OpSets: Sequential Specifications for Replicated Datatypes
Proof Document

Martin Kleppmann¹, Victor B. F. Gomes¹, Dominic P. Mulligan², and Alastair R. Beresford¹

¹Department of Computer Science and Technology, University of Cambridge, UK
²Security Research Group, Arm Research, Cambridge, UK

Abstract

We introduce OpSets, an executable framework for specifying and reasoning about the semantics of replicated datatypes that provide eventual consistency in a distributed system, and for mechanically verifying algorithms that implement these datatypes. Our approach is simple but expressive, allowing us to succinctly specify a variety of abstract datatypes, including maps, sets, lists, text, graphs, trees, and registers. Our datatypes are also composable, enabling the construction of complex data structures. To demonstrate the utility of OpSets for analysing replication algorithms, we highlight an important correctness property for collaborative text editing that has traditionally been overlooked; algorithms that do not satisfy this property can exhibit awkward interleaving of text. We use OpSets to specify this correctness property and prove that although one existing replication algorithm satisfies this property, several other published algorithms do not.

Contents

1 Abstract OpSet
 1.1 OpSet definition .. 2
 1.2 Helper lemmas about lists 3
 1.3 The spec-ops predicate 5
 1.4 The crdt-ops predicate 12

2 Specifying list insertion 18
 2.1 The insert-ops predicate 19
 2.2 Properties of the insert-spec function 20
 2.3 Properties of the interp-ins function 25
 2.4 Equivalence of the two definitions of insertion 26
 2.5 The list-order predicate 32

3 Relationship to Strong List Specification 40
 3.1 Lemmas about insertion and deletion 42
 3.2 Lemmas about interpreting operations 48
 3.3 Satisfying all conditions of A_strong 52
1 Abstract OpSet

In this section, we define a general-purpose OpSet abstraction that is not specific to any one particular datatype. We develop a library of useful lemmas that we can build upon later when reasoning about a specific datatype.

theory OpSet
 imports Main
begin

1.1 OpSet definition

An OpSet is a set of (ID, operation) pairs with an associated total order on IDs (represented here with the linorder typeclass), and satisfying the following properties:

1. The ID is unique (that is, if any two pairs in the set have the same ID, then their operation is also the same).

2. If the operation references the IDs of any other operations, those referenced IDs are less than that of the operation itself, according to the total order on IDs. To avoid assuming anything about the structure of operations here, we use a function deps that returns the set of dependent IDs for a given operation. This requirement is a weak expression of causality: an operation can only depend on causally prior operations, and by making the total order on IDs a linear extension of the causal order, we can easily ensure that any referenced IDs are less than that of the operation itself.

3. The OpSet is finite (but we do not assume any particular maximum size).

locale opset =
 fixes opset :: ('oid::{linorder} × 'oper) set
 and deps :: 'oper ⇒ 'oid set
We prove that any subset of an OpSet is also a valid OpSet. This is the case because, although an operation can depend on causally prior operations, the OpSet does not require those prior operations to actually exist. This weak assumption makes the OpSet model more general and simplifies reasoning about OpSets.

Lemma opset-subset:

Assumes OpSet \(Y \) \(\text{deps} \)

and \(X \subseteq Y \)

Shows OpSet \(X \) \(\text{deps} \)

Proof

- Fix \(oid \text{ op1 op2} \)
- Assume \((oid, \text{op1}) \in X \text{ and } (oid, \text{op2}) \in X \)
- Thus \(\text{op1 = op2} \)
- Using assms by (meson opset.unique-oid set-mp)

Next

- Fix \(oid \text{ oper ref} \)
- Assume \((oid, \text{oper}) \in X \text{ and } \text{ref} \in \text{deps oper} \)
- Thus \(\text{ref < oid} \)
- Using assms by (meson opset.ref-older set-rev-mp)

Next

- Show finite \(X \)
- Using assms opset.finite-opset finite-subset by blast

Qed

Lemma opset-insert:

Assumes OpSet \((\text{insert } x \text{ ops}) \) \(\text{deps} \)

Shows OpSet \(\text{ops} \) \(\text{deps} \)

Using assms OpSet-subset by blast

Lemma opset-sublist:

Assumes OpSet \((\text{set } (xs @ ys @ zs)) \) \(\text{deps} \)

Shows OpSet \((\text{set } (xs @ zs)) \) \(\text{deps} \)

Proof

- Have \(\text{set } (xs @ zs) \subseteq \text{set } (xs @ ys @ zs) \)
 - By auto
- Thus \(\text{opset } (\text{set } (xs @ zs)) \) \(\text{deps} \)
 - Using assms OpSet-subset by blast

Qed

1.2 Helper lemmas about lists

Some general-purpose lemas about lists and sets that are helpful for subsequent proofs.

Lemma distinct-rem-mid:
assumes distinct (xs @ [x] @ ys)
shows distinct (xs @ ys)
using assms by (induction ys rule: rev-induct, simp-all)

lemma distinct-fst-append:
assumes x ∈ set (map fst xs)
and distinct (map fst (xs @ ys))
shows x /∈ set (map fst ys)
using assms by (induction ys rule: rev-induct, simp-all)

lemma distinct-set-remove-last:
assumes distinct (xs @ [x])
shows set xs = set (xs @ [x]) − {x}
using assms by force

lemma distinct-set-remove-mid:
assumes distinct (xs @ [x] @ ys)
shows set (xs @ ys) = set (xs @ [x] @ ys) − {x}
using assms by force

lemma distinct-list-split:
assumes distinct xs
and xs = xa @ x # ya
and xs = xb @ x # yb
shows xa = xb ∧ ya = yb
using assms proof (induction xs arbitrary: xa xb x)
fix xa xb x
assume [] = xa @ x # ya
thus xa = xb ∧ ya = yb
by auto
next
fix a xs xa xb x
assume IH: \(\forall xa xb x. \text{distinct } xs \implies xs = xa @ x # ya \implies xs = xb @ x # yb \implies xa = xb ∧ ya = yb\)
and distinct (a # xs) and a # xs = xa @ x # ya and a # xs = xb @ x # yb
thus xa = xb ∧ ya = yb
by (case-tac xa; case-tac xb) auto
qed

lemma distinct-append-swap:
assumes distinct (xs @ ys)
shows distinct (ys @ xs)
using assms by (induction ys, auto)

lemma append-subset:
assumes set xs = set (ys @ zs)
shows set ys ⊆ set xs and set zs ⊆ set xs
by (metis Un-iff assms set-append subsetI)+
lemma append-set-rem-last:
assumes set (xs @ [x]) = set (ys @ [x] @ zs)
and distinct (xs @ [x]) and distinct (ys @ [x] @ zs)
shows set xs = set (ys @ zs)
proof −
have distinct xs
 using assms distinct-append by blast
moreover from this have set xs = set (xs @ [x]) − {x}
 by (meson assms distinct-set-remove-last)
moreover have distinct (ys @ zs)
 using assms distinct-rem-mid by simp
ultimately show set xs = set (ys @ zs)
 using assms distinct-set-remove-mid by metis
qed

lemma distinct-map-fst-remove1:
assumes distinct (map fst xs)
shows distinct (map fst (remove1 x xs))
using assms proof(induction xs)
case Nil
then show distinct (map fst (remove1 x []))
 by simp
next
case (Cons a xs)
hence IH: distinct (map fst (remove1 x xs))
 by simp
then show distinct (map fst (remove1 x (a # xs)))
proof(cases a = x)
 case True
 then show thesis
 using Cons.prems by auto
next
case False
moreover have fst a \notin fst ' set (remove1 x xs)
 by (metis (no-types, lifting) Cons.prems distinct.simps(2) image_iff
 list.simps(9) notin-set-remove1 set-map)
ultimately show thesis
 using IH by auto
qed

1.3 The spec-ops predicate

The spec-ops predicate describes a list of (ID, operation) pairs that corresponds to the linearisation of an OpSet, and which we use for sequentially interpreting the OpSet. A list satisfies spec-ops iff it is sorted in ascending order of IDs, if the IDs are unique, and if every operation’s dependencies have lower IDs than the operation itself. A list is implicitly finite in Isabelle/HOL.
These requirements correspond to the OpSet definition above, and indeed we prove later that every OpSet has a linearisation that satisfies `spec-ops`.

definition `spec-ops` :: `(oid::{linorder} × 'oper) list ⇒ ('oper ⇒ 'oid set) ⇒ bool`
where
`spec-ops` `ops` `deps` ≡ (sorted (map fst `ops`) ∧ distinct (map fst `ops`) ∧
(∀ oid oper ref. (oid, oper) ∈ set `ops` ∧ ref ∈ `deps` oper ⇒ ref < oid))

lemma `spec-ops-empty`:
shows `spec-ops` [] `deps`
by (simp add: `spec-ops-def`)

lemma `spec-ops-distinct`:
assumes `spec-ops` `ops` `deps`
shows distinct `ops`
using assms distinct-map `spec-ops-def` by blast

lemma `spec-ops-distinct-fst`:
assumes `spec-ops` `ops` `deps`
shows distinct (map fst `ops`)
using assms by (simp add: `spec-ops-def`)

lemma `spec-ops-sorted`:
assumes `spec-ops` `ops` `deps`
shows sorted (map fst `ops`)
using assms by (simp add: `spec-ops-def`)

lemma `spec-ops-rem-cons`:
assumes `spec-ops` (x # `xs`) `deps`
shows `spec-ops` `xs` `deps`
proof –
 have sorted (map fst (x # `xs`)) and distinct (map fst (x # `xs`))
 using assms `spec-ops-def` by blast+
 moreover from this have sorted (map fst `xs`)
 by simp
 moreover have ∀ oid oper ref. (oid, oper) ∈ set `xs` ∧ ref ∈ `deps` oper ⇒ ref < oid
 by (meson assms set-subset-Con spec-ops-def subsetCE)
 ultimately show `spec-ops` `xs` `deps`
 by (simp add: `spec-ops-def`)
qed

lemma `spec-ops-rem-last`:
assumes `spec-ops` (`xs` @ [x]) `deps`
shows `spec-ops` `xs` `deps`
proof –
 have sorted (map fst (`xs` @ [x])) and distinct (map fst (`xs` @ [x]))
 using assms `spec-ops-def` by blast+
 moreover from this have sorted (map fst `xs`) and distinct `xs`
by (auto simp add: sorted-append distinct-butlast distinct-map)

moreover have \(\forall \text{oid oper ref. } (\text{oid, oper}) \in \text{set xs} \land \text{ref} \in \text{deps oper} \rightarrow \text{ref} < \text{oid} \)
 by (metis assms butlast-snoc in-set-butlastD spec-ops-def)

ultimately show \(\text{spec-ops xs deps} \)
 by (simp add: spec-ops-def)

qed

lemma \(\text{spec-ops-remove1} \):
 assumes \(\text{spec-ops xs deps} \)
 shows \(\text{spec-ops (remove1 x xs) deps} \)
 using assms distinct-map-fst-remove1 spec-ops-def
 by (metis notin-set-remove1 sorted-map-remove1 spec-ops-def)

lemma \(\text{spec-ops-ref-less} \):
 assumes \(\text{spec-ops xs deps} \)
 and \((\text{oid, oper}) \in \text{set xs} \)
 and \(\text{r} \in \text{deps oper} \)
 shows \(\text{r} < \text{oid} \)
 using assms spec-ops-def by force

lemma \(\text{spec-ops-ref-less-last} \):
 assumes \(\text{spec-ops (xs @ [(\text{oid, oper})]) deps} \)
 and \(\text{r} \in \text{deps oper} \)
 shows \(\text{r} < \text{oid} \)
 using assms spec-ops-ref-less by fastforce

lemma \(\text{spec-ops-id-inc} \):
 assumes \(\text{spec-ops (xs @ [(\text{oid, oper})]) deps} \)
 and \(\text{x} \in \text{set (map fst xs)} \)
 shows \(\text{x} < \text{oid} \)

proof
 have \(\text{sorted ((map fst xs) @ (map fst [(\text{oid, oper})]))} \)
 using assms(1) by (simp add: spec-ops-def)
 hence \(\forall i \in \text{set (map fst xs)} . \ i < \text{oid} \)
 by (simp add: sorted-append)
 moreover have \(\text{distinct ((map fst xs) @ (map fst [(\text{oid, oper})]))} \)
 using assms(1) by (simp add: spec-ops-def)
 hence \(\forall i \in \text{set (map fst xs)} . \ i \neq \text{oid} \)
 by auto
 ultimately show \(\text{x} < \text{oid} \)
 using assms(2) le-neq-trans by auto

qed

lemma \(\text{spec-ops-add-last} \):
 assumes \(\text{spec-ops xs deps} \)
 and \(\forall i \in \text{set (map fst xs)} . \ i < \text{oid} \)
 and \(\forall \text{ref} \in \text{deps oper} . \ \text{ref} < \text{oid} \)
 shows \(\text{spec-ops (xs @ [(\text{oid, oper})]) deps} \)
proof
have sorted ((map fst xs) @ [oid])
using assms sorted-append spec-ops-sorted by fastforce
moreover have distinct ((map fst xs) @ [oid])
using assms spec-ops-distinct-fst by fastforce
moreover have ∀ oid oper ref. (oid, oper) ∈ set xs ∧ ref ∈ deps oper → ref < oid
using assms(1) spec-ops-def by fastforce
hence ∀ i opr r. (i, opr) ∈ set (xs @ [(oid, oper)]) ∧ r ∈ deps opr → r < i
using assms(3) by auto
ultimately show spec-ops (xs @ [(oid, oper)]) deps
by (simp add: spec-ops-def)
qed

lemma spec-ops-add-any:
assumes spec-ops (xs @ ys) deps
and ∀ i ∈ set (map fst xs). i < oid
and ∀ i ∈ set (map fst ys). oid < i
and ∀ ref ∈ deps oper. ref < oid
shows spec-ops (xs @ [(oid, oper)] @ ys) deps
using assms proof(induction ys rule: rev-induct)
case Nil
then show spec-ops (xs @ [(oid, oper)] @ []) deps
by (simp add: spec-ops-add-last)
next
case (snoc y ys)
have IH: spec-ops (xs @ [(oid, oper)] @ ys) deps
proof
 from snoc have spec-ops (xs @ ys) deps
 by (metis append-assoc spec-ops-rem-last)
 thus spec-ops (xs @ [(oid, oper)] @ ys) deps
 using assms(2) snoc by auto
qed
obtain yi yo where y-pair: y = (yi, yo)
 by force
have oid-yi: oid < yi
 by (simp add: snoc.prems(3) y-pair)
have yi-biggest: ∀ i ∈ set (map fst (xs @ [(oid, oper)] @ ys)). i < yi
proof
 have ∀ i ∈ set (map fst xs). i < yi
 using oid-yi assms(2) less-trans by blast
 moreover have ∀ i ∈ set (map fst ys). i < yi
 by (metis UnCI append-assoc map-append set-append snoc.prems(1) spec-ops-id-inc)
 ultimately show ?thesis
 using oid-yi by auto
qed
have sorted (map fst (xs @ [(oid, oper)] @ ys @ [y]))
proof

from IH have sorted (map fst (xs @ [(oid, oper)] @ ys))
 using spec-ops-def by blast
hence sorted (map fst (xs @ [(oid, oper)] @ ys) @ [yi])
 using yi-biggest
 by (simp add: sorted-append dual-order.strict-implies-order)
thus sorted (map fst (xs @ [(oid, oper)] @ ys @ [yi]))
 by (simp add: y-pair)
qed
moreover have distinct (map fst (xs @ [(oid, oper)] @ ys @ [yi]))
proof –
 have distinct (map fst (xs @ [(oid, oper)] @ ys) @ [yi])
 using IH yi-biggest spec-ops-def
 by (metis distinct1-rotate order-less-irrefl rotate1.simps)
thus distinct (map fst (xs @ [(oid, oper)] @ ys @ [yi]))
 by (simp add: y-pair)
qed
moreover have ∀i opr r. (i, opr) ∈ set (xs @ [(oid, oper)] @ ys @ [yi]) ∧ r ∈ deps opr → r < i
proof –
 have ∀i opr r. (i, opr) ∈ set (xs @ [(oid, oper)] @ ys) ∧ r ∈ deps opr → r < i
 by (meson IH spec-ops-def)
moreover have ∀ref. ref ∈ deps yo → ref < yi
 by (metis spec-ops-ref-less append-is-Nil-conv last-appendR last-in-set last-snoc)
ultimately show ?thesis
 using y-pair by auto
qed
ultimately show spec-ops (xs @ [(oid, oper)] @ ys @ [yi]) deps
 using spec-ops-def by blast
qed

lemma spec-ops-split:
assumes spec-ops xs deps
 and oid ∉ set (map fst xs)
shows ∃pre suf. xs = pre @ suf ∧
 (∀i ∈ set (map fst pre). i < oid) ∧
 (∀i ∈ set (map fst suf). oid < i)
using assms proof (induction xs rule: rev-induct)
case Nil
then show ?case by force
next
case (snoc x xs)
obtain xi xr where y-pair: x = (xi, xr)
 by force
obtain pre suf where IH: xs = pre @ suf ∧
 (∀a ∈ set (map fst pre). a < oid) ∧
 (∀a ∈ set (map fst suf). oid < a)
 by (metis UnCI map-append set-append snoc spec-ops-rem-last)
then show \textit{?case}
proof\((\text{cases } \forall x \in \text{set} (\text{map \text{fst} (\text{pre \& \text{suf}}))). x < \xi)\)
case \textit{xi-less}: True
have \(\forall x \in \text{set} (\text{map \text{fst} (\text{pre @ suf}})). x < \xi\)
 using IH spec-ops-id-inc snoc.prems\(\text{(1)}\) y-pair by metis
hence \(\forall x \in \text{set \text{suf}}. \text{fst} x < \xi\)
 by simp
hence \(\forall x \in \text{set \text{suf}}. \text{fst} x < \text{oid}\)
 using \textit{xi-less} by auto
hence \(\forall x \in \text{set \text{suf}}. \text{fst} x < \text{oid}\)
 using \textit{IH last-in-set} by fastforce
then show \(\text{thesis by force}\)
next
case \textit{False}
hence \(\text{oid} < \xi\) using snoc.prems\(\text{(2)}\) y-pair by auto
hence \(\text{xs @ [x]} = (\text{pre @ [([x_i, x_r])]} @ []) \land\)
 \(\forall a \in \text{set} (\text{map \text{fst} ((\text{pre @ [([x_i, x_r])]}))). a < \text{oid}) \land\)
 \(\forall a \in \text{set} (\text{map \text{fst} []}). \text{oid} < a\)
by (simp add: IH \textit{xi-less y-pair})
then show \(\text{thesis by blast}\)
qed

lemma \textit{spec-ops-exists-base}:
assumes \textit{finite \textit{ops}}
 \text{and} \(\forall \text{oid} \text{ op1 op2. (oid, op1) \in \text{ops} \Rightarrow (oid, op2) \in \text{ops} \Rightarrow \text{op1} = \text{op2}\)}
shows \exists \text{op-list. set \text{op-list} = \text{ops} \land \text{spec-ops op-list \text{deps}}} \text{ using \textit{assms proof(\text{induct \textit{ops rule: Finite-Set.finite-induct-select})}}}
case \textit{empty}
then show \exists \text{op-list. set \text{op-list} = {}} \land \text{spec-ops op-list \text{deps}}
 by (simp add: spec-ops-empty)
next
case (\text{select \textit{subset}})
from this obtain \text{op-list where set \text{op-list} = \text{subset and spec-ops op-list \text{deps}}}
 using \textit{assms by blast}
moreover obtain \text{oid oper where select: (oid, oper) \in \text{ops} \Rightarrow select.hyps(1) \text{ by auto}}
moreover from this have \(\land \text{op2. (oid, op2) \in \text{ops} \Rightarrow op2 = oper}\)
 using \textit{assms(2) by auto}
hence \text{oid \notin \text{fst \text{i subset}}}
 by (metis \textit{no-types, lifting} DiffD2 select.image-iff prod.collapse psubsetD select.hyps(1))
from this obtain \text{pre \text{suf}}
 where \text{op-list = pre \& \text{suf}}
∀ i ∈ set (map fst pre). i < oid
∀ i ∈ set (map fst suf). oid < i
using spec-ops-split calculation by (metis (no-types, lifting) set-map)
moreover have set (pre @ [(oid, oper)] @ suf) = insert (oid, oper) subset
using calculation by auto
moreover have spec-ops (pre @ [(oid, oper)] @ suf) deps
using calculation spec-ops-add-any assms(3) by (metis DiffD1)
ultimately show ?case by blast
qed

We prove that for any given OpSet, a spec-ops linearisation exists:

lemma spec-ops-exists:
assumes opset ops deps
shows ∃ op-list. set op-list = ops ∧ spec-ops op-list deps
proof –
 have finite ops
 using assms opset.finite-opset by force
 moreover have \(\forall oid \ op1 \ op2. (oid, op1) \in \text{ops} \implies (oid, op2) \in \text{ops} \implies op1 = op2 \)
 using assms opset.unique-oid by force
 moreover have \(\forall oid oper ref. (oid, oper) \in \text{ops} \implies \text{ref} \in \text{deps oper} \implies \text{ref} < oid \)
 using assms opset.ref-older by force
 ultimately show ∃ op-list. set op-list = ops ∧ spec-ops op-list deps
 by (simp add: spec-ops-exists-base)
qed

lemma spec-ops-oid-unique:
assumes spec-ops op-list deps and (oid, op1) ∈ set op-list and (oid, op2) ∈ set op-list
shows op1 = op2
using assms proof(induction op-list, simp)
case (Cons x op-list)
have distinct (map fst (x # op-list))
 using Cons.prems(1) spec-ops-def by blast
hence notin: fst x /∈ set (map fst op-list)
 by simp
then show op1 = op2
proof(cases fst x = oid)
 case True
 then show op1 = op2
 using Cons.prems notin by (metis Pair-inject in-set-zipE set-ConsD zip-map-fst-snd)
next
case False
then have (oid, op1) ∈ set op-list and (oid, op2) ∈ set op-list
 using Cons.prems by auto
then show op1 = op2
 using Cons.IH Cons.prems(1) spec-ops-rem-cons by blast
Conversely, for any given spec-ops list, the set of pairs in the list is an OpSet:

lemma spec-ops-is-opset:

assumes spec-ops op-list deps

shows opset (set op-list) deps

proof

- **have** \(\forall oid \ op1 \ op2. (oid, op1) \in \text{set op-list} \implies (oid, op2) \in \text{set op-list} \implies op1 = op2 \)

 using assms spec-ops-oid-unique **by** fastforce

- **moreover have** \(\forall oid \ oper \ ref. (oid, oper) \in \text{set op-list} \implies ref \in \text{deps oper} \implies ref < oid \)

 by (meson assms spec-ops-ref-less)

- **moreover have** finite (set op-list)

 by simp

ultimately show opset (set op-list) deps

by (simp add: opset-def)

qed

1.4 The crdt-ops predicate

Like spec-ops, the crdt-ops predicate describes the linearisation of an OpSet into a list. Like spec-ops, it requires IDs to be unique. However, its other properties are different: crdt-ops does not require operations to appear in sorted order, but instead, whenever any operation references the ID of a prior operation, that prior operation must appear previously in the crdt-ops list. Thus, the order of operations is partially constrained: operations must appear in causal order, but concurrent operations can be ordered arbitrarily.

This list describes the operation sequence in the order it is typically applied to an operation-based CRDT. Applying operations in the order they appear in crdt-ops requires that concurrent operations commute. For any crdt-ops operation sequence, there is a permutation that satisfies the spec-ops predicate. Thus, to check whether a CRDT satisfies its sequential specification, we can prove that interpreting any crdt-ops operation sequence with the commutative operation interpretation results in the same end result as interpreting the spec-ops permutation of that operation sequence with the sequential operation interpretation.

inductive crdt-ops :: ('oid::{linorder} × 'oper) list ⇒ ('oper ⇒ 'oid set) ⇒ bool

where

- crdt-ops [] deps |
- \[\text{crdt-ops } xs \text{ deps; } oid \notin \text{set (map fst } xs); \forall ref \in \text{deps oper. ref } \in \text{set (map fst } xs) \land \text{ref < oid} \]
- \[⇒ \text{crdt-ops } (xs @ [(oid, oper)]) \text{ deps} \]
lemma crdt-ops-intro:
assumes \(r \in \text{deps oper} \implies r \in \text{fst ' set xs} \land r < \text{oid} \)
and \(\text{oid} \notin \text{fst ' set xs} \)
and \(\text{crdt-ops xs deps} \)
shows \(\text{crdt-ops (xs @ [(oid, oper)]) deps} \)
using assms crdt-ops.simps by force

lemma crdt-ops-rem-last:
assumes \(\text{crdt-ops (xs @ [x]) deps} \)
shows \(\text{crdt-ops xs deps} \)
using assms crdt-ops.cases snoc-eq-iff-butlast by blast

lemma crdt-ops-ref-less:
assumes \(\text{crdt-ops xs deps} \)
and \((\text{oid}, \text{oper}) \in \text{set xs} \)
and \(r \in \text{deps oper} \)
shows \(r < \text{oid} \)
using assms by (induction rule: crdt-ops.induct, auto)

lemma crdt-ops-ref-less-last:
assumes \(\text{crdt-ops (xs @ [(oid, oper)]) deps} \)
and \(r \in \text{deps oper} \)
shows \(r < \text{oid} \)
using assms crdt-ops-ref-less by fastforce

lemma crdt-ops-distinct-fst:
assumes \(\text{crdt-ops xs deps} \)
shows \(\text{distinct (map fst xs)} \)
using assms proof (induction xs rule: List.rev-induct, simp)
case (snoc x xs)
hence \(\text{distinct (map fst xs)} \)
using crdt-ops-last by blast
moreover have \(\text{fst x \notin set (map fst xs)} \)
using snoc by (metis crdt-ops-last fstI image-set)
ultimately show \(\text{distinct (map fst (xs @ [x]))} \)
by simp
qed

lemma crdt-ops-distinct:
assumes \(\text{crdt-ops xs deps} \)
shows \(\text{distinct xs} \)
using assms crdt-ops-distinct-fst distinct-map by blast

lemma crdt-ops-unique-last:
assumes \(\text{crdt-ops (xs @ [(oid, oper)]) deps} \)
shows \(\text{oid \notin set (map fst xs)} \)
using assms crdt-ops.cases by blast
lemma crdt-ops-unique-mid:
assumes crdt-ops (xs @ [(oid, oper)] @ ys) deps
shows oid \notin set (map fst xs) \land oid \notin set (map fst ys)
using assms proof (induction ys rule: rev-induct)
case Nil
then show oid \notin set (map fst xs) \land oid \notin set (map fst [])
 by (metis crdt-ops-unique-last Nil-is-map-conv append-Nil2 empty-iff empty-set)
next
case (snoc y ys)
obtain yi yr where y-pair: y = (yi, yr)
 by fastforce
have IH: oid \notin set (map fst xs) \land oid \notin set (map fst ys)
 using crdt-ops-rem-last snoc by (metis append-assoc
hence yi \notin set (map fst (xs @ (oid, oper) # ys))
 using crdt-ops-unique-last by (metis append-Cons append-self-conv2 snoc.prems y-pair)
thus oid \notin set (map fst xs) \land oid \notin set (map fst (ys @ [y]))
 using IH y-pair by auto
qed

lemma crdt-ops-ref-exists:
assumes crdt-ops (pre @ (oid, oper) # suf) deps
and ref \in deps oper
shows ref \in fst ' set pre
using assms proof (induction suf rule: List.rev-induct)
case Nil thus ?case
 by (metis crdt-ops-last prod.sel(2))
next
case (snoc x xs) thus ?case
 using crdt-ops.cases by force
qed

lemma crdt-ops-no-future-ref:
assumes crdt-ops (xs @ [(oid, oper)] @ ys) deps
shows \forall ref. ref \in deps oper \imp ref \notin set (map fst ys)
proof
 from assms(1) have \forall ref. ref \in deps oper \imp ref \in set (map fst xs)
 by (simp add: crdt-ops-ref-exists)
 moreover have distinct (map fst (xs @ [(oid, oper)] @ ys))
 using assms crdt-ops-distinct-fst by blast
 ultimately have \forall ref. ref \in deps oper \imp ref \notin set (map fst ([(oid, oper)] @ ys))
 using distinct-fst-append by metis
 thus \forall ref. ref \in deps oper \imp ref \notin set ys
 by simp
qed
lemma crdt-ops-reorder:
assumes crdt-ops (xs @ [(oid, oper)] @ ys) dep
and \bigwedge op2 r. op2 \in \text{snd} ' \text{set} ys \implies r \in \text{deps} op2 \implies r \neq oid
shows crdt-ops (xs @ ys @ [(oid, oper)]) dep
using assms proof (induction ys rule: rev-induct)
case Nil
then show crdt-ops (xs @ [] @ [(oid, oper)]) dep
using crdt-ops-rem-last by auto
next
case (snoc y ys)
then obtain yi yo where y-pair: y = (yi, yo)
by fastforce
have IH: crdt-ops (xs @ ys @ [(oid, oper)]) dep
proof –
have crdt-ops (xs @ [(oid, oper)] @ ys) dep
by (metis snoc append.assoc crdt-ops-rem-last)
thus crdt-ops (xs @ ys @ [(oid, oper)]) dep
using snoc.IH snoc.prems(2) by auto
qed
have crdt-ops (xs @ ys @ [y]) dep
proof –
have yi \notin \text{fst} ' \text{set} (xs @ [(oid, oper)] @ ys)
by (metis y-pair append-assoc crdt-ops-unique-last set-map snoc.prems(1))
hence yi \notin \text{fst} ' \text{set} (xs @ ys)
by auto
moreover have \bigwedge r. r \in \text{deps} yo \implies r \neq yi
proof –
have \bigwedge r. r \in \text{deps} yo \implies r \neq oid
using snoc.prems(2) y-pair by fastforce
moreover have \bigwedge r. r \in \text{deps} yo \implies r \in \text{fst} ' \text{set} (xs @ [(oid, oper)] @ ys)
by (metis y-pair append-assoc snoc.prems(1) crdt-ops-ref-exists)
moreover have \bigwedge r. r \in \text{deps} yo \implies r < yi
using crdt-ops-ref-less snoc.prems(1) y-pair by fastforce
ultimately show \bigwedge r. r \in \text{deps} yo \implies r \in \text{fst} ' \text{set} (xs @ ys) \land r < yi
by simp
qed
moreover from IH have crdt-ops (xs @ ys) dep
using crdt-ops-rem-last by force
ultimately show crdt-ops (xs @ ys @ [y]) dep
using y-pair crdt-ops-intro by (metis append.assoc)
qed
moreover have oid \notin \text{fst} ' \text{set} (xs @ ys @ [y])
using crdt-ops-unique-mid by (metis (no-types, lifting) UnE image-Un image-set append snoc.prems(1))
moreover have \bigwedge r. r \in \text{deps} oper \implies r \in \text{fst} ' \text{set} (xs @ ys @ [y])
using crdt-ops-ref-exists
by (metis UnCI append-Cons image-Un set-append snoc.prems(1))
moreover have \bigwedge r. r \in \text{deps} oper \implies r < oid
qed
using IH crdt-ops-ref-less by fastforce
ultimately show crdt-ops \((xs \oplus (ys \oplus [y])) \oplus [(oid, oper)])\) deps
using crdt-ops-intro by (metis append-assoc)
qed

lemma crdt-ops-rem-middle:
\assumes\ crdt-ops \((xs \oplus [(oid, ref)] \oplus ys)\) deps
\and\ \bigwedge op2 r. op2 \in \snd \set ys \implies r \in \deps op2 \implies r \neq oid
\shows\ crdt-ops \((xs \oplus ys)\) deps
\using\ \assms\ crdt-ops-rem-last crdt-ops-reorder append-assoc by metis

lemma crdt-ops-independent-suf:
\assumes\ spec-ops \((xs \oplus [(oid, oper)])\) deps
\and\ crdt-ops \((ys \oplus [(oid, oper)] \oplus zs)\) deps
\and\ \set \((xs \oplus [(oid, oper)]) = \set \((ys \oplus [(oid, oper)] \oplus zs)\)
\shows\ \bigwedge op2 r. op2 \in \snd \set zs \implies r \in \deps op2 \implies r \neq oid
\proof\have \bigwedge op2 r. op2 \in \snd \set xs \implies r \in \deps op2 \implies r < oid
\proof\from\assms(1)\have \bigwedge i. i \in \fst \set xs \implies i < oid
\using\spec-ops-id-inc by fastforce
\moreover\have \bigwedge i2 op2 r. (i2, op2) \in \set xs \implies r \in \deps op2 \implies r < i2
\using\assms(1)\spec-ops-ref-less spec-ops-reorder append-assoc by fastforce
\ultimately\show \bigwedge op2 r. op2 \in \snd \set zs \implies r \in \deps op2 \implies r < oid
\by\fastforce
\qed
\moreover\have\set zs \subseteq \set xs
\proof\have\distinct \((xs \oplus [(oid, oper)])\)\and\distinct \((ys \oplus [(oid, oper)] \oplus zs)\)
\using\assms\spec-ops-distinct crdt-ops-distinct by blast+
\hence\set xs = \set \((ys \oplus zs)\)
\by\(meson\ append-set-rem-last\assms(3))
\then\show\set zs \subseteq \set xs
\using\append-subset(2) by simp
\qed
\ultimately\show \bigwedge op2 r. op2 \in \snd \set zs \implies r \in \deps op2 \implies r \neq oid
\by\fastforce
\qed

lemma crdt-ops-reorder-spec:
\assumes\ spec-ops \((xs \oplus [x])\) deps
\and\ crdt-ops \((ys \oplus [x] \oplus zs)\) deps
\and\ \set \((xs \oplus [x]) = \set \((ys \oplus [x] \oplus zs)\)
\shows\ crdt-ops \((ys \oplus zs \oplus [x])\) deps
\using\assms\proof\obtain\oid oper where \x-pair: \(x = (oid, oper)\) by force
\hence\ \bigwedge op2 r. op2 \in \snd \set zs \implies r \in \deps op2 \implies r \neq oid
\using\assms\crdt-ops-independent-suf by fastforce
\thus\crdt-ops \((ys \oplus zs \oplus [x])\) deps
using assms(2) crdt-ops-reorder x-pair by metis

qed

lemma crdt-ops-rem-spec:
assumes spec-ops \((xs @ [x])@zs\) deps
and crdt-ops \((ys @ [x] @ zs)\) deps
and set \((xs @ [x]) = set (ys @ [x] @ zs)\)
shows crdt-ops \((ys @ zs)\) deps
using assms crdt-ops-rem-last crdt-ops-reorder-spec append-assoc by metis

lemma crdt-ops-rem-penultimate:
assumes crdt-ops \((xs @ [(i1, r1)] @ (i2, r2))\) deps
and \(\forall r. r \in \text{deps } r2 \Rightarrow r \neq i1\)
shows crdt-ops \((xs @ [(i2, r2)])\) deps
proof –
have crdt-ops \((xs @ [(i1, r1)])\) deps
using assms(1) crdt-ops-rem-last by force
hence crdt-ops \(xs\) deps
using crdt-ops-rem-last by force
moreover have distinct \((\text{map fst } (xs @ [(i1, r1)] @ (i2, r2)])\)
using assms(1) crdt-ops-distinct-fst by blast
hence \(i2 \notin \text{set } (\text{map fst } xs)\)
by auto
moreover have crdt-ops \((xs @ [(i1, r1)])\) deps
using assms(1) by auto
hence \(\forall r. r \in \text{deps } r2 \Rightarrow r \in \text{fst } \text{set } (xs @ [(i1, r1)])\)
using crdt-ops-ref-exists by metis
hence \(\forall r. r \in \text{deps } r2 \Rightarrow r \in \text{set } (\text{map fst } xs)\)
using assms(2) by auto
moreover have \(\forall r. r \in \text{deps } r2 \Rightarrow r < i2\)
using assms(1) crdt-ops-ref-less by fastforce
ultimately show crdt-ops \((xs @ [(i2, r2)])\) deps
by (simp add: crdt-ops-intro)
qed

lemma crdt-ops-spec-ops-exist:
assumes crdt-ops \(xs\) deps
shows \(\exists ys. \text{set } xs = \text{set } ys \land \text{spec-ops } ys\) deps
using assms proof(induction \(xs\) rule: List.rev-induct)
case Nil
then show \(\exists ys. \text{set } [] = \text{set } ys \land \text{spec-ops } ys\) deps
by (simp add: spec-ops-empty)
next
case \((\text{snoc } x \, xs)\)
hence IH: \(\exists ys. \text{set } xs = \text{set } ys \land \text{spec-ops } ys\) deps
using crdt-ops-rem-last by blast
then obtain \(ys\) oid ref
where \(\text{set } xs = \text{set } ys\) and \(\text{spec-ops } ys\) deps and \(x = (oid, ref)\)
by force

17
moreover have \(\exists \text{pre \ suf}. \ \text{ys} = \text{pre} \# \text{suf} \land \)
\[(\forall i \in \text{set (map \ \text{fst \ pre})}. \ i < \text{oid}) \land \]
\[(\forall i \in \text{set (map \ \text{fst \ suf})}. \ \text{oid} < i) \]

proof –

have \(\text{oid} \notin \text{set (map \ \text{fst \ xs})} \)
using calculation(3) crdt-ops-unique-last snoc.prems by force

hence \(\text{oid} \notin \text{set (map \ \text{fst \ ys})} \)
by (simp add: calculation(1))

thus ?thesis
using spec-ops-split (spec-ops \ys \ \text{deps}) by blast

qed

from this obtain \text{pre \ suf} where \ys = \text{pre} \# \text{suf} and
\[\forall i \in \text{set (map \ \text{fst \ pre})}. \ i < \text{oid} \land \]
\[\forall i \in \text{set (map \ \text{fst \ suf})}. \ \text{oid} < i \ by \ force \]

moreover have \(\text{set (xs @ [(\text{oid}, \text{ref})])} = \text{set (pre} \# [(\text{oid}, \text{ref})] \# \text{suf}) \)

using crdt-ops-distinct calculation snoc.prems by simp

moreover have \(\text{spec-ops (pre} \# [(\text{oid}, \text{ref})] \# \text{suf}) \ \text{deps} \)

proof –

have \(\forall r \in \text{deps \ ref}. \ r < \text{oid} \)
using calculation(3) crdt-ops-ref-less-last snoc.prems by fastforce

hence \(\text{spec-ops (pre} \# [(\text{oid}, \text{ref})] \# \text{suf}) \ \text{deps} \)

using spec-ops-add-any calculation by metis

thus ?thesis by simp

qed

ultimately show \(\exists \ys. \ \text{set (xs @ [x])} = \text{set \ ys} \land \text{spec-ops \ ys \ \text{deps}} \)
by blast

qed

end

2 Specifying list insertion

theory Insert-Spec

imports OpSet

begin

In this section we consider only list insertion. We model an insertion operation as a pair \((\text{ID}, \text{ref}) \), where \text{ref} is either \text{None} (signifying an insertion at the head of the list) or \text{Some r} (an insertion immediately after a reference element with \text{ID} \ r). If the reference element does not exist, the operation does nothing.

We provide two different definitions of the interpretation function for list insertion: \text{insert-spec} and \text{insert-alt}. The \text{insert-alt} definition matches the paper, while \text{insert-spec} uses the Isabelle/HOL list datatype, making it more suitable for formal reasoning. In a later subsection we prove that the two definitions are in fact equivalent.

fun insert-spec :: \('\text{oid \ list} \Rightarrow (\text{\text{oid} \times \text{\text{oid} \ option}}) \Rightarrow \text{\text{oid \ list}} \ where
fun insert-alt :: (′oid × ′oid option) set ⇒ (′oid × ′oid) ⇒ (′oid × ′oid option) set
where
insert-alt list-rel (oid, ref) = (if ∃ n. (ref, n) ∈ list-rel
then \{(p, n) ∈ list-rel. p ≠ ref\} ∪ \{(ref, Some oid)\} ∪
 \{(i, n). i = oid ∧ (ref, n) ∈ list-rel\}
else list-rel)

interp-ins is the sequential interpretation of a set of insertion operations. It
starts with an empty list as initial state, and then applies the operations
from left to right.

definition interp-ins :: (′oid × ′oid option) list ⇒ ′oid list where
interp-ins ops ≡ foldl insert-spec [] ops

2.1 The insert-ops predicate

We now specialise the definitions from the abstract OpSet section for list
insertion. insert-opset is an opset consisting only of insertion operations,
and insert-ops is the specialisation of the spec-ops predicate for insertion
operations. We prove several useful lemmas about insert-ops.

locale insert-opset = opset opset set-option
for opset :: (′oid::{linorder} × ′oid option) set

definition insert-ops :: (′oid::{linorder} × ′oid option) list ⇒ bool where
insert-ops list ≡ spec-ops list set-option

lemma insert-ops-NilI [intro!]:
shows insert-ops []
by (auto simp add: insert-ops-def spec-ops-def)

lemma insert-ops-rem-last [dest]:
assumes insert-ops (xs @ [x])
shows insert-ops xs
using assms insert-ops-def spec-ops-rem-last by blast

lemma insert-ops-rem-cons:
assumes insert-ops (x ≠ xs)
shows insert-ops xs
using assms insert-ops-def spec-ops-rem-cons by blast

lemma insert-ops-appendD:
assumes insert-ops (xs @ ys)
shows insert-ops xs
using assms by (induction ys rule: List.rev-induct,
 auto, metis insert-ops-rem-last append-assoc)

lemma insert-ops-rem-prefix:
assumes insert-ops (pre @ suf)
shows insert-ops suf
using assms proof(induction pre)
case Nil
 then show insert-ops ({} @ suf) \implies insert-ops suf
 by auto
next
 case (Cons a pre)
 have sorted (map fst suf)
 using assms by (simp add: insert-ops-def sorted-append spec-ops-def)
 moreover have distinct (map fst suf)
 using assms by (simp add: insert-ops-def spec-ops-def)
 ultimately show insert-ops ((a # pre) @ suf) \implies insert-ops suf
 by (simp add: insert-ops-def spec-ops-def)
qed

lemma insert-ops-remove1:
assumes insert-ops xs
shows insert-ops (remove1 x xs)
using assms insert-ops-def spec-ops-remove1 by blast

lemma last-op-greatest:
assumes insert-ops op-list and x \in set (map fst op-list)
shows x < oid
using assms spec-ops-id-inc insert-ops-def by metis

lemma insert-ops-ref-older:
assumes insert-ops (pre @ [(oid, Some ref)] @ suf)
shows ref < oid
using assms by (auto simp add: insert-ops-def spec-ops-def)

lemma insert-ops-memb-ref-older:
assumes insert-ops op-list and (oid, Some ref) \in set op-list
shows ref < oid
using assms insert-ops-ref-older split-list-first by fastforce

2.2 Properties of the insert-spec function

lemma insert-spec-none [simp]:
shows set (insert-spec xs (oid, None)) = set xs \cup \{ oid \}
by (induction xs, auto simp add: insert-commute sup-commute)
lemma insert-spec-set [simp]:
assumes ref ∈ set xs
shows set (insert-spec xs (oid, Some ref)) = set xs ∪ {oid}
using assms proof (induction xs)
assume ref ∈ set []
thus set (insert-spec [] (oid, Some ref)) = set [] ∪ {oid}
by auto
next
fix a xs
assume ref ∈ set xs ⟹ set (insert-spec xs (oid, Some ref)) = set xs ∪ {oid}
and ref ∈ set (a#xs)
thus set (insert-spec (a#xs) (oid, Some ref)) = set (a#xs) ∪ {oid}
by (cases a = ref, auto simp add: insert-commute sup-commute)
qed

lemma insert-spec-nonex [simp]:
assumes ref /∈ set xs
shows insert-spec xs (oid, Some ref) = xs
using assms proof (induction xs)
next
fix a xs
assume ref /∈ set xs ⟹ insert-spec xs (oid, Some ref) = xs
and ref /∈ set (a#xs)
thus insert-spec (a#xs) (oid, Some ref) = a#xs
by (cases a = ref, auto simp add: insert-commute sup-commute)
qed

lemma list-greater-non-memb:
fixes oid :: 'oid::linorder
assumes ∀x. x ∈ set xs ⟹ x < oid
and oid ∈ set xs
shows False
using assms by blast

lemma inserted-item-ident:
assumes a ∈ set (insert-spec xs (e, i))
and a /∈ set xs
shows a = e
using assms proof (induction xs)
case Nil
then show a = e by (cases i, auto)
next
case (Cons x xs)
then show a = e
proof (cases i)
case None
then show a = e using assms by auto
next
 case (Some ref)
 then show \(a = e\) using Cons by (case-tac \(x = \text{ref}\), auto)
qed
qed

lemma insert-spec-distinct [intro]:
fixes oid :: 'oid::{linorder}
assumes distinct \(xs\)
 and \(\forall x. x \in \text{set} \ xs \Rightarrow x < \text{oid}\)
 and \(\text{ref} = \text{Some} \ r \Rightarrow r < \text{oid}\)
shows distinct (insert-spec \(xs\) \((\text{oid}, \text{ref})\))
using assms(1) assms(2) proof (induction \(xs\))
show distinct (insert-spec \([], \text{oid}, \text{ref}\))
 by (cases \text{ref}, auto)
next
fix \(a\) \(xs\)
assume \(IH\): distinct \(xs\) \(\Rightarrow (\forall x. x \in \text{set} \ xs \Rightarrow x < \text{oid}) \Rightarrow\) distinct (insert-spec \(xs\) \((\text{oid}, \text{ref})\))
 and \(D\): distinct (\(a\#xs\))
 and \(L\): \(\forall x. x \in \text{set} \ (a\#xs) \Rightarrow x < \text{oid}\)
show distinct (insert-spec (\(a\#xs\)) \((\text{oid}, \text{ref})\))
proof (cases \text{ref})
 assume \text{ref} = None
 thus distinct (insert-spec (\(a\#xs\)) \((\text{oid}, \text{ref})\))
 using \(D\) \(L\) by auto
next
fix \id\)
assume \(S\): \text{ref} = Some \id
{
 assume \(EQ\): \(a = \id\)
 hence \(\id \neq \text{oid}\)
 using \(D\) \(L\) by auto
 moreover have \(\id \notin \text{set} \ xs\)
 using \(D\) \(EQ\) by auto
 moreover have \(\text{oid} \notin \text{set} \ xs\)
 using \(D\) \(EQ\) by auto
 ultimately have \(\id \neq \text{oid} \land \id \notin \text{set} \ xs \land \text{oid} \neq \text{set} \ xs \land \text{distinct} \ xs\)
 using \(D\) by auto
}
note \(T = \text{this}\)
{
 assume \(NEQ\): \(a \neq \id\)
 have 0: \(a \notin \text{set} \ (\text{insert-spec} \ xs \ (\text{oid}, \text{Some} \ id))\)
 using \(D\) \(L\) by (metis distinct.simps(1) insert-spec.simps(2) insert-spec-none insert-spec-none)
insert-spec-set insert-iff list.set(2) not-less-iff-gr-or-eq)
 have 1: distinct \(xs\)
 using \(D\) by auto
}

22
Proof Assistant
show \(\exists x \in ys. \ a \#\, list = x @ ys \land \text{insert-spec}\ (a \#\, list)\ (oid, ref) = x @ oid \#\, ys \)

proof (rule disjE[OF 2])

assume \(r = a \)

thus \(\exists x \in ys. \ a \#\, list = x @ ys \land \text{insert-spec}\ (a \#\, list)\ (oid, ref) = x @ oid \#\, ys \)

using 3 by (metis append-Cons append-Nil insert-spec.simps(3))

qed

qed

next

fix \(x \in xs \)

assume IH: \(\text{ref} = \text{None} \lor \text{ref} = \text{Some} r \land r \in \text{set} \, xs \)

and \(\text{ref} = \text{None} \lor \text{ref} = \text{Some} r \land r \in \text{set} \, xs \)

thus \(\text{insert-spec} (x @ xs @ xsa @ [x])\ (oid, ref) = \text{insert-spec} x @ xsa @ [x] \)

proof (induction \(x @ xsa \) xs)

assume \(\text{ref} = \text{None} \lor \text{ref} = \text{Some} r \land r \in \text{set} \, x @ xsa @ [x] \)

thus \(\text{insert-spec} (x @ xsa @ [x])\ (oid, ref) = \text{insert-spec} x @ xsa @ [x] \)

by auto

next

fix \(a \in xs \)

assume 1: \(\text{ref} = \text{None} \lor \text{ref} = \text{Some} r \land r \in \text{set} \, (a \#\, xs) \)

and 2: \(((\text{ref} = \text{None} \lor \text{ref} = \text{Some} r \land r \in \text{set} \, xs \Rightarrow \text{insert-spec}\ (x @ xsa)\ (oid, ref) = x @ xsa) \Rightarrow \text{ref} = \text{None} \lor \text{ref} = \text{Some} r \land r \in \text{set} \, x @ xsa @ [x])\ (oid, ref) = \text{insert-spec} x @ xsa @ [x] \)

and 3: \(((\text{ref} = \text{None} \lor \text{ref} = \text{Some} r \land r \in \text{set} \, (a \#\, xs) \Rightarrow \text{insert-spec}\ ((a \#\, xs) @ xsa)\ (oid, ref) = \text{insert-spec} (a \#\, xs)\ (oid, ref) @ xsa)\ (oid, ref) = \text{insert-spec} ((a \#\, xs) @ xsa @ [x])\ (oid, ref) = \text{insert-spec} (a \#\, xs)\ (oid, ref) @ xsa @ [x] \)

show \(\text{insert-spec} ((a \#\, xs) @ xsa @ [x])\ (oid, ref) = \text{insert-spec} (a \#\, xs)\ (oid, ref) @ xsa @ [x] \)

24
proof (rule disjE[OF 1])
 assume ref = None
 thus insert-spec ((a ≠ xs) @ xsa @ [x]) (oid, ref) = insert-spec (a ≠ xs) (oid, ref) @ xsa @ [x]
 by auto
next
 assume ref = Some r ∧ r ∈ set (a ≠ xs)
 thus insert-spec ((a ≠ xs) @ xsa @ [x]) (oid, ref) = insert-spec (a ≠ xs) (oid, ref) @ xsa @ [x]
 using 2 3 by auto
qed

lemma insert-second-part:
 assumes ref = Some r
 and r /∈ set xs
 and r ∈ set ys
 shows insert-spec (xs @ ys) (oid, ref) = xs @ (insert-spec ys (oid, ref))
 using assms proof (induction xs)
 assume ref = Some r
 thus insert-spec ([] @ ys) (oid, ref) = [] @ insert-spec ys (oid, ref)
 by auto
next
 fix a xs
 assume ref = Some r and r /∈ set (a ≠ xs) and r ∈ set ys
 and ref = Some r ⇒ r /∈ set xs ⇒ r ∈ set ys ⇒ insert-spec (xs @ ys) (oid, ref) = xs @ insert-spec ys (oid, ref)
 thus insert-spec ((a ≠ xs) @ ys) (oid, ref) = (a ≠ xs) @ insert-spec ys (oid, ref)
 by auto
qed

2.3 Properties of the interp-ins function

lemma interp-ins-empty [simp]:
 shows interp-ins [] = []
 by (simp add: interp-ins-def)

lemma interp-ins-tail-unfold:
 shows interp-ins (xs @ [x]) = insert-spec (interp-ins xs) x
 by (clarsimp simp add: interp-ins-def)

lemma interp-ins-subset [simp]:
 shows set (interp-ins op-list) ⊆ set (map fst op-list)
proof (induction op-list rule: List.rev-induct)
 case Nil
 then show set (interp-ins []) ⊆ set (map fst [])
 by (simp add: interp-ins-def)
next
\textbf{case (snoc x xs)}

\textbf{hence IH: set (interp-ins xs) \subseteq set (map \textit{fst} xs)}

\textbf{using interp-ins-def by blast}

\textbf{obtain oid ref where x-pair: $x = (oid, ref)$}

\textbf{by fastforce}

\textbf{hence spec: interp-ins ($xs @ [x]$) = insert-spec (interp-ins xs) (oid, ref)}

\textbf{by (simp add: interp-ins-def)}

\textbf{then show set (interp-ins ($xs @ [x]$)) \subseteq set (map \textit{fst} ($xs @ [x]$))}

\textbf{proof (cases ref)}

\textbf{case None}

\textbf{then show set (interp-ins ($xs @ [x]$)) \subseteq set (map \textit{fst} ($xs @ [x]$))}

\textbf{using IH spec x-pair by auto}

\textbf{next}

\textbf{case (Some a)}

\textbf{then show set (interp-ins ($xs @ [x]$)) \subseteq set (map \textit{fst} ($xs @ [x]$))}

\textbf{using IH spec x-pair by (cases $a \in$ set (interp-ins xs), auto)}

\textbf{qed}

\textbf{qed}

\textbf{lemma interp-ins-distinct:}

\textbf{assumes insert-ops op-list}

\textbf{shows distinct (interp-ins op-list)}

\textbf{using assms proof (induction op-list rule: rev-induct)}

\textbf{case Nil}

\textbf{then show distinct (interp-ins [])}

\textbf{by (simp add: interp-ins-def)}

\textbf{next}

\textbf{case (snoc x xs)}

\textbf{hence IH: distinct (interp-ins xs) by blast}

\textbf{obtain oid ref where x-pair: $x = (oid, ref)$ by force}

\textbf{hence $\forall x \in$ set (map \textit{fst} xs). $x < oid$}

\textbf{using last-op-greatest snoc.prems by blast}

\textbf{hence $\forall x \in$ set (interp-ins xs). $x < oid$}

\textbf{using interp-ins-subset by fastforce}

\textbf{hence distinct (insert-spec (interp-ins xs) (oid, ref))}

\textbf{using IH insert-spec-distinct insert-spec-none by metis}

\textbf{then show distinct (interp-ins ($xs @ [x]$))}

\textbf{by (simp add: x-pair interp-ins-tail-unfold)}

\textbf{qed}

\textbf{2.4 Equivalence of the two definitions of insertion}

At the beginning of this section we gave two different definitions of interpretation functions for list insertion: \textit{insert-spec} and \textit{insert-alt}. In this section we prove that the two are equivalent.

We first define how to derive the successor relation from an Isabelle list. This relation contains (id, None) if id is the last element of the list, and $(id1, id2)$ if $id1$ is immediately followed by $id2$ in the list.

26
fun succ-rel :: 'oid list ⇒ ('oid × 'oid option) set where
 succ-rel [] = {} |
 succ-rel [head] = {(head, None)} |
 succ-rel (head#x#xs) = {(head, Some x)} ∪ succ-rel (x#xs)

interp-alt is the equivalent of interp-ins, but using insert-alt instead of insert-spec. To match the paper, it uses a distinct head element to refer to the beginning of the list.

definition interp-alt :: 'oid ⇒ ('oid × 'oid option) list ⇒ ('oid × 'oid option) set where
 interp-alt head ops ≡ foldl insert-alt {{head, None}}
 (map (λx. case x of
 (oid, None) ⇒ (oid, head) |
 (oid, Some ref) ⇒ (oid, ref))
 ops)

lemma succ-rel-set-fst:
 shows fst ' (succ-rel xs) = set xs
 by (induction xs rule: succ-rel.induct, auto)

lemma succ-rel-functional:
 assumes (a, b1) ∈ succ-rel xs
 and (a, b2) ∈ succ-rel xs
 and distinct xs
 shows b1 = b2
 using assms proof(induction xs rule: succ-rel.induct)
 case 1
 then show ?case by simp
 next
 case (2 head)
 then show ?case by simp
 next
 case (3 head x xs)
 then show ?case
 proof(cases a = head)
 case True
 hence a ∉ set (x#xs)
 using 3 by auto
 hence a ∉ fst ' (succ-rel (x#xs))
 using succ-rel-set-fst by metis
 then show b1 = b2
 using 3 image-iff by fastforce
 next
 case False
 hence {(a, b1), (a, b2)} ⊆ succ-rel (x#xs)
 using 3 by auto
 moreover have distinct (x#xs)
 using 3 by auto
 ultimately show b1 = b2

27
using $\exists \cdot IH$ by auto
qed

lemma succ-rel-rem-head:
assumes distinct $(x \# xs)$
shows $\{(p, n) \in succ-rel (x \# xs). p \neq x\} = succ-rel xs$
proof
 have head-notin: $x \notin fst \cdot succ-rel xs$
 using assms by (simp add: succ-rel-set-fst)
moreover obtain y where $(x, y) \in succ-rel (x \# xs)$
 by (cases xs, auto)
major have succ-rel $(x \# xs) = \{(x, y)\} \cup succ-rel xs$
 using calculation head-notin image-iff by (cases xs, fastforce+)
moreover from this have $\forall n. (x, n) \in succ-rel (x \# xs) \Rightarrow n = y$
 by (metis Pair-inject fst-conv head-notin image-eqI insertE insert-is-Un)
hence $\{(p, n) \in succ-rel (x \# xs). p \neq x\} = succ-rel (x \# xs) - \{(x, y)\}$
 by blast
moreover have $succ-rel (x \# xs) - \{(x, y)\} = succ-rel xs$
 using image-iff calculation by fastforce
ultimately show $\{(p, n) \in succ-rel (x \# xs). p \neq x\} = succ-rel xs$
 by simp
qed

lemma succ-rel-swap-head:
assumes distinct $(ref \# list) \\text{and} \ (ref, n) \in succ-rel (ref \# list)$
shows $succ-rel (oid \# list) = \{(oid, n)\} \cup succ-rel list$
proof (cases list)
 case Nil
 then show αthesis using assms by auto
next
 case (Cons a list)
major from this have $n = Some a$
 by (metis Un-iff assms singletonI succ-rel-functional)
ultimately show αthesis by simp
qed

lemma succ-rel-insert-alt:
assumes $a \neq ref$
 and distinct $(oid \# a \# b \# list)$
shows $insert-alt (succ-rel (a \# b \# list)) (oid, ref) =$
 $\{(a, Some b)\} \cup insert-alt (succ-rel (b \# list)) (oid, ref)$
proof (cases $\exists n. (ref, n) \in succ-rel (a \# b \# list)$)
 case True
 hence $insert-alt (succ-rel (a \# b \# list)) (oid, ref) =$
 $\{(p, n) \in succ-rel (a \# b \# list). p \neq ref\} \cup \{(ref, Some oid)\} \cup$
 $\{(i, n). i = oid \land (ref, n) \in succ-rel (a \# b \# list)\}$
 by simp
moreover have \((p, n) \in \text{succ-rel} (a \# b \# \text{list})\), \(p \neq \text{ref}\) =
\[\{(a, \text{Some } b)\} \cup \{(p, n) \in \text{succ-rel} (b \# \text{list})\}, p \neq \text{ref}\]

using `assms(1)` by auto

moreover have \(\text{insert-alt} (\text{succ-rel} (b \# \text{list})) (\text{oid}, \text{ref}) = \)
\[\{(p, n) \in \text{succ-rel} (b \# \text{list})\}, p \neq \text{ref}\} \cup \{(\text{ref}, \text{Some oid})\} \cup \]
\[\{(i, n). i = \text{oid} \land (\text{ref}, n) \in \text{succ-rel} (b \# \text{list})\}\]

proof –

have \(\exists n. (\text{ref}, n) \in \text{succ-rel} (b \# \text{list})\)

using `assms(1)` True by auto

thus \(?\text{thesis}\) by simp

qed

moreover have \((i, n). i = \text{oid} \land (\text{ref}, n) \in \text{succ-rel} (a \# b \# \text{list})\) =
\[\{(i, n). i = \text{oid} \land (\text{ref}, n) \in \text{succ-rel} (b \# \text{list})\}\]

using `assms(1)` by auto

ultimately show \(?\text{thesis}\) by simp

next

case False

then show \(?\text{thesis}\) by auto

qed

lemma \(\text{succ-rel-insert-head}\):

assumes \(\text{distinct} (\text{ref} \# \text{list})\)

shows \(\text{succ-rel} (\text{insert-spec} (\text{ref} \# \text{list}) (\text{oid}, \text{Some ref})) = \)
\(\text{insert-alt} (\text{succ-rel} (\text{ref} \# \text{list})) (\text{oid}, \text{ref})\)

proof –

obtain \(n\) where \(\text{ref-in-rel} (\text{ref}, n) \in \text{succ-rel} (\text{ref} \# \text{list})\)

by (cases list, auto)

moreover from this have \((p, n) \in \text{succ-rel} (\text{ref} \# \text{list})\), \(p \neq \text{ref}\} = \text{succ-rel}

list

using `assms succ-rel-rem-head by (metis (mono-tags, lifting))`

moreover have \((i, n). i = \text{oid} \land (\text{ref}, n) \in \text{succ-rel} (\text{ref} \# \text{list})\} = \{(\text{oid}, n)\}\)

proof –

have \(\forall \text{n}. (\text{ref}, n) \in \text{succ-rel} (\text{ref} \# \text{list}) \Rightarrow n x = n\)

using `assms by (simp add: succ-rel-functional ref-in-rel)`

hence \((i, n) \in \text{succ-rel} (\text{ref} \# \text{list}). i = \text{ref}\} \subseteq \{(\text{ref}, n)\}\)

by blast

moreover have \(\{(\text{ref}, n)\} \subseteq \{(i, n) \in \text{succ-rel} (\text{ref} \# \text{list}). i = \text{ref}\}\)

by (simp add: ref-in-rel)

ultimately show \(?\text{thesis}\) by blast

qed

moreover have \(\text{insert-alt} (\text{succ-rel} (\text{ref} \# \text{list})) (\text{oid}, \text{ref}) = \)
\[\{(p, n) \in \text{succ-rel} (\text{ref} \# \text{list})\}, p \neq \text{ref}\} \cup \{(\text{ref}, \text{Some oid})\} \cup \]
\[\{(i, n). i = \text{oid} \land (\text{ref}, n) \in \text{succ-rel} (\text{ref} \# \text{list})\}\]

proof –

have \(\exists n. (\text{ref}, n) \in \text{succ-rel} (\text{ref} \# \text{list})\)

using `ref-in-rel by blast`

thus \(?\text{thesis}\) by simp

qed

ultimately have \(\text{insert-alt} (\text{succ-rel} (\text{ref} \# \text{list})) (\text{oid}, \text{ref}) = \)
succ-rel list ∪ \{(ref, Some oid)\} ∪ \{(oid, n)\}

by simp

moreover have succ-rel (oid # list) = \{(oid, n)\} ∪ succ-rel list
using assms ref-in-rel succ-rel-swap-head by metis

hence succ-rel (ref # oid # list) = \{(ref, Some oid), (oid, n)\} ∪ succ-rel list
by auto

ultimately show succ-rel (insert-spec (ref # list) (oid, Some ref)) =
insert-alt (succ-rel (ref # list)) (oid, ref)
by auto

qed

lemma succ-rel-insert-later:
assumes succ-rel (insert-spec (b # list) (oid, Some ref)) =
insert-alt (succ-rel (b # list)) (oid, ref)
and a ≠ ref
and distinct (a # b # list)
shows succ-rel (insert-spec (a # b # list) (oid, Some ref)) =
insert-alt (succ-rel (a # b # list)) (oid, ref)

proof —
have succ-rel (a # b # list) = \{(a, Some b)\} ∪ succ-rel (b # list)
by simp

moreover have insert-spec (a # b # list) (oid, Some ref) =
a # (insert-spec (b # list) (oid, Some ref))
using assms(2) by simp

hence succ-rel (insert-spec (a # b # list) (oid, Some ref)) =
\{(a, Some b)\} ∪ succ-rel (insert-spec (b # list) (oid, Some ref))
by auto

hence succ-rel (insert-spec (a # b # list) (oid, Some ref)) =
\{(a, Some b)\} ∪ insert-alt (succ-rel (b # list)) (oid, ref)
using assms(1) by auto

moreover have insert-alt (succ-rel (a # b # list)) (oid, ref) =
\{(a, Some b)\} ∪ insert-alt (succ-rel (b # list)) (oid, ref)
using succ-rel-insert-alt assms(2) by auto

ultimately show ?thesis by blast

qed

lemma succ-rel-insert-Some:
assumes distinct list
shows succ-rel (insert-spec list (oid, Some ref)) = insert-alt (succ-rel list) (oid, ref)
using assms proof(induction list)
case Nil
then show succ-rel (insert-spec [] (oid, Some ref)) = insert-alt (succ-rel []) (oid, ref)
by simp

next
case (Cons a list)
hence distinct (a # list)
by simp
then show \(\text{succ-rel} (\text{insert-spec} (a \# \text{list}) (\text{oid}, \text{Some ref})) = \text{insert-alt} (\text{succ-rel} (a \# \text{list}) (\text{oid}, \text{ref})) \)

proof (cases \(a = \text{ref} \))
 case True
 then show \(?\text{thesis} \)
 using \(\text{succ-rel-insert-head} \langle \text{distinct} (a \# \text{list}) \rangle \) by metis
 next
 case False
 hence \(a \neq \text{ref} \) by simp
 moreover have \(\text{succ-rel} (\text{insert-spec list} (\text{oid}, \text{Some ref})) = \text{insert-alt} (\text{succ-rel (a \# list}) (\text{oid}, \text{ref})) \)
 using Cons.IH Cons.prems by auto
 ultimately show \(\text{succ-rel} (\text{insert-spec} (a \# \text{list}) (\text{oid}, \text{ref})) = \text{insert-alt} (\text{succ-rel} (a \# \text{list}) (\text{oid}, \text{ref}) \)
 by (cases list, force, metis Cons.prems succ-rel-insert-later)
 qed

qed

The main result of this section, that \(\text{insert-spec} \) and \(\text{insert-alt} \) are equivalent.

theorem \(\text{insert-alt-equivalent} \):
 assumes \(\text{insert-ops ops} \) and \(\text{head \in fst ' set ops} \)
 and \(\forall r. \text{Some r} \in snd ' set ops \Rightarrow r \neq \text{head} \)
 shows \(\text{succ-rel} (\text{head \# interp-ins ops}) = \text{interp-alt head ops} \)
 using \(\text{assms} \)
proof (induction \(\text{ops} \) rule: List.rev-induct)
 case Nil
 then show \(\text{succ-rel} (\text{head \# interp-ins []}) = \text{interp-alt head []} \)
 by (simp add: interp-ins-def interp-alt-def)

next
 case (snoc \(x \) \(\text{xs} \))
 have \(\text{IH}: \text{succ-rel} (\text{head \# interp-ins xs}) = \text{interp-alt head xs} \)
 using \(\text{snoc} \)
 have \(\text{distinct-list: distinct} (\text{head \# interp-ins xs}) \)
 using \(\text{snoc} \)
 proof
 have \(\text{distinct} (\text{interp-ins xs}) \)
 using \(\text{interp-ins-distinct snoc.prems(1)} \) by blast
 moreover have \(\text{set} (\text{interp-ins xs}) \subseteq \text{fst ' set xs} \)
 using \(\text{interp-ins-subset snoc.prems(1)} \) by fastforce
 ultimately show \(\text{distinct} (\text{head \# interp-ins xs}) \)
 using \(\text{snoc.prems(2)} \) by auto
 qed

obtain \(\text{oid r where} \) \(x\text{-pair}: x = (\text{oid, r}) \) by force
then show \(\text{succ-rel} (\text{head \# interp-ins (xs @ [x])}) = \text{interp-alt head (xs @ [x])} \)
proof (cases \(r \))
 case None
 have \(\text{interp-alt head (xs @ [x])} = \text{insert-alt} (\text{interp-alt head xs}) (\text{oid, head}) \)
 by (simp add: interp-alt-def None x-pair)
 moreover have \(... = \text{insert-alt} (\text{succ-rel (head \# interp-ins xs)}) \)
 by (simp add: IH)

qed

The main result of this section, that \(\text{insert-spec} \) and \(\text{insert-alt} \) are equivalent.
moreover have ... = succ-rel (insert-spec (head # interp-ins xs) (oid, Some head))
 using distinct-list succ-rel-insert-Some by metis
moreover have ... = succ-rel (head # (insert-spec (interp-ins xs) (oid, None)))
 by auto
moreover have ... = succ-rel (head # (interp-ins (xs @ [x])))
 by (simp add: interp-ins-tail-unfold None x-pair)
ultimately show ?thesis by simp
next
 case (Some ref)
 have ref ≠ head
 by (simp add: Some snoc.prems(3) x-pair)
 have interp-alt (xs @ [x]) = insert-alt (interp-alt head xs) (oid, ref)
 by (simp add: interp-alt-def Some x-pair)
 moreover have ... = insert-alt (succ-rel (head # interp-ins xs)) (oid, ref)
 by (simp add: IH)
 moreover have ... = succ-rel (insert-spec (head # interp-ins xs) (oid, Some ref))
 using distinct-list succ-rel-insert-Some by metis
 moreover have ... = succ-rel (head # (insert-spec (interp-ins xs) (oid, Some ref)))
 using ref ≠ head by auto
 moreover have ... = succ-rel (head # (interp-ins (xs @ [x])))
 by (simp add: interp-ins-tail-unfold Some x-pair)
ultimately show ?thesis by simp
qed
qed

2.5 The list-order predicate

list-order ops x y holds iff, after interpreting the list of insertion operations ops, the list element with ID x appears before the list element with ID y in the resulting list. We prove several lemmas about this predicate; in particular, that executing additional insertion operations does not change the relative ordering of existing list elements.

definition list-order :: ('oid::{linorder} × 'oid option) list ⇒ 'oid ⇒ 'oid ⇒ bool
where
 list-order ops x y ≡ ∃ xs ys zs. interp-ins ops = xs @ [x] @ ys @ [y] @ zs

lemma list-orderI:
 assumes interp-ins ops = xs @ [x] @ ys @ [y] @ zs
 shows list-order ops x y
 using assms by (auto simp add: list-order-def)

lemma list-orderE:
 assumes list-order ops x y
 shows ∃ xs ys zs. interp-ins ops = xs @ [x] @ ys @ [y] @ zs
 using assms by (auto simp add: list-order-def)
lemma list-order-memb1:
assumes list-order ops x y
shows \(x \in \text{set} (\text{interp-ins ops}) \)
using assms by (auto simp add: list-order-def)

lemma list-order-memb2:
assumes list-order ops x y
shows \(y \in \text{set} (\text{interp-ins ops}) \)
using assms by (auto simp add: list-order-def)

lemma list-order-trans:
assumes insert-ops op-list
and list-order op-list x y
and list-order op-list y z
shows list-order op-list x z
proof
 obtain xxss xys zss where 1: \(\text{interp-ins op-list} = (xxss@[x]@[xys])@([y]#zss) \)
 using assms by (auto simp add: list-order-def interp-ins-def)
 obtain yxs yys zys where 2: \(\text{interp-ins op-list} = yxs@[y]#(yys@[z]@yzs) \)
 using assms by (auto simp add: list-order-def interp-ins-def)
 have 3: \(\text{distinct} (\text{interp-ins op-list}) \)
 using assms interp-ins-distinct by blast
 hence \(xzs = yys@[z]@yzs \)
 using distinct-list-split[OF 3, OF 2, OF 1] by auto
 hence \(\text{interp-ins op-list} = xxss@[x]@[xys@[y]]@[yys@[z]@yzs \)
 using 1 2 3 by clarsimp
 thus list-order op-list x z
 using assms by (metis append.assoc list-orderI)
qed

lemma insert-preserves-order:
assumes insert-ops ops and insert-ops rest
and rest = before @ after
and ops = before @ (oid, ref) # after
shows \(\exists \, xs \, ys \, zs. \text{interp-ins rest} = xs @ zs \wedge \text{interp-ins ops} = xs @ ys @ zs \)
using assms proof(induction after arbitrary: rest ops rule: List.rev-induct)
case Nil
then have 1: \(\text{interp-ins ops} = \text{insert-spec} (\text{interp-ins before}) \) (oid, ref)
by (simp add: interp-ins-tail-unfold)
then show \(\exists \, xs \, ys \, zs. \text{interp-ins rest} = xs @ zs \wedge \text{interp-ins ops} = xs @ ys @ zs \)
proof(cases ref)
case None
hence \(\text{interp-ins rest} = [] @ (\text{interp-ins before}) \wedge \text{interp-ins ops} = [] @ (\text{oid}) @ (\text{interp-ins before}) \)
 using 1 Nil.prems(3) by simp
then show \(?\, \text{thesis} \) by blast
next
case (Some a)
then show \(\text{thesis} \)

proof (cases \(a \in \text{set \ (interp-ins \ before)} \))

case \(\text{True} \)

then obtain \(xs \ \text{ys} \) where \(\text{interp-ins \ before} = xs @ ys \land \)

\(\text{insert-spec \ (interp-ins \ before) \ (oid, ref) = xs @ oid \# \ ys} \)

using \(\text{insert-somewhere \ Some \ by \ metis} \)

hence \(\text{interp-ins \ rest} = xs @ ys \land \text{interp-ins \ ops} = xs @ \ [\text{oid}] \@ ys \)

using \(\text{1 Nil.prems(3) \ by \ auto} \)

then show \(\text{thesis \ by \ blast} \)

next

case \(\text{False} \)

hence \(\text{interp-ins \ ops = (interp-ins \ rest) @ [] @ []} \)

using \(\text{insert-spec-nonex \ 1 Nil.prems(3) \ Some \ by \ simp} \)

then show \(\text{thesis \ by \ blast} \)

qed

qed

next

case \(\text{(snoc \ oper \ op-list)} \)

then have \(\text{insert-ops \ ((before @ (oid, ref) \# op-list) @ oper]} \)

and \(\text{insert-ops \ ((before @ op-list) @ oper]} \)

by \(\text{auto} \)

then have \(\text{ops1: \ insert-ops \ (before @ op-list) \ @ oper @ []} \)

and \(\text{ops2: \ insert-ops \ (before @ (oid, ref) \# op-list) \ @ oper @ []} \)

using \(\text{insert-ops-appendD \ by \ blast} \)

then obtain \(i2 \ r2 \) where \(\text{IH1: \ interp-ins \ (before @ op-list) = xs @ zs} \)

and \(\text{IH2: \ interp-ins \ (before @ (oid, ref) \# op-list) = xs @ ys @ zs} \)

using \(\text{snoc.IH \ by \ blast} \)

obtain \(i2 \ r2 \) where \(\text{oper = (i2, r2) \ by \ force} \)

then show \(\exists \text{xs ys zs. \ interp-ins \ rest} = xs @ zs \land \text{interp-ins \ ops} = xs @ ys @ zs \)

proof (cases \(r2 \))

case \(\text{None} \)

hence \(\text{interp-ins \ (before @ op-list \ [oper])} = (i2 \# xs) \@ zs \)

by \(\text{(metis IH1 \ oper = (i2, r2)\ append.assoc \ append-Cons \ insert-spec\ simps(1) \ interp-ins-tail-unfold)} \)

moreover have \(\text{interp-ins \ (before @ (oid, ref) \# op-list \ [oper])} = (i2 \# xs) \)

\@ ys \@ zs \by \(\text{(metis IH2 \ None \ oper = (i2, r2)\ append.assoc \ append-Cons \ insert-spec\ simps(1) \ interp-ins-tail-unfold)} \)

ultimately show \(\text{thesis} \)

using \(\text{snoc.prems(3) \ snoc.prems(4) \ by \ blast} \)

next

case \(\text{(Some \ r)} \)

then have \(\text{1: \ interp-ins \ (before @ (oid, ref) \# op-list \ [[i2, r2]]) = \)

\(\text{insert-spec \ (xs @ ys @ zs) \ (i2, Some \ r)} \)

by \(\text{(metis IH2 \ append.assoc \ append-Cons \ interp-ins-tail-unfold)} \)

have \(\text{2: \ interp-ins \ (before @ op-list \ [[i2, r2]]) = \text{insert-spec \ (xs @ zs) \ (i2, \)} \)

\(\text{Some \ r)} \)

by \(\text{(metis IH1 \ append.assoc \ interp-ins-tail-unfold \ Some)} \)

consider \(\text{(r-xz) \ r \in \ set \ xs \ | \ (r-yz) \ r \in \ set \ ys \ | \ (r-zs) \ r \in \ set \ zs \ |} \)

34
(r-nonex) $r \notin \text{set} \ (xs @ ys @ zs)$

by auto

then show $\exists xs \ ys \ zs. \ \text{interp-ins rest} = xs @ zs \land \text{interp-ins ops} = xs @ ys @$

proof(cases)
 case r-xs
 from this have $\text{insert-spec} \ (xs @ ys @ zs) \ (i2, \text{Some} \ r) =$$
 (\text{insert-spec} \ xs \ (i2, \text{Some} \ r)) @ ys @ zs$

 by (meson insert-first-part)

 moreover have $\text{insert-spec} \ (xs @ zs) \ (i2, \text{Some} \ r) = (\text{insert-spec} \ xs \ (i2, \text{Some} \ r)) @ zs$

 by (meson r-xs insert-first-part)

 ultimately show $\exists \diamondsuit$ using $1 \ 2 \ \langle \text{oper} = (i2, r2)\rangle$ snoc.prems by auto

next
 case r-ys
 hence $r \notin \text{set} \ xs$ and $r \notin \text{set} \ zs$

 using IH2 ops2 interp-ins-distinct by force+

 moreover from this have $\text{insert-spec} \ (xs @ ys @ zs) \ (i2, \text{Some} \ r) =$$
 xs @ (\text{insert-spec} \ ys \ (i2, \text{Some} \ r)) @ zs$

 using insert-first-part insert-second-part insert-spec-nonex

 by (metis Some UnE r-ys set-append)

 moreover have $\text{insert-spec} \ (xs @ zs) \ (i2, \text{Some} \ r) = xs @ zs$

 by (simp add: Some calculation(1) calculation(2))

 ultimately show $\exists \diamondsuit$ using $1 \ 2 \ \langle \text{oper} = (i2, r2)\rangle$ snoc.prems by auto

next
 case r-zs
 hence $r \notin \text{set} \ xs$ and $r \notin \text{set} \ ys$

 using IH2 ops2 interp-ins-distinct by force+

 moreover from this have $\text{insert-spec} \ (xs @ ys @ zs) \ (i2, \text{Some} \ r) =$$
 xs @ ys @ (\text{insert-spec} \ zs \ (i2, \text{Some} \ r))$

 by (metis Some UnE insert-second-part insert-spec-nonex set-append)

 moreover have $\text{insert-spec} \ (xs @ zs) \ (i2, \text{Some} \ r) = xs @ (\text{insert-spec} \ zs \ (i2,$

 Some $r))$

 by (simp add: r-zs calculation(1) insert-second-part)

 ultimately show $\exists \diamondsuit$ using $1 \ 2 \ \langle \text{oper} = (i2, r2)\rangle$ snoc.prems by auto

next
 case r-nonex
 then have $\text{insert-spec} \ (xs @ ys @ zs) \ (i2, \text{Some} \ r) = xs @ ys @ zs$

 by simp

 moreover have $\text{insert-spec} \ (xs @ zs) \ (i2, \text{Some} \ r) = xs @ zs$

 using r-nonex by simp

 ultimately show $\exists \diamondsuit$ using $1 \ 2 \ \langle \text{oper} = (i2, r2)\rangle$ snoc.prems by auto

qed

qed
lemma distinct-fst:
assumes distinct (map fst A)
shows distinct A
using assms by (induction A) auto

lemma subset-distinct-le:
assumes set A ⊆ set B and distinct A and distinct B
shows length A ≤ length B
using assms proof (induction B arbitrary; A)
case Nil
then show length A ≤ length [] by simp
next
case (Cons a B)
then show length A ≤ length (a # B)
proof (cases a ∈ set A)
case True
have set (remove1 a A) ⊆ set B
using Cons.prems by auto
hence length (remove1 a A) ≤ length B
using Cons.IH Cons.prems by auto
then show length A ≤ length (a # B)
by (simp add: True length-remove1)
next
case False
hence set A ⊆ set B
using Cons.prems by auto
hence length A ≤ length B
using Cons.IH Cons.prems by auto
then show length A ≤ length (a # B)
by simp
qed
qed

lemma set-subset-length-eq:
assumes set A ⊆ set B and length B ≤ length A
and distinct A and distinct B
shows set A = set B
proof –
have length A ≤ length B
using assms by (simp add: subset-distinct-le)
moreover from this have card (set A) = card (set B)
using assms by (simp add: distinct-card le-antisym)
ultimately show set A = set B
using assms(1) by (simp add: card-subset-eq)
qed

lemma length-diff-Suc-exists:
assumes length xs − length ys = Suc m
and set ys ⊆ set xs
and distinct ys and distinct xs
shows ∃ e. e ∈ set xs ∧ e /∈ set ys
using assms proof (induction xs arbitrary: ys)
case Nil
then show ∃ e. e ∈ set [] ∧ e /∈ set ys
 by simp
next
case (Cons a xs)
then show ∃ e. e ∈ set (a # xs) ∧ e /∈ set ys
proof (cases a ∈ set ys)
case True
 have IH: ∃ e. e ∈ set xs ∧ e /∈ set (remove1 a ys)
 proof
 − have length xs − length (remove1 a ys) = Suc m
 by (metis Cons.prems(1) One-nat-def Suc-pred True diff-Suc Suc length-Cons
 length-pos-if-in-set length-remove1)
 moreover have set (remove1 a ys) ⊆ set xs
 using Cons.prems by auto
 ultimately show thesis
 by (meson Cons.IH Cons.prems distinct.simps(2) distinct-remove1)
 qed
moreover have set ys − {a} ⊆ set xs
 using Cons.prems(2) by auto
ultimately show ∃ e. e ∈ set (a # xs) ∧ e /∈ set ys
 by (metis Cons.prems(4) distinct.simps(2) in-set-remove1 set-subset-Cons
 subsetCE)
next
case False
then show ∃ e. e ∈ set (a # xs) ∧ e /∈ set ys
 by auto
qed
qed

lemma app-length-lt-exists:
assumes xsa @ zsya = xs @ ys
and length xsa ≤ length xs
shows xsa @ (drop (length xsa) xs) = xs
using assms by (induction xsa arbitrary: xs zsya simp,
 meson append-eq-append-conv-if append-take-drop-id)

lemma list-order-monotonic:
assumes insert-ops A and insert-ops B
and set A ⊆ set B
and list-order A x y
shows list-order B x y
using assms proof (induction rule: measure-induct-rule[where f=λx. (length x − length A)])
case (less xa)
have distinct (map fst A) and distinct (map fst xa) and
sorted (map fst A) and sorted (map fst xa)
 using less.prems by (auto simp add: insert-ops-def spec-ops-def)
hence distinct A and distinct xa
 by (auto simp add: distinct-fst)
then show list-order xa x y
proof(cases length xa - length A)
case 0
 hence set A = set xa
 using set-subset-length-eq less.prems(3) (distinct A) (distinct xa) diff-is-0-eq
 by blast
hence A = xa
 using (distinct (map fst A)) (distinct (map fst xa));
 (sorted (map fst A)) (sorted (map fst xa)) map-sorted-distinct-set-unique
 by (metis distinct-map less.prems(3) subset-Un-eq)
then show list-order xa x y
 using less.prems(4) by blast
next
case (Suc nat)
then obtain e where e ∈ set xa and e /∈ set A
 using length-diff-Suc-exists (distinct A) (distinct xa) less.prems(3)
 by blast
proof --
 have length (remove1 e xa) = length A < Suc nat
 using diff-Suc-I diff-commute length-remove1 less-Suc-eq Suc (e ∈ set xa)
 by metis
 moreover have insert-ops (remove1 e xa)
 by (simp add: insert-ops-remove1 less.prems(2))
 moreover have set A ⊆ set (remove1 e xa)
 by (metis (no-types, lifting) (e /∈ set A) in-set-remove1 less.prems(3))
set-rev-mp subsetI
ultimately show ?thesis
 by (simp add: Suc less.IH less.prems(1) less.prems(4))
qed
then obtain xs ys zs where interp-ins (remove1 e xa) = xs @ x @ y @ y #
using list-order-def by fastforce
moreover obtain oid ref where e-pair: e = (oid, ref)
 by fastforce
moreover obtain ps ss where xa-split: xa = ps @ [e] @ ss and e /∈ set ps
 using split-list-first (e ∈ set xa) by fastforce
hence remove1 e (ps @ e # ss) = ps @ ss
 by (simp add: remove1-append)
moreover from this have insert-ops (ps @ ss) and insert-ops (ps @ e # ss)
 using xa-split less.prems(2) by (metis append-Cons append-Nil insert-ops-remove1, auto)
then obtain zsa ysa zsa where interp-ins (ps @ ss) = zsa @ zsa
 and interp-xa: interp-ins (ps @ (oid, ref) # ss) = zsa @ ysa @ zsa
 using insert-preserves-order e-pair by metis

38
moreover have \(\text{xsa-zsa}: \text{xsa} @ \text{zsa} = \text{xs} @ \text{x} \# \text{ys} @ \text{y} \# \text{zs} \)
using interp-ins-def remove1-append calculation xa-split by auto

then show list-order \(\text{xa} \, \text{y} \)

proof (cases length \(\text{xsa} \leq \text{length} \, \text{xs} \))

case True
then obtain \(\text{ts} \) where \(\text{xsa}@\text{ts} = \text{xs} \)
using app-length-lt-exists xsa-zsa by blast
hence interp-ins \(\text{xa} = (\text{xsa} @ \text{y} @ \text{ts}) @ [\text{x}] @ \text{ys} @ [\text{y}] @ \text{zs} \)
using calculation xa-split by auto
then show list-order \(\text{xa} \, \text{x} \, \text{y} \)
using list-order-def by blast

next
case False
then show list-order \(\text{xa} \, \text{x} \, \text{y} \)
proof (cases length \(\text{xs} \leq \text{length} \, (\text{xs} @ \text{x} \# \text{ys}) \))

case True
have \(\text{xsa-zsa1}: \text{xsa} @ \text{zsa} = (\text{xs} @ \text{x} \# \text{ys}) @ (\text{y} \# \text{zs}) \)
by (simp add: xsa-zsa)
then obtain \(\text{us} \) where \(\text{xsa} @ \text{us} = \text{xs} @ \text{x} \# \text{ys} \)
using app-length-lt-exists True by blast
moreover from this have \(\text{x} @ \text{x} \# (\text{drop} \, (\text{Suc} \, (\text{length} \, \text{xs}))) \, \text{xsa} = \text{xs} \)
using append-eq-append-conv-if id-take-nth-drop linorder-not-less nth-append nth-append-length False by metis

moreover have \(\text{us} @ \text{y} \# \text{zs} = \text{zsa} \)
by (metis True xsa-zsa1 append-eq-append-conv-if append-eq-eq-append-eq e-pair interp-xa xa-split)
ultimately have interp-ins \(\text{xa} = \text{xs} @ [\text{x}] @ ((\text{drop} \, (\text{Suc} \, (\text{length} \, \text{xs}))) \, \text{xsa} @ \text{ys} @ \text{us}) @ [\text{y}] @ \text{zs} \)
by (simp add: interp-xa xa-split)
then show list-order \(\text{xa} \, \text{x} \, \text{y} \)
using list-order-def by blast

next
case False
hence length \(\text{xs} @ \text{x} \# \text{ys} \lt \text{length} \, \text{xs} \)
using not-less by blast
hence length \((\text{xs} @ \text{x} \# \text{ys} @ [\text{y}]) \leq \text{length} \, \text{xs} \)
by simp
moreover have \((\text{xs} @ \text{x} \# \text{ys} @ [\text{y}]) @ \text{zs} = \text{xsa} @ \text{zsa} \)
by (simp add: xsa-zsa)
ultimately obtain \(\text{vs} \) where \((\text{xs} @ \text{x} \# \text{ys} @ [\text{y}]) @ \text{vs} = \text{xsa} \)
using app-length-lt-exists by blast
hence \(\text{xsa} @ \text{ysa} @ \text{zsa} = \text{xs} @ [\text{x}] @ \text{ys} @ [\text{y}] @ \text{vs} @ \text{ysa} @ \text{zsa} \)
by simp
hence interp-ins \(\text{xa} = \text{xs} @ [\text{x}] @ \text{ys} @ [\text{y}] @ (\text{vs} @ \text{ysa} @ \text{zsa}) \)
using e-pair interp-xa xa-split by auto
then show list-order \(\text{xa} \, \text{x} \, \text{y} \)
using list-order-def by blast
qed

qed
3 Relationship to Strong List Specification

In this section we show that our list specification is stronger than the A_{strong} specification of collaborative text editing by Attiya et al. [1]. We do this by showing that the OpSet interpretation of any set of insertion and deletion operations satisfies all of the consistency criteria that constitute the A_{strong} specification.

Attiya et al.’s specification is as follows [1]:

An abstract execution $A = (H, \text{vis})$ belongs to the strong list specification A_{strong} if and only if there is a relation $lo \subseteq \text{elems}(A) \times \text{elems}(A)$, called the list order, such that:

1. Each event $e = do(op, w) \in H$ returns a sequence of elements $w = a_0 \ldots a_{n-1}$, where $a_i \in \text{elems}(A)$, such that
 (a) w contains exactly the elements visible to e that have been inserted, but not deleted:
 \[
 \forall a. \ a \in w \iff (do(\text{ins}(a, _), _) \leq_{\text{vis}} e) \land \neg (do(\text{del}(a), _) \leq_{\text{vis}} e).
 \]
 (b) The order of the elements is consistent with the list order:
 \[
 \forall i, j. \ (i < j) \implies (a_i, a_j) \in lo.
 \]
 (c) Elements are inserted at the specified position: if $op = \text{ins}(a, k)$, then $a = a_{\min\{k, n-1\}}$.

2. The list order lo is transitive, irreflexive and total, and thus determines the order of all insert operations in the execution.

This specification considers only insertion and deletion operations, but no assignment. Moreover, it considers only a single list object, not a graph of composable objects like in our paper. Thus, we prove the relationship to A_{strong} using a simplified interpretation function that defines only insertion and deletion on a single list.

code theory List-Spec
 imports Insert-Spec
begin

We first define a datatype for list operations, with two constructors: Insert ref val, and Delete ref. For insertion, the ref argument is the ID of the
existing element after which we want to insert, or None to insert at the head of the list. The val argument is an arbitrary value to associate with the list element. For deletion, the ref argument is the ID of the existing list element to delete.

datatype ('oid, 'val) list-op =
 Insert 'oid option 'val |
 Delete 'oid

When interpreting operations, the result is a pair (list, vals). The list contains the IDs of list elements in the correct order (equivalent to the list relation in the paper), and vals is a mapping from list element IDs to values (equivalent to the element relation in the paper).

Insertion delegates to the previously defined insert-spec interpretation function. Deleting a list element removes it from vals.

fun interp-op :: (' oid list × ('oid → 'val)) ⇒ ('oid × ('oid, 'val) list-op)
⇒ (' oid list × ('oid → 'val)) where
 interp-op (list, vals) (oid, Insert ref val) = (insert-spec list (oid, ref), vals(oid ⇒ val)) |
 interp-op (list, vals) (oid, Delete ref) = (list, vals(ref := None))

definition interp-ops :: ('oid × ('oid, 'val) list-op) list ⇒ ('oid list × ('oid → 'val)) where
 interp-ops ops ≡ foldl interp-op ([], Map.empty) ops

list-order ops x y holds iff, after interpreting the list of operations ops, the list element with ID x appears before the list element with ID y in the resulting list.

definition list-order :: ('oid × ('oid, 'val) list-op) list ⇒ 'oid ⇒ 'oid ⇒ bool where
 list-order ops x y ≡ ∃ xs ys zs. fst (interp-ops ops) = xs @ [x] @ ys @ [y] @ zs

The make-insert function generates a new operation for insertion into a given index in a given list. The exclamation mark is Isabelle’s list subscript operator.

fun make-insert :: 'oid list ⇒ 'val ⇒ nat ⇒ ('oid, 'val) list-op where
 make-insert list val 0 = Insert None val |
 make-insert [] val k = Insert None val |
 make-insert list val (Suc k) = Insert (Some (list ! (min k (length list − 1)))) val

The list-ops predicate is a specialisation of spec-ops to the list-op datatype: it describes a list of (ID, operation) pairs that is sorted by ID, and can thus be used for the sequential interpretation of the OpSet.

fun list-op-deps :: ('oid, 'val) list-op ⇒ 'oid set where
 list-op-deps (Insert (Some ref) _) = {ref} |
 list-op-deps (Insert None _) = {} |
 list-op-deps (Delete ref) = {ref}
locale list-opset = opset opset list-op-deps
 for opset :: ('oid::{linorder} × ('oid, 'val) list-op) set

definition list-ops :: ('oid::{linorder} × ('oid, 'val) list-op) list ⇒ bool where
 list-ops ops ≡ spec-ops ops list-op-deps

3.1 Lemmas about insertion and deletion

definition insertions :: ('oid::{linorder} × ('oid, 'val) list-op) list ⇒ ('oid × 'oid option) list where
 insertions ops ≡ List.map-filter (λoper.
 case oper of (oid, Insert ref val) ⇒ Some (oid, ref) | (oid, Delete ref) ⇒ None) ops

definition inserted-ids :: ('oid::{linorder} × ('oid, 'val) list-op) list ⇒ 'oid list where
 inserted-ids ops ≡ List.map-filter (λoper.
 case oper of (oid, Insert ref val) ⇒ Some oid | (oid, Delete ref) ⇒ None) ops

definition deleted-ids :: ('oid::{linorder} × ('oid, 'val) list-op) list ⇒ 'oid list where
 deleted-ids ops ≡ List.map-filter (λoper.
 case oper of (oid, Insert ref val) ⇒ None | (oid, Delete ref) ⇒ Some ref) ops

lemma interp-ops-unfold-last:
 shows interp-ops (xs @ [x]) = interp-op (interp-ops xs) x
 by (simp add: interp-ops-def)

lemma map-filter-append:
 shows List.map-filter P (xs @ ys) = List.map-filter P xs @ List.map-filter P ys
 by (auto simp add: List.map-filter-def)

lemma map-filter-Some:
 assumes P x = Some y
 shows List.map-filter P [x] = [y]
 by (simp add: assms map-filter-simps(1) map-filter-simps(2))

lemma map-filter-None:
 assumes P x = None
 shows List.map-filter P [x] = []
 by (simp add: assms map-filter-simps(1) map-filter-simps(2))

lemma insertions-last-ins:
 shows insertions (xs @ [(oid, Insert ref val)]) = insertions xs @ [(oid, ref)]
 by (simp add: insertions-def map-filter-Some map-filter-append)

lemma insertions-last-del:

42
shows insertions \(xs @ [(oid, Delete ref)] \) \(= \) insertions \(xs \)
by (simp add: insertions-def map-filter-None map-filter-append)

lemma insertions-fst-subset:
shows set (map fst (insertions ops)) \(\subseteq \) set (map fst ops)
proof(induction ops rule: List.rev-induct)
case Nil
then show set (map fst (insertions [])) \(\subseteq \) set (map fst [])
by (simp add: insert-ops-def spec-ops-def insertions-def map-filter-def)
next
case (snoc a ops)
obtain oid oper where a-pair: \(a = (oid, oper) \)
by fastforce
then show set (map fst (insertions (ops @ [a]))) \(\subseteq \) set (map fst (ops @ [a]))
proof(cases oper)
case (Insert ref val)
hence insertions (ops @ [a]) \(= \) insertions ops @ [(oid, ref)]
by (simp add: a-pair insertions-last-ins)
then show ?thesis using snoc.IH a-pair by auto
next
case (Delete ref)
hence insertions (ops @ [a]) \(= \) insertions ops
by (simp add: a-pair insertions-last-del)
then show ?thesis using snoc.IH by auto
qed
qed

lemma insertions-subset:
assumes list-ops A and list-ops B
and set A \(\subseteq \) set B
shows set (insertions A) \(\subseteq \) set (insertions B)
using assms proof(induction B arbitrary: A rule: List.rev-induct)
case Nil
then show set (insertions A) \(\subseteq \) set (insertions [])
by (simp add: insertions-def map-filter-simps(2))
next
case (snoc a ops)
obtain oid oper where a-pair: \(a = (oid, oper) \)
by fastforce
have list-ops ops
using list-ops-def spec-ops-rem-last snoc.prems(2) by blast
then show set (insertions A) \(\subseteq \) set (insertions (ops @ [a]))
proof(cases a \(\in \) set A)
case True
then obtain as bs where A-split: A \(= \) as @ a \# bs \& a \notin set as
by (meson split-list-first)
hence remove1 a A \(= \) as @ bs
by (simp add: remove1-append)
hence as-bs: insertions (remove1 a A) \(= \) insertions as @ insertions bs

43
by (simp add: insertions-def map-filter-append)
moreover have $A = \text{as @} [a] @ \text{bs}$
 by (simp add: A-split)
 hence as-a-bs: insertions $A = \text{insertions as @} \text{insertions [a] @} \text{insertions bs}$
 by (metis insertions-def map-filter-append)
moreover have $\text{IH}: \text{set (insertions (remove1 a A))} \subseteq \text{set (insertions ops)}$
proof
 have list-ops (remove1 a A)
 using snoc.prems(1) list-ops-def spec-ops-remove1 by blast
moreover have set (remove1 a A) \subseteq set ops
 proof
 have distinct A
 using snoc.prems(1) list-ops-def spec-ops-distinct by blast
 hence $a \notin \text{set (remove1 a A)}$
 by auto
 moreover have $\text{set (ops @} [a]) = \text{set ops} \cup \{a\}$
 by auto
 moreover have set (remove1 a A) \subseteq set A
 by (simp add: set-remove1-subset)
 ultimately show set (remove1 a A) \subseteq set ops
 using snoc.prems(3) by blast
 qed
ultimately show ?thesis
 by (simp add: (list-ops ops) snoc.IH)
qed
ultimately show ?thesis
proof (cases oper)
case (Insert ref val)
 hence insertions $\{a\} = \{(\text{oid}, \text{ref})\}$
 by (simp add: insertions-def map-filter-Some a-pair)
 hence set (insertions A) = set (insertions (remove1 a A)) \cup \{\text{oid}, \text{ref}\}
 using as-a-bs as-bs by auto
moreover have set (insertions (ops @ [a])) = set (insertions ops) \cup \{\text{oid}, \text{ref}\}
 by (simp add: Insert a-pair insertions-last-ins)
ultimately show ?thesis
 using IH by auto
next
case (Delete ref)
 hence insertions $\{a\} = []$
 by (simp add: insertions-def map-filter-None a-pair)
 hence set (insertions A) = set (insertions (remove1 a A))
 using as-a-bs as-bs by auto
moreover have set (insertions (ops @ [a])) = set (insertions ops)
 by (simp add: Delete a-pair insertions-last-del)
ultimately show ?thesis
 using IH by auto
qed
next
case False
hence set A ⊆ set ops
 using DiffE snoc.prems by auto
hence set (insertions A) ⊆ set (insertions ops)
 using snoc.IH snoc.prems(1) (list-ops ops) by blast
moreover have set (insertions ops) ⊆ set (insertions (ops @ [a]))
 by (simp add: insertions-def map-filter-append)
ultimately show ?thesis
 by blast
qed

qed

lemma list-ops-insertions:
 assumes list-ops ops
 shows insert-ops (insertions ops)
 using assms proof(induction ops rule: List.rev-induct)
case Nil
 then show insert-ops (insertions [])
 by (simp add: insert-ops-def spec-ops-def insertions-def map-filter-def)
next
case (snoc a ops)
hence IH: insert-ops (insertions ops)
 using list-ops-def spec-ops-rem-last by blast
obtain oid oper where a-pair: a = (oid, oper)
 by fastforce
then show insert-ops (insertions (ops @ [a]))
proof(cases oper)
case (Insert ref val)
hence insertions (ops @ [a]) = insertions ops @ [(oid, ref)]
 by (simp add: a-pair insertions-last-ins)
moreover have \(\forall i. \ i \in \text{set} (\map \text{fst} \text{ops}) \implies i < \text{oid} \)
 using a-pair list-ops-def snoc.prems spec-ops-id-inc by fastforce
hence \(\forall i. \ i \in \text{set} (\map \text{fst} \text{insertions ops}) \implies i < \text{oid} \)
 using insertions-fst-subset by blast
moreover have list-op-deps oper = set-option ref
 using Insert by (cases ref, auto)
hence \(\forall r. \ r \in \text{set-option ref} \implies r < \text{oid} \)
 using list-ops-def spec-ops-ref-less
 by (metis a-pair last-in-set snoc.prems snoc-eq-iff-butlast)
ultimately show ?thesis
 using IH insert-ops-def spec-ops-add-last by metis
next
case (Delete ref)
hence insertions (ops @ [a]) = insertions ops
 by (simp add: a-pair insertions-last-del)
then show ?thesis by (simp add: IH)
qed
qed

45
lemma inserted-ids-last-ins:
sows inserted-ids (xs @ [(oid, Insert ref val)]) = inserted-ids xs @ [oid]
by (simp add: inserted-ids-def map-filter-Some map-filter-append)

lemma inserted-ids-last-del:
sows inserted-ids (xs @ [(oid, Delete ref)]) = inserted-ids xs
by (simp add: inserted-ids-def map-filter-None map-filter-append)

lemma inserted-ids-exist:
sows oid ∈ set (inserted-ids ops) ↔ (∃ref val. (oid, Insert ref val) ∈ set ops)
proof (induction ops rule: List.rev-induct)
case Nil
then show oid ∈ set (inserted-ids []) ↔ (∃ref val. (oid, Insert ref val) ∈ set [])
by (simp add: inserted-ids-def List.map-filter-def)
next
case (snoc a ops)
obtain i oper where a-pair: a = (i, oper)
by fastforce
then show oid ∈ set (inserted-ids (ops @ [a])) ↔ (∃ref val. (oid, Insert ref val) ∈ set (ops @ [a]))
proof (cases oper)
case (Insert r v)
moreover from this have inserted-ids (ops @ [a]) = inserted-ids ops @ [i]
by (simp add: a-pair inserted-ids-last-ins)
ultimately show ?thesis
using snoc.IH a-pair by auto
next
case (Delete r)
moreover from this have inserted-ids (ops @ [a]) = inserted-ids ops
by (simp add: a-pair inserted-ids-last-del)
ultimately show ?thesis
by (simp add: a-pair snoc.IH)
qed
qed

lemma deleted-ids-last-ins:
sows deleted-ids (xs @ [(oid, Insert ref val)]) = deleted-ids xs
by (simp add: deleted-ids-def map-filter-None map-filter-append)

lemma deleted-ids-last-del:
sows deleted-ids (xs @ [(oid, Delete ref)]) = deleted-ids xs @ [ref]
by (simp add: deleted-ids-def map-filter-Some map-filter-append)

lemma deleted-ids-exist:
sows ref ∈ set (deleted-ids ops) ↔ (∃i. (i, Delete ref) ∈ set ops)
proof (induction ops rule: List.rev-induct)
case Nil
then show ref ∈ set (deleted-ids []) ↔ (∃i. (i, Delete ref) ∈ set [])

46
by (simp add: deleted-ids-def List.map-filter-def)

next
case (snoc a ops)
obtain oid oper where a-pair: a = (oid, oper)
 by fastforce
then show \(\text{ref} \in \text{set} (\text{deleted-ids} (\text{ops} @ [a])) \iff (\exists i. (i, \text{Delete ref}) \in \text{set} (\text{ops} @ [a])) \)
proof(cases oper)
case (Insert r v)
 moreover from this have deleted-ids (ops @ [a]) = deleted-ids ops
 by (simp add: a-pair deleted-ids-last-ins)
 ultimately show \(\text{thesis} \)
 using a-pair snoc.\(IH \) by auto
next
case (Delete r)
 moreover from this have deleted-ids (ops @ [a]) = deleted-ids ops @ [r]
 by (simp add: a-pair deleted-ids-last-del)
 ultimately show \(\text{thesis} \)
 using a-pair snoc.\(IH \) by auto
qed

qed

lemma deleted-ids-ref-solder:
assumes list-ops (ops @ [(oid, oper)])
shows \(\forall \text{ref}. \text{ref} \in \text{set} (\text{deleted-ids} \text{ops}) \Rightarrow \text{ref} < \text{oid} \)
proof
fix ref
assume ref \(\in \text{set} (\text{deleted-ids} \text{ops}) \)
then obtain i where in-ops: (i, Delete ref) \(\in \text{set} \text{ops} \)
 using deleted-ids-exist by blast
have ref < i
proof
 have \(\forall i \text{ oper} r. (i, \text{oper}) \in \text{set} \text{ops} \Rightarrow r \in \text{list-op-deps} \text{oper} \Rightarrow r < i \)
 by (meson assms list-ops-def spec-ops-ref-less spec-ops-rem-last)
 thus ref < i
 using in-ops by auto
qed
moreover have i < oid
proof
 have \(\forall i. i \in \text{set} (\text{map fst} \text{ops}) \Rightarrow i < \text{oid} \)
 using assms by (simp add: list-ops-def spec-ops-id-inc)
 thus \(\text{thesis} \)
 by (metis in-ops in-set-zipE zip-map-fst snd)
qed
ultimately show ref < oid
 using order.strict-trans by blast
qed

47
3.2 Lemmas about interpreting operations

lemma interp-ops-list-equiv:

shows \(\text{fst} (\text{interp-ops ops}) = \text{interp-ins} (\text{insertions ops}) \)

proof

(induction ops rule: List.rev-induct)

case Nil

have \(1: \text{fst} (\text{interp-ops []}) = [] \)

by \(\text{(simp add: interp-ops-def)} \)

have \(2: \text{interp-ins} (\text{insertions []}) = [] \)

by \(\text{(simp add: insertions-def map-filter-def interp-ins-def)} \)

show \(\text{fst} (\text{interp-ops []}) = \text{interp-ins} (\text{insertions []}) \)

by \(\text{(simp add: 1 2)} \)

next

case \((\text{snc a ops})\)

obtain \(\text{oid oper} \) \text{where} \(a\text{-pair: } a = (\text{oid, oper}) \)

by \(\text{fastforce} \)

then show \(\text{fst} (\text{interp-ops} (\text{ops} @ [a])) = \text{interp-ins} (\text{ops} @ [a]) \)

proof

(cases oper)

case \((\text{Insert ref val})\)

hence \(\text{insertions} (\text{ops} @ [a]) = \text{insertions} \text{ops} @ [(\text{oid, ref})] \)

by \(\text{(simp add: a-pair insertions-last-ins)} \)

hence \(\text{interp-ins} (\text{insertions} (\text{ops} @ [a])) = \text{insert-spec} (\text{interp-ins} (\text{insertions} \text{ops})) (\text{oid, ref}) \)

by \(\text{(simp add: interp-ins-tail-unfold)} \)

moreover have \(\text{fst} (\text{interp-ops} (\text{ops} @ [a])) = \text{insert-spec} (\text{fst} (\text{interp-ops ops})) (\text{oid, ref}) \)

by \(\text{(metis Insert a-pair fst-conv interp-op.simps(1) interp-ops-unfold-last prod.collapse)} \)

ultimately show \(?\text{thesis} \)

using \(\text{snoc.IH by auto} \)

next

case \((\text{Delete ref})\)

hence \(\text{insertions} (\text{ops} @ [a]) = \text{insertions} \text{ops} \)

by \(\text{(simp add: a-pair insertions-last-del)} \)

moreover have \(\text{fst} (\text{interp-ops} (\text{ops} @ [a])) = \text{fst} (\text{interp-ops ops}) \)

by \(\text{(metis Delete a-pair eq-fst-iff interp-op.simps(2) interp-ops-unfold-last)} \)

ultimately show \(?\text{thesis} \)

using \(\text{snoc.IH by auto} \)

qed

qed

lemma interp-ops-distinct:

assumes \(\text{list-ops ops} \)

shows \(\text{distinct} (\text{fst} (\text{interp-ops ops})) \)

by \(\text{(simp add: assms interp-ins-distinct interp-ops-list-equiv list-ops-insertions)} \)

lemma list-order-equiv:

shows \(\text{list-order} \text{ops} x y \leftrightarrow \text{Insert-Spec.list-order} (\text{insertions ops}) x y \)

by \(\text{(simp add: Insert-Spec.list-order-def List-Spec.list-order-def interp-ops-list-equiv)} \)
lemma interp-ops-vals-domain:
 assumes list-ops ops
 shows dom (snd (interp-ops ops)) = set (inserted-ids ops) - set (deleted-ids ops)
 using assms proof (induction ops rule: List.rev-induct)
 case Nil
 have 1: interp-ops [] = ([], Map.empty)
 by (simp add: interp-ops-def)
 moreover have 2: inserted-ids [] = [] and deleted-ids [] = []
 by (auto simp add: inserted-ids-def deleted-ids-def map-filter-simps(2))
 ultimately show dom (snd (interp-ops [])) = set (inserted-ids []) - set (deleted-ids [])
 by (simp add: 1 2)
 next
 case (snoc x xs)
 hence IH: dom (snd (interp-ops xs)) = set (inserted-ids xs) - set (deleted-ids xs)
 using list-ops-def spec-ops-rem-last by blast
 obtain oid oper where x-pair: x = (oid, oper)
 by fastforce
 obtain list vals where interp-xs: interp-ops xs = (list, vals)
 by fastforce
 then show dom (snd (interp-ops (xs @ [x]))) = set (inserted-ids (xs @ [x])) - set (deleted-ids (xs @ [x]))
 proof (cases oper)
 case (Insert ref val)
 hence interp-ops (xs @ [x]) = (insert-spec list (oid, ref), vals(oid := val))
 by (simp add: interp-ops-unfold-last interp-xs x-pair)
 hence dom (snd (interp-ops (xs @ [x]))) = (dom vals) ∪ {oid}
 by simp
 moreover have set (inserted-ids xs) - set (deleted-ids xs) = dom vals
 using IH interp-xs by auto
 moreover have inserted-ids (xs @ [x]) = inserted-ids xs @ [oid]
 by (simp add: Insert inserted-ids-last-ins x-pair)
 moreover have deleted-ids (xs @ [x]) = deleted-ids xs
 by (simp add: Insert deleted-ids-last-ins x-pair)
 hence set (inserted-ids (xs @ [x])) - set (deleted-ids (xs @ [x])) = {oid} ∪ set (inserted-ids xs) - set (deleted-ids xs)
 using calculation(3) by auto
 moreover have ... = {oid} ∪ (set (inserted-ids xs) - set (deleted-ids xs))
 using deleted-ids-ref-older snoc.prems x-pair by blast
 ultimately show ?thesis by auto
 next
 case (Delete ref)
 hence interp-ops (xs @ [x]) = (list, vals(ref := None))
 by (simp add: interp-ops-unfold-last interp-xs x-pair)
 hence dom (snd (interp-ops (xs @ [x]))) = (dom vals) - {ref}
 by simp
 moreover have set (inserted-ids xs) - set (deleted-ids xs) = dom vals
 next
 qed
next
 case (Delete ref)
 hence interp-ops (xs @ [x]) = (list, vals(ref := None))
 by (simp add: interp-ops-unfold-last interp-xs x-pair)
 hence dom (snd (interp-ops (xs @ [x]))) = (dom vals) - {ref}
 by simp
 moreover have set (inserted-ids xs) - set (deleted-ids xs) = dom vals
 qed
next
using IH interp-xs by auto
moreover have inserted-ids (xs @ [x]) = inserted-ids xs
 by (simp add: Delete inserted-ids-last-del x-pair)
moreover have deleted-ids (xs @ [x]) = deleted-ids xs @ [ref]
 by (simp add: Delete deleted-ids-last-del x-pair)
hence (set (inserted-ids (xs @ [x])) − set (deleted-ids (xs @ [x]))) =
 set (inserted-ids xs) − (set (deleted-ids xs) ∪ {ref})
 using calculation(3) by auto
moreover have ...
 = set (inserted-ids xs) − set (deleted-ids xs) − {ref}
 by blast
ultimately show ?thesis by auto
qed

lemma insert-spec-nth-oid:
 assumes distinct xs
 and n < length xs
 shows insert-spec xs (oid, Some (xs ! n)) ! Suc n = oid
 using assms proof(induction xs arbitrary: n)
case Nil
 then show insert-spec [] (oid, Some ([] ! n)) ! Suc n = oid
 by simp
next
case (Cons a xs)
 have distinct (a # xs)
 using Cons.prems(1) by auto
 then show insert-spec (a # xs) (oid, Some ((a # xs) ! n)) ! Suc n = oid
 using (cases a = (a # xs) ! n)
 case True
 then have n = 0
 using (distinct (a # xs): Cons.prems(2) gr-implies-not-zero by force
 then show insert-spec (a # xs) (oid, Some ((a # xs) ! n)) ! Suc n = oid
 by auto
next
case False
 then have n > 0
 using (distinct (a # xs): Cons.prems(2) gr-implies-not-zero by force
 then obtain m where n = Suc m
 using Suc-pred' by blast
 then show insert-spec (a # xs) (oid, Some ((a # xs) ! n)) ! Suc n = oid
 using Cons.IH Cons.prems by auto
qed
qed

lemma insert-spec-inc-length:
 assumes distinct xs
 and n < length xs
 shows length (insert-spec xs (oid, Some (xs ! n))) = Suc (length xs)
 using assms proof(induction xs arbitrary: n, simp)
case (Cons a xs)
 have distinct (a ≠ xs)
 using Cons.prems(1) by auto
 then show length (insert-spec (a ≠ xs) (oid, Some ((a ≠ xs) ! n))) = Suc (length (a ≠ xs))
 proof (cases n)
 case 0
 hence insert-spec (a ≠ xs) (oid, Some ((a ≠ xs) ! n)) = a ≠ oid # xs
 by simp
 then show ?thesis
 by simp
 next
case (Suc nat)
 hence nat < length xs
 using Cons.prems(2) by auto
 hence length (insert-spec xs (oid, Some (xs ! nat))) = Suc (length xs)
 using Cons.IH Cons.prems(1) by auto
 then show ?thesis
 by (simp add: Suc)
 qed
qed

lemma list-split-two-elems:
 assumes distinct xs
 and x ∈ set xs and y ∈ set xs
 and x ≠ y
 shows ∃pre mid suf. xs = pre @ x ≠ mid @ y ≠ suf ∨ xs = pre @ y ≠ mid @
 x ≠ suf
proof –
 obtain as bs where as-bs: xs = as @ [x] @ bs
 using assms(2) split-list-first by fastforce
 show ?thesis
 proof (cases y ∈ set as)
 case True
 then obtain cs ds where as = cs @ [y] @ ds
 using assms(3) split-list-first by fastforce
 then show ?thesis
 by (auto simp add: as-bs)
 next
 case False
 then have y ∈ set bs
 using as-bs assms(3) assms(4) by auto
 then obtain cs ds where bs = cs @ [y] @ ds
 using assms(3) split-list-first by fastforce
 then show ?thesis
 by (auto simp add: as-bs)
 qed
qed

51
3.3 Satisfying all conditions of A_{strong}

Part 1(a) of Attiya et al.’s specification states that whenever the list is observed, the elements of the list are exactly those that have been inserted but not deleted. A_{strong} uses the visibility relation \leq_{vis} to capture the operations known to a node at some arbitrary point in the execution; in the OpSet model, we can simply prove the theorem for an arbitrary OpSet, since the contents of the OpSet at a particular time on a particular node correspond exactly to the set of operations known to that node at that time.

theorem inserted-but-not-deleted:
- **assumes** list-ops ops
- and interp-ops $ops = (\text{list}, \text{vals})$
- **shows** $a \in \text{dom (~vals~)} \iff \exists \text{ref~val}. (a, \text{Insert~ref~val}) \in \text{set~ops} \land (\forall i. (i, \text{Delete~a}) \in \text{set~ops})$
 - using assms deleted-ids-exist inserted-ids-exist interp-ops-vals-domain
 - by (metis Diff-iff snd-conv)

Part 1(b) states that whenever the list is observed, the order of list elements is consistent with the global list order. We can define the global list order simply as the list order that arises from interpreting the OpSet containing all operations in the entire execution. Then, at any point in the execution, the OpSet is some subset of the set of all operations.

We can then rephrase condition 1(b) as follows: whenever list element x appears before list element y in the interpretation of some-ops, then for any OpSet all-ops that is a superset of some-ops, x must also appear before y in the interpretation of all-ops. In other words, adding more operations to the OpSet does not change the relative order of any existing list elements.

theorem list-order-consistent:
- **assumes** list-ops some-ops and list-ops all-ops
- and set some-ops \subseteq set all-ops
- and list-order some-ops $x y$
- **shows** list-order all-ops $x y$
 - using assms list-order-monotonic list-ops-insertions insertions-subset list-order-equiv
 - by metis

Part 1(c) states that inserted elements appear at the specified position: that is, immediately after an insertion of oid at index k, the list index k does indeed contain oid (provided that k is less than the length of the list). We prove this property below.

theorem correct-position-insert:
- **assumes** list-ops ($ops \&\& [(\text{oid}, \text{ins})]$)
- and $ins = \text{make-insert (fst (interp-ops ops)) val k}$
- and $list = \text{fst (interp-ops (ops \&\& [(\text{oid}, \text{ins})])]})$
- **shows** $\text{list}! (\text{min} k (\text{length list} − 1)) = \text{oid}$
 - proof (cases $k = 0 \lor \text{fst (interp-ops ops)} = []$
 - case True
moreover from this have make-insert (fst (interp-ops ops)) val k = Insert None val and min-k: min k (length (fst (interp-ops ops))) = 0 by (cases k, auto) hence fst (interp-ops (ops @ [(oid, ins)])) = oid # fst (interp-ops ops)
 using assms(2) interp-ops-unfold-last
 by (metis fst-conv insert-spec.1 interp-op.1 prod.collapse)
ultimately show thesis
 by (simp add: min-k assms(3))
next
case False
moreover from this have k > 0 and fst (interp-ops ops) ≠ []
 using neq0-conv by blast
from this obtain nat where k = Suc nat
 using gr0-implies-Suc by blast
hence make-insert (fst (interp-ops ops)) val k =
 Insert (Some ((fst (interp-ops ops)) ! (min nat (length (fst (interp-ops ops))) − 1)))
 by (cases fst (interp-ops ops), auto)
hence fst (interp-ops (ops @ [(oid, ins)])) =
 insert-spec (fst (interp-ops ops)) (oid, Some ((fst (interp-ops ops)) ! (min
 nat (length (fst (interp-ops ops))) − 1))))
 by (metis assms(2) fst-conv interp-op.1 prod.collapse)
moreover have min nat (length (fst (interp-ops ops))) − 1 < length (fst (interp-ops ops))
 by (simp add: fst (interp-ops ops) ≠ []; min_strict-coboundedI2)
moreover have distinct (fst (interp-ops ops))
 using interp-ops-distinct list-ops-def spec-ops-rem-last assms(1) by blast
moreover have length list = Suc (length (fst (interp-ops ops)))
 using assms(3) calculation by (simp add: insert-spec-inc-length)
ultimately show thesis
 using assms insert-spec-nth-oid
 by (metis Suc-diff-1 (k = Suc nat) diff-Suc-1 length-greater-0-conv min-Suc-Suc) qed

Part 2 states that the list order relation must be transitive, irreflexive, and total. These three properties are straightforward to prove, using our definition of the list-order predicate.

theorem list-order-trans:
 assumes list-ops ops
 and list-order ops x y
 and list-order ops y z
 shows list-order ops x z
 using assms list-order-trans list-ops-insertions list-order-equiv by blast

theorem list-order-irrefl:
 assumes list-ops ops
 shows ¬ list-order ops x x
 proof –
have list-order ops x x ⇒ False
proof –
assume list-order ops x x
then obtain zs ys zs where split: fst (interp-ops ops) = zs @ [x] @ ys @ [x]
@ zs
 by (meson List-Spec.list-order-def)
moreover have distinct (fst (interp-ops ops))
 by (simp add: assms interp-ops-distinct)
ultimately show False
 by (simp add: split)
qed
thus ¬ list-order ops x x
 by blast
qed

theorem list-order-total:
assumes list-ops ops
 and x ∈ set (fst (interp-ops ops))
 and y ∈ set (fst (interp-ops ops))
 and x ≠ y
shows list-order ops x y ∨ list-order ops y x
proof –
have distinct (fst (interp-ops ops))
 using assms(1) by (simp add: interp-ops-distinct)
then obtain pre mid suf
 where fst (interp-ops ops) = pre @ x # mid @ y # suf ∨
 fst (interp-ops ops) = pre @ y # mid @ x # suf
 using list-split-two-elems assms by metis
then show list-order ops x y ∨ list-order ops y x
 by (simp add: list-order-def, blast)
qed

end

4 Interleaving of concurrent insertions

In this section we prove that our list specification rules out interleaving of concurrent insertion sequences starting at the same position.

theory Interleaving
 imports Insert-Spec
begin

4.1 Lemmas about insert-ops

lemma map-fst-append1:
assumes ∀ i ∈ set (map fst xs), P i
 and P x
shows ∀ i ∈ set (map fst (xs @ [(x, y)])), P i


```
using assms by (induction xs, auto)

lemma insert-ops-split:
  assumes insert-ops ops and (oid, ref) ∈ set ops
  shows ∃ pre suf. ops = pre @ [(oid, ref)] @ suf ∧
      (∀ i ∈ set (map fst pre). i < oid) ∧
      (∀ i ∈ set (map fst suf). oid < i)
  using assms proof (induction ops rule: List.rev-induct)
  case Nil
  then show ?case by auto
next
  case (snoc x xs)
  then show ?case proof
    (cases x = (oid, ref))
    case True
    moreover from this have ∀ i ∈ set (map fst xs). i < oid
      using last-op-greatest snoc.prems(1) by blast
    ultimately have xs @ [x] = xs @ [(oid, ref)] @ [] ∧
      (∀ i ∈ set (map fst xs). i < oid) ∧
      (∀ i ∈ set (map fst []). oid < i)
      by auto
    then show ?thesis by force
  next
    case False
    hence (oid, ref) ∈ set xs
    using snoc.prems(2) by auto
    from this obtain pre suf where IH: xs = pre @ [(oid, ref)] @ suf ∧
      (∀ i ∈ set (map fst pre). i < oid) ∧
      (∀ i ∈ set (map fst suf). oid < i)
      using snoc.IH snoc.prems(1) by blast
    obtain xi xr where x-pair: x = (xi, xr)
      by force
    hence distinct (map fst (pre @ [(oid, ref)] @ suf @ [(xi, xr)]))
      by (metis IH appendassoc insert-ops-def spec-ops-def snoc.prems(1))
    hence xi ≠ oid
      by auto
    have xi-max: ∀ x ∈ set (map fst (pre @ [(oid, ref)] @ suf)). x < xi
      using IH last-op-greatest snoc.prems(1) x-pair by blast
    then show ?thesis
      proof (cases xi < oid)
        case True
        using xi-max by auto
        hence suf = []
          using IH last-in-set by fastforce
        ultimately have xs @ [x] = (pre @ [(xi, xr)]) @ [] ∧
          (∀ i ∈ set (map fst ((pre @ [(xi, xr)]))). i < oid) ∧
          (∀ i ∈ set (map fst []). oid < i)
```
using dual-order.asgm xi-max by auto
then show \textit{thesis} by (simp add: IH)
next
case False
hence oid < xi
 using \(xi \neq \text{oid} \) by auto
hence \(\forall i \in \text{set} (\text{map fst} (\text{suf @ } [(\text{oid}, \text{ref}] @ (\text{suf @ } [(\text{xi}, \text{xr}]))) \land \\
(\forall i \in \text{set} (\text{map fst pre}). i < \text{oid}) \land \\
(\forall i \in \text{set} (\text{map fst (suf @ } [(\text{xi}, \text{xr}]))). \text{oid} < i)
 \)
 by (simp add: \text{IH} \text{x-pair})
then show \textit{thesis} by blast
qed

lemma insert-ops-split-2:
 assumes insert-ops ops
 and (\(\text{xid}, \text{xr} \)) \(\in \text{set ops} \)
 and (\(\text{yid}, \text{yr} \)) \(\in \text{set ops} \)
 and \(\text{xid} < \text{yid} \)
 shows \(\exists \text{bs cs}. \text{ops} = \text{as @ } [(\text{xid}, \text{xr})] \@ \text{bs @ } [(\text{yid}, \text{yr})] \@ \text{cs} \land \\
(\forall i \in \text{set} (\text{map fst as}). i < \text{xid}) \land \\
(\forall i \in \text{set} (\text{map fst bs}). \text{xid} < i \land i < \text{yid}) \land \\
(\forall i \in \text{set} (\text{map fst cs}). \text{yid} < i)
\)
proof –
 obtain as as1 where \text{x-split}: \text{ops} = \text{as @ } [(\text{xid}, \text{xr})] \@ \text{as1} \land \\
 (\forall i \in \text{set} (\text{map fst as}). i < \text{xid}) \land (\forall i \in \text{set} (\text{map fst as1}). \text{xid} < i)
 using \text{assms insert-ops-split by blast}
 hence insert-ops ((\text{as @ } [(\text{xid}, \text{xr})]) \@ \text{as1})
 using assms(1) by auto
 hence insert-ops as1
 using assms(1) insert-ops-rem-prefix by blast
 have (\(\text{yid}, \text{yr} \)) \(\in \text{set as1} \)
 using \text{x-split asms by auto}
 from this obtain bs cs where \text{y-split}: as1 = bs @ [(\text{yid}, \text{yr})] @ cs \land \\
 (\forall i \in \text{set} (\text{map fst bs}). i < \text{yid}) \land (\forall i \in \text{set} (\text{map fst cs}). \text{yid} < i)
 using assms insert-ops-split (insert-ops as1) by blast
 hence ops = as @ [(\text{xid}, \text{xr})] @ bs @ [(\text{yid}, \text{yr})] @ cs
 using \text{x-split by blast}
 moreover have \(\forall i \in \text{set} (\text{map fst bs}). \text{xid} < i \land i < \text{yid} \)
 by (simp add: \text{x-split y-split})
 ultimately show \textit{thesis}
 using \text{x-split y-split by blast}
qed

lemma insert-ops-sorted-oids:
 assumes insert-ops \(\text{xs @ } [(\text{i1}, \text{r1})] @ \text{ys @ } [(\text{i2}, \text{r2})]) \)
shows $i_1 < i_2$

proof –

have $\forall i. \ i \in \text{set} \ (\text{map} \ \text{fst} \ (xs \ @ \ [(i1, r1)] \ @ \ ys)) \implies i < i_2$
 by (metis append.assoc assms last-op-greatest)
moreover have $i_1 \in \text{set} \ (\text{map} \ \text{fst} \ (xs \ @ \ [(i1, r1)] \ @ \ ys))$
 by auto
ultimately show $i_1 < i_2$
 by blast
qed

lemma insert-ops-subset-last:

assumes insert-ops $(xs @ [x])$
 and insert-ops ys
 and set ys \subseteq set $(xs @ [x])$
 and $x \in$ set ys
shows $x = \text{last} \ ys$
using assms proof (induction ys, simp)
case $(Cons \ y \ ys)$
then show $x = \text{last} \ (y \# \ ys)$
proof (cases ys $= []$)
case True
 then show $x = \text{last} \ (y \# \ ys)$
 using Cons.prems(4) by auto
next
case ys-nonempty: False
have $x \neq y$
proof –
 obtain $\text{mid} \ l \ where \ ys = \text{mid} \ @ \ [l]$
 using append-butlast-last-id ys-nonempty by metis
moreover obtain $\text{li} \ \text{lr}$ where $l = (\text{li}, \lr)$
 by force
moreover have $\forall i. \ i \in \text{set} \ (\text{map} \ \text{fst} \ (y \# \ mid)) \implies i < li$
 by (metis last-op-greatest Cons.prems(2) calculation append-Cons)
hence $\text{fst} \ y < li$
 by simp
moreover have $\forall i. \ i \in \text{set} \ (\text{map} \ \text{fst} \ xs) \implies i < \text{fst} \ x$
 using assms(1) last-op-greatest by (metis prod.collapse)
hence $\forall i. \ i \in \text{set} \ (\text{map} \ \text{fst} \ (y \# \ ys)) \implies i \leq \text{fst} \ x$
 using Cons.prems(3) by fastforce
ultimately show $x \neq y$
 by fastforce
qed
then show $x = \text{last} \ (y \# \ ys)$
 using Cons.IH Cons.prems insert-ops-rem-cons ys-nonempty
 by (metis dual-order.trans last-ConsR set-ConsD set-subset-Cons)
qed

lemma subset-butlast:

57
assumes \(\text{set } xs \subseteq \text{set } (ys @ [y]) \)
and \(\text{last } xs = y \)
and \(\text{distinct } xs \)
shows \(\text{set } (\text{butlast } xs) \subseteq \text{set } ys \)
using assms by (induction \(xs \), auto)

lemma \(\text{distinct-append-butlast1} \):
assumes \(\text{distinct } (\text{map } \text{fst } xs @ \text{map } \text{fst } ys) \)
shows \(\text{distinct } (\text{map } \text{fst } (\text{butlast } xs) @ \text{map } \text{fst } ys) \)
using assms proof (induction \(xs \), simp)
case \(\text{Cons } a \) \(xs \)
have \(\text{fst } a \notin \text{set } (\text{map } \text{fst } xs @ \text{map } \text{fst } ys) \)
using \text{Cons.prem} by auto
moreover have \(\text{set } (\text{map } \text{fst } (\text{butlast } xs)) \subseteq \text{set } (\text{map } \text{fst } xs) \)
by \text{metis in-set-butlastD map-butlast subsetI}
hence \(\text{set } (\text{map } \text{fst } (\text{butlast } xs) @ \text{map } \text{fst } ys) \subseteq \text{set } (\text{map } \text{fst } xs @ \text{map } \text{fst } ys) \)
by auto
ultimately have \(\text{fst } a \notin \text{set } (\text{map } \text{fst } (\text{butlast } xs) @ \text{map } \text{fst } ys) \)
by blast
then show \(\text{distinct } (\text{map } \text{fst } (\text{butlast } (a \neq xs)) @ \text{map } \text{fst } ys) \)
using \text{Cons.IH Cons.prem} by auto
qed

lemma \(\text{distinct-append-butlast2} \):
assumes \(\text{distinct } (\text{map } \text{fst } xs @ \text{map } \text{fst } ys) \)
shows \(\text{distinct } (\text{map } \text{fst } xs @ \text{map } \text{fst } (\text{butlast } ys)) \)
using assms proof (induction \(xs \))
case \(\text{Nil} \)
then show \(\text{distinct } (\text{map } \text{fst } [] @ \text{map } \text{fst } (\text{butlast } ys)) \)
by \text{simp add: distinct-butlast map-butlast}
next
case \(\text{Cons } a \) \(xs \)
have \(\text{fst } a \notin \text{set } (\text{map } \text{fst } xs @ \text{map } \text{fst } ys) \)
using \text{Cons.prem} by auto
moreover have \(\text{set } (\text{map } \text{fst } (\text{butlast } ys)) \subseteq \text{set } (\text{map } \text{fst } ys) \)
by \text{metis in-set-butlastD map-butlast subsetI}
hence \(\text{set } (\text{map } \text{fst } xs @ \text{map } \text{fst } (\text{butlast } ys)) \subseteq \text{set } (\text{map } \text{fst } xs @ \text{map } \text{fst } ys) \)
by auto
ultimately have \(\text{fst } a \notin \text{set } (\text{map } \text{fst } xs @ \text{map } \text{fst } (\text{butlast } ys)) \)
by blast
then show \(?\text{case} \)
using \text{Cons.IH Cons.prem} by auto
qed

4.2 Lemmas about \(\text{interp-ins} \)

lemma \(\text{interp-ins-maybe-grow} \):
assumes \(\text{insert-ops } (xs @ [(oid, ref)]) \)
shows \(\text{set } (\text{interp-ins } (xs @ [(oid, ref)])) = \text{set } (\text{interp-ins } xs) \lor \)
set (interp-ins (xs @ [(oid, ref)])) = (set (interp-ins xs) ∪ \{oid\})
by (cases ref, simp add: interp-ins-tail-unfold, metis insert-spec-nonex interp-ins-tail-unfold)

lemma interp-ins-maybe-grow2:
assumes insert-ops (xs @ [x])
shows set (interp-ins (xs @ [x])) = set (interp-ins xs) ∨ set (interp-ins (xs @ [x])) = (set (interp-ins xs) ∪ \{fst x\})
using assms interp-ins-maybe-grow by (cases x, auto)

lemma interp-ins-maybe-grow3:
assumes insert-ops (xs @ ys)
shows \(\exists A. A \subseteq \text{set} \ (\text{map} \ \text{fst} \ ys) \land \text{set} \ (\text{interp-ins} \ (xs \ @ \ ys)) = \text{set} \ (\text{interp-ins} \ xs) \cup A\)
using assms proof (induction ys rule: List.rev_induct)
case Nil
then show ?case by simp
next
case (snoc x ys)
then have insert-ops (xs @ ys)
by (metis append-assoc insert-ops-rem-last)
then obtain A where IH: \(A \subseteq \text{set} \ (\text{map} \ \text{fst} \ ys) \land \text{set} \ (\text{interp-ins} \ (xs \ @ \ ys)) = \text{set} \ (\text{interp-ins} \ xs) \cup A\)
using snoc.IH by blast
then show ?case
proof (cases set (interp-ins (xs @ ys @ [x])) = set (interp-ins (xs @ ys)))
case True
moreover have A \(\subseteq \text{set} \ (\text{map} \ \text{fst} \ (ys @ [x]))\)
using IH by auto
ultimately show \(?thesis\)
using IH by auto
next
case False
then have set (interp-ins (xs @ ys @ [x])) = set (interp-ins (xs @ ys)) \{fst x\}
by (metis append-assoc interp-ins-maybe-grow2 snoc.prems)
moreover have A \(\cup \{\text{fst} x\} \subseteq \text{set} \ (\text{map} \ \text{fst} \ (ys @ [x]))\)
using IH by auto
ultimately show \(?thesis\)
using IH Un-assoc by metis
qed
qed

lemma interp-ins-ref-nonex:
assumes insert-ops ops
and ops = xs @ [(oid, Some ref)] @ ys
and ref \notin\ set (interp-ins xs)
shows \(\text{oid} \notin\ set \ (\text{interp-ins} \ ops)\)
using assms proof (induction ys arbitrary: ops rule: List.rev_induct)
case Nil
then have interp-ins ops = insert-spec (interp-ins xs) (oid, Some ref)
 by (simp add: interp-ins-tail-unfold)
moreover have ∃ i. i ∈ set (map fst xs) ⇒ i < oid
 using Nil.prems last-op-greatest by fastforce
hence ∃ i. i ∈ set (interp-ins xs) ⇒ i < oid
 by (meson interp-ins-subset subsetCE)
ultimately show oid ∉ set (interp-ins ops)
 using assms(3) by auto
next
case (snoc x ys)
then have insert-ops (xs @ (oid, Some ref) # ys)
 by (metis append.assoc append.simps(1) append-Cons insert-ops-appendD)
 hence IH: oid ∉ set (interp-ins (xs @ (oid, Some ref) # ys))
 by (simp add: snoc.IH snoc.prems)
moreover have distinct (map fst (xs @ (oid, Some ref) # ys @ [x]))
 using snoc.prems by (metis append-Cons append-self-conv2 insert-ops-def spec-ops-def)
 hence fst x ≠ oid
 using empty_iff by auto
moreover have insert-ops ((xs @ (oid, Some ref) # ys) @ [x])
 using snoc.prems by auto
hence set (interp-ins ((xs @ (oid, Some ref) # ys) @ [x])) =
 set (interp-ins ((xs @ (oid, Some ref) # ys)) ∨
 set (interp-ins ((xs @ (oid, Some ref) # ys)) @ [x]))=
 set (interp-ins (xs @ (oid, Some ref) # ys)) ∪ {fst x}
 using interp-ins-maybe-grow2 by blast
ultimately show oid ∉ set (interp-ins ops)
 using snoc.prems(2) by auto
qed

lemma interp-ins-last-None:
shows oid ∈ set (interp-ins (ops @ [(oid, None)]))
by (simp add: interp-ins-tail-unfold)

lemma interp-ins-monotonic:
 assumes insert-ops (pre @ suf)
 and oid ∈ set (interp-ins pre)
 shows oid ∈ set (interp-ins (pre @ suf))
 using assms interp-ins-maybe-grow3 by auto

lemma interp-ins-append-non-memb:
 assumes insert-ops (pre @ [(oid, Some ref)] @ suf)
 and ref ∉ set (interp-ins pre)
 shows ref ∉ set (interp-ins (pre @ [(oid, Some ref)] @ suf))
 using assms proof(induction suf rule: List.rev-induct)
 case Nil
 then show ref ∉ set (interp-ins (pre @ [(oid, Some ref)] @ []))
 by (metis append-Nil2 insert-spec-nonex interp-ins-tail-unfold)
next
case (snoc x xs)
hence IH: ref \notin set (interp-ins (pre @ [(oid, Some ref)] @ xs))
by (metis append-assoc insert-ops-rem-last)
moreover have ref < oid
using insert-ops-ref-older snoc.prems(1) by auto
moreover have oid < fst x
using insert-ops-sorted-oids by (metis prod.collapse snoc.prems(1))
have set (interp-ins ((pre @ [(oid, Some ref)] @ xs) @ [x])) =
 set (interp-ins (pre @ [(oid, Some ref)] @ xs)) \set
 set (interp-ins (pre @ [(oid, Some ref)] @ xs)) \ set (fst x)
by (metis (full-types) append.assoc interp-ins-maybe-grow2 snoc.prems(1))
ultimately show ref \notin set (interp-ins (pre @ [(oid, Some ref)] @ xs @ [x]))
using ⟨oid < fst x⟩ by auto
qed

lemma interp-ins-append-memb:
assumes insert-ops (pre @ [(oid, Some ref)] @ suf)
and ref \in set (interp-ins pre)
shows oid \in set (interp-ins (pre @ [(oid, Some ref)] @ suf))
using assms by (metis UnCI append-assoc interp-ins-monotonic
interp-ins-tail-unfold singletonI)

lemma interp-ins-append-forward:
assumes insert-ops (xs @ ys)
and oid \in set (interp-ins (xs @ ys))
and oid \in set (map fst xs)
shows oid \in set (interp-ins (xs @ ys))
using assms proof (induction ys rule: List.rev-induct, simp)
case (snoc y ys)
obtain cs ds ref where xs = cs @ (oid, ref) \# ds
by (metis (no-types, lifting) imageE prod.collapse set-map snoc.prems(3) split-list-last)
hence insert-ops (cs @ [(oid, ref)] @ (ds @ ys) @ [y])
using snoc.prems(1) by auto
hence oid < fst y
using insert-ops-sorted-oids by (metis prod.collapse)
hence oid \neq fst y
by blast
then show ?case
using snoc.IH snoc.prems(1) snoc.prems(2) assms(3) inserted-item-ident
by (metis append-assoc insert-ops-appendD interp-ins-tail-unfold prod.collapse)
qed

lemma interp-ins-find-ref:
assumes insert-ops (xs @ [(oid, Some ref)] @ ys)
and ref \in set (interp-ins (xs @ [(oid, Some ref)] @ ys))
shows \exists r. (ref, r) \in set xs
proof –
 have ref < oid

61
using assms(1) insert-ops-ref-older by blast
have ref ∈ set (map fst (xs @ [(oid, Some ref)] @ ys))
 by (meson assms(2) interpsubset subsetCE)
then obtain x where x-prop: x ∈ set (xs @ [(oid, Some ref)] @ ys) ∧ fst x = ref
 by fastforce
obtain xr where x-pair: x = (ref, xr)
 using prod.exhaust-set x-prop by blast
show (cases x ∈ set xs)
 case True
 then show ∃ r. (ref, r) ∈ set xs
 by (metis x-prop prod.collapse)
next
 case False
 hence (ref, xr) ∈ set ([(oid, Some ref)] @ ys)
 using x-prop x-pair by auto
 hence (ref, xr) ∈ set ys
 using (ref < oid) x-prop
 by (metis append-Cons append-self-cone2 fst-cone min.strict-order-iff set-ConsD)
then obtain as bs where ys = as @ (ref, xr) ≠ bs
 by (meson split-list)
 hence insert-ops (xs @ [(oid, Some ref)] @ as @ [(ref, xr)]) @ bs)
 using assms(1) by auto
 hence insert-ops (xs @ [(oid, Some ref)] @ as @ [(ref, xr)])
 using insert-ops-appendD by blast
 hence oid < ref
 using insert-ops-sorted-oids by auto
 then show ?thesis
 using (ref < oid) by force
qed
qed

4.3 Lemmas about list-order

lemma list-order-append:
 assumes insert-ops (pre @ suf)
 and list-order pre x y
 shows list-order (pre @ suf) x y
 by (metis Un-iff assms list-order-monotonic insert-ops-appendD set-append subset-code(1))

lemma list-order-insert-ref:
 assumes insert-ops (ops @ [(oid, Some ref)])
 and ref ∈ set (interp-ins ops)
 shows list-order (ops @ [(oid, Some ref)]) ref oid
proof
 have interp-ins (ops @ [(oid, Some ref)]) = insert-spec (interp-ins ops) (oid, Some ref)
 by (simp add: interp-ins-tail-unfold)
moreover obtain $xs \ ys$ where \(\text{interp-ins ops} = xs \ [\text{ref}] \ @ \ ys \)
 using \text{assms(2)} split-list-first by fastforce

hence \(\text{insert-spec (interp-ins ops)} (\text{oid}, \text{Some ref}) = xs \ [\text{ref}] \ @ \ [] \ @ \ [\text{oid}] \ @ \ ys \)
 using \text{assms(1)} insert-after-ref interp-ins-distinct by fastforce

ultimately show \(\text{list-order (ops @ [(\text{oid}, \text{Some ref})]) ref oid} \)
 using \text{assms(1)} list-orderI by metis

qed

lemma list-order-insert-none:
 assumes \(\text{insert-ops (ops @ [(\text{oid}, \text{None})])} \)
 and \(x \in \text{set (interp-ins ops)} \)
 shows \(\text{list-order (ops @ [(\text{oid}, \text{None})]) oid x} \)
proof –
 have \(\text{interp-ins (ops @ [(\text{oid}, \text{None})])} = \text{insert-spec (interp-ins ops)} (\text{oid}, \text{None}) \)
 by (simp add: interp-ins-tail-unfold)

moreover obtain $xs \ ys$ where \(\text{interp-ins ops} = xs \ [x] \ @ \ ys \)
 using \text{assms(2)} split-list-first by fastforce

hence \(\text{insert-spec (interp-ins ops)} (\text{oid}, \text{None}) = [] \ @ [\text{oid}] \ @ \ xs \ @ [x] \ @ \ ys \)
 by simp

ultimately show \(\text{list-order (ops @ [(\text{oid}, \text{None})]) oid x} \)
 using \text{assms(1)} list-orderI by metis

qed

lemma list-order-insert-between:
 assumes \(\text{insert-ops (ops @ [(\text{oid}, \text{Some ref})])} \)
 and \(\text{list-order ops ref x} \)
 shows \(\text{list-order (ops @ [(\text{oid}, \text{Some ref})]) oid x} \)
proof –
 have \(\text{interp-ins (ops @ [(\text{oid}, \text{Some ref})])} = \text{insert-spec (interp-ins ops)} (\text{oid}, \text{Some ref}) \)
 by (simp add: interp-ins-tail-unfold)

moreover obtain $xs \ ys \ zs$ where \(\text{interp-ins ops} = xs \ [\text{ref}] \ @ \ ys \ @ [x] \ @ \ zs \)
 using \text{assms list-orderE} by blast

moreover have \(... = xs \ @ \ ref \ # (ys \ @ [x] \ @ \ zs) \)
 by simp

moreover have \(\text{distinct (xs @ ref # (ys @ [x] @ zs))} \)
 using \text{assms(1)} calculation by (metis interp-ins-distinct insert-ops-rem-last)

hence \(\text{insert-spec (xs @ ref # (ys @ [x] @ zs)) (\text{oid}, \text{Some ref}) = xs \ @ \ ref \ # oids # (ys @ [x] @ zs)} \)
 using \text{assms(1)} calculation by (simp add: insert-after-ref)

moreover have \(... = (xs @ [ref]) @ [oid] @ ys @ [x] @ zs \)
 by simp

ultimately show \(\text{list-order (ops @ [(\text{oid}, \text{Some ref})]) oid x} \)
 using \text{assms(1)} list-orderI by metis

qed
4.4 The insert-seq predicate

The predicate insert-seq start ops is true iff ops is a list of insertion operations that begins by inserting after start, and then continues by placing each subsequent insertion directly after its predecessor. This definition models the sequential insertion of text at a particular place in a text document.

\[
\text{inductive insert-seq :: } 'oid \times 'oid \Rightarrow \text{bool} \quad \text{where}
\begin{align*}
\text{insert-seq start } [(oid, start)] & \| \\
\text{insert-seq start } (\text{list } @ [\text{prev}, \text{ref}]) & \quad \implies \text{insert-seq start } (\text{list } @ [\text{prev}, \text{ref}], (oid, \text{Some prev}))
\end{align*}
\]

lemma insert-seq-nonempty:
- **assumes** insert-seq start xs
- **shows** xs \(\neq [] \)
- **using** assms by (induction rule: insert-seq.induct, auto)

lemma insert-seq-hd:
- **assumes** insert-seq start xs
- **shows** \(\exists \text{ oid. hd } xs = (\text{oid, start}) \)
- **using** assms by (induction rule: insert-seq.induct, simp, metis append-self-conv2 hd-append2 list.sel(1))

lemma insert-seq-rem-last:
- **assumes** insert-seq start (xs @ [x])
- **and** xs \(\neq [] \)
- **shows** insert-seq start xs
- **using** assms insert-seq.cases by fastforce

lemma insert-seq-butlast:
- **assumes** insert-seq start xs
- **and** xs \(\neq [] \) and xs \(\neq \text{[last xs]} \)
- **shows** insert-seq start (butlast xs)
- **proof**
 - have length xs \(> 1 \)
 - by (metis One-nat-def Suc-lessI add-0-left append-butlast-last-id append-eq-append-conv append-self-conv2 assms(2) assms(3) length-greater-0-conv list.size(3) list.size(4))
 - hence butlast xs \(\neq [] \)
 - by (metis length-butlast less-numeral-extra(3) list.size(3) zero-less-diff)
 - then show insert-seq start (butlast xs)
 - **using** assms by (metis append-butlast-last-id insert-seq-rem-last)
- **qed**

lemma insert-seq-last-ref:
- **assumes** insert-seq start (xs @ [(xi, xr), (yi, yr)])
- **shows** yr = Some xi
- **using** assms insert-seq.cases by fastforce

lemma insert-seq-start-none:
assumes insert-ops ops
 and insert-seq None xs and insert-ops xs
 and set xs \subseteq set ops
shows \(\forall i \in set (map \text{fst} \; xs), \; i \in set (\text{interp-ins} \; ops) \)
using assms proof (induction xs rule: List.rev-induct, simp)
case (snoc x xs)
 then have IH: \(\forall i \in set (map \text{fst} \; xs), \; i \in set (\text{interp-ins} \; ops) \)
 by (metis Nil-is-map-conv append-is-Nil-conv insert-ops-appendD insert-seq-rem-last
 le-supE list.simps(3) set-append split-list)
then show \(\forall i \in set (map \text{fst} \; (xs @ [x])), \; i \in set (\text{interp-ins} \; ops) \)
proof (cases xs = [])
 case True
 then obtain oid where xs @ [x] = [(oid, None)]
 using insert-seq-hd snoc.prems(2) by fastforce
 hence (oid, None) \in set ops
 using snoc.prems(4) by auto
 then obtain as bs where ops = as @ (oid, None) \# bs
 by (meson split-list)
 hence ops = (as @ [(oid, None)]) @ bs
 by (simp add: ops = as @ (oid, None) \# bs)
 moreover have oid \in set (interp-ins (as @ [(oid, None)]))
 by (simp add: interp-ins-last-None)
 ultimately have oid \in set (interp-ins ops)
 using interp-ins-monotonic snoc.prems(1) by blast
 then show \(\forall i \in set (map \text{fst} \; (xs @ [x])), \; i \in set (\text{interp-ins} \; ops) \)
 using (xs @ [x] = [(oid, None)]) by auto
next
 case False
 then obtain rest y where snoc-y: xs = rest @ [y]
 using append-butlast-last-id by metis
 obtain yi yr xi xr where yx-pairs: y = (yi, yr) \land x = (xi, xr)
 by force
 then have xr = Some yi
 using insert-seq-last-ref snoc.prems(2) snoc-y by fastforce
 have yi < xi
 using insert-ops-sorted-oids snoc-y yx-pairs snoc.prems(3)
 by (metis (no-types, lifting) append-eq-append-conv2)
 have (yi, yr) \in set ops and (xi, Some yi) \in set ops
 using snoc.prems(4) snoc-y yx-pairs (xr = Some yi) by auto
 then obtain as bs cs where ops-split: ops = as @ [(yi, yr)] @ bs @ [(xi, Some yi)] @ cs
 using insert-ops-split-2 (yi < xi) snoc.prems(1) by blast
 hence yi \in set (interp-ins (as @ [(yi, yr)] @ bs))
 proof
 have yi \in set (interp-ins ops)
 by (simp add: IH snoc-y yx-pairs)
 moreover have ops = (as @ [(yi, yr)] @ bs) @ ([(xi, Some yi)] @ cs)
 using ops-split by simp
 moreover have yi \in set (map \text{fst} \; (as @ [(yi, yr)] @ bs))
 qed
by simp
ultimately show \(?\text{thesis} \)
using \(\text{snoc.prems(1) interp-ins-append-forward by blast} \)
qed
hence \(xi \in \text{set (interp-ins ((as @ [yi, yr]) @ bs) @ [xi, Some yi]) @ cs)} \)
using \(\text{snoc.prems(1) interp-ins-append-memb ops-split by force} \)
then show \(\forall i \in \text{set (map fst (xs @ [x])}. i \in \text{set (interp-ins ops)} \)
using \(\text{IH yx-pairs by auto} \)
qed
qed

\text{lemma insert-seq-after-start:}
assumes \(\text{insert-ops ops} \)
and \(\text{insert-seq (Some ref) xs and insert-ops xs} \)
and \(\text{set xs} \subseteq \text{set ops} \)
and \(\text{ref} \in \text{set (interp-ins ops)} \)
shows \(\forall i \in \text{set (map fst xs)}. \text{list-order ops ref i} \)
using \(\text{assms proof(induction xs rule: List.rev-induct, simp)} \)
proof (cases xs rule: List.rev-induct)
case \(\text{snoc x xs} \)
have \(\text{IH: } \forall i \in \text{set (map fst xs)}. \text{list-order ops ref i} \)
using \(\text{snoc.IH snoc.prems insert-seq-rem-last insert-ops-appendD} \)
by (metis \text{Nil-is-map-conv Un-subset-iff empty-set equals0D set-append})
moreover have \(\text{list-order ops ref (fst x)} \)
proof (cases xs \in [])
case \(\text{True} \)
hence \(\text{snd x = Some ref} \)
using \(\text{insert-seq-hd snoc.prems(2) by fastforce} \)
moreover have \(\text{x \in set ops} \)
using \(\text{snoc.prems(4) by auto} \)
then obtain \(\text{cs ds where x-split: ops = cs @ x # ds} \)
by (meson \text{split-list})
have \(\text{list-order (cs @ [(fst x, Some ref)]) ref (fst x)} \)
proof (cases xs)
 have \(\text{insert-ops (cs @ [(fst x, Some ref)]) @ ds} \)
 using \(\text{x-split (snd x = Some ref)} \)
 by (metis \text{append-Cons append-self-conv2 prod.collapse snoc.prems(1)})
 moreover from \(\text{this obtain rr where (ref, rr) \in set cs} \)
 using \(\text{interp-ins-find-ref x-split (snd x = Some ref) assms(5)} \)
 by (metis \text{(no-types, lifting) append-Cons append-self-conv2 prod.collapse})
 hence \(\text{ref \in set (interp-ins cs)} \)
 proof (cases)
 have \(\text{ops = cs @ [(fst x, Some ref)] @ ds} \)
 by (metis \text{x-split (snd x = Some ref) append-Cons append-self-conv2 prod.collapse})
 thus \(\text{ref \in set (interp-ins cs)} \)
 using \(\text{assms(5) calculation interp-ins-append-forward interp-ins-append-non-memb} \)
 by blast

66
ultimately show list-order \((cs @ [(fst x, Some ref)])\) ref \((fst x)\)
using list-order-insert-ref by \(\text{metis append.assoc insert-ops-appendD}\)

moreover have \(ops = (cs @ [(fst x, Some ref)]) @ ds\)
using calculation x-split
by \(\text{metis append.eq-Cons-cone append-eq-append-conv2 append-self-cone2 prod-collapse}\)

ultimately show list-order ops ref \((fst x)\)
using list-order-append snoc.prems(1) by blast

next
case False
then obtain \(rest y where snoc-y: xs = rest @ [y]\)
using append-butlast-last-id by metis

obtain \(yi yr xi xr where yx-pairs: y = (yi, yr) \land x = (xi, xr)\)
by force
then have \(xr = Some yi\)
using interp-ins-snocs.prems(1) snoc-y yx-pairs by auto

have \(yi < xi\)
using insert-ops-sorted-oids snoc-y yx-pairs snoc.prems(3)
by \(\text{metis (no-types, lifting) append-eq-append-conv2}\)

have \((yi, yr) \in set \text{ops} \text{ and } (xi, Some yi) \in set \text{ops}\)
using snoc.prems(4) snoc-y yx-pairs \((xr = Some yi)\) by auto
then obtain as bs cs where ops-split: \(ops = as @ [(yi, yr)] @ bs @ [(xi, Some yi)]\) @ cs

using insert-ops-split-2 \((yi < xi)\) snoc.prems(1) by blast

have list-order ops ref yi
by \(\text{simpl add: IH snoc-y yx-pairs}\)

moreover have list-order \((as @ [(yi, yr)] @ bs @ [(xi, Some yi)])\) yi xi

proof

have insert-ops \((as @ [(yi, yr)] @ bs @ [(xi, Some yi)]) @ cs)\)
using ops-split-snocs.prems(1) by auto

hence insert-ops \((as @ [(yi, yr)] @ bs) @ [(xi, Some yi)]\)
using insert-ops-appendD by fastforce

moreover have yi \(\in\) set \((\text{interp-ins ops})\)
using \((\text{list-order ops ref yi: list-order-memb2 by auto})\)

hence yi \(\in\) set \((\text{interp-ins (as @ [(yi, yr)] @ bs)})\)
using interp-ins-append-non-memb-ops-split snocs.prems(1) by force

ultimately show \(?thesis\)
using list-order-insert-ref by force

qed

hence list-order ops yi xi
by \(\text{metis append-assoc list-order-append ops-split snocs.prems(1)}\)

ultimately show list-order ops ref \((fst x)\)
using list-order-trans snocs.prems(1) yx-pairs by auto

qed

ultimately show \(\forall i \in\) set \((\text{map \(fst (xs @ [x])\)})\). list-order ops ref i
by auto

qed
lemma insert-seq-no-start:
 assumes insert-ops ops
 and insert-seq (Some ref) xs and insert-ops xs
 and set xs ⊆ set ops
 and ref ∉ set (interp-ins ops)
 shows ∀ i ∈ set (map fst xs), i ∉ set (interp-ins ops)
 using assms proof (induction xs rule: List.rev-induct, simp)
 case (snoc x xs)
 have IH: ∀ i ∈ set (map fst xs). i ∉ set (interp-ins ops)
 using snoc.IH snoc.prems insert-seq-rem-last insert-ops-appendD
 by (metis append-is-Nil-cong le-sup-iff list.map-disc-iff set-append split-list-first)
 obtain as bs where ops = as @ x # bs
 using snoc.prems(4) by (metis split-list last-in-set snoc-eq-iff-butlast subset-code(1))
 have fst x ∉ set (interp-ins ops)
 proof (cases xs = [])
 case True
 then obtain xi where x = (xi, Some ref)
 using insert-seq-hd snoc.prems(2) by force
 moreover have ref ∉ set (interp-ins as)
 using interp-ins-monotonic snoc.prems(1) snoc.prems(5) : ops = as @ x # bs
 by blast
 ultimately have xi ∉ set (interp-ins (as @[x] @ bs))
 using snoc.prems(1) by (simp add: interp-ins-ref-nonex : ops = as @ x # bs)
 then show fst x ∉ set (interp-ins ops)
 by (simp add: : ops = as @ x # bs) (x = (xi, Some ref))
 next
 case xs-nonempty: False
 then obtain y where xs = (butlast xs) @ [y]
 by (metis append-butlast-last-id)
 moreover from this obtain yi yr xi xr where y = (yi, yr) ∧ x = (xi, xr)
 by fastforce
 moreover from this have xr = Some yi
 using insert-seq.cases snoc.prems(2) calculation by fastforce
 moreover have yi ∉ set (interp-ins ops)
 using IH calculation
 by (metis Nil-is-map-conv fst-conv last-in-set last-map snoc-eq-iff-butlast)
 hence yi ∉ set (interp-ins as)
 using ops = as @ x # bs) interp-ins-monotonic snoc.prems(1) by blast
 ultimately have xi ∉ set (interp-ins (as @[x] @ bs))
 using interp-ins-ref-nonex snoc.prems(1) : ops = as @ x # bs)
 by fastforce
 then show fst x ∉ set (interp-ins ops)
 by (simp add: : ops = as @ x # bs) (y = (yi, yr) ∧ x = (xi, xr))
 qed
 then show ∀ i ∈ set (map fst (xs @ [x])). i ∉ set (interp-ins ops)
 using IH by auto
 qed
4.5 The proof of no interleaving

lemma no-interleaving-ordered:

assumes

- insert-ops ops
- insert-seq start xs and insert-ops xs
- insert-seq start ys and insert-ops ys
- set xs ⊆ set ops and set ys ⊆ set ops
- distinct (map fst xs @ map fst ys)
- fst (hd xs) < fst (hd ys)
- \(\forall \mathit{r} \cdot \mathit{start} = \mathit{Some} \ r \implies r \in \mathit{set} (\mathit{interp-ins} \ ops) \)

shows

\(\forall x \in \mathit{set} (\mathit{map} \ \mathit{fst} \ xs), \forall y \in \mathit{set} (\mathit{map} \ \mathit{fst} \ ys), \mathit{list-order} \ ops \ y \mathit{x} \) \land \(\forall y \in \mathit{set} (\mathit{map} \ \mathit{fst} \ ys), \mathit{list-order} \ ops \ r \mathit{y} \)

using

- assms
- proof (induction ops arbitrary; xs ys rule: List.rev-induct, simp)

case (snoc a ops)

then have insert-ops ops

consider (a-in-xs) a ∈ set xs | (a-in-ys) a ∈ set ys | (neither) a ∉ set xs ∧ a ∉ set ys

by blast

then show ?case

proof (cases)

- case a-in-xs
 then have a ∉ set ys

 using snoc.prems(8) by auto

 hence set ys ⊆ set ops

 using snoc.prems(7) DiffE by auto

 from a-in-xs have a = last xs

 using insert-ops-subset-last snoc.prems by blast

 have IH: \(\forall x \in \mathit{set} (\mathit{map} \ \mathit{fst} \ (\mathit{butlast} \ xs)), \forall y \in \mathit{set} (\mathit{map} \ \mathit{fst} \ ys), \mathit{list-order} \ ops \ y \mathit{x} \) \land \(\forall y \in \mathit{set} (\mathit{map} \ \mathit{fst} \ ys), \mathit{list-order} \ ops \ r \mathit{y} \)

 proof (cases xs = [a])

 case True

 moreover have \(\forall \mathit{r} \cdot \mathit{start} = \mathit{Some} \ r \implies \forall y \in \mathit{set} (\mathit{map} \ \mathit{fst} \ ys), \mathit{list-order} \ ops \ r \mathit{y} \)

 using insert-seq-after-start (insert-ops ops) (set ys ⊆ set ops) snoc.prems

 by (metis append-nil2 calculation insert-seq-hd interp-ins-append-non-memb list.sel(1))

 ultimately show ?thesis by auto

next

- case xs-longer: False

 from \(\langle a = \text{last} \mathit{xs} \rangle \) have set (butlast xs) ⊆ set ops

 using snoc.prems by (simp add: distinct-fst subset-butlast)

 moreover have insert-seq start (butlast xs)

 using insert-seq-butlast insert-seq-nonempty xs-longer (a = last xs) snoc.prems(2)

 by blast

69
moreover have insert-ops (butlast xs)
 using snoc.prems(2) snoc.prems(3) insert-ops-appendD
 by (metis append-buttlast-last-id insert-seq-nonempty)
moreover have distinct (map fst (butlast xs) @ map fst ys)
 using distinct-append-buttlast1 snoc.prems(8) by blast
moreover have set ys ⊆ set ops
 using (a ∉ set ys) (set ys ⊆ set ops) by blast
moreover have hd (butlast xs) = hd xs
 by (metis append-buttlast-last-id calculation(2) hd-append2 insert-seq-nonempty
 snoc.prems(2))
hence fst (hd (butlast xs)) < fst (hd ys)
 by (simp add: snoc.prems(9))
moreover have \(\forall r. \text{start} = \text{Some } r \implies r \in \text{set} (\text{interp-ins ops}) \)
 proof
 fix r
 assume start = Some r
 then obtain xid where hd xs = (xid, Some r)
 using insert-seq-hd snoc.prems(2) by auto
 hence r < xid
 by (metis hd-in-set insert-ops-memb-ref-older insert-seq-nonempty snoc.prems(2)
snoc.prems(3))
 moreover have xid < fst a
 proof
 have xs = (butlast xs) @ [a]
 using snoc.prems(2) insert-seq-nonempty (a = last xs) by fastforce
 moreover have (xid, Some r) ∈ set (butlast xs)
 using (hd xs = (xid, Some r)): insert-seq-nonempty list.set-sel(1)
 by (metis hd-buttlast-left-id calc insert-seq (butlast xs))
 hence xid ∈ set (map fst (butlast xs))
 by (metis in-set-zipE zip-map-fst-snd)
 ultimately show \?thesis
 using snoc.prems(3) last-op-greatest by (metis prod.collapse)
 qed
 ultimately have r ≠ fst a
 using dual-order.asym by blast
 thus r ∈ set (interp-ins ops)
 using snoc.prems(1) snoc.prems(10) interp-ins-maybe-grow2 (start = Some r)
 by blast
 qed
 ultimately show \?thesis
 using (insert-ops ops) snoc.IH snoc.prems(4) snoc.prems(5) by blast
 qed
moreover have x-exists: \(\forall x \in \text{set} (\text{map } \text{fst} \text{ (butlast } xs)), x \in \text{set} (\text{interp-ins ops}) \)
 proof(cases start)
 case None
 moreover have set (butlast xs) ⊆ set ops
 using (a = last xs) distinct-map snoc.prems(6) snoc.prems(8) subset-buttlast
 qed
by fastforce

ultimately show \(\exists \text{thesis} \)
using insert-seq-start-none ⟨insert-ops ops⟩ snoc.prems
by (metis append-butlast-last-id butlast.simps(2) empty-iif empty-set
insert-ops-rem-last insert-seq-butlast insert-seq-nonempty list.simps(8))

next
 case (Some a)
 then show \(\exists \text{thesis} \)
 using IH list-order-memb2 by blast

qed

moreover have \(\forall y \in \text{set (map fst ys)}. \text{list-order (ops @ [a]) y (fst a)} \)
proof (cases xs = [a])
 case xs-a: True
 have ys \(\neq [] \implies \text{False} \)
 proof
 assume ys \(\neq [] \)
 then obtain yi where yi-def: ys = (yi, start) \# (tl ys)
 by (metis hd-Cons tl insert-seq-hd snoc.prems(4))
 hence (yi, start) \in\ set ops
 by (metis ⟨set ys \subseteq set ops⟩ list.set-intros(1) subsetCE)
 hence yi \in\ set (map fst ops)
 by force
 hence yi < \text{fst a}
 using snoc.prems(1) last-op-greatest by (metis prod.collapse)
 moreover have \text{fst a} < yi
 by (metis ⟨yi-def xs-a⟩ last-conv list.sel(1) snoc.prems(9))
 ultimately show \text{False}
 using less-not-sym by blast
 qed

then show \(\forall y \in \text{set (map fst ys)}. \text{list-order (ops @ [a]) y (fst a)} \)
using insert-seq-nonempty snoc.prems(4) by blast
next
 case xs-longer: False
 hence butlast-split: butlast xs = (butlast (butlast xs)) @ [last (butlast xs)]
 using (a = last xs) insert-seq-butlast insert-seq-nonempty snoc.prems(2) by fastforce
 hence ref-exists: \text{fst (last (butlast xs))} \in\ set (interp-ins ops)
 using x-exists by (metis last-in-set last-map map-is-nil conv snoc-eq-iiff-butlast)
 moreover from butlast-split have xs = (butlast (butlast xs)) @ [last (butlast xs), a]
 by (metis (a = last xs) append.assoc append-butlast-last-id butlast.simps(2)
 insert-seq-nonempty last-ConsL last-ConsR list.simps(3) snoc.prems(2))
hence snd a = Some (fst (last (butlast xs)))
 using snoc.prems(2) insert-seq-last-ref by (metis prod.collapse)
 hence list-order (ops @ [a]) (fst (last (butlast xs))) (fst a)
 using list-order-insert-ref ref-exists snoc.prems(1) by (metis prod.collapse)
 moreover have \(\forall y \in \text{set (map fst ys)}. \text{list-order ops y (fst (last (butlast xs)))} \)
 by (metis IH butlast-split last-in-set last-map map-is-nil conv snoc-eq-iiff-butlast)
hence \(\forall y \in \text{set (map fst ys)}. \text{list-order (ops @ [a]) y (fst (last (butlast xs)))} \)
using \textit{list-order-append} \texttt{snoc.prem}(1) by \textbf{blast}
ultimately show \(\forall y \in \text{set (map fst ys)}. \text{list-order (ops @ [a])} y (\text{fst a})\)
using \textit{list-order-trans} \texttt{snoc.prem}(1) by \textbf{blast}
qd
moreover have \textit{map-fst-xs}: \text{map fst xs} = \text{map fst (butlast xs)} @ \text{map fst [last xs]}
by (metis \textit{append-butlast-last-id} \textit{insert-seq-nonempty} \textit{map-append} \texttt{snoc.prem}(2))
hence set (map fst xs) = set (map fst (butlast xs)) \cup \{\text{fst a}\}
by (simp add: \(a \supseteq \text{last xs}\))
moreover have \(\forall r. \text{start} = \text{Some r} \longrightarrow \text{list-order (ops @ [a])} r (\text{fst a})\)
using \texttt{snoc.prem} by (cases start, auto simp add: \textit{insert-seq-after-start} \(a \supseteq \text{last xs} \supseteq \text{map-fst-xs}\))
ultimately show \(\forall x \in \text{set (map fst xs)}. \forall y \in \text{set (map fst ys)}. \text{list-order (ops @ [a])} y x\)
\(\forall r. \text{start} = \text{Some r} \longrightarrow (\forall x \in \text{set (map fst xs)}. \text{list-order (ops @ [a])} r x) \wedge (\forall y \in \text{set (map fst ys)}. \text{list-order (ops @ [a])} r y)\)
using \texttt{snoc.prem}(1) by (simp add: \textit{list-order-append})
next
case \textit{a-in-ys}
then have \(a \notin \text{set xs}\)
using \texttt{snoc.prem}(8) by \textbf{auto}
hence set xs \subseteq set ops
using \texttt{snoc.prem}(6) \texttt{DiffE} by \textbf{auto}
from \textit{a-in-ys} have \(a = \text{last ys}\)
using \textit{insert-ops-subset-last} \texttt{snoc.prem} by \textbf{blast}
have IH: \(\forall x \in \text{set (map fst xs)}. \forall y \in \text{set (map fst (butlast ys))}. \text{list-order ops y x} \wedge (\forall r. \text{start} = \text{Some r} \longrightarrow (\forall x \in \text{set (map fst xs)}. \text{list-order ops r x}) \wedge (\forall y \in \text{set (map fst (butlast ys)}. \text{list-order ops r y}))\)
proof (cases \(ys = [a]\))
case \text{True}
mOREOVER have \(\forall r. \text{start} = \text{Some r} \longrightarrow (\forall y \in \text{set (map fst xs)}. \text{list-order ops r y})\)
using \textit{insert-seq-after-start} \textit{(insert-ops ops)} \(\text{set xs} \subseteq \text{set ops}: \texttt{snoc.prem}\)
by (metis \textit{append-\textit{Nil2}} calculation \textit{insert-seq-hd} \textit{interp-ins-append-non-memb} \texttt{list.sel}(1))
ultimately show \(?thesis\) by \textbf{auto}
next
case \textit{ys-larger: False}
from \((a = \text{last ys})\) have set (butlast ys) \subseteq set ops
using \texttt{snoc.prem} by (simp add: \textit{distinct-fst subset-butlast})
mOREOVER have \textit{insert-seq start (butlast ys)}
using \textit{insert-seq-butlast} \textit{insert-seq-nonempty} \textit{ys-longer} \((a = \text{last ys}: \texttt{snoc.prem}(4)\))
by \textbf{blast}
mOREOVER have \textit{insert-ops (butlast ys)}
using \texttt{snoc.prem}(4) \texttt{snoc.prem}(5) \textit{insert-ops-appendD}
by (metis \textit{append-butlast-last-id} \textit{insert-seq-nonempty})
moreover have distinct (map fst xs @ map fst (butlast ys))
 using distinct-append-butlast2 snoc.prems(8) by blast
moreover have set xs ⊆ set ops
 using (a ∉ set xs) (set xs ⊆ set ops) by blast
moreover have hd (butlast ys) = hd ys
by (metis append-butlast-last-id calculation(2) hd-append2 insert-seq-nonempty
snoc.prems(4))
hence fst (hd xs) < fst (hd (butlast ys))
by (simp add: snoc.prems(9))
moreover have ∀r. start = Some r → r ∈ set (interp-ins ops)
proof –
 fix r
 assume start = Some r
 then obtain yid where hd ys = (yid, Some r)
 using insert-seq-hd snoc.prems(4) by auto
 hence r < yid
by (metis hd-in-set insert-ops-memb-ref-older insert-seq-nonempty snoc.prems(4)
snoc.prems(5))
moreover have yid < fst a
proof –
 have ys = (butlast ys) @ [a]
 using snoc.prems(4) insert-seq-nonempty (a = last ys) by fastforce
moreover have (yid, Some r) ∈ set (butlast ys)
 using (hd ys = (yid, Some r)) insert-seq-nonempty list.set-sel(1)
by (metis in-set-zipE zip-map-fst-snd)
ultimately show ?thesis
 using snoc.prems(5) last-op-greatest by (metis prod.collapse)
qed
ultimately have r ≠ fst a
 using dual-order.asym by blast
thus r ∈ set (interp-ins ops)
using snoc.prems(1) snoc.prems(10) interp-ins-maybe-grow2 (start = Some r)
by blast
qed
ultimately show ?thesis
 using insert-ops ops snoc.IH snoc.prems(2) snoc.prems(3) by blast
qed
moreover have ∀x ∈ set (map fst xs). list-order (ops @ [a]) (fst a) x
proof (cases ys = [a])
case ys-a: True
 then show ∀x ∈ set (map fst xs). list-order (ops @ [a]) (fst a) x
 using insert-seq-start-none list-order-insert-none snoc.prems
by (metis insert-ops ops (set xs ⊆ set ops) fst-comm insert-seq-hd list.set-sel(1)
ultimately have ∀x ∈ set (map fst xs). list-order (ops @ [a]) (fst a) x
proof (cases start)
case None
 then show ?thesis
 using insert-seq-start-none list-order-insert-none snoc.prems
by (metis insert-ops ops (set xs ⊆ set ops) fst-comm insert-seq-hd list.set-sel(1)
ys-a)
next
case (Some r)
moreover from this have ∀ x ∈ set (map fst xs). list-order ops r x
using IH by blast
ultimately show thesis
using snoc.prems(1) snoc.prems(4) list-order-insert-between
by (metis fst-conv insert-seq-hd list.sel(1) ys-a)
qed
next
case ys-longer: False
hence butlast-split: butlast ys = (butlast (butlast ys)) @ [last (butlast ys)]
using (a = last ys) insert-seq-butlast insert-seq-nonempty snoc.prems(4) by fastforce
moreover from this have ys = (butlast (butlast ys)) @ [last (butlast ys), a]
by (metis ⟨a = last ys⟩ append.assoc append-butlast-last-id butlast.simps(2)
insert-seq-nonempty last-ConsL last-ConsR list.simps(3) snoc.prems(4))
hence snd a = Some (fst (last (butlast ys)))
using snoc.prems(4) insert-seq-last-ref by (metis prod.collapse)
moreover have ∀ x ∈ set (map fst xs). list-order ops (fst (last (butlast ys))) x
by (metis IH butlast-split last-in-set last-map map-is-Nil-conv snoc-eq-iff-butlast)
ultimately show ∀ x ∈ set (map fst xs). list-order (ops @ [a]) (fst a) x
using list-order-insert-between snoc.prems(1) by (metis prod.collapse)
qed
moreover have map-fst-xs: map fst ys = map fst (butlast ys) @ map fst [last ys]
by (metis append-butlast-last-id insert-seq-nonempty map-append snoc.prems(4))
hence set (map fst ys) = set (map fst (butlast ys)) ∪ {fst a}
by (simp add: a = last ys)
moreover have ∀ r. start = Some r → list-order (ops @ [a]) r (fst a)
using snoc.prems by (cases start, auto simp add: insert-seq-after-start 'a =
last ys: map-fst-xs)
ultimately show (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order (ops
@ [a]) y x) ∧ (∀ r. start = Some r → (∀ x ∈ set (map fst xs). list-order (ops @ [a]) r
x) ∧ (∀ y ∈ set (map fst ys). list-order (ops @ [a]) r y))
using snoc.prems(1) by (simp add: list-order-append)
next
case neither
hence set xs ⊆ set ops and set ys ⊆ set ops
using snoc.prems(6) snoc.prems(7) DiffE by auto
have (∀ r. start = Some r → r ∈ set (interp-ins ops)) ∨ (xs = [] ∧ ys = [])
proof(cases xs)
case Nil
then show thesis using insert-seq-nonempty snoc.prems(2) by blast
next
case xs-nonempty: (Cons x xs)
have ∃ r. start = Some r → r ∈ set (interp-ins ops)
proof
 fix r
 assume start = Some r
 then obtain xi where \(x = (x_i, \text{Some } r) \) using insert-seq-hd xs-nonempty snoc.prems(2) by fastforce
 hence \((x_i, \text{Some } r) \in \text{set } \text{ops} \)
 hence \(r < x_i \)
 using (insert-ops ops) insert-ops-memb-ref-older by blast
 moreover have \(x_i \in \text{set} (\text{map } \text{fst } \text{ops}) \)
 using \((x_i, \text{Some } r) \in \text{set } \text{ops} \) by force
 hence \(x_i < \text{fst } a \)
 using last-op-greatest snoc.
 prems (1) by (metis prod.collapse)
 ultimately have \(\text{fst } a \neq r \)
 using order.asym by blast
 then show \(r \in \text{set} (\text{interp-ins } \text{ops}) \)
 using snoc.prems(1) snoc.prems(10) interp-ins-maybe-grow2 \(< \text{start} = \text{Some } r \) by blast
qed

Consider an execution that contains two distinct insertion sequences, \(xs \) and \(ys \), that both begin at the same initial position \(\text{start} \). We prove that, provided the starting element exists, the two insertion sequences are not interleaved. That is, in the final list order, either all insertions by \(xs \) appear before all insertions by \(ys \), or vice versa.

\textbf{theorem} no-interleaving:
\textbf{assumes} insert-ops ops
and insert-seq start xs and insert-ops xs
and insert-seq start ys and insert-ops ys
and set xs \(\subseteq \text{set } \text{ops} \) and set ys \(\subseteq \text{set } \text{ops} \)
and distinct (map fst xs @ map fst ys)
and start = None \(\lor \exists r. \text{start} = \text{Some } r \land r \in \text{set} (\text{interp-ins } \text{ops}) \)
\textbf{shows} \(\forall x \in \text{set} (\text{map } \text{fst } \text{xs}). \forall y \in \text{set} (\text{map } \text{fst } \text{ys}). \text{list-order } \text{ops } x \text{ y} \lor \forall x \in \text{set} (\text{map } \text{fst } \text{xs}). \forall y \in \text{set} (\text{map } \text{fst } \text{ys}). \text{list-order } \text{ops } x \text{ y} \)
proof \(\left(\text{cases } \text{fst} \ (\text{hd} \ \text{xs}) < \text{fst} \ (\text{hd} \ \text{ys}) \right) \)

case True

moreover have \(\forall r. \ \text{start} = \text{Some} \ r \implies r \in \text{set} \ (\text{interp-ins} \ \text{ops}) \)
using assms\((9) \) by blast

ultimately have \(\forall x \in \text{set} \ (\text{map} \ \text{fst} \ \text{xs}) \). \(\forall y \in \text{set} \ (\text{map} \ \text{fst} \ \text{ys}) \). \text{list-order} \ \text{ops} \ y \ x \)
using assms no-interleaving-ordered by blast
then show \(?\text{thesis} \) by blast

next

case False

hence \(\text{fst} \ (\text{hd} \ \text{ys}) < \text{fst} \ (\text{hd} \ \text{xs}) \)
using assms\((2) \) assms\((4) \) assms\((8) \) insert-seq-nonempty distinct-fst-append
by (metis \(\text{no-types, lifting, hd-in-set, hd-map, list, map-disc-iff, map-append, neqE} \))

moreover have \(\forall r. \ \text{start} = \text{Some} \ r \implies r \in \text{set} \ (\text{interp-ins} \ \text{ops}) \)
using assms\((9) \) by blast

ultimately have \(\forall x \in \text{set} \ (\text{map} \ \text{fst} \ \text{ys}) \). \(\forall y \in \text{set} \ (\text{map} \ \text{fst} \ \text{xs}) \). \text{list-order} \ \text{ops} \ y \ x \)
using assms no-interleaving-ordered by blast
then show \(?\text{thesis} \) by blast

qed

For completeness, we also prove what happens if there are two insertion sequences, \(\text{xs} \) and \(\text{ys} \), but their initial position \(\text{start} \) does not exist. In that case, none of the insertions in \(\text{xs} \) or \(\text{ys} \) take effect.

theorem missing-start-no-insertion:
assumes insert-ops \(\text{ops} \)
and insert-seq (Some \(\text{start} \)) \(\text{xs} \) and insert-ops \(\text{xs} \)
and insert-seq (Some \(\text{start} \)) \(\text{ys} \) and insert-ops \(\text{ys} \)
and set \(\text{xs} \) \(\subseteq \) set \(\text{ops} \) and set \(\text{ys} \) \(\subseteq \) set \(\text{ops} \)
and start \(\notin \) set (interp-ins \(\text{ops} \))
shows \(\forall x \in \text{set} \ (\text{map} \ \text{fst} \ \text{xs}) \cup \text{set} \ (\text{map} \ \text{fst} \ \text{ys}) \). \(x \notin \text{set} \ (\text{interp-ins} \ \text{ops}) \)
using assms insert-seq-no-start by (metis UnE)

end

5 The Replicated Growable Array (RGA)

The RGA algorithm [4] is a replicated list (or collaborative text-editing) algorithm. In this section we prove that RGA satisfies our list specification. The Isabelle/HOL definition of RGA in this section is based on our prior work on formally verifying CRDTs [3, 2].
insert-body \((x \# xs) \ e =\)
\((\text{if } x < e \text{ then } e \# x \# xs \ \text{else } x \# \text{insert-body } xs \ e)\)

fun insert-rga :: \(\text{'oid::{linorder}} \ \text{list} \Rightarrow \text{'oid list} \ \text{where}\)
\(\text{insert-rga } xs (e, \text{None}) = \text{insert-body } xs \ e \ |
\text{insert-rga } [] (e, \text{Some } i) = [] \ |
\text{insert-rga } (x \# xs) (e, \text{Some } i) =\)
\((\text{if } x = i \text{ then } x \# \text{insert-body } xs \ e \ \text{else } x \# \text{insert-rga } xs (e, \text{Some } i))\)

definition interp-rga :: \(\text{'oid::{linorder}} \times \text{'oid option} \ \text{list} \Rightarrow \text{'oid list} \ \text{where}\)
\(\text{interp-rga } \text{ops} \equiv \text{foldl } \text{insert-rga} \ [] \ \text{ops}\)

5.1 Commutativity of insert-rga

lemma insert-body-set-ins [simp]:
shows \(\text{set (insert-body } xs \ e) = \text{insert } e \ (\text{set } xs)\)
by (induction \(xs\), auto)

lemma insert-rga-set-ins:
assumes \(i \in \text{set } xs\)
shows \(\text{set (insert-rga } xs \ (\text{oid, Some } i)) = \text{insert } \text{oid} \ (\text{set } xs)\)
using \(\text{assms}\) by (induction \(xs\), auto)

lemma insert-body-commutes:
shows \(\text{insert-body } (\text{insert-body } xs \ e1) \ e2 = \text{insert-body } (\text{insert-body } xs \ e2) \ e1\)
by (induction \(xs\), auto)

lemma insert-rga-insert-body-commute:
assumes \(i2 \neq \text{Some } e1\)
shows \(\text{insert-rga } (\text{insert-body } xs \ e1) \ (e2, \text{Some } i2) = \text{insert-body } (\text{insert-rga } xs \ (e2, \text{Some } i2)) \ e1\)
using \(\text{assms}\) by (induction \(xs\); cases \(i2\)) (auto simp add: insert-body-commutes)

lemma insert-rga-None-commutes:
assumes \(i2 \neq \text{Some } e1\)
shows \(\text{insert-rga } (\text{insert-rga } xs \ (e1, \text{None})) \ (e2, \text{Some } i2) = \text{insert-rga } (\text{insert-rga } xs \ (e2, \text{Some } i2)) \ (e1, \text{None})\)
using \(\text{assms}\) by (induction \(xs\); cases \(i2\)) (auto simp add: insert-body-commutes)

lemma insert-rga-nonexistent:
assumes \(i \notin \text{set } xs\)
shows \(\text{insert-rga } xs \ (e, \text{Some } i) = xs\)
using \(\text{assms}\) by (induction \(xs\), auto)

lemma insert-rga-Some-commutes:
assumes $i_1 \in \text{set} \:\text{xs}$ and $i_2 \in \text{set} \:\text{xs}$
and $e_1 \neq i_2$ and $e_2 \neq i_1$
shows $\text{insert-rga} \ (\text{insert-rga} \ \text{xs} \ (e_1, \text{Some} \ i_1)) \ (e_2, \text{Some} \ i_2) =$
$\text{insert-rga} \ (\text{insert-rga} \ \text{xs} \ (e_2, \text{Some} \ i_2)) \ (e_1, \text{Some} \ i_1)$
using assms proof (induction \text{xs}, simp)
case (Cons a \text{xs})
then show $?\text{case}$
by (cases $a = i_1$; cases $a = i_2$;
\text{auto simp add: insert-body-commutes insert-rga-insert-body-commute})
qed

lemma insert-rga-commutes:
assumes $i_2 \neq \text{Some} \ e_1$ and $i_1 \neq \text{Some} \ e_2$
shows $\text{insert-rga} \ (\text{insert-rga} \ \text{xs} \ (e_1, \text{Some} \ i_1)) \ (e_2, \text{Some} \ i_2) =$
$\text{insert-rga} \ (\text{insert-rga} \ \text{xs} \ (e_2, \text{Some} \ i_2)) \ (e_1, \text{Some} \ i_1)$
proof(cases i_1)
case None
then show $?\text{thesis}$
using assms(1) insert-rga-None-commutes by (cases i_2, fastforce, blast)
next
case some-r1: (Some r_1)
then show $?\text{thesis}$
proof(cases i_2)
case None
then show $?\text{thesis}$
using assms(2) insert-rga-None-commutes by fastforce
next
case some-r2: (Some r_2)
then show $?\text{thesis}$
proof(cases $r_1 \in \text{set} \ \text{xs} \ \land \ r_2 \in \text{set} \ \text{xs}$)
case True
then show $?\text{thesis}$
using assms some-r1 some-r2 by (simp add: insert-rga-Some-commutes)
next
case False
then show $?\text{thesis}$
using assms some-r1 some-r2
by (metis insert-iff insert-rga-nonexistent insert-rga-set-ins)
qed
qed

lemma insert-body-split:
shows $\exists \ p \ s. \ \text{xs} = p \ @ \ s \ \land \ \text{insert-body} \ \text{xs} \ e = p \ @ \ e \ # \ s$
proof(induction \text{xs}, force)
case (Cons a \text{xs})
then obtain $p \ s$ where $\text{IH}: \ \text{xs} = p \ @ \ s \ \land \ \text{insert-body} \ \text{xs} \ e = p \ @ \ e \ # \ s$
by blast
then show $\exists \ p \ s. \ a \ # \ \text{xs} = p \ @ \ s \ \land \ \text{insert-body} \ (a \ # \ \text{xs}) \ e = p \ @ \ e \ # \ s$

78
proof (cases a < e)
 case True
 then have a ≠ xs = [] @ (a ≠ p @ s) ∧ insert-body (a ≠ xs) e = [] @ e ≠ (a ≠ p @ s)
 by (simp add: IH)
 then show ?thesis by blast
next
 case False
 then have a ≠ xs = (a ≠ p) @ s ∧ insert-body (a ≠ xs) e = (a ≠ p) @ e ≠ s
 using IH by auto
 then show ?thesis by blast
qed

lemma insert-between-elements:
assumes xs = pre @ ref ≠ suf
 and distinct xs
 and ∀i. i ∈ set xs ⇒ i ≠ e
shows insert-rga xs (e, Some ref) = pre @ ref ≠ e ≠ suf
using assms proof (induction xs arbitrary: pre, force)
case (Cons a xs)
then have insert-rga xs (e, Some ref) = pre @ ref ≠ e ≠ suf
 using Cons.IH Cons.prems by auto
then show ?thesis
 using Cons.prems pre-nil by (cases suf, auto)
next
 case (Cons b pre')
 then have insert-rga xs (e, Some ref) = pre' @ ref ≠ e ≠ suf
 using Cons.IH Cons.prems by auto
 then show ?thesis
 using Cons.prems(1) Cons.prems(2) local.Cons by auto
qed

lemma insert-rga-after-ref:
assumes ∀x∈set as. a ≠ x
 and insert-body (cs @ ds) e = cs @ e ≠ ds
shows insert-rga (as @ a ≠ cs @ ds) (e, Some a) = as @ a ≠ cs @ e ≠ ds
using assms by (induction as; auto)

lemma insert-rga-preserves-order:
assumes i = None ∨ (∃i'. i = Some i' ∧ i' ∈ set xs)
 and distinct xs
shows ∃pre suf. xs = pre @ suf ∧ insert-rga xs (e, i) = pre @ e ≠ suf
proof (cases i)
 case None
then show \(\exists \text{pre \ suf}, \, xs = \text{pre} \circ \text{suf} \land \text{insert-rga} \, xs \,(e, i) = \text{pre} \circ e \# \text{suf} \)

using \text{insert-body-split} by auto

next
case (\text{Some \ r})
moreover from this obtain as bs where \(xs = as \circ r \# bs \land (\forall x \in \text{set} \, as. \, x \neq r) \)

using assms(1) \text{split-list-first} by fastforce

moreover have \(\exists cs \, ds. \, bs = cs \circ ds \land \text{insert-body} \, bs \, e = cs \circ e \# ds \)

by (simp add: \text{insert-body-split})

then obtain cs ds where \(bs = cs \circ ds \land \text{insert-body} \, bs \, e = cs \circ e \# ds \)

by blast

ultimately have \(xs = (as \circ r \# cs) \circ ds \land \text{insert-rga} \, xs \,(e, i) = (as \circ r \# cs) \circ e \# ds \)

using \text{insert-rga-after-ref} by fastforce

then show \?\text{thesis} by fastforce

qed

5.2 Lemmas about the \text{rga-ops} predicate

definition \text{rga-ops} :: \('oid::\{linorder\} \times 'oid \, \text{option}\) list \Rightarrow \text{bool} where
\text{rga-ops} \, \text{list} \equiv \text{crdt-ops} \, \text{list} \, \text{set-option}

lemma \text{rga-ops-rem-last}:
assumes \text{rga-ops} \,(xs \circ [x])
shows \text{rga-ops} \,xs

using assms \text{crdt-ops-rem-last} \text{rga-ops-def} by blast

lemma \text{rga-ops-rem-penultimate}:
assumes \text{rga-ops} \,(xs \circ [(i1, r1), (i2, r2)])

and \(r. \, r2 = \text{Some \ r} \implies r \neq i1 \)

shows \text{rga-ops} \,(xs \circ [(i2, r2)])

using assms proof

have \text{crdt-ops} \,(xs \circ [(i2, r2)]) \, \text{set-option}

using assms \text{crdt-ops-rem-penultimate} \text{rga-ops-def} by fastforce

thus \text{rga-ops} \,(xs \circ [(i2, r2)])

by (simp add: \text{rga-ops-def})

qed

lemma \text{rga-ops-ref-exists}:
assumes \text{rga-ops} \,(\text{pre} \circ (\text{oid}, \text{Some \ ref} \# \text{suf}))

shows ref \in \text{fst} \, ' \text{set} \, \text{pre}

proof

from assms have \text{crdt-ops} \,(\text{pre} \circ (\text{oid}, \text{Some \ ref} \# \text{suf}) \, \text{set-option}

by (simp add: \text{rga-ops-def})

moreover have \text{set-option} \,(\text{Some \ ref}) = \{\text{ref}\}

by simp

ultimately show ref \in \text{fst} \, ' \text{set} \, \text{pre}

using \text{crdt-ops-ref-exists} by fastforce

qed
5.3 Lemmas about the interp-rga function

lemma interp-rga-tail-unfold:
 shows interp-rga (xs@[x]) = insert-rga (interp-rga (xs)) x
 by (clarsimp simp add: interp-rga-def)

lemma interp-rga-ids:
 assumes rga-ops xs
 shows set (interp-rga xs) = set (map fst xs)
 using assms proof (induction xs rule: List.rev-induct)
 case Nil
 then show set (interp-rga []) = set (map fst [])
 by (simp add: interp-rga-def)
next
 case (snoc x xs)
 hence IH: set (interp-rga xs) = set (map fst xs)
 using rga-ops-rem-last by blast
 obtain xi xr where x-pair: x = (xi, xr) by force
 then show set (interp-rga (xs @ [x])) = set (map fst (xs @ [x]))
 proof (cases xr)
 case None
 then show ?thesis
 using IH x-pair by (clarsimp simp add: interp-rga-def)
 next
 case (Some r)
 moreover from this have r ∈ set (interp-rga xs)
 using IH rga-ops-ref-exists by (metis x-pair list.set-map snoc.prems)
 ultimately have set (interp-rga (xs @ [(xi, xr)])) = insert xi (set (interp-rga xs))
 by (simp add: insert-rga-set-ins interp-rga-tail-unfold)
 then show set (interp-rga (xs @ [x])) = set (map fst (xs @ [x]))
 using IH x-pair by auto
 qed
qed

lemma interp-rga-distinct:
 assumes rga-ops xs
 shows distinct (interp-rga xs)
 using assms proof (induction xs rule: List.rev-induct)
 case Nil
 then show distinct (interp-rga []) by (simp add: interp-rga-def)
next
 case (snoc x xs)
 hence IH: distinct (interp-rga xs)
 using rga-ops-rem-last by blast
 moreover obtain xi xr where x-pair: x = (xi, xr)
 by force
 moreover from this have xi ∉ set (interp-rga xs)
 using interp-rga-ids crdt-ops-unique-last rga-ops-rem-last
 qed
qed
by (metis rga-ops-def snoc.prems)
moreover have ∃ pre suf. interp-rga xs = pre @ suf ∧
 insert-rga (interp-rga xs) (xi, xr) = pre @ xi # suf
proof
 have ∆r. r ∈ set-option xr → r ∈ set (map fst xs)
 using crdt-ops-ref-exists rga-ops-def snoc.prems x-pair by fastforce
 hence xr = None ∨ (∃ r. xr = Some r ∧ r ∈ set (map fst xs))
 using option.set-set by blast
 hence xr = None ∨ (∃ r. xr = Some r ∧ r ∈ set (interp-rga xs))
 using interp-rga-ids rga-ops-rem-last snoc.prems by blast
 thus ?thesis
 using IH insert-rga-preserves-order by blast
qed
ultimately show distinct (interp-rga (xs @ [x]))
by (metis Un_iff disjoint-insert (1) distinct.simps(2) distinct-append
 interp-rga-tail-unfold list.simps(15) set-append)
qed

5.4 Proof that RGA satisfies the list specification

lemma final-insert:
 assumes set (xs @ [x]) = set (ys @ [x])
 and rga-ops (xs @ [x])
 and insert-ops (ys @ [x])
 and interp-rga xs = interp-ins ys
 shows interp-rga (xs @ [x]) = interp-ins (ys @ [x])
proof
 obtain oid ref where x-pair: x = (oid, ref) by force
 have distinct (xs @ [x]) and distinct (ys @ [x])
 using assms crdt-ops-distinct spec-ops-distinct rga-ops-def insert-ops-def by blast+
 then have set xs = set ys
 using assms(1) by force
 have oid-greatest: ∆i. i ∈ set (interp-rga xs) → i < oid
 proof
 have ∆i. i ∈ set (map fst ys) → i < oid
 using assms(3) by (simp add: spec-ops-id-inc x-pair insert-ops-def)
 hence ∆i. i ∈ set (map fst xs) → i < oid
 using (set xs = set ys) by auto
 thus ∆i. i ∈ set (interp-rga xs) → i < oid
 using assms(2) interp-rga-ids rga-ops-rem-last by blast
 qed
 thus interp-rga (xs @ [x]) = interp-ins (ys @ [x])
 proof(cases ref)
 case None
 moreover from this have insert-rga (interp-rga xs) (oid, ref) = oid #
 interp-rga xs
 using oid-greatest hd-in-set insert-body.elims insert-body.simps(1)
 insert-rga.simps(1) list.sel(1) by metis
ultimately show interp-rga (xs @ [x]) = interp-ins (ys @ [x]) using assms(4) by (simp add: interp-ins-tail-unfold interp-rga-tail-unfold x-pair)

next
case (Some r)
have \exists as bs. interp-rga xs = as @ r # bs
proof –
 have r \in set (map fst xs)
 using assms(2) Some by (simp add: rga-ops-ref-exists x-pair)
 hence \exists r (\in set (interp-rga xs)) using assms(2) interp-rga-ids rga-ops-rem-last by blast
thus \exists thesis by (simp add: split-list)
q.e.d.

from this obtain as bs where as-bs: interp-rga xs = as @ r # bs by force
hence distinct (as @ r # bs)
by (metis assms(2) interp-rga-distinct rga-ops-rem-last)

moreover have insert-spec (as @ r # bs) (oid, Some r) = as @ r # oid # bs by (meson \langle \exists as bs. interp-rga xs = as @ r # bs \rangle insert-after-ref)
ultimately show interp-rga (xs @ [x]) = interp-ins (ys @ [x])
by (metis assms(4) Some as-bs interp-ins-tail-unfold interp-rga-tail-unfold x-pair)
q.e.d.

lemma interp-rga-reorder:
assumes rga-ops (pre @ suf @ [(oid, ref)])
and \(\forall i. (i, Some r) \in set suf \Rightarrow r \neq oid \)
and \(\forall r. ref = Some r \Rightarrow r \notin fst \cdot set suf \)
shows interp-rga (pre @ (oid, ref) # suf) = interp-rga (pre @ suf @ [(oid, ref)])
using assms proof(induction suf rule: List.rev-induct)
case Nil
then show \?case by simp
next
case (snoc x xs)
have ref-not-x: \(\forall r. ref = Some r \Rightarrow r \neq fst x \) using snoc.prems(3) by auto
have IH: interp-rga (pre @ (oid, ref) # xs) = interp-rga (pre @ xs @ [(oid, ref)])
proof –
 have rga-ops ((pre @ xs) @ [x] @ [(oid, ref)]) using snoc.prems(1) by auto
 moreover have \(\forall r. ref = Some r \Rightarrow r \neq fst x \)
 by (simp add: ref-not-x)
 ultimately have rga-ops ((pre @ xs) @ [(oid, ref)]) using rga-ops-rem-penultimate
 by (metis (no-types, lifting) Cons-eq-append-conv prod.collapse)
 thus \?thesis using snoc by force
q.e.d.

obtain xi xr where x-pair: x = (xi, xr) by force

83
have \(\text{interp-rga} \left(\text{pre} @ (\text{oid}, \text{ref}) \right) \neq \text{xs} \left(\left(\text{xi}, \text{xr} \right) \right) \) =
\(\text{insert-rga} \left(\text{interp-rga} \left(\text{pre} @ \text{xs} \left(\left(\text{oid}, \text{ref} \right) \right) \right) \right) \left(\text{xi}, \text{xr} \right) \)

using IH interp-rga-tail-unfold by (metis append.assoc append-Con)
moreover have \(... = \text{insert-rga} \left(\text{insert-rga} \left(\text{interp-rga} \left(\text{pre} @ \text{xs} \right) \right) \left(\text{oid}, \text{ref} \right) \right) \left(\text{xi}, \text{xr} \right) \)

using interp-rga-tail-unfold by (metis append-assoc
moreover have \(... = \text{insert-rga} \left(\text{insert-rga} \left(\text{interp-rga} \left(\text{pre} @ \text{xs} \right) \right) \left(\text{oid}, \text{ref} \right) \right) \left(\text{xi}, \text{xr} \right) \)

proof —

have \(\forall xrr. \text{xr} = \text{Some xrr} \Rightarrow xrr \neq \text{oid} \)
using x-pair snoc.prems(2) by auto
thus ?thesis
using insert-rga-commutes ref-not-x by (metis conv x-pair)
qed
moreover have \(... = \text{interp-rga} \left(\text{pre} @ \text{xs} \left(\left(\text{oid}, \text{ref} \right) \right) \right) \left(\text{xi}, \text{xr} \right) \)

by (simp add x-pair)
qed

lemma rga-spec-equal:
assumes \(\text{set} \ xs = \text{set} \ ys \)
and \(\text{insert-ops} \ xs \)
and \(\text{rga-ops} \ ys \)
shows \(\text{interp-ins} \ xs = \text{interp-rga} \ ys \)
using assms proof(induction \(\text{xs} \) arbitrary: \(\text{ys} \) rule: rev-induct)
case Nil
then show ?case by (simp add: interp-rga-def interp-ins-def)
next
case (\(\text{snoc} \) \(\text{xs} \) \(\text{xs} \))
hence \(\text{xs} \in \text{set} \ \text{ys} \)
by (metis last-in-set snoc-eq-iff-butlast)
from this obtain \(\text{pre} \ \text{suf} \) where \(\text{ys-split} \): \(\text{ys} = \text{pre} @ \left[\text{xs} @ [\text{oid}, \text{ref}] \right] \)
using split-list-first by fastforce
have IH: interp-ins \(\text{xs} = \text{interp-rga} \left(\text{pre} @ \text{ys} \right) \)
proof —

have \(\text{crdt-ops} \left(\text{pre} @ \text{suf} \right) \) set-option
proof —

have \(\text{crdt-ops} \left(\text{pre} @ \left[\text{xs} @ [\text{oid}, \text{ref}] \right] \right) \) set-option
using rga-ops-def snoc.prems(3) ys-split by blast
thus \(\text{crdt-ops} \left(\text{pre} @ \text{suf} \right) \) set-option
using crdt-ops-rem-spec snoc.prems ys-split insert-ops-def by blast
qed
hence \(\text{rga-ops} \left(\text{pre} @ \text{suf} \right) \)
using rga-ops-def by blast
moreover have \(\text{set} \ \text{xs} = \text{set} \left(\text{pre} @ \text{suf} \right) \)
by (metis append-set-rem-last crdt-ops-distinct insert-ops-def rga-ops-def
\text{snoc.prems} \ \text{spec-ops-distinct} \ \text{ys-split})

84
ultimately show ?thesis
 using insert-ops-rem-last ys-split snoc by metis
qed

have valid-rga: rga-ops (pre @ suf @ [x])
proof –
 have crdt-ops (pre @ suf @ [x]) set-option
 using snoc.prems ys-split
 by (simp add: crdt-ops-reorder-spec insert-ops-def rga-ops-def)
 thus rga-ops (pre @ suf @ [x])
 by (simp add: rga-ops-def)
qed

have interp-ins (xs @ [x]) = interp-rga (pre @ suf @ [x])
proof –
 have set (xs @ [x]) = set (pre @ suf @ [x])
 using snoc.prems(1) ys-split by auto
 thus ?thesis
 using IH snoc.prems(2) valid-rga final-insert append-assoc by metis
qed

moreover have ...
 = interp-rga (pre @ [x] @ suf)
proof –
 obtain oid ref where x-pair: x = (oid, ref)
 by force
 have \(\forall r. \) op2 \(\in \) snd \(' \) set suf \(\Rightarrow \) r \(\in \) set-option op2 \(\Rightarrow \) r \(\neq \) oid
 using snoc.prems
 by (simp add: crdt-ops-independent-suf insert-ops-def rga-ops-def x-pair ys-split)
 hence \(\forall r. \) (i, Some r) \(\in \) set suf \(\Rightarrow \) r \(\neq \) oid
 by fastforce
 moreover have \(\forall r. \) ref = Some r \(\Rightarrow \) r \(\notin \) fst \(' \) set suf
 using crdt-ops-no-future-ref snoc.prems(3) x-pair ys-split
 by (metis option.set-intros rga-ops-def)
 ultimately show interp-rga (pre @ suf @ [x]) = interp-rga (pre @ [x] @ suf)
 using interp-rga-reorder valid-rga x-pair by force
qed

ultimately show interp-ins (xs @ [x]) = interp-rga ys
 by (simp add: ys-split)
qed

lemma insert-ops-exist:
assumes rga-ops xs
shows \(\exists \) ys. set xs = set ys \(\land \) insert-ops ys
using assms by (simp add: crdt-ops-spec-ops-exist insert-ops-def rga-ops-def)

theorem rga-meets-spec:
assumes rga-ops xs
shows \(\exists \) ys. set ys = set xs \(\land \) insert-ops ys \(\land \) interp-ins ys = interp-rga xs
using assms rga-spec-equal insert-ops-exist by metis

end
References

