OpSets: Sequential Specifications for Replicated Datatypes

Proof Document

Martin Kleppmann¹, Victor B. F. Gomes¹, Dominic P. Mulligan², and Alastair R. Beresford¹

¹Department of Computer Science and Technology, University of Cambridge, UK
²Security Research Group, Arm Research, Cambridge, UK

Abstract

We introduce OpSets, an executable framework for specifying and reasoning about the semantics of replicated datatypes that provide eventual consistency in a distributed system, and for mechanically verifying algorithms that implement these datatypes. Our approach is simple but expressive, allowing us to succinctly specify a variety of abstract datatypes, including maps, sets, lists, text, graphs, trees, and registers. Our datatypes are also composable, enabling the construction of complex data structures. To demonstrate the utility of OpSets for analysing replication algorithms, we highlight an important correctness property for collaborative text editing that has traditionally been overlooked; algorithms that do not satisfy this property can exhibit awkward interleaving of text. We use OpSets to specify this correctness property and prove that although one existing replication algorithm satisfies this property, several other published algorithms do not.

Contents

1 Abstract OpSet 2
 1.1 OpSet definition ... 2
 1.2 Helper lemmas about lists 3
 1.3 The spec-ops predicate 4
 1.4 The crdt-ops predicate 7

2 Specifying list insertion 9
 2.1 The insert-ops predicate 10
 2.2 Properties of the insert-spec function 11
 2.3 Properties of the interp-ins function 12
 2.4 Equivalence of the two definitions of insertion 13
 2.5 The list-order predicate 15

3 Relationship to Strong List Specification 16
 3.1 Lemmas about insertion and deletion 18
 3.2 Lemmas about interpreting operations 20
 3.3 Satisfying all conditions of A_{strong} 21
1 Abstract OpSet

In this section, we define a general-purpose OpSet abstraction that is not specific to any one particular datatype. We develop a library of useful lemmas that we can build upon later when reasoning about a specific datatype.

theory OpSet
 imports Main
begin

1.1 OpSet definition

An OpSet is a set of (ID, operation) pairs with an associated total order on IDs (represented here with the linorder typeclass), and satisfying the following properties:

1. The ID is unique (that is, if any two pairs in the set have the same ID, then their operation is also the same).

2. If the operation references the IDs of any other operations, those referenced IDs are less than that of the operation itself, according to the total order on IDs. To avoid assuming anything about the structure of operations here, we use a function deps that returns the set of dependent IDs for a given operation. This requirement is a weak expression of causality: an operation can only depend on causally prior operations, and by making the total order on IDs a linear extension of the causal order, we can easily ensure that any referenced IDs are less than that of the operation itself.

3. The OpSet is finite (but we do not assume any particular maximum size).

locale opset =
 fixes opset :: ('oid::{linorder} × 'oper) set
 and deps :: 'oper ⇒ 'oid set
assumes unique-oid: \((oid, op1) \in \text{opset} \Rightarrow (oid, op2) \in \text{opset} \Rightarrow op1 = op2\)
and ref-older: \((oid, oper) \in \text{opset} \Rightarrow \text{ref} \in \text{deps} \text{oper} \Rightarrow \text{ref} < \text{oid}\)
and finite-opset: finite opset

We prove that any subset of an OpSet is also a valid OpSet. This is the case because, although an operation can depend on causally prior operations, the OpSet does not require those prior operations to actually exist. This weak assumption makes the OpSet model more general and simplifies reasoning about OpSets.

Lemma opset-subset:
assumes opset \(Y\) deps
and \(X \subseteq Y\)
shows opset \(X\) deps
⟨proof⟩

Lemma opset-insert:
assumes opset \((\text{insert } x \text{ ops})\) deps
shows opset \(\text{ops}\) deps
⟨proof⟩

Lemma opset-sublist:
assumes opset \((\text{set } (xs @ ys @ zs))\) deps
shows opset \((\text{set } (xs @ zs))\) deps
⟨proof⟩

1.2 Helper lemmas about lists

Some general-purpose lemas about lists and sets that are helpful for subsequent proofs.

Lemma distinct-rem-mid:
assumes distinct \((xs @ [x] @ ys)\)
shows distinct \((xs @ ys)\)
⟨proof⟩

Lemma distinct-fst-append:
assumes \(x \in \text{set} (\text{map fst} \text{ xs})\)
and distinct \((\text{map fst} (xs @ ys))\)
shows \(x \notin \text{set} (\text{map fst} \text{ ys})\)
⟨proof⟩

Lemma distinct-set-remove-last:
assumes distinct \((xs @ [x])\)
shows set \(xs = \text{set} (xs @ [x]) - \{x\}\)
⟨proof⟩

Lemma distinct-set-remove-mid:
assumes distinct \((xs @ [x] @ ys)\)
shows set \((xs @ ys) = \text{set} (xs @ [x] @ ys) - \{x\}\)
lemma distinct-list-split:
 assumes distinct xs
 and xs = xa @ x # ya
 and xs = xb @ x # yb
 shows xa = xb ∧ ya = yb
⟨proof⟩

lemma distinct-append-swap:
 assumes distinct (xs @ ys)
 shows distinct (ys @(xs)
⟨proof⟩

lemma append-subset:
 assumes set xs = set (ys @ zs)
 shows set ys ⊆ set xs and set zs ⊆ set xs
⟨proof⟩

lemma append-set-rem-last:
 assumes set (xs @ [x]) = set (ys @ [x] @ zs)
 and distinct (xs @ [x]) and distinct (ys @ [x] @ zs)
 shows set xs = set (ys @ zs)
⟨proof⟩

lemma distinct-map-fst-remove1:
 assumes distinct (map fst xs)
 shows distinct (map fst (remove1 x xs))
⟨proof⟩

1.3 The spec-ops predicate

The spec-ops predicate describes a list of (ID, operation) pairs that corresponds to the linearisation of an OpSet, and which we use for sequentially interpreting the OpSet. A list satisfies spec-ops iff it is sorted in ascending order of IDs, if the IDs are unique, and if every operation’s dependencies have lower IDs than the operation itself. A list is implicitly finite in Isabelle/HOL. These requirements correspond to the OpSet definition above, and indeed we prove later that every OpSet has a linearisation that satisfies spec-ops.

definition spec-ops :: ('oid::{linorder} × 'oper) list ⇒ ('oper ⇒ 'oid set) ⇒ bool
 where
 spec-ops ops deps = (sorted (map fst ops) ∧ distinct (map fst ops) ∧
 (∀ oid oper ref. (oid, oper) ∈ set ops ∧ ref ∈ deps oper ⇒ ref < oid))

lemma spec-ops-empty:
 shows spec-ops [] deps
⟨proof⟩
lemma spec-ops-distinct:
 assumes spec-ops ops deps
 shows distinct ops
⟨proof⟩

lemma spec-ops-distinct-fst:
 assumes spec-ops ops deps
 shows distinct (map fst ops)
⟨proof⟩

lemma spec-ops-sorted:
 assumes spec-ops ops deps
 shows sorted (map fst ops)
⟨proof⟩

lemma spec-ops-rem-cons:
 assumes spec-ops (x # xs) deps
 shows spec-ops xs deps
⟨proof⟩

lemma spec-ops-rem-last:
 assumes spec-ops (xs @ [x]) deps
 shows spec-ops xs deps
⟨proof⟩

lemma spec-ops-remove1:
 assumes spec-ops xs deps
 shows spec-ops (remove1 x xs) deps
⟨proof⟩

lemma spec-ops-ref-less:
 assumes spec-ops xs deps
 and (oid, oper) ∈ set xs
 and r ∈ deps oper
 shows r < oid
⟨proof⟩

lemma spec-ops-ref-less-last:
 assumes spec-ops (xs @ [(oid, oper)]) deps
 and r ∈ deps oper
 shows r < oid
⟨proof⟩

lemma spec-ops-id-inc:
 assumes spec-ops (xs @ [(oid, oper)]) deps
 and x ∈ set (map fst xs)
 shows x < oid
⟨proof⟩
lemma spec-ops-add-last:
assumes spec-ops xs deps
 and ∀ i ∈ set (map fst xs). i < oid
 and ∀ ref ∈ deps oper. ref < oid
shows spec-ops (xs @ [(oid, oper)]) deps ⟨proof⟩

lemma spec-ops-add-any:
assumes spec-ops (xs @ ys) deps
 and ∀ i ∈ set (map fst xs). i < oid
 and ∀ i ∈ set (map fst ys). oid < i
 and ∀ ref ∈ deps oper. ref < oid
shows spec-ops (xs @ [(oid, oper)] @ ys) deps ⟨proof⟩

lemma spec-ops-split:
assumes spec-ops xs deps
 and oid /∈ set (map fst xs)
shows ∃ pre suf. xs = pre @ suf ∧
 (∀ i ∈ set (map fst pre). i < oid) ∧
 (∀ i ∈ set (map fst suf). oid < i)
⟨proof⟩

lemma spec-ops-exists-base:
assumes finite ops
 and ∀ oid op1 op2. (oid, op1) ∈ ops ⇒ (oid, op2) ∈ ops ⇒ op1 = op2
 and ∀ oid oper ref. (oid, oper) ∈ ops ⇒ ref ∈ deps oper ⇒ ref < oid
shows ∃ op-list. set op-list = ops ∧ spec-ops op-list deps ⟨proof⟩

We prove that for any given OpSet, a spec-ops linearisation exists:

lemma spec-ops-exists:
assumes opset ops deps
shows ∃ op-list. set op-list = ops ∧ spec-ops op-list deps ⟨proof⟩

lemma spec-ops-oid-unique:
assumes spec-ops op-list deps
 and (oid, op1) ∈ set op-list
 and (oid, op2) ∈ set op-list
shows op1 = op2 ⟨proof⟩

Conversely, for any given spec-ops list, the set of pairs in the list is an OpSet:

lemma spec-ops-is-opset:
assumes spec-ops op-list deps
shows opset (set op-list) deps ⟨proof⟩
1.4 The crdt-ops predicate

Like spec-ops, the crdt-ops predicate describes the linearisation of an OpSet into a list. Like spec-ops, it requires IDs to be unique. However, its other properties are different: crdt-ops does not require operations to appear in sorted order, but instead, whenever any operation references the ID of a prior operation, that prior operation must appear previously in the crdt-ops list. Thus, the order of operations is partially constrained: operations must appear in causal order, but concurrent operations can be ordered arbitrarily.

This list describes the operation sequence in the order it is typically applied to an operation-based CRDT. Applying operations in the order they appear in crdt-ops requires that concurrent operations commute. For any crdt-ops operation sequence, there is a permutation that satisfies the spec-ops predicate. Thus, to check whether a CRDT satisfies its sequential specification, we can prove that interpreting any crdt-ops operation sequence with the commutative operation interpretation results in the same end result as interpreting the spec-ops permutation of that operation sequence with the sequential operation interpretation.

\[
\text{inductive crdt-ops} :: (\text{oid} \Rightarrow \text{linorder}) \times \text{oper} \Rightarrow \text{bool}
\]

\[
\text{where}
\]

\[
\text{crdt-ops} \; [\;] \; \text{deps} \; | \\
\text{crdt-ops} \; \text{xs} \; \text{deps}; \\
\text{oid} \notin \text{set} \; (\text{map} \; \text{fst} \; \text{xs}); \\
\forall \; \text{ref} \in \text{deps} \; \text{oper}. \; \text{ref} \in \text{set} \; (\text{map} \; \text{fst} \; \text{xs}) \land \text{ref} < \text{oid} \\
\implies \text{crdt-ops} \; (\text{xs} \; \# \; [(\text{oid}, \text{oper})]) \; \text{deps}
\]

\[
\text{inductive-cases crdt-ops-last}: \text{crdt-ops} \; (\text{xs} \; \# \; [\text{x}]) \; \text{deps}
\]

\[
\text{lemma crdt-ops-intro:} \\
\text{assumes} \; \forall \; \text{r}. \; \text{r} \in \text{deps} \; \text{oper} \implies \text{r} \in \text{fst} \; \text{set} \; \text{xs} \land \text{r} < \text{oid} \\
\text{and} \; \text{oid} \notin \text{fst} \; \text{set} \; \text{xs} \\
\text{and} \; \text{crdt-ops} \; \text{xs} \; \text{deps} \\
\text{shows} \; \text{crdt-ops} \; (\text{xs} \; \# \; [(\text{oid}, \text{oper})]) \; \text{deps} \\
\langle \text{proof} \rangle
\]

\[
\text{lemma crdt-ops-rem-last:} \\
\text{assumes} \; \text{crdt-ops} \; (\text{xs} \; \# \; [\text{x}]) \; \text{deps} \\
\text{shows} \; \text{crdt-ops} \; \text{xs} \; \text{deps} \\
\langle \text{proof} \rangle
\]

\[
\text{lemma crdt-ops-ref-less:} \\
\text{assumes} \; \text{crdt-ops} \; \text{xs} \; \text{deps} \\
\text{and} \; (\text{oid}, \text{oper}) \in \text{set} \; \text{xs} \\
\text{and} \; \text{r} \in \text{deps} \; \text{oper} \\
\text{shows} \; \text{r} < \text{oid} \\
\langle \text{proof} \rangle
\]
lemma crdt-ops-ref-less-last:
 assumes crdt-ops \((xs \oplus [(oid, oper)])\) deps
 and \(r \in \text{deps oper}\)
 shows \(r < oid\)
 ⟨proof⟩

lemma crdt-ops-distinct-fst:
 assumes crdt-ops xs deps
 shows distinct \((\text{map fst xs})\)
 ⟨proof⟩

lemma crdt-ops-distinct:
 assumes crdt-ops xs deps
 shows distinct xs
 ⟨proof⟩

lemma crdt-ops-unique-last:
 assumes crdt-ops \((xs \oplus [(oid, oper)])\) deps
 shows oid /∈ \(\text{set \((\text{map fst xs})\)}\)
 ⟨proof⟩

lemma crdt-ops-unique-mid:
 assumes crdt-ops \((xs \oplus [(oid, oper)]) \oplus ys\) deps
 shows oid /∈ \(\text{set \((\text{map fst xs})\)} \land oid /∈ \(\text{set \((\text{map fst ys})\)}\)
 ⟨proof⟩

lemma crdt-ops-ref-exists:
 assumes crdt-ops \((\text{pre} \oplus (oid, oper) \# \text{suf})\) deps
 and ref ∈ \(\text{deps oper}\)
 shows ref ∈ \(\text{fst ‘ set pre}\)
 ⟨proof⟩

lemma crdt-ops-no-future-ref:
 assumes crdt-ops \((xs \oplus [(oid, oper)]) \oplus ys\) deps
 shows \(\forall ref. ref \in \text{deps oper} \rightarrow ref \notin \text{fst ‘ set ys}\)
 ⟨proof⟩

lemma crdt-ops-reorder:
 assumes crdt-ops \((xs \oplus [(oid, oper)]) \oplus ys\) deps
 and \(\forall op2 r. op2 \in \text{snd ‘ set ys} \rightarrow r \in \text{deps op2} \rightarrow r \neq oid\)
 shows crdt-ops \((xs \oplus ys \oplus [(oid, oper)])\) deps
 ⟨proof⟩

lemma crdt-ops-rem-middle:
 assumes crdt-ops \((xs \oplus [(oid, ref)]) \oplus ys\) deps
 and \(\forall op2 r. op2 \in \text{snd ‘ set ys} \rightarrow r \in \text{deps op2} \rightarrow r \neq oid\)
 shows crdt-ops \((xs \oplus ys)\) deps
 ⟨proof⟩
lemma crdt-ops-independent-suf:
 assumes spec-ops \([xs \circ [(oid, oper)]]\) deps
 and crdt-ops \([ys \circ [(oid, oper)] \circ zs]\) deps
 and set \([xs \circ [(oid, oper)]]\) = set \([ys \circ [(oid, oper)] \circ zs]\)
 shows \(\bigwedge op2. op2 \in snd \circ set zs \implies r \in deps op2 \implies r \neq oid\)
⟨proof⟩

lemma crdt-ops-reorder-spec:
 assumes spec-ops \([xs \circ [x]]\) deps
 and crdt-ops \([ys \circ [x] \circ zs]\) deps
 and set \([xs \circ [x]]\) = set \([ys \circ [x] \circ zs]\)
 shows crdt-ops \([ys \circ zs \circ [x]]\) deps
⟨proof⟩

lemma crdt-ops-rem-spec:
 assumes spec-ops \([xs \circ [x]]\) deps
 and crdt-ops \([ys \circ [x] \circ zs]\) deps
 and set \([xs \circ [x]]\) = set \([ys \circ [x] \circ zs]\)
 shows crdt-ops \([ys \circ zs]\) deps
⟨proof⟩

lemma crdt-ops-rem-penultimate:
 assumes crdt-ops \([xs \circ [(i1, r1)] \circ [(i2, r2)]\) deps
 and \(\bigwedge r. r \in deps r2 \implies r \neq i1\)
 shows crdt-ops \([xs \circ [(i2, r2)]\) deps
⟨proof⟩

lemma crdt-ops-spec-ops-exist:
 assumes crdt-ops \(xs \circ deps\)
 shows \(\exists ys. set xs = set ys \land spec-ops ys deps\)
⟨proof⟩
end

2 Specifying list insertion

theory Insert-Spec
 imports OpSet
begin

In this section we consider only list insertion. We model an insertion operation as a pair \((ID, ref)\), where ref is either None (signifying an insertion at the head of the list) or Some \(r\) (an insertion immediately after a reference element with ID \(r\)). If the reference element does not exist, the operation does nothing.

We provide two different definitions of the interpretation function for list insertion: insert-spec and insert-alt. The insert-alt definition matches the paper, while insert-spec uses the Isabelle/HOL list datatype, making it more
suitable for formal reasoning. In a later subsection we prove that the two definitions are in fact equivalent.

fun insert-spec :: 'oid list ⇒ ('oid × 'oid option) ⇒ 'oid list
where
insert-spec xs (oid, None) = oid#xs |
insert-spec (x#xs) (oid, -) = [] |
insert-spec (x#xs) (oid, Some ref) =
(if x = ref then x ≠ oid # xs
else x ≠ (insert-spec xs (oid, Some ref)))

fun insert-alt :: ('oid × 'oid option) set ⇒ ('oid × 'oid) ⇒ ('oid × 'oid option)
set where
insert-alt list-rel (oid, ref) = (
if ∃n. (ref, n) ∈ list-rel
then {((p, n) ∈ list-rel. p ≠ ref} ∪ {(ref, Some oid)} ∪
{(i, n). i = oid ∧ (ref, n) ∈ list-rel}
else list-rel)

interp-ins is the sequential interpretation of a set of insertion operations. It starts with an empty list as initial state, and then applies the operations from left to right.

definition interp-ins :: ('oid × 'oid option) list ⇒ 'oid list
where
interp-ins ops ≡ foldl insert-spec [] ops

2.1 The insert-ops predicate

We now specialise the definitions from the abstract OpSet section for list insertion. insert-opset is an opset consisting only of insertion operations, and insert-ops is the specialisation of the spec-ops predicate for insertion operations. We prove several useful lemmas about insert-ops.

locale insert-opset = opset opset set-option
for opset :: ('oid::{linorder} × 'oid option) set

definition insert-ops :: ('oid::{linorder} × 'oid option) list ⇒ bool
where
insert-ops list ≡ spec-ops list set-option

lemma insert-ops-NilI [intro!]:
shows insert-ops []
(proof)

lemma insert-ops-rem-last [dest]:
assumes insert-ops (xs @ [x])
shows insert-ops xs
(proof)

lemma insert-ops-rem-cons:
assumes insert-ops (x ≠ xs)
shows insert-ops xs

lemma insert-ops-rem-cons:
lemma insert-ops-appendD:
 assumes insert-ops (xs @ ys)
 shows insert-ops xs
 ⟨proof⟩

lemma insert-ops-rem-prefix:
 assumes insert-ops (pre @ suf)
 shows insert-ops suf
 ⟨proof⟩

lemma insert-ops-remove1:
 assumes insert-ops xs
 shows insert-ops (remove1 x xs)
 ⟨proof⟩

lemma last-op-greatest:
 assumes insert-ops (op-list @ [(oid, oper)])
 and x ∈ set (map fst op-list)
 shows x < oid
 ⟨proof⟩

lemma insert-ops-ref-older:
 assumes insert-ops (pre @ [(oid, Some ref)] @ suf)
 shows ref < oid
 ⟨proof⟩

lemma insert-ops-memb-ref-older:
 assumes insert-ops op-list
 and (oid, Some ref) ∈ set op-list
 shows ref < oid
 ⟨proof⟩

2.2 Properties of the insert-spec function

lemma insert-spec-none [simp]:
 shows set (insert-spec xs (oid, None)) = set xs ∪ {oid}
 ⟨proof⟩

lemma insert-spec-set [simp]:
 assumes ref ∈ set xs
 shows set (insert-spec xs (oid, Some ref)) = set xs ∪ {oid}
 ⟨proof⟩

lemma insert-spec-nonex [simp]:
 assumes ref ∉ set xs
 shows insert-spec xs (oid, Some ref) = xs
 ⟨proof⟩
lemma list-greater-non-memb:
fixes oid :: 'oid::{linorder}
assumes \(\forall x. x \in \text{set} \ ys \implies x < \text{oid} \)
and \(\text{oid} \in \text{set} \ ys \)
shows False
(proof)

lemma inserted-item-ident:
assumes \(a \in \text{set} \ (\text{insert-spec} \ ys \ (e, i)) \)
and \(a \notin \text{set} \ ys \)
shows \(a = e \)
(proof)

lemma insert-spec-distinct [intro]:
fixes oid :: 'oid::{linorder}
assumes distinct ys
and \(\forall x. x \in \text{set} \ ys \implies x < \text{oid} \)
and ref = Some r \(\implies r < \text{oid} \)
shows distinct (\text{insert-spec} ys \ (\text{oid}, \text{ref}))
(proof)

lemma insert-after-ref:
assumes distinct (ys @ ref # ys)
shows insert-spec (ys @ ref # ys) \ (\text{oid}, \text{ref}) = ys @ ref # \text{oid} # ys
(proof)

lemma insert-somewhere:
assumes ref = None \lor (ref = Some r \land r \in \text{set list})
shows \(\exists ys. \text{list} = ys @ \text{oid} \land \text{insert-spec list} \ (\text{oid}, \text{ref}) = ys @ \text{oid} # ys \)
(proof)

lemma insert-first-part:
assumes ref = None \lor (ref = Some r \land r \in \text{set ys})
shows insert-spec (ys @ ys) \ (\text{oid}, \text{ref}) = (\text{insert-spec} ys \ (\text{oid}, \text{ref})) @ ys
(proof)

lemma insert-second-part:
assumes ref = Some r
and \(r \notin \text{set} \ ys \)
and \(r \in \text{set} \ ys \)
shows insert-spec (ys @ ys) \ (\text{oid}, \text{ref}) = ys @ (\text{insert-spec} ys \ (\text{oid}, \text{ref}))
(proof)

2.3 Properties of the interp-ins function

lemma interp-ins-empty [simp]:
shows interp-ins [] = []
(proof)
lemma interp-ins-tail-unfold:
shows interp-ins (xs @ [x]) = insert-spec (interp-ins xs) x
⟨proof⟩

lemma interp-ins-subset [simp]:
shows set (interp-ins op-list) ⊆ set (map fst op-list)
⟨proof⟩

lemma interp-ins-distinct:
assumes insert-ops op-list
shows distinct (interp-ins op-list)
⟨proof⟩

2.4 Equivalence of the two definitions of insertion

At the beginning of this section we gave two different definitions of interpretation functions for list insertion: `insert-spec` and `insert-alt`. In this section we prove that the two are equivalent.

We first define how to derive the successor relation from an Isabelle list. This relation contains `(id, None)` if `id` is the last element of the list, and `(id1, id2)` if `id1` is immediately followed by `id2` in the list.

fun succ-rel :: 'oid list ⇒ ('oid × 'oid option) set
where
\[
\begin{align*}
\text{succ-rel} & \emptyset = \{} \\
\text{succ-rel} & [\text{head}] = \{(\text{head}, \text{None})}\} \\
\text{succ-rel} & (\text{head}#x#xs) = \{(\text{head}, \text{Some } x)\} \cup \text{succ-rel} (x#xs)
\end{align*}
\]

`interp-alt` is the equivalent of `interp-ins`, but using `insert-alt` instead of `insert-spec`. To match the paper, it uses a distinct head element to refer to the beginning of the list.

definition interp-alt :: 'oid ⇒ ('oid × 'oid option) list ⇒ ('oid × 'oid option) set
where
\[
\begin{align*}
\text{interp-alt} & \text{head} \text{ ops} \equiv \text{foldl} \text{ insert-alt} \{(\text{head}, \text{None})\} \\
& \text{(map } \lambda x . \text{ case } x \text{ of} \\
& \quad (\text{oid}, \text{None}) \Rightarrow (\text{oid}, \text{head}) | \\
& \quad (\text{oid}, \text{Some ref}) \Rightarrow (\text{oid}, \text{ref})) \\
& \text{ops})
\end{align*}
\]

lemma succ-rel-set-fst:
shows fst ' (succ-rel xs) = set xs
⟨proof⟩

lemma succ-rel-functional:
assumes (a, b1) ∈ succ-rel xs
and (a, b2) ∈ succ-rel xs
and distinct xs
shows b1 = b2

13
lemma succ-rel-rem-head:
assumes distinct (x # xs)
shows \{ (p, n) ∈ succ-rel (x # xs). p ≠ x \} = succ-rel xs

lemma succ-rel-swap-head:
assumes distinct (ref # list)
and (ref, n) ∈ succ-rel (ref # list)
shows succ-rel (oid # list) = \{ (oid, n) \} ∪ succ-rel list

lemma succ-rel-insert-alt:
assumes a ≠ ref
and distinct (oid # a # b # list)
shows insert-alt (succ-rel (a # b # list)) (oid, ref) =
\{ (a, Some b) \} ∪ insert-alt (succ-rel (b # list)) (oid, ref)

lemma succ-rel-insert-head:
assumes distinct (ref # list)
shows succ-rel (insert-spec (ref # list) (oid, Some ref)) =
insert-alt (succ-rel (ref # list)) (oid, ref)

lemma succ-rel-insert-later:
assumes succ-rel (insert-spec (b # list) (oid, Some ref)) =
insert-alt (succ-rel (b # list)) (oid, ref)
and a ≠ ref
and distinct (a # b # list)
shows succ-rel (insert-spec (a # b # list) (oid, Some ref)) =
insert-alt (succ-rel (a # b # list)) (oid, ref)

lemma succ-rel-insert-Some:
assumes distinct list
shows succ-rel (insert-spec list (oid, Some ref)) = insert-alt (succ-rel list) (oid, ref)

The main result of this section, that insert-spec and insert-alt are equivalent.

Theorem insert-alt-equivalent:
assumes insert-ops ops
and head ∉ fst ‘ set ops
and \(∀ r. \) Some r ∈ snd ‘ set ops ⇒ r ≠ head
shows succ-rel (head # interp-ins ops) = interp-alt head ops

2.5 The list-order predicate

list-order ops x y holds iff, after interpreting the list of insertion operations ops, the list element with ID x appears before the list element with ID y in the resulting list. We prove several lemmas about this predicate; in particular, that executing additional insertion operations does not change the relative ordering of existing list elements.

definition list-order :: ('oid::{linorder} × 'oid option) list ⇒ 'oid ⇒ 'oid ⇒ bool
where
 list-order ops x y ≡ ∃ xs ys zs. interp-ins ops = xs @ [x] @ ys @ [y] @ zs

lemma list-orderI:
 assumes interp-ins ops = xs @ [x] @ ys @ [y] @ zs
 shows list-order ops x y
 ⟨proof⟩

lemma list-orderE:
 assumes list-order ops x y
 shows ∃ xs ys zs. interp-ins ops = xs @ [x] @ ys @ [y] @ zs
 ⟨proof⟩

lemma list-order-memb1:
 assumes list-order ops x y
 shows x ∈ set (interp-ins ops)
 ⟨proof⟩

lemma list-order-memb2:
 assumes list-order ops x y
 shows y ∈ set (interp-ins ops)
 ⟨proof⟩

lemma list-order-trans:
 assumes insert-ops op-list
 and list-order op-list x y
 and list-order op-list y z
 shows list-order op-list x z
 ⟨proof⟩

lemma insert-preserves-order:
 assumes insert-ops ops and insert-ops rest
 and rest = before @ after
 and ops = before @ (oid, ref) ≠ after
 shows ∃ xs ys zs. interp-ins rest = xs @ zs ∧ interp-ins ops = xs @ ys @ zs
 ⟨proof⟩

lemma distinct-fst:
 assumes distinct (map fst A)
 shows distinct A
\langle proof \rangle

lemma subset-distinct-le:
assumes set A \subseteq set B and distinct A and distinct B
shows length A \leq length B
\langle proof \rangle

lemma set-subset-length-eq:
assumes set A \subseteq set B and length B \leq length A
and distinct A and distinct B
shows set A = set B
\langle proof \rangle

lemma length-diff-Suc-exists:
assumes length xs - length ys = Suc m
and set ys \subseteq set xs
and distinct ys and distinct xs
shows \exists e. e \in set xs \land e \notin set ys
\langle proof \rangle

lemma app-length-lt-exists:
assumes xsa @ zsa = xs @ ys
and length xsa \leq length xs
shows xsa @ (drop (length xsa) xs) = xs
\langle proof \rangle

lemma list-order-monotonic:
assumes insert-ops A and insert-ops B
and set A \subseteq set B
and list-order A x y
shows list-order B x y
\langle proof \rangle

end

3 Relationship to Strong List Specification

In this section we show that our list specification is stronger than the A_{strong} specification of collaborative text editing by Attiya et al. [1]. We do this by showing that the OpSet interpretation of any set of insertion and deletion operations satisfies all of the consistency criteria that constitute the A_{strong} specification.

Attiya et al.’s specification is as follows [1]:

An abstract execution $A = (H, \text{vis})$ belongs to the strong list specification A_{strong} if and only if there is a relation $lo \subseteq \text{elems}(A) \times$
elems(A), called the list order, such that:

1. Each event $e = do(op, w) \in H$ returns a sequence of elements $w = a_0 \ldots a_{n-1}$, where $a_i \in \text{elems}(A)$, such that
 (a) w contains exactly the elements visible to e that have been inserted, but not deleted:
 $\forall a. a \in w \iff (do(\text{ins}(a, _), _) \leq \text{vis} e) \land \neg (do(\text{del}(a), _)) \leq \text{vis} e$.

 (b) The order of the elements is consistent with the list order:
 $\forall i, j. (i < j) \implies (a_i, a_j) \in \text{lo}$.

 (c) Elements are inserted at the specified position: if $op = \text{ins}(a, k)$, then $a = a_{\text{min}(k, n-1)}$.

2. The list order lo is transitive, irreflexive and total, and thus determines the order of all insert operations in the execution.

This specification considers only insertion and deletion operations, but no assignment. Moreover, it considers only a single list object, not a graph of composable objects like in our paper. Thus, we prove the relationship to A_{strong} using a simplified interpretation function that defines only insertion and deletion on a single list.

theory List-Spec
 imports Insert-Spec
begin

We first define a datatype for list operations, with two constructors: Insert ref val, and Delete ref. For insertion, the ref argument is the ID of the existing element after which we want to insert, or None to insert at the head of the list. The val argument is an arbitrary value to associate with the list element. For deletion, the ref argument is the ID of the existing list element to delete.

datatype ('oid, 'val) list-op =
 Insert 'oid option 'val |
 Delete 'oid

When interpreting operations, the result is a pair (list, vals). The list contains the IDs of list elements in the correct order (equivalent to the list relation in the paper), and vals is a mapping from list element IDs to values (equivalent to the element relation in the paper).

Insertion delegates to the previously defined insert-spec interpretation function. Deleting a list element removes it from vals.

fun interp-op :: ('oid list \times ('oid \Rightarrow 'val)) \Rightarrow ('oid \times ('oid, 'val) list-op) \Rightarrow ('oid list \times ('oid \Rightarrow 'val)) where
interp-op \((\text{list}, \text{vals}) \ (\text{oid}, \text{Insert ref val}) = (\text{insert-spec list} \ (\text{oid}, \text{ref}), \text{vals(oid} \mapsto \text{val})) \ |
\)
interp-op \((\text{list}, \text{vals}) \ (\text{oid}, \text{Delete ref}) = (\text{list}, \text{vals(ref := None)}) \)

definition interp-ops :: \((\text{oid} \times (\text{oid}, \text{val}) \text{ list-op}) \text{ list} \Rightarrow (\text{oid list} \times (\text{oid} \rightarrow \text{val}))\) where
interp-ops ops \equiv \text{foldl interp-op} ([], \text{Map.empty}) ops

list-order ops x y holds iff, after interpreting the list of operations ops, the list element with ID x appears before the list element with ID y in the resulting list.

definition list-order :: \((\text{oid} \times (\text{oid}, \text{val}) \text{ list-op}) \text{ list} \Rightarrow \text{oid} \Rightarrow \text{oid} \Rightarrow \text{bool}\) where
list-order ops x y \equiv \exists xs ys zs. \text{fst (interp-ops ops)} = xs @ \text{x} @ \text{ys} @ \text{y} @ \text{zs}

The make-insert function generates a new operation for insertion into a given index in a given list. The exclamation mark is Isabelle’s list subscript operator.

fun make-insert :: \((\text{oid list} \Rightarrow \text{val} \Rightarrow \text{nat} \Rightarrow (\text{oid}, \text{val}) \text{ list-op})\) where
make-insert list val 0 = Insert None val |
make-insert \([],\text{val} \text{k}\) = Insert None val |
make-insert list val \text{(Suc k)} = Insert \text{Some (list ! (min k (length list - 1)))} \text{val}

The list-ops predicate is a specialisation of spec-ops to the list-op datatype: it describes a list of (ID, operation) pairs that is sorted by ID, and can thus be used for the sequential interpretation of the OpSet.

fun list-op-deps :: \((\text{oid}, \text{val}) \text{ list-op} \Rightarrow \text{oid set}\) where
list-op-deps \text{(Insert (Some ref)} -\) = \{\text{ref}\} |
list-op-deps \text{(Insert None)} -\) = \{} |
list-op-deps \text{(Delete ref)} -\) = \{\text{ref}\}

locale list-opset = opset opset list-op-deps
for opset :: \((\text{oid} :: \{\text{linorder}\} \times (\text{oid}, \text{val}) \text{ list-op}) \text{ set}\)
definition list-ops :: \((\text{oid} :: \{\text{linorder}\} \times (\text{oid}, \text{val}) \text{ list-op}) \text{ list} \Rightarrow \text{bool}\) where
list-ops ops \equiv \text{spec-ops ops list-op-deps}

3.1 Lemmas about insertion and deletion

definition insertions :: \((\text{oid} :: \{\text{linorder}\} \times (\text{oid}, \text{val}) \text{ list-op}) \text{ list} \Rightarrow (\text{oid} \times \text{oid}) \text{ option}) \text{ list} \Rightarrow \text{bool}\) where
insertions ops \equiv \text{List.map-filter (\lambda oper.}
\text{case oper of (oid, Insert ref val) \Rightarrow Some (oid, ref)} |
\text{(oid, Delete ref) \Rightarrow None)} \text{ ops}

definition inserted-ids :: \((\text{oid} :: \{\text{linorder}\} \times (\text{oid}, \text{val}) \text{ list-op}) \text{ list} \Rightarrow \text{oid list}\) where
inserted-ids ops \equiv \text{List.map-filter (\lambda oper.}
\text{case oper of (oid, Insert ref val) \Rightarrow Some oid |}
(oid, Delete ref) ⇒ None) ops

definition deleted-ids :: ('oid::{linorder} × ('oid, 'val) list-op) list ⇒ 'oid list
where
 deleted-ids ops ≡ List.map-filter (λoper.
 case oper of (oid, Insert ref val) ⇒ None |
 (oid, Delete ref) ⇒ Some ref) ops

lemma interp-ops-unfold-last:
 shows interp-ops (xs @ [x]) = interp-op (interp-ops xs) x
 ⟨proof⟩

lemma map-filter-append:
 shows List.map-filter P (xs @ ys) = List.map-filter P xs @ List.map-filter P ys
 ⟨proof⟩

lemma map-filter-Some:
 assumes P x = Some y
 shows List.map-filter P [x] = [y]
 ⟨proof⟩

lemma map-filter-None:
 assumes P x = None
 shows List.map-filter P [x] = []
 ⟨proof⟩

lemma insertions-last-ins:
 shows insertions (xs @ [(oid, Insert ref val)]) = insertions xs @ [(oid, ref)]
 ⟨proof⟩

lemma insertions-last-del:
 shows insertions (xs @ [(oid, Delete ref)]) = insertions xs
 ⟨proof⟩

lemma insertions-fst-subset:
 shows set (map fst (insertions ops)) ⊆ set (map fst ops)
 ⟨proof⟩

lemma insertions-subset:
 assumes list-ops A and list-ops B
 and set A ⊆ set B
 shows set (insertions A) ⊆ set (insertions B)
 ⟨proof⟩

lemma list-ops-insertions:
 assumes list-ops ops
 shows insert-ops (insertions ops)
 ⟨proof⟩

lemma inserted-ids-last-ins:
 shows inserted-ids (xs @ [(oid, Insert ref val)]) = inserted-ids xs @ [oid]
 ⟨proof⟩

lemma inserted-ids-last-del:
 shows inserted-ids (xs @ [(oid, Delete ref)]) = inserted-ids xs
 ⟨proof⟩

lemma inserted-ids-exist:
 shows oid ∈ set (inserted-ids ops) ←→ (∃ ref val. (oid, Insert ref val) ∈ set ops)
 ⟨proof⟩

lemma deleted-ids-last-ins:
 shows deleted-ids (xs @ [(oid, Insert ref val)]) = deleted-ids xs
 ⟨proof⟩

lemma deleted-ids-last-del:
 shows deleted-ids (xs @ [(oid, Delete ref)]) = deleted-ids xs @ [ref]
 ⟨proof⟩

lemma deleted-ids-exist:
 shows ref ∈ set (deleted-ids ops) ←→ (∃ i. (i, Delete ref) ∈ set ops)
 ⟨proof⟩

lemma deleted-ids-refs-older:
 assumes list-ops (ops @ [(oid, oper)])
 shows ∀ ref. ref ∈ set (deleted-ids ops) ⇒ ref < oid
 ⟨proof⟩

3.2 Lemmas about interpreting operations

lemma interp-ops-list-equiv:
 shows fst (interp-ops ops) = interp-ins (insertions ops)
 ⟨proof⟩

lemma interp-ops-distinct:
 assumes list-ops ops
 shows distinct (fst (interp-ops ops))
 ⟨proof⟩

lemma list-order-equiv:
 shows list-order ops x y ←→ Insert-Spec.list-order (insertions ops) x y
 ⟨proof⟩

lemma interp-ops-vals-domain:
 assumes list-ops ops
 shows dom (snd (interp-ops ops)) = set (inserted-ids ops) − set (deleted-ids ops)
 ⟨proof⟩
lemma insert-spec-nth-oid:
assumes distinct xs
and \(n < \text{length} \, xs \)
shows \(\text{insert-spec} \, \text{xs} \, (\text{oid}, \text{Some} \, (\text{xs} \, ! \, n)) \, ! \, \text{Suc} \, \text{n} = \text{oid} \)
(proof)

lemma insert-spec-inc-length:
assumes distinct xs
and \(n < \text{length} \, xs \)
shows \(\text{length} \, (\text{insert-spec} \, \text{xs} \, (\text{oid}, \text{Some} \, (\text{xs} \, ! \, n))) = \text{Suc} \, (\text{length} \, \text{xs}) \)
(proof)

lemma list-split-two-elems:
assumes distinct xs
and \(x \in \text{set} \, \text{xs} \) and \(y \in \text{set} \, \text{xs} \)
and \(x \neq y \)
shows \(\exists \, \text{pre} \, \text{mid} \, \text{suf}. \, \text{xs} = \text{pre} \, @ \, x \, # \, \text{mid} \, @ \, y \, # \, \text{suf} \, \lor \, \text{xs} = \text{pre} \, @ \, y \, # \, \text{mid} \, @ \, x \, # \, \text{suf} \)
(proof)

3.3 Satisfying all conditions of \(A_{\text{strong}} \)

Part 1(a) of Attiya et al.’s specification states that whenever the list is observed, the elements of the list are exactly those that have been inserted but not deleted. \(A_{\text{strong}} \) uses the visibility relation \(\leq_{\text{vis}} \) to capture the operations known to a node at some arbitrary point in the execution; in the OpSet model, we can simply prove the theorem for an arbitrary OpSet, since the contents of the OpSet at a particular time on a particular node correspond exactly to the set of operations known to that node at that time.

theorem inserted-but-not-deleted:
assumes list-ops ops
and interp-ops ops = (list, vals)
shows \(a \in \text{dom} \, (\text{vals}) \leftrightarrow (\exists \, \text{val}. \, (a, \text{Insert ref val}) \in \text{set ops}) \land \)
\((\forall \, i. \, (i, \text{Delete a}) \in \text{set ops}) \)
(proof)

Part 1(b) states that whenever the list is observed, the order of list elements is consistent with the global list order. We can define the global list order simply as the list order that arises from interpreting the OpSet containing all operations in the entire execution. Then, at any point in the execution, the OpSet is some subset of the set of all operations.

We can then rephrase condition 1(b) as follows: whenever list element \(x \) appears before list element \(y \) in the interpretation of \(\text{some-ops} \), then for any OpSet \(\text{all-ops} \) that is a superset of \(\text{some-ops} \), \(x \) must also appear before \(y \) in the interpretation of \(\text{all-ops} \). In other words, adding more operations to the OpSet does not change the relative order of any existing list elements.
theorem list-order-consistent:
assumes list-ops some-ops and list-ops all-ops
and set some-ops ⊆ set all-ops
and list-order some-ops x y
shows list-order all-ops x y
⟨proof⟩

Part 1(c) states that inserted elements appear at the specified position: that is, immediately after an insertion of oid at index k, the list index k does indeed contain oid (provided that k is less than the length of the list). We prove this property below.

theorem correct-position-insert:
assumes list-ops (ops @ [(oid, ins)])
and ins = make-insert (fst (interp-ops ops)) val k
and list = fst (interp-ops (ops @ [(oid, ins)]))
shows list ! (min k (length list − 1)) = oid
⟨proof⟩

Part 2 states that the list order relation must be transitive, irreflexive, and total. These three properties are straightforward to prove, using our definition of the list-order predicate.

theorem list-order-trans:
assumes list-ops ops
and list-order ops x y
and list-order ops y z
shows list-order ops x z
⟨proof⟩

theorem list-order-irrefl:
assumes list-ops ops
shows ¬ list-order ops x x
⟨proof⟩

theorem list-order-total:
assumes list-ops ops
and x ∈ set (fst (interp-ops ops))
and y ∈ set (fst (interp-ops ops))
and x ≠ y
shows list-order ops x y ∨ list-order ops y x
⟨proof⟩

end

4 Interleaving of concurrent insertions

In this section we prove that our list specification rules out interleaving of concurrent insertion sequences starting at the same position.
theory Interleaving
 imports Insert-Spec
begin

4.1 Lemmas about insert-ops

lemma map-fst-append1:
 assumes ∀ i ∈ set (map fst xs). P i
 and P x
 shows ∀ i ∈ set (map fst (xs @ [(x, y)])). P i
⟨proof⟩

lemma insert-ops-split:
 assumes insert-ops ops
 and (oid, ref) ∈ set ops
 shows ∃ pre suf. ops = pre @ [(oid, ref)] @ suf ∧
 (∀ i ∈ set (map fst pre). i < oid) ∧
 (∀ i ∈ set (map fst suf). oid < i)
⟨proof⟩

lemma insert-ops-split-2:
 assumes insert-ops ops
 and (xid, xr) ∈ set ops
 and (yid, yr) ∈ set ops
 and xid < yid
 shows ∃ as bs cs. ops = as @ [(xid, xr)] @ bs @ [(yid, yr)] @ cs ∧
 (∀ i ∈ set (map fst as). i < xid) ∧
 (∀ i ∈ set (map fst bs). xid < i ∧ i < yid) ∧
 (∀ i ∈ set (map fst cs). yid < i)
⟨proof⟩

lemma insert-ops-sorted-oids:
 assumes insert-ops (xs @ [(i1, r1)] @ ys @ [(i2, r2)])
 shows i1 < i2
⟨proof⟩

lemma insert-ops-subset-last:
 assumes insert-ops (xs @ [x])
 and insert-ops ys
 and set ys ⊆ set (xs @ [x])
 and x ∈ set ys
 shows x = last ys
⟨proof⟩

lemma subset-butlast:
 assumes set xs ⊆ set (ys @ [y])
 and last xs = y
 and distinct xs
 shows set (butlast xs) ⊆ set ys

23
lemma distinct-append-butlast1:
assumes distinct (map fst xs @ map fst ys)
shows distinct (map fst (butlast xs) @ map fst ys)
(proof)

lemma distinct-append-butlast2:
assumes distinct (map fst xs @ map fst ys)
shows distinct (map fst xs @ map fst (butlast ys))
(proof)

4.2 Lemmas about interp-ins

lemma interp-ins-maybe-grow:
assumes insert-ops (xs @ [(oid, ref)])
shows set (interp-ins (xs @ [(oid, ref)])) = set (interp-ins xs) ∨
 set (interp-ins (xs @ [(oid, ref)])) = (set (interp-ins xs) ∪ {oid})
(proof)

lemma interp-ins-maybe-grow2:
assumes insert-ops (xs @ [x])
shows set (interp-ins (xs @ [x])) = set (interp-ins xs) ∨
 set (interp-ins (xs @ [x])) = (set (interp-ins xs) ∪ {fst x})
(proof)

lemma interp-ins-maybe-grow3:
assumes insert-ops (xs @ ys)
shows ∃ A. A ⊆ set (map fst ys) ∧ set (interp-ins (xs @ ys)) = set (interp-ins xs) ∪ A
(proof)

lemma interp-ins-ref-nonex:
assumes insert-ops ops
 and ops = xs @ [(oid, Some ref)] @ ys
 and ref /∈ set (interp-ins xs)
shows oid /∈ set (interp-ins ops)
(proof)

lemma interp-ins-last-None:
shows oid ∈ set (interp-ins (ops @ [(oid, None)]))
(proof)

lemma interp-ins-monotonic:
assumes insert-ops (pre @ suf)
 and oid ∈ set (interp-ins pre)
shows oid ∈ set (interp-ins (pre @ suf))
(proof)
lemma interp-ins-append-non-memb:
assumes insert-ops (pre @ [([oid, Some ref]) @ suf])
and ref \notin set (interp-ins pre)
shows ref \notin set (interp-ins (pre @ [([oid, Some ref]) @ suf]))
(\langle proof \rangle)

lemma interp-ins-append-memb:
assumes insert-ops (pre @ [([oid, Some ref]) @ suf])
and ref \in set (interp-ins pre)
shows oid \in set (interp-ins (pre @ [([oid, Some ref]) @ suf]))
(\langle proof \rangle)

lemma interp-ins-append-forward:
assumes insert-ops (xs @ ys)
and oid \in set (interp-ins (xs @ ys))
and oid \in set (map fst xs)
shows oid \in set (interp-ins xs)
(\langle proof \rangle)

lemma interp-ins-find-ref:
assumes insert-ops (xs @ [([oid, Some ref]) @ ys])
and ref \in set (interp-ins (xs @ [([oid, Some ref]) @ ys]))
shows \exists r. (ref, r) \in set xs
(\langle proof \rangle)

4.3 Lemmas about list-order

lemma list-order-append:
assumes insert-ops (pre @ suf)
and list-order pre x y
shows list-order (pre @ suf) x y
(\langle proof \rangle)

lemma list-order-insert-ref:
assumes insert-ops (ops @ [([oid, Some ref])])
and ref \in set (interp-ins ops)
shows list-order (ops @ [([oid, Some ref])]) ref oid
(\langle proof \rangle)

lemma list-order-insert-none:
assumes insert-ops (ops @ [([oid, None])])
and x \in set (interp-ins ops)
shows list-order (ops @ [([oid, None])]) oid x
(\langle proof \rangle)

lemma list-order-insert-between:
assumes insert-ops (ops @ [([oid, Some ref])])
and list-order ops ref x
shows list-order (ops @ [([oid, Some ref])]) oid x
(\langle proof \rangle)
4.4 The insert-seq predicate

The predicate insert-seq start ops is true iff ops is a list of insertion operations that begins by inserting after start, and then continues by placing each subsequent insertion directly after its predecessor. This definition models the sequential insertion of text at a particular place in a text document.

\[
\text{inductive insert-seq :: 'oid option } \Rightarrow \ ('oid \times 'oid option) \text{ list } \Rightarrow \ bool\text{ where}
\]
\[
\begin{align*}
\text{insert-seq start } [(\text{oid}, \text{start})] & \mid \\
\text{insert-seq start } (\text{list } @ [(\text{prev}, \text{ref})]) & \Rightarrow \text{insert-seq start } (\text{list } @ [(\text{prev}, \text{ref}), (\text{oid}, \text{Some prev})])
\end{align*}
\]

Lemma insert-seq-nonempty:
- **Assumes** insert-seq start xs
- **Shows** xs \(\neq \emptyset\)

Lemma insert-seq-hd:
- **Assumes** insert-seq start xs
- **Shows** \(\exists\) oid. hd xs = (oid, start)

Lemma insert-seq-rem-last:
- **Assumes** insert-seq start (xs @ [x])
- **And** xs \(\neq \emptyset\)
- **Shows** insert-seq start xs

Lemma insert-seq-butlast:
- **Assumes** insert-seq start xs
- **And** xs \(\neq \emptyset\) and xs \(\neq \text{[last xs]}\)
- **Shows** insert-seq start (butlast xs)

Lemma insert-seq-last-ref:
- **Assumes** insert-seq start (xs @ [(xi, xr), (yi, yr)])
- **Shows** yr = Some xi

Lemma insert-seq-start-none:
- **Assumes** insert-ops ops
- **And** insert-seq None xs and insert-ops xs
- **And** set xs \(\subseteq\) set ops
- **Shows** \(\forall i \in\) set (map fst xs). \(i \in\) set (interp-ins ops)

Lemma insert-seq-after-start:
assumes insert-ops ops
and insert-seq (Some ref) xs and insert-ops xs
and set xs ⊆ set ops
and ref ∈ set (interp-ins ops)
shows ∀ i ∈ set (map fst xs). list-order ops ref i
⟨proof⟩

lemma insert-seq-no-start:
assumes insert-ops ops
and insert-seq (Some ref) xs and insert-ops xs
and set xs ⊆ set ops
and ref /∈ set (interp-ins ops)
shows ∀ i ∈ set (map fst xs). i /∈ set (interp-ins ops)
⟨proof⟩

4.5 The proof of no interleaving

lemma no-interleaving-ordered:
assumes insert-ops ops
and insert-seq start xs and insert-ops xs
and insert-seq start ys and insert-ops ys
and set xs ⊆ set ops and set ys ⊆ set ops
and distinct (map fst xs @ map fst ys)
and fst (hd xs) < fst (hd ys)
and (∀ r. start = Some r =⇒ r ∈ set (interp-ins ops))
shows (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops y x) ∧
(∀ r. start = Some r =⇒ (∀ x ∈ set (map fst xs). list-order ops r x) ∧
 (∀ y ∈ set (map fst ys). list-order ops r y))
⟨proof⟩

Consider an execution that contains two distinct insertion sequences, xs and ys, that both begin at the same initial position start. We prove that, provided the starting element exists, the two insertion sequences are not interleaved. That is, in the final list order, either all insertions by xs appear before all insertions by ys, or vice versa.

theorem no-interleaving:
assumes insert-ops ops
and insert-seq start xs and insert-ops xs
and insert-seq start ys and insert-ops ys
and set xs ⊆ set ops and set ys ⊆ set ops
and distinct (map fst xs @ map fst ys)
and start = None ∨ (∃ r. start = Some r ∧ r ∈ set (interp-ins ops))
shows (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops x y) ∨
(∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops y x)
⟨proof⟩

For completeness, we also prove what happens if there are two insertion sequences, xs and ys, but their initial position start does not exist. In that case, none of the insertions in xs or ys take effect.
theorem missing-start-no-insertion:
 assumes insert-ops ops
 and insert-seq (Some start) xs and insert-ops xs
 and insert-seq (Some start) ys and insert-ops ys
 and set xs \subseteq set ops and set ys \subseteq set ops
 and start \notin set (interp-ins ops)
 shows \forall x \in set (map fst xs) \cup set (map fst ys), x \notin set (interp-ins ops)
⟨proof⟩
end

5 The Replicated Growable Array (RGA)

The RGA algorithm [4] is a replicated list (or collaborative text-editing) algorithm. In this section we prove that RGA satisfies our list specification. The Isabelle/HOL definition of RGA in this section is based on our prior work on formally verifying CRDTs [3, 2].

theory RGA
 imports Insert-Spec
begin

fun insert-body :: 'oid::{linorder} list \Rightarrow 'oid list
where
insert-body [] e = [e] |
insert-body (x # xs) e = (if x < e then e # x # xs else x # insert-body xs e)

fun insert-rga :: 'oid::{linorder} list \Rightarrow ('oid \times 'oid option) \Rightarrow 'oid list
where
insert-rga xs (e, None) = insert-body xs e |
insert-rga [] (e, Some i) = [] |
insert-rga (x # xs) (e, Some i) = (if x = i then x # insert-body xs e else x # insert-rga xs (e, Some i))

definition interp-rga :: ('oid::{linorder} \times 'oid option) list \Rightarrow 'oid list
interp-rga ops \equiv foldl insert-rga [] ops

5.1 Commutativity of insert-rga

lemma insert-body-set-ins [simp]:
 shows set (insert-body xs e) = insert e (set xs)
⟨proof⟩

lemma insert-rga-set-ins:
 assumes i \in set xs

shows set (insert-rga xs (oid, Some i)) = insert oid (set xs)
⟨proof⟩

lemma insert-body-commutes:
shows insert-body (insert-body xs e1) e2 = insert-body (insert-body xs e2) e1
⟨proof⟩

lemma insert-rga-insert-body-commute:
assumes i2 ≠ Some e1
shows insert-rga (insert-body xs e1) (e2, i2) = insert-body (insert-rga xs (e2, i2)) e1
⟨proof⟩

lemma insert-rga-None-commutes:
assumes i2 ≠ Some e1
shows insert-rga (insert-rga xs (e1, None)) (e2, i2) = insert-rga (insert-rga xs (e2, i2)) (e1, None)
⟨proof⟩

lemma insert-rga-nonexistent:
assumes i ̸∈ set xs
shows insert-rga xs (e, Some i) = xs
⟨proof⟩

lemma insert-rga-Some-commutes:
assumes i1 ∈ set xs and i2 ∈ set xs
and e1 ≠ i2 and e2 ≠ i1
shows insert-rga (insert-rga xs (e1, Some i1)) (e2, Some i2) = insert-rga (insert-rga xs (e2, Some i2)) (e1, Some i1)
⟨proof⟩

lemma insert-rga-commutes:
assumes i2 ≠ Some e1 and i1 ≠ Some e2
shows insert-rga (insert-rga xs (e1, i1)) (e2, i2) = insert-rga (insert-rga xs (e2, i2)) (e1, i1)
⟨proof⟩

lemma insert-body-split:
shows ∃ p s. xs = p @ s ∧ insert-body xs e = p @ e # s
⟨proof⟩

lemma insert-between-elements:
assumes xs = pre @ ref # suf
and distinct xs
and ∃i. i ∈ set xs ⇒ i < e
shows insert-rga xs (e, Some ref) = pre @ ref # e # suf
⟨proof⟩

lemma insert-rga-after-ref:
assumes $\forall x \in \text{set as. } a \neq x$
and $\text{insert-body } (cs @\ ds)\ e = cs @\ e \#\ ds$
shows $\text{insert-rga } (as @\ a \#\ cs @\ ds)\ (e, \text{Some } a) = as @\ a \#\ cs @\ e \#\ ds$
\langle proof \rangle

lemma $\text{insert-rga-preserves-order}$:
assumes $i = \text{None} \lor (\exists i'. i = \text{Some } i' \land i' \in \text{set xs})$
and distinct xs
shows $\exists \text{pre suf. } xs = \text{pre} @\ \text{suf} \land \text{insert-rga } xs\ (e, i) = \text{pre} @\ e \#\ \text{suf}$
\langle proof \rangle

5.2 Lemmas about the rga-ops predicate

definition $\text{rga-ops} : ('oid::{linorder} \times 'oid option)\ \text{list} \Rightarrow \text{bool}$ where $\text{rga-ops list} \equiv \text{crdt-ops list set-option}$

lemma rga-ops-rem-last:
assumes $\text{rga-ops } (xs @\ [x])$
shows $\text{rga-ops } xs$
\langle proof \rangle

lemma $\text{rga-ops-rem-penultimate}$:
assumes $\text{rga-ops } (xs @\ [(i1, r1), (i2, r2)])$
and $\land r. r2 = \text{Some } r \Rightarrow r \neq i1$
shows $\text{rga-ops } (xs @\ [(i2, r2)])$
\langle proof \rangle

lemma $\text{rga-ops-ref-exists}$:
assumes $\text{rga-ops } (\text{pre} @\ (\text{oid}, \text{Some } \text{ref}) \#\ \text{suf})$
shows $\text{ref} \in \text{fst } \text{set pre}$
\langle proof \rangle

5.3 Lemmas about the $\text{interp-rga function}$

lemma $\text{interp-rga-tail-unfold}$:
shows $\text{interp-rga } (xs@[x]) = \text{insert-rga } (\text{interp-rga } (xs))\ x$
\langle proof \rangle

lemma interp-rga-ids:
assumes $\text{rga-ops } xs$
shows $\text{set } (\text{interp-rga } xs) = \text{set } (\text{map } \text{fst } xs)$
\langle proof \rangle

lemma $\text{interp-rga-distinct}$:
assumes $\text{rga-ops } xs$
shows $\text{distinct } (\text{interp-rga } xs)$
\langle proof \rangle
5.4 Proof that RGA satisfies the list specification

lemma final-insert:
assumes set (xs @ [x]) = set (ys @ [x])
and rga-ops (xs @ [x])
and insert-ops (ys @ [x])
and interp-rga xs = interp-ins ys
shows interp-rga (xs @ [x]) = interp-ins (ys @ [x])

lemma interp-rga-reorder:
assumes rga-ops (pre @ suf @ [(oid, ref)])
and \(\forall i \ r \cdot (i, \text{Some } r) \in \text{set } suf \implies r \neq \text{oid} \)
and \(\forall r \cdot \text{ref } = \text{Some } r \implies r \notin \text{fst } \cdot \text{set } suf \)
shows interp-rga (pre @ (oid, ref) @ suf) = interp-rga (pre @ suf @ [(oid, ref)])

lemma rga-spec-equal:
assumes set xs = set ys
and insert-ops xs
and rga-ops ys
shows interp-ins xs = interp-rga ys

lemma insert-ops-exist:
assumes rga-ops xs
shows \(\exists ys \cdot \text{set } xs = \text{set } ys \land \text{insert-ops } ys \)

theorem rga-meets-spec:
assumes rga-ops xs
shows \(\exists ys \cdot \text{set } ys = \text{set } xs \land \text{insert-ops } ys \land \text{interp-ins } ys = \text{interp-rga } xs \)

end

References

