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Abstract

A proof of the open induction schema based on [1].
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1 Binary Predicates Restricted to Elements of a

Given Set

theory Restricted-Predicates
imports Main
begin

A subset C of A is a chain on A (w.r.t. P) iff for all pairs of elements of C,
one is less than or equal to the other one.

abbreviation chain-on P C A = pred-on.chain A P C
lemmas chain-on-def = pred-on.chain-def

lemma chain-on-subset:

A C B = chain-on P C A = chain-on P C B

*The research was partly funded by the Austrian Science Fund (FWF): J3202.



by (force simp: chain-on-def)

lemma chain-on-imp-subset:
chain-on P CA=— C C A
by (simp add: chain-on-def)

lemma subchain-on:
assumes C C D and chain-on P D A
shows chain-on P C A

using assms by (auto simp: chain-on-def)

definition restrict-to :: (‘a = 'a = bool) = 'a set = (‘a = 'a = bool) where
restrict-to PA = (Axy. s € ANy € ANPuay)

abbreviation strict P=Azy. Pxy A - (P yx)
abbreviation incomparable P = v y. -~ Pz y AN-~Pyzx

abbreviation antichain-on P f A =V (i::nat) j. fi € A A (i < j — incomparable

P (fi) (£7))

lemma strict-reflclp-conv [simp]:
strict (P==) = strict P by auto

lemma reflp-on-reflclp-simp [simp]:
assumes reflp-on A Pand a € Aand b€ A
shows P== ab=Pad
using assms by (auto simp: reflp-on-def)

lemmas refip-on-converse-simp = refip-on-conversp
lemmas irrefip-on-converse-simp = irrefip-on-converse
lemmas transp-on-converse-simp = transp-on-conversep

lemma transp-on-strict:
transp-on A P = transp-on A (strict P)
unfolding transp-on-def by blast

definition wfp-on :: (‘a = 'a = bool) = 'a set = bool
where
wfp-on P A +— = (3f.Vi.fi € AN P (f (Suci)) (fi))

definition inductive-on :: ('a = 'a = bool) = 'a set = bool where
inductive-on P A +— (VQ. VycA. Vz€A. Pz y — Qz) — Qy) —
(Vzed. Q z))

lemma inductive-onl [Pure.intro):

assumes N\Q z. [z € A; (A\y. [y € A; Nz. [xr € 4; Pz y] = Q2] = Q y)]
— Q=

shows inductive-on P A



using assms unfolding inductive-on-def by metis

If P is well-founded on A then every non-empty subset ) of A has a minimal
element z w.r.t. P, i.e., all elements that are P-smaller than z are not in Q.

lemma wfp-on-imp-minimal:
assumes wfp-on P A
showsVQz.2€ QAN QCA— (32€Q.Vy. Pyz — y ¢ Q)
proof (rule ccontr)
assume — ?thesis
then obtain @ x where x: z € Q Q C A
and Vz. Jy. z€ Q@ — Pyz Ay € Q by metis
from choice [OF this(3)] obtain f
where sx: Vze@. P (fz) z A fz € Q by blast
let 25 =Xi. (f i)z
have x*x: Vi. 2S¢ € @
proof
fix i show 25 i € Q by (induct ©) (auto simp: * *x)
qed
then have Vi. S ¢ € A using * by blast
moreover have Vi. P (25 (Suc i)) (%S i)
proof
fix i show P (2S5 (Suc ©)) (25 1)
by (induct ©) (auto simp: x #x skx)
qed
ultimately have Vi. 25i € A A P (25 (Suc i) (25 ) by blast
with assms(1) show Fualse
unfolding wfp-on-def by fast
qed

lemma minimal-imp-inductive-on:
assumes VQuz.2 € QAN QC A— (32€6Q.Vy. Pyz — y ¢ Q)
shows inductive-on P A
proof (rule ccontr)
assume — ?thesis
then obtain Q z
where x: VycA. (Va€A. Pzy — Qz) — Quy
and xx: x € A - Qx
by (auto simp: inductive-on-def)
let 7Q = {z€A. - Q =}
from xx have z € ?Q by auto
moreover have ?Q) C A by auto
ultimately obtain z where z € 70
and min: Vy. Pyz — y ¢ 2Q
using assms [THEN spec [of - ?Q), THEN spec [of - z]] by blast
from «z € ?@Q» have z € A and -~ @ z by auto
with % obtain y where y € A and P y z and — @ y by auto
then have y € ?Q by auto
with (P y 2> and min show Fualse by auto
qed



lemmas wfp-on-imp-inductive-on =
wfp-on-imp-minimal [THEN minimal-imp-inductive-on)]

lemma inductive-on-induct [consumes 2, case-names less, induct pred: inductive-on]:
assumes inductive-on P A and z € A
and Ay. [y e A Ne. [z€ A Pzy] = Q2] = Qy
shows Q z
using assms unfolding inductive-on-def by metis

lemma inductive-on-imp-wfp-on:
assumes inductive-on P A
shows wfp-on P A
proof —
let 2Q =Xe. - (3f. fO=a AN Vi.fie ANP(f (Suci)) (f1)))
{ fix z assume z € A
with assms have 7Q) z
proof (induct rule: inductive-on-induct)
fix yassume y € Aand [H: A\e. c € A= Pzy = ?Qz
show 7Q y
proof (rule ccontr)
assume - ?Q y
then obtain f where x: f0 = y
Vi.fie ANP(f (Suci)) (fi) by auto
then have P (f (Suc 0)) (f 0) and f (Suc 0) € A by auto
with 7H and x have ?Q (f (Suc 0)) by auto
with * show Fulse by auto
qed
qed }
then show ?thesis unfolding wfp-on-def by blast
qed

definition qo-on :: (‘a = 'a = bool) = 'a set = bool where
go-on P A <— reflp-on A P A transp-on A P

definition po-on :: (‘a = 'a = bool) = 'a set = bool where
po-on P A «— (irreflp-on A P A transp-on A P)

lemma po-onl [Pure.intro]:
[érreflp-on A P; transp-on A P] = po-on P A
by (auto simp: po-on-def)

lemma po-on-converse-simp [simp]:
po-on P71 A «— po-on P A
by (simp add: po-on-def)

lemma po-on-imp-qo-on:
po-on P A = go-on (P==) A
unfolding po-on-def qo-on-def



by (metis reflp-on-reflclp transp-on-reficlp)

lemma po-on-imp-irrefip-on:
po-on P A = irrefip-on A P
by (auto simp: po-on-def)

lemma po-on-imp-transp-on:
po-on P A = transp-on A P
by (auto simp: po-on-def)

lemma po-on-subset:
assumes A C B and po-on P B
shows po-on P A
using transp-on-subset and irrefip-on-subset and assms
unfolding po-on-def by blast

lemma transp-on-irrefip-on-imp-antisymp-on:
assumes transp-on A P and irreflp-on A P
shows antisymp-on A (P=7)
proof (rule antisymp-onI)
fix a b assume a € A
and b € Aand P~= aband P== b a
show a = b
proof (rule ccontr)
assume a # b
with <P== a b» and <P== b a» have P a b and P b a by auto
with <transp-on A P> and (a € A» and <b € A have P a a unfolding
transp-on-def by blast
with <irrefip-on A P> and <a € Ay show Fulse unfolding irrefip-on-def by
blast
qed
qed

lemma po-on-imp-antisymp-on:

assumes po-on P A

shows antisymp-on A P
using transp-on-irreflp-on-imp-antisymp-on [of A P] and assms by (auto simp:
po-on-def)

lemma strict-reflclp [simp):
assumes z € Aand y € 4
and transp-on A P and irreflp-on A P
shows strict (P==)zy=Puzy
using assms unfolding transp-on-def irreflp-on-def
by blast

lemma go-on-imp-reflp-on:
qgo-on P A = reflp-on A P
by (auto simp: go-on-def)



lemma go-on-imp-transp-on:
go-on P A = transp-on A P
by (auto simp: qo-on-def)

lemma qo-on-subset:
ACB= go-on PB = gqo-on P A
unfolding qo-on-def
using reflp-on-subset
and transp-on-subset by blast

Quasi-orders are instances of the preorder class.

lemma qo-on-UNIV-conv:
go-on P UNIV <— class.preorder P (strict P) (is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs
unfolding qo-on-def class.preorder-def
using go-on-imp-refip-on [of P UNIV]
and qo-on-imp-transp-on [of P UNIV]
by (auto simp: reflp-on-def) (unfold transp-on-def, blast)
next
assume ?rhs then show ?lhs
unfolding class.preorder-def
by (auto simp: go-on-def reflp-on-def transp-on-def)
qed

lemma wfp-on-iff-inductive-on:
wfp-on P A <— inductive-on P A
by (blast intro: inductive-on-imp-wfp-on wfp-on-imp-inductive-on)

lemma wfp-on-iff-minimal:

wfp-on P A +— (VQ =.
r€EQNQCA—
(32€Q.YVy. Pyz— y ¢ Q))

using wfp-on-imp-minimal [of P A]
and minimal-imp-inductive-on [of A P]
and inductive-on-imp-wfp-on [of P A
by blast

Every non-empty well-founded set A has a minimal element, i.e., an element
that is not greater than any other element.

lemma wfp-on-imp-has-min-elt:
assumes wfp-on P A and A # {}
shows Jz€A. VycA. - Pyx
using assms unfolding wfp-on-iff-minimal by force

lemma wfp-on-induct [consumes 2, case-names less, induct pred: wfp-on:
assumes wfp-on P A and z € A
and Ay. [ve A N\e. [z€4 Pyl = Qz] = Quy



shows @ =
using assms and inductive-on-induct [of P A z]
unfolding wfp-on-iff-inductive-on by blast

lemma wfp-on-UNIV [simp]:
wfp-on P UNIV <— wfP P
unfolding wfp-on-iff-inductive-on inductive-on-def wfp-def wf-def by force

1.1 Measures on Sets (Instead of Full Types)

definition
inv-tmage-betw ::
('b="b = bool) = (Ya = 'b) = 'a set = b set = ('a = 'a = bool)
where
inv-image-betw P fA B= (Azy. 2 € ANye ANfze BANfye BAP (fx)
(f9))

definition

measure-on :: ('a = nat) = 'a set = 'a = 'a = bool
where

measure-on f A = inv-image-betw (<) f A UNIV

lemma in-inv-image-betw [simp):
inv-image-betw PfA Bzy+—>x € ANye ANfze BAfye BAP (fx)
(fy)

by (auto simp: inv-image-betw-def)

lemma in-measure-on [simp, code-unfold):
measure-on fArzy+—xz € ANye ANfx<fy
by (simp add: measure-on-def)

lemma wfp-on-inv-image-betw [simp, introl]:
assumes wfp-on P B
shows wfp-on (inv-image-betw P f A B) A (is wfp-on 2P A)
proof (rule ccontr)
assume — ?thesis
then obtain g where Vi. g i € A AN ?P (g (Suc 7)) (g 7) by (auto simp:
wfp-on-def)
with assms show False by (auto simp: wfp-on-def)
qed

lemma wfp-less:
wfp-on (<) (UNIV :: nat set)
using wf-less by (auto simp: wfp-def)

lemma wfp-on-measure-on [iff]:
wfp-on (measure-on f A) A
unfolding measure-on-def
by (rule wfp-less [THEN wfp-on-inv-image-betw))



lemma wfp-on-mono:

ACB= (Aty 1€ A=—=ye A= Pry—=— Qzy) = wfp-on Q B=
wfp-on P A

unfolding wfp-on-def by (metis subsetD)

lemma wfp-on-subset:
A C B = wfp-on P B = wfp-on P A
using wfp-on-mono by blast

lemma restrict-to-iff [iff):
restrict-to PArzy+—x € ANye ANPxay
by (simp add: restrict-to-def)

lemma wfp-on-restrict-to [simp]:
wfp-on (restrict-to P A) A = wfp-on P A
by (auto simp: wfp-on-def)

lemma irreflp-on-strict [simp, intro:
irreflp-on A (strict P)
by (auto simp: irreflp-on-def)

lemma transp-on-map”:

assumes transp-on B @

and g ‘A CB

and h “ACB

and Az. 2 € A = Q== (hz) (g x)
shows transp-on A (Azx y. Q (g z) (h y))
using assms unfolding transp-on-def
by auto (metis imagel subsetD)

lemma transp-on-map:
assumes transp-on B @
and h ‘A CB
shows transp-on A (Azy. Q (hz) (hy))
using transp-on-map’ [of B Q h A h, simplified, OF assms] by blast

lemma irrefip-on-map:
assumes irrefip-on B @
and h “ACB
shows irreflp-on A (Az y. Q (h z) (hy))
using assms unfolding irrefip-on-def by auto

lemma po-on-map:
assumes po-on Q) B
and h “ACB
shows po-on (Az y. Q (hz) (hy)) A
using assms and transp-on-map and irrefip-on-map
unfolding po-on-def by auto



lemma chain-transp-on-less:
assumes Vi. fi € AN P (fi) (f (Suc?)) and transp-on A P and ¢ < j
shows P (fi) (f7)
using i < )
proof (induct j)
case 0 then show ?case by simp
next
case (Suc j)
show ?Zcase
proof (cases i = j)
case True
with Suc show ?thesis using assms(1) by simp
next
case False
with Suc have P (f i) (fj) by force
moreover from assms have P (f7) (f (Suc j)) by auto
ultimately show ?thesis using assms(1, 2) unfolding transp-on-def by blast
qed
qed

lemma wfp-on-imp-irrefip-on:
assumes wfp-on P A
shows irrefip-on A P
proof (rule irreflp-onl)
fix z
assume z € A
show = Pz x
proof
let 2f = A-.
assume Pz z
then have Vi. P (?f (Suc i)) (?f i) by blast
with <z € 4> have — wfp-on P A by (auto simp: wfp-on-def)
with assms show Fualse by contradiction
qed
qed

inductive
accessible-on :: ('a = 'a = bool) = 'a set = 'a = bool
for P and A
where
accessible-onl [Pure.intro]:
[z € A; Ay. [y € 4; Py z] = accessible-on P A y] = accessible-on P A x

lemma accessible-on-imp-mem:
assumes accessible-on P A a
shows a € 4
using assms by (induct) auto



lemma accessible-on-induct [consumes 1, induct pred: accessible-on]:
assumes *: accessible-on P A a
and IH: A\z. [accessible-on P A z; N\y. [y € 4; Pyz] = Qy] = Q=
shows @ a
by (rule * [THEN accessible-on.induct]) (auto intro: IH accessible-onl)

lemma accessible-on-downward:
accessible-on P A b =— a € A = P a b = accessible-on P A a
by (cases rule: accessible-on.cases) fast

lemma accessible-on-restrict-to-downwards:
assumes (restrict-to P A)*" a b and accessible-on P A b
shows accessible-on P A a
using assms by (induct) (auto dest: accessible-on-imp-mem accessible-on-downward)

lemma accessible-on-imp-inductive-on:
assumes YV z€A. accessible-on P A x
shows inductive-on P A
proof
fix Q =z
assume z € A
and « Ay. [y€e A; Ne. [z € A, Pyl = Qz] = Qy
with assms have accessible-on P A x by auto
then show Q z
proof (induct)
case (1 z)
then have z € A by (blast dest: accessible-on-imp-mem)
show ?case by (rule x) fact+
qed
qed

lemmas accessible-on-imp-wfp-on = accessible-on-imp-inductive-on [THEN induc-
tive-on-imp-wfp-on]

lemma wfp-on-tranclp-imp-wfp-on:
assumes wfp-on (PT1) A
shows wfp-on P A
by (rule ccontr) (insert assms, auto simp: wfp-on-def)

lemma inductive-on-imp-accessible-on:

assumes inductive-on P A

shows VzeA. accessible-on P A x
proof

fix z

assume z € A

with assms show accessible-on P A x

by (induct) (auto intro: accessible-onl)

qed
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lemma inductive-on-accessible-on-conuv:
inductive-on P A «— (Y z€A. accessible-on P A )
using inductive-on-imp-accessible-on
and accessible-on-imp-inductive-on
by blast

lemmas wfp-on-imp-accessible-on =
wfp-on-imp-inductive-on [THEN inductive-on-imp-accessible-on)]

lemma wfp-on-accessible-on-iff:
wfp-on P A +— (Vz€A. accessible-on P A x)
by (blast dest: wfp-on-imp-accessible-on accessible-on-imp-wfp-on)

lemma accessible-on-tranclp:
assumes accessible-on P A x
shows accessible-on ((restrict-to P A)TT) A z
(is accessible-on ?P A 1)
using assms
proof (induct)
case (I x)
then have z € A by (blast dest: accessible-on-imp-mem)
then show ?case
proof (rule accessible-onl)
fix y
assume y € A
assume Py
then show accessible-on P A y
proof (cases)
assume restrict-to P A y x
with 7 and <y € A) show ?thesis by blast
next
fix z
assume ?P y z and restrict-to P A z x
with 1 have accessible-on ?P A z by (auto simp: restrict-to-def)
from accessible-on-downward [OF this <y € Ay <ZP y 2]
show ?thesis .
qged
qed
qed

lemma wfp-on-restrict-to-tranclp:
assumes wfp-on P A
shows wfp-on ((restrict-to P A)TT) A
using wfp-on-imp-accessible-on [OF assms]
and accessible-on-tranclp [of P A]
and accessible-on-imp-wfp-on [of A (restrict-to P A)* 7]
by blast

lemma wfp-on-restrict-to-tranclp’:
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assumes wfp-on (restrict-to P A)T™+ A
shows wfp-on P A
by (rule ccontr) (insert assms, auto simp: wfp-on-def)

lemma wfp-on-restrict-to-tranclp-wfp-on-conv:
wfp-on (restrict-to P A)*T A +— wfp-on P A
using wfp-on-restrict-to-tranclp [of P A
and wfp-on-restrict-to-tranclp’ [of P A]
by blast

lemma tranclp-idemp [simp]:
(PTT)T+ = Pt (is 2l = 2r)
proof (intro ext)
fix zy
show ?lxy= %rzy
proof
assume ¢l z y then show ?r z y by (induct) auto
next
assume ?r z y then show 2] z y by (induct) auto
qed
qed

lemma stepfun-imp-tranclp:
assumes f 0 = z and f (Suc n) = z
and Vi<n. P (f i) (f (Suc 7))
shows Pt1 1 2
using assms
by (induct n arbitrary: z z)
(auto intro: tranclp.trancl-into-trancl)

lemma tranclp-imp-stepfun:
assumes PtT 1 2
shows 3fn. fO=x A f (Sucn)=2ANi<n. P (fi)(f (Suci)))
(is3fn. Pxzfn)
using assms
proof (induct rule: tranclp-induct)
case (base y)
let 2f = (A-. y)(0 := x)
have ?f 0 = z and ?f (Suc 0) = y by auto
moreover have Vi<0. P (?f i) (?f (Suc 7))
using base by auto
ultimately show ?case by blast
next
case (step y 2)
then obtain fn where [H: ?P z y f n by blast
then have *: Vi<n. P (f i) (f (Suc 1))
and [simp]: fO =z f (Sucn) =y
by auto
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let 9n = Suc n
let ?f = f(Suc %n := z)
have ?f 0 = z and ?f (Suc ?n) = z by auto
moreover have Vi<?n. P (?f 1) (?f (Suc 1))
using <P y 2> and * by auto
ultimately show ?case by blast
qed

lemma tranclp-stepfun-conv:
Pt zy<+— Gfn fOo=xzAf (Sucn)=yA Vi<n. P (fi) (f (Suci))))
using tranclp-imp-stepfun and stepfun-imp-tranclp by metis

1.2 Facts About Predecessor Sets

lemma qo-on-predecessor-subset-conv’:
assumes qo-on P Aand BC Aand C C A
shows {z€A. JyeB. Pz y} C {z€A. FyeC. Pz y} +— (VzeB. 3yeC. Pz y)
using assms
by (auto simp: subset-eq qo-on-def reflp-on-def, unfold transp-on-def) metis+

lemma qo-on-predecessor-subset-conv:
[qo-on P A; z € Ay y € Al = {2€A. Pzz} C{2€A. Pzy} +— Puay
using go-on-predecessor-subset-conv’ [of P A {z} {y}] by simp

lemma po-on-predecessors-eq-conv:
assumes po-on P Aand z € Aand y € A
shows {z€A. P== za} = {2€A. P== zy} +— z =y
using assms(2—)
and reflp-on-reficlp [of A P]
and po-on-imp-antisymp-on [OF <po-on P A>]
unfolding antisymp-on-def refip-on-def
by blast

lemma restrict-to-rtranclp:
assumes transp-on A P
and z € Aand y € A
shows (restrict-to P A)** zy «— P~z y
proof —
{ assume (restrict-to P A)** z y
then have P== z y using assms
by (induct) (auto, unfold transp-on-def, blast) }
with assms show ?thesis by auto
qed

lemma refip-on-restrict-to-rtranclp:
assumes reflp-on A P and transp-on A P
andz € Aand y € A
shows (restrict-to P A)** zy «— Pz y
unfolding restrict-to-rtranclp [OF assms(2—)]

13



unfolding refip-on-reficlp-simp [OF assms(1, 3—)] ..

end

2 Open Induction

theory Open-Induction
imports Restricted-Predicates
begin

2.1 (Greatest) Lower Bounds and Chains

A set B has the lower bound z iff x is less than or equal to every element of
B.

definition b P B z +— (VyeB. P== z y)

lemma (b [Pure.introl:
(Ayv.y€e B= P~ zy) = W PBzx
by (auto simp: lb-def)

A set B has the greatest lower bound x iff x is a lower bound of B and less
than or equal to every other lower bound of B.

definition glb PBxz «— b PBxz AN (Vy. b PBy — P== yux)

lemma glbI [Pure.intro:
bPBx—= (A\y. WPBy—=— P~ yz) = glb PBux
by (auto simp: glb-def)

Antisymmetric relations have unique glbs.

lemma glb-unique:
antisymp-on AP —=r € A—yec A= gbPBr = glbPBy=— =y
by (auto simp: glb-def antisymp-on-def)

context pred-on
begin

lemma chain-glb:
assumes transp-on A (C)
shows chain C = glb (C) Co =€ A= yec A= y T v = chain ({y}
U Q)
using assms [unfolded transp-on-def]
unfolding chain-def glb-def Ib-def
by (cases C = {}) blast+

2.2 Open Properties

definition open @ <— (VY C. chain C N C # {} A (3z€A. glb (C) Cz A Q z)
— (JyeC. Qy))
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lemma openl [Pure.intro]:

(ANC. chain C = C #{} = Jz€A. glb (C) Cz A Q2 = FyeC. Qy) =
open @
by (auto simp: open-def)

lemma open-glb:
[chain C; C # {}; open Q;VzeC. = Qz;z € A; glb (C) Cz] = - Q=
by (auto simp: open-def)

2.3 Downward Completeness

A relation C is downward-complete iff every non-empty C-chain has a great-
est lower bound.

definition downward-complete +— (V¥ C. chain C N C # {} — (Fz€A. glb (O)
C 1))

lemma downward-completel [Pure.introl:
assumes A\C. chain C = C # {} = Jz€A. glb (C) Cz
shows downward-complete

using assms by (auto simp: downward-complete-def)

end

abbreviation open-on P Q A = pred-on.open A P Q
abbreviation dc-on P A = pred-on.downward-complete A P
lemmas open-on-def = pred-on.open-def

and dc-on-def = pred-on.downward-complete-def

lemma dc-onl [Pure.introl:
assumes A\C. chain-on P C A = C # {} = Jz€A. glb P Cz
shows dc-on P A

using assms by (auto simp: dc-on-def)

lemma open-onl [Pure.introl:

(AC. chain-on P C A = C # {} = Fa€A. gb P Cz AN Q= JyeC. Q
y) = open-on P @) A
by (auto simp: open-on-def)

lemma chain-on-reficlp:
chain-on P== A C +— chain-on P A C
by (auto simp: pred-on.chain-def)

lemma [b-reficlp:
IbP~= Bx+— IbPBzx
by (auto simp: lb-def)

lemma glb-reficip:
glb P.~= Bx +— glb PBz
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by (auto simp: glb-def lb-reficlp)

lemma dc-on-reficlp:
dc-on P== A +— dc-on P A
by (auto simp: dc-on-def chain-on-reficlp glb-reficlp)

2.4 The Open Induction Principle

lemma open-induct-on [consumes 4, case-names less|:
assumes qo: qo-on P A and dc-on P A and open-on P Q A
and z € A
and ind: N\z. [z € A; N\y. [y € A; strict Pyz] = Qy] = Qux
shows @ =
proof (rule ccontr)
assume — Q) x
let B = {z€A. = Q z}
have ?B C A by blast
interpret B: pred-on ?B P .
from B.Hausdorff obtain M
where chain: B.chain M
and maz: \C. B.chain C = M C C = M = C by (auto simp: B.maxchain-def)
then have M C ?B by (auto simp: B.chain-def)
show Fulse
proof (cases M = {})
assume M = {}
moreover have B.chain {z} using <z € A and — @ =) by (simp add:
B.chain-def)
ultimately show Fulse using max by blast
next
interpret A: pred-on A P .
assume M # {}
have A.chain M using chain by (auto simp: A.chain-def B.chain-def)
moreover with <dc-on P Ay and <M # {}» obtain m
where m € A and glb P M m by (auto simp: A.downward-complete-def)
ultimately have - Q m and m € ?B
using A.open-glb [OF - <M # {}» <open-on P Q As - - «glb P M m>]
and <M C ?B» by auto
from ind [OF <m € Aj] and <= @ m» obtain y
where y € A and strict P y m and - @ y by blast
then have Py m and y € B by simp+
from transp-on-subset [OF qo-on-imp-transp-on [OF qo] <¢B C A)]
have transp-on ?B P .
from B.chain-glb [OF this chain <glb P M m> <m € ¢B) <y € ?B» <P y my]
have B.chain ({y} U M) .
then show Fulse
using «glb P M m» and <strict P y m» by (cases y € M) (auto dest: max
sitmp: glb-def lb-def)
qed
qed
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2.5 Open Induction on Universal Domains

Open induction on quasi-orders (i.e., preorder).

lemma (in preorder) dc-open-induct [consumes 2, case-names less]:
assumes dc-on (<) UNIV
and open-on (<) Q@ UNIV
and A\z. (Ay. y<z= Qy) = Q=
shows @ =
proof —
have go-on (<) UNIV by (auto simp: go-on-def transp-on-def reflp-on-def dest:
order-trans)
from open-induct-on [OF this assms(1,2)]
show @ z using assms(3) unfolding less-le-not-le by blast
qed

2.6 Type Class of Downward Complete Orders

class dcorder = preorder +
assumes dc-on-UNIV: dc-on (<) UNIV
begin

Open induction on downward-complete orders.

lemmas open-induct [consumes 1, case-names less] = dc-open-induct [OF dc-on-UNIV]
end

end
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