 2 € ANye ANfze BANfye BAP (fx)
(f9))

definition

measure-on :: ('a = nat) = 'a set = 'a = 'a = bool
where

measure-on f A = inv-image-betw (<) f A UNIV

lemma in-inv-image-betw [simp):
inv-image-betw PfA Bzy+—>x € ANye ANfze BAfye BAP (fx)
(fy)

by (auto simp: inv-image-betw-def)

lemma in-measure-on [simp, code-unfold):
measure-on fArzy+—xz € ANye ANfx<fy
by (simp add: measure-on-def)

lemma wfp-on-inv-image-betw [simp, introl]:
assumes wfp-on P B
shows wfp-on (inv-image-betw P f A B) A (is wfp-on 2P A)
proof (rule ccontr)
assume — ?thesis
then obtain g where Vi. g i € A AN ?P (g (Suc 7)) (g 7) by (auto simp:
wfp-on-def)
with assms show False by (auto simp: wfp-on-def)
qed

lemma wfp-less:
wfp-on (<) (UNIV :: nat set)
using wf-less by (auto simp: wfp-def)

lemma wfp-on-measure-on [iff]:
wfp-on (measure-on f A) A
unfolding measure-on-def
by (rule wfp-less [THEN wfp-on-inv-image-betw))

lemma wfp-on-mono:

ACB= (Aty 1€ A=—=ye A= Pry—=— Qzy) = wfp-on Q B=
wfp-on P A

unfolding wfp-on-def by (metis subsetD)

lemma wfp-on-subset:
A C B = wfp-on P B = wfp-on P A
using wfp-on-mono by blast

lemma restrict-to-iff [iff):
restrict-to PArzy+—x € ANye ANPxay
by (simp add: restrict-to-def)

lemma wfp-on-restrict-to [simp]:
wfp-on (restrict-to P A) A = wfp-on P A
by (auto simp: wfp-on-def)

lemma irreflp-on-strict [simp, intro:
irreflp-on A (strict P)
by (auto simp: irreflp-on-def)

lemma transp-on-map”:

assumes transp-on B @

and g ‘A CB

and h “ACB

and Az. 2 € A = Q== (hz) (g x)
shows transp-on A (Azx y. Q (g z) (h y))
using assms unfolding transp-on-def
by auto (metis imagel subsetD)

lemma transp-on-map:
assumes transp-on B @
and h ‘A CB
shows transp-on A (Azy. Q (hz) (hy))
using transp-on-map’ [of B Q h A h, simplified, OF assms] by blast

lemma irrefip-on-map:
assumes irrefip-on B @
and h “ACB
shows irreflp-on A (Az y. Q (h z) (hy))
using assms unfolding irrefip-on-def by auto

lemma po-on-map:
assumes po-on Q) B
and h “ACB
shows po-on (Az y. Q (hz) (hy)) A
using assms and transp-on-map and irrefip-on-map
unfolding po-on-def by auto

lemma chain-transp-on-less:
assumes Vi. fi € AN P (fi) (f (Suc?)) and transp-on A P and ¢ < j
shows P (fi) (f7)
using i <)
proof (induct j)
case 0 then show ?case by simp
next
case (Suc j)
show ?Zcase
proof (cases i = j)
case True
with Suc show ?thesis using assms(1) by simp
next
case False
with Suc have P (f i) (fj) by force
moreover from assms have P (f7) (f (Suc j)) by auto
ultimately show ?thesis using assms(1, 2) unfolding transp-on-def by blast
qed
qed

lemma wfp-on-imp-irrefip-on:
assumes wfp-on P A
shows irrefip-on A P
proof (rule irreflp-onl)
fix z
assume z € A
show = Pz x
proof
let 2f = A-.
assume Pz z
then have Vi. P (?f (Suc i)) (?f i) by blast
with <z € 4> have — wfp-on P A by (auto simp: wfp-on-def)
with assms show Fualse by contradiction
qed
qed

inductive
accessible-on :: ('a = 'a = bool) = 'a set = 'a = bool
for P and A
where
accessible-onl [Pure.intro]:
[z € A; Ay. [y € 4; Py z] = accessible-on P A y] = accessible-on P A x

lemma accessible-on-imp-mem:
assumes accessible-on P A a
shows a € 4
using assms by (induct) auto

lemma accessible-on-induct [consumes 1, induct pred: accessible-on]:
assumes *: accessible-on P A a
and IH: A\z. [accessible-on P A z; N\y. [y € 4; Pyz] = Qy] = Q=
shows @ a
by (rule * [THEN accessible-on.induct]) (auto intro: IH accessible-onl)

lemma accessible-on-downward:
accessible-on P A b =— a € A = P a b = accessible-on P A a
by (cases rule: accessible-on.cases) fast

lemma accessible-on-restrict-to-downwards:
assumes (restrict-to P A)*" a b and accessible-on P A b
shows accessible-on P A a
using assms by (induct) (auto dest: accessible-on-imp-mem accessible-on-downward)

lemma accessible-on-imp-inductive-on:
assumes YV z€A. accessible-on P A x
shows inductive-on P A
proof
fix Q =z
assume z € A
and « Ay. [y€e A; Ne. [z € A, Pyl = Qz] = Qy
with assms have accessible-on P A x by auto
then show Q z
proof (induct)
case (1 z)
then have z € A by (blast dest: accessible-on-imp-mem)
show ?case by (rule x) fact+
qed
qed

lemmas accessible-on-imp-wfp-on = accessible-on-imp-inductive-on [THEN induc-
tive-on-imp-wfp-on]

lemma wfp-on-tranclp-imp-wfp-on:
assumes wfp-on (PT1) A
shows wfp-on P A
by (rule ccontr) (insert assms, auto simp: wfp-on-def)

lemma inductive-on-imp-accessible-on:

assumes inductive-on P A

shows VzeA. accessible-on P A x
proof

fix z

assume z € A

with assms show accessible-on P A x

by (induct) (auto intro: accessible-onl)

qed

10

lemma inductive-on-accessible-on-conuv:
inductive-on P A «— (Y z€A. accessible-on P A)
using inductive-on-imp-accessible-on
and accessible-on-imp-inductive-on
by blast

lemmas wfp-on-imp-accessible-on =
wfp-on-imp-inductive-on [THEN inductive-on-imp-accessible-on)]

lemma wfp-on-accessible-on-iff:
wfp-on P A +— (Vz€A. accessible-on P A x)
by (blast dest: wfp-on-imp-accessible-on accessible-on-imp-wfp-on)

lemma accessible-on-tranclp:
assumes accessible-on P A x
shows accessible-on ((restrict-to P A)TT) A z
(is accessible-on ?P A 1)
using assms
proof (induct)
case (I x)
then have z € A by (blast dest: accessible-on-imp-mem)
then show ?case
proof (rule accessible-onl)
fix y
assume y € A
assume Py
then show accessible-on P A y
proof (cases)
assume restrict-to P A y x
with 7 and <y € A) show ?thesis by blast
next
fix z
assume ?P y z and restrict-to P A z x
with 1 have accessible-on ?P A z by (auto simp: restrict-to-def)
from accessible-on-downward [OF this <y € Ay <ZP y 2]
show ?thesis .
qged
qed
qed

lemma wfp-on-restrict-to-tranclp:
assumes wfp-on P A
shows wfp-on ((restrict-to P A)TT) A
using wfp-on-imp-accessible-on [OF assms]
and accessible-on-tranclp [of P A]
and accessible-on-imp-wfp-on [of A (restrict-to P A)* 7]
by blast

lemma wfp-on-restrict-to-tranclp’:

11

assumes wfp-on (restrict-to P A)T™+ A
shows wfp-on P A
by (rule ccontr) (insert assms, auto simp: wfp-on-def)

lemma wfp-on-restrict-to-tranclp-wfp-on-conv:
wfp-on (restrict-to P A)*T A +— wfp-on P A
using wfp-on-restrict-to-tranclp [of P A
and wfp-on-restrict-to-tranclp’ [of P A]
by blast

lemma tranclp-idemp [simp]:
(PTT)T+ = Pt (is 2l = 2r)
proof (intro ext)
fix zy
show ?lxy= %rzy
proof
assume ¢l z y then show ?r z y by (induct) auto
next
assume ?r z y then show 2] z y by (induct) auto
qed
qed

lemma stepfun-imp-tranclp:
assumes f 0 = z and f (Suc n) = z
and Vi<n. P (f i) (f (Suc 7))
shows Pt1 1 2
using assms
by (induct n arbitrary: z z)
(auto intro: tranclp.trancl-into-trancl)

lemma tranclp-imp-stepfun:
assumes PtT 1 2
shows 3fn. fO=x A f (Sucn)=2ANi<n. P (fi)(f (Suci)))
(is3fn. Pxzfn)
using assms
proof (induct rule: tranclp-induct)
case (base y)
let 2f = (A-. y)(0 := x)
have ?f 0 = z and ?f (Suc 0) = y by auto
moreover have Vi<0. P (?f i) (?f (Suc 7))
using base by auto
ultimately show ?case by blast
next
case (step y 2)
then obtain fn where [H: ?P z y f n by blast
then have *: Vi<n. P (f i) (f (Suc 1))
and [simp]: fO =z f (Sucn) =y
by auto

12

let 9n = Suc n
let ?f = f(Suc %n := z)
have ?f 0 = z and ?f (Suc ?n) = z by auto
moreover have Vi<?n. P (?f 1) (?f (Suc 1))
using <P y 2> and * by auto
ultimately show ?case by blast
qed

lemma tranclp-stepfun-conv:
Pt zy<+— Gfn fOo=xzAf (Sucn)=yA Vi<n. P (fi) (f (Suci))))
using tranclp-imp-stepfun and stepfun-imp-tranclp by metis

1.2 Facts About Predecessor Sets

lemma qo-on-predecessor-subset-conv’:
assumes qo-on P Aand BC Aand C C A
shows {z€A. JyeB. Pz y} C {z€A. FyeC. Pz y} +— (VzeB. 3yeC. Pz y)
using assms
by (auto simp: subset-eq qo-on-def reflp-on-def, unfold transp-on-def) metis+

lemma qo-on-predecessor-subset-conv:
[qo-on P A; z € Ay y € Al = {2€A. Pzz} C{2€A. Pzy} +— Puay
using go-on-predecessor-subset-conv’ [of P A {z} {y}] by simp

lemma po-on-predecessors-eq-conv:
assumes po-on P Aand z € Aand y € A
shows {z€A. P== za} = {2€A. P== zy} +— z =y
using assms(2—)
and reflp-on-reficlp [of A P]
and po-on-imp-antisymp-on [OF <po-on P A>]
unfolding antisymp-on-def refip-on-def
by blast

lemma restrict-to-rtranclp:
assumes transp-on A P
and z € Aand y € A
shows (restrict-to P A)** zy «— P~z y
proof —
{ assume (restrict-to P A)** z y
then have P== z y using assms
by (induct) (auto, unfold transp-on-def, blast) }
with assms show ?thesis by auto
qed

lemma refip-on-restrict-to-rtranclp:
assumes reflp-on A P and transp-on A P
andz € Aand y € A
shows (restrict-to P A)** zy «— Pz y
unfolding restrict-to-rtranclp [OF assms(2—)]

13

unfolding refip-on-reficlp-simp [OF assms(1, 3—)] ..

end

2 Open Induction

theory Open-Induction
imports Restricted-Predicates
begin

2.1 (Greatest) Lower Bounds and Chains

A set B has the lower bound z iff x is less than or equal to every element of
B.

definition b P B z +— (VyeB. P== z y)

lemma (b [Pure.introl:
(Ayv.y€e B= P~ zy) = W PBzx
by (auto simp: lb-def)

A set B has the greatest lower bound x iff x is a lower bound of B and less
than or equal to every other lower bound of B.

definition glb PBxz «— b PBxz AN (Vy. b PBy — P== yux)

lemma glbI [Pure.intro:
bPBx—= (A\y. WPBy—=— P~ yz) = glb PBux
by (auto simp: glb-def)

Antisymmetric relations have unique glbs.

lemma glb-unique:
antisymp-on AP —=r € A—yec A= gbPBr = glbPBy=— =y
by (auto simp: glb-def antisymp-on-def)

context pred-on
begin

lemma chain-glb:
assumes transp-on A (C)
shows chain C = glb (C) Co =€ A= yec A= y T v = chain ({y}
U Q)
using assms [unfolded transp-on-def]
unfolding chain-def glb-def Ib-def
by (cases C = {}) blast+

2.2 Open Properties

definition open @ <— (VY C. chain C N C # {} A (3z€A. glb (C) Cz A Q z)
— (JyeC. Qy))

14

lemma openl [Pure.intro]:

(ANC. chain C = C #{} = Jz€A. glb (C) Cz A Q2 = FyeC. Qy) =
open @
by (auto simp: open-def)

lemma open-glb:
[chain C; C # {}; open Q;VzeC. = Qz;z € A; glb (C) Cz] = - Q=
by (auto simp: open-def)

2.3 Downward Completeness

A relation C is downward-complete iff every non-empty C-chain has a great-
est lower bound.

definition downward-complete +— (V¥ C. chain C N C # {} — (Fz€A. glb (O)
C 1))

lemma downward-completel [Pure.introl:
assumes A\C. chain C = C # {} = Jz€A. glb (C) Cz
shows downward-complete

using assms by (auto simp: downward-complete-def)

end

abbreviation open-on P Q A = pred-on.open A P Q
abbreviation dc-on P A = pred-on.downward-complete A P
lemmas open-on-def = pred-on.open-def

and dc-on-def = pred-on.downward-complete-def

lemma dc-onl [Pure.introl:
assumes A\C. chain-on P C A = C # {} = Jz€A. glb P Cz
shows dc-on P A

using assms by (auto simp: dc-on-def)

lemma open-onl [Pure.introl:

(AC. chain-on P C A = C # {} = Fa€A. gb P Cz AN Q= JyeC. Q
y) = open-on P @) A
by (auto simp: open-on-def)

lemma chain-on-reficlp:
chain-on P== A C +— chain-on P A C
by (auto simp: pred-on.chain-def)

lemma [b-reficlp:
IbP~= Bx+— IbPBzx
by (auto simp: lb-def)

lemma glb-reficip:
glb P.~= Bx +— glb PBz

15

by (auto simp: glb-def lb-reficlp)

lemma dc-on-reficlp:
dc-on P== A +— dc-on P A
by (auto simp: dc-on-def chain-on-reficlp glb-reficlp)

2.4 The Open Induction Principle

lemma open-induct-on [consumes 4, case-names less|:
assumes qo: qo-on P A and dc-on P A and open-on P Q A
and z € A
and ind: N\z. [z € A; N\y. [y € A; strict Pyz] = Qy] = Qux
shows @ =
proof (rule ccontr)
assume — Q) x
let B = {z€A. = Q z}
have ?B C A by blast
interpret B: pred-on ?B P .
from B.Hausdorff obtain M
where chain: B.chain M
and maz: \C. B.chain C = M C C = M = C by (auto simp: B.maxchain-def)
then have M C ?B by (auto simp: B.chain-def)
show Fulse
proof (cases M = {})
assume M = {}
moreover have B.chain {z} using <z € A and — @ =) by (simp add:
B.chain-def)
ultimately show Fulse using max by blast
next
interpret A: pred-on A P .
assume M # {}
have A.chain M using chain by (auto simp: A.chain-def B.chain-def)
moreover with <dc-on P Ay and <M # {}» obtain m
where m € A and glb P M m by (auto simp: A.downward-complete-def)
ultimately have - Q m and m € ?B
using A.open-glb [OF - <M # {}» <open-on P Q As - - «glb P M m>]
and <M C ?B» by auto
from ind [OF <m € Aj] and <= @ m» obtain y
where y € A and strict P y m and - @ y by blast
then have Py m and y € B by simp+
from transp-on-subset [OF qo-on-imp-transp-on [OF qo] <¢B C A)]
have transp-on ?B P .
from B.chain-glb [OF this chain <glb P M m> <m € ¢B) <y € ?B» <P y my]
have B.chain ({y} U M) .
then show Fulse
using «glb P M m» and <strict P y m» by (cases y € M) (auto dest: max
sitmp: glb-def lb-def)
qed
qed

16

2.5 Open Induction on Universal Domains

Open induction on quasi-orders (i.e., preorder).

lemma (in preorder) dc-open-induct [consumes 2, case-names less]:
assumes dc-on (<) UNIV
and open-on (<) Q@ UNIV
and A\z. (Ay. y<z= Qy) = Q=
shows @ =
proof —
have go-on (<) UNIV by (auto simp: go-on-def transp-on-def reflp-on-def dest:
order-trans)
from open-induct-on [OF this assms(1,2)]
show @ z using assms(3) unfolding less-le-not-le by blast
qed

2.6 Type Class of Downward Complete Orders

class dcorder = preorder +
assumes dc-on-UNIV: dc-on (<) UNIV
begin

Open induction on downward-complete orders.

lemmas open-induct [consumes 1, case-names less] = dc-open-induct [OF dc-on-UNIV]
end

end

References

[1] J.-C. Raoult. Proving open properties by induction. Information Pro-
cessing Letters, 29(1):19-23, 1988. doi:10.1016,/0020-0190(88)90126-3.

17

http://dx.doi.org/10.1016/0020-0190(88)90126-3

	Binary Predicates Restricted to Elements of a Given Set
	Measures on Sets (Instead of Full Types)
	Facts About Predecessor Sets

	Open Induction
	(Greatest) Lower Bounds and Chains
	Open Properties
	Downward Completeness
	The Open Induction Principle
	Open Induction on Universal Domains
	Type Class of Downward Complete Orders

