
OpSets: Sequential Specifications for Replicated Datatypes
Proof Document

Martin Kleppmann1, Victor B. F. Gomes1, Dominic P. Mulligan2, and Alastair
R. Beresford1

1Department of Computer Science and Technology, University of Cambridge, UK
2Security Research Group, Arm Research, Cambridge, UK

Abstract
We introduce OpSets, an executable framework for specifying and reasoning

about the semantics of replicated datatypes that provide eventual consistency in a
distributed system, and for mechanically verifying algorithms that implement these
datatypes. Our approach is simple but expressive, allowing us to succinctly specify
a variety of abstract datatypes, including maps, sets, lists, text, graphs, trees, and
registers. Our datatypes are also composable, enabling the construction of complex
data structures. To demonstrate the utility of OpSets for analysing replication
algorithms, we highlight an important correctness property for collaborative text
editing that has traditionally been overlooked; algorithms that do not satisfy this
property can exhibit awkward interleaving of text. We use OpSets to specify this
correctness property and prove that although one existing replication algorithm
satisfies this property, several other published algorithms do not.

Contents
1 Abstract OpSet 2

1.1 OpSet definition . 2
1.2 Helper lemmas about lists . 3
1.3 The spec-ops predicate . 4
1.4 The crdt-ops predicate . 7

2 Specifying list insertion 9
2.1 The insert-ops predicate . 10
2.2 Properties of the insert-spec function 11
2.3 Properties of the interp-ins function 12
2.4 Equivalence of the two definitions of insertion 13
2.5 The list-order predicate . 15

3 Relationship to Strong List Specification 16
3.1 Lemmas about insertion and deletion 18
3.2 Lemmas about interpreting operations 20
3.3 Satisfying all conditions of Astrong 21

1

4 Interleaving of concurrent insertions 22
4.1 Lemmas about insert-ops . 23
4.2 Lemmas about interp-ins . 24
4.3 Lemmas about list-order . 25
4.4 The insert-seq predicate . 26
4.5 The proof of no interleaving . 27

5 The Replicated Growable Array (RGA) 28
5.1 Commutativity of insert-rga . 28
5.2 Lemmas about the rga-ops predicate 30
5.3 Lemmas about the interp-rga function 30
5.4 Proof that RGA satisfies the list specification 31

1 Abstract OpSet

In this section, we define a general-purpose OpSet abstraction that is not
specific to any one particular datatype. We develop a library of useful lemmas
that we can build upon later when reasoning about a specific datatype.
theory OpSet

imports Main
begin

1.1 OpSet definition

An OpSet is a set of (ID, operation) pairs with an associated total order
on IDs (represented here with the linorder typeclass), and satisfying the
following properties:

1. The ID is unique (that is, if any two pairs in the set have the same ID,
then their operation is also the same).

2. If the operation references the IDs of any other operations, those ref-
erenced IDs are less than that of the operation itself, according to the
total order on IDs. To avoid assuming anything about the structure of
operations here, we use a function deps that returns the set of depen-
dent IDs for a given operation. This requirement is a weak expression
of causality: an operation can only depend on causally prior operations,
and by making the total order on IDs a linear extension of the causal
order, we can easily ensure that any referenced IDs are less than that
of the operation itself.

3. The OpSet is finite (but we do not assume any particular maximum
size).

locale opset =
fixes opset :: (′oid::{linorder} × ′oper) set

and deps :: ′oper ⇒ ′oid set

2

assumes unique-oid: (oid, op1) ∈ opset =⇒ (oid, op2) ∈ opset =⇒ op1 = op2
and ref-older : (oid, oper) ∈ opset =⇒ ref ∈ deps oper =⇒ ref < oid
and finite-opset: finite opset

We prove that any subset of an OpSet is also a valid OpSet. This is the case
because, although an operation can depend on causally prior operations, the
OpSet does not require those prior operations to actually exist. This weak
assumption makes the OpSet model more general and simplifies reasoning
about OpSets.
lemma opset-subset:

assumes opset Y deps
and X ⊆ Y

shows opset X deps
〈proof 〉

lemma opset-insert:
assumes opset (insert x ops) deps
shows opset ops deps
〈proof 〉

lemma opset-sublist:
assumes opset (set (xs @ ys @ zs)) deps
shows opset (set (xs @ zs)) deps
〈proof 〉

1.2 Helper lemmas about lists

Some general-purpose lemas about lists and sets that are helpful for subse-
quent proofs.
lemma distinct-rem-mid:

assumes distinct (xs @ [x] @ ys)
shows distinct (xs @ ys)
〈proof 〉

lemma distinct-fst-append:
assumes x ∈ set (map fst xs)

and distinct (map fst (xs @ ys))
shows x /∈ set (map fst ys)
〈proof 〉

lemma distinct-set-remove-last:
assumes distinct (xs @ [x])
shows set xs = set (xs @ [x]) − {x}
〈proof 〉

lemma distinct-set-remove-mid:
assumes distinct (xs @ [x] @ ys)
shows set (xs @ ys) = set (xs @ [x] @ ys) − {x}

3

〈proof 〉

lemma distinct-list-split:
assumes distinct xs

and xs = xa @ x # ya
and xs = xb @ x # yb

shows xa = xb ∧ ya = yb
〈proof 〉

lemma distinct-append-swap:
assumes distinct (xs @ ys)
shows distinct (ys @ xs)
〈proof 〉

lemma append-subset:
assumes set xs = set (ys @ zs)
shows set ys ⊆ set xs and set zs ⊆ set xs
〈proof 〉

lemma append-set-rem-last:
assumes set (xs @ [x]) = set (ys @ [x] @ zs)

and distinct (xs @ [x]) and distinct (ys @ [x] @ zs)
shows set xs = set (ys @ zs)
〈proof 〉

lemma distinct-map-fst-remove1 :
assumes distinct (map fst xs)
shows distinct (map fst (remove1 x xs))
〈proof 〉

1.3 The spec-ops predicate

The spec-ops predicate describes a list of (ID, operation) pairs that corre-
sponds to the linearisation of an OpSet, and which we use for sequentially
interpreting the OpSet. A list satisfies spec-ops iff it is sorted in ascending
order of IDs, if the IDs are unique, and if every operation’s dependencies have
lower IDs than the operation itself. A list is implicitly finite in Isabelle/HOL.
These requirements correspond to the OpSet definition above, and indeed we
prove later that every OpSet has a linearisation that satisfies spec-ops.
definition spec-ops :: (′oid::{linorder} × ′oper) list ⇒ (′oper ⇒ ′oid set) ⇒ bool
where

spec-ops ops deps ≡ (sorted (map fst ops) ∧ distinct (map fst ops) ∧
(∀ oid oper ref . (oid, oper) ∈ set ops ∧ ref ∈ deps oper −→ ref < oid))

lemma spec-ops-empty:
shows spec-ops [] deps
〈proof 〉

4

lemma spec-ops-distinct:
assumes spec-ops ops deps
shows distinct ops
〈proof 〉

lemma spec-ops-distinct-fst:
assumes spec-ops ops deps
shows distinct (map fst ops)
〈proof 〉

lemma spec-ops-sorted:
assumes spec-ops ops deps
shows sorted (map fst ops)
〈proof 〉

lemma spec-ops-rem-cons:
assumes spec-ops (x # xs) deps
shows spec-ops xs deps
〈proof 〉

lemma spec-ops-rem-last:
assumes spec-ops (xs @ [x]) deps
shows spec-ops xs deps
〈proof 〉

lemma spec-ops-remove1 :
assumes spec-ops xs deps
shows spec-ops (remove1 x xs) deps
〈proof 〉

lemma spec-ops-ref-less:
assumes spec-ops xs deps

and (oid, oper) ∈ set xs
and r ∈ deps oper

shows r < oid
〈proof 〉

lemma spec-ops-ref-less-last:
assumes spec-ops (xs @ [(oid, oper)]) deps

and r ∈ deps oper
shows r < oid
〈proof 〉

lemma spec-ops-id-inc:
assumes spec-ops (xs @ [(oid, oper)]) deps

and x ∈ set (map fst xs)
shows x < oid
〈proof 〉

5

lemma spec-ops-add-last:
assumes spec-ops xs deps

and ∀ i ∈ set (map fst xs). i < oid
and ∀ ref ∈ deps oper . ref < oid

shows spec-ops (xs @ [(oid, oper)]) deps
〈proof 〉

lemma spec-ops-add-any:
assumes spec-ops (xs @ ys) deps

and ∀ i ∈ set (map fst xs). i < oid
and ∀ i ∈ set (map fst ys). oid < i
and ∀ ref ∈ deps oper . ref < oid

shows spec-ops (xs @ [(oid, oper)] @ ys) deps
〈proof 〉

lemma spec-ops-split:
assumes spec-ops xs deps

and oid /∈ set (map fst xs)
shows ∃ pre suf . xs = pre @ suf ∧

(∀ i ∈ set (map fst pre). i < oid) ∧
(∀ i ∈ set (map fst suf). oid < i)

〈proof 〉

lemma spec-ops-exists-base:
assumes finite ops

and
∧

oid op1 op2 . (oid, op1) ∈ ops =⇒ (oid, op2) ∈ ops =⇒ op1 = op2
and

∧
oid oper ref . (oid, oper) ∈ ops =⇒ ref ∈ deps oper =⇒ ref < oid

shows ∃ op-list. set op-list = ops ∧ spec-ops op-list deps
〈proof 〉

We prove that for any given OpSet, a spec-ops linearisation exists:
lemma spec-ops-exists:

assumes opset ops deps
shows ∃ op-list. set op-list = ops ∧ spec-ops op-list deps
〈proof 〉

lemma spec-ops-oid-unique:
assumes spec-ops op-list deps

and (oid, op1) ∈ set op-list
and (oid, op2) ∈ set op-list

shows op1 = op2
〈proof 〉

Conversely, for any given spec-ops list, the set of pairs in the list is an OpSet:
lemma spec-ops-is-opset:

assumes spec-ops op-list deps
shows opset (set op-list) deps
〈proof 〉

6

1.4 The crdt-ops predicate

Like spec-ops, the crdt-ops predicate describes the linearisation of an OpSet
into a list. Like spec-ops, it requires IDs to be unique. However, its other
properties are different: crdt-ops does not require operations to appear in
sorted order, but instead, whenever any operation references the ID of a
prior operation, that prior operation must appear previously in the crdt-ops
list. Thus, the order of operations is partially constrained: operations must
appear in causal order, but concurrent operations can be ordered arbitrarily.
This list describes the operation sequence in the order it is typically applied
to an operation-based CRDT. Applying operations in the order they appear
in crdt-ops requires that concurrent operations commute. For any crdt-ops
operation sequence, there is a permutation that satisfies the spec-ops predi-
cate. Thus, to check whether a CRDT satisfies its sequential specification, we
can prove that interpreting any crdt-ops operation sequence with the commu-
tative operation interpretation results in the same end result as interpreting
the spec-ops permutation of that operation sequence with the sequential op-
eration interpretation.
inductive crdt-ops :: (′oid::{linorder} × ′oper) list ⇒ (′oper ⇒ ′oid set) ⇒ bool
where

crdt-ops [] deps |
[[crdt-ops xs deps;

oid /∈ set (map fst xs);
∀ ref ∈ deps oper . ref ∈ set (map fst xs) ∧ ref < oid
]] =⇒ crdt-ops (xs @ [(oid, oper)]) deps

inductive-cases crdt-ops-last: crdt-ops (xs @ [x]) deps

lemma crdt-ops-intro:
assumes

∧
r . r ∈ deps oper =⇒ r ∈ fst ‘ set xs ∧ r < oid

and oid /∈ fst ‘ set xs
and crdt-ops xs deps

shows crdt-ops (xs @ [(oid, oper)]) deps
〈proof 〉

lemma crdt-ops-rem-last:
assumes crdt-ops (xs @ [x]) deps
shows crdt-ops xs deps
〈proof 〉

lemma crdt-ops-ref-less:
assumes crdt-ops xs deps

and (oid, oper) ∈ set xs
and r ∈ deps oper

shows r < oid
〈proof 〉

7

lemma crdt-ops-ref-less-last:
assumes crdt-ops (xs @ [(oid, oper)]) deps

and r ∈ deps oper
shows r < oid
〈proof 〉

lemma crdt-ops-distinct-fst:
assumes crdt-ops xs deps
shows distinct (map fst xs)
〈proof 〉

lemma crdt-ops-distinct:
assumes crdt-ops xs deps
shows distinct xs
〈proof 〉

lemma crdt-ops-unique-last:
assumes crdt-ops (xs @ [(oid, oper)]) deps
shows oid /∈ set (map fst xs)
〈proof 〉

lemma crdt-ops-unique-mid:
assumes crdt-ops (xs @ [(oid, oper)] @ ys) deps
shows oid /∈ set (map fst xs) ∧ oid /∈ set (map fst ys)
〈proof 〉

lemma crdt-ops-ref-exists:
assumes crdt-ops (pre @ (oid, oper) # suf) deps

and ref ∈ deps oper
shows ref ∈ fst ‘ set pre
〈proof 〉

lemma crdt-ops-no-future-ref :
assumes crdt-ops (xs @ [(oid, oper)] @ ys) deps
shows

∧
ref . ref ∈ deps oper =⇒ ref /∈ fst ‘ set ys

〈proof 〉

lemma crdt-ops-reorder :
assumes crdt-ops (xs @ [(oid, oper)] @ ys) deps

and
∧

op2 r . op2 ∈ snd ‘ set ys =⇒ r ∈ deps op2 =⇒ r 6= oid
shows crdt-ops (xs @ ys @ [(oid, oper)]) deps
〈proof 〉

lemma crdt-ops-rem-middle:
assumes crdt-ops (xs @ [(oid, ref)] @ ys) deps

and
∧

op2 r . op2 ∈ snd ‘ set ys =⇒ r ∈ deps op2 =⇒ r 6= oid
shows crdt-ops (xs @ ys) deps
〈proof 〉

8

lemma crdt-ops-independent-suf :
assumes spec-ops (xs @ [(oid, oper)]) deps

and crdt-ops (ys @ [(oid, oper)] @ zs) deps
and set (xs @ [(oid, oper)]) = set (ys @ [(oid, oper)] @ zs)

shows
∧

op2 r . op2 ∈ snd ‘ set zs =⇒ r ∈ deps op2 =⇒ r 6= oid
〈proof 〉

lemma crdt-ops-reorder-spec:
assumes spec-ops (xs @ [x]) deps

and crdt-ops (ys @ [x] @ zs) deps
and set (xs @ [x]) = set (ys @ [x] @ zs)

shows crdt-ops (ys @ zs @ [x]) deps
〈proof 〉

lemma crdt-ops-rem-spec:
assumes spec-ops (xs @ [x]) deps

and crdt-ops (ys @ [x] @ zs) deps
and set (xs @ [x]) = set (ys @ [x] @ zs)

shows crdt-ops (ys @ zs) deps
〈proof 〉

lemma crdt-ops-rem-penultimate:
assumes crdt-ops (xs @ [(i1 , r1)] @ [(i2 , r2)]) deps

and
∧

r . r ∈ deps r2 =⇒ r 6= i1
shows crdt-ops (xs @ [(i2 , r2)]) deps
〈proof 〉

lemma crdt-ops-spec-ops-exist:
assumes crdt-ops xs deps
shows ∃ ys. set xs = set ys ∧ spec-ops ys deps
〈proof 〉

end

2 Specifying list insertion
theory Insert-Spec

imports OpSet
begin

In this section we consider only list insertion. We model an insertion opera-
tion as a pair (ID, ref), where ref is either None (signifying an insertion at
the head of the list) or Some r (an insertion immediately after a reference
element with ID r). If the reference element does not exist, the operation
does nothing.
We provide two different definitions of the interpretation function for list
insertion: insert-spec and insert-alt. The insert-alt definition matches the
paper, while insert-spec uses the Isabelle/HOL list datatype, making it more

9

suitable for formal reasoning. In a later subsection we prove that the two
definitions are in fact equivalent.
fun insert-spec :: ′oid list ⇒ (′oid × ′oid option) ⇒ ′oid list where

insert-spec xs (oid, None) = oid#xs |
insert-spec [] (oid, -) = [] |
insert-spec (x#xs) (oid, Some ref) =

(if x = ref then x # oid # xs
else x # (insert-spec xs (oid, Some ref)))

fun insert-alt :: (′oid × ′oid option) set ⇒ (′oid × ′oid) ⇒ (′oid × ′oid option) set
where

insert-alt list-rel (oid, ref) = (
if ∃n. (ref , n) ∈ list-rel
then {(p, n) ∈ list-rel. p 6= ref } ∪ {(ref , Some oid)} ∪
{(i, n). i = oid ∧ (ref , n) ∈ list-rel}

else list-rel)

interp-ins is the sequential interpretation of a set of insertion operations. It
starts with an empty list as initial state, and then applies the operations
from left to right.
definition interp-ins :: (′oid × ′oid option) list ⇒ ′oid list where

interp-ins ops ≡ foldl insert-spec [] ops

2.1 The insert-ops predicate

We now specialise the definitions from the abstract OpSet section for list
insertion. insert-opset is an opset consisting only of insertion operations,
and insert-ops is the specialisation of the spec-ops predicate for insertion
operations. We prove several useful lemmas about insert-ops.
locale insert-opset = opset opset set-option

for opset :: (′oid::{linorder} × ′oid option) set

definition insert-ops :: (′oid::{linorder} × ′oid option) list ⇒ bool where
insert-ops list ≡ spec-ops list set-option

lemma insert-ops-NilI [intro!]:
shows insert-ops []
〈proof 〉

lemma insert-ops-rem-last [dest]:
assumes insert-ops (xs @ [x])
shows insert-ops xs
〈proof 〉

lemma insert-ops-rem-cons:
assumes insert-ops (x # xs)
shows insert-ops xs

10

〈proof 〉

lemma insert-ops-appendD:
assumes insert-ops (xs @ ys)
shows insert-ops xs
〈proof 〉

lemma insert-ops-rem-prefix:
assumes insert-ops (pre @ suf)
shows insert-ops suf
〈proof 〉

lemma insert-ops-remove1 :
assumes insert-ops xs
shows insert-ops (remove1 x xs)
〈proof 〉

lemma last-op-greatest:
assumes insert-ops (op-list @ [(oid, oper)])

and x ∈ set (map fst op-list)
shows x < oid
〈proof 〉

lemma insert-ops-ref-older :
assumes insert-ops (pre @ [(oid, Some ref)] @ suf)
shows ref < oid
〈proof 〉

lemma insert-ops-memb-ref-older :
assumes insert-ops op-list

and (oid, Some ref) ∈ set op-list
shows ref < oid
〈proof 〉

2.2 Properties of the insert-spec function
lemma insert-spec-none [simp]:

shows set (insert-spec xs (oid, None)) = set xs ∪ {oid}
〈proof 〉

lemma insert-spec-set [simp]:
assumes ref ∈ set xs
shows set (insert-spec xs (oid, Some ref)) = set xs ∪ {oid}
〈proof 〉

lemma insert-spec-nonex [simp]:
assumes ref /∈ set xs
shows insert-spec xs (oid, Some ref) = xs
〈proof 〉

11

lemma list-greater-non-memb:
fixes oid :: ′oid::{linorder}
assumes

∧
x. x ∈ set xs =⇒ x < oid

and oid ∈ set xs
shows False
〈proof 〉

lemma inserted-item-ident:
assumes a ∈ set (insert-spec xs (e, i))

and a /∈ set xs
shows a = e
〈proof 〉

lemma insert-spec-distinct [intro]:
fixes oid :: ′oid::{linorder}
assumes distinct xs

and
∧

x. x ∈ set xs =⇒ x < oid
and ref = Some r −→ r < oid

shows distinct (insert-spec xs (oid, ref))
〈proof 〉

lemma insert-after-ref :
assumes distinct (xs @ ref # ys)
shows insert-spec (xs @ ref # ys) (oid, Some ref) = xs @ ref # oid # ys
〈proof 〉

lemma insert-somewhere:
assumes ref = None ∨ (ref = Some r ∧ r ∈ set list)
shows ∃ xs ys. list = xs @ ys ∧ insert-spec list (oid, ref) = xs @ oid # ys
〈proof 〉

lemma insert-first-part:
assumes ref = None ∨ (ref = Some r ∧ r ∈ set xs)
shows insert-spec (xs @ ys) (oid, ref) = (insert-spec xs (oid, ref)) @ ys
〈proof 〉

lemma insert-second-part:
assumes ref = Some r

and r /∈ set xs
and r ∈ set ys

shows insert-spec (xs @ ys) (oid, ref) = xs @ (insert-spec ys (oid, ref))
〈proof 〉

2.3 Properties of the interp-ins function
lemma interp-ins-empty [simp]:

shows interp-ins [] = []
〈proof 〉

12

lemma interp-ins-tail-unfold:
shows interp-ins (xs @ [x]) = insert-spec (interp-ins xs) x
〈proof 〉

lemma interp-ins-subset [simp]:
shows set (interp-ins op-list) ⊆ set (map fst op-list)
〈proof 〉

lemma interp-ins-distinct:
assumes insert-ops op-list
shows distinct (interp-ins op-list)
〈proof 〉

2.4 Equivalence of the two definitions of insertion

At the beginning of this section we gave two different definitions of interpre-
tation functions for list insertion: insert-spec and insert-alt. In this section
we prove that the two are equivalent.
We first define how to derive the successor relation from an Isabelle list. This
relation contains (id, None) if id is the last element of the list, and (id1, id2)
if id1 is immediately followed by id2 in the list.
fun succ-rel :: ′oid list ⇒ (′oid × ′oid option) set where

succ-rel [] = {} |
succ-rel [head] = {(head, None)} |
succ-rel (head#x#xs) = {(head, Some x)} ∪ succ-rel (x#xs)

interp-alt is the equivalent of interp-ins, but using insert-alt instead of insert-
spec. To match the paper, it uses a distinct head element to refer to the
beginning of the list.
definition interp-alt :: ′oid ⇒ (′oid × ′oid option) list ⇒ (′oid × ′oid option) set
where

interp-alt head ops ≡ foldl insert-alt {(head, None)}
(map (λx. case x of

(oid, None) ⇒ (oid, head) |
(oid, Some ref) ⇒ (oid, ref))

ops)

lemma succ-rel-set-fst:
shows fst ‘ (succ-rel xs) = set xs
〈proof 〉

lemma succ-rel-functional:
assumes (a, b1) ∈ succ-rel xs

and (a, b2) ∈ succ-rel xs
and distinct xs

shows b1 = b2

13

〈proof 〉

lemma succ-rel-rem-head:
assumes distinct (x # xs)
shows {(p, n) ∈ succ-rel (x # xs). p 6= x} = succ-rel xs
〈proof 〉

lemma succ-rel-swap-head:
assumes distinct (ref # list)

and (ref , n) ∈ succ-rel (ref # list)
shows succ-rel (oid # list) = {(oid, n)} ∪ succ-rel list
〈proof 〉

lemma succ-rel-insert-alt:
assumes a 6= ref

and distinct (oid # a # b # list)
shows insert-alt (succ-rel (a # b # list)) (oid, ref) =

{(a, Some b)} ∪ insert-alt (succ-rel (b # list)) (oid, ref)
〈proof 〉

lemma succ-rel-insert-head:
assumes distinct (ref # list)
shows succ-rel (insert-spec (ref # list) (oid, Some ref)) =

insert-alt (succ-rel (ref # list)) (oid, ref)
〈proof 〉

lemma succ-rel-insert-later :
assumes succ-rel (insert-spec (b # list) (oid, Some ref)) =

insert-alt (succ-rel (b # list)) (oid, ref)
and a 6= ref
and distinct (a # b # list)

shows succ-rel (insert-spec (a # b # list) (oid, Some ref)) =
insert-alt (succ-rel (a # b # list)) (oid, ref)

〈proof 〉

lemma succ-rel-insert-Some:
assumes distinct list
shows succ-rel (insert-spec list (oid, Some ref)) = insert-alt (succ-rel list) (oid,

ref)
〈proof 〉

The main result of this section, that insert-spec and insert-alt are equivalent.
theorem insert-alt-equivalent:

assumes insert-ops ops
and head /∈ fst ‘ set ops
and

∧
r . Some r ∈ snd ‘ set ops =⇒ r 6= head

shows succ-rel (head # interp-ins ops) = interp-alt head ops
〈proof 〉

14

2.5 The list-order predicate

list-order ops x y holds iff, after interpreting the list of insertion operations
ops, the list element with ID x appears before the list element with ID y in the
resulting list. We prove several lemmas about this predicate; in particular,
that executing additional insertion operations does not change the relative
ordering of existing list elements.
definition list-order :: (′oid::{linorder} × ′oid option) list ⇒ ′oid ⇒ ′oid ⇒ bool
where

list-order ops x y ≡ ∃ xs ys zs. interp-ins ops = xs @ [x] @ ys @ [y] @ zs

lemma list-orderI :
assumes interp-ins ops = xs @ [x] @ ys @ [y] @ zs
shows list-order ops x y
〈proof 〉

lemma list-orderE :
assumes list-order ops x y
shows ∃ xs ys zs. interp-ins ops = xs @ [x] @ ys @ [y] @ zs
〈proof 〉

lemma list-order-memb1 :
assumes list-order ops x y
shows x ∈ set (interp-ins ops)
〈proof 〉

lemma list-order-memb2 :
assumes list-order ops x y
shows y ∈ set (interp-ins ops)
〈proof 〉

lemma list-order-trans:
assumes insert-ops op-list

and list-order op-list x y
and list-order op-list y z

shows list-order op-list x z
〈proof 〉

lemma insert-preserves-order :
assumes insert-ops ops and insert-ops rest

and rest = before @ after
and ops = before @ (oid, ref) # after

shows ∃ xs ys zs. interp-ins rest = xs @ zs ∧ interp-ins ops = xs @ ys @ zs
〈proof 〉

lemma distinct-fst:
assumes distinct (map fst A)
shows distinct A

15

〈proof 〉

lemma subset-distinct-le:
assumes set A ⊆ set B and distinct A and distinct B
shows length A ≤ length B
〈proof 〉

lemma set-subset-length-eq:
assumes set A ⊆ set B and length B ≤ length A

and distinct A and distinct B
shows set A = set B
〈proof 〉

lemma length-diff-Suc-exists:
assumes length xs − length ys = Suc m

and set ys ⊆ set xs
and distinct ys and distinct xs

shows ∃ e. e ∈ set xs ∧ e /∈ set ys
〈proof 〉

lemma app-length-lt-exists:
assumes xsa @ zsa = xs @ ys

and length xsa ≤ length xs
shows xsa @ (drop (length xsa) xs) = xs
〈proof 〉

lemma list-order-monotonic:
assumes insert-ops A and insert-ops B

and set A ⊆ set B
and list-order A x y

shows list-order B x y
〈proof 〉

end

3 Relationship to Strong List Specification

In this section we show that our list specification is stronger than the Astrong
specification of collaborative text editing by Attiya et al. [1]. We do this by
showing that the OpSet interpretation of any set of insertion and deletion
operations satisfies all of the consistency criteria that constitute the Astrong
specification.
Attiya et al.’s specification is as follows [1]:

An abstract execution A = (H, vis) belongs to the strong list spec-
ification Astrong if and only if there is a relation lo ⊆ elems(A)×

16

elems(A), called the list order, such that:
1. Each event e = do(op, w) ∈ H returns a sequence of elements

w = a0 . . . an−1, where ai ∈ elems(A), such that
(a) w contains exactly the elements visible to e that have been

inserted, but not deleted:

∀a. a ∈ w ⇐⇒ (do(ins(a,_),_) ≤vis e) ∧ ¬(do(del(a),_) ≤vis e).

(b) The order of the elements is consistent with the list order:

∀i, j. (i < j) =⇒ (ai, aj) ∈ lo.

(c) Elements are inserted at the specified position: if op =
ins(a, k), then a = amin{k, n−1}.

2. The list order lo is transitive, irreflexive and total, and thus
determines the order of all insert operations in the execution.

This specification considers only insertion and deletion operations, but no
assignment. Moreover, it considers only a single list object, not a graph of
composable objects like in our paper. Thus, we prove the relationship to
Astrong using a simplified interpretation function that defines only insertion
and deletion on a single list.
theory List-Spec

imports Insert-Spec
begin

We first define a datatype for list operations, with two constructors: Insert
ref val, and Delete ref. For insertion, the ref argument is the ID of the
existing element after which we want to insert, or None to insert at the head
of the list. The val argument is an arbitrary value to associate with the list
element. For deletion, the ref argument is the ID of the existing list element
to delete.
datatype (′oid, ′val) list-op =

Insert ′oid option ′val |
Delete ′oid

When interpreting operations, the result is a pair (list, vals). The list contains
the IDs of list elements in the correct order (equivalent to the list relation in
the paper), and vals is a mapping from list element IDs to values (equivalent
to the element relation in the paper).
Insertion delegates to the previously defined insert-spec interpretation func-
tion. Deleting a list element removes it from vals.
fun interp-op :: (′oid list × (′oid ⇀ ′val)) ⇒ (′oid × (′oid, ′val) list-op)

⇒ (′oid list × (′oid ⇀ ′val)) where

17

interp-op (list, vals) (oid, Insert ref val) = (insert-spec list (oid, ref), vals(oid 7→
val)) |

interp-op (list, vals) (oid, Delete ref) = (list, vals(ref := None))

definition interp-ops :: (′oid × (′oid, ′val) list-op) list ⇒ (′oid list × (′oid ⇀ ′val))
where

interp-ops ops ≡ foldl interp-op ([], Map.empty) ops

list-order ops x y holds iff, after interpreting the list of operations ops, the list
element with ID x appears before the list element with ID y in the resulting
list.
definition list-order :: (′oid × (′oid, ′val) list-op) list ⇒ ′oid ⇒ ′oid ⇒ bool where

list-order ops x y ≡ ∃ xs ys zs. fst (interp-ops ops) = xs @ [x] @ ys @ [y] @ zs

The make-insert function generates a new operation for insertion into a given
index in a given list. The exclamation mark is Isabelle’s list subscript oper-
ator.
fun make-insert :: ′oid list ⇒ ′val ⇒ nat ⇒ (′oid, ′val) list-op where

make-insert list val 0 = Insert None val |
make-insert [] val k = Insert None val |
make-insert list val (Suc k) = Insert (Some (list ! (min k (length list − 1)))) val

The list-ops predicate is a specialisation of spec-ops to the list-op datatype:
it describes a list of (ID, operation) pairs that is sorted by ID, and can thus
be used for the sequential interpretation of the OpSet.
fun list-op-deps :: (′oid, ′val) list-op ⇒ ′oid set where

list-op-deps (Insert (Some ref) -) = {ref } |
list-op-deps (Insert None -) = {} |
list-op-deps (Delete ref) = {ref }

locale list-opset = opset opset list-op-deps
for opset :: (′oid::{linorder} × (′oid, ′val) list-op) set

definition list-ops :: (′oid::{linorder} × (′oid, ′val) list-op) list ⇒ bool where
list-ops ops ≡ spec-ops ops list-op-deps

3.1 Lemmas about insertion and deletion
definition insertions :: (′oid::{linorder} × (′oid, ′val) list-op) list ⇒ (′oid × ′oid
option) list where

insertions ops ≡ List.map-filter (λoper .
case oper of (oid, Insert ref val) ⇒ Some (oid, ref) |

(oid, Delete ref) ⇒ None) ops

definition inserted-ids :: (′oid::{linorder} × (′oid, ′val) list-op) list ⇒ ′oid list
where

inserted-ids ops ≡ List.map-filter (λoper .
case oper of (oid, Insert ref val) ⇒ Some oid |

18

(oid, Delete ref) ⇒ None) ops

definition deleted-ids :: (′oid::{linorder} × (′oid, ′val) list-op) list ⇒ ′oid list
where

deleted-ids ops ≡ List.map-filter (λoper .
case oper of (oid, Insert ref val) ⇒ None |

(oid, Delete ref) ⇒ Some ref) ops

lemma interp-ops-unfold-last:
shows interp-ops (xs @ [x]) = interp-op (interp-ops xs) x
〈proof 〉

lemma map-filter-append:
shows List.map-filter P (xs @ ys) = List.map-filter P xs @ List.map-filter P ys
〈proof 〉

lemma map-filter-Some:
assumes P x = Some y
shows List.map-filter P [x] = [y]
〈proof 〉

lemma map-filter-None:
assumes P x = None
shows List.map-filter P [x] = []
〈proof 〉

lemma insertions-last-ins:
shows insertions (xs @ [(oid, Insert ref val)]) = insertions xs @ [(oid, ref)]
〈proof 〉

lemma insertions-last-del:
shows insertions (xs @ [(oid, Delete ref)]) = insertions xs
〈proof 〉

lemma insertions-fst-subset:
shows set (map fst (insertions ops)) ⊆ set (map fst ops)
〈proof 〉

lemma insertions-subset:
assumes list-ops A and list-ops B

and set A ⊆ set B
shows set (insertions A) ⊆ set (insertions B)
〈proof 〉

lemma list-ops-insertions:
assumes list-ops ops
shows insert-ops (insertions ops)
〈proof 〉

19

lemma inserted-ids-last-ins:
shows inserted-ids (xs @ [(oid, Insert ref val)]) = inserted-ids xs @ [oid]
〈proof 〉

lemma inserted-ids-last-del:
shows inserted-ids (xs @ [(oid, Delete ref)]) = inserted-ids xs
〈proof 〉

lemma inserted-ids-exist:
shows oid ∈ set (inserted-ids ops) ←→ (∃ ref val. (oid, Insert ref val) ∈ set ops)
〈proof 〉

lemma deleted-ids-last-ins:
shows deleted-ids (xs @ [(oid, Insert ref val)]) = deleted-ids xs
〈proof 〉

lemma deleted-ids-last-del:
shows deleted-ids (xs @ [(oid, Delete ref)]) = deleted-ids xs @ [ref]
〈proof 〉

lemma deleted-ids-exist:
shows ref ∈ set (deleted-ids ops) ←→ (∃ i. (i, Delete ref) ∈ set ops)
〈proof 〉

lemma deleted-ids-refs-older :
assumes list-ops (ops @ [(oid, oper)])
shows

∧
ref . ref ∈ set (deleted-ids ops) =⇒ ref < oid

〈proof 〉

3.2 Lemmas about interpreting operations
lemma interp-ops-list-equiv:

shows fst (interp-ops ops) = interp-ins (insertions ops)
〈proof 〉

lemma interp-ops-distinct:
assumes list-ops ops
shows distinct (fst (interp-ops ops))
〈proof 〉

lemma list-order-equiv:
shows list-order ops x y ←→ Insert-Spec.list-order (insertions ops) x y
〈proof 〉

lemma interp-ops-vals-domain:
assumes list-ops ops
shows dom (snd (interp-ops ops)) = set (inserted-ids ops) − set (deleted-ids ops)
〈proof 〉

20

lemma insert-spec-nth-oid:
assumes distinct xs

and n < length xs
shows insert-spec xs (oid, Some (xs ! n)) ! Suc n = oid
〈proof 〉

lemma insert-spec-inc-length:
assumes distinct xs

and n < length xs
shows length (insert-spec xs (oid, Some (xs ! n))) = Suc (length xs)
〈proof 〉

lemma list-split-two-elems:
assumes distinct xs

and x ∈ set xs and y ∈ set xs
and x 6= y

shows ∃ pre mid suf . xs = pre @ x # mid @ y # suf ∨ xs = pre @ y # mid @
x # suf
〈proof 〉

3.3 Satisfying all conditions of Astrong
Part 1(a) of Attiya et al.’s specification states that whenever the list is ob-
served, the elements of the list are exactly those that have been inserted but
not deleted. Astrong uses the visibility relation ≤vis to capture the opera-
tions known to a node at some arbitrary point in the execution; in the OpSet
model, we can simply prove the theorem for an arbitrary OpSet, since the
contents of the OpSet at a particular time on a particular node correspond
exactly to the set of operations known to that node at that time.
theorem inserted-but-not-deleted:

assumes list-ops ops
and interp-ops ops = (list, vals)

shows a ∈ dom (vals) ←→ (∃ ref val. (a, Insert ref val) ∈ set ops) ∧
(@ i. (i, Delete a) ∈ set ops)

〈proof 〉

Part 1(b) states that whenever the list is observed, the order of list elements
is consistent with the global list order. We can define the global list order
simply as the list order that arises from interpreting the OpSet containing
all operations in the entire execution. Then, at any point in the execution,
the OpSet is some subset of the set of all operations.
We can then rephrase condition 1(b) as follows: whenever list element x
appears before list element y in the interpretation of some-ops, then for any
OpSet all-ops that is a superset of some-ops, x must also appear before y in
the interpretation of all-ops. In other words, adding more operations to the
OpSet does not change the relative order of any existing list elements.

21

theorem list-order-consistent:
assumes list-ops some-ops and list-ops all-ops

and set some-ops ⊆ set all-ops
and list-order some-ops x y

shows list-order all-ops x y
〈proof 〉

Part 1(c) states that inserted elements appear at the specified position: that
is, immediately after an insertion of oid at index k, the list index k does
indeed contain oid (provided that k is less than the length of the list). We
prove this property below.
theorem correct-position-insert:

assumes list-ops (ops @ [(oid, ins)])
and ins = make-insert (fst (interp-ops ops)) val k
and list = fst (interp-ops (ops @ [(oid, ins)]))

shows list ! (min k (length list − 1)) = oid
〈proof 〉

Part 2 states that the list order relation must be transitive, irreflexive, and to-
tal. These three properties are straightforward to prove, using our definition
of the list-order predicate.
theorem list-order-trans:

assumes list-ops ops
and list-order ops x y
and list-order ops y z

shows list-order ops x z
〈proof 〉

theorem list-order-irrefl:
assumes list-ops ops
shows ¬ list-order ops x x
〈proof 〉

theorem list-order-total:
assumes list-ops ops

and x ∈ set (fst (interp-ops ops))
and y ∈ set (fst (interp-ops ops))
and x 6= y

shows list-order ops x y ∨ list-order ops y x
〈proof 〉

end

4 Interleaving of concurrent insertions

In this section we prove that our list specification rules out interleaving of
concurrent insertion sequences starting at the same position.

22

theory Interleaving
imports Insert-Spec

begin

4.1 Lemmas about insert-ops
lemma map-fst-append1 :

assumes ∀ i ∈ set (map fst xs). P i
and P x

shows ∀ i ∈ set (map fst (xs @ [(x, y)])). P i
〈proof 〉

lemma insert-ops-split:
assumes insert-ops ops

and (oid, ref) ∈ set ops
shows ∃ pre suf . ops = pre @ [(oid, ref)] @ suf ∧

(∀ i ∈ set (map fst pre). i < oid) ∧
(∀ i ∈ set (map fst suf). oid < i)

〈proof 〉

lemma insert-ops-split-2 :
assumes insert-ops ops

and (xid, xr) ∈ set ops
and (yid, yr) ∈ set ops
and xid < yid

shows ∃ as bs cs. ops = as @ [(xid, xr)] @ bs @ [(yid, yr)] @ cs ∧
(∀ i ∈ set (map fst as). i < xid) ∧
(∀ i ∈ set (map fst bs). xid < i ∧ i < yid) ∧
(∀ i ∈ set (map fst cs). yid < i)

〈proof 〉

lemma insert-ops-sorted-oids:
assumes insert-ops (xs @ [(i1 , r1)] @ ys @ [(i2 , r2)])
shows i1 < i2
〈proof 〉

lemma insert-ops-subset-last:
assumes insert-ops (xs @ [x])

and insert-ops ys
and set ys ⊆ set (xs @ [x])
and x ∈ set ys

shows x = last ys
〈proof 〉

lemma subset-butlast:
assumes set xs ⊆ set (ys @ [y])

and last xs = y
and distinct xs

shows set (butlast xs) ⊆ set ys

23

〈proof 〉

lemma distinct-append-butlast1 :
assumes distinct (map fst xs @ map fst ys)
shows distinct (map fst (butlast xs) @ map fst ys)
〈proof 〉

lemma distinct-append-butlast2 :
assumes distinct (map fst xs @ map fst ys)
shows distinct (map fst xs @ map fst (butlast ys))
〈proof 〉

4.2 Lemmas about interp-ins
lemma interp-ins-maybe-grow:

assumes insert-ops (xs @ [(oid, ref)])
shows set (interp-ins (xs @ [(oid, ref)])) = set (interp-ins xs) ∨

set (interp-ins (xs @ [(oid, ref)])) = (set (interp-ins xs) ∪ {oid})
〈proof 〉

lemma interp-ins-maybe-grow2 :
assumes insert-ops (xs @ [x])
shows set (interp-ins (xs @ [x])) = set (interp-ins xs) ∨

set (interp-ins (xs @ [x])) = (set (interp-ins xs) ∪ {fst x})
〈proof 〉

lemma interp-ins-maybe-grow3 :
assumes insert-ops (xs @ ys)
shows ∃A. A ⊆ set (map fst ys) ∧ set (interp-ins (xs @ ys)) = set (interp-ins

xs) ∪ A
〈proof 〉

lemma interp-ins-ref-nonex:
assumes insert-ops ops

and ops = xs @ [(oid, Some ref)] @ ys
and ref /∈ set (interp-ins xs)

shows oid /∈ set (interp-ins ops)
〈proof 〉

lemma interp-ins-last-None:
shows oid ∈ set (interp-ins (ops @ [(oid, None)]))
〈proof 〉

lemma interp-ins-monotonic:
assumes insert-ops (pre @ suf)

and oid ∈ set (interp-ins pre)
shows oid ∈ set (interp-ins (pre @ suf))
〈proof 〉

24

lemma interp-ins-append-non-memb:
assumes insert-ops (pre @ [(oid, Some ref)] @ suf)

and ref /∈ set (interp-ins pre)
shows ref /∈ set (interp-ins (pre @ [(oid, Some ref)] @ suf))
〈proof 〉

lemma interp-ins-append-memb:
assumes insert-ops (pre @ [(oid, Some ref)] @ suf)

and ref ∈ set (interp-ins pre)
shows oid ∈ set (interp-ins (pre @ [(oid, Some ref)] @ suf))
〈proof 〉

lemma interp-ins-append-forward:
assumes insert-ops (xs @ ys)

and oid ∈ set (interp-ins (xs @ ys))
and oid ∈ set (map fst xs)

shows oid ∈ set (interp-ins xs)
〈proof 〉

lemma interp-ins-find-ref :
assumes insert-ops (xs @ [(oid, Some ref)] @ ys)

and ref ∈ set (interp-ins (xs @ [(oid, Some ref)] @ ys))
shows ∃ r . (ref , r) ∈ set xs
〈proof 〉

4.3 Lemmas about list-order
lemma list-order-append:

assumes insert-ops (pre @ suf)
and list-order pre x y

shows list-order (pre @ suf) x y
〈proof 〉

lemma list-order-insert-ref :
assumes insert-ops (ops @ [(oid, Some ref)])

and ref ∈ set (interp-ins ops)
shows list-order (ops @ [(oid, Some ref)]) ref oid
〈proof 〉

lemma list-order-insert-none:
assumes insert-ops (ops @ [(oid, None)])

and x ∈ set (interp-ins ops)
shows list-order (ops @ [(oid, None)]) oid x
〈proof 〉

lemma list-order-insert-between:
assumes insert-ops (ops @ [(oid, Some ref)])

and list-order ops ref x
shows list-order (ops @ [(oid, Some ref)]) oid x

25

〈proof 〉

4.4 The insert-seq predicate

The predicate insert-seq start ops is true iff ops is a list of insertion opera-
tions that begins by inserting after start, and then continues by placing each
subsequent insertion directly after its predecessor. This definition models the
sequential insertion of text at a particular place in a text document.
inductive insert-seq :: ′oid option ⇒ (′oid × ′oid option) list ⇒ bool where

insert-seq start [(oid, start)] |
[[insert-seq start (list @ [(prev, ref)])]]

=⇒ insert-seq start (list @ [(prev, ref), (oid, Some prev)])

lemma insert-seq-nonempty:
assumes insert-seq start xs
shows xs 6= []
〈proof 〉

lemma insert-seq-hd:
assumes insert-seq start xs
shows ∃ oid. hd xs = (oid, start)
〈proof 〉

lemma insert-seq-rem-last:
assumes insert-seq start (xs @ [x])

and xs 6= []
shows insert-seq start xs
〈proof 〉

lemma insert-seq-butlast:
assumes insert-seq start xs

and xs 6= [] and xs 6= [last xs]
shows insert-seq start (butlast xs)
〈proof 〉

lemma insert-seq-last-ref :
assumes insert-seq start (xs @ [(xi, xr), (yi, yr)])
shows yr = Some xi
〈proof 〉

lemma insert-seq-start-none:
assumes insert-ops ops

and insert-seq None xs and insert-ops xs
and set xs ⊆ set ops

shows ∀ i ∈ set (map fst xs). i ∈ set (interp-ins ops)
〈proof 〉

lemma insert-seq-after-start:

26

assumes insert-ops ops
and insert-seq (Some ref) xs and insert-ops xs
and set xs ⊆ set ops
and ref ∈ set (interp-ins ops)

shows ∀ i ∈ set (map fst xs). list-order ops ref i
〈proof 〉

lemma insert-seq-no-start:
assumes insert-ops ops

and insert-seq (Some ref) xs and insert-ops xs
and set xs ⊆ set ops
and ref /∈ set (interp-ins ops)

shows ∀ i ∈ set (map fst xs). i /∈ set (interp-ins ops)
〈proof 〉

4.5 The proof of no interleaving
lemma no-interleaving-ordered:

assumes insert-ops ops
and insert-seq start xs and insert-ops xs
and insert-seq start ys and insert-ops ys
and set xs ⊆ set ops and set ys ⊆ set ops
and distinct (map fst xs @ map fst ys)
and fst (hd xs) < fst (hd ys)
and

∧
r . start = Some r =⇒ r ∈ set (interp-ins ops)

shows (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops y x) ∧
(∀ r . start = Some r −→ (∀ x ∈ set (map fst xs). list-order ops r x) ∧

(∀ y ∈ set (map fst ys). list-order ops r y))
〈proof 〉

Consider an execution that contains two distinct insertion sequences, xs and
ys, that both begin at the same initial position start. We prove that, provided
the starting element exists, the two insertion sequences are not interleaved.
That is, in the final list order, either all insertions by xs appear before all
insertions by ys, or vice versa.
theorem no-interleaving:

assumes insert-ops ops
and insert-seq start xs and insert-ops xs
and insert-seq start ys and insert-ops ys
and set xs ⊆ set ops and set ys ⊆ set ops
and distinct (map fst xs @ map fst ys)
and start = None ∨ (∃ r . start = Some r ∧ r ∈ set (interp-ins ops))

shows (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops x y) ∨
(∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops y x)

〈proof 〉

For completeness, we also prove what happens if there are two insertion
sequences, xs and ys, but their initial position start does not exist. In that
case, none of the insertions in xs or ys take effect.

27

theorem missing-start-no-insertion:
assumes insert-ops ops

and insert-seq (Some start) xs and insert-ops xs
and insert-seq (Some start) ys and insert-ops ys
and set xs ⊆ set ops and set ys ⊆ set ops
and start /∈ set (interp-ins ops)

shows ∀ x ∈ set (map fst xs) ∪ set (map fst ys). x /∈ set (interp-ins ops)
〈proof 〉

end

5 The Replicated Growable Array (RGA)

The RGA algorithm [4] is a replicated list (or collaborative text-editing)
algorithm. In this section we prove that RGA satisfies our list specification.
The Isabelle/HOL definition of RGA in this section is based on our prior
work on formally verifying CRDTs [3, 2].
theory RGA

imports Insert-Spec
begin

fun insert-body :: ′oid::{linorder} list ⇒ ′oid ⇒ ′oid list where
insert-body [] e = [e] |
insert-body (x # xs) e =

(if x < e then e # x # xs
else x # insert-body xs e)

fun insert-rga :: ′oid::{linorder} list ⇒ (′oid × ′oid option) ⇒ ′oid list where
insert-rga xs (e, None) = insert-body xs e |
insert-rga [] (e, Some i) = [] |
insert-rga (x # xs) (e, Some i) =

(if x = i then
x # insert-body xs e

else
x # insert-rga xs (e, Some i))

definition interp-rga :: (′oid::{linorder} × ′oid option) list ⇒ ′oid list where
interp-rga ops ≡ foldl insert-rga [] ops

5.1 Commutativity of insert-rga
lemma insert-body-set-ins [simp]:

shows set (insert-body xs e) = insert e (set xs)
〈proof 〉

lemma insert-rga-set-ins:
assumes i ∈ set xs

28

shows set (insert-rga xs (oid, Some i)) = insert oid (set xs)
〈proof 〉

lemma insert-body-commutes:
shows insert-body (insert-body xs e1) e2 = insert-body (insert-body xs e2) e1
〈proof 〉

lemma insert-rga-insert-body-commute:
assumes i2 6= Some e1
shows insert-rga (insert-body xs e1) (e2 , i2) = insert-body (insert-rga xs (e2 ,

i2)) e1
〈proof 〉

lemma insert-rga-None-commutes:
assumes i2 6= Some e1
shows insert-rga (insert-rga xs (e1 , None)) (e2 , i2) =

insert-rga (insert-rga xs (e2 , i2)) (e1 , None)
〈proof 〉

lemma insert-rga-nonexistent:
assumes i /∈ set xs
shows insert-rga xs (e, Some i) = xs
〈proof 〉

lemma insert-rga-Some-commutes:
assumes i1 ∈ set xs and i2 ∈ set xs

and e1 6= i2 and e2 6= i1
shows insert-rga (insert-rga xs (e1 , Some i1)) (e2 , Some i2) =

insert-rga (insert-rga xs (e2 , Some i2)) (e1 , Some i1)
〈proof 〉

lemma insert-rga-commutes:
assumes i2 6= Some e1 and i1 6= Some e2
shows insert-rga (insert-rga xs (e1 , i1)) (e2 , i2) =

insert-rga (insert-rga xs (e2 , i2)) (e1 , i1)
〈proof 〉

lemma insert-body-split:
shows ∃ p s. xs = p @ s ∧ insert-body xs e = p @ e # s
〈proof 〉

lemma insert-between-elements:
assumes xs = pre @ ref # suf

and distinct xs
and

∧
i. i ∈ set xs =⇒ i < e

shows insert-rga xs (e, Some ref) = pre @ ref # e # suf
〈proof 〉

lemma insert-rga-after-ref :

29

assumes ∀ x∈set as. a 6= x
and insert-body (cs @ ds) e = cs @ e # ds

shows insert-rga (as @ a # cs @ ds) (e, Some a) = as @ a # cs @ e # ds
〈proof 〉

lemma insert-rga-preserves-order :
assumes i = None ∨ (∃ i ′. i = Some i ′ ∧ i ′ ∈ set xs)

and distinct xs
shows ∃ pre suf . xs = pre @ suf ∧ insert-rga xs (e, i) = pre @ e # suf
〈proof 〉

5.2 Lemmas about the rga-ops predicate
definition rga-ops :: (′oid::{linorder} × ′oid option) list ⇒ bool where

rga-ops list ≡ crdt-ops list set-option

lemma rga-ops-rem-last:
assumes rga-ops (xs @ [x])
shows rga-ops xs
〈proof 〉

lemma rga-ops-rem-penultimate:
assumes rga-ops (xs @ [(i1 , r1), (i2 , r2)])

and
∧

r . r2 = Some r =⇒ r 6= i1
shows rga-ops (xs @ [(i2 , r2)])
〈proof 〉

lemma rga-ops-ref-exists:
assumes rga-ops (pre @ (oid, Some ref) # suf)
shows ref ∈ fst ‘ set pre
〈proof 〉

5.3 Lemmas about the interp-rga function
lemma interp-rga-tail-unfold:

shows interp-rga (xs@[x]) = insert-rga (interp-rga (xs)) x
〈proof 〉

lemma interp-rga-ids:
assumes rga-ops xs
shows set (interp-rga xs) = set (map fst xs)
〈proof 〉

lemma interp-rga-distinct:
assumes rga-ops xs
shows distinct (interp-rga xs)
〈proof 〉

30

5.4 Proof that RGA satisfies the list specification
lemma final-insert:

assumes set (xs @ [x]) = set (ys @ [x])
and rga-ops (xs @ [x])
and insert-ops (ys @ [x])
and interp-rga xs = interp-ins ys

shows interp-rga (xs @ [x]) = interp-ins (ys @ [x])
〈proof 〉

lemma interp-rga-reorder :
assumes rga-ops (pre @ suf @ [(oid, ref)])

and
∧

i r . (i, Some r) ∈ set suf =⇒ r 6= oid
and

∧
r . ref = Some r =⇒ r /∈ fst ‘ set suf

shows interp-rga (pre @ (oid, ref) # suf) = interp-rga (pre @ suf @ [(oid, ref)])
〈proof 〉

lemma rga-spec-equal:
assumes set xs = set ys

and insert-ops xs
and rga-ops ys

shows interp-ins xs = interp-rga ys
〈proof 〉

lemma insert-ops-exist:
assumes rga-ops xs
shows ∃ ys. set xs = set ys ∧ insert-ops ys
〈proof 〉

theorem rga-meets-spec:
assumes rga-ops xs
shows ∃ ys. set ys = set xs ∧ insert-ops ys ∧ interp-ins ys = interp-rga xs
〈proof 〉

end

References
[1] H. Attiya, S. Burckhardt, A. Gotsman, A. Morrison, H. Yang, and M. Zawirski.

Specification and complexity of collaborative text editing. In ACM Symposium
on Principles of Distributed Computing (PODC), pages 259–268, July 2016.

[2] V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford. A frame-
work for establishing strong eventual consistency for conflict-free replicated data
types. Archive of Formal Proofs, July 2017.

[3] V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford. Verifying
strong eventual consistency in distributed systems. Proceedings of the ACM on
Programming Languages (PACMPL), 1(OOPSLA), Oct. 2017.

31

[4] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated abstract data types:
Building blocks for collaborative applications. Journal of Parallel and Dis-
tributed Computing, 71(3):354–368, 2011.

32

	Abstract OpSet
	OpSet definition
	Helper lemmas about lists
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 spec-ops predicate
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 crdt-ops predicate

	Specifying list insertion
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 insert-ops predicate
	Properties of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 insert-spec function
	Properties of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 interp-ins function
	Equivalence of the two definitions of insertion
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 list-order predicate

	Relationship to Strong List Specification
	Lemmas about insertion and deletion
	Lemmas about interpreting operations
	Satisfying all conditions of Astrong

	Interleaving of concurrent insertions
	Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 insert-ops
	Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 interp-ins
	Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 list-order
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 insert-seq predicate
	The proof of no interleaving

	The Replicated Growable Array (RGA)
	Commutativity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 insert-rga
	Lemmas about the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 rga-ops predicate
	Lemmas about the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 interp-rga function
	Proof that RGA satisfies the list specification

