OpSets: Sequential Specifications for Replicated Datatypes
Proof Document

Martin Kleppmann¹, Victor B. F. Gomes¹, Dominic P. Mulligan², and Alastair R. Beresford¹

¹Department of Computer Science and Technology, University of Cambridge, UK
²Security Research Group, Arm Research, Cambridge, UK

Abstract
We introduce OpSets, an executable framework for specifying and reasoning about the semantics of replicated datatypes that provide eventual consistency in a distributed system, and for mechanically verifying algorithms that implement these datatypes. Our approach is simple but expressive, allowing us to succinctly specify a variety of abstract datatypes, including maps, sets, lists, text, graphs, trees, and registers. Our datatypes are also composable, enabling the construction of complex data structures. To demonstrate the utility of OpSets for analysing replication algorithms, we highlight an important correctness property for collaborative text editing that has traditionally been overlooked; algorithms that do not satisfy this property can exhibit awkward interleaving of text. We use OpSets to specify this correctness property and prove that although one existing replication algorithm satisfies this property, several other published algorithms do not.

Contents
1 Abstract OpSet 2
 1.1 OpSet definition 2
 1.2 Helper lemmas about lists 3
 1.3 The spec-ops predicate 4
 1.4 The crdt-ops predicate 7
2 Specifying list insertion 9
 2.1 The insert-ops predicate 10
 2.2 Properties of the insert-spec function 11
 2.3 Properties of the interp-ins function 12
 2.4 Equivalence of the two definitions of insertion 13
 2.5 The list-order predicate 15
3 Relationship to Strong List Specification 16
 3.1 Lemmas about insertion and deletion 18
 3.2 Lemmas about interpreting operations 20
 3.3 Satisfying all conditions of A_{strong} 21
1 Abstract OpSet

In this section, we define a general-purpose OpSet abstraction that is not specific to any one particular datatype. We develop a library of useful lemmas that we can build upon later when reasoning about a specific datatype.

```plaintext
theory OpSet
  imports Main
begin

1.1 OpSet definition

An OpSet is a set of (ID, operation) pairs with an associated total order on IDs (represented here with the linorder typeclass), and satisfying the following properties:

1. The ID is unique (that is, if any two pairs in the set have the same ID, then their operation is also the same).

2. If the operation references the IDs of any other operations, those referenced IDs are less than that of the operation itself, according to the total order on IDs. To avoid assuming anything about the structure of operations here, we use a function deps that returns the set of dependent IDs for a given operation. This requirement is a weak expression of causality: an operation can only depend on causally prior operations, and by making the total order on IDs a linear extension of the causal order, we can easily ensure that any referenced IDs are less than that of the operation itself.

3. The OpSet is finite (but we do not assume any particular maximum size).

locale opset =
  fixes opset :: ('oid::{linorder} × 'oper) set
  and deps :: 'oper ⇒ 'oid set
```

4 Interleaving of concurrent insertions

4.1 Lemmas about insert-ops

4.2 Lemmas about interp-ins

4.3 Lemmas about list-order

4.4 The insert-seq predicate

4.5 The proof of no interleaving

5 The Replicated Growable Array (RGA)

5.1 Commutativity of insert-rga

5.2 Lemmas about the rga-ops predicate

5.3 Lemmas about the interp-rga function

5.4 Proof that RGA satisfies the list specification
assumes unique-oid: \((oid, op1) \in opset \implies (oid, op2) \in opset \implies op1 = op2\)
and ref-older: \((oid, oper) \in opset \implies ref \in deps oper \implies ref < oid\)
and finite-opset: finite opset

We prove that any subset of an OpSet is also a valid OpSet. This is the case because, although an operation can depend on causally prior operations, the OpSet does not require those prior operations to actually exist. This weak assumption makes the OpSet model more general and simplifies reasoning about OpSets.

lemma opset-subset:
 assumes opset Y deps
 and \(X \subseteq Y\)
 shows opset X deps
⟨proof⟩

lemma opset-insert:
 assumes opset \((\text{insert } x \text{ ops})\) deps
 shows opset \(\text{ops}\) deps
⟨proof⟩

lemma opset-sublist:
 assumes opset \((\text{set } (xs @ ys @ zs))\) deps
 shows opset \((\text{set } (xs @ zs))\) deps
⟨proof⟩

1.2 Helper lemmas about lists

Some general-purpose lemas about lists and sets that are helpful for subsequent proofs.

lemma distinct-rem-mid:
 assumes distinct \((xs @ [x] @ ys)\)
 shows distinct \((xs @ ys)\)
⟨proof⟩

lemma distinct-fst-append:
 assumes \(x \in \text{set } (\text{map fst } xs)\)
 and distinct \((\text{map fst } (xs @ ys))\)
 shows \(x \notin \text{set } (\text{map fst } ys)\)
⟨proof⟩

lemma distinct-set-remove-last:
 assumes distinct \((xs @ [x])\)
 shows set xs = set \((xs @ [x])\) \(-\{x\}\)
⟨proof⟩

lemma distinct-set-remove-mid:
 assumes distinct \((xs @ [x] @ ys)\)
 shows set \((xs @ ys)\) = set \((xs @ [x] @ ys)\) \(-\{x\}\)
lemma distinct-list-split:
assumes distinct \(xs\)
and \(xs = xa @ x \# ya\)
and \(xs = xb @ x \# yb\)
shows \(xa = xb \land ya = yb\)

lemma distinct-append-swap:
assumes distinct \((xs @ ys)\)
shows distinct \((ys @ xs)\)

lemma append-subset:
assumes set \(xs = set (ys @ zs)\)
shows set \(ys \subseteq set xs\) and set \(zs \subseteq set xs\)

lemma append-set-rem-last:
assumes set \((xs @ [x]) = set (ys @ [x] @ zs)\)
and distinct \((xs @ [x])\) and distinct \((ys @ [x] @ zs)\)
shows set \(xs = set (ys @ zs)\)

lemma distinct-map-fst-remove1:
assumes distinct \((map fst xs)\)
shows distinct \((map fst (remove1 x xs))\)

1.3 The spec-ops predicate

The spec-ops predicate describes a list of (ID, operation) pairs that corresponds to the linearisation of an OpSet, and which we use for sequentially interpreting the OpSet. A list satisfies spec-ops iff it is sorted in ascending order of IDs, if the IDs are unique, and if every operation’s dependencies have lower IDs than the operation itself. A list is implicitly finite in Isabelle/HOL. These requirements correspond to the OpSet definition above, and indeed we prove later that every OpSet has a linearisation that satisfies spec-ops.

definition spec-ops :: \('(oid::{linorder} × oper) list ⇒ (oper ⇒ oid set) ⇒ bool where
spec-ops ops deps ≡ (sorted (map fst ops) ∧ distinct (map fst ops) ∧
(∀ oid oper ref. (oid, oper) ∈ set ops ∧ ref ∈ deps oper → ref < oid))

lemma spec-ops-empty:
shows spec-ops [] deps

⟨proof⟩
lemma spec-ops-distinct:
 assumes spec-ops ops deps
 shows distinct ops
 ⟨proof⟩

lemma spec-ops-distinct-fst:
 assumes spec-ops ops deps
 shows distinct (map fst ops)
 ⟨proof⟩

lemma spec-ops-sorted:
 assumes spec-ops ops deps
 shows sorted (map fst ops)
 ⟨proof⟩

lemma spec-ops-rem-cons:
 assumes spec-ops (x ≠ xs) deps
 shows spec-ops xs deps
 ⟨proof⟩

lemma spec-ops-rem-last:
 assumes spec-ops (xs @ [x]) deps
 shows spec-ops xs deps
 ⟨proof⟩

lemma spec-ops-remove1:
 assumes spec-ops xs deps
 shows spec-ops (remove1 x xs) deps
 ⟨proof⟩

lemma spec-ops-ref-less:
 assumes spec-ops xs deps
 and (oid, oper) ∈ set xs
 and r ∈ deps oper
 shows r < oid
 ⟨proof⟩

lemma spec-ops-ref-less-last:
 assumes spec-ops (xs @ [(oid, oper)]) deps
 and r ∈ deps oper
 shows r < oid
 ⟨proof⟩

lemma spec-ops-id-inc:
 assumes spec-ops (xs @ [(oid, oper)]) deps
 and x ∈ set (map fst xs)
 shows x < oid
 ⟨proof⟩
lemma spec-ops-add-last:
assumes spec-ops xs deps
and ∀ i ∈ set (map fst xs). i < oid
and ∀ ref ∈ deps oper. ref < oid
shows spec-ops (xs @ [(oid, oper)]) deps
⟨proof⟩

lemma spec-ops-add-any:
assumes spec-ops (xs @ ys) deps
and ∀ i ∈ set (map fst xs). i < oid
and ∀ i ∈ set (map fst ys). oid < i
and ∀ ref ∈ deps oper. ref < oid
shows spec-ops (xs @ [(oid, oper)] @ ys) deps
⟨proof⟩

lemma spec-ops-split:
assumes spec-ops xs deps
and oid \notin set (map fst xs)
shows ∃ pre suf. xs = pre @ suf ∧
(∀ i ∈ set (map fst pre). i < oid) ∧
(∀ i ∈ set (map fst suf). oid < i)
⟨proof⟩

lemma spec-ops-exists-base:
assumes finite ops
and \forall oid op1 op2. (oid, op1) ∈ ops ⇒ (oid, op2) ∈ ops ⇒ op1 = op2
and \forall oid oper ref. (oid, oper) ∈ ops ⇒ ref ∈ deps oper ⇒ ref < oid
shows ∃ op-list. set op-list = ops ∧ spec-ops op-list deps
⟨proof⟩

We prove that for any given OpSet, a spec-ops linearisation exists:

lemma spec-ops-exists:
assumes opset ops deps
shows ∃ op-list. set op-list = ops ∧ spec-ops op-list deps
⟨proof⟩

lemma spec-ops-oid-unique:
assumes spec-ops op-list deps
and (oid, op1) ∈ set op-list
and (oid, op2) ∈ set op-list
shows op1 = op2
⟨proof⟩

Conversely, for any given spec-ops list, the set of pairs in the list is an OpSet:

lemma spec-ops-is-opset:
assumes spec-ops op-list deps
shows opset (set op-list) deps
⟨proof⟩
1.4 The crdt-ops predicate

Like spec-ops, the crdt-ops predicate describes the linearisation of an OpSet into a list. Like spec-ops, it requires IDs to be unique. However, its other properties are different: crdt-ops does not require operations to appear in sorted order, but instead, whenever any operation references the ID of a prior operation, that prior operation must appear previously in the crdt-ops list. Thus, the order of operations is partially constrained: operations must appear in causal order, but concurrent operations can be ordered arbitrarily.

This list describes the operation sequence in the order it is typically applied to an operation-based CRDT. Applying operations in the order they appear in crdt-ops requires that concurrent operations commute. For any crdt-ops operation sequence, there is a permutation that satisfies the spec-ops predicate. Thus, to check whether a CRDT satisfies its sequential specification, we can prove that interpreting any crdt-ops operation sequence with the commutative operation interpretation results in the same end result as interpreting the spec-ops permutation of that operation sequence with the sequential operation interpretation.

\[
\text{inductive crdt-ops} :: ('oid::linorder) \times \text{'oper} \Rightarrow \text{bool}
\]

where

\[
\begin{align*}
\text{crdt-ops} \; [\;] & \; \text{deps} \; | \\
\text{crdt-ops} \; xs \; \text{deps}; & \; \text{oid} \notin \text{set} (\text{map} \; \text{fst} \; xs); \\
& \; \forall \; \text{ref} \in \text{deps} \; \text{oper}. \; \text{ref} \in \text{set} (\text{map} \; \text{fst} \; xs) \land \text{ref} < \text{oid} \\
& \; \implies \; \text{crdt-ops} \; (xs \; @ \; [(\text{oid}, \text{oper})]) \; \text{deps}
\end{align*}
\]

\[
\text{inductive-cases crdt-ops-last: crdt-ops} \; (xs \; @ \; [x]) \; \text{deps}
\]

\[
\text{lemma crdt-ops-intro:}
\]

assumes \(r. \; r \in \text{deps} \; \text{oper} \implies r \in \text{fst} \; \text{set} \; xs \land r < \text{oid} \)

and \(\text{oid} \notin \text{fst} \; \text{set} \; xs \)

and \(\text{crdt-ops} \; xs \; \text{deps} \)

shows \(\text{crdt-ops} \; (xs \; @ \; [(\text{oid}, \text{oper})]) \; \text{deps} \)

(proof)

\[
\text{lemma crdt-ops-rem-last:}
\]

assumes \(\text{crdt-ops} \; (xs \; @ \; [x]) \; \text{deps} \)

shows \(\text{crdt-ops} \; xs \; \text{deps} \)

(proof)

\[
\text{lemma crdt-ops-ref-less:}
\]

assumes \(\text{crdt-ops} \; xs \; \text{deps} \)

and \((\text{oid}, \text{oper}) \in \text{set} \; xs \)

and \(r \in \text{deps} \; \text{oper} \)

shows \(r < \text{oid} \)

(proof)
lemma crdt-ops-ref-less-last:
 assumes crdt-ops (xs @ [(oid, oper)]) deps
 and r ∈ deps oper
 shows r < oid
⟨proof⟩

lemma crdt-ops-distinct-fst:
 assumes crdt-ops xsdeps
 shows distinct (map fst xs)
⟨proof⟩

lemma crdt-ops-distinct:
 assumes crdt-ops xs deps
 shows distinct xs
⟨proof⟩

lemma crdt-ops-unique-last:
 assumes crdt-ops (xs @ [(oid, oper)]) deps
 shows oid ∉ set (map fst xs)
⟨proof⟩

lemma crdt-ops-unique-mid:
 assumes crdt-ops (xs @ [(oid, oper)] @ ys) deps
 shows oid ∉ set (map fst xs) ∧ oid ∉ set (map fst ys)
⟨proof⟩

lemma crdt-ops-ref-exists:
 assumes crdt-ops (pre @ (oid, oper) # suf) deps
 and ref ∈ deps oper
 shows ref ∈ fst ' set pre
⟨proof⟩

lemma crdt-ops-no-future-ref:
 assumes crdt-ops (xs @ [(oid, oper)] @ ys) deps
 shows ∀ ref. ref ∈ deps oper ⇒ ref ∉ fst ' set ys
⟨proof⟩

lemma crdt-ops-reorder:
 assumes crdt-ops (xs @ [(oid, oper)] @ ys) deps
 and ∃ op2 r. op2 ∈ snd ' set ys ⇒ r ∈ deps op2 ⇒ r ≠ oid
 shows crdt-ops (xs @ ys @ [(oid, oper)]) deps
⟨proof⟩

lemma crdt-ops-rem-middle:
 assumes crdt-ops (xs @ [(oid, ref)] @ ys) deps
 and ∃ op2 r. op2 ∈ snd ' set ys ⇒ r ∈ deps op2 ⇒ r ≠ oid
 shows crdt-ops (xs @ ys) deps
⟨proof⟩
lemma crdt-ops-independent-suf:
assumes spec-ops (xs @ [(oid, oper)]) deps
 and crdt-ops (ys @ [(oid, oper)] @ zs) deps
 and set (xs @ [(oid, oper)]) = set (ys @ [(oid, oper)] @ zs)
sshows \(\forall op2 \ r. \ op2 \in \text{snd \ \{set zs\}) \implies r \in \text{deps \ op2} \implies r \neq \text{oid} \)
⟨proof⟩

lemma crdt-ops-reorder-spec:
assumes spec-ops (xs @ [x]) deps
 and crdt-ops (ys @ [x] @ zs) deps
 and set (xs @ [x]) = set (ys @ [x] @ zs)
sshows crdt-ops (ys @ zs @ [x]) deps
⟨proof⟩

lemma crdt-ops-rem-spec:
assumes spec-ops (xs @ [x]) deps
 and crdt-ops (ys @ [x] @ zs) deps
 and set (xs @ [x]) = set (ys @ [x] @ zs)
sshows crdt-ops (ys @ zs) deps
⟨proof⟩

lemma crdt-ops-rem-penultimate:
assumes crdt-ops (xs @ [(i1, r1)] @ [(i2, r2)]) deps
 and \(\forall r. \ r \in \text{deps \ r2} \implies r \neq i1 \)
sshows crdt-ops (xs @ [(i2, r2)]) deps
⟨proof⟩

lemma crdt-ops-spec-ops-exist:
assumes crdt-ops xs deps
 shows \(\exists ys. \ \text{set \ xs} = \text{set \ ys} \land \text{spec-ops \ ys \ deps} \)
⟨proof⟩

end

2 Specifying list insertion

theory Insert-Spec
 imports OpSet
begin

In this section we consider only list insertion. We model an insertion operation as a pair \((ID, ref)\), where \text{ref} is either \text{None} (signifying an insertion at the head of the list) or \text{Some \ r} (an insertion immediately after a reference element with ID \text{r}). If the reference element does not exist, the operation does nothing.

We provide two different definitions of the interpretation function for list insertion: \text{insert-spec} and \text{insert-alt}. The \text{insert-alt} definition matches the paper, while \text{insert-spec} uses the Isabelle/HOL list datatype, making it more
suitable for formal reasoning. In a later subsection we prove that the two
definitions are in fact equivalent.

fun insert-spec :: 'oid list ⇒ ('oid × 'oid option) ⇒ 'oid list where
insert-spec xs (oid, None) = oid#xs |
insert-spec [] (oid, _) = [] |
insert-spec (x#xs) (oid, Some ref) =
 (if x = ref then x # oid # xs
 else x # (insert-spec xs (oid, Some ref)))

fun insert-alt :: ('oid × 'oid option)⇒ ('oid × 'oid)⇒ ('oid × 'oid option) set
set where
insert-alt list-rel (oid, ref) = (
 if ∃ n. (ref, n) ∈ list-rel
 then {(p, n) ∈ list-rel. p ≠ ref} ∪ {(ref, Some oid)} ∪
 {(i, n). i = oid ∧ (ref, n) ∈ list-rel}
 else list-rel)

interp-ins is the sequential interpretation of a set of insertion operations. It
starts with an empty list as initial state, and then applies the operations
from left to right.

definition interp-ins :: ('oid × 'oid option) list ⇒ 'oid list where
interp-ins ops ≡ foldl insert-spec [] ops

2.1 The insert-ops predicate

We now specialise the definitions from the abstract OpSet section for list
insertion. insert-opset is an opset consisting only of insertion operations,
and insert-ops is the specialisation of the spec-ops predicate for insertion
operations. We prove several useful lemmas about insert-ops.

locale insert-opset = opset opset set-option
for opset :: ('oid::{linorder} × 'oid option) set

definition insert-ops :: ('oid::{linorder} × 'oid option) list ⇒ bool where
insert-ops list ≡ spec-ops list set-option

lemma insert-ops-NilI [intro!]:
 shows insert-ops []
 ⟨proof⟩

lemma insert-ops-rem-last [dest]:
 assumes insert-ops (xs @ [x])
 shows insert-ops xs
 ⟨proof⟩

lemma insert-ops-rem-cons:
 assumes insert-ops (x ≠ xs)
 shows insert-ops xs
(proof)

lemma insert-ops-appendD:
assumes insert-ops (xs @ ys)
shows insert-ops xs
(proof)

lemma insert-ops-rem-prefix:
assumes insert-ops (pre @ suf)
shows insert-ops suf
(proof)

lemma insert-ops-remove1:
assumes insert-ops xs
shows insert-ops (remove1 x xs)
(proof)

lemma last-op-greatest:
assumes insert-ops (op-list @ [(oid, oper)])
and x ∈ set (map fst op-list)
shows x < oid
(proof)

lemma insert-ops-ref-older:
assumes insert-ops (pre @ [(oid, Some ref)] @ suf)
shows ref < oid
(proof)

lemma insert-ops-memb-ref-older:
assumes insert-ops op-list
and (oid, Some ref) ∈ set op-list
shows ref < oid
(proof)

2.2 Properties of the insert-spec function

lemma insert-spec-none [simp]:
shows set (insert-spec xs (oid, None)) = set xs ∪ {oid}
(proof)

lemma insert-spec-set [simp]:
assumes ref ∈ set xs
shows set (insert-spec xs (oid, Some ref)) = set xs ∪ {oid}
(proof)

lemma insert-spec-nonex [simp]:
assumes ref /∈ set xs
shows insert-spec xs (oid, Some ref) = xs
(proof)
lemma list-greater-non-memb:
 fixes oid :: 'oid::{linorder}
 assumes \(\forall x. x \in \text{set } xs \implies x < \text{oid} \)
 and \(\text{oid} \in \text{set } xs \)
 shows False
⟨proof⟩

lemma inserted-item-ident:
 assumes \(a \in \text{set } (\text{insert-spec } xs (e, i)) \)
 and \(a \notin \text{set } xs \)
 shows \(a = e \)
⟨proof⟩

lemma insert-spec-distinct [intro]:
 fixes oid :: 'oid::{linorder}
 assumes distinct xs
 and \(\forall x. x \in \text{set } xs \implies x < \text{oid} \)
 and ref = Some r \(\rightarrow r < \text{oid} \)
 shows distinct (insert-spec xs (oid, ref))
⟨proof⟩

lemma insert-after-ref:
 assumes distinct (xs @ ref # ys)
 shows insert-spec (xs @ ref # ys) (oid, Some ref) = xs @ ref # oid # ys
⟨proof⟩

lemma insert-somewhere:
 assumes ref = None \lor (ref = Some r \land r \in \text{set list})
 shows \(\exists xs ys. \text{list} = xs @ ys \land \text{insert-spec list (oid, ref)} = xs @ oid # ys \)
⟨proof⟩

lemma insert-first-part:
 assumes ref = None \lor (ref = Some r \land r \in \text{set xs})
 shows insert-spec (xs @ ys) (oid, ref) = (insert-spec xs (oid, ref)) @ ys
⟨proof⟩

lemma insert-second-part:
 assumes ref = Some r
 and \(r \notin \text{set xs} \)
 and \(r \in \text{set ys} \)
 shows insert-spec (xs @ ys) (oid, ref) = xs @ (insert-spec ys (oid, ref))
⟨proof⟩

2.3 Properties of the interp-ins function

lemma interp-ins-empty [simp]:
 shows interp-ins [] = []
⟨proof⟩
lemma interp-ins-tail-unfold:
 shows interp-ins (xs @ [x]) = insert-spec (interp-ins xs) x
 ⟨proof⟩

lemma interp-ins-subset [simp]:
 shows set (interp-ins op-list) ⊆ set (map fst op-list)
 ⟨proof⟩

lemma interp-ins-distinct:
 assumes insert-ops op-list
 shows distinct (interp-ins op-list)
 ⟨proof⟩

2.4 Equivalence of the two definitions of insertion

At the beginning of this section we gave two different definitions of interpretation functions for list insertion: insert-spec and insert-alt. In this section we prove that the two are equivalent.

We first define how to derive the successor relation from an Isabelle list. This relation contains (id, None) if id is the last element of the list, and (id1, id2) if id1 is immediately followed by id2 in the list.

fun succ-rel :: 'oid list ⇒ ('oid × 'oid option) set where
 succ-rel [] = {} |
 succ-rel [head] = {(head, None)} |
 succ-rel (head#x#xs) = {(head, Some x)} ∪ succ-rel (x#xs)

 interp-alt is the equivalent of interp-ins, but using insert-alt instead of insert-spec. To match the paper, it uses a distinct head element to refer to the beginning of the list.

definition interp-alt :: 'oid ⇒ ('oid × 'oid option) list ⇒ ('oid × 'oid option) set where
 interp-alt head ops ≡ foldl insert-alt {(head, None)}
 (map (λx. case x of
 (oid, None) ⇒ (oid, head) |
 (oid, Some ref) ⇒ (oid, ref))
 ops)

lemma succ-rel-set-fst:
 shows fst ' (succ-rel xs) = set xs
 ⟨proof⟩

lemma succ-rel-functional:
 assumes (a, b1) ∈ succ-rel xs
 and (a, b2) ∈ succ-rel xs
 and distinct xs
 shows b1 = b2
lemma succ-rel-rem-head:
 assumes distinct (x # xs)
 shows \{(p, n) \in succ-rel (x # xs). p \neq x\} = succ-rel xs

lemma succ-rel-swap-head:
 assumes distinct (ref # list)
 and (ref, n) \in succ-rel (ref # list)
 shows succ-rel (oid # list) = \{(oid, n)\} \cup succ-rel list

lemma succ-rel-insert-alt:
 assumes a \neq ref
 and distinct (oid # a # b # list)
 shows insert-alt (succ-rel (a # b # list)) (oid, ref) =
 \{(a, Some b)\} \cup insert-alt (succ-rel (b # list)) (oid, ref)

lemma succ-rel-insert-head:
 assumes distinct (ref # list)
 shows succ-rel (insert-spec (ref # list) (oid, Some ref)) =
 insert-alt (succ-rel (ref # list)) (oid, ref)

lemma succ-rel-insert-later:
 assumes succ-rel (insert-spec (b # list) (oid, Some ref)) =
 insert-alt (succ-rel (b # list)) (oid, ref)
 and a \neq ref
 and distinct (a # b # list)
 shows succ-rel (insert-spec (a # b # list) (oid, Some ref)) =
 insert-alt (succ-rel (a # b # list)) (oid, ref)

lemma succ-rel-insert-Some:
 assumes distinct list
 shows succ-rel (insert-spec list (oid, Some ref)) = insert-alt (succ-rel list) (oid, ref)

The main result of this section, that insert-spec and insert-alt are equivalent.

theorem insert-alt-equivalent:
 assumes insert-ops ops
 and head \notin \textit{fst} \set ops
 and \\(\forall r. \text{Some } r \in \textit{snd} \set ops \implies r \neq \text{head}\)
 shows succ-rel (head # interp-ins ops) = interp-alt head ops
2.5 The list-order predicate

list-order \(ops \ x \ y \) holds iff, after interpreting the list of insertion operations \(ops \), the list element with ID \(x \) appears before the list element with ID \(y \) in the resulting list. We prove several lemmas about this predicate; in particular, that executing additional insertion operations does not change the relative ordering of existing list elements.

definition list-order :: ("oid :: linorder \times oid option\) list \Rightarrow oid \Rightarrow oid \Rightarrow bool
where
list-order \(ops \ x \ y \equiv \exists \ xs \ ys \ zs. \ interp-ins \ ops = xs @ [x] @ ys @ [y] @ zs \)

lemma list-orderI:
assumes \(\interp-ins \ ops = xs @ [x] @ ys @ [y] @ zs \)
shows list-order \(ops \ x \ y \)
⟨proof⟩

lemma list-orderE:
assumes list-order \(ops \ x \ y \)
shows \(\exists \ xs \ ys \ zs. \ interp-ins \ ops = xs @ [x] @ ys @ [y] @ zs \)
⟨proof⟩

lemma list-order-memb1:
assumes list-order \(ops \ x \ y \)
shows \(x \in \set{\interp-ins \ ops} \)
⟨proof⟩

lemma list-order-memb2:
assumes list-order \(ops \ x \ y \)
shows \(y \in \set{\interp-ins \ ops} \)
⟨proof⟩

lemma list-order-trans:
assumes \(\text{insert-ops op-list} \)
and list-order \(op-list \ x \ y \)
and list-order \(op-list \ y \ z \)
shows list-order \(op-list \ x \ z \)
⟨proof⟩

lemma insert-preserves-order:
assumes \(\text{insert-ops ops} \) and \(\text{insert-ops rest} \)
and \(\text{rest} = \text{before} @ \text{after} \)
and \(\text{ops} = \text{before} @ (\text{oid}, \text{ref}) \# \text{after} \)
shows \(\exists \ xs \ ys \ zs. \ interp-ins \ rest = xs @ zs \land \ interp-ins \ ops = xs @ ys @ zs \)
⟨proof⟩

lemma distinct-fst:
assumes \(\text{distinct} \ (\text{map fst} A) \)
shows \(\text{distinct} \ A \)
proof

lemma subset-distinct-le:
 assumes set A ⊆ set B and distinct A and distinct B
 shows length A ≤ length B
proof

lemma set-subset-length-eq:
 assumes set A ⊆ set B and length B ≤ length A
 and distinct A and distinct B
 shows set A = set B
proof

lemma length-diff-Suc-exists:
 assumes length xs - length ys = Suc m
 and set ys ⊆ set xs
 and distinct ys and distinct xs
 shows ∃ e. e ∈ set xs ∧ e ∉ set ys
proof

lemma app-length-lt-exists:
 assumes xs @ zsa = xs @ ys
 and length zsa ≤ length xs
 shows xs @ (drop (length zsa) xs) = xs
proof

lemma list-order-monotonic:
 assumes insert-ops A and insert-ops B
 and set A ⊆ set B
 and list-order A x y
 shows list-order B x y
proof

end

3 Relationship to Strong List Specification

In this section we show that our list specification is stronger than the A_{strong} specification of collaborative text editing by Attiya et al. [1]. We do this by showing that the OpSet interpretation of any set of insertion and deletion operations satisfies all of the consistency criteria that constitute the A_{strong} specification.

Attiya et al.’s specification is as follows [1]:

An abstract execution $A = (H, vis)$ belongs to the strong list spec-
i fica tion A_{strong} if and only if there is a relation $lo \subseteq \text{elems}(A) \times$
 elems(A), called the list order, such that:

1. Each event \(e = \text{do}(\text{op}, w) \in H \) returns a sequence of elements \(w = a_0 \ldots a_{n-1} \), where \(a_i \in \text{elems}(A) \), such that:
 (a) \(w \) contains exactly the elements visible to \(e \) that have been inserted, but not deleted:
 \[
 \forall a \cdot a \in w \iff (\text{do}(\text{ins}(a, _), _) \leq \text{vis} e) \land \neg(\text{do}(\text{del}(a), _) \leq \text{vis} e).
 \]
 (b) The order of the elements is consistent with the list order:
 \[
 \forall i, j \cdot (i < j) \implies (a_i, a_j) \in \text{lo}.
 \]
 (c) Elements are inserted at the specified position: if \(\text{op} = \text{ins}(a, k) \), then \(a = a_{\min\{k, n-1\}} \).

2. The list order \(\text{lo} \) is transitive, irreflexive and total, and thus determines the order of all insert operations in the execution.

This specification considers only insertion and deletion operations, but no assignment. Moreover, it considers only a single list object, not a graph of composable objects like in our paper. Thus, we prove the relationship to \(\mathcal{A}_{\text{strong}} \) using a simplified interpretation function that defines only insertion and deletion on a single list.

theory List-Spec
 imports Insert-Spec
begin

We first define a datatype for list operations, with two constructors: Insert \(\text{ref val} \) and Delete \(\text{ref} \). For insertion, the \(\text{ref} \) argument is the ID of the existing element after which we want to insert, or None to insert at the head of the list. The \(\text{val} \) argument is an arbitrary value to associate with the list element. For deletion, the \(\text{ref} \) argument is the ID of the existing list element to delete.

datatype ('oid, 'val) list-op =
 Insert 'oid option 'val |
 Delete 'oid

When interpreting operations, the result is a pair \((\text{list}, \text{vals}) \). The \text{list} contains the IDs of list elements in the correct order (equivalent to the list relation in the paper), and \text{vals} is a mapping from list element IDs to values (equivalent to the element relation in the paper).

Insertion delegates to the previously defined insert-spec interpretation function. Deleting a list element removes it from \text{vals}.

fun interp-op :: ('oid list × ('oid ⇒ 'val)) ⇒ ('oid × ('oid, 'val) list-op)
 ⇒ ('oid list × ('oid ⇒ 'val)) where
interp-op \((\text{list}, \text{vals}) ((\text{oid}, \text{Insert ref val})) | $$
interp-op \((\text{list}, \text{vals}) ((\text{oid}, \text{Delete ref})) = (\text{list}, \text{vals(ref := None)})$$

definition interp-ops :: \(\text{('oid} \times \text{(oid, val) list-op}) \text{ list} \Rightarrow \text{('oid list} \times \text{('oid -> 'val))}
\)

\[\text{interp-ops ops} \equiv \text{foldl interp-op ([], Map.empty) ops} \]

list-order \(x \ y\) holds iff, after interpreting the list of operations \(ops\), the list element with ID \(x\) appears before the list element with ID \(y\) in the resulting list.

definition list-order :: \(\text{('oid} \times \text{(oid, val) list-op}) \text{ list} \Rightarrow \text{'oid} \Rightarrow \text{'oid} \Rightarrow \text{bool}
\)

\[\text{list-order ops x y } \equiv \exists \text{xs ys zs}. \text{fst} (\text{interp-ops ops}) = \text{xs} @ [x] @ \text{ys} @ [y] @ \text{zs} \]

The \text{make-insert} function generates a new operation for insertion into a given index in a given list. The exclamation mark is Isabelle’s list subscript operator.

fun make-insert :: \(\text{'oid list} \Rightarrow \text{'val} \Rightarrow \text{nat} \Rightarrow \text{('oid, 'val) list-op}
\)

\[\text{make-insert list val 0} = \text{Insert None val} | \]
\[\text{make-insert } [] \text{ val k} = \text{Insert None val} | \]
\[\text{make-insert list val} (\text{Suc k}) = \text{Insert} (\text{Some} (\text{list} ! (\text{min k} (\text{length list} - 1)))) \text{ val} \]

The \text{list-ops} predicate is a specialisation of \text{spec-ops} to the \text{list-op} datatype: it describes a list of (ID, operation) pairs that is sorted by ID, and can thus be used for the sequential interpretation of the OpSet.

fun list-op-deps :: \(\text{'oid, 'val) list-op} \Rightarrow \text{'oid set}
\)

\[\text{list-op-deps (Insert (Some ref))} = \{\text{ref}\} | \]
\[\text{list-op-deps (Insert None)} = \{\} | \]
\[\text{list-op-deps (Delete ref)} = \{\text{ref}\} \]

locale list-opset = opset opset list-op-deps

for opset :: \(\text{'oid::{linorder} \times (oid, 'val) list-op}
\)

definition list-ops :: \(\text{'oid::{linorder} \times (oid, 'val) list-op} \text{ list} \Rightarrow \text{bool}
\)

\[\text{list-ops ops} \equiv \text{spec-ops ops list-op-deps} \]

3.1 Lemmas about insertion and deletion

definition insertions :: \(\text{'oid::{linorder} \times (oid, 'val) list-op} \text{ list} \Rightarrow \text{('oid \times 'oid option) list}
\)

\[\text{insertions ops} \equiv \text{List.map-filter } (\lambda \text{oper}. \]
\[\text{case oper of (oid, Insert ref val) } \Rightarrow \text{Some (oid, ref)} | \]
\[(\text{oid, Delete ref }) \Rightarrow \text{None}) ops \]

definition inserted-ids :: \(\text{'oid::{linorder} \times (oid, 'val) list-op} \text{ list} \Rightarrow \text{'oid list}
\)

\[\text{inserted-ids ops} \equiv \text{List.map-filter } (\lambda \text{oper}. \]
\[\text{case oper of (oid, Insert ref val) } \Rightarrow \text{Some oid |} \]
(oid, Delete ref) ⇒ None) ops

definition deleted-ids :: ('oid::{linorder} × ('oid, 'val) list-op) list ⇒ 'oid list
where
 deleted-ids ops ≡ List.map-filter (λoper.
 case oper of (oid, Insert ref val) ⇒ None |
 (oid, Delete ref) ⇒ Some ref) ops

lemma interp-ops-unfold-last:
 shows interp-ops (xs @ [x]) = interp-op (interp-ops xs) x
 ⟨proof⟩

lemma map-filter-append:
 shows List.map-filter P (xs @ ys) = List.map-filter P xs @ List.map-filter P ys
 ⟨proof⟩

lemma map-filter-Some:
 assumes P x = Some y
 shows List.map-filter P [x] = [y]
 ⟨proof⟩

lemma map-filter-None:
 assumes P x = None
 shows List.map-filter P [x] = []
 ⟨proof⟩

lemma insertions-last-ins:
 shows insertions (xs @ [(oid, Insert ref val)]) = insertions xs @ [(oid, ref)]
 ⟨proof⟩

lemma insertions-last-del:
 shows insertions (xs @ [(oid, Delete ref)]) = insertions xs
 ⟨proof⟩

lemma insertions-fst-subset:
 shows set (map fst (insertions ops)) ⊆ set (map fst ops)
 ⟨proof⟩

lemma insertions-subset:
 assumes list-ops A and list-ops B
 and set A ⊆ set B
 shows set (insertions A) ⊆ set (insertions B)
 ⟨proof⟩

lemma list-ops-insertions:
 assumes list-ops ops
 shows insert-ops (insertions ops)
 ⟨proof⟩
lemma inserted-ids-last-ins:
shows inserted-ids (xs @ [(oid, Insert ref val)]) = inserted-ids xs @ [oid]
⟨proof⟩

lemma inserted-ids-last-del:
shows inserted-ids (xs @ [(oid, Delete ref)]) = inserted-ids xs
⟨proof⟩

lemma inserted-ids-exist:
shows oid ∈ set (inserted-ids ops) ←→ (∃ ref val. (oid, Insert ref val) ∈ set ops)
⟨proof⟩

lemma deleted-ids-last-ins:
shows deleted-ids (xs @ [(oid, Insert ref val)]) = deleted-ids xs
⟨proof⟩

lemma deleted-ids-last-del:
shows deleted-ids (xs @ [(oid, Delete ref)]) = deleted-ids xs @ [ref]
⟨proof⟩

lemma deleted-ids-exist:
shows ref ∈ set (deleted-ids ops) ←→ (∃ i. (i, Delete ref) ∈ set ops)
⟨proof⟩

lemma deleted-ids-refs-older:
assumes list-ops (ops @ [(oid, oper)])
shows ∀ ref. ref ∈ set (deleted-ids ops) ⇒ ref < oid
⟨proof⟩

3.2 Lemmas about interpreting operations

lemma interp-ops-list-equiv:
shows fst (interp-ops ops) = interp-ins (insertions ops)
⟨proof⟩

lemma interp-ops-distinct:
assumes list-ops ops
shows distinct (fst (interp-ops ops))
⟨proof⟩

lemma list-order-equiv:
shows list-order ops x y ←→ Insert-Spec.list-order (insertions ops) x y
⟨proof⟩

lemma interp-ops-vals-domain:
assumes list-ops ops
shows dom (snd (interp-ops ops)) = set (inserted-ids ops) − set (deleted-ids ops)
⟨proof⟩
lemma insert-spec-nth-oid:
assumes distinct xs
 and n < length xs
shows insert-spec xs (oid, Some (xs ! n)) ! Suc n = oid
⟨proof⟩

lemma insert-spec-inc-length:
assumes distinct xs
 and n < length xs
shows length (insert-spec xs (oid, Some (xs ! n))) = Suc (length xs)
⟨proof⟩

lemma list-split-two-elems:
assumes distinct xs
 and x ∈ set xs and y ∈ set xs
 and x ≠ y
shows ∃ pre mid suf. xs = pre @ x # mid @ y # suf ∨ xs = pre @ y # mid @
x # suf
⟨proof⟩

3.3 Satisfying all conditions of A_{strong}

Part 1(a) of Attiya et al.’s specification states that whenever the list is observed, the elements of the list are exactly those that have been inserted but not deleted. A_{strong} uses the visibility relation \leq_{vis} to capture the operations known to a node at some arbitrary point in the execution; in the OpSet model, we can simply prove the theorem for an arbitrary OpSet, since the contents of the OpSet at a particular time on a particular node correspond exactly to the set of operations known to that node at that time.

theorem inserted-but-not-deleted:
assumes list-ops ops
 and interp-ops ops = (list, vals)
sshows a ∈ dom (vals) ←→ (∃ val. (a, Insert ref val) ∈ set ops) ∧
 (∄ i. (i, Delete a) ∈ set ops)
⟨proof⟩

Part 1(b) states that whenever the list is observed, the order of list elements is consistent with the global list order. We can define the global list order simply as the list order that arises from interpreting the OpSet containing all operations in the entire execution. Then, at any point in the execution, the OpSet is some subset of the set of all operations.

We can then rephrase condition 1(b) as follows: whenever list element x appears before list element y in the interpretation of some-ops, then for any OpSet all-ops that is a superset of some-ops, x must also appear before y in the interpretation of all-ops. In other words, adding more operations to the OpSet does not change the relative order of any existing list elements.
Theorem list-order-consistent:

Assumes list-ops some-ops and list-ops all-ops

- and set some-ops \(\subseteq\) set all-ops
- and list-order some-ops x y

Shows list-order all-ops x y

Proof

Part 1(c) states that inserted elements appear at the specified position: that is, immediately after an insertion of \(oid\) at index \(k\), the list index \(k\) does indeed contain \(oid\) (provided that \(k\) is less than the length of the list). We prove this property below.

Theorem correct-position-insert:

Assumes list-ops (ops @ [(oid, ins)])

- and \(ins = \text{make-insert} (\text{fst} (\text{interp-ops} ops)) \text{ val } k\)
- and list = \(\text{fst} (\text{interp-ops} (\text{ops} @ [(oid, ins)]))\)

Shows list ! (min k (length list - 1)) = oid

Proof

Part 2 states that the list order relation must be transitive, irreflexive, and total. These three properties are straightforward to prove, using our definition of the list-order predicate.

Theorem list-order-trans:

Assumes list-ops ops

- and list-order ops x y
- and list-order ops y z

Shows list-order ops x z

Proof

Theorem list-order-irrefl:

Assumes list-ops ops

Shows \(\neg\) list-order ops x x

Proof

Theorem list-order-total:

Assumes list-ops ops

- and \(x \in\) set (fst (interp-ops ops))
- and \(y \in\) set (fst (interp-ops ops))
- and \(x \neq y\)

Shows list-order ops x y \(\lor\) list-order ops y x

Proof

end

4 Interleaving of concurrent insertions

In this section we prove that our list specification rules out interleaving of concurrent insertion sequences starting at the same position.
theory Interleaving
imports Insert-Spec
begin

4.1 Lemmas about insert-ops

lemma map-fst-append1:
 assumes ∀ i ∈ set (map fst xs). P i
 and P x
 shows ∀ i ∈ set (map fst (xs @ [(x, y)])). P i
⟨proof⟩

lemma insert-ops-split:
 assumes insert-ops ops
 and (oid, ref) ∈ set ops
 shows ∃ pre suf. ops = pre @ [(oid, ref)] @ suf ∧
 (∀ i ∈ set (map fst pre). i < oid) ∧
 (∀ i ∈ set (map fst suf). oid < i)
⟨proof⟩

lemma insert-ops-split-2:
 assumes insert-ops ops
 and (xid, xr) ∈ set ops
 and (yid, yr) ∈ set ops
 and xid < yid
 shows ∃ as bs cs. ops = as @ [(xid, xr)] @ bs @ [(yid, yr)] @ cs ∧
 (∀ i ∈ set (map fst as). i < xid) ∧
 (∀ i ∈ set (map fst bs). xid < i ∧ i < yid) ∧
 (∀ i ∈ set (map fst cs). yid < i)
⟨proof⟩

lemma insert-ops-sorted-oids:
 assumes insert-ops (xs @ [(i1, r1)] @ ys @ [(i2, r2)])
 shows i1 < i2
⟨proof⟩

lemma insert-ops-subset-last:
 assumes insert-ops (xs @ [x])
 and insert-ops ys
 and set ys ⊆ set (xs @ [x])
 and x ∈ set ys
 shows x = last ys
⟨proof⟩

lemma subset-butlast:
 assumes set xs ⊆ set (ys @ [y])
 and last xs = y
 and distinct xs
 shows set (butlast xs) ⊆ set ys

23
lemma distinct-append-butlast1:
assumes distinct (map fst xs @ map fst ys)
shows distinct (map fst (butlast xs) @ map fst ys)
⟨proof⟩

lemma distinct-append-butlast2:
assumes distinct (map fst xs @ map fst ys)
shows distinct (map fst xs @ map fst (butlast ys))
⟨proof⟩

4.2 Lemmas about interp-ins

lemma interp-ins-maybe-grow:
assumes insert-ops (xs @ [(oid, ref)])
shows set (interp-ins (xs @ [(oid, ref)])) = set (interp-ins xs) ∨
 set (interp-ins (xs @ [(oid, ref)])) = (set (interp-ins xs) ∪ {oid})
⟨proof⟩

lemma interp-ins-maybe-grow2:
assumes insert-ops (xs @ [x])
shows set (interp-ins (xs @ [x])) = set (interp-ins xs) ∨
 set (interp-ins (xs @ [x])) = (set (interp-ins xs) ∪ {fst x})
⟨proof⟩

lemma interp-ins-maybe-grow3:
assumes insert-ops (xs @ ys)
shows ∃ A. A ⊆ set (map fst ys) ∧ set (interp-ins (xs @ ys)) = set (interp-ins xs) ∪ A
⟨proof⟩

lemma interp-ins-ref-nonex:
assumes insert-ops ops
 and ops = xs @ [(oid, Some ref)] @ ys
 and ref /∈ set (interp-ins xs)
shows oid /∈ set (interp-ins ops)
⟨proof⟩

lemma interp-ins-last-None:
shows oid ∈ set (interp-ins (ops @ [(oid, None)]))
⟨proof⟩

lemma interp-ins-monotonic:
assumes insert-ops (pre @ suf)
 and oid ∈ set (interp-ins pre)
shows oid ∈ set (interp-ins (pre @ suf))
⟨proof⟩
lemma interp-ins-append-non-memb:
assumes insert-ops (pre @ [(oid, Some ref)] @ suf)
and ref /∈ set (interp-ins pre)
shows ref /∈ set (interp-ins (pre @ [(oid, Some ref)] @ suf))
⟨proof⟩

lemma interp-ins-append-memb:
assumes insert-ops (pre @ [(oid, Some ref)] @ suf)
and ref /∈ set (interp-ins pre)
shows oid /∈ set (interp-ins (pre @ [(oid, Some ref)] @ suf))
⟨proof⟩

lemma interp-ins-append-forward:
assumes insert-ops (xs @ ys)
and oid /∈ set (interp-ins (xs @ ys))
and oid /∈ set (map fst xs)
shows oid /∈ set (interp-ins xs)
⟨proof⟩

lemma interp-ins-find-ref:
assumes insert-ops (xs @ [(oid, Some ref)] @ ys)
and ref /∈ set (interp-ins (xs @ [(oid, Some ref)] @ ys))
shows ∃ r. (ref, r) ∈ set xs
⟨proof⟩

4.3 Lemmas about list-order

lemma list-order-append:
assumes insert-ops (pre @ suf)
and list-order pre x y
shows list-order (pre @ suf) x y
⟨proof⟩

lemma list-order-insert-ref:
assumes insert-ops (ops @ [(oid, Some ref)])
and ref /∈ set (interp-ins ops)
shows list-order (ops @ [(oid, Some ref)]) ref oid
⟨proof⟩

lemma list-order-insert-none:
assumes insert-ops (ops @ [(oid, None)])
and x /∈ set (interp-ins ops)
shows list-order (ops @ [(oid, None)]) oid x
⟨proof⟩

lemma list-order-insert-between:
assumes insert-ops (ops @ [(oid, Some ref)])
and list-order ops ref x
shows list-order (ops @ [(oid, Some ref)]) oid x
4.4 The insert-seq predicate

The predicate insert-seq start ops is true iff ops is a list of insertion operations that begins by inserting after start, and then continues by placing each subsequent insertion directly after its predecessor. This definition models the sequential insertion of text at a particular place in a text document.

\[
\text{inductive insert-seq} :: \text{'oid option} \Rightarrow (\text{'oid} \times \text{'oid option}) \text{ list} \Rightarrow \text{bool where}
\]
\[
\begin{align*}
\text{insert-seq} \ &\text{start} \ [\{(\text{oid}, \text{start})\}] \\
\Rightarrow \ &\text{insert-seq} \ (\text{list} \ @ \ \{(\text{prev, ref})\})
\end{align*}
\]

lemma insert-seq-nonempty:
assumes insert-seq start xs
shows \(xs \neq []\)
(proof)

lemma insert-seq-hd:
assumes insert-seq start xs
shows \(\exists \text{ oid. hd } xs = (\text{oid, start})\)
(proof)

lemma insert-seq-rem-last:
assumes insert-seq start (xs @ [x])
and \(xs \neq []\)
shows insert-seq start xs
(proof)

lemma insert-seq-butlast:
assumes insert-seq start xs
and \(xs \neq []\) and \(xs \neq [\text{last} \, \text{xs}]\)
shows insert-seq start (butlast xs)
(proof)

lemma insert-seq-last-ref:
assumes insert-seq start (xs @ [(xi, xr), (yi, yr)])
shows yr = Some xi
(proof)

lemma insert-seq-start-none:
assumes insert-ops ops
and insert-seq None xs and insert-ops xs
and set xs \(\subseteq\) set ops
shows \(\forall i \in \text{set} \, (\text{map} \, \text{fst} \, \text{xs}), \ i \in \text{set} \, \text{(interp-ins} \, \text{ops})\)
(proof)

lemma insert-seq-after-start:
assumes insert-ops ops
and insert-seq (Some ref) xs and insert-ops xs
and set xs ⊆ set ops
and ref ∈ set (interp-ins ops)
shows ∀ i ∈ set (map fst xs). list-order ops ref i
(proof)

lemma insert-seq-no-start:
assumes insert-ops ops
and insert-seq (Some ref) xs and insert-ops xs
and set xs ⊆ set ops
and ref /∈ set (interp-ins ops)
shows ∀ i ∈ set (map fst xs). list-order ops ref i
(proof)

4.5 The proof of no interleaving

lemma no-interleaving-ordered:
assumes insert-ops ops
and insert-seq start xs and insert-ops xs
and insert-seq start ys and insert-ops ys
and set xs ⊆ set ops and set ys ⊆ set ops
and distinct (map fst xs @ map fst ys)
and fst (hd xs) < fst (hd ys)
and ∀ r. start = Some r ⇒ r ∈ set (interp-ins ops)
shows (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops y x) ∧
(∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops r x) ∧
(∀ y ∈ set (map fst ys). list-order ops r y)
(proof)

Consider an execution that contains two distinct insertion sequences, xs and ys, that both begin at the same initial position start. We prove that, provided the starting element exists, the two insertion sequences are not interleaved. That is, in the final list order, either all insertions by xs appear before all insertions by ys, or vice versa.

theorem no-interleaving:
assumes insert-ops ops
and insert-seq start xs and insert-ops xs
and insert-seq start ys and insert-ops ys
and set xs ⊆ set ops and set ys ⊆ set ops
and distinct (map fst xs @ map fst ys)
and start = None ∨ (∃ r. start = Some r ∧ r ∈ set (interp-ins ops))
shows (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops x y) ∨
(∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops x y)
(proof)

For completeness, we also prove what happens if there are two insertion sequences, xs and ys, but their initial position start does not exist. In that case, none of the insertions in xs or ys take effect.
theorem missing-start-no-insertion:
assumes insert-ops ops
and insert-seq (Some start) xs and insert-ops xs
and insert-seq (Some start) ys and insert-ops ys
and set xs ⊆ set ops and set ys ⊆ set ops
and start /∈ set (interp-ins ops)
shows ∀ x ∈ set (map fst xs) ∪ set (map fst ys). x /∈ set (interp-ins ops)
(proof)

end

5 The Replicated Growable Array (RGA)

The RGA algorithm [4] is a replicated list (or collaborative text-editing) algorithm. In this section we prove that RGA satisfies our list specification. The Isabelle/HOL definition of RGA in this section is based on our prior work on formally verifying CRDTs [3, 2].

theory RGA
imports Insert-Spec
begin

fun insert-body :: 'oid::{linorder} list ⇒ 'oid ⇒ 'oid list where
insert-body [] e = [e] |
insert-body (x # xs) e =
(if x < e then e # x # xs
 else x # insert-body xs e)

fun insert-rga :: 'oid::{linorder} list ⇒ ('oid × 'oid option) ⇒ 'oid list where
insert-rga xs (e, None) = insert-body xs e |
insert-rga [] (e, Some i) = [] |
insert-rga (x # xs) (e, Some i) =
(if x = i then
 x # insert-body xs e
 else
 x # insert-rga xs (e, Some i))

definition interp-rga :: ('oid::{linorder} × 'oid option) list ⇒ 'oid list where
interp-rga ops ≡ foldl insert-rga [] ops

5.1 Commutativity of insert-rga

lemma insert-body-set-ins [simp]:
shows set (insert-body xs e) = insert e (set xs)
(proof)

lemma insert-rga-set-ins:
assumes i ∈ set xs
shows \(\text{set} \ (\text{insert-rga} \ xs \ (\text{oid}, \text{Some} \ i)) = \text{insert} \ \text{oid} \ (\text{set} \ xs) \)

\langle \text{proof} \rangle

\text{lemma} \ \text{insert-body-commutes}:
\text{shows} \ \text{insert-body} \ (\text{insert-body} \ xs \ e1) \ e2 = \text{insert-body} \ (\text{insert-body} \ xs \ e2) \ e1
\langle \text{proof} \rangle

\text{lemma} \ \text{insert-rga-insert-body-commute}:
\text{assumes} \ i2 \neq \text{Some} \ e1
\text{shows} \ \text{insert-rga} \ (\text{insert-body} \ xs \ e1) \ (e2, \ i2) = \text{insert-rga} \ (\text{insert-rga} \ xs \ (e2, \ i2)) \ e1
\langle \text{proof} \rangle

\text{lemma} \ \text{insert-rga-None-commutes}:
\text{assumes} \ i2 \neq \text{Some} \ e1
\text{shows} \ \text{insert-rga} \ (\text{insert-rga} \ xs \ (e1, \text{None})) \ (e2, \ i2) = \text{insert-rga} \ (\text{insert-rga} \ xs \ (e2, \ i2)) \ (e1, \text{None})
\langle \text{proof} \rangle

\text{lemma} \ \text{insert-rga-nonexistent}:
\text{assumes} \ i \notin \text{set} \ xs
\text{shows} \ \text{insert-rga} \ xs \ (e, \text{Some} \ i) = xs
\langle \text{proof} \rangle

\text{lemma} \ \text{insert-rga-All-commutes}:
\text{assumes} \ i1 \in \text{set} \ xs \ \text{and} \ i2 \in \text{set} \ xs
\text{and} \ e1 \neq i2 \ \text{and} \ e2 \neq i1
\text{shows} \ \text{insert-rga} \ (\text{insert-rga} \ xs \ (e1, \text{Some} \ i1)) \ (e2, \text{Some} \ i2) = \text{insert-rga} \ (\text{insert-rga} \ xs \ (e2, \text{Some} \ i2)) \ (e1, \text{Some} \ i1)
\langle \text{proof} \rangle

\text{lemma} \ \text{insert-rga-commutes}:
\text{assumes} \ i2 \neq \text{Some} \ e1 \ \text{and} \ i1 \neq \text{Some} \ e2
\text{shows} \ \text{insert-rga} \ (\text{insert-rga} \ xs \ (e1, \text{Some} \ i1)) \ (e2, \text{Some} \ i2) = \text{insert-rga} \ (\text{insert-rga} \ xs \ (e2, \text{Some} \ i2)) \ (e1, \text{Some} \ i1)
\langle \text{proof} \rangle

\text{lemma} \ \text{insert-between-elements}:
\text{shows} \ \exists \ p \ s. \ xs = p \mathbin{\&} s \land \text{insert-body} \ xs \ e = p \mathbin{\&} e \mathbin{\#} s
\langle \text{proof} \rangle

\text{lemma} \ \text{insert-between-elements}:
\text{assumes} \ xs = \text{pre} \mathbin{\&} \text{ref} \mathbin{\#} \text{suf}
\text{and} \ \text{distinct} \ xs
\text{and} \ \text{\#} i, \ i \in \text{set} \ xs \rightarrow i < e
\text{shows} \ \text{insert-rga} \ xs \ (e, \text{Some} \ \text{ref}) = \text{pre} \mathbin{\&} \text{ref} \mathbin{\#} e \mathbin{\#} \text{suf}
\langle \text{proof} \rangle

\text{lemma} \ \text{insert-rga-after-ref}:

29
\textbf{assumes} \(\forall x \in \text{set as.} \ a \neq x \)
\textbf{and} insert-body \((cs @ ds) \ e = cs @ e @ \# ds\)
\textbf{shows} insert-rga \((as @ a @ \# cs @ ds) \ (e, \text{Some} \ a) = as @ a @ cs @ e @ \# ds\)
(\text{proof})

\textbf{lemma} insert-rga-preserves-order:
\textbf{assumes} \(i = \text{None } \lor (\exists i'. \ i = \text{Some} \ i' \land i' \in \text{set xs})\)
\textbf{and} distinct \(xs\)
\textbf{shows} \(\exists \text{pre suf.} \ xs = \text{pre } @ \text{suf} \land \text{insert-rga} \ (e, \ i) = \text{pre } @ e @ \# \text{suf}\)
(\text{proof})

\textbf{5.2 Lemmas about the rga-ops predicate}

\textbf{definition} rga-ops :: \(('oid::linorder) \times 'oid option\) list \(\Rightarrow\) bool \textbf{where}
rga-ops \((\text{list}) = \text{crdt-ops} \ (\text{list}) \ # \text{set-option}\)

\textbf{lemma} rga-ops-rem-last:
\textbf{assumes} rga-ops \((\text{xs} @ \ [x])\)
\textbf{shows} rga-ops \text{xs}
(\text{proof})

\textbf{lemma} rga-ops-rem-penultimate:
\textbf{assumes} rga-ops \((\text{xs} @ \ [(i1, \ r1), (i2, \ r2)])\)
\textbf{and} \(\land r, r2 = \text{Some} \ r \implies r \neq i1\)
\textbf{shows} rga-ops \((\text{xs} @ \ [(i2, \ r2)])\)
(\text{proof})

\textbf{lemma} rga-ops-ref-exists:
\textbf{assumes} rga-ops \((\text{pre } @ \ (\text{oid, Some ref}) @ \# \text{suf})\)
\textbf{shows} ref \in \text{fst } \# \text{set pre}
(\text{proof})

\textbf{5.3 Lemmas about the interp-rga function}

\textbf{lemma} interp-rga-tail-unfold:
\textbf{shows} interp-rga \((\text{xs} @ [x])\) = insert-rga \((\text{interp-rga} \ (\text{xs})) \ x\)
(\text{proof})

\textbf{lemma} interp-rga-ids:
\textbf{assumes} rga-ops \text{xs}
\textbf{shows} \text{set} \ (\text{interp-rga} \ \text{xs}) = \text{set} \ (\text{map} \ \text{fst} \ \text{xs})
(\text{proof})

\textbf{lemma} interp-rga-distinct:
\textbf{assumes} rga-ops \text{xs}
\textbf{shows} distinct \((\text{interp-rga} \ \text{xs})\)
(\text{proof})
5.4 Proof that RGA satisfies the list specification

Lemma `final-insert`

Assumes
- `set (xs @ [x]) = set (ys @ [x])`
- `rga-ops (xs @ [x])`
- `insert-ops (ys @ [x])`
- `interp-rga xs = interp-ins ys`

Shows
- `interp-rga (xs @ [x]) = interp-ins (ys @ [x])`

Proof

Lemma `interp-rga-reorder`

Assumes
- `rga-ops (pre @ suf @ [(oid, ref)])`
- `\[i \cdot (i, Some r) \in set suf \Rightarrow r \neq oid \]
- `\[r \cdot ref = Some r \Rightarrow r \notin \text{fst'} set suf \]

Shows
- `interp-rga (pre @ (oid, ref) # suf) = interp-rga (pre @ suf @ [(oid, ref)])`

Proof

Lemma `rga-spec-equal`

Assumes
- `set xs = set ys`
- `insert-ops xs`
- `rga-ops ys`

Shows
- `interp-ins xs = interp-rga ys`

Proof

Lemma `insert-ops-exist`

Assumes
- `rga-ops xs`

Shows
- `\exists ys. set xs = set ys \land insert-ops ys`

Proof

Theorem `rga-meets-spec`

Assumes
- `rga-ops xs`

Shows
- `\exists ys. set ys = set xs \land insert-ops ys \land interp-ins ys = interp-rga xs`

Proof

References

