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Abstract

This entry contains an Isabelle formalization of the Number Theoretic Transform
(NTT) which is the analogue to a Discrete Fourier Transform (DFT), just over a finite
field. Roots of unity in the complex numbers are replaced by those in a finite field.

First, we define both NTT and the inverse transform INTT in Isabelle and prove them
to be mutually inverse.

DFT can be efficiently computed by the recursive Fast Fourier Transform (FFT). In
our formalization, this algorithm is adapted to the setting of the NT7T: We implement a
Fast Number Theoretic Transform (FNTT) based on the Butterfly scheme by Cooley and
Tukey [1]. Additionally, we provide an inverse transform IFNTT and prove it mutually
inverse to FNTT.

Afterwards, a recursive formalization of the FNT'T running time is examined and the
famous O(nlogn) bounds are proven.
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1 Introduction

The Discrete Fourier Transform (DFT) is used to analyze a periodic signal given by
equidistant samples for its frequencies. For an introduction to DFT one may have a look
at [2]. However, one may generalize the setting and consider any algebraic structure with
roots of unity. For finite fields, we call the analogue to DFT a Number Theoretic Trans-
form (NTT). It can be used for fast Integer multiplications and post-quantum lattice-based
cryptography [3].

Starting our formalization, we provide some initial setup, namely roots of unity by an
argument on generating elements in Z, (Sections 2.1, 2.2, 2.3) and lemmas on summation
(Section 2.4), especially geometric sums (Section 2.5).

We continue with a mathematical definition of NTT [4] and formalize it in Isabelle (Sec-
tion 3.1). Let us consider a definition of DFT:

n—1
DFT(D)p = e w1 where § = v/—1
=0

In this equation, e~ %" is a root of unity. Let w be a n-th root of unity in Z, and we can state
analogously:

n—1
NTT(Z), = le - wht
=0

Throughout the paper, we stick to this definition. An inverse tranform INTT is obtained by
replacing w by its field inverse pu (i.e. p-w =1 mod p). We prove NTT and INTT to be
mutually inverse in Section 3.2.

For computing DFT more efficiently than O(n?), a divide and conquer approach can be
applied. By a smart rearranging, the sum can be split into two subproblems of size 5 which
gives an O(nlogn) algorithm. We call this the Fast Nuber Theoretic Transform (FNTT) [3]
and IFNTT respectively. The corresponding procedure is treated in Section 4. We prove
equality between (I)NTT and (I)FNTT and can infer that both are mutually inverse by pre-
vios results.

DFT and similar transforms like NT'T are especially famous for algorithms with O(nlogn)
running times. Thus, it is appropriate to formalize some related arguments. We loosely follow
a generic approach for verifying resource bounds of functional data structures and algorithms
in Isabelle [5].

During the formalization, we also present some informal arguments in order to give a bet-
ter intution of what’s going on in the formal proofs.

The present formalization was developed during a practical course on specification and
verification at the TUM Chair of Logic and Verification.

theory Preliminary-Lemmas
imports Berlekamp-Zassenhaus. Finite-Field
HOL— Number-Theory. Number-Theory


https://www21.in.tum.de/index.html

begin

2 Preliminary Lemmas

2.1 A little bit of Modular Arithmetic

An obvious lemma. Just for simplification.

lemma two-powrs-div:

assumes j < (i:nat)

shows ((27%) div ((2::nat) (Suc §)))x2 = ((27%) div (27)))
(proof)

lemma two-powr-div:
assumes j < (i:nat)
shows ((27%) div ((2::nat) 7)) = 27(i—))
(proof)

The order of an element is the same whether we consider it as an integer or as a natural
number.

lemma ord-int: ord (int p) (int x) = ord p x

(proof )

lemma not-residue-primroot-1:
assumes n > 2
shows —residue-primroot n 1

(proof)

lemma residue-primroot-not-cong-1:
assumes residue-primroot n g n > 2
shows [g # 1] (mod n)

(proof)

We want to show the existence of a generating element of Z, where p is prime.

Non-trivial order of an element g modulo p in a ring implies g # 1. Although this lemma
applies to all rings, it’s only intended to be used in connection with nats or ints

lemma prime-not-2-order-not-1:
assumes prime p
p>2
ordpg> 2
shows ¢ # 1

(proof )
The same for modular arithmetic.

lemma prime-not-2-order-not-1-mod:
assumes prime p

p>2

ordpg> 2



shows [g # 1] (mod p)
{proof)

Now we formulate our lemma about generating elements in residue classes: There is an
element g € Z, such that for any = € Z,, there is a natural ¢ such that ¢' = z ( mod p).

lemma generator-exists:

assumes prime (p::nat) p > 2

shows 3 g. [¢g # 1] (mod p) A (Y z. (0<z Az < p)— (3 i. [¢7 = z] (mod p)))
{proof )

2.2 General Lemmas in a Finite Field

We make certain assumptions: From now on, we will calculate in a finite field which is the ring
of integers modulo a prime p. Let n be the length of vectors to be transformed. By Dirichlet’s
theorem on arithmetic progressions we can assume that there is a natural number k£ and a
prime p with p = k- n + 1. In order to avoid some special cases and even contradictions, we
additionally assume that p > 3 and n > 2.

locale preliminary =
fixes
a-type::('a::prime-card) itself
and p::nat
and n::nat
and k::nat
assumes
p-def: p= CARD('a) and p-lst3: p > 2 and p-fact: p = kxn +1
and n-lst2: n > 2
begin

lemma exp-rule: ((c::('a) mod-ring) * d ) "e= (c¢"e) * (d"e)

{proof)

lemma 3 y. 2 # 0 — (2::(('a) mod-ring)) * y = 1
(proof)

lemma test: prime p

(proof)

lemma k-bound: k > 0
(proof )
We show some homomorphisms.
lemma homomorphism-add: (of-int-mod-ring )+ (of-int-mod-ring y) =

((of-int-mod-ring (z+y)) ::(("a::prime-card) mod-ring))
(proof)

lemma homomorphism-mul-on-ring: (of-int-mod-ring x)*(of-int-mod-ring y) =
((of-int-mod-ring (zxy)) ::((‘a::prime-card) mod-ring))

{proof)



lemma exp-homo:(of-int-mod-ring (z7%)) = ((of-int-mod-ring x) i ::(('a::prime-card) mod-ring))

(proof)

lemma mod-homo: ((of-int-mod-ring x)::(('a::prime-card) mod-ring)) = of-int-mod-ring (z mod p)

(proof)

lemma int-exp-hom: int x i = int (%)

(proof)

lemma coprime-nat-int: coprime (int p) (to-int-mod-ring pr) «— coprime p (nat(to-int-mod-ring pr))

(proof)

lemma nat-int-mod:[nat (to-int-mod-ring pr) ~d = 1] (mod p) =
[ (to-int-mod-ring pr) ~d = 1] (mod (int p))
(proof)

Order of p doesn’t change when interpreting it as an integer.

lemma ord-lift: ord (int p) (to-int-mod-ring pr) = ord p (nat (to-int-mod-ring pr))
{proof)

A primitive root has order p — 1.

lemma primroot-ord: residue-primroot p g = ord p g =p —1

(proof )
If 2/ =1in Zyp, then [ is an upper bound for the order of x in Z,,.

lemma ord-max:
assumes | # 0 (z :: ((‘a::prime-card) mod-ring)) "l = 1
shows ord p (to-int-mod-ring x) < I

{proof)

2.3 Existence of n-th Roots of Unity in the Finite Field

We obtain an element in the finite field such that its reinterpretation as a nat will be a
primitive root in the residue class modulo p. The difference between residue classes, their
representatives in the Integers and elements of the finite field is notable. When conducting
informal proofs, this distinction is usually blurred, but Isabelle enforces the explicit conversion
between those structures.

lemma primroot-ex:
obtains primroot::('a::prime-card) mod-ring where
primroot (p—1) = 1
primroot # 1
residue-primroot p (nat (to-int-mod-ring primroot))

{proof)

From this, we obtain an n-th root of unity w in the finite field of characteristic p. Note
that in this step we will use the assumption p = k- n + 1 from locale preliminary: The k-th
power of a primitive root pr modulo p will have the property (pr*)” =1 mod p.



lemma omega-properties-ex:
obtains w ::(('a::prime-card) mod-ring)
where w™n = 1

w # 1

Vmwm=1Am#0) — m > n

(proof )
We define an n-th root of unity w for NTT.

theorem omega-exists: 3 w ::(('a::prime-card) mod-ring) .
wn=1ANw#I ANV mwm=1Am#) — m > n)

(proof)

definition (omega::((‘a::prime-card) mod-ring)) =
(SOMEw . (wn=1Aw#INVN mwm=1ANm#0 — m > n)))

lemma omega-properties: omega ™n = 1 omega # 1
(V m. omega™m = 1 A m#0 — m > n)

(proof)
We define the multiplicative inverse u of w.
definition mu = omega " (n — 1)

lemma mu-properties: mu x omega = 1 mu # 1

(proof)
2.4 Some Lemmas on Sums

The following lemmas concern sums over a finite field. Most of the propositions are intuitive.

lemma sum-in: (3> i=0..<(z:nat). fi * (y :("a mod-ring))) = (3. i=0..<z. fi )* (y)
(proof)

lemma sum-eq: (N i. i<z = fi=g z)
= (Do i=0..<(z:nat). fi) = (> i=0..<z. g 7)
(proof )

lemma sum-diff-in: (> i=0..<(z:nat). (f i)::('a mod-ring)) — (3 i=0..<xz. g i) =
Oli=0.<z. fi— g1)
(proof)

lemma sum-swap: (> i=0..<(z:nat). > j=0..<(y:nat). fij) =
I (> j=0..<(y:=nat). > i=0..<(z:nat). fij)
proo

lemma sum-const: (> i=0..<(x::nat). (c:('a::prime-card) mod-ring)) = (of-int-mod-ring x) * ¢
(proof)

lemma sum-split: (rl:nat) < r2 = 3.1 = 0..<rl. ((f 1)::(("a::prime-card) mod-ring)))

:
+0l=rl.<r2. fl)=(>1 <r2. fl)



(proof)

le<mm?;lc>sum-mdez—shz'ft: o1 = (aunat)..< b. f(I+c)) = 1 = (atc)..< (b+c). f1)
proo

One may sum over even and odd indices independently. The lemma statement was taken
from a formalization of FFT [6]. We give an alternative proof adapted to the finite field Z,,.

lemma sum-splice:
O dtmnat = 0.<2xnn. fi) = .1 = 0..<nn. f (2x0)) + O_i = 0..<nn. f (2xi+1))
{proof )

lemma sum-even-odd-split: even (a:nat) = (> j=0..<(a div 2). f (2%j))+ O j=0..<(a div 2). f
(2xj+1)) = (22j=0.<a. f])
(proof)

lemma sum-splice-other-way-round: (3 j=(0:nat)..<i. f (2x)) + O j=0..<i. f (2xj+1)) =
(> j=(0::nat)..<2xi. fj)
(proof )

lemma sum-neg-in: — (>_j = 0..<l. (fj)=:("a mod-ring)) = (>.j=0.<l. — f7)
{proof)

2.5 Geometric Sums

This lemma will be important for proving properties on NTT. At first, an informal proof
sketch:

(1—2x) = xl—:v-zgvl
1=0 1=0 1=0
r—1 T
= e Y
=0 =1
=1-2a"

The same lemma for integers can be found in [7]. Our version is adapted to finite fields.

lemma geo-sum:

assumes z #* 1

shows (1—xz)x(>_1 = 0..<r. (z::("a mod-ring)) 1) = (1 —z"r)
(proof)

lemmas sum-rules = sum-in sum-eq sum-diff-in sum-swap sum-const sum-split sum-index-shift

end
end

theory NTT



imports Preliminary-Lemmas
begin

3 Number Theoretic Transform and Inverse Transform

locale nit = preliminary TYPE ('a ::prime-card) +

fixes w :: (‘a::prime-card mod-ring)

fixes p :: ("a mod-ring)

assumes omega-properties: w n =1 w # 1 ¥V m.w™m=1A m#0 — m > n)
assumes mu-properties: p * w = 1

begin

lemma mu-properties’s p # 1

(proof )
3.1 Definition of NTT and INTT

Now we can state an analogue to the DFT on finite fields, namely the Number Theoretic
Transform. First, let us look at an informal definition of NTT [4]:

1 1 1 1 1

1 w w? w3 wnt

1 w? wh w6 w2 (1)
NTT(Z)=[1 3 Wb WY W3 (=1 Z

i wn.—l w2-(.n—1) w?)-(;L—l) . w(n—1.)~(n—1)

Or for single vector entries:
n—1
NTT(Z); = > ;- w'
J=0

Formally:
definition ntt::((‘a ::prime-card) mod-ring) list = nat = 'a mod-ring where
ntt numbers { = (> j=0..<n. (numbers | j) x w (ixj))
definition NTT numbers = map (ntt numbers) [0..<n]

We define the inverse transform INTT by matrices:

1 1 1 1 1

1 4 12 13 !

1 2 i 1 2 (n=1)
INTT(3) = | 4 13 46 1 3= 1

1 Iu’nfl Iu2-(n71) M3-(n71) Iul(nfl)-(nfl)



Per component:
n—1
INTT(3); = Zyj -t
=0

definition intt zs i = (> j=0..<n. (zs ! j) * p (ixj))

definition INTT xs = map (intt xs) [0..<n]

Vector length is preserved.

lemma length-NTT:
assumes n-def: length numbers = n
shows length (NTT numbers) = n

(proof)

lemma length-INTT:
assumes n-def: length numbers = n
shows length (INTT numbers) = n
(proof)

3.2 Correctness Proof of NTT and INTT
We prove NTT and INTT correct: By taking INTT(NTT(z)) we obtain x scaled by n. Analogue

to DFT, one can get rid of the factor n by a simple rescaling. First, consider an informal
proof sketch using the matrix form:

INTT(NTT(Z)) =
1 1 1 1 1 1 1 e 1
1 ’unfl MZ-(nfl) . 'u(nfl)-(nfl) 1 ! w2-(nfl) w(nfl)-(nfl)

A resulting entry is of the following form:

3
_JL
3
—

INTT(NTT(z TRl x;

k:0

<.
Il
=)

Now, we analyze the interior sum by cases on ¢ = j.

10



Case © = j.

n—1 n—1
SIERELE) SO
k=0 k=0
=n-(n-w)
=n-1"F
=n

Note that w and p are mutually inverse.

Case i # j. Wlog assume i > j, otherwise replace w by p and i — j by j — ¢ respectively.

n—1 n—1
k=0 k=0
n—1
— Zw(iﬁ) k
k=0
= (1 — w7y (1 — i)t by lemma on geometric sum
S (117 (1= )
=0
n—1 n—-1 .
We conclude that > (3" p* - wi*) . z; =n - ;.
=0 k=0

theorem ntt-correct:
assumes n-def: length numbers = n
shows INTT (NTT numbers) = map (A z. (of-int-mod-ring n) * x ) numbers

(proof )

Now we prove the converse to be true: NTT(INTT(Z)) = n - Z. The proof proceeds analo-
gously with exchanged roles of w and pu.

theorem inv-ntt-correct:
assumes n-def: length numbers = n
shows NTT (INTT numbers) = map (A z. (of-int-mod-ring n) * x ) numbers

(proof)

end
end

theory Butterfly
imports NTT HOL— Library. Discrete-Functions
begin

11



4 Butterfly Algorithms

Several recursive algorithms for F'F'T based on the divide and conquer principle have been
developed in order to speed up the transform. A method for reducing complexity is the
butterfly scheme. In this formalization, we consider the butterfly algorithm by Cooley and
Tukey [1] adapted to the setting of NT'T.

We additionally assume that n is power of two.

locale butterfly = ntt +

fixes N

assumes n-two-pot: n = 2°N
begin

4.1 Recursive Definition

Let’s recall the definition of a transformed vector element:
NTT(Z Z ;- w'l
We assume n = 2 and obtain:

<2N

E N
.’I)j w
§=0

<aN-1 <aN-1
o (2in1
= E x2j.w7‘~7+ E $2j+1'wl(‘7+)
j=0 J=0
<2N—1 2N 1
= E T9; - (W) + W' E T2j41 J
Jj=0
<aN-2 <2N 2
Ny . Ny
= ( E Tgj - (W) + W' E Tajro - (W5)"7)
J=0 j=0
<2N72 <2N72

( Z Tajpr - (W' 4w’ Z Tajys - (wh)'7) ete.
J=0 J=0

which gives us a recursive algorithm:

e Compose vectors consisting of elements at even and odd indices respectively
e Compute a transformation of these vectors recursively where the dimensions are halved.

o Add results after scaling the second subresult by w?

12



Now we give a functional definition of the analogue to F'F'T adapted to finite fields. A
gentle introduction to FFT can be found in [2]. For the fast implementation of Number
Theoretic Transform in particular, have a look at [3].

(The following lemma is needed to obtain an automated termination proof of FNTT.)
lemma FNTT-termination-aux [simp]: length (filter P [0..<l]) < Suc |

(proof)

Please note that we closely adhere to the textbook definition which just talks about el-
ements at even and odd indices. We model the informal definition by predefined functions,
since this seems to be more handy during proofs. An algorithm splitting the elements smartly
will be presented afterwards.

fun FNTT::('a mod-ring) list = (‘a mod-ring) list where

FNTT [| = ]|
FNTT [a] = [d]]
FNTT nums = (let nn = length nums;

numsl = [numsli. i < filter even [0..<nn]];

nums2 = [numsli. i < filter odd [0..<nn]];

fnttl = FNTT numsl;

fitt2 = FNTT nums2;

suml = map2 (+) fnttl (map2 (A z k. azx(w™( (n div nn) x k))) ftt2 [0..<(nn div
2)]);

sum2 = map2 (=) fnttl (map2 (A z k. xx(w™( (n div nn) * k))) fmtt2 [0..<(nn div
2)])

in sumlQsum?2)

lemmas [simp del] = FNTT-termination-auz

Finally, we want to prove correctness, i.e. FNTT xs = NTT xs. Since we consider a
recursive algorithm, some kind of induction is appropriate: Assume the claim for % = 2d-1
and prove it for 2¢, where 2¢ is the vector length. This implies that we have to talk about
NTTs with respect to some powers of w. In particular, we decide to annotate NTT with a
degree degr indicating the referred vector length. There is a correspondence to the current
level [ of recursion:

degr = 2N~!

A generalized version of NT'T keeps track of all levels during recursion:

definition ntt-gen numbers degr i = (> j=0..<(length numbers). (numbers ! j) * w ((n div degr)*ixj))

definition NTT-gen degr numbers = map (ntt-gen numbers (degr)) [0..< length numbers]
Whenever generalized NT'T is applied to a list of full length, then its actually equal to the
defined NT'T.

lemma NTT-gen-NTT-full-length:
assumes length numbers =n
shows NTT-gen n numbers = NTT numbers

{proof)

13



4.2 Arguments on Correctness

First some general lemmas on list operations.

lemma length-even-filter: length [fi . i <— (filter even [0..<I])] = -1 div 2
(proof)

lemma length-odd-filter: length [f i . i <— (filter odd [0..<I])] = I div 2
(proof)

lemma map2-length: length (map2 f zs ys) = min (length xzs) (length ys)
(proof )

lemma map2-indez: i < length s = i < length ys = (map2 fxsys) ! i = f (zs 1 0) (ys ! i)

{proof)

lemma filter-last-not: = P x = filter P (xsQ[z]) = filter P xs
(proof)

lemma filter-even-map: filter even [0..<2x(z:nat)] = map ((x) (2::nat)) [0..<z]

(proof)

lemma filter-even-nth: 2xj < | = 2xx = | = (filter even [0..<l] ! j) = (2xj)
(proof)

lemma filter-odd-map: filter odd [0..<2x(z::nat)] = map (X y. (2:nat)xy +1) [0..<x]
(proof)

lemma filter-odd-nth: 2xj < | = 2%z = | = (filter odd [0..<I] ! j) = (2xj+1)
(proof)

Lemmas by using the assumption n = 2V,

(—1 denotes the additive inverse of 1 in the finite field.)

lemma n-mini-2: n =2 — w = —1

(proof)

lemma n-minil-gr2:
assumes n > 2
shows w (n div 2) = —1

(proof )
lemma div-exp-sub: 271 < n = n div (271) = 27 (N—1){proof)
lemma omega-div-exp-minl:

assumes 2 (Sucl) < n

shows (w (n div 27 (Suc 1)) (271) = —1
{proof)

lemma omg-n-2-minl: w (n div 2) = —1

{proof)

14



lemma neg-cong: —(z::('a mod-ring)) = — y = x = y (proof)

Generalized NT'T indeed describes all recursive levels, and thus, it is actually equivalent
to the ordinary NTT definition.

theorem FNTT-NTT-gen-eq: length numbers = 271 —> 271 < n = FNTT numbers = NTT-gen
(length numbers) numbers

{proof)
Major Correctness Theorem for Butterfly Algorithm.

We have already shown:
o Generalized NTT with degree annotation 2V equals usual NTT.
o Generalized NT'T tracks all levels of recursion in FNTT.

Thus, FNTT equals NTT.

theorem FNTT-correct:
assumes length numbers = n
shows FNTT numbers = NTT numbers

(proof)

4.3 Inverse Transform in Butterfly Scheme

We also formalized the inverse transform by using the butterfly scheme. Proofs are obtained
by adaption of arguments for FNTT.

lemmas [simp] = FNTT-termination-aux

fun IFNTT where
IFNTT || =
IFNTT [a] = [a]|
IFNTT nums = (let nn = length nums;
numsl = [numsli . i <— (filter even [0..<nn)])];
nums2 = [numsli . i <— (filter odd [0..<nn])];
ifntt] = IFNTT numsli;
ifntt2 = IFNTT nums2;
suml = map2 (+) ifnttl (map2 (X z k. zx(p( (n div nn) = k))) ifntt2 [0..<(nn div

sum2 = map2 (=) ifntt] (map2 (XA z k. zx(p( (n div nn) = k))) ifntt2 [0..<(nn div
in sumlQsum?2)

lemmas [simp del] = FNTT-termination-auz

definition intt-gen numbers degr i = (> j=0..<(length numbers). (numbers ! 7) * p ((n div degr)*ixj))

15



definition INTT-gen degr numbers = map (intt-gen numbers (degr)) [0..< length numbers]

lemma INTT-gen-INTT-full-length:
assumes length numbers =n
shows INTT-gen n numbers = INTT numbers

(proof)

lemma my-div-exp-minl:
assumes 2 (Sucl) < n
shows (u (n div 27 (Suc 1)) (271) = —1
{proof )

lemma my-n-2-minl: p (n div 2) = —1
(proof)

Correctness proof by common induction technique. Same strategies as for FNTT.

theorem IFNTT-INTT-gen-eq:
length numbers = 271 = 271 < n = IFNTT numbers = INTT-gen (length numbers) numbers

(proof)
Correctness of the butterfly scheme for the inverse INTT.

theorem IFNTT-correct:
assumes length numbers = n
shows IFNTT numbers = INTT numbers

(proof )
Also FNTT and IFNTT are mutually inverse

theorem [FNTT-inv-FNTT:
assumes length numbers = n
shows IFNTT (FNTT numbers) = map ((x) (of-int-mod-ring (int n))) numbers

(proof)

The other way round:

theorem FNTT-inv-IFNTT:
assumes length numbers = n
shows FNTT (IFNTT numbers) = map ((x) (of-int-mod-ring (int n))) numbers

{proof)

4.4 An Optimization

Currently, we extract elements on even and odd positions respectively by a list comprehension
over even and odd indices. Due to the definition in Isabelle, an index access has linear time
complexity. This results in quadratic running time complexity for every level in the recursion
tree of the FNTT. In order to reach the O(nlogn) time bound, we have find a better way of

splitting the elements at even or odd indices respectively.

A core of this optimization is the evens-odds function, which splits the vectors in linear

time.

fun evens-odds::bool ='b list = 'b list where

16



evens-odds - [| = []|
evens-odds True (z#xs)= (z# evens-odds Fualse xs)]
evens-odds False (z#uxs) = evens-odds True xs

lemma map-filter-shift: map f (filter even [0..<Suc g]) =
fO# map (\ =z f (z+1)) (filter odd [0..<g])
(proof )

lemma map-filter-shift: map f (filter odd [0..<Suc g]) =
map (A z. f (x+1)) (filter even [0..<g])
{proof )
A splitting by the evens-odds function is equivalent to the more textbook-like list compre-
hension.

lemma filter-compehension-evens-odds:

[xs ! i. i <— filter even [0..<length zs]] = evens-odds True xs A
[zs ! i. i <— filter odd [0..<length zs|| = evens-odds Fulse xs
{proof )

For automated termination proof.

lemma [simp]: length (evens-odds True ve) < Suc (length vc)
length (evens-odds False ve) < Suc (length vc)

(proof)

The FNTT definition from above was suitable for matters of proof conduction. However,
the naive decomposition into elements at odd and even indices induces a complexity of n? in
every recursive step. As mentioned, the evens-odds function filters for elements on even or odd
positions respectively. The list has to be traversed only once which gives linear complexity
for every recursive step.
fun FNTT' where
FNTT' || = []

FNTT' [a] = [a]]
FNTT' nums = (let nn = length nums;
numsl = evens-odds True nums;
nums2 = evens-odds False nums;
fnttl = FNTT' numsl;
fntt2 = FNTT' nums2;
fntt2-omg = (map2 (A z k. zx(w ( (n div nn) * k))) fmtt2 [0..<(nn div 2)));
suml = map2 (+) fnttl fntt2-omg;
sum2 = map2 (—) fnttl fntt2-omg
in sumlQsum?2)

The optimized FNTT is equivalent to the naive NT'T.

lemma FNTT'-FNTT: FNTT' zs = FNTT s
(proof)

It is quite surprising that some inaccuracies in the interpretation of informal textbook
definitions - even when just considering such a simple algorithm - can indeed affect time
complexity.
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4.5 Arguments on Running Time

FFT is especially known for its O(nlogn) running time. Unfortunately, Isabelle does not
provide a built-in time formalization. Nonetheless we can reason about running time after
defining some "reasonable" consumption functions by hand. Our approach loosely follows a
general pattern by Nipkow et al. [5]. First, we give running times and lemmas for the auxiliary
functions used during FNTT.

General ideas behind the O(nlogn) are:

o By recursively halving the problem size, we obtain a tree of depth O(logn).

o For every level of that tree, we have to process all elements which gives O(n) time.

Time for splitting the list according to even and odd indices.

fun T-.,::bool = 'c list = nat where
T-co - [] = Zl

T-co True (z#xs)= (1+ T-., False xs)|
T-co False (z#zs) = (1+ T-c, True xs)

lemma T-eo-linear: T-., b xs = length xs + 1

(proof)
Time for length.

fun Tiepgin where
Tlength H =1 |
Tlength (.’L’#Q?S) = 1+ Tlength xs

lemma T-length-linear: Ticngen x5 = length xs +1

(proof)
Time for index access.

fun T,,;; where

T | =1 |

Totn (z#xs) 0 = 1]

Trnin (x#xs) (Suci) = 1 + Tpep 254

lemma T-nth-linear: Ty xs i@ < length s +1

(proof)
Time for mapping two lists into one result.

fun T,4p2 Where

Tap2 t[] - = 1

Tmap2 t - [| = 1|

TmupQ t (1?#.735) (y#yS) = (t zy+ 1+ TmapQ txs ys)

lemma T-map-2-linear:

c> 0=
ANzy tzy <c) = Tmap2 t zs ys < min (length zs) (length ys) = (c+1) + 1
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(proof)

lemma T-map-2-linear’:
c> 0=

ANzy tzy=c) = Tmap2 t zs ys = min (length zs) (length ys) * (c+1) + 1
(proof )

Time for append.

fun T,,, where
Tapp [] -= 1
Topp (x#xs) ys=1+ Topp x5 Ys

lemma T-app-linear: Tqpp s ys = length xs +1

(proof)
Running Time of (optimized) FNTT.

fun Try7r:('a mod-ring) list = nat where
Tentr [] = 1]

Tentr [a) = 1

Tenrr nums = (1 +Tiengtn nums+ 3+

(let nn = length nums;

numsl = evens-odds True nums;

nums2 = evens-odds Fualse nums

m

T-co True nums + T-., False nums + 2 +
(let

fnttl = FNTT numsl;

fitt2 = FNTT nums2

mn
(TFNTT numsl) + (TFNTT nums?) +
(let
suml = map2 (+) fnttl (map2 (A z k. xzx(w™( (n div nn) * k))) mit2 [0..<(nn div
2)));
sum2 = map2 (=) fnttl (map2 (A z k. ax(w™( (n div nn) x k))) ftt2 [0..<(nn div
2)))
2% Trapa (A zy. 1) ftt2 [0..<(nn div 2)] +
2% Tap2 (A zy. 1) fattl (map2 (A z k. zx(w™( (n div nn) * k))) fmit2 [0..<(nn
div 2)]) +

Tapp suml sum2))))
lemma mono: ((fz):nat) < fy = fy < fz = fa < fz (proof)

lemma evens-odds-length:
length (evens-odds True xs) = (length xs+1) div 2 A
length (evens-odds False zs) = (length xzs) div 2
(proof)

Length preservation during FNTT.
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lemma FNTT-length: length numbers = 271 = length (FNTT numbers) = length numbers
(proof )

lemma add-cong: (al::nat) + a2+a8 +af=b = al +a2+ ¢ + a3+a4= c +b
(proof)

lemma add-mono:a < (b:nat) = ¢ < d = a + ¢ < b +d (proof)

lemma zyz: Suc (Suc (length xs)) = 2 ~ 1 = length (¢ # evens-odds True xs) = 2 ~ (I — 1)
(proof)

lemma zyz: Suc (Suc (length xs)) = 2 ~ 1 = length (y # evens-odds False zs) = 2 ~ (I — 1)
(proof)

When length xs = 2!, then length (evens-odds xs) = 2171,

lemma evens-odds-power-2:
fixes z::'b and y::'b
assumes Suc (Suc (length (xzs::'b list))) = 2 ~ 1
shows Suc(length (evens-odds b xs)) = 2 ~ (I—1)
(proof)

Major Lemma: We rewrite the Running time of FNTT in this proof and collect constraints
for the time bound. Using this, bounds are chosen in a way such that the induction goes
through properly.

We define:

T2 =1
T2 = (2 — 1) - 1dapply +15-1-2!71 2!

We want to show:

Tenrr(2Y) = T(2Y)
(Note that by abuse of types, the 2! denotes a list of length 2.)

First, let’s informally check that 7" is indeed an accurate description of the running time:
TFNTT(ZZ) =14+15-21 4 2. TFNTT(2Z_1) by analyzing the running time function
g 11590 po (25— 1) 14+ (1—1) - 15202 4 201

— 1420~ 1441527 415002 1520 4
=(2'-1)-14+15-1- 271 4 2
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The base case is trivially true.

theorem tight-bound:
assumes T-def: \ numbers l. length numbers = 271 = | > 0 =
T numbers = (271 — 1) x 14 + 1 x15x27(1—1) + 271
N\ numbers I. | =0 = length numbers = 271 = T numbers = 1
shows length numbers = 271 = TpnrT numbers = T numbers

{proof)
We can finally state that FNT'T has O(nlogn) time complexity.

theorem log-lin-time:
assumes length numbers = 271
shows Tryrr numbers < 30 x [ x length numbers + 1

(proof )

theorem log-lin-time-explicitly:
assumes length numbers = 271
shows Tryrr numbers < 30 * floor-log (length numbers) x length numbers + 1

(proof)

end
end
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